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Abstract

In this paper we present a few topics related to maximum principles (comparison
principles) in partial differential equations. The equations we consider include
Hamilton-Jacobi equations and curvature flow equations appearing in crystal
growth phenomena. On the basis of the theory of viscosity solutions, we establish
a unique solvability of the initial value problems via maximum principles and
track behavior of the solution. We also apply the method for proving maximum
principles to discrete analysis.

In Chapter 1 we study the initial-value problem for a Hamilton-Jacobi equa-
tion whose Hamiltonian is discontinuous with respect to state variables. Our mo-
tivation comes from a model describing the two-dimensional nucleation in crystal
growth phenomena. A typical equation has a semicontinuous source term. We
introduce a new notion of viscosity solutions and prove, among other results,
that the initial-value problem admits a unique global-in-time uniformly contin-
uous solution for any bounded uniformly continuous initial data. For Bellman
equations we give a representation formula of the solution as a value function of
the optimal control problem with a semicontinuous running cost function. The
large time behavior of the unique solution is also studied. We prove that, when
the source term has a compact support, the scaling limit of the solution to the
initial-value problem is characterized as the unique self-similar solution of the
limit problem with a jump discontinuity at the origin. In the case where the
source term is periodic, it turns out that the solution is asymptotically constant.
We also study equations for the profile function of the self-similar solution, and
establish a comparison principle and an existence result of solutions to general
stationary problems.

Chapter 2 is devoted to the asymptotic behavior of solutions to fully nonlinear
second order parabolic equations including a generalized curvature flow equation
which was introduced by Mullins in 1957 as a model of evaporation-condensation.
We prove that, in the multi-dimensional half space, solutions of the problem with
prescribed contact angle asymptotically converge to a self-similar solution of the
associated problem under a suitable rescaling. Several properties of the profile
function of the self-similar solution are also investigated. We show that the
profile function has a corner and that its angle is determined by points at which
the equation is degenerate. We also study the depth of the groove, which is
represented by the value of the profile function at the boundary. Among other
results it turns out that, as the contact angle tends to zero, the depth of the
groove is well approximated by the linearized problem.

In Chapter 3 we establish an isoperimetric inequality constrained by n-
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dimensional lattices. We prove that, among all sets which consist of lattice
translations of a given rectangular parallelepiped, a cube is the optimal shape
that minimizes the ratio involving its perimeter and volume as long as the cube is
realizable by the lattice. For its proof, the solvability of finite difference Poisson-
Neumann problems is verified. Our approach to the isoperimetric inequality is
based on the technique used in a proof of the Aleksandrov-Bakelman-Pucci max-
imum principle, which was originally proposed by Cabré in 2000 to prove the
classical isoperimetric inequality.

Chapter 4 is concerned with the level set method. In the classical level set
method, a slope of a solution to level set equations can be close to zero as time
develops even if the initial slope is large, and this prevents one from computing
interfaces given as the level set of the solution. To overcome this issue we in-
troduce an improved equation by adding an extra term to the original equation.
Then, by applying a comparison principle to the signed distance function to the
interface, we prove that, globally in time, the slope of a solution of the initial
value problem is preserved near the zero level set.

Chapter 1 is combination of papers [1] and [4], while Chapter 2 is essentially
based on [3]. Chapter 3 is essentially based on [2].

All Sections, formulas and theorems, etc., are cited only in the chapter where
they appear.
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Chapter 1

Hamilton-Jacobi equations
with discontinuous source
terms

1 Introduction

We consider the initial-value problem for the Hamilton-Jacobi equation of the
form

(HJ)

{
∂tu+H(x,∇u) = 0 in Rn × (0, T ) =: Q, (1.1)

u|t=0 = u0 in Rn, (1.2)

when the Hamiltonian H is discontinuous in space variable x ∈ Rn. Here ∇u
denotes the spatial gradient, i.e., ∇u = ∇xu = (∂x1u, . . . , ∂xnu). A typical
example we consider is the case when

H(x, p) = −|p| − cI(x) (c > 0) (1.3)

with

I(x) :=

{
1 (x = 0),

0 (x ̸= 0),
(1.4)

where | · | stands for the standard Euclidean norm in Rn. In other words,
the source term can be discontinuous. Our main goal is to introduce a suitable
definition of weak solution (by extending the theory of viscosity solutions) so that
the initial-value problem admits a unique global-in-time solution for a general
bounded Lipschitz continuous initial data u0 ∈ BLip(Rn) or even just bounded
uniformly continuous initial data u0 ∈ BUC (Rn).

Our motivation comes from crystal growth phenomena. One of key mecha-
nisms of crystal growth is the two dimensional nucleation ([6, 36]). This growth
is started by external supply of crystal molecules for a flat face. Such a source
of supply is called a step source. This is a macroscopic understanding of crystal
growth. At a very initial stage of the two dimensional nucleation the step source
catches crystal molecules so that a small disk-like island is formed at the step
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source on a flat face. Then the island grows to be a “wedding cake” consisting
of several disks. The other mechanism is the spiral growth ([6]). As pointed out
by [6] a pair of two spirals (with opposite orientations) whose centers are very
close essentially forms a small island just like the two dimensional nucleation;
see, e.g., [38] and [33]. According to [37], some high-temperature superconductor
provides such a model and the authors proposed a macroscopic model including
(1.1)–(1.3) approximating spiral growth on a crystal surface. Both situations
can be modeled by Hamilton-Jacobi equations with discontinuous source terms
if we interpret the phenomena in macroscopic point of view.

Let us consider the typical case that there is a step source only at the origin
and crystals grow at the uniform velocity 1 horizontally. Assume that the step
source supplies crystal molecules at a rate of c (> 0) and let u(x, t) be the height
of crystals at position x ∈ Rn and time t ∈ (0, T ). (See Figure 1.) Then,

O x

u(x, t)

∂tu

|∇u|
= 1

supplying rate c

Figure 1: The step source at the origin.

the horizontal outward growth rate of crystals is given by ∂tu/|∇u|. Since the
horizontal growth speed is one, we have

∂tu = |∇u|

provided that ∇u ̸= 0. However, this equation does not include the effect of step
sources. It is natural to postulate that the growth rate ∂tu at the origin should
increase by c due to the step source. The resulting equation is formally of the
form

∂tu− |∇u| = cI(x). (1.5)

The corresponding Hamiltonian (1.3) is not continuous but lower semicontinuous.
The equation (1.5) is a Hamilton-Jacobi equation with a discontinuous source
term. The physical intuition suggests that

uc(x, t) = c(t− |x|)+ (1.6)

is a solution for (1.5) when the initial-value equals zero (see Figure 2), where a+
denotes the positive part of a ∈ R, i.e., a+ = max{a, 0}. Such a “solution” is
proposed in [30, 37] by variational principle. The function uc is also obtained
via approximation. More precisely, if we consider approximate Hamiltonians

Hε(x, p) = −|p| − cIε(x) (1.7)
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with

Iε(x) =

(
1− |x|

ε

)
+

(1.8)

for ε > 0 and solve (HJ) with Hε and u0 ≡ 0, it turns out that the unique
viscosity solution of the approximate problem uniformly converges to uc as ε ↓ 0.
(See Example 3.2 for more details.) However, it is an important issue how to
characterize uc.

x ∈ R

t

u(x, t)

O

Figure 2: The intuitive solution of ∂tu− |∇u| = I(x), u0 ≡ 0.

Unfortunately, we cannot expect the uniqueness of solutions for (1.5) even
in Ishii’s sense of viscosity solutions [26], where a discontinuous Hamiltonian is
treated. Indeed, uc is a solution but uα(x, t) := α(t−|x|)+ for α ∈ [0, c] is also a
solution with the zero initial data. This is caused by an inadequate effect of the
discontinuous term. More precisely, in the standard definition of supersolutions
we use the upper semicontinuous envelope ofH, that isH∗(x, p) = −|p|, but then
the term cI(x), which is a key term of our equation (1.5), disappears. Hence,
in order to guarantee the uniqueness we must introduce some proper notion of
supersolutions reflecting discontinuities and keep the notion of a subsolution in
a standard way. Instead of using H∗ we are tempted to define a supersolution
(D-supersolution) by requiring

τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D−u(x̂, t̂), (1.9)

where D−u denotes the subdifferential. However, uα is a D-supersolution no
matter how α ∈ (0, c] is taken. We are led to introduce a notion ofD-supersolution

by replacing D−u in (1.9) with D
−
u, a kind of “closure” of D−u. We shall es-

tablish a general comparison principle for D-super- and subsolutions (Theorem
2.6). Applying this comparison principle we are able to establish a comparison
principle for Lipschitz continuous D-super- and subsolutions for (1.5) (Theorem
2.9). The reason we need Lipschitz continuity is that our general comparison
principle needs continuity of H in x for large |p| which excludes (1.5).

We next discuss the existence problem. Unfortunately, the intuitive solu-
tion uc in (1.6) is not a D-supersolution. We have to weaken the definition of
supersolutions by regarding the infimum of a family of D-supersolutions as a
“supersolution”. We call such a supersolution an envelope supersolution. By
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definition we have a comparison principle for envelope super- and subsolutions.
In this way, we introduce a notion of an envelope solution (envelope super- and
subsolution) and construct a global-in-time solution by approximating equations
with continuous Hamiltonians (Proposition 3.7). It turns out that the envelope
solution is a proper notion of the solution. Indeed, it is easy to see that uc is a
unique envelope solution of (1.5) with the zero initial data. Moreover, we show
that our solution preserves the Lipschitz continuity and uniform continuity of
the initial data if Hamiltonian is coercive. Thus the envelope solution is unique
for Lipschitz continuous initial data. Moreover, by a suitable approximation
argument one is able to conclude that the envelope solution we constructed is
unique even for bounded uniformly continuous initial data (Theorem 3.19). The
typical H(x, p) we are concerned with is

H(x, p) = H0(x, p)− r(x), (1.10)

where H0 is a continuous coercive Hamiltonian and r is a bounded lower semi-
continuous function. No convexity (concavity) assumption on p 7→ H(x, p) is
imposed, though our example (1.3) is concave in p. In this case, we prove that
there exists a unique uniformly continuous envelope solution for all bounded
uniformly continuous initial data (Theorem 3.20).

The name “an envelope solution” was also introduced in [2] and [1] in or-
der to deal with boundary conditions. They considered equations with contin-
uous Hamiltonians, and defined the notion of envelope supersolutions as the
infimum of standard viscosity supersolutions. Except on the boundary their
envelope supersolution is a standard viscosity supersolution since the infimum
of supersolutions in a domain is known to be a supersolution. Different from
their solutions, our envelope solutions for discontinuous Hamiltonians may not
be a D-supersolution. Moreover, it is not clear whether or not there is a way to
characterize our envelope solutions by using a suitable class of test functions.

In the argument above we obtain the unique existence result for a Hamilto-
nian with the form (1.10) only when it is coercive. This is caused by a limitation
of our comparison principle. In order to guarantee the continuity of H(x, p) in x
for large |p|, we define a relaxed Hamiltonian Ĥ by regularizing the discontinuity
of H. It turns out in several interesting examples that our envelope solution of
(1.1) is also an envelope solution of (1.1) with a relaxed Hamiltonian Ĥ which
permits a general comparison principle without assuming the Lipschitz continu-
ity of solutions. Then, by regarding our envelope solution of the original problem
as that of the relaxed problem, we establish the uniqueness of the envelope solu-
tions but only for more restrictive Hamiltonians (Proposition 4.5). Fortunately,
this still applies to the problem with finitely many source terms. (See (1.11)
with (1.12).) It turns out that the relaxed Hamiltonian corresponding to (1.3)
is

Ĥ(x, p) = −|p| − (cI(x)− |p|)+,

which is continuous if |p| >= c. (This Hamiltonian is coercive but it is very
instructive to calculate Ĥ.) Also, uc in (1.6) becomes an envelope solution of
the relaxed problem.
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If we consider the relaxed problem, there are more chances that an envelope
solution is a D-solution. We give its sufficient condition. Note that there still
exists an envelope solution which is not a D-solution.

Our theory applies to more physically interesting examples including

∂tu− |∇u| = r(x), (1.11)

where r : Rn → R is bounded and upper semicontinuous, i.e., r ∈ BUSC (Rn).
A typical example in our mind is

r(x) =
N∑
j=1

cjI(x− aj) (cj > 0, aj ∈ Rn, ai ̸= aj(i ̸= j)). (1.12)

This is the case that the step source is distributed at several singletons. It turns
out that the resulting unique envelope solution with zero initial data is

u(x, t) =
N

max
j=1

cj(t− |x− aj |)+, (1.13)

which tells us that the envelope solution is the maximum of solutions for each
step source. As an another example we have

r(x) = cχS(x) (c > 0 and S is a nonempty closed subset of Rn). (1.14)

Then (1.11) means that the step source is concentrated at a general set S. Here
χS is the characteristic function of S, namely

χS(x) :=

{
1 (x ∈ S),

0 (x ̸∈ S).

Our theory guarantees the unique existence of envelope solutions of (1.11) for
general bounded uniformly continuous initial data. We are interested in estab-
lishing a representation formula of solutions based on the optimal control theory.
However, the traditional method can be applied only for continuous equations.
In this paper we adopt a discontinuous function appearing in our equation as
a running cost function and prove that our envelope solution can be given via
the value function of this discontinuous control problem under the some kind of
controllability condition. Such an interpretation gives several explicit represen-
tation formulas of solutions. For example it guarantees that (1.13) is an envelope
solution of (1.11) with (1.12) and u0 ≡ 0.

Our theory applies to more general growth models including anisotropy. The
typical form is

∂tu− |∇u|U
(
−∇u
|∇u|

)
σ(x) = r(x). (1.15)

Here U(n) : Sn−1 = {x ∈ Rn | |x| = 1} → R is the growth rate in the direction
n ∈ Sn−1 and −∇u/|∇u| means the outward unit normal vector to the level
sets of u. The function σ : Rn → R is called the surface supersaturation.
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Since |p|U(−p/|p|) → 0 as |p| → 0 provided that U is continuous, (1.15) has no
singularity contrary to its seemingly singular appearance. The unique existence
result for (1.15) is included in Theorem 3.20.

When the Hamiltonian is non-coercive ([37, 42]), the problem becomes more
complicated. We cannot expect uniqueness results similar to the coercive cases.
The difficulty may be seen from the following two examples. The first one is

H(x, p) = −cI(x) (c > 0), (1.16)

which means that there is no horizontal growth. Obviously u(x, t) = ctI(x) seems
to be the solution when the initial-value equals zero. However, the solution is
not continuous and the uniqueness of solutions breaks down in our definition as
will be mentioned in Example 3.16. The second one is

Hc(x, p) = − |p|
1 + |p|

− cI(x) (c > 0). (1.17)

This Hamiltonian arises in physical phenomena ([37]) where growth velocity is
dependent on the gradient of the crystal surface. For 0 < c < 1 we show
in Theorem 4.8 that there exists a unique envelope solution for any bounded
uniformly continuous initial data.

In [42] and [24] a step source is considered as a Dirichlet boundary condition.
One may think that our envelope solution of (1.5) coincides with a solution of
the Dirichlet boundary problem with u(0, t) = ct + u0(0) at the origin. This
guess is correct provided that a slope of the initial data is less than or equal to
c. However, if not, it turns out that the Dirichlet problem may give a different
solution from our problem with (1.3). We also discuss a relation to the dynamic
boundary condition ∂tu(0, t) = c.

In the latter part of this chapter, we study the large time behavior of the
unique envelope solution to the following problem:

(HJ1)

{
∂tu(x, t)−H1(∇u(x, t)) = r(x) in Rn × (0,∞), (1.18)

(1.2).

Here H1 is a continuous and coercive Hamiltonian and r ∈ BUSC (Rn) is non-
negative. The large time behavior is discussed via the scaling method. Namely,
we study the limit of the rescaled function of the solution u which is defined as

u(λ)(x, t) :=
1

λ
u(λx, λt)

for λ > 0. Our goal is to find a function v which is a solution to the associated
problem of (HJ1) and characterizes the limit of u(λ) in the sense that

u(λ)(x, t) → v(x, t) as λ→ ∞. (1.19)

Once the convergence of the type (1.19) is obtained, putting t = 1 and λ = t,
we get

1

t
u(tx, t) → v(x, 1) as t→ ∞, (1.20)
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which is the large time behavior of u. To study the scaling limit of u we consider
the equation for u(λ). Differentiating the rescaled function, we see u(λ) satisfies
the equation

∂tu(λ) −H1(∇u(λ)) = r(λx) in Rn × (0,∞) (1.21)

and the initial data

u(λ)(x, 0) =
1

λ
u0(λx).

Assuming that u0 is bounded, the above initial data uniformly converges to zero.
However, the source term in (1.21) may oscillate as λ → ∞. In this paper we
treat source terms r with special forms for which we are able to compute the
scaling limit of solutions. The results include two types of source terms; source
terms with compact support and periodic source terms.

We first suppose that the support of r(x), which is

supp(r) := {x ∈ Rn | r(x) ̸= 0},

is compact in Rn. In this case, since the graph of r(λx) concentrates into the
origin and keeps its maximum value c := maxRn r as λ → ∞, it is reasonable
to expect that the scaling limit of the solution is characterized as the unique
envelope solution of

∂tv −H1(∇v) = cI(x) in Rn × (0,∞) (1.22)

with the zero initial data. In fact, it will be shown in Theorem 6.5 that the
convergence (1.19) holds locally uniformly in Rn × [0,∞) for the solution v.
Under some restrictive assumptions we also give an example of the scaling limit
of solutions when r has non-compact support (Example 6.7).

We are also interested in periodic source terms. It turns out that, if r(x) =
r(x+ a) for all a ∈ Zn, then we have (1.19) in the sense of uniform convergence
for v(x, t) = ct with c = maxRn r. This is a natural result since the source term
is uniformly distributed in space as λ → ∞. Our problem for periodic source
terms is closely related to homogenization problems ([29, 18, 41]), and, when r
is continuous, our result on the large time behavior is indeed consistent with the
classical result in the homogenization theory (Remark 6.12).

The envelope solution (1.6) of (1.5) with the zero initial data is self-similar
in the sense that uc is scaling invariant, i.e., uc = (uc)(λ) for all λ > 0. More
generally, as long as solutions are unique, the envelope solution v of (1.22) with
the zero initial data is self-similar. Thus the result (1.19) means convergence
to the self-similar solution of the limit problem. In other words, the solution
u of the original problem is asymptotically self-similar although u itself is not
necessarily self-similar. When a function v(x, t) is self-similar, it is represented as
v(x, t) = tv(x/t, 1) = tV (x/t), where V (x) := v(x, 1) is called a profile function
of v. The profile function also appears in (1.20) as the limit of u, and so (1.20)
asserts asymptotic convergence of u to the profile function. In Section 7 we will
derive a stationary equation for the profile function and show that an envelope
solution V of the stationary equation gives that of the time-dependent problem
by letting v(x, t) = tV (x/t). We also establish a comparison principle and an
existence result of solutions to general stationary problems.
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In this paper we mainly discuss the case when the given Hamiltonian H(x, p)
is lower semicontinuous with respect to x. We here recall some preceding studies
about the viscosity solution theory for PDEs with discontinuous Hamiltonians.
Shortly after the establishment of notions of viscosity solution, Ishii [26] studied
discontinuous Hamiltonians with respect to the variables t and u. Discontinuities
in the space variable x are investigated in many other works later.

For the stationary problem, the equation of eikonal type was studied by
Newcomb and Su [32], Ostrov [34], Deckelnick and Elliott [13] and Soravia [40].
In [32] the authors considered the equation H(∇u) = n(x). Here H(p) is convex,
coercive and positive except at p = 0 and n is assumed to be lower semicontinuous
and positive. They introduced a suitable notion called Monge solutions, which,
in the case of continuous Hamiltonians, are consistent with the usual viscosity
solution. Briani and Davini [5] generalized the approach of Monge solutions
for the equation H(x,∇u) = 0, where H(x, p) is only assumed to be Borel
measurable and quasi-convex in p. Although we did not check, we expect that
our envelope solution should agree with the Monge solution when the latter is
available. The work by Soravia [39] is related to our results concerning the
optimal control theory. The author of [39] considered the equation

λu(x) + sup
a∈A

{−⟨f(x, a),∇u(x)⟩ − h(x, a)} = g(x)

with a Borel measurable function g. Here ⟨·, ·⟩ denotes the standard Euclidean
inner product. The author established a general uniqueness result in the sense of
lower semicontinuous solutions, which was introduced by Barron and Jensen [4].
However, the uniqueness result does not apply to our setting since the definition
of solutions like lower semicontinuous solutions is not suitable for (1.4). The
reason is that it is impossible to choose the intuitive solution uc exclusively even
if we impose an additional condition about test functions from the opposite side
no matter which definition of solutions (standard, D- or D-) we use.

For the time-dependent problem, Camilli and Siconolfi [9] considered the
equation ∂tu+H(x,∇u) = 0, where the Hamiltonian H(x, p) is measurable in x
and convex, coercive in p. The convexity is used to guarantee the Legendre trans-
form and the equivalence of a.e. subsolution and viscosity subsolution. However,
such measure theoretic approach does not give a suitable notion of solutions to
our problems because the jump discontinuity such as cI(x) is negligible with re-
spect to the Lebesgue measure. Actually, it is reasonable to understand that the
discontinuity depends on what kind of measure we consider as discussed at the
end of this paper (Appendix C). See also [8] for an earlier work where a solution
formula established for this type of equation under similar assumptions on H
with positive 1-homogeneity on the function p 7→ H(x, p). For discontinuity of
different types, there are a few works on the equations of the form

∂tu+ f(x, t)h(x,∇u) = 0

with discontinuous f , which has important applications in front propagations.
Deckelnick and Elliott [14] obtained the unique existence of continuous vis-
cosity solutions for the one space dimensional case when f(x, t) = a(x) and
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h(x, p) =
√

1 + p2, where a is assumed to be bounded, of bounded variation and
one-sided Lipschitz continuous. Afterwards Chen and Hu [10] studied a more
general case when f depends on t but h depends only on p. They assumed that
f is positive, bounded and measurable and h is non-negative and Lipschitz con-
tinuous. More recently, with the optimal control theory involved De Zan and
Soravia [15] discussed the unique existence of solutions when h depends also on
x while f is independent of t and piecewise Lipschitz continuous across Lipschitz
hypersurfaces. Our results are therefore different from these above. The discon-
tinuity of Hamiltonians we are concerned with is given as a source term instead
of the jump of propagating speed, which is also studied recently in [23].

For the second order equation, Caffarelli, Crandall, Kocan and Swiȩch [7]
studied fully nonlinear and uniformly elliptic PDEs by utilizing Lp-viscosity so-
lution theory. However, the situation is quite different from ours.

The large time behavior of solutions u to Hamilton-Jacobi equations is well
studied in the sense that

u(x, t) ∼ λt+ ϕ(x) as t→ ∞ (1.23)

when equations are continuous ([31, 20, 3, 35, 12]). However, the scaling limit
of u in our sense gives a different limit from (1.23) both in the non-periodic case
(Example 6.6) and in the periodic case (Example 6.13).

For the scaling limit of solutions to second order equations, the reader is
referred to the book [22]. There, via the scaling method, self-similar solutions
are analyzed for various equations including the heat equation, Navier-Stokes
equation, porous medium equation and so on. The papers [16, 27] are concerned
with the curvature flow equations for graphs. Under a suitable growth condi-
tion, the authors of these papers study the asymptotic behavior of solutions to
the curvature flow equations over the whole space. Recently, the author of the
present paper studied the asymptotic behavior of solutions to fully nonlinear
parabolic equations including a generalized curvature flow equation which ap-
pears in a model of evaporation-condensation; see Chapter 2 in this paper. It
was shown that the scaling limit of solutions to the problem is characterized as
a self-similar solution to the associated problem, which is, in the evaporation-
condensation model, the usual mean curvature flow equation for graphs.

This paper is organized as follows. In Section 2 we first define some notions of
solutions. Then we establish two types of comparison principles for D-solutions;
a general version which excludes (1.5) and a Lipschitz version which includes
(1.5) but needs Lipschitz continuity of solutions. Section 3 is devoted to ex-
istence problems of solutions. We prove that there exists a unique envelope
solution of (HJ) when H is coercive. Section 4 deals with relaxed Hamiltonians.
After introducing the relaxed Hamiltonians, we deduce a unique existence result
of envelope solutions without the coercivity assumption. Also, we discuss the
existence of D-solutions. Section 5 is dedicated to showing some examples of
envelope solutions. We also mention the relation between our envelope solutions
and solutions of Dirichlet boundary problems. In Section 6 we study the large
time behavior of envelope solutions to (HJ1). We prove that, if the support
of the source term r is compact, then the solution converges to the self-similar
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solution of (1.22) under rescaling. Periodic source terms are also investigated.
Section 7 is devoted to stationary problems. We first study equations for profile
functions of the self-similar solutions. We next establish a comparison principle
and an existence result of solutions to general stationary problems.

2 Proper definition of solutions and comparison prin-
ciples

2.1 Definition of solutions

We first recall the notion of super- and subdifferentials to define a viscosity
solution. For u : Q→ R and (x̂, t̂) ∈ Q we set a superdifferential D+

Qu(x̂, t̂) and

an extended superdifferential D
+
Qu(x̂, t̂) by

D+
Qu(x̂, t̂) :={
(p, τ) ∈ Rn ×R

∣∣∣∣ ∃ϕ ∈ C1(Q) such that (p, τ) = (∇ϕ, ∂tϕ)(x̂, t̂)
and maxQ(u− ϕ) = (u− ϕ)(x̂, t̂)

}
, (2.1)

D
+
Qu(x̂, t̂) :=(p, τ) ∈ Rn ×R

∣∣∣∣∣∣
∃{(xm, tm)}m∈N ⊂ Q, ∃{(pm, τm)}m∈N ⊂ Rn ×R,

such that (pm, τm) ∈ D+
Qu(xm, tm), (xm, tm) → (x̂, t̂),

(pm, τm) → (p, τ) and u(xm, tm) → u(x̂, t̂) as m→ ∞

 ,

(2.2)

where N := {1, 2, 3, . . . }. We denote a subdifferential D−
Qu(x̂, t̂) and an extended

subdifferential D
−
Qu(x̂, t̂) by

D−
Qu(x̂, t̂) := −D+

Q(−u)(x̂, t̂) and D
−
Qu(x̂, t̂) := −D+

Q(−u)(x̂, t̂).

We can also define D−
Q and D

−
Q by replacing, respectively, max by min in (2.1)

and D+
Q by D−

Q in (2.2). Index Q is often omitted. It is known that D+ and D−

are closed convex subset of Rn ×R. (See [2, Lemma II.1.8.(a)].)
We call ϕ ∈ C1(Q) a corresponding test function for (p, τ) ∈ D+u(x̂, t̂),

where ϕ appears in (2.1). One can take such ϕ as a separated form, i.e.,
ϕ(x, t) = ψ(x) + g(t) with ψ ∈ C1(Rn) and g ∈ C1(0, T ). (See [21, Proposition
2.2.3.(i)].) Moreover we call {(xm, tm), (pm, τm)}m∈N ⊂ Q×D+u(xm, tm) a defin-

ing approximate sequence for (p, τ) ∈ D
+
u(x̂, t̂), where (xm, tm) and (pm, τm) are

given in (2.2).

Definition 2.1. Let H = H(x, p) be a real valued function defined in Rn ×Rn

and let u be a real valued function in Q.

(1) We call u a (standard) viscosity supersolution (resp. subsolution) of (1.1)
if u is bounded from below (resp. from above) in Q and

τ +H∗(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D−
Qu∗(x̂, t̂). (2.3)

(resp. τ +H∗(x̂, p) <= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D+
Qu

∗(x̂, t̂).)
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We denote by SUP(H) and SUB(H) respectively the set of all supersolu-
tions and subsolutions of (1.1).

(2) If u ∈ SUP(H) (resp. u ∈ SUB(H)) defined in Q0 := Rn × [0, T ) is
continuous on Rn ×{0} and satisfies the initial condition (1.2), it is called
a viscosity supersolution (resp. subsolution) of (HJ) and then we write
u ∈ SUP(H,u0) (resp. u ∈ SUB(H,u0)).

(3) We say that u is a viscosity solution if it is both a viscosity supersolution
and a viscosity subsolution. Define SOL(H) := SUP(H) ∩ SUB(H) and
SOL(H,u0) := SUP(H,u0) ∩ SUB(H,u0).

Remark 2.2. (1) For any subset L ⊂ RN and h : L → R we denote the
upper semicontinuous envelope (resp. lower semicontinuous envelope) by
h∗ (resp. h∗) : L→ R ∪ {±∞}, which is as follows:

h∗(z) := lim sup
y→z

h(y) = lim
δ↓0

sup{h(y) | y ∈ Bδ(z) ∩ L}

(resp. h∗(z) := lim inf
y→z

h(y) = lim
δ↓0

inf{h(y) | y ∈ Bδ(z) ∩ L}) (z ∈ L),

where Br(x) stands for the closed ball with center x and radius r. (We
denote the open ball by Br(x).) The function h∗ is characterized as the
smallest upper semicontiuous function on L that is greater than h on L,
while h∗ is the greatest lower semicontiuous function on L that is smaller
than h on L.

(2) We can replace D−
Q in (2.3) by D

−
Q since H∗ is applied in the definition.

This can be easily shown by taking limits.

(3) It often assumes one side local boundedness of sub- and supersolutions in-
stead of global boundedness in the literature. We impose the boundedness
assumption to simplify the argument. Also, when we think of the initial
value problem (HJ), we require solutions to be continuous at t = 0 for the
sake of simplicity.

Example 2.3. Let us consider (HJ) with (1.3) and u0 ≡ 0. It is easy to verify
that functions uα(x, t) := α(t−|x|)+ (0 <= α <= c) are all viscosity solutions of this
initial-value problem in the standard sense above. We must therefore strengthen
the definition of solutions in order to get uniqueness. As mentioned in Section 1,
we adopt a new definition in which H instead of H∗ is used in (2.3). However,

notice that in this case the definition by D−
Q and that by D

−
Q are different.

Definition 2.4. Let u : Q → R. We call u a D-viscosity supersolution (resp.
D-viscosity supersolution) of (1.1) if u is bounded from below in Q and

τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D−
Qu∗(x̂, t̂).

(resp. τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ Q and (p, τ) ∈ D
−
Qu∗(x̂, t̂).)

We denote by D-SUP(H) (resp. D-SUP(H)) a set which consists of all
D-supersolutions (resp. D-supersolutions) of (1.1). Moreover we similarly de-
fine a corresponding viscosity subsolution, solution, solution of the initial-value
problem, and set notations by marking D- or D-.
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About three notions of supersolutions defined so far we have the inclusion
relation SUP(H) ⊃ D-SUP(H) ⊃ D-SUP(H) in general, and these sets are the
same for upper semicontinuous H. Since we mainly think of a lower continuous
H, as for subsolutions we have SUB(H) = D-SUB(H) = D-SUB(H) in many
cases.

Example 2.5. We revisit the Example 2.3. How about solutions of our equation
in the sense of D- or D-solutions? Since there is no smooth function that touches
uα from below at (0, t̂) (t̂ > 0) when α ∈ (0, c], they all become D-solutions.
(When α = 0, the function u ≡ 0 is not a D-supersolution.) This suggests
that D-solutions are still not unique. For this reason we adopt D-solutions as
a proper definition for the moment, and we will show comparison principles for
such solutions in the next subsection.

2.2 Comparison principles

We will show comparison principles (CP for short), which are important to prove
uniqueness of solutions. The following two assumptions are standard for usual
CP.

(Hp) There exists a modulus ω1 ∈ M such that |H(x, p)−H(x, q)| <= ω1(|p− q|)
for all x, p, q ∈ Rn.

(Hx) There exists a modulus ω2 ∈ M such that |H(x, p) − H(y, p)| <= ω2((1 +
|p|)|x− y|) for all x, y, p ∈ Rn.

Here we denote by M the set of all moduli of continuity, namely

M :=

{
ω : [0,∞) → [0,∞)

∣∣∣∣ ω(0) = 0, ω is continuous at 0
and nondecreasing on [0,∞).

}
.

We still use (Hp) now. Since we should treat discontinuous Hamiltonians
with respect to the space variable, we weaken (Hx) in the following manner.

(HxN ) There exist a modulus ω2 ∈ M and a constant N > 0 such that |H(x, p)−
H(y, p)| <= ω2((1 + |p|)|x− y|) for all x, y ∈ Rn and p ∈ Rn \BN (0).

This condition means that (Hx) holds if |p| is large. Note that (1.3) does not
satisfy (HxN ).

Before stating our CP, we check that H satisfying (Hp) and (HxN ) is locally
bounded in Rn ×Rn. This fact will be used in the proof of CP. Since the local
boundedness is clear in Rn × (Rn \ BN (0)), we show that H is bounded in
B1(x) × B1(p) for any (x, p) ∈ Rn × BN (0). Take any (y, q) ∈ B1(x) × B1(p)
and p′ ∈ Rn such that N <= |p′| <= N + 1. Then, we calculate

|H(x, p)−H(y, q)|
<=|H(x, p)−H(x, p′)|+ |H(x, p′)−H(y, p′)|+ |H(y, p′)−H(y, q)|
<=2ω1(|p− p′|+ 1) + ω2((1 + |p′|)|x− y|)
<=2ω1(2N + 2) + ω2(N + 2),

which yields our claim.
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Theorem 2.6 (CP–general version). Assume that H satisfies (Hp) and (HxN ).
Let u and v : Q0 → R be, respectively, bounded from above and bounded from
below in Q0. Assume that u ∈ D-SUB(H) and v ∈ D-SUP(H). If u∗(·, 0) <=
v∗(·, 0) in Rn, then u∗ <= v∗ in Q.

Though our assumption for H is weaker than the classical one, our definition
of solutions is stronger, and so we can keep balance.

Proof. 1. Suppose by contradiction that there would exist (x0, t0) ∈ Rn × (0, T )
such that u∗(x0, t0) − v∗(x0, t0) =: A > 0. We define a function F : (Rn ×
[0, T ])2 → R ∪ {−∞} by

F(x, t, y, s) := u∗(x, t)− v∗(y, s)−Ψ(x, t, y, s)

with Ψ(x, t, y, s) :=
1

2ε2
(
|x− y|2 + |t− s|2

)
+ βf(x) +

α

T − t
,

where α ∈ (0, A(T − t0)), β > 0, ε > 0 and f(x) =
√
1 + |x− x0|2 − 1. Note

that f >= 0, f ∈ C1(Rn) and |∇f | <= 1. Also, by the choice of α, we have

F(x0, t0, x0, t0) = u∗(x0, t0)− v∗(x0, t0)−
α

T − t0
> 0.

Since u and −v are bounded from above, F attains its maximum in (Rn×[0, T ])2

at some (xε, tε, yε, sε) ∈ (Rn × [0, T ))2. Then, we see

F(xε, tε, yε, sε) >= F(x0, t0, x0, t0) > 0. (2.4)

2. Set M := supQ0
u∗ + supQ0

(−v∗) (< ∞). Then we have βf(xε) < M by
(2.4), and hence {xε}ε>0 is bounded. Furthermore, since we also have |xε−yε| <=√
2Mε and |tε − sε| <=

√
2Mε by (2.4), we may assume that there exists some

(x̂, t̂) ∈ Rn × [0, T ] such that

lim
ε↓0

(xε, tε, yε, sε) = (x̂, t̂, x̂, t̂). (2.5)

Here, we claim that t̂ ∈ (0, T ). By (2.4) we observe

0 < lim sup
ε↓0

F(xε, tε, yε, sε) <= F(x̂, t̂, x̂, t̂).

However, since we have

F(x̂, 0, x̂, 0) = u∗(x̂, 0)− v∗(x̂, 0)− βf(x̂)− α

T
< 0,

F(x̂, T, x̂, T ) = −∞,

it follows that t̂ ̸= 0 and t̂ ̸= T .
3. We remark that

F(x̂, t̂, x̂, t̂) <= F(xε, tε, yε, sε) (2.6)
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because (xε, tε, yε, sε) is the maximizer of F . In view of (2.6) we calculate

lim sup
ε↓0

1

2ε2
(
|xε − yε|2 + |tε − sε|2

)
<= lim sup

ε↓0

{
−F(x̂, t̂, x̂, t̂) + u∗(xε, tε)− v∗(y

ε, sε)− βf(xε)− α

T − tε

}
<=−F(x̂, t̂, x̂, t̂) + u∗(x̂, t̂)− v∗(x̂, t̂)− βf(x̂)− α

T − t̂
= 0.

Hence

lim
ε↓0

|xε − yε|
ε

= 0, lim
ε↓0

|tε − sε|
ε

= 0. (2.7)

Also, by (2.6) and the upper semicontinuity of F , we observe

F(x̂, t̂, x̂, t̂) <= lim inf
ε↓0

F(xε, tε, yε, sε) <= lim sup
ε↓0

F(xε, tε, yε, sε) <= F(x̂, t̂, x̂, t̂),

which means
lim
ε↓0

F(xε, tε, yε, sε) = F(x̂, t̂, x̂, t̂).

This equality and (2.7) implies

lim
ε↓0

{u∗(xε, tε)− v∗(y
ε, sε)} = u∗(x̂, t̂)− v∗(x̂, t̂).

Now, we also observe

u∗(x̂, t̂) >= lim sup
ε↓0

u∗(xε, tε) >= lim inf
ε↓0

u∗(xε, tε)

= lim inf
ε↓0

{(u∗(xε, tε)− v∗(y
ε, sε)) + v∗(y

ε, sε)}

>= (u∗(x̂, t̂)− v∗(x̂, t̂)) + v∗(x̂, t̂) = u∗(x̂, t̂).

Consequently it follows that

lim
ε↓0

u∗(xε, tε) = u∗(x̂, t̂), lim
ε↓0

v∗(y
ε, sε) = v∗(x̂, t̂). (2.8)

4. We next calculate the first derivatives of Ψ at (xε, tε, yε, sε).

pεx := ∇xΨ(xε, tε, yε, sε) =
1

ε2
(xε − yε) + β∇f(xε),

pεy := ∇yΨ(xε, tε, yε, sε) = − 1

ε2
(xε − yε),

τ ε := ∂tΨ(xε, tε, yε, sε) =
1

ε2
(tε − sε) +

α

(T − tε)2
,

σε := ∂sΨ(xε, tε, yε, sε) = − 1

ε2
(tε − sε).

By the definitions of D± we have{
(pεx, τ

ε) ∈ D+u∗(xε, tε),

(−pεy,−σε) ∈ D−v∗(y
ε, sε),

(2.9)
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and therefore {
τ ε +H(xε, pεx) <= 0,

−σε +H(yε,−pεy) >= 0
(2.10)

since u ∈ D-SUB(H) and v ∈ D-SUP(H).
Here we discuss two different cases for subsequences of {pεy}ε>0:

There exists a sequence {ε(j)}j∈N such that ε(j) ↓ 0 (j → ∞) and

Case 1: |pε(j)y | → ∞.

Case 2: p
ε(j)
y → −p̄ for some p̄ ∈ Rn.

We will reach to contradiction for both cases. From now on we simply write ε
for ε(j).

Case 1. In terms of (HxN ) it is enough to apply the classical method.
Combining two inequalities in (2.10), we have

α

(T − tε)2
<= {H(yε,−pεy)−H(xε,−pεy)}+ {H(xε,−pεy)−H(xε, pεx)}.

Letting ε small and applying (HxN ) and (Hp), we compute

α

(T − tε)2
<= ω2((1 + |pεy|)|xε − yε|) + ω1(|pεx + pεy|)

= ω2

(
|xε − yε|+ 1

ε2
|xε − yε|2

)
+ ω1(|β∇f(xε)|).

Sending ε ↓ 0 in the above and using 1/T 2 <= 1/(T − t̂)2, we obtain α/T 2 <=
ω1(β|∇f(x̂)|) <= ω1(β). This is a contradiction for very small β.

Case 2. By (2.10) we see

α

(T − tε)2
+H(xε, pεx) <= σε <= H(yε,−pεy).

Thus we may assume that σε converges to some −τ̄ as ε ↓ 0 by the local bound-
edness of H. Now, since (2.5), (2.8) and

lim
ε↓0

(pεx, τ
ε, pεy, σ

ε) =

(
p̄+ β∇f(x̂),−p̄, τ̄ + α

(T − t̂)2
,−τ̄

)
hold, the definitions of D

±
and (2.10) yield

(
p̄+ β∇f(x̂), τ̄ + α

(T − t̂)2

)
∈ D

+
u∗(x̂, t̂),

(p̄, τ̄) ∈ D
−
v∗(ŷ, ŝ).

Therefore τ̄ +
α

(T − t̂)2
+H(x̂, p̄+ β∇f(x̂)) <= 0,

τ̄ +H(x̂, p̄) >= 0
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since u ∈ D-SUB(H) and v ∈ D-SUP(H). Consequently

α

T 2
<= H(x̂, p̄)−H(x̂, p̄+ β∇f(x̂)) <= ω1(β|∇f(x̂)|) <= ω1(β),

which is a contradiction for very small β.

Remark 2.7. (1) In general, whenever CP holds, we have ∥u1−u2∥Q <= ∥(u1|t=0)−
(u2|t=0)∥Rn for any two solutions u1 and u2 of (1.1), no matter which def-
inition of solutions we use. This is continuous dependence of the solutions
on the initial data. Here we write ∥f∥U := supU |f | for f : U → R.

(2) The term βf(x) in the definition of Ψ is added in order that F attains the
maximum in (Rn × [0, T ])2. If both u and v are periodic in Rn, namely
u(x, t) = u(x+

∑n
i=1 ei, t) and v(x, t) = v(x+

∑n
i=1 ei, t) for some linearly

independent e1, . . . , en ∈ Rn, the function F attains the maximum without
βf(x), and then we have pεx = −pεy. Therefore it is unnecessary to assume
(Hp) in this periodic case.

Corollary 2.8 (uniqueness of D-solutions). Assume that H satisfies (Hp) and
(HxN ). Then there exists at most one D-solution of (HJ) and it is continuous.

Proof. Let u, v ∈ D-SOL(H,u0). Applying Theorem 2.6 to a subsolution u and
a supersolution v, we get u∗ <= v∗ in Q. Next changing roles of u and v, we also
see v∗ <= u∗ in Q. Hence it follows that u∗ <= v∗ <= v∗ <= u∗ in Q, which yields
our claim.

The assumption (HxN ) was used only in Case1 in the proof of Theorem 2.6
for the situation that elements in D+u∗ and D−v∗ are unbounded. For any
Lipschitz continuous function w in Q, we have |p| <= Lip[w] and τ <= Lip[w]
whenever (p, τ) ∈ D+w(x̂, t̂) or (p, τ) ∈ D−w(x̂, t̂), where Lip[w] stands for the
Lipschitz constant of w. Therefore it is unnecessary to assume (HxN ) in order
to prove CP when one of solutions is Lipschitz continuous.

Theorem 2.9 (CP–Lipschitz version). Assume that H satisfies (Hp). Let u and
v : Q0 → R be, respectively, bounded from above and bounded from below in Q0.
Assume that u ∈ D-SUB(H) and v ∈ D-SUP(H). Furthermore assume that ei-
ther u or v is (space-time) Lipschitz continuous in Q. If u∗(·, 0) <= v∗(·, 0) in Rn,
then u∗ <= v∗ in Q.

As mentioned in Remark 2.7 (2), the assumption (Hp) is unnecessary for the
periodic case. It is not difficult to find that this version of CP applies to (1.3).

3 Existence results

3.1 Unique existence of envelope solutions

We adoptedD-solutions as a proper definition in Section 2.1 in order to guarantee
the uniqueness of solutions of (HJ) with (1.3) and u0 ≡ 0, but the existence turns
out to be an issue for a discontinuous Hamiltonian. We give two examples to
show the non-existence of D-solutions.
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Example 3.1. Let us consider (HJ) with (1.16) and u0 ≡ 0. Then u ≡ 0 is
a subsolution but is not a D-supersolution. Also, one observes that uε(x, t) =
ctIε(x) with (1.8) is a D-supersolution but is not a subsolution for each ε > 0.
Therefore, if there would exist a D-solution v, then 0 <= v∗ <= v∗ <= uε in Q by
Theorem 2.9. Sending ε ↓ 0, we see 0 <= v∗ <= v∗ <= ctI(x). Hence v∗ ≡ 0 in Q,
which contradicts the fact that 0 is not a D-supersolution. (See Figure 3.)

Figure 3: D-supersolutions tIε(x) of ∂tu = I(x), u0 ≡ 0 (the left) and their limit
tI(x) (the right). The latter is an envelope solution.

