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Abstract

In this paper we present a few topics related to maximum principles (comparison
principles) in partial differential equations. The equations we consider include
Hamilton-Jacobi equations and curvature flow equations appearing in crystal
growth phenomena. On the basis of the theory of viscosity solutions, we establish
a unique solvability of the initial value problems via maximum principles and
track behavior of the solution. We also apply the method for proving maximum
principles to discrete analysis.

In Chapter 1 we study the initial-value problem for a Hamilton-Jacobi equa-
tion whose Hamiltonian is discontinuous with respect to state variables. Our mo-
tivation comes from a model describing the two-dimensional nucleation in crystal
growth phenomena. A typical equation has a semicontinuous source term. We
introduce a new notion of viscosity solutions and prove, among other results,
that the initial-value problem admits a unique global-in-time uniformly contin-
uous solution for any bounded uniformly continuous initial data. For Bellman
equations we give a representation formula of the solution as a value function of
the optimal control problem with a semicontinuous running cost function. The
large time behavior of the unique solution is also studied. We prove that, when
the source term has a compact support, the scaling limit of the solution to the
initial-value problem is characterized as the unique self-similar solution of the
limit problem with a jump discontinuity at the origin. In the case where the
source term is periodic, it turns out that the solution is asymptotically constant.
We also study equations for the profile function of the self-similar solution, and
establish a comparison principle and an existence result of solutions to general
stationary problems.

Chapter 2 is devoted to the asymptotic behavior of solutions to fully nonlinear
second order parabolic equations including a generalized curvature flow equation
which was introduced by Mullins in 1957 as a model of evaporation-condensation.
We prove that, in the multi-dimensional half space, solutions of the problem with
prescribed contact angle asymptotically converge to a self-similar solution of the
associated problem under a suitable rescaling. Several properties of the profile
function of the self-similar solution are also investigated. We show that the
profile function has a corner and that its angle is determined by points at which
the equation is degenerate. We also study the depth of the groove, which is
represented by the value of the profile function at the boundary. Among other
results it turns out that, as the contact angle tends to zero, the depth of the
groove is well approximated by the linearized problem.

In Chapter 3 we establish an isoperimetric inequality constrained by n-
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dimensional lattices. We prove that, among all sets which consist of lattice
translations of a given rectangular parallelepiped, a cube is the optimal shape
that minimizes the ratio involving its perimeter and volume as long as the cube is
realizable by the lattice. For its proof, the solvability of finite difference Poisson-
Neumann problems is verified. Our approach to the isoperimetric inequality is
based on the technique used in a proof of the Aleksandrov-Bakelman-Pucci max-
imum principle, which was originally proposed by Cabré in 2000 to prove the
classical isoperimetric inequality.

Chapter 4 is concerned with the level set method. In the classical level set
method, a slope of a solution to level set equations can be close to zero as time
develops even if the initial slope is large, and this prevents one from computing
interfaces given as the level set of the solution. To overcome this issue we in-
troduce an improved equation by adding an extra term to the original equation.
Then, by applying a comparison principle to the signed distance function to the
interface, we prove that, globally in time, the slope of a solution of the initial
value problem is preserved near the zero level set.

Chapter 1 is combination of papers [1] and [4], while Chapter 2 is essentially
based on [3]. Chapter 3 is essentially based on [2].

All Sections, formulas and theorems, etc., are cited only in the chapter where
they appear.
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Chapter 1

Hamilton-Jacobi equations
with discontinuous source
terms

1 Introduction

We consider the initial-value problem for the Hamilton-Jacobi equation of the
form

Owu+ H(z,Vu)=0 in R"x (0,T) =:Q, (1.1)
u‘t:() = Uup in Rn, (1.2)

(1) {

when the Hamiltonian H is discontinuous in space variable z € R™. Here Vu
denotes the spatial gradient, i.e., Vu = Vyu = (0p,u,...,0;,u). A typical
example we consider is the case when

H(z,p) = =|p| = cl(z) (c>0) (1.3)
with
1 =0
I2)= 4t @=0 (1.4)
0 (z#0),
where | - | stands for the standard Euclidean norm in R™. In other words,

the source term can be discontinuous. Our main goal is to introduce a suitable
definition of weak solution (by extending the theory of viscosity solutions) so that
the initial-value problem admits a unique global-in-time solution for a general
bounded Lipschitz continuous initial data ug € BLip(R™) or even just bounded
uniformly continuous initial data ug € BUC(R™).

Our motivation comes from crystal growth phenomena. One of key mecha-
nisms of crystal growth is the two dimensional nucleation ([6, 36]). This growth
is started by external supply of crystal molecules for a flat face. Such a source
of supply is called a step source. This is a macroscopic understanding of crystal
growth. At a very initial stage of the two dimensional nucleation the step source
catches crystal molecules so that a small disk-like island is formed at the step
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source on a flat face. Then the island grows to be a “wedding cake” consisting
of several disks. The other mechanism is the spiral growth ([6]). As pointed out
by [6] a pair of two spirals (with opposite orientations) whose centers are very
close essentially forms a small island just like the two dimensional nucleation;
see, e.g., [38] and [33]. According to [37], some high-temperature superconductor
provides such a model and the authors proposed a macroscopic model including
(1.1)—(1.3) approximating spiral growth on a crystal surface. Both situations
can be modeled by Hamilton-Jacobi equations with discontinuous source terms
if we interpret the phenomena in macroscopic point of view.

Let us consider the typical case that there is a step source only at the origin
and crystals grow at the uniform velocity 1 horizontally. Assume that the step
source supplies crystal molecules at a rate of ¢ (> 0) and let u(z,t) be the height
of crystals at position x € R™ and time t € (0,7). (See Figure 1.) Then,

u(x,t)

supplying rate ¢

\ 8tu

/\ |Vul =1

Figure 1: The step source at the origin.

the horizontal outward growth rate of crystals is given by dyu/|Vu|. Since the
horizontal growth speed is one, we have

Oru = |Vul

provided that Vu # 0. However, this equation does not include the effect of step
sources. It is natural to postulate that the growth rate d,u at the origin should
increase by ¢ due to the step source. The resulting equation is formally of the
form

Ou — |Vu| = cl(x). (1.5)

The corresponding Hamiltonian (1.3) is not continuous but lower semicontinuous.
The equation (1.5) is a Hamilton-Jacobi equation with a discontinuous source
term. The physical intuition suggests that

u(z,t) = et — |x])+ (1.6)

is a solution for (1.5) when the initial-value equals zero (see Figure 2), where a
denotes the positive part of a € R, i.e., ax = max{a, 0}. Such a “solution” is
proposed in [30, 37] by variational principle. The function u¢ is also obtained
via approximation. More precisely, if we consider approximate Hamiltonians

H*(z,p) = —|p| — cI*(x) (1.7)



with

F(z) = <1 - ’”j>+ (1.8)

for ¢ > 0 and solve (HJ) with H® and up = 0, it turns out that the unique
viscosity solution of the approximate problem uniformly converges to u¢ as € | 0.
(See Example 3.2 for more details.) However, it is an important issue how to
characterize u°.

u(zx,t)

/
)
y
1

7

O r€eR

Figure 2: The intuitive solution of dyu — |Vu| = I(x), ug = 0.

Unfortunately, we cannot expect the uniqueness of solutions for (1.5) even
in Ishii’s sense of viscosity solutions [26], where a discontinuous Hamiltonian is
treated. Indeed, u€ is a solution but u®(x,t) := a(t — |z|)+ for o € [0, ¢] is also a
solution with the zero initial data. This is caused by an inadequate effect of the
discontinuous term. More precisely, in the standard definition of supersolutions
we use the upper semicontinuous envelope of H, that is H*(z,p) = —|p|, but then
the term cI(z), which is a key term of our equation (1.5), disappears. Hence,
in order to guarantee the uniqueness we must introduce some proper notion of
supersolutions reflecting discontinuities and keep the notion of a subsolution in
a standard way. Instead of using H* we are tempted to define a supersolution
(D-supersolution) by requiring

T+ H(&,p) =0 forall (&¢) € Q and (p,7) € D™ u(i, 1), (1.9)

where D~ u denotes the subdifferential. However, u® is a D-supersolution no
matter how a € (0, ¢] is taken. We are led to introduce a notion of D-supersolution
by replacing D~ u in (1.9) with D u, a kind of “closure” of D~u. We shall es-
tablish a general comparison principle for D-super- and subsolutions (Theorem
2.6). Applying this comparison principle we are able to establish a comparison
principle for Lipschitz continuous D-super- and subsolutions for (1.5) (Theorem
2.9). The reason we need Lipschitz continuity is that our general comparison
principle needs continuity of H in x for large |p| which excludes (1.5).

We next discuss the existence problem. Unfortunately, the intuitive solu-
tion u¢ in (1.6) is not a D-supersolution. We have to weaken the definition of
supersolutions by regarding the infimum of a family of D-supersolutions as a
“supersolution”. We call such a supersolution an envelope supersolution. By



definition we have a comparison principle for envelope super- and subsolutions.
In this way, we introduce a notion of an envelope solution (envelope super- and
subsolution) and construct a global-in-time solution by approximating equations
with continuous Hamiltonians (Proposition 3.7). It turns out that the envelope
solution is a proper notion of the solution. Indeed, it is easy to see that u® is a
unique envelope solution of (1.5) with the zero initial data. Moreover, we show
that our solution preserves the Lipschitz continuity and uniform continuity of
the initial data if Hamiltonian is coercive. Thus the envelope solution is unique
for Lipschitz continuous initial data. Moreover, by a suitable approximation
argument one is able to conclude that the envelope solution we constructed is
unique even for bounded uniformly continuous initial data (Theorem 3.19). The
typical H(z,p) we are concerned with is

H(l’,p) :Ho(.f,p)—r(.%), (110)

where Hj is a continuous coercive Hamiltonian and r is a bounded lower semi-
continuous function. No convexity (concavity) assumption on p — H(x,p) is
imposed, though our example (1.3) is concave in p. In this case, we prove that
there exists a unique uniformly continuous envelope solution for all bounded
uniformly continuous initial data (Theorem 3.20).

The name “an envelope solution” was also introduced in [2] and [1] in or-
der to deal with boundary conditions. They considered equations with contin-
uous Hamiltonians, and defined the notion of envelope supersolutions as the
infimum of standard viscosity supersolutions. FExcept on the boundary their
envelope supersolution is a standard viscosity supersolution since the infimum
of supersolutions in a domain is known to be a supersolution. Different from
their solutions, our envelope solutions for discontinuous Hamiltonians may not
be a D-supersolution. Moreover, it is not clear whether or not there is a way to
characterize our envelope solutions by using a suitable class of test functions.

In the argument above we obtain the unique existence result for a Hamilto-
nian with the form (1.10) only when it is coercive. This is caused by a limitation
of our comparison principle. In order to guarantee the continuity of H(z,p) in x
for large |p|, we define a relaxed Hamiltonian H by regularizing the discontinuity
of H. It turns out in several interesting examples that our envelope solution of
(1.1) is also an envelope solution of (1.1) with a relaxed Hamiltonian H which
permits a general comparison principle without assuming the Lipschitz continu-
ity of solutions. Then, by regarding our envelope solution of the original problem
as that of the relaxed problem, we establish the uniqueness of the envelope solu-
tions but only for more restrictive Hamiltonians (Proposition 4.5). Fortunately,
this still applies to the problem with finitely many source terms. (See (1.11)
with (1.12).) It turns out that the relaxed Hamiltonian corresponding to (1.3)
is

H(z,p) = —|pl = (cI(z) = [P+,
which is continuous if |p| = ¢. (This Hamiltonian is coercive but it is very
instructive to calculate H.) Also, u® in (1.6) becomes an envelope solution of
the relaxed problem.



If we consider the relaxed problem, there are more chances that an envelope
solution is a D-solution. We give its sufficient condition. Note that there still
exists an envelope solution which is not a D-solution.

Our theory applies to more physically interesting examples including

O — |Vu| = r(z), (1.11)

where r : R™ — R is bounded and upper semicontinuous, i.e., r € BUSC(R").
A typical example in our mind is

N
r(x) = chl(:n —a;) (¢j >0, a; € R", a; # a;(i # j)). (1.12)
j=1

This is the case that the step source is distributed at several singletons. It turns
out that the resulting unique envelope solution with zero initial data is

N
u(z,t) :malxcj(t— |z — aj|)+, (1.13)
‘7:
which tells us that the envelope solution is the maximum of solutions for each
step source. As an another example we have

r(z) = exs(x) (¢>0and S is a nonempty closed subset of R™).  (1.14)

Then (1.11) means that the step source is concentrated at a general set S. Here
Xs is the characteristic function of S, namely

{1 (z € 9),

Xs(@) =9 (x & 5).

Our theory guarantees the unique existence of envelope solutions of (1.11) for
general bounded uniformly continuous initial data. We are interested in estab-
lishing a representation formula of solutions based on the optimal control theory.
However, the traditional method can be applied only for continuous equations.
In this paper we adopt a discontinuous function appearing in our equation as
a running cost function and prove that our envelope solution can be given via
the value function of this discontinuous control problem under the some kind of
controllability condition. Such an interpretation gives several explicit represen-
tation formulas of solutions. For example it guarantees that (1.13) is an envelope
solution of (1.11) with (1.12) and uy = 0.

Our theory applies to more general growth models including anisotropy. The
typical form is

Ou — |Vu|U <\_VVQLT> o(x) =r(z). (1.15)

Here U(n) : S" ! = {z € R" | |z| = 1} — R is the growth rate in the direction
n € S" ! and —Vu/|Vu| means the outward unit normal vector to the level
sets of u. The function ¢ : R® — R is called the surface supersaturation.



Since |p|U(—p/|p|) — 0 as |p| — 0 provided that U is continuous, (1.15) has no
singularity contrary to its seemingly singular appearance. The unique existence
result for (1.15) is included in Theorem 3.20.

When the Hamiltonian is non-coercive ([37, 42]), the problem becomes more
complicated. We cannot expect uniqueness results similar to the coercive cases.
The difficulty may be seen from the following two examples. The first one is

H(z,p) = —cl(x) (c>0), (1.16)

which means that there is no horizontal growth. Obviously u(z,t) = ctI(x) seems
to be the solution when the initial-value equals zero. However, the solution is
not continuous and the uniqueness of solutions breaks down in our definition as
will be mentioned in Example 3.16. The second one is

He(z,p) = —7 f’m —cI(z) (c>0). (1.17)

This Hamiltonian arises in physical phenomena ([37]) where growth velocity is
dependent on the gradient of the crystal surface. For 0 < ¢ < 1 we show
in Theorem 4.8 that there exists a unique envelope solution for any bounded
uniformly continuous initial data.

In [42] and [24] a step source is considered as a Dirichlet boundary condition.
One may think that our envelope solution of (1.5) coincides with a solution of
the Dirichlet boundary problem with w(0,¢) = ¢t 4+ up(0) at the origin. This
guess is correct provided that a slope of the initial data is less than or equal to
c. However, if not, it turns out that the Dirichlet problem may give a different
solution from our problem with (1.3). We also discuss a relation to the dynamic
boundary condition d;u(0,t) = c.

In the latter part of this chapter, we study the large time behavior of the
unique envelope solution to the following problem:

ou(z,t) — Hi(Vu(z,t)) =r(z) in R"™x (0,00), (1.18)

(HI1) { (1.2).

Here H; is a continuous and coercive Hamiltonian and » € BUSC(R™) is non-
negative. The large time behavior is discussed via the scaling method. Namely,
we study the limit of the rescaled function of the solution w which is defined as

1
u(yy(z,t) = Xu()\x, At)

for A > 0. Our goal is to find a function v which is a solution to the associated
problem of (HJ1) and characterizes the limit of u(y) in the sense that

uyy(z,t) = v(w,t) as A — oo. (1.19)

Once the convergence of the type (1.19) is obtained, putting t = 1 and \ = ¢,
we get,

1
Zu(tx, t) > v(z,1) ast— oo, (1.20)



which is the large time behavior of u. To study the scaling limit of u we consider
the equation for uy). Differentiating the rescaled function, we see u(y) satisfies
the equation

8tU()\) — Hl(VU(/\)) = T‘()\I) in R" x (0,00) (1.21)

and the initial data )
u(y)(z,0) = Xug()\:c).

Assuming that ug is bounded, the above initial data uniformly converges to zero.
However, the source term in (1.21) may oscillate as A — oo. In this paper we
treat source terms r with special forms for which we are able to compute the
scaling limit of solutions. The results include two types of source terms; source
terms with compact support and periodic source terms.

We first suppose that the support of r(z), which is

supp(r) := {z € R™ | r(x) # 0},

is compact in R™. In this case, since the graph of r(A\z) concentrates into the
origin and keeps its maximum value ¢ := maxgn 7 as A — oo, it is reasonable
to expect that the scaling limit of the solution is characterized as the unique
envelope solution of

O — Hi(Vv) =cl(z) in R" x (0,00) (1.22)

with the zero initial data. In fact, it will be shown in Theorem 6.5 that the
convergence (1.19) holds locally uniformly in R™ x [0,00) for the solution wv.
Under some restrictive assumptions we also give an example of the scaling limit
of solutions when r has non-compact support (Example 6.7).

We are also interested in periodic source terms. It turns out that, if r(x) =
r(z + a) for all a € Z"™, then we have (1.19) in the sense of uniform convergence
for v(x,t) = ¢t with ¢ = maxgn r. This is a natural result since the source term
is uniformly distributed in space as A — co. Our problem for periodic source
terms is closely related to homogenization problems ([29, 18, 41]), and, when r
is continuous, our result on the large time behavior is indeed consistent with the
classical result in the homogenization theory (Remark 6.12).

The envelope solution (1.6) of (1.5) with the zero initial data is self-similar
in the sense that u° is scaling invariant, i.e., u® = (u)) for all A > 0. More
generally, as long as solutions are unique, the envelope solution v of (1.22) with
the zero initial data is self-similar. Thus the result (1.19) means convergence
to the self-similar solution of the limit problem. In other words, the solution
u of the original problem is asymptotically self-similar although u itself is not
necessarily self-similar. When a function v(z, t) is self-similar, it is represented as
v(z,t) = tv(x/t,1) = tV(x/t), where V(x) := v(z,1) is called a profile function
of v. The profile function also appears in (1.20) as the limit of u, and so (1.20)
asserts asymptotic convergence of u to the profile function. In Section 7 we will
derive a stationary equation for the profile function and show that an envelope
solution V of the stationary equation gives that of the time-dependent problem
by letting v(z,t) = tV(x/t). We also establish a comparison principle and an
existence result of solutions to general stationary problems.



In this paper we mainly discuss the case when the given Hamiltonian H (z, p)
is lower semicontinuous with respect to z. We here recall some preceding studies
about the viscosity solution theory for PDEs with discontinuous Hamiltonians.
Shortly after the establishment of notions of viscosity solution, Ishii [26] studied
discontinuous Hamiltonians with respect to the variables ¢ and u. Discontinuities
in the space variable x are investigated in many other works later.

For the stationary problem, the equation of eikonal type was studied by
Newcomb and Su [32], Ostrov [34], Deckelnick and Elliott [13] and Soravia [40].
In [32] the authors considered the equation H(Vu) = n(z). Here H(p) is convex,
coercive and positive except at p = 0 and n is assumed to be lower semicontinuous
and positive. They introduced a suitable notion called Monge solutions, which,
in the case of continuous Hamiltonians, are consistent with the usual viscosity
solution. Briani and Davini [5] generalized the approach of Monge solutions
for the equation H(x,Vu) = 0, where H(z,p) is only assumed to be Borel
measurable and quasi-convex in p. Although we did not check, we expect that
our envelope solution should agree with the Monge solution when the latter is
available. The work by Soravia [39] is related to our results concerning the
optimal control theory. The author of [39] considered the equation

Au(z) + sup{={f(z,a), Vu(z)) = h(w, a)} = g(z)

with a Borel measurable function g. Here (-,-) denotes the standard Euclidean
inner product. The author established a general uniqueness result in the sense of
lower semicontinuous solutions, which was introduced by Barron and Jensen [4].
However, the uniqueness result does not apply to our setting since the definition
of solutions like lower semicontinuous solutions is not suitable for (1.4). The
reason is that it is impossible to choose the intuitive solution u® exclusively even
if we impose an additional condition about test functions from the opposite side
no matter which definition of solutions (standard, D- or D-) we use.

For the time-dependent problem, Camilli and Siconolfi [9] considered the
equation Oyu + H(z, Vu) = 0, where the Hamiltonian H (x,p) is measurable in z
and convex, coercive in p. The convexity is used to guarantee the Legendre trans-
form and the equivalence of a.e. subsolution and viscosity subsolution. However,
such measure theoretic approach does not give a suitable notion of solutions to
our problems because the jump discontinuity such as cI(x) is negligible with re-
spect to the Lebesgue measure. Actually, it is reasonable to understand that the
discontinuity depends on what kind of measure we consider as discussed at the
end of this paper (Appendix C). See also [8] for an earlier work where a solution
formula established for this type of equation under similar assumptions on H
with positive 1-homogeneity on the function p — H(x,p). For discontinuity of
different types, there are a few works on the equations of the form

o+ f(z,t)h(x, Vu) =0

with discontinuous f, which has important applications in front propagations.
Deckelnick and Elliott [14] obtained the unique existence of continuous vis-
cosity solutions for the one space dimensional case when f(z,t) = a(z) and



h(z,p) = \/1+ p?, where a is assumed to be bounded, of bounded variation and
one-sided Lipschitz continuous. Afterwards Chen and Hu [10] studied a more
general case when f depends on t but h depends only on p. They assumed that
f is positive, bounded and measurable and h is non-negative and Lipschitz con-
tinuous. More recently, with the optimal control theory involved De Zan and
Soravia [15] discussed the unique existence of solutions when h depends also on
x while f is independent of ¢ and piecewise Lipschitz continuous across Lipschitz
hypersurfaces. Our results are therefore different from these above. The discon-
tinuity of Hamiltonians we are concerned with is given as a source term instead
of the jump of propagating speed, which is also studied recently in [23].

For the second order equation, Caffarelli, Crandall, Kocan and Swiech [7]
studied fully nonlinear and uniformly elliptic PDEs by utilizing LP-viscosity so-
lution theory. However, the situation is quite different from ours.

The large time behavior of solutions u to Hamilton-Jacobi equations is well
studied in the sense that

u(z,t) ~ Mt +¢(x) ast— oo (1.23)

when equations are continuous ([31, 20, 3, 35, 12]). However, the scaling limit
of u in our sense gives a different limit from (1.23) both in the non-periodic case
(Example 6.6) and in the periodic case (Example 6.13).

For the scaling limit of solutions to second order equations, the reader is
referred to the book [22]. There, via the scaling method, self-similar solutions
are analyzed for various equations including the heat equation, Navier-Stokes
equation, porous medium equation and so on. The papers [16, 27] are concerned
with the curvature flow equations for graphs. Under a suitable growth condi-
tion, the authors of these papers study the asymptotic behavior of solutions to
the curvature flow equations over the whole space. Recently, the author of the
present paper studied the asymptotic behavior of solutions to fully nonlinear
parabolic equations including a generalized curvature flow equation which ap-
pears in a model of evaporation-condensation; see Chapter 2 in this paper. It
was shown that the scaling limit of solutions to the problem is characterized as
a self-similar solution to the associated problem, which is, in the evaporation-
condensation model, the usual mean curvature flow equation for graphs.

This paper is organized as follows. In Section 2 we first define some notions of
solutions. Then we establish two types of comparison principles for D-solutions;
a general version which excludes (1.5) and a Lipschitz version which includes
(1.5) but needs Lipschitz continuity of solutions. Section 3 is devoted to ex-
istence problems of solutions. We prove that there exists a unique envelope
solution of (HJ) when H is coercive. Section 4 deals with relaxed Hamiltonians.
After introducing the relaxed Hamiltonians, we deduce a unique existence result
of envelope solutions without the coercivity assumption. Also, we discuss the
existence of D-solutions. Section 5 is dedicated to showing some examples of
envelope solutions. We also mention the relation between our envelope solutions
and solutions of Dirichlet boundary problems. In Section 6 we study the large
time behavior of envelope solutions to (HJ1). We prove that, if the support
of the source term r is compact, then the solution converges to the self-similar



solution of (1.22) under rescaling. Periodic source terms are also investigated.
Section 7 is devoted to stationary problems. We first study equations for profile
functions of the self-similar solutions. We next establish a comparison principle
and an existence result of solutions to general stationary problems.

2 Proper definition of solutions and comparison prin-
ciples

2.1 Definition of solutions
We first recall the notion of super- and subdifferentials to define a viscosity
solution. For u: Q — R and (Z,1) € Q we set a superdifferential Dgu(:fv, t) and
an extended superdifferential Egu(aﬁ,f) by
Dgu(i, t) =
W w | 36 €CHQ) such that (p,7) = (V6,0,6)(#,)
{(p’ TERTXR and maxo(u — ¢) = (u — §)(2, ) o 21
Egu(i,f) =
Ei{(‘rTthm)}MGN CQ, El{(pmaTm)}meN C R"™ x RZ
(p,7) € R" x R | such that (pp,m) € D&Su((ﬂm,tm), (T tm) = (2,1), 3,

(Prms i) — (p,7) and u(zp,, ty) — u(d, 1) as m — oo
(2.2)

where N := {1,2,3,...}. We denote a subdifferential Dyu(Z, t) and an extended
subdifferential Dgyu(, 1) by

Dgu(i,t) == =D (—u)(#,) and Dgu(i,f) := —D)(—u)(&,1).
We can also define Dé and Ec_g by replacing, respectively, max by min in (2.1)

and Dg by D in (2.2). Index @ is often omitted. It is known that Dt and D~
are closed convex subset of R” x R.. (See [2, Lemma II.1.8.(a)].)

We call ¢ € CY(Q) a corresponding test function for (p,7) € Dtu(,t),
where ¢ appears in (2.1). One can take such ¢ as a separated form, i.e.,
é(x,t) = P(x) + g(t) with » € C}(R™) and g € C1(0,T). (See [21, Proposition
2.2.3.(i)].) Moreover we call {(Zm, tm), (Pm, Tm) }meN C QX D u(xpy,, ty) a defin-
ing approximate sequence for (p,7) € ﬁ+u(§:, t), where (2, t) and (P, Tm) are
given in (2.2).

Definition 2.1. Let H = H(x,p) be a real valued function defined in R™ x R"
and let u be a real valued function in Q.

(1) We call u a (standard) viscosity supersolution (resp. subsolution) of (1.1)
if u is bounded from below (resp. from above) in @ and

7+ H*(#,p) 20 for all (#,1) € Q and (p,7) € Déu*(fc,f). (2.3)
(resp. T+ Hy(&,p) £0 for all (#,1) € Q and (p,7) € Dgu*(i,f).)
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We denote by SUP(H) and SUB(H) respectively the set of all supersolu-
tions and subsolutions of (1.1).

(2) If w € SUP(H) (resp. u € SUB(H)) defined in Qy := R"™ x [0,T) is
continuous on R™ x {0} and satisfies the initial condition (1.2), it is called
a viscosity supersolution (resp. subsolution) of (HJ) and then we write
u € SUP(H,up) (resp. u € SUB(H,uyp)).

(3) We say that u is a wiscosity solution if it is both a viscosity supersolution
and a viscosity subsolution. Define SOL(H) := SUP(H) N SUB(H) and
SOL(H,ugp) := SUP(H,uy) N SUB(H,uyp).

Remark 2.2. (1) For any subset L € R and h : L — R we denote the
upper semicontinuous envelope (resp. lower semicontinuous envelope) by
h* (resp. hy) : L — R U {400}, which is as follows:

W (2) = limsup h(y) = limsup{h(y) | y € Bs(2) N L}

y—z
(resp. hs(z) := liminf h(y) = liminf{h(y) | y € Bs(z)NL}) (2 € L),
y—z 510
where B,(x) stands for the closed ball with center z and radius r. (We
denote the open ball by B,(x).) The function h* is characterized as the
smallest upper semicontiuous function on L that is greater than h on L,

while h, is the greatest lower semicontiuous function on L that is smaller
than h on L.

(2) We can replace Dy in (2.3) by 55 since H* is applied in the definition.
This can be easily shown by taking limits.

(3) It often assumes one side local boundedness of sub- and supersolutions in-
stead of global boundedness in the literature. We impose the boundedness
assumption to simplify the argument. Also, when we think of the initial
value problem (HJ), we require solutions to be continuous at ¢ = 0 for the
sake of simplicity.

Example 2.3. Let us consider (HJ) with (1.3) and ug = 0. It is easy to verify
that functions u®(x,t) := a(t—|z|)+ (0 £ a < ¢) are all viscosity solutions of this
initial-value problem in the standard sense above. We must therefore strengthen

the definition of solutions in order to get uniqueness. As mentioned in Section 1,
we adopt a new definition in which H instead of H* is used in (2.3). However,

notice that in this case the definition by Dé and that by Eg? are different.

Definition 2.4. Let u : @ — R. We call u a D-viscosity supersolution (resp.
D-viscosity supersolution) of (1.1) if u is bounded from below in @ and

7+ H(2,p) 20 forall (#,{) € Q and (p,7) € Déu*(ﬁn,f).
(resp. 7+ H(&,p) 20 for all (2,1) € Q and (p,7) € Dgu.(#,1).)

We denote by D-SUP(H) (resp. D-SUP(H)) a set which consists of all
D-supersolutions (resp. D-supersolutions) of (1.1). Moreover we similarly de-
fine a corresponding viscosity subsolution, solution, solution of the initial-value
problem, and set notations by marking D- or D-.
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About three notions of supersolutions defined so far we have the inclusion
relation SUP(H) D D-SUP(H) D D-SUP(H) in general, and these sets are the
same for upper semicontinuous H. Since we mainly think of a lower continuous
H, as for subsolutions we have SUB(H) = D-SUB(H) = D-SUB(H) in many
cases.

Example 2.5. We revisit the Example 2.3. How about solutions of our equation
in the sense of D- or D-solutions? Since there is no smooth function that touches
u® from below at (0,%) (f > 0) when a € (0,¢], they all become D-solutions.
(When o = 0, the function © = 0 is not a D-supersolution.) This suggests
that D-solutions are still not unique. For this reason we adopt D-solutions as
a proper definition for the moment, and we will show comparison principles for
such solutions in the next subsection.

2.2 Comparison principles

We will show comparison principles (CP for short), which are important to prove
uniqueness of solutions. The following two assumptions are standard for usual
CP.

(Hp) There exists a modulus w; € M such that |H(z,p) — H(x,q)| £ wi(lp—q|)
for all x,p,q € R™.

(H,) There exists a modulus wy € M such that |H(z,p) — H(y,p)| £ wa((1 +
D]z —y]) for all z,y,p € R™.

Here we denote by M the set of all moduli of continuity, namely

M= {w 0, 00) — [0, ) w(0) = 0, w is continuous at 0 }

and nondecreasing on [0, 00).

We still use (Hp) now. Since we should treat discontinuous Hamiltonians
with respect to the space variable, we weaken (H;) in the following manner.

(Hyn) There exist a modulus we € M and a constant N > 0 such that |H(x,p) —
H(y,p)| £ wa((1+ |p|)|z — y|) for all z,y € R™ and p € R™\ By(0).
This condition means that (H,) holds if |p| is large. Note that (1.3) does not
satisfy (Hyn).

Before stating our CP, we check that H satisfying (H,) and (H,y) is locally
bounded in R™ x R”. This fact will be used in the proof of CP. Since the local
boundedness is clear in R™ x (R™ \ By(0)), we show that H is bounded in
Bi(x) x By(p) for any (z,p) € R™ x By(0). Take any (y,q) € Bi(z) x Bi(p)
and p’ € R"™ such that N < |p/| £ N 4 1. Then, we calculate

|H(z,p) — H(y,q)|
<|H(x,p) — H(z,p")| + |H(z,p') — H(y,p')| + |H(y,p') — H(y, q)|
L2wi(lp — P+ 1) + wa (1 + [p'D]z — y])
§2w1(2N + 2) + WQ(N + 2),

which yields our claim.
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Theorem 2.6 (CP-general version). Assume that H satisfies (H,) and (Hyn).
Let uw and v : Qo — R be, respectively, bounded from above and bounded from
below in Qo. Assume that w € D-SUB(H) and v € D-SUP(H). If u*(-,0) <
v«(+,0) in R", then v* < v, in Q.

Though our assumption for H is weaker than the classical one, our definition
of solutions is stronger, and so we can keep balance.

Proof. 1. Suppose by contradiction that there would exist (xg,ty) € R™ x (0,7
such that u*(zg,tg) — v«(x0,t0) =: A > 0. We define a function F : (R" x
[0,7])? = RU{—oc} by

Flz,t,y,s) :=u"(x,t) —vi(y,s) — V(z,t,y,s)
a

. 1 9 9
with ¥(z,¢,y,5) := 5 (Jz —y)® + |t — s|*) + Bf(z) + Ut

where o € (0, A(T — to)), >0, e > 0 and f(z) = \/1+ |z — 20/?> — 1. Note
that f >0, f € CY(R") and |V f| £ 1. Also, by the choice of o, we have

F(x0,t0, z0,t0) = u* (w0, t0) — v«(z0,%0) — > 0.

«
T —

Since v and —v are bounded from above, F attains its maximum in (R" x [0, T])?
at some (z%,t°, 9%, 5%) € (R™ x [0,T))2. Then, we see

F(x%,t%, 9%, s%) = F(xo, to, xo, to) > 0. (2.4)

2. Set M := supg, u* + supg,(—v«) (< 00). Then we have 5f(z°) < M by
(2.4), and hence {x°}.~¢ is bounded. Furthermore, since we also have |z° —y¢| <
V2Me and |t° — 5°| < v/2Me by (2.4), we may assume that there exists some
(#,1) € R™ x [0, 7] such that

lim (2%, 15,9, s°) = (&, 1,2, 1). (2.5)
E.

Here, we claim that £ € (0,7). By (2.4) we observe

0 < limsup F(z°,t°,y°%,s°) < F(&,t,2,1).
el0

However, since we have

F(#,0,2,0) = u*(&,0) — vy(&,0) — Bf(2) — % <0,
F(&,T, % T) = —o0,
it follows that  # 0 and £ # T.
3. We remark that
F(#,t,2,t) < F(a, 15,55, 5°) (2.6)
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because (z°,t°,y°, s°) is the maximizer of F. In view of (2.6) we calculate

1
limsup —; (|2° — y°|2 + |t — 57|
sup oy )

2
<timsup { = (2, £.0,0) + 0" 07 ) = 0n(07,57) = 1) - |

el0 T — t€
<~ F(oda.0) +u'(@,8) — (@ 0) ~ BF (@) — e =
Hence
E _ . &
tim Y g (2.7)
el0 £ €10 c

Also, by (2.6) and the upper semicontinuity of F, we observe

Fla,t,@,t) < lirri%nff(xe,ts,ye, 5°) < limsup F(2°,%,9%, 5°) < F(&,1,2,1),
€ el0
which means
lsif(r]lf(xa,ta,ya,sg) = F(&,t,2,1).
This equality and (2.7) implies

lif(r)l{u*(:cg,ta) — (15, 8%)} = u (2, 1) — vi(2, 1).
3

Now, we also observe

u*(2,1) = limsup u* (2, %) = liminf u* (2%, t°)

el0 el0
= lirri%nf{(u*(xe,te) — v (Y%, 5%)) + ve(y°, %) }
&

2 (u*(2,1) — vi(@,8)) + (2, 1) = u*(2, ).
Consequently it follows that
limu*(2,1%) = u*(2,1), limv.(y°,s%) = v (d, ). (2.8)
el0 el0

4. We next calculate the first derivatives of W at (z°, ¢, 4%, s°).

1
pi: = VI\II(msatea y57 SE) = 572(%6 - ?JE) + vi(x5)7

1
pz =V, ¥(2, 15,95, s%) = —E—2(x£ —9°),
T O, 5%) = () b
s by e2 (T _ ts)Q’
1
0% = 05U (2%, 1%, 4%, 8°) = —E—2(t5 — ).

By the definitions of D* we have

{(p;ﬂ € Dt (af, ),

€ 5 — £ oE (29)
(_py7_0 ) €D ’U*(y S )7
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and therefore

£ H £ £ SO
{T + H(a%p7) £ 0, (2.10)

—o° + H(yga _pz) % 0

since w € D-SUB(H) and v € D-SUP(H).
Here we discuss two different cases for subsequences of {p}.>o:

There exists a sequence {e(j)}jen such that e(j) L 0 (j — oo) and

Case 1: |pz(j)\ — 00.

Case 2: pz(j) — —p for some p € R™.

We will reach to contradiction for both cases. From now on we simply write ¢
for e(j).

Case 1. In terms of (H,y) it is enough to apply the classical method.
Combining two inequalities in (2.10), we have

a
T—r)y < {H(y",—p;) — H(z", —p;)} + {H (2, —py) — H(z%,p3)}
Letting e small and applying (H,n) and (H,), we compute

(07

m < wo((1+ |p;‘)|x6 —y°]) +wi(|p; +p§|)

1
= (10 =71+ 1o — 7 ) + 18V
Sending £ | 0 in the above and using 1/7? < 1/(T — t)?, we obtain «/T? <

w1 (BIVf(2)]) £ wi(B). This is a contradiction for very small 3.
Case 2. By (2.10) we see

(%

m+H($ \Pe) £ 0° < H(y", —pj).

Thus we may assume that ¢° converges to some —7 as € | 0 by the local bound-
edness of H. Now, since (2.5), (2.8) and

. _ N _ a _
lslﬁ’)l(p§77_6ap§a o%) = <]9 +BVf(2),—p, T + ma —7'>
hold, the definitions of D" and (2.10) yield
(p+891@0 7+ 5 ) €D o)

Therefore
T +H(z,p+pVf(2)) =0,
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since u € D-SUB(H) and v € D-SUP(H). Consequently

2 < H(@.p) — H@.p+ BV(@)) £ a(BIVF@)]) < wi(8),

which is a contradiction for very small 5. O

Remark 2.7. (1) In general, whenever CP holds, we have ||u1—us||g < || (u1]i=0)—
(uz|i=0)||rr for any two solutions u; and ug of (1.1), no matter which def-
inition of solutions we use. This is continuous dependence of the solutions
on the initial data. Here we write ||f||y := supy | f| for f: U — R.

(2) The term Sf(x) in the definition of ¥ is added in order that F attains the
maximum in (R™ x [0,T])2. If both u and v are periodic in R", namely
u(z,t) =u(x+ Y ;e t) and v(z,t) = v(xr + Y ;" €;,t) for some linearly
independent eq, ..., e, € R", the function F attains the maximum without
Bf(x), and then we have pS = —pj. Therefore it is unnecessary to assume
(Hp) in this periodic case.

Corollary 2.8 (uniqueness of D-solutions). Assume that H satisfies (H,) and
(Hyn). Then there exists at most one D-solution of (HJ) and it is continuous.

