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Preface

The propose of this thesis is to study the Stokes semigroup on spaces of bounded functions.
It is well known that the solution operator of the linear Stokes equations, called the Stokes
semigroup, is an analytic semigroup on L"-solenoidal space, r € (1, o0), for various kinds
of domains including bounded domains with smooth boundaries [19], [7]. However, it had
been a long-standing open problem whether or not the Stokes semigroup is an analytic
semigroup on L*-type spaces even for smoothly bounded domains. For a half space,
the Stokes semigroup is an analytic semigroup on L™-type spaces since explicit solution
formulas are available [5], [20], [13]. It is the aim of the thesis to give an affirmative
answer to this problem for bounded domains, and moreover, for a large class of domains
including exterior domains and perturbed half spaces based on works [1], [2], [3].

For the Laplace operator or general elliptic operators, it is well known that the corre-
sponding semigroup is analytic on L*-type spaces. K. Masuda was the first to prove the
analyticity of the semigroup associated to general elliptic operators on a space of contin-
uous functions in the whole space (including the case of higher orders) [14], [15], [16].
This result was then extended by H. B. Stewart to the case for the Dirichlet problem [21]
and more general boundary conditions [22]. We refer to a book by A. Lunardi [12, Chap-
ter 3] for this Masuda-Stewart method which applies to many other situations. However,
it seems that their localization argument does not directly apply to the Stokes equations
because of the presence of pressure.

In the sequel, we introduce a new a priori estimate for pressure in terms of velocity
on L™ which plays a key role for the analyticity of the Stokes semigroup on L*. The new
pressure estimate presented is available for merely bounded velocity while L"-pressure
bounds through the Helmholtz projection do not hold for r = co. The pressure estimate on
L™ is a key in proving an a priori L™ -estimate for solutions of the Stokes equations, which
in particular implies that the Stokes semigroup is an analytic semigroup on L.

The thesis is consist of 5 chapters. From Chapter 1 to Chapter 4, we prove an a priori
L*-estimate for solutions of the non-stationary Stokes equations by a contradiction argu-
ment. Furthermore, in Chapter 5, we give a direct proof for the analyticity of the Stokes
semigroup on L™ by a resolvent approach. We establish a corresponding resolvent esti-
mate directly by the Maduda-Stewart technique. The former is the original proof based on
a heuristic observation which implies a stronger estimate for higher derivatives than that
of the resolvent. The latter is rather involved, but we are able to prove the maximum angle
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of the analytic semigroup on L* which does not follow from a contradiction argument.

From Chapter 1 to Chapter 3, we study the a priori L*-estimate for solutions (v, g) of
the non-stationary Stokes equations (subject to the Dirichlet boundary condition) in the
domain Q,

Sup [N, @) ) < Cllvolli=con, (0.1.1)

0<t<Ty

where v denotes the initial velocity and N(v, g)(x, t) denotes the the scale invariant norm
for solutions (v, g) up to second orders,

N, g)(x, ) = [v(x, O] + 12| Vv, )] + | V2(x, )]+t | + 1| Va(x, ). (0.1.2)

The a priori estimate (0.1.1) implies that the Stokes semigroup is extendable to a Cy-
analytic semigroup on the continuous solenoidal space Cy,(£2). We prove the a priori
L>-estimate (0.1.1) by a blow-up argument. A blow-up argument reduces the proof for
the a priori L”-estimate (0.1.1) to the “compactness” of a blow-up sequence and to the
“uniqueness” of a blow-up limit. By rescaling around a blow-up point, a limit problem is
either the whole space or a half space. If the problem is the heat equation, it is easy to re-
alize this argument. However, for the Stokes equations, both compactness and uniqueness
are highly non-trivial problems because of the presence of pressure.

A blow-up argument was first introduced by E. De Giorgi [4] to study regularity of a
minimal surface. B. Gidas and J. Spruck [6] adjusted a blow-up argument to derive an a
priori bound for solutions of a semilinear elliptic problem. Y. Giga [8] applied it to the
semilinear parabolic problem. The method has been further developed in recent years to
obtain several a priori bounds, e.g., [18], [17]. However, it is quite recent to apply it to the
Navier—Stokes equations [11], [9].

In Chapter 1, we study the uniqueness of the Stokes equations in a half space, which
is used later in order to conclude that a blow-up limit is trivial. The uniqueness of the
Stokes equations is well known for decaying velocity at infinity in spatial variables, but
without assuming such a decay condition, the uniqueness results is less known. The L™-
type uniqueness result was proved by V. A. Solonnikov [20], where a decay condition
of pressure gradient to the normal direction is assumed. We give a short proof for his
uniqueness result by using the L!-estimate for spatial derivatives of the Stokes semigroup.

In order to solve both compactness of a blow-up sequence and uniqueness of a blow-up
limit, a key is an estimate for pressure in terms of velocity called the harmonic-pressure
gradient estimate,

sup do(0)|Vg(x, 0] < Col[ W) o 50, (0.1.3)

where dq(x) denotes the distance from x € Q to the boundary 0Q2 and W(v) = —(Vv —
Viv)ng. When n = 3, W(v) is nothing but the tangential component of vorticity, i.e.,
—curl v X ng. Here, ng denotes the unit outward normal vector field on 9Q2. The harmonic-
pressure gradient estimate (0.1.3) is a special case of an estimate for solutions of the homo-
geneous Neumann problem. A key observation is that the Neumann data of the pressure
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q is transformed into the surface divergence of vorticity, i.e., Av - ng = divgg W(v). So
the estimate (0.1.3) follows from an a priori estimate for solutions of the homogeneous
Neumann problem:

Ag =01in Q, 94 = divgoW on 0Q. (0.1.4)

ong

The estimate (0.1.3) may not hold for general domains, so we call Q strictly admissible
if the a priori estimate (0.1.3) holds for the Neumann problem (0.1.4). Of course, a half
space is strictly admissible. In Chapter 2, we give typical examples of strictly admissible
domains: bounded domains, exterior domains and perturbed half spaces by showing the
a priori estimate (0.1.3) by a blow-up argument. Recently, it turned out that the estimate
(0.1.3) was also found by C. E. Kenig, F. Lin, and Z. Shen [10], independently of the
works [1], [2]. Although they directly proved the estimate (0.1.3) for bounded domains by
estimating the Green function, exterior domains and perturbed half spaces are not included
there. Our proof by a blow-up argument is based on the uniqueness for the Neumann
problem (0.1.4) and applicable to prove the estimate (0.1.3) without appealing to the Green
function.

In Chapter 3, we establish the local Holder estimates for the Stokes equations by using
the harmonic-pressure gradient estimate (0.1.3), which is used to get a necessary compact-
ness of a blow-up sequence for the Stokes equations. Using the results proved in Chapters
1 and 2, we prove the a priori L*-estimate (0.1.1) by a blow-up argument.

Chapter 4 is the goal. We extend the Stokes semigroup to the non-decaying type
solenoidal space L. Note that for non-decaying initial data, the existence of solutions
is non-trivial. We pointwise approximate elements of L by compactly supported smooth
solenoidal vector fields and extend the Stokes semigroup to a non-Cy-analytic semigroup
on L together with the L*-estimate (0.1.1).

Chapter 5 is devoted to the resolvent approach. We establish an a priori L*-estimate for
the resolvent Stokes equations corresponding to (0.1.1) by the Masuda-Stewart technique,
which in particular implies that the maximum angle of the analytic semigroup on L is
n/2. Furthermore, the resolvent approach applies to different boundary conditions, e.g.,
to the Robin-type boundary condition, where a partial slip of velocity on the boundary is
taken into account.

I would like to express my deep gratitude to Professor Yoshikazu Giga for valuable
advices and constant encouragements. I am also grateful to Professor Dr. Matthias Hieber
for stimulating discussions, especially, on Chapter 5.

I have been supported by the JSPS Fellow during the writing of this thesis under the
grant No. 24-8019.

Ken Abe
June, 2013
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Chapter 1

Uniqueness in a half space

In this chapter, we study the uniqueness of the Stokes equations in a half space in a
space of bounded functions, which will be used later in Chapter 3 in order to prove the
a priori L*-estimate for the non-stationary Stokes equations. The uniqueness of the
Stokes equations is well known for decaying velocity at infinity in spatial variables,
e.g., v(-, 1) € LP, p € (1,0). However, for merely bounded velocity, the uniqueness
results is less known even for a half space. We prove the uniqueness of the Stokes
equations for bounded velocity with assuming the decay condition for the tangential
component of the pressure gradient, i.e., Vizng — 0 as x, — oo. Such the decay
condition is necessary since there exist non-trivial Poiseuille flow-type solutions. The
proof is by a duality argument based on the L'-estimate for spatial derivatives of the
Stokes semigroup.

1.1 Introduction

We study the uniqueness of the Stokes equations in a half space R}, n > 2:

v—Av+Vg=0 in R.x(0,T), (1.1.1)
divv=0 in R} x(0,7), (1.1.2)

v=0 on IR} x(0,T), (1.1.3)

v(x,0) =vo on R} x{r=0}. (1.1.4)

The uniqueness of the Stokes equations (1.1.1)—(1.1.4) is well known for decaying velocity
at the infinity in spatial variables, e.g., v(-,¢) € L? for p € (1,00). However, without
assuming such the decay condition, the uniqueness results is less known even for a half
space. The L*-type uniqueness was proved by V. A. Solonnikov [7, Theorem 1.1] for
continuous velocity at # = 0. We give a short proof for his uniqueness result based on [1].
The goal of this chapter is to prove:
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Theorem 1.1.1. Let v € C>'(R” x (0,T]) and Vg € C(R" x (0,T)) satisfy the Stokes
equations (1.1.1)—(1.1.3). Assume that

sup |Vllzemn(f) < oo, (1.1.5)
0<t<T
and Vv, Vv, v,, Vq are bounded in R’} X [6, T] for each 6 > 0. Assume that v — 0 weakly-x
on L*(R?}) as t | 0. Assume in addition that

Viang(x,t) - 0 as x, — oo, (1.1.6)
for x' € R, 1€ (0,T). Then, v =0 and Vg=0.

Remark 1.1.2. If we drop the condition (1.1.6), the statement of Theorem 1.1.1 does not
hold since there exists a Poiseuille flow-type solution, which is a non-trivial solution sat-
isfying the Stokes (Navier—Stokes) equations (1.1.1)—(1.1.4). We say a solution (v, Vg) is
Poiseuille flow-type in the sense that there is a function a(f) = (au,(?), 0) such that (v, Vg)
is represented by

V(Xn, 1) = (Vaan(Xn, 1), 0), V(1) = a(?), (1.1.7)

where v, (x,, ) and aq,(f) respectively denote the tangential component of v(x,, ) and
a(t). Note that each component of velocity vi(x,, f) solves the heat equation in a half line,

OV (X, 1) = 0% V' (3, 1) = —a' (1), (1.1.8)

and satisfies the Dirichlet and initial conditions v' = 0 on {x, = 0} and {t = 0}. The assump-
tion (1.1.6) says that a Poiseuille flow-type solution must be zero. In fact, the condition
(1.1.6) implies a(¢) = 0 so v = 0 follows from the uniqueness of the heat equation.

Let us sketch the proof of Theorem 1.1.1. We apply a duality argument to the tangential
derivatives of the velocity dy,,v instead of v, where dy,, indiscriminately denotes tangential
derivatives d;v for j € {1,--- ,n — 1}. We prove di,nv = 0 by invoking the L'-estimate of
the Stokes semigroup,

IVS @)vollp1 ey < C/l1/2||Vo||L1(Rz) forr >0, (1.1.9)

while the solution S (£)v, itself does not belong to L!(R") in general, i.e., ||S (/)vol| LRy %
Clvollirey [3], [2], [5]. Once we have diyv = 0, ie., (91-\/" =0forie{l,---,n}, j€
{1,--- ,n—1}, by (1.1.2), it follows that

so V" = 0 and dq/dx, = 0 by (1.1.1) and (1.1.3). Thus, (v, Vg) is a Poiseuille flow-type
solution (1.1.7). We are able to prove 0,,,v = 0 without using the condition (1.1.6). On the
contrary, this means the following:
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Lemma 1.1.3. Under the assumptions of Theorem 1.1.1 except (1.1.6), a non-trivial solu-
tion (v, Vq) must be a Poiseuille flow-type solution (1.1.7).

Proof of Theorem 1.1.1. By Lemma 1.1.3 and (1.1.6), it follows that (v, Vg) is a Poiseuille
flow-type solution (1.1.7) for a(f) = 0. Then, each component v'(x,, ) solves the heat
equation in a half line and v/(x,,#) — 0 weakly-+ on L*(0,00) as ¢ | 0. By multiplying
¢ € CZ'([0, 00) x [0, T)) satisfying ¢ = 0 on {x, = 0} x (0, T) to vi(x,, 7) and integrating by
parts, it follows that

T 00
f f V s (P Xy 1) + B2 (X, 1))dx,dt = 0.
0 0

Then, by a duality argument to the heat equation, v' = 0 follows. O

This chapter is organized as follows. In Section 2, we prove Lemma 1.1.3 by a duality
argument. In Section 3, we estimate L'-norms for solutions of the dual problem based on
the fundamental solutions to (1.1.1)—(1.1.4).

1.2 Duality arguments to tangential derivatives of veloc-
ity

We prove Lemma 1.1.3 by applying a duality argument to d,,v. We choose test functions
by compactly supported solenoidal vector fields in order to estimate L'-norms of solutions
for the dual problem via the L!-estimate of the Stokes semigroup (1.1.9). To state a result,
let CZ,(R?) be the space of all smooth solenoidal vector fields with compact support in
R!. Let C7 (R} x (0,T)) be the space of all functions f € CZ(R] X (0,T)) such that
fG, 0 e CZ (R}) foreach t € (0, T). The goal of this section is to prove:

Nea

Proposition 1.2.1. Under the assumption of Theorem 1.1.1 except (1.1.6), we have

T
f f v(x, 1) - Oanf(x,t)dxdt = 0 (1.2.1)
0 Jr

+

forall f € CZ (R} X (0,7)).

Remark 1.2.2. Actually, we are able to prove (1.2.1) for all functions f € C:°(R}; x (0, T)).

In fact, in the original proof [7], 8iv = 0 is directly proved by estimating L'-norms of
solutions for the dual problem:

—0ip — Ap + Yt = POy f inR” x(0,T),

and div ¢ = 0 in R’} x (0, T), with the Dirichlet and terminal conditions for ¢. Although
we restrict test functions to f € CZ (R} X (0,7)), our proof is rather simpler. Since
Patanf = atanf and

S (Z)atanf = atanS (t)f’ (122)
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for f € CZ(RY), S(N0unf € L'(R%) directly follows from the L'-estimate (1.1.9). This
implies an L‘ -bound for solutions of the dual problem.

Our restriction f € CZ (R’ x (0,7)) in (1.2.1) is sufficient in order to show 0,,v = 0.
In fact, we have the followmg

Proposition 1.2.3. Let v(-,1) € C2(R ), 1 € (0,T), satisfy (1.2.1) for all f € CZ, (R} X
(0,7)). Assume that Vv(-,t) is bounded in R’}, divv = 0in R’ and v = 0 on dR} for each
t€(0,T). Then, 0,,,v = 0.

Proof. By (1.2.1) and the de Rham’s theory [4], [6, Theorem 1.1], there exists the potential
functions @/ such that .
0y=Vd/ forjefl,---,n-1}.

Since v € C2(R) satisfies div v = 0 in R” and v = 0 on dR”, ®/ € C*(R") satisfies
A®’ = 0in R” and V®/ = 0 on dR". In particular, d®’/dx, = 0 on IR".
Let @’ be the even extension of ®/ to R”, i.e.,

. ®/(x',x,) forx e R™! x,>0,
O/(x', x,) = .

®/(x',—x,) forx e R"! x,<0.
Then, &/ € CZ(R ) and A®/ = 0 in R” by ®//8x, = 0 on IR". Since d;v is bounded
in R?, V&’ is bounded in R”. We apply the Liouville theorem and conclude that V&’ is
constant. Since V®/ = 0 on dR", V& is zero. Thus, d,v = 0. O

Proof of Proposition 1.2.1. We prove (1.2.1) by a duality argument. The proof reduces to
L'-estimates for solutions of the dual problem:

—0ip — Ap + V1 = 0nf InREX(0,7), (1.2.3)
dive =0 in R’ x (0,7), (1.2.4)

=0 on R’ x (0, 7), (1.2.5)

=0 on R} x{r=T}. (1.2.6)

For f € C, (R x (0, T)), set ¢(-,1) = ¢(-, T — 1) and Va(-, 1) = Vs(-, T — 1) by

w(,1) = f S(t = $)0ang(s)ds, Vs, 1) = f I(# — $)0ang(s)ds, (1.2.7)
0

0

and g(-,1) = f(-,T —t). Here, I1(¢) denotes the solution operator to the pressure gradient
for (1.1.1)—(1.1.4). Since (i, V) is a solution of the initial problem,

0y —AY +Vs =0ug inRYx(0,T),
divy =0 in R’ x (0,7),

=0 on dR’ x (0,7),

=0 on R} x {r =0},
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(¢, V) satisfies (1.2.3)—(1.2.6). By the L'-estimate (1.1.9), observe that
W e L¥(0,T; L'(R?)). (1.2.8)
Moreover, from explicit representations of S (¢) and I1(¢), (¥, Vs) satisfies
W, Vi, Vi, 04, Vs € L'(R™ x (0, T)). (1.2.9)

In fact, we apply Proposition 1.3.3 in the next section. Thus, (¢, V) is also integrable in
R’ x (0, T) up to second orders.

We now prove (1.2.1). Since Vv, V?v, v;, and Vg are bounded in R’ x[6,T) foreach o > 0
and v — 0 weakly-* as t | 0, it follows that

T T
f f V- On fdxdt = f f v (=0, — Ap + Vm)dxdt
5 JR! 5 JR!
T
= —f f Vg - pdxdt + f v(x,0) - ¢(x,0)dx
5 JR! R

= f v(x,0) - p(x,0)dx = 0 aso | 0.
R}

Thus, we have proved (1.2.1). The proof is now complete. |

1.3 L'-estimates for solutions of the dual problem

In this section, we estimate L'-norms of solutions to (1.1.1)—(1.1.4) which implies the in-
tegrability of solutions for the dual problem (1.2.3)—(1.2.6) (Proposition 1.3.3). We recall
the explicit representation for the Stokes semigroup S (7) as well as the solution operator
to pressure gradient I1(7).

1.3.1 Estimates for spatial derivatives of the Stokes semigroup

Let T'(¢) be the heat semigroup in R" and I'(x, f) be the heat kernel, i.e., T(¢#)f = I' * f and
[(x,1) = (4mr)y "2 /% We write T(t)f = (I * f})i<j<, also for the R"-valued function
f = (f)i<j<n- By the solution formula [8, p.347], the remainder term S (¢)f — T(2)f is
explicitly given by
SO-TO)f = | G(xynf(ydy, (1.3.1)
R}

with the kernel G* = (G; j) 1<i,j<n Of the form,

a [ OE
G;'kj(X, v, 0= —6ijl“(x - y*, H+41 - 5]',,)— f f —(x -2z - y*, rdz.

J n—1 (9)61
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Here, ¢;; denotes the Kronecker’s delta and y* = (y’, —y,) denotes the reflection point of
y € R’} with respect to JR’}. The function E(x) denotes the fundamental solution of the
Laplace equation, i.e., E(x) = C,/|x|® for n > 3 and E(x) = —1/2nlog|x| forn = 2
with the constant C, = (an(n — 2))~!, where a denotes the volume of n-dimensional unit
ball. Since the functions E(x) and I'(x, f) are radially symmetric, S (¢) is commutative with
tangential derivatives (1.2.2). We estimate the remainder term (7°(¢) — S(¢))f from the
pointwise estimates of the kernel G* = (G j) 1<i, j<ns 1.€.,

e_c.vnz/l

15tmal2(x,2 + fYknl2(|x — y*[2 + )t IHmD/2°

X7y

(1.3.2)
where 0 = 0i! -+ -1 0% and K| = Y_| k; for the multi-index k = (K, k,), k' = (ki -+, kny).

We estimate L'-norms for spatial derivatives of the Stokes semigroup.

Proposition 1.3.1. There exists constants C, and C, independent of t > 0 such that
VS @ fllzrwey < C1/11/2||f||L1(R1), (1.3.3)

||6)2€nS(t)f||L‘(Rﬁ) <G/t (||ax,,f||L'(Rﬁ) + sup ||f||Ll(Rn-1)(Xn)) (1.3.4)

x,>0
hold for f € CZ(R}).
Proof. It is well known that the heat semigroup satisfies the L'-estimate (1.3.3). More-
over, by integration by parts, we have |05 T(1)fll;r < C/t'2(10y, fllp1. Thus, T(2)f satis-
fies (1.3.3) and (1.3.4). We shall show the estimate (1.3.3) and (1.3.4) for the remainder
¢=(SO-TM)f, 1e.,

IVolliwe < Ca/t 2Nl fllnwe)s (1.3.5)
163, ¢llus sy < Cafr'? sup |l o1, (5 (1.3.6)

We show (1.3.5) for tangential derivatives of ¢. The normal derivative is estimated in a
similar way. By the kernel estimate (1.3.2), it follows that

If )

(lx _ y*|2 + t)(n+l)/2 Y

|Vtan¢(x’ t)l < CS f

R

with the constant Cs independent of ¢ > (. By integrating by tangential variables, we have

Cs
(X2 +1)

IVian®llzr -1y (X0, 1) < Nz ey

with C¢ = CsC7 where

dx’ C;
= 1.3.7
fRnl (o =y P + 0002 (6 + ) + 1) .
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is used. By integrating by the normal variable, we obtain (1.3.5) for V,,¢.
We next show (1.3.6). By (1.3.2), it follows that

e F ()|

L R D=y PP

162 B(x. 1) < Cy f
R

Integrating by tangential variables, we have

tl/2
102 Bl g1y (Xns 1) < Co——— |sup [l flli e (x|
x, LR A (2 + )32\, oo " R

By integrating by the normal variable, we obtain (1.3.6). The proof is now complete. O

1.3.2 Estimates for second derivatives of pressure

We next estimate second derivatives of pressure. We define the solution operator for the
pressure gradient [1(7) : f +— II(#)f = Vgq(-,t) associated to the Stokes equations (1.1.1)—
(1.1.4) by
A1 f)(x) = Vf P(x,y,1) - f(y)dy, (1.3.8)
R;

with the kernel P = (P;) <<, and

0 OE
Pi(x,t) =4(1 - 6j")_(f &' =2, x)I =Y,y 0)dZ
Ox;i\ Jrm-1 0x,

or
+EX -7, x)— @ =y, yu,0)d7 ).
Oyn

The kernel P = (P;)i<<, satisfies the pointwise estimates [8, p.346],

e_cynz/t

165080 P(x,y,1)| < C

t= x>y

tl+S+m,l/2(|x _ y*|2 + t)(n—l+|k|+|m/|)/2 . (1.3.9)

From the explicit representation of the kernel P = (P;),<j<,, we observe that the operator
I1(¢) is also commutative with tangential derivatives, i.e., [1(#)0unf = O0unll(®) f.

We shall estimate second derivatives of pressure.
Proposition 1.3.2. There exists a constant Cy independent of t > 0 such that
VL) fllp ey < Cro/t 1l e (1.3.10)

holds for f € CZ(R%).
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Proof. By (1.3.9), it follows that

IVII(H) £)(x)| < C f IfO)

: .
vy 13—y + D72

By integrating by the tangential variables and (1.3.7), it follows that

Ci
IVIL(D) f1l 2 o1 (Xn) < m”f”LI(RZ)

with Cy, = C;Cy;. By integrating by the normal variable, we obtain (1.3.10). O
Propositions 1.3.1 and 1.3.2 now imply:

Proposition 1.3.3. For g € C (R X(0,T)), the functions (4, Vs) defined by (1.2.7) satisfy
(1.2.9), i.e.,
W, Vi, VA, 0, Vs € L0, T; L' (R™)).

Proof. Since S (f) and I1(¢) are commutative with tangential derivatives, by (1.3.3) and
(1.3.10), it follows that ¥, Vi, Vr € L*(0, T; L'(R")). By (1.3.3), (1.3.4) and the equation
O = Ay — Vs + Oing, we obtain V2 and 8, € L=(0, T; L'(R")). m
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Chapter 2

Estimates for solutions of the Neumann
problem

In this chapter, we study an a priori estimate for solutions of the homogeneous
Neumann problem to get the harmonic-pressure gradient estimate for pressure of the
Stokes equations (0.1.3). The harmonic-pressure gradient estimate holds for a large
class of domains, but there is a domain where the estimate does not hold. We intro-
duce the notion of strictly admissible domain which deduces the harmonic-pressure
gradient estimate. As typical examples, we shall show that bounded domains, exterior
domains and perturbed half spaces are indeed strictly admissible.

2.1 Introduction

In this chapter, we study the homogeneous Neumann problem of the form,

oP
AP=0inQ, — =divgeW ondQ, (2.1.1)
6719

where divyq denotes the surface divergence and W denotes the tangential vector field on
0Q. We call Q strictly admissible if the a priori estimate

sup do(x)| VP()| < ColWilzoo) (2.12)
xeQ

holds for all solutions of the Neumann problem (2.1.1). (We give a rigorous definition
later in Section 2). As explained in the preface, the estimate (2.1.2) implies the harmonic-
pressure gradient estimate (0.1.3) for pressure of the Stokes equations, which plays a key
role in proving the a priori estimate (0.1.1) for solutions of the Stokes equations. A ques-
tion is what kinds of domains are strictly admissible. Of course, a half space is strictly
admissible. We prove the estimate (2.1.2) for a half space directly by estimating the Green

10
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function for the Neumann problem (2.1.1). Moreover, we shall show typical examples of
strictly admissible domains (with non-trivial boundaries):

(I) bounded domains,
(IT) exterior domains,
(IIT) perturbed half spaces (n > 3).

Here, we call Q a perturbed half space in the sense that there exists Rg > 0 such that
Q\By(Rq) = R"\By(Rg). For domains (I)~(III), we assume the boundaries of class C3.

We appeal to a blow-up argument to prove the a priori estimate (2.1.2). Let us give
a heuristic idea in proving (2.1.2) for bounded domains. To argue by contradiction, sup-
pose that there are a sequence of solutions of (2.1.1), {P,},>_,, and a sequence of points
{xm}_; € Q such that

1
< dQ(Xm)lvpm(xm)

< sup do(x)|VP,(x)| = 1, (2.1.3)
xeQ

N |

and the boundary data W,, tends to zero uniformly on Q. If a subsequence of {x,}>_,
converges to an interior point, the limit P solves the Neumann problem (2.1.1) under the
bound
sup do(x)|VP(x)| < oo. (2.1.4)
xeQ
So if the solution of this problem is unique (i.e. VP = 0), then one gets a contradiction.
Note that P,, is harmonic so compactness part is easy. If {x,,} >, converges to a boundary
point (by taking a subsequence), we rescale P, around x,, by d,, = do(x,,) to get

Q,
On(x) = Pu(xy +dyx) for xeQ, = ) - (2.1.5)

Then, the rescaled domains €2, expands to a half space and the limit Q solves the Neumann
problem (2.1.1) in a half space with an estimate inherited from (2.1.3). We prove its
uniqueness by reducing the problem to the whole space via a reflection argument. The
compactness part is easy since the distance between the origin for Q,, and the boundary
0Q),, is always one.

For general unbounded domains, this argument is difficult to apply since the sequence
{xn},_, may diverge to infinity, i.e., d, T co. However, we are able to prove the estimate
(2.1.2) for exterior domains and perturbed half spaces. If the sequence {x,}>_, diverges
to infinity, we rescale P, again by (2.1.5). When the domain is an exterior domain, the
rescaled domain €, approaches to the whole space and the boundary 0Q,, accumulates
to a point in R”. We remove a singularity of the limit Q by using a bound inherited from
(2.1.3) and conclude that the limit is trivial. When the domain is a perturbed half space,
a curved part of the boundary d€,, accumulates to a point (or diverge to infinity) and the
rescaled domain €,, approached to a half space.
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The uniqueness of the Neumann problem (2.1.1) under the bound (2.1.4) is neces-
sary condition for the strictly admissibility of the domain Q (see Remark 2.2.5 (ii)). In
fact, layer-type domains are not strictly admissible since linear functions are non-trivial
solutions for the Neumann problem (2.1.1). For instance, P = x! is a non-trivial solu-
tion for the Neumann problem (2.1.1) in a layer Q = {a < x, < b}. We conjecture that
quasi-cylindrical domains are not strictly admissible. Here, the domain Q is called quasi-
cylindrical if m|x|_,oodg(x) < oo (see [3, 4, 6.32]).

This chapter is organized as follows. In Section 2, we define strictly admissible do-
mains. In Section 3, we show that a half space is strictly admissible by using an explicit
solution formula for the Neumann problem (2.1.1). In Section 4, we prove the uniqueness
of the Neumann problem (2.1.1) for domains (I)—(III) by a duality argument. In Section
5, we prove the a priori estimate (2.1.2) for the domains (I)—(III). In Section 6, we give
extension theorems for harmonic functions which are used in proving the estimate (2.1.2)
for exterior domains and perturbed half spaces.

During the preparation of this thesis, the author was informed of the recent paper [11]
by C. E. Kenig, F. Lin and Z. Shen, where the estimate (2.1.2) is essentially proved for
a bounded domain with C'-boundary (independently of the work [1]) by estimating the
Green functions. However, the estimates (2.1.2) for exterior domains and perturbed half
spaces are not included there. Our proof by a blow-up argument is based on a uniqueness
theorem for (2.1.1) and applicable to prove (2.1.2) without appealing to the Green function.
We shall give a detailed comparison in Remark 2.5.2 (1).

2.2 Admissible and strictly admissible domain

In this section, we define the terms admissible domain and strictly admissible domain.
Since the original definition of an admissible domain involves the Helmholtz projection
operator, the harmonic-pressure gradient estimate (0.1.3) was restricted to spatially decay-
ing solutions of the Stokes equations. We define strictly admissible domains without using
the Helmholtz projection. We first define admissible domains.

