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Abstract: Data-intensive workflows have become one of the most important
and necessary tools for data-intensive applications since they facilitate the compo-
sition of individually developed executables, making it easier for domain experts to
focus on their research rather than computation managements. A workflow generally
consists of a set of jobs with their dependencies. Since a job is typically an existing
executable, data transfers between jobs are generally handled by the workflow sys-
tem. Usually, data are stored in files and implicitly transferred through a shared file
system or explicitly moved by a staging subsystem. Such file-based workflows are
often very complex with many jobs due to the low-level description. To schedule a
job to computing resources for parallel execution, the input of the job is generally
split into multiple small files, thus, leading to a large number of intermediate files.

While there is a critical need for workflow systems to manage scientific applica-
tions and data, parallel database systems which have been commercially available
for decades and proved to be efficient large-scale data processing platforms, are
well-suited to deal with specific aspects of workflow management. Some workflow
management systems utilize database technologies to provide functionality such as
simplifying the description of a workflow with SQL queries, improving the perfor-
mance of the execution and facilitating the management of data. While database
systems with high-level SQL queries simplify the description of workflows, they gen-
erally lack a good support for directly invoking executables from SQL statements.
Many of executables are third-party components that receive a large amount of de-
velopment efforts from the community and are usually developed in a variety of
languages. As a workflow is typically built out of such executables, integrating
them into SQL statements is very important. Most databases execute the executa-
bles in the form of user-defined functions or stored procedures. Thus, programmers
who want to invoke such executables as part of SQL statements have to write and
compile them with respect to the strict specifications of databases, and are usually
constrained by the languages they can use. It is obviously unreasonable for scientists
to rewrite their applications with a large number of such executables to allow them
to be run by a database. Another limitation of database systems for workflows is
inefficient fault tolerance mechanisms. The conventional approach in most existing
database systems which handle failures by aborting the query and restarting it from
the beginning, is not efficient for long-running jobs in workflows.

To tackle these problems, we propose ParaLite, a shared-nothing parallel
database system which facilitates the development of workflows and improves the
performance of their executions. The basic idea behind ParaLite is to provide a
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coordination layer to glue many SQLite instances together, and parallelize an SQL
query across them. With ParaLite, jobs in a workflow are expressed with SQL
queries and all intermediate data are stored as relational tables. To allow the direct
invocation of external executable from SQL statements, ParaLite provides seamless
integrations of external executables (User-Defined Executable, UDX for short) into
SQL statements. The syntax of an UDX is similar to that of a User-Defined Func-
tion (UDF) but more flexible in the format of input and output data. With the
support of UDX, programmers do not need to write any program with respect to
strict specifications of databases. To provide efficient parallel execution of UDXes,
ParaLite is equipped with a concept of collective query, an SQL query issued by mul-
tiple computing clients who collectively receive the results of the query and process
them in parallel using UDXes. Collective query enables the co-allocation of com-
puting clients and data sources (data nodes in databases) with consideration of data
locality and load balance across all clients. With collective queries, the execution
of an UDX is not bound to database nodes and it can be distributed to arbitrary
clients for larger scale execution and computational load balancing.

Moreover, for long-running jobs in a workflow, ParaLite supports intra-query
fault tolerance with a selective checkpointing mechanism, enabling to resume queries
from middle of the execution upon a failure. Each query is represented by a DAG
of relational operators in which data are typically pipelined between operators. The
goal of the mechanism is to find a set of operators whose outputs are worth being
checkpointed to minimize the expected completion time of the whole query. It
firstly provides a cost model to estimate the expected completion time of a whole
query plan under a given failure probability for each operator. Then a divide-and-
conquer algorithm is proposed to find a close-to-optimal solution to the problem.
The algorithm divides the query plan into sub-plans with smaller search spaces. For
a given query plan with n operators, the algorithm runs in O(n) time.

The experimental results firstly show that while ParaLite has similar perfor-
mance with a commercial database system DBMS-X for most queries from TPC-H
benchmark, it is 10x speedup comparing to UDF implementation in DBMS-X for
the execution of executables. Besides, ParaLite has several times higher perfor-
mance than a MapReduce system (specifically Hive) for typical SQL tasks, such as
selections, joins and aggregations. With collective queries the performance for the
UDX’s execution could achieve close-to-ideal speedup with the increase of computing
clients when data are either balanced or not balanced distributed across a cluster.
Moreover, the mechanism of collective query balances the load across computing
clients even when some clients are manually loaded. The experimental results also
indicate that different fault-tolerant strategies affect the overall runtimes of queries.
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Our selective checkpointing mechanism can choose reasonable operators to be check-
pointed and outperforms other fault-tolerant strategies, such as pure pipelining data
and checkpointing all intermediate data. In addition, the divide-and-conquer algo-
rithm taken by our mechanism has a smaller overhead than brute-force approach
while keeping a similar effectiveness.

Finally, we study three real-world text-processing workflows in the field of Nat-
ural Language Processing (NLP), and build them on top of ParaLite, Hadoop,
Hive and regular files. We discuss their strengths/weaknesses both in terms of
programmability and performance for each workflow. Our development experience
reveals that high-level query languages such as SQL of ParaLite and HiveQL of
Hive are helpful for expressing data selection, join, aggregation and calculation by
typical executables. In NLP workflows, the expressiveness of SQL in ParaLite is
particularly useful since it provides natural supports of file-based NLP executables
and reusing existing NLP tools by tracking the association between a document and
its annotation attached by the tools. On the other hand, workflows expressed in
low-level languages lack good support of all features mentioned above, requiring a
few extra efforts. The experimental results show that essentially each system has a
similar overall performance because the executables dominate the exuecution time.
However, a closer investigation still reveals a potential advantage of ParaLite due
to data partitioning and query optimization.

Keywords: Data-intensive workflow, MapReduce model, parallel database sys-
tem, user-defined executable, collective query, intra-query fault tolerance
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

The fourth paradigm of science, data-intensive computing [51], is characterized by
the big exploding of data. Researches in many disciplines, such as environmental
science, astronomy, particle physics, and medicine, are increasingly relying on data-
intensive computation. There is a wide agreement that data-intensive methods are
key to these applications and receive more and more interest [7]. Such methods
are expected to play more and more important role in providing evidence for well-
informed policies and decisions. Therefore they are of great scientific and social
importance. There are many approaches to support data-intensive methods, such
as workflow systems [35, 5, 104] and MapReduce framework [32] over large-scale
distributed resources.

Among all these methods, data-intensive workflows have become one of the most
important and necessary tools for data-intensive applications since they facilitate the
composition of individual executable, making it easier for domain experts to focus on
their researches rather than computation management. Workflows are widely used
to process a large number of text, especially in the discipline of Natural Language
Processing (NLP). Common tasks in NLP are to extract the features of data (aspects
of the representations of the data) some of which may be superficial, such as the
words and sequences of words themselves while others are more complex, such as
both the grammatical and semantic relationship between words. To accomplish
these tasks with workflows, easy description and parallel processing of tasks readily
accessible to NLP scientists. Many systems are proposed to execute workflows,
including GXP Make [103], Swift [122], Pegasus [34] and Taverna [77].



2 Chapter 1. Introduction

A workflow is generally a DAG with a set of independently developed jobs and
their dependencies. Each job is a typical existing binary or executable and commu-
nicates with another job in the workflow. A data transfer among jobs is generally
handled by the workflow system. Usually, data are stored in files and implicitly
transferred through a shared file system or explicitly moved by a staging subsystem.
A file-based workflow is always very complex with many jobs due to its low-level
description. Besides, to process file in parallel, a big file is split into small files, thus,
leading to a large number of intermediate files. Users usually tend to complain that
it is troublesome for them to manage thousands of files, and also inconvenient to
extract useful information from so many files. In addition, using files to store data
may lead to poor performance for the execution of a workflow. Since creating index
for data stored in files is usually difficult, it is very tedious and inefficient to select
a subset of data which requires a full scan to files.

With a common goal of making large scale data processing simple and easy,
MapReduce model [32] has attracted wide interests from both industry and academia
due to its simple programming model and good scalability across hundreds of nodes.
After the emergence of MapReduce and its open-source incarnation Hadoop [116,
53] in particular, more and more efforts are made to enable or utilize them in
scientific workflows. Researchers either create workflows with MapReduce features
or integrate Hadoop into workflows to get better performance for the executable of
jobs. However, MapReduce in general requires users to develop two functions map
and reduce; Hadoop requires them to be written in Java conforming the class library
framework, at least by default. This low-level description increases difficulties for
users to develop their applications. Hence, some MapReduce systems are extended
to support high-level language (e.g. SQL-like queries) [106, 44]. In addition, as data
are stored in the distributed file system (HDFS in Hadoop), it is difficult to index
data too.

While there is a critical need for workflow systems to manage scientific applica-
tions and data, and database technologies are well-suited to deal with some specific
aspects of workflow management, a nature idea is to build workflows on top of
the parallel database system [36]. Parallel database systems have been dominat-
ing platforms for large-scale data processing and will continue to be prominent in
future. They have been commercially available for nearly two decades and there
are now about a dozen in the marketplace, including Teradata [105], Microsoft SQL
Server [92], Vertica [111], DB2 [29], and Oracle [81]. They are robust, high perfor-
mance computing platforms to provide a high-level programming environment and
parallelize data processing easily. The DBMS community has also been working
on systems customized for data-intensive science applications and has built many
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prototypes such as extensions to MonetDB [63], SciDB [96] and Sloan Digital Sky
Survey (SDSS [99]) which are successfully being used today. Firstly, with expres-
sive SQL, database systems can simplify the description of workflows. For instance,
SQL queries with a proper support of user-defined functions and reductions can ex-
press many data processing tasks much more elegantly and easily than MapReduce.
Secondly, database systems facilitate the management of data naturally. Finally,
databases are efficient for processing relational data in ways expressible in SQL due
to data indexing and sophisticated query optimization [82, 97].

While parallel database systems facilitate the description of workflows in terms
of expressing jobs with SQL queries and provide efficient management of data, they
generally have some limitations:

Non-straightforward Integration of Executable: As a workflow is typical built
out of various individually developed executables, integrating such executables into
SQL statements is very crucial. For example, NLP workflows typically consist of
data scrapers, sentence splitters, part-of-speech taggers, named entity recognizers,
parsers, data indexers, and so on. Many of them (e.g., parsers [39, 12]) are third-
party components that received a large amount of development efforts from the do-
main community and are usually developed in a variety of languages. Most databases
execute external modules in the form of user-defined functions or stored procedures.
Thus, programmers who want to invoke such executables as part of SQL statements
have to write and compile them with respect to the strict specifications of databases,
and are usually constrained by the languages they can use (e.g. C/C++/Java). It
is obviously unreasonable for scientists to rewrite their applications with a large
number of such executables to allow them to be run by a database.

Limited Performance in Executable Execution: Another general limitation of
parallel database systems is that they do not optimize data transfers between data
nodes and parallel clients that process large query results. A significant work exists
in minimizing IO costs and data transfers inside the execution of an SQL query [36],
but query results are all returned to a single client who issued the query. When big
results are returned to a single client and then distributed to external programs for
parallel execution, the single client can easily become a bottleneck. Moreover, it
prohibits us to take advantage of co-allocating computing clients with data.

Ineffective Fault Tolerance for Long-running Executable: As data that need to
be analyzed continues to grow, the size of computing resources grows accordingly.
Thus, the probability of a failure during query processing increases rapidly. Most
existing database systems handle failures by aborting unfinished queries upon a
failure and restarting the entire query processing. This approach is reasonable for
queries with OLTP workload as almost all transactions must be completed within a
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small amount of time. However, this conventional approach is not efficient for the
long running jobs of OLAP workload in workflows because it is time-consuming to
restart the query from the beginning as lots of work are lost.

1.2 Contribution

With consideration of the advantages of databases, our goal is to develop workflows
on top of a database system ParaLite, with which jobs are expressed in SQL queries
and all intermediate data are stored as relational tables. ParaLite is a shared-nothing
parallel database system which provides an coordination layer to connect multiple
single-node databases and parallelizes queries across them. To support workflows
better, it has the following distinguished features:

• Straightforward integration of executable. ParaLite provides User-defined Exe-
cutable (UDX) to make it straightforward to integrate arbitrary executables in
a query. UDX considerably lowers users’ efforts to describe jobs in workflows
as it allows the user to define the executable with the input/output format
directly in a query without writing any program. The implementation of UDX
also reduce the start-up overhead which would be too heavy for typical NLP
programs by invoking the executable on a block of tuples rather than every
single one.

• Efficient parallelization of executable. ParaLite proposes a concept of collective
query, a single SQL query issued by many clients who collectively receive the
results of the query and then perform arbitrary external executable on them in
parallel. With collective query, executables are not bound to database nodes
and they can be distributed to arbitrary clients, for larger scale execution and
computational load balancing. The concept of collective query optimizes data
transfer between parallel compute clients and data sources and makes it easy
to tune the parallelism by adding/reducing the number of clients.

• Intra-query fault tolerance. ParaLite presents a selective checkpointing mecha-
nism which looks for a set of operators whose outputs are worth being check-
pointed to minimize the expected runtime of the whole query, enabling to
resume queries from middle of the execution upon failures. The mechanism
is more effective than uniform strategy of checkpointing nothing (used by
most commercial databases) and materializing all intermediate data (used in
MapReduce framework).

In addition, we study several real-world text processing workflows and develop
them on top of ParaLite, Hadoop, Hive and general files. We discuss their strength-
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s/weaknesses both in terms of productivity and performance for each workflow.
Our experiences and experimental results reveal some interesting trade-offs: (1)
High-level query languages (SQL of ParaLite and HiveQL of Hive) are helpful for
expressing data selection, aggregation and calculation by typical executables; (2) To
reuse existing NLP tools, it is often important to be able to track the association
between a document and its annotation attached by the tool, for which the expres-
siveness of SQL is particularly useful; (3) Each system has similar performance in
the execution of overall workflows because essentially performing executables takes
most of the time, but small differences could reveal some potential trade-offs that
each system entails for workflows.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows:
Chapter 2 provides a comprehensive understanding of the background of our

work, including parallel database systems, MapReduce frameworks, target workflows
and the problems of existing parallel database systems. We present related works
on how current database systems and MapReduce systems solve these problems in
Chapter 3.

In Chapter 4, we present our major work ParaLite, a shared-nothing parallel
database system. The details of the integration of executables into SQL statements
and the parallelization of them are introduced in Chapter 5 while the intra-query
fault tolerance mechanism is elaborated in Chapter 6.

Chapter 7 gives the evaluation of ParaLite to verify the scalability and perfor-
mance of the system and the effectiveness of proposed mechanisms.

In Chapter 8, we show our efforts on three real-world text-processing workflows
built on top of ParaLite, Hadoop, Hive and general files and compare them in terms
of both productivity and performance.

Finally, we give our concluding remarks and suggest future directions of our
research in Chapter 9.
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2.1 Parallel Database Systems and MapReduce Frame-
works

2.1.1 Architecture of Parallel Database System

A parallel database system provides the same functionality as centralized databases
except in an environment where data are distributed across the nodes of a cluster
or processors of a multiprocessor system [36, 124]. Ideally, a parallel DBMS should
demonstrate two advantages: linear scaleup and linear speedup. Linear scaleup
refers to a sustained performance when both database size and processing capacities
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Figure 2.1: Architecture of a Shared-nothing System

are linearly increased. Linear speedup refers to a linear increase in performance
when the database size keeps unchanged but the processing capacities are linearly
increased.

Most parallel database systems are based on a cluster of commodity computers
called“ shared-nothing nodes”as Fig. 2.1 shows. In the shared-nothing architec-
ture, each node has its own memory and one or more disks. Nodes communicate
with each other through a high-speed interconnect network. Data storage in such ar-
chitecture is distributed among the nodes by connecting them. The shared-nothing
architecture reduces interference by minimizing resource sharing and data transfer.
Memory and disk accesses are performed locally on each node, and only the filtered
(reduced) data is passed to the client. Since shared-nothing architecture provides
high scalability due to involving minimal interference between nodes/processors and
minimal traffic on interconnection network, it is widely used in Parallel DBMSs.

Every parallel database system is built and pioneered by these two techniques:
data partitioning and the partitioned execution of queries. The idea behind data
partitioning is to distribute the tuples of a relational table across the nodes for par-
allel execution. There are three typical partitioning methods for data: Round-robin
fashion, Range fashion and Hash fashion [36]. With the data partitioned across the
nodes of the cluster, a query can be trivially executed in parallel. In Parallel DBMSs,
each SQL query is represented as a DAG of operators such as SELECT, SORT, JOIN
and so on. These operators take relations as input and produce relations as outputs.
The uniformity of the operators and data allow them to be arbitrarily composed into
the execution flow. By streaming the output of one operator into another operator,
the two operators can work in series giving pipelined parallelism. By partitioning
the input data among multiple nodes/processors, an operator can often be split into
many independent operators and each works on a part of the data. This partitioned
data and execution is called partitioned parallelism.
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Figure 2.2: The Overview of Execution in MapReduce [32]

2.1.2 Overview of MapReduce

MapReduce [32] is a programming model for processing huge data sets on certain
kinds of distributable problems using a large number of computers (nodes). The
computation takes a set of input key/value pairs, and produces a set of output
key/value pairs which can be presented by two functions: Map and Reduce.

A Map function, written by user, takes a series of key/value pairs, processes
each, and generates zero or more intermediate key/value pairs. The input and
output types of the map can be (and often are) different from each other. The
MapReduce integrates associated values with the same intermediate key and passes
them to the Reduce function. A Reduce function, also written by user, reads an
intermediate key and a set of values for that key, iterates through the values that
are associated with that key and outputs zero or more values.

A task is executed as Fig. 2.2 shows. First of all, the input file is split into
M pieces (the size of each piece is controlled by user), starts up many copies of
programs on multi machines of cluster. One of the copies of program is master,
a special one who is responsible for assigning work to other copies called workers.
In generally, there are M map tasks and R reduce tasks. The master picks idle
workers and assigns each one a map task or a reduce task. A worker who is assigned
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map task firstly reads the corresponding input split. Then it parses key/value pairs
out of the input data, passes them to the Map function. After desired filtering
and/or transformations, a set of intermediate key/value pairs is produced. Then
the Map worker partitions the intermediate key/value pairs into R regions (files) by
partitioning function. Hash function is very popular for data partitioning. Since M
workers participate in the map phase, there are R files on disk storage at each of M
nodes, for a total of M ×R files. The locations of the partitioned pairs on the local
disk are passed back to the master, who is responsible for forwarding these locations
to the reduce workers.

When a reduce worker is notified by the master about the intermediate pairs’
locations, it remotely reads the data from the local disks of the map workers. The
input for each reduce instance consists of the M files. When a reduce worker has
read all intermediate data, it sorts the data by the intermediate keys so that all
occurrences of the same key are grouped together. The sorting is necessary since
typically many different keys map to the same reduce task. If the amount of inter-
mediate data are too large to fit in memory, an external sort is used. The reduce
worker iterates over the sorted intermediate data and for each unique intermediate
key encountered, it passes the key and the corresponding set of intermediate values
to the user’s Reduce function. The output of the Reduce function is appended to a
final output file for this reduce partition.

When all map tasks and reduce tasks have been completed, the output of the
MapReduce execution is available in the R output files (one per reduce task, with
file names as special led by the user). All these output files are passed as input to
another MapReduce call or another distributed application that is able to deal with
input that is partitioned into multiple files typically.

2.1.3 Programming Model

During the 1970s, the database research community engaged in a contentious debate
between the relational advocates and the Codasyl advocates [31]. In the end, DBMS
uses relational representation (SQL queries) which is stating what you want, rather
than presenting an algorithm for how to get it. Programs in high-level languages,
such as SQL, are easier to write, easier to modify, and easier for a new person to
understand.

For example, assume a table named document, with each row an id with a word.
The word count task which is to calculate the occurrences of words can be simply
expressed by an aggregation operation on the column word as shown in the the
following SQL statement:

SELECT word, count(*) as wordcount
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FROM document
WHERE word> ’c ’and word <‘ t ’
GROUP BY word

Many relational databases support User-Defined Functions (UDFs) in which a
developer can implement tasks using a procedural language. User-defined functions
are longstanding database features that enable database extensibility. UDFs allow
customization of how a database processes data, eliminating the limitation of op-
erations brought by a SQL query. For example, an user-defined function parse is
used in the SELECT statements and invoked on each row to convert the value of
the column word to a value produced by the UDF.

SELECT id, parse(word) as parse_result
FROM document

On the other hand, MapReduce model presents an algorithm for data access
which can be consider as Codasyl. The user is forced to write algorithms for the
Map and Reduce function in a low-level language in order to perform record-level
manipulation. For example, the word count task requires a Map and Reduce func-
tions which are described in Fig. 2.3.

void map (String name, String document):
     //name: document name
     //document: document content
     for each word w in document:
          if w > "c" and w < "t"
               EmitIntermediate(w, 1);

void reduce(String word, Interator counts):
     //word: a word
     //counts: a list of word counts
     int result = 0 ;
     for each pc in counts:
          result += pc ;
     Emit(AsString(result)) ;

Figure 2.3: Word Count Task in MapReduce

2.1.4 Data Storage

Parallel DBMSs require data to fit into a schema such as a relational paradigm of
rows and columns. Parallel DBMS advocates think schema is important since the
run-time system of the DBMS can ensure that input records obey this schema. This
is the best way to keep an application from adding“garbage”to a data set. They also
insist that separation of the schema from the application is good. If a programmer
wants to write a new application against a data set, he or she must discover the
record structure. In modern DBMSs, the schema is stored in a collection of system
catalogs and can be queried (in SQL) by any user to uncover such structure.
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In contrast, the MapRedcue model does not require that data files adhere to a
schema defined by the relational data model. That is, the MapReduce programmer
is free to structure their data in any manner or even can have no structure at
all. But there exist some potential problems for free data structure when data are
shared by multi-applications. Since a programmer has to write functions explicitly
to handle raw data, it is difficult for other programmers to know the structure of
data unless they analyze the source code of the first programmer. Even if a schema
is separated from applications and available to all the programmers, they have to
ensure that any updates (addition or modification) on data does not violate some
high-level constraints (e.g., the value for a specific column must not be NULL). All
these additional works are tedious and troublesome.

After the data are stored, all modern DBMSs create indexes (e.g. hash or B-tree
indexes) for data to accelerate access to them. If a user wants to look for a subset
of records, the scope of the search dramatically reduces with a proper index. Most
database systems also support an index on multiple columns or multiple indexes per
table. However, MapReduce frameworks do not provide built-in indexes. Program-
mers have to implement any indexes that they want to accelerate access to the data
for their applications. Creating indexes inside their applications is difficult because
the mechanism for reading data from the file system must be changed to use these
indexes. Moreover, if there exists index sharing between different programmers, this
is an un-acceptable strategy as the similar reason for“ no schema data is bad”.
The specifications for the creation and usage of indexes must be transferred among
programmers. Therefore, it is better to use a standard format to store indexes in the
system catalogs. As a result, programmers can discover the information of indexes
by simply querying to the system.

2.1.5 Data Flow

The processing of a task with both approaches of parallel database systems and
MapReduce systems can be presented by data flows. In parallel database systems,
a query is transformed into a DAG of relational operators, such as sort, join, ag-
gregation and selection. Data are simply pipelined between operators. When one
operator must send data to the next operator, regardless of whether that the opera-
tor is running on the same node or a different one, the qualifying data are“pushed”
by the first operator to the second operator. Hence, data are streamed from pro-
ducer to consumer without being written to disks. Such data transfer pattern is
efficient because it doesn’t suffer from the bottleneck of disk accesses. However, it
is not effective to recover a query from failures, which we introduce in the Section
2.1.7.
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On the other hand, in the MapReduce framework, data are moved from Map to
Reduce and the intermediate data are stored in disk. The master notifies reducers
about the information of the intermediate pairs and then the reducer remotely reads
the data from the local disks of the map tasks. This mode is characterized by
the patten of "PULL". Consequently, disk size becomes a potential bottleneck.
There also exists another concurrency problem. M Map instances can produce M*R
intermediate local files. Each of the R Reduce instances needs to read its M input
files. With so many of Reduce instances running at the same time, two or more
Reduce instances probably attempt to simultaneously read their input files from the
same map node, leading to a lot of disk seeks and low disk transfer rate.