Proof. Let u,v € D-SOL(H,uo). Applying Theorem 2.6 to a subsolution u and
a supersolution v, we get u* < v, in ). Next changing roles of v and v, we also
see v* < u, in Q. Hence it follows that u* < v, < v* < u, in @, which yields
our claim. O

The assumption (H,y) was used only in Casel in the proof of Theorem 2.6
for the situation that elements in Dtu* and D~ v, are unbounded. For any
Lipschitz continuous function w in @, we have |p| < Lip[w| and 7 < Lip[w]
whenever (p,7) € DY w(,t) or (p,7) € D~w(&,t), where Lip[w] stands for the
Lipschitz constant of w. Therefore it is unnecessary to assume (H,x) in order
to prove CP when one of solutions is Lipschitz continuous.

Theorem 2.9 (CP-Lipschitz version). Assume that H satisfies (H,). Let u and
v: Qo — R be, respectively, bounded from above and bounded from below in Q.
Assume that w € D-SUB(H) and v € D-SUP(H). Furthermore assume that ei-
ther u or v is (space-time) Lipschitz continuous in Q. If u*(-,0) < v,.(+,0) in R,
then u* < vy in Q).

As mentioned in Remark 2.7 (2), the assumption (H,) is unnecessary for the
periodic case. It is not difficult to find that this version of CP applies to (1.3).

3 Existence results

3.1 Unique existence of envelope solutions

We adopted D-solutions as a proper definition in Section 2.1 in order to guarantee
the uniqueness of solutions of (HJ) with (1.3) and up = 0, but the existence turns
out to be an issue for a discontinuous Hamiltonian. We give two examples to
show the non-existence of D-solutions.
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Example 3.1. Let us consider (HJ) with (1.16) and up = 0. Then u = 0 is
a subsolution but is not a D-supersolution. Also, one observes that u®(z,t) =
ctI®(z) with (1.8) is a D-supersolution but is not a subsolution for each & > 0.
Therefore, if there would exist a D-solution v, then 0 < v, < v* < «f in Q by
Theorem 2.9. Sending ¢ | 0, we see 0 < v, < v* < ¢tl(x). Hence v, =0 in Q,
which contradicts the fact that 0 is not a D-supersolution. (See Figure 3.)

Figure 3: D-supersolutions tI¢(x) of Q;u = I(x), up = 0 (the left) and their limit
tI(x) (the right). The latter is an envelope solution.

Example 3.2. Let us consider (HJ) with (1.3) and uy = 0. The intuitive
solution u(z,t) = c(t—|z|)4 is a subsolution but is not a D-supersolution because
(p,e) € D u(0,1) (|p| = ¢) and ¢ — |p| < eI(0). Now we think of approximate
problems

Ou+ H(z,Vu) =0 in Q,

u\t:() = Up in Rn,

(c.HJ) {

where H€ is given by (1.7). Since we can write H*(z,p) = —max 5, ) (a,p) —
cI®(z), the representation formula by the optimal control theory (see Section 5.1
for more details) implies that u® given by

t
ut(z,t) = sup/ cl®(X“(s))ds
acAJO

is a unique viscosity solution of (¢.HJ). Here A = {« : [0, 7] — B1(0), measurable}
and X “(s) is the solution of the state equation: X'(s) = a(s) in (0,t), X(0) = z.
In other words, X“(s) describes a trajectory which leaves at time 0 from x and
moves at velocity 1 or less. In this case for each z € R"™ the optimal control is
the one that leads to a straight trajectory before it comes to the origin and stays

17



there after that moment. A direct calculation yields

( ’x| t2
— = )t+ = (t<]z)),
( 8) +28 (t = |zf)

us(x,t)/c = for |z| < e,
-t (t2 e
- — x
2¢ -
(0 (t < Ja| - o),
‘ 2
and u°(x,t)/c= (‘;H_d (Jz| —e £t < |x]), for |z|=e.
£

9
t=lzl+5  (t=]z]),
\ 2

The inequality H = H¢ implies that each u° is a D-supersolution of the original
(HJ). However, since u® | u as € | 0, it is shown by the similar argument in the
previous example that there is no D-solution of (HJ). (See Figure 4.)

Figure 4: D-supersolutions u® of dyu — |Vu| = I(x), ug = 0 (the left) and their
limit (¢ — |x|)+ (the right). The latter is an envelope solution.

For (HJ) with (1.3) and up = 0, there are infinitely many D-solutions while
there is no D-solution. This suggests that we must define another proper notion
of solutions.

Definition 3.3 (envelope solutions). Let S be a nonempty subset of D-SUP (H).
If v := inf,cs w is bounded from below in @, it is said to be an envelope viscosity
supersolution of (1.1). Let e.SUP(H) denote the set of all such solutions. If v is
also an envelope viscosity subsolution (write v € e.SUB(H)), i.e., v = Sup,c w
for some 7 C D-SUB(H) and v is bounded from above in @, we call it an
envelope viscosity solution. Set e.SOL(H) := e.SUB(H) N e.SUP(H). We also
define e.SUB(H,ug), e.SUP(H,up) and e.SOL(H,up) as the sets of all (sub,
super)solutions of (HJ) similarly as before.

Remark 3.4. (1) The function ctI(x) is an envelope solution in Example 3.1
and c(t — |x|)+ is an envelope solution in Example 3.2. Also, Example 3.1
suggests that our envelope solution is not always continuous.

(2) Since standard viscosity supersolutions have stability, that is, the infimum
of them is still a supersolution (see for instance [11, Lemma 4.2]), the
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class of solutions does not become large by taking infimum. As for D-
supersolutions, however, we observed that inf.~qu® ¢ D-SUP(H) in Ex-
amples 3.1 and 3.2. In other words, stability under infimum does not hold
for D-supersolutions in general. By contrast, our envelope supersolutions
have such stability by the definition. We also learn by Example 3.2 that
D-supersolutions are not stable even under the uniform limit.

(3) We have D-SUP(H) C e.SUP(H) C SUP(H), but the inclusion relation
e.SUP(H) C D-SUP(H) does not hold in general. (See Figure 5.) The
function ctI(z) in Example 3.1 is its counter-example. If H is lower semi-
continuous, then e.SUB(H) = SUB(H).

SOL : infinitely many solutions

D-SOL : infinitely many solutions

D-SOL : no solution

7?7 : a unique solution ]

e.SOL !

Figure 5: The notion of envelope solutions.

As was pointed out in Remark 3.4 (2) we do not have the stability under
infimum for D-supersolutions in general, but it is shown that the infimum of
finitely many D-supersolutions is still a D-supersolution.

Proposition 3.5 (stability under infimum of finitely many sglutions). Let u; €
D-SUP(H) for alli € {1,2,...,M}. Then u :=min%, u; € D-SUP(H).

Proof. We first remark that u, = min}, (u;).. Fix (2,%) € Q, (p,7) € D u(,1)
and take a defining sequence (zpm,tm) € Q, (Pm, Tm) € D™ (T, tm) (m € N).
Then we have 1im,, soo Us (T, tm) = u«(Z,1), and there exists a subsequence
{m(k)}ren of {m}en such that

Us(Zin (k) tn(k)) = (Wi)s(Tm(k), tmry)  (Vk € N)
for some ¢ € {1,2,..., M}. Observe that

Uy (2,1) = nlgnoo Use (T, tm)

= klggo U (xm(k) , tm(k:))

= lim

k—o0

Therefore, it follows that wu.(&,t) = (u;)«(Z, ). We thus have

(Pim(k)ys Tm(k)) € D™ (W) (Tn(hys (k) ) () (T (k) b)) = (i)« (2, ),

lim
k—o0

and hence (p,7) € D (u;)+(,%). Since u; € D-SUP(H), we deduce that 7 +
H(z,p) = 0. 0
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We now present the uniqueness result for envelope solutions.

Proposition 3.6 (uniqueness of envelope solutions). Assume that H satisfies
(Hp) and (Hyn). Then there exists at most one envelope solution of (HJ). More-
over if H is lower semicontinuous, the unique envelope solution is upper semi-
continuous.

Proof. Let u,v € e.SOL(H,uy). We first use the fact that u € e.SUB(H, ug) and
v € e.SUP(H,up). By the definition of envelope sub- and supersolutions there
exists some T C D-SUB(H,up) and S C D-SUP(H, ug) such that u = sup,,csw
and v = infyyecs W. Then applying Theorem 2.6 to w € T and W € S, we get
w* < W, in @, which yields v < v in . Next changing roles of u and v, we also
see v < v in @, and hence our first claim is proved.

If H is lower semicontinuous, we apply Theorem 2.6 to v and W € §. Then
we deduce that v* < W, in @, hence that v* < v in ). Since we also have
v* < win @, it follows that v* < v < v* < u in @, and so our second claim
follows. O

We next consider the existence of envelope solutions. We will construct the
solution as the infimum of u®, which are solutions for “good” Hamiltonians H*
approximating H. Here “good” means that comparison and existence properties
are ensured for solutions. We use the following assumption.

(He) There exists a family {H®}.~o C C(R" x R"™) such that H* T H (¢ |
0) pointwise, and for all € > 0 and uy € BUC(R"™) the following two
statements hold.

(i) If w® € SUB(H®,up) and v¢ € SUP(H®, up), then (w®)* < (v°), in Q.
(ii) There exists a bounded solution u® € SOL(H®, uy).

If there is some u® € SOL(H®,uyp), it is automatically continuous and a unique
solution by the comparison (i). Also, H satisfying (H.) is lower semicontinuous.

We here recall the Perron’s method for constructing standard viscosity so-
lutions. (See for instance [11, Theorem 4.1.].) Let v € SUB(H,up), V €
SUP(H,up) and v £V in Q. Then u defined by

u:=sup{w € SUB(H,up) | vLw <V in Q}

is a viscosity solution of (HJ). Functions v and V are called respectively a lower
barrier and an upper barrier. One can construct these barriers for all uy €
BUC(R™) provided that H(z,p) is bounded locally in p (see [21, Lemma 4.3.4.]),

(Hyn) m(p) := sup{|H (z,p)| | (z,p) € R" x B,(0)} < cc for all p > 0.

Proposition 3.7 (existence). Assume that H satisfies (H.) and (H,,). Let
u® € SOL(HE®,up) in (Hs). Then u := inf.~gu® is an envelope solution of (HJ).

We call w constructed in this way a solution approzimated from above. By
the definition @ is upper semicontinuous.
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Proof. We first show that u° is monotone in e. Let 0 < ¢ < &. Then v €
SUB(H®,up), and also we see u € SUP(H® ,ug) C SUP(H®, up) since H® <
He. Therefore we conclude that u¢ < u¢ by the comparison. This monotonicity
implies that @ = lim sup] jou® and that w is bounded from above. Now, we are
able to take an upper semicontinuous lower barrier v € SUB(H, ug) on account
of the assumption (H,,). Since v € SUB(H¢,uq), we see by the comparison that
v < uf, and so v £ u. We also find that @ is bounded from below.

Since u® € SUB(H®), we see u € SUB(liminf,. o H*) = SUB(H) by the
stability of viscosity subsolutions. Also, @ is an envelope supersolution of (HJ)
because U = inf.~qu® and u® € SUP(H®) C D-SUP(H). We finally show that
% is continuous at the initial time. Take any x € R™ and (y,s) € Qp. Then
v(y,s) —up(z) Ly, s) —uo(x) £ uf(y,s) — up(z) and both v(y, s) and u(y, s)
converge to ugp(z) as (y,s) — (x,0). As a result we deduce that u(y,s) —
uo(x). O

Remark 3.8. For any subset L € RY and h® : L — R (¢ > 0) we denote
the upper relazed limit (vesp. lower relazed limit) by h = limsup; ,h® (resp.
h =liminf. o k%) : L - R U {+oo}, which is defined as
h(z) := limsup h(y) = limsup{h®(y) | y € Bs(z) N L, 0 < e <4}
(e)=(0.2) 840
(resp. h(z) := liminf h°(y) =liminf{h°(y) | y € Bs(2) N L, 0 <e < &})
(g,9)—(0,2) 640
for z € L. The following properties are easily seen by the definition: If h® = h,
then h = h* and h = h,. If h® | h (resp. h® 1 h) monotonously, then h = h*
(resp. h = hy). Also, h = limsup} ;(h)* and h = liminf,.o(h°). in general.
We next present examples of H which satisfies the assumption (H.). In order

to obtain the comparison and existence properties in (H.), it is sufficient that
each H€ satisfies (Hy), (H;) and (Hy,).

Example 3.9. If H is lower semicontinuous and bounded in R"” x R", then (H;)
is fulfilled. In this case we take H® as the inf-convolution of H over R" x R".
(See below about sup- and inf-convolution.) Each H€ satisfies (H,) and (H,)
since it is globally Lipschitz continuous, and (H,,) is clear from the boundedness
of H®.

Example 3.10. Let H have the form of (1.10) with » € BUSC(R"). As-
sume that Hp is uniformly continuous in R" x R™ and satisfies (H,,). Then
(He) is fulfilled. The conditions (H,), (H;), (H,,) are all satisfied by H®(z,p) =
Hy(z,p) — r¢(x), where r¢ is the sup-convolution of r.

Remark 3.11 (sup- and inf-convolution). For bounded f : RN — R and € > 0
we define the sup-convolution f¢ (resp. inf-convolution f.) of f by

ra)i= sup {0~ gole o2}

yeRN

(vesp. 1) i= int L)+ ool =2}

The following properties are easily found, and so we omit the verification.
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o —|flre S fFE P f < flmafor0<d<e
e f¢is Lipschitz continuous in RV,
e If f is upper semicontinuous, then f(x) | f(z) (¢ | 0) for each z € RV,

e If f is uniformly continuous, then f¢ converges to f uniformly in RV,

We mainly use these convolutions in order to approximate semicontinuous func-
tions by Lipschitz continuous ones.

Combining Proposition 3.6 and Proposition 3.7, we obtain the unique exis-
tence result.

Theorem 3.12 (unique existence—general version). Assume that H satisfies
(Hp), (Hyn), (He) and (Hy,). Then @, a solution approximated from above,
is a unique envelope solution of (HJ).

If we do not accept the assumption (H, ), Lipschitz continuities of solutions
are needed for CP.

Theorem 3.13 (unique existence-Lipschitz version). Assume that H satisfies
(Hp), (H) and (Hy,). Let u® € SOL(H®,up) in (He) and assume that u® (¢ > 0)
and inf.sou® are Lipschitz continuous in (). Then u, a solution approrimated
from above, is a unique envelope solution of (HJ).

Proof. We only need to show the uniqueness. Let v € e.SOL(H,up). An ana-
logue of the proof of Proposition 3.6 works and yields the inequality @ < v, in Q
(but we use Theorem 2.9 here). Next, since v € SUB(H, ug), u¢ € D-SUP(H, ug)
and wu® is Lipschitz continuous, Theorem 2.9 yields that v* < u® in @, and so
v* <win Q. Thus w=w. O

Remark 3.14. Let u € e.SOL(H,ug) and (Hp) hold. If there exists some 7 C
D-SUB(H,u) N BLip(Q) (resp. S C D-SUP(H,ug) N BLip(Q)) such that u =
sup,c7 v (resp. u = inf,csw), then u is the minimal (resp. maximal) envelope
solution. These facts are easily shown by using Theorem 2.9.

Remark 3.15. If the Lipschitz constants of u° are estimated uniformly in €, then
u = inf.su® is also Lipschitz continuous (provided that u® are bounded uni-
formly in ¢). In general, if u® have their modulus w € M independent of ¢, their
infimum % also has the same w as its modulus.

Example 3.16. In Example 3.2 the function u(z,t) = ¢(t — |z|)+ is a unique
envelope solution by Theorem 3.13 since u® and w are Lipschitz continuous.
In Example 3.1, on the other hand, the envelope solutions are not unique in
that v*(z,t) = atl(z) (o € (0,c]) are all envelope solutions. Let us show
this claim. It is easily seen that they are all subsolutions. Set v®¢(x,t) :=
at{(1 — +/|z|/e)+}? for € > 0. (See Figure 6.) Then one observes that v® €
D-SUP(H,0) since djv*¢ =2 0 and D v*(0,#) = (. Hence the equality v® =
inf.so v®¢ implies our claim. Moreover v° = 0 is also an envelope solution since
W = inf,e(0,d,e>0 v™°. The function v“ is the maximal envelope solution by
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Remark 3.14 because v¢(w,t) = inf.sqctI®(x) and ctI®(x) € D-SUP(H,0) N
BLip(Q), where I°(z) := (1 — |z|/¢)+. Also, v = 0 is the minimal envelope
solution.

For a general initial data ug € BUC(R™), it is also seen that wug(x) +
atl(x) (a € [0,c]) are all envelope solutions. Uniqueness, therefore, always goes
wrong for the initial-value problem with the equation dyu = cI(x). Such bad
behavior can happen when a Hamiltonian is non-coercive. Indeed, we establish
the uniqueness result for coercive Hamiltonians in the next subsection (Theorem
3.20).

i
!'w
,t"wm

| N"':‘I‘M

I
bl

Figure 6: D-supersolutions v®¢ of dyu = I(z), ug = 0.

3.2 Coercive Hamiltonians

In order to apply Theorem 3.13, we need to know what conditions guarantee
the Lipschitz continuities of u® and inf.-gu®. We therefore consider in this
subsection whether the solutions preserve the continuity of initial data. For
continuous Hamiltonians it is known that such preserving properties hold if they
are coercive, namely

lim inf H(z,p) =00 or lim sup H(z,p) = —oc.
lp| o0 z€R™ Ip|—=00 zeRn

The coercivity of H is equivalent to (Hgy) or (Hg—) below.
(Hr+) R4(m) :=sup{|p| | 3x € R", H(x,p) £ m} < oo for all m = 0.
(Hr—) R—_(m) :=sup{|p| | Iz € R", H(z,p) = —m} < oo for all m = 0.

Here we use the convention that sup () = 0. We first present Lipschitz continuity
and BUC (bounded uniform continuity) preserving properties for continuous
Hamiltonians. These results are more or less known. See for example [9], where
they discussed for a.e. (sub)solutions. We give proofs based on the theory of
viscosity solutions without using a.e. solutions in Appendix for completeness.
By using these results we establish our preserving properties for discontinuous
Hamiltonians via approximation by continuous ones.
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For a function u : Q — R, we define

t _
Lip,[u] := sup sup [ulz,?) — u(z, 5)|
z€R™ ¢,5€(0,T) |t - S|
t#s

)

t) — t
Lip,[u] := sup sup [uz 1) — uly, )|
te(0,T) z,ycR™ |$ - y|
Y

Proposition 3.17 (Lipschitz continuity preserving property). Assume that H
satisfies (Hp), (Hz), (Hp,) and (Hpy). Let ug € BLip(R™) and v € SOL(H, uy).
Then u € BLip(Q) with the Lipschitz constant satisfying

Lipt [u} = m, Lipx [u] = R+ (m)a
where m := m(Lip[ug]) and m(-) is the function in (H,,).

The assumption (Hg4 ) is able to be replaced by (Hg—). (The same is valid
for Proposition 3.18.) For the proof see Appendix.

Proposition 3.18 (BUC preserving property). Assume that H satisfies (Hp),
(Hy), (Hp) and (Hgy). Let ug € BUC(R™) and u € SOL(H,ug). Furthermore
let {ug}5>0 C BLip(R"™) and assume that ug converges to ug uniformly in R™ as
51 0. Then u € BUC(Q) with modulus of continuity

w(r) = (igr;% <2Hu0 — ud||mn + \/(m‘s)2 + (R4 (m?))? r) :

where m® := m(Lip[ud]), m(-) is the function in (Hy,) and Ry () is the function
in (Hp4).

For a given ug € BUC(R™) one can always construct the family {ud}so like
the above by taking ug as the sup- or inf-convolution of ug for 4 > 0. For the
proof of Proposition 3.18 see Appendix.

Since we should treat discontinuous H, we apply the above results to the
solutions u® of the approximate equations and confirm that their infimum has
a desired property. We use the fact in Remark 3.15 that if u® share a modulus
independent of &, then their infimum has the same modulus. In the case of non-
coercive Hamiltonian, solutions cannot preserve even continuity of the initial
data as we observed in Example 3.1, in which the envelope solution u(zx,t) =
ctl(x) is not continuous in contrast to the initial data ug = 0.

Theorem 3.19. Assume that H satisfies (H.), (H,,) and that each H® in (H.)
satisfies (Hy,), (Hry). Assume furthermore that

supm®(p) < oo, sup RS (m) < oo
e>0 e>0

for all p =20 and m = 0, where

m(p) 1= sup{|H"(z,p)| | (z,p) € R" x By(0)} (< o0),
R (m) :=sup{[p| | 3z € R", H*(z,p) £ m} (< 00).

Let ug € BUC(R™). Then u, a solution approximated from above, has the fol-
lowing properties.

24



(1) we BUC(Q).
(2) If up € BLip(R™), then u € BLip(Q).
(3) If H satisfies (Hy), then u is a unique envelope solution of (HJ).

The condition (Hg4 ) is able to be replaced by (Hgr—). In this case, if H itself
satisfies (Hr—), then the assumption sup,.y R° (m) < oo always holds since we
have R® (m) < R_(m) by H* < H.

Proof. We first prove (2) and next show (1) by approximating the initial data.
Take u® € SOL(H®,up) in (He).

(2) Denote [ := Lip[ug]. Now, Proposition 3.17 ensures that u® € BLip(Q)
and

Lipy 0] < me(1) < supme(), Lip,[u] < RS (m"(1)) < sup 5 (me(1).
e>0 e>0
Since both Lipschitz constants are estimated independently of €, we conclude
u = 1inf.~ou® € BLip(Q).
(1) Let u§ = (up)® be the sup-convolution of ug and denote 1° := Lip[ug].
Then, Proposition 3.18 ensures that u® € BUC(Q) and each u® has a modulus

() i= inf (2o = e + /e ()2 4 (5 (=) 7).

Since m#(1°) and R% (m®(1°)) are similarly estimated independently of e, there
exists a common modulus for u®. Thus we conclude u € BUC(Q).

(3) Since ug € BLip(R"™), there exists a Lipschitz continuous envelope solu-
tion u® € e.SOL(H,ud) N BLip(Q) for each § > 0 by (2) above. Moreover, there
exist solutions of approximate equations (u’)¢ € SOL(H?®, ug), which satisfy

u = gg(uﬁ)ﬁ and (u®)® € D-SUP(H,ud) N BLip(Q).

Then, by Theorem 2.9 we have ||v—u%||q < ||ug—ud||r~ for any envelope solution
v of (HJ). Hence the uniqueness of u follows because limgg |ug — ud|| =0. O

We have given some examples of H satisfying (H.). In Example 3.9 H€ are
not coercive because of their boundedness. We therefore impose the coercivity
assumption on H in Example 3.10 so as to apply Theorem 3.19.

Theorem 3.20. Assume that H has the form of (1.10) with r € BUSC(R™).
Assume that Hy is coercive, uniformly continuous in R™ xR™ and satisfies (H,,).
Let ug € BUC(R™). Then there exists a unique envelope solution u of (HJ) and
it has the following properties.

(1) we BUC(Q).
(2) If up € BLip(R™), then u € BLip(Q).
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Proof. We assume (Hp, ) because the proof in the case of (Hg_) is similar. Let
Ro+(-) be the function in (Hgr4) for Hy. It is clear that the above H fulfills
(H,,). As observed in Example 3.10, we also learn that H satisfies (H:) by
the approximation H¢(x,p) = Hy(x,p) — r(z), where r¢ is the sup-convolution
of r. Thus by Proposition 3.7 we obtain a solution approximated from above
u € e.SOL(H,up). It remains to show the uniform boundedness of m®(p) and
R% (m) in € in order to apply Theorem 3.19. Since H® < |Ho| + |r||r», we
have m®(p) < maxg., 5 o) [Hol + ||| < oo, and hence sup..,m®(p) < oo.
Also, when m = H¢(z,p), one observes that Ho(z,p) £ m+1r° < m+ ||r|| and so
Ip| £ Roy(m+|r|)) by (Hg+). Therefore we obtain RS (m) < Ro4(m||r||) < oo,
which yields sup,. o R% (m) < co. O

4 Relaxed Hamiltonians

In this section we establish a unique existence result without the coercivity as-
sumption for H. Our existence result (Proposition 3.7) does not require the
coercivity. The problem lies in the uniqueness part. In fact, we cannot expect
the uniqueness in general as we observed in Example 3.16. However, we are able
to show the uniqueness for more restrictive Hamiltonians without the coercivity.
To apply our Lipschitz version of CP (Theorem 2.9) we need Lipschitz continu-
ity of one of solutions, but the continuity preserving property does not hold in
general without the coercivity. On the other hand, our general version of CP
(Theorem 2.6) excludes Hamiltonians with discontinuous source terms. We solve
this difficulty by considering a relaxzed problem. If an envelope solution u of (HJ)
can be regarded as an envelope solution of another problem (relaxed problem):

(r.HJ) { du+ H(z,Vu) =0 in Q, (4.1)
(1.2).

with a relazed Hamiltonian H satisfying (Hyn), then we conclude the uniqueness
of u as envelope solutions of (HJ) by Theorem 2.6.

We define the relaxed Hamiltonians so that H > H. Then it is obvious that a
supersolution of (1.1) is also a supersolution of (4.1). Therefore it is an important
issue whether or not a subsolution of (1.1) is also a subsolution of (4.1). We will
solve this problem after defining H. In addition, as another topics about H we
discuss existence of D-solutions which are not guaranteed for original H.

4.1 Uniqueness revisited
In this section we treat special Hamiltonians with the following properties.

(H,) (i) H is lower semicontinuous in R™ x R™ and is continuous in (R™\T") x
R’ with some discrete set I, i.e.,

for every a € I' there exists a open set V, such that {a} =T'NV,.
(4.2)
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(ii) H* is continuous in R™ x R™.

(ili) H(a,p) < info< <1 H*(a, up) for each a € I' and p € R™.
For such H, we define a relaxed Hamiltonian H:R"xR" >R by

g o (D) (e # 1),
7 | min{info<,<1 H* (2, up), supg< <1 H(z,pp)} (z €T).

(See Figure 7.) The continuity of H* implies that

H*(z,p)= lim H(y,q) (4.3)
(ZJ»‘DZ(I::D)
YFT

for all (z,p) € R" x R". Also, since H(z,p) < supg,<; H(, up) and (H;)(iii)

holds, we have H < H in R" x R™. Besides, it is seen that H <H*inR"xR"
and H is lower semicontinuous.

O p
H*(0,p)
h N\
\ A
N H(0,p)
\
\
\
‘H (0, p)

Figure 7: The definition of H(0,p) in the case 0 € I.

Example 4.1. Let H have the form of (1.10). Then the following (i)’—(iii)’ is
one sufficient condition for (H,).

(i) Hy is continuous in R™ x R™. r is upper semicontinuous in R™ and is
continuous in R™ \ I for some I' which satisfies (4.2).

(ii)" r is continuous in R".
(iii)" Ho(a,p) —r(a) < infocu<i Ho(a, pp) — r«(a) for each a € I and p € R™.
To show (iii)’ it is enough to prove that

a function p +— Hy(a, up) is nonincreasing on {u = 0} for each a € I and p € R™.
(4.4)

We here assume (4.4) and let 0 € ' (; i.e., r is discontinuous at 0). Then, since
H*(0, up) = Ho(0, up) — r+(0) and H(0, up) = Ho(0, pp) — r(0), we have

FI(OJ)) = min{HO(Ovp) - T*(O)a HO(Ov 0) - T(O)}

27



for all p € R™. By this equality we find that JEI(O, p) is a constant Hy(0,0)—r(0) =
H(0,0)on P:={p e R"| Hy(0,p) = Hy(0,0)—(r(0)—74(0))}. Furthermore, if P
is bounded, namely P C By (0) for some N > 0, then H(xz,p) = Ho(z, p) — r«(z)
holds in R™ x (R"™\ By (0)). Therefore assumptions (H,) and (H,y) required in
Theorem 2.6 are fulfilled if Hy and 7, are uniformly continuous.

Example 4.2. We see for (1.3) that H(z,p) = —|p| — (cI(x) — |p|)+. As for a
unique envelope solution u(z,t) = ¢(t — |z|)4+ with up = 0, an easy computation
shows that u € SUB(I:I, 0), which implies u € e.SOL(ﬁ, 0). Moreover one can
also verify v € D-SOL(H,0). This suggests that an envelope solution of (HJ)
has a more chance to be a D-solution of (r.HJ) than the original equation. The
details will be discussed in the next subsection.

Example 4.3. For (1.16) we have H = H. Hence the relaxation method does
not give any new information to us.

The following is the key fact for relaxed Hamiltonians.
Lemma 4.4. Assume that H satisfies (H,). Ifu € SUB(H), then w € SUB(H).

Proof. We simply write u for u*. Take any (,7) € Q and (p,7) € D u(&,1).
If 2 €T or p =0, we deduce 7 —I—I:I(jz,p) < 0 since ﬁ(:ﬁ,p) = H(&,p) and
u € SUB(H). Therefore we need only consider the case that £ € I' and p # 0.
We may assume & = 0 to simplify the notation. Our goal is now to show
T4 H(0,p) < 0, namely

7+ inf H*(0,up) <0  or 7+ sup H(0,up) <0.
0<pu<l 0<pu<l

Define
Yi={pel0,1] | (up,7) € DTu(0,8)}, po:=inf{p e [0,1] | [u,1] C T},

Then 1 € ¥ and we also have g € X since superdifferentials are closed. We
discuss two different cases about py.
Case 1: yo = 0. Since (up,7) € DTu(0,%) for each u € [0, 1], it follows from
u € SUB(H) that
T+ H(0,up) £ 0.

Thus we obtain
T+ sup H(0,up) £0.
0<p<1
Case 2: 0 < o < 1. Take a corresponding test function ¢ € C(Q) for
(pop, 7) € DTu(0,). We may assume u — ¢ attains its strict maximum at (0, £).
By the definition of g there exists a sequence {jm }men such that p,, T uo and
m € 2. Define

¢m(.%',t) = ¢($7t) - (MO - Mm)<xvp>

for each m. Since ¢,, converges to ¢ locally uniformly, there exists some se-
quence { (T, tm) }men such that (2, tm) — (0,%) and maxg (u — ¢p) = (u —
Gm) (T, tr). Here Q' is an arbitrary bounded open subset of @ containing (0, #).
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The facts that p, ¢ ¥ and Vé,,(0,1) = pymp imply (2, tn) # (0,1). Moreover
we find that z,,, # 0 since ¢,,(0,%) = ¢(0,¢). Thus it follows from u € SUB(H)
that

O p(xm, tm) + H(@m, VO(Tm, tm) — (o — pim)p) = 0
and by letting m — oo we obtain
74+ H*(0, pop) <0

on account of (4.3). As a result we have

inf H* <
T+ ok (0, up) <0,

which concludes the proof. O
We present a uniqueness result in a general form.

Proposition 4.5 (uniqueness by relaxation). Assume that H satisfies (H,) and
that H satisfies (H,), (Hyn). Then there exists at most one envelope solution of
(HJ) and it is upper semicontinuous.

Proof. 1f ui,us € F.SOL(H, ug), then uy,us € e.SOL(fI,uO) by Lemma 4.4 and
H < H. Since H satisfies (Hp), (H;n) and is lower semicontinuous, we see
u1 = ug and they are upper semicontinuous in terms of Proposition 3.6. O

Here we give one sufficient condition to apply Proposition 4.5.

Proposition 4.6. Assume that H has the form of (1.10) with (1.12). Assume
that Hy is uniformly continuous in R™ x R™, satisfies (4.4) and

R(y) :=sup{lp| | 3z € R", Ho(z,p) = —7} < oo, (4.5)

where v := maxévzl(cj — Ho(a;,0)). Then H satisfies (H,) and (H,y).
Proof. According to Example 4.1 we have
N H, ;
H(I’,p) = 0($7p) (5675(1])7
min{Ho(aj,p), Ho(a;,0) —¢;} (z=a;)

under the above assumptions. It suffices to check (Hyn). By (4.5) we see
Ho(aj,p) < Ho(aj,0) —c; for all p € R"\ Bg(,)(0) and j € {1,2,...,N}.
Consequently

H(z,p) = Ho(z,p) if (z,p) € R" x (R"\ Bp(,)(0)),
and so (H,y) is satisfied. O

Example 4.7. Let us consider the non-coercive Hamiltonian (1.17). Then (4.5)
is fulfilled if and only if 0 < ¢ < 1, and therefore the uniqueness of envelope
solutions follows. We will later see in Example 5.15 that there are infinitely
many D-solutions even with ug = 0 when ¢ > 1.
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Theorem 4.8. Assume that H has the form of (1.17). Let ug € BUC(R"™) and
0 < ¢ < 1. Then there exists a unique envelope solution u® of (HJ). Moreover
u® € BLip(Q) provided that Lip[ug] < (1 —¢)/c.

Proof. Since H = H€ satisfies (H.) and (H,,) for Proposition 3.7 (refer to Ex-
ample 3.9 or 3.10 about (H.)), there exists u® € e.SOL(H®, ugp), a solution ap-
proximated from above, and its uniqueness follows from Example 4.7.

We next show the Lipschitz continuity preserving property of u®. Define
H (x,p) = —|p|/(1 + |p|) — cI(x) with (1.8). Observe that for fixed pg > 0

m(p) = sup{|H* (2. p)| | (.9) € R x Bp(0)) S e 4% (Yp € [0.p0])

and

RS (m) == sup{|p| | Iz € R*, H**(2,p) = —m} < % (Vm € [0,1)).

Therefore we learn by Remark A.1 that solutions of (HJ) with H%® are Lipschitz
continuous provided that c+po/(1+pg) < 1, i.e., po < (1—c)/c. Furthermore, we
see by the estimate above that their Lipschitz constants are bounded uniformly
in e. Hence their infimum, which is ¢ by the uniqueness, is also Lipschitz
continuous if Lip[ug] < (1 —¢)/c. O

We think that the Lipschitz continuity preserving property may not hold if
Lip[ug] > (1 —¢)/c.

4.2 Existence of D-solutions

For (HJ) with (1.3) and up = 0, the unique envelope solution u(z,t) = ¢(t —|z|)+
is not only an envelope solution of (r.HJ) but also a D-solution of (r.HJ). In other
words, we obtained a D-solution by the relaxation method while our original
problem (HJ) has no D-solution. Unfortunately, for a general initial-value it is
not always true that u € D-SOL(H,ug) when u € e.SOL(H, ug). Its counter-
example is given by the lower left function in Figure 10 later. It is the envelope
solution of (HJ) with H(z,p) = —|p| — I(z), uo(z) = 2min{(|z| — 1)+, 1} and is
written as

u(z,t) = max {max ug, (t— |x|)+} . (4.6)

By(z)

For this u, we observe that u & D-SOL(H, ug) because (0,0) € D u(0,2) and
0+ H(0,0) = —1 < 0. In this subsection we consider what conditions lead an
envelope solution of (HJ) to a D-solution of (r.HJ).

Recall that an envelope supersolution is not always a D-supersolution because
of a lack of stability. If it is guaranteed for (r.HJ), one can obtain a D-solution.
We shall explain the difficulty to show the stability in general. Let v := inf.~qu®,
uf € D-SUP(H), (p,7) € D u.(&,1) and take a defining approximate sequence
(Prms Tm) € D™ s (&, t). Since u® € SUP(H) in particular, the stability for
standard solutions ensures 7, + (ﬁ )*(Zm, pm) = 0. Sending m — oo, we see
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74 (H)*(2,p) = 0 and 7 + H(Z,p) = 0 if H is continuous at (Z,p). Hence the
remaining problem is whether T—f—ﬁ(ﬁ:,p) > 0 holds for every (p,7) € D™ u.(,1)
such that (&, p) is a discontinuous point of H.

Let us come back to the example of (1.3). Since the set of discontinuous
points of H(z,p) = —|p| — (cI(x) — |p|)+ is {(0,p) | |p| < ¢}, the problem is
whether 7 — ¢ = 0 holds for all (p,7) € D™ u.(0,f) such that |p| < c¢. This
can be regarded as a condition about growth rates of u in the t-direction near
{0} x (0, T) and is satisfied for example if v has the form u(z,t) = c(t — |z|)+ + k
for some k € R. According to Example 5.7 later, if the initial-value ug satisfies

up(x) < clz| 4+ up(0) for all x € R™\ {0}, (4.7)
then
u(z,t) = c(t — |x|)+ +up(0) near {0} x (0,7). (4.8)

Thus we obtain a D-solution of (r.HJ). Summarizing the above arguments we
conclude

Theorem 4.9. Let H(x,p) = —|p| — cI(z) for ¢ > 0. Let u € e.SOL(H, u). If
(4.7) holds, then uw € D-SOL(H ,up).

Remark 4.10. The assumption (4.7) is optimal since (4.6) is not a D-solution of
(r.HJ). (Note that ug(z) = |z| if |z| =0 or 2 and up(x) < |z| if |z| # 0 and 2 in
the example.)

In Appendix B we discuss the existence of D-solutions for more general equa-
tions.

5 Some examples of solutions

5.1 Representation by optimal control theory

Let us recall the representation formula of viscosity solutions by optimal control
theory. (See for instance [19].) We consider the following state equation.

X'(s) = f(X(s),a(s)) in (0,1), X(0) = =. (5.1)
Here the unknown is X : [0,¢] - R"™ and

e z € R" is a given initial state and ¢ € [0,7] is a terminal time.

e A C R™isacompact control set and o € A := {a: [0,7] — A, measurable}
is a control.

o f = f(r,a) : R" x A — R" is a given bounded and continuous func-
tion. Moreover f(x,a) is Lipschitz continuous in x uniformly in a, that is
Lip,[f] < oo.
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As for this ODE there exists for each o € A a unique Lipschitz continuous
solution X (s) which satisfies the first equation of (5.1) a.e. s € (0, ). Let us write
X(s) = Xa( ) = X (s;a,z,t) to denote the solution. Since |X%(s1) — X%(s2)| =
\fsl F(X%(s),a(s))ds| < ||fllrnxa - |s1 — s2| for each o € A, the solutions X
are Llpschltz continuous uniformly in o with the Lipschitz constant smaller than
11

Next, for given (z,t) € R" x [0,7] and a € A we define a corresponding cost
functional Cy t[r] by

t
Cy il ::/0 r(X%(s), a(s))ds + up(X*(t)),

where
er =r(r,a) : R" x A — R is a given bounded and continuous func-
tion. Moreover r(x,a) is Lipschitz continuous in x uniformly in a, that is
Lip,[r] < oo.

® Uy € BUC(R”)

We call the above r a running cost function while ug serves as a terminal cost
function. Then the value function u : R™ x [0,T] — R is defined by

u(z,t) == sup Cy tla]. (5.2)
acA
We are able to prove that u is a viscosity solution of a Hamilton-Jacobi-Bellman

equation.

Theorem 5.1 (a PDE for the value function). Let u be defined as above. Then
u 18 a unique viscosity solution of the initial-value problem

Ou — max{(f(z,a),Vu) +r(z,a)} =0 in Q, (5.3)
(HJB) acA
u]t:() = Up in R". (5.4)
Remark 5.2. When the value function is defined as the infimum of costs, namely

:= inf C, , .
u(z,t) := inf Caylo] (5.5)

u becomes a solution of the same equation as above except that the max is
replaced by min.

