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Abstract

This thesis discusses the planning algorithms of a novel type of grasping closure – namely
caging. In the author’s view, this is the first literature which systematically discusses caging
planning algorithms and their applications in robotics. Although the idea of caging is not
proposed by the author himself, he further develops the geometric definition of caging and
makes it pragmatic.

The thesis contributes in three aspects. Firstly, in caging theory, the thesis initially ex-
plains the relationship between caging and traditional research in grasping. Namely, caging is
the extension of immobilization. Secondly, in caging planning algorithms, the thesis initially
employs caging to deal with uncertainty. It on the one hand proposes efficient algorithms to
deal with caging test while on the other hand further proposes efficient algorithms to deal
with caging optimization. Both caging test algorithms and caging optimization algorithms
are explored in the configuration space of target object and the configuration space of finger
formation. Thirdly, in the aspect of applications, the thesis applies the proposed caging
planning algorithms to robotic hands and multi-robot cooperative transportation. It dis-
cusses how to select proper algorithms according to requirements of real-world applications.
Results show that the algorithms are not only robust to various uncertainty but also helpful
to reduce the number of fingers or mobile robots.

Main texts of the thesis are divided into four parts. The first three parts corresponds to
the three contributions. The first part is the basic concepts of caging. It reviews time-of-the-
art progresses in robotic manipulation and presents the contribution in theoretical aspect,
namely relationship between caging and traditional research topics in grasping. The remain-
ing two parts discuss caging by using two different spaces. One is the configuration space
of target object and the other is the configuration space of finger formation. Details on how
to solve the caging problems, namely the caging test problem and the caging optimization
problem, in those two spaces are discussed respectively in these two parts. These two parts
also involve applications of the caging algorithms like a distributed end-effector, a gripping
manipulator and multi-robot cooperation.

The configuration space of target object and the configuration space of finger formation
essentially equal with each other by a linear transformation. They actually provide different
metrics to measure the robustness of caging. The fourth part of the thesis discusses the
relationship of the algorithms in the two spaces and how to choose a proper algorithm
according to mechanical structures and specific tasks. It also summarizes the thesis and
proposes potential future directions.

The concepts and algorithms proposed in this thesis can efficiently solve 2D manipulation
problems in the presence of uncertainty. The author believes that caging is a promising tool
to deal with perception and control uncertainty. He would like to spread this tool and explore
more about this tool in both theory and application aspects in the future.
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Chapter 1

Introduction

1.1 Robotic Manipulation and Its Difficulties
Robotic manipulation involves two aspects. One is the working subject, namely a robot.
The other one is the working motion, namely manipulation or rearranging the world by
hands. Prof. Matthew T. Mason discussed a lot about how should a robot rearrange the
world with robotic hands in his book “Mechanics of Robotic Manipulation”[Mason, 2001].
Mechanics is one essential problem in robotic manipulation. However, it is never the unique
one. Generally speaking, a pragmatic robotic manipulation suffers from either difficulties
from mechanism, sensing and mechanics. We can summarize them as following.

• Mechanism: Structures and organizations of a robotic hand

• Sensing: Perception and understanding of target objects

• Mechanics: Forces exerted by fingers and balances of those forces

Mechanism relates to structures of robotic hands. It concentrates on kinematics and ac-
tuation, especially how to select and organize mechanical components to obtain better control
performance. Prof. Nancy Pollard in his course “Hands: Design and Control for Dexterous
Manipulation”[Pollard, 2010] gave a good review of popular hands and related design issues.
In most cases, robotic hands are designed according empirical requirements of specific tasks or
designed by mimicking certain biological creatures. These hands are in front of difficulties like
complicated control and expensive actuators. Low-cost, high-robustness and general-purpose
robotic hands remains a popular research topic. One representative work in this topic is
[Rodriguez and Mason, 2013](fundamentally based on [Rodriguez and Mason, 2012a]). It
won the IEEE ICRA2013 best student paper award.

Sensing relates to perceiving and understanding target objects. Most manipulation
systems install two kinds of sensors. One kind is global sensors which play the role of human
eyes. The other kind is local sensors which play the role of tactile sensation. Take the
WillowGarage PR2 robot[WillowGarage, 2012] for example. Before performing manipulation
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tasks, the PR2 robot firstly perceive positions and geometric information of target objects
with global sensors on its head. Then, when stretching out its hand for grasping, the PR2
robot exerts forces by using tactile sensors inside its gripping hand. The most important
problems that relate to these sensors are their precisions and costs. Low-cost perception
devices like KINECT[Microsoft, 2012]1 could have as much as 50mm errors while precise
perception devices like a laser ranger could cost thousands of dollars or even overtake the
cost of a robotic hand itself. Researchers are still devoting themselves to struggling with the
difficulties caused by sensing devices. Two popular solutions, namely reducing the number of
necessary sensors and improving the performance of manipulation under various uncertainties
take up most of nowadays researches.

Mechanics relates to mathematical and physical analysis of manipulation. It includes
but is not limited to form or force closure (see Chapter 7 of [Mason, 2001]). Given the
geometric information of target objects, mechanics study calculates the formations that
should be shaped to manipulate the target objects and calculates the forces that should be
exerted to operate the target objects. The difficulty from mechanics is not independent.
It is deeply coupled with mechanism and sensing. An under-actuated mechanism suffers
from kinematics and thus changes analysis of mechanics. A noisy perception device offers
uncertain surface normals and thus changes conditions of force or form closures. Lots of
state-of-the-art works discuss how to optimize mechanics against mechanism and sensing.

None of the three difficulties are independent. They interplay each other and further
improve the difficulties of robotic manipulation. Our group design a distributed end-effector
to challenge these three difficulties. This distributed end-effector is a background work of
my caging topic and I will briefly introduce this it in the next section.

1.2 The Distributed End-effector
Our group proposes a distributed end-effector to challenge the difficulties of mechanism,
sensing and mechanics in robotic manipulation. During the design of this end-effector we
try to avoid explicit contact between fingers and target object as well as try to reduce the
number of motors as much as possible. Fig.1.1 illustrates our concept.

Novelty of this end-effector lies in the following four aspects. (1) Generality: As can be
seen from Fig.1.1, our distributed end-effector is installed to a base robotic arm to transport
target objects from place to place. The target objects could have any rigid shapes, from
commodity packages to cups and plates. In this way, the distributed end-effector is more
general than traditional robotic palletizers. (2) Conciseness: We install only one x-y-θ actu-
ator to the end-effector to lower its cost. This actuator will attach, actuate and detach each
of those four “hanging” fingers sequentially and each finger can be actuated “distributedly”.
(3) Fully distributed control: Each finger has some permanent magnets installed to its top
and each finger is connected to the “palm” of the end-effector by the magnetic forces exerted

1News of KINECT2 has been released recently. KINECT2 is Time-of-Flight based depth sensor. It is
more precise as well as low cost.
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Figure 1.1: The concept of our distributed end-effector.

by those permanent magnets. Connection by magnets offer the freedom that when a finger
is attached by the x-y-θ, it can be dragged and rotated freely in the “palm” plane. Each
finger is controlled fully distributedly. (4) Prismatic finger body and nails: Each finger has a
prismatic body and an inserting nail. The prismatic bodies help to enlength fingers without
taking too much space while the inserting nails help to support objects during picking-up
and transporting procedure. After perceiving the shape of a target object, the fingers stretch
out their bodies to the bottom of the object and insert their nails underneath the object to
avoid direct contact. In this way, we no longer need to consider about object materials or
analyze contact frictions as long as the links of fingers constrain target objects and the nails
have enough power to support object mass. Fig.1.2 shows in detail the mechanism of our
x-y-θ actuator and a transporting procedure of the end-effector.

Along with these novelties, we encounter several problems like how to configure motors
of the x-y-θ actuator, how to set permanent magnets and how to set the shape and strength
of finger nails, etc. These problems relate heavily to mechanical design. However, besides
these mechanical problems, we have an essential issue which relates to grasp synthesis. Say,
given the shape of an object, how many fingers do we need and what kind of finger formation
should we choose to constrain target objects? This problem looks like a traditional grasping
problem, or more exactly looks like a form-closure problem since we do not consider frictions
explicitly. Unfortunately, it is different. Form closure requires the equilibrium of wrenches.
In contrast, the fingers in our case do not explicitly exert forces and we cannot build equations
base on the convexity of form or force closure hulls. This problem is pure geometric. It is
actually a different kind of closure which relates to caging.
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Figure 1.2: Mechanism of the x-y-θ actuator and a transporting procedure.

1.3 Controlling the End-effector by Caging
The first formal proposal of a caging problem is from Kuperberg’s paper[Kuperberg, 1990]
in 1990. In this paper, Kuperberg proposed the following question.

Let P be a polygon in the plane, and let C be a set of n points in the complement
of the interior of P. The points capture P if P cannot be moved arbitrarily far
from its original position without at least one point of C penetrating the interior
of P. Design an algorithm for finding a set of capturing points for P.

Kuperberg is a mathematician and he is mathematically strict in this proposal. Assume
that any planar objects can be approximated by polygons, we can have a more general form.
Inputs to the general form is the geometric shape or boundary clouds of a planar object.
Outputs of it is a formation of capturing points that cages the geometric shape so that it can
never go to infinity. The grasp closure issue we encountered in the end-effector is a variation
of this general form. Actually, our issue is more difficult due to the limitation of hardware
and uncertainty from engineering noises. Fig.1.3 illustrates the similarities and differences
between our issue and Kuperberg’s caging problem. The upper part of Fig.1.3 expresses
Kuperberg’s caging problem. It shows a caging formation which cages a circular object. In
this case, the object is caged and cannot escape from the cage formed by the point finger
formation. The lower part of Fig.1.3 expresses the caging issue of our end-effector. In this
case, we need to consider extra problems like how many fingers should we employ to reduce
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mechanical costs and how to deal with various uncertainty due to perception and control
noises.

Figure 1.3: Similarities and differences between our issue and Kuperberg’s caging problem.

Our issue has the same input as Kuperberg’s proposal, namely the geometric shape
of a planar object. It also has the same output, namely a formation of capturing finger
positions that cages the target object2. Despite the similarities, our issue inherently suffers
from engineering uncertainty. We not only need to consider whether the finger formation
can capture or cage a target object, but also need to consider uncertainty caused by noises
from the perception device and noises from control. The uncertainty makes our issue more
difficult. Fig.1.4 shows in detail how Kuperberg’s caging problem changes in the presence of
perception and control noises.

When noises appear during perception procedure, the perceived object boundary could
be dramatically different from its groundtruth shape. The difference may become even more
dramatic after certain post-processing procedures. The upper part of Fig.1.4(a) illustrates

2Readers may notice that in our case finger have shapes. Surely finger shapes can simplify caging. For
instance, our end-effector has rectangular finger shape and it can cage target objects more easily than point
fingers. Nevertheless, let us temporarily take all fingers as point fingers. This is a sound assumption. Shaped
fingers are super sets of point fingers. If an object can be caged by point fingers, it will sure to be caged by
shaped ones.
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Figure 1.4: Our issue inherently suffers from uncertainty caused by engineering noises.

the perception noises and distortions in the shape. In this illustration, a groundtruth circular
object becomes an irregular polygon after noisy perception and approximation. These noisy
perception and approximation cause a fatal failure that the caging set calculated based
the approximated polygon cannot cage the groundtruth circular object. The lower part of
Fig.1.4(a) illustrates the fatal failures and caging breaking.

The same failure happens when control noises appears. Accumulation of noises from
motor encoders, belt gears and permanent magnetic connecting modules could degenerate
control and drive fingers to unexpected positions. Even though we can find a formation of
finger positions to cage a target object, the caging may break due to noises during finger
control and actuation. The upper part of Fig.1.4(b) illustrates the degenerated control and
wrongly actuated fingers. These wrongly actuated fingers may either squash the target object
or result into caging breakings. The lower part of Fig.1.4(b) illustrates a failure case (caging
breaking).

Moreover, besides the noisy uncertainty we also need to take into account some other fac-
tors like length of the finger nails. In one word, our issue is a similar but complicated version
of Kuperberg’s caging problem. However, there is no perfect solution to Kuperberg’s
caging problem, far from ours. Consequently, I dive into the following research topic.

How can we deal with the caging problem and apply it to our end-effector? Or
more generally, how can we deal with the caging problem and apply it to robotic
manipulation?
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This thesis originates from this topic. The caging problem can indeed be divided into two
sub-problems. The first one corresponds to Kuperberg’s proposal, namely finding a set of
caging formations or simply finding a caging set by solving the caging test problem. The
second one corresponds to our newly encountered issue, namely finding a caging formation
that is most robust to uncertainties or simply the caging optimization problem. I will
generally call the caging test problem and the caging optimization problem by using
the caging problems in the context.

In the problem of caging test, we need to develop a caging test algorithm that can
test whether a specific finger formation cages the target object. We will need to find all
the caging formations that can pass the caging test algorithm. In the problem of caging
optimization, we need to develop an algorithm by using robust caging, namely find a mea-
surement, evaluate the robustness of a caging formation with the measurement and picking
out a caging formation that has satisfying robustness. Fig.1.5 illustrates the relationship of
those caging problems.

Figure 1.5: The caging problems of this thesis.

This thesis explores the caging problems. It summarizes my study in caging algorithms
and presents some applications based on those study. The title of the thesis is named “caging
planning” following “grasp planning”. It borrows some ideas from path planning literature
to solve the caging problems. I may not say the caging problems has been perfectly solved,
but I believe my work can contribute to researches in related fields.

1.4 Organization of the Thesis
This thesis is composed of eight chapters. Besides the introduction chapter and the conclu-
sion chapter, the remaining six chapters can be divided into four parts. They are,

Part I, Basic Concepts of Caging. This part introduces the basic concepts of caging
and its recent development. It is not only a literature review but also includes some of
my proposals that fill up the gap between caging and traditional robotic grasping research.
My contribution in this part is the demonstration of both traditional grasping concepts and
caging in the configuration space of target object, Cobj. I visualize the relationship
between caging and traditional research in grasping with Cobj.

This Part I includes Chapter 2.
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Part II, Caging in Cobj and Its Applications. This part discusses in detail of how to
deal with the caging problem in Cobj and presents some applications based on my discussion.
Cobj can be seen as a tool to make caging analysis easier. By employing Cobj we can review
the caging problems from a different viewpoint and solve them intuitively.

Specifically, in this part, I firstly revisit, improve and implement a work by Prof. Jeff
Erickson[Erickson et al., 2003][Erickson et al., 2007]. Erickson’s idea is quite smart and my
implementation improves his idea. However, both Erickson’s idea and my implementation
are limited to three-finger hands and known finger positions. How to push though those
limitations and extend my implementation to general cases become a key issue. I propose an
algorithm to solve this issue by fixing fingers alternatively and further reduce the computa-
tional complexity of that algorithm by decomposing caging into translational caging and
rotational constraints. The performance of my algorithm are demonstrated and evaluated
by the robustness of finger formations with WEBOT simulation software.

Applications in this part includes the distributed end-effector and a multi-robot cooper-
ative transportation system. The applications work well with 2D convex objects. However,
convexity is an inherent limitation and the algorithms in Cobj can only work with 2D convex
objects. Objects with concave boundaries invalidate the algorithms easily. This drawback
motivates me to explore into another tool, say, configuration space of finger formation,
Cfrm.

This Part II includes Chapter 3 and Chapter 4.
Part III, Caging in Cfrm and Its Applications. This part analysizes the caging

problems in Cfrm. Like Cobj, Cfrm can also be seen as a tool to make easier caging analysis.
The motivation that drive me to this tool is from two aspects. For one thing, I hope to make
the caging algorithm work with any 2D shape, not only objects with either convex boundaries,
but also concave boundaries, 1-order or high-order boundaries. For the other, I hope to make
the caging algorithm complete as well as rapid. This is difficult in Cobj since the complete
algorithm in Cobj may have a time cost as much as order nine. Therefore, approximation of
the complete algorithm is employed in Cobj to by a combination of translational caging
and rotational constraints. However, the combination is not from strict mathematically
analysis and lacks completeness. In Cobj, completeness and rapidness are reciprocal. High
completeness implies low rapidness while high rapidness implies low completeness. Therefore,
I choose to change to Cfrm. Making both complete and rapid algorithms to the caging
problems is the second motivation that drives me to Cfrm.

In this part III, I will firstly discuss in detail why to change from Cobj to Cfrm. Employing
Cobj instead of Cfrm changes the center of my algorithm from target objects to fingers. We
no longer need to bother with specific object shape features like concavity and convexity.
This change exactly caters the expectation in the first aspect of my motivation. Then, I
introduce the space mapping idea which caters the expectation in the second aspect of
my motivation. Raw space mapping and especially its faster version, the improved space
mapping, make it possible to update the whole space of Cfrm. In other words, the algorithm
is complete. At the same time, we can quickly find the caging sets in the updated Cfrm and
locate an optimized caging formation. In other words, the algorithm is rapid.
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My complete and rapid algorithm in this part is applied to the design and implementation
of a gripping hand. The algorithm plays important roles in both design and implementation
procedures. During design, the Cfrm algorithm is employed to simplify and evaluate deign
models. During implementation, the Cfrm algorithm is employed to control the hand to cage
and grasp objects. The design and implementation procedure could demonstrate advantages
of caging.

This Part III includes Chapter 5 and Chapter 6.
Part IV, In-depth the Relationship Between Cobj and Cfrm. Cfrm is sometimes a

more powerful tool comparing with Cobj. However, it is unwise to discuss which is better.
Both algorithms in Cobj and Cfrm have their advantages and disadvantages. The fourth part
of the thesis proves that at different orientations Cfrm is the linear transformation of Cobj.
Consequently, the metrics used in Cfrm and Cobj are different. Both the two tools and their
correspondent algorithms have reasons to exist. They therefore should be treated equally.

Actually, the two tools and their algorithms correspond to different solutions of geomet-
ric modeling. The algorithm in Cobj uses wireframe modeling while the algorithm in
Cfrm uses solid modeling. Both modeling technology plays important roles in geometric
modeling and either algorithms in Cobj and Cfrm should exist. I treat them equally and
compile them into Part II and Part III of this thesis.

In real world, the algorithms in Cobj and Cfrm should be chosen according to mechanical
structure of robots and tasks. If all capture points are distributed and target objects are
convex (like the distributed end-effector and multi-robot cooperative transportation), it is
wise to do caging planning with the algorithms in Cobj. If capture points can be represented
by certain formations or target objects have various shapes (like the gripping hand), it is
wise to do caging planning with the algorithms in Cfrm.

This Part IV discusses these in-depth relationships. It includes Chapter 7.
The last chapter, Chapter 8, concludes the thesis. It firstly summarizes the whole thesis,

especially the algorithms in Cobj and Cfrm. Then, this chapter makes clear the contributions.
In the third sub-section of this chapter, I discuss about some future directions in algorithms
and applications aspects respectively. In the aspect of algorithms, future works could be
the discussion of 2.5D/3D objects and the discussion of how to pre-define representative
finger formations. In the aspect of applications, future works could be the deployment onto
macro/nano manipulation and in-hand re-grasping systems.

Finally, Fig.1.6 shows all the works and their relationships. The sub-figures in Fig.1.6 are
representatives of those works. We will see their details throughout the remaining contents.
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Figure 1.6: Organization of the works included in this thesis.
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Chapter 2

Caging is the General Form of
Grasping

2.1 Related Research Topics in Grasping
Before going deeper into caging, let us review some related researches and concepts in grasp-
ing. They are (1) force and form closure (2) immobilization and (3) grasping optimization.

2.1.1 Force closure and form closure
The force closure problem is one of the most fundamental problems in grasping. Basically,
force closure describes a state in wrench space. Detailed reviews and discussions of the force
closure problem can be found in Nguyen’s publications[Nguyen, 1986a][Nguyen, 1986b]. I
will not repeat those mathematically deductions here but would like to visualize the concept
with figures. Like its name, force closure means the wrench vectors exerted by
fingers enclose the origin point of wrench space. Or namely, the origin point of
wrench space is enclosed by a convex hull which is spanned by wrenches exerted by fingers.
Fig.2.1 visualizes this concept with two examples.

There are two points to explain about this figure. The first one is the forces exerted by
those point fingers. Each point finger can exert not only normal forces along surface normals
of target objects, but also friction forces along tangential directions. The synthesis of normal
forces and friction forces is in a region. The areas in the middle of those orange, green and
purple segments in the center part of Fig.2.1 illustrate this kind of regions. Since one finger
can exert forces in a region, it is possible to ensure force closure with only two fingers. The
first example of Fig.2.1 demonstrates this case.

