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1. ABSTRACT 

Cells use common signaling molecules for the selective control of downstream gene 

expression and cell-fate decisions. The relationship between signaling molecules and 

downstream gene expression and cellular phenotypes is a multiple-input and 

multiple-output (MIMO) system and is difficult to understand due to its complexity. For 

example, it has been reported that, in PC12 cells, different types of growth factors 

activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective 

protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, 

JUNB and FOSB, leading to cell differentiation, proliferation and cell death; however, 

how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as 

expression of the IEGs and cellular phenotypes remains unclear. To address this issue, I 

employed a statistical method called partial least squares (PLS) regression, which 

involves a reduction of the dimensionality of the inputs and outputs into latent variables 

and a linear regression between these latent variables. I measured 1,200 data points for 

MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes 

as the outputs, and I constructed the PLS model from these data. The PLS model 

highlighted the complexity of the MIMO system and growth factor-specific input-output 

relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, 

I applied a backward elimination method to the PLS regression, in which 60 input 
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variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, 

CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model 

with only 5 input variables demonstrated a predictive ability comparable to that of the 

full PLS model. The 5 input variables effectively extracted the growth factor-specific 

simple relationships within the MIMO system in cell-fate decisions in PC12 cells. 
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3. INTRODUCTION 

 

3.1 Multi-input and multi-output (MIMO) system 

 

Cells use common signaling molecules to selectively control downstream gene 

expression and cell-fate decisions. The relationship between signaling molecules and 

gene expression or cellular phenotypes was previously thought to be a one-to-one 

correlation. However, recent studies have revealed that signaling molecules and 

downstream gene expression levels and cellular phenotypes are mutually connected, and 

their relationship appears to be a multiple-input and multiple-output (MIMO) system 

[1-6]. 

For example, PC12 cells, an adrenal chromaffin cell line, have been shown to 

undergo cell differentiation, proliferation and death in response to various growth 

factors (Fig. 1) [7-11]. Nerve growth factor (NGF) and pituitary adenylate 

cyclase-activating polypeptide (PACAP) induce differentiation and neurite extension, 

epidermal growth factor (EGF) induces cell proliferation, and the protein synthesis 

inhibitor anisomycin induces cell death [9-18]. These growth factors use common 

signaling pathways. NGF induces differentiation via the receptor-tyrosine kinase, TrkA, 

which causes a sustained activation of downstream signaling pathways, including both 

the ERK and AKT pathways [9,10,19]. PACAP activates the G protein type receptor 
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PAC1, which phosphorylates CREB through cAMP-dependent protein kinase A (PKA) 

activation, leading to cell differentiation [10,20,21]. EGF induces cell proliferation by 

activating the tyrosine kinase receptor EGFR, which transiently activates the ERK and 

AKT pathways [9,15,22,23]. Anisomycin activates mitogen-activated protein kinase (MAPK) 

cascades, such as JNK and p38, as well as caspases, including Caspase 3, which leads to 

cell death. Moreover, signaling molecules transmit information downstream via the 

protein expression of immediate early genes (IEGs), including c-Fos, c-Jun, EGR1, 

FosB and JunB [24,25]. Thus, a wide range of growth factors encode information into 

specific temporal patterns and combinations of the multiple-inputs, such as MAPKs and 

CREB, that are further decoded by the multiple-outputs, such as expression of IEGs to 

exert biological functions in PC12 cells. However, the essential and simple relationship 

in the MIMO system remains to be elucidated. 
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3.2 Partial least squares (PLS) regression method  

 

The statistical analysis called partial least square (PLS) regression was originally 

developed for econometrics and chemometrics [26]. The PLS regression has been 

applied to the biological MIMO system, signaling molecules and cellular phenotypes 

such as apoptotic signaling pathways [1-3,27-30]. The application of PLS regressions to 

the MIMO system involve reducing the dimensionality of the inputs and outputs into 

latent variables, which are selectively weighted linear combinations of the inputs and 

outputs. A linear regression is then performed between the latent variables of the inputs 

and the outputs. Because the latent variables explain the characteristics of the data using 

a smaller number of latent variables than the number of original variables, those latent 

variables are called principal components. This method can relate multiple signaling 

molecules to multiple downstream functions based on heterogeneous multivariate 

signaling in response to various growth factors. The principal components in the PLS 

model consist of linear combinations of all variables. Because the number of variables 

is not reduced and complexity still remains, the result of the PLS regression is difficult 

to intuitively understand. To facilitate a better understanding of the MIMO system, a 

method for further reducing the number of variables is required.  
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3.3 Introduction of this study 

 

In this study, I employed PLS regression and analyzed the complex relationship 

between the phosphorylation of signaling molecules and the expression of IEGs and 

cellular phenotypes in PC12 cells in response to various growth factors. The PLS model 

highlighted the complex characteristics of the MIMO system and growth factor-specific 

input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce 

the number of input variables in the PLS model, I applied a backward elimination 

method to the PLS regression model and obtained a simple PLS model with 5 input 

variables. The simple PLS model with only 5 input variables demonstrated a predictive 

ability comparable to that of the full PLS model with 60 variables. The 5 input variables 

effectively highlight the simple relationships within the MIMO system and growth 

factor-specific input-output relationships of cell-fate decisions in PC12 cells. the simple 

relationships can be intuitively understood and easily observed by visual inspection. 
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4 MATERIALS AND METHODS 

