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“Be curious. And however difficult life may seem, there is always something you can do

and succeed at. It matter that you dont just give up.”

Stephen Hawking



Abstract

The entropic effects of anchored polymers on various mechanical properties of single and

multi-component membranes are systematically studied using simulations of a mesh-

less membrane model combined with anchored linear polymer chains. Polymer-induced

bending rigidity and spontaneous curvature of membrane are first revisited. For the

simplicity, a cylindrical shape of membrane are chosen to investigate these two mechan-

ical properties for anchored ideal and excluded-volume polymer chains, respectively.

Our results on membrane with anchored ideal polymer chains agree with the previous

linear partition function method and Monte Carlo simulation well. Our results on mem-

brane with anchored excluded-volume polymer chains are well consistent with a previous

scaling theory in a low density region, but in a high density part there is a difference

between our simulation and scaling theory, due to the limitation of Taylor expansion on

a non-small quantity.

In this PhD thesis, we specially pay attention to the effect of anchored polymers on the

edge of a patch of strip membrane, as well as the interfacial line between two coexisting

domains, both the strip shape and the circular shape, for the first time. It is found

that both ideal and excluded-volume polymer chains can reduce the line tension of

membrane edges, but excluded-volume chains reduce the line tension more due to the

steric repulsion. A 3D lattice polymer model is employed to calculate the reduced

weight ratio of linear ideal chains in the middle part and at the edge part. Based on

the lattice model. Based on the 3D lattice model, a mean field theory is proposed

for the edge line tension reduced by grafting ideal chains, which well reproduces our

simulation results. The interfacial line tension between different membrane domains

is also reduced by anchored polymer chains, for the strip and circular domains. It

leads to microdomain separation. Different cases for the interfacial tension reduction

are compared between the domains with and without anchored polymer chains. It is

found that without anchored polymers, two domain phases always tend to mix with the

interfacial line tension decreasing. However, instead of the mixing of two phases as seen

in typical binary fluids, densely anchored polymers can stabilize small domains. At some

critical density of anchored polymer chains, an intermediate state before microdomain

separation are confirmed in the simulation. It leads the domain boundary increase, but

without the separation occurring.
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Chapter 1

Research Motivation

Since the unicellular organism occurs on the earth, membranes just have become an

indispensable constituent part of cells. Cell membranes are very crucial to living organ-

isms. They are the barriers of cells and ensure cells to be relatively isolated individuals

but still able to exchange some materials between the inner sides and outer surround-

ings through some special ways due to the fancy properties of membranes. Membranes

usually consist of lipid bilayers mosaicks built of various kinds of proteins and anchored

bio-sugar chains. They are also key factors to determine the shapes of many kinds of

cells. For example, the biconcave discoidal shape of healthy red blood cells is regarded

as a result of minimization of the free energy of membranes under the area and volume

constraints because red blood cells have no complex inner structures.

In the past two decades, the lipid domains on cell membranes have always been a hot

research topic and received much attention from physicists, chemists, and biologists. Our

knowledge on the heterogeneous structure of biomembranes has been developed from

the primitive fluid mosaic model [1] to the modern raft model [2, 3] for decades. It is

considered that membrane proteins are not randomly distributed in lipid membranes but

concentrated in local microdomains, called lipid rafts, with diameter of 10 ∼ 100nm [4–

7]. The raft contains high concentrations of glycosphingolipids and cholesterol, and play

important roles on many intra- and inter-cellular processes including signal transaction

and membrane protein trafficking.

In the last decade, the phase separation in multi-component lipid membranes has been

intensively investigated in three-component systems of saturated and unsaturated phos-

pholipids and cholesterol [8–15]. Lipid domains exhibit various interesting patterns in

µm scale, which can be reproduced by theories and simulations. Various shapes of lipid

domains can be also formed in air-water interface [16–18]. However, the formation mech-

anism of microdomains in 10 ∼ 200nm scale has not been understood so far [19]. In

1
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the lipid rafts, glycolipids have glycan chains. Recently, network-shaped domains and

small scattered domains are observed in lipid membranes with PEG-conjugated choles-

terol [20]. The effects of anchored polymers have been well investigated in the case of

uniformly anchoring on membranes, but the effects on the lipid domains and line tension

are not well investigated. In this paper, we focus on the effects of anchored polymers on

properties of biomenbranes, in particular on lipid domains.

It is well known that anchored polymers modify membrane properties [21]. The polymer

grafting induces a positive spontaneous curvature C0 of the membranes and increases the

bending rigidity κ. These relations are analytically derived using the Green’s function

method and scaling method [21–25] and confirmed by Monte Carlo simulations [26–28].

Experimentally, the κ increase is measured by micropipette aspiration of liposomes [29].

Polymer decoration can enhance the stability of lipid membranes. PEG-conjugated lipids

can reduce protein adsorption and adhesion on cellular surfaces, whereby PEG-coated

liposomes can be used as a drug carrier in drug-delivery systems [30, 31].

When vesicles are formed from the self-assembly of surfactant molecules via micelle

growth, the vesicle size is determined kinetically by the competition between the bending

energy and the line tension energy of the membrane edge [32–38]. Recently, Bressel et

al. reported that the addition of an amphiphilic copolymer induces the formation of

larger vesicles [39]. A polymer-grafting-induced liposome-to-micelle transition is also

observed [21, 40, 41]. The line tension of the membrane edge is considered to be reduced

by polymer grafting, but it has not been systematically investigated so far. In this study,

we simulate the line tension of the membrane edge for anchored ideal and excluded-

volume chains and analytically investigate the polymer effects on the line tension for

ideal chains.

In order to simulate the polymer-grafting effects on biomembranes, we employ one of

the solvent-free meshless membrane models [42, 43]. Since we focus on the entropic

effects of polymer chains, the detailed structures of the bilayer can be neglected, and

thus the membranes can be treated as a curved surface. In the meshless model, a

membrane particle represents a patch of bilayer membrane and membrane properties can

be easily controlled., and the parameters related to mechanical properties of membranes

can independently change and can be adjusted in a wide range.

Starting with the next chapter, we will illuminate the topic of my thesis as the follow-

ing sequences: In Chapter 2, some basic knowledge on biomembrane and lipid domains

are introduced and then some important biochemical experiments on multi-component

membrane with and without anchored polymers are introduced. In Chapter 3, we in-

troduce some theoretical background on membrane and polymers, and specially on the
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principle of the effects of anchored polymers on membrane. In Chapter 4, a coarse-

grained biomembrane model is described in detail, and by combination with polymers,

it allows us to study various properties of biomembranes, that means, membranes with

anchored polymers. In Chapter 5, the bending rigidity and spontaneous curvature of

membrane with anchored polymers are revisited. Detailed investigations are performed

on ideal and excluded-volume polymer chains, respectively. In Chapter 6, we simulate

the effect of anchored polymers on the edge of strip membrane by a coarse-grained MD

simulation, and we proposed a mean field theory to deal with the case of ideal poly-

mer chains. It also can describe the mushroom region for excluded-volume polymer

chains. In Chapter 7, our study emphasis is shifted to interesting phenomena of mi-

crodomain separation and the corresponding interfacial line tension. We focus on the

domain shape transition and microdomain separation. Since the behavior of a mem-

brane patch of phospholipids and cholesterol is sufficiently complex, traditional detailed

simulations over time-scales are not sufficient to in investigate raft formation and struc-

ture [44]. Our coarse-grained biomembrane model can overcome this shortcoming. We

also pay attention to the polymer fraction of the mother domain. In Chapter 8, a brief

summary and future prospectives of this topic are discussed. Some calculation details of

the scaling theory and the mean field theory are written in Appendix A and Appendix B,

respectively. The pressure tensor calculation commonly used in Molecular Dynamics and

its derivation are described in Appendix C. The main results of this thesis is based on

our papers [45–47].



Chapter 2

Biomembranes and Lipid

Membranes

Cellular membranes in living cells are a complex and compound system, including various

kinds of proteins and different lipid compositions, all of which have two types of lipids

of saturated and unsaturated in terms of the configuration of the double bonds. Usually

cell membranes consist of three classes of amphipathic lipids: phospholipids, glycolipids,

and Cholesterols, where glycolipids are ”decorated” by bio-sugar chains called glycolipids

[48, 49]. The amount of each depends upon the type of cell, but in the majority of cases

phospholipids are the most abundant. There are also some transmembrane proteins with

anchored bio-sugar chains called glycoproteins [48, 49].

Biomimetic membranes or vesicles are usually used as useful tools to exert a series of

biochemical experiments in lab. Artificially the experimentalists decorate membranes

with short polymer chains, e.g. PEG chains. This provides simple model systems of

biomembranes to study some interesting characters of biomembranes.

2.1 Introduction of biomembranes

Cells are the basic consistent units of the structures and functions of human bodies and

all the other living organisms. All the in vivo physiological functions and biochemical

reactions are carried out on the basis of the material in the cell and its synthetic and

excretive substrate (such as the collagen and proteoglycans in the cell gap). Every kind of

cells in animals and plants are encapsuled by a piece of thin biomembrane, which is called

cell membrane or plasma membrane. It physically divides the intracellular cytoplasm

and the extracellular environment of cells, and protect the inside, which contains the

4
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life carrying components, from the outside. On the other hand, cell membranes have to

ensure good transport between the inner and outer of the cell, thus, many ion channels,

composed of proteins, are embedded in the membrane, so that various small molecules

and ions can pass them through and nourish the cell.

Cells are the basic unit of structures and functions directly related to all life activities of

human body and almost all the other living organisms. All physiological functions and

biochemical reactions in the bodies are performed on the basis of the stromal of cells

and their synthetic or excretive materials (such as, the collagen and proteoglycans in

the cell gap). All animal and plant cells are encapsulated by a layer of thin membranes,

called the cell membranes (biomembranes) or plasma membranes, which separate the

cell internal contents from cell external environment (mainly extracellular fluid), so that

cells can exist relatively independent of their surrounding environment. Obviously, if a

cell wants to maintain normal life activities, not only its contents cannot be lost, but

also its chemical composition must remain relatively stable, which requires a structure

between the cell and its environment to play a role of the barrier. However, in the

ongoing process of metabolism, the cells also need to get oxygen and nutrients from the

outside, and expel cellular metabolites. The entry and exit of these substances both

have to go through the cell membrane, which involves the process of transmembrane

transport for the substances. Thus, the membrane must be a special structure with

the function of a semipermeable membrane which allows certain substances or ions to

selectively pass through, but can strictly limit the number of other substances into and

out of the cells to maintain the stability of the material composition. Inside the cell there

are some similar cell membrane structures, which constitute a variety of organelles, such

as mitochondria, endoplasmic reticulum and other membranous parts, keeping them

alive not only with the general existence of a barrier between the cytoplasm, but also

with the transport of certain substances. In addition to the function of the material

transport, the membranes have the functions of transmembrane information transfer

and energy conversion, whose mechanism are decided by the membrane composition

and molecular structure. In membrane compositions, lipid molecules mainly play a role

of the “barrier”, and special proteins in membrane are related to the transmembrane

transport of matter and information and the conversion of energy.

One important problem, plaguing biologists for several decades, is whether there is the

existence of the small domains composed of the aggregates of special kinds of lipids

and proteins on biomembranes? From the point of view of simple model, the existence

of this small area is possible. Gel-liquid phase separation is an example most easily

understood[50]. In fact, it is also observed that the membrane structure encapsulating

several cells and organelles inside is not uniformly formed by a simple component, but

in which there are colorful complex structures like mosaic small areas [51]. For the past
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decade, ones have found the tiny membrane lipid rafts scattering on the surface of cell

membrane. This is the best evidence that small and specific functional areas do exist

on cell membranes, and the membrane structure is indeed a complexity of structures. It

also presents a major challenge for the future research of biomembranes.

2.1.1 Structures of biomembranes

Biomembranes are dominantly composed of phospholipids and various kinds of proteins

and carbohydrate macromolecules inlaid thereon. Although different membranes from

different sources contain varied proportions and compositions of various substances,

but generally are mainly based on proteins and lipids, with only a small amount of

carbohydrates. If they are calculated by weight, the weight of membrane proteins is

about 1 ∼ 4 times of that of lipids, but the molecular weight of a protein is much larger

than a lipid molecule, so membranes contain the number of lipids molecules much more

than protein molecules, at least it also exceeds more than 100 times the number of

protein molecules. Thus, we can image that scattered proteins float on the 2D lipid sea.

Biomembranes play the roles of the division and the separation of cells and organelles,

but they are also important parts related to a lot of activities of energy transformation

and intracellular communication, as well as, have a large number of enzyme binding

sites thereon. Cells, organelles, and their borders with the environment are all coated

by the membrane structure in general. Organisms, except for some viruses, all have

biomembranes. Eukaryotic cells (Figure 2.1 below), in addition to plasma membrane

(also known as cell membrane), contain a variety of intramembrane systems, which

separate organelles, including nuclear membrane, mitochondria membrane, endoplasmic

reticulum membrane, lysosomes membrane, Golgi membrane, chloroplast membrane,

peroxisome membrane, and so on [48]. Biomembranes have a kind of morphology of

lamellar bilayer structure with a thickness of about 4 to 10 nm. Its compositions are

mainly lipids and proteins, with a minor amount of saccharide is covalently bound to

the lipids or proteins. Different biomembranes execute different physiological functions.

The existences and arrangement patterns of various molecules of substances in the mem-

branes is the key factor to determine the basic biological characteristics of membranes.

Molecular biology studies show that the special ordered arrangements of various mem-

brane substances, especially biological macromolecules, in many kinds of biological struc-

tures are the bases for the realization of a variety of life phenomena. Although there are

currently no convenient techniques and methods able to directly observe the molecular

structure of the membranes, but based on some analyses and researches on character-

istics of artificial membranes and biomembranes, since the 1930s ones proposed many
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Figure 2.1: A schematic picture shows the main structures of animal and plant cells.
Reprinted with permission from http://jpsy2011.blogspot.jp/2011/02/similarities-and-

differences-between.html.

hypotheses on molecular structures of biomembranes , in which fluid mosaic model pro-

posed by Singer and Nicolson’s in 1972 [1], gaining many supports of experimental facts,

is now widely recognized, as is shown in Figure 2.2.

Figure 2.2: Singer and Nicolson’s fluid mosaic model is shown. Reprinted with per-
mission from Ref. [52].

Fluid mosaic model is a dynamic model, which emphasizes the continuum of phospho-

lipid bilayer membrane, with protein molecules randomly dispersing in the lipid bilayer.
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Experimental results indicate that the mobility of the lipids is a significantly basic prop-

erty of membrane structure. The properties of biomembranes reflected in this structure

model can be concluded into the following aspects:

1. Biomembranes are composed of complex mixtures of a variety of phospholipids and

other amphipathic molecules. Different types of biomembranes have generally different

compositions, which propbably form different subphase areas of different components on

the plane of membranes.

2. In addition to the formation of the lipid bilayer of amphiphilic molecules (such as phos-

pholipids), there are a considerable number of other membrane molecules on membranes.

Specifically, many animal cells contain cholesterol molecules, whose amphiphilicity is

weak, but can dramatically change the strength and permeability of biomembranes.

3. Biomembranes contain a certain amount of proteins of different types, called mem-

brane proteins. Some of them insert into the membrane, while others completely pass

through both sides of the membrane, called transmembrane proteins. These transmem-

brane proteins form the membrane pores through which the medium sizes of molecules

can pass. In some cases, cells can pump molecules through this channel against chemical

potential gradient.

4 Biomembranes are asymmetric, and have different chemical compositions on both sides

5 The outer membrane part contains various short-chains of polysaccharide. these chains

become specifically amphiphiles – hydrophilic groups of glycolipids, or combined with

membrane proteins covalently.

6. The inner membrane part can form the cytoskeleton connections with some kinds

of protein networks of reversible actin polymerization. Membrane and cytoskeleton are

connected as a single entity, so that cells are able to control the membrane curvature

and flexibility, and further have the abilities of movement and division by manipulating

the membrane shapes (Figure 2.3 below).

2.1.2 Chemical components of biomembranes

The main components of membrane lipids are phospholipids, accounting for more than 70

percent of the total amount of lipids, followed by cholesterol, generally less than 30 per-

cent, and there is a small amount of sphingolipids. The basic structure of phospholipids:

a hydrophilic polar head (a phosphate-binding molecule with a hydroxyl group is com-

bined with a base) and a hydrophobic tail of fatty acyl chains (two hydroxyl groups of a

glycerol molecule combine with two molecules of fatty acid). According to different bases,
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Figure 2.3: Schematic picture shows biomembrane patch with the junctions connected
with cytoskeleton inside. Reprinted with permission from Ref. [53].

in the membrane of animal cells, there are mainly four phospholipids(Figure 2.4 shown):

phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and phosphatidyl

inositol. Sphingolipids have the similar basic structure to phospholipids, but without

glycerol. These amphiphilic characteristics maintain the structural stability of mem-

branes. The hydrophilic head portion likes towards the aqueous phase, while the hy-

drophobic tails aggregate with each other to avoid the water. This kind of effect is

so-called hydrophobic interaction. The bilayer arrangement of lipid molecules is essen-

tially a kind of entropy effect [54], which satisfies the requirements of thermodynamic

stability, and is the integrated result of the effects of the hydrogen bonding in a solution,

intermolecular van der Waals forces, dispersion forces, etc.

The low melting point of lipids determines that lipid molecules in the membrane are gen-

erally in the liquid state under the condition of body temperature, i.e., membranes have

a degree of fluidity. The thermodynamic stability and its mobility of lipid bilayers can

explain why cells can withstand considerable tension and the shape deformation without

the rupture, and even if the membrane structure may have some minor faults, they can

automatically be fused and repaired, still maintain a continuous bilayer formation.

2.1.3 Structures and functions of lipid rafts

Since 1972, American scientists Singer and Nicolson proposed the fluid mosaic model

of biomembranes [1], it has been more than 30 years. Although it is generally believed

that some fundamental aspects of this model are still correct, but the lipid bilayer is
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Figure 2.4: Chemical components of phospholipids. Reprinted with permission from
http://www.glycoforum.gr.jp/science/word/glycolipid/GLD01E.html.

not actually a uniform two-dimensional fluid, some kinds of lipid molecules can form a

relatively stable gel state or liquid-ordered state, but at that time enough considerations

were not given to the inhomogeneities of biomembrane structure yet. As time goes on,

people have come to realize the importance of the inhomogeneities, that is, the existence

of microdomains on biomembranes. The heterogeneous membrane model hypothesizes

the existence of domains of lipids in the liquid-ordered (lo) phase surrounded by lipids

in the liquid-disordered (ld) phase. One kind of these microdomains is called lipid raft,

which is proposed by German biologist Kai Simons in 1997 [2]. Simons and his colleagues

used a mild non-ionic detergent to dissolve the cell membrane. This is a commonly used

experimental method to isolate the structures of lipid rafts from the cell membranes.

Under the condition of the detergent treatment, glycerol and phospholipids are removed

from membranes, while the raft structures composed of sphingolipids and Cholesterol

and the binding proteins are not soluble in the detergent. This structural part of mem-

brane contains a large amount of lipids, and therefore has a relatively small density. It

is separated by centrifuge, and polymerized together. Like this, a detergent-insoluble

membrane is extracted. These decontamination insoluble membranes contain choles-

terol and sphingolipids as the main membrane lipid compositions that, thus, create the

concept of lipid rafts [55]. Lipid rafts are a kind of lipid microstructures different from

caveolae on biomembranes (as Figure 2.5 shown), containing a certain amount of pro-

teins and lipid molecules, where lipid molecules are mainly based on sphingolipids and
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cholesterol, and the former including sphingomyelin and glycosphingolipids, whose main

difference lies in the oligomeric sugar residues contained in the molecules. Generally

speaking, the components of lipid rafts are rich in glycosphingolipids and protein recep-

tors [5, 6, 56]. In the biochemical experiments, the size of lipid rafts has been defined

as 10 ∼ 200nm very recently [19], but many people also think that the size of lipid rafts

may not be limited to this range. Lipid rafts are flat membrane structure. Generally

they do not have the apparent structure of the fixed characteristics and basically keep

the same morphology as the surrounding cell membrane, so they are generally not easy

to be observed by the electron microscopy. Therefore, the main criteria for that lipid

raft structure on cell membrane different from the surrounding cell membrane can be

indicated by its morphological characteristics, but by its special lipid compositions. In

addition to lipid raft composed of different compositions from the surrounding mem-

brane, its binding proteins are not the same as the surrounding part, such as caveolin,

flotillin, and some transmembrane proteins anchored on lipids of cell membranes, all of

which are only located in the region of lipid rafts. While a considerable part of receptors

on the cell membrane and their corresponding signaling protein molecules have also been

found in lipid rafts [2].

Through the discovery and repeated identifications of lipid rafts, many lipid rafts should

be much smaller than ones imagine. Therefore, biomembranes should be considered as

an inhomogeneous supramolecular system with the compositions of lipids, proteins and

carbohydrates, in which lipid membranes contain glycerides as its main component.

while lipid rafts, including sphingolipids and cholesterol as the main ingredients, with

different sizes are dispersed in the lipid membranes, therefore, the entire membrane is like

a static mosaic composed of many microdomains [51]. However, lipid raft region contains

more kinds of functional membrane proteins and a higher concentration of glycolipids

than the membrane main body (Figure 2.5 below). Thus, Singer and Nicolson’s fluid

mosaic model needs some corrections. Because lipid rafts are not static, but dynamic,

it increases the structure complexity and lateral heterogeneity of biomembranes.

These lipid rafts on membranes not only constitute the special structure of cell mem-

branes, and more importantly, they are involved in many important physiological ac-

tivities on cell membranes, such as, vesicle transport (endocytosis and exocytosis) on

membranes, regulation of cell cholesterol balance, transmembrane conductance of cell

signaling, and so on.