The second point is wrench space. A wrench is a force plus a torque. Therefore, a
wrench is a six dimensional vector shown in expression (2.1).
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Figure 2.1: Two examples of force closure.
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)
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)
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(
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)
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′
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′

)
(2.1)

Here Fi is the force exerted by point fingers. According to foregoing explanation, this
force is the synthesis of normal force and friction force. ri is a position vector which indicates
the relative position between the force and rotational center. All the six dimensional wrenches
wi constitute a six dimensional vector space named wrench space. In 2D case, Fiz is always
zero and wi is always a three dimensional vector wi = (Fix , Fiy , τiz). Therefore, the wrench
space of a 2D object has three dimensions. The contents in the frames of Fig.2.1 illustrate
the 3D wrench spaces.

The wrenches exerted by those point fingers in Fig.2.1 are rendered with the same colors
as their work space correspondence. These wrenches span convex hulls which enclose
their origin points. Enclosing the origin points indicates that the fingers in both
examples of Fig.2.1 form force closures.

Force closure ensures grasping. However, it is impractical since materials and frictions
of target objects are difficult to be perceived and modelled. Therefore, researchers usually
discusses force closure without considering frictions. That is the concept of form closure.

Form closure was first proposed by Reuleaux in the year 1875(see [Bicchi, 1995] for a
detailed review of those historical work). When referring to form closure, researchers have
a common assumption that the point fingers cannot exert friction force. This assumption
means that the wi = (Fix , Fiy , τiz) in the wrench space of a 2D object becomes wi =
(Nix , Niy , τiz). Namely the synthesized force Fi is reduced into the simple normal force
Ni = (Nix , Niy , 0). The assumption is quite practical since researchers no longer need to
consider about frictions to ensure form-closure grasp.

However, form closure causes new problems. It requires a lot more fingers
[Mishra et al., 1987] and it is not applicable to circular objects. Reader may compare Fig.2.1
and Fig.2.2 for example. The same point fingers and the same target object ensure force
closures in Fig.2.1(a), however, they cannot ensure form closures in Fig.2.2(a). Without
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friction, the wrenches exerted by the point fingers cannot span convex hulls to enclose the
origin points. [Mishra et al., 1987] proved that (1) if the DoF (Degree of Freedom) of an
object is ndof, we need at least ndof + 1 point fingers to ensure form closure and (2) if the
object is a circle, we can never ensure form closure with point fingers. For a 2D object whose
ndof = 3, we need at least 4 point fingers to ensure form closure. Therefore, the point fingers
in Fig.2.2 are insufficient and they cannot ensure form closures.

Figure 2.2: Two examples of non-form closure.

Mishra’s theory seems to be contradictory to our common sense. Intuitively, people hold
an feeling that the second example of Fig.2.2 can be successfully grasped by those point
fingers. However, Mishra’s theory shows that it would fail. Is there anything wrong with
form closure? Elon Rimon tries to explain the contradiction by considering surface curva-
ture of objects. His theory starts from [Ponce et al., 1995], [Rimon and Burdick, 1996] and
[Rimon and Blake, 1996]. It becomes mature in [Rimon and Burdick, 1998a] and
[Rimon and Burdick, 1998b]. The work is extended to 3D objects in [Rimon, 2001]. Accord-
ing to Rimon’s theory, the contradiction between form closure and people’s common sense
was caused by surface curvatures of target objects. Take Fig.2.3 for example. In traditional
definition of form closure, none of the cases in Fig.2.3 are form closure. Rimon improves the
traditional definition by considering surface curvatures and introduces the concept of 2nd
order form closure. In Rimon’s theory, the traditional form closure is named 1st order
form closure since it only considers surface normals while his new closure is named 2nd order
form closure since it further takes the derivative of surface normals, namely the curvatures
of object surfaces into account. 2nd order form closure considers surface curvatures of target
objects and therefore dissolves the contradiction. The surface curvatures at contact points
in Fig.2.3(a) go outwards the contact tangent lines. They neither ensure 1st order nor en-
sure 2nd order form closure. The surface curvatures of the other cases in Fig.2.3(b) either
run parallel to or go inwards contact tangent lines. Although they are not 1st order form
closures. They fulfills Rimon’s 2nd order definition and therefore can ensure successful grasp
of target objects.

Besides 2nd order form closure, another explanation of the contradiction is infinites-
imal motions[Czyzowicz et al., 1999][van der Stappen, 2005][Cheong et al., 2006]. In force
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Figure 2.3: 2nd order form closure and surface curvatures.

closure, three fingers are enough to block both finite motions and infinitesimal motions
since friction forces exist at every contacts. However, in form closure, three fingers can only
block finite motions and target objects may oscillate infinitesimally due to the lack of
friction. We may need at least 4 fingers to block both finite motions and infinitesimal
motions and to ensure form closure. This conclusion corresponds to Mishra’s ndof+1 theory.

Fig.2.4 illustrates the meanings of finite motions and infinitesimal motions. It is
too strong for fingers to block both finite and infinitesimal motions in form closure and
that’s the reason why the contradiction between form closure and our common sense exists.

Rimon’s 2nd order form closure can be recognized as an attempt to deprive infinites-
imal motions from the definition of 1st order form closure. That is, even if there exists
infinitesimal motions, a target object could be grasped. However, Rimon’s analysis is
quite complicated. A more concise way to deprive infinitesimal motions is to define clo-
sures from another viewpoint, namely immobilization.

Figure 2.4: Form closure requires more fingers to constrain infinitesimal motions.
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2.1.2 Immobilization
Either the definition of force or form closures relate heavily to forces and wrench space.
In contrast, immobilization do not analyze forces. Jurek Czyzowicz[Czyzowicz et al., 1999]
defines immobilization as following.

The set of points I is said to immobilize a planar shape P if any rigid motion of
P in the plane forces at least one point of I to penetrate the interior of P.

Comparing with force and form closure which require enclosing the origin point of wrench
space, the definition of immobilization is pure geometric. It does not result into problems of
surface curvatures or infinitesimal motions. All we need to ensure is that the target
object, in its configuration space, is at a fixed single configuration. Instead of
Jurek’s definition, let us view the immobilization problem in configuration space. More
exactly, we should call it the configuration space of target object and use symbol Cobj

to indicate it. Cobj was originally a R2 × S topology space. This R2 × S topology space
is homeomorphic to the three-dimension Euclidean space R3 (see Chapter 3 of reference
[Choset et al., 2005] for more formal definition). We can therefore use R3 rather than R2×S
to represent Cobj and to simplify the deductions. The first two dimension of Cobj denote
the position of target objects and the third dimension of Cobj denotes the orientation of
target objects. A point in Cobj is called a configuration and it corresponds the position and
orientation of the target object in work space. Fig.2.5 shows the correspondences between a
target object in work space and a configuration in Cobj.

Figure 2.5: Correspondence between an object in work space and a configuration in Cobj.

A point finger in work space corresponds to an obstacle in Cobj. Take Fig.2.6 for instance.
In the upper-left figure of Fig.2.6, the target object is at a configuration q and it does not
collide with the point finger. In this case, the q is free. In the upper-right figure of Fig.2.6,
as the target object moves along the red arrow, the target object and the point finger would
collide with each other. In that case, the position and orientation of the target object,
or namely the configuration q of the target object, becomes obstructed. A target object
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could collide with a point finger at many different qs. All the qs constitute a compact set
(sub-space) in Cobj and we name this set the configuration obstacle. This is shown in the
middle row of Fig.2.6. One configuration obstacle is decided by the position of a point finger.
Therefore, we say one configuration obstacle corresponds to one point finger. If there are
three point fingers like the lower part of Fig.2.6, there will be three correspondent obstacles
in Cobj.

Figure 2.6: Correspondence between a finger in work space and an obstacle in Cobj.
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When a target object’s configuration is fixed to a single point by the obstacles, we can
say the object is immobilized. This is the same as Jurek’s definition. When the configuration
of a target object is fixed to a single point, any changes in object configuration, or namely
any rigid motion of the target object, would cause the configuration to be obstructed by
obstacles or namely would force at least one point finger to penetrate into the interior of the
target object. An example of immobilization is the fingers and target object in the right part
of Fig.2.1. Although those fingers cannot ensure form closure, they immobilize the target
object. Fig.2.7 shows the Cobj of this immobilization example. In this figure, the obstacles
are rendered with wire-frames to better illustrate the fixed single configuration. The three
wire-framed obstacles compactly enclose an fixed single configuration and therefore the three
fingers immobilize the target object. Readers may refer to the two images in the center part
of this figure for better comprehension. In the center part, both a whole view which shows
all Cobj and a sliced view which shows only the Cobj at an orientation θ are rendered. The
target object cannot change its position or rotation as any changes in configuration would
be obstructed by obstacles. The right part of Fig.2.7 demonstrates two obstructions.

Figure 2.7: Immobilization means a fixed single object configuration.

Immobilization unifies 1st order and 2nd order form closure. 2nd order form closure
belongs to immobilization while 1st order form closure is not immobilization. It makes the
theory concise. However, we need to pay attention to that immobilization is different from
fixture design. In fixture design, researchers expect to fix objects with force closure rather
than immobilization. This is because immobilization inherits the problem of infinitesimal
motions from form closure, it cannot “firmly” fix objects.

Jurek proved that four points are always sufficient to immobilize any shape. Comparing
with force and form closures, immobilization is quite pragmatic. For one thing, it requires few
fingers. For another, it involves no wrench analysis. However, that’s not the ultimate theory.
Caging, the major topic of this thesis, is more general comparing with immobilization. We
will see their relationship later in this chapter. Before that, let us review another related
topic, namely grasping optimization.
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2.1.3 Grasping optimization
The third research related the topic of this thesis is grasping optimization. In accordance
with the foregoing introduction, we divide grasping optimization into two aspects. The
first one is optimization of force and form closures and the second one is optimization of
immobilization.

2.1.3.1 Optimization of force closures and form closures

Basically, following the definition of force closure and form closure, traditional works tend
to define a measurement and perform optimization of grasping in the wrench space. This
basic measurement is usually the radius of Largest Inscribed Sphere (LIS) of the
convex hull spanned by wrenches. Fig.2.8(a) illustrates this basic basic measurement.

Figure 2.8: Grasping optimization is to find a convex hull whose LIS has largest radius.

The basic measurement is reasonable since the larger the radius of LIS is, the more
robust a force closure or form closure would be. Fig.2.8(b) illustrates this reason. When
the object is unknown, engineering errors, or namely noises from perception devices and
control would easily cause errors in normal forces and friction forces. These errors in forces,
in the wrench space, cause changes in wrench vectors. The middle part of Fig.2.8(b-1)
demonstrates this kind of errors and changes. If the radius of LIS is too small, like the
case in Fig.2.8(b-1), the origin point of wrench space may go outside the convex hull
easily and force closure breaks. Therefore, Fig.2.8(b-1) is not robust to errors and changes.
Optimization is needed. Comparing with Fig.2.8(b-1), Fig.2.8(b-2) has a larger radius of
LIS and it is more robust. Interested readers may refer to the following three references for
more details. The first one is reference [Mirtich and Canny, 1994] which gives some intuitive
examples that demonstrate the efficacy of basic measurement in work space. The second
and third one are references [Liu et al., 2004] and [Niparnan et al., 2009] which give formal
expressions to calculate basic measurement and discuss how to compute force closure and
form closures efficiently. Fig.2.8 is based on force closure. Nevertheless, it is not limited to
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force closure. It can be applied to form closures in the same way. The basic measurement
is a fundamental evaluation criteria in wrench space optimization.

Of course, there are lots of variations which make the basic measurement more prag-
matic. For instance, sometimes we need to take into account the given external forces exerted
on the target objects. Gravity force is one example of the given external forces. Some other
times we need to consider some unavailable contact areas on the surface of target objects.
The cutting edge of a knife is one example of those unavailable areas. Grasping the cutting
edge does harm to fingers and hands. Fig.2.9 illustrates these pragmatic variations. When
there are given external forces, as shown in Fig.2.9(b), the convex hull deforms with respect
to the given forces. It results into different radius of LIS and different optimization results.
Readers may see [Watanabe and Yoshikawa, 2007] for examples of optimization on given ex-
ternal forces. When there are certain unavailable areas, as shown in Fig.2.9(c), the convex
hull deforms with respect to the changes of contacts. It also results into different radius of
LIS and different optimization result. Readers may see [Li and Sastry, 1988] for examples of
unavailable areas.

Figure 2.9: Some variations of grasping optimization.

Pure optimization of force closures and form closures is becoming less popular and there
are few new publications on this topic in recent two or three years. What’s more, it is not
directly related to our topic in this thesis. Therefore we won’t repeatedly review the historic
works of this area. I refer readers to Watanabe’s paper [Watanabe and Yoshikawa, 2007]
for a good review and classification of literature. Interested readers may also refer to
Eris Chinellato’s work[Chinellato, 2002][Chinellato et al., 2003][Chinellato, 2008] to better
understand different measurements and their performance. They may also refer to fixture
design[Wallack and Canny, 1996][Wallack, 1996][Ponce, 1996] to see some practical applica-
tions. Readers may find that some figures in [Wallack and Canny, 1996][Wallack, 1996]
[Ponce, 1996] are like translational and rotational decomposition in Chapter 3. The similar-
ity, from another view, demonstrates the relationship between grasping closure and caging.
We will see the details in Section 2.2.
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2.1.3.2 Optimization of immobilization

Like optimization of force closures and form closures, we can also perform Immobilization op-
timization. Optimization of force closures and form closures are performed in wrench space
and likewise optimization of immobilization could be performed in Cobj. However, discussions
on immobilization optimization in Cobj cannot be found in popular researches. I there-
fore develop a new measurement for immobilization optimization. I will briefly introduce
the new measurement for immobilization in this sub-section. It is an essential connection
between grasping and caging.

In previous sections we have seen that immobilization means the target object, in Cobj,
is at a fixed single configuration. In another word, when a target object is immobilized,
its correspondent Cobj can be divided into three components. The first one is the fixed single
configuration, which represents the position and orientation of the target object. When the
target object is at this configuration, it is immobilized. The second one is the collection of
obstacles, which compactly surrounds the single configuration. When the target object is at
a configuration of this component, it collides with fingers. The third one is the other “free”
space. When the target object is at a configuration of the third component, it can move freely.
Considering the three components, we can evaluate the quality of an immobilization
grasp by measuring the minimum distance between the first component, namely
the fixed single configuration, and the third component, namely the “free” space.
This measurement is quite intuitive and it is demonstrated in Fig.2.10.

Figure 2.10: An intuitive measurement of immobilization optimization in Cobj.

The same target object and the same fingers as Fig.2.7 is used in this figure. Since the
target object is convex and the fingers are point fingers, component 2 is composed of three
obstacles and it separates component 1 and component 2 compactly. There’s no inner-holes
in the obstacles. Note that some other objects, such as concave objects or objects with inner
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holes, may break the compactness of these components and their measurement won’t be as
rigid as Fig.2.10.

The measurement in Fig.2.10 can indicate the quality of immobilization. However, it is
a rough measurement since it did not take into account that objects are rigid. For rigid
objects, it is unnecessary to measure a single obstacle and only the intersections between
obstacles plays essential roles. The intersections represents the “distance” between fingers
in work space. The larger an intersection is, the smaller the distance between
its correspondent fingers would be. Fig.2.11 shows the correspondence between the
intersections in Cobj and the inter-finger “distance”s in work space.

Figure 2.11: Correspondence between intersections of obstacles in Cobj and inter-finger “dis-
tance”s in work space.

Consequently, we can have another measurement, namely the minimum of intersec-
tions. It is more advisable to use it for rigid objects. Nevertheless, this measurement is quite
ambiguous. The minimum of intersections requires comparison between the “size”s of
intersections. Unfortunately, it is difficult to define a measurement of the “size”s which is
difficult to be defined. I rendered the “distance”s between fingers in Fig.2.11 with shadowed
areas. Readers may refer to them to retrospect on this difficulty. How can we define a
measurement to measure those shadow areas so that it can indicate the quality of immobi-
lization? It remains an open question to immobilization optimization and relates intensively
to caging optimization.

Caging optimization and immobilization optimization share lots of common backgrounds.
They both need the measurement of distances in Cfrm. However, I would like to emphasize
the differences between them. In grasping optimization, fingers are always in contact with
objects. This is not the case in caging. In caging, we would like to deal with engineering
errors without considering contacts and forces. The robustness of caging is not to endure force
errors, but to endure collisions between fingers and target objects or failures of constraining
target objects caused by positioning errors. The difference makes caging optimization more
complicated. I will revisit this problem and propose my solutions in relevant chapters later.
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Comparing with grasping, caging is force-less and geometric. I am going to put them in
the same context and show their relationship in the following texts.

2.2 The Relationship Between Grasping and Caging
Lots of related researches and concepts have been discussed in Section 2.1 and they can be
summarized in the following words and figures.

Our discussion begins with force closure. Force closure requires considering both normal
forces and friction forces. It is not practical since friction is difficult to model. Therefore,
researchers come to the concept of form closure. Theoretical study showed that form closure
requires as many as ndof + 1 fingers which conflicts with our common sense. Researchers
therefore propose two ways to conquer the contradiction. One is 2nd order form closure
which takes surface curvatures of target objects into account. It is a bit complicated. The
other is immobilization which divides object motions into finite motions and infinitesimal
motions. Immobilization is concise and agrees with our common sense. Besides the basic
concepts, researchers performed various attempts to optimize grasping. In force closure and
form closure the quality measurement is mainly the radius of LIS. In immobilization, the
quality measurement is mainly the minimum distance between the fixed single configuration
and configurations in the “free” space.

Caging is the extension of immobilization. If we insert caging into the discussion, it
should take an ensuing position after immobilization. Fig.2.12 summarizes our discussion in
Section 2.1 with diagrams and shows the position of caging.

Figure 2.12: The position of caging and its relationship to grasping.

Note that in Fig.2.12, each concept has an accompanying blue frame besides it. The
blue frame denotes in which space is the concept developed. Force closure and form closure
are developed in wrench space. In contrast, immobilization and caging are developed
in Cobj. Force closure and form closure are essentially the analysis of forces. In contrast,
immobilization and caging are essentially the analysis of geometry. In Fig.2.7 we have seen
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the Cobj of an immobilization grasp. Here I will go on to show the Cobj of caged objects in
Fig.2.13.

Figure 2.13: The Cobj of two caged objects.

Two examples of caging are given in Fig.2.13. The first one is a circular object which
was used in Fig.1.3. The second one is a polygon which was used in Fig.2.7. According to
Kuperberg’s definition (see Section 1.3), caging, in work space, means the target object is
constrained by fingers. The objects in Fig.2.13 are constrained by fingers in work space and
they are caged. In Cobj, caging means the configuration of a target object is constrained in
a caging sub-space. In side this caging sub-space, the target object may move freely.
However, it cannot go outside without being penetrated by fingers. The right part of Fig.2.13
illustrates the constraints in Cobj. I made three different drawings to better present it. The
first drawing is a solid view of obstacles. This solid view show each obstacle in with solid
colors. Like the definition in immobilization (see Fig.2.6), each obstacle corresponds to a
finger and there are totally three obstacles in each example. The second drawing is the
inverse of the first drawing. In the second drawing, the complementary space of obstacles
are rendered. When a target object is caged, the complementary space of obstacles can be
divided into two sub-spaces. The first sub-space is a free sub-space, it is rendered with light
blue in the second drawing of Fig.2.13. The configurations in this free sub-space can freely
move into infinity without any penetration. The second sub-space is the caging sub-space.
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If a target object is at a configuration inside this caging sub-space, the object is caged.
The caging sub-space is emphasized with orange color in the second drawing. The third
drawing is a wire-frame view of obstacles. The wire-frame view gives a more clear view that
the caging sub-space is enclosed by obstacles and it is separated from free sub-space.

Now we can have the following conclusion that caging in Cobj means the configura-
tion of the target object is inside a caging sub-space. This sub-space is separated
from the free sub-space. It could be either open or closed. Recall our definition
of immobilization. Immobilization means that the target object, in its configuration
space, is at a fixed single configuration. The difference between caging and immobi-
lization is caging implies a free sub-space while immobilization implies a single configuration.
Caging is an extension of immobilization. Fig.2.14 demonstrates the relationship between
caging and immobilization with the second example of Fig.2.13.

Figure 2.14: The relationship between immobilization, caging and caging breaking.