 

4.1 Antibodies  

 

 Mouse anti-phospho-ERK1/2 (Thr 202/Tyr 204) monoclonal antibody (mAb) (#9106), 

rabbit anti-phospho-CREB (Thr 133) mAb (#9198), rabbit anti-phospho-JNK 

(Thr183/Tyr185) mAb (#4668), rabbit anti-EGR1 mAb (#4154), rabbit anti-c-JUN mAb 

(#9165), rabbit anti-c-FOS mAb (#2250), rabbit anti-JUNB mAb (#3753), rabbit 

anti-FOSB mAb (#2251), and rabbit anti-cleaved Caspase 3 mAb (#9664) were 

purchased from Cell Signaling Technology (Beverly, MA). Rabbit anti-phospho p38 

mAb (#v1211) was purchased from Promega (Madison, WI).  

 

4.2 Cell culture and treatments  

 

 PC12 cells (kindly provided by Masato Nakafuku, Cincinnati Children’s Hospital 

Medical Center, Ohio) were cultured at 37°C under 5% CO2 in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 5% horse 

serum (Invitrogen, Carlsbad, CA). Cells were stimulated using recombinant mouse 

β-NGF (R&D Systems, Minneapolis, MN), EGF (Roche, Mannheim, Germany), 

PACAP (Sigma, Zwijndrecht, The Netherlands), or anisomycin (EMD Biosciences, Inc., 

San Diego, CA) as previously described [31]. I used a low dose of anisomycin (50 nM) 
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to activate p38 and JNK without inhibiting translation. For the QIC assays, cells were 

seeded at a density of 10
4
 cells per well in 96-well poly-L-lysine–coated glass-bottomed 

plates (Thermo Fisher Scientific, Pittsburgh, PA) and then starved in DMEM containing 

25 mM HEPES and 0.1% bovine serum albumin for approximately 18 h before 

stimulation. Cells seeded in 96-well microplates were stimulated by replacing the 

starvation medium with the medium containing the stimulant using a liquid handling 

system (Biomek® NX Span-8, Beckman Coulter, Fullerton, CA) with an integrated 

heater-shaker (Variomag®, Daytona Beach, FL) and robotic incubator (STX-40, 

Liconic, Mauren, Liechtenstein). All of the cells within a plate were fixed 

simultaneously to prevent their exposure to formaldehyde vapor during the treatment. 

 

4.3 QIC (Quantitative Image Cytometry) 

 

QIC was performed as previously described [32]. Briefly, after growth factor 

stimulation, the cells were fixed, washed with phosphate-buffered saline (PBS), and 

permeabilized with blocking buffer (0.1% Triton X-100, 10% fetal bovine serum in 

PBS). The cells were then washed and incubated for 2 h with primary antibodies diluted 

in Can Get Signal immunostain Solution A (Toyobo, Osaka, Japan). The cells were 

washed three times and then incubated for 1 h with secondary antibodies. After 
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immunostaining, the cells were treated for nucleus and cytoplasm staining by incubating 

with Hoechst 33342 (Invitrogen, Carlsbad, CA) and CellMask Deep Red stain 

(Invitrogen Carlsbad, CA), respectively. The images of the stained cells were acquired 

using a CellWoRx (Thermo Fisher Scientific, Pittsburgh, PA) automated microscope 

with a ×10 objective. For QIC analyses, I acquired two different fields for each well and 

obtained 1238 ± 356 (mean ± SD) cells for each well. All liquid handling for the 

96-well microplates was performed using a Biomek® NX Span-8 liquid handling 

system (Beckman Coulter, Fullerton, CA). 

 

4.4 Quantitative analysis of the neurite length 

 

PC12 cells (0.5×10
4
 cells/well) were fixed using a 10% formalin solution (Wako, 

Osaka, Japan) for 10 minutes. Cells were washed with phosphate-buffered saline (PBS), 

incubated with 1 μg/ml Hoechst 33342 solution (Life Technologies, Carlsbad, CA) and 

1 μg/ml CellMask (Life Technologies) in PBS for 1 hour at room temperature and then 

washed with PBS. Images were captured using a CellWoRx microscope (Thermo Fisher 

Scientific, Rockford, IL). Using the CellMask signal as the neuronal cell image and the 

Hoechst signal as the nuclear image, the lengths of the neurites were measured with the 
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NeuroTracer NIH ImageJ plug-in [33]. The length of the neurites of cells under each 

stimulation condition was represented as the averaged neurite lengths of cells.  

 

4.5 Cell viability assay (mitochondrial respiratory chain activity) 

 

 Cell viability was determined by measuring mitochondrial reduction of the MTS dye 

[3-(4,5-dimethythiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetraz

olium] reagent into a soluble formazan product (Promega, Madison, WI) for the 

quantification of the respiratory chain activity of the mitochondria. PC12 cells were 

plated on Poly-L-lysine (PLL)-coated 96-well plates. After incubation, cells were 

treated with MTS solution (1 mg/ml), and the intracellular soluble formazan produced 

by the cellular reduction of the MTS was determined by recording the absorbance of 

each 96-well plate using a Mithras LB940 microplate reader (Berthold Japan, 

Tokyo, Japan) at a wavelength of 490 nm. 