2.1.6 Processing Optimization

In Parallel DBMSs, query processing refers to the automatic translation of a query,
query optimization and its parallel execution. Query translation takes an SQL query
and translates it into a relational algebra. In the process, the query is analyzed se-
mantically so that incorrect queries are detected and rejected as easily as possible,
and correct queries are simplified. The query optimization is to find the best execu-
tion plan by permuting the ordering of operations. The query optimizer is usually
seen as three components: a search space, a cost model, and a search strategy [109]
as Fig. 2.4 shows. The search space is the set of alternative execution plans to
represent the input query. These plans are equivalent, in the sense that they yield
the same result but they differ on the execution order of operations and the way
these operations are implemented. The cost model predicts the cost of a given ex-
ecution plan. To be accurate, the cost model must have accurate knowledge about
the parallel execution environment. The search strategy explores the search space
and selects the best plan. It defines which plans are examined and in which order.
Cost model based optimization mechanism easily optimizes the communication be-
tween operators [68, 18]. One example is pushing the WHERE clause down of the
execution plan so that data filtering is done before they are joined or aggregated,
resulting much less data transfer through network. Another example is deciding
the order of join. This optimizer takes the advantage of data partitioning method.
It requires each operand relation to be partitioned the same way. For example, if
R and S are both partitioned across multiple nodes using the same hash function
on the join attributes, the join operation on R and S can be executed locally with
much less data transfer since records with the same hashed attribute are in the same
nodes. In addition, the optimizer also can get the optimal order for multiple joins
based on the estimated number of result tuples for each join.

While parallel database systems provide efficient general cost-model based opti-
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mization to get the optimal solution, MapReduce can support only domain specific
optimization for the job execution. A significant bottleneck existing in the execu-
tion is the repetition in the intermediate keys from each map task. For example,
in the word count task, each map task produces thousanands of records for a sin-
gle word in form of 〈word, 1〉. All of these pairs are sent to a single reduce task
through the network and then aggregated together to produce a final result number
by the Reduce function. To solve this problem, a common method is to allow users
to customize an optional Combine function which does partial aggregation of the
output data from map tasks. A combiner runs between the mapper and reducer
and executes the function on the each node that performs a map task. The output
from each mapper is sent to the combiner, which performs the aggregation of the
word count for the same word locally in the example above. The output from the
combine is then written to disk, before being sent to the reducer. By this way, a lot
of data are reduced to be transferred to reducers.

2.1.7 Fault Tolerance

Most existing parallel database systems support transaction-level fault tolerance by
aborting unfinished queries upon a failure and restart the entire query processing.
Data are usually replicated on multiple nodes through specific mechanisms such
as disk shadowing, interleaved declustering and chained declustering [40, 88, 100].
If a single node fails during a running query in a DBMS, the entire query must be
completely restarted on the replica node. Part of the reason for this approach is that
DBMSs avoid saving intermediate results to disk whenever possible. This approach
is reasonable for queries with OLTP workload as almost all transactions must be
completed within a small amount of time. However, for long running queries of
OLAP workload, it is costly to restart the query from the beginning as lots of work
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are lost. This problem should be readily solved by providing operator-level fault
tolerance. The runtime system marks one or more operators in the query plan as
"checkpointed operators" whose results are saved to disk. Once a failure occurs, the
query can be recovered from these checkpointed operators.

On the other hand, MapReduce frameworks provide a more sophisticated fail-
ure model than parallel database systems. While both types of systems use data
replications to deal with node failures, MapReduce is far more effective at dealing
with node failures during the execution. In a MapReduce system, if a Map/Reduce
worker fails, the master can automatically reschedule the task that was working on
the failed worker to an alternate node to be re-executed. If the master fails, a new
copy can be started from the last checkpointed state. The main reason behind this
effective recovery mechanism is contributed to the fact that the output of the Map
tasks are materialized locally instead of being pipelined to the Reduce tasks. While
this strategy is safe-first, it is not always efficient for smaller to medium-sized jobs
as writing all intermediate data to durable storage before making progress may not
gain from re-execution of tasks.

2.1.8 Development and Setup

The first thing that user care about is how to get a parallel DBMS and MapReduce
system. Most of MapReduce systems are open source projects available for free,
such as Hadoop. DBMSs, and in particular parallel DBMSs, are expensive; though
there are good single-node open source solutions. To the best of our knowledge,
there are no robust, community-supported parallel DBMSs.

Even in case that a user has already got some parallel DBMSs, he would be
possibly disappointed by the fact that these systems are difficult to install and
configure properly. This is because the user often face the difficulty in tuning pa-
rameters which must be set correctly for the system to operate effectively. On the
other hand, an open-source MapReduce implementation provides the best“ out-of-
the-box”experience. Thus, it is faster for users to get the MapReduce system up
and run queries than the DBMSs. Once a DBMS is started and running properly,
programmers have to write a schema for their data (if no schema exists for the data)
and then load the data into the system. The time spent on this process is consider-
ably larger in a DBMS than in a MapReduce system. While the DBMS has to parse
and verify each datum in the records, MapReduce programmers load their data to
the system just simply by coping it into the underlying distributed storage system.

However, although it may be easier to for users to get started with MapRe-
duce, it may bring significant pain to applications developers for maintenance of
MapReduce programs. Data increases a lot with the development of application.
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In a MapReduce system, it is necessary to modify the existing MapReduce code
and retest them to ensure that the new MapReduce programs work with the new
assumptions about the data’s schema. In contrast, once DBMS users have built the
initial SQL-based applications, they do not need to modify the code despite several
changes to new schema.

2.2 Data-intensive Workflows

A scientific workflow is typical formed by connecting multiple jobs based on their
dependencies. A workflow is typical represented as a Directed Acyclic Graph (DAG)
which indicates the relationships between jobs as Fig. 2.5 shows. In a workflow,
one job starts after a previous job has completed and jobs without any dependency
can be performed concurrently. Jobs are executables written in various languages
in most workflow systems and web services in a few workflows. In this section, we
introduce four key issues in a workflow management system – workflow composition,
workflow scheduling, data movement and fault tolerance.

Figure 2.5: An Example of Worklfow [91]

2.2.1 Workflow Composition

The composition of workflows is the first and important step of the entire workflow
process. It allows a user to specify the jobs and their dependencies. Usually there
are two types of fashions, namely abstract and concrete. With the abstract fashion,
a workflow is specified without considering the underlying resources for its execution
while with the concrete fashion, workflow jobs are bound to specific resources.

Many workflow systems use a particular language or representation to describe a
workflow, such as BPEL [67], Swift [122], DAGMan [26] and GXP make [103]. The
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languages they provide can be composed manually using a plain text editor with a
specification. While language-based composition works well in some systems, writing
the textual programs by hand is very difficult. The situation becomes worse if the
compositional language cannot support standard programming control components
well. To solve this problem, a user can use a high-level script (e.g. Python and Ruby)
to express complex control and generate the lower-level primitives of workflows.

To simplify the composition for scientific users, some workflow systems provide
graphical tools for composing workflows, such as Taverna [77], Triana [104] and Ke-
pler [5] who build workflows with composing graphs where the nodes represent jobs
and edges represent jobs’ dependencies. Compared to language-based composition,
graphical composition is more intuitive and can be handled more easily even by a
general user who is not an expert or sophisticated programmer. While graphical
composition is easy to describe workflows with small number of jobs, it is general
troublesome for describing more complex workflows with a few dozen jobs. As a
result, most graphical tools support graphical nesting forms based on sub-workflow
hierarchies. In addition, graphical composition has complexity in expressing con-
currency in a workflow (e.g. “for-each” function). Some systems provide specialized
control primitives to address this problem.

2.2.2 Workflow Scheduling

Workflow scheduling focuses on mapping a workflow onto distributed resources and
managing the execution of workflow jobs. Usually there is a central scheduler who
makes scheduling decisions for all jobs in the workflow. While such centralized
scheduling can produce efficient policy since it has all information of all jobs, it is
not scalable with respect to the number of resources and jobs.

Firstly, as workflows have different features, it is difficult to find a standard best
mechanism for mapping workflows onto resources for all workflows. There are two
kinds of decisions about mapping jobs onto resources: local decision which is made
based on the information of current job, and global decision which is made based on
the information of the entire workflow. While scheduling based on global decisions
provides better overall performance, it takes much more time to make the decisions.
The overhead from the global decision making decreases the overall performance.
Thus, both the overall execution time and overhead for decision making should
be considered in the scheduling. In general, mapping a workflow onto distributed
resources is a NP-complete problem. Some systems use a heuristic solution to obtain
near-optimal solutions to satisfy the QoS constraints, e.g. deadline and budget.

After making the decisions for mapping a workflow onto resources, the next step
is workflow planning which translates the abstract model to concrete model referring
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to the resources. The translation is conducted in either static or dynamic fashion.
The static fashion does not take the dynamically changing status of resources into
consideration and the concrete model is generated before the execution of workflow
based on the current information of the resources. The static fashion is based
on user-directed or simulation-based scheduling. In the former, users simulate the
process and map the workflow onto resources based on their knowledge, requirement
or specific performance criteria. In the simulation-based scheduling, the resource
mapping is decided by simulating the workflow execution on a set of resources before
it is really executed. In contrast, in a dynamic fashion, both static and dynamic
information of resources are taken into account and the concrete model is generated
at run-time. Some dynamic fashions use prediction-based scheduling which makes
the mapping decisions based on dynamic information and predicted results. Others
use in-time scheduling which makes a scheduling decision when a task is executed
rather than making the decision prior to the scheduling.

2.2.3 Data Movement

For a workflow running on distributed resources, the output files of jobs may be
required by its successor jobs which are processed on remote resources. Thus, the
intermediate data have to be staged out to the corresponding remote resources.
Most workflow systems support intermediate data transfer automatically through a
shared file system or a file staging system [66] while others require users to manage
the transfer conforming to the specification of the workflow.

The approaches of automatic intermediate data transfer can be classified as cen-
tralized, mediated and peer-to-peer [119]. In the centralized method, the interme-
diate data are transferred through a central point. While the centralized approach
is easily implemented, it is not efficient in data transfer and only suitable for the
workflows in which only small-scale data are required to be transferred. A medi-
ated approach uses a distributed data management system to manage the locations
of the intermediate data. Mediated approach is scalable and suits workflows with
the requirement of large-scale data transfer. A peer-to-peer approach transfers the
intermediate data between resources. Since data are transmitted between resources
directly, peer-to-peer approach reduces the transmission time significantly. It also
releases the bottleneck caused by the centralized and mediated approaches due to
not involving any third-party software. Therefore, the peer-to-peer approach suits
large intermediate data transfer better.
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2.2.4 Fault Tolerance

In distributed environments, various failures can occur during the execution of a
workflow such as network failure, disk failure and process failure. Thus, work-
flow systems should be able to detect and be tolerant of failures by supporting
efficient recovery from those failures. To achieve fault tolerance, the combination
of checkpointing and rollback recovery mechanism are exploited. Checkpointing
approach periodically stores the state of the system during its execution as check-
points or snapshots, whereas rollback recovery, once a failure occurs, provides a way
of restarting a system from the previously saved state. Scientific workflow systems
incorporate the checkpointing and rollback recovery schemes at different granularity
levels: task-level and workflow-level [84, 60].

Task-level fault tolerance, widely used in parallel and distributed systems, saves
the intermediate states of running tasks, so that a task can be re-started from a
previously saved state in case of a failure. It restarts the failed tasks transparently
on other resources upon resource failures, so that the task can continue its execution
from the point of failure. Besides checkpoint/recovery technology, task-level fault
tolerance has another simpler policy called retry. The retry technique, the simplest
recovery technique, simply tries to execute the same task on the same resource or
another resource after a failure occurs. Workflow-level fault tolerance captures the
state of the workflow as a whole. Once a failure occurs, the execution of the whole
workflow restarts from the last saved checkpoint. In addition, the system can achieve
fault tolerance by the technique of redundancy which executes multiple alternative
tasks at the same time.

2.3 Why a Database is Essential for Workflows?

From the user’s point of view, there are several important aspects existing in work-
flows as follow:

• How to describe the workflow and data?

• How to invoke the workflow?

• How to monitor the workflow?

To make it easy for a user to fulfill the above requirements, the following activities
should be handled well. Meanwhile, database technologies are well-suited to deal
with them.

• Workflow Description: As described in Section 2.2.1, many workflow systems
use a particular language or representation (usually in a low-level way) to
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describe a workflow. Such low-level description brings difficulties for users
when they want to develop and reuse jobs in the workflow. Database systems
support high-level declarative SQL queries. Programs in high-level languages
are easier to write, modify, and understand for a new person. Describing a
workflow with SQL queries can simplify its complexity by reducing the jobs in
the workflow. Usually, several MapReduce jobs can be easily expressed with
a single SQL query.

• Workflow Optimization: To maximize the efficiency and throughput of the
system, some optimizations on the job execution and data transfer are re-
quired. Meeting such requirements becomes more and more important as the
scale of a cluster increases. Databases have been solving the problem of opti-
mizing queries over distributed resources to minimize the overhead of network
and disk I/O and cpu time. In addition, a lot of works on the dynamic query
optimization are proposed. They adjust the query plan based on the feedback
from the execution of queries. Therefore, database technologies are well-suited
to optimize the execution of scientific workflows in distributed and dynamic
environments.

• Data Management: A workflow system must keep track of the origins of data
and their movements during the execution. In addition, it has to provide
the functionality of managing the replicas and consistency of data, and also
has to provide data recovery upon a failure. Databases can meet all these
requirements easily. The support of transactions keeps data consistency when
concurrent operations happen on data. Transaction-level fault tolerance also
keeps the consistency of data when a failure occurs.

• Concurrency Control: With the increase of the size of cluster and workload,
the interference between jobs being executing simultaneously increases. Thus
it is necessary to recognize and prevent such interference which has not been
solved adequately in workflow systems. Databases naturally deal with the
concurrent accesses at different level of granularity and data consistency. They
also provide different degrees of transaction consistencies.

• Query Capabilities: In addition to data from users, a large amounts of opera-
tional or cluster data are generated, including the status of machines and jobs
in the cluster, the information for file access and the usage of resources. Such
data are difficult to administer if they are stored in files. The tasks of manag-
ing a set of underlying resources, monitoring their status and diagnosing their
health could be simplified if all these catalog data are stored in databases and
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accessed by SQL queries. Databases also provide the security on data belong
to different users. A user is allowed to query on their personal data without
interfering the privacy of others.

2.4 Limitations in a Database for Workflows

• Non-straightforward Expression of Executables: One advantage of database
systems for workflows is the expressive high-level SQL query which can sim-
plify the description of workflows. While SQL queries can easily express tasks
such as selection, aggregation and join on relational data, they are gener-
ally difficult to express various individually developed executables. Many of
such executables are third-party components that have received a considerable
amount of development efforts from the community and usually developed in
various languages. As a workflow is typically built out of such executables,
integrating them into SQL statements is very important. Most databases
execute external modules in the form of user-defined functions or stored pro-
cedures. Thus, programmers who want to invoke such executables as part of
SQL statements have to write and compile them conforming to the strict spec-
ifications of databases, and are usually constrained in the language they can
use (e.g. C/C++/Java). It is obviously unreasonable for scientists to rewrite
their applications with a large number of such executables just to allow them
to be run by a database.

• Limited Performance in Executable Execution: Another general limitation of
parallel database systems is that they do not optimize data transfers between
data nodes and parallel clients that process large query results. A significant
work exists on minimizing IO costs and data transfers inside the execution
of an SQL query, but query results are all returned to a single client who
issued the query. When big results are returned to a single client and then
distributed to external programs for parallel execution, the single client can
easily become a bottleneck. Moreover, it prohibits us to take advantage of co-
allocating computing clients with data. In addition, as typical NLP programs
have high start-up overhead, invoking the executable on every single tuple for
most existing database systems would heavily degrade the overall performance.

• Ineffective Recovery for Long-running Jobs: As each job is expressed by a
SQL query and processed by the database system in parallel, failures that
occur during the execution of the query are handled by the database system.
Most existing database systems achieve fault tolerance by aborting unfinished
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queries upon a failure and restarting the entire query processing. This ap-
proach is reasonable for queries with OLTP workload as almost all transactions
must be completed within a small amount of time. However, this conventional
approach is not efficient for long running jobs in workflows because it is costly
to restart the query from the beginning as lots of work are lost.
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3.1 Large-scale Data Processing

3.1.1 Parallel DBMS VS. MapReduce

With the rapid growth of data, large-scale data analysis and processing is faced a
big challenge. MapReduce [32] and parallel database systems [36] are two popular
approaches for large-scale data processing.

The debates around MapReduce model and parallel DBMS never stop. At first,
David J. DeWitt and Michael Stonebraker published a blog article“MapReduce: A
major step backwards” in 2008 [37]. After that, two papers [82, 97] compared the
performance of these two approaches. [82] evaluated the performance of the open
source Hadoop [116], DBMS-X, and Vertica [111]. It tested these three systems by
several benchmark experiments. According to the results, Hadoop costs much less
time to load data into the specific file system. However it has poor performance in
query execution. Firstly, since data are not required to adhere a kind of schema, it



24 Chapter 3. Related Work

is impossible/hard to create index for raw data. Secondly, Hadoop bas inefficient
processing optimization strategy since the optimizer cannot take advantage of data
partitioning information.

Of course, Google people responded the debate and the comparison results
strongly in the paper [33] written by Jeffery Dean and Sanjay Ghemawat. In this
paper, they argue that there are three flaws in the comparison paper: (1) MapRe-
duce is independent with storage systems and can process data without first loading
it into a database. Hadoop can even load and execute queries in the same time that
it takes DBMS-X just to load; (2) There are alternatives to reading all of the in-
put data, for example, selecting files based on naming convention or use alternative
storage such as BigTable; (3)Many conclusions in the comparison paper were based
on implementation and evaluation shortcomings that are not fundamental to the
MapReduce model. In addition, they claimed that complicated transformations are
often easier to express in MapReduce than in SQL and fine-grained fault tolerance
is provided.

In conclusion, both approaches have their own goodness. MapReduce systems
are easy to use, fast to load data and support fine-grained fault tolerance. On the
other hand, parallel DBMSs support powerful declarative language (SQL) and have
better performance due to database technologies such as data partitioning, indexing
and query optimization. Then a nature idea is to integrate these two approaches
to obtain both advantages. In the following sections, we introduce works on the
hybrids of these two approaches.

3.1.2 MapReduce with Hive-level Languages

The MapReduce framework provides simple programming model that users only
need to code their own map and reduce functions for their applications. While it
is highly flexible in programming applications with this low-level hand coding, it
increases the difficulty in the debugging of programs [101] and adds extra burden to
the programming beginners [37]. Recently, many works are proposed to integrate
high-level languages with MapReduce. Firstly, simpler procedural languages are
built on top of MapReduce framework specifically Hadoop, such as Sawzall [83]
and Pig [44, 78]. However, they are more suitable for experienced analysts who
are familiar with a procedural programming style. Secondly, SQL-like declarative
languages are supported by MapReduce frameworks with optimizations to some
extent, such as Hive [106], Scope [15], HadoopDB [2], Tenzing [17], Cheetah [21]. As
analysis community is very comfortable with SQL, these systems are popular in this
field. While these languages significantly improve the productivity of MapReduce
programs, MapReduce programs automatically translated from many queries are
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often inefficient compared to programs that are manually optimized by experienced
programmers. Therefore, more sophisticated translators are proposed to produce
more efficient MapReduce programs [69, 49]. Finally, language extensions are built
on top of MapReduce frameworks. Such extensions usually have optimizers with
special purposes, such as FlumeJava [16] which builds large data-parallel pipelines
with relatively simple operations. DryadLINQ [120] provides such extension to
Dryad [62] which is another kind of distributed data processing model.

3.1.3 MapReduce with Database Technology

Another criticism for MapReduce frameworks is the slow task execution compared
to parallel database systems. [82] shows that parallel DBMSs significantly outper-
form MapReduce in a variety of tasks. The main reason for the inferior perfor-
mance of MapReduce is the lack of database technologies, such as data partition-
ing, data indexing and query optimization. Therefore, many works are focusing on
supporting such DBMS features in MapReduce frameworks. The most popular sys-
tem is HadoopDB [2], recently commercialized by Hadapt. The basic idea behind
HadoopDB is that it connects multiple single-node database systems (PostgreSQL
[85]) using Hadoop as the task coordinator and network communication layer. It
translates HiveQL into MapReduce jobs, some of which are pushed into a single
SQL query executed by PostgreSQL while others are executed by Hadoop. With
the advantages provided by PostgreSQL, the performance is improved a lot. Rather
than using a whole database, some works just integrate a specific database feature
with the core MapReduce framework [115, 113]. Hadoop++ [38] provides a non-
invasive, DBMS-independent indexing and join techniques to Hadoop to boost its
performance without changing its framework at all. Map-Reduce-Merge [22] sup-
ports relational algebra primitives and implements several join algorithms efficiently
by adding a Merge phase that merges data which has already been partitioned and
sorted by map and reduce functions.

3.1.4 Databases with MapReduce feature

Database systems, such as AsterData, GreenPlum, Vertica etc, are extended with
some MapReduce capabilities. Greenplum [52] transforms MapReduce code into a
query plan which can be executed by the SQL engine on its existing SQL tables.
Aster nCluster Database [3, 43] provides users with a procedural API (row and
partition methods like map and reduce methods in Hadoop) through which they
can implement a UDF in the language of their choice and parallelize the UDF by
a MapReduce framework. Teradata’s parallel DBMS [117] integrates Hadoop into
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its system by offering a fully parallel load utility to load Hadoop data to Teradata.
It also allows MapReduce programs to directly read Teradata data through JDBC
drivers without any external steps of exporting and loading data to Hadoop. A
similar work exists in Vertica [111] which provides VerticaInputFormat [112] imple-
mentation that also allows a MapReduce program to directly access data that is
stored in Vertica’s parallel DBMS, inspired by DBInputFormat [30]. In addition,
Osprey [118] implements MapReduce-style fault tolerance in a shared-nothing par-
allel Database. It divides queries into sub-queries to be executed by PostgreSQL
[85], and re-schedules a failed or slow sub-query to a different node which has the
replicated data. Similar to MapReduce, Osprey adopts the MapReduce-style load
balancing strategy of greedy assignment of work to solve the skew problem.

3.2 Data-intensive Workflows

Workflows are widely used in data-intensive scientific applications since they facil-
itate the composition of individual executables or scripts, providing an easy-to-use
parallelization to domain experts. In this section, we introduce some related works
on the general scientific workflows and integrating databases and MapReduce into
workflows.

3.2.1 Various Workflow Systems

The basic idea behind a workflow system is that a DAG of coarse-grained jobs with
their dependencies are maintained and jobs are executed when its dependencies are
met. There are various workflow systems shown in Table. 3.1 [103].

Swift [122] combines a scripting language SwiftScrip for the description of work-
flows and a runtime system for the efficient parallel execution of jobs in Grid en-
vironments. Pegasus [34] and DAGMan [26] can map the workflows to underlying
distributed resources efficiently. Both of them use directed acyclic graph (DAG) to
describe the workflow. Taverna [77], Triana [104], and Kepler [5] are three popular
workflows for scientific problems. They all provide GUI for the composition of work-
flows with boxes and connectors. The primary components are either web services
or Java classes adhering to specific conventions. Another three systems GXP make
[103], makeflow [121] and SGE qmake [87] adopt make to describe workflows. There
are another two workflow systems Business Process Execution Language (BPEL)
[67] and Yet Another Workflow Language (YAWL) [110] which are widely used by
the business community and not described in the Table. 3.1. Similar with Taverna,
the primary component of BPEL are Web Services. YAWL is designed with the
purpose of being a generic workflow tool to support all kinds of workflow patterns.
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Workflow Description Primary Component
Target

Environment
Swift [122] SwiftScript executable HPC
Dryad [62] C++ executable HPC
Xcrypt [57] Perl dialect executable HPC

Hadoop [116] N/A (fixed) Java class HPC
Taverna [77] GUI Web Service WWW
Triana [104] GUI Java class LCS
Kepler [5] GUI Java class LCS

Pwrake [102] Rake executable HPC
GXP make [103] make executable HPC
makeflow [121] make-like executable LCS
SGE qmake [87] make executable HPC
DAGMan [26] static DAG executable LCS
Pegasus [34] static DAG executable LCS

Table 3.1: Various Workflow Systems [103]

As ParaLite aims to express executables in workflows within SQL queries and
provide efficient parallel execution for them, we choose GXP make as our workflow
engine. Thus, jobs in workflows are presented by SQL queries while the dependencies
are described by Make.

3.2.2 Integrating Databases and Workflows

While there is a critical need for workflow systems to manage scientific applications
and data and database technology is well-suited to deal with some specific aspects of
workflow management, several workflow management systems each of which utilizes
database technology to some extent, such as GridDB [70], Zoo [61] and Kepler
[5], have been proposed to provide functionality such as simplifying the description
of a workflow with SQL queries, improving the performance of the execution and
facilitating the management of data.

