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Chapter 1

Introduction

1.1 Intercellular communication in the development of the

social amoeba Dictyostelium discoideum
The social amoeba Dictyostelium discoideum (figure 1.1) is one of the most stud-
ied organisms both in cell biology and developmental biology [65]. The main reason
why the amoeba have attracted researchers to date is that the cells transition from
a unicellular stage into a multicellular stage during their life cycle. The life cycle
of each amoeba begins with the germination of a spore. The cell germinated from
the spore continues to grow and divide as long as it finds bacteria on which it can
feed. Upon starvation, however, the cells start to communicate with each other by
means of a chemical mechanism. The intercellular signaling results in a macroscopic
spatio-temporal pattern of a signaling molecule. At a certain point, the cells start
to aggregate to a center of the pattern following a chemical gradient of the signaling
molecule. The resultant collection of the cells makes a mound-like aggregate contain-
ing about 105 cells. The aggregate then takes the form of a slug that can migrate a
long distance and finally culminates in a multicellular structure called fruiting body.

In this study, we try to gain insights into the relation between collective behaviors
of cells and properties of constituent cells through the analysis of cAMP signaling in
the early stage of Dictyostelium development. The collective behavior observed at
the early stage of the development is periodic synthesis and secretion of cAMP called
cAMP oscillation. Two to three hours after a layer of starved Dictyostelium cells are
placed on an agar substrate, a macroscopic pattern consisting of dark and light bands
of a few millimeters wavelength appears on the agar surface (figure 1.2). The pattern
propagates unidirectionally as waves and forms a spiral pattern in a self-organized
manner until the cells start to aggregate to the center of the spiral pattern [34, 35]. It
has been revealed that the pattern results from shape changes of the cells [2], which
alter the intensity of scattered light, caused by the stimulation of waves of cAMP
[66, 13, 93, 109]. Because the periodic nature of cAMP can be observed even in a
continuously stirred cell suspensions (i.e., in a spatially-uniform conditions)(Gerisch
1974), we call the phenomenon cAMP oscillation instead of cAMP wave. The several
dynamic properties of cAMP oscillation is the key in successfully carrying out their
development. The temporally periodic stimulation of cAMP cause the cells to express
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Fig. 1.1 Microscopic image of free-living Dictyostelium cells in a unicellular
stage. Scale bar: 100 µm.

several genes required at later stages of the development [82]. In addition to that, the
spatial pattern of the cAMP wave determines the point to which the cells migrate.

It is interesting to note that the dynamics of extracellular cAMP that stimulates
the cells are created by their own. Therefore a natural question here is that what kind
of rules governing each cell make it possible for a genetically identical cell population
to self-organize such spatio-temporal patterning. To understand the origin of the
collective behavior, cellular level properties of the signaling system has been intensely
investigated. One fundamental process underlying the oscillation is cAMP signaling
response in which binding of extracellular cAMP to receptors on the membrane cause
the cells to synthesize cAMP intracellularly and to secrete it to extracellular space
[25]. As will be described later in this chapter, we try to characterizes the response
in a quantitative way and then relate it to the population-level behavior.

How can it contribute to understand biological phenomena in general to solve the
problem specific to Dictyostelium? Because of the singularity of their life cycle and
resultant tractability in doing experiment, Dictyostelium cells offer substantial ad-
vantage over other model organisms in addressing several fundamental questions con-
cerning multicellularity. In the following sections, we introduce a few ubiquitous
phenomena in biology: cellular information processing, cell-cell signaling and pattern
formation in development. In each section, we discuss basic idea in the field and how
it is related to Dictyostelium development.

1.2 Cellular information processing
The survival of cells depends on appropriate response to diverse external cues and
stimuli and therefore cells must have developed mechanisms for responding to changes
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Fig. 1.2 Optical-density waves observed by a dark-field microscopy in the course
of Dictyostelium development on an agar substrate. The contrast of the image
was enhanced by frame subtraction. Scale bar: 5 mm.

in their environment during the course of evolution. One of the typical information
that cells utilize is the amount of molecules existing in extracellular space. External
molecule is usually detected by cells by receptor proteins at the cell surface (figure
1.3). The binding of the molecules to receptors activates the receptor, which in turn
activates one or more intracellular signaling pathways (or signal transduction systems)
composed mainly of cascades and networks of intracellular signaling proteins. The
activation of the pathways results in the alteration in the states of effector proteins,
which finally determine or shape cellular response. In general, the effector proteins
and resultant cellular response depend on the identity of the stimulus and the state
of the receiving cell. Examples of cellular responses evoked by chemical stimuli are
gene regulation, opening and closing of ion channels, modification of components of
metabolic pathway, or shaping of the cytoskeleton and so on.

A challenging problem in this field is to understand the molecular mechanism by
which information embedded in extracellular space is read out and transformed into
a cellular behavior. Such attempts can be difficult because of the ‘complexity’ of the
network structures of signal transduction system. The network is often characterized
by redundancy and cross-talk among pathways and full of feedback and feedforward
loops in it. To elucidate the mechanism, it is essential to characterize temporal
behavior of a system responding to a stimulus. The characterization of temporal
behavior, however, is often difficult because the cellular information processing is
intrinsically dynamic [91]: even if the same cells (in the same state) are stimulated
by the same species of molecule, the cellular response often depends on one or more
properties of the stimuli, such as amplitude, rate of increase, duration, or rate of
decrease.

Because of these properties, it is often required to measure the cellular behavior in
a quantitative way. Moreover, to obtain reliable data, the measurement of cellular
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Fig. 1.3 A conceptual diagram of cellular information processing by a intracellu-
lar signaling pathway. Extracellular signaling molecule are detected by receptor
proteins at the cell surface. The event activates one or more signaling pathways,
which causes the activation of effector molecules and resultant cellular behavior.

dynamics should be at the single-cell level [98, 81]. Experiments that average over
cell populations can mask events that occur only in a subset of cells, all-or-none ef-
fects and cell-cell variability. Furthermore, a cell must be placed in a well-controlled
environment because a quantitative difference between two input signals can cause
qualitatively different responses. Therefore, as will be explained in chapter 2, we
used an experimental system where we can observe how the cells synthesize intracel-
lular cAMP or another signaling molecule at the single-cell level in a well-controlled
environment.

In the following subsection, we will introduce two common cellular dynamics in
biology: adaptation and directional sensing. Both cellular responses are quite impor-
tant for cells to behave appropriately in an ever-changing environment. Dictyostelium
cells show both types of responses and their molecular mechanisms are under intense
investigation.

1.2.1 Adaptation

Adaptation refers to a system’s ability to respond to a change in input stimulus then
return to its prestimulated output level, even when the change in input persists (figure
1.4). Especially when the output level reset exactly to the prestimulus value, the
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Fig. 1.4 Input-output relations in adaptive responses.

response is called perfect adaptation. Adaptation is widely used in sensory systems,
such as vision and hearing, and other signaling systems ranging from the chemotaxis
of bacteria [11, 99, 100, 102, 10] to the osmo-response in yeast [76]. Adaptation
enables cells to more accurately detect changes in the input stimulus by resetting the
sensitivity in accordance with the background stimulus and to maintain homeostasis
in the presence of perturbations [72].

Adaptation in cAMP signaling response and its history
cAMP signaling response has been shown to be an adaptive response. Upon binding
of extracellular cAMP to the G-protein coupled receptor cAR1, intracellular cAMP
is synthesized by adenylyl cyclase ACA, which is activated by PI3 kinase- and PKB-
dependent pathways in a transient manner [94, 20, 15, 17]. Before these knowledge
of molecular details became available, Steck, Devreotes and his co-workers revealed
various dynamic aspects of cAMP signaling response [26, 25, 27, 28, 29, 108]. The
key experimental setup in their experiment was a combination of a perfusion system
that delivers cAMP stimuli of well-defined magnitude and duration and biochemical
assays for cAMP. By using these techniques, they were able to measure intracellular
and secreted cAMP under defined concentrations of extracellular cAMP and made
quantitative analyses under various conditions to reveal the dynamic property of
cAMP signaling response. As shown in figure 1.5, they revealed that the synthesis of
cAMP and its secretion peaks at about 2 minutes after application of extracellular
cAMP and attenuates within 3-10 minutes. The transient nature, or adaptation, of
the response is clearly not due to decrease in extracellular cAMP level by degradation
because perfusion was used to “clamp” the level of extracellular cAMP.

In spite of these earlier efforts, a lot remains to be determined regarding the dy-
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Fig. 1.5 Representative time courses of cAMP signaling response taken from
Ref. [108]. The unit of x-axis is minutes. Application of cAMP stimuli is
denoted by the dashed rectangle. Rates of radioactively-labeled cAMP secretion
were measured by using a population of cells.

namics in cAMP signaling response. One of the main reasons for this is that the
measurements were made at the population level in the preceding study. As stated
above, such measurements can miss individuality of the cells and more subtle feature
by averaging over the population. To circumvent these problems one would ideally
like to measure cAMP signaling response of single living cells in isolation. Recently,
such experiments have become possible by the development in FRET (förster reso-
nance energy transfer)-based cAMP sensor. By using one of the FRET-based cAMP
sensor epac1-camps [84], Gregor et al. have succeeded in observing the dynamics of
cAMP signaling response at the single-cell level [47]. When the cells are exposed
to a nanomolar level of extracellular cAMP by perfusion, cytosolic cAMP level rises
transiently within a few minutes after addition of cAMP. This response attenuates
during the next ∼15 minutes showing a trend like a damped oscillation with a peri-
odicity of 3-4 minutes (left panel in figure 1.6). At higher extracellular cAMP level,
the damping rate of the oscillation slows down so that the response persists as long as
extracellular cAMP is kept elevated. These single-cell analyses have clearly demon-
strated the oscillatory property of the response although it has been overlooked in the
previous measurements. Importantly the results place strong constraints on potential
mechanisms of cAMP signaling response; for a system to be able to show oscillation,
it has to contain a negative feedback loop in it [85]. Thus, the result would help us
search for the molecular mechanisms for the response.

Response-rescaling properties in cell signaling systems
Recent studies of the input-output relations of cellular signaling systems suggest that
a special type of adaptation called fold-change detection (FCD) may be ubiquitous
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Fig. 1.6 Representative time courses of cAMP signaling response measured at
the single-cell level by using FRET-based cAMP sensor. Two cells are rep-
resented by different colors. (Left) When perfused with a nanomolar level of
extracellular cAMP, the response is gradually damped and adapt to the stimu-
lus. (Right) When perfused with a micromolar level of extracellular cAMP, the
response persists.

in biology [19, 42, 97, 68]. FCD refers to a response whose entire shape, including its
amplitude and duration, depends only on fold changes in input and not on absolute
levels. The feature of FCD is related to Weber’s law, an empirical rule originally
found in the measurement on psychophysical threshold sensitivity [75, 43, 97]. The
law states that the maximal response to a change in signal is inversely proportional
to the background signal: ∆y = k∆z/z0, where k is a constant, ∆y is the change in
the output and ∆z is the signal change over the background z0. FCD is more general
than weber’s law or perfect adaptation (figure 1.7): Weber’s law concerns only the
maximal initial response and exact adaptation concerns only the steady state of the
response, whereas FCD concerns the entire shape of the response.

The first and only demonstration of FCD was provided in the bacterial chemotactic
response of Escherichia coli by in vivo FRET measurements on immobilized cell
population [68]. In the study, the dynamics of the activity of a kinase, CheA, was
analyzed in time-varying stimulus of an attractant α-methylaspartate with various
background stimulus level. As a result, it was shown that the response is dictated
not by the absolute differences from the background but rather the fold change over
the background (figure 1.8). From a theoretical point of view, Shoval and co-workers
showed that the FCD property is necessary and sufficient for an organism to be able to
move through a spatial sensory field in a way that is independent of multiplications by
scalars of the input field [97] For example, bacteria perform a spatial walk through a
chemo-attractant field, where the cells climb up the gradient of the field by computing
the rate of random direction changes based on the local concentrations of chemo-
attractant [10]. Here let us write the spatial position of a bacteria as R(t). In the
chemo-attractant field u(r, t), the cell senses a series of time changes in input signal
as u(R(t), t). The spatial distribution of chemoattractant u(r, t) is often governed by
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Fig. 1.7 Definitions of fold-change detection, Weber’s law and perfect adapta-
tion (modified from [97]). Responses to two step changes with identical fold
change and different absolute change are shown. Outputs of the system capable
of FCD are identical for the two inputs whereas outputs of the system with exact
adaptation, Weber’s law and no FCD are not except their amplitudes.

the equations for diffusion or passive scalar convection. Because of the linearity of
the equations in terms of the source strength, the sensory field has a scalar symmetry,
i.e., the field have the same pattern up to a multiplicative constant (a.k.a. amplitude
symmetry) irrespective of the source strength. Therefore a cell capable of fold-change
detection of the signal u(R(t), t) would be dictated not by the absolute level of the
signal, which is dependent on the source strength, but by the relative change of
the signal. Thus the spatial distribution of the cells would be independent of the
source strength [75]. In fact, Lazova and co-workers have demonstrated that the
spatial distribution of an ensemble of free-swimming E.coli cells changes identically
in different absolute levels of an attractant [68].

On the other hand, FCD has been described on the basis of indirect evidence in
eukaryotic cell sensory systems. For example in the case of the dynamic response of
ERK2, a well-characterized MAPK signaling protein, it was demonstrated that the
peak level of the protein concentration is proportional to basal level of it in each
cell [19] (figure 1.9). That is, fold change in the activity of the signaling molecule
is almost constant even though its absolute level is highly variable between cells.
The result strongly suggests that downstream system responds to fold change of the
concentration of ERK2 instead of absolute levels. However it remains to be seen
whether there really exists such mechanism in the signaling system.
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Fig. 1.8 Representative time courses demonstrating that E.coli chemotaxis dis-
plays FCD taken from Ref. [68]. The cellular response (∆FRET/|∆FRETsat|)
remain essentially invariant to identical waveforms and amplitude of input signals
([L]) scaled by the same factor as the background concentration of chemoattrac-
tant.

Fig. 1.9 (Left) Representative time courses of ERK2 response taken from Ref.
[19]. Different cells are represented by different colors. (Right) ERK2 responses
normalized to the initial time point.

A response-rescaling property in cAMP signaling response
Although several features of cAMP signaling response have been clarified by a single-
cell analysis using FRET-based cAMP sensor [47], such a response-rescaling prop-
erty in Dicyostelium cell is not yet determined. Investigating the property by using
Dicyostelium cells can be highly advantageous as it is now possible to observe the
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response at the single-cell level*1. Moreover, characterizing the property would also
be important to understanding cAMP oscillation because the cells experience time-
varying input stimuli with nonzero background level during the oscillation [40, 109].
In this study, we conduct single-cell analysis of response-rescaling property in cAMP
signaling response by using the cAMP sensor as described in chapter 3.

1.2.2 Directional sensing

Another example of well-characterized cellular dynamics is directional sensing. Di-
rectional sensing is one of the key process in chemotaxis by which cells sense and re-
spond to chemoattractant gradients. Interestingly, the process of directional sensing
is known to be separable from other processes required for chemotaxis (i.e., polarity
and motility) in the signal transduction system [104]; even in a immobilized cell with
no polarity, signaling molecules accumulate at the leading edge (the high side of the
gradient) of the cell and the location of the leading edge dynamically tracks changes
in gradient direction. Because chemotaxis underlies a wide range of biological phe-
nomena such as embryogenesis, the molecular mechanism of directional sensing has
been a central theme in cell biology.

Behaviors of the directional sensing module in Dictyostelium
In the case of Dictyostelium cells, a gradient stimulus of cAMP elicits an accumulation
of signaling molecule at the front of the cell [89, 104, 1] (figure 1.10). The initial event
of the process is to detect cAMP molecule by a subset of ∼ 80, 000 cAMP receptors
cAR1 at the cell surface [112]. The difference in the receptor occupancy by cAMP
molecules between the front and the back of the cell leads to a greatly amplified
response. That is, the distribution of a signaling molecule, phosphatidylinositol 3,4,5-
trisphosphate (PIP3), on the membrane are sharply localized to the leading edge even
when the gradient of the chemoattractant concentration across the cell is very shallow.
As shown in figure 1.10, gradient sensing and its resultant localization of the signaling
molecule persists as long as the gradient is maintained. Curiously the accumulation of
the same signaling molecule appears only transiently when the stimulus is presented
in a spatially-uniform manner.

A local-excitation and global-inhibition scheme
Phenomenological models to explain these behaviors of the directional sensing mod-
ule has been proposed based on a local-excitation, global-inhibition (LEGI) scheme
[88, 69] (figure 1.11). In this scheme, the activation of receptors by a external stimulus
triggers counteracting processes: a fast excitation of the output signal (PIP3) and a
slow inhibition of the signal. By these processes, a spatially uniform stimulus elicit
transient response because of the difference in the time scales of the two processes (fig-
ure 1.11 A). The model also explains the spatial distribution of the signaling molecule
upon a gradient stimulus by assuming excitation occurs locally near the membrane

*1 Although there are many biological systems that exhibit adaptation, single-cell analysis of
adaptation is often challenging. For example, even in the case of bacterial chemotaxis, a well-
characterized adaptive system, the response is often observed at the population level [101, 68].
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Fig. 1.10 Immobilized Dictyostelium cells that shows directional sensing taken
from Ref. [88]. The location of the signaling molecule PIP3 is visualized by
CRAC-GRP. The tip of a cAMP filled micropipette is placed in the vicinity of
the cells. The response of gradient sensing persists as long as the gradient is
maintained.

(local excitation) while inhibition occurs throughout the cells (global inhibition) (fig-
ure 1.11 B). At the front of the cell, excitation exceeds inhibition as the excitation
continues to reflect the local input level. On the other hand, at the rear of the cell,
inhibition exceeds excitation at steady state because of the global effect of inhibition.

A response-rescaling property in PIP3 response
As mentioned above, PIP3 is synthesized at the membrane as an output signal in the
gradient sensing module. As well as sensing cAMP gradient, the synthesis of PIP3

regulates a number of critical cellular processes such as cAMP signaling response [74].
Therefore characterizing the dynamics of PIP3 response would help us understand
the molecular mechanism of cAMP signaling response. However, as was the case for
cAMP signaling response, a response-rescaling property of the response has not been
investigated. In chapter 6, we characterize the property at the PIP3 level and show
how it efficiently constrains possible mechanisms of the directional sensing module.
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Fig. 1.11 A conceptual diagram of local-excitation, global inhibition model mod-
ified from Ref. [88]. (A) The transient response observed in cells when stimu-
lated uniformly is the combined effect of first the fast excitation followed by its
quenching by the slower inhibition. Because the stimulus is spatially uniform,
the distinction between local and global disappears. (B) In a gradient of receptor
occupancy, the excitatory signal at the front is stronger than that of the back.
The inhibitory signal equilibrates in space at steady state because of diffusion.

1.3 Cell-cell signaling
Understanding collective behavior of cells in multicellular system is one of the most
challenging problem in biology. Multicellularity requires the constituent cells to com-
municate with each other. The communication is often mediated by transmissions
of extracellular signaling molecules across the space between one cell and another.
Of course, cell-cell communication include information processing by cells: detection
of the signaling molecules secreted by other cells and transformation of the signal
into an appropriately response. Therefore, it would be important to investigate the
molecular mechanism responsible for the process of information.

However, to understand collective behaviors of cells, just describing single-cell level
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Fig. 1.12 Intercellular signaling includes interaction between two different hi-
erarchical level. That is, a behavior or response of a cell are fed back through
strong interactions between cells.

property and its molecular mechanism would not be sufficient. One of the essential
features in multicellular system is that each constituent cell is exposed to feedbacks
from a higher level of the system [64] (figure 1.12). In other words, the cells not just
respond to their environment, which consists of extracellular medium plus all other
interacting cells, but also the response does change the environment. To understand
such system in a proper way, it is also essential to elucidate the rule describing how the
cells interact with each other. In that sense Dictyostelium is an ideal model system
for the study of cell-cell signaling.

Advantages in making use of Dictyostelium cells as a model system for cell-cell signaling
Dictyostelium cells spend as single-celled organism when they grow and divide in a
nutrient-rich condition while they can switch to multicellular phase upon starvation.
Thanks to this property, the cells can be separated from other cells in a non-invasive
manner, which would be difficult in other multicellular system in general. Moreover,
the mode of cell-cell signaling in Dictyostelium cells are quite simple. The main
signaling molecule utilized by the cells is cAMP at least in the early stage of the
development although cells in other multicellular system would exchange many species
of molecules. Thus, in Dictyostelium, it is relatively easy to discriminate single-
cell level property from population-level property and to describe how the cells are
interacting with each other in comparison to other systems.

Simplification of the mode of cell-cell signaling by a perfusion system
Even though the mode of cell-cell signaling during Dictyostelium development is rel-
atively simple, it remains a challenge to accurately describe the way the cells interact
with each other. The reason for the difficulty is two-fold: first, concentrations of
signaling molecules and the resultant cellular state are spatially heterogenous in the
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development, and second, extracellular cAMP is degraded by an enzyme phosphodi-
esterase (PDE)*2.