Let Q be a domain in R” for n > 2 with dQ # 0. An admissible domain is defined by
the Helmholtz projection operator P = P, : L"(Q2) — L] (Q) and Q = I — P associated to
the Helmholtz decomposition,

L'(Q) =L (&G (Q) forre(l, o),

{1

Ly (Q) = CZ(Q)  and G"(Q) = {Vp e L'(Q) | p € L; (Q)}. Although this decomposition

is known to hold (see, e.g., [8, III.1]) for various domains such as bounded or exterior
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domains with smooth boundaries, in general, there is a domain with (uniformly) smooth
boundary such that the L"-Helmholtz decomposition may not hold (cf. [4], [12]).

In [6] R. Farwig, H. Kozono, and H. Sohr introduced an L" space and proved that the
Helmholtz decomposition is valid for any uniformly C?-domain for n = 3. Later, it is
generalized for arbitrary uniformly C'-domain for n > 2 [7]. We set

2 r
E,(Q):{L @QNL(Q), 2<r<c,
LXQ)+L(Q), 1<r<2,

and define f,f,(Q) and G"(Q) in a similar way. The space L"(Q) for r > 2 is equipped with
the norm || f||zq) = max(|| ]l [l f1lz2)- In order to define of an admissible domain, let
us recall the definition of a uniformly C*-domain for k > 1 (see, e.g., [16, 1.3.2]).

Definition 2.2.1. (Uniformly C*-domain) Let Q be a domain in R”, n > 2, with 0Q # 0.
Assume that there exists @, 8, K > 0 such that for each x, € 0Q, there exists C*-function h
of n — 1 variables y" such that supy /<, |6;,h(y’)| < K, V'h(0) = 0, h(0) = 0 and denote
a neighborhood of xo by U, gn(x0) = {(y/,y,) € R" |h(Y) =B <y, < h(Y") +B,1y'| < a}.
Assume that up to rotation and translation, we have

h(Y) < yu <h(Y) +B, V'l < o},

Uapn(x0) N Q = 1{(, yn)

and U, 5, (x0)NOQ = {(/, yu) [yn = ('), ly’] < a}. Then, we call Q a uniformly C*-domain
of type a,f, K. Here, 8. = c’)i'l c')i with multi-index [ = ({y,...,/,) and d,, = 9/0x; as
usual and V’ denotes the gradient in y’ € R™!,

If the solution (v, Vg) of the linear Stokes equations is defined on L’, the pressure
gradient Vq is represented by the velocity v through the Helmholtz projection operator, i.e.,
Vg = Q[Av] so the harmonic-pressure gradient estimate (0.1.3) can be viewed as an L™-
type estimate for the Helmholtz projection. In the sequel, we define a strictly admissible
domain without using the Helmholtz projection operator.

Definition 2.2.2. Let Q be a uniformly C'-domain in R”,n > 2, with 0Q # 0. We call Q
admissible if there exists r > n and a constant C = Cqo > 0 such that

sup do(x)|QIV - f1)] < Callfll=we) 2.2.1)

holds for all matrix-valued function f = (f;;)1<i j<n € C 1(Q) satisfying V-f = (221 0ifiih<i<n
e L'(Q),
trf=0 and &,f;;=20,fu (2.2.2)

fori, j,l €{l,--- ,n}, where 9; = 0/0x;.
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We define a strictly admissible domain by the a priori estimate (2.1.2) for solutions
to the Neumann problem (2.1.1). We recall the Gauss—Green formula on a surface and
understand the boundary condition in (2.1.1) in terms of an appropriate weak form.

Let Q be a domain in R", n > 2, with C!-boundary. We define the surface gradient on
0Q for a (scalar-valued) C'-function ¢ in Q by a tangential component of Vo, i.e.,

Vaoap = Vo — na(de/ong).

We also define the surface divergence on Q by divgoh = tr Vaoh for a vector-valued C!-
function h, where Vgoh = (Vaoh', -+, Vaoh™). If a support of @h is compact on 69, the
Gauss-Green formula on 9Q holds (e.g. [9], [15]):

f h - VaaedH (x) = — f (divgah + kh - no)edH" ' (x), (2.2.3)
0Q oQ

where k = k(x) denotes the mean curvature of dQ and H"~! denotes the n — 1 dimensional
Hausdorftf measure.

We define the space L, (0€2) and L7(€2). Let L*(9€2) be the space of all essentially
bounded functions on dQ with respect to H"'.The space L*(dQ) is equipped with the
norm || - ||z~@q) = |- llx.sq. The space L, (0€2) denotes the closed subspace of all tangential
vector fields on L*(0€2). We say h is tangential if 4 - ng = 0 on dQ. The space L7 (£2)
denotes the space of all locally integrable functions f such that dg f is essentially bounded

in Q. The space L7 (£2) is equipped with the norm
|fleo.a = sup da(x) |f(x)].

xeQ
Note that VP € L7 (Q) implies P € L]’OC(Q) for r € [1, 00).
Definition 2.2.3 (Weak solution). Let Q be a domain in R”, n > 2, with C!-boundary. Let
Pe L] (Q)satisfy
f PApdx = | W - VyaedH" ' (x) (2.2.4)
Q Fle}

for W e L, (0Q) and all ¢ € CZ(Q) satisfying dp/dnq = 0 on 6Q. If VP € L7 (), we call

P weak solution of (2.1.1).
We now define the term strictly admissible domain.

Definition 2.2.4 (Strictly admissible domain). Let Q be a domain in R”, n > 2, with C!-
boundary. We call Q strictly admissible if there exists a constant C = Cq > 0 such that the

a priori estimate
[VP|ewq < CollWllw.s00 (2.2.5)

holds for all weak solutions VP € L7(Q2) for W € L (0Q).

tan
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Remarks 2.2.5. (i) The constant Cq in (2.2.5) is invariant of dilation and translation of Q,
1.e., Cig+y, = Cq for 4 > 0 and xj € Q.

(i1) If Q is strictly admissible, a weak solution for (2.1.1) is unique. In fact, if VP € L7(€2)
satisfies (2.2.4) for W = 0, VP = 0 follows from (2.2.5).

A strictly admissible domain is indeed admissible.

Proposition 2.2.6. Let Q be a strictly admissible domain in R", n > 2, with uniformly
C'-boundary. Then, Q is admissible.

Proof. Let f = (f;j)1<ij<n € C'(Q) be a matrix-valued function satisfying V- f € L(Q) for
r>nand (2.2.2). Set VP = Q[V - fland W = —(f - /1) - ng. Then, W € LY (0Q) since

W-ng=- szzl(f,-j — fj,-)nézné2 = 0. We show that P satisfies (2.2.4) for W. Let ¢ € CZ(Q)
satisfy dp/0ng = 0 on Q2. By multiplying Ve to VP = Q[V - f], it follows that

fVPVQOdX: Zf@l U('),tpdx
Q i,jzl Q

The left-hand-side is — fQ PAgdx since dp/0ng = 0 on 0Q). By integration by parts, it
follows that

f d;fij0ipdx = — f [:j0,0ipdx + f fidiprpdH"™ (x)
Q Q 0Q
= f 0ifij0pdx + f fii(@ipngy = 8 jonQ)dH" (),
Q 0Q

where the symbol of summation is suppressed. By (2.2.2), the first term vanishes. Since
i fiibenly = X, fid jony, the second term is — fagz W - VaapdH" ' (x). Thus P satisfies
(2.2.4) for W = —(f — f1) - nq.

It remains to show VP € L7(€2). We shall show that VP € L'(Q) for r > n implies

VP € L7 (Q) for the harmonic function P. By the mean value formula, it follows that
VP(x) = JC VPY)AH" ' (y) for x € Qand T = do(x).
By (1)

Apply the Hélder inequality to get [VP(x)| < C,/7" SIVP||Ls) for s € (1, 00), with the
constant C, independent of 7 = dg(x). If do(x) < 1take s = r > n. If do(x) > 1, take
s = 2. Since Q is bounded on L7(Q), it follows that

IVPlooa < CAIV - fllzr@) (2.2.6)

for the constant C, depending on r. Thus, P is a weak solution of (2.1.1). If Q is strictly
admissible, (2.2.1) follows from (2.2.5). The proof is now complete. O
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2.3 Examples

In this section, we prove that a half space is strictly admissible by an explicit solution
formula for the Neumann problem (2.1.1). We then give non-trivial examples of strictly
admissible domains. The proofs for the non-trivial examples are given in the subsequent
sections.

Theorem 2.3.1. A half space is strictly admissible.

For a half space, we are able to show the estimate (2.1.2) directly by estimating the
Green function for the Neumann problem (2.1.1). To represent weak solutions for (2.1.1)
by the Green function, we first prove the uniqueness.

Lemma 2.3.2. A weak solution of (2.1.1) on R’} is unique up to an additive constant.

Proof. The proof is reduced to the whole space. Let P be a weak solution of (2.1.1) for
W = 0onR". Let P be the even extension of P to R", i.e., P(x', x,) = P(X', x,,), x, > 0 and
P(x',x,) = P(x',—x,), x, < 0. For p € C>(R"), it follows from (2.2.4) that

o0 0
f PA@dx = f f P, x,)Ap(xX', x,)dx'dx,, + f f P(X', x,)Ap(x’, x,)dx"dx,
R~ 0 R-1 —0c0 Rr-1

= f P(X)A(‘P(X,’ xn) + QQ(X,, _xn))dx,dxn
R”

+

=0.

Thus, P € L] (R") is weakly harmonic in R". Set P, = P « 1, by the radially symmetric
mollifier 7., € > 0. Then, P, € C*(R") is harmonic in R". By the mean value formula, it
follows that

P.(x) = f P.(y)YdH"'(y) forxeR",r>0.
0B(r)

By
sup |x,||[VP(x)| < oo,

xeR”

P, is uniformly bounded by |log |x,|| near dR’;. Since P, > Pae. inR"ase | 0, by
letting € | 0, we have

P(x) = JC POy)AH"'(y) ae.xeR",r>0.
0B (r)

Since 7, is radially symmetric, eventually, P, =P e C*R".
The function P(x) may increase as |x| — oo, but increasing rates are at most polynomial
orders. In fact, by integrating P from x € R’ to xp = (0,---,0, 1), it follows that

|P(x)| < Cy|x||log x,| + C, for x € RY,
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with C; = |VP|,4 and C; = |P(xp)|. Similarly, we are able to estimate P(x) for x, < 0.
Applying the Liouville theorem implies that P is a polynomial of degree two. By VP €
LY(R}), VP — 0 as x, — oco. Thus, VP = 0 follows. The proof is now complete. O

Proof of Theorem 2.3.1. For W € L (OR"), we set

tan

n—1
P(x) = Z 0, E(x — Y)W (y)dy’. (2.3.1)
i=1 YOR,
Then, it follows that
dy’

VP <C W= sr"

IVP(x)| < Cy e (P +xn2)”/2” llz=omre)
Gy

< —[|Wllz=@arr)-

n

Thus, VP € L7(RY) satisfies the estimate (2.1.2). Let ¢ € C2(R") satisfy d¢p/dx, = 0 on
OR’. By multiplying V¢ to VP and integration by parts, it follows that

- f PAgodx:Z N Wi(y)dy' fR Vo, E(x —y') - Vep(x)dx

n
+

-2 [ wienay [ G-y Vo600
oR" R

i=1

= - W) - Vorep(y')dy’,
R

since

f VE(x —y')- VO, ¢(x)dx = 0y, E(X' — y")0,,¢(x")dx’
Rl‘l

IR"

+

= (9”()0()/).

Thus, P is a weak solution of (2.1.1). By Lemma 2.3.2, weak solutions for W € L, (OR")

tan

are represented by (2.3.1). Thus, a half space is strictly admissible. O

For general domains, solution formulas for the Neumann problem (2.1.1) are not avail-
able, but we are able to prove the a priori estimate (2.2.5) for domains (I)—(III) by a blow-
up argument.

Theorem 2.3.3. The domains (I1)—(1ll) with C*-boundaries are strictly admissible.
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We prove the a priori estimate (2.1.2) by a blow-up argument later in Section 5. For
this purpose, we prove the uniqueness of the Neumann problem (2.1.1) on the domains
(D—II) in the next section. The uniqueness of weak solutions is important in order to
know whether (2.2.5) holds as noted in Remark 2.2.5 (i1). In fact, in a layer domain
Q = {a < x, < b}, P = x!' is a non-trivial weak solution for W = 0. Thus, layer domains
and cylindrical domains are not strictly admissible. We conjecture that quasi-cylindrical
domains are not strictly admissible. Here, the domain Q is called quasi-cylindrical if
limpyeda(x) < oo (see [3, 6.32]).

2.4 Uniqueness of the Neumann problem

In this section, we prove the uniqueness of the Neumann problem (2.1.1) on the domains
(D—(III) by a duality argument. We find a solution of the dual problem by using the
Helmholtz projection. Note that VP € L7(€2) does not imply decay for P(x) as |x| — oo.
We give pointwise estimates for P(x) as |x| — oo, and apply a duality argument.

2.4.1 Uniqueness on an exterior domain
We begin with a bounded domain.

Lemma 2.4.1. Let Q be a bounded domain in R", n > 2, with C3-boundary. Then, a weak
solution of (2.1.1) is unique up to an additive constant.

Proof. Let P be a weak solution of (2.1.1) for W = 0in Q. Set Vp = Q[g] for g € C°(Q).
Then, ¢ solves the weak Neumann problem: A¢ = div g in Q, d¢/dng = 0 on 9Q. Since
0Q is C3, by the elliptic regularity theory, ¢ is in W3 (Q) for r € (1, c0). By the Sobolev
embedding for r > n, observe that ¢ is a C?>-function in Q. By substituting ¢ into (2.2.4),

it follows that
f Pdiv gdx = 0.
Q

Thus, VP = 0, i.e., P is constant. O
We next prove the uniqueness of weak solutions on an exterior domain.

Lemma 2.4.2. Let Q be an exterior domain in R", n > 2, with C3-boundary. A weak
solution of (2.1.1) is unique up to an additive constant.

In order to prove Lemma 2.4.2 by a duality argument, for VP € L7 (), we estimate
P(x) as |x| — .

Proposition 2.4.3. Let Q be an exterior domain in R", n > 2. Let 0 € Q° and Ry >
diam Q°. For VP € L7 (Q), there exists constants Cy and Cy such that

|P(x)| < Cylog|x| + Cy for|x| > 2R,. 2.4.1)
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Proof. For x € Q satisfying |x| > 2Ry, there is some z € dQ such that do(x) = |z— x|. Since
|x| < dq(x) + Ry, it follows that |x] < 2dq(x). Thus, we estimate

sup [x[[VP(x)| < 2|VPle 4.
|x[>2Rg

Set y = 2Ryx/|x| for |x| > 2R,. Then, it follows that

dr

1
d
P - POl < [ [Pax = o
0

1
de
<Jx—) ( f —) sup [2l|VP(2)|
o I +1x—=yl/ =28,

< 2(log|x| —1og 2Ry)|VP|w.a-

Thus, (2.4.1) holds with C; = 2|VP|, 4, and C, = =210g 2Ro|V Pl g + SUP|y-2r, |P(y)|. O

Proof of Lemma 2.4.2. Let VP € L7(2) be a weak solution of (2.1.1) for W = 0. We shall
show that

deiV gdx =0 (2.4.2)
Q

for all g € C(QY). Set Vo = Qlg] € L' (Q) for g € C°(Q2). Then, ¢ satisfies the weak
Neumann problem: Ap = div g in Q and d¢/dng = 0 on Q. Let 8 be a smooth function
in [0, co) satisfying # = 1in [0,1/2] and 8 = 0 in [1, o0). Set Oz(x) = 6(|x|/R) for R > 2R,
with Ry > diam Q°. Since dQ is C°, by the elliptic regularity theory [10, Lemma 2.3], ¢ is
a C*>-function in Q. Then, g = pbr € C*(Q) and dyp/dOng = 0 on Q. From the definition
of weak solutions (2.2.4), it follows that

f P(div g 6 + 2V - Vg + oAbg) dx = 0. (2.4.3)
Q

We show that the last two terms vanish as R — oco. By Proposition 2.4.3, it follows that

(CilogR + ()

IVl f Veldx
R/2<|x|<R

<(C1 logR + C3)
- Rl—n+n/r

Q

1-1
C, /r”VG”L“(R)”V‘P”U(Q)

for R > 4R, where C, denotes the volume of n dimensional unit ball. For r € (1,n/(n— 1))
the right-hand side vanishes as R — co.

It remains to show that the last term of (2.4.3) vanishes as R — oo. Since P is harmonic
in Q and the support of Abg is in Dy, for Dg = Bo(R)\Bo(R/2), we are able to shift ¢ by
a constant. We replace ¢ to § = ¢ — JCDR ¢dx. By the Poincaré inequality [5, 5.8.1], we
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estimate [|@||.-pp) < CoRIIVellLrn, With the constant Cy independent of R. By Proposition
2.4.3, it follows that

. (CilogR + C) .
f PpAdrdx| <2 T = A Gl ey [ Ildx
Q R Dg
(CylogR + C») o
<! an+n/r 2 1Al CoCl IV gl — O as R — oo,
We proved (2.4.2) for all g € C°(©2) so VP = 0. The proof is now complete. O

2.4.2 Uniqueness on a perturbed half space

We next prove the uniqueness of weak solutions on a perturbed half space Q forn > 2. As
stated below (Proposition 2.4.5), on a perturbed half space, VP € L7(Q) does not imply
a logarithmic increasing order for P(x) as |x] — oo. So the same duality argument for
exterior domains does not directly apply to prove the uniqueness. We shall show V2P = 0
by taking test functions in differentiated forms so that solutions of the dual problem is
L'-integrable in Q.

Lemma 2.4.4. Let Q be a perturbed half space in R", n > 2, with C3-boundary. Then, a
weak solution of (2.1.1) is unique up to an additive constant.

For VP € L7(Q), we estimate P(x) as x| — oco. Note that P(x) may not be bounded
near the boundary. To state a result, let Cy(R) be the cylinder centered at the origin with
hight 2R > 0, i.e., Cy(R) = BL'(R) X (—R, R), where B}"!(R) denotes the n — 1-dimensional
ball with radius R > 0.

Proposition 2.4.5. Let Q be a perturbed half space in R", n > 2. Let Rq be a positive
constant such that Q\Co(Rq) = R{\Co(Rq). For VP € L7(Q), there exists constants
C, — Cy4 such that

|P(x)| < Cylx| + C,  for X' e R™! x, > Rq, (2.4.4)
|P(x)| < Cs|log x,| + Cy|x| + C4  for |x'| > 4Rq, x, < Rq. (2.4.5)

Proof. By taking Rq large if necessary, we may assume dg, = inf{do(x) | x = (¥, x,) €
Q, x, = Rg} > 0. For x = (¥, x,) € Q satisfying x, > Rg and xo = (0,---,0,Rq), it
follows that

1
|P(x) — P(xp)| = f (x—x0) - VP(tx + (1 — t)xg)dt
0

-1
< |x = xoldry™ [V Pleo.d-

Thus, (2.4.4) holds with C; = dRQ*lVPloo,d and C, = CiRq + |P(xp)|-
We shall show (2.4.5). Observe that do(z) = z, for z = (Z/, z,) such that |Z'| > 4R and
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Z, < 2Rq since B,(z,) N Co(Rq) = 0. For x = (¥, x,,) such that |x’'| > 4R and x,, < Rq, set
Xr, = X + Xxo. It follows that

1
|P(x) — P(xgy)l = f (x = xgy) - VP(tx + (1 — t)xg,)d?
0

< Ro|VP| f dr
= neltted U do(tx + (1 - Dxry)

!
dr
= Rleploo,df
0 tRQ + X,

< (|1og x,| + [10g 2R )|V P|w 4.

Since |P(xg,)| < Cilx| + C1Rq + C, by (2.4.4), (2.4.5) holds with C3 = |[VP|4 and C4 =
|[10g 2R0||VP|wa + CiRo + C,. The proof is now complete. O

Proof of Lemma 2.4.4 . Let VP € L7(£2) be a weak solution for W = 0 on Q. We shall
show

f Pdiv d,gdx =0
Q

for all g € C°(Q2), where 0, indiscriminately denotes d,, for i € {1,---,n}. This implies
that P is a polynomial of degree one. Since VP € L7 () implies VP — 0 as dg(x) — oo
so VP = 0 follows.

Since Q is a perturbed half space, there exists Ry > 0 such that Q\Cy(Rq) = R}\Co(Rq).
Set Vo = Q[d,g] € LP(Q) for g € C°(Q2). Then, ¢ solves the weak Neumann problem:
Ay = div d,g in Q and dp/0ng = 0 on OQ. By the elliptic regularity theory, ¢ € C*(Q).
Moreover, Vo € L'(Q) since d,g is a differentiated function. (In fact, we apply Lemma
2.4.6 below). Let 6 € C’[0, o0) be a smooth cutoff function such that § = 1 in [0, 1] and
6 = 01in [2, ). Set Gr(x) = Gr(Ix'|)0r(1x,]) by Or(s) = 6(s/R). Then, Og(x) = 1 in Cy(R).
and Gg(x) = 0in R"\Cy(2R)., where Co(R), = B"'(R) x (0, R). By multiplying the cut-off
function Gx(x) to ¢, we have @i = 0y € CZ(Q) satisfying dpg/0dng = 0 on 02 for R > Rg.
We substitute ¢y into (2.2.4) for W = 0 to get

0= f P(div 0,86 + 2V - Vg + (pAéR)dx.
Q

It suffices to show that the last two terms vanishes as R — oo. We shall show that the
second term vanishes as R — oco. By a similar way, we are able to show the last term also
vanishes. We divide the second term into two terms,

f PV - Vordx = f PV - Vordx + f PV - Vrdx
Q Do(R)N{x,=Ra} Do(R)N{0<x,<Ro}

= IR + IIR,
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where Dy(R) = Co(2R)\Co(R). By (2.4.4), it follows that |Iz| < C|IV¢llLpyr)y — O as
R — 0. By (2.4.5), we estimate

C
mi< [ (Ilog.x,| + R)IVlds.
Do(R)N{0<x,<Rq}
The second term vanishes as R — oco. Applying the Holder inequality implies that

1 1{ (e A\
" f |log x| Vegldx < — ( f |log x,|” dxn) f IVl 10<5, <oy ()l
R Do(R)N{0<x,<Rq} R 0 {R<|x"|<2R}

1/p
= R1+(n—1)/p—(n—1)”V(p”LP(Do(R))'

Forn > 3,take p € (1,(n—1)/(n—2)]. Forn = 2, take p € (1, o). Then the right-hand side

converges to zero as R — oo. Thus Iz — 0 as R — oo. The proof is now complete. O

We shall show the L'-bound for Vo = Q[d,gl, g € C*(Q2). We appeal to pointwise
kernel estimates for solutions of the (weak) Neumann problem in a half space.

Lemma 2.4.6. Let Q be a perturbed half space in R", n > 2, with C'-boundary. For
g € CX(Q), set Vo = Q[d,g]. Then, Vo € LY(Q).

We first prove Lemma 2.4.6 for Q = R’}.

Proposition 2.4.7. The statement of Lemma 2.4.6 is valid when Q = R}.

Proof. Let E(x) be the fundamental solution of the Laplace equation, i.e., E(x) = C,/|x|""~?

forn > 3 and E(x) = —1/2xlog|x| for n = 2 with the constant C, = (an(n — 2))~!, where
a denotes the volume of n-dimensional unit ball. Set N(x,y) = E(x —y) + E(x — y")
for x,y € R} and y* = (y',—y,). Since solutions of the weak Neumann problem, i.e.,
Ay = div d,g in R}, dp/0ng = 0 on JR’, are unique under the bound V¢ € LP(R}),
p € (1, 00), the function Vy = Q[d,g] is expressed by the kernel N(x, y), i.e.,

Vp(x) =V fR ) V,N(x,y) - 0,g(y)dy.

Take a positive constant R > 0 such that spt g C By(R). Since |0*E(x)| < C/|x"**¥ for
|k| > 1, it follows that

1 1
|V (x)ISCf( + )I )|dy.
¥ R |x _ y|n+1 |x _ y*|n+1 g(y Yy

For |x| > 2R and |y| < R, we observe that

x =y > |Ix] = |
> |x]| - R
> |x|/2.
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By the same way, it follows that |x — y*| > |x|/2 for [y*| < R. Thus, we have

V()| <

< p for |x| > 2R,

with the constant C’ = 2"**Cl|g|l;1rz). Since Ve is LP-integrable in R, Vo € L} (R’

loc

).
Thus, Vg € L'(R"). O

Proof of Lemma 2.4.6. Let Rq be a positive constant such that Q\By(Rq) = R}\By(Rq).
Let 6 € C°[0, c0) be a smooth cutoff function such that 8 = 1in [0, 1) and 8 = 0 in [2, c0).
Set Or(x) = 6(]x|/R) for R > Rq. Then, 6z = 1 in By(R) and 0z = 0 in By(2R)°. We divide
¢ into two terms ¢ = @fr + (1 — Bg). Observe that V(¢8g) = Vebr + ¢V € L1(Q) since
Vo = Q[d,g] € LP(Q), p € (1, o). It suffices to show that Vo € L'(Q) for ¢ = ¢(1 — 6g).
Set gr = gbg. Since the function ¢ satisfies the weak Neumann problem: Ay = div d,g in
Q, dp/0ng = 0 on 0Q, g satisfies
Aow = di . Opr _
pr=divd,gr+ fr iInQ, — =0 ondQ,
al’lg
where
fR = —ZVQD - VO — QDAQR + Bxg - VOr + div gaxeR +g- Vang.

We identify ¢ and its zero extension to R} \Q. Since ¢z = 0 in By(R), = Bo(R) N R, ¢g

satisfies
Or
ox,

We observe that spt fzr C By(2R),. Let go}e be a solution of the Laplace equation in By(2R),,

AQDR = div 8ng +fR in R:L_, =0 on aR:l_

Apg = fr in By(2R).,
¢or =0 ondBy2R), NR”,

Ol
ox,

=0 ondR} N By(2R),.

Since fg € LP(Bo(2R).), ¢ € W*P(By(2R),). (The existence of the solution ¢}, follows
from the LP-theory for the Dirichlet problem in By(2R) via a reflection argument). Denot-
ing the zero extension of ¢}, to R”\By(R) by @y, we set ¢ = g — gg. Then @2 satisfies

At

n

A% = divd,gr inR”, =0 ondR".

We apply Proposition 2.4.7 and observe that Ve € L'(R?). Thus, Vor € L'(R?). Since
@r = 01in By(R), Vg € L'(Q) . The proof is now complete. O
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2.5 Blow-up arguments

Now, we prove Theorem 2.3.3 by a blow-up argument. A blow-up argument reduces the
proof of the a priori estimate (2.2.5) to the uniqueness of weak solutions for the Neumann
problem (2.1.3) . If blow-up points stay inside of the domain Q, the proof is reduced to
the uniqueness of weak solutions on Q. If blow-up points accumulate to the boundary, it is
reduced to the uniqueness on R’}. Note that blow-up points may diverge to infinity when
Q is unbounded. We start from a bounded domain.

Lemma 2.5.1. A bounded domain in R", n > 2, with C*-boundary is strictly admissible.

Proof. We argue by contradiction. Suppose that (2.2.5) were false for any choice of the
constant C. Then, there would exist a sequence of weak solutions {P,,}>_, such that

|VPm|oo,d > m”WmHOO,aQa

where VP,, € L7 (Q) satisfies (2.2.4) for W), € L; (0Q), i.e.,

tan

f P, Agdx = f W,, - VaaedH" 1 (x),
Q 0Q

for all ¢ € Cf(ﬁ) satisfying d¢/0ng = 0 on 0Q. We take a point x,, € Q such that
do(x)IVPy(x)| = M,,/2 for M,,, = |VP,| 4 and normalize P,, by dividing by M, to get
P, = P, /M, and W,, = W,,/M,, such that

IVPolea =1, 2.5.1)
||Wm||oo,ag <1/m, (2.5.2)
do(%)|VP,u(x)| > 1/2. (2.5.3)

Since Em_,oodm < 00, We may assume Xx,, — Xo € Q as m — oo. Then, the proof is
divided into two cases depending on whether x,, € Q or x,, € Q.

(i) xoo € Q. The proof reduces to the uniqueness of the Neumann problem (2.1.3) on
Q. Since P,, is harmonic in Q and |VP,,|.s = 1, P,, subsequently converges to a limit P
locally uniformly in Q together with its all derivatives. Moreover, by |V13m|oo,d =1, P,
converges to P weakly on L"(Q) for r € [1, o). Thus, the limit P satisfies

f PAgdx = 0.
Q

We apply Lemma 2.4.1 and conclude that VP = 0. This contradicts dq(xe)|VP(xe)| > 1/2
so (1) X, € € does not occur.
(i1) xc € 0Q. The proof reduces to the uniqueness on a half space. By rotation and
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translation of Q, we may assume x,, = (0,d,,) and d,, | 0 as m — oo. Since dQ is C?, there
exists constants a, 8, K and a C3-function & such that

Q S QIOC — {x c Rn | h(x,) < X, < h(x/) +ﬁ’ |x’| < G“/}’
I1Allc3gr-1ay < K and h(0) = 0. We rescale P,, around x,, to get the blow-up sequence,

Xm

Opn(x) = Ppy(xy + dpx) forxeQ,, = T

and G,,(x) = W,,(x,, + d,,x). Then, the estimates (2.5.1)—(2.5.3) are inherited to

sup dq, ()IVOu(x)| =1,

x€Q,,

IGmll=@a,) < 1/m,
VO,.(0)] > 1/2.