Currently our understanding for the structures and functions of lipid rafts is still very

limited. Biologists, chemists and physicists hope that more clear information about the

structures and functions of lipid rafts can be obtained from the experiments in the near

future.
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Figure 2.5: Schematic picture of lipid raft microdomains, where there are
various membrane proteins performing physiological functions and signal trans-
duction, as well as a higher concentration of glycolipids inside lipid raft do-
mains than the membrane main body. Reprinted with permission from

http://www.glycoforum.gr.jp/science/word/glycolipid .
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In this section, we simply introduced biomembranes and some basic knowledge of lipid

rafts. by learning about these, ones can deeply realize that some characteristics of

biomembrane and their important roles for sustaining organisms. In the following sec-

tions we will introduce some important in vitro experiments on biomimic membranes,

especially a recent experiment on microdomain sepration induced by PEG-anchored

multi-component membrane. From the physical point of view, these experimental ob-

servations lead to this PhD study on polymer-anchored multi-component membranes.

2.2 Lipid membranes in lab

Since biomembranes are composed of mixtures of various different kinds of lipids and

proteins, the investigations on more complex model systems are highly interesting. To

obtain insight into the roles of membrane components, many groups have focused their

efforts on making artificial membrane systems typically including ternary lipid species.

A general focus is the long standing question on lipid-protein interactions. Another

general one is the question on the membrane lateral heterogeneity, which is often char-

acterized by the terminology, lipid rafts. To mimic real conditions of biomembranes,

multi-component membranes, usually composed of ternary components, such as com-

monly DOPC/DPPC/Cholesterols, are applied to form optically observable µm scale

domains. The lo domains (experimentally called artificial lipid rafts) are rich in choles-

terol and saturated lipids, and are thought to play an important role in regulation of

cell processes. Although many controversial issues on the exact nature of lipid raft and

its size and time scale are still existing, as well as ones debated if they are on earth some

kind of non-equilibrium or equilibrium structures or whether they require a certain kind

of mechanism, e.g. some specific proteins, to maintain themselves. Whatever the con-

clusions will be to these investigations, it is clear that the equilibrium measurement on

optically observable µm domains in biomimetic model mixtures is always valuable to un-

derstand the mechanism and interaction existing on biological rafts from the molecular

level, no matter what they will finally turn out to be. So it is certainly appropriate that

the further study of lateral organization on multi-component membranes with anchored

polymers is included in this thesis.

2.2.1 Phase separation on multicomponent membranes

To many biophysicists it seems intuitively obvious that the presence of various kinds of

composition lipids and proteins in biomembranes can result in lateral heterogeneity of

lipids and proteins [57]. The idea that specific lipids might be helpful to laterally orga-

nize membranes into discrete domains with different properties received only sporadic
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attention over the past four decades [58, 59] until the past ten years which witnessed

an explosion of interests and the studies of the raft paradigm. Like other scientific

paradigms, raft may mean different things to different research groups. Nevertheless,

lateral heterogeneity is definitely an important research focus in the field of biomem-

brane.

The free energy differences of the effective interaction between different lipid composi-

tions is the main reason to lead to the lateral lipid heterogeneity [58, 60–64]. Some kinds

of entropic components will be necessarily involved in these kinds of free energies which

are, therefore, not able to be obtained by simple calculation of molecular energetics.

In principle, they can be estimated by All-atom Molecular Dynamics [65], but as we

will introduce in Chapter 3, this simulation method is very time-consuming to reach

the equilibrium lateral distribution of lipid compositions. Unless ones can appropriately

choose an effective initial distribution which is very close to the correct distribution. An-

other feasible way is to apply coarse-grained simulations [66–69], which have sufficient

time to achieve the equilibrium state. Or ones also can use analytical methods in which

infinite time is available [60, 61]. But in the latter two cases, the effective interaction

have to be estimated correctly. One way is to obtain the correct effective interactions

by adjusting them to be consistent with experimental phase diagrams [58, 60–64, 70]. It

is also why the accurate equilibrium phase diagrams for multi-component vesicles and

membranes are desirable, even if the transient states of lipid rafts may not be in the

thermodynamic equilibrium [58]. Unless the tie-lines which indicate the compositions

of coexisting phases are determined, the effective interactions are still unknown even

if the regions of phase coexistence at large scale are gained by applying fluorescence

spectroscopy.

2.2.1.1 Phase diagram on membranes of ternary components

In cell membranes, the common ternary components are phospholipid, cholesterol, and

sphingomyelin, where phospholipid is unsaturated, sphingomyelin is saturated so that it

have strong affinity to combine cholesterol molecules as the main ingredients of lipid rafts.

In the lab, biochemical experimentalists usually applied artificial ternary lipid mem-

branes of DPPC/POPC/Chol [14, 20, 71, 72], eSM/POPC/Chol [72] or PSM/POPC/-

Chol [8, 73] to replace cell membrane components, in which DPPC, eSM and PSM

are saturated lipids and can be experimentally prepared easily. The studies on phase

separation on multicomponent membranes are valuable to study the lateral structure or-

ganization on cell membranes. The ternary diagram of the canonical raft mixture in the

tensionless membrane state is often referred to in many references on phase separation

of lipid mixtures. One most famous canonical raft diagram was built from fluorescence
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imaging and NMR data [73]. So far the construction of the full phase diagram is still

challenging experimentally, and also for theory and simulation.

Figure 2.6: (a) Various coexisting phases observed by fluorescence microscopy of
GUVs containing mixtures of DOPC, PSM, and cholesterol at 25◦C. (b) Fluorescence
microscopy data are consistent with a speculative underlying phase diagram including a
region of three-phase coexistence. (c) Speculative location of tie-lines and a miscibility

critical point (star). Reprinted with permission from Ref. [74]

Thermodynamically the tie-lines indicate the conditions where two phases can exist

at equilibrium. Through following a tie line, one knows how the melting point or the

miscibility transition point of a certain kind of composition lipids changes with pressure,

membrane component ratios, temperature or some other experimental conditions. Under

conditions one side or the other side of a tie-line means that a particular phase is

stable. Tie-line determination is a hot topic of current studies on biomembranes [73–

80]. It clearly decide the quantitative values of the effective interactions between different

membrane components with their molar concentrations in the coexisting phases [73]. By

comparing thermodynamic theories [60, 61] phase diagrams with tie-lines could provide
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an estimate of the effective interaction free energies that may then be applied in coarse-

grained Molecular Dynamics simulations [62, 64, 81] to provide approximations to the

lateral distributions of membrane components. These lateral distribution conditions

can then be chosen as the initial states of molecular dynamics simulations which could

inversely be tested directly against experimental data. If such an interactive program

is successful, this will massively improve our current understandings on lipid lateral

heterogeneity.

A typical ternary phase diagram is shown in Fig. 2.6 (from Ref. [74]), where a solid lo

phase and a globally single fluid phase are locally triangularized as liquid disordered ld

and liquid ordered lo due to a fluid-fluid coexistence (red) region ending in a consolute

point close to the yellow dot. Both the solid (so) and liquid-ordered (lo) phases appear

dark by fluorescence microscopy in Fig. 2.6(a). so and lo phases are distinguished based

on lipid mobility.

Fig. 2.6 provided the speculative slopes of the tie lines for ld − lo coexisting, so − lo

coexisting and ld − so coexisting, respectively, as well as the three-phase coexistence

state in the triangular three-phase region with a miscibility critical point (star) shown

thereon. The recent work modified the boundaries of the three-phase and low cholesterol

regions by adding X-ray data [58, 71], so that it can obtain the slopes of the two-phase

tie lines with even greater accuracy than had earlier been obtained using NMR [75].

2.2.1.2 Dependence of line tension on temperature

Membranes composed of various ternary mixtures of saturated lipids, unsaturated lipids,

and cholesterol undergo lateral phase separation into coexisting liquid phases at a mis-

cibility transition. When artificial membranes are manufactured from a ternary lipid

mixture at a critical composition, they undergo a miscibility critical point at the tran-

sition temperature. In the biophysical experiments, the critical temperature is typically

comparable to the room temperature, thus, artificial multi-component membranes pro-

vide a good platform to perform a quantitative study of real biomembrane systems,

where ones can regard it as a physical system that exhibit similar critical phenomena

to the two-dimensional Ising universality class. As a critical point is approached from

either the high or low temperature direction, the scale of fluctuations in lipid composi-

tion, scaled by the correlation length, diverges. Previously most of people working on

multi-component membranes are only concerned with the ternary phase diagram of ar-

tificial membranes [8, 73, 73, 75–80, 83]. Recently some groups realized that as a critical

point is approached, the domains of Lo phase in Ld phase will diminish, during this

period then line tension between coexisting domains could play an important role [82].
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Figure 2.7: The upper and lower panels show line tension between coexisting do-
mains with standard deviations obtained from two different vesicles, respectively, at
various temperatures. The line tension can approximately be considered to decrease
linearly with increasing temperature close to the miscibility critical point Tc. Standard
deviations are found by comparing line tensions from more fluctuating domains visible.
At some temperatures, only one domain was available and no standard deviation is

shown. Reprinted with permission from Ref. [82].
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Honerkamp-Smith and his colleges quantitatively evaluate the temperature dependence

of line tension between liquid domains for the first time. They found when a critical

point is approached from the low temperature direction, the line tension between two

coexisting phases gradually decreases to zero.

In their recent experiment [82], all line tensions from one of two individual vesicles are

collected and plotted in the upper or lower panel in Fig. 2.7. They estimated standard

deviations by comparing line tensions obtained from two or more fluctuating phase

domains visible in a single frame and/or breaking long movies into runs of 20 frames or

greater. The two panels of Fig. 2.7 show the measurements of line tension for all domains

at all temperatures of two different vesicles. They find that line tension decreases almost

linearly to zero at the critical transition temperature. Their measured line tension values

are valid only for temperatures within 10◦C of the critical temperature due to the optical

resolution limit. All the measurements have been done in the tensionless state of multi-

component membranes.

2.2.1.3 Effect of surface tension on miscibility temperature

Another interesting experiment on biomimetic membranes recently has also been posed

by Keller group [84]. They have further considered the effect of membrane-cytoskeletal

interaction in real cell membranes, and the cytoskeletal part can provide some tension to

the membrane part so that the membrane part is not tensionless. They tried to answer

how membrane tension influences the miscibility temperature of lipid bilayers.

In their ternary lipid system, because the acyl chains of both DiPhyPC and DMPC

are saturated, they chose ternary vesicle composition to be a 1 : 1 : 1 molar ratio of

diphytanoylphosphatidylcholine (DiPhyPC), dimyristoylphosphatidylcholine (DMPC),

and cholesterol to minimize photo-oxidation and set the initial miscibility transition

temperature Tmix near 30◦C [84].

They microaspirate giant unilamellar vesicles to determine the effect of mechanical stress

on the liquid/liquid miscibility temperature of a membrane composed of a ternary lipid

mixture.

To measure the change of the miscibility transition temperature ∆Tmix versus the change

of applied tension ∆σ, the following procedures were followed:

1) Initial tension of σ1 > 1mN/m was employed to a giant unilamellar vesicle. The

membrane was then in the stretched state.

2) The sample was heated above the miscibility temperature such that membrane do-

mains disappeared.
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3) Temperature Tmix,1, at which domains reappeared by cooling sample slowly, was

measured.

4) Tension was tuned to a new value, σ2.

5) Steps 2) and 3) were repeated to decide Tmix,2.

Figure 2.8: Measured shift in miscibility temperature, ∆Tmix, as a function of differ-
ence in applied tension, ∆σ. Black and gray symbols are obtained using Rhodamine-
DMPE and Rhodamine- DOPE fluorescent dyes, respectively. Reprinted with permis-

sion from Ref. [84].

They used eight experiments of the above type (see Fig. 2.8) to confirm that the increase

of membrane tension decreases the miscibility temperature. In Fig. 2.8, the two gray

points and the two black points with the largest values of ∆σ were from vesicles used in

each of two experiments. They fit a straight line to quantify the effect of ∆σ on ∆Tmix for

the black data points in Fig. 2.8 and obtained a slope of −2.8±0.7K/(mN/m). Because

they only obtained a few of data points and no priori linear relationship between ∆σ

on ∆Tmix existed previously, this slope value only could be understood as an order of

magnitude but not as a precise value [84].

2.2.2 Micro-segregation triggered by PEG-anchored lipids

A more complex study of model membrane systems is the addition of various peptides

or other macromolecules to lipid bilayers, such as PEG chains. The investigations on

such systems could provide the answers to two general questions to us. One is how

the additive influence the bilayer. Does the bilayer become stiffer? Could the additive

change local spontaneous curvature or even induce the pore on the bilayer? How does
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the additive affect the interfacial tension between two coexisting lipid domains in multi-

component membranes? The other question asks inversely what are the effects of the

bilayer on the additives. How does the bilayer restrict the conformation of the additives?

And how does the additives anchor on the bilayer.

As we have introduced above, real cell membranes contain not only bare lipids, but

also a large amount of bulky glycolipids, which play an indispensable role in cellular

membranes. But so far little has been known about the effects of bulky glycolipids on

the physicochemical properties of the membrane. Recently, Yanagesawa and coworkers

have applied a kind of bulky lipids, that is, lipids anchored short polymer chains, e.g.

PEGs, with different molecular weights. Their work tried to obtain some insights to the

first category of the above questions on the effects of the additives on membranes.

For the desired experiment, they constructed poly(ethylene glycol)-conjugated choles-

terol (PEG-Chol) as a model glycolipids to clarify the effects of bulky-head lipids on

phase separation. The physical properties of lipid bilayers including PEG-lipids have

been studied extensively. For example, PEG-lipids in a membrane reduce the main gel-

to-liquid-crystal transition temperature of lipids [85], increase the bending rigidity [23–

27, 86–90], and induce a finite spontaneous curvature [23–27, 88–91]. However, currently

there are still no theoretical or experimental studies on the effects of PEG-lipids on phase

separation in multi-component membranes. Therefore, they constructed poly(ethylene

glycol)-conjugated cholesterol (PEG-Chol) as a model glycolipids to clarify the effects

of bulky-head lipids on phase separation.

They first prepared a tranditional ternary GUV composed of DPPC, DOPC and Chol [10,

73]. It is recognized that tranditional ternary vesicles composed of DPPC, DOPC and

Chol separate into the ld and lo phases, and form a mono-domain to minimize the line

energy, that is, interfacial instability at domain boundaries [20]. This is classified as a

first-order phase transition under the criterion of Landau.

Then, they gradually replaced Chol in the ternary GUVs with PEG-Chol. By comparing

the domain patterns observed with and without PEG-Chol, they illuminate show here

the occurrence of stable micro-domains in the molar fraction of PEG-Chol above a

critical composition. The transition from global- to micro-segregation is interpreted in

terms of the competition between two physical effects, i.e., polymer brush effects between

the bulky-head groups of PEG-Chol and the cost of interfacial line tension along the

domain boundaries, as will be illustrated in Chapter 7 in detail. Interestingly, near the

critical micelle concentration of PEG-Chol, a network pattern of domains appears as an

intermediate state in which small domains are connected to each other (see Fig. 4 in

Ref. [20]). They further examined the stability of the network pattern by local heating

using a focused laser, and confirmed that it exhibited an ability of self-recovery [20].
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They also investigated the polymer length dependence of the micro-segregation of the

big domain. They found that the anchored longer polymer (PEG) chains can induce the

micro-segregation in a lower anchored density compared with the short PEG chains. In

Fig. 5 a, b and c in Ref. [20] clearly show more and smaller scattered domains in vesicles

composed of DPPC/DOPC = 1 : 1 plus 20% PEG2000-Chol emerge compared with the

cases with the same concentration of PEG1000-Chol and PEG600-Chol. This agrees

with the fact that critical micelle concentration (CMC) is decreased with an increase in

the molecular weight of PEG. Therefore, it is most likely that when the mole fraction of

PEG approaches the CMC, the increase in the free energy of PEG-Chol overcomes the

cost of the line tension energy, and leads to a transition in the domain size.

Based on their observations, natural bulky-head lipids in cells may be helpful to stabilize

the domain structure like a lipid raft. Their study may shed light on the intrinsic mech-

anism of the stabilization of nano-domain structures in cells containing large numbers

of bulky-head lipids and proteins [20].



Chapter 3

Theory and Simulation of

Membranes and Polymers

Membranes and polymers are supermolecular systems, which typically exist at the meso-

scopic level, about µm. On one hand, such systems are big enough, dynamics and

equilibrium structures of them have the mechanical properties stronger than kBT and

can exist at a relatively large scale and long time scale. On the other hand, the ones

of such systems are small enough, they can be affected by thermal fluctuation, which

can cause polymer configuration transition and membrane undulation, as well as self-

assembly process of amphophilic molecules in solution. Theoretically the configuration

of a long linear polymer chain satisfies Gaussian type of random walk theory for ideal

chains and self-avoid walk theory for excluded-volume chains. After polymer theory

was built up, people realized that membranes looked like two-dimensional versions of

polymers. Since people had studied random polymers (Gaussian type), people wanted

to study membranes as 2D random surfaces. Tensionless membranes at large scales are

very good representations of random surfaces.

3.1 Theory of membranes

In this section, we introduce some fundamental knowledge on membrane theory describ-

ing membrane deformation and vesicle shape transition. At first, the famous Helfrich

model based on local curvature energy is revisited. Then its Monge form on almost

planar membrane patch is introduced by a small curvature expansion.

22
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3.1.1 Helfrich curvature elastic free energy

In the fluid membrane state, the area of membrane is assumed as the constant, since no

work is done to increase the area, which corresponds to surface tension. Thus, the only

important quantity for the fluid membrane is the curvature. And because membrane

is in the fluid state, the environment of pure membrane should be homogeneous and

isotropic, and the energy functional of membrane should be a translational invariant,

that is, the spatial position of membrane does not enter the Hamiltonian to change the

membrane free energy [92].

Due to the large aspect ratio between the lateral dimension and the thickness as well as

the small compressibility, a lipid membrane is usually regarded as an incompressibility

elastic thin film in mechanics and a smooth surface in mathematics when we investigate

its large scale behaviors. It is indeed true that the thickness of a patch of membrane is

about four or five nanometers, so we can ignore the membrane thickness and consider

a membrane patch or a vesicle as a open or closed 2D surface embedded into 3D space.

In differential geometry, any surface can be locally described by its two vertical and

orthogonal radii of curvature R1 and R2 (usually we choose the two principal curvatures

for the convenience), from which we can further obtain the mean curvature:

H = (1/R1 + 1/R2) /2 (3.1)

and the Gaussian curvature

K = 1/R1R2 (3.2)

If the environment of both sides of membrane is symmetric, that is, there is no different

percentage of lipid compositions on both leaflets, and no different external interactive

object or material attached on both sides, then we easily know the free energy should

be symmetric and the curvature should be included in a quadratic form. The whole

free energy of membrane can be described by the integral on the curvature over the

membrane surface. And two prefactors κ and κ̄, corresponding to the mean curvature

and the Gaussian curvature, are introduced and called the bending rigidity and the

Gaussian bending rigidity (or saddle-splay modulus), respectively. Then we can write

down a curvature elastic free energy for a symmetric membrane or vesicle as follow:

Fsym =
∫

dA2κH2 +
∫

dAκ̄K (3.3)

where the values of κ and κ̄ can be extracted by the experiment, since κ is much higher

than the thermal energy kBT . For lipid bilayer, ones find κ is about 10− 40kBT , which
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are quite depend on the kinds of lipids. But the Gaussian bending rigidity κ̄ is difficult to

measure since the second integral is a topological invariant, which is the consequence of

Gauss-Bonnet Theorem. The parameter κ̄ measures the energy change by the formation

of handles.

To deal with some complicated cases of real cell membranes, a full form of the curvature

elastic free energy is proposed by considering the asymmetric environment of membrane

and introducing several additional terms as Lagrange multiples as follows:

FHel =
∫

dA2κ (H − c0)
2 +

∫
dAκ̄K +

∫
dAσ +

∫
dV ∆P +

∫
dLγ (3.4)

where c0 is call the spontaneous curvature of the membrane, which is used to describe

the asymmetric degree of both sides of membrane. σ, ∆P , and γ are three Lagrange

multiples, which can also be considered as the surface tension of membrane, the pressure

difference between inside and outside a vesicle, and the line tension if there is a pore

on membrane, respectively. This full form is also called Helfrich curvature elastic free

energy, which was first proposed by Prof. W. Helfrch in 1973.

3.1.2 Monge representation for a patch of small curvature surface

Besides by using three independent orthogonal orientational coordinates x, y, and z,

almost planar surfaces in 3D space can be described by two independent orthogonal

orientational coordinates x and y along the surfaces and then a ”height” z = h(x, y)

to describe the surface deformation or fluctuation [93], alternatively. Thus, the area

element dA is given by

dA =
√

1 + h2
x + h2

ydxdy (3.5)

where the subscripts denote a derivative, e.g., hx = ∂h(x, y)/∂x. Thus, the normal on

surface is given by

n̂ =
ẑ − hxx̂− hyŷ√

1 + h2
x + h2

y

(3.6)
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We use a Monge representation on membrane surface with the displacement h(x, y)

which is oriented in the h = 0 plane. The mean curvature can then be given by

H =
(1 + h2

x)hyy + (1 + h2
y)hxx − 2hxhyhxy

2
√

(1 + h2
x + h2

y)3
(3.7)

= ∇2h
{
1 +O [

(∇h)2
]}

≈ tr(hij)

and the Gaussian curvature can then be given by

K =
hxxhyy − h2

xy

(1 + h2
x + h2

y)2
(3.8)

≈ det(hij)

Hence, based on Helfrich free energy, the Monge representation of a complete membrane

patch can be written as

FMon =
∫

dAp

[κ

2
(∇2h− c0

)2 + κ̄ det(hij)
]

+
∫

dApσ (∇h)2 (3.9)

where dA =
√

1 + (∇h)2dAp, dAp is called projected area or frame area, dA is real area.

3.2 Multi-scale simulation of membranes

With the fast development of the ability of modern computers, the recent advances of

the studies of complex biological systems are more and more dependent on the com-

puter simulation techniques. Polymers and membranes are supermolecules (many body

systems) and both show universal collective behaviors at a mesoscopic level. Simula-

tion skills can help us to investigate many large-scale thermodynamic properties of such

meso-scale complex systems, for example, at the aspects of membranes, the liquid-solid

like phase transition of lipid membrane from a fluid phase to a hexagonal phase and then

to a gel phase, the ld-lo phase separation of raft domain formation in lipid mixtures, and

the routes of the formation of vesicle fusion and fission, which are applicable to explore

the drug encapsulation and drug delivery in body systems [94]. At the aspects of poly-

mers, the coil-globular transition of charged polyelectrolytes, like DNAs, RNAs, or some

kinds of chemical polymers, and the collapse transition of polymers.