In figure Fig.2.14(a), the object is immobilized and its Cobj is the same as Fig.2.7. A fixed
single configuration exists and it is separated from free spaces by obstacles. If we retract
fingers back from the contact points, the single configuration will expand to a compact
set, namely a caging sub-space. The immobilization grasping becomes caging. The further
we retract fingers, the larger this caging sub-space would be. Fig.2.14(b) and Fig.2.14(c)
shows two different cagings. The object in Fig.2.14(c) has higher freedom comparing with
Fig.2.14(b) as its caging sub-space is larger. Fig.2.14 shows that if we retract fingers too
far from the surface of objects, the caging sub-space may disappear. In that case, the
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point fingers will never cage the target object and caging breaks. We can also see Fig.2.14 in
inverse order. As we squeeze the fingers, the caging in Fig.2.14(c) and Fig.2.14(b) will finally
degenerate into immobilization. The retracting and squeezing directions are important to
ensure the continuity between caging and immobilization. We will discuss about that later.

Fig.2.14 demonstrates that caging is the extension of immobilization. However, the object
in Fig.2.14 doesn’t cover all cases. For example, when the target object is the concave object
shown in Fig.2.15 and it is caged by a two-finger formation, no matter how we squeeze the
two fingers, they will never immobilize the object. The final shape of the caging sub-space
in this case will be an caging surface. That means there must be something else between
caging and immobilization.

Figure 2.15: Gaps exist between traditional immobilization and caging.

I define this “something else” as contacting caging. Readers may compare the following
lists for better comprehension.

immobilization The target object, in its configuration sub-space, is at a fixed single
configuration.

contacting caging The target object, in its configuration sub-space, is on a caging curve
and or a caging surface.

caging The target object, in its configuration sub-space, is in a caging sub-
space.

It is easy to get two conclusions from these concepts. (1) We can start from immobi-
lization and move fingers to caging. But we cannot start from caging and move fingers to
immobilization. Caging may end up at contacting caging. (2) When the target object is
convex polygon, there is no contact caging and caging directly connects to immobilization.
We can either move from immobilization to caging or move from caging to immobilization.
That is the most ideal case.

Based on these conclusions, we can further solve a problem. That is, how many fingers
are sufficient to cage any objects? In the first conclusion, I claimed that we can start from
immobilization and move fingers to caging. That means, the number of fingers that are
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sufficient to immobilize an object is the number of finger that are sufficient to
cage an object. According to Jurek , it requires at least 3 to 4 fingers to immobilize an
object in 2D space. When three edges of the object form a triangle, we need at least 3 fingers.
Or else, we need at least 4 fingers. More generally, it requires ndim + 1 to 2ndim fingers to
immobilize an object in ndim space. (For example, in 3D space, we need at least 4 to 6 fingers
to immobilize a 3D object.) Therefore, the number of fingers that are sufficient to
cage an object in ndim space is the same as immobilization. It is ndim + 1 to 2ndim.

Comparing with form closure, the number of fingers that is sufficient to cage an object is
much smaller. We need at least ndof + 1 fingers to grasp an object with form closure. A 2D
object has 3 DoF and therefore 4 fingers are needed. A 3D object has 6 DoF and therefore
7 fingers are needed. In contrast, we need ndim + 1 = 2 + 1 = 3 to 2ndim = 2× 2 = 4 fingers
to sufficiently cage an object in 2D space and ndim + 1 = 3 + 1 = 4 to 2ndim = 2 × 3 = 6
fingers to sufficiently cage an object in 3D space. Note that this is the sufficient number.
It is neither the least number nor the maximum number since there are lots of possibilities.
When the target object is concave, 2 could be the least number of fingers that are required
to cage an object. When the target object has inner holes, 1 could be the least number of
fingers. When target objects are convex, 3 or 4 could be the least number of fingers. We will
revisit this conclusion in later chapters.

2.3 State-of-the-art Works in Caging
We have connected caging to grasping and seen that caging is an extension of grasping. Con-
necting caging to traditional grasping research is one contribution of this thesis. To my best
knowledge, no other researchers had ever discussed the connection of these concepts in Cobj.
Actually, the development of caging is relatively slow due to its abstractness and high cost
of computational resources. I will summarize state-of-the-art works in caging in this section.
Note that I am not going to repeatedly trace back to those very old publications, but would
like to discuss the recent development. Interested readers may refer to [Rodriguez, 2013] for
a complete review of old publications.

Major contemporary researchers of caging in the robotics community include Elon Ri-
mon, Andrew Blake, Attawith Sudsang, Vijay Kumar, Zhidong Wang, A. Frank van der
Stappen, Yusuke Maeda and Alberto Rodriguez. They all have a series of publications on
this topic. Some other researchers, like Jeff Erickson and David J. Cappelleri, also have some
publications directly related to caging. Besides them, there are many other researchers who
indirectly made great contributions. Let us review their works here.

The first paper that makes caging an independent research topic of robotics is writ-
ten by Elon Rimon, [Rimon and Blake, 1996]. It is later extended into a journal paper
[Rimon and Blake, 1999]. This work is limited to 2D objects and two-finger grippers. Some
ensuing improvements of this work involve extension to three-finger grippers and application
with visual sensors [Davidson and Blake, 1998a] [Davidson and Blake, 1998b]. The major
idea used in these three works is to build a contact space graph. This idea is still in use
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in the most recent publications of Rimon and his students [Allen et al., 2012]. The name of
contact space comes from contacts. Each axis of the contact space corresponds to all the
contacts between a finger and the surface of an object. The number of axes of a contact
space is the number of fingers that contact with object surfaces. Therefore, the dimension
of the contact space is the same as the number of fingers. This space suffers from the curse
of dimensionality as finger number increases. That is one reason why the idea of contact
space graph can only be applied to grippers with limited number of fingers.

The other researcher, Attawith Sudsang, begins his research of caging a little later than
Rimon. His first debut is [Sudsang and Ponce, 1998]. In this work, he carries out a sim-
ulation on a 2D triangular object to demonstrate his contact-less grasping and manipula-
tion idea. This work is based on a concept named Inescapable Configuration Space (ICS)
proposed in [Sudsang et al., 1997] and [Sudsang et al., 2000]. Although this work is not
explicitly named “caging”, it is essentially the same idea. ICS can be recognized as an-
other description of the caging sub-space. However, it is not as intuitive and complete
as caging sub-space. This is because ICS is defined in work space, not configuration
space. Its definition limited its further development. We can find some other similar con-
cepts that are defined in work space and aim to describe caging sub-space. The at-
tractive region proposed in [Qiao, 2001] and [Qiao, 2002] is such an concept. These con-
cepts, from another view point, show the interests of robotics community in caging and
the importance of choosing a proper mathematical tool. In [Sudsang et al., 1999], Sud-
sang implements his simulation in [Sudsang and Ponce, 1998] on real mobile robots. These
two papers, [Sudsang and Ponce, 1998] and [Sudsang et al., 1999], start the research of per-
forming caging transportation with multiple point robots. Sudsang claims that point fin-
gers and point mobile robots are the same thing. Caging with point fingers shares the
same principle as caging with point robots or multi-robot cooperative caging. Later in
[Sudsang and Ponce, 2000], Sudsang proposes a basic solution which connects multi-robot
cooperative caging and motion planning/obstacle avoidance in the presence of obstacles.
Connecting caging to motion planning is quite practical and interesting. Unfortunately, I fail
to find their ensuing implementation of this framework. In [Vongmasa and Sudsang, 2006],
Sudsang and Vongmasa propose the concept of coverage diameters. This work gives a redun-
dant solution to multi-robot cooperative caging. Although redundant, it is quite practical
since caging can be ensured as long as the inter-robot distance is smaller than the coverage
diameter. Their solution of coverage diameter is applicable to both convex and concave 2D
objects. However, the coverage diameter results into redundant robots. Probably Sudsang
realized the drawback of coverage diameter, he published another work [Suarod et al., 2007]
which discusses about looser caging. The work [Suarod et al., 2007] is based on Zhidong
Wang’s proposals. We will review it later when discussing about Wang’s works. These
works of Sudsang concentrate on caging with point mobile robots. Besides multi-robot
cooperative caging, Sudsang also published some works on caging with point fingers. In
[Pipattanasomporn et al., 2008] and [Pipattanasomporn and Sudsang, 2011], Sudsang and
Pipattanasomporn discusses two-finger squeezing caging. This work is extended to (1) a given
formation of fingers and (2) both squeezing and stretching in [Pipattanasomporn et al., 2008].
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This work decomposes objects into convex components. Its result is interesting. I am looking
forward to their improvement in completeness and limitation of formations. Sudsang and his
group are quite active in caging research and make lots of contributions. They also had the
idea of using caging to deal with uncertainties [Pipattanasomporn and Sudsang, 2010]. The
major difference between their work and mine is their concepts are built in work space. We
can find that some of their publications implicitly imply the idea of contact space graph
and configuration space. However, they fail to make explicit expression. Implicitly work-
ing in work space obscure their presentation and limits their development.

Zhidong Wang is the first researcher who explicitly expressed caging in Cobj. His work
in caging concentrates on multi-robot cooperation. At the very beginning, Wang solves the
multi-robot cooperative transportation by task allocation [Wang et al., 1999]. Task alloca-
tion requires to specify specific tasks to each robot during cooperative transportation. An
impressive task allocation work can be found from [Cheng et al., 2008]. The requirements of
task allocation limits its extensibility. I guess that’s why Wang change to the idea of caging.
Wang’s early caging publications were [Wang and Kumar, 2002] and [Wang et al., 2003a].
In these two papers Wang together with Vijay Kumar proposes the concept of object closure
and rendered it in Cobj. Object closure is exactly an alternative name of caging. Wang fur-
ther implements his proposal with three mobile manipulators in [Wang et al., 2003b]. Each
mobile manipulator in this work is simplified into a rectangular finger and consequently the
implementation is the same as caging with three rectangular fingers. The implementation
in [Wang et al., 2003b] controls a precomputed formation of the three mobile manipulators
by maintaining certain offset margins from target objects. This formation control strategy
is rough and encounters some problems. Therefore, Wang proposes a new control strategy
in [Wang et al., 2004]. The control strategy in [Wang et al., 2004] mixes maximum mar-
gins and minimum margins of object closure and leader-follower formation control. The
new control strategy is validated by using three circular robots and a concave object in
[Wang et al., 2005]. These early works of Wang built up a solid basis of caging test. Given
a formation of mobile robots and a target object, Wang’s algorithm can tell whether the
formation of robots could cage the target object1. He in [Wang et al., 2006] extends the
caging test to a set of robot formations where he could not only test the caging of one for-
mation but many formations in a set. The extended algorithm is named dynamic object
closure. Dynamic object closure enables testing many formations of robots at different time
intervals and enables robots to cage and transport target objects in real time. It can take
the place of formation control. Wang proposes the real-time caging and transportation in
[Wang et al., 2009]. The algorithm in this paper plans a path in configuration-time space to
connect caging formations calculated by dynamic object closure at different time intervals. I
am looking forward to Wang’s implementation of the dynamic object closure on real robots.
Wang’s work is based on his discussion in Cobj. Some of my work borrow and improve his
idea. I will refer to them when necessary.

In the same year as Wang and Kumar’s publication [Wang and Kumar, 2002], some
1His test is not complete. But it is powerful to solve practical problems.
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other researchers from Kumar’s group published another work based on the idea of ob-
ject closure [Pereira et al., 2002b][Pereira et al., 2002a]. This work is implemented with
three car-like mobile robots and a triangle object with the same control strategy used
in [Wang et al., 2003b]. It was later extended to a journal paper [Pereira et al., 2004].
The works of Pereira are not independent, they are more like a complementary branch
of Wang. There are some other researches in Kumar’s group that work caging. For example,
[Fink et al., 2008]. Nevertheless, those works bias towards multi-robot control rather than
geometric basis of caging. I am not going to discuss them here. Wang/Kumar’s work explic-
itly discuss caging in Cobj. However, they concentrate too much on the application aspect
of multi-robot cooperative transportation and fail to go further into the basic theory. The
major difference between Wang/Kumar’s work and mine can be concluded into the following
three points. (1) They discuss the caging problems only in Cobj while I explore different
tools like Cfrm. (2) They do not discuss optimization while I treat caging test and caging
optimization as two parallel problems of caging. (3) They assume perfect object information
and use redundant number of robots while I assume noisy perception and least number of
capture points.

When Wang was trying to figure out a solution to caging test, he proposed the concept of
CC-closure object. CC-closure object is the Configuration obstacle of a Configuration
obstacle. This name is a little obscure but it do fully exploit the the configuration of
configuration. It was interesting to find that Jeff Erickson independently developed the
same concept in [Erickson et al., 2003] and [Erickson et al., 2007]. Erickon and Wang do
not have any interaction with each other but they do proposed the same idea.

Erickson’s idea was further developed by Vahedi and Stappen. Stappen’s group have
excellent background in theoretical grasping and computational geometry and consequently
Vahedi’s early work analyzes the caging problems in work space by geometric computa-
tion. He successfully described the relationship between immobilization and caging (This
description is in work space. It is different from my contribution which is in Cobj). In
[Vahedi and van der Stappen, 2006] and [Vahedi and van der Stappen, 2008c], Vahedi dis-
cusses the problem of caging with two fingers. His algorithm could both perform two-
finger caging tests and report two-finger caging sets rapidly. We can find some relation-
ship between these works and [Rimon and Blake, 1996], [Pipattanasomporn et al., 2008] and
[Allen et al., 2012]. This is because the vertex-graspings are commonly recognized as the
bounds where caging breaks. Vahedi’s major contribution is the application of the caging
breaking bounds to three-finger cases. In references [Vahedi and van der Stappen, 2007],
[Vahedi and van der Stappen, 2008a], [Vahedi and van der Stappen, 2008b] and
[Vahedi and van der Stappen, 2009], Vahedi concentrates on three-finger caging and concen-
trates on the problem proposed by Erickson’s, namely reporting the caging set of a third
finger with two given ones or reporting the caging set of a third finger with the given distance
between the other two fingers. Especially in [Vahedi and van der Stappen, 2009], Vahedi not
only uses work space but also makes a program to show the critical patches in configura-
tion space. Although Vahedi makes certain improvements in computational efficiency, I
maintain that his work is essentially the same as Erickson. Vahedi’s concept, for instance,
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“vertex-grasping”, “equilibrium grasping” and “critical patches” actually describe same thing
as Erickson’s “critical orientation”. Nevertheless, Vahedi is the first researcher who purely
works on caging theory and describes the relationship between caging and immobilization.
He shows the difficulty of caging tests and finding caging sets and partially solves those prob-
lems. In his Ph.D thesis [Vahedi, 2009], Vahedi draws lots of important conclusions. For
example, the Lemma 6.2.10 and Theorem 6.2.11 on page 68 and 69 show how to maintain
caging when shrinking fingers. Many of my ideas in this thesis, like translational caging and
accumulation, are borrowed from Erickson and Vahedi’s work.

The early works of Maeda and Makita belong to the research field of non-prehensile
manipulation [Maeda et al., 2004][Maeda and Makita, 2006]. Try comparing their works
in grasping to those works in task allocation of multi-robot cooperative transportation,
we can find that the non-prehensile manipulation works of Maeda and Makita are actu-
ally the same as multi-robot cooperation by using task allocation. The difference is they
use multi-fingers instead of robots. It is very interesting that so many researchers who
work with task allocation move to caging. The first caging work of Maeda and Makita is
[Makita and Maeda, 2008]. In this paper, they measure the distances between fingers and
evaluate with a target may go through those distances. Their solutions are intuitive and
require redundant number of fingers. Later, a student from Maeda’s group, Yokoi, pub-
lished a multi-robot cooperation work by using not only mobile robots but also obstacles
in the environment [Yokoi et al., 2009]. They take into account walls and transport ob-
jects along the walls. Maeda summarizes the work in both [Makita and Maeda, 2008] and
[Yokoi et al., 2009] and implements with real robots in [Maeda et al., 2012]. He further dis-
cusses and installs some soft parts to rigid mobile robots and fingers in this paper. More
recently, Maeda and Makita employ AR (Augmented Reality) markers to recognize shapes of
3D objects. AR markers are quite popular to retrieve shapes of target objects from pre-built
databases. Employing AR markers make their caging work practical. However, the number
of modeled shapes in the pre-built databases is limited. It is difficult to cover many objects.
I in this thesis prefer real-time perception and modeling but I agree that with the help of
modern database and machine learning, modeled shapes would bring bright future to robots.
Maeda and Makita’s work are much more practical comparing with previous works. They
are, nevertheless, weak in the caging theories and all their implementations are based on
[Makita and Maeda, 2008]. Details of Maeda and Makita’s caging research are summarized
in Makita’s Ph.D thesis [Makita, 2010] (It is written in Japanese.).

Rodriguez is a graduate student of Prof. Matthew T. Mason. He proposes the idea
of “from caging to grasping” [Rodriguez et al., 2011]. This idea is nearly the same as my
“grasping by caging” proposal. It was interesting that we come to the same idea without any
communication. This paper of Rodriguez is awarded the best student paper of Robotics, Sci-
ence and Systems 2011 and is invited to be published in International Journal of Robotics Re-
search [Rodriguez et al., 2012]. Rodriguez’s work in caging is as theoretical as Vahedi. It con-
trasts significantly with Maeda and Makita’s practical implementations. Rodriguez started
his research in caging by studying the case of two fingers [Rodriguez and Mason, 2008], which
is a well discussed topic of Rimon and Sudsang. The difference of Rodriguez’s two-finger
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research is he not only considers squeezing but also gives intensive discussions on stretch-
ing. He demonstrates that complete caging is a difficult problem as there are too many
special cases and he maintains that “from caging to grasping” is essentially to find a F-
caging function which could ensure continuous caging of target objects. Rodriguez’s study
in [Rodriguez and Mason, 2008] and [Rodriguez et al., 2011] is done in topology space of
fingers. Using this space as the analyzing tool is quite abstract. He diverts the analyzing
tool from topology space into Cobj in [Rodriguez and Mason, 2012b]. I will discuss later in
related chapters the difference between the topology space and Cobj. Rodriguez’s most recent
work is a review of caging research [Rodriguez, 2013]. His research on caging is theoretical
and his review biases towards theoretical researches of caging too.

All the researches in discussed until now work on either fingers or mobile robots. The
work of David J. Cappelleri brings something new to our vision. He employs caging in
micro-manipulation [Cappelleri et al., 2011] to transport and assemble micro-parts. This
paper is later extended to a journal version in [Cappelleri et al., 2012]. Although Cappelleri
does not explicitly claim the “grasping by caging” concept, he actually makes use of it. In
his publications, Cappelleri firstly cages a micro-object and then shrink the cage into force
closure to transport or assemble it. Cappelleri’s implementation is based a the redundant
calculation like [Makita and Maeda, 2008]. From Makita and Cappelleri’s work, we can find
that there is a big gap between caging theories and pragmatic applications. Comparing
with complicated caging theories, pragmatic applications prefer using simple and redundant
algorithms. How to practically use the well developed theories and reduce the redundancy
caused by simple algorithms is one challenge in front of us. Rodriguez tells us that complete
caging theory involves too many unexpected cases and it is difficult to develop a complete
algorithm that takes into account every aspect. Even if the target objects are 2D, the
difficulty remains. Therefore, we should seek the balance between complete caging algorithms
and pragmatic applications. I am going to discuss my solutions on caging in the next few
chapters. In a certain degree, my solutions are complete and ready to be employed by
practitioners.

In order to better illustrate the related works, I compile them chronically according to the
relationship of the researchers and their ideas. Fig.2.16 shows the chronicle categorization.
Each categorized box includes four items, namely the time period, the main researchers, the
methodologies and the problems solved. Beside the related works, I attach my work in this
thesis into this chronically categorization. Readers may compare my work and the other
researchers to better understand the its position.
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Figure 2.16: A summary of the related works and my contributions.
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Chapter 3

Caging in The Configuration Space of
Target Object

3.1 Caging Test in Cobj

Starting from this chapter, I am going to discuss in detail the tools, techniques, experiments
and applications of caging.

Firstly, I list the symbols that will be used in the following part. Readers are recom-
mended to revisit these symbols frequently during their reading process.