Note that the distance from the origin to the boundary is always one, i.e., dq, (0) = 1. The
rescaled domain €, expands to the half space R} | = {x € R"|x = (¥, x,) x, > —1}. In
fact, ’

Q, D QL = {x € R" | hy(X') < X, < hyp(X)) + Bldy, |X| < @/d,)

for h,(x') = h(d,,x") — 1, so Q}gc converges to Ri_ ;- Note that this rescaling procedure
keeps C’-regularity of the boundary 9Q,,, i.e., the C*-norm of &, in B} '(a/d,), xo =
0,---,0,-1), is uniformly bounded for m > 1. Moreover, the boundary 0Q,, converges
to dR", i.e., h,, — —1 and #h,, — 0 as m — oo locally uniformly in R"™! for 1 < |k| < 3.
Since Q,, 18 harmonic in Q,, and sup .o dq,,(X)|VQO,(x)| < 1, O, subsequently converges
to a limit Q locally uniformly in R _, together with its all derivatives and weakly on
Ly (R _)) for r € [1,00).

Now, we observe that the limit Q is a trivial limit, i.e., VQ = 0. Let ¢ € C?(K) satisfy
0p/0x, = 0 on {x, = —1}. We extend ¢ to R” by the even extension of ¢, which is still
denoted by ¢ € CZ(R"). Set p,,(X) = ¢(X,,'(X)) for X € Q) by themap X,,, : R} _; — Q),
ie.,

Xn(X', X) = Xaq,, — (X, + Dng, (xs0,) for xao, = (X, h, (X)), x = (¥, x,) € R} _,.

This X,, is well-defined for sufficiently large m. Since dQ,, is C, ¢,, € CX(Q,,). Moreover,
0¢n/0ng, = 0 on 0Q,, since ng, = —Vd,,. Since O, and G,, satisfies (2.2.4) for ¢,,, by
letting m — oo, we have
QApdx = 0.
+,—1

We apply Lemma 2.3.2 and conclude that VQ = 0. This contradicts [VQ(0)| > 1/2. Thus
(i1) does not occur. We reached a contradiction. The proof is now complete. O
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We shall prove the estimate (2.2.5) for exterior domains and perturbed half spaces. To
argue by contradiction, suppose that there are a sequence of weak solutions of (2.1.1),
{Pn}_,, and a sequence of points {x,,}>_, C Q such that [VP,|wg = 1, [[Wyllewsa — 0 as
m — oo and

1
o) VP ()| 2 5.

Setd,, = do(x,,). If ﬂm%dm < 00, the proof reduces to the uniqueness of weak solutions
on R’ and the domain Q (Lemmas 2.4.2 and 2.4.4) as we proved (2.2.5) for bounded
domains. The crucial case is when {x,,}”’_, diverges to infinity, i.e., d,, T o0 as m — oo.
When Q is an exterior domain, the problem is reduced to the whole space. When Q is a
perturbed half space, it is reduced to a half space.

Let us give ideas in proving (2.2.5) for an exterior domain. We rescale the solution P,
around x,, to get

Xm

dﬂ‘l

Then, Q;, accumulates to the point a € R" (a # 0) and Q,, approaches to R"\{a}. We show
that the limit Q is extendable to a harmonic function in R" by using

O.(x)=P,(x, +d,x) forxeQ, =

sup |[x—a|lVQ(x)| < 1,
xeR”\{a}

and conclude that VQ = 0. This contradicts [VQ(0)| > 1/2. For n = 2, above bound for Q
is not enough in order to show Q is harmonic in R?2, but in this case, we use the fact that
the mean value of Q around x = a on a surface of a ball is independent of the radius of a
ball.

This idea works also for perturbed half space. When Q is a perturbed half space, we
rescale P,, around the point x,, € Q by replacing d,, to d,, = (x,,), to get

- ~ Q,
O.(x)=P,(x,, +dp,x) forxeQ, = d~—’”
Then, the rescaled domain €, approaches to a half space R’ _| and a curbed part of the
boundary 9€2,, accumulates to the point a € JR’ _; (or diverges to infinity). We remove
the singularity at x = a for the limit Q by using the bound,

sup (x, + DIVO()| < 1,

n
xeRJﬁ_1

and conclude that VQ = 0 for n > 3. It is likely that the estimate (2.2.5) holds also for n =
2, but the above bound does not exclude the singularity at x = a. In fact, Q(x) = log |x — af
is harmonic in R’l,—1 and satisfies the bound.

Proof of Theorem 2.3.3. We argue by contradiction. Suppose that (2.2.5) were false for
any choice of constants. Then, there would exist the weak solutions P,, for W,, and the
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points {x,,} > C Q satisfying (2.5.1)—(2.5.3). Set d,, = da(x,,). If lim,, ed,, < o0, by the
same way as we proved Lemma 2.5, the proof reduces to the uniqueness of weak solutions
in R} and Q (Lemmas 2.3.2, 2.4.2 and 2.4.4). We may assume d,, T o0 as m — oo.

(a) The case Q is an exterior domain. We rescale P,, around x,, to get

Qm(x) = Pm(xm + de) for x € Qm’
where Q,, = {x e R" | x = (y — x,,)/d,n, y € Q}. Then, Q,, satisfies AQ,, = 01in Q,,,
sup do,, ()IVOu(x)| = 1,

xeQ,,
IV0,.(0)| > 1/2.

Take y,, € 0Q such that d,, = [y, — x,|. Then z,, = (Y, — X)/d,, € 0Q,, satisfies |z,,| = 1.
We may assume z,, — a € R" as m — oo. Since ), accumulates to the point a € R”,
Q,, approaches to R"\{a}. Set ¢,,(r) = JCaB On(x)dH" 1 (x) for r > diam Qg . Then, by
(2.2.4), it follows that d¢m(r)/dr = 0 for r > diam € (One should apply Proposition
2.6.3).

Now, we observe a limit of Q,, is a trivial limit. Since V(Q,, is uniformly bounded by
SUp,cq, da, (DIVQ,(x)| = 1 and Q,, is harmonic in €, O, subsequently converges to a
limit Q locally uniformly in R"\{a}. Thus, the limit Q satisfies AQ = 0 in R"\{a},

sup [x—dllVO(x)[ <1, (2.5.4)
xeR™"\{a}
d
d—(f(r) =0 forr>0, (2.5.5)

where ¢(r) = faBa o O(x)dH"'(x). The estimate (2.5.4) and condition (2.5.5) imply that
Q is extendable to a harmonic function in R" for all n > 2; see Lemma 2.6.1. We apply the
Liouville theorem and conclude that VQ = 0. This contradicts [VQO(0)| > 1/2. We reached
a contradiction. Thus, we proved (2.2.5) for exterior domains.

(b) The case Q is a perturbed half space. Let R = Rq be a positive constant such that
Q\By(R) = R}\By(R). Let d,, be the normal component of the pomt Xm. If By, (d,)NQ =0,
then d, = d,,. If me(dm) NQ # 0, thend, > d,. Thus, d, <d, — oo asm — co. We
rescale P,, around the point x,, to get

- ~ Q.
0,.x)=P,(x, +d,x) forxeQ, = 7 =,

m

and G,,(x) = W,,(x,, + d,,x). Then, the estimates (2.5.1)—(2.5.3) are inherited to
sup do,, (0)|[VQu(x)| =1,
xeQ,,
IGnllwo, < 1/m

dm 1
> —
2d, ~ 2’

IVO(0)| =
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The rescaled domain Q,, satisfies Q,,\Bz, (R,) = R'l,_l\me(Rm) for %, = —xu/d, =
(—=x,,/ d,,—1)and R,, = R/d,. If Em%m = oo, a curved part of 0Q,, diverges to infinity
so the limit domain of Q,, is R} ;. We may assume X,, — a € dR", | as m — oo. Then,
B;, (R,,) accumulates to the poirft a and €, approaches to R _,. Since Q,, is harmonic in
Q,, and sup, o do,(V)|0n(x)| < 1, O, subsequently converges to a limit Q locally uni-
formly in R} _, together with its all derivatives. Moreover, Q,, converges to Q weakly on

L, (R} _)) for r € [1,c0).
We now observe that the limit Q is trivial, i.e., VO = 0. Let ¢ € Cf(Ri_l) satisfy
0p/dx, = 0 on GR’j’_l and spt ¢ N {a} = 0. Since Q,, satisfies (2.2.4) for G,, in Q,,

by letting m — oo, it follows that

f OAgdx = 0. (2.5.6)

-1

We remove the restrictive condition spy ¢ N {a} = @ for n > 3. Since the limit Q satisfies

sup (x, + DIVO()| < 1,

xeRﬁﬁl
applying Proposition 2.6.4 implies (2.5.6) for all ¢ € Cf(Rﬁ’_l) satisfying d¢/0x, = 0 on
OR _, forn > 3. We apply Lemma 2.3.2 and conclude that VQ = 0. This contradicts
IVO(0)] > 1/2. We reached a contradiction. Thus, we proved (2.2.5) for perturbed half
spaces. The proof is now complete. O

Remarks 2.5.2. (i) For a bounded domain, the estimate (2.1.2) was also proved by C. E.
Kenig, F. Lin and Z. Shen [11], independently of our previous work [1], where a slightly
different version was proved. In [11], they studied the Neumann problem,

, opP ; 0 ;0
AP =0 inQ, e = ,zj: ("Qa_xj - nQa—xi)g,-.,- on 0Q2 (2.5.7)

for tensor-valued functions g = (g;;)1<i j<n, and proved the estimate

sup do(¥)|VP()] < C ) lgifllieo (2.5.8)

xeQ 0j
for a bounded domain with C'”-boundary. The boundary data in (2.5.7) can be written as

the surface divergence (2.5.8) of a tangential vector field. In fact, set W = —(g — g7)ngq for
g = (gij)1<ij<n- Then, W satisfies W - ng = 0 and

, .0 .9
divgoW = Z (ngg - nga)gﬁ (2.5.9)
ij J !
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since dn/ = d;n', i, j € {1,--- ,n} and divegoW = divW by extending nq outside of dQ as
a gradient of —dg. Thus, our estimate (2.1.2) immediately implies (2.5.8). Moreover, we
are able to estimate do VP by the antisymmetric part (g — g7)ng, i.e.,

sup do(x)|VP(x)| < Cll(g — g")nallr=@q-
xeQ

On the other hand, for a tangential vector field W = (W'),<;<, and g; i = nQ, (2.5.9)
holds so the estimate (2.5.8) implies our estimate (2.1.2).

Actually, in the paper [11, Lemma 6.2] the estimate (2.5.8) is discussed for the Neumann
problem, LP = 0 in Q, dP/dng = Y, (n,0; nga )gij on 0Q, associated to the elliptic
operator £ = —div(a(x)V) and a(x) = (a; ](x)) 1<i,j<n- 1t is proved that the estimate (2.5.8)
holds if L is symmetric and uniformly elliptic, i.e., a;j(x) = a;(x), i,j € {1,--- ,n} and
HIEP < aij(0&E < plI€P, x € R" and € € R” for some p > 0. The assumptions on
the operator £ are interesting, but for our purpose of estimating the pressure (0.1.3), the
Laplace equation (2.1.1) is sufficient.

(i) On an exterior domain, a unique weak solution VP € L7(Q) exists for W € Lg; (0Q).
We call the solution operator K : W +— VP the harmonic-pressure operator, which is a
bounded operator from Lg;, (0Q) to L (€2). Although the representation by the Helmholtz
projection, i.e., Vg = Q[Av], may not hold for non-decaying solutions to the Stokes equa-
tions, the harmonic-pressure operator K recovers the pressure gradient from the velocity,
ie., Vg = K[W(®W)] for W) = —(Vv = VIV)ngq.

The existence of weak solutions immediately follows from the L”-theory for the Neumann
problem if one impose a suitable regularity for the Neumann data W € Lg, (092). For
instance, if W € L (0Q) satisfies g = diveg W € W™/PP(9Q), by taking a compactly
supported extension f € LP(Q) such that div f = 0in Q, f - ng = g on 9Q (see, e.g.,
[13]), VP = QI[f] is a weak solution for W € Ltan(aﬂ). Here, W~1/7P(9Q) denotes the
dual space of the Sobolev space W!=1/7""'(8Q), p’ = p/(p — 1). For general W € L (6Q),
approximating W by changing a coordinate to dR", we take W,, € L (0Q) N W=1/PP(5Q)
satisfying [|Wllwoa < ClIW|lwso and W,, — W a.e. on 0Q as m — oo, with the constant
C independent of m > 1. Then, the a priori estimate (2.2.5) implies that VP,, = K[W,,]
is uniformly bounded on L7(€2). Thus, the limit VP is in L7(€2) and a weak solution
for W € L (0Q). Note that the limit VP is independent of the choices of extension and

tan
approximation for W € L, (0€Q2) since weak solutions are unique.

tan

2.6 Extensions for harmonic functions

In this section, we give extension theorems for harmonic functions in R” and R’}, which are
used in the proof of Theorem 2.3.3. We first state an extension theorem in R”. Although
our assumption can be weakened, we give the statement in a simple form in order to apply
it in the proof of Theorem 2.3.3.
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Lemma 2.6.1. Let P be a harmonic function in R"\{0} for n > 2. Assume that

sup |x||[VP(x)| < oco. (2.6.1)

[x[<1

Then, for n > 3, P is extendable to a harmonic function in R". For n = 2, assume in

addition that
d

— P(x)dH'(x)=0 for r<1. (2.6.2)
dr Jay)

Then, P is extendable to a harmonic function in R>.

Proof. By (2.6.1), P is locally integrable in R". We prove the assertion by showing

f PApdx =0 (2.6.3)
Rl‘l

for all ¢ € CZ(R"). Let 1, be a radially symmetric mollifier, 1.e., n.(x) = n.(|x]), spt n, C
By(e) and J;?()(S) n.dx = 1. Set P, = Pxn,. Then ,P, € C*(R") is harmonic in R" by (2.6.3).
By the mean value formula, P, satisfies

P.(x) = f P.)dH"'(y) forxeR", r>0.
OB.(r)

Letting £ | 0, we obtain P(x) = J%B " P(y)dH" ' (y) for x € R"\{0}, r > 0. Since the
right-hand side is continuous in R”, by setting P(x) = P(x) for x € R"\{0} and P(0) =
15,0y POYIH" (), P € C(R") and

P(x) = JC P(Y)dH" '(y) forxeR", r>0.
0B (r)

Note that P(0) is independent of r > 0 since £, PO)AH"' () = £, POAH" ()
for x € R"\{0}, r;,r, > 0 and J%Bx(r]) Py)dH"'(y) — P(0) as |x| | 0. Since 7, is radially
symmetric mollifier, P, = P * 1, € C*(R") agrees with P, i.e., P, = P. Thus, P € C*(R")
is harmonic in R".

Now, we prove (2.6.3). We may assume spt ¢ C By(1). For x € By(1)\{0} and y = x/|x|, it
follows that

1
|P(x) = Py < |x =yl fo IVP(rx + (1 = 1)y)ldr

1
dr
<Ci(1-|x _—
A ||>f0 e
= —C log |x|
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with the constant C; larger than (2.6.1). Thus, we have
|P(x)| < Cylog|x| + C, for x € By(1)\{0} (2.6.4)

with C, = supy_; [POY)I- Since P is harmonic in By(1)\{0}, by integration by parts, it

follows that 5 5
P
f PAgdx = f (P LA 90) dH"" (x)
e<|x|<1 [xl=¢ anBo(s) 6’/LBO(S)

for € > 0. By (2.6.5), the first term vanishes as € | 0. We estimate the second term. By

(2.6.1), it follows that
oP
| P (2)
|

x|l=& 6”30(8)

< Ce"?||gll oy (2.6.5)

with the constant C independent of € > 0. For n > 3, the right-hand side vanishes as € | 0.
Thus, we proved (2.6.3) for n > 3.
It remains to show (2.6.3) for n = 2. By (2.6.2), it follows that
d OP
= — P(x)dH'(x) = f ﬂdw‘(x) for r < 1.
dr ABy(r)

0
aBo(r) OMBo(r)

Thus, in (2.6.5), we are able to shift ¢ by a constant. We replace ¢ to ¢ — ¢(0) in (2.6.5).
Since |p(x) — ¢(0)] < |x[[[Vel| o ®n. it follows that

f oF @dH" (x)
|

x|=¢ anBo (e)

oP
f (¢ — p(0)dH' (¥)| < Coell Vel
i=e OMBy(e)

By letting € | 0, (2.6.3) follows. The proof is now complete. O

Remarks 2.6.2. (i) If we drop (2.6.2) for n = 2, the statement of Lemma 2.6.1 does not
hold. For example, log |x| is harmonic in R?\{0} and satisfies (2.6.1).

(ii) The condition (2.6.1) can be replaced by sup,,, |x|'"*|VP(x)| < oo for some @ € (0, 1)
without modifying the proof.

(iii)) We state Lemma 2.6.1 in a simple form in order to apply it in the proof of Theo-
rem 2.3.3. If we assume (2.6.2) for all n > 2, we are able to replace (2.6.1) to |P(x)| =
O (Jlog |x|||x|*™) as |x| — O (see, e.g., [14, Chapter I, Theorem 3.2]).

In an exterior domain Q, the mean value of a weak solution on dBy(r) is independent
of r > diam Q°. The following Proposition 2.6.3 is used in the proof of Theorem 2.3.3 in
order to apply Lemma 2.6.1.

Proposition 2.6.3. Let Q be an exterior domain with C'-boundary and 0 € Q°. Let P be a
weak solution of (2.1.1). Then,

d

— P(X)dH" '(x) =0 forr > diam Q°. (2.6.6)
dr Jasy)
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Proof. Since

4 P(x)dH" " (x) = JC op

dr dBo(r) dBo(r) ONBy(r)

()dH"™ (),

it suffices to show that the right-hand side is zero. For each r > diam Q¢ we take a smooth
function ¢ such that ¢ = 1 for |x| < r and ¢ = O for |x| > 2r. Since P is a weak solution of
(2.1.8), by (2.2.4) it follows that
- f VP -Vedx = W - VaaedH" ! (x)
r<|x|<2r 0Q

=0.

Since P is harmonic in  and ¢(x) = 0 on [x] = 2r, ¢(x) = 1 on |x| = r, by integration by
parts, it follows that

AP oP
f VP - Vdx = f edH" ! (x) + f edH" 1 (x)
r<|x|<2r 0By(r) 6?130(,) 0By(2r) 6nBO(Zr)
AP
= f dH" ' (x).
0

Bo(r) OMBo(r)

Thus, we obtain (2.3.6). The proof is now complete. O

We next state an extension theorem for harmonic functions in a half space correspond-
ing to Lemma 2.6.1. In the proof of Theorem 2.3.3 for a perturbed half space by a blow-up
argument, a curbed part of a perturbed half space accumulates to a point on JR’; _;. The
following Proposition 2.4.4 implies that the limit of the rescaled solution Q,, does not have
a singularity on JR’; _, forn > 3.

Proposition 2.6.4. Let P € L} (RY) satisfy
f PApdx =0 (2.6.7)
R!
for ¢ € CX(R?) satisfying dp/Ong = 0 on IR" and
spt o N {0} = 0. (2.6.8)

Assume that
sup x,|VP(x)| < oo.

lx<1

Then, for n > 3, (2.6.7) holds without imposing the restrictive condition (2.6.8) for ¢.
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Proof. Let 8 € C°[0, o) be a smooth cutoff function satisfying # = 1in [0,1] and 6 = 0
in [2,00). Set Yo(x) = 1 = Gx(x) by G.(x) = 6.(1¥'b:(|x,]) and 6.(s) = 6(s/€). Then,
e € C§°(R_’i) satisfies Y. € Co(€)+, Y. = 1 in RT\Co(2¢), and dy./dx, = 0 on JR’;. Here,
Co(e)s = Bl"'(e) x (0, ). For ¢ € C2(R?) satisfying dp/dx, = 0 on R, set ¢, = @i,
Then ¢, € Cf(R_’i) satisfies d¢./0x, = 0 on OR’} and spt ¢, N {0} = 0. By substituting ¢,
into (2.6.7), it follows that

0= f P(Apy, + 2V - Vi, + oA, )dx. (2.6.9)
-

+

The first term converges to fR" PAgdx as € | 0. We shall show that the last two terms
vanish as € | 0. By connecting x € Cy(1/2), and xo = (0, --- ,0, 1), it follows that

1
|P(x) — P(xp)| < f (x = xp) - VP(tx + (1 — t)x)dt
0

! de
< |x — xol (SUP ZnIVP(Z)I) f
0

lzZ<1 tx, + (1 — t)

< 4|log x,| (sup zanP(Z)I) .

lzl<1

Thus, we have
|P(x)| < Cy|logx,| + C, for x € Co(1/2), (2.6.10)

with Cy = 4 sup,; z,|VP(2)| and C; = [P(xo)|. By using the estimate (2.6.10), we estimate
the last two terms in (2.6.9). Since spt ¥, C Cy(2¢),, by (2.6.10), it follows that

f PV - Vi dx
Co(2e)+

for £ < 1/4. The right-hand side converges to zero as € | O for n > 2. By the same way,

we have
f PoAy.dx
Co(2e)4

The right-hand side converges to zero as € | 0 for n > 3. Thus, P satisfies (2.6.7) for all
¢ € C2(R") satisfying d¢/dx, = 0 on IR". The proof is now complete. O

< Ce"'(log e + DIVyll=wr)

< Ce"?(log e + Dllgllr=~n).
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Chapter 3

Analyticity and estimates for second
derivatives

The goal of this chapter is to prove the a priori L*-estimate (0.1.1) for solutions of
the non-stationary Stokes equations by a blow-up argument. The a priori L*-estimate
(0.1.1) implies that the Stokes semigroup is uniquely extendable to an analytic semi-
group on the (decaying) continuous solenoidal space Co . By using the harmonic-
pressure gradient estimate (0.1.3), we establish local Holder estimates for the Stokes
equations both interior and up to boundary which implies a necessary compactness
for a blow-up sequence.

3.1 Introduction

We consider the initial-boundary problem for the Stokes equations,

vi—Av+Vg=0 in Qx(0,7T), (3.1.1)
divv=0 in Qx(0,T7), (3.1.2)

v=0 on 0Qx(0,T), (3.1.3)

v(x,0) =vg on QX {r=0]}, 3.14)

in the domain Q c R", n > 2. It is well known that the solution operator S (¢) : vo — v(-, 1)
forms an analytic semigroup on the solenoidal L" space, L] (Q2) for r € (1, ), for various
kind of domains € including smoothly bounded domains [56], [28]. However, it had been
a long-standing open problem whether or not the Stokes semigroup {S (¢)};>o is analytic
on L*-type spaces even if Q is bounded. When Q is a half space, it is known that the
Stokes semigroup {S (7)},»0 is analytic on L*-type spaces since explicit solution formulas
are available [14], [44], [59].

The goal of this chapter is to give an affirmative answer to this open problem at least
when Q is bounded as a typical example. For a precise statement, let Cy,(£2) denote

36



3.1. INTRODUCTION 37

the L™-closure of C¢. (), the space of all smooth solenoidal vector fields with compact

support in Q. When Q is bounded, C(€2) agrees with the space of all solenoidal vector
fields continuous in Q vanishing on 0Q2 [43]. One of our main results is:

Theorem 3.1.1 (Analyticity on Cy ). Let Q be a bounded domain in R" with C3-boundary.
Then, the solution operator (the Stokes semigroup) S(t) : vo — v(-,t) is a Cy-analytic
semigroup on Cy ().

Our approach to prove the analyticity is completely different from conventional ap-
proaches. We appeal to a blow-up argument which is often used in a study of nonlinear
elliptic and parabolic equations. Let us give a heuristic idea of our argument. Our goal is
to establish a bound for

N, @, 1) = Ve, 0] + 22| V(e 0| + V200, | + v, 0] + Vg, 0| (3.1.5)

of the form

sup [[Nv, @)L < Clivolles (3.1.6)

0<<Ty
for some Ty > 0 and C depending only on the domain €, where ||vo|l = [|[VollL~() denotes
the sup-norm of |vg| in Q.

We argue by contradiction. Suppose that (3.1.6) were false for any choice of 7, and
C. Then, there would exist a sequence {(Vy, g)},,_, Of solutions of (3.1.1)—~(3.1.4) with
Vo = Vo and a sequence 7, | 0 such that||N(v,,, )|l (Ti) > m||vomlleo- Thereist,, € (0,7,,)
such that |
INGws @) (t) = M My, = sup NG g, (®)-

<t<Tp

We normalize v,,, g,, by dividing M,, to observe that

sup [|N @, Gn)|| (1) < 1. (3.1.7)
O<t<ty,
NG )|, (5) > 172, (3.1.8)
Vomlleo < 1/m, (3.1.9)

with ¥,, = v,,/M,,., G = qu/M,,. We rescale (V,,, §,,) around a point x,, € € satisfying
NGy Gn)(Xms tn) 2 1/4, (3.1.10)
to get the blow-up sequence,
Up (X, 1) = V(X + t,ix, tnl), Pum(x, 1) = t,%qm(xm + t,%,,x, tnt).

(Such an x,, exists because of (3.1.8)). Because of the scaling invariance of the equations
(3.1.1) and (3.1.2), the rescaled function (u,,, p,,) solves (3.1.1) and (3.1.2) in the rescaled
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domain Q,, X (0, 1]. Note that the time interval is normalized to a unit interval and Q,,
tends to either a half space or the whole space R” as m — oo.

The basic strategy is to prove that the blow-up sequence {(u,, pn)};,_, (Subsequently)
converges to a solution (u, p) of (3.1.1)—(3.1.4) with zero initial data. If the conver-
gence is strong enough, (3.1.10) implies that N(u, p)(0,1) > 1/4. If the limit (u, p) is
unique, it is natural to expect u = 0, Vp = 0. This evidently yields a contradiction to
N(u, p)(0,1) > 1/4. The first part corresponds to ”compactness” of a blow-up sequence
and the second part corresponds to “uniqueness” of a blow-up limit. When the problem
is the heat equation, this strategy is easy to realize. However, for the Stokes equations it
turns out that this procedure is highly nontrivial because of the presence of the pressure.

In order to solve both compactness of a blow-up sequence and uniqueness of its limit,
we appeal to the harmonic-pressure gradient estimate for solutions to the Stokes equations
(3.1.1)—(3.1.4),

sup do(0)|Vg(x, )| < Col[ WO g0, (3.1.11)

for W(v) = —(Vv — VTv)nq. Actually, the estimate (3.1.11) is a special case of an estimate
for solutions of the homogeneous Neumann problem,

oP
AP =0inQ, —— =divgoW on JQ. (3.1.12)
61’19
In fact, the pressure ¢ is harmonic in Q and dg/dng = Av - ng on Q. The divergence-free
condition implies Av - ng = divgoW(v). (We give a proof in Section 2). We call Q strictly
admissible if the a priori estimate

sup do(x)|VP(x)| < Co|W| (3.1.13)

L>(0Q)

holds for all solutions of the Neumann problem (3.1.12). As we showed in Chapter 2,
the estimate (3.1.13) holds not only on bounded domains but on exterior domains and
perturbed half spaces.

We now study compactness of the blow-up sequence {(u,,, pn)}._,. The proof is di-
vided into two cases depending on whether the limit of €, is a half space or the whole
space. Let us consider the case when the limit is the whole space. We would like to prove
that N(u,,, p,,) converges to N(u, p) near (0, 1) € R" x (0, 1] uniformly by taking a subse-
quence. For this purpose, it is enough to prove that the local space-time Holder norm in
R" x (0, 1] near (0, 1) for u,,, Vu,,, V?u,,, Vp,, is bounded as m — oo. We are tempted to
derive such as interior regularity estimate from (3.1.7) by localizing the problem. This idea
works for the heat equation, but for the Stokes equations, it does not work (Remark 3.3.3
(1)). In fact, if we consider a solution of (3.1.1)—(3.1.2) of the form v = g(¢),q = —g'(¢) - x
for g € C'[0, 1], we do not expect the (local) Holder continuity in time for Vg and v,
although N(v, g) is bounded in R" x (0, 1]. We invoke the strictly admissibility of € and
derive a uniform time Holder estimate for dg (x)Vp,, in Q,, X (6, 1](6 > 0) from (3.1.12).

m
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Then, one can use usual parabolic interior regularity theory [41] to derive necessary inte-
rior regularity estimate. Note that the constant in (3.1.12) is independent of the rescaling
procedure so our Holder estimate is uniform in m.

The case when €, tends to a half space is more involved. We still use the admissibility
of Q to derive necessary Holder estimates for p,. Then, instead of using conventional
parabolic local Holder estimate, we are forced to use the Schauder estimates for the Stokes
equations and Helmholtz decomposition for Holder spaces developed by V. A. Solonnikov
[61] since the boundary value problem for the Stokes equations cannot be reduced to usual
parabolic theory.

We also invoke the strictly admissibility of € to derive the uniqueness of the blow-up
limit (u, p). If Q,, tends to the whole space, by (3.1.11), we observe that Vp,, tends to
zero locally uniformly in R" X (0, 1]. This reduces the problem to the uniqueness result
for the heat equation. If €, tends to a half space, we use a uniqueness result for spatially
non-decaying velocity in the half space R} = {(x',x,)| x, > 0, x’ € R}, which is
essentially due to V. A. Solonnikov [59] as we proved in Chapter 2. Note that to assert the
uniqueness of solutions (u, p) of the Stokes equations (3.1.1)-(3.1.4) with zero initial data
and a bound for ||N(u, p)||-(?), we need to assume some decay for Vp, otherwise there is a
counterexample (Remark 3.4.2). In fact, it suffices to assume that Vp — 0 for x,, — oco. In
our setting since (3.1.12) is a scaling invariant, this estimate is inherited to (u,,, p,,). Since
x, = dg(x), we are able to conclude that 12 X,V p(x,1)| is bounded in R” X (0, 1), which is
enough to apply this available uniqueness result. Note that in the above uniqueness result,
we do not assume any spatial decay condition for velocity fields at infinity.