Our goal is to extend the classical theory above for discontinuous equations.
Now we study Hamiltonians written by the form H(x,p) = — max,eca(f(z,a),p)—
r(z) with r € BUSC(R'™). We hereafter assume that running costs are indepen-
dent of the control variable a. Recall that as Example 3.2 and Proposition 3.7
we are able to construct an envelope solution by regularizing r from above to get

¢ (the sup-convolution method enables us to do that) and taking the infimum
of solutions of the approximate problems. That means we take

u®(x,t) == sup Oy 4[a] with CF 4[a] = /0 (X %(s))ds + up(X“(t)), (5.6)

acA
u(z,t) = lgfolue(ib,t) = gf(’)ue(x,t), (5.7)
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and prove that u is an envelope solution. On the other hand, since upper semi-
continuous functions are integrable, it is possible to define a cost and value
function for our original r which is not necessarily continuous, that is

t

v(z,t) == sup Cyi[a] with Cp¢la] = / r(X%(s))ds 4+ ug(X*(t)). (5.8)
acA 0

What is the relationship between this v of the discontinuous problem and u via

the approximation (5.7)? Since problems including no e-perturbation can be

directly handled, if u = v, it characterizes the limit of u®. (See Figure 8.)

approximation R
S .
controll l control
el0 R

V=U *-— U

Figure 8: Control theory for a discontinuous running cost. The commutativity
of this diagram is a problem.

In Example 3.2 we deduced that u(z,t) = lim.jou°(x,t) = c(t — |z])4+ by
regarding the Hamiltonian as H(z,p) = —max,.g, (o) (a,p) — cI(z). On the
other hand, as for discontinuous case v(x,t) = sup,ec4 fg cl(X“(s))ds, for each
x € R the optimal control is still the one that leads to a straight trajectory
before it comes to the origin and stays there after that moment. Therefore we
conclude that v(z,t) = ¢(t—|z|)+, and so u = v. However, situations are different
for another compact set A. For example if the control set A’ is taken as S™~!,
the resulting Hamiltonian is the same as H(z,p) = — max,cgn-1(a,p) — cI(x).
However, since X% moves at a velocity of 1 all the time for each control «, it
cannot stay at the origin. Hence we conclude that v = 0.

We here give one sufficient condition for guaranteeing u = v.

Lemma 5.3 (controllability). Let » € BUSC(R"), r® € BLip(R") (¢ > 0)
and ¢ | r in R" pointwise, and define u®,u and v by (5.6)—(5.8). Assume
furthermore that

(A1) there exists a measurable function 0 : R™ x B (0) — A such that p =
f(x,0(x,p)) for all (x,p) € R™ x Byg(0),

where || f|| = suprnxa |f|l- Then u=v.

Proof. 1. We find that v < u because Cy,[-] < C7,[-] for all € > 0. It remains
to prove u < v. Fix (z,t) € Q. For each € > 0 there is some af € A such that
u(z,t) —e < Cp4af]. Set X°(s) := X(s;a%,z,t), then one can easily check
that the family {X¢}.50 C C[0,¢] is equicontinuous and uniformly bounded by
using Lipschitz continuities of X®. Consequently Ascoli-Arzela theorem ensures
that there exists a subseqence {X E(j)}jeN such that X<¢U) uniformly converges
to some X € C[0,t] as j — oo. The estimate Lip[X*] < ||f] (Vo) implies
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Lip[X] < [|f||, and so X is a.e. differentiable and X'(s) € By f(0). Therefore by
setting a(s) := 0(X(s), X'(s)) we have X'(s) = f(X(s),a@(s)) a.e. s, and also
X(s) = X(s;a,m,t).

2. Fix d > 0. If 0 < (j) < d, then we have

w2, 1) < e(j) + O [0"D] £ () + €2, [a"0)]

and
t

lim Cg}t[a‘s(j)] = lim {/ r(X50)(s))ds —i—uo(XE(j)(t))}
0

- /0 (X (s))ds + ug(X (t)).

Hence it follows that

u(x,t) < /0 rd(X (s))ds + uo(X (t)).

Sending d | 0, we obtain by monotone convergence theorem

u(z,t) < /0 r(X(s))ds + ug(X (t)) = Cpi[a] < v(w,t),

which completes the proof. O

Remark 5.4. To prove u = v in the case that value functions are defined by
(5.5), there is no need to assume (Al). It suffices to show u < v again. Take
a minimizing sequence {ay,} of v(z,t) (, i.e., limy oo Crtlam] = v(z,t)), and
then u®(z,t) < CF,[am] holds for all e and m. Letting € | 0, we see that
u(z,t) £ Cypt[am,] by monotone convergence theorem. Finally send m — oo.

Let us calculate some examples of solutions by applying Lemma 5.3 or Re-
mark 5.4.

At first we consider the case that H(xz,p) = —|p|—r(z) = —max 5, o {a,p)—
r(z) with r € BUSC(R"™). Then (A1) is satisfied by taking 0(x,p) = p, and so
Lemma 5.3 guarantees that v defined by

v(z,t) == sup {/Ot r(X%(s))ds + uo(X“(t))}

acA

is the unique envelope solution.

Example 5.5. Let us consider the case of (1.14) and up = 0. In this case, for
each x € R the optimal control forces the state to move straight towards the
nearest point in S and to stop moving after the arrival. Therefore we conclude
that

v(x,t) = c(t — dist(z, 5))+.

The solution in the case that S = [—1,1] and ¢ = 1 is given in Figure 9 (the
left).
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Example 5.6. Let us consider the case of (1.12) and uy = 0. In this case, since
we have obtained the optimal control for the case r(x) = ¢;jI(z — a;) for every
j(=1,2,...,N), we only need to pick up the maximum of them. Hence we have

v(x,t) = m]gtficj(t — |z —aj])+.
j:

The solution in the case that a; = 1,v; = 1,a9 = —1,v3 = 1/3 is given in Figure

9 (the right).
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Figure 9: The envelope solution of dyu — [Vu| = x[—1 1](¥), uo = 0 (the left) and
that of dyu — |[Vu|=I(z+1)/3+ I(x — 1), up = 0 (the right).

Example 5.7. Let us consider the case that r(z) = cI(x) (¢ > 0) with a general
initial condition ug € BUC(R'™). In this case, for each x € R" all of the controls
can be categorized into two types. One type is to force the state to approach the
origin. The other type results in trajectories without passing the origin. The

optimal value for the former type is

max <qcs+  max ugp =: V(x,t)
86[07t—|$|] Bt—|z|7s(0)
provided that t = |z| while
max ug
Bt (IE)
is the maximal value for the latter type. Thus we conclude that
(< [al),

ma,XEt (x) uQ

o) = (t = [z

max |maxg, ,y v, V(,t)

We will make this formula simpler by imposing some conditions on ug. Assume

that up(0) = 0 hereafter.
[1] The case that ug(z) < c|z| in R™. Since V(z,t) = c(t — |z|) (s =t — |z|),

we have
maXEt(x) uo

it) =
v(z,t) max [maXE(x) ug, c(t —|x|) >

In particular, we see u(0,t) = ct for all t € (0,T") because maxg, ) 4o < ct.
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Figure 10: The envelope solutions of dyu — |Vu| = I(x) under several initial data
uo. The upper left is the case that up(x) = —|z|/(1 + |z|) and the solid curve
is (x,t,u) = (s,]s|,0). The upper right is the case that ug(z) = |z|/(1 + |z|)
and the solid curve is (s, /s2 + 2[s|, /52 + 2|s| — s). The lower left is the case
that up(z) = 2min{(|z| — 1)+, 1}. The lower right is the case that ug(z) =
2min{|z|, 1}. Each function is the unique envelope solution.

36



(a) If up(z) £ 0 in R™, then v(x,t) = ¢(t — |z|) for ¢ = |x|. The solution
for ¢ =1 and ug(z) = —|z|/(1 + |z|) is given in Figure 10 (the upper
left).

(b) Ifug(z) < clz|in R™\{0}, then for all € (0, T) we have v(z,t) = c(t—
|z|) in some open neighborhood of (0, ) € @ because maxp, ) o < ct.
The solution for ¢ =1 and ug(x) = |z|/(1 + |z|) is given in Figure 10
(the upper right).

(c) If there is some & # 0 such that ug(Z) = ¢|Z|, it is unable to take the
open neighborhood described in (b) at (0, |#|). The solution for ¢ =1
and ug(z) = 2min{(Jz|—1)4, 1} is given in Figure 10 (the lower left),
where T = 2.

[2] The case that up(xz) £ clz| in R™. We assume that up has the form
up(z) = b(|z|) and that b(p2) —b(p1) > c(p2—p1) (0 < p1 < p2 < R), b(p) =
b(R) (p = R) for some R > 0. Note that we have maxg, ) uo = b(|z| + ¢).
Then we observe that V(z,t) =b(t — |z| —s) (s=0)for 0 <t — |z| £ R
and it is smaller than b(|x|+t), and also V (x,t) = c¢(t—|z| — R) +b(R) (s =
t — x| = R) for t — |x| = R and it is bigger than b(|x| +t) = b(R). Thus
we conclude that

o, 8) = {bux\ +1) (t < 2] + R),
’ c(t —|z| — R)+b(R) (t=|z|+ R).

It is seen that v(x,t) = b(R) if —|z| + R <t < || + R. In this case, there
is no effect of the step source by time R on account of rapid growth of
the initial data and v becomes flat at time R. The solution for ¢ = 1 and
b(p) = 2min{p, 1} (R =1) is given in Figure 10 (the lower right).

We next consider the case that H (z,p) = [p|—r(x) = —min, 5, ) (a,p)—r(x)
with r € BUSC(R™), which describes the isotropic shrink at a velocity of 1. Then
Remark 5.4 guarantees that v defined by

o(z,1) = inf {/Otr(X“(s))ds—i-uo(Xo‘(t))}

acA
is the unique envelope solution.

Example 5.8. Let us consider the case of (1.12) with a general initial condition
ug € BUC(R™). In this case, since for each x € R the optimal control forces
the corresponding state to go to the minimizer of ug on By(x) (and not to stay
each a; for a positive time), we have

v(z,t) = min uo.
Bt(x)

This coincides with the solution of d;u+|Vu| = 0, and hence we may think that
there is no effect of the source term r(z).
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Example 5.9. Let us consider the case of (1.14) and uy = 0. In this case, since
for each x € R™ the optimal control forces the corresponding state to leave S
for the shortest time and stay in the outside of S after the exit, we have

v(z,t) = c¢- min{¢t, dist(z,S)},

where S¢ means a complementary set of S in R™. In particular, if S has no
interior point, we see v(x,t) = 0, which reduces to a special case of Example
5.8. We also learn for a bounded S that v(z,t) = ¢ - dist(x, S¢) for every ¢t >
sup,ern dist(z, S¢) # oo. The solution in the case that S = [—1,1] and c =1 is
given in Figure 11.

R
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Figure 11: The envelope solution of dyu + [Vu| = x[_11)(z), uo = 0.

5.2 Solutions without coercivity assumption
In this subsection we focus on the equations of the form

owu — Hi(Vu) =cl(x) in Q, (5.9)

ul=0 =0 in R",

(HJ1c) {

ie., H(x,p) = —Hi(p) — cl(x) with H; : R™ — R and ¢ > 0. We do not impose
the coercivity assumption on H;y here. Also, without loss of generality we may
take

H,(0) = 0; (5.10)

if not, we replace Hi(Vu) in (5.9) with H;(Vu) — H1(0) and solve the new
problem. For any solution wu(z,t) of the new one, u(x,t) + H1(0)t is a solution
of the original (HJ1c).

The next proposition helps us to construct envelope supersolutions when the
step source consists of a singleton.

Proposition 5.10 (construction of envelope supersolutions). Assume (5.10).
Assume that u : Q — R is bounded from below and satisfies the following three
conditions.

(i) 7+ H(&,p) =0 for all (2,%) € (R"\ {0}) x (0,T) and (p,7) € D u.(%,1).
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(ii) w is continuous on {0} x (0,T).
(iii) u(0,t) =ct in (0,T) and u(z,t) < ct in Q.
Then u € e.SUP(H).

Set Q. := (R™\{0}) x (0,T). We say that u is a D-viscosity supersolution in
Q. (write u € D-SUP(H) in Q.) if u satisfies the condition (i) and is bounded
from below.

Proof. For € > 0 we define
u(z,t) := min{u(z,t) +et, ct}.

(See Figure 12.) Then, we deduce by Proposition 3.5 that u¢ € D-SUP(H) since
we have the following three facts.

e u(x,t) +¢et € D-SUP(H) in Q..
o ct € D-SUP(H).
e u(x,t)+et > ct in some open neighborhood of (0,%) € Q, where £ € (0,T).

Also, it is clear that v = inf.~ou®. We thus conclude that u € e.SUP(H). O

ct

u(z,t) + et

u(x,t)

Figure 12: The definition of u®.

Let a,b > 0 and define a “cone-shaped” function Wy 4(z,t) := (at — b|z|)+.
Before describing the first existence result of (HJ1c), which claims that W, is
an envelope solution for suitable b and Hi, we give simple observations about
sub- and superdifferentials of the cone-shaped functions.

(CS) Let (py,74) € DY Wop(2,t) and (p—,7-) € D™W, (8, 1) for (2,%) € Q.
(1) If at < b|#|, we have p+ = 0 and 74 = 0.
(2) If at > b|#| and & # 0, we have |p+| = b and 7+ = a.
(3) If at = b|2|, we have [p_| < b, 0 < 7_ < a and br_ = a|p_|. Also,
D*W,,(2,%) = 0.
(4) If # = 0, we have |py| < b and 71 = a. Also, D™W,4(#,t) = 0.
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Proposition 5.11. Assume (5.10) and let b > 0. Assume that Hy satisfies the
following.

0< Hi(p) < %\p| for all p € R™ such that |p| <b. (5.11)

Hy(p) =c forallp € R™ such that |p| = b. (5.12)

Then Wep(x,t) = (ct — blz|)+ is an envelope solution of (HJ1c).

Proof. In view of (5.11), (5.12) and (CS) we see that W is a ‘D-subsolution of
(5.9) and is a D-supersolution of (5.9) in Q.. Since W, fulfills the assumptions
in Proposition 5.10, we conclude that W, is an envelope solution of (HJ1c). O

Of course, if H; fulfills the regularity assumption (H,) required in our com-
parison principles, it follows that the Lipschitz continuous function W, is a
unique envelope solution.

Example 5.12. We consider the case that Hy(p) = |[p|* with o > 1. Then, the
conditions (5.11) and (5.12) are satisfied if we take b = ¢!/, Hence we see that
Wep(x,t) = (ct — c'/*|z|)+ is an envelope solution of (HJ1c).

Example 5.13. We next consider the case that Hy(p) = /1 + |p|?> — 1. Then,
the conditions (5.11) and (5.12) are satisfied if we take b = v/c? + 2c. Hence we
see that W, p(x,t) = (ct — vV c? + 2c|x])+ is a unique envelope solution of (HJ1c).
Equivalently, the function u(z,t) = (¢t — V/¢® + 2¢|z|)+ + t is a unique envelope
solution of

{ Ou—+/14+|Vul2=cI(z) in Q,

Uli=o =0 in R™.

Unfortunately, Proposition 5.11 does not include the case that H; is “spoke-
wisely concave” from the origin, that is, the case when

Hi(p) = h(|p|), where h:[0,00) = R is strictly concave. (5.13)

Here we say h is strictly concave if h((1 — N)x + Ay) > (1 — A\)h(x) + Ah(y) for
every A € (0,1) and z,y € [0,00) with x # y. For the purpose of finding envelope
solutions of (HJ1c) in such cases we further assume that

h € C%(0,00) N C[0,00), h is strictly increasing on [0, c0). (5.14)
Then, it is easily seen by (CS) that
Wa,hfl(a) (Q?, t) = (at - hil(a)’x‘)-i-

is a D-subsolution of (HJ1c) for each a € (0,¢) with ¢ < ||h|p,0)- Besides, it
turns out that these supremum

U, t) = sup (ot — b a)al) (e = JAl)
a€(0,c)

becomes an envelope solution of (HJ1c).
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Proposition 5.14. Assume (5.10), (5.13) and (5.14).
(1) Assume ¢ < ||h||. Then U, is a unique envelope solution of (HJ1c).

(2) Assume ¢ = ||h||. Then Uy is a D-solution of (HJlc) and a unique
envelope solution.

(3) Assume ¢ > ||h||. Then Uy + ktI(z) are D-solutions of (HJ1c) for all
k€ [0,c— []).

We remark that the assumption (H,) is satisfied because of the concavity of
h; indeed, we now have |Hi(p) — Hi(q)| £ h(|p — q|). Hence the uniqueness in
(1) follows from the Lipschitz continuity of U..

Proof. At first, it is obvious that U, is a standard subsolution due to the stability
under supremum. In order to prove that U, is an envelope supersolution we
utilize Proposition 5.10. Notice that U, is rewritten as

et —bla (2] < W'(b)1),
Uz, t) = h<g<‘f|>> <‘ |>y| (W)t < |z < H(0)),  (5.15)
0 (W (0)t < |z|)

by a direct calculation. Here h/(0) means the right derivative at 0 and possibly
equals +oo. Also, we write b= h~!(c) and g = (h’)~! for the inverse function of
h'. If ¢ = ||h||, we read (5.15) as

ct (z =0),
Ud(z,t) =4 h <g (”;‘)) ( ‘) 2| (0 < |z| < B (0)L), (5.16)
0 (H(0)t < |z)).

By the formula (5.15) we find U, € C'(Q,) and its derivatives are as follows:

(

c (J2| < W (b)),
otia) = {0 (o (1)) o< i < wow),

0 (H(0)t < [a]).

—,% (0 < [a] < W (b)t),
VUc(x,t) = { —¢g <‘f|> I%I (W (b)t < |z| < W (0)t),

0 (W(0)t < |2])

Thus we deduce that
0Ucs(x,t) — h(|VU.(x,t)]) =0 for all (z,t) € Qx,

and hence U, satisfies the condition (i) in Proposition 5.10. Since the conditions
(ii) and (iii) are clear, we conclude that U. is an envelope supersolution. If
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¢ = ||h]| in particular, we see that U, is also a D-supersolution of (HJ1c) since
D U.(0,t) = 0.

(2) To show the uniqueness of U, as an envelope solution we use the idea of
Remark 3.14. It is seen that U, is the minimal envelope solution because U, =
SUPge(0,c) Wah—1(a) and We p-1(4) € SUB(H,0) N BLip(Q). Next, let u(z,t) :=
min{U.(z,t)+¢t, ct} for e > 0. As we showed in the proof of Proposition 5.10, it
turns out that u® € D-SUP(H). We also have u® € BLip(Q) and U, = inf.~qu?,
and therefore U, is the maximal envelope solution.

(3) This claim follows from (2) and the fact that (Uj, +ktl(z))« = Upp. O

Example 5.15. We consider the case that Hi(p) = [p|/(1 + |p|), which is a
non-coercive Hamiltonian. Then, by substituting

b )= =Y

into (5.15) we see that

c
ct — x z| < (1 —¢)%t),
ey = [T (els =0
{(Vt=VI2D)+}? (J2] 2 (1 -0)*t)

is a unique envelope solution of (HJ1c) when ¢ < 1 = |||/, and in particular

Ur(z,t) = {(V/t—+/|z])+}? is a D-solution of (HJ1c) with ¢ = 1. In the case when
¢ > 1, functions Uy (z,t) + ktI(z) are all D-solutions of (HJ1c) for k € [0,c — 1].
(See Figure 13.) Also, we see that the Lipschitz continuity preserving property
breaks down for ¢ = 1 since U; is not Lipschitz continuous in Q.

Example 5.16. We next consider the case that Hy(p) = |p|* with 0 < o < 1.
Then, by substituting

_ 1ja o _ [« 1/(1-a)
b—C ) h(r)—r, g(r)_<7">

into (5.15) we see that

ct — c/z] (l] £ at/cl=)/e),

Ue(x,t) = a/(l1-a) 1/(1-c)

kd ]

is a unique envelope solution of (HJ1c) for any ¢ > 0. This formula means that
the present equation (HJ1c) has a some kind of infinite propagation property for
a step source because u > 0 in Q. (See Figure 14.)

The formula (5.15) also applies to Hamiltonians with the hyperbolic tangent
form ([42])

1
H(.fl?,p) = _‘p’tanhﬂ - CI(.’L’),
p

but it is complicated to calculate the inverse function g = (h’)~! in this case.
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Figure 13: Solutions of dyu — |Vu|/(1 + |Vu|) = cl(x), up = 0. The envelope
solution for ¢ = 1/2 (the upper left), the D-solution for ¢ = 1(the upper right)
and one of the D-solutions for ¢ = 2 (the bottom).

5.3 Remark on relation to Dirichlet boundary problems

Let u be the unique envelope solution of the problem with a single step source:

Ou — |Vu| =cl(z) in R"x(0,7),

u(z,0) = up(x) in R™
We study in this subsection whether u is also a solution of the Dirichlet boundary
problem:

Ou — |[Vul =0 in (R™\{0}) x (0,7),

(Di) ¢ u(z,0) =wup(x) in R,
u(0,t) = ct in (0,7).
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Figure 14: The envelope solution of dyu — +/|Vu| = I(x), up = 0.
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To simplify the argument we assume ug(0) = 0. We first recall the following
facts about u from the observation in Example 5.7.

(1) u(0,t) = ct for all t € (0, 7).
(2) u(0,t) = ct for all t € (0,T) provided that up(x) < c|z| in R™.
(3) If
uo(x) = 2cmin{|x|, 1}, (5.17)

whose slope is larger than ¢ near the origin, then the unique envelope
solution is

o(o,8) = {2cmin{\x|+t, 1} (t<1),

ct—|z|—1)4++2c (t=1).
In particular, we have v(0,t) = min{2ct, c¢(t +1)} > ct.

We see by (1) that u is always a supersolution of (Di). Also, by virtue of (2), if
up(z) < clz| in R™, then u is a viscosity solution of (Di) which indeed attains
the boundary condition. What happens in the case that ug(z) £ c|z| in R"?
Unfortunately, we cannot expect that u is a subsolution on the boundary even in
the weak sense, i.e., u(0,t) < ct or 7 — |p| < 0 whenever (p,7) € D, u(0,t). In
fact, when the initial data is given by (5.17), we have v(0,2) > 2c and 7—|p| > 0
for (p,7) = (0,¢) € D" v(0,2). Instead of v, if we set

v(x,t) (t<1),
v (z,t) = < 2¢ (1<t<1+7),
v(z,t—71) (t=1+7),

then each v” (7 = 1) becomes a solution of (Di) with (5.17) in the weak sense.
One can interpret the constant 7 as a “waiting time”. The Dirichlet problem
(Di) forces its solution to stop the growth until it satisfies the Dirichlet boundary
data at the origin.
As an another type of the boundary condition in the weak sense, one may
think of the dynamic boundary condition ([17]); namely
Ou — |[Vul =0 in (R™\ {0}) x (0,7,
(Dy) ¢ u(z,0) =up(z) in R7,
Owu(0,t) = ¢ in (0,7).
However, one cannot expect the uniqueness of solutions for (Dy) as well. Indeed,
each v (7 = 0) is a solution of (Dy) with (5.17).

6 Large time behavior

6.1 Self-similar solution

We study the large time behavior of solutions to (HJ1). Hereafter we use a
notation (HJ1;7,up) to represent the source term r and the initial data ug of
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(HJ1). Our goal is to prove that a rescaled function of a solution to (HJ1)
converges to a self-similar solution of the associated problem, which is (HJ1; I, 0)
if » has a compact support. In the case where r is periodic, we show that
(HJ1;¢,0) with a constant source term gives the associated problem. Throughout
our arguments we assume ug € BLip(R"™) and

(6.1)

{(1) H, is coercive and uniformly continuous in R".

(i) r€ BUSC(R") and r =0 in R".

These conditions guarantee that there exists a unique envelope solution of (HJ1)
which is bounded in R™ x [0,T) for all T" > 0. Moreover, the unique solution
is Lipschitz continuous in R™ X [0, 00) since Proposition 3.17 implies that the
Lipschitz constant of the solution in R™ x [0,7T") does not depend on 7.

Definition 6.1. Let u : R" x [0,00) — R. For A > 0 we define a rescaled
function ugyy : R™ x [0,00) — R of u by

uny(w,t) = %u()\x, At).

If u=wugy in R" x [0,00) for all A > 0, we say u is self-similar.

When w is self-similar, letting A = 1/t, we see u(x,t) = u(Az, Adt)/\ =
tu(z/t,1). Thus, setting U (&) := u(&, 1), we get

u(x,t) =tU (%) .

The function U is called a profile function of u. It is easy to see that the function
(1.6), which is the unique envelope solution of (1.5) with the zero initial data, is
self-similar in the sense of Definition 6.1 and that its profile function is

U(€) = (1 = [E)+- (6.2)

Self-similar solutions exist not only for the typical problem (1.5) but also
for more general equations with a positively 0-homogeneous source term 7, i.e.,
r(Az) = r(x) for all A > 0 and € R™. The function cI(z) is a trivial example
of such positively 0-homogeneous functions.

Proposition 6.2. Assume that Hy and r satisfy (6.1). Assume that r is pos-
itively 0-homogeneous. Then the unique envelope solution of (HJ1;r,0) is self-
simalar.

The proof uses the uniqueness result. When u is an envelope solution of
(HJ1;7,0), noting that dyu(y)(w,t) = du(Az, At) and Vuy(z,t) = Vu(lz, At),

we compute
Opucyy(z,t) — Hi(Vupyy(z,t)) = Ou(Ar, \t) — Hi(Vu(Az, At)) = r(Az) = r(z)

as long as u is smooth. Thus by the uniqueness of solutions we obtain u = wy).
In the general case where u is not smooth, we take smooth test functions in the
definition of viscosity solutions and apply a similar calculation to them.
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6.2 Source terms with compact support

Before we show a general result on the large time behavior, we present two
simple examples of solutions which converge to the self-similar solution (1.6)
under rescaling.

Example 6.3. We study (HJ1;r,0) with Hy(p) = |p| and r of the form (1.12).
As we discussed in Example 5.6, the unique envelope solution is given by the
formula 1.13. Now, let us compute the scaling limit of this solution. For A > 0
we have

1 1 ;
ugyy(z,t) = Xu(/\x,)\t) = XI;lgilXCj()\t — A\ —aj])+ = I?]Eilxcj (t - ‘x — %]D_;_'

Set ¢ := max®y

o1 ¢j = cy. Then

uny(z,t) 2 ey (t— ‘x — GTJDJF — c(t —|z])+

uniformly as A — oo, while

N a;
< —|x— J‘ — et —
ugyy(z,t) < max ¢ (t ‘m 3 )+ c(t — |z|)+

since each functions ¢(t — |z — (a;/\)|)+ uniformly converges to c(t — |z|)+. We
therefore conclude that
(1) = et — [2) 4 (6.3)

uniformly as A — oo.

Example 6.4. Let us consider (HJ1;7,0) with H;(p) = |p| and r of the form
(1.14). We further assume that S is bounded. The unique envelope solution
which was computed in Example 5.5 is

u(z,t) = c(t — dist(z, S))+.

(This formula is valid even if S is unbounded.) For A > 0 we observe
1 c . 1.
un(7,t) = Xu()\x, At) = X()\t —dist(Az, 9))y =¢ (t - Xdlst()\:c, S)>

We now choose R > 0 large so that S C Bg(0) to see

1. 1 . — 1

—dist(Az, S) = —dist(A\z, Br(0)) = —(|A\z| = R)+ = | |z| — — | — |z|

A A A n
uniformly as A — co. Also, for a fixed z € S we compute

1 1 1 z
—di < di DV ,
/\dlst()\m,S) < )\dlst()\x,{z}) )\|)\x z| ‘ ‘ — |z]

r— 2

A
Hence the same conclusion (6.3) as the previous example holds.

We now state our result on the asymptotic behavior in the case the support

of r is compact.
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Theorem 6.5 (Large time behavior for source terms with compact support).
Assume that Hy and r satisfy (6.1). Assume that supp(r) is a compact set in
R™. Let u and v be, respectively, the unique envelope solution of (HJ1;r, ug)
and (HJ1;cl,0) with ¢ = maxgn 7. Then u(y) converges to v locally uniformly
in R" x [0,00) as A — 0.

This theorem especially implies that (1.20) holds locally uniformly in R”.
This is an asymptotic convergence to a profile function of v.

Proof. 1. We fist show the relaxed limits u := limsup)_, uy) and u :=
liminf,\ o0 u(y) fulfill the zero initial data. Set Mo := supgn |ug|.- Then it
is easy to see that functions Hy(0)t — My and (c + H1(0))t + My are, respec-
tively, a subsolution and a D-supersolution of (HJ1; 7, ug). From the comparison
principle it follows that Hy(0)t — My < u(z,t) < (¢ + H1(0))t + My, and hence

M, M,
H,(0)t — TO < ugny(@,t) £ (c+ Hi(0)t + 70

We take limsup}_, ., and liminf,)_,, in the above inequalities to obtain
H1(0)t < u(z,t) < u(z,t) < (c+ Hi(0))t.
This ensures that these two relaxed limits are real-valued in R"™ x [0, c0) and

lim wu(y,t) =u(x,0) =0, lim w(y,t) =u(x,0) =0
(y,tH(o:,or(y ) = u(z,0) W o (y,t) =u(z,0)

for all z € R".

2. Take z € R"™ as a maximum point of r. We define o(x,t) := v(z — 2,t) —
My. Then v solves (HJ1;cl(- — 2),up(- — 2) — My). Since cI(- — z) < r and
uo(- — z) — My < up, our comparison principle implies o < u. We thus have

1 M,
X’U()\ZL' — 2, At) — ~ < upy(, ) (6.4)

for A > 0. Now, by the self-similarity of v

%v()\x—z,)\t) = %v ()\ (:B— ;) ,)\t) = (:B— ;,t) .
Taking lim inf, ), in (6.4), we obtain

< liminf . .
v = liminf,uy (6.5)

Here we have used the continuity of v.
3. Define g(x) := CXB 1 (0) (x), where we choose R > 0 large so that supp(r) C

Br(0). We let w be the unique envelope solution of (HJ1;g,0). Since cI < g, by
the comparison principle we have u < g+ M. This implies u(y) < w(y) +(Mo/N)
and

lim sup *u(y) < limsup “wyy). (6.6)

A—00 A—00
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We write gx(z) = g(Az). Then limsup}_,,, gx» = ¢l by the definition of g. Now
w(y) is a standard viscosity subsolution of (HJ1;gy,0) since w is a viscosity
subsolution of (HJ1;g,0) in the standard sense. Thus, the stability result for
subsolutions under the relaxed limit ([11, Lemma 6.1, Remark 6.3]) ensures that
lim sup}_, o, w(y) is a subsolution of (HJ1;limsup}_, ., gx,0) = (HJ1;¢l,0). This
relaxed limit of w(y) exists for the same reason as in Step 1. Since v is a solution
of (HJ1;¢l,0), it follows from the comparison principle that

lim sup “w(y) < v. (6.7)

A—00

Finally, combining (6.5), (6.6) and (6.7), we conclude

v = limsup *u(yy = liminf ,u
msup “u(y = mint.u),

which implies the locally uniform convergence of uy) to v. O

Example 6.6. We consider the large time behavior in the sense (1.23). Let
Hi(p) = |p|- A direct computation implies that, for the solution (1.6) of (HJ1;¢I,0),
we have

u(z,t) — (et —clz|) =0 ast— o0

locally uniformly in R™. Thus the limit ¢t — c|z| is different from our scaling
limit, which is (1.6) itself. More generally, the solution (1.13) of (HJ1;r,0) with
(1.12) satisfies

u(z,t) — (et —cle —ay]) = 0 ast— oo,

where ¢ := maxé-\f:1 ¢j = cj, locally uniformly in R" provided that c¢; < ¢y
(j # J). Therefore the scaling limit in (6.3) gives another function.

In the next example we discuss the scaling limit of solutions when r has a
non-compact support.

Example 6.7. We study the source term r which is non-zero near finitely many
half-lines starting from the origin, but assume that r attains its maximum at
the origin. We set half-lines I; (i = 1,...,M) as [; :== {\z; € R" | A\ > 0},
where z; € R" (i = 1,..., M) are different points satisfying |z;| = 1, Then
linl; =0 if i # j. We next take positive constants ¢; (i = 0,1,..., M) such that
co = max.Z, ¢;. Now, we define functions 7, g € BUSC(R") as follows:

M
_ M
T(z) = col(z) + E_l cixy (x),  g(z) == max {coXBé(O)(x), max Cz‘XE@?)a } ,

where 6,& > 0 and l; ¢ := (¢, Be(z) is an e-neighborhood of I;. The function 7

plays a role as a source term of the limit problem, which is ¢l in Theorem 6.5.
Typical examples of such 7 are

F(x) =cl(z1) and T7(x)= ZCJ(%),
i=1
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where I : R — R is the function in (1.4). Since 7 is positively 0-homogeneous
by definition, the unique envelope solution of (HJ1;7,0) is self-similar.

We now take the source term r € BUSC(R™) such that 7 < r < ¢ in
R"; clearly, this r has non-compact support. Then the same conclusion as
Theorem 6.5 holds, i.e., if u is the unique envelope solution of (HJ1;r, ugp), the
rescaled function uy) converges to the self-similar solution v of (HJ1;7, 0) locally
uniformly as A\ — co. The proof is similar to that of Theorem 6.5. Indeed, from
the same argument as in Step 2, where we take z = 0 and replace “cI(- — z)” by
“77, we deduce v < liminfy) o u(y). Also, when we let w be the unique envelope
solution of (HJ1;¢,0), a similar argument to Step 3 yields limsupy_, upy =

lim sup} _, , wy) < v.

6.3 Periodic source terms

We begin with a simple example where the source terms cI(-) are periodically
distributed.

Example 6.8. We study (HJ1;cI,0) with Hy(p) = |p| and

[(z) := max [(z — a) = 1 (zeZ7),
Iz) = a€Zn K )= {O (x g ZM).

By Example 5.5 the unique envelope solution is given as

u(z,t) = c(t — dist(z,Z"))+ = max c(t— |z —al)+. (6.8)
ae n

We shall show
u(y)(z,t) — ct  uniformly in R" x [0,00) as A — oo. (6.9)

Obviously, we have u(z,t) < ct by (6.8), so that uy)(x,t) < ct. We next estimate
u(y) from below. Compute

1 1 a
uyy(z,t) = XU(MC’M) = X}}é%}éc()\t — Az —al)y = max c (t - ’x - XDJF
Now, for fixed (z,t) € R™ x [0,00) and A > 0, we choose a € Z™ such that
|z — (a/N)] £ v/n/(2)\). We then see

vn

uyy(z,t) 2 e (t - 2)\> — ¢t uniformly in R" X [0, 00) as A — oo,
+

which gives (6.9).

It turns out in the next theorem that, for more general periodic source terms
and general initial data, the scaling limits are still ct, where ¢ is the maximum
of r in R™. We remark that limsup}_,  r(Az) = ¢ by periodicity and that ct is
the unique envelope solution of (HJ1;¢,0) provided that H;(0) = 0.
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Theorem 6.9 (Large time behavior for periodic source terms). Assume that
Hy and r satisfy (6.1). Assume that r(x) = r(x + a) for all (z,a) € R™ x Z",
H1(0) =0 and Hy 20 in R™. Let u and v be, respectively, the unique envelope
solution of (HJ1;7r,up) and (HJ1;¢,0) with ¢ = maxgnr. Then v(z,t) = ct and
u(y) converges to v uniformly in R™ x [0,00) as A — oo.

Proof. Take z € R" as a maximum point of r, so that ¢I(z — z) < r(z). We now
claim .
ctl(x — z) — My £ u(zx,t), (6.10)

where My := supgn |ug|. To prove (6.10) it is enough to show that vo(,t) :=
ctI(z —z) — My is a standard subsolution of (HJ1;7,u). Let (p,7) € D wvo(2,1).
If # — 2z ¢ Z", then (p,7) = (0,0) since vg = —My near (&,%). Thus

T— Hi(p) =0 < r(2).

We turn to the case & — z € Z". Since vo(Z,t) = ¢t — My, we then have 7 = c.
Therefore ~

T—Hi(p) = c=cl(i - z) = r(2),
which proves (6.10). By the Lipschitz continuity of u we next see that (6.10)

gives

m%x(ct—L\x—z—a\)Jr—Mogu(x,t), (6.11)
acZm

where L is the Lipschitz constant of u with respect to x, i.e.,

L =sup sup
t>0 z,ycR™ |z — y|
TFY

Rescaling the both functions in (6.11), we get

) - % < ugyy(2,t)
+

zZ—a

A

xr —

max (ct — L
acZn

for A > 0. In the same manner as in Example 6.8 we see that the left hand side
converges to ¢t uniformly in R" x [0,00) as A — oo.

It remains to estimate u(y) from above. Since r < ¢ in R", the comparison
principle implies u(w,t) < ct + Mo. Thus u(y)(z,t) < ct + (Mo/)), and the right
hand side converges to ¢t uniformly in R™ x [0, 00) as A — co. O

The following two examples show that the conclusion of Theorem 6.9 may
not hold if we remove the non-negativity or coercivity of Hj.

Example 6.10. Let us study

Opu + |Vu| = cl(x) %n R"™ x (0, 00), (6.12)
u(z,0) =0 in R™.
Here H(p) = —|p| is non-positive. According to Example 5.9, where we con-

sidered the value function defined as the imfimum of costs, the unique envelope
solution of (6.12) is
u(z,t) =0
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since the interior of Z" is empty. The rescaled function is u(y) = 0, but this does
not converge to ct.

One can directly check that u = 0 is an envelope solution of (6.12). Indeed,
it is easily seen that u is a subsolution. Next, since

‘(2. 1) maxgezn c(t — |z —a|)+ (0=t < e),
u(x,t) =
maxgezn ¢(e — |z —al|)y (e £¢t)

is a D-supersolution of (6.12) for every ¢ > 0, the infimum of u®, which equals
zero, is an envelope supersolution.

Example 6.11. When a Hamiltonian is non-coercive, solutions may not have
the scaling limit even in the sense of pointwise convergence. To see this let us
consider the following problem:

. (6.13)
u(z,0) =0 in R™.

{E?tu = cf(x) in R" x (0, 0),
In the same manner as in Example 3.1 we see that u(x,t) = ctI(x) is an envelope
solution of (6.13). (This is not a unique envelope solution of the problem. In
fact, u®(z,t) = atl(z) solves the same problem for every o € [0, ¢); see Example
3.16. However, among such solutions u is a natural one since it vertically grows
at a speed c at each step source.) We now compute

uny(w,t) = %u()\x, M) = ctI(\x),

and so the limit of u(y)(z,t) as A — oo does not exist for every (x,t) € (R"\
{0}) x (0,00). We also have

limsup “u(yy(z,t) = ct, liminf gy (z,t) = 0.
A—o00 A—00
Remark 6.12. The result in Theorem 6.9 is consistent with the classical homog-
enization theory for continuous equations ([29]). To check this we set H(z,p) =
Hi(p) + r(z) so that H is coercive in the sense limp_,o infzern H(z,p) = 0o,
and solve (HJ) with this Hamiltonian. We let u be the unique envelope solu-
tion (an envelope subsolution and a standard supersolution) of (HJ), and set

u® :=u(y ;). Then Theorem 6.9 implies that u®, which is a solution to

o — Hi(Vu) =r (g) in R" x (0,00),

uniformly converges to —ct as € — 0, where ¢ = maxgn . On the other hand,
according to the homogenization theory, u® converges to the viscosity solution v
of

(6.14)

O+ H(Vv) =0 in R" x (0, 00),
v(z,0) =0 in R"

when 7 is continuous. Here H is called an effective Hamiltonian chosen so that,
for each p € R", the cell problem

H(xz,p+ Vw)=H(p) in R" (6.15)
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admits a periodic viscosity solution w. If H(0) = ¢, then we see that the solution
v of (6.14) is v(x,t) = —ct, and hence the conclusion is the same as Theorem
6.9.