Example 3.2. Let us consider (HJ) with (1.3) and u0 ≡ 0. The intuitive
solution u(x, t) = c(t−|x|)+ is a subsolution but is not aD-supersolution because

(p, c) ∈ D
−
u(0, 1) (|p| = c) and c − |p| < cI(0). Now we think of approximate

problems

(ε.HJ)

{
∂tu+Hε(x,∇u) = 0 in Q,

u|t=0 = u0 in Rn,

where Hε is given by (1.7). Since we can write Hε(x, p) = −maxa∈B1(0)
⟨a, p⟩ −

cIε(x), the representation formula by the optimal control theory (see Section 5.1
for more details) implies that uε given by

uε(x, t) = sup
α∈A

∫ t

0
cIε(Xα(s))ds

is a unique viscosity solution of (ε.HJ). HereA = {α : [0, T ] → B1(0),measurable}
and Xα(s) is the solution of the state equation: X ′(s) = α(s) in (0, t), X(0) = x.
In other words, Xα(s) describes a trajectory which leaves at time 0 from x and
moves at velocity 1 or less. In this case for each x ∈ Rn the optimal control is
the one that leads to a straight trajectory before it comes to the origin and stays
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there after that moment. A direct calculation yields

uε(x, t)/c =


(
1− |x|

ε

)
t+

t2

2ε
(t <= |x|),

t− |x|2

2ε
(t >= |x|),

for |x| <= ε,

and uε(x, t)/c =


0 (t <= |x| − ε),

(t− |x|+ ε)2

2ε
(|x| − ε <= t <= |x|),

t− |x|+ ε

2
(t >= |x|),

for |x| >= ε.

The inequality H >= Hε implies that each uε is a D-supersolution of the original
(HJ). However, since uε ↓ u as ε ↓ 0, it is shown by the similar argument in the
previous example that there is no D-solution of (HJ). (See Figure 4.)

Figure 4: D-supersolutions uε of ∂tu − |∇u| = I(x), u0 ≡ 0 (the left) and their
limit (t− |x|)+ (the right). The latter is an envelope solution.

For (HJ) with (1.3) and u0 ≡ 0, there are infinitely many D-solutions while
there is no D-solution. This suggests that we must define another proper notion
of solutions.

Definition 3.3 (envelope solutions). Let S be a nonempty subset ofD-SUP(H).
If v := infw∈S w is bounded from below in Q, it is said to be an envelope viscosity
supersolution of (1.1). Let e.SUP(H) denote the set of all such solutions. If v is
also an envelope viscosity subsolution (write v ∈ e.SUB(H)), i.e., v = supw∈T w
for some T ⊂ D-SUB(H) and v is bounded from above in Q, we call it an
envelope viscosity solution. Set e.SOL(H) := e.SUB(H) ∩ e.SUP(H). We also
define e.SUB(H,u0), e.SUP(H,u0) and e.SOL(H,u0) as the sets of all (sub,
super)solutions of (HJ) similarly as before.

Remark 3.4. (1) The function ctI(x) is an envelope solution in Example 3.1
and c(t− |x|)+ is an envelope solution in Example 3.2. Also, Example 3.1
suggests that our envelope solution is not always continuous.

(2) Since standard viscosity supersolutions have stability, that is, the infimum
of them is still a supersolution (see for instance [11, Lemma 4.2]), the
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class of solutions does not become large by taking infimum. As for D-
supersolutions, however, we observed that infε>0 u

ε ̸∈ D-SUP(H) in Ex-
amples 3.1 and 3.2. In other words, stability under infimum does not hold
for D-supersolutions in general. By contrast, our envelope supersolutions
have such stability by the definition. We also learn by Example 3.2 that
D-supersolutions are not stable even under the uniform limit.

(3) We have D-SUP(H) ⊂ e.SUP(H ) ⊂ SUP(H), but the inclusion relation
e.SUP(H ) ⊂ D-SUP(H) does not hold in general. (See Figure 5.) The
function ctI(x) in Example 3.1 is its counter-example. If H is lower semi-
continuous, then e.SUB(H ) = SUB(H).

D-SOL : no solution

D-SOL : infinitely many solutions

??? : a unique solution

SOL : infinitely many solutions

e.SOL !

Figure 5: The notion of envelope solutions.

As was pointed out in Remark 3.4 (2) we do not have the stability under
infimum for D-supersolutions in general, but it is shown that the infimum of
finitely many D-supersolutions is still a D-supersolution.

Proposition 3.5 (stability under infimum of finitely many solutions). Let ui ∈
D-SUP(H) for all i ∈ {1, 2, . . . ,M}. Then u := minMi=1 ui ∈ D-SUP(H).

Proof. We first remark that u∗ = minMi=1(ui)∗. Fix (x̂, t̂) ∈ Q, (p, τ) ∈ D
−
u∗(x̂, t̂)

and take a defining sequence (xm, tm) ∈ Q, (pm, τm) ∈ D−u∗(xm, tm) (m ∈ N).
Then we have limm→∞ u∗(xm, tm) = u∗(x̂, t̂), and there exists a subsequence
{m(k)}k∈N of {m}m∈N such that

u∗(xm(k), tm(k)) = (ui)∗(xm(k), tm(k)) (∀k ∈ N)

for some i ∈ {1, 2, . . . ,M}. Observe that

u∗(x̂, t̂) = lim
m→∞

u∗(xm, tm)

= lim
k→∞

u∗(xm(k), tm(k))

= lim
k→∞

(ui)∗(xm(k), tm(k)) >= (ui)∗(x̂, t̂).

Therefore, it follows that u∗(x̂, t̂) = (ui)∗(x̂, t̂). We thus have

(pm(k), τm(k)) ∈ D−(ui)∗(xm(k), tm(k)), lim
k→∞

(ui)∗(xm(k), tm(k)) = (ui)∗(x̂, t̂),

and hence (p, τ) ∈ D
−
(ui)∗(x̂, t̂). Since ui ∈ D-SUP(H), we deduce that τ +

H(x̂, p) >= 0.
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We now present the uniqueness result for envelope solutions.

Proposition 3.6 (uniqueness of envelope solutions). Assume that H satisfies
(Hp) and (HxN ). Then there exists at most one envelope solution of (HJ). More-
over if H is lower semicontinuous, the unique envelope solution is upper semi-
continuous.

Proof. Let u, v ∈ e.SOL(H,u0). We first use the fact that u ∈ e.SUB(H,u0) and
v ∈ e.SUP(H,u0). By the definition of envelope sub- and supersolutions there
exists some T ⊂ D-SUB(H,u0) and S ⊂ D-SUP(H,u0) such that u = supw∈T w
and v = infW∈S W . Then applying Theorem 2.6 to w ∈ T and W ∈ S, we get
w∗ <=W∗ in Q, which yields u <= v in Q. Next changing roles of u and v, we also
see v <= u in Q, and hence our first claim is proved.

If H is lower semicontinuous, we apply Theorem 2.6 to u and W ∈ S. Then
we deduce that u∗ <= W∗ in Q, hence that u∗ <= v in Q. Since we also have
v∗ <= u in Q, it follows that u∗ <= v <= v∗ <= u in Q, and so our second claim
follows.

We next consider the existence of envelope solutions. We will construct the
solution as the infimum of uε, which are solutions for “good” Hamiltonians Hε

approximating H. Here “good” means that comparison and existence properties
are ensured for solutions. We use the following assumption.

(Hε) There exists a family {Hε}ε>0 ⊂ C(Rn × Rn) such that Hε ↑ H (ε ↓
0) pointwise, and for all ε > 0 and u0 ∈ BUC (Rn) the following two
statements hold.

(i) If wε ∈ SUB(Hε, u0) and v
ε ∈ SUP(Hε, u0), then (wε)∗ <= (vε)∗ in Q.

(ii) There exists a bounded solution uε ∈ SOL(Hε, u0).

If there is some uε ∈ SOL(Hε, u0), it is automatically continuous and a unique
solution by the comparison (i). Also, H satisfying (Hε) is lower semicontinuous.

We here recall the Perron’s method for constructing standard viscosity so-
lutions. (See for instance [11, Theorem 4.1.].) Let v ∈ SUB(H,u0), V ∈
SUP(H,u0) and v <= V in Q. Then u defined by

u := sup{w ∈ SUB(H,u0) | v <= w <= V in Q}

is a viscosity solution of (HJ). Functions v and V are called respectively a lower
barrier and an upper barrier. One can construct these barriers for all u0 ∈
BUC (Rn) provided that H(x, p) is bounded locally in p (see [21, Lemma 4.3.4.]),
i.e.,

(Hm) m(ρ) := sup{|H(x, p)| | (x, p) ∈ Rn ×Bρ(0)} <∞ for all ρ >= 0.

Proposition 3.7 (existence). Assume that H satisfies (Hε) and (Hm). Let
uε ∈ SOL(Hε, u0) in (Hε). Then u := infε>0 u

ε is an envelope solution of (HJ).

We call u constructed in this way a solution approximated from above. By
the definition u is upper semicontinuous.
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Proof. We first show that uε is monotone in ε. Let 0 < ε < ε′. Then uε ∈
SUB(Hε, u0), and also we see uε

′ ∈ SUP(Hε′ , u0) ⊂ SUP(Hε, u0) since Hε′ <=
Hε. Therefore we conclude that uε <= uε

′
by the comparison. This monotonicity

implies that u = lim sup∗ε↓0 u
ε and that u is bounded from above. Now, we are

able to take an upper semicontinuous lower barrier v ∈ SUB(H,u0) on account
of the assumption (Hm). Since v ∈ SUB(Hε, u0), we see by the comparison that
v <= uε, and so v <= u. We also find that u is bounded from below.

Since uε ∈ SUB(Hε), we see u ∈ SUB(lim inf∗ε↓0H
ε) = SUB(H) by the

stability of viscosity subsolutions. Also, u is an envelope supersolution of (HJ)
because u = infε>0 u

ε and uε ∈ SUP(Hε) ⊂ D-SUP(H). We finally show that
u is continuous at the initial time. Take any x ∈ Rn and (y, s) ∈ Q0. Then
v(y, s)− u0(x) <= u(y, s)− u0(x) <= uε(y, s)− u0(x) and both v(y, s) and uε(y, s)
converge to u0(x) as (y, s) → (x, 0). As a result we deduce that u(y, s) →
u0(x).

Remark 3.8. For any subset L ⊂ RN and hε : L → R (ε > 0) we denote
the upper relaxed limit (resp. lower relaxed limit) by h = lim sup∗ε↓0 h

ε (resp.

h = lim inf∗ε↓0 h
ε) : L→ R ∪ {±∞}, which is defined as

h(z) := lim sup
(ε,y)→(0,z)

hε(y) = lim
δ↓0

sup{hε(y) | y ∈ Bδ(z) ∩ L, 0 < ε < δ}

(resp. h(z) := lim inf
(ε,y)→(0,z)

hε(y) = lim
δ↓0

inf{hε(y) | y ∈ Bδ(z) ∩ L, 0 < ε < δ})

for z ∈ L. The following properties are easily seen by the definition: If hε ≡ h,
then h = h∗ and h = h∗. If hε ↓ h (resp. hε ↑ h) monotonously, then h = h∗

(resp. h = h∗). Also, h = lim sup∗ε↓0(h
ε)∗ and h = lim inf∗ε↓0(h

ε)∗ in general.

We next present examples of H which satisfies the assumption (Hε). In order
to obtain the comparison and existence properties in (Hε), it is sufficient that
each Hε satisfies (Hp), (Hx) and (Hm).

Example 3.9. If H is lower semicontinuous and bounded in Rn×Rn, then (Hε)
is fulfilled. In this case we take Hε as the inf-convolution of H over Rn ×Rn.
(See below about sup- and inf-convolution.) Each Hε satisfies (Hp) and (Hx)
since it is globally Lipschitz continuous, and (Hm) is clear from the boundedness
of Hε.

Example 3.10. Let H have the form of (1.10) with r ∈ BUSC (Rn). As-
sume that H0 is uniformly continuous in Rn × Rn and satisfies (Hm). Then
(Hε) is fulfilled. The conditions (Hp), (Hx), (Hm) are all satisfied by Hε(x, p) =
H0(x, p)− rε(x), where rε is the sup-convolution of r.

Remark 3.11 (sup- and inf-convolution). For bounded f : RN → R and ε > 0
we define the sup-convolution fε (resp. inf-convolution fε) of f by

f ε(x) := sup
y∈RN

{
f(y)− 1

2ε
|x− y|2

}
.(

resp. fε(x) := inf
y∈RN

{
f(y) +

1

2ε
|x− y|2

}
.

)
The following properties are easily found, and so we omit the verification.

21



• −∥f∥Rn <= f <= f δ <= f ε <= ∥f∥Rn for 0 < δ < ε.

• f ε is Lipschitz continuous in RN .

• If f is upper semicontinuous, then f ε(x) ↓ f(x) (ε ↓ 0) for each x ∈ RN .

• If f is uniformly continuous, then fε converges to f uniformly in RN .

We mainly use these convolutions in order to approximate semicontinuous func-
tions by Lipschitz continuous ones.

Combining Proposition 3.6 and Proposition 3.7, we obtain the unique exis-
tence result.

Theorem 3.12 (unique existence–general version). Assume that H satisfies
(Hp), (HxN ), (Hε) and (Hm). Then u, a solution approximated from above,
is a unique envelope solution of (HJ).

If we do not accept the assumption (HxN ), Lipschitz continuities of solutions
are needed for CP.

Theorem 3.13 (unique existence–Lipschitz version). Assume that H satisfies
(Hp), (Hε) and (Hm). Let uε ∈ SOL(Hε, u0) in (Hε) and assume that uε (ε > 0)
and infε>0 u

ε are Lipschitz continuous in Q. Then u, a solution approximated
from above, is a unique envelope solution of (HJ).

Proof. We only need to show the uniqueness. Let v ∈ e.SOL(H,u0). An ana-
logue of the proof of Proposition 3.6 works and yields the inequality u <= v∗ in Q
(but we use Theorem 2.9 here). Next, since v ∈ SUB(H,u0), u

ε ∈ D-SUP(H,u0)
and uε is Lipschitz continuous, Theorem 2.9 yields that v∗ <= uε in Q, and so
v∗ <= u in Q. Thus u = v.

Remark 3.14. Let u ∈ e.SOL(H,u0) and (Hp) hold. If there exists some T ⊂
D-SUB(H,u0) ∩ BLip(Q) (resp. S ⊂ D-SUP(H,u0) ∩ BLip(Q)) such that u =
supv∈T v (resp. u = infw∈S w), then u is the minimal (resp. maximal) envelope
solution. These facts are easily shown by using Theorem 2.9.

Remark 3.15. If the Lipschitz constants of uε are estimated uniformly in ε, then
u = infε>0 u

ε is also Lipschitz continuous (provided that uε are bounded uni-
formly in ε). In general, if uε have their modulus ω ∈ M independent of ε, their
infimum u also has the same ω as its modulus.

Example 3.16. In Example 3.2 the function u(x, t) = c(t − |x|)+ is a unique
envelope solution by Theorem 3.13 since uε and u are Lipschitz continuous.
In Example 3.1, on the other hand, the envelope solutions are not unique in
that vα(x, t) = αtI(x) (α ∈ (0, c]) are all envelope solutions. Let us show
this claim. It is easily seen that they are all subsolutions. Set vα,ε(x, t) :=
αt{(1 −

√
|x|/ε)+}2 for ε > 0. (See Figure 6.) Then one observes that vα,ε ∈

D-SUP(H, 0) since ∂tv
α,ε >= 0 and D

−
vα,ε(0, t̂) = ∅. Hence the equality vα =

infε>0 v
α,ε implies our claim. Moreover v0 ≡ 0 is also an envelope solution since

v0 = infα∈(0,c],ε>0 v
α,ε. The function vc is the maximal envelope solution by
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Remark 3.14 because vc(x, t) = infε>0 ctI
ε(x) and ctIε(x) ∈ D-SUP(H, 0) ∩

BLip(Q), where Iε(x) := (1 − |x|/ε)+. Also, v0 ≡ 0 is the minimal envelope
solution.

For a general initial data u0 ∈ BUC (Rn), it is also seen that u0(x) +
αtI(x) (α ∈ [0, c]) are all envelope solutions. Uniqueness, therefore, always goes
wrong for the initial-value problem with the equation ∂tu = cI(x). Such bad
behavior can happen when a Hamiltonian is non-coercive. Indeed, we establish
the uniqueness result for coercive Hamiltonians in the next subsection (Theorem
3.20).

Figure 6: D-supersolutions vα,ε of ∂tu = I(x), u0 ≡ 0.

3.2 Coercive Hamiltonians

In order to apply Theorem 3.13, we need to know what conditions guarantee
the Lipschitz continuities of uε and infε>0 u

ε. We therefore consider in this
subsection whether the solutions preserve the continuity of initial data. For
continuous Hamiltonians it is known that such preserving properties hold if they
are coercive, namely

lim
|p|→∞

inf
x∈Rn

H(x, p) = ∞ or lim
|p|→∞

sup
x∈Rn

H(x, p) = −∞.

The coercivity of H is equivalent to (HR+) or (HR−) below.

(HR+) R+(m) := sup{|p| | ∃x ∈ Rn, H(x, p) <= m} <∞ for all m >= 0.

(HR−) R−(m) := sup{|p| | ∃x ∈ Rn, H(x, p) >= −m} <∞ for all m >= 0.

Here we use the convention that sup ∅ = 0. We first present Lipschitz continuity
and BUC (bounded uniform continuity) preserving properties for continuous
Hamiltonians. These results are more or less known. See for example [9], where
they discussed for a.e. (sub)solutions. We give proofs based on the theory of
viscosity solutions without using a.e. solutions in Appendix for completeness.
By using these results we establish our preserving properties for discontinuous
Hamiltonians via approximation by continuous ones.
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For a function u : Q→ R, we define

Lipt[u] := sup
x∈Rn

sup
t,s∈(0,T )

t ̸=s

|u(x, t)− u(x, s)|
|t− s|

,

Lipx[u] := sup
t∈(0,T )

sup
x,y∈Rn

x̸=y

|u(x, t)− u(y, t)|
|x− y|

.

Proposition 3.17 (Lipschitz continuity preserving property). Assume that H
satisfies (Hp), (Hx), (Hm) and (HR+). Let u0 ∈ BLip(Rn) and u ∈ SOL(H,u0).
Then u ∈ BLip(Q) with the Lipschitz constant satisfying

Lipt[u] <= m, Lipx[u] <= R+(m),

where m := m(Lip[u0]) and m(·) is the function in (Hm).

The assumption (HR+) is able to be replaced by (HR−). (The same is valid
for Proposition 3.18.) For the proof see Appendix.

Proposition 3.18 (BUC preserving property). Assume that H satisfies (Hp),
(Hx), (Hm) and (HR+). Let u0 ∈ BUC (Rn) and u ∈ SOL(H,u0). Furthermore
let {uδ0}δ>0 ⊂ BLip(Rn) and assume that uδ0 converges to u0 uniformly in Rn as
δ ↓ 0. Then u ∈ BUC (Q) with modulus of continuity

ω(r) := inf
δ>0

(
2∥u0 − uδ0∥Rn +

√
(mδ)2 + (R+(mδ))2 r

)
,

where mδ := m(Lip[uδ0]), m(·) is the function in (Hm) and R+(·) is the function
in (HR+).

For a given u0 ∈ BUC (Rn) one can always construct the family {uδ0}δ>0 like
the above by taking uδ0 as the sup- or inf-convolution of u0 for δ > 0. For the
proof of Proposition 3.18 see Appendix.

Since we should treat discontinuous H, we apply the above results to the
solutions uε of the approximate equations and confirm that their infimum has
a desired property. We use the fact in Remark 3.15 that if uε share a modulus
independent of ε, then their infimum has the same modulus. In the case of non-
coercive Hamiltonian, solutions cannot preserve even continuity of the initial
data as we observed in Example 3.1, in which the envelope solution u(x, t) =
ctI(x) is not continuous in contrast to the initial data u0 ≡ 0.

Theorem 3.19. Assume that H satisfies (Hε), (Hm) and that each Hε in (Hε)
satisfies (Hm), (HR+). Assume furthermore that

sup
ε>0

mε(ρ) <∞, sup
ε>0

Rε
+(m) <∞

for all ρ >= 0 and m >= 0, where

mε(ρ) := sup{|Hε(x, p)| | (x, p) ∈ Rn ×Bρ(0)} (<∞),

Rε
+(m) := sup{|p| | ∃x ∈ Rn, Hε(x, p) <= m} (<∞).

Let u0 ∈ BUC (Rn). Then u, a solution approximated from above, has the fol-
lowing properties.
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(1) u ∈ BUC (Q).

(2) If u0 ∈ BLip(Rn), then u ∈ BLip(Q).

(3) If H satisfies (Hp), then u is a unique envelope solution of (HJ).

The condition (HR+) is able to be replaced by (HR−). In this case, if H itself
satisfies (HR−), then the assumption supε>0R

ε
−(m) < ∞ always holds since we

have Rε
−(m) <= R−(m) by Hε <= H.

Proof. We first prove (2) and next show (1) by approximating the initial data.
Take uε ∈ SOL(Hε, u0) in (Hε).

(2) Denote l := Lip[u0]. Now, Proposition 3.17 ensures that uε ∈ BLip(Q)
and

Lipt[u
ε] <= mε(l) <= sup

ε>0
mε(l), Lipx[u

ε] <= Rε
+(m

ε(l)) <= sup
ε>0

Rε
+(m

ε(l)).

Since both Lipschitz constants are estimated independently of ε, we conclude
u = infε>0 u

ε ∈ BLip(Q).
(1) Let uδ0 = (u0)

δ be the sup-convolution of u0 and denote lδ := Lip[uδ0].
Then, Proposition 3.18 ensures that uε ∈ BUC (Q) and each uε has a modulus

ωε(r) := inf
δ>0

(
2∥u0 − uδ0∥Rn +

√
{mε(lδ)}2 + {Rε

+(m
ε(lδ))}2 r

)
.

Since mε(lδ) and Rε
+(m

ε(lδ)) are similarly estimated independently of ε, there
exists a common modulus for uε. Thus we conclude u ∈ BUC (Q).

(3) Since uδ0 ∈ BLip(Rn), there exists a Lipschitz continuous envelope solu-
tion uδ ∈ e.SOL(H,uδ0) ∩BLip(Q) for each δ > 0 by (2) above. Moreover, there
exist solutions of approximate equations (uδ)ε ∈ SOL(Hε, uδ0), which satisfy

uδ = inf
ε>0

(uδ)ε and (uδ)ε ∈ D-SUP(H,uδ0) ∩ BLip(Q).

Then, by Theorem 2.9 we have ∥v−uδ∥Q <= ∥u0−uδ0∥Rn for any envelope solution
v of (HJ). Hence the uniqueness of u follows because limδ↓0 ∥u0 − uδ0∥ = 0.

We have given some examples of H satisfying (Hε). In Example 3.9 Hε are
not coercive because of their boundedness. We therefore impose the coercivity
assumption on H in Example 3.10 so as to apply Theorem 3.19.

Theorem 3.20. Assume that H has the form of (1.10) with r ∈ BUSC (Rn).
Assume that H0 is coercive, uniformly continuous in Rn×Rn and satisfies (Hm).
Let u0 ∈ BUC (Rn). Then there exists a unique envelope solution u of (HJ) and
it has the following properties.

(1) u ∈ BUC (Q).

(2) If u0 ∈ BLip(Rn), then u ∈ BLip(Q).
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Proof. We assume (HR+) because the proof in the case of (HR−) is similar. Let
R0+(·) be the function in (HR+) for H0. It is clear that the above H fulfills
(Hm). As observed in Example 3.10, we also learn that H satisfies (Hε) by
the approximation Hε(x, p) = H0(x, p)− rε(x), where rε is the sup-convolution
of r. Thus by Proposition 3.7 we obtain a solution approximated from above
u ∈ e.SOL(H,u0). It remains to show the uniform boundedness of mε(ρ) and
Rε

+(m) in ε in order to apply Theorem 3.19. Since Hε <= |H0| + ∥r∥Rn , we
have mε(ρ) <= maxRn×Bρ(0)

|H0| + ∥r∥ < ∞, and hence supε>0m
ε(ρ) < ∞.

Also, when m >= Hε(x, p), one observes that H0(x, p) <= m+rε <= m+∥r∥ and so
|p| <= R0+(m+∥r∥) by (HR+). Therefore we obtain R

ε
+(m) <= R0+(m+∥r∥) <∞,

which yields supε>0R
ε
+(m) <∞.

4 Relaxed Hamiltonians

In this section we establish a unique existence result without the coercivity as-
sumption for H. Our existence result (Proposition 3.7) does not require the
coercivity. The problem lies in the uniqueness part. In fact, we cannot expect
the uniqueness in general as we observed in Example 3.16. However, we are able
to show the uniqueness for more restrictive Hamiltonians without the coercivity.
To apply our Lipschitz version of CP (Theorem 2.9) we need Lipschitz continu-
ity of one of solutions, but the continuity preserving property does not hold in
general without the coercivity. On the other hand, our general version of CP
(Theorem 2.6) excludes Hamiltonians with discontinuous source terms. We solve
this difficulty by considering a relaxed problem. If an envelope solution u of (HJ)
can be regarded as an envelope solution of another problem (relaxed problem):

(r.HJ)

{
∂tu+ Ĥ(x,∇u) = 0 in Q, (4.1)

(1.2).

with a relaxed Hamiltonian Ĥ satisfying (HxN ), then we conclude the uniqueness
of u as envelope solutions of (HJ) by Theorem 2.6.

We define the relaxed Hamiltonians so that Ĥ >= H. Then it is obvious that a
supersolution of (1.1) is also a supersolution of (4.1). Therefore it is an important
issue whether or not a subsolution of (1.1) is also a subsolution of (4.1). We will
solve this problem after defining Ĥ. In addition, as another topics about Ĥ we
discuss existence of D-solutions which are not guaranteed for original H.

4.1 Uniqueness revisited

In this section we treat special Hamiltonians with the following properties.

(Hr) (i) H is lower semicontinuous in Rn×Rn and is continuous in (Rn \Γ)×
Rn with some discrete set Γ, i.e.,

for every a ∈ Γ there exists a open set Va such that {a} = Γ ∩ Va.
(4.2)
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(ii) H∗ is continuous in Rn ×Rn.

(iii) H(a, p) <= inf0<=µ<=1H
∗(a, µp) for each a ∈ Γ and p ∈ Rn.

For such H, we define a relaxed Hamiltonian Ĥ : Rn ×Rn → R by

Ĥ(x, p) :=

{
H(x, p) (x ̸∈ Γ),

min{inf0<=µ<=1H
∗(x, µp), sup0<=µ<=1H(x, µp)} (x ∈ Γ).

(See Figure 7.) The continuity of H∗ implies that

H∗(x, p) = lim
(y,q)→(x,p)

y ̸=x

H(y, q) (4.3)

for all (x, p) ∈ Rn ×Rn. Also, since H(x, p) <= sup0<=µ<=1H(x, µp) and (Hr)(iii)

holds, we have H <= Ĥ in Rn ×Rn. Besides, it is seen that Ĥ <= H∗ in Rn ×Rn

and Ĥ is lower semicontinuous.

O p

Ĥ(0, p)

H∗(0, p)

H(0, p)

Figure 7: The definition of Ĥ(0, p) in the case 0 ∈ Γ.

Example 4.1. Let H have the form of (1.10). Then the following (i)′–(iii)′ is
one sufficient condition for (Hr).

(i)′ H0 is continuous in Rn × Rn. r is upper semicontinuous in Rn and is
continuous in Rn \ Γ for some Γ which satisfies (4.2).

(ii)′ r∗ is continuous in Rn.

(iii)′ H0(a, p)− r(a) <= inf0<=µ<=1H0(a, µp)− r∗(a) for each a ∈ Γ and p ∈ Rn.

To show (iii)′ it is enough to prove that

a function µ 7→ H0(a, µp) is nonincreasing on {µ >= 0} for each a ∈ Γ and p ∈ Rn.
(4.4)

We here assume (4.4) and let 0 ∈ Γ (, i.e., r is discontinuous at 0). Then, since
H∗(0, µp) = H0(0, µp)− r∗(0) and H(0, µp) = H0(0, µp)− r(0), we have

Ĥ(0, p) = min{H0(0, p)− r∗(0), H0(0, 0)− r(0)}
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for all p ∈ Rn. By this equality we find that Ĥ(0, p) is a constantH0(0, 0)−r(0) =
H(0, 0) on P := {p ∈ Rn |H0(0, p) >= H0(0, 0)−(r(0)−r∗(0))}. Furthermore, if P
is bounded, namely P ⊂ BN (0) for some N > 0, then Ĥ(x, p) = H0(x, p)−r∗(x)
holds in Rn× (Rn \BN (0)). Therefore assumptions (Hp) and (HxN ) required in
Theorem 2.6 are fulfilled if H0 and r∗ are uniformly continuous.

Example 4.2. We see for (1.3) that Ĥ(x, p) = −|p| − (cI(x) − |p|)+. As for a
unique envelope solution u(x, t) = c(t− |x|)+ with u0 ≡ 0, an easy computation
shows that u ∈ SUB(Ĥ, 0), which implies u ∈ e.SOL(Ĥ, 0). Moreover one can
also verify u ∈ D-SOL(Ĥ, 0). This suggests that an envelope solution of (HJ)
has a more chance to be a D-solution of (r.HJ) than the original equation. The
details will be discussed in the next subsection.

Example 4.3. For (1.16) we have Ĥ = H. Hence the relaxation method does
not give any new information to us.

The following is the key fact for relaxed Hamiltonians.

Lemma 4.4. Assume that H satisfies (Hr). If u ∈ SUB(H), then u ∈ SUB(Ĥ).

Proof. We simply write u for u∗. Take any (x̂, t̂) ∈ Q and (p, τ) ∈ D+u(x̂, t̂).
If x̂ ̸∈ Γ or p = 0, we deduce τ + Ĥ(x̂, p) <= 0 since Ĥ(x̂, p) = H(x̂, p) and
u ∈ SUB(H). Therefore we need only consider the case that x̂ ∈ Γ and p ̸= 0.
We may assume x̂ = 0 to simplify the notation. Our goal is now to show
τ + Ĥ(0, p) <= 0, namely

τ + inf
0<=µ<=1

H∗(0, µp) <= 0 or τ + sup
0<=µ<=1

H(0, µp) <= 0.

Define

Σ := {µ ∈ [0, 1] | (µp, τ) ∈ D+u(0, t̂)}, µ0 := inf{µ ∈ [0, 1] | [µ, 1] ⊂ Σ}.

Then 1 ∈ Σ and we also have µ0 ∈ Σ since superdifferentials are closed. We
discuss two different cases about µ0.

Case 1: µ0 = 0. Since (µp, τ) ∈ D+u(0, t̂) for each µ ∈ [0, 1], it follows from
u ∈ SUB(H) that

τ +H(0, µp) <= 0.

Thus we obtain
τ + sup

0<=µ<=1
H(0, µp) <= 0.

Case 2: 0 < µ0 <= 1. Take a corresponding test function ϕ ∈ C1(Q) for
(µ0p, τ) ∈ D+u(0, t̂). We may assume u−ϕ attains its strict maximum at (0, t̂).
By the definition of µ0 there exists a sequence {µm}m∈N such that µm ↑ µ0 and
µm ̸∈ Σ. Define

ϕm(x, t) = ϕ(x, t)− (µ0 − µm)⟨x, p⟩

for each m. Since ϕm converges to ϕ locally uniformly, there exists some se-
quence {(xm, tm)}m∈N such that (xm, tm) → (0, t̂) and maxQ′(u − ϕm) = (u −
ϕm)(xm, tm). Here Q′ is an arbitrary bounded open subset of Q containing (0, t̂).
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The facts that µm ̸∈ Σ and ∇ϕm(0, t̂) = µmp imply (xm, tm) ̸= (0, t̂). Moreover
we find that xm ̸= 0 since ϕm(0, t) = ϕ(0, t). Thus it follows from u ∈ SUB(H)
that

∂tϕ(xm, tm) +H(xm,∇ϕ(xm, tm)− (µ0 − µm)p) <= 0

and by letting m→ ∞ we obtain

τ +H∗(0, µ0p) <= 0

on account of (4.3). As a result we have

τ + inf
0<=µ<=1

H∗(0, µp) <= 0,

which concludes the proof.

We present a uniqueness result in a general form.

Proposition 4.5 (uniqueness by relaxation). Assume that H satisfies (Hr) and
that Ĥ satisfies (Hp), (HxN ). Then there exists at most one envelope solution of
(HJ) and it is upper semicontinuous.

Proof. If u1, u2 ∈ e.SOL(H,u0), then u1, u2 ∈ e.SOL(Ĥ, u0) by Lemma 4.4 and
H <= Ĥ. Since Ĥ satisfies (Hp), (HxN ) and is lower semicontinuous, we see
u1 = u2 and they are upper semicontinuous in terms of Proposition 3.6.

Here we give one sufficient condition to apply Proposition 4.5.

Proposition 4.6. Assume that H has the form of (1.10) with (1.12). Assume
that H0 is uniformly continuous in Rn ×Rn, satisfies (4.4) and

R(γ) := sup{|p| | ∃x ∈ Rn, H0(x, p) >= −γ} <∞, (4.5)

where γ := maxNj=1(cj −H0(aj , 0)). Then Ĥ satisfies (Hp) and (HxN ).

Proof. According to Example 4.1 we have

Ĥ(x, p) :=

{
H0(x, p) (x ̸= aj),

min{H0(aj , p), H0(aj , 0)− cj} (x = aj)

under the above assumptions. It suffices to check (HxN ). By (4.5) we see
H0(aj , p) < H0(aj , 0) − cj for all p ∈ Rn \ BR(γ)(0) and j ∈ {1, 2, . . . , N}.
Consequently

Ĥ(x, p) = H0(x, p) if (x, p) ∈ Rn × (Rn \BR(γ)(0)),

and so (HxN ) is satisfied.

Example 4.7. Let us consider the non-coercive Hamiltonian (1.17). Then (4.5)
is fulfilled if and only if 0 < c < 1, and therefore the uniqueness of envelope
solutions follows. We will later see in Example 5.15 that there are infinitely
many D-solutions even with u0 ≡ 0 when c > 1.
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Theorem 4.8. Assume that H has the form of (1.17). Let u0 ∈ BUC (Rn) and
0 < c < 1. Then there exists a unique envelope solution uc of (HJ). Moreover
uc ∈ BLip(Q) provided that Lip[u0] < (1− c)/c.

Proof. Since H = Hc satisfies (Hε) and (Hm) for Proposition 3.7 (refer to Ex-
ample 3.9 or 3.10 about (Hε)), there exists uc ∈ e.SOL(Hc, u0), a solution ap-
proximated from above, and its uniqueness follows from Example 4.7.

We next show the Lipschitz continuity preserving property of uc. Define
Hc,ε(x, p) = −|p|/(1 + |p|)− cIε(x) with (1.8). Observe that for fixed ρ0 > 0

mc,ε(ρ) := sup{|Hc,ε(x, p)| | (x, p) ∈ Rn ×Bρ(0)} <= c+
ρ0

1 + ρ0
(∀ρ ∈ [0, ρ0])

and

Rc,ε
− (m) := sup{|p| | ∃x ∈ Rn, Hc,ε(x, p) >= −m} <=

m

1−m
(∀m ∈ [0, 1)).

Therefore we learn by Remark A.1 that solutions of (HJ) with Hc,ε are Lipschitz
continuous provided that c+ρ0/(1+ρ0) < 1, i.e., ρ0 < (1−c)/c. Furthermore, we
see by the estimate above that their Lipschitz constants are bounded uniformly
in ε. Hence their infimum, which is uc by the uniqueness, is also Lipschitz
continuous if Lip[u0] < (1− c)/c.

We think that the Lipschitz continuity preserving property may not hold if
Lip[u0] > (1− c)/c.

4.2 Existence of D-solutions

For (HJ) with (1.3) and u0 ≡ 0, the unique envelope solution u(x, t) = c(t−|x|)+
is not only an envelope solution of (r.HJ) but also a D-solution of (r.HJ). In other
words, we obtained a D-solution by the relaxation method while our original
problem (HJ) has no D-solution. Unfortunately, for a general initial-value it is
not always true that u ∈ D-SOL(Ĥ, u0) when u ∈ e.SOL(H,u0). Its counter-
example is given by the lower left function in Figure 10 later. It is the envelope
solution of (HJ) with H(x, p) = −|p| − I(x), u0(x) = 2min{(|x| − 1)+, 1} and is
written as

u(x, t) = max

{
max
Bt(x)

u0, (t− |x|)+

}
. (4.6)

For this u, we observe that u ̸∈ D-SOL(Ĥ, u0) because (0, 0) ∈ D
−
u(0, 2) and

0 + Ĥ(0, 0) = −1 < 0. In this subsection we consider what conditions lead an
envelope solution of (HJ) to a D-solution of (r.HJ).

Recall that an envelope supersolution is not always aD-supersolution because
of a lack of stability. If it is guaranteed for (r.HJ), one can obtain a D-solution.
We shall explain the difficulty to show the stability in general. Let u := infε>0 u

ε,
uε ∈ D-SUP(Ĥ), (p, τ) ∈ D

−
u∗(x̂, t̂) and take a defining approximate sequence

(pm, τm) ∈ D−u∗(xm, tm). Since uε ∈ SUP(Ĥ) in particular, the stability for
standard solutions ensures τm + (Ĥ)∗(xm, pm) >= 0. Sending m → ∞, we see
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τ + (Ĥ)∗(x̂, p) >= 0 and τ + Ĥ(x̂, p) >= 0 if Ĥ is continuous at (x̂, p). Hence the

remaining problem is whether τ+Ĥ(x̂, p) >= 0 holds for every (p, τ) ∈ D
−
u∗(x̂, t̂)

such that (x̂, p) is a discontinuous point of Ĥ.
Let us come back to the example of (1.3). Since the set of discontinuous

points of Ĥ(x, p) = −|p| − (cI(x) − |p|)+ is {(0, p) | |p| < c}, the problem is

whether τ − c >= 0 holds for all (p, τ) ∈ D
−
u∗(0, t̂) such that |p| < c. This

can be regarded as a condition about growth rates of u in the t-direction near
{0}× (0, T ) and is satisfied for example if u has the form u(x, t) = c(t−|x|)++k
for some k ∈ R. According to Example 5.7 later, if the initial-value u0 satisfies

u0(x) < c|x|+ u0(0) for all x ∈ Rn \ {0}, (4.7)

then

u(x, t) = c(t− |x|)+ + u0(0) near {0} × (0, T ). (4.8)

Thus we obtain a D-solution of (r.HJ). Summarizing the above arguments we
conclude

Theorem 4.9. Let H(x, p) = −|p| − cI(x) for c > 0. Let u ∈ e.SOL(H,u0). If
(4.7) holds, then u ∈ D-SOL(Ĥ, u0).

Remark 4.10. The assumption (4.7) is optimal since (4.6) is not a D-solution of
(r.HJ). (Note that u0(x) = |x| if |x| = 0 or 2 and u0(x) < |x| if |x| ≠ 0 and 2 in
the example.)

In Appendix B we discuss the existence of D-solutions for more general equa-
tions.

5 Some examples of solutions

5.1 Representation by optimal control theory

Let us recall the representation formula of viscosity solutions by optimal control
theory. (See for instance [19].) We consider the following state equation.

X ′(s) = f(X(s), α(s)) in (0, t), X(0) = x. (5.1)

Here the unknown is X : [0, t] → Rn and

• x ∈ Rn is a given initial state and t ∈ [0, T ] is a terminal time.

• A ⊂ Rm is a compact control set and α ∈ A := {α : [0, T ] → A, measurable}
is a control.

• f = f(x, a) : Rn × A → Rn is a given bounded and continuous func-
tion. Moreover f(x, a) is Lipschitz continuous in x uniformly in a, that is
Lipx[f ] <∞.
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As for this ODE there exists for each α ∈ A a unique Lipschitz continuous
solutionX(s) which satisfies the first equation of (5.1) a.e. s ∈ (0, t). Let us write
X(s) = Xα(s) = X(s;α, x, t) to denote the solution. Since |Xα(s1)−Xα(s2)| =
|
∫ s1
s2
f(Xα(s), α(s))ds| <= ∥f∥Rn×A · |s1 − s2| for each α ∈ A, the solutions Xα

are Lipschitz continuous uniformly in α with the Lipschitz constant smaller than
∥f∥.

Next, for given (x, t) ∈ Rn× [0, T ] and α ∈ A we define a corresponding cost
functional Cx,t[α] by

Cx,t[α] :=

∫ t

0
r(Xα(s), α(s))ds+ u0(X

α(t)),

where

• r = r(x, a) : Rn × A → R is a given bounded and continuous func-
tion. Moreover r(x, a) is Lipschitz continuous in x uniformly in a, that is
Lipx[r] <∞.

• u0 ∈ BUC (Rn).

We call the above r a running cost function while u0 serves as a terminal cost
function. Then the value function u : Rn × [0, T ] → R is defined by

u(x, t) := sup
α∈A

Cx,t[α]. (5.2)

We are able to prove that u is a viscosity solution of a Hamilton-Jacobi-Bellman
equation.

Theorem 5.1 (a PDE for the value function). Let u be defined as above. Then
u is a unique viscosity solution of the initial-value problem

(HJB)

{
∂tu−max

a∈A
{⟨f(x, a),∇u⟩+ r(x, a)} = 0 in Q, (5.3)

u|t=0 = u0 in Rn. (5.4)

Remark 5.2. When the value function is defined as the infimum of costs, namely

u(x, t) := inf
α∈A

Cx,t[α], (5.5)

u becomes a solution of the same equation as above except that the max is
replaced by min.

Our goal is to extend the classical theory above for discontinuous equations.
Now we study Hamiltonians written by the formH(x, p) = −maxa∈A⟨f(x, a), p⟩−
r(x) with r ∈ BUSC (Rn). We hereafter assume that running costs are indepen-
dent of the control variable a. Recall that as Example 3.2 and Proposition 3.7
we are able to construct an envelope solution by regularizing r from above to get
rε (the sup-convolution method enables us to do that) and taking the infimum
of solutions of the approximate problems. That means we take

uε(x, t) := sup
α∈A

Cε
x,t[α] with Cε

x,t[α] =

∫ t

0
rε(Xα(s))ds+ u0(X

α(t)), (5.6)

u(x, t) := lim
ε↓0

uε(x, t) = inf
ε>0

uε(x, t), (5.7)
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and prove that u is an envelope solution. On the other hand, since upper semi-
continuous functions are integrable, it is possible to define a cost and value
function for our original r which is not necessarily continuous, that is

v(x, t) := sup
α∈A

Cx,t[α] with Cx,t[α] =

∫ t

0
r(Xα(s))ds+ u0(X

α(t)). (5.8)

What is the relationship between this v of the discontinuous problem and u via
the approximation (5.7)? Since problems including no ε-perturbation can be
directly handled, if u = v, it characterizes the limit of uε. (See Figure 8.)

r

control

v = u

r
ε

u
ε

control

approximation

ε ↓ 0

?

Figure 8: Control theory for a discontinuous running cost. The commutativity
of this diagram is a problem.

In Example 3.2 we deduced that u(x, t) = limε↓0 u
ε(x, t) = c(t − |x|)+ by

regarding the Hamiltonian as H(x, p) = −maxa∈B1(0)
⟨a, p⟩ − cI(x). On the

other hand, as for discontinuous case v(x, t) = supα∈A
∫ t
0 cI(X

α(s))ds, for each
x ∈ Rn the optimal control is still the one that leads to a straight trajectory
before it comes to the origin and stays there after that moment. Therefore we
conclude that v(x, t) = c(t−|x|)+, and so u = v. However, situations are different
for another compact set A. For example if the control set A′ is taken as Sn−1,
the resulting Hamiltonian is the same as H(x, p) = −maxa∈Sn−1⟨a, p⟩ − cI(x).
However, since Xα moves at a velocity of 1 all the time for each control α, it
cannot stay at the origin. Hence we conclude that v ≡ 0.

We here give one sufficient condition for guaranteeing u = v.

Lemma 5.3 (controllability). Let r ∈ BUSC (Rn), rε ∈ BLip(Rn) (ε > 0)
and rε ↓ r in Rn pointwise, and define uε, u and v by (5.6)–(5.8). Assume
furthermore that

(A1) there exists a measurable function θ : Rn × B∥f∥(0) → A such that p =

f(x, θ(x, p)) for all (x, p) ∈ Rn ×B∥f∥(0),

where ∥f∥ = supRn×A |f |. Then u = v.