 

4.6 Cell death assay (Activity of Caspase 3) 

 

Cell death was determined by measuring of activation of Caspase 3 as cleaved Caspase 

3 using western blot assays. Cell lysates were subjected to standard sodium dodecyl 



 

 

16 

 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). After fractionation by 

SDS-PAGE and transfer to nitrocellulose membranes, the blots were incubated with 

antibodies directed at Cleaved Caspase 3 (1:1000 dilution; Cell Signaling Technology, 

Danvers, MA, #9664 ) or pan ERK1/2 (1:2000 dilution; Cell Signaling Technology, 

#9102) followed by incubation with horseradish peroxidase-conjugated rabbit IgG (GE 

Healthcare, Buckinghamshire, England). Chemiluminescence was detected using 

Immobilon Western (Millipore, Billerica, MA). The resulting image was captured with a 

luminescent image analyzer LAS-4000 (Fujifilm, Tokyo, Japan). The signal intensity 

was quantified using Phoretix 1D software (TotalLab Ltd, Newcastle upon Tyne, UK). 

 

4.7 Cell cycle assay (cell cycle S-phase fraction) 

 

 Cell cycle S-phase fraction was determined by the incorporation of 

5-ethynyl-2′-deoxyuridine (EdU) using the Click-iTEdU Cell Proliferation AssayKit 

(Invitrogen). The PC12 cells were incubated with 10 μM EdU for 1 hour before fixation, 

permeabilization, and EdU staining, which were performed according to the kit 

manufacturer’s protocol. The proportion of nucleated cells incorporating EdU was 

determined by fluorescence microscopy using a CellWoRx microscope (Thermo Fisher 

Scientific), and the fraction of cells in the S-phase was measured using MATLAB 
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software (MathWorks). 

 

4.8 Partial Least Squares Regression method  

 

The partial least squares regression method used in this study was described in a 

previous publication [1,34]. Partial least squares regression is a predictive two-block 

regression method based on estimated latent variables and is applied for the 

simultaneous analysis of two data sets. The purpose of PLS regression is to build a 

linear model that enables the prediction of outputs from inputs. In this study, PLS 

regression analysis was performed using the MATLAB (Mathworks) software suite. 

Data were normalized by mean centering and variance scaling the different 

measurements.  

Let X  be the (2060) input data matrix for PLS modeling. The i -th (1 20i  ) 

row vector of X  is the input vector 
t

ix  where t  denotes the transpose of a vector or 

matrix  . The input vector ix  consists of 60 metric variables which are time course 

points of MAPKs and CREB. I used 20 doses of stimuli to obtain 20 samples as input 

vectors, hence, i  corresponds to the attribute of stimulation. Let Y  be the (2095) 

output matrix. The j -th (1 95j  ) column vector jy  of Y  is the output vector of 
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which each variable correspond to the attribute of stimulation, and j corresponds to the 

attribute of time course point of the IEGs or phenotype. 

The PLS model can be understood as two steps regression model developed 

simultaneously. The first step can be considered as consisting of the development of 

outer relations ( X  and Y  metric individually). These data matrix were decomposed 

in latent variables plus a residue metrics. The sub-matrices can be represented as the 

product of the scores and the loadings which can be re-grouped in independent matrices 

for the X  and Y  metrics as follows: 

ETPX  t  

FUQY  t  

where T  and U are the scores, and P  and Q are the loadings, for the X  and Y  

metrics, respectively. The matrices E  and F correspond to the residues associated 

with the PLS modeling. The second step is a linear inner relation linking between T  

and U ,  

 U TD H  

where D  is the diagonal matrix and H  denotes the residual matrix. 

Eventually, PLS regression is yielded by 

  Y XB ε  
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where B  is the matrix of regression coefficients  

  
1

t t t t


B X U T XX U T Y  

and ε is the residual matrix. 

The optimum number of components were determined by minimizing MSE of 

Leave-one-out cross-validation as LOOCV MSE[35], 

LOOCV MSE =  
2

\

1 1

1
ˆ

N M
i

ij ij

i j

y y
NM  

  

where ijy is the ( , )i j variables of the ( N M ) matrix Y  and 
\ˆ i

ijy  is the prediction 

for ijy  by PLS model which was trained by the data set removed i -th sample. 

 

4.9 Backward elimination PLS regression 

 

I applied a backward elimination variable selection method [36] for PLS because backward 

elimination can improve the accuracy of a PLS model. The backward elimination PLS regression 

began with the full PLS model with the input vector of M variables.  I define the LOOCV MSE 

removing k -th variable from input vector as 

  
2

\

1 1

1
ˆLOOCV MSE \

N M
ik

ij ij

i j

k y y
NM  

   

\ˆ ik

ijy  is the prediction for ijy  by PLS model which was trained by the data set removed i -th 

sample and k -th variable of input vector. In the n -th step of procedure, the elimination 
*k -th 
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variable of input vector was determined by minimizing LOOCV MSE \k  for 1 1k M n     

 

* arg min LOOCV MSE \
k

k k
 

then, 
*k -th variable was eliminated from the input vector, and redefined the new input vector of 

which 
*k -th variable was eliminated for ( 1)n -th step. I iterated this procedure until the 4 

variables remained, which is the same number as the principal components. 