Because collective behaviors exhibited by our study objects, polymers and membranes,

involve many molecules, and bridge a large length and time scales, typically from nm

to µm [43]. Therefore, the details of the local structures and short time dynamics of
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such systems are often irrelevant so that ones can ignore molecular details of the built

units of such systems when they hope to study the large scale collective phenomena.

However, atomistic molecular dynamics is also important if ones pay attention to the

detailed properties of particular lipid membranes, and the special interactions between

lipid and membrane proteins.

Behaviors and processes of membranes involves several different scales of length, time

and energy. As a result, various kinds of membrane models are devised and many new

simulation techniques are proposed to investigate specific problems at different scales.

In this section, we roughly classify them into three scales: microscopy, mesoscopy and

continuous macroscopy , and concisely introduce the corresponding simulation models:

atomistic Molecular Dynamics (MD) at a 10nm scale, coarse-grained methods (explicit-

solvent and solvent-free) at a 1µm scale, and continuous triangular surfaces at a 10µm

scale, which are intuitively shown in Fig. 3.1.

Figure 3.1: Three kinds of different scale simulation models are shown. The left snap-
shot is an atomistic MD simulation, the middle snapshot is a coarse-grained tensionless
membrane patch, and the right one is a dynamic triangularization model. Reprinted

with permission from Ref. [94].
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3.2.1 Atomistic Molecular Dynamics for nanometer scales

Since even one lipid molecule consists of many different kinds of atoms, One mole of

them contains O (
1023

)
particles, having a extremely huge number of freedom degrees

in the extent of classical statistical physics. To be able to study reasonably such systems

by Molecular Dynamics, some approximations are necessary. First of all, the freedom

degree of electrons are not explicitly taken into account any more. Rather, they are

dealt with within the framework of Born-Oppenheimer approximation. For example, it

is assumed that the nucleus moves according to the laws of Newtonian mechanics and

the electrons follow instantaneously. Although real microscopic world is not classical,

classical and quantum statistical mechanics can lead to the same results if and only if

the considered particles are stable, which means that typical scale of energy is so small

that no bonds among particles are formed or broken. Under this condition, it is possible

to find a classical interaction function, which can characterize the statistical properties

of systems with the same level of accuracy as a full quantum-mechanical treatment.

A natural way is to derive a classical interaction function from the quantum Hamiltonian

by averaging over all degrees of freedom of the electrons. But it is impossible and, thus,

we rather use a tailored empirical interaction function instead. This interaction function

is defined as a sum of potential energy terms and is called as a force field. The parameters

of a force field are determined by comparison with the quantitatively reproduced values

of the corresponding experiments which are desirable to simulate. In this sense, ones

can construct many different kinds of force fields, whose function forms need to balance

between the accuracy and the efficiency.

The first atomistic molecular dynamics method for lipid membranes was born in the

early 1990s. It was only able to simulate a tiny patch of membrane bilayer, about

1nm and 0.1ns [95, 96]. Today there are several famous simulation packages of force

fields, including the standard routes for MD simulations, existing to simulate membrane

and proteins, such as, NAMD Molecular Dynamics Software (NAMD), the Gronin-

gen Machine for Chemical Simulation (GROMACS), Groningen Molecular Simulation

(GROMOS), Assisted Model Building with Energy Refinement (AMBER), Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS), and so on. The first three

packages are suited to simulate lipid bilayers and proteins in the atomistic level, while

the latter ones originate from polymer simulations but can also be applied to coarse-

grain simulations of soft matters [94]. Differences among these packages are their own

ways of information distribution in the processors, the force fields, and the advantages

of use and availability of tutorials [94].
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Atomistic force field inevitably include Coulomb interactions, which can be calculated

by Ewald summation only for very small systems. To speed up this summation, particle-

mesh-Ewald techniques which leads to a scaling of the order O(N ln N), with the number

of charges, N, or fast multipole expansions which scale linearly with N are usually ap-

plied [94].

The advantage of atomistic simulation scheme exists in its detialed description of the

microscopic dynamics of the constituents. Therefore, it allows us to explore kinetic

processes, for example, the transmembrane transport of small molecules and the lateral

diffusion of lipid molecules in the membrane. The MD simulations often use the time-

reversible, symplectic Velocity Verlet or Leapfrog algorithms (shown in Chapter 4) and

allow for multiple time step integration [94, 97].

An important aspect of atomistic simulations is that they could exhibit the details

of the bilayer architecture (e.g., particular head group structure, length, and degree of

saturation of the tails) with the corresponding physical properties (thickness, orientation

of segments, and elastic moduli). Typically physical properties can be obtained by

increasing the system size and simulation time. Ones also can observe the fluctuations

of the bilayer membrane. From an analysis of the undulations of the local thickness,

one obtains the bending rigidity and area compressibility of the membrane[111,112].

The left snapshot in Fig. 3.1 shows a typical atomistic simulations of a 1-stearoyl- 2-

docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC, 18 : 0/22 : 6 PC) lipid bilayer.

3.2.2 Coarse-grained off-lattice models for mesoscopic scales

Although atomistic simulations could give us many valuable aspects about the local

structural properties of lipid membranes, they cannot access the sufficient time and

length scales for collective membrane phenomena at a larger scale. One way to overcome

this shortcoming is to take the coarse-graining way. Coarse-grained models do not

attempt to describe the large scale phenomena by starting from the smallest atomic

length scale, but directly start from an appropriate mesoscale by using some empirical

parameters which should agree with the experimental data. In such models, a small

number of atoms are considered into one effective coarse-grained particle. These effective

particles then interact by coarse-grained interactions, which typically do not include

electrostatic and torsional potentials [94]. This dramatically speeds up the simulation

and makes possible the study of collective phenomena for large-scale membranes

When ones enter the realm of coarse-grained models from ab initio simulations, they

inevitably ask how to make the coarse-graining procedures and how to keep the relevant

degrees of freedom and interactions so that the essential physics of the system can be
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reproduced. These fundamental problems should be solved when a successful coarse-

grained model is proposed.

3.2.2.1 Explicit solvent model

In this thesis, we only introduce off-lattice coarse-grained models, because without the

constraints of the degree of motion freedom these models allow for more flexibility in

describing the molecular geometry compared with the lattice models and they can be

studied by Molecular Dynamics. Smit et al. [98] proposed a generic off-lattice coarse-

grained model to simulate micelle formation, in which water and oil molecules are acted

on by Lennard-Jones potentials, while the amphiphile is formed by a group of particles

linked via harmonic springs. The hydrophobic beads consist a linear chain tail one by

one, while all the hydrophilic head beads are linked to a single, central bead which is

attached to one end of the tail. This characterizes the bulkiness of the lipid head. Goetz

and Lipowsky constructed another model in which one amphiphiles are composed of a

single head bead and four tail segments [99, 100]. A water molecule is represented by a

single bead. The interactions between all the beads are Lennard-Jones-like with a cut-off

at rc = 2.5σ. The hydrophobic interaction between water and tail or head and tail is

modeled via a repulsive soft potential. The potentials are truncated and shifted so that

both the potential and the force are continuous at the cut-off. Beads in the amphiphile

are linked via harmonic springs. Additionally a bending potential is also included to

mimic the configuration of a lipid molecule. By increasing the bending coefficient, one

can change the conformations from a very flexible lipid molecule to a rigid one. But

since this coarse-grained explicit solvent models still have to deal with a large mount of

water molecules, the computational speed is still not fast enough to study a larger scale

membrane system. Thus, we only introduce such models briefly here. To achieve one

faster simulation speed, solvent free models are desired.

3.2.2.2 Solvent free model

A further coarse-graining procedure is to remove the solvent particles but still holding

their effects implicitly. Since the 2D membrane is embedded in a 3D space filled with

the solvent, if ones investigate larger sizes of systems, the number of solvent particles

increases much faster than the number of amphiphiles. However, the solvent actually

only play a role to stabilize the bilayer membrane. The interaction between solvent

and amphiphiles can be replaced by some effective interactions between the amphiphilic

units. Therefore, ones can obtain a huge computational speed-up by eliminate the

solvent.
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Such implicit solvent models have been widely employed in polymer physics where the

behavior of polymers in solvents of different qualities often is described by polymers in

vacuum with effective interactions between the monomeric units. Attractive interactions

correspond to a poor solvent and lead to a collapse of the polymer, while repulsive

interactions correspond to a good solvent because the isolated polymer adopts a swollen,

self-avoiding walk like shape.

(a) (b)

Figure 3.2: (a) An atomic amphiphilic lipid molecule can be coarse-grained to the
one composed of the hydrophilic head (one red particle) and the hydrophobic tail (two
yellow particles). (b) Snapshot of a patch of the bilayer constructed by the coarse-

grained three-bead model.

Because the author is only familiar with some models proposed by Nougchi, we will only

take his three-bead model as an example here. Noguchi and Takasu [101, 102] mod-

eled one amphiphile molecule composed of three beads, a head and two tail beads (see

Fig. 3.2). These beads interact via a rotationally symmetric but multi-body attractive

potential for the hydrophobic tail beads is used to stabilize the membrane instead of

the solvent effects. Particles repel each other via a soft core potential which defines the

energy scale,ε, and the monomeric length scale, σ. The potential is of the form

Urep(r) = ε exp [−20(rij/σ − 1)] (3.10)

and it is truncated and shifted at a cut-off 1.3σ. The multi-body potential takes the

form

Uhp(ρ)/ε =





−0.5ρ (ρ < ρ∗ − 1)

0.25(ρ− ρ∗)2 − c (ρ∗ − 1 ≤ ρ < ρ∗)

−c (ρ∗ ≤ ρ)

(3.11)
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with parameters ρ∗ = 10 and c = 4.75 for the tail bead nearest to the head and ρ∗ = 14

and c = 6.75 for the tail bead at the end [101, 102]. The function of a local density,

ρ, quantifies the local number of hydrophobic particles in a small sphere around the

reference particle at position, r, according to

ρi,j =
∑

i6=i′,j′=2,3

h(
∣∣ri,j − ri′,j′

∣∣) (3.12)

with

h(r) =





1 (r 6 1.6σ)
1

exp[−20(rij/σ−1.9)+1] (1.6σ ≤ r < 2.2σ)

0 (2.2σ ≤ r)

(3.13)

At small local densities, ρ < ρ∗ − 1, the multi-body potential is linear in the density

and, thus, represents a pairwise attraction between neighboring hydrophobic beads on

different molecules. At higher densities, the attractive strength levels off and adopts a

constant value independent of the local density. This feature avoids the collapse of the

hydrophobic tails into extremely dense structures and thus prevents crystallization. This

model are used to mimic the bilayer composed of two layers of amphiphilic molecules.

3.2.3 Continuous surfaces constructed by dynamic triangulation

Since membranes can be considered as 2D random surface, people tried to construct ran-

dom triangulated models to model random fluctuating surfaces. A construction strat-

egy and a typical snapshot are presented in the Fig. 3.3 (a) and (b). The vertices are

connected by bonds. If the bond connection is fixed, the membrane only show elastic

deformation that is characteristic of polymerized membranes. If the bonds are permitted

to change during the simulation (dynamic triangulation) [103–108], one can mimic the

membrane fluidity. The vertices are able to diffuse in this type of fluid membrane. The

self-avoidance of the membrane is modeled by an excluded volume interaction between

vertices. The strength and range of the excluded volume interaction and the interactions

along bonds can be chosen in order to avoid crossings. Let ni denote the normal to a

triangle facet, i. The discretization of the mean curvature, H = n ·∆R at vertex i takes

the form

Hi =
1
σi

ni ·
∑

j∈n.n.(i)

σij

lij
(Ri −Rj) (3.14)

where the sum runs over all tethers ij that are connected to the vertex i. The length of

such a tether is lij , σij = lij(cotΘ1 +cotΘ2)/2 is the length of the corresponding bond



Chapter 3. Theory and Simulation of Membranes and Polymers 32

(a)

(b)

Figure 3.3: A dynamic triangulation model of a fluctuating surface is shown. (a)
shows that hard spheres connected by bonds of maximum extension L are used to
describe self-avoiding membranes. And the Monte Carlo step, which makes the trian-
gulation dynamic, is required to model fluid membranes. While (b) is a snapshot for
the dynamic triangulation of a red blood cell with the biconcave shape. Reprinted with

permission from Ref. [103].
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in the dual lattice which is created from the intersections of the perpendicular bisectors

of the bonds. Θ1 and Θ2 are the angles opposite to the link ij in the two triangles that

border the link. The quantity σi = 1
4

∑
j∈n.n.(i) σijlij represents the area of the virtual

dual cell. Using this expression and the fact that the local normal n is collinear to ∆R

in three dimensional space, one obtains the discrete Helfrich free energy with free surface

tension as follows:

H =
κ

2

∑

i

1
σi


 ∑

j∈n.n.(i)

σij

lij
(Ri −Rj)




2

(3.15)

where the integral over the Gaussian curvature is omitted because it is just a constant

when the topology is conserved.

If all triangles are equilateral, σij = lij/
√

3, Eq. (3.15) above reduces to

H =
√

3κ

2

∑

〈α,β〉
(nα − nβ)2 (3.16)

=
√

3κ
∑

〈α,β〉
(1− nα · nβ)

To study fluid membranes, the connectivity of the membrane vertices cannot be fixed

during the simulation, otherwise this model cannot mimic the diffusion of lipids in the

membrane. So the dynamic triangulation ensure the occurrence of the internal diffusion.

The essential step of this dynamic procedure is shown in Fig. 3.3 (a). Among the four

vertices of two neighboring triangles, the diagonal bond is switched from one of the two

possible positions to the other. This bond-switching is allowed if the vertices remain

connected to at least three neighbors after the switch. At the same time, an additional

requirement is that the new connected bond length has to be smaller than the maximum

bond length. The advantages of this Monte Carlo scheme are that it is local between

only the vertices of two neighboring triangles, and it guarantees the whole triangulation

network still to be 2D connected [103].

3.3 Physics of polymers

A real polymer is a macromolecule composed of thousands of small molecules.It is chem-

ically a group or mixture of compounds consisting of repeating structural units, which

are covalently connected, created by a series of polymerization processes. Generally,

the backbone structure of polymers is supported by carbon atoms C-C. The simplest

example of polymers is polyethylene. In physics, for the simplicity, ones assume a model
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polymer chain consist of a large number of the same kind of monomers (homopolymer)

or different kinds of monomers (heteropolymer or block polymer).

The mesoscopic length is significant to understand soft matter, such as polymers. Thus,

we can deal with polymer problems by using some suitable coarse-grained methods,

but without considering every details, e.g. the chemical components, in their atomistic

level from the view of point on the modeling construction theory. It makes that ones

do not have to study from the characters of the construction units of polymer chains,

thus, physicists can predict many universal characters from the topological properties

of polymers, considered as a piece of disjoint string, at large scale. As a result, ones can

understand a large number of related characters of polymers by only their geometric

structure and statistical properties, but not their energetic quantities.

3.3.1 Ideal chains

A single polymer chain can be characterized by a simplest model, the freely joint chain

model. Each monomer is considered as a point-like particle and linked by a bond with

a length b, which is called Kuhn length. The probability distribution of one single bond

is given by

p (rn+1 − rn) = p (|Rn|) =
δ (|Rn| − b)

4πb2
(3.17)

where rn is the spatial position of the n-th monomer.

An important quantity is the end-to-end vector Re of the polymer chain. It can be used

to evaluate the relative spatial position of the first and the end monomers of a polymer

chain. Since it points all directions with equal probability, the average end-to-end vector

is zero, that is, 〈Re〉 = 0. However, the interesting quantity is the average of the squared

end-to-end vector as given by

〈R2
e〉 = 〈(

∑
n

Rn)2〉 = Nb2 (3.18)

The end-to-end distance can be defined as [109]

Re =
√
〈R2

e〉 = b
√

N (3.19)

We define the mean square radius of gyration Rg
2 of the polymer as

〈R2
g〉 =

1
N

N∑

n=1

〈(Rn −RG)2〉 (3.20)
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where RG is the position of the center of mass of the polymer chain:

RG =
1
N

N∑

n=1

Rn (3.21)

For a linear Gaussian polymer, R2
g is easily evaluated as follows:

Rg
2 =

1
6
〈R2

e〉 =
1
6
Nb2 (3.22)

Thus, Rg is given by Re/
√

6 for a linear Gaussian polymer chain.

Both radii of end-to-end distance Re and gyration Rg can be applied to measure the

polymer size.

The above calculations are based on random walk in 3D space without any constraint.

Ones call this kind of polymers as ideal polymer chains.

3.3.2 Excluded-volume chains

In solvent-free polymer simulations, ones usually consider the non-bonded long range

interactions between the monomers as well as between monomers and solvent particles,

the available space for the polymer chain is approximately replaced by the introduc-

tion of an excluded volume. In this type of models, each polymer monomer cannot be

regarded as a point-like particle, but occupies a certain spatial volume. Such polymer

chain is a self-avoiding walk obtaining a more extended conformation compared with a

freely joint chain model. So we easily understand that the size of an excluded-volume

polymer chain should be elongated larger compare with an ideal polymer chain due to

the steric repulsion. This is reflected in a larger scaling exponent which now becomes

ν = 0.6 (a more exact numerical calculation gave us ν = 0.588 [110]). The excluded

volume effect can be involved into a model by a repulsive potential, Urep, which describes

the interactions between non-connected units along the chain and prevents them from

overlapping. Besides this short range steric repulsion, the effective interaction between

two monomers also include a long range attraction. If we denote r as the distance

between two monomers, the interaction potential between them can be written to be

∼ 1/r6 [111]. A very popular potential which models the combination of these two

effects is just the Lennard-Jones potential [112]:

ULJ(rij) = 4ε

[(
σLJ

rij

)12

−
(

σLJ

rij

)6
]

, (3.23)
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where rij = |ri − rj | is the distance between the ith and jth units, σLJ is a measure of

the effective size of a monomer and ε is the Lennard-Jones parameter characterizing the

strength of the interaction. A large ε for the inter-bead potential represents that the

polymer tends to effectively minimize its interface with the solvent and such polymer

solution is in a bad or poor solvent condition and conversely for a small ε, regarded as

a good solvent condition.

This type of more practical model is called excluded-volume chains, which is constructed

on the basis of the self-avoiding walk.

3.3.3 Polymer mushroom and brush

The above theoretical models primarily show a free polymer molecule in solution, but

in many practical applications of interest, the polymer inevitably has an end anchored

with a surface. A single flexible polymer chain or a dilute polymer-chain layer in a

good solvent at equilibrium forms a structure often called a “mushroom. For polymers

anchored at a high density, a mushroom conformation will be suppressed into a brush,

describing the more stretched-out conformations due to excluded volume forces. In terms

of the mean field theory by de Gennes [113], the equilibrium height, h0, of a polymer

brush layer on the flat surface in a good solvent is proportional to N

h0 = NΓ1/3 (3.24)

where Kuhn length is set to 1, and Γ is the surface coverage. In Section 3.4.3 we will

see the derivation of Eq. (3.24).

3.4 Polymer-induced mechanical properties of membranes

3.4.1 Mechanical properties induced by a single polymer

Due to the constraint from membrane substrate, a polymer with an end anchored onto a

surface will involve a loss of configuration entropy of the polymer chain. In Fig. 3.4, we

show a schematic picture where a flexible polymer is linked to a patch of 2D membrane.

Then three kinds of shapes of the membrane patch could be induced: cone, spherical cap,

and catenoid. In the idealized situation of a flat substrate, the polymer is confined to the

half-space and, thus, loses entropy because it cannot explore the half-space on the other
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Cone CatenoidSphere

Figure 3.4: Schematic picture of anchored-polymer-induced entropic effects on mem-
brane, three possible membrane deformations induced by a flexible anchored polymer

are shown.

side of the substrate [114]. In order to anchor the polymer on the surface it is necessary to

compensate the entropic effect by a chemically induced energy gain due to the grafting.

If this energy is smaller than the entropy loss, the polymers will leave away from the

surface. Conversely, if the energy is large compared to the entropy decrease, polymers

will stay at the surface for a long time. For a large reservoir of polymers, in principle,

this anchoring will lead to very large coverage densities. However, for large densities the

steric interaction of the polymer chains provides an additional entropy decrease which

balances the anchoring energy and leads to an equilibrium coverage density of polymers

on the surface. The situation is similar if the polymers are anchored on the membrane.

If the membrane is initially flat, the anchoring energy in the lipid bilayer has to compete

with the entropy decrease. Since the membrane is a flexible object, the anchoring of the

polymer leads to a change in the membrane shape in such a way that the membrane

bends away from the polymer. Consequently the polymer obtains more configuration

space.

Generally the effect of the addition of macromolecules to membrane systems can be

described by the effective elastic moduli, which is the summation of bare membrane

elastic moduli and excess elastic moduli as follows:

c0 = c0,mem + ∆c0 (3.25)

κeff = κ0 + ∆κ

κ̄eff = κ̄0 + ∆κ̄

where c0,mem, κ0, and κ̄0 are the elastic moduli for pure membranes.

If one considers the curvature of the membrane to be small one can expand the polymers

entropy difference by using the membrane curvature, and the flat situation in powers of

the curvature up to second order, which leads to [23]
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∆Sp = b1ReH + b2 (ReH)2 + b3R
3
eK (3.26)

When we solve the problem for a polymer anchored on a flat surface, on a sphere and

on a cylinder, we can obtain three prefactors up to the second order expansion of the

curvature [23, 24]

b1 =
√

π

6
, b2 = −

(
π

12
+

1
6

)
, b3 =

1
6

(3.27)

Since the first coefficient b1 is positive the polymer gains entropy if the membrane bends

away from it. Calculation of the spontaneous curvature c0 leads to

c0 ≈ T
b1

4κeffRe
≈ 0.18

T

κeffRe
(3.28)

where T is the temperature measured in energy units and the curvature is defined as

positive if the membrane bends away from the polymer.