Proof. 1. We find that v <= u because Cx,t[·] <= Cε
x,t[·] for all ε > 0. It remains

to prove u <= v. Fix (x, t) ∈ Q. For each ε > 0 there is some αε ∈ A such that
uε(x, t) − ε <= Cε

x,t[α
ε]. Set Xε(s) := X(s;αε, x, t), then one can easily check

that the family {Xε}ε>0 ⊂ C[0, t] is equicontinuous and uniformly bounded by
using Lipschitz continuities of Xα. Consequently Ascoli-Arzelà theorem ensures
that there exists a subseqence {Xε(j)}j∈N such that Xε(j) uniformly converges
to some X̄ ∈ C[0, t] as j → ∞. The estimate Lip[Xα] <= ∥f∥ (∀α) implies
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Lip[X̄] <= ∥f∥, and so X̄ is a.e. differentiable and X̄ ′(s) ∈ B∥f∥(0). Therefore by
setting ᾱ(s) := θ(X̄(s), X̄ ′(s)) we have X̄ ′(s) = f(X̄(s), ᾱ(s)) a.e. s, and also
X̄(s) = X(s; ᾱ, x, t).

2. Fix d > 0. If 0 < ε(j) < d, then we have

uε(j)(x, t) <= ε(j) + C
ε(j)
x,t [αε(j)] <= ε(j) + Cd

x,t[α
ε(j)]

and

lim
j→∞

Cd
x,t[α

ε(j)] = lim
j→∞

{∫ t

0
rd(Xε(j)(s))ds+ u0(X

ε(j)(t))

}
=

∫ t

0
rd(X̄(s))ds+ u0(X̄(t)).

Hence it follows that

u(x, t) <=

∫ t

0
rd(X̄(s))ds+ u0(X̄(t)).

Sending d ↓ 0, we obtain by monotone convergence theorem

u(x, t) <=

∫ t

0
r(X̄(s))ds+ u0(X̄(t)) = Cx,t[ᾱ] <= v(x, t),

which completes the proof.

Remark 5.4. To prove u = v in the case that value functions are defined by
(5.5), there is no need to assume (A1). It suffices to show u <= v again. Take
a minimizing sequence {αm} of v(x, t) (, i.e., limm→∞Cx,t[αm] = v(x, t)), and
then uε(x, t) <= Cε

x,t[αm] holds for all ε and m. Letting ε ↓ 0, we see that
u(x, t) <= Cx,t[αm] by monotone convergence theorem. Finally send m→ ∞.

Let us calculate some examples of solutions by applying Lemma 5.3 or Re-
mark 5.4.

At first we consider the case thatH(x, p) = −|p|−r(x) = −maxa∈B1(0)
⟨a, p⟩−

r(x) with r ∈ BUSC (Rn). Then (A1) is satisfied by taking θ(x, p) = p, and so
Lemma 5.3 guarantees that v defined by

v(x, t) := sup
α∈A

{∫ t

0
r(Xα(s))ds+ u0(X

α(t))

}
is the unique envelope solution.

Example 5.5. Let us consider the case of (1.14) and u0 ≡ 0. In this case, for
each x ∈ Rn the optimal control forces the state to move straight towards the
nearest point in S and to stop moving after the arrival. Therefore we conclude
that

v(x, t) = c(t− dist(x, S))+.

The solution in the case that S = [−1, 1] and c = 1 is given in Figure 9 (the
left).
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Example 5.6. Let us consider the case of (1.12) and u0 ≡ 0. In this case, since
we have obtained the optimal control for the case r(x) = cjI(x − aj) for every
j (= 1, 2, . . . , N), we only need to pick up the maximum of them. Hence we have

v(x, t) =
N

max
j=1

cj(t− |x− aj |)+.

The solution in the case that a1 = 1, v1 = 1, a2 = −1, v2 = 1/3 is given in Figure
9 (the right).

Figure 9: The envelope solution of ∂tu− |∇u| = χ[−1,1](x), u0 ≡ 0 (the left) and
that of ∂tu− |∇u| = I(x+ 1)/3 + I(x− 1), u0 ≡ 0 (the right).

Example 5.7. Let us consider the case that r(x) = cI(x) (c > 0) with a general
initial condition u0 ∈ BUC (Rn). In this case, for each x ∈ Rn all of the controls
can be categorized into two types. One type is to force the state to approach the
origin. The other type results in trajectories without passing the origin. The
optimal value for the former type is

max
s∈[0,t−|x|]

{
cs+ max

Bt−|x|−s(0)
u0

}
=: V (x, t)

provided that t >= |x| while
max
Bt(x)

u0

is the maximal value for the latter type. Thus we conclude that

v(x, t) =

maxBt(x)
u0 (t <= |x|),

max
[
maxBt(x)

u0, V (x, t)
]

(t >= |x|).

We will make this formula simpler by imposing some conditions on u0. Assume
that u0(0) = 0 hereafter.

[1] The case that u0(x) <= c|x| in Rn. Since V (x, t) = c(t− |x|) (s = t − |x|),
we have

v(x, t) =

maxBt(x)
u0 (t <= |x|),

max
[
maxBt(x)

u0, c(t− |x|)
]

(t >= |x|).

In particular, we see u(0, t) = ct for all t ∈ (0, T ) because maxBt(0)
u0 <= ct.

35



Figure 10: The envelope solutions of ∂tu−|∇u| = I(x) under several initial data
u0. The upper left is the case that u0(x) = −|x|/(1 + |x|) and the solid curve
is (x, t, u) = (s, |s|, 0). The upper right is the case that u0(x) = |x|/(1 + |x|)
and the solid curve is (s,

√
s2 + 2|s|,

√
s2 + 2|s| − s). The lower left is the case

that u0(x) = 2min{(|x| − 1)+, 1}. The lower right is the case that u0(x) =
2min{|x|, 1}. Each function is the unique envelope solution.
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(a) If u0(x) <= 0 in Rn, then v(x, t) = c(t− |x|) for t >= |x|. The solution
for c = 1 and u0(x) = −|x|/(1 + |x|) is given in Figure 10 (the upper
left).

(b) If u0(x) < c|x| inRn\{0}, then for all t̂ ∈ (0, T ) we have v(x, t) = c(t−
|x|) in some open neighborhood of (0, t̂) ∈ Q because maxBt(0)

u0 < ct.

The solution for c = 1 and u0(x) = |x|/(1 + |x|) is given in Figure 10
(the upper right).

(c) If there is some x̂ ̸= 0 such that u0(x̂) = c|x̂|, it is unable to take the
open neighborhood described in (b) at (0, |x̂|). The solution for c = 1
and u0(x) = 2min{(|x|−1)+, 1} is given in Figure 10 (the lower left),
where x̂ = 2.

[2] The case that u0(x) ̸<= c|x| in Rn. We assume that u0 has the form
u0(x) = b(|x|) and that b(ρ2)−b(ρ1) > c(ρ2−ρ1) (0 <= ρ1 < ρ2 <= R), b(ρ) =
b(R) (ρ >= R) for some R > 0. Note that we have maxBt(x)

u0 = b(|x|+ t).

Then we observe that V (x, t) = b(t − |x| − s) (s = 0) for 0 <= t − |x| <= R
and it is smaller than b(|x|+t), and also V (x, t) = c(t−|x|−R)+b(R) (s =
t − |x| − R) for t − |x| >= R and it is bigger than b(|x| + t) = b(R). Thus
we conclude that

v(x, t) =

{
b(|x|+ t) (t <= |x|+R),

c(t− |x| −R) + b(R) (t >= |x|+R).

It is seen that v(x, t) ≡ b(R) if −|x|+R <= t <= |x|+R. In this case, there
is no effect of the step source by time R on account of rapid growth of
the initial data and v becomes flat at time R. The solution for c = 1 and
b(ρ) = 2min{ρ, 1} (R = 1) is given in Figure 10 (the lower right).

We next consider the case thatH(x, p) = |p|−r(x) = −mina∈B1(0)
⟨a, p⟩−r(x)

with r ∈ BUSC (Rn), which describes the isotropic shrink at a velocity of 1. Then
Remark 5.4 guarantees that v defined by

v(x, t) := inf
α∈A

{∫ t

0
r(Xα(s))ds+ u0(X

α(t))

}
is the unique envelope solution.

Example 5.8. Let us consider the case of (1.12) with a general initial condition
u0 ∈ BUC (Rn). In this case, since for each x ∈ Rn the optimal control forces
the corresponding state to go to the minimizer of u0 on Bt(x) (and not to stay
each aj for a positive time), we have

v(x, t) = min
Bt(x)

u0.

This coincides with the solution of ∂tu+ |∇u| = 0, and hence we may think that
there is no effect of the source term r(x).
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Example 5.9. Let us consider the case of (1.14) and u0 ≡ 0. In this case, since
for each x ∈ Rn the optimal control forces the corresponding state to leave S
for the shortest time and stay in the outside of S after the exit, we have

v(x, t) = c ·min{t, dist(x, Sc)},

where Sc means a complementary set of S in Rn. In particular, if S has no
interior point, we see v(x, t) = 0, which reduces to a special case of Example
5.8. We also learn for a bounded S that v(x, t) = c · dist(x, Sc) for every t >=
supx∈Rn dist(x, Sc) ̸= ∞. The solution in the case that S = [−1, 1] and c = 1 is
given in Figure 11.

Figure 11: The envelope solution of ∂tu+ |∇u| = χ[−1,1](x), u0 ≡ 0.

5.2 Solutions without coercivity assumption

In this subsection we focus on the equations of the form

(HJ1c)

{
∂tu−H1(∇u) = cI(x) in Q, (5.9)

u|t=0 ≡ 0 in Rn,

i.e., H(x, p) = −H1(p)− cI(x) with H1 : R
n → R and c > 0. We do not impose

the coercivity assumption on H1 here. Also, without loss of generality we may
take

H1(0) = 0; (5.10)

if not, we replace H1(∇u) in (5.9) with H1(∇u) − H1(0) and solve the new
problem. For any solution u(x, t) of the new one, u(x, t) +H1(0)t is a solution
of the original (HJ1c).

The next proposition helps us to construct envelope supersolutions when the
step source consists of a singleton.

Proposition 5.10 (construction of envelope supersolutions). Assume (5.10).
Assume that u : Q → R is bounded from below and satisfies the following three
conditions.

(i) τ +H(x̂, p) >= 0 for all (x̂, t̂) ∈ (Rn \ {0})× (0, T ) and (p, τ) ∈ D
−
u∗(x̂, t̂).

38



(ii) u is continuous on {0} × (0, T ).

(iii) u(0, t) = ct in (0, T ) and u(x, t) <= ct in Q.

Then u ∈ e.SUP(H).

Set Q∗ := (Rn \{0})× (0, T ). We say that u is a D-viscosity supersolution in
Q∗ (write u ∈ D-SUP(H) in Q∗) if u satisfies the condition (i) and is bounded
from below.

Proof. For ε > 0 we define

uε(x, t) := min{u(x, t) + εt, ct}.

(See Figure 12.) Then, we deduce by Proposition 3.5 that uε ∈ D-SUP(H) since
we have the following three facts.

• u(x, t) + εt ∈ D-SUP(H) in Q∗.

• ct ∈ D-SUP(H).

• u(x, t)+ εt > ct in some open neighborhood of (0, t̂) ∈ Q, where t̂ ∈ (0, T ).

Also, it is clear that u = infε>0 u
ε. We thus conclude that u ∈ e.SUP(H).

O
u(x, t)

x

ct

u(x, t) + εt

Figure 12: The definition of uε.

Let a, b > 0 and define a “cone-shaped” function Wa,b(x, t) := (at − b|x|)+.
Before describing the first existence result of (HJ1c), which claims that Wc,b is
an envelope solution for suitable b and H1, we give simple observations about
sub- and superdifferentials of the cone-shaped functions.

(CS) Let (p+, τ+) ∈ D+Wa,b(x̂, t̂) and (p−, τ−) ∈ D−Wa,b(x̂, t̂) for (x̂, t̂) ∈ Q.

(1) If at̂ < b|x̂|, we have p± = 0 and τ± = 0.

(2) If at̂ > b|x̂| and x̂ ̸= 0, we have |p±| = b and τ± = a.

(3) If at̂ = b|x̂|, we have |p−| <= b, 0 <= τ− <= a and bτ− = a|p−|. Also,
D+Wa,b(x̂, t̂) = ∅.

(4) If x̂ = 0, we have |p+| <= b and τ+ = a. Also, D−Wa,b(x̂, t̂) = ∅.
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Proposition 5.11. Assume (5.10) and let b > 0. Assume that H1 satisfies the
following.

0 <= H1(p) <=
c

b
|p| for all p ∈ Rn such that |p| <= b. (5.11)

H1(p) = c for all p ∈ Rn such that |p| = b. (5.12)

Then Wc,b(x, t) = (ct− b|x|)+ is an envelope solution of (HJ1c).

Proof. In view of (5.11), (5.12) and (CS) we see that Wc,b is a D-subsolution of
(5.9) and is a D-supersolution of (5.9) in Q∗. Since Wc,b fulfills the assumptions
in Proposition 5.10, we conclude that Wc,b is an envelope solution of (HJ1c).

Of course, if H1 fulfills the regularity assumption (Hp) required in our com-
parison principles, it follows that the Lipschitz continuous function Wc,b is a
unique envelope solution.

Example 5.12. We consider the case that H1(p) = |p|α with α > 1. Then, the
conditions (5.11) and (5.12) are satisfied if we take b = c1/α. Hence we see that
Wc,b(x, t) = (ct− c1/α|x|)+ is an envelope solution of (HJ1c).

Example 5.13. We next consider the case that H1(p) =
√

1 + |p|2 − 1. Then,
the conditions (5.11) and (5.12) are satisfied if we take b =

√
c2 + 2c. Hence we

see that Wc,b(x, t) = (ct−
√
c2 + 2c|x|)+ is a unique envelope solution of (HJ1c).

Equivalently, the function u(x, t) = (ct−
√
c2 + 2c|x|)+ + t is a unique envelope

solution of {
∂tu−

√
1 + |∇u|2 = cI(x) in Q,

u|t=0 ≡ 0 in Rn.

Unfortunately, Proposition 5.11 does not include the case that H1 is “spoke-
wisely concave” from the origin, that is, the case when

H1(p) = h(|p|), where h : [0,∞) → R is strictly concave. (5.13)

Here we say h is strictly concave if h((1 − λ)x + λy) > (1 − λ)h(x) + λh(y) for
every λ ∈ (0, 1) and x, y ∈ [0,∞) with x ̸= y. For the purpose of finding envelope
solutions of (HJ1c) in such cases we further assume that

h ∈ C2(0,∞) ∩ C[0,∞), h is strictly increasing on [0,∞). (5.14)

Then, it is easily seen by (CS) that

Wa,h−1(a)(x, t) = (at− h−1(a)|x|)+

is a D-subsolution of (HJ1c) for each a ∈ (0, c) with c <= ∥h∥[0,∞). Besides, it
turns out that these supremum

Uc(x, t) = sup
a∈(0,c)

(at− h−1(a)|x|) (c <= ∥h∥)

becomes an envelope solution of (HJ1c).
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Proposition 5.14. Assume (5.10), (5.13) and (5.14).

(1) Assume c < ∥h∥. Then Uc is a unique envelope solution of (HJ1c).

(2) Assume c = ∥h∥. Then U∥h∥ is a D-solution of (HJ1c) and a unique
envelope solution.

(3) Assume c > ∥h∥. Then U∥h∥ + ktI(x) are D-solutions of (HJ1c) for all
k ∈ [0, c− ∥h∥].

We remark that the assumption (Hp) is satisfied because of the concavity of
h; indeed, we now have |H1(p) −H1(q)| <= h(|p − q|). Hence the uniqueness in
(1) follows from the Lipschitz continuity of Uc.

Proof. At first, it is obvious that Uc is a standard subsolution due to the stability
under supremum. In order to prove that Uc is an envelope supersolution we
utilize Proposition 5.10. Notice that Uc is rewritten as

Uc(x, t) =


ct− b|x| (|x| <= h′(b)t),

h

(
g

(
|x|
t

))
t− g

(
|x|
t

)
|x| (h′(b)t < |x| < h′(0)t),

0 (h′(0)t <= |x|)

(5.15)

by a direct calculation. Here h′(0) means the right derivative at 0 and possibly
equals +∞. Also, we write b = h−1(c) and g = (h′)−1 for the inverse function of
h′. If c = ∥h∥, we read (5.15) as

Uc(x, t) =


ct (x = 0),

h

(
g

(
|x|
t

))
t− g

(
|x|
t

)
|x| (0 < |x| < h′(0)t),

0 (h′(0)t <= |x|).

(5.16)

By the formula (5.15) we find Uc ∈ C1(Q∗) and its derivatives are as follows:

∂tUc(x, t) =


c (|x| <= h′(b)t),

h

(
g

(
|x|
t

))
(h′(b)t < |x| < h′(0)t),

0 (h′(0)t <= |x|).

∇Uc(x, t) =


−b x

|x|
(0 < |x| <= h′(b)t),

−g
(
|x|
t

)
x

|x|
(h′(b)t < |x| < h′(0)t),

0 (h′(0)t <= |x|).

Thus we deduce that

∂tUc(x, t)− h(|∇Uc(x, t)|) = 0 for all (x, t) ∈ Q∗,

and hence Uc satisfies the condition (i) in Proposition 5.10. Since the conditions
(ii) and (iii) are clear, we conclude that Uc is an envelope supersolution. If
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c = ∥h∥ in particular, we see that Uc is also a D-supersolution of (HJ1c) since

D
−
Uc(0, t) = ∅.
(2) To show the uniqueness of Uc as an envelope solution we use the idea of

Remark 3.14. It is seen that Uc is the minimal envelope solution because Uc =
supa∈(0,c)Wa,h−1(a) and Wa,h−1(a) ∈ SUB(H, 0) ∩ BLip(Q). Next, let uε(x, t) :=
min{Uc(x, t)+εt, ct} for ε > 0. As we showed in the proof of Proposition 5.10, it
turns out that uε ∈ D-SUP(H). We also have uε ∈ BLip(Q) and Uc = infε>0 u

ε,
and therefore Uc is the maximal envelope solution.

(3) This claim follows from (2) and the fact that (U∥h∥+ktI(x))∗ = U∥h∥.

Example 5.15. We consider the case that H1(p) = |p|/(1 + |p|), which is a
non-coercive Hamiltonian. Then, by substituting

b =
c

1− c
, h(r) =

r

1 + r
, g(r) =

1−
√
r√

r

into (5.15) we see that

Uc(x, t) =

ct−
c

1− c
|x| (|x| <= (1− c)2t),

{(
√
t−

√
|x|)+}2 (|x| >= (1− c)2t)

is a unique envelope solution of (HJ1c) when c <= 1 = ∥h∥, and in particular
U1(x, t) = {(

√
t−
√

|x|)+}2 is aD-solution of (HJ1c) with c = 1. In the case when
c > 1, functions U1(x, t) + ktI(x) are all D-solutions of (HJ1c) for k ∈ [0, c− 1].
(See Figure 13.) Also, we see that the Lipschitz continuity preserving property
breaks down for c >= 1 since U1 is not Lipschitz continuous in Q.

Example 5.16. We next consider the case that H1(p) = |p|α with 0 < α < 1.
Then, by substituting

b = c1/α, h(r) = rα, g(r) =
(α
r

)1/(1−α)

into (5.15) we see that

Uc(x, t) =


ct− c1/α|x| (|x| <= αt/c(1−α)/α),(
αt

|x|

)α/(1−α)

t−
(
αt

|x|

)1/(1−α)

|x| (|x| >= αt/c(1−α)/α)

is a unique envelope solution of (HJ1c) for any c > 0. This formula means that
the present equation (HJ1c) has a some kind of infinite propagation property for
a step source because u > 0 in Q. (See Figure 14.)

The formula (5.15) also applies to Hamiltonians with the hyperbolic tangent
form ([42])

H(x, p) = −|p| tanh 1

|p|
− cI(x),

but it is complicated to calculate the inverse function g = (h′)−1 in this case.
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Figure 13: Solutions of ∂tu − |∇u|/(1 + |∇u|) = cI(x), u0 ≡ 0. The envelope
solution for c = 1/2 (the upper left), the D-solution for c = 1(the upper right)
and one of the D-solutions for c = 2 (the bottom).

5.3 Remark on relation to Dirichlet boundary problems

Let u be the unique envelope solution of the problem with a single step source:{
∂tu− |∇u| = cI(x) in Rn × (0, T ),

u(x, 0) = u0(x) in Rn.

We study in this subsection whether u is also a solution of the Dirichlet boundary
problem:

(Di)


∂tu− |∇u| = 0 in (Rn \ {0})× (0, T ),

u(x, 0) = u0(x) in Rn,

u(0, t) = ct in (0, T ).

Figure 14: The envelope solution of ∂tu−
√

|∇u| = I(x), u0 ≡ 0.
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To simplify the argument we assume u0(0) = 0. We first recall the following
facts about u from the observation in Example 5.7.

(1) u(0, t) >= ct for all t ∈ (0, T ).

(2) u(0, t) = ct for all t ∈ (0, T ) provided that u0(x) <= c|x| in Rn.

(3) If

u0(x) = 2cmin{|x|, 1}, (5.17)

whose slope is larger than c near the origin, then the unique envelope
solution is

v(x, t) =

{
2cmin{|x|+ t, 1} (t <= 1),

c(t− |x| − 1)+ + 2c (t >= 1).

In particular, we have v(0, t) = min{2ct, c(t+ 1)} > ct.

We see by (1) that u is always a supersolution of (Di). Also, by virtue of (2), if
u0(x) <= c|x| in Rn, then u is a viscosity solution of (Di) which indeed attains
the boundary condition. What happens in the case that u0(x) ̸<= c|x| in Rn?
Unfortunately, we cannot expect that u is a subsolution on the boundary even in
the weak sense, i.e., u(0, t) <= ct or τ − |p| <= 0 whenever (p, τ) ∈ D+

Rnu(0, t). In
fact, when the initial data is given by (5.17), we have v(0, 2) > 2c and τ−|p| > 0
for (p, τ) = (0, c) ∈ D+v(0, 2). Instead of v, if we set

vτ (x, t) =


v(x, t) (t <= 1),

2c (1 <= t <= 1 + τ),

v(x, t− τ) (t >= 1 + τ),

then each vτ (τ >= 1) becomes a solution of (Di) with (5.17) in the weak sense.
One can interpret the constant τ as a “waiting time”. The Dirichlet problem
(Di) forces its solution to stop the growth until it satisfies the Dirichlet boundary
data at the origin.

As an another type of the boundary condition in the weak sense, one may
think of the dynamic boundary condition ([17]); namely

(Dy)


∂tu− |∇u| = 0 in (Rn \ {0})× (0, T ),

u(x, 0) = u0(x) in Rn,

∂tu(0, t) = c in (0, T ).

However, one cannot expect the uniqueness of solutions for (Dy) as well. Indeed,
each vτ (τ >= 0) is a solution of (Dy) with (5.17).

6 Large time behavior

6.1 Self-similar solution

We study the large time behavior of solutions to (HJ1). Hereafter we use a
notation (HJ1; r, u0) to represent the source term r and the initial data u0 of
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(HJ1). Our goal is to prove that a rescaled function of a solution to (HJ1)
converges to a self-similar solution of the associated problem, which is (HJ1; cI, 0)
if r has a compact support. In the case where r is periodic, we show that
(HJ1; c, 0) with a constant source term gives the associated problem. Throughout
our arguments we assume u0 ∈ BLip(Rn) and{

(i) H1 is coercive and uniformly continuous in Rn.

(ii) r ∈ BUSC (Rn) and r >= 0 in Rn.
(6.1)

These conditions guarantee that there exists a unique envelope solution of (HJ1)
which is bounded in Rn × [0, T ) for all T > 0. Moreover, the unique solution
is Lipschitz continuous in Rn × [0,∞) since Proposition 3.17 implies that the
Lipschitz constant of the solution in Rn × [0, T ) does not depend on T .

Definition 6.1. Let u : Rn × [0,∞) → R. For λ > 0 we define a rescaled
function u(λ) : R

n × [0,∞) → R of u by

u(λ)(x, t) :=
1

λ
u(λx, λt).

If u = u(λ) in Rn × [0,∞) for all λ > 0, we say u is self-similar.

When u is self-similar, letting λ = 1/t, we see u(x, t) = u(λx, λt)/λ =
tu(x/t, 1). Thus, setting U(ξ) := u(ξ, 1), we get

u(x, t) = tU
(x
t

)
.

The function U is called a profile function of u. It is easy to see that the function
(1.6), which is the unique envelope solution of (1.5) with the zero initial data, is
self-similar in the sense of Definition 6.1 and that its profile function is

U(ξ) = c(1− |ξ|)+. (6.2)

Self-similar solutions exist not only for the typical problem (1.5) but also
for more general equations with a positively 0-homogeneous source term r, i.e.,
r(λx) = r(x) for all λ > 0 and x ∈ Rn. The function cI(x) is a trivial example
of such positively 0-homogeneous functions.

Proposition 6.2. Assume that H1 and r satisfy (6.1). Assume that r is pos-
itively 0-homogeneous. Then the unique envelope solution of (HJ1; r, 0) is self-
similar.

The proof uses the uniqueness result. When u is an envelope solution of
(HJ1; r, 0), noting that ∂tu(λ)(x, t) = ∂tu(λx, λt) and ∇u(λ)(x, t) = ∇u(λx, λt),
we compute

∂tu(λ)(x, t)−H1(∇u(λ)(x, t)) = ∂tu(λx, λt)−H1(∇u(λx, λt)) = r(λx) = r(x)

as long as u is smooth. Thus by the uniqueness of solutions we obtain u = u(λ).
In the general case where u is not smooth, we take smooth test functions in the
definition of viscosity solutions and apply a similar calculation to them.
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6.2 Source terms with compact support

Before we show a general result on the large time behavior, we present two
simple examples of solutions which converge to the self-similar solution (1.6)
under rescaling.

Example 6.3. We study (HJ1; r, 0) with H1(p) = |p| and r of the form (1.12).
As we discussed in Example 5.6, the unique envelope solution is given by the
formula 1.13. Now, let us compute the scaling limit of this solution. For λ > 0
we have

u(λ)(x, t) =
1

λ
u(λx, λt) =

1

λ

N
max
j=1

cj(λt− |λx− aj |)+ =
N

max
j=1

cj

(
t−

∣∣∣x− aj
λ

∣∣∣)
+
.

Set c := maxNj=1 cj = cJ . Then

u(λ)(x, t) >= cJ

(
t−

∣∣∣x− aJ
λ

∣∣∣)
+
→ c(t− |x|)+

uniformly as λ→ ∞, while

u(λ)(x, t) <=
N

max
j=1

c
(
t−

∣∣∣x− aj
λ

∣∣∣)
+
→ c(t− |x|)+

since each functions c(t− |x− (aj/λ)|)+ uniformly converges to c(t− |x|)+. We
therefore conclude that

u(λ)(x, t) → c(t− |x|)+ (6.3)

uniformly as λ→ ∞.

Example 6.4. Let us consider (HJ1; r, 0) with H1(p) = |p| and r of the form
(1.14). We further assume that S is bounded. The unique envelope solution
which was computed in Example 5.5 is

u(x, t) = c(t− dist(x, S))+.

(This formula is valid even if S is unbounded.) For λ > 0 we observe

u(λ)(x, t) =
1

λ
u(λx, λt) =

c

λ
(λt− dist(λx, S))+ = c

(
t− 1

λ
dist(λx, S)

)
+

.

We now choose R > 0 large so that S ⊂ BR(0) to see

1

λ
dist(λx, S) >=

1

λ
dist(λx,BR(0)) =

1

λ
(|λx| −R)+ =

(
|x| − R

λ

)
+

→ |x|

uniformly as λ→ ∞. Also, for a fixed z ∈ S we compute

1

λ
dist(λx, S) <=

1

λ
dist(λx, {z}) = 1

λ
|λx− z| =

∣∣∣x− z

λ

∣∣∣→ |x|.

Hence the same conclusion (6.3) as the previous example holds.

We now state our result on the asymptotic behavior in the case the support
of r is compact.
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Theorem 6.5 (Large time behavior for source terms with compact support).
Assume that H1 and r satisfy (6.1). Assume that supp(r) is a compact set in
Rn. Let u and v be, respectively, the unique envelope solution of (HJ1; r, u0)
and (HJ1; cI, 0) with c = maxRn r. Then u(λ) converges to v locally uniformly
in Rn × [0,∞) as λ→ ∞.

This theorem especially implies that (1.20) holds locally uniformly in Rn.
This is an asymptotic convergence to a profile function of v.

Proof. 1. We fist show the relaxed limits u := lim sup∗λ→∞ u(λ) and u :=
lim inf∗λ→∞ u(λ) fulfill the zero initial data. Set M0 := supRn |u0|. Then it
is easy to see that functions H1(0)t −M0 and (c + H1(0))t +M0 are, respec-
tively, a subsolution and a D-supersolution of (HJ1; r, u0). From the comparison
principle it follows that H1(0)t−M0 <= u(x, t) <= (c+H1(0))t+M0, and hence

H1(0)t−
M0

λ
<= u(λ)(x, t) <= (c+H1(0))t+

M0

λ
.

We take lim sup∗λ→∞ and lim inf∗λ→∞ in the above inequalities to obtain

H1(0)t <= u(x, t) <= u(x, t) <= (c+H1(0))t.

This ensures that these two relaxed limits are real-valued in Rn × [0,∞) and

lim
(y,t)→(x,0)

u(y, t) = u(x, 0) = 0, lim
(y,t)→(x,0)

u(y, t) = u(x, 0) = 0

for all x ∈ Rn.
2. Take z ∈ Rn as a maximum point of r. We define ṽ(x, t) := v(x− z, t)−

M0. Then ṽ solves (HJ1; cI(· − z), u0(· − z) − M0). Since cI(· − z) <= r and
u0(· − z)−M0 <= u0, our comparison principle implies ṽ <= u. We thus have

1

λ
v(λx− z, λt)− M0

λ
<= u(λ)(x, t) (6.4)

for λ > 0. Now, by the self-similarity of v

1

λ
v(λx− z, λt) =

1

λ
v
(
λ
(
x− z

λ

)
, λt
)
= v

(
x− z

λ
, t
)
.

Taking lim inf∗λ→∞ in (6.4), we obtain

v <= lim inf
λ→∞

∗u(λ). (6.5)

Here we have used the continuity of v.
3. Define g(x) := cχBR(0)(x), where we choose R > 0 large so that supp(r) ⊂

BR(0). We let w be the unique envelope solution of (HJ1; g, 0). Since cI <= g, by
the comparison principle we have u <= g+M0. This implies u(λ) <= w(λ)+(M0/λ)
and

lim sup
λ→∞

∗u(λ) <= lim sup
λ→∞

∗w(λ). (6.6)
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We write gλ(x) = g(λx). Then lim sup∗λ→∞ gλ = cI by the definition of g. Now
w(λ) is a standard viscosity subsolution of (HJ1; gλ, 0) since w is a viscosity
subsolution of (HJ1; g, 0) in the standard sense. Thus, the stability result for
subsolutions under the relaxed limit ([11, Lemma 6.1, Remark 6.3]) ensures that
lim sup∗λ→∞w(λ) is a subsolution of (HJ1; lim sup∗λ→∞ gλ, 0) = (HJ1; cI, 0). This
relaxed limit of w(λ) exists for the same reason as in Step 1. Since v is a solution
of (HJ1; cI, 0), it follows from the comparison principle that

lim sup
λ→∞

∗w(λ) <= v. (6.7)

Finally, combining (6.5), (6.6) and (6.7), we conclude

v = lim sup
λ→∞

∗u(λ) = lim inf
λ→∞

∗u(λ),

which implies the locally uniform convergence of u(λ) to v.

Example 6.6. We consider the large time behavior in the sense (1.23). Let
H1(p) = |p|. A direct computation implies that, for the solution (1.6) of (HJ1; cI, 0),
we have

u(x, t)− (ct− c|x|) → 0 as t→ ∞

locally uniformly in Rn. Thus the limit ct − c|x| is different from our scaling
limit, which is (1.6) itself. More generally, the solution (1.13) of (HJ1; r, 0) with
(1.12) satisfies

u(x, t)− (ct− c|x− aJ |) → 0 as t→ ∞,

where c := maxNj=1 cj = cJ , locally uniformly in Rn provided that cj < cJ
(j ̸= J). Therefore the scaling limit in (6.3) gives another function.

In the next example we discuss the scaling limit of solutions when r has a
non-compact support.

Example 6.7. We study the source term r which is non-zero near finitely many
half-lines starting from the origin, but assume that r attains its maximum at
the origin. We set half-lines li (i = 1, . . . ,M) as li := {λzi ∈ Rn | λ > 0},
where zi ∈ Rn (i = 1, . . . ,M) are different points satisfying |zi| = 1, Then
li∩ lj = ∅ if i ̸= j. We next take positive constants ci (i = 0, 1, . . . ,M) such that
c0 >= maxMi=1 ci. Now, we define functions r, g ∈ BUSC (Rn) as follows:

r(x) := c0I(x) +

M∑
i=1

ciχli(x), g(x) := max

{
c0χBδ(0)

(x),
M

max
i=1

ciχli,ε
(x),

}
,

where δ, ε > 0 and li,ε :=
∩

x∈li Bε(x) is an ε-neighborhood of li. The function r
plays a role as a source term of the limit problem, which is cI in Theorem 6.5.
Typical examples of such r are

r(x) = cI(x1) and r(x) =

n∑
i=1

ciI(xi),
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where I : R → R is the function in (1.4). Since r is positively 0-homogeneous
by definition, the unique envelope solution of (HJ1; r, 0) is self-similar.

We now take the source term r ∈ BUSC (Rn) such that r <= r <= g in
Rn; clearly, this r has non-compact support. Then the same conclusion as
Theorem 6.5 holds, i.e., if u is the unique envelope solution of (HJ1; r, u0), the
rescaled function u(λ) converges to the self-similar solution v of (HJ1; r, 0) locally
uniformly as λ→ ∞. The proof is similar to that of Theorem 6.5. Indeed, from
the same argument as in Step 2, where we take z = 0 and replace “cI(· − z)” by
“r”, we deduce v <= lim inf∗λ→∞ u(λ). Also, when we let w be the unique envelope
solution of (HJ1; g, 0), a similar argument to Step 3 yields lim sup∗λ→∞ u(λ) <=
lim sup∗λ→∞w(λ) <= v.

6.3 Periodic source terms

We begin with a simple example where the source terms cI(·) are periodically
distributed.

Example 6.8. We study (HJ1; cĨ, 0) with H1(p) = |p| and

Ĩ(x) := max
a∈Zn

I(x− a) =

{
1 (x ∈ Zn),

0 (x ̸∈ Zn).

By Example 5.5 the unique envelope solution is given as

u(x, t) = c(t− dist(x,Zn))+ = max
a∈Zn

c(t− |x− a|)+. (6.8)

We shall show

u(λ)(x, t) → ct uniformly in Rn × [0,∞) as λ→ ∞. (6.9)

Obviously, we have u(x, t) <= ct by (6.8), so that u(λ)(x, t) <= ct. We next estimate
u(λ) from below. Compute

u(λ)(x, t) =
1

λ
u(λx, λt) =

1

λ
max
a∈Zn

c(λt− |λx− a|)+ = max
a∈Zn

c
(
t−

∣∣∣x− a

λ

∣∣∣)
+
.

Now, for fixed (x, t) ∈ Rn × [0,∞) and λ > 0, we choose a ∈ Zn such that
|x− (a/λ)| <=

√
n/(2λ). We then see

u(λ)(x, t) >= c

(
t−

√
n

2λ

)
+

→ ct uniformly in Rn × [0,∞) as λ→ ∞,

which gives (6.9).

It turns out in the next theorem that, for more general periodic source terms
and general initial data, the scaling limits are still ct, where c is the maximum
of r in Rn. We remark that lim sup∗λ→∞ r(λx) = c by periodicity and that ct is
the unique envelope solution of (HJ1; c, 0) provided that H1(0) = 0.
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Theorem 6.9 (Large time behavior for periodic source terms). Assume that
H1 and r satisfy (6.1). Assume that r(x) = r(x + a) for all (x, a) ∈ Rn × Zn,
H1(0) = 0 and H1 >= 0 in Rn. Let u and v be, respectively, the unique envelope
solution of (HJ1; r, u0) and (HJ1; c, 0) with c = maxRn r. Then v(x, t) = ct and
u(λ) converges to v uniformly in Rn × [0,∞) as λ→ ∞.

Proof. Take z ∈ Rn as a maximum point of r, so that cĨ(x− z) <= r(x). We now
claim

ctĨ(x− z)−M0 <= u(x, t), (6.10)

where M0 := supRn |u0|. To prove (6.10) it is enough to show that v0(x, t) :=
ctĨ(x−z)−M0 is a standard subsolution of (HJ1; r, u0). Let (p, τ) ∈ D+v0(x̂, t̂).
If x̂− z ̸∈ Zn, then (p, τ) = (0, 0) since v0 ≡ −M0 near (x̂, t̂). Thus

τ −H1(p) = 0 <= r(x̂).

We turn to the case x̂ − z ∈ Zn. Since v0(x̂, t) = ct −M0, we then have τ = c.
Therefore

τ −H1(p) <= c = cĨ(x̂− z) <= r(x̂),

which proves (6.10). By the Lipschitz continuity of u we next see that (6.10)
gives

max
a∈Zn

(ct− L|x− z − a|)+ −M0 <= u(x, t), (6.11)

where L is the Lipschitz constant of u with respect to x, i.e.,

L = sup
t>=0

sup
x,y∈Rn

x ̸=y

|u(x, t)− u(y, t)|
|x− y|

.

Rescaling the both functions in (6.11), we get

max
a∈Zn

(
ct− L

∣∣∣∣x− z − a

λ

∣∣∣∣)
+

− M0

λ
<= u(λ)(x, t)

for λ > 0. In the same manner as in Example 6.8 we see that the left hand side
converges to ct uniformly in Rn × [0,∞) as λ→ ∞.

It remains to estimate u(λ) from above. Since r <= c in Rn, the comparison
principle implies u(x, t) <= ct+M0. Thus u(λ)(x, t) <= ct+ (M0/λ), and the right
hand side converges to ct uniformly in Rn × [0,∞) as λ→ ∞.

The following two examples show that the conclusion of Theorem 6.9 may
not hold if we remove the non-negativity or coercivity of H1.

Example 6.10. Let us study{
∂tu+ |∇u| = cĨ(x) in Rn × (0,∞),

u(x, 0) = 0 in Rn.
(6.12)

Here H1(p) = −|p| is non-positive. According to Example 5.9, where we con-
sidered the value function defined as the imfimum of costs, the unique envelope
solution of (6.12) is

u(x, t) = 0
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since the interior of Zn is empty. The rescaled function is u(λ) = 0, but this does
not converge to ct.

One can directly check that u = 0 is an envelope solution of (6.12). Indeed,
it is easily seen that u is a subsolution. Next, since

uε(x, t) :=

{
maxa∈Zn c(t− |x− a|)+ (0 <= t <= ε),

maxa∈Zn c(ε− |x− a|)+ (ε <= t)

is a D-supersolution of (6.12) for every ε > 0, the infimum of uε, which equals
zero, is an envelope supersolution.

Example 6.11. When a Hamiltonian is non-coercive, solutions may not have
the scaling limit even in the sense of pointwise convergence. To see this let us
consider the following problem:{

∂tu = cĨ(x) in Rn × (0,∞),

u(x, 0) = 0 in Rn.
(6.13)

In the same manner as in Example 3.1 we see that u(x, t) = ctĨ(x) is an envelope
solution of (6.13). (This is not a unique envelope solution of the problem. In
fact, uα(x, t) = αtĨ(x) solves the same problem for every α ∈ [0, c); see Example
3.16. However, among such solutions u is a natural one since it vertically grows
at a speed c at each step source.) We now compute

u(λ)(x, t) =
1

λ
u(λx, λt) = ctĨ(λx),

and so the limit of u(λ)(x, t) as λ → ∞ does not exist for every (x, t) ∈ (Rn \
{0})× (0,∞). We also have

lim sup
λ→∞

∗u(λ)(x, t) = ct, lim inf
λ→∞

∗u(λ)(x, t) = 0.

Remark 6.12. The result in Theorem 6.9 is consistent with the classical homog-
enization theory for continuous equations ([29]). To check this we set H(x, p) =
H1(p) + r(x) so that H is coercive in the sense lim|p|→∞ infx∈Rn H(x, p) = ∞,
and solve (HJ) with this Hamiltonian. We let u be the unique envelope solu-
tion (an envelope subsolution and a standard supersolution) of (HJ), and set
uε := u(1/ε). Then Theorem 6.9 implies that uε, which is a solution to

∂tu
ε −H1(∇uε) = r

(x
ε

)
in Rn × (0,∞),

uniformly converges to −ct as ε → 0, where c = maxRn r. On the other hand,
according to the homogenization theory, uε converges to the viscosity solution v
of {

∂tv +H(∇v) = 0 in Rn × (0,∞),

v(x, 0) = 0 in Rn
(6.14)

when r is continuous. Here H is called an effective Hamiltonian chosen so that,
for each p ∈ Rn, the cell problem

H(x, p+∇w) = H(p) in Rn (6.15)
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admits a periodic viscosity solution w. If H(0) = c, then we see that the solution
v of (6.14) is v(x, t) = −ct, and hence the conclusion is the same as Theorem
6.9.

Let us show H(0) = c. (This fact is more or less known, but we give the
proof for completeness.) We take p = 0 in (6.15). Then (6.15) is

H1(∇w) = H(0)− r(x) in Rn. (6.16)

Suppose H(0) > c. Since 0 ∈ D−w(x̂) at a minimum point x̂ of w, we would
have

0 = H1(0) >= H(0)− r(x̂) > c− r(x̂) >= 0,

which is a contradiction. We next suppose H(0) < c. Then, since H(0)− r(x) <
0 in a small open neighborhood of a maximum point of r, we would reach a
contradiction by substituting any element of D+w in the neighborhood into
(6.16); recall thatH1 is now assumed to be non-negative. As a result, we conclude
H(0) = c.

Example 6.13. We revisit Example 6.8 and consider the large time behavior
in the sense (1.23). Since the unique envelope solution of (HJ1; cĨ, 0) is of the
form (6.8), we see

u(x, t)−
(
ct− max

a∈Zn
|x− a|

)
→ 0 as t→ ∞

uniformly in Rn. Obviously, this limit is different from our scaling limit ct.

7 Stationary problem

We define a notion of solutions to stationary problems of the form

F (x, u(x),∇u(x)) = 0 in Rn (7.1)

in the same way as the time-dependent problems. Namely, a function u : Rn →
R such that u∗ > −∞ in Rn is called a D-supersolution of (7.1) if

F (x, u∗(x), p) >= 0 for all x ∈ Ω and p ∈ D
−
u∗(x). (7.2)

Also, we call u an envelope supersolution of (7.1) if u(x) = infw∈S w(x) (x ∈ Rn)
for some family S ⊂ {w | w is a D-supersolution of (7.1)}. A (standard) viscosity

supersolution of (7.1) is defined by replacing “F” by “F ∗” and “D
−
” by “D−”

in (7.2). Notions of subsolutions are defined in a similar way, i.e., we say u is a
subsolution if −u is a supersolution. For stationary problems we do not impose
global boundedness on solutions.

7.1 Profile function

We first derive an equation for a profile function of a self-similar solution to
(HJ1; r, 0). Let u be self-similar and suppose that its profile function U is smooth.
Since u(x, t) = tU(x/t), we compute

∂tu(x, t) = U(x/t)− ⟨x/t,∇U(x/t)⟩, ∇u(x, t) = ∇U(x/t).
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Here ⟨·, ·⟩ denotes the standard Euclidean inner product in Rn. Thus, if u solves
(HJ1; r, 0) with a 0-homogeneous r, substituting the above derivatives of u for
(1.18) and letting ξ := x/t, we obtain

U(ξ)− ⟨ξ,∇U(ξ)⟩ −H1(∇U(ξ)) = r(ξ) in Rn. (7.3)

The next proposition asserts that an envelope solution of the stationary problem
(7.3) gives that of the time-dependent problem (HJ1; r, 0).

Proposition 7.1. Assume H1 ∈ C(Rn), r ∈ BUSC (Rn) and that r is positively
0-homogeneous. Let U : R → R be a bounded envelope solution of (7.3). Then
u : Rn × [0,∞) → R defined as

u(x, t) :=

{
0 (t = 0),

tU(x/t) (t > 0)

is an envelope solution of (HJ1; r, 0).