To circumvent the difficulty, Gregor and co-workers have investigated cell-cell sig-
naling of Dictyostelium cells by using a perfusion chamber [47]. The system greatly
simplifies the kinetics of extracellular cAMP as this:

d[cAMP ]ext(t)
dt

= ρkt[cAMP ]int(t) − γ[cAMP ]ext(t), (1.1)

where [cAMP ]ext(t) and [cAMP ]int(t) represent the concentration of extracellular
cAMP and intracellular cAMP at time t respectively. The effect of rapid mixture of
extracellular buffer by perfusion enables a mean-field approximation and therefore to
omit space dimension in the formulation. In addition to that, because the constant
flow by perfusion rapidly washes out both extracellular PDE and cAMP, we don’t have
to consider an enzymatic reaction between the two. Instead, extracellular cAMP in
the perfusion chamber is constantly diluted by a factor of γ, which is determined
by the flow rate of perfusion. The secretion of cAMP by the cells are supposed to
be proportionate to intracellular cAMP [27] and to cell density ρ. Importantly, the
system has enabled to control the parameters ρ and γ independently of each other
by changing cell density in the chamber and the flow rate of perfusion. We will
describe the experimental results obtained by using the perfusion system in the next
section. To conclude, although interactions between cells are highly complicated in
multicellular organisms in general, cell-cell signaling in Dictyostelium cells can now
be described in a extremely simple way by using the perfusion chamber.

1.4 Pattern formation in development and its robustness
Spatiotemporal patterning in multicellular development shows high stability to en-
vironmental, genetic, or stochastic fluctuations [7, 9]. The stability, or robustness,
of the pattern formation of signaling molecules is a prerequisite for the success of
multicellular development as such molecules often direct cellular movement and/or
state during the course of the development [37]. Here, we describe an example of such
robust patterning in multicellular development. Then we show that similar property
can also be found in Dictyostelium development.

*2 When the cells are placed on a substrate, the general equation for the kinetics of extracellular
cAMP can be written as

∂[cAMP ]ext(r, t)

∂t
=ρ(r, t)kt[cAMP ]int(r, t)

− fρ([cAMP ]ext(r, t), [PDE]ext(r, t))

+ D∇2[cAMP ]ext(r, t).

Here, [cAMP ]ext(r, t) and [cAMP ]int(r, t) represent the local concentration of extracellular
cAMP and intracellular cAMP at time t respectively. The second term fρ represents the
degradation of extracellular cAMP by extracellular PDE secreted by the cells, which may also
be dependent on cell density ρ. The third term represents diffusion of extracellular cAMP.
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Fig. 1.13 Confocal images of Bcd gradient (immunofluorescence staining) for
Lucilia sericata (top), Drosophila melanogaster (middle) and Drosophila busckii
(bottom) taken from Ref. [46]. The focal plane is at mid-embryo and top-embryo
in the left and right columns, respectively. Scale bar: 100 µm.

Scaling of a morphogen gradient in a developing embryo
Examples of the robustness of functional patterns in multicellular system can be
found in morphogen gradients in developing embryos [9, 116]. Morphogen gradient is
a widely used paradigm by which a developing tissue provides its cells with positional
information. The molecule, i.e., the morphogen, is secreted by a localized group of
cells to a larger field where a concentration gradient of the molecule is established.
Cells in the field respond to the morphogen in a concentration dependent manner.
Interestingly, it has been shown that the morphogen gradient often scales with the
size of the field and therefore the proportion within and between tissues is precisely
kept. In other words, the morphogen gradients in the developing embryo are robust
to size variations. For example, the gradient of Bicoid (figure 1.13), a transcription
factor patterning early dipteran embryo [33, 32], was shown to be scaled with the size
of the embryo [46, 48, 49] (figure 1.14). The concentration of Bicoid was quantified
in embryos from different dipteran species varying by fivefold in size. In all species
examined, the Bicoid gradient was shown to be scaled with the size of embryo. The
mechanism of the scaling is still under intense discussion [9].

Robustness to variations in cell density in Dictyostelium development
The self-organized spatio-temporal pattern of cAMP in Dictyostelium development
plays a key role in orchestrating cellular behaviors. With regard to temporal pattern
of cAMP, periodic increase and decrease of it induces several genes that are required
for the cells to differentiate [82]. As to the spatial pattern of cAMP, the core of the
spiral-shaped cAMP wave works as an aggregation center to which tens of thousands
of cells collect to form a multicellular system. Of particular note is that these pattern
formations have to be achieved in natural environments, where various environmental
parameters would not be controllable for the cells. This entails that the pattern has
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Fig. 1.14 Scaling of Bcd profiles with egg length taken from Ref. [46] (B) Inten-
sity profiles of Bcd fluorescence. The x-axis in upper is absolute the x-axis in lower
is relative to egg length. (C）Length constants λ defined as c(x) ∝ exp(−x/λ) as a
function of egg length for L.sericata (blue), D.melanogaster (red) and D.busckii
(green). (D) Cumulative probability distributions of menthe constants λ for
L.sericata (blue), D.melanogaster (red) and D.busckii (green). Asterisks indi-
cate the means of the three distributions.

to be robust to variation in environmental parameters.
One of the key parameters that determines the success of the development is initial

cell density. It has been investigated whether and how the development is dependent
on the parameter. Naturally, there should be a lower limit of initial cell density for the
cells to be able to transmit signals to neighboring cells. This critical cell density has
been reported to be 5 × 104 cm−2, which corresponds to a few-hundredth monolayer
(ML) [50, 41]. This can be explained by supposing that the cells can only detect
the signaling molecules in a finite range of concentration [62] and therefore cAMP
molecules secreted by a cell has a finite range beyond which the molecule cannot be
detected by the neighboring cells [18].

On the other hand, a striking feature in Dictyostelium development is that the cells
are able to accomplish the development over a huge range of initial cell densities (well
more than two orders of magnitudes in initial cell density) [50, 41, 86]. To understand
the phenomenon, cell-cell signaling at the pre-aggregation stage would be the key
because once the cells have aggregated cell density would increase to a high value.
In fact, it has been shown that mutant cells that cannot synthesize cAMP (adenylyl
cyclase-null cells) but have activated form of PKA (catalytic subunit of PKA), the
major down stream effector of intracellular cAMP, lead to near-normal development
only at high cell density [113, 92]. This means that the success in the development
at low cell density in wild-type cells can be attributed to cAMP-mediated cell-cell
signaling*3. However, the reason for the robustness remains unanswered.

*3 Also, the result strongly suggests that all intracellular cAMP signaling is effected through PKA
and that signals other than extracellular cAMP coordinate morphogenesis in the later stage of
Dictyostelium development.
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Fig. 1.15 Representative time courses obtained by numerical calculations of the
equations 1.2. (Left) Here the variable representing extracellular cAMP, z, is
used as a control parameter to mimic the step-like input stimulus. At the time
indicated by the dotted red line, the system is subjected to an increase in ex-
tracellular cAMP, z, from 0 to 10. (Right) When all the three variables, x, y
and z are governed by the equations 1.2, the system exhibits a oscillation. The
parameter values used here are the same as in [73]: k1 = 0.036, k2 = 0.666,
L1 = 10, L2 = 0.005, c = 10, α = 3, λ = 0.01, θ = 0.01, ε = 1, q = 4000, σ = 0.6,
ki = 1.7, kt = 0.9, ρ = 0.2 and γ = 5.4.

Emergence of cAMP oscillation
Before we discuss the origin of the robustness to variations in initial cell density in
cAMP oscillation, we explain the reason why the cells exhibit the oscillation at the
early stage of the development. The dynamic properties of cAMP signaling response
and cAMP oscillation have been described by a mathematical model originally pro-
posed by Martiel and Goldbeter in 1987 (M&G model) [73]. The model is composed
of two-variable ODE equations describing cellular state and one ODE kinetic equation
for the extracellular environment. It assumes spatial uniformity, where the cells are
supposed to be placed in a well-stirred suspension or in a perfusion chamber. The
model has succeeded in reproducing two key features in the dynamics of cAMP signal-
ing: adaptation in cAMP signaling response and cAMP oscillation at the population
level in a semi-quantitative way (figure 1.15) *4.

The equations of the model are

*4 With a slight modifications of the model, it has been shown that the model can explain several
other features observed in Dictyostelium development [44]. Among others, the model has
reproduced the spatial patterns of cAMP, such as target pattern and spiral pattern, during
Dictyostelium development by diffusively-coupling the model [110, 111, 67]. Even nowadays
the model is still under intense investigation (for example Ref. [38]) to understand the origin
of the spatio-temporal patterns in the development.
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ẋ = −f1(z)x + f2(z)(1 − x)

ẏ = qσφ(x, z) − (ki + kt)y
ż = ρkty − γz,

(1.2)

where:

f1(z) =
k1 + k2z

1 + z
,

f2(z) =
k1L1 + k2L2cz

1 + cz
,

φ(x, z) =
α(λθ + εY 2)

1 + αθ + εY 2(1 + α)
,

Y =
xz

1 + z
.

The variables in the model x, y and z represent a regulatory variable within the cell
(which was supposed to be the activity of cAMP receptor*5), the concentration of
intracellular cAMP and the concentration of extracellular cAMP respectively. Most
of the parameters in the model are physiologically relevant and its values are collected
from experimental studies.

Although the model is composed of a set of rather complicated non-linear ordinary
equations, a topological representation may help understand the reason why the model
are able to show adaptation and oscillation. In figure 1.16, normal arrows indicate
activation effects and blunt edge denotes inhibiting effect. The AND in the diagram
represents the way φ(x, z) works in the model; the function φ(x, z) take high values
only when both x and z are large as is shown in figure 1.17.

First we consider a situation where z is viewed as a control parameter and the sys-
tem is governed only by the two equations for x and y. Such a situation is achievable
in the perfusion chamber if the cell density is sufficiently low and the flow rate is suffi-
ciently high (cf. equation 1.1). In this case a step-like increase in z makes a transient
increase in y because the activation of y by z is faster than the inhibiting process of x
by z. That is to say the output variable y exhibits adaptation as is shown in the left
panel in figure 1.15. The mechanism of adaptation is essentially based on a network
topology called incoherent feedforward loop, one of the recurring interaction patterns
in biological systems [3]. In the network topology, an input variable activates both
an output variable and a repressive process of the output variable.

Then we consider another situation where z is also governed by the equations 1.2.
This means that the system’s output y are fed back to itself through activation of z

*5 The assumption itself is now being considered to be wrong from a detailed study of the states
of the receptor [59]. In the study, it was shown that the adaptation in cAMP signaling response
is achieved downstream of the receptor. However, one can think of the regulatory variable x
as an another unknown internal entity that is responsible for adaptation in cAMP signaling
response. In that case the model remain valid, in that the model’s predictions in terms of the
behavior of other ‘observable’ variables, y and z, essentially agree with experimental results.
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Fig. 1.16 Topological representation of M&G model. The variables x, y and z
represent a regulatory variable, the concentration of intracellular cAMP and the
concentration of extracellular cAMP. Normal arrows indicate activation effects
and blunt edges denote inhibiting effect. The functions of φ(x, z) is represented
by “AND” as is explained in figure 1.17.
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Fig. 1.17 A graph of φ(x, z) in the model equations 1.2. The function φ(x, z)
can be think of an “AND circuit” because it takes high values only when both x
and z are large.
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by y (This corresponds to cell’s secretion of cAMP, which is represented by a dotted
arrow in figure 1.16). Note that the strength of the feedback is dependent on cell
density ρ. In a high-cell-density condition, this feedback makes the system unstable
and therefore the concentrations of cAMP (i.e., y and z) tend to increase. On the other
hand, because of the adaptive property of the cell resulting from an inhibitory process
from z to x, the elevated cAMP level tends to decrease, leading to oscillation. In terms
of network topology, the system has both a positive feedback loop (z → y → z) and a
negative feedback loop (z → x → y → z), which is one of the conditions for a system
to be able to oscillate [85].

It has been shown that adaptation can be achieved either by an incoherent feed-
forward loop or by a negative feedback loop [72]. This suggests that either of the
network topology is exploited by the cells to exhibit adaptation. Although an inco-
herent feedforward loop was adopted in M&G model, the above discussion can also
apply to the case in which a negative feedback loop is exploited. In both cases, it can
be shown that the system include one positive feedback loop (consisting of synthesis
and secretion of a signaling molecule, z) and one negative feedback loop in it and
therefore the system can show oscillation. To conclude the reason why a population
of Dictyostelium cells shows oscillation is that (i) the cells show adaptation and (ii)
there is the positive feedback loop resulting from secretion of cAMP.

Robustness of cAMP oscillation in the perfusion system
The above argument explains the emergence of the oscillation. However, the robust-
ness of the oscillation to variations in cell density remains to be answered. Roughly
speaking, one can think of two possible ways to achieve the robustness. One pos-
sibility is that the cells finely control the extracellular environment. This might be
possible, for example, by controlling the amount of extracellular phosphodiesterase
(PDE) concentration [6, 86]. Another possibility is that a response property of cAMP
signaling response mainly contributes to the robustness while the control of extracel-
lular cAMP is crude. This may be related to the adaptive property of cAMP signaling
response.

Recently Gregor et al. observed populations of cells by using a perfusion system
and showed that the cells exhibit cAMP oscillation even in the perfusion chamber.
According to equation 1.1, the key parameters in determining the cellular environment
and resultant population-level behavior are cell density ρ and dilution rate γ. In the
study, the population of cells are shown to exhibit two qualitatively different states
depending on the two parameter values (figure 1.18); (a) In regions where cell density
is high and flow rate is low and therefore cell-cell interaction is strong, the population
of cells exhibited cAMP oscillation (red regions of the phase diagram in figure 1.18)
with a constant, approximately six-minutes, periodicity (figure 1.19 left panel). The
periodicity is nearly identical to that in a natural condition. (b) In regions where
cell-density is low and flow rate is high and therefore cell-cell interaction is weak, the
cells exhibited sporadic firing or remained quiet (lower right of the phase diagram in
figure 1.18 and figure 1.19 right panel). In the intermediate regions between (a) and
(b), sharp transitions from quiet state to oscillatory state were observed.

The existence of the two qualitatively different states per se would be explained
relatively easily by assuming a finite dynamic range of cAMP receptor. If cell density
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Fig. 1.18 A phase diagram that show fairing rate as a function of cell density
and flow rate taken from Ref. [47]. The mean firing rate (min−1) is represented
in color. Red regions represents high frequency of the firing rate (period of 6
min) whereas blue (or white) regions represents sporadic firing.

is high and flow rate is low, the concentration of extracellular cAMP would be high
enough and the molecule will be detected by the cells and vice versa. Instead, what is
important here is that the oscillation is observed more than one order of magnitude
in cell density. In other words, cAMP oscillation is robust to variations in cell density
even in the perfusion chamber. Note that it is not possible to address maximum
cell density where cell population can show oscillation in the experimental system*6.
Therefore, the range over which the oscillation is observed is underestimated.

As discussed above, we can think of two possible ways to achieve the robustness of
cAMP oscillation; a fine control of extracellular environment or a adaptive property
in cAMP signaling response. However, it is impossible for the cells to precisely control
the amount of PDE and other extracellular proteins because such molecule will be

*6 In a natural habitat of Dictyostelium cells, it is conceivable that the cells are distributed in a
three dimensional space in the soil. In such a condition, it would be possible that cell density
gets higher than 1 ML, which is defined in two dimensional space. In the perfusion chamber,
we can only address cell densities less than 1 ML because the cells are more frequently swept
away by shear forces coming from perfusion when the cell density gets higher.
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Fig. 1.19 Representative time courses of cAMP oscillation in the perfusion
chamber. (Left) In conditions corresponding to the red regions of the phase
diagram in figure 1.18 (strong cell-cell interaction), the population of cells ex-
hibits periodic firing of intracellular cAMP. The condition of the data is: flow
rate 4 ml/min and cell density 1/16 ML. (Right) In conditions corresponding
to blue (or white) regions of the phase diagram (weak cell-cell interaction), the
population of cells exhibits sporadic or no firing. The condition of the data is:
flow rate 2 ml/min and cell density 1/64 ML.

immediately*7 washed out by perfusion. Therefore, the robust oscillation observed in
the perfusion chamber strongly suggests that the property can be attributed not to
an extracellular control but to an intracellular mechanism.

The necessity of fine tuning of parameters in a well-accepted model of cAMP oscillation
One might ask how difficult it is to explain the robust oscillation in the perfusion
chamber. As mentioned above, M&G model has succeeded in reproducing various
aspects of cAMP signaling often quantitatively. Here we ask whether M&G model
can reproduce the phase diagram shown in figure 1.18. Note that the equations for
z describing the kinetics of extracellular cAMP in M&G model has the same form
as that in the perfusion chamber discussed above (equation 1.1). Therefore we can
examine how the oscillation of the model depends on the two parameters; cell density,
ρ and degradation rate, γ. Figure 1.20 is the phase diagram that shows parameter
regions where oscillation is observed (red) and where oscillation is not observed (blue)
obtained from M&G model. It is clear from the figure that M&G model requires fine
tuning of the parameter values and therefore the oscillatory regions are narrower
than the experimental result. This indicates that it is not trivial to explain the
robustness. In other words, a model that can explain the emergence of oscillation
does not necessarily explain the robustness of it.

*7 The buffer in the perfusion chamber is exchanged rapidly (within a few minutes) compared to
the timescale for the expression of proteins (∼1 hr).



1.5 Outline of the thesis 23

10
0

10
1

10
−2

10
−1

10
0

γ

ρ

Fig. 1.20 A phase diagram that show existence and non-existence of oscillatory
solution in M & G model in a phase plane of γ and ρ. Red and blue regions
represents oscillatory and non-oscillatory (fixed point) region respectively. The
parameter values are the same as in [73]: k1 = 0.036, k2 = 0.666, L1 = 10,
L2 = 0.005, c = 10, α = 3, λ = 0.01, θ = 0.01, ε = 1, q = 4000, σ = 0.6, ki = 1.7
and kt = 0.9.

1.5 Outline of the thesis
In this chapter, we have discussed the property of cAMP signaling in Dictyostelium
cells in terms of three different but interrelated point of view, i.e, cellular informa-
tion processing, cell-cell signaling and pattern formation in development. Exploiting
Dictyostelium cells as a model system can be advantageous in these fields because (i)
we can analyze the dynamics of cellular responses at the single-cell level, (ii) the rule
governing cell-cell interaction is relatively simple and (iii) nevertheless, the collective
behavior cAMP oscillation has ubiquitous feature in multicellular systems; emergence
of a functional pattern and its robustness. Moreover, it is now clear that (a) adap-
tation in cAMP signaling response is not characterized sufficiently especially in its
response-rescaling property and (b) the origin of the robust cAMP oscillation is not
yet understood.

With these backgrounds in mind, we investigate the dynamic property of cAMP
signaling system at the single cell level and discuss its functional aspect in the fol-
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lowing chapters. After introducing experimental systems in chapter 2, we show the
results of single-cell analysis of cAMP signaling response in chapter 3. The response
is shown to follow fold-change detection (FCD). This is the first direct evidence of
FCD in eukaryotic signaling system. Also, the FCD property is shown to be robust
to cell-cell variability, meaning that the property is insensitive to the precise val-
ues of the biological parameters. Considering the role that cAMP signaling response
plays in intercellular communication in Dictyostelium development, the results raise
a question about the function of FCD in cell-cell signaling. In chapter 4, we develop a
mathematical model describing cells capable of FCD communicating with each other.
Analysis of the model reveals that the equations have a symmetric property, in that
the equations remain invariant to a transformation of variables. The symmetry can
be interpreted as a system’s robustness to variations in cell density. This strongly
suggests that the robustness of cAMP oscillation can be attributed to the FCD prop-
erty of the constituent cells. To further support the idea, in chapter 5, we test the
model’s prediction by studying cAMP oscillation in the perfusion chamber. There,
we show that the key properties in the model are also observed in the real system.
Thus, these data strongly suggest that cAMP oscillation is robust to variations in cell
density because each cell has the FCD property in cAMP signaling response. To gain
insights as to the molecular mechanisms in cAMP signaling response, in chapter 6,
we investigate the dynamics of a signaling molecule PIP3 which is upstream of ACA
in the signal transduction system. We show that the temporal behavior of PIP3 also
follows FCD. This result suggests that the PI3K pathway that governs the dynamics
of PIP3 is the origin of FCD in cAMP signaling response. In chapter 7, we explore
the possibility that the relation between FCD and the robustness is generalized to
biological system other than Dictyostelium cells in the perfusion chamber. By using
general form of equation, we show that FCD ensures the robustness to variations in
cell density in various conditions. Lastly, in chapter 8, we summarize the results and
discuss the outlook of this study in a broader context.
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Chapter 2

Materials and Methods

2.1 Cell preparation and measurements

2.1.1 Strain and cell culture

Dictyostelium AX4 cells were used for all experiments. Cell lines used included AX4
cells expressing Epac1camps (Epac1camps/AX4) and PHCrac-RFP (PH domain of
Crac fused to monomeric red fluorescent protein (mRFP)) (PHCrac-RFP/AX4).

Epac1camps/AX4
The cell line Epac1camps/AX4 was made in the preceding study [47] by transforming
AX4 cells with a expression vector pA15Epac1camps by electroporation [52]. The vec-
tor pA15Epac1camps allows constitutive expression of the cAMP sensor Epac1camps
[84] under the act15 promoter.

PHCrac-RFP/AX4
The cell line PHCrac-RFP/AX4 was made in the preceding study [106] by transforming
AX4 cells with a vector by electroporation. The expression vector was a generous gift
from R. Firtel (University of California, San Diego, CA) and carries a hygromycin
resistance cassette and PH domain of CRAC fused to mRFP1. The victor allows
constitutive expression of PHCrac-RFP under the act15 promoter.