3.4.2 Mechanical properties induced by polymer mushroom

There are two cases for the formation of polymer mushroom. One is formed by ideal

polymer chains without caring the anchored polymer density, the other is formed by

excluded-volume chains at the low enough densities which have to make sure that an-

chored polymers do not overlap with each other. For the region of polymer mushroom,

we can extend the above theoretical predictions for a single idea polymer chain to de-

scribe the effective mechanical properties of membranes by introducing a lateral area

A in order to guarantee the correct units of the mean curvature H and spontaneous

curvature c0. Thus, we have

Ac0 =
kBT

4κeff

√
π

6
Re (3.29)

Because the anchored polymer density σ is considered as 1/A, we obtain

κeffc0 =
kBT

4

√
π

6
σRe (3.30)

≈ 0.18kBTσRe
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Following the similar procedures, we can obtain [26, 115]

∆κ =
kBT

6

(
1 +

π

2

)
(3.31)

≈ 0.21kBTσR2
e

∆κ̄ = −kBT

6
σR2

e (3.32)

≈ −0.17kBTσR2
e

where σ is the number density of chains per membrane area, and three coefficients 0.18,

0.21, and −0.17 are estimated by theory. The more exact expressions, including the

polymer contour length, are obtained by Monte Carlo simulation [26, 115]

κeffc0 = aspkBTσRe (3.33)

∆κ = aκkBTσR2
e

∆κ̄ = aκ̄kBTσR2
e

with

asp = 0.1801(1− 0.369N−1/2) (3.34)

aκ = 0.2130(1− 0.870N−1/2)

aκ̄ = −0.1682(1− 1.179N−1/2)

For the low density of anchored excluded-volume polymer chains, the expressions have

the same forms as Eqs (3.33), and the exact coefficients are written as

asp = 0.1679(1− 0.391N−1/2) (3.35)

aκ = 0.1997(1− 0.972N−1/2)

aκ̄ = −0.1532(1− 1.221N−1/2)

3.4.3 Mechanical properties induced by polymer brush

When the mean distance between the anchor points of excluded-volume polymer chains

is less than the radius of the polymer coil, the polymers will overlap and form a so-called

polymer brush due to the steric confinement by the neighboring chains. In the region

of polymer brush, we need to calculate the polymer-induced mechanical properties of

membrane by using a scaling theory based on the blob picture (as shown in Figs. 3.5

and 3.6).
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0

N0
h

Figure 3.5: Scaling picture of a polymer brush on a flat surface is shown. The height
of the brush layer on the flat surface is h0, and each blob contains N segments. The

distance between two nearest blobs are ξ0.

The distance between the grafting points is denoted by ξ0. Then it is convenient to

introduce a reduced surface coverage Γ given by

Γ ≡
(

b

ξ0

)2

(3.36)

which gives us a dimension less number of polymer chains per unit area, and b represents

a generic kuhn length of a polymer chain mentioned in Section 3.3.1. The reduced overlap

coverage scales as Γ ∼ N−2ν .

On a flat surface shown in Fig. 3.5, each blob is of radius ξ0 and contains N1 = (ξ0/b)1/ν

segments. The height of polymer brush layer on the flat surface is denoted by h0, then

the blob number is h0/ξ0, and the layer segment satisfies

N = h0

(
ξ0

b

)1/ν 1
ξ0

(3.37)

Thus, we obtain

h0 = bNΓ(1−ν)/2ν (3.38)

when ν = 0.6 for excluded-volume chains, the above expression can be written as h0 =

bNΓ1/3, which just reflects a scaling relation Eq. (3.24) obtained by de Gennes.

We have to expand the scaling argument for a brush anchored on spherical and cylindrical

surfaces to obtain the bending rigidity and spontaneous curvature. Let us denote the

size of blobs by ξs and ξc for spherical and cylindrical surfaces, respectively. In the first

layer the surface area is given by S(r) ≈ Xξi(r)2, where X is the number of anchored

polymer chains, i = s and c for spherical and cylindrical geometries.
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Figure 3.6: Scaling picture of a polymer brush on a sphere of radius R. The height
of the brush layer on the spherical surface is hs(R), and each blob contains N segments.

The distance between two nearest blobs are ξs(r).

For a sphere of radius R shown in Fig. 3.6, S(r) = 4πr2 and X = 4πR2/ξ2
0 , where ξ0

means the distance between anchored points on the spherical surface. By using these

relations, we obtain the blob size as

ξs(r) =
ξ0r

R
(3.39)

If the brush height on spherical surface is hs, then it is implicitly given by

N =
∫ R+hs

R
dr

(
ξs(r)
R

)1/ν (
1

ξs(r)

)
(3.40)

This leads to

h0 = νR

[(
1 +

hs(R)
R

)1/ν

− 1

]
(3.41)
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Solving this equation for hs, we have

hs = R

[(
1 +

h

νR

)ν

− 1
]

(3.42)

Similar to the spherical surface, the surface area of a cylinder is S(r) = 2πDr and

X = 2πDR/ξ2
0 , therefore

ξc(r) =
ξ0r

1/2

R1/2
(3.43)

Then the brush height on cylindrical surface hc is obtained as

hc = R

[(
1 +

(1 + ν)h
2νR

)2ν/(1+ν)

− 1

]
(3.44)

In the scaling picture, the free energy per polymer chain is proportional to the number

of blob, so it can generally be calculated as

F = kBT

∫ R+h

R
dr1/ξ(r) (3.45)

where F represents free energies F0, Fs, Fc per unit area on the flat surface, spherical

surface and cylindrical surface, and h represents heights h0, hs, hc on the flat surface,

spherical surface and cylindrical surface, respectively.

Following this procedure, the free energies F0, Fs, Fc per unit area on the flat surface,

spherical surface and cylindrical surface can be obtained, respectively, as

F0 = kBTΓ1/2h0/b (3.46)

Fs =

(
kBTΓ1/2Rν

b

)
ln

(
1 +

h0

νR

)
(3.47)

Fc =

(
2kBTΓ1/2R

b

)[(
1 +

(1 + ν)h0

2νR

)ν/(1+ν)

− 1

]
(3.48)

The differences of the brush free energy per polymer on the curved surfaces (of sphere

and cylinder) and a flat surface at a fixed polymer density are

∆Fs = F0fs (h0/R) (3.49)
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with

fs =
ν

x
ln

(
1 +

x

ν

)
− 1

and

∆Fc = F0fc (h0/2R) (3.50)

with

fc =
1
x

[(
1 +

1 + ν

ν
x

)ν/(1+ν)

− 1

]
− 1

The excess free energy of the polymer brush ∆F is balanced by the bending energy of

a membrane patch. Here the the corresponding membrane patch is measured by the

polymer segment b and can be written as A = b2Γ−1. The bending energy is written

∆Eb = 2κΓ−1 (bH)2 + κ̄Γ−1b2K (3.51)

up to the second order in the principal curvatures.

For a cylindrical surface, the Gaussian curvature K = 0, and the mean curvature H =

1/2R. Thus, ∆Fc depends only on H and spontaneous curvature c0 can be obtained by

minimizing ∆Fc with respect to H. It leads to an implicit equation

fc(x)
x

+
4κ0x

kBTN3Γ3/2ν
= 0 (3.52)

where x = h0c0.

When the anchored polymer density is low for excluded-volume polymer chains, we

assume the deformation of membrane surface is small, so we can expand the excess free

energies for spherical and cylindrical surfaces by small curvature h0H up to the second

order. This leads to

∆Fs = F0

[
− 1

2ν
(h0H) +

1
3ν2

(h0H)2 +O (
(h0H)3

)
]

(3.53)

and

∆Fc = F0

[
− 1

2ν
(h0H) +

ν + 2
6ν2

(h0H)2 +O (
(h0H)3

)
]

(3.54)

By minimizing the expression for the cylindrical case, we obtain h0H = 3ν/(2ν + 4).

Therefore, the expression must break down for h0H . 3ν/(2ν + 4).
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By combining the expressions (3.51), (3.53), and (3.54), we obtain

κeff = κ0 +
ν + 2
12ν2

N3Γ3/2νkBT (3.55)

and

κ̄eff = κ̄0 − 1
6ν2

N3Γ3/2νkBT (3.56)

By using an approximate effective bending rigidity κeff of Eq. (3.55), we can obtain an

approximate spontaneous curvature expression from Eq. (3.52)

bc0 =
1
8ν

N2Γ(ν+2)/2ν kBT

κeff
(3.57)

A very detailed derivation of all the equations above is shown in Appendix A.



Chapter 4

Simulation of Biomembranes

In this thesis, we employ a coarse-grained meshless membrane model with anchored lin-

ear polymer chains [42, 46]. One membrane particle possesses only a translational degree

of freedom. The membrane particles form a quasi-two-dimensional (2D) membrane ac-

cording to a curvature potential based on the moving least-squares (MLS) method [42].

The meshless membrane model can simulate many universal properties at a quite large

scale, that is, which is a discrete off-lattice version of triangular lattice membrane model

and has the same ability to simulate the same large scale. By using the meshless mem-

brane model, geometric and topological properties of membranes can be conveniently

controlled. Then we constructed a minimal biomembrane model based on this mesh-

less model by adding anchored polymers to investigate the properties of biomembranes.

Polymer particles are linked by a harmonic potential, and freely move as a self-avoiding

chain with a soft-core repulsion. One end of each polymer chain is anchored on a single

membrane particle with a harmonic potential and a soft-core repulsion [46].

4.1 Meshless biomembrane model

We consider a single- or multi-component membrane composed of Nmb membrane par-

ticles. Among them, Nchain membrane particles are anchored by polymer chains. Each

polymer chain consists of Np polymer segments with an anchored membrane particle.

The membrane and polymer particles interact with each other via a potential

Utot = Urep + Umb + Up + UAB, (4.1)

where Urep is an excluded-volume potential, Umb is a membrane potential, Up is a poly-

mer potential, and UAB is a repulsive potential between different species of membrane

particles in two-component membranes.

45



Chapter 4. Simulation of Biomembranes 46

To simulate self-assembly dynamics and control topological structures of membranes or

vesicles at large scales, we employ a most coarse-grained degree of solvent free MD simu-

lation, called meshless (mls) membrane model, combining with linear Gaussian polymer

chains, to simulate various phenomena occurring on biomembranes at the mesoscopic

scale. One particle typically represents a patch of membrane bilayers.

Figure 4.1: Coarse-grained meshless membrane model is shown here, where one
particle represents a patch of bilayer.

4.1.1 Soft-core repulsive potential

In our simulation, a modified Stillinger-Weber type potential is applied to play the role of

soft-core repulsion. Since our simulation does not consider the contribution from bond

angle to the repulsive potential, we only revise a two-body term of Stillinger-Weber

(SW) potential to produce a pairwise repulsive force. Nevertheless, SW potentials based

on the concepts (using only geometrical quantities such as distances and bond angles

as variables) are also currently used in simulations of organic systems, where they are

usually called force fields. In spite of the limited transferability, which makes it difficult

to change the topology of a molecule by breaking and reforming bonds, or to work at

high temperatures or pressures, they are capable of modeling with a very high precision

the structural and dynamical properties of a large variety of molecules, and are therefore

vastly used in research and industry. Here we take a most successful example that SW

potentials are widely used in the LAMMPS program package. In the SW potentials,

the interaction energies become negligibly small at atomic separations substantially less

than the theoretical cutoff distances. This advantage of SW potential itself has no need

to be truncated as Leonnard-Jones potential at cutoff distances.
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All particles have a soft-core excluded-volume potential with a diameter of σ.

Urep = ε
∑

i<j

exp [−20(rij/σ − 1) + B] fcut(rij/σ) (4.2)

in which rij is the distance between membrane (or polymer) particles i and j. The

diameter σ is used as the length unit, B = 0.126, and fcut(s) is a C∞ cutoff function

fcut(s) =





exp
{

A
[
1 + 1

(|s|/scut)n−1

]}
(s < scut)

0 (s > scut)
(4.3)

with n = 12 denotes a 12th order smooth function, A = 1, and scut = 1.2.

4.1.2 Multi-body attraction for solvent free

Typical solvent free (or implicit solvent) models eliminate the explicit occurrence of

solvent (usually water) in the models and replace it by effective interactions between the

existing solute particles, thus dramatically decreasing the number of degrees of freedom

one needs to simulate. The implicit solvent is a common trick in coarse-grained polymer

simulations, but it took longer time to be adopted in the simulations of membranes.

Different from polymers, membranes are self-assembled aggregates, for which the forces

that keep them together originate from the very component ones want to dismiss [116].

Although this is not impossible or forbidden, one needs more care when choosing the

effective interactions, as will be seen in a moment.

Water plays a crucial role in the formation of membranes since water provides hy-

drophobic effect to produce membrane. In the absence of water, coarse-grained lipids

need another source of cohesive force in order to form a condensed phase [116].

This unknown effective force field should be a very complicated function, but obviously

not a simply linear superposition of pairwise Lennard-Jones interactions because the

attractive force range of standard 12-6 Lennard-Jones potential is too short. Thus,

we need to find strong enough phenomenological attractive interactions so that it can

suppress lipids out of a three-dimensional gas phase into a two-dimensional condensed

liquid phase.

A liquid phase requires both sufficient cohesion so as to compete with the much larger

entropy of the gas phase, as well as simultaneously requires a sufficient amount of entropy

to compete with the free energy of the solid phase. Not all interaction potentials meet

these requirements. A natural idea is to apply some kinds of many-body potentials

instead of the solvent degrees of freedom. It has to satisfy some nontrivial constraints
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that ones have never see when they studied polymeric systems by using solvent-free

method [94, 116].

To replace water to produce a source of cohesion in order to form a condensed phase pro-

duce, an attractive multibody potential with a relatively simple expression is employed

here to mimic the “hydrophobic” interaction.

Uatt(ρi) = 0.25 ln {1 + exp [−4(ρi − ρ∗)]} − C, (4.4)

which is a function of the local density of membrane particles

ρi =
Nmb∑

j 6=i

fcut(rij/σ), (4.5)

with n = 12, shalf = 1.8, and scut = shalf + 0.3, where fcut(shalf) = 0.5, which implies

A = ln(2)(scut/shalf)n − 1. The constant C = 0.25 ln [1 + exp(4ρ∗)] is chosen so that

Uatt = 0 at ρi = 0. Here we set ρ∗ = 6 in order to simulate a 2D fluid membrane. For

ρi < ρ∗, Uatt acts as a pairwise potential with Uatt = −2
∑

j>i fcut(rij/σ). For ρi & ρ∗,

this potential saturates to the constant −C. Thus, it is a pairwise potential with a cutoff

at densities higher than ρ∗.

Our multi-body potential can enhance the molecular diffusion in the membrane and

to obtain a wide range of stability of a fluid phase. Additionally, there is a second

reason for employing a density cutoff, which can suppress 3D aggregates to 2D planar

aggregates. For example, every particle has 12 nearest neighbors in a face-centered cubic

crystal, while each particle has only six nearest neighbors in a two-dimensional hexagonal

crystal. The density cutoff ρ∗ retains the attraction for two-dimensional aggregates, but,

in the third vertical direction, suppresses additional attractions for three-dimensional

aggregates. If only pairwise attraction potentials are applied, the suppression of three-

dimensional structures would require a much stronger curvature potential than for the

multibody potential (4.4), which implies that the membrane would have a very large

bending rigidity κ. It has been shown that the density-dependent potential allows a

wide range of bending rigidities κ of the membrane [42, 117]. To choose the appropriate

parameters of the potentials, information from the crystal structure of the ground state

(at temperature T = 0) is helpful. The two-dimensional system can have two types of

crystal structure, hexagonal and square lattices. The hexagonal crystal has six nearest

neighbors and six next nearest neighbors at distances r1 and r2 =
√

3r1, respectively.

The square crystal has four nearest neighbors and four next-nearest neighbors with
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r2 = 2r1. For example, the ground state for a square-well (or Heaviside step) potential

Uwell(rij) =





∞ (rij 6 σ)

−1 (σ < rij 6 ratt)

0 (ratt < rij)

(4.6)

is a square lattice for
√

2 < ratt/σ <
√

3 and hexagonal lattice otherwise. For our

potential (4.4) with ρ∗ = ∞ (pairwise interactions), the ground state is a square lattice

for 1.578 < ratt/σ < 1.841 and a hexagonal lattice otherwise. As ρ∗ decreases, the region

of fluid phase increases and particle diffusion in fluid membrane becomes faster. We use

mainly the parameters ratt/σ = 1.8 and ρ∗ = 6. While the robustness of our results to

the choice of parameters also has been shown by using ratt/σ = 1.9 and ρ∗ = 8 [42].

4.1.3 Aplanarity curvature potential

Figure 4.2: If a particle deviates from the local plane formed by the neighboring
membrane particles, a force along the normal vector to this plane will be applied to

this particle. The deviation degree reflects the magnitude of the applied force.

The curvature potential is expressed by the shape parameter called “aplanarity”, which

is defined by

αpl =
9Dw

TwMw
, (4.7)

with the determinant Dw = λ1λ2λ3, the trace Tw = λ1 + λ2 + λ3, and the sum of

the principal minors Mw = λ1λ2 + λ2λ3 + λ3λ1. The aplanarity αpl scales the degree of

deviation from the planar shape, and λ1, λ2, and λ3 are three eigenvalues of the weighted

gyration tensor

aαβ(ri) =
Nmb∑

j

(αj − αG)(βj − βG)wcv(rij), (4.8)
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where α, β ∈ {x, y, z}, and the mass center of a local region of the membrane rG =
∑

j rjwcv(rij)/
∑

j wcv(rij). Without loss of generality, we suppose that λ1 6 λ2 6
λ3. The minimum eigenvalue λ1 represents a deviation from the local plane fit by the

neighboring membrane particles (as shown in Fig. 4.2), and its corresponding eigenvector

is collinear with the normal vector n of this plane. When the i-th membrane particle

has two or fewer neighbor particles within the cutoff distance rcc, they could be localized

on a certain plane, and therefore, αpl = 0. A truncated Gaussian function is employed

to calculate the weight of the gyration tensor

wcv(rij) =





exp
[

(rij/rga)2

(rij/rcc)n−1

]
(rij < rcc)

0 (rij > rcc),
(4.9)

which is smoothly cut off at rij = rcc. Here we use the parameters n = 12, rga =

0.5rcc, and rcc = 3σ. The bending rigidity and the line tension of the membrane edges

are linearly dependent on kα and ε, respectively, for kα & 10, so that they can be

independently varied by changing kα and ε, respectively.

In terms of the previous work[42], the aplanarity αpl ∼ λ1 for the smallest eigenvalue

λ1 ¿ λ2,λ3. In the polar coordinates, locally a patch of a cylindrical membrane can be

expressed for small fluctuations in the Monge representation as

h = h0 +
1
2
C1(s− s0)2 +

1
2
C2(z − z0)2, (4.10)

where s and z coordinates are along the cross-section periphery and the symmetric axis

of the cylinder, respectively. C1 and C2 are the corresponding principal curvatures of

the cylindrical membrane patch. In the case of cylindrical membrane, h0 is the average

radius along the normal vector of the local membrane patch. By averaging over the local

neighborhood with a weight function w(r) where r2 = s2 + z2, we have

λ1 = 〈h2〉 − 〈h〉2 = 〈(C2
1 + C2

2 )〉〈(r2 − 〈r2〉)2〉. (4.11)

Since 〈C2
1 + C2

2 〉 = 〈(C1 + C2)2〉 − 2〈C1C2〉 and 〈C2〉 = 0 for the cylindrical membrane,

we easily know

kααpl ∼ kαλ1 ∼ kα〈(C1 + C2)2〉. (4.12)

Thus, a linear relation between the bending energy in Helfrich’s macroscopic model and

our mesoscopic parameter is obtained as κ ∝ kα, which is numerically confirmed in the

previous work [42, 117]. The membrane has almost zero spontaneous curvature without

polymers.
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4.1.4 Chemical affinity potential between different particles

Figure 4.3: A biomimetic vesicle can be considered as a thin spherical shell composed
of a lipid bilayer, bounded by water on the inside and outside. Coexisting lipid phase
domains occur on the bilayer of the typical ternary vesicle. Reprinted with permission

from Ref. [8]

For artificial multi-component membrane systems, a biomimetic vesicle can be consid-

ered as a thin spherical shell composed of a lipid bilayer, bounded by water on the

inside and outside. When the composition of the bilayer is a ternary mixture composed

of typically a saturated lipid, an unsaturated lipid, and cholesterol, coexisting liquid

phases at micron scale can occur in the bilayer. Biophysicists assume that when the

phase separation occurs on the bilayer, the saturated lipid composition has the same

distribution on both inner layer and outer layer, which is shown in Fig. 4.3. Based on

this starting point, we can conveniently ignore the little difference of lipid composition

between the inner and outer leaflets of the bilayer, and for the simplicity assume that

the same kind of lipids have the same motion tendency during the process of phase

separation. Thus, we can further extend our coarse-grained meshless model to study

multi-component membrane systems.
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Two types of membrane particles, A and B, are considered in Chapter 7. The number of

these particles are NA and NB, respectively. To investigate phase separation, we apply

a repulsive term UAB in Eq. (4.1) to reduce the chemical affinity between different types

of membrane particles [118]. The potential UAB is a monotonic decreasing function:

UAB = εAB
∑

i∈A,j∈B A1fcut(ri,j) with n = 1, A1 = 1 and rcut = 2.1σ, and A1 =

exp[σ/(rcut − σ)] to set UAB(σ) = 1.

4.2 Model biomembranes with linear flexible polymers

Figure 4.4: A coarse-grained lipid membrane anchored with a coarse-grained polymer
chain to form a anchored biomembrane system. The blue particle represent membrane
particles. A single polymer chain is composed of ten (green) particles which are freely

linked as an excluded-volume chain. Reprinted with permission from Ref. [46].

We consider flexible linear polymer chains anchored on the membrane. Polymer particles

are connected by a harmonic spring potential,

Up =
kbond

2

∑

chain

(ri,i+1 − b)2, (4.13)

where kbond is the spring constant for the harmonic potential and b is the Kuhn length

of the polymer chain. The summation is taken only between neighboring particles along

polymer chains and between the end polymer particles and anchored membrane particles

(a total of Np springs in each chain). We choose b = 1.2σ here such that a polymer

chain stays in the force-free state for ri,i+1 = b.

