論文の内容の要旨

応用生命工学専攻

平成 22 年度博士課程 入学

氏名 ルーンティティカンチャナ スマナ

指導教員名 藤原徹

論文題目 Analysis of genes that respond to boron deficiency in model and crop plants

(ホウ素欠乏に応答する遺伝子のモデル植物や穀物を用いた解析)

Boron (B) has been recognized as an essential microelement for higher plants since 1923. B deficiency is a major agricultural problem that affects vegetative and reproductive growth of plants. Thus, it is important to advance the knowledge of molecular basis of B deficiency and tolerance in plants. So far, two types of boron transporters are found as effective B transporters under low B conditions in *Arabidopsis thaliana*, nodulin 26 (NOD26)-like intrinsic protein 5;1 (NIP5;1), a boric acid channel, involved in B uptake from soils to root cells, and BOR1, a B efflux-type transporter, involved in xylem loading of B in roots. These two types of boron transporters play important roles for normal growth under low B conditions.

In this thesis, I focused on genes that respond to B deficient condition in crop plants, wheat, maize and rice, and also in a model plant, *A. thaliana*. This research consists of three parts as follows. First part is the characterization of the *BOR1*-like genes responsible for B transport under B deficiency in wheat. In the second part, the accumulation of *BOR1*-like gene transcript was observed in several tissues in response to B stress between two genotypes with different B efficiencies of Thai wheat, Thai maize

and Thai rice. I found the tendency that the *BOR1*-like genes are more expressed in the B efficient cultivars than in inefficient cultivars. Finally, I identified a novel gene, *GDSL LIPASE-LIKE 1* (*GLIP1*), that response to B deficiency in *A. thaliana*, and expression and function of *GLIP1* were investigated in the third part.

1. Differential expression of three *BOR1* genes corresponding to different genomes in response to B conditions in hexaploid wheat (*Triticum aestivum* L.)

To overcome the problem of B deficiency in wheat, it is of fundamental importance to understand the molecular mechanisms of B transport through identification of transporters. Before I initiate this study, three *BOR1*-like genes (Ta *BOR1.1*, Ta *BOR1.2*, and Ta *BOR1.3*) were identified in wheat by Dr. Fujibe. He demonstrated that Ta BOR1s are capable of reducing the B concentrations in BY-2 cells expressing Ta BOR1s. Then Mr. Wang demonstrated Ta BOR1s-GFP expressed in *A. thaliana* leaf cells showed plasma membrane localization. Taken together, these results suggest that Ta BOR1s are efflux-type B transporters in plant cells.

I confirmed the nucleotide sequence of the *BOR1*-like genes and performed phylogenetic analysis. I found that the three *BOR1*-like genes (Ta *BOR1.1*, Ta *BOR1.2*, and Ta *BOR1.3*) in the wheat genome were the most similar to Os *BOR1* (91% in amino acid identity).

Then I demonstrated that three Ta *BOR1* genes were expressed with a different tissue-specificity and different response patterns to B conditions. Ta *BOR1.1* and Ta *BOR1.3* transcripts were up-regulated under low B conditions, while Ta *BOR1.2* transcript was up-regulated under excess B conditions. Taken together with functional analysis using BY-2 and plasma membrane localization, these results demonstrated that Ta *BOR1s* are the B efflux transporters in wheat. Interestingly, the genes on the A, B and D genomes have different expression patterns.

2. Comparison of *BOR1*-like gene expression in two genotypes with different B efficiencies in wheat (*Triticum aestivumL.*), maize (*Zea mays L.*) and rice (*Oryza sativa L.*) in Thailand

Genotypic variation in the response to low B supply has been reported in wheat, maize and rice. Here, I presented a comparative investigation of the differential transcript levels of *BOR1*-like genes that expressed in roots, leaves and reproductive organs of two genotypes with different B efficiencies in wheat (*Triticum aestivum L.*), maize (*Zea mays*) and rice (*Oryza sativa*) which were grown under B deficiency in Thailand.

The mRNA expression levels of Ta *BOR1*-like genes between B-efficient (Fang60) and B-inefficient (Bonza) wheat genotypes were compared. Ta *BOR1s* genes were expressed at relatively high levels in Fang60 compared to Bonza in most of the tissues I observed. These results suggest that Ta *BOR1s* may be required for wheat growth and development, especially in the reproductive stage under B limitation.

Zm *BOR1* mRNA expression levels were compared between B efficient variety (Sweet corn) and B inefficient variety (NS72) of maize. The expression of Zm *BOR1* in Sweet corn was higher than that in NS72 in ear at the reproductive stage and roots at both the vegetative and reproductive stages. There was no significant difference in Zm *BOR1* expression between two genotypes in leaves at the vegetative and reproductive stages, and baby corn. These results showed that the expression of Zm *BOR1* in roots is correlated with the B deficiency tolerance.

The expression patterns of Os *BOR1* gene were compared between B-efficient variety (SPR1) and B-inefficient variety (CNT1). Os *BOR1* gene was expressed at higher level in SPR1 compared to CNT1 in roots at the vegetative and reproductive stages, and leaves at the vegetative stage. The expression levels of Os *BOR1* in leaves at the reproductive stage and panicle were detected only in SPR1, not in CNT1. These results showed that Os *BOR1* expression levels correlated with the B deficiency tolerance in rice.

Taken altogether, I found the tendency that *BOR1*-like gene transcripts are accumulated to higher levels in a low boron tolerant cultivar than the sensitive ones. By selecting appropriate tissues and growth stages, the difference in transcript accumulation becomes more evident.

3. Analysis of GLIP1 gene that is required for boron and calcium deficiency tolerance

To identify the B deficiency responsive genes, I searched for genes up-regulated under B deficient conditions in *A. thaliana* roots using a combination of DNA microarray and quantitative

real-time PCR analysis. In this study, the *GLIP1* gene (At5g40990) was identified as a gene whose expression is increased significantly under B deficient condition.

To characterize the function of *GLIP1* gene in *A. thaliana*, two independent T-DNA insertion mutant lines, *glip1-2* and *glip1-3*, were used. While both *glip1-2* and *glip1-3* grew normally under normal B condition, both *glip1* mutant plants showed reduced growth rate under B limitation compared to wild type. The B concentrations in shoots of both *glip1* mutants were reduced under normal B condition compared to wild type.

To confirm whether the mutant phenotype is specific to B deficiency, mutant plants were grown under various nutrient deficient medium. The results showed that the shoot weight of both *GLIP1* mutant lines was significantly reduced in calcium (Ca) deficient condition compared with wild type plants. Ca concentrations showed significant reductions in *glip1-2* and *glip1-3* plants under low Ca conditions compared to wild type plants, suggesting that *GLIP1* is required for Ca deficient condition.

Conclusion

In this thesis, I have identified Ta *BOR1*s as efflux-type B transporters that localize to the plasma membrane in wheat. In addition, this thesis also demonstrated that the expression levels of *BOR1*-like genes correlate with the B deficiency tolerance in wheat, maize and rice. I have also identified *GLIP1* as low-B up-regulated gene in *A. thaliana* roots. *GLIP1* is required for *A. thaliana* roots and shoots growth under B and Ca deficiency, respectively and plays a role in the B and Ca transport from roots to shoots.

Publication

Leaungthitikanchana, S., Fujibe T., Tanaka M., Wang S., Sotta N., Takano J. and Fujiwara T. (2013) Differential expression of three *BOR1* genes corresponding to different genomes in response to boron conditions in hexaploid wheat (*Triticum aestivum* L.). *Plant and Cell Physiology*, Advance Access published May 10, 2013, doi:10.1093/pcp/pct059.