As we have seen above, a blow-up argument yields a key estimate (3.1.6) for solutions
of the Stokes equations (3.1.1)—(3.1.4) provided that ||[N(v, ¢)||.(?) (see (3.1.5)) is finite for
t > 0 as far as Q is strictly admissible not necessarily bounded. We prove the a priori
estimate (3.1.16) for all solutions (v, g) such that

sup [N, @) (1) < oo,
0<t<T

and (3.1.11) holds. We call such a solution L*-solution (see Definition 3.2.1). A question
is whether or not an L™-solution actually exists. It is by now well known [24] that if
a uniformly C°-domain admits the Helmholtz decomposition in L', there exists an L'-
solution and the Stokes semigroup §(7) is analytic in L, the closure of CZ (€2) in L".
However, in general, it is also known that the Helmholtz decomposition in L" space may
not hold (see [11], [48]), unless r = 2. Fortunately, R. Farwig, H. Kozono, and H. Sohr
[16], [17], [18] established an L’-theory with I:f, = L N L% for r > 2 for any uniformly
C?-domain for (3.1.1)=(3.1.4). In particular, they showed that the Stokes semigroup is
analytic on I’ space. It turns out that their solution (called an L"-solution) is an L*-
solution provided that r > n and vy is sufficiently regular, e.g., vo € C(€2). Here is our
main result.

Theorem 3.1.2 (A priori L™-estimates). Let Q be a strictly admissible, uniformly C-
domain in R". Then, there exists positive constants C and T depending only on Q such
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that (3.1.6), i.e.,
sup ||[N(, 9| .(®) < ClIvoll (3.1.15)

0<t<Ty

holds for all L*-solutions (v,Vq) of (3.1.1)—(3,1.4) and vy € CZ(Q).

Nog

By a density argument with (3.1.15), we are able to construct a solution semigroup
S(#) for (3.1.1)—(3,1.4) on Cy,(€2). In particular, the estimate

sup ][Vl () < Cllvolleo

0<t<Ty

from (3.1.15) shows that this semigroup is analytic on Cy ,(£2). Let us give a precise form
of our result which includes Theorem 3.1.1 as a particular example.

Theorem 3.1.3 (Analyticity for a general domain). Let Q be a strictly admissible, uni-
formly C3*-domain in R". Then, the Stokes semigroup S (t) is uniquely extendable to a
Co-analytic semigroup on Cy (). Moreover, the estimate (3.1.15) holds with some C > 0
and Ty > 0 forv = S(t)vy, vy € Co(2) with a suitable choice of pressure q.

Although there are several results on analyticity of S (f) on L!_ for various domains such
as a half space, a bounded domain [28], [56], an exterior domain [12], [36], an aperture
domain [20], a layer domain [3], a perturbed half space [19], the result corresponding to
Theorem 3.1.3 is available only for a half space [14], [44], [59] (and the whole space,
where the Stokes semigroup agrees with the heat semigroup).

This chapter is organized as follows. In Section 2, we define L*-solutions and prove
the harmonic-pressure gradient estimate (3.1.11) for all L*-solutions. In Section 3, we
derive local Holder estimates both interior and up to boundary which are key to derive
necessary compactness for a blow-up sequence. In Section 4, we prove the a priori esti-
mates (Theorem 3.1.2) by a blow-up argument. As an application we prove Theorem 3.1.3
(and Theorem 3.1.1 as a particular example).

3.2 L*-solutions and the harmonic-pressure gradient es-
timate

In this section, we define L*-solutions and prove that the harmonic-pressure gradient es-
timate (3.1.11) for all L*-solutions in a strictly admissible domain. As discussed later in
Section 4, if initial data is sufficiently regular, an L"-solution agrees with an L*-solution.

In order to define an L™ -solution, we recall the space L;’(Q2) defined by

Ly (©Q) = {f € L™(Q)

ff Vedx =0 forall ¢e WH(Q) }
Q
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where W'!(Q) denotes the homogeneous Sobolev space W"'(Q) = { ¢ € L! (Q) | Vo €

loc

L'(Q) }. Note that L>(Q) is larger than Cy(Q2) and includes non-decaying functions.
Although the existence of L*-solutions is unknown in general, L*-solutions uniquely exist
on an exterior domain and a perturbed half space as discussed later in Chapter 4.

Definition 3.2.1 (L*-solution). Let ©Q be a domain in R", n > 2, with Q # 0. Let
(v,Vq) € C>'(Qx(0,T]) x C(Qx (0, T]) satisfy (3.1.1)=(3.1.3) and (3.1.4) for vy € LZ(Q)
in the sense that v(-, ) — vy weakly-* on L*(Q) as ¢t | 0. We call (v, Vgq) L*-solution if
(3.1.5) and

1'2do(x)|\Vg(x, 1) (3.2.1)

are bounded in Q x (0, T).

The bound for (3.2.1) implies that the pressure g(-, ) is a weak solution of (3.1.12).
Thus, the harmonic-pressure gradient estimate (3.1.11) holds for all L*-solutions provided
that Q is strictly admissible.

Lemma 3.2.2 (Harmonic-pressure gradient estimate). Let Q be a domain in R", n > 2,
with C?-boundary. Let (v,Vq) be an L*-solution for (3.1.1)—(3.1.4) in Q x (0, T). Then,
q(-, 1) is a weak solution of (3.1.12) for W(v) = —(Vv — VIV)nqg. Assume that Q is strictly
admissible. Then, the estimate

IVgleoa(®) < CallWW)llw.00(?) (3.2.2)
holds for each t € (0,T). The constant Cq, is invariant of translation and dilation of Q.

We shall show that the pressure g solves the Neumann problem (3.1.12) for W(v) =
—(Vv — VI'v)ng. We prepare the following:

Proposition 3.2.3. Let Q be a domain in R", n > 2, with C*-boundary. Set
W =—(g~g"ng (3.2.3)

for a tensor-valued function g = (gij)i<i j<n € CY(Q). Then W - ng = 0 on 0Q and

divaoW = > (nd; = n},0))gi;. (3.2.4)
i.j

Proof. Since 0Q is C?, —Vdq, is a C'-function near Q and agrees with ng on Q. We
extend ng by —Vdg. We may assume W is a C'-function near Q. By multiplying nq, to
W, it follows that

W-ng=- Zg,-jnézné + Zgijné!nf2 =0.
ij ij
We shall show (3.2.4). Since VygoW' = VW — no(VW - ng), it follows that

divaoW = divW = > 0 Winiynl,.

i,j
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We show that

divw = Z(n;a i — 188, (3.2.5)
Z 8;Winin! = (3.2.6)

The equalities (3.2.5) and (3.2.6) imply (3.2.4). We first show (3.2.5). Take the divergence
to Win (3.2.3) to get

leW = Z(azgz] a gﬂ)ng Z(gl] gﬂ)a nQ

= - Z(”Q ngai)gij - Z(gij - gji)aing~
i,j

The second term vanishes since 0 jné2 = 0in£2 by ng = —Vdg. In fact, it follows that

Z(gij — gi)dinl, = Z(gij - 8i)0ng,

iJ ij

== Z(gij - gji)ainéz-
ij
Thus, (3.2.5) holds. It remains to show (3.2.6). Since
oW = - Z(aigjk — Biging, — Z(gjk — g0,
k k

for i, j € {1,--- ,n}. By multiplying n’Qné2 to the both sides and summing up with respect
to i and j, we have

Z a W]I’l nQ - Z(atg]k 0; gk])nQnQn Z(gjk gkj)a nQnQn

i,j,k i,k

= - Z(algjk 0 gkj)nQnQnQ

i,j.k

Here, we use ); dininly = lnl/2 = 0 since |n| = 1 near 9Q. By replacing k and j, we
have

Z(aig ik — 0i8k ])ngnlgné = Z(aigk j—0ig jk)nénéz”]fz
i,jk i,jk

== Z(aig jk = Bigkj)n’énézné-

i,jk

Thus, (3.2.5) holds. The proof is now complete. O
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Proof of Lemma 3.2.2. By taking the divergence to (3.1.1) and multiplying ng to (3.1.1),
we observe that the pressure g solves the Neumann problem,

Ag=0 inQ, 0q/dng=Av-ng ondQ,

where v - ng = 0 on dQ is used. Since div v = 0 on €, it follows that

_ 20 200
Av - ng = E IV'ng + E 0;v'ng,
i

J#i
_ 2000 _ Aini
= E dV'ng Z@ﬂ,v ng

J#i J#i

= Z(l’léa, - nézaj)a,-vj.
i.j

By Proposition 3.2.3, the right-hand side agrees with divgoW for W(v) = —(Vv — VIv)ng.
Since Vq(-, 1) € L7 () by the definition of an L*-solution, (-, f) is a weak solution of the
Neumann problem (3.1.12) for W(v). Since Q is strictly admissible, (3.2.2) holds with the
dilation invariant constant Cq. The proof is now complete. |

Remark 3.2.4. (i) The estimate (3.2.2) also holds for the Robin-type boundary condition,
i.e.,v-ng = 0on dQ and

QVeap + (D(V)I’lg)tan =h ondQ

for a tangential vector field 4 and @ > 0, where D(v) = (Vv + Vv)/2 denotes the deforma-
tion tensor and f,, denotes the tangential component of the vector field f (see, e.g., [53],
[51] for the Robin-type boundary conditions).

(ii) Actually, the statement of Lemma 3.2.2 holds with C!-boundary since by integration
by parts, we are able to prove that pressure of an L*-solution is a weak solution for the
Neumann problem (3.1.12) (without applying Proposition 3.2.3).

3.3 Local Holder estimates for the Stokes equations

The goal of this section is to establish local Holder estimates for second spatial deriva-
tives and a time derivative of velocity solving the Stokes equations both interior and up to
boundary. This procedure is a key to derive necessary compactness for blow-up sequences.
Unlike the heat equation the result is not completely local even interior case since we need
a uniform Holder estimates in time for pressure gradients. For this purpose, we invoke the
strictly admissibility of domains.
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3.3.1 Interior Holder estimates for pressure gradients

We use conventional notation [41] for Holder (semi)norms for space-time functions. Let
f = f(x,t) be areal-valued or an R"-valued function defined in Q = Q X (0, T'], where Q
is a domain in R”. For u € (0, 1) we set several Holder semi-norms

[F 1y 0) = sup{| 0, 1) = £Cx, )] It = s
180 = sup{|£(v,0) - F@. 0l =¥ | .y € Qx 2],

t,s€(0,T],t+ s},

and
(15 = SupLF 1m0, L1 = SupL 1500

In the parabolic scale, for y € (0, 1), we set
/2 2
197" = 11757 + 105 -
For later convenience, we also define the case y = 1 so that
L1517 = IV fllso + 1507 -

If [ = [I] + y where [[] is a nonnegative integer and y € (0, 1), we set

157" = ), 10595

led+2B=[1]

and the parabolic Holder norm

Ll/2 Ll/2
AG = > 100 flisigy + [£1577

lal+2B<[1]
When f is time-independent, we simply write [ f]ff,‘)Q by [ f]g(’;) .

Lemma 3.3.1. Let Q be a strictly admissible, uniformly C*-domain in R". Then there
exists a constant M(Q) > 0 such that

M
[da(0Val'h? < = sup{(Ivllu) + IVVlu ()t | 6 < 1 < T}

holds for all L™ -solutions (v,Vq) of (3.1.1)~(3.1.4) and all 6 € (0,T), where Qs = € X
(0, T). The constant M can be taken uniform with respect to translation and dilation, i.e.,
M(AQ + xo) = M(Q) for all A > 0 and x, € Q.

Proof. By an interpolation inequality (e.g. [65], [40, 3.2]), there is a dilation invariant
constant C such that for any € > 0O the estimate

IVVleo(®) < &llVVllea(2) + (C/ )Vl (1)
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holds. Since our solution is an L*-solution, g(:,f) — ¢(:, s) solves the Neumann problem
(3.1.12) for W(v(-, 1) — v(-, 5)). Since € is strictly admissible, we have

do(0)|Vq(x, 1) = Vq(x, )| < CQ[VOC0) = v ),
< C(Q)[e max (V@) [IV2V]leo(s)) + (C/)||[v(, ) = v, 9)|| ]
Since
[V, 8) = vC, 9|, < 1t = s| sup{lIville(r) | T is between ¢ and s},
1
<t = sl < sup{riivlle(r) |6 <r<T}

for t, s > &, the desired inequality follows by taking & = |t — 5|!/2. Since Cq, is also dilation
and translation invariant, so is M(£2). O

Proposition 3.3.2 (Interior Holder estimates). Let Q be a strictly admissible, uniformly
C?-domain in R". Takey € (0,1), § > 0, T > 0, R > 0. Then, there exists a constant
C=C(M(Q),6,R,d,y, T) such that the estimate

(V57 + 137 + (Vg1 < CNy (3.1

holds for all L*-solutions (v,Vq) of (3.1.1)—(3.1.4) provided that B,,(R) C Q and x, € €,
where Q' = B, (R) X (6, T] and d denotes the distance of B,(R) and 0€2. Here,

N7 = sup [N, @) ,(®) < o, (3.3.2)
O<t<T

and M(Q) is the constant in Lemma 3.3.1.

Proof. Since Vg is harmonic in Q, the Cauchy type estimate implies

C
sup  |V2q(x.0)| < —IVgllio@(@). By(R +d/2) € Q.
xeBxO(R+d/2)

where Cy depends only on n. This together with Lemma 3.3.1 implies

CoR’ 1

——— +M)=-Ny, R =R+d/2

y )5N1 /

forany xo € Q, R > 0,6 > 0, where Q” = B, (R + d/2) X (6/2,T]. By the standard local

Holder estimate for the heat equation, i.e.,

Vall? <

vv—Av=-Vqg in Q"

this pressure gradient estimate implies estimates for Vv, v, for Q' [41, Chapter IV, Theo-
rem 10.1]. o
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Remarks 3.3.3. (i) We are tempted to claim that if (v, g) solves the Stokes system (3.1.1)-
(3.1.2) without boundary and initial condition, then the desired interior Holder estimate
would be valid. Such a type estimate is in fact true for the heat equation [41, Chapter IV,
Theorem 10.1]. However, for the Stokes equations, this is no longer true. In fact, if we
take v(x,1) = g(¢) and p(x,1) = —g'(f) - x with g € C'[0, 00), this is always a solution of
(3.1.1)-(3.1.2) satisfying Ny, < oo for any 7, > 0. However, evidently, v, may not be
Holder continuous in time unless Vp is Holder continuous in time. This is why we use a
global setting with the strictly admissibility of a domain.

(i1) In the constant C the dependence of €2 is through M(€2) so it is invariant under a dilation
provided that d and R are taken independent of a dilation.

(ii1) The local Holder estimate (4.3.1) says that L*-solutions are Holder continuous both
interior an up to the boundary of Q and ¢ > 0, ie., v € C*"'"/2(Q x [6,T]), Vg €
cr/ 2(5 X [0, T]) for each 6 > 0; see Theorem 3.3.4 below for the estimate (4.3.1) up to
the boundary.

3.3.2 Local Holder estimates up to the boundary

The regularity up to boundary is more involved. We begin with the statement and give a
proof in subsequent sections.

Theorem 3.3.4 (Estimates near the boundary). Let Q be a strictly admissible, uniformly
C3-domain of type (a, 3, K) in R". Then, there exists Ry = Ro(a, 3, K) > 0 such that for
anyy €(0,1), 6 € (0,T) and R < Ry/2 there exists a constant

C=C(MQ),6,y,T,R,a,8,K)
such that (3.3.1) is valid for all L™-solution (v,Vq) of (3.1.1)-(3.1.4) with
Q' = Qrs = Qr X (0, T], Qur = By, (R)NQ
provided that xy € 0Q.

The proof is more involved. We first localize the Stokes equations near the boundary
by using cutoff technique and the Bogovskii operator [22, III.3] to recover divergence
free property. Then, we apply the global Schauder estimate for the Stokes equations in a
localized domain. As in the interior case, we use the strictly admissibility of a domain to
obtain the Holder estimate for pressure in time.

We begin with Holder estimates for ¢ in time since we are not able to control the Holder
norm of Vg up to the boundary.

Lemma 3.3.5. Assume the same hypotheses of Lemma 3.3.1. Then, there exists Ry =
Ro(a,B,K) > 0 such that for v € (0,1) and R € (0,Ry], there exists a constant Cy =
Co(M(Q),v,a, R, B, K) such that

[q15""? < CoNy /6 (3.3.3)
is valid for all L*-solutions (v,Vq) of (3.1.1)~(3.1.4) and Q" = Q' s for xo € 0L
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In order to show (3.4.3), we prepare basic facts for a distance function.

Proposition 3.3.6. Let Q be a uniformly C*-domain of type (., 8, K).

(i) There is a constant R, = R.(a,B,K) > 0 such that x € I'qg, = {x € Q| dq(x) < R}
has the unique projection x, € 0Q (i.e., |x — x,| = do(x)) and x is represented by x =
x, —dnq(x,) with d = do(x). The mapping x = (x,,d) is ClinTqg..

(ii) There is a positive constant Ry = Ri(a, 8, K) < R, such that Q, r, C U, pn(x0) and the
projection x,, of x € Q, g, is on xy + graph h.

(iii) For each R € (0,Ry) and v € [0, 1), there is a constant C = C(a, 3, K, R, v) such that

13(x) = 40| < Clldg Vil {|da)' ™ = da(x)'™

+1x =yl / max(do(x)", da(»)")]
for X,y € QX(),Ra
forall g € C'(Q) and x, € 6Q.

Proof. (i) This is nontrivial but well known. See, e.g., [26] or [39, 4.4].

(11) This 1s easy by taking R smaller. The smallness depends on a bound for the second
fundamental form of 9Q.

(iii) For x € Q, r (R < R;), we consider its normal coordinate (x,,d). Since Q. r C
Uapn(Xo), there is unique x;, € R"! such that x, = (x7,, h(x,)). Moreover, we are able to
use (x),,d) as a coordinate system. For x,y € Q, ¢ with x = (x},da(x)), y = (¥}, da()))
with do(y) > do(x), we estimate

|a(x) - g < |a(x) - 3@)| + |a() - 30|

with z = (x,, da(y)). Thus we connect x and z by a straight line which parallels to no(x,)
and observe that

60 — 42| < I2 — o f e

da) |
< [ sl
d,

a(x)

< (da(@'™ = do(0) Ndg V=@ (1 =)™

It remains to estimate |G(z) — g(y)|. We connect z and y by a curve C,, of the form,

doVa(x,)

dr,x, =x(1-7)+7z 0<7t<1

C., = {X(T) ‘ 0<7<I1, x(1) = x,(1 = 7) + 7y}, do(x(1)) = dg(y)},

so that the projection in R""! is a straight line connecting x;, and y;,. We now estimate

1
|4(2) - g < f - dgy(VIV|(x) dH' (x)
& do(y)

dg(y)vﬂl (Coplldo Villr=-

Since H'(C,,) < Clx, — y,|, the proof is now complete. O
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Proof of Lemma 3.3.5. We take R; > 0 as in Proposition 3.3.6. For x, € 0Q, we take
Xo = X9 — %I’ZQ(X()). We may assume that ¢(Xo, ) = 0 for all # € (0, 7). Since

[da(x)' Vgl < (Ida()Vql'y?) @IVgllisw,)' ™

Lemma 3.3.1 implies that

1-v

M’Ny2
= t=s? for t,se (5Tl

|da(x) Vaex, )| g8 ) <
with g(x, 1, s) = q(x,1) — g(x, s). We now apply Proposition 3.3.6 (ii1) with y = X, to get

MVNTZI_V V/2

|g(x, 1) = q(x, )| < C(da(%0)'™ + |x, — Xolda(Fe) ™) It = s]

fort,s € (6,T]and all x € Q. z, R < Ry = R;/4. Since do(%y) = 2Ry and |x, — xo| < R,
the above inequality implies

[Q]Evé'z) = CONT/5, Co = C((ZRO)I_V + R(ZRO)_V)MVZI_V_

For the Holder estimate in space, we simply apply Proposition 3.3.6 (iii) with v = 0 to
get

lg(x, 1) = g, )| < ClIVall=@@)(|da®) — da(x)| + Ix, = y,))
< C”VQHL‘”(Q)(INX - yla X,y € QXO,Ra R < R()a re (Oa T)

This implies

[41Y), < CoNt/6,

so the proof is now complete. O

3.3.3 Helmholtz decomposition and the Stokes equations in Holder spaces

To prove local Holder estimates up to boundary (Theorem 3.3.4), we recall several known
Holder estimates for the Helmholtz decomposition and the Stokes equations established
by [56], [61] via potential theoretic approach. We recall notions for the spaces of Holder
continuous functions. By C?(Q) with ¥ € (0, 1), we mean the space of all continuous
functions in Q with [ f ]g) < oco. Similarly, we use C?/?(Q) for the space of all continuous

functions in Q with [ f](Q”/ ) < oo,

Proposition 3.3.7 (Helmholtz decomposition). Let Q be a bounded C**”-domain in R"
withy € (0, 1).

(i) For f € C"(Q) there is a (unique) decomposition f = fy + VO with f;, VO € C"(Q)
such that

f fo-Vedx=0 forall ¢eC™(Q). (3.3.4)
Q
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(ii) There is a constant Cy > 0 depending only on vy and Q only through its C**" regularity
such that

ol +IVOIY < Cy | fIY for all f € C7(Q). (3.3.5)

(iii) For each € € (0,1 — ) there is a constant C}; > 0 depending only on y,e and Q only
through its C** regularity such that

Ifo |(77/2) + |V(D|(77/2) < CH |f|(7+s = )fOI” all f € C7+€’(7+€)/2(Q), (3.3.6)

Proof. The part (i) and (ii) are established in [56], [61]; the dependence of the constant is
not explicit but it is observed from the proof.

In [61, Corollary on p.175], it is proved that the left hand side of (3.3.6) is dominated
by a (similar type) constant multiple of

S0 4 I(f(x D - f(x ) = (F0, D) = £, 9))|
)

e e =y -1 = o

(3.3.7)

for arbitrary u € (0, 1). By the Young inequality, we observe to get

1 <€ 1 LY 1
X —ylele = sP2 T y+elx -yt y+ep— g

Thus, we take u = & to see that the second term of (3.3.7) is dominated by

(y”)

2¢e (Y+8) 2
H+ —— .
vre Sup [flg (@ v P f o )

Thus, the estimate (3.3.6) follows and (iii) is proved. O

Remark 3.3.8. The operator f — f is essentially the Helmholtz projection P for Holder
vector fields since (3.3.4) implies that div f = 0in Q and f - ng = 0 on 9Q. The estimate
(3.3.5) shows the continuity of P in the Holder space C”(Q). However, it is mentioned in
[61] (without a proof) that P is not continuous in C**/2(Q). In other words, one cannot
take £ = 0 in the estimate (3.3.6).

We next recall Schauder type estimates for the Stokes system:

~Av+Vg=fy in Qx(0,T), (3.3.8)
divi=0 in Qx(0,7T), (3.3.9)
y=0 on 0Qx(0,T), (3.3.10)

v=0 on Qx{r=0}. (3.3.11)
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Proposition 3.3.9. Let Q be a bounded C**"-domain in R" with y € (0,1) and T > 0.
Then, for each f, € C"/*(Q) satisfying (3.3.4) there is a unique solution (v,Vq) €
CHrIY2(Q) x C*'2(Q) (up to an additive constant for q) of (3.3.8)—(3.3.11). More-
over, there is a constant Cg depending only on y, T and Q only through its C**”-regularly
such that

vlp 7+ IVgly " < Cslfoly™™ (33.12)

Remarks 3.3.10. (i) This result is a special case of a very general result [61, Theorem
1.1], where the viscosity constant in front of A in (3.3.8) depends on space and time and
the boundary and initial data are inhomogeneous. Note that the divergence free condition
(3.3.4) for f; is assumed to establish (3.3.12).

(ii) If the domain is a bounded C3-domain, clearly, it is a uniformly C*-domain of type
(a, B, K) with some («, B, K). The constants Cy, C}, and Cs in Propositions 3.3.7 and 3.3.9
depends on Q only through this (@, 8, K) when Q is a bounded C*-domain (which is of
course a C>*”-domain for all y € (0, 1)).

3.3.4 Localization procedure

We shall prove Theorem 3.3.4 by Lemma 3.3.5 and a localization procedure with necessary
Holder estimates (Propositions 3.3.7 and 3.3.9). We first recall the Bogovskii operator Bg
in [10]. Let E be a bounded subdomain in Q with a Lipschitz boundary. The Bogovskii
operator Bg is a rather explicit operator, but here we only need a few properties. This
linear operator By is well-defined for average-zero functions, i.e., fE gdx = 0. Moreover,
divBg(g) = g in E and if the support spt g C E, then, spt Bg(g) C E.

The operator Bg fulfills estimates

||BE(g)||Wl,p(E) < Cpllgllrre) for g € LP(E) satisfying j};gdx =0, (3.3.13)

1BE@Il,1, < Colglly; e, for b€ Wy (E) = (W (E)), (33.14)

with some constant Cp independent of g, where 1/p" + 1/p = 1 with 1 < p < co. In
particular, By is bounded from L (E) = {g € L?(E)}| fE gdx = 0} to the Sobolev space
WUP(E). The result (3.3.14) is a special case of that of [23, Theorem 2.5] which asserts
that By is bounded from W, (Q) to Wg”’p (Q) for s > =2 + 1/p. The bound Cp depends
on p, but its dependence on E is through Lipschitz regularity constant of 0E.

Proof of Theorem 3.3.4. We take R, as in Lemma 3.3.5 and take R < R(/2. For xy € 0€,
we take a bounded C>-domain Q’ such that Q. 3rp2 C Q" C Q, 2r. Evidently, 0Q,, g N 0Q
is strictly included in 92" N 9Q2. Moreover, one can arrange that Q' is of type (o/,8’, K’)
such that (¢’,f’, K) depends on (a,f, K) and R. Such Q' is constructed, for example, by
considering Q" = Q, 7z and mollifying near the set of intersection 0B,,(7R/4) and 0
in a suitable way to get Q'.



3.3. LOCAL HOLDER ESTIMATES FOR THE STOKES EQUATIONS 51

Let 0 be a smooth cutoff function of [0, 1] supported in [0, 3/2), i.e., 8§ € C*[0, o) such
thatd = 1on [0, 1]and 0 < 6 < 1 withspt8 C [0, 3/2). We set Og(x) = 0(|x—xo|/R) which is
a cut-off function of Q, x supported in Q’. Because of construction, its derivatives depend
only on R. We also take a cutoff function p;s in time variable. Let p € C*[0, co) satisfies
p=1lon[l,c0)and p =0o0n[0,1/2) with0 < p < 1. For 6 > 0 we set ps(t) = p(t/5). We
set & = Ogps and observe that u = v€ and p = gé solves

u,—Au+Vp=f divu =g,
inU =" x(0,T) with
f=vE =2V - VE—VAE + gVE, g = VvVE (= div(vé)).

We next use the Bogovskii operator By so that the vector field is solenoidal. We set
u* = Bo/(g) and &t = u — u*. Then, (i1, p) solves

i, —Aii+Vp=f,divi=0inU,
with f = f + u* — Au*. We shall fix Q' so that C},in (3.3.6) and Cy in (3.3.12) depends on

Q' only through (a, 8, K) and R. If we know f € C7+‘9’¥(U) with € € (0,1 — ), then, by
the Helmholtz decomposition in Holder spaces (Proposition 3.3.7), one finds f = f, + V®

with f, € C/?(U) satisfying (3.3.4) and
fol) + IV®@ly) < Cyl fliyers (3.3.15)

where we use a short hand notation ||, = |f I(J”/ Y If we set p = p— @, then (i1, p) solves
(3.3.8)—~(3.3.11) with Q = Q’, where f; satisfies the solenoidal condition (3.3.4). Applying
the Schauder estimate (3.3.12) yields

litl 2+y) + IVPley < Cslfoly- (3.3.16)

By definition of f, we observe that

|f|(’)’+8) < |f|(y+£) + |u:|(y+£) + |Au*|('y+8)
y+e

(y+e,5-)
Vg +ld

(r+e.5%)
x(§.7]

(r+e.5%)

< CO(|V|Q'><(g,T]

) + |u*|(2+y+a)

with ¢y depends only on R, 7', 6 and y + €. Since N7 in (3.3.2) is finite, by an interpolation
inequality as in the proof of Lemma 3.3.1, we have |Vv|§,]Q/§) < CNr/6 with C depending
only on (a,8,K). We now apply this estimate together with estimate (3.3.3) for ¢ in
Lemma 3.3.5 to get

Ifl('y+8) < Cv]VT + |u*|(2+y+s)’ (3317)

with a constant C = C(M(Q),y + €, a,8, K, R, §). Since
2+v,1 2 ~ #
MG <ty < litlasy) + [0y

/2 ~
Vgl < 1V ply) + IVl
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the desired estimates follow from (3.3.15)-(3.3.17) once we have established that
|u*|(2+y+€) < C‘ZVT

with C = C(M(Q),y + &, @,B, K, R, 5).
We shall present a proof for
[u;1%)? < CNy, (3.3.18)

for u € (0, 1) since other quantities can be estimated in a similar way and even easier. By
(3.3.13) and (3.3.14), we have

[t lrery < Colldiv tellyyin gy (3.3.19)

e/ llw1r @y < Calldiv ullzrry. (3.3.20)

To estimate ||div u|| -1 we use the equations v, — Av + Vg = 0 and div v = 0. For an
0

()’
arbitrary ¢ € W' (Q’), we have

f "pdiV”'dx:f(QOVI'V§+90chz'V)dx
Q, Q/
:f(‘pv‘f'(AV_VQ)"'(PV&'V)dx
Q/
:f {— Z 0., (V&) - 0,,v + q div(pVE) + pV&, - v} dx
o

+ f (o VE - dv/Ong — qp O dngy} dH™ .
o

This implies

| f @ div udy] < C{IVvle + llgllo + Wkl + lelloeen) — (3321)
Q/

with C, depending only on R and 6 (independent of 7), where L*-norms are taken on €.
By a trace theorem (e.g. [15, 5.5, Theorem 1]), there is a constant C (depending only on
Lipschitz regularity of the domain) such that

lleollioary < Cll@llwigy)-

By the Holder inequality [|¢llwiiq) < C'llgllwiry with C” depending on the volume of
Q. Thus, (3.3.21) yields

Idiv uilly-1r 0y < CollVVlleo + ligllee + 1IVileo)
with Cy depending only on ¢, R and Q' through its (a, 8, K). By (3.3.19), this yields

47Nl < CaColllVVls + llglleo + [IVileo)- (3.3.22)
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We next estimate ||u;||y1.,. By (3.3.20), a direct computation shows that
e lwrrry < CoCa(IIVIleo + 11Villeo) (3.3.23)

since div u, = div 0,(év) = 0,(V&€ - v) by divv = 0.
We now apply the Gagliardo-Nirenberg inequality (e.g. [27]):

1} o < ellif 157 1} 51 e O = 2/,
to (3.3.22) and (3.3.23) to get
”M;kHoo < Cl CB(”v”oo + ”vtlloo)o—(llvvlloo + ”V”oo + ”q”oo)l_o—

with C; depending only on ¢, R and Q' through its (@, S, K). We replace u* by u*(-,1) —
u*(-, s) and observe that

(. 0) = u; (- 9)|| . < CLCB(|VvC. 1) = WG 9| + [lat 0 = aC. 9|
v(, 1) = v(, 8)|| ) TT@Nr/E A 8)7, 15> 0, (3.3.24)

+]
where t A s = min(t, s). As observed in the end of the proof of Lemma 3.3.1, we have
(1/2)
[Vv][’Qﬁ < CNz/o.
By (3.3.3), we now conclude that

") ) ’_ H
t,Q'X(%,T] + Sup[CI] S CNT/&, l,[ =

ey HYXGETI 2(1-0)

sup[Vv]

xeQY
provided that ¢/ < 1/2 (i.e. p > n/(1 —u)). Dividing both sides of (3.3.24) by |t — s|*/> and
take the supremum for s, > 6/2 to get (3.3.18) since u* = 0 for t < §/2. O

3.4 Blow-up arguments - a priori L™ estimates

In this section, we shall prove Theorem 3.1.2 by a blow-up argument. We then derive The-
orem 3.1.3 which deduces Theorem 3.1.1 since a bounded domain is strictly admissible.