We use Np = 10, ε = 4, kα = 10, and khar = 10 through this work. In the absence of

anchored polymer chains, the tensinless membranes have the bending rigidity κcv/kBT =
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21 ± 0.5, the line tension of open edges Γedσ/kBT = 4.5 and the area a0 = 1.44σ2 per

membrane particle [? ]. For single-component membranes, the number of membrane

particles are fixed as Nmb = 1200 and the number fraction φ = Nchain/Nmb of polymer-

anchored membrane particles is varied.

In cell membranes, there are more types of unsaturated lipids having more flexibility to

tune lipid compositions so as to approach many possible critical points [8]. Thus, for a

two-component membrane patch the number of the type A membrane particles, which

can combine polymer chains, is fixed as NA = 400 as the minority saturated lipids, and

the number of the type B particles is chosen as NB = 400 and 2100 as unsaturated lipids

with more flexibility for a striped domain and circular domain, respectively. The polymer

chains are anchored to the type A particles and the polymer fraction φ = Nchain/NA

is varied. To confirm the membranes is in thermal equilibrium, we compare the results

between two initial states, stretching or shrinking, and check no hysteresis is obtained.

We slowly stretch and shrink in axial direction for cylinder or for striped membranes with

a speed less than Lz/dt = 10−6σ/τ and then equilibrate them for t/τ = 6×104 before the

measurements. For the simulations of circular domains, the membranes equilibriated for

the duration of 6×104τ after step-wise changes of φ or εAB. The error bars are calculated

from six independent runs.

4.3 Our simulation method

4.3.1 Leapfrog integration

Leapfrog integration is an integration scheme that does not suffer from the gradually

divergent behavior. While it is also a second-order accurate scheme like the Verlet

method, and therefore the error at each step is similar, on average the errors in this

new scheme tend to cancel out instead of add coherently. Hence this new scheme, called

leapfrog integration, is a better choice to evolve systems over many dynamical times.

The reason for this is that leapfrog integration has the property of being “symplectic”,

which is a property whose definition we will not discuss in detail, but one can broadly

think of it as a scheme that is time-reversible; i.e. it is possible to use the same set of

equations with time evolved in reverse to recover the initial conditions from the final

state. For symplectic integration schemes, higher order errors tend to cancel out on

average rather than add coherently, and hence such schemes maintain approximately

the proper orbit forever.
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In the leapfrog scheme, the positions and velocities are “leapfrogged” over each other,

with one being advanced between the full timesteps (i.e. 0 → 1 → 2 → ...) and the other

one being advanced between “halfsteps” (i.e. 1
2 → 3

2 → 5
2 → ...). A full timestep thus

progresses as follows:

xi+ 1
2

= xi +
1
2
vi∆t (4.14)

vi+1 = vi +
1
2
ai+ 1

2
∆t (4.15)

xi+1 = xi+ 1
2

+
1
2
vi+1∆t (4.16)

Ones easily that by substituting the first of the three equations into the last, one obtains

the formula for xi+1 in the Verlet method, and by substituting the last equation into the

second, one obtains vi+1 in the Verlet method with the exception that the acceleration at

the halfstep ai+ 1
2

is used in place of the average acceleration across the step 1
2 (ai + ai+1).

It is straightforward to show that this maintains the same order of accuracy as the Verlet

equations.

4.3.2 NV T ensemble

The constant-temperature, constant-volume ensemble (NV T ) ensemble (constant num-

ber of particles N , volume V , and temperature T ) is used with periodic boundary

conditions in a simulation box of dimensions Lx × Ly × Lz. The NV T is also referred

to as the canonical ensemble. The ensemble is obtained by controlling the temperature

through Langevin thermostat. The volume is kept constant throughout the run. This

is the appropriate choice when conformational searches of molecules are carried out in

vacuum without periodic boundary conditions. Without periodic boundary conditions,

volume, pressure, and density cannot be defined. Constant-pressure dynamics cannot be

carried out. Even if periodic boundary conditions are used, if pressure is not a significant

factor, the constant-temperature constant-volume ensemble provides the advantage of

less perturbation of the trajectory, due to the absence of coupling to a pressure bath.
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4.3.3 Brownian dynamics simulation

The Brownian dynamics simulation technique is a mesoscopic method in which explicit

solvent molecules are replaced by a stochastic force. The technique takes advantage

of the fact that there is a large separation in time scales between the rapid motion of

solvent molecules and the more sluggish motion of polymers, lipids, or colloids. The

ability to coarse-grain out these fast modes of the solvent allows one to simulate much

larger time scales than in a molecular dynamics simulation. At the core of a Brown-

ian dynamics simulation is a stochastic differential equation, called Langevin equation,

which is integrated forward in time to create trajectories of molecules. Time enters nat-

urally into the scheme allowing for the study of the temporal evolution and dynamics

of complex fluids (e.g. polymers, vesicle self-assembly, large proteins, DNA molecules

and colloidal solutions). The Langevin equation generates classical Brownian dynamics

which describes the motion of a particle under the influence of random collisions with

the surrounding solvent. Brownian dynamics simulations are particularly well suited to

studying the structure and rheology of complex fluids in hydrodynamic flows and other

nonequilibrium situations.

In Brownian dynamics, atoms in the system are assumed to be embedded in a sea of

fictional particles of smaller size, like a buffer region. Thus, in this case the dynamics of

particles is described by Langevin equations of motion instead of the Newtons equations.

In the Langevin equation, two additional force terms have been added to Newton’s sec-

ond law to approximate the effects of neglected degrees of freedom. One term represents

a frictional force, which describes the drag on the particle due to the solvent, the other

one represents a random or stochastic force due to thermal fluctuations of the solvent.

For example, the effects of solvent molecules is not explicitly present in the system being

simulated would be approximated in terms of a frictional drag on the solute as well as

random kicks associated with the thermal motions of the solvent molecules. Since fric-

tion opposes motion, the first additional force is proportional to the particle’s velocity

and oppositely directed. For planar membranes, the projected area Lx × Ly is set for

the tensionless state. The dynamics of both membrane and anchored flexible polymers

are calculated by using underdamped Langevin dynamics. The Langevin thermostat is

used to maintain constant temperature in the course of the simulation. The motions of

membrane and polymer particles are governed by

m
d2ri

dt2
= −∂Utot

∂ri
− ζ

dri

dt
+ gi(t) (4.17)

where m is the mass of a particle (membrane or polymer particle) and ζ is the fric-

tion constant. gi(t) is a Gaussian white noise, which obeys the fluctuation-dissipation
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theorem:

〈gi,α(t)〉 = 0 (4.18)

〈gi,α(t)gj,β(t′)〉 = 2kBTζδijδαβδ(t− t′) (4.19)

where α, β ∈ {x, y, z}, kBT is the thermal energy, 〈. . . 〉 denotes statistical average. The

temperature of the system being simulated is maintained via this relationship between

gi(t) and ζ. We employ the time unit τ = ζσ2/kBT with m = ζτ . The Langevin

equations are integrated by the leapfrog integration [112] with a time step of ∆t =

0.005τ . Because the discretization of δ(t− t′) is 1/∆t, Eq. (4.19) is rewritten as

〈gi,α(t)gj,β(t′)〉 =
2kBTζδijδαβ

∆t
(4.20)

= 〈 g̃i,α(t)g̃j,β(t′)
∆t

〉

By combining the leapfrog integration, we can discrete the Langevin motion equations

as

m
∆vi(t)

∆t
= −ζvi(t + ∆t/2) + fi(t) +

g̃i(t)√
∆t

(4.21)

vi(t + ∆t/2) =
vi(t) + vi(t + ∆t)

2
(4.22)

∆vi(t) = vi(t + ∆t)− vi(t) (4.23)

where fi(t) = −∂Utot/∂ri. From the discretization Eqs. (4.21), (4.22), and (4.23), we

can easily obtain an applicable discreted algorithm as:

vi(t + ∆t) = vi(t)
1− ζ∆t/2m

1 + ζ∆t/2m
+

fi(t) + g̃i(t)
√

∆t/m

1 + ζ∆t/2m
(4.24)

4.4 Radial distribution function of meshless membrane sys-

tems

The radial distribution function (RDF) is an important structural characteristic and also

an example of a pair correlation function, which describes how, on average, the particles

in a system are radially packed around each other. This proves to be a particularly

effective way of describing the average structure of disordered molecular systems such

as liquids. Also in systems like liquids, such as fluid membrane systems, where there

is continual movement of the particles and a single snapshot of the system shows only

the instantaneous disorder, it is extremely useful to be able to deal with the average

structure.
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Figure 4.5: A schematic picture of the space discretization for the evaluation of the
radial distribution function (from the ISAACS website of Central Michigan University).

The RDF is useful in other ways. For example, it is something that can be deduced

experimentally from x-ray or neutron diffraction studies, thus providing a direct com-

parison between experiment and simulation. It can also be used in conjunction with

the interparticle pair potential function to calculate the internal energy of the system,

usually quite accurately.

To construct an RDF is simple. Because our potentials for meshless membrane model is

applied to form a quasi-2D membrane, we will study RDF in our model in the 2D case.

For the 2D membrane case, choose a particle in the system and draw around it a series

of concentric circles, set at a small fixed distance dr apart (see Fig. 4.5). At regular

intervals a snapshot of the system is taken and the number of particles found in each 2D

circular shell is counted and stored. At the end of the simulation, the average number

of particles in each shell is calculated. This is then divided by the area of each shell and

the average density of particles in the system. The result is the RDF. Mathematically

the 2D formula is:

g(r) =
n(r)

(N/Ap)2rdr
=

n(r)
ρ2rdr

(4.25)

where g(r) is the RDF, n(r) is the mean number of particles in a 2D circular shell of

width dr at distance r, N is the total particle number, Ap is the 2D membrane project

area, ρ is the mean particle density. The method need not be restricted to one particle.

All the particles in the system can be treated in this method, leading to an improved
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determination of the RDF as an ensemble average of many particles.

The RDF is usually plotted as a function of the interpaticle separation r. The RDF

picture (below) shows a number of important characteristics. Firstly, at short separa-

tions (≤ r) the RDF is zero. This indicates the effective width of the particles, since

they cannot approach any more closely. Secondly, a number of obvious peaks appear,

which indicate that the particles pack around each other in ‘shells’ of neighbours. The

occurrence of peaks at long range indicates a high degree of ordering. Usually, at high

temperature the peaks are broad, indicating thermal motion, while at low temperature

they are sharp. They are particularly sharp in crystalline materials, where particles are

strongly confined in their positions. At very long range every RDF tends to a value of

1, which happens because the RDF describes the average density at this range. Here we

show a RDF plot in our meshless membrane model for a patch of tensionless membrane

in Fig. 4.6. From it, we see that the effects of our meshless potentials can well be nor-

malized. Fig. 4.6 also describes how density of membrane particles varies as a function

of distance from a reference particle in our meshless model.

0
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Figure 4.6: A plot of radial distribution function for a patch of tensionless membranes
is shown.



Chapter 5

Bending Rigidity and

Spontaneous Curvature of

Biomembranes

In the study of membranes, the bending rigidity κ is widely considered as a most im-

portant quantity for characterizing the flexibility of membranes at a mesoscopic level.

There are also some other quantities, such as the Gaussian bending rigidity κ̄ [119–121],

important for membrane fusion [122], and the area compressibility modulus KA [123].

However, the centrality of the bending rigidity is irreplaceable, because of the fact that

it is the ratio κ̄/κ that is usually reported rather than κ̄ alone, and the compressibility

modulus KA is also often measured based on κ [71]. Also, there are relatively few mea-

surements of κ̄ and κ compared with the ones of κ. In this thesis, let’s only focus on κ

among them.

For an asymmetric membrane, a second central quantity is the spontaneous curvature

C0, which can be used to phenomenologically determine the local asymmetric degree of

membrane patch. When the components of two leaflets of bilayers are exactly the same,

the spontaneous curvature is diminished. If there is some reason to cause the difference

between two leaflets, then membrane will have a preference to curve to one side than the

other side. The existence of the asymmetry of bilayers is very crucial and necessary to

the deformation of biomimetic vesicles and some kinds of cells, such as red blood cells.

59
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Z
L

Figure 5.1: A snapshot of front and side views of a cylindrical membrane with an-
chored excluded-volume polymer chains only at the outer surface of the membrane at
the polymer density φ = 0.167 and the cylinder axial length Lz = 45.3σ. The red and
green particles represent membrane and polymer particles, respectively. Reproduced

from Ref. [47] with permission of The Royal Society of Chemistry.

5.1 Axial force method

A cylindrical membrane with polymer chains anchored at the outer surface of the mem-

brane is used to estimate the polymer-induced spontaneous curvature and bending rigid-

ity (see Fig. 5.1). For a cylindrical membrane with a radius R and a length Lz, Helfrich

curvature elastic free energy is given by

FHe =
∫ [κ

2
(C1 + C2 − C0)2 + κ̄C1C2

]
dA

= 2πRLz

[
κ

2

(
1
R
− C0

)2
]

, (5.1)

where C1 and C2 are the principal curvatures at each position on the membrane surface,

and the membrane area A = 2πRLz. The coefficients κ and κ̄ are the bending rigidity

and saddle-splay modulus, respectively, and C0 is the spontaneous curvature. In the

absence of the anchored polymer (we call it a pure membrane hereafter), the membrane

has zero spontaneous curvature, C0 = 0. Note that compared with the first term of

Eq. (3.4) we find 1/R = 2H for the cylindrical case, so C0 = 2c0.
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We also have known that the membrane, with anchored polymers, has the area com-

pression energy Far(A) that can be expressed as:

Far(A) =
KA(A−A0)2

A0
. (5.2)

where A0 is the area of the tensionless membrane, and generally A − A0 ¿ A0. The

radius R is determined by the total curvature free-energy minimization ∂Fcv/∂R|Lz = 0

for Fcv = FHe + Far(A), so that we obtain the relation:

KA(A−A0)
A0

=
κ

R

( 1
R
− C0

)
− κ

2

( 1
R
− C0

)2
. (5.3)

Since the total curvature free energy increases with increasing Lz, along the cylindri-

cal axis a general shrinking force, including the contribution of area compressibility, is

generated as

fz = πκR
( 1

R
− C0

)2
+ 2πR

KA(A−A0)
A0

= 2πκ
( 1

R
− C0

)
. (5.4)

The axial force fz = −PzzLz can be calculated from the pressure tensors:

Pαα =
1
V

〈
NkBT −

∑

i

αi
∂U

∂αi

〉
, (5.5)

for α ∈ {x, y, z}, where the summation is taken over all of membrane and polymer

particles, 〈. . . 〉 denotes statistical average. When the potential interaction crosses the

periodic boundary, the periodic image αi + nLα is employed for Pαα calculation, whose

specific algorithm in MD simulation is illustrated in the Appendix B in detail.

Then we can plot the pictures of the axial force fz dependence on the radius 1/R of

the cylindrical membranes at different anchored polymer densities for ideal chains and

excluded-volume chains (see Fig. 5.2), respectively. The force fz increases linearly with

1/R [46]. Thus, C0 and κ of the anchored membranes can be estimated from a linear

fitting method to Eq. (5.4). For both anchored ideal chains and excluded-volume chains,

the obtained values of C0 and κ are shown in Fig. 5.5. For the pure membranes, the

value of κ agrees very well with those estimated from the height fluctuations of planar

membranes [117] and membrane bucking [124]. The estimated value of C0 for the pure

membrane deviates slightly from the exact value, zero. This small deviation would

be caused by a higher-order term of the curvature energy [125] or finite size effects as

discussed in Ref. [117].
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We measured the axial force with several cylindrical membranes with different stretched

(or shrinked) axial lengths, as shown in Fig. 5.2, where the overlapping range of stretched

data and shrinked data is less than the error bar. It means that our simulation is very

stable. The solid lines are obtained by linear least-squares fits for the last seven points.

It can avoid the finite size effect for the cylindrical membrane with a short axial length.

5.2 Anchored linear polymers simulation

In this section, we introduce some fundamental measurements on quantities of large den-

sities of anchored short ideal and excluded volume polymers. As mentioned in Chapter 3,

the end-to-end distance is a very important quantity to estimate the effective mechanical

properties of biomembranes. For a flexible free polymer chain, it satisfies the theoretical

predictions. If it is anchored on a membrane surface, due to the constraint of polymer

configuration space, it has to only move oppose to the membrane substrate, and lose

a part of configuration entropy. Thus, it is expected that the end-to-end distance of

anchored polymers will increase a little bit more than the one of flexible polymers in

free space. Our simulation results make sure this conclusion, as shown in Fig. 5.3)

From the simulation, we find that there is no difference of the end-to-end distance of ideal

chains with different anchored-polymer densities. However, the end-to-end distance of

excluded-volume chains increase with higher anchored-polymer densities, since excluded-

volume chains can form brush region due to the strong steric repulsion. Although there

are no direct theoretical predictions on the end-to-end distance of anchored polymers

to compare with our measurements, theoretical heights of excluded-volume chains, de-

pending on the anchored-polymer densities, in the polymer brush region are often used

for calculation.

To make sure that our simulation period is sufficiently long, we track the time-dependent

end-to-end distances of any two chains of anchored ideal chains and excluded-volume

chains, whose traces are similar to the cases of free chains, which is shown in Fig. 5.4.

5.3 Collective effects of anchored polymer layer

The force fz increases linearly with 1/R [46]. Thus, C0 and κ of the anchored membranes

can be estimated from a linear fitting method to Eq. (5.4). For both anchored ideal chains

and excluded-volume chains, the obtained values of C0 and κ are shown in Fig. 5.5. For

the pure membranes, the value for κ agrees very well with those estimated from height

fluctuations of planar membranes [117] and membrane bucking [124]. The estimated
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Figure 5.2: (a) For the excluded volume chains, the axial force fz dependence on the
radius R of the cylindrical membranes at φ = 0.083, 0.100, 0.125, 0.167, and 0.250.
The solid lines are obtained by linear least-squares fits for the last seven points. (b)
For the ideal chains, the axial force fz dependence on the radius R of the cylindrical
membranes at φ = 0.083, 0.100, 0.125, 0.167, 0.250, 0.333, 0.417, and 0.500. The solid

lines are obtained by linear least-squares fits for the last seven points.
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Figure 5.3: Simulation results of the end-to-end distances dependent on anchored
polymer densities for ideal chains and excluded-volume chains.

value of C0 for the pure membrane has small deviation from the exact value, zero. This

small deviation would be caused by higher order term of the curvature energy or finite

size effects as discussed in Ref. [117]. From Fig. 5.5 we found that the accurate C0 and

κ can be obtained compared with the pure membrane case. It means that the polymer-

anchored membranes (specially the membranes with anchored excluded-volume chains

due to the additional steric repulsion) have the more stable configuration because some

big fluctuations (a kind of membrane entropy) of pure membranes are suppressed by the

entropy of anchored polymers [46]. Thus, the estimated κ will not decay as shown for

the pure membranes in Ref. [117].

The anchored polymer generates a positive (opposite to the anchored surface) sponta-

neous curvature, and enhances the bending rigidity κ. Both quantities increase with

increasing polymer chain density, and for the excluded-volume chains, these increases

are enhanced by the repulsive interactions between the neighboring chains.



Chapter 5. Bending Rigidity and Spontaneous Curvature of Biomembranes 65

0

2

4

6

8

10

20000 25000 30000 35000 40000

R
e/

σ

t/τ

(b)

0

2

4

6

8

10
R

e/
σ

(a)

Figure 5.4: The time-dependent end-to-end distance of two anchored excluded-
volume chains is shown in (a). The time-dependent end-to-end distance of two anchored

idea chains is shown in (b).
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Figure 5.5: Polymer density φ dependence of (a) the spontaneous curvature C0 and
(b) bending rigidity κ of the membranes with anchored ideal chains and excluded-
volume chains. The dashed lines in (a) and (b) represent the prediction of the linear
theory (Eqs. (5.6) and (5.7)) for the ideal chains. The solid lines in (a) and (b) repre-
sent the prediction of the scaling theory (Eqs. (5.9) and (5.10) ) in the brush region.

Reproduced from Ref. [47] with permission of The Royal Society of Chemistry.
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Figure 5.6: Comparison of a compound quantity κC0/Re theoretically defined by a
linear theory in Ref. [26] and its estimation in our simulations for the ideal chains. The
green lines represent the linear theory (Eq.(5.6)) in the mushroom region. The red lines

represent our simulation results.

5.3.1 Polymer effects in mushroom region

In the mushroom region, the spontaneous curvature and bending rigidity are linearly

dependent on the polymer density φ. As is mentioned in Section 3.4.2, the linear relations

κ∆C0 = 2aspkBTReφ/a0 (5.6)

∆κ = aκkBTR2
eφ/a0 (5.7)

can be obtained, where ∆C0 and ∆κ are the differences of the spontaneous curvatures

and bending rigidities between the polymer-decorated membrane and the pure mem-

brane, respectively, and Re is the mean end-to-end distance of the polymer chain. The

factor 2 in Eq. (5.6) appears because in our definition of the spontaneous curvature

in Eq. 5.1 is twice as large as that in the previous theoretical formula in Chapter 3.

The reason is explained in Sec. 5.1. The coefficients are derived analytically using the

Green’s function [23, 24] and also estimated by Monte Carlo simulations of single an-

chored polymer chains [26]: aκ = 0.21 and 0.2; and asp = 0.18 and 0.17 for ideal and

excluded-volume chains, respectively. Our results for the ideal chains agree very well

with these previous predictions (compare the dashed lines and symbols in Figs. 5.5
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and 5.6. Note that anchored ideal polymer chains can be considered in the mushroom

region for any density φ, since the polymer chains do not directly interact with each

other.

Supposed Errx is the error bar of one individual quantity, where x represents κ, C0,

Re and so on. In Fig. 5.6, we plot the error bar of a compound quantity ErrκC0/Re
as

follows:

ErrκC0/Re
= κErrC0 + C0Errκ (5.8)

Since ErrRe is very small, we can ignore it here.

5.3.2 Comparisons with the scaling theory in brush region

For excluded-volume chains, our results deviate from the theoretical prediction (Eq. (5.6))

for the mushroom region at φ & 0.1. Thus, in the high density of anchored polymer

chains, the interactions between polymer chains are not negligible. We compare our

results with a scaling theory based on a blob picture for the brush region in Ref. [24].