Some solutions for business workflows focus on the control flow among processes
such as active databases [28], relational transducers [1] and enhanced datalog [10].
As scientific jobs are typical long-running and resource-intensive, it is essential to
efficiently manage the data-flow. Besides, it is necessary to have sophisticated tools
to query and visualize the data. Zoo [61], a desktop experiment management envi-
ronment built on top of Horse OODBMS, is developed for this purpose. It models
the dependencies (relationships) between jobs, input and output data using the
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object-oriented language Moose. Job is invoked based on the assigned rules on
these relationships. It also provides various workflow auditing capabilities which
allow users to use Fox query language to query the state of the database.

GridDB [70] models the inputs and outputs of programs as relational tables. It
allows users to define programs and the dependencies between their inputs and out-
puts with a functional data modeling language (FDM). The execution of programs
in the workflow is triggered by the change of the input tables such as insertion of
tuples. [75] is another work related to the execution of scientific programs. The
work demonstrated the advantages of modern DBMSs such as data indexing, query
parallelization and efficient joins by the cluster-finding example from the Sloan Dig-
ital Sky Survey. It obtained several times better performance with a database
(Microsoft’s SQL Server [92]) than previous approach. The work involves invoking
program modules from SQL statements which is usually in the form of User-defined
Functions (UDF) or stored procedures. As most databases cannot execute executa-
bles directly, users who want to invoke such modules as part of SQL statements have
to conform to the database specifications while coding and compiling them. They
usually have to write them in limited languages (C, C++ and Java). Thus, scien-
tists may face problems in rewriting their applications to run them in a database.
Our work falls into this group and concentrates on the expression of jobs in a work-
flow by SQL queries. Furthermore, it solves the problem of rewriting applications
conforming to strict database specifications existing in [75].

While above systems utilize database technology to some extent, [90] provides
a tight coupling between data manipulations with databases and workflow manage-
ments. It models workflows using a language that is tightly integrated with SQL.
Scientific programs in a workflow are associated with active tables or views. The
data products are defined in the format of relational tables and the programs are
invoked from SQL statements.

3.2.3 Using MapReduce in Workflows

Due to the simple programming model and good scalability across hundreds com-
modity machines of MapReduce [32] and its open-source implementation Hadoop
[116], more and more efforts are made to enable or utilize them in scientific work-
flows.

Firstly, MapReduce or similar programming models are supported in scientific
workflow systems. [42] proposes a MapReduce-enabled scientific workflow composi-
tion framework. It designs a set of dataflow constructs, such as Map, Reduce, Loop,
and Conditional, and their composition semantics and supports the MapReduce-
style parallelization of jobs. Martlet [48] introduces a programming model that
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abstracts the parallelization of the computation with foldr, foldl, and tree func-
tional programming constructs. With these constructs, Martlet is able to extract
the complexity of creating parallel processes over underlying distributed data and
computing resources, releasing the burden for users from the parallelization imple-
mentation.

Then, Hadoop is started to be integrated into workflow systems (e.g. Cascading
[14] and Oozie [80]). Oozie [80], an open source workflow system from Yahoo!, is
designed specifically for MapReduce (Hadoop) jobs. It organizes MapReduce jobs
with action nodes in DAGs and the dependencies between them are represented by
the dependencies in DAGs. The functions for flow control in Oozie can be completed
by the decision nodes such as fork and join. [123] proposes a strategy to transform
XML data processing pipelines to a set of MapReduce jobs which are executed by
Hadoop for efficient execution. MRGIS [20] proposes a parallel computing platform
based on Hadoop to efficiently execute script-based geoinformatics applications. The
Kepler scientific workflow system supports MapReduce workflow composition and
management [114]. It provides a general MapReduce actor where Map/Reduce
functions are easily expressed by sub-workflows which can be executed in Hadoop.
[74] proposes a workflow system to integrate orchestrating MapReduce jobs and
structure for data-intensive workflows. It provides C++ API to create DAG, where
each job dispatched to Hadoop for parallel execution by a job scheduler. Nova [79] is
a continuous workflows on top of Pig [44] for stateful incremental processing. Each
module in a workflow is written in Pig Latin [78] and executed on Hadoop.

3.3 Integration of External Executable

To allow integration of data processing methods into query execution plans, rela-
tional database systems support user-defined functions (UDF) [94, 13, 95] which
are longstanding database features for database extensibility. There are significant
research focusing on efficiently using UDFs within database queries in terms of both
optimization and execution, such as [19, 55, 56]. However, most of their work in
the context of single-node database systems rather than parallel databases for the
parallel execution.

There are some works related to the parallelization of user-defined aggregates,
table operators [25] and scalar functions [64]. By specifying local and global fi-
nalize functions, conventional user-defined aggregates can be executed in parallel
[64]. Furthermore, [25] proposes user-defined table operators which use relations as
both input and output. The idea of a user-defined table function is supported in
most commercial databases including [81, 25, 29]. To enable parallelism and tell the
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system the usable of the operator, user-defined table operators require the user to
specify a partitioning method , which is inconvenient for the user. Besides, they lack
flexibility in input/output formats, development language and reusability of code
[64, 65].

On the other hand, MapReduce framework with its most popular implementation
Hadoop [116] provides the user procedural API (Map and Reduce functions) to
customize their own processing logic. However, it requires programming in relatively
low-level languages (most commonly C++ or Java) even for very straightforward
tasks that would be trivial in SQL. Integrating third-party binaries and ad-hoc
scripts need similar efforts just to wrap them. In addition, Hadoop programs are
often slower than equivalent SQL queries because the former lack data indexing and
require multiple MapReduce jobs each accessing files for intermediate results.

Therefore, many hybrids of relational databases and MapReduce have been pro-
posed. SQL/MapReduce [43], a part of Aster nCluster Database, proposes an ap-
proach to polymorphic user-defined functions providing users with a procedural API
(row and partition methods like map and reduce methods in Hadoop) through which
they can implement a UDF in the language of their choice. These user-defined meth-
ods are parallelized by MapReduce. However, the user still needs to write programs
conforming to database APIs and thus cannot directly use existing file-based ap-
plications. Hive [106] and Pig [44] add SQL-like functions to MapReduce model,
but with a syntax different from SQL. Hive supports queries expressed in a SQL-like
declarative language, HiveQL, which are compiled into map-reduce jobs executed on
Hadoop. It allows the user to embed custom scripts (mapper and reducer) written in
any language. It assumes they read/write data from/to their standard input/out-
puts and does not accommodate programs that insist on reading data from files.
Pig also offers a high-level data manipulation language, which can be assembled
in an explicit data flow and interacted with custom MapReduce-style executables.
Pig introduces a significant change in its syntax. HadoopDB [2] connects multiple
single-node database systems (PostgreSQL [85]) using Hadoop as the task coordina-
tor and network communication layer. The performance is improved a lot but the
interface still has limitations since the query planner extended Hive.

3.4 Fault Tolerance

Most of commercial parallel database systems [81, 111, 52, 73] provide fault-tolerance
through replication [47, 8, 24, 59]. As they cannot handle the intra-query fault
tolerance, if a failure occurs during a long running query, the entire query must be
aborted and restarted from the beginning. Such transaction-level fault tolerance
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[50] is reasonable for queries with OLTP workload as almost all transactions must
be completed within a small amount of time. However, for long-running queries of
OLAP workloads, it is costly to restart the query from the beginning as lots of work
are lost.

To efficiently recovery a long-running query from the middle of the execution,
some researches on intra-query fault tolerance are given. FTOpt [108] provides a
intra-query fault tolerance framework which enables the mixing and matching of dif-
ferent fault-tolerance techniques in a single pipelined query plan. However, FTOpt
focuses on non-blocking query plans, where data are pipelined from one operator
to the next, producing results incrementally. In this case, they assume that aggre-
gation operators, if any, appear only at the top of a plan. Besides, FTOpt uses
a brute-force algorithm to enumerate through the search space to get an optimal
combinations of fault-tolerance strategies. For a given query plan with n operators,
the algorithm runs in at least O(3n) time. Another work, Osprey [118], provides the
ability to detect and recover from failures (or slow nodes) in long-running queries. It
divides queries into sub-queries to be executed by PostgreSQL [85], and re-schedules
a sub-query which failed or progresses too slowly to a different node based on data
replication. Similar to MapReduce, Osprey adopts the MapReduce-style load bal-
ancing strategy of greedy assignment of work to solve the skew problem. However,
Osprey is designed for data-warehouse applications in which tables are arranged in a
star schema and it cannot support many other queries such as non-star joins, nested
queries. On the other hand, ParaLite is designed for more general queries.

In contrast to parallel database systems, MapReduce model [32, 116, 106, 2, 44]
provides fine-grained fault tolerance by storing all intermediate results to a durable
storage before making further progresses. As a result, the Map/Reduce jobs running
on a failed worker are rescheduled on another worker, allowing that task to complete
without restarting. However, this naive strategy is not always efficient especially for
short to middle running jobs. To improve the performance, recent work [23] intro-
duced the ability to partly pipeline data in Hadoop. Another popular lower-level
computing platform, Dryad [62], is proposed by Microsoft for data-parallel appli-
cations which organized as a data-flow graph with arbitrary computational vertices
and communication edges. Hyracks [11] built on top of Dryad allows users to ex-
press a computation as a DAG of data operators and connectors. Operators operate
on partitions of input data and produce partitions of output data, while connectors
repartition the output of operators to make the newly produced partitions available
at the consuming operators. Hyracks is trying to explore a more selective fault-
tolerance than the naive strategy in Hadoop to achieve the same degree of fault
tolerance while doing less work along the way. However, by the time of the publi-
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cation of this paper, Hyracks just simply restarts all operators in the same pipeline
path with the failed one since data are pipelined between different operators.

3.5 Our Goal

While database systems meet the critical requirement for workflows to efficiently
manage scientific data, our goal is to built workflows on top of a parallel database
system ParaLite as shown in Table. 3.2. Firstly, ParaLite inherits all advantages of
conventional database systems for workflows. All data are stored as relational ta-
bles, enabling easily indexing on data and efficiently analysis of data. Jobs are repre-
sented by simple but powerful SQL queries, simpling the description of the workflow.
Apparently, it should provide high performance for the execution of workflows by
taking advantage of database technologies, such as data partitioning, data indexing
and query optimizations. Secondly, as each job is a typical individually developed
executable, ParaLite is able to provide straightforward expression within a SQL
query for such executable. Finally, for long-running jobs, similar with MapReduce,
ParaLite can support fine-grained fault tolerance, enabling the recovery from the
middle of the execution rather than the beginning to reduce the overall completion
time once a failure occurs.

File-
based workflow

MapReduce-
based workflow

Database-
based workflow

ParaLite-
based workflow

Data Storage File System HDFS Database Database

Description Low-level Low-level
High-level

(SQL)
High-level

(SQL)
Express

executables
Easy Difficult Difficult Easy

Performance Hard to tuning
Worse

than database
High High

Fault
Tolerance

Workflow-level Fine-grained
Transactional-

level
Fine-grained

Table 3.2: The Goal of ParaLite
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4.1 Architecture

ParaLite is a shared-nothing parallel database system based on a popular single-node
database SQLite [93]. The basic idea of ParaLite is to provide a coordination layer
to glue many SQLite instances together, and parallelize an SQL query across them.
The architecture of our system is shown in Fig 4.1. It uses classic master/worker
pattern to organize resources. ParaLite is designed to be a serverless and zero-
configuration system, so no process is running before a query is executed. ParaLite
has multiple clients which present an SQL interface to users and allows a group of
queries to be submitted at the same time.

The master is responsible for transforming received queries into the logical plan
(a DAG of operators) which is the key structure to connect each logical component,
creating processes for operators on data nodes and scheduling and dispatching jobs
to corresponding processes. Data are transferred among data nodes and computing
clients, thus the master works only for the controlling decisions and is not a bottle-
neck for any data transfer. Each process on a data node receives data from another,
handles them using its own processing logic (e.g. join, sort and aggregate) and sends
the output data to the next process. The root operator in the logical plan returns
results to the clients.
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Figure 4.1: Architecture of ParaLite

4.2 Data Model

For a cluster of n nodes, a relation is divided into n partitions either in round-
robin fashion or hash fashion. Each partition is then segmented into chunks using
the same fashion with first-level partitioning on each node and stored in SQLite
database. For instance, relation A is partitioned on attribute A.a and relation B is
partitioned on attribute B.b using the same hash function with A. Then the records
from both relations whose values of attributes A.a and B.b must fall into the same
chunk. As a chunk is presented as a single database file of SQLite, a join operation
can be simply finished by issuing a query to the database.

Chunks are replicated once using Interleaved Declustering which works as
follows:
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Figure 4.2: Data Model
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The whole cluster is divided into several sub-clusters, each of size N , e.g., in
Fig 4.2, N = 4. Each node has multiple chunks and chunk is the smallest unit for a
relation, which means that once a chunk is created, it cannot be divided further. At
all times two copies of a chunk exist, called primary copy and backup copy and both
copies are located on the same sub-cluster. For each node, all primary chunks reside
locally and the backup copies for them are stored on the remaining N − 1 nodes
respectively. Once a node fails, for instance of node 1 in Fig 4.2, the system reads
data from the surviving N −1 nodes. Obviously, the load is best balanced when the
number of chunks on each node (denoted by M) is times of sub-cluster size N minus
one, that is, M = k× (N − 1). The larger the sub-cluster size N , the smaller is the
imbalance in the workload in case of node failure. However, as the sub-cluster size
increases, so does the probability of two failures in the same sub-cluster. Failures of
two nodes in the same sub-cluster lead to data unavailability. Therefore, we should
set the size of sub-cluster according to the structure of the physical resources.

4.3 Query Model

A query is expressed by a DAG (query plan) of relational operators, such as selection,
join, aggregation, each of which forwards data tuples to the next operator.

The transformation occurs along with the following chain:
(1) Syntax Parser: It translates a query into a abstract syntax tree consisted of
keyword tokens based on SQL grammar. At the same time, it analyzes the query
semantically through the interaction with information center which stores informa-
tion about data partitioning, table attributes, resource usage situation and so on.
(2) Logical Planner: It transforms the syntax tree to logical plan composed of rela-
tional operators. Each operator is an executable or a sub-query.
(3) Plan Optimizer: It re-constructs the query plan to be more efficient based on
the following rules.

• WHERE-RULE: Filter (where) operator applies some arithmetic calculation
to data and gets the satisfied data. In most of the cases, it reduces a large
amount of data. Hence, we push these where operators as close as possible to
data to reduce the data transfer.

• SPLIT-RULE: We cannot directly send the SQL query to each worker to
execute due to the join and group operators. For example, if the key to be
joined is different from the data partitioned key, we surely cannot get correct
results. So SPLIT-RULE is used for join and group operators to repartition the
data based on appropriate keys. Two special operators, splitter and merger,



36 Chapter 4. System Design

are inserted into logical plan before each join and group operator. Splitter is
responsible for splitting the output of an operator into several stream based
on the join key while merger merges the several input streams before the next
operator executes.

• SUB-SQL-RULE: As ParaLite stores data in SQLite databases, it uses SQL
query to access data. To take advantage of database technologies of SQLite,
e.g. indexing and query optimization, we push as much operations as possible
into the query to the underlying SQLite. We retrieve the logical plan from
bottom to up and put all operators into a single SQL until a splitter operator
encounters.

For example, the query plan of Query 3 of TPC-H benchmark [107] is shown in
Fig 4.3. As data are always accessed by SQLite, the leaf nodes of the plan are sub-
query operators which read relations using corresponding predicates and produce a
row-and-column subset of the relational table. For example, the operator S7 reads
data from relation Orders with the query:

select orderdate, shippriority, custkey, orderkey
from Orders where orderdate < ’1995-10-11 ’

Operators J3 and J4 join two relations or counterparts. The output from J3 is
then aggregated and sorted. Specially, some operators can be integrated into a single
query if no repartitioning operations are needed. For example, if relations Customer
and Orders are both hash-partitioned across data nodes by the join attribute, J4,
S6 and S7 can be integrated into a single query:

select O.orderdate, O.shippriority, O.orderkey
from Orders O, Customer C
where O.orderdate < ’1995-10-11’and C.mktsegment = ’AUTOMOBILE’
and C.custkey = O.custkey

Each operator is either a pipeline operator, which can process each tuple inde-
pendently without the knowledge of all tuples, or a blocking operator which must
receive all tuples before emitting the result, e.g, an aggregation operator and a sort-
ing operator. For hash joins, we need to have all tuples from at least one table
to build the hash table for it. Then we could in principle emit outputs as tuples
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O1: Order 

G2: Group 

J3: Join (L, O) 

J4: Join (C, O) 

S6: Sub-query (C) S7: Sub-query (O)

S5: Sub-query (L) 

select 
   L.orderkey,
   sum(L.extendedprice * (1 - L.discount)) as revenue,
   O.orderdate, O.shippriority
from
   Customer C, Orders O, LineItem L
where
   C.mktsegment = ’AUTOMOBILE’
   and C.custkey = O.custkey
   and L.orderkey = O.orderkey
   and O.orderdate < ’1995-10-11’
   and L.shipdate > ’1995-10-11’
group by
   L.orderkey, O.orderdate, O.shippriority
order by
   revenue DECS, O.orderdate

Figure 4.3: A Logical Plan for TPC-H Query 3

from the other table are coming. To simplify the implementation, we consider a join
operator as a blocking operator in our work.

Each operator is split into multiple logical tasks and assigned to a set of pro-
cessors. The number of tasks is determined by the number of partitions for the
input tuples of the operator and is usually much larger than the number of assigned
processors. If an operator’s successor is a pipeline operator, it forwards the output
tuples of each task to the its successor as soon as the task is finished. The target
processor is chosen based on its processing capacity in terms of estimated runtime.
For an operator whose successor is a blocking operator, it holds all output data on
memory until it reaches a threshold, at which point it writes them into an inter-
mediate file. Tasks of a blocking operator is scheduled to processors using a greedy
algorithm to balance the load across all processors. Once a processor becomes idle,
a task is allocated to the processor.

4.4 Execution Flow

The straightforward execution flow of performing a query in ParaLite is shown in
Fig. 4.4. Once a query is issued, it is executed through 4 stages as follows:

• Master Creation. As ParaLite aims to be a serverless system, the master is
started after a query is issued. ParaLite allows multiple clients to issue queries
at the same time. Thus the problem is how to decide a client who is responsible
for starting the master and then to let all other clients know the information
of the master. ParaLite provides several methods to exchange the information
between clients. For users who develop their applications on a shared file
system, a database or a file that shared by all clients with exclusion write
operation is helpful. If no shared file system is used, users can directly specify
the address and port information of the master. The information including
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compute client

(2) Plan Preparing
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     - process data
     - transfer data

(4) Results Aggregation

Figure 4.4: The Execution Flow for a Query

the path of the shared database and file and address of the master is specified
within a SQL query with a unified interface.

• Plan Preparing. Each client registers the query to the master after it is started.
The master collects the clients information and transforms the query into a
logical plan of operators each of which is an executable. The master spawns
all related executables based on the logical plan. For general SQL operators
such as join, aggregation and selection, their processes run on the data nodes
while the processes for the user-defined executables introduced in Section 5.1
are started on computing clients. Then the master splits each operator into a
set of logical tasks (the number of tasks can be specified by the user) which
are scheduled to corresponding processes according to the dependencies of
operators in the logical plan, using a greedy manner.

• Plan Execution. Each operator process presents a channel through a TCP
pipe for receiving the control message from the master and tuples from other
processes. After processing received data, the process forwards the result
tuples to another process. The result tuples are split with respect to the
number of tasks assigned to operators. For example, if a join operator J1

has N tasks, the output tuples of its children operators are partitioned by
N chunks. Specially, for the sub-query operator, it has the tasks as many as
all chunks that the original data for the related table is partitioned to. Each
process handles a task at a time. If the operator is decided to be checkpointed,
the result tuples are written to the local files. After all tasks are finished, all
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processes are destroyed.

• Results Aggregation. The output tuples from the top operator of the logical
plan are sent to the clients who issue the queries. If only one client exists,
the results are aggregated and returned to it. If there are multiple clients, the
results are distributed to them randomly.

4.5 Easy-to-use Features

ParaLite is designed to be a lightweight system which provides easy-to-use features
to users:

• Server-less: There is no daemon started before queries’ execution. ParaLite
inherits this feature of the underlying SQLite database system. All processes
are spawned according to the logical plan of the query and destructed after
the query is finished.

• Zero-configuration: Necessary configurations, such as the addresses of the mas-
ter nodes and data nodes, are specified within a query. ParaLite also provides
some performance tuning configurations, such as the PRAGMA statement
which is used to modify the operation of the SQLite library or to query the
SQLite library for internal intermediate data, the number of processes for each
operator and the size of a block that is executed by an executable at a time
(described in Section 5). The user can specify all these options in a configura-
tion file or leave them as default. ParaLite assigns these parameters with the
best values by default.

• Fast job start-up: Although spawning all related processes after receiving the
query takes more time than keeping them running for the time, this overhead
is much smaller than that in Hadoop.

• Independent database files: The data files behind ParaLite are a set of SQLite
database files. As SQLite stores a database into a single file, it is easy to
manage database files, such as replicating and migrating. It is also conve-
nient to port SQLite databases to ParaLite databases simply by updating the
metadata information of ParaLite.

4.6 Workflows with ParaLite

ParaLite aims to facilitate the description of workflows with SQL queries and the
management of data. As Fig. 4.5 shows, to develop a workflow on top of ParaLite,
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the input data are firstly loaded into ParaLite as relational tables, and then each job
expressed with SQL query performs corresponding computations on related tables
and creates another table to store its output data.

T0

Data stored in file

input output

Data stored as relational table

job (typical executable)

Pipeline

Broadcast Reduce

J7

Figure 4.5: An Example of Workflow on top of ParaLite

Firstly, SQL queries are well-suited to describe workflows for the common data
access patterns:

• Pipeline: It is a chain of a set of jobs where the output of one job is the
input of the next job. The pipeline pattern could be expressed with either
multiple queries (each job is expressed with a single query) or a single query
which contains a chained UDXes (introduced in the next chapter) if each job
is an executable. While the former method provides independent view of the
execution of each job, it has to store the output of each job into the database,
wasting much time on the data loading process. The latter executes jobs and
data are pipelined from one to another.

• Broadcast: A single input is processed by a number of jobs at the same time.
The broadcast pattern is easily expressed with several queries that retrieve
the same relational table.

• Reduce: The input for a single job is produced by multiple different jobs. For
example, a job checks the results of previous jobs for a convergence criterion,
and a job that calculates the summary statistics from the output of multiple
jobs. An executable working on joined data from several input tables is enough
for the Reduce pattern.

Secondly, it is natural to simplify the management of data including all inter-
mediate data with ParaLite. It supports indexing on data, making selection of a
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subset of data efficient. This feature is especially useful for many natural language
processing applications which end with a search engine on indexed data, e.g. the
MEDLINE to MEDIE Indexing workflow [71] which creates indexing database for
a running search engine called MEDIE.

Finally, ParaLite provides transparent parallelization of jobs and improves the
performance of the workflow: 1), data are naturally partitioned on many data nodes
eliminating explicit big file split; 2), typical SQL tasks such as selection, join and
aggregation are processed by a set of data nodes in parallel; 3) with support of
UDX and collective query, ParaLite provides transparent parallelization of UDX
across multiple computing clients with optimized data transfer from data sources to
clients. The performance is easily tuned by specifying different block size based on
the characteristic of the executable.
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5.1 User-defined Executable(UDX)

As the intended applications for ParaLite are workflows typically built out of various
independently developed executables and scripts, ParaLite extends SQL to support
arbitrary executable called User-Defined Executable (UDX).

