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Preface

The propose of this thesis is to study the Stokes semigroup on spaces of bounded functions.
It is well known that the solution operator of the linear Stokes equations, called the Stokes
semigroup, is an analytic semigroup on Lr-solenoidal space, r ∈ (1,∞), for various kinds
of domains including bounded domains with smooth boundaries [19], [7]. However, it had
been a long-standing open problem whether or not the Stokes semigroup is an analytic
semigroup on L∞-type spaces even for smoothly bounded domains. For a half space,
the Stokes semigroup is an analytic semigroup on L∞-type spaces since explicit solution
formulas are available [5], [20], [13]. It is the aim of the thesis to give an affirmative
answer to this problem for bounded domains, and moreover, for a large class of domains
including exterior domains and perturbed half spaces based on works [1], [2], [3].

For the Laplace operator or general elliptic operators, it is well known that the corre-
sponding semigroup is analytic on L∞-type spaces. K. Masuda was the first to prove the
analyticity of the semigroup associated to general elliptic operators on a space of contin-
uous functions in the whole space (including the case of higher orders) [14], [15], [16].
This result was then extended by H. B. Stewart to the case for the Dirichlet problem [21]
and more general boundary conditions [22]. We refer to a book by A. Lunardi [12, Chap-
ter 3] for this Masuda-Stewart method which applies to many other situations. However,
it seems that their localization argument does not directly apply to the Stokes equations
because of the presence of pressure.

In the sequel, we introduce a new a priori estimate for pressure in terms of velocity
on L∞ which plays a key role for the analyticity of the Stokes semigroup on L∞. The new
pressure estimate presented is available for merely bounded velocity while Lr-pressure
bounds through the Helmholtz projection do not hold for r = ∞. The pressure estimate on
L∞ is a key in proving an a priori L∞-estimate for solutions of the Stokes equations, which
in particular implies that the Stokes semigroup is an analytic semigroup on L∞.

The thesis is consist of 5 chapters. From Chapter 1 to Chapter 4, we prove an a priori
L∞-estimate for solutions of the non-stationary Stokes equations by a contradiction argu-
ment. Furthermore, in Chapter 5, we give a direct proof for the analyticity of the Stokes
semigroup on L∞ by a resolvent approach. We establish a corresponding resolvent esti-
mate directly by the Maduda-Stewart technique. The former is the original proof based on
a heuristic observation which implies a stronger estimate for higher derivatives than that
of the resolvent. The latter is rather involved, but we are able to prove the maximum angle
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of the analytic semigroup on L∞ which does not follow from a contradiction argument.
From Chapter 1 to Chapter 3, we study the a priori L∞-estimate for solutions (v, q) of

the non-stationary Stokes equations (subject to the Dirichlet boundary condition) in the
domain Ω,

sup
0<t≤T0

∥∥∥N(v, q)
∥∥∥

L∞(Ω)(t) ≤ C∥v0∥L∞(Ω), (0.1.1)

where v0 denotes the initial velocity and N(v, q)(x, t) denotes the the scale invariant norm
for solutions (v, q) up to second orders,

N(v, q)(x, t) =
∣∣∣v(x, t)

∣∣∣ + t1/2
∣∣∣∇v(x, t)

∣∣∣ + t
∣∣∣∇2v(x, t)

∣∣∣ + t
∣∣∣vt(x, t)

∣∣∣ + t
∣∣∣∇q(x, t)

∣∣∣. (0.1.2)

The a priori estimate (0.1.1) implies that the Stokes semigroup is extendable to a C0-
analytic semigroup on the continuous solenoidal space C0,σ(Ω). We prove the a priori
L∞-estimate (0.1.1) by a blow-up argument. A blow-up argument reduces the proof for
the a priori L∞-estimate (0.1.1) to the ”compactness” of a blow-up sequence and to the
”uniqueness” of a blow-up limit. By rescaling around a blow-up point, a limit problem is
either the whole space or a half space. If the problem is the heat equation, it is easy to re-
alize this argument. However, for the Stokes equations, both compactness and uniqueness
are highly non-trivial problems because of the presence of pressure.

A blow-up argument was first introduced by E. De Giorgi [4] to study regularity of a
minimal surface. B. Gidas and J. Spruck [6] adjusted a blow-up argument to derive an a
priori bound for solutions of a semilinear elliptic problem. Y. Giga [8] applied it to the
semilinear parabolic problem. The method has been further developed in recent years to
obtain several a priori bounds, e.g., [18], [17]. However, it is quite recent to apply it to the
Navier–Stokes equations [11], [9].

In Chapter 1, we study the uniqueness of the Stokes equations in a half space, which
is used later in order to conclude that a blow-up limit is trivial. The uniqueness of the
Stokes equations is well known for decaying velocity at infinity in spatial variables, but
without assuming such a decay condition, the uniqueness results is less known. The L∞-
type uniqueness result was proved by V. A. Solonnikov [20], where a decay condition
of pressure gradient to the normal direction is assumed. We give a short proof for his
uniqueness result by using the L1-estimate for spatial derivatives of the Stokes semigroup.

In order to solve both compactness of a blow-up sequence and uniqueness of a blow-up
limit, a key is an estimate for pressure in terms of velocity called the harmonic-pressure
gradient estimate,

sup
x∈Ω

dΩ(x)
∣∣∣∇q(x, t)

∣∣∣ ≤ CΩ
∥∥∥W(v)

∥∥∥
L∞(∂Ω)(t), (0.1.3)

where dΩ(x) denotes the distance from x ∈ Ω to the boundary ∂Ω and W(v) = −(∇v −
∇T v)nΩ. When n = 3, W(v) is nothing but the tangential component of vorticity, i.e.,
−curl v× nΩ. Here, nΩ denotes the unit outward normal vector field on ∂Ω. The harmonic-
pressure gradient estimate (0.1.3) is a special case of an estimate for solutions of the homo-
geneous Neumann problem. A key observation is that the Neumann data of the pressure
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q is transformed into the surface divergence of vorticity, i.e., ∆v · nΩ = div∂Ω W(v). So
the estimate (0.1.3) follows from an a priori estimate for solutions of the homogeneous
Neumann problem:

∆q = 0 in Ω,
∂q
∂nΩ
= div∂ΩW on ∂Ω. (0.1.4)

The estimate (0.1.3) may not hold for general domains, so we call Ω strictly admissible
if the a priori estimate (0.1.3) holds for the Neumann problem (0.1.4). Of course, a half
space is strictly admissible. In Chapter 2, we give typical examples of strictly admissible
domains: bounded domains, exterior domains and perturbed half spaces by showing the
a priori estimate (0.1.3) by a blow-up argument. Recently, it turned out that the estimate
(0.1.3) was also found by C. E. Kenig, F. Lin, and Z. Shen [10], independently of the
works [1], [2]. Although they directly proved the estimate (0.1.3) for bounded domains by
estimating the Green function, exterior domains and perturbed half spaces are not included
there. Our proof by a blow-up argument is based on the uniqueness for the Neumann
problem (0.1.4) and applicable to prove the estimate (0.1.3) without appealing to the Green
function.

In Chapter 3, we establish the local Hölder estimates for the Stokes equations by using
the harmonic-pressure gradient estimate (0.1.3), which is used to get a necessary compact-
ness of a blow-up sequence for the Stokes equations. Using the results proved in Chapters
1 and 2, we prove the a priori L∞-estimate (0.1.1) by a blow-up argument.

Chapter 4 is the goal. We extend the Stokes semigroup to the non-decaying type
solenoidal space L∞σ . Note that for non-decaying initial data, the existence of solutions
is non-trivial. We pointwise approximate elements of L∞σ by compactly supported smooth
solenoidal vector fields and extend the Stokes semigroup to a non-C0-analytic semigroup
on L∞σ together with the L∞-estimate (0.1.1).

Chapter 5 is devoted to the resolvent approach. We establish an a priori L∞-estimate for
the resolvent Stokes equations corresponding to (0.1.1) by the Masuda-Stewart technique,
which in particular implies that the maximum angle of the analytic semigroup on L∞ is
π/2. Furthermore, the resolvent approach applies to different boundary conditions, e.g.,
to the Robin-type boundary condition, where a partial slip of velocity on the boundary is
taken into account.

I would like to express my deep gratitude to Professor Yoshikazu Giga for valuable
advices and constant encouragements. I am also grateful to Professor Dr. Matthias Hieber
for stimulating discussions, especially, on Chapter 5.

I have been supported by the JSPS Fellow during the writing of this thesis under the
grant No. 24–8019.

Ken Abe
June, 2013
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Chapter 1

Uniqueness in a half space

In this chapter, we study the uniqueness of the Stokes equations in a half space in a
space of bounded functions, which will be used later in Chapter 3 in order to prove the
a priori L∞-estimate for the non-stationary Stokes equations. The uniqueness of the
Stokes equations is well known for decaying velocity at infinity in spatial variables,
e.g., v(·, t) ∈ Lp, p ∈ (1,∞). However, for merely bounded velocity, the uniqueness
results is less known even for a half space. We prove the uniqueness of the Stokes
equations for bounded velocity with assuming the decay condition for the tangential
component of the pressure gradient, i.e., ∇tanq → 0 as xn → ∞. Such the decay
condition is necessary since there exist non-trivial Poiseuille flow-type solutions. The
proof is by a duality argument based on the L1-estimate for spatial derivatives of the
Stokes semigroup.

1.1 Introduction
We study the uniqueness of the Stokes equations in a half space Rn

+, n ≥ 2:

vt − ∆v + ∇q = 0 in Rn
+ × (0,T ), (1.1.1)

div v = 0 in Rn
+ × (0,T ), (1.1.2)

v = 0 on ∂Rn
+ × (0,T ), (1.1.3)

v(x, 0) = v0 on Rn
+ × {t = 0}. (1.1.4)

The uniqueness of the Stokes equations (1.1.1)–(1.1.4) is well known for decaying velocity
at the infinity in spatial variables, e.g., v(·, t) ∈ Lp for p ∈ (1,∞). However, without
assuming such the decay condition, the uniqueness results is less known even for a half
space. The L∞-type uniqueness was proved by V. A. Solonnikov [7, Theorem 1.1] for
continuous velocity at t = 0. We give a short proof for his uniqueness result based on [1].
The goal of this chapter is to prove:

1



2 CHAPTER 1. UNIQUENESS IN A HALF SPACE

Theorem 1.1.1. Let v ∈ C2,1(Rn
+ × (0,T ]) and ∇q ∈ C(Rn

+ × (0,T ]) satisfy the Stokes
equations (1.1.1)–(1.1.3). Assume that

sup
0<t<T
||v||L∞(Rn

+)(t) < ∞, (1.1.5)

and ∇v, ∇2v, vt, ∇q are bounded in Rn
+×[δ,T ] for each δ > 0. Assume that v→ 0 weakly-∗

on L∞(Rn
+) as t ↓ 0. Assume in addition that

∇tanq(x, t)→ 0 as xn → ∞, (1.1.6)

for x′ ∈ Rn−1, t ∈ (0,T ). Then, v ≡ 0 and ∇q ≡ 0.

Remark 1.1.2. If we drop the condition (1.1.6), the statement of Theorem 1.1.1 does not
hold since there exists a Poiseuille flow-type solution, which is a non-trivial solution sat-
isfying the Stokes (Navier–Stokes) equations (1.1.1)–(1.1.4). We say a solution (v,∇q) is
Poiseuille flow-type in the sense that there is a function a(t) = (atan(t), 0) such that (v,∇q)
is represented by

v(xn, t) = (vtan(xn, t), 0), ∇q(t) = a(t), (1.1.7)

where vtan(xn, t) and atan(t) respectively denote the tangential component of v(xn, t) and
a(t). Note that each component of velocity vi(xn, t) solves the heat equation in a half line,

∂tvi(xn, t) − ∂2
xn

vi(xn, t) = −ai(t), (1.1.8)

and satisfies the Dirichlet and initial conditions vi = 0 on {xn = 0} and {t = 0}. The assump-
tion (1.1.6) says that a Poiseuille flow-type solution must be zero. In fact, the condition
(1.1.6) implies a(t) ≡ 0 so v ≡ 0 follows from the uniqueness of the heat equation.

Let us sketch the proof of Theorem 1.1.1. We apply a duality argument to the tangential
derivatives of the velocity ∂tanv instead of v, where ∂tan indiscriminately denotes tangential
derivatives ∂ jv for j ∈ {1, · · · , n − 1}. We prove ∂tanv ≡ 0 by invoking the L1-estimate of
the Stokes semigroup,

||∇S (t)v0||L1(Rn
+) ≤ C/t1/2||v0||L1(Rn

+) for t > 0, (1.1.9)

while the solution S (t)v0 itself does not belong to L1(Rn
+) in general, i.e., ||S (t)v0||L1(Rn

+) !
C||v0||L1(Rn

+) [3], [2], [5]. Once we have ∂tanv ≡ 0, i.e., ∂ jvi ≡ 0 for i ∈ {1, · · · , n}, j ∈
{1, · · · , n − 1}, by (1.1.2), it follows that

∂vn

∂xn
=

n−1∑

j=1

∂v j

∂x j
= 0,

so vn ≡ 0 and ∂q/∂xn ≡ 0 by (1.1.1) and (1.1.3). Thus, (v,∇q) is a Poiseuille flow-type
solution (1.1.7). We are able to prove ∂tanv ≡ 0 without using the condition (1.1.6). On the
contrary, this means the following:
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Lemma 1.1.3. Under the assumptions of Theorem 1.1.1 except (1.1.6), a non-trivial solu-
tion (v,∇q) must be a Poiseuille flow-type solution (1.1.7).

Proof of Theorem 1.1.1. By Lemma 1.1.3 and (1.1.6), it follows that (v,∇q) is a Poiseuille
flow-type solution (1.1.7) for a(t) ≡ 0. Then, each component vi(xn, t) solves the heat
equation in a half line and vi(xn, t) → 0 weakly-∗ on L∞(0,∞) as t ↓ 0. By multiplying
φ ∈ C2,1

c ([0,∞)× [0, T )) satisfying φ = 0 on {xn = 0}× (0,T ) to vi(xn, t) and integrating by
parts, it follows that

∫ T

0

∫ ∞

0
vi(xn, t)(φt(xn, t) + ∂2

nφ(xn, t))dxndt = 0.

Then, by a duality argument to the heat equation, vi ≡ 0 follows. !

This chapter is organized as follows. In Section 2, we prove Lemma 1.1.3 by a duality
argument. In Section 3, we estimate L1-norms for solutions of the dual problem based on
the fundamental solutions to (1.1.1)–(1.1.4).

1.2 Duality arguments to tangential derivatives of veloc-
ity

We prove Lemma 1.1.3 by applying a duality argument to ∂tanv. We choose test functions
by compactly supported solenoidal vector fields in order to estimate L1-norms of solutions
for the dual problem via the L1-estimate of the Stokes semigroup (1.1.9). To state a result,
let C∞c,σ(Rn

+) be the space of all smooth solenoidal vector fields with compact support in
Rn
+. Let C∞c,σ(Rn

+ × (0,T )) be the space of all functions f ∈ C∞c (Rn
+ × (0,T )) such that

f (·, t) ∈ C∞c,σ(Rn
+) for each t ∈ (0,T ). The goal of this section is to prove:

Proposition 1.2.1. Under the assumption of Theorem 1.1.1 except (1.1.6), we have
∫ T

0

∫

Rn
+

v(x, t) · ∂tan f (x, t)dxdt = 0 (1.2.1)

for all f ∈ C∞c,σ(Rn
+ × (0,T )).

Remark 1.2.2. Actually, we are able to prove (1.2.1) for all functions f ∈ C∞c (Rn
+× (0,T )).

In fact, in the original proof [7], ∂tanv ≡ 0 is directly proved by estimating L1-norms of
solutions for the dual problem:

−∂tϕ − ∆ϕ + ∇π = P∂tan f in Rn
+ × (0,T ),

and div ϕ = 0 in Rn
+ × (0,T ), with the Dirichlet and terminal conditions for ϕ. Although

we restrict test functions to f ∈ C∞c,σ(Rn
+ × (0,T )), our proof is rather simpler. Since

P∂tan f = ∂tan f and
S (t)∂tan f = ∂tanS (t) f , (1.2.2)
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for f ∈ C∞c,σ(Rn
+), S (t)∂tan f ∈ L1(Rn

+) directly follows from the L1-estimate (1.1.9). This
implies an L1-bound for solutions of the dual problem.

Our restriction f ∈ C∞c,σ(Rn
+ × (0,T )) in (1.2.1) is sufficient in order to show ∂tanv ≡ 0.

In fact, we have the following:

Proposition 1.2.3. Let v(·, t) ∈ C2(Rn
+), t ∈ (0,T ), satisfy (1.2.1) for all f ∈ C∞c,σ(Rn

+ ×
(0,T )). Assume that ∇v(·, t) is bounded in Rn

+, div v = 0 in Rn
+ and v = 0 on ∂Rn

+ for each
t ∈ (0,T ). Then, ∂tanv ≡ 0.

Proof. By (1.2.1) and the de Rham’s theory [4], [6, Theorem 1.1], there exists the potential
functions Φ j such that

∂ jv = ∇Φ j for j ∈ {1, · · · , n − 1}.
Since v ∈ C2(Rn

+) satisfies div v = 0 in Rn
+ and v = 0 on ∂Rn

+, Φ j ∈ C2(Rn
+) satisfies

∆Φ j = 0 in Rn
+ and ∇Φ j = 0 on ∂Rn

+. In particular, ∂Φ j/∂xn = 0 on ∂Rn
+.

Let Φ̃ j be the even extension of Φ j to Rn, i.e.,

Φ̃ j(x′, xn) =

⎧⎪⎪⎨
⎪⎪⎩
Φ j(x′, xn) for x′ ∈ Rn−1, xn ≥ 0,
Φ j(x′,−xn) for x′ ∈ Rn−1, xn < 0.

Then, Φ̃ j ∈ C2(Rn
+) and ∆Φ̃ j = 0 in Rn by ∂Φ j/∂xn = 0 on ∂Rn

+. Since ∂ jv is bounded
in Rn

+, ∇Φ̃ j is bounded in Rn. We apply the Liouville theorem and conclude that ∇Φ̃ j is
constant. Since ∇Φ j = 0 on ∂Rn

+, ∇Φ j is zero. Thus, ∂tanv ≡ 0. !

Proof of Proposition 1.2.1. We prove (1.2.1) by a duality argument. The proof reduces to
L1-estimates for solutions of the dual problem:

−∂tϕ − ∆ϕ + ∇π = ∂tan f in Rn
+ × (0,T ), (1.2.3)

div ϕ = 0 in Rn
+ × (0,T ), (1.2.4)

ϕ = 0 on ∂Rn
+ × (0,T ), (1.2.5)

ϕ = 0 on Rn
+ × {t = T }. (1.2.6)

For f ∈ C∞c,σ(Rn
+ × (0,T )), set ϕ(·, t) = ψ(·,T − t) and ∇π(·, t) = ∇s(·,T − t) by

ψ(·, t) =
∫ t

0
S (t − s)∂tang(s)ds, ∇s(·, t) =

∫ t

0
Π(t − s)∂tang(s)ds, (1.2.7)

and g(·, t) = f (·,T − t). Here, Π(t) denotes the solution operator to the pressure gradient
for (1.1.1)–(1.1.4). Since (ψ,∇s) is a solution of the initial problem,

∂tψ − ∆ψ + ∇s = ∂tang in Rn
+ × (0, T ),

div ψ = 0 in Rn
+ × (0,T ),

ψ = 0 on ∂Rn
+ × (0,T ),

ψ = 0 on Rn
+ × {t = 0},
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(ϕ,∇π) satisfies (1.2.3)–(1.2.6). By the L1-estimate (1.1.9), observe that

ψ ∈ L∞(0,T ; L1(Rn
+)). (1.2.8)

Moreover, from explicit representations of S (t) and Π(t), (ψ,∇s) satisfies

ψ,∇ψ,∇2ψ, ∂tψ,∇s ∈ L1(Rn
+ × (0,T )). (1.2.9)

In fact, we apply Proposition 1.3.3 in the next section. Thus, (ϕ,∇π) is also integrable in
Rn
+ × (0,T ) up to second orders.

We now prove (1.2.1). Since ∇v,∇2v, vt, and ∇q are bounded in Rn
+ × [δ,T ) for each δ > 0

and v→ 0 weakly-∗ as t ↓ 0, it follows that
∫ T

δ

∫

Rn
+

v · ∂tan f dxdt =
∫ T

δ

∫

Rn
+

v · (−∂tϕ − ∆ϕ + ∇π)dxdt

= −
∫ T

δ

∫

Rn
+

∇q · ϕdxdt +
∫

Rn
+

v(x, δ) · ϕ(x, δ)dx

=

∫

Rn
+

v(x, δ) · ϕ(x, δ)dx→ 0 as δ ↓ 0.

Thus, we have proved (1.2.1). The proof is now complete. !

1.3 L1-estimates for solutions of the dual problem
In this section, we estimate L1-norms of solutions to (1.1.1)–(1.1.4) which implies the in-
tegrability of solutions for the dual problem (1.2.3)–(1.2.6) (Proposition 1.3.3). We recall
the explicit representation for the Stokes semigroup S (t) as well as the solution operator
to pressure gradient Π(t).

1.3.1 Estimates for spatial derivatives of the Stokes semigroup
Let T (t) be the heat semigroup in Rn and Γ(x, t) be the heat kernel, i.e., T (t) f = Γ ∗ f and
Γ(x, t) = (4πt)−n/2e−|x|2/4t. We write T (t) f = (Γ ∗ f j)1≤ j≤n also for the Rn-valued function
f = ( f j)1≤ j≤n. By the solution formula [8, p.347], the remainder term S (t) f − T (t) f is
explicitly given by

(S (t) − T (t)) f =
∫

Rn
+

G∗(x, y, t) f (y)dy, (1.3.1)

with the kernel G∗ = (G∗i j)1≤i, j≤n of the form,

G∗i j(x, y, t) = −δi jΓ(x − y∗, t) + 4(1 − δ jn)
∂

∂x j

∫ xn

0

∫

Rn−1

∂E
∂xi

(x − z)Γ(z − y∗, t)dz.
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Here, δi j denotes the Kronecker’s delta and y∗ = (y′,−yn) denotes the reflection point of
y ∈ Rn

+ with respect to ∂Rn
+. The function E(x) denotes the fundamental solution of the

Laplace equation, i.e., E(x) = Cn/|x|(n−2) for n ≥ 3 and E(x) = −1/2π log |x| for n = 2
with the constant Cn = (an(n − 2))−1, where a denotes the volume of n-dimensional unit
ball. Since the functions E(x) and Γ(x, t) are radially symmetric, S (t) is commutative with
tangential derivatives (1.2.2). We estimate the remainder term (T (t) − S (t)) f from the
pointwise estimates of the kernel G∗ = (G∗i j)1≤i, j≤n, i.e.,

|∂s
t∂

k
x∂

m
y G∗i j(x, y, t)| ≤ C

e−cyn
2/t

ts+mn/2(xn
2 + t)kn/2(|x − y∗|2 + t)(n+|k′ |+|m′ |)/2 , (1.3.2)

where ∂k
x = ∂

k1
x1 · · · ∂kn−1

xn−1∂
kn
xn and |k′| = ∑n−1

j=1 k j for the multi-index k = (k′, kn), k′ = (k1, · · · , kn−1).

We estimate L1-norms for spatial derivatives of the Stokes semigroup.

Proposition 1.3.1. There exists constants C1 and C2 independent of t > 0 such that

||∇S (t) f ||L1(Rn
+) ≤ C1/t1/2|| f ||L1(Rn

+), (1.3.3)

||∂2
xn

S (t) f ||L1(Rn
+) ≤ C2/t1/2

(
||∂xn f ||L1(Rn

+) + sup
xn>0
|| f ||L1(Rn−1)(xn)

)
(1.3.4)

hold for f ∈ C∞c (Rn
+).

Proof. It is well known that the heat semigroup satisfies the L1-estimate (1.3.3). More-
over, by integration by parts, we have ||∂2

xn
T (t) f ||L1 ≤ C/t1/2||∂xn f ||L1 . Thus, T (t) f satis-

fies (1.3.3) and (1.3.4). We shall show the estimate (1.3.3) and (1.3.4) for the remainder
φ = (S (t) − T (t)) f , i.e.,

||∇φ||L1(Rn
+) ≤ C3/t1/2|| f ||L1(Rn

+), (1.3.5)
||∂2

xn
φ||L1(Rn

+) ≤ C4/t1/2 sup
xn>0
|| f ||L1(Rn−1)(xn). (1.3.6)

We show (1.3.5) for tangential derivatives of φ. The normal derivative is estimated in a
similar way. By the kernel estimate (1.3.2), it follows that

|∇tanφ(x, t)| ≤ C5

∫

Rn
+

| f (y)|
(|x − y∗|2 + t)(n+1)/2 dy,

with the constant C5 independent of t > 0. By integrating by tangential variables, we have

||∇tanφ||L1(Rn−1)(xn, t) ≤
C6

(x2
n + t)

|| f ||L1(Rn
+),

with C6 = C5C7 where
∫

Rn−1

dx′

(|x − y∗|2 + t)(n+1)/2 =
C7

((xn + yn)2 + t)
(1.3.7)
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is used. By integrating by the normal variable, we obtain (1.3.5) for ∇tanφ.
We next show (1.3.6). By (1.3.2), it follows that

|∂2
xn
φ(x, t)| ≤ C8

∫

Rn
+

e−cyn
2/t| f (y)|

(x2
n + t)(|x − y∗|2 + t)n/2 dy.

Integrating by tangential variables, we have

||∂2
xn
φ||L1(Rn−1)(xn, t) ≤ C9

t1/2

(x2
n + t)3/2

(
sup
xn>0
|| f ||L1(Rn−1) (xn)

)
.

By integrating by the normal variable, we obtain (1.3.6). The proof is now complete. !

1.3.2 Estimates for second derivatives of pressure

We next estimate second derivatives of pressure. We define the solution operator for the
pressure gradient Π(t) : f .→ Π(t) f = ∇q(·, t) associated to the Stokes equations (1.1.1)–
(1.1.4) by

(Π(t) f )(x) = ∇
∫

Rn
+

P(x, y, t) · f (y)dy, (1.3.8)

with the kernel P = (Pj)1≤ j≤n and

Pj(x, t) = 4(1 − δ jn)
∂

∂x j

( ∫

Rn−1

∂E
∂xn

(x′ − z′, xn)Γ(z′ − y′, yn, t)dz′

+ E(x′ − z′, xn)
∂Γ

∂yn
(z′ − y′, yn, t)dz′

)
.

The kernel P = (Pj)1≤ j≤n satisfies the pointwise estimates [8, p.346],

|∂s
t∂

k
x∂

m
y P(x, y, t)| ≤ C

e−cyn
2/t

t1+s+mn/2(|x − y∗|2 + t)(n−1+|k|+|m′ |)/2 . (1.3.9)

From the explicit representation of the kernel P = (Pj)1≤ j≤n, we observe that the operator
Π(t) is also commutative with tangential derivatives, i.e., Π(t)∂tan f = ∂tanΠ(t) f .

We shall estimate second derivatives of pressure.

Proposition 1.3.2. There exists a constant C10 independent of t > 0 such that

||∇Π(t) f ||L1(Rn
+) ≤ C10/t1/2|| f ||L1(Rn

+) (1.3.10)

holds for f ∈ C∞c (Rn
+).
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Proof. By (1.3.9), it follows that

|∇(Π(t) f )(x)| ≤ C11

∫

Rn
+

| f (y)|
t(|x − y∗|2 + t)(n+1)/2 dy.

By integrating by the tangential variables and (1.3.7), it follows that

||∇Π(t) f ||L1(Rn−1)(xn) ≤ C12

t(x2
n + t)

|| f ||L1(Rn
+)

with C12 = C7C11. By integrating by the normal variable, we obtain (1.3.10). !

Propositions 1.3.1 and 1.3.2 now imply:

Proposition 1.3.3. For g ∈ C∞c,σ(Rn
+×(0,T )), the functions (ψ,∇s) defined by (1.2.7) satisfy

(1.2.9), i.e.,
ψ,∇ψ,∇2ψ, ∂tψ,∇s ∈ L∞(0,T ; L1(Rn

+)).

Proof. Since S (t) and Π(t) are commutative with tangential derivatives, by (1.3.3) and
(1.3.10), it follows that ψ,∇ψ,∇π ∈ L∞(0,T ; L1(Rn

+)). By (1.3.3), (1.3.4) and the equation
∂tψ = ∆ψ − ∇s + ∂tang, we obtain ∇2ψ and ∂tψ ∈ L∞(0,T ; L1(Rn

+)). !
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Chapter 2

Estimates for solutions of the Neumann
problem

In this chapter, we study an a priori estimate for solutions of the homogeneous
Neumann problem to get the harmonic-pressure gradient estimate for pressure of the
Stokes equations (0.1.3). The harmonic-pressure gradient estimate holds for a large
class of domains, but there is a domain where the estimate does not hold. We intro-
duce the notion of strictly admissible domain which deduces the harmonic-pressure
gradient estimate. As typical examples, we shall show that bounded domains, exterior
domains and perturbed half spaces are indeed strictly admissible.

2.1 Introduction
In this chapter, we study the homogeneous Neumann problem of the form,

∆P = 0 in Ω,
∂P
∂nΩ
= div∂ΩW on ∂Ω, (2.1.1)

where div∂Ω denotes the surface divergence and W denotes the tangential vector field on
∂Ω. We call Ω strictly admissible if the a priori estimate

sup
x∈Ω

dΩ(x)
∣∣∣∇P(x)

∣∣∣ ≤ CΩ||W ||L∞(∂Ω) (2.1.2)

holds for all solutions of the Neumann problem (2.1.1). (We give a rigorous definition
later in Section 2). As explained in the preface, the estimate (2.1.2) implies the harmonic-
pressure gradient estimate (0.1.3) for pressure of the Stokes equations, which plays a key
role in proving the a priori estimate (0.1.1) for solutions of the Stokes equations. A ques-
tion is what kinds of domains are strictly admissible. Of course, a half space is strictly
admissible. We prove the estimate (2.1.2) for a half space directly by estimating the Green

10
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function for the Neumann problem (2.1.1). Moreover, we shall show typical examples of
strictly admissible domains (with non-trivial boundaries):

(I) bounded domains,
(II) exterior domains,
(III) perturbed half spaces (n ≥ 3).

Here, we call Ω a perturbed half space in the sense that there exists RΩ > 0 such that
Ω\B0(RΩ) = Rn

+\B0(RΩ). For domains (I)–(III), we assume the boundaries of class C3.
We appeal to a blow-up argument to prove the a priori estimate (2.1.2). Let us give

a heuristic idea in proving (2.1.2) for bounded domains. To argue by contradiction, sup-
pose that there are a sequence of solutions of (2.1.1), {Pm}∞m=1, and a sequence of points
{xm}∞m=1 ⊂ Ω such that

1
2
≤ dΩ(xm)

∣∣∣∇Pm(xm)
∣∣∣ ≤ sup

x∈Ω
dΩ(x)

∣∣∣∇Pm(x)
∣∣∣ = 1, (2.1.3)

and the boundary data Wm tends to zero uniformly on ∂Ω. If a subsequence of {xm}∞m=1
converges to an interior point, the limit P solves the Neumann problem (2.1.1) under the
bound

sup
x∈Ω

dΩ(x)
∣∣∣∇P(x)

∣∣∣ < ∞. (2.1.4)

So if the solution of this problem is unique (i.e. ∇P ≡ 0), then one gets a contradiction.
Note that Pm is harmonic so compactness part is easy. If {xm}∞m=1 converges to a boundary
point (by taking a subsequence), we rescale Pm around xm by dm = dΩ(xm) to get

Qm(x) = Pm(xm + dmx) for x ∈ Ωm =
Ωxm

dm
. (2.1.5)

Then, the rescaled domainsΩm expands to a half space and the limit Q solves the Neumann
problem (2.1.1) in a half space with an estimate inherited from (2.1.3). We prove its
uniqueness by reducing the problem to the whole space via a reflection argument. The
compactness part is easy since the distance between the origin for Qm and the boundary
∂Ωm is always one.

For general unbounded domains, this argument is difficult to apply since the sequence
{xm}∞m=1 may diverge to infinity, i.e., dm ↑ ∞. However, we are able to prove the estimate
(2.1.2) for exterior domains and perturbed half spaces. If the sequence {xm}∞m=1 diverges
to infinity, we rescale Pm again by (2.1.5). When the domain is an exterior domain, the
rescaled domain Ωm approaches to the whole space and the boundary ∂Ωm accumulates
to a point in Rn. We remove a singularity of the limit Q by using a bound inherited from
(2.1.3) and conclude that the limit is trivial. When the domain is a perturbed half space,
a curved part of the boundary ∂Ωm accumulates to a point (or diverge to infinity) and the
rescaled domain Ωm approached to a half space.
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The uniqueness of the Neumann problem (2.1.1) under the bound (2.1.4) is neces-
sary condition for the strictly admissibility of the domain Ω (see Remark 2.2.5 (ii)). In
fact, layer-type domains are not strictly admissible since linear functions are non-trivial
solutions for the Neumann problem (2.1.1). For instance, P = x1 is a non-trivial solu-
tion for the Neumann problem (2.1.1) in a layer Ω = {a < xn < b}. We conjecture that
quasi-cylindrical domains are not strictly admissible. Here, the domain Ω is called quasi-
cylindrical if lim|x|→∞dΩ(x) < ∞ (see [3, 4, 6.32]).

This chapter is organized as follows. In Section 2, we define strictly admissible do-
mains. In Section 3, we show that a half space is strictly admissible by using an explicit
solution formula for the Neumann problem (2.1.1). In Section 4, we prove the uniqueness
of the Neumann problem (2.1.1) for domains (I)–(III) by a duality argument. In Section
5, we prove the a priori estimate (2.1.2) for the domains (I)–(III). In Section 6, we give
extension theorems for harmonic functions which are used in proving the estimate (2.1.2)
for exterior domains and perturbed half spaces.

During the preparation of this thesis, the author was informed of the recent paper [11]
by C. E. Kenig, F. Lin and Z. Shen, where the estimate (2.1.2) is essentially proved for
a bounded domain with C1,γ-boundary (independently of the work [1]) by estimating the
Green functions. However, the estimates (2.1.2) for exterior domains and perturbed half
spaces are not included there. Our proof by a blow-up argument is based on a uniqueness
theorem for (2.1.1) and applicable to prove (2.1.2) without appealing to the Green function.
We shall give a detailed comparison in Remark 2.5.2 (i).

2.2 Admissible and strictly admissible domain
In this section, we define the terms admissible domain and strictly admissible domain.
Since the original definition of an admissible domain involves the Helmholtz projection
operator, the harmonic-pressure gradient estimate (0.1.3) was restricted to spatially decay-
ing solutions of the Stokes equations. We define strictly admissible domains without using
the Helmholtz projection. We first define admissible domains.

Let Ω be a domain in Rn for n ≥ 2 with ∂Ω ! ∅. An admissible domain is defined by
the Helmholtz projection operator P = Pr : Lr(Ω) → Lr

σ(Ω) and Q = I − P associated to
the Helmholtz decomposition,

Lr(Ω) = Lr
σ(Ω) ⊕Gr(Ω) for r ∈ (1,∞),

Lr
σ(Ω) = C∞c,σ(Ω)

||·||r and Gr(Ω) = {∇p ∈ Lr(Ω)
∣∣∣ p ∈ Lr

loc(Ω)}. Although this decomposition
is known to hold (see, e.g., [8, III.1]) for various domains such as bounded or exterior
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domains with smooth boundaries, in general, there is a domain with (uniformly) smooth
boundary such that the Lr-Helmholtz decomposition may not hold (cf. [4], [12]).