Let us show H(0) = c¢. (This fact is more or less known, but we give the
proof for completeness.) We take p =0 in (6.15). Then (6.15) is

Hy(Vw) = H(0) —r(z) in R". (6.16)

Suppose H(0) > c. Since 0 € D~ w(%) at a minimum point & of w, we would
have o
0=H(0) = H(0) —r(z) >c—r(z) 20,

which is a contradiction. We next suppose H(0) < c. Then, since H(0) —r(z) <
0 in a small open neighborhood of a maximum point of r, we would reach a
contradiction by substituting any element of DTw in the neighborhood into
(6.16); recall that H; is now assumed to be non-negative. As a result, we conclude

H(0) =c.

Example 6.13. We revisit Example 6.8 and consider the large time behavior
in the sense (1.23). Since the unique envelope solution of (HJ1;cI,0) is of the
form (6.8), we see

u(x,t) — (ct—max|:c—a> —0 ast— oo
acZ™

uniformly in R". Obviously, this limit is different from our scaling limit ct.

7 Stationary problem

We define a notion of solutions to stationary problems of the form
F(z,u(x),Vu(z)) =0 in R" (7.1)

in the same way as the time-dependent problems. Namely, a function v : R™ —
R such that u, > —oco in R" is called a D-supersolution of (7.1) if

F(x,us(x),p) 20 forallz € Qand p € D u.(x). (7.2)

Also, we call u an envelope supersolution of (7.1) if u(x) = inf,cs w(z) (z € R™)
for some family S C {w | w is a D-supersolution of (7.1)}. A (standard) viscosity
supersolution of (7.1) is defined by replacing “F” by “F*” and “D ” by “D~”
in (7.2). Notions of subsolutions are defined in a similar way, i.e., we say u is a
subsolution if —u is a supersolution. For stationary problems we do not impose
global boundedness on solutions.

7.1 Profile function

We first derive an equation for a profile function of a self-similar solution to
(HJ1;7,0). Let u be self-similar and suppose that its profile function U is smooth.
Since u(z,t) = tU(z/t), we compute

Byu(a,t) = U(z/t) — (x/t,VU(z/t)), Vulz,t) = VU (z/t).
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Here (-, -) denotes the standard Euclidean inner product in R". Thus, if u solves
(HJ1;7,0) with a 0-homogeneous r, substituting the above derivatives of u for
(1.18) and letting £ := x/t, we obtain

U(§) — (&, VU(E)) — Hi(VU(§)) = r(§) in R™ (7.3)

The next proposition asserts that an envelope solution of the stationary problem
(7.3) gives that of the time-dependent problem (HJ1;7,0).

Proposition 7.1. Assume H; € C(R"), r € BUSC(R"™) and that r is positively
0-homogeneous. Let U : R — R be a bounded envelope solution of (7.3). Then
u: R"™ x [0,00) — R defined as

(2,1) = 0 (t= 0),
V@ (> 0)

is an envelope solution of (HJ1;7,0).

In contrast, it is not trivial whether the self-similar solution u gives the profile
function U in the sense of envelope solutions.

Proof. 1. By the boundedness of U we easily see that u is continuous at t = 0,
ie., u(z,0) = limg, )50y u(y,t) = 0 for all z € R™.

2. Let us show that u is an envelope supersolution of (HJ1;7,0). Since U is an
envelope supersolution of (7.3), there is a family 7~ C {D-supersolutions of (7.3)}
such that U(§) = infyyer W(€). Then u(x,t) = tU(x/t) = infyer tW(z/t). We
claim that w(z,t) := tW(x/t) is a D-supersolution of (1.18) for every W € T.
To do this we first prove

"~ Hy(p) 2 r(3) (7.4)

for (p,7) € D~ w.(#,1). Take a test function ¢ for (p,7), so that wy(x,t) —
B(x,t) = wi(,t) — ¢(,1) for all (x,t) € R™ x (0,00). Letting & = x/t, we see

tWL(€) — (&L, t) = IW,(€) — (L, 1) for all (£,1) € R™ x (0,00),  (7.5)
where € := #/f. We now choose ¢t = £ in (7.5) to get
D™ W.(§) 3 Ve(d(h, 8)/D)|,_¢ = Vad(&,1) = p.
Since W is a D-supersolution of (7.3), we have

Wa(§) = (€,p) — Hi(p) 2 r(§) = r(@). (7.6)

Here we have used the 0-homogeneity of r. We next take £ = f in (7.5). Since a
map t — tW,(§) — ¢(&t, t) is smooth, we observe

0= Law.() - olét.1)

ot t=t
= Wi(€) — (£, Voo(@, 1)) — Od(2, )
=W.(é) — (£,p) — . (7.7)
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Substituting (7.7) into (7.6), we obtain (7.4).

3. We shall show that the inequality (7.4) holds for every (p,7) € D~ w. (%, ).
Let us take an approximate sequence {((Zm, tm), (Pm,Tm)) }oo_q for (p,7) which
appears in the definition of D . Since (pm,Tm) € D™ wy(Tm,tm) for each m,
a similar argument to Step 2 yields p,, € D™ W, (&) with &, = z,/tm. Now,
compute

. o . U}*(Jim,tm) o w*( 7A) - I
Jim W(&n) = lim e = W.(§),

> &>

where ¢ = #/f. We thus have p € D~ W, (), which implies (7.6). In the same
manner as in Step 2 we also see 0 = Wi (§m) — (§m, Pm) — Tm- Sending m — oo
gives (7.7), and hence (7.4) holds.

4. We now apply the argument in Step 2 again in order to show that w is
a standard viscosity subsolution of (HJ1;r,0). Then, for (p,7) € DYu*(2,t) we
get p e DYU*(E) and U*(€) — (€,p) — 7 = 0. Here £ = &/f. Using the fact that
U is a subsolution of (7.3), we conclude 7 — Hi(p) < r(&). O

Example 7.2. The corresponding stationary problem to our typical equation
(1.5) is
U(§) — (& VU) = [VU(E)| = cI(§) n R" (7.8)

In Section 7.4 we will solve approximated problems of (7.8) with continuous
source terms and show that (6.2), which is the profile function of the self-similar
solution to (1.5), is indeed an envelope supersolution of (7.8). By contrast one
can check that (6.2) is a subsolution of (7.8) in a direct way. Let us take p €
DTU(¢), where U is given as (6.2). We first notice that |¢] # 1 since DTU(E)
is a empty set if || = 1. When [¢| > 1, we have p = 0 and U(¢) = 0. Thus
U) — (& p) — |pl =0—(£,0) — 0] = 0. We next study the case 0 < [§| < 1.
Since p = —c£/|¢| and U(§) = ¢(1 — [€]), we compute

U€) — (& p)—Ip| = c(1 = [¢]) — <§, —c|§|> - ‘—cé =c(1—[¢|)+ | —c=0.

Finally, in the case £ = 0 we observe U(§) — ({,p) — [p| = c— (0,p) — |p| L c.

7.2 Comparison principle

We study uniqueness of solutions to stationary problems with discontinuity. Let
us consider a general equation of the form

vu(z)+ H(x,Vu) =0 in R", (7.9)

where v > 0. We establish a comparison principle for D-sub- and D-supersolutions
of (7.9) under a suitable growth condition for solutions.

Theorem 7.3 (Comparison principle). Assume that H satisfies (Hy) with wi(r) =
Lir for some constant Ly > 0. Let u and v : R" — R be, respectively, a D-
subsolution and a D-supersolution of (7.9) such that

u(z) < Co(l+|z|) and v(z) = —-Co(l+|z|) forallz e R" (7.10)
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for some Cy > 0. Assume either (Hyn) or Lipschitz continuity of u or v in R™.
Then u* < v, in R".

Unfortunately, the assumption of Theorem 7.3 excludes Hamiltonians having
the inner product (x,p) such as (7.3). The reader is referred to [28, Proposition
5.5] for the proof of a comparison principle in the whole space for standard
viscosity solutions satisfying the same growth condition.

Proof. 1. Suppose by contradiction that there would exist some zy € R™ such
that u*(z9) — vi(x09) =: A > 0. Take a constant ¢ > 0 small so that 0 < § <
A/4(1 + |xo|?), and define

6 := sup {u*(x) — vi(z) — 20(1 + |z|*)}.
TeR"™
Since u and v satisfy the growth condition (7.10), there exists a maximizer z €
R" of the function in the right hand side; namely 0 = u*(z) —v4(2) —26(14|2[?).
Also, by the choice of §, we have

0 = u*(wo) — vi(w0) — 20(1 + |wol*) = A —

ol i
b

(7.11)
We next define a function ¥ : R™ x R® — R by
\IJ(IE,y) = U*(l') - ’U*(y) - Qb(-’E,y),

where ¢ : R" x R™ — R is a smooth function given as

o |~7C—3/|2 2 2
Blay) = g 32+ [ + [yl?).

Here 0 < € < 1. Then ¥ attains its maximum over R"” x R" at some (2%, y°) €
R"™ x R"™ thanks to the growth condition (7.10). We observe

Wz, 9°) = (2, 2) = u*(2) —va(2) =0 = 6(2+ |2)* + |2*) = 6. (7.12)
From this inequality and (7.10) it follows that

|x6 _ye’2

sz T2+ [ +[y°) = Co@+ |27 + [y])-

This implies that {#°}. and {y°}. are bounded, so that we may assume

li ) = (2,2 1
lim (2%, y°) = (&, 2) (7.13)
for some Z € R".
2. We shall show
e &
im =Y (7.14)
e—0 e
and
lim u*(2°) = u*(2), lmu.(y°) = ve(2). (7.15)
e—0 e—0



Since (2°,y°) is a maximizer of ¥, we have
U(z, &) < W2, y°). (7.16)
Using this inequality, we calculate

e _ ,E|2
imsup &Y < (s, 5) + limsup {u(2°) — v. () — 52 + |27 + 1))}

e—0 g2 e—0

< —U(2,2) +u(2) — vi(@) = 62+ [2° + [2]*) = 0,

which implies (7.14). Next, by (7.16) and the upper semicontinuity of ¥, we
observe

U(z,z) £ lim iélf\l’(l‘g, y°) < limsup ¥(z°,y°) < U(z, ).
e—

e—0

Thus
lim U (2%, y%) = ¥U(z, 2). (7.17)

e—0

This equality and (7.14) implies

lim {u”(2°) —0.(y")} = u* () — va(2).

e—0

We now compute

w*(Z) = limsup v*(z°) = lim inf u*(2°) = liminf{(u* (2%) — v« (¥°)) + v« (¥°)}

e—0 e—0 e—0

2 (W (2) = vu(2)) + 0:(2) = u*(2).

Consequently we obtain the both assertions in (7.15). Also, it is now easy to
derive the inequality

2|

< U(z,2) (7.18)

by (7.11), (7.12) and (7.17).
3. Set p° := (2° — y¥)/e%. The first derivatives of ¢ at (z°,y°) are given as
follows:
Vag(a®,y7) = p° +202°,  Vyo(a®,y°) = —p° + 201"

Since ¥ attains its maximum at (z°,y°), we have

€ 25 £ D+ * £
{p + 202° € u*(z), (7.19)

p® —20y° € D7 (y°).
Now we divide the situation into two different cases.
Case 1: {p°}o<c<1 is unbounded, Case 2: {p°}p<c<1 is bounded.

We will reach to contradiction for both cases. Note that, if u or v is assumed to
be Lipschitz continuous, then Case 1 does not occur because DT u* or D™ v, is a
bounded set by the Lipschitz continuity. On the other hand, Case 1 can happen
when we assume (H,y) instead of the Lipschitz continuity.
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In Case 1 there exists a sequence {e(5)}32; C (0,1) such that lim; ,oc £(j) =0

and lim;_,e0 [p°9)| = co. To simplify the notation let us write ¢ for £(j). By
(7.19) we see

vu*(x°) + H(zf,p° + 262°) <0,
vo.(y°) + H(y",p" — 20y°) 2 0

since u and v are a sub- and supersolution, respectively. Combining these two
inequalities, we have

v(u'(2%) —ve(y®)) < {H(y",p° — 26y°) — H(y",p°)} + {H(y",p°) — H(z%,p")}
+{H (z%,p%) — H(z%,p° + 202°)}.

We now let € small so that [p°| = N, where N is the constant in the assumption
(Hzn). Applying (H,) and (H,y), we calculate

v(u(2°) = ve(y?)) = 20 Lay"| + wa((1 + [p°])]2" — y7]) + 20 La ||

= wy (]a:E -yl +

|2°

_ ya‘Q
82) + 26 L1 (2] + |y°]).
Sending ¢ — 0 yields
v(u* (&) — v () £ 40L1|2], (7.20)
where we have used (7.14). Adding —2v§(1+|2|?) to the both sides, we compute
vU(2,2) < 460, |&| — 2v6(1 + |2|?)

2 2 2
:25{—1/(]§3|—L1> —|—L1—V}§25<L1—V>.
v v v

Finally, we apply the inequality (7.18) to get

2
w‘lé%(h_y).
2 v

This is a contradiction for small 9.

We next study Case 2. In this case we may assume lim._,o p° = p for some
p € R™. Since we have (7.13), (7.15) and

lir%(ps + 202%,p° — 20y°) = (p+ 20z, p — 20%),
E—
taking a limit in (7.19), we obtain
P+ 208 € D ur(2),
P — 208 € D v, (%)
by the definitions of DF. Now u and v are solutions in the D-sense, and so it
follows that
vu*(2) + H(z,p+ 20%) £ 0,
vu(z) + H(z,p — 262) =2 0.

From these inequalities and (H,) we are able to deduce (7.20) without (H,n).
The rest of the proof is similar to Case 1. 0
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7.3 Existence result

We turn to the existence problem for (7.9). Similarly to the time-dependent case,
we construct envelope solutions via approximated problems. More precisely, for
each € > 0 we first solve

vu(z) + H*(z,Vu®) =0 in R", (7.21)

where H€ is a continuous Hamiltonian approximating H. We next show that
the infimum of ¢ gives an envelope solution of the original problem (7.9).
The following assumption requires an approximability of H:

(H.) There exists {H}.~¢o C C(R™xR"), a family of continuous Hamiltonians,
such that H¢ T H pointwise as € — 0 and the following conditions hold.

(i) If w and v : R™ — R be, respectively, a standard viscosity sub- and
supersolution of (7.21) satisfying (7.10) for some Cy > 0, then v* < v,
in R™.

(ii) There exists a standard viscosity solution u® of (7.21) such that
—C(1+ |z|) £ u(z) £ C*(1 + |z|) in R™ for some C* > 0.

The condition (i) implies that the solution in (ii) is unique and continuous.
We also remark that H satisfying (H.) is always lower semicontinuous, so that
we may discuss subsolutions of (7.9) in the standard viscosity sense.

Proposition 7.4 (Existence of envelope solutions). Assume that H satisfies
(HL). Let u® be the unique solution of (7.21), and set u := inf.sou®. Assume
furthermore that there exists a subsolution w of (7.9) such that —C'(1 + |z|) <
w(z) in R™ for some C' > 0. Thenw is an envelope solution of (7.9). Moreover,
it hold that —C"(1 + |z|) L u(z) < C°(1 + |z|) in R™ for all € > 0, where C° is
the constant in (HL).

The proof of Proposition 7.4 uses a similar argument to that of Proposition
3.7.

Proof. Since H¥ < H® < H for 0 < ¢ < ¢, the comparison principle (i) in (H.)
implies w < u¢ < uf. Thus taking the infimum over {¢ > 0} yields w < 7 < u®.
The growth condition on wu follows from these inequalities.

We shall show that @ is an envelope solution. Since u® is a standard sub-
solution of (7.21), the stability result for subsolutions under the relaxed limit
([11, Lemma 6.1, Remark 6.3]) implies that limsup}_,,u®, which is now equal
to w by the monotonicity of u®, is a subsolution of (7.9). Here we have used
liminf,.,0 H® = H. We also see that w is an envelope supersolution of (7.9)
since v is a D-supersolution of (7.9) by H® < H. O

One of sufficient conditions for existence of the subsolution w in the statement
of Proposition 7.4 is

m := sup H(z,0) < oo.
zeR™

In fact, if H satisfies this condition, then w(x) = —m/v is a bounded subsolution
of (7.9) since
vw(z) + H(x,Vw(z)) = —m+ H(z,0) < 0.
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7.4 Explicit solutions

Let us solve (7.8) via approximation. As we studied in Example 3.1 and 3.2, one
of simple approximation to (7.8) is

u®(z) — (z, Vu®) — |Vu| = cl®(z) in R", (7.22)

where 0 < e < 1 and I¢ is given by (1.8). Let us compute the exact solutions of
the approximated problems (7.22). We fix € € (0, 1) and simply write u for .
Since (7.22) is written as a Bellman equation of the form

u(z) — sup (x+a,Vu) =cl°(z) in R",
a€§1(0)

we are able to apply the classical optimal control theory. According to [2, Propo-
sition III.2.8] the value function of the infinite horizon problem defined as

o0

u(zx) == sup/ e el (X%(s))ds
acAJO

is a standard viscosity solution of (7.22). Here o € A := {a : [0,00) —

B1(0), measurable} is a control (the control set is B1(0)) and X : [0, 00) — R™

solves the state equation

(X*)(s) = X*(s) + a(s) in (0,00), X*0) = x.
A discount factor A, which usually appears in the exponential term e~**, is now
chosen as one. Studying the optimal strategy for each x € R", we shall simplify
the representation formula of u.

We first notice that, if |x| = 1, it is impossible for the state X*(s) to reach
B.(0)(= supp(r)) whatever control « is chosen because, for each 2’ € R" such
that |2/| = 1, the set {2/ + a | a € B1(0)} is disjoint from the half space {y €
R"™ | («/,y) < 0}. This implies that the state cannot get close to the origin.
Thus

u(z) =0 (Jz| =1). (7.23)

We next study the case where 0 < |z| < 1. Then the optimal control forces to
the state to move straight from x to the origin at a maximal speed and to stop
at the origin after the arrival. In other words, the optimal strategy satisfies

(—log(l — |z]) £ s < 00).

X% ()| = {(1) —(1=fahe” (0= s< ~log(l-al),

Therefore

log(1—|z|) @ 00
/ e (1 - |X(S)> ds —i—/ e *ds
€ + — log(1—|x)

/ og(1-leD (1_1—(1—\3:\)e5> ds+(1—|z).  (7.24)
+

£
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When |z| < €, the first term is

—log(1—|x) —(1— s -
/ o= (1_1(1|55)6) ds = — (1_1> ‘x,_ﬂlog(l_,x‘),
0 € € £

and consequently

e i N(HES) (7.25)

We next compute the first term in (7.24) when ¢ < |z| < 1. Then

—log(1—|x) (1~ s _
/ o—" (1_1(1‘$|)e> ds — (log(lz—:)_1> 1 - |z|),
—log{(1-|=|)/(1-2)} € €

which yields
log(1 —
%ﬁz_%: D1—jal) (<ol <1). (7.26)

Summarizing the above computations, we established the solution formula (7.23),
(7.25) and (7.26). The solution u® of (7.22) is a D-supersolution of (7.8) since
cl(z) £ cI(z) for all x € R™. Also, the infimum of u® is equal to (6.2), and
therefore we conclude that (6.2) is an envelope supersolution of (7.8). (In this
example, u® uniformly converges to (6.2) as € — 0.)

One can obtain functions of the form (7.25) and (7.26) via solving ordinary
differential equations. To get the solutions we first simplify the equation (7.22).
We consider (7.22) in the one-dimensional half space (0,00) and suppose that
the solution w is non-increasing in (0,00) so that |u/(z)] = —u/(x). Then the
equation (7.22) simplifies to

uw(z) + (1 —2)u'(z) = cI*(z) in (0,00). (7.27)

Since this is a linear differential equation, we are able to employ the solution
formula of the linear equation. For 0 < x < 1 we have

u(z) = (u(O) +/ 17081—5(3)6‘[05 dz/(l—Z)ds> eJo —ds/(1=s). (7.28)
0 1—

We consider the value of u(0). If we suppose u is radially symmetric and dif-
ferentiable at the origin, then Vu(0) = 0. Thus letting z = 0 in the original
equation (7.22) implies u(0) = ¢. Substituting this for (7.28) and computing the
integrals, we finally obtain (7.25) and (7.26), where “|z|” is replaced by “x”, for
0<z<eand e <z <1, respectively.

In Example 3.2, considering a finite horizon optimal control problem, we
computed the exact solution to the approximated time-dependent equation of the
form 0;v° — |Vv®| = cI¢(z) under the zero initial data. However, the shape of the
solution v®(z,t) to this problem is different from that to the stationary problem
(7.22). Indeed, for a fixed t > 0 the solution v° is a quadratic function of |z|
near the origin with the vertex (0, ct), and the solution is smooth in R™ x (0,7).
Obviously, the solution of (7.22) does not enjoy these properties.
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In Lemma 5.3 we proved that, under a suitable controllability condition, the
value function of a finite horizon problem with a discontinuous running cost gives
the unique envelope solution of Bellman equations. As its analogue let us study
the value function ~

v(z) = sup/ e *cl(X%(s))ds (7.29)
acAJO
with a discontinuous integrand. The optimal control for this problem is the
same one as before, i.e., to maximize the cost the state first goes to the origin
straight at a maximal speed, and, after the state arrives at the origin at a time
—log(1 — |z|), it stays there. Consequently, we see

v(z) = / e fds =1—|z|.

¢ —log(1—|=[)

In other words, (7.29) gives the envelope solution of (7.8). However, if we choose a
control set as dB1(0) instead of B1(0), the value function with the discontinuous
cost ¢l becomes zero because the state X*(-) is enable to stop at the origin
whatever « is chosen. This implies that we need to take the control set suitably
to represent the envelope solution.

A Preservation of Lipschitz and uniform continuity

Proof of Proposition 3.17. We first remark that w(z,t) := uo(x)+mt € SUP(H, up).
Take any (#,%) € Q, h € (0,T — t) and define

(1) = w(x,t) (t €10,h]),
0 \u(z,t—h)+mh (t€ (h,T)).

We claim @ € SUP(H,ug). Let (p,7) € D™(#,%). Then it follows easily that
7+ H(#,p) = 0 when t # h, and so we only consider the case { = h. Since
u € SUB(H,up) and w € SUP(H,up), we see by the comparison principle that
u < win Q. Take (z,t) € R™ x (h,T), and substitute (x,t — h) into the
inequality. Then we find u(x,t—h) < ug(z) +m(t—h), namely a(z,t) < w(x,t).
This implies the relation D~a(z,h) C D~w(Z, h), and hence our claim follows
from w € SUP(H, up).

Applying the comparison principle to u € SUB(H,up) and @ € SUP(H, uy),
we obtain u < @ in Q. In particular, we have u(Z,f + h) < (&t + h) =
u(2,t) + mh, that is

w(Z,t + h) — u(z, )

<m.
Y <m
By the similar argument we also deduce
u(z,t + h) —u(z,t) > m

h

from the fact that ug(x) — mt € SUB(H,up) and so on. Thus Lip,[u] £ m is
proved.
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We next estimate Lip,[u]. Take any (p,7) € DV u(Z,%). Since the estimate
Lip,[u] £ m implies |7| £ m, we see from v € SUB(H) that H(Z,p) £ —7 < m,
hence that |p| £ Ry (m) by (Hg4). This observation means

sup  [p| = Ry (m),
(#,0)€Q
(p,m)EDTu(@,i)

and moreover Lemma A.2 (1) and (2) below ensure that

Ju(z, ) — u(y, 1)

sup  sup < Ry(m).
ie(0,T) v,yER™ |z — y
Y
We thus conclude that Lip,[u] < R4 (m). O

Remark A.1. From the proof it turns out that it is sufficient to assume that H
satisfies (Hr4) or (Hr—) only for all m € I, where I is the range of m(-) in (Hy,)
on [0,00). For example H(x,p) = —|p|/(1 + |p|) is not coercive but the same
conclusion in Proposition 3.17 still holds since we have 0 < m(p) < 1 (p = 0)
and R_(m) <oo (0<m < 1).

Lemma A.2. (1) Let f: RY — R be bounded. Then we have

J(z)— fly
wp M@=l
z,yeRN |z —y| #eRN

TH#Y peDT f(2)

(2) Let u: Q — R be continuous. Assume that Lip,[u] < co. Then we have

sup  [p| = sup sup Ipl.
(#,)eQ te(0,T) FeER™
(p,r)eDTu(,f) peDT (ul,_3) (@)

Proof. (1) This is well-known even in multi-dimensional setting; see, e.g., [25,
Proposition 5.8].

(2) Denote by L, and R, respectively the left hand side and the right hand
side. Then we obtain L, £ R, by the separation of variables of a test function.
Let us show L, = R,,. Fix (2,%) € Q, p € D*(u|,_;)(2) and take a corresponding
test function ¥ € CY(R"™). We may assume that u|,_; — ¢ attains its strict
maximum at #. Define C := Lip,[u] + 1, g(t) := C|t — |, ¢ := o + g, ¢°(t) :=

Cy/|t —t? 4+ and ¢° := 1) + ¢°. Then u — ¢ attains its strict maximum at
(#,1) and u — ¢F converges to u — ¢ uniformly. Therefore, by the lemma on
convergence of maximum points (see [21, Lemma 2.2.5]), there exists a sequence
{(2°,1°)}c50 such that (2°,t°) — (&,f) and u — ¢° attains its local maximum
at (2¢,t°) for each € > 0. Then we have (Vi (), (¢°)'(t°)) € DTus(af,¢°) and
Vi(zf) — Vip(x) = p, which yield L, = R,,. O
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We next prove Proposition 3.18. In the following proof we use the fact that
if uniformly continuous functions f° (6 > 0) converges to f uniformly as ¢ | 0,
then f is also uniformly continuous. Let w® be a modulus of f°. Then

£(@) = F@) £ 1(2) = £ @) +[£(2) = £ ()] + £ (W) — F©)
<2|f = £+l — ),
and hence our claim follows. We also find that f has
w(r) = inf (21 = £ + ()
as its modulus and that there is no need to assume the existence of a common
modulus of f°.

Proof of Proposition 3.18. By the assumption (H,,) there exists a solution u® €
SOL(H,uj) for each § > 0, and Proposition 3.17 implies that «’ € BLip(Q)
since ud € BLip(R™). Now, by using the inequality

B s
lu =l = [luo — ug|[rn (A1)

in Remark 2.7 (1) we find that u% converges to u uniformly in Q as 6 | 0. Besides,
recalling the remark before this proof, we see u € BUC(Q) and

wo(r) == éﬂg (2||u — g + Lip[u‘s}r)

is a modulus of u. Applying (A.1) and the estimate of Lip[u’] in Proposition
3.17, we obtain the desired form of w. ]

B Existence of D-solutions to general equations

In this section we discuss a sufficient condition which guarantees that an envelope
solution of the original problem is a D-solution of the relaxed problem. As the
original problem, we consider (HJ) with H of the form (1.10); that is

Owu + Ho(z,Vu) = r(x) in @, (B.1)

(HJO){ (1.2).

To study the relaxed problem we make the following assumptions on Hy and r:

(i) Hoe C(R"™x R") and the map u — Hy(0, up) is nonincreasing
on {u =0} for all p € R™. (B.2)
(i) re C(R™\ {0}) and r, € C(R"™).

The condition (B.2) implies (i), (ii)’ and (4.4) in Example 4.1, and therefore
(H,) is satisfied. The corresponding relaxed Hamiltonian H is

ﬁ@m%:{H@m> (x #0),

min{H*(0,p), H(0,0)} (z=0).
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Setting P := {p € R" | H*(0,p) = H(0,0)}, we have

P mr 0.0 weP),

and so H is continuous in {(z,p) | z # 0 or p &€ P}. We also notice that P is a
closed set in R™ by the continuity of H*. We have already shown in Section 4
that an envelope solution of (HJO) is also an envelope solution of (r.HJ).

Our gold in the rest of this section is to prove that an envelope solution
of (r.HJ) is a D-solution of the same problem. To do this the following two
assertions play crucial roles.

Lemma B.1. Let u: QQ — R be continuous.
(1) Assume that u satisfies the following property:

(U1) For all t € (0,T) there exist some d > 0,0 > 0 and C = 0 such that
U|p—gr + Ct? is convex in (t — 6,t + ) for each 2’ € By(0).

Then

7€ D™ (ulg=0)(t) for all (p,7) € D u(0,%) with t € (0,T). (B.3)

(2) Assume that Ho and r satisfies (B.2). Assume furthermore that u is a
Lipschitz continuous D-supersolution of (4.1). Then

T+ H(0,0) 20 for all 7 € D™ (u|z=0)(t) with t € (0,T). (B.4)

A function f : R® — R is said to be semiconvez if f(z) + C|x|? is convex
for some C' > 0. Thus the condition (Ul) requires some kind of semiconvexity
of u with respect to t. We remark that, when f(z) + C|x|? is convex, functions
f(x)+C|z—al? are also convex for all « € R™. Indeed, we have f(z)+Clz—a|* =
f(x)+C|z|> —2C(x,a) + Cla|?, and the right hand side is the sum of two convex
functions. This implies the convexity of f(z) + Clx — al?.

Proof. (1) Let (p,7) € D u(0,t). Take an approximate sequence (P, Tm) €
D~ u(Zm, tm) for (p,7) and their test functions ¢,, € C1(R™ x (0,T)). We may
assume that ¢,, is of the separated form, i.e, ¢, (z,t) = V¥ (z) + gm (t) for some
Ym € CHR™) and g,, € C1(0,T). Since u|y,—z,, — gm attains its minimum at t,,,
we see that ¢,, is also a minimum point of u|;—z,, + C(t — t;m)? — gm, where C
is the constant in (Ul). As we remarked after the statement of Lemma B.1, the
function u|,—g, + C(t —t;,)? is convex in (t — 6,1 + ). Thus t,, is a minimum
point of u|y—y,, +C(t—tm)2—g'(tm)t over (t—6,1+5). We now apply ¢'(tm) = Tm
and send m — oo. Then, from the continuity of u at (0,%), it follows that the
function w|,—¢ + C(t — )? — 7t attains its minimum over (f — d,f + ) at £. This
implies
D (ulemo)(() > St = Ce— 02} =r,
dt t=t

which is the desired conclusion.
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(2) Choose any 7 € D~ (u|,—=0)(t), and take a test function g € C*(0,T) for 7.
We may assume that u|,—o—g¢ attains its strict minimum at #. For £ > 0 we define
¥ 1= Lip,[ul+1, $(2) = —lal, 6(z,£) = $(x)+9(t), ¥°(z) = —y/ ] +  and
¢ (z,t) := ¢*(x)+g(t). Then u—¢ attains its strict minimum at (0, ¢), and u—¢°
converges to u— ¢ uniformly as e — 0. Thus there exists a sequence {(z%,t%)}.>0
such that (2°,¢°) — (0,f) as e — 0 and that u — ¢° attains its local minimum at
(z¢,t%) for each £ > 0 ([21, Lemma 2.2.5]). Now, since |Vi¢| < ~ for all ¢ > 0,
taking a subsequence if necessarily, we may let V)¢ (x) converge to some p € R™.
Moreover lim. o ¢'(t°) = ¢'(t) = 7, and so we see (p,7) € D u(0,f). Since u is
a D-supersolution of (4.1), we conclude 0 < 7+ H(0,5) < 7 + H(0,0). O

Remark B.2. (1) If a function w is of the form (4.8), then u satisfies (U1) with
C = 0. Thus, when a Hamiltonian is given as (1.3), we conclude that (4.7)
is a sufficient condition for (U1) since (4.7) implies (4.8). For more general
Hamiltonians, as far as the author knows, there is no convenient sufficient

condition on the initial data which guarantees (U1) for envelope solutions
u of (HJO).

(2) The conclusion (B.3) in Lemma B.1 (1) may not hold if we remove (U1).
To see this, let us consider the solution u given by (4.6). Concerning its
subdifferentials, we have 0 ¢ D™ (u|,—)(2) and (0,0) € D (0, 2); that is,
(B.3) is violated. We also notice that u does not satisfy (Ul) at £ = 2.

Remark B.3. If we assume

limsup  H(z,p) < H(0,0) (B.5)
(z,p)—(0,00), x#0

in Lemma B.1 (2) instead of the Lipschitz continuity of u, the same conclusion
follows. In this case we take ¢ and ° in the proof as

) = 0 (x =0) Ex:—ﬁ
¥ () {_Oo (x#o),w() p

Since limsup;_,o9° = v, it follows from [21, Lemma 2.2.5] that there exists a
sequence {(z°,t°)}.~0 satisfying the same properties as in the proof of Lemma
B.1 (2) by taking a subsequence if necessary. Set p® := Vi¢(zf) = —2a/e
and assume that the sequence {p}.~¢ is not bounded; otherwise the same proof
runs as before. By the unboundedness of p* we notice 2¢ # 0 for very small €.
Since (p%, ¢'(t°)) € D~ u(2f,t°) and u is a supersolution of (4.1), we have ¢'(t°) +
H(z%,p®) =2 0. Taking limsup._,, in the inequality, we obtain 7 + H(0,0) = 0
by (B.5).

Proposition B.4 (Existence of D-solutions). Assume that Hy and r satisfies
(B.2). Let u be a continuous envelope solution of (HJO) such that u = inf,csw
for some S which consists of Lipschitz continuous D-supersolutions of (B.1).
Assume furthermore that u satisfies (Ul). Then u is a D-solution of (r.HJ).

Proof. From Lemma 4.4 and the inequality H < H it follows that u is an envelope
solution of (r.HJ).
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Let (p,7) € D u(#,t). When & # 0 or p € P, we apply the stability result
under infimum for standard supersolutions ([11, Lemma 4.2]) to obtain

0< 7+ (H)"(&,p) =7+ H(&,p)

since H is continuous at (Z,p). We next study the case where & = 0 and p € P.
By the definition of P our goal is to show

T+ H(0,0) = 0. (B.6)
Since wu satisfies (U1), Lemma B.1 (1) implies
7 € D™ (u|z=0) (D). (B.7)

We next apply Lemma B.1 (2) to each w € S. It then follows that 0¢(w|z=0) +
H(0,0) = 01in (0,7) in the standard viscosity sense. Thus, by the stability under
infimum we see 9(u|z=0) + H(0,0) = 0 in (0,7") in the standard viscosity sense.
Using (B.7), we finally deduce (B.6). O

C On effects of discontinuity and measures

If we see source terms with jump discontinuity such as I(z) with respect to
the Lebesgue measure, we cannot observe the discontinuity since, in the case
of I(x), it is equal to zero in the almost everywhere sense. However, if we use
another measure, say the counting measure, we may not neglect such discon-
tinuity at a singleton. It is thus reasonable to establish a notion of envelope
solutions depending on a given measure. For this purpose we introduce an es-
sential semicontinuous envelope as follows. Let o be a Borel (regular) measure
on R™. Assume that 0 < u(B) < oo for any open ball B = B,(z) with radius
r > 0 centered at x € R"™. For a Borel measurable function f : R — R we
define an essential lower semicontinuous envelope of f with respect to i as

fun(@) = lim <eg§(1;1)f f) :

where essinfg ) f = sup{A € R | u({z € R" | f(z) < A} N Bs(x)) = 0}.
In other words, we modify a set of discontinuity of f with u-zero measures.
Assuming that all balls have positive measure, we see that f,. is well-defined as
a real-valued function provided that f is locally bounded. Also, as we will see
below, f,« is a lower semicontinuous function.

We apply this essential envelope to the original Hamiltonian H, and solve
(HJ) with H,, instead of H. We then obtain an envelope solution on which
the measure p has an effect. When a Hamiltonian is of the form (1.10), we

have H,.(x,p) = Ho(x,p) — r#*(x) with r** := —(—r),.. For instance, when
the source term r is given as (1.12), we have r** = 0 if y is the n-dimensional
Lebesgue measure while r** = r if u is the counting measure. The former

example implies that the inequality r < r** does not necessarily hold although
we always have r < r* for the usual upper semicontinuous envelope.
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We prove that f,. is lower semicontinuous. Take x € R™ and 6 > 0. We
also choose y € Bs(x) and d > 0 small so that By(y) C Bs(z). This inclusion
relation implies ess infgd(y) f = ess infgé(x) f- We send d — 0 and then take
liminfy_,, in the inequality to obtain liminf, ., f..(y) = ess infg ) f. Finally,
sending § — 0 gives liminfy_,; f,.(y) = fu«(x), which means that f,, is lower
semicontinuous at x.
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Chapter 2

Asymptotically self-similar
solutions to curvature flow
equations with prescribed
contact angle and their
applications to groove profiles
due to
evaporation-condensation

1 Introduction

We are concerned with the asymptotic behavior of solutions to second order
parabolic equations with the Neumann boundary condition of the form

dpu(z,t) = F(Vu(x,t), V2u(z,t)) in Q x (0,00), (1.1)
(NP) { u(z,0) = ug(z) on €, (1.2)
Opu(x,t)|gy=0 = >0 on 0 x (0,00), (1.3)

which we also denote by (NP; F,up). Here Q = {(x1,...,2,) € R" | 21 > 0}
is the half space, Vu and V?u denote, respectively, the gradient and Hessian
matrix of u with respect to z, and the initial data ug is bounded and uniformly
continuous, i.e., ug € BUC(Q). A given real-valued function F is continuous and
degenerate elliptic. Our goal in this paper is to prove that (viscosity) solutions of
(NP) asymptotically converge to a self-similar solution of the associated problem,
and study properties of a profile function of the self-similar solution.

Our study is motivated by evaporation-condensation model which was first
proposed by a material scientist Mullins in [43]. Consider the situation that
there are two crystal grain regions (solid phases) on the plane which consist of
the same matter and differ only in their relative crystalline orientation. Let the

two region be {(z,y) | x 20, y < u(z,t)} and {(z,y) | 2 £ 0, y < u(z,t)} at
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time ¢t = 0, where we assume u(0,t) = u(0,t) so that a triple junction appears
at the point (0,u(0,t)); see Figure 1. Moreover, we assume the symmetry, i.e.,
u(x,t) = u(—=x,t) for x > 0. The rest part on the plane is filled by gas. The
intersection between the two crystal regions, which is called a grain boundary,
is assumed to be stable on the line x = 0. We suppose that due to evaporation
and condensation crystal atoms move between solid phases and gas phase. This
mechanism leads development of a surface groove at the grain boundary, which
we call a thermal groove, as in Figure 1. In this setting we study evolution of

gas t=0 4 R t>0 o

— O . %O T, u(z,t)
% E— %

grain boundary (fixed) thermal groove

<

— crystal -

Figure 1: The thermal groove develops due to evaporation-condensation.

interfaces between crystal grains and gas. By symmetry we consider the interface
only in the right region, which we represent as 'y := {(z,u(z,t)) € R? | x = 0}.
According to Mullins’ theory in [43] the evolution equation for I'; is given as

V, = Co (1 . e_Clk> on I, (1.4)

where V,, is the upward normal velocity of I';, k is the upward (mean) curvature,
and Cy, C] are positive constants. Thus, taking Cy = C; = 1 for simplicity, we
obtain the following partial differential equation for wu:

(7 .

