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OUTLINE 

This thesis consists of outline, four chapters and conclusion. The contents of the four 

chapters are as followers. Chapter 1 is the part of introduction about physical and 

chemical proportions of boron (B), physiological function of B, B transport system and 

B deficiency response in plants. Chapter 2 is characterization of the genes responsible 

for B transport under B deficiency in wheat. The Ta BOR1 genes were cloned and their 

expression were investigated. Chapter 3 is examination of BOR1-like gene transcript 

accumulation in crops. BOR1-like gene expression patterns in response to B stress 

among two genotypes with different B efficiency of Thai wheat, maize and rice were 

determined. In Chapter 4, I have identified novel genes that response to B deficiency in 

Arabidopsis thaliana, and expression and functions of GLIP1 was investigated.  
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CHAPTER 1 

Introduction 

 Introduction consists of four sections. The first section describes the chemical 

properties and distribution of boron (B) in nature. The second section describes the 

physiological functions of B in plants including roles for B in cell walls, membrane 

function, and metabolic pathways. The third section describes the transport mechanism 

of B in plants. Finally, physiological response of plant to low B and B deficiency in 

wheat, maize and rice are described in the last section. 

 

1.1 properties and distribution of B in nature  

B is a member of the metalloid group of elements from Group IIIA of the 

periodic table, with an atomic number of 5 and a relative atomic mass of 10.811 g mol
-1

. 

More than one hundred borate minerals contain B in oxidation state of +3. B contains 

characteristics between metals and non-metals (Naghii, 1999). Its chemical properties 

are very different from those of the other elements in this group, such as aluminium or 

gallium. Its unique properties make B an important element in organic chemistry. 

Crystalline B is chemically inert and resistant to abolish by boiling hydrofluoric or 

hydrochloric acid (Tanaka and Fujiwara, 2008). The rate of oxidation of B depends 

upon the crystallinity, particle size, purity and temperature. B appears to interact with 

other biological substance, such as polysaccharides, pyridoxine, riboflavin, 

dehydroascorbic acid, and the pyridine nucleotides (Devirian and Volpe, 2003).  
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 B has two naturally occurring stable isotopes, 
11

B (80.1%) and 
10

B (19.9%) that 

are found in the form of borax ore or tincal (Na2B4O7x10H2O), boric acid (H3BO3), 

colemanite [CaB3O4(OH)3
-
H2O], kernite or rasorite (Na2B4O7x4H2O), ulexite 

(NaCaB5O9xH2O) and borates (salt or ester of boric acid) in the oceans, sedimentary 

rocks, coal, shale and some soils (IPCS, 1998; Smallwood, 1998). In plant and animal 

cells, B primarily exists (more than 98%) as boric acid (Tanaka and Fujiwara, 2008). 

Boric acid (H3BO3) is mostly present as non-charged at neutral pH and in this condition 

it exists as odourless, colorless, translucent crystals or white granules or powder at 

ambient temperatures (O’Neil et al., 2004). The molecular radius of boric acid is 2.573 

Å. Boric acid is a small molecule with three valence electrons and a very weak Lewis 

acid with pKa of 9.42. Boric acid form complexes with a wide variety of sugars and 

other compounds containing cis-hydroxyl groups such as phenols, organic acids and 

some polymers (Marques-Alves, 2010).  

 B is widely distributed in nature, with an average concentrations of around 10 

mg/kg in the Earth’s crust (ranged from 5 mg/kg in basalts to 100 mg/kg in shales), 

around 4.5 mg/l in the ocean and 3-30 µg/l in the rivers (Power and Woods, 1997; 

Marques-Alves, 2010). Plant tissues found to contain 10-100 mg/kg on dry weight basis 

(Shaaban, 2010). When B was applied to soil, 10% of B was absorbed by plants, 30-

40% of B left in the soil, and 40-60% was leached out from the soil (Eguchi and 

Yamanda, 1997). Under soil pH conditions (pH 5.5-7.5), B is mainly present in a non-

ionized form in soil solution. It may be the main reason why B can be leached so easily 

from the soil (Chaudhary et al., 2005).  
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1.2 The physiological role of B in plant 

 B is known as an essential element for all vascular plants since 1923. Warington 

observed that plants required a continuous supply of B. This is an important point for 

understanding of B function in plant growth until now (Devirian and Volpe, 2003; 

Blevins and Lukaszewski, 1998). The major roles of B are classified and described as 

follows: a structural role in cell walls; in membrane function; and in metabolic 

pathways (Brown et al., 2002).   

 

1.2.1 Role of B in cell wall structure 

 The primary cell wall of higher plants is an important factor determining cell 

size and shape during plant development (Blevins and Lukaszewski, 1998). The 

mechanical properties of growing cell wall can be modified by crosslinks between their 

major components, cellulosic polymers, and matrix polymers such as hemicellulosic 

and pectic polysaccharides (Blevins and Lukaszewski, 1998). The close relationship 

between the primary cell walls and B nutrition has been observed for many years. Most 

of the cellular B (> 90%) has been localized in the cell wall fraction where B is 

associated with pectinacious compounds.  

 Borate-rhamnogalacturonan-II (RG-II-B) complex was found in cell walls of 

many plant species such as Brassicaceae, Cucurbitaceae, Leguminosae, Apiaceae, 

Chenopodiaceae, Solanaceae, Asteraceae, Liliaceae, Araceae, Amaryllidaceae and 

Gramineae (Matoh et al., 1996 ; Blevins and Lukaszewski, 1998). The borate ester was 

located on C-2 and C-3 of two of the four 3’-linked apiosyl residues of dimeric RG-II. 

The formation of this complex is essential for cell wall structure and function (Figure 1-
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1) (O’Neill et al., 2004; Camacho-Cristobal et al., 2011). Furthermore, Ryden et al. 

(2003) suggested that RG-II-B complex plays a role in the expanded primary wall and 

in secondary wall structure or assembly. B and RG-II may also interact in processes 

beyond more cell-wall cross linking (Goldbach and Wimmer, 2007). In vivo cross-

linking of apiose residues by B in the pectic polysaccharide RG-II has been 

convincingly demonstrated, supporting earlier suggestions that the primary function of 

B in plants is a structural role, relating to the stability of the cell wall (Warington, 1923; 

O’Neill et al., 2001 and 2004). 

 

1.2.2 Role of B in membrane function 

 In plants, B is localized in membranes (Tanada, 1983; Bonilla et al., 2010). B 

plays a role in maintaining the structural integrity and physiological functions of plasma 

membrane (Yang and Li, 1999; Blevins and Lukaszewski, 1994). B seems to perform 

its role by forming complex with membrane compounds containing cis-diol groups, 

such as glycoproteins and glycolipids (Yang and Li, 1999), which are structural 

constituents of the plasma membrane (Marques-Alves, 2010; Goldbach and Wimmer, 

2007). The binding of B to these compounds may change the conformation of proteins 

and lipids, and lead to the alternation of their functions (Yang and Li, 1999).  

It is also possible that B affect the activity of ion channels in the plasma 

membrane (Yang and Li, 1999). The quantities of B in membranes were not large 

compared with those in cell wall function, however, they were important for ion uptake 

(Blevins and Lukaszewski, 1998). In membranes, B could be involved in ion 

transporters and redox reactions by stimulating enzymes like nicrotinamide adenine 
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dinucleotide (NADH) oxidase (Blevins and Lukaszewski, 1994). Parr and Loughman 

(Blevins and Lukaszewski, 1994) found that B increased membrane transport of 

chlorine (Cl) and phosphorus (P). These results are explained as a B stimulation of the 

plasmalemma ATPase. Schon et al. (1990) found a hyperpolarization of membranes of 

sunflower roots within 3 min of B addition to a B free medium, whereas an 

instantaneous stimulation of the plasma membrane NADH oxidase was reported after B 

addition to low B carrot cell cultured (Bonilla et al., 2010). Other studies have shown 

that supplemental B stimulates proton pumping in plants, causes hyperpolarization of 

the membrane potential, and increase K
+
 uptake (Blevins and Lukaszewski, 1994). It 

has also been reported that B deficiency decrease net nitrate uptake by repressing 

expression of root plasma membrane H
+
-ATPase gene (Gonzalez-Fontes et al., 2008). 

 

1.2.3 Role of B in metabolic pathways 

 Primary cell wall structure and membrane functions are closely related to B 

element, while, role of B in plant metabolism is still a considerable discussion. On the 

basis of the stability of known borate monoesters in aqueous systems and the 

distribution of cis-diol-binding sites in cells, it seems likely that B monoesters play a 

relevant metabolic function (Goldbach and Wimmer, 2007). The mechanisms by which 

it binds to enzymes or to cofactors are not presently known and must be investigated 

further. One hypothesis is that B alters metabolic reactions by binding to substrate 

compounds (Devirian and Volpe, 2003). Many physiological impairments caused by B 

deficiency have been reported and it has been postulated that B may be involved in a 

wide number of metabolic pathways (Brown et al., 2002). The possible roles of B in 
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metabolic pathways include phenol metabolism, nitrogen metabolism, ascorbate 

metabolism, indole acetic acid (IAA) metabolism, sugar transport, cell wall synthesis, 

lignification, cell wall structure integrity, carbohydrate metabolism, ribose nucleic acid 

(RNA) metabolism, respiration, and etc. (Ahmad et al., 2012). 

 For instances, B is one of the nutrients responsible for the changes in 

concentration and metabolism of phenolic compounds in vascular plants (Herrera-

Rodriguez et al., 2010). Accumulation of phenolic takes places under B deprivation 

(Brown et al., 2002; Herrera-Rodriguez et al., 2010). Camacho-Cristobal et al. (2002) 

demonstrated that the concentration of phenylpropanoid as well as the polyphenol 

oxidase and phenylalanine ammonia-lyase activities increased mainly in tobacco leaves 

during short-term B deficiency. The involvement of B on phenol metabolism may also 

be a secondary consequence of disruptions in carbon metabolism as a result of a role for 

B as a structural element in the cell wall or cell membrane (Brown et al., 2002). B has 

also been implicated in nitrogen metabolism. A decreased nitrate uptake was observed 

in B-deficient tobacco plants. It is probably due to a lower expression of plasma 

membrane H
+
-ATPase (Brown et al., 2002; Camacho-Cristobal and Gonzalez-Fontes, 

2008). There is substantial evidence supporting the association of B with ascorbate 

metabolism (Brown et al., 2002). Chandler and Miller (1946) and Blevins and 

Lukaszewski (1998) found that rutabaga treated with B had more ascorbate than 

untreated controls, and that following dehydration and storage, the B-treated plants 

maintained around twice as much ascorbate. Another function of B is auxin metabolism. 

B may also suppress IAA oxidase activity (Marschner, 1995). Bohnsack and Albert 
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(1997) demonstrated a 20-fold increase in IAA oxidation rate in root apices 24 h after B 

was withheld from the nutrient medium. 

 

 

Figure 1-1. Structure of RG-II: A: shows the detailed structure of the RG-II monomer; 

the dotted circle indicates the apiose moiety responsible for cross-linking with borate, 

whereas the apiose at side chain B is not involved in the dimer formation. B: depicts the 

RG-II-B dimmer. Reproduced from Goldbach and Wimmer (2007)  
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1.3 B uptake and transport in plant under B limitation 

 B uptake is considered to be a passive process. In soils, B mostly is present as 

boric acid (H3BO3). This form of B is mobile and easily lost by leaching, but it can be 

taken up by plant roots (Nable et al., 1997). After taken up by roots, B is transported to 

the shoots via the xylem. The long distance translocation of solutes in the xylem 

depends on transpiration, and B is transported along the transpiration systems (Tanaka 

and Fujiwara, 2008; Landi et al., 2012). Physiological studies have revealed the 

presence of channel-mediated facilitated diffusion and energy-dependent active 

transport against concentration gradients in B transport systems. Two types of B 

transporters were identified in A. thaliana, NIP5;1 and BOR1, both of which are 

important for efficient uptake and transport of B across the plasma membrane under B 

limitation (Miwa and Fujiwara, 2010). 

 

1.3.1 B uptake by root plants  

 B is absorbed by roots as undissociated boric acid (H3BO3). B is the only 

element that is taken up from the soil by plants not as an ion, but as an uncharged 

molecule (Marschner, 1995; Miwa and Fujiwara, 2010; Ahmad et al., 2012). B 

absorption by plant roots is closely related to pH and B concentration in the soil solution, 

and is probably a passive process (Brown and Hu, 1998). The factors affecting B uptake 

include soil type (texture, alkalinity, pH, organic matter content), B concentration, 

moisture, and plant species (Ahmad et al., 2012). 

Under high B supply, B is absorbed by root through a passive diffusion across 

lipid bilayer (Tanaka and Fujiwara, 2008; Camacho-Cristobal et al., 2011). In fact, boric 
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acid has a very high permeability coefficient for lipid bilayer. This affirmation was 

supported by experimental data from lipid permeability coefficients calculated in both 

the membrane vesicles isolated from Cucurbita pepo and giant internodal cells of the 

Chara corallina (Camacho-Cristobal et al., 2011; Brown et al., 2002).  

Several reports suggest that B uptake is facilitated through the major intrinsic 

proteins (MIPs), channel proteins. Takano et al. (2006) found nodulin 26-like intrinsic 

protein (NIP) 5;1 as a boric acid channel required for boric acid uptake and normal 

growth in A. thaliana under low B condition. NIPs belong to a subgroup of plant MIPs 

that function as channels for water and small uncharged molecules (Maurel, 2007). 

NIP5;1 transcript accumulation is up-regulated more than 10-folds by low B condition 

and localized in the plasma membrane of root epidermal, cortical, and endodermal cells. 

Expression of NIP5;1 facilitates the influx of boric acid to Xenopus laevis oocytes. The 

NIP5;1 mutant line exhibited reduced B uptake by roots and growth defects under B 

limitation. These results suggested that NIP5;1 is a major plasma membrane boric acid 

channel required for efficient B import into A. thaliana roots under B limitation 

(Takano et al., 2006; Miwa and Fujiwara, 2010). Beside A. thaliana, Os NIP3;1, the 

closet homolog to At NIP5;1, has been also identified as a boric channel required for 

efficient growth under B limitation in rice (Hanaoka and Fujiwara, 2007). Expression of 

maize PIP1 in Xenopus oocytes increases the boric acid uptake around 30% (Dordas et 

al., 2000). 
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1.3.2 B transport in plants 

B is absorbed by root cells, and it is transported towards shoots. BOR1 is 

involved in xylem loading and is regulated for B transport from roots to shoots under B 

limitation (Dannel et al., 2002). BOR1 is an energy dependent high affinity transporter. 

BOR1 was identified by positional cloning as the first B efflux transporter required for 

normal shoot growth of A. thaliana under low B condition (Takano et al., 2002). BOR1 

belongs to the bicarbonate transporter superfamily (SLC4) (Frommer and Wiren, 2002). 

It is localized to plasma membrane and BOR1 decreased cellular B concentration when 

expressed in yeast, supporting that BOR1 plays a role as a B exporter (Takano et al., 

2002 and 2008). BOR1 promoter-GFP fusions showed the expression of BOR1 in 

pericycle cells of the root stele. The activity of the BOR1 transporter was high under B 

limitation and rapidly down-regulated after exposure to high B condition (Takano et al., 

2008). The bor1-1 mutant of A. thaliana exhibited severe shoot growth inhibition and 

reduced fertility under low B condition (Noguchi et al., 1997). Taken together, it was 

established that BOR1 functions as xylem loading of B under low B condition by 

exporting B from stelar cells into the xylem (Figure 1-2) (Tanaka and Fujiwara, 2008; 

Takano et al. 2010). It has also been demonstrated that BOR1 proteins accumulate to a 

high level in response to low B condition in A. thaliana (Takano et al., 2005).  