W Work space.
pi A point in W space. Since we deal with 2D objects in 2D W space, the pi has

two coordinate elements {pix , piy}.
Cobj The configuration space of target object.
O The target object in W space.
∂O Boundary of the target object in W space.
fi A point finger in W space. Since we deal with 2D objects in 2D W space, the

fi has two coordinate elements {fix , fiy}. Mathematically, fi = pi. I employ
this extra symbol fi rather than using an unified one with pi to make clear the
texts.

qobj/qi
obj A configuration of Cobj. Since the configuration space of a 2D object is 3D, a

configuration qi
obj has three coordinate elements {qobj

ix , qobj
iy , qobj

iθ
}. The first two

elements qobj
ix and qobj

iy are actually the same as a position in 2D W space. That
is to say, {qobj

ix , qobj
iy } and {fix , fiy} both indicate coordinates in 2D plane. The

are only different in symbols.
O[qi

obj] A target object O at configuration qi
obj. Reader may assume that O[qi

obj]
represents a region in 2D workspace that is occupied by a target object. It
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mathematically equals a set of 2D points. This expression can also be written
in the following two forms, (1) O[{qobj

ix , qobj
iy }] and (2) O[qobj

iθ
]. The first form,

O[{qobj
ix , qobj

iy }] indicates a region in 2D workspace that is occupied by a target
object which could rotate arbitrarily through 0 to 2π. However, its position is
fixed at the point O[{qobj

ix , qobj
iy }]. The second form, O[qobj

iθ
], indicates a region in

2D workspace that is occupied by a target object which could translate arbi-
trarily on the 2D plane. However, its orientation is fixed to qobj

iθ
. 　 Note that

the superfix are sometimes omitted for conciseness.
∂O[qi

obj] The boundary of the 2D region occupied by a target object at configuration
qi

obj. Note that the symbols ∂O[{qobj
ix , qobj

iy }] and ∂O[qobj
iθ
] do not make much

sense as the first one is usually the boundary of a circle while the second one is
not applicable (O[qobj

iθ
] spans all 2D plane).

Fi One configuration obstacle in Cobj. Please go back to Fig.2.11 for details. Mathe-
matically, it is a set of compact 3D points and a sub-space of Cobj. The subscript
indicates the correspondence between W space fingers and Cobj space obstacles.
For example, Fi is the Cobj obstacle of finger fi. Note that the obstacles of dif-
ferent fingers indeed have the same shape in Cobj, they only differ in positions.

Fi[q
obj
iθ
] Generally, a configuration obstacle Fi spans the whole orientation axis of Cobj.

I use Fi[q
obj
iθ
] to denote a sliced layer of the whole Fi at orientation qobj

iθ
. This

combination is not applicable to qobj
ix and qobj

iy .

Cobj
otl All obstruction-free obstacles in Cobj. It is used to indicate both the caging sub-

space and the free sub-space in Fig.2.13. Mathematically, Cobj
otl is the union of

all Fi. Assume there are n fingers, then Cobj
otl =

n∪
i=1

Fi.

Cobj
free All free sub-spaces in Cobj. Mathematically, it is complementary to Cobj

otl . Assume
there are n fingers, then Cobj

free = Cobj \ Cobj
otl = {qobj|(qobj ∈ Cobj) ∧ (qobj /∈

n∪
i=1

Fi)}

R(θ) The rotation matrix with respect to an angle θ. For example, if we would like

to rotate π, R(π) =

 cos(π) sin(π) 0
−sin(π) cos(π) 0

0 0 1

 =

 −1 0 0
0 −1 0
0 0 1

.
A caging test problem offers the following conditions. (1) The target object and its

initial configuration, say, O[q0
obj] = O[{qobj

0x , q
obj
0y , q

obj
0θ
}]. (2) The positions of fingers, say,

f1 = {f1y , f1y}, f2 = {f2y , f2y}, …, fn = {fny , fny} when there are n fingers.
When caging is achieved, we have the following two necessary and sufficient conditions.

(1) The Cobj
free is divided into several disconnected components. Most of the components are

enclosed by obstacles, let us denote them with Cobj
fc =

u∪
i=1

Cobj
fci

. Here u = 1 when the target
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object is convex. A special component is the complementary of Cobj
fc , let us denote it with

Cobj
ff . This condition follows the following expression, Cobj

free = Cobj
fc ∪ C

obj
ff = (

u∪
i=1

Cobj
fci

) ∪ Cobj
ff ,

Cobj
fc ∩C

obj
ff = ∅ (2) The configuration of the target object is inside one component of Cobj

fc . Let
us denote the configuration of the target object, when performing caging test, is q0

obj. Then,
caging requires q0

obj ∈ Cobj
fc or more exactly, q0

obj ∈ Cobj
fck

, 1 ≤ k ≤ u. Note that the caging
sub-space and the free sub-space of Fig.2.13 are examples of Cobj

fc and Cobj
ff respectively.

Recall our discussion of caging in Chapter 2.5: “The target object, in its configuration
space, is in a caging sub-space.” Following this discussion, caging test can be performed by
checking the following expression.

(Cobj
free = (

u∪
i=1

Cobj
fci

) ∪ Cobj
ff ) ∧ (q0

obj ∈ Cobj
fck

) ∧ (|Cobj
fck
| > 1), 1 ≤ k ≤ u (3.1)

Here |Cobj
fck
|means the cardinality, namely the number of elements, of Cobj

fck
. When |Cobj

fck
| > 1,

the target object is either in the state of caging or in the state of contact caging. When
|Cobj

fck
| = 1, the target object is in the state of immobilization.
Now the caging test problem becomes modeling and intersecting several 3D objects. We

have discussed in Section 1.3 that there are two ways of modeling a 3D object. One is wire-
frame modeling while the other one is solid modeling. Here I choose the wireframe
modeling technology to model Cobj

otl . This is because in Cobj, we can easily know the vertices
of Cobj

otl . These vertices make wireframe modeling easier comparing with solid model-
ing. This is because Solid modeling models 3D objects with a set of voxels. If a user
want to render an object modeled by solid modeling, he has to firstly convert the voxels
into a wireframe model [Wikipedia, 2013a]. The conversion process makes solid modeling
complicated.

Fig.3.1 shows the details of wireframe modeling. We have seen in Section 2.1.2 that
the Cobj has three axes, namely position x, position y and orientation. The symbol definition
of a configuration qi

obj = {qobj
ix , qobj

iy , qobj
iθ
} respectively denote coordinate values along position

x, position y and orientation. In order to model the whole wireframe of a Fi. We first
discretize rotation, namely the orientation axis. With a granularity of 2m+1, we can divide
the rotation of a target object into 2m + 1 angles. In correspondence, the [−π, π) domain
of the orientation axis is divided into 2m + 1 coordinate values and the Cobj between this
domain is divided into 2m + 1 layers. Note that we do not need to consider the domains
since 2π is the period of rotation and the Cobj between the other domains are the same as
the one between [−π, π). The 2m + 1 layers have coordinate values along the orientation
axis ranging from qobj

−mθ
to qobj

mθ
. The whole model of Fi is accordingly discretized into 2m+1

slices. Note that the whole model of Fi is periodical at every 2π rotation. We only discuss
the part between [−π, π). Fig.3.1(a) illustrates the granularity and divided layers.

When performing caging test, the configuration of the target object is known. It is
q0

obj = {qobj
0x , q

obj
0y , q

obj
0θ
}. Here the position {qobj

0x , q
obj
0y } is equal to the position of a pivot
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Figure 3.1: Wireframe modeling of a Fi obstacle and discretization.

point on the target object. This pivot point could be chosen arbitrarily. For instance,
[Wang and Kumar, 2002] chooses the geometric center of the target object while
[Pereira et al., 2002b] chooses a vertex of the target object. The pivot point is coordinate-
invariant and there is no difference between different choices. The W space region occupied
by the target object at its initial configuration therefore can be expressed as ∂O[{qobj

0x , q
obj
0y , q

obj
0θ
}].

Fig.3.1(b) illustrates the initial configuration and the occupied workspace region.
Without any changes in orientation, the Fi is always a slice at layer qobj

0θ
, namely Fi[q

obj
0θ
].

If the target object rotates to qobj
jθ

, −m ≤ j ≤ m, then the the Fi becomes a slice at layer
qobj
jθ

, namely Fi[q
obj
jθ
]. Since the target object may rotate to any orientation between qobj

−mθ

and qobj
mθ

, Fi is composed of 2m+ 1 layers naming from Fi[q
obj
−mθ

] to Fi[q
obj
mθ

].
Modeling the wireframe of a discretized Fi essentially equals to modeling 2m + 1 layers

of polygon slices. Fig.3.2 shows the detail of how to model the 2m + 1 slices. Given a
configuration of the target object, for example {qobj

jx , qobj
jy , qobj

jθ
}, −m ≤ j ≤ m and a finger f1,

we can generate F1[q
obj
jθ
] by R(π) ·O[{f1x , f1y , q

obj
jθ
}]. The following part proves this conclusion.

According to the definition of F0,

F1[q
obj
jθ
] =

{
pi|f1 ∩ O[{pobj

ix , pobj
iy , qobj

jθ
}] ̸= ∅

}
. (3.2)
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Figure 3.2: Modeling the discretized slices of Fi.
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This is equal to

F1[q
obj
jθ
] =

{
pi|pi ∩

 −1 0 0
0 −1 0
0 0 1

 · O[{f1x , f1y , q
obj
jθ
}] ̸= ∅

}
(3.3)

since for each point,

pi − f1 =

 −1 0 0
0 −1 0
0 0 1

 · (f1 − pi). (3.4)

In 2D plane,

R(π) =

 cos(π) sin(π) 0
−sin(π) cos(π) 0

0 0 1

 =

 −1 0 0
0 −1 0
0 0 1

 . (3.5)

Therefore,
F1[q

obj
jθ
] =

{
R(π) · ∂O[{f1x , f1y , q

obj
jθ
}]
}

(3.6)

Fig.3.2(a) graphically illustrates the geometric meaning of these expressions. All the key
translations that result into collision between the target object and the finger are shown in
Fig.3.2(a)(1-5). By summing up these key translations and connecting the pivot points, we
can generate F1[q

obj
0θ
]. It is easy to find that this F1[q

obj
0θ
] equals its W space correspondence

O[{f1x , f1y , q
obj
0θ
}] with a π rotation. This is the same as our deduction. In Fig.3.2(b), I give

another example with the same object as Fig.3.2(a). The difference is, in this case, the target
object is at another configuration, say, qj

obj.
Now we can model the whole Fi in the following way. Given a finger fi and a target

object at its initial configuration O, we model the Fi that corresponds to this object by using
a set of polygon slices, namely,

{
R(π) · ∂O[{fix , fiy , q

obj
−mθ
}], R(π) · ∂O[{fix , fiy , q

obj
−m+1θ

}], . . . , R(π) · ∂O[{fix , fiy , qobj
mθ
}]
}
. (3.7)

The caging test in expression (3.1) becomes performing the following procedures. (1)
Check whether {qobj

0x , q
obj
0y , q

obj
0θ
} is enclosed by

{
F1[q

obj
0θ
], F2[q

obj
0θ
], …, Fnf

[qobj
0θ
]
}
when there are

nf fingers. If q0 is enclosed, we can calculate the enclosed region that q0 exists. We denote
this region by Cobj

fck
[qobj

0θ
]. It is a set of 2D points. (2) For any pi ∈ Cobj

fck
[qobj

0θ
], check whether

it is enclosed or obstructed by obstacles in neighbour layers. Since the layers adjacent to
qobj
0θ

are qobj
1θ

and qobj
−1θ

, We should check whether any pi fulfills that {pix , piy , q
obj
1θ
} is enclosed

or obstructed by
{
F1[q

obj
1θ
], F2[q

obj
1θ
], …, Fnf

[qobj
1θ
]
}

and enclosed or obstructed by
{
F1[q

obj
−1θ

],

F2[q
obj
−1θ

], …, Fnf
[qobj

−1θ
]
}
. If all points in the 2D set are obstructed, then caging is true. If
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any point is enclosed, we further calculate the new enclosed region Cobj
fck

[qobj
1θ
] or Cobj

fck
[qobj

−1θ
] that

{pix , piy , q
obj
1θ
} or {pix , piy , q

obj
−1θ
} belongs to and replace the 2D point set with the points in the

new enclosed region. For any point in the new enclosed regions, we repeat the procedure
done in qobj

1θ
or qobj

−1θ
with

{
F1[q

obj
2θ
], F2[q

obj
2θ
], …, Fnf

[qobj
2θ
]
}
,
{
F1[q

obj
3θ
], F2[q

obj
3θ
], …, Fnf

[qobj
3θ
]
}
,

…until we reach
{
F1[q

obj
mθ

], F2[q
obj
mθ

], …, Fnf
[qobj

mθ
]
}

or with
{
F1[q

obj
−2θ

], F2[q
obj
−2θ

], …, Fnf
[qobj

−2θ
]
}
,{

F1[q
obj
−3θ

], F2[q
obj
−3θ

], …, Fnf
[qobj

−3θ
]
}
, …until we reach

{
F1[q

obj
−mθ

], F2[q
obj
−mθ

], …, Fnf
[qobj

−mθ
]
}
.

During this repetition, if a point is neither enclosed nor obstructed, caging is considered to
be breaking. Or else, caging succeeds.

The narrative of this caging test algorithm seems complicated. Fortunately, it can be
implemented with computer programs concisely. Fig.3.3 illustrates the basic ideas of this
algorithms with the convex polygon we used in previous figures. The (ccw) part of Fig.3.3(a)
shows the continuous caging test along counter-clockwise rotation, namely from qobj

1θ
to qobj

mθ
.

The (cw) part of Fig.3.3(b) shows the continuous caging test along clockwise rotation, namely
from qobj

−1θ
to qobj

−mθ
. At (ccw)-3 and (cw)-2, some points from the continuous refreshing 2D

point set are neither enclosed nor obstructed, the caging breaks. The given formation of
fingers is considered not able to cage the given target object. Fig.3.3(b) separately illustrates
the correspondent failures at (ccw)-3 and (cw)-2 in W space.

Our figures in Fig.2.13, Fig.2.14 and Fig.2.15 are rendered by using this algorithm. They
are programmed with Python and the figures are rendered with the Blender rendering engine
[Blender, 2013].

With modern computers, this caging test algorithm can test whether a given formation
of fingers could cage a given target object in a few seconds. Given a polygon of nv boundary
points, the computational complexity of this algorithm would be O(n

nf
v ·s ·m). Here, O(n

nf
v )

is the complexity of calculating an enclosed region while s is the average size of an enclosed
2D point set. The algorithm is complete with discretization and works with both convex
and concave objects.

3.2 Robust Caging in Cobj

We have seen in last part how to discretize Cobj, how to model the wireframes of Fi at each
layer and how to perform caging test with the discretization. Beyond caging test, we
need to (1) find a set of finger formations that could cage the target object and (2) develop a
robust caging algorithm to find an optimized formation of fingers that could be most robust
to endure uncertainty. I refer readers to Fig.1.4 if they need a refresher about uncertainty.
Let us firstly consider the item (1), namely how to find a set of finger formations that could
cage the target object.
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Figure 3.3: The caging test algorithm after discretization becomes testing the continuity of
enclosure at each layer.
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3.2.1 Finding all possible caging formations is costly
The most intuitive solution to find all possible caging formations is to perform caging test
with all finger formations in a certain band that surrounds the target object. Fig.3.4 il-
lustrates this intuitive solution. I proved in Section 2.2 that ndim + 1 = 2 + 1 = 3 to
2ndim = 2× 2 = 4 fingers are sufficient to cage an object. It was emphasized there that this
is neither the least number nor the maximum number. It is the sufficient number.
That means it would be sufficient if we perform caging test with formations ranging from
2-finger formations to 2 × 2 = 4-finger formations. Of course more than 4 fingers would
beyond sufficient and far enough for caging 2D objects. We can freely test 5-finger, 6-finger,
…, nf -finger formations as we like. As examples, I am going to limit my analysis to the
sufficient number, namely the 2-finger, 3-finger and 4-finger formations.

Figure 3.4: An intuitive way to find all caging formations.

Let us see again the intuitive solution in Fig.3.4. In the intuitive solution shown in Fig.3.4,
finding all possible 2-finger, 3-finger and 4-finger caging formations means performing caging
tests on all 2-finger, 3-finger and 4-finger combinations in the gray band. This is intuitive ans
simple. However, it is computationally impossible. Performing one caging test with one
given formation of fingers would cost O(n

nf
v · s ·m). It is to the (nf +2)th order of variants.

Assume that the band includes np points, then roughly there would be n2
p, n3

p and n4
p finger

formations for 2-finger, 3-finger and 4-finger cases. Totally, the cost of finding all caging
formations may run as high as O(n2

p ·n2
v ·s ·m+n3

p ·n3
v ·s ·m+n4

p ·n4
v ·s ·m) = O(n4

p ·n4
v ·s ·m).

That’s to the 10th order! Or more generally, it would be to the order of 2nf +2 where nf is
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the maximum number of fingers that are employed for caging. Of course it is computational
infeasible and we must choose another way to consider this “finding all caging formations”
problem.

3.2.2 The caging region of a third finger – Concepts
One good starting point to consider the “finding all caging formations” problem is the idea
introduced in [Erickson et al., 2007] and [Vahedi, 2009]. In these works, Erickson and Vahedi
try to solve a problem like this: How to find the caging region of a third finger given the
following two conditions. (1) A convex target object and its initial configuration. This is
nearly the same as the “finding all possible caging formations” problem except that the
object shape is limited to convex ones. (2) Positions of two fingers, say, f1 = {f1x , f1y} and
f2 = {f2x , f2y}. This condition is different from the “finding all possible caging formations”
problem where all finger positions are unknown. This “finding the caging region of a third
finger” problem is computationally feasible comparing with the “finding all possible caging
formations” problem because of the two extra conditions.

Erickson proposes two concepts in his paper to solve this problem, namely the canonical
motion and the critical orientation. Canonical motion is a motion that the target object
moves as well as continues keeping in contact with the two given fingers. Critical orientation
is an orientation at which the target object is potentially on the critical condition of detaching
from either of the two given fingers. Fig.3.5 illustrates this problem and the two concepts1.
As we can see, canonical motion and critical orientation are concepts specific to the two
given fingers. If there are three given fingers, canonical motion and critical orientation may
not exist. Critical orientation brings non-smoothness to canonical motion. The canonical
motion changes drastically at critical orientations.

Figure 3.5: The “finding the caging region of a third finger” problem and two accompanying
concepts.

1Critical orientation is defined with the configuration obstacle of a configuration obstacle shown in
Fig.3.7. When segments of the two FF1 [q

obj
iθ

] and FF2 [q
obj
iθ

] are on the same line, the target object is in
critical orientation.
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These two concepts make it easier to find the region for a third fingers. We introduce
a symbol Ac to denote this region. We find this region by calculating its boundary. Any
point on the boundary of Ac, say, f3, together with the given f1 and f2 forms a 3-finger
formation. This 3-finger formation is on the boundary of caging breaking. It is important
to keep the target object in contact with the two given fingers so that we can calculate all
those f3s on the boundary of Ac and find Ac. Therefore, the concept of canonical motion
plays an important role. When caging breaks, the object must be escaping through f1 and
f3 or escaping through f2 and f3. The concept of critical orientation is used to monitor
these escapings. The critical orientation plays an important role in recording the possible
escaping orientations.

Besides the two concepts, Erickson also proposes an extended form of Fi. It shares the
same idea of CC-object proposed by [Wang et al., 2003b]. In Erickson’s symbol definition,
Aθ is used to denote the Fa[q

obj
jθ
] that corresponds to fa while A∗

θ is used to denote the
configuration of Fa[q

obj
jθ
] at qobj

jθ
. Fig.3.6 and Fig.3.7 illustrate the Configuration obstacle

of a Configuration obstacle and shows why employing this concept makes caging easier
to be analyzed. If we would like to know at a certain layer, for example qobj

0θ
, whether

the three fingers can cage the target object, we need to make sure their correspondent
configuration obstacles at this layer overlap with each other. Fig.3.6(a) demonstrates a
caging state at layer qobj

0θ
and the overlapping of fingers. This is intuitive to human beings,

but how can we check it with computer programs? Surely it is unwise to calculate all points
between F1[q

obj
0θ
] and F2[q

obj
0θ
], between F2[q

obj
0θ
] and F3[q

obj
0θ
] and between F3[q

obj
0θ
] and F1[q

obj
0θ
]

respectively. A smarter solution is to follow the idea of Cobj and simplify this problem by
using the Configuration obstacle of a Configuration obstacle. Fig.3.6(b) shows the
overlapping after conversion. In this case, checking whether F1[q

obj
0θ
] and F3[q

obj
0θ
] overlaps

becomes checking whether the finger f3 collides with or is inside FF1 [q
obj
0θ
]. This smarter

solution changes checking the overlapping of two polygons into a point in polygon problem.
It is much easier to be processed by computer programs.