In [6] R. Farwig, H. Kozono, and H. Sohr introduced an L̃r space and proved that the
Helmholtz decomposition is valid for any uniformly C2-domain for n = 3. Later, it is
generalized for arbitrary uniformly C1-domain for n ≥ 2 [7]. We set

L̃r(Ω) =

⎧⎪⎪⎨
⎪⎪⎩

L2(Ω) ∩ Lr(Ω), 2 ≤ r < ∞,
L2(Ω) + Lr(Ω), 1 < r < 2,

and define L̃r
σ(Ω) and G̃r(Ω) in a similar way. The space L̃r(Ω) for r ≥ 2 is equipped with

the norm ∥ f ∥L̃r(Ω) = max(∥ f ∥Lr(Ω), ∥ f ∥L2(Ω)). In order to define of an admissible domain, let
us recall the definition of a uniformly Ck-domain for k ≥ 1 (see, e.g., [16, I.3.2]).

Definition 2.2.1. (Uniformly Ck-domain) Let Ω be a domain in Rn, n ≥ 2, with ∂Ω ! ∅.
Assume that there exists α, β,K > 0 such that for each x0 ∈ ∂Ω, there exists Ck-function h
of n − 1 variables y′ such that sup|l|≤k,|y′ |<α |∂l

y′h(y′)| ≤ K, ∇′h(0) = 0, h(0) = 0 and denote
a neighborhood of x0 by Uα,β,h(x0) = {(y′, yn) ∈ Rn |h(y′) − β < yn < h(y′) + β, |y′| < α}.
Assume that up to rotation and translation, we have

Uα,β,h(x0) ∩Ω = {
(y′, yn)

∣∣∣ h(y′) < yn < h(y′) + β, |y′| < α},

and Uα,β,h(x0)∩∂Ω = {(y′, yn) |yn = h(y′), |y′| < α}. Then, we callΩ a uniformly Ck-domain
of type α, β,K. Here, ∂l

x = ∂
l1
x1 · · · ∂ln

xn with multi-index l = (l1, . . . , ln) and ∂x j = ∂/∂x j as
usual and ∇′ denotes the gradient in y′ ∈ Rn−1.

If the solution (v,∇q) of the linear Stokes equations is defined on Lr, the pressure
gradient ∇q is represented by the velocity v through the Helmholtz projection operator, i.e.,
∇q = Q[∆v] so the harmonic-pressure gradient estimate (0.1.3) can be viewed as an L∞-
type estimate for the Helmholtz projection. In the sequel, we define a strictly admissible
domain without using the Helmholtz projection operator.

Definition 2.2.2. Let Ω be a uniformly C1-domain in Rn, n ≥ 2, with ∂Ω ! ∅. We call Ω
admissible if there exists r ≥ n and a constant C = CΩ > 0 such that

sup
x∈Ω

dΩ(x)
∣∣∣Q[∇ · f ](x)

∣∣∣ ≤ CΩ∥ f ∥L∞(∂Ω) (2.2.1)

holds for all matrix-valued function f = ( fi j)1≤i, j≤n ∈ C1(Ω̄) satisfying∇· f = (
∑n

j=1 ∂ j fi j)1≤i≤n

∈ L̃r(Ω),
tr f = 0 and ∂l fi j = ∂ j fil (2.2.2)

for i, j, l ∈ {1, · · · , n}, where ∂ j = ∂/∂x j.
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We define a strictly admissible domain by the a priori estimate (2.1.2) for solutions
to the Neumann problem (2.1.1). We recall the Gauss–Green formula on a surface and
understand the boundary condition in (2.1.1) in terms of an appropriate weak form.

Let Ω be a domain in Rn, n ≥ 2, with C1-boundary. We define the surface gradient on
∂Ω for a (scalar-valued) C1-function ϕ in Ω̄ by a tangential component of ∇ϕ, i.e.,

∇∂Ωϕ = ∇ϕ − nΩ(∂ϕ/∂nΩ).

We also define the surface divergence on ∂Ω by div∂Ωh = tr ∇∂Ωh for a vector-valued C1-
function h, where ∇∂Ωh = (∇∂Ωh1, · · · ,∇∂Ωhn). If a support of ϕh is compact on ∂Ω, the
Gauss-Green formula on ∂Ω holds (e.g. [9], [15]):

∫

∂Ω

h · ∇∂ΩϕdHn−1(x) = −
∫

∂Ω

(div∂Ωh + κh · nΩ)ϕdHn−1(x), (2.2.3)

where κ = κ(x) denotes the mean curvature of ∂Ω andHn−1 denotes the n− 1 dimensional
Hausdorff measure.

We define the space L∞tan(∂Ω) and L∞d (Ω). Let L∞(∂Ω) be the space of all essentially
bounded functions on ∂Ω with respect to Hn−1.The space L∞(∂Ω) is equipped with the
norm || · ||L∞(∂Ω) = || · ||∞,∂Ω. The space L∞tan(∂Ω) denotes the closed subspace of all tangential
vector fields on L∞(∂Ω). We say h is tangential if h · nΩ = 0 on ∂Ω. The space L∞d (Ω)
denotes the space of all locally integrable functions f such that dΩ f is essentially bounded
in Ω. The space L∞d (Ω) is equipped with the norm

| f |∞,d = sup
x∈Ω

dΩ(x) | f (x)| .

Note that ∇P ∈ L∞d (Ω) implies P ∈ Lr
loc(Ω̄) for r ∈ [1,∞).

Definition 2.2.3 (Weak solution). Let Ω be a domain in Rn, n ≥ 2, with C1-boundary. Let
P ∈ L1

loc(Ω̄) satisfy ∫

Ω

P∆ϕdx =
∫

∂Ω

W · ∇∂ΩϕdHn−1(x) (2.2.4)

for W ∈ L∞tan(∂Ω) and all ϕ ∈ C2
c (Ω̄) satisfying ∂ϕ/∂nΩ = 0 on ∂Ω. If ∇P ∈ L∞d (Ω), we call

P weak solution of (2.1.1).

We now define the term strictly admissible domain.

Definition 2.2.4 (Strictly admissible domain). Let Ω be a domain in Rn, n ≥ 2, with C1-
boundary. We call Ω strictly admissible if there exists a constant C = CΩ > 0 such that the
a priori estimate

|∇P|∞,d ≤ CΩ||W ||∞,∂Ω (2.2.5)

holds for all weak solutions ∇P ∈ L∞d (Ω) for W ∈ L∞tan(∂Ω).
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Remarks 2.2.5. (i) The constant CΩ in (2.2.5) is invariant of dilation and translation of Ω,
i.e., CλΩ+x0 = CΩ for λ > 0 and x0 ∈ Ω.
(ii) If Ω is strictly admissible, a weak solution for (2.1.1) is unique. In fact, if ∇P ∈ L∞d (Ω)
satisfies (2.2.4) for W = 0, ∇P = 0 follows from (2.2.5).

A strictly admissible domain is indeed admissible.

Proposition 2.2.6. Let Ω be a strictly admissible domain in Rn, n ≥ 2, with uniformly
C1-boundary. Then, Ω is admissible.

Proof. Let f = ( fi j)1≤i, j≤n ∈ C1(Ω̄) be a matrix-valued function satisfying ∇ · f ∈ L̃r(Ω) for
r ≥ n and (2.2.2). Set ∇P = Q[∇ · f ] and W = −( f − f T ) · nΩ. Then, W ∈ L∞tan(∂Ω) since
W ·nΩ = −

∑n
i, j=1( fi j − f ji)n

j
Ω

ni
Ω
= 0. We show that P satisfies (2.2.4) for W. Let ϕ ∈ C2

c (Ω̄)
satisfy ∂ϕ/∂nΩ = 0 on ∂Ω. By multiplying ∇ϕ to ∇P = Q[∇ · f ], it follows that

∫

Ω

∇P · ∇ϕdx =
n∑

i, j=1

∫

Ω

∂ j fi j∂iϕdx.

The left-hand-side is −
∫
Ω

P∆ϕdx since ∂ϕ/∂nΩ = 0 on ∂Ω. By integration by parts, it
follows that

∫

Ω

∂ j fi j∂iϕdx = −
∫

Ω

fi j∂ j∂iϕdx +
∫

∂Ω

fi j∂iϕnj
Ω

dHn−1(x)

=

∫

Ω

∂i fi j∂ jϕdx +
∫

∂Ω

fi j(∂iϕnj
Ω
− ∂ jϕni

Ω)dHn−1(x),

where the symbol of summation is suppressed. By (2.2.2), the first term vanishes. Since∑
i, j fi j∂iϕnj

Ω
=

∑
i, j f ji∂ jϕni

Ω
, the second term is −

∫
∂Ω

W · ∇∂ΩϕdHn−1(x). Thus P satisfies
(2.2.4) for W = −( f − f T ) · nΩ.
It remains to show ∇P ∈ L∞d (Ω). We shall show that ∇P ∈ L̃r(Ω) for r ≥ n implies
∇P ∈ L∞d (Ω) for the harmonic function P. By the mean value formula, it follows that

∇P(x) =
!

Bx(τ)
∇P(y)dHn−1(y) for x ∈ Ω and τ = dΩ(x).

Apply the Hölder inequality to get |∇P(x)| ≤ Cs/τn/s||∇P||Ls(Ω) for s ∈ (1,∞), with the
constant Cs independent of τ = dΩ(x). If dΩ(x) ≤ 1 take s = r ≥ n. If dΩ(x) > 1, take
s = 2. Since Q is bounded on L̃r(Ω), it follows that

|∇P|∞,d ≤ Cr||∇ · f ||L̃r(Ω) (2.2.6)

for the constant Cr depending on r. Thus, P is a weak solution of (2.1.1). If Ω is strictly
admissible, (2.2.1) follows from (2.2.5). The proof is now complete. !
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2.3 Examples
In this section, we prove that a half space is strictly admissible by an explicit solution
formula for the Neumann problem (2.1.1). We then give non-trivial examples of strictly
admissible domains. The proofs for the non-trivial examples are given in the subsequent
sections.

Theorem 2.3.1. A half space is strictly admissible.

For a half space, we are able to show the estimate (2.1.2) directly by estimating the
Green function for the Neumann problem (2.1.1). To represent weak solutions for (2.1.1)
by the Green function, we first prove the uniqueness.

Lemma 2.3.2. A weak solution of (2.1.1) on Rn
+ is unique up to an additive constant.

Proof. The proof is reduced to the whole space. Let P be a weak solution of (2.1.1) for
W = 0 on Rn

+. Let P̃ be the even extension of P to Rn, i.e., P̃(x′, xn) = P(x′, xn), xn ≥ 0 and
P̃(x′, xn) = P(x′,−xn), xn < 0. For ϕ ∈ C∞c (Rn), it follows from (2.2.4) that
∫

Rn
P̃∆ϕdx =

∫ ∞

0

∫

Rn−1
P(x′, xn)∆ϕ(x′, xn)dx′dxn +

∫ 0

−∞

∫

Rn−1
P(x′, xn)∆ϕ(x′, xn)dx′dxn

=

∫

Rn
+

P(x)∆(ϕ(x′, xn) + ϕ(x′,−xn))dx′dxn

= 0.

Thus, P̃ ∈ L1
loc(Rn) is weakly harmonic in Rn. Set P̃ε = P̃ ∗ ηε by the radially symmetric

mollifier ηε, ε > 0. Then, P̃ε ∈ C∞(Rn) is harmonic in Rn. By the mean value formula, it
follows that

P̃ε(x) =
!

∂Bx(r)
P̃ε(y)dHn−1(y) for x ∈ Rn, r > 0.

By
sup
x∈Rn
|xn||∇P̃(x)| < ∞,

P̃ε is uniformly bounded by | log |xn|| near ∂Rn
+. Since P̃ε → P̃ a.e. in Rn as ε ↓ 0, by

letting ε ↓ 0, we have

P̃(x) =
!

∂Bx(r)
P̃(y)dHn−1(y) a.e. x ∈ Rn, r > 0.

Since ηε is radially symmetric, eventually, P̃ε = P̃ ∈ C∞(Rn).
The function P̃(x) may increase as |x| → ∞, but increasing rates are at most polynomial
orders. In fact, by integrating P̃ from x ∈ Rn

+ to x0 = (0, · · · , 0, 1), it follows that

|P(x)| ≤ C1|x|| log xn| +C2 for x ∈ Rn
+,
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with C1 = |∇P|∞,d and C2 = |P(x0)|. Similarly, we are able to estimate P̃(x) for xn < 0.
Applying the Liouville theorem implies that P̃ is a polynomial of degree two. By ∇P ∈
L∞d (Rn

+), ∇P→ 0 as xn → ∞. Thus, ∇P ≡ 0 follows. The proof is now complete. !

Proof of Theorem 2.3.1. For W ∈ L∞tan(∂Rn
+), we set

P(x) =
n−1∑

i=1

∫

∂Rn
+

∂xi E(x − y′)Wi(y)dy’. (2.3.1)

Then, it follows that

|∇P(x)| ≤ C1

∫

∂Rn
+

dy’
(|y′|2 + xn

2)n/2 ||W ||L∞(∂Rn
+)

≤ C2

xn
||W ||L∞(∂Rn

+).

Thus, ∇P ∈ L∞d (Rn
+) satisfies the estimate (2.1.2). Let ϕ ∈ C2

c (Rn
+) satisfy ∂ϕ/∂xn = 0 on

∂Rn
+. By multiplying ∇ϕ to ∇P and integration by parts, it follows that

−
∫

Rn
+

P∆ϕdx =
n−1∑

i=1

∫

∂Rn
+

Wi(y′)dy′
∫

Rn
+

∇∂xiE(x − y′) · ∇ϕ(x)dx

= −
n−1∑

i=1

∫

∂Rn
+

Wi(y′)dy′
∫

Rn
+

∇E(x − y′) · ∇∂xiϕ(x)dx

= −
∫

∂Rn
+

Wi(y′) · ∇∂Rn
+
ϕ(y′)dy′,

since
∫

Rn
+

∇E(x − y′) · ∇∂xiϕ(x)dx =
∫

∂Rn
+

∂xn E(x′ − y′)∂xiϕ(x′)dx′

= ∂yiϕ(y′).

Thus, P is a weak solution of (2.1.1). By Lemma 2.3.2, weak solutions for W ∈ L∞tan(∂Rn
+)

are represented by (2.3.1). Thus, a half space is strictly admissible. !

For general domains, solution formulas for the Neumann problem (2.1.1) are not avail-
able, but we are able to prove the a priori estimate (2.2.5) for domains (I)–(III) by a blow-
up argument.

Theorem 2.3.3. The domains (I)–(III) with C3-boundaries are strictly admissible.
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We prove the a priori estimate (2.1.2) by a blow-up argument later in Section 5. For
this purpose, we prove the uniqueness of the Neumann problem (2.1.1) on the domains
(I)–(III) in the next section. The uniqueness of weak solutions is important in order to
know whether (2.2.5) holds as noted in Remark 2.2.5 (ii). In fact, in a layer domain
Ω = {a < xn < b}, P = x1 is a non-trivial weak solution for W = 0. Thus, layer domains
and cylindrical domains are not strictly admissible. We conjecture that quasi-cylindrical
domains are not strictly admissible. Here, the domain Ω is called quasi-cylindrical if
lim|x|→∞dΩ(x) < ∞ (see [3, 6.32]).

2.4 Uniqueness of the Neumann problem
In this section, we prove the uniqueness of the Neumann problem (2.1.1) on the domains
(I)–(III) by a duality argument. We find a solution of the dual problem by using the
Helmholtz projection. Note that ∇P ∈ L∞d (Ω) does not imply decay for P(x) as |x| → ∞.
We give pointwise estimates for P(x) as |x|→ ∞, and apply a duality argument.

2.4.1 Uniqueness on an exterior domain
We begin with a bounded domain.

Lemma 2.4.1. Let Ω be a bounded domain in Rn, n ≥ 2, with C3-boundary. Then, a weak
solution of (2.1.1) is unique up to an additive constant.

Proof. Let P be a weak solution of (2.1.1) for W = 0 in Ω. Set ∇ϕ = Q[g] for g ∈ C∞c (Ω).
Then, ϕ solves the weak Neumann problem: ∆ϕ = div g in Ω, ∂ϕ/∂nΩ = 0 on ∂Ω. Since
∂Ω is C3, by the elliptic regularity theory, ϕ is in W3,r(Ω) for r ∈ (1,∞). By the Sobolev
embedding for r > n, observe that ϕ is a C2-function in Ω̄. By substituting ϕ into (2.2.4),
it follows that ∫

Ω

Pdiv gdx = 0.

Thus, ∇P ≡ 0, i.e., P is constant. !

We next prove the uniqueness of weak solutions on an exterior domain.

Lemma 2.4.2. Let Ω be an exterior domain in Rn, n ≥ 2, with C3-boundary. A weak
solution of (2.1.1) is unique up to an additive constant.

In order to prove Lemma 2.4.2 by a duality argument, for ∇P ∈ L∞d (Ω), we estimate
P(x) as |x|→ ∞.

Proposition 2.4.3. Let Ω be an exterior domain in Rn, n ≥ 2. Let 0 ∈ Ωc and R0 >
diam Ωc. For ∇P ∈ L∞d (Ω), there exists constants C1 and C2 such that

|P(x)| ≤ C1 log |x| +C2 for |x| ≥ 2R0. (2.4.1)
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Proof. For x ∈ Ω satisfying |x| ≥ 2R0, there is some z ∈ ∂Ω such that dΩ(x) = |z− x|. Since
|x| ≤ dΩ(x) + R0, it follows that |x| ≤ 2dΩ(x). Thus, we estimate

sup
|x|≥2R0

|x||∇P(x)| ≤ 2|∇P|∞,d.

Set y = 2R0x/|x| for |x| > 2R0. Then, it follows that

|P(x) − P(y)| ≤
∫ 1

0

∣∣∣∣∣∣
d
dt

P(tx + (1 − t)y)
∣∣∣∣∣∣dt

≤ |x − y|
(∫ 1

0

dt
|y| + t|x − y|

)
sup
|z|≥2R0

|z||∇P(z)|

≤ 2(log |x| − log 2R0)|∇P|∞,d.

Thus, (2.4.1) holds with C1 = 2|∇P|∞,d and C2 = −2 log 2R0|∇P|∞,d + sup|y|=2R0
|P(y)|. !

Proof of Lemma 2.4.2. Let ∇P ∈ L∞d (Ω) be a weak solution of (2.1.1) for W = 0. We shall
show that ∫

Ω

Pdiv gdx = 0 (2.4.2)

for all g ∈ C∞c (Ω). Set ∇ϕ = Q[g] ∈ Lr(Ω) for g ∈ C∞c (Ω). Then, ϕ satisfies the weak
Neumann problem: ∆ϕ = div g in Ω and ∂ϕ/∂nΩ = 0 on ∂Ω. Let θ be a smooth function
in [0,∞) satisfying θ ≡ 1 in [0, 1/2] and θ ≡ 0 in [1,∞). Set θR(x) = θ(|x|/R) for R > 2R0

with R0 > diam Ωc. Since ∂Ω is C3, by the elliptic regularity theory [10, Lemma 2.3], ϕ is
a C2-function in Ω̄. Then, ϕR = ϕθR ∈ C2

c (Ω̄) and ∂ϕR/∂nΩ = 0 on ∂Ω. From the definition
of weak solutions (2.2.4), it follows that

∫

Ω

P(div g θR + 2∇ϕ · ∇θR + ϕ∆θR) dx = 0. (2.4.3)

We show that the last two terms vanish as R→ ∞. By Proposition 2.4.3, it follows that
∣∣∣∣∣

∫

Ω

P∇ϕ · ∇θRdx
∣∣∣∣∣ ≤

(C1 log R +C2)
R

||∇θ||L∞(R)

∫

R/2<|x|<R
|∇ϕ|dx

≤ (C1 log R +C2)
R1−n+n/r C1−1/r

n ||∇θ||L∞(R)||∇ϕ||Lr(Ω)

for R > 4R0 where Cn denotes the volume of n dimensional unit ball. For r ∈ (1, n/(n− 1))
the right-hand side vanishes as R→ ∞.
It remains to show that the last term of (2.4.3) vanishes as R → ∞. Since P is harmonic
in Ω and the support of ∆θR is in DR for DR = B0(R)\B0(R/2), we are able to shift ϕ by
a constant. We replace ϕ to ϕ̃ = ϕ −

"

DR
ϕdx. By the Poincaré inequality [5, 5.8.1], we
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estimate ||ϕ̃||Lr(DR) ≤ C0R||∇ϕ||Lr(DR) with the constant C0 independent of R. By Proposition
2.4.3, it follows that

∣∣∣∣∣

∫

Ω

Pϕ̃∆θRdx
∣∣∣∣∣ ≤

(C1 log R +C2)
R2 ||∆θ||L∞(R)

∫

DR

|ϕ̃|dx

≤ (C1 log R +C2)
R1−n+n/r ||∆θ||L∞(R)C0C1−1/r

n ||∇ϕ||Lr(Ω) → 0 as R→ ∞.

We proved (2.4.2) for all g ∈ C∞c (Ω) so ∇P ≡ 0. The proof is now complete. !

2.4.2 Uniqueness on a perturbed half space
We next prove the uniqueness of weak solutions on a perturbed half space Ω for n ≥ 2. As
stated below (Proposition 2.4.5), on a perturbed half space, ∇P ∈ L∞d (Ω) does not imply
a logarithmic increasing order for P(x) as |x| → ∞. So the same duality argument for
exterior domains does not directly apply to prove the uniqueness. We shall show ∇2P ≡ 0
by taking test functions in differentiated forms so that solutions of the dual problem is
L1-integrable in Ω.

Lemma 2.4.4. Let Ω be a perturbed half space in Rn, n ≥ 2, with C3-boundary. Then, a
weak solution of (2.1.1) is unique up to an additive constant.

For ∇P ∈ L∞d (Ω), we estimate P(x) as |x| → ∞. Note that P(x) may not be bounded
near the boundary. To state a result, let C0(R) be the cylinder centered at the origin with
hight 2R > 0, i.e., C0(R) = Bn−1

0 (R)× (−R,R), where Bn−1
0 (R) denotes the n−1-dimensional

ball with radius R > 0.

Proposition 2.4.5. Let Ω be a perturbed half space in Rn, n ≥ 2. Let RΩ be a positive
constant such that Ω\C0(RΩ) = Rn

+\C0(RΩ). For ∇P ∈ L∞d (Ω), there exists constants
C1 −C4 such that

|P(x)| ≤ C1|x| +C2 for x′ ∈ Rn−1, xn ≥ RΩ, (2.4.4)
|P(x)| ≤ C3| log xn| +C1|x| +C4 for |x′| ≥ 4RΩ, xn ≤ RΩ. (2.4.5)

Proof. By taking RΩ large if necessary, we may assume dRΩ = inf{dΩ(x) | x = (x′, xn) ∈
Ω, xn = RΩ} > 0. For x = (x′, xn) ∈ Ω satisfying xn ≥ RΩ and x0 = (0, · · · , 0,RΩ), it
follows that

|P(x) − P(x0)| =
∣∣∣∣∣∣

∫ 1

0
(x − x0) · ∇P(tx + (1 − t)x0)dt

∣∣∣∣∣∣
≤ |x − x0|dRΩ

−1|∇P|∞,d.

Thus, (2.4.4) holds with C1 = dRΩ
−1|∇P|∞,d and C2 = C1RΩ + |P(x0)|.

We shall show (2.4.5). Observe that dΩ(z) = zn for z = (z′, zn) such that |z′| ≥ 4RΩ and
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zn ≤ 2RΩ since Bz(zn) ∩ C0(RΩ) = ∅. For x = (x′, xn) such that |x′| ≥ 4RΩ and xn ≤ RΩ, set
xRΩ = x + x0. It follows that

|P(x) − P(xRΩ)| =
∣∣∣∣∣∣

∫ 1

0
(x − xRΩ) · ∇P(tx + (1 − t)xRΩ)dt

∣∣∣∣∣∣

≤ RΩ|∇P|∞,d
∫ 1

0

dt
dΩ(tx + (1 − t)xRΩ)

= RΩ|∇P|∞,d
∫ 1

0

dt
tRΩ + xn

≤ (| log xn| + | log 2RΩ|)|∇P|∞,d.

Since |P(xRΩ)| ≤ C1|x| + C1RΩ + C2 by (2.4.4), (2.4.5) holds with C3 = |∇P|∞,d and C4 =

| log 2RΩ||∇P|∞,d +C1RΩ +C2. The proof is now complete. !

Proof of Lemma 2.4.4 . Let ∇P ∈ L∞d (Ω) be a weak solution for W = 0 on Ω. We shall
show ∫

Ω

Pdiv ∂xgdx = 0

for all g ∈ C∞c (Ω), where ∂x indiscriminately denotes ∂xi for i ∈ {1, · · · , n}. This implies
that P is a polynomial of degree one. Since ∇P ∈ L∞d (Ω) implies ∇P → 0 as dΩ(x) → ∞
so ∇P ≡ 0 follows.
Since Ω is a perturbed half space, there exists RΩ > 0 such that Ω\C0(RΩ) = Rn

+\C0(RΩ).
Set ∇ϕ = Q[∂xg] ∈ Lp(Ω) for g ∈ C∞c (Ω). Then, ϕ solves the weak Neumann problem:
∆ϕ = div ∂xg in Ω and ∂ϕ/∂nΩ = 0 on ∂Ω. By the elliptic regularity theory, ϕ ∈ C2(Ω̄).
Moreover, ∇ϕ ∈ L1(Ω) since ∂xg is a differentiated function. (In fact, we apply Lemma
2.4.6 below). Let θ ∈ C∞c [0,∞) be a smooth cutoff function such that θ ≡ 1 in [0, 1] and
θ ≡ 0 in [2,∞). Set θ̃R(x) = θ̃R(|x′|)θ̃R(|xn|) by θR(s) = θ(s/R). Then, θ̃R(x) ≡ 1 in C0(R)+
and θ̃R(x) ≡ 0 in Rn

+\C0(2R)+, where C0(R)+ = Bn−1(R)× (0,R). By multiplying the cut-off
function θ̃R(x) to ϕ, we have ϕR = ϕθ̃R ∈ C2

c (Ω̄) satisfying ∂ϕR/∂nΩ = 0 on ∂Ω for R > RΩ.
We substitute ϕR into (2.2.4) for W = 0 to get

0 =
∫

Ω

P(div ∂xgθ̃R + 2∇ϕ · ∇θ̃R + ϕ∆θ̃R)dx.

It suffices to show that the last two terms vanishes as R → ∞. We shall show that the
second term vanishes as R → ∞. By a similar way, we are able to show the last term also
vanishes. We divide the second term into two terms,

∫

Ω

P∇ϕ · ∇θ̃Rdx =
∫

D0(R)∩{xn≥RΩ}
P∇ϕ · ∇θ̃Rdx +

∫

D0(R)∩{0<xn<RΩ}
P∇ϕ · ∇θ̃Rdx

= IR + IIR,
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where D0(R) = C0(2R)\C0(R). By (2.4.4), it follows that |IR| ≤ C||∇ϕ||L1(D0(R)) → 0 as
R→ ∞. By (2.4.5), we estimate

|IIR| ≤
C
R

∫

D0(R)∩{0<xn<RΩ}

(| log xn| + R
) |∇ϕ|dx.

The second term vanishes as R→ ∞. Applying the Hölder inequality implies that

1
R

∫

D0(R)∩{0<xn<RΩ}
| log xn||∇ϕ|dx ≤ 1

R

(∫ RΩ

0
| log xn|p

′
dxn

)1/p′ ∫

{R<|x′ |<2R}
||∇ϕ||Lp({0<xn<RΩ})(x′)dx′

≤ C
R1+(n−1)/p−(n−1) ||∇ϕ||

1/p
Lp(D0(R)).

For n ≥ 3, take p ∈ (1, (n−1)/(n−2)]. For n = 2, take p ∈ (1,∞). Then the right-hand side
converges to zero as R→ ∞. Thus IIR → 0 as R→ ∞. The proof is now complete. !

We shall show the L1-bound for ∇ϕ = Q[∂xg], g ∈ C2
c (Ω). We appeal to pointwise

kernel estimates for solutions of the (weak) Neumann problem in a half space.

Lemma 2.4.6. Let Ω be a perturbed half space in Rn, n ≥ 2, with C1-boundary. For
g ∈ C2

c (Ω), set ∇ϕ = Q[∂xg]. Then, ∇ϕ ∈ L1(Ω).

We first prove Lemma 2.4.6 for Ω = Rn
+.

Proposition 2.4.7. The statement of Lemma 2.4.6 is valid when Ω = Rn
+.

Proof. Let E(x) be the fundamental solution of the Laplace equation, i.e., E(x) = Cn/|x|(n−2)

for n ≥ 3 and E(x) = −1/2π log |x| for n = 2 with the constant Cn = (an(n − 2))−1, where
a denotes the volume of n-dimensional unit ball. Set N(x, y) = E(x − y) + E(x − y∗)
for x, y ∈ Rn

+ and y∗ = (y′,−yn). Since solutions of the weak Neumann problem, i.e.,
∆ϕ = div ∂xg in Rn

+, ∂ϕ/∂nΩ = 0 on ∂Rn
+, are unique under the bound ∇ϕ ∈ Lp(Rn

+),
p ∈ (1,∞), the function ∇ϕ = Q[∂xg] is expressed by the kernel N(x, y), i.e.,

∇ϕ(x) = ∇
∫

Rn
+

∇yN(x, y) · ∂yg(y)dy.

Take a positive constant R > 0 such that spt g ⊂ B0(R). Since |∂k
xE(x)| ≤ C/|x|n−2+|k| for

|k| ≥ 1, it follows that

|∇ϕ(x)| ≤ C
∫

Rn
+

(
1

|x − y|n+1 +
1

|x − y∗|n+1

)
|g(y)|dy.

For |x| ≥ 2R and |y| ≤ R, we observe that

|x − y| ≥
∣∣∣|x| − |y|

∣∣∣
≥ |x| − R
≥ |x|/2.
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By the same way, it follows that |x − y∗| ≥ |x|/2 for |y∗| ≤ R. Thus, we have

|∇ϕ(x)| ≤ C
|x|n+1 for |x| ≥ 2R,

with the constant C′ = 2n+2C||g||L1(Rn
+). Since ∇ϕ is Lp-integrable in Rn

+, ∇ϕ ∈ L1
loc(Rn

+).
Thus, ∇ϕ ∈ L1(Rn

+). !

Proof of Lemma 2.4.6. Let RΩ be a positive constant such that Ω\B0(RΩ) = Rn
+\B0(RΩ).

Let θ ∈ C∞c [0,∞) be a smooth cutoff function such that θ ≡ 1 in [0, 1) and θ ≡ 0 in [2,∞).
Set θR(x) = θ(|x|/R) for R > RΩ. Then, θR ≡ 1 in B0(R) and θR ≡ 0 in B0(2R)c. We divide
ϕ into two terms ϕ = ϕθR + ϕ(1 − θR). Observe that ∇(ϕθR) = ∇ϕθR + ϕ∇θR ∈ L1(Ω) since
∇ϕ = Q[∂xg] ∈ Lp(Ω), p ∈ (1,∞). It suffices to show that ∇ϕR ∈ L1(Ω) for ϕR = ϕ(1− θR).
Set gR = gθR. Since the function ϕ satisfies the weak Neumann problem: ∆ϕ = div ∂xg in
Ω, ∂ϕ/∂nΩ = 0 on ∂Ω, ϕR satisfies

∆ϕR = div ∂xgR + fR in Ω,
∂ϕR

∂nΩ
= 0 on ∂Ω,

where
fR = −2∇ϕ · ∇θR − ϕ∆θR + ∂xg · ∇θR + div g∂xθR + g · ∇∂xθR.

We identify ϕR and its zero extension to Rn
+\Ω. Since ϕR = 0 in B0(R)+ = B0(R) ∩ Rn

+, ϕR

satisfies
∆ϕR = div ∂xgR + fR in Rn

+,
∂ϕR

∂xn
= 0 on ∂Rn

+.

We observe that spt fR ⊂ B0(2R)+. Let ϕ1
R be a solution of the Laplace equation in B0(2R)+,

∆ϕ1
R = fR in B0(2R)+,
ϕ1

R = 0 on ∂B0(2R)+ ∩ Rn
+,

∂ϕ1
R

∂xn
= 0 on ∂Rn

+ ∩ B0(2R)+.

Since fR ∈ Lp(B0(2R)+), ϕ1
R ∈ W2,p(B0(2R)+). (The existence of the solution ϕ1

R follows
from the Lp-theory for the Dirichlet problem in B0(2R) via a reflection argument). Denot-
ing the zero extension of ϕ1

R to Rn
+\B0(R) by ϕ1

R, we set ϕ2
R = ϕR − ϕ1

R. Then ϕ2
R satisfies

∆ϕ2
R = div∂xgR in Rn

+,
∂ϕ2

R

∂xn
= 0 on ∂Rn

+.

We apply Proposition 2.4.7 and observe that ∇ϕ2
R ∈ L1(Rn

+). Thus, ∇ϕR ∈ L1(Rn
+). Since

ϕR = 0 in B0(R), ∇ϕR ∈ L1(Ω) . The proof is now complete. !
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2.5 Blow-up arguments
Now, we prove Theorem 2.3.3 by a blow-up argument. A blow-up argument reduces the
proof of the a priori estimate (2.2.5) to the uniqueness of weak solutions for the Neumann
problem (2.1.3) . If blow-up points stay inside of the domain Ω, the proof is reduced to
the uniqueness of weak solutions on Ω. If blow-up points accumulate to the boundary, it is
reduced to the uniqueness on Rn

+. Note that blow-up points may diverge to infinity when
Ω is unbounded. We start from a bounded domain.

Lemma 2.5.1. A bounded domain in Rn, n ≥ 2, with C3-boundary is strictly admissible.

Proof. We argue by contradiction. Suppose that (2.2.5) were false for any choice of the
constant C. Then, there would exist a sequence of weak solutions {Pm}∞m=1 such that

|∇Pm|∞,d > m∥Wm∥∞,∂Ω,

where ∇Pm ∈ L∞d (Ω) satisfies (2.2.4) for Wm ∈ L∞tan(∂Ω), i.e.,
∫

Ω

Pm∆ϕdx =
∫

∂Ω

Wm · ∇∂ΩϕdHn−1(x),

for all ϕ ∈ C2
c (Ω) satisfying ∂ϕ/∂nΩ = 0 on ∂Ω. We take a point xm ∈ Ω such that

dΩ(xm)|∇Pm(xm)| ≥ Mm/2 for Mm = |∇Pm|∞,d and normalize Pm by dividing by Mm to get
P̃m = Pm/Mm and W̃m = Wm/Mm such that

|∇P̃m|∞,d = 1, (2.5.1)
||W̃m||∞,∂Ω < 1/m, (2.5.2)

dΩ(xm)
∣∣∣∇P̃m(xm)

∣∣∣ ≥ 1/2. (2.5.3)

Since limm→∞dm < ∞, we may assume xm → x∞ ∈ Ω as m → ∞. Then, the proof is
divided into two cases depending on whether x∞ ∈ Ω or x∞ ∈ ∂Ω.
(i) x∞ ∈ Ω. The proof reduces to the uniqueness of the Neumann problem (2.1.3) on
Ω. Since P̃m is harmonic in Ω and |∇P̃m|∞,d = 1, P̃m subsequently converges to a limit P
locally uniformly in Ω together with its all derivatives. Moreover, by |∇P̃m|∞,d = 1, P̃m

converges to P weakly on Lr(Ω) for r ∈ [1,∞). Thus, the limit P satisfies
∫

Ω

P∆ϕdx = 0.