We extract the numerical results from the nonlinear equation for a cylindrical surface

∂fc(x)
∂x

+
4κ0

kBT
N−3

p Γ̄−3/2νx = 0. (5.9)

as has already been obtained in Section 3.4.3, where fc(x) = [{1 + (1 + ν)x/ν}ν/(1+ν) −
1]/x − 1 and κ0 is the bending rigidity of the pure membrane. Because of C0 = 2c0,

a reduced spontaneous curvature x = h0C0/2 for the height h0 = NpΓ̄(1−ν)/2νb of a

brush on a flat surface. The polymer coverage on the membrane is normalized by the

maximum coverage as Γ̄ = Γ/Γmax = b2φ/a0, and the exponent ν = 0.6 is used for

excluded-volume chains. The bending rigidity is given by

∆κ =
ν + 2
12ν2

N3
p Γ̄3/2νkBT (5.10)

in the small curvature limit as shown in Appendix A. Our results qualitatively agree

with these predictions from the scaling theory (see Fig. 5.5 and 5.7). The deviation

is likely due to the polymer length (Np = 10) in the simulation, which is too short to

apply the blob picture in the scaling theory. The deviation is likely due to the polymer

length (Np = 10) in the simulation, which is too short to apply the blob picture in

the scaling theory. However, the application of short polymers only can make the blob

picture obscure. It should not lead to so big a difference.
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Figure 5.7: Comparison of a compound quantity κC0/Re theoretically defined by a
linear theory in Ref. [26] and its estimation in our simulations for the excluded-volume
chains. The green lines represent the linear theory (Eq.(5.6)) in the mushroom region.
The red lines represent our simulation results. The light blue line represents the scaling

theory (Eq.(5.7)) in the brush region.

The exact theoretical reason for the deviation is from the invalidity of the small curvature

expansion formula (5.10) and (3.57). In the reference [24], the small curvature expansion

must break down for h0/2R . 3ν/(2ν+4). But this relation is based on the second order

expansions Eqs. (3.53) and (3.54) to the quantity h0H, respectively, in that paper. But

actually in our simulation h0H is not a small quantity. Let us further expand Eqs. (3.53)

and (3.54) up to the fifth order of the curvature as follows:

∆Fs = F0

[
− 1

2ν
(h0H) +

1
3ν2

(h0H)2 − 1
4ν3

(h0H)3 +
1

5ν4
(h0H)4

− 1
6ν5

(h0H)5 +O (
(h0H)6

)
]

(5.11)
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and

∆Fc = F0

[
− 1

2ν
(h0H) +

ν + 2
6ν2

(h0H)2 − (ν + 2)(2ν + 3)
24ν3

(h0H)3

+
(ν + 2)(2ν + 3)(3ν + 4)

120ν4
(h0H)4

−(ν + 2)(2ν + 3)(3ν + 4)(4ν + 5)
720ν5

(h0H)5

+O (
(h0H)6

)
]

(5.12)

For our cylindrical biomembranes in simulation, we have ν = 0.6 and h0H = h0/2R ≈
0.35 in Eq. (5.12). Then we can theoretically estimate that the third term is about 0.61

of the value of the second term, the fourth one is about 0.68 of the one of the third

term, and the fifth term is about 0.72 of the value of the fourth term. Thus, it means

that when the polymer length is comparable to the cylinder radius, the small curvature

expansion is invalid. To rescue it, we have to expand to enough order terms until the last

term is less than 0.01 of the second order term so that we can safely omit higher order

terms after it. Here we understand that intuitively the small curvature expansion only

can be applied to the spherical or cylindrical surface with a very large radius compared

with the polymer contour length.

5.4 Vesicle formation from stretched cylindrical biomem-

branes

For the case for excluded-volume chains, we found that due to the steric repulsion the

anchored polymers can induce a neck shape along the the cylindrical axis. When the

anchored polymer density is more than 0.333 for excluded-volume chains and if we

gradually increase the axial force fz by increasing Lz along the axial direction, the

neck part can become thinner and thinner. This finally leads to the vesiculation of

the cylindrical biomembranes. We observed that the stretched cylindrical biomembrane

patch self-assemblies into one vesicle under the densities φ = 0.333 and 0.417, while the

broken membrane patch self-assemblies into two vesicles at a higher density φ = 0.500.

It means that a large vesicle is able to separate into several small vesicles with the

anchored polymer density increasing. But for the vesicles of the smaller size, even if the

anchored polymer density is higher, it still keeps itself, not separates into several. This

conclusion is very similar the one we obtained by investigating microdomain separation

in 2D membrane patch described in Chapter 7.
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Figure 5.8: A snapshot of polymer-anchored vesicle formation process is shown
for the cylindrical biomembranes with the anchored excluded-volume polymer density
φ = 0.417. To observe the process of vesicle transformation clearly, polymer particles

are not displayed.

Fig. 5.8 shows a process for biovesicle formation from the stretched cylindrical biomem-

branes with the anchored excluded-volume polymer density φ = 0.417. We found that

a neck part is first created instead of the stretched pore in the case of stretched cylin-

drical biomembranes before the vesicle is formed finally. From Fig. 5.8 we found that

the biomembrane stretching for the cylindrical case is different from the pure membrane

stretching for the planar case [42]. The latter first forms a pore and then form a vesicle.

Instead of any pore formation for the cylindrical biomembranes, pearling instabilities of

membrane tubes have been verified by our simulation due to curvature-driven by an-

chored polymers. The reason is that the anchored excluded-volume polymers can form

the brush region which has the strong steric effect to induce curvature before so that a

neck shape can be formed in the stretched membrane part.

Fig. 5.9 shows that if the anchored polymer density is low (between 0.333 and 0.417),

only one vesicle can be formed, while two vesicles can be formed if the anchored polymer

density approach 0.5. It tells us that the number of the formed vesicles depends on the

anchored polymer density. More details and conclusions still need further research in

the future.

5.5 Summary for cylindrical biomembranes

In this chapter, we mainly used cylindrical geometry to estimate bending rigidity and

spontaneous curvature of biomembranes. Most of previous studies paid attention to

effects of polymer length or linear effects of many polymers (many ideal chains or many

excluded-volume chains in the low density region) to mechanical properties of mem-

branes. Here we mainly focus on effects of polymer density on mechanical properties

of membranes, not only in linear region, but also in nonlinear region formed by a high
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Figure 5.9: (a) shows that a single polymer-anchored vesicle is formed under the
polymer density φ = 0.417 after the cylindrical biomembranes overstretching. Only
membrane particles are displayed in the upper graph, while both membrane and poly-
mer particles are displayed in the lower graph. (b) shows that two polymer-anchored
vesicles are formed under the polymer density φ = 0.500 after the cylindrical biomem-
branes overstretching. Only membrane particles are displayed in the upper graph, while

both membrane and polymer particles are displayed in the lower graph.

density of excluded-volume chains by simulation for the first time. Our simulation re-

sults agree very well with previous linear theory and scaling theory for ideal chains and

excluded-volume chains in the low density. And our results qualitatively agree with the

scaling theory in the high density. The reason was analyzed in Section 5.3.2. We also

confirmed that end-to-end distance of anchored ideal polymer chains does not depend

on anchored polymer density, but the one of anchored excluded-volume chains increases

with anchored polymer density.

The vesiculation process is observed from stretched cylindrical biomembranes. Polymers

tend to induce the spontaneous curvature and distribute uniformly. Such tendencies

prefer to isotropically bend the cylindrical membrane and distribute uniformly at last.

So we can find that biovesicles are finally formed from the snapshots 5.9. A higher

density of anchored polymers can induce a bigger spontaneous curvature so that more

vesicles are formed with bigger curvatures.

Experimentally, the κ increase of polymer-anchored membranes has been observed and

measured [21, 29]. In addition, some experiments also have confirmed our simulation
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results that pearling instabilities of membrane tubes can be driven by curvature induced

by anchored polymers [126, 127].



Chapter 6

Edge Line Tension of

Biomembranes

6.1 Simulation of strip biomembranes with two edges

Previous theoretical work mainly focuses on the mechanical properties of isotropic infi-

nite membrane with/without anchored polymers in the thermodynamic limit [23, 24, 26].

In this chapter, we consider a realistic biomembrane system under the constraint con-

dition of the finite boundary, that is, a strip of biomembrane with open edges so that

we can study boundary effects and finite size effects of biomembranes in a more real

situation.

A strip of a single-component membrane with anchored linear polymers is used to esti-

mate the line tension Γed of the membrane edges (see Fig. 6.1). In this chapter, we will

investigate the line tension of membrane edges with various anchored polymer densities

for both ideal chains and excluded-volume chains. And we also propose a phenomeno-

logical mean field theory to explain our simulation results on ideal chains.

6.1.1 The effective line tension on the edge

The line tension Γed on the edge can be calculated by [117, 128, 129]

Γed =
∂F

2∂Ly
=

〈Pxx + Pzz

2
− Pyy

〉LxLz

2
, (6.1)

since the total edge length is 2Ly. The pressure Pxx = Pzz ≈ 0 for solvent-free simulation

with a negligibly low critical micelle concentration. We checked that the line tension

74
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y
L

Figure 6.1: A snapshot of top and side views of a membrane strip with anchored
excluded-volume chains at φ = 0.15 and the length Ly = 57.6σ of each membrane edge.

Reproduced from Ref. [47] with permission of The Royal Society of Chemistry.
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Figure 6.2: Line tension Γed on the open edge of a membrane strip with anchored
excluded-volume chains estimated for different edge lengths Ly at φ = 0, 0.1, 0.15,
0.2, and 0.25. Reproduced from Ref. [47] with permission of The Royal Society of

Chemistry.
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is independent of the length of the membrane edge for pure membranes as well as for

polymer-decorated membranes (see Fig. 6.2).
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Figure 6.3: Polymer density dependence φ of the line tension of the membrane
edges for ideal and excluded-volume chains. The blue line represents our theoretical
prediction by Eq. (6.10). Reproduced from Ref. [47] with permission of The Royal

Society of Chemistry.

Fig. 6.3 shows that the line tension Γed decreases with increasing polymer density φ. The

reduction for excluded-volume chains is much larger than that for ideal chains, similar

to polymer effects on the bending rigidity. The polymer chains prefer staying on the

edge, since there is more space to move so that they can gain entropy. Fig. 6.4 (a) shows

that the polymer density distribution ρchain is nonuniform at the distance dw from the

strip’s central axis. High peaks of ρchain are found close to the edges for both ideal chains

and excluded-volume chains, while the density ρmb of all membrane particles has only

very small peak. The relative polymer density ρchain/ρmb more rapidly increases at the

edges for larger mean density φ [see Fig. 6.4 (b)]. The mean polymer density φ1 at the

edges is calculated as an average 〈∑dw≥dmax
w

ρchain/
∑

dw≥dmax
w

ρmb〉 for the right region

of the peak (dmax
w ) of ρmb in Fig. 6.4 (a). The density difference from the mean value

∆φ = φ1 − φ increases with increasing φ as shown in Fig. 6.11. The excluded volume

chains induce higher polymer concentration at the edges than the ideal chains.
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6.1.2 Anchored polymers on the strip of biomembranes

6.1.2.1 Polymer distribution on the strip of biomembranes

In the case of self-assembled biomembrane system, ones have to notice that the excess

anchored polymer density ∆φ is not fixed, but adjusts itself to minimize the total free

energy in the equilibrium state [93]. Thus, it is meaningful to see how the anchored

polymers distribute when the biomembrane system approach the equilibrium state.

In Fig. 6.4, we show that most of anchored polymers always try to occupy the edge

part of the strip membrane. Because the polymers can obtain more space to move on

the edges so that they can obtain more configuration entropy. When the entropy of

polymers compete with the free energy of membranes, the entropic effect can reduce the

line tension of the strip membrane as shown in Fig. 6.3.

6.1.2.2 End-to-end distance of anchored polymers on the strip of biomem-

branes

In Chapter 5, we found that due to the constraints of the membrane part, anchored

polymers exhibit the average end-to-end distance different from free polymer chains.

the average end-to-end distance becomes longer than the free case. The strip shape is

different from the cylindrical shape. For the cylindrical shape, any part has the same

geometric constraint, while there is an obvious difference between the edge part and the

middle part of the strip shape. Thus, it is quite interesting to study how the strip shape

of membrane influences the end-to-end distance of anchored polymers and what is the

difference between the edge parts and the middle part of membranes.

In this subsection, we study the changes of end-to-end distances with different distance

from the central axis of the strip shape for the ideal chains and excluded-volume chains,

respectively. The cases are shown in Fig. 6.5 and Fig. 6.6, respectively. We found that

the anchored polymers in the middle part have the same end-to-end distance, while

they have a short one at the edge parts of the strip biomembranes. A peak for the

end-to-end distance comes up when the anchored polymers stays in the transition zone

between the middle part and the edge part. It may be caused by the peak for the

membrane particle distribution, which is shown in Fig. 6.5 (a) and Fig. 6.6 (a). There

are basically no membrane particles outside the edge part, so the multi-body attractive

potential decides a little bit higher distribution of membrane particle number close to

the edge part than the one in the middle part. As explained in Chapter 5, the membrane

part with the steric repulsion effect will elongate the end-to-end distance of anchored
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Figure 6.4: Density distribution on the membrane strip. (a) Density of polymer-
anchored membrane particles ρchain, and total density ρmb at φ = 0.25. The solid lines
with symbols and dashed lines represent the data for the excluded-volume chains, and
ideal chains, respectively. (b) Density ratio ρchain/ρmb for the excluded-volume chains.
The distance dw from the center of the strip is taken in the direction perpendicular
to the edge. The membrane lengths are Lst = 60σ perpendicular to the edge and
Ly = 28.8σ along the edge. Reproduced from Ref. [47] with permission of The Royal

Society of Chemistry.
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Figure 6.5: End-to-end Distance Distribution for Ideal Chains on the membrane
strip. (a) Density of polymer-anchored membrane particles ρchain, and total density
ρmb at φ = 0.25. The solid lines with symbols and dashed lines represent the data for
the excluded-volume chains, and ideal chains, respectively. (b) End-to-end Distance
Re for the ideal chains is shown. The distance dw from the center of the strip is taken
in the direction perpendicular to the edge. The membrane lengths are Lst = 60σ

perpendicular to the edge and Ly = 28.8σ along the edge.
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polymers, so a higher distribution of membrane particle number leads to a bit larger

end-to-end distance of the anchored polymers close to the edge part.

By comparing Fig. 6.5 and Fig. 6.6, we found that the excluded-volume chains can

stabilize the strip biomembranes and gives us stable results with the small error bars.

This conclusion is very similar to the one made in Chapter 5, where we found that the

excluded-volume chains can stabilize the cylindrical biomembranes by suppressing the

big fluctuations of membranes.

6.2 Theory for anchored ideal chains

As mentioned in Chapter 3, chemists spend much of their time developing polymer with

specific chemical or physical properties, which are determined by their linked monomers

or mutual bindings. But physicists pay attention to universal properties which depend

only on the fact that the polymer is a long linear molecule, and determined by ’large

scale quantities’ such as the quality of the solvent in which the polymer is immersed,

the temperature, the presence of surfaces, and so on. Keeping these in mind, we can

introduce a description of polymers in terms of random and self avoiding walks for ideal

polymers and excluded-volume polymers, respectively. When we add a large number

of monomers to form a long polymer, one can understand that the correlation between

bond orientations emerging on the monomer level will decay on larger length scales, until

beyond a certain persistence length lp, which is called as Kuhn length, the orientations

between bonds become completely uncorrelated. This concept of persistence length is

sufficient for us to work with the above intuitive idea to introduce our model for polymer

chains [130].

6.2.1 Lattice model for a restricted ideal chain

Polymers can show many interesting mesoscopic properties which can be adequately

represented by using coarse-grained models. Lattice models, which have a history of

about six decades, are old, but particularly useful since they employ integer coordinates

which can be quickly processed. Another advantage is the possibility of checking the

occupancy of the discrete number of sites and store it in an array. Therefore, overlapping

or not between beads can be easily executed or avoided. Many early simulations were

usually performed with the simple cubic lattices, employing different algorithms.

Based on the independence of bond directions when ones consider a polymer on length

scales above the persistence length leads to the simplest model for an isolated polymer.
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Figure 6.6: End-to-end Distance Distribution for Ideal Chains on the membrane
strip. (a) Density of polymer-anchored membrane particles ρchain, and total density
ρmb at φ = 0.25. The solid lines with symbols and dashed lines represent the data for
the excluded-volume chains, and ideal chains, respectively. (b) End-to-end Distance
Re for the excluded-volume chains is shown. The distance dw from the center of the
strip is taken in the direction perpendicular to the edge. The membrane lengths are

Lst = 60σ perpendicular to the edge and Ly = 28.8σ along the edge.
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Figure 6.7: A simple lattice model is plotted for modeling a 3D free polymer. There
are six independent directions for the next step of every end monomer in the 3D lattices.

In this model, the polymer is modeled as a random walk, which has a long history

for detailed discussions. Here we only focus on 3D lattice random walks. As shown

in Fig. 6.7, there are six independent directions (six nearest neighbor points) for the

next step motion of every end monomer in the 3D lattices. For random walks for ideal

polymer chains, the segments of the polymer chain are allowed to overlap with each other.

So for each polymer segment in 3D free space, we have the configuration distribution

probability of the polymer with N segments, that is, the reduced polymer weight (or

partition function) W = 6N . To be generalized, consider a hypercubic lattice Zd in d

dimensions. A random walker goes at each step with equal probability, then we have a

generalized reduced weight (2d)N for a free polymer.

In this thesis, we extend the pervious lattice polymer model to the restricted half space

case and the restricted edge case, which are, respectively, shown in Fig. 6.8.

For counting the reduced weight of a restricted ideal polymer above a plane, we know

that the polymer cannot move down or touch on the plane because of the constraint.

Thus, the first segment of an ideal polymer has only one probability, that is, the motion

upwards. Supposed the plane is the zeroth layer, once the segment end move up to the

first layer of lattice, the next segment has 5 probable directions for motion, while once

the segment move up to the layers higher than the first layer, the case goes back the

one for a free polymer, that is, the next segment always has 6 probable directions for

motion. From this analysis, we can divide a half space lattice random walk into three

cases to calculate the probabilities: one probability is to move upward, four probabilities

is to move horizontally, and one probability is to move downward, which, however, is

restricted in term of whether its last step is in the first layer or not. Thus, we can easily
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Figure 6.8: Our improved Lattice models for the ideal polymers restricted on the half
space above the plane (a) and at the edge of a plane (b). The normal vector to the
plane is defined as z direction, and the horizontal direction is defined as x direction.

deduce a general procedure to calculate the reduce weight of the ideal chain restricted

on a plane as follows:

Whs(N, Z) = Whs(N − 1, Z + 1) + 4Whs(N − 1, Z) + Whs(N − 1, Z − 1),

Whs(N) =
N∑

Z=−N

Whs(N, Z). (6.2)

with the initial conditions:

Whs(1, 1) = 1,

Whs(1,−1) = 1,

Whs(1, 0) = 0, (6.3)

Whs(N, Z) = 0 (|Z| > N).

where Whs(N) is the reduced weight of an ideal polymer chain restricted on a half space

by an anchored plane, Whs(N, Z) is the reduced weight of an ideal polymer with the

length N in the Zth layer which depends on that of the previous (N − 1)th polymer

segment.

To follow a similar procedure, we also can obtain the calculation way to the case of the
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ideal chain anchored at the edge of a plane. In this case, besides considering different

layers in ẑ direction, ones also have to consider the horizontal x̂ direction proportional

to the edge line as well as ẑ direction. This x̂ is applied to judge whether the lattice

polymer end moves back onto the plane or outside plane. Suppose the edge line has the

coordinate X = 0 and the segments outside the plane have X > 0, if the polymer end

moves back onto the plane, that is X < 0, then the case goes back to the last half-plane

case, while if the polymer end moves outside the plane, then the case is the free-space

case. Thus, we can easily deduce the feasible calculation procedures as follows:

Wed(N, Z,X) = Wed(N − 1, Z, X − 1) + 2Whs(N − 1, Z, X) + Whs(N − 1, Z, X + 1)

+Wed(N − 1, Z − 1, X) + Whs(N − 1, Z + 1, X),

Wed(N) =
N∑

Z=−N

N∑

X=−N

Whs(N, Z,X). (6.4)

with the initial conditions:

Wed(1,−1, 0) = 1,

Wed(1, 1, 0) = 1,

Wed(1, 0, 1) = 1, (6.5)

Wed(N, 0, X) = 0 (X 6 0),

Wed(N, Z,X) = 0 (|Z| > N, |X| > N).

where Wed(N) is the reduced weight of an ideal polymer chain restricted at the edge

of an anchored plane, Whs(N, Z,X) is the reduced weight of an ideal polymer with the

length N in the Zth layer inside or outside the plane, which depends on the coordinate

value of the polymer segment in x̂ direction.

From the above deduction, we can esitmate Whs(N) and Wed(N), which are abbreviated

to Whs and Wed, for different polymer contour lengths N . Then the restricted partition

functions Zhs and Zed can easily be obtained by the integration over all possible positions

of the free end of the lattice polymer: Zhs = qNWhs and Zed = qNWed, where q = 6

is for the cubic lattice model. In this work, we are interested in the partition function

ratio Zed/Zhs = Wed/Whs, which is the key quantity to measure the excess configuration

entropy ∆S, because ∆S = ln (Wed/Whs). Generally the polymer at the edge has more

configuration entropy than the one anchored on the plane because of less restriction).

We can plot the change of the ratio Wed/Whs with the polymer length N , which is shown

in Fig. 6.9.

In this thesis, only Np = 10 is employed. In Fig. 6.9, we easily know Wed/Whs ' 2 for

Np = 10.
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Figure 6.9: Probability Ratio Wed(Np)/Whs(Np) of a linear Restricted Ideal Chain
changes with different polymer length N .

6.2.2 Mean field theory for strip biomembranes with ideal chains

Based on the above 3D polymer lattice model, we further propose a mean field theory for

the line tension induced by the anchored polymers in the mushroom region. According

to the nonuniform polymer distribution on the membrane strip, we divide the membrane

into two regions, the edge (blue part, region 1) and middle region (yellow part, region

2) as shown in Fig. 6.10. The polymer density is assumed to be uniform in each region.