3.4.1 A priori estimates for L*-solutions

Proof of Theorem 3.1.2. We argue by contradiction. Suppose that (3.1.15) were false for
any choice of Ty and C. Then, there would exist an L*-solution (v,,, g,,) of (3.1.1)-(3.1.4)
for vo = vo, € Co, (€2) and the sequence 7, | 0 (as m — o0) such that [[N(vyu, gu)lleo(Tim) >

m||[Vomlle. There is ¢,, € (0, T,,) such that

1
NG @ () 2 5 M My, = sup NG, gu)]| (-

<t<Tp,
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Note that M,, is finite for the L*-solution (v,,, Vg,,). We normalize (v,, g,,) by defining
Vm = V/Myy Gm = gm/M,,. Then, (¥, §,) enjoys estimates (3.1.7)—(3.1.9). Since Q is
strictly admissible, (3.1.7) implies that there is a dilation and translation invariant constant
Cq independent of m such that

sup{t'2do(x)|VGu(x, D] | x € Q.1 € (0,1,)} < Co. (3.4.1)

We rescale (V,,, §,,) around the point x,, € Q satisfying (3.1.10) to get the blow-up sequence
(U, pm) of the form,

1 1 1
U (X, 1) = V(X + 13X, )y, Pi(X, 1) = E0Gm(X + 13X, Eyl).

By the scaling invariance of the Stokes equations (3.1.1)—(3.1.2), this (u,,, p,,) solves the
Stokes equations in a rescaled domain €, X (0, 1], where

x=(-— x,,,)/t,ln/z, y € Q.

It follows from (3.1.7), (3.4.1) and (3.1.10) that

Q,={xeR"

SUP || N s pon)| o, < 1 (3.4.2)
0<t<1 "

sup{t'do,, (X)IVpu(x, D] | x € Q,,0 <t < 1} < Cq, (3.4.3)
N(tty, p)(0,1) > 1/4. (3.4.4)

Moreover, for initial data vy, the condition (3.1.9) implies [[ugn|l.~q,) — O (as m — o).
The proof is divided into two cases depending on whether or not

Cm = dQ(xm)/tyln/2

tends to infinity as m — oo. This ¢,, is the distance from zero to 99, i.e., ¢, = dg, (0).

Case 1.1im,,_,0C,y = c0. We may assume that lim,,_,.. ¢,, = co by taking a subsequence. In
this case, the rescaled domain Q,, expands to R". Thus, for any ¢ € C2(R" X [0, 1)), the
blow-up sequence (u,,, p,) satisfies

1
f f {thn - (@1 + Ap) = Vp,, - @} dxdr = — f u,(x,0) - o(x,0)dx
0 Jrr R"

for sufficiently large m > 0. By (3.4.2) and Proposition 3.3.2, we have a necessary com-
pactness to conclude that there exists a subsequence of solutions still denoted by (u,,, p,,)
such that (u,,, p,,) converges to some (u, p) locally uniformly in R” X (0, 1] together with
Vi, Vi, 0;ty, Vp,,. (Note that the constant C in (3.3.1) is invariant under dilation and
translation of Q so (3.3.1) for (u,,, p,,) gives equi-continuity of V2u,,, Uy and Vp,,.) Since
foreach R > 0,

inf{do, (x) | IXl <R} > 00 as m — oo,
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the estimate (3.4.3) implies that Vp = 0. Thus, the limit u € C(R" x (0, 1]) solves

1
ffu-(got+Ago)dxdt:0
0 Jr

for all p € C°(R"X[0, 1)) since |[uomllz~q,) — 0asm — oo. Since u is bounded by (3.4.2),
by the uniqueness of the heat equation, we conclude that u = 0. However, (3.4.4) implies
N(u, p)(0,1) > 1/4 which is a contradiction so Case 1 does not occur.

Case 2.1im,,_,.c, < co. By taking a subsequence, we may asuume that c,, converges to
some ¢y > 0. We may also assume that x,, converges to a boundary point x € 9Q. By
rotation and translation of coordinates, we may assume that X = 0 and that exterior normal
no(%) = (0,...,0,-1). Since Q is a uniformly C*-domain of type (a, 3, K), the domain Q
is represented locally near X of the form,

Qloc = {(x,a -xn) eR"

hx') < x, < h(X') + B, |X| < a},

with a C*-function /4 such that V'A(0) = 0, h(0) = 0, where derivatives up to third order of
h is bounded by K. If one rescales with respect to x,,, £, is expanded as

h(t,%y + x,) < 1,50 + (G < b6,y + x,) + B 11,°'] < .

m

Qm loc — {(y,’yn) € R"

Since do(x,,)/ (X)) — 1 as m — oo and x/, — 0, this domain Q,, ;,. converges to

m

R ={,x,)eR"

e X, > —Co}.

In fact, if one expresses

Qm loc = {(y,ayn) e R"

hn(Y') < Y < B+ hn(Y), 1] < @},

with @, = /6y, B = Bl hn(y)) = h(ty*Y + X.)/th* = (Xp)a/1y]%, then b, — —co
locally uniformly up to third derivatives and a,,, 8,, — 0. Note that |0 A,,| for u, 1 < |u| <
3 is uniformly bounded by K.

Thus, (4, p) solves (3.1.1)—(3.1.4) in Q,, 1oc X (0, 1]. By (3.4.2) and Theorem 3.3.4
we have a necessary compactness to conclude that there exists a subsequence (u,,, p;,)
converges to some (u, p) locally uniformly in R’L_CO x (0, 1] together with Vu,,, VZu,,,
Vp.. as interior case. (Note that Q,, is still of type (a, 8, K) which is uniform in m).

Now, we observe that the limit (u, p) solves the Stokes equations (3.1.1)-(3.1.4) in a

half space with zero initial data in a weak sense. In fact, since (u,,, p,,) fulfills

1
f f {thm - (@1 + Ap) — ¢ - Vp,,} dxdr = — f Un(x,0) - @(x,0)dx
0 n n

+.-¢( +.-¢(



56 CHAPTER 3. ANALYTICITY AND ESTIMATES FOR SECOND DERIVATIVES

for all ¢ € CZ(R!;_,, X (0,1)). We note that (3.5.2) and (3.5.3) are inherited to (u, p), in
particular,

sup{t”z(xn + ¢o)|Vp(x, 1) ' ¥ eR"™, x, > —co, t € (0, 1)} < Cq.

Since the convergence of u,, is up to boundary, the boundary condition is also preserved.
We thus apply the uniqueness to the Stokes equations in a half space (Theorem 1.1.1 in
Chapter 1) to conclude u = 0 and Vp = 0.

However, (3.4.4) implies N(u, p)(0, 1) > 1/4 which is a contradiction so Case 2 does
not occur neither.

We have thus proved (3.1.15). O

Remarks 3.4.1. (i) Actually, the a priori estimate (3.1.15) holds for vy € L7 (Q), i.e.,

sup [N, 9| .®) < Clvoll

0<<Ty

holds for all L*-solutions (v, Vg) and vy € L () in a strictly admissible, uniformly C 3
domain. The a priori L*-estimate, in particular, implies the uniqueness of L*-solutions
since (3.1.15) for vy = 0 implies v = 0 and Vg = 0. Note that in general, the existence of
L*-solutions is unknown. In Chapter 4, we prove the unique existence of L*-solutions for
exterior domains and perturbed half spaces by approximating vy € L (€2) by elements of
Co(Q).

(i1) Once we know the existence of the time 7T, > O such that (3.1.15) holds, we are able
to extend T, up to an arbitrary time. In fact, we are able to estimate L*-solutions (v, Vgq)
between T and 27, by applying the a priori estimate (3.1.15) again, i.e., the estimate

sup [N, @)|| (1) < CIMTo)llw

To<t<2Ty

holds, where C = C(T,) > 1 is the constant in (3.1.15). Thus, we have

2
sup |Vlleo () < C7[volleo.
0<t<2Ty

In a similar way, we are able to estimate other terms Vv, V2, 0,v, Vg. By an iteration
argument, we are able to extend the time T up to an arbitrary time.

3.4.2 Regularity for L"-solutions

We shall prove that an L-solution is indeed an L*-solution for sufficiently regular initial
data.
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Proposition 3.4.2. Let Q be a uniformly C*-domain in R". Let (v,Vq) be an L -solution
of (3.1.1)~(3.1.4) for r > n. Assume that vo € D(A,), where A, is the Stokes operator
in Z(’T(Q), i.e., —A, is the generator of the Stokes semigroup in I:(’T(Q). Then (v,Vgq) €
C>1(Qx (0, T x C(Qx(0,T]) and t'?do(x)|Vq(x, t)| is bounded in Q x (0, T). Moreover,
foreach T >0 we have

Os1t1pT||N(v, D) < o, (3.4.5)

i.e., (v,Vq) is an L*-solution.

Proof. We shall claim a stronger statement

sup {1Vl (6) + £ 29y 0) + 117>Vl (0) + 187l (1) + Vgl ()]

0<t<T

< Clvollpa,) (3.4.6)
with C = C(T, Q, r). Here, W&l’r is a uniformly local W' space defined by

W@ = {f € Ly@ | Vf e L@}, fllye = 1fllzg, + 1Vl
and

1/r
L(Q) = {f €L .(Q) | I£llzz, = sug( fg |f(y>|’dy) }

where Q, z = B,(R) N Q and R is a fixed positive number. The norm depends on R but the
topology defined by the norm is independent of the choice of R. The norm of the domain
D(A,) is defined by

||M||D(A,> = ||M||D(Q) + ||Aru||i’(Q)’ ||M||D(Q) = maX(”uHU(Q)’ ||M||L2(Q))

when r > 2. As proved in [16], [18], this norm is equivalent to the norm

I
lleel[2r ) = Z 10l -

17<2

Note that once we have proved (3.4.6), the bound (3.4.5) and v € C>'(Q x (0, T]) (also
Vg € C(Q x (0, T])) follow from the Sobolev embedding.
‘We shall prove (3.4.6). We first observe that by the analyticity of the semigroup S (¢) =
oA,
sup fl[villp, () < Cillvollpa,y
0<t<T

since A,v, = A,e7* A,v,. It is easy to see that

sup [Vllpi,) (@) < Callvollpa,)s (3.4.7)

0<t<T
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with C; depending only on 7', Q and r. Thus, we have proved that

sup (IVllwr) (@) + IVVIlg1r @) (@) + Hviller ) (®) < Callvollpa,) (3.4.8)
0<t<T
since D(A,)-norm and W>"-norm is equivalent.
To show (3.4.6), it remains to prove that

sup 1(11V°Vlly 1 (1) + IVglly 1 (1)) < Callvollpia, - (349)
0<t<T 4 4
We take R sufficiently small such that Q, 3z C U, zn(x0) for any x, € 0Q. We normalize g
by taking

1
o f g()dx, Q" = Q, 3.
Q/I

It follows from the Poincaré inequality [15, 5.8.1] that

q(x) = q(x) -

19117y < cllVallr @y, (3.4.10)
with ¢ independent of x,. Since Q is C* and (v, ¢) solves
-Av+Vg=-v,divv=0 in Q,

with
v=0 on 0Q"NaoQ,

the local higher regularity theory for elliptic systems (see [22, V]) shows that

3 2 A
VY@ + IVgllr@) < C(llvt”WL"(Q”) + |Vllwirry + g1l )

with Q" = Q, -z. Here the dependence with respect to ¢ is suppressed. The last term is
estimated by (3.4.10) so we observe that

||V3V||U(Q') + ||V26]||Lr(m < C(”Vt”W]v’(Q) + ||V||W'~’(Q) + ||V61||U(Q)) (3.4.11)

with C depending only on €, R and r but independent of x, € 0Q. If xy € Q is taken so
that B,,(2R) C €, then, interior higher regularity theory yields (3.4.11) with Q" = B, (R)
(by taking Q" = B, (2R)). Since Q is covered by Q, 1z, xo € 0Q2 and B, (R) with x; € Q
such that B,,(2R) C Q, the estimate (3.4.11) implies that

||V3V||L;1(Q) + ||V261||L;l(9) < C(||Vz||wl~rr(9) + ||V||wlm(g) + ||VQ||U(Q))- (3.4.12)
Since Vg = Q[Av] implies
IVl < C'lIAVIz- )

with C’ = C'(Q, r), the estimate (3.4.12) together with (3.4.8) now yields (3.4.9).
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It remains to show Vg(x) = Vg(x,-) € L7(Q). By the mean value formula, it follows
that

Vg(x) = JC Vg(y)dH"'(y) forx € Qand 7 = do(x).
B (1)

Apply the Holder inequality to get [Vg(x)| < C,/7" *IIVqllLsq) for s € (1,00), with the
constant C, independent of 7 = dg(x). If do(x) < 1 take s = r > n. If do(x) > 1, take
s = 2. Since Q is bounded on L"(Q), it follows that

IVqleoa(t) < CIAV] ) (2)

with the constant C,. By (3.4.9), t'/2|V¢|..4(?) is bounded in (0, T).

Since D(A,) ¢ W*"(Q), by the Sobolev embedding, vy € D(A,) c L2(Q). Since v — vy
ae. inQast | 0,v — vy weakly-* on L*(Q) as ¢t | 0. Thus, (v, Vg) is an L*-solution.
The proof is now complete. O

Although we use L’-theory in order to extend the Stokes semigroup S(f) to Co ()
on a uniformly regular domain, we can use L’-theory for domains where the Helmholtz
projection P acts as a bounded operator on L"(Q), r € (1,00). In fact, in Chapter 4 we
extend S (7) to L () for domains (I)—(III) by using the L"-theory. For this purpose, we
give the statement for L"-solutions.

Proposition 3.4.3. Let Q be a uniformly C*-domain, which admits the Helmholtz projec-
tion on L'(Q), r € (1, 0). Let (v,Vq) be an L"-solution for r > n. Assume that vy € D(A,),
where A, is the Stokes operator on L (€). Then, (v,Vq) € C*(QAX (0, TYxCEOQX(O,T]
and (3.4.5) holds. If in addition vy € D(A,), then t'*d(x)|Vq(x, t)| is bounded in Qx(0, T).
In particular, (v,Vq) is an L*-solution.

Proof. The estimate (3.4.6) is valid by replacing L"-norm to L"-norm since the L"-Helmholtz
projection as well as the analyticity of S (¢) on L’.(Q) are valid. Thus, (v, Vg) € C*'(Q x
(0,T]) x C(Q x (0,T]) and (3.4.5) hold for L"-solutions (v, Vg) for r > n. By (3.4.5) and
v—ovoonL'(Q)ast | 0,v — vy weakly-+ on L*(Q) as ¢ | 0 follows.

We use the assumption vy € D(A,) in order to show t'/2d(x)|Vq(x,1)| is bounded in
Q x (0, T). Since Q is bounded on L" N L?, it follows that

IVgleo.a(t) < C(|AVIILr ) () + 1AV 120 (2))-
Since ||v||y2r(q) 1s estimated by |[Vl|pa,) and A,v = e " A, vy, it follows that

sup |Vglea(t) < Clvollpa,) + Ivollpea,))-
0<t<T

Thus, t'/2dq(x)|Vg(x, t)| is bounded in Q x (0, T). O
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3.4.3 Analyticity of the Stokes semigroup on Co
We shall prove Theorem 3.1.3. To show Cy-property of the semigroup we prepare

Proposition 3.4.4. Let Q be a uniformly C*-domain in R". Let (v,Vq) be an L -solution
of (3.1.1)~(3.1.4) for r > n and vy € D(A,). Then,

ltil%1||v(-,t) — ||, =0. (3.4.13)

In other words,

tA

lim|le vy —v =0.
m | 0 = Volleo

Proof. By the Gagliardo-Nirenberg inequality, we have

||v(t) - v0||L°°(Q) = C”v(t) - vo”i:(gg) |v(t) - VO”?VU'(Q) (3.4.14)

with 8 = 1 — n/r, where v(t) = v(-, ). Since

Ifllwir < fllwer) < A2 < ClIfllpe, )

we have by (3.4.7) that
@ = voll 10y < C (VO s, + olliiy) < € vollgs, - (3.4.15)
Since e™™" is strongly continuous on L, (3.4.14) with (3.4.15) yields (3.4.13). O

Proof of Theorem 3.1.3. By Proposition 3.4.2, an L’-solution for v, € Ce, is an L™-
solution. By a priori estimate (3.1.15), the operator S (7) is uniquely extended to a bounded
operator S () on Cy- at least for a small ¢, i.e., ¢ € [0, T). Since S () is a semigroup on L,
we have

Se)St) =8 +1) asfaras t+1 < To. (3.4.16)

We extend S(f) tot > Ty by S(t) = §(t,)---S(t,,) so that t; € (0,Tg) and t; + -+ + 1, =
t. This is well-defined in the sense that S(¢) is independent of the division of ¢ by the
semigroup property (3.4.16). Thus, we are able to define the Stokes semigroup S () for
all # > 0 which we simply write by S (#) (since it agrees with S(7) on Cy, N L"). Our
estimate (3.1.15) is inherited to S (¢). Moreover, by the semigroup property, the estimate
(3.1.15) yields [IS (H)volle < Crllvoll With Cr independent of vy € Cy(Q) and ¢t € (0,7)
for arbitrary 7 > 0. Since dS (¢)/dt = S (¢ — 5)dS (s)/ds for s € (0, 1), the estimate (3.1.15)
together with an L* bound for S () yields

sup tH%S(z)voum < Chlvolles

with a constant C7. independent of vy € Cy,(€2). This implies that S(z) is an analytic
semigroup on Co ,(£2).
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It remains to prove that S (7) is a Co-semigroup on Cy(Q). Since C;,(£2) is dense on
Co,, (), for each vy € Cp(Q) there is vy, € C;,(Q) such that vy, — vg in L¥(2). Since
IS (Hvolleo < Crllvolle for 0 < £ < T we have

IS (v = vo|l, < |IS o = S @voul|, + [|S @OVom = vou|, + IVom = volleo
< (Cr + Dlvom = volleo + |S (Vo = vou]| .-
By Proposition 3.4.4, sending ¢ | 0 yields

tim [|$ (6w = vol |, < (Cr + Dilvon = volls

Letting m to infinity, we conclude that S (¢) is a Cy-semigroup on Cy ,(£2). O

Since a bounded domain is strictly admissible, Theorem 3.1.3 yields Theorem 3.1.1.
Moreover, S () is analytic semigroup on C(€2) for exterior domains and perturbed half
spaces since these domains are also strictly admissible as we proved in Chapter 2.

Remarks 3.4.5. (i) In general, we do not know whether or not S (¢) is a bounded analytic
semigroup in the sense that

H%memS§WNm (3.4.17)

for some C independent of ¢ > 0. When Q is bounded, one can claim such boundedness.
In fact, multiplying v with (3.1.1) and integrating by parts, we obtain an energy equality

1d, ., 2
7 g M@ + IVl = 0.

Since Q is bounded, the Poincaré inequality implies
2 2
VYl = VIVI,

with some v > 0. Thus,
2 -2 2
IS @wol|,> < e IIvoll7..

If Q is sufficiently smooth, by the Sobolev inequality and the property of the Stokes semi-
group in L? (see [55, I11.2.1]), we have

”S (t)v()”Loo < C1||S (t)V()”Wzk.z < C2||A1§S(I)Vo||L2

for an integer k > n/4 with C; (j = 1,2,...) independent of 7 and v, € L?,(Q). Since S (¥)
is analytic semigroup in L2, this yields

IS o[, < C3||S = Dyvg||,, for > 1.
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We have thus proved that
IS (#vol . < Cae™lIvollzz < Cse™|Iolly, £ > 1. (3.4.18)

Similarly,

H%S(ﬂ‘@“ < ClniS(t)vO‘ < Cz||A’§“S(t)v0||L2 < CoeIvollpe for 13 1.

L dt

Wak2

Since d C
HaS(I)von < T7||VOHOO for r<1,

this yields (3.4.17). Thus, S(7) is a bounded analytic semigroup in Cy(€2) and L ()
(see in next the section) when Q is a smoothly bounded domain. If one uses the L’-
theory (r > n) instead of L2-theory, the result is still valid for a bounded domain with C>-
boundary.
(i1) Since we have (3.4.18) for ¢t > T, > 0, our a priori estimate (3.1.15) in particular
implies that

IS (tvo||. < Clvolle forall >0, vy € Co(Q)

with C depending only on Q when Q is bounded. This type of results is often called a
maximum modulus result which is available in the literature.

The maximum modulus theorem is first stated in [66] when Q is a bounded, convex
domain with smooth boundary for vy € C,(£2). Later, a full proof is given in [57]. It is
extended by [58] for a general bounded domain with C*>-boundary. It is extended by [43]
for vy € Cp () but AQ is assumed to be C>** with y € (0, 1).

By our extension to L space in the next chapter, we conclude that

IS @o|,, < Cllvollaes vo € LS(€)

for all t > 0 with C depending only on Q when Q is bounded and of C? boundary.

(iii) It is interesting to discuss whether or not our semigroup S (¢) is an analytic semigroup
of angle /2, i.e., it is extendable as a holomorphic semigroup in Re ¢ > 0. Our results
say that S(7) is angle € for some € > 0. If we are able to prove (3.1.6) for Re # € (0, T))
with |arg 7| < a for @ € (0,7/2) where analyticity is valid, then, we conclude that S () is
angle /2. This idea would work provided that the Schauder type estimate for complex ¢
with |arg 7| < € would be available. It is of course likely but there seems to be no explicit
reference. In Chapter 5, we shall prove a necessary resolvent estimate to conclude that S (¢)
is an analytic semigroup of angle /2 (without proving (3.1.6) for complex parameter).



Bibliography

[1] K. Abe, Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions,
Acta Math., to appear

[2] K. Abe, Y. Giga, The L*-Stokes semigroup in exterior domains, J. Evol. Equ., to
appear

[3] T. Abe, Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer,
J. Math. Soc. Japan 55 (2003), 469-497.

[4] H. Abels, Nonstationary Stokes system with variable viscosity in bounded and un-
bounded domains, Discrete and Continuous Dynamical Systems, Series S, 3 (2010),
141-157.

[5] H. Abels, Y. Terasawa, On Stokes operators with variable viscosity in bounded and
unbounded domains, Math. Ann. 334 (2009), 381-429.

[6] P. Acquistapace, B. Terreni, Holder classes with boundary conditions as interpolation
spaces, Math. Z. 195 (1987), 451-471.

[7] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Second edition, Elsevier, Amsterdam,
2003.

[8] W. Arendt, R. Schitzle, Semigroups generated by elliptic operators in non-
divergence on Cy(€2), preprint

[9] H-O. Bae, B. J. Jin, Existence of strong mild solution of the Navier-Stokes equa-
tions in the half space with nondecaying initial data, J. Korean Math. Soc. 49 (2012),
113-138.

[10] M. E. Bogovskii, Solution of the first boundary value problem for the equation of
continuity of an incompressible medium, Dokl, Akad. Nauk. SSSR, 248 (1979),
1037-1040 (Russian); English translation in Soviet Math. Dokl. 20 (1979), 1094—
1098.

63



64 BIBLIOGRAPHY

[11] M. E. Bogovskii, Decomposition of L,(€2, R") into the direct sum of subspaces of
solenoidal and potential vector fields, Dokl. Akad. Nauk. SSSR, 286 (1986), 781-
786 (Russian); English translation in Soviet Math. Dokl. 33 (1986), 161-165.

[12] W. Borchers, H. Sohr, On the semigroup of the Stokes operator for exterior domains
in L7-spaces, Math. Z. 196 (1987), 415-425.

[13] E. De Giorgi, Frontiere orientate di misura minima, Seminario di Matematica della
Scuola Normale Superiore di Pisa 1960—61. Editrice Tecnico Scientifica, Pisa, 1961.

[14] W. Desch, M. Hieber, J. Priiss, L”-theory of the Stokes equation in a half space, J.
Evol. Equ. 1 (2001), 115-142.

[15] L. C. Evans, Partial differential equations, Second edition, American Mathematical
Society, Providence, Rhode Island, 2010.

[16] R. Farwig, H. Kozono, H. Sohr, An L?-approach to Stokes and Navier-Stokes equa-
tions in general domains, Acta Math. 195 (2005), 21-53.

[17] R. Farwig, H. Kozono, H. Sohr, On the Helmholtz decomposition in general un-
bounded domains, Arch Math. 88 (2007), 239-248.

[18] R. Farwig, H. Kozono, H. Sohr, On the Stokes operator in general unbounded do-
mains, Hokkaido Math. J. 38 (2009), 111-136.

[19] R.Farwig, H. Sohr, Generalized resolvent estimates for the Stokes system in bounded
and unbounded domains, J. Math. Soc. Japan 46 (1994), 607-643.

[20] R. Farwig, H. Sohr, Helmholtz decomposition and Stokes resolvent system for aper-
ture domains in L? spaces, Analysis 16 (1996), 1-26.

[21] R. Farwig, Y. Taniuchi, On the energy equality of Navier-Stokes equations in general
unbounded domains, Arch. Math. (Basel) 95 (2010), 447-456.

[22] G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equa-
tions. Vol. I. Linearized steady problems, Springer Tracts in Natural Philosophy. 38.
Springer, New York, 1994.

[23] M. Geissert, H. Heck, M. Hieber, On the equation div n=g and Bogovskii’s operator
in Sobolev spaces of negative order, Operator Theory: Advances in Applications,
168 (2006), 113-121.

[24] M. Geissert, H. Heck, M. Hieber, O. Sawada, Weak Neumann implies Stokes, J.
Reine Angew. Math 669 (2012), 75-100.



BIBLIOGRAPHY 65

[25]

[26]

[27]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equa-
tions, Commun.Partial Differ. Equations 6 (1981), 883-901.

D. Gilberg, N.S. Trudinger, Elliptic partial differential equations of second order.
Second edition, Springer, Berlin, 1983.

M.-H. Giga, Y. Giga, J. Saal, Nonlinear partial differential equations: Asymptotic
behavior of solutions and self-similar solutions, Birkhiduser, Boston-Basel-Berlin,
2010.

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L, spaces,
Math. Z. 178 (1981), 297-329.

Y. Giga, A bound for global solutions of semilinear heat equations. Comm. Math.
Phys. 103 (1986), 415-421.

Y. Giga, Surface evolution equitions: a level set approach, Birkhéduser, Basel-Boston-
Berlin, 2006.

Y. Giga, K. Inui, S. Matsui, On the Cauchy problem for the Navier-Stokes equations
with nondecaying initial data, Quad. Mat. 4 (1999), 27-68.

Y. Giga, R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ.
Math. J. 36 (1987), 1-40.

Y. Giga, S. Matsui, O. Sawada, Global existence of two-dimensional Navier-Stokes
flow with nondecaying initial velocity, J. Math. Fluid Mech 3 (2001), 302-315.

Y. Giga, S. Matsui, Y. Shimizu, On estimates in Hardy spaces for the Stokes flow in
a half space, Math. Z. 231 (1999), 383-396.

Y. Giga, H. Miura, On vorticity directions near singularities for the Navier-Stokes
flow with infinite energy, Comm. Math. Phys., 303 (2011), 289-300.

Y. Giga, H, Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 36 (1989), 103-130.

H. Heck, M. Hieber, K. Stavrakidis, L*-estimates for parabolic systems with VMO-
coefficients Discrete and Continuous Dynamical Systems, Series S 3 (2010), 299-
309.

G. Koch, N. Nadirashvili, G.A. Seregin, Sverak, V., Liouville theorems for the
Navier-Stokes equations and applications, Acta Math. 203 (2009), 83-105.

S. G. Krantz, H. R. Parks, The implicit function theorem, History, theory, and appli-
cations, Birkhduser, Boston - Basel - Berlin, 2002.



66 BIBLIOGRAPHY

[40] N. Krylov, Lectures on elliptic and parabolic equations in Holder spaces, American
Mathematical Society, Providence, R.I. 1996.