 

4.10 Variable Importance in Projection (VIP) 

We calculated the Variable Importance in Projection (VIP) of [41] to summarize each 

variable contribution to the model. VIP describes which X variables characterize the X 

block well and which variables correlate with Y. VIP values summarize the overall 

contribution of each input variable to the PLS model, summed over all components and 

weighted according to the Y variation accounted for by each component. VIP is 

calculated as follows:  

 

1/2

2 2 2

1 1 1 1

( , ) / ( , )
m M m M

k j h hk j h

h j h j

VIP R w R
   

 
  
 
 y t y t  

, 

for each k-th input variable k=1,…, p, where ),(2 baR  stands for the squared 

correlation between items in vector a and b, ht  is the h-th column vector of the score 
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matrix T, m is the number of principle components, and hkw  is the (h,k) element of the 

weight matrix W. 
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5 RESULTS 

5.1 The multiple-input and multiple-output system in PC12 cells 

 

I stimulated PC12 cells with various doses of NGF, PACAP, EGF, and anisomysin 

and measured time series data of the phosphorylation of signaling molecules, including 

ERK (pERK), CREB (pCREB), JNK (pJNK), AKT (pAKT) and p38 (pp38) (Figs. 2A 

and 3), protein expression levels of immediate early genes (IEGs), including c-FOS, 

c-JUN, EGR1, JUNB and FOSB (Fig. 2B, Fig. 3), and cellular phenotypes, including 

neurite lengths, cell viability (respiratory chain activity of mitochondria), cell cycle 

(S-phase fraction) and cell death (Caspase3 activity) (Figs. 2B, Fig 3). Among many 

asssays for detection of apoptosis, we chose caspase3 activity because of the availability 

for high-throughput assay. NGF, PACAP, EGF, and anisomycin induced distinct 

temporal patterns and combinations of phosphorylation of signaling molecules, IEGs 

and cellular phenotypes. I did not observe obvious cell proliferation by EGF stimulation 

under the conditions. Here, I regarded the phosphorylation of signaling molecules as the 

inputs and the IEGs and cellular phenotypes as the outputs.  
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5.2 Construction of the PLS model  

 

I applied PLS regression to infer the MIMO system underlying cell-fate decisions in 

PC12 cells (Fig. 4) [37]. PLS regression is a regression method for use with the MIMO 

system that involves reducing the dimensionality of the inputs and outputs into latent 

variables, which are selectively weighted linear combinations of the inputs and the 

outputs, denoted as principal components. A linear regression is then performed 

between the principal components of the inputs and the principal components of the 

outputs(see Materials and Methods). The principal component was determined to 

maximize the capture of the covariance between the input latent variable and the output 

latent variable, and the principal components were orthogonal to one another. Thus, the 

PLS regression predicts multiple output variables from multiple input variables. 

The input data set consisted of 20x60 matrices of phosphorylation of signaling 

molecules at 12 time points (60 variables) that involved 5 doses of 4 growth factors (Fig. 

4A, Tables 1, see Materials and Methods). The output dataset consisted of 20x95 

matrices of the protein expression of 5 IEGs with 12 time points and cellular 

phenotypes of neurite lengths, cell viability and cell death at 9 time points and cell cycle 

at 8 time points (95 variables) that involved 5 doses of 4 growth factors (Fig. 4A, Tables 

1, see Materials and Methods). I used the LOOCV MSE (leave-one-out cross validation 
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mean squared error) [35] as the estimated prediction error to optimize the number of 

model dimensions (Fig. 4B) and determined that the LOOCV MSE was minimized with 

four principal components. The first principal component captured approximately 45% 

of the total variance, the first and second principal components captured 67% of the 

total variance, and the first to fourth principal components captured approximately 85% 

of the total variance (Fig. 4C). The Pearson correlation coefficient between the 

measured outputs and the predicted outputs in the four principal components was 0.94 

(Fig. 4D). 

PLS regression characterizes the input-output system using "loadings", which are the 

vector projections of the unit direction vector of the principal component on each 

variable, and "scores", which are the projections of sample points on the principal 

component direction. In short, loadings represent the contribution of each variable to the 

principal component, and scores represent growth factor-specificity in the principal 

component.  

In the input loadings of the first principal component, pERK, pCREB and pAKT 

were positive, whereas pJNK and pp38 were negative (Fig. 5A), indicating their 

opposing contributions to the first principal component. In the input scores of the first 

principal component, NGF, PACAP and EGF were positive, whereas anisomycin was 
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negative (Fig. 5B), indicating that anisomycin was inversely correlated to the other 

growth factors in the first principal component. In the output loadings of the first 

principal component of the outputs, the neurite length, cell viability, and all IEGs were 

positive, whereas cell death and cell cycle were negative (Fig. 5C). In the output scores, 

NGF and PACAP were positive, whereas anisomycin was negative (Fig. 5D), indicating 

that anisomycin was inversely correlated with the other growth factors in the first 

principal component. These results indicate that the first PLS component divided the 

data into cell survival/differentiation and cell death. In the input loadings of the second 

principal component, pCREB and pJNK, late pAKT, and pp38 were positive, whereas 

pERK and early pAKT were negative. In the input scores, PACAP and anisomycin were 

positive, whereas NGF and EGF were negative. In the output loadings of the second 

principal component, cell death, cell cycle and c-FOS, JUNB and FOSB were positive, 

whereas the neurite length, cell viability, c-JUN and EGR1 were negative. In the output 

scores, PACAP and anisomycin were positive, whereas NGF and EGF were positive. 