In addition to BOR1, it is also demonstrated that NIP6;1 is important for B 

distribution in shoots (Tanaka et al., 2008). Amino acid sequence of NIP6;1 is the most 

similar to NIP5;1 among all NIP genes in the A. thaliana genome. NIP6;1 is also 

localized in the plasma membrane and facilitates boric acid uptake into oocytes (Tanaka 

et al., 2008). The NIP6;1 mutant lines exhibited defects in the expansion of young 
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leaves. The B concentrations in young leaves of the mutant were lower than that of wild 

type plants under low B condition. NIP6;1 promoter activity was observed in the 

phloem region at nodes of the stem. Taken together, these results suggest that NIP6;1 

functions in xylem-phloem transfer for preferential distribution of B into young growing 

tissues (Tanaka et al., 2008; Miwa and Fujiwara, 2010). 

 

Figure 1-2. The model of B transport pathways and mechanisms in plants. In A. 

thaliana roots, under low B conditions, NIP5;1 imports boric acid into epidermal, 

cortical and endodermal cells, and BOR1 exports boric acid/borate from stelar cells 

(xylem loading). The endodermal Casparian band prevents the apoplastic flow of B into 

and back from the stele (primary vascular tissue that consists of pericyle, xylem and 

phloem). In the epidermis and cortex, NIP5;1 localized to the plasma membrane of the 

distal side, and in the endodermis, BOR1 localized to the plasma membrane of the 

proximal side. Redrawn based on Takano et al. (2008) 
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1.4 B deficiency response in plants 

 B deficiency is a major agricultural problem that affects vegetative and 

reproductive growth of plants resulting in the inhibition of cell expansion, the death of 

meristem and reduced fertility. The symptoms of B deficiency vary among crop species, 

but generally occur in the growing points or flower and fruiting parts of the plant. It is 

characterized by abnormal or retarded elongation of apical meristems (Benton, 2003).  

 

1.4.1 Physiological response of plant to low B 

B is essential for normal growth of plants because it promotes proper cell 

division and cell elongation in meristematic tissues and floral organs, cell wall strength, 

flowering pollination, pollen tube germination and elongation, seed set, and sugar 

translocation (Marschner, 1995). 

B deficiency is a widespread problem for field crop production, and causes large 

losses of yield occur annually both quantitatively and qualitatively (Marschner, 1995; 

Shorrocks, 1997; Goldbach and Wimmer, 2007). B deficiency has been reported in 

more than 80 countries and for 132 crops over the last 60 years (Shorrocks, 1997; 

Ahmad et al., 2012). B deficiency has been commonly found in soils which are highly 

leached and developed from calcareous, alluvial and loessial deposits. There are several 

factors and conditions that affect soil deficient in B, including low soil organic matter 

content, sandy texture, high pH, liming, drought, intensive cultivation and more nutrient 

uptake than application, and the low available using fertilizers in micronutrients. 

(Ahmad et al., 2012).  
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 B deficiency have been reported for many plant species and cultivars such as 

wheat (Triticum aestivum L.), maize (Zea mays L.), rice (Oryza sativa L.), cotton 

(Gossypiumhirsutum L.), soybean (Glycine max L.), oilseed rape (Brassica napus), 

alfafa (Medicago sativa L.), oil palm (Elaeis guineensis) (Dregne and Powers, 1942; 

Ferwerda, 1954; Brown and Ambler, 1969; Cheng and Rerkasem et al., 1993; Wei et al., 

1998; Rerkasem and Jamjod, 2004; Rashid et al., 2009; Lordkaew et al.,2011; Savic et 

al., 2011). It is also known that B deficiency causes different effects on root elongation, 

IAA oxidase activity, sugar translocation, carbohydrate metabolism, nucleic acid 

synthesis, and pollen tube growth (Camacho-Cristobal et al., 2011). 

  

1.4.2 B deficiency in wheat 

 Wheat (Triticum aestivum L.) is the major cereal crops grown in almost every 

part of the world. B deficiency in wheat has been reported included Bangladesh, Brazil, 

Bulgaria, China, Finland, India, Madagascar, Nepal, Pakistan, South Africa, Sweden, 

Tanzania, Thailand, USA, USSR, Yugoslavia, and Zambia (Shorrocks, 1997; Rerkasem 

and Jamjod, 2004). Its deficiency causes grain set failure and considerable yield losses 

in the wheat belt of the world’s wheat growing countries (Rerkasem and jamjod, 2004; 

Ahmad et al., 2012).  

 For wheat, B requirement for reproductive development is higher than that for 

vegetative growth (Ahmad et al., 2012). Vegetative development of wheat is relatively 

insensitive to B deficiency, but lack of B during reproductive development can cause 

devastating yield loss through sterility (Subedi et al., 1998). Several previous studies 

reported that B deficiency was induced in vegetative growth in wheat only after B in the 
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nutrient solution had been depleted by plant uptake. The first symptom of B deficiency 

in field grown wheat is observed during anthesis. The florets remain open longer than 

normal. The effect of B deficiency has also been shown to cause poor anther and pollen 

development and the fertilization process (Huang et al., 2000). In vitro germination tests 

also showed that B was required for pollen germination and tube growth in wheat 

(Cheng and Rekasem, 1993). 

 There are several reports for genetic variation in B efficiency among wheat 

genotypes. A large variation among wheat genotypes has been observed in the response 

to low B condition. Wheat genotypes were classified based on B efficiency, namely, 

efficient, moderately efficient, moderately inefficient and inefficient (Rerkasem and 

Jamjod, 1997a). B-inefficient  genotype were completely sterile and set no or just a few 

grains, while B-efficient genotypes set grain normally in low B condition in quartz river 

sand experiments. (Rerkasem and Jamjod, 1997a; Jamjod et al., 2004). However, the 

mechanisms of cultivar differences in wheat are still unknown (Nachiangmai et al., 

2004). 

 

1.4.3 B deficiency in rice  

 Rice (Oryza sativa L.) is one of the most important cereal crops and is a model 

species for monocotyledonous plants with a rather small genome. B deficiency has a 

serious impact on rice productivity. In rice, B deficiency results in white and rolled tips 

of emerging leaves, reduced plant height. Moreover, severe deficiency can cause the 

death of growing point although new tillers continue to be produced. In addition, B 
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deficiency at the panicle formation stage causes reduced-production of panicles 

(Dobberman and Fairhurst, 2000; Saleem et al., 2011).  

B is also necessary in improving kernel quality of rice. Starch contents, grain 

size, shape and strength are increased by applying B at suitable time. Dunn et al. (2005) 

and Shaaban (2010) found that rice yields were greatest when soil B levels were 

between 0.25 to 0.33 ppm. Application of B to soil result in significantly greater yields 

than foliar B application and no B application. Positive responses to B application were 

observed in rice cultivars Basmti-370 and IR-6, a major cultivar in Punjab (Chaudhry et 

al., 1976). Similarly, paddy yield increased by 14-25% over control in cvs. Supper 

Basmati, Basmati-385 and KS-282 grown in rice belt of Punjab and in cv. IR-6 grown 

in Sindh province (Rashid et al., 2004). Yield increases are caused by the decrease (on 

lower portion of the ear) and increased productive tillers per hill. Lordkaew et al. (2013) 

indicated that B deficiency can cause male sterility and depressed pollen viability and 

grain set in rice. 

 

1.4.4 B deficiency in maize  

 Maize (Zea mays L.) belongs to Graminae family. It is the most important crop 

among all cereal grain crops, such as wheat and rice. Maize is widely grown throughout 

the world in subtropical and temperate agroclimatic regions (Fageria et al., 1991; Martin 

et al., 1976). Most of the maize-growing areas are unsuitable condition i.e. infertile soil. 

Maize yield is low when plants are grown in infertile soils with low B (Sherrocks, 1997). 

Eltinge (1936) demonstrated that the visible effect of a lack of B in maize appeared on 

the seventh day in the form of a chlorosis of the tissue between the veins of the older 
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leaves, and the failure of the youngest leaves to unroll normally. The symptom of B 

deficiency in maize is including thin and death anthers at pollen shedding time. B 

deficiency depressed commercial maize yield primarily through grain set failure. Maize 

requires a supply of available B, especially during tasseling and silking. The emergence 

of tassel and silk is suppressed and delayed under low B condition. The most common 

B deficiency symptom is missing kernels which results significantly decrease in yields 

(Eltinge, 1936; Lordkaew et al., 2011; Palta and Karadavut, 2011). For an open 

pollinated crop with separated female and male inflorescences like maize, 

understanding the molecular basis of B deficiency response is useful for the 

management of B deficiency through its sensitive analysis. This understanding may also 

benefit the production of hybrid maize seed, with the primary concern being successful 

pollination and fertilization (Lordkaew et al., 2011).  
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CHAPTER 2 

Differential Expression of Three BOR1 Genes Corresponding to Different 

Genomes in Response to B Conditions in Hexaploid Wheat 

 (Triticum aestivum L.) 

 

2.1 Introduction 

Wheat (Triticum aestivum L.) is a staple cereal throughout the world (Rashid et 

al., 2011). B deficiency is a critical problem for wheat production in many countries and 

regions with high rainfall including many areas of the subtropics (Rerkasem and Jamjod, 

2004; Emon et al., 2010). Wheat is more susceptible to B deficiency than rice, maize 

and some dicotyledons including soybean and mungbean. In wheat, B deficiency 

depresses yield primarily through grain set failure (Rerkasem and Jamjod, 2004). To 

overcome the problem of B deficiency in wheat, it is of fundamental importance to 

understand the molecular mechanisms of B transport through identification of 

transporters. In case of A. thaliana, it is reported that high expression of BOR1 leads to 

tolerance to B deficiency (Miwa et al., 2006). Besides A. thaliana, BOR1-like genes 

widely present in eukaryotic genomes. So far, functional BOR1-like genes have been 

identified from Saccharomyces cerevisiae (Takano et al., 2002), Eucalyptus 

(Domingues et al., 2005), rice (Nakagawa et al., 2007), Brassica napus (Sun et al., 

2012) and grapes (Perez-Castro et al., 2012). To date, BOR1 genes in wheat have not 

yet been characterized.  

In the present study, I studied expression of three orthologs of Os BOR1, Ta 

BOR1.1 to 1.3, from wheat. Ta BOR1s were identified by Dr. T. Fujibe that these 
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encode functional efflux type of B transporters. I demonstrated that mRNA 

accumulation of Ta BOR1s was regulated by B status, which is different from those of 

At BOR1 and Os BOR1. 
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2.2 Materials and Methods 

2.2.1 Plant materials and cultures 

Wheat (Triticum aestivum L.) seeds were germinated on 0.3 mM CaCl2  plate for 

3 d at 4°C after surface sterilization in 1% H2O2 for 60 min and then incubated in a 

vertical position for 3 d at 20 to 25°C under fluorescent lamps in a long-day condition 

(16 h light/8 h dark cycle). The seedlings were transplanted into 1.5 L pot wrapped with 

black plastic tape and containing half-strength Hoagland nutrient solution supplemented 

with 18 nM, 18 µM or 1 mM boric acid. Wheat seedlings were grown in a growth 

chamber under controlled conditions (temperature 20 to 25°C; photoperiod 16 h light/8 

h dark; relative humidity 60-70%). 

 

2.2.2 Sequence alignment and phylogenetic analysis 

A similarity search of the wheat EST was performed with the Os BOR1 amino 

acid and cDNA sequence using the BLAST programs in Wheat Genetic Resources 

Database (KOMUGI) at National BioResource Project website (NBRP; 

http://www.shigen.nig.ac.jp/wheat/komugi). The amino acid sequences of all putative 

wheat BOR1s were aligned by the ClustalW2 

(http://www.ebi.ac.uk/tools/msa/clustalw2). A phylogenetic tree, based on BOR family 

members from A. thaliana, rice and wheat, was constructed using Phylodendron 

software (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html). Aligned sequences 

were used to generate the phylogenetic tree (Figure 2-1A). 

 

 

http://www.ebi.ac.uk/tools/msa/
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2.2.3 Plasmid constructions (by Dr. Takahiro Fujibe) 

The Ta BOR1s-GFP fusion was constructed by Dr. T. Fujibe as follows. Total 

RNA was extracted from shoots using an RNeasy plant mini kit (Qiagen) according to 

the manufacturer’s instructions. RNA was reverse-transcribed to cDNA using the 

PrimeScript RT reagent kit (Takara) with oligo(dT)16 primer. The Ta BOR1.1 to 1.3 

cDNA was amplified by PCR using primers 5´-ATACGCTCTCCGATTCCTTC-3´ and 

5´-ACCGTGCATAAGTAGACATC-3´ for Ta BOR1.1; 5´-AAAAGCGTAATCTGGG 

TCTCT-3´ and 5´-ACCGTGCATAAGTAGACATC-3´ for Ta BOR1.2; 5´-GGTGAAT 

CCCTTGTCGGGTT-3´ and 5´-ACCGTGCATAAGTAGACATC-3´ for Ta BOR1.3. 

The amplified fragments were cloned into the ZeroBlunt vector (invitrogen) according 

to the manufacturer’s instructions. After subcloning, the nucleotide sequences of the Ta 

BOR1.1 to 1.3 cDNA were confirmed by DNA sequencing. The EcoRI fragments from 

the plasmids containing Ta BOR1.1 to 1.3 were subcloned into the EcoRI vector 

fragment from the binary vector pYES2 (Invitrogen). The KpnI-NcoI fragments from 

the plasmids containing Ta BOR1.1 to 1.3 were then subcloned into KpnI-NcoI 

fragment from the vector pTF521, which is the pYES2 vector containing GFP. The 

resulting plasmids contained Ta BOR1.1 to 1.3-GFP. For the transient expression, 

Maize ubiquitin1 promoter (pUbi) was amplified from pANDA vector (Miki and 

Shimamoto, 2004) by PCR using primers, 5´-ATGAAGCTTGCAGCGTGACCCGGTC 

GTGC-3´ and 5´-CATGTTAACCATCTGCAGAAGTAACACCAAAC-3´. HindIII and 

HpaI (blunt-end) recognition sites are underlined, respectively. The HindIII-HpaI 

fragment of pUbi was subcloned into the HindIII-SalI (SalI was blunt-ended) site of the 

binary vector pMDC32 (Curtis and Grossniklaus, 2003). The Ta BOR1.1 to 1.3-GFPs 
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were amplified using primers, 5´-ATGCTGCAGATGGAGGAGAGCTTCGTGCC-3´ 

and 5´-TTACTTGTACAGCTCGTCCA-3´. PstI recognition site is underlined. The 

PCR products containing Ta BOR1.1 to 1.3:GFPs were then subcloned into PstI-HpaI 

fragment from the binary vector pMDC32 containing pUbi. The resulting plasmids 

contained pUbi::Ta BOR1.1 to 1.3:GFPs were used to determine the Ta BOR1s 

activities in BY-2 cells and the subcellular localization of Ta BOR1s in A. thaliana leaf 

cell. 

 

2.2.4 Determination of Ta BOR1 activity in BY-2 cells (by Dr. Takahiro Fujibe) 

Transformation of BY-2 cells was performed by Dr. T. Fujibe as follows. 5 ml 

of 72 h-old BY-2 culture was co-cultivated with 100 µl of Agrobacterium EHA101 

carrying plasmids containing pUbi::Ta BOR1.1 to 1.3:GFP and incubates for 42 to 60 h 

at 27
o
C dark. The cells were incubated with medium containing 1 mM boric acid for 60 

min. The transformed BY-2 cells were mixtures of a number of independently 

transformed cells. The soluble fraction of BY-2 cells was sampled, and the B 

concentrations were determined using ICP-MS as described by Takano et al. (2002). 