We apply Lemma 2.4.1 and conclude that ∇P ≡ 0. This contradicts dΩ(x∞)|∇P(x∞)| ≥ 1/2
so (i) x∞ ∈ Ω does not occur.
(ii) x∞ ∈ ∂Ω. The proof reduces to the uniqueness on a half space. By rotation and
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translation of Ω, we may assume xm = (0, dm) and dm ↓ 0 as m→ ∞. Since ∂Ω is C3, there
exists constants α, β,K and a C3-function h such that

Ω ⊃ Ωloc = {x ∈ Rn | h(x′) < xn < h(x′) + β, |x′| < α},

||h||C3(Bn−1(α)) ≤ K and h(0) = 0. We rescale P̃m around xm to get the blow-up sequence,

Qm(x) = P̃m(xm + dmx) for x ∈ Ωm =
Ωxm

dm
,

and Gm(x) = W̃m(xm + dmx). Then, the estimates (2.5.1)–(2.5.3) are inherited to

sup
x∈Ωm

dΩm(x)|∇Qm(x)| = 1,

||Gm||L∞(∂Ωm) < 1/m,
|∇Qm(0)| ≥ 1/2.

Note that the distance from the origin to the boundary is always one, i.e., dΩm(0) = 1. The
rescaled domain Ωm expands to the half space Rn

+,−1 = {x ∈ Rn | x = (x′, xn) xn > −1}. In
fact,

Ωm ⊃ Ωloc
m = {x ∈ Rn | hm(x′) < xn < hm(x′) + β/dm, |x′| < α/dm}

for hm(x′) = h(dmx′) − 1, so Ωloc
m converges to Rn

+,−1. Note that this rescaling procedure
keeps C3-regularity of the boundary ∂Ωm, i.e., the C3-norm of hm in Bn−1

x0
(α/dm), x0 =

(0, · · · , 0,−1), is uniformly bounded for m ≥ 1. Moreover, the boundary ∂Ωm converges
to ∂Rn

+, i.e., hm → −1 and ∂k
xhm → 0 as m → ∞ locally uniformly in Rn−1 for 1 ≤ |k| ≤ 3.

Since Qm is harmonic in Ωm and supx∈Ωm
dΩm(x)|∇Qm(x)| ≤ 1, Qm subsequently converges

to a limit Q locally uniformly in Rn
+,−1 together with its all derivatives and weakly on

Lr
loc(Rn

+,−1) for r ∈ [1,∞).
Now, we observe that the limit Q is a trivial limit, i.e., ∇Q ≡ 0. Let ϕ ∈ C2

c (Rn
+,−1) satisfy

∂ϕ/∂xn = 0 on {xn = −1}. We extend ϕ to Rn by the even extension of ϕ, which is still
denoted by ϕ ∈ C2

c (Rn). Set ϕm(X) = ϕ(X−1
m (X)) for X ∈ Ωloc

m by the map Xm : Rn
+,−1 → Ωloc

m ,
i.e.,

Xm(x′, xn) = x∂Ωm − (xn + 1)nΩm(x∂Ωm) for x∂Ωm = (x′, hm(x′)), x = (x′, xn) ∈ Rn
+,−1.

This Xm is well-defined for sufficiently large m. Since ∂Ωm is C3, ϕm ∈ C2
c (Ωm). Moreover,

∂ϕm/∂nΩm = 0 on ∂Ωm since nΩm = −∇dm. Since Qm and Gm satisfies (2.2.4) for ϕm, by
letting m→ ∞, we have ∫

Rn
+,−1

Q∆ϕdx = 0.

We apply Lemma 2.3.2 and conclude that ∇Q ≡ 0. This contradicts |∇Q(0)| ≥ 1/2. Thus
(ii) does not occur. We reached a contradiction. The proof is now complete. !
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We shall prove the estimate (2.2.5) for exterior domains and perturbed half spaces. To
argue by contradiction, suppose that there are a sequence of weak solutions of (2.1.1),
{Pm}∞m=1, and a sequence of points {xm}∞m=1 ⊂ Ω such that |∇Pm|∞,d = 1, ||Wm||∞,∂Ω → 0 as
m→ ∞ and

dΩ(xm)
∣∣∣∇Pm(xm)| ≥ 1

2
.

Set dm = dΩ(xm). If limm→∞dm < ∞, the proof reduces to the uniqueness of weak solutions
on Rn

+ and the domain Ω (Lemmas 2.4.2 and 2.4.4) as we proved (2.2.5) for bounded
domains. The crucial case is when {xm}∞m=1 diverges to infinity, i.e., dm ↑ ∞ as m → ∞.
When Ω is an exterior domain, the problem is reduced to the whole space. When Ω is a
perturbed half space, it is reduced to a half space.
Let us give ideas in proving (2.2.5) for an exterior domain. We rescale the solution Pm

around xm to get

Qm(x) = Pm(xm + dmx) for x ∈ Ωm =
Ωxm

dm
.

Then, Ωc
m accumulates to the point a ∈ Rn (a ! 0) and Ωm approaches to Rn\{a}. We show

that the limit Q is extendable to a harmonic function in Rn by using

sup
x∈Rn\{a}

|x − a||∇Q(x)| ≤ 1,

and conclude that ∇Q ≡ 0. This contradicts |∇Q(0)| ≥ 1/2. For n = 2, above bound for Q
is not enough in order to show Q is harmonic in R2, but in this case, we use the fact that
the mean value of Q around x = a on a surface of a ball is independent of the radius of a
ball.

This idea works also for perturbed half space. When Ω is a perturbed half space, we
rescale Pm around the point xm ∈ Ω by replacing dm to d̃m = (xm)n to get

Qm(x) = P̃m(xm + d̃mx) for x ∈ Ωm =
Ωxm

d̃m
.

Then, the rescaled domain Ωm approaches to a half space Rn
+,−1 and a curbed part of the

boundary ∂Ωm accumulates to the point a ∈ ∂Rn
+,−1 (or diverges to infinity). We remove

the singularity at x = a for the limit Q by using the bound,

sup
x∈Rn

+,−1

(xn + 1)|∇Q(x)| ≤ 1,

and conclude that ∇Q ≡ 0 for n ≥ 3. It is likely that the estimate (2.2.5) holds also for n =
2, but the above bound does not exclude the singularity at x = a. In fact, Q(x) = log |x − a|
is harmonic in Rn

+,−1 and satisfies the bound.

Proof of Theorem 2.3.3. We argue by contradiction. Suppose that (2.2.5) were false for
any choice of constants. Then, there would exist the weak solutions P̃m for W̃m and the
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points {xm}∞m=1 ⊂ Ω satisfying (2.5.1)–(2.5.3). Set dm = dΩ(xm). If limm→∞dm < ∞, by the
same way as we proved Lemma 2.5, the proof reduces to the uniqueness of weak solutions
in Rn

+ and Ω (Lemmas 2.3.2, 2.4.2 and 2.4.4). We may assume dm ↑ ∞ as m→ ∞.
(a) The case Ω is an exterior domain. We rescale P̃m around xm to get

Qm(x) = P̃m(xm + dmx) for x ∈ Ωm,

where Ωm = {x ∈ Rn | x = (y − xm)/dm, y ∈ Ω}. Then, Qm satisfies ∆Qm = 0 in Ωm,

sup
x∈Ωm

dΩm(x)|∇Qm(x)| = 1,
∣∣∣∇Qm(0)

∣∣∣ ≥ 1/2.

Take ym ∈ ∂Ω such that dm = |ym − xm|. Then zm = (ym − xm)/dm ∈ ∂Ωm satisfies |zm| = 1.
We may assume zm → a ∈ Rn as m → ∞. Since Ωc

m accumulates to the point a ∈ Rn,
Ωm approaches to Rn\{a}. Set φm(r) =

"

∂Ba(r) Qm(x)dHn−1(x) for r > diam Ωc
m. Then, by

(2.2.4), it follows that dφm(r)/dr ≡ 0 for r > diam Ωc
m (One should apply Proposition

2.6.3).
Now, we observe a limit of Qm is a trivial limit. Since ∇Qm is uniformly bounded by
supx∈Ωm

dΩm(x)|∇Qm(x)| = 1 and Qm is harmonic in Ωm, Qm subsequently converges to a
limit Q locally uniformly in Rn\{a}. Thus, the limit Q satisfies ∆Q = 0 in Rn\{a},

sup
x∈Rn\{a}

|x − a||∇Q(x)| ≤ 1, (2.5.4)

dφ
dr

(r) ≡ 0 for r > 0, (2.5.5)

where φ(r) =
"

∂Ba(r) Q(x)dHn−1(x). The estimate (2.5.4) and condition (2.5.5) imply that
Q is extendable to a harmonic function in Rn for all n ≥ 2; see Lemma 2.6.1. We apply the
Liouville theorem and conclude that ∇Q ≡ 0. This contradicts |∇Q(0)| ≥ 1/2. We reached
a contradiction. Thus, we proved (2.2.5) for exterior domains.
(b) The case Ω is a perturbed half space. Let R = RΩ be a positive constant such that
Ω\B0(R) = Rn

+\B0(R). Let d̃m be the normal component of the point xm. If Bxm(d̃m)∩Ω = ∅,
then d̃m = dm. If Bxm(d̃m) ∩ Ω ! ∅, then d̃m ≥ dm. Thus, dm ≤ d̃m → ∞ as m → ∞. We
rescale P̃m around the point xm to get

Qm(x) = P̃m(xm + d̃mx) for x ∈ Ωm =
Ωxm

d̃m
,

and Gm(x) = W̃m(xm + d̃mx). Then, the estimates (2.5.1)–(2.5.3) are inherited to

sup
x∈Ωm

dΩm(x)|∇Qm(x)| = 1,

||Gm||∞,∂Ωm < 1/m

|∇Qm(0)| ≥ d̃m

2dm
≥ 1

2
.
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The rescaled domain Ωm satisfies Ωm\Bx̃m(Rm) = Rn
+,−1\Bx̃m(Rm) for x̃m = −xm/d̃m =

(−x′m/d̃m,−1) and Rm = R/d̃m. If limm→∞|x̃m| = ∞, a curved part of ∂Ωm diverges to infinity
so the limit domain of Ωm is Rn

+,−1. We may assume x̃m → a ∈ ∂Rn
+,−1 as m → ∞. Then,

Bx̃m(Rm) accumulates to the point a and Ωm approaches to Rn
+,−1. Since Qm is harmonic in

Ωm and supx∈Ωm
dΩm(x)|Qm(x)| ≤ 1, Qm subsequently converges to a limit Q locally uni-

formly in Rn
+,−1 together with its all derivatives. Moreover, Qm converges to Q weakly on

Lr
loc(Rn

+,−1) for r ∈ [1,∞).
We now observe that the limit Q is trivial, i.e., ∇Q ≡ 0. Let ϕ ∈ C2

c (Rn
+,−1) satisfy

∂ϕ/∂xn = 0 on ∂Rn
+,−1 and spt ϕ ∩ {a} = ∅. Since Qm satisfies (2.2.4) for Gm in Ωm,

by letting m→ ∞, it follows that
∫

Rn
+,−1

Q∆ϕdx = 0. (2.5.6)

We remove the restrictive condition spy ϕ ∩ {a} = ∅ for n ≥ 3. Since the limit Q satisfies

sup
x∈Rn

+,−1

(xn + 1)|∇Q(x)| ≤ 1,

applying Proposition 2.6.4 implies (2.5.6) for all ϕ ∈ C2
c (Rn

+,−1) satisfying ∂ϕ/∂xn = 0 on
∂Rn
+,−1 for n ≥ 3 . We apply Lemma 2.3.2 and conclude that ∇Q ≡ 0. This contradicts

|∇Q(0)| ≥ 1/2. We reached a contradiction. Thus, we proved (2.2.5) for perturbed half
spaces. The proof is now complete. !

Remarks 2.5.2. (i) For a bounded domain, the estimate (2.1.2) was also proved by C. E.
Kenig, F. Lin and Z. Shen [11], independently of our previous work [1], where a slightly
different version was proved. In [11], they studied the Neumann problem,

∆P = 0 in Ω,
∂P
∂nΩ
=

∑

i, j

(
ni
Ω

∂

∂x j
− nj

Ω

∂

∂xi

)
gi j on ∂Ω (2.5.7)

for tensor-valued functions g = (gi j)1≤i, j≤n, and proved the estimate

sup
x∈Ω

dΩ(x)|∇P(x)| ≤ C
∑

i, j

||gi j||L∞(∂Ω) (2.5.8)

for a bounded domain with C1,γ-boundary. The boundary data in (2.5.7) can be written as
the surface divergence (2.5.8) of a tangential vector field. In fact, set W = −(g − gT )nΩ for
g = (gi j)1≤i, j≤n. Then, W satisfies W · nΩ = 0 and

div∂ΩW =
∑

i, j

(
ni
Ω

∂

∂x j
− nj

Ω

∂

∂xi

)
gi j (2.5.9)
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since ∂in j = ∂ jni, i, j ∈ {1, · · · , n} and div∂ΩW = divW by extending nΩ outside of ∂Ω as
a gradient of −dΩ. Thus, our estimate (2.1.2) immediately implies (2.5.8). Moreover, we
are able to estimate dΩ∇P by the antisymmetric part (g − gT )nΩ, i.e.,

sup
x∈Ω

dΩ(x)|∇P(x)| ≤ C||(g − gT )nΩ||L∞(∂Ω).

On the other hand, for a tangential vector field W = (Wi)1≤i≤n and gi j = −Winj
Ω

, (2.5.9)
holds so the estimate (2.5.8) implies our estimate (2.1.2).
Actually, in the paper [11, Lemma 6.2] the estimate (2.5.8) is discussed for the Neumann
problem, LP = 0 in Ω, ∂P/∂nΩ =

∑
i, j(ni

Ω
∂ j − nj

Ω
∂i)gi j on ∂Ω, associated to the elliptic

operator L = −div(a(x)∇) and a(x) = (ai j(x))1≤i, j≤n. It is proved that the estimate (2.5.8)
holds if L is symmetric and uniformly elliptic, i.e., ai j(x) = aji(x), i, j ∈ {1, · · · , n} and
µ|ξ|2 ≤ ai j(x)ξiξ j ≤ µ−1|ξ|2, x ∈ Rn and ξ ∈ Rn for some µ > 0. The assumptions on
the operator L are interesting, but for our purpose of estimating the pressure (0.1.3), the
Laplace equation (2.1.1) is sufficient.
(ii) On an exterior domain, a unique weak solution ∇P ∈ L∞d (Ω) exists for W ∈ L∞tan(∂Ω).
We call the solution operator K : W .→ ∇P the harmonic-pressure operator, which is a
bounded operator from L∞tan(∂Ω) to L∞d (Ω). Although the representation by the Helmholtz
projection, i.e., ∇q = Q[∆v], may not hold for non-decaying solutions to the Stokes equa-
tions, the harmonic-pressure operator K recovers the pressure gradient from the velocity,
i.e., ∇q = K[W(v)] for W(v) = −(∇v − ∇T v)nΩ.
The existence of weak solutions immediately follows from the Lp-theory for the Neumann
problem if one impose a suitable regularity for the Neumann data W ∈ L∞tan(∂Ω). For
instance, if W ∈ L∞tan(∂Ω) satisfies g = div∂Ω W ∈ W−1/p,p(∂Ω), by taking a compactly
supported extension f ∈ Lp(Ω) such that div f = 0 in Ω, f · nΩ = g on ∂Ω (see, e.g.,
[13]), ∇P = Q[ f ] is a weak solution for W ∈ L∞tan(∂Ω). Here, W−1/p,p(∂Ω) denotes the
dual space of the Sobolev space W1−1/p′,p′(∂Ω), p′ = p/(p − 1). For general W ∈ L∞tan(∂Ω),
approximating W by changing a coordinate to ∂Rn

+, we take Wm ∈ L∞tan(∂Ω) ∩W−1/p,p(∂Ω)
satisfying ||Wm||∞,∂Ω ≤ C||W ||∞,∂Ω and Wm → W a.e. on ∂Ω as m → ∞, with the constant
C independent of m ≥ 1. Then, the a priori estimate (2.2.5) implies that ∇Pm = K[Wm]
is uniformly bounded on L∞d (Ω). Thus, the limit ∇P is in L∞d (Ω) and a weak solution
for W ∈ L∞tan(∂Ω). Note that the limit ∇P is independent of the choices of extension and
approximation for W ∈ L∞tan(∂Ω) since weak solutions are unique.

2.6 Extensions for harmonic functions
In this section, we give extension theorems for harmonic functions in Rn and Rn

+, which are
used in the proof of Theorem 2.3.3. We first state an extension theorem in Rn. Although
our assumption can be weakened, we give the statement in a simple form in order to apply
it in the proof of Theorem 2.3.3.
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Lemma 2.6.1. Let P be a harmonic function in Rn\{0} for n ≥ 2. Assume that

sup
|x|≤1
|x||∇P(x)| < ∞. (2.6.1)

Then, for n ≥ 3, P is extendable to a harmonic function in Rn. For n = 2, assume in
addition that

d
dr

!

∂B0(r)
P(x)dH1(x) ≡ 0 for r < 1. (2.6.2)

Then, P is extendable to a harmonic function in R2.

Proof. By (2.6.1), P is locally integrable in Rn. We prove the assertion by showing
∫

Rn
P∆ϕdx = 0 (2.6.3)

for all ϕ ∈ C∞c (Rn). Let ηε be a radially symmetric mollifier, i.e., ηε(x) = ηε(|x|), spt ηε ⊂
B0(ε) and

∫
B0(ε) ηεdx = 1. Set Pε = P∗ηε. Then ,Pε ∈ C∞(Rn) is harmonic in Rn by (2.6.3).

By the mean value formula, Pε satisfies

Pε(x) =
!

∂Bx(r)
Pε(y)dHn−1(y) for x ∈ Rn, r > 0.

Letting ε ↓ 0, we obtain P(x) =
"

∂Bx(r) P(y)dHn−1(y) for x ∈ Rn\{0}, r > 0. Since the
right-hand side is continuous in Rn, by setting P̄(x) = P(x) for x ∈ Rn\{0} and P̄(0) =
"

∂B0(r) P(y)dHn−1(y), P̄ ∈ C(Rn) and

P̄(x) =
!

∂Bx(r)
P̄(y)dHn−1(y) for x ∈ Rn, r > 0.

Note that P̄(0) is independent of r > 0 since
"

∂Bx(r1) P(y)dHn−1(y) =
"

∂Bx(r2) P(y)dHn−1(y)
for x ∈ Rn\{0}, r1, r2 > 0 and

"

∂Bx(r1) P(y)dHn−1(y) → P̄(0) as |x| ↓ 0. Since ηε is radially
symmetric mollifier, P̄ε = P ∗ ηε ∈ C∞(Rn) agrees with P̄, i.e., P̄ε = P̄. Thus, P̄ ∈ C∞(Rn)
is harmonic in Rn.
Now, we prove (2.6.3). We may assume spt ϕ ⊂ B0(1). For x ∈ B0(1)\{0} and y = x/|x|, it
follows that

|P(x) − P(y)| ≤ |x − y|
∫ 1

0
|∇P(τx + (1 − τ)y)| dτ

≤ C1(1 − |x|)
∫ 1

0

dτ
1 − τ(1 − |x|)

= −C1 log |x|
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with the constant C1 larger than (2.6.1). Thus, we have

|P(x)| ≤ C1 log |x| +C2 for x ∈ B0(1)\{0} (2.6.4)

with C2 = sup|y|=1 |P(y)|. Since P is harmonic in B0(1)\{0}, by integration by parts, it
follows that ∫

ε<|x|<1
P∆ϕdx =

∫

|x|=ε

(
P

∂ϕ

∂nB0(ε)
− ∂P
∂nB0(ε)

ϕ

)
dHn−1(x)

for ε > 0. By (2.6.5), the first term vanishes as ε ↓ 0. We estimate the second term. By
(2.6.1), it follows that

∣∣∣∣∣∣

∫

|x|=ε

∂P
∂nB0(ε)

ϕdHn−1(x)
∣∣∣∣∣∣ ≤ Cεn−2||ϕ||L∞(Rn) (2.6.5)

with the constant C independent of ε > 0. For n ≥ 3, the right-hand side vanishes as ε ↓ 0.
Thus, we proved (2.6.3) for n ≥ 3.
It remains to show (2.6.3) for n = 2. By (2.6.2), it follows that

0 =
d
dr

!

∂B0(r)
P(x)dH1(x) =

!

∂B0(r)

∂P(x)
∂nB0(r)

dH1(x) for r < 1.

Thus, in (2.6.5), we are able to shift ϕ by a constant. We replace ϕ to ϕ − ϕ(0) in (2.6.5).
Since |ϕ(x) − ϕ(0)| ≤ |x|||∇ϕ||L∞(Rn), it follows that

∣∣∣∣∣∣

∫

|x|=ε

∂P
∂nB0(ε)

ϕdHn−1(x)
∣∣∣∣∣∣ =

∣∣∣∣∣∣

∫

|x|=ε

∂P
∂nB0(ε)

(ϕ − ϕ(0))dH1(x)
∣∣∣∣∣∣ ≤ Cnε||∇ϕ||L∞(Rn).

By letting ε ↓ 0, (2.6.3) follows. The proof is now complete. !

Remarks 2.6.2. (i) If we drop (2.6.2) for n = 2, the statement of Lemma 2.6.1 does not
hold. For example, log |x| is harmonic in R2\{0} and satisfies (2.6.1).
(ii) The condition (2.6.1) can be replaced by sup|x|≤1 |x|1+α|∇P(x)| < ∞ for some α ∈ (0, 1)
without modifying the proof.
(iii) We state Lemma 2.6.1 in a simple form in order to apply it in the proof of Theo-
rem 2.3.3. If we assume (2.6.2) for all n ≥ 2, we are able to replace (2.6.1) to |P(x)| =
O (|log |x|||x|2−n) as |x|→ 0 (see, e.g., [14, Chapter I, Theorem 3.2]).

In an exterior domain Ω, the mean value of a weak solution on ∂B0(r) is independent
of r > diam Ωc. The following Proposition 2.6.3 is used in the proof of Theorem 2.3.3 in
order to apply Lemma 2.6.1.

Proposition 2.6.3. Let Ω be an exterior domain with C1-boundary and 0 ∈ Ωc. Let P be a
weak solution of (2.1.1). Then,

d
dr

!

∂B0(r)
P(x)dHn−1(x) ≡ 0 for r > diam Ωc. (2.6.6)
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Proof. Since
d
dr

!

∂B0(r)
P(x)dHn−1(x) =

!

∂B0(r)

∂P
∂nB0(r)

(x)dHn−1(x),

it suffices to show that the right-hand side is zero. For each r > diam Ωc we take a smooth
function ϕ such that ϕ ≡ 1 for |x| ≤ r and ϕ ≡ 0 for |x| ≥ 2r. Since P is a weak solution of
(2.1.8), by (2.2.4) it follows that

−
∫

r<|x|<2r
∇P · ∇ϕdx =

∫

∂Ω

W · ∇∂ΩϕdHn−1(x)

= 0.

Since P is harmonic in Ω and ϕ(x) = 0 on |x| = 2r, ϕ(x) = 1 on |x| = r, by integration by
parts, it follows that

∫

r<|x|<2r
∇P · ∇ϕdx =

∫

∂B0(r)

∂P
∂nB0(r)

ϕdHn−1(x) +
∫

∂B0(2r)

∂P
∂nB0(2r)

ϕdHn−1(x)

=

∫

∂B0(r)

∂P
∂nB0(r)

dHn−1(x).

Thus, we obtain (2.3.6). The proof is now complete. !

We next state an extension theorem for harmonic functions in a half space correspond-
ing to Lemma 2.6.1. In the proof of Theorem 2.3.3 for a perturbed half space by a blow-up
argument, a curbed part of a perturbed half space accumulates to a point on ∂Rn

+,−1. The
following Proposition 2.4.4 implies that the limit of the rescaled solution Qm does not have
a singularity on ∂Rn

+,−1 for n ≥ 3.

Proposition 2.6.4. Let P ∈ L1
loc(Rn

+) satisfy

∫

Rn
+

P∆ϕdx = 0 (2.6.7)

for ϕ ∈ C2
c (Rn

+) satisfying ∂ϕ/∂nΩ = 0 on ∂Rn
+ and

spt ϕ ∩ {0} = ∅. (2.6.8)

Assume that
sup
|x|≤1

xn|∇P(x)| < ∞.

Then, for n ≥ 3, (2.6.7) holds without imposing the restrictive condition (2.6.8) for ϕ.
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Proof. Let θ ∈ C∞c [0,∞) be a smooth cutoff function satisfying θ ≡ 1 in [0, 1] and θ ≡ 0
in [2,∞). Set ψε(x) = 1 − θ̃ε(x) by θ̃ε(x) = θε(|x′|)θε(|xn|) and θε(s) = θ(s/ε). Then,
ψε ∈ C∞c (Rn

+) satisfies ψε ∈ C0(ε)+, ψε ≡ 1 in Rn
+\C0(2ε)+ and ∂ψε/∂xn = 0 on ∂Rn

+. Here,
C0(ε)+ = Bn−1

0 (ε) × (0, ε). For ϕ ∈ C2
c (Rn

+) satisfying ∂ϕ/∂xn = 0 on ∂Rn
+, set ϕε = ϕψε.

Then ϕε ∈ C2
c (Rn

+) satisfies ∂ϕε/∂xn = 0 on ∂Rn
+ and spt ϕε ∩ {0} = ∅. By substituting ϕε

into (2.6.7), it follows that

0 =
∫

Rn
+

P(∆ϕψε + 2∇ϕ · ∇ψε + ϕ∆ψε)dx. (2.6.9)

The first term converges to
∫

Rn
+

P∆ϕdx as ε ↓ 0. We shall show that the last two terms
vanish as ε ↓ 0. By connecting x ∈ C0(1/2)+ and x0 = (0, · · · , 0, 1), it follows that

|P(x) − P(x0)| ≤
∣∣∣∣∣∣

∫ 1

0
(x − x0) · ∇P(tx + (1 − t)x0)dt

∣∣∣∣∣∣

≤ |x − x0|
(
sup
|z|≤1

zn|∇P(z)|
) ∫ 1

0

dt
txn + (1 − t)

≤ 4| log xn|
(
sup
|z|≤1

zn|∇P(z)|
)
.

Thus, we have
|P(x)| ≤ C1| log xn| +C2 for x ∈ C0(1/2)+ (2.6.10)

with C1 = 4 sup|z|≤1 zn|∇P(z)| and C2 = |P(x0)|. By using the estimate (2.6.10), we estimate
the last two terms in (2.6.9). Since spt ψε ⊂ C0(2ε)+, by (2.6.10), it follows that

∣∣∣∣∣∣

∫

C0(2ε)+
P∇ϕ · ∇ψεdx

∣∣∣∣∣∣ ≤ Cεn−1(log ε + 1)||∇ϕ||L∞(Rn
+)

for ε < 1/4. The right-hand side converges to zero as ε ↓ 0 for n ≥ 2. By the same way,
we have ∣∣∣∣∣∣

∫

C0(2ε)+
Pϕ∆ψεdx

∣∣∣∣∣∣ ≤ Cεn−2(log ε + 1)||ϕ||L∞(Rn
+).

The right-hand side converges to zero as ε ↓ 0 for n ≥ 3. Thus, P satisfies (2.6.7) for all
ϕ ∈ C2

c (Rn
+) satisfying ∂ϕ/∂xn = 0 on ∂Rn

+. The proof is now complete. !
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Chapter 3

Analyticity and estimates for second
derivatives

The goal of this chapter is to prove the a priori L∞-estimate (0.1.1) for solutions of
the non-stationary Stokes equations by a blow-up argument. The a priori L∞-estimate
(0.1.1) implies that the Stokes semigroup is uniquely extendable to an analytic semi-
group on the (decaying) continuous solenoidal space C0,σ. By using the harmonic-
pressure gradient estimate (0.1.3), we establish local Hölder estimates for the Stokes
equations both interior and up to boundary which implies a necessary compactness
for a blow-up sequence.

3.1 Introduction
We consider the initial-boundary problem for the Stokes equations,

vt − ∆v + ∇q = 0 in Ω × (0,T ), (3.1.1)
div v = 0 in Ω × (0,T ), (3.1.2)

v = 0 on ∂Ω × (0, T ), (3.1.3)
v(x, 0) = v0 on Ω × {t = 0}, (3.1.4)

in the domainΩ ⊂ Rn, n ≥ 2. It is well known that the solution operator S (t) : v0 .−→ v(·, t)
forms an analytic semigroup on the solenoidal Lr space, Lr

σ(Ω) for r ∈ (1,∞), for various
kind of domains Ω including smoothly bounded domains [56], [28]. However, it had been
a long-standing open problem whether or not the Stokes semigroup {S (t)}t≥0 is analytic
on L∞-type spaces even if Ω is bounded. When Ω is a half space, it is known that the
Stokes semigroup {S (t)}t≥0 is analytic on L∞-type spaces since explicit solution formulas
are available [14], [44], [59].

The goal of this chapter is to give an affirmative answer to this open problem at least
when Ω is bounded as a typical example. For a precise statement, let C0,σ(Ω) denote

36
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the L∞-closure of C∞c,σ(Ω), the space of all smooth solenoidal vector fields with compact
support in Ω. When Ω is bounded, C0,σ(Ω) agrees with the space of all solenoidal vector
fields continuous in Ω̄ vanishing on ∂Ω [43]. One of our main results is:

Theorem 3.1.1 (Analyticity on C0,σ). LetΩ be a bounded domain in Rn with C3-boundary.
Then, the solution operator (the Stokes semigroup) S (t) : v0 .→ v(·, t) is a C0-analytic
semigroup on C0,σ(Ω).

Our approach to prove the analyticity is completely different from conventional ap-
proaches. We appeal to a blow-up argument which is often used in a study of nonlinear
elliptic and parabolic equations. Let us give a heuristic idea of our argument. Our goal is
to establish a bound for

N(v, q)(x, t) =
∣∣∣v(x, t)

∣∣∣ + t
1
2
∣∣∣∇v(x, t)

∣∣∣ + t
∣∣∣∇2v(x, t)

∣∣∣ + t
∣∣∣∂tv(x, t)

∣∣∣ + t
∣∣∣∇q(x, t)

∣∣∣ (3.1.5)

of the form
sup

0<t<T0

∥∥∥N(v, q)
∥∥∥∞(t) ≤ C∥v0∥∞ (3.1.6)

for some T0 > 0 and C depending only on the domain Ω, where ∥v0∥∞ = ∥v0∥L∞(Ω) denotes
the sup-norm of |v0| in Ω.

We argue by contradiction. Suppose that (3.1.6) were false for any choice of T0 and
C. Then, there would exist a sequence {(vm, qm)}∞m=1 of solutions of (3.1.1)–(3.1.4) with
v0 = v0m and a sequence τm ↓ 0 such that∥N(vm, qm)∥∞(τm) > m∥v0m∥∞. There is tm ∈ (0, τm)
such that ∥∥∥N(vm, qm)

∥∥∥∞(tm) ≥ 1
2

Mm, Mm = sup
0<t<τm

∥∥∥N(vm, qm)
∥∥∥∞(t).

We normalize vm, qm by dividing Mm to observe that

sup
0<t<tm

∥∥∥N(ṽm, q̃m)
∥∥∥∞(t) ≤ 1, (3.1.7)

∥∥∥N(ṽm, q̃m)
∥∥∥∞(tm) ≥ 1/2, (3.1.8)

∥ṽ0m∥∞ < 1/m, (3.1.9)

with ṽm = vm/Mm, q̃m = qm/Mm. We rescale (ṽm, q̃m) around a point xm ∈ Ω satisfying

N(ṽm, q̃m)(xm, tm) ≥ 1/4, (3.1.10)

to get the blow-up sequence,

um(x, t) = ṽm(xm + t
1
2
mx, tmt), pm(x, t) = t

1
2
mq̃m(xm + t

1
2
mx, tmt).

(Such an xm exists because of (3.1.8)). Because of the scaling invariance of the equations
(3.1.1) and (3.1.2), the rescaled function (um, pm) solves (3.1.1) and (3.1.2) in the rescaled
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domain Ωm × (0, 1]. Note that the time interval is normalized to a unit interval and Ωm

tends to either a half space or the whole space Rn as m→ ∞.
The basic strategy is to prove that the blow-up sequence {(um, pm)}∞m=1 (subsequently)

converges to a solution (u, p) of (3.1.1)–(3.1.4) with zero initial data. If the conver-
gence is strong enough, (3.1.10) implies that N(u, p)(0, 1) ≥ 1/4. If the limit (u, p) is
unique, it is natural to expect u ≡ 0, ∇p ≡ 0. This evidently yields a contradiction to
N(u, p)(0, 1) ≥ 1/4. The first part corresponds to ”compactness” of a blow-up sequence
and the second part corresponds to ”uniqueness” of a blow-up limit. When the problem
is the heat equation, this strategy is easy to realize. However, for the Stokes equations it
turns out that this procedure is highly nontrivial because of the presence of the pressure.

In order to solve both compactness of a blow-up sequence and uniqueness of its limit,
we appeal to the harmonic-pressure gradient estimate for solutions to the Stokes equations
(3.1.1)–(3.1.4),

sup
x∈Ω

dΩ(x)
∣∣∣∇q(x, t)

∣∣∣ ≤ CΩ
∥∥∥W(v)

∥∥∥
L∞(∂Ω)(t) (3.1.11)

for W(v) = −(∇v − ∇T v)nΩ. Actually, the estimate (3.1.11) is a special case of an estimate
for solutions of the homogeneous Neumann problem,

∆P = 0 in Ω,
∂P
∂nΩ
= div∂ΩW on ∂Ω. (3.1.12)

In fact, the pressure q is harmonic in Ω and ∂q/∂nΩ = ∆v · nΩ on ∂Ω. The divergence-free
condition implies ∆v · nΩ = div∂ΩW(v). (We give a proof in Section 2). We call Ω strictly
admissible if the a priori estimate

sup
x∈Ω

dΩ(x)
∣∣∣∇P(x)

∣∣∣ ≤ CΩ
∥∥∥W

∥∥∥
L∞(∂Ω) (3.1.13)

holds for all solutions of the Neumann problem (3.1.12). As we showed in Chapter 2,
the estimate (3.1.13) holds not only on bounded domains but on exterior domains and
perturbed half spaces.

We now study compactness of the blow-up sequence {(um, pm)}∞m=1. The proof is di-
vided into two cases depending on whether the limit of Ωm is a half space or the whole
space. Let us consider the case when the limit is the whole space. We would like to prove
that N(um, pm) converges to N(u, p) near (0, 1) ∈ Rn × (0, 1] uniformly by taking a subse-
quence. For this purpose, it is enough to prove that the local space-time Hölder norm in
Rn × (0, 1] near (0, 1) for um, ∇um, ∇2um, ∇pm is bounded as m → ∞. We are tempted to
derive such as interior regularity estimate from (3.1.7) by localizing the problem. This idea
works for the heat equation, but for the Stokes equations, it does not work (Remark 3.3.3
(i)). In fact, if we consider a solution of (3.1.1)–(3.1.2) of the form v = g(t), q = −g′(t) · x
for g ∈ C1[0, 1], we do not expect the (local) Hölder continuity in time for ∇q and vt

although N(v, q) is bounded in Rn × (0, 1]. We invoke the strictly admissibility of Ω and
derive a uniform time Hölder estimate for dΩm(x)∇pm in Ωm × (δ, 1](δ > 0) from (3.1.12).
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Then, one can use usual parabolic interior regularity theory [41] to derive necessary inte-
rior regularity estimate. Note that the constant in (3.1.12) is independent of the rescaling
procedure so our Hölder estimate is uniform in m.

The case whenΩm tends to a half space is more involved. We still use the admissibility
of Ω to derive necessary Hölder estimates for pm. Then, instead of using conventional
parabolic local Hölder estimate, we are forced to use the Schauder estimates for the Stokes
equations and Helmholtz decomposition for Hölder spaces developed by V. A. Solonnikov
[61] since the boundary value problem for the Stokes equations cannot be reduced to usual
parabolic theory.