These observations indicate that the second
 
principal component divided the data into 

receptor-type tyrosine kinase (NGF and EGF) and other receptor types (PACAP and 

anisomycin). The third principal component divided the data into higher and lower 

doses of stimuli, and the fourth principal component divided the data into EGF and 
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others. 

The first and second principal components captured approximately 67% of the 

variance (Fig. 4C), and I plotted both the loadings and scores on these two principal 

components (Fig. 5E-H). In the first quadrant of the loadings, pCREB and late pAKT in 

the inputs were correlated with c-FOS, JUNB and FOSB in the outputs (Fig. 5E, G). In 

the second quadrant of the loadings, pJNK and pp38 in the input were correlated with 

cell death and cell cycles in the outputs (Fig. 5E, G). In the fourth quadrant, pERK and 

early pAKT in the inputs were correlated with the neurite length, cell viability, EGR1 

and c-JUN in the outputs. In the scores, the first, second, and forth quadrant involved 

PACAP, anisomycin and NGF, respectively (Fig. 5F, H), indicating that these quadrants 

represent growth factor-specific input-output relationships. Thus, the loadings and 

scores of the first and second principal components highlight characteristics of the 

MIMO system and growth factor-specific input-output relationships of cell-fate 

decisions in PC12 cells, respectively. 
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5.3 Validation of the PLS model 

 

I validated the PLS model using additional experimental data including inhibitors of 

signaling molecules. I perturbed the activity of signaling molecules by adding inhibitors 

and measured the inputs and cellular phenotypes. I used PD0325901 (MEK inhibitor), 

H89 (PKA inhibitor), SP600125 (JNK inhibitor), SB203580 (p38 inhibitor), and 

LY294002 (PI3K inhibitor) that are thought to inhibit pERK, pCREB, pJNK, pp38 and 

pAKT, respectively. Because of prominent effects of NGF and PACAP on neurite 

lengths and MTS, and of anisomycin on cell cycle and cell death, we chose these stimuli 

for validation by the inhibitor experiments.  

 

Using the measured inputs in the presence of the inhibitors, the PLS model predicted the 

neurite length in the presence of the inhibitors (Fig. 6A, B). The predicted neurite length 

showed a high correlation (r>=0.7) with the measured neurite length in response to 

NGF (r=0.78) and PACAP (r=0.82). The predicted c-FOS, c-JUN and EGR1 expression 

levels showed high correlations with the measured data in response to NGF (r=0.93 for 

c-FOS, r=0.94 for c-JUN, r=0.81 for EGR1) (Fig. 6A, B). The predicted c-FOS FOSB 

and JUNB expression levels were highly correlated with the measured data in response 

to PACAP (r=0.91 for c-FOS, r=0.93 for FOSB, r=0.78 for JUNB) (Fig. 6B). However, 
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we observed a low correlation (r=<0.5) between JUNB and NGF (r=0.50) and between 

EGR1 and PACAP (r=-0.1) (Fig. 6A, B). This lack of correlation may have attributed to 

the low expression levels of the IEGs (Table S2) rather than a low predictive ability of 

the PLS model. Thus, the PLS model predicted data that correlated well with the 

inhibitor experimental data regarding the neurite length and protein expression levels of 

the IEGs. 

There were no significant correlations regarding the cell viability ( r=0.32 for 

PACAP), or cell death (r=0.16 for anisomycin) (Fig. 6C), indicating that the PLS model 

shows a low predictive ability for the cell cycle and cell death in the presence of the 

inhibitors. This low predictive ability may occur due to the existence of nonlinearity 

between the inputs and the outputs that cannot be modeled by PLS regression or 

because the inputs of the PLS model may overlook essential signaling molecules 

required for representing 
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5.4 Reduction of the PLS model by backward elimination PLS regression 

 

Although PLS regression involves reducing the dimensionality of the inputs into 

principal components, the principal components continue to involve all of the inputs, 

making it difficult to intuitively understand how the combination of inputs correlates 

with the outputs. To facilitate an intuitive understanding of the relationship by reducing 

the number of variables, I employed a backward elimination variable selection process 

[36] in the PLS regression called the backward elimination PLS regression method. I 

constructed a set of single variable-eliminated PLS models and estimated the LOOCV 

MSE of each model. I eliminated the variable with the minimum LOOCV MSE. I then 

reconstructed each single variable-eliminated PLS model using the remainder of the 

variables. I iterated this step sequentially. As a result, as the model was reduced in order, 

the LOOCV MSE decreased and reached a minimum with 22 input variables (Fig. 7A-C, 

Table 2). The 22-input variable PLS model provided the best predictive accuracy of any 