In contrast, it is not trivial whether the self-similar solution u gives the profile
function U in the sense of envelope solutions.

Proof. 1. By the boundedness of U we easily see that u is continuous at t = 0,
i.e., u(x, 0) = lim(y,t)→(x,0) u(y, t) = 0 for all x ∈ Rn.

2. Let us show that u is an envelope supersolution of (HJ1; r, 0). Since U is an
envelope supersolution of (7.3), there is a family T ⊂ {D-supersolutions of (7.3)}
such that U(ξ) = infW∈T W (ξ). Then u(x, t) = tU(x/t) = infW∈T tW (x/t). We
claim that w(x, t) := tW (x/t) is a D-supersolution of (1.18) for every W ∈ T .
To do this we first prove

τ −H1(p) >= r(x̂) (7.4)

for (p, τ) ∈ D−w∗(x̂, t̂). Take a test function ϕ for (p, τ), so that w∗(x, t) −
ϕ(x, t) >= w∗(x̂, t̂)− ϕ(x̂, t̂) for all (x, t) ∈ Rn × (0,∞). Letting ξ = x/t, we see

tW∗(ξ)− ϕ(ξt, t) >= t̂W∗(ξ̂)− ϕ(ξ̂t̂, t̂) for all (ξ, t) ∈ Rn × (0,∞), (7.5)

where ξ̂ := x̂/t̂. We now choose t = t̂ in (7.5) to get

D−W∗(ξ̂) ∋ ∇ξ(ϕ(ξt̂, t̂)/t̂)|ξ=ξ̂ = ∇xϕ(x̂, t̂) = p.

Since W is a D-supersolution of (7.3), we have

W∗(ξ̂)− ⟨ξ̂, p⟩ −H1(p) >= r(ξ̂) = r(x̂). (7.6)

Here we have used the 0-homogeneity of r. We next take ξ = ξ̂ in (7.5). Since a
map t 7→ tW∗(ξ̂)− ϕ(ξ̂t, t) is smooth, we observe

0 =
d

dt
(tW∗(ξ̂)− ϕ(ξ̂t, t))

∣∣∣∣
t=t̂

=W∗(ξ̂)− ⟨ξ̂,∇xϕ(x̂, t̂)⟩ − ∂tϕ(x̂, t̂)

=W∗(ξ̂)− ⟨ξ̂, p⟩ − τ. (7.7)
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Substituting (7.7) into (7.6), we obtain (7.4).

3. We shall show that the inequality (7.4) holds for every (p, τ) ∈ D
−
w∗(x̂, t̂).

Let us take an approximate sequence {((xm, tm), (pm, τm))}∞m=1 for (p, τ) which

appears in the definition of D
−
. Since (pm, τm) ∈ D−w∗(xm, tm) for each m,

a similar argument to Step 2 yields pm ∈ D−W∗(ξm) with ξm = xm/tm. Now,
compute

lim
m→∞

W∗(ξm) = lim
m→∞

w∗(xm, tm)

tm
=
w∗(x̂, t̂)

t̂
=W∗(ξ̂),

where ξ̂ = x̂/t̂. We thus have p ∈ D
−
W∗(ξ̂), which implies (7.6). In the same

manner as in Step 2 we also see 0 = W∗(ξm)− ⟨ξm, pm⟩ − τm. Sending m → ∞
gives (7.7), and hence (7.4) holds.

4. We now apply the argument in Step 2 again in order to show that u is
a standard viscosity subsolution of (HJ1; r, 0). Then, for (p, τ) ∈ D+u∗(x̂, t̂) we
get p ∈ D+U∗(ξ̂) and U∗(ξ̂)− ⟨ξ̂, p⟩ − τ = 0. Here ξ̂ = x̂/t̂. Using the fact that
U is a subsolution of (7.3), we conclude τ −H1(p) <= r(x̂).

Example 7.2. The corresponding stationary problem to our typical equation
(1.5) is

U(ξ)− ⟨ξ,∇U⟩ − |∇U(ξ)| = cI(ξ) in Rn. (7.8)

In Section 7.4 we will solve approximated problems of (7.8) with continuous
source terms and show that (6.2), which is the profile function of the self-similar
solution to (1.5), is indeed an envelope supersolution of (7.8). By contrast one
can check that (6.2) is a subsolution of (7.8) in a direct way. Let us take p ∈
D+U(ξ), where U is given as (6.2). We first notice that |ξ| ≠ 1 since D+U(ξ)
is a empty set if |ξ| = 1. When |ξ| > 1, we have p = 0 and U(ξ) = 0. Thus
U(ξ) − ⟨ξ, p⟩ − |p| = 0 − ⟨ξ, 0⟩ − |0| = 0. We next study the case 0 < |ξ| < 1.
Since p = −cξ/|ξ| and U(ξ) = c(1− |ξ|), we compute

U(ξ)− ⟨ξ, p⟩ − |p| = c(1− |ξ|)−
⟨
ξ,−c ξ

|ξ|

⟩
−
∣∣∣∣−c ξ|ξ|

∣∣∣∣ = c(1− |ξ|) + c|ξ| − c = 0.

Finally, in the case ξ = 0 we observe U(ξ)− ⟨ξ, p⟩ − |p| = c− ⟨0, p⟩ − |p| <= c.

7.2 Comparison principle

We study uniqueness of solutions to stationary problems with discontinuity. Let
us consider a general equation of the form

νu(x) +H(x,∇u) = 0 in Rn, (7.9)

where ν > 0. We establish a comparison principle forD-sub- andD-supersolutions
of (7.9) under a suitable growth condition for solutions.

Theorem 7.3 (Comparison principle). Assume that H satisfies (Hp) with ω1(r) =
L1r for some constant L1 > 0. Let u and v : Rn → R be, respectively, a D-
subsolution and a D-supersolution of (7.9) such that

u(x) <= C0(1 + |x|) and v(x) >= −C0(1 + |x|) for all x ∈ Rn (7.10)
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for some C0 > 0. Assume either (HxN ) or Lipschitz continuity of u or v in Rn.
Then u∗ <= v∗ in Rn.

Unfortunately, the assumption of Theorem 7.3 excludes Hamiltonians having
the inner product ⟨x, p⟩ such as (7.3). The reader is referred to [28, Proposition
5.5] for the proof of a comparison principle in the whole space for standard
viscosity solutions satisfying the same growth condition.

Proof. 1. Suppose by contradiction that there would exist some x0 ∈ Rn such
that u∗(x0) − v∗(x0) =: A > 0. Take a constant δ > 0 small so that 0 < δ <=
A/4(1 + |x0|2), and define

θ := sup
x∈Rn

{u∗(x)− v∗(x)− 2δ(1 + |x|2)}.

Since u and v satisfy the growth condition (7.10), there exists a maximizer z ∈
Rn of the function in the right hand side; namely θ = u∗(z)−v∗(z)−2δ(1+ |z|2).
Also, by the choice of δ, we have

θ >= u∗(x0)− v∗(x0)− 2δ(1 + |x0|2) >= A− A

2
=
A

2
. (7.11)

We next define a function Ψ : Rn ×Rn → R by

Ψ(x, y) := u∗(x)− v∗(y)− ϕ(x, y),

where ϕ : Rn ×Rn → R is a smooth function given as

ϕ(x, y) :=
|x− y|2

2ε2
+ δ(2 + |x|2 + |y|2).

Here 0 < ε < 1. Then Ψ attains its maximum over Rn ×Rn at some (xε, yε) ∈
Rn ×Rn thanks to the growth condition (7.10). We observe

Ψ(xε, yε) >= Ψ(z, z) = u∗(z)− v∗(z)− 0− δ(2 + |z|2 + |z|2) = θ. (7.12)

From this inequality and (7.10) it follows that

|xε − yε|2

2ε2
+ δ(2 + |xε|2 + |yε|2) <= C0(2 + |xε|+ |yε|).

This implies that {xε}ε and {yε}ε are bounded, so that we may assume

lim
ε→0

(xε, yε) = (x̂, x̂) (7.13)

for some x̂ ∈ Rn.
2. We shall show

lim
ε→0

|xε − yε|
ε

= 0 (7.14)

and

lim
ε→0

u∗(xε) = u∗(x̂), lim
ε→0

v∗(y
ε) = v∗(x̂). (7.15)
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Since (xε, yε) is a maximizer of Ψ, we have

Ψ(x̂, x̂) <= Ψ(xε, yε). (7.16)

Using this inequality, we calculate

lim sup
ε→0

|xε − yε|2

2ε2
<= −Ψ(x̂, x̂) + lim sup

ε→0

{
u∗(xε)− v∗(y

ε)− δ(2 + |xε|2 + |yε|2)
}

<= −Ψ(x̂, x̂) + u∗(x̂)− v∗(x̂)− δ(2 + |x̂|2 + |x̂|2) = 0,

which implies (7.14). Next, by (7.16) and the upper semicontinuity of Ψ, we
observe

Ψ(x̂, x̂) <= lim inf
ε→0

Ψ(xε, yε) <= lim sup
ε→0

Ψ(xε, yε) <= Ψ(x̂, x̂).

Thus
lim
ε→0

Ψ(xε, yε) = Ψ(x̂, x̂). (7.17)

This equality and (7.14) implies

lim
ε→0

{u∗(xε)− v∗(y
ε)} = u∗(x̂)− v∗(x̂).

We now compute

u∗(x̂) >= lim sup
ε→0

u∗(xε) >= lim inf
ε→0

u∗(xε) = lim inf
ε→0

{(u∗(xε)− v∗(y
ε)) + v∗(y

ε)}

>= (u∗(x̂)− v∗(x̂)) + v∗(x̂) = u∗(x̂).

Consequently we obtain the both assertions in (7.15). Also, it is now easy to
derive the inequality

A

2
<= Ψ(x̂, x̂) (7.18)

by (7.11), (7.12) and (7.17).
3. Set pε := (xε − yε)/ε2. The first derivatives of ϕ at (xε, yε) are given as

follows:
∇xϕ(x

ε, yε) = pε + 2δxε, ∇yϕ(x
ε, yε) = −pε + 2δyε.

Since Ψ attains its maximum at (xε, yε), we have{
pε + 2δxε ∈ D+u∗(xε),

pε − 2δyε ∈ D−v∗(y
ε).

(7.19)

Now we divide the situation into two different cases.

Case 1: {pε}0<ε<1 is unbounded, Case 2: {pε}0<ε<1 is bounded.

We will reach to contradiction for both cases. Note that, if u or v is assumed to
be Lipschitz continuous, then Case 1 does not occur because D+u∗ or D−v∗ is a
bounded set by the Lipschitz continuity. On the other hand, Case 1 can happen
when we assume (HxN ) instead of the Lipschitz continuity.
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In Case 1 there exists a sequence {ε(j)}∞j=1 ⊂ (0, 1) such that limj→∞ ε(j) = 0

and limj→∞ |pε(j)| = ∞. To simplify the notation let us write ε for ε(j). By
(7.19) we see {

νu∗(xε) +H(xε, pε + 2δxε) <= 0,

νv∗(y
ε) +H(yε, pε − 2δyε) >= 0

since u and v are a sub- and supersolution, respectively. Combining these two
inequalities, we have

ν(u∗(xε)− v∗(y
ε)) <= {H(yε, pε − 2δyε)−H(yε, pε)}+ {H(yε, pε)−H(xε, pε)}

+{H(xε, pε)−H(xε, pε + 2δxε)}.

We now let ε small so that |pε| >= N , where N is the constant in the assumption
(HxN ). Applying (Hp) and (HxN ), we calculate

ν(u∗(xε)− v∗(y
ε)) <= 2δL1|yε|+ ω2((1 + |pε|)|xε − yε|) + 2δL1|xε|

= ω2

(
|xε − yε|+ |xε − yε|2

ε2

)
+ 2δL1(|xε|+ |yε|).

Sending ε→ 0 yields
ν(u∗(x̂)− v∗(x̂)) <= 4δL1|x̂|, (7.20)

where we have used (7.14). Adding −2νδ(1+ |x̂|2) to the both sides, we compute

νΨ(x̂, x̂) <= 4δL1|x̂| − 2νδ(1 + |x̂|2)

= 2δ

{
−ν
(
|x̂| − L1

ν

)2

+
L2
1

ν
− ν

}
<= 2δ

(
L2
1

ν
− ν

)
.

Finally, we apply the inequality (7.18) to get

νA

2
<= 2δ

(
L2
1

ν
− ν

)
.

This is a contradiction for small δ.
We next study Case 2. In this case we may assume limε→0 p

ε = p̄ for some
p̄ ∈ Rn. Since we have (7.13), (7.15) and

lim
ε→0

(pε + 2δxε, pε − 2δyε) = (p̄+ 2δx̂, p̄− 2δx̂),

taking a limit in (7.19), we obtain{
p̄+ 2δx̂ ∈ D

+
u∗(x̂),

p̄− 2δx̂ ∈ D
−
v∗(x̂)

by the definitions of D
±
. Now u and v are solutions in the D-sense, and so it

follows that {
νu∗(x̂) +H(x̂, p̄+ 2δx̂) <= 0,

νv∗(x̂) +H(x̂, p̄− 2δx̂) >= 0.

From these inequalities and (Hp) we are able to deduce (7.20) without (HxN ).
The rest of the proof is similar to Case 1.
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7.3 Existence result

We turn to the existence problem for (7.9). Similarly to the time-dependent case,
we construct envelope solutions via approximated problems. More precisely, for
each ε > 0 we first solve

νuε(x) +Hε(x,∇uε) = 0 in Rn, (7.21)

where Hε is a continuous Hamiltonian approximating H. We next show that
the infimum of uε gives an envelope solution of the original problem (7.9).

The following assumption requires an approximability of H:

(H′
ε) There exists {Hε}ε>0 ⊂ C(Rn×Rn), a family of continuous Hamiltonians,

such that Hε ↑ H pointwise as ε→ 0 and the following conditions hold.

(i) If u and v : Rn → R be, respectively, a standard viscosity sub- and
supersolution of (7.21) satisfying (7.10) for some C0 > 0, then u∗ <= v∗
in Rn.

(ii) There exists a standard viscosity solution uε of (7.21) such that
−Cε(1 + |x|) <= uε(x) <= Cε(1 + |x|) in Rn for some Cε > 0.

The condition (i) implies that the solution in (ii) is unique and continuous.
We also remark that H satisfying (H′

ε) is always lower semicontinuous, so that
we may discuss subsolutions of (7.9) in the standard viscosity sense.

Proposition 7.4 (Existence of envelope solutions). Assume that H satisfies
(H′

ε). Let uε be the unique solution of (7.21), and set u := infε>0 u
ε. Assume

furthermore that there exists a subsolution w of (7.9) such that −C ′(1 + |x|) <=
w(x) in Rn for some C ′ > 0. Then u is an envelope solution of (7.9). Moreover,
it hold that −C ′(1 + |x|) <= u(x) <= Cε(1 + |x|) in Rn for all ε > 0, where Cε is
the constant in (H′

ε).

The proof of Proposition 7.4 uses a similar argument to that of Proposition
3.7.

Proof. Since Hε′ <= Hε <= H for 0 < ε < ε′, the comparison principle (i) in (H′
ε)

implies w <= uε <= uε
′
. Thus taking the infimum over {ε > 0} yields w <= u <= uε

′
.

The growth condition on u follows from these inequalities.
We shall show that u is an envelope solution. Since uε is a standard sub-

solution of (7.21), the stability result for subsolutions under the relaxed limit
([11, Lemma 6.1, Remark 6.3]) implies that lim sup∗ε→0 u

ε, which is now equal
to u by the monotonicity of uε, is a subsolution of (7.9). Here we have used
lim inf∗ε→0H

ε = H. We also see that u is an envelope supersolution of (7.9)
since uε is a D-supersolution of (7.9) by Hε <= H.

One of sufficient conditions for existence of the subsolution w in the statement
of Proposition 7.4 is

m := sup
x∈Rn

H(x, 0) <∞.

In fact, if H satisfies this condition, then w(x) = −m/ν is a bounded subsolution
of (7.9) since

νw(x) +H(x,∇w(x)) = −m+H(x, 0) <= 0.
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7.4 Explicit solutions

Let us solve (7.8) via approximation. As we studied in Example 3.1 and 3.2, one
of simple approximation to (7.8) is

uε(x)− ⟨x,∇uε⟩ − |∇uε| = cIε(x) in Rn, (7.22)

where 0 < ε < 1 and Iε is given by (1.8). Let us compute the exact solutions of
the approximated problems (7.22). We fix ε ∈ (0, 1) and simply write u for uε.
Since (7.22) is written as a Bellman equation of the form

u(x)− sup
a∈B1(0)

⟨x+ a,∇u⟩ = cIε(x) in Rn,

we are able to apply the classical optimal control theory. According to [2, Propo-
sition III.2.8] the value function of the infinite horizon problem defined as

u(x) := sup
α∈A

∫ ∞

0
e−scIε(Xα(s))ds

is a standard viscosity solution of (7.22). Here α ∈ A := {α : [0,∞) →
B1(0),measurable} is a control (the control set is B1(0)) and X

α : [0,∞) → Rn

solves the state equation

(Xα)′(s) = Xα(s) + α(s) in (0,∞), Xα(0) = x.

A discount factor λ, which usually appears in the exponential term e−λs, is now
chosen as one. Studying the optimal strategy for each x ∈ Rn, we shall simplify
the representation formula of u.

We first notice that, if |x| >= 1, it is impossible for the state Xα(s) to reach
Bε(0)(= supp(r)) whatever control α is chosen because, for each x′ ∈ Rn such
that |x′| >= 1, the set {x′ + a | a ∈ B1(0)} is disjoint from the half space {y ∈
Rn | ⟨x′, y⟩ < 0}. This implies that the state cannot get close to the origin.
Thus

u(x) = 0 (|x| >= 1). (7.23)

We next study the case where 0 <= |x| < 1. Then the optimal control forces to
the state to move straight from x to the origin at a maximal speed and to stop
at the origin after the arrival. In other words, the optimal strategy satisfies

|Xα(s)| =

{
1− (1− |x|)es (0 <= s <= − log(1− |x|)),
0 (− log(1− |x|) <= s <∞).

Therefore

u(x)

c
=

∫ − log(1−|x|)

0
e−s

(
1− |Xα(s)|

ε

)
+

ds+

∫ ∞

− log(1−|x|)
e−sds

=

∫ − log(1−|x|)

0
e−s

(
1− 1− (1− |x|)es

ε

)
+

ds+ (1− |x|). (7.24)

59



When |x| <= ε, the first term is∫ − log(1−|x|)

0
e−s

(
1− 1− (1− |x|)es

ε

)
ds = −

(
1

ε
− 1

)
|x| − 1− |x|

ε
log(1− |x|),

and consequently

u(x)

c
= 1− |x|

ε
− 1− |x|

ε
log(1− |x|) (0 <= |x| <= ε). (7.25)

We next compute the first term in (7.24) when ε <= |x| < 1. Then∫ − log(1−|x|)

− log{(1−|x|)/(1−ε)}
e−s

(
1− 1− (1− |x|)es

ε

)
ds =

(
log(1− ε)

ε
− 1

)
(1− |x|),

which yields
u(x)

c
= − log(1− ε)

ε
(1− |x|) (ε <= |x| < 1). (7.26)

Summarizing the above computations, we established the solution formula (7.23),
(7.25) and (7.26). The solution uε of (7.22) is a D-supersolution of (7.8) since
cI(x) <= cIε(x) for all x ∈ Rn. Also, the infimum of uε is equal to (6.2), and
therefore we conclude that (6.2) is an envelope supersolution of (7.8). (In this
example, uε uniformly converges to (6.2) as ε→ 0.)

One can obtain functions of the form (7.25) and (7.26) via solving ordinary
differential equations. To get the solutions we first simplify the equation (7.22).
We consider (7.22) in the one-dimensional half space (0,∞) and suppose that
the solution u is non-increasing in (0,∞) so that |u′(x)| = −u′(x). Then the
equation (7.22) simplifies to

u(x) + (1− x)u′(x) = cIε(x) in (0,∞). (7.27)

Since this is a linear differential equation, we are able to employ the solution
formula of the linear equation. For 0 < x < 1 we have

u(x) =

(
u(0) +

∫ x

0

c

1− s
Iε(s)e

∫ s
0 dz/(1−z)ds

)
e
∫ x
0 −ds/(1−s). (7.28)

We consider the value of u(0). If we suppose u is radially symmetric and dif-
ferentiable at the origin, then ∇u(0) = 0. Thus letting x = 0 in the original
equation (7.22) implies u(0) = c. Substituting this for (7.28) and computing the
integrals, we finally obtain (7.25) and (7.26), where “|x|” is replaced by “x”, for
0 < x <= ε and ε <= x < 1, respectively.

In Example 3.2, considering a finite horizon optimal control problem, we
computed the exact solution to the approximated time-dependent equation of the
form ∂tv

ε−|∇vε| = cIε(x) under the zero initial data. However, the shape of the
solution vε(x, t) to this problem is different from that to the stationary problem
(7.22). Indeed, for a fixed t > 0 the solution vε is a quadratic function of |x|
near the origin with the vertex (0, ct), and the solution is smooth in Rn× (0, T ).
Obviously, the solution of (7.22) does not enjoy these properties.
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In Lemma 5.3 we proved that, under a suitable controllability condition, the
value function of a finite horizon problem with a discontinuous running cost gives
the unique envelope solution of Bellman equations. As its analogue let us study
the value function

v(x) = sup
α∈A

∫ ∞

0
e−scI(Xα(s))ds (7.29)

with a discontinuous integrand. The optimal control for this problem is the
same one as before, i.e., to maximize the cost the state first goes to the origin
straight at a maximal speed, and, after the state arrives at the origin at a time
− log(1− |x|), it stays there. Consequently, we see

v(x)

c
=

∫ ∞

− log(1−|x|)
e−sds = 1− |x|.

In other words, (7.29) gives the envelope solution of (7.8). However, if we choose a
control set as ∂B1(0) instead of B1(0), the value function with the discontinuous
cost cI becomes zero because the state Xα(·) is enable to stop at the origin
whatever α is chosen. This implies that we need to take the control set suitably
to represent the envelope solution.

A Preservation of Lipschitz and uniform continuity

Proof of Proposition 3.17. We first remark that w(x, t) := u0(x)+mt ∈ SUP(H,u0).
Take any (x̂, t̂) ∈ Q, h ∈ (0, T − t̂) and define

ũ(x, t) :=

{
w(x, t) (t ∈ [0, h]),

u(x, t− h) +mh (t ∈ (h, T )).

We claim ũ ∈ SUP(H,u0). Let (p, τ) ∈ D−ũ(x̂, t̂). Then it follows easily that
τ + H(x̂, p) >= 0 when t̂ ̸= h, and so we only consider the case t̂ = h. Since
u ∈ SUB(H,u0) and w ∈ SUP(H,u0), we see by the comparison principle that
u <= w in Q. Take (x, t) ∈ Rn × (h, T ), and substitute (x, t − h) into the
inequality. Then we find u(x, t−h) <= u0(x)+m(t−h), namely ũ(x, t) <= w(x, t).
This implies the relation D−ũ(x̂, h) ⊂ D−w(x̂, h), and hence our claim follows
from w ∈ SUP(H,u0).

Applying the comparison principle to u ∈ SUB(H,u0) and ũ ∈ SUP(H,u0),
we obtain u <= ũ in Q. In particular, we have u(x̂, t̂ + h) <= ũ(x̂, t̂ + h) =
u(x̂, t̂) +mh, that is

u(x̂, t̂+ h)− u(x̂, t̂)

h
<= m.

By the similar argument we also deduce

u(x̂, t̂+ h)− u(x̂, t̂)

h
>= −m

from the fact that u0(x) − mt ∈ SUB(H,u0) and so on. Thus Lipt[u] <= m is
proved.
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We next estimate Lipx[u]. Take any (p, τ) ∈ D+u(x̂, t̂). Since the estimate
Lipt[u] <= m implies |τ | <= m, we see from u ∈ SUB(H) that H(x̂, p) <= −τ <= m,
hence that |p| <= R+(m) by (HR+). This observation means

sup
(x̂,t̂)∈Q

(p,τ)∈D+u(x̂,t̂)

|p| <= R+(m),

and moreover Lemma A.2 (1) and (2) below ensure that

sup
t̂∈(0,T )

sup
x,y∈Rn

x ̸=y

|u(x, t̂)− u(y, t̂)|
|x− y|

<= R+(m).

We thus conclude that Lipx[u] <= R+(m).

Remark A.1. From the proof it turns out that it is sufficient to assume that H
satisfies (HR+) or (HR−) only for all m ∈ I, where I is the range of m(·) in (Hm)
on [0,∞). For example H(x, p) = −|p|/(1 + |p|) is not coercive but the same
conclusion in Proposition 3.17 still holds since we have 0 <= m(ρ) < 1 (ρ >= 0)
and R−(m) <∞ (0 <= m < 1).

Lemma A.2. (1) Let f : RN → R be bounded. Then we have

sup
x,y∈RN

x ̸=y

|f(x)− f(y)|
|x− y|

= sup
x̂∈RN

p∈D+f(x̂)

|p|.

(2) Let u : Q→ R be continuous. Assume that Lipt[u] <∞. Then we have

sup
(x̂,t̂)∈Q

(p,τ)∈D+u(x̂,t̂)

|p| = sup
t̂∈(0,T )

sup
x̂∈Rn

p∈D+(u|t=t̂)(x̂)

|p|.

Proof. (1) This is well-known even in multi-dimensional setting; see, e.g., [25,
Proposition 5.8].

(2) Denote by Lu and Ru respectively the left hand side and the right hand
side. Then we obtain Lu <= Ru by the separation of variables of a test function.
Let us show Lu >= Ru. Fix (x̂, t̂) ∈ Q, p ∈ D+(u|t=t̂)(x̂) and take a corresponding
test function ψ ∈ C1(Rn). We may assume that u|t=t̂ − ψ attains its strict
maximum at x̂. Define C := Lipt[u] + 1, g(t) := C|t − t̂|, ϕ := ψ + g, gε(t) :=

C
√

|t− t̂|2 + ε and ϕε := ψ + gε. Then u − ϕ attains its strict maximum at

(x̂, t̂) and u − ϕε converges to u − ϕ uniformly. Therefore, by the lemma on
convergence of maximum points (see [21, Lemma 2.2.5]), there exists a sequence
{(xε, tε)}ε>0 such that (xε, tε) → (x̂, t̂) and u − ϕε attains its local maximum
at (xε, tε) for each ε > 0. Then we have (∇ψ(xε), (gε)′(tε)) ∈ D+uε(xε, tε) and
∇ψ(xε) → ∇ψ(x) = p, which yield Lu >= Ru.
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We next prove Proposition 3.18. In the following proof we use the fact that
if uniformly continuous functions f δ (δ > 0) converges to f uniformly as δ ↓ 0,
then f is also uniformly continuous. Let ωδ be a modulus of f δ. Then

|f(x)− f(y)| <= |f(x)− f δ(x)|+ |f δ(x)− f δ(y)|+ |f δ(y)− f(y)|
<= 2∥f − f δ∥+ ωδ(|x− y|),

and hence our claim follows. We also find that f has

ω(r) = inf
δ>0

(
2∥f − f δ∥+ ωδ(r)

)
as its modulus and that there is no need to assume the existence of a common
modulus of f δ.

Proof of Proposition 3.18. By the assumption (Hm) there exists a solution uδ ∈
SOL(H,uδ0) for each δ > 0, and Proposition 3.17 implies that uδ ∈ BLip(Q)
since uδ0 ∈ BLip(Rn). Now, by using the inequality

∥u− uδ∥Q <= ∥u0 − uδ0∥Rn (A.1)

in Remark 2.7 (1) we find that uδ converges to u uniformly in Q as δ ↓ 0. Besides,
recalling the remark before this proof, we see u ∈ BUC (Q) and

ω0(r) := inf
δ>0

(
2∥u− uδ∥Q + Lip[uδ]r

)
is a modulus of u. Applying (A.1) and the estimate of Lip[uδ] in Proposition
3.17, we obtain the desired form of ω.

B Existence of D-solutions to general equations

In this section we discuss a sufficient condition which guarantees that an envelope
solution of the original problem is a D-solution of the relaxed problem. As the
original problem, we consider (HJ) with H of the form (1.10); that is

(HJ0)

{
∂tu+H0(x,∇u) = r(x) in Q, (B.1)

(1.2).

To study the relaxed problem we make the following assumptions on H0 and r:
(i) H0 ∈ C(Rn ×Rn) and the map µ 7→ H0(0, µp) is nonincreasing

on {µ >= 0} for all p ∈ Rn.

(ii) r ∈ C(Rn \ {0}) and r∗ ∈ C(Rn).

(B.2)

The condition (B.2) implies (i)′, (ii)′ and (4.4) in Example 4.1, and therefore
(Hr) is satisfied. The corresponding relaxed Hamiltonian Ĥ is

Ĥ(x, p) :=

{
H(x, p) (x ̸= 0),

min{H∗(0, p), H(0, 0)} (x = 0).
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Setting P := {p ∈ Rn | H∗(0, p) >= H(0, 0)}, we have

Ĥ(0, p) =

{
H(0, 0) (p ∈ P ),

H∗(0, p) (p ̸∈ P ),

and so Ĥ is continuous in {(x, p) | x ̸= 0 or p ̸∈ P}. We also notice that P is a
closed set in Rn by the continuity of H∗. We have already shown in Section 4
that an envelope solution of (HJ0) is also an envelope solution of (r.HJ).

Our gold in the rest of this section is to prove that an envelope solution
of (r.HJ) is a D-solution of the same problem. To do this the following two
assertions play crucial roles.

Lemma B.1. Let u : Q→ R be continuous.

(1) Assume that u satisfies the following property:

(U1) For all t̂ ∈ (0, T ) there exist some d > 0, δ > 0 and C >= 0 such that
u|x=x′ + Ct2 is convex in (t̂− δ, t̂+ δ) for each x′ ∈ Bd(0).

Then

τ ∈ D−(u|x=0)(t̂) for all (p, τ) ∈ D
−
u(0, t̂) with t̂ ∈ (0, T ). (B.3)

(2) Assume that H0 and r satisfies (B.2). Assume furthermore that u is a
Lipschitz continuous D-supersolution of (4.1). Then

τ +H(0, 0) >= 0 for all τ ∈ D−(u|x=0)(t̂) with t̂ ∈ (0, T ). (B.4)

A function f : Rn → R is said to be semiconvex if f(x) + C|x|2 is convex
for some C > 0. Thus the condition (U1) requires some kind of semiconvexity
of u with respect to t. We remark that, when f(x) + C|x|2 is convex, functions
f(x)+C|x−a|2 are also convex for all a ∈ Rn. Indeed, we have f(x)+C|x−a|2 =
f(x)+C|x|2−2C⟨x, a⟩+C|a|2, and the right hand side is the sum of two convex
functions. This implies the convexity of f(x) + C|x− a|2.

Proof. (1) Let (p, τ) ∈ D
−
u(0, t̂). Take an approximate sequence (pm, τm) ∈

D−u(xm, tm) for (p, τ) and their test functions ϕm ∈ C1(Rn × (0, T )). We may
assume that ϕm is of the separated form, i.e, ϕm(x, t) = ψm(x) + gm(t) for some
ψm ∈ C1(Rn) and gm ∈ C1(0, T ). Since u|x=xm −gm attains its minimum at tm,
we see that tm is also a minimum point of u|x=xm + C(t − tm)2 − gm, where C
is the constant in (U1). As we remarked after the statement of Lemma B.1, the
function u|x=xm + C(t− tm)2 is convex in (t̂− δ, t̂+ δ). Thus tm is a minimum
point of u|x=xm+C(t−tm)2−g′(tm)t over (t̂−δ, t̂+δ). We now apply g′(tm) = τm
and send m → ∞. Then, from the continuity of u at (0, t̂), it follows that the
function u|x=0 +C(t− t̂)2 − τt attains its minimum over (t̂− δ, t̂+ δ) at t̂. This
implies

D−(u|x=0)(t̂) ∋
d

dt
{τt− C(t− t̂)2}

∣∣∣∣
t=t̂

= τ,

which is the desired conclusion.
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(2) Choose any τ ∈ D−(u|x=0)(t̂), and take a test function g ∈ C1(0, T ) for τ .
We may assume that u|x=0−g attains its strict minimum at t̂. For ε > 0 we define
γ := Lipx[u]+1, ψ(x) := −γ|x|, ϕ(x, t) := ψ(x)+g(t), ψε(x) := −γ

√
|x|2 + ε and

ϕε(x, t) := ψε(x)+g(t). Then u−ϕ attains its strict minimum at (0, t̂), and u−ϕε
converges to u−ϕ uniformly as ε→ 0. Thus there exists a sequence {(xε, tε)}ε>0

such that (xε, tε) → (0, t̂) as ε→ 0 and that u−ϕε attains its local minimum at
(xε, tε) for each ε > 0 ([21, Lemma 2.2.5]). Now, since |∇ψε| <= γ for all ε > 0,
taking a subsequence if necessarily, we may let∇ψε(xε) converge to some p̄ ∈ Rn.

Moreover limε→0 g
′(tε) = g′(t̂) = τ , and so we see (p̄, τ) ∈ D

−
u(0, t̂). Since u is

a D-supersolution of (4.1), we conclude 0 <= τ + Ĥ(0, p̄) <= τ +H(0, 0).

Remark B.2. (1) If a function u is of the form (4.8), then u satisfies (U1) with
C = 0. Thus, when a Hamiltonian is given as (1.3), we conclude that (4.7)
is a sufficient condition for (U1) since (4.7) implies (4.8). For more general
Hamiltonians, as far as the author knows, there is no convenient sufficient
condition on the initial data which guarantees (U1) for envelope solutions
u of (HJ0).

(2) The conclusion (B.3) in Lemma B.1 (1) may not hold if we remove (U1).
To see this, let us consider the solution u given by (4.6). Concerning its

subdifferentials, we have 0 ̸∈ D−(u|x=0)(2) and (0, 0) ∈ D
−
u(0, 2); that is,

(B.3) is violated. We also notice that u does not satisfy (U1) at t̂ = 2.

Remark B.3. If we assume

lim sup
(x,p)→(0,∞), x ̸=0

H(x, p) <= H(0, 0) (B.5)

in Lemma B.1 (2) instead of the Lipschitz continuity of u, the same conclusion
follows. In this case we take ψ and ψε in the proof as

ψ(x) =

{
0 (x = 0)

−∞ (x ̸= 0)
, ψε(x) = −|x|2

ε
.

Since lim sup∗ε→0 ψ
ε = ψ, it follows from [21, Lemma 2.2.5] that there exists a

sequence {(xε, tε)}ε>0 satisfying the same properties as in the proof of Lemma
B.1 (2) by taking a subsequence if necessary. Set pε := ∇ψε(xε) = −2xε/ε
and assume that the sequence {pε}ε>0 is not bounded; otherwise the same proof
runs as before. By the unboundedness of pε we notice xε ̸= 0 for very small ε.
Since (pε, g′(tε)) ∈ D−u(xε, tε) and u is a supersolution of (4.1), we have g′(tε)+
H(xε, pε) >= 0. Taking lim sup∗ε→0 in the inequality, we obtain τ + H(0, 0) >= 0
by (B.5).

Proposition B.4 (Existence of D-solutions). Assume that H0 and r satisfies
(B.2). Let u be a continuous envelope solution of (HJ0) such that u = infw∈S w
for some S which consists of Lipschitz continuous D-supersolutions of (B.1).
Assume furthermore that u satisfies (U1). Then u is a D-solution of (r.HJ).

Proof. From Lemma 4.4 and the inequalityH <= Ĥ it follows that u is an envelope
solution of (r.HJ).
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Let (p, τ) ∈ D
−
u(x̂, t̂). When x̂ ̸= 0 or p ̸∈ P , we apply the stability result

under infimum for standard supersolutions ([11, Lemma 4.2]) to obtain

0 <= τ + (Ĥ)∗(x̂, p) = τ + Ĥ(x̂, p)

since Ĥ is continuous at (x̂, p). We next study the case where x̂ = 0 and p ∈ P .
By the definition of P our goal is to show

τ +H(0, 0) >= 0. (B.6)

Since u satisfies (U1), Lemma B.1 (1) implies

τ ∈ D−(u|x=0)(t̂). (B.7)

We next apply Lemma B.1 (2) to each w ∈ S. It then follows that ∂t(w|x=0) +
H(0, 0) >= 0 in (0, T ) in the standard viscosity sense. Thus, by the stability under
infimum we see ∂t(u|x=0) +H(0, 0) >= 0 in (0, T ) in the standard viscosity sense.
Using (B.7), we finally deduce (B.6).

C On effects of discontinuity and measures

If we see source terms with jump discontinuity such as I(x) with respect to
the Lebesgue measure, we cannot observe the discontinuity since, in the case
of I(x), it is equal to zero in the almost everywhere sense. However, if we use
another measure, say the counting measure, we may not neglect such discon-
tinuity at a singleton. It is thus reasonable to establish a notion of envelope
solutions depending on a given measure. For this purpose we introduce an es-
sential semicontinuous envelope as follows. Let µ be a Borel (regular) measure
on Rn. Assume that 0 < µ(B) <= ∞ for any open ball B = Br(x) with radius
r > 0 centered at x ∈ Rn. For a Borel measurable function f : Rn → R we
define an essential lower semicontinuous envelope of f with respect to µ as

fµ∗(x) := lim
δ→0

(
ess inf
Bδ(x)

f

)
,

where ess infBδ(x)
f := sup{λ ∈ R | µ({x ∈ Rn | f(x) < λ} ∩ Bδ(x)) = 0}.

In other words, we modify a set of discontinuity of f with µ-zero measures.
Assuming that all balls have positive measure, we see that fµ∗ is well-defined as
a real-valued function provided that f is locally bounded. Also, as we will see
below, fµ∗ is a lower semicontinuous function.

We apply this essential envelope to the original Hamiltonian H, and solve
(HJ) with Hµ∗ instead of H. We then obtain an envelope solution on which
the measure µ has an effect. When a Hamiltonian is of the form (1.10), we
have Hµ∗(x, p) = H0(x, p) − rµ∗(x) with rµ∗ := −(−r)µ∗. For instance, when
the source term r is given as (1.12), we have rµ∗ = 0 if µ is the n-dimensional
Lebesgue measure while rµ∗ = r if µ is the counting measure. The former
example implies that the inequality r <= rµ∗ does not necessarily hold although
we always have r <= r∗ for the usual upper semicontinuous envelope.
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We prove that fµ∗ is lower semicontinuous. Take x ∈ Rn and δ > 0. We
also choose y ∈ Bδ(x) and d > 0 small so that Bd(y) ⊂ Bδ(x). This inclusion
relation implies ess infBd(y)

f >= ess infBδ(x)
f . We send d → 0 and then take

lim infy→x in the inequality to obtain lim infy→x fµ∗(y) >= ess infBδ(x)
f . Finally,

sending δ → 0 gives lim infy→x fµ∗(y) >= fµ∗(x), which means that fµ∗ is lower
semicontinuous at x.
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Birkhäuser Boston, Inc., Boston, MA, 1997.

[3] G. Barles, P. E. Souganidis, On the large time behavior of solutions of
Hamilton-Jacobi equations, SIAM J. Math. Anal. 31 (2000), no. 4, 925–
939.

[4] E. N. Barron, R. Jensen, Semicontinuous viscosity solutions for Hamilton-
Jacobi equations with convex Hamiltonians, Comm. Partial Differential
Equations 15 (1990), no. 12, 1713–1742.

[5] A. Briani, A. Davini, Monge solutions for discontinuous Hamiltonians,
ESAIM Control Optim. Calc. Var. 11 (2005), no. 2, 229–251.

[6] W. K. Burton, N. Cabrera, F. C. Frank, The growth of crystals and the
equilibrium structure of their surfaces, Philos. Trans. Roy. Soc. London.
Ser. A. 243 (1951), 299–358.

[7] L. A. Caffarelli, M. G. Crandall, M. Kocan, A. Swiȩch, On viscosity solutions
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Chapter 2

Asymptotically self-similar
solutions to curvature flow
equations with prescribed
contact angle and their
applications to groove profiles
due to
evaporation-condensation

1 Introduction

We are concerned with the asymptotic behavior of solutions to second order
parabolic equations with the Neumann boundary condition of the form

(NP)


∂tu(x, t) = F (∇u(x, t),∇2u(x, t)) in Ω× (0,∞), (1.1)

u(x, 0) = u0(x) on Ω, (1.2)

∂x1u(x, t)|x1=0 = β > 0 on ∂Ω× (0,∞), (1.3)

which we also denote by (NP;F, u0). Here Ω = {(x1, . . . , xn) ∈ Rn | x1 > 0}
is the half space, ∇u and ∇2u denote, respectively, the gradient and Hessian
matrix of u with respect to x, and the initial data u0 is bounded and uniformly
continuous, i.e., u0 ∈ BUC (Ω). A given real-valued function F is continuous and
degenerate elliptic. Our goal in this paper is to prove that (viscosity) solutions of
(NP) asymptotically converge to a self-similar solution of the associated problem,
and study properties of a profile function of the self-similar solution.

Our study is motivated by evaporation-condensation model which was first
proposed by a material scientist Mullins in [43]. Consider the situation that
there are two crystal grain regions (solid phases) on the plane which consist of
the same matter and differ only in their relative crystalline orientation. Let the
two region be {(x, y) | x >= 0, y <= u(x, t)} and {(x, y) | x <= 0, y <= ũ(x, t)} at
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time t >= 0, where we assume u(0, t) = ũ(0, t) so that a triple junction appears
at the point (0, u(0, t)); see Figure 1. Moreover, we assume the symmetry, i.e.,
u(x, t) = ũ(−x, t) for x > 0. The rest part on the plane is filled by gas. The
intersection between the two crystal regions, which is called a grain boundary,
is assumed to be stable on the line x = 0. We suppose that due to evaporation
and condensation crystal atoms move between solid phases and gas phase. This
mechanism leads development of a surface groove at the grain boundary, which
we call a thermal groove, as in Figure 1. In this setting we study evolution of

O
x

O
xt = 0 t > 0gas

grain boundary (fixed) thermal groove

crystal

u(x, t)ũ Γt

Figure 1: The thermal groove develops due to evaporation-condensation.

interfaces between crystal grains and gas. By symmetry we consider the interface
only in the right region, which we represent as Γt := {(x, u(x, t)) ∈ R2 | x >= 0}.
According to Mullins’ theory in [43] the evolution equation for Γt is given as

Vn = C0

(
1− e−C1k

)
on Γt, (1.4)

where Vn is the upward normal velocity of Γt, k is the upward (mean) curvature,
and C0, C1 are positive constants. Thus, taking C0 = C1 = 1 for simplicity, we
obtain the following partial differential equation for u:

ut√
1 + u2x

= 1− e−k (1.5)

in {x > 0} × {t > 0}, where (ut, ux, uxx) = (∂tu, ∂xu, ∂xxu). Here we have
invoked the formula Vn = ut/

√
1 + u2x, and also the curvature k is represented by

k = uxx/
√

1 + u2x
3
([22, Chapter 1.2, 1.4]). In this model a boundary condition

on u at x = 0 is given as
ux(0, t) ≡ β > 0, (1.6)

which is the prescribed angle condition and results from equilibrium of tensions at
the triple junction point (0, u(0, t)). Hence solving the Cauchy problem for (1.5)
under the Neumann boundary condition (1.6) gives the surface profile due to
evaporation-condensation. The problem (NP) is a generalized multidimensional
case of this model.

In [43] Mullins approached the equation (1.5) via two approximations. He
first applies the linear approximation of the exponential term, which is

1− e−k ≈ k. (1.7)
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Then the original equation (1.5) simplifies to

vt =
vxx

1 + v2x
, (1.8)

which is the usual mean curvature flow equation for graphs. To solve (1.8)
Mullins next applies the second approximation that

vx ≈ 0. (1.9)

This condition comes from physical assumption that slopes on the surface are
sufficiently small, which especially implies β ≪ 1. Applying (1.9) to (1.8) finally
yields

wt = wxx. (1.10)

Since this is the simple heat equation, its classical solution w with the initial-
boundary conditions w(x, 0) ≡ 0 and wx(0, t) ≡ β > 0 exists and has the explicit
form; see Example 2.3. In this way Mullins concludes that the groove profile due
to evaporation-condensation is given by the solution w. In particular, putting
x = 0, Mullins computes the depth of the developing thermal groove at the
origin, which is

−w(0, t) = 2β

√
t

π
≈ 1.13β

√
t. (1.11)

In this paper we aim at justifying these two approximations by Mullins.
Namely, we rigorously discuss a relation among the three solutions u, v and
w. The point in our study is that the solutions v of (1.8) and w of (1.10) are
(forward) self-similar, i.e., they are of the form

v(x, t) =
√
tV

(
x√
t

)
, w(x, t) =

√
tW

(
x√
t

)
.