Cultivation and starvation of the cells
The cells were selected and grown axenically at 22◦C in PS-medium [51] (1% Special
Peptone (LP0072; Oxoid), 0.7% Yeast extract (LP0021; Oxoid), 1.5% D-glucose,
0.14% KH2PO4, 0.012% Na2HPO4·7H2O, 40 ng/mL vitamin B12, 80 ng/mL folic
acid and 1x antibiotic-antimycotic mix (100X, 15240-112; Gibco), which contains
streptomycin, amphotericin B and penicillin, with 10 µg G418 for Epac1camps/AX4
and with 60 µg/ml hygromycin B for PHCrac-RFP; PH 6.5). During the cultivation,
30-ml cell suspensions in PS-medium were shaken in a Erlenmeyer flask (250 ml;
Bellco) at a constant speed of 155 rpm, where the cell density was kept below ∼ 2×106

cells. Before experiments, cells were washed twice with developmental buffer (DB; 10
mM K/Na2 phosphate buffer, 1 mM CaCl2, 2 mM MgCl2; pH 6.5) by centrifugation
of the cells in a centrifuge tube (15ml, 430766; Corning) for 3 minutes at 700 G. The
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washed cells were re-suspended in ∼1-ml DB in the centrifuge tube and shaken at
∼ 2 × 107 cells/mL at a constant speed of 155 rpm for 4 to 5 h.

2.1.2 Live cell microscopy

Starved cells were plated on a perfusion chamber at a density below 1×103 cells/cm2

and perfused with flow rate 4 to 8 ml/min unless otherwise described. Fluorescence
images were obtained at 22◦C.

Imaging of Epac1camps/AX4
The cell line of Epac1camps/AX4 was observed under inverted microscope (IX-81;
Olympus) equipped with a motorized microscope stage (BIOS-215T; Sigma Koki)
and filter wheels (99A354 and 99A357; Ludl Electronic Products) through oil im-
mersion objectives (60× PlanApo N, N.A. 1.42, or 20× UPlanSApo N, N.A. 0.85;
Olympus) (figure 2.1). The stage and the filter wheels were controlled by a stage con-
troller (FC-101G; Shiguma Koki) and the MAC5000 system (Ludl Electronic Prod-
ucts) respectively. Microscope device control and data acquisition were conducted by
using Metamorph software (Molecular Devices). As a light source, we used a xenon
lamp (UXL-75XB; Ushio) in a 75W xenon lamp housing (U-LH75XE; Olympus).
For FRET analysis, the image of the cells were taken through CFP channel (CFP
excitation filter and CFP emission filter) and FRET channel (CFP excitation filter
and YFP emission filter). In both channel, the cells were excited with 435-nm light
(BP425-445HQ; Olympus) with 50 % and 12% neutral density filters and 30 msec
exposure time. The emission from the cells was separated from the excitation by a
dichroic mirror (DM450; Olympus) and was passed through an emission filter 460-
510 nm (BA460-510HQ; Olympus) for CFP channel and 515-560 nm (BA515-560HQ;
Olympus) for FRET channel. Images were taken at 10 to 15 s intervals for total du-
ration of ∼0.5 to 2 hr. CFP and FRET images were taken in succession at ∼ 200 ms
interval. We also used YFP channel (YFP excitation filter and YFP emission filter)
only once right before each experiment to obtains data which is needed to correct
for cross-excitation (see below), where cells were excited with 495-nm light (BP490-
500HQ; Olympus) with 50 % and 12% neutral density filters and 30 msec exposure
time and the emission was separated from the excitation by a dichroic mirror (DM505;
Olympus). The images were captured with a depth of 16 bit by a 512×512 pixels by
an EMCCD camera (Cascade II:1024; Photometrics). Data were stored in Tagged
Image File Format (TIFF) files.

Imaging of PHCrac-RFP/AX4
The cell line of PHCrac-RFP/AX4 was observed under inverted microscope (IX-81;
Olympus) equipped with an automated stage (BIOS-215T; Sigma Koki), a confo-
cal unit (CSU-X1; Yokogawa) and optical shutters (LS6ZM2; Uniblitz Electronics)
through an oil immersion objectives (60× PlanApo N, N.A. 1.42; Olympus). The
stage and the shutters were controlled by a stage controller (FC-101G; Shiguma Koki)
and a shutter driver (VMM-D3; Uniblitz Electronic) respectively. Microscope device
control and data acquisition were conducted by using Metamorph software (Molec-
ular Devices). As a light source, we used a diode-pumped solid-state (DPSS) laser
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Fig. 2.1 A schematic diagram of the setup for FRET measurement.

(561 nm, 25mW; Melles Griot). PHCrac-RFP were excited with 50 % neutral density
filters and 30 msec exposure time and the emission was passed through an emission
filter (BA575IF; Olympus). Images were taken at 3 s interval. The images were cap-
tured with a depth of 16 bit by a 512×512 pixels by an EMCCD camera (Evolve:512;
Photometrics). Data were stored in Tagged Image File Format (TIFF) files.

2.1.3 Perfusion and cAMP stimulation

A chamber insert (RC-37F; Warner instruments) was mounted onto a glass bottom
culture dish (35 mm petri dish, 14 mm micro well, No. 0 coverglass; MatTek) using
silicone grease (high vacuum grease; Dow Corning) and the device was used as a
perfusion chamber. The inlet of the perfusion chamber was attached to syringes filled
with cAMP-containing buffer and the outlet was attached to a suction pump (MV-
6005V; ASONE) (figure 2.3). To provide a constant influx of cAMP-containing buffer,
syringe pumps (NE-1000X dual, New Era Pump Systems Inc.) were used, each of
which holds a 50-ml syringe (SS-50LZ; TERMO). The flow rate become controllable
by the syringe pumps while the average fluid volume in the perfusion chamber is
almost stable at ∼250 µl. To connect the inlet of the perfusion chamber to the
syringe pumps and the outlet of the perfusion chamber to the suction pump, tubes of
a few meters in total (Polyethlene tubing size 5; Hibiki, Tygon R-3603 (AAC0002);
Saint-Gobain and Laboran Silicon tube 1×2; HAGI) connected by tubing connectors
(64-0164; Werner instruments) were used. During perfusion, the flow rate was kept



28 Chapter 2 Materials and Methods

Fig. 2.2 A schematic diagram of the setup for confocal measurement.

at 8 ml/min at least for a minute before and after changing the concentration of
extracellular cAMP, which results in step-like changes (within ∼10 s) in the stimulus
level (figure 2.4) while the flow rate was reduced to 4 ml/min when there is no need
to change stimulus level.

2.2 Image processing and analysis
The following image processing and analysis were performed using MATLAB (Math-
Works). The source code central to these analyses are shown in the Appendix.

2.2.1 FRET analysis

Simple ratiometry (i.e., the ratio of fluorescence intensities of donor channel and
FRET channel) is a convenient way to analyze FRET data. However it is known that
such simple FRET ratio suffers from several sources of distortion such as spectral
bleed through, cross-excitation and photobleaching*1. To obtain a good indicator of
FRET efficiency, which is supposed to accurately reflects the concentration of cAMP,
such factors in raw data have to be corrected in a proper way [45, 117, 14]. Such fully-
corrected FRET index is more reliable, in that it is independent of the expression level
of cAMP sensor Epac1camps and therefore enables us to compare the values of index
among different cells. Here we describe how the correction was conducted in our

*1 In our experimental system, the effect of photobleaching is negligible
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Fig. 2.3 The perfusion system. (A) The perfusion chamber mounted onto a
mortared microscope stage. (B) Syringe pumps and a microscope.
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Fig. 2.4 Representative time courses showing exchange rates of fluid in the per-
fusion chamber. Buffer containing fluorescence was perfused and observed under
the microscope.
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Fig. 2.5 Determining the correction coefficient for bleedthrough. The cells that
express only CFP were excited with 435-nm light and fluorescence in CFP and
FRET channel with a background correction was measured (65 cells). The least
squares regression line is represented by the dotted line (y = 0.50x).

FRET experiment.
First, we determined the coefficient for spectral bleedthrough, α. Spectral

bleedthrough, or cross-talk, results from the fact that the emission spectrum of CFP
overlaps with YFP emission spectrum*2. This means that a part of fluorescence in the
FRET channel is comimg from the fluorescence emitted by CFP. To determine the
correction coefficient for bleedthrough in our system, we excited the cells expressing
only CFP with 435-nm light and recorded fluorescence with a background correction
in CFP and FRET channels. The ratio of the two fluorescence, α = FRET/CFP,
represents the effect of the spectral bleedthrough between the CFP and FRET
channel (figure 2.5).

Then, we evaluated the coefficient for cross-excitation, β. Cross-excitation refers
to the fact that YFP can also be directly excited by the 435-nm light. To estimate
the correction coefficient for cross-excitation in our system, we excited the cells that
express only YFP first with 435-nm light (to record the FRET channel emission
intensity) and then with 500-nm light (to record the YFP channel emission intensity).
The ratio of the two fluorescence, β = FRET/YFP, represents the degree of direct
acceptor excitation by 435-nm light (figure 2.6).

Using those coefficients, we corrected FRET channel intensities as follows. At the

*2 The opposite bleedthrough, i.e., YFP emission bleeding into CFP channel, is negligible.
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Fig. 2.6 Determining the correction coefficient for cross-excitation. The cells
that express only YFP were excited with 435-nm light for FRET channel and 500-
nm light for YFP channel and fluorescence in both channels with a background
correction was measured (42 cells).The least squares regression line is represented
by the dotted line (y = 3.1x).

beginning of each FRET experiment, we obtained the acceptor intensity IY FP−dir

measured on direct YFP excitation with 500-nm light. From the images of the cells
from CFP and FRET channel, we obtained fluorescence of the cells with a background
correction (ICFP and IFRET respectively). We then obtained the corrected FRET
channel intensity (IFRET−corr) as

IFRET−corr = IFRET − α × ICFP − β × IY FP−dir.

Finally, we obtained the FRET index as

FRETindex =
ICFP

IFRET−corr
.

2.2.2 Quantifying the responses of PHCrac-RFP/AX4

In evaluating the dynamics of PIP3 response in PHCrac-RFP/AX4, we analyzed the
images of the cells in essentially the same way as that developed by Postma et al
[90]. To accurately evaluate the dynamics of translocation of PHCrac-RFP, which
reflects the amount of synthesized PIP3 at the membrane, one have to obtain rela-
tive fluorescence intensity in the cytosolic region. This requires three processes: (i)
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discrimination between cytosolic region and other fluorescent and nonfluorescent re-
gion resulting from organella and (ii) normalization of the fluorescence intensities (iii)
correction of photobleaching.

Selecting regions of interest.
First, to select regions of interest, i.e., cytosolic regions, from the images, we omitted
non-cytosolic regions from raw data by using the techniques of image analysis*3(figure
2.7). The regions to be eliminated include the boundary (the membrane) of the
cells, fluorescent region such as nucleus and vesicles and nonfluorescent region such
as vacuoles. Briefly speaking, we selected spatially-clustered high-intensity or low-
intensity regions of the images by using both median filtering with a proper window
size and binalization technique. As shown in figure 2.7, this method enables to detect
non-cytosolic regions stably, regardless of whether the cell is responding to a stimulus
(cytosolic intensities are high) or not (cytosolic intensities are low).

Fig. 2.7 Quantification of fluorescence intensity in the cytosol. Representative
images of the cells before (A left) and after (B left) stimulation with 1 µM
cAMP are shown. Areas of cytosol (blue area in the right images of panels A
and B) were selected by omitting the plasma membrane and strongly fluorescent
and nonfluorescent objects (red, purple and magenta area in the right images of
panels A and B). The histograms (panel C) show the distribution of fluorescence
intensities in the cytosol of the cell shown in panels A and B respectively.

After selecting the region of interest, a median and a standard deviation of the
fluorescence intensities of the regions were obtained at each time. The left panel in

*3 In the preceding work [90], the selection of the region of interest was performed manually but
we developed a fully-automatic method.
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fig.2.8 shows a representative time course of fluorescence intensity. The SD values of
the time series data are relatively constant, which means the cytosolic fluorescence
intensity is properly estimated. Otherwise the SD values would fluctuate significantly
because the organella are so dynamic that they come and go on the focal plane even
within this short-time observation.

Normalization of fluorescence intensity of PHCrac-RFP in the cytosol.
Next, we normalized the time series of the fluorescence intensity. This is required
because the expression levels of PHCrac-RFP and therefore the cytosolic fluorescence
intensities are variable between cells. Normalized fluorescence intensity ÎC was cal-
culated as follows:

ÎC =
IC − IB

IC0 − IB
, (2.1)

where IC and IB is a median value of the fluorescence intensity in the cytosol and
the background fluorescence intensity outside the cell respectively. IC0 was defined as
the average value of IC in five images just before cAMP stimulation. Representative
time courses are shown in the right panel of fig.2.8.
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Fig. 2.8 Representative time courses of PIP3 response. In both figures, the cell,
the raw images of which are shown in fig.6.1, was stimulated with 1 µM cAMP at
t = 0 s. (Left) The results shown are the median and the SD of the fluorescence
intensity in the cytosol. Note the relative constancy of the SD values. This is
because the cytosolic fluorescence intensity is properly estimated by omitting the
fluorescent and nonfluorescent objects (fig.2.7). (Right) Normalized fluorescence
intensity defined as eq.2.1.

Correction for RFP photobleaching.
Finally, we corrected the effect of photobleaching. We correct the data by using
an estimated rate at which the fluorescence intensity decrease. Specifically, we first
obtained confocal images of unstimulated cells (figure 2.9). By fitting these data with
a linear equation y = ax+1, we obtained the photobleaching rate in this experimental
condition (16 % per minute). Using the value of photobleaching rate, we corrected
the normalized cytosolic fluorescence (figure 2.10).
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Fig. 2.9 Estimating the rate at which the fluorescence intensity decrease by
photobleaching. Confocal images of 27 unstimulated cells were obtained. Each
normalized florescence intensities (left) and mean and SD (right) are plotted
respectively. The red dotted lines in both figures are least-square fit representing
y = −0.16x + 1.
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Fig. 2.10 Correction of photobleaching. The normalized cytosolic fluorescence
(left) was corrected (right) using the estimated rate of decrease in fluorescence
intensity (figure 2.6). Two cells are represented by different colors.
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Chapter 3

Characterization of cAMP signaling

response at the single-cell level

3.1 Introduction
In Dictyostelium cells, binding of extracellular cAMP to the receptor on the mem-
brane elicits synthesis and secretion of intracellular cAMP. The response called cAMP
signaling response underlies cell-cell signaling and its resultant cAMP oscillation dur-
ing Dictyostelium development. Recent advantage in FRET-based cAMP sensor has
enabled us to observe cAMP signaling response at the single cell level. In preceding
studies, the response has been shown to be adaptive, meaning the synthesis of cAMP
occurs only transiently even in a persistent input [29, 47]. As discussed in chapter
1, however, the response property remains to be fully elucidated. In particular, a
key feature in characterizing an adaptive system, a response-rescaling property, has
not been investigated. Here, we address the issue by a single-cell analysis of cAMP
signaling response.

Brief summary of the experimental system
In this chapter, input-output relations in cAMP signaling response are investigated
in a quantitative way. To do this we used FRET-based cAMP sensor, Epac1-camps
[84], and a perfusion system. The cAMP sensor expressed in a transformed cell
(Epac1-camps/AX4) provides a real-time readout of a FRET index. The FRET index
corresponds to the concentration of intracellular cAMP. Importantly we corrected cell-
cell variation in the expression level of the sensor protein and therefore the value of the
FRET index can be comparable between cells. The perfusion system enabled us to
control extracellular environment. By employing a pair of syringe pumps, well-defined
time-varying input signal (i.e., extracellular cAMP) was delivered to the perfusion
chamber. Representative time courses are shown in figure 3.1. Further information
on the experimental system can be found in chapter 2.
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Fig. 3.1 Representative time courses of adaptive cAMP signaling response ob-
tained by full correction of FRET ratio (FRET index; see chapter 2). Four cells
are represented by different colors. 3 nM cAMP was applied at the dotted line.

3.2 Results and discussions

3.2.1 Adaptation in cAMP signaling response in low concentrations of ex-

tracellular cAMP

In a preceding study [47], it was shown that the level of intracellular cAMP rises
transiently and peaks within 2 to 3 minutes upon step stimulus of extracellular cAMP
(figure 3.1). The initial peak was shown to be followed by several peaks and the
subsequent peaks sustain in a higher concentration of extracellular cAMP, meaning
the timescale of adaptation depends on the stimulus level. To investigate the timescale
of adaptation and the range over which the response is able to adapt, we exposed the
cells to step stimuli with 0-M basal level (figure 3.2). To minimize photo damage to
the cells and avoid defocusing resulting from relatively long-time measurement, we
observed the cells only in a limited time window; 5-minutes measurement every 10
minutes. Figure 3.3 and 3.4 show representative time courses.

Figure 3.5 shows how amplitude of the response decreases depending on the stimulus
level. Here amplitude is defined as the maximum value of FRET index within each
5-minutes time window. As reported in the preceding work [47], 1 nM or higher
extracellular cAMP evoked the increase in the concentration of intracellular cAMP
right after the step change in the input*1. The figure also shows that the amplitude of
the response gradually decreases in a dose-dependent manner; the higher the stimulus

*1 It was demonstrated that the cells exhibit pulsatile, stochastic synthesis of intracellular cAMP
in a sub-nanomolar concentration [47], although the level of stimuli don’t evoke such deter-
ministic responses as 1 nM or higher cAMP do.
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Fig. 3.2 A schematic of the experimental setup. In this experiment, the cells in
a cAMP-free environment was stimulated with various concentrations of extra-
cellular cAMP in a step-like manner.

Fig. 3.3 Representative time courses of cAMP signaling response to 10 nM ex-
tracellular cAMP. Five cells are represented by different colors. The time lapsed
after the stimulation is indicated in x-axis. Observation was made for 5 minutes
every10 minutes after stimulation at t = 0.
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Fig. 3.4 Representative time courses of cAMP signaling response to 1 uM ex-
tracellular cAMP. Five cells are represented by different colors.
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Fig. 3.5 Response intensities as a function of time after the change in the level
of cAMP form 0 M. Response intensities were evaluated as a maximum FRET
index within 5-minutes time windows. Median and quartile are shown.

level is the longer the response sustains. At steady state (specifically, 40-minutes after
stimulation), qualitatively different two modes of responses are observed (figure 3.6);
at 10-nM cAMP or lower, the response adapts to the stimulation while, at 100-nM
cAMP or higher, the response tends to sustain.
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Fig. 3.6 Response intensities 40 minutes after the change in the level of cAMP.
In ∼10 nM or below cAMP, the response almost reset to the pre-stimulated level,
whereas, in ∼100 nM or above cAMP, it shows prolonged response. Median and
quartile are shown.

3.3 cAMP signaling response to relative changes in the level

of input stimulus

3.3.1 Weber’s law in cAMP signaling response

To investigate the response to relative increase in input stimulus, we exposed the cells
to step stimuli with nonzero basal level (Fig.3.7). Specifically, the cells were first
pretreated with a pre-stimulation (z0 in figure 3.7, z0 = 10 nM or less) and allowed
to adapt to it (it takes less than 40 minutes). After that the stimulation was changed
to a level of post-stimulation (z1 in figure 3.7) in a step-like manner.

Representative time courses are shown in figure 3.8. We found that the response
intensity, which we define as maximum value of the FRET index after step change
in the input, does not necessarily increase even when the difference between pre-
stimulus level and post-stimulus level increases; the cells adapted to 100 pM cAMP
respond to 1-nM stimulus with relatively high amplitudes (900-pM increase; left panel
in figure 3.8) whereas the cells in 1 nM cAMP respond to 3-nM stimulus with small
amplitudes (2-nM increase, right panel in figure 3.8). These results suggest that the
response intensity is not determined by the absolute change of the input stimulus.

Figure 3.9 shows the response intensities as a function of fold-change in the stimulus
level. As the three curves obtained from different pre-stimulus condition (100 pM,
1 nM, 3 nM) overlap significantly, the result shows that the response intensity is
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Fig. 3.7 A schematic of the experimental setup. Here the cells are initially
exposed to a pre-stimulus level (z0) of extracellular cAMP for less than 40 minutes
and allowed to adapt to the stimulus. Then the extracellular cAMP is elevated
to a post-stimulus level z1(> z0) in a step-like manner.
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Fig. 3.8 Representative time courses of cAMP signaling responses to relative
input changes. In each panel, three different cells are represented by different
colors. The stimulus levels were changed at t = 0.
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Fig. 3.9 Dose response curves of cAMP signaling response. The response inten-
sity is dictated by fold-change of the stimulus level (z1/z0), in that the curves
considerably overlaps irrespective of more than 10-fold difference in pre-stimulus
levels. The response intensity is defined as the maximum FRET index (ampli-
tude) within 5 minutes after the change in input stimuli. Median and quartile
are shown.

dictated by the fold-change of the stimulus level (z1/z0) (Fig.3.9). The result means
that cAMP signaling response follows Weber’s law – a common feature observed in
many sensory systems such as vision. Weber’s law refers to an I/O relation in which
the maximal response to a change in input signal is dictated by the fold-change of the
signal (see figure 1.7) [97].