5.1.1 Syntax of UDX

A ParaLite UDX is an executable file which can be written in any language. This is
very flexible because a user does not need to develop a program respecting to rigid
formatting rules such as <key, value> input/output format or write code according
to pre-defined procedural methods. User can use arbitrary format of input and
output and any programming language to implement their functions. The only
condition is just to make sure the program is executable. This has been very useful
for data-intensive science computations such as a linear algebra package for solving
linear equations and a natural language processing library. In these applications,
most functions are developed by domain experts and then reused by others on diverse
workflows. ParaLite programs allow such functions to be reused without changing
any code.
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The syntax of UDX shown below is similar to that of traditional User-Defined
Function. Firstly, the name of an UDX could be a random string e.g X in the exam-
ple. Secondly, an UDX can work on and produce arbitrary columns. It extends AS
syntax a little bit so that multiple columns are allowed to be the output of a UDX
by using “AS (col1, col2,...)”. Finally, the definition of an UDX provides flexible in-
put/output format with a set of options such as, input, input_row_delimiter, output
and out_row_delimiter. The options related to input allow the system to correctly
extract and organize data for the executable while output-related options tell the
system how to parse the output of the executable and store them in a relational
table. Specially, input and output options can specify that the input/output for the
executable comes/goes from/to the standard input/output or files. This ability is
especially useful for file-based programs commonly existed in NLP applications. In
addition, to avoid create and compile an UDX before the query is executed, Par-
aLite allows users to define it within the query using WITH clause. It starts from
a command line followed by data format options mentioned above.

select col1, X(col2) as new_col2
from T
where <predicate1, predicate2, ...>
with X = "command_line"

5.1.2 Examples

In this section, we take some examples to elaborate the usage of UDX. First of all,
let’s define the schema for a table DOCUMENT:

paper_id | title | author | year | text

• Grep Task

Grep task is considered as a typical MapReduce task which scans through a
large set of records looking for a three-character pattern. This task can be
expressed by a simple SQL query:

select * from DOCUMENT where text like ’%XYZ%’

It is also easily performed by a query with shell scrip command "grep" as a
UDX:

select F(text) from DOCUMENT with F = "grep XYZ"
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All data of column text retrieved from table DOCUMENT is processed by the
UDX grep XYZ and the filtered data are returned.

• Word Count Task

Word count task is also a typical MapReduce task[32] to count the number of
occurrences of words in a large collection of documents. This task processes a
document table in which a single row is a single document with its descriptions
and generates a word table in which a single row is a word with its occurrences.
While this task could be easily expressed by MapReduce researcher with a Map
and a Reduce job, there is no easy way to perform it in database community
unless the big text could be split into words. With UDX, it is straightforward
to integrate text splitter into general group by SQL task to calculate the count
for each word.

select word, count(*) from (
select F(text) as word from DOCUMENT
with F = "awk ’{for(i=1;i<=NF;i++) print $i}’"

)
group by word

Column text is a long article split into independent words by an awk command
in the nested SQL. The occurrences for each word is simply counted by group-
ing words from the output of the nested query. The command awk reads data
from standard input and writes results to standard output.

• Sentence Split Task

The sentence split task is to split a big text into sentences and it is normally the
first step of almost all text-processing applications. It involves a third-party
binary geniass[45] developed by domain researchers which reads a text from
file, splits it into sentences by inserting line breaks between sentences within a
paragraph and empty lines before the sentence from another paragraph, and
finally outputs the sentences to a file.

select paper_id, F(text) as sentence
from DOCUMENT
with F = "geniass" input ’src_file’ output ’dest_file’

output_row_delimiter EMPTY_LINE
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In the query above, the user needs to specify the input and output for the
executable to be a file. This is different from the word count task in which
the executable reads/writes data from/to the standard input/output. Besides,
if the option output_record_delimiter is empty line, it means that all results
between two empty lines belong to a single record. So the results for the query
is as follow:

paper1 | sentence1
sentence2

--------------------------
paper2 | sentence1

sentence2
-------------------------

...

Each result record has two columns of paper_id and sentence. The second
column contains multiple sentences separated by line breaks. By setting the
output_record_delimiter option to be NEW_LINE as described below, each
line of the result from the executable becomes a single record.

select paper_id, F(text) as sentence
from DOCUMENT
with F = "geniass" input ’src_file’ output ’dest_file’

output_row_delimiter NEW_LINE
output_record_delimiter EMPTY_LINE

The query above produces a result table still with the two columns. However,
the second column of each record only contains one sentence.

paper1 | sentence1
--------------------------

paper1 | sentence2
--------------------------

paper2 | sentence1
--------------------------

paper2 | sentence2
--------------------------

...
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Now, we write another program geniass_wrap which reads text from standard
input and writes sentences with its ID (separated by ’\t’) to the standard
output. So a user should specify the output_col_delimiter to let database
system know how to convert data into the right schema as described in the
following query.

select paper_id, F(text) as (SID, sentence)
from DOCUMENT
with F = "geniass_wrap" output_col_delimiter ’\t’

output_record_delimiter EMPTY_LINE

As a result, the query returns tuples with three attrbutes: paper_id, sen-
tence_id and sentence.

paper1 | 1 | sentence1
-------------------------------

paper1 | 2 | sentence2
-------------------------------

paper2 | 1 | sentence1
-------------------------------

paper2 | 2 | sentence2
-------------------------------

• Sentence Parser Task

Sentence Parser Task is to get the relationship between each word using a
NLP tool enju[39] which is a fast, accurate, and deep parser for English texts.
The task firstly splits the text into sentences using geniass and then applies
enju program to each sentence. This simple workflow can be expressed with
two nested UDXes as follow.

select E(F(text)) as enju_result
from DOCUMENT
with F = "geniass" input ’src_file’ output ’dest_file’

E = "enju" output_row_delimiter EMPTY_LINE
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As the output format of geniass is the same with that of the input of enju,
the specifications of them can be ignored in their definitions. The outer UDX
enju tells the system that the result records are separated by empty line with
the corresponding option. Each of the result records only has one column
enju_result with multiple lines.

5.2 Execution Model of UDX

UDX1

UDX2

Data Blocks
(Database format)

Data Blocks
(UDX2 format)

Figure 5.1: The Execution Model of UDX

An instance is initiated for a program when a client issues a collective query.
As Fig. 5.1 shows, inside the instance, the execution of the executable uses an
event-based programming style. Each instance has an incoming queue for storing
the received blocks of data (splitting data into blocks is introduced in Section 5.3.2).
In our execution model, only one thread is assigned to each incoming queue because
the main work of the thread is to spawn a process for the execution of the executable.
We assume that the user controls the parallelism degree in terms of the number of
computing clients based on their knowledge of the characteristic of the executable.
The instance has to publish a method to receive data using a pipe, sockets or files.
Once a block of data is pushed into incoming queue and no thread is running for
this instance, the instance starts to process the block using the executable in a new
thread. It firstly transforms the data into the correct input format of the executable
based on the output-related options of its previous executable (or the data format
in the database) and the input-related options in its definition. The converted input
is then fed to the executable either from standard input or a target file. After the
execution, the results are pushed to the outgoing queue of this instance which is
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also an incoming queue of its successor instance if it exists. Besides, since data are
sent to the instance based on the processing state dynamically, the instance is able
to obtain the real-time execution status of the program.

If a query has nested UDXes, ParaLite supports the pipelined executions of
multiple executables also as Fig. 5.1 shows. After a data block is processed by the
first instance, the result data are pushed to its outgoing queue or the incoming queue
of the next instance, triggering the execution of the next executable. Meanwhile, the
first instance continues to obtain and then process the next block without waiting
for the all other executables to complete the previous block.

5.3 Parallel Execution of UDX

5.3.1 Concept of Collective query

To understand collective query better, we first give a brief review of parallel database
systems.

A parallel database system provides the same functionality as a centralized
DBMS with the ability of transparently distributing data across nodes and par-
allelizing queries. It typically consists of a single master node and multiple data
nodes. A master is responsible for receiving a query from a client, converting the
query to a parallel execution plan, scheduling the plan to worker nodes, and assem-
bling the individual “pieces” of the final results up into a single result set to the
client. As such, the master node hides the distributed nature of the system and
presents users a single system image. Data nodes provide the data storage and the
query processing backbone of the appliance. All permanent data are partitioned and
stored on each data node. All queries, therefore, must access data stored in DBMS
on some (or all) of the data nodes. A data node is responsible for processing one
or more steps of the execution plan. The intermediate result data are transferred
among them directly without passing them to the master node.

Let us assume a user wants to apply a parallel processing on the data accessed
from a parallel database such as loading the data into another system (e.g. MapRe-
duce system) or performing a further analysis which cannot be expressed within
a SQL query. In this case, a traditional approach is that a user issues a query,
gets all result data from the database system and then distributes them to multiple
clients who perform the further processing on the result data in parallel. As Fig.
5.2 shows, in a parallel database system, data are firstly partitioned across multiple
data nodes. After receiving a query from a client, all result data are integrated and
returned to the single client. Then to enable the parallel processing on the result
data, the client distributes them across multiple computing clients.
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Figure 5.2: Data Transfer in Conventional Parallel DBMS

Obviously, the single query issuer can easily become a bottleneck. Moreover, as
the approach prohibits us to take the advantage of co-allocating computing clients
with data in the database, data transfer probably brings much unnecessary overhead
to the overall execution. For example, if the computing clients are located on the
same physical data nodes, it is straightforward and efficient that each client gets
data locally from the corresponding data node, instead of integrating data from
data nodes first and then distributing them to the same nodes again.

Hence, to solve this problem, we propose the concept of collective query to take
advantage of co-allocation of parallel compute clients and data sources. A collective
query is a single query issued by many clients who collectively receive the results of
the query. As Fig. 5.3 shows, a set of clients issue the same query to the database
system. They just notify the system to get a part of data and don’t care about
what exact data they will obtain. The system performs the query received from the
clients and distributes the result to them. As the system knows the destinations of
the result in advance, it allows the data transfer directly from the data nodes to the
clients without passing through the master. In this case, data are not required to be
integrated first and distributed later. The best situation is that when a computing
client is running on each data node and data are already balanced among them, no
data are transferred between nodes at all and each client gets data locally from the
data node the client is running on.

ParaLite uses the concept of collective query for the parallelization of executa-
bles. The query issued by multiple clients contains one or more UDX(es). The
results of the query are distributed to the clients and then processed by them in
parallel, using the executables defined in the query.
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5.3.2 Data Distribution

The key issue for collective query is to efficiently distribute data to clients from
data nodes. The result data are always stored in multiple nodes, thus, a more
general problem setting should be that given data on N data nodes and m clients,
to determine which data should go to which client. In data intensive applications, a
client may perform a significant amount of computation, therefore, ParaLite should
consider not only communication cost but also computation cost.

ParaLite implements two-phased DLLB (Data Locality with taking Load Bal-
ance into consideration) algorithm to solve the problem. The first phase in the
algorithm is to generate tasks on each data node by splitting data into small blocks.
Each block size is denoted by bsize. A block is the smallest unit that is transferred
to a computing client at a time and a process of the executable is spawned for a
block of data. Invoking a process on a block of data rather than a single tuple
reduces the start-up overhead a lot for most NLP programs.

Once splitting is complete and execution has begun, we enter the load-balancing
phase. When a client i on the node A becomes idle, a task (block) must be trans-
ferred to it from some data node. Our goal is to balance load across all clients but
with the smallest data transfer cost. Thus, the target data node T should be:

(1) node A, if A is a data node, or,
(2) node B, who has the maximum expected completion time:

B = argmax
J

ECTJ

ECT is an expected completion time as measure of the load of a node. ECT of a
data node J relies on the total data and clients it holds and can be calculated as



52 Chapter 5. Integration of Executable

(assuming c clients are running on it):

ECTJ = lsizeJ/
c∑

i=1

si +maxci=1(bsize/si − stimei)

lsizeJ : the size of left (unassigned) data on data node J

si: the speed of client i

stimei: the time for client i starting to process a task
The speed of each client is initiated as a random number. The ECT should

be infinite if a data node has no client on it. Once a client completes a task, it
sends an ACK message to the master to notify about its IDLE status and report
its processing speed which is used for the next scheduling. Since it is difficult to
provide an exact measure of real-time speed for a client, ParaLite always estimates
it by the last speed of a client. On the other hand, after the master receives a
ACK message from a client, it updates its speed and data information of related
data node whose data are processed by this client. Once a client becomes idle, the
master firstly calculates the ECT of all data nodes and decides a target data node
based on the formula above. The computational complexity for deciding a target
data node is O(n) where n is the number of client. It costs 10−6 seconds if there is
only one client based on some experiments we conducted.

Once the target T is chosen for an idle client i, it must decide how much data
(how many blocks) are needed to be transferred to the idle client. DLLB employs
the following equation to calculate the number of blocks:

n =

{
0 if T = B and ECTT (cur) < Com(1) + ECTi(1)

1 otherwise

Data are transferred to the idle client only when the transfer provides a gain in
the completion time, that is, the sum of the task transfer time (Com(1)) and the
estimated completion time of the task on the idle client (ECTi(1)) should be smaller
than the estimated completion time of all tasks on the target node (ECTT (cur)).

The DLLB algorithm is flexible for data scheduling. It first takes data locality as
a main consideration and always tries to perform calculation on local data. But if the
calculation is CPU-intensive and data transfer can get a gain to the calculation, data
are transferred to a remote client to be calculated. At most one block is transferred
at a time, which lets the master node have better control on data. Fine-grained data
scheduling adds extra overhead of making decision to the master node, but the cost
of making decisions is negligible even the data unit to be transferred is 1 compared
with the cost of data transferring and calculation.

In addition, DLLB algorithm allows new clients to join at any time before all data
are scheduled. When ultra long time is taken and the task is still unfinished, user can
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start more clients on more resources by simply issuing the same collective queries.
Although it provides big controllability to users, extra burden is also brought to
them. So in the future, ParaLite should add more clients automatically by itself in
order to finish a task faster without the interference of users.

5.4 UDX Compared to UDF

Compared with ordinary User-Defined Function (UDF) in conventional parallel
database systems, our implementation of User-Defined Executable (UDX) has the
following advantages:

• UDX doesn’t require the user to write any program and register to the database
before it is executed. To define UDF in conventional databases, the user has
to write a specific program conforming to strict database specifications. This
is very troublesome in workflows as typically only executables are provided.
In this case, for each executable, a program that encapsulates the invoking of
the executable is required. Besides, programs are usually constrained with the
language they can use as most database systems only support UDF written in
C/C++ or Java.

• The UDX implementation does not invoke the executable on every single tuple
while the implementation of UDF does. As typical NLP programs have high
start-up overhead, invoking such programs on every single tuple would heavily
degrade the overall performance.

• The execution of an UDX is not bound to database nodes and it can be
distributed to arbitrary clients for larger scale execution and computational
load balancing. This loose coupling with database nodes is also very useful in
the case of that data are stored in a set of nodes while the related executable
is installed in other sets of nodes for some reasons, e.g. the licenses. On the
other hand, an UDF can only be parallelized across data nodes pre-configured
before the database server starts.

• UDX parallelization is efficient as it optimizes data transfer between data
nodes and computing clients. Most commercial database systems take a naive
strategy to parallelize UDF which assigns a whole partition of data to a local
processor without consideration of its load. Moreover, the implementation
of the UDX allows flexible control on the parallelism degree by increasing or
reducing the number of computing clients.





Chapter 6

Intra-query Fault Tolerance

6.1 Problem Setting

Assume that the logical plan of a query is G =< V,E >, where V is a set of operators
V = v1, v2, ..., vn and E is the set of edges (or dependencies) between operators E =

(vi, vj)|vi, vj ∈ V . Each operator is started only after all of its children operators
are finished and multiple operators that don ’t have dependencies with each other
can be executed in parallel. When the query is executed without any failure, the
runtime time Ttotal of the query is calculated as a function of the operator and edge
sets:

Ttotal = F (V,E) (6.1)

In a failure-prone environment, we assume that each operator is executed with a
probability of failure P = p1, p2, ..., pn. If an operator vi is failed, all of its children
are required to be re-executed to replay the input for vi if they are not checkpointed.
Otherwise, the checkpointed operators can simply replay its output by reading them
from a durable storage. The problem is that what operators should be checkpointed.
Not making a necessary checkpoint may lead to a loss of important computation,
affecting the overall execution performance while making an unnecessary checkpoint
leads to an increase in the checkpointing overhead as well. Let’s denote another
variable CK = ck1, ck2, ..., ckn to mark if a checkpoint is necessary or not for each
operator. In the case of failure, the expected runtime of the query is calculated by
the following equation:

Ttotal = F (V,E,CK,P ) (6.2)

Therefore, the problem is equivalent to get the a set of checkpoints to minimize the
expected runtime:

CKopt = argmin
CK

F(V, E, CK, P) (6.3)

6.2 Fault Tolerance Strategy

Generally, data are pipelined from one operator to the next. Once a job fails, all
operators are required to be re-executed as all intermediate data are lost. To avoid
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operators’ re-execution, a common strategy is checkpointing and rollback recovery
approach which periodically records the state of operators to a durable storage. To
ensure the right recovery from a failure, an operator is required to save sufficient
information to replay its state such as join hash tables and partial aggregation
results. Once failures occur, the operator restarts from the last state (checkpoint).
In our work, we take a simpler checkpointing method which does not save internal
states of an operator but only saves the output of an operator in a durable storage.
This checkpointing method works because the execution of each operator can be
divided into many independent parts and only failed parts need to be re-executed
upon a failure. For example, a join operator J has two predecessors S1 and S2. The
outputs of S1 and S2 is partitioned into hundreds of parts (each part is a logical
task) by the join attribute and the tasks are then scheduled to a specific number
of processors (which is usually much smaller than the number of tasks) performing
data joining. Once a failure occurs, saying a processor for J fails, only the failed
task (which is running exactly when the failure occurs) is re-executed if the output
of J is checkpointed. As a result, the recovery overhead of the failed operator is
very limited as each task usually runs in a small time.

With checkpointing strategy, the places to insert checkpointing heavily affect
the overall execution performance. On one hand, not making a necessary check-
point may lead to a loss of important computation, degrading the overall execution
performance. A checkpointed operator speeds up the recovery for its successor op-
erator as reproducing the output tuples is simply re-reading materialized data. For
example, for a query plan A→B→C→D with only A checkpointed, if D fails, oper-
ator B, C and D require to be re-executed while A does not. So only checkpointing
A leads to too much work lost when a failure occurs. On the other hand, making
unnecessary checkpoints leads to an increase in the checkpointing overhead as well.
We also take the above query plan as an example. If the operator C is light on CPU
but emits lots of tuples, it is unlikely worth being checkpointed. An extreme case
is that the checkpointing time is wasted if no failure occurs.

6.3 Cost Model

In this section, we explain how we model the cost of an execution plan of a query
and propose the problem for the selective checkpointing.

Processing Cost: For operator i, the processing cost TPi is the delay introduced
by the operator. TPi is the sum of execution time for its input tuples and the
communication time for its output tuples as shown in Equation 6.4.

TPi = TEXEi + TSENDi (6.4)
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TEXEi : the cost for executing input tuples of operator i;
TSENDi : the cost of sending output data to the successor for operator i.

To estimate TPi , we assume the following two functions are known for each
operator i:
fi(Nin_tuplei): this function provides the number of output tuples produced for a
given number of input tuples Nin_tuplei of operator i:

Nout_tuplei = fi(Nin_tuplei) (6.5)

gi(Nin_tuplei): this function provides the time to produce all output tuples for a
given number of input tuples Nin_tuplei of operator i:

TEXEi = gi(Nin_tuplei) (6.6)

In practice, such infomation could come from profiling and statistics, or could be
supplied by user. Specifically, the function fi is simply given with respect to the
selectivity for each operator while it is more complicated to estimate gi. The function
gi models the processing for each tuple, e.g. for an operator only with a sorting
algorithm, the gi(n) is of the form n × log(n). We ignore other fixed, auxiliary
cost for operators such as initiating and terminating the operation. If the output
tuples of the operator i are divided into Ntask tasks with hash function h(key) = i

1 ≤ i ≤ Ntask, the partitioning cost is added to TEXEi .
The cost for sending Nout_tuplei tuples depends on the number of the successor

operator. For the blocking successor operator, such as group operator, the output
tuples are required to be re-partitioned on the group key and transferred to all
successor processors. For other operators, the output tuples are transferred to only
one or a few processors.

Checkpointing Cost: We set a checkpoint value CKi for operator i:

CKi =

{
0 if a checkpoint for i is not necessary
1 otherwise

For operator i, the checkpointing cost TCi represents the cost to write the output
tuples of i to disk:

TCi = CKi × TI/O ×Nout_tuplei (6.7)

TI/O: the time taken to write/read a tuple from/to disk.
Recovery Cost: For operator i, the recovery cost TRi depends on the check-

pointing values of both i and its predecessors. The recovery time of an operator i

contains two parts as equation 6.8 shows: T ′
Ri

the cost for getting the input tuples
again and T ′′

Ri
the cost for the re-execution of the operator i itself.
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For the former, assuming that the operator i fails, its input tuples are required
to be reproduced, that is, all of its predecessor operators need to reproduce their
output tuples. Thus, the recovery time for the operator i is determined by the
predecessor who takes longer time to reproduce its output tuples as equation 6.9
shows. For each of its predecessors j, the cost for reproducing the output tuples of
j is reading data from disk if j is checkpointed (CKj = 1). Otherwise, if j is not
checkpointed (CKj = 0), j must be re-executed.

TRi = T ′
Ri

+ T ′′
Ri

(6.8)

T ′
Ri

= max
j∈PREDi

((TPj + T ′
Rj
)× (1− CKj) + CKj × TCj ) (6.9)

For the second part of the recovery cost, T ′′
Ri

, if the successor of operator i is
a blocking operator, i keeps the output tuples of received tasks until all tasks are
finished. As a result, all tasks are re-executed if this operator is not checkpointed. If
the operator is checkpointed, only the failed task (which is running at the time the
operator fails) needs to be re-executed. If the successor of operator i is a pipeline
operator, the output of a task is sent to its successor quickly. Thus, still only the
failed task needs to be re-executed.

Objective Function: Assuming that infinite resources are used, the expected
runtime of an operator i is the sum of the processing cost of the operator TPi (Eq
6.4), the expected runtime of its children, the recovery cost TRi (Eq 6.8) and the
checkpoint cost TCi (Eq 6.7).

Ti = TPi + max
j∈PREDi

(Tj) + pi × TRi + TCi (6.10)

PREDi: the set of predecessor operators of i
pi: the probability of a failure for operator i.
Obviously, the expected runtime of a query plan Ttotal is estimated by the fol-

lowing equation according to equation 6.2 (where operator 0 represents the root of
the query plan):

Ttotal = F (V,E,CK,P ) = T0 = TP0 + max
j∈PRED0

(Tj) + p0 × TR0 + TC0 (6.11)

The objective is to find the optimal checkpointing value for each operator to
minimize the expected runtime of a given plan.

CKopt = argmin
CK

Ttotal (6.12)
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6.4 Heuristic Algorithm

A straightforward approach to the problem is to retrieve all solutions in the full
search space and get an optimal one. However, if the size of the query plan (saying
that the number of operator is n) is large, this approach is not practical as the
search space SG is 2n. So we propose a heuristic algorithm (using divide-and-
conquer approach) to reduce the search space. Although the algorithm might not
produce the global optimal solution, its efficiency is verified by the experiments.

6.4.1 Reduction of Checkpointing Candidates

First of all, we use a simple inequality to filter the operators which should not be
checkpointed. Let’s firstly consider a simple sub-plan in which each operator has at
most one upstream operator as Fig 6.1 shows.

Assume that a failure occurs at the operator y, the completion time of y depends
on whether operator x is checkpointed (CKx = 1) or not (CKx = 0). When x is
not checkpointed, the recovery should start from the beginning and the completion
time of y should be:

Ttotaly{CKx=0} = 2× Ttotalx + T ′
Ry

(6.13)

With the checkpoint, the recovery of y starts from reading tuples from disk and
the completion time of y with consideration of a checkpoint is:

Ttotaly{CKx=1} = Ttotalx + 2× tx + T ′
Ry

(6.14)

tx is the I/O cost for reading/writing the output of x from/to the disk. For n

tuples, the I/O cost is estimated as tx = TI/O × n.
To get benefit from making a checkpoint with a failure, the completion time of

y with a checkpoint should be smaller than that without a checkpoint:

Ttotaly{CKx=1} < Ttotaly{CKx=0} ⇒ 2× tx < Ttotalx (6.15)
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Algorithm 1: singleCheckpointing: algorithm for setting the checkpoint value
for an operator without sibling

Input: i: an operator
Output: the checkpointing values of i
if inequality6.15(i) = True then

return 1
else

return 0

Inequality 6.15 intuitively shows that the process of a query plan can gain from
a checkpoint of operator i only if the cost for writing and reading the output of i
is smaller than its completion time. This observation generates the opportunity to
reduce whole search space by setting CKi = 0 if i does not satisfy the inequality.

Next, let’s consider a more complex sub-plan as Fig 6.2 shows. Operator y has
two upstream operators x1 and x2 which are executed in parallel. As the completion
of y is decided by the slower operator, the checkpointing decision of the two operators
depends on both execution times. We take the following algorithm to decide the
checkpoint values for x1 and x2.