 

2.2.5 Subcellular localization of Ta BOR1s-GFP (by Mr. Sheliang Wang) 

The subcellular localization of Ta BOR1s was investigated by Mr. S. Wang. For 

transient expression of Ta BORs-GFP in A. thaliana leaf cells, the method was followed 

from Grefen et al. (2010) with following modifications. For co-cultivation of 

Agrobacterium strain GV3101:pMP90 with A. thaliana seedlings, MGRL medium 

(Takano et al., 2005) containing 10 µM boric acid instead of MS basal salts medium 
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was used. After the co-cultivation for 24 h, the seedlings were washed two times with 

0.003 % NaClO, then two times with sterile water, and cultured in fresh MGRL medium 

containing 10 µM boric acid for 24 h. 

The construct for pUBQ10::mCitrine-NIP5;1 (Alassimone et al., 2010) was 

provided by N. Geldner. The cotyledons were incubated with 10 µM FM4-64 for at 

least 5 min before the observation. Confocal images were taken with a confocal laser 

scanning microscope (Leica TCS-SP8) equipped with a water-immersed x 40 lens with 

the excitation wavelength 488 nm and following detection wavelengths, respectively: 

500–540 nm for GFP; 510-600 nm for mCitrine; and >650 nm for FM4-64. 

 

2.2.6 RNA extraction and quantitative real-time PCR 

Total RNA was extracted from roots and shoots and the RNA was then reverse-

transcribed to cDNA as described above. The absolute real-time PCR amplification was 

performed using a Thermal Cycler Dice (Takara) with SYBR Premix Ex Taq II 

(Takara). The primers used in real-time PCR were designed using Primer3 software 

(http://frodo.wi.mit.edu/primer3). The sequences of the primers were as follows: 5´-

CCGGTATCAGGATCCTAGCG-3´ and 5´'-ATGCCAATGTCTGCACCGCG-3' for 

Ta BOR1.1; 5´-GCGGCTCACCTGCTACAAGC-3´ and 5´-ATGCCAATGTCTGCAC 

TGCC-3´ for Ta BOR1.2; and 5´-ACATCTTCTTCGCCTCCGCG-3´ and 5´-ATGCCA 

ATGTCTGCACTGCT-3´ for Ta BOR1.3. 

Eight-fold serial dilution series of the plasmid carried BOR1-GFP fusion genes 

as described above, ranging from 1x10
-3

 to 1x10
4
 copies/µl, were used to construct the 

standard curves for Ta BOR1.1, Ta BOR1.2 and Ta BOR1.3. The concentration of the 
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plasmid was estimated by OD260 and the number of copies/µl of standards was 

calculated according to the following formula (Yin et al., 2001): 

                                          Copies/ml =    6.023 x 10
23

 x C x OD260 

                 MWt 

Where C= 5 x 10
-5

 g/ml for DNA and MWt= molecular weight of PCR product (base 

pairs x 6.58 x 10
2 
g) 
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2.3 Results 

2.3.1 Phylogenetic analysis of Ta BOR1s 

A database search of the wheat genome for Os BOR1-like genes identified three 

genes. Based on the predicted amino acid sequences, I named these genes, Ta BOR1.1, 

Ta BOR1.2 and Ta BOR1.3. To confirm the nucleotide sequences of the Ta BOR1s in 

the database, I amplified the corresponding cDNA from mRNA isolated from leaves of 

wheat cultivar Chinese Spring by reverse transcription mediated PCR. Among the Ta 

BOR1, Ta BOR1.1 showed 98% and 99% identity at the predicted amino acid 

sequences with Ta BOR1.2 and Ta BOR1.3, respectively. The predicted amino acid 

sequence of Ta BOR1.2 showed 99% identity with Ta BOR1.3. All three Ta BOR1 

genes are 91% identical in amino acid sequence to Os BOR1 and showed 79-80% 

similarity on the amino acid level to At BOR1 (Figure 2-1A). The phylogenetic analysis 

showed that Ta BOR1.1, Ta BOR1.2 and Ta BOR1.3 are very similar each other and 

these genes are clustered together with Os BOR1 and At BOR1, 2, 3 (Figure 2-1B). 
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Ta BOR1.2     MEESFVP-----LRGIKNDVRGRLTCYKQDWTGGFSAGIRILAPTTYIFFASAIPVISFG 55 

Ta BOR1.3     MEESFVP-----LRGIKNDVRGRLACYKQDWTGGFSAGIRILAPTTYIFFASAIPVISFG 55 

Ta BOR1.1     MEESFVP-----LRGIKNDVRGRLACYKQDWTGGFSAGIRILAPTTYIFFASAIPVISFG 55 

Os BOR1       MEESFVP-----LRGIKNDLHGRLQCYKQDWTGGFRAGIRILAPTTYIFFASAIPVISFG 55 

At BOR1       MEETFVP-----FEGIKNDLKGRLMCYKQDWTGGFKAGFRILAPTTYIFFASAIPVISFG 55 

At BOR4       MEEERVDSSKRLFRGIVADLRGRALCYKEDWVAGLRSGFGILAPTTYIFFASALPVIAFG 60 

              ***  *      :.**  *::**  ***:**..*: :*: *************:***:** 

Ta BOR1.2     EQLERSTDGVLTAVQTLASTALCGIIHSIVGGQPLLILGVAEPTVIMYTFMFSFAKDRAD 115 

Ta BOR1.3     EQLERSTDGVLTAVQTLASTALCGIIHSIVGGQPLLILGVAEPTVIMYTFMFSFAKDRAD 115 

Ta BOR1.1     EQLERSTDGVLTAVQTLASTALCGIIHSIVGGQPLLILGVAEPTVIMYTFMFSFAKDRAD 115 

Os BOR1       EQLERNTDGVLTAVQTLASTALCGIIHSFLGGQPLLILGVAEPTVLMYTFMFNFAKDRPD 115 

At BOR1       EQLERSTDGVLTAVQTLASTAICGMIHSIIGGQPLLILGVAEPTVIMYTFMFNFAKARPE 115 

At BOR4       EQLSRDTEGALSTVETLASTALCGVIHSILGGQPLLILGVAEPTVLMYVYLYNFAIGRPE 120 

              ***.*.*:*.*::*:******:**:***::***************:**.:::.**  *.: 

Ta BOR1.2     LGPNLFLAWAGWVCVWTALLLFLLAVLGACSIINRFTRIAGELFGLLIAMLFMQQAIKGL 175 

Ta BOR1.3     LGPNLFLAWAGWVCVWTALLLFLLAVLGACSIINRFTRIAGELFGLLIAMLFMQQAIKGL 175 

Ta BOR1.1     LGPNLFLAWAGWVCVWTALLLFLLAVLGACSIINRFTRIAGELFGLLIAMLFMQQAIKGL 175 

Os BOR1       LGRRLFLAWTGWVCVWTAILLFLLAILGACSIINRFTRIAGELFGLLIAMLFMQQAIKGL 175 

At BOR1       LGRDLFLAWSGWVCVWTALMLFVLAICGACSIINRFTRVAGELFGLLIAMLFMQQAIKGL 175 

At BOR4       LGKQLYLAWAAWVCVWTALLLFVMAILNTADIINRFTRVAGELFGMLISVLFIQQAIKGM 180 

              **  *:***:.*******::**::*: .:..*******:******:**::**:******: 

Ta BOR1.2     VDEFRIPERENIKALQFVPSWRFANGMFAIVLSFGLLLTALRSRKARSWRYGAGWLRGFI 235 

Ta BOR1.3     VDEFGVPERENIKALQFVPSWRFANGMFAIVLSFGLLLTALRSRKARSWRYGAGWLRGFI 235 

Ta BOR1.1     VDEFRIPERENIKALQYIPSWRFANGMFAIVLSFGLLLTALRSRKARSWRYGAGWLRGFI 235 

Os BOR1       VDEFRIPERENRKALEFVSSWRFANGMFAIVLSFGLLLTALRSRKARSWRYGTGWLRGFI 235 

At BOR1       VDEFRIPERENQKLKEFLPSWRFANGMFALVLSFGLLLTGLRSRKARSWRYGTGWLRSLI 235 

At BOR4       VSEFGMPKDEDSKLEKYKFEWLYTNGLLGLIFTFGLLYTALKSRKARSWRYGTGWYRSFI 240 

              *.** :*: *: *  ::  .* ::**::.::::**** *.*:**********:** *.:* 

 

(A) 
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Ta BOR1.2     ADYGVPLMVLVWTGVSYIPHDSVPKGIPRRLFSPNPWSPGAYDNWTVIKDMLQVPVMYII 295 

Ta BOR1.3     ADYGVPLMVLVWTGVSYIPHDSVPKGIPRRLFSPNPWSPGAYDNWTVIKDMLQVPVMYII 295 

Ta BOR1.1     ADYGVPLMVLVWTGVSYIPHDSVPKGIPRRLFSPNPWSPGAYDNWTVIKDMAQVPVMYII 295 

Os BOR1       ADYGVPLMVLVWTGVSYIPYGSVPKGIPRRLFSPNPWSPGAYDNWTVIRDMPNVPLLYII 295 

At BOR1       ADYGVPLMVLVWTGVSYIPAGDVPKGIPRRLFSPNPWSPGAYGNWTVVKEMLDVPIVYII 295 

At BOR4       ADYGVPLMVVVWTALSFSTPSKLPSGVPRRLFSPLPWDSPSLSHWTVIKDMGKVSPGYIF 300 

              *********:***.:*: . ..:*.*:******* **.. : .:***:::* .*.  **: 

Ta BOR1.2     GAFMPATMIAVLYYFDHSVASQLAQQAEFNLRKPPSFHYDLLLLGFLTLMCGLIGIPPSN 355 

Ta BOR1.3     GAFMPATMIAVLYYFDHSVASQLAQQAEFNLRKPPSFHYDLLLLGFLTLMCGLIGIPPSN 355 

Ta BOR1.1     GAFMPATMIAVLYYFDHSVASQLAQQAEFNLRKPPSFHYDLLLLGFLTLMCGLIGIPPSN 355 

Os BOR1       GAFIPATMIAVLYYFDHSVASQLAQQKEFNLRKPPSFHYDLLLLGFLTLLCGLIGIPPAN 355 

At BOR1       GAFIPASMIAVLYYFDHSVASQLAQQKEFNLRKPSSYHYDLLLLGFLTLMCGLLGVPPSN 355 

At BOR4       AAFIPALMIAGLYFFDHSVASQLAQQKEFNLKKPSAYHYDILLLGFMTLICGLLGLPPSN 360 

              .**:** *** **:************ ****:**.::***:*****:**:***:*:**:* 

Ta BOR1.2     GVIPQSPMHTKSLATLKHQILRNRLVATARQSMRQNASLSQLYNNMQDAYHQIQTPLIHQ 415 

Ta BOR1.3     GVIPQSPMHTKSLATLKHQILRNRLVATARQSMRQNASLSQLYNNMQDAYHQIQTPLIHQ 415 

Ta BOR1.1     GVIPQSPMHTKSLATLKHQILRNRLVATARQSMRQNASLSQLYNNMQDAYHQIQTPLIHQ 415 

Os BOR1       GVIPQSPMHTKSLATLKHQLLRNRLVATARQSMSQNASLSQLYGSMQEAYQQMQTPLIYQ 415 

At BOR1       GVIPQSPMHTKSLATLKYQLLRNRLVATARRSIKTNASLGQLYDNMQEAYHHMQTPLVYQ 415 

At BOR4       GVLPQSPMHTKSLAVLKRQLIRRKMVKTAKESIRKRETSSQVYENMQEVFIEMDKSPLAQ 420 

              **:***********.** *::*.::* **:.*:  . : .*:* .**:.: .::.. : * 

Ta BOR1.2     QQTVKGLNELKDSTVQLASSMGNFDAPVDETIFDIEKEIDDLLPMEVKEQRLSNFLQAVM 475 

Ta BOR1.3     QQSVKGLNELKDSTVQLASSMGNFDAPVDETIFDIEKEIDDLLPMEVKEQRLSNFLQAVM 475 

Ta BOR1.1     QQSVKGLNELKDSTVQLASSMGNFDAPVDETIFDIEKEIDDLLPMEVKEQRLSNFLQAVM 475 

Os BOR1       QPSVKGLNELKDSTVQMASSMGNIDAPVDETVFDIEKEIDDLLPIEVKEQRLSNLLQATM 475 

At BOR1       QP--QGLKELKESTIQATTFTGNLNAPVDETLFDIEKEIDDLLPVEVKEQRVSNLLQSTM 473 

At BOR4       TDP-SVIIELQDLKEAVMKSNDEEREGDEESGFDPEKHLDAYLPVRVNEQRVSNLLQSLL 479 

              . : **:: .    .  .:     :*: ** **.:*  **:.*:***:**:**: : 
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Ta BOR1.2     VGGCVAAMPLLKKIPTAVLWGYFAFMAIESLPGNQFWERILLLFTAPSRRYKVLEEYHTT 535 

Ta BOR1.3     VGGCVAAMPLLKKIPTAVLWGYFAFMAIESLPGNQFWERILLLFTAPSRRYKVLEEYHTT 535 

Ta BOR1.1     VGGCVAAMPLLKKIPTAVLWGYFAFMAIESLPGNQFWERILLLFTAPSRRYKVLEEYHTT 535 

Os BOR1       VGGCVAAMPLLKKIPTSVLWGYFAFMAIESLPGNQFWERILLLFTAPSRRYKVLEEYHTT 535 

At BOR1       VGGCVAAMPILKMIPTSVLWGYFAFMAIESLPGNQFWERILLLFTAPSRRFKVLEDYHAT 533 

At BOR4       VAGAVLAMPAIKLIPTSILWGYFAYMAIDSLPGNQFFERLTLLFVPTSRRFKVLEGAHAS 539 

              *.*.* *** :* ***::******:***:*******:**: ***...***:****  *:: 

Ta BOR1.2     FVETVPFKTIAMFTLFQTTYLLVCFGITWIPIAGVLFPLMIMLLVPVRQYILPKLFKGAH 595 

Ta BOR1.3     FVETVPFKTIAMFTLFQTTYLLVCFGITWIPIAGVLFPLMIMLLVPVRQYILPKLFKGAH 595 

Ta BOR1.1     FVETVPFKTIAMFTLFQTTYLLVCFGITWIPIAGVLFPLMIMLLVPVRQYILPKLFKGAH 595 

Os BOR1       FVETVPFKTIAMFTLFQTMYLLVCFGITWIPIAGVLFPLMIMLLVPVRQYILPKLFKGAH 595 

At BOR1       FVETVPFKTIAMFTLFQTTYLLICFGLTWIPIAGVMFPLMIMFLIPVRQYLLPRFFKGAH 593 

At BOR4       FVEKVPYKSMAAFTLLQIFYFGLCYGVTWIPVAGIMFPVPFFLLIAIRQYILPKLFNPAH 599 

              ***.**:*::* ***:*  *: :*:*:****:**::**: :::*:.:***:**::*: ** 

Ta BOR1.2     LNDLDAAEYEESP---AIPFNLAAQDID-VALGRTQSAEILDDMVTRSRGEIKRLNSPKI 651 

Ta BOR1.3     LNDLDAAEYEESP---AIPFNLAAQDID-VALGRTQSAEILDDMVTRSRGEIKRLNSPKI 651 

Ta BOR1.1     LNDLDAAEYEESP---AIPFNLAAQDID-VALGRTQSAEILDDMVTRSRGEIKRLNSPKI 651 

Os BOR1       LTDLDAAEYEESP---AIPF-IAAQDID-VALARTQSAEILDDIVTRSRGEIKRLNSPKI 650 

At BOR1       LQDLDAAEYEEAP---ALPFNLAAETEIGSTTSYPGDLEILDEVMTRSRGEFRHTSSPKV 650 

At BOR4       LRELDAAEYEEIPGTPRNPLELSFRSNDSKRGVQEGDAEILDELTT-SRGELK-VRTLNL 657 

              * :******** *     *: :: .           . ****:: * ****::   : :: 

Ta BOR1.2     TSSGGTPVTELKGIRSPCMSEKAYSPRVNELRH-ERSPLGGRDSPRMGEARPSKLGEGST 710 

Ta BOR1.3     TSSGGTPVTELKGIRSPCISEKAYSPRVAELRH-ERSPLGGRDSPRTGEARPSKLGEGST 710 

Ta BOR1.1     TSSGGTPVTELKGIRSPCISEKAYSPRVTELRH-ERSPLGGRDSPRTGEARTSKLGEGST 710 

Os BOR1       TSSGGTPVAELKGIRSPCISERAYSPCITELRH-DRSPLGGRGSPRTGETRSSKLGEGST 709 

At BOR1       TSSSSTPVNNRS-------LSQVFSPRVSGIRLGQMSPRVVGNSPKPASCGRSPLNQSSS 703 

At BOR4       NEDKGN---------------QIYP----------------KEKVKAGDGDMSTTRE--- 683 

              ... ..               : :.                  . : ..   *   :    
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Ta BOR1.2     PK 712 

Ta BOR1.3     PK 712 

Ta BOR1.1     PK 712 

Os BOR1       PK 711 

At BOR1       N- 704 

At BOR4       -- 

 

Figure 2-1. Sequence alignment and phylogenetic analysis of BOR-like proteins in 

wheat, A. thaliana and rice. 