V1+u2
in {x > 0} x {t > 0}, where (ut, Uz, Uzz) = (Oru, Oy, Ozzu). Here we have
invoked the formula V;, = u¢/+/1 4+ u2, and also the curvature k is represented by
k= ug./\/1+ u§3 ([22, Chapter 1.2, 1.4]). In this model a boundary condition

on u at x = 0 is given as

1—e* (1.5)

uz(0,8) = 8> 0, (1.6)

which is the prescribed angle condition and results from equilibrium of tensions at
the triple junction point (0, u(0,t)). Hence solving the Cauchy problem for (1.5)
under the Neumann boundary condition (1.6) gives the surface profile due to
evaporation-condensation. The problem (NP) is a generalized multidimensional
case of this model.

In [43] Mullins approached the equation (1.5) via two approximations. He
first applies the linear approximation of the exponential term, which is

1—e "k (1.7)
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Then the original equation (1.5) simplifies to

Vg
== 1.8
TIT v2 (18)
which is the usual mean curvature flow equation for graphs. To solve (1.8)
Mullins next applies the second approximation that

vy ~ 0. (1.9)

This condition comes from physical assumption that slopes on the surface are
sufficiently small, which especially implies § < 1. Applying (1.9) to (1.8) finally
yields

W = Wy (1.10)

Since this is the simple heat equation, its classical solution w with the initial-
boundary conditions w(z,0) = 0 and w,(0,t) = 5 > 0 exists and has the explicit
form; see Example 2.3. In this way Mullins concludes that the groove profile due
to evaporation-condensation is given by the solution w. In particular, putting
xz = 0, Mullins computes the depth of the developing thermal groove at the
origin, which is

—w(0,t) = zﬁﬁ ~ 1.136V1. (1.11)

In this paper we aim at justifying these two approximations by Mullins.
Namely, we rigorously discuss a relation among the three solutions u,v and
w. The point in our study is that the solutions v of (1.8) and w of (1.10) are
(forward) self-similar, i.e., they are of the form

(@, t) = VAV (%) , w(z,t) = VIW @i) .

The functions V' and W are called profile functions of v and w, respectively.
Then, as a justification for the first approximation, we prove

1
Vi

in Theorem 3.4. This convergence result says that if we rescale the solution
u of (1.5) in the above way, then it converges to the profile function V' of the
approximated equation. In other words, w itself is not necessarily self-similar,
but it is asymptotically self-similar in the above sense.

We prove such an asymptotic result for more general problems of the form
(NP) in Section 3. As a special structure of the equation (1.1) we direct our
attention to homogeneity of F'. Here we say F' (or (1.1)) is homogeneous if F' is
positively homogeneous of degree 1 with respect to X, i.e., F'(p, X) = AF(p, X/\)
for A > 0. Evidently, the equation (1.8) is homogeneous. It also turns out that
solutions of the homogeneous equations with the zero initial data are self-similar.
Thus (1.8) can be generalized to homogeneous equations. In order to explain
how we generalize (1.5) to the equation (1.1) with G : R" x S” — R", we shall

u(Vtx,t) = V(z) ast— oo (1.12)
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give an idea of the proof of (1.12). Let u and v be, respectively, a solution of
(NP; G, up) and (NP; F,0), where F' is homogeneous. We prove the result (1.12)
by showing that rescaled functions of u converge to v; namely,

uny (w,t) = %u()\x,)ﬁt) —v(z,t) as A — oo. (1.13)

It is easy to see that this rescaled function u(y) is a solution to the rescaled equa-
tion (NP; Gy, (uo)(x)) with Ga(p, X) = AG(p, X/A) and (uo)(x)(z) = uo(Ax)/A.
Since (uo)()\) — 0 as A — oo, we can conclude that if G converges to F', then the
limit of u(y) solves (NP; F,0). By uniqueness the limit should be v, and hence
we obtain (1.13). Note that our convergence result (1.13) holds for a solution u
of (NP; G, ug) with an arbitrary initial data ug € BUC(Q).

In this way we are led to introduce a notion that G is asymptotically homo-
geneous, which roughly means that G approximates some homogeneous function
in a suitable sense. To be more precise, we require that G(p, ) := AG(p, X/\)
converge to some homogeneous F' as A — oo. By a simple calculation we see
that (1.5) is asymptotically homogeneous with the limit (1.8). Accordingly the
asymptotic homogeneity is a generalized notion containing (1.5), and the Mullins’
first approximation is then generalized to

G=~F.

To show the convergence of u(y) to v rigorously we employ stability results of
viscosity solutions. Due to comparison principle for (NP), we see that the upper
and lower relaxed limit of u(y), which are a sub- and supersolution respectively,
should agree with v provided that the relaxed limits exist. Thus the remaining
problem, which is our main difficulty, is to show the existence of the relaxed
limits. This is achieved by constructing suitable barriers which are of order
O(Vt) as t — o0; see Lemma 3.5 and the proof of Theorem 3.4.

We turn to the second approximation by Mullins, to which we dedicate Sec-
tion 5. Since the solution v of (1.8) and w of (1.10) are self-similar, we consider
only their profile functions. Our main interest is to examine adequateness of
Mullins’ conclusion (1.11) concerning the depth of the thermal groove at the
origin. For this purpose we compare the depths of two profile functions at the
origin; one is the original depth —V'(0)(= —v(0, 1)) which comes from (1.8) and
the other is the approximated depth — W (0)(= —w(0, 1)) corresponding to (1.10).
Recall that —W(0) has the explicit form that —W (0) = 23/y/7 by (1.11). We
prove among other results that, in Mullins’ problem, —W(0) is the third order
approximation of —V'(0), i.e.,

~V(0) = -W(0)+0(B%) as B — 0. (1.14)

In this paper we discuss such comparison of the two depths for more general
equations. From results for the general case we deduce (1.14). To discuss the
general case let us consider (NP) with a homogeneous F. Since the problem
(NP; F,0) does not include the variables xs, ..., z,, its self-similar solution de-
pends only on z; and ¢. Thus, in what follows we let the spatial dimension n
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be one so that the profile function V' is defined on R. Then it turns out that V'
satisfies the ordinary differential equation of the form

V(&) = €V'(§) = a(V/()V"(€) in (0,00), (1.15)

where a is given by a(p) := —2F(p, —1). Note that a(p) = 2/(1 + p?) in Mullins’
case since F(p, X) = X/(1 + p?) for (1.8). Let us recall the Mullins’ second
approximation which replaces the first derivative v, by zero. As its analogue, for
the general equation (1.15) we replace a(V'(£)) in the right hand side by a(0),
i.e., we apply

a(V/(€)) =~ a(0).

This is a generalized Mullins’ second approximation. The resulting approximated
equation is

W(g) = EW'(§) = a(OW’(§) in (0,00), (1.16)

which represents the heat equation if we return (1.16) to the parabolic problem.
Let V and W be, respectively, the unique viscosity solution of (1.15) and (1.16)
with the boundary conditions that V/(0) = § and V(o0) = 0. A well-posedness
of these equations in the viscosity sense is a consequence of that of parabolic
equations (NP). We also remark that W has the explicit form. In this general
setting we prove that the estimate

o < V(0) = W(0)
- g
holds for some positive constant C' independent of 5. This result implies —V(0) =
—W(0) +o(B) as  — 0 for general equations and (1.14) for Mullins’ case where
a(p) = 2/(1+ p?). The main tool for the proof of (1.17) is comparison principle.
Namely, if we have a subsolution V; and a supersolution V5, then we obtain an
inequality Vi £ V5 and in particular —V;(0) = —V5(0). To this end we seek
a suitable sub- or supersolution of the ordinary differential equation. We also
deduce a couple of other estimates on the depth by the comparison method.
Our another interest is degenerate cases. We study (1.15) when a(p) is al-
lowed to be zero. Even in such degenerate cases the unique solution to (1.15)
exists in the viscosity sense. As an instructive example, we now let a(p) = 0
for p € [¢7,¢"] and a(p) > 0 otherwise. Then a simple observation indicates

<C (a(O) ~ min a) (1.17)

a(p) VIO & gt i ¢
O o

solution
—_—

Figure 2: The profile function V has a corner when the equation is degenerate.
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that the unique solution V has a corner whose angles are determined by ¢~ and
qt. Indeed, if we admit that V is negative and increasing (these properties are
shown in Proposition 4.3), we notice by (1.15) that 0 > a(V'(£))V”(£). This
implies V'(€) & [¢~, ¢"]; in other words, the derivative of V' jumps over the in-
terval [¢, ¢"]. Rigorous statement and its proof on the corner of the viscosity
solution V are given in Theorem 4.10, where we prove that there exists a unique
& € (0,00) such that the left and right derivatives of V' at &y are, respectively,
g and ¢~ ; see Figure 2.

Since the solution V' of (1.15) is a profile function of the (forward) self-
similar solution, it is natural to expect relation between V and the Wulff shape,
which minimizes the total surface energy among all sets with the same volume.
Although our interface I'; is now unbounded, we are able to relate the corner of
the profile function V to that of the associated Wulff shape in the following way.
For a given surface energy density v : S ! = {x € R" | |z| = 1} — (0,00) we
define a Wulff shape associated with ~ by

Wulff(7) = () {z € R" | (,0) £ v(0)},
la|=1

where (-,-) is the standard inner product in R"”. Let us consider the evolution
equation of the form

Vo =M(mn)k, only, (1.18)

where M : S"~! — (0, 00) is the mobility, n is the oriented normal vector on I,
and k, is the anisotropic curvature with respect to the surface energy density .
See, e.g., [22, Chapter 1.3] for the definition of k. We now let n = 2 and assume
that Ty is represented by a graph, i.e., I'y = {(z,u(x,t)) € R?}. Then, choosing
n as the upward normal vector and using the formula

ky = (" (argn) + F(arg n))k,

where argn is the argument of n and () := vy(cos#,sinf), we see that (1.18)
is rewritten as

Y _ ) ) e arg(—u y(arg(—u e
W—M<m> (7" (arg(—ug, 1)) + Y(arg(—ug, 1))) mg'

The profile function of the self-similar solution of this equation satisfies the
ordinary differential equation (1.15) with a of the form

(_p7 1) 1

V7 Ve

Therefore we see that a(p) = 0 for all p € [¢—, ¢"] if and only if ¥/(0) +5(0) =0
for all # € [arg(—q,1),arg(—q™",1)]. The latter condition on ~ leads the corner
point of Wulff() at which the slope of each tangent line is in [¢~,¢"]. This
agrees with the corner of our profile function shown in Figure 2.

a(p) = 2M < > (7" (arg(—p, 1)) + y(arg(—p, 1)))
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Let us explain why the equation (1.5) (or (1.4)) and the boundary condi-
tion (1.6) appear in Mullins’ model. The exponential term in (1.4) comes from
the Gibbs-Thompson formula in physics. This formula asserts that the vapor
pressure p in equilibrium with the surface is given as

log <p> = —Cik, (1.19)
Po

where pg is the atmospheric pressure and C is a positive constant. Now, recall

that the only mechanism operative in the transport of matter is evaporation-

condensation. Thereby the normal velocity V,, is determined by the difference

between the effect by condensation and that by evaporation. According to kinetic

theory their effects are in proportion to pressures py and p, respectively, and thus

Vo = Ca(po — p) (1.20)

with Cy > 0. It is now clear that (1.19) and (1.20) lead the equation (1.4) by
letting Cp = Capg. The prescribed angle condition (1.6) is a consequence of equi-
librium of tensions. More precisely, the resultant of the grain boundary tension
(0, —7) € R? and two surface tensions (4, cos®,vssinf) € R? is assumed to
vanish at (0,u(0,t)), where 7, > 0 and ~s > 0 are, respectively, the boundary
free energy and the surface free energy per unit area and 6 is the slope angle of
u at x = 0. Thus we have 2v;sin § = 3, which implies (1.6).

In [43] Mullins proposes another mechanism for the development of surface
groove, which is surface diffusion. If we take the surface diffusion into account,
the resulting equation describing the surface profile becomes a fourth order non-
linear parabolic equation. In this paper, however, we do not discuss such effect
by surface diffusion so that only second order equations appear in our study. As
a result, we are able to apply the viscosity solution theory ([16]) to study the
problem. Mullins gives a criterion for judging which mechanism dominates the
development of surface. According to [43] for magnesium under high pressure
the profile is completely shaped by evaporation-condensation after a very short
time while surface diffusion plays a dominant role for a very long time for gold
under low pressure. See, e.g., [11, 32, 42, 58] for the studies of fourth order
equations related to the surface diffusion.

We next state previous work related to our study. Many authors investigate
asymptotic behaviors of solutions to curvature flow type equations. We first
refer the reader to [26], where surfaces evolving by the mean curvature over
a domain in R™ are studied under the zero Neumann boundary condition. It
is shown that the solution converges to a constant function as t — oco. In [2]
Altschuler and Wu study Cauchy problems for quasilinear equations of the form
ur = (a(ugz))z on {0 < & < d} x[0,00). They prove that solutions of the problem
asymptotically converge to a solution which moves at a constant speed. The
same authors obtain in [3] a similar convergence result for surfaces over a convex
domain in R?, but they deal with only the curvature flow equation.

Asymptotic behaviors of graph solutions to free boundary problems are also
studied in the literature. The paper [13] treats a quasilinear parabolic equation
uy = (a(ug)), under a two point free boundary condition. (The same problem

7



restricted to the equation (1.8) can be found in [15].) In [13] two half-lines are
given radially from the origin and solutions are required to have intersections
with them, which are the free boundary points, at prescribed contact angles.
A global existence and uniqueness of solutions to the parabolic problem are
established. A convergence result to a self-similar solution is deduced together
with its convergence rate in the sense of the Hausdorff metric. The parabolic
equation in [13] is not allowed to be degenerate, but our results concerning a
well-posedness and the asymptotic behavior include degenerate cases. A similar
setting to [13] is found in [39], where a one-point free boundary problem is
considered. The paper [13] deals with expanding interfaces while the preserving
case and the shrinking case for the same problem are discussed in [24].

For graphs defined on a whole space, their convergence results to a self-similar
solution are obtained in [20, 31]. The paper [20] studies mean curvature evo-
lutions written as graphs over R™. Under a suitable rescaling the convergence
result is obtained for initial data satisfying a linear growth condition and further
assumptions. Ishimura, the author of [31], considers the spatially one dimen-
sional equation (1.8) in R x (0,00) with prescribed opening angle conditions;
that is, v, — Ky as * — oo and v, — —K9 as x — —oo for given constants
K, Ky > 0.

Curvature flow equations with constant driving force

Ut _ Vg
Vito: /1402

and asymptotic convergences to traveling fronts are studied in several works.
In [17] the authors consider (1.21) for (z,t) € (0,00) x (0,00) with the zero
Neumann condition at * = 0 and the opening angle condition at x = co. It
is shown that the solution v converges to a traveling wave solution as t — oo
when c is positive, while for a negative ¢ convergence to a self-similar solution is
proven in the sense that t~!|v(z,t) — tQ(x/t)| — 0 as t — oo, where tQ(z/t) is
a solution of (1.21). The explicit form of @ is also found in [17]. Note that the
way of rescaling is different from ours. The papers [48, 45] studies asymptotics
of solutions to (1.21) on R x (0, 00) when c is positive. Convergence results to a
traveling V-shaped solution are obtained for spatially decaying and non-decaying
initial perturbations in [48] and [45], respectively. For the explicit form of the
V-shaped front, see [47]. The reader is also referred to [44] for convergence to a
traveling line.

The paper [46] is related to the Mullins’ second approximation (1.9) and
asymptotic stability of constant solutions. There it is shown that

s+ (1.21)

51611[; lv(z,t) —w(z, t)| = O(1/Vt) ast — oo, (1.22)

where v and w are, respectively, the solution of the Cauchy problem for (1.8) and
(1.10) in R x (0, 00) with the same initial data. Moreover, using the results, the
authors of [46] obtain a necessary and sufficient condition on initial data that
ensures u — 0 uniformly or pointwisely as ¢ — oco. In our Neumann problem
on the half space, however, a similar convergence result to (1.22) does not hold
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since

sup |v(z,t) —w(x,t)| =Vt sup |[V(€) —W(€)] = oo ast— oo
z€[0,00) £€[0,00)

for two different self-similar solutions v and w of the forms v(z,t) = vtV (x/\/)
and w(x,t) = VW (z/V/1).

Asymptotic shapes of expanding interfaces represented by a level set function
are obtained in [29]. There the evolution equation V,, = —tr(E(n)Dn) + v(n)
on I'; is considered, and it is shown that I';/t — OWulff(v) as ¢ — oo in the
Hausdorff metric. We remark that the limit is not the Wulff shape of the surface
energy density in this work. To prove this large time asymptotics the authors
study the limit of rescaled viscosity solutions of second order parabolic equations,
and consider the corresponding stationary equations which the limit function
satisfies. The result says that if u is a viscosity subsolution (resp. supersolution)
of Oyu+ 1 (Vu, Vu) + Fy(Vu) = 0, then the (relaxed) limit of u(tz,t) as t — oo
is a viscosity subsolution (resp. supersolution) of —(x, Vu) + F5(Vu) = 0. Note
that this limit equation is first order while the second order equation (1.15),
which V in (1.12) should satisfy, appears in our study.

Motion by curvature with triple junctions such as the point (0,u(0,?)) in
Mullins’ model is studied in [14]. There a planar domain surrounded by other
phase domains is considered, and at each junction point three intersection an-
gles are assumed to satisfy the Herring condition which is determined by inter-
facial energies. The authors of [14] give conditions for existence of self-similar
stationary, expanding or shrinking solutions to the problem. Plane curves hav-
ing the triple junction are also treated in [57], where the authors study evolv-
ing three curves by curvature forming 120 degree angles at their common start
point. The authors of [57] derive several properties of solutions to (1.15) with
a(p) = 1/(1 + p?) and prove the unique existence of self-similar expanding solu-
tions. As a study of expanding self-similar solutions we finally refer the reader
to [21] for evolution by a crystalline curvature flow.

A generalized Mullins’ model is proposed in [56, 49]. The author of [56] con-
siders the model including a strain energy. In [49] Ogasawara studies evaporation-
condensation model under a temperature gradient and proves an existence of sta-
tionary solutions to the resulting parabolic equation of the form w; = F'(u, Uy, gy ).
See also [50] for flattening properties of solutions to the generalized problem.
Such flattening properties are also studied in [33, 37, 34, 38] for equations of the
type (1.8) and in [35, 36] for those of the type (1.5).

Interestingly, an exact representation of the solution to (1.8) with v,(0,¢) = S
and v(z,0) = 0 is obtained by Broadbridge in [10]. However, we do not employ
the formula in the present paper since generalization of the problem is one of our
aims and the formula is rather complicated to handle. In [5] the authors obtain
upper and lower bounds on the solution to (1.15) of the Mullins’ case by solving
two auxiliary problems which are relatively easily solvable and employing the
comparison principle. They conclude accurate estimates of the depth when S is
large, but an estimate allowing /5 to be small such as (1.17) is not stated in [5].
See Remark 5.3 for comparison with our results concerning the depth. The paper
[52] gives exact solutions to wider classes of nonlinear equations, but solutions
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to (1.8) constructed there do not satisfy the prescribed angle condition (1.6).
In [53, 12] exact solutions of the separated form ¢(z) + v (t) are investigated.
We also refer [1] for solvablity of the equation (1.8) on I x (0,00), where I is
a bounded interval. Under the zero Dirichlet or Neumann boundary condition,
the authors of [1] establish the existence of weak, strong and classical solutions
and asymptotic behaviors of the classical solutions. The paper [40] shows the
existence of classical solutions to more general degenerate parabolic equations.

A well-posedness of the problem (NP) is established in the sense of viscosity
solutions in Section 2. We thus interpret the boundary condition (1.3) in the
viscosity sense, that is, we require solutions to satisfy either (1.1) or (1.3) on
the boundary. As a result, we observe that the unique solution may not satisfy
(1.3) in the classical sense when the equation is degenerate (Proposition 4.6 (1)).
Such generalized boundary conditions, which naturally appear when we take the
limit in the vanishing viscosity method, was first introduced by Lions in [41]; see
also [51]. The well-posedness is obtained in [41] for first order equations with
Neumann or oblique conditions involving applications to optimal control, differ-
ential games and ergodic problems. After their works, uniqueness and existence
results for oblique boundary problems in the viscosity sense were established in
[9] for first order cases and in [28, 27, 6] for second order cases. In [18, 19] the
authors approach oblique problems on domains involving corners. All of these
studies treat continuous equations while equations with singularity in Vu like
the mean curvature flow equation for level sets are discussed in [23, 54] under
the zero Neumann boundary condition. As relatively general results for second
order singular equations with nonlinear boundary conditions, we refer the reader
to [7, 30]. Compared with [30], the paper [7] deals with more general equations
and boundary conditions, but domains are more restrictive.

Unfortunately, all the above results treat a bounded domain with respect to
the space variables. As far as the author know, [55] is the only paper which proves
a well-posedness of the Neumann type problems on an unbounded domain. In
[55] Sato established comparison and existence results for second order singular
equations under the capillary boundary condition:

Opu=Ek|Vu| with —1<k<1,

which does not cover our boundary condition (1.3). Although it might be possible
to extend the previous results for bounded domains to our problem (NP) by
modifying their proofs suitably, we give in the present paper complete proofs of
comparison and existence theorem for (NP) to make the paper self-contained.
Neumann problems in half-space type domains are also treated in [4, 8|, where
the authors studies ergodic problems and homogenization.

This chapter is organized as follows. In Section 2 we establish comparison
and existence results of viscosity solutions to (NP). Section 3 is devoted to the
asymptotic profile. We prove (1.13), i.e., asymptotic self-similarity of the solu-
tion to the equation of the type (1.5). In Section 4 we consider the ordinary
differential equation (1.15) and its solution. We show the solution has a corner if
the equation is degenerate. Section 5 concerns the depth of the thermal groove
at the origin. Several estimates for the depth including (1.17) are obtained.
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2 A well-posedness of Neumann problems

2.1 Definition of solutions

Throughout this chapter we set Q := {(z1,...,z,) € R" | 21 > 0}. We first
introduce a notion of viscosity solutions for (NP). The boundary condition (1.3)
is interpreted in the (weak) viscosity sense. Our basic assumption on F' is

(FO) F: R™ x S™ — R is continuous and degenerate elliptic.

Here S™ denotes the space of real n x n symmetric matrices with the usual
ordering, i.e., X <Y if (X¢,&) < (YE,€) for all £ € R™. We say F is degenerate
elliptic if F(p,X) £ F(p,Y) for all p € R" and X,Y € S" with X <Y

Definition 2.1 (Viscosity solution). We say u : Q x [0,00) — R is a viscosity
subsolution (resp. supersolution) of (NP) if u is bounded from above (resp.
below) on Q2 x [0,T) for every T' > 0, u*(+,0) < ug (resp. u«(-,0) = up) on §2 and

Ord(x,t) — F(Vo(x,t), Vi¢(x,t)) <0 (resp. =0) if 1 >0,
Oz, t) — F(Ve(x,t), V2(w,t)) 0 (resp. = 0) (2.1)
or ff— 0y ¢(x,t) <0 (resp. = 0) ifzy =0

whenever u* — ¢ (resp. us — ¢) attains its maximum (resp. minimum) at (x,t)
for ¢ € C*L(Q x [0,00)). If u is both a viscosity sub- and supersolution, u is
said to be a wviscosity solution.

Here by a C%! function we mean that derivatives 0;¢, V¢ and V2¢ are
continuous. If u* < oo (resp. ux > —o0) on Q x [0,00) and u satisfies (2.1), u
is said to be a viscosity subsolution (resp. supersolution) of (1.1) and (1.3). In
the definition above, u* and w, stand for an upper and lower semicontimuous
envelope of u respectively. Namely,

u*(x,t) = %i_rf(l)sup{u(y,s) | (y,8) € A x[0,00), |z —1y|+|t—s| <},
Uy (z,t) = %ig(l)inf{u(y,s) | (y,8) € A x[0,00), |z —1y|+|t—s| <5}

As a boundary condition we consider not 9, ¢(z,t)—8 = 0 but f—0,, ¢(z,t) =
0 so that consistency between a classical subsolution (resp. supersolution) and
a viscosity subsolution (resp. supersolution) holds.

Proposition 2.2 (Consistency). Assume (F0). Let u € C**(Q x (0,00)) and
assume that

{ ou(z,t) < F(Vu(z,t), Vau(z,t))  if 21 >0, (2.2)

B — Ogu(x,t) £0 if x1=0. (2.3)

Then w is a viscosity subsolution of (1.1) and (1.3).

Proof. Take any ¢ € C%1(Q x (0,00)) such that u — ¢ attains its maximum
at (z,t) € Q x (0,00). In the case where x1 > 0, the inequality 0;¢(z,t) <
F(Vo(x,t), V2¢(z,t)) follows from (2.2) and the degenerate ellipticity of F'.
If 1 = 0, we see at once that J,,¢(z,t) = Oy u(z,t), and consequently 5 —
Op,d(z,t) <0 by (2.3). O
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It is known that for a general boundary condition B(x,u(x), Vu(z)) = 0 the
consistency holds if a map A — B(z,r,p — Av(z)) is nonincreasing on [0, 00),
where v(x) is the unit outward normal vector at a boundary point x. We refer
the reader to [16, Proposition 7.2] or [22, Proposition 2.3.3] for more details.

Example 2.3. We consider the heat equation
Opu(z,t) = AAu(x,t), (2.4)

ie, F(p,X)=A-tr(X) with A > 0, where tr(X) denotes the trace of X € S".
Then the unique solution of (NP; F,0), which is also given by Mullins in [43], is

w(z,t) = hg a(w1,t) = —28VAL - ierfc (&) . (2.5)

Here ierfc(z) is the integral error function

ierfc(m):/ erfc(z)dz,

and erfc(z) is the error function

2 R
erfc(z) = — e “dz.
e /x

We now differentiate h = hg 4 to obtain
A x1 > By < 71 >
O¢h(z1,t) = — B4/ — - ierfc — — -erfc ,
(1, 1) b t <2\/At 2t 2V At

xr _B —x
azlh(.f]_,t) = /8 - erfc <2\/iﬂ> s 8I1x1h(x17t) == \/ﬁe %/(4At)

Employing the formula

. I e

ierfc(§) 4 & - erfe(§) = ﬁe
with & = 1 /(2V/At), we observe that h indeed solves (2.4) in the classical sense.
Thus h is also a viscosity solution of (NP; F,0) by Proposition 2.2. By the
formula (2.5) or the derivatives of h we notice that h(-,?) is negative, increasing
and (strictly) concave on [0, 00). It turns out that these properties still hold for
viscosity solutions of more general equations; see Proposition 4.3.

Example 2.4. We seck viscosity sub- and supersolutions of (NP; F,0) which
have the form of (2.5). Assume (F0) and

(F1) F(p,X) = AF(p,X/\) for all (p, X) € R" x S™ and A > 0.

We simply say F' is homogeneous if F satisfies (F1). For v = 0 we set

m(y) = jin {=F(0yer, =L} M(y) = max {=F(0yer, =h)} - (26)
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where e; = (1,0,...,0) and I; ; denotes the matrix with 1 in the (1,1) entry
and 0 elsewhere. We then notice that m(vy) = 0 since F' is degenerate elliptic
by (FO0) and satisfies F(p,O) = 0 for all p € R™ by (F1), where O is the zero
matrix. For the function h = h, 4 given as (2.5) we observe

F(Vh,V?h) = F(Oy,h-e1,0p0,h-T11) = —0p o h - F(Op,h -1, —11 1)

{g m(7) - Opyorh = (m(7)/A) - O4h,
= M) - Opyarh = (M(7)/A) - 9.

Taking account of the boundary condition (1.3), we conclude that h, 4 is a
viscosity subsolution of (NP;F,0) if v = 8 and A = M(y) while hy 4 is a
viscosity supersolution of (NP; F,0) if 0 <y < S and 0 < A < m(y).

2.2 Comparison principle

We show uniqueness of viscosity solutions to (NP) via comparison principle.
Define Up :=Q x Q x [0,T) for T > 0.

Theorem 2.5 (Comparison principle). Assume (F0). Let w and v be, respec-
tively, a viscosity subsolution and a viscosity supersolution of (NP). Then

K = Ku,o] i= lim sup{u”(,8) = v,(y,1) | (2,9,8) € Up, |o—y| <0} 0

for every T > 0. In particular, u* < v, on Q x [0, 00).

In the proof of Theorem 2.5 we use an auxiliary function F : Up — RU{—o00}
of the form
F(z,y,t) = u*(z,t) — vi(y,t) — U(z,y,t)

with
|z y|? . S 2 2
U(z,y,t) = = + Bler —y1) + 8{p(ar) + ply)} + (el + [y°) + 77—
Here «,v,8,e € (0,1) are constants and p is given by p(r) = (1 +7)~!. Note
that p/(0) = —1. It then follows from an elementary calculation that for all
(:U>y7t) € UT

B — 0y V(z,y,t) 26 ifxg =0, (2.7)
B4 0y, W(w,y,t) S —5 iy =0 (2.8)

and

1701 —I

lim V¢, ¥(z,y,t) =— 2.9
(%6)32070) (z,y) (xaya ) c (_I I ) ) ( )

where [ is the identity matrix with dimension n.

Lemma 2.6. Assume the same hypotheses of Theorem 2.5. Let T > 0 and
suppose K = Ku,v] > 0. Then,
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(1) F attains a mazimum on Ur at some (&,7,t) witht < T.
(2) There exists a constant n € (0,1] such that

max F > K’ (2.10)
Ur

for all a,7y,6 € (0,n), where K' := K/7.
(3) Sup, s5ee(o,m) 12 — 9 < 00 and lim.— sup, se (0. [£ — 9| = 0.
(4) lim(y 50,0 (v2,79) = (0,0) for all e € (0,n).
(5) There exists a constant ny € (0,7) such that t > 0 for all v,d,¢ € (0,m0).

Proof. (1) This follows from an upper semicontinuity of F and the facts that
F(x,y,T) = —oco and F — —o0 as |z| = oo or |y| — oo.
(2) By the definition of K there exists some 6y > 0 such that for all 6 € (0, 6]

u* (g, tg) — vi(yp, tg) > 6K’ (2.11)
holds for some (xg,yg, tg) € Ur with |xg — yg| < 6. Take
6 = min {90, V2Ke, K’/B} .
By this choice we have

|29 — yol?

5 <K', B(zer —ye) < K. (2.12)
€

We next choose € (0, 1] as
n= min {L K//Q, K/(‘:UGP + ‘y9’2 + 1)_17 K/(T - tH)} 5

and then for a,v,d € (0,7)

(07

<K' 2.13
T—tg — ( )

i{p(zor) + plyo2)} =K', y(|zol® + lyol?) = K,

Thus (2.11)~(2.13) yield (2.10).
(3) Take M > 0 so that u* — v, £ M on Ur. By (2.10) we have

D)
. . . T — L
K<t (@d) — o0 - 0.0 < - 200 4 ga g
Thus by an elementary calculation

|& — 9] < ef + V€282 +2eM,

which implies our assertions.
(4) By (2.10) again we see

K'< M+ Bl& — 9] — (12> + [9]%).
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Therefore sup., sc (0., V(%> + [9]*) < oo, and so

y(I21+131) < V2y V(22 +1312) = 0 as (7,8) = (0,0).

(5) Suppose by contradiction that there were some sequence {(¢;,d7,77)}32;
which satisfies lim;_o0(¢5,65,7;) = (0,0,0) and = #(g},0;,7;) = 0. Then

F({i‘,:{)ﬂ?) = U*(JA},O) - v*(?)70) - ql(j7g)70) < UO(i‘) - UO(yA) - /B(‘%l - yl)v

and the right hand side converges to 0 as j — oo by (3) and the uniform conti-
nuity of ug. This is a contradiction to (2.10). O

Proof of Theorem 2.5. By virtue of (3) in Lemma 2.6 we may assume

lm (z—9)=p
(%5)—>(070)( )
for some p € R™ by taking a subsequence if necessary. We now apply the
Crandall-Ishii lemma ([16, Theorem 8.3]) to F. Since (2.7) and (2.8) hold, there
exists (X,Y) € 8™ x 8" such that

and
1 X 0 )
— [ - < <
<€+|Ay>l_<0 Y)_A+5A. (2.15)

Here A := V2 U(2,9,t) and |A] := sup{|(A&,&)| | € € R", |¢] = 1}. Note that

. T —1
Vol (e,g.8) = = + {8+ 00 (@) }er + 272,

~

T—y

—{B=0p'(In)}er + 299,

In view of (2.9) and (2.15) we may assume that (X,Y) converges to some
(X,Y)eS" xS as (y,0) — (0,0). Then the limit (X,Y) satisfies

X O\_3(1 -I
O Y)=ec\~-1I 1)
and in particular X +Y < O. Letting (v,d) — (0,0) in (2.14), we have

2 <F (13 —I—Bel,X) _F (g +ﬁ61,—17) .
T2 € €
This is a contradiction since F' is degenerate elliptic. O

Corollary 2.7 (Uniqueness). Assume (F0). Then (NP) admits at most one
viscosity solution, and the solution is continuous on §2 X [0, 00).
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Proof. Tf u and v are two viscosity solutions of (NP), we have u* < v, and v* < u,
on ) x [0,00) by Theorem 2.5. These inequalities imply our assertions. O

Corollary 2.8 (Contraction property). Assume (F0). Let ugi,up2 € BUC ().
Let up and ug be, respectively, a viscosity solution of (NP; F,ugp1) and that of
(NP; F,ug2). Then we have SUDG  [0,00) [u1 — ug| < supg |uor — uo2|.

Proof. Let d = supg |up1 — uoz2|- Then it is easily seen that ug + d is a viscosity
solution of (NP; F,ugy + d). Since ugy < gz + d on €, Theorem 2.5 gives
up < ug +d on Q x [0,00). In the same manner we obtain us < uj; + d on
Q x [0,00). O

2.3 Existence result

We prove the existence of viscosity solutions by Perron’s method ([16, Section
4]). An important step is to construct a lower and upper barrier, which are a
viscosity sub- and supersolution of (NP) satisfying the given initial data. We
first prepare stability results for viscosity solutions. For the proofs we refer the
reader to [16, Lemma 4.2, Lemma 6.1] or [22, Lemma 2.4.1, Theorem 2.3.5].

Proposition 2.9 (Stability). Assume (FO0).

(1) Let S be a nonempty subset of
{v | v is a viscosity subsolution of (1.1) and (1.3)}.

Let u(w,t) := sup,eg v(x,t). If u* < 0o on Q x [0,00), then u is a viscosity
subsolution of (1.1) and (1.3)

(2) Assume that F* satisfies (FO), and let u® be a a viscosity subsolution of
(1.1) with F = F¢ and (1.3) for each ¢ > 0. If F = limsup;_,F* on
R" x S™ and u := limsup}_,yu® < 0o on Q x [0,00), then U is a viscosity
subsolution of (1.1) and (1.3).

To apply Perron’s method we need only (1) while (2) plays an important role
in Section 3, where we discuss a local uniform convergence of solutions. We recall
a notion of relaxed limits appearing in (2). For a subset L € R" and functions
he: L — R with € > 0 we define an upper relazed limit h = lim sup} 10 h® (resp.

lower relaxed limit h = liminf.. o h¥) : L — R U {£oo} as

h(z) := limsup h®(y) =lmsup{h®(y) |y € L, l[y—z <4, 0 <e <4}
(e:)=(0,2) e

(resp. h(z) ;== liminf A°(y) =lminf{h*(y) |y € L, |y — 2| <J, 0 <e < d}).
(ey)—(0,2) 510

If h = h in L, then h® converges to h := h = h locally uniformly in L as € — 0.

Proposition 2.10 (Barriers). Assume (F0). Then (NP) has a viscosity subsolu-
tion w™ and a viscosity supersolution wt such that w™(z,t) < ugp(x) < wt(z,t)
for all (z,t) € Q x [0,00) and ug(z) = w*(z,0) = Lim(, 1) (20 wt(z,t) for all
€.
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Proof. We give the proof only for a subsolution since a similar argument applies
for a supersolution.

1. Let w(r) = supj,_y <, [uo(z) — uo(y)| and f(r) = r —arctanr. Then for
each € > 0 there exists Cy(g) > 0 such that w(r) < e+ Cy(e)f(r) for all » = 0.
Set C(e) := max{4Cy(e), 4Cp(e)/B, 1} = 1. Since f(r+s) < 4{f(r)+ f(s)} for

r,s = 0, we see that

w(lz —yl) < e+ BCE) f(lz1 —m1]) + Ce)f (I = ¢/]) (2.16)

for all z = (x1,2") € R" and y = (y1,3') € R". We also remark that f € C?(R),
F(0)= f/(0) = f(0)=0,0< f'<Land 0 < f” < 1/2 in R.
2. For e € (0,1) and y € Q we define

(o) = ) — £ = 0 fllor = ) = €S (a' — /) - .

where M = M (e,y) > 0 is a large constant. Then v, € C%1(Q x [0,00)) and
2y (2, 1) < up(z) on Q x [0,00) from (2.16). By the boundedness of f" and f”
we see that |V,v.,| and [VZv, | are also bounded on 2 x [0,00). We thus have

—M < F(Vgvey(x,t), V?Ev&y(x, t))

for sufficiently large M. We also compute

BC(e)
f'(y1)

and therefore v, is a viscosity subsolution of (1.1) and (1.3) by Proposition 2.2.
Consequently Proposition 2.9 (2) ensures that the supremum of v,

{=f'(y)} =B,

Bxlvs,y(x’ t) |x1=0 = -

w (z,t) = sup{ve y(z,t) | € € (0,1), y € N}

is also a viscosity subsolution of (1.1) and (1.3). By definition w™ is lower
semicontinuous and satisfies w™(z,t) < ug(z) on Q x [0,00). In particular w™ is
bounded from above.

3. We next show w~(z,0) = ug(x) for all x € Q. We see w™(x,0) =
Vez(2,0) = uo(x) — e if € Q, and so w™(x,0) = up(x) holds. Let z € 09Q.
Taking y = (y1, '), we then have

~ BC(e)
f'(y1)

Letting y1 — 0 first and then € — 0, we obtain w™(z,0) = ug(x).
4. Since w™ is lower semicontinuous, for all x € §2

w™ (2,0) = vey(2,0) = up(z) —¢

fy).

up(z) =w (2,0) £ liminf w (z,¢) £ limsup w™ (z,t)
(z,t)—(2,0) (2,t)—(x,0)

< limsup up(z) = ug(z).
(2,t)—(z,0)

Hence lim, 4y (y,0)w™ (2,t) = ug(z). We thus conclude that w™ satisfies the
required properties. ]
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Remark 2.11. By the same way as in Step 3 we obtain a more general estimate
that w™(z,t) = ug(z) — Mt for all (z,t) € Q x [0,00). This implies that w™ is
bounded from below on Q x [0,7) for every T > 0. Similarly, we are able to
construct wT in Proposition 2.10 such that it is bounded from above on Q x [0, T)
for every T > 0.