We also invoke the strictly admissibility of Ω to derive the uniqueness of the blow-up
limit (u, p). If Ωm tends to the whole space, by (3.1.11), we observe that ∇pm tends to
zero locally uniformly in Rn × (0, 1]. This reduces the problem to the uniqueness result
for the heat equation. If Ωm tends to a half space, we use a uniqueness result for spatially
non-decaying velocity in the half space Rn

+ = {(x′, xn)| xn > 0, x′ ∈ Rn−1}, which is
essentially due to V. A. Solonnikov [59] as we proved in Chapter 2. Note that to assert the
uniqueness of solutions (u, p) of the Stokes equations (3.1.1)-(3.1.4) with zero initial data
and a bound for ∥N(u, p)∥∞(t), we need to assume some decay for ∇p, otherwise there is a
counterexample (Remark 3.4.2). In fact, it suffices to assume that ∇p→ 0 for xn → ∞. In
our setting since (3.1.12) is a scaling invariant, this estimate is inherited to (um, pm). Since
xn = dRn

+
(x), we are able to conclude that t 1

2 xn|∇p(x, t)| is bounded in Rn
+ × (0, 1), which is

enough to apply this available uniqueness result. Note that in the above uniqueness result,
we do not assume any spatial decay condition for velocity fields at infinity.

As we have seen above, a blow-up argument yields a key estimate (3.1.6) for solutions
of the Stokes equations (3.1.1)–(3.1.4) provided that ∥N(v, q)∥∞(t) (see (3.1.5)) is finite for
t > 0 as far as Ω is strictly admissible not necessarily bounded. We prove the a priori
estimate (3.1.16) for all solutions (v, q) such that

sup
0<t<T

∥∥∥N(v, q)
∥∥∥∞(t) < ∞,

and (3.1.11) holds. We call such a solution L∞-solution (see Definition 3.2.1). A question
is whether or not an L∞-solution actually exists. It is by now well known [24] that if
a uniformly C3-domain admits the Helmholtz decomposition in Lr, there exists an Lr-
solution and the Stokes semigroup S (t) is analytic in Lr

σ, the closure of C∞c,σ(Ω) in Lr.
However, in general, it is also known that the Helmholtz decomposition in Lr space may
not hold (see [11], [48]), unless r = 2. Fortunately, R. Farwig, H. Kozono, and H. Sohr
[16], [17], [18] established an L̃r-theory with L̃r

σ = Lr
σ ∩ L2

σ for r ≥ 2 for any uniformly
C2-domain for (3.1.1)–(3.1.4). In particular, they showed that the Stokes semigroup is
analytic on L̃r

σ space. It turns out that their solution (called an L̃r-solution) is an L∞-
solution provided that r > n and v0 is sufficiently regular, e.g., v0 ∈ C∞c,σ(Ω). Here is our
main result.

Theorem 3.1.2 (A priori L∞-estimates). Let Ω be a strictly admissible, uniformly C3-
domain in Rn. Then, there exists positive constants C and T0 depending only on Ω such
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that (3.1.6), i.e.,
sup

0<t<T0

∥∥∥N(v, q)
∥∥∥∞(t) ≤ C∥v0∥∞ (3.1.15)

holds for all L∞-solutions (v,∇q) of (3.1.1)–(3,1.4) and v0 ∈ C∞c,σ(Ω).

By a density argument with (3.1.15), we are able to construct a solution semigroup
S (t) for (3.1.1)–(3,1.4) on C0,σ(Ω). In particular, the estimate

sup
0<t<T0

t∥vt∥∞(t) ≤ C∥v0∥∞

from (3.1.15) shows that this semigroup is analytic on C0,σ(Ω). Let us give a precise form
of our result which includes Theorem 3.1.1 as a particular example.

Theorem 3.1.3 (Analyticity for a general domain). Let Ω be a strictly admissible, uni-
formly C3-domain in Rn. Then, the Stokes semigroup S (t) is uniquely extendable to a
C0-analytic semigroup on C0,σ(Ω). Moreover, the estimate (3.1.15) holds with some C > 0
and T0 > 0 for v = S (t)v0, v0 ∈ C0,σ(Ω) with a suitable choice of pressure q.

Although there are several results on analyticity of S (t) on Lr
σ for various domains such

as a half space, a bounded domain [28], [56], an exterior domain [12], [36], an aperture
domain [20], a layer domain [3], a perturbed half space [19], the result corresponding to
Theorem 3.1.3 is available only for a half space [14], [44], [59] (and the whole space,
where the Stokes semigroup agrees with the heat semigroup).

This chapter is organized as follows. In Section 2, we define L∞-solutions and prove
the harmonic-pressure gradient estimate (3.1.11) for all L∞-solutions. In Section 3, we
derive local Hölder estimates both interior and up to boundary which are key to derive
necessary compactness for a blow-up sequence. In Section 4, we prove the a priori esti-
mates (Theorem 3.1.2) by a blow-up argument. As an application we prove Theorem 3.1.3
(and Theorem 3.1.1 as a particular example).

3.2 L∞-solutions and the harmonic-pressure gradient es-
timate

In this section, we define L∞-solutions and prove that the harmonic-pressure gradient es-
timate (3.1.11) for all L∞-solutions in a strictly admissible domain. As discussed later in
Section 4, if initial data is sufficiently regular, an L̃r-solution agrees with an L∞-solution.

In order to define an L∞-solution, we recall the space L∞σ (Ω) defined by

L∞σ (Ω) =
{

f ∈ L∞(Ω)
∣∣∣∣∣∣

∫

Ω

f · ∇ϕdx = 0 for all ϕ ∈ Ŵ1,1(Ω)
}
,
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where Ŵ1,1(Ω) denotes the homogeneous Sobolev space Ŵ1,1(Ω) = { ϕ ∈ L1
loc(Ω)

∣∣∣ ∇ϕ ∈
L1(Ω) }. Note that L∞σ (Ω) is larger than C0,σ(Ω) and includes non-decaying functions.
Although the existence of L∞-solutions is unknown in general, L∞-solutions uniquely exist
on an exterior domain and a perturbed half space as discussed later in Chapter 4.

Definition 3.2.1 (L∞-solution). Let Ω be a domain in Rn, n ≥ 2, with ∂Ω ! ∅. Let
(v,∇q) ∈ C2,1(Ω̄× (0,T ])×C(Ω̄× (0, T ]) satisfy (3.1.1)–(3.1.3) and (3.1.4) for v0 ∈ L∞σ (Ω)
in the sense that v(·, t) → v0 weakly-∗ on L∞(Ω) as t ↓ 0. We call (v,∇q) L∞-solution if
(3.1.5) and

t1/2dΩ(x)|∇q(x, t)| (3.2.1)

are bounded in Ω × (0,T ).

The bound for (3.2.1) implies that the pressure q(·, t) is a weak solution of (3.1.12).
Thus, the harmonic-pressure gradient estimate (3.1.11) holds for all L∞-solutions provided
that Ω is strictly admissible.

Lemma 3.2.2 (Harmonic-pressure gradient estimate). Let Ω be a domain in Rn, n ≥ 2,
with C2-boundary. Let (v,∇q) be an L∞-solution for (3.1.1)–(3.1.4) in Ω × (0,T ). Then,
q(·, t) is a weak solution of (3.1.12) for W(v) = −(∇v − ∇T v)nΩ. Assume that Ω is strictly
admissible. Then, the estimate

|∇q|∞,d(t) ≤ CΩ||W(v)||∞,∂Ω(t) (3.2.2)

holds for each t ∈ (0,T ). The constant CΩ is invariant of translation and dilation of Ω.

We shall show that the pressure q solves the Neumann problem (3.1.12) for W(v) =
−(∇v − ∇T v)nΩ. We prepare the following:

Proposition 3.2.3. Let Ω be a domain in Rn, n ≥ 2, with C2-boundary. Set

W = −(g − gT )nΩ (3.2.3)

for a tensor-valued function g = (gi j)1≤i, j≤n ∈ C1(Ω̄). Then W · nΩ = 0 on ∂Ω and

div∂ΩW =
∑

i, j

(ni
Ω∂ j − nj

Ω
∂i)gi j. (3.2.4)

Proof. Since ∂Ω is C2, −∇dΩ is a C1-function near ∂Ω and agrees with nΩ on ∂Ω. We
extend nΩ by −∇dΩ. We may assume W is a C1-function near ∂Ω. By multiplying nΩ to
W, it follows that

W · nΩ = −
∑

i, j

gi jni
Ωnj
Ω
+

∑

i, j

gi jni
Ωnj
Ω
= 0.

We shall show (3.2.4). Since ∇∂ΩWi = ∇W − nΩ(∇W · nΩ), it follows that

div∂ΩW = divW −
∑

i, j

∂ jWini
Ωnj
Ω
.
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We show that

divW =
∑

i, j

(ni
Ω∂ j − nj

Ω
∂i)gi j, (3.2.5)

∑

i, j

∂ jWini
Ωnj
Ω
= 0. (3.2.6)

The equalities (3.2.5) and (3.2.6) imply (3.2.4). We first show (3.2.5). Take the divergence
to W in (3.2.3) to get

divW = −
∑

i, j

(∂igi j − ∂ig ji)n
j
Ω
−

∑

i, j

(gi j − gji)∂in
j
Ω

= −
∑

i, j

(ni
Ω∂ j − nj

Ω
∂i)gi j −

∑

i, j

(gi j − gji)∂in
j
Ω
.

The second term vanishes since ∂ jni
Ω
= ∂in

j
Ω

by nΩ = −∇dΩ. In fact, it follows that
∑

i, j

(gi j − gji)∂in
j
Ω
=

∑

i, j

(gi j − gji)∂ jni
Ω

= −
∑

i, j

(gi j − gji)∂in
j
Ω
.

Thus, (3.2.5) holds. It remains to show (3.2.6). Since

∂iW j = −
∑

k

(∂ig jk − ∂igk j)nk
Ω −

∑

k

(gjk − gk j)∂ink
Ω

for i, j ∈ {1, · · · , n}. By multiplying ni
Ω

nj
Ω

to the both sides and summing up with respect
to i and j, we have

∑

i, j

∂iW jn j
Ω

ni
Ω = −

∑

i, j,k

(∂ig jk − ∂igk j)nk
Ωni
Ωnj
Ω
−

∑

i, j,k

(gjk − gk j)∂ink
Ωni
Ωnj
Ω

= −
∑

i, j,k

(∂ig jk − ∂igk j)nk
Ωni
Ωnj
Ω
.

Here, we use
∑

i ∂kni
Ω

ni
Ω
= ∂k|n|/2 = 0 since |n| = 1 near ∂Ω. By replacing k and j, we

have
∑

i, j,k

(∂ig jk − ∂igk j)nk
Ωni
Ωnj
Ω
=

∑

i, j,k

(∂igk j − ∂ig jk)n
j
Ω

ni
Ωnk
Ω

= −
∑

i, j,k

(∂ig jk − ∂igk j)nk
Ωni
Ωnj
Ω
.

Thus, (3.2.5) holds. The proof is now complete. !
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Proof of Lemma 3.2.2. By taking the divergence to (3.1.1) and multiplying nΩ to (3.1.1),
we observe that the pressure q solves the Neumann problem,

∆q = 0 in Ω, ∂q/∂nΩ = ∆v · nΩ on ∂Ω,

where v · nΩ = 0 on ∂Ω is used. Since div v = 0 on Ω, it follows that

∆v · nΩ =
∑

j!i

∂2
jv

ini
Ω +

∑

i

∂2
i vini

Ω

=
∑

j!i

∂2
jv

ini
Ω −

∑

j!i

∂ j∂iv jni
Ω

=
∑

i, j

(nj
Ω
∂i − ni

Ω∂ j)∂iv j.

By Proposition 3.2.3, the right-hand side agrees with div∂ΩW for W(v) = −(∇v − ∇T v)nΩ.
Since ∇q(·, t) ∈ L∞d (Ω) by the definition of an L∞-solution, q(·, t) is a weak solution of the
Neumann problem (3.1.12) for W(v). Since Ω is strictly admissible, (3.2.2) holds with the
dilation invariant constant CΩ. The proof is now complete. !

Remark 3.2.4. (i) The estimate (3.2.2) also holds for the Robin-type boundary condition,
i.e., v · nΩ = 0 on ∂Ω and

αvtan + (D(v)nΩ)tan = h on ∂Ω

for a tangential vector field h and α ≥ 0, where D(v) = (∇v+∇T v)/2 denotes the deforma-
tion tensor and ftan denotes the tangential component of the vector field f (see, e.g., [53],
[51] for the Robin-type boundary conditions).
(ii) Actually, the statement of Lemma 3.2.2 holds with C1-boundary since by integration
by parts, we are able to prove that pressure of an L∞-solution is a weak solution for the
Neumann problem (3.1.12) (without applying Proposition 3.2.3).

3.3 Local Hölder estimates for the Stokes equations

The goal of this section is to establish local Hölder estimates for second spatial deriva-
tives and a time derivative of velocity solving the Stokes equations both interior and up to
boundary. This procedure is a key to derive necessary compactness for blow-up sequences.
Unlike the heat equation the result is not completely local even interior case since we need
a uniform Hölder estimates in time for pressure gradients. For this purpose, we invoke the
strictly admissibility of domains.
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3.3.1 Interior Hölder estimates for pressure gradients
We use conventional notation [41] for Hölder (semi)norms for space-time functions. Let
f = f (x, t) be a real-valued or an Rn-valued function defined in Q = Ω × (0,T ], where Ω
is a domain in Rn. For µ ∈ (0, 1) we set several Hölder semi-norms

[ f ](µ)
(0,T ](x) = sup

{∣∣∣ f (x, t) − f (x, s)
∣∣∣/|t − s|µ

∣∣∣∣ t, s ∈ (0,T ], t ! s
}
,

[ f ](µ)
Ω

(t) = sup
{∣∣∣ f (x, t) − f (y, t)

∣∣∣/|x − y|µ
∣∣∣∣ x, y ∈ Ω, x ! y

}
,

and
[ f ](µ)

t,Q = sup
x∈Ω

[ f ](µ)
(0,T ](x), [ f ](µ)

x,Q = sup
t

[ f ]µ
Ω

(t).

In the parabolic scale, for γ ∈ (0, 1), we set

[ f ](γ,γ/2)
Q = [ f ](γ/2)

t,Q + [ f ](γ)
x,Q .

For later convenience, we also define the case γ = 1 so that

[ f ](1,1/2)
Q = ∥∇ f ∥L∞(Q) + [ f ](1/2)

t,Q .

If l = [l] + γ where [l] is a nonnegative integer and γ ∈ (0, 1), we set

[ f ](l,l/2)
Q =

∑

|α|+2β=[l]

[∂αx ∂
β
t f ](γ,γ/2)

Q

and the parabolic Hölder norm

| f |(l,l/2)
Q =

∑

|α|+2β≤[l]

∥∂αx ∂βt f ∥L∞(Q) + [ f ](l,l/2)
Q .

When f is time-independent, we simply write [ f ](µ)
x,Q by [ f ](µ)

Ω
.

Lemma 3.3.1. Let Ω be a strictly admissible, uniformly C2-domain in Rn. Then there
exists a constant M(Ω) > 0 such that

[dΩ(x)∇q](1/2)
t,Qδ
≤ M

δ
sup

{(∥vt∥∞(t) + ∥∇2v∥∞(t)
)
t
∣∣∣∣ δ ≤ t ≤ T

}

holds for all L∞-solutions (v,∇q) of (3.1.1)–(3.1.4) and all δ ∈ (0,T ), where Qδ = Ω ×
(δ,T ). The constant M can be taken uniform with respect to translation and dilation, i.e.,
M(λΩ + x0) = M(Ω) for all λ > 0 and x0 ∈ Ω.

Proof. By an interpolation inequality (e.g. [65], [40, 3.2]), there is a dilation invariant
constant C such that for any ε > 0 the estimate

∥∇v∥∞(t) ≤ ε∥∇2v∥∞(t) + (C/ε)∥v∥∞(t)
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holds. Since our solution is an L∞-solution, q(·, t) − q(·, s) solves the Neumann problem
(3.1.12) for W(v(·, t) − v(·, s)). Since Ω is strictly admissible, we have

dΩ(x)
∣∣∣∇q(x, t) − ∇q(x, s)

∣∣∣ ≤ C(Ω)
∥∥∥∇(v(·, t) − v(·, s)

)∥∥∥∞
≤ C(Ω)[εmax

(∥∇2v∥∞(t), ∥∇2v∥∞(s)
)
+ (C/ε)

∥∥∥v(·, t) − v(·, s)
∥∥∥∞

]
.

Since
∥∥∥v(·, t) − v(·, s)

∥∥∥∞ ≤ |t − s| sup
{∥vt∥∞(τ)

∣∣∣ τ is between t and s
}
,

≤ |t − s| 1
δ

sup
{
τ∥vt∥∞(τ)

∣∣∣ δ ≤ τ ≤ T
}

for t, s ≥ δ, the desired inequality follows by taking ε = |t − s|1/2. Since CΩ is also dilation
and translation invariant, so is M(Ω). !

Proposition 3.3.2 (Interior Hölder estimates). Let Ω be a strictly admissible, uniformly
C2-domain in Rn. Take γ ∈ (0, 1), δ > 0, T > 0, R > 0. Then, there exists a constant
C = C

(
M(Ω), δ,R, d, γ, T

)
such that the estimate

[∇2v](γ,γ/2)
Q′ + [vt]

(γ,γ/2)
Q′ + [∇q](γ,γ/2)

Q′ ≤ CNT (4.3.1)

holds for all L∞-solutions (v,∇q) of (3.1.1)–(3.1.4) provided that Bx0(R) ⊂ Ω and x0 ∈ Ω,
where Q′ = Bx0(R) × (δ,T ] and d denotes the distance of Bx(R) and ∂Ω. Here,

NT = sup
0<t<T

∥∥∥N(v, q)
∥∥∥∞(t) < ∞, (3.3.2)

and M(Ω) is the constant in Lemma 3.3.1.

Proof. Since ∇q is harmonic in Ω, the Cauchy type estimate implies

sup
x∈Bx0 (R+d/2)

∣∣∣∇2q(x, t)
∣∣∣ ≤ C0

d
∥∇q∥L∞(Ω)(t), Bx0(R + d/2) ⊂ Ω,

where C0 depends only on n. This together with Lemma 3.3.1 implies

[∇q](1,1/2)
Q′′ ≤

(C0R′

d
+ M

)1
δ

NT , R′ = R + d/2

for any x0 ∈ Ω, R > 0, δ > 0, where Q′′ = Bx0(R + d/2) × (δ/2,T ]. By the standard local
Hölder estimate for the heat equation, i.e.,

vt − ∆v = −∇q in Q′′,

this pressure gradient estimate implies estimates for ∇2v, vt for Q′ [41, Chapter IV, Theo-
rem 10.1]. !
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Remarks 3.3.3. (i) We are tempted to claim that if (v, q) solves the Stokes system (3.1.1)–
(3.1.2) without boundary and initial condition, then the desired interior Hölder estimate
would be valid. Such a type estimate is in fact true for the heat equation [41, Chapter IV,
Theorem 10.1]. However, for the Stokes equations, this is no longer true. In fact, if we
take v(x, t) = g(t) and p(x, t) = −g′(t) · x with g ∈ C1[0,∞), this is always a solution of
(3.1.1)–(3.1.2) satisfying NT1 < ∞ for any T1 > 0. However, evidently, vt may not be
Hölder continuous in time unless ∇p is Hölder continuous in time. This is why we use a
global setting with the strictly admissibility of a domain.
(ii) In the constant C the dependence ofΩ is through M(Ω) so it is invariant under a dilation
provided that d and R are taken independent of a dilation.
(iii) The local Hölder estimate (4.3.1) says that L∞-solutions are Hölder continuous both
interior an up to the boundary of Ω and t > 0, i.e., v ∈ C2+γ,1+γ/2(Ω × [δ,T ]), ∇q ∈
Cγ,γ/2(Ω × [δ,T ]) for each δ > 0; see Theorem 3.3.4 below for the estimate (4.3.1) up to
the boundary.

3.3.2 Local Hölder estimates up to the boundary
The regularity up to boundary is more involved. We begin with the statement and give a
proof in subsequent sections.

Theorem 3.3.4 (Estimates near the boundary). Let Ω be a strictly admissible, uniformly
C3-domain of type (α, β,K) in Rn. Then, there exists R0 = R0(α, β,K) > 0 such that for
any γ ∈ (0, 1), δ ∈ (0,T ) and R ≤ R0/2 there exists a constant

C = C
(
M(Ω), δ, γ, T,R,α, β,K

)

such that (3.3.1) is valid for all L∞-solution (v,∇q) of (3.1.1)-(3.1.4) with

Q′ = Q′x0,R,δ = Ωx0,R × (δ,T ], Ωx0,R = Bx0(R) ∩Ω
provided that x0 ∈ ∂Ω.

The proof is more involved. We first localize the Stokes equations near the boundary
by using cutoff technique and the Bogovskiı̌ operator [22, III.3] to recover divergence
free property. Then, we apply the global Schauder estimate for the Stokes equations in a
localized domain. As in the interior case, we use the strictly admissibility of a domain to
obtain the Hölder estimate for pressure in time.

We begin with Hölder estimates for q in time since we are not able to control the Hölder
norm of ∇q up to the boundary.

Lemma 3.3.5. Assume the same hypotheses of Lemma 3.3.1. Then, there exists R0 =

R0(α, β,K) > 0 such that for ν ∈ (0, 1) and R ∈ (0,R0], there exists a constant C0 =

C0
(
M(Ω), ν,α,R, β,K

)
such that

[q](ν,ν/2)
Q′ ≤ C0NT/δ (3.3.3)

is valid for all L∞-solutions (v,∇q) of (3.1.1)–(3.1.4) and Q′ = Q′x0,R,δ for x0 ∈ ∂Ω.
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In order to show (3.4.3), we prepare basic facts for a distance function.

Proposition 3.3.6. Let Ω be a uniformly C2-domain of type (α, β,K).
(i) There is a constant R∗ = R∗(α, β,K) > 0 such that x ∈ ΓΩ,R∗ = {x ∈ Ω | dΩ(x) < R∗}
has the unique projection xp ∈ ∂Ω (i.e., |x − xp| = dΩ(x)) and x is represented by x =
xp − dnΩ(xp) with d = dΩ(x). The mapping x .→ (xp, d) is C1 in ΓΩ,R∗ .
(ii) There is a positive constant R1 = R1(α, β,K) ≤ R∗ such that Ωx0,R1 ⊂ Uα,β,h(x0) and the
projection xp of x ∈ Ωx0,R1 is on x0 + graph h.
(iii) For each R ∈ (0,R1) and ν ∈ [0, 1), there is a constant C = C(α, β,K,R, ν) such that

∣∣∣q̃(x) − q̃(y)
∣∣∣ ≤ C∥dνΩ∇q̃∥L∞(Ω)

{∣∣∣dΩ(y)1−ν − dΩ(x)1−ν∣∣∣ + |xp − yp|
/

max
(
dΩ(x)ν, dΩ(y)ν

)}

for x, y ∈ Ωx0,R,

for all q̃ ∈ C1(Ω) and x0 ∈ ∂Ω.

Proof. (i) This is nontrivial but well known. See, e.g., [26] or [39, 4.4].
(ii) This is easy by taking R smaller. The smallness depends on a bound for the second
fundamental form of ∂Ω.
(iii) For x ∈ Ωx0,R (R ≤ R1), we consider its normal coordinate (xp, d). Since Ωx0,R ⊂
Uα,β,h(x0), there is unique x′p ∈ Rn−1 such that xp =

(
x′p, h(x′p)

)
. Moreover, we are able to

use (x′p, d) as a coordinate system. For x, y ∈ Ωx0,R with x =
(
x′p, dΩ(x)

)
, y =

(
y′p, dΩ(y)

)

with dΩ(y) > dΩ(x), we estimate
∣∣∣q̃(x) − q̃(y)

∣∣∣ ≤
∣∣∣q̃(x) − q̃(z)

∣∣∣ +
∣∣∣q̃(z) − q̃(y)

∣∣∣

with z =
(
x′p, dΩ(y)

)
. Thus we connect x and z by a straight line which parallels to nΩ(xp)

and observe that
∣∣∣q̃(x) − q̃(z)

∣∣∣ ≤ |z − x|
∫ 1

0

1
dν
Ω

(xτ)

∣∣∣dνΩ∇q̃(xτ)
∣∣∣ dτ, xτ = x(1 − τ) + τz (0 ≤ τ ≤ 1)

≤
∫ dΩ(y)

dΩ(x)

1
sν

ds∥dνΩ∇q̃∥L∞(Ω)

≤ (
dΩ(z)1−ν − dΩ(x)1−ν)∥dνΩ∇q̃∥L∞(Ω)(1 − ν)−1.

It remains to estimate |q̃(z) − q̃(y)|. We connect z and y by a curve Cz,y of the form,

Cz,y =
{
x(τ)

∣∣∣∣ 0 ≤ τ ≤ 1, x′p(τ) = x′p(1 − τ) + τy′p, dΩ
(
x(τ)

)
= dΩ(y)

}
,

so that the projection in Rn−1 is a straight line connecting x′p and y′p. We now estimate
∣∣∣q̃(z) − q̃(y)

∣∣∣ ≤
∫

Cz,y

1
dΩ(y)ν

dνΩ(y)|∇q̃|(x) dH1(x)

=
1

dΩ(y)ν
H1(Cz,y)∥dνΩ∇q̃∥L∞(Ω).

SinceH1(Cz,y) ≤ C|xp − yp|, the proof is now complete. !
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Proof of Lemma 3.3.5. We take R1 > 0 as in Proposition 3.3.6. For x0 ∈ ∂Ω, we take
x̃0 = x0 − R1

2 nΩ(x0). We may assume that q(x̃0, t) = 0 for all t ∈ (0,T ). Since

[
dΩ(x)ν∇q

](ν/2)
t,Qδ
≤

(
[dΩ(x)∇q](1/2)

t,Qδ

)ν(
2∥∇q∥L∞(Qδ)

)1−ν,

Lemma 3.3.1 implies that

∥∥∥dΩ(x)ν∇q̃(x, ·)
∥∥∥

L∞(Ω)(t, s) ≤ MνNT 2
δ

1−ν
|t − s|ν/2 for t, s ∈ (δ,T ],

with q̃(x, t, s) = q(x, t) − q(x, s). We now apply Proposition 3.3.6 (iii) with y = x̃0 to get

∣∣∣q(x, t) − q(x, s)
∣∣∣ ≤ C

(
dΩ(x̃0)1−ν + |xp − x0|dΩ(x̃0)−ν

)MνNT 2
δ

1−ν
|t − s|ν/2

for t, s ∈ (δ,T ] and all x ∈ Ωx0,R , R ≤ R0 = R1/4. Since dΩ(x̃0) = 2R0 and |xp − x0| < R,
the above inequality implies

[q](ν/2)
t,Q′ ≤ C0NT/δ, C0 = C

(
(2R0)1−ν + R(2R0)−ν

)
Mν21−ν.

For the Hölder estimate in space, we simply apply Proposition 3.3.6 (iii) with ν = 0 to
get

∣∣∣q(x, t) − q(y, t)
∣∣∣ ≤ C∥∇q∥L∞(Ω)(t)

(∣∣∣dΩ(y) − dΩ(x)
∣∣∣ + |xp − yp|

)

≤ C∥∇q∥L∞(Ω)(t)|x − y|, x, y ∈ Ωx0,R, R ≤ R0, t ∈ (0,T ).

This implies
[q](ν)

x,Q′ ≤ C0NT/δ,

so the proof is now complete. !

3.3.3 Helmholtz decomposition and the Stokes equations in Hölder spaces
To prove local Hölder estimates up to boundary (Theorem 3.3.4), we recall several known
Hölder estimates for the Helmholtz decomposition and the Stokes equations established
by [56], [61] via potential theoretic approach. We recall notions for the spaces of Hölder
continuous functions. By Cγ(Ω̄) with γ ∈ (0, 1), we mean the space of all continuous
functions in Ω̄ with [ f ](γ)

Ω
< ∞. Similarly, we use Cγ,γ/2(Q̄) for the space of all continuous

functions in Q̄ with [ f ](γ,γ/2)
Q < ∞.

Proposition 3.3.7 (Helmholtz decomposition). Let Ω be a bounded C2+γ-domain in Rn

with γ ∈ (0, 1).
(i) For f ∈ Cγ(Ω̄) there is a (unique) decomposition f = f0 + ∇Φ with f0, ∇Φ ∈ Cγ(Ω̄)
such that ∫

Ω

f0 · ∇ϕdx = 0 for all ϕ ∈ C∞(Ω̄). (3.3.4)
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(ii) There is a constant CH > 0 depending only on γ and Ω only through its C2+γ regularity
such that

| f0|(γ)
Ω
+ |∇Φ|(γ)

Ω
≤ CH | f |(γ)

Ω
for all f ∈ Cγ(Ω̄). (3.3.5)

(iii) For each ε ∈ (0, 1 − γ) there is a constant C′H > 0 depending only on γ,ε and Ω only
through its C2+γ regularity such that

| f0|(γ,γ/2)
Q + |∇Φ|(γ,γ/2)

Q ≤ C′H | f |
(γ+ε, γ+ε2 )
Q for all f ∈ Cγ+ε,(γ+ε)/2(Q̄). (3.3.6)

Proof. The part (i) and (ii) are established in [56], [61]; the dependence of the constant is
not explicit but it is observed from the proof.

In [61, Corollary on p.175], it is proved that the left hand side of (3.3.6) is dominated
by a (similar type) constant multiple of

| f |(γ,γ/2)
Q + sup

x,y∈Ω
t,s∈(0,T ]

∣∣∣( f (x, t) − f (x, s)
) − (

f (y, t) − f (y, s)
)∣∣∣

|x − y|µ · |t − s| γ2
(3.3.7)

for arbitrary µ ∈ (0, 1). By the Young inequality, we observe to get

1
|x − y|ε|t − s|γ/2 ≤

ε

γ + ε

1
|x − y|γ+ε +

γ

γ + ε

1
|t − s| γ+ε2

.

Thus, we take µ = ε to see that the second term of (3.3.7) is dominated by

2ε
γ + ε

sup
t∈(0,T ]

[ f ](γ+ε)
Ω

(t) +
2γ
γ + ε

sup
x∈Ω

[ f ]( γ+ε2 )
(0,T ] (x).

Thus, the estimate (3.3.6) follows and (iii) is proved. !

Remark 3.3.8. The operator f .→ f0 is essentially the Helmholtz projection P for Hölder
vector fields since (3.3.4) implies that div f = 0 in Ω and f · nΩ = 0 on ∂Ω. The estimate
(3.3.5) shows the continuity of P in the Hölder space Cγ(Ω̄). However, it is mentioned in
[61] (without a proof) that P is not continuous in Cγ,γ/2(Q̄). In other words, one cannot
take ε = 0 in the estimate (3.3.6).

We next recall Schauder type estimates for the Stokes system:

vt − ∆v + ∇q = f0 in Ω × (0,T ), (3.3.8)
div v = 0 in Ω × (0,T ), (3.3.9)

v = 0 on ∂Ω × (0, T ), (3.3.10)
v = 0 on Ω × {t = 0}. (3.3.11)
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Proposition 3.3.9. Let Ω be a bounded C2+γ-domain in Rn with γ ∈ (0, 1) and T > 0.
Then, for each f0 ∈ Cγ,γ/2(Q̄) satisfying (3.3.4) there is a unique solution (v,∇q) ∈
C2+γ,1+γ/2(Q̄) × Cγ,γ/2(Q̄) (up to an additive constant for q) of (3.3.8)–(3.3.11). More-
over, there is a constant CS depending only on γ, T and Ω only through its C2+γ-regularly
such that

|v|(2+γ,1+γ/2)
Q + |∇q|(γ,γ/2)

Q ≤ CS | f0|(γ,γ/2)
Q (3.3.12)

Remarks 3.3.10. (i) This result is a special case of a very general result [61, Theorem
1.1], where the viscosity constant in front of ∆ in (3.3.8) depends on space and time and
the boundary and initial data are inhomogeneous. Note that the divergence free condition
(3.3.4) for f0 is assumed to establish (3.3.12).
(ii) If the domain is a bounded C3-domain, clearly, it is a uniformly C3-domain of type
(α, β,K) with some (α, β,K). The constants CH, C′H and CS in Propositions 3.3.7 and 3.3.9
depends on Ω only through this (α, β,K) when Ω is a bounded C3-domain (which is of
course a C2+γ-domain for all γ ∈ (0, 1)).

3.3.4 Localization procedure

We shall prove Theorem 3.3.4 by Lemma 3.3.5 and a localization procedure with necessary
Hölder estimates (Propositions 3.3.7 and 3.3.9). We first recall the Bogovskiı̌ operator BE

in [10]. Let E be a bounded subdomain in Ω with a Lipschitz boundary. The Bogovskiı̌
operator BE is a rather explicit operator, but here we only need a few properties. This
linear operator BE is well-defined for average-zero functions, i.e.,

∫
E gdx = 0. Moreover,

divBE(g) = g in E and if the support spt g ⊂ E, then, spt BE(g) ⊂ E.
The operator BE fulfills estimates

∥∥∥BE(g)
∥∥∥

W1,p(E) ≤ CB∥g∥Lp(E) for g ∈ Lp(E) satisfying
∫

E
gdx = 0, (3.3.13)

∥∥∥BE(g)
∥∥∥

Lp(E) ≤ CB∥g∥W−1,p
0 (E) for h ∈ W−1,p

0 (E) =
(
W1,p′(E)

)∗, (3.3.14)

with some constant CB independent of g, where 1/p′ + 1/p = 1 with 1 < p < ∞. In
particular, BE is bounded from Lp

av(E) = {g ∈ Lp(E)}|
∫

E gdx = 0} to the Sobolev space
W1,p(E). The result (3.3.14) is a special case of that of [23, Theorem 2.5] which asserts
that BE is bounded from W s,p

0 (Ω) to W s+1,p
0 (Ω) for s > −2 + 1/p. The bound CB depends

on p, but its dependence on E is through Lipschitz regularity constant of ∂E.

Proof of Theorem 3.3.4. We take R0 as in Lemma 3.3.5 and take R ≤ R0/2. For x0 ∈ ∂Ω,
we take a bounded C3-domain Ω′ such that Ωx0,3R/2 ⊂ Ω′ ⊂ Ωx0,2R. Evidently, ∂Ωx0,R ∩ ∂Ω
is strictly included in ∂Ω′ ∩ ∂Ω. Moreover, one can arrange that Ω′ is of type (α′, β′,K′)
such that (α′, β′,K) depends on (α, β,K) and R. Such Ω′ is constructed, for example, by
considering Ω′′ = Ωx0,7R/4 and mollifying near the set of intersection ∂Bx0(7R/4) and ∂Ω
in a suitable way to get Ω′.
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Let θ be a smooth cutoff function of [0, 1] supported in [0, 3/2), i.e., θ ∈ C∞[0,∞) such
that θ ≡ 1 on [0, 1] and 0 ≤ θ ≤ 1 with spt θ ⊂ [0, 3/2). We set θR(x) = θ(|x−x0|/R) which is
a cut-off function of Ωx0,R supported in Ω′. Because of construction, its derivatives depend
only on R. We also take a cutoff function ρδ in time variable. Let ρ ∈ C∞[0,∞) satisfies
ρ ≡ 1 on [1,∞) and ρ = 0 on [0, 1/2) with 0 ≤ ρ ≤ 1. For δ > 0 we set ρδ(t) = ρ(t/δ). We
set ξ = θRρδ and observe that u = vξ and p = qξ solves

ut − ∆u + ∇p = f , div u = g,

in U = Ω′ × (0,T ) with

f = vξt − 2∇v · ∇ξ − v∆ξ + q∇ξ, g = v∇ξ (
= div(vξ)

)
.