3.3.2 A FCD property in the initial peak of cAMP signaling response

Then we asked whether cAMP signaling response follows fold-change detection (FCD)
as well as Weber’s law. FCD refers to a response whose entire shape, including its
amplitude and duration, depends only on fold change in input stimulus (see figure
1.7). By comparing time series data, we found that the entire shape of cAMP signaling
response does not follow FCD (figure 3.8 and 3.11); the second or later peaks following
the initial peak in the response become more prominent as the absolute level of the
stimulus increases. For example, the responses to a step change from 1 nM to 10 nM
(left panel in figure 3.11) shows more prominent second peak than the responses to a
step change from 100 pM to 1 nM (left panel in figure 3.8). As mentioned above, the
cells shows sustained response at ∼100-nM extracellular cAMP or higher (figure 3.5
also [47]). Consistent with these observation, sustained responses were observed when
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Fig. 3.10 Raw data used in figure 3.9. Blue, green and red represents data for
100 pM, 1nM and 3 nM respectively.

the cells are exposed to a relative increase in the input (right panel in figure 3.11).
Thus, the absolute level of input stimulus is reflected in the amplitudes of second or
later peaks and therefore the entire shape of the response does not follow FCD.

However, as far as cAMP oscillation is considered, the step inputs (figure 3.7)
we have used so far are not realistic: during cAMP oscillation, the concentration of
extracellular cAMP oscillates with a period of 6 minutes. Therefore, developmentally-
relevant properties of the response should be investigated by using periodic stimuli
(figure 3.12). Moreover, periodic stimuli, as well as step stimuli, is important in
characterizing an adaptive system in general. In fact adaptive systems such as the
osmo-response pathway of Saccharomyces cerevisiae and the chemotactic pathway of
Escherichia coli show deferent responsiveness depending on the frequencies of periodic
stimuli [76, 80, 12, 95]. In other words, such periodic inputs can reveal a characteristic
time constant of a system.

To observe cAMP signaling response in a physiological condition, we exposed the
cells to rectangular stimuli with a period of 6 minutes. Figure 3.13 shows representa-
tive time courses. We found that the intracellular cAMP level increases only during
up-phases of the input (double-headed arrows in the figure). That is, the second or
later peaks after the initial peak are suppressed in the down phases of the stimuli
while the initial peak is prominent in each up-phase. The initial peaks showed no
refractoriness; the amplitude of the response did not decrease in successive 6-minutes
periodic inputs. Furthermore, the amplitude of the initial peak is dictated by the fold
change of the input as was the case in the responses to step stimuli. In fact, as shown
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Fig. 3.11 Representative time courses of cAMP signaling responses to relative
input changes. In each panel, three different cells are represented by different
colors. The stimulus levels were changed at t = 0.

Fig. 3.12 The step inputs we have used so far are not realistic but periodic
inputs are more developmentally related as far as we consider cAMP oscillation
in Dictyostelium development.
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Fig. 3.13 Representative time courses of cAMP signaling response to stimuli
with a period of 6 minutes . In the left panel, the stimulus level was elevated
from 100 pM to 3 nM during the time windows denoted by double-headed arrows.
In the right panel, it was elevated from 1 nM to 30 nM. Each cell is represented
by different colors.
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Fig. 3.14 Representative time courses of cAMP signaling response to stimuli
with a period of 2 minutes. In the left panel, the stimulus level was elevated from
100 pM to 3 nM during the time windows denoted by double-headed arrows. In
the right panel, it was elevated from 1 nM to 30 nM. Each cell is represented by
different colors.

in figure 3.13, two periodic inputs with the same fold change but different absolute
level evoked similar outputs . When the period of inputs become significantly shorter
than 6 minutes, the initial peaks showed refractoriness and did not follow the up-
phases of the inputs (figure 3.14). These data suggest that the initial peak in cAMP
signaling response is responsible for the rise in the level of intracellular cAMP during
cAMP oscillation. Also, note that the duration of the initial peak seems independent
of the absolute level of the input. Specifically, it is approximately 3 to 4 minutes
regardless of whether the input is step-like one or periodic one. Thus, we conclude
that the initial peak in cAMP signaling response follows FCD.
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Fig. 3.15 The range over which the FCD property holds. Response intensities
to 10-fold change in input stimuli from indicated basal levels are shown. Median
and quartile are shown.

3.3.3 The dynamic range of the relative response

To probe the dynamic range over which the FCD property holds, we studied the
response amplitudes to 10-fold change at different pre-stimulation levels. Figure 3.15
summarizes the result. The cells begin to respond to 10-fold increase in the stimulus
level at ∼100 pM pre-stimulation level. The responsiveness remains almost constant
until pre-stimulation level reach ∼10 nM, which is nearly maximum concentration
that the response adapt. Thus, we conclude that the cells are capable of FCD over
approximately 2 orders of magnitude in pre-stimulation level.

3.3.4 Robustness of the FCD property in cAMP signaling response

As can be seen in the time series data of cAMP signaling response (e.g. figure 3.8
or figure 3.11), the shapes of the initial peaks are highly variable between cells. In
general, most biochemical parameters of living cells such as cell size and protein
concentrations often vary significantly between cells due to stochastic effect, even if
the cells are genetically identical [36]. Nevertheless some properties in cell signaling
systems have been shown to be robust to cell-cell variation [5, 19]. Such robustness
is often achieved by a special type of connectivity, or network topology, between
constituent proteins of the signaling system [8, 118, 77]. Knowing which property
is robust, therefore, can constrain potential mechanisms of the system [5, 72, 78].
Furthermore, such robustness would suggest that the property may be biologically
important because a functional property would be required to be stable [5, 19].
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Fig. 3.16 Raw data used in figure 3.15.

Here we ask whether the FCD property in cAMP signaling response is a robust
property or not. What we mean by robustness of the FCD property is as follows.
Imagine two cells that have identical biochemical parameters and the cells are stimu-
lated with step inputs with identical fold-change but different absolute level. If both
cells are capable of FCD, by definition, such stimulations would yield outputs whose
entire shapes are equal to each other. Assume that we can somehow change bio-
chemical parameters of the cells just a little from its original state to another state
simultaneously in both cells. Then we ask what happens when the cells are again
stimulated as before. The responses of the cells in the new states would, in general,
be different from the previous ones because of the alteration in their biochemical
parameters. Suppose if the FCD property requires fine-tuning of the parameters,
then the FCD property no longer holds in the new condition; the entire shape of the
responses are not identical to each other. On the other hand, if the FCD property
does not depend on the precise values of their biochemical parameters, i.e., if FCD
is a robust property, then the shape of the responses remain equal to each other.
Although preparing two biochemically-identical cells is unattainable because of the
individuality of the cells, we would be able to assume that each individual cells have
nearly identical biochemical parameter values for a brief period of time. This as-
sumption enables us to interpret the following experiments as a similar experiment
discussed above: that is, we expose each individual cell to two successive step inputs
with identical fold change but different absolute level (figure 3.17) to test whether the
FCD property is robust or not.

Representative time courses of the responses to such inputs are shown in figure
3.18, where the cells are exposed to two successive 5-fold increase in extracellular
cAMP. To evaluate the similarity between the two successive responses, we analyzed
the correlation between the amplitudes of the two. Figure 3.19 shows a scatter plot,
which represents the amplitude to the 1st step change (300 pM to 1.5 nM) and that
to the 2nd step change (1.5 nM to 7.5 nM). The figure clearly shows that, although
amplitude itself is highly variable between cells, the amplitudes of two successive
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Fig. 3.17 Schematic of the experimental setup to test whether the FCD property
is robust or not.

responses are highly correlated with each other (correlation coefficient: 0.81). This
means that the cells tend to respond with a relatively constant amplitude to a certain
ratio of increase in input stimuli in spite of the difference in its absolute level. This
suggests that the FCD property is less sensitive to the precise values of the biochemical
parameters of the cell than the amplitude of the response.

3.4 Some comments on the two modes of oscillation in

cAMP signaling
We have assumed that the initial peak of cAMP signaling response is primarily rel-
evant to cAMP oscillation but the following peaks of the response, or its oscillatory
behavior, are not. One might think that the oscillatory behavior in cAMP signaling
response observed at the single cell level directly explains cAMP oscillation at the
population level, but it’s not. Here we summarize observations that support our as-
sumption and explain how the two oscillations observed at the single-cell level and at
the population level are different.

Single-cell level oscillatory dynamics in cAMP signaling response
The necessity to discriminate between the two modes of oscillation in cAMP signaling
has emerged only recently because the multiple peaks in cAMP signaling response have
been observed for the first time in 2010 at the single-cell level by using FRET-based
cAMP sensor [47]. This was in contrast to the previous measurements on populations
of cells, in which cAMP signaling response were shown to consist of a unimodal
peak [26, 25]. The reason for the discrepancy between the two observation can be
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Fig. 3.18 Representative time courses of cAMP signaling response to two succes-
sive step inputs with identical fold-change. Six cells are represented by different
colors and data obtained from the same cell is represented by the same color in
the both panel. Here cells are first exposed to 300 pM cAMP and then 1.5 nM
cAMP for 15 minutes and then 7.5 nM cAMP.

understood as follows. Suppose that each individual cells exhibit oscillation but the
phases of the oscillations are not well synchronized between the cells. If the output
of the system was observed only at the population level, the output would look non-
oscillatory because of averaging effect [63, 81] (fig.3.20). Thus, the oscillatory property
have been revealed by the virtue of single-cell analysis.

Two different oscillations observed in two different conditions; subcellular oscillation and
cAMP oscillation
The observation of the oscillation at the single-cell level raised a question as to its
relation to the collective behavior of cAMP oscillation. However, the two oscillations
can be observed in two different experimental setup respectively (figure 3.21). The
oscillation in cAMP signaling response is observed in a condition where the cells are
isolated from other cells and stimulated with a fixed concentration of extracellular
cAMP. On the other hand, cAMP oscillation is observed in a condition in which the
cells are placed at a sufficiently high density and therefore are allowed to communicate
with each other through secreted cAMP. As a result of secretion of cAMP, the con-
centration of extracellular cAMP also oscillates in cAMP oscillation. Note that the
temporal properties of the input stimuli that the cells experience are totally different
in the two conditions.

We name the former oscillation subcellular oscillation, whereas we call the latter
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Fig. 3.19 A scatter plot that shows correlation of two amplitudes of the re-
sponses to two successive step inputs with identical fold-change. Each dot is a
measurement obtained from an individual cell (R = 0.68).

cAMP oscillation as customary. Note that we call it subcellular oscillation because
the oscillation can be observed even in a constant level of extracellular cAMP, that is
to say, the molecular mechanism responsible for the oscillation exists within the in-
tracellular, or subcellular, space (left panel in figure 3.21). On the other hand, cAMP
oscillation requires the concentration of extracellular cAMP to oscillate (right panel
in figure 3.21). In fact, externally-applied extracellular cAMP perturbs the oscilla-
tion significantly (as more fully discussed in chapter 5), meaning that the molecular
circuit responsible for cAMP oscillation contains the concentration of extracellular
cAMP. Also, as shown in figure 3.13, a periodic stimuli evoke only initial peaks at
the up-phase of the stimuli but no following peaks. Thus, we conclude that the two
modes of oscillations are different in their dependence on extracellular condition and
therefore in their mechanisms.

The periodicity of the oscillations are different.
As discussed, some experimental evidences show that the two oscillations are different
in their mechanisms. In addition to that, the periods of the two oscillations are
different. As mentioned in chapter 1, the periodicity of cAMP oscillation is ∼6 minutes
both in vivo and in the perfusion chamber (figure 1.18). However the periodicity of
cAMP signaling response is significantly faster than that of cAMP oscillation. To
quantify the periodicity of the spikes in cAMP signaling response, we conducted auto-
correlation analysis. Figure 3.22 shows the results where the cells are stimulated with
10 nM and 1 µM cAMP. Although the sustainability of the oscillation depends on
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Fig. 3.20 Comparison of individual and averaged cAMP response. Cells are
exposed to a constant flow of buffer with or without cAMP. Thin lines indicate
response in five cells to 1 µM extracellular cAMP applied at time zero. The red
line in bold is the group average. Peaks after the initial spike are not clearly
visible in the averaged signal.

Fig. 3.21 Two modes of oscillation in cAMP signaling system.
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Fig. 3.22 Autocorrelation function of cAMP signaling response defined as
φ(τ) = E{(Y (t) − E{Y (t)})(Y (t − τ) − E{Y (t)})}, where Y (t) represents time
series of cAMP signaling response and E{ } represents expectation operator.

the concentration of extracellular cMAP as discussed in section 3.2.1, the periodicity
seems to be independent of the concentration and is constant at approximately 3 to
4 minutes.

Thus, it is now clear that the oscillatory property in cAMP signaling response can
not explain cAMP oscillation by itself. This raise a question as to the biological
importance of the oscillation in cAMP signaling response. It is conceivable that
the fast oscillation is functioning at the later stage of Dictyostelium development.
In fact, it has been reported that the frequency of cAMP oscillation increases at
the aggregation or mound stage [30, 31]. It would be interesting to investigate the
relation between the single-cell level oscillation and the collective behavior observed
in the later development in the future.
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Chapter 4

A possible function of fold-change

detection in cell-cell signaling

4.1 Introduction
In the previous chapter, it has been demonstrated that the initial peak of cAMP
signaling response follows fold-change detection (FCD). One of the prominent features
in cAMP signaling response is that the output of the response, i.e., intracellular
cAMP, is secreted to extracellular space and therefore it can feed back to the cell. As
briefly discussed in section 1.4, the positive feedback loop resulting from the secretion
of cAMP is the reason for cAMP oscillation during development: Adaptability of
cAMP signaling response suggests that there exists a suppressive interaction between
molecular species within the cell. The suppressive interaction essentially composes
an incoherent feedforward loop (left panel in figure 4.1) or a negative feedback loop
(right panel in figure 4.1) [72]. Because of the secretion of cAMP (dotted line in figure
4.1), both system have one positive feedback loop and one negative feedback loop in
it. Such a network topology is capable of oscillation [85]. This is intuitively explained
as follows. The positive feedback loop consisting of secretion of cAMP and detection
of the molecule make quiescent state unstable and leads to higher concentration of
cAMP. However, the process of the increase of cAMP is interrupted at a certain point
as the suppressive effect resulting from adaptability of the cell become stronger and
therefore the concentration of cAMP begin to decrease. The newly-achieved low-
concentration state is again unstable and therefore the system proceeds to oscillate.

Then, how could the FCD property in Dictyostelium cells be advantageous in this
cAMP-mediated cell-cell signaling? To answer the question, in this chapter, we try
to understand the function of FCD by using a mathematical description of commu-
nicating cells capable of FCD. Through the analysis of the model, we propose the
hypothesis that the FCD property of Dictyostelium cells enables cAMP oscillation to
be robust to cell density. The explanatory power of the models are partially discussed
by reproducing a feature of the phase diagram (figure 1.18), which has been obtained
from measurements on the cell populations in the perfusion chamber [47]. The model
is further corroborated in the next chapter by more closely investigating the property
of cAMP oscillation in the perfusion chamber.
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Fig. 4.1 Network topologies describing cAMP-mediated cell-cell signaling in
Dictyostelium cells.

4.2 Results and discussions

4.2.1 Robustness to cell density in cell-cell signaling enabled by the FCD

property of the cells: a mathematical formulation

Consider a cell described by a set of ordinary differential equations, with internal
variable x, output y and input z. The dynamics of these variables are

ẋ = f(x, y, z)

ẏ = g(x, y, z).
(4.1)

FCD is defined as follows. Consider a system that is initially at steady state. FCD
means that the output y(t) is exactly the same for any two inputs z1(t) and z2(t)
that are proportional to each other, z2(t) = pz1(t), for any p > 0 and z1(t) > 0. By
definition, a system capable of FCD yields precisely the same temporal output to, for
example, two step inputs with the same fold change but different absolute level (cf.
figure 1.7).

It has been shown that FCD holds if the system is stable*1, shows exact adapta-
tion*2, and g and f satisfy the following condition for any p > 0 with an appropriate

*1 The system is stable, under a constant input, if every trajectories approaches a fixed point of
which value is dependent on the input strength in general.

*2 The system exactly adapts, under a constant input, if there exists a fixed point of which value
is independent of the input strength. Note that the notion of perfect adaptation used in biology
corresponds to a system’s property where the system is stable and capable of exact adaptation
[97] because the mathematical definition of exact adaptation does not refer to the stability of
the fixed point.
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function φ [97] (proof shown in Appendix 4.3.1)*3:

f(φ(p, x), y, pz) =
∂φ(p, x)

∂x
f(x, y, z) (4.2)

g(φ(p, x), y, pz) = g(x, y, z). (4.3)

As mentioned in section 1.3, in a perfusion chamber with a large number of cells in it,
the concentration of extracellular cAMP is governed by the equation d[cAMP ]ext(t)

dt =
ρkt[cAMP ]int(t) − γ[cAMP ]ext(t) (equation 1.1). Here [cAMP ]ext can be seen as
input (z) and [cAMP ]int as output (y) and therefore the equation can be written as

ż = ρkty − γz, (4.4)

using the same notation as in equation 4.1. Combining equations 4.1 and equation 4.4,
the whole system, i.e., cells communicating with each other in the perfusion chamber,
can be described as

ẋ = f(x, y, z)

ẏ = g(x, y, z)
ż = ρkty − γz.

(4.5)

where f , g satisfy the condition 4.2, 4.3 respectively. Note that here we consider a
situation where the extracellular cellular environment is spatially uniform and there-
fore the state of each individual cells, which would be specified by xi and yi, are all
synchronized and hence represented by x and y.

Here we show that the system 4.5 is invariant under the transformation

x → φ(p, X)
z → pZ

ρ → pρ.

(4.6)

This yields that

Ẋ =
1
∂φ
∂X

f(φ(p,X), y, pZ)

= f(X, y, Z),

using the condition 4.2 and

ẏ = g(φ(p, X), y, pZ)

= g(X, y, Z),

using the condition 4.3. The equation for z is transformed to

pŻ = pρkty − γpZ

⇐⇒ Z = ρkty − γZ.

*3 This condition is not only sufficient but necessary for a system to be able to exhibit FCD if
the system is controllable and observable in the sense of control theory [97].
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Therefore the whole equations become

Ẋ = f(X, y, Z)

ẏ = g(X, y, Z)

Ż = ρkty − γZ.

(4.7)

The invariance of equations 7.2.1 to the transformation 4.6 means that the system’s
output y(t) is independent of the parameter ρ. As the parameter ρ represents cell
density, we conclude that the output of the system 7.2.1 is robust to variations in cell
density. Also, it is obvious from the proof that the reason why the robustness emerged
in the system is that the cells, i.e., the subsystem consisting of x and y, exhibit FCD.

4.2.2 Phenomenological models capable of robust oscillation by means of

fold-change detection

In the previous subsection, we have shown that the equations 4.5 that describes
communicating cells capable of FCD in the perfusion chamber is invariant under the
transformation. This leads us to hypothesize that the robustness of cAMP oscillation
to cell density in the perfusion chamber also based on the FCD property at the single-
cell level. As a first step towards corroboration of the hypothesis, here we develop
phenomenological models whose outputs are independent of cell density and capable
of oscillation. Predictions of these models are compared with experimental results
later.

Two-node three-link circuits capable of FCD.
In the preceding works, it was demonstrated that a type of incoherent feedforward
loop [43] and several types of negative feedback loops [97] are able to show FCD.
Importantly, these ODE models are equipped with circuits as simple as two-node
three-link network topology. In the models, one node represents the output of the
system, another node plays a regulatory role in a topology-dependent manner, and
both of the nodes can be affected by input signal. Two-node three-link network
topology is the simplest framework for FCD because the topology is required for a
system to be able to exhibit perfect adaptation, which is a prerequisite for FCD.

Here we propose four networks as the simplest models capable of robust FCD (fig-
ure 4.2 and 4.3) based on the preceding works [43, 97]. What we mean by robust here
is that the property of FCD of the models are independent of the precise parameter
values. The network topologies of the four networks are either a incoherent feedfor-
ward loop (figure 4.2 for model (a) and (b)) or a negative feedback loop (figure 4.3
for model (c）and (d))*4. Those networks exhibit FCD because all models satisfy the
conditions for FCD: f(φ(p, x), y, pz) = ∂φ(p,x)

∂x f(x, y, z), g(φ(p, x), y, pz) = g(x, y, z)
(equations 4.2 and 4.3) by choosing φ(p, x) = px for network (a), (c）and (d), and

*4 Either of the topologies would be required for FCD because it has been shown by a computa-
tional search that either of them is necessary for a system to exhibit adaptation [72].
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φ(p, x) = x/p for network (b)*5 *6.

The FCD models with an additional positive feedback loop can have oscillatory solutions.
Now that we have obtained several two-variable models capable of FCD, we examine
whether the models can exhibit oscillatory output when input variable z obey the
equation ż = ρkty − γz (equation 4.4). We recall adding the equation to the FCD
models is a mathematical representation of cell-cell signaling; the cells are allowed to
communicate with each other by secretion and recognition of the signaling molecule
z. In other words, adding equation 4.4 to the models means to introduce a positive
feedback loop through extracellular space (figure 4.4).

In addition to that, in order for an ODE system to exhibit limit cycle oscillation,
it is required that there is sufficient nonlineality in the equations [85]. To introduce
such nonlinearlity into the models we substitute the term that represents activation
of output variable y by input z (i.e., z/x for (a), (b) and (c）, zx for (b)) by Michaelis-
Menten equation as z/x → zn/(zn + (Kx)n) or zx → (zx)n/((zx)n + Kn). Note this
substitution introduces a saturation effect of input stimuli z when it is sufficiently
large while it does not change the FCD property, i.e., the conditions for FCD (eq.4.2
and 4.3) still hold. With these modifications, all the three-variable models are capable
of oscillation (figure 4.5 and 4.6).

The three-variable models exhibit robust oscillation to cell density
From the previous discussion (subsubsection 4.2.1), it is obvious that the equations
are invariant under the transformation 4.6. That is, the oscillatory outputs, y(t), of

*5 One can also think of FCD models based on negative feedback loops which satisfy the condition
for FCD (equations 4.2 and 4.3) by choosing φ(p, x) = x/p instead of φ(p, x) = px. However
such models can be obtained by a transformation of variable, x = 1/ξ, of the model (c） and
(d) and therefore we here confine our interest only to model (c） and (d).

