

論文の内容の要旨

論文題目 ParaLite: a Parallel Database System for Data-intensive Workflows

 (ParaLite: データ集約的ワークフローのための並列データベースシステム)

氏 名 陳 婷

Data-intensive workflows have become one of the most important and necessary tools for

data-intensive applications since they facilitate the composition of individually developed

executables, making it easier for domain experts to focus on their research rather than

computation managements. A workflow generally consists of a set of jobs with their dependencies.

Since a job is typically an existing executable, data transfers between jobs are generally handled

by the workflow system. Usually, data are stored in files and implicitly transferred through a

shared file system or explicitly moved by a staging subsystem. Such file-based workflows are

often very complex with many jobs due to the low-level description. To schedule a job to

computing resources for parallel execution, the input of the job is generally split into multiple

small files, thus, leading to a large number of intermediate files.

While there is a critical need for workflow systems to manage scientific applications and data,

parallel database systems which have been commercially available for decades and proved to be

efficient large-scale data processing platforms, are well-suited to deal with specific aspects of

workflow management. Some workflow management systems utilize database technologies to

provide functionality such as simplifying the description of a workflow with SQL queries,

improving the performance of the execution and facilitating the management of data. While

database systems with high-level SQL queries simplify the description of workflows, they

generally lack a good support for directly invoking executables from SQL statements. Many of

executables are third-party components that received a large amount of development efforts from

the community and usually developed in a variety of languages. As a workflow is typically built

out of such executables, integrating them into SQL statements is very important. Most databases

execute the executables in the form of user-defined functions or stored procedures. Thus,

programmers who want to invoke such executables as part of SQL statements have to write and

compile them with respect to the strict specifications of databases, and are usually constrained in

the language they can use. It is obviously unreasonable for scientists to rewrite their applications

with a large number of such executables to allow them to be run by a database. Another limitation

for database systems for workflows is inefficient fault tolerance mechanisms. The conventional

approach in most existing database systems which handle failures by aborting the query and

restarting it from the beginning, is not efficient for long-running jobs in workflows.

To tackle these problems, we propose ParaLite, a shared-nothing parallel database system which

facilitates the development of workflows and improves the performance of their executions. The

basic idea behind ParaLite is to provide a coordination layer to glue many SQLite instances

together, and parallelize an SQL query across them. With ParaLite, jobs in a workflow are

expressed with SQL queries and all intermediate data are stored as relational tables. To allow the

direct invocation of external executable from SQL statements, ParaLite provides seamless

integrations of external executables (User-Defined Executable, UDX for short) into SQL

statements. The syntax of an UDX is similar to that of a User-Defined Function (UDF) but more

flexible in the format of input and output data. With the support of UDX, programmers do not

need to write any program with respect to strict specifications of databases. To provide efficient

parallel execution of UDXes, ParaLite is equipped with a concept of collective query, an SQL

query issued by multiple computing clients who collectively receive the results of the query and

process them in parallel using UDXes. Collective query enables the co-allocation of computing

clients and data sources (data nodes in databases) with consideration of data locality and load

balance across all clients. With collective queries, the execution of an UDX is not bound to

database nodes and it can be distributed to arbitrary clients for larger scale execution and

computational load balancing.

Moreover, for long-running jobs in a workflow, ParaLite supports intra-query fault tolerance with

a selective checkpointing mechanism, enabling to resume queries from middle of the execution

upon a failure. Each query is represented by a DAG of relational operators in which data are

typically pipelined between operators. The goal of the mechanism is to find a set of operators

whose outputs are worth being checkpointed to minimize the expected completion time of the

whole query. It firstly provides a cost model to estimate the expected completion time of a whole

query plan under a given failure probability for each operator. Then a divide-and-conquer

algorithm is proposed to find a close-to-optimal solution to the problem. The algorithm divides

the query plan into sub-plans with smaller search spaces. For a given query plan with n operators,

the algorithm runs in O(n) time.

The experimental results firstly show that while ParaLite has similar performance with a

commercial database system DBMS-X for most queries from TPC-H benchmark, it is 10x

speedup comparing to UDF implementation in DBMS-X for the execution of executables.

Besides, ParaLite has several times higher performance than a MapReduce system (specifically

Hive) for typical SQL tasks, such as selections, joins and aggregations. With collective queries

the performance for the UDX's execution could achieve close-to-ideal speedup with the increase

of computing clients when data are either balanced or not balanced distributed across a cluster.

Moreover, the mechanism of collective query balances the load across computing clients even

when some clients are manually overloaded. The experimental results also indicate that different

fault-tolerant strategies affect the overall runtimes of queries. Our selective checkpointing

mechanism can choose reasonable operators to be checkpointed and outperforms other

fault-tolerant strategies, such as pure pipelining data and checkpointing all intermediate data. In

addition, the divide-and-conquer algorithm taken by our mechanism has a smaller overhead than

brute-force approach while keeping a similar effectiveness.

Finally, we study three real-world text-processing workflows in the field of Natural Language

Processing (NLP), and build them on top of ParaLite, Hadoop, Hive and regular files. We discuss

their strengths/weaknesses both in terms of programmability and performance for each workflow.

Our development experience reveals that high-level query languages such as SQL of ParaLite and

HiveQL of Hive are helpful for expressing data selection, join, aggregation and calculation by

typical executables. In NLP workflows, the expressiveness of SQL in ParaLite is particularly

useful since it provides natural supports of file-based NLP executables and reusing existing NLP

tools by tracking the association between a document and its annotation attached by the tools. On

the other hand, workflows expressed in low-level languages lack good support of all features

mentioned above, requiring a few extra efforts. The experimental results show that essentially

each system has a similar overall performance because performing executables takes most of time.

However, a closer investigation still reveals a potential advantage of ParaLite due to data

partitioning and query optimization.