[41] O. A. LadyZenskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasilinear equa-
tions of parabolic Type, Transl. Math. Monogr. vol. 23. American Mathematical So-
ciety, Providence. R.I., 1968.

[42] A. Lunardi, Analytic semigroup and optimal regularity in parabolic problems,
Birkh&user, Basel, 1995.

[43] P. Maremonti, Pointwise asymptotic stability of steady fluid motions, J. Math. Fluid
Mech. 11 (2009), 348-382.

[44] P. Maremonti, G. Starita, Nonstationary Stokes equations in a half-space with contin-
uous initial data, J. Math. Sci. (N.Y.) 127 (2005), 1886—1914, translated from Zapiski
Nauchnykh Seminarov POMI, 295 (2003), 118-167.

[45] K. Masuda, On the generation of analytic semigroups of higher-order elliptic opera-
tors in spaces of continuous functions, Proc. Katata Symposium on Partial Differen-
tial Equations (eds. S. Mizohata and H. Fujita), (1972), 144—149 (in Japanese).

[46] K.Masuda, On the generation of analytic semigroups by elliptic differential operators
with unbounded coeflicients, unpublished note (1972).

[47] K. Masuda, Evolution equations (in Japanese), Kinokuniya Shoten, Tokyo, 1975.

[48] V. N. Maslennikova, M. E. Bogovskii, Elliptic boundary value problems in un-
bounded domains with noncompact and non smooth boundaries, Rend. Sem. Mat.
Fis. Milano, 56 (1986), 125-138.

[49] P. Polacik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear
problems via Liouville-type theorems. Part II. Parabolic equations., Indiana Univ.
Math. J. 56 (2007), 879-908.

[50] P. Quittner, P. Souplet, Superlinear parabolic problems: Blow-up, global existence
and steady states, Birkhiuser, Basel - Boston - Berlin, 2007.

[51] J. Saal, The Stokes operator with Robin boundary conditions in solenoidal subspaces
of L'(R") and L¥(R"), Comm. Partial Differential Equations 32 (2007), 343-373.

[52] G. A. Seregin, V. Sverédk, On type I singularities of the local axi-symmetric solutions
of the Navier-Stokes equations, Commun. Partial Differ. Equations 34 (2009), 171-
201.

[53] Y. Shibata, R. Shimada, On a generalized resolvent for the Stokes system with Robin
boundary condition, J. Math. Soc. Japan, 59 (2007), 469-519.



BIBLIOGRAPHY 67

[54] L. Simon, Lectures on geometric measure theory, Proc. of the Centre for Mathemat-
ical Analysis, Australian National Univversity, 3, 1983.

[55] H. Sohr, The Navier-Stokes equations, Birkhéduser, Basel, 2001.

[56] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations,
J. Soviet Math. 8 (1977), 467-529.

[57] V. A. Solonnikov, On the theory of nonstationary hydrodynamic potential, The
Navier-Stokes equitions: theory and numerical methods (Varenna, 2000) Lecture
Notes in Pure and Appl. Math., 223 (2002), 113129, Dekker, New York.

[58] V. A. Solonnikov, Potential theory for nonstationary Stokes problem in nonconvex
domains, Nonlinear problems in mathematical physics and related topics, I, 349-372
(2002) Int. Math. Ser. (N. Y.) 1, Kluwer/Plenum, New York.

[59] V. A. Solonnikov, On nonstationary Stokes problem and Navier-Stokes problem in a
half-space with initial data nondecreasing at infinity, J. Math. Sci. (N. Y.) 114 (2003),
1726-1740.

[60] V. A. Solonnikov, Weighted Schauder estimates for evolution Stokes problem, Ann.
Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), 137-172.

[61] V. A. Solonnikov, Schauder estimates for the evolutionary generalized Stokes prob-
lem, Amer. Math. Soc. Transl. Ser. 2. 220 (2007), 165-199.

[62] H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators,
Trans. Amer. Math. Soc. 199 (1974), 141-162.

[63] H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under
general boundary conditions, Trans. Amer. Math. Soc. 259 (1980), 299-310.

[64] K. Taira, Semigroups, boundary value problems and Markov processes, Springer,
Berlin, 2004.

[65] H. Tanabe, Functional analytic methods for partial differential equations, Mono-
graphs and textbooks in pure and applied mathematics, Marcel Dekker Inc., New
York, 1997.

[66] V.N. Vasil’ev, V. A. Solonnikov, Bounds for the maximum modulus of the solution of
a linear nonstationary system of Navier-Stokes equations, (Russian) Boundary value
problems of mathematical physics and related questions in the theory of functions,
10. Zap. Naucn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 69 (1999), 34-44,
273.

[67] K. Yosida, On holomorphic Markov processes, Proc. Japan Acad., 42 (1966), 313—
317.



Chapter 4

Semigroup on BUC, and L spaces

We now extend the Stokes semigroup to non-decaying type solenoidal spaces L]
(and BUC,). As we proved in Chapter 3, the Stokes equations is uniquely solvable
for bounded and decaying initial data vy as |[x| — oo, i.e., vo € Co, but for merely
bounded initial data, the existence of solutions is non-trivial. For this purpose, we
pointwise approximate vo € L by compactly supported solenoidal vector fields and
prove the unique existence of solutions by using the a priori L*-estimate (0.1.1).

4.1 Introduction

We consider the Stokes equations for vy € L7 (€2) in the domain Q C R", n > 2:

vi—Av+Vg=0 in Qx(0,7), 4.1.1)
divv=0 in Qx(0,7), (4.1.2)

v=0 on 0Qx(0,7), (4.1.3)

v=yy on QX {r=0}, 4.1.4)

where L7 (€) 1s the solenoidal L™ space defined by

L2 = {f € L™(Q)

ff -Vodx =0 forall ¢e VV“(Q)},
Q

and the homogeneous Sobolev space W"'(Q) = {p € L! (Q)| Vo € L'(Q)}. When Q is

loc

bounded, the Stokes semigroup S () is defined on L () C L/ (), r € (1,00). We first
state a result for bounded domains as a typical example.

Theorem 4.1.1 (Analyticity on LY). Let Q be a bounded C*-domain in R", n > 2. Then
the Stokes semigroup S () is a (non-Cy-)analytic semigroup on Ly (Q).

68
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Since smooth functions are not dense in L7 (€2) and S (#)vy is smooth for r > 0, S (#)vy —
vo as t | 0in L7 (Q) does not hold for some vy € L (€2). This means S(#) is a non-Cy-
semigroup.

Our approach for the extension to the space L (€2) is based on the a priori L*-estimate
for solutions to the Stokes equations (4.1.1)—(4.1.4),

sup [N, @]y @ < Clvollimieas (4.1.5)

0<t<Ty

where N(v, g)(x, t) denotes the scale invariant norm for solutions up to second orders,
N, @)(x, 1) = [, D] + 12|V, )| + 1|V2v(x, )] + vi(x, )] + | Va(x, 1) (4.1.6)

The a priori L™-estimate (4.1.5) is available for sufficiently smooth initial data as we
proved in Chapter 3 (Theorem 3.1.2 and Proposition 3.4.2). To extend S(f) to L (€),
we approximate vy € L (Q2) by compactly supported functions {vo.},»_, C Cc (€2) such
that

Vomllze@) < Clivollre),

[IVo.mllze() [Vollz=(c @.1.7)

Vom — Vo ae.inQ asm — oo,

with the constant C independent of m > 1. Note that CZ (Q) (or Cp(£2)) is not dense
in L7 (€2) so one cannot approximate vy by elements of CZ, () in a uniform topology.
However, by a mollifying procedure keeping the divergence free condition, we are able to
find the sequence {vo,.},,_, € CZ(Q) satisfying (4.1.7). This is very easy to prove when
Q) is star-shaped while in general it is nontrivial. We localize the problem to reduce it to
star-shaped case. Since € is bounded, v(,, — v in L] (€2) so we extend the estimate (4.1.5)
to v = S (¢)vy with the associated pressure g for vy € L7 (€2).

We prove the approximation (4.1.7) also for exterior domains and perturbed half spaces.
By combining the approximation (4.1.7) for a bounded domain and that for the whole
space (or a half space), we find the desired sequence. Once we have the sequence {vo,}_, C
Ce,(Q) satisfying (4.1.7), we are able to prove the existence of solutions for vy € L7 ().
We prove that the sequence of L"-solutions (v,,, Vg,,) for vy, € C¢ () (subsquently) con-
verges to the solution (v, Vg) for vy € L7 (€2). Then, the Stokes semigroup S (¢) is extended
to L(€2) by the limit v, i.e., S(t)vop = v for vy € L7(Q). The limit v is independent of
the choice of approximation since an L*-solution is unique (Remarks 3.4.1 (i)). The main
result of this chapter is the following:

Theorem 4.1.2. Let Q) be an exterior domain in R", n > 2, or a perturbed half space in
R", n > 3, with C3-boundary.

(i) (Unique existence of L™ -solutions)

For vy € Ly (Q), there exists a unique L*-solution (v, Vq) satisfying (4.1.5) for any fixed
T, with some constant C depending only on Ty and Q.

(ii) (Analyticity on L)

The Stokes semigroup S (t) is uniquely extendable to a (non-Cy-)analytic semigroup on
L3 (Q).
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The L*-estimate (4.1.5) implies the analyticity of the Stokes semigroup S () on L (€2).
We call a semigroup {T(¢)};>0 C L(X) analytic if t||dT(¢)/dt|| s is bounded for ¢ € (0, 1].
Here, £= L(X) denotes the space of all bounded linear operators from the Banach space
X onto itself and is equipped with the operator norm || - ||z. Since S(f)vg — vpast | 0
on L (€2) may not hold for general vy, € L7 (€2), we call S (¢) a non Cyp-analytic semigroup.
We refer to [27] (also [21]) for properties of analytic semigroups generated by non-densely
defined sectorial operators on L= (€). It is natural to restrict S (¢) to the space of uniformly
continuous functions BUC,(Q) so that S (¢) is a Cy-analytic semigroup on BUC(€2). We
discuss the continuity of S (¢) at time zero after we extend S (7) to L (€2) (see Remark 4.1.3
(i1) below).

Remarks 4.1.3. (i) The statement of Theorem 4.1.2 is valid also for bounded domains
with C3-boundaries. In fact, we prove Theorem 4.1.2 for bounded domains together with
exterior domains and perturbed half spaces, which deduces Theorem 4.1.1.

(ii) Let BUC(Q) be the space of all uniformly continuous functions in Q. Define the space
BUC,() by

BUC,(Q) ={ f € BUC(Q) | div f =0inQ, f=00ndQ}.

Then, S (¢) is a Cy-(analytic) semigroup on BUC(€2) for exterior domains €. We prove the
continuity of S (#) at # = 0 in Section 4 (Theorem 4.4.2). Note that Cy ,(2) € BUC,() C
L3 (€). When Q is bounded, the space BUC,(€2) agrees with Cy,(Q2) [22], [1, Lemma
6.3] so we already know S (¢#) is a Cy-analytic semigroup on BUC,(Q2) by Theorem 3.1.1
in Chapter 3.

It 1s well known that the Stokes semigroup S (¢) is a bounded analytic semigroup on
L] (Q2) for exterior domains [7], [20], [8] in the sense that both [|S (?)||, and #||dS (¢)/d¢]|
are bounded in (0, c0), where X = L/ (Q) for r € (1,00). Recently, P. Maremonti [24]
proved that S(7) is a bounded semigroup on L;(€2) for exterior domains based on our a
priori L*-estimate (4.1.5). Note that it is unknown whether #||dS (¢)/df||, 1s bounded in
(0, o).

The analyticity of the Stokes semigroup on L™ as well as (4.1.5) is fundamental to
study the Navier—Stokes equations for non-decaying initial data on exterior domains. Al-
though one can handle non-decaying Holder initial data by reducing the initial problem to
the boundary-value problem to the Navier—Stokes equations [16], a direct semigroup ap-
proach on L7 (€) is still unknown. So far L*-type theory is only established when Q = R"
[18] (see also [19], [25]) and R [28], [5]. The analyticity of the Stokes semigroup on
L3 (€) 1s proved in [1] for bounded domains and in [2] for exterior domains. We extend
the results for perturbed half space for n > 3, where the strictly admissibility is proved in
Chapter 2.

This chapter is organized as follows. In Section 2, we prove the existence of L™-
solutions for vy € L7 (€) by admitting the approximation (4.1.7). The proof of Theorem
4.1.2 (and also Theorem 4.1.1) is complete in Section 2. In Section 3, we prove the ap-
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proximation (4.1.7) fir bounded domains, exterior domains and perturbed half spaces. In
Section 4, we show that S (7) is a Cy-semigroup on BUC(Q2) for exterior domains.

4.2 Existence of L*°-solutions

The goal of this section is to prove Theorem 4.1.2 (and Theorem 4.1.1). Since the ap-
proximation for initial data (4.1.7) is pointwise convergence in €, for the compactness
of an approximate solution sequence, we apply the local Holder estimates for the Stokes
equations (Proposition 3.3.2 and Theorem 3.3.4 proved in Chapter 3). The proof for the
approximation (4.1.7) is given in the next section.

Before starting to prove Theorem 4.1.2, we prepare the following Proposition 4.2.1.
The local Holder estimates (Proposition 3.3.2 and Theorem 3.3.4) imply that a limit of
approximate solutions for vy € L7 (€2) is (Holder) continuous in Q x (0,T]. In order
to prove that a limit solution converges to initial data weakly-* on L*(Q) as t | 0, we
understand initial data in terms of a weak form.

Proposition 4.2.1. Let Q be a domain in R", n > 2 with 0Q # 0. Let (v,Vq) € C>'(Q x
(0, T]) x C(Q x (0,T1) satisfy (4.1.1) and supy_,.{|[Vlle(?) + t1/2|Vq|oo’d(t)} < oo. If (v,Vg)
satisfies

T
f f v (o + Ap) — Vq - ¢} dxdt = - f vo(x) - ¢(x, 0)dx
0 Q Q

forvy € LY(Q) and all ¢ € CX(Q X [0,7)), then v — vy weakly-= on L*(Q) ast | 0. The
converse also holds.

Proof. Since (v, Vq) satisfies (4.1.1), by integration by parts it follows that

T
f f{v (@ + Ap) — Vq - o} dxdt = — f v(x, €) - p(x, )dx
& Q Q

forall ¢ € C(2x[0,T)) and € > 0. By letting € | 0, it follows that fg v(x, ) -¢(x,e)dx —
J, vo(x) - @(x, 0)dx. Thus, [0 v-ydx — [ vo-ydxast | 0fory € CX(Q). Since CX(Q) is
dense in L'(Q), v — v, weakly-* on L¥(Q) as ¢ | 0. The converse also holds. O

We now prove the existence of L*-solutions for vy € L7 (€2). In order to apply (4.1.5)
for L"-solutions, we recall that an L"-solution for r > n is an L*-solution for sufficiently
smooth and decaying initial data (Proposition 3.4.3).

Proof of Theorems 4.1.1 and 4.1.2. Let Q be a bounded domain, an exterior domain or a
perturbed half space (n > 3) with C*-boundary. We prove the unique existence of L*-
solutions for vy € L7(€2). We apply the approximation lemma (Lemmas 4.3.3, 4.3.5, and
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4.3.10) to get a compactly supported smooth sequence {vo,.},._; C Cc (€2) such that

Vomllze < Callvollz=),
Vo.mllz= Ql.l ollz=@) 42.1)
Vo — Vo a.e.inQasm — oo,
with the constant Cg independent of m > 1. Let (v,,, Vg,,) be an L"-solution for r > n and
vom- Let T > 0 be an arbitrary fixed time. By Remark 4.3.1 (i), the L*-estimate (4.1.5)
holds in (0,T). By integration by parts, it follows that

T
f f Vi - (@ + Ap) — Vg, - o} dxdt = — f vom(x) - @(x,0)dx
0 Jo

Q
forall ¢ € CZ(Q % [0,T)). Since vy,, € D(A,) N D(A,), by Proposition 3.4.3, (v,,, Vg,,)
is an L*-solution. By Theorem 2.3.3, bounded domains, exterior domains and perturbed
half spaces (n > 3) with C*-boundaries are strictly admissible. We apply Lemma 3.3.2 to
estimate

IV@mleo.a(®) < CIIWW)l|L200) (). (4.2.2)
Combining the estimate (4.2.2), (4.1.5) and (4.2.1), it follows that

Sup {[INOum, gu)llz=@(®) + 12V Gle s} < Clivollz=(e)»
0<t<T

3.3.4 to get a uniform local Holder bound for (v,,, Vg,,) in Q X (0,T]. Then, (v,,, Vg,,)
subsequently converges to a limit (v, Vg) locally uniformly in Q x (0, T] together with v,,,
Vs Vs 0V, V. By letting m — oo, the limit (v, Vg) satisfies

with the constant C independent of m > 1. We apply Proposition 3.3.2 and Theorem

T
[ [t 2= Vg dxd == [ v et 0.
0 Q Q

Since v — vy weakly-* on L*(Q) as ¢ | 0 by Proposition 4.2.1, (v, Vg) is an L*-solution
for vp € LY(Q). By Remarks 3.4.1 (i), the L*-solution (v, Vg) is unique. Since T > 0 is
an arbitrary fixed time, for vy € L (£2), a unique L*-solution (v, Vg) exists in Q2 X (0, o).
Thus, we proved the assertion (i).
We next extend S (7) to LY (€2) by the limit v for vy € LY (). We define S (H)vp = v(-, 1)
fort > 0 and S(0) = I. We shall show the semigroup property for S(¢) on L (€), i.e.,
S(t+s) = S@®S(s) fort,s > 0. Since S(0) = I, we may assume s > 0. Let (v!,g")
be an L*-solution for vy € L7 (€2). For each fixed s > 0, let (v*,Vg?) be an L*-solution
for initial data v'(-, s). Then, by the uniqueness of L*-solutions, (v!,Vq') = (2, Vg?) for
t > s. Thus, S(t)vo = S(t — 5)S(s)vg, t > 5. By substitutingt = 7+ 5, S(t + 5) = S(1)S ()
for 7, s > 0 follows so S (¢) satisfies the semigroup property on L (€). The analyticity of
S (#) on L () follows from (4.1.5). Thus, S (¢) is an analytic semigroup on L (€2).

This semigroup S (¢) 1s a non-Cy-semigroup on L;’(€2). Indeed, suppose the contrary to
get

Stvy—> vy in L¥(Q) asr] 0
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for all vy € LX(Q). Our estimate for Vv implies that S (r)vo (1 > 0) is at least continuous
in Q. However, if S(f)vy converges uniformly, then vy must be continuous which is a
contradiction. We have proved the assertion (ii). The proof is now complete. O

Remark 4.2.2. If the approximation (4.1.7) is known to hold, then we are able to prove
the existence of L*-solutions for general strictly admissible domains by the same way. In
order to approximate solutions in a uniformly regular domain, we appeal to L’-theory [11],
[12] although L"-theory works for more general domains [13], [3], [14], [17].

4.3 Approximation for initial data

In this section, we prove the approximation (4.1.7) for bounded domains, exterior domains
and perturbed half spaces. We first prove the approximation (4.1.7) for a bounded domain.
We decompose a bounded domain and reduce the problem to star-shaped domains. In
a star-shaped domain, we rescale a function so that whose support is compact in Q and
mollify it to get a compactly supported smooth sequence. By using the result for a bounded
domain and the whole space (or a half space), we prove the approximation (4.1.7) for
exterior domains and perturbed half spaces.

4.3.1 Reduction to star-shaped domains

We begin with an approximation result when € is star-shaped (with respect to some point
aeR"ie A(Q—a)cQ—aforall 1€ (0,1)).

Lemma 4.3.1 (Approximation). Let Q be a bounded, star-shaped domain in R". There
exists a constant C = Cq such that for any v € L7 (), there exists a sequence {v,}>_, C
C(Q) such that

Vinllz=@) < ClIvlize), 4.3.1)
Ve — Vo ae. inQ asm — oo. (4.3.2)

If in addition v € C(Q), the convergence is locally uniform in Q. If in addition v = 0 on
0Q), the convergence is uniform in Q.

Proof. Since Q is star-shaped, we may assume that
AQcQ forall A€][0,1)

by a translation. We extend that v € L’ (Q) by zero outside € and observe that the exten-
sion (still denoted by v) is in L (R") with spt v C Q. We set v (x) = v(x/2) and observe
that spt v; € AQ € Q. Since v; — v a.e. as A T 1, it is easy to find the desired sequence by
mollifying v,, i.e., v, * n.. Here, C in (4.3.1) can be taken 1. O
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To establish the above approximation result for general bounded domains, we need a
localization lemma.

Lemma 4.3.2 (Localization). Let Q) be a bounded domain with Lipschitz boundary in R".
Let {Gk},’("=1 be an open covering of Q in R" and Q; = G, N Q. Then, there exists a family
of bounded linear operators {7rk}2’=1 from LY (Q) into itself satisfying u = Zszl mu and for
eachk=1,...,N

(i) mulg, € Ly (), mulovg, =0 for ue L7 (Q),
(ii) mu e C(Qk) and 7Tku|ggk\ag =0 for ue C(Q) N LZ.O(Q),
(iii)  meuloo, =0 if ulpa =0 for u e c(Q)n L3(Q).

Proof. We shall prove by induction with respect to N. If N = 1, the result is trivial by
taking 7, as the identity.
Assume that the result is valid for N. We shall prove the assertion when the number of

coveris N + 1. We set
N+1 N+1

D:kggk, U:kg(;k

and observe that Q = Q; U D and {G,, U} is a covering of Q.

Let {£;,&,} be a partition of unity of Q associated with {G, U}, i.e., & € C°(R") with
0<¢& <1, spté CGy,spté&CcU, & +6E =11n Q. For E = Q, N D, let B; denotes the
Bogovskii operator. We set

uéy— Bg(u-Vé) in E,
mu = I/lfl in QI\D,
0 in Q\Q.

Since u € L7 (Q) and &; = 0in Q\Q,, V& = 01in Q,\D, we see

fu -Védx = f u-Védx =0. (4.3.3)
E Q
By the Sobolev inequality and (3.3.13), we observe that

1B - VED | oy < ClIBEG - YED|| yrney (P> m)
< CChllu - V&) < CCBIVElLrllull=@)

with a constant C independent of u and &,. We thus observe that

||7T1u||L°°(Ql) < C1||M||Loo(g) forall u € LZ_O(.Q.)
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with C independent of u.
By (4.3.3), we see divBg(u-Vé;) = u-Vé, in E. Moreover, Bg(u-V&;) = 0on d(Q;ND).
Thus for each ¢ € L] (Q) with Vg € L'(Q,), we have

fﬂ]u-Vgodx:f ufl-Vgodx—fBE(u-Vfl)-Vgodx
Q Q E

_ f wEr - Vids + f (- VEpdx
Q E

= fu -V(&p)dx = 0.
Q

By the Poincaré inequality if ¢ € W'!(Q,), then ¢ € L} (Q) (not only ¢ € L! (Q))).
Thus, the above identity implies that m ulo, € L (€;). By definition m;u = 0 in Q\Q,. If
u e C(Q), it is easy to see that the term Bg(u - V&) is always Holder continuous by the
Sobolev embeddings.

For u € L (Q2), we set

u fz — BE(M . V§2) in E,
TpU = l/tfz in D\Q],
0 in Q\D.

By definition,
u=rmu+npu

and, as for my, this mp satisfies all properties of m; in (i), (ii), (iii) with €, replaced by
D. Since D is covered by {Gk}kszl, by our induction assumption, there is a bounded linear

operator {7Ark}f€\’=+22 in Ly (D) satisfying v = ZkN:21 v and (1), (i1), (111) with u replaced by v

and with m; replaced by 7, fork = 2,..., N + 1. If we set
ﬂ]zﬂl,ﬂk:ﬁk'ﬂp (k:2,...,N+1),
then it is rather clear that this 7, satisfies all desired properties. O

Lemma 4.3.3 (Approximation). The assertion of Lemma 4.3.1 is still valid when Q is a
bounded domain with Lipschitz boundary in R".

Proof. If Q is a bounded domain with Lipschitz boundary, then it is known that there is
an open covering {Gk}kN: , of Q such that Q; = G, N Q is bounded, star-shaped with respect
to an open ball By(B; C Q) (i.e. star-shaped with respect to any point of B;) and G, has a
Lipschitz boundary; see [15, II1.3, Lemma 4.3]. In the sequel, we only need the property
that Gy 1s bounded and star-shaped with respect to a point.

We apply Lemma 4.3.2 and set u;, = myu to observe that uy|o, € L (€) and ulg\q, = 0.
Since € is star-shaped, by Lemma 4.3.1 there is {u j}‘;.‘;l C CZ, (L) such that

ot il o) < Ntwellzocep)s Ui,j — Uy a.e. in €.
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(The constant C in (4.3.1) can be taken 1). We still denote the zero extension of u; ; on
Q\Qk by I/tk,j.
If we set u,, = ZkN:1 Ui.m» by construction, u; € CZ, (€2) and

N
Uy — Zuk =u ae. inQ and,
k=1

N N N
il < D Mtimllize < D iz < (D I ludlz=con,
k=1 k=1 k=1

where ||m;|| denotes the operator norm of 7; in LY (€2). We thus conclude that there is a
desired approximate sequence {u,,},_, for u € L7 (Q).

If u € C(Q) (NLI(Q)), then u; € C(Q) and uylsn, 90 = 0. Thus, for any compact set
Ki € € such that do(Kj) = inf ek, do(x) > 0, we see that u,, converges to u; uniformly
in K; by Lemma 4.3.1 as m — oo. Let K be a compact set in Q. Then, d(K;) > d(K) > 0
for K = Qk NK. ThllS,

N

ot — upllzocky < Z lleex — il
=)

N
= Z g — g mllzok,) — O (as m — o0).
k=1

Thus, we have proved that u,, converges to u locally uniformly in Q. If u|sqo = 0 so that
Urlaq, = 0, then uy ,, converges to u; uniformly in €; by Lemma 4.3.1. Arguing in the same
way by replacing K by Q, we conclude that u,, converges to u uniformly in Q. O

Remarks 4.3.4. (i) This lemma in particular implies that
Cor(Q) ={veCQ) | divv=0in Q, v = 0 on 0Q}

when Q is bounded. This give an alternate and direct proof of a result of [22], where the
maximum modulus result for the stationary problem is invoked.
(i1) For bounded domains, we are able to characterize the space L, (Q2) by

LY(Q) ={ve L™(Q) |divv=0inQ, v-ng = 0 on 6Q}.

For v € L*®(Q) c L'(Q) satisfying div v € L' (Q), r € (1, o), we understand the normal
component v - ng as an element of the negative order Sobolev space; see, e.g., [26].

4.3.2 Approximation for |x| = oo

We next prove the approximation lemma for L7 (€2) for exterior domains. Recently, an
approximate sequence for L () is constructed in [24, Lemma 2.6] by smooth solenoidal
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vector fields in an exterior domain. Although a construction procedure is similar, we give
an approximation by compactly supported functions in order to prove the existence of
L>-solutions by applying the a priori estimate (4.1.5) for L"-solutions.

Lemma 4.3.5 (Approximation in an exterior domain). Let 2 be an exterior domain with
Lipschitz boundary. There exists a constant C = Cgq such that for any v € L7 (L), there
exist a sequence {v,,}>_ C C;° (L) such that

c,o

Vinllz=@) < ClIvlize), (4.3.4)
Ve —V ae. inQ asm — oo, 4.3.5)

If in addition v € C(Q) and v = 0 on 0Q, the above convergence can be replaced by
locally uniform convergence in Q. If in addition v(x) vanishes at the space infinity, i.e.,
limyy e v(x) = O, the convergence can be replaced by uniform convergence in Q. In
particular, Cy (€) agrees with the space {v € C(Q)| limpy5e v(x) =0, divv=0inQ,v =
0 on 0Q)}.

In order to prove Lemma 4.3.5, we recall the Bogovskii operator [6], [15]. Let D be
a bounded domain with Lipschitz boundary. The Bogovskii operator By is a bounded
operator from L. (D) to the Sobolev space W'"(D) for r € (1, c0) such that div Bp(g) = g
in D, Bp(g) = 0 on 0D and

IBp(@llwipy < Cpllgllerm) (4.3.6)

for g € LL,(D), where L. (D) denotes the space of all average-zero functions in L"(D). The
constant Cp depends on Lipschitz regularity of dD and is independent of g.

We first prove Lemma 4.3.5 for Q = R".

Proposition 4.3.6. The statement of Lemma 4.3.5 holds for Q = R". If in addition v €
C(R"), the convergence in (4.3.5) can be replaced by locally uniform convergence in R".

If in addition lim},_,., v(x) = 0, the convergence can be replaced by uniform convergence
in R".

Proof. Let 6 be a smooth cutoff function in [0, co) satisfying 6 = 1 in [0,1/2], and 8 = 0
in [1, 00). Set 6,,(x) = 6(|x|/m) for x € R" and m > 1. Then, 6,, = 1 in By(m/2) and 6,, = 0
in By(m)‘. Forv € LY(R"), set g, = v - VO,. Then, g, € L (D,,) and spt g, C D,, for
D,, = Bo(m)\By(m/2). Set f,,(x) = g,(mx) for x € D, and apply the Bogovskii operator
for f,, € L, (D) to get u;, = Bp,(f,,) satisfying div «,, = f,, in Dy, u;, = 0 on dD, and
ey llwirpy < Collfwllro,), where the constant Cp, is independent of m > 1. By the
Sobolev inequality, it follows that

ety llpy) < Cillfmlliroy)-
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for r > n with the constant Cy, independent of m > 1. We set
v, (x) = mu,(x/m) for x € D,,.