Algorithm 2: siblingCheckpointing: Algorithm for setting the checkpoint
values for two sibling operators

Input: i and j: two sibling operators
Output: i and j with the checkpointing values
small← min_execution_time(i, j) ;
big ← max_execution_time(i, j) ;
CKsmall ← 0 ;
CKbig ← singleCheckpointing(big);
if CKbig = 1 then

if TPbig + TCbig > TPsmall + TCsmall then
CKsmall ← 1

else
CKsmall ← singleCheckpointing(small)

Algorithm 2 firstly decides the checkpointing value for the operator with larger
execution time (denoted by i) according to the Algorithm 1. The checkpointing
value of the operator with smaller execution time (denoted by j) is decided by i’s
checkpointing value. If i is not worth being checkpointed, the algorithm thinks it is
better for not checkpointing j because the recovery time for their parent is decided
by the execution time of i. When i is checkpointed, j is also checkpointed if the
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overall cost of the processing and checkpointing for j is smaller than that of i and
otherwise the checkpointing value of j is set through the Algorithm 1.

6.4.2 Divide-and-Conquer Approach

Divide-and-conquer approach is a common strategy that comes next to the brute-
force but reduces the search spaces. It works as follows: query plan G is divided
into sub-plans, denoted by G(i), with smaller plan search spaces Si

G such that the
globally-optimal choice in SG can be found by composing the optimal choices found
for each Si

G. Each sub-plan is the smallest unit within which an optimal check-
pointing decisions are made. We assume that a sub-plan brings together a set of
related decisions that affect each other, but are independent of the decisions made
in other sub-plans. In other words, the goal is to break the large plan space SG

into independent subspaces Si
G such that SG =

⋃
S(i)
G . Within each G(i), we take

brute-force approach to get an optimal solution among all possibilities.
While the plan dividing is arbitrary, we generate the sub-plans based on a key

insight: how checkpointing decisions affect each other. In theory, a decision to
making a checkpoint for a specific operator can influence the choice of a checkpoint
of any other operator. But from our experience, the checkpointing decision for an
operator mainly affects the decision for its successors. For example, a typical case
is that when an operator A produces large data and its successor B produces small
data with light computations, then it is better to checkpoint B rather than A.
Based on this observation, we assume that checkpointing decision for an operator is
independent from that of operators who are not its successors.
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S6 S7
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Figure 6.3: An example for the sub-plan generation

Sub-plan Generation: The sub-plans are generated based on the assumption
mentioned above: the checkpointing decision for an operator does not affect the
decision for operators who are not its successors. More specifically, when two op-
erators Oi and Ok are separated by one or more operators in the query plan, the
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checkpointing decision for Oi can be made independently from the decision made
for Ok. Each sub-plan consists of one or several sibling operators and their unique
successor. Sibling operators with a same successor are executed concurrently and
the checkpointing decisions for them are influenced by each other as shown in the
algorithm Sibling Checkpointing.

We take a query plan for TPC-H Query 3 as an example (Fig 6.3). As the
algorithm traverses the plan in topological order, the first sub-plan G(1) consists
of operator J4 and its two predecessors S6 and S7. The next sub-plan G(2) comes
with J4, its sibling S5 and its successor J3. When an operator has no siblings, the
sub-plan only contains two operators such as G(3).

Search in a Sub-plan: For each sub-plan G(i), the algorithm is to make the
optimal checkpointing decisions for all operators in the sub-plan. As checkpointing
an operator mainly brings benefit to the recovery of its successor, the algorithm
adds a virtual operator O0 to the top of the sub-plan and minimizes the expected
completion time of O0 calculated by the equation 6.10. The related variables for
O0 can be randomly specified because they don’t affected the decisions for other
operators. To get the optimal solution that minimizes the expected completion
time of O0, we use a brute-force technique to enumerate through that subspace.

The number of operators within any individual sub-plan is typically small. With
a query plan presented as a binary tree with n operators, the number of operators
in each sub-plan is at most 3 and the number of sub-plans is between n+1

2 − 1 (for
full binary tree in which every operator other than the leaves has two children) and
n− 1 (for degenerate binary tree in which every operator only has one child) where
n > 1. So the search space is varying from (n+1

2 − 1)× 23 to (n− 1)× 23 which is
much smaller than the original 2n.

Algorithm: Overall, the selective checkpointing algorithm is described as fol-
lows: (1) For a given query plan G, the algorithm firstly finds the candidate operators
to be checkpointed based on the Sibling Checkpointing Algorithm described above;
(2) Then it generates the first sub-plan; (3) It enumerates all solutions within the
sub-plan to find the optimal solution for the sub-plan; (4) It generates the next
sub-plan and repeats the process until the entire plan is visited.
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Algorithm 3: Algorithm for selecting the operators who are worth being
checkpointed

Input: G: a query plan
Output: G with decided checkpoint values for each operator
find candidate checkpointing operators based on the Sibling Checkpointing
and single Checkpointing algorithm ;
Gcur ← first_sub_plan;
while Gcur is not None do

find optimal solution for Gcur based on equation 6.12;
calculate the intersection of the shape A and the ray OE:F ;
Gcur ← next_sub_plan;
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7.1 Experimental Environment

We conducted all experiments in a 32-node cluster. Each node uses 2.40 GHz Intel
Xeon processor with 8 cores running 64-bit Debian 6.0 with 24GB RAM and 500G
SATA hard disk. According to hdparm, the hard disks deliver 86MB/sec for buffered
reads.
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7.1.1 Compared Systems

We compare ParaLite with a commercial parallel database system DBMS-X from a
major relational database company and a popular MapReduce system Hive.

DBMS-X: We installed the newest release of DBMS-X, a parallel row-oriented
SQL DBMS. The official TPC-H benchmark conducted by the DBMS-X vendor
used a slightly older version of the system. We specified our parameters for our
installation the same with that in the official TPC-H benchmark. Specially, we did
not enable the replication features in DBMS-X because all queries in the bench-
mark are read-only and enabling replication features makes it more complex for the
installation process. We installed this version on each node. To enable the data
partition feature, we have to install it as a root user which brings many troubles for
us because we usually don’t have the root authority.

Hive and Hadoop: For experiments in this paper, we used Hive version 0.8.1
and Hadoop version 1.0.3, running on Java 1.6.0. We configured both systems
according to the suggestions offered by members of Hive ’s development team in
their report on running TPC-H on Hive[58]. To reflect our hardware capacity,
we configured the system to run eight Map instances and eight Reduce instances
concurrently on each node. We also allowed JVM to be reused by all tasks instead
of starting a new process for each Map/Reduce task. To make the comparison fair,
we stored all input and output data in HDFS with the settings of one replica per
block and without compression.

7.1.2 Dataset

The datasets used in all experiments are popular and widely used in database com-
munity or natural language processing applications.

• TPC-H benchmark: The TPC-H Benchmark[107] defined by the Transac-
tion Processing Performance Council (TPC) is a popular one for comparing
database vendors. It consists of a set of business oriented ad-hoc queries and
concurrent data modifications. The queries simulate the real-business envi-
ronment and cover almost all kinds of relation operations. This benchmark
illustrates decision support systems that examine large volumes of data, ex-
ecute queries with a high degree of complexity, and give answers to critical
business questions. The performance metric reported by TPC-H reflects mul-
tiple aspects of the capability of the system to process queries. These aspects
include the selected database size against which the queries are executed, the
query processing power when queries are submitted by a single stream, and the
query throughput when queries are submitted by multiple concurrent users.
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So far, many database vendors have published their results on performing
TPC-H benchmark, including IBM DB2[29], Oracle Database[81], Microsoft
SQL Server[92] and Sybase[98].

• Medline: MEDLINE (Medical Literature Analysis and Retrieval System
Online)[41, 76] is the most authoritative international biomedical literature
database of life sciences and biomedical information. It includes bibliographic
information for articles from academic journals covering medicine, nursing,
pharmacy, dentistry, veterinary medicine, and health care. MEDLINE also
covers much of the literature in biology and biochemistry, as well as fields
such as molecular evolution. MEDLINE contains more than 21.6 million
records from 5,582 selected publications covering biomedicine and health from
1950 to the present. It is produced by the United States National Library
of Medicine (NLM) and freely available on the Internet and searchable via
PubMed[86]. MEDLINE is widely used in Biomedical Natural Language Pro-
cessing (BioNLP) applications.

Each article is stored in XML format in MEDLINE. The description of the
article is defined as separated tags such as title, author, year and abstract.
In all experiments of this section, by “the MEDLINE data”, we actually mean
the abstracts of many articles extracted from the original XML files.

7.2 Data Preparing and Loading

The TPC-H benchmark data were generated in parallel on every node using the
dbgen program provided by TPC. We used the appropriate parameters to produce
a consistent dataset across the cluster. As the data preparing and loading process
for both TPC-H and MEDLINE data set are almost the same, here we only report
the results of loading TPC-H data set. The time for loading 100GB data in total
(with scaling factor of 100) to 16 nodes for each system is shown in Table. 7.1.

DBMS-X: We followed the suggestions from DBMS-X vendor to create the ta-
bles and indices, and to distribute data across the cluster. All tables were
hash-partitioned across the nodes by their primary keys while PartSupp and
LineItem relations were hash-partitioned on only the first column of their pri-
mary keys. In addition to creating index on the primary key for each table,
the Supplier and Customer relations were indexed on their nation keys re-
spectively, and the Nation table was indexed on its region column. Finally,
the LineItem and Orders relations were organized by the month of the date
columns for a partial ordering by date on each node of the cluster. The loading
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DBMS-X(DL) DBMS-X(IC) ParaLite(DL) ParaLite(IC) Hive
11460 598 7980 695 420

Table 7.1: Data Preparing Time (seconds): DL–Data Loading IC–Index Creating

process worked as follows: data were first partitioned across the cluster and
then the partitioned data were loaded on each node in bulk. DBMS-X took 3
hours and 11 minutes to load all related data into the database. Besides, the
index creation took about 10 minutes.

Hive and Hadoop: We first loaded the source data into HDFS using the Hadoop
command-line utility. The utility was run in parallel on all nodes and copied
unaltered data files into HDFS under a separate directory for each table. Each
file was automatically broken into 128MB blocks and stored on a local DataN-
ode. Then we executed Hive DDL scripts provided by the Hive development
team special for TPC-H benchmark to put relational mapping on the files.
Since the metadata creation cost is negligible, the entire data preparing time
is considered as loading data into HDFS and it took only 7 minutes.

ParaLite: In ParaLite, all tables were hash-partitioned across the cluster and in-
dexed on the same key with that in DBMS-X respectively. But ParaLite
cannot organize the LineItem and Orders relations by the month of their date
columns. The main process of loading data is almost the same with DBMS-X.
It first parses each record and sends it to the correct partition. Then each
node loads received records to the SQLite database locally in parallel. The
whole process took about 2 hours and 13 minutes and the index creating took
about 11 minutes.

7.3 Evaluation of General Query Performance

In this section, we evaluated the scalability of ParaLite and the performance of
ParaLite for both general queries and executables compared to Hive and DBMS-X.

7.3.1 Scalability of Typical SQL Task

We firstly performed three typical SQL tasks: selection, aggregation and join.

Selection Task:

The query shown below performs a lightweight filter to find the related informa-
tion in the Orders table with the orderkey smaller than a user-defined threshold. In
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this experiment, we set this threshold parameter to 10,000,000, which yields approx-
imately 250,000 records per node. ParaLite directly dispatches the query to each
node and executes it by SQLite in parallel. Hive uses only a single Map function
that parses Orders tuples, and outputs the records as new key/value pairs if the
orderkey predicate succeeds. This query does not require a Reduce function.

SELECT orderkey, custkey, orderstatus, totalprice
FROM Orders
WHERE orderkey < 1000000
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Figure 7.1: Scalability for Performing Selection Query

The number of data nodes varies from 1 to 30 with about 2GB data on each
node. From Fig. 7.1, we can see that both ParaLite and Hive scale well with the
increase of data nodes. The overall execution time of Hive slightly increases mainly
because that the increase of result tuples leads to longer time for storing them.
Moreover, the experimental results show that ParaLite is about 10 times faster than
Hive. On the one hand, ParaLite creates index on column orderkey for table Orders
which reduces the data access time significantly. On the other hand, Hive performs
sequential scan of all tuples to parse each tuple and check if the value of orderkey
satisfies the threshold. In addition, Hadoop’s start-up cost should not be ignored.
For a cluster with 30 nodes, it takes about 10 to 15 seconds from the submission of
a job to the execution of the first Map task.
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Aggregation Task:

The aggregation query performed by ParaLite and Hive is described below. As
the table LineItem is not partitioned on either column returnflag or linestatus, Par-
aLite transformed the query to an execution plan with two operators. A sub-query
operator which performs a local aggregation, hash-partitions the result tuples on the
group key and distributes them to the followed group operator to perform a global
aggregation. Hive uses one MapReduce job to finish the query which consists of both
a Map and Reduce function. The Map function outputs all tuples from LineItem
which are hash-partitioned on the group key and sent to the Reduce function that
aggregates the sum of each of extendedprice and other related columns.

SELECT returnflag, linestatus, sum(quantity), count(*),
sum(extendedprice), sum(extendedprice * (1 - discount))

FROM LineItem
GROUB BY returnflag, linestatus
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Figure 7.2: Scalability for Performing Aggregation Query

The number of data nodes varies from 1 to 30 with about 10 GB on each node.
Fig. 7.2 firstly shows that ParaLite scales out well across the cluster. The execution
time of the query increases little with the increase of data nodes. As mentioned
above, ParaLite firstly aggregates data locally by SQLite on each node and then
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distributes data to the group operator to perform the final global aggregation. The
local aggregation produces only 4 groups, so there is little data transfer between the
two operators and the overhead for the global aggregation can be ignored as the input
data is really small. Therefore, the execution doesn’t not suffer from the bottleneck
of data transfer and the overall execution time is decided by the performance of
SQLite. While ParaLite reduces the data transfer overhead by taking advantage of
local aggregation, Hive has to retrieve, materialize and distribute all tuples to the
Reducer. As a result, ParaLite is about twice faster than Hive.

Join Task:

We perform two join queries:

• Join Query 1 (J1): The query described below is to get the order information
of a product by joining tables LineItem and Orders. As these two tables are
hash-partitioned on the join key, ParaLite directly dispatches the query to
each node to be executed by SQLite and merges the results. Hive uses a single
MapReduce job with a Map function which filters all tuples whose order dates
are over the predicate and a Reduce function which joins the satisfied tuples
on the order key of both tables. Each node produces about 13M result data.

SELECT L.orderkey, O.orderdate, O.shippriority
FROM Orders O, LineItem L
WHERE L.orderkey = O.orderkey

AND O.orderdate < ’1995-10-11’
AND L.shipdate > ’1995-10-11’

• Join Query 2 (J2): The query described below gets the price information of
products by joining tables LineItem and Part. As the two tables are not par-
titioned on the join key, the execution plan for the query in ParaLite consists
a join operator with two children of sub-query operators which access tuples
from each table with necessary predicates. Hive executes the query in the
similar way used to perform the query J1. Each node produces about 340M
result data.

SELECT L.extendedprice, L.discount
FROM LineItem L, Part P
WHERE L.partkey = P.partkey and L.shipdate >= ’1995-10-11’



72 Chapter 7. Evaluation

  0

  50

  100

  150

  200

  250

  300

1(J1) 10(J1) 20(J1) 30(J1) 1(J2) 10(J2) 20(J2) 30(J2)

El
ap

se
 T

im
e(

s)

# of nodes

ParaLite
Hive

Figure 7.3: Scalability for Performing Join Query

As always, the number of data nodes increases from 1 to 30 with fixed size of
data on each node (about 7.5GB LineItem, 1.7GB Orders and 220MB Part). From
Fig. 7.3, ParaLite and Hive scale well for both queries. The reason for the slight
increase of the overall execution time for J2 is the data to be transferred to the join
operator (Reducer in Hive) has increased (330MB per node) and the result tuples
to be stored in files are also increased from 340MB on a single node to about 10GB
on 30 nodes. In addition, ParaLite is approximately twice faster than Hadoop for
both queries. For the query J1, the main execution is performed by SQLite and the
performance of SQLite is proved to be better than Hive. For the query J2, ParaLite
executes the join operations using hash-join which is about 40% faster than sort-join
used in Hive.

7.3.2 Scalability of Complex Task

Next, we perform the TPC-H Query 3, a more complex task with composition of
selection, join, aggregation and sort. The execution plans of the query expressed by
ParaLite and Hive respectively are shown in Fig. 7.4. As the two relations Orders
and LineItem are partitioned on the join key, the join operation on them is pushed
into a SQL query to be executed by SQLite directly. On the other hand, Hive needs
another single MapReduce job to join these two relations.

In the experiments, we increased the nodes from 10 to 30 with about 10GB on
each node. The results are shown in Fig. 7.5 as we expected: (1) Both systems
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Figure 7.4: The Query Plan of TPC-H Query 3

scale well with the increase of data nodes; (2) ParaLite is about 4 times faster than
Hive. As we explain before, firstly, join and aggregation are faster in ParaLite due
to data partitioning. Then writing all intermediate data to durable storage in Hive
degrades the overall performance. In addition, the start-up overhead of Hadoop
cannot be ignored since there are 4 MapReduce jobs in total and each one takes
about 15 seconds until the first Map task begins.
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Figure 7.5: The performance of TPC-H Query 3
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7.3.3 Comparison of Completion Time for TPC-H Query

We run TPC-H queries from Query 1 to 20 with scaling factor 100 in a cluster of 16
nodes. For DBMS-X and Hive we executed the queries as suggested in the official
TPC-H reports by the vendors. Since the syntax of HiveQL is just a subset of SQL,
for may queries, the original TPC-H queries were rewritten into a series of simple
queries which produce the desired results in the last step in Hive. For ParaLite,
several queries are also rewritten into a series of simple queries as Hive does and
Query 7, 11 cannot run successfully because currently ParaLite does not support
operations like left join and nested query in where clause.
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Figure 7.6: TPC-H Performance of Several Approaches

Fig. 7.6 shows the benchmarking results for all three systems. First, it is not
surprising that DBMS-X and ParaLite significantly outperform Hive for almost all
queries. These results are expected because the Hive development team reported
a similar result when comparing Hive with DBMS-X[58]. The main reason for the
superior performance of DBMS-X’s and ParaLite is the ability to take advantages
of partitioning and indexing. Without this ability, Hive performs a full data scan
for every selection and most of the joins in Hive require to repartition and shuffle
all records across the cluster. However, ParaLite is slower than Hive for Query 18.
The reason for the inferior performance is the intermediate data storing to database.
ParaLite and Hive rewrite this query into several simpler ones. ParaLite stores the
output of each query to the database and it takes much time than storing them to
HDFS in Hive.
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Secondly, the performance of ParaLite and DBMS-X are comparable. ParaLite
loses for some queries and slightly wins for other queries. The main reason for the
inferior performance is the lack of organization of data. DBMS-X organizes the
LineItem and Orders relations by the month of their date columns for a partial or-
dering by date. DBMS-X gains much from the organization of data for many queries
such as Query 2, 15. Another reason is that for some rewritten queries, ParaLite is
required to store intermediate data from each step to database as mentioned above
while DBMS-X does not need to materialize any of them.

Obviously, the biggest bottleneck in ParaLite is the storing of intermediate data
from each simple query. This is limited by the types of queries supported by Par-
aLite. In the future, we plan to refine ParaLite to support the full syntax of SQL.
However, the experimental results still show the efficiency of ParaLite for most
queries.

7.4 Evaluation of Executable Performance

Providing the straightforward and efficient integration of external executables into
query plans is a major feature of ParaLite for workflows. In this section, we run
several queries with the integration of both heavy and lightweight executables.

Before we show the experimental results, we briefly introduce the executables
used in our experiments and how to express them in the three systems.

Heavy (CPU-Intensive) Executable: Enju

Enju[39] is a fast, accurate, and deep parser for English text and widely used in
natural language processing (NLP) applications. It reads data from the standard
input and writes the result to standard output. The parse results for each sentence
contains much information and are presented in multiple lines. The results are
separated by an empty line for different sentences. Enju is a cpu-intensive program
with very high start-up overhead. It firstly needs to load dictionary before processing
sentences which takes about 8 seconds.

ParaLite expresses the task simply by a query with a UDX definition as follows.
The UDX F takes a column sentence as the argument and returns a new column
enju_result. By setting the output_row_delimiter a empty line, the whole query
returns records with two columns and each of record is the sentence ID and the
parsed results of the sentence by enju.

SELECT sid, F(sentence) as enju_result
FROM Abstract
with F = "Enju" output_row_delimiter EMPTY_LINE
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DBMS-X performs the task with an UDF in the query below. However, the
function F is developed conforming to the database API. In the experiments, we
implement a java program which receives each sentence, starts the Enju process and
returns the result tuple. Besides, before the query is issued, we have to register the
definition of the function into the database system. The query returns the same
records with ParaLite.

SELECT sid, F(sentence) as enju_result
FROM Abstract

Hive provides the syntax to integrate any executable into the HiveQL straight-
forwardly. It runs the executable as a MapReduce job. However, it cannot map the
sentence ID to the enju result for the sentence. So we encapsulate the executable
in another program to fulfill the mapping. The program reads records with two
columns, feds only sentences to the enju program and maps the output of enju of a
sentence to its ID.

from (
from Abstract map sid, sentence

using ’enju_wrap’ as SID, enju
) map_output

select map_output.sid, map_output.enju

Lightweight Executable: simple_tokenizer.pl

The executable simple_tokenizer.pl is also a NLP tool to tokenize the words
in sentences. It reads sentences from standard input and returns the sentences
with tokenzied words. Similar with Enju, this executable is expressed by ParaLite,
DBMS-X and Hive in the same way. For example, ParaLite performs it using the
following query:

SELECT sid, S(sentence) as tk_sentence
FROM Abstract
with S = "perl simple_tokenizer.pl"
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Figure 7.7: Completion Time of the Heavy Executable

7.4.1 Comparison of Completion Time

We tested the completion time of the two executables with both balanced and un-
balanced data across a 16-node cluster.

For the heavy executable, 1.6MB data are distributed across the cluster. Each
node has 0.1MB data when the data are evenly distributed while each of 8 nodes
holds 0.15MB and each of the other nodes has only 0.05MB data when data are not
evenly distributed. The results are shown in Fig. 7.7. Firstly, ParaLite is slightly
faster than Hive but about 10 times faster than DBMS-X in both situations. The
main reason for the inferior performance of DBMS-X is the high start-up overhead
of enju. DBMS-X takes about 8 seconds to initiate a enju process for each sen-
tence while ParaLite and Hive take the 8 seconds for a bulk of data (50KB in our
experiments). Secondly, ParaLite has similar performance no matter whether data
are evenly distributed or not, so does Hive. However, there exists big differences
between the completion time of both cases for DBMS-X because it uses static data
scheduling policy for the parallelization of executables. Once data are partitioned,
DBMS-X assigns a processor for a partition of data. When the assigned data is
finished, the processor does not get the data from another partition. ParaLite and
Hive take dynamic data scheduling policies in which once a processor becomes idle,
data from other partitions are dispatched to it.

For the lightweight executable, 32GB data are distributed across the cluster.
Each node has 2GB data when the data are evenly distributed while each of 8
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Figure 7.8: Completion Time of the Lightweight Executable

nodes holds 3GB and each of the other nodes has only 1GB data when data are not
evenly distributed. Fig. 7.8 shows the completion time with the two types of data
distribution. The results are similar with that for the heavy executable. ParaLite
and Hive are 25 times faster than DBMS-X. Even if simple_tokenizer.pl does not
have high start-up overhead, the time for a large number of processes creation is
considerable. Similar with the heavy executable execution, DBMS-X has worse
performance when data are not evenly distributed due to the lack of efficient data
scheduling policy.

7.4.2 Scalability of Executable

We test the scalability of ParaLite when the executable is performed with the in-
crease of computing clients. The data distribution for all executable related ex-
periments in the rest of this section is set as follows. For the heavy executable,
30MB data are distributed across a 30-node cluster. Each node has 1MB data
when the data are evenly distributed while each of 15 nodes holds 2MB data when
data are not evenly distributed. For the lightweight executable, 120GB data are
distributed across the same cluster. Each node has 4GB data when the data are
evenly distributed while each of 15 nodes holds 8GB data when data are not evenly
distributed. The number of clients varied from 8 to 240 for both executables.

As Fig. 7.9 and Fig. 7.10 show, the speedup is close to the ideal (linear) one.
The reasons for the small deviation are: (1) the time for accessing data from the
database is not decreased with the increase of clients; (2) when data are unevenly
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Figure 7.9: Speedup for the Heavy Executable
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Figure 7.10: Speedup for the Lightweight Executable

distributed, data transfer is increased when the clients are located in the nodes who
don’t have data.