PLS model. The eliminated inputs are also considered to be factors that decrease or do 

not affect the predictive accuracy of the model. As the input variables were sequentially 

eliminated, the error increased and reached a level similar to that of the full PLS model 

when 5 input variables remained. The last 5-input variable model was denoted as the 

simple PLS model (Fig. 7D). The input variables in the simple PLS model were pERK 
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at 10 min (pERK10), pCREB at 5 and 30 min (pCREB5 and pCREB60), pAKT at 5 min 

(pAKT5) and pJNK at 30 min (pJNK30). This result indicates that pERK10, pCREB5, 

pCREB60, pAKT5 and pJNK30 were the minimum set of the inputs that showed a 

comparable predictive accuracy as that of the entire data set of the outputs in the full 

PLS model with 60 input variables. We further validated the simple model by use of the 

inhibitor experiments in Figure 4 and found that the simple model similarly predicted 

the inhibitor experimental result as the full and best models (Fig. 8 and 9). The variables 

pERK10, pAKT5 and pJNK30 were considered to indicate the peak activity of pERK, 

pAKT and pJNK, respectively (Fig. 3). The variables pCREB5 and pCREB60 may 

correspond to pERK and PKA activity, respectively, because pCREB is regulated by 

pERK and PKA. I then plotted the loadings and scores of the 5 variables in the first and 

second principal component axes (Fig. 7E, F). I also reduced the number of output 

variables by selecting the single output variable with the maximum norm that is 

considered to indicate the maximum amount of information regarding the output 

variable. The selected output variables were cell death at 12 hour (Cell death12), cell 

cycle at 32 hour (Cell cycle32), JUNB at 270 min (JUNB270), FOSB at 180 min 

(FOSB180), c-FOS at 60 min (c-FOS60), neurite length at 48 hour (Neurite length48), 

cell viability at 48 hour (Cell viability48), c-JUN at 90 min (c-JUN90) and EGR1 at 90 
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min (EGR1-90). I plotted the loadings and scores of the selected single outputs for each 

variable (Fig. 7G, H) of the simple PLS model with 5 input and 9 output variables (Fig. 

8A). The variable pJNK30 correlated with Cell death12 and pCREB5, and pCREB60 

correlated with JUNB270, FOSB180 and c-FOS60. pERK10 and pAKT5 correlated 

with c-JUN90 and EGR1-90. Neurite length48 and Cell viability48 correlated with 

pCREB5 and pCREB60, and pERK10. Anisomycin, PACAP, NGF and EGF were 

plotted in the first, second, third and fourth quadrants, respectively. The results of the 

simple PLS model are consistent with those of the full PLS model, indicating that the 

simple PLS model effectively represents the relationships between the inputs and the 

outputs underlying cell-fate decisions in PC12 cells.  
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6 DISCUSSION 

 

In this study, I employed PLS regression to describe the relationship between the 

phosphorylation of signaling molecules and the expression of IEGs and cellular 

phenotypes, which has been applied to similar biological data sets [1-3,27-30]. The 

loadings and scores of the PLS model highlight characteristics of the MIMO system and 

growth factor-specific input-output relationships of cell-fate decisions, respectively, in 

PC12 cells.  

One of the technical highlights of this study is the model reduction via backward 

elimination PLS regression. I found that a reduction of the number of input variables 

provided better predictive ability, and the 22-variable model showed the best predictive 

ability. I further reduced the number of variables, and found that the simple PLS model 

with 5 input variables showed a comparable predictive ability to that of the full PLS 

model with 60 input variables. I also reduced the number of outputs by selecting the 

output with the maximum norm, which is considered to encode the maximum 

information of each output. Such reduction methods help provide an intuitive 

understanding of the complex relationships in the MIMO system and can be widely 

applied to any signaling and cellular phenotypes. The variable importance in the 

projection (VIP) scores is indicative of the importance of each variable in the projection 
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used in a PLS model and are often used for variable selection [1]. I calculated the VIP 

scores of all variables in the full PLS model and found that the 5 variables in the simple 

PLS model were included in the top 20 variables selected by VIP (Table 3). 

Furthermore, we compared the simple PLS model with the VIPs-PLS model with 5 

input variables selected from the highest VIP score (Table 4). The simple PLS model 

with 5 input variables showed lower LOOCV MSE and higher correlation than the 

VIPs-PLS models with 5 input variables. indicating that the prediction ability of the 

simple model is higher than the VIPs-PLS model. These results support the importance 

of these 5 variables in the simple PLS model.  

The simple PLS model with 5 variables demonstrated a comparable predictive ability 

to that of the full PLS model. The simple PLS model with 5 input variables and 9 output 

variables (Fig. 10A) facilitates an intuitive understanding of the MIMO system and 

growth factor-specific input-output relationships of cell-fate decision in PC12 cells (Fig. 

10B). The simple model showed the similar predictive ability to the full model against 

the inhibitor experiment (Fig. 8 and 9), indicating the simple model essentially captures 

the input-output relationship of the MIMO system. The selected input variables in the 

simple PLS model were pERK10, pCREB5, pCREB60, pAKT5 and pJNK30. Among 

the selected inputs, pERK10, pAKT5 and pJNK30 correspond to their peak activities 
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and are considered to encode the maximum information of the signaling molecules (Fig. 