We next use the Bogovskiı̌ operator BΩ′ so that the vector field is solenoidal. We set
u∗ = BΩ′(g) and ũ = u − u∗. Then, (ũ, p) solves

ũt − ∆ũ + ∇p = f̃ , div ũ = 0 in U,

with f̃ = f + u∗t −∆u∗. We shall fix Ω′ so that C′H in (3.3.6) and CS in (3.3.12) depends on
Ω′ only through (α, β,K) and R. If we know f̃ ∈ Cγ+ε, γ+ε2 (Ū) with ε ∈ (0, 1 − γ), then, by
the Helmholtz decomposition in Hölder spaces (Proposition 3.3.7), one finds f̃ = f0 +∇Φ
with f0 ∈ Cγ,γ/2(Ū) satisfying (3.3.4) and

| f0|(γ) + |∇Φ|(γ) ≤ C′H | f̃ |(γ+ε), (3.3.15)

where we use a short hand notation | f |(γ) = | f |(γ,γ/2)
U . If we set p̃ = p−Φ, then (ũ, p̃) solves

(3.3.8)–(3.3.11) withΩ = Ω′, where f0 satisfies the solenoidal condition (3.3.4). Applying
the Schauder estimate (3.3.12) yields

|ũ|(2+γ) + |∇ p̃|(γ) ≤ CS | f0|(γ). (3.3.16)

By definition of f̃ , we observe that

| f̃ |(γ+ε) ≤ | f |(γ+ε) + |u∗t |(γ+ε) + |∆u∗|(γ+ε)

≤ c0

(
|v|(γ+ε,

γ+ε
2 )

Ω′×( δ2 ,T ]
+ |∇v|(γ+ε,

γ+ε
2 )

Ω′×( δ2 ,T ]
+ |q|(γ+ε,

γ+ε
2 )

Ω′×( δ2 ,T ]

)
+ |u∗|(2+γ+ε)

with c0 depends only on R, T , δ and γ+ ε. Since NT in (3.3.2) is finite, by an interpolation
inequality as in the proof of Lemma 3.3.1, we have |∇v|(1/2)

t,Qδ
≤ CNT/δ with C depending

only on (α, β,K). We now apply this estimate together with estimate (3.3.3) for q in
Lemma 3.3.5 to get

| f̃ |(γ+ε) ≤ CNT + |u∗|(2+γ+ε), (3.3.17)

with a constant C = C
(
M(Ω), γ + ε,α, β,K,R, δ

)
. Since

|v|(2+γ,1+γ/2)
Q′ ≤ |u|(2+γ) ≤ |ũ|(2+γ) + |u∗|(2+γ)

|∇q|(γ,γ/2)
Q′ ≤ |∇ p̃|(γ) + |∇Φ|(γ),
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the desired estimates follow from (3.3.15)-(3.3.17) once we have established that

|u∗|(2+γ+ε) ≤ CNT .

with C = C
(
M(Ω), γ + ε,α, β,K,R, δ

)
.

We shall present a proof for
[u∗t ](µ/2)

t,U ≤ CNT , (3.3.18)

for µ ∈ (0, 1) since other quantities can be estimated in a similar way and even easier. By
(3.3.13) and (3.3.14), we have

∥u∗t ∥Lp(Ω′) ≤ CB∥div ut∥W−1,p
0 (Ω′), (3.3.19)

∥u∗t ∥W1,p(Ω′) ≤ CB∥div ut∥Lp(Ω′). (3.3.20)

To estimate ∥div ut∥W−1,p
0 (Ω′), we use the equations vt − ∆v + ∇q = 0 and div v = 0. For an

arbitrary ϕ ∈ W1,p′(Ω′), we have
∫

Ω′
ϕ div ut dx =

∫

Ω′
(ϕ vt · ∇ξ + ϕ ∇ξt · v) dx

=

∫

Ω′

(
ϕ ∇ξ · (∆v − ∇q) + ϕ ∇ξt · v) dx

=

∫

Ω′

{
−

n∑

i=1

∂xi(ϕ∇ξ) · ∂xiv + q div(ϕ∇ξ) + ϕ∇ξt · v
}

dx

+

∫

∂Ω′
{ϕ ∇ξ · ∂v/∂nΩ′ − qϕ ∂ξ/∂nΩ′} dHn−1.

This implies
∣∣∣∣
∫

Ω′
ϕ div utdx

∣∣∣∣ ≤ Cξ

{
∥∇v∥∞ + ∥q∥∞ + ∥v∥∞

}(
∥ϕ∥W1,1(Ω′) + ∥ϕ∥L1(∂Ω′)

)
(3.3.21)

with Cξ depending only on R and δ (independent of t), where L∞-norms are taken on Ω′.
By a trace theorem (e.g. [15, 5.5, Theorem 1]), there is a constant C (depending only on
Lipschitz regularity of the domain) such that

∥ϕ∥L1(∂Ω′) ≤ C∥ϕ∥W1,1(Ω′).

By the Hölder inequality ∥ϕ∥W1,1(Ω′) ≤ C′∥ϕ∥W1,p(Ω′) with C′ depending on the volume of
Ω′. Thus, (3.3.21) yields

∥div ut∥W−1,p
0 (Ω′) ≤ C0

(∥∇v∥∞ + ∥q∥∞ + ∥v∥∞
)

with C0 depending only on δ, R and Ω′ through its (α, β,K). By (3.3.19), this yields

∥u∗t ∥Lp(Ω′) ≤ CBC0
(∥∇v∥∞ + ∥q∥∞ + ∥v∥∞

)
. (3.3.22)
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We next estimate ∥u∗t ∥W1,p . By (3.3.20), a direct computation shows that

∥u∗t ∥W1,p(Ω′) ≤ C0CB
(∥v∥∞ + ∥vt∥∞

)
(3.3.23)

since div ut = div ∂t(ξv) = ∂t(∇ξ · v) by div v = 0.
We now apply the Gagliardo-Nirenberg inequality (e.g. [27]):

∥u∗t ∥∞ ≤ c∥u∗t ∥1−σLp(Ω′)∥u∗t ∥σW1,p(Ω′), σ = n/p,

to (3.3.22) and (3.3.23) to get

∥u∗t ∥∞ ≤ C1CB
(∥v∥∞ + ∥vt∥∞

)σ(∥∇v∥∞ + ∥v∥∞ + ∥q∥∞
)1−σ

with C1 depending only on δ, R and Ω′ through its (α, β,K). We replace u∗ by u∗(·, t) −
u∗(·, s) and observe that

∥∥∥u∗t (·, t) − u∗t (·, s)
∥∥∥∞ ≤ C1CB

(∥∥∥∇v(·, t) − ∇v(·, s)
∥∥∥∞ +

∥∥∥q(·, t) − q(·, s)
∥∥∥∞

+
∥∥∥v(·, t) − v(·, s)

∥∥∥∞
)1−σ(2NT/t ∧ s)

)σ, t, s > 0, (3.3.24)

where t ∧ s = min(t, s). As observed in the end of the proof of Lemma 3.3.1, we have

[∇v](1/2)
t,Qδ
≤ CNT/δ.

By (3.3.3), we now conclude that

sup
x∈Ω′

[∇v](µ′)
t,Ω′×( δ2 ,T ]

+ sup
x∈Ω′

[q](µ′)
t,Ω′×( δ2 ,T ]

≤ CNT/δ, µ
′ =

µ

2(1 − σ)

provided that µ′ < 1/2 (i.e. p > n/(1− µ)). Dividing both sides of (3.3.24) by |t− s|µ/2 and
take the supremum for s, t ≥ δ/2 to get (3.3.18) since u∗ = 0 for t ≤ δ/2. !

3.4 Blow-up arguments - a priori L∞ estimates
In this section, we shall prove Theorem 3.1.2 by a blow-up argument. We then derive The-
orem 3.1.3 which deduces Theorem 3.1.1 since a bounded domain is strictly admissible.

3.4.1 A priori estimates for L∞-solutions
Proof of Theorem 3.1.2. We argue by contradiction. Suppose that (3.1.15) were false for
any choice of T0 and C. Then, there would exist an L∞-solution (vm, qm) of (3.1.1)-(3.1.4)
for v0 = v0m ∈ C∞c,σ(Ω) and the sequence τm ↓ 0 (as m→ ∞) such that ∥N(vm, qm)∥∞(τm) >
m∥v0m∥∞. There is tm ∈ (0, τm) such that

∥∥∥N(vm, qn)
∥∥∥∞(tm) ≥ 1

2
Mm, Mm = sup

0<t<τm

∥∥∥N(vn, qm)
∥∥∥∞(t).
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Note that Mm is finite for the L∞-solution (vm,∇qm). We normalize (vm, qm) by defining
ṽm = vm/Mm, q̃m = qm/Mm. Then, (ṽm, q̃m) enjoys estimates (3.1.7)–(3.1.9). Since Ω is
strictly admissible, (3.1.7) implies that there is a dilation and translation invariant constant
CΩ independent of m such that

sup
{
t1/2dΩ(x)|∇q̃m(x, t)|

∣∣∣ x ∈ Ωm, t ∈ (0, tm)
} ≤ CΩ. (3.4.1)

We rescale (ṽm, q̃m) around the point xm ∈ Ω satisfying (3.1.10) to get the blow-up sequence
(um, pm) of the form,

um(x, t) = ṽm(xm + t
1
2
mx, tmt), pm(x, t) = t

1
2
mq̃m(xm + t

1
2
mx, tmt).

By the scaling invariance of the Stokes equations (3.1.1)–(3.1.2), this (um, pm) solves the
Stokes equations in a rescaled domain Ωm × (0, 1], where

Ωm =
{
x ∈ Rn

∣∣∣ x = (y − xm)
/

t1/2
m , y ∈ Ω}

.

It follows from (3.1.7), (3.4.1) and (3.1.10) that

sup
0<t<1

∥∥∥N(um, pm)
∥∥∥

L∞(Ωm) ≤ 1, (3.4.2)

sup
{
t1/2dΩm(x)|∇pm(x, t)|

∣∣∣ x ∈ Ωm, 0 < t < 1
} ≤ CΩ, (3.4.3)

N(um, pm)(0, 1) ≥ 1/4. (3.4.4)

Moreover, for initial data v0m, the condition (3.1.9) implies ∥u0m∥L∞(Ωm) → 0 (as m → ∞).
The proof is divided into two cases depending on whether or not

cm = dΩ(xm)/t1/2
m

tends to infinity as m→ ∞. This cm is the distance from zero to ∂Ωm, i.e., cm = dΩm(0).

Case 1. limm→∞cm = ∞. We may assume that limm→∞ cm = ∞ by taking a subsequence. In
this case, the rescaled domain Ωm expands to Rn. Thus, for any ϕ ∈ C∞c

(
Rn × [0, 1)

)
, the

blow-up sequence (um, pm) satisfies
∫ 1

0

∫

Rn

{
um · (ϕt + ∆ϕ) − ∇pm · ϕ

}
dxdt = −

∫

Rn
um(x, 0) · ϕ(x, 0)dx

for sufficiently large m > 0. By (3.4.2) and Proposition 3.3.2, we have a necessary com-
pactness to conclude that there exists a subsequence of solutions still denoted by (um, pm)
such that (um, pm) converges to some (u, p) locally uniformly in Rn × (0, 1] together with
∇um, ∇2um, ∂tum, ∇pm. (Note that the constant C in (3.3.1) is invariant under dilation and
translation of Ω so (3.3.1) for (um, pm) gives equi-continuity of ∇2um, umt and ∇pm.) Since
for each R > 0,

inf
{
dΩm(x)

∣∣∣ |x| ≤ R
}→ ∞ as m→ ∞,
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the estimate (3.4.3) implies that ∇p ≡ 0. Thus, the limit u ∈ C
(
Rn × (0, 1]

)
solves

∫ 1

0

∫

Rn
u · (ϕt + ∆ϕ) dxdt = 0

for all ϕ ∈ C∞c
(
Rn×[0, 1)

)
since ∥u0m∥L∞(Ωm) → 0 as m→ ∞. Since u is bounded by (3.4.2),

by the uniqueness of the heat equation, we conclude that u ≡ 0. However, (3.4.4) implies
N(u, p)(0, 1) ≥ 1/4 which is a contradiction so Case 1 does not occur.

Case 2. limm→∞cm < ∞. By taking a subsequence, we may asuume that cm converges to
some c0 ≥ 0. We may also assume that xm converges to a boundary point x̂ ∈ ∂Ω. By
rotation and translation of coordinates, we may assume that x̂ = 0 and that exterior normal
nΩ(x̂) = (0, . . . , 0,−1). Since Ω is a uniformly C3-domain of type (α, β,K), the domain Ω
is represented locally near x̂ of the form,

Ωloc =
{
(x′, xn) ∈ Rn

∣∣∣ h(x′) < xn < h(x′) + β, |x′| < α},

with a C3-function h such that ∇′h(0) = 0, h(0) = 0, where derivatives up to third order of
h is bounded by K. If one rescales with respect to xm, Ωloc is expanded as

Ωm loc =
{
(y′, yn) ∈ Rn

∣∣∣ h(t1/2
m y′ + x′m) < t1/2

m yn + (xm)n < h(t1/2
m y + x′m) + β, |t1/2

m y′| < α}.

Since dΩ(xm)/(xm)n → 1 as m→ ∞ and x′m → 0, this domain Ωm loc converges to

Rn
+,−c0
=

{
(x′, xn) ∈ Rn

∣∣∣ xn > −c0
}
.

In fact, if one expresses

Ωm loc =
{
(y′, yn) ∈ Rn

∣∣∣ hm(y′) < ym < βm + hm(y′), |y′| < αm
}
,

with αm = α/t1/2
m , βm = β/t1/2

m , hm(y′) = h(t1/2
m y′ + x′m)/t1/2

m − (xm)n/t1/2
m , then hm → −c0

locally uniformly up to third derivatives and αm, βm → ∞. Note that |∂µxhm| for µ, 1 ≤ |µ| ≤
3 is uniformly bounded by K.

Thus, (um, pm) solves (3.1.1)–(3.1.4) in Ωm loc × (0, 1]. By (3.4.2) and Theorem 3.3.4
we have a necessary compactness to conclude that there exists a subsequence (um, pm)
converges to some (u, p) locally uniformly in R̄n

+,−c0
× (0, 1] together with ∇um, ∇2um, umt,

∇pm as interior case. (Note that Ωm is still of type (α, β,K) which is uniform in m).
Now, we observe that the limit (u, p) solves the Stokes equations (3.1.1)-(3.1.4) in a

half space with zero initial data in a weak sense. In fact, since (um, pm) fulfills

∫ 1

0

∫

Rn
+,−c0

{
um · (ϕt + ∆ϕ) − ϕ · ∇pm

}
dxdt = −

∫

Rn
+,−c0

um(x, 0) · ϕ(x, 0)dx
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for all ϕ ∈ C∞c
(
Rn
+,−c0
× (0, 1)

)
. We note that (3.5.2) and (3.5.3) are inherited to (u, p), in

particular,

sup
{
t1/2(xn + c0)

∣∣∣∇p(x, t)
∣∣∣
∣∣∣∣ x′ ∈ Rn−1, xn > −c0, t ∈ (0, 1)

}
≤ CΩ.

Since the convergence of um is up to boundary, the boundary condition is also preserved.
We thus apply the uniqueness to the Stokes equations in a half space (Theorem 1.1.1 in
Chapter 1) to conclude u ≡ 0 and ∇p ≡ 0.

However, (3.4.4) implies N(u, p)(0, 1) ≥ 1/4 which is a contradiction so Case 2 does
not occur neither.

We have thus proved (3.1.15). !

Remarks 3.4.1. (i) Actually, the a priori estimate (3.1.15) holds for v0 ∈ L∞σ (Ω), i.e.,

sup
0<t<T0

∥∥∥N(v, q)
∥∥∥∞(t) ≤ C∥v0∥∞

holds for all L∞-solutions (v,∇q) and v0 ∈ L∞σ (Ω) in a strictly admissible, uniformly C3-
domain. The a priori L∞-estimate, in particular, implies the uniqueness of L∞-solutions
since (3.1.15) for v0 = 0 implies v ≡ 0 and ∇q ≡ 0. Note that in general, the existence of
L∞-solutions is unknown. In Chapter 4, we prove the unique existence of L∞-solutions for
exterior domains and perturbed half spaces by approximating v0 ∈ L∞σ (Ω) by elements of
C∞c,σ(Ω).
(ii) Once we know the existence of the time T0 > 0 such that (3.1.15) holds, we are able
to extend T0 up to an arbitrary time. In fact, we are able to estimate L∞-solutions (v,∇q)
between T0 and 2T0 by applying the a priori estimate (3.1.15) again, i.e., the estimate

sup
T0<t≤2T0

∥∥∥N(v, q)
∥∥∥∞(t) ≤ C∥v(T0)∥∞

holds, where C = C(T0) ≥ 1 is the constant in (3.1.15). Thus, we have

sup
0<t≤2T0

∥v∥∞(t) ≤ C2∥v0∥∞.

In a similar way, we are able to estimate other terms ∇v,∇2v, ∂tv,∇q. By an iteration
argument, we are able to extend the time T0 up to an arbitrary time.

3.4.2 Regularity for L̃r-solutions

We shall prove that an L̃r-solution is indeed an L∞-solution for sufficiently regular initial
data.
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Proposition 3.4.2. Let Ω be a uniformly C3-domain in Rn. Let (v,∇q) be an L̃r-solution
of (3.1.1)–(3.1.4) for r > n. Assume that v0 ∈ D(Ãr), where Ãr is the Stokes operator
in L̃r

σ(Ω), i.e., −Ãr is the generator of the Stokes semigroup in L̃r
σ(Ω). Then (v,∇q) ∈

C2,1(Ω̄× (0,T ])×C(Ω̄× (0,T ]) and t1/2dΩ(x)|∇q(x, t)| is bounded in Ω× (0,T ). Moreover,
for each T > 0 we have

sup
0<t<T

∥∥∥N(v, q)
∥∥∥∞(t) < ∞, (3.4.5)

i.e., (v,∇q) is an L∞-solution.

Proof. We shall claim a stronger statement

sup
0<t<T

{
∥v∥W1,r

ul
(t) + t1/2∥∇v∥W1,r

ul
(t) + t

(∥∇2v∥W1,r
ul

(t) + ∥∂tv∥W1,r
ul

(t) + ∥∇q∥W1,r
ul

(t)
)}

≤ C∥v0∥D(Ãr) (3.4.6)

with C = C(T,Ω, r). Here, W1,r
ul is a uniformly local W1,r space defined by

W1,r
ul (Ω) =

{
f ∈ Lr

ul(Ω)
∣∣∣ ∇ f ∈ Lr

ul(Ω)
}
, ∥ f ∥W1,r

ul
= ∥ f ∥Lr

ul
+ ∥∇ f ∥Lr

ul

and

Lr
ul(Ω) =

⎧⎪⎪⎨
⎪⎪⎩ f ∈ Lr

loc(Ω)
∣∣∣∣∣∣ ∥ f ∥Lr

ul
= sup

x∈Ω

(∫

Ωx,R

∣∣∣ f (y)
∣∣∣rdy

)1/r⎫⎪⎪⎬
⎪⎪⎭ ,

where Ωx,R = Bx(R) ∩Ω and R is a fixed positive number. The norm depends on R but the
topology defined by the norm is independent of the choice of R. The norm of the domain
D(Ãr) is defined by

∥u∥D(Ãr) = ∥u∥L̃r(Ω) + ∥Ãru∥L̃r(Ω), ∥u∥L̃r(Ω) = max
(∥u∥Lr(Ω), ∥u∥L2(Ω)

)

when r ≥ 2. As proved in [16], [18], this norm is equivalent to the norm

∥u∥W̃2,r(Ω) =
∑

|l|≤2

∥∂l
xu∥L̃r(Ω).

Note that once we have proved (3.4.6), the bound (3.4.5) and v ∈ C2,1(Ω̄ × (0,T ]) (also
∇q ∈ C(Ω̄ × (0,T ])) follow from the Sobolev embedding.

We shall prove (3.4.6). We first observe that by the analyticity of the semigroup S (t) =
e−tÃr ,

sup
0<t<T

t∥vt∥D(Ãr)(t) ≤ C1∥v0∥D(Ãr)

since Ãrvt = Ãre−tÃr Ãrv0. It is easy to see that

sup
0<t<T
∥v∥D(Ãr)(t) ≤ C2∥v0∥D(Ãr), (3.4.7)
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with C j depending only on T , Ω and r. Thus, we have proved that

sup
0<t<T

(∥v∥W̃1,r(Ω)(t) + ∥∇v∥W̃1,r(Ω)(t) + t∥vt∥W̃2,r(Ω)(t)
) ≤ C3∥v0∥D(Ãr) (3.4.8)

since D(Ãr)-norm and W̃2,r-norm is equivalent.
To show (3.4.6), it remains to prove that

sup
0<t<T

t
(∥∇2v∥W1,r

ul
(t) + ∥∇q∥W1,r

ul
(t)

) ≤ C4∥v0∥D(Ãr). (3.4.9)

We take R sufficiently small such that Ωx,3R ⊂ Uα,β,h(x0) for any x0 ∈ ∂Ω. We normalize q
by taking

q̂(x) = q(x) − 1
|Ω′′|

∫

Ω′′
q(x)dx, Ω′′ = Ωx0,3R.

It follows from the Poincaré inequality [15, 5.8.1] that

∥q̂∥Lr(Ω′′) ≤ c∥∇q∥Lr(Ω′′), (3.4.10)

with c independent of x0. Since Ω is C3 and (v, q) solves

−∆v + ∇q = −vt, div v = 0 in Ω′′,

with
v = 0 on ∂Ω′′ ∩ ∂Ω,

the local higher regularity theory for elliptic systems (see [22, V]) shows that

∥∇3v∥Lr(Ω′) + ∥∇2q∥Lr(Ω′) ≤ C
(∥vt∥W1,r(Ω′′) + ∥v∥W1,r(Ω′′) + ∥q̂∥Lr(Ω′′)

)

with Ω′ = Ωx0,2R. Here the dependence with respect to t is suppressed. The last term is
estimated by (3.4.10) so we observe that

∥∇3v∥Lr(Ω′) + ∥∇2q∥Lr(Ω′) ≤ C
(∥vt∥W1,r(Ω) + ∥v∥W1,r(Ω) + ∥∇q∥Lr(Ω)

)
(3.4.11)

with C depending only on Ω, R and r but independent of x0 ∈ ∂Ω. If x0 ∈ Ω is taken so
that Bx0(2R) ⊂ Ω, then, interior higher regularity theory yields (3.4.11) with Ω′ = Bx0(R)
(by taking Ω′′ = Bx0(2R)). Since Ω is covered by Ωx0,2R, x0 ∈ ∂Ω and Bx0(R) with x0 ∈ Ω
such that Bx0(2R) ⊂ Ω, the estimate (3.4.11) implies that

∥∇3v∥Lr
ul(Ω) + ∥∇2q∥Lr

ul(Ω) ≤ C
(∥vt∥W1,r(Ω) + ∥v∥W1,r(Ω) + ∥∇q∥Lr(Ω)

)
. (3.4.12)

Since ∇q = Q[∆v] implies

∥∇q∥L̃r(Ω) ≤ C′∥∆v∥L̃r(Ω),

with C′ = C′(Ω, r), the estimate (3.4.12) together with (3.4.8) now yields (3.4.9).
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It remains to show ∇q(x) = ∇q(x, ·) ∈ L∞d (Ω). By the mean value formula, it follows
that

∇q(x) =
!

Bx(τ)
∇q(y)dHn−1(y) for x ∈ Ω and τ = dΩ(x).

Apply the Hölder inequality to get |∇q(x)| ≤ Cs/τn/s||∇q||Ls(Ω) for s ∈ (1,∞), with the
constant Cs independent of τ = dΩ(x). If dΩ(x) ≤ 1 take s = r ≥ n. If dΩ(x) > 1, take
s = 2. Since Q is bounded on L̃r(Ω), it follows that

|∇q|∞,d(t) ≤ Cr||∆v||L̃r(Ω)(t)

with the constant Cr. By (3.4.9), t1/2|∇q|∞,d(t) is bounded in (0, T ).
Since D(Ãr) ⊂ W2,r(Ω), by the Sobolev embedding, v0 ∈ D(Ãr) ⊂ L∞σ (Ω). Since v→ v0

a.e. in Ω as t ↓ 0, v → v0 weakly-∗ on L∞(Ω) as t ↓ 0. Thus, (v,∇q) is an L∞-solution.
The proof is now complete. !

Although we use L̃r-theory in order to extend the Stokes semigroup S (t) to C0,σ(Ω)
on a uniformly regular domain, we can use Lr-theory for domains where the Helmholtz
projection P acts as a bounded operator on Lr(Ω), r ∈ (1,∞). In fact, in Chapter 4 we
extend S (t) to L∞σ (Ω) for domains (I)–(III) by using the Lr-theory. For this purpose, we
give the statement for Lr-solutions.

Proposition 3.4.3. Let Ω be a uniformly C3-domain, which admits the Helmholtz projec-
tion on Lr(Ω), r ∈ (1,∞). Let (v,∇q) be an Lr-solution for r > n. Assume that v0 ∈ D(Ar),
where Ar is the Stokes operator on Lr

σ(Ω). Then, (v,∇q) ∈ C2,1(Ω̄× (0,T ])×C(Ω̄× (0, T ])
and (3.4.5) holds. If in addition v0 ∈ D(A2), then t1/2dΩ(x)|∇q(x, t)| is bounded inΩ×(0,T ).
In particular, (v,∇q) is an L∞-solution.

Proof. The estimate (3.4.6) is valid by replacing L̃r-norm to Lr-norm since the Lr-Helmholtz
projection as well as the analyticity of S (t) on Lr

σ(Ω) are valid. Thus, (v,∇q) ∈ C2,1(Ω̄ ×
(0,T ]) × C(Ω̄ × (0,T ]) and (3.4.5) hold for Lr-solutions (v,∇q) for r > n. By (3.4.5) and
v→ v0 on Lr(Ω) as t ↓ 0, v→ v0 weakly-∗ on L∞(Ω) as t ↓ 0 follows.
We use the assumption v0 ∈ D(A2) in order to show t1/2dΩ(x)|∇q(x, t)| is bounded in
Ω × (0,T ). Since Q is bounded on Lr ∩ L2, it follows that

|∇q|∞,d(t) ≤ Cr(||∆v||Lr(Ω)(t) + ||∆v||L2(Ω)(t)).

Since ||v||W2,r(Ω) is estimated by ||v||D(Ar) and Arv = e−tAr Arv0, it follows that

sup
0<t<T
|∇q|∞,d(t) ≤ C(||v0||D(Ar) + ||v0||D(A2)).

Thus, t1/2dΩ(x)|∇q(x, t)| is bounded in Ω × (0,T ). !
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3.4.3 Analyticity of the Stokes semigroup on C0,σ

We shall prove Theorem 3.1.3. To show C0-property of the semigroup we prepare

Proposition 3.4.4. Let Ω be a uniformly C2-domain in Rn. Let (v,∇q) be an L̃r-solution
of (3.1.1)–(3.1.4) for r > n and v0 ∈ D(Ãr). Then,

lim
t↓0

∥∥∥v(·, t) − v0
∥∥∥∞ = 0. (3.4.13)

In other words,
lim
t↓0
∥e−tÃr v0 − v0∥∞ = 0.

Proof. By the Gagliardo-Nirenberg inequality, we have
∥∥∥v(t) − v0

∥∥∥
L∞(Ω) ≤ C

∥∥∥v(t) − v0
∥∥∥1−θ

Lr(Ω)

∥∥∥v(t) − v0
∥∥∥θ

W1,r(Ω) (3.4.14)

with θ = 1 − n/r, where v(t) = v(·, t). Since

∥ f ∥W1,r(Ω) ≤ ∥ f ∥W2,r(Ω) ≤ ∥ f ∥W̃2,r(Ω) ≤ C′∥ f ∥D(Ãr),

we have by (3.4.7) that
∥∥∥v(t) − v0

∥∥∥
W1,r(Ω) ≤ C′

(∥∥∥v(t)
∥∥∥

D(Ãr) + ∥v0∥D(Ãr)

)
≤ C′′∥v0∥D(Ãr). (3.4.15)

Since e−tÃr is strongly continuous on L̃r, (3.4.14) with (3.4.15) yields (3.4.13). !

Proof of Theorem 3.1.3. By Proposition 3.4.2, an L̃r-solution for v0 ∈ C∞c,σ is an L∞-
solution. By a priori estimate (3.1.15), the operator S (t) is uniquely extended to a bounded
operator S̃ (t) on C0,σ at least for a small t, i.e., t ∈ [0,T0). Since S (t) is a semigroup on L̃r,
we have

S̃ (t1)S̃ (t2) = S̃ (t1 + t2) as far as t1 + t2 < T0. (3.4.16)

We extend S̃ (t) to t ≥ T0 by S̃ (t) = S̃ (t1) · · · S̃ (tm) so that ti ∈ (0,T0) and t1 + · · · + tm =

t. This is well-defined in the sense that S̃ (t) is independent of the division of t by the
semigroup property (3.4.16). Thus, we are able to define the Stokes semigroup S̃ (t) for
all t ≥ 0 which we simply write by S (t) (since it agrees with S (t) on C0,σ ∩ L̃r). Our
estimate (3.1.15) is inherited to S (t). Moreover, by the semigroup property, the estimate
(3.1.15) yields ∥S (t)v0∥∞ ≤ CT ∥v0∥∞ with CT independent of v0 ∈ C0,σ(Ω) and t ∈ (0, T )
for arbitrary T > 0. Since dS (t)/dt = S (t − s)dS (s)/ds for s ∈ (0, t), the estimate (3.1.15)
together with an L∞ bound for S (t) yields

sup
0<t<T

t
∥∥∥∥

d
dt

S (t)v0

∥∥∥∥∞ ≤ C′T ∥v0∥∞,

with a constant C′T independent of v0 ∈ C0,σ(Ω). This implies that S (t) is an analytic
semigroup on C0,σ(Ω).
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It remains to prove that S (t) is a C0-semigroup on C0,σ(Ω). Since C∞c,σ(Ω) is dense on
C0,σ(Ω), for each v0 ∈ C0,σ(Ω) there is v0m ∈ C∞c,σ(Ω) such that v0m → v0 in L∞(Ω). Since
∥S (t)v0∥∞ ≤ CT ∥v0∥∞ for 0 < t < T we have

∥∥∥S (t)v0 − v0
∥∥∥∞ ≤

∥∥∥S (t)v0 − S (t)v0m

∥∥∥∞ +
∥∥∥S (t)v0m − v0m

∥∥∥∞ + ∥v0m − v0∥∞
≤ (CT + 1)∥v0m − v0∥∞ +

∥∥∥S (t)v0m − v0m

∥∥∥∞.

By Proposition 3.4.4, sending t ↓ 0 yields

lim
t↓0

∥∥∥S (t)v0 − v0
∥∥∥∞ ≤ (CT + 1)∥v0m − v0∥∞.

Letting m to infinity, we conclude that S (t) is a C0-semigroup on C0,σ(Ω). !

Since a bounded domain is strictly admissible, Theorem 3.1.3 yields Theorem 3.1.1.
Moreover, S (t) is analytic semigroup on C0,σ(Ω) for exterior domains and perturbed half
spaces since these domains are also strictly admissible as we proved in Chapter 2.

Remarks 3.4.5. (i) In general, we do not know whether or not S (t) is a bounded analytic
semigroup in the sense that ∥∥∥∥

d
dt

S (t)v0

∥∥∥∥∞ ≤
C
t
∥v0∥∞ (3.4.17)

for some C independent of t > 0. When Ω is bounded, one can claim such boundedness.
In fact, multiplying v with (3.1.1) and integrating by parts, we obtain an energy equality

1
2

d
dt
∥v∥2L2(t) + ∥∇v∥2L2(t) = 0.

Since Ω is bounded, the Poincaré inequality implies

∥∇v∥2L2 ≥ ν∥v∥2L2

with some ν > 0. Thus, ∥∥∥S (t)v0
∥∥∥2

L2 ≤ e−2νt∥v0∥2L2 .

If Ω is sufficiently smooth, by the Sobolev inequality and the property of the Stokes semi-
group in L2 (see [55, III.2.1]), we have

∥∥∥S (t)v0
∥∥∥

L∞ ≤ C1
∥∥∥S (t)v0

∥∥∥
W2k,2 ≤ C2

∥∥∥Ak
2S (t)v0

∥∥∥
L2

for an integer k > n/4 with C j ( j = 1, 2, . . .) independent of t and v0 ∈ L2
σ(Ω). Since S (t)

is analytic semigroup in L2
σ, this yields

∥∥∥S (t)v0
∥∥∥

L∞ ≤ C3
∥∥∥S (t − 1)v0

∥∥∥
L2 for t ≥ 1.
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We have thus proved that
∥∥∥S (t)v0

∥∥∥
L∞ ≤ C4e−νt∥v0∥L2 ≤ C5e−νt∥v0∥L∞ , t ≥ 1. (3.4.18)

Similarly,
∥∥∥∥

d
dt

S (t)v0

∥∥∥∥
L∞
≤ C1

∥∥∥∥
d
dt

S (t)v0

∥∥∥∥
W2k,2
≤ C2

∥∥∥Ak+1
2 S (t)v0

∥∥∥
L2 ≤ C6e−νt∥v0∥L∞ for t ≥ 1.

Since ∥∥∥∥
d
dt

S (t)v0

∥∥∥∥∞ ≤
C7

t
∥v0∥∞ for t ≤ 1,

this yields (3.4.17). Thus, S (t) is a bounded analytic semigroup in C0,σ(Ω) and L∞σ (Ω)
(see in next the section) when Ω is a smoothly bounded domain. If one uses the Lr-
theory (r > n) instead of L2-theory, the result is still valid for a bounded domain with C3-
boundary.
(ii) Since we have (3.4.18) for t ≥ T0 > 0, our a priori estimate (3.1.15) in particular
implies that ∥∥∥S (t)v0

∥∥∥∞ ≤ C∥v0∥∞ for all t > 0, v0 ∈ C0,σ(Ω)

with C depending only on Ω when Ω is bounded. This type of results is often called a
maximum modulus result which is available in the literature.

The maximum modulus theorem is first stated in [66] when Ω is a bounded, convex
domain with smooth boundary for v0 ∈ C∞c,σ(Ω). Later, a full proof is given in [57]. It is
extended by [58] for a general bounded domain with C2-boundary. It is extended by [43]
for v0 ∈ C0,σ(Ω) but ∂Ω is assumed to be C2+γ with γ ∈ (0, 1).

By our extension to L∞σ space in the next chapter, we conclude that
∥∥∥S (t)v0

∥∥∥∞ ≤ C∥v0∥∞, v0 ∈ L∞σ (Ω)

for all t > 0 with C depending only on Ω when Ω is bounded and of C3 boundary.

(iii) It is interesting to discuss whether or not our semigroup S (t) is an analytic semigroup
of angle π/2, i.e., it is extendable as a holomorphic semigroup in Re t > 0. Our results
say that S (t) is angle ε for some ε > 0. If we are able to prove (3.1.6) for Re t ∈ (0,T0)
with |arg t| < α for α ∈ (0, π/2) where analyticity is valid, then, we conclude that S (t) is
angle π/2. This idea would work provided that the Schauder type estimate for complex t
with |arg t| < ε would be available. It is of course likely but there seems to be no explicit
reference. In Chapter 5, we shall prove a necessary resolvent estimate to conclude that S (t)
is an analytic semigroup of angle π/2 (without proving (3.1.6) for complex parameter).
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Birkhäuser, Basel, 1995.

[43] P. Maremonti, Pointwise asymptotic stability of steady fluid motions, J. Math. Fluid
Mech. 11 (2009), 348–382.

[44] P. Maremonti, G. Starita, Nonstationary Stokes equations in a half-space with contin-
uous initial data, J. Math. Sci. (N.Y.) 127 (2005), 1886–1914, translated from Zapiski
Nauchnykh Seminarov POMI, 295 (2003), 118–167.