(A) Amino acid sequence similarity between BOR1-like proteins in A. thaliana, rice 

and wheat; At BOR1, Os BOR1, Ta BOR1.1, Ta BOR1.2 and Ta BOR1.3, and At 

BOR4 protein in A. thaliana. The black arrows indicate the positions of amino acid 

residue which are different among Ta BOR1.2 and others. 
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Figure 2-1. Sequence alignment and phylogenetic analysis of BOR-like proteins in 

wheat, A. thaliana and rice. 

(B) Phylogenetic tree of wheat, A. thaliana and rice BOR-like proteins. Phylogenetic 

analysis was performed with clustalw2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/).   

Accession number: At2g47160 for At BOR1; At3g62270 for At BOR2; At3g06450 for 

At BOR3; At1g15460 for At BOR4; At1g74810 for At BOR5; At5g25430 for At BOR6; 

At4g32510 for At BOR7; Os12g37840 for Os BOR1; Os01g08040 for Os BOR2; 

Os01g08020 for Os BOR3 and Os05g08430 for OS BOR4. 

(B) 
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2.3.2 B transport activity of Ta BOR1s (by Dr. T. Fujibe) 

To examine the B transport activity of Ta BOR1s, the corresponding cDNAs 

were stably expressed in BY-2 cells under the control of pUbi. To obtain stably 

transformed BY-2 cells, cells were co-cultured with Agrobacterium carrying vectors for 

transformation followed by selection by Kanamycin/Hygromycin on the solid media. 

After the selection, transformants on a dish were collected and brought back to the 

liquid culture before B uptake studies. The transformed BY-2 cells in these experiments 

are mixtures of a number of independently transformed cells. 

Cells were incubated for 60 min in the medium containing 1 mM boric acid and 

the B concentrations in the cells were determined by ICP-MS. After the one hour 

incubation, the B concentration of BY-2 cells transformed with the empty vector was 

13.9 nmol/mg dry weight, whereas the B concentrations in cells expressing Ta BOR1.1, 

Ta BOR1.2 and Ta BOR1.3 were 5.8, 7.2 and 8.6 nmol/mg dry weight, respectively. 

The B concentrations in BY-2 cells were reduced by 57, 50 and 43% of the vector 

control by expression of Ta BOR1.1, Ta BOR1.2 and Ta BOR1.3, respectively (Figure 

2-2), suggesting that all Ta BOR1s are functional efflux-type B transporters similar to 

At BOR1 and Os BOR1 (Takano et al., 2002; Nakagawa et al., 2007). 
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Figure 2-2. B transport activity of Ta BOR1s in BY-2 cells. 

B concentrations in BY-2 cells expressing Ta BOR1.1, Ta BOR1.2 and Ta BOR1.3. 

The B concentrations of vector control (WT) or BY-2 cells carrying pUbi::Ta 

BOR1.1:GFP (Ta BOR1.1), pUbi::Ta BOR1.2:GFP (Ta BOR1.2) or pUbi::Ta 

BOR1.3:GFP (Ta BOR1.3) are shown. Cells were exposed for 60 min to medium 

containing 1 mM boric acid. DW, dry weight. 
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2.3.3 Subcellular localization of Ta BOR1s in A. thaliana leaf cell. (by Mr. S. 

Wang) 

To investigate the subcellular localization of Ta BOR1s, open reading frames 

(ORFs) of Ta BOR1.1 to 1.3 were fused to the 5’ end of ORF of green fluorescent 

protein (GFP) and placed under the control of an ubiquitin1 promoter (pUbi::Ta 

BOR1s:GFP). NIP5;1 fused to the 3’ end of ORF of mCitrine under the control of an 

ubiquitin10 promoter (pUBQ10::mCitrine-NIP5;1, Alassimone et al., 2010) was used as 

a plasma membrane marker. The constructs were introduced into A. thaliana leaf cells 

by Agrobacterium. The leaves were incubated with FM4-64 to visualize the plasma 

membrane before observation by a confocal laser scanning microscope. GFP 

fluorescence were observed in cell periphery similar to FM4-64 of cells expressing Ta 

BOR1.1-GFP (Figure 2-3A), BOR1.2-GFP (Figure 2-3B), BOR1.3-GFP (Figure 2-3C) 

and mCitrine-NIP5;1 (Figure 2-3E). In leaves co-cultivated with Agrobacterium with or 

without constructs (negative control; Figure 2-3D), the stomata in the guard cells 

showed green autofluorescence. Although some cells of the negative control showed 

green autofluorescence in the cell periphery, the signals in all Ta BOR1s-GFP 

expressing cells were stronger than that of autofluorescence, suggesting that Ta BOR1.1 

to 1.3 are localized to the plasma membrane. 
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Figure 2-3. Subcellular localization of Ta BOR1s:GFP in A. thaliana leaf cells. 

Confocal microscopy images of the A. thaliana leaf cell expressing Ta BOR1s:GFP are 

shown. The plasma membrane was stained with FM4-64. A, A. thaliana leaf cell 

expressing pUbi::Ta BOR1.1:GFP. B, A. thaliana leaf cell expressing pUbi::Ta 

BOR1.2:GFP. C, A. thaliana leaf cell expressing pUbi::Ta BOR1.3:GFP. D, Negative 

control (A. thaliana leaf cell). E, A. thaliana leaf cell expressing pUBQ10::mCitrine-

NIP5;1. Left, GFP fluorescence; middle FM4-64 fluorescence; right, merged image. 

Bars = 10 µm. 
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2.3.4 Patterns of Ta BOR1s transcript accumulation: tissue specificity and 

response to B conditions 

The patterns of transcript accumulation of Ta BOR1.1, Ta BOR1.2 and Ta 

BOR1.3 were examined by real-time PCR. Roots and shoots were harvested from wheat 

grown hydroponically under low B (18 nM B), sufficient B (18 µM B) or excess B (1 

mM B) conditions for 18 days. Total RNA was extracted from roots and shoots of the 

samples and the copy number of the transcript present in the total RNA samples was 

determined (Figure 2-4). Ta BOR1 genes were expressed in both roots and shoots with 

different abundances and patterns in response to B (Figure 2-4). In roots, abundance of 

transcripts for Ta BOR1.1, Ta BOR1.2 and Ta BOR1.3 were more or less equivalent, 

while in shoots, transcript for Ta BOR1.2 is the most abundant followed by those of Ta 

BOR1.1 and Ta BOR1.3. Ta BOR1.3 transcript accumulation is much less than the 

others in shoots. The three genes responded differently to B conditions. Accumulation 

of Ta BOR1.1 mRNA was induced in both roots and shoots by B deficiency. The 

expression levels of Ta BOR1.1 was 1.6 and 4.7 times higher in roots and was 2.4 and 

3.3 times higher in shoots under low B condition than under sufficient or excess B 

conditions, respectively. In contrast, Ta BOR1.2 gene was expressed at high levels in 

excess B conditions in roots and shoots. Ta BOR1.2 transcript level in roots in the 

excess B condition was 1.9 times higher than those under low and sufficient B 

conditions. Ta BOR1.2 transcript level in shoots under excess B condition was 1.9 times 

higher than that under the low B condition. The expression of Ta BOR1.3 gene was 

induced mainly in roots. The accumulation of Ta BOR1.3 transcript in low or sufficient 

B conditions was 2.3 and 2.7 times higher in roots and 1.6 and 2.8 times higher in shoot 
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than that in excess B conditions, respectively. These results indicated that the 

accumulation of Ta BOR1s are regulate at transcriptional level. Ta BOR1.1 and Ta 

BOR1.3 responded to B deficiency, while Ta BOR1.2 responded to B toxicity in both 

roots and shoots. 

  



 
 

47 
 

 

Figure 2-4. Accumulation of Ta BOR1 transcripts in roots and shoots in response to B 

conditions.  

Plants were grown in low B (18 nM B; white bars), sufficient B (18 µM B; grey bars) or 

excess B (1 mM B; black bars) hydroponic solutions for 18 d. Average copy number of  

Ta BOR1.1 mRNA, Ta BOR1.2 mRNA or Ta BOR1.3 mRNA is shown for roots and 

shoots. Means of three biological replicates±SE for each treatment are shown (n=3). 

The different letters above each bar represent statistically significant differences 

(analysis of variance, p< 0.01, post-hoc Tukey’s test). 
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2.4 Discussion 

2.4.1 Ta BOR1s are orthologs of Os BOR1 and At BOR1 

At BOR1 and Os BOR1 are efflux-type B transporters in A. thaliana and rice, 

respectively (Takano et al., 2002; Nakagawa et al., 2007). In this study, Ta BOR1s were 

identified as wheat efflux transporters of B by Dr. Fujibe. The phylogenetic analysis 

showed that the three BOR1-like genes (Ta BOR1.1, Ta BOR1.2, and Ta BOR1.3) in the 

wheat genome are the most similar to Os BOR1 (Figure 2-1B). Ta BOR1s show 91 and 

79-80% amino acid identity with Os BOR1 and At BOR1, respectively. The close 

phylogenetic relationships of the Ta BOR1 genes and functional similarities of the gene 

products indicate that Ta BOR1s are orthologs to Os BOR1 and At BOR1.  

In the present study, Dr. Fujibe used tobacco BY-2 cells for the functional study 

of the transporters. Ta BOR1s are capable of reducing the B concentrations in cells 

when expressed in tobacco BY-2 cells (Figure 2-2). Furthermore, all Ta BOR1s-GFP 

expressed in A. thaliana leaf cells showed localization to cell periphery (Figure 2-3). 

Considering that the Ta BOR1s are predicted to have multiple transmembrane domains, 

it is most probable that these transporters are localized in the plasma membrane, similar 

to the case of At BOR1 and Os BOR1 (Takano et al., 2002; Nakagawa et al., 2007). 

Taken together, these results suggest that Ta BOR1s are efflux-type B transporters in 

plant cells. 
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2.4.2 The expression of three Ta BOR1 in roots and shoots are differentially 

affected by B conditions 

In the present study, I demonstrated that three Ta BOR1 genes are expressed 

with a different tissue-specificity and showed different responses to B conditions 

(Figure 2-4). This is a clear contrast to the previously reported cases in A. thaliana and 

rice. The accumulation of At BOR1 and Os BOR1 transcripts in leaves and roots were 

not affected by B limitation (Takano et al., 2010, Nakagawa et al., 2007). Apparently, 

the regulation of Ta BOR1s is different from the cases of At BOR1 and Os BOR1, 

suggesting the different roles and regulation of these genes. 

 Recently, six BOR1-like genes were identified in Brassica napus named as Bn 

BOR1;1a, Bn BOR1;1c, Bn BOR1;2a, Bn BOR1;2c, Bn BOR1;3a and Bn BOR1;3c 

(Sun et al., 2012). Semi-quantitative real time PCR analysis of these Bn BOR1s showed 

that Bn BOR1;1a, Bn BOR1;1c, Bn BOR1;2a, and Bn BOR1;2c were mainly expressed 

in root, stem, and flower, while Bn BOR1;3a and Bn BOR1;3c were expressed in all 

tested tissues, including root, stem, leaf, flower, bud, and silique. The accumulation of 

Bn BOR1;1c and Bn BOR1:2a mRNA increased under low B conditions compared to 

under high B conditions, while the accumulation of mRNA in the rest of Bn BOR1s 

were not changed and constitutively expressed both under low and high B conditions. In 

the case of Ta BOR1s, the accumulations of Ta BOR1.1 and Ta BOR1.3 mRNA were 

up-regulated in response to B limitation (Figure 2-4). In contrast, the accumulation of 

Ta BOR1.2 mRNA increased under excess B condition compared to low and normal B 

condition in roots. Considering that Brassica napus is amphidiploid, it is likely that 

expression patterns of BOR1 genes in a plant species with complex genomes differ 
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among the members of the BOR1 genes. It is likely that these genes are diversified and 

have different physiological roles. 

 

2.4.3 Possible functional differences among the Ta BOR1s 

Although the accumulation of Os BOR1 transcripts in whole roots is not affected 

by B limitation, the histochemical observation of pOS BOR1:GUS transgenic plants 

demonstrated that the expression of Os BOR1 in endodermal and exodermal cells 

responded to B limitation (Nakagawa et al., 2007). Ta BOR1 proteins are very similar to 

Os BOR1. It is possible that Ta BOR1s have differential tissue-specific expression, 

although the tissue-specific expression of Ta BOR1s is required analyzed further. 

Interestingly, the accumulation of Ta BOR1.2 transcript was at high levels under excess 

B condition in both roots and shoots, suggesting that Ta BOR1.2 may have a function to 

exclude B from tissues for resistance to B toxicity as is the case of At BOR4 (Miwa et 

al., 2007). At BOR4 is a paralog of At BOR1, and has different characteristics from At 

BOR1 in terms of polar localization and protein degradation in response to B. At BOR1 

is degraded via the endocytic pathway in response to B, while At BOR4 is not (Miwa et 

al., 2007). Overexpression of At BOR4 showed B-toxicity tolerance and reduced the B 

concentration in roots and shoots under excess B conditions compared to wild type 

(Miwa et al., 2007). To investigate the possibility that Ta BOR1.2 has a difference 

function from Ta BOR1.1 and Ta BOR1.3, I compared the amino acid sequences among 

Ta BOR1s, Os BOR1, At BOR1, and At BOR4 (Figure 2-1A). I found that there are 3 

positions of amino acid residue that are different among Ta BOR1.2 and others. It is 

possible that these positions of Ta BOR1.2 might be importance for B toxicity tolerance.  
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Figure 2-5. Model of the possible roles of Ta BOR1s in roots under normal, low (-B) 

and excess (++B) B conditions. The diagram shows the cell layers in roots, with the 

epidermis at the left side and xylem vessels to the right. Grey boxes indicate the 

positions of the Casparian strips. In wheat, Ta BOR1.1 and Ta BOR1.3 may play the 

same role as At BOR1 that involved in xylem loading of B in roots under -B condition. 