3). It has been reported that sustained ERK activity is required for cell differentiation in 

PC12 cells [9,38,39]; however, late pERK was not selected in the simple PLS model, 

although the model can capture the characteristics of the neurite length. This omission 

may occur because late pERK information is encoded by pCREB60 levels, a 

downstream molecule of ERK, in the simple PLS model. Two different time points of 

pCREB, pCREB5 and pCREB60, were selected, suggesting that pCREB5 and 

pCREB60 encode different information. The phosphorylation of CREB has been 

reported to be regulated by ERK and PKA [40]. NGF and EGF have been reported to 

induce the phosphorylation of CREB via ERK, and PACAP has been reported to induce 

the phosphorylation of PKA [10,40,41]. Therefore, pCREB5 and pCREB60 likely 

encode different information for growth factors and upstream molecules. 

I found that the simple model shows the similar predictive ability for the inhibitor 

experiments to the full and best models, meaning that the selected 5 input variables in 

the simple model have high explanatory abilities to the outputs. I further examined the 

contribution of the 5 input variables in the simple model to the specific outputs. I made 

the best models for each output and compared to the selected input variables to those in 

the simple models (Table 5). The selected input variables in the best models for each 
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output included different sets of the input variables in the simple model, suggesting that 

the different sets of the input variables in the simple model specifically contributed to 

each output. For example, the cell cycle and cell death shared the same set of the input 

variables such as pERK10, pJNK30 and pAKT5, suggesting that these output may share 

the same upstream dependency. Each IEG had the different sets of the selected input 

variables except c-FOS and FOSB, indicating that the regulation of c-FOS and FOSB 

were similar, and the regulation of other IEGs were different. 

PLS regression reduces dimensionality of the inputs and outputs into respective latent 

variables. In this study, I further reduced the PLS model by eliminating inputs variables 

from the original PLS model using the backward elimination method, and found that 

accuracy of the eliminated PLS model (best PLS model) was improved. These results 

demonstrate that the backward elimination PLS regression has two-fold advantage 

compared to the conventional PLS regression; reduction of input variables and 

improvement of accuracy of prediction. I further eliminated the input variables and 

identified 5 inputs as the minimum set of the inputs that characterized the MIMO 

system in PC12 cells. Thus, our data-driven statistical modeling method is widely useful 

to effectively extract simple relationships of the cellular MIMO system from large-scale 

data sets. 
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7 FIGURES 

 

Figure 1. Multi-input and multi-output system in PC12 cell. PC12 cells exhibit 

several characteristic phenotypes in response to various external stimuli. These 

various stimuli are redundantly mediated by a few common signal transduction factors 

such as Akt, CREB and MAPKs, eventually increase expression levels of some proteins 

known as Immediate Early Genes (IEGs). These stimuli finally cause different types of 

cellular phenotype; cell differentiation, proliferation and cell death are caused by NGF 

and PACAP, by EGF and by anisomycin respectively. Each phenotype observes one or 

more properties such as cellcycle, neurite length, cell death and cell viability.  
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Figure 2. The inputs and outputs in the MIMO system for cell-fate decisions in 

PC12 cells. (A) The inputs consisted of the 12 time points of pERK, pCREB, pJNK, 

pAKT, and pp38 in response to 5 doses of 4 growth factors (Fig. 3). (B) The outputs 

consisted of the 12 time points for protein expression of c-FOS, c-JUN, EGR1, FOSB, 

and JUNB, and 9 time points for the neurite lengths, cell viability (respiratory chain 

activity of mitochondria), cell cycle (S-phase fraction) and cell death (Caspase3 

activity) in response to 5 doses of 4 growth factors (Fig. 3). The doses of the growth 

factors are indicated by different colors (A and B). 
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Figure 3. Time courses of the inputs (phosphorylation of 5 signaling molecules) and theoutputs (5 

IEGs and 4 cellular phenotypes) in response to NGF, EGF, PACAP and anisomycin for construction 

of the PLSmodel. 
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Figure 4. Construction of the PLS model (A) Construction of the PLS model. Inputs 

metrics X (20×60) regressed against the output metrics Y (20×95). Each column and 

row in X correspond with time course points of MAPKs and CREB, and the doses of 

stimuli, respectively. Each column and row in Y correspond with time course points of 

the IEGs and phenotypes, and with doses of stimuli, respectively. B is the coefficient 

metrics and E is the residue metrics of the PLS model. (B) LOOCV MSE 

(leave-one-out cross validation mean square error) as a function of the number of 

principal components. (C) The cumulative contribution percentage of the principal 

components. (D) Correlation plots between the measured and predicted outputs. The 

Pearson correlation coefficient, r, was 0.94. Each dot represents a single time point for 

one of the outputs. 
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Figure 5. Loadings and scores of the principal components of the inputs and 

outputs. (A) Input loadings. A wedge indicates the temporal evolution of the indicated 

molecules from 0 to 360 min (Table 1). (B) Input scores. A wedge indicates the doses of 

the stimulant. (C) Output loadings. A wedge indicates the temporal evolution (Table 1). 