Theorem 2.12 (Existence by Perron’s method). Assume (F0). Then (NP)
admits at least one viscosity solution.

sz{v

where w™ and w™ are functions in Proposition 2.10. Since w~ € S, the set S
is nonempty. We demonstrate that u(z) := sup,cs v(x) is a viscosity solution of
(NP). By definition we have w™ < u < w* on Q x [0,00). We then notice that
u*(+,0) = ux(-,0) = up on Q and that u is bounded on Q x [0, T) for all T' > 0 by
Remark 2.11. Proposition 2.9 (1) ensures that u is a subsolution of (NP). We also
see that u is a viscosity supersolution of (NP) since u is a maximal subsolution
in the sense that u(xg,tg) < v(xo,to) for some v € S and (2, o) € Q x (0, 00) if
u were not a supersolution. See [22, Lemma 2.4.2] for more details. O

Proof. Let

v is a viscosity subsolution of (NP)
such that w™ < v < wt on Q x [0,00) [’

3 Asymptotic behavior

To study the asymptotic behavior self-similar solutions of (NP) play an impor-
tant role in our study.

Definition 3.1. Let u : Q x [0,00) — R.

1) We define a rescaled function wu(yy of u as uy(z,t) = u(Az, \2t)/\ for
(N M)
A > 0.

(2) We say u is self-similar if u = u(y) for all A > 0, or equivalently u(z,t) =
tU(x/+/t) tor some U :|0,00) = R. We ca a profile function of u.
VU (x /1) f U:|[0 R. We call U file f ' f

Note that, if u is self-similar, the profile function U of u is represented by
U(z) = u(z,1). We next introduce a notion of asymptotic homogeneity. We
consider G : R™ x S™ — R such that G is not necessarily homogeneous but it
approximates some homogeneous F' in a suitable sense. To state the rigorous
meaning of the approximation we define

65, X) =36 (5.5 )

for A > 0. We say G is asymptotically homogeneous if G satisfies the following;:
(F2) G converges to some F' : R" x S" — R as A — oo locally uniformly in

R™ x S™.
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We call F' in (F2) the limit of G. We also remark that the limit F' satisfies
(FO) and (F1) whenever G satisfies (FO) and (F2). Thus the limit F' is always
homogeneous. The function G(p, X) = /1 + p2(1 —e~*) with k = X//1 + p23,
which represents (1.5) in Mullins’ case, is indeed asymptotically homogeneous
with the limit F(p, X) = X/(1 + p?) corresponding to (1.8). This follows from
the fact that fy(z) := A(1—e~*/*) — z converges to 0 as A — oo locally uniformly
in R.

Remark 3.2. If u is a viscosity solution of (NP; G, ug), then the rescaled function
u(y is a viscosity solution of (NP; G, (ug)(y)), where

> =

(uo) ) () = Tuo(Az).
Indeed, noting that

Orueyy(z,t) = ANpu(A, A2t),
Vupy(z,t) = Vu(Az, A1),  VZuo(z,t) = AVu(Az, A*t),

we compute
1
Oru(y) (z,t) = A\G(Vu(Az, )\Qt),VQU(/\a:,)\Qt)) = \G <Vu(>\) (z,t), XVQU(A) (a:,t))

and
8ﬂflu(x\) (JJ, t) = 811U(ACL', )‘Zt) - B

if u is a classical solution. In the case where u is not smooth, taking elements of
semijets, we see that uy) solves (NP; G, (uo)(y)) in the viscosity sense. We also
remark that if G is homogeneous, then uy solves (NP; G, (uo)(y))-

We prove that the unique solution of the homogeneous equation with the zero
initial data is always self-similar. Several properties of the self-similar solution
are also discussed.

Proposition 3.3 (Self-similar solution). Assume (F0) and (F1). Let u be the
unique viscosity solution of (NP; F,0). Then

(1) w is self-similar.

(2) <0 0nQx[0,00). If F(O,—I11) <0, then u <0 on 2 x [0, 00).
(3) w(x,t) = u(x1,0,...,0,t) for all (z,t) € Q x [0, 00).

(4) limy, o0 u(x,t) =0 for all t = 0.

Proof. By Remark 3.2 we see that uy is a viscosity solution of (NP; F,0) for
every A > 0. Applying Theorem 2.5, we obtain u = w(yy. This implies (1).
Combining Example 2.4 with Theorem 2.5, we observe that hg g < u <
hgms) on € x [0,00), where h is the function in (2.5) and m(8), M(B) are
defined as (2.6). Thus the first assertion in (2) and (4) hold. If F/(0,—1;1) <0,
then we have m(y) < 0 for sufficiently small v € (0,3]. Then a supersolution
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Py () is negative on Q x [0, 00), so that u is also negative. We finally prove (3).
For a € R" ! we set wy(x,t) := u(x1,2’ — a,t), where 2’ = (29, ...,7,). Then
it is easy to see that w, is also a viscosity solution of (NP; F,0) since F' and the
initial-boundary conditions do not depend on z’. By the uniqueness we obtain
u = wg. In particular, for fixed (z,t) € Q x [0,00) we have u(x,t) = wy(z,t) =
u(x1,0,...,0,t). O

Our main result on asymptotic convergence is

Theorem 3.4 (Asymptotic behavior). Assume that G satisfies (F0) and (F2)
with the limit F'. Let u and v be, respectively, the unique viscosity solution of
(NP; G,uo) and that of (NP; F,0). Then u(y) converges to v as A\ — oo locally
uniformly on Q x [0, 00).

By Theorem 3.4 we see that u, (z,1) converges to v(x,1) as t — oo uni-

formly on every compact subset of Q. This implies that (1.12) holds locally
uniformly with respect to x € Q.

As is pointed out in Remark 3.2, the rescaled function uy) is a solution of
(NP; Gy, (u0)(x))- Since the local uniform convergence of G\ to F' is assumed,
in view of Proposition 2.9 (2) the relaxed limits @ and u of u(y) becomes a sub-
and supersolution of (NP; F,0), respectively, provided that the limits exist. To
guarantee the existence of the relaxed limits we construct suitable barriers of
(NP; G,ug) whose rescaled families are locally uniformly bounded. Recalling
Remark 2.11, we have rough estimates for u that ug(x) — Mt < u(x,t) < ugp(z)+
Mt. Then ug(Az)/X — MAt < uy(7,t) < ug(Az)/A + MAt, but this does not
yields that u and w are real-valued. We construct the barriers so that they have
the order O(v/t) as t — co.

Lemma 3.5. (1) Assume that g : [0,00) — R satisfies
gt £ M(VE+1) on[0,00) (3.1)

for some M > 0. Set gy (t) = g(\2t) /A, g = liminfi\ 0 g1y and g :=
limsup}_,o gy Then we have —M /'t < g(t) < g(t) < M/t on [0,00).

(2) Assume that G satisfies (FO) and (F2). Then there exists My > 0 such
that

p(t) == sup
01o]<1

0'1171 %
G<05@1, ﬁ)‘é\/i (3.2)

for allt = 1. Moreover

satisfies (3.1) with M = 2M.

Obviously, the estimate (3.2) holds if G is homogeneous. For a general G,
roughly speaking, (3.2) still holds since G is approximately homogeneous.
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Proof. (1) Fix tg = 0. Let § > 0 and take t = 0, A > 0 such that |t — to] < 0,
A =1/5. We then observe

lgony ()] = %Ig(mﬂ < %M(m—k )=M <\/i+ i) < M(V/to+6+96).

Thus, sending 0 — 0 gives —M /Ty < g(to) < G(to) < M/to.
(2) The second assertion is obvious if (3.2) holds. For ¢ > 1 we observe

Vip(t) £ sup
6]lo]<1

ViG (eﬁel, ”j;) — F(0fer,olr1)

The first term of the right hand side converges to 0 as t — oo by assumption
while the second term is a constant independent of ¢. Therefore (3.2) follows. [

+ sup |F(0Be1,0l11)].
16],]o|<1

Proof of Theorem 3.4. Let w~ and w™ be barriers constructed in the proof of
Eroposition 2.10. Then there exists Ci> 0 such that —-C < w~ < wt < C on
2 x [0,2] by Remark 2.11. Define ® : Q x [0,00) — R as

O(x,t) := —C + h(x1,t) — g(1).

Here h and g are the functions given by (2.5) and (3.3), respectively. We choose
A= %/min (2.5) so that 0 < 9,,h < B and —1/v/t < 0y, h < 0 in Q x (0, 00).
By the definition of g, we then find that ® and —® are, respectively, a viscosity
subsolution and a viscosity supersolution of

opu(z,t) = G(Vu(z,t), Vu(x,t)) (3.4)
in Q x (1,00) and (1.3). Indeed, the boundary condition is easy to check, and

for (z,t) € Q x (1,00) we compute

0®(x,t) £ —¢g'(t) = — sup
0],]o|<1

G <0Bel, Uf};) ’ < G(VD(z,1), V2B (x, 1)).

Here we have used the facts that ;2 < 0,0 < 0,,h < S and —1/\/72 < Oy h £ 0.
A similar argument yields that —® is a supersolution. Since ® < w~ < wt < -
on Q x [0,2], we see that @~ := max{w™, ®} and " := min{w™, —®} are,
respectively, a viscosity subsolution and a viscosity supersolution of (3.4) in
Q) x (0,00) and (1.3). Noting that (w~)*(x,0) = ug(z) = (W")«(z,0) on Q, we
see by Theorem 2.5 that (07)* < u < (@07), in Q x [0,00). In particular, we
have ®(y) < u(y) £ —®(y). Taking liminf.\ ,o and limsup)_, ., we obtain

h(z1,t) —g(t) < u(x,t) < u(x,t) < —h(z,t) +g(t) in Q x [0,00),

where u := liminf,\ oo u(y) and (@,g) := limsup} . (u(r),g¢r)). Therefore
Lemma 3.5 implies that u and u are bounded on Q x [0, T) for every T > 0 and
that u(z,0) = u(x,0) = 0 on Q.

Now, since u(y) is a viscosity solution of (NP; Gy, (ug)(y)) for every A > 0,
Proposition 2.9 (2) and (F2) imply that @ and u are, respectively, a viscosity
subsolution and a viscosity supersolution of (NP; ', 0). By Theorem 2.5 we have
u < wuin Q x [0,00), and therefore @ = u = v since v is now the unique solution
of (NP; F,0). As a result, u(y) converges to v locally uniformly in Q x [0, 00). [
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Remark 3.6. 1f G is homogeneous in Theorem 3.4, i.e., G = F, then uy) converges
to v uniformly on € x [0,00). Indeed, since uy) solves (NP;F, (ug)(y)), the
contraction property (Corollary 2.8) ensures

1
sup |uexy — v < sup |(uo)(n) — 0] = 5 sup |ug].
Q% [0,00) Q Q

We thus obtain the uniform convergence of () together with its convergence
rate.

Remark 3.7. We derive a sufficient condition for (F2). Let G : R" x S" - R
and consider a linear approximation of G such as (1.7). Suppose that G is of
the form G(p, X) = H(p, f(p, X)) with some continuous and homogeneous f.
We expand H as H(p,z) = z - 9.H(p,0) + z - r(p, z), where we have assumed
H(p,0) =0. Then

26 (5. 5) = M (530030 ) = 10 X000+, X07 (5310 X) )

Thus G satisfies (F2) with the limit F(p, X) = f(p, X)-0.H(p,0) if the reminder
term 7(p, z/A) converges to zero as A\ — oo locally uniformly with respect to
(p,z). This setting includes Mullins’ problem, which corresponds to the case

where H(p, X) = /14 p?(1 —e?) and f(p,X) = X//1 —|—p23.

4 Profile functions

In this section we study the profile function of the unique self-similar solution to
(NP; F,0) with a homogeneous F'. Our main interest is the configuration of its
graph, especially the corner of the graph when F(p, X) is allowed to be 0 even
if X #0.

We first derive the ordinary differential equation which the profile function
should solve. Assume (F0) and (F1). Let v be a viscosity solution of (NP; £, 0).
According to Proposition 3.3 (3), v(z,t) is independent of (xo,...,z,). Thus we
hereafter assume n = 1 so that u and F are, respectively, defined on R x [0, c0)
and R x R. We let V' : [0,00) — R be the profile function of v, i.e.,

V(z) =v(x,1). (4.1)

Since v is self-similar, we have

(@, t) = Vv <jz 1) = ViV <x> . (4.2)

We now differentiate v to find
1 T T T
0, H=—VI=)-=V'[=),
wied =52V () -5 ()
1 T
dyv(a,t) = V' m) Bpuv(z, t :V”<)
v(x,t) <\/E v(x,t) - N
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provided that v is smooth. Substituting these derivatives for (1.1), we have

it () -7 ()t =7 (v () ()
Multiplying the both sides by 21/t and letting ¢ = x/+/t, we are led to
V(&) = EVI(§) = 2F(V'(€),V"(§)).

Here we have used (F1). We consider this equation with the boundary condition
at £ =0 and & = oo

V(§) —&VI(§) =2F(V'(£),V"(€))  in (0,00), (4.3)

(FODE){ V'(0) =58>0, (4.4)
Jim V(&) =0. (4.5)

To impose (4.5) is natural in terms of Proposition 3.3 (4). Since F' is now defined
on R x R and satisfies (F1), we notice that F' is written as

Fpx)_ [FRUX X =0
)= 2R, —1)x X <0,

Thus the right hand side of (4.3) is linear with respect to V" (&) as long as the
sign of V”(£) does not change. By (F0) we also find that F(p,1) and —F(p, —1)
are nonnegative continuous functions of p.

We say a function V : [0,00) — R is a classical solution of (FODE) if
V € C?(0,00)NC0,00) and V satisfies (4.3)-(4.5). Here we define V/(0) as the
right derivative:

V'(0) := lim Vie) = V(o).
€10 §

A wiscosity subsolution of (FODE) is a function V' : [0,00) — R such that V is
bounded from above on [0, 00), V* satisfies (4.5) and

V(€) — &p < 2F(p, X) if € >0,
V*(0) S2F(p,X) or f—p<0 ifE=0

for all (p, X) € J>TV*(&) with € = 0. The definitions of a viscosity supersolution
and a viscosity solution of (FODE) are similar so are omitted. The set of all
second order superjets and subjets of V at & on [0, 00) are denoted by J>TV(¢)
and J2~V (&), respectively. Namely,

V() = {(
PV = {(

Remark 4.1. Assume (F0) and (F1). Although (4.3) was derived under the
assumption that v is smooth, the consistency between (NP; F,0) and (FODE)
holds in the viscosity sense as well.

(€),9"(€)) | ¢ € C?[0,00) and V — ¢ attains its maximum at £},

¢'(8),
¢ (&), 8"(€)) | ¢ € C?0,00) and V — ¢ attains its minimum at £}.
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e (Consistency) If V is a viscosity subsolution of (FODE), then v given as
(4.2) is a viscosity subsolution of (NP; F,0). Conversely, if v is a viscosity
subsolution of (NP; F,0), then V given as (4.1) is a viscosity subsolution
of (FODE). Similar statements hold for supersolutions.

Due to this consistency we have the comparison and existence of viscosity solu-
tions to (FODE). These assertions follow from the results for the time-dependent
case in Section 2.

e (Comparison principle) If U and V' are, respectively, a viscosity subsolution
and supersolution of (FODE), then U* < V, on [0, c0).

o (Existence) There exists a continuous viscosity solution of (FODE).

Example 4.2. Let us consider the linearized equation

V(&) —¢V'(§) =BV"(§) in (0,00), (4.6)

(LODE) { (4.4), (4.5)

with B > 0. This equation corresponds to the case that 2F(p,1) = —2F(p,—1) =
B for all p € R in (FODE). Choosing A = B/2 in (2.5), we see that the unique
classical solution of (LODE) is

Hg 5(€) := —BV2B -ierfc ( (4.7)

75)

Note that the derivatives of Hg p up to the second order are

H (6 = 3-erte (=) Hyn(©) = By 2528y

In the rest of this section we consider the problem of the form

V(§) = V() = a(VI()V"(€)  in (0,00),(4.9)

(ODE) = (ODE; a, 8) { ). (45)

with nonnegative a € C(R). Although (ODE) is a special case of (FODE), it
turns out that the both problems are equivalent; see Remark 4.8. Our basic
assumption on a is

(Al) ae C(R), a=0in R and a(0) > 0.

Recall that Mullins’ equation (1.8) corresponds to (ODE) with a(p) = 2/(1+p?).
We list fundamental properties of a viscosity solution to (ODE).

Proposition 4.3. Assume (Al). Let V be the unique viscosity solution of
(ODE). Let (p, X) € J>~V (&) with & > 0. Then

(1) V<0 on[0,00).
(2) V is increasing on [0,00), i.e, V(&) < V(&) if 0 £ & < &.

(3) p>0and X <O0.
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(4) V is strictly concave on [0,00), i.e., V((1 — N)&1 + X&) > (1 — ANV (&) +
AV (&) for all X € (0,1) and &1,&2 € [0,00) with & < &.

(5) a(p) > 0.

Proof. (1) This is a consequence of the second assertion of Proposition 3.3 (2).

(2) We suppose that 0 > V(&) = V(&) with & < &. In view of (4.5) we
then have ming, o) V = V(1) < 0 for some 7 € (£1,00). Thus (0,0) € J>~V (1),
so that V(n) —n-0 = a(0) -0 = 0 since V is a supersolution. However, this is
contract to (1).

(3) (5) The monotonicity of V' yields that p = 0. We then notice that a(p)
must be positive and that X must be negative since 0 > V(§) —&p = a(p)X. We
show that p > 0 after the proof of (4).

(4) We suppose that V((1 — A& + A2) < (1 — NV (&) + AV (&) for some
A€ (0,1) and &, & € [0,00) with & < &. We now take the parabola ¢ € C?(R)
which passes through three points (£1, V(£1)),((1=A)&1+ A, V(1 =A)&1+AE2))
and (£2,V(£2)). Then ¢ is a nonnegative constant ¢ and ming, ¢,)(V — ¢) =
(V — ¢)(n) for some n € (&1,&2). Thus (¢'(n),c) € J>~V(n), which contradicts
(3) since ¢ = 0.

(3) Let &1,& > 0 with & < & < &. Since V is concave and increasing, we

observe that
V(€)= V(&) | V(&) — V()
§o — &1 - & —%
We next take ¢ € C?(0,00) such that ming ) (V — @) = (V — ¢)(&) and
(p, X) = (¢'(€0), ¢"(§0)). Then
¢(&) — o(&1) | V(&) — V(§1)_
-6 —  &—&

Combining the two inequalities above and letting &1 1 &, we obtain p > 0. [

> 0.

Remark 4.4. Since V' is concave on [0,00), we see by Aleksandrov’s theorem
([16, Theorem A.2]) that V is twice differentiable almost everywhere on [0, c0).
Namely, J2+HV(€)NJ%~V(€) is nonempty a.e. £ € [0,00). Accordingly, V solves
(4.9) almost everywhere in the classical sense.

Remark 4.5. Although the viscosity solution V' in Proposition 4.3 may not be
differentiable, we are able to deduce several properties of its one-side derivatives
mainly from the strict concavity of V. We define the right derivative V! of V'
and the left derivative V/ of V' as follows:

V(&) = élfgé V(fg:;(éo) for & € [0, 00),
Vi (&) = élTIgé V(fg:go(fo) for & € (0, 00).

Under the same hypotheses of Proposition 4.3 these limits indeed exist and enjoy
the following properties.

(a) (One-side continuity) V;/(&) = limg ¢, V;/(€) for all §, € [0, c0) and V}/ (&) =
limgqe, V;(€) for all § € (0, 00).
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(b) (Monotonicity) 8 = V(&) > V/(&) = V(&) > V/(&3) > 0if 0 < & <
§2 < &3.

(c) (Limit as & = 00) limg_y00 V//(§) = limgoo V}/(§) = 0. (If the limit were
positive, V(£) would not converge to zero as £ — 00.)

If V is a classical solution, it is obvious that the range of V’ on [0, 00) is (0, 8]. In
Corollary 4.12 we will determine the range of V' and V}/ when V' is not necessarily
a classical solution.

We discuss the angle V’(0) at the origin for a viscosity solution V' of (ODE).

Proposition 4.6 (Angle at the origin). Assume (Al). Let V be the unique
viscosity solution of (ODE).

(1) We have

inf{q € (0,8] | a=0 on [q,B]} ifa(B)=0.
(2) Let 81 > B and Vy be the unique viscosity solution of (ODE;a, f1). Ifa =0
on |8, B1], then V. =V1 on [0,00).

Proof. (1) 1. We first prove that V/(0) exists and 0 < V’(0) < 3. Since V is
strictly concave, we see that (V(£) — V(0))/€ is increasing as £ | 0. Thus V’/(0)
exists and V'(0) € (0,00] by the monotonicity of V. Suppose V'(0) > 5. Then
(p,0) € J2~V(0) for every p € (8,V'(0)); however, V(0) —0-p < a(p) - 0 and
B8 —p < 0. This is a contradiction.

2. We next show that V'(0) = ¢~. Suppose 0 < V'(0) < ¢~. Then, by the
definition of ¢~ there exists some p € (V/(0), /) such that a(p) > 0. We let
(&) = —c€2 4 p&€ + V(0) for ¢ > 0. Since ¢(0) = V(0) and ¢'(0) = p, it follows
that (p, —2c) € J>TV(0). We thus have V(0) — 0-p < a(p) - (—2¢), which is a
contradiction for large ¢ > 0.

3. If ¢= = B, the proof has already been completed. Let ¢~ < 8 and suppose
that ¢— < V/(0) < B. Since V/(§) — V'(0) as £ | 0, we see that ¢~ <V < 8

n [0,¢] for some small € > 0. We now take (p, X) € J> V(&) N J>~V (&)
with & € (0,¢); see Remark 4.4 for the existence of such &. Then p = V/(&).
However, we reach a contradiction that 0 > V(&) — & - p = a(p)X = 0 since
¢ <p<p.

(2) If we prove that V is a viscosity solution of (ODE;a, 31), the conclusion
follows. We only need to consider the boundary condition. Evidently, V is
a supersolution of (ODE;a, 1) since 51 —p = 8 —p = 0 whenever (p, X) €
J37V(0); see Remark 4.7. We next take (p, X) € J>TV(0) and let p < Si;
otherwise 51 —p < 0 holds. In (1) we have shown V’'(0) = inf{q € (0,5] | a =
0 on [gq,]}. Since V'(0) < p < 81, we now have a(p) = 0 and therefore V(0) —
0-p<0=a(pX. O

Remark 4.7. Since 0 < V/(0) < 8 by (1) above, we always have § —p = 0 if
(p,X) € J>~V(0) for a viscosity solution V. Indeed, if V — ¢ has its minimum
at the origin, then ¢'(0) < V/(0) < .
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Remark 4.8. Let F : R x R — R satisfy (F0), (F1) and F(0,—1) < 0. It
is not difficult to see that, if we replace a(p) by —2F(p, —1), the assertions in
Proposition 4.3 and 4.6 still hold for a viscosity solution of the general problem
(FODE). We thus find that (FODE) and (ODE) are equivalent in the following
sense.

(i) If V is a viscosity solution of (FODE) with F' satisfying (F0), (F1) and
F(0,—1) < 0, then V is also a viscosity solution of (ODE) with a(p) =

(ii) If V is a viscosity solution of (ODE) with a satisfying (A1), then V is also
a viscosity solution of (FODE) with F(p,X) = a(p)X/2 if X £ 0, and
F(p,X) = b(p)X for some nonnegative b € C(R) if X = 0.

Indeed, when V is concave, we have 2F(p, X) = a(p)X for (p,X) € J>~V(¢)
with € > 0. We next let (p, X) € J>TV(¢) with € = 0. If X < 0, then
2F(p, X) = a(p)X. If X > 0, we see (p,0) € J>TV(£) by concavity. Since
a(p) -0 £ a(p)X and 2F(p,0) < 2F(p, X ), we finally conclude (i) and (ii). (It
is easy to check the boundary condition by virtue of Remark 4.7.) Also, similar
assertions to (i) and (ii) hold for classical solutions.

We next establish a unique existence result of classical solutions to (ODE).
Recalling the property (5) in Proposition 4.3, we see that there is no classical
solution of (ODE) if a(8y) = 0 for some fy € (0, 5). We thus need the positivity
of a for the existence. Conversely, it turns out that a viscosity solution of (ODE),
for which we have already known the unique existence, is actually a classical
solution of (ODE) if a is positive.

Proposition 4.9 (C2-regularity of viscosity solutions). Assume (A1). Let V be
the unique viscosity solution of (ODE). If a > 0 on [0, 3], then V is a classical
solution of (ODE).

Proof. 1. By virtue of Proposition 4.6 (1) the boundary condition (4.4) is now
fulfilled. Since V; is right continuous, the condition V € C'[0,00) is satisfied if
we prove V € C*(0,00). In the rest of the proof we show V € C?(0,1) for every
[>0.

2. Let
V(0) ifr £V(0),
v(r)y:=<r if V(0)<r<pg,

B ifg<r

and

b(p) := max{a(p), ms} with mg= qgfoi%] a(q).
Then we observe that V' also satisfies
YW (E)) — EY(W'(€)) = b(W'(€))W"(€) in (0,1) (4.10)

in the viscosity sense because V(0) < V < 0 and 0 < p < 3 for every p €
JETV(E) U JETV(€) with € € (0,1); recall Proposition 4.3 (1), (2) and Remark
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4.5 (b). We now solve the ordinary differential equation (4.10) with the boundary
condition

W(0)=V(0) and W(l)= V(). (4.11)

According to [25, Theorem XII.4.2] there exists U € C2(0,1) N C[0,1] which
satisfies (4.10) and (4.11) in the classical sense. The reason why we introduced
(4.10) is to guarantee that

Y(r) — E(p)
b(p)

is continuous and bounded on [0,1] x (—o00,00) X (—00, o), which is assumed in
[25, Theorem XII.4.2].

3. We assert that V(0) < U < 0 on [0,{]. If U(p) > 0 at a maximum
point n € (0,1) of U, noting that U’'(n) = 0 and U"(n) < 0, we would reach a
contradiction that

P(U ) = mp(U'(n) >0 = b(U'(n)U" (n).

Thus U £ 0. A similar argument yields V' (0) < U.
4. By Step 3 we find that U satisfies

W(&) = E(W'(€)) = b(W'(£))W"(&) in (0,00) (4.12)

f(&rp) =

in the classical sense, and therefore in the viscosity sense. We now apply the
comparison principle for a viscosity subsolution and a viscosity supersolution of
(4.12). Such a comparison is ensured by [16, Theorem 3.3]; indeed, if we set
G(£7Tava) =Tr-—= 51/1(]9) - b(p)X, we have G(garvva) - G(&,S,p,X) 2r—s
for r 2 s and G(n,r, (€ — 1), Y) — G(&,r,a(é — 1), X) < alé —n|? for X LY.
We thus obtain V' = U on [0, ], which implies V' € C?(0,1). O

Approximating a viscosity solution by classical solutions, we prove that its
derivative takes the value p if a(p) > 0 and that the value of the derivative jumps
over p if a(p) = 0. In other words, the solution has a corner when the equation
is degenerate.

Theorem 4.10 (Corner of profile functions). Assume (Al). Let V be the unique
viscosity solution of (ODE). Let p € (0,0).

(1) Assume that a(p) > 0. Then there ezists a unique &, € (0,00) such that
V € C*(I) and V'(&,) = p for some open interval I with &, € I C (0,00).

(2) Assume that a(p) = 0. Let

q" :=sup{g e [p,f] | a=0 on[p,q]},
g =inf{g € (0,p] | a=0 on [g,p]}.

If ¢ < B, then there exists a unique &, € (0,00) such that V/(&p) = ¢
and V(&) = q~. If g7 = B, then we have V'(0) = ¢

98



Remark 4.11. If ¢~ = ¢* = p in (2), then V is differentiable at &, but not twice
differentiable at &, since a(p) = 0. See Proposition 4.3 (5).

Proof. The uniqueness assertions in (1) and (2) follow from the monotonicities of
V; and V/, which are ensured by Remark 4.5 (b). If a > 0 on [0, 3], the assertion
in (1) is obvious since V is bijection from [0, 00) to (0, 5]; recall Remark 4.5 (b),
(c) and Proposition 4.6 (1). Also, when ¢* = /3 in (2), we have already proved
V’(0) = ¢~ in Proposition 4.6 (1).

(1) 1. Set as(q) = max{a(q), 0} for § € (0,a(0)]. Owing to the positivity
of as the unique solution Vs of (ODE;as, 8) is smooth. Since as converges to a
uniformly, we see that Vs converges to V as § — 0 locally uniformly on [0, c0)
by stability (Proposition 2.9 (2)).

2. Take € > 0 small so that [p—e,p+¢] C (0,5) and a >0on [p—e,p+¢].
Since Vj is a classical solution of (ODE;ag, ) with a positive ag, there exist
55_7775’{;_ < (0700) such that 55_ < 7ns < ‘53_ and (Vg(gé_)7v§/(775>7vg(£;_)) =
(p+e,p,p—e) for each 6 > 0. Then we observe

&
(- o)t < /O VI()de = V3(E5) — V3(0) < —V3(0).

Since V;(0)(0) < V5(0) by the comparison principle, we obtain f; < —Va0)(0)/(p—
¢). Therefore we may assume that (5,7, §;) — (£7,7,€T) as 6 — 0 by taking

a subsequence if necessary.
3. We show that —M < V{ <0 on [¢, &) for some M > 0 independent of
d. Take ¢ > 0 such that c < a on [p —e,p + €]|. Then, for £ € [fg,ﬁgr] we have

b VRO — VLS Vay(0) — & (p )
O=" e = -

Since {&; }s is bounded by Step 2, we conclude that Vi’ = —M for some M > 0.
4. We next claim that £~ < 7 < 7. In fact, we compute

ns

e = Vi(ns) - Vi(&5) = / V(€)= —M(ns — &),

&
which implies that £~ < 7. The same argument yields that 7 < £*.

5. Choose 6 > 0 small so that J := [ — 0,7 + 0] C (§7,£7). We then have
—M £ V§" <0 on J for sufficiently small §. Thus the Ascoli-Arzela theorem
ensures that Vj converges to some U € C(J) as 6 — 0 uniformly on J by taking
a subsequence. In particular, we have U(7) = lims_o Vy(ns) = p. Since Vo
converges to V pointwise, we learn that V € C'(77 — 0,7 + 6) and V' = U.
Consequently V'(77) = p.

6. We are able to show the C?-regularity of V' in the same way as in the proof
of Proposition 4.9. Let I = (a,b) := (7—0/2,7+60/2). Since V € C(7—0,7+6),
for every ¢ € I and (p, X) € J>TV (&) U J>~V(€) we have V/(a) = p = V'(b)
and a(p) = m for some m > 0. Thus V solves

(W (E) — E(W'(€)) = b(W'())W"(§) in I (4.13)
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in the viscosity sense. Here v(r) and b(p) are suitable modification of functions
r and a(p) respectively; see the proof of Proposition 4.9. Then V must agree
with a classical solution of (4.13) with the boundary condition W (a) = V(a) and
W (b) = V(b). Hence V € C*(I).

(2) 1. Let ¢t < . By the definitions of ¢~ and ¢* there exist sequences
{g;, }n and {qg}, such that 0 < ¢, < ¢~ < q" < g < B, alg,) >0, a(g) >
0, g, Tq asn — oo and ¢ | ¢" as n — oo. Then we see by (1) that
(V(&),V'(&D) = (an . qF) for some &, & € (0,00) such that 0 < &F < &F ) <
&1 < &, - By this monotonicity we let limp, oo (&, ,&F) = (£7,£7), and then
we have

V/(EY) = lim V(&) = lim V(&) = ¢",

16+
V(€)= lim V/(§) = lim V/(&,) =q".
£J/§7 n—oo

2. It remains to prove that 5_“‘7 = £~. Suppose that £t < £-. We take
(po, X) € J2~V (no) with ng € (£€,£7); recall Remark 4.4. We then have

po < Vi(mo) £ V(&) =an and po=V/(mo) 2 V/ (&) = -

Sending n — oo yields that ¢~ < py < ¢™, and hence a(pg) = 0. This is contrary
to Proposition 4.3 (5). O

We are now in a position to determine the range of V! and V. Define

R(VY) :={V/(€) | £ 2 0}, R(V/) := {V/(§) | £ > 0} and

there exists {gn}72; C (0, p] such that
a(qn) > 0 and ¢, — p asn — oo ’

{a>mﬂ={pemﬂ1

there exists {¢n}7>; C [p, 5) such that
a(q,) > 0 and ¢, — p asn — oo ’

{a>m5={pemﬂ>

Corollary 4.12 (Range of derivatives). Assume (Al). Let V be the unique
viscosity solution of (ODE). Then we have R(V!) = {a >0} and R(V/) =

{a > 0}1.

Proof. The inclusion R(V/) D {a > 0} follows immediately from Theorem 4.10
(1) and (2). Let p € R(V}), that is p = V;/(§) for some £ = 0. Evidently, we
have p € {a >0} if a(p) > 0. We let a(p) = 0. When 8 = ¢* := sup{q €
[p,8] | a=0on [p,q]}, Proposition 4.6 implies V'(0) = ¢~ :=inf{q € (0,p] | a =
0 on [g,p]}. By definition ¢— < p. Since we also have ¢— = V! on [0,00) by
monotonicity, it follows that p = ¢~ € {a > O}T. In the case where 8 > ¢T,
by Theorem 4.10 (2) we have V/(&,) = ¢ and V//(§,) = ¢~ for some &, > 0.
Since V(&) = ¢ < p = V/(€), we see &, = £. If & > &, we would reach a
contradiction that V(&) > V/(&) = ¢7 = p = V/(§). Thus £ = &, and then
p = ¢ . This means p € {a > 0} . We have thus proved R(V/) = {a > 0} . A

similar argument yields R(V}) = {a > O}Z. O
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5 Depth of the thermal groove

We investigate the depth of the thermal groove. For a viscosity solution V' of
(ODE) we define

d(B) == —V(0). (5.1)

This is the depth of the corresponding self-similar solution v in (4.2) at the origin
when ¢ = 1. Similarly, for the classical solution W of the linearized equation
(LODE) with B = a(0) > 0 we define

L(B) :=-W(0) =5 : (5.2)

where the second equality is due to (4.7) since W = Hpg 4(g)-

Theorem 5.1 (Depth of the groove). Assume (Al). Assume furthermore that
a(p) £ a(0) for all p > 0. Let V and W be, respectively, the unique viscosity
solution of (ODE) and that of (LODE) with B = a(0). Define d and L as in
(5.1) and (5.2). Then

(1) 0<d <L in(0,00).

(2) d is nondecreasing in (0,00).

(3) e1(B) == By/(2ming g a)/m < d(B) for all B> 0.

(4)
L(B) — d(B) :
0 § T é C <CL(O) —I{})l}lﬁt}la)
with C = /2/(ma(0)) for all B > 0. In particular, limgo(L(5)—d(B))/B =
0.

(5) If a is nonincreasing on [0,00), then Ad(B) < d(AB) for all A € [0,1] and
5> 0.

(6) e2(8) ==/ [ alp)pdp < d(B) for all § > 0.
(7) Ifa(p) = ¢/(1+p?) on [M,00) for some ¢, M > 0, then limg_,o d(3) = oco.

The estimate in (4) yields (1.14), which asserts that the depth of the lin-
earized problem is the third order approximation in Mullins’ case, i.e, a(p) =
2/(1 4+ p?). The main tool for the proof of (1)—(5) is the comparison principle
while we calculate integrals to show (6) and (7).

Proof. (1) Fix g > 0. By Proposition 4.3 (1) the depth d(f) is positive. We
next observe that W — EW' = a(0)W” < a(W")W” on (0,00) since W/ = 0 and
W"” < 0. This inequality means that W is a subsolution of (ODE). We thus find
by the comparison principle that W <V on [0, 00), and hence d(5) < L(f).
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Figure 3: The assertions in Theorem 5.1 on the depth d(f).

(2) Take 31, 82 > 0 with 51 < (3. Let V; and V3 be, respectively, the unique
viscosity solution of (ODE;a, 81) and that of (ODE;a, B2). It is then easily seen
that V7 is a supersolution of (ODE;a, 32), and so V5 < V; on [0,00) by the
comparison principle. As a result we see that d(51) < d(52).

(3) Fix 8 > 0 and take By > 0 such that mingga = a(fp). Clearly the
claim holds if a(8p) = 0. In the case where a(fp) > 0 we consider the linearized
equation (LODE) with B = a(fy). Then the unique classical solution is

U(€) = Hpg () (&) = =B/ 2a(Bo) - ierfc ( f(ﬁ ))
0

Since 0 £ U’ < B and U” £ 0, we observe that U — U’ = a(Bp)U” = a(U")U” on
(0,00). Thus U is a supersolution of (ODE;a, 8). We now apply the comparison
principle to obtain V' < U on [0,00). In particular, we have

a(B) 2 U (0) = 1/ 220

(4) Tt follows from (3) that

2
0< L(B) Sﬁ\/ B4/ mmoﬁ]aé(}’ﬁ( mlﬁr]la)
0

The second assertion in (4) is now obvious.

(5) Fix 8 > 0 and A € (0,1). Let V) be the unique viscosity solution
of (ODE;a,AB). Set V = AV. We now claim that V is a supersolution of
(ODE;a,\3). Let (p,X) € J>V(€), ie., (p/\X/\) € J>V(€). If £ = 0,
we derive f — (p/A) = 0 from Remark 4.7. This means \§ —p = 0. If
¢ > 0, noting that p 2 0, X < 0 and V() — € (p/A) = a(p/A\)X/A, we have
V(€)= €p=alp/N)X = a(p)X since a is monotone. We thus conclude that V is
a supersolution of (ODE; a, \3). Hence Vy < V on [0, 00), and so d(A3) = \d(B).

(6) 1. We first let @ > 0 on [0,00). Then V is a classical solution of (ODE)
by Proposition 4.9. We multiply the both sides of (4.9) by V’(¢) and integrate
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over [0,n]. We then have
hi= [ - v = [ve - o] + [ evrevieds
— (V) —mﬂmn«m—wvm»2+[faﬂ@n«@@

from the left hand side while the right hand side becomes

B
b= ["a(vi@)v© Ve - / p@——/(ﬁ@Mn
"(n
where we have used the change of variables that p = V/(£). Since V<0, V' 20
and V" <0, we see that I} = —{V(0)}? = —{d(B)}?. Thus

B
{ﬂmﬁg—hz—bz/ o(p)pdp.

V'(n)

Letting n — oo and recalling Remark 4.5 (c), we obtain the estimate in (6).