The functions V and W are called profile functions of v and w, respectively.
Then, as a justification for the first approximation, we prove

1√
t
u(
√
tx, t) → V (x) as t→ ∞ (1.12)

in Theorem 3.4. This convergence result says that if we rescale the solution
u of (1.5) in the above way, then it converges to the profile function V of the
approximated equation. In other words, u itself is not necessarily self-similar,
but it is asymptotically self-similar in the above sense.

We prove such an asymptotic result for more general problems of the form
(NP) in Section 3. As a special structure of the equation (1.1) we direct our
attention to homogeneity of F . Here we say F (or (1.1)) is homogeneous if F is
positively homogeneous of degree 1 with respect toX, i.e., F (p,X) = λF (p,X/λ)
for λ > 0. Evidently, the equation (1.8) is homogeneous. It also turns out that
solutions of the homogeneous equations with the zero initial data are self-similar.
Thus (1.8) can be generalized to homogeneous equations. In order to explain
how we generalize (1.5) to the equation (1.1) with G : Rn × Sn → Rn, we shall
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give an idea of the proof of (1.12). Let u and v be, respectively, a solution of
(NP;G, u0) and (NP;F, 0), where F is homogeneous. We prove the result (1.12)
by showing that rescaled functions of u converge to v; namely,

u(λ)(x, t) :=
1

λ
u(λx, λ2t) → v(x, t) as λ→ ∞. (1.13)

It is easy to see that this rescaled function u(λ) is a solution to the rescaled equa-
tion (NP;Gλ, (u0)(λ)) with Gλ(p,X) = λG(p,X/λ) and (u0)(λ)(x) = u0(λx)/λ.
Since (u0)(λ) → 0 as λ→ ∞, we can conclude that if Gλ converges to F , then the
limit of u(λ) solves (NP;F, 0). By uniqueness the limit should be v, and hence
we obtain (1.13). Note that our convergence result (1.13) holds for a solution u
of (NP;G, u0) with an arbitrary initial data u0 ∈ BUC (Ω).

In this way we are led to introduce a notion that G is asymptotically homo-
geneous, which roughly means that G approximates some homogeneous function
in a suitable sense. To be more precise, we require that Gλ(p, x) := λG(p,X/λ)
converge to some homogeneous F as λ → ∞. By a simple calculation we see
that (1.5) is asymptotically homogeneous with the limit (1.8). Accordingly the
asymptotic homogeneity is a generalized notion containing (1.5), and the Mullins’
first approximation is then generalized to

G ≈ F.

To show the convergence of u(λ) to v rigorously we employ stability results of
viscosity solutions. Due to comparison principle for (NP), we see that the upper
and lower relaxed limit of u(λ), which are a sub- and supersolution respectively,
should agree with v provided that the relaxed limits exist. Thus the remaining
problem, which is our main difficulty, is to show the existence of the relaxed
limits. This is achieved by constructing suitable barriers which are of order
O(

√
t) as t→ ∞; see Lemma 3.5 and the proof of Theorem 3.4.
We turn to the second approximation by Mullins, to which we dedicate Sec-

tion 5. Since the solution v of (1.8) and w of (1.10) are self-similar, we consider
only their profile functions. Our main interest is to examine adequateness of
Mullins’ conclusion (1.11) concerning the depth of the thermal groove at the
origin. For this purpose we compare the depths of two profile functions at the
origin; one is the original depth −V (0)(= −v(0, 1)) which comes from (1.8) and
the other is the approximated depth−W (0)(= −w(0, 1)) corresponding to (1.10).
Recall that −W (0) has the explicit form that −W (0) = 2β/

√
π by (1.11). We

prove among other results that, in Mullins’ problem, −W (0) is the third order
approximation of −V (0), i.e.,

−V (0) = −W (0) +O(β3) as β → 0. (1.14)

In this paper we discuss such comparison of the two depths for more general
equations. From results for the general case we deduce (1.14). To discuss the
general case let us consider (NP) with a homogeneous F . Since the problem
(NP;F, 0) does not include the variables x2, . . . , xn, its self-similar solution de-
pends only on x1 and t. Thus, in what follows we let the spatial dimension n

74



be one so that the profile function V is defined on R. Then it turns out that V
satisfies the ordinary differential equation of the form

V (ξ)− ξV ′(ξ) = a(V ′(ξ))V ′′(ξ) in (0,∞), (1.15)

where a is given by a(p) := −2F (p,−1). Note that a(p) = 2/(1+ p2) in Mullins’
case since F (p,X) = X/(1 + p2) for (1.8). Let us recall the Mullins’ second
approximation which replaces the first derivative vx by zero. As its analogue, for
the general equation (1.15) we replace a(V ′(ξ)) in the right hand side by a(0),
i.e., we apply

a(V ′(ξ)) ≈ a(0).

This is a generalized Mullins’ second approximation. The resulting approximated
equation is

W (ξ)− ξW ′(ξ) = a(0)W ′′(ξ) in (0,∞), (1.16)

which represents the heat equation if we return (1.16) to the parabolic problem.
Let V and W be, respectively, the unique viscosity solution of (1.15) and (1.16)
with the boundary conditions that V ′(0) = β and V (∞) = 0. A well-posedness
of these equations in the viscosity sense is a consequence of that of parabolic
equations (NP). We also remark that W has the explicit form. In this general
setting we prove that the estimate

0 <=
V (0)−W (0)

β
<= C

(
a(0)−min

[0,β]
a

)
(1.17)

holds for some positive constant C independent of β. This result implies−V (0) =
−W (0)+ o(β) as β → 0 for general equations and (1.14) for Mullins’ case where
a(p) = 2/(1+ p2). The main tool for the proof of (1.17) is comparison principle.
Namely, if we have a subsolution V1 and a supersolution V2, then we obtain an
inequality V1 <= V2 and in particular −V1(0) >= −V2(0). To this end we seek
a suitable sub- or supersolution of the ordinary differential equation. We also
deduce a couple of other estimates on the depth by the comparison method.

Our another interest is degenerate cases. We study (1.15) when a(p) is al-
lowed to be zero. Even in such degenerate cases the unique solution to (1.15)
exists in the viscosity sense. As an instructive example, we now let a(p) = 0
for p ∈ [q−, q+] and a(p) > 0 otherwise. Then a simple observation indicates

O

V (ξ) ξ

O p

a(p)

β

q−q+

solution

q+q−

ξ0

Figure 2: The profile function V has a corner when the equation is degenerate.
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that the unique solution V has a corner whose angles are determined by q− and
q+. Indeed, if we admit that V is negative and increasing (these properties are
shown in Proposition 4.3), we notice by (1.15) that 0 > a(V ′(ξ))V ′′(ξ). This
implies V ′(ξ) ̸∈ [q−, q+]; in other words, the derivative of V jumps over the in-
terval [q−, q+]. Rigorous statement and its proof on the corner of the viscosity
solution V are given in Theorem 4.10, where we prove that there exists a unique
ξ0 ∈ (0,∞) such that the left and right derivatives of V at ξ0 are, respectively,
q+ and q−; see Figure 2.

Since the solution V of (1.15) is a profile function of the (forward) self-
similar solution, it is natural to expect relation between V and the Wulff shape,
which minimizes the total surface energy among all sets with the same volume.
Although our interface Γt is now unbounded, we are able to relate the corner of
the profile function V to that of the associated Wulff shape in the following way.
For a given surface energy density γ : Sn−1 = {x ∈ Rn | |x| = 1} → (0,∞) we
define a Wulff shape associated with γ by

Wulff(γ) =
∩
|q|=1

{x ∈ Rn | ⟨x, q⟩ <= γ(q)},

where ⟨·, ·⟩ is the standard inner product in Rn. Let us consider the evolution
equation of the form

Vn =M(n)kγ on Γt, (1.18)

where M : Sn−1 → (0,∞) is the mobility, n is the oriented normal vector on Γt,
and kγ is the anisotropic curvature with respect to the surface energy density γ.
See, e.g., [22, Chapter 1.3] for the definition of kγ . We now let n = 2 and assume
that Γt is represented by a graph, i.e., Γt = {(x, u(x, t)) ∈ R2}. Then, choosing
n as the upward normal vector and using the formula

kγ = (γ̃′′(argn) + γ̃(argn))k,

where argn is the argument of n and γ̃(θ) := γ(cos θ, sin θ), we see that (1.18)
is rewritten as

ut√
1 + u2x

=M

(
(−ux, 1)√
1 + u2x

)(
γ̃′′(arg(−ux, 1)) + γ̃(arg(−ux, 1))

) uxx√
1 + u2x

3 .

The profile function of the self-similar solution of this equation satisfies the
ordinary differential equation (1.15) with a of the form

a(p) = 2M

(
(−p, 1)√
1 + p2

)(
γ̃′′(arg(−p, 1)) + γ̃(arg(−p, 1))

) 1√
1 + p2

3 .

Therefore we see that a(p) = 0 for all p ∈ [q−, q+] if and only if γ̃′′(θ)+ γ̃(θ) = 0
for all θ ∈ [arg(−q−, 1), arg(−q+, 1)]. The latter condition on γ leads the corner
point of Wulff(γ) at which the slope of each tangent line is in [q−, q+]. This
agrees with the corner of our profile function shown in Figure 2.
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Let us explain why the equation (1.5) (or (1.4)) and the boundary condi-
tion (1.6) appear in Mullins’ model. The exponential term in (1.4) comes from
the Gibbs-Thompson formula in physics. This formula asserts that the vapor
pressure p in equilibrium with the surface is given as

log

(
p

p0

)
= −C1k, (1.19)

where p0 is the atmospheric pressure and C1 is a positive constant. Now, recall
that the only mechanism operative in the transport of matter is evaporation-
condensation. Thereby the normal velocity Vn is determined by the difference
between the effect by condensation and that by evaporation. According to kinetic
theory their effects are in proportion to pressures p0 and p, respectively, and thus

Vn = C2(p0 − p) (1.20)

with C2 > 0. It is now clear that (1.19) and (1.20) lead the equation (1.4) by
letting C0 = C2p0. The prescribed angle condition (1.6) is a consequence of equi-
librium of tensions. More precisely, the resultant of the grain boundary tension
(0,−γb) ∈ R2 and two surface tensions (±γs cos θ, γs sin θ) ∈ R2 is assumed to
vanish at (0, u(0, t)), where γb > 0 and γs > 0 are, respectively, the boundary
free energy and the surface free energy per unit area and θ is the slope angle of
u at x = 0. Thus we have 2γs sin θ = γb, which implies (1.6).

In [43] Mullins proposes another mechanism for the development of surface
groove, which is surface diffusion. If we take the surface diffusion into account,
the resulting equation describing the surface profile becomes a fourth order non-
linear parabolic equation. In this paper, however, we do not discuss such effect
by surface diffusion so that only second order equations appear in our study. As
a result, we are able to apply the viscosity solution theory ([16]) to study the
problem. Mullins gives a criterion for judging which mechanism dominates the
development of surface. According to [43] for magnesium under high pressure
the profile is completely shaped by evaporation-condensation after a very short
time while surface diffusion plays a dominant role for a very long time for gold
under low pressure. See, e.g., [11, 32, 42, 58] for the studies of fourth order
equations related to the surface diffusion.

We next state previous work related to our study. Many authors investigate
asymptotic behaviors of solutions to curvature flow type equations. We first
refer the reader to [26], where surfaces evolving by the mean curvature over
a domain in Rn are studied under the zero Neumann boundary condition. It
is shown that the solution converges to a constant function as t → ∞. In [2]
Altschuler and Wu study Cauchy problems for quasilinear equations of the form
ut = (a(ux))x on {0 <= x <= d}× [0,∞). They prove that solutions of the problem
asymptotically converge to a solution which moves at a constant speed. The
same authors obtain in [3] a similar convergence result for surfaces over a convex
domain in R2, but they deal with only the curvature flow equation.

Asymptotic behaviors of graph solutions to free boundary problems are also
studied in the literature. The paper [13] treats a quasilinear parabolic equation
ut = (a(ux))x under a two point free boundary condition. (The same problem
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restricted to the equation (1.8) can be found in [15].) In [13] two half-lines are
given radially from the origin and solutions are required to have intersections
with them, which are the free boundary points, at prescribed contact angles.
A global existence and uniqueness of solutions to the parabolic problem are
established. A convergence result to a self-similar solution is deduced together
with its convergence rate in the sense of the Hausdorff metric. The parabolic
equation in [13] is not allowed to be degenerate, but our results concerning a
well-posedness and the asymptotic behavior include degenerate cases. A similar
setting to [13] is found in [39], where a one-point free boundary problem is
considered. The paper [13] deals with expanding interfaces while the preserving
case and the shrinking case for the same problem are discussed in [24].

For graphs defined on a whole space, their convergence results to a self-similar
solution are obtained in [20, 31]. The paper [20] studies mean curvature evo-
lutions written as graphs over Rn. Under a suitable rescaling the convergence
result is obtained for initial data satisfying a linear growth condition and further
assumptions. Ishimura, the author of [31], considers the spatially one dimen-
sional equation (1.8) in R × (0,∞) with prescribed opening angle conditions;
that is, vx → K1 as x → ∞ and vx → −K2 as x → −∞ for given constants
K1,K2 > 0.

Curvature flow equations with constant driving force

vt√
1 + v2x

=
vxx√
1 + v2x

3 + c (1.21)

and asymptotic convergences to traveling fronts are studied in several works.
In [17] the authors consider (1.21) for (x, t) ∈ (0,∞) × (0,∞) with the zero
Neumann condition at x = 0 and the opening angle condition at x = ∞. It
is shown that the solution v converges to a traveling wave solution as t → ∞
when c is positive, while for a negative c convergence to a self-similar solution is
proven in the sense that t−1|v(x, t) − tQ(x/t)| → 0 as t → ∞, where tQ(x/t) is
a solution of (1.21). The explicit form of Q is also found in [17]. Note that the
way of rescaling is different from ours. The papers [48, 45] studies asymptotics
of solutions to (1.21) on R× (0,∞) when c is positive. Convergence results to a
traveling V-shaped solution are obtained for spatially decaying and non-decaying
initial perturbations in [48] and [45], respectively. For the explicit form of the
V-shaped front, see [47]. The reader is also referred to [44] for convergence to a
traveling line.

The paper [46] is related to the Mullins’ second approximation (1.9) and
asymptotic stability of constant solutions. There it is shown that

sup
x∈R

|v(x, t)− w(x, t)| = O(1/
√
t) as t→ ∞, (1.22)

where v and w are, respectively, the solution of the Cauchy problem for (1.8) and
(1.10) in R× (0,∞) with the same initial data. Moreover, using the results, the
authors of [46] obtain a necessary and sufficient condition on initial data that
ensures u → 0 uniformly or pointwisely as t → ∞. In our Neumann problem
on the half space, however, a similar convergence result to (1.22) does not hold
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since

sup
x∈[0,∞)

|v(x, t)− w(x, t)| =
√
t sup
ξ∈[0,∞)

|V (ξ)−W (ξ)| → ∞ as t→ ∞

for two different self-similar solutions v and w of the forms v(x, t) =
√
tV (x/

√
t)

and w(x, t) =
√
tW (x/

√
t).

Asymptotic shapes of expanding interfaces represented by a level set function
are obtained in [29]. There the evolution equation Vn = −tr(E(n)Dn) + ν(n)
on Γt is considered, and it is shown that Γt/t → ∂Wulff(ν) as t → ∞ in the
Hausdorff metric. We remark that the limit is not the Wulff shape of the surface
energy density in this work. To prove this large time asymptotics the authors
study the limit of rescaled viscosity solutions of second order parabolic equations,
and consider the corresponding stationary equations which the limit function
satisfies. The result says that if u is a viscosity subsolution (resp. supersolution)
of ∂tu+F1(∇u,∇2u)+F2(∇u) = 0, then the (relaxed) limit of u(tx, t) as t→ ∞
is a viscosity subsolution (resp. supersolution) of −⟨x,∇u⟩+ F2(∇u) = 0. Note
that this limit equation is first order while the second order equation (1.15),
which V in (1.12) should satisfy, appears in our study.

Motion by curvature with triple junctions such as the point (0, u(0, t)) in
Mullins’ model is studied in [14]. There a planar domain surrounded by other
phase domains is considered, and at each junction point three intersection an-
gles are assumed to satisfy the Herring condition which is determined by inter-
facial energies. The authors of [14] give conditions for existence of self-similar
stationary, expanding or shrinking solutions to the problem. Plane curves hav-
ing the triple junction are also treated in [57], where the authors study evolv-
ing three curves by curvature forming 120 degree angles at their common start
point. The authors of [57] derive several properties of solutions to (1.15) with
a(p) = 1/(1 + p2) and prove the unique existence of self-similar expanding solu-
tions. As a study of expanding self-similar solutions we finally refer the reader
to [21] for evolution by a crystalline curvature flow.

A generalized Mullins’ model is proposed in [56, 49]. The author of [56] con-
siders the model including a strain energy. In [49] Ogasawara studies evaporation-
condensation model under a temperature gradient and proves an existence of sta-
tionary solutions to the resulting parabolic equation of the form ut = F (u, ux, uxx).
See also [50] for flattening properties of solutions to the generalized problem.
Such flattening properties are also studied in [33, 37, 34, 38] for equations of the
type (1.8) and in [35, 36] for those of the type (1.5).

Interestingly, an exact representation of the solution to (1.8) with vx(0, t) ≡ β
and v(x, 0) ≡ 0 is obtained by Broadbridge in [10]. However, we do not employ
the formula in the present paper since generalization of the problem is one of our
aims and the formula is rather complicated to handle. In [5] the authors obtain
upper and lower bounds on the solution to (1.15) of the Mullins’ case by solving
two auxiliary problems which are relatively easily solvable and employing the
comparison principle. They conclude accurate estimates of the depth when β is
large, but an estimate allowing β to be small such as (1.17) is not stated in [5].
See Remark 5.3 for comparison with our results concerning the depth. The paper
[52] gives exact solutions to wider classes of nonlinear equations, but solutions
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to (1.8) constructed there do not satisfy the prescribed angle condition (1.6).
In [53, 12] exact solutions of the separated form ϕ(x) + ψ(t) are investigated.
We also refer [1] for solvablity of the equation (1.8) on I × (0,∞), where I is
a bounded interval. Under the zero Dirichlet or Neumann boundary condition,
the authors of [1] establish the existence of weak, strong and classical solutions
and asymptotic behaviors of the classical solutions. The paper [40] shows the
existence of classical solutions to more general degenerate parabolic equations.

A well-posedness of the problem (NP) is established in the sense of viscosity
solutions in Section 2. We thus interpret the boundary condition (1.3) in the
viscosity sense, that is, we require solutions to satisfy either (1.1) or (1.3) on
the boundary. As a result, we observe that the unique solution may not satisfy
(1.3) in the classical sense when the equation is degenerate (Proposition 4.6 (1)).
Such generalized boundary conditions, which naturally appear when we take the
limit in the vanishing viscosity method, was first introduced by Lions in [41]; see
also [51]. The well-posedness is obtained in [41] for first order equations with
Neumann or oblique conditions involving applications to optimal control, differ-
ential games and ergodic problems. After their works, uniqueness and existence
results for oblique boundary problems in the viscosity sense were established in
[9] for first order cases and in [28, 27, 6] for second order cases. In [18, 19] the
authors approach oblique problems on domains involving corners. All of these
studies treat continuous equations while equations with singularity in ∇u like
the mean curvature flow equation for level sets are discussed in [23, 54] under
the zero Neumann boundary condition. As relatively general results for second
order singular equations with nonlinear boundary conditions, we refer the reader
to [7, 30]. Compared with [30], the paper [7] deals with more general equations
and boundary conditions, but domains are more restrictive.

Unfortunately, all the above results treat a bounded domain with respect to
the space variables. As far as the author know, [55] is the only paper which proves
a well-posedness of the Neumann type problems on an unbounded domain. In
[55] Sato established comparison and existence results for second order singular
equations under the capillary boundary condition:

∂x1u = k|∇u| with − 1 < k < 1,

which does not cover our boundary condition (1.3). Although it might be possible
to extend the previous results for bounded domains to our problem (NP) by
modifying their proofs suitably, we give in the present paper complete proofs of
comparison and existence theorem for (NP) to make the paper self-contained.
Neumann problems in half-space type domains are also treated in [4, 8], where
the authors studies ergodic problems and homogenization.

This chapter is organized as follows. In Section 2 we establish comparison
and existence results of viscosity solutions to (NP). Section 3 is devoted to the
asymptotic profile. We prove (1.13), i.e., asymptotic self-similarity of the solu-
tion to the equation of the type (1.5). In Section 4 we consider the ordinary
differential equation (1.15) and its solution. We show the solution has a corner if
the equation is degenerate. Section 5 concerns the depth of the thermal groove
at the origin. Several estimates for the depth including (1.17) are obtained.
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2 A well-posedness of Neumann problems

2.1 Definition of solutions

Throughout this chapter we set Ω := {(x1, . . . , xn) ∈ Rn | x1 > 0}. We first
introduce a notion of viscosity solutions for (NP). The boundary condition (1.3)
is interpreted in the (weak) viscosity sense. Our basic assumption on F is

(F0) F : Rn × Sn → R is continuous and degenerate elliptic.

Here Sn denotes the space of real n × n symmetric matrices with the usual
ordering, i.e., X <= Y if ⟨Xξ, ξ⟩ <= ⟨Y ξ, ξ⟩ for all ξ ∈ Rn. We say F is degenerate
elliptic if F (p,X) <= F (p, Y ) for all p ∈ Rn and X,Y ∈ Sn with X <= Y .

Definition 2.1 (Viscosity solution). We say u : Ω × [0,∞) → R is a viscosity
subsolution (resp. supersolution) of (NP) if u is bounded from above (resp.
below) on Ω× [0, T ) for every T > 0, u∗(·, 0) <= u0 (resp. u∗(·, 0) >= u0) on Ω and

∂tϕ(x, t)− F (∇ϕ(x, t),∇2ϕ(x, t)) <= 0 (resp. >= 0) if x1 > 0,

∂tϕ(x, t)− F (∇ϕ(x, t),∇2ϕ(x, t)) <= 0 (resp. >= 0)

or β − ∂x1ϕ(x, t) <= 0 (resp. >= 0) if x1 = 0

(2.1)

whenever u∗ − ϕ (resp. u∗ − ϕ) attains its maximum (resp. minimum) at (x, t)
for ϕ ∈ C2,1(Ω × [0,∞)). If u is both a viscosity sub- and supersolution, u is
said to be a viscosity solution.

Here by a C2,1 function we mean that derivatives ∂tϕ, ∇ϕ and ∇2ϕ are
continuous. If u∗ < ∞ (resp. u∗ > −∞) on Ω × [0,∞) and u satisfies (2.1), u
is said to be a viscosity subsolution (resp. supersolution) of (1.1) and (1.3). In
the definition above, u∗ and u∗ stand for an upper and lower semicontimuous
envelope of u respectively. Namely,

u∗(x, t) = lim
δ→0

sup{u(y, s) | (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s| <= δ},

u∗(x, t) = lim
δ→0

inf{u(y, s) | (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s| <= δ}.

As a boundary condition we consider not ∂x1ϕ(x, t)−β = 0 but β−∂x1ϕ(x, t) =
0 so that consistency between a classical subsolution (resp. supersolution) and
a viscosity subsolution (resp. supersolution) holds.

Proposition 2.2 (Consistency). Assume (F0). Let u ∈ C2,1(Ω × (0,∞)) and
assume that {

∂tu(x, t) <= F (∇u(x, t),∇2u(x, t)) if x1 > 0, (2.2)

β − ∂x1u(x, t) <= 0 if x1 = 0. (2.3)

Then u is a viscosity subsolution of (1.1) and (1.3).

Proof. Take any ϕ ∈ C2,1(Ω × (0,∞)) such that u − ϕ attains its maximum
at (x, t) ∈ Ω × (0,∞). In the case where x1 > 0, the inequality ∂tϕ(x, t) <=
F (∇ϕ(x, t),∇2ϕ(x, t)) follows from (2.2) and the degenerate ellipticity of F .
If x1 = 0, we see at once that ∂x1ϕ(x, t) >= ∂x1u(x, t), and consequently β −
∂x1ϕ(x, t) <= 0 by (2.3).
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It is known that for a general boundary condition B(x, u(x),∇u(x)) = 0 the
consistency holds if a map λ 7→ B(x, r, p − λν(x)) is nonincreasing on [0,∞),
where ν(x) is the unit outward normal vector at a boundary point x. We refer
the reader to [16, Proposition 7.2] or [22, Proposition 2.3.3] for more details.

Example 2.3. We consider the heat equation

∂tu(x, t) = A∆u(x, t), (2.4)

i.e., F (p,X) = A · tr(X) with A > 0, where tr(X) denotes the trace of X ∈ Sn.
Then the unique solution of (NP;F, 0), which is also given by Mullins in [43], is

u(x, t) = hβ,A(x1, t) := −2β
√
At · ierfc

(
x1

2
√
At

)
. (2.5)

Here ierfc(x) is the integral error function

ierfc(x) =

∫ ∞

x
erfc(z)dz,

and erfc(x) is the error function

erfc(x) =
2√
π

∫ ∞

x
e−z2dz.

We now differentiate h = hβ,A to obtain

∂th(x1, t) = −β
√
A

t
· ierfc

(
x1

2
√
At

)
− βx1

2t
· erfc

(
x1

2
√
At

)
,

∂x1h(x1, t) = β · erfc
(

x1

2
√
At

)
, ∂x1x1h(x1, t) =

−β√
πAt

e−x2
1/(4At).

Employing the formula

ierfc(ξ) + ξ · erfc(ξ) = 1√
π
e−ξ2

with ξ = x1/(2
√
At), we observe that h indeed solves (2.4) in the classical sense.

Thus h is also a viscosity solution of (NP;F, 0) by Proposition 2.2. By the
formula (2.5) or the derivatives of h we notice that h(·, t) is negative, increasing
and (strictly) concave on [0,∞). It turns out that these properties still hold for
viscosity solutions of more general equations; see Proposition 4.3.

Example 2.4. We seek viscosity sub- and supersolutions of (NP;F, 0) which
have the form of (2.5). Assume (F0) and

(F1) F (p,X) = λF (p,X/λ) for all (p,X) ∈ Rn × Sn and λ > 0.

We simply say F is homogeneous if F satisfies (F1). For γ >= 0 we set

m(γ) = min
0<=θ<=1

{−F (θγe1,−I1,1)}, M(γ) = max
0<=θ<=1

{−F (θγe1,−I1,1)}, (2.6)
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where e1 = (1, 0, . . . , 0) and I1,1 denotes the matrix with 1 in the (1, 1) entry
and 0 elsewhere. We then notice that m(γ) >= 0 since F is degenerate elliptic
by (F0) and satisfies F (p,O) = 0 for all p ∈ Rn by (F1), where O is the zero
matrix. For the function h = hγ,A given as (2.5) we observe

F (∇h,∇2h) = F (∂x1h · e1, ∂x1x1h · I1,1) = −∂x1x1h · F (∂x1h · e1,−I1,1){
<= m(γ) · ∂x1x1h = (m(γ)/A) · ∂th,
>=M(γ) · ∂x1x1h = (M(γ)/A) · ∂th.

Taking account of the boundary condition (1.3), we conclude that hγ,A is a
viscosity subsolution of (NP;F, 0) if γ >= β and A >= M(γ) while hγ,A is a
viscosity supersolution of (NP;F, 0) if 0 <= γ <= β and 0 < A <= m(γ).

2.2 Comparison principle

We show uniqueness of viscosity solutions to (NP) via comparison principle.
Define UT := Ω× Ω× [0, T ) for T > 0.

Theorem 2.5 (Comparison principle). Assume (F0). Let u and v be, respec-
tively, a viscosity subsolution and a viscosity supersolution of (NP). Then

K = K[u, v] := lim
θ→0

sup{u∗(x, t)− v∗(y, t) | (x, y, t) ∈ UT , |x− y| < θ} <= 0

for every T > 0. In particular, u∗ <= v∗ on Ω× [0,∞).

In the proof of Theorem 2.5 we use an auxiliary function F : UT → R∪{−∞}
of the form

F(x, y, t) = u∗(x, t)− v∗(y, t)−Ψ(x, y, t)

with

Ψ(x, y, t) =
|x− y|2

2ε
+ β(x1 − y1) + δ{ρ(x1) + ρ(y1)}+ γ(|x|2 + |y|2) + α

T − t
.

Here α, γ, δ, ε ∈ (0, 1) are constants and ρ is given by ρ(r) = (1 + r)−1. Note
that ρ′(0) = −1. It then follows from an elementary calculation that for all
(x, y, t) ∈ UT

β − ∂x1Ψ(x, y, t) >= δ if x1 = 0, (2.7)

β + ∂y1Ψ(x, y, t) <= −δ if y1 = 0 (2.8)

and

lim
(γ,δ)→(0,0)

∇2
(x,y)Ψ(x, y, t) =

1

ε

(
I −I
−I I

)
, (2.9)

where I is the identity matrix with dimension n.

Lemma 2.6. Assume the same hypotheses of Theorem 2.5. Let T > 0 and
suppose K = K[u, v] > 0. Then,
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(1) F attains a maximum on UT at some (x̂, ŷ, t̂) with t̂ < T .

(2) There exists a constant η ∈ (0, 1] such that

max
UT

F > K ′ (2.10)

for all α, γ, δ ∈ (0, η), where K ′ := K/7.

(3) supγ,δ,ε∈(0,η) |x̂− ŷ| <∞ and limε→0 supγ,δ∈(0,η) |x̂− ŷ| = 0.

(4) lim(γ,δ)→(0,0)(γx̂, γŷ) = (0, 0) for all ε ∈ (0, η).

(5) There exists a constant η0 ∈ (0, η) such that t̂ > 0 for all γ, δ, ε ∈ (0, η0).

Proof. (1) This follows from an upper semicontinuity of F and the facts that
F(x, y, T ) = −∞ and F → −∞ as |x| → ∞ or |y| → ∞.

(2) By the definition of K there exists some θ0 > 0 such that for all θ ∈ (0, θ0]

u∗(xθ, tθ)− v∗(yθ, tθ) > 6K ′ (2.11)

holds for some (xθ, yθ, tθ) ∈ UT with |xθ − yθ| < θ. Take

θ = min
{
θ0,

√
2K ′ε, K ′/β

}
.

By this choice we have

|xθ − yθ|2

2ε
<= K ′, β(xθ1 − yθ1) <= K ′. (2.12)

We next choose η ∈ (0, 1] as

η = min
{
1, K ′/2, K ′(|xθ|2 + |yθ|2 + 1)−1, K ′(T − tθ)

}
,

and then for α, γ, δ ∈ (0, η)

δ{ρ(xθ1) + ρ(yθ2)} <= K ′, γ(|xθ|2 + |yθ|2) <= K ′,
α

T − tθ
<= K ′. (2.13)

Thus (2.11)–(2.13) yield (2.10).
(3) Take M > 0 so that u∗ − v∗ <=M on UT . By (2.10) we have

K ′ < u∗(x̂, t̂)− v∗(ŷ, t̂)−Ψ(x̂, ŷ, t̂) <=M − |x̂− ŷ|2

2ε
+ β|x̂− ŷ|.

Thus by an elementary calculation

|x̂− ŷ| <= εβ +
√
ε2β2 + 2εM,

which implies our assertions.
(4) By (2.10) again we see

K ′ <=M + β|x̂− ŷ| − γ(|x̂|2 + |ŷ|2).
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Therefore supγ,δ∈(0,η) γ(|x̂|2 + |ŷ|2) <∞, and so

γ(|x̂|+ |ŷ|) <=
√

2γ
√
γ(|x̂|2 + |ŷ|2) → 0 as (γ, δ) → (0, 0).

(5) Suppose by contradiction that there were some sequence {(εj , δj , γj)}∞j=1

which satisfies limj→∞(εj , δj , γj) = (0, 0, 0) and t̂ = t̂(εj , δj , γj) = 0. Then

F(x̂, ŷ, t̂) = u∗(x̂, 0)− v∗(ŷ, 0)−Ψ(x̂, ŷ, 0) <= u0(x̂)− u0(ŷ)− β(x̂1 − ŷ1),

and the right hand side converges to 0 as j → ∞ by (3) and the uniform conti-
nuity of u0. This is a contradiction to (2.10).

Proof of Theorem 2.5. By virtue of (3) in Lemma 2.6 we may assume

lim
(γ,δ)→(0,0)

(x̂− ŷ) = p̄

for some p̄ ∈ Rn by taking a subsequence if necessary. We now apply the
Crandall-Ishii lemma ([16, Theorem 8.3]) to F . Since (2.7) and (2.8) hold, there
exists (X,Y ) ∈ Sn × Sn such that

∂tΨ(x̂, ŷ, t̂) <= F (∇xΨ(x̂, ŷ, t̂), X)− F (−∇yΨ(x̂, ŷ, t̂),−Y ) (2.14)

and

−
(
1

ε
+ |A|

)
I <=

(
X O
O Y

)
<= A+ εA2. (2.15)

Here A := ∇2
(x,y)Ψ(x̂, ŷ, t̂) and |A| := sup{|⟨Aξ, ξ⟩| | ξ ∈ Rn, |ξ| = 1}. Note that

∇xΨ(x̂, ŷ, t̂) =
x̂− ŷ

ε
+ {β + δρ′(x̂1)}e1 + 2γx̂,

∇yΨ(x̂, ŷ, t̂) = − x̂− ŷ

ε
− {β − δρ′(ŷ1)}e1 + 2γŷ,

∂tΨ(x̂, ŷ, t̂) =
α

(T − t̂)2
.

In view of (2.9) and (2.15) we may assume that (X,Y ) converges to some
(X̄, Ȳ ) ∈ Sn × Sn as (γ, δ) → (0, 0). Then the limit (X̄, Ȳ ) satisfies(

X̄ O
O Ȳ

)
<=

3

ε

(
I −I
−I I

)
,

and in particular X̄ + Ȳ <= O. Letting (γ, δ) → (0, 0) in (2.14), we have

α

T 2
<= F

( p̄
ε
+ βe1, X̄

)
− F

( p̄
ε
+ βe1,−Ȳ

)
.

This is a contradiction since F is degenerate elliptic.

Corollary 2.7 (Uniqueness). Assume (F0). Then (NP) admits at most one
viscosity solution, and the solution is continuous on Ω× [0,∞).
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Proof. If u and v are two viscosity solutions of (NP), we have u∗ <= v∗ and v
∗ <= u∗

on Ω× [0,∞) by Theorem 2.5. These inequalities imply our assertions.

Corollary 2.8 (Contraction property). Assume (F0). Let u01, u02 ∈ BUC (Ω).
Let u1 and u2 be, respectively, a viscosity solution of (NP;F, u01) and that of
(NP;F, u02). Then we have supΩ×[0,∞) |u1 − u2| <= supΩ |u01 − u02|.

Proof. Let d = supΩ |u01 − u02|. Then it is easily seen that u2 + d is a viscosity
solution of (NP;F, u02 + d). Since u01 <= u02 + d on Ω, Theorem 2.5 gives
u1 <= u2 + d on Ω × [0,∞). In the same manner we obtain u2 <= u1 + d on
Ω× [0,∞).

2.3 Existence result

We prove the existence of viscosity solutions by Perron’s method ([16, Section
4]). An important step is to construct a lower and upper barrier, which are a
viscosity sub- and supersolution of (NP) satisfying the given initial data. We
first prepare stability results for viscosity solutions. For the proofs we refer the
reader to [16, Lemma 4.2, Lemma 6.1] or [22, Lemma 2.4.1, Theorem 2.3.5].

Proposition 2.9 (Stability). Assume (F0).

(1) Let S be a nonempty subset of

{v | v is a viscosity subsolution of (1.1) and (1.3)}.

Let u(x, t) := supv∈S v(x, t). If u∗ <∞ on Ω× [0,∞), then u is a viscosity
subsolution of (1.1) and (1.3)

(2) Assume that F ε satisfies (F0), and let uε be a a viscosity subsolution of
(1.1) with F = F ε and (1.3) for each ε > 0. If F >= lim sup∗ε→0 F

ε on
Rn × Sn and u := lim sup∗ε→0 u

ε < ∞ on Ω× [0,∞), then u is a viscosity
subsolution of (1.1) and (1.3).

To apply Perron’s method we need only (1) while (2) plays an important role
in Section 3, where we discuss a local uniform convergence of solutions. We recall
a notion of relaxed limits appearing in (2). For a subset L ⊂ RN and functions
hε : L → R with ε > 0 we define an upper relaxed limit h = lim sup∗ε↓0 h

ε (resp.

lower relaxed limit h = lim inf∗ε↓0 h
ε) : L→ R ∪ {±∞} as

h(z) := lim sup
(ε,y)→(0,z)

hε(y) = lim
δ↓0

sup{hε(y) | y ∈ L, |y − z| < δ, 0 < ε < δ}

(resp. h(z) := lim inf
(ε,y)→(0,z)

hε(y) = lim
δ↓0

inf{hε(y) | y ∈ L, |y − z| < δ, 0 < ε < δ}).

If h = h in L, then hε converges to h := h = h locally uniformly in L as ε→ 0.

Proposition 2.10 (Barriers). Assume (F0). Then (NP) has a viscosity subsolu-
tion w− and a viscosity supersolution w+ such that w−(x, t) <= u0(x) <= w+(x, t)
for all (x, t) ∈ Ω × [0,∞) and u0(x) = w±(x, 0) = lim(z,t)→(x,0)w

±(z, t) for all

x ∈ Ω.
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Proof. We give the proof only for a subsolution since a similar argument applies
for a supersolution.

1. Let ω(r) = sup|x−y|<=r |u0(x) − u0(y)| and f(r) = r − arctan r. Then for

each ε > 0 there exists C0(ε) > 0 such that ω(r) <= ε + C0(ε)f(r) for all r >= 0.
Set C(ε) := max{4C0(ε), 4C0(ε)/β, 1} >= 1. Since f(r+ s) <= 4{f(r)+ f(s)} for
r, s >= 0, we see that

ω(|x− y|) <= ε+ βC(ε)f(|x1 − y1|) + C(ε)f(|x′ − y′|) (2.16)

for all x = (x1, x
′) ∈ Rn and y = (y1, y

′) ∈ Rn. We also remark that f ∈ C2(R),
f(0) = f ′(0) = f ′′(0) = 0, 0 <= f ′ <= 1 and 0 <= f ′′ <= 1/2 in R.

2. For ε ∈ (0, 1) and y ∈ Ω we define

vε,y(x, t) := u0(y)− ε− βC(ε)

f ′(y1)
f(|x1 − y1|)− C(ε)f(|x′ − y′|)−Mt,

where M = M(ε, y) > 0 is a large constant. Then vε,y ∈ C2,1(Ω × [0,∞)) and
vε,y(x, t) <= u0(x) on Ω × [0,∞) from (2.16). By the boundedness of f ′ and f ′′

we see that |∇xvε,y| and |∇2
xvε,y| are also bounded on Ω× [0,∞). We thus have

−M <= F (∇xvε,y(x, t),∇2
xvε,y(x, t))

for sufficiently large M . We also compute

∂x1vε,y(x, t)|x1=0 = −βC(ε)
f ′(y1)

{−f ′(y1)} >= β,

and therefore vε,y is a viscosity subsolution of (1.1) and (1.3) by Proposition 2.2.
Consequently Proposition 2.9 (2) ensures that the supremum of vε,y

w−(x, t) = sup{vε,y(x, t) | ε ∈ (0, 1), y ∈ Ω}

is also a viscosity subsolution of (1.1) and (1.3). By definition w− is lower
semicontinuous and satisfies w−(x, t) <= u0(x) on Ω× [0,∞). In particular w− is
bounded from above.

3. We next show w−(x, 0) >= u0(x) for all x ∈ Ω. We see w−(x, 0) >=
vε,x(x, 0) = u0(x) − ε if x ∈ Ω, and so w−(x, 0) >= u0(x) holds. Let x ∈ ∂Ω.
Taking y = (y1, x

′), we then have

w−(x, 0) >= vε,y(x, 0) >= u0(x)− ε− βC(ε)

f ′(y1)
f(y1).

Letting y1 → 0 first and then ε→ 0, we obtain w−(x, 0) >= u0(x).
4. Since w− is lower semicontinuous, for all x ∈ Ω

u0(x) = w−(x, 0) <= lim inf
(z,t)→(x,0)

w−(z, t) <= lim sup
(z,t)→(x,0)

w−(z, t)

<= lim sup
(z,t)→(x,0)

u0(z) = u0(x).

Hence lim(z,t)→(x,0)w
−(z, t) = u0(x). We thus conclude that w− satisfies the

required properties.
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Remark 2.11. By the same way as in Step 3 we obtain a more general estimate
that w−(x, t) >= u0(x) −Mt for all (x, t) ∈ Ω × [0,∞). This implies that w− is
bounded from below on Ω × [0, T ) for every T > 0. Similarly, we are able to
construct w+ in Proposition 2.10 such that it is bounded from above on Ω×[0, T )
for every T > 0.

Theorem 2.12 (Existence by Perron’s method). Assume (F0). Then (NP)
admits at least one viscosity solution.

Proof. Let

S =

{
v

∣∣∣∣∣ v is a viscosity subsolution of (NP)

such that w− <= v <= w+ on Ω× [0,∞)

}
,

where w− and w+ are functions in Proposition 2.10. Since w− ∈ S, the set S
is nonempty. We demonstrate that u(x) := supv∈S v(x) is a viscosity solution of
(NP). By definition we have w− <= u <= w+ on Ω × [0,∞). We then notice that
u∗(·, 0) = u∗(·, 0) = u0 on Ω and that u is bounded on Ω× [0, T ) for all T > 0 by
Remark 2.11. Proposition 2.9 (1) ensures that u is a subsolution of (NP). We also
see that u is a viscosity supersolution of (NP) since u is a maximal subsolution
in the sense that u(x0, t0) < v(x0, t0) for some v ∈ S and (x0, t0) ∈ Ω× (0,∞) if
u were not a supersolution. See [22, Lemma 2.4.2] for more details.

3 Asymptotic behavior

To study the asymptotic behavior self-similar solutions of (NP) play an impor-
tant role in our study.

Definition 3.1. Let u : Ω× [0,∞) → R.

(1) We define a rescaled function u(λ) of u as u(λ)(x, t) := u(λx, λ2t)/λ for
λ > 0.

(2) We say u is self-similar if u = u(λ) for all λ > 0, or equivalently u(x, t) =√
tU(x/

√
t) for some U : [0,∞) → R. We call U a profile function of u.

Note that, if u is self-similar, the profile function U of u is represented by
U(x) = u(x, 1). We next introduce a notion of asymptotic homogeneity. We
consider G : Rn × Sn → R such that G is not necessarily homogeneous but it
approximates some homogeneous F in a suitable sense. To state the rigorous
meaning of the approximation we define

Gλ(p,X) := λG

(
p,
X

λ

)
for λ > 0. We say G is asymptotically homogeneous if G satisfies the following:

(F2) Gλ converges to some F : Rn × Sn → R as λ → ∞ locally uniformly in
Rn × Sn.
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We call F in (F2) the limit of G. We also remark that the limit F satisfies
(F0) and (F1) whenever G satisfies (F0) and (F2). Thus the limit F is always

homogeneous. The function G(p,X) =
√

1 + p2(1− e−k) with k = X/
√

1 + p2
3
,

which represents (1.5) in Mullins’ case, is indeed asymptotically homogeneous
with the limit F (p,X) = X/(1 + p2) corresponding to (1.8). This follows from
the fact that fλ(z) := λ(1−e−z/λ)−z converges to 0 as λ→ ∞ locally uniformly
in R.

Remark 3.2. If u is a viscosity solution of (NP;G, u0), then the rescaled function
u(λ) is a viscosity solution of (NP;Gλ, (u0)(λ)), where

(u0)(λ)(x) =
1

λ
u0(λx).