(D) Output scores. A wedge indicates the doses of the indicated molecules (Fig. 3). The 

red and blue colors indicate positive and negative values, respectively (A-D). Scatter 

plots of input loadings (E), input scores (F), output loadings (G) and output scores (H) 

of the first and second principal components. The colors correspond to the latent 

variables (E, G) and growth factors (F, H). The numbers indicate the time (minute for 
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pERK, pCREB, pJNK, pAKT, pp38, c-FOS, c-JUN, EGR1, JUNB and FOSB and hour 

for neurite lengths, cell viability, cell cycle and cell death).  
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Figure 6. Validation of the PLS model using inhibitor experiments. Correlation plots 

between the measured outputs and predicted outputs with NGF (A), PACAP (B) and 

anisomycin (C). The correlation coefficient, r, is indicated in each plot. Each dot 

represents a single time point. The data sets with PD0325901 (MEK inhibitor), H89 

(PKA inhibitor), LY294002 (PI3K inhibitor), SB203580 (p38 inhibitor), SP600125 

(JNK inhibitor) are indicated by the various colors.  
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Figure 7. Reduction of the PLS model by backward elimination PLS regression. 

(A) MSE of LOOCV as a function of number of the eliminated variables via the 
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backward elimination PLS regression. Coefficient matrix of the full PLS model with 60 

input variables (B), the best PLS model with 22 input variables (C) and the simple PLS 

model with 5 input variables (D). The red and blue colors indicate positive and negative 

values, respectively. As the number of the variables reduced, the contribution of 

remained variables relatively increased, and as a result, magnitude of the regression 

coefficient increased. The scatter plots of the input loadings (E), input scores (F), output 

loadings (G) and output scores (H) of the first and second principal components of the 

simple PLS model. The colors correspond to the latent variables (E, G) and growth 

factors (F, H). 
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Figure 8. Validation of the simple PLS model using inhibitor experiments. 

Correlation plots between the measured outputs and predicted outputs using same 

experiment as Figure 4 with NGF (A), PACAP (B) and anisomycin (C). 
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Figure 9. The correlation coefficient of the full, best and simple PLS model 

between the measured outputs and predicted outputs using the inhibitor 

experiments. The high correlations were found between NGF and neurite length 

(r=0.73),between PACAP and neurite length(r=0.80), between NGF and c-Fos (r=0.91), 

between PACAP and c-FOS(r=0.90), between NGF and c-JUN(r=0.95), between NGF 

and EGR1(r=0.77), between PACAP and FOSB (r=0.89) and between PACAP and 

JUNB (r=0.79); and the low correlations were found between PACAP and MTS 

(r=0.35), between PACAP and EGR1(r=-0.15), between NGF and FOSB (r=0.48), 

between NGF and JUNB (r=0.28), between anisomycin and cell death (r=0.32). 
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Figure 10. The simple relationships in the MIMO system in cell fate decision in 

PC12 cells. (A) The simple PLS model with 5 input and 9 output variables. (B) 

Loadings (squares) and scores (circles) of the first and second principal components in 

the simple PLS model with 5 input and 9 output variables were bi-plotted in input and 

output layers. Lines across the layers are coefficients of the matrix of the simple PLS 

model whose values are indicated by the color bar. The colors of circles indicate the 

growth factors.  
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8. TABLES 

Table 1. Summary of the input (1,200 points) and output (1,900 points) data shown 

in Figs. 2 and 3. 

 Molecule/Phenotype Time points 

Input pERK 0, 2, 5, 10, 15, 30, 60, 90, 120, 180, 270, 360 (min) 

 pCREB  

 pAKT  

 pJNK  

 pp38  

Output c-FOS 0, 2, 5, 10, 15, 30, 60, 90, 120, 180, 270, 360 (min) 

 FOSB  

 c-JUN  

 EGR1  

 JUNB  

 Neurite length 6, 9, 12, 18, 24, 30, 36, 42, 48 (hour) 

 Cell viability 6, 9, 12, 18, 24, 30, 36, 42, 48 (hour) 

 Cell death 1, 3, 6, 9, 12, 18, 24, 36, 48 (hour) 

 Cell cycle 4, 8, 12, 16, 20, 24, 28, 32 (hour) 
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Table 2. The 22 input variables in the best model and five input variables in the 

simple model. 

 
2 5 10 15 30 60 90 120 180 270 360 (min) 

pERK 
           

pCREB 
           

pJNK 
           

pAKT 
           

pp38 
           

Both the gray and black cells are the variables for the best PLS model, whereas the 

black cells alone are the variables for the simple PLS model. 
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Table 3. The VIP scores of the input variables. 
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Table 4. The correlation coefficients and LOOCV MSE in the backward 

elimination PLS models and the VIPs-PLS model with 5 input variables. 

 
* Correlation coefficient between the mesured outputs and predicted outputs 

  



 

 

54 

 

Table 5. The best models for each output. 

The high correlations were found between NGF and neurite length (r=0.73),between 

PACAP and neurite length(r=0.80), between NGF and c-Fos (r=0.91), between PACAP 

and c-FOS(r=0.90), between NGF and c-JUN(r=0.95), between NGF and 

EGR1(r=0.77), between PACAP and FOSB (r=0.89) and between PACAP and JUNB 

(r=0.79); and the low correlations were found between PACAP and MTS (r=0.35), 

between PACAP and EGR1(r=-0.15), between NGF and FOSB (r=0.48), between NGF 

and JUNB (r=0.28), between anisomycin and cell death (r=0.32). 
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