In contrast, Ta BOR1.2 may have a function to exclude B from roots to soil under ++B 

as is the case of At BOR4. CS, Casparian strip; EN, endodermis; CO, cortex; SC, 

sclerenchyma cells; EX, exodermis; EP, epidermis; PC, pericycle; XY, xylem. 

(Modified from Nakagawa et al., 2007)  

- B 

Normal 
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In summary, the wheat genome contains three BOR1-like genes, named Ta 

BOR1.1, Ta BOR1.2 and Ta BOR1.3 (Figure 2-1). The Ta BOR1 is most similar to Os 

BOR1 (91% amino acid identity). The Ta BOR1s are efflux-type B transporters (Figure 

2-2) that localize to the plasma membrane (Figure 2-3). The accumulation of Ta BOR1s 

are regulated at transcriptional level. Ta BOR1.1 and Ta BOR1.3 transcripts are up-

regulated under low B conditions, while Ta BOR1.2 transcript is up-regulated under 

excess B condition (Figure 2-4). Based on the transcript accumulation in wheat, Ta 

BOR1.1 and Ta BOR1.3 may play a role in xylem loading of B under low B condition. 

Ta BOR1.2 may exclude B from roots to soil under excess B condition (Figure 2-5). 

These expression patterns and possible functional differences represent an interesting 

example for the diversification of very similar genes in plant species with complex 

genomes. 
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CHAPTER 3 

Comparison of BOR1-Like Gene Expression in Two Genotypes with Different  

B Efficiencies in Wheat (Triticum aestivum L.), Maize (Zea mays L.) 

 and Rice (Oryza sativa L.) in Thailand 

 

3.1 Introduction 

Genotypic variation in the response to low B supply has been reported in wheat 

maize, rice, and barley. A large variation among genotypes has been reported in term of 

the response to low B condition. These genotypes were classified into different B 

efficiency tolerant or susceptible to B deficiency (Rerkasem and jamjod, 1997a; Jamjod 

and Rerkasem, 1999; Wongmo et al., 2004; Lordkaew eat al., 2011; Lordkaew et al., 

2013). To advance the understanding of molecular basis of B efficiency, BOR1-like 

gene expression in wheat, maize and rice was determined between two genotypes of 

each crop.  

Here, I presented a comparative investigation of the differential transcript levels 

of BOR1-like genes expressed in roots, leaves, and reproductive organs using 

quantitative real-time PCR. Two genotypes with different B efficiencies in wheat 

(Triticum aestivum), maize (Zea mays) and rice (Oryza sativa) were grown under B 

deficiency in Thailand.  
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3.2 Materials and Methods 

3.2.1 Plant materials and growth condition 

This part was carried out at Chiang Mai University in Thailand (latitude 18º47'N, 

longitude 98º59'E, altitude 330 m above mean sea level) in 2011-2012. Two varieties of 

each species, Fang60 (B-efficient variety) and Bonza (B-inefficient variety) for wheat; 

Sweet corn (B-efficient variety) and NS72 (B-inefficient variety) for maize; 

Suphanburi1 (SPR1; B-efficient variety) and Chainart1 (CNT1; B-inefficient variety) 

for rice, were used in this experiment. The experiment was based on a randomized 

complete block (RCB) model with two levels of B treatments replicated three times 

each, with one separate set of pots for each of the two harvests (vegetative and 

reproductive stage). Set of two plants was sown in the pots (0.30 m diameter and 0.30 m 

deep) filled with washed quartz river sand. The pots were watered twice daily with 1 L 

of a complete nutrient solution with two levels of B (0 or 10 µM B for wheat and rice; 0 

or 20 µM B for maize). The nutrient solution was adapted from Broughton and Dilworth 

(1997) and Mozafar (1989) and consisted of: 15 mM KNO3, 1 mM CaCl2, 2 mM 

Mg(SO4)2, 1 mM KH2PO4, 100 µM Fe-EDTA, 250 µM K2SO4, 9 µM MnSO4, 0.76 µM 

ZnSO4, 0.31 µM CuSO4, 0.1 µM CoSO4, and 0.1 µM Na2MoO4. 

Plants were harvested during vegetative (1 month old roots and leaves) and 

reproductive growth stages (roots, leaves and ear for wheat; roots, leaves, baby corn and 

ear for maize; and roots, leaves, and panicle for rice). Then, the collected samples were 

stored at -80 ºC until RNA extraction.  
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3.2.2 RNA extraction  

Total RNA was extracted from plant tissues that were harvested as described 

above. The method was followed from Laksana (2011). Each tissue was grounded in 

liquid nitrogen to a fine powder, then transferred  into a microcentrifuge tube and added 

600 µl of RNA extraction buffer (2% CTAB, 2% PVP, 2M NaCl2, 25mM EDTA, 100 

mM Tris-HCl pH 8.0 and 2% -mercaptoethanol (v/v)), and vortexed vigorously. The 

mixture was incubated for 10 min at room temperature and then 600 µl of phenol: 

chloroform: isoamyl alcohol (25: 24: 1) was added followed by mixing by inverting 

tube. The mixture was centrifuged at 12,000 xg for 10 min at 4°C. The supernatant was 

transferred to a new microcentrifuge tube and added 1 volume of chloroform: isoamyl 

alcohol (24:1), and mixed by inverting tubes. The mixture was centrifuged at 12,000 xg 

for 10 min at 4°C. The supernatant was transferred to a new microcentrifuge tube and 

400 µl of isopropanol and 100 µl of NaCl2 was added to the supernatant, mixed by 

inverting tube and incubated for 10 min at -20°C. After that, the mixture was 

centrifuged at 12,000 xg for 10 min at 4°C. The supernatant was discarded and washed 

the pellet with 400 µl of cold 70% ethanol. The mixture was centrifuged at 12,000 xg 

for 3 min at 4°C. The supernatant was removed, and the pellet was then dried out and 

resuspended in 20 µl of DEPC-water. The genomic DNA was removed by RNA 

samples treatment with DNase I and stored at -80ºC. 

 

3.2.3 Quantitative real-time PCR 

Total RNA was reverse-transcribed to cDNA using the PrimeScript RT reagent 

kit with Oligo(dT)16 primer. The real-time PCR amplification was performed using a 
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Thermal Cycler Dice with SYBR Premix Ex Taq II (Takara). The VIP2, HMG or Ubi1 

genes were used as an internal control for quantitation in wheat, maize, or rice, 

respectively. The specific primers for BOR1-like genes were designed using Primer3 

software (http://frodo.wi.mit.edu/primer3). The sequences of the primers were shown in 

Table 3-1.  

Table 3-1. Genes and gene-specific primers used for the real-time PCR experiments 

    Oligonucleotide primer sequences used for real-time PCR, 5´to 3´ 

Plant Gene name Forward Reverse 

Wheat Ta BOR1.1 ATACGCTCTCCGATTCCTTC AAGCATCGCGATGAGGAGCCCG 

 

Ta BOR1.2 AAAGCGTAATCTGGGTCTCT GCTGCATGAAGAGCATTGCG 

 

Ta BOR1.3 GCGTTTCTCCCGGTCCGGTC TGATGACCGTGGGCTCGGCC 

 Ta VIP2 GGGCGCATCTGCCCCATTCC GGCCAGATGAACCCGGTGGG 

Maize Zm BOR1 TGATGGAGTCCTCAGAGCAG GTATGGCCAGCAAGAAGAGC 

 HMG GCTACATAGGGAGCCTTGTCCT TTGGACTAGAAATCTCGTGCTGA 

Rice Os BOR1  CACTAGAAGCCGTGGTGAAA  CAGGTAGTTGCATAGCTCAT 

 Ubi1 GACAAGGAGGGAATCCCG  GCATAGCATTTGCGGCA 

 

  

http://frodo.wi.mit.edu/primer3
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3.3 Results 

 3.3.1 Transcript levels of Ta BOR1 genes among two genotypes of wheat related 

to B deficiency  

 To determine the expression levels of BOR1-like gene between the two 

genotypes in response to B status, the transcript levels of Ta BOR1.1, Ta BOR1.2 and 

Ta BOR1.3 were comparatively analysed between B-efficient (Fang 60) and B-

inefficient (Bonza) wheat genotypes in different organs, including roots (vegetative 

stage), leaves (vegetative stage), roots (reproductive stage), leaves (reproductive stage) 

and ear under low and sufficient B conditions by using quantitative real-time PCR. 

In roots at the vegetative stage, the expression levels of all Ta BOR1s showed no 

statistically difference between those under low B condition and sufficient B condition 

in both Fang60 and Bonza (Figure3-1). 

 In leaves at the vegetative stage, the expression levels of all Ta BOR1s under B 

deficiency were lower than those under sufficient B condition in Bonza, while the 

expression levels of all Ta BOR1s in Fang60 under B deficiency were no different as 

compared with those under sufficient B condition (Figure 3-2). 

 In roots at the reproductive stage, the expression levels of Ta BOR1.1 and Ta 

BOR1.3 in Fang60 were up-regulated, while the expression levels of Ta BOR1.2 was 

down-regulated under low B condition. In case of Bonza, the expression levels of all Ta 

BOR1s were down-regulated in B deficiency (Figure 3-3). 
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Figure 3-1. Transcript levels of wheat BOR1-like genes, Ta BOR1.1, Ta BOR1.2 and 

Ta BOR1.3 in roots at the vegetative stage; 1 month of Fang60 (B-efficient genotype) 

and Bonza (B-inefficient genotype) under B deficient (0 µM B) or sufficient (10 µM B) 

condition. The transcript levels of each gene in Fang60 at 10 µM B were used as the 

control and assigned value of 1. Means of three biological replicates±SE for each 

treatment are shown (n=3). Statistical significance was determined using Student's t-

test. 
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Figure 3-2. Transcript levels of wheat BOR1-like genes, Ta BOR1.1, Ta BOR1.2 and 

Ta BOR1.3 in leaves at the vegetative stage; 1 month of Fang60 (B-efficient 

genotype) and Bonza (B-inefficient genotype) under B deficient (0 µM B) or sufficient 

(10 µM B) condition. The transcript levels of each gene in Fang60 at 10 µM B were 

used as the control and assigned value of 1. Means of three biological replicates±SE for 

each treatment are shown (n=3). Statistical significance was determined using Student's 

t-test; * P< 0.05, ** P< 0.01. 
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Figure 3-3. Transcript levels of wheat BOR1-like genes, Ta BOR1.1, Ta BOR1.2 and 

Ta BOR1.3 in roots at the reproductive stage of Fang60 (B-efficient genotype) and 

Bonza (B-inefficient genotype) under B deficient (0 µM B) or sufficient (10 µM B) 

condition. The transcript levels of each gene in Fang60 at 10 µM B were used as the 

control and assigned value of 1. Means of three biological replicates±SE for each 

treatment are shown (n=3). Statistical significance was determined using Student's t-

test; ** P< 0.01. 
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In leaves at the reproductive stage, the expression levels of Ta BOR1.3 was up-

regulated, while Ta BOR1.2 expression was down regulated under low B condition in 

Fang60. Whereas, the expression levels of Ta BOR1.1 did not change among B 

conditions in Fang60. The expression levels of all Ta BOR1s were not significantly 

different under low and sufficient B conditions in Bonza (Figure 3-4). 

 The expression levels in ear of all Ta BOR1s were not different between low and 

sufficient B conditions both in Fang60 and Bonza. (Figure 3-5). 

 The transcript accumulation patterns of all Ta BOR1s were also compared 

between Fang60 and Bonza under B deficient condition. Ta BOR1s genes were 

expressed at relatively high levels in Fang60 compared to Bonza. Except for the 

expression levels of Ta BOR1.1 in roots and leaves at the vegetative stage, the 

expression levels of Ta BOR1.2 in leaves at the vegetative stage and ear, the expression 

levels were not significantly different among two genotypes. In Ta BOR1.3, except for 

ear, in Fang60 was higher than that in Bonza (Figure 3-6). These results suggest that Ta 

BOR1s may be required for wheat growth and development, especially in the 

reproductive stage under B limitation. This implies that these genes may be involved in 

the tolerance to B deficiency of wheat. 
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Figure 3-4. Transcript levels of wheat BOR1-like genes, Ta BOR1.1, Ta BOR1.2 and 

Ta BOR1.3 in leaves at the reproductive stage of Fang60 (B-efficient genotype) and 

Bonza (B-inefficient genotype) under B deficient (0 µM B) or sufficient (10 µM B) 

condition. The transcript levels of each gene in Fang60 at 10 µM B were used as the 

control and assigned value of 1. Means of three biological replicates±SE for each 

treatment are shown (n=3). Statistical significance was determined using Student's t-

test; * P< 0.05, ** P< 0.01. 
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Figure 3-5. Transcript levels of wheat BOR1-like genes, Ta BOR1.1, Ta BOR1.2 and 

Ta BOR1.3 in ear of Fang60 (B-efficient genotype) and Bonza (B-inefficient genotype) 

under B deficient (0 µM B) or sufficient (10 µM B) condition. The transcript levels of 

each gene in Fang60 at 10 µM B were used as the control and assigned value of 1. 

Means of three biological replicates±SE for each treatment are shown (n=3). Statistical 

significance was determined using Student's t-test. 
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Figure 3-6. Summary of relative expression of wheat BOR1-like genes, Ta BOR1.1, 

Ta BOR1.2 and Ta BOR1.3 in roots at the vegetative stage, leaves at the vegetative stage, 

roots at the reproductive stage, leaves at the reproductive stage and ear of Fang60 (B-

efficient genotype) and Bonza (B-inefficient genotype) under B deficiency were 

analyzed by real-time PCR. The transcript levels of each gene in Fang60 at 10 µM B 

were used as the control and assigned value of 1. Means of three biological 

replicates±SE for each treatment are shown (n=3). Statistical significance was 

determined using Student's t-test; * P< 0.05, ** P< 0.01. 
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3.3.2 Transcript levels of Zm BOR1 gene among two genotypes of maize related 

to B deficiency 

Similar to wheat BOR1 genes expression study, Zm BOR1 genes were compared 

between B-efficient variety (Sweet corn) and B-inefficient variety (NS72) of maize in 

different organs including roots (vegetative stage), leaves (vegetative stage), roots 

(reproductive stage), leaves (reproductive stage), ear and baby corn under low and 

sufficient B conditions using quantitative real-time PCR. The results demonstrated that 

Zm BOR1 of Sweet corn and NS72 mainly expressed in ear (Figure 3-7). In Sweet corn 

the expression levels of Zm BOR1 under low B conditions was higher in ear, while in 

leaves at the vegetative stage, and baby corn, Zm BOR1 expression was lower than that 

under sufficient B conditions (Figure 3-7 and 3-8). 

The level of transcript accumulation of Zm BOR1 of NS72 was not significantly 

different among B conditions, except for baby corn. The expression levels of Zm BOR1 

was up-regulated under low B condition as compared with the sufficient B condition 

(Figure 3-7 and 3-8). 