Fig.3.7 shows how the Configuration obstacle of a Configuration obstacle, or
namely FF1 [q

obj
0θ
] in Fig.3.6(b) is modeled. This is similar to the procedure of modeling a

Fi[q
obj
0θ
] in Fig.3.2 because Fi[q

obj
0θ
] aims to convert the relationship between a finger and a

target object while FF1 [q
obj
0θ
] aims to convert the relationship between two Fi[q

obj
0θ
]. Neverthe-

less, implementing the procedure illustrated in Fig.3.7 with computer programs is different
from implementing the procedure in Fig.3.2. The implementation of Fig.3.2 is essentially
based on expression (3.6). In contrast, the implementation of Fig.3.7 is more complicated
and it requires to the following two steps. (1) Put boundary points of the convex, F3[q

obj
0θ
],

on to the boundary points of the convex, F3[q
obj
0θ
] sequentially. (2) Calculate the convex hull

of the sequential F3[q
obj
0θ
]s. The convex hull calculated in the (2) step is the result FF1 [q

obj
0θ
].

Given a polygon of nv boundary points, this algorithm would cost O(n2
v) where most of the

computational resources is consumed by step (1).
Now let us recall our “finding the caging region of a third finger” problem, given two
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Figure 3.6: The “finding the caging region of a third finger” problem and two accompanying
concepts.

fingers f1, f2 and the target object, we can model FF1 [q
obj
0θ
] and FF2 [q

obj
0θ
] according to the

algorithm introduced in last paragraph. Then, the caging region of a third finger at a one
layer of Cobj, namely Ac[q

obj
0θ
], can be expressed as the boolean sum of expression (3.8) and

expression (3.9).

Ac[q
obj
0θ
] ∈ ((FF1 [q

obj
0θ
] ∩ FF2 [q

obj
0θ
]) \ O[{qobj

0x , q
obj
0y , q

obj
0θ
}]) (3.8)

(f1 /∈ Ac[q
obj
0θ
]) ∧ (f2 /∈ Ac[q

obj
0θ
]) (3.9)

The region calculated by expression (3.8) ∧ expression (3.9) is illustrated in the left part
of Fig.3.8. This region for the third finger is only the region at one layer. Vahedi in his
Ph.D thesis [Vahedi, 2009] names the state when a third finger is in the region Ac[q

obj
0θ
] the

translational caging. This is a rational name since when a third finger is in Ac[q
obj
0θ
], the

target object can never escape from the fingers by translational motion. It has to rotate to
escape. A complete caging not only involves the translational caging but also involves
a rotational constraint. Calculating the complete Ac is like Fig.3.3 and it requires to
accumulate the translational caging regions at different orientations qobj

−mθ
, qobj

−m+1θ
, …, qobj

0θ
, …,

qobj
mθ

. The right part of Fig.3.8 shows the accumulation procedure. The translational caging
regions in this right part are rendered with shadows decorated by gray and red textures.
We should start from Ac[q

obj
0θ
] and calculate Ac[q

obj
1θ
], Ac[q

obj
2θ
], …and Ac[q

obj
−1θ

], Ac[q
obj
−2θ

], …until
+/−m or until a Ac[q

obj
iθ
] disappears. This procedure relates to the two concepts proposed by

Erickson, namely the canonical motion and the critical orientation. However, this complete
accumulation is more advanced comparing with Erickson’s work since (1) it does not explic-
itly take critical orientations into account and (2) it proposes an implicit way of generating



CHAPTER 3. CAGING IN THE CONFIGURATION SPACE OF TARGET OBJECT 49

Figure 3.7: Modeling the configuration obstacle of a configuration obstacle.
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the canonical motions. We will discuss the details of my complete accumulation in the next
sub-section. It is ready to co-operate with raw sensor data from real-world devices.

Figure 3.8: The translational caging regionAc[q
obj
0θ
] for a third finger and region accumulation.

3.2.3 The caging region of a third finger – Algorithms
This sub-section is going to discuss details of how to completely accumulate Ac. We have
to solve two problems to smoothly accumulate the region. The two problems are (1) how to
keep tracking the canonical motion of target objects and (2) what should be the termination
condition of the accumulation.

3.2.3.1 Tracking the canonical motion

The first problem of accumulation is how to keep tracking the canonical motion of the target
object. Canonical motion requires to continuously keep the target object in contact with the
two given fingers. But how can we guarantee the continuity of contacts with programming
languages? One solution is to keep in contact with one finger, say f1, rotate round f1 a



CHAPTER 3. CAGING IN THE CONFIGURATION SPACE OF TARGET OBJECT 51

little and slip the target object to adjacent boundary points along f1 until it contacts with
f2. This solution cannot mathematically ensure continuity and may produce a discretized
contacts of “continuous” motion. Fig.3.9 illustrates its details. Note that I will use a simple
triangular object to exemplify various algorithms in this sub-section since comparing with the
polygons we used in foregoing texts, the triangular object would make the contents clearer.

Figure 3.9: A discretized tracking of canonical motion.

This solution can be considered to be a solution of tracking canonical motion inW space.
Although Vahedi does not explicitly describe how he tracks the canonical motion in his Ph.D
thesis [Vahedi, 2009], he confirms using this solution during the e-mail discussions between
him and me. This solution suffers from several problems. In the first place, it is quite
difficult to be programmed with computer languages. For instance, it would be very difficult
to “slip the target object to adjacent boundary points along f1 until it contacts with f2”
with computer programs. In the second place, there’s no ensurance on the continuity of the
discretized motion. The solution depends too much on the continuous contacts with f1. It
is doubtful whether this dependence can produce the ground-truth canonical motions.

In Erickson’s papers, especially the lower part of Fig.3 in [Erickson et al., 2007]. He
seems to be tracking the canonical motion in Cobj. Tracking the canonical motion in Cobj is
exactly the same solution as me. However, I am not sure whether Erickson programmed the
tracking of canonical motion in this way. It is only a deduction from the lower part of Fig.3.
Erickson does not discuss in detail about it.

I will show the details of my solution on how to track the canonical motion in Cobj.
Comparing with the discretizedW space tracking adopted by Vahedi, tracking the canonical
motion in Cobj offers more continuity.

Take Fig.3.10 for example. Keeping the target object in contact with both f1 and f2

in Cobj is actually the same as keeping the configuration of target object in contact with
both F1 and F2. Therefore, we only need to model F1[q

obj
iθ
] and F2[q

obj
iθ
] at each layer and

calculate their intersections to decide where should the configuration of the target object
be to keep in contact with both f1 and f2. The upper part of Fig.3.10 illustrates the
canonical motion of the target object in W space while the lower part of Fig.3.10 illustrates
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the correspondent target object configurations in Cobj. Besides this figure, I summarize how
to track the target configuration in the next canonical motion step in Alg.1. Readers may
combine the renderings in Fig.3.10 and the program flow in Alg.1 to better understand my
idea of how to track the canonical motion.

Figure 3.10: Tracking canonical motion in Cobj.

Algorithm 1: Tracking the canonical motion
Data: f1, f2, O[q0], qobj

iθ

Result: Target configuration in the next step qi+1
obj

1 begin
2 F1[q

obj
iθ
]←getConfigurationObstacle(f1, O[q0], qobj

iθ
)

3 F2[q
obj
iθ
]←getConfigurationObstacle(f2, O[q0], qobj

iθ
)

4 /*P is a set of intersection points.*/
5 P ←getIntersections(F1[q

obj
iθ
], F2[q

obj
iθ
])

6 if P==∅ then
7 return null
8 {qobj

i+1x , q
obj
i+1y} ←getNearestPoint({qobj

ix , qobj
iy }, P)

9 qi+1
obj ← {qobj

i+1x , q
obj
i+1y , q

obj
i+1θ
}

10 return qi+1
obj

11 end

Specifically, tracking the canonical motion in Cobj involves two steps. In the first step, both
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F1[q
obj
0θ
] and F2[q

obj
0θ
] are continuously rotated with small steps, say from F1[q

obj
0θ
] to F1[q

obj
1θ
],

F1[q
obj
2θ
], …, from F2[q

obj
0θ
] to F2[q

obj
1θ
], F2[q

obj
2θ
], …and from F1[q

obj
0θ
] to F1[q

obj
−1θ

], F1[q
obj
−2θ

], …,
from F2[q

obj
0θ
] to F2[q

obj
−1θ

], F2[q
obj
−2θ

], …. At each qobj
iθ

there are two intersection points between
F1[q

obj
iθ
] and F2[q

obj
iθ
]. One of the intersection point locates in a further region while the other

intersection point locates in a nearer region. The intersection points can be easily found
in the lower part of Fig.3.10. The succeeding intersection in the nearer region to previous
configuration is selected as an ensuing canonical motion step. For example, the intersection
of F1[q

obj
1θ
] and F2[q

obj
1θ
] in the nearer region to {qobj

0x , q
obj
0y , q

obj
0θ
} is selected as {q1x , q1y , q

obj
1θ
}.

The intersection of F1[q
obj
2θ
] and F2[q

obj
2θ
] in the nearer region to {qobj

1x , q
obj
1y , q

obj
1θ
} is selected

as {qobj
2x , q

obj
2y , q

obj
2θ
}, and so on. By calculating each configuration {qobj

ix , qobj
iy , qobj

iθ
} during the

rotation, we can uniformly generate the whole canonical motion.

3.2.3.2 Termination conditions

Besides canonical motion tracking and intersection, the accumulation procedure should be
stopped according to certain conditions. This is because complete accumulation along whole
[−π, π) introduces fatal excessive regions which break caging.

Specifically, we have two termination conditions for accumulation. The first one is the
disappearance of intersection points and the other one is when Ac[q

obj
iθ
] becomes empty. On

the one hand, if the intersection points between F1[q
obj
iθ
] and F2[q

obj
iθ
] becomes null as the

target object moves canonically, the target object could escape from the gap between f1 and
f2. We must make sure F1[q

obj
iθ
] and F2[q

obj
iθ
] stop the rotation before the intersections become

null. Say, only the accumulated Ac before the disappearance of intersections constitutes the
complete caging region. On the other hand, when Ac[q

obj
iθ
] becomes empty, we can never

translationally cage the target object by posing a third finger f3 in a certain empty region
and it is unnecessary to make further accumulation.

Now let us accumulate the Ac of the triangle object and see the roles of the termination
conditions. Here I introduce two extra concepts to accumulate the complete Ac. One concept
is the potential caging region Apc and the other concept is the determinate caging region Adc.
Like their names, the potential caging region is a region which potentially includes a part of
the final caging region. A finger in this region only potentially cage the target object. It is
not a determinate caging region. Some parts of the potential caging region may be in the
final Ac while some other parts may be not. The determinate caging region is determinately
one part of the final Ac. All of the determinate caging region belong to (are sub-regions of)
the final Ac. Fig.3.11 demonstrates the procedure of how to calculate and accumulate Apc
and Adc at two rotational orientations qobj

0θ
and qobj

1θ
.

At the initial layer qobj
0θ

the potential caging region Apc, or Apc[q
obj
0θ
] is exactly the same as

Ac[q
obj
0θ
]. As we track the canonical motion, or as we rotate the sliced obstacles, the Apc[q

obj
iθ
]

no longer equals Ac[q
obj
iθ
]. For example, at layer qobj

1θ
, the Apc[q

obj
1θ
] is the intersection between

O[q1] ∪ Ac[q
obj
1θ
] and Apc[q

obj
0θ
]. The orange polygon in the dialogue box of Fig.3.11 shows
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this accumulation between Apc and Ac. More generally this accumulation can be written as
expression (3.10) and expression (3.11).

Apc[q
obj
iθ
] = (O[qi] ∪ Ac[q

obj
iθ
]) ∩ Apc[q

obj
i−1θ

], i = 1, 2, . . . ,m (3.10)

Apc[q
obj
iθ
] = (O[qi] ∪ Ac[q

obj
iθ
]) ∩ Apc[q

obj
i+1θ

], i = −1,−2, . . . ,−m (3.11)

Figure 3.11: Accumulation of the potential caging region and the determinate caging region.

The determinate caging region of a layer, or namely Adc[q
obj
iθ
], is a sub-region of the

potential caging region at layer qobj
i−1θ

, i > 1 or qobj
i+1θ

, i < 1. The red polygon in the dialogue
box of Fig.3.11 demonstrates this determinate caging region of a layer. It can be formally
expressed as following.

Adc[q
obj
iθ
] = O[qi] ∩ Apc[q

obj
i−1θ

], i = 1, 2, . . . ,m (3.12)

Adc[q
obj
iθ
] = O[qi] ∩ Apc[q

obj
i+1θ

], i = −1,−2, . . . ,−m (3.13)

The whole Adc along all layers is the union of the determinate caging regions at each qobj
iθ

.
When we are calculating the whole Adc, we need to take care of the termination conditions.
If the intersection points between F1[q

obj
1θ
] and F2[q

obj
1θ
] becomes null, then caging will break

between f1 and f2. The whole Adc does not exist. If the intersection points always exists
but the Ac[q

obj
iθ
] becomes empty at certain layers, we need to make union of all available

Adc[q
obj
iθ
] before empty. More concretely, if the Ac[q

obj
iθ
] exists between −j and k where −j

denotes a number in (−m, 0) and k denotes a number in (0,m). The whole Ac would be

Adc = A+
dc ∩ A

−
dc (3.14)

whereA+
dc denotes the union ofAc[q

obj
iθ
] along positive axis or along counter-clockwise rotation

while where A−
dc denotes the union of Ac[q

obj
iθ
] along negative axis or along clockwise rotation.

They can be formally written as
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A+
dc =

k∪
i=1

(O[qi] ∩ Apc[q
obj
i−1θ

]) (3.15)

A−
dc =

−j∪
i=−1

(O[qi] ∩ Apc[q
obj
i+1θ

]) (3.16)

Alg.2 summaries the algorithm flow of how to make union and terminate along the
positive axis. Note that the second termination condition in this algorithm is not exactly
the same as our analysis which requires Ac[q

obj
iθ
] == null. It might be clearer if we em-

ploy Apc[q
obj
iθ
] == null. Nevertheless, I did not employ Apc[q

obj
iθ
] == null is because when

Ac[q
obj
iθ
] == null, the following Adc[q

obj
i+1θ

] == null will always be a subset of Adc[q
obj
iθ
] == null.

It is unnecessary to repeatedly make union of them. We are actually making union of the
caging regions that will be obstructed by the canonical motion of O. Surely we need to
consider a special case where all caging regions are outside O. That is a very special case
and we will discuss about it soon. Alg.2 makes union of the caging regions along positive
axis. Like the previous discussion of expression (3.14), the whole Adc not only involves the
positive union but also involves the negative union. It should be a intersection of these two
region unions.

Note that the whole Adc is not the complete caging region. There are some special cases
where we need to further take into account the caging regions that are outside the target
object O. The example in the upper part of Fig.2.13 illustrates one of this case. A circular
object, no matter how it changes the orientation, its Apc[q

obj
iθ
] maintains the same through

out all qobj
iθ

and its O[qi+1] never intersects with Apc[q
obj
iθ
]. Fig.3.12 demonstrates this idea2.

The empty intersections between O[qi+1] and Apc[q
obj
iθ
] mean that the result of Alg.2 is always

∅. This is contradictory with our previous solution in expression (3.14). Actually, we should
take special treatment to deal with this special case. Comparing with Alg.2, the special
treatment is simple, namely

m∪
i=−m

(Ac[q
obj
iθ
]). The complete caging region Ac, should be a

union of Adc and this special treatment (see expression (3.17)).

Ac = Adc ∪ (
m∪

i=−m

(Ac[q
obj
iθ
])) = (A+

dc ∩ A
−
dc) ∪ (

m∩
i=−m

(Ac[q
obj
iθ
])) (3.17)

3.2.4 The caging region of a third finger – Demonstrations
Now let us see how my proposal works with the triangle object. The triangle object is simple
and it can be analyzed step by step to observe the performance of my algorithms. Fig.3.13
shows the details. The upper row of Fig.3.13 illustrates the changes of Ac[q

obj
iθ
] as i increases

2According to [van der Stappen, 2005], circular objects are the only special case. But I did not find any
explicit proof about that. Therefore my algorithm follows exactly expression (3.17)
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Algorithm 2: Computing the A+
dc

Data: f1, f2, O[q0]
Result: A+

dc
1 begin
2 i← 0

3 A+
dc ←null

4 F1[q
obj
0θ
]←getCObstacle(f1, O[q0], qobj

0θ
)

5 F2[q
obj
0θ
]←getCObstacle(f2, O[q0], qobj

0θ
)

6 FF1 [q
obj
0θ
]←getCCObstacle( F1[q

obj
0θ
])

7 FF2 [q
obj
0θ
]←getCCObstacle( F2[q

obj
0θ
])

8 Ac[q
obj
0θ
]←getTranslationalCagingRegion( FF1 [q

obj
0θ
], FF2 [q

obj
0θ
], O[q0])

9 Apc[q
obj
0θ
] == Ac[q

obj
0θ
]

10 while i ≤ m do
11 F1[q

obj
iθ
]←getCObstacle(f1, O[q0], qobj

iθ
)

12 F2[q
obj
iθ
]←getCObstacle(f2, O[q0], qobj

iθ
)

13 qi+1 ←Alg.1(F1[q
obj
iθ
], F2[q

obj
iθ
], O[q0], qobj

iθ
)

14 /*Termination condition 1*/
15 if qi+1 ==null then
16 break
17 FF1 [q

obj
i+1θ

]←getCCObstacle( F1[q
obj
i+1θ

])
18 FF2 [q

obj
i+1θ

]←getCCObstacle( F2[q
obj
i+1θ

])
19 Ac[q

obj
i+1θ

]←getTranslationalCagingRegion( FF1 [q
obj
i+1θ

], FF2 [q
obj
i+1θ

], O[qi+1])
20 A+

dc ← A
+
dc ∪ (O[qi+1] ∩ Apc[q

obj
iθ
])

21 Apc[q
obj
i+1θ

]← Apc[q
obj
iθ
] ∩ (Ac[q

obj
i+1θ

] ∪ O[qi+1])

22 /*Termination condition 2*/
23 if Ac[q

obj
iθ
] ==null then

24 break
25 i← i+ 1

26 end
27 return A+

dc
28 end
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Figure 3.12: A special case where all caging regions are outside the target object.

from 0. The granularity of between qobj
iθ

and qobj
i+1θ

in this case is 10◦. The lower row of
Fig.3.13 illustrates the changes of Ac[q

obj
iθ
] as i decreases from 0. It uses the same granularity

as the upper row. The accumulation stops when at certain −j and k the Ac[q
obj
−jθ

] and Ac[q
obj
kθ
]

disappears. In Fig.3.13, −j and k are −7 and 4 respectively. By using these Ac[i
obj
kθ
] and

by following the algorithm proposed in Alg.2 and expression (3.17), we can accumulate the
complete caging region for a third finger. Fig.3.14 shows the accumulation procedure.

In correspondence with Fig.3.13, Fig.3.14 is divided into an upper row and a lower row
too. The upper row of Fig.3.14 illustrates the changes of Apc[q

obj
iθ
] and Adc[q

obj
iθ
] as i increases

from 0 to 4. The lower row of Fig.3.14 illustrates the changes of Apc[q
obj
iθ
] and Adc[q

obj
iθ
] as i

decreases from 0 to -7. Readers may compare expressions (3.10), (3.11), (3.12) and (3.13) to
better understand how are the orange polygons and the red polygons calculated. A+

dc and
A−

dc, as has been shown in expression (3.15) and expression (3.16) respectively, are the union
of the caging regions along positive axis and the union of the caging regions along negative
axis. The overlapping polygons in the right part of Fig.3.14 illustrate the unions. Those
overlapping polygons rendered with red color are the union along positive axis, namely A+

dc
while the overlapping polygons rendered with green color are the union along negative axis,
namely A−

dc.
The complete Ac, following expression (3.17), is the intersection of A+

dc and A−
dc plus the

∪(
m∩

i=−m

(Ac[q
obj
iθ
])). In the case of this triangle object, ∪(

m∩
i=−m

(Ac[q
obj
iθ
])) is null since when

i == −4 and i == −7, Ac[q
obj
iθ
] is null. Therefore, the complete Ac of this triangle object

and the fingers f1 and f2 is A+
dc∩A

−
dc. This region is rendered with white color in Fig.3.153.

3Since I the difference between an orientation qobj
iθ

and its adjacent orientation qobj
i+1θ

is set to 10degree,
the final result in this figure involves some zigzags. The zigzags can be eliminated by reducing the difference
between orientation steps.
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Figure 3.13: A step-by-step analysis of the Ac[q
obj
iθ
].

Figure 3.14: A step by step analysis of the Apc[q
obj
iθ
] and Adc[q

obj
iθ
].
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Figure 3.15: The complete caging region for a third finger of the triangle example.

Given a polygon of nv boundary points, the computational complexity of this algorithm
would be O(n2

v ·m). This exponential complexity is acceptable to deal with one pair of given
f1 and f2.