The area fractions of the two regions are n1 and n2 with n1 + n2 = 1, and the polymer

densities are φ1 and φ2 with φ = n1φ1 + n2φ2. The width of region 1 is considered the

radius of gyration of polymer Rg, so that the area fraction is given by

n1 =
2LyRg

Nmba0
. (6.6)

The free energy of the membrane strip is written as

Fed

NmbkBT
= n1φ1 lnφ1 + n1 (1− φ1) ln (1− φ1)

+n2φ2 lnφ2 + n2 (1− φ2) ln (1− φ2)

−n1φ1∆S + f0 (6.7)
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Figure 6.10: (a) shows that a strip shape of biomembranes can be simply divided
into two regions: the edge region and the middle region with the area fractions of n1

(blue part, region 1) and n2 (yellow part, region 2). (b) shows the anchored polymer
distribution on the strip biomembranes, the high columns with dark purple represent
the high polymer density φ1 at the edges, while the low column with light purple
represents the low polymer density φ2 in the middle part of the strip biomembranes.

where f0 is the free energy contribution of the membrane without polymer grafting. The

first four terms are the mixing entropy for regions 1 and 2. When a polymer chain moves

from the middle region to the open edges, it gains the excess conformational entropy

∆S.

The partition function of a single anchored polymer chain is expressed as Zp = qNpW ,

where q is the number of the nearest neighbors in the lattice model (q = 6 in a cubic

lattice). The restricted weight of a polymer anchored on the flat membrane is Whs =

erf
[√

qlan
2Re

]
, where erf(x) is the error function and lan is the anchor length [23, 24]. On

the other hand, the free end of a polymer anchored on the edge can also move the

other half space, and has a larger value of weight Wed. We numerically counted the

weights Wed and Whs in a cubic lattice. The ratio Wed/Whs increases with increasing

Np, and Wed/Whs ' 2 for Np = 10. Thus, the excess entropy is estimated as ∆S =

ln (Wed/Whs) ' ln 2 for our simulation condition.

Using minimization of Fed, the polymer density φ1 in the edge region is analytically

derived as

φ1 =
2Qφ

s +
√

s2 − 4Q(Q− 1)φn1

(6.8)

=
Qφ

1 + (Q− 1)φ

(
1− (Q− 1)(1− φ)

{1 + (Q− 1)φ}2
n1

)
+ O(n2

1)
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Figure 6.11: Excess polymer density ∆φ ≡ φ1−φ at the membrane edge as a function
of the mean polymer density φ. The solid lines with circles and squares represent
our simulation results for the ideal chains (red) and excluded volume chains (blue),
respectively. The dashed line represents our theoretical prediction for the ideal chains
by Eq. (6.8). Reproduced from Ref. [47] with permission of The Royal Society of

Chemistry.

where Q = exp(∆S) and s = 1 + (Q − 1)(φ + n1). At Q = 2 and n1 ¿ 1, the density

difference is simply ∆φ ≡ φ1 − φ = φ(1 − φ)/(1 + φ), which agrees very well with the

simulation results as shown in Fig. 6.11.

In Fig. 6.11, our simulation result for ideal chains (red solid line) is lower than the

theoretical prediction because our mean field theory naively consider that one strip

patch of biomembranes can be simply divided into two types of rectangular parts with

different anchored polymer densities as shown in Fig. 6.10, while our simulation result for

excluded-volume chains (blue solid line) is higher than the theoretical prediction because

our mean field theory is proposed for anchored ideal chains, but excluded-volume chains

have stronger steric repulsive interaction among different polymer chains, then more

polymers are pushed to the edge parts of the biomembrane strip.
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The line tension is derived as Γed = ∂Fed/∂Led, where Led is the total edge length

Led = 2Ly. Thus, the polymer-induced line tension ∆Γed is given by

∆Γeda0

RgkBT
= ln(1− n1) + φ1 ln

φ1

Q(φ− φ1n1)
(6.9)

+(1− φ1) ln
1− φ1

1− φ− (1− φ1)n1
.

At Q = 2, the Taylor expansion gives

∆Γeda0

RgkBT
= − ln(1 + φ) +

φ(1− φ)
(1 + φ)2

n1 + O(n2
1). (6.10)

Thus, the line tension Γed decreases with increasing φ and is independent of the edge

length Ly for n1 ¿ 1. Figure 6.3 shows the comparison of line tensions between our

simulation and the theoretical results for ideal chains; The agreement is excellent. As

the membrane strip becomes narrower (n1 increases), the polymer effect on the line

tension Γed is reduced by the loss of mixing entropy in region 2, and Γed increases with

increasing edge length Ly. This conclusion is consistent with our results on the reduced

interfacial line tension 7, since the non-edge polymers have more contributions to reduce

the line tension. When the edge length increases, more non-edge polymers move to the

edge to obtain more entropy. This leads that the percentage of edge polymers increases,

while that of non-edge polymers decreases, so the line tension increases.

6.3 Summary for strip biomembranes

In this chapter, we employed strip geometry to calculate edge line tension of biomem-

branes by simulation and theory for the first time. Here we mainly paid attention to

effects of polymer density on edge line tension of membranes. The reduction of edge line

tension caused by anchored polymers has been confirmed by simulation. The reason is

that polymers prefer to stay on the edges of strip biomembranes because of polymer con-

figuration entropy. Based on polymer distribution on the strip membranes, we proposed

a mean field theory for anchored ideal polymer chains. Our simulation results agree very

well with our theoretical predictions for ideal chains. Excluded-volume chains can reduce

edge line tension more than ideal chains due to the steric repulsion. We also confirmed

that end-to-end distance and its distribution of anchored ideal polymer chains does not

depend on anchored polymer density, but the ones of anchored excluded-volume chains

increases with anchored polymer density. The results on end-to-end distance are similar

to the ones obtained from cylindrical cases.
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In the experiments, people found that polymer anchoring induces the formation of large

vesicles [39] and spherical or discoidal micelles [40]. Since the ratio between the edge

tension and the bending rigidity determines the vesicle radius Rves formed by the mem-

brane disks as Rves ∼ (2κ+κ̄)/Γed, the reduction in the edge tension increases the vesicle

radius. Our results are consistent with these experimental observations.



Chapter 7

Interfacial Line Tension and

Microdomain Separation on

Biomembranes

The investigation on domains in multi-component membranes with anchored polymer

chains is the most exciting topic in this thesis. In this section, we focus on the effects

of polymer-grafting-induced interfacial tension. First, in Sec. 7.1 we estimate the line

tension of polymer-anchored membrane domains, and then in Sec. 7.2 we investigate

the polymer effects on domain separation and domain shape transformation. Here, we

investigate only the membranes with excluded-volume chains, since the effects of the

ideal chains are considered to be very small. As described in Chapter 5, polymers can

induce an effective spontaneous curvature in the membrane. In order to diminish the

influence of the induced spontaneous curvature, we symmetrically graft polymer chains

on both sides of the membrane as shown in Fig. 7.1. Half of the chains (Nchain/2) are

anchored on the upper (lower) side of the membrane, and each chain is anchored on

one membrane particle. Then, the net curvature effects induced on both sides of the

membrane cancel each other out. Our handling is also consistent with the assumption

from the experimental observations as shown in Fig. 4.3.

7.1 Interfacial line tension between two coexisting domains

7.1.1 The case of a strip domain

The line tension ΓAB between the type A and B domains is estimated by two meth-

ods using a striped domain and a circular domain. For the striped domain shown in

90
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Figure 7.1: Snapshots of (a) striped and (b) circular domains with anchored excluded-
volume chains in two-component planar membranes at NA = 400 and φ = 0.3. Type
A and B membrane particles are displayed in red and blue, respectively. Reproduced

from Ref. [47] with permission of The Royal Society of Chemistry.

Fig. 7.1(a), the line tension is calculated by

ΓAB = 〈Pxx − Pyy〉LxLz/2. (7.1)

The obtained line tension for tensionless membranes is shown by solid lines in Fig. 7.2.

We ensured that ΓAB is independent of the boundary length Ly for 24 < Ly/σ < 48.

The line tension ΓAB decreases with increasing φ, while ΓAB increases with increasing

εAB. Thus, the same value of ΓAB can be obtained for the different polymer density φ

by adjusting εAB.

7.1.2 The case of a circular domain

Before investigating polymer effects on the domain shapes in the next subsection, we also

estimate ΓAB from the circular domain shown in Fig. 7.1(b). Because the free energy G

of the whole circular domain is composed of surface free energy and line free energy as

follows:

G = ∆γπR̄2 − ΓAB2πR̄, (7.2)
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Figure 7.2: Interfacial line tension ΓAB between membrane domains as a function
of (a) φ and (b) εAB. The solid and dashed lines represent ΓAB estimated from the
striped domain and the circular domain, respectively. Reproduced from Ref. [47] with

permission of The Royal Society of Chemistry.
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where the negative sign indicates that the line energy always resists surface area shrink-

ing. Because the whole domain lies in a fluctuating fluid environment and the domain

boundary is dynamic, we have to use an average radius R̄ to measure the domain size.

By minimizing the free energy G, one obtains a 2D Laplace equation so that the line

tension ΓAB can be calculated by the 2D Laplace pressure

ΓAB = R̄∆γ, (7.3)

where R̄ is the average radius of the domain, and ∆γ is the difference of surface tension

between the type A and B domains: ∆γ = γin− γout, where γin is the surface tension of

the inner (type A) domain and γout is that of the outer (type B) domain. Both of them

can be estimated by the pressure tensors of the local regions

γα = 〈Pα
zz − (Pα

xx + Pα
yy)/2〉Lz, (7.4)

where α represents “in” or “out”; Pα
xx, Pα

yy, and Pα
zz are the diagonal components of the

pressure tensors calculated in the local membrane regions. The outer surface tension

γout can also be calculated from the pressure tensors for all regions.

To estimate γin and γout, we extract the inner and outer regions as follows. First,

domains of type A particles are calculated. The particles are considered to belong to

the same cluster (domain) when their distance is less than rcut = 2.1σ. Then the radius R̄

of the largest domain is calculated. Type A particles contacting type B particles (closer

than rcut) are considered domain boundary particles. The number of boundary particles

is Nbd. In the largest domain, the distance of the domain particles from the center rG of

the domain is averaged by RA = (1/Nbd)
∑ |r−rG|. For the mean radius of the domain

boundary, the half boundary width
√

a0/2 = 0.6σ is added so that R̄ = RA+0.6σ. Then,

the maximum fluctuation amplitude ∆R around R̄ is calculated. The surface tension γin

is estimated within the area inside the circular region with radius R̄−∆R− 0.5σ, while

γout is estimated within the area outside the circular region with radius R̄ +∆R +0.5σ.

Note that a few type B particles can enter the type A domain at small ΓABσ/kBT ∼ 1

so the type A particles neighboring these isolated particles are not taken into account

for estimation of R̄ and ∆R.

The line tension estimated from the 2D Laplace pressure is shown by dashed lines in

Fig. 7.2. For the pure membrane, the obtained values agree with those from the mem-

brane strip very well. However, they are slightly larger for the polymer-anchored mem-

branes. This deviation is likely caused by the relative larger boundary region of the

circular domain than the striped domain. It is a similar dependence obtained for the

membrane edges (see Eq. (6.10)).
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7.2 Polymer-induced microdomain separation

To clarify the anchored polymer effects, we compare the shape changes of the type

A membrane domains with increasing φ and with decreasing εAB. In both cases, the

interfacial line tension ΓAB decreases and the low line tension leads to the breakup of

domains. However, the resultant states are quite different as shown in Fig. 7.3. As the

repulsive interaction between the type A and B particles is reduced with decreasing εAB,

the obtained phase behavior is similar to that of typical binary fluids. At ΓABσ ' kBT

(εAB = 2), the domain boundary undergoes large fluctuation and a few (type A or B)

particles leave their domain to dissolve in the other domain. As εAB decreases further,

the domain breaks up into small domains, and finally the two types of particles are

completely mixed.

On the other hand, the anchored polymers induce formation of small stable domains

(called microdomains) instead of a mixing state, although it can reduce the line tension

to ΓABσ . kBT (see Fig. 7.3(g)). At φ ≤ 0.45, the type A domain remains as one

domain but exhibits an elongated shape at φ = 0.45. At φ ≥ 0.5, it starts separating

into microdomains. Note that the membrane is considered in a mixed state even at

φ = 0.45, if ΓAB for the straight boundary is extrapolated (see Fig. 7.2).

In contrast to the reduction in εAB, the boundary of the elongated domain is rather

smooth (compare snapshots in Figs. 7.3(c) and (f)). We confirmed that these small

domains are also formed from random distribution of initial states. Thus, it is a ther-

modynamically stable state [47].

Let us discuss the effects of the polymer anchoring on the domain formation. First, we

remind that the polymer beads have only repulsive interactions with the other beads

and membrane particles except for the membrane-anchored head particles.

The polymer effects seem suppressed for shorter lengths than the polymer size ∼ Rend =

4σ. A smaller boundary undulation than the polymer size does not yield additional space

for the polymer brush. A similar suppression in the short length scale was reported on

the bending rigidity induced by the polymer anchoring [27]. When the domain size is

comparable to the polymer length, most of the particles already stay at the domain

boundary, so that an additional increase in the boundary length likely yields much less

gain in the average volume per polymer and the polymer conformational entropy. As

explained in Sec. 7.1, the line tension of the circular domain is larger than the straight

boundary. For the smaller domains, this difference would be enhanced, although the

domains are too small for direct estimation of ΓAB by Laplace’s law.
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Figure 7.3: Sequential snapshots of two-component membranes as (left from (a) to
(d)) εAB increases at φ = 0 or (right from (a) to (g)) polymer density φ increases at
εAB = 4. Red and blue particles represent the types of A and B membrane particles,
respectively. To observe microdomain separation and shape transformation clearly,
polymer particles are not displayed. Reproduced from Ref. [47] with permission of The

Royal Society of Chemistry.
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Figure 7.4: Domain shape changes and domain separation as (a,b) εAB decreases at
φ = 0 and (c,d) φ increases at εAB = 4. (a,c) The average cluster size N̄dm of the
mother (largest) domains and (b,d) the reduced excess domain length ∆Lbd of the
mother domains. The mean number Nmth of the membrane particles in the mother
domains at each stage is shown in light red color. Reproduced from Ref. [47] with

permission of The Royal Society of Chemistry.
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To investigate the changes of domains in greater detail, we calculate the mean cluster

size N̄dm and a reduced excess domain length ∆Lbd. The cluster size N̄dm is defined as

N̄dm =

∑NA
ic=1 nii

2
c∑NA

ic=1 niic
, (7.5)

where ni is the number of clusters with size ic. The reduced excess domain length for

the mother (largest) domains ∆Lbd is defined as

∆Lbd =
Lbd

2
√

πAdm
− 1, (7.6)

where Lbd = Nbd
√

a0 is the boundary length of the mother domains and Adm = NAa0

is the domain area. The length Lbd is normalized by the length of a circular domain

2
√

πAdm so that ∆Lbd = 0 for the circular domain.

Figure 7.4 shows the development of N̄dm and ∆Lbd. In the εAB reduction, the tran-

sition to the mixing state occurs sharply between εAB = 1.5 and 1. However, for poly-

mer grafting, a gradual decrease in N̄dm represents the formation of microdomains (see

Fig. 7.4(c)). Around the transition points, ∆Lbd is increased less by polymer grafting

than by lowering εAB, while both domains are similarly elongated (see Fig. 7.3). This

difference is caused by the weaker undulation of polymer-anchored domain boundaries.

We calculated the fraction of polymer chain anchors on the mother domain φmth after the

microdomain separation (see Fig. 7.5). Interestingly, it is lower than the initial density φ.

Thus, detached small domains have higher polymer densities than their mother domain.

This is caused thermodynamically by the entropy gain of polymers anchored on small

domains and also kinetically by a higher density at the domain boundary.

7.3 Summary for multi-component biomembrane patch

In this chapter, we applied binary fluid membranes with anchored polymers to measure

interfacial line tension between two coexisting domains by simulation for the first time.

We explored effects of polymer density on interfacial line tension of multi-component

membranes. We found that interfacial tension between two domains can be reduced

by anchoring polymers, and the domain separation occurs when the interfacial tension

reduced by anchored polymer density reaches roughly less than 1kBT , and the boundary

length dramatically increases. The domain with the interfacial tension reduced by an-

chored polymer density has a smoother boundary profile compared with the one reduced

by the affinity reduction potential. Two different routes of phase transitions are found
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Figure 7.5: Mean polymer density φ dependence of the number fraction φmth of
polymer chain anchors on the mother (largest) domain. Reproduced from Ref. [47]

with permission of The Royal Society of Chemistry.

for the cases with/without anchored polymers. It implies that densely anchored poly-

mers can stabilize microdomains to a small size. Our simulation results well reproduced

a recent experiment observations on PEG-chain-anchored lipid membranes [20].

However, there is a difference between our simulation and their experimental condition.

Since they used DOPC/DPPC/Chol as membrane substrates in the experiment [20],

the affinity of DPPC lipids with Chol is weaker than some other saturated lipids, such

as eSM [72]. It leads that DOPC lipids can also combine a part of lipids. While PEG

chains only can anchor lipids by combining cholesterol first. So it is inevitable that

some PEG chains also anchored onto DOPC lipids besides DPPC lipids. But since sat-

urated lipids have stronger affinity to combine cholesterol compared with unsaturated

lipids [8, 10, 72–74, 131], thus, for simplicity we can assume that all the cholesterol

only combine saturated lipids so that polymer chains are only anchored onto saturated

lipids in our simulation. Then we found the similar microdomain separation phenomena

observed in their experiment [20]. It implied that only a nonuniform distribution of poly-

mers anchored onto saturated and unsaturated lipids can induce such micro-segregation

phenomena.



Chapter 8

Summary and Perspectives

8.1 Summary

We have systematically studied the entropic effects of anchored polymers on various

types of mechanical and interfacial properties of biomembranes using particle-based

membrane simulations. First, we reconfirm the previous theoretical predictions for spon-

taneous curvature and bending rigidity by simulating cylindrical membranes. They in-

crease with the anchored polymer density φ linearly in the mushroom region, but sharply

increase in the brush region.

Second, we investigated the polymer anchoring effects on the line tension of membrane

edges for ideal and excluded-volume chains. It is revealed that polymer anchoring sig-

nificantly reduces the line tension. For ideal polymer chains, it is also investigated by

a mean field theory. It is clarified that the entropy gain of polymer conformation at

the membrane edge reduces the line tension. Experimentally, it is known that poly-

mer anchoring induces the formation of large vesicles [39] and spherical or discoidal

micelles [40]. Since the ratio between the line tension and the bending rigidity deter-

mines the vesicle radius Rves formed by the membrane disks as Rves ∼ (2κ+ κ̄)/Γed, the

reduction in the line tension increases the vesicle radius. Our results are consistent with

these experimental observations.

Finally, we investigated the polymer anchoring effects on two-component membranes for

excluded-volume chains. The line tension of the domain boundary is reduced by anchor-

ing polymers. It is found that densely anchored polymers can stabilize microdomains,

whereas large domains are unstable. Although we did not investigate polymer length

dependence here, it is expected that the domain size can be controlled by the polymer

length. In living cells, lipid rafts contain a large amount of glycosphingolipids [4–7].

99



Chapter 8. Summary and Perspectives 100

Our simulation results suggest that the entropic effects of glycosphingolipids may play

a significant role in stabilizing microdomains . 100 nm. At a moderate polymer den-

sity, elongated shapes of membrane domains are obtained. In lipid membranes with

PEG-conjugated cholesterol, the domain shapes depend on the anchored polymer den-

sity φPEG: at a high φPEG, small domains are scattered, while at a slightly lower φPEG,

small elongated domains are connected with each other to form a network [20]. The

elongated domains in our simulations may form a network, if much larger domains are

simulated. Further study is needed to clarify the polymer-anchoring effects on large-scale

domain patterns.

Our present study highlights entropic effects of anchored polymers on the microdomain

formation via the reduction in domain boundary tension on quasi-2D biomembranes.

It is well known that high line tension can induce budding of membranes. Nonzero

spontaneous curvature induced by proteins and anchored polymers can lead to various

liposome shapes, such as tube formation and pearling [132–137]. Shape transformation of

vesicles induced by polymer-anchored domains is an interesting topic for further studies.

8.2 Perspectives

This thesis provides the quantitative results of various mechanical properties of biomem-

branes dependent on anchored polymer density. It may be helpful to measure polymer-

density-dependent properties of biomembranes. Furthermore, our work shows that bi-

nary phase separation with anchored polymers is quite different from the conventional

binary phase separation, which can be explained by 2D Ising universality class, be-

cause separated microdomains can be finally stabilized in a small size instead of an

indistinguishable random mixing. Such polymer-induced phase separation is not related

to critical fluctuation, so the microdomain size cannot be explained by the correlation

length of critical fluctuation. This provides a possible explanation why in vivo lipid rafts

are stable in the range of size about 10 100 nm from the physical viewpoint.

From the biochemical experiments, we know that cholesterol prefer combining with sat-

urated lipids, such as eSM, PSM, and DPPC, rather than unsaturated lipids, such as

DOPC and SOPC [8, 10, 14, 20, 72–75, 84, 131]. Compared with ternary membranes

composed of DPPC, DOPC, and cholesterol, in the ternary membranes composed of

eSM, DOPC, and cholesterol eSM composition have a stronger affinity to hold all the

cholesterol composition, as shown in Fig. 8.1. While DPPC composition only can hold

most of the cholesterol composition, there is still a part of cholesterol composition comb-

ing with DOPC molecules. Thus, we suggest that membrane experimentalists apply a

ternary membranes composed of eSM, DOPC and cholesterol with PEG-chol molecules
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Figure 8.1: A schematic picture shows that different affinities in two types of ternary
component membranes composed of DOPC/eSM/Chol and DOPC/DPPC/Chol, re-

spectively. Reprinted with permission from Ref. [72].

to do new experiments so that they can prepare well-defined ternary membranes with

anchored PEG chains exactly anchored to saturated lipids, such as eSM. This kind of

experimental condition might fit to our simulation condition better so that this thesis

work can be hopefully verified by such experiments in the near future. Or the experi-

mentalists also may adopt other methods to enforce PEG-Chol molecules only combined

with saturated lipids, such as DPPC, eSM, or PSM, in ternary membranes to verify and

reproduce our simulation results.