2. If a is not necessarily positive, we set as(p) := max{a(p), o} for § > 0.
Then Step 1 yields fo as(p)pdp < {V5(0)}2, where Vj is the unique classical
solution of (ODE;as, ). Letting 6 — 0 gives the desired conclusion since
V5(0) — V(0) by the stability; recall the argument in Stepl in the proof of
Theorem 4.10 (1).

(7) For = M we observe that

A p 1+
2 _ S cp . _c .
{e2(B)} /O a(p)pdp = /M T3 dp=glogm

Thus (6) yields the claim. O

Remark 5.2. (1) We have actually derived several estimates not only at the
origin but also on the whole [0, c0). In particular, by the proof of (1) and
(3) we notice

0= V(&) —W(E)

. £ : §
<p {\/m - lerfe < 2a(0)) - Vo) et <Mﬁo)> }

for all £ € [0, 00), where 5y > 0 is chosen so that a(fp) = min g a.

(2) By virtue of Proposition 4.6 (2) we see that limg_,o, d(f) # oo if a = 0
on [M, ) for some M > 0. Namely, the depth does not necessarily go to
infinity.

Remark 5.3. In [5] the authors gives upper and lower bounds on the solution V' of
(ODE) with a(p) = 1/2(1+4p?). There two auxiliary (ODE) with a;(p) = 1/(1+
p)? and as(p) = 1/2(1 + p)? are considered, and the exact solution V; of (ODE;
a1, 3) and Vo of (ODE; ag, B) are given in the implicit forms. Since a; = a = aq,
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employing the comparison theorem, the authors conclude V; £ V < V5, and in
particular they derive the estimate at the origin of the form

210 (1) 2 a(9) 2 \/10g (352) +3 -5 =10

The both sides of the above inequality are of order O(y/log ) as f — oco. Our
result (6) also gives a lower bound on d(/3), which is

B
() 2 \/ | smye = | gloe(1 + 5% = 9.

The right hand side l3(8) is of order O(y/log ), the same order as in [5]; however,
by a direct calculation we see limg_, o (11(8) —l2(8)) = oo. Thus our estimate (6)
in Theorem 5.1 is rough in this sense, but it is shown more simply and directly
by integration and is enough to prove d(5) — oo as f — oo in the Mullins’
example.
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Chapter 3

A discrete isoperimetric
inequality on lattices

1 Introduction

The classical isoperimetric inequality asserts that for any bounded £ C R"™ we
have
|OE|™ |0B1|"
= ;
|E|"—1 = |By|n T

(1.1)

where |E| and |0E| denote, respectively, the volume of E and the perimeter of
E, and B, := {z € R" | |z| < r} is a ball. This inequality says that among
all sets a ball is the best shape to minimize the ratio given as the left-hand side
of (1.1). Topics related to the classical isoperimetric problem or arguments on
its generalization can be found in the book [5] and the survey paper [22]. See
also the recent book [27] for connections with Sobolev inequalities and optimal
transport.

In this paper we are concerned with the case where F is a collection of
rectangular parallelepipeds with a common shape. To describe the situation
more precisely we first define a weighted lattice. For each i € {1,...,n} we fix a
positive constant h; > 0 as a step size in the direction of x;. Then the resulting
lattice is

hZ" := (h1Z) X oo X (hnZ) = {(hll‘l, ... ,hnazn) eR" ‘ (171,. . .,xn) € Zn}
Consider a subset £ C hZ™. We define Q, the closure of Q, as
Q:={r+ohie; |r€Q, ic{l,...,n}, o€ {-1,0,1}},

where {e;}_; C R" is the standard orthogonal basis of R", e.g., e; = (1,0,...,0).
Note that Q is not a closure in R™. We also set 9 := Q \ Q, the boundary of
Q. Given a bounded Q) C hZ™, we define the volume of 2 and the perimeter of
Q) as, respectively,

wmm:mX#m,mmn:mX< ﬁ)
i=1 "
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with
wi = wilQ =Y #({z £ hie;} N 0Q),
e
where h™ := hq X --- X h,, and #A stands for the number of elements of a set
A. The number w; counts the edges that are parallel to the x;-direction and are
connecting points of 2 with points of 9€). Our definitions of the volume and the
perimeter are natural in that if we let

for a given 2 C hZ", we then have Vol(Q2) = L"(E), the n-dimensional Lebesgue
measure of F, and Per(Q2) = H" 1 (0F), the (n — 1)-dimensional Hausdorff mea-
sure of OF (the boundary of F in R™). We say 2 C hZ" is connected if for
all z,y € Q there exist m € {1,2,...} and z1,...,2, € Q such that z, € {z},
Zer1 €4y (B=1,...,m—1) and y € {z,}.

We denote by Q, and Q,, respectively, the open and closed cube in R"
centered at 0 with side-length 2r > 0, i.e., Q, := (—r,7)" C R" and Q, :=
[—r, 7" € R™. Let Q,(a) := a + Q, for a € R". The volume and perimeter
of Q, are, respectively, |Q,| = (2r)" and |0Q,| = 2n(2r)"~!. We are now in a
position to state our main result.

Theorem 1.1 (Discrete isoperimetric inequality). For any nonempty, bounded
and connected 2 C hZ"™ we have
Per(Q)" S |0Q1|™
Vol(©)"=1 = |Qq[n~t

(1.3)

Moreover, the equality in (1.3) holds if and only if E[Q)] is a cube, i.e., E[)] =
Q. (a) for somer >0 and a € R™.

The isoperimetric constant for the cube is |0Q1|"/|Q1|"~! = (2n)". Although
(1.3) can be regarded as a “continuous” isoperimetric inequality if we identify
Q with E[Q] in (1.2), we call (1.3) a “discrete” isoperimetric inequality since
our approach to Theorem 1.1 uses numerical techniques which study functions
defined on the lattice hZ™. Note that our result is different from the classical one
in that the minimizer of the left-hand side of (1.3) is a cube. This is a consequence
of the constraint by square lattices; see Example 2.4. We also remark that the
equality in (1.3) does not necessarily hold; consider the two dimensional case
where hy = 1 and hy = V2.

Isoperimetric problems on discrete spaces are studied by many authors. The
paper [1] gives a survey, and in the recent book [13, Chaper 8] isoperimetric
problems are studied on graphs (networks). Various results including discrete
Sobolev inequalities on finite graphs are also found in [9]. Isoperimetric problems
concerning lattices are discussed in several previous works; however, their set-
tings and problems are different from ours. The authors of [2, 15] study planar
convex subsets and lattice points lying in them. In [4] isoperimetric inequalities
for lattice-periodic sets are derived. The reader is also referred to its related
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work [14, 3, 24]. Properties of planar subsets with constraint by a triangular
lattice are discussed in [11].

For the proof of our discrete isoperimetric inequality we employ the idea by
Cabré. As an application of the technique used in a proof of the Aleksandrov-
Bakelman-Pucci (ABP for short) maximum principle, Cabré pointed out in [8]
(and the original paper [7] in Catalan) that the ABP method gives a simple proof
of the classical isoperimetric inequality (1.1). The ABP maximum principle ([12,
Theorem 9.1], [6, Theorem 3.2]) is a pointwise estimate for solutions of elliptic
partial differential equations. In a typical case the principle asserts that if u is a
(sub)solution of the equation F(V?u) = f(x) in E C R", where F is a possibly
nonlinear elliptic operator and V2u denotes the Hessian of u, then we have

< C n(T)-
mEaxu_I%%XU‘i‘ 1fllz T

Here C' > 0, || fllznry = (Jp |f(2)|"dz)"/™ and T is an upper contact set of u
which is defined as the set of points in E where the graph of u has a tangent
plane that lies above u in E. Discrete versions of the ABP estimate are also
established in a series of studies by Kuo and Trudinger; see [16, 21] for linear
equations, [17] for nonlinear operators, [18, 20] for parabolic cases and [19, 20]
for general meshes.

Unfortunately, the result in [8] does not cover subsets having corners such as
(1.2) since domains E in [8] is assumed to be smooth in order to solve Neumann
problems on E. To be more precise, the author of [8] takes a function u which
solves the Poisson-Neumann problem

el l9BL
o |E| (1.4)
—=-1 on OF,

v

and proves (1.1) by studying the n-dimensional Lebesgue measure of Vu(I'), the
image of the upper contact set of u under the gradient of u. Here v is the outward
unit normal vector to JF. In this paper we solve a finite difference version of
(1.4) instead of the continuous equation. Considering such discrete equations
and their discrete solutions enables us to deal with non-smooth domains.

Our proof is similar to that in [8] except that the minimizers are not balls
but cubes and that a superdifferential of u, which is the set of all slopes of
hyperplanes touching u from above, is used instead of the gradient of u ([16]).
However, there are some extra difficulties in our case. One is a solvability of the
discrete Poisson-Neumann problem. Such problems are discussed in the previous
work [26, 23, 25, 28], but domains are restricted to rectangles [26, 23, 28] or their
collections [25]. For the proof of our discrete isoperimetric inequality, fortunately,
it is enough to require u to be a subsolution of the Poisson equation in (1.4) and to
satisfy the Neumann condition in (1.4) with some direction v. For this reason we
are able to construct such solutions on general subsets of hZ". Solutions of (1.4)
are not unique in our discrete case as well as the continuous case since adding a
constant gives another solution. Accordingly, the resulting coefficient matrix of
a linear system which corresponds to the discrete (1.4) is not invertible. Thus
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an existence of solutions to the problem will be established by determining the
kernel of the matrix. We will give a proof of this existence result separately from
that of the isoperimetric inequality to increase readability. Another difficulty is
to study a necessary and sufficient condition which leads to the equality in (1.3).
This is not discussed in [8].

This chapter is organized as follows. In Section 2 we give a proof of the
discrete isoperimetric inequality. Since we use a discrete solution of the Poisson-
Neumann problem in the proof, we show the existence of such solutions in Section
3. In Appendix we present two results on maximum principles; one is an ABP
maximum principle shown by a similar method to the isoperimetric inequality,
and the other is a strong maximum principle which is used in Section 3.

2 A proof of the discrete isoperimetric inequality
Throughout this chapter we always assume

Q C hZ" is nonempty, bounded and connected.

We first introduce a notion of superdifferentials and upper contact sets, and then
study their properties. Let u :  — R. We denote by 07 u(z) a superdifferential
of u on  at z € ), which is given as

Otu(z) == {pe R" | u(z) < (p,x — 2) +u(z), Yo € Q},

where (-,-) stands for the Euclidean inner product in R". It is easy to see that
O%u(z) is a closed set in R". We next define I'[u], an upper contact set of u on
Q, as

Du) :={z € Q| 0Tu(z) # 0}
={z € Q| Ip € R" such that u(z) < (p,z — 2) + u(z), Vo € Q}.

For z € Q and i € {1,...,n} we define discrete differential operators as follows:
Sru(z) = u(x + hie;) — U(ﬂf)’ S u(z) = _ulz — hie;) — u(m)’
% hz i hl
5 —0; i€i — h;e;) — 2
u(z) = % u(z) — 0; u(x) _ w(x + hie;) + u(gg2 hie;) U(LU)’
h; h?
- " u(zx + hje;) + ulz — hjej) "1
Aue) 1= 32 ) = 37 PRI IE IO {230 5 | ute)
j=1 J=1 J j=1 9

Lemma 2.1. Let u : @ — R. For all z € T'[u] we have §; u(z) < §; u(z) for
every i € {1,...,n} and

0T u(z) C [6]u(2), 67 u(2)] x -+ x [6Fu(2), 8, u(2)]. (2.1)
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Proof. Let p = (p1,...,pn) € 0T u(z). From the definition of the superdifferential
it follows that u(z) < (p,x — 2) + u(z) for all z € Q. In particular, taking
T =z £ he; € Q, we have

uw(z £ hie;) < (p, Lhie;) + u(z);

that is,
u(z + hie;) — u(z) < < ~u(z — hig;) — u(z)
hi hi
This implies 6;u(2) < §; u(z) and (2.1). O

Remark 2.2. Since 67 u(z) < 67 u(z) at 2z € I'[u] by Lemma 2.1, we see that
S2u(z) <0 foralli€ {1,...,n}.

In the proof of the classical isoperimetric inequality proposed by Cabré [7, 8],
solutions of the Poisson-Neumann problem (1.4) are studied, and actually the
proof still works for a subsolution w of (1.4), i.e., —Au < |0E|/|E| in E and
Ou/Ov = —1 on QF. Similarly to this classical case, for the proof of Theorem
1.1 we consider the discrete version of (1.4) on 2, which is

Per(Q)

—Au < in Q, (2.2)
(NP) , Vol(©2)
u

The meaning of solutions of (NP) is given as follows. We say u : & — R is a
discrete solution of (NP) if

(a) —A'u(x) < Per(Q)/Vol(Q2) for all x €

(b) For all z € 09 there exist some i € {1,...,n} and 0 € {—1,1} such that
x + oh;e; € Q) and
u(x) —u(z + ohie;)
hi N

The condition (b) requires that the outward normal derivative of u be —1 for
some direction v = +e;. This boundary condition is also explained by saying
that 6;fu(x) =1 or &; u(z) = —1 for all x € 9Q. We will prove the existence of
discrete solutions of (NP) in the next section (Proposition 3.2).

Proof of Theorem 1.1. 1. Let u : @ — R be a discrete solution of (NP) and let
I'[u] be the upper contact set of u on Q. We claim

Qi c |J oTula). (2.4)

z€l'[u]

Let p € Q;. We take a maximum point 2 € Q of u(z) — (p,z) over Q. To
show (2.4) it is enough to prove that & € €2 since we then have & € I'[u] and
p € 0Tu(#). Suppose by contradiction that & € 9Q. Take any i € {1,...,n}
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and o € {—1,1} such that y := & + oh;e; € Q. Since u(x) — (p, x) attains its
maximum at & and since p lies in the open cube )1, we compute

w@) —uly) o (p2) = (py) _ (P, —ohici) >

_ —Ips| > —1.
3 = 3 3 pi| >

This implies that u does not satisfy the boundary condition (2.3) at & € 01,
a contradiction. Therefore (2.4) follows. We also remark that (2.4) guarantees
I'[u] is nonempty.

2. By (2.4) we see

Q1| = L"(Q1) = L" ( U 0T u( ) < Z L7 (0T u(2)). (2.5)

z€l'u] z€I'u]
Also, for each z € I'lu] Lemma 2.1 implies
L0 u(=)) < L7167 u(), 67 u(2)] x -+ x [ u(2), 5y u(2)])
= (67 u(2) — 8 u(z)) x -+ x (6, u(2) — 6, u(z))
= W (=63u(z)) x --- x (=62u(z)). (2.6)

We next apply the arithmetic-geometric mean inequality to obtain

(—62u(z2)) x -+ x (=062u(2)) < <_5%“(Z) —1'1"—5%u(2))" _ (—A’u(z)>”

Consequently, combining (2.5)—(2.7) yields

Per(Q2)" Per(Q)"
Qils > hn( )> < 2 hnnnvo(l(s)z)n = nnVoliﬁin—r (2.8)

z€Il'[u] 2€Tu]

Since n = [0Q1]/|Q1], it follows that

Per(Q)”
Vol(Q)n—1 =

0Qu " 10Qq|"
Q1" |Qu[ 1

3. We next assume that the equality in (1.3) holds. In view of Step 2, we
then have I'[u] = Q by (2.8) and

=L" (U a+u(x)> , (2.9)
e

L(0%u(x)) = L([6] w(x), 67 u(z)] % -+ x [0, u(x), 5, u(x)]) for all z € Q,
(2.10)

Su(z) = = 62u(x) =: p(x) (£0) forall z € (2.11)

2 n"|Quf = Qi =

by (2.5), (2.6) and (2.7), respectively. Here we have derived (2.11) from the
equality case of the arithmetic-geometric mean inequality. We claim

O u(z) = [07 u(x), 07 w(@)] x - x [§ u(z), 6, u(z)] forallz e Q. (2.12)
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One inclusion is known by (2.1). Also, the both sets in (2.12) are closed and
have the same measure by (2.10). Thus they have to be the same set. For the
same reason it follows from (2.4) and (2.9) that

Qi = [ J 0 u(x). (2.13)
z€Q
4. Let z,y € Q be such that y = = + h;e; for some i € {1,...,n}. Then we
show u(x) = u(y) and

0T u(y) = 0T u(x) + hipoe; (2.14)

with po := p(z), where p(-) is the function in (2.11). Without loss of generality
we may assume x = 0, y = hije; and u(x) = 0. We then notice that u(y) =
h1d7u(0). Fix i € {2,...,n} and set p* := 5 u(0)er + 6 u(0)e;. Because of
(2.12) we see that p* belong to 9*u(0). Since x = 0 € T'[u], we observe that
u(z) < (p*,z) for all z € Q. In particular, letting z = hye; & hye;, we deduce
u(z) £ h167u(0) £ hidFu(0) = u(y) + hidFu(0), ie., & u(y) < §u(0) and
67 u(0) < §; u(y). Changing the role of z and y we also have &; u(y) = §; u(0)
and §; u(0) = §; u(y). Thus

§Fu(y) =6 u(0) and 6; u(0) = d; u(y) (2.15)

for all i € {2,...,n}. By (2.11) these equalities imply u(z) = p(y), and then
5Fu(y) are computed as

Sy u(y) = 07 u(x) = 07 w(@) + hapo, 6 u(y) = 67 u(y) + hipo = 67 (@) + hipo.

Namely, we have [67 u(y), 0] u(y)] = [67 u(z),d;u(x)] + hipo, which together
with (2.15) shows (2.14).

5. By translation we may let 0 € Q. Set R := [-h1/2,h1/2] x -+ X
[—hn/2,hn/2] and in view of (2.11) and (2.12) there exists z € R™ such that
Ot u(0) = 2+ pR with p := p(0). Since Q is now connected, as a consequence of
Step 4 we see u(z) = p and 0t u(z) = 01 u(0) + px = z + px + pR for all z € Q.
Therefore (2.13) implies

Qi = |J (z+ pz + uR).
e

Finally, from translation and rescaling it follows that
Q1/|“|(—Z//J) = U (z + R) = E[Q],
€]

which is the desired conclusion. O

Remark 2.3. If a nonempty and bounded subset ' C hZ" is not connected, then
we have the strict inequality
Per ()™ S |0Q1|™
VOI(Q’)”_l ‘Q1|n—1 ’

(2.16)
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This is shown by docking one connected component with another one. To be
more precise, translating two connected components 2; and €29, we are able to
construct one connected set whose volume is equal to that of 21 U9 and whose
perimeter is strictly less than that of 2; U{s. Iterating this procedure, we finally
obtain a connected set 2 such that Vol(©') = Vol(Q2) and Per(Q2') > Per(Q2).
These relations and Theorem 1.1 imply (2.16).

Example 2.4. In the planar case (n = 2) it is easily seen that round-shaped
subsets are not optimal. Let h; = hy = 1 for simplicity, and consider Q C Z?
which is nonempty, bounded and connected. We choose R = {a,a +1,...,a +
M—1}x{b,b+1,...,b4+N—1} C Z? as the minimal rectangle such that Q C R.
Obviously, Vol(2) < Vol(R) if Q # R. We next consider their perimeters. Since
) is connected, for each z € {a,a+1,...,a+ M —1} there exist (z,y_), (z,y4+) €
Q2 such that (z,y— — 1), (z,y+ + 1) & Q. This implies w;[Q}] = 2M = wi[R].
Similarly, we obtain w2[2] = 2N = ws[R], and therefore Per(Q) = Per(R). We
thus conclude that Per(2)2/Vol(Q) > Per(R)?/Vol(R), i.e., {2 is not optimal.
Moreover, we see that, among all rectangles R = {a,a 4+ 1,...,a + M — 1} x
{b;b+1,...,b+ N — 1}, a square is the best shape since

Per(R)*>  {2(M + N)}?
Vol(R) MN

M N
—4<N+M—i—2> >4(2+2)=16
by the arithmetic-geometric mean inequality. Therefore, in the planar case The-
orem 1.1 is easily shown. However, the above argument is not valid for n = 3
since the inequalities w;[Q?] = w;[R] do not necessarily hold.

On the contrary, if we define a volume and a perimeter of €} as #{) and
#(09), respectively, then a cube is not an optimal shape. This can be seen in
the following simple example. Let n = 2, h; = ho = 1 again and consider planar
subsets Q = {(z,y) € Z% | |z| £ 1, |y| <1} and Qp = {(z,y) € Z2 | |z| + |y| <
2}. We then have #0; = 9, #Qy = 13 and #(99Q1) = #(0Q2) = 12. Thus the
square € is not a minimizer of the functional (#(952))%/(#€). In the article
[10] the author asserts that if {2 has a minimal #0909, then  is roughly diamond-
shaped. The author of [10] also observes inequalities (#(952))%/(#€) > 8 for
the two dimensional case and (#(99))3/(#Q)? > 36 for the three dimensional
case without detailed argument. We do not discuss such problems concerning
the functional (#(992))"/(#Q)"! in the present paper.

3 An existence result for the Poisson-Neumann prob-
lem

We shall prove the solvability of (NP), the Poisson equation with the Neumann
boundary condition which appeared in the proof of the discrete isoperimetric
inequality. Before starting the proof, using a simple example, we explain how to
construct the solutions.

Example 3.1. Consider Q C hZ? which consists of three points Py, P and
P53 in the left lattice of Figure 1. We also denote by Si,...,.S7 all points on
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0Q as in the same figure. In order to determine values of v on Q we solve a
system of linear equations of the matrix form La = b which corresponds to the
finite difference equation (NP). However, if we require u to satisfy the Neumann
condition (2.3) at S; toward the both adjacent points P; and Ps, the linear
system may not be solvable since the number of the unknowns is less than that
of equations; in the present example they are 10 and 11, respectively. Thus we
are tempted to consider the Neumann condition toward either P; or Ps since we
are now allowed to relax (2.3) in this way by the meaning of solutions. Then the
number of equations decreases to 10, but, unfortunately, it becomes difficult to
study the linear system since the new matrix L is not symmetric. In addition,
we do not know a priori how to choose the adjacent point toward which the
Neumann condition is satisfied.

[e] o

S7 S?
o 51’2 o
151 Ps Se 5171T Ps Se
‘S, 2 P, °Ss ‘S, 2 P, °Ss
53 054 53 0S4

Figure 1: Q = {P;}?_, and 9Q = {S;}_,. We solve a system of linear equations
for the right lattice, and then define u(S1) := max{u(S1,1), u(S12)}.

To avoid these situations we regard S; as two different points S1; and S
which are connected to P; and Pj, respectively, and consider a modified system
with new unknowns u(S1,1) and u(S12) instead of u(S1); see the right lattice in
Figure 1. Then the number of the unknowns in our example becomes 11. Thanks
to this increase of the unknowns, it turns out that the modified linear system ad-
mits at least one solution (u(Pr), u(Ps), u(P3),u(S1,1), u(S1,2), u(S2), ..., u(S7)).
(In the notation of the proof below we write u(S11) = £(1,1) and u(S12) =
B(1,2).) In the process of proving the solvability we find that the right-hand
side of (2.2) should be Per(€2)/Vol(£2). Also, for its proof we employ the strong
maximum principle for the discrete Laplace equation.

The remaining problem is how to define u(S7). We define u(S7) as the max-
imum of u(S1,1) and u(S12), so that, if u(S1,1) = u(S12), we have —A'u(P3) <
Per(€2)/Vol(€2) since u(S1) = u(S2) and {u(S1)—u(Py)}/he = —1 since u(S1) =
u(S1,1). In this way we obtain a solution of (NP).

Proposition 3.2. The problem (NP) admits at least one discrete solution.

Proof. 1. We first introduce notations. Let @ = {Pi,..., Py} and 092 =
{S1,..., SN, }, where M := #Q and Ny := #(99). For each i € {1,..., M} we
define subsets M (i) C {1,...,M} and N'(:) C {1,..., Ny} so that {P;} \ {P;} =
{Pj}jema) Y {Si}jen)- We also set s; := #({S;} N Q) for i € {1,..., No},
which stands for the number of points of (2 adjacent to 5;, and N := Z;V:Ol 5j.
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Next, for i € {1,...,No} we define a map n; : {1,...,s;} — {1,..., M} such
that n;(1) < n3(2) < --- and {S;} NQ = { Py }j21- We denote by n; ! the
inverse map of n;; that is, P; is the nl._l(j)—th point of (P, 1), Pny(sy)) if
Pj € m N Q.

For x,y € Q such that y = x + ohse; with 0 = £1 and i € {1,...,n} we set
h(z,y) := h;. Obviously, we then have h(z,y) = h(y,z). We denote by E(i, j)
the (M 4+ N) x (M + N) matrix with 1 in the (4, j) entry and 0 elsewhere. Given
a vector

a="a(1),...,a(M),5(1,1),...,8(1,51),...,8(No,1),...,8(No,sn,)) € R(M+)N,
3.1

where i means the transpose of a vector ¥, we define u = u[a] : 2 — R as

() = {a(i) (x=PeQ, ic{l,. .. M},
| max{B(i,j) | 1< s} (x=5€09Q, i€ {l,...,No}).

2. We consider the following system of linear equations
Li=b, (3.2)

where @ € RM*+V is the unknown vector and b = (b)Y € RMHN s given as

Per(Q2)
k=1,....M
Vol(€2) ( e M),
by, = 1 j—1
—— (k=M+ sp+iwith j €{1,...,No}, i €{1,...,s;}).
h(S]anJ(z)) ZX; !

Here so = 0. Also, the (M + N) x (M + N) matrix L is defined by
L:=
0l 0\ E(i, j)
M )
< 0 0> 2\ 2 G pEt 2
=1 jeM(i) JEN()

No o5 B (M A+ S22y s+ i Mo+ 00 s+ i) — B (M 4+ S50 s+ ,my0))

22 W(S5, P2 ’

j=1i=1

E (z M+ e+ nj_l(i))
h(Pi’ Sj)2

where Iy is the identity matrix of dimension M and 6 := 2Y""  (1/h?). (See
Example 3.4, where we will give a small sized matrix L along the example of
Figure 1.) By definition L is symmetric. To check the symmetricity we first
take i € {1,..., M} and j € M(i). Then the (i,j) entry of L is —1/h(P;, P;)>.
Since j € M(i), we see P; € {P;}. Thus P; € {P;} and this implies i € M(j).
As a result, it follows that the (j,7) entry of L is —1/h(P;, P;)®. We next let
i€{l,...,M} and j € N'(i), so that the (i, M + 3]y s, +n; ' (i)) entry of L is
~1/h(P;, S;)?. In this case we have S; € {P;}, and so P; € {S;}. Then from the

definition of n; it follows that n;(t) =i for some t € {1,...,s;}, i.e., t = n]_l(z)
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Since (M + E{:—Ol s +nj_1(i), i)=(M+ Z{:—é s;+t,n;(t)), we conclude that the
(M—i-zg;ol sl—l—nj_l(i),i) entry of L is —1/h(S}, P, ))* = —1/h(S;, P;)?. Hence
the symmetricity of L is proved.

3. We claim that if @ € RM*Y is a solution of (3.2), then u = uld] is a
discrete solution of (NP). Let z € Q, i.e., x = P; for some i. Without loss of
generality we may assume x = P;. Since d satisfies (3.2), comparing the first
coordinates of the both sides in (3.2), we observe

)2
VOI(Q) jeM(1) h Pl, ) EN(I) h(Pl,SJ)
2 0u(P) - ) hP1 thl e
JEM(1) ’ ’
= —A’u( 1).

We next let x € 092. Again we may assume x = S;. We also let §(1,7j9) =
max{3(1,7) | 1 £j < s1}. Then the (M + jjo)-th coordinates in (3.2) implies

B, jo) — a(ni(jo)) _ —1
h(Sl, nl(]o))Q h(Sthl(jO))’

that is,
u(S1) — (Pnl(jo))
h(S1, Pry o))
Consequently, we see that u is a discrete solution of (NP) in our sense.

4. We shall show that (3.2) is solvable. For this purpose, we first assert that
KerL = R, where KerL is the kernel of L and

=—1.

£=11,...,1) e RM*N,

By the definition of L we see that the sum of each row of L is zero. This implies
KerL D Rg. We next let @ € KerL, i.e., Ld = 0. We represent each component
of @ as in (3.1). Now, by the same argument as in Step 3 we see that u = u|d]
is a discrete solution of

—Au<0 in Q, (3.3)
(NPO) ¢ au
v 0 on 09, (3.4)

where the notion of a discrete solution of (NPO) is the same as that of (NP).
We take a maximum point z € Q of u over Q. If z € 01, there exists some
y € {2} N Q such that u(y) = u(z) since u satisfies the Neumann boundary
condition (3.4) at z. Thus u attains its maximum at some point in Q. Since Q
is now bounded and connected, the strong maximum principle for the Laplace
equation (Corollary A.5) ensures that u must be some constant ¢ € R on Q.
From this it follows that o(1) = --- = a(M) = c¢. Also, since La = 0, we have
B(i, j) = a(ni(j)) for all i € {1,..., No}t and j € {1,...,s;}. As a result, we see
a= cf € R{ We thus conclude that KerL = Rg.
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5. Since L is symmetric and KerL = RE, we see that (ImL)* = RE, where
(ImL)* stands for the orthogonal complement of ImL, the image of L. Thus, for
v € RMHN it follows that b € ImL if and only if (€,8') = 0. Noting that —1/h;
appears w; times in a sequence {bk}ﬁiﬁvﬂ for each i € {1,...,n}, we compute

=~ Per(Q) /-1 AU Per(92) -
0 = Tora) M+; <h X”Z) = e _;

Consequently be ImL, and therefore the problem (3.2) has at least one solution
a € RM*TN, Hence by Step 3 the corresponding u = u[a] solves (NP). O

(<

>

L.
1

Remark 3.3. We have actually proved that u, which we constructed as a subsolu-
tion, is a solution of (2.2) in 0\ 09. Namely, we have —A’u(z) = Per()/Vol(£2)
for all x € '\ 09Q2. This is clear from the construction of u.

Example 3.4. We revisit Example 3.1 and consider €2 given in Figure 1. Let
us solve the system (3.2). For simplicity we assume hy = hy =: h > 0. In the
notation used in the proof of Proposition 3.2, the unknown vector @ is given as

‘A= (a(l) a2) o@)|B(1,1) B(1,2)|4(2,1) BB ... B(T,1)).

Here a(i) (i = 1,2,3) represents the value of u(F;). Also, 5(1,7) (j = 1,2) and
B(k,1) (k= 2,3,...,7) represent the values of u(Si ;) and u(Sj), respectively.
Since Vol(€2) = 3h? and Per(£2) = 8h in this example, we see

-1
tb:<8 8 §H—1 —1‘—1 -1 -1 -1 -1 —1>,
R\ 3 3 3

and the coefficient matrix L is

4 -1 -1 -1 -1
-1 4 -1 -1 -1
-1 4 -1 -1 -1
-1 1
-1 1
L:% -1 1
-1 1
-1 1
-1 1
-1 1
-1 1

The rest entries in L are zeros. A direct computation shows that agy given as

ta’ézg(?) 4 3/0 0/0 0110 0)

is a particular solution of (3.2). Since the kernel of L is known, we conclude that
the general solution of (3.2) is @ = ap + ¢ (1,...,1) with c € R.
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A Maximum principles

A.1 An ABP maximum principle

In Appendix we consider the second order fully nonlinear elliptic equations of
the form

F(O2 u,...,02 u)= f(z) inQ, (A.1)

T

where F': R™ — R and f : Q — R are given function such that F(0,...,0) = 0.
Let 62u(z) := (02u(x), ..., 02u(z)). We say u: Q — R is a discrete subsolution
of (A.1) if F(6%u(z)) £ f(z) for all z € Q. As an ellipticity condition on F for
our ABP estimate, we use the following:

(F1) =AY X < F(X) for all X € R™ with X < 0.

Here A > 0. Also, " X == Y7 X; for X = (X1,...,X,) € R" and the
inequality X < 0 means that X; < 0 for every i € {1,...,n}. For K C hZ"™ and
g : K — R the n-norm of g over K is given as ||g||mx) :== (X ex h”]g(a:)|”)1/n.
We also set diam(€2) := maxgeq yeon |v — y| and |B,| := L"(B,).

Theorem A.1 (ABP maximum principle). Assume (F1). Letu: Q — R be a
discrete subsolution of (A.1). Then the estimate

maxu < maxu + Cadiam ()| f{| ¢ (rpu)) (A.2)
Q

holds, where Cq = Ca(\,n) is given as Cqy = (An|By|Y/™)~1.
A crucial estimate to prove Theorem A.1 is

Proposition A.2. For all u: Q — R we have

di Q
maxu £ maxu + fam (§)

2 a; WH — A'ul|gn (1)) (A.3)

Proof. 1. We first prove Bq C U ¢pyy Ot u(z), where d is a constant given as
d = (maxgu—maxpq u)/diam(§2). If d = 0, the assertion is obvious. We assume
d > 0, ie., u(®) = maxgu > maxgou for some & € Q. Let p € By and set
é(x) := (p,x — &). We take a maximum point z of u — ¢ over 2. Then we have
z € Q. Indeed, for all x € 92 we observe

u(x) — p(z) < I%%Xu+ Ip|- |z — 2| < Hél)%xu—l—d-diam(Q) = maxu = u(Z) — ().

Q

Thus z € ©, and so we conclude that z € T'[u] and p € 91 u(z).
2. By Step 1 the estimate (2.5) with By instead of Q; holds. Thus the same
argument as in the proof of Theorem 1.1 yields

o —Au(z)\" 1 n
Ba 3 i (FEHD) = - Al
z€l[u]
Applying |By4| = d"|B1]| to the above inequality, we obtain (A.3) by the choice
of d. O
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Proof of Theorem A.1. By Remark 2.2 we have 6%u (2) = 0 for z € I'[u], and
therefore the condition (F1) yields —AA'u(z) = —)\252 (2) < F(6%u(z)). Since
u is a discrete subsolution of (A.1), we also have F(5%u(z)) < f(z). Applying
these two inequalities to (A.3), we obtain (A.2). O

A.2 A strong maximum principle

Although the strong maximum principle for the Laplace equation is enough
for the proof of Proposition 3.2, we consider a wider class of equations in this
subsection. We study homogeneous equations of the form

F(@%lu, 02 u)=0 inQ. (A.4)

xT

From the ABP maximum principle (A.2) we learn that all discrete subsolutions
u of (A.4) satisfy
maxu < maxu
Q

if (F1) holds. This is the so-called weak maximum principle. Our aim in this
subsection is to prove that a certain weaker condition on F' actually leads to the
strong maximum principle and conversely the weaker condition is necessary for
it. Here the rigorous meaning of the strong maximum principle is

(SMP) If u: Q — R is a discrete subsolution of (A.4) such that maxg u = maxgq u,
then u must be constant on Q.

Following the classical theory of partial differential equations, we consider bounded
and connected subsets @ C hZ" for (SMP). It turns out that the strong maximum
principle holds if and only if F' satisfies the following weak ellipticity condition
(F2). It is easily seen that (F1) implies (F2).

(F2) If X eR", X <0 and F()?) < 0, then X must be zero, i.e., X = 0.

Theorem A.3 (Strong maximum principle). The two conditions (SMP) and
(F2) are equivalent.

To show this theorem we first study discrete quadratic functions. They will
be used when we prove that (SMP) implies (F2).

Example A.4. Let (Aj,...,A,) € R". We define a quadratic function ¢ :
hZ™ — R as

n

q(z) = Z(hjxj)2Aj for v = (i1, ..., hney) € KZ™.

j=1
Then §2q is a constant for each i € {1,...,n}. Indeed, we observe
q(z + hie;) + q(z — hie;) — 2q(x
$Pa(z) = “ :
. hzz (:L'l + 1)2142‘ + h% (.%1 — 1)2Ai — Qh%.r?Al

=2A4;

h?
for all z = (hix1, ..., hpzy) € KZ™.
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Proof of Theorem A.3. 1. We first assume (F2). Let u :  — R is a discrete
subsolution of (A.4) such that u(#) = maxgu for some & € Q. This maximality
implies that for each i € {1,...,n}

u(Z + hie;) +u( — hie;) — 2u()
&

uw(Z) + u(®) — 2u()
i

62u(z) = < =0.

Thus 62u(#) < 0. Since u is a discrete subsolution, we also have F(52u(z)) < 0.
It now follows from (F2) that 62u(#) = 0, and hence we see that u(2) = u(d +
hie;) for all .. We next apply the above argument with the new central point
I + h;e; if the point is in 2. Iterating this procedure, we finally conclude that
u = u(#) on Q since Q is now connected.

2. We next assume (SMP). Take any X = (X1,...,X,) € R" such that
X £ 0and F(X) £ 0. We may assume 0 € Q. Now, we take the quadratic
function ¢ in Example A.4 with A; = X;/2 < 0. By the calculation in Example
A.4 we then have §2¢(x) = X, for all 4, i.e., 52q(z) = X. Thus F(6%q(z)) =
F(X) < 0, which means that ¢ is a discrete subsolution of (A.4). Next, we
deduce from the nonpositivity of each A; that g attains its maximum over  at
0 € Q. Therefore (SMP) ensures that ¢ = ¢(0) = 0 on Q, which implies that
A;=0forallie {1,...,n}. Consequently, we find X=0. O

—

A simple example of F satisfying (F2) is F(X) = —3 X, and then (A.4)
represents the Laplace equation for u. We therefore have

Corollary A.5. Let u: Q — R. If —A'u(z) £ 0 for all z € Q and maxgu =
maxq u, then w is constant on §Q.
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Chapter 4

An improved level set method
for Hamilton-Jacobi equations

1 Introduction

In the classical level set method, a motion of an interface {I'(¢) }; in R" is studied
by representing the interface I'(t) as the zero level set of an auxiliary function
u(x,t), that is,

I'(t) ={x e R" | u(z,t) = 0},

and solving the associated initial value problem of a partial differential equation
for w. In this paper we are concerned with the case where the associated problem
is given as the Hamilton-Jacobi equation of the form

Owu(z,t) + H(z, Vu(x,t)) =0 in R" x (0,7) (1.1)
with the initial condition
u(x,0) =up(zr) in R™. (1.2)

Here H is a continuous Hamiltonian and Vu = (0,,u);"; denotes the gradient
of u with respect to x. In practice, it might be difficult to compute the zero
level set of u because the spatial gradient of u can be close to zero near I'(t) as
time develops even if the initial gradient is large. To overcome this issue, in this
paper we propose an improved equation of the form

Owu(x,t) + H(z, Vu(z,t)) = u(z, t)G(z, Vu(z,t)) (1.3)

with a continuous G. Our goal is to demonstrate that a solution u of (1.3) with
a suitably defined G gives the same zero level set as (1.1), and that, globally in
time, the slope of u is preserved near the zero level set.
We illustrate our approach on a typical example of (1.1), the transport equa-
tion of the form
ou(z,t) + (X (z), Vu(z,t)) =0, (1.4)

where X : R™ — R" is a vector field and (-, -) denotes the standard inner product
in R™. In this case, as we will see in Section 2, a formal argument implies that
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the slope of a solution u of

(X' (2)Vu(z,t), Vu(z,t))
|Vu(z,t)?

ou(z,t) + (X (x), Vu(z, b)) = u(z,t) (1.5)
is preserved along the flow determined by the vector field X. Here X'(x) stands
for the Jacobian matrix of X(z) = (X;(z))iL;, i.e., X'(2) = (04, Xi(x))i;. Our
general theory for (1.3) will be constructed so that, in the case of transport
equations, G agrees with the function appearing on the right-hand side of (1.5)
except on a small neighborhood of the singular point at |Vu(z,t)| = 0.