[45] K. Masuda, On the generation of analytic semigroups of higher-order elliptic opera-
tors in spaces of continuous functions, Proc. Katata Symposium on Partial Differen-
tial Equations (eds. S. Mizohata and H. Fujita), (1972), 144–149 (in Japanese).

[46] K. Masuda, On the generation of analytic semigroups by elliptic differential operators
with unbounded coefficients, unpublished note (1972).

[47] K. Masuda, Evolution equations (in Japanese), Kinokuniya Shoten, Tokyo, 1975.

[48] V. N. Maslennikova, M. E. Bogovskiı̌, Elliptic boundary value problems in un-
bounded domains with noncompact and non smooth boundaries, Rend. Sem. Mat.
Fis. Milano, 56 (1986), 125–138.
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Chapter 4

Semigroup on BUCσ and L∞σ spaces

We now extend the Stokes semigroup to non-decaying type solenoidal spaces L∞σ
(and BUCσ). As we proved in Chapter 3, the Stokes equations is uniquely solvable
for bounded and decaying initial data v0 as |x| → ∞, i.e., v0 ∈ C0,σ, but for merely
bounded initial data, the existence of solutions is non-trivial. For this purpose, we
pointwise approximate v0 ∈ L∞σ by compactly supported solenoidal vector fields and
prove the unique existence of solutions by using the a priori L∞-estimate (0.1.1).

4.1 Introduction
We consider the Stokes equations for v0 ∈ L∞σ (Ω) in the domain Ω ⊂ Rn, n ≥ 2:

vt − ∆v + ∇q = 0 in Ω × (0, T ), (4.1.1)
div v = 0 in Ω × (0, T ), (4.1.2)

v = 0 on ∂Ω × (0,T ), (4.1.3)
v = v0 on Ω × {t = 0}, (4.1.4)

where L∞σ (Ω) is the solenoidal L∞ space defined by

L∞σ (Ω) =
{

f ∈ L∞(Ω)
∣∣∣∣∣∣

∫

Ω

f · ∇ϕdx = 0 for all ϕ ∈ Ŵ1,1(Ω)
}
,

and the homogeneous Sobolev space Ŵ1,1(Ω) = {ϕ ∈ L1
loc(Ω) | ∇ϕ ∈ L1(Ω)}. When Ω is

bounded, the Stokes semigroup S (t) is defined on L∞σ (Ω) ⊂ Lr
σ(Ω), r ∈ (1,∞). We first

state a result for bounded domains as a typical example.

Theorem 4.1.1 (Analyticity on L∞σ ). Let Ω be a bounded C3-domain in Rn, n ≥ 2. Then
the Stokes semigroup S (t) is a (non-C0-)analytic semigroup on L∞σ (Ω).

68
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Since smooth functions are not dense in L∞σ (Ω) and S (t)v0 is smooth for t > 0, S (t)v0 →
v0 as t ↓ 0 in L∞σ (Ω) does not hold for some v0 ∈ L∞σ (Ω). This means S (t) is a non-C0-
semigroup.

Our approach for the extension to the space L∞σ (Ω) is based on the a priori L∞-estimate
for solutions to the Stokes equations (4.1.1)–(4.1.4),

sup
0<t≤T0

∥∥∥N(v, q)
∥∥∥

L∞(Ω)(t) ≤ C∥v0∥L∞(Ω), (4.1.5)

where N(v, q)(x, t) denotes the scale invariant norm for solutions up to second orders,

N(v, q)(x, t) =
∣∣∣v(x, t)

∣∣∣ + t1/2
∣∣∣∇v(x, t)

∣∣∣ + t
∣∣∣∇2v(x, t)

∣∣∣ + t
∣∣∣vt(x, t)

∣∣∣ + t
∣∣∣∇q(x, t)

∣∣∣. (4.1.6)

The a priori L∞-estimate (4.1.5) is available for sufficiently smooth initial data as we
proved in Chapter 3 (Theorem 3.1.2 and Proposition 3.4.2). To extend S (t) to L∞σ (Ω),
we approximate v0 ∈ L∞σ (Ω) by compactly supported functions {v0,m}∞m=1 ⊂ C∞c,σ(Ω) such
that

||v0,m||L∞(Ω) ≤ C∥v0∥L∞(Ω),

v0,m → v0 a.e. in Ω as m→ ∞, (4.1.7)

with the constant C independent of m ≥ 1. Note that C∞c,σ(Ω) (or C0,σ(Ω)) is not dense
in L∞σ (Ω) so one cannot approximate v0 by elements of C∞c,σ(Ω) in a uniform topology.
However, by a mollifying procedure keeping the divergence free condition, we are able to
find the sequence {v0,m}∞m=1 ⊂ C∞c,σ(Ω) satisfying (4.1.7). This is very easy to prove when
Ω is star-shaped while in general it is nontrivial. We localize the problem to reduce it to
star-shaped case. Since Ω is bounded, v0m → v in Lr

σ(Ω) so we extend the estimate (4.1.5)
to v = S (t)v0 with the associated pressure q for v0 ∈ L∞σ (Ω).

We prove the approximation (4.1.7) also for exterior domains and perturbed half spaces.
By combining the approximation (4.1.7) for a bounded domain and that for the whole
space (or a half space), we find the desired sequence. Once we have the sequence {v0,m}∞m=1 ⊂
C∞c,σ(Ω) satisfying (4.1.7), we are able to prove the existence of solutions for v0 ∈ L∞σ (Ω).
We prove that the sequence of Lr-solutions (vm,∇qm) for v0,m ∈ C∞c,σ(Ω) (subsquently) con-
verges to the solution (v,∇q) for v0 ∈ L∞σ (Ω). Then, the Stokes semigroup S (t) is extended
to L∞σ (Ω) by the limit v, i.e., S (t)v0 = v for v0 ∈ L∞σ (Ω). The limit v is independent of
the choice of approximation since an L∞-solution is unique (Remarks 3.4.1 (i)). The main
result of this chapter is the following:

Theorem 4.1.2. Let Ω be an exterior domain in Rn, n ≥ 2, or a perturbed half space in
Rn, n ≥ 3, with C3-boundary.
(i) (Unique existence of L∞-solutions)
For v0 ∈ L∞σ (Ω), there exists a unique L∞-solution (v,∇q) satisfying (4.1.5) for any fixed
T0 with some constant C depending only on T0 and Ω.
(ii) (Analyticity on L∞σ )
The Stokes semigroup S (t) is uniquely extendable to a (non-C0-)analytic semigroup on
L∞σ (Ω).
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The L∞-estimate (4.1.5) implies the analyticity of the Stokes semigroup S (t) on L∞σ (Ω).
We call a semigroup {T (t)}t≥0 ⊂ L(X) analytic if t||dT (t)/dt||L is bounded for t ∈ (0, 1].
Here, L= L(X) denotes the space of all bounded linear operators from the Banach space
X onto itself and is equipped with the operator norm || · ||L. Since S (t)v0 → v0 as t ↓ 0
on L∞σ (Ω) may not hold for general v0 ∈ L∞σ (Ω), we call S (t) a non C0-analytic semigroup.
We refer to [27] (also [21]) for properties of analytic semigroups generated by non-densely
defined sectorial operators on L∞(Ω). It is natural to restrict S (t) to the space of uniformly
continuous functions BUCσ(Ω) so that S (t) is a C0-analytic semigroup on BUCσ(Ω). We
discuss the continuity of S (t) at time zero after we extend S (t) to L∞σ (Ω) (see Remark 4.1.3
(ii) below).

Remarks 4.1.3. (i) The statement of Theorem 4.1.2 is valid also for bounded domains
with C3-boundaries. In fact, we prove Theorem 4.1.2 for bounded domains together with
exterior domains and perturbed half spaces, which deduces Theorem 4.1.1.
(ii) Let BUC(Ω) be the space of all uniformly continuous functions in Ω̄. Define the space
BUCσ(Ω) by

BUCσ(Ω) =
{

f ∈ BUC(Ω)
∣∣∣ div f = 0 in Ω, f = 0 on ∂Ω

}
.

Then, S (t) is a C0-(analytic) semigroup on BUCσ(Ω) for exterior domainsΩ. We prove the
continuity of S (t) at t = 0 in Section 4 (Theorem 4.4.2). Note that C0,σ(Ω) ⊂ BUCσ(Ω) ⊂
L∞σ (Ω). When Ω is bounded, the space BUCσ(Ω) agrees with C0,σ(Ω) [22], [1, Lemma
6.3] so we already know S (t) is a C0-analytic semigroup on BUCσ(Ω) by Theorem 3.1.1
in Chapter 3.

It is well known that the Stokes semigroup S (t) is a bounded analytic semigroup on
Lr
σ(Ω) for exterior domains [7], [20], [8] in the sense that both ||S (t)||L and t||dS (t)/dt||L

are bounded in (0,∞), where X = Lr
σ(Ω) for r ∈ (1,∞). Recently, P. Maremonti [24]

proved that S (t) is a bounded semigroup on L∞σ (Ω) for exterior domains based on our a
priori L∞-estimate (4.1.5). Note that it is unknown whether t||dS (t)/dt||L is bounded in
(0,∞).

The analyticity of the Stokes semigroup on L∞ as well as (4.1.5) is fundamental to
study the Navier–Stokes equations for non-decaying initial data on exterior domains. Al-
though one can handle non-decaying Hölder initial data by reducing the initial problem to
the boundary-value problem to the Navier–Stokes equations [16], a direct semigroup ap-
proach on L∞σ (Ω) is still unknown. So far L∞-type theory is only established when Ω = Rn

[18] (see also [19], [25]) and Rn
+ [28], [5]. The analyticity of the Stokes semigroup on

L∞σ (Ω) is proved in [1] for bounded domains and in [2] for exterior domains. We extend
the results for perturbed half space for n ≥ 3, where the strictly admissibility is proved in
Chapter 2.

This chapter is organized as follows. In Section 2, we prove the existence of L∞-
solutions for v0 ∈ L∞σ (Ω) by admitting the approximation (4.1.7). The proof of Theorem
4.1.2 (and also Theorem 4.1.1) is complete in Section 2. In Section 3, we prove the ap-
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proximation (4.1.7) fir bounded domains, exterior domains and perturbed half spaces. In
Section 4, we show that S (t) is a C0-semigroup on BUCσ(Ω) for exterior domains.

4.2 Existence of L∞-solutions
The goal of this section is to prove Theorem 4.1.2 (and Theorem 4.1.1). Since the ap-
proximation for initial data (4.1.7) is pointwise convergence in Ω, for the compactness
of an approximate solution sequence, we apply the local Hölder estimates for the Stokes
equations (Proposition 3.3.2 and Theorem 3.3.4 proved in Chapter 3). The proof for the
approximation (4.1.7) is given in the next section.

Before starting to prove Theorem 4.1.2, we prepare the following Proposition 4.2.1.
The local Hölder estimates (Proposition 3.3.2 and Theorem 3.3.4) imply that a limit of
approximate solutions for v0 ∈ L∞σ (Ω) is (Hölder) continuous in Ω × (0,T ]. In order
to prove that a limit solution converges to initial data weakly-∗ on L∞(Ω) as t ↓ 0, we
understand initial data in terms of a weak form.

Proposition 4.2.1. Let Ω be a domain in Rn, n ≥ 2 with ∂Ω ! ∅. Let (v,∇q) ∈ C2,1(Ω ×
(0,T ]) × C(Ω × (0,T ]) satisfy (4.1.1) and sup0<t≤T {||v||∞(t) + t1/2|∇q|∞,d(t)} < ∞. If (v,∇q)
satisfies ∫ T

0

∫

Ω

{v · (ϕt + ∆ϕ) − ∇q · ϕ} dxdt = −
∫

Ω

v0(x) · ϕ(x, 0)dx

for v0 ∈ L∞σ (Ω) and all ϕ ∈ C∞c
(
Ω × [0, T )

)
, then v → v0 weakly-∗ on L∞(Ω) as t ↓ 0. The

converse also holds.

Proof. Since (v,∇q) satisfies (4.1.1), by integration by parts it follows that
∫ T

ε

∫

Ω

{
v · (ϕt + ∆ϕ) − ∇q · ϕ} dxdt = −

∫

Ω

v(x, ε) · ϕ(x, ε)dx

for all ϕ ∈ C∞c (Ω×[0,T )) and ε > 0. By letting ε ↓ 0, it follows that
∫
Ω

v(x, ε) ·ϕ(x, ε)dx→∫
Ω

v0(x) · ϕ(x, 0)dx. Thus,
∫
Ω

v · ψdx→
∫
Ω

v0 · ψdx as t ↓ 0 for ψ ∈ C∞c (Ω). Since C∞c (Ω) is
dense in L1(Ω), v→ v0 weakly-∗ on L∞(Ω) as t ↓ 0. The converse also holds. !

We now prove the existence of L∞-solutions for v0 ∈ L∞σ (Ω). In order to apply (4.1.5)
for Lr-solutions, we recall that an Lr-solution for r > n is an L∞-solution for sufficiently
smooth and decaying initial data (Proposition 3.4.3).

Proof of Theorems 4.1.1 and 4.1.2. Let Ω be a bounded domain, an exterior domain or a
perturbed half space (n ≥ 3) with C3-boundary. We prove the unique existence of L∞-
solutions for v0 ∈ L∞σ (Ω). We apply the approximation lemma (Lemmas 4.3.3, 4.3.5, and
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4.3.10) to get a compactly supported smooth sequence {v0,m}∞m=1 ⊂ C∞c,σ(Ω) such that

∥v0,m∥L∞(Ω) ≤ CΩ∥v0∥L∞(Ω),

v0,m → v0 a.e. in Ω as m→ ∞, (4.2.1)

with the constant CΩ independent of m ≥ 1. Let (vm,∇qm) be an Lr-solution for r > n and
v0,m. Let T > 0 be an arbitrary fixed time. By Remark 4.3.1 (ii), the L∞-estimate (4.1.5)
holds in (0,T). By integration by parts, it follows that

∫ T

0

∫

Ω

{
vm · (ϕt + ∆ϕ) − ∇qm · ϕ

}
dxdt = −

∫

Ω

v0,m(x) · ϕ(x, 0)dx

for all ϕ ∈ C∞c (Ω × [0,T )). Since v0,m ∈ D(Ar) ∩ D(A2), by Proposition 3.4.3, (vm,∇qm)
is an L∞-solution. By Theorem 2.3.3, bounded domains, exterior domains and perturbed
half spaces (n ≥ 3) with C3-boundaries are strictly admissible. We apply Lemma 3.3.2 to
estimate

|∇qm|∞,d(t) ≤ C||W(v)||L∞(∂Ω)(t). (4.2.2)

Combining the estimate (4.2.2), (4.1.5) and (4.2.1), it follows that

sup
0<t≤T
{||N(vm, qm)||L∞(Ω)(t) + t1/2|∇qm|∞,d(t)} ≤ C||v0||L∞(Ω),

with the constant C independent of m ≥ 1. We apply Proposition 3.3.2 and Theorem
3.3.4 to get a uniform local Hölder bound for (vm,∇qm) in Ω × (0, T ]. Then, (vm,∇qm)
subsequently converges to a limit (v,∇q) locally uniformly in Ω̄ × (0,T ] together with vm,
∇vm, ∇2vm, ∂tvm, ∇qm. By letting m→ ∞, the limit (v,∇q) satisfies

∫ T

0

∫

Ω

{
v · (ϕt + ∆ϕ) − ∇q · ϕ} dxdt = −

∫

Ω

v0(x) · ϕ(x, 0)dx.

Since v → v0 weakly-∗ on L∞(Ω) as t ↓ 0 by Proposition 4.2.1, (v,∇q) is an L∞-solution
for v0 ∈ L∞σ (Ω). By Remarks 3.4.1 (i), the L∞-solution (v,∇q) is unique. Since T > 0 is
an arbitrary fixed time, for v0 ∈ L∞σ (Ω), a unique L∞-solution (v,∇q) exists in Ω × (0,∞).
Thus, we proved the assertion (i).
We next extend S (t) to L∞σ (Ω) by the limit v for v0 ∈ L∞σ (Ω). We define S (t)v0 = v(·, t)
for t > 0 and S (0) = I. We shall show the semigroup property for S (t) on L∞σ (Ω), i.e.,
S (t + s) = S (t)S (s) for t, s ≥ 0. Since S (0) = I, we may assume s > 0. Let (v1, q1)
be an L∞-solution for v0 ∈ L∞σ (Ω). For each fixed s > 0, let (v2,∇q2) be an L∞-solution
for initial data v1(·, s). Then, by the uniqueness of L∞-solutions, (v1,∇q1) ≡ (v2,∇q2) for
t ≥ s. Thus, S (t)v0 = S (t − s)S (s)v0, t ≥ s. By substituting t = τ + s, S (τ + s) = S (τ)S (s)
for τ, s > 0 follows so S (t) satisfies the semigroup property on L∞σ (Ω). The analyticity of
S (t) on L∞σ (Ω) follows from (4.1.5). Thus, S (t) is an analytic semigroup on L∞σ (Ω).

This semigroup S (t) is a non-C0-semigroup on L∞σ (Ω). Indeed, suppose the contrary to
get

S (t)v0 → v0 in L∞(Ω) as t ↓ 0
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for all v0 ∈ L∞σ (Ω). Our estimate for ∇2v implies that S (t)v0 (t > 0) is at least continuous
in Ω̄. However, if S (t)v0 converges uniformly, then v0 must be continuous which is a
contradiction. We have proved the assertion (ii). The proof is now complete. !

Remark 4.2.2. If the approximation (4.1.7) is known to hold, then we are able to prove
the existence of L∞-solutions for general strictly admissible domains by the same way. In
order to approximate solutions in a uniformly regular domain, we appeal to L̃r-theory [11],
[12] although Lr-theory works for more general domains [13], [3], [14], [17].

4.3 Approximation for initial data
In this section, we prove the approximation (4.1.7) for bounded domains, exterior domains
and perturbed half spaces. We first prove the approximation (4.1.7) for a bounded domain.
We decompose a bounded domain and reduce the problem to star-shaped domains. In
a star-shaped domain, we rescale a function so that whose support is compact in Ω and
mollify it to get a compactly supported smooth sequence. By using the result for a bounded
domain and the whole space (or a half space), we prove the approximation (4.1.7) for
exterior domains and perturbed half spaces.

4.3.1 Reduction to star-shaped domains

We begin with an approximation result when Ω is star-shaped (with respect to some point
a ∈ Rn, i.e. λ(Ω − a) ⊂ Ω − a for all λ ∈ (0, 1)).

Lemma 4.3.1 (Approximation). Let Ω be a bounded, star-shaped domain in Rn. There
exists a constant C = CΩ such that for any v ∈ L∞σ (Ω), there exists a sequence {vm}∞m=1 ⊂
C∞c,σ(Ω) such that

||vm||L∞(Ω) ≤ C∥v∥L∞(Ω), (4.3.1)
vm → v a.e. in Ω as m→ ∞. (4.3.2)

If in addition v ∈ C(Ω̄), the convergence is locally uniform in Ω. If in addition v = 0 on
∂Ω, the convergence is uniform in Ω̄.

Proof. Since Ω is star-shaped, we may assume that

λΩ̄ ⊂ Ω for all λ ∈ [0, 1)

by a translation. We extend that v ∈ L∞σ (Ω) by zero outside Ω and observe that the exten-
sion (still denoted by v) is in L∞σ (Rn) with spt v ⊂ Ω̄. We set vλ(x) = v(x/λ) and observe
that spt vλ ⊂ λΩ̄ ⊂ Ω. Since vλ → v a.e. as λ ↑ 1, it is easy to find the desired sequence by
mollifying vλ, i.e., vλ ∗ ηε. Here, C in (4.3.1) can be taken 1. !
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To establish the above approximation result for general bounded domains, we need a
localization lemma.

Lemma 4.3.2 (Localization). Let Ω be a bounded domain with Lipschitz boundary in Rn.
Let {Gk}Nk=1 be an open covering of Ω̄ in Rn and Ωk = Gk ∩ Ω. Then, there exists a family
of bounded linear operators {πk}Nk=1 from L∞σ (Ω) into itself satisfying u =

∑N
k=1 πku and for

each k = 1, . . . ,N

(i) πku|Ωk ∈ L∞σ (Ωk), πku|Ω\Ωk = 0 for u ∈ L∞σ (Ω),

(ii) πku ∈ C(Ω̄k) and πku|∂Ωk\∂Ω = 0 for u ∈ C(Ω̄) ∩ L∞σ (Ω),

(iii) πku|∂Ωk = 0 if u|∂Ω = 0 for u ∈ C(Ω̄) ∩ L∞σ (Ω).

Proof. We shall prove by induction with respect to N. If N = 1, the result is trivial by
taking π1 as the identity.

Assume that the result is valid for N. We shall prove the assertion when the number of
cover is N + 1. We set

D =
N+1⋃

k=2

Ωk, U =
N+1⋃

k=2

Gk

and observe that Ω = Ω1 ∪ D and {G1,U} is a covering of Ω̄.
Let {ξ1, ξ2} be a partition of unity of Ω associated with {G,U}, i.e., ξ j ∈ C∞c (Rn) with

0 ≤ ξ j ≤ 1, spt ξ1 ⊂ G1, spt ξ2 ⊂ U, ξ1 + ξ2 = 1 in Ω̄. For E = Ω1 ∩ D, let BE denotes the
Bogovskiı̌ operator. We set

π1u =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ξ1 − BE(u · ∇ξ1) in E,
u ξ1 in Ω1\D,
0 in Ω\Ω1.

Since u ∈ L∞σ (Ω) and ξ1 = 0 in Ω\Ω1, ∇ξ1 = 0 in Ω1\D, we see
∫

E
u · ∇ξ1dx =

∫

Ω

u · ∇ξ1dx = 0. (4.3.3)

By the Sobolev inequality and (3.3.13), we observe that
∥∥∥BE(u · ∇ξ1)

∥∥∥
L∞(E) ≤ C

∥∥∥BE(u · ∇ξ1)
∥∥∥

W1,p(E) (p > n)

≤ CCB∥u · ∇ξ1∥Lp(E) ≤ CCB∥∇ξ1∥Lp(E)∥u∥L∞(Ω)

with a constant C independent of u and ξ1. We thus observe that

∥π1u∥L∞(Ω1) ≤ C1∥u∥L∞(Ω) for all u ∈ L∞σ (Ω)
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with C1 independent of u.
By (4.3.3), we see divBE(u·∇ξ1) = u·∇ξ1 in E. Moreover, BE(u·∇ξ1) = 0 on ∂(Ω1∩D).

Thus for each ϕ ∈ L1
loc(Ω̄1) with ∇ϕ ∈ L1(Ω1), we have

∫

Ω1

π1u · ∇ϕdx =
∫

Ω1

u ξ1 · ∇ϕdx −
∫

E
BE(u · ∇ξ1) · ∇ϕdx

=

∫

Ω1

u ξ1 · ∇ϕdx +
∫

E
(u · ∇ξ1)ϕdx

=

∫

Ω

u · ∇(ξ1ϕ)dx = 0.

By the Poincaré inequality if ϕ ∈ Ŵ1,1(Ω1), then ϕ ∈ L1
loc(Ω̄1) (not only ϕ ∈ L1

loc(Ω1)).
Thus, the above identity implies that π1u|Ω1 ∈ L∞σ (Ω1). By definition π1u = 0 in Ω\Ω1. If
u ∈ C(Ω̄), it is easy to see that the term BE(u · ∇ξ1) is always Hölder continuous by the
Sobolev embeddings.

For u ∈ L∞σ (Ω), we set

πDu =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ξ2 − BE(u · ∇ξ2) in E,
u ξ2 in D\Ω1,

0 in Ω\D.

By definition,
u = π1u + πDu

and, as for π1, this πD satisfies all properties of πk in (i), (ii), (iii) with Ωk replaced by
D. Since D̄ is covered by {Gk}N+1

k=2 , by our induction assumption, there is a bounded linear
operator {π̂k}N+2

k=2 in L∞σ (D) satisfying v =
∑N+1

k=2 π̂kv and (i), (ii), (iii) with u replaced by v
and with πk replaced by π̂k for k = 2, . . . ,N + 1. If we set

π1 = π1, πk = π̂k · πD (k = 2, . . . ,N + 1),

then it is rather clear that this πk satisfies all desired properties. !

Lemma 4.3.3 (Approximation). The assertion of Lemma 4.3.1 is still valid when Ω is a
bounded domain with Lipschitz boundary in Rn.

Proof. If Ω is a bounded domain with Lipschitz boundary, then it is known that there is
an open covering {Gk}Nk=1 of Ω̄ such that Ωk = Gk ∩Ω is bounded, star-shaped with respect
to an open ball Bk(B̄k ⊂ Ω) (i.e. star-shaped with respect to any point of Bk) and Gk has a
Lipschitz boundary; see [15, III.3, Lemma 4.3]. In the sequel, we only need the property
that Gk is bounded and star-shaped with respect to a point.

We apply Lemma 4.3.2 and set uk = πku to observe that uk|Ωk ∈ L∞σ (Ωk) and uk|Ω\Ωk = 0.
Since Ωk is star-shaped, by Lemma 4.3.1 there is {uk, j}∞j=1 ⊂ C∞c,σ(Ωk) such that

∥uk, j∥L∞(Ωk) ≤ ∥uk∥L∞(Ωk), uk, j → uk a.e. in Ω.
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(The constant C in (4.3.1) can be taken 1). We still denote the zero extension of uk, j on
Ω\Ωk by uk, j.

If we set um =
∑N

k=1 uk,m, by construction, uj ∈ C∞c,σ(Ω) and

um →
N∑

k=1

uk = u a.e. in Ω and,

∥um∥L∞(Ω) ≤
N∑

k=1

∥uk,m∥L∞(Ω) ≤
N∑

k=1

∥uk∥L∞(Ω) ≤
( N∑

k=1

∥πk∥
)
∥u∥L∞(Ω),

where ∥πk∥ denotes the operator norm of πk in L∞σ (Ω). We thus conclude that there is a
desired approximate sequence {um}∞m=1 for u ∈ L∞σ (Ω).

If u ∈ C(Ω̄)
(∩L∞σ (Ω)

)
, then uk ∈ C(Ω̄k) and uk|∂Ωk\∂Ω = 0. Thus, for any compact set

Kk ⊂ Ωk such that dΩ(Kk) = infx∈Kk dΩ(x) > 0, we see that uk,m converges to uk uniformly
in Kk by Lemma 4.3.1 as m → ∞. Let K be a compact set in Ω. Then, d(Kk) ≥ d(K) > 0
for Kk = Ω̄k ∩ K. Thus,

∥u − um∥L∞(K) ≤
N∑

k=1

∥uk − uk,m∥L∞(K)

=

N∑

k=1

∥uk − uk,m∥L∞(Kk) → 0 (as m→ ∞).

Thus, we have proved that um converges to u locally uniformly in Ω. If u|∂Ω = 0 so that
uk|∂Ωk = 0, then uk,m converges to uk uniformly in Ω̄k by Lemma 4.3.1. Arguing in the same
way by replacing K by Ω̄, we conclude that um converges to u uniformly in Ω̄. !

Remarks 4.3.4. (i) This lemma in particular implies that

C0,σ(Ω) =
{
v ∈ C(Ω̄)

∣∣∣ div v = 0 in Ω, v = 0 on ∂Ω
}

when Ω is bounded. This give an alternate and direct proof of a result of [22], where the
maximum modulus result for the stationary problem is invoked.
(ii) For bounded domains, we are able to characterize the space L∞σ (Ω) by

L∞σ (Ω) =
{
v ∈ L∞(Ω)

∣∣∣ div v = 0 in Ω, v · nΩ = 0 on ∂Ω
}
.

For v ∈ L∞(Ω) ⊂ Lr(Ω) satisfying div v ∈ Lr(Ω), r ∈ (1,∞), we understand the normal
component v · nΩ as an element of the negative order Sobolev space; see, e.g., [26].

4.3.2 Approximation for |x|→ ∞
We next prove the approximation lemma for L∞σ (Ω) for exterior domains. Recently, an
approximate sequence for L∞σ (Ω) is constructed in [24, Lemma 2.6] by smooth solenoidal
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vector fields in an exterior domain. Although a construction procedure is similar, we give
an approximation by compactly supported functions in order to prove the existence of
L∞-solutions by applying the a priori estimate (4.1.5) for Lr-solutions.

Lemma 4.3.5 (Approximation in an exterior domain). Let Ω be an exterior domain with
Lipschitz boundary. There exists a constant C = CΩ such that for any v ∈ L∞σ (Ω), there
exist a sequence {vm}∞m=1 ⊂ C∞c,σ(Ω) such that

||vm||L∞(Ω) ≤ C∥v∥L∞(Ω), (4.3.4)
vm → v a.e. in Ω as m→ ∞. (4.3.5)

If in addition v ∈ C(Ω̄) and v = 0 on ∂Ω, the above convergence can be replaced by
locally uniform convergence in Ω̄. If in addition v(x) vanishes at the space infinity, i.e.,
lim|x|→∞ v(x) = 0, the convergence can be replaced by uniform convergence in Ω̄. In
particular, C0,σ(Ω) agrees with the space {v ∈ C(Ω̄) | lim|x|→∞ v(x) = 0, div v = 0 in Ω, v =
0 on ∂Ω}.

In order to prove Lemma 4.3.5, we recall the Bogovskiı̆ operator [6], [15]. Let D be
a bounded domain with Lipschitz boundary. The Bogovskiı̆ operator BD is a bounded
operator from Lr

av(D) to the Sobolev space W1,r(D) for r ∈ (1,∞) such that div BD(g) = g
in D, BD(g) = 0 on ∂D and

||BD(g)||W1,r(D) ≤ CD∥g∥Lr(D) (4.3.6)

for g ∈ Lp
av(D), where Lr

av(D) denotes the space of all average-zero functions in Lr(D). The
constant CD depends on Lipschitz regularity of ∂D and is independent of g.

We first prove Lemma 4.3.5 for Ω = Rn.

Proposition 4.3.6. The statement of Lemma 4.3.5 holds for Ω = Rn. If in addition v ∈
C(Rn), the convergence in (4.3.5) can be replaced by locally uniform convergence in Rn.
If in addition lim|x|→∞ v(x) = 0, the convergence can be replaced by uniform convergence
in Rn.

Proof. Let θ be a smooth cutoff function in [0,∞) satisfying θ ≡ 1 in [0, 1/2], and θ ≡ 0
in [1,∞). Set θm(x) = θ(|x|/m)

for x ∈ Rn and m ≥ 1. Then, θm ≡ 1 in B0(m/2) and θm ≡ 0
in B0(m)c. For v ∈ L∞σ (Rn), set gm = v · ∇θm. Then, gm ∈ Lr

av(Dm) and spt gm ⊂ Dm for
Dm = B0(m)\B0(m/2). Set fm(x) = gm(mx) for x ∈ D1 and apply the Bogovskiı̆ operator
for fm ∈ Lr

av(D1) to get u∗m = BD1( fm) satisfying div u∗m = fm in D1, u∗m = 0 on ∂D1 and
||u∗m||W1,r(D1) ≤ CD1 || fm||Lr(D1), where the constant CD1 is independent of m ≥ 1. By the
Sobolev inequality, it follows that

||u∗m||L∞(D1) ≤ Cs|| fm||Lr(D1).
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for r > n with the constant Cs, independent of m ≥ 1. We set

v∗m(x) = mu∗m(x/m) for x ∈ Dm.

Then, div v∗m = gm in Dm, v∗m = 0 on ∂Dm and ||v∗m||L∞(D1) ≤ mCs|| fm||Lr(D1). Since || fm||Lr(D1) =

m−n/r||gm||Lr(Dm) and ||∇θm||Lr(Dm) = mn/r−1||∇θ||Lr(D1), it follows that

||v∗m||L∞(Dm) ≤ Csm1−n/r||gm||Lr(Dm)

≤ Cs||∇θ||Lr(D1)||v||L∞(Dm).

Denoting the zero extension of v∗m to Rn\Dm by v̄∗m, we set ṽm = vθm − v̄∗m. Then, ṽm ∈
L∞σ (Rn) and spt ṽm is compact in Rn. By the standard mollifier ηε, ε > 0, set vm = ṽm ∗ η1/m.
Then, vm ∈ C∞c,σ(Rn) is desired sequence.
If v ∈ C(Rn), vm → v locally uniformly in Rn as m → ∞. If in addition lim|x|→∞ v(x) = 0,
vm → v uniformly in Rn as m→ ∞. The proof is now complete. !

For sufficiently smooth v ∈ L∞σ (Rn), Proposition 4.3.6 holds up to higher orders.

Corollary 4.3.7. For v ∈ Wk,∞(Rn)∩L∞σ (Rn) and k ≥ 0, (4.3.4) and (4.3.5) can be replaced
to

∥vm∥Wk,∞(Rn) ≤ C∥v∥Wk,∞(Rn), (4.3.7)
∂l

xvm → ∂l
xv a.e. in Rn as m→ ∞ for |l| ≤ k. (4.3.8)

Proof. We prove by induction with respect to k. For k = 0 the statement holds by Propo-
sition 4.3.6. Assume that (4.3.7) and (4.3.8) hold for k = k0. We shall show

∥∂l
xvm∥L∞(Rn) ≤ C∥v∥Wk0+1,∞(Rn), (4.3.9)

and (4.3.8) for |l| = k0 + 1. Since the Bogovskiı̆ operator is bounded from Wk0+1,r(D) to
Wk0+2,r(D) [15], we have

||u∗m||Wk0+2,r(D1) ≤ C|| fm||Wk0+1,r(D1).

By the Sobolev inequality, it follows that

||∂l
xu
∗
m||L∞(D1) ≤ Cs|| fm||Wk0+1,r(D1)

for r > n with the constant Cs independent of m ≥ 1. Since ||∂ j
xv∗m||L∞(D1) = m1−| j|||∂ j

xu∗m||L∞(Dm)

and ||∂ j
x fm||L∞(D1) = m| j|−n/r||∂ j

xgm||L∞(Dm) for | j| ≥ 0, it follows that

||∂l
xv
∗
m||L∞(Dm) ≤ m1−|l||| fm||Wk0+1,r(D1)

≤ m1−n/r||gm||Wk0+1,r(Dm).
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By ||∇θm||L∞(Dm) = mn/r−1||∇θ||Lr(D1), we estimate ||gm||Wk0+1,r(Dm) ≤ mn/r−1C||v||Wk0+1,r(Dm) with
the constant C independent of m ≥ 1. Thus, we obtain

||∂l
xv
∗
m||L∞(Dm) ≤ C||v||Wk0+1,∞(Dm).

Since vm = ṽm ∗η1/m and ṽm = vmθm− v̄∗m, (4.3.9) and (4.3.8) hold for k = k0+1. We proved
(4.3.7) and (4.3.8) for all k ≥ 0. The proof is now complete. !

Remark 4.3.8. The proof of Proposition 4.3.6 works for v ∈ L∞(Rn) satisfying div v = 0
in Rn, i.e., there exists a sequence {v0,m}∞m=1 ⊂ C∞c,σ(Rn) satisfying (4.3.4) and (4.3.5). By
the dominated convergence theorem, we have

0 = lim
m→∞

∫

Rn
vm · ∇ϕdx =

∫

Rn
v · ∇ϕdx for ϕ ∈ Ŵ1,1(Rn)

so v ∈ L∞σ (Rn). This implies L∞σ (Rn) =
{
v ∈ L∞(Rn)

∣∣∣ div v = 0 in Rn}.
We prove Lemma 4.3.5 for an exterior domain. By using the Bogovskiı̆ operator, we

divide a solenoidal vector field into two vector fields – one is compactly supported in Ω
and the other is supported in Rn away from ∂Ω. We reduce our problem to the case of Rn

(Proposition 4.3.6) and a bounded domain. For a bounded domain, we already constructed
the corresponding approximate sequence (Lemma 4.3.3).