Then, div v}, = g,,in D,,, v;, = 0on dD,, and ||V}, ||,y < mCl|fullerp,)- Since || fullrp,) =
m_”/r||gm||Lr(Dm) and ”VHmHL’(Dm) = m”/’_l ||V9||L"(D1)9 it follows that

* 1-
Ve llom,) < Csm ™" |lgmllr o,
< ClIVOllrplVlli=m,,)-

Denoting the zero extension of v, to R”\Em by v;,, we set ¥,, = v6,, — V. Then, ¥,, €
L (R") and spt ¥,, is compact in R". By the standard mollifier 7., & > 0, set v,, = V,,, * 1 /.
Then, v, € C (R") is desired sequence.

If v € C(R"), vm — v locally uniformly in R" as m — oo. If in addition lim,j_,., v(x) = 0,
v, — v uniformly in R” as m — oco. The proof is now complete. O
For sufficiently smooth v € L' (R"), Proposition 4.3.6 holds up to higher orders.

Corollary 4.3.7. Forv € Ws*(R)NLI(R") and k > 0, (4.3.4) and (4.3.5) can be replaced
to

Vallwes®n < Clvllwes g, 4.3.7)

vy — 0y ae inR"asm — oo for|l| < k. (4.3.8)

Proof. We prove by induction with respect to k. For k = 0 the statement holds by Propo-
sition 4.3.6. Assume that (4.3.7) and (4.3.8) hold for k = k,. We shall show

!
10 VillL=@ey < ClVIlwtor1.oo gy, (4.3.9)

and (4.3.8) for |I| = ky + 1. Since the Bogovskii operator is bounded from W**!(D) to
Wh+2r(D) [15], we have

||u;kn||Wk0+2‘r(D1) S C”fm”WkO"'lvr(Dl)'

By the Sobolev inequality, it follows that
||aiu,*n||L°°(D1) < Cs”fm”W"O*”(D,)

for r > n with the constant C, independent of m > 1. Since 100vE ooy = m M@ o,
and || foll~o,) = m'ﬂ_"/’llaigmlle(Dm) for |j| > 0, it follows that

) 1-|/]
10 llzeo, < m' M fullwiorroo,)

1—
S m n/rllgmllwk0+l,r(Dm).
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By IVOullio,) = m"" VOl p,), we estimate ||gullyio-1rp, ) < M ClIVllysos1rp, , With
the constant C independent of m > 1. Thus, we obtain

[
||axv;;l||Lm(Dm) S C”vllwko+l,oo(Dm).

Since v,, = V,, ¥ 11, and ¥, = v,,,0,, — v, (4.3.9) and (4.3.8) hold for k = ky + 1. We proved

V>

(4.3.7) and (4.3.8) for all k£ > 0. The proof is now complete. O

Remark 4.3.8. The proof of Proposition 4.3.6 works for v € L*(R") satisfying divv = 0
in R", i.e., there exists a sequence {vo,},_, C Co (R") satisfying (4.3.4) and (4.3.5). By
the dominated convergence theorem, we have

0=1lim [ v, -Vedx= | v-Vedx forpe WH(R")

m—oo Jpn R"

so v € LX(R"). This implies LX(R") = {v € L*(R") | div v = 0 in R"}.

We prove Lemma 4.3.5 for an exterior domain. By using the Bogovskii operator, we
divide a solenoidal vector field into two vector fields — one is compactly supported in Q
and the other is supported in R"” away from d€Q2. We reduce our problem to the case of R”
(Proposition 4.3.6) and a bounded domain. For a bounded domain, we already constructed
the corresponding approximate sequence (Lemma 4.3.3).

Proof of Lemma 4.3.5. We may assume 0 € Q°. Let 6 be a smooth cutoff function in
[0, o0) satisfying @ = 1in [0,1/2] and 6 = 0 in [1, ). Set Ox(x) = 6(|x|/R) for x € R”"
and R > diam Q°¢. Then, g = 1 in By(R/2), g = 0 in By(R)‘ and spt VO C Dy, for
Dr = By(R)\Bo(R/2). Forv € L7(€2) set gg = v - VOg. Then, g € L ,(Dg). We apply
the Bogovskii operator for gr € L (Dg) to get v = Bp,(gr) such that div v, = gz
in Dg, v = 0 on dDg and |[Villwirpey < Cogllgrllrpg)- By the Sobolev inequality, we
estimate [[Villz=mg < Csllgrll g < CslIVORIlmplIvlliie@) for r > n with the constant C;
independent of v. Denoting the zero extension of vi to R"\Dg by v}, we set

Vi = Vg — Vp,

4.3.10
vy = v(1 — 6g) + V. ( )

Then, v; and v, are estimated by v, i.e.,
VillLo) < ClVll= for i=1,2

with the constant C independent of v.

We find an approximation for v;. Since v, satisfies div v; = 0in Q, v - ng = 0 on 09,
and spt v, C Qg for Qg = By(R) N Q, it follows that v, € L(Qg). We apply the ap-
proximation lemma for a bounded domain (Lemma 4.3.3) to get vy, € CZ,(€2r) such that
IVimllie@q < CrlVillie@q and vy, — v; a.e. in Q as m — oo. The constant Cy is inde-
pendent of m > 1. We do not distinguish v, ,, and its zero extension to Q\By(R).
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We next find an approximation for v,. Let 7, be a zero extension of v to R"\Q. Since
v, satisfies div v, = 0 in Q and spt v, € R"\By(R/2), v, is in L7 (R"). We apply Propo-
sition 4.3.6 to get a sequence of functions {v,,,};, |, € CZ (R") such that [[vy|[L=®r) <
CIvallz=®m and v,,, — Vv, a.e. in R" as m — oo. Since v, = 0 in By(R/2), by construction
of vy, Vo also satisfies v, = 0 in Bo(R/2). Then, the restriction of v, ,, to Q denoted by
Vo 18 In CZ ().

We set v,, = Vi, + Vo.. Then, v, satisfies (4.3.4) and (4.3.5). If v € C(Q) and v = 0 on
0Q, vi,, — v uniformly in Q and vam — Vo locally uniformly in Q as m — oo. Thus, Vin
converges to v locally uniformly in Q. If in addition limjy00 V(x) = 0, v, — v, uniformly

in Q as m — oo. Thus, v,, converges to v uniformly in Q. The proof is now complete. O

Remark 4.3.9. The characterization of Cy ,(Q2) in Lemma 4.3.5 was proved in [22, Lemma
3.1] ([23, Lemma A.1]) for bounded and exterior domains Q with C'”-boundaries. The
proof depends on the maximum modulus theorem of the stationary Stokes problem. Lemma
4.3.5 is a natural extension of that for bound domains (Lemma 4.3.3) and the proof is direct
via the Bogovskii operator without appealing the Stokes equations.

4.3.3 Approximation in a perturbed half space

We prove the approximation (4.1.7) for perturbed half spaces. The approach is essentially
the same with that of exterior domains. The proof is reduced to the approximation (4.1.7)
for a half space and a bounded domain (Lemma 4.3.3).

Lemma 4.3.10 (Approximation in a perturbed half space). Let Q be a perturbed half space
in R", n > 2, with Lipschitz boundary. There exists a constant C such that for v € L7 (€)
there exists a sequence {v,,},>_, C Cc () such that

Vallze@) < ClVllzs@), 4.3.11)
Ve =V a.e inf) asm — oo, 4.3.12)

Assume in addition v € C (Q) and v = 0 on 8Q, then v,, converges to v locally uniformly
in Q. Assume in addition limyy_,. v(x) = 0O, then v, converges to v uniformly in Q. In
particular, Cy,(Q) = {v € C(Q) | divv = 0in Q,v = 0 on dQ, limy_ v(x) =0 }.

We first prove Lemma 4.3.10 for Q = R’}. As we proved the approximation (4.1.7) for
the whole space (Proposition 4.3.6), we cut off a function and apply the Bogovskii operator
to get a compactly supported solenoidal vector field. But in this case, a support of a cutoff
function may not have a Lipschitz boundary because of the presence of the boundary dR’;.
We use a cutoff function associated with the cylinder Cy(r) = Bg‘l(r) X (=r,r), r > 0in
order to show the estimate (4.3.11) via the Bogovskﬁ operator. (The constant in (4.3.6)
depends on the Lipschitz regularity of the boundary).

Proposition 4.3.11. The statement of Lemma 4.3.10 holds for Q = R'.
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Proof. Let 6 € C°[0, c0) be a smooth cutoff function such that # = 1in [0,1], 0 = O in
[2,00) and 0 < 0 < 1. Set 8,, = 6(x/m) for A(x) = 6(|x'|)6(|x,). Then, §,, = 1 in Cy(m) and
6,, = 0in Cy(2m)°. Forv € LY (RY), set g, = v-V@,,. Then, 8m € L ,(D,,) and spt g,, C D,
for O, = Dy(m) N R’} and Dy(m) = Co(2m)\Co(m). Set fi,(x) = gn(mx) for x € D = D.
Then, f, € L (D) and spt f,, € D. We apply the Bogovskii operator in the Lipschitz
domain D to get u;,, = Bp(f,,) such that div u;,, = §,, in D, u;, = 0 on 0D and

m

ety [lwrroy < Call fnller o)

with the constant Cp, independent of m > 1. By the Sobolev inequality for » > n in the
Lipschitz domain D (e.g. [4, Theorem 4.12]), we estimate ||u},||;~p) < CsCgllfinlle- (o).

Since || fullroy = M l|gmllr o,y and VOl oy = m'="|[V8,llp,), it follows that

e lemcor < lieco
with the constant C depending on Cs, Cp, r and ||V||.,, independent of m > 1. We set
v, (x) = mu,(x/m) forx e D,
and observe that div v;,, = g, in D,,, v;, = 0 on 0D,,, spt v, C D,, and
||V;,||L°°(1)m) < Cilvliz=o,)- (4.3.13)

Denoting the zero extension of v; to R’ \Z)_m by v, , we set ¥, = vé,, — ve. Then, ¥, €
L>(R") satisfies div ¥,, = 0in R", 9" = 0 on R, spt ¥,, € D,, and

m

Pnllzo®ny < (1 + COIVIem®e)-

Finally, we set

Dpu(x, X, — 1/m) forx’ e R, x, > 1/m,
0 forx’ e R"1,0< x, < 1/m,

(X', x,) = {

so that spt v,, C R’.. We obtain the desired sequence by approximating v,, with the standard
mollifier.

Ifve CARY) and v = 0 on OR, it is easy to see that v,, converges to v locally uniformly
in R”. If in addition limjy—e v(x) = 0, from (4.3.13), ¥,, converges to v uniformly in R” as
m — 00 50 v,, — v uniformly in R”.. The proof is now complete. |

Proof of Lemma 4.3.10. Take Rq > 0 such that Q\Cy(Rq) = R}\Co(Rq). Let6 € C°[0, o)
be a smooth cutoff function such that # = 1in[0,1], 6 = 0in [2,c0)and 0 < 6 < 1. Set
Or(x) = 6(|x’]/R)O(|x,|/R) for fixed R > Rq. Forv € L (€2), by the Bogovskii operator on
Dr, we set

= véR - B- V@R),
va = (1 — 8g) + B(v - Vo).
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Since ||B(v - VOp)||z=0p) < CrlVIlL=(0p)» it follows that
Villzo) < (1 + CR)IVllzo fori=1,2.

The function v; satisfies divv; = 0in Q, v;-ng = 0 on 9Q and spt v, C ﬁR for the bounded
Lipschitz domain Qg = Q N Cy(2R). Thus, v; € L (Qg). We apply Lemma 4.3.3 to get a
sequence {vi,},._; C Cg (Qg) satisfying (4.3.1) and (4.3.2) for vl in Qg. We identify v;,
and its zero extension to Q\Qx.

The function v, satisfies div v, = 0in Q, v, - ng = 0 on dQ and spt v, N Cy(R) = 0.
We set 7, = v, in R?\Cy(R) and %, = 0 in R” N Cy(R). Then, ¥, € LX(R"). We apply
Proposition 4.3.11 to get a sequence {Vy,,},,_, C C (RY) satisfying (4.3.11) and (4.3.12)
for v, in R}. From the proof of Proposition 4.3.11, we observe that v,,, also satisfies
spt 92.m N Co(R) = 0. We set vy, = P2, in Q\Co(R) and v,,, = 0 in Q N Cy(R). Then,
vam € Cg,(Q) satisfies (4.3.11) and (4.3.12) for v, in Q.

Now, we set v,, = vy, + v, and observe that v,, € CZ (Q) satisfies (4.3.11) and (4.3.12)
for vin Q. If v e C(Q) and v = 0 on 4L, then v; € C(Qg), vi = 0 on Q% and v, € C(RY),
v, = 0 on AR}. For v, € LY (Qg) N C(ﬁR) satisfying vi = 0 on 0Qg, vy, € CZ,(Qg)
converges to v; uniformly in Q. Thus, vy, — v| uniformly in Q. For #, € LY(R")NC(R")
satisfying v, = 0 on dR’, ¥, converges to ¥, locally uniformly in Q so Vo.m — Vo locally
uniformly in Q. Thus, v,, converges to v locally uniformly in Q as m — co.

If in addition limy,_,,, v(x) = 0, v,,, converges to v, uniformly in Q as m — oo. Thus,

v, — v uniformly in Q as m — oo. The proof is now complete. |

4.4 Continuity at time zero

In this section, we show that S (7) is strongly continuous at = 0 on BUC () for exterior
domains. We divide a support of vy € BUC,(£2) into two parts so that one is compactly
supported in Q and the other is supported away from dQ. For compactly supported initial
data, i.e., vy € Co(Q2) we already know S (¥)vy — vy on BUC,(Q) as t | 0 since S(?) is a
Cy-semigroup on Cy(€2) by Theorem 3.1.3 in Chapter 3. Thus, we shall show:

Proposition 4.4.1. Let Q be an exterior domain with C3-boundary. Let S (t) be the Stokes
semigroup on L7 (Q). Then, S(t)vg — vo on BUC,(Q) as t | 0 for all vi € BUC,(QQ)
satisfying dist(spt vy, 0Q) > 0.

Proof. Let vy € BUC,(Q) satisfy dist(spt vy, 0€2) > 0. Denoting the standard mollifier by
Ne, set vy = vo * 1m,. Then, v € C*(Q) is supported away from 9 and converges to vy
uniformly in Q. Thus, we may assume vy € W>*(Q) N BUC,(Q).
Set v = S (#)vy. We shall show

0,v = S (H)Avy. (4.4.1)
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This implies that ||[v(¢) — volle < CHt|Avo|le as t | 0. By Corollary 4.3.7, for vy € W>*(Q) N
BUC,(9Q), there exists vo,, € Co(Q) such that |[vo,llw2e@) < Clvollwzsq) and 8\vo, —
d'vy a.e. in Q as m — oo for || < 2. Here, we do not distinguish v, and its zero extension
to R” \5. Setv,, = S(#)vo,. As we proved Theorem 4.1.2, v,, subsequently converges to v
locally uniformly in Qx (0, 7] together with d,v,,. Since —Avy,, = Av,, for vy, € Co,(Q),
it follows that

0V = S (O)Avo . (4.4.2)

Since Avg,, — Avg a.e. in Q as m — oo, §(1)Avy, subsequently converges to S(£)Avy
locally uniformly in Q X (0, T']. By letting m — oo to (4.4.2), we obtain (4.4.1). The proof
is now complete. ]

Proposition 4.4.1 now implies:

Theorem 4.4.2. Let Q be an exterior domain in R", n > 2, with C*-boundary. The Stokes
semigroup S (t) is a Cy-(analytic) semigroup on BUC,(Q).

Proof. We may assume 0 € Q°. By (4.3.10), we divide vy € BUC,(Q) into two terms
Vo = Vo1 + Vo2 so that vy 1s compactly supported in Q and Voo 1s supported away from
0Q, i.e. dist(0€Q, spt vop) > 0. By Lemma 4.3.5, v is in Co,(Q) so S(#)vo; — vo1 on
BUC,(Q2) as t | 0 by Theorem 3.1.3. By Proposition 4.4.1, S (£)vo9 — va0 on BUC,(QQ)
ast | 0. Thus, S(¥)vg = vopon BUC,(2) as t | 0. The proof is now complete. O
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Chapter 5

Resolvent approach

This chapter is devoted to the resolvent approach for the analyticity of the Stokes
semigroup on L. We present an a priori L™-estimate for solutions to the resolvent
Stokes equations, which in particular implies that the angle of the analytic semigroup
on L™ is /2. The approach is inspired by the Masuda-Stewart technique for ellip-
tic operators. Furthermore, the method presented applies also to different type of
boundary conditions, e.g., to the Robin boundary condition. Note that the harmonic-
pressure gradient estimate (0.1.3) is available also for the resolvent Stokes equation.

5.1 Introduction

We consider the resolvent Stokes equations in the domain Q Cc R", n > 2. When Q = R/,
the analyticity of the Stokes semigroup on L-type spaces was proved in [9] (see also
[36], [25]) based on explicit calculations for the solution operator R(1) : f +— v = v, to
the corresponding resolvent problem:

Av—Av+Vg=f in Q, (5.1.1)
divv=0 inQ, (5.1.2)
v=0 on 0Q. (5.1.3)

We present a direct resolvent approach to the resolvent Stokes equations (5.1.1)—(5.1.3)
and establish the a priori estimate of the form,

My, )0x, ) = V)] + Vv + APV, + IVl o

for p > nand
Sup || M (v, @) (D) < Cll iy (5.1.4)
/1629,5

for some constant C > 0 independent of f. Here, €, , denotes the intersection of € with an
open ball B,(r) centered at x € Q with radius r > 0, i.e. Q,, = B,(r) N Q and Xy s denotes
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the sectorial region in the complex plane given by 255 = {1 € C\{0} | |arg | < ¥, |1]| > J}
for & € (n/2,n) and 6 > 0. Our approach is inspired by the corresponding approach for
general elliptic operators. K. Masuda was the first to prove analyticity of the semigroup
associated to general elliptic operators in Cyp(R") including the case of higher orders [27],
[28] ([29].) This result was then extended by H. B. Stewart to the case for the Dirichlet
problem [37] and more general boundary condition [38]. This Masuda-Stewart method
was applied to many other situations [5], [24], [21], [6]. However, its application to the
resolvent Stokes equations (5.1.1)—(5.1.3) was unknown.

In the sequel, we prove the estimate (5.1.4) by invoking the L”-estimates for the re-
solvent Stokes equations with inhomogeneous divergence-free condition [14], [15]. We
invoke the strictly admissibility of a domain introduced in Chapter 2 which implies an
estimate of pressure ¢ in terms of the velocity by

sup do(0)|Vg(0)] < CalWli-oo) (5.1.5)
RAS

for W(v) = =(Vv — V'v)ng, where Vf denotes (0f;/0x,)1<i j<n and V' f = (Vf)" for the
vector field f = (f;)i<i<n. The estimate (5.1.5) plays a key role in transferring results
from the elliptic situation to the situation of the Stokes system. Here, ng denotes the unit
outward normal vector field on 0Q and d, denotes the distance function from the boundary,
do(x) = infyepq |x — y| for x € Q. The estimate (5.1.5) can be viewed as a regularizing-type
estimate for solutions to the Laplace equation AP = 0 in QQ with the Neumann boundary
condition dP/dng = divgoW on 0Q for a tangential vector field W where divgg = tr Vg
denotes the surface divergence and Vyq = V — ng(ng - V) is the gradient on 0Q. As is
proved in Chapter 3 (Lemma 3.2.2), the pressure P = g solves this Neumann problem
for W = W(v) and the estimate (5.1.5) holds for bounded domains, exterior domains and
perturbed half spaces (n > 3). When n = 3, W(v) is nothing but the tangential trace of
vorticity, i.e. —curl v X ng. We call Q strictly admissible if there exists a constant C = Cq
such that the a priori estimate

IVPlro@) < ClIWII~@0) (5.1.6)
holds for all solutions P of the Neumann problem for tangential vector fields W € L*(9Q),
where || f]| 15©) = SUPeq dqo(x)|f(x)| denotes the norm for f € L7 (L)

We are now in the position to formulate the main results of this chapter.

Theorem 5.1.1. Let Q be a strictly admissible, uniformly C*-domain in R" for n > 2. Let
p > n. For 9 € (n/2,n), there exists constants 6 and C such that the a priori estimate
(5.1.4) holds for all solutions (v,Vq) € Wi)’f(ﬂ) X (LZ}C(Q) N L7 (Q)) of (5.1.1)—(5.1.3) for
fe€Cos(Q)and A € Zy.

The a priori estimate (5.1.4) implies the analyticity of the Stokes semigroup on L*-type
spaces. Let us observe the generation of an analytic semigroup on Cy(€2). By invoking
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Zp-theory [11], [12], [13], we verify the existence of solutions to (5.1.1)—(5.1.3), (v, Vg) €
Wéf Q) x (L () N L3(Q)) for f € CZ(Q) in a uniformly C*-domain Q. We extend
the solution operator R(1) to Cy, by a uniform approximation and the estimates (5.1.4).
(The solution operator to the pressure gradient f +— Vg, is also uniquely extendable for
f € Co,). We observe that R(1) is injective on Cy, since the estimate (5.1.5) immediately
implies that f = 0 for f € Cy, satisfying v; = R(1)f = 0. The operator R(1) may
be regarded as a surjective operator from Cy to the range of R(1). The open mapping
theorem then implies the existence of the closed operator A such that R(1) = (1—-A)™'; see
[7, Proposition B.6]. We call A the Stokes operator in Cy(€2). From Theorem 5.1.1 we
have:

Theorem 5.1.2. Let Q be a strictly admissible, uniformly C*-domain in R". Then, the
Stokes operator A generates a Cy-analytic semigroup on Cy ,(Q) of angle r/2.

We next consider the space L (€2) defined by
L2(Q) = {f e L¥(Q) ‘ ff -Vedx =0 forall ¢ € W“(Q)},
Q

where W'!(Q) denotes the homogeneous Sobolev space of the form W''(Q) = {¢ €
Llloc(Q) | Vo € L'(Q)}. Note that Co(Q2) C L7 (€2). When the domain € is unbounded, the
space L (€2) includes non-decaying solenoidal vector fields at infinity. Actually, the a pri-
ori estimates (5.1.4) is also valid for f € L. In particular, (5.1.4) implies the uniqueness
of solutions for f € LY. We verify the existence of solutions by approximating f € L
with compactly supported smooth solenoidal vector fields {f,.},,_, € C¢.. Note that one
can not approximate f € L7 in a uniform topology by an element of C,. We weaken
the convergence, for example, to the pointwise convergence, i.e., f,, — f a.e. in Q and
I finllzo@) < CllfllL= with some constant C = Cg, independent of m > 1. Although this
approximation is non-trivial for general domains, for bounded domains, exterior domains
and perturbed half spaces, this approximation is valid as we proved in Chapter 4. In the
following, we restrict our results to (I) bounded domains, (II) exterior domains and (III)
perturbed half spaces (n > 3). By an approximation argument, we verify the existence of
solutions to (5.1.1)—(5.1.3) for general f € LY. We then define the Stokes operator on L,
by the same way as for Cy.. Since the domains (I)—(III) are strictly admissible provided

that the boundary is C* (Theorem 2.3.3 in Chapter 2), we have:

Theorem 5.1.3. Let Q be one of the domains (1)—(11I) with C*-boundary. Then, the Stokes
operator A generates a (non-Cy-)analytic semigroup on L (€) of angle /2.

Remarks 5.1.4. (i) The direct resolvent approach clarifies the angle of the analytic semi-
group ¢ on Cy,. Theorem 5.1.2 (and also Theorem 5.1.3) assert that e is angle /2
on Cy, which does not follow from the a priori L*-estimate (0.1.1) for solutions to the
non-stationary Stokes equations proved in Chapter 3.
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(i) We observe that our argument applies to other boundary conditions, for example, to
the Robin boundary condition, i.e., B(v) = 0 and v - ng = 0 on 02 where

B(V) = @V t+ (D(V)nQ)tan for a > 0.

Here, D(v) = (Vv + V1v)/2 denotes the deformation tensor and f;,, denotes the tangential
component of the vector field f on 0Q. Note that the case @ = oo corresponds to the
Dirichlet boundary condition (1.3); see [30] for generation results subject to the Robin
boundary conditions on L for R’. The L”-resolvent estimates for the Robin boundary
condition was established in [20] for concerning analyticity and was later strengthened in
[32] to non-divergence free vector fields. We shall use the generalized resolvent estimate
in [32] to extend our result in spaces of bounded functions to the Robin boundary condition
(Theorem 5.3.6). For a more detailed discussion, see Remark 5.3.5.

(ii1) We observe that the domain of the Stokes operator D(A) is dense in Cy. In fact, by
invoking L”-theory and using (5.1.4), we have

10 = flovc@) = WApliay < Ty iy = 0. 11— oo

for f € C, c D(A,), where A, is the Stokes operator in L”. Thus, we conclude that
D(A) is dense in Cy,. On the other hand, smooth functions are not dense in L™ and e f is
smooth for t > 0, ¢ f — fast | 0in LY does not hold for some f € LY. This means e
is a non-Cy-analytic semigroup. In other words, D(A) is not dense in L;,. We refer to [34,
1.1.2] for properties of the analytic semigroup generated by non-densely defined sectorial
operators; see also [7, Definition 3.2.5].

(iv) For a bounded domain Q, v(-,) = e¢vy and Vg = (1 — P)[Av] give a solution to
the non-stationary Stokes equations, v, — Av + Vg = 0, divv = 0 in Q X (0, c0) with
v = 0 on 0Q for initial data vy € L7 (Q). Although the Helmholtz projection operator
P: LP(Q) — LL(Q)isnot bounded on L™, we are able to define the pressure Vg = K[W(v)]
at least for exterior domains Q by the harmonic-pressure operator K : L, (0Q2) > W —
VP e L7(Q) (Remarks 2.5.2 (ii) in Chapter 2). Here, L, (0€Q) denotes the closed subspace
of all tangential vector fields in L*(0Q2).

(v) We observe that the Masuda-Stewart method does not imply a large time behavior
for ¢*. For a bounded domain, the energy inequality implies that v(-, 1) = ey, (and
also v;) exponentially decay as + — oo as discussed in Chapter 3 (Remarks 3.4.4 (i)). In
particular, ¢ is a bounded analytic semigroup on L. Recently, based on the L™ -estimates
[1, Theorem 1.2] it was shown in [26] that ¢ is bounded semigroup on L for exterior
domains by appealing to the maximum modulus theorem for the boundary-value problem
of the stationary Stokes equations. Note that it is unknown whether ¢ is a bounded
analytic semigroup on L.

In the sequel, we sketch the proof for the a priori estimate (5.1.4). Our argument can be
divided into the following three steps:
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(i) (Localization) We first localize a solution (v, g) of the Stokes equations (5.1.1)—(5.1.3)
in a domain Q" = B, ((n + 1)r) N Q for xy € Q,r > 0 and parameters n > 1 by setting
u =vfy and p = (q — q.)6, with a constant g, and the smooth cutoft function 6, around
Q,,r satisfying 6y = 1 in B, (r) and 6y = 0 in B, ,((7 + 1)r)°. We then observe that (u, p)
solves the resolvent Stokes equations with inhomogeneous divergence-free condition in
the localized domain Q’. Applying the L”-estimates for the localized Stokes equations, we
have

12 2
IAllleell oy + 12V Ullo@ry + IV ullr@ry + IV Pl

< Cp (s + I98lsce) + WUl 1) (5.1.7)

where W Lp (Q’) denotes the dual space of the Sobolev space WP (@) with 1/p+1/p’ = 1.
The external forces & and g contain error terms appearing in the cutoff procedure and are
explicitly given by

h= 6, — 2VvV8y — vAby + (g — g)V6y, g =v- Vb (5.1.8)

(i1) (Error estimates) A key step is to estimate the error terms of the pressure such as
(g — q:.)V6y. We here simplify the description by disregarding the terms related to g in
order to describe the essence of the proof. We will give precise estimates for the terms
related to g in Section 3. Now, the error terms related to 4 are estimated in the form

Ihllzrer, < Cr”/”((n + )| fllzey + @+ D7D e + r-‘nwnm))). (5.1.9)

If we disregard the term (¢ — ¢g.)V6, in h, the estimates (1.8) easily follows by using the
estimates of the cutoff function 6y, i.e., ||6olle + (7 + D7lIVOlles + (7 + 1)>7%(|V?6plle < K
with some constant K. We invoke the estimate (5.1.5) in order to handle the pressure term
by velocity through the Poincaré-Sobolev-type inequality:

lp = @llzr@y < CS"PIV@llsi@y  for all € Wr™(Q), (1.10)

with some constant C independent of s > 0, where (¢) denotes the mean value of ¢ in Q,_
and WJ’W(Q) ={pe L}OC(Q) | Vo € L7 (€)}. We prove the inequality (5.1.10) in Section 2.
By taking g. = (¢) and applying (5.1.10) for ¢ = g and s = (+ 1)r, we obtain the estimate
(5.1.9) via (5.1.5).

(ii1) (Interpolation) Once we establish the error estimates for /# and g, it is easy to obtain
the estimate (5.1.4) by applying the interpolation inequality,

lelli~@, < Cor? (Ilelna, ) + V@) forg e W@, (S.L1D)
for ¢ = u and Vu. Now, taking r = [A]7'/?

the parameters 7 of the form,

My, @)(x0, ) < C (7 + D"l flls) + 07 + DM@, @llme(D),  (5.1.12)

, we obtain the estimate for M, (v, g)(xo, A) with
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for some constant C independent of 7. The second term in the right-hand side is absorbed
into the left-hand side by letting n sufficiently large provided p > n.

Actually, in the procedure (ii), we take g. by the mean value of g in Q, (1) sSince we
estimate |/l|||g||W0—1,p. By using the equation (5.1.1), we reduce the estimate of |/1|||g||Wal.p to
the L -estimate for the boundary value of g — g, on 6€'. In order to estimate ||g — g|lr~),
we use a uniformly local LP-norm bound for Vg besides the sup-bound for Vv. This is the
reason why we need the norm ||M,(v, g)||z=)(4) in the right-hand side of (5.1.12). For
general elliptic operators, the estimate (5.1.12) is valid without invoking the uniformly
local L”-norm bound for second derivatives of a solution.