*6 A more intuitive way to show the FCD property of the models is as follows. Here we consider
the case of the model (a) in figure 4.2 but similar considerations are applicable to other models.
The model (a) can be written as

ẋ = az − bx

ẏ = c
z

x
− dy.

(4.8)

Let us define the following dimensionless variables,

X =
x

(a/b)z0

Y =
y

cb/ad
,

in which the variables x and y are normalized by the steady-state solutions for z = z0. Then
the equations 4.8 become

1

b
Ẋ = z/z0 − X

1

d
Ẏ =

(z/z0)

X
− Y.

Observe in the equations the dynamics of X and Y (and therefore y) only depends on fold-
change in z, which is the FCD property.
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Fig. 4.2 The simplest models capable of FCD based on incoherent feed-forward
loop (IFFL). Normal arrows indicate activation effects and blunt edges denote
inhibitory effects. The network (a) has already been reported in the preceding
work[97].

Fig. 4.3 The simplest models capable of FCD based on negative feedback loop.
Normal arrows indicate activation effects and blunt edges denote inhibitory ef-
fects. The network (c) has already been reported in the preceding work[97].
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Fig. 4.4 Introducing the equation for z, which corresponds to the concentra-
tion of extracellular signaling molecule, can be interpreted as adding a positive
feedback loop to the system consisting of secretion of signaling molecules (dotted
arrow) and recognition of the molecules (normal arrow).
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Fig. 4.5 Representative time courses of oscillatory solutions of the models based
on incoherent feedforward loops (figure 4.2). Blue, red and green lines represent
x, y and z respectively. Left panel is the modified version of model (a): ẋ =
az − bx, ẏ = czn/(zn + (Kx)n) − dy, ż = ρkty − γz where a = 4, b = 1, c = 5,
d = 1.5, n = 2, K = 1, ρkt = 1 and γ = 3. Right panel is the modified version
of model (b): ẋ = a/z − bx, ẏ = c(zx)n/((zx)n + Kn)− dy, ż = ρkty − γz where
a = 0.3, b = 1, c = 12, d = 1.7, n = 2, K = 1, ρkt = 1 and γ = 3.

the models are invariant to variations in cell density ρ. Just to show specific example,
we demonstrate the invariance by using our models introduced above. Here we take
a model (a) (with a positive feedback loop and nonlineality in input function) as an
example but the same is true for other models. The equation of the model (a) can be
written as

ẋ = f(x, y) = az − bx

ẏ = g(x, y) = c
zn

zn + (Kx)n
− dy

ż = ρkty − γz.

(4.9)
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Fig. 4.6 Representative time courses of oscillatory solutions of the models based
on negative feedback loops (figure 4.3). Blue, red and green lines represent x, y
and z respectively. Left panel corresponded to the modified version of model (c）:
ẋ = axy − bx, ẏ = c(zn)/(zn + (Kx)n) − dy, ż = ρkty − γz where a = 4, b = 1,
c = 2, d = 3, n = 2, K = 1, ρkt = 1 and γ = 3. Right panel corresponded to the
modified version of model (d): ẋ = ax − b(x/y), ẏ = czxn/(zxn + (K)n) − dy,
ż = ρkty − γz where a = 1, b = 1, c = 5, d = 1.5, n = 2, K = 1, ρkt = 1 and
γ = 3.

The subsystem x, y of this equation satisfies the FCD condition (equations 4.2 and
4.3) if we take φ as φ(p, x) = px. Therefore we transform the variables as (in the
same way as equations 4.6)

x → px

z → pz

ρ → pρ.

(4.10)

This yields

Ẋ = aZ − bX

ẏ = c
Zn

Zn + (KX)n
− dy

Ż = ρkty − γZ.

That is, the equations are invariant under the transformation of 4.10, meaning the
output variable, y(t), is invariant to variations in cell density. Figure 4.7 shows a
representative time courses of the model 4.9 and its dependence on cell density ρ. As
is obvious from equations 4.10, x and z is linearly dependent on ρ whereas the output
variable y is independent of ρ.

The models reproduce the robust property of cAMP oscillation in the perfusion chamber.
In section 1.4, we introduced an experimental result reported by Gregor et al. [47]
where they examined the dependence of cAMP oscillation on cell density (ρ) and flow
rate (γ) by using a perfusion chamber (figure 1.18). As mentioned there, there are
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Fig. 4.7 Independence and dependence of the model 4.9 on cell density ρ. Blue,
red and green lines represent x, y and z respectively. Left panel represents time
courses when cell density is low (ρ = 0.2). Right panel represents time courses
when cell density is high (ρ = 1). It is clearly shown that the variables x and z
are dependent on cell density ρ but the output variable y is independent of the
parameter. Parameter values are a = 4, b = 1, c = 5, d = 1.5, n = 2, K = 1,
kt = 1 and γ = 3.

oscillatory and non-oscillatory regions and the oscillatory regions have a characteristic
triangular shape in the γ-ρ phase plane. There we suggested that the existence of the
non-oscillatory region in high-γ and low-ρ regions can be understood by counting the
lower detection limit of cAMP receptors.

Here, to include lower detection limit of input signal, we make a slight modification
to the FCD models developed above and test if the models can reproduce the feature
of the phase diagram. Again, we take the model (a) as an example. The model can
now be written as

ẋ = axy − bx

ẏ = c
(z + δ)n

(z + δ)n + (Kx)n
− dy

ż = ρkty − γz,

(4.11)

where, in the equation for y, z is substituted by z + δ*7 to introduce a lower detection
limit of z to the model. Note that the cells, i.e., the subsystem x and y, no longer
exhibit the FCD property in a precise sense because of the new term δ. However,
when the level of input stimuli z is sufficiently high, the effect of δ would become

*7 One can choose other function forms to introduce the lower detection limit: c zn

zn+K(x+α)n or

c
(z+δ)n

(z+δ)n+K(x+α)n , both of which are compatible with the one described in the main text. In

fact, qualitative feature of the phase diagram is independent of the choices (data not shown).
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Fig. 4.8 A phase diagram that show existence and non-existence of oscillatory
solution of the model 4.11. Red and blue regions represents oscillatory and
non-oscillatory (equilibrium state) region respectively. Left panel represent the
results calculated from the perfect FCD model (δ = 0). Right panel is from the
approximate FCD model (δ = 0.01). The parameter values are a = 4, b = 1,
c = 5, d = 1.5, n = 2 and K = 1.

negligible as the relative magnitude of z and x would become sufficiently large.
As shown in figure 4.8, the model without lower detection limit (a perfect FCD

model, i.e., δ = 0 in equations 4.11) exhibits oscillation even in a infinitesimally small
cell density (figure 4.8 left panel). On the other hand, the model with a lower detection
limit successfully reproduced the triangular shape of oscillatory region in the phase
diagram (figure 4.8 right panel). This can be interpreted as follows: Because the
model with lower detection limit is no longer a perfect FCD model, the system no
longer exhibits oscillation at small cell-density regions in which the average level of
input stimuli z is small. On the other hand, at high cell-density and low flow-rate
regions, the average input level z (and therefore x) is high enough and therefore the
effect of lower detection limit (i.e., the effect of δ) is negligible and therefore the
cells show nearly perfect FCD. This feature of the phase diagram is also successfully
reproduced with other FCD models by introducing lower detection limit of input
stimuli (figure 4.9). Therefore we conclude that the robustness and triangular shape
of the phase diagram results from the FCD property of each individual cells and the
lower detection limit instead of the detailed structures of the system such as network
topologies of the signaling system.

FCD is required for cell-cell signaling in the perfusion chamber to be robust to variations
in cell density.
It has been suggested that FCD is one of the sensible strategies for a population of cells
to achieve the robustness in a perfusion chamber. However, it remains unanswered
whether the strategy based on FCD is the only way to achieve the robustness.
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Fig. 4.9 Phase diagrams that show existence and non-existence of oscillatory
solution of approximate FCD models based on model (B) (left), model (C）(mid-
dle) and model (D) (right). Red and blue regions represents oscillatory and
non-oscillatory (equilibrium state) region respectively. The parameter values are
(B): a = 0.3, b = 1, c = 8, d = 1.7, n = 2, K = 1 and δ = 0.01, (C）: a = 4,
b = 1, c = 2, d = 3, n = 2, K = 1 and δ = 0.01, (D): a = 1, b = 1, c = 5, d = 1.5,
n = 2, K = 1 and δ = 0.01.

We consider a system written as

ẋ = f(x, y, z)

ẏ = g(x, y, z)
ż = ρkty − γz,

(4.12)

We denote the trajectory of a variable i (= x, y, z) of the system with an initial
condition µ when the cell density is ρ as:

Ψi(t, µ, ρ),

and the trajectory of a variable i (= x, y) of the subsystem composed of x and y with
an initial condition ν when the input is z(t) as:

ψi(t, ν, z).

The robustness of the system 4.12 to cell density means that the output variable y
remain invariant to any multiplication of cell density ρ. That is, there exists a initial
condition µ′

0 that satisfies the following condition for any p*8:

Ψy(t, µ0, ρ) = Ψy(t, µ′
0, pρ). (4.13)

Given the robustness, it is obvious that the following statement is true from the
linearity of the equation for z in terms of the variable z: there exists an initial
condition µ′

1 that satisfies the following condition for any p:

Ψz(t, µ′
1, pρ) = pΨz(t, µ1, ρ). (4.14)

*8 Although this condition is rather strict if the initial condition µ0 are allowed to take any value,
here we assume µ0 take values within attractors of the solutions of the system.
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Given 4.13 and 4.14, the output of the subsystem composed of x and y must be
invariant to any multiplication of input z. That is, there exists an initial condition
ν′
0 that satisfies the following condition for any p:

ψy(t, ν0, z(t)) = ψy(t, ν′
0, pz(t)). (4.15)

This means that the system responds to only relative changes of the input, i.e., a
property that characterizes systems capable of FCD*9.

Although we showed that M&G model cannot reproduce the phase diagram (section
1.4), one might think that it may be possible to increase the robustness to cell den-
sity by choosing more appropriate parameter values. However, the discussion above
strongly suggests that improving M&G model so that it can show the robustness to
cell density is no more than to make the constituent cell (i.e, the subsystem (x, y))
capable of FCD. In other words, the result suggests that FCD is the only way to
achieve the robustness to cell density.

4.3 Technical notes

4.3.1 A sufficient condition for FCD.

This proof is essentially the same as the one described in [97] except that here we
explicitly consider a general condition for FCD instead of a special condition of which
proof is described in [97].

Here we consider a system whose dynamics is

ẋ = f(x, y, z)

ẏ = g(x, y, z)

and shows stability and exact adaptation. Here, we show that if

f(φ(p, x), y, pz) =
∂φ(p, x)

∂x
f(x, y, z) (4.16)

g(φ(p, x), y, pz) = g(x, y, z), (4.17)

then FCD holds. We compare the output y of the system to two different inputs:
z1(t) and z2(t) with a constant ratio p > 0 between them, z2(t) = pz1(t). That is, we
compare the outputs y1 and y2 of the systems

ẋ1 = f(x1, y1, z1)

ẏ1 = g(x1, y1, z1)

and

ẋ2 = f(x2, y2, z2)

ẏ2 = g(x2, y2, z2).

*9 It remains as a future work to show strictly whether the FCD is necessary for the robustness
because the equation 4.15 is not equivalent to the definition of FCD (cf. subsection 4.2.1).
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At time 0, the system is at a steady-state output y0 in constant inputs z1(0) = z0
1

and z2(0) = z0
2 . Thus, the following equations hold:

f(x0
1, y0, z

0
1) = 0

g(x0
1, y0, z

0
1) = 0

f(x0
2, y0, z

0
2) = 0

g(x0
2, y0, z

0
2) = 0

Using the condition 4.16 we have that

x0
2 = φ(p, x0

1), (4.18)

because f(x0
2, y0, z

0
2) = f(x0

2, y0, pz0
1) = 0 holds and there is only one value for x that

yields f = 0 at a given input z at steady state.
Consider the coordinate transformation for x2 and z2:

φ(p, x̃2) = x2

z̃2 =
z2

p
.

By this transformation and the condition 4.16, we have that

ẋ2 =
∂φ(p, x̃2)

∂t

= ˙̃x2
∂φ(p, x̃2)

∂x̃2

and

f(x2, y2, z2) = f(φ(p, x̃2), y2, pz̃2)

=
∂φ(p, x̃2)

∂x̃2
f(x̃2, y2, z̃2)

=
∂φ(p, x̃2)

∂x̃2
f(x̃2, y2, z1).

Note that here we used the relation z̃2 = z2/p = z1. Thus, the new variable x̃2 follows
the equation:

˙̃x2 = f(x̃2, y2, z1).

On the other hand, the equation that govern the output y2 can be written as

ẏ2 = g(φ(p, x̃2), y2, pz̃2)

= g(x̃2, y2, z̃2)

= g(x̃2, y2, z1),
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using the condition 4.17. The initial condition for y2 is equal to that for y1 (= y0)
because of exact adaptation. The initial condition for x̃2 (= x̃0

2) is equal to that for
x1 (= x0

1) because the following equation holds:

φ(p, x̃0
2) = x0

2 = φ(p, x0
1),

where the equality 4.18 was used. Thus, because the initial condition for x and
y are equal and their time derivatives are equal the relations, x1(t) = x̃2(t) and
y2(t) = y1(t), holds. As the output y2(t) is identical to y1(1) despite the input is
multiplied by a scalar, this means the system shows the FCD property.

4.3.2 Path inhibition in a FCD model

We used nonlinear terms such as z/x in developing FCD models. Although one might
think such a term is unnatural as a biochemical interactions, there are a few conditions
in which this type of regulation holds as described below.

• The term z/x can be think of as an approximation of a Michaelis-Menten
inhibition term z/(K + x), with K ¿ 1 [96].

• Consider a system described in figure 4.10. This system can be written as

τ ξ̇ = αz − βξx

ẏ = γξ − µy.

Then we suppose that the kinetics of the variable is sufficiently fast, i.e., the
parameter τ is sufficiently small. In such a condition, a quasi-steady-state
hypothesis could be justified for ξ, whose kinetic equation would then be reduce
to the algebraic relation:

ξ =
z

x
.

Therefore the dynamics of y is now governed by

ẏ = γ
z

x
− µy,

where the ratio z/x contribute to the synthesis of y.
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Fig. 4.10 Explicit representation of path inhibition. normal arrows indicate
activation effects, and blunt edges denote inhibition.
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Chapter 5

Testing the relation between FCD

and the robustness to cell density

5.1 Introduction
In the previous chapter, we have developed a mathematical framework by using a set
of equations, in which the combination of the FCD property of the cells and the extra-
cellular condition in the perfusion chamber were shown to result in a scale-invariant
property of the system. The scale invariance means that the system’s output, i.e.,
intracellular cAMP, is independent of the parameter of cell density. This strongly sug-
gests that the robustness to cell density of cAMP oscillation in the perfusion chamber
results from the FCD property at the single-cell level. To deduce some testable predic-
tions from the hypothesis, we have developed some specific phenomenological models
and demonstrated that the models reproduce the essential features of the phase dia-
gram of cAMP oscillation in the perfusion chamber. In this chapter, we show some
experimental and theoretical results that further support the validity of the relation
between FCD and the robustness to cell density.

Experimental tests
First, we test the predictions of the models through a series of experiments using the
perfusion system. Generally speaking, it would not be obvious which property of a
model should be consistent with a real system especially when discussing a phenom-
enological toy model: The degree of freedom of our models would be too small to
reproduce all the experimental results in a quantitative manner. Instead, we inves-
tigate a few qualitative features that is closely related to the origin of cell-density
robustness in the models – features that remain true as long as the constituent cells
are capable of FCD. In that sense, the following features, among others, would be the
key property: (i) Independence of the temporal behavior of intracellular cAMP to cell
density in cAMP oscillation. (ii) Increases in the average concentration of extracellu-
alr cAMP with cell density. As explained below, these features are closely related to
our scenario about the origin of cell-density robustness while they are independent of
specific details of the models such as network topology.

First of all, it is obvious that the feature (i), i.e., invariance of the dynamics of the
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output variable (y or intracellular cAMP) to cell density, is the key to our discussion
because the feature is the requirement for the system to be robust to cell density
(figure 4.7). Nevertheless the feature has not yet been directly observed. Therefore
we test whether the whole time series of the oscillation essentially remain invariant
in different cell-density conditions.

The feature (ii), increases in the average concentration of extracellualr cAMP
with cell density, results mainly from the assumption in the model’s equation for
z (dz/dt = ρkty − γz). That is to say, we have assumed that secretion of cAMP and
its resultant increase in the concentration of extracellular cAMP is dependent on cell
density (i.e., ρkty) whereas the degradation (or dilution) of it is independent of cell
density (i.e., −γz) *1. The feature would also be a key in testing the relation between
FCD and the robustness to cell density: if it were not for such increase in the aver-
age concentration of extracellular cAMP with cell density, then the FCD property,
i.e., the property to reset sensitivity to stimuli in accordance with its basal stimulus
levels, would not be required in achieving the robustness. Rather, it would become
more important to understand the mechanism for keeping the average concentration
constant irrespective of cell density. However the feature has not yet been addressed
experimentally mainly because of the technical difficulty in measuring the concentra-
tion of extracellular cAMP in the perfusion system. Here, instead of measuring it
directory, we will investigate the extracellular environment by observing the system’s
response to a perturbation of an externally-applied cAMP stimuli as will be described
later.

A theoretical test
In addition to those experimental corroborations, we will ask whether our phenome-
nological models are capable of excitation with a little bit of modification. One of the
characteristics observed during Dictyostelium development is propagating waves of
cAMP over a layer of signaling cells (figure 1.2). It has been realized that the waves
have a generic properties of excitable media, in that the waves propagate unidirection-
ally without damping in amplitude and those waves annihilate when two fronts collide
[34]. Both excitability and oscillatory property of the cell population are observed in
the course of the development and the way the cells transit between the two states
have been considered to be a key to make macroscopic spiral patterns [67]. From the
dynamical systems point of view, excitability and oscillation are closely related in that
an excitable system often bifurcates and become oscillatory depending on the values of
parameters [103]. Therefore it would be fair to say that an oscillatory model capable
of bifurcation to excitable state better describes cAMP oscillation than a oscillatory
model incapable of bifurcation [44]. Although the FCD-based oscillatory models in-
troduced in the previous chapter do not show excitability by themselves, we show
that a bit of modification of the models makes them excitable without changing the
FCD property. This result also strongly support the validity of our phenomenological
modeling.

*1 In other words, we have assumed that the decrease in the concentration of extracellular cAMP
is not attributed to cell-secreted molecules such as phosphodiesterase. The concentration of
the molecule would be dependent on cell density.
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Fig. 5.1 Images of the cells at 1/10 ML (left) and 1/2 ML (right) obtained
by the FRET channel (CFP excitation filter and YFP emission filter) through
20x objective lens. The scale bar represents 100 µm. In the experiments at the
population level described in this chapter, the flow rate of perfusion was kept 1.5
ml/min in the both conditions unless otherwise noted.

5.2 Results and discussions

5.2.1 Invariance of the temporal behavior of the output variable in different

cell-density conditions.

The key feature of the models is that the dynamics of the output variable is inde-
pendent of cell density (the feature (i)). Here we compare the dynamics of cAMP
oscillation between a low-cell-density condition (1/10 ML) and a high-cell-density
condition (1/2 ML). We use the corrected FRET ratio (FRET index) which allows
us to compare its absolute value of the signal as well as its temporal information as
discussed in chapter 2.

Figure 5.1 shows representative images of cell populations at the density of 1/10 ML
(left) and 1/2 ML (right) obtained through 20x objective lens. It is clear from these
images that the spatial occupancy by the cells are significantly different between these
two conditions. Figure 5.2 shows representative time courses of cAMP oscillation in
the two different conditions. The FRET index was obtained at the population level,
i.e., the averaged intensities with background correction of CFP image and FRET
image (and YFP image for correction) were used to obtain the FRET index. In the
preceding study [47], it has been demonstrated that the periodicity of the oscillation
is nearly constant at 6 minutes over a wide range of cell density on average except at
a critical point where transition from quiescence to oscillation occurs [47].

Figure 5.3 shows FRET index values at the top and at the bottom during cAMP
oscillation in two different cell-density conditions (i.e., 1/10 ML and 1/2 ML). This
clearly shows that, regardless of the five-fold difference in cell density, there is no sig-
nificant difference between the two in their absolute values of the FRET indexes both
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Fig. 5.2 Representative time courses of cAMP oscillation at the population level.
Left panel shows cAMP oscillation at the density of 1/10 ML. Right panel shows
cAMP oscillation at the density of 1/2 ML.

at the top and the bottom. As the corrected FRET index is a single-valued function
of the concentration of intracellular cAMP in a fixed experimental condition[14], the
result means that the absolute concentration of intracellular cAMP is not dependent
on cell density as well as its average periodicity.

5.2.2 Increase in the average concentration of extracellular cAMP with cell

density.