We employ the theory of viscosity solutions to solve the improved equation
(1.3) since it is a nonlinear equation. However, viscosity solutions are not smooth
in general, and so it is an issue how to show that the “slope” of the viscosity
solution of (1.3) is preserved near the zero level set. In this paper we establish
the preservation of the slope of the solution by comparing it with the signed
distance function d(z,t) to the zero level set, which is defined as

dist(x,I'(¢))  if u(x,t) >0,
d(z,t) =<0 if u(z,t) =0,
—dist(x,T'(¢)) if u(z,t) <O.

Here dist(z,I'(t)) = inf{|z —y| | y € I'(¢)}. The distance function is known to
be a solution of the eikonal equation

Vd(z,t)| =1,

both in the almost everywhere sense and in the viscosity sense. It is thus rea-
sonable to use the signed distance function in order to guarantee that the slope
of u remains one. It turns out that, if the initial data ug in (1.2) is equal to the
signed distance function near the initial interface and if d is smooth near I'(t),
then, for every ¢ > 0, the estimates

>0
- 1.6
eftd(z,t) < u(z,t) < e td(z,t) if d(z,t) <0 (1.6)

{edd(x,t) S u(x,t) < etd(z,t) if d(z,t)
e

hold near I'(¢). In this sense the slope of u is preserved near the zero level set.
This chapter is organized as follows. In Section 2 we formally explain how to
derive the improved equation (1.5) in the case of transport equations. Section
3 contains a brief summary of the theory of viscosity solutions and the level set
method. In Section 4 we prove that the zero level set of a solution of (1.3) agrees
with that of a solution of (1.1), and finally Section 5 establishes the estimates
(1.6) near the zero level set of a solution u of (1.3) with a suitably defined G.

2 Transport equations

Let us show how the improved equation (1.5) is formally derived in the case of
transport equations. Assume that a smooth function u(z,t) solves

ou(z,t) + (X (x), Vu(z, b)) = u(z,t)G(z, Vu(z, 1))

127



with (1.2). Let &, : (—oo,00) — R™ be a solution of the ordinary differential
equation

&(t) = X(&(t)) in (—o0,00),
£:(0) = .

This is the flow determined by X. Then the solution w of the original problem,

(1.4) and (1.2), is given as w(z,t) = up(£:(—t)). We now compute

d

= (Vu(€,(t), 1), €L () + dpu(Ea(t), 1)
= (Vu(Ex(t), 1), X (€2(1))) + Dyu(E(t), 1)

u(&e(t), 1) Gz, Vu(&e(t), 1)

u(&e(t),1)

8

Thus we notice that
u(éz(t),t) =0 ifug(x) =0, wu(&(t),t) >0 ifug(z)>0 (2.1)

for all ¢ € (—o0,00). This implies that the zero level set of u agrees with that of
the solution w of (1.4) and (1.2).
We now define ¢(x,t) := |Vu(z,t)|? and assume that

ho(x,t) + (X (x),Vo(x,t)) =0 on {u(x,t) =0}. (2.2)

(We denote the set {(x,t) € R" x (0,T) | u(z,t) = 0} briefly by {u(z,t) = 0}
unless confusion can occur.) If (2.2) holds, it then follows that ¢ is constant
along each flow. Indeed, for x € R™ such that ug(x) = 0, we have

SOE(0),1) = (VO(&:(0), 1), X(&(0)) + 0d(&x(0),1) = 0

since u(&;(t),t) = 0 by (2.1). Thus we see that |Vu| is constant along the flow.
Let us study a condition on G which leads to (2.2). We have

Od(x,t) = 2(Vu(x,t),0(Vu(z,t))),
Vo(r,t) = 2(Vu(z,t) Vu(z,t).

Here VZu = (agﬂj u);; denotes the Hessian matrix with respect to . The second
derivative 0;(Vu) is computed as

= V(uG(z,Vu) — (X(x), Vu))
= G(z, Vu)Vu +uV(G(z, Vu)) — (X' (2))Vu — (V) X (),

where !(X’(z)) stands for the transposed matrix of X’(z). On {u(x,t) = 0} we
have uV(G(z, Vu)) = 0, and therefore

(040 + (X(2), 79))
=(Vu, G(x, Vu)Vu — 1(X'(2))Vu — (V2u) X (2)) + (X (z), (VZu)Vu)
=G(x, Vu)|Vul* — (X' (x)Vu, Vu).
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In the last equality we have used the relations (*(X’(x))Vu, Vu) = (X'(z)Vu, Vu)
and (X (z), (V2u)Vu) = (Vu, (V?u) X (x)). We thus conclude that, if

(X'(x)Vu, Vu)

G($,VU) = |V’LL‘2 )

then (2.2) holds, and hence the slope of u is preserved along the flow. This choice
of G yields (1.5).

3 Viscosity solutions

In this section we first recall a notion of viscosity solutions and then describe
basic results of the level set method. For the theory of viscosity solutions we
refer the reader to [1] and [2, Section 2, 3|, while analytic foundations of the
level set method are presented in [2, Section 4].

We consider a general first order equation of the form

Owu(x,t) + F(x,u(x,t), Vu(z,t)) =0, (3.1)

where F': R" x R x R" — R is a continuous function. Let us introduce notions
of a sub- and superdifferential. For a function u : R" x (0,7') — R we define a
superdifferential DV u(z,s) of u at (z,s) € R" x (0,7T) by

J¢ € CL(R™ x (0,T)) such that
Dtu(z,s) =4 (p,7) ER" xR (p,7) = (Vo,0:¢)(z,s) and
maxgnx (0,7) (4 — ¢) = (u— ¢)(2,5)
(3.2)
A subdifferential D~ u(z, s) is defined by replacing “max” by “min” in (3.2). We
call ¢ appearing in (3.2) a corresponding test function for (p,7) € DV u(z, s).

Definition 3.1 (Viscosity solution). We say an upper semicontinuous (resp.
lower semicontinuous) function v : R x (0,7) — R is a wiscosity subsolution
(resp. wiscosity supersolution) of (3.1) if

T+ F(z,u(z,s),p) £0 (resp. =0)

for all (z,s) € R" x (0,T) and (p,7) € DT u(z,s) (resp. (p,7) € D™ u(z,s)). Ifu
is both a viscosity sub- and supersolution, then it is called a wviscosity solution.

A class of viscosity subsolutions and supersolutions are known to be closed
under the operation of supremum and infimum respectively.

Proposition 3.2 (Stability). Let S be a nonempty subset of viscosity subsolu-
tions (resp. supersolutions) of (3.1). Set u(x,t) := sup,esv(x,t). If u is upper
semicontinuous (resp. lower semicontinuous) in R™x (0,T), then u is a viscosity
subsolution (resp. supersolution) of (3.1).

We next present a comparison principle, which guarantees uniqueness of vis-
cosity solutions of the initial value problem. We make the following two assump-
tions on F.
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(F1) There exists some nondecreasing function w € C([0, c0)) satisfying w(0) =
0 such that

|F(:U7T,p) _F(x7r7Q)| §W(|P—Q|),
|F(x,r,p) — F(y,r,p)| < w((1 +[p])]z —yl)

for all z,y,p,q € R™" and r € R.

(F2) There exists some constant v € R such that F(z,r, p)+~r is nondecreasing
inr e R.

Theorem 3.3 (Comparison principle). Assume (F1) and (F2). Let u,v: R™ x
[0,T) — R and assume that w and —v are upper semicontinuous and bounded
from above on R™ x [0,T). Assume that u and v are, respectively, a viscosity
sub- and supersolution of (3.1). If u(x,0) < v(x,0) for allz € R™, then u(z,t) <
v(x,t) for all (x,t) € R™ x (0,T).

When F' is written as F(x,r,p) = H(z,p) — rG(z,p), which represents the
equation (1.3), the following conditions imply (F1) and (F2).

(CP) (i) H and G satisfy (F1).
(ii) G is bounded in R™ x R"™, i.e., |G| := supgnyrn» |G| < 00.

Indeed, (F1) is obvious while (F2) is fulfilled with v = ||G].

Existence of viscosity solutions is shown by Perron’s method, but we omit it
in this paper; see [1, Section 4] or [2, Section 2.4].

We turn to the level set method for (1.1). To carry out the level set method,
the geometricity (H1) is a basic assumption on H.

(H1) H(x,\p) = AH(z,p) for all (z,p) € R x R" and A > 0.

Note that (H1) implies that H(x,0) = 0 for all z € R". One of important prop-
erties of geometric equations is invariance under change of dependent variables.
This invariance property as well as the comparison principle play a crucial role
for the proof of uniqueness of evolutions.

Theorem 3.4 (Invariance). Assume (H1). Let § : R — R be a nondecreas-
ing and upper semicontinuous (resp. lower semicontinuous) function. If u is
a viscosity subsolution (resp. supersolution) of (1.1), then 6 o u is a viscosity
subsolution (resp. supersolution) of (1.1).

The next theorem guarantees that, for a given initial surface, the evolution
is independent of a choice of the initial auxiliary function, which is ug in (1.2).
Let us denote by BUC(R"™) the set of all bounded and uniformly continuous
functions in R™.

Theorem 3.5 (Uniqueness of evolutions). Assume that H satisfies (F1) and
(H1). Let upi,up2 € BUC(R™) and assume that {upi(x) = 0} = {ug2(x) = 0},
{up1(z) > 0} = {up2(z) > 0} and that {up1(z) > 0} is compact. Let w1 and wo
be a viscosity solution of (1.1) with the initial data ugy and ugy respectively. Then
we have {wi(x,t) = 0} = {wa(x,t) = 0} and {w;(z,t) > 0} = {wa(x,t) > 0}.
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We conclude this section by giving simple sub- and supersolutions of (1.3).
In the proof we use the fact that a classical subsolution (resp. supersolution) of
(3.1) is always a viscosity subsolution (resp. supersolution) of (3.1).

Lemma 3.6. Assume (ii) in (CP) and (H1). Let ¢ > 0, M = |G| and define
wh(z,t) = ceMt, w(z,t) = ce™*. Then w (resp. w™) is a supersolution
(resp. subsolutzon} of (1.3), cmd —w™t (resp. —w™ ) is a subsolution (resp. su-
persolution) of (1.3).

Proof. Since H(x,0) =0 by (H1), we compute
ow™ + H(z, Vw') = MceMt + H(z,0) = Mw™ +0 = w™G(z, Vu™),

which implies that w™ is a supersolution. The rest assertions also follows from
similar calculations. O

4 Preservation of the zero level set

We demonstrate that a solution of the improved problem (1.3) gives the same
zero level set of a solution of the original problem (1.1).

Proposition 4.1 (Preservation of the zero level set). Assume (CP) and (H1).
Let w and u be, respectively, a viscosity solution of (1.1) and (1.3) with the same
initial data. Then we have {w(z,t) = 0} = {u(z,t) = 0} and {w(x,t) > 0} =
{u(z,t) > 0}.

Since we have already known uniqueness of evolutions for (1.1), Proposition
4.1 yields uniqueness of evolutions for (1.3). Namely, the same conclusion in
Theorem 3.5 holds if we replace “(1.1)” by “(1.3)” and add the assumption (CP)
in the statement of Theorem 3.5.

Proof. 1. We define

oy elGlity(z,t)  if u(z,t) 20,
v \x =
e NGty (2, 1) if u(z,t) <0

and

~ e NGy (x,t)  if u(z,t) =0,
v (x,t) =
elGlity(z,t)  if u(z,t) <0

for (z,t) € R™ x [0,T). We claim that v* and v~ are, respectively, a viscosity
supersolution and subsolution of (1.1).
2. We shall show that v" is a supersolution. If u is smooth and u(z,t) > 0,
we compute
vt + H(z, Vo) = ||G||el€lty + el gy + H(z, elCItTu)
= |G le! MWy + IG5 + H (2, Viu)}
= ||Gle!CMty + elGIEyG (2, V) = 0.
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In the general case where u is not necessarily smooth, taking an element of the
subdifferential of u, we see that vt is a viscosity supersolution of (1.1). Since
similar arguments apply to the case when u(z,t) < 0, it follows that v* is a
supersolution in {u(x,t) > 0} U {u(z,t) < 0}.

3. It remains to prove that v is a supersolution on {u(x,t) = 0}. For this
purpose, we first claim that var defined by

elClty(z,t) if u(z,t) 20,

vy (z,t) = max{vT (z,t), 0} = {0 if u(z,t) <0

is a supersolution of (1.1). Fix € > 0 and define 6° : R — R by 6°(r) :=
max{r, ¢}. Since vt is a supersolution of (1.1) in {u(x,t) > 0}, Theorem 3.4
implies that #°ov™ = max{v™, £} is also a supersolution of (1.1) in {u(z,t) > 0}.
Now, the constant ¢ is a solution of (1.1) and €° o v = ¢ in {0 < u(z,t) <
ee~I€IE} . Thus we see that 6° o v is a supersolution of (1.1) on the whole of
R" x (0,T). Finally, by Proposition 3.2, taking the infimum over {¢ > 0} implies
that vd = inf.~0(6° o v™) is a supersolution of (1.1).

4. Let (z,8) € R™ x (0,T) be a point such that u(z,s) = 0, and take
(p,7) € D™vT(z,s). Since v*(z,5) = vy (2,5) = 0 and v+ < vf in R" x (0,7),
it is easily seen that (p,7) € D7vg (2, s). In the previous step we proved that vy
is a supersolution, and thus we have 7 + H(z,p) = 0. Summarizing the above
argument, we conclude that v™ is a supersolution of (1.1). Also, in the same
manner we are able to prove that v~ is a subsolution of (1.1).

5. Since v*(x,0) = ug(x) for all z € R™, the comparison principle (Theorem
3.3) yields v~ (x,t) L w(x,t) < vt (z,t) for all (z,t) € R" x (0,T). In particular,
we have {v™(z,t) > 0} C {w(z,t) > 0} C {vt(x,t) > 0}. Since {vF(z,t) >
0} = {u(x,t) > 0} by the definition of v*, we conclude that {w(z,t) > 0} =
{u(z,t) > 0}. Similarly, we obtain {w(x,t) < 0} = {u(z,t) < 0}, and hence
{w(z,t) =0} = {u(z,t) =0}. O

5 Comparison with the signed distance function
We study a bounded evolution {(I'(t), D(t)) }o<¢<7 in R", Namely, we assume
(I) I'(t) U D(t) is a bounded set in R™ for every t € [0,T);

(IT) there exists a continuous viscosity solution w : R™ x [0,7) — R of (1.1)
such that

I't)={zreR" | w(z,t) =0},
D(t) ={z e R" | w(z,t) > 0}

for all t € [0,T).

For this evolution we define the signed distance function d : R™ x [0,T) — R by

dist(z,I'(¢))  if z € D(t),
d(z,t) =<0 if x € T'(t),
—dist(z,I'(¢)) ifx € R"\ (D(t) UL'(t)).
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We intend to prove that a viscosity solution u of the improved problem (1.3)
satisfies the estimate (1.6) which involves the signed distance function d to the
interface. This shows that the slope of u is preserved near the zero level set.
For this purpose, we first derive the equation for the signed distance function
d. In this paper we assume that d is smooth near the zero level set, and so the
derivatives of d are interpreted in the classical sense. It is future work to extend
the theory presented in this paper to the case of non-smooth signed distance
functions. Our assumption concerning smoothness is

(SM) There exist a constant § > 0 and a function wp : R" x (0,7) — R such
that

(i) d,wg € C* on {|d(z,t)| < &} as a function of (x,);
(il) T'(t) = {wo(z,t) = 0} and D(t) = {wo(x,t) > 0} for all t € (0,T);
(iii) for all (z,t) € R™ x (0,T) such that d(x,t) = 0, wg solves (1.1) and
Vo (z, t)] # 0;
(iv) for all (z,t) € R™ x (0,T) such that |d(x,t)| < 4,
T:=x—d(z,t)Vd(z,t) € ['(t)
and

8tw0(i‘> t)

V’wo(f t)
|V’LUO(£Z', t)‘ ’ 13

8td(l’, t) == W

Vd(z,t) = (5.1)

It is known that, under a suitable smoothness assumption on the interface, the
time derivative and the spatial gradient of d are, respectively, the normal velocity
and the normal vector to the interface. (See, e.g., [3].) Instead of assuming that
the interface possesses sufficient smoothness, we assume that the formulas (5.1)
hold for d.

Lemma 5.1. Assume (SM) and (H1). Then

Od(z,t) + H(x — d(z,t)Vd(z,t), Vd(z,t)) =0 (5.2)
for all (x,t) € R™ x (0,T) such that |d(z,t)| <.
Proof. Set T :=x — d(x,t)Vd(z,t). Using the formulas in (5.1), we compute

Od(z,t) + H(x — d(z,t)Vd(z,t), Vd(z,1))

8tw0(5c t) _ ng(ﬁv,t)
2 H(”’" \Vwo@,t)\)

= o] 200 + H(, T, 1)

Here we have used (H1) in the last equality. Since wq solves (1.1) at (z,t), the
last quantity is zero. O
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The equation (5.2) is equivalent to
Bd + H(z,Vd) = H(z,Vd) — H(z — dVd, Vd). (5.3)

If H is smooth and |d| is sufficiently small, the right-hand side of (5.3) is ap-
proximated by d(V,H (z,Vd),Vd). It is thus reasonable to study the equation
of the form

od+ H(z,Vd) = d{V,H(z,Vd),Vd)

as an improved problem for (1.1). In this paper we define G as a suitably modified
function of (V,H (z,p),p).

We shall give our assumptions on H and G precisely. Concerning differen-
tiablity of H with respect to x, we require the following condition (H2). We
denote by S™~! the unit sphere in R", i.e., S" 1 = {z € R" | |z| = 1}.

(H2) For any compact set K C R"

= 0.
RO1—0 (5 e K x Sn—1 |h]

(5.4)
For later use we state (5.4) in an equivalent way as follows:

For all r > 0 there exists some a(r) > 0 such that,
if |h| < a(r) and (x,p) € K x S""1, then (5.5)

The function a : (0, 00) — (0,00) in (5.5) may depend on a choice of the compact
set K. We next state how to define a function G : R™ x R"™ — R appearing in
the improved problem (1.3).

(G1) There exists some o € (0,1) such that G(z, A\p) = (V. H(x,p),p) for all
(z,p) €ER" x §" 1 and A\ 2 0.

Example 5.2. We consider the transport equation (1.4), in which the Hamilto-
nian H is given by H(z,p) = (X (x),p). The gradient of H with respect to z is
V.H(z,p) = X'(x)p. We next let G : R" x R™ — R be a continuous function

such that )
(X'(z)p,p)

[pl?

for some o € (0,1). This is the function appearing in the right-hand side of

(1.5). Now, for (z,p) € R" x S" ! and A = o, we compute

Gl vp) = SR CHORE)L _ (xay p) = (9, H o))

Thus we see that G satisfies (G1).

G(z,p) = if [p| 2 o
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Example 5.3. We study the equation
Ou(z,t) + b(z)|Vu(x,t)| =0,

where b € C1(R"). The corresponding Hamiltonian H(x,p) = b(z)|p| satisfies
(H1), and its spatial gradient is V,H(z,p) = |p| - Vb(z). Let o € (0,1) and

define b
G(z,p) = <’(l’|)’p> if [p| > 0.
b
Then G satisfies (G1) since, for all (z,p) € R" x S"~ ! and A\ = o, we have
Vb(z), A
Gt 30) = VDA — (1] 0(e), ) = (Ve p).5)

Therefore the improved equation is given as

(Vb(x), Vu(zx,t))

dpu(x,t) + b(x)|Vu(z,t)| = u(z,t) Vu(z, )|

when |Vu(z,t)| 2 0.

Our next assertion is that functions e®td(x,t) and e~*!d(z,t), which appear
in our objective estimates (1.6), are a subsoltion and a supersolution of (1.3)
near the zero level set respectively.

Proposition 5.4 (Sub- and supersolutions near the zero level set). Assume
(SM), (H1), (H2) and (G1). Let e € (0,—(logo)/T| and define

dt(x,t) = etd(x,t), d (z,t):=e d(x,t). (5.6)

Let K C R"™ be a compact set such that {d(x,t) < 6} C K, and let a be the
function in (5.5). Let r > 0 be a constant satisfying a(r) < §. Then, for all
(z,t) € R™" x (0,T) such that |d(z,t)| < a(r), we have

|oyd™ (2, t) + H(z,Vdt (x,t)) — d" (z,){G(z, Vd T (x,t)) + e}| < r|dT (z,1)],
(5.7)
)

d.
|0yd™ (z,t) + H(z,Vd ™ (x,t)) —d (z,){G(z,Vd (x,t)) —e}| Z r|d” (z,1)].

(5.
In particular, if r < e, then dt is a supersolution (resp. subsolution) of (1.3) on
{0 < d(z,t) < a(r)} (resp. on {—a(r) < d(z,t) £0}), and d~ is a subsolution
(resp. supersolution) of (1.3) on {0 < d(z,t) < a(r)} (resp. on {—a(r) <
d(z,t) £0}).

8)

Proof. By the choice of ¢ we have e™¢! > e=¢1' > ¢ for every t € (0,T). Thus
the assumption (G1) implies

G(x,Vd*) = G(x,e™'Vd) = (V H(z,Vd),Vd). (5.9)

Let us fix (x,t) € R™ x (0,T) such that |d(z,t)| < a(r). Since a(r) < §, choosing
h =d(x,t) and p = Vd(z,t) in (5.5), we have

|H (2, Vd) — H(z — dVd,Vd) — d(V,H(z,Vd), Vd)| < r|d.
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Now, we apply (5.9) to the left-hand side and multiply the both sides by e*! to
get

e H(z,p) — H(x — dVd,Vd)} — d*G(x, Vd*)| < r|dE|. (5.10)
Using (H1) and (5.3), we compute

Oyd* + H(z,Vd*¥) = +ed™ + e**'0id + H(z,e'Vd)
= t+ed® + 0 d + H(x,Vd)}
= ted® + e H(x,Vd) — H(x — dVd,Vd)}.  (5.11)

Finally, combining (5.10) and (5.11), we arrive at both (5.7) and (5.8). The
assertions in the case r < ¢ are clear from (5.7) and (5.8). O

In order to derive the estimates (1.6) by the comparison principle, we need to
extend a local subsolution and supersolution d* in Proposition 5.4 so that they
are a subsolution and supersolution on the whole of R" x (0,7"). To do this, we
first study superdifferentials of a function which is written as the minimum of
two functions.

Lemma 5.5. Let f1, fo : R — R and define g(x) := min{ fi(z), fo(x)}. Let
z € R™ be a point such that fi(z) = f2(2). Assume that fi, fo € C! near z. If
p € Dtg(z), then p = AV f1(2) + (1 — \)V fa(z) for some X € [0,1].

Proof. 1. We first give the proof in the case fo = 0. If p = 0, the assertion
is obvious because we have p = AV fi(z) + (1 — A\)V fa(2) with A = 0. Assume
p # 0. Take a corresponding test function ¢ € C1(R™) for p € DT g(2) such that
¢(z) = 0. Since V¢(z) = p # 0, we may assume 0, ¢(z) > 0 without loss of
generality.
2. We claim
O, f1(2) = 0, 0(2) (> 0). (5.12)

Let us write z = (2, 2,) € R"~! x R. Since 9., ¢(z) > 0, we see that ¢(z', z, —
h) < 0 for sufficiently small & > 0. Thus 0 = (g — ¢)(2/, 2z, — h) > g(#/, zn — h),
which implies g(z’, z,, — h) = f1(Z/, 2z, — h). Now, we compute

fi(z, 20 = h) = f1(2)

anfl(z) = lim

h10 —h
, J— —
— lim g(Z y Zn h) g(z)
h10 —h
, — J—
> lim ¢(Z ) Zn h) (b(z)
h10 —h

We thus obtain (5.12).

3. By (5.12) the zero level sets {fi(x) = 0} and {¢(x) = 0} are written
as the graphs of implicit functions on some open neighborhood U of z/. We
represent {fi(x) = 0} as z, = h(z') and {¢(z) = 0} as x, = (a'), where
' = (x1,...,2p—1) € U. We then have h = ¢ on U. Indeed, if h(z') < ¢(2') for
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some z' € U, we would have f1(2/, h(z')) = 0 and ¢(2/, h(2")) < ¢(2/,1p(2')) = 0.
This is a contradiction to the fact that f; — ¢ takes its maximum value 0 at z.
Since h = 1) on U and h(z') = 9(2'), we have

Veh(z') = V(). (5.13)

The derivatives of implicit functions are given as

/ Vo / Vo
Vah(2) = —m, Vai() = 5 28 (5.14)
Substituting (5.14) for (5.13) and setting A := 0, #(2)/0%, f1(2), we see
Oz
Vx/gb(z) = (mvx/fl(z) = )\Vz/fl (Z)

By the definition of A and (5.12), we also have 0., ¢(z) = A0, f1(z) and 0 <
A £ 1. Thus the proof is complete when fo = 0.

4. For a general fy we study the function (g — f2)(z) = min{(f1 — f2)(z), 0}.
Since p € DT g(z), we have p — V fa(z) € DT (g — f2)(2). Thus the result in the
case fo = 0 implies that there exists some A € [0,1] such that p — Vfa(z) =
AV (fi— f2)(z), i.e., p= AV fi(2)+ (1 = A\)V fa(2). This is precisely the assertion
of the lemma. O

Using Lemma 5.5, we construct a global subsolution and supersolution of
(1.3) which equal to d* or d™ near the zero level set.

Proposition 5.6 (Extension of sub- and supersolutions). Assume (SM), (H1),
(H2) and (G1). Assume the same hypotheses of Proposition 5.4 concerning €
and a. Let ¢, L, M € R be positive constants such that

2/|G
0 < c<min{a(e), 6}, L=c¢, M2 Gl M>e

— 1—cgeT’

Define d*(z,t) as in (5.6) and

V(x,t) = %e”GthJr(m,t).

We further define

[ min {max{d*(z,t), V(z,t) — L}, Lel®I*} ifd(z,t) 20,
we,t) = {max{d(x,t), —ce*Mt} if d(z,t) <0 (5.15)
and
- (2,t) = min {d~(z,t), ce M} if d(z,t) =0,
’ max {min{d*(z,t), V(z,t) + L}, —Lell€It} ifd(z,t) < 0.
(5.16)

Then ut and u™ are, respectively, a viscosity supersolution and a viscosity sub-
solution of (1.3) in R™ x (0,T).
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t>0

LGt
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c ¢ T~
dt =efld
T ce~ Mt
d_ = e_std S - - - = -~
o~ ~ rz e R?
. D(t) S
/ \
? t
I \
I \
I \
—_ — 4 b — — u

Figure 1: Definitions of u* and u ™.

Proof. 1. We only prove that u* and u~ are, respectively, a supersolution and
a subsolution of (1.3) on {d(z,t) = 0}, because the same arguments work in
{d(z,t) < 0}. On {d(z,t) = 0} we see that u™ and u~ are represented as
follows:

d(z,t) i 0<d¥(w,t) < cL/(3LelCI — ¢),
ut(z,t) = V(x,t) — L if eL/(3LelClt — ¢) < dt(z,t) < (1 + e 1ICN1) /3,
LellGlt if c(1 4 e~ IGI1) /3 < dt(z, t)
and
_ d=(x,t) if0<d (z,t) < ce M
u(z,t) = —Mt i —Mt -
ce if ce <d (z,t).

(See also Figure 1.) When 0 < d*(z,t) < ¢(1 + e I€1) /3, we have

=Gty p—et
c(l +e - )6 < gc < gmin{a(é“)v 5}7

which implies that d* is a supersolution of (1.3) on {0 < d*(x,t) < ¢(1 +
e~NIGIY /3. Also, if 0 < d~(x,t) < ce™ ™, then

0<d(z,t) <

0 < d(z,t) < ce® M < ¢ < min{a(e), 6}

since M > e. Thus d~ is a subsolution of (1.3) on {0 < d~(z,t) < ce~ M},

2. We prove that v~ is a viscosity subsolution of (1.3) in {0 < d™(xz,t)}. As
we stated in Step 1, u(x,t) = d~(z,t) is a subsolution in {0 < d~(x,t) < ce”M}.
Also, since we have

2||G] S
M=——=>2|G G|,
- 1= U@ET H ” = H H
Lemma 3.6 guarantees that u(z,t) = ce ™! is a subsolution in {ce ! <

d~(x,t)}. What is left is to show that u~ is a subsolution on {d~(z,t) = ce=M*}.
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Let (z,5) € R™ x (0,7) be a point such that d~(z,s) = ce™™* =: o, and take
any (p,7) € DYu™(z,s). Our goal is to show that

I:=74 H(z,p) —aG(z,p) £0.

We apply Lemma 5.5 to ™. It then follows that

p=AVd (z,5) 4+ (1 = A)V(ce M) (2, s)
= \Vd (z,5s),

T=X0d (z,8) + (1 — N\)O(ce Mt)(z, s)
=Aod (2z,8) — M(1 - Na

for some A € [0,1], and thus

I=Xod™ — M1 —Na+ H(z,A\Vd™") —aG(z,A\Vd")
=Mod™ + H(2,Vd™)} —aG(z,A\Vd™) — M(1 - N«
< MaG(z,Vd™) —aG(z,A\Vd™) — M(1 — N)a.
We now divide the situation into two different cases.

Case 1: |[AVd (z,s)] = o. In this case, we have G(z,AVd (z,s)) =
G(z2,Vd~(z,s)) by (G1). Thus

I/Jao=AG(2,Vd™) — G(2,Vd™) — M(1—-)\)
=(1-X{-G(2,Vd") — M}.

Recalling M = ||G||, we see that I < 0.
Case 2: |A\Vd ™ (z,s)| < 0. We first remark that

A< 0/|Vd (z,5)] = 0e < oe L.
Using this estimate, we observe
I/a < MGl + |G - M1 - 0eT) < 2G| — M(1 — e 7).

The right-hand side is nonpositive by the choice of M, and therefore I < 0. As
a result, we conclude that u~ is a subsolution in {0 < d™(z,t)}.

3. We assert that ™ is a subsolution on {d~(z,t) = 0}. Let us define
01(r) =0if r =0, 0;(r) = —LellCIT if < 0 and

0 if d_(x,t) g 07
wy(x,t) = (01 ow)(z,t) = {_L6|GT if d=(z,t) < 0

where w is the viscosity solution of (1.1) which appears in (II) at the beginning
of this section. Since 6 is nondecreasing and upper semicontinuous, Theorem
3.4 implies that w; is a viscosity subsolution of (1.1). We now fix a point (z, s) €
{d™(z,t) = 0} and take (p,7) € D"u"(z,s). Then, since u™(z,s) = wy(z,5) =0
and w; < u~ in R™ x (0,7T), we see that (p,7) € DTwy(z, s). Therefore

T+ H(z,p) £0=1u"(25)G(2p),
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which shows our assertion.
4. We next prove that u™ is a viscosity supersolution of (1.3) in {0 <
d*(x,t)}. To do this, we first claim that

%(.’L’,t) = KeHGth—i_(:mt) -n

is a supersolution of (1.3) on {Vp(z,t) = 0} N {d(z,t) < ¢} for all K > 1 and
n > 0. Fix (z,t) € R" x (0,T) such that Vy(x,t) =2 0 and d(z,t) < c. We then
have |VVp| = Kell¢lt|vat| = |Vdt| = 1, which yields G(z, VVp) = G(z, Vdt)
by (G1). Since d7 is a supersolution, we calculate

8:Vo + H(z,VVy) = K{||G|lelCMtat + elCIta,q+y + H(z, KelCltvat)
= |G| (Vo + ) + KelC1{a,d* + H(x, Vd*")}
2 |Gll(Vo +n) + Kel€ltat G(z, vd*)
= (Vo +{lIG|l + G(x, VD) }-

Noting that ||G|| + G = 0 and Vy(z,t) = 0, we conclude
OVe + H(z, Vo) = Vol |Gl + G, Vo) } 2 VoG, V),

which shows our claim. Hereafter we choose K = 3L/c and n = L, so that
Vo(x,t) = V(x,t) — L.

5. We shall show that u™ is a viscosity supersolution of (1.3) in {0 <
d*(z,t)}. Since we have already shown that d*, Vg and Lell¢ll are supersolu-
tions, we only need to study ut on {d*(z,t) = Vo(x,t)} and {Vy(z,t) = LelClt}.

On {Vy(z,t) = LelClt} it is easily seen that subdifferentials D~ ut are empty,
and so u™ is a supersolution. (Applying Proposition 3.2 also shows that u™ is
a supersolution on {Vp(z,t) = LelCIt} because ut is written as the infimum of
two supersolutions Vg and Lell¢lt near {Vi(x,t) = Lell¢llt})

We next let (z,s) € R"x (0,T) be a point such that d*(z, s) = Vo(z,s) =: 3,
and take any (p,7) € D~ ut(2,s). Our goal is to show that

Ji=T1+ H(Zap) - BG(Z7p) = 0.

Similarly to the case of subsolutions in Step 2, Lemma 5.5 implies that there
exists some A € [0, 1] such that

Set X := A+ (1 — M) KelGls. Then

p=NVd"(z,s),
T=Nowd"(2,8) + (1 = V)| G||(B +n).
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We also see N 2 A+ (1—\) = 1, which gives G(2.N'Vd') = G(2.Vd"). We thus
have
J = XNod* + (1= NGB +n) + H(z, NVd*) — BG(z, N'Vd")
= XN{0d" + H(z,Vd")} + (1 = M[|G[(B +n) — BG(2,Vd")
= NBG(2,Vd") + (1 = N|G|(B +n) — BG(2,Vd")
= —(1 = XN)BG(2,Vd") + (1 = NG (B +n).
The definition of A and S implies

—(1=N)B=1-NKelp - 8) = (1-Nn,
and so we see

AnG(z, VdT) + (1 = N|IG[(B +n)

J=(1-
= (1= N[{G(z,Vd") + |G|} + BIG|]
0

%

6. Finally, in a similar way to Step 3, we see that u™ is a viscosity supersolu-
tion of (1.3) on {d*(z,t) = 0} by studying the composite function wy := 5 o w

with 6y defined by 6y(r) = LellCIT if » > 0, 65(r) = 0 if r < 0. O
Remark 5.7. Define
cLe—T
N (e—=M)T
po = min { SLICIT — o @ } . (5.17)

Then, by the definition of u* and u~ we see

(eftd(z,t), e td(z,t)) if 0 < d(z,t) < po,

N . (5.18)
(e=¢td(x,t), etd(x,t)) if — po < d(x,t) <0.

(u* (2,1), 0™ (1)) = {

We are now in a position to state our main theorem. As the initial data wq,
we take a bounded and uniformly continuous function in R™ which agrees with
the signed distance function near I'(0). Namely, we assume that there exists
some m > 0 such that

up(z) = do(x) if |do(z)| £ m,
uo(x) 2 m if do(z) > m, (5.19)
up(z) <m if do(z) < —m

where we set do(z) := d(z,0).

Theorem 5.8 (Comparison with the signed distance function near the zero
level set). Assume that the initial data ug € BUC(R™) satisfies (5.19) for some
m > 0. Assume (SM), (CP), (H1), (H2) and (G1). Let u be a viscosity solution
of (1.3) with (1.2). Then for every e > 0 there exists a positive constant p(g) > 0
such that

e d(x,t) < u(x,t) < ed(z,t) if 0 < d(z,t) < p(e),
etd(z,t) S u(x,t) < e d(z,t) if —ple) <d(z,t) 0.
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Proof. Fix € > 0. Since it suffices to show the theorem for small €, we may
assume that ¢ < —(log o) /T, where o appears in (G1). We also choose a compact
set K C R"™ so that {|d(x,t)] < 0} C K, and then take the function a in (5.5).
Here ¢ is the constant in (SM). We define

¢ :=min{J, a(e), m},

L= [luoll = sup [ug(z)],
zeR™?

2
M := max 7”GH , 3 ,
1—oesT’ 2

and let v : R" x [0,T) — R be the functions in (5.15) and (5.16) with these
constants. We then have

u” (7,0) < up(z) < ut(x,0) for all z € R™. (5.20)

We shall prove (5.20) on {dyp(z) = 0}; similar arguments work in {do(z) < 0}.
Let x € R be a point such that do(x) = 0. We notice that

u™ (x,0) = min {max {dg(a:), 3llul
c

u” (x,0) = min {dy(x), c}

dofe) = ol . ol |

by definitions. When 0 < dy(z) £ m, noting that ug(z) = do(z) by (5.19), we
compute

u™(2,0) = min {do(z), [[uoll} = min {ug(x), [luo|l} = uo(x),
u” (x,0) < min{dy(z), m} = do(x) = uo(x).
In the case where dy(x) > m, we estimate

3|uol
C

H20) 2 min{ do() — [luoll ||uo\}

= min {2Juo||, [Juoll}

= ug()

and
u (x,0) < min{dy(z), m} =m < up(z).

Therefore (5.20) is proved.
By (5.20) the comparison principle (Theorem 3.3) implies

u (x,t) Su(x,t) <ut(z,t) forall (z,t) € R" x (0,7). (5.21)

We set p(e) := po, where pg is the constant in (5.17) with ¢, L and M given as
above. Finally, combing (5.18) and (5.21) gives the conclusion of the theorem.
O

Remark 5.9. In view of the proof we notice that the constant p(e) also depends
on T, |G|, o, a, m and |Jug||.
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Corollary 5.10. Assume the same hypotheses of Theorem 5.8. Let (z,s) €
R" x (0,T) be a point such that d(z,s) = 0.

(1) We have

I
(a:,t)l—IE%z,s) d($, t
d(z,t)#0

~—

(2) The solution u is differentiable at (z,s), and the derivatives are given as

Owu(z,s) = Od(z,s), Vu(z,s)=Vd(z,s).

Proof. (1) For a fixed € > 0 we have

u(x,t) < etd(x,t)
d(z,t) = d(z,t)

et

for all (z,t) € R™ x (0,7) such that 0 < |d(x,t)| < po(e). Thus

. (z,1)
lim sup

(@,6)=(z,5) AT, 1)
d(z,t)#0

e

g eES

Since € is arbitrary, we see that

e

lim sup (z,?) <1
(@)= (z,5) AT,

d(z,t)#0

~—

Similarly, we obtain

e

~—

t
lim inf (=,
(2.6)=(2,5) d(z,1)
d(x,t)#0

and hence the assertion follows.

(2) We only give the proof for the time derivative since a similar argument
applies to the spatial derivative. Fix ¢ > 0 and let h € R. If |h| is sufficiently
small, we have

= 1.

u(z, s+ h) —u(z,s) < =M d(z, 5 4+ h) — 2T (2, s)

h - h ’
which yields
lim sup wzs+h) - ulzs) < eP0d(z, ).
h—0 h
The rest of the proof runs as in (1). O
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