7.4.3 Impact of Block Size

The parallelization of executables in ParaLite is affected by the size of block. A block
of data is scheduled at a time. In this set of experiments, data are evenly distributed
across the cluster and the number of clients is 128. The results are shown in Fig.
7.11 and Fig. 7.12 respectively for the heavy and lightweight executables.
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Figure 7.11: Impact of Block Size for the Heavy Executable
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Figure 7.12: Impact of Block Size for the Lightweight Executable

From the results, we can see that the completion time decreases when the size
of block is reduced. However, when the block size is reduced to a certain extent,
the completion time starts to increase. The reason for the decrease of the com-
pletion time is coarse-grained parallelization. With large block size, it is difficult
to rigorously balance the load of all clients. Although ParaLite achieves the load
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balancing by greedy assignment of task, it is still possible that one client gets the
last task while all other clients just finish. In this worst situation, the processing of
the last block of data becomes a potential bottleneck. For the heavy executable, the
reason for the increase of the completion time is the start-up overhead of the exe-
cutable. When the block size becomes very small, the ratio of the start-up overhead
to the overall execution time becomes larger. For the lightweight executable, with
too small block size, the overhead for scheduling, dispatching data and handling the
information from clients increases. So we allow the user to specify the block size as
they know better about their executables and data than ParaLite.

7.4.4 Evaluation of Data-distribution Algorithm

In this section, we evaluate our DLLB (Data Locality with taking Load Balance
into consideration) algorithm for the data distribution in both normal and abnormal
situations. We run 30 computing clients with one client on each node.
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Figure 7.13: Load Balancing Test for Heavy Executable in Normal Situation

In the normal situation that no machine is artificially loaded, the load balance
for the cluster over time for both executables are shown in Fig. 7.13 and Fig.
7.14. The Y-axis is the fraction of whole data that each client receives. If the
system is perfectly load balanced, all clients should receive equal size of data. The
system works exactly as we expected while performing the lightweight executable
and the 30 clients hover around 0.033 of the whole load. A small deviation from our
expectation exists for the execution of the heavy executable. From our observation,
the abilities of all clients to perform the heavy executable are not perfectly equal.
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Some clients are several seconds faster than others for a block of data, leading faster
clients getting more data. However, the lines in Fig. 7.13 tending to be straight
indicate that they get data at the same speed. Most of data are executed locally
and only 463KB and 500MB data are transferred through network for heavy and
lightweight executables respectively.
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Figure 7.14: Load Balancing Test for Lightweight Executable in Normal Situation

In the abnormal situation, we adopted a system stressing utility called CPU
Burn-in [27] to artificially load a given machine. CPU Burn-in spawns a number
of processes to consume system resources. At t = 800, we start CPU Burn-in on
client18. Fig. 7.15 and Fig. 7.16 show the results for the heavy and lightweight
executables respectively. Before we push the stress on the client, the load is balanced
as in the normal situation. After the client is artificially loaded, its received data
decreases and other clients compensate for the over-loaded client’s loss quickly. The
data transferred through network is 1025KB for the heavy executable and 1.6GB
for the lightweight one.

7.5 Evaluation of Data Model

To test the efficiency of Interleaved Declustering, we use TPC-H Query 6 which
is directly executed by each SQLite instance and all results are simply merged and
returned to the client. In this experiment, 10 data nodes are used and data set
comes from TPC-H benchmark with the scaling factor 100. The size of relation
LineItem is about 80GB.

select sum(extendedprice * discount) as revenue
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Figure 7.15: Load Balancing Test for Heavy Executable in Abnormal Situation
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Figure 7.16: Load Balancing Test for Lightweight Executable in Abnormal Situation

from LineItem
where shipdate >= date(’1995-10-11’)

and shipdate < date(’1995-10-11’, ’+1 year’)
and discount between 0.1 - 0.01 and 0.1 + 0.01
and quantity < 50

Firstly, data are partitioned across the 10 nodes by Interleaved Declustering
and the sub-cluster size is 10. Each partition is divided into 45 chunks. In this case,
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only one data node is allowed to be failed. Fig. 7.17 shows the load balance of the
cluster over time. The y-axis is the relative ratio of the computation time for each
node to the total computation time. We can see that the ten nodes almost have the
same ratio (≈ 0.1) which means the system is well load balanced. When t = 70,
we terminate node 2. The remaining 9 nodes share the workload of node 2 and the
load is still balanced since the replica of chunks on node 2 is evenly replicated on
the left 9 nodes.
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Figure 7.17: Load balancing with 1 node failure

Next, we set the sub-cluster size to be 5 and re-load data into the 10 data nodes.
In this experiment, each node has 40 chunks which are replicated on other nodes
in the same sub-cluster. From Fig. 7.18, we see that the load is well balanced in
this setting. At time t = 80, we terminate two nodes (node 2 and node 8) in two
different sub-cluster. The workload on each failed node is compensated by the other
4 nodes in the same sub-cluster.

7.6 Evaluation of Selective Checkpointing Mechanism

The experiments are performed to verify: (1) Different fault-tolerant strategies heav-
ily affect the overall runtimes of queries; (2) Our selective checkpointing mechanism
can choose reasonable operators to be checkpointed; (3) The mechanism outperforms
other fault-tolerant strategies; (4) the divide-and-conquer algorithm has smaller
overhead than brute-force approach while keeps similar effectiveness; (5) our mech-
anism can achieve similar slowdown with Hive (Hadoop) upon a failure; (6) the
system (ParaLite) scales well with the mechanism.
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7.6.1 Effect of Fault-tolerant Strategy

We first evaluated that different fault-tolerant strategies affect the overall perfor-
mance of a query plan. We performed the typical SQL tasks, including selection (S),
join (J) and aggregation (G) through queries 1 and 2 from Fig. 7.19 and a special
task with User-defined Executable (U) by query 3.

Recall that our cost model requires two functions for operator i: fi provides
the number of output tuples for a given number of input tuples and gi gives the
processing time for a given number of input tuples (shown in Eq. 6.5 and Eq. 6.6).
Function fi is determined by the selectivity of the operator. We define gi based on
our measurements. For example, for a sub-query, the execution time (seconds) is
estimated as 3× 10−6 times the number of input tuples.

Fig. 7.20 through Fig. 7.22 show the actual and predicted execution times for
Queries 1 through 3. All X-axises are the fault-tolerant strategies for operators. For
example, in Fig. 7.21, NN means No checkpoint for operator S1 and G0 while NC
indicates No checkpoint for S1 and a checkpoint for G0. Note that the order of the
operators is from left to right in the query plans. For Query 1, to show the results
clearly, we assume that no checkpoint for S2. We inject a failure at the middle of
the completion.
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Figure 7.20: Elapse Query 1 (JOIN)

• Different fault-tolerant strategies heavily affect the overall runtimes of queries.
The differences between the overall execution time with the best and worst
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Figure 7.22: Query 3 (UDX)

strategy are high: For normal execution without a failure, the differences are
30% for Query 1, 15% for Query 2, and 61% for Query 3. For the execution
recovered from a failure, the differences are 14% for Query 1, 30% for Query
2, and 56% for Query 3. Each of queries 1 through 3 achieves the best perfor-
mance with a different fault-tolerant strategy in both failure-free (normal) and
failure-prone environments. For all queries, checkpointing nothing (NN) is the
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best option if no failure occurs. However, once a failure occurs, only Query 3
achieves the best performance with this strategy while Query 1 requires the
strategy NC and Query 2 requires CC.

• Our selective checkpointing mechanism can identify the best strategy for all
queries. The predicted execution time can not exactly match but close to the
actual time. Most of the differences come from the simple model for the data
transfer and the assumption that data are evenly distributed to each process
which is not simply satisfied in real cases. However, the model could correctly
get the relative order of predicted execution time of plans with different strate-
gies. Our mechanism simulates the execution in a failure-prone environment
and predicts the runtime of a query plan with the assumption that each op-
erator has a fixed probability of failure, so it considers the strategy with the
smallest predicted execution time with failures as the best one. Therefore, for
Query 1, the option of only checkpointing the output of the join operator (NC)
is chosen although the execution time with option NC in normal situation is
slightly larger than that with the option of checkpointing nothing (NN). For
Query 2, the strategy of checkpointing everything (CC) is considered as the
best strategy by our mechanism. For Query 3, it decides to checkpointing
nothing.

• Finally, restarting a query, the strategy used in most existing database sys-
tems, produces the largest slowdown upon a failure among all strategies.
Strategies other than RESTART reduce recovery times with minimal impact
on the execution time without failures. For Query 1 through 3, RESTART is
14%, 30% and 39% worse than the best strategy respectively.

7.6.2 Effectiveness of Selective Checkpointing

In this section, we apply several fault-tolerant strategies to two TPC-H queries,
Query 4 and 5 from Fig. 7.19.

We compare the overhead for choosing checkpointing operators and the places
of checkpointing with both Divide-and-Conquer (DaC) and Brute-Force (BF) al-
gorithms. From the Table. 7.2, we can see that although the overhead with both
algorithms is very small but DaC is several times faster than BF. The difference
increases exponentially with the increase of operators. For the tested queries, the
places for checkpointing are the same for both algorithm.

We inject a failure at 80% execution of Query 4 and 50% execution of Query 5.
Fig. 7.23 and Fig. 7.24 shows the actual and predicted execution time with/without
a failure. In the figures, CKNONE means that no operator is checkpointed; CKALL
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Overhead(second) Checkpoints
Query4 Query5 Query4 Query5

Divide-and-Conquer 0.011 0.0095 S1, J2 G0,S2,J3,S4,S5
Brute-force 0.15 0.092 S1, J2 G0,S2,J3,S4,S5

Table 7.2: Divide-and-Conquer Compared with Brute-force

indicates all intermediate data are materialized; SELECTIVE shows the operators
chosen by our selective checkpointing mechanism are checkpointed.
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Figure 7.23: Query 4 (SJJJ)

Firstly, SELECTIVE outperforms other strategies for both queries. It produces
the smallest slowdown upon a failure with the minimal increase on the execution
time with NONE strategy in the normal situation. For Query 4, SELECTIVE
increases 3% of the execution time compared to NONE (the best strategy) when
no failure occurs while it is 58% faster than NONE when a failure is injected.
For Query 5, SELECTIVE is 6% worse than NONE for the execution without a
failure but %17 better than NONE in the case of a failure. While SELECTIVE
and CKALL both produce several times smaller recovery time than NONE and
RESTART, SELECTIVE outperforms CKALL in the overall execution time from
6% to 44%. Specially, although RESTART is at most 5% better than SELECTIVE
when no failure occurs, it is 25% and 60% slower than SELECTIVE upon a failure
for both queries respectively.

Secondly, SELECTIVE chooses reasonable operators to be checkpointed. For
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Query 4, as the previous operator J4 produces a large number of output tuples,
it is better to checkpoint its predecessor J2 if it takes a small time and produces
small number of output tuples. As we expected, SELECTIVE checkpoints the
operator J2. Meanwhile, based on the Sibling Checkpointing Algorithm described in
Section 6.4.2, operator S1 should be checkpointed too. For Query 5, all operators
are checkpointed except J1. This is also reasonable because re-producing the output
of J1 is not time-consuming since its two input sources are checkpointed.

7.6.3 Comparison of Slowdown

We conducted a set of experiments to compare the slowdown of Query 5 with Par-
aLite and Hive[106]. As we know, Hive is a data warehouse system built on top of
Hadoop[116]. It translates the HiveQL (SQL-like language) into MapReduce jobs
which are executed by Hadoop. Hadoop provides fine-grained fault tolerance be-
cause it stores all intermediate data into a durable storage (HDFS). Once a node
fails, all failed tasks on that node rather than the whole job are re-scheduled to an-
other node to be executed. ParaLite uses our selective checkpointing mechanism to
materialize the output of a set operators and restart all related tasks once a failure
occurs.

The results are shown in Figure Fig. 7.25. The X-axis is the percentage of
the normal completion time of Query 5 when a failure is injected. Firstly, it is
not surprised that ParaLite is about twice faster than Hive. One reason for the
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Figure 7.25: The slowdown of Query 5 with ParaLite and Hive

superiority is that not all the operators are checkpointed in ParaLite. Moreover,
Hive uses sort-join while ParaLite uses hash-join. In addition, the start-up overhead
for Hadoop cannot be ignored. Hive uses 3 MapReduce jobs to express the query
and each takes 10 ∼ 15 seconds before all map tasks are started. Secondly, the
slowdowns of both systems are similar. However, the slowdown of Hadoop is limited
to the interval of heartbeat message sent to the JobTracker (master) from each
TaskTracker (worker). After a fixed time (we set it 30 seconds) from receiving the
last heartbeat, if the master does not receive a new heartbeat message, it sets the
status of the worker as failed and re-schedules the failed tasks. Therefore, for a light-
weight job whose execution time is not much larger than the interval, the slowdown
becomes larger because it needs to wait for the task re-execution. On the other
hand, ParaLite detects the failure immediately after a process fails and then starts
the recovery.
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In this section, we introduce three real-world text-processing workflows with
different structures in natural language processing:

• Japanese Word Count

• Event Recognition

• Sentence Chunking Problem

We compare and discuss the strength/weaknesses both in terms of programma-
bility and performance for each workflow built on top of ParaLite, Hive and Hadoop
and Files. Since all these three systems do not provide any language to describe the
dependencies of components/jobs, we generally perform each single job using them
and leave the creation of the whole workflows to a known workflow engine called
GXP Make [103]. GXP Make uses make to describe the workflow and provides the
parallelization of tasks across clusters. So in the following sections, we ignore the
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descriptions of dependencies among jobs and only focus on the expressiveness of
each job based on different systems.

8.1 Review of Compared Systems

8.1.1 Hadoop

Hadoop [116] is an open-source incarnation of MapReduce model to process large-
scale data across large clusters of compute nodes. It provides users easy programing
model by which only two user-customized Map and Reduce functions are required to
be written. Hadoop consists two layers:

(1) Hadoop Distributed File System (HDFS) layer for data storage. HDFS is a
block-structured file system which splits individual files into blocks with a fixed size
and distributes them across multiple DataNodes in the cluster. HDFS is controlled
by a central NameNode which keeps the directory structure of all files in the file
system, and tracks the location of blocks and their replicas.

(2) MapReduce layer for data processing. The MapReduce Framework follows
the master/worker pattern. A single master called JobTracker receives MapReduce
jobs from user applications and schedules tasks to some specific nodes in the clus-
ter determined by the information on NameNode. The policy for job scheduling
takes both data locality and load balancing into consideration. Each worker node
called TaskTracker accepts tasks including Map, Reduce and Shuffle operations, and
spawns separate processes to do the actual work.

Hadoop Streaming (HS) is a utility that comes with the Hadoop distribution.
The utility allows you to create and run map/reduce jobs with any executable or
script as the mapper and/or the reducer. For instance, to perform the word count
task which is to calculate the occurrences of words from a big text, hadoop streaming
uses the following statements:

Hadoop jar hadoop-streaming.jar
-input myInputDir
-output myOutputDir
-mapper wc_mapper.py
-reducer wc_reducer.py

In the above example, both the mapper and the reducer are python executables.
The mapper reads the input from stdin (line by line), splits the input into words
and emits the output of 〈word, 1〉 to stdout. The reducer reads the output of the
mapper from stdin and calculates the total number of occurrences for each word. HS
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creates a map/reduce job, submits the job to a cluster, and monitors the progress
of the job until it completes.

8.1.2 Hive

Hive is a data warehouse system built on top of Hadoop. It is considered as a
hybrid of MapReduce model and database system since it projects structured data
files to relational database tables and supports queries on the data. These queries
are expressed in a SQL-like declarative language called HiveQL and compiled into
MapReduce jobs executed on Hadoop. Meanwhile, Hive also allows users’ own
mappers and reducers which are executables written in any language to be plugged
in the query when it is inconvenient or inefficient to express the logic in HiveQL.

With Hive, we can express the word count task by the following query:

select mapout.word, count(*) from (
map text using ’wc_mapper.py’ as word
from} data) mapout group by mapout.word

As Hadoop does, it firstly splits text into words using a nested query in which
the executable wc_mapper.py is specified as a mapper and outputs an intermediate
table mapout of words. Then the outer query aggregates the occurrence of each
word using group by operation. However, although HiveQL is similar with general
SQL and targets to achieve SQL compatibility, it still introduces significant new
syntax to normal SQL to integrate MapReduce scripts; for instance, in addition to
the usual SELECT, it adds MAP, REDUCE and TRANSFORM.

8.2 Japanese Word Count

Japanese Word Count calculates the occurrence of Japanese words from crawled
Japanese web pages. Word count task is widely used to extract key words or phrases
from web data which is very useful in the web analysis of various fields, such as,
revealing hot topics in Twitter, popular products in on-line stores and attracting
customs in different countries.

As Fig 8.1 shows, this workflow is a simple pipeline with four jobs: (1) html2sf:
convert the source data crawled from Japanese web pages to an XML-based canon-
ical format developed by Kurohashi group at Kyoto University. The format defines
XML tags to identify plain text and accommodates annotations such as named enti-
ties. (2) sf2rs: extract plain text, identified with tag 〈raw_string〉 from the canonical
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Figure 8.1: Workflow of Japanese Word Count

format data, (3) juman: tokenize text into Japanese words, (4) wordcount: calculate
the frequencies of Japanese words.

Hadoop: The first two jobs are expressed by two Hadoop Streaming[54] com-
mands each of which only contains a mapper html2sf or sf2rs. To reduce redundant
IO operations, we perform the last two jobs together using one command with a
mapper juman and a reducer word_count_reducer. The mapper parses Japanese
sentences into words and outputs each word with an associated count of occurrences
1 and then the reducer aggregates all counts emitted for a particular word.

The first executable html2sf is a file-based program which reads input data from
file, so a wrapper which receives data from standard input and stores them into a
file is necessary. Moreover, since the input of each executable has multiple lines per
record, we have to either customize our own InputFormat and InputReader classes
and pack them along with the streaming jar or write a small wrapper to convert
the complex record into a single-line one. In this paper, we take the latter method.
Therefore, 3 wrappers for executables are necessary.

Hive: Hive performs the workflow by only one query

insert overwrite table wordcount
select tokens.word, count(*) as count from (

map rst.rs using ’juman’ as word from (
map sft.sf using ’sf2rs’ as rs from (

map html.con using ’html2sf\_wrap’ as sf from html)
sft) rst) tokens group by tokens.word

in which the first three executables are nested and the output Japanese words from
juman are aggregated. To deal with file-based executable html2sf, we still need
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a wrapper to produce the input file with data from standard input. Since data
are piped between executables and each one can handle the output data from the
previous one, we don’t need to write any wrapper to deal with the complicated
format of data.

ParaLite: The first three jobs are expressed by a single query where the exe-
cutables are specified as three UDXes and data are piped from one to another. The
whole workflow is described in Appendix A.1.

create table tokens as
select T(S(H(con))) as word from html
with H="html2sf html_file" input ’html_file’ S="sf2rs" T="juman"

Then another simple SQL query with group by operation aggregates the occur-
rences of Japanese words. To take advantage of SQLite, the results from the first
query are partitioned by words. As a result, ParaLite directly assigns the aggregate
query to SQLite engine on each node. ParaLite can support file-based UDX, so no
wrapper is required for this workflow and we only need to specify the input option
for the executable.

File: In file-based workflows, the first three steps are expressed simply by a
command line. However, to parallelize the command line, it is necessary to split
the big input file into many small files. As a result, many intermediate files are
produced. Specially, since there is no straightforward method to express the last
aggregation job wordcount, we perform it by Hadoop Streaming.

Discussion: Japanese Word Count is a simple pipeline workflow which is ex-
pressed by Hive and ParaLite elegantly where more than one executables can be
expressed within a single query. However, Hive needs more efforts to deal with
file-based executable. Since Hadoop Streaming cannot support multiple mappers or
reducers in a single HS job, the executables have to be expressed by several separate
HS jobs, leading to a), more steps in the workflow, b), more efforts to deal with
the complicated format of input data, c), longer execution time due to storing the
output of each executable in files. General jobs with executables are easily expressed
with file system, but the aggregate job cannot be presented straightforwardly. Users
have to either write their own processing logic or rely on Hadoop. Besides, a large
number of intermediate files are produced for the parallelization. The summary for
the efforts made by each system is shown in Table. 8.1.
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Hadoop Hive ParaLite File
# of intermediate files No No No 1000

# of wrapper 3 1 0 0

Table 8.1: Comparsion of Productivity of Systems for JAWC

8.3 Event Recognition Application

The goal of Event-Recognition [72][9] workflow is to recognize complex bio-molecular
relations (bio-events) among biomedical entities (i.e. proteins and genes) that ap-
pear in biomedical literature. Recognition of such events including an expression of
a certain gene, a phosphorylation of a protein, and a regulation of certain reactions
are important to understand biomedical phenomena. The process to extract the
events from an English sentence is show in Fig. 8.2.

TRAF2

Theme

phosphorylation
Event1:
phosphorylation

Event2:
binding

binding

TRAF2 CD40

Theme Theme

Cause Theme

inhibits Event3: 
Negative Regulation

We hypothesized that the phosphorylation of TRAF2 inhibits binding to 
the CD40 cytoplasmic domain.

Figure 8.2: Extracted Events from An English Sentence

The workflow of Event Recognition is shown in Fig 8.3. The input of the workflow
is the MEDLINE database [41] which contains over 19 million references to journal
articles in life sciences with a concentration on biomedicine. The event recognition
application consists of 4 steps with 6 jobs: (1) extract abstract of each article
from the source xml files; (2) split the abstract into sentences with their unique
identification; (3) to each sentence, apply three tools:

• Enju Parser: a HPSG parser which can effectively analyze syntactic/semantic
structures of English sentences.
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Figure 8.3: Workflow of Event-Recognition Application

• Named Entity Recognizer: recognition for bio-medical entities such as gene
and protein.

• Dependency Parser: a dependency parser for biomedical text.

(4) combine the results from the three tools and extract bio-medical events. It is
a typical real NLP workflow, which applies several existing tools to each documen-
t/sentence and combines results from them to perform a higher-level reasoning. A
recurring problem in such workflows is that each tool reads texts as a single stream
and does not have a notion of document boundaries. The output from such a tool
is similarly a single stream that does not leave anything between document bound-
aries. Thus, it is the responsibility of workflow developers to track the association
between a document and a result from each tool and correctly combines them.

Hadoop: Each job in the workflow could be expressed by one or several Map-
Reduce jobs. Generally, tools used in the steps (3) and (4) consist of several executa-
bles and some of them work on the joined data from other two previous executables.
Hadoop performs join operation separately before the executable is executed and
uses several scripts for these executables. For example, the final eventDetector job
which joins data from the previous three tools on the sentence ID to detect complex
relations between entities is expressed by two MR jobs. The first one only performs
the join operation using both Map and Reduce functions and outputs records each
of which consists of a sentence ID followed by the sentence and the three result of
this sentence. Then the next MR job specifies the executable as a mapper which
reads output from the previous job and emits the final results.
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Hive: Hive expresses each job with one or several equivalent queries. Different
from Hadoop, Hive is able to chain several executables or express them together
with a join operation within a single query. For example, the eventDetector is
expressed by the following query:

insert overwrite table event_so
select out.SID, out.event
from (map abst.SID, abst.sentence, enju_so.enju, ksdep_so.ksdep,

gene_so.gene using ’event-detector’ as (SID, event)
from abst join enju_so on (abst.SID = enju_so.SID)

join ksdep_so on (abst.SID = ksdep_so.SID)
join gene_so on (abst.SID = gene_so.SID)) out

ParaLite: ParaLite expresses each job by a similar query as Hive. Still taking
eventDetector as an example, it is expressed by the following query (the whole
workflow is shown in Appendix A.2):

create table event_so as
select F(abst.SID, abst.sentence, enju_so.enju, ksdep_so.ksdep,

gene_so.gene) as (SID, event)
from abst, enju_so, ksdep_so, gene_so
where abst.SID = enju_so.SID

and abst.SID = ksdep_so.SID
and abst.SID = gene_so.SID

with F="event-detector" output_row_delimiter EMPTY_LINE

File: Similar with JAWC application, the input file is firstly split into thousands
of small files and several executables are applied to each single file. Specially, for all
the merge jobs, we take a in-order processing method, that is, all data are stored in
the same order on the sentence ID. To fulfill this requirement, we define the name
of each result file before the execution of the workflow.