Indeed, noting that

∂tu(λ)(x, t) = λ∂tu(λx, λ
2t),

∇u(λ)(x, t) = ∇u(λx, λ2t), ∇2u(λ)(x, t) = λ∇2u(λx, λ2t),

we compute

∂tu(λ)(x, t) = λG(∇u(λx, λ2t),∇2u(λx, λ2t)) = λG

(
∇u(λ)(x, t),

1

λ
∇2u(λ)(x, t)

)
and

∂x1u(λ)(x, t) = ∂x1u(λx, λ
2t) = β

if u is a classical solution. In the case where u is not smooth, taking elements of
semijets, we see that u(λ) solves (NP;Gλ, (u0)(λ)) in the viscosity sense. We also
remark that if G is homogeneous, then u(λ) solves (NP;G, (u0)(λ)).

We prove that the unique solution of the homogeneous equation with the zero
initial data is always self-similar. Several properties of the self-similar solution
are also discussed.

Proposition 3.3 (Self-similar solution). Assume (F0) and (F1). Let u be the
unique viscosity solution of (NP;F, 0). Then

(1) u is self-similar.

(2) u <= 0 on Ω× [0,∞). If F (0,−I1,1) < 0, then u < 0 on Ω× [0,∞).

(3) u(x, t) = u(x1, 0, . . . , 0, t) for all (x, t) ∈ Ω× [0,∞).

(4) limx1→∞ u(x, t) = 0 for all t >= 0.

Proof. By Remark 3.2 we see that u(λ) is a viscosity solution of (NP;F, 0) for
every λ > 0. Applying Theorem 2.5, we obtain u = u(λ). This implies (1).
Combining Example 2.4 with Theorem 2.5, we observe that hβ,M(β) <= u <=
hβ,m(β) on Ω × [0,∞), where h is the function in (2.5) and m(β), M(β) are
defined as (2.6). Thus the first assertion in (2) and (4) hold. If F (0,−I1,1) < 0,
then we have m(γ) < 0 for sufficiently small γ ∈ (0, β]. Then a supersolution
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hγ,m(γ) is negative on Ω× [0,∞), so that u is also negative. We finally prove (3).
For a ∈ Rn−1 we set wa(x, t) := u(x1, x

′ − a, t), where x′ = (x2, . . . , xn). Then
it is easy to see that wa is also a viscosity solution of (NP;F, 0) since F and the
initial-boundary conditions do not depend on x′. By the uniqueness we obtain
u = wa. In particular, for fixed (x, t) ∈ Ω× [0,∞) we have u(x, t) = wx′(x, t) =
u(x1, 0, . . . , 0, t).

Our main result on asymptotic convergence is

Theorem 3.4 (Asymptotic behavior). Assume that G satisfies (F0) and (F2)
with the limit F . Let u and v be, respectively, the unique viscosity solution of
(NP;G, u0) and that of (NP;F, 0). Then u(λ) converges to v as λ → ∞ locally

uniformly on Ω× [0,∞).

By Theorem 3.4 we see that u(
√
t)(x, 1) converges to v(x, 1) as t → ∞ uni-

formly on every compact subset of Ω. This implies that (1.12) holds locally
uniformly with respect to x ∈ Ω.

As is pointed out in Remark 3.2, the rescaled function u(λ) is a solution of
(NP;Gλ, (u0)(λ)). Since the local uniform convergence of Gλ to F is assumed,
in view of Proposition 2.9 (2) the relaxed limits u and u of u(λ) becomes a sub-
and supersolution of (NP;F, 0), respectively, provided that the limits exist. To
guarantee the existence of the relaxed limits we construct suitable barriers of
(NP;G, u0) whose rescaled families are locally uniformly bounded. Recalling
Remark 2.11, we have rough estimates for u that u0(x)−Mt <= u(x, t) <= u0(x)+
Mt. Then u0(λx)/λ −Mλt <= u(λ)(x, t) <= u0(λx)/λ +Mλt, but this does not
yields that u and u are real-valued. We construct the barriers so that they have
the order O(

√
t) as t→ ∞.

Lemma 3.5. (1) Assume that g : [0,∞) → R satisfies

|g(t)| <=M(
√
t+ 1) on [0,∞) (3.1)

for some M > 0. Set g(λ)(t) := g(λ2t)/λ, g := lim inf∗λ→∞ g(λ) and g :=

lim sup∗λ→∞ g(λ). Then we have −M
√
t <= g(t) <= g(t) <=M

√
t on [0,∞).

(2) Assume that G satisfies (F0) and (F2). Then there exists M0 > 0 such
that

ρ(t) := sup
|θ|,|σ|<=1

∣∣∣∣G(θβe1, σI1,1√
t

)∣∣∣∣ <= M0√
t

(3.2)

for all t >= 1. Moreover

g(t) :=

{
0 (0 <= t <= 1),∫ t
1 ρ(s)ds (t > 1)

(3.3)

satisfies (3.1) with M = 2M0.

Obviously, the estimate (3.2) holds if G is homogeneous. For a general G,
roughly speaking, (3.2) still holds since G is approximately homogeneous.
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Proof. (1) Fix t0 >= 0. Let δ > 0 and take t >= 0, λ > 0 such that |t − t0| <= δ,
λ >= 1/δ. We then observe

|g(λ)(t)| =
1

λ
|g(λ2t)| <=

1

λ
M(

√
λ2t+ 1) =M

(√
t+

1

λ

)
<=M(

√
t0 + δ + δ).

Thus, sending δ → 0 gives −M
√
t0 <= g(t0) <= g(t0) <=M

√
t0.

(2) The second assertion is obvious if (3.2) holds. For t >= 1 we observe

√
tρ(t) <= sup

|θ|,|σ|<=1

∣∣∣∣√tG(θβe1, σI1,1√
t

)
− F (θβe1, σI1,1)

∣∣∣∣+ sup
|θ|,|σ|<=1

|F (θβe1, σI1,1)|.

The first term of the right hand side converges to 0 as t → ∞ by assumption
while the second term is a constant independent of t. Therefore (3.2) follows.

Proof of Theorem 3.4. Let w− and w+ be barriers constructed in the proof of
Proposition 2.10. Then there exists C > 0 such that −C <= w− <= w+ <= C on
Ω× [0, 2] by Remark 2.11. Define Φ : Ω× [0,∞) → R as

Φ(x, t) := −C + h(x1, t)− g(t).

Here h and g are the functions given by (2.5) and (3.3), respectively. We choose
A = β2/π in (2.5) so that 0 <= ∂x1h <= β and −1/

√
t <= ∂x1x1h <= 0 in Ω× (0,∞).

By the definition of g, we then find that Φ and −Φ are, respectively, a viscosity
subsolution and a viscosity supersolution of

∂tu(x, t) = G(∇u(x, t),∇2u(x, t)) (3.4)

in Ω × (1,∞) and (1.3). Indeed, the boundary condition is easy to check, and
for (x, t) ∈ Ω× (1,∞) we compute

∂tΦ(x, t) <= −g′(t) = − sup
|θ|,|σ|<=1

∣∣∣∣G(θβe1, σI1,1√
t

)∣∣∣∣ <= G(∇Φ(x, t),∇2Φ(x, t)).

Here we have used the facts that ∂th <= 0, 0 <= ∂x1h <= β and−1/
√
t <= ∂x1x1h <= 0.

A similar argument yields that −Φ is a supersolution. Since Φ <= w− <= w+ <= −Φ
on Ω × [0, 2], we see that w̃− := max{w−, Φ} and w̃+ := min{w+, −Φ} are,
respectively, a viscosity subsolution and a viscosity supersolution of (3.4) in
Ω × (0,∞) and (1.3). Noting that (w̃−)∗(x, 0) = u0(x) = (w̃+)∗(x, 0) on Ω, we
see by Theorem 2.5 that (w̃−)∗ <= u <= (w̃+)∗ in Ω × [0,∞). In particular, we
have Φ(λ) <= u(λ) <= −Φ(λ). Taking lim inf∗λ→∞ and lim sup∗λ→∞, we obtain

h(x1, t)− g(t) <= u(x, t) <= u(x, t) <= −h(x1, t) + g(t) in Ω× [0,∞),

where u := lim inf∗λ→∞ u(λ) and (u, g) := lim sup∗λ→∞(u(λ), g(λ)). Therefore

Lemma 3.5 implies that u and u are bounded on Ω× [0, T ) for every T > 0 and
that u(x, 0) = u(x, 0) = 0 on Ω.

Now, since u(λ) is a viscosity solution of (NP;Gλ, (u0)(λ)) for every λ > 0,
Proposition 2.9 (2) and (F2) imply that u and u are, respectively, a viscosity
subsolution and a viscosity supersolution of (NP;F, 0). By Theorem 2.5 we have
u <= u in Ω× [0,∞), and therefore u ≡ u ≡ v since v is now the unique solution
of (NP;F, 0). As a result, u(λ) converges to v locally uniformly in Ω× [0,∞).
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Remark 3.6. IfG is homogeneous in Theorem 3.4, i.e., G ≡ F , then u(λ) converges

to v uniformly on Ω × [0,∞). Indeed, since u(λ) solves (NP;F, (u0)(λ)), the
contraction property (Corollary 2.8) ensures

sup
Ω×[0,∞)

|u(λ) − v| <= sup
Ω

|(u0)(λ) − 0| = 1

λ
sup
Ω

|u0|.

We thus obtain the uniform convergence of u(λ) together with its convergence
rate.

Remark 3.7. We derive a sufficient condition for (F2). Let G : Rn × Sn → R
and consider a linear approximation of G such as (1.7). Suppose that G is of
the form G(p,X) = H(p, f(p,X)) with some continuous and homogeneous f .
We expand H as H(p, z) = z · ∂zH(p, 0) + z · r(p, z), where we have assumed
H(p, 0) = 0. Then

λG

(
p,
X

λ

)
= λH

(
p,

1

λ
f(p,X)

)
= f(p,X)·∂zH(p, 0)+f(p,X)·r

(
p,

1

λ
f(p,X)

)
.

Thus G satisfies (F2) with the limit F (p,X) = f(p,X) ·∂zH(p, 0) if the reminder
term r(p, z/λ) converges to zero as λ → ∞ locally uniformly with respect to
(p, z). This setting includes Mullins’ problem, which corresponds to the case

where H(p,X) =
√

1 + p2(1− e−z) and f(p,X) = X/
√

1 + p2
3
.

4 Profile functions

In this section we study the profile function of the unique self-similar solution to
(NP;F, 0) with a homogeneous F . Our main interest is the configuration of its
graph, especially the corner of the graph when F (p,X) is allowed to be 0 even
if X ̸= 0.

We first derive the ordinary differential equation which the profile function
should solve. Assume (F0) and (F1). Let v be a viscosity solution of (NP;F, 0).
According to Proposition 3.3 (3), v(x, t) is independent of (x2, . . . , xn). Thus we
hereafter assume n = 1 so that u and F are, respectively, defined on R× [0,∞)
and R×R. We let V : [0,∞) → R be the profile function of v, i.e.,

V (x) = v(x, 1). (4.1)

Since v is self-similar, we have

v(x, t) =
√
tv

(
x√
t
, 1

)
=

√
tV

(
x√
t

)
. (4.2)

We now differentiate v to find

∂tv(x, t) =
1

2
√
t
V

(
x√
t

)
− x

2t
V ′
(
x√
t

)
,

∂xv(x, t) = V ′
(
x√
t

)
, ∂xxv(x, t) =

1√
t
V ′′
(
x√
t

)
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provided that v is smooth. Substituting these derivatives for (1.1), we have

1

2
√
t

{
V

(
x√
t

)
− x√

t
V ′
(
x√
t

)}
= F

(
V ′
(
x√
t

)
,
1√
t
V ′′
(
x√
t

))
.

Multiplying the both sides by 2
√
t and letting ξ = x/

√
t, we are led to

V (ξ)− ξV ′(ξ) = 2F (V ′(ξ), V ′′(ξ)).

Here we have used (F1). We consider this equation with the boundary condition
at ξ = 0 and ξ = ∞:

(FODE)


V (ξ)− ξV ′(ξ) = 2F (V ′(ξ), V ′′(ξ)) in (0,∞), (4.3)

V ′(0) = β > 0, (4.4)

lim
ξ→∞

V (ξ) = 0. (4.5)

To impose (4.5) is natural in terms of Proposition 3.3 (4). Since F is now defined
on R×R and satisfies (F1), we notice that F is written as

F (p,X) =

{
F (p, 1)X if X >= 0,

−F (p,−1)X if X <= 0.

Thus the right hand side of (4.3) is linear with respect to V ′′(ξ) as long as the
sign of V ′′(ξ) does not change. By (F0) we also find that F (p, 1) and −F (p,−1)
are nonnegative continuous functions of p.

We say a function V : [0,∞) → R is a classical solution of (FODE) if
V ∈ C2(0,∞)∩C1[0,∞) and V satisfies (4.3)–(4.5). Here we define V ′(0) as the
right derivative:

V ′(0) := lim
ξ↓0

V (ξ)− V (0)

ξ
.

A viscosity subsolution of (FODE) is a function V : [0,∞) → R such that V is
bounded from above on [0,∞), V ∗ satisfies (4.5) and{

V ∗(ξ)− ξp <= 2F (p,X) if ξ > 0,

V ∗(0) <= 2F (p,X) or β − p <= 0 if ξ = 0

for all (p,X) ∈ J2,+V ∗(ξ) with ξ >= 0. The definitions of a viscosity supersolution
and a viscosity solution of (FODE) are similar so are omitted. The set of all
second order superjets and subjets of V at ξ on [0,∞) are denoted by J2,+V (ξ)
and J2,−V (ξ), respectively. Namely,

J2,+V (ξ) = {(ϕ′(ξ), ϕ′′(ξ)) | ϕ ∈ C2[0,∞) and V − ϕ attains its maximum at ξ},
J2,−V (ξ) = {(ϕ′(ξ), ϕ′′(ξ)) | ϕ ∈ C2[0,∞) and V − ϕ attains its minimum at ξ}.

Remark 4.1. Assume (F0) and (F1). Although (4.3) was derived under the
assumption that v is smooth, the consistency between (NP;F, 0) and (FODE)
holds in the viscosity sense as well.
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• (Consistency) If V is a viscosity subsolution of (FODE), then v given as
(4.2) is a viscosity subsolution of (NP;F, 0). Conversely, if v is a viscosity
subsolution of (NP;F, 0), then V given as (4.1) is a viscosity subsolution
of (FODE). Similar statements hold for supersolutions.

Due to this consistency we have the comparison and existence of viscosity solu-
tions to (FODE). These assertions follow from the results for the time-dependent
case in Section 2.

• (Comparison principle) If U and V are, respectively, a viscosity subsolution
and supersolution of (FODE), then U∗ <= V∗ on [0,∞).

• (Existence) There exists a continuous viscosity solution of (FODE).

Example 4.2. Let us consider the linearized equation

(LODE)

{
V (ξ)− ξV ′(ξ) = BV ′′(ξ) in (0,∞), (4.6)

(4.4), (4.5)

withB > 0. This equation corresponds to the case that 2F (p, 1) = −2F (p,−1) =
B for all p ∈ R in (FODE). Choosing A = B/2 in (2.5), we see that the unique
classical solution of (LODE) is

Hβ,B(ξ) := −β
√
2B · ierfc

(
ξ√
2B

)
. (4.7)

Note that the derivatives of Hβ,B up to the second order are

H ′
β,B(ξ) = β · erfc

(
ξ√
2B

)
, H ′′

β,B(ξ) = −β
√

2

πB
· e−ξ2/2B. (4.8)

In the rest of this section we consider the problem of the form

(ODE) = (ODE; a, β)

{
V (ξ)− ξV ′(ξ) = a(V ′(ξ))V ′′(ξ) in (0,∞), (4.9)

(4.4), (4.5)

with nonnegative a ∈ C(R). Although (ODE) is a special case of (FODE), it
turns out that the both problems are equivalent; see Remark 4.8. Our basic
assumption on a is

(A1) a ∈ C(R), a >= 0 in R and a(0) > 0.

Recall that Mullins’ equation (1.8) corresponds to (ODE) with a(p) = 2/(1+p2).
We list fundamental properties of a viscosity solution to (ODE).

Proposition 4.3. Assume (A1). Let V be the unique viscosity solution of
(ODE). Let (p,X) ∈ J2,−V (ξ0) with ξ0 > 0. Then

(1) V < 0 on [0,∞).

(2) V is increasing on [0,∞), i.e, V (ξ1) < V (ξ2) if 0 <= ξ1 < ξ2.

(3) p > 0 and X < 0.
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(4) V is strictly concave on [0,∞), i.e., V ((1− λ)ξ1 + λξ2) > (1− λ)V (ξ1) +
λV (ξ2) for all λ ∈ (0, 1) and ξ1, ξ2 ∈ [0,∞) with ξ1 < ξ2.

(5) a(p) > 0.

Proof. (1) This is a consequence of the second assertion of Proposition 3.3 (2).
(2) We suppose that 0 > V (ξ1) >= V (ξ2) with ξ1 < ξ2. In view of (4.5) we

then have min[ξ1,∞) V = V (η) < 0 for some η ∈ (ξ1,∞). Thus (0, 0) ∈ J2,−V (η),
so that V (η) − η · 0 >= a(0) · 0 = 0 since V is a supersolution. However, this is
contract to (1).

(3) (5) The monotonicity of V yields that p >= 0. We then notice that a(p)
must be positive and that X must be negative since 0 > V (ξ)− ξp >= a(p)X. We
show that p > 0 after the proof of (4).

(4) We suppose that V ((1 − λ)ξ1 + λξ2) <= (1 − λ)V (ξ1) + λV (ξ2) for some
λ ∈ (0, 1) and ξ1, ξ2 ∈ [0,∞) with ξ1 < ξ2. We now take the parabola ϕ ∈ C2(R)
which passes through three points (ξ1, V (ξ1)),((1−λ)ξ1+λξ2, V ((1−λ)ξ1+λξ2))
and (ξ2, V (ξ2)). Then ϕ′′ is a nonnegative constant c and min[ξ1,ξ2](V − ϕ) =
(V − ϕ)(η) for some η ∈ (ξ1, ξ2). Thus (ϕ′(η), c) ∈ J2,−V (η), which contradicts
(3) since c >= 0.

(3) Let ξ1, ξ2 > 0 with ξ1 < ξ0 < ξ2. Since V is concave and increasing, we
observe that

V (ξ0)− V (ξ1)

ξ0 − ξ1
>=
V (ξ2)− V (ξ0)

ξ2 − ξ0
> 0.

We next take ϕ ∈ C2(0,∞) such that min(0,∞)(V − ϕ) = (V − ϕ)(ξ0) and
(p,X) = (ϕ′(ξ0), ϕ

′′(ξ0)). Then

ϕ(ξ0)− ϕ(ξ1)

ξ0 − ξ1
>=
V (ξ0)− V (ξ1)

ξ0 − ξ1
.

Combining the two inequalities above and letting ξ1 ↑ ξ0, we obtain p > 0.

Remark 4.4. Since V is concave on [0,∞), we see by Aleksandrov’s theorem
([16, Theorem A.2]) that V is twice differentiable almost everywhere on [0,∞).
Namely, J2,+V (ξ)∩J2,−V (ξ) is nonempty a.e. ξ ∈ [0,∞). Accordingly, V solves
(4.9) almost everywhere in the classical sense.

Remark 4.5. Although the viscosity solution V in Proposition 4.3 may not be
differentiable, we are able to deduce several properties of its one-side derivatives
mainly from the strict concavity of V . We define the right derivative V ′

r of V
and the left derivative V ′

l of V as follows:

V ′
r (ξ0) := lim

ξ↓ξ0

V (ξ)− V (ξ0)

ξ − ξ0
for ξ0 ∈ [0,∞),

V ′
l (ξ0) := lim

ξ↑ξ0

V (ξ)− V (ξ0)

ξ − ξ0
for ξ0 ∈ (0,∞).

Under the same hypotheses of Proposition 4.3 these limits indeed exist and enjoy
the following properties.

(a) (One-side continuity) V ′
r (ξ0) = limξ↓ξ0 V

′
r (ξ) for all ξ0 ∈ [0,∞) and V ′

l (ξ0) =
limξ↑ξ0 V

′
r (ξ) for all ξ0 ∈ (0,∞).
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(b) (Monotonicity) β >= V ′
r (ξ1) > V ′

l (ξ2) >= V ′
r (ξ2) > V ′

l (ξ3) > 0 if 0 <= ξ1 <
ξ2 < ξ3.

(c) (Limit as ξ → ∞) limξ→∞ V ′
r (ξ) = limξ→∞ V ′

l (ξ) = 0. (If the limit were
positive, V (ξ) would not converge to zero as ξ → ∞.)

If V is a classical solution, it is obvious that the range of V ′ on [0,∞) is (0, β]. In
Corollary 4.12 we will determine the range of V ′

r and V ′
l when V is not necessarily

a classical solution.

We discuss the angle V ′(0) at the origin for a viscosity solution V of (ODE).

Proposition 4.6 (Angle at the origin). Assume (A1). Let V be the unique
viscosity solution of (ODE).

(1) We have

V ′(0) = q− :=

{
β if a(β) > 0,

inf{q ∈ (0, β] | a = 0 on [q, β]} if a(β) = 0.

(2) Let β1 > β and V1 be the unique viscosity solution of (ODE; a, β1). If a = 0
on [β, β1], then V = V1 on [0,∞).

Proof. (1) 1. We first prove that V ′(0) exists and 0 < V ′(0) <= β. Since V is
strictly concave, we see that (V (ξ)− V (0))/ξ is increasing as ξ ↓ 0. Thus V ′(0)
exists and V ′(0) ∈ (0,∞] by the monotonicity of V . Suppose V ′(0) > β. Then
(p, 0) ∈ J2,−V (0) for every p ∈ (β, V ′(0)); however, V (0) − 0 · p < a(p) · 0 and
β − p < 0. This is a contradiction.

2. We next show that V ′(0) >= q−. Suppose 0 < V ′(0) < q−. Then, by the
definition of q− there exists some p ∈ (V ′(0), β) such that a(p) > 0. We let
ϕ(ξ) = −cξ2 + pξ + V (0) for c > 0. Since ϕ(0) = V (0) and ϕ′(0) = p, it follows
that (p,−2c) ∈ J2,+V (0). We thus have V (0) − 0 · p <= a(p) · (−2c), which is a
contradiction for large c > 0.

3. If q− = β, the proof has already been completed. Let q− < β and suppose
that q− < V ′(0) <= β. Since V ′

r (ξ) → V ′(0) as ξ ↓ 0, we see that q− < V ′
r
<= β

on [0, ε] for some small ε > 0. We now take (p,X) ∈ J2,+V (ξ0) ∩ J2,−V (ξ0)
with ξ0 ∈ (0, ε); see Remark 4.4 for the existence of such ξ0. Then p = V ′

r (ξ0).
However, we reach a contradiction that 0 > V (ξ0) − ξ0 · p >= a(p)X = 0 since
q− < p <= β.

(2) If we prove that V is a viscosity solution of (ODE; a, β1), the conclusion
follows. We only need to consider the boundary condition. Evidently, V is
a supersolution of (ODE; a, β1) since β1 − p >= β − p >= 0 whenever (p,X) ∈
J2,−V (0); see Remark 4.7. We next take (p,X) ∈ J2,+V (0) and let p < β1;
otherwise β1 − p <= 0 holds. In (1) we have shown V ′(0) = inf{q ∈ (0, β] | a =
0 on [q, β]}. Since V ′(0) <= p < β1, we now have a(p) = 0 and therefore V (0) −
0 · p <= 0 = a(p)X.

Remark 4.7. Since 0 < V ′(0) <= β by (1) above, we always have β − p >= 0 if
(p,X) ∈ J2,−V (0) for a viscosity solution V . Indeed, if V − ϕ has its minimum
at the origin, then ϕ′(0) <= V ′(0) <= β.
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Remark 4.8. Let F : R × R → R satisfy (F0), (F1) and F (0,−1) < 0. It
is not difficult to see that, if we replace a(p) by −2F (p,−1), the assertions in
Proposition 4.3 and 4.6 still hold for a viscosity solution of the general problem
(FODE). We thus find that (FODE) and (ODE) are equivalent in the following
sense.

(i) If V is a viscosity solution of (FODE) with F satisfying (F0), (F1) and
F (0,−1) < 0, then V is also a viscosity solution of (ODE) with a(p) =
−2F (p,−1).

(ii) If V is a viscosity solution of (ODE) with a satisfying (A1), then V is also
a viscosity solution of (FODE) with F (p,X) = a(p)X/2 if X <= 0, and
F (p,X) = b(p)X for some nonnegative b ∈ C(R) if X >= 0.

Indeed, when V is concave, we have 2F (p,X) = a(p)X for (p,X) ∈ J2,−V (ξ)
with ξ > 0. We next let (p,X) ∈ J2,+V (ξ) with ξ >= 0. If X <= 0, then
2F (p,X) = a(p)X. If X > 0, we see (p, 0) ∈ J2,+V (ξ) by concavity. Since
a(p) · 0 <= a(p)X and 2F (p, 0) <= 2F (p,X), we finally conclude (i) and (ii). (It
is easy to check the boundary condition by virtue of Remark 4.7.) Also, similar
assertions to (i) and (ii) hold for classical solutions.

We next establish a unique existence result of classical solutions to (ODE).
Recalling the property (5) in Proposition 4.3, we see that there is no classical
solution of (ODE) if a(β0) = 0 for some β0 ∈ (0, β). We thus need the positivity
of a for the existence. Conversely, it turns out that a viscosity solution of (ODE),
for which we have already known the unique existence, is actually a classical
solution of (ODE) if a is positive.

Proposition 4.9 (C2-regularity of viscosity solutions). Assume (A1). Let V be
the unique viscosity solution of (ODE). If a > 0 on [0, β], then V is a classical
solution of (ODE).

Proof. 1. By virtue of Proposition 4.6 (1) the boundary condition (4.4) is now
fulfilled. Since Vr is right continuous, the condition V ∈ C1[0,∞) is satisfied if
we prove V ∈ C1(0,∞). In the rest of the proof we show V ∈ C2(0, l) for every
l > 0.

2. Let

ψ(r) :=


V (0) if r <= V (0),

r if V (0) <= r <= β,

β if β <= r

and
b(p) := max{a(p), mβ} with mβ = min

q∈[0,β]
a(q).

Then we observe that V also satisfies

ψ(W (ξ))− ξψ(W ′(ξ)) = b(W ′(ξ))W ′′(ξ) in (0, l) (4.10)

in the viscosity sense because V (0) <= V <= 0 and 0 <= p <= β for every p ∈
J2,+V (ξ) ∪ J2,−V (ξ) with ξ ∈ (0, l); recall Proposition 4.3 (1), (2) and Remark
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4.5 (b). We now solve the ordinary differential equation (4.10) with the boundary
condition

W (0) = V (0) and W (l) = V (l). (4.11)

According to [25, Theorem XII.4.2] there exists U ∈ C2(0, l) ∩ C[0, l] which
satisfies (4.10) and (4.11) in the classical sense. The reason why we introduced
(4.10) is to guarantee that

f(ξ, r, p) :=
ψ(r)− ξψ(p)

b(p)

is continuous and bounded on [0, l]× (−∞,∞)× (−∞,∞), which is assumed in
[25, Theorem XII.4.2].

3. We assert that V (0) <= U <= 0 on [0, l]. If U(η) > 0 at a maximum
point η ∈ (0, l) of U , noting that U ′(η) = 0 and U ′′(η) <= 0, we would reach a
contradiction that

ψ(U(η))− ηψ(U ′(η)) > 0 >= b(U ′(η))U ′′(η).

Thus U <= 0. A similar argument yields V (0) <= U .
4. By Step 3 we find that U satisfies

W (ξ)− ξψ(W ′(ξ)) = b(W ′(ξ))W ′′(ξ) in (0,∞) (4.12)

in the classical sense, and therefore in the viscosity sense. We now apply the
comparison principle for a viscosity subsolution and a viscosity supersolution of
(4.12). Such a comparison is ensured by [16, Theorem 3.3]; indeed, if we set
G(ξ, r, p,X) = r − ξψ(p) − b(p)X, we have G(ξ, r, p,X) − G(ξ, s, p,X) >= r − s
for r >= s and G(η, r, α(ξ − η), Y ) − G(ξ, r, α(ξ − η), X) <= α|ξ − η|2 for X <= Y .
We thus obtain V = U on [0, l], which implies V ∈ C2(0, l).

Approximating a viscosity solution by classical solutions, we prove that its
derivative takes the value p if a(p) > 0 and that the value of the derivative jumps
over p if a(p) = 0. In other words, the solution has a corner when the equation
is degenerate.

Theorem 4.10 (Corner of profile functions). Assume (A1). Let V be the unique
viscosity solution of (ODE). Let p ∈ (0, β).

(1) Assume that a(p) > 0. Then there exists a unique ξp ∈ (0,∞) such that
V ∈ C2(I) and V ′(ξp) = p for some open interval I with ξp ∈ I ⊂ (0,∞).

(2) Assume that a(p) = 0. Let

q+ := sup{q ∈ [p, β] | a = 0 on [p, q]},
q− := inf{q ∈ (0, p] | a = 0 on [q, p]}.

If q+ < β, then there exists a unique ξp ∈ (0,∞) such that V ′
l (ξp) = q+

and V ′
r (ξp) = q−. If q+ = β, then we have V ′(0) = q−.
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Remark 4.11. If q− = q+ = p in (2), then V is differentiable at ξp but not twice
differentiable at ξp since a(p) = 0. See Proposition 4.3 (5).

Proof. The uniqueness assertions in (1) and (2) follow from the monotonicities of
V ′
r and V ′

l , which are ensured by Remark 4.5 (b). If a > 0 on [0, β], the assertion
in (1) is obvious since V ′ is bijection from [0,∞) to (0, β]; recall Remark 4.5 (b),
(c) and Proposition 4.6 (1). Also, when q+ = β in (2), we have already proved
V ′(0) = q− in Proposition 4.6 (1).

(1) 1. Set aδ(q) = max{a(q), δ} for δ ∈ (0, a(0)]. Owing to the positivity
of aδ the unique solution Vδ of (ODE; aδ, β) is smooth. Since aδ converges to a
uniformly, we see that Vδ converges to V as δ → 0 locally uniformly on [0,∞)
by stability (Proposition 2.9 (2)).

2. Take ε > 0 small so that [p− ε, p+ ε] ⊂ (0, β) and a > 0 on [p− ε, p+ ε].
Since Vδ is a classical solution of (ODE; aδ, β) with a positive aδ, there exist
ξ−δ , ηδ, ξ

+
δ ∈ (0,∞) such that ξ−δ < ηδ < ξ+δ and (V ′

δ (ξ
−
δ ), V

′
δ (ηδ), V

′
δ (ξ

+
δ )) =

(p+ ε, p, p− ε) for each δ > 0. Then we observe

(p− ε)ξ+δ <=

∫ ξ+δ

0
V ′
δ (ξ)dξ = Vδ(ξ

+
δ )− Vδ(0) <= −Vδ(0).

Since Va(0)(0) <= Vδ(0) by the comparison principle, we obtain ξ+δ <= −Va(0)(0)/(p−
ε). Therefore we may assume that (ξ−δ , ηδ, ξ

+
δ ) → (ξ̄−, η̄, ξ̄+) as δ → 0 by taking

a subsequence if necessary.
3. We show that −M <= V ′′

δ
<= 0 on [ξ−δ , ξ

+
δ ] for some M > 0 independent of

δ. Take c > 0 such that c <= a on [p− ε, p+ ε]. Then, for ξ ∈ [ξ−δ , ξ
+
δ ] we have

V ′′
δ (ξ) =

Vδ(ξ)− ξV ′
δ (ξ)

a(V ′
δ (ξ))

>=
Va(0)(0)− ξ+δ (p+ ε)

c
.

Since {ξ+δ }δ is bounded by Step 2, we conclude that V ′′
δ
>= −M for some M > 0.

4. We next claim that ξ̄− < η̄ < ξ̄+. In fact, we compute

−ε = V ′
δ (ηδ)− V ′

δ (ξ
−
δ ) =

∫ ηδ

ξ−δ

V ′′
δ (ξ)dξ >= −M(η−δ − ξ−δ ),

which implies that ξ̄− < η̄. The same argument yields that η̄ < ξ̄+.
5. Choose θ > 0 small so that J := [η̄ − θ, η̄ + θ] ⊂ (ξ̄−, ξ̄+). We then have

−M <= V ′′
δ
<= 0 on J for sufficiently small δ. Thus the Ascoli-Arzelà theorem

ensures that V ′
δ converges to some U ∈ C(J) as δ → 0 uniformly on J by taking

a subsequence. In particular, we have U(η̄) = limδ→0 V
′
δ (ηδ) = p. Since V δ

converges to V pointwise, we learn that V ∈ C1(η̄ − θ, η̄ + θ) and V ′ = U .
Consequently V ′(η̄) = p.

6. We are able to show the C2-regularity of V in the same way as in the proof
of Proposition 4.9. Let I = (a, b) := (η̄−θ/2, η̄+θ/2). Since V ∈ C1(η̄−θ, η̄+θ),
for every ξ ∈ I and (p,X) ∈ J2,+V (ξ) ∪ J2,−V (ξ) we have V ′(a) >= p >= V ′(b)
and a(p) >= m for some m > 0. Thus V solves

ψ(W (ξ))− ξψ(W ′(ξ)) = b(W ′(ξ))W ′′(ξ) in I (4.13)
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in the viscosity sense. Here ψ(r) and b(p) are suitable modification of functions
r and a(p) respectively; see the proof of Proposition 4.9. Then V must agree
with a classical solution of (4.13) with the boundary conditionW (a) = V (a) and
W (b) = V (b). Hence V ∈ C2(I).

(2) 1. Let q+ < β. By the definitions of q− and q+ there exist sequences
{q−n }n and {q+n }n such that 0 < q−n < q− <= q+ < q+n < β, a(q−n ) > 0, a(q+n ) >
0, q−n ↑ q− as n → ∞ and q+n ↓ q+ as n → ∞. Then we see by (1) that
(V ′(ξ−n ), V

′(ξ+n )) = (q−n , q
+
n ) for some ξ−n , ξ

+
n ∈ (0,∞) such that 0 < ξ+n <= ξ+n+1

<=
ξ−n+1

<= ξ−n . By this monotonicity we let limn→∞(ξ−n , ξ
+
n ) = (ξ̄−, ξ̄+), and then

we have

V ′
l (ξ̄

+) = lim
ξ↑ξ̄+

V ′
l (ξ) = lim

n→∞
V ′
l (ξ

+
n ) = q+,

V ′
r (ξ̄

−) = lim
ξ↓ξ̄−

V ′
r (ξ) = lim

n→∞
V ′
r (ξ

−
n ) = q−.

2. It remains to prove that ξ̄+ = ξ̄−. Suppose that ξ̄+ < ξ̄−. We take
(p0, X) ∈ J2,−V (η0) with η0 ∈ (ξ̄+, ξ̄−); recall Remark 4.4. We then have

p0 <= V ′
r (η0) <= V ′

r (ξ
+
n ) = q+n and p0 >= V ′

l (η0) >= V ′
l (ξ

−
n ) = q−n .

Sending n→ ∞ yields that q− <= p0 <= q+, and hence a(p0) = 0. This is contrary
to Proposition 4.3 (5).

We are now in a position to determine the range of V ′
r and V ′

l . Define
R(V ′

r ) := {V ′
r (ξ) | ξ >= 0}, R(V ′

l ) := {V ′
l (ξ) | ξ > 0} and

{a > 0}r :=

{
p ∈ (0, β]

∣∣∣∣∣ there exists {qn}∞n=1 ⊂ (0, p] such that
a(qn) > 0 and qn → p as n→ ∞

}
,

{a > 0}l :=

{
p ∈ (0, β)

∣∣∣∣∣ there exists {qn}∞n=1 ⊂ [p, β) such that
a(qn) > 0 and qn → p as n→ ∞

}
.

Corollary 4.12 (Range of derivatives). Assume (A1). Let V be the unique
viscosity solution of (ODE). Then we have R(V ′

r ) = {a > 0}r and R(V ′
l ) =

{a > 0}l.

Proof. The inclusion R(V ′
r ) ⊃ {a > 0}r follows immediately from Theorem 4.10

(1) and (2). Let p ∈ R(V ′
r ), that is p = V ′

r (ξ) for some ξ >= 0. Evidently, we
have p ∈ {a > 0}r if a(p) > 0. We let a(p) = 0. When β = q+ := sup{q ∈
[p, β] | a = 0 on [p, q]}, Proposition 4.6 implies V ′(0) = q− := inf{q ∈ (0, p] | a =
0 on [q, p]}. By definition q− <= p. Since we also have q− >= V ′

r on [0,∞) by
monotonicity, it follows that p = q− ∈ {a > 0}r. In the case where β > q+,
by Theorem 4.10 (2) we have V ′

l (ξp) = q+ and V ′
r (ξp) = q− for some ξp > 0.

Since V ′
r (ξp) = q− <= p = V ′

r (ξ), we see ξp >= ξ. If ξp > ξ, we would reach a
contradiction that V ′

r (ξ) > V ′
l (ξp) = q+ >= p = V ′

r (ξ). Thus ξ = ξp and then

p = q−. This means p ∈ {a > 0}r. We have thus proved R(V ′
r ) = {a > 0}r. A

similar argument yields R(V ′
l ) = {a > 0}l.
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5 Depth of the thermal groove

We investigate the depth of the thermal groove. For a viscosity solution V of
(ODE) we define

d(β) := −V (0). (5.1)

This is the depth of the corresponding self-similar solution v in (4.2) at the origin
when t = 1. Similarly, for the classical solution W of the linearized equation
(LODE) with B = a(0) > 0 we define

L(β) := −W (0) = β

√
2a(0)

π
, (5.2)

where the second equality is due to (4.7) since W = Hβ,a(0).

Theorem 5.1 (Depth of the groove). Assume (A1). Assume furthermore that
a(p) <= a(0) for all p > 0. Let V and W be, respectively, the unique viscosity
solution of (ODE) and that of (LODE) with B = a(0). Define d and L as in
(5.1) and (5.2). Then

(1) 0 < d <= L in (0,∞).

(2) d is nondecreasing in (0,∞).

(3) e1(β) := β
√

(2min[0,β] a)/π <= d(β) for all β > 0.

(4)

0 <=
L(β)− d(β)

β
<= C

(
a(0)−min

[0,β]
a

)
with C =

√
2/(πa(0)) for all β > 0. In particular, limβ↓0(L(β)−d(β))/β =

0.

(5) If a is nonincreasing on [0,∞), then λd(β) <= d(λβ) for all λ ∈ [0, 1] and
β > 0.

(6) e2(β) :=
√∫ β

0 a(p)pdp <= d(β) for all β > 0.

(7) If a(p) >= c/(1+p2) on [M,∞) for some c,M > 0, then limβ→∞ d(β) = ∞.

The estimate in (4) yields (1.14), which asserts that the depth of the lin-
earized problem is the third order approximation in Mullins’ case, i.e, a(p) =
2/(1 + p2). The main tool for the proof of (1)–(5) is the comparison principle
while we calculate integrals to show (6) and (7).

Proof. (1) Fix β > 0. By Proposition 4.3 (1) the depth d(β) is positive. We
next observe that W − ξW ′ = a(0)W ′′ <= a(W ′)W ′′ on (0,∞) since W ′ >= 0 and
W ′′ <= 0. This inequality means that W is a subsolution of (ODE). We thus find
by the comparison principle that W <= V on [0,∞), and hence d(β) <= L(β).
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Figure 3: The assertions in Theorem 5.1 on the depth d(β).

(2) Take β1, β2 > 0 with β1 < β2. Let V1 and V2 be, respectively, the unique
viscosity solution of (ODE; a, β1) and that of (ODE; a, β2). It is then easily seen
that V1 is a supersolution of (ODE; a, β2), and so V2 <= V1 on [0,∞) by the
comparison principle. As a result we see that d(β1) <= d(β2).

(3) Fix β > 0 and take β0 > 0 such that min[0,β] a = a(β0). Clearly the
claim holds if a(β0) = 0. In the case where a(β0) > 0 we consider the linearized
equation (LODE) with B = a(β0). Then the unique classical solution is

U(ξ) := Hβ,a(β0)(ξ) = −β
√

2a(β0) · ierfc

(
ξ√

2a(β0)

)
.

Since 0 <= U ′ <= β and U ′′ <= 0, we observe that U−ξU ′ = a(β0)U
′′ >= a(U ′)U ′′ on

(0,∞). Thus U is a supersolution of (ODE; a, β). We now apply the comparison
principle to obtain V <= U on [0,∞). In particular, we have

d(β) >= −U(0) = β

√
2a(β0)

π
= e1(β).

(4) It follows from (3) that

0 <= L(β)− d(β) <= β

√
2a(0)

π
− β

√
2min[0,β] a

π
<= Cβ

(
a(0)−min

[0,β]
a

)
.

The second assertion in (4) is now obvious.
(5) Fix β > 0 and λ ∈ (0, 1). Let Vλ be the unique viscosity solution

of (ODE; a, λβ). Set Ṽ = λV . We now claim that Ṽ is a supersolution of
(ODE; a, λβ). Let (p,X) ∈ J2,−Ṽ (ξ), i.e., (p/λ,X/λ) ∈ J2,−V (ξ). If ξ = 0,
we derive β − (p/λ) >= 0 from Remark 4.7. This means λβ − p >= 0. If
ξ > 0, noting that p >= 0, X <= 0 and V (ξ) − ξ · (p/λ) >= a(p/λ)X/λ, we have
Ṽ (ξ)− ξp >= a(p/λ)X >= a(p)X since a is monotone. We thus conclude that Ṽ is
a supersolution of (ODE; a, λβ). Hence Vλ <= Ṽ on [0,∞), and so d(λβ) >= λd(β).

(6) 1. We first let a > 0 on [0,∞). Then V is a classical solution of (ODE)
by Proposition 4.9. We multiply the both sides of (4.9) by V ′(ξ) and integrate
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over [0, η]. We then have

I1 :=

∫ η

0
{V (ξ)− ξV ′(ξ)}V ′(ξ)dξ =

[
{V (ξ)− ξV ′(ξ)}V (ξ)

]η
0
+

∫ η

0
ξV ′′(ξ)V (ξ)dξ

= {V (η)}2 − ηV ′(η)V (η)− {V (0)}2 +
∫ η

0
ξV ′′(ξ)V (ξ)dξ

from the left hand side while the right hand side becomes

I2 :=

∫ η

0
a(V ′(ξ))V ′′(ξ)V ′(ξ)dξ =

∫ V ′(η)

β
a(p)pdp = −

∫ β

V ′(η)
a(p)pdp,

where we have used the change of variables that p = V ′(ξ). Since V <= 0, V ′ >= 0
and V ′′ <= 0, we see that I1 >= −{V (0)}2 = −{d(β)}2. Thus

{d(β)}2 >= −I1 = −I2 =
∫ β

V ′(η)
a(p)pdp.

Letting η → ∞ and recalling Remark 4.5 (c), we obtain the estimate in (6).
2. If a is not necessarily positive, we set aδ(p) := max{a(p), δ} for δ > 0.

Then Step 1 yields
∫ β
0 aδ(p)pdp <= {Vδ(0)}2, where Vδ is the unique classical

solution of (ODE; aδ, β). Letting δ → 0 gives the desired conclusion since
Vδ(0) → V (0) by the stability; recall the argument in Step1 in the proof of
Theorem 4.10 (1).

(7) For β >=M we observe that

{e2(β)}2 =
∫ β

0
a(p)pdp >=

∫ β

M

cp

1 + p2
dp =

c

2
log

1 + β2

1 +M2
.

Thus (6) yields the claim.

Remark 5.2. (1) We have actually derived several estimates not only at the
origin but also on the whole [0,∞). In particular, by the proof of (1) and
(3) we notice

0 <= V (ξ)−W (ξ)

<= β

{√
2a(0) · ierfc

(
ξ√
2a(0)

)
−
√

2a(β0) · ierfc

(
ξ√

2a(β0)

)}

for all ξ ∈ [0,∞), where β0 > 0 is chosen so that a(β0) = min[0,β] a.

(2) By virtue of Proposition 4.6 (2) we see that limβ→∞ d(β) ̸= ∞ if a = 0
on [M,∞) for some M > 0. Namely, the depth does not necessarily go to
infinity.

Remark 5.3. In [5] the authors gives upper and lower bounds on the solution V of
(ODE) with a(p) = 1/2(1+p2). There two auxiliary (ODE) with a1(p) = 1/(1+
p)2 and a2(p) = 1/2(1 + p)2 are considered, and the exact solution V1 of (ODE;
a1, β) and V2 of (ODE; a2, β) are given in the implicit forms. Since a1 >= a >= a2,
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employing the comparison theorem, the authors conclude V1 <= V <= V2, and in
particular they derive the estimate at the origin of the form√

2 log

(
β√
π

)
>= d(β) >=

√
log

(
β

2
√
π

)
+

1

4
− 1

2
=: l1(β).