Zm BOR1 expression patterns of Sweet corn and NS72 at a various tissues and 

two developmental stages were comparatively analysed under B deficient conditions 

(Figure 3-9). The expression levels of Zm BOR1 in Sweet corn was higher than that in 

NS72 in ear and roots at both the vegetative and reproductive stage. There was no 

significantly difference in Zm BOR1 expression in leaves at both the vegetative and 

reproductive stages and baby corn between two genotypes (Figure 3-9). These results 

suggest that the expression of Zm BOR1 may be correlated with B deficiency tolerance 

in maize roots. 
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Figure 3-7. Transcript levels of Zm BOR1-like gene in roots and leaves at the 

vegetative stage, and ear at the reproductive stage of Sweet corn (B-efficient 

genotype) and NS72 (B-inefficient genotype) under B deficient (0 µM B) or sufficient 

(20 µM B) condition. The transcript levels of Zm BOR1 in Sweet corn at 20 µM B was 

used as the control and assigned value of 1. Means of three biological replicates±SE for 

each treatment are shown (n=3). Statistical significance was determined using Student's 

t-test; * P< 0.05, ** P< 0.01. 
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Figure 3-8. Transcript levels of Zm BOR1-like gene in roots, leaves and baby corn at 

the reproductive stage of Sweet corn (B-efficient genotype) and NS72 (B-inefficient 

genotype) under B deficient (0 µM B) or sufficient (20 µM B) condition. The transcript 

levels of Zm BOR1 in Sweet corn at 20 µM B was used as the control and assigned 

value of 1. Means of three biological replicates±SE for each treatment are shown (n=3). 

Statistical significance was determined using Student's t-test; ** P< 0.01. 

** 
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Figure 3-9. Summary of relative expression of Zm BOR1 in roots at the vegetative 

stage, leaves at the vegetative stage, roots at the reproductive stage, leaves at the 

reproductive stage, ear and baby corn of Sweet corn (B-efficient genotype) and NS72 

(B-inefficient genotype) under B deficiency was analyzed by real-time PCR. The 

transcript levels of Zm BOR1 in Sweet corn at 20 µM B was used as the control and 

assigned value of 1. Means of three biological replicates±SE for each treatment are 

shown (n=3). Statistical significance was determined using Student's t-test; * P< 0.05, 

** P< 0.01. 
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3.3.3 Transcript levels of Os BOR1 gene among two genotypes of rice related to 

B deficiency 

I compared the transcript levels of Os BOR1 gene between B-efficient variety 

(Suphanburi1; SPR1) and -inefficient variety (Chainart1; CNT1) of rice.  

Similar to the previous results (Nakagawa et al., 2007), the expression levels of 

Os BOR1 were not affected by B status in all tested tissues. There were no difference in 

Os BOR1 expression among B conditions in both SPR1 and CNT1 (Figure 3-10). In 

leaves at the reproductive stage and panicle, the expression levels of Os BOR1 could not 

be detected under low and sufficient B conditions in CNT1 by using the specific 

primers for Os BOR1 as shown in Table 3-1 (Figure 3-10). 

The expression patterns of Os BOR1 gene was compared between SPR1 and 

CNT1 under B deficient condition (Figure 3-11). Similar to wheat and maize BOR1-like 

gene expression, Os BOR1 was differentially expressed between B-efficient and B-

inefficient varieties. Os BOR1 gene was expressed at higher level in SPR1 compared to 

CNT1 (Figure 3-11). 
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Figure 3-10. Transcript levels of Os BOR1 gene in roots and leaves at the vegetative 

stage, roots and leaves at the reproductive stage, and panicle of SPR1 (Suphanburi1; 

B-efficient genotype) and CNT1 (Chainart1; B-inefficient genotype) under B deficient 

(0 µM B) or sufficient (10 µM B) conditions. The transcript levels of Os BOR1 in SPR1 

at 10 µM B was used as the control and assigned value of 1. Means of three biological 

replicates±SE for each treatment are shown (n=3). Statistical significance was 

determined using Student's t-test. N.A., not amplified; Rep., reproductive stage.  
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Figure 3-11. Summary of relative expression of Os BOR1 in roots at the vegetative 

stage, leaves at the vegetative stage, roots at the reproductive stage, leaves at the 

reproductive stage and panicle of SPR1 (Suphanburi1; B-efficient genotype) and CNT1 

(Chainart1; B-inefficient genotype) under B deficiency was analysed by real time PCR. 

The transcript levels of Os BOR1 in SPR1 at 10 µM B was used as the control and 

assigned value of 1. Means of three biological replicates±SE for each treatment are 

shown (n=3). Statistical significance was determined using Student's t-test; * P< 0.05, 

** P< 0.01. N.A., not amplified; Rep., reproductive stage.  
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3.4 Discussion 

 In Thailand, the B deficiency in soil is found especially in the north region. B 

deficiency is observed in wheat, maize, and rice which are grown in the north of 

Thailand (Rerkasem and Jamjod, 1989). Several researches have been doing to solve the 

problems. Physiological analysis and genetic variation in B efficiency among plant 

genotypes have been reported, however, the molecular and genetic mechanisms of B 

tolerance remain unclear. This study aims to advance the understanding of the 

molecular basis of B tolerance in wheat, maize, and rice. I compared transcript levels of 

BOR1-like gene, an efflux type B transporters, between B-efficient and -inefficient 

genotypes in different organs under B deficiency using quantitative real-time PCR. 

 

 3.4.1 The expression levels of Ta BOR1s genes correlate with the ability of B 

deficiency tolerance in wheat   

The transcript levels of wheat BOR1-like gene was comparatively analysed 

between two genotypes under B limitation. Fang60, which is classified as a B-efficient 

variety (Jamjod et al., 1992) and Bonza, which is classified as a B-inefficient variety 

(Rerkasem and Jamjod, 1997a) were used in this study. Three BOR1-like genes (named 

Ta BOR1.1, Ta BOR1.2, and Ta BOR1.3), which is the most similar to Os BOR1 in 

amino acid sequence, were identified from wheat genome and these are functional 

efflux transporters of B like At BOR1 and Os BOR1 (Chapter 2).  

Ta BOR1.1 of Fang60 was expressed at 12, 37 and 2 folds higher as compared 

those of Bonza in roots at the reproductive stage, leaves at the reproductive stage, and 

ear, respectively (Figure 3-6). Ta BOR1.2 of Fang60 was expressed at 4.5, 1.3, 2.0, and 
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10 folds higher than those of Bonza in roots at the vegetative stage, leaves at the 

vegetative stage, roots at the reproductive stage, and leaves at the reproductive stage, 

respectively (Figure 3-6). While, Ta BOR1.3 was expressed at 4.0, 2.3, 10, and 130 

folds higher in Fang60 than in Bonza in roots at the vegetative stage, leaves at the 

vegetative stage, roots at the reproductive stage and leaves at the reproductive stage, 

respectively (Figure 3-6). The expression levels of three Ta BOR1s in Fang60 were high 

under B deficient condition in most of the tested organs as compared with those in 

Bonza (Figure 3-6). In wheat, the functional B requirement for reproductive growth is 

higher than that for vegetative growth (Rerkasem et al., 1997). The critical B 

concentration required for early vegetative growth in wheat is reported to be about 1 mg 

B kg
-1

 DW (Asad et al., 2001). In contrast, grain set failure in wheat has been found less 

than 2-4 mg B kg
-1

 DW in the ear (Rerkasem and Lordkaew, 1992) and 3-7 mg B kg
-1

 

DW in the flag leaf at the boot stage (Rerkasem and Loneragan, 1994). Wheat is well 

known for its difference in their sensitivity to B deficiency for B uptake ability 

(Cangiani-Furlani et al., 2004 and Nachiangmai et al., 2004). Rerkasem and Jamjod 

(1997a) observed large variation among wheat genotypes in low B concentrations with 

quartz river sand experiments. Under low B conditions, the two most sensitive groups of 

genotypes are completely male sterile and set only a few or no grains, while the tolerant 

group set grains normally (Cangiani-Furlani et al., 2004). Pollen viability of the B-

efficient Fang60 is not affected by withholding B during the critical stage of 

microsporogenesis, while pollen viability of B-inefficient SW41 is nearly halved. A B-

efficient wheat variety may have greater ability to accumulate B from the growing 

medium than a B-inefficient variety wheat thereby contributing to reproductive 

development (Nachiangmai et al., 2004). Consistent with this study, Ta BOR1s were 
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differentially expressed between the two genotypes. The expression of Ta BOR1s genes 

are expressed at high levels in tolerant compared to sensitive genotype. It is possible 

that expression of Ta BOR1 genes was correlated with the ability of tolerance genotypes 

to B deficiency in wheat.  

Moreover, the results of this study support the previous study. Nachiangmai et al. 

(2004) determined whether differences in B transport and retranslocation ability among 

cultivars can explain the differences in B efficiency between B-efficient (Fang60) and 

B-inefficient (SW4) wheat cultivars. They reported that the 
10

B accumulation in ears of 

Fang60 is greater than SW41 with limited external B supply, suggesting that B 

efficiency was associated with xylem transport of B (Nachiangmai et al., 2004). 

Furthermore, a study with 
10

B revealed that Fang60 was able to retranslocate B from 

older to younger tissues after B supply to the roots was withdrawn, whereas Bonza was 

not able to (Konsaeng, 2007). The comparative study of Fang60 and SW41 showed that 

a major mechanism in B efficiency in wheat was associated with the transport of B from 

roots to the developing ear. BOR1, an efflux B transporter, is involved in not only B 

transport into the xylem but also in B distribution within shoots (Miwa and Fujiwara, 

2010). It is possible that the high expression of Ta BOR1s enable effective transport 

from the root into reproductive organs under low B condition.  

Most of the Ta BOR1s represent the difference in transcript levels between 

efficient and inefficient varieties under B deficiency. The expression of Ta BOR1.1, Ta 

BOR1.2, and Ta BOR1.3 of Fang60 is higher than that of Bonza in most tested tissues. 

This study showed that the expression of Ta BOR1s genes correlates with the B 

deficiency tolerance. These genes may be involved in the tolerance to B deficiency of 
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wheat. Especially, Ta BOR1.1 transcripts in root and leaf at the reproductive stage were 

higher at both conditions, suggesting that roots and leaves at the reproductive stage are 

appropriate tissue for B deficiency tolerance selection. 

 

3.4.2 The transcript levels of Zm BOR1 correlate with the difference in B 

deficiency in maize 

Similar to wheat experiment, this study aimed to evaluate the differences in gene 

expression patterns between B-efficient and B-inefficient genotypes of maize under B 

deficiency. The levels of Zm BOR1 gene transcript were compared in difference organs. 

Zm BOR1 is 93% identical in amino acid sequence to Os BOR1 (Appendix1). In this 

study, Sweet corn and NS72 were used as a B-efficient and B-inefficient variety, 

respectively.  

Along with most cereals, maize has been generally considered to have a 

relatively low B requirement compared with other crops (Marten and Westermann, 

1991). A wide range of genotypic variation in the B deficiency response has also been 

reported in maize. Lordkaew et al. (2007) observed the response of maize to B during 

vegetative and reproductive growth and evaluated genotypic variation in B deficiency 

response. Seven maize genotypes were evaluated for their response to B. The most 

tolerant genotype to B deficiency was Sweet corn, which had about the same grain 

number in B-deficient and -sufficient condition. In contrast, NS1, NS72 and CM are 

sensitive to B deficiency, which set almost no grain under low B condition.  

The Zm BOR1 mRNA levels were highly expressed in roots at the vegetative 

stage and higher in Sweet corn than that in NS72, while the expression levels of Zm 
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BOR1 in leaves was not different between two genotypes (Figure 3-9). These results are 

consistent with the detailed physiological analysis of two maize genotypes. At seedling 

stage, the two maize genotypes grew differently in nutrient solution from which B has 

been removed (Lordkaew, 2007). The concentrations of B in the roots and shoots of 

Sweet corn were 2-3 folds higher than those of NS72 (Lordkaew et al., 2007). It is 

likely that the transcript levels of Zm BOR1 may correlate with the B efficiency in 

maize genotypes. B-efficient variety would have more effective transport from the root 

into shoot under low B condition. 

The Zm BOR1 mRNA levels were also highly expressed in ear, while the 

expression in baby corn is at low level (Figure 3-9). The expression levels of Zm BOR1 

was higher in Sweet corn than in NS72 in roots at the reproductive stage under B 

deficiency (Figure 3-9). Consistent with the physiological analysis, the B-inefficient 

genotype appeared more severe symptoms of B deficiency than the B-efficient genotype 

in roots and leaves at the reproductive stage. Lordkaew et al (2011) demonstrated that 

the silk was poorly developed and thin under B deficiency in B-inefficient genotypes, 

whereas silk appeared normal and thick under normal B condition from the part of 

young ear (baby corn) in both genotypes. It is possible that the higher transcript levels 

of Zm BOR1 of Sweet corn in roots at the reproductive stage contributes efficient B 

uptake and efflux transport from roots to shoots and reproductive organs as compared 

with NS72. Moreover, roots at the reproductive stage is appropriate tissue for B 

deficiency tolerance selection. 
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3.4.3 The expression levels of Os BOR1 gene correlates with the ability in 

tolerance to B deficiency of rice  

The aim of present study was to investigate how rice genotypes with different B 

deficient sensitivity, differ with respect to the expression pattern of Os BOR1 gene, 

under B deficient condition, which could be related to the varietal difference in 

tolerance. Genotypic variation in response to low B has been reported in rice. In 

Pakistan, the yield was depressed range from 9 to 32% in grain and from 2 to 44% in 

yield due to B deficiency among different rice varieties (Rashid et al., 2002). B 

deficiency depressed pollen viability and grain set in rice in the same way as in wheat 

and maize (Rerkasem and Jamjod, 1997b).  

SPR1 (Suphanburi1), which is a B-efficient variety, and CNT1 (Chainart1), 

which is a B-inefficient variety (Lordkaew et al., 2013), were used in this study. 

Lordkaew et al. (2013) demonstrated that grain weight was strongly depressed by B 

deficiency, ranging from 28% in SPR1 to 79% in CNT1. B uptake and transporter genes 

have been identified in rice. As described above, the rice BOR1 gene, Os BOR1, has 

been identified through phylogenetic analysis (Nakagawa et al., 2007). Os BOR1 is a B 

efflux transporter required for normal growth especially under B-limited conditions 

(Nakagawa et al., 2007).  

I compared the expression levels of Os BOR1 between SPR1 and CNT1 in 

different organs. The expression levels of Os BOR1 in all tested organs were not 

affected by B status. There was no difference in Os BOR1 expression between low and 

sufficient B conditions in both SPR1 and CNT1 (Figure 3-10). Similar to the previous 

results of Nakagawa et al. (2007), the accumulation of Os BOR1 transcripts in leaves 
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and roots was not affected by B deprivation. In this study, Os BOR1 was differentially 

expressed between SPR1 and CNT1 in all tested organs including roots at both the 

vegetative and reproductive stage, leaves at both the vegetative and reproductive stage 

and panicle. The levels of Os BOR1 transcript accumulation were higher in SPR1 than 

in CNT1 under low B condition (Figure 3-11). The mechanisms responsible for the 

different in expression of Os BOR1 gene remains to be identified. However, this work 

proved that variation in Os BOR1 expression between two genotypes is correlated with 

the B deficiency tolerance in rice.  

In summary, to elucidate the molecular basis of B deficiency and tolerance in 

cereal crops (wheat, maize and rice), the expression analysis of BOR1-likes, under B 

deficiency was performed using quantitative real-time PCR against B-efficient and B-

inefficient genotypes. The expression patterns of BOR1-like genes are different between 

two genotypes. BOR1-like gene transcripts are accumulated to higher levels in a tolerant 

cultivar than the sensitive ones in most tested tissues. It is possible that B-efficient 

variety would have more effective transport of B from the root into reproductive organs. 