Proof of Lemma 4.3.5. We may assume 0 ∈ Ωc. Let θ be a smooth cutoff function in
[0,∞) satisfying θ ≡ 1 in [0, 1/2] and θ ≡ 0 in [1,∞). Set θR(x) = θ(|x|/R) for x ∈ Rn

and R > diam Ωc. Then, θR ≡ 1 in B0(R/2), θR ≡ 0 in B0(R)c and spt ∇θR ⊂ DR for
DR = B0(R)\B0(R/2). For v ∈ L∞σ (Ω) set gR = v · ∇θR. Then, gR ∈ Lr

av(DR). We apply
the Bogovskiı̆ operator for gR ∈ Lr

av(DR) to get v∗R = BDR(gR) such that div v∗R = gR

in DR, v∗R = 0 on ∂DR and ||v∗R||W1,r(DR) ≤ CDR ||gR||Lr(DR). By the Sobolev inequality, we
estimate ||v∗R||L∞(DR) ≤ Cs||gR||Lr(DR) ≤ Cs||∇θR||Lr(DR)||v||L∞(Ω) for r > n with the constant Cs

independent of v. Denoting the zero extension of v∗R to Rn\DR by v̄∗R, we set

v1 = vθR − v̄∗R,
v2 = v

(
1 − θR

)
+ v̄∗R.

(4.3.10)

Then, v1 and v2 are estimated by v, i.e.,

∥vi∥L∞(Ω) ≤ C∥v∥L∞(Ω) for i = 1, 2

with the constant C independent of v.
We find an approximation for v1. Since v1 satisfies div v1 = 0 in Ω, v1 · nΩ = 0 on ∂Ω,
and spt v1 ⊂ ΩR for ΩR = B0(R) ∩ Ω, it follows that v1 ∈ L∞σ (ΩR). We apply the ap-
proximation lemma for a bounded domain (Lemma 4.3.3) to get v1,m ∈ C∞c,σ(ΩR) such that
||v1,m||L∞(ΩR) ≤ CR||v1||L∞(ΩR) and v1,m → v1 a.e. in Ω as m → ∞. The constant CR is inde-
pendent of m ≥ 1. We do not distinguish v1,m and its zero extension to Ω\B0(R).
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We next find an approximation for v2. Let v2 be a zero extension of v2 to Rn\Ω. Since
v2 satisfies div v2 = 0 in Ω and spt v2 ⊂ Rn\B0(R/2), v2 is in L∞σ (Rn). We apply Propo-
sition 4.3.6 to get a sequence of functions {v2,m}∞m=1 ⊂ C∞c,σ(Rn) such that ||v2,m||L∞(Rn) ≤
C||v2||L∞(Rn) and v2,m → v2 a.e. in Rn as m → ∞. Since v2 = 0 in B0(R/2), by construction
of v2,m, v̄2,m also satisfies v̄2,m = 0 in B0(R/2). Then, the restriction of v̄2,m to Ω denoted by
v2,m is in C∞c,σ(Ω).
We set vm = v1,m + v2,m. Then, vm satisfies (4.3.4) and (4.3.5). If v ∈ C(Ω̄) and v = 0 on
∂Ω, v1,m → v1 uniformly in Ω and v2,m → v2 locally uniformly in Ω as m → ∞. Thus, vm

converges to v locally uniformly inΩ. If in addition lim|x|→∞ v(x) = 0, v2,m → v2 uniformly
in Ω as m→ ∞. Thus, vm converges to v uniformly in Ω. The proof is now complete. !

Remark 4.3.9. The characterization of C0,σ(Ω) in Lemma 4.3.5 was proved in [22, Lemma
3.1] ([23, Lemma A.1]) for bounded and exterior domains Ω with C1,γ-boundaries. The
proof depends on the maximum modulus theorem of the stationary Stokes problem. Lemma
4.3.5 is a natural extension of that for bound domains (Lemma 4.3.3) and the proof is direct
via the Bogovskiı̆ operator without appealing the Stokes equations.

4.3.3 Approximation in a perturbed half space
We prove the approximation (4.1.7) for perturbed half spaces. The approach is essentially
the same with that of exterior domains. The proof is reduced to the approximation (4.1.7)
for a half space and a bounded domain (Lemma 4.3.3).

Lemma 4.3.10 (Approximation in a perturbed half space). LetΩ be a perturbed half space
in Rn, n ≥ 2, with Lipschitz boundary. There exists a constant C such that for v ∈ L∞σ (Ω)
there exists a sequence {vm}∞m=1 ⊂ C∞c,σ(Ω) such that

||vm||L∞(Ω) ≤ C||v||L∞(Ω), (4.3.11)
vm → v a.e. in Ω as m→ ∞. (4.3.12)

Assume in addition v ∈ C(Ω) and v = 0 on ∂Ω, then vm converges to v locally uniformly
in Ω. Assume in addition lim|x|→∞ v(x) = 0, then vm converges to v uniformly in Ω. In
particular, C0,σ(Ω) = {v ∈ C(Ω) | divv = 0 in Ω, v = 0 on ∂Ω, lim|x|→∞ v(x) = 0 }.

We first prove Lemma 4.3.10 for Ω = Rn
+. As we proved the approximation (4.1.7) for

the whole space (Proposition 4.3.6), we cut off a function and apply the Bogovskiĭ operator
to get a compactly supported solenoidal vector field. But in this case, a support of a cutoff
function may not have a Lipschitz boundary because of the presence of the boundary ∂Rn

+.
We use a cutoff function associated with the cylinder C0(r) = Bn−1

0 (r) × (−r, r), r > 0 in
order to show the estimate (4.3.11) via the Bogovskiĭ operator. (The constant in (4.3.6)
depends on the Lipschitz regularity of the boundary).

Proposition 4.3.11. The statement of Lemma 4.3.10 holds for Ω = Rn
+.
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Proof. Let θ ∈ C∞c [0,∞) be a smooth cutoff function such that θ ≡ 1 in [0, 1], θ ≡ 0 in
[2,∞) and 0 ≤ θ ≤ 1. Set θ̃m = θ̃(x/m) for θ̃(x) = θ(|x′|)θ(|xn|). Then, θ̃m ≡ 1 in C0(m) and
θ̃m ≡ 0 in C0(2m)c. For v ∈ L∞σ (Rn

+), set gm = v ·∇θ̃m. Then, gm ∈ Lr
av(Dm) and spt gm ⊂ Dm

for Dm = D0(m) ∩ Rn
+ and D0(m) = C0(2m)\C0(m). Set fm(x) = gm(mx) for x ∈ D = D1.

Then, fm ∈ Lr
av(D) and spt fm ⊂ D. We apply the Bogovskiĭ operator in the Lipschitz

domainD to get u∗m = BD( fm) such that div u∗m = g̃m inD, u∗m = 0 on ∂D and

||u∗m||W1,r(D) ≤ CB|| fm||Lr(D),

with the constant CB, independent of m ≥ 1. By the Sobolev inequality for r > n in the
Lipschitz domain D (e.g. [4, Theorem 4.12]), we estimate ||u∗m||L∞(D) ≤ CS CB|| fm||Lr(D).
Since || fm||Lr(D) = m−n/r||gm||Lr(Dm) and ||∇θ̃||Lr(D) = m1−n/r||∇θ̃m||Lr(Dm), it follows that

||u∗m||L∞(D) ≤
C1

m
||v||L∞(Dm)

with the constant C1 depending on CS , CB, r and ||∇θ||∞, independent of m ≥ 1. We set

v∗m(x) = mu∗m(x/m) for x ∈ Dm

and observe that div v∗m = gm inDm, v∗m = 0 on ∂Dm, spt v∗m ⊂ Dm and

||v∗m||L∞(Dm) ≤ C1||v||L∞(Dm). (4.3.13)

Denoting the zero extension of v∗m to Rn
+\Dm by v̄∗m, we set v̂m = vθ̃m − v̄∗m. Then, v̂m ∈

L∞(Rn
+) satisfies div v̂m = 0 in Rn

+, v̂n
m = 0 on ∂Rn

+, spt v̂m ⊂ Dm and

||v̂m||L∞(Rn
+) ≤ (1 +C1)||v||L∞(Rn

+).

Finally, we set

vm(x′, xn) =

⎧⎪⎪⎨
⎪⎪⎩

v̂m(x′, xn − 1/m) for x′ ∈ Rn−1, xn ≥ 1/m,
0 for x′ ∈ Rn−1, 0 < xn < 1/m,

so that spt vm ⊂ Rn
+. We obtain the desired sequence by approximating vm with the standard

mollifier.
If v ∈ C(Rn

+) and v = 0 on ∂Rn
+, it is easy to see that vm converges to v locally uniformly

in Rn
+. If in addition lim|x|→∞ v(x) = 0, from (4.3.13), v̂m converges to v uniformly in Rn

+ as
m→ ∞ so vm → v uniformly in Rn

+. The proof is now complete. !

Proof of Lemma 4.3.10. Take RΩ > 0 such thatΩ\C0(RΩ) = Rn
+\C0(RΩ). Let θ ∈ C∞c [0,∞)

be a smooth cutoff function such that θ ≡ 1 in [0, 1], θ ≡ 0 in [2,∞) and 0 ≤ θ ≤ 1. Set
θ̃R(x) = θ(|x′|/R)θ(|xn|/R) for fixed R > RΩ. For v ∈ L∞σ (Ω), by the Bogovskiı̆ operator on
DR, we set

v1 = vθ̃R − B(v · ∇θ̃R),
v2 = v(1 − θ̃R) + B(v · ∇θ̃R).
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Since ||B(v · ∇θ̃R)||L∞(DR) ≤ CR||v||L∞(DR), it follows that

||vi||L∞(Ω) ≤ (1 +CR)||v||L∞(Ω) for i = 1, 2.

The function v1 satisfies div v1 = 0 inΩ, v1 ·nΩ = 0 on ∂Ω and spt v1 ⊂ ΩR for the bounded
Lipschitz domain ΩR = Ω ∩ C0(2R). Thus, v1 ∈ L∞σ (ΩR). We apply Lemma 4.3.3 to get a
sequence {v1,m}∞m=1 ⊂ C∞c,σ(ΩR) satisfying (4.3.1) and (4.3.2) for v1 in ΩR. We identify v1,m

and its zero extension to Ω\ΩR.
The function v2 satisfies div v2 = 0 in Ω, v2 · nΩ = 0 on ∂Ω and spt v2 ∩ C0(R) = ∅.
We set v̄2 = v2 in Rn

+\C0(R) and v̄2 = 0 in Rn
+ ∩ C0(R). Then, v̄2 ∈ L∞σ (Rn

+). We apply
Proposition 4.3.11 to get a sequence {v̄2,m}∞m=1 ⊂ C∞c,σ(Rn

+) satisfying (4.3.11) and (4.3.12)
for v̄2 in Rn

+. From the proof of Proposition 4.3.11, we observe that v̄2,m also satisfies
spt v̄2,m ∩ C0(R) = ∅. We set v2,m = v̄2,m in Ω\C0(R) and v2,m = 0 in Ω ∩ C0(R). Then,
v2,m ∈ C∞c,σ(Ω) satisfies (4.3.11) and (4.3.12) for v2 in Ω.
Now, we set vm = v1,m + v2,m and observe that vm ∈ C∞c,σ(Ω) satisfies (4.3.11) and (4.3.12)
for v in Ω. If v ∈ C(Ω) and v = 0 on ∂Ω, then v1 ∈ C(ΩR), v1 = 0 on ∂ΩR and v2 ∈ C(Rn

+),
v2 = 0 on ∂Rn

+. For v1 ∈ L∞σ (ΩR) ∩ C(ΩR) satisfying v1 = 0 on ∂ΩR, v1,m ∈ C∞c,σ(ΩR)
converges to v1 uniformly in Ω̄R. Thus, v1,m → v1 uniformly in Ω̄. For v̄2 ∈ L∞σ (Rn

+)∩C(Rn
+)

satisfying v̄2 = 0 on ∂Rn
+, v̄2,m converges to v̄2 locally uniformly in Ω so v2,m → v2 locally

uniformly in Ω. Thus, vm converges to v locally uniformly in Ω as m→ ∞.
If in addition lim|x|→∞ v(x) = 0, v2,m converges to v2 uniformly in Ω as m → ∞. Thus,
vm → v uniformly in Ω as m→ ∞. The proof is now complete. !

4.4 Continuity at time zero
In this section, we show that S (t) is strongly continuous at t = 0 on BUCσ(Ω) for exterior
domains. We divide a support of v0 ∈ BUCσ(Ω) into two parts so that one is compactly
supported in Ω̄ and the other is supported away from ∂Ω. For compactly supported initial
data, i.e., v0 ∈ C0,σ(Ω) we already know S (t)v0 → v0 on BUCσ(Ω) as t ↓ 0 since S (t) is a
C0-semigroup on C0,σ(Ω) by Theorem 3.1.3 in Chapter 3. Thus, we shall show:

Proposition 4.4.1. Let Ω be an exterior domain with C3-boundary. Let S (t) be the Stokes
semigroup on L∞σ (Ω). Then, S (t)v0 → v0 on BUCσ(Ω) as t ↓ 0 for all v0 ∈ BUCσ(Ω)
satisfying dist(spt v0, ∂Ω) > 0.

Proof. Let v0 ∈ BUCσ(Ω) satisfy dist(spt v0, ∂Ω) > 0. Denoting the standard mollifier by
ηε, set vε0 = v0 ∗ ηε. Then, vε0 ∈ C∞(Ω) is supported away from ∂Ω and converges to v0

uniformly in Ω. Thus, we may assume v0 ∈ W2,∞(Ω) ∩ BUCσ(Ω).
Set v = S (t)v0. We shall show

∂tv = S (t)∆v0. (4.4.1)
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This implies that ||v(t)− v0||∞ ≤ Ct||∆v0||∞ as t ↓ 0. By Corollary 4.3.7, for v0 ∈ W2,∞(Ω)∩
BUCσ(Ω), there exists v0,m ∈ C∞c,σ(Ω) such that ||v0,m||W2,∞(Ω) ≤ C||v0||W2,∞(Ω) and ∂l

xv0,m →
∂l

xv0 a.e. in Ω as m → ∞ for |l| ≤ 2. Here, we do not distinguish v0 and its zero extension
to Rn\Ω. Set vm = S (t)v0,m. As we proved Theorem 4.1.2, vm subsequently converges to v
locally uniformly in Ω̄×(0, T ] together with ∂tvm. Since −Av0,m = ∆v0,m for v0,m ∈ C∞c,σ(Ω),
it follows that

∂tvm = S (t)∆v0,m. (4.4.2)

Since ∆v0,m → ∆v0 a.e. in Ω as m → ∞, S (t)∆v0,m subsequently converges to S (t)∆v0

locally uniformly in Ω× (0,T ]. By letting m→ ∞ to (4.4.2), we obtain (4.4.1). The proof
is now complete. !

Proposition 4.4.1 now implies:

Theorem 4.4.2. Let Ω be an exterior domain in Rn, n ≥ 2, with C3-boundary. The Stokes
semigroup S (t) is a C0-(analytic) semigroup on BUCσ(Ω).

Proof. We may assume 0 ∈ Ωc. By (4.3.10), we divide v0 ∈ BUCσ(Ω) into two terms
v0 = v0,1 + v0,2 so that v0,1 is compactly supported in Ω and v0,2 is supported away from
∂Ω, i.e. dist(∂Ω, spt v0,2) > 0. By Lemma 4.3.5, v0,1 is in C0,σ(Ω) so S (t)v0,1 → v0,1 on
BUCσ(Ω) as t ↓ 0 by Theorem 3.1.3. By Proposition 4.4.1, S (t)v2,0 → v2,0 on BUCσ(Ω)
as t ↓ 0. Thus, S (t)v0 → v0 on BUCσ(Ω) as t ↓ 0. The proof is now complete. !
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Chapter 5

Resolvent approach

This chapter is devoted to the resolvent approach for the analyticity of the Stokes
semigroup on L∞. We present an a priori L∞-estimate for solutions to the resolvent
Stokes equations, which in particular implies that the angle of the analytic semigroup
on L∞ is π/2. The approach is inspired by the Masuda-Stewart technique for ellip-
tic operators. Furthermore, the method presented applies also to different type of
boundary conditions, e.g., to the Robin boundary condition. Note that the harmonic-
pressure gradient estimate (0.1.3) is available also for the resolvent Stokes equation.

5.1 Introduction
We consider the resolvent Stokes equations in the domain Ω ⊂ Rn, n ≥ 2. When Ω = Rn

+,
the analyticity of the Stokes semigroup on L∞-type spaces was proved in [9] (see also
[36], [25]) based on explicit calculations for the solution operator R(λ) : f .→ v = vλ to
the corresponding resolvent problem:

λv − ∆v + ∇q = f in Ω, (5.1.1)
div v = 0 in Ω, (5.1.2)

v = 0 on ∂Ω. (5.1.3)

We present a direct resolvent approach to the resolvent Stokes equations (5.1.1)–(5.1.3)
and establish the a priori estimate of the form,

Mp(v, q)(x, λ) = |λ||v(x)| + |λ|1/2|∇v(x)| + |λ|n/2p||∇2v||Lp(Ωx,|λ|−1/2 ) + |λ|n/2p||∇q||Lp(Ωx,|λ|−1/2 ),

for p > n and
sup
λ∈Σϑ,δ

∥∥∥Mp(v, q)
∥∥∥

L∞(Ω)(λ) ≤ C|| f ||L∞(Ω) (5.1.4)

for some constant C > 0 independent of f . Here,Ωx,r denotes the intersection ofΩwith an
open ball Bx(r) centered at x ∈ Ω with radius r > 0, i.e. Ωx,r = Bx(r) ∩ Ω and Σϑ,δ denotes

87
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the sectorial region in the complex plane given by Σϑ,δ = {λ ∈ C\{0} | | arg λ| < ϑ, |λ| > δ}
for ϑ ∈ (π/2, π) and δ > 0. Our approach is inspired by the corresponding approach for
general elliptic operators. K. Masuda was the first to prove analyticity of the semigroup
associated to general elliptic operators in C0(Rn) including the case of higher orders [27],
[28] ([29].) This result was then extended by H. B. Stewart to the case for the Dirichlet
problem [37] and more general boundary condition [38]. This Masuda-Stewart method
was applied to many other situations [5], [24], [21], [6]. However, its application to the
resolvent Stokes equations (5.1.1)–(5.1.3) was unknown.

In the sequel, we prove the estimate (5.1.4) by invoking the Lp-estimates for the re-
solvent Stokes equations with inhomogeneous divergence-free condition [14], [15]. We
invoke the strictly admissibility of a domain introduced in Chapter 2 which implies an
estimate of pressure q in terms of the velocity by

sup
x∈Ω

dΩ(x)
∣∣∣∇q(x)

∣∣∣ ≤ CΩ∥W(v)∥L∞(∂Ω) (5.1.5)

for W(v) = −(∇v − ∇T v)nΩ, where ∇ f denotes (∂ fi/∂x j)1≤i, j≤n and ∇T f = (∇ f )T for the
vector field f = ( fi)1≤i≤n. The estimate (5.1.5) plays a key role in transferring results
from the elliptic situation to the situation of the Stokes system. Here, nΩ denotes the unit
outward normal vector field on ∂Ω and dΩ denotes the distance function from the boundary,
dΩ(x) = infy∈∂Ω |x− y| for x ∈ Ω. The estimate (5.1.5) can be viewed as a regularizing-type
estimate for solutions to the Laplace equation ∆P = 0 in Ω with the Neumann boundary
condition ∂P/∂nΩ = div∂ΩW on ∂Ω for a tangential vector field W where div∂Ω = tr ∇∂Ω
denotes the surface divergence and ∇∂Ω = ∇ − nΩ(nΩ · ∇) is the gradient on ∂Ω. As is
proved in Chapter 3 (Lemma 3.2.2), the pressure P = q solves this Neumann problem
for W = W(v) and the estimate (5.1.5) holds for bounded domains, exterior domains and
perturbed half spaces (n ≥ 3). When n = 3, W(v) is nothing but the tangential trace of
vorticity, i.e. −curl v × nΩ. We call Ω strictly admissible if there exists a constant C = CΩ
such that the a priori estimate

||∇P||L∞d (Ω) ≤ C||W ||L∞(∂Ω) (5.1.6)

holds for all solutions P of the Neumann problem for tangential vector fields W ∈ L∞(∂Ω),
where || f ||L∞d (Ω) = supx∈Ω dΩ(x)| f (x)| denotes the norm for f ∈ L∞d (Ω)

We are now in the position to formulate the main results of this chapter.

Theorem 5.1.1. Let Ω be a strictly admissible, uniformly C2-domain in Rn for n ≥ 2. Let
p > n. For ϑ ∈ (π/2, π), there exists constants δ and C such that the a priori estimate
(5.1.4) holds for all solutions (v,∇q) ∈ W2,p

loc (Ω̄) × (Lp
loc(Ω̄) ∩ L∞d (Ω)) of (5.1.1)–(5.1.3) for

f ∈ C0,σ(Ω) and λ ∈ Σϑ,δ.

The a priori estimate (5.1.4) implies the analyticity of the Stokes semigroup on L∞-type
spaces. Let us observe the generation of an analytic semigroup on C0,σ(Ω). By invoking
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L̃p-theory [11], [12], [13], we verify the existence of solutions to (5.1.1)–(5.1.3), (v,∇q) ∈
W2,p

loc (Ω̄) × (Lp
loc(Ω̄) ∩ L∞d (Ω)) for f ∈ C∞c,σ(Ω) in a uniformly C2-domain Ω. We extend

the solution operator R(λ) to C0,σ by a uniform approximation and the estimates (5.1.4).
(The solution operator to the pressure gradient f .→ ∇qλ is also uniquely extendable for
f ∈ C0,σ). We observe that R(λ) is injective on C0,σ since the estimate (5.1.5) immediately
implies that f = 0 for f ∈ C0,σ satisfying vλ = R(λ) f = 0. The operator R(λ) may
be regarded as a surjective operator from C0,σ to the range of R(λ). The open mapping
theorem then implies the existence of the closed operator A such that R(λ) = (λ−A)−1; see
[7, Proposition B.6]. We call A the Stokes operator in C0,σ(Ω). From Theorem 5.1.1 we
have:

Theorem 5.1.2. Let Ω be a strictly admissible, uniformly C2-domain in Rn. Then, the
Stokes operator A generates a C0-analytic semigroup on C0,σ(Ω) of angle π/2.

We next consider the space L∞σ (Ω) defined by

L∞σ (Ω) =
{

f ∈ L∞(Ω)
∣∣∣∣∣∣

∫

Ω

f · ∇ϕdx = 0 for all ϕ ∈ Ŵ1,1(Ω)
}
,

where Ŵ1,1(Ω) denotes the homogeneous Sobolev space of the form Ŵ1,1(Ω) = {ϕ ∈
L1

loc(Ω) | ∇ϕ ∈ L1(Ω)}. Note that C0,σ(Ω) ⊂ L∞σ (Ω). When the domain Ω is unbounded, the
space L∞σ (Ω) includes non-decaying solenoidal vector fields at infinity. Actually, the a pri-
ori estimates (5.1.4) is also valid for f ∈ L∞σ . In particular, (5.1.4) implies the uniqueness
of solutions for f ∈ L∞σ . We verify the existence of solutions by approximating f ∈ L∞σ
with compactly supported smooth solenoidal vector fields { fm}∞m=1 ⊂ C∞c,σ. Note that one
can not approximate f ∈ L∞σ in a uniform topology by an element of C∞c,σ. We weaken
the convergence, for example, to the pointwise convergence, i.e., fm → f a.e. in Ω and
|| fm||L∞(Ω) ≤ C|| f ||L∞(Ω) with some constant C = CΩ, independent of m ≥ 1. Although this
approximation is non-trivial for general domains, for bounded domains, exterior domains
and perturbed half spaces, this approximation is valid as we proved in Chapter 4. In the
following, we restrict our results to (I) bounded domains, (II) exterior domains and (III)
perturbed half spaces (n ≥ 3). By an approximation argument, we verify the existence of
solutions to (5.1.1)–(5.1.3) for general f ∈ L∞σ . We then define the Stokes operator on L∞σ
by the same way as for C0,σ. Since the domains (I)–(III) are strictly admissible provided
that the boundary is C3 (Theorem 2.3.3 in Chapter 2), we have:

Theorem 5.1.3. Let Ω be one of the domains (I)–(III) with C3-boundary. Then, the Stokes
operator A generates a (non-C0-)analytic semigroup on L∞σ (Ω) of angle π/2.

Remarks 5.1.4. (i) The direct resolvent approach clarifies the angle of the analytic semi-
group etA on C0,σ. Theorem 5.1.2 (and also Theorem 5.1.3) assert that etA is angle π/2
on C0,σ which does not follow from the a priori L∞-estimate (0.1.1) for solutions to the
non-stationary Stokes equations proved in Chapter 3.
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(ii) We observe that our argument applies to other boundary conditions, for example, to
the Robin boundary condition, i.e., B(v) = 0 and v · nΩ = 0 on ∂Ω where

B(v) = αvtan + (D(v)nΩ)tan for α ≥ 0.

Here, D(v) = (∇v + ∇T v)/2 denotes the deformation tensor and ftan denotes the tangential
component of the vector field f on ∂Ω. Note that the case α = ∞ corresponds to the
Dirichlet boundary condition (1.3); see [30] for generation results subject to the Robin
boundary conditions on L∞ for Rn

+. The Lp-resolvent estimates for the Robin boundary
condition was established in [20] for concerning analyticity and was later strengthened in
[32] to non-divergence free vector fields. We shall use the generalized resolvent estimate
in [32] to extend our result in spaces of bounded functions to the Robin boundary condition
(Theorem 5.3.6). For a more detailed discussion, see Remark 5.3.5.
(iii) We observe that the domain of the Stokes operator D(A) is dense in C0,σ. In fact, by
invoking L̃p-theory and using (5.1.4), we have

||λv − f ||L∞(Ω) = ||Ãpv||L∞(Ω) ≤
C
|λ| ||Ãp f ||L∞(Ω) → 0, |λ|→ ∞

for f ∈ C∞c,σ ⊂ D(Ãp), where Ãp is the Stokes operator in L̃p. Thus, we conclude that
D(A) is dense in C0,σ. On the other hand, smooth functions are not dense in L∞ and etA f is
smooth for t > 0, etA f → f as t ↓ 0 in L∞σ does not hold for some f ∈ L∞σ . This means etA

is a non-C0-analytic semigroup. In other words, D(A) is not dense in L∞σ . We refer to [34,
1.1.2] for properties of the analytic semigroup generated by non-densely defined sectorial
operators; see also [7, Definition 3.2.5].
(iv) For a bounded domain Ω, v(·, t) = etAv0 and ∇q = (1 − P)[∆v] give a solution to
the non-stationary Stokes equations, vt − ∆v + ∇q = 0, div v = 0 in Ω × (0,∞) with
v = 0 on ∂Ω for initial data v0 ∈ L∞σ (Ω). Although the Helmholtz projection operator
P : Lp(Ω)→ Lp

σ(Ω) is not bounded on L∞, we are able to define the pressure∇q = K[W(v)]
at least for exterior domains Ω by the harmonic-pressure operator K : L∞tan(∂Ω) ∋ W .→
∇P ∈ L∞d (Ω) (Remarks 2.5.2 (ii) in Chapter 2). Here, L∞tan(∂Ω) denotes the closed subspace
of all tangential vector fields in L∞(∂Ω).
(v) We observe that the Masuda-Stewart method does not imply a large time behavior
for etA. For a bounded domain, the energy inequality implies that v(·, t) = etAv0 (and
also vt) exponentially decay as t → ∞ as discussed in Chapter 3 (Remarks 3.4.4 (i)). In
particular, etA is a bounded analytic semigroup on L∞σ . Recently, based on the L∞-estimates
[1, Theorem 1.2] it was shown in [26] that etA is bounded semigroup on L∞σ for exterior
domains by appealing to the maximum modulus theorem for the boundary-value problem
of the stationary Stokes equations. Note that it is unknown whether etA is a bounded
analytic semigroup on L∞σ .
In the sequel, we sketch the proof for the a priori estimate (5.1.4). Our argument can be
divided into the following three steps:
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(i) (Localization) We first localize a solution (v, q) of the Stokes equations (5.1.1)–(5.1.3)
in a domain Ω′ = Bx0((η + 1)r) ∩ Ω for x0 ∈ Ω, r > 0 and parameters η ≥ 1 by setting
u = vθ0 and p = (q − qc)θ0 with a constant qc and the smooth cutoff function θ0 around
Ωx0,r satisfying θ0 ≡ 1 in Bx0(r) and θ0 ≡ 0 in Bx0((η + 1)r)c. We then observe that (u, p)
solves the resolvent Stokes equations with inhomogeneous divergence-free condition in
the localized domain Ω′. Applying the Lp-estimates for the localized Stokes equations, we
have

|λ|||u||Lp(Ω′) + |λ|1/2||∇u||Lp(Ω′) + ||∇2u||Lp(Ω′) + ||∇p||Lp(Ω′)

≤ Cp

(
||h||Lp(Ω′) + ||∇g||Lp(Ω′) + |λ|||g||W−1,p

0 (Ω′)

)
, (5.1.7)

where W−1,p
0 (Ω′) denotes the dual space of the Sobolev space W1,p′(Ω′) with 1/p+1/p′ = 1.

The external forces h and g contain error terms appearing in the cutoff procedure and are
explicitly given by

h = f θ0 − 2∇v∇θ0 − v∆θ0 + (q − qc)∇θ0, g = v · ∇θ0. (5.1.8)

(ii) (Error estimates) A key step is to estimate the error terms of the pressure such as
(q − qc)∇θ0. We here simplify the description by disregarding the terms related to g in
order to describe the essence of the proof. We will give precise estimates for the terms
related to g in Section 3. Now, the error terms related to h are estimated in the form

||h||Lp(Ω′) ≤ Crn/p
(
(η + 1)n/p|| f ||L∞(Ω) + (η + 1)−(1−n/p)

(
r−2||v||L∞(Ω) + r−1||∇v||L∞(Ω)

))
. (5.1.9)

If we disregard the term (q − qc)∇θ0 in h, the estimates (1.8) easily follows by using the
estimates of the cutoff function θ0, i.e., ||θ0||∞ + (η + 1)r||∇θ0||∞ + (η + 1)2r2||∇2θ0||∞ ≤ K
with some constant K. We invoke the estimate (5.1.5) in order to handle the pressure term
by velocity through the Poincaré-Sobolev-type inequality:

||ϕ − (ϕ)||Lp(Ωx0 ,s) ≤ Csn/p||∇ϕ||L∞d (Ω) for all ϕ ∈ Ŵ1,∞
d (Ω), (1.10)

with some constant C independent of s > 0, where (ϕ) denotes the mean value of ϕ inΩx0,s

and Ŵ1,∞
d (Ω) = {ϕ ∈ L1

loc(Ω̄) | ∇ϕ ∈ L∞d (Ω)}. We prove the inequality (5.1.10) in Section 2.
By taking qc = (q) and applying (5.1.10) for ϕ = q and s = (η+1)r, we obtain the estimate
(5.1.9) via (5.1.5).
(iii) (Interpolation) Once we establish the error estimates for h and g, it is easy to obtain
the estimate (5.1.4) by applying the interpolation inequality,

||ϕ||L∞(Ωx0 ,r) ≤ CIr−n/p
(
||ϕ||Lp(Ωx0 ,r) + r||∇ϕ||Lp(Ωx0 ,r)

)
for ϕ ∈ W1,p

loc (Ω̄), (5.1.11)

for ϕ = u and ∇u. Now, taking r = |λ|−1/2, we obtain the estimate for Mp(v, q)(x0, λ) with
the parameters η of the form,

Mp(v, q)(x0, λ) ≤ C
(
(η + 1)n/p|| f ||L∞(Ω) + (η + 1)−(1−n/p)||Mp(v, q)||L∞(Ω)(λ)

)
, (5.1.12)
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for some constant C independent of η. The second term in the right-hand side is absorbed
into the left-hand side by letting η sufficiently large provided p > n.

Actually, in the procedure (ii), we take qc by the mean value of q in Ωx0,(η+2)r since we
estimate |λ|||g||W−1,p

0
. By using the equation (5.1.1), we reduce the estimate of |λ|||g||W−1,p

0
to

the L∞-estimate for the boundary value of q−qc on ∂Ω′. In order to estimate ||q−qc||L∞(Ω′),
we use a uniformly local Lp-norm bound for ∇q besides the sup-bound for ∇v. This is the
reason why we need the norm ||Mp(v, q)||L∞(Ω)(λ) in the right-hand side of (5.1.12). For
general elliptic operators, the estimate (5.1.12) is valid without invoking the uniformly
local Lp-norm bound for second derivatives of a solution.

This chapter is organized as follows. In Section 2, we prove the inequality (5.1.10)
for uniformly C2-domains. More precisely, we prove stronger estimates than (5.1.10) both
interior and up to boundary Ωx0,s of Ω. In Section 3, we first prepare the estimates for h
and g and then prove the a priori estimate (5.1.4) (Theorem 5.1.1). After proving Theorem
5.1.1, we also note the estimates (5.1.4) subject to the Robin boundary condition.

During the preparation of this thesis, the author was informed on the recent paper by
Kenig et al. [22], where the estimate (5.1.6) was directly proved for C1,γ-bounded domains
by estimating the Green function for the Neumann problem (0.1.4). From their result, we
observe that it is possible in Theorem 5.1.3 to reduce the boundary regularity from C3 to C2

at least for bounded domains. For elliptic operators, the estimate corresponding to (5.1.4)
holds with C1,1-boundary. However, we use the C2-regularity of the boundary in the proof
of the inequality (5.1.10) although the Lp-estimate for the Stokes equations (5.1.7) is valid
with C1,1-boundary (e.g. [15]).

5.2 Poincaré-Sobolev-type inequality
In this section, we prove the inequality (5.1.10) in a uniformly C2-domain. We start with
the Poincaré-Sobolev-type inequality in a bounded domain D and observe the compact-
ness of the embedding from Ŵ1,∞

d (D) to Lp(D), which is the key in proving the inequality
(5.1.10) by reductio ad absurdum.

5.2.1 Curvilinear coodinates
Let D be a bounded domain in Rn, n ≥ 2 and p ∈ [1,∞). We prove the inequality of the
form,

||ϕ − (ϕ)||Lp(D) ≤ C||∇ϕ||L∞d (D) for ϕ ∈ Ŵ1,∞
d (D) (5.2.1)

where (ϕ) denotes the mean value of ϕ in D, i.e., (ϕ) =
"

D ϕdx. If we replace the norm
||∇ϕ||L∞d (D) by the Lp-norm ||∇ϕ||Lp(D), the estimate (5.2.1) is nothing but the Poincaré in-
equality [10, 5.8.1]. We observe that the bound for ||∇ϕ||L∞d (Ω) implies the Lp-integrability
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of ϕ in D even if ∇ϕ is not in Lp(D). For example, when D = B0(1), ϕ(x) = log (1 − |x|) is
in Lp although |∇ϕ(x)| = dD(x)−1 is not for any p ∈ [1,∞). Since the space Ŵ1,∞

d is com-
pactly embedded to the space C(D̄′) for each subdomain D′ of D with D′ ⊂ D, we shall
show a pointwise upper bound for ϕ near ∂D′ by an Lp-integrable function to conclude
that the space Ŵ1,∞

d (D) is compactly embedded to Lp(D) by the dominated convergence
theorem. We estimate ϕ ∈ Ŵ1,∞

d (D) near ∂D directly by using the curvilinear coordinates.
Here, for a domain Ω, ∂Ω ! ∅, we say that ∂Ω is Ck if for each x0 ∈ ∂Ω, there exists con-
stants α, β and Ck-function h of n − 1 variables y′ such that (up to rotation and translation
if necessary) we have

U(x0) ∩Ω = {
(y′, yn)

∣∣∣ h(y′) < yn < h(y′) + β, |y′| < α},
U(x0) ∩ ∂Ω = {

(y′, yn)
∣∣∣ yn = h(y′), |y′| < α},

sup
|l|≤k,|y′ |<α

∣∣∣∂l
y′h(y′)

∣∣∣ ≤ K, ∇′h(0) = 0, h(0) = 0,

with the constant K and the neighborhood of x0, U(x0) = Uα,β,h(x0), i.e.,

Uα,β,h(x0) =
{
(y′, yn) ∈ Rn

∣∣∣ h(y′) − β < yn < h(y′) + β, |y′| < α}.