The both sides of the above inequality are of order O(
√
log β) as β → ∞. Our

result (6) also gives a lower bound on d(β), which is

d(β) >=

√∫ β

0

p

2(1 + p2)
dp =

√
1

4
log(1 + β2) =: l2(β).

The right hand side l2(β) is of order O(
√
log β), the same order as in [5]; however,

by a direct calculation we see limβ→∞(l1(β)− l2(β)) = ∞. Thus our estimate (6)
in Theorem 5.1 is rough in this sense, but it is shown more simply and directly
by integration and is enough to prove d(β) → ∞ as β → ∞ in the Mullins’
example.
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Chapter 3

A discrete isoperimetric
inequality on lattices

1 Introduction

The classical isoperimetric inequality asserts that for any bounded E ⊂ Rn we
have

|∂E|n

|E|n−1
>=

|∂B1|n

|B1|n−1
, (1.1)

where |E| and |∂E| denote, respectively, the volume of E and the perimeter of
E, and Br := {x ∈ Rn | |x| < r} is a ball. This inequality says that among
all sets a ball is the best shape to minimize the ratio given as the left-hand side
of (1.1). Topics related to the classical isoperimetric problem or arguments on
its generalization can be found in the book [5] and the survey paper [22]. See
also the recent book [27] for connections with Sobolev inequalities and optimal
transport.

In this paper we are concerned with the case where E is a collection of
rectangular parallelepipeds with a common shape. To describe the situation
more precisely we first define a weighted lattice. For each i ∈ {1, . . . , n} we fix a
positive constant hi > 0 as a step size in the direction of xi. Then the resulting
lattice is

hZn := (h1Z)× · · · × (hnZ) = {(h1x1, . . . , hnxn) ∈ Rn | (x1, . . . , xn) ∈ Zn}.

Consider a subset Ω ⊂ hZn. We define Ω, the closure of Ω, as

Ω := {x+ σhiei | x ∈ Ω, i ∈ {1, . . . , n}, σ ∈ {−1, 0, 1}} ,

where {ei}ni=1 ⊂ Rn is the standard orthogonal basis ofRn, e.g., e1 = (1, 0, . . . , 0).
Note that Ω is not a closure in Rn. We also set ∂Ω := Ω \ Ω, the boundary of
Ω. Given a bounded Ω ⊂ hZn, we define the volume of Ω and the perimeter of
Ω as, respectively,

Vol(Ω) := hn × (#Ω), Per(Ω) := hn ×

(
n∑

i=1

ωi

hi

)
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with
ωi = ωi[Ω] =

∑
x∈Ω

#({x± hiei} ∩ ∂Ω),

where hn := h1 × · · · × hn and #A stands for the number of elements of a set
A. The number ωi counts the edges that are parallel to the xi-direction and are
connecting points of Ω with points of ∂Ω. Our definitions of the volume and the
perimeter are natural in that if we let

E = E[Ω] :=
∪

(x1,...,xn)∈Ω

[
x1 −

h1
2
, x1 +

h1
2

]
× · · · ×

[
xn − hn

2
, xn +

hn
2

]
(1.2)

for a given Ω ⊂ hZn, we then have Vol(Ω) = Ln(E), the n-dimensional Lebesgue
measure of E, and Per(Ω) = Hn−1(∂E), the (n− 1)-dimensional Hausdorff mea-
sure of ∂E (the boundary of E in Rn). We say Ω ⊂ hZn is connected if for
all x, y ∈ Ω there exist m ∈ {1, 2, . . . } and z1, . . . , zm ∈ Ω such that z1 ∈ {x},
zk+1 ∈ {zk} (k = 1, . . . ,m− 1) and y ∈ {zm}.

We denote by Qr and Q̄r, respectively, the open and closed cube in Rn

centered at 0 with side-length 2r > 0, i.e., Qr := (−r, r)n ⊂ Rn and Q̄r :=
[−r, r]n ⊂ Rn. Let Q̄r(a) := a + Q̄r for a ∈ Rn. The volume and perimeter
of Qr are, respectively, |Qr| = (2r)n and |∂Qr| = 2n(2r)n−1. We are now in a
position to state our main result.

Theorem 1.1 (Discrete isoperimetric inequality). For any nonempty, bounded
and connected Ω ⊂ hZn we have

Per(Ω)n

Vol(Ω)n−1
>=

|∂Q1|n

|Q1|n−1
. (1.3)

Moreover, the equality in (1.3) holds if and only if E[Ω] is a cube, i.e., E[Ω] =
Q̄r(a) for some r > 0 and a ∈ Rn.

The isoperimetric constant for the cube is |∂Q1|n/|Q1|n−1 = (2n)n. Although
(1.3) can be regarded as a “continuous” isoperimetric inequality if we identify
Ω with E[Ω] in (1.2), we call (1.3) a “discrete” isoperimetric inequality since
our approach to Theorem 1.1 uses numerical techniques which study functions
defined on the lattice hZn. Note that our result is different from the classical one
in that the minimizer of the left-hand side of (1.3) is a cube. This is a consequence
of the constraint by square lattices; see Example 2.4. We also remark that the
equality in (1.3) does not necessarily hold; consider the two dimensional case
where h1 = 1 and h2 =

√
2.

Isoperimetric problems on discrete spaces are studied by many authors. The
paper [1] gives a survey, and in the recent book [13, Chaper 8] isoperimetric
problems are studied on graphs (networks). Various results including discrete
Sobolev inequalities on finite graphs are also found in [9]. Isoperimetric problems
concerning lattices are discussed in several previous works; however, their set-
tings and problems are different from ours. The authors of [2, 15] study planar
convex subsets and lattice points lying in them. In [4] isoperimetric inequalities
for lattice-periodic sets are derived. The reader is also referred to its related
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work [14, 3, 24]. Properties of planar subsets with constraint by a triangular
lattice are discussed in [11].

For the proof of our discrete isoperimetric inequality we employ the idea by
Cabré. As an application of the technique used in a proof of the Aleksandrov-
Bakelman-Pucci (ABP for short) maximum principle, Cabré pointed out in [8]
(and the original paper [7] in Catalan) that the ABP method gives a simple proof
of the classical isoperimetric inequality (1.1). The ABP maximum principle ([12,
Theorem 9.1], [6, Theorem 3.2]) is a pointwise estimate for solutions of elliptic
partial differential equations. In a typical case the principle asserts that if u is a
(sub)solution of the equation F (∇2u) = f(x) in E ⊂ Rn, where F is a possibly
nonlinear elliptic operator and ∇2u denotes the Hessian of u, then we have

max
E

u <= max
∂E

u+ C∥f∥Ln(Γ).

Here C > 0, ∥f∥Ln(Γ) = (
∫
Γ |f(x)|

ndx)1/n and Γ is an upper contact set of u
which is defined as the set of points in E where the graph of u has a tangent
plane that lies above u in E. Discrete versions of the ABP estimate are also
established in a series of studies by Kuo and Trudinger; see [16, 21] for linear
equations, [17] for nonlinear operators, [18, 20] for parabolic cases and [19, 20]
for general meshes.

Unfortunately, the result in [8] does not cover subsets having corners such as
(1.2) since domains E in [8] is assumed to be smooth in order to solve Neumann
problems on E. To be more precise, the author of [8] takes a function u which
solves the Poisson-Neumann problem

−∆u =
|∂E|
|E|

in E,

∂u

∂ν
= −1 on ∂E,

(1.4)

and proves (1.1) by studying the n-dimensional Lebesgue measure of ∇u(Γ), the
image of the upper contact set of u under the gradient of u. Here ν is the outward
unit normal vector to ∂E. In this paper we solve a finite difference version of
(1.4) instead of the continuous equation. Considering such discrete equations
and their discrete solutions enables us to deal with non-smooth domains.

Our proof is similar to that in [8] except that the minimizers are not balls
but cubes and that a superdifferential of u, which is the set of all slopes of
hyperplanes touching u from above, is used instead of the gradient of u ([16]).
However, there are some extra difficulties in our case. One is a solvability of the
discrete Poisson-Neumann problem. Such problems are discussed in the previous
work [26, 23, 25, 28], but domains are restricted to rectangles [26, 23, 28] or their
collections [25]. For the proof of our discrete isoperimetric inequality, fortunately,
it is enough to require u to be a subsolution of the Poisson equation in (1.4) and to
satisfy the Neumann condition in (1.4) with some direction ν. For this reason we
are able to construct such solutions on general subsets of hZn. Solutions of (1.4)
are not unique in our discrete case as well as the continuous case since adding a
constant gives another solution. Accordingly, the resulting coefficient matrix of
a linear system which corresponds to the discrete (1.4) is not invertible. Thus
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an existence of solutions to the problem will be established by determining the
kernel of the matrix. We will give a proof of this existence result separately from
that of the isoperimetric inequality to increase readability. Another difficulty is
to study a necessary and sufficient condition which leads to the equality in (1.3).
This is not discussed in [8].

This chapter is organized as follows. In Section 2 we give a proof of the
discrete isoperimetric inequality. Since we use a discrete solution of the Poisson-
Neumann problem in the proof, we show the existence of such solutions in Section
3. In Appendix we present two results on maximum principles; one is an ABP
maximum principle shown by a similar method to the isoperimetric inequality,
and the other is a strong maximum principle which is used in Section 3.

2 A proof of the discrete isoperimetric inequality

Throughout this chapter we always assume

Ω ⊂ hZn is nonempty, bounded and connected.

We first introduce a notion of superdifferentials and upper contact sets, and then
study their properties. Let u : Ω → R. We denote by ∂+u(z) a superdifferential
of u on Ω at z ∈ Ω, which is given as

∂+u(z) := {p ∈ Rn | u(x) <= ⟨p, x− z⟩+ u(z), ∀x ∈ Ω},

where ⟨·, ·⟩ stands for the Euclidean inner product in Rn. It is easy to see that
∂+u(z) is a closed set in Rn. We next define Γ[u], an upper contact set of u on
Ω, as

Γ[u] :={z ∈ Ω | ∂+u(z) ̸= ∅}
={z ∈ Ω | ∃p ∈ Rn such that u(x) <= ⟨p, x− z⟩+ u(z), ∀x ∈ Ω}.

For x ∈ Ω and i ∈ {1, . . . , n} we define discrete differential operators as follows:

δ+i u(x) :=
u(x+ hiei)− u(x)

hi
, δ−i u(x) := −u(x− hiei)− u(x)

hi
,

δ2i u(x) :=
δ+i u(x)− δ−i u(x)

hi
=
u(x+ hiei) + u(x− hiei)− 2u(x)

h2i
,

∆′u(x) :=

n∑
j=1

δ2ju(x) =

n∑
j=1

u(x+ hjej) + u(x− hjej)

h2j
−

2

n∑
j=1

1

h2j

u(x).

Lemma 2.1. Let u : Ω → R. For all z ∈ Γ[u] we have δ+i u(z) <= δ−i u(z) for
every i ∈ {1, . . . , n} and

∂+u(z) ⊂ [δ+1 u(z), δ
−
1 u(z)]× · · · × [δ+n u(z), δ

−
n u(z)]. (2.1)
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Proof. Let p = (p1, . . . , pn) ∈ ∂+u(z). From the definition of the superdifferential
it follows that u(x) <= ⟨p, x − z⟩ + u(z) for all x ∈ Ω. In particular, taking
x = z ± hiei ∈ Ω, we have

u(z ± hiei) <= ⟨p,±hiei⟩+ u(z);

that is,
u(z + hiei)− u(z)

hi
<= pi 5 −u(z − hiei)− u(z)

hi
.

This implies δ+i u(z) <= δ−i u(z) and (2.1).

Remark 2.2. Since δ+i u(z) <= δ−i u(z) at z ∈ Γ[u] by Lemma 2.1, we see that
δ2i u(z) <= 0 for all i ∈ {1, . . . , n}.

In the proof of the classical isoperimetric inequality proposed by Cabré [7, 8],
solutions of the Poisson-Neumann problem (1.4) are studied, and actually the
proof still works for a subsolution u of (1.4), i.e., −∆u <= |∂E|/|E| in E and
∂u/∂ν = −1 on ∂E. Similarly to this classical case, for the proof of Theorem
1.1 we consider the discrete version of (1.4) on Ω, which is

(NP)


−∆u <=

Per(Ω)

Vol(Ω)
in Ω, (2.2)

∂u

∂ν
= −1 on ∂Ω. (2.3)

The meaning of solutions of (NP) is given as follows. We say u : Ω → R is a
discrete solution of (NP) if

(a) −∆′u(x) <= Per(Ω)/Vol(Ω) for all x ∈ Ω;

(b) For all x ∈ ∂Ω there exist some i ∈ {1, . . . , n} and σ ∈ {−1, 1} such that
x+ σhiei ∈ Ω and

u(x)− u(x+ σhiei)

hi
= −1.

The condition (b) requires that the outward normal derivative of u be −1 for
some direction ν = ±ei. This boundary condition is also explained by saying
that δ+i u(x) = 1 or δ−i u(x) = −1 for all x ∈ ∂Ω. We will prove the existence of
discrete solutions of (NP) in the next section (Proposition 3.2).

Proof of Theorem 1.1. 1. Let u : Ω → R be a discrete solution of (NP) and let
Γ[u] be the upper contact set of u on Ω. We claim

Q1 ⊂
∪

z∈Γ[u]

∂+u(z). (2.4)

Let p ∈ Q1. We take a maximum point x̂ ∈ Ω of u(x) − ⟨p, x⟩ over Ω. To
show (2.4) it is enough to prove that x̂ ∈ Ω since we then have x̂ ∈ Γ[u] and
p ∈ ∂+u(x̂). Suppose by contradiction that x̂ ∈ ∂Ω. Take any i ∈ {1, . . . , n}
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and σ ∈ {−1, 1} such that y := x̂ + σhiei ∈ Ω. Since u(x) − ⟨p, x⟩ attains its
maximum at x̂ and since p lies in the open cube Q1, we compute

u(x̂)− u(y)

hi
>=

⟨p, x̂⟩ − ⟨p, y⟩
hi

=
⟨p,−σhiei⟩

hi
>= −|pi| > −1.

This implies that u does not satisfy the boundary condition (2.3) at x̂ ∈ ∂Ω,
a contradiction. Therefore (2.4) follows. We also remark that (2.4) guarantees
Γ[u] is nonempty.

2. By (2.4) we see

|Q1| = Ln(Q1) <= Ln

 ∪
z∈Γ[u]

∂+u(z)

 <=
∑

z∈Γ[u]

Ln(∂+u(z)). (2.5)

Also, for each z ∈ Γ[u] Lemma 2.1 implies

Ln(∂+u(z)) <= Ln([δ+1 u(z), δ
−
1 u(z)]× · · · × [δ+n u(z), δ

−
n u(z)])

= (δ−1 u(z)− δ+1 u(z))× · · · × (δ−n u(z)− δ+n u(z))

= hn(−δ21u(z))× · · · × (−δ2nu(z)). (2.6)

We next apply the arithmetic-geometric mean inequality to obtain

(−δ21u(z))× · · · × (−δ2nu(z)) <=
(
−δ21u(z)− · · · − δ2nu(z)

n

)n

=

(
−∆′u(z)

n

)n

.

(2.7)

Consequently, combining (2.5)–(2.7) yields

|Q1| <=
∑

z∈Γ[u]

hn
(
−∆′u(z)

n

)n

<=
∑

z∈Γ[u]

hn
Per(Ω)n

nnVol(Ω)n
<=

Per(Ω)n

nnVol(Ω)n−1
. (2.8)

Since n = |∂Q1|/|Q1|, it follows that

Per(Ω)n

Vol(Ω)n−1
>= nn|Q1| =

|∂Q1|n

|Q1|n
|Q1| =

|∂Q1|n

|Q1|n−1
.

3. We next assume that the equality in (1.3) holds. In view of Step 2, we
then have Γ[u] = Ω by (2.8) and

Ln(Q1) = Ln

(∪
x∈Ω

∂+u(x)

)
, (2.9)

Ln(∂+u(x)) = Ln([δ+1 u(x), δ
−
1 u(x)]× · · · × [δ+n u(x), δ

−
n u(x)]) for all x ∈ Ω,

(2.10)

δ21u(x) = · · · = δ2nu(x) =: µ(x) (<= 0) for all x ∈ Ω (2.11)

by (2.5), (2.6) and (2.7), respectively. Here we have derived (2.11) from the
equality case of the arithmetic-geometric mean inequality. We claim

∂+u(x) = [δ+1 u(x), δ
−
1 u(x)]× · · · × [δ+n u(x), δ

−
n u(x)] for all x ∈ Ω. (2.12)
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One inclusion is known by (2.1). Also, the both sets in (2.12) are closed and
have the same measure by (2.10). Thus they have to be the same set. For the
same reason it follows from (2.4) and (2.9) that

Q̄1 =
∪
x∈Ω

∂+u(x). (2.13)

4. Let x, y ∈ Ω be such that y = x + hiei for some i ∈ {1, . . . , n}. Then we
show µ(x) = µ(y) and

∂+u(y) = ∂+u(x) + hiµ0ei (2.14)

with µ0 := µ(x), where µ(·) is the function in (2.11). Without loss of generality
we may assume x = 0, y = h1e1 and u(x) = 0. We then notice that u(y) =
h1δ

+
1 u(0). Fix i ∈ {2, . . . , n} and set p± := δ+1 u(0)e1 + δ±i u(0)ei. Because of

(2.12) we see that p± belong to ∂+u(0). Since x = 0 ∈ Γ[u], we observe that
u(z) <= ⟨p±, z⟩ for all z ∈ Ω. In particular, letting z = h1e1 ± hiei, we deduce
u(z) <= h1δ

+
1 u(0) ± hiδ

±
i u(0) = u(y) ± hiδ

±
i u(0), i.e., δ+i u(y) <= δ+i u(0) and

δ−i u(0) <= δ−i u(y). Changing the role of x and y we also have δ+i u(y) >= δ+i u(0)
and δ−i u(0) >= δ−i u(y). Thus

δ+i u(y) = δ+i u(0) and δ−i u(0) = δ−i u(y) (2.15)

for all i ∈ {2, . . . , n}. By (2.11) these equalities imply µ(x) = µ(y), and then
δ±1 u(y) are computed as

δ−1 u(y) = δ+1 u(x) = δ−1 u(x) + h1µ0, δ+1 u(y) = δ−1 u(y) + h1µ0 = δ+1 u(x) + h1µ0.

Namely, we have [δ−1 u(y), δ
+
1 u(y)] = [δ−1 u(x), δ

+
1 u(x)] + h1µ0, which together

with (2.15) shows (2.14).
5. By translation we may let 0 ∈ Ω. Set R := [−h1/2, h1/2] × · · · ×

[−hn/2, hn/2] and in view of (2.11) and (2.12) there exists z ∈ Rn such that
∂+u(0) = z+µR with µ := µ(0). Since Ω is now connected, as a consequence of
Step 4 we see µ(x) ≡ µ and ∂+u(x) = ∂+u(0) + µx = z+µx+µR for all x ∈ Ω.
Therefore (2.13) implies

Q̄1 =
∪
x∈Ω

(z + µx+ µR).

Finally, from translation and rescaling it follows that

Q̄1/|µ|(−z/µ) =
∪
x∈Ω

(x+R) = E[Ω],

which is the desired conclusion.

Remark 2.3. If a nonempty and bounded subset Ω′ ⊂ hZn is not connected, then
we have the strict inequality

Per(Ω′)n

Vol(Ω′)n−1
>

|∂Q1|n

|Q1|n−1
. (2.16)
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This is shown by docking one connected component with another one. To be
more precise, translating two connected components Ω1 and Ω2, we are able to
construct one connected set whose volume is equal to that of Ω1 ∪Ω2 and whose
perimeter is strictly less than that of Ω1∪Ω2. Iterating this procedure, we finally
obtain a connected set Ω such that Vol(Ω′) = Vol(Ω) and Per(Ω′) > Per(Ω).
These relations and Theorem 1.1 imply (2.16).

Example 2.4. In the planar case (n = 2) it is easily seen that round-shaped
subsets are not optimal. Let h1 = h2 = 1 for simplicity, and consider Ω ⊂ Z2

which is nonempty, bounded and connected. We choose R = {a, a + 1, . . . , a +
M−1}×{b, b+1, . . . , b+N−1} ⊂ Z2 as the minimal rectangle such that Ω ⊂ R.
Obviously, Vol(Ω) < Vol(R) if Ω ̸= R. We next consider their perimeters. Since
Ω is connected, for each x ∈ {a, a+1, . . . , a+M−1} there exist (x, y−), (x, y+) ∈
Ω such that (x, y− − 1), (x, y+ + 1) ̸∈ Ω. This implies ω1[Ω] >= 2M = ω1[R].
Similarly, we obtain ω2[Ω] >= 2N = ω2[R], and therefore Per(Ω) >= Per(R). We
thus conclude that Per(Ω)2/Vol(Ω) > Per(R)2/Vol(R), i.e., Ω is not optimal.
Moreover, we see that, among all rectangles R = {a, a + 1, . . . , a +M − 1} ×
{b, b+ 1, . . . , b+N − 1}, a square is the best shape since

Per(R)2

Vol(R)
=

{2(M +N)}2

MN
= 4

(
M

N
+
N

M
+ 2

)
>= 4(2 + 2) = 16

by the arithmetic-geometric mean inequality. Therefore, in the planar case The-
orem 1.1 is easily shown. However, the above argument is not valid for n >= 3
since the inequalities ωi[Ω] >= ωi[R] do not necessarily hold.

On the contrary, if we define a volume and a perimeter of Ω as #Ω and
#(∂Ω), respectively, then a cube is not an optimal shape. This can be seen in
the following simple example. Let n = 2, h1 = h2 = 1 again and consider planar
subsets Ω1 = {(x, y) ∈ Z2 | |x| <= 1, |y| <= 1} and Ω2 = {(x, y) ∈ Z2 | |x|+ |y| <=
2}. We then have #Ω1 = 9, #Ω2 = 13 and #(∂Ω1) = #(∂Ω2) = 12. Thus the
square Ω1 is not a minimizer of the functional (#(∂Ω))2/(#Ω). In the article
[10] the author asserts that if Ω has a minimal #∂Ω, then Ω is roughly diamond-
shaped. The author of [10] also observes inequalities (#(∂Ω))2/(#Ω) > 8 for
the two dimensional case and (#(∂Ω))3/(#Ω)2 > 36 for the three dimensional
case without detailed argument. We do not discuss such problems concerning
the functional (#(∂Ω))n/(#Ω)n−1 in the present paper.

3 An existence result for the Poisson-Neumann prob-
lem

We shall prove the solvability of (NP), the Poisson equation with the Neumann
boundary condition which appeared in the proof of the discrete isoperimetric
inequality. Before starting the proof, using a simple example, we explain how to
construct the solutions.

Example 3.1. Consider Ω ⊂ hZ2 which consists of three points P1, P2 and
P3 in the left lattice of Figure 1. We also denote by S1, . . . , S7 all points on
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∂Ω as in the same figure. In order to determine values of u on Ω we solve a
system of linear equations of the matrix form La⃗ = b⃗ which corresponds to the
finite difference equation (NP). However, if we require u to satisfy the Neumann
condition (2.3) at S1 toward the both adjacent points P1 and P3, the linear
system may not be solvable since the number of the unknowns is less than that
of equations; in the present example they are 10 and 11, respectively. Thus we
are tempted to consider the Neumann condition toward either P1 or P3 since we
are now allowed to relax (2.3) in this way by the meaning of solutions. Then the
number of equations decreases to 10, but, unfortunately, it becomes difficult to
study the linear system since the new matrix L is not symmetric. In addition,
we do not know a priori how to choose the adjacent point toward which the
Neumann condition is satisfied.

P1 P2

P3

S2

S1

S3 S4

S5

S6

S7

P1 P2

P3

S2

S3 S4

S5

S6

S7

S1,2

S1,1

Figure 1: Ω = {Pi}3i=1 and ∂Ω = {Si}7i=1. We solve a system of linear equations
for the right lattice, and then define u(S1) := max{u(S1,1), u(S1,2)}.

To avoid these situations we regard S1 as two different points S1,1 and S1,2
which are connected to P1 and P3, respectively, and consider a modified system
with new unknowns u(S1,1) and u(S1,2) instead of u(S1); see the right lattice in
Figure 1. Then the number of the unknowns in our example becomes 11. Thanks
to this increase of the unknowns, it turns out that the modified linear system ad-
mits at least one solution (u(P1), u(P2), u(P3), u(S1,1), u(S1,2), u(S2), . . . , u(S7)).
(In the notation of the proof below we write u(S1,1) = β(1, 1) and u(S1,2) =
β(1, 2).) In the process of proving the solvability we find that the right-hand
side of (2.2) should be Per(Ω)/Vol(Ω). Also, for its proof we employ the strong
maximum principle for the discrete Laplace equation.

The remaining problem is how to define u(S1). We define u(S1) as the max-
imum of u(S1,1) and u(S1,2), so that, if u(S1,1) >= u(S1,2), we have −∆′u(P3) <=
Per(Ω)/Vol(Ω) since u(S1) >= u(S1,2) and {u(S1)−u(P1)}/h2 = −1 since u(S1) =
u(S1,1). In this way we obtain a solution of (NP).

Proposition 3.2. The problem (NP) admits at least one discrete solution.

Proof. 1. We first introduce notations. Let Ω = {P1, . . . , PM} and ∂Ω =
{S1, . . . , SN0}, where M := #Ω and N0 := #(∂Ω). For each i ∈ {1, . . . ,M} we
define subsets M(i) ⊂ {1, . . . ,M} and N (i) ⊂ {1, . . . , N0} so that {Pi} \ {Pi} =
{Pj}j∈M(i) ∪ {Sj}j∈N (i). We also set si := #({Si} ∩ Ω) for i ∈ {1, . . . , N0},
which stands for the number of points of Ω adjacent to Si, and N :=

∑N0
j=1 sj .
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Next, for i ∈ {1, . . . , N0} we define a map ni : {1, . . . , si} → {1, . . . ,M} such
that ni(1) < ni(2) < · · · and {Si} ∩ Ω = {Pni(j)}

si
j=1. We denote by n−1

i the

inverse map of ni; that is, Pj is the n−1
i (j)-th point of (Pni(1), . . . , Pni(si)) if

Pj ∈ {Si} ∩ Ω.
For x, y ∈ Ω such that y = x+ σhiei with σ = ±1 and i ∈ {1, . . . , n} we set

h(x, y) := hi. Obviously, we then have h(x, y) = h(y, x). We denote by E(i, j)
the (M +N)× (M +N) matrix with 1 in the (i, j) entry and 0 elsewhere. Given
a vector

a⃗ = t(α(1), . . . , α(M), β(1, 1), . . . , β(1, s1), . . . , β(N0, 1), . . . , β(N0, sN0)) ∈ RM+N ,
(3.1)

where tv⃗ means the transpose of a vector v⃗, we define u = u[⃗a] : Ω → R as

u(x) :=

{
α(i) (x = Pi ∈ Ω, i ∈ {1, . . . ,M}),
max{β(i, j) | 1 <= j <= si} (x = Si ∈ ∂Ω, i ∈ {1, . . . , N0}).

2. We consider the following system of linear equations

La⃗ = b⃗, (3.2)

where a⃗ ∈ RM+N is the unknown vector and b⃗ = (bk)
M+N
k=1 ∈ RM+N is given as

bk =


Per(Ω)

Vol(Ω)
(k = 1, . . . ,M),

−1

h(Sj , Pnj(i))
(k =M +

j−1∑
l=0

sl + i with j ∈ {1, . . . , N0}, i ∈ {1, . . . , sj}).

Here s0 = 0. Also, the (M +N)× (M +N) matrix L is defined by

L :=(
θIM 0
0 0

)
−

M∑
i=1

 ∑
j∈M(i)

E(i, j)

h(Pi, Pj)2
+
∑

j∈N (i)

E
(
i,M +

∑j−1
l=0 sl + n−1

j (i)
)

h(Pi, Sj)2


+

N0∑
j=1

sj∑
i=1

E
(
M +

∑j−1
l=0 sl + i,M +

∑j−1
l=0 sl + i

)
− E

(
M +

∑j−1
l=0 sl + i, nj(i)

)
h(Sj , Pnj(i))

2
,

where IM is the identity matrix of dimension M and θ := 2
∑n

i=1(1/h
2
i ). (See

Example 3.4, where we will give a small sized matrix L along the example of
Figure 1.) By definition L is symmetric. To check the symmetricity we first
take i ∈ {1, . . . ,M} and j ∈ M(i). Then the (i, j) entry of L is −1/h(Pi, Pj)

2.

Since j ∈ M(i), we see Pj ∈ {Pi}. Thus Pi ∈ {Pj} and this implies i ∈ M(j).
As a result, it follows that the (j, i) entry of L is −1/h(Pj , Pi)

2. We next let

i ∈ {1, . . . ,M} and j ∈ N (i), so that the (i,M +
∑j−1

l=0 sl + n−1
j (i)) entry of L is

−1/h(Pi, Sj)
2. In this case we have Sj ∈ {Pi}, and so Pi ∈ {Sj}. Then from the

definition of nj it follows that nj(t) = i for some t ∈ {1, . . . , sj}, i.e., t = n−1
j (i).
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Since (M +
∑j−1

l=0 sl+n
−1
j (i), i) = (M +

∑j−1
l=0 sl+ t, nj(t)), we conclude that the

(M +
∑j−1

l=0 sl+n
−1
j (i), i) entry of L is −1/h(Sj , Pnj(t))

2 = −1/h(Sj , Pi)
2. Hence

the symmetricity of L is proved.
3. We claim that if a⃗ ∈ RM+N is a solution of (3.2), then u = u[⃗a] is a

discrete solution of (NP). Let x ∈ Ω, i.e., x = Pi for some i. Without loss of
generality we may assume x = P1. Since a⃗ satisfies (3.2), comparing the first
coordinates of the both sides in (3.2), we observe

Per(Ω)

Vol(Ω)
= θα(1)−

∑
j∈M(1)

α(j)

h(P1, Pj)2
−

∑
j∈N (1)

β(j, n−1
j (1))

h(P1, Sj)2

>= θu(P1)−
∑

j∈M(1)

u(Pj)

h(P1, Pj)2
−

∑
j∈N (1)

u(Sj)

h(P1, Sj)2

= −∆′u(P1).

We next let x ∈ ∂Ω. Again we may assume x = S1. We also let β(1, j0) =
max{β(1, j) | 1 <= j <= s1}. Then the (M + j0)-th coordinates in (3.2) implies

β(1, j0)− α(n1(j0))

h(S1, Pn1(j0))
2

=
−1

h(S1, Pn1(j0))
,

that is,
u(S1)− u(Pn1(j0))

h(S1, Pn1(j0))
= −1.

Consequently, we see that u is a discrete solution of (NP) in our sense.
4. We shall show that (3.2) is solvable. For this purpose, we first assert that

KerL = Rξ⃗, where KerL is the kernel of L and

ξ⃗ = t(1, . . . , 1) ∈ RM+N .

By the definition of L we see that the sum of each row of L is zero. This implies
KerL ⊃ Rξ⃗. We next let a⃗ ∈ KerL, i.e., La⃗ = 0. We represent each component
of a⃗ as in (3.1). Now, by the same argument as in Step 3 we see that u = u[⃗a]
is a discrete solution of

(NP0)

−∆u <= 0 in Ω, (3.3)

∂u

∂ν
= 0 on ∂Ω, (3.4)

where the notion of a discrete solution of (NP0) is the same as that of (NP).
We take a maximum point z ∈ Ω of u over Ω. If z ∈ ∂Ω, there exists some
y ∈ {z} ∩ Ω such that u(y) = u(z) since u satisfies the Neumann boundary
condition (3.4) at z. Thus u attains its maximum at some point in Ω. Since Ω
is now bounded and connected, the strong maximum principle for the Laplace
equation (Corollary A.5) ensures that u must be some constant c ∈ R on Ω.
From this it follows that α(1) = · · · = α(M) = c. Also, since La⃗ = 0, we have
β(i, j) = α(ni(j)) for all i ∈ {1, . . . , N0} and j ∈ {1, . . . , si}. As a result, we see
a⃗ = cξ⃗ ∈ Rξ⃗. We thus conclude that KerL = Rξ⃗.
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5. Since L is symmetric and KerL = Rξ⃗, we see that (ImL)⊥ = Rξ⃗, where
(ImL)⊥ stands for the orthogonal complement of ImL, the image of L. Thus, for
b⃗′ ∈ RM+N it follows that b⃗′ ∈ ImL if and only if ⟨ξ⃗, b⃗′⟩ = 0. Noting that −1/hi
appears ωi times in a sequence {bk}M+N

k=M+1 for each i ∈ {1, . . . , n}, we compute

⟨ξ⃗, b⃗⟩ = Per(Ω)

Vol(Ω)
×M +

n∑
i=1

(
−1

hi
× ωi

)
=

Per(Ω)

hn
−

n∑
i=1

ωi

hi
= 0.

Consequently b⃗ ∈ ImL, and therefore the problem (3.2) has at least one solution
a⃗ ∈ RM+N . Hence by Step 3 the corresponding u = u[⃗a] solves (NP).

Remark 3.3. We have actually proved that u, which we constructed as a subsolu-
tion, is a solution of (2.2) in Ω\∂Ω. Namely, we have −∆′u(x) = Per(Ω)/Vol(Ω)
for all x ∈ Ω \ ∂Ω. This is clear from the construction of u.

Example 3.4. We revisit Example 3.1 and consider Ω given in Figure 1. Let
us solve the system (3.2). For simplicity we assume h1 = h2 =: h > 0. In the
notation used in the proof of Proposition 3.2, the unknown vector a⃗ is given as

ta⃗ =
(
α(1) α(2) α(3) β(1, 1) β(1, 2) β(2, 1) β(3, 1) . . . β(7, 1)

)
.

Here α(i) (i = 1, 2, 3) represents the value of u(Pi). Also, β(1, j) (j = 1, 2) and
β(k, 1) (k = 2, 3, . . . , 7) represent the values of u(S1,j) and u(Sk), respectively.
Since Vol(Ω) = 3h2 and Per(Ω) = 8h in this example, we see

t⃗b =
1

h

(
8

3

8

3

8

3
−1 −1 −1 −1 −1 −1 −1 −1

)
,

and the coefficient matrix L is

L =
1

h2



4 −1 −1 −1 −1
−1 4 −1 −1 −1

−1 4 −1 −1 −1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1



.

The rest entries in L are zeros. A direct computation shows that a⃗0 given as

ta⃗0 =
h

3

(
3 4 3 0 0 0 0 1 1 0 0

)
is a particular solution of (3.2). Since the kernel of L is known, we conclude that
the general solution of (3.2) is a⃗ = a⃗0 + c t(1, . . . , 1) with c ∈ R.
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A Maximum principles

A.1 An ABP maximum principle

In Appendix we consider the second order fully nonlinear elliptic equations of
the form

F (∂2x1
u, . . . , ∂2xn

u) = f(x) in Ω, (A.1)

where F : Rn → R and f : Ω → R are given function such that F (0, . . . , 0) = 0.
Let δ⃗2u(x) := (δ21u(x), . . . , δ

2
nu(x)). We say u : Ω → R is a discrete subsolution

of (A.1) if F (δ⃗2u(x)) <= f(x) for all x ∈ Ω. As an ellipticity condition on F for
our ABP estimate, we use the following:

(F1) −λ
∑
X⃗ <= F (X⃗) for all X⃗ ∈ Rn with X⃗ <= 0.

Here λ > 0. Also,
∑
X⃗ :=

∑n
i=1Xi for X⃗ = (X1, . . . , Xn) ∈ Rn and the

inequality X⃗ <= 0 means that Xi <= 0 for every i ∈ {1, . . . , n}. For K ⊂ hZn and

g : K → R the n-norm of g over K is given as ∥g∥ℓn(K) :=
(∑

x∈K hn|g(x)|n
)1/n

.
We also set diam(Ω) := maxx∈Ω,y∈∂Ω |x− y| and |Br| := Ln(Br).

Theorem A.1 (ABP maximum principle). Assume (F1). Let u : Ω → R be a
discrete subsolution of (A.1). Then the estimate

max
Ω

u <= max
∂Ω

u+ CAdiam(Ω)∥f∥ℓn(Γ[u]) (A.2)

holds, where CA = CA(λ, n) is given as CA = (λn|B1|1/n)−1.

A crucial estimate to prove Theorem A.1 is

Proposition A.2. For all u : Ω → R we have

max
Ω

u <= max
∂Ω

u+
diam(Ω)

n|B1|1/n
∥ −∆′u∥ℓn(Γ[u]). (A.3)

Proof. 1. We first prove Bd ⊂
∪

z∈Γ[u] ∂
+u(z), where d is a constant given as

d = (maxΩ u−max∂Ω u)/diam(Ω). If d = 0, the assertion is obvious. We assume
d > 0, i.e., u(x̂) = maxΩ u > max∂Ω u for some x̂ ∈ Ω. Let p ∈ Bd and set
ϕ(x) := ⟨p, x− x̂⟩. We take a maximum point z of u− ϕ over Ω. Then we have
z ∈ Ω. Indeed, for all x ∈ ∂Ω we observe

u(x)−ϕ(x) <= max
∂Ω

u+ |p| · |x− x̂| < max
∂Ω

u+ d ·diam(Ω) = max
Ω

u = u(x̂)−ϕ(x̂).

Thus z ∈ Ω, and so we conclude that z ∈ Γ[u] and p ∈ ∂+u(z).
2. By Step 1 the estimate (2.5) with Bd instead of Q1 holds. Thus the same

argument as in the proof of Theorem 1.1 yields

|Bd| <=
∑

z∈Γ[u]

hn
(
−∆′u(z)

n

)n

=
1

nn
∥ −∆′u∥nℓn(Γ[u]).

Applying |Bd| = dn|B1| to the above inequality, we obtain (A.3) by the choice
of d.

121



Proof of Theorem A.1. By Remark 2.2 we have δ⃗2u(z) <= 0 for z ∈ Γ[u], and
therefore the condition (F1) yields −λ∆′u(z) = −λ

∑
δ⃗2u(z) <= F (δ⃗2u(z)). Since

u is a discrete subsolution of (A.1), we also have F (δ⃗2u(z)) <= f(z). Applying
these two inequalities to (A.3), we obtain (A.2).

A.2 A strong maximum principle

Although the strong maximum principle for the Laplace equation is enough
for the proof of Proposition 3.2, we consider a wider class of equations in this
subsection. We study homogeneous equations of the form

F (∂2x1
u, . . . , ∂2xn

u) = 0 in Ω. (A.4)

From the ABP maximum principle (A.2) we learn that all discrete subsolutions
u of (A.4) satisfy

max
Ω

u <= max
Ω

u

if (F1) holds. This is the so-called weak maximum principle. Our aim in this
subsection is to prove that a certain weaker condition on F actually leads to the
strong maximum principle and conversely the weaker condition is necessary for
it. Here the rigorous meaning of the strong maximum principle is

(SMP) If u : Ω → R is a discrete subsolution of (A.4) such that maxΩ u = maxΩ u,
then u must be constant on Ω.

Following the classical theory of partial differential equations, we consider bounded
and connected subsets Ω ⊂ hZn for (SMP). It turns out that the strong maximum
principle holds if and only if F satisfies the following weak ellipticity condition
(F2). It is easily seen that (F1) implies (F2).

(F2) If X⃗ ∈ Rn, X⃗ <= 0 and F (X⃗) <= 0, then X⃗ must be zero, i.e., X⃗ ≡ 0.

Theorem A.3 (Strong maximum principle). The two conditions (SMP) and
(F2) are equivalent.

To show this theorem we first study discrete quadratic functions. They will
be used when we prove that (SMP) implies (F2).

Example A.4. Let (A1, . . . , An) ∈ Rn. We define a quadratic function q :
hZn → R as

q(x) :=

n∑
j=1

(hjxj)
2Aj for x = (h1x1, . . . , hnxn) ∈ hZn.

Then δ2i q is a constant for each i ∈ {1, . . . , n}. Indeed, we observe

δ2i q(x) =
q(x+ hiei) + q(x− hiei)− 2q(x)

h2i

=
h2i (xi + 1)2Ai + h2i (xi − 1)2Ai − 2h2ix

2
iAi

h2i
= 2Ai

for all x = (h1x1, . . . , hnxn) ∈ hZn.
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Proof of Theorem A.3. 1. We first assume (F2). Let u : Ω → R is a discrete
subsolution of (A.4) such that u(x̂) = maxΩ u for some x̂ ∈ Ω. This maximality
implies that for each i ∈ {1, . . . , n}

δ2i u(x̂) =
u(x̂+ hiei) + u(x̂− hiei)− 2u(x̂)

h2i
<=
u(x̂) + u(x̂)− 2u(x̂)

h2i
= 0.

Thus δ⃗2u(x̂) <= 0. Since u is a discrete subsolution, we also have F (δ⃗2u(x̂)) <= 0.
It now follows from (F2) that δ⃗2u(x̂) ≡ 0, and hence we see that u(x̂) = u(x̂ ±
hiei) for all i. We next apply the above argument with the new central point
x̂ ± hiei if the point is in Ω. Iterating this procedure, we finally conclude that
u ≡ u(x̂) on Ω since Ω is now connected.

2. We next assume (SMP). Take any X⃗ = (X1, . . . , Xn) ∈ Rn such that
X⃗ <= 0 and F (X⃗) <= 0. We may assume 0 ∈ Ω. Now, we take the quadratic
function q in Example A.4 with Ai = Xi/2 <= 0. By the calculation in Example
A.4 we then have δ2i q(x) = Xi for all i, i.e., δ⃗2q(x) = X⃗. Thus F (δ⃗2q(x)) =

F (X⃗) <= 0, which means that q is a discrete subsolution of (A.4). Next, we
deduce from the nonpositivity of each Ai that q attains its maximum over Ω at
0 ∈ Ω. Therefore (SMP) ensures that q ≡ q(0) = 0 on Ω, which implies that
Ai = 0 for all i ∈ {1, . . . , n}. Consequently, we find X⃗ ≡ 0.

A simple example of F satisfying (F2) is F (X⃗) = −
∑
X⃗, and then (A.4)

represents the Laplace equation for u. We therefore have

Corollary A.5. Let u : Ω → R. If −∆′u(x) <= 0 for all x ∈ Ω and maxΩ u =
maxΩ u, then u is constant on Ω.
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chen Volumen, Oberfläche und Gitterpunktanzahl konvexer Körper im n-
dimensionalen euklidischen Raum. Math. Z. 127 (1972), 363–364.

[4] P. Brass, Isoperimetric inequalities for densities of lattice-periodic sets.
Monatsh. Math. 127 (1999), no. 3, 177–181.

[5] Y. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der
Mathematischen Wissenschaften, 285, Springer Series in Soviet Mathemat-
ics, Springer-Verlag, Berlin, 1988.
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Chapter 4

An improved level set method
for Hamilton-Jacobi equations

1 Introduction

In the classical level set method, a motion of an interface {Γ(t)}t in Rn is studied
by representing the interface Γ(t) as the zero level set of an auxiliary function
u(x, t), that is,

Γ(t) = {x ∈ Rn | u(x, t) = 0},

and solving the associated initial value problem of a partial differential equation
for u. In this paper we are concerned with the case where the associated problem
is given as the Hamilton-Jacobi equation of the form

∂tu(x, t) +H(x,∇u(x, t)) = 0 in Rn × (0, T ) (1.1)

with the initial condition

u(x, 0) = u0(x) in Rn. (1.2)

Here H is a continuous Hamiltonian and ∇u = (∂xiu)
n
i=1 denotes the gradient

of u with respect to x. In practice, it might be difficult to compute the zero
level set of u because the spatial gradient of u can be close to zero near Γ(t) as
time develops even if the initial gradient is large. To overcome this issue, in this
paper we propose an improved equation of the form

∂tu(x, t) +H(x,∇u(x, t)) = u(x, t)G(x,∇u(x, t)) (1.3)

with a continuous G. Our goal is to demonstrate that a solution u of (1.3) with
a suitably defined G gives the same zero level set as (1.1), and that, globally in
time, the slope of u is preserved near the zero level set.