Actually, for practical usage, it is unnecessary to union all the Ac[q
obj
iθ
]) before it becomes

null. We can stop at user-defined orientations, or namely we can perform the algorithm
interactively. Take Alg.2 for example. If the second termination condition of this algorithm
is not Ac[q

obj
iθ
] == null but another one, say break the loop when i == l where l is a

terminating layer defined by users, then, the result caging region for a third finger would be
a subset of the groundtruth value. Sometimes this subset is enough for practical usage and
we can use it to reduce the cost of computational resources.

Fig.3.16 demonstrates with the same triangle object and shows the result of accumulation
when l = +/ −m, l = +/ − 4, l = +/ − 3, l = +/ − 2 and l = +/ − 1. Note that when
l = +/ −m, the algorithm is actually the one showed in Alg.2 and the accumulated Ac is
the groundtruth region.

Figure 3.16: Terminating layers can be set manually to save computational resources.
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As we can see in Fig.3.16 that the reduced results at l = +/−4, l = +/−3, l = +/−2 and
l = +/−1 are subsets of the groundtruth region. I name these reduced results the sub-caging
regions. In rough environments, these sub-caging regions are enough for practical usage. The
idea of setting terminating layers share the same basis with [Pereira et al., 2004] which sets
some stopping angles for rotation. [Pereira et al., 2004]’s algorithm with stopping angles
is successfully applied to multi-robot cooperative transportation. Their results support my
claim here. If we calculate the sub-caging regions instead of the groundtruth caging region,
the computational complexity would decrease from O(n2

v ·m) to O(n2
v) since m becomes a

constant.
One significant problem of setting the terminating layers is we have no apriori-knowledge

of how to set the positive terminating layer and the negative terminating layer with different
values. In Fig.3.16, both positive terminating layer and negative terminating layer are set to
the same absolute value. However, it causes certain problems. When l = +/−m, the actual
positive terminating layer and the actual negative terminating layer are +4 and −7 respec-
tively. We have analyzed these two values in foregoing contexts. Since the their absolute
value differs from each other, there is a bias in the goundtruth caging region. I recommend
readers refer to the left shape in the second row of Fig.3.16 for better comprehension. This
shape is not symmetric. Its left part is a fatter than its right part. That is because the
different +4 and −7 values bring into bias. When l = +/ − 4, l = +/ − 3, l = +/ − 2 or
l = +/−1, the actual positive terminating layer and actual negative terminating layer share
the same absolute value. The same value eliminates the inherent bias of groundtruth caging
region. We can see from the other shapes in the lower row of Fig.3.16 that they are nearly
symmetric. The left parts are no longer fatter than the right parts. Therefore, we should
not use the sub-caging regions for caging optimization. These sub-caging regions no
longer include metrics of caging. They can only denote whether a third finger inside them
could cage the target objects.

3.2.5 The caging region of a third finger – Implementations
The algorithms of “finding the caging region of a third finger” are implemented and tested
with Python programming language and Webots robot simulation software. Specific in-
formation about Webots can be found in its official website [Webots, 2013] while a brief
introduction can be found in this journal paper [Michel, 2004]. I use Webots to simulate a
range scanner. With Webots, we can change the resolution of the range scanner very easily.
In my implementation, the resolutions are set to 1∼4 pixels per centimeter. Fig.3.17 shows
the scanning procedure and the 3D cloud points collected by scanning a sphere object. The
red line in Fig.3.17(a) illustrates the virtual laser beam of the range scanner in W space
while Fig.3.17(b) shows the 3D cloud points collected by the scanning procedure. The 3D
cloud points collected are filtered into boundary cloud points and employed for calculation
of Ac. The red frame in the right part of Fig.3.17 shows the details of filtering. The al-
gorithms in the filtering procedure, like edge detection and boundary following, are quite
common in image processing literature. I am not going to repeatedly cite them here. As
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for simplification, the strategy employed here is re-sampling of the original boundary points.
This simplification strategy has no special purpose. It only aims at improving calculation
speed. The scene of this simulation is modeled according to our distributed end-effector
introduced in section 1.2. I will introduce the other details of this scene in the next chapter
when discusses about real-world applications. Let us concentrate on the ranger scanner and
the implementation of my algorithms in this section.

Figure 3.17: The scanning procedure of a range scanner and processing of 3D point clouds.

I build three different rigid polytopes into the simulation environment to validate the
algorithms. The scanned and filtered boundary cloud points of these three rigid polytopes,
together with their positions and orientations, will be employed as target objects O and initial
configuration q0. These three objects and their boundary point clouds are shown in Fig.3.18.
They are named Target Object A, Target Object B and Target Object C, respectively.

Figure 3.18: Three different objects are employed to validate the implementation.

Fig.3.19 shows the results of Target Object B. When performing the algorithm on this
object, I give the positions of f1 and f2 respectively in advance. They are rendered with blue
points in Fig.3.19. The blue region in Fig.3.19(a) shows the region taken up by O[q0] while
the green region in Fig.3.19(a) shows the FF1 [q

obj
0θ
]. Likewise, the blue region in Fig.3.19(b)

shows the region taken up by O[q0] while the red region in Fig.3.19(a) shows the FF2 [q
obj
0θ
].

The intersections of FF1 [q
obj
0θ
] and FF2 [q

obj
0θ
] are rendered with white color in Fig.3.19(c).

Note that the Ac[q
obj
iθ
] at this layer should not only fulfill expression (3.8) but also expression
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Figure 3.19: The detailed results of my algorithms on Target Object B.

(3.9). Therefore, only the lower part of the white regions in Fig.3.19(c) is kept as Ac[q
obj
iθ
].

Fig.3.19(d), Fig.3.19(e) and Fig.3.19(f) show A+
dc, A−

dc and Adc respectively. They are ren-
dered with red color in Fig.3.19(d), green color in Fig.3.19(e) and white color in Fig.3.19(f).
Note that since in the case of Target Object B, where

m∪
i=−m

(Ac[q
obj
iθ
]) == null, the complete

Ac = Adc. It is the white region in Fig.3.19(f).
Fig.3.20 shows some more results of the three target objects with different given positions

of fingers. Like Fig.3.19, the complete Ac is rendered with white color. A+
dc and A−

dc are
rendered with red color and green color respectively. Note that the given fingers in these
experiments are chosen randomly and may result into empty Ac. Fig.3.20(b-2) is an example
of such an empty case. The Ac in this figure is empty so that no region is rendered with
white color.

Fig.3.21 shows results of the algorithm under a user-defined terminating layer. In this
figure, the terminating layer l is set to +/− 2 to have better visual effect. Like my analysis
in previous sub-sections, These results are subsets of their corresponding complete Ac in
Fig.3.20(a-1), Fig.3.20(b-1) and Fig.3.20(c-1).

Moreover I carry out some experiments with the same objects presented by Erickson
[Erickson et al., 2007]. Fig.3.22 demonstrates these objects and their correspondent re-
sults. The boundaries and finger positions are made with best similarity to the examples
of [Erickson et al., 2007]. My results in Fig.3.22 are equal or a little smaller compared with
Erickson’s results. This is because Erickson uses critical orientations. The critical orien-
tations depend highly on the vertices of the target shape. It can be recognized as a rougher
form of my discretization. In my discretization, the orientation axis is divided into −m,
−m + 1, …, 0, …, m layers. I calculate and accumulate the Ac[q

obj
iθ
] along the discretized

layers. In contrast, Erickson calculates and accumulate the Ac[q
obj
iθ
] when the orientation
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Figure 3.20: Results with different finger positions.

Figure 3.21: The results of Fig.3.20(a-1), (b-2) and (c-1) with user-defined terminating layer
l = +/− 2.

qobj
iθ

is at a critical orientation. This is even rougher so that the complete Ac not only has
zigzag form like Fig.3.15 but also changes from a region with smooth boundary to a polyg-
onal region. The smooth result should be roughly the same or smaller comparing with the
polygon region. That’s why my results in Fig.3.22 are equal or a little smaller comparing
with Erickson’s results in [Erickson et al., 2007]. The right three columns in Fig.3.22 are
generated with respect to different resolutions of the range scanner. They correspond to
40×30, 80×60 and 160×120, respectively. It is easy to draw a conclusion that a higher res-
olution endows more continuity to the critical orientations and consequently implies higher
precision. However, higher resolution dramatically lowers computational efficiency. Recall
that the computational complexity of my algorithm is O(n2

v ·m). It highly depends on nv,
namely the number of boundary points or the resolution of a boundary.
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Figure 3.22: The results of my algorithm on Erickson’s target objects with different scanner
resolutions.

3.2.6 Robust three-finger caging and its complexity
In the previous four subsections, I presented how to find the caging region of a third finger
given the shape of target object and two finger positions. Since the target object is limited to
convex polygons. This algorithm can be further extended to replace the three-finger caging
optimization by considering the immobilization optimization introduced in section 2.1.3.

3.2.6.1 The measurement of a three-finger immobilization

Now let us recall the open problem that was left in section 2.1.3. That is, how can we define
a measurement to measure those shadow areas in Fig.2.11 so that it can indicate the quality
of immobilization? If we present this problem in another way, it could be as following. Given
a three-finger immobilization formation {f1, f2, f3} and a target object, how to measure
the robustness of each finger with respect to caging breaking? Let us take measuring the
robustness of f3 for example. Delightfully, when measuring the robustness of f3, the problem
becomes a familiar form discussed in the previous four sections. Here we have two given
fingers {f1, f2} and a target object. With these given information, we can calculate the
caging region Ac of f3 by using Alg.2 and expression (3.17). Then, the robustness of f3 with
respect to caging breaking can be measured by calculating the distance between f3 and the
boundary of its Ac. More specifically, it is the minimum Euclidean distance between f3 and
∂Ac.

df3 = min(|f1 − ∂Ac|) (3.18)
The measurement of the whole three-finger immobilization formation can be done by

alternatively repeating the procedure of expression (3.18). That is, (1) alternatively fix
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two fingers and take them as the given ones, (2) calculate the Ac of the third finger and (3)
measure the minimum distance between the third finger and the boundary of Ac. With these
three steps, we can get three distances, say df1 , df2 , df3 . The measurement of the whole
three-finger immobilization formation depends on the smallest value of the three distances
and it could be defined as

Q{f1,f2,f3} = min(df1 , df2 , df3) (3.19)
Fig.3.23 demonstrates the measurement of expression (3.19). Readers may better un-

derstand how I fix two fingers as given fingers alternatively and how I employed Alg.2 by
referring to the frame of this figure. The algorithm based on expression (3.19) and demon-
strated in Fig.3.23 is named the “immobilization optimization algorithm”.

Figure 3.23: Measuring the robustness of a three-finger formation with a convex object.

3.2.6.2 Retracting to a robust three-finger caging

Expression (3.19) enables us to measure the robustness of a three-finger immobilization for-
mation. However, it is still quite far from the robustness of any caging formation introduced
in Fig.3.4. Calculating the robustness of all caging formations is computationally infeasible
and therefore I propose another solution by replacing the three-finger caging optimization
with the immobilization optimization. Recall that we have shown in section 2.1.3 and section
2.2 the relationship of caging, contact caging and immobilization of a convex object.
Caging is the extension of contact caging or immobilization. In the case of three fingers
and convex polygons, contact caging does not exist and caging is the extension of im-
mobilization. Or we can say immobilization is the minimum form of caging in the case
of three fingers and convex target objects. Accordingly, I do not calculate the robustness
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of all caging formations and find an optimized three-finger caging explicitly but implicitly
perform optimization by the following two steps. (1) Finding an optimized three-finger im-
mobilization with the immobilization optimization algorithm and (2) retracting fingers to
obtain certain robustness to avoid collisions. Fig.3.24 illustrates these two steps.

Note that this two-step algorithm is not based on rigid mathematical deduc-
tion. It is a patchwork method and it requires delicate design to get a good
caging. However, comparing with Fig.3.4, the two steps in Fig.3.24 does not explicitly solve
the problem of “finding all possible caging formations” but pays more attention to finding
a formation of fingers that could be quite robust to endure uncertainties. On the one hand,
an optimized three-finger immobilization has large robustness to caging breaking. On the
other hand, the retraction of fingers keeps finger far from collision with target objects.

Figure 3.24: Two steps to get a robust caging formation.

As I told in last paragraph, this two-step solution requires delicate design, or
else it may easily fail into caging breaking. There are generally two problems that re-
late to detailed design of these two steps. They are (1) how to find an optimized three-finger
immobilization with the robustness measurement in expression (3.19) and (2) how to retract
fingers. The first problem can be solved by finding all immobilization finger formations and
evaluate their robustness one by one. The immobilization finger formation with largest mea-
surement Q{f1,f2,f3} is an optimized result. Fig.3.4(a) illustrates this procedure. The second
problem is difficult to be strictly solved. We can further divide it into two sub-problems,
namely (2.1) along which direction should a finger be retracted and (2.2) how much should
a finger be retracted. Although the second problem cannot be solved precisely, we can find
a certain retracting direction and give a threshold of retracting distance. These retracting
direction and threshold of retracting distance will be discussed later with simulations.
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The reason why I would like to delay discussing the second problem is the two-step
algorithm to find a robust three-finger caging formation still costs too much computational
resources and I would like to simplify it further. What’s more I will introduce how to extend
this two-step algorithm to multiple fingers and practical grasping problems. Let us firstly
briefly analyze and discuss its complexity in the following texts. The cost of calculating one
Ac, as was discussed in previous section, is O(n2

v ·m). Measuring the distances df1 , df2 and
df3 can be roughly considered O(nv). Therefore, the total cost of measuring one formation is
O(n3

v ·m). We should multiply this cost with the cost of finding all immobilization formations,
O(n3

v)
4. In total, the cost of the two-step algorithm to find a robust three-finger caging

formation would be as high as O(n3
v ·n3

v ·m) = O(n6
v ·m). It is much better than the intuitive

solution introduced in section 3.2.1 which costs O(n4
p ·n4

v · s ·m). Note that np is much larger
than nv since np is the number of points in a band surrounding the boundary. However, it
still costs too much. We need further simplification. I will introduce an simplification to
this two-step algorithm by using translational constraints and rotational constraints
in the next section. The simplified two-step algorithm will be named faster robust caging.

3.3 Faster Robust Caging
3.3.1 Translational constraints and rotational constraints
The high cost of the two-step algorithm mainly depends on the immobilization optimization
algorithm which is half caused by finding all immobilization formations and half caused
by accumulation of Ac. The second reason relates closely to Alg.2 and expression (3.17).
Further, the second reason can be divided into two aspects, namely (1) the canonical motion
and (2) the continuous accumulation. The canonical motion limits finger number to three,
it results into the m component of O(n2

v ·m). The continuous accumulation results into the
n2
v component.
Vahedi in his Ph.D thesis [Vahedi, 2009] proves that the translational caging region at

layer qobj
0θ

, namelyAc[q
obj
0θ
] is a superset of the complete caging regionAc. The same conclusion

can be drawn from Fig.3.13 and expression (3.10) and (3.11). Apc[q
obj
jθ
] is always a subset

of Apc[q
obj
iθ
] when the absolute value of j is larger than the absolute value of i. Therefore,

the accumulated A+
c and A−

c are always subsets of Ac[q
obj
0θ
]. Can we improve the efficiency

of this procedure by adding certain constraints to Ac[q
obj
0θ
]? Comparing with the complete

Ac, computing Ac[q
obj
0θ
] requires no canonical motions and no continuous accumulation. It is

advisable to improve efficiency with Ac[q
obj
0θ
] instead of Ac by adding certain constraints.

4Some reader may maintain the idea that the multiplication here should be an addition. I agree with this
argument. The computational complexity can be O(n3

v + ni · n3
v ·m)=O(ni · n3

v ·m) where ni is the number
of immobilization formations. However, I decide not to employ ni to keep its conciseness. Although ni is
always smaller than n3

v, changing to it does not essentially change the comparison with other algorithms in
this thesis.
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I propose employing the constraints along rotational axis to Ac[q
obj
0θ
] to substitute for the

time-consuming calculation of Ac. The constraints along rotational axis is named “rota-
tional constraints” in this thesis. Ac[q

obj
0θ
] is the translational caging region. Translational

caging region Ac[q
obj
0θ
] together with rotational constraints can highly improve time efficiency

and break through the limitation of three fingers. Therefore, I do not accumulate the Ac
but divide the immobilization optimization algorithm into the collaboration of translational
constraints, namely the procedure of calculating translational caging region, and rotational
constraints.

The idea of introducing some rotational constraints is based on [Wang et al., 2005]’s idea
which employs bounded rotational angle from a ρ − θ curve for caging test. ρ − θ curve
represents the relationship between the distance from rotation anchor to the boundary of
FFi

[qobj
0θ
] and the angle of the measuring direction. Fig.3.25(a) demonstrates this curve.

In Fig.3.25, I use the same target object as Fig.3.7. Since this object is a polygon and
its boundary is composed of segments, the correspondent ρ− θ curve has several unsmooth
connecting points. These connecting points, together with curvature of the curve, imply
shape information of the original target object. Readers may compare the two peaks of the
ρ − θ curve in Fig.3.25(a) and the shape of the original target object to better understand
this explanation.

In order to make a formation as robust as possible, we need to make the distance between
a finger and the boundary of FFi

[qobj
0θ
] as far as possible. As is explained in Fig.3.6, the

boundary of FFi
[qobj

0θ
] is the boundary where two Fi separate. This “distance” depends on

the shape of the ρ − θ curve and the position of the finger. It is the minimum euclidean
distance between the finger and any point on the ρ− θ curve. Fig.3.25(b) shows a finger and
the ρ − θ curve. If there’s no apriori information about the shape of the target object, we
cannot calculate the minimum euclidean distance between the finger and any point on the
ρ − θ curve. We can only know the distance between this finger and the pivot of FFi

[qobj
0θ
].

That is to say, without any apriori target shape information, we can only measure the
robustness by measuring the “distance” between a finger and the pivot of FFi

[qobj
0θ
]. The

description seems complicated. However, it is intuitive to our common knowledge. Given
an arbitrary shape, what is the best way to grasp or immobilize it with three fingers? Note
that the condition here is “given an arbitrary shape”. There is no extra information about
the “arbitrary shape”. We know no details about it. The answer of most people would be
make the three fingers an equilateral triangle and make the edge of this triangle as small as
possible. Because without any detailed information of a given shape, equalize the “distance”
between fingers is the best choice. Equalizing the “distance” between fingers and making the
“distance” as small as possible is like making the “distance” between a finger and the pivot
of FFi

[qobj
0θ
] as small as possible. Without any apriori target shape information, an equilateral

formation with smallest inter-finger distances would be the best choice. Fig.3.25(c) shows
the case when shape information is unavailable.

This conclusion is drawn from a ρ − θ curve which relates to rotation of the target
object. That is why I name it the rotational constraints. Rotational constraints re-
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Figure 3.25: ρ− θ curve and the rotational constraints.
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quire to making the distances between fingers as small as possible. An optimized
three-finger immobilization under the rotational constraints would therefore be defined as
an immobilization formation that has smallest inter-finger distances. Its measurement is as
following.

d{fi,fj} = |fi − fj | (3.20)

QR
{f1,f2,f3} =

1

max(d{f1,f2}, d{f1,f3}, d{f2,f3})
(3.21)

Only taking the rotational constraints into account means not considering the shape
of target objects but only considering its rotation. Only taking into account rotational
constraints loses lots of information. Nevertheless, we can remedy the lost by collaborating
rotational constraints together with the translational constraints. Translational constraints
relate to translational regions and it pays all its attention to layer qobj

0θ
. The measurement of

translational constraints is the revised version of expression (3.18) and (3.19). They are as
following.

dT
fi

= min(|fi − ∂Ac[q
obj
0θ
]|) (3.22)

QT
{f1,f2,f3} = min(dT

f1
, dT

f2
, dT

f3
) (3.23)

Note that only taking into account translational constraints results into a superset of the
complete Ac. Only the collaboration of these two constraints works. We can have a new
Q{f1,f2,f3} by collaborating QR

{f1,f2,f3} and QT
{f1,f2,f3}. QR

{f1,f2,f3} biases on rotation while
QT

{f1,f2,f3} biases on translation, they collaborate together to offer a faster robust caging
algorithm.

The analysis and collaboration is qualitative. We cannot strictly demonstrate and evalu-
ate the performance of this collaboration. In section 3.2.6, we can measure the robustness of
an immobilization by expression (3.18). That is because ∂Ac is the complete caging region.
In expression (3.22) and expression (3.23), complete caging region is no longer explicitly
calculated so that we can no longer measure the robustness. The procedure is like finding a
robust caging formation blindly. However, we can estimate its performance with some simple
examples and simulation softwares. I will discuss about that in the following contexts and
the implementation section.