It has been demonstrated that, during cAMP oscillation, the concentration of extra-
cellular cAMP exhibits oscillation [40, 109] as a result of secretion of intracellular
cAMP to outer space [27]. In addition, the dynamics of cAMP oscillation is signifi-
cantly affected by externally-applied cAMP [39], demonstrating extracellular cAMP
is one of the key factors consisting of the chemical circuit responsible for the oscilla-
tion. Here, by using the perfusion system, we test how the oscillation is perturbed by
externally-applied cAMP and whether the effects are dependent on cell density. This
experiments would corroborate the prediction of our molds, i.e., the average concen-
tration of extracellular cAMP increases with cell density (the feature (ii)): if it is true
in the real system, the oscillation at higher cell density (and therefore higher average
concentration of extracellular cAMP) would be more insensitive to a small amount
of externally-applied cAMP than the oscillation at lower cell density. This is because
the relative magnitude of the perturbation to the average concentration is different
between the two conditions*2. As a perturbation, we adopted a constant elevation of
basal level in extracellular cAMP because such relatively simple interference with the
system can be expressed explicitly in the equations of our phenomenological model
and therefore it enables us to compare the results between the experimental results

*2 Here we are assuming that the relative scale of the perturbation is important because the
constituent cells detect the relative change of extracellular cAMP.
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Fig. 5.3 FRET index values at the top and bottom during cAMP oscillation.
Two different cell-density conditions are compared (Low: 1/10 ML, High: 1/2
ML). More than 20 points of data are used from two independent time series
data for each bar. Mean and standard deviation are shown.

and the phenomenological models.
In this case the system is governed by the equations

ẋ = f(x, y, z)

ẏ = g(x, y, z)

ż = ρkty − γ(z − z0),
(5.1)

where f and g satisfy the FCD condition (equation 4.2 and 4.3). The only difference
here is that the new constant parameter z0 is introduced to represents the concentra-
tion of cAMP that is applied externally by the perfusion system.

By using such perturbation, we observed the population of cells in the perfusion
chamber. Here, the flow rate was kept at 1.5 ml/min during the observation. In figure
5.4, representative time courses of the FRET indexes are shown in which 0.5 nM of
extracellular cAMP is applied to the system at the dotted line. cAMP oscillation at
the cell density of 1/10 ML (left panel in figure 5.4) ceased after application of 500-
pM cAMP (N ≥ 3) while the oscillation at the cell density of 1/2 ML (right panel in
figure 5.4) is less perturbed (N ≥ 3). The oscillation at a higher cell density was also
significantly perturbed when the level of perturbation is increased as shown in the
left panel of figure 5.5, where the oscillation at the cell density of 1/2 ML is disturbed
after application of 2.5-nM cAMP (N ≥ 3). Also we confirmed that the cease of
the oscillation is irreversible. The right panel in figure shows that the population of
cells at the cell density of 1/2 ML starts to oscillate when externally- applied 2.5 nM
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Fig. 5.4 Effects of externally-applied 500 pM cAMP to cAMP oscillation. Y-
axis indicates FRET index averaged over the population of cells within a region
of interest. (Left) In a relatively low cell density (1/10 ML), the oscillation
is strongly perturbed by the basal increase of extracellular cAMP. (Right) On
the other hand, in a relatively high cell density (1/2 ML) the same level of
perturbation does not affect the oscillation very much.
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Fig. 5.5 (Left) cAMP oscillation at a high cell density (1/2 ML) can also be
disturbed by a sufficiently high level of perturbation. Here 2.5 nM cAMP was
applied after the dotted line. (Right) Perturbation effect of externally-applied
cAMP is reversible. Here 2.5 nM cAMP was applied to a cell population of
1/2 ML until the dotted line and then removed by perfusing cAMP-free buffer.
cAMP oscillation appears after the removal of external perturbation.

cAMP is removed by re-flashing cAMP-free buffer (N ≥ 2). This result suggests that
the disturbance of the oscillation by externally-applied cAMP does not result from
some changes in the cellular state.

These results can be summarized as follows: (a) Sufficiently high concentration of
extracellular cAMP externally applied to the system can disturb cAMP oscillation
significantly. (b) The insensitivity to a certain level of elevation in the concentration
of extracellular cAMP increases with cell density. Note that the results eliminate the
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Fig. 5.6 Numerical simulation of equations 5.1 that shows different sensitivities
to a perturbation in extracellular cAMP depending on cell density. In left figure
cell density is low and in right figure cell density is high while the same level of
perturbation is applied after the dotted line. The parameters used are ρ = 1 for
left figure and ρ = 20 for right figure. Other parameters are a = 7, b = 1, c = 5,
d = 1.5, n = 2, kt = 1, K=1 and z0 = 0.005.

possibility that cAMP oscillation in the perfusion chamber is a kind of noise-driven
collective oscillation observed in an excitable media [79]: if one think of the system
of cAMP oscillation as an excitable media with a certain fixed threshold, a constant
elevation of extracellular cAMP would increase the probability that the noise elicit
the response of cells and hence collective oscillation. Instead, our data suggests that
the average concentration of extracellular cAMP are changeable depending on cell
density and therefore there is no such fixed threshold for making spikes.

Next, to test whether the experimental results are consistent with the behavior of
the model, we numerically calculated the equations 5.1 *3 and try to understand the
results. Figure 5.6 shows representative time courses of output variable y obtained
from the simulation. It’s revealed that the sensitivity of the system to a constant
level of perturbation is different depending on cell density: At low cell density (left
panel in figure 5.6), a certain level of perturbation is sufficient to prevent the system
from oscillating, while, at high cell density (right panel in figure 5.6), the same level
of perturbation does not stop oscillation. With a higher concentration of extracellular
cAMP, however, the oscillation ceases even in the high cell-density condition. These
results are completely consistent with the experimental results.

These behaviors can be understood as follows: First of all, observe that, with the
addition of the new parameter z0, the equations 5.1 no longer satisfies the invariant

*3 In this subsection, to obtain specific time courses from the model, we used model A of the four
models introduced in the previous chapter with the addition of the perturbation effect z0:

ẋ = az − bx

ẏ = c
zn

zn + (Kx)n
− dy

ż = ρkty − γ(z − z0).

However, qualitative feature of the results is independent of specific details of the model.
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Fig. 5.7 Numerical simulation of equations 5.1 that shows different sensitivi-
ties to a perturbation in extracellular cAMP depending on cell density. The
parameters values are the same as that in figure 5.6 except ρ = 20 and z0 = 0.1

property to the transformation of variables 4.6, i.e., the system’s output y is no
longer independent of cell density. On the other hand, irrespective of the presence
or absence of the term z0, it is the case that the higher cell density ρ is the higher
average extracellular cAMP concentration z is. It is also the case that, because of
the FCD property of the cells (i.e., the subsystem consists of x and y), the key factor
in eliciting cellular response is not the absolute change but the relative change in
z. The reason why a (sufficiently strong) perturbation in z ceases the oscillation is
that a constant increase in the average level of z by a factor, the amount of which is
determined by z0, decreases the relative changes in z (left panel in figure 5.8. Simply
put, the ratio, (zmax + δ)/(zmin + δ), decreases with increase in δ). Also the reason
why the oscillation in lower cell-density condition is more sensitive to a perturbation
is that a certain level of increase in the average level of z decrease the ratio of change
in z more significantly than that in high cell-density condition (right panel in figure
5.8. The ratio, (zmax + δ)/(zmin + δ), decreases with decrease in the absolute level of
zmax and zmin).

Discussion: On the absolute concentration of extracellular cAMP during cAMP oscillation.
We have observed that external application of 500 pM cAMP significantly disturbs
cAMP oscillation at the cell density of 1/10 ML whereas the same level of perturbation
does not prevent cAMP oscillation at the cell density of 1/2 ML. Here we show that
the results are consistent with earlier works as well as our results obtained from
single-cell level experiment by using specific biochemical parameters and the estimated
concentration of intracellular cAMP.

First, we recall that we assumed a kinetic equation for extracellular environment
in the perfusion chamber:

ż = ρkty − γz,

where the variables z and y represent the concentrations of extracellular and intracel-
lular cAMP respectively and the parameters ρ, kt and γ represent cell density, rate
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Fig. 5.8 The reasons why the dynamics of cAMP oscillation changes in a per-
turbation of extracellular cAMP. (Left) Relative change (such as top-to-bottom
ratio) of an oscillatory dynamics with a fixed amplitude decreases with the av-
erage value of the oscillation. Therefore a constant increase in the average level
of extracellular cAMP disturbs cAMP oscillation. (Right) A constant increase
in the average level of an oscillation alters its relative change less significantly
when the absolute level of the oscillation gets higher (compared to the left panel).
Therefore a condition with higher cell density is more insensitive to a perturba-
tion.

of cAMP secretion and rate of dilution respectively.
The parameter kt has already been determined by an earlier experiment as approx-

imately 0.9 (min−1) [27, 73]. In the perfusion system, absolute values of cell density
ρ at the cell density of 1 ML (= 6.6 × 103 cells/mm2) can be evaluated as follows:

ρ1 =
6.6 × 103 cells/mm2 × πr2|r=6.5 mm2 × 4πR3

3 |R=7.5µm

250 µ l
∼ 6 × 10−3,

(5.2)

where πr2 is the glass area where the cells are placed in the perfusion chamber and
R is the radius of the cells. Also the dilution rate γ is evaluated as

γ =
Flow rate

Fluid volume in the chamber

=
1.5 ml/min

250 µ l
= 6 min−1.

(5.3)

Note that the factor γ determines the time scale of the kinetics of z and that its
absolute value (6 min−1) is sufficiently larger than the time scale of the oscillation,
which is roughly the reciprocal of the period (1/(6 min) = 0.17 min−1). In such a
condition, a quasi-steady-state hypothesis could be justified for z and therefore its
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Fig. 5.9 cAMP oscillation in a cell suspension taken from Ref. [40]. The top
time series represents light scattering changes in a cell suspension. The bottom
two time series represents the concentration of intracellular and extracellular
cAMP respectively.

kinetic equation becomes the algebraic relation:

z =
ρkt

γ
y.

In an earlier study [40], the concentration of intracellular cAMP during cAMP oscilla-
tion has been evaluated, where it was shown that the basal level of intracellular cAMP
is approximately 3 µM and it increases by a factor of about 10 at the peak of cAMP
oscillation (figure 5.9). By using those parameters, we can estimate the concentration
of extracellular cAMP during cAMP oscillation in the perfusion chamber as follows.
At the low-cell-density condition (1/10 ML), the extracellular cAMP concentrations



5.2 Results and discussions 79

both at the bottom and at the top would be

zmin|ρ= 1
10ML =

(1/10)ρ1kt

γ
y
∣∣∣
y=3 µM

=
((1/10) × 6 × 10−3) × 0.9 min−1

6 min−1 × 3 µM

∼ 3 × 102 pM,

and

zmax|ρ= 1
10ML =

(1/10)ρ1kt

γ
y
∣∣∣
y=30 µM

∼ 3 nM,

respectively. Also, at the high-cell-density condition, the concentrations would be

zmin|ρ= 1
2ML =

(1/2)ρ1kt

γ
y
∣∣∣
y=3 µM

∼ 1.4 nM

and

zmax|ρ= 1
2ML =

(1/2)ρ1kt

γ
y
∣∣∣
y=30 µM

∼ 14 nM,

respectively. Note that the estimations are consistent with our single-cell level obser-
vation because the estimated basal concentrations are within the range over which
the cells are capable of FCD (from ∼ 100 pM to ∼ 10 nM). As the absolute con-
centrations of cAMP in these two conditions are different, the effect of the external
perturbations would also be different. One simple estimation of the effect would be to
calculate the ratio (= fold change) of the maximum to the minimum of extracellular
cAMP and to know how it deviates from 10-fold change. For the low-cell-density
condition, this is

zmax|ρ= 1
10ML + 500 pM

zmin|ρ= 1
10ML + 500 pM

=
3 nM + 500 pM

3 × 102 pM + 500 pM

∼ 4 fold change,

and for the high-cell-density condition, this becomes

zmax|ρ= 1
2ML + 500 pM

zmin|ρ= 1
2ML + 500 pM

=
14 nM + 500 pM
1.4 nM + 500 pM

∼ 8 fold change.

Therefore, the effect of the perturbation is less significant for the oscillation at higher
cell density.
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Fig. 5.10 Propagating waves of equations 5.4. Parameter values used here are
a = 0.28, b = 0.04, c = 5, d = 1.5, α = 0.1, n = 2, K = 1, ρ = 10, γ = 15 and
D = 20.

5.2.3 The models reproduce the property of excitable media.

As we have introduced in the section 5.1, the models we have developed in the previ-
ous section are capable of oscillation but not of excitation. Here we make the models
capable of both properties with a little bit of (and biochemically-acceptable) modifi-
cation. The modified equations of the model (a)*4 are:

ẋ = axy − bx

ẏ = c
zn

zn + (Kx)n
− dy + α

ż = ρy − γz + D∇2z,

(5.4)

where a constant α is added to the equation for y and an diffusion effect of z is taken
into consideration to test the stability of propagating waves. The new term α can be
interpreted as a basal activity of ACA by which the output value y become to have
nonzero value even when the input is absent. This model can exhibit the property
of excitable media, i.e., the model shows a propagating wave without damping in
amplitude (figure 5.10), annihilation of the waves in a collision (figure 5.11) and
refractoriness to two successive perturbations with short interval (figure 5.12).

Why has it become possible to make the system excitable just by adding a constant
term to the equations for y? In figure 5.13, we show nullclines of the equations 5.4

*4 Here we picked up the FCD model (a) which contains incoherent feedforward loop (equation
4.9), but same modification to models with negative feedback loop also make them excitable.
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Fig. 5.11 Annihilation of two proper gating waves of equations 5.4. Parameter
values are the same as in figure 5.10.
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Fig. 5.12 Refractoriness to two successive perturbations of equations 5.4. When
the interval between the two perturbations are long, a propagating wave with
full amplitude is generated (left panel). On the other hand, when the interval is
short the wave is not generated. Parameter values are the same as in figure 5.10.
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Fig. 5.13 Left: a = 4, b = 1, c = 5, d = 1.5 and alpha = 0. Right: a = 0.28,
b = 0.04, c = 5, d = 1.5 and α = 0.1.

(without the diffusion term) in which the three-variable system is reduced to two-
variable system by assuming that the kinetics of the equation for z is much faster
than other variables: the nullclines are

ẋ = axy − bx = f(x, y)

ẏ = c
((ρ/γ)y)n

((ρ/γ)y)n + (Kx)n
− dy + α = g(x, y).

(5.5)

With a finite value of α in equation 5.5, the equation g(x, y) = 0 become N-shaped
nullcline on the phase plane, which is a prominent feature of an excitable system [58].
Depending on the slope of the line 0 = f(x, y), the system shows bifurcation to an
oscillatory mode.

Thus, we succeeded in developing excitable FCD models. Considering the experi-
mental fact that cAMP oscillation is near bifurcation point [44], this strongly suggests
that our mathematical descriptions of cAMP oscillation captur the essence of cAMP
oscillation in the perfusion chamber.
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Chapter 6

Dynamics of the PI3K pathway

6.1 Introduction

6.1.1 The molecular mechanisms for achieving the FCD property in eukary-

otic cells remain to be identified.

As mentioned in Chapter 1, some preceding studies suggest that the FCD property is
widely observable in signal transduction systems in eukaryotic cells [19, 42]. However,
the molecular mechanism responsible for FCD in eukaryotic systems still remains
elusive. The main reason for the difficulty in identifying it is that there had been no
direct observation of FCD property in a signaling system. Now that we have shown
that the initial peak in cAMP signaling response follows FCD not just based on a
direct measurement but also at the single-cell level, it would be highly advantageous to
investigate the molecular mechanism of FCD by using Dictyostelium cells. In fact, the
structures of the intracellular signaling pathways responsible for cAMP signaling have
been investigated intensely by many researchers [104]. To integrate the accumulating
knowledge of the molecular networks of the signaling system, it is required to know
the dynamic property of the system at the single-cell level [4, 81]. Here, to understand
the molecular origin of FCD in cAMP singling system, we focus our attention to the
dynamics of the PI3K pathway that exists upstream of ACA.

6.1.2 PI3K signaling is necessary for the synthesis of cAMP.

In the signal transduction system of Dictyostelium cells, one of the key signaling path-
way, among others, is the phosphatidylinositol-(3,4,5)-triphosphate(PIP3)-dependent
signaling system called PI3K signaling pathway [54]. Upon stimulation with extracel-
lular cAMP, the signaling molecule PIP3 transiently translocates to the plasmamem-
brane [87] (PIP3 response) resulting from a positive regulation by phosphoinositide
3-kinase (PI3-kinase) and a negative regulation by PI3-phosphatase (PTEN) [53, 56].
The transient accumulation of PIP3 on the membrane is required for cAMP synthesis
since the accumulated PIP3 confer binding sites for multiple PH domain-containing
proteins necessary for cAMP synthesis.

One of the PH domain-containing proteins is cytosolic regulator of adenylyl cyclase
(CRAC) [57]. The PH domain of CRAC (PHCrac) fused to fluorescent protein can
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Fig. 6.1 Translocation of PHCrac-RFP upon stimulation with 1 µM extracellular
cAMP. Confocal images were taken at the time indicated. Cells were stimulated
in a perfusion chamber with a spatially-homogeneous cAMP concentration of 1
µM at t = 0 s.

be used as an indicator for PIP3 synthesis, and therefore PIP3 response, because the
sensor molecules translocate from the cytosol to the plasma membrane by binding to
the synthesized PIP3 [87, 90, 71]. Figure 6.1 shows a series of confocal fluorescence
images of a single cell recorded during 6 seconds before and 30 seconds after stimula-
tion with 1 µM cAMP. Before stimulation PHCrac-RFP exists mainly in the cytosol.
After addition of extracellular cAMP, a decrease of fluorescence at the cytosolic area
and an increase at the boundary, i.e., plasma membrane, become apparent transiently.

PIP3 response can be observed not only in the perfusion chamber but also during de-
velopment. Using the fluorescently-labeled PHCrac, Weijer and his colleagues demon-
strated that the cells exhibit periodic translocation of fluorescently-labeled PHCrac

during the early stage of the developmental [31] (figure 6.2). This is consistent with
the fact that the PI3K signaling pathway is necessary for cAMP synthesis as the
cells during early stage of the development exhibit oscillatory synthesis of cAMP as
explained in chapter 1.

6.1.3 How do the cells reset the sensitivity in the PI3K pathway?

PIP3 response seems to be tightly coupled with cAMP signaling response not just
from biochemical evidences [104] but also temporal behavior during cAMP signaling.



6.2 Results and discussions 85

Fig. 6.2 Periodic translocation of fluorescently-labeled PHCrac during the early
stage of the development taken from Ref. [31]. (A) A image of 4-hr starved
Dictyostelium cells. The arrows indicate the direction of wave propagation. (B)
A image of the cells with translocations of the fluorescent probe. (C) The periodic
changes in fluorescence intensity of the cytoplasm. The scale bar represents 30
µ m.

However, the dynamic property of the signaling system has not been fully character-
ized. Here, to elucidate the molecular origin of the FCD property in cAMP signaling
response, we investigate the PIP3 response and ask how the cells respond to relative
change in extracellular cAMP. As was the case in cAMP signaling response, the re-
sponse property at the PIP3 level has only been characterized by using step stimuli
with 0 M basal level [90, 71]. By clarifying the resetting property of PIP3 response,
we are able to confine possible mechanisms responsible for the response as will be
discussed later.

6.2 Results and discussions

6.2.1 PIP3 response follows fold-change detection.

The cells expressing PHCrac-RFP were well-isolated from other cells in the perfusion
chamber and were observed under the microscope. The captured images (such as
figure 6.1) were analyzed to obtain time-series data of normalized cytosolic fluores-
cence of PHCrac-RFP, which reflects inversely the amount of newly-synthesized PIP3

because elevation of the level of PIP3 increases the amount of PHCrac-RFP translo-
cating to the membrane [71]. Just like the observation of intracellular cAMP in the
perfusion chamber, we exposed to the cells step changes in the concentration of ex-
tracellular cAMP by using the same perfusion chamber. During the experiment, cells
were treated with a pre-stimulus level and allowed to adapt before elevation of the
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Fig. 6.3 Representative time courses of PIP3 response. Here the cells were
pretreated by 100 pM cAMP before a step change in the concentration of cAMP
to 1 µM at t = 0. Two different cells are represented by different colors.

stimuli (see chapter 2 for the detailed description of the experimental system and
the analysis). Representative time courses of normalized cytosolic fluorescence of
PHCrac-RFP are shown in figure 6.3.

We investigated various combinations of pre-stimulus and post-stimulus level of ex-
tracellular cAMP. In figure 6.4, the time courses of normalized cytosolic fluorescence
are shown, where the pre-stimulus level was initially kept at 100 pM and then ele-
vated at t = 0 by 1, 10, 100 and 1000 fold respectively. In the same way as cAMP
signaling response, the response intensities of PIP3 response monotonically increases
with increase in the post-stimulus level. In figure 6.5, time courses of normalized
cytosolic fluorescence are shown, where the pre-stimulus level was initially kept at 1
nM and then elevated in the same way as the previous one. The monotonic increase is
quite similar to those of 100-pM prestimulus level. Importantly, the time scale of the
response is also quite similar to each other: the level of cytosolic fluorescence returns
to its pre-stimulus level approximately within half a minute.

We then evaluated the response intensity of PIP3 response as a function of relative
increase in the stimulus level. We defined the response intensity as the minimum value
of normalized cytosolic fluorescence within 1 minute after the change in the stimulus
level. The results are summarized in figure 6.6 (and 6.7 for raw data). Despite 10-
fold difference in absolute stimulus level, the two lines overlap significantly. That is to
say, the data clearly shows that the response intensity is determined not by absolute
level (or absolute change) in input stimulus but relative change. Considering the
independence of time scales of the responses to the absolute stimulus level, these data
demonstrates that PIP3 response follows FCD.