After studying interesting phenomena in the 2D flat multi-component membrane patch,

we further hope to extend our study to the 3D case for multi-component vesicles. We

hope to understand how the anchored polymers will globally affect the domain pattern

on the 3D vesicle and what are the new phenomena there. Does the spherical curvature

affect the domain pattern? Are there some different domain shapes from the ones on

the 2D planar membrane case by the geometric constraints? What are the preferred

shapes of multi-component vesicles with anchored polymers? To clarify such problems,

we construct a multi-component vesicle with anchored polymers, which is shown in

Fig. 8.2.

Additionally cell membranes are always surrounded by various body fluids, such as

blood, lymph, and sap, in real in vivo environment, and almost all the physiological

activities cannot be executed without the fluids in the body. We are studying what

is the new phenomena when the fluidic effects are considered. Our model can be easy

to combine various hydrodynamics simulation methods, such as Dissipative Particle

Dynamics [138–142], Multi-Particle Collision Dynamics (also called Stochastic Rotation
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(a) (b)

Figure 8.2: A snapshot shows that microdomain separation occurs in a 3D multi-
component vesicle with anchored polymers.

Dynamics) [143–147] and so on. It is also a fantastic direction of biomembranes worthy

to explore in the future.

Our current model may be extended to explain the concept “lipid raft”, mainly composed

of sphingolipids and sterols, proposed by Simons and his coworkers on the heterogeneity

of cell membranes [2]. The presence of lipid rafts has been validated and confirmed by a

lot of laboratories. Although many hypotheses have been proposed for the physiological

function of these lipid microdomains, the detailed mechanism remains to be further

clarified. Some ideas are difficult to be conducted in the experiments, because lipid rafts

are too small to be observed by the optic microscopy, and also difficult to be prepared

and purified. Some research groups attempted to adopt single-molecule techniques to

explore lipid microdomains in the nanoscale world. We may apply theory and simulation

to assist the relative researches. We are currently trying to take the first step.

There are many signaling molecules on the scaffold of lipid rafts, ones hope to know the

relation among these signaling molecules, as well as whether these signaling molecules

and the lipid components involved in signal transduction presented in lo phase can per-

form best during phase separation. These promising questions are worthy to be seriously

thought about. The issues on signal transduction involve nonlinear dynamics and statis-

tical physics, so this is actually a highly interdisciplinary research field. To investigate

lipid rafts, ones not only hope to understand its structure, it is more important to find

their important functions in the physiological activities in cells.



Appendix A

Details of Scaling Theory

Calculation

In this appendix, we show the details for the scaling theory calculation for the polymer

brush regions on the flat surface, the spherical surface, and the cylindrical surface,

respectively.

In the case of polymer brush on the flat surface, we assumed that it is the limit case of

the spherical surface with an infinite radius. According to Sec. 3.4.3, ones have

N =
∫ R+h0

R
drN1

1
ξ0

(A.1)

= h0

(
ξ0

b

)1/ν 1
ξ0

= h0b
−1Γ(ν−1)/2ν

Thus, we easily obtain the result (3.38).

For a sphere of radius R, we have

N =
∫ R+hs

R
drN1

1
ξs(r)

(A.2)

=
∫ R+hs

R
dr

(
ξs(r)

b

)1/ν 1
ξs(r)

=
∫ R+hs

R
drb−1/ν

(
ξ0r

R

)(1−ν)/ν

= b−1/ν

(
ξ0

R

)(1−ν)/ν [
ν (R + hs)

1/ν − νR1/ν
]

=
(

ξ0

b

)1/ν 1
ξ0

(νR)

[(
1 +

hs

R

)1/ν

− 1

]
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Combining with (3.37), it leads to the result (3.41).

Similar to the spherical surface, for a cylindrical surface of radius R, we have

N =
∫ R+hc

R
drN1

1
ξc(r)

(A.3)

=
∫ R+hc

R
dr

(
ξc(r)

b

)1/ν 1
ξc(r)

=
∫ R+hc

R
drb−1/ν

(
ξ0r

1/2

R1/2

)(1−ν)/ν

= b−1/ν

(
ξ0

R1/2

)(1−ν)/ν 2ν

1 + ν

[
(R + hc)

(1+ν)/2ν −R(1+ν)/2ν
]

=
(

ξ0

b

)1/ν 1
ξ0

(
2ν

1 + ν
R

) [(
1 +

hc

R

)(1+ν)/2ν

− 1

]

Combining with (3.37), it leads to the result (3.44).

Next, we calculate three kinds of free energies per polymer on different types of surfaces.

Combining with (3.36), the free energy per polymer on the flat surface can be easily

obtained as

F0 = kBT

∫ R+h0

R
dr

1
ξ0

(A.4)

= kBTh0
1
ξ0

= kBTΓ1/2h0/b

which is just the result (3.46) for the flat surface.

In the case of a sphere of radius R, the free energy per polymer on the flat surface is

Fs = kBT

∫ R+hs

R
dr

1
ξs(r)

(A.5)

= kBT

∫ R+hs

R
dr

R

ξ0r

= kBT
R

ξ0

{
ln

[
R

(
1 +

h0

νR

)ν]
− lnR

}

=

(
kBTΓ1/2Rν

b

)
ln

(
1 +

h0

νR

)

Thus, the result (3.47) for the spherical surface case is also obtained.
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Similar to the spherical surface, for a cylinder of radius R, we have

Fc = kBT

∫ R+hc

R
dr

1
ξc(r)

(A.6)

= kBT

∫ R+hc

R
dr

R1/2

ξ0r1/2

= 2kBT
R1/2

ξ0

{[
R

(
1 +

(1 + ν)h0

2νR

)2ν/(1+ν)
]
−R

}

=

(
2kBTΓ1/2R

b

)[(
1 +

(1 + ν)h0

2νR

)ν/(1+ν)

− 1

]

which is exactly the same as the result (3.48) for the cylindrical surface.

The excess free energy of the polymer brush on the cylindrical surface is calculated as

∆Fex,c = ∆Eb + ∆Fc (A.7)

= 2κ0Γ−1 (bH)2 + TNΓ1/2νfc(x)

with

fc(x) =
1
x

[(
1 +

1 + ν

ν
x

)ν/(1+ν)

− 1

]
− 1

where x = h0H.

Let us minimize Eq. (A.7), that is, ∂∆Fex,c/∂H = 0 , we have

∂∆Fex,c

∂H
= 4κ0Γ−1b2H +

kBTNΓ1/2νh2
0

b

∂fc(x)
∂x

(A.8)

= 4κ0Γ−1bx + kBTN3Γ(3−2ν)/2νb
∂fc(x)

∂x
= 0

Thus, we easily obtain Eq. (3.52).

To estimate the spontaneous curvature and the bending rigidity by using the cylindri-

cal surface, an approximate second order expansion Eq. 3.54 can be substituted into

Eq. (3.52). Then we have

− 1
2ν

+
ν + 2
3ν2

x +
4κ0

kBT
N−3Γ−3/2νx = 0 (A.9)

So we obtain a small curvature expansion expression for the cylindrical surface as

h0c0 =
1
2ν

[
ν + 2
3ν2

+
4κ0

kBT
N−3Γ−3/2ν

]−1

(A.10)
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Because ones know H = 1/R and K = 1/R2 for the spherical surface, but H = 1/2R

and K = 0 the cylindrical surface, we can rewrite Eq. (3.53) as

∆Fs = F0

[
− 1

2ν
(h0H) +

ν + 2
6ν2

(h0H)2 − 1
6ν

(h0H)2 +O (
(h0H)3

)
]

(A.11)

By comparing Eqs. (A.11) and (3.54), we obtain a second order curvature expansion of

the excess free energy for a general surface

∆Fsurf(H, K) = F0

[
− 1

2ν
(h0H) +

ν + 2
6ν2

(h0H)2 − 1
6ν

h2
0K

]
(A.12)

By using Eq. (3.38), we can compare the corresponding terms between Eq. (3.51)

and (A.12) to obtain the polymer-induced bending rigidities:

∆κ =
ν + 2
12ν2

N3Γ3/2νkBT (A.13)

and

∆κ̄ = − 1
6ν2

N3Γ3/2νkBT (A.14)

Again, by using Eq. (3.38), Eq. (A.10) can be written as

bNΓ(1−ν)/2νc0 =
1
2ν

[
ν + 2
3ν2

x +
4κ0

kBT
N−3Γ−3/2νx

]−1

(A.15)

Thus, we obtain

bc0 =
1
2ν

[
ν + 2
3ν2

NΓ(1−ν)/2ν +
4κ0

kBT
N−2Γ−(ν+2)/2ν

]−1

(A.16)

=
1
8ν

[
ν + 2
12ν2

NΓ(1−ν)/2ν +
κ0

kBT
N−2Γ−(ν+2)/2ν

]−1

=
1
8ν

N2Γ(ν+2)/2ν kBT

κeff

The last result is obtained by using Eq. (3.55).



Appendix B

Details of Mean Field Theory

Calculation

Because n1 is a small area part, about 5%, compared to the whole membrane strip,

we should execute Taylor expansion in terms of it. Let A = 1 + (Q − 1)φ, B = (Q −
1)n1/[1 + (Q− 1)φ], and C = 4Q(Q− 1)φn1, then we have

φ1 =
2Qφ

s +
√

s2 − 4Q(Q− 1)φn1

(B.1)

=
2Qφ

A(1 + B)[1 +
√

1− C/A2(1 + B)2]

=
Qφ(1−B)

A[1− C/4A2(1 + B)2]
+O (

n2
1

)

=
Qφ

A
(1−B)

[
1 +

C

4A2(1 + B)2

]
+O (

n2
1

)

=
Qφ

A
(1−B)

[
1 +

C(1−B)2

4A2

]
+O (

n2
1

)

=
Qφ

1 + (Q− 1)φ

[
1− (Q− 1)n1

1 + (Q− 1)φ

](
1− Q(Q− 1)φn1(1− 2B)

[1 + (Q− 1)φ]2

)
+O (

n2
1

)

=
Qφ

1 + (Q− 1)φ

(
1− (Q− 1)n1

1 + (Q− 1)φ
− Q(Q− 1)φn1

[1 + (Q− 1)φ]2

)
+O (

n2
1

)

=
Qφ

1 + (Q− 1)φ

(
1− (Q− 1)(1− φ)

{1 + (Q− 1)φ}2
n1

)
+O (

n2
1

)

where s = 1 + (Q− 1)(φ + n1).
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Appendix C

Standard Virial Calculation of

Pressure in Molecular Dynamics

The usual virial approach to the estimation of the macroscopic pressure P in many

standard molecular simulations involves an ensemble average of the instantaneous or

microscopic pressure p [112, 148]. For a simulation box containing N particles with a

volume V , ones can express the microscopic pressure p as [112]

p =
1
V

(
1
3

∑

i

miv2
i +

1
3

∑

i

ri · fi
)

(C.1)

fi = −∂U

∂ri
(C.2)

where mi is the mass, ri and vi is the position vector and the velocity vector of particle

i, and fi is the force applied on particle i. When external fields vanish, only the inter-

molecular interactions make the contribution to the forces. The macroscopic pressure P

can be easily obtained by the averaging procedure P = 〈p〉, where the angular brackets

means either a time average or an ensemble average. For any system with pairwise

interactions, the pressure can be written explicitly in the usual virial form as

P =

〈
1
V

(
1
3

∑

i

miv2
i +

1
3

∑

i

ri · fi
)〉

(C.3)

where ρ = N/V is the particle number density, kB is the Boltzmann constant, T is the

temperature. The first term on the right side of Eq. (C.3) is the kinetic (ideal gas)

contribution, while the second term, also called as ‘internal virial’ [112], represents the

contribution from the intermolecular interactions.
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For the convenience of MD simulation, the internal virial for pressure tensors, the second

term in Eq. (C.3), can be algorithmized as

∑

i

ri · fi =
∑

i

∑

j 6=i

ri · fij

=
1
2

∑

i

∑

j 6=i

(ri · fij + rj · fji)

=
1
2

∑

i

∑

j 6=i

(ri · fij − rj · fij)

=
1
2

∑

i

∑

j 6=i

rij · fij

=
∑

i

∑

j>i

rij · fij (C.4)

Thus, the component form of Eq. (C.4) can be written as

∑

i

αif
α
i =

∑

i

∑

j>i

αijf
α
ij (C.5)

where fα
i = −∂U/∂αi, fα

ij = −∂Uj/∂αi, and α represents x, y, or z. Thus, we obtain

Eq. (5.5) in Section 5.1.

This calculation way of the pressure is widely applied and well suited to various MD

simulations, for which the molecular trajectories are determined by the evaluation of the

forces [112, 148].
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[25] H.-G. Döbereiner, O. Selchow, and R. Lipowsky. Spontaneous curvature of fluid

vesicles induced by trans-bilayer sugar asymmetry. Euro. Biophys. J., 28(2):174–

178, 1999.

[26] T. Auth and G. Gompper. Self-avoiding linear and star polymers anchored to

membranes. Phys. Rev. E, 68(5):051801, 2003.

[27] T. Auth and G. Gompper. Fluctuation spectrum of membranes with anchored

linear and star polymers. Phys. Rev. E, 72(3):031904, 2005.

[28] M. Werner and J.-U. Sommer. Polymer-decorated tethered membranes under

good- and poor-solvent conditions. Eur. Phys. J. E, 31:383–392, 2010.

[29] E. Evans and W. Rawicz. Elasticity of“fuzzy”biomembranes. Phys. Rev. Lett., 79

(12):2379–2382, 1997.

[30] D. D. Lasic. Sterically stabillized vesicles. Angew. Chem. Int. Ed. Engl., 33:

1685–1698, 1994.

[31] A. S. Hoffman. The origins and evolution of controlled drug delivery systems. J.

Control. Release, 132(3):153–163, 2008.

[32] E. W. Kaler, A. K. Murthy, B. E. Rodriguez, and J. A. N. Zasadzinski. Sponta-

neous vesicle formation in aqueous mixtures of single-tailed surfactants. Science,

245:1371–1374, 1989.

[33] T. M. Weiss, T. Narayanan, C. Wolf, M. Gradzielski, P. Panine, S. Finet, and

W. I. Helsby. Dynamics of the self-assembly of unilamellar vesicles. Phys. Rev.

Lett., 94:038303, 2005.

[34] J. Leng, S. U. Egelhaaf, and M. E. Cates. Kinetic pathway of spontaneous vesicle

formation. Europhys. Lett., 59:311–317, 2002.

[35] D. Madenci, A. Salonen, P. Schurtenberger, J. S. Pedersen, and S. U. Egelhaaf.

Simple model for the growth behaviour of mixed lecithin-bile salt micelles. Phys.

Chem. Chem. Phys., 13:3171–3178, 2011.

[36] K. Bryskhe, S. Bulut, and U. Olsson. Vesicle formation from temperature jumps

in a noionic surfactant system. J. Phys. Chem. B, 109:9265–9274, 2005.

[37] H. Noguchi and G. Gompper. Dynamics of vesicle self-assembly and dissolution.

J. Chem. Phys., 125:164908, 2006.

[38] H. Noguchi. Structure formation in binary mixtures of lipids and detergents: Self-

assembly and vesicle division. J. Chem. Phys., 138:024907, 2013.



Bibliography 113

[39] K. Bressel, M. Muthig, S. Prevost, J. Gummel, T. Narayanan, and M. Gradziel-

ski. Shaping vesicles-controlling size and stability by admixture of amphiphilic

copolymer. ACS Nano, 6:5858–5865, 2012.

[40] M. Johnsson and K. Edwards. Liposomes, disks, and spherical micelles: Aggregate

structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-

phospholipids. Biophys. J., 85:3839–3847, 2003.

[41] A. Schalchli-Plaszczynski and L. Auvray. Vesicle-to-micelle transition induced by

grafted diblock copolymers. Eur. Phys. J. E, 7:339–344, 2002.

[42] H. Noguchi and G. Gompper. Meshless membrane model based on the moving

least-squares method. Phys. Rev. E, 73(2):021903, 2006.

[43] H. Noguchi. Membrane simulation models from nm to um scale. J. Phys. Soc.

Jpn., 78(1):041007, 2009.

[44] S. A. Pandit, E. Jakobsson, and H. L. Scott. Simulation of the early stages of

nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dio-

leylphosphatidylcholine. Biophys. J., 87(5):3312–3322, 2004.

[45] Hao Wu, Hayato Shiba, and Hiroshi Noguchi. Mechanical properties and

microdomain separation of polymer-grafted fluid membranes. arXiv preprint

arXiv:1306.4271, 2013.

[46] H. Wu and H. Noguchi. Effects of anchored flexible polymers on mechanical prop-

erties of model biomembranes. AIP Conf. Proc., 1518:649–653, 2013.

[47] H. Wu, H. Shiba, and H. Noguchi. Mechanical properties and microdomain sep-

aration of fluid membranes with anchored polymers. Soft Matter, 2013. doi:

10.1039/C3SM51680F.

[48] J. Lewis M. Raff K. Roberts B. Alberts, A. Johnson and P. Walter. Molecular

Biology of the Cell, 4th ed. New York: Garland Science Publishing, 2007.

[49] R. Lipowsky and E. Sackmann. Structure and Dynamics of Membranes: I. From

Cells to Vesicles/II. Generic and Specific Interactions, volume 1. North Holland,

1995.

[50] S. F. Sui. Molecular Biology of Membrances. Higher Education Press, Beijing,

2003.

[51] F. R. Maxfield. Plasma membrane microdomains. Curr. Opin. Cell Biol., 14(4):

483–487, 2002.



Bibliography 114

[52] M. Edidin. Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev.

Mol. Cell Biol., 4(5):414–418, 2003.

[53] D. Chiras. Human Biology: Health, Homeostasis, and the Environment, 4th ed.

Jones and Bartlett Publishers, Boston, 2002.

[54] P. Nelson. Biological Physics: Energy, Information, Life. W.H. Freeman Company

Publishing, 2004.

[55] C. J. Fielding. Lipid Rafts and Caveolae : From Membrane Biophysics to Cell

Biology. Wiley-VCH, Weinheim, 2006.

[56] S. Thomas, A. Preda-Pais, S. Casares, and T.-D. Brumeanu. Analysis of lipid rafts

in t cells. Mol. Immunol., 41(4):399–409, 2004.

[57] J. F. Nagle and H. L. Scott. Biomembrane phase transitions. Physics Today, 31:

38, 1978.

[58] P. Uppamoochikkal, S. Tristram-Nagle, and J. F. Nagle. Orientation of tie-lines

in the phase diagram of dopc/dppc/cholesterol model biomembranes. Langmuir,

26(22):17363–17368, 2010.

[59] S. Munro. Lipid rafts: elusive or illusive? Cell, 115(4):377–388, 2003.

[60] G. Garbès Putzel and M. Schick. Phenomenological model and phase behavior of

saturated and unsaturated lipids and cholesterol. Biophys. J., 95(10):4756–4762,

2008.

[61] A. Radhakrishnan and H. M. McConnell. Condensed complexes in vesicles con-

taining cholesterol and phospholipids. Proc. Natl. Acad. Sci. USA, 102(36):12662–

12666, 2005.

[62] P. F. F. Almeida. Thermodynamics of lipid interactions in complex bilayers.

Biochim. Biophys. Acta Biomembr., 1788(1):72–85, 2009.

[63] G. W. Feigenson. Phase behavior of lipid mixtures. Nat. Chem. Biol., 2(11):

560–563, 2006.

[64] M. L. Frazier, J. R. Wright, A. Pokorny, and P. F. F. Almeida. Investigation

of domain formation in sphingomyelin/cholesterol/popc mixtures by fluorescence

resonance energy transfer and monte carlo simulations. Biophys. J., 92(7):2422–

2433, 2007.

[65] M. L. Berkowitz. Detailed molecular dynamics simulations of model biological

membranes containing cholesterol. Biochim. Biophys. Acta Biomembr., 1788(1):

86–96, 2009.



Bibliography 115

[66] S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries. The

martini force field: coarse grained model for biomolecular simulations. J. Phys.

Chem. B, 111(27):7812–7824, 2007.

[67] B. J. Reynwar, G. Illya, V. A. Harmandaris, M. M. Müller, K. Kremer, and

M. Deserno. Aggregation and vesiculation of membrane proteins by curvature-

mediated interactions. Nature, 447(7143):461–464, 2007.

[68] S. Izvekov and G. A. Voth. A multiscale coarse-graining method for biomolecular

systems. J. Phys. Chem. B, 109(7):2469–2473, 2005.

[69] J. Huang and G. W. Feigenson. A microscopic interaction model of maximum

solubility of cholesterol in lipid bilayers. Biophys. J., 76(4):2142–2157, 1999.

[70] G. W. Feigenson. Phase boundaries and biological membranes. Ann. Rev. Biophys.

Biomol. Struct., 36:63, 2007.

[71] J. F. Nagle. Introductory lecture: Basic quantities in model biomembranes. Fara-

day Discuss., 161:11–29, 2013. doi: 10.1039/C2FD20121F.

[72] K. J. Fritzsching, J. Kim, and G. P. Holland. Probing lipid–cholesterol interactions

in dopc/esm/chol and dopc/dppc/chol model lipid rafts with dsc and 13c solid-

state nmr. Biochim. Biophys. Acta, 1828(8):1889–1898, 2013.

[73] S. L. Veatch, I. V. Polozov, K. Gawrisch, and S. L. Keller. Liquid domains in

vesicles investigated by nmr and fluorescence microscopy. Biophys. J., 86(5):2910–

2922, 2004.

[74] S. L. Veatch and S. L. Keller. Seeing spots: complex phase behavior in simple

membranes. Biochim. Biophys. Acta, 1746(3):172–185, 2005.

[75] S. L. Veatch, O. Soubias, S. L. Keller, and K. Gawrisch. Critical fluctuations in

domain-forming lipid mixtures. Proc. Natl. Acad. Sci. USA, 104(45):17650–17655,

2007.
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