3.3.2 Collaboration of QR
{f1,f2,f3} and QT

{f1,f2,f3}

Let us take a simple triangle object to demonstrate the collaboration of QR
{f1,f2,f3} and

QT
{f1,f2,f3}. Like section 3.2.4, triangle object can help to demonstrate the collaboration

clearly. Fig.3.26 shows the whole procedure of the faster robust caging algorithm by collab-
orating QR

{f1,f2,f3} and QT
{f1,f2,f3}.

In the first step, we need to find all the immobilization finger formations on the boundary
of the target object and calculate all their translational constraints QT

{f1,f2,f3}. This step is
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Figure 3.26: Procedure of the faster robust caging algorithm with a triangular example.
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shown in Fig.3.26(a). The step consumes lots of resources. It would cost O(n6
v). Luckily,

that’s all the costly component. The other steps are addition components and they cost
much smaller than the first one. The total cost of this faster algorithm is O(n6

v). Comparing
with the original immobilization optimization algorithm, it reduces the coefficient m. This is
an exciting reduction. m involves both accumulation and calculation of canonical motions.
Reducing m could improve the algorithm remarkably. At the same time, this improvement
by collaborating QR

{f1,f2,f3} and QT
{f1,f2,f3} is different from the terminating layers introduced

in Fig.3.21. Although the terminating layer can also reduce m, it suffers from a significant
problem. We have discussed about the significant problem in the last part of section 3.2.4.
The collaboration reduces m without suffering from this problem.

In the second step, the finger formations with largest QT
{f1,f2,f3} will be filtered into a

candidate set. Fig.3.26(b) illustrates this second step. The formations in the candidate set
would be further processed in step three where the QR

{f1,f2,f3} of each formation is calculated.
Fig.3.26(c) illustrates the third step. Finally, the finger formation with largest QR

{f1,f2,f3}
will be selected as the result of immobilization optimization. We will retract it to get a
robust caging. Fig.3.26(d) illustrates the last step.

Note that in the illustration of Fig.3.26, the procedure in Fig.3.26(b) can filter out a set
of formations. That’s not always the case, especially when the object information involves
some noises. I propose to employ an extra parameter τ to endure the outliers. The extra
parameter τ works as following. In the second step, I do not select the finger formations
with largest QT

{f1,f2,f3} but select the finger formations whose QT
{f1,f2,f3} is larger than certain

threshold τ . This τ should be chosen according to the largest QT
{f1,f2,f3} to obtain better

performance. We will see how to choose it in the implementation part. Fig.3.27 shows the
flow chart of the faster robust caging algorithm, including its two steps and the role of the
extra parameter τ as a summary of this demonstration section.

3.3.3 Some extensions
Another topic before discussing the details of retraction is how to extend this faster robust
caging algorithm to multiple fingers and practical grasping problems. They will be discussed
in the following two sub-sections.

3.3.3.1 Multiple fingers

The collaboration of QR
{f1,f2,f3} and QT

{f1,f2,f3} not only improves the efficiency of original
algorithms from O(n6

v ·m) to O(n6
v) but also extend the number of fingers.

The original immobilization optimization algorithm depends on Ac which accumulates
with canonical motion and requires three fingers. The first step in faster robust caging
uses collaboration of QR

{f1,f2,f3} and QT
{f1,f2,f3}. It does not need canonical motions and

accumulation. Only the translational caging region at layer qobj
0θ

needs to be calculated.
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Figure 3.27: Flow chart of faster robust caging.

Therefore, we can take this advantage and extend the faster robust caging algorithm to
arbitrary fingers.

Firstly, let us discuss about how to calculate QT
{f1,f2,f3} in multi-finger cases. Calculating

QT
{f1,f2,f3} in multi-finger cases shares the same principle as three-finger cases. They both

consider adjacent fingers. The following lemma presents how to calculate the translational
caging region with multiple fingers. When caging a 2D convex object, the translational
caging region Ac[q

obj
0θ
] of a finger fi is determined by its two adjacent neighbours fi−1 and

fi+1. Here we name Ac[q
obj
0θ
] of a finger fi with Afi

c [qobj
0θ
]. Afi

c [qobj
0θ
] can be calculated by the

following expressions.

Afi
c [qobj

0θ
] ∈ ((FFi−1

[qobj
0θ
] ∩ FFi+1

[qobj
0θ
]) \ O[{qobj

0x , q
obj
0y , q

obj
0θ
}]) (3.24)

(f1 /∈ Afi
c [qobj

0θ
]) ∧ (f2 /∈ Afi

c [qobj
0θ
]) (3.25)

The two expressions here are nearly the same as expression (3.24) and (3.25) except that
they are extended to an arbitrary finger fi. Note that the description of i, i + 1 and i − 1
is not strict. When i > 1, it is the same as the description. However, when i = 1, i − 1
should be index of the last finger, say i − 1 = nf when nf is the total number of fingers.
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When i = nf , i + 1 should be index of the first finger, say i + 1 = 1. i − 1 and i + 1 are
modulated by nf . Since calculating one Ac[q

obj
0θ
] requires two adjacent fingers, the minimum

required finger number is three. This is coherent with our discussion in section 2.2. 3 fingers
are required to calculate the translational caging region and 3 or 4 is the least number of
fingers that are required to cage a 2D convex target object.

When a planar object is translationally caged, all Fi[q
obj
0θ
] form a chain or the position

of any finger fi falls inside both Fi−1[q
obj
0θ
] and Fi+1[q

obj
0θ
]. Despite the extension to multi-

ple fingers, the chain shares the same concept as our illustration in Fig.3.6. More strictly
speaking, we only consider the fingers that form a chain. There are some exceptions where
the position of one finger doesn’t simultaneously fall inside both Fi−1[q

obj
0θ
] and Fi+1[q

obj
0θ
].

These exceptions are not taken into account. This is because our target objects are convex
objects and Our faster robust caging algorithm start from immobilization formations5 of a
convex object and retract fingers to a robust caging formation. Fingers in immobilization
formations are always in contact with target objects and therefore all finger in the immo-
bilization formations are sure to form a chain. See Fig.3.28 for example. Both the fingers
in Fig.3.28(a-1) and Fig.3.28(b-1) immobilize the target object. Especially, the fingers in
Fig.3.28(b-1) are multi-finger caging. Some three fingers in Fig.3.28(b-1) already immobilize
the target object. For example the fingers that are at the same position as Fig.3.28(a-1)
are one of those “some three fingers”. The other fingers besides those three fingers can be
viewed as extra fingers. The positions of the extra fingers are always simultaneously in both
Fi−1[q

obj
0θ
] and Fi+1[q

obj
0θ
] since boundary of the target object always belongs to any Fi[q

obj
0θ
].

It is unnecessary to consider the exceptions that does not form chains.
Fig.3.28(b-2) and Fig.3.28(b-3) illustrates how Afi

c [qobj
0θ
] is calculated. Readers may better

understand these two figures by referring to expression (3.24) and (3.25).
Since the calculation of Afi

c [qobj
0θ
] is nearly the same as three-finger cases, there is not too

much difference between the expression to calculate translational constraints QT
{f1,f2,f3} and

expression (3.23). It can be expressed as following. Note that the symbol nf is the total
number of fingers.

QT
{f1,f2,f3} = min(dT

f1
, dT

f2
, . . . , dT

fnv
) (3.26)

Then, let us discuss about how to calculate QR
{f1,f2,f3} in multi-finger cases. Like trans-

lational constraints, the rotational constraints of multi-finger case shares the same principle
as the rotational constraints of three-finger case. Its expression is like expression (3.21).

QR
{f1,f2,...fnf

} =
1

max(d{f1,f2}, d{f1,fnf
}, d{f3,f4}, d{f3,f2}, . . . , d{fnf−1,fnf

}, d{fnf−1,fnf−2})

(3.27)
5In the multi-finger case, a finger formation is supposed to be immobilizing a target object as long as any

three-finger or four-finger combination from the formation can immobilize it. Although not all fingers play
the role of immobilizers, they should be in contact with the target object. Or else, the discussion becomes
nonsense.
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Figure 3.28: Afi
c [qobj

0θ
] in multi-finger case.

An essential point of the rotational constraints of multi-fingers in expression (3.27) is the
meaning of “inter-finger distances”. I have been using this name since section 3.3.1. However,
we were dealing with three fingers before this sub-section and the “inter-finger distances”
meant the distances between any two fingers. When the finger number is extended to more
than three, the “distances between any two fingers” can no longer represent “inter-finger
distances” correctly. It should be the distances between any two adjacent fingers. The
distances between any two adjacent fingers are shown in the denominator component of ex-
pression (3.27), namely the d{f1,f2}, d{f1,fnf

}, d{f3,f4}, d{f3,f2}, . . . , d{fnf−1,fnf
}, d{fnf−1,fnf−2}

part.
Like the three-finger case, we can have a new Q{f1,f2,...,fnf

} by collaborating QR
{f1,f2,...,fnf

}

and QT
{f1,f2,...,fnf

}. It follows the same flowchart in Fig.3.27 to calculate a robust caging for
multi-fingers.
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3.3.3.2 Grasping by caging

Grasping by caging is another extension of the my faster robust caging algorithm. If one
would like to perform a manipulation task with strict grasping as well as robustness to
uncertainty. “grasping by caging” is a good choice.

By reviewing section 1.3, Fig.1.3 and Fig.1.4, we can find that the major aim of caging is
to avoid collision with the target object as well as to keep constraining of the target object.
The faster robust caging algorithm proposed in foregoing texts aims at finding a good solution
to fulfill this requirements. Result of the faster robust caging algorithm, on the one hand,
can cage and constrain the target object. This is because we started from immobilization
which is the minimum form of caging. The caging maintains as long as we do not retract
fingers too much from the positions of an optimized immobilization formation. On the other
hand, it can avoid collision with the target objects since fingers are retracted from target
object boundaries. The faster robust caging algorithm can solve the caging problems to a
certain degree.

However, caging is not as strict as grasping or immobilization. Grasping and immobi-
lization control objects strictly while caging only controls object loosely. Objects can move
freely in a free configuration region Cobj

fc . Recall the discussion in Chapter 2 and we may find
that caging makes us confront a situation where

• Caging is robust to uncertainties but controls loosely.

• Grasping controls strictly but suffers from uncertainties.

I propose the “grasping by caging” concept to make up the drawback of caging. In
certain occasions, people may employ caging as a pre-grasping step to practical grasping
and take the advantages of both caging and grasping. Before this proposal, lots of impres-
sive works have devoted themselves to deal with uncertainties in grasping. Those works
do not involve caging but they interest me a lot and directly drive me to the “grasp-
ing by caging” idea. These researches involve but not limited to the following works.
(1) Approaching regions with hand primitives, examples include [Ekvall and Kragic, 2007]
and [Berenson et al., 2011], (2) database matching, examples include [Goldfeder et al., 2009]
and [Glover et al., 2009], (3) heuristic shape recovery, examples include [Rao et al., 2010],
[Bohg et al., 2011] and [Harada et al., 2013], (4) local reactive sensing, examples include
[Leeper et al., 2010] and [Hsiao et al., 2010] and (5) machine learning, examples include
[Saxena et al., 2006] and [Jiang et al., 2011], etc. Here I will discuss some of them in de-
tails. The most interesting work to me that relates to making grasping robust to un-
certainty is Berenson’s research. He started his work by considering distance to obsta-
cles, namely the distmap, in the scene [Berenson et al., 2007][Berenson and Srinivasa, 2008].
The distmap can be viewed as a criterion to evaluate the contact space of target objects.
Probably it is criterion that drove him to the later concept – Task Space Region (TSR)
[Berenson et al., 2009b]. The name is changed into Workspace Goal Regions (WGR) in
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[Berenson et al., 2009a] and finally back to TSR in [Berenson et al., 2011] and his Ph.D the-
sis [Berenson, 2011]. Distmap calculates a measurement to obstacles in the scene while TSR
calculates a measurement to fingers. Their final goals are the same, namely find a pre-
grasping that could be robust to uncertainties in control or perception. Berenson’s TSR
is interesting. However it is defined manually so that the solution seems a little tricky.
[Saxena et al., 2006] and [Jiang et al., 2011] defines implicitly and explicitly a window to
detect gripping points. This window is actually the same idea as manually defining a TSR.
Prof. Kragic’s group published many works on grasping in the presence of uncertainties.
In their publications, [Ekvall and Kragic, 2007] and [Bohg et al., 2011] interested me most.
These two works also try to calculate a pre-grasping, either pre-approaching vector or pre-
grasping shape according to recovered 3D models. They do not manually define a region or
window. Nevertheless, [Bohg et al., 2011] recovers 3D models by using heuristics of known
shapes. It is a heuristic way to build a bounding box and hence a heuristic way to de-
fine a region. The heuristic approach is an interesting strategy to calculate pre-graspings.
[Leeper et al., 2010] and [Hsiao et al., 2010]’s research concentrate on the PR2 gripper of
WillowGarage. Their work is different from pre-grasping and it plans re-grasping in real
time according to dynamic information collected from sensors mounted on end-effectors.
Database approaches can use pre-computed results. However, the range of target objects is
limited. It depends on the range of pre-computed database.

We can have a conclusion by reviewing these publications. That is in order to deal
with uncertainties in grasping, we had better calculate a good pre-grasping. In
the “grasping by caging” proposal, calculating robust caging plays the role of calculating a
good pre-grasping. Specifically, “grasping by caging” firstly finds a robust caging formation
and initiate fingers to positions of this robust caging formation. This step initializes a good
pre-grasping and it is essential the faster robust caging algorithm introduced in previous
sections. Then the “grasping by caging” algorithm shrinks fingers into immobilization or
contact caging to perform a practical grasping. Note that shrinking from a caging formation
into a practical grasping is not limited to convex target objects. This is because of two
reasons.(1) The minimum state of caging is contact caging or immobilization. (2) Contact
caging and immobilization are in a state of equilibrium. When fingers in equilibrium state
are endowed with friction, they become force closure. Fig.3.29 illustrates the two reasons.
Although force closure suffers from perception problems, force closure itself is practical to
grasping. The caging-based pre-grasping procedure filters out the perception problems of
force closures. Even if the friction force are not large enough to support force closure, the
result of “grasping by caging” is still practical strict control comparing with single caging.

There are two notes about my “grasping by caging” algorithm. The first one is since
the faster robust caging algorithm requires convex target objects, the “grasping by caging”
algorithm here only works with convex target objects. I will present another robust caging
algorithm which is not limited to convex target objects in the third part of this thesis.
In that case, the “grasping by caging” algorithm will work with both concave and con-
vex target objects. The second one is we are discussing about “shrinking caging” but
“stretching caging”. Grasping by stretching caging must be dealt in a different way. Ro-
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driguez [Rodriguez et al., 2012] shows that considering grasping by both shrinking caging
and stretching caging at the same time is quite difficult since there are lots of possibilities.
Readers may refer to Fig.4 of [Rodriguez et al., 2012] to better understand the difficulties.

Figure 3.29: “Grasping by caging” can be applied to both convex and concave objects.

Fig.3.30 summarizes a whole methodology of practical grasping by using the extensions
proposed in this section, it includes the faster robust caging algorithm, the multi-finger ex-
tension and the “grasping by caging” algorithm. During a procedure of grasping, there could
be two kinds of uncertainties. One comes into being during the perception procedure shown
in Fig.3.30(a) while the other one comes into being during the actuation procedure shown
in the right part of Fig.3.30(b). The methodology summarized here could endure these
uncertainties. In the beginning, the faster robust caging algorithm is applied to the approx-
imated target object shape of Fig.3.30(a). Fig.3.30(b-1) shows the details of applying the
faster robust caging algorithm. It finds an optimized immobilization formation by consid-
ering QR

{f1,f2,...,fnf
} and QT

{f1,f2,...,fnf
}. Note that the subscript {f1,f2, . . . ,fnf

} is omitted
for conciseness. The faster robust caging algorithm starts calculation with three fingers and
increase finger number one by one until certain condition is satisfied. We will discuss about
this “certain condition” in the implementation section. In Fig.3.30(b-1), a three-finger im-
mobilization formation is considered to be optimized since three fingers are enough and it is
unnecessary to use four. The formation will be retracted from the boundary of target objects
with some distance. The retraction distance will also be discussed in the implementation
section. After retraction, we can get a robust caging formation and this formation will be
applied to groundtruth target object. Fig.3.30(b-2) shows this procedure. Note that during
this procedure, the finger may suffer from uncertainties caused by actuation noises. Thanks
to our calculation in Fig.3.30(b-1). The uncertainties won’t cause too much trouble since
the caging formation is a robust one and it could endure actuation uncertainties to a cer-
tain degree. When the formation is applied to groundtruth target objects, the pre-grasping
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formation is inititiated. We can then follow the ‘grasping by caging” algorithm and shrink
fingers to obtain more strict manipulation. Fig.3.30(c) illustrates this procedure.

Figure 3.30: The whole approach to realize strict manipulation.

There is one extra problem in Fig.3.30(c), namely how can we maintain caging during the
shrinking procedure. This is an important issue as losing caging during the shrinking proce-
dure makes the pre-grasping procedure nonsense. Vahedi in his Ph.D thesis [Vahedi, 2009]
proposed a lemma in page 78.

Let c be a placement of the third finger that cages P [q]. Then any point c0
vertically above P [q] and below c also cages P [q].

This lemma can be demonstrated with Fig.3.31. It means that when the object in Fig.3.31
is caged by the three point fingers f1, f2 and f3, the caging maintains if we shrink one
finger vertically towards the connecting line of the other two fingers. For example, when
we shrink f3 vertically towards the connecting line of f1 and f2 in Fig.3.31, caging will
continuously maintained until grasping. The inherent reason of this lemma is when shrinking
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f3 vertically towards the connecting line of f1 and f2, the distances d{f1,f3} and d{f2,f3} would
continuously become smaller while the distance d{f1,f2} remains the same. Accordingly,
caging maintains continuously.

Figure 3.31: Caging maintains when vertically shrinking f3 in three-finger caging.

This lemma can be extended to multi-finger case intuitively. It should be as following. If
we shrink a finger fi vertically towards the connecting line of its adjacent fingers fi−1 and
fi+1, caging will maintain continuously. Note that both Vahedi’s lemma and my extension
to multi-finger case are subject to shrinking caging. I define the shrinking caging as follow-
ing. Shrinking caging means when shrinking one finger vertically towards the
connecting line of its adjacent neighbours, it should not go over the connecting
line. Surely this is a “stricter” shrinking caging. But it would be satisfying to make clear
the coverage of my “grasping by caging” algorithm.

Taking into account the discussion on shrinking, Fig.3.30(c) becomes shrink randomly a
finger towards the connecting line of its adjacent neighbours until strict grasping.

3.3.4 Implementation with Webots
In the past few sections we have successfully collaborate QR

{f1,f2,f3} and QT
{f1,f2,f3} and pro-

pose the basic flow of “grasping by caging”. But at the same time, we have unfortunately
collected a batch of unsolved problems. They are (1) how to retract fingers, (2) how is
the performance of the collaboration，(3) how to choose the selecting parameter τ and (4)
how to decide the number of fingers. Strictly deducing them with mathematical formulae is
infeasible and consequently I estimate them by simulations.

The simulation uses the same Webots simulation software as section 3.2.5. Nevertheless,
a different scene is built for this estimation work. This scene is based on a revised Katana
Arm [Katana, 2013]. Fig.3.32 demonstrates this simulation scene. The original Katana Arm
has five DoFs. It can be installed with extra grippers or other end-effectors. I install a
20.0cm × 20.0cm board to the fifth DoF. The board is modeled with a box and it acts as
the palm of the end-effector. On this board there are four fingers and each of them can be
actuated inside the board along x and y axes. The fingers are modeled with cylinders. The
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height of a finger, namely the height the cylinder is 6.0cm while its radius is 0.5cm. These
fingers are assumed to play the role of those point fingers in our algorithms. Since each
finger can be actuated independently, it is like our end-effector introduced in section 1.2.

Figure 3.32: A Katana Arm with a distributed end-effector.

Five different target objects are modeled for the simulation. They are all convex 2D
target objects. Fig.3.33 shows their geometrical settings.

I carry out two groups of implementations with the simulation to find answers to the
three problems. The first implementation aims at problems (1) and (3), namely how to
retract fingers and how to choose the selecting parameter τ . The second implementation
aims at problem (2), namely how is the performance of the collaboration.