Discussion: The workflow of Event Recognition generates both data access
patterns of pipeline and reduce. Hadoop Streaming and file-based method are not
sufficient to present join job. Hive and ParaLite are able to use queries to express
the workflow elegantly. However, some extra efforts are necessary when the workflow
is performed by Hive and Hadoop because they cannot track the association of the
input sentence and the output from the NLP tools as we mentioned in the beginning
of this section.
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For example, let’s say we have an executable X that reads sentences and outputs
annotated sentences. In the workflow using such a tool as a component, we like to
find (document id, annotated sentence) from (document id, the original sentence).
In Hive and Hadoop, it is necessary to write an extra program which extracts sen-
tences fed to the tool, receives the results and maps the annotated sentence to the
original one. This is because that MapReduce programming model leaves all the
computation inside of the mapper and reducer and it cannot handle complex logical
processing outside. Specifically, the model reads data from HDFS, feeds them to a
mapper, shuffles and sorts the output of the mapper and finally gives to a reducer.
So it doesn’t have any mechanism to do some complex processing to the output of
mapper of reducer. Hence we need to write ten such wrappers in total. On the
other hand, ParaLite, or SQL for that matter, naturally supports such an associa-
tion through a simple query of the form "select sentence_id,X(sentence) from ...",
as long as the output of the last executable in the chain has a fixed string , such
as an empty line in most cases, between records boundaries. The summary for the
efforts made by each system is shown in Table. 8.2.

Hadoop Hive ParaLite File
# of intermediate files No No No 50000

# of wrapper 12 10 5 10

Table 8.2: Comparison of Productivity of Systems for ER

8.4 Sentence Chunking Problem

Splitting sentences into meaningful chunks or phrases (N-grams) is very important
in natural language processing since it is the first step of extracting concepts and
relations within statements across a large text. Significant chunks would typically
correspond to semantic units such as named entities (proteins, genes, diseases) or
relations [46][89]. A recent paper [4] focused on the improvement of the performance
of this application based on MapReduce through a proposed distributed looking-up
system.

• phrase-generator: Generate N-grams (phrases) for each sentence.

• phrase-frequency: Calculate the frequencies of phrases.

• db-load: store all phrases whose frequencies are larger than 1 into a SQLite
database which is located in a shared file system.
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• bf-producer: construct BloomFilter (BF) [6] for phrases whose frequencies are
larger than 1. The BF is created to reduce the latency of a look up to the
SQLite database. For example, if we want to query the frequency for word
A, firstly, we check if A is in the BF. If not, it means the frequency of this
word is 1. Otherwise, another query to the SQLite database is required to get
the exactly frequency. Since the latency to look up in a BF is much smaller
than SQLite and phrases whose frequencies equal to 1 take a great part in the
whole phrases, BF provides a significant improvement of performance.

• frequency-count: Calculate the number of phrases group by their frequencies.

• likelihood-prod: Calculate the likelihood of each sentence.

The problem for Sentence Chunking is to find the best way to chunk a sentence
with the most meaningful phrases. We use a statistical model to solve it. Every
sentence is generated by randomly sampling and the number of ways to chunk a
sentence into phrases is finite. The model calculates the likelihood of each sentence
by:

L(S) =
∑

σ∈Φ

∏

i∈σ
fi (8.1)

Φ is the set of the chunked sentence by all chunking methods; σ represents all phrases
in the sentence under a specific chunking method and fi is the probability of phrase
i occurs in a corpus calculated based on its frequency.

The likelihood of whole corpus is simply calculated by the multiplication of the
likelihood of each sentence:

L(C) =
∏

Si∈C
L(Si) (8.2)

We can then maximize the likelihood function of the whole corpus to get the best
parameter f .

f = argmax
f

L(C) (8.3)

Then, based on the best value of f , we can calculate the likelihood of each sentence
in different chunking methods and the best one leads to the largest likelihood of the
sentence.

The workflow of Sentence Chunking is shown in Fig 8.4. The input of the work-
flow is sentences of articles from the MEDLINE database. The workflow consists
of five steps. The first three are required for initialization and only run once per
input corpus: (1) senSplit: Extract text from input xml files and splitting into
sentences, (2) freqGen: Generate phrases from sentence and get their frequencies,
(3) filter: Store phrases with frequencies greater than one into a SQLite database
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to reduce the size of the database because most phrases occur only once according
to the paper [4]. So receiving NULL for a frequency lookup query means that the
frequency for the phrase is one. The following two steps are iterated: (4) probGen:
newly estimated model parameter f is updated at the end of each iteration if a bet-
ter distribution is found, (5) likelihoodCal: calculate the likelihood of the whole
corpus based on the new parameter.
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Figure 8.4: Workflow of Sentence Chunking Problem

Hadoop: The freqGen job is expressed by a single streaming job in Hadoop in
which the mapper executable generates phrases from sentences and emits pairs of
〈phrase, 1〉. Then an aggregate reducer reads the output of the mapper and sums
the frequency for each phrase. The next filter job only requires a mapper which
reads phrases from stdin and emits those with frequencies greater than one. Phrases
that passed the filter are stored in SQLite database which is queried against those
phrase frequencies at each iteration. Next, we calculate the probability of phrase
based on their frequencies, so we firstly have another aggregate job to obtain the
number of phrases with the same frequency and then a script is invoked to get the
related probability. Finally, the last job specifies an executable as the mapper which
outputs the likelihood of each sentence to the reducer to get the likelihood of the
whole corpus by multiplying likelihood of all sentences.

Hive: Hive uses equivalent streaming operations in a query to express each job,
such as freqGen and likelihoodCal job. Specially, it performs filter job by a
simple selective query without a customized mapper.

ParaLite: Similar with Hive, ParaLite expresses each job by an equivalent query
in which UDXes are used instead of mappers. Specially, for the last job, ParaLite
supports a user-defined aggregation mul to get the product of all records. The whole
workflow is shown in Appendix A.3.

File: In this workflow, aggregate jobs such as freqGen, probGen and
likelihoodCal appear alternately. These jobs cannot be elegantly expressed only
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based on file systems and as general we use Hadoop instead. Since most of jobs are
performed in Hadoop style, we finally did not develop the whole workflow based on
files.

Discussion: Each iteration of this workflow is a simple pipeline which is easily
expressed by Hadoop, Hive and ParaLite. Although Hadoop provides an overall ele-
gant expression, it still requires more efforts (an extra mapper or reducer) to perform
data selection and aggregation. In addition, file-based method is not appropriate
for such workflow in which most jobs perform aggregations to all data. The total
number of programs that are developed for this workflow are shown in Table. 8.3.

Hadoop Hive ParaLite
# of wrapper 10 5 4

Table 8.3: Comparison of Productivity of Systems for Sentence Chunking

8.5 Evaluation

We conducted several experiments to compare the performance of the three work-
flows built on top of Hadoop Streaming, Hive, ParaLite and a shared file system in
a cluster of 32 nodes. Each node uses 2.40 GHz Intel Xeon processor with 8 cores
running 64-bit Debian 6.0 with 24GB RAM.

8.5.1 System Configuration

Hadoop: In our experiments, we use Hadoop version 1.0.3 running on Java 1.6.0.
We deploy the system on the cluster with the default configuration settings except
for (1) we configure the system to run six Map instances and six Reduce instance
concurrently on each node. The reason we set them to be six is that Hive often uses
a single query with 2∼3 executables to perform a job, that is, 2∼3 processes are
running for each Map task and we observed that Hive cat get the best performance
with this configuration. (2) we allow JVM to be reused by all tasks instead of starting
a new process for each Map/Reduce task. The number of mappers is decided by the
system for most jobs while set manually for some time-consuming jobs to make sure
that the execution time of each job is no more than 10 or 30 minutes. Since some
jobs have large start-up cost, we do not limit the execution time within 1 minute
as Hadoop suggested. To make the comparison fair, we store all input and output
data in HDFS with the settings of one replica per block and without compression.

Hive: We use Hive version 0.8.1 with default configuration based on the Hadoop
system configured as mentioned above. We set the same number of mappers and
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reducers for each Hive job and Hadoop job.
ParaLite: ParaLite is a serverlessness and zero-configuration system, so we do

not need to configure anything before it is executed. Each table is stored in the
same 32-node cluster and we start at most 6 clients on each node for each job. We
set the size of blocks which is sent from data node to the computing clients within
each collective query to make sure the total number of blocks equals to the number
of mappers for the equivalent Hadoop job.

File: In file-based workflows, we use a shared file system NFS3 to store and
transfer data. The parallelism of each job depends on the number of input files N

which is determined by the parallel granularity of the most time-consuming job in
other systems. For example, N should be equal to the number of mapper tasks for
the job in Hadoop.

8.5.2 Japanese Word Count

We perform the experiments for Japanese Word Count workflow with a collection
of Japanese web pages of size 104 GB. These web pages produce 62 GB useful text
which are then loaded into different systems. The data loading time for each system
is shown in Table 8.4.

Hadoop Hadoop(parallel) Hive Hive(parallel) ParaLite File
1280 126 1310 131 432 980

Table 8.4: Data Preparation Time for JAWC(sec)

Hadoop: Since we do not need to alter the input data, we load the input file
into HDFS as plain text using the Hadoop command-line utility. The input data is a
single 62 GB file. If we directly invoke the command line to store it into HDFS from
a node, a copy of the file is loaded to one HDFS data node. Another choice is that
we split the big file into 32 small ones and store each one in the local disk of each
data node respectively, then we load all local files in parallel into HDFS by issuing
the command on each node. We measure these two methods and the results are
presented in Table 8.4 where label Hadoop indicates the first method while Hadoop
(parallel) means the latter. Obviously, loading data in parallel reduce a lot time
but it brings file split overhead.

Hive: Hive can load data to table from both local disk and HDFS by Hive
Data Definition Language (DDL). Hive firstly copies it into HDFS and then creates
metadata for the table. Since the metadata creation cost is negligible, so it takes
almost the same time with Hadoop for the two cases.

ParaLite: ParaLite provides the same API with SQLite and loads data to the
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database by the .import command line. Unlike Hadoop, ParaLite distributes the
big file automatically across all data nodes and really loads data to database on
each data node in parallel. The process takes about 7 minutes.

File: The input file is stored in NFS, and we do not need to do anything but split
it into 1000 sub-files which takes about 16 minutes. 1000 is chosen because Hadoop
automatically splits each job into about 1000 tasks to be executed in parallel.
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Figure 8.5: The Execution Time of JAWC Workflow

As Fig 8.5 shows, ParaLite and Hive outperforms other systems about 15%.
Since Hadoop Streaming cannot pipe multiple executables, three separate Hadoop
jobs are launched which brings some extra overheads. For example, the sf2rs job is
very lightweight and takes less than 2 minutes, but Hadoop Streaming spends 281
seconds on it. One extra overhead comes from the start-up cost of Hadoop. From
our observations, it takes 15-25 seconds before all allowed Map tasks have been
started. Besides, storing intermediate data (such as 25GB result of html2sf) into
HDFS which is then read by next process also takes much more time than directly
piping data between processes. For the last aggregate job, since the output results
from juman is partitioned by words, ParaLite executes the SQL query by sending it
to the SQLite database on each node and performs local aggregation. Therefore, it
outperforms Hadoop since it needs to reduce data.

8.5.3 Event Recognition

Event Recognition workflow reads 30 GB data from MEDLINE database and ex-
tracts 1 GB abstracts of articles from the source xml files. We load the data into
all systems using the methods mentioned in Section 7.2. For Hadoop and Hive, we
directly use the single input file without splitting it and loading from all data nodes
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in parallel because the data are small. As a result, Hadoop and Hive take 8 seconds
while ParaLite takes 11 seconds. For file-based workflow, we split the input into
10000 small ones according to the most time-consuming job Enju Parser and the
split takes about 8 seconds.
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Figure 8.6: The Execution Time of Event-Recog Workflow

Fig 8.6 shows that ParaLite outperforms other systems from 8% to 30%. Since
ParaLite is able to track the association of the input and output records, most
executables work on the input data directly without parsing while each executable in
Hadoop- and Hive-based workflows requires to parse the input data to map the input
to the according output. Another reason is that ParaLite has better performance
in join operation, especially for the eventDetector job. The input four tables of
eventDetector are 1 GB sentences, 55 GB enju results, 11 GB gdep results and
150 MB ner results. ParaLite partitions all these data on the key SID, so when the
join operation is performed, it pushes the original join SQL query directly to the
SQLite database on each data node and it only takes about 25 seconds. Hadoop
performs this join operation using about 8 minutes and Hive takes about 4 minutes.

To get the best performance, we tune some parameters for each job to adjust
the degree of jobs parallelization according to their compute density. Job enju is
very computationally intensive and eventDetector is not as heavy as enju and
it has high start-up overhead, so we set more parallel tasks for enju and less for
eventDetector. It is easy to do the parameter tuning in ParaLite which allows
you to specify the size of block for each query and Hadoop which allows you to
set the number of mappers and reducers in the script for each job. However, it is
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not easy with Hive to tune this parameter. We have to modify the parameter of
number of mappers in the configuration file and restart the Hadoop cluster every
time when we want to change it. What is the worse is that this kind of parameter
tuning is impossible in file-based workflow. This is the reason that the execution
time of event-detector job in the workflow with files is much larger than that in
the workflow with other systems. As mentioned in the beginning of this section, we
split the input file into 10000 small ones based on the execution of enju job. Hence
we have 10000 small sub-jobs to be processed in parallel for each step. The number
of sub-jobs is much larger than that in other systems and each has high start-up
overhead (about 20 seconds) , as a result, the total execution time is increased. Once
the input files is split, users have to parallelize each job according to the number of
sub-files unless internal parallelization and merge is performed independently.

8.5.4 Sentence Chunking

Sentence Chunking workflow reads 60 GB data from MEDLINE database and gets
2 GB abstract. We load the data into HDFS using the Hadoop command-line utility
and it takes 14 seconds. Hive takes several seconds more to create the metadata
and ParaLite takes 21 seconds. From Fig 8.7 we can see that the execution time
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Figure 8.7: The Execution Time of Sentence Chunking Workflow

of the whole workflow by Hive and Hadoop are almost the same and ParaLite is
about 18% faster than them mainly because of ParaLite has better performance on
the most time-consuming job likelihoodCal. For the freqGen job, Hadoop and
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Hive are about 200 seconds faster than ParaLite. That is because the output of
freqGen is about 145 GB and storing them into database takes ParaLite another
420 seconds. For the probGen job, Hadoop is much more slower than others. The
data to be aggregated in this job is very unbalanced and more than 90% phrases
(about 137 GB) occur only once. So all these data are transferred to a single reduce
task to be aggregated in Hadoop leading to longer execution time than Hive and
ParaLite that firstly aggregate data locally.
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9.1 Conclusions

This thesis proposes ParaLite – a shared-nothing parallel database system for data-
intensive workflows. For general SQL queries, ParaLite has similar performance with
a commercial database system and several times outperforms Hive. With ParaLite,
jobs in a workflow are expressed with SQL queries and all intermediate data are
stored as relational tables. To facilitate the workflow’s description and increase the
performance of its execution, ParaLite provides the following specific features for
workflows.

As workflows are typically built out of various executables, ParaLite provides
seamless integrations of external executables (UDX, short for User-Defined Exe-
cutable) into SQL statements and proposes a concept of collective query for the
efficient parallel execution of UDX through co-allocation of parallel compute clients
and data sources the two driving design principles. With the support of UDX, users
do not need to write any programs that are conformed to strict specifications of
databases and are not constrained in the languages they can use. The UDX imple-
mentation does not invoke the executable on every single tuple, making ParaLite
10x speed up comparing to UDF implementation in the conventional database. The
experimental results also show that with collective queries the performance for the
UDX’s execution could achieve close-to-ideal speedup with the increase of computing
clients when data are either balanced or not balanced distributed across a cluster.
In addition, the mechanism of collective query adapts the load across computing
clients even when some clients are manually loaded.

For long-running jobs in a workflow, ParaLite supports intra-query fault toler-
ance with a selective checkpointing mechanism, enabling to resume queries from
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the middle of the execution upon a failure. The mechanism models the cost of
a query execution with the consideration of fine-grained parallelism and takes a
divide-and-conquer algorithm with the complexity of O(n) to select a set of opera-
tors whose outputs are worth being checkpointed. The experimental results firstly
show that different fault-tolerant strategies affect the overall runtimes of queries.
Then our selective checkpointing can choose reasonable operators to be checkpointed
and outperforms other fault-tolerant strategies, such as simple pipelining data and
checkpointing all intermediate data. In addition, the divide-and-conquer algorithm
taken by our mechanism has a smaller overhead than brute-force approach while
keeping a similar effectiveness.

Finally, we studied three real-world text-processing workflows, specifically in the
discipline of Natural Language Processing (NLP), and built them on top of ParaLite,
Hadoop, Hive and general files. We discuss their strengths/weaknesses both in
terms of programmability and performance for each workflow. Our development
experience revealed that high-level query languages such as SQL of ParaLite and
HiveQL of Hive are helpful for expressing data selection, aggregation and calculation
by typical executables. In NLP workflows, the expressiveness of SQL in ParaLite is
particularly useful since it provides natural supports of file-based NLP executables
and reusing existing NLP tools by tracking the association between a document
and its annotation attached by the tool. On the other hand, workflows expressed
in low-level language lack good support of all features mentioned above, requiring
some extra efforts. The experimental results show that essentially each system has
similar performance in the execution of the whole workflows because performing
executables takes most time. However, the small differences still revealed some
potential superiority of ParaLite due to data partitioning and query optimization.

9.2 Future Work

The major future work of ParaLite includes performance improvements and func-
tional enhancement to make ParaLite more productive for workflows. As the per-
formance analysis for TPC-H queries shows, one potential bottleneck for ParaLite
is that a complex query is re-written to multiple simpler queries and it suffers from
bad performance for storing intermediate data of each query into databases. Thus,
more sophisticated query planner should be implemented to release ParaLite from
this limitation. Another work exists in eliminating the limitation that ParaLite
cannot organize data on a particular columns to provide the partial order when the
data are loaded into the database. In addition, we would like to reduce the latency
to query ParaLite database. As most NLP executables have high start-up overhead,
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it is difficult to return the results within a short latency if such executables are
spawned after the system receives the query. A possible solution for this problem is
to make the executables stay running on some resources and data are transferred to
the nodes which are running the processes.

Functional enhancement to make ParaLite more productive for workflows is an-
other important future work. Firstly, a more general and user-friendly method of
describing various formats from external executables is necessary. Current UDXes
support the executables with simple formats of input and output where records/-
columns are distinguished by a specific string. To support executables with more
complex formats, one solution is to define the specification with regex, BNF or
Xpath rather than the simple string. Secondly, detection and notification to users
of error data for an executable are general problems in workflows. Sometimes, a
failure of an UDX is caused by receiving error data and cannot be recovered by
re-execution. The system should detect this kind of failure and notify the user the
probable problem data.





Appendix A

Workflows Description

A.1 Japanese Word Count Workflow with ParaLite

all: $(WORD_COUNT)

$(HTML_FILE) : $(INPUT_FILES)
./ readcrawl.py $< > $@

$(HTML_TABLE) : $(HTML_FILE)
paralite DB "create table html(rowid , rar ,url ,rbt ,res ,tim ,req ,

sta ,hdr ,con) on DATA_NODE"
paralite DB ".import $< html -column_separator ::::: -

row_separator ====="
$(TOKENS) : $(HTML_TABLE)

paralite DB "create table tokens as select T(S(H(con))) as
word from html with T="juman" S="sf2rs" H="html2sf
html_file" input ’html_file ’ on $(DATA_NODE) partition by
word collective by 1"

$(WORD_COUNT) : $(TOKENS)
paralite DB "create table word_count as select word , count (*)

as frequency from tokens group by word on DATA_NODE"

A.2 Event Recognition Workflow with ParaLite

ALL: $(EVENT_SO)

$(ABST_TXT) : $(PUBMED_XML_GZ)
zcat $^ | xml2text ’###’ > $@
paralite DB "create table abst_txt(PMID , abstract) on

DATA_NODE"
paralite DB ".import $@ abst_txt"

$(ABST_SS) : $(ABST_TXT)
paralite DB "create table abst_ss as select F(PMID , abstract)

as (SID , sentence) from abst_txt with F="geniass_wrap"
input_col_delimiter ’###’ output_col_delimiter ’###’ on
DATA_NODE partition by SID collective by 1"

$(ENJU_SO) : $(ABST_SS)
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paralite DB "create table enju_so as select SID , A(E(sentence)
) as enju from abst_ss with E="enju" A="add_lex_head_wrap"
output_row_delimiter ’====####==== ’ on $(DATA_NODE)
partition by SID collective by 2"

$(GDEP_OUT) : $(ABST_SS)
paralite DB "create table ksdep_out as select SID , F(sentence)

as pre_ksdep from abst_ss with F="gdep"
output_row_delimiter EMPTY_LINE on $(DATA_NODE) partition
by SID collective by 3"

$(GDEP_SO) : $(GDEP_OUT)
paralite DB "create table ksdep_so as select abst_ss.SID as

SID , F(abst_ss.sentence , ksdep_out.pre_ksdep) as ksdep from
abst_ss , ksdep_out where abst_ss.SID = ksdep_out.SID with

F="DEP2SO_WRAP -g" input_row_delimiter EMPTY_LINE
input_col_delimiter ’###’ output_row_delimiter EMPTY_LINE
on $(DATA_NODE) partition by SID collective by 4"

$(GENE_NE_TEMP) : $(ABST_SS)
paralite DB "create table gene_ne_temp as select SID , G(T(

sentence)) as pre_gene from abst_ss with T="
gene_ner_tokenizer /dev/stdin" G="gene_ner_gtag off /dev/
stdin /dev/stdout" output_row_delimiter EMPTY_LINE on $(
DATA_NODE) partition by SID collective by 5"

$(GENE_NE_SO) : $(GENE_NE_TEMP)
paralite DB "create table gene_ne_so as select abst_ss.SID as

SID , F(N(M(abst_ss.sentence , gene_ne_temp.pre_gene))) as
gene from abst_ss , gene_ne_temp where abst_ss.SID =
gene_ne_temp.SID with M="pos_maker_wrap /dev/stdin 0"
input_row_delimiter EMPTY_LINE input_col_delimiter ’###’ N=
"gene_ner_dict_matcher /dev/stdin" F="ner_wrap /dev/stdin"
output_row_delimiter EMPTY_LINE on $(DATA_NODE) partition
by SID collective by 6"

$(EVENT_SO) : $(GENE_NE_SO) $(GDEP_SO) $(ENJU_SO) $(ABST_SS)
paralite DB "create table event_so as select F(abst_ss.SID ,

abst_ss.sentence , enju_so.enju , ksdep_so.ksdep , gene_ne_so.
gene) as (SID , event) from abst_ss , enju_so , ksdep_so ,
gene_ne_so where abst_ss.SID = enju_so.SID and abst_ss.SID
= ksdep_so.SID and abst_ss.SID = gene_ne_so.SID with F="
event_detector $(EVR_JAVA) medie $(EVR_MODEL)/ $(FILE_ID)"
input_row_delimiter EMPTY_LINE input_col_delimiter ’###’
output_row_delimiter ’====’ on $(DATA_NODE) collective by 6
"

A.3 Sentence Chunking Workflow with ParaLite

Makefile.pre:
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ALL: $(FREQUENCY_COUNT) $(BLOOMFILTER) $(SQDB)

$(ABST_TXT) : $(PUBMED_XML_GZ)
zcat $^ | xml2text ’###’ > $@
paralite DB "create table abst_txt(abstract) on DATA_NODE"
paralite DB ".import $@ abst_txt"

$(ABST_SS) : $(ABST_TXT)
paralite DB "create table abst_ss as select G(F(abstract)) as

sentence from abst_txt with G="tokenize /dev/stdin" F="
geniass INPUT OUTPUT" input ’INPUT ’ output ’OUTPUT)’ on
DATA_NODE collective by 1"

$(N_GRAM) : $(ABST_SS)
paralite DB "create table n_gram as select G(sentence) as

phrase from abst_ss with G="n_gram_splitter MAX_LENGTH" on
DATA_NODE partition by phrase collective by 1"

$(PHRASE_FREQUENCY) : $(N_GRAM)
paralite DB "create table phrase_frequency as select phrase ,

count (*) as frequency from n_gram group by phrase on
DATA_NODE"

$(SMALL_PHRASE_FREQUENCY) : $(PHRASE_FREQUENCY)
paralite DB "select phrase , frequency from phrase_frequency

where frequency > 1" > $@
$(SQDB) : $(SMALL_PHRASE_FREQUENCY)

sqlite3 SQDB "create table phrase_frequency (phrase varchar
(100), frequency int)"

sqlite3 SQDB ".import $^ phrase_frequency"
$(BLOOMFILTER) : $(SMALL_PHRASE_FREQUENCY)

./ bf_producer SIZE NUN_HASH $^ | $@
$(FREQUENCY_COUNT) : $(PHRASE_FREQUENCY)

paralite DB "select frequency , count (*) from phrase_frequency
group by frequency"