To probe the dynamic range over which the FCD property holds, we plotted the
response intensity to 10-fold change in input stimuli over various pre-stimulus levels.
Figure 6.8 (and figure 6.9 for raw data), summarizes the results. This shows that
PIP3 response shows the FCD property over approximately one-order of magnitude
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Fig. 6.4 Representative time courses of PIP3 response with 100 pM pre-stimulus
level. The stimulus level is elevated at t = 0 by 1, 10, 100 and 1000 fold respec-
tively. Eight different cells are represented by different colors.
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Fig. 6.5 Representative time courses of PIP3 response with 1n M pre-stimulus
level. The stimulus level is elevated at t = 0 by 1, 10, 100 and 1000 fold respec-
tively. Eight different cells are represented by different colors.
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Fig. 6.6 Response intensity of PIP3 response as a function of fold change in the
concentration of extracellular cAMP. The markers and bars represent median
value and quartile of the data.
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Fig. 6.7 Raw data of figure 6.6.
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Fig. 6.8 Range over which the FCD property holds. The response intensities
to10-fold change in input stimuli are plotted over wide pre-stimulus levels. The
markers and bars represent median value and quartile of the data.

10
−2

10
−1

10
0

10
1

0.6

0.7

0.8

0.9

1

1.1

Prestimulus level (nM)

R
es

po
ns

e 
in

te
ns

ity
(a

.u
.)

Fig. 6.9 Raw data of figure 6.6.

(∼0.1 nM to ∼1nM).

Discussion1: Relationships to the dose-response curves in cAMP signaling response.
Here we discuss relations between dose-response curves of PIP3 response and that of
cAMP signaling response. First, note that the response amplitude of cAMP signal-
ing response saturates faster that that of PIP3 response: The amplitude of cAMP
signaling response to a few 10-fold change is almost maximum whereas that of PIP3

response to 10-fold change is only one-half of the maximum amplitude. This is consis-
tent with the assumption that PI3K signaling pathway is upstream of ACA. From the
view point of information theory [21], a saturated response amplitude would not be
able to ‘encode’ the difference in stimuli and therefore cannot transmit the difference
to a downstream factor.

Second, note that the dynamic range over which PIP3 response follows FCD (∼0.1
nM to ∼1 nM) is significantly overlaps but a little bit smaller than the dynamic
range of FCD for cAMP signaling response (∼0.1 nM to ∼3nM). The overlap in the
dynamic ranges itself is consistent with the assumption that PI3K signaling pathway
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is upstream of ACA. On the other hand, the fact that the dynamic range of PIP3 is
narrower than that of cAMP suggests that the PI3K pathway in not the only pathway
that activates ACA. In fact, some preceding studies suggest that PIP3-independent
signaling molecule PKBR1 is involved in the activation of ACA [17, 15, 104]. The
molecule may also be contributing to the wider dynamic range of cAMP signaling
response.

To conclude, these data suggest that the FCD property of PIP3 response is re-
sponsible for the FCD property at the level of cytosolic cAMP. Although the exact
mechanism for the FCD property remains to be determined, it would be much easier
to detail the PI3K pathway than to fully describe cAMP signaling pathway because
the number of molecular species involved are much smaller [104]. Therefore, the PI3K
pathway can serve as an ideal model system to investigate molecular mechanisms of
FCD in eukaryotic signaling system.

Discussion2: The FCD property constrain possible mechanisms in the directional sensing
module.
For the purpose of constraining possible mechanisms that govern the dynamics of the
PI3K signaling pathway, input/output relations of the system have been characterized
from various points of view [88, 60]. Among others, the responses to spatially-uniform
elevation in the stimulus level and spatially-graded stimulation (and combinations
of those) have been characterized. To spatially-uniform step inputs, the response
shows adaptation whereas, to spatially-graded inputs, the localization of the signaling
molecule PIP3 persists. However, it had not been investigated before how the cells
respond to relative changes in spatially-uniform step inputs. Here, we discuss how the
newly-obtained input/output relation of PIP3 response can further constrain possible
mechanisms of the signaling pathway.

As described in chapter 1, it has been considered that the general idea of local-
excitation and global inhibition (LEGI) model explains the spatio-temporal dynamics
of PI3K signaling pathway. Note that the idea LEGI just concerns spatial distribution
of an excitatory pathway and an inhibitory pathway and therefore it does not constrain
specific mechanisms. In fact, LEGI-based models has been implemented by adopting a
network topology of incoherent feedforward loop (iFFL) [69] without any experimental
evidence for the topology*1. However, recent study on the signaling pathway have
suggested that the system is composed of an iFFL-based mechanism instead of a
feedback-based one by using a quantitative analysis of the dynamic property [105, 55].

A type of LEGI-based phenomenological model called a balanced inactivation model
[70] has been thought of as one of the best models that explains the input/output
relations of the PI3K pathway [54]. The model has succeeded in reproducing a newly-
characterized input-output relation of the pathway: Figure 6.10 demonstrates the
response property in graded stimuli, in which the same absolute level in input stimuli
can elicit totally different responses depending on whether they occur at the front or
rear of the cell (figure 6.10 B). However, input-output relationships, once normalized,

*1 For example, it is also possible to implement a LEGI model based on a negative feedback loop
(NFBL) because iFFL and NFBL are the network topology that can achieve adaptation [72]
and both can exhibit persistent output to graded inputs.
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Fig. 6.10 Responses to graded stimuli of varying steepness and absolute level
taken from Ref. [60]. (A) The micropipette location and pressure were altered to
change the steepness and midpoint of the chemoattractant, Cy3-cAMP, gradient.
(B) Input-output relations. x-axis indicates input signal, or Cy3-cAMP fluores-
cence, at the points just outside the cell perimeter and y-axis indicates output
signal, or PH-GFP Fluorescence, at the points just inside the cell perimeter. (C）
Normalized input-output relations, where the input signals are normalized by
their mean value.

produced curves with nearly identical slopes and thresholds (figure 6.10 C), meaning
that the intensity of the response depends on the relative steepness of the gradient
rather than the absolute level of the stimulus.

In the model, input stimulus S produces a membrane-bound species A and a cytoso-
lic species B, which diffuses inside the cell and produces another membrane-bound
species Bm. A and Bm mutually inactivate each other. In mathematical terms, the
model is written as

∂A

∂t
= kaS − k−aA − kiABm at the membrane,

∂Bm

∂t
= kbB − k−bBm − kiABm at the membrane, and

∂B

∂t
= D∇2B in the cytosol,

(6.1)

with a boundary condition for the outward pointing normal derivative of the cytosolic
component

D
∂B

∂n
= kaS − kbB.
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Fig. 6.11 A topological representation of the balanced inactivation model [70].

Figure 6.11 represents a topological representation of the model, where the input
variable S control the output variable A through a few internal variables. Note that
the model essentially based on an iFFL except that the output variable A negatively
regulates an internal variable Bm (red blunt arrow in figure 6.11). However, the neg-
ative regulation newly-introduced in the model is not supported by any experimental
evidence although the interaction is essential for the model to be able to reproduce
the response to graded inputs.

Here we ask whether the model can reproduce the FCD property at the PIP3 level
we have observed in this study. Figure 6.12 is a time course of output variable A
obtained by a numerical calculation of the equations 6.12 where successive step-wise
changes in the stimulus S were applied to the system (10-fold change at t = 0 s
and t = 50 s). This clearly shows that the FCD property can not be reproduced by
the model and therefore the model is not capturing the molecular mechanism of the
system.

As a first step towards better understanding of the directional sensing module, here
we propose a phenomenological model (a FCD-LEGI model) relying on the framework
of LEGI-based model. The model is based on a ODE model that show FCD, which
is introduce in chapter 4, to implement the idea of LEGI. The model is written as

∂A

∂t
= ka

Sn

Sn + Bn
m

− k−aA at the membrane,

∂Bm

∂t
= kbB − k−bBm at the membrane, and

∂B

∂t
= D∇2B in the cytosol,

(6.2)
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Fig. 6.12 The response of the model (equation ) to step-wise changes in uniform
stimulus taken from Ref. [70]. The level of the stimulus is changed 10-fold at
t = 0 s and another 10-fold at t = 50 s.

with a boundary condition for the outward pointing normal derivative of the cytosolic
component

D
∂B

∂n
= kaS − kbB.

Note that it is obvious that the model is able to show FCD to a spatially-uniform
inputs because it is essentially the same as the ODE model that exhibits FCD. To
spatially-graded stimuli, it basically follows the LEGI scheme: the output variable A
is produced depending on the local level of input stimuli S and the inhibitory vari-
able B is globally distributed by diffusion. Therefore most properties explained by
the previously-reported LEGI models, such as amplified responses to shallow graded
stimuli, can also be reproduced. Here we consider a simplified one-dimensional geom-
etry, the front and back are single points connected by a finite line segment of length
L*2. We suppose that S is not uniform but is different at the front, Sf , and at the
back, Sb. And we introduce average input level as S̄ = (Sf + Sb)/2.

The exact solution of the diffusion equation for B is given by a linear profile:

B(x) = Gx + H,

where G = (Bf − Bb)/L and H = (Bf + Bb)/2. The values of B at the front of the
cell, Bf , and at the back of the cell, Bb, is obtained by using the boundary condition
of the system. It is also easy to obtain the steady-state value of Bm and A both at
the front of the cell and at the back of the cell by solving algebraic equations. The

*2 The same setting has been used to analyze essential features of the models in the previous
work [70].
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Fig. 6.13 Amplification of graded stimuli in the FCD-LEGI model in a simplified
one-dimensional geometry (see the main text). X-axis indicates gradient of the
input stimuli (The ratio of the stimulus level at the front of the cell Sf = Sm(1+
p) to that at the back of the cell Sb = Sm(1 + p) ). Y-axis indicates the ratio
to the output variable A at the front of the cell to that at the back of the cell.
The green line represents y = x. The parameter values used here are ka = 5,
k−a = 1.5, kb = 4, k−b = 1, D = 30, n = 4 and L = 10.

Fig. 6.14 A topological representation of a FCD and LEGI model.
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exact solution of the output variable A at the front of the cell is given as

Af =
(

ka

k−a

)
Sn

f

Sn
f + (kb/k−b)n(Bm,f )n

=
(

ka

k−a

)
(Sf/S̄)n

(Sf/S̄)n + (kb/k−b)n(Bm,f/S̄)n
.

The solution at the back of the cell, Ab, is given by the same expression with Sf and
Bm,f replaced by Sb and Bm,b respectively. The term that appears in the denominator
of the solution, Bm,f/S̄, can be written as

Bm,f

S̄
=

(
kb

k−b

)
ka(Sf/S̄) + (2kaD/kbL)

kb + 2D/L
. (6.3)

From these expressions, it is clear that Af is dependent only on Sf/S̄, the stimulus
level at the front of the cell normalized by the average stimulus level. The same holds
true for the case of Ab. Note that this is exactly what has been observed in the
experiment (figure 6.10 C), i.e., the response depends on the relative steepness of the
gradient rather than the absolute level of the stimuli.

Compared to the balanced inactivation model, our model has a few improvement.
First of all, our model is capable of FCD, a property which was clearly shown at
the PIP3 level for the first time by our experiments. However, to our knowledge, no
previously-reported models for the directional sensing module are able to reproduce
the property [61]. Second, the FCD-LEGI model does not assume any new interac-
tion between the molecular species other than iFFL network topology (figure 6.14),
although the balanced inactivation model hypothesize new inhibitory interaction.

To conclude, we were able to constrain possible mechanisms of the directional sens-
ing system by the observation of FCD because the FCD property is achieved only by
a subset of the models containing iFFL network topology. Also, it has been revealed
that the FCD property naturally explains the reason why the responses to graded
stimuli are independent of the absolute stimulus level. As a future work, it would be
interesting to expand the model to two dimensions and test whether other properties
of the signaling system (such as those demonstrated in [60]) is reproduced successfully.
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Chapter 7

General relation between fold-change

detection and robustness

7.1 Introduction
So far we have discussed the validity of the hypothesis that the FCD property of Dic-
tyostelium cells enables cAMP oscillation to be robust to cell density in the perfusion
chamber. There, we have assumed that the extracellular environment is described
by a kinetic equation (d[ext − cAMP ]/dt = ρkt[int − cAMP ] − γ[ext − cAMP ]).
However, the extracellular condition in the perfusion chamber is different from the
natural condition of Dictyostelium development. In the former case, the extracellular
cAMP is constantly diluted by perfusion while, in the latter case, it is degraded by
extracellular phosphodiesterase (PDE) secreted by the cells. Therefore it is natural
to ask whether the FCD property of the cells make the cell population robust to cell
density even in the natural condition.

To investigate the relation between the FCD property and the robustness to cell
density in various conditions may help gain insights into cell-cell signaling in general.
In the light of the ubiquity of intercellular communication mediated by signaling
molecules in single-celled organisms, it is conceivable that the robustness to cell den-
sity is a general property of cell-cell signaling; if it were not for such robustness in
intercellular communication, collective behavior of cells would rarely be observed in
a fluctuating environment. Therefore it would be useful to ask whether FCD can still
be a sensible strategy to achieve the robustness even in conditions other than that of
Dictyostelium cells. To answer these questions, here we explore the possibility that
the relation between the FCD property and the robustness to cell density is general-
ized. Specifically, we ask how the signaling molecule should be secreted and how it
should be degraded to achieve the robustness provided that cells are capable of FCD.
Based on the mathematical framework we have developed in chapter 4, we show FCD
can be an efficient strategy in a broader context.
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7.2 Results and discussions

7.2.1 Robustness in an arbitral secretion of signaling molecules

First of all, we note that, when considering general cases, molecular entities of a sys-
tem’s output, y, and secreted molecule, z, can be different from each other, although
they are both cAMP in the case of Dictyostelium. The molecule y exists in intra-
cellular space while the molecule z is extracellular space. The only assumption here
is that the intracellular molecule y somehow determines the rate of secretion of the
extracellular signaling molecule z.

Here, we ask what if secretion of signaling molecule z is not proportionate to the
output variable y as is the case for Dictyostelium cells (dz/dt = ρkty−γz). In chapter
4, we defined the robustness to variations in cell density as invariance of the equations
to a set of transformations. Specifically, the equations we have analyzed so far

ẋ = f(x, y, z)

ẏ = g(x, y, z)
ż = ρkty − γz,

where f and g satisfies the FCD condition (equation 4.2 and 4.3), shows invariance
under the transformation

x → φ(p,X)
z → pZ

ρ → pρ.

(7.1)

The resultant equations are

Ẋ = f(X, y, Z)

ẏ = g(X, y, Z)

Ż = ρkty − γZ.

Observe that, given the FCD property of cells (i.e., subsystem x and y), the invariance
holds true if the equation for z is linear in terms of z. It is therefore obvious that the
equations

ẋ = f(x, y, z)

ẏ = g(x, y, z)

ż = ρh(y) − γz.

is also invariant under the set of transformation. That is, the rate of secretion of the
signaling molecule z can be regulated by an arbitrary function of the output variable
y as h(y). This means that the system’s robustness to variations in cell density is not
dependent on the way cells regulate the secretion of extracellular signaling molecule
z by the output variable y.
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7.2.2 Robustness in a cell-density dependent secretion of signaling

molecules

Here we consider cases in which cells capable of FCD secrete the signaling molecule
z not just depending on the output variable y but also on cell density ρ. In this case,
the system would be governed by the equations

ẋ = f(x, y, z)

ẏ = g(x, y, z)

ż = ξ(ρ)h(y) − γz.

(7.2)

Here the cell-density dependence of the equation for z is generalized as ρ → ξ(ρ). In
this case, there exists such q that satisfies the equation

ξ(pρ) = qξ(ρ).

Now we consider the transformations

x → φ(q,X)
z → qZ

ρ → pρ.

(7.3)

This yields that

Ẋ =
1
∂φ
∂X

f(φ(q,X), y, qZ)

= f(X, y, Z),

by using one of the condition for FCD (equation 4.2, f(φ(p, x), y, pz) =
∂φ(p,x)

∂x f(x, y, z)) and

ẏ = g(φ(q,X), y, qZ)

= g(X, y, Z),

by using another condition for FCD (equation 4.3, g(φ(p, x), y, pz) = g(x, y, z)). The
equation for z is transformed to

qŻ = ξ(pρ)h(y) − γqZ

⇐⇒ Ż = ξ(ρ)h(y) − γZ.

Thus the equation 7.2 are transformed to the following form:

Ẋ = f(X, y, Z)

ẏ = g(X, y, Z)

Ż = ξ(ρ)h(y) − γZ.
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It was shown that the equations are invariant under the transformation 7.3. That is
to say, the system is robust to variations in cell density even when the cells secrete
signaling molecule in a cell-density dependent manner.

7.2.3 Robustness in a cell-density dependent degradation of signaling

molecules

Here we consider cases where signaling molecule in extracellular space is degraded in
cell-density dependent manners. Such assumption may be related to Dictyostelium
development in a natural condition (e.g., development on an agar substrate). In that
case extracellular cAMP would be mainly degraded by secreted PDE [6] and the
amount of PDE per unit area can be dependent on cell density. In that case the
system is written as

ẋ = f(x, y, z)

ẏ = g(x, y, z)

ż = ρkty − γ(ρ)z,

where γ is a function of cell density ρ.

A case in which the kinetics of extracellular signaling molecule is fast.
First we investigate a situation where the kinetics of the variable z is much faster
than that of other variables*1. In such a case, it is valid to assume a quasi-steady
state for z, whose kinetic equation would then be reduced to the algebraic relation:

z =
ρkt

γ(ρ)
y ≡ Θ(ρ)y.

In such a condition, the system is governed by the two differential equations:

ẋ = f(x, y, Θ(ρ)y)

ẏ = g(x, y, Θ(ρ)y).

Note that there exists such q that satisfies the equation

Θ(pρ) = qΘ(ρ).

*1 In the case of the early stage of Dictyostelium development, it seems reasonable to assume
that the kinetics of extracellular molecule is sufficiently fast. In the perfusion experiment, it
was shown that the periodicity of cAMP oscillation is almost constant at 6 minutes even in a
sufficiently high dilution rate [47]. This strongly suggests that not the kinetics of extracellular
space but the kinetics of intracellular system is a rate-limiting process and therefore determines
the period of the oscillation. On the other hand, the periodicity of the oscillation on an agar
substrate is also 6 minutes. These facts suggest that the extracellular kinetics even in the
natural condition would not be a rate-limiting process. In other words, the kinetics of the
extracellular cAMP is sufficiently fast compared to that of intracellular signaling system. Such
a fast kinetics would be achieved if there exist sufficient amount of enzyme that degrade
signaling molecules (i.e., PDE) in extracellular space.
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We now consider the transformations

x → φ(q,X)
ρ → pρ.

(7.4)

This yields that

Ẋ =
1
∂φ
∂X

f(φ(q,X), y, Θ(pρ)y)

= f(X, y, Θ(ρ)y),

by using the condition 4.2 and

ẏ = g(φ(q,X), y, Θ(pρ)y)

= g(X, y, Θ(ρ)y)

by using the condition 4.3. Therefore we obtain a two-variable system:

Ẋ = f(X, y, Θ(ρ)y)

ẏ = g(X, y, Θ(ρ)y).

That is, the system is invariant under the transformation 7.4, meaning the system is
robust to variations in cell density.

A general case in which the kinetics of extracellular signaling molecule is not so fast.
Then, what if a general case where such a time-scale separation is not validated? The
cell-density dependence of the degradation rate of signaling molecule entails that the
cell density (ρ) and the degradation rate (γ) are no longer independent of each other
like those in the perfusion chamber. The idea is graphically described by introducing a
γ−ρ plane in figure 7.1. Each point on the plane corresponds to a certain extracellular
condition and therefore to a state (e.g., equilibrium or oscillation and so on) of the
system.

In the case of the perfusion experiment, an extracellular condition defined by a set
of values, (γ, ρ), is arbitrarily selectable. On the other hand, when the degradation
rate is dependent on cell density, possible extracellular conditions are restricted on
the curve γ = γ(ρ).

With the FCD property (which refers to the property of the subsystem x and
y), the trajectory of the output variable y is independent of ρ as we have discussed
so far (figure 7.1 right panel). Without the FCD property, on the other hand, the
states are dependent on ρ in general as well as γ (figure 7.1 left panel). Because the
FCD property expands the region consists of qualitatively equivalent states towards ρ
direction, the curve γ = γ(ρ) would have larger overlap with the region when the cells
are capable of FCD. This means that the range of cell density (ρmin < ρ < ρmax) in
which the system exhibits a functional state (e.g., oscillatory state) expands by the
property of FCD. In other words, the FCD property increases the system’s robustness
to variations in cell density even when the degradation rate is dependent on cell
density. Note that the above discussions hold true even when the term representing
secretion of signaling molecule is generalized as ρkty → ξ(ρ)h(y).
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Fig. 7.1 A graphical explanation showing that FCD increases the robustness to
cell density even when the rate of degradation of extracellular signaling molecule
(z) is degraded in a cell-density dependent manner. In the case of FCD model
(right panel) the states of the system (e.g. an oscillatory state or an equilib-
rium state etc.) are independent of ρ, whereas in the case of non-FCD model
(left panel) the states depend both on ρ and γ in general (purple region, where
the systems exhibit “functional state”). When the degradation rate of signal-
ing molecule γ depends on cell density ρ, possible conditions of the system are
restricted on a curve γ = γ(ρ) (dotted line) whereas, in the case of perfusion
experiment, the both parameters are independent of each other. Because the
FCD model expands the “functional state” region towards ρ direction, even if
the degradation rate is dependent cell density, the range of ρ that can exhibit
“functional state” become larger (double-headed arrows) compared to non-FCD
model.