Here, ∂l
x = ∂l1

x1 · · · ∂ln
xn for a multi-index l = (l1, . . . , ln) and ∂x j = ∂/∂x j as usual and ∇′

denotes the gradient in Rn−1. Moreover, if we are able to take uniform constants α, β,K
independent of each x0 ∈ ∂Ω, we call Ω uniformly Ck-domain of type (α, β,K) as defined
in [33, I.3.2].

We estimate ϕ ∈ Ŵ1,1
d (Ω) along the boundary using the curvilinear coordinates.

Proposition 5.2.1. Let D be a bounded domain with Ck-boundary (k ≥ 2). Let Γ = {x ∈
∂D | x = (x′, h(x′)), |x′| < α′} be a neighborhood of x0 ∈ ∂D.
(i) There exists positive constants µ and α′ such that (γ, d) .→ X(γ, d) = γ + dnD(γ) is a
Ck−1 diffeomorphism from Γ × (0, µ) onto

Nµ(Γ) = {X(γ, d) ∈ U(x0) | (γ, d) ∈ Γ × (0, µ)},

i.e., x ∈ Nµ(Γ) has a unique projection to ∂D denoted by γ(x) ∈ ∂D such that

(γ(x), dD(x)) = X−1(x) for x ∈ Nµ(Γ).

(ii) There exists a constant C1 such that for any x1 ∈ Nµ(Γ) and r1 > 0 satisfying Dx1,r1 =

Bx1(r1) ∩ D ⊂ Nµ(Γ),

|ϕ(x) − ϕ(y)| ≤ C1

(∣∣∣∣∣log
dD(x)
dD(y)

∣∣∣∣∣ +
|γ(x) − γ(y)|

max{dD(x), dD(y)}

)
sup

z∈Dx1 ,r

dD(z)|∇ϕ(z)| for x, y ∈ Dx1,r1

holds for ϕ ∈ Ŵ1,∞
d (D).
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Proof. The assertion (i) is based on the inverse function theorem [23, Lemma 4.4.7]. We
shall prove the second assertion (ii). We take points x, y ∈ Dx1,r1 for x1 ∈ Nµ(Γ) and
r1 > 0 satisfying Dx1,r1 ⊂ Nµ(Γ). We may assume dD(y) = d(y) > d(x). By setting
z = (γ(x), d(y)), we estimate

|ϕ(x) − ϕ(y)| ≤ |ϕ(x) − ϕ(z)| + |ϕ(z) − ϕ(y)|.

We connect x and z by the straight line to estimate

|ϕ(x) − ϕ(z)| =
∣∣∣∣∣∣

∫ 1

0

d
dt
ϕ(X(γ(x), td(x) + (1 − t)d(y)))dt

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫ 1

0
(d(y) − d(x))(∇ϕ)(X(γ(x), td(x) + (1 − t)d(y)) · nD(γ(x))dt

∣∣∣∣∣∣

≤ (d(y) − d(x))
∫ 1

0

dt
t(d(x) − d(y)) + d(y)

sup
z∈Dx1 ,r

d(z)|∇ϕ(z)|

=

∣∣∣∣∣log
d(y)
d(x)

∣∣∣∣∣ sup
z∈Dx1 ,r

d(z)|∇ϕ(z)|.

It remains to estimate |ϕ(z) − ϕ(y)|.We connect z and y by the curve

Cz,y = {X(γ(t), d(y)) | γ(t) = (γ′(t), h(γ′(t))), γ′(t) = tγ′(x) + (1 − t)γ′(y), 0 ≤ t ≤ 1},

where γ′ denotes the n − 1 variables of γ. We then estimate

|ϕ(z) − ϕ(y)| =
∣∣∣∣∣∣

∫ 1

0

d
dt
ϕ(X(γ(t), d(y)))dt

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫ 1

0

dγ
dt

(t)(1 + d(y)∇∂DnD(γ(t)))∇ϕ(X(γ(t), d(y)))dt
∣∣∣∣∣∣

≤ C(1 + µK)
|γ(x) − γ(y)|

d(y)
sup

z∈Dx1 ,r1

d(z)|∇ϕ(z)|,

since |dγ(t)/dt| ≤ C|γ(x) − γ(y)| and |∇∂DnD| ≤ K with a constant C depending on K. The
assertion (ii) thus follows. !

Remarks 5.2.2. (i) We observe from the second assertion that ϕ ∈ Ŵ1,∞
d (D) is bounded

from above by an Lp-integrable function for all p ∈ [1,∞) near ∂D, i.e., for each fixed
y ∈ Dx1,r1 such that dD(y) ≥ δ, we have

|ϕ(x)| ≤ C2(| log dD(x)| + 1)
⎛
⎜⎜⎜⎜⎜⎝ sup

z∈Dx1 ,r1

dD(z)|∇ϕ(z)|
⎞
⎟⎟⎟⎟⎟⎠ + |ϕ(y)| for x ∈ Dx1,r1 (5.2.2)

with a constant C2 depending on µ, δ.
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(ii) Note that Proposition 5.2.1 is also valid for a uniformly Ck-domain Ω of type (α, β,K),
i.e., there exist constants µ,α′, depending only on α, β,K, such that for each x0 ∈ ∂Ω the
assertions (i) and (ii) hold. The above constants C1 and C2 are depending only on α, β,K
and δ. In the sequel, we will apply Proposition 5.2.1 to a uniformly C2-domain to prove
the inequality (5.1.10).

The estimate (5.2.2) implies the compactness from Ŵ1,∞
d (D) to Lp(D).

Lemma 5.2.3. Let D be a bounded domain in Rn, n ≥ 2, with C2-boundary. Then, there
exists a constant CD such that the estimate (5.2.1) holds for all ϕ ∈ Ŵ1,∞

d (D). Moreover,
the space Ŵ1,∞

d (D) is compactly embedded into Lp(D).

Proof. We argue by contradiction. Suppose that the estimate (5.2.1) were false for any
choice of the constant C. Then, there would exist a sequence of functions {ϕm}∞m=1 ⊂
Ŵ1,∞

d (D) such that
||ϕm − (ϕm)||Lp(D) > m||∇ϕm||L∞d (D), m ∈ N.

We may assume (ϕm) = 0 by replacing ϕm to ϕm − (ϕm). We divide ϕm by Mm = ||ϕm||Lp(D)

to get a sequence of functions {φm}∞m=1, φm = ϕm/Mm such that

||∇φm||L∞d (D) < 1/m,

||φm||Lp(D) = 1 with (φm) = 0.

We now prove the compactness of {φm}∞m=1 in Lp(D). Since ||∇φm||L∞d (D) is bounded, {φm}∞m=1
subsequently converges to a limit φ̄ locally uniformly in D. By Proposition 5.2.1, in par-
ticular, the estimate (5.2.2) implies that φm is uniformly bounded from above by an Lp-
integrable function near ∂D. The dominated convergence theorem implies that

φm → φ̄ in Lp(D) as m→ ∞.

Since ∇φm(x) → 0 as m → ∞ for each x ∈ D and ||φ̄||Lp(D) = 1, φ̄ is a non-zero constant
which contradicts (φ̄) = 0. We reached a contradiction.
For the compactness of {φm}∞m=1 in Lp(D), we here only invoke the bound for ||∇φm||L∞d (D).
This means that the embedding from Ŵ1,∞

d (D) into Lp(D) is compact. The proof is now
complete. !

5.2.2 Estimates near the boundary
We now prove the inequality (5.1.10) for uniformly C2-domains Ω. When the ball Bx0(r)
locates in the interior of Ω, i.e., Ωx0,r = Bx0(r), applying (5.2.1) to ϕr(x) = ϕ(x0 + rx) in
D = B0(1) implies the estimate

||ϕ − (ϕ)||Lp(Ωx0 ,r) ≤ Crn/p sup
z∈Ωx0 ,r

dΩx0 ,r
(z)|∇ϕ(z)|, r > 0. (5.2.3)



96 CHAPTER 5. RESOLVENT APPROACH

Since dΩx0 ,r
(x) ≤ dΩ(x) for x ∈ Ωx0,r, the inequality (5.1.10) follows. However, if Bx0(r)

involves ∂Ω, the boundary of Ωx0,r may not have C1-regularity. We thus prove

||ϕ − (ϕ)||Lp(Ωx0 ,r) ≤ Crn/p sup
z∈Ωx0 ,r

dΩ(z)|∇ϕ(z)| for ϕ ∈ Ŵ1,∞
d (Ω) (5.2.4)

for x0 ∈ Ω and r > 0 satisfying dΩ(x0) < r, which is weaker than (5.2.3).

Proposition 5.2.4. Let Ω be a uniformly C2-domain. There exists constants r0 and C
such that for x0 ∈ Ω and r < r0 satisfying dΩ(x0) < r, the estimate (5.2.4) holds for all
ϕ ∈ Ŵ1,∞

d (Ω) with a constant C independent of x0 and r.

The inequality (5.1.10) easily follows from Proposition 5.2.4.

Lemma 5.2.5. The inequality (5.1.10) holds for ϕ ∈ Ŵ1,∞
d (Ω) for all x0 ∈ Ω and r < r0

with a constant C independent of x0 and r.

Proof. For r < r0, combining (5.2.3) for dΩ(x0) > r with (2.4) for dΩ(x0) < r, the assertion
(5.1.10) follows. !

Proof of Proposition 5.2.4. We argue by contradiction. Suppose that the estimate (5.2.4)
were false for any choice of constants r0 and C. Then, there would exist a sequence of
functions {ϕ}∞m=1 ⊂ Ŵ1,∞

d (Ω) and a sequence of points {xm}∞m=1 ⊂ Ω satisfying dΩ(xm) <
rm ↓ 0 such that

||ϕm − (ϕm)||Lp(Ωxm ,rm ) > mrm
n/p sup

z∈Ωxm ,rm

dΩ(z)|∇ϕm(z)|, m ∈ N.

Replacing ϕm by ϕm − (ϕm) and dividing ϕm by r−n/p
m ||ϕm||Lp(Ωxm ,rm ) (still denoted by ϕm), we

observe that ϕm satisfies rm
−n/p||ϕm||Lp(Ωxm ,rm ) = 1 with (ϕm) = 0 and supz∈Ωxm ,rm

dΩ(z)|∇ϕm(z)| <
1/m. Since the points {xm}∞m=1 accumulates at the boundary ∂Ω, we may assume, by ro-
tation and translation of Ω, that xm = (0, dm) with dm = dΩ(xm), which subsequently
converges to the origin located on the boundary ∂Ω. Here, the neighborhood of the origin
is denoted by Ωloc = U(0) ∩Ω with constants α, β and C2-function h, i.e.,

Ωloc = {(x′, xn) ∈ Rn
+ | h(x′) < xn < h(x′) + β, |x′| < α}.

We rescale ϕm around the point xm by setting

φm(x) = ϕm(xm + rmx) for x ∈ Ωm,

whereΩm = {x ∈ Ω | x = (y−xm)/rm, y ∈ Ω} is the rescaled domain. Since cm = dm/rm < 1,
by taking a subsequence, we may assume limm→∞ cm = c0 ≤ 1. We then observe that the
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rescaled domain Ωm expands to a half space Rn
+,−c0
= {(x′, xn) ∈ Rn | xn > −c0}. In fact, the

neighborhood Ωloc ⊂ Ω is rescaled to the domain,

Ωm
loc =

{
(x′, xn) ∈ Rn

∣∣∣∣∣∣
1
rm

h(rmx′) − cm < xn <
1
rm

h(rmx′) +
β

rm
, |x′| < α

rm

}
,

which converges to Rn
+,−c0

by letting m → ∞. Note that constants of uniformly regularity
of ∂Ωm are uniformly bounded under this rescaling procedure. Moreover, for any constants
µ and α′, the curvilinear neighborhood of the origin Nµ(Γ) is in Ωm

loc for sufficiently large
m ≥ 1, where Γ = Γα′(0) is the neighborhood of the origin on ∂Ωm. Then, the estimates
for ϕm are inherited to the estimates for φm, i.e.,

sup
z∈Ωm

0,1

dΩm(z)|∇φm(z)| < 1/m, m ∈ N,

||φm||Lp(Ωm
0,1) = 1 with (φm) =

!

Ωm
0,1

φm = 0,

where Ωm
0,1 = B0(1) ∩ Ωm. From above bound for φm, the sequence {φm}∞m=1 subsequently

converges to a limit φ̄ locally uniformly in (Rn
+,−c0

)0,1 = Rn
+,−c0
∩ B0(1).

We now observe the compactness of the sequence {φm}∞m=1 in Lp((Rn
+,−c0

)0,1). By Remarks
5.2.2 (ii), applying Proposition 5.2.1 to Ωm, the estimate (5.2.2) with x1 = 0, r = 1 and a
fixed y ∈ Ωm

0,1 satisfying dΩm(y) ≥ δ yield

|ϕm(x)| ≤ C(| log dΩm(x)| + 1)
⎛
⎜⎜⎜⎜⎜⎝ sup

z∈Ωm
0,1

dΩm(z)|∇φm(z)|
⎞
⎟⎟⎟⎟⎟⎠ + |φm(y)| for x ∈ Ωm

0,1,

for sufficiently large m ≥ 1. Here, the constant C is independent of m ≥ 1. Since φm is
uniformly bounded from above by an Lp-integrable function inΩm

0,1, the dominated conver-
gence theorem implies that φm converges to a limit φ̄ in Lp((Rn

+,−c0
)0,1). Since ∇φm(x)→ 0

as m → ∞ for each x ∈ (Rn
+,−c0

)0,1 and ||φ̄||Lp((Rn
+,−c0

)0,1) = 1, φ̄ is a non-zero constant which
contradicts (φ̄) = 0. We reached a contradiction and the proof is now complete. !

5.3 A priori estimates for the Stokes equations

The goal of this section is to prove the a priori estimate (5.1.4) by using the inequality
(5.1.10). A key step is to establish the estimates for h and g in the procedure (ii) as
explained in the introduction. We first recall the Lp-estimates to the Stokes equations
(5.1.7) and the interpolation inequality (5.1.11). Note that the constants Cp and CI in
(5.1.7) and (5.1.11) respectively are independent of the volume of domains Ω′, Ωx0,r.
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5.3.1 Lp-estimates for localized equations
LetΩ′ be a bounded domain with C2-boundary. For the a priori estimate (5.1.4), we invoke
the Lp-estimates (5.1.7) to the resolvent Stokes equations with inhomogeneous divergence-
free condition,

λu − ∆u + ∇p = h in Ω′, (5.3.1)
div u = g in Ω′, (5.3.2)

u = 0 on ∂Ω′, (5.3.3)

for h ∈ Lp(Ω′), g ∈ W1,p(Ω′) ∩ Lp
av(Ω′), λ ∈ ∑

ϑ,0 and ϑ ∈ (π/2, π). Here, Lp
av(Ω′) denotes

the space of all average-zero functions g in Lp(Ω′), i.e.,
∫
Ω′

gdx = 0. The estimate (5.1.7)
is proved by a perturbation argument [14], [15] with the constant Cp independent of the
volume of Ω′.

Proposition 5.3.1. ([14], [15]) Let ϑ ∈ (π/2, π) and λ ∈ ∑
ϑ,0. For h ∈ Lp(Ω′) and

g ∈ W1,p(Ω′) ∩ Lp
av(Ω′), there exists a unique solution of (5.3.1)–(5.3.3) satisfying the

estimates (5.1.7) with the constant Cp, independent of the volume of Ω′ and depending on
ϑ, p, n and the C2-regularity of ∂Ω′.

We estimate the L∞-norms of a solution up to first derivatives via the Sobolev em-
beddings and the Lp-estimates (5.1.7) for p > n. In order to estimate the L∞-norms of a
solution, we apply the interpolation inequality (5.1.11) [24, Chapter 3. Lemma 3.1.4] in
Ωx0,r = Bx0(r) ∩ Ω for x0 ∈ Ω̄ and r < r0 with a constant r0. In what follows, we fix the
constant r0 by taking the same constant r0 given by Lemma 5.2.5. The constant CI is also
independent of the radius r.

5.3.2 Estimates in the localization procedure
We prepare the estimates for h and g in the procedure (ii). The estimate for |λ|||g||W−1,p

0
is

different from that of ||h||Lp . In order to estimate |λ|||g||W−1,p
0

, we use the uniformly local
Lp-norm bound for ∇q besides the sup-bound of ∇v as in (5.3.8). After establishing these
estimates, we will put the procedures (i)–(iii) together in the next subsection.

Let Ω be a uniformly C2-domain. Let θ be a smooth cutoff function satisfying θ ≡ 1 in
[0, 1/2] and θ ≡ 0 in [1,∞). For x0 ∈ Ω and r > 0 we set θ0(x) = θ(|x − x0|/(η + 1)r) with
parameters η ≥ 1 and observe that θ0 ≡ 1 in Bx0(r) and θ0 ≡ 0 in Bx0((η + 1)r)c. The cutoff
function θ0 is uniformly bounded by a constant K, i.e.,

||θ0||∞ + (η + 1)r||∇θ0||∞ + (η + 1)2r2||∇2θ0||∞ ≤ K, η ≥ 1 (5.3.4)

Let (v,∇q) ∈ W2,p
loc (Ω̄)×Lp

loc(Ω̄) be a solution of (5.1.1)–(5.1.3) for f ∈ L∞σ (Ω) and λ ∈ Σϑ,0.
We localize a solution (v,∇q) in a domain Ω′ = Ωx0,(η+1)r by setting u = vθ0 and p = q̂θ0
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with q̂ = q − qc and a constant qc. We then observe that (u,∇p) solves the localized
equation (5.3.1)–(5.3.3) in the domain Ω′ with h and g given by (5.1.8). We shall show the
following estimates for h and g,

||∇g||Lp(Ω′) ≤ C1rn/p(η + 1)−(1−n/p)
(
r−1||∇v||L∞(Ω) + r−2||v||L∞(Ω)

)
, (5.3.5)

||h||Lp(Ω′) ≤ C2rn/p
(
(η + 1)n/p|| f ||L∞(Ω)

+ (η + 1)−(1−n/p)
(
r−1||∇v||L∞(Ω) + r−2||v||L∞(Ω)

))
, (5.3.6)

|λ|||g||W−1,p
0 (Ω′) ≤ C3rn/p

(
(η + 1)n/p|| f ||L∞(Ω)

+ (η + 1)−(1−2n/p)
(
r−1||∇v||L∞(Ω) + r−n/p sup

z∈Ω
||∇q||Lp(Ωz,r)

))
, (5.3.7)

with constants C1,C2 and C3 independent of r and η ≥ 1. For the estimates of the terms of
f , v and ∇v, we use the estimates

|| f θ0||Lp(Ω′) ≤ KC1/p
n rn/p(η + 1)n/p|| f ||L∞(Ω), (5.3.8)

||∇v∇θ0||Lp(Ω′) ≤ KC1/p
n rn/p(η + 1)−(1−n/p)r−1||∇v||L∞(Ω), (5.3.9)

||v∇2θ0||Lp(Ω′) ≤ KC1/p
n rn/p(η + 1)−(1−n/p)r−2||v||L∞(Ω), (5.3.10)

for all r > 0 and η ≥ 1, where the constant Cn denotes the volume of the n-dimensional
unit ball. Since ∇g = ∇v∇θ0 + v∇2θ0 does not contain the pressure, the estimate (5.3.5)
easily follows from the estimates (5.3.9) and (5.3.10).

For the estimates (5.3.6) and (5.3.7), we apply the inequality (5.1.10). We choose a
constant qc by the mean value of q in Ωx0,(η+2)r, i.e.,

qc =

!

Ωx0 ,(η+2)r

q(x)dx. (5.3.11)

We then observe that the inequality (5.1.10) implies the estimate

||q̂||Lp(Ωx0 ,(η+2)r) ≤ Crn/p(η + 2)n/p||∇q||L∞d (Ω) (5.3.12)

for r > 0 and η ≥ 1 satisfying (η + 2)r ≤ r0, where q̂ = q − qc.
In order to estimate (5.3.7), we estimate the L∞-norm of q̂ on Ω′ since by using the

equation λv = f + ∆v − ∇q we reduce (5.3.7) to the estimate of the boundary value of q̂
on ∂Ω′. This is the reason why we take qc by (5.3.11). We apply the inequality (5.1.11) in
Ωx1,r ⊂ Ωx0,(η+2)r for x1 ∈ Ω′ and r > 0 with p > n to estimate

||q̂||L∞(Ωx1 ,r) ≤ CIr−n/p
(
||q̂||Lp(Ωx1 ,r) + r||∇q||Lp(Ωx1 ,r)

)

≤ CIr−n/p
(
||q̂||Lp(Ωx0 ,(η+2)r) + r sup

z∈Ω
||∇q||Lp(Ωz,r)

)
. (5.3.13)
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Combining the estimate (5.3.13) with (5.3.12) and taking a supremum for x1 ∈ Ω′, we
have

||q̂||L∞(Ω′) ≤ C
(
(η + 2)n/p||∇q||L∞d (Ω) + r1−n/p sup

z∈Ω
||∇q||Lp(Ωz,r)

)
. (5.3.14)

We now invoke the strictly admissibility of a domain Ω to estimate the norm ||∇q||L∞d (Ω) by
the sup-norm of ∇v in Ω via (5.1.5).

Proposition 5.3.2. Let Ω be a uniformly C2-domain. Assume that Ω is strictly admissible.
Then, the estimate

||q̂||Lp(Ω′) ≤ C4rn/p(η + 2)n/p||∇v||L∞(Ω) (5.3.15)

holds for all r > 0 and η ≥ 1 satisfying (η + 2)r ≤ r0 and p ∈ [1,∞). If in addition p > n,
then the estimate

||q̂||L∞(Ω′) ≤ C5

(
(η + 2)n/p||∇v||L∞(Ω) + r1−n/p sup

z∈Ω
||∇q||Lp(Ωz,r)

)
(5.3.16)

holds. The constants C4 and C5 are independent of r and η.

Proof. By (5.1.5), (5.3.12) and (5.3.14), the assertion follows. !

By using the estimates (5.3.15) and (5.3.16), we obtain the estimates (5.3.6) and (5.3.7).

Lemma 5.3.3. LetΩ be a strictly admissible, uniformly C2-domain. Let (v,∇q) ∈ W2,p
loc (Ω̄)×

(Lp
loc(Ω̄) ∩ L∞d (Ω)) be a solution of (5.1.1)–(5.1.3) for f ∈ L∞σ (Ω) and λ ∈ ∑

ϑ,0 with p > n.
Then, the estimates (5.3.5)–(5.3.7) hold for Ω′ = Bx0((η + 1)r) ∩Ω with x0 ∈ Ω, r > 0 and
η ≥ 1 satisfying (η + 2)r ≤ r0 with the constants C1, C2 and C3 independent of x0, r and η.

Proof. As mentioned before, (5.3.5) follows from (5.3.9) and (5.3.10). The estimate
(5.3.6) follows from the estimates (5.3.8)–(5.3.10) and (5.3.15). We shall show the es-
timate (5.3.7). By using the equation λg = λv · ∇θ0 = ( f + ∆v − ∇q) · ∇θ0, we estimate

|λ|||g||W−1,p
0 (Ω′) ≤ || f · ∇θ0||W−1,p

0 (Ω′) + ||∆v · ∇θ0||W−1,p
0 (Ω′) + ||∇q · ∇θ0||W−1,p

0 (Ω′).

Since || f · ∇θ0||W−1,p
0 (Ω′) = || f θ0||Lp(Ω′) for f ∈ L∞σ (Ω), it suffices to show the estimates

||∆v · ∇θ0||W−1,p
0 (Ω′) ≤ C6rn/p(η + 1)−(1−n/p)r−1||∇v||L∞(Ω), (5.3.17)

||∇q · ∇θ0||W−1,p
0 (Ω′) ≤ C7rn/p(η + 1)−(1−2n/p)

(
r−1||∇v||L∞(Ω) + r−n/p sup

z∈Ω
||∇q||Lp(Ωz,r)

)
. (5.3.18)

We first show (5.3.17). Take ϕ ∈ W1,p′(Ω′) satisfying ||ϕ||W1,p′ (Ω′) ≤ 1. By using div v = 0,
integration by parts yields that

n∑

i, j=1

∫

Ω′
∂2

jv
i∂iθ0ϕdx =

n∑

i, j=1

∫

Ω′
(∂ jvi − ∂iv j)∂iθ0∂iϕdx −

∫

∂Ω′
(∂ jvi − ∂iv j)∂iθ0ϕni

ΩdHn−1(x).
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We estimate the second term in the right-hand side by the W1,1-norm of ϕ in Ω′ [10, 5.5
Theorem 1.1] to estimate

||ϕ||L1(∂Ω) ≤ CT ||ϕ||W1,1(Ω′) ≤ 2CT |Ω′|1/p, (5.3.19)

with the constant CT depending on the C1-regularity of the boundary ∂Ω, but independent
of |Ω′|, the volume of Ω′. We thus obtain

∣∣∣∣∣

∫

Ω′
∂2

jv
i∂iθ0ϕdx

∣∣∣∣∣ ≤ (1 + 2CT )||(∂ jvi − ∂iv j)∂ jθ0||L∞(Ω′)|Ω′|1/p

≤ 2(1 + 2CT )KCn
1/prn/p(η + 1)−(1−n/p)r−1||∇v||L∞(Ω).

Thus, the estimate (5.3.17) holds with the constant C6 independent of r and η. It remains
to show the estimate (5.3.18). Since ∇q = ∇q̂, integration by parts yields that

∫

Ω′
∇q · ∇θ0ϕdx = −

∫

Ω′
q̂(∆θ0ϕ + ∇θ0 · ∇ϕ)dx +

∫

∂Ω′
q̂ϕ∇θ0 · nΩ′dHn−1(x)

= I + II + III.

Combining (5.3.4), (5.3.19) with (5.3.16), we obtain

II + III ≤ (1 + 2CT )||q̂∇θ0||L∞(Ω′)|Ω′|1/p

≤ (1 + 2CT )KCn
1/prn/p(η + 1)−(1−n/p)r−1||q̂||L∞(Ω′)

≤ Crn/p(η + 1)−(1−2n/p)
(
r−1||∇v||L∞(Ω) + r−n/p sup

z∈Ω
||∇q||Lp(Ωz,r)

)
,

with the constant C depending on CT ,K,Cn, p,C4 and C5, but independent of r and η. We
complete the proof by showing the estimate for I. Applying the Hölder inequality, for
s, s′ ∈ (1,∞) with 1/s + 1/s′ = 1, we have

I ≤ K(η + 1)−2r−2||ϕ||Ls(Ω′)||q̂||Ls′ (Ω′).

Since p > n, the conjugate exponent p′ is strictly smaller than n/(n − 1) for n ≥ 2. By
setting 1/s = 1/p′ + 1/n, we apply the Sobolev inequality [10, 5.6 Theorem 2] to estimate
||ϕ||Ls(Ω′) ≤ CS ||ϕ||W1,p′ (Ω′) ≤ CS with the constant Cs independent of |Ω′|. Applying the
estimate (5.3.15) to q̂ yields

I ≤ Crn/s′−2(η + 2)n/s′−2||∇v||L∞(Ω)

≤ Crn/p(η + 2)−(1−n/p)r−1||∇v||L∞(Ω),

since 1/s′ = 1 − 1/s = 1/p + 1/n. The constant C is independent of r and η. The proof is
now complete. !
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Remark 5.3.4. From the estimate (5.3.7), we observe that the exponent −(1 − 2n/p) of
(η + 1) in front of the term (r−1||∇v||L∞(Ω) + r−n/p supz∈Ω ||∇q||Lp(Ωz,r)) is negative provided
that p > 2n. We thus first prove the a priori estimate (5.1.4) for p > 2n. Once we obtain
the estimate |λ|||v||L∞(Ω) ≤ C|| f ||L∞(Ω), it is easy to replace the estimate (5.3.7) to

|λ|||g||W−1,p
0 (Ω′) ≤ CKCn

1/nrn/p(η + 1)n/p|| f ||L∞(Ω)

for p > n since

|λ|||v · ∇θ0||W−1,p
0 (Ω′) = |λ|||vθ0||Lp(Ω)

≤ C||θ0||Lp(Ω′)|| f ||L∞(Ω)

≤ CKCn
1/prn/p(η + 1)n/p|| f ||L∞(Ω).

5.3.3 Interpolation
We now prove the a priori estimate (5.1.4) for p > n. The size of the parameters η and
the constant δ are determined only through the constants Cp,CI and C1–C3. Although we
eventually obtain the estimate (5.1.12) for all p > n, we firstly prove the case p > 2n
as observed by Remark 5.3.4. The case p > 2n is enough for analyticity, but for the
completeness, we prove the estimate (5.1.4) for all p > n.

Proof of Theorem 5.1.1. We set δ = δη = (η + 2)2/r0
2 and now take r = 1/|λ|1/2 for

λ ∈ ∑
ϑ,δ. We then observe that r = 1/|λ|1/2 and η ≥ 1 automatically satisfy r(η + 2) ≤ r0

for λ ∈ Σϑ,δ. We may assume that the boundary of Ω′ = Bx0((η+1)r)∩Ω is C2 because the
localized equations (5.3.1)–(5.3.3) can be regarded as the equation in a subdomainΩ′′ ofΩ
by taking Ω′′ with C2-boundary so that Ω′ ⊂ Ω′′ and Ω′′ preserves an order of the volume
of Ω′, i.e., |Ω′′| is bounded from above by C(η + 1)nrn with a constant C independent of
r > 0 and η ≥ 1. We first prove:

Case (I) p > 2n. By applying the Lp-estimates (5.1.7) to u = vθ0 and p = q̂θ0 in Ω′ and
combining the estimates (5.3.5)–(5.3.7) with (5.1.7), we obtain

|λ|||u||Lp(Ω′) + |λ|1/2||∇u||Lp(Ω′) + ||∇2u||Lp(Ω′) + ||∇p||Lp(Ω′)

≤ C8|λ|−n/2p
(
(η + 1)n/p|| f ||L∞(Ω) + (η + 1)−(1−2n/p)||Mp(v, q)||L∞(Ω)(λ)

)
, (5.3.20)

with the constant C8 independent of r = 1/|λ|1/2 and η ≥ 1. We next estimate the L∞-norms
of u and ∇u in Ω by interpolation. Applying the interpolation inequality (5.1.11) for ϕ = u
and ∇u implies the estimates

||u||L∞(Ωx0 ,r) ≤ CIr−n/p
(
||u||Lp(Ωx0 ,r) + r||∇u||Lp(Ωx0 ,r)

)
,

||∇u||L∞(Ωx0 ,r) ≤ CIr−n/p
(
||∇u||Lp(Ωx0 ,r

) + r||∇2u||Lp(Ωx0 ,r)

)
.
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Summing up these norms together with |λ|n/2p||∇2u||Lp(Ωx0 ,r) and |λ|n/2p||∇p||Lp(Ωx0 ,r), we have

Mp(u, p)(x0, λ)

≤ C9r−n/p
(
|λ|||u||Lp(Ωx0 ,r) + |λ|1/2||∇u||Lp(Ωx0 ,r) + ||∇2u||Lp(Ωx0 ,r) + ||∇p||Lp(Ωx0 ,r)

)
, (5.3.21)

with the constant C9 independent of r and η ≥ 1. Since (u,∇p) agrees with (v,∇q) in Ωx0,r,
combining (5.3.20) with (5.3.21) yields

Mp(v, q)(x0, λ) ≤ C10

(
(η + 1)n/p|| f ||L∞(Ω) + (η + 1)−(1−2n/p)||Mp(v, q)||L∞(Ω)(λ)

)
, (5.3.22)

with C10 = C8C9. By taking a supremum for x0 ∈ Ω and letting η ≥ 1 large so that
C10(η + 1)−(1−2n/p) < 1/2, we obtain (5.1.4) with p > 2n.

We shall complete the proof by showing the uniformly local Lp-bound for second
derivatives of (v, q) for all p > n.

Case (II) p > n. Since |λ|||g||W−1, p̃
0

is bounded for p̃ > 2n, we may assume (v,∇q) ∈
W2,p̃

loc (Ω̄) × Lp̃
loc(Ω̄) with p̃ > 2n. By using |λ|||v||L∞(Ω) ≤ C|| f ||L∞(Ω) for λ ∈ Σϑ,δ with δ = δ p̃,

we replace the estimate (5.3.7) to

|λ|||g||W−1,p
0 (Ω′) ≤ CKCn

1/prn/p(η + 1)n/p|| f ||L∞(Ω)

by Remark 5.3.4. Then, we are able to replace the estimate (5.3.22) to

||Mp(v, q)||L∞(Ω)(λ) ≤ C11

(
(η + 1)n/p|| f ||L∞(Ω) + (η + 1)−(1−n/p)||Mp(v, q)||L∞(Ω)(λ)

)
.

Letting η ≥ 1 large so that C11(η + 1)−(1−n/p) < 1/2, we obtain (5.1.4) for all p > n. The
proof is now complete.
Remark 5.3.5. (Robin boundary condition) Concerning the Robin boundary condition, we
replace the Dirichlet boundary condition for the localized equations (5.3.3) to the inhomo-
geneous boundary condition with a tangential vector field k,

B(u) = k, u · nΩ′ = 0 on ∂Ω′.

Instead of the estimate (5.1.7), we apply the Lp-estiamte of the form,

|λ|||u||Lp(Ω′) + |λ|1/2||∇u||Lp(Ω′) + ||∇2u||Lp(Ω′) + ||∇p||Lp(Ω′)

≤ C(||h||Lp(Ω′) + ||∇g||Lp(Ω′) + |λ|||g||W−1,p
0 (Ω′) + |λ|1/2||k||Lp(Ω′) + ||∇k||Lp(Ω′)),

where k is identified with its arbitrary extension to Ω′. Since k = vtan∂θ0/∂nΩ′ for u = vθ0

and p = q̂θ0, we observe that the norms of k in the right-hand side are estimated by the
same way with ||∇g||Lp where g = v ·∇θ0. The Lp-estimates for the Robin boundary condi-
tion is proved by [32] for bounded and exterior domains by generalizing the perturbation
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argument to the Dirichlet boundary condition [15]. We thus observe that the constant C is
also independent of the volume Ω′. After proving the a priori estimate (5.1.4) for f ∈ L∞σ
subject to the Robin boundary condition, we verify the existence of solutions of (5.1.1)
and (5.1.2). In particular, v ∈ L∞σ (not in C0,σ.) Then, we are able to define the Stokes
operator A = AR in L∞σ in the same way as we did for the Dirichlet boundary condition.
Our observations may be summarized as following:

Theorem 5.3.6. Assume that Ω is a bounded or an exterior domain with C3-boundary in
Rn. Then, the Stokes operator A = AR subject to the Robin boundary condition generates
an analytic semigroup on L∞σ (Ω) of angle π/2.



Bibliography

[1] K. Abe, Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions,
Acta Math., to appear

[2] K. Abe, Y. Giga, The L∞-Stokes semigroup in exterior domains, J. Evol. Equ., to
appear

[3] K. Abe, Y. Giga, M. Hieber, Stokes resolvent estimates in spaces of bounded func-
tions, Hokkaido University Preprint Series in Mathematics, no.1022 (2012)

[4] T. Abe, Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer,
J. Math. Soc. Japan, 55 (2003), 469–497.
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