Moreover, BOR1-like genes can be useful as an indicator of B deficiency tolerance in 

wheat maize and rice by selecting appropriate tissues and growth stages.  
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CHAPTER 4 

Analysis of A. thaliana GLIP1 Gene in Relation to B Deficiency 

 

4.1 Introduction 

In recent years, many progresses have been made toward the understanding of 

molecular mechanisms of B transport in plants (Takano et al., 2002 and 2006; Miwa et 

al., 2007; Nakagawa et al., 2007; Tanaka et al., 2008). Takano et al. (2006) found 

NIP5;1 is a gene up-regulated under B limitation in A. thaliana roots. As described in 

Introduction, NIP5;1 is localized to the plasma membrane and shown to be as a boric 

acid channel to facilitate B across the membrane. In 2008, Tanaka et al. revealed that 

NIP6;1 is also a boric acid channel required for proper distribution of boric acid and 

involved in xylem-phloem transfer of boric acid at the nodal regions. In contrast to 

NIP5;1, the transcript accumulation of NIP6;1 is elevated in young rosette leaves and 

shoot apices but not in roots (Tanaka et al., 2008).  

 To investigate B deficiency responsive genes, similar to the case of NIP5;1, I 

searched for genes up-regulated under B-deficient conditions in A. thaliana roots using 

a combination of DNA microarray and quantitative real-time PCR analysis. Since DNA 

microarray has already been done by Dr. M. Tanaka, I used the microarray data and 

selected 16 genes and examined the expression levels using quantitative real-time PCR. 

In this study, I focused on GLIP1. The physiological functions of GLIP1 were examined 

and discussed the possible roles of GLIP1 gene responsive to B deficiency in A. 

thaliana.     



 
 

80 
 

4.2 Materials and Methods 

 4.2.1 Plant materials 

 Col-0 (ecotype Columbia) of Arabidopsis thaliana (L.) Heynh. was from our 

laboratory stock. Two independent mutant alleles for GLIP1 T-DNA insertion lines, 

SALK_130146 and SALK_119002, in the Col-0 background were obtained from 

ABRC. Homozygous lines for each T-DNA insertion were selected by PCR analysis 

using primer specific to genome DNA and T-DNA. The positions of the T-DNA 

insertion sites were then verified by nucleotide sequence determination. Primers used 

are shown in Table 4-1. 

Table 4-1. Genes and gene-specific primers used for homozygous T-DNA insertion line 

selection and nucleotide sequence determination.  

T-DNA Oligonucleotide primer sequences, 5´to 3´ 

insertion line Forward Reverse 

T-DNA  GCGTGGACCGCTTGCTGC AACT TGACAGGATATATTGGCGGGTAAAC 

SALK_130146 CCTCC TTGAACCCTTCAAAAC TTGTAACAAACCAATCCGCTC 

SALK_119002 GACCAGCAGCTACATTAAGCG CAACGAGAAGCT TCTGAATGG 

 

4.2.2 Plant growth conditions 

  For phenotypic analysis, determination of GLIP1 mRNA accumulation, and 

determination of B concentration, plants were grown on the MGRL solid medium 

(Fujiwara et al., 1992). B concentrations were adjusted with boric acid without the 

change in pH. Two% sucrose and 1.5% gellan gum were added to make the solid media. 
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Surface-sterilized seeds were sown on the plates and incubated for one day at 4°C. The 

plates were placed vertically and incubated at 22°C under a 16-h light/8-h dark cycle. 

 For phenotypic analysis of GLIP1 T-DNA insertion mutants under various 

nutrient conditions, plant were grown on MGRL medium containing 1% sucrose 

solidified with 1% agar without B, Fe, Ca, Cu, Mo, Mg, Mn, Zn, N, P or K. After one 

day of incubation at 4 ºC, the plates were placed vertically in a growth chamber (16-h 

light/8-h dark cycle, 22 ºC) for 14 d. 

 

 4.2.3 Quantification of transcript accumulation by real-time PCR 

 Plants were grown under long-day conditions in solid medium supplied with 

0.03, 0.1, 0.3 or 100 µM B for 14 days. Roots were separately collected from three 

independent plants. Total RNA was extracted using the RNeasy Plant Mini Kit as 

described by the manufacturer. Total RNA (500ng) was reverse-transcribed into cDNA 

in a 20 µl reaction using the PrimeScript RT reagent kit with oligo(dT)16 primer for RT-

PCR. The cDNA was amplified by PCR in a Thermal Cycler Dice with SYBR Premix 

Ex TaqII. The Elongation Factor1- (EF1-) gene was used as a control for 

quantitation. The primers used in real-time PCR were as follows: 5´-

ATTCAAATACGCCCTTCACG-3´ and 5´-ACTTTGCGACAGTCCCATT C-3´ for 

GLIP1; 5-CCTTGGTGTCAAGCAGATGA-3´ and 5´-TGAAGACACCTCCTTGATG 

ATTT-3´ for EF1-. Specific amplification of target genes was confirmed by 

electrophoresis. The relative expression level of GLIP1 was calculated using the 

standard curve method and standardized using EF1-  as a calibrator. 
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 4.2.4 Measurement of B and Ca concentration in plants 

 To determine the B concentration in roots and shoots of Col-0 and T-DNA 

mutant lines, plants were grown in solid medium containing 0.03, 0.1, 0.3 or 100 µM B 

for 14 d under long-day conditions. Roots and shoots were separately harvested from 

three independent plants and dried in oven at 60°C for more than 60 h. Dry weight was 

determined and concentrated HNO3 was added followed by the complete digestion at 

130ºC for more than 2 h in a teflon tube until the residue was completely dried. Two ml 

of 0.08N HNO3 containing 5 ppb Be was added to dissolve the pellet. The B contents of 

these samples were determined using ICP-MS. 

 To determine the Ca concentration in roots and shoots of Col-0 and GLIP1 T-

DNA mutant lines, plants were grown in solid medium containing 0.2 or 2mM Ca for 

14 d under long-day conditions. Ca concentrations were determined by ICP-MS as 

described in B determination. 
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4.3 Results 

4.3.1 Identification of A. thaliana GLIP1 as a gene up-regulated under B 

limitation in roots 

To search for genes that response to B deficiency, microarray analysis was 

carried out using A. thaliana roots under B deficient condition. The microarray analysis 

was performed by Dr. Tanaka and found that 88 candidate genes were up-regulated by 

B deficiency in A. thaliana roots (Appendix 2). The expression levels of 16 candidate 

genes are up-regulated more than 2.1 folds under B deficiency by using quantitative 

real-time PCR. Among 16 genes, 5 genes, including GLIP1, FAMT, F4P12, CYP71A12 

and MDC8, were up-regulated in B-deficient roots as compared with B-sufficient roots 

(Figure 4-1). Among the 5 genes, GLIP1 (At5g40990) was selected for further analysis 

on the phenotype of the mutant plants and studied in its function as described below. 

The expression levels of GLIP1 in response to B deficiency was analysed by 

quantitative real-time PCR. These experiments were repeated two times, and similar 

results were obtained in each case. The results suggested that the expression levels of 

GLIP1 transcript was up-regulated under low B condition. The mRNA levels of GLIP1 

under low B condition was 25.1 times higher than under sufficient condition (Figure 4-

2).  
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Figure 4-1. Relative mRNA levels of the 16 candidate genes that were up-regulated 

under B deficiency from microarray data were verified by using quantitative real-time 

PCR in roots of Col-0 plants. Plants were grown on solid medium containing 0.3 or 100 

µM boric acid. The transcript levels of each gene at 100 µM B was used as the control 

and assigned value of 1. Means of three biological replicates±SE for each treatment are 

shown (n=3).   
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Figure 4-2. Accumulation of GLIP1 (At5g40990) mRNA in roots of Col-0 plants. 

Plants were grown on solid medium containing 0.3 (B-) or 100 (B+) µM boric acid. The 

transcript levels of GLIP1 at 100 µM B was used as the control and assigned value of 1. 

Means of three biological replicates±SE for each treatment are shown (n=3). Statistical 

significance was determined using Student's t-test; ** P< 0.01. 
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4.3.2 Isolation of GLIP1 T-DNA insertion mutants 

To investigate the function of the GLIP1 gene in A. thaliana, two independent 

mutant alleles for GLIP1 were obtained. SALK_130146 and SALK_119002, T-DNA 

insertion lines of GLIP1, were obtained from ABRC and named glip1-2 and glip1-3, 

respectively. Homozygous lines for each T-DNA insertion were selected by PCR 

analysis (Figure 4-3A). 

The exact position of T-DNA insertion lines were verified by the nucleotide 

sequence analysis. T-DNA was inserted in the fourth exon and the third exon in glip1-2 

and glip1-3, respectively (Figure 4-3).  
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Figure 4-3. GLIP1 mutant alleles. Schematic representation of a T-DNA insertion in 

the GLIP1 gene and the exon-intron structure of the genes. Black and white bars 

indicate exons and introns, respectively.  
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4.3.3 Expression and functional analysis of GLIP1 

4.3.3.1 Phenotypic analysis of GLIP1 T-DNA insertion mutants 

To characterize the function of GLIP1 gene in A. thaliana, two independent T-

DNA insertion mutant lines for GLIP1, glip1-2 and glip1-3, were used. The T-DNA 

insertion lines and wild-type (Col-0) plants were grown under 0.03, 0.1, 0.3 or 100 µM 

B for 14 days. Both T-DNA insertion lines showed normal root growth as compared 

with wild-type plants at 0.1, 0.3 or 100 µM B conditions. Whereas at 0.03 µM B, the 

root elongation rate of both lines, especially the root growth rate was reduced and 

shorter than wild-type at 10 days after germination (Figure 4-4). No difference between 

glip1-2 and glip1-3 was observed in sensitivity to B deficiency. Taken together, these 

results suggest that root growth of glip1 may sensitive to B deficient conditions. 
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Figure 4-4. Root elongation rate of GLIP1 T-DNA lines under 0.03, 0.1, 0.3 or 100 µM 

B at 10-14 days after germination. Statistical significance was determined using 

Student's t-test; * P< 0.05, ** P< 0.01. (glip1-2, SALK_130146; glip1-3, 

SALK_119002) 
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Figure 4-5. Root elongation rate of GLIP1 T-DNA lines and Col-0 plants after 

germination 7, 10 or 14 days under 0.03 µM B. Statistical significance was determined 

using Student's t-test; * P< 0.05, ** P< 0.01. (glip1-2, SALK_130146; glip1-3, 

SALK_119002) 
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4.3.3.2 B concentration in GLIP1 T-DNA insertion plants 

To examine the physiological function of GLIP1, the B concentrations of the T-

DNA lines and wild-type plants grown under various B concentrations (0.03, 0.1, 0.3 or 

100 µM B) were determined using ICP-MS. There were no difference in the B 

concentrations in roots and shoot between Col-0 and glip1 T-DNA plants, except at 100 

µM B condition in shoot. The B concentrations of both glip1 plants were significantly 

reduced (Figure 4-6). 
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Figure 4-6. The B concentrations in roots (A) and shoots (B) of Col-0 and GLIP1 T-

DNA lines for GLIP1. Plants were grown in solid medium containing 100, 0.3, 0.1 or 

0.03 µM boric acid for 14 days. Statistical significance was determined using Student's 

t-test; * P< 0.05, ** P< 0.01. (glip1-2, SALK_130146; glip1-3, SALK_119002) 
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4.3.3.3 Phenotypic analysis of GLIP1 T-DNA insertion mutants under various 

nutrient conditions 

To demonstrate whether the mutant phenotype is specific to B deficiency, the 

phenotype of the T-DNA insertion lines and Col-0 plants were examined on the medium 

without boron (B-), iron (Fe-), calcium (Ca-), copper (Cu-), molybdenum (Mo-), 

magnesium (Mg-), manganese (Mn-), zinc (Z-), nitrogen (N-), phosphate (P-), or 

potassium (K-). The results showed that there were no significantly difference in root 

elongation between the mutant lines and wild type plants under all of the nutrient 

deficient conditions (Figure 4-7A). While, the shoot weight of both GLIP1 mutant lines 

was significantly reduced in Ca deficient condition compared with wild type plants 

(Figure 4-7B). 

To confirm the phenotype of GLIP1 T-DNA insertion lines under Ca deficiency, 

the mutants and Col-0 plants were grown under 0, 0.15, 0.2, 0.25 or 2 mM Ca 

conditions. Under low Ca conditions (0, 0.15, 0.2, and 0.25 mM Ca), root length was 

not statistically different between the Col-0 and mutants (Figure 4-8A). In contrast, 

shoot fresh weight of both GLIP1 mutant lines was significantly reduced under 0, 0.15, 

0.2, and 0.25 mM Ca conditions compared with Col-0, except for 2 mM Ca condition, 

indicating that the shoot is sensitive to Ca deficiency (Figure 4-8B and 4-9). 
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Figure 4-7. Root length (A) and shoot fresh weight (B) of Col-0 and GLIP1 T-DNA 

lines under nutrient deficient conditions after germination 14 days (n=5-10); * P < 0.05, 

** P < 0.01 by Student’s T-test (B; boron, Fe; I ron, Ca; calcium, Cu; copper, Mo; 

molybdenum, Mg; magnesium, Mn; manganese, Zn; zinc, N; nitrogen, P; phosphorus, 

K; Potassium) 
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Figur4-8. Root elongation (A) and shoot fresh weight (B) of GLIP1 T-DNA lines under 

2, 0.25, 0.2, 0.15 or 0 mM calcium conditions after germination 14 days (n=5-10) 

Statistical significance was determined using Student's t-test; * P< 0.05, ** P< 0.01. 

(glip1-2, SALK_130146; glip1-3, SALK_119002) 
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 Figure 4-9. Plants were grown in solid medium containing 2, 0.25, 0.20, 0.15 or 0 mM 

Ca for 14 days. Picture of Figure 4-8. Bars show 1 cm. (glip1-2, SALK_130146; glip1-

3, SALK_119002) 

  



 
 

97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-9 (Continue). Plants were grown in solid medium containing 2, 0.25, 0.20, 

0.15 or 0 mM Ca for 14 days. Picture of Figure 4-8. Bars show 1 cm. (glip1-2, 

SALK_130146; glip1-3, SALK_119002) 
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Figure 4-9 (Continue). Plants were grown in solid medium containing 2, 0.25, 0.20, 

0.15 or 0 mM Ca for 14 days. Picture of Figure 4-8. Bars show 1 cm. (glip1-2, 

SALK_130146; glip1-3, SALK_119002) 
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4.3.3.4 GLIP1 transcript accumulation in T-DNA insertion lines 

Accumulation of GLIP1 mRNA in the insertion lines and the wild-type plants 

was quantified by quantitative real-time PCR. Plants were grown on solid medium 

containing 0.2 or 2 mM Ca for 14 d. The GLIP1 mRNA levels in roots of glip1-2 

mutant plants were 10 and 17.6% of those of the Col-0 plants at 0.2 and 2 mM Ca, 

respectively (Figure 4-10A). The mRNA levels in roots of glip1-3 mutant plants were 

32 and 12 % of those of Col-0 plants at 0.2 and 2 mM Ca, respectively. In shoots, 

GLIP1 mRNA level in glip1-3 was higher at 0.2 mM Ca compared with Col-0 plants 

(Figure 4-10).  
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Figure 4-10. Accumulation of GLIP1 mRNA in roots and shoots of Col-0 and GLIP1 

insertion lines. Plants were grown on solid medium containing 0.2 or 2mM Ca for 14 

days. The transcript levels of GLIP1 in Col-0 plants at 100 µM B was used as the 

control and assigned value of 1. Means of three biological replicates±SE for each 

treatment are shown (n=3). (glip1-2, SALK_130146; glip1-3, SALK_119002) 
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4.3.3.5 Ca concentration in GLIP1 T-DNA insertion plants 

 To further elucidate the functions of GLIP1 in Ca uptake and transport, the Ca 

concentrations in the roots and shoots of Col-0 and mutant plants grown under 0.2 or 2 

mM Ca conditions were determined using ICP-MS. Roots and shoots were collected 

from three biological replicates. Roots of glip1-2, glip1-3 and Col-0 plants showed no 

significant difference in Ca concentrations when grown in medium containing 0.2 or 2 

mM Ca. The significant reductions in Ca concentrations were observed in glip1-2 and 

glip1-3 in shoots under 0.2 mM Ca. In shoots under 2 mM Ca, the Ca concentrations in 

shoots of glip1-2 and glip1-3 were no significant difference as compared with Col-0 

plants (Figure 4-11), suggesting that GLIP1 may involve in Ca uptake and transport 

from roots to shoots under low Ca condition .  
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Figure 4-11. The Ca concentrations in roots (A) and shoots (B) of Col-0 and GLIP1 T-

DNA lines. Plants were grown in solid medium containing 0.2 or 2mM Ca for 14 days. 