This chapter is organized as follows. In Section 2, we prove the inequality (5.1.10)
for uniformly C?-domains. More precisely, we prove stronger estimates than (5.1.10) both
interior and up to boundary Q,, , of Q. In Section 3, we first prepare the estimates for /
and g and then prove the a priori estimate (5.1.4) (Theorem 5.1.1). After proving Theorem
5.1.1, we also note the estimates (5.1.4) subject to the Robin boundary condition.

During the preparation of this thesis, the author was informed on the recent paper by
Kenig et al. [22], where the estimate (5.1.6) was directly proved for C'’-bounded domains
by estimating the Green function for the Neumann problem (0.1.4). From their result, we
observe that it is possible in Theorem 5.1.3 to reduce the boundary regularity from C* to C?
at least for bounded domains. For elliptic operators, the estimate corresponding to (5.1.4)
holds with C'!-boundary. However, we use the C*-regularity of the boundary in the proof
of the inequality (5.1.10) although the L”-estimate for the Stokes equations (5.1.7) is valid
with C'!-boundary (e.g. [15]).

5.2 Poincaré-Sobolev-type inequality

In this section, we prove the inequality (5.1.10) in a uniformly C>-domain. We start with
the Poincaré-Sobolev-type inequality in a bounded domain D and observe the compact-
ness of the embedding from W;"X’(D) to LP(D), which is the key in proving the inequality
(5.1.10) by reductio ad absurdum.

5.2.1 Curvilinear coodinates

Let D be a bounded domain in R",n > 2 and p € [1, o). We prove the inequality of the
form,

lle = @l < ClIVellLew)  for ¢ € Wy (D) (5.2.1)

where (¢) denotes the mean value of ¢ in D, i.e., (¢) = 3% wdx. If we replace the norm
||Vg0||L;o(D) by the LP-norm |[V¢l|»(p), the estimate (5.2.1) is nothing but the Poincaré in-
equality [10, 5.8.1]. We observe that the bound for ||V|| L2©Q) implies the LP-integrability
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of ¢ in D even if Vg is not in L?(D). For example, when D = By(1), ¢(x) = log (1 — |x]) is
in L” although |Ve(x)| = dp(x)~! is not for any p € [1,00). Since the space W;’“’ is com-
pactly embedded to the space C(D’) for each subdomain D’ of D with D’ c D, we shall
show a pointwise upper bound for ¢ near dD’ by an LP-integrable function to conclude
that the space VAV[}"X’(D) is compactly embedded to L”(D) by the dominated convergence
theorem. We estimate ¢ € VV;’“’(D) near 0D directly by using the curvilinear coordinates.
Here, for a domain Q, 9Q # 0, we say that dQ is C* if for each x, € 0Q, there exists con-
stants a, 8 and C*-function & of n — 1 variables y’ such that (up to rotation and translation
if necessary) we have

U(xo) N Q ={(",yn)
U(XO) NnoQ = {(y,’ yn)
sup |6;,h(y’)

l<k.|y’|<a

h(y') <y, <hQy)+B, Y| < a},
o = hQ), Y| < af,
<K, V'h(0) = 0, h(0) =0,

with the constant K and the neighborhood of xo, U(xy) = U, gx(x0), 1.€.,
h(y) =B < ya <h() +B,1Y| < a}.

Here, 3 = 9, --- 8" for a multi-index [ = (Iy,...,l,) and 8, = 3/dx; as usual and V’
denotes the gradient in R""!. Moreover, if we are able to take uniform constants a, 3, K
independent of each xy € dQ, we call Q uniformly C*-domain of type («, 3, K) as defined
in [33, 1.3.2].

Uqpn(x0) = {0, y2) €R"

We estimate ¢ € WJ’I(Q) along the boundary using the curvilinear coordinates.

Proposition 5.2.1. Let D be a bounded domain with C*-boundary (k > 2). LetT = {x €
0D | x = (X', h(X")),|x'| < &'} be a neighborhood of x, € dD.

(i) There exists positive constants u and o’ such that (y,d) — X(y,d) = vy + dnp(y) is a
C*! diffeomorphism from T x (0, ) onto

NHI) = {X(y,d) € U(xo) | (7,d) € T x (0, )},
i.e., x € N¥(I') has a unique projection to dD denoted by y(x) € 0D such that
(y(x),dp(x)) = X '(x) for x e N¥(T).

(ii) There exists a constant C; such that for any x; € N¥I') and r\ > O satisfying Dy, ,, =
B, (r) N D c N*(D),

log sup dp(2)IVe(z)l  for x, y € Dy, ,

ZEDXI Ng

d _
IQD(X)—so(y)Iscl( b, Iy =) )

dp(y)l  max{dp(x),dp(y)}

holds for ¢ € VAV;"X’(D).
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Proof. The assertion (i) is based on the inverse function theorem [23, Lemma 4.4.7]. We
shall prove the second assertion (ii). We take points x,y € D, ,, for x; € N#(I') and
ri > 0 satistying D,, ,, € N¥(I'). We may assume dp(y) = d(y) > d(x). By setting
z = (y(x),d(y)), we estimate

lo(x) = eI < le(x) = @(2)] + e(2) = ().

We connect x and z by the straight line to estimate

1
d
lo(x) = @(2)| = ' fo 2 P X (), 1d(x) + (1 = d(y))dt

1
f (d(y) = d(x))(Ve)X(y(x), td(x) + (1 = Dd(y)) - np(y(x))dt
0

! dt
< (d(y) - d(w) fo ) A ARG
_ o 4O
= |log ) ZESBI]J d(2)IVe(2)l.

It remains to estimate |¢(z) — ¢(y)|. We connect z and y by the curve
Coy = {X(y(0),dy) | y(1) = Y @), h(y' ), Y') = ty'(x) + (1 =)y’ (y), 0 <t < 1},

where ¥’ denotes the n — 1 variables of y. We then estimate

1
d
lp(2) — o)l = ‘ f d—QD(X(V(t),d(y)))dl‘
o dt

1
d
fo _dz(z)(l + d(y)Vapnp(y(1)) V(X (y(1), d(y)))dt

M sup d(Z)|V()0(Z)|a

<CQ K
B ( o ) d(y) 2€Dy 1y

since |dy(1)/dt| < Cly(x) — y(y)| and |Vgpnp| < K with a constant C depending on K. The
assertion (ii) thus follows. O

Remarks 5.2.2. (i) We observe from the second assertion that ¢ € VAV;’“’(D) is bounded
from above by an L”-integrable function for all p € [1, o) near 9D, i.e., for each fixed
y € Dy, ,, such that dp(y) > 6, we have

le(0)l < Ca(llog dp(x)] + 1)[ sup dD(Z)IVSO(Z)I) +le)| forx € Dy, (5.2.2)

2€Dy 1y

with a constant C, depending on y, 6.



5.2. POINCARE-SOBOLEV-TYPE INEQUALITY 95

(ii) Note that Proposition 5.2.1 is also valid for a uniformly C*-domain Q of type (e, 3, K),
i.e., there exist constants i, @’, depending only on «, 8, K, such that for each x; € 0 the
assertions (i) and (i1) hold. The above constants C; and C, are depending only on @, 3, K
and 6. In the sequel, we will apply Proposition 5.2.1 to a uniformly C?>-domain to prove
the inequality (5.1.10).

The estimate (5.2.2) implies the compactness from VAV;’“’(D) to LP(D).

Lemma 5.2.3. Let D be a bounded domain in R",n > 2, with C*-boundary. Then, there
exists a constant Cp such that the estimate (5.2.1) holds for all ¢ € VAle’OO(D). Moreover,

the space VAV;“(D) is compactly embedded into LP(D).

Proof. We argue by contradiction. Suppose that the estimate (5.2.1) were false for any
choice of the constant C. Then, there would exist a sequence of functions {¢,,}
W;"X’(D) such that

(o]
m=1

lewm = (@udllry > mlIVeumllrsmp), meN.

We may assume (¢,,) = 0 by replacing ¢,, to ¢, — (¢,,). We divide ¢,, by M,, = llwllrp)
to get a sequence of functions {¢,,}_,, ¢ = ¢n/M,, such that

IV@ulliemy < 1/m,
||¢m||L1’(D) =1 with (¢m) =0.

We now prove the compactness of {¢,,}>_, in L7(D). Since [|V¢,|| L3 (D) is bounded, {¢,,}_,
subsequently converges to a limit ¢ locally uniformly in D. By Proposition 5.2.1, in par-
ticular, the estimate (5.2.2) implies that ¢,, is uniformly bounded from above by an L”-
integrable function near dD. The dominated convergence theorem implies that

¢ — ¢ inLP(D) as m — oo.

Since V¢,,(x) — 0 as m — oo for each x € D and ||¢||.»py = 1, ¢ is a non-zero constant
which contradicts (¢) = 0. We reached a contradiction.

For the compactness of {¢,,}~_, in L”(D), we here only invoke the bound for |[V,|| L3 (D)-
This means that the embedding from VAV;""’(D) into L”(D) is compact. The proof is now
complete. O

5.2.2 Estimates near the boundary

We now prove the inequality (5.1.10) for uniformly C*>-domains Q. When the ball B, (r)
locates in the interior of €, i.e., Q,,, = B (r), applying (5.2.1) to ¢,(x) = ¢(xo + rx) in
D = By(1) implies the estimate

lp = @llra, ) < Cr'" sup do, DIVe@], > 0. (5.2.3)

2€Qy
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Since dgxo,r(x) < dg(x) for x € Q,,,, the inequality (5.1.10) follows. However, if B, (r)
involves AQ, the boundary of Q,,, may not have C'-regularity. We thus prove

le = @llr,,) < Cr'7 sup da(@IVe()]  for g € W (Q) (5.2.4)

ZEQxOJ
for xo € Q and r > 0 satisfying do(xy) < r, which is weaker than (5.2.3).

Proposition 5.2.4. Let Q be a uniformly C*-domain. There exists constants ry and C
such that for xo € Q and r < ry satisfying do(xg) < r, the estimate (5.2.4) holds for all
Y E VAV;’“’(Q) with a constant C independent of xo and r.

The inequality (5.1.10) easily follows from Proposition 5.2.4.

Lemma 5.2.5. The inequality (5.1.10) holds for ¢ € VAV;"X’(Q) forall xo € Qandr < rg
with a constant C independent of xy and r.

Proof. For r < ry, combining (5.2.3) for do(xg) > r with (2.4) for do(x() < r, the assertion
(5.1.10) follows. O

Proof of Proposition 5.2.4. We argue by contradiction. Suppose that the estimate (5.2.4)
were false for any choice of constants ry and C. Then, there would exist a sequence of
functions {¢}>_ . C WJ’“’(Q) and a sequence of points {x,} c Q satisfying do(x,,) <

(o8]

m=1 m=1

r, | 0 such that

llom — (QDm)HLP(QXm,,m) > m,,mn/p sup do(2)|Ven(z)l, meN.

ZEmeJ‘m

Replacing ¢,, by ¢, — (¢,,) and dividing @,, by 75”7 |lgmllr@
observe that ¢, satisfies 7, ”"/?||@,l| Q. = 1 With(g,) = 0andsup_ o da(2)|Ve.(2)| <
1/m. Since the points {x,}>_, accumulates at the boundary 0Q, we mar”}}massume, by ro-
tation and translation of €, that x,, = (0,d,,) with d,, = dqo(x,,), which subsequently
converges to the origin located on the boundary dQ2. Here, the neighborhood of the origin

is denoted by Q.. = U(0) N Q with constants «, 8 and C>-function 4, i.e.,

o) (Still denoted by ¢,,), we

Quoe = {(x', x,) € RY [ A(X') < x, < h(X') + B, |X] < a}.
We rescale ¢,, around the point x,, by setting
¢m(x) = Qom(xm +ryx) forxe Q"

where Q" = {x € Q| x = (yV—x,,)/"m,y € Q}is the rescaled domain. Since ¢, = d,,/r, < 1,
by taking a subsequence, we may assume lim,,_,., ¢,, = ¢o < 1. We then observe that the
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rescaled domain Q™ expands to a half space R} _., = {(x, x,) € R" | x, > —co}. In fact, the
neighborhood Q. C Q is rescaled to the domain,

B

1 1
_h(rmx,) —Cp < X < _h(rmx,) +—, |X’| < g} )

m m m m

Q. = {(x’,x,,) e R”

which converges to R’} _, by letting m — oco. Note that constants of uniformly regularity
of 9Q2,, are uniformly bounded under this rescaling procedure. Moreover, for any constants
u and @', the curvilinear neighborhood of the origin N#(I') is in Q7" for sufficiently large
m > 1, where I' = I',,(0) is the neighborhood of the origin on JQQ”. Then, the estimates
for ¢,, are inherited to the estimates for ¢,,, i.e.,

sup don(2)IVom(2)l < 1/m, meN,

m
ZEQO,I

||¢m||Lp(Qg{l) =1 with(¢,) = ¢ =0,
| 4,

where ngl = By(1) n Q™. From above bound for ¢,,, the sequence {¢,,}*"_, subsequently

m=1

converges to a limit ¢ locally uniformly in (R, _, o1 = R _. N Bo(1).

We now observe the compactness of the sequence {¢,};_, in L°((R} _, )o.1). By Remarks

5.2.2 (ii), applying Proposition 5.2.1 to Q", the estimate (5.2.2) with x; = 0,7 = 1 and a
fixed y € €, satisfying do(y) > 6 yield

lem(0)] < C(l1log dg,, ()] + 1) [ sup dgm(z)IVqu(z)l] +Ipn(y)|  for x € Qg

11
ZEQO,I

for sufficiently large m > 1. Here, the constant C is independent of m > 1. Since ¢,, is
uniformly bounded from above by an L”-integrable function in 7, the dominated conver-
gence theorem implies that ¢,, converges to a limit ¢ in L?((R” __ )o.1). Since V@,,(x) — 0

_ _hco )
as m — oo for each x € (R _ )o.1 and [|¢llowz _, )01 = 1, ¢ 1s a non-zero constant which
contradicts (¢) = 0. We reached a contradiction and the proof is now complete. O

5.3 A priori estimates for the Stokes equations

The goal of this section is to prove the a priori estimate (5.1.4) by using the inequality
(5.1.10). A key step is to establish the estimates for 4 and g in the procedure (ii) as
explained in the introduction. We first recall the L”-estimates to the Stokes equations
(5.1.7) and the interpolation inequality (5.1.11). Note that the constants C, and C; in
(5.1.7) and (5.1.11) respectively are independent of the volume of domains Q’, Q, ..
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5.3.1 L’-estimates for localized equations

Let ©’ be a bounded domain with C2-boundary. For the a priori estimate (5.1.4), we invoke
the L”-estimates (5.1.7) to the resolvent Stokes equations with inhomogeneous divergence-
free condition,

Au—Au+Vp=h inQ/, (5.3.1)
divu=g inQ, (5.3.2)
u=0 onoQ, (5.3.3)

forh € LP(Q), g € WHP(Q) N LE(Q), A € Yy and & € (n/2, 7). Here, L5, (Q') denotes
the space of all average-zero functions g in L”(€Y'), i.e., fQ gdx = 0. The estimate (5.1.7)
is proved by a perturbation argument [14], [15] with the constant C, independent of the
volume of €',

Proposition 5.3.1. ([14], [15]) Let ¥ € (n/2,n) and A € Y4, For h € LP(Q') and
g € WP () N LE(QY), there exists a unique solution of (5.3.1)—(5.3.3) satisfying the
estimates (5.1.7) with the constant C), independent of the volume of Q' and depending on
9, p,n and the C*-regularity of 0€Y'.

We estimate the L™-norms of a solution up to first derivatives via the Sobolev em-
beddings and the L”-estimates (5.1.7) for p > n. In order to estimate the L*-norms of a
solution, we apply the interpolation inequality (5.1.11) [24, Chapter 3. Lemma 3.1.4] in
Q,,.r = B,,(r) N Q for xy € Q and r < ry with a constant . In what follows, we fix the
constant ry by taking the same constant r given by Lemma 5.2.5. The constant C; is also
independent of the radius r.

5.3.2 Estimates in the localization procedure

We prepare the estimates for / and g in the procedure (ii). The estimate for |Al[|g]|,,-1» is
0
different from that of ||4]|z». In order to estimate |Al|gl|,-», Wwe use the uniformly local
0

L?-norm bound for Vg besides the sup-bound of Vv as in (5.3.8). After establishing these
estimates, we will put the procedures (i)—(iii) together in the next subsection.

Let Q be a uniformly C?-domain. Let @ be a smooth cutoff function satisfying 6 = 1 in
[0,1/2] and 6 = 0 in [1, 00). For xy € Q and r > 0 we set Gy(x) = 6(|x — xo|/(n + 1)r) with
parameters 7 > 1 and observe that 6, = 1 in B,,(r) and 6, = 0 in B,,((7 + 1)r). The cutoff
function 6y is uniformly bounded by a constant K, i.e.,

160l + (7 + DIVl + (7 + 1D*FIV6plle < K, 721 (5.3.4)

Let (v, Vq) € W>"(Q) X LP () be asolution of (5.1.1)~(5.1.3) for f € LY(Q) and A € Zyy.

loc

We localize a solution (v, Vg) in a domain Q" = Q, ..1), by setting u = v, and p = g6,
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with § = g — q. and a constant g.. We then observe that (u, Vp) solves the localized
equation (5.3.1)—(5.3.3) in the domain Q’ with 4 and g given by (5.1.8). We shall show the
following estimates for 4 and g,

IVgllr@y < Cir'P( + 1)~ =/p) (fl”VVHLm(Q) + 1”72||V||L°°(Q)) , (5.3.5)

Al Lr @y < Czr””’((n + l)n/p”f”L‘”(Q)
+ @+ D (V| + ”_2||V||L°°(Q))), (5.3.6)
Ul lly-1r gy < CB’ﬂ/p((U + D"l flls

+ (+ PP 9l + 777 sup ||Vq||u<gz,,>)), (53.7)
7eQ

with constants Cy, C, and C; independent of r and n > 1. For the estimates of the terms of
f,v and Vv, we use the estimates

1/ 6ollrry < KC;/[’V"/F(U + 1)n/p||f||Lw(Q), (5.3.8)
IVVV8ollzriry < KCYPPP(p + 1) P V]| 1o (5.3.9)
IWV200llrqry < KCPr P Gp + 17 P2 ] ) (5.3.10)

for all » > 0 and > 1, where the constant C,, denotes the volume of the n-dimensional
unit ball. Since Vg = VvV#, + vV26, does not contain the pressure, the estimate (5.3.5)
easily follows from the estimates (5.3.9) and (5.3.10).

For the estimates (5.3.6) and (5.3.7), we apply the inequality (5.1.10). We choose a
constant ¢, by the mean value of g in Q, ,+2), 1.€.,

qc = JC q(x)dx. (5.3.11)
on,(7]+2)r

We then observe that the inequality (5.1.10) implies the estimate
18112 @, ey < CPP (@ + 2Y PV G50 (5.3.12)

for r > 0 and n > 1 satisfying (7 + 2)r < ry, where g = g — q..

In order to estimate (5.3.7), we estimate the L*-norm of ¢ on Q' since by using the
equation Av = f + Av — Vg we reduce (5.3.7) to the estimate of the boundary value of §
on 0. This is the reason why we take g, by (5.3.11). We apply the inequality (5.1.11) in
Q. r C Q) o) for x; € Q" and r > 0 with p > n to estimate

131,y < Crr"(ldllr, ) + FIVGllr,, )

< Crr P (1ldllry ey + 750D IV qllrca, ) )- (5.3.13)
2€Q
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Combining the estimate (5.3.13) with (5.3.12) and taking a supremum for x; € Q’, we

have

I4llz@) < C((n+ 2)"7IIVqlliz@ + 7™/ sup IVqllia, ). (53.14)
ZEQ

We now invoke the strictly admissibility of a domain € to estimate the norm ||V¢]|| L2Q) by
the sup-norm of Vv in Q via (5.1.5).

Proposition 5.3.2. Let Q be a uniformly C*-domain. Assume that Q is strictly admissible.

Then, the estimate
110y < Car"P (7 + 20" PVl (5.3.15)

holds for all r > 0 and n > 1 satisfying (n + 2)r < ro and p € [1,00). If in addition p > n,

then the estimate

14ll~@) < Cs ((n + 2PVl + 7P sup ”Vq”Ll’(Q”)) (5.3.16)

€0
holds. The constants C4 and Cs are independent of r and n.
Proof. By (5.1.5), (5.3.12) and (5.3.14), the assertion follows. O
By using the estimates (5.3.15) and (5.3.16), we obtain the estimates (5.3.6) and (5.3.7).
Lemma 5.3.3. Let Q be a strictly admissible, uniformly C*-domain. Let (v,Vq) € WP (Q)x

- loc
(Lf’OC(Q) N L7 (Q)) be a solution of (5.1.1)—«(5.1.3) for f € LY (Q) and A € Y5 with p > n.
Then, the estimates (5.3.5)—(5.3.7) hold for Q' = B, ,((n + 1)r) N Q with xy € Q, r > 0 and
n > 1 satisfying (n + 2)r < ry with the constants Cy, C, and C5 independent of xy, r and 1.

Proof. As mentioned before, (5.3.5) follows from (5.3.9) and (5.3.10). The estimate
(5.3.6) follows from the estimates (5.3.8)—(5.3.10) and (5.3.15). We shall show the es-
timate (5.3.7). By using the equation Ag = Av - V6, = (f + Av — Vgq) - Vb, we estimate

|/1|||g”W(;Lp(Q/) < “f . VQOHW(;IJ’(Q/) +|Av - VGO”W(;LP(Q/) + ”Vq . Vgollwgl'f’(g/)-
Since || f - V90||W_|,p(g,) = || fOollr) for f € L (Q), it suffices to show the estimates
0
1AV VEolly-1r ) < Cor"'P(n + D)™ P V] 1o, (5.3.17)

Vg - Volly-1 ¢y, < Cor"'P(n + 1)_(]_2”/”)(1”_1||Vv||Loo(Q) +r " sup Vgl |- (5.3.18)
2€Q

We first show (5.3.17). Take ¢ € W7 (') satisfying llellwrr @y < 1. By using div v = 0,
integration by parts yields that

Z fQ , 8§vi8i9090dx = Z fg ,(iji — 0:v))0:000,pd x — agz'(aj‘}i - 0,-vj)(9,-0090n§2d'7{”_1(x).

ij=1 i,j=1
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We estimate the second term in the right-hand side by the W'!-norm of ¢ in Q' [10, 5.5
Theorem 1.1] to estimate

lellzioa) < Crllellwiiqy < 20117, (5.3.19)

with the constant C; depending on the C!-regularity of the boundary 4€, but independent
of ||, the volume of Q’. We thus obtain

f OV 00pdx| < (1+2CII@O = 8v)0 80l 1P
Q/

< 2(1 +2Cr)KC, PrP(p + 1P V]| o).

Thus, the estimate (5.3.17) holds with the constant C¢ independent of r and 7. It remains
to show the estimate (5.3.18). Since Vg = Vg, integration by parts yields that

f Vg - Voopdx = — f q(Abop + Vo - Vep)dx + f GV - noydH" ' (x)
& o pleY
=T+ 11 +1II

Combining (5.3.4), (5.3.19) with (5.3.16), we obtain

I+ 11T < (1 + 2C)gV 0|l oo |7
< (1+2CH)KC,"Pr'Pm + 1)~ P Y|4l ooy

—(1-2 -1 -
< Crn/p(ﬂ + 1) (=P (” VYo + 7 np sup ||VQ||LP(QZ_,)) ,
7EQ

with the constant C depending on Cr, K, C,, p, C4 and Cs, but independent of r and . We
complete the proof by showing the estimate for /. Applying the Holder inequality, for
s, € (l,00)with1/s+ 1/s" = 1, we have

1< Ko+ D72 lellsolldlly @

Since p > n, the conjugate exponent p’ is strictly smaller than n/(n — 1) for n > 2. By
setting 1/s = 1/p” + 1/n, we apply the Sobolev inequality [10, 5.6 Theorem 2] to estimate
lells@y < Csllellwir @y < Cs with the constant C, independent of [Q’|. Applying the
estimate (5.3.15) to g yields

1< Cr" 2+ 2"V
< Cr''P(p + 2y P VY|

since 1/s" =1—-1/s =1/p + 1/n. The constant C is independent of r and r. The proof is
now complete. O
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Remark 5.3.4. From the estimate (5.3.7), we observe that the exponent —(1 — 2n/p) of
(7 + 1) in front of the term (r~!||Vv|| =) + #7P SUp,eq IV4llzr(@,,)) 1s negative provided
that p > 2n. We thus first prove the a priori estimate (5.1.4) for p > 2n. Once we obtain
the estimate |A|||v||z~) < Cl|fllz~@), it 1s easy to replace the estimate (5.3.7) to

|/l|||g||W(;1,p(Q,) < CKCnl/nrn/p(77 " l)n/p||f||L°°(Q)
for p > n since

AUV - Volly-1r vy = [AlIVEollr@)

< Cll6ollr @l fll= @
1
< CKC,P PP (g + 17| fllio -

5.3.3 Interpolation

We now prove the a priori estimate (5.1.4) for p > n. The size of the parameters n and
the constant ¢ are determined only through the constants C,,, C; and C,—Cs. Although we
eventually obtain the estimate (5.1.12) for all p > n, we firstly prove the case p > 2n
as observed by Remark 5.3.4. The case p > 2n is enough for analyticity, but for the
completeness, we prove the estimate (5.1.4) for all p > n.

Proof of Theorem 5.1.1. We set § = 6, = (n + 2)*/ro* and now take r = 1/|4|'/* for
A € Y45 We then observe that r = 1/|4|'/? and > 1 automatically satisfy r(n + 2) < ry
for A € Xy,5. We may assume that the boundary of Q" = B, (n+1)r)NQ1is C 2 because the
localized equations (5.3.1)—(5.3.3) can be regarded as the equation in a subdomain " of
by taking Q" with C2-boundary so that Q' C Q" and Q" preserves an order of the volume
of Q', i.e., |QQ”| is bounded from above by C(n + 1)"r" with a constant C independent of
r > 0andn > 1. We first prove:

Case (I) p > 2n. By applying the L7-estimates (5.1.7) to u = vy and p = gb, in Q" and
combining the estimates (5.3.5)—(5.3.7) with (5.1.7), we obtain

IAlletll oy + 1AV Ullo@ry + IV ullr@ry + IV Pl
< CglA|™/? ((77 + P fllzeqy + (7 + 1) 2P M (v, Q)”L""(Q)(/D)a (5.3.20)

with the constant Cg independent of » = 1/|4|'/? and 7 > 1. We next estimate the L*-norms
of u and Vu in Q by interpolation. Applying the interpolation inequality (5.1.11) for ¢ = u
and Vu implies the estimates

lllz=@,,,y < Cor P (lullisy,,) + riIVUlla,,))-

- 2
IVullis,,) < Crr " (IVullsa,,,) + AIVulla,, ))-
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Summing up these norms together with |A|"??||V2ul|;»q, ) and [A"*?||Vp|lrrq, ), We have

X0 xo,r)’

Mp(u’ p)(-x(), /l)
< Cor™? (|Allullrq, ) + 1A NIVHlI @y, ) + VU@, ) + VPl ) (5-321)

with the constant Cy independent of r and 7 > 1. Since (u, Vp) agrees with (v, Vg) in Q,, ,,
combining (5.3.20) with (5.3.21) yields

My (v, )0, ) < Cro (07 + D"l flloy + @7 + D72 PNM 0, @l (D). (5.3.22)

with Cjy = CsCy. By taking a supremum for x, € Q and letting n > 1 large so that
Cio(n + 1)"1727/P) < 1/2, we obtain (5.1.4) with p > 2n.

We shall complete the proof by showing the uniformly local L”-bound for second
derivatives of (v, g) for all p > n.

Case (Il) p > n. Since |A|l|gll;~» is bounded for p > 2n, we may assume (v,Vq) €
o - _ 0
Wz’p(Q) X Lf;C(Q) with p > 2n. By using |A]||[Vl|z~@) < Cl|fllL=~q) for A € Zy s with 6 = ¢,

loc
we replace the estimate (5.3.7) to

gl ey < CKC,PP2Gp + 1) fllscy
by Remark 5.3.4. Then, we are able to replace the estimate (5.3.22) to
1M, (v, lli=n(D) < Crr (1 + DIl fllimiy + (7 + D™ VUM, @l ().

Letting 7 > 1 large so that Cy;(7 + 1)"17/P) < 1/2, we obtain (5.1.4) for all p > n. The
proof is now complete.

Remark 5.3.5. (Robin boundary condition) Concerning the Robin boundary condition, we
replace the Dirichlet boundary condition for the localized equations (5.3.3) to the inhomo-
geneous boundary condition with a tangential vector field k,

Bu)=k, u-ng =0 ondQ.
Instead of the estimate (5.1.7), we apply the L”-estiamte of the form,
\Allullzrry + 1A IVl + 1Vl + IV Pl
< ClIAllr @y + 1V8ller@y + [AlgH 12y + A1kl iy + VKo@),

where £ is identified with its arbitrary extension to €'. Since k = v,,00,/0ng for u = vl
and p = g6y, we observe that the norms of k in the right-hand side are estimated by the
same way with ||Vg||.» where g = v- V6. The LP-estimates for the Robin boundary condi-
tion is proved by [32] for bounded and exterior domains by generalizing the perturbation
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argument to the Dirichlet boundary condition [15]. We thus observe that the constant C is
also independent of the volume Q'. After proving the a priori estimate (5.1.4) for f € L
subject to the Robin boundary condition, we verify the existence of solutions of (5.1.1)
and (5.1.2). In particular, v € L (not in Cy,.) Then, we are able to define the Stokes
operator A = Ag in L in the same way as we did for the Dirichlet boundary condition.
Our observations may be summarized as following:

Theorem 5.3.6. Assume that Q is a bounded or an exterior domain with C*-boundary in
R". Then, the Stokes operator A = Ay subject to the Robin boundary condition generates
an analytic semigroup on L7 (Q) of angle rt/2.
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