7.2.4 Robustness in a diffusively-coupled system

Lastly, we consider a case where the signaling molecules secreted by the cells diffuse
and stimulate the neighboring cells (diffusion coupling) instead of global coupling as
we have assumed so far. The assumption of diffusion coupling would be appropriate
when, for example, describing cell-cell signaling in the early stage of the Dictyostelium
development*2.

In that case, the system is governed by the equations:

dx

dt
= f(x, y, z)

dy

dt
= g(x, y, z)

∂z

∂t
= ρkty − γz + D∇2z,

(7.5)

*2 In fact, the kinetic equation for z with a diffusion term in the following equations (equations
7.5) has been used in the models of the early stage of Dictyostelium development [44, 67].
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where D is a diffusion constant. Observe that the equation for z is linear in terms
of the variable z and therefore the equations are invariant under the transformation
7.1. Thus, even in a situation where the extracellular field is inhomogeneous because
of diffusion coupling of the cells, FCD enables a system to be robust to cell density.

7.2.5 Cell-cell communications in other microbial systems

In this chapter, we have shown that the robustness to variations in cell density emerges
in rather general conditions, given that the constituent cells are capable of FCD. Al-
though it is a prominent feature of Dictyostelium cells that cAMP is utilized in both
intracellular and extracellular signaling, molecular entities of these don’t have to be
the same to achieve a FCD-based cell-cell signaling. Moreover, the relation between
FCD and the robustness to cell density is independent of the way the cells secrete
the signaling molecule. The discussion above suggests that the FCD strategy for the
robustness to cell density is a sensible way even in a different conditions from that of
Dictyostelium cells. It is widely accepted that synchronized activities in single-celled
microorganisms on a population-wide scale result from cell-cell communication medi-
ated by extracellular signaling molecule. One of the well-studied examples is cell-cell
communication in bacteria called quorum sensing [115, 16, 83]. As in Dictyostelium
cells, this process also involves detecting, producing, releasing and responding to sig-
naling molecules. For example, in the case of an gram-negative bacteria Vibro fischeri,
the extracellular signaling molecule acyl-hormoserine lactone (AHL) are synthesized
by LuxI, which is synthesized after detection of AHL by the cytoplasmic receptor
LuxR (figure 7.2). The concentration of AHL increases as a function of increasing cell
density. The bacteria detect the accumulation of the molecule and, at a certain cell
density, they alter gene expression in a collective way. To our knowledge, researchers
in the field of quorum sensing in bacteria have focused their attention to cell-density
dependent behavior rather than cell-density independent behavior. However, it is
conceivable that bacteria also have a mode of cell-cell signaling in which some output
variables behave in a cell-density-independent manner to handle with the inevitable
fluctuation in cell density. In fact, in our scenario, quorum-sensing ability of the cells
and cell-density independence in some output responses are not mutually exclusive;
the information of cell density is preserved in the internal variable x, in our notation,
while the output variable y is independent of cell density by definition. Therefore, it
is possible to make the cells behave in a cell-density dependent manner by making
use of the concentration of the internal variable x. There are also several cases in
which suspensions of yeast cells [23, 22, 24] or catalytic microparticles in BZ reaction
solution [107] communicate with each other through chemical exchange. It would be
interesting to test whether the logic we have proposed here can apply to these cases
in the future.
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Fig. 7.2 A schematic representation of quorum sensing in Vibrio fischeri taken
from Ref. [115]. Red triangles represents signaling molecules called AHL, which
freely diffuses in and out of the cells. The signaling molecule is synthesized by
LuxI and detected by the receptor molecule LuxR.
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Chapter 8

Summary and outlook

8.1 Summary of the results
In this study, we investigated adaptation in cAMP signaling response in the social
amoeba Dictyostelium discoideum at the single-cell level. Binding of extracellular
cAMP (input signal) to the membrane-bound receptors elicit transient synthesis and
secretion of intracellular cAMP (output signal) through a series of complex signaling
cascade [104]. As explained in chapter 2, to monitor the real-time change in cytoso-
lic cAMP, we carried out time-lapse live-cell imaging of the cells expressing Förster
Resonance Energy Transfer (FRET)-based cAMP sensor [84, 47]. The FRET signal
was fully corrected to obtain an index that is independent of expression level of the
sensor. This enabled us to compare amplitudes of cAMP signaling response between
cells [14]. Moreover, cells were isolated in a small perfusion chamber to prevent cell-
cell interaction and well-defined time-varying input signal was delivered by employing
syringe pumps.

Using these experimental setups, in chapter 3, we characterized adaptation in cAMP
signaling response. Specifically, we exposed the cells to step increase in extracellular
cAMP from nonzero basal level to evaluate response intensity to relative change in the
input stimulus. We found that the main initial peaks observed immediately after the
step increase follows fold-change detection (FCD). Moreover, despite its marked cell-
cell variability, the peak amplitude of the initial peak was found to be reproducible in
each individual cells when they are exposed to successive step inputs with identical
fold-change but different absolute level. These results suggest that FCD is a robust
property to cell-cell variation.

In Dictyostelium development, cell-cell signaling mediated by cAMP signaling re-
sponse results in a collective oscillation in the concentration of cAMP. In chapter 4,
we therefore asked whether there are any advantages of FCD in cell-cell signaling.
One of the characteristics of the collective oscillation in cAMP is its robustness to
variations in cell density. An analysis of a mathematical model describing commu-
nicating cells capable of FCD revealed that FCD renders the output of the system,
which corresponds to intracellular cAMP, independent of the parameter of cell den-
sity. To corroborate the predictions of the model, in chapter 5, we studied populations
of cells interacting with each other in the perfusion chamber. It was shown that the
dynamic properties of both intracellular and extracellular cAMP are consistent with
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those of the models. Thus, we conclude that cell-cell signaling in Dictyostelium de-
velopment achieves robustness to variations in cell density by the FCD property of
the constituent cells.

In chapter 6, we asked how the FCD property in cAMP signaling response is
implemented in the signal transduction system in the cells. To address this ques-
tion, we observed the activity of the PI3K signaling pathway responding to relative
changes in the input by measuring spatio-temporal dynamics of phosphotidylinositol-
(3,4,5)-triphosphate (PIP3). The PI3K signaling pathway is known to exist upstream
of adenylyl cyclase ACA that synthesizes intracellular cAMP [74] and its dynamics
has been explained by a network model consisting of a incoherent feedforward loop
[69, 114, 55]. By using the perfusion system, we showed that PIP3 response also fol-
lows FCD at the single-cell level. The result suggests that the PI3K signaling pathway
is responsible for the FCD property in cAMP signaling response. Moreover, the result
enabled us to choose a special type of incoherent feedforward loop as a model of the
pathway.

Although we have discussed cell-cell signaling by focusing Dictyostelium cells in the
perfusion chamber, we asked, in chapter 7, whether the relation between FCD and
the robustness to cell density can be generalized to other situations. By examining
equations that describes communicating cells capable of FCD, we found that the re-
lation is not specific to Dictyostelium cells. Rather, the robustness to cell density
can be observed in a wide range of conditions as far as the constituent cells have the
FCD property. Considering the generality of cell-cell signaling in single-celled mi-
croorganism, the result suggests that other organisms may also use the FCD strategy
to alleviate cell-density dependence in their communication with each other.

8.2 cAMP signaling response in Dictyostelium cells as an

ideal model system for further studies of FCD
In chapter 3, we have shown that the initial peak in cAMP signaling response follows
FCD. The result provides a unique experimental demonstration of FCD in eukaryotic
cells. Furthermore, our results are the first direct observation of FCD at the single-cell
level. This enables us to analyze deeper aspect of FCD than other systems. For exam-
ple, we have demonstrated the robustness of the FCD property to cell-cell variation.
Such an experiment would not be possible in a population-level measurement.

Because there are a lot of experimental and theoretical tools available for analyzing
the system, cAMP signaling response can serve as an ideal model system for further
studies of FCD, from the level of molecular mechanism to its physiological implica-
tions. Regarding its molecular mechanism, we have suggested in chapter 6 that the
FCD property in the PI3K pathway may be implemented by a type of incoherent
feedforward loop. It is interesting to ask which, if any, molecular species compose
such network topology in the signal transduction system.

In addition to that, several preceding works have mentioned possible advantages of
the fold-change detection (FCD) property in signal processing of the cells. Goentoro
and co-workers have suggested that FCD may provide advantages in coping with
cell-cell variations in the concentrations of regulatory proteins and in maintaining
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Fig. 8.1 Schematics representing possible advantages of FCD in cellular informa-
tion processing taken from Ref. [43]. (A) An increase in activator X is detected
by the cells. Consider a situation where basal concentrations of X are variable
between cells but its fold-change is equal among the cells. In that case a system
capable of fold-change detection ensures that each cell responds reliably to an
external signal despite the variation in the basal level of the signal X (lower part).
A system which detect absolute-level (or absolute-change) of the signal would fail
to cope with the variation in the basal level of X (upper part). (B) Then what
if a system where the level of an external signal X is increased by a constant
level (absolute-change generation) and the change in the signal is detected by
an absolute-change detector? Is it work as well as a system where the signal
X is increased by a constant ratio (fold-change generation) and the change in
the signal is detected by an fold-change detector? Again the system composed
of absolutes-change detector would fail to overcome the basal-level variation in
cellular environment because the amplitude of fluctuations of the signal also in-
creases with the absolute level of basal activity of X. As a result, such systems
would result in reacting to false positives (upper part) more often than the system
composed of fold-change detector (lower part).

sensitivity to noisy environment [43] (figure 8.1). However, whether the strategy is
the one really utilized by cells remain to be examined. Further investigation of cAMP
signaling system in Dictyostelium cells can provide useful information on this problem.

8.3 Robustness as a scale invariance in developmental biology
In this study, we have shown that the robustness of cAMP oscillation to variations
in cell density can be understood as a consequence of the FCD property in cAMP
signaling response in Dictyostelium cells. As described in chapter 4, the relation
between the robustness and FCD can be summarized succinctly by using a set of
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equations; The cells in the perfusion chamber are described as

ẋ = f(x, y, z)

ẏ = g(x, y, z)
ż = ρkty − γz.

If the cells exhibit FCD, i.e., if f and g satisfy the FCD condition (equation 4.2 and
4.3), then the system is invariant under the transformation

x → φ(p, x)
z → pz

ρ → pρ.

In other words, the oscillation is robust to variations in cell density because the system
has a scale-invariant property.

A mathematically similar mechanism for robustness can be found in the study of
developing animals. As described in section 1.4, developing embryo often utilizes mor-
phogen gradient that scales with the size of the embryo to keep accurate proportions
within and between tissues [9]. This means that the system can be invariant under
the transformation in the size of the field L (figure 8.2):

L → pL.

This suggests that robustness as a scale-invariant property can be found in biological
parameters other than cell density. To our knowledge, our results provide a unique
demonstration of the robustness to cell density as a scale-invariant property. It would
be interesting to test whether such robustness to other biological parameters can be
observed in other biological systems.
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Fig. 8.2 Robustness as a scale invariance in developmental biology. (Left) Mor-
phogen gradient often scales with the size of the embryo. (Right) cAMP oscilla-
tion scales with cell density.
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Appendix A

Appendix

A.1 Source codes for data analysis
In this work, processing and analysis of data were performed by using MATLAB
(MahtWorks). Here we provide some of the central source codes used in the analyses.

A.1.1 FRET analysis

The raw images for FRET measurement were processed and analyzed as shown in the
following code;

clear all;
%
Input = [18];
Pos = 5;
%
Start=1;
Finish=200;
n=Finish-Start+1;
Interval=10; %the interval(sec) of images
NameofCFP=’130131_1_Epac1AX4__w1FRET-CFP_s’;
NameofYFP=’130131_1_Epac1AX4__w2FRET-YFP_s’;
NameofYFPDIR=’130131_1_Epac1AX4_pre_w4YFP_s’;
%
EndTime=(n-1).*Interval;
Time=linspace(0,EndTime,n);
InputTime = (Input-1).*Interval./60;
Time = Time./60;
%
mkdir(DIR);
%
%Parameters for correction
alpha=0.50312;
beta=3.1085;
%
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for l=1:Pos;
%
v=genvarname([’Color’ int2str(l)]);
eval([v ’=rand(1,3);’]);
%
v=genvarname([’CFPMed’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’YFPMed’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’YFPcorr’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’YFPDirMed’ int2str(l)]);
eval([v ’=zeros(1,1);’]);
v=genvarname([’FRETratio’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’BGCFPMed’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’BGYFPMed’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
%
YFPDIR=imread([NameofYFPDIR,num2str(l),’_t1.TIF’ ]);
if max(YFPDIR(:)) > 1.9661e+04

disp(’YFPDIR is adjusted incorrectly’);
break

end
YFPDIR2=imadjust(YFPDIR,[0 0.3],[0 1]);
%Making a mask
ImB = PreprocessForCYFP(YFPDIR2);
[MaskYFPDIR L] = SingleMask(ImB);
[YFPDirMed BGYFPDirMed] = CFRETIntensityCell(YFPDIR,MaskYFPDIR);
srNew=[’YFPDirMed’ int2str(l) ’=YFPDirMed;’];
eval(srNew)
%
for k=Start:Finish

CFP=imread([NameofCFP,num2str(l),’_t’,num2str(k),’.TIF’ ]);
YFP=imread([NameofYFP,num2str(l),’_t’,num2str(k),’.TIF’ ]);
%
%Making a mask
ImB= PreprocessForCYFP(CFP);
[MaskCFP L] = SingleMask(ImB);
ImB= PreprocessForCYFP(YFP);
[MaskYFP L] = SingleMask(ImB);
Mask = MaskCFP & MaskYFP;
%
[YFPMed BGYFPMed] = CFRETIntensityCell(YFP,Mask);
[CFPMed BGCFPMed] = CFRETIntensityCell(CFP,Mask);
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%
YFPcorr=double(YFPMed)-alpha*double(CFPMed)-beta*double(YFPDirMed);
FRETratio=double(CFPMed)/double(YFPcorr);
%
sr1=[’CFPMed’ int2str(l) ’(k)=CFPMed;’];
eval(sr1)
sr2=[’YFPMed’ int2str(l) ’(k)=YFPMed;’];
eval(sr2)
sr3=[’YFPcorr’ int2str(l) ’(k)=YFPcorr;’];
eval(sr3)
sr4=[’FRETratio’ int2str(l) ’(k)=FRETratio;’];
eval(sr4)
sr5=[’BGCFPMed’ int2str(l) ’(k)= BGCFPMed;’];
eval(sr5);
sr6=[’BGYFPMed’ int2str(l) ’(k)= BGYFPMed;’];
eval(sr6);

end
end
%
FH=figure;AH=axes;
for FRETi=1:Pos

plot(Time,eval([’FRETratio’,num2str(FRETi)]),’Color’,eval([’Color’ ...
int2str(FRETi)]),’LineWidth’,2);hold on

end
Bar = linspace(1, 4);%linspace(min of YLim, max of YLim, 10)
[X, Y]=meshgrid(InputTime,Bar);
plot(X,Y,’--k’,’LineWidth’,1);
xlabel(’Time (min.)’,’FontSize’,20);ylabel(’FRET index (a.u.)’,’FontSize’,20);
set(AH,’FontSize’,20);
axis([Time(1) Time(n) 1.45 2.45]);

function ImC = PreprocessForCYFP(Im)
%
SEA=strel(’disk’,30);
ImA=imtophat(Im,SEA);
SEB=strel(’disk’,10);
ImB=imclose(ImA,SEB);
SEC=strel(’disk’,10);
ImC=imopen(ImB,SEC);
end

function [Mask L] = SingleMask(ImB)
%
Mask = im2bw(ImB,graythresh(ImB));
[L,num]=bwlabel(Mask,4);
while num>1

STATS=regionprops(L,’Area’);
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[M idx]=max([STATS.Area]);
Mask=ismember(L,idx);
[L,num]=bwlabel(Mask,4);

end
Mask=imfill(Mask,’holes’);
end

function [CellMedian BGMedian] = CFRETIntensityCell(Image,Mask)
%
BGMask=~Mask;
SE=strel(’disk’,30);
BGMask=imerode(BGMask,SE);
BGMaskedImage=im2uint16(im2double(Image).*BGMask);
[r_finalBG,c_finalBG,v_finalBG]=find(BGMaskedImage);
BGMedian=median(v_finalBG);
%
Image=Image-BGMedian;
MaskedImage=im2uint16(im2double(Image).*Mask);
[r_finalCell,c_finalCell,v_finalCell]=find(MaskedImage);
CellMedian=median(v_finalCell);
end

A.1.2 Quantifying the responses of PHCrac-RFP/AX4

The raw images of PHCrac-RFP/AX4 were processed and analyzed as shown in the
following code;

clear all
%
Input =[10];
Pos = 2;
Start=1;
Finish=30;
n=Finish-Start+1;
Interval=3; %the interval(sec) of images
NameofRFP=’121102_2_DagAAX4_4__w1CSU-HcRed_s’;
%
EndTime=(n-1).*Interval;%The time of last Image
Time=linspace(0,EndTime,n);
InputTime = (Input-1).*Interval./60;
Time = Time./60;
MinInt=2000;
MaxInt=20000;
%
se = strel(’square’,8);
%
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for l=1:Pos;
v=genvarname([’Color’ int2str(l)]);
eval([v ’=rand(1,3);’]);
v=genvarname([’Cyt_med’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’Cyt_std’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’BackGro_med’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’BackGro_std’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’Ic_med’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
v=genvarname([’Ic_std’ int2str(l)]);
eval([v ’=zeros(1,n);’]);
%
for k=Start:Finish;

Im=imread([NameofRFP,num2str(l),’_t’,num2str(k),’.TIF’ ]);
%
%Making a Mask
Mask = MakeMask2(Im);
DilatedMask=imdilate(Mask,se);
[r_O c_O v_O]=find(DilatedMask==0);
BackGro=zeros(1,length(r_O));
for a=1:length(r_O);

BackGro(a)=Im(r_O(a),c_O(a));
end
sr1=[’BackGro_med’ int2str(l) ’(k)=median(BackGro);’];
eval(sr1)
sr2=[’BackGro_std’ int2str(l) ’(k)=std(BackGro);’];
eval(sr2)
[L,num]=bwlabel(Mask,4);
while num>1

STATS=regionprops(L,’Area’);
[M idx]=max([STATS.Area]);
Mask=ismember(L,idx);
[L,num]=bwlabel(Mask,4);

end
Mask=imfill(Mask,’holes’);
%
STATS=regionprops(L,’Centroid’);
G=round([STATS.Centroid]);
G2=[G(2);G(1)];
%
Im=Im(max(1,G2(1)-50):max(1,G2(1)+50),max(1,G2(2)-50):max(1,G2(2)+50));
MedfiltIm=medfilt2(Im,[5 5],’symmetric’);
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Mask=Mask(max(1,G2(1)-50):max(1,G2(1)+50),max(1,G2(2)-50):max(1,G2(2)+50));
Mask2=imerode(Mask,se);
ErodedRegion=Mask-Mask2;
MaskedIm=im2uint16(im2double(Im).*Mask);
MaskedIm2=im2uint16(im2double(Im).*Mask2);
MaskedMedfiltIm=im2uint16(im2double(MedfiltIm).*Mask2);
%
[r,c,v]=find(MaskedIm2);
%
[r_high,c_high]=find(MaskedMedfiltIm>prctile(v,85));
[r_low,c_low]=find(Mask2&(MaskedMedfiltIm<prctile(v,10)));
%
FinalIm=MaskedIm2;
for i=1:length(r_high)

FinalIm(r_high(i),c_high(i))=0;
end
for i=1:length(r_low)

FinalIm(r_low(i),c_low(i))=0;
end
[r_final,c_final,v_final]=find(FinalIm);
%
sr3=[’Cyt_med’ int2str(l) ’(k)=median(v_final);’];
eval(sr3)
sr4=[’Cyt_std’ int2str(l) ’(k)=std(double(v_final));’];
eval(sr4)

end
%
if Input~=0

Ic0=eval([’mean(Cyt_med’ int2str(l) ’(Input(1)-5:Input(1)-1))’]);
elseif Input == 0

Ic0=eval([’Cyt_med’ int2str(l) ’(1)’]);
end
sr5=[’Ic_med’ int2str(l) ’=(Cyt_med’ int2str(l) ’-BackGro_med’ int2str(l) ...

’)./(Ic0-BackGro_med’ int2str(l) ’);’];
eval(sr5)
sr6=[’Ic_std’ int2str(l) ’=(Cyt_std’ int2str(l) ’)./(Ic0-BackGro_med’...

int2str(l) ’);’];
eval(sr6)

end
%
figure;AHCyt=axes;hold on
for l=1:Pos

plot(Time,eval([’Ic_med’ int2str(l)]),’Color’,...
eval([’Color’ int2str(l)]),’LineWidth’,1,’Marker’,’s’,’MarkerSize’...
,10,’MarkerFaceColor’,eval([’Color’ int2str(l)]));

end
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set(AHCyt,’YLim’,[0.4 1.3],’XLim’,[0 max(Time)],’FontSize’,15);
Bar = linspace(0.4,1.3);%linspace(min of YLim, max of YLim, 10)
[X, Y]=meshgrid(InputTime,Bar);
plot(X,Y,’--k’,’LineWidth’,1);
ylabel(’Normalized cytosolic fluorescence (a.u.)’);
xlabel(’Time (minutes)’);
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