Makefile.loop:

ALL: $(CORPUS_LIKELIHOOD)

$(FREQUENCY_PROBABILITY) : $(FREQUENCY_COUNT)
$(PROBABILITY_PRODUCER) $^ $@

$(SENTENCE_LIKELIHOOD) :
time paralite $(DB) "create table sentence_likelihood_1 as

select F(sentence) as hood from abst_ss_1 with F="
likelihood_producer.py $(BLOOMFILTER) $(SIZE) $(NHASH) $(
CACHE_SIZE) $(SQDB) $(FREQUENCY_PROBABILITY) ### " on $(
DATA_NODE) collective by 1"

$(CORPUS_LIKELIHOOD) : $(SENTENCE_LIKELIHOOD)
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paralite $(DB) "select sum(likelihood) from
sentence_likelihood" > $@

best:
cp -f $(FREQUENCY_PROBABILITY) $(BEST_PROBABILITY)

run.sh:

iteration_num =10
max_value =0
i=0

make -f Makefile.pre

while [ $i -lt $iteration_num ]
do

make -f Makefile.loop
value = ‘cat corpus -likelihood.dat ‘
if [ $value > $max_value ]; then

max_value=$value
make -f Makefile.loop best

fi
make -f Makefile.loop clean
i=$(($i+1))

done



Bibliography

[1] Serge Abiteboul, Victor Vianu, Bradley S. Fordham and Yelena Yesha. Rela-
tional Transducers for Electronic Commerce. J. Comput. Syst. Sci., vol. 61,
no. 2, pages 236–269, 2000. 27

[2] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz
and Alexander Rasin. HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads. Proceedings of VLDB,
vol. 2, no. 1, pages 922–933, 2009. 24, 25, 30, 31

[3] Aster. http://www.asterdata.com/. 25

[4] Atilla Soner Balkir, Ian Foster and Andrey Rzhetsky. A Distributed Look-up
Architecture for Text Mining Applications using mapreduce. In Proceedings
of International Conference for High Performance Computing, Networking,
Storage and Analysis (SC11), 2011. 101, 103

[5] Derik Barseghian, Ilkay Altintas, Matthew B. Jones, Daniel Crawl, Nathan
Potter, James Gallagher, Peter Cornillon, Mark Schildhauer, Elizabeth T.
Borer, Eric W. Seabloom and Parviez R. Hosseini. Workflows and Extensions
to the Kepler Scientific Workflow System to Support Environmental Sensor
Data Access and Analysis. Ecological Informatics, pages 42–50, 2010. 1, 17,
26, 27

[6] B.Bloom. Space/time Tradeoffs in the Hash Coding with Allowable Errors.
CACM, vol. 13, no. 7, pages 422–426, 1970. 102

[7] Gordon Bell, Tony Hey and Alex Szalay. COMPUTER SCIENCE: Beyond
the Data Deluge. Science, vol. 323, pages 1297–1298, 2009. 1

[8] D. Bitton and J. Gray. Disk Shadowing. In Proc. of VLDB, pages 331–338,
1988. 30

[9] Bjorne, F. Ginter, S. Pyysalo, J. Tsujii and T. Salakoski. Complex Event
Extraction at PubMed Scale. Bioinformatics, vol. 26, no. 12, pages 382–390,
2010. 98

[10] Anthony J. Bonner. Workflow, Transactions, and Datalog. In Proceedings of
the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 294–305, 1999. 27



120 Bibliography

[11] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose and
Rares Vernica. Hyracks: A Flexible and Extensible Foundation for Data-
intensive Computing. In ICDE, pages 1151–1162, 2011. 31

[12] CaboCha Yet Another Japanese Dependency Structure. http://code.
google.com/p/cabocha. 3

[13] Michael J. Carey and Laura M. Haas. Extensible Database Management
Systems. SIGMOD Record, no. 4, pages 54–60, 1990. 29

[14] Cascading. http://www.cascading.org/. 29

[15] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib,
Simon Weaver and Jingren Zhou. SCOPE: Easy and Efficient Parallel Pro-
cessing of Massive Data Sets. PVLDB, vol. 1, no. 2, pages 1265–1276, 2008.
24

[16] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw and Nathan Weizenbaum. FlumeJava:
Easy, Efficient Data-parallel Pipelines. In PLDI, pages 363–375, 2010. 25

[17] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha
Aragonda, Vera Lychagina, Younghee Kwon and Michael Wong. Tenzing A
SQL Implementation On The MapReduce Framework. PVLDB, vol. 4, no. 12,
pages 1318–1327, 2011. 24

[18] Surajit Chaudhuri. An Overview of Query Optimization in Relational Sys-
tems. In Alberto O. Mendelzon and Jan Paredaens, editeurs, Proceedings of
the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, June 1-3, 1998, Seattle, Washington, USA, pages
34–43. ACM Press, 1998. 13

[19] S. Chaudhuri and K. Shim. Optimization of Queries with User-defined Pred-
icates. ACM Trans. Database Syst., vol. 24, pages 177–228, 1999. 29

[20] Qichang Chen, Liqiang Wang and Zongbo Shang. MRGIS: A MapReduce-
Enabled High Performance Workflow System for GIS. In eScience, pages
646–651, 2008. 29

[21] Songting Chen. Cheetah: A High Performance, Custom Data Warehouse on
Top of MapReduce. PVLDB, vol. 3, no. 2, pages 1459–1468, 2010. 24



Bibliography 121

[22] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao and Douglas Stott Parker Jr.
Map-reduce-merge: Simplified Relational Data Processing on Large Clusters.
In SIGMOD Conference, pages 1029–1040, 2007. 25

[23] Tyson Condie, Neil Conway, Peter Alvaro and Joseph M. Hellerstein. MapRe-
duce Online. In Proc. of the 7th NSDI Symp., 2010. 31

[24] George P. Copeland and Tom W. Keller. A Comparison Of High-Availability
Media Recovery Techniques. In SIGMOD Conference, pages 98–109, 1989.
30

[25] Microsoft Corporation. Table-valued User-defined Functions. Rapport tech-
nique, Microsoft, 2009. 29

[26] P. Couvares, T. Kosar, A. Roy, J. Weber and K. Wenger. Workflows for
E-Science: Scientific Workflows for Grids. Springer Press, 2008. 16, 26, 27

[27] CPU burn-in. http://users.bigpond.net.au/CPUburn/. 82

[28] Umeshwar Dayal, Eric N. Hanson and Jennifer Widom. Active Database
Systems. In Modern Database Systems, pages 434–456, 1995. 27

[29] IBM DB2 Database Software. http://www-01.ibm.com/software/data/
db2/. 2, 29, 67

[30] DBInputFormat. http://www.cloudera.com/blog/2009/03/
database-access-with-hadoop/. 26

[31] A. L. Dean, editeur. Proceedings of 1972 acm-sigfidet workshop on data
description, access and control, denver, colorado, november 29 - december 1,
1972. ACM, 1972. 10

[32] J. Dean and S. Ghemawat. MapReduce:Simplified Data Processing on Large
Clusters. In OSDI’04, pages 137–150, 2004. xi, 1, 2, 9, 23, 28, 31, 45

[33] Jeffrey Dean and Sanjay Ghemawat. MapReduce: a Flexible Data Processing
Tool. Commun. ACM, vol. 53, no. 1, pages 72–77, 2010. 24

[34] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good,
Anastasia Laity, Joseph C. Jacob and Daniel S. Katz. Pegasus: A Frame-
work for Mapping Complex Scientific Workflows onto Distributed Systems.
Scientific Programming Journal, vol. 13, no. 3, pages 219–237, July 2005. 1,
26, 27



122 Bibliography

[35] Ewa Deelman, Dennis Gannon, Matthew S. Shields and Ian Taylor. Work-
flows and E-science: An Overview of Workflow System Features and Capa-
bilities. Future Generation Comp. Syst., vol. 25, no. 5, pages 528–540, 2009.
1

[36] D.J. DeWitt and J. Gray. Parallel Database Systems: the Future of High-
performance Database Systems. Commun, vol. 35, no. 6, pages 85–98, 1992.
2, 3, 7, 8, 23

[37] D. DeWitt and M. Stonebraker. MapReduce: A Major Step Backwards. In
The Database Column, 1, 2008. 23, 24

[38] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay
Setty and Jörg Schad. Hadoop++: Making a Yellow Elephant Run Like a
Cheetah (Without it Even Noticing). Proc. VLDB Endow., vol. 3, no. 1-2,
pages 515–529, September 2010. 25

[39] Enju. http://www-tsujii.is.s.u-tokyo.ac.jp/enju, 2011. 3, 47, 75

[40] Chen et. al. High Availability and Scalability Guide for DB2 on Linux, Unix,
and Windows. Rapport technique, IBM, 2007. 14

[41] D. FA. Searching Medline via Pubmed. In Clin Lab Sci, 2008. 67, 98

[42] Xubo Fei, Shiyong Lu and Cui Lin. A MapReduce-Enabled Scientific Work-
flow Composition Framework. In ICWS ’09, pages 663–670, 2009. 28

[43] E Friedman, P Pawlowski and J. Cieslewicz. SQL/MapReduce: A Practi-
cal Approach to Self-describing, Polymorphic, and Parallelizable User-defined
Functions. In Proceedings of VLDB Endow., pages 1402–1413, 2009. 25, 30

[44] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shra-
van M. Narayanamurthy, Christopher Olston, Benjamin Reed, Santhosh
Srinivasan and Utkarsh Srivastava. Building a High-Level Dataflow System
on top of Map-Reduce: The Pig Experience. In IN VLDB ’09: Proceedings
of the VLDB endowment, pages 1414–1425, 2009. 2, 24, 29, 30, 31

[45] GENIA Sentence Splitter. https://github.com/TsujiiLaboratory/
geniass. 45

[46] Sharon Goldwater, Thomas L. Griffiths and Mark Johnson. Contextual De-
pendencies in Unsupervised Word Segmentation. In Meeting of the Associa-
tion for Computational Linguistics - ACL, 2006. 101



Bibliography 123

[47] Leana Golubchik and Richard R. Muntz. Fault Tolerance Issues in Data
Declustering for Parallel Database Systems. Bulletin of the Technical Com-
mittee on Data Engineering, vol. 14, 1994. 30

[48] Daniel James Goodman. Introduction and Evaluation of Martlet: a Scientific
Workflow Language for Abstracted Parallelisation. In WWW, pages 983–992,
2007. 28

[49] Narayan Gowraj, Prasanna Venkatesh Ravi, Mouniga V and M. R.
Sumalatha. S2MART: Smart Sql to Map-Reduce Translators. In APWeb,
pages 571–582, 2013. 25

[50] Jim Gray and Andreas Reuter. Transaction processing: Concepts and tech-
niques. Morgan Kaufmann, 1993. 30

[51] Jim Gray. Jim Gray on eScience: A Transformed Scientific Method. In Tony
Hey, Stewart Tansley and Kristin Tolle, editeurs, The Fourth Paradigm:
Data-Intensive Scientific Discovery, pages xix–xxxiii. 2009. 1

[52] Greenplum Database. http://www.greenplum.com/. 25, 30

[53] Hadoop. http://hadoop.apache.org/. 2

[54] Hadoop Streaming. http://hadoop.apache.org/common/docs/r0.15.2/
streaming.html. 96

[55] J. M. Hellerstein and M. Stonebraker. Predicate Migration: Optimizing
Queries with Expensive Predicates. In Proceedings of SIGMOD Conf., pages
267–276, 1993. 29

[56] Joseph M. Hellerstein and Jeffrey F. Naughton. Query Execution Techniques
for Caching Expensive Methods. In In SIGMOD, pages 423–434, 1996. 29

[57] T. Hiraishi, T. Abe, Y. Miyake, T. Iwashita and H. Nakashima. Xcrypt:
Flexible and Intuitive Job-parallel Script. In Symposium on Advanced Com-
puting Systems and Infrastructures (SACSIS2010), pages 183–191, 2010. 27

[58] Running TPC-H queries on Hive. Web page. https://issues.apache.org/
jira/browse/HIVE-600, 2009. 66, 74

[59] H. Hsiao and D. J. DeWitt. Chained Declustering: A New Availability Strat-
egy for Multiprocessor Database Machines. In Proceedings of Data Engineer-
ing, pages 456–465, 1990. 30



124 Bibliography

[60] Soonwook Hwang and Carl Kesselman. GridWorkflow: A Flexible Failure
Handling Framework for the Grid. In Proceedings of the 12th IEEE Inter-
national Symposium on High Performance Distributed Computing, HPDC
’03, pages 126–, 2003. 19

[61] Yannis E. Ioannidis, Miron Livny, Shivani Gupta and Nagavamsi Ponnekanti.
ZOO : A Desktop Experiment Management Environment. In VLDB, pages
274–285, 1996. 27

[62] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell and Dennis Fetterly.
Dryad: Distributed Data-parallel Programs from Sequential Building Blocks.
In EuroSys, pages 59–72, 2007. 25, 27, 31

[63] M. Ivanova, R. Goncalves N. Nes and M. Kersten. MonetDB/SQL Meets Sky-
Server: the Challenges of a Scientific Database. In Proceedings of the 19th
International Conference on Scientific and Statistical Database Management
(SSDBM’07), pages 13–13, 2007. 3

[64] M. Jaedicke and B. Mitschang. On Parallel Processing of Aggregate and
Scalar Functions in Object-relational DBMS. In Proceedings of SIGMOD
Conf., pages 379–389, 1998. 29, 30

[65] Michael Jaedicke and Bernhard Mitschang. User-Defined Table Operators:
Enhancing Extensibility for ORDBMS. In VLDB, pages 494–505, 1999. 30

[66] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, G. Bruce Berri-
man, Benjamin P. Berman and Philip Maechling. Data Sharing Options for
Scientific Workflows on Amazon EC2. In SC, pages 1–9, 2010. 18

[67] Rania Khalaf, Alexander Keller and Frank Leymann. Business Processes for
Web Services: Principles and Applications. IBM Systems Journal, vol. 45,
no. 2, pages 425–446, 2006. 16, 26

[68] Max Kremer, Max Kremer, Jarek Gryz and Jarek Gryz. A Survey of Query
Optimization in Parallel Databases. Rapport technique, 1999. 13

[69] Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yongqiang He and Xiaodong
Zhang. YSmart: Yet Another SQL-to-MapReduce Translator. In ICDCS,
pages 25–36, 2011. 25

[70] David T. Liu and Michael J. Franklin. The Design of GridDB: A Data-
Centric Overlay for the Scientific Grid. In VLDB, pages 600–611, 2004. 27,
28



Bibliography 125

[71] MEDIE - Semantic Retrieval Engine for MEDLINE. http://www.nactem.
ac.uk/tsujii/medie/. 41

[72] M. Miwa, R. Satre, J.-D. Kim and J. Tsujii. Event Extraction with Complex
Event Classification Using Rich Features. In JBCB, pages 131–146, 2010. 98

[73] MySQL Cluster. http://www.mysql.com/products/cluster/. 30

[74] Phuong Nguyen and Milton Halem. A MapReduce Workflow System for
Architecting Scientific Data Intensive Applications. In SECLOUD ’11, pages
57–63, 2011. 29

[75] María A. Nieto-Santisteban, Jim Gray, Alexander S. Szalay, James Annis,
Aniruddha R. Thakar and William O’Mullane. When Database Systems Meet
the Grid. In CIDR, pages 154–161, 2005. 28

[76] L. E. Notter. Medline-newest Service in the Medical Information Network.
In Nursing Research, 1972. 67

[77] Thomas M. Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin
Senger, Mark Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock,
Anil Wipat and Peter Li. Taverna: a Tool for the Composition and Enact-
ment of Bioinformatics Workflows. Bioinformatics, vol. 20, no. 17, pages
3405–3054, 2004. 1, 17, 26, 27

[78] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar and
Andrew Tomkins. Pig Latin: A Not-So-Foreign Language for Data Process-
ing. In International Conference on Management of Data - SIGMOD, pages
1099–1110, 2008. 24, 29

[79] Christopher Olston, Greg Chiou, Laukik Chitnis, Francis Liu, Yiping
Han, Mattias Larsson, Andreas Neumann, Vellanki B. N. Rao, Vijayanand
Sankarasubramanian, Siddharth Seth, Chao Tian, Topher ZiCornell and Xi-
aodan Wang. Nova: Continuous Pig/Hadoop Workflows. In SIGMOD Con-
ference, pages 1081–1090, 2011. 29

[80] Apache. Oozie: Hadoop workflow system. http://yahoo.github.com/
oozie/. 29

[81] Oracle Database. http://www.oracle.com/. 2, 29, 30, 67

[82] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden and Michael Stonebraker. A Comparison of Ap-
proaches to Large-scale Data Analysis. In SIGMOD ’09: Proceedings of the



126 Bibliography

2009 ACM SIGMOD International Conference, pages 165–178, 2009. 3, 23,
25

[83] Rob Pike, Sean Dorward, Robert Griesemer and Sean Quinlan. Interpreting
the Data: Parallel Analysis with Sawzall. Scientific Programming, vol. 13,
no. 4, pages 277–298, 2005. 24

[84] K. Plankensteiner, R. Prodan and T. Fahringer. Fault-tolerant Behaviour in
State-of-the-art Grid Workflow Management Systems. In CoreGRID Techni-
cal Report, TR-0091, 2007. 19

[85] PostgreSQL: the World’s Most Advanced Open Source Database. http://
www.postgresql.org/. 25, 26, 30, 31

[86] PubMed: US National Library of Medicine. http://www.ncbi.nlm.nih.
gov/pubmed. 67

[87] Sun Grid Engine Home. http://wikis.sun.com/display/GridEngine/
Home, 2011. 26, 27

[88] A. Ray. Oracle Data Guard: Ensuring Disaster Recovery for the Enterprise.
Rapport technique, Oracle, Mar 2002. 14

[89] Chiara Sabatti and Kenneth Lange. Genomewide Motif Identification Using
a Dictionary Model. Proceedings of The IEEE, vol. 90, no. 11, pages 1803–
1810, 2002. 101

[90] Srinath Shankar, Ameet Kini, David J. DeWitt and Jeffrey F. Naughton.
Integrating Databases and Workflow Systems. SIGMOD Record, vol. 34,
no. 3, pages 5–11, 2005. 28

[91] Takeshi Shibata, SungJun Choi and Kenjiro Taura. File-access Patterns of
Data-intensive Workflow Applications and their Implications to Distributed
File Systems. In HPDC, pages 746–755, 2010. xi, 16

[92] SQL Server. http://www.microsoft.com/en-us/sqlserver/default.
aspx. 2, 28, 67

[93] SQLite. http://www.sqlite.org/. 33

[94] Michael Stonebraker, Jeff Anton and Eric N. Hanson. Extending a Database
System with Procedures. ACM Trans. Database Syst., vol. 12, no. 3, pages
350–376, 1987. 29



Bibliography 127

[95] Michael Stonebraker and Greg Kemnitz. The Postgres Next Generation
Database Management System. Commun. ACM, vol. 34, no. 10, pages 78–92,
1991. 29

[96] Michael Stonebraker, Jacek Becla, David Dewitt, Kian tat Lim and Stan
Zdonik. Requirements for Science Data Bases and SciDB. In Proc. Confer-
ence on Innovative Data Systems Research (CIDR’09), 2009. 3

[97] Michael Stonebraker, Daniel Abadi, David J. DeWitt and Sam Madden.
MapReduce and Parallel DBMSs: Friends or Foes? Commun, vol. 53, no. 1,
pages 64–71, 2010. 3, 23

[98] Sybase. http://www.sybase.com/products. 67

[99] Alexander S. Szalay, Peter Kunszt, Ani Thakar, Jim Gray and Don Slutz.
Designing and Mining Multi-terabyte Astronomy Archives: the Sloan Digital
Sky Survey. In Proc. of the SIGMOD Conf., pages 451–462, 2000. 3

[100] R. Talmage. Database Mirroring in SQL Server 2005. Rapport technique,
Microsoft, Apr 2005. 14

[101] Jiaqi Tan, Soila Kavulya, Rajeev Gandhi and Priya Narasimhan. Visual, Log-
Based Causal Tracing for Performance Debugging of MapReduce Systems. In
Proceedings of the 2010 IEEE 30th International Conference on Distributed
Computing Systems, ICDCS ’10, pages 795–806, 2010. 24

[102] Masahiro Tanaka and Osamu Tatebe. Pwrake: A Parallel and Distributed
Flexible Workflow Management Tool for Wide-area Data Intensive Comput-
ing. In Proceedings of HPDC’10, pages 356–359, 2010. 27

[103] Kenjiro Taura, Takuya Matsuzaki, Makoto Miwa, Yoshikazu Kamoshida,
Daisaku Yokoyama, Nan Dun, Takeshi Shibata, Choi Sung Jun and Jun ’
ichi Tsujii. Design and Implementation of GXP Make – a Workflow System
Based on Make. In e-Science 2010 conference (eScience2010), 2010. xiii, 1,
16, 26, 27, 93

[104] Ian Taylor, Matthew Shields, Ian Wang and Andrew Harrison. The Triana
Workflow Environment: Architecture and Applications. Workflows for e-
Science, pages 320–339, 2007. 1, 17, 26, 27

[105] Teradata: Data Appliance, Data Warehouse, Business Intelligence. www.
teradata.com. 2



128 Bibliography

[106] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff and Raghotham Murthy.
Hive - A Warehousing Solution Over a Map-Reduce Framework. In Proceed-
ings of VLDB Endow, pages 1626–1629, 2009. 2, 24, 30, 31, 90

[107] TPC-H. http://www.tpc.org/tpch. 36, 66

[108] Prasang Upadhyaya, YongChul Kwon and Magdalena Balazinska. A Latency
and Fault-tolerance Optimizer for Online Parallel Query Plans. In SIGMOD
Conference, pages 241–252, 2011. 31

[109] Patrick Valduriez. Parallel Database Systems: Open Problems and New Is-
sues. Distributed and Parallel Databases, vol. 1, no. 2, pages 137–165, 1993.
13

[110] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Work-
flow Language. Inf. Syst., vol. 30, pages 245–275, 2005. 26

[111] Vertica. http://www.vertica.com/. 2, 23, 26, 30

[112] VerticaInputFormat. http://www.vertica.com/mapreduce. 26

[113] Rares Vernica, Michael J. Carey and Chen Li. Efficient Parallel Set-similarity
Joins Using MapReduce. In SIGMOD Conference, pages 495–506, 2010. 25

[114] Jianwu Wang, Daniel Crawl and Ilkay Altintas. Kepler + Hadoop: a General
Architecture Facilitating Data-intensive Applications in Scientific Workflow
Systems. In SC-WORKS, 2009. 29

[115] Guozhang Wang, Marcos Vaz Salles, Benjamin Sowell, Xun Wang, Tuan Cao,
Alan Demers, Johannes Gehrke and Walker White. Behavioral Simulations in
MapReduce. Proc. VLDB Endow., vol. 3, no. 1-2, pages 952–963, September
2010. 25

[116] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc., June 2009.
2, 23, 27, 28, 30, 31, 90, 94

[117] Yu Xu, Pekka Kostamaa and Like Gao. Integrating Hadoop and Parallel
DBMS. In SIGMOD Conference, pages 969–974, 2010. 25

[118] Christopher Yang, Christine Yen, Ceryen Tan and Samuel Madden. Os-
prey: Implementing MapReduce-style Fault Tolerance in a Shared-nothing
Distributed Database. In ICDE, pages 657–668, 2010. 26, 31



Bibliography 129

[119] Jia Yu and Rajkumar Buyya. A Taxonomy of Scientific Workflow Systems
for Grid Computing. SIGMOD Record, vol. 34, no. 3, pages 44–49, 2005. 18

[120] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda and Jon Currey. DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language.
In OSDI, pages 1–14, 2008. 25

[121] Li Yu, Christopher Moretti, Andrew Thrasher, Scott J. Emrich, Kenneth
Judd and Douglas Thain. Harnessing Parallelism in Multicore Clusters with
the All-Pairs, Wavefront, and Makeflow Abstractions. Cluster Computing,
vol. 13, no. 3, pages 243–256, 2010. 26, 27

[122] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, I. Raicu,
T. Stef-Praun and M. Wilde. Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. In IEEE International Workshop on Service Computing, pages
199–206, 2007. 1, 16, 26, 27

[123] Daniel Zinn, Sven Kohler, Shawn Bowers and Bertram Ludascher. Paral-
lelizing XML Processing Pipelines via MapReduce. Rapport technique, 2009.
29

[124] M. Tamer Özsu and Patrick Valduriez. Distributed and Parallel Database
Systems. ACM Computing Surveys, vol. 28, pages 125–128, 1996. 7