Statistical significance was determined using Student's t-test; * P< 0.05, ** P< 0.01. 
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4.4 Discussion 

 4.4.1 GLIP1 is induced by B deficiency  

It has been reported that B deficiency induces the expression of stress responsive 

genes (Gonzalez-Fontes et al., 2008). In this study, the GLIP1 gene (At5g40990) was 

identified from A. thaliana roots as a gene whose expression is significantly increased 

under B deficient condition (Figure 4-1 and 4-2). GLIP1 is GDSL lipase that perform 

critical roles in the biotic and abiotic stress responses (Lee et al., 2009). Physiologically, 

plant GDSL lipases are generally considered to be mainly involved in the regulation of 

plant growth and development (Ling, 2008). GLIP1 is localized in the intercellular 

space and is secreted into the cell wall or extracellular space (Oh et al., 2005). Alves et 

al. (2010) observed that B deficiency altered the expression of gene related with lipid 

transport-related process and lipid metabolic processing.  

 

 4.4.2 A possible role of GLIP1 in plant growth under B or Ca deficiency 

Under Ca or B limitation, both glip1-2 and glip1-3 were affected the phenotype 

(Figure 4-4 and 4-8). In addition, the Ca concentrations in shoots of both insertion 

plants were reduced (Figure 4-11). These data indicate that GLIP1 is important for Ca 

transport from roots to shoots under low Ca condition.  

GLIP1 protein has a lipase activity that catalyses the hydrolysis of a lipid or 

phospholipid. GLIP1 also exhibit esterase activity (Oh et al., 2005). It is localized in the 

apoplastic space. In the Ca transport pathway, Ca
2+

 ion move across the plasma 

membranes of endodermal cells by apoplastic pathway (Figure 4-12). In A. thaliana, 
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suberin act as apoplastic barriers. Its function is to prevent water and nutrients taken up 

by the root from entering the stele through the apoplast. Suberin consists of two 

domains, including a polyaromatic and a polyaliphatic domain. The aliphatic domain of 

suberin is a polyester polymer (Franke et al., 2005). Taken altogether, it is possible that 

suberin may be degraded by GLIP1. So, the loss of GLIP1 in the mutants may 

accumulate the suberin and result in low Ca in shoots. While, in roots, plant can directly 

get Ca from the medium, Ca may be enough for root growth. 

In case of B, B is transported through both symplast and apoplast, considering 

that is different from Ca transport (Figure 4-12). Although, suberin were accumulate 

and affect the apoplastic pathway of B transport, B still has enough for shoot growth of 

the mutant under low B condition. Because B can uptake and transport through 

symplastic pathway by NIP5;1. For root phenotype of the mutants, now it is still unclear 

how GLIP1 affect the root length under low B conditions. However this hypothesis can 

explain most occurrences. 
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Figure 4-12. The models of Ca transport (A) and B transport (B) in A. thaliana roots.   

Apoplast 

Casparian strip 

B 

B 

Symplast 

Casparian strip 

Apoplast 

(A) Ca transport pathway 

(B) B transport pathway 



 
 

106 
 

Conclusion 

The aim of this study was to: (I) isolate novel B transporter gene in hexaploid 

wheat and characterize the function of these gene, (II) comparison the expression of 

genes related to known B efflux transporter in two genotypes with different B efficiency 

in cereal plants (wheat, maize and rice) in Thailand, (III) identify gene that response to 

B deficient condition. 

Three genes closely related to Os BOR1 were cloned from wheat, named Ta 

BOR1.1, Ta BOR1.2 and Ta BOR1.3. The Ta BOR1s genes are efflux-type B 

transporters that localize to the plasma membrane. The accumulation of Ta BOR1s are 

regulated at transcriptional level. This is the first identification and characterization of 

BOR1-like gene in wheat which has complex genomes. It is also the new finding that 

the regulation of Ta BOR1 is clear contrast with the regulation of At BOR1 (Chapter 2). 

The mechanism in tolerance to B deficiency is probably regulated by the 

expression level and/or function of the B transporter. The expression patterns of BOR1-

like genes are differentially among two different genotypes. BOR1-like gene expressed 

at high level in B-efficient compared to B-inefficient genotypes of wheat, maize and 

rice. It is possible that the expression levels of BOR1-like genes correlate with the B 

deficiency tolerance in plants. Moreover, BOR1-like genes can be useful as gene 

expression biomarkers for crop breeding in wheat maize and rice by selecting 

appropriate tissues and growth stages (Chapter 3).  

The GLIP1 gene (At5g40990) was identified as a gene whose expression is 

increased significantly under B deficient condition. GLIP1 may be required for root 
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growth of A. thaliana plants under B deficient and necessary for uptake and xylem 

loading of B from roots to shoots and functions under normal B condition. In addition, 

GLIP1 mutant plants were significantly reduced shoot weight and Ca concentrations in 

shoots under Ca deficiency, suggesting that GLIP1 required for A. thaliana shoot 

growth and involve in the Ca transport from roots to shoots. This is the first report that 

GDSL lipase relate to nutrient transport pathways in plants (Chapter 4). 
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Appendix 1 Phylogenetic relationship of BOR1-like proteins of wheat, A. thaliana, 

maize and rice. Phylogenetic analysis was performed with clustalw2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/).   
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Appendix 2 List of 88 candidate genes differentially expressed between B-sufficient (100 µM B) and deficient (0.3 µM B) conditions in 

Arabidopsis Col-0 roots. These data were obtained by microarray analysis (by Dr. M. Tanaka). 

  

Prob set AGI code Gene description

0.3 µM B 100 µM B fold change

251438_s_at At3g59930  defensin-like (DEFL) family protein 21426.5 1475.1 14.5

251937_at At3g53400 expressed protein 1734.9 163.5 10.6

252502_at At3g46900 copper transporter family 434.1 45.3 9.6

254971_at At4g10380 NIP5;1 major intrinsic family protein 7624 875 8.7

249333_at At5g40990 GDSL-motif lipase/hydrolase family protein 90.6 12.7 7.1

250955_at At5g03190 CONSERVED PEPTIDE UPSTREAM OPEN READING FRAME 47  expressed protein 510.9 79 6.5

260551_at At2g43510 trypsin inhibitor 219.4 43.1 5.1

267565_at At2g30750 cytochrome P450 71A12 321.1 67.9 4.7

254758_at At4g13260 flavin-containing monooxygenase 86.2 21.8 4.0

260462_at At1g10970 metal transporter, member of the Zinc (Zn2+)-Iron (Fe2+) permease (ZIP) family 829.1 213.8 3.9

246340_s_at At3g44860 S-adenosyl-L-methionine:carboxyl methyltransferase family protein 246.7 69.9 3.5

248151_at At5g54270 chlorophyll A-B binding protein / LHCII type III (LHCB3) identical to Lhcb3 protein 105.3 30.3 3.5

265121_at At1g62560 flavin-containing monooxygenase family protein 97.8 28.5 3.4

259575_at At1g35320 expressed protein 81.9 25.5 3.2

266336_at At2g32270 zinc transporter (ZIP3); member of the Zinc (Zn2+)-Iron (Fe2+) permease (ZIP) family 7159.2 2245.9 3.2

microarray results
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Prob set AGI code Gene description

0.3 µM B 100 µM B fold change

260703_at At1g32270 syntaxin, putative similar to syntaxin related protein 33.2 10.9 3.0

257927_at At3g23240 ethylene-responsive factor 1 86 28.3 3.0

261466_at At1g07690 hypothetical protein 82 27.3 3.0

262707_at At1g16290 expressed protein 51.2 17.2 3.0

246375_at At1g51830 leucine-rich repeat protein kinase 180.4 60.7 3.0

247919_at At5g57650 eukaryotic translation initiation factor 37.7 12.9 2.9

266179_at At2g02300 F-box family protein 80.6 28.7 2.8

253301_at At4g33720 pathogenesis-related protein 482.1 172.3 2.8

254098_at At4g25100 superoxide dismutase [Fe] 7415.3 2717.5 2.7

263877_at At2g21780 expressed protein 38.3 14.1 2.7

247204_at At5g64990 Ras-related GTP-binding protein 25.8 9.6 2.7

247678_at At5g59520 zinc transporter (ZIP2); member of the Zinc (Zn2+)-Iron (Fe2+) permease (ZIP) family 2855.7 1065.8 2.7

245875_at At1g26240 proline-rich extensin-like family protein 53.6 20.3 2.6

257027_at At3g19210 DNA repair protein RAD54 57.4 22 2.6

248048_at At5g56080 nicotianamine synthase 2026.5 778.3 2.6

microarray results
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Prob set AGI code Gene description

0.3 µM B 100 µM B fold change

253347_at At4g33610 glycine-rich protein 76.4 29.4 2.6

258388_at At3g15370 expansin (EXP12) 177.2 68.2 2.6

245038_at At2g26560 patatin 494.6 191.2 2.6

259837_at At1g52180 major intrinsic family protein 108.9 42.1 2.6

258277_at At3g26830 cytochrome P450 71B15 271.5 105.1 2.6

261009_at At1g26360 hydrolase, alpha/beta fold family 97.4 39.2 2.5

250172_at At5g14330 expressed protein 85.8 34.7 2.5

244957_at orf157 orf157 hypothetical protein 29.6 12.5 2.4

256208_at At1g50930 hypothetical protein 84.4 35.9 2.4

247755_at At5g59090 subtilase family protein 7029.1 3038.2 2.3

259269_at At3g01270 pectate lyase family protein 30.3 13.1 2.3

264574_at At1g05300 metal transporter (ZIP5); member of the Zinc (Zn2+)-Iron (Fe2+) permease (ZIP) family 1042.4 452.8 2.3

263558_at At2g16380 SEC14 cytosolic factor family protein 77.5 34.1 2.3

253413_at At4g33020 metal transporter (ZIP9); member of the Zinc (Zn2+)-Iron (Fe2+) permease (ZIP) family 248.8 109.5 2.3

252269_at At3g49580 expressed protein 72.2 31.8 2.3

microarray results
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Prob set AGI code Gene description

0.3 µM B 100 µM B fold change

257424_at At1g78840 F-box family protein 36.7 16.2 2.3

262012_s_at At1g35625 protease-associated zinc finger (C3HC4-type RING finger) family protein 111.6 49.4 2.3

267502_at At2g45550 cytochrome P450 family protein 58.9 26.2 2.2

260438_at At1g68290 bifunctional nuclease 56.3 25.2 2.2

252429_at At3g47500 Dof-type zinc finger domain 123.1 55.3 2.2

258395_at At3g15500 no apical meristem (NAM) family protein 205.5 92.4 2.2

258851_at At3g03190 glutathione S-transferase 1374.9 619 2.2

248667_at At5g48710 ubiquitin-related similar to SP|O13351 Ubiquitin-like protein smt3/pmt3 15.2 6.9 2.2

248725_at At5g47980 transferase family protein 1107.7 503.1 2.2

244953_s_at nad6 nad6 NADH dehydrogenase subunit 6 33.9 15.5 2.2

259087_at At3g04980 DNAJ heat shock N-terminal domain-containing protein 58.3 26.7 2.2

246013_at At5g10660 calmodulin-binding protein 23.7 10.9 2.2

254326_at At4g22610 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 652 300.7 2.2

249205_at At5g42600 pentacyclic triterpene synthase 1885.4 870.2 2.2

249676_at At5g35960 protein kinase 64.3 29.7 2.2

microarray results
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Prob set AGI code Gene description

0.3 µM B 100 µM B fold change

265817_at At2g18050 histone H1-3 (HIS1-3) 343.2 159.9 2.1

263380_at At2g40200 basic helix-loop-helix (bHLH) family protein 37.1 17.3 2.1

251524_at At3g58990 aconitase C-terminal domain 3457.5 1616.1 2.1

252111_at At3g51570 disease resistance protein (TIR-NBS-LRR class) 26.1 12.2 2.1

257021_at At3g19710 branched-chain amino acid aminotransferase 9666.5 4577.4 2.1

248729_at At5g48010 pentacyclic triterpene synthase 2834.9 1343.7 2.1

249752_at At5g24660 expressed protein 210.5 99.8 2.1

253070_at At4g37850 basic helix-loop-helix (bHLH) family protein 116.3 55.2 2.1

251191_at At3g62590 expressed protein 185.2 88.1 2.1

250123_at At5g16530 auxin efflux carrier family protein 73.2 35.4 2.1

254805_at At4g12480 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 167 80.9 2.1

264754_at At1g61400 S-locus protein kinase 45 21.8 2.1

263477_at At2g31790 UDP-glucoronosyl/UDP-glucosyl transferase family protein 926.6 449 2.1

259632_at At1g56430 nicotianamine synthase 224.9 109 2.1

262454_at At1g11190 bifunctional nuclease (BFN1) 1171.6 568.8 2.1

microarray results
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Prob set AGI code Gene description

0.3 µM B 100 µM B fold change

257206_at At3g16530 legume lectin family protein 162.6 79.1 2.1

265213_at At1g05020 epsin N-terminal homology (ENTH) domain 88 42.9 2.1

246110_at At5g20140 SOUL heme-binding family protein 101.7 49.6 2.1

266720_s_at At2g46790 pseudo-response regulator 9 (APRR9) / timing of CAB expression 1-like protein (TL1) 72.7 35.5 2.0

266218_s_at At2g28850 cytochrome P450 family protein 133.6 65.7 2.0

263042_at At1g23340 expressed protein 237 116.7 2.0

246708_at At5g28150 expressed protein 1079.6 534.8 2.0

264263_at At1g09155 SKP1 interacting partner 3 194.8 96.5 2.0

263963_at At2g36080 DNA-binding protein 299.3 148.5 2.0

245550_at At4g15330 cytochrome P450 family protein 417.1 207 2.0

263709_at At1g09310 expressed protein 29.6 14.7 2.0

262717_s_at At1g16410 cytochrome P450 family protein 536.4 266.7 2.0

249867_at At5g23020 2-isopropylmalate synthase 2 (IMS2) 7052 3519.3 2.0

microarray results
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