We illustrate our approach on a typical example of (1.1), the transport equa-
tion of the form

∂tu(x, t) + ⟨X(x),∇u(x, t)⟩ = 0, (1.4)

whereX : Rn → Rn is a vector field and ⟨·, ·⟩ denotes the standard inner product
in Rn. In this case, as we will see in Section 2, a formal argument implies that
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the slope of a solution u of

∂tu(x, t) + ⟨X(x),∇u(x, t)⟩ = u(x, t)
⟨X ′(x)∇u(x, t),∇u(x, t)⟩

|∇u(x, t)|2
(1.5)

is preserved along the flow determined by the vector field X. Here X ′(x) stands
for the Jacobian matrix of X(x) = (Xi(x))

n
i=1, i.e., X

′(x) = (∂xjXi(x))ij . Our
general theory for (1.3) will be constructed so that, in the case of transport
equations, G agrees with the function appearing on the right-hand side of (1.5)
except on a small neighborhood of the singular point at |∇u(x, t)| = 0.

We employ the theory of viscosity solutions to solve the improved equation
(1.3) since it is a nonlinear equation. However, viscosity solutions are not smooth
in general, and so it is an issue how to show that the “slope” of the viscosity
solution of (1.3) is preserved near the zero level set. In this paper we establish
the preservation of the slope of the solution by comparing it with the signed
distance function d(x, t) to the zero level set, which is defined as

d(x, t) =


dist(x,Γ(t)) if u(x, t) > 0,

0 if u(x, t) = 0,

−dist(x,Γ(t)) if u(x, t) < 0.

Here dist(x,Γ(t)) = inf{|x − y| | y ∈ Γ(t)}. The distance function is known to
be a solution of the eikonal equation

|∇d(x, t)| = 1,

both in the almost everywhere sense and in the viscosity sense. It is thus rea-
sonable to use the signed distance function in order to guarantee that the slope
of u remains one. It turns out that, if the initial data u0 in (1.2) is equal to the
signed distance function near the initial interface and if d is smooth near Γ(t),
then, for every ε > 0, the estimates{

e−εtd(x, t) <= u(x, t) <= eεtd(x, t) if d(x, t) >= 0,

eεtd(x, t) <= u(x, t) <= e−εtd(x, t) if d(x, t) <= 0
(1.6)

hold near Γ(t). In this sense the slope of u is preserved near the zero level set.
This chapter is organized as follows. In Section 2 we formally explain how to

derive the improved equation (1.5) in the case of transport equations. Section
3 contains a brief summary of the theory of viscosity solutions and the level set
method. In Section 4 we prove that the zero level set of a solution of (1.3) agrees
with that of a solution of (1.1), and finally Section 5 establishes the estimates
(1.6) near the zero level set of a solution u of (1.3) with a suitably defined G.

2 Transport equations

Let us show how the improved equation (1.5) is formally derived in the case of
transport equations. Assume that a smooth function u(x, t) solves

∂tu(x, t) + ⟨X(x),∇u(x, t)⟩ = u(x, t)G(x,∇u(x, t))
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with (1.2). Let ξx : (−∞,∞) → Rn be a solution of the ordinary differential
equation {

ξ′x(t) = X(ξx(t)) in (−∞,∞),

ξx(0) = x.

This is the flow determined by X. Then the solution w of the original problem,
(1.4) and (1.2), is given as w(x, t) = u0(ξx(−t)). We now compute

d

dt
u(ξx(t), t) = ⟨∇u(ξx(t), t), ξ′x(t)⟩+ ∂tu(ξx(t), t)

= ⟨∇u(ξx(t), t), X(ξx(t))⟩+ ∂tu(ξx(t), t)

= u(ξx(t), t)G(x,∇u(ξx(t), t)).

Thus we notice that

u(ξx(t), t) = 0 if u0(x) = 0, u(ξx(t), t) > 0 if u0(x) > 0 (2.1)

for all t ∈ (−∞,∞). This implies that the zero level set of u agrees with that of
the solution w of (1.4) and (1.2).

We now define ϕ(x, t) := |∇u(x, t)|2 and assume that

∂tϕ(x, t) + ⟨X(x),∇ϕ(x, t)⟩ = 0 on {u(x, t) = 0}. (2.2)

(We denote the set {(x, t) ∈ Rn × (0, T ) | u(x, t) = 0} briefly by {u(x, t) = 0}
unless confusion can occur.) If (2.2) holds, it then follows that ϕ is constant
along each flow. Indeed, for x ∈ Rn such that u0(x) = 0, we have

d

dt
ϕ(ξx(t), t) = ⟨∇ϕ(ξx(t), t), X(ξx(t))⟩+ ∂tϕ(ξx(t), t) = 0

since u(ξx(t), t) = 0 by (2.1). Thus we see that |∇u| is constant along the flow.
Let us study a condition on G which leads to (2.2). We have

∂tϕ(x, t) = 2⟨∇u(x, t), ∂t(∇u(x, t))⟩,
∇ϕ(x, t) = 2(∇2u(x, t))∇u(x, t).

Here ∇2u = (∂2xixj
u)ij denotes the Hessian matrix with respect to x. The second

derivative ∂t(∇u) is computed as

∂t(∇u) = ∇(∂tu)

= ∇(uG(x,∇u)− ⟨X(x),∇u⟩)
= G(x,∇u)∇u+ u∇(G(x,∇u))− t(X ′(x))∇u− (∇2u)X(x),

where t(X ′(x)) stands for the transposed matrix of X ′(x). On {u(x, t) = 0} we
have u∇(G(x,∇u)) = 0, and therefore

1

2
(∂tϕ+ ⟨X(x),∇ϕ⟩)

=⟨∇u,G(x,∇u)∇u− t(X ′(x))∇u− (∇2u)X(x)⟩+ ⟨X(x), (∇2u)∇u⟩
=G(x,∇u)|∇u|2 − ⟨X ′(x)∇u,∇u⟩.
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In the last equality we have used the relations ⟨t(X ′(x))∇u,∇u⟩ = ⟨X ′(x)∇u,∇u⟩
and ⟨X(x), (∇2u)∇u⟩ = ⟨∇u, (∇2u)X(x)⟩. We thus conclude that, if

G(x,∇u) = ⟨X ′(x)∇u,∇u⟩
|∇u|2

,

then (2.2) holds, and hence the slope of u is preserved along the flow. This choice
of G yields (1.5).

3 Viscosity solutions

In this section we first recall a notion of viscosity solutions and then describe
basic results of the level set method. For the theory of viscosity solutions we
refer the reader to [1] and [2, Section 2, 3], while analytic foundations of the
level set method are presented in [2, Section 4].

We consider a general first order equation of the form

∂tu(x, t) + F (x, u(x, t),∇u(x, t)) = 0, (3.1)

where F : Rn ×R×Rn → R is a continuous function. Let us introduce notions
of a sub- and superdifferential. For a function u : Rn × (0, T ) → R we define a
superdifferential D+u(z, s) of u at (z, s) ∈ Rn × (0, T ) by

D+u(z, s) :=

(p, τ) ∈ Rn ×R

∣∣∣∣∣∣
∃ϕ ∈ C1(Rn × (0, T )) such that
(p, τ) = (∇ϕ, ∂tϕ)(z, s) and

maxRn×(0,T )(u− ϕ) = (u− ϕ)(z, s)

 .

(3.2)
A subdifferential D−u(z, s) is defined by replacing “max” by “min” in (3.2). We
call ϕ appearing in (3.2) a corresponding test function for (p, τ) ∈ D+u(z, s).

Definition 3.1 (Viscosity solution). We say an upper semicontinuous (resp.
lower semicontinuous) function u : Rn × (0, T ) → R is a viscosity subsolution
(resp. viscosity supersolution) of (3.1) if

τ + F (z, u(z, s), p) <= 0 (resp. >= 0)

for all (z, s) ∈ Rn× (0, T ) and (p, τ) ∈ D+u(z, s) (resp. (p, τ) ∈ D−u(z, s)). If u
is both a viscosity sub- and supersolution, then it is called a viscosity solution.

A class of viscosity subsolutions and supersolutions are known to be closed
under the operation of supremum and infimum respectively.

Proposition 3.2 (Stability). Let S be a nonempty subset of viscosity subsolu-
tions (resp. supersolutions) of (3.1). Set u(x, t) := supv∈S v(x, t). If u is upper
semicontinuous (resp. lower semicontinuous) in Rn×(0, T ), then u is a viscosity
subsolution (resp. supersolution) of (3.1).

We next present a comparison principle, which guarantees uniqueness of vis-
cosity solutions of the initial value problem. We make the following two assump-
tions on F .

129



(F1) There exists some nondecreasing function ω ∈ C([0,∞)) satisfying ω(0) =
0 such that

|F (x, r, p)− F (x, r, q)| <= ω(|p− q|),
|F (x, r, p)− F (y, r, p)| <= ω((1 + |p|)|x− y|)

for all x, y, p, q ∈ Rn and r ∈ R.

(F2) There exists some constant γ ∈ R such that F (x, r, p)+γr is nondecreasing
in r ∈ R.

Theorem 3.3 (Comparison principle). Assume (F1) and (F2). Let u, v : Rn ×
[0, T ) → R and assume that u and −v are upper semicontinuous and bounded
from above on Rn × [0, T ). Assume that u and v are, respectively, a viscosity
sub- and supersolution of (3.1). If u(x, 0) <= v(x, 0) for all x ∈ Rn, then u(x, t) <=
v(x, t) for all (x, t) ∈ Rn × (0, T ).

When F is written as F (x, r, p) = H(x, p) − rG(x, p), which represents the
equation (1.3), the following conditions imply (F1) and (F2).

(CP) (i) H and G satisfy (F1).

(ii) G is bounded in Rn ×Rn, i.e., ∥G∥ := supRn×Rn |G| <∞.

Indeed, (F1) is obvious while (F2) is fulfilled with γ = ∥G∥.
Existence of viscosity solutions is shown by Perron’s method, but we omit it

in this paper; see [1, Section 4] or [2, Section 2.4].
We turn to the level set method for (1.1). To carry out the level set method,

the geometricity (H1) is a basic assumption on H.

(H1) H(x, λp) = λH(x, p) for all (x, p) ∈ Rn ×Rn and λ > 0.

Note that (H1) implies that H(x, 0) = 0 for all x ∈ Rn. One of important prop-
erties of geometric equations is invariance under change of dependent variables.
This invariance property as well as the comparison principle play a crucial role
for the proof of uniqueness of evolutions.

Theorem 3.4 (Invariance). Assume (H1). Let θ : R → R be a nondecreas-
ing and upper semicontinuous (resp. lower semicontinuous) function. If u is
a viscosity subsolution (resp. supersolution) of (1.1), then θ ◦ u is a viscosity
subsolution (resp. supersolution) of (1.1).

The next theorem guarantees that, for a given initial surface, the evolution
is independent of a choice of the initial auxiliary function, which is u0 in (1.2).
Let us denote by BUC (Rn) the set of all bounded and uniformly continuous
functions in Rn.

Theorem 3.5 (Uniqueness of evolutions). Assume that H satisfies (F1) and
(H1). Let u01, u02 ∈ BUC (Rn) and assume that {u01(x) = 0} = {u02(x) = 0},
{u01(x) > 0} = {u02(x) > 0} and that {u01(x) > 0} is compact. Let w1 and w2

be a viscosity solution of (1.1) with the initial data u01 and u02 respectively. Then
we have {w1(x, t) = 0} = {w2(x, t) = 0} and {w1(x, t) > 0} = {w2(x, t) > 0}.
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We conclude this section by giving simple sub- and supersolutions of (1.3).
In the proof we use the fact that a classical subsolution (resp. supersolution) of
(3.1) is always a viscosity subsolution (resp. supersolution) of (3.1).

Lemma 3.6. Assume (ii) in (CP) and (H1). Let c > 0, M >= ∥G∥ and define
w+(x, t) = ceMt, w−(x, t) = ce−Mt. Then w+ (resp. w−) is a supersolution
(resp. subsolution) of (1.3), and −w+ (resp. −w−) is a subsolution (resp. su-
persolution) of (1.3).

Proof. Since H(x, 0) = 0 by (H1), we compute

∂tw
+ +H(x,∇w+) =MceMt +H(x, 0) =Mw+ + 0 >= w+G(x,∇w+),

which implies that w+ is a supersolution. The rest assertions also follows from
similar calculations.

4 Preservation of the zero level set

We demonstrate that a solution of the improved problem (1.3) gives the same
zero level set of a solution of the original problem (1.1).

Proposition 4.1 (Preservation of the zero level set). Assume (CP) and (H1).
Let w and u be, respectively, a viscosity solution of (1.1) and (1.3) with the same
initial data. Then we have {w(x, t) = 0} = {u(x, t) = 0} and {w(x, t) > 0} =
{u(x, t) > 0}.

Since we have already known uniqueness of evolutions for (1.1), Proposition
4.1 yields uniqueness of evolutions for (1.3). Namely, the same conclusion in
Theorem 3.5 holds if we replace “(1.1)” by “(1.3)” and add the assumption (CP)
in the statement of Theorem 3.5.

Proof. 1. We define

v+(x, t) =

{
e∥G∥tu(x, t) if u(x, t) >= 0,

e−∥G∥tu(x, t) if u(x, t) < 0

and

v−(x, t) =

{
e−∥G∥tu(x, t) if u(x, t) >= 0,

e∥G∥tu(x, t) if u(x, t) < 0

for (x, t) ∈ Rn × [0, T ). We claim that v+ and v− are, respectively, a viscosity
supersolution and subsolution of (1.1).

2. We shall show that v+ is a supersolution. If u is smooth and u(x, t) > 0,
we compute

∂tv
+ +H(x,∇v+) = ∥G∥e∥G∥tu+ e∥G∥t∂tu+H(x, e∥G∥t∇u)

= ∥G∥e∥G∥tu+ e∥G∥t{∂tu+H(x,∇u)}
= ∥G∥e∥G∥tu+ e∥G∥tuG(x,∇u) >= 0.
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In the general case where u is not necessarily smooth, taking an element of the
subdifferential of u, we see that v+ is a viscosity supersolution of (1.1). Since
similar arguments apply to the case when u(x, t) < 0, it follows that v+ is a
supersolution in {u(x, t) > 0} ∪ {u(x, t) < 0}.

3. It remains to prove that v+ is a supersolution on {u(x, t) = 0}. For this
purpose, we first claim that v+0 defined by

v+0 (x, t) = max{v+(x, t), 0} =

{
e∥G∥tu(x, t) if u(x, t) >= 0,

0 if u(x, t) < 0

is a supersolution of (1.1). Fix ε > 0 and define θε : R → R by θε(r) :=
max{r, ε}. Since v+ is a supersolution of (1.1) in {u(x, t) > 0}, Theorem 3.4
implies that θε◦v+ = max{v+, ε} is also a supersolution of (1.1) in {u(x, t) > 0}.
Now, the constant ε is a solution of (1.1) and θε ◦ v+ = ε in {0 < u(x, t) <
εe−∥G∥t}. Thus we see that θε ◦ v+ is a supersolution of (1.1) on the whole of
Rn×(0, T ). Finally, by Proposition 3.2, taking the infimum over {ε > 0} implies
that v+0 = infε>0(θ

ε ◦ v+) is a supersolution of (1.1).
4. Let (z, s) ∈ Rn × (0, T ) be a point such that u(z, s) = 0, and take

(p, τ) ∈ D−v+(z, s). Since v+(z, s) = v+0 (z, s) = 0 and v+ <= v+0 in Rn × (0, T ),
it is easily seen that (p, τ) ∈ D−v+0 (z, s). In the previous step we proved that v+0
is a supersolution, and thus we have τ + H(z, p) >= 0. Summarizing the above
argument, we conclude that v+ is a supersolution of (1.1). Also, in the same
manner we are able to prove that v− is a subsolution of (1.1).

5. Since v±(x, 0) = u0(x) for all x ∈ Rn, the comparison principle (Theorem
3.3) yields v−(x, t) <= w(x, t) <= v+(x, t) for all (x, t) ∈ Rn× (0, T ). In particular,
we have {v−(x, t) > 0} ⊂ {w(x, t) > 0} ⊂ {v+(x, t) > 0}. Since {v±(x, t) >
0} = {u(x, t) > 0} by the definition of v±, we conclude that {w(x, t) > 0} =
{u(x, t) > 0}. Similarly, we obtain {w(x, t) < 0} = {u(x, t) < 0}, and hence
{w(x, t) = 0} = {u(x, t) = 0}.

5 Comparison with the signed distance function

We study a bounded evolution {(Γ(t), D(t))}0<=t<T in Rn, Namely, we assume

(I) Γ(t) ∪D(t) is a bounded set in Rn for every t ∈ [0, T );

(II) there exists a continuous viscosity solution w : Rn × [0, T ) → R of (1.1)
such that

Γ(t) = {x ∈ Rn | w(x, t) = 0},
D(t) = {x ∈ Rn | w(x, t) > 0}

for all t ∈ [0, T ).

For this evolution we define the signed distance function d : Rn × [0, T ) → R by

d(x, t) =


dist(x,Γ(t)) if x ∈ D(t),

0 if x ∈ Γ(t),

−dist(x,Γ(t)) if x ∈ Rn \ (D(t) ∪ Γ(t)).
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We intend to prove that a viscosity solution u of the improved problem (1.3)
satisfies the estimate (1.6) which involves the signed distance function d to the
interface. This shows that the slope of u is preserved near the zero level set.
For this purpose, we first derive the equation for the signed distance function
d. In this paper we assume that d is smooth near the zero level set, and so the
derivatives of d are interpreted in the classical sense. It is future work to extend
the theory presented in this paper to the case of non-smooth signed distance
functions. Our assumption concerning smoothness is

(SM) There exist a constant δ > 0 and a function w0 : Rn × (0, T ) → R such
that

(i) d,w0 ∈ C1 on {|d(x, t)| < δ} as a function of (x, t);

(ii) Γ(t) = {w0(x, t) = 0} and D(t) = {w0(x, t) > 0} for all t ∈ (0, T );

(iii) for all (x, t) ∈ Rn × (0, T ) such that d(x, t) = 0, w0 solves (1.1) and
|∇w0(x, t)| ≠ 0;

(iv) for all (x, t) ∈ Rn × (0, T ) such that |d(x, t)| < δ,

x̄ := x− d(x, t)∇d(x, t) ∈ Γ(t)

and

∂td(x, t) =
∂tw0(x̄, t)

|∇w0(x̄, t)|
, ∇d(x, t) = ∇w0(x̄, t)

|∇w0(x̄, t)|
. (5.1)

It is known that, under a suitable smoothness assumption on the interface, the
time derivative and the spatial gradient of d are, respectively, the normal velocity
and the normal vector to the interface. (See, e.g., [3].) Instead of assuming that
the interface possesses sufficient smoothness, we assume that the formulas (5.1)
hold for d.

Lemma 5.1. Assume (SM) and (H1). Then

∂td(x, t) +H(x− d(x, t)∇d(x, t),∇d(x, t)) = 0 (5.2)

for all (x, t) ∈ Rn × (0, T ) such that |d(x, t)| < δ.

Proof. Set x̄ := x− d(x, t)∇d(x, t). Using the formulas in (5.1), we compute

∂td(x, t) +H(x− d(x, t)∇d(x, t),∇d(x, t))

=
∂tw0(x̄, t)

|∇w0(x̄, t)|
+H

(
x̄,

∇w0(x̄, t)

|∇w0(x̄, t)|

)
=

1

|∇w0(x̄, t)|
{∂tw0(x̄, t) +H(x̄,∇w0(x̄, t))}.

Here we have used (H1) in the last equality. Since w0 solves (1.1) at (x̄, t), the
last quantity is zero.
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The equation (5.2) is equivalent to

∂td+H(x,∇d) = H(x,∇d)−H(x− d∇d,∇d). (5.3)

If H is smooth and |d| is sufficiently small, the right-hand side of (5.3) is ap-
proximated by d⟨∇xH(x,∇d),∇d⟩. It is thus reasonable to study the equation
of the form

∂td+H(x,∇d) = d⟨∇xH(x,∇d),∇d⟩

as an improved problem for (1.1). In this paper we defineG as a suitably modified
function of ⟨∇xH(x, p), p⟩.

We shall give our assumptions on H and G precisely. Concerning differen-
tiablity of H with respect to x, we require the following condition (H2). We
denote by Sn−1 the unit sphere in Rn, i.e., Sn−1 = {x ∈ Rn | |x| = 1}.

(H2) For any compact set K ⊂ Rn

lim
R∋h→0

sup
(x,p)∈K×Sn−1

|H(x, p)−H(x− hp, p)− h⟨∇xH(x, p), p⟩|
|h|

= 0.

(5.4)

For later use we state (5.4) in an equivalent way as follows:

For all r > 0 there exists some a(r) > 0 such that,
if |h| < a(r) and (x, p) ∈ K × Sn−1, then

|H(x, p)−H(x− hp, p)− h⟨∇xH(x, p), p⟩| <= r|h|.
(5.5)

The function a : (0,∞) → (0,∞) in (5.5) may depend on a choice of the compact
set K. We next state how to define a function G : Rn ×Rn → R appearing in
the improved problem (1.3).

(G1) There exists some σ ∈ (0, 1) such that G(x, λp) = ⟨∇xH(x, p), p⟩ for all
(x, p) ∈ Rn × Sn−1 and λ >= σ.

Example 5.2. We consider the transport equation (1.4), in which the Hamilto-
nian H is given by H(x, p) = ⟨X(x), p⟩. The gradient of H with respect to x is
∇xH(x, p) = X ′(x)p. We next let G : Rn ×Rn → R be a continuous function
such that

G(x, p) =
⟨X ′(x)p, p⟩

|p|2
if |p| >= σ

for some σ ∈ (0, 1). This is the function appearing in the right-hand side of
(1.5). Now, for (x, p) ∈ Rn × Sn−1 and λ >= σ, we compute

G(x, λp) =
⟨X ′(x)λp, λp⟩

|λp|2
=

⟨X ′(x)p, p⟩
|p|2

= ⟨X ′(x)p, p⟩ = ⟨∇xH(x, p), p⟩.

Thus we see that G satisfies (G1).
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Example 5.3. We study the equation

∂tu(x, t) + b(x)|∇u(x, t)| = 0,

where b ∈ C1(Rn). The corresponding Hamiltonian H(x, p) = b(x)|p| satisfies
(H1), and its spatial gradient is ∇xH(x, p) = |p| · ∇b(x). Let σ ∈ (0, 1) and
define

G(x, p) :=
⟨∇b(x), p⟩

|p|
if |p| >= σ.

Then G satisfies (G1) since, for all (x, p) ∈ Rn × Sn−1 and λ >= σ, we have

G(x, λp) =
⟨∇b(x), λp⟩

|λp|
= ⟨|p| · ∇b(x), p⟩ = ⟨∇xH(x, p), p⟩.

Therefore the improved equation is given as

∂tu(x, t) + b(x)|∇u(x, t)| = u(x, t)
⟨∇b(x),∇u(x, t)⟩

|∇u(x, t)|

when |∇u(x, t)| >= σ.

Our next assertion is that functions eεtd(x, t) and e−εtd(x, t), which appear
in our objective estimates (1.6), are a subsoltion and a supersolution of (1.3)
near the zero level set respectively.

Proposition 5.4 (Sub- and supersolutions near the zero level set). Assume
(SM), (H1), (H2) and (G1). Let ε ∈ (0,−(log σ)/T ] and define

d+(x, t) := eεtd(x, t), d−(x, t) := e−εtd(x, t). (5.6)

Let K ⊂ Rn be a compact set such that {d(x, t) < δ} ⊂ K, and let a be the
function in (5.5). Let r > 0 be a constant satisfying a(r) <= δ. Then, for all
(x, t) ∈ Rn × (0, T ) such that |d(x, t)| < a(r), we have

|∂td+(x, t) +H(x,∇d+(x, t))− d+(x, t){G(x,∇d+(x, t)) + ε}| <= r|d+(x, t)|,
(5.7)

|∂td−(x, t) +H(x,∇d−(x, t))− d−(x, t){G(x,∇d−(x, t))− ε}| <= r|d−(x, t)|.
(5.8)

In particular, if r <= ε, then d+ is a supersolution (resp. subsolution) of (1.3) on
{0 <= d(x, t) < a(r)} (resp. on {−a(r) < d(x, t) <= 0}), and d− is a subsolution
(resp. supersolution) of (1.3) on {0 <= d(x, t) < a(r)} (resp. on {−a(r) <
d(x, t) <= 0}).

Proof. By the choice of ε we have e−εt > e−εT >= σ for every t ∈ (0, T ). Thus
the assumption (G1) implies

G(x,∇d±) = G(x, e±εt∇d) = ⟨∇xH(x,∇d),∇d⟩. (5.9)

Let us fix (x, t) ∈ Rn× (0, T ) such that |d(x, t)| < a(r). Since a(r) <= δ, choosing
h = d(x, t) and p = ∇d(x, t) in (5.5), we have

|H(x,∇d)−H(x− d∇d,∇d)− d⟨∇xH(x,∇d),∇d⟩| <= r|d|.

135



Now, we apply (5.9) to the left-hand side and multiply the both sides by e±εt to
get

|e±εt{H(x, p)−H(x− d∇d,∇d)} − d±G(x,∇d±)| <= r|d±|. (5.10)

Using (H1) and (5.3), we compute

∂td
± +H(x,∇d±) = ±εd± + e±εt∂td+H(x, e±εt∇d)

= ±εd± + e±εt{∂td+H(x,∇d)}
= ±εd± + e±εt{H(x,∇d)−H(x− d∇d,∇d)}. (5.11)

Finally, combining (5.10) and (5.11), we arrive at both (5.7) and (5.8). The
assertions in the case r <= ε are clear from (5.7) and (5.8).

In order to derive the estimates (1.6) by the comparison principle, we need to
extend a local subsolution and supersolution d± in Proposition 5.4 so that they
are a subsolution and supersolution on the whole of Rn × (0, T ). To do this, we
first study superdifferentials of a function which is written as the minimum of
two functions.

Lemma 5.5. Let f1, f2 : Rn → R and define g(x) := min{f1(x), f2(x)}. Let
z ∈ Rn be a point such that f1(z) = f2(z). Assume that f1, f2 ∈ C1 near z. If
p ∈ D+g(z), then p = λ∇f1(z) + (1− λ)∇f2(z) for some λ ∈ [0, 1].

Proof. 1. We first give the proof in the case f2 ≡ 0. If p = 0, the assertion
is obvious because we have p = λ∇f1(z) + (1 − λ)∇f2(z) with λ = 0. Assume
p ̸= 0. Take a corresponding test function ϕ ∈ C1(Rn) for p ∈ D+g(z) such that
ϕ(z) = 0. Since ∇ϕ(z) = p ̸= 0, we may assume ∂xnϕ(z) > 0 without loss of
generality.

2. We claim
∂xnf1(z) >= ∂xnϕ(z) (> 0). (5.12)

Let us write z = (z′, zn) ∈ Rn−1 ×R. Since ∂xnϕ(z) > 0, we see that ϕ(z′, zn −
h) < 0 for sufficiently small h > 0. Thus 0 >= (g − ϕ)(z′, zn − h) > g(z′, zn − h),
which implies g(z′, zn − h) = f1(z

′, zn − h). Now, we compute

∂xnf1(z) = lim
h↓0

f1(z
′, zn − h)− f1(z)

−h

= lim
h↓0

g(z′, zn − h)− g(z)

−h

>= lim
h↓0

ϕ(z′, zn − h)− ϕ(z)

−h
= ∂xnϕ(z).

We thus obtain (5.12).
3. By (5.12) the zero level sets {f1(x) = 0} and {ϕ(x) = 0} are written

as the graphs of implicit functions on some open neighborhood U of z′. We
represent {f1(x) = 0} as xn = h(x′) and {ϕ(x) = 0} as xn = ψ(x′), where
x′ = (x1, . . . , xn−1) ∈ U . We then have h >= ψ on U . Indeed, if h(x′) < ψ(x′) for
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some x′ ∈ U , we would have f1(x
′, h(x′)) = 0 and ϕ(x′, h(x′)) < ϕ(x′, ψ(x′)) = 0.

This is a contradiction to the fact that f1 − ϕ takes its maximum value 0 at z.
Since h >= ψ on U and h(z′) = ψ(z′), we have

∇x′h(z′) = ∇x′ψ(z′). (5.13)

The derivatives of implicit functions are given as

∇x′h(z′) = −∇x′f1(z)

∂xnf1(z)
, ∇x′ψ(z′) = −∇x′ϕ(z)

∂xnϕ(z)
. (5.14)

Substituting (5.14) for (5.13) and setting λ := ∂xnϕ(z)/∂xnf1(z), we see

∇x′ϕ(z) =
∂xnϕ(z)

∂xnf1(z)
∇x′f1(z) = λ∇x′f1(z).

By the definition of λ and (5.12), we also have ∂xnϕ(z) = λ∂xnf1(z) and 0 <
λ <= 1. Thus the proof is complete when f2 ≡ 0.

4. For a general f2 we study the function (g−f2)(x) = min{(f1−f2)(x), 0}.
Since p ∈ D+g(z), we have p−∇f2(z) ∈ D+(g − f2)(z). Thus the result in the
case f2 ≡ 0 implies that there exists some λ ∈ [0, 1] such that p − ∇f2(z) =
λ∇(f1−f2)(z), i.e., p = λ∇f1(z)+(1−λ)∇f2(z). This is precisely the assertion
of the lemma.

Using Lemma 5.5, we construct a global subsolution and supersolution of
(1.3) which equal to d+ or d− near the zero level set.

Proposition 5.6 (Extension of sub- and supersolutions). Assume (SM), (H1),
(H2) and (G1). Assume the same hypotheses of Proposition 5.4 concerning ε
and a. Let c, L,M ∈ R be positive constants such that

0 < c <= min{a(ε), δ}, L >= c, M >=
2∥G∥

1− σeεT
, M > ε.

Define d±(x, t) as in (5.6) and

V (x, t) :=
3L

c
e∥G∥td+(x, t).

We further define

u+(x, t) =

{
min

{
max{d+(x, t), V (x, t)− L}, Le∥G∥t} if d(x, t) >= 0,

max
{
d−(x, t), −ce−Mt

}
if d(x, t) < 0

(5.15)

and

u−(x, t) =

{
min

{
d−(x, t), ce−Mt

}
if d(x, t) >= 0,

max
{
min{d+(x, t), V (x, t) + L}, −Le∥G∥t} if d(x, t) < 0.

(5.16)
Then u+ and u− are, respectively, a viscosity supersolution and a viscosity sub-
solution of (1.3) in Rn × (0, T ).
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x ∈ R
n

t > 0

u+

u−

Le‖G‖t

ce−Mt

d+ = eεtd

d− = e−εtd

3L

c
e
‖G‖t

d
+
− L

D(t)

Figure 1: Definitions of u+ and u−.

Proof. 1. We only prove that u+ and u− are, respectively, a supersolution and
a subsolution of (1.3) on {d(x, t) >= 0}, because the same arguments work in
{d(x, t) < 0}. On {d(x, t) >= 0} we see that u+ and u− are represented as
follows:

u+(x, t) =


d+(x, t) if 0 <= d+(x, t) <= cL/(3Le∥G∥t − c),

V (x, t)− L if cL/(3Le∥G∥t − c) <= d+(x, t) <= c(1 + e−∥G∥t)/3,

Le∥G∥t if c(1 + e−∥G∥t)/3 <= d+(x, t)

and

u−(x, t) =

{
d−(x, t) if 0 <= d−(x, t) <= ce−Mt,

ce−Mt if ce−Mt <= d−(x, t).

(See also Figure 1.) When 0 <= d+(x, t) <= c(1 + e−∥G∥t)/3, we have

0 <= d(x, t) <=
c(1 + e−∥G∥t)e−εt

3
<=

2

3
c <=

2

3
min{a(ε), δ},

which implies that d+ is a supersolution of (1.3) on {0 <= d+(x, t) <= c(1 +
e−∥G∥t)/3}. Also, if 0 <= d−(x, t) <= ce−Mt, then

0 <= d(x, t) <= ce(ε−M)t < c <= min{a(ε), δ}

since M > ε. Thus d− is a subsolution of (1.3) on {0 <= d−(x, t) <= ce−Mt}.
2. We prove that u− is a viscosity subsolution of (1.3) in {0 < d−(x, t)}. As

we stated in Step 1, u(x, t) = d−(x, t) is a subsolution in {0 < d−(x, t) < ce−Mt}.
Also, since we have

M >=
2∥G∥

1− σeεT
> 2∥G∥ >= ∥G∥,

Lemma 3.6 guarantees that u(x, t) = ce−Mt is a subsolution in {ce−Mt <
d−(x, t)}. What is left is to show that u− is a subsolution on {d−(x, t) = ce−Mt}.
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Let (z, s) ∈ Rn × (0, T ) be a point such that d−(z, s) = ce−Ms =: α, and take
any (p, τ) ∈ D+u−(z, s). Our goal is to show that

I := τ +H(z, p)− αG(z, p) <= 0.

We apply Lemma 5.5 to u−. It then follows that

p = λ∇d−(z, s) + (1− λ)∇(ce−Mt)(z, s)

= λ∇d−(z, s),
τ = λ∂td

−(z, s) + (1− λ)∂t(ce
−Mt)(z, s)

= λ∂td
−(z, s)−M(1− λ)α

for some λ ∈ [0, 1], and thus

I = λ∂td
− −M(1− λ)α+H(z, λ∇d−)− αG(z, λ∇d−)

= λ{∂td− +H(z,∇d−)} − αG(z, λ∇d−)−M(1− λ)α

<= λαG(z,∇d−)− αG(z, λ∇d−)−M(1− λ)α.

We now divide the situation into two different cases.
Case 1: |λ∇d−(z, s)| >= σ. In this case, we have G(z, λ∇d−(z, s)) =

G(z,∇d−(z, s)) by (G1). Thus

I/α = λG(z,∇d−)−G(z,∇d−)−M(1− λ)

= (1− λ){−G(z,∇d−)−M}.

Recalling M >= ∥G∥, we see that I <= 0.
Case 2: |λ∇d−(z, s)| < σ. We first remark that

λ < σ/|∇d−(z, s)| = σeεs < σeεT .

Using this estimate, we observe

I/α <= λ∥G∥+ ∥G∥ −M(1− σeεT ) <= 2∥G∥ −M(1− σeεT ).

The right-hand side is nonpositive by the choice of M , and therefore I <= 0. As
a result, we conclude that u− is a subsolution in {0 < d−(x, t)}.

3. We assert that u− is a subsolution on {d−(x, t) = 0}. Let us define
θ1(r) = 0 if r >= 0, θ1(r) = −Le∥G∥T if r < 0 and

w1(x, t) = (θ1 ◦ w)(x, t) =

{
0 if d−(x, t) >= 0,

−Le∥G∥T if d−(x, t) < 0,

where w is the viscosity solution of (1.1) which appears in (II) at the beginning
of this section. Since θ1 is nondecreasing and upper semicontinuous, Theorem
3.4 implies that w1 is a viscosity subsolution of (1.1). We now fix a point (z, s) ∈
{d−(x, t) = 0} and take (p, τ) ∈ D+u−(z, s). Then, since u−(z, s) = w1(z, s) = 0
and w1 <= u− in Rn × (0, T ), we see that (p, τ) ∈ D+w1(z, s). Therefore

τ +H(z, p) <= 0 = u−(z, s)G(z, p),
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which shows our assertion.
4. We next prove that u+ is a viscosity supersolution of (1.3) in {0 <

d+(x, t)}. To do this, we first claim that

V0(x, t) = Ke∥G∥td+(x, t)− η

is a supersolution of (1.3) on {V0(x, t) >= 0} ∩ {d(x, t) < c} for all K >= 1 and
η > 0. Fix (x, t) ∈ Rn × (0, T ) such that V0(x, t) >= 0 and d(x, t) < c. We then
have |∇V0| = Ke∥G∥t|∇d+| >= |∇d+| >= 1, which yields G(x,∇V0) = G(x,∇d+)
by (G1). Since d+ is a supersolution, we calculate

∂tV0 +H(x,∇V0) = K{∥G∥e∥G∥td+ + e∥G∥t∂td
+}+H(x,Ke∥G∥t∇d+)

= ∥G∥(V0 + η) +Ke∥G∥t{∂td+ +H(x,∇d+)}
>= ∥G∥(V0 + η) +Ke∥G∥td+G(x,∇d+)
= (V0 + η){∥G∥+G(x,∇V0)}.

Noting that ∥G∥+G >= 0 and V0(x, t) >= 0, we conclude

∂tV0 +H(x,∇V0) >= V0{∥G∥+G(x,∇V0)} >= V0G(x,∇V0),

which shows our claim. Hereafter we choose K = 3L/c and η = L, so that
V0(x, t) = V (x, t)− L.

5. We shall show that u+ is a viscosity supersolution of (1.3) in {0 <
d+(x, t)}. Since we have already shown that d+, V0 and Le∥G∥t are supersolu-
tions, we only need to study u+ on {d+(x, t) = V0(x, t)} and {V0(x, t) = Le∥G∥t}.

On {V0(x, t) = Le∥G∥t} it is easily seen that subdifferentials D−u+ are empty,
and so u+ is a supersolution. (Applying Proposition 3.2 also shows that u+ is
a supersolution on {V0(x, t) = Le∥G∥t} because u+ is written as the infimum of
two supersolutions V0 and Le∥G∥t near {V0(x, t) = Le∥G∥t}.)

We next let (z, s) ∈ Rn× (0, T ) be a point such that d+(z, s) = V0(z, s) =: β,
and take any (p, τ) ∈ D−u+(z, s). Our goal is to show that

J := τ +H(z, p)− βG(z, p) >= 0.

Similarly to the case of subsolutions in Step 2, Lemma 5.5 implies that there
exists some λ ∈ [0, 1] such that

p = λ∇d+(z, s) + (1− λ)∇V0(z, s)
= λ∇d+(z, s) + (1− λ)Ke∥G∥s∇d+(z, s),

τ = λ∂td
+(z, s) + (1− λ)∂tV0(z, s)

= λ∂td
+(z, s) + (1− λ){∥G∥(β + η) +Ke∥G∥s∂td

+(z, s)}.

Set λ′ := λ+ (1− λ)Ke∥G∥s. Then

p = λ′∇d+(z, s),
τ = λ′∂td

+(z, s) + (1− λ)∥G∥(β + η).
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We also see λ′ >= λ+(1−λ) = 1, which gives G(z.λ′∇d+) = G(z.∇d+). We thus
have

J = λ′∂td
+ + (1− λ)∥G∥(β + η) +H(z, λ′∇d+)− βG(z, λ′∇d+)

= λ′{∂td+ +H(z,∇d+)}+ (1− λ)∥G∥(β + η)− βG(z,∇d+)
>= λ′βG(z,∇d+) + (1− λ)∥G∥(β + η)− βG(z,∇d+)
= −(1− λ′)βG(z,∇d+) + (1− λ)∥G∥(β + η).

The definition of λ′ and β implies

−(1− λ′)β = (1− λ)(Ke∥G∥sβ − β) = (1− λ)η,

and so we see

J >= (1− λ)ηG(z,∇d+) + (1− λ)∥G∥(β + η)

= (1− λ)[η{G(z,∇d+) + ∥G∥}+ β∥G∥]
>= 0.

6. Finally, in a similar way to Step 3, we see that u+ is a viscosity supersolu-
tion of (1.3) on {d+(x, t) = 0} by studying the composite function w2 := θ2 ◦ w
with θ2 defined by θ2(r) = Le∥G∥T if r > 0, θ2(r) = 0 if r <= 0.

Remark 5.7. Define

ρ0 := min

{
cLe−εT

3Le∥G∥T − c
, ce(ε−M)T

}
. (5.17)

Then, by the definition of u+ and u− we see

(u+(x, t), u−(x, t)) =

{
(eεtd(x, t), e−εtd(x, t)) if 0 <= d(x, t) <= ρ0,

(e−εtd(x, t), eεtd(x, t)) if − ρ0 <= d(x, t) <= 0.
(5.18)

We are now in a position to state our main theorem. As the initial data u0,
we take a bounded and uniformly continuous function in Rn which agrees with
the signed distance function near Γ(0). Namely, we assume that there exists
some m > 0 such that 

u0(x) = d0(x) if |d0(x)| <= m,

u0(x) >= m if d0(x) > m,

u0(x) <= m if d0(x) < −m,
(5.19)

where we set d0(x) := d(x, 0).

Theorem 5.8 (Comparison with the signed distance function near the zero
level set). Assume that the initial data u0 ∈ BUC (Rn) satisfies (5.19) for some
m > 0. Assume (SM), (CP), (H1), (H2) and (G1). Let u be a viscosity solution
of (1.3) with (1.2). Then for every ε > 0 there exists a positive constant ρ(ε) > 0
such that

e−εtd(x, t) <= u(x, t) <= eεtd(x, t) if 0 <= d(x, t) <= ρ(ε),

eεtd(x, t) <= u(x, t) <= e−εtd(x, t) if − ρ(ε) <= d(x, t) <= 0.
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Proof. Fix ε > 0. Since it suffices to show the theorem for small ε, we may
assume that ε <= −(log σ)/T , where σ appears in (G1). We also choose a compact
set K ⊂ Rn so that {|d(x, t)| < δ} ⊂ K, and then take the function a in (5.5).
Here δ is the constant in (SM). We define

c := min{δ, a(ε), m},
L := ∥u0∥ = sup

x∈Rn
|u0(x)|,

M := max

{
2∥G∥

1− σeεT
,
3ε

2

}
,

and let u± : Rn × [0, T ) → R be the functions in (5.15) and (5.16) with these
constants. We then have

u−(x, 0) <= u0(x) <= u+(x, 0) for all x ∈ Rn. (5.20)

We shall prove (5.20) on {d0(x) >= 0}; similar arguments work in {d0(x) < 0}.
Let x ∈ Rn be a point such that d0(x) >= 0. We notice that

u+(x, 0) = min

{
max

{
d0(x),

3∥u0∥
c

d0(x)− ∥u0∥
}
, ∥u0∥

}
,

u−(x, 0) = min {d0(x), c}

by definitions. When 0 <= d0(x) <= m, noting that u0(x) = d0(x) by (5.19), we
compute

u+(x, 0) >= min {d0(x), ∥u0∥} = min {u0(x), ∥u0∥} = u0(x),

u−(x, 0) <= min{d0(x), m} = d0(x) = u0(x).

In the case where d0(x) > m, we estimate

u+(x, 0) >= min

{
3∥u0∥
c

d0(x)− ∥u0∥, ∥u0∥
}

>= min {2∥u0∥, ∥u0∥}
>= u0(x)

and
u−(x, 0) <= min{d0(x), m} = m <= u0(x).

Therefore (5.20) is proved.
By (5.20) the comparison principle (Theorem 3.3) implies

u−(x, t) <= u(x, t) <= u+(x, t) for all (x, t) ∈ Rn × (0, T ). (5.21)

We set ρ(ε) := ρ0, where ρ0 is the constant in (5.17) with c, L and M given as
above. Finally, combing (5.18) and (5.21) gives the conclusion of the theorem.

Remark 5.9. In view of the proof we notice that the constant ρ(ε) also depends
on T , ∥G∥, σ, a, m and ∥u0∥.
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Corollary 5.10. Assume the same hypotheses of Theorem 5.8. Let (z, s) ∈
Rn × (0, T ) be a point such that d(z, s) = 0.

(1) We have

lim
(x,t)→(z,s)
d(x,t)̸=0

u(x, t)

d(x, t)
= 1.

(2) The solution u is differentiable at (z, s), and the derivatives are given as

∂tu(z, s) = ∂td(z, s), ∇u(z, s) = ∇d(z, s).

Proof. (1) For a fixed ε > 0 we have

u(x, t)

d(x, t)
<=
eεtd(x, t)

d(x, t)
= eεt

for all (x, t) ∈ Rn × (0, T ) such that 0 < |d(x, t)| <= ρ0(ε). Thus

lim sup
(x,t)→(z,s)
d(x,t)̸=0

u(x, t)

d(x, t)
<= eεs.

Since ε is arbitrary, we see that

lim sup
(x,t)→(z,s)
d(x,t)̸=0

u(x, t)

d(x, t)
<= 1.

Similarly, we obtain

lim inf
(x,t)→(z,s)
d(x,t)̸=0

u(x, t)

d(x, t)
>= 1.

and hence the assertion follows.
(2) We only give the proof for the time derivative since a similar argument

applies to the spatial derivative. Fix ε > 0 and let h ∈ R. If |h| is sufficiently
small, we have

u(z, s+ h)− u(z, s)

h
<=
eε(s+h)d(z, s+ h)− eε(s+h)d(z, s)

h
,

which yields

lim sup
h→0

u(z, s+ h)− u(z, s)

h
<= eεs∂td(z, s).

The rest of the proof runs as in (1).
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