A common point of both groups is how to test whether a finger formation cages the target
objects. Note that this is how to perform caging test with simulation. It is different from
the caging test algorithm discussed in the beginning of this chapter. I propose to perform
twelve tests to check whether a finger formation cages the target objects in simulation. The
major idea of these tests are to check caging by rotating the end-effector. Their settings
are as following. (1) The end-effector is inclined to induce random motions of the target
object during rotation. I set the upperarm joint (3rd DoF in Fig.3.32) to 1.3rad to make
inclination. This joint parameter is chosen because the total inclination of the end-effector
palm becomes 0.14rad after forward kinematic calculation6. The 0.14rad inclination of the
palm could induce random motions of the target object inside the palm as well as stop the
target object from falling out of the palm. (2) The rotation wrist (the 5th DoF in Fig.3.32)
is rotated with two different speeds to make the random motions more dramatic. During

6Each joint of the Katana Arm has an initial rotation and a mechanical stopper. Readers may refer to
its document for details.
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Figure 3.33: Geometric settings of the convex 2D target objects.

the tests, the rotation wrist is actuated in a slower speed 1rad/s and a faster speed 10rad/s.
The slower and faster speed together make more random motions and therefore make caging
test more convincing. If only one rotating speed is employed, random motions of the target
object during rotation might be de-randomized and the testing may return a false result.
(3) Along with different rotating speeds of the rotation wrist, the base of the Katana Arm
is actuated to different orientations. This is also a strategy to make random motions more
dramatic. The more dramatic the random motions are, the more convincing our caging tests.
Orientations of the base are actuated to every π

6
in [0, π) to perform caging tests. Making

together the three settings, the total test number would be twelve with 0.14rad inclination of
the palm. A clear list of each test is shown as following. If a formation could pass the twelve
tests during simulation, it is supposed to be able to cage the target object. The twelve tests
are boring procedure but they are a convincing way to ensure caging7.

7I agree that the tests can be alternatively performed by using the caging test algorithms introduced
in the beginning of this chapter. However, I prefer this simulation due to two reasons. The first one is, as
finger number increases the caging test algorithms increases dramatically since nf is an exponential number
in O(n

nf
v · s ·m). The second one is, we can see the performance of our algorithms more intuitively with the

Webots simulation.
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Test 1 Base Orientation: 0, UpperArm: 1.3rad, Rotation wirst speed: 1rad/s.
Test 2 Base Orientation: 0, UpperArm: 1.3rad, Rotation wirst speed: 10rad/s.
Test 3 Base Orientation: π

6
, UpperArm: 1.3rad, Rotation wirst speed: 1rad/s.

Test 4 Base Orientation: π
6
, UpperArm: 1.3rad, Rotation wirst speed: 10rad/s.

Test 5 Base Orientation: π
3
, UpperArm: 1.3rad, Rotation wirst speed: 1rad/s.

Test 6 Base Orientation: π
3
, UpperArm: 1.3rad, Rotation wirst speed: 10rad/s.

…

Note that Webots uses Open Dynamics Engine (ODE) [Smith, 2013] for physical com-
putation. I set the gravity and columb friction coefficient of the ODE engine in Webots
(0,−9.81, 0) and 1 × 10−5. ODE does not allow 0 friction coefficient and therefore I set it
to a small value 1× 10−5. Besides the common point, each group involves different details.
These details will be discussed separately in their own contexts.

3.3.4.1 Group I – Choosing parameters for the faster robust caging

The faster robust caging algorithm proposed in Fig.3.27 is only a framework. We need to
further consider the problems (1), (3), (4) and choose two parameters to make it working.
They are

τ The parameter to collaborate QR
{f1,f2,f3} and QT

{f1,f2,f3}. This symbol has been defined
in previous contexts.

dret This parameter denotes the maximum distance that the fingers could be retracted
from the boundary of a target object. This symbol is new and it depends on the
direction of retraction.

Choosing the parameters requires testing different τ values and testing whether caging
maintains continuously during a retracting procedure. Say, we can set τ with different values
and check the dret of each τ . The τ that induces largest dret would be the most satisfying
parameters. Fig.3.34 shows the procedure.

In the beginning, I initialize τ with 0 and increase it step by step. Let us denote one
step with τstep. Then, at a step i, the value of τ would be τ = 0 + i · τstep. This would be
the threshold to the immobilization optimization algorithm. The immobilization optimiza-
tion algorithm has been shown in Fig.3.27. Readers can replace the purple box in Fig.3.34
with the upper frame of Fig.3.27 to better understand its role. Result of the immobilization
optimization algorithm is an optimized immobilization formation. This optimized immobi-
lization depends on the settings of parameter τ . We can see different τ may correspond to
different optimized immobilization formations.

The optimized immobilization formation would be an input to the blue frame of Fig.3.34.
In this blue frame, the offset between fingers and boundary of target objects are increased
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Figure 3.34: Choosing the proper parameters.
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step by step to check the maximum robustness of this optimized immobilization formation
to caging breaking. In the beginning of this blue frame, I initialize dret, namely the distance
of retraction, with 0 and increase it by dstep in each loop. The maximum dret that fingers can
retract from boundary of target objects without breaking caging is the maximum robustness
of the optimized immobilization formation. Therefore, the result of this blue frame would
be a pair where the first element is an optimized immobilization formation while the second
element is the maximum retraction distance dret. Since an optimization immobilization
formation corresponds to a certain parameter settings of τ . This pair can be written as (τ ,
dret). During the simulation this pair will be saved for further analysis. The green box in
the blue frame of Fig.3.34 shows the saving process of the pair.

Given a target object, the procedure in Fig.3.34 can output a series of (τ , dret) pairs. We
can analyze this pair and find how to set τ to get the maximum retraction distance dret.

There are two details that need further consideration in this procedure. The first one
is how to define one step, say how to choose τstep and dret. They should not be set to a
fixed value since they depends on the shape and size of target objects. For example, dret of
a 100.0cm× 100.0cm rectangular object is surely different from a radius = 10.0cm circular
object. If we choose fixed values, the pair (τ , dret) won’t be able to imply the robustness of
caging. We need to choose τstep and dret with respect to a certain reference. The translational
QT

{f1,f2,...,fnf
} of a target object is a good reference candidate. We name the translational

QT
{f1,f2,...,fnf

} of a target object the translational robustness and denote it with τmax. This
τmax, as we analyzed before, can be calculated quickly. It at the same time encodes geometric
information of target objects. Consequently, I prefer choosing it as the reference.

This τmax should be calculated with respect to τ = 0. The calculation is shown in the
beginning of the flowchart in Fig.3.34. Note that only the τmax at τ = 0 encodes the geometric
information of target objects and is calculated as the reference since this is the translational
caging for a target object. When τ ̸= 0, the translational robustness is no larger than τmax.
Given a target object, we can pre-calculate τmax and prepare it for later reference in defining
τstep and dret. In my simulation, the τstep and dret are chosen to be 0.05τmax. That is to say,
at a ith outer looping step, τ is set to 0 + i · 0.05τmax. At the jth inner looping step, dret is
set to 0 + j · 0.05τmax. Each of the pair (τ , dret) would be a pair of values with respect to
reference τstep, namely (0 + i · 0.05τmax, 0 + j · 0.05τmax).

The second detail that needs further consideration is the retraction direction when per-
forming dret=0 + j · 0.05τmax. In order to ensure the result of faster robust caging algorithm
as robust as possible, we can give an intuitive answer. That is to retract fingers along a
direction that can break caging as quickly as possible. We name this direction the “Break-
ing” direction. If the fingers can be retracted with quite large distance along the “Breaking”
direction, it potentially can be retracted longer along the other directions and the result
of the faster robust caging algorithm would be more convincing. However, I wonder if an-
other direction is really worse comparing with the “breaking” direction. Therefore, in my
simulation, I manually define another retraction direction for comparison. The figures in
the middle dialog box of Fig.3.34 shows the other retraction direction. In this case, each
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finger is retracted from the surface of target objects along normal direction of the surface. I
name this retraction direction the “normal” direction. The “breaking” direction can be cal-
culated by exploring QT

{f1,f2,...,fnf
}. Recall expression (3.26), the QT

{f1,f2,f3} is the minimum
distance of all dT

f1
, dT

f2
, . . . , dT

fnv
. Each dT

fi
denotes the minimum distance from the finger fi

to the translational caging boundary. This minimum distance has a direction which means
the “short-cut” to breaking. Retracting fingers along this “short-cut” direction would break
caging quickly. Therefore, I use it as the “breaking” direction. The white segments in the
upper dialog box of Fig.3.34 show these “breaking” directions. I save the (τ , dret) pairs by
both retractions along “normal” directions and “breaking” directions for analysis.

Here is a summary of the detailed techniques used in the simulation and in choosing
parameters.

τ τ is used to filter out the translational caging formations.
τmax τmax is the translational robustness of a target object.
dret dret is the distance that fingers are retracted from target objects.
Normal Normal is one retraction direction. It is along the normals of object boundary.
Breaking Breaking is another retraction direction. It is along the direction of dT

fi
.

(τ , dret) (τ , dret) is a pair of value with respect to τmax. This pair implies the maximum
retraction distance dret with respect to τ .

In the following part I will show the saved (τ , dret) of different objects and analyze them.
I divide the five objects into two categories. One is the symmetric “box” and “cylinders”
and the other one is the other three general polygons.

The symmetric “box” and “cylinders”
Firstly, let us look at the results with the two symmetric “Box” and “Cylinder” shown in

Fig.3.33. The reason why I separate the symmetric objects from the other polygons is there
is no need to change τ for symmetric objects. Any τ results into the same pair. We can say
τ is not available in symmetric cases. The third column of Fig.3.35 shows the “N/A” status
of τ .

Figure 3.35: Parameter results of the two symmetric objects.
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The least number of fingers to cage a “Cylinder” object is three while the least number
of fingers to cage a “Box” object is four. The result is the same as our analysis in section
2.2. The last column of Fig.3.35 shows the number. The fourth and fifth columns in Fig.3.35
shows the retraction thresholds along different directions. Since τ is not applicable, there
is only one maximum dret. Any τ results into the same dret shown in the fourth and fifth
columns. Starting from 0.0, I increase τ step by step with 0.05τmax step length. The caging
maintains until 0.35τmax for “Cylinder” while until 0.45τmax for “Box”. Say, our proposal can
offer a 0.35×1.6cm=0.6cm threshold for caging “Cylinder” while offer a 0.45×5.3cm=2.4cm
threshold for caging “Box”. Different choices of τ give the same results.

Retracting along different directions are the same in Fig.3.35. It is different from my
expectation that “breaking” direction has a smaller retraction distance. This is reasonable
for “Box” object since the “Box” object is special that the two directions share the same
vector. It is a little confusing for the “Cylinder” object. One possibility is that the “Cylin-
der”’s robustness is too small to discern the difference. The difference between retraction
along “Normal” direction and retraction along “Breaking” direction can be neglected safely.
Fig.3.36 shows the details of the two retraction directions and the caged “Cylinder” with
different retraction distance. The white segments in (a-1) and (a-2) of Fig.3.36 demonstrate
the two different retraction directions of the “Cylinder” object. Fig.3.36(b-1) shows one
caging status during the retraction loop where τ=0.1τmax. Fig.3.36(b-2) shows the maxi-
mum retraction distance (0.35τmax). In Fig.3.36(b-2), a further retraction step shall break
caging.

Figure 3.36: A retraction example.

General polygons
Unlike the symmetric objects, τ is applicable to general polygons and each of the general

polygons “Polygon A”, “Polygon B” and “Polygon C” in Fig.3.33 corresponds to a series
of (τ , dret) pairs. The (τ , dret) of the three polygons are shown in Fig.3.37 with curves
of different colors. The horizontal coordinate of Fig.3.37 denotes the variation in τ while
the vertical coordinate of Fig.3.37 denotes the maximum retraction distance before caging
breaking.
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Figure 3.37: Parameter results of the three polygon objects.
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Both the horizontal an vertical coordinates in Fig.3.37 are shown with respect to reference
τmax. They are a certain proportion of τmax. Take the red curve of Fig.3.37(a) for example.
This is the result of “Polygon A” when we retract fingers along “Normal” direction. The
maximum retraction distance of this curve appears at τ=0.3τmax. The τmax of “Polygon A” is
shown in the upper-right text of Fig.3.37(a). It is 4.0cm. Therefore, the maximum retraction
distance of this curve appears at τ=0.3τmax=1.2cm and its value is τ=0.3τmax=1.2cm. That
is to say, we have a pair (1.2cm, 1.2cm) for this “Polygon A”. The white point in Fig.3.37(a)
denotes this (1.2cm, 1.2cm) pair.

Now let us analyze these curves in detail.
a) The choice of τ . The pair (τ , dret) with maximum dret along the curves of “Polygon

A” and “Polygon B” both appear at τ=0.3τmax. Therefore, I prefer choosing τ=0.3τmax as
the filtering parameter of translational constraints. However, this seems quite different on
“Polygon C”. The curve of “Polygon C”, no mater along which direction the fingers are
retracted, is always going monotonically. There’s not significant superiority around 0.3τmax.
This is because this “Polygon C” object is too long or thin and caging is not suitable to cage
this kind of objects.

b) Retraction/shrinking direction. We can compare the performance of different retrac-
tion directions by comparing the results of Fig.3.37(a) and Fig.3.37(b). The conclusion is
retraction along either direction can both be flexible enough. There is not too much dif-
ference between the two different directions. The breaking direction seems to be a better
choice on “Polygon A” while a worse choice on “Polygon B” and “Polygon C”. The reason
is probably the same as symmetric objects. That is, the robustness is not very large and it
doesn’t result into significant difference. Retraction along “Normal” direction and retraction
along “Breaking” direction have nealry the same performance and we could choose either
safely.

Thin objects like “Polygon C” is not suitable for caging, but what can we do if we really
want to cage it? The answer is to increase the number of fingers. This relates to the problem
of when to increase fingers or how many fingers do we need to cage a target object.

I propose to deal this problem by measuring the maximum retraction distance. Take
“Polygon C” for example. The three-finger maximum retraction distance of “Polygon C”
is unsatisfying. It is 0.2τmax=0.46cm. We can introduce an extra finger to enlarge this
maximum retraction distance. Fig.3.38 shows the (τ , dret) curve with respect to four fingers.

As we can see in the upper-right text of Fig.3.38, τmax increases greatly from 2.3cm to
3.6cm after introducing an extra finger and the maximum retraction distance grows from
0.2×2.3cm=0.46cm to 0.25×3.6cm=1.08cm. It is interesting that this maximum retraction
distance appears around τ=0.3τmax which is the preferred value of “Polygon A” and “Poly-
gon B”. Actually, if we choose a different τ , the result formation would be quite different.
Fig.3.39 shows the difference. The formations with τ=0.1τmax, τ=0.2τmax, τ=0.4τmax and
τ=0.5τmax cannot offer as much robustness as the formation as τ=0.3τmax. Their maximum
retraction distances are 0.15τmax, 0.15τmax, 0.15τmax and 0.11τmax respectively. We can also
find evaluate the performance of each formation in Fig.3.39 by observation and prediction.
Comparing with the third figure where τ=0.3τmax, the first result biases toward the fatter
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Figure 3.38: Parameter results of “Polygon C” with four fingers.

end of “Polygon C”. This bias may cause certain problems. The second figure involves two
closely arranged fingers. Due to those two closely arranged fingers, the formation in the
second figure deteriorates into three finger case. The fourth and fifth figure both has a large
gap between fingers. The fourth one has a large gap between the lower two fingers while
the fifth one has a large gap between the upper two fingers. When there is uncertainty,
the target object may drop out easily from those gaps. The third one where τ=0.3τmax is a
satisfying result.

Figure 3.39: Different results due to different parameter settings.

By the way, I would like to explain more about the “Polygon C” object. As the target
object becomes thinner and thinner, it may require more and more fingers to get a satisfying
retraction distance. In the extreme case where target becomes a long thin stick (for instance,
a pen), we may never cage it and have to refer to friction for help. This is the common sense
in our daily life.

After the first group of simulation, we can make clear the answer to problems (1), (3)
and (4) of the faster robust caging algorithm.
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(1) How to retract fingers? The answer is we can either retract fingers along normal
direction or breaking direction. This is no significant difference between them.

(3) How to choose the selecting parameter τ? The answer is to choose τ=0.3τmax. How-
ever, we should ensure that the maximum retraction distance is larger than a certain thresh-
old which can be defined by users. If we hope to have a caging with at least 0.5cm robustness,
it is advisable to use a threshold of 1.0cm. This is because when the maximum retraction
distance is larger than 1.0cm, we can safely retract fingers with 0.5cm. After retraction, the
fingers have both 0.5cm robustness against collision with target boundary and dmax− 0.5cm
robustness against caging breaking.

(4) how to decide the number of fingers? The answer is to decide finger number by max-
imum retraction distance and a user-defined threshold. If the maximum retraction distance
is smaller than the user-defined threshold, we should introduce extra fingers to increase the
maximum retraction distance so that caging could be more robust.

Now we can mix up everything and summarize the complete faster robust caging algo-
rithm. It is shown in Fig.3.40. This figure illustrates in detail how to set those parameters
and how to decide the number of fingers. Especially, it employs the normal direction as the
retraction direction. There is no remaining problems in the summarized algorithm. However,
I agree that the parameter settings of this complete version suffer from doubts. For example,
readers may consider that these empirical settings are summarized from five objects. The
number five is too small. Actually, testing various object is dull due to the manual step-by-
step tests. For instance, each object have to go through (τmax/0.05τmax)×12nd=1200nd tests
and we have to perform 6000nd caging tests for five objects. Here nd denotes the number
of retraction steps in each inner loop. Therefore, only five objects are employed in Group
I. The five target objects are not selected arbitrarily. They are representative enough to
represent “convex” target objects. In case of more doubts about these parameter settings
and at the same time in order to answer the problem (2). I will use the algorithm to test its
performance in the next group of simulation.

3.3.4.2 Group II – Evaluating performance of faster robust caging

The second group of simulation aims at evaluating the performance of the algorithm and
parameter settings shown in Fig.3.40. As we know, uncertainties come from two aspects,
namely (1) uncertainty from perception devices and (2) uncertainty from actuation of fingers.
These two aspects are demonstrated in Fig.3.40. I emulate these noises by adding Gaussian
noises to vertices of target objects and I suppose that the noises model both uncertainty
in perception devices and uncertainty from actuation. Noises from actuation is integrated
into noises of perception in this case. Specifically, for each vertex (vx, vy) of the ground-
truth shape, a random noise (δvx, δvy) is generated with respect to a Gaussian distribution
N(0, σ2) and added to (vx, vy). The noisy shape vix + δvix , viy + δviy , i = 1, 2, . . . , nv is taken
as the noisy shape input into the faster robust caging algorithm. Then the algorithm works
exactly following the flowchart in Fig.3.40. The noisy shape is used to calculate a robust
caging formation while the groundtruth shape is used for caging test. We need to calculate
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Figure 3.40: The final faster robust caging algorithm with empirical parameter settings.

a robust caging formation for each Gaussian noise and evaluate whether this Gaussian noise
can be endured by formation.

The following figure shows the procedure of adding Gaussian noises to the ground-truth
shape.

Figure 3.41: Adding noises to groundtruth shapes to evaluate the robustness of caging.

The performance of faster robust caging under Gaussian noises are shown in Fig.3.42.
The noisy shapes in this figure are selected and rearranged to better compare performance
the robustness. The first column of Fig.3.42 denotes the meaning of each row and which
object in Fig.3.33 these shapes correspond to. It also shows how many fingers are needed
to ensure dret > 1.0cm. The second column of Fig.3.42 denotes the groundtruth shapes of
target object. The other column shows the changes of shapes with different Gaussian noise
and whether the noisy shapes could be caged. If a noisy object can pass the cage test, its
“result” row would be “success”. Or else the “result” row could be “collision” or “breaking”
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which corresponds to the two possibilities of failure. The “collision” failure means the fingers
collides with target objects and the “breaking” failure means caging test fails and the target
object drop out of the formation. The results are according to τ = 0.7τmax with 0.5dret
retraction.

Figure 3.42: Performance of the faster robust caging under Gaussian noises.

As we can see from Fig.3.42, it is safe to endure more than N(0, 1.32) and N(0, 1.52)
Gaussian noises with “Polygon A” and “Polygon B” with three fingers. After introducing an
extra finger, it is also safe to endure more than N(0, 0.72) Gaussian noises on “Polygon C”.
These results show that my proposal is potentially good to work with Swiss Ranger. The
parameter settings and faster robust caging algorithm could be a promising way to calculate
robust caging formations for convex target objects. I will show some applications of this
algorithm in the next chapter.
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Chapter 4

Applications I – Distributed Agents

The chapter includes two applications of the faster robust caging algorithm. The first one is
our distributed end-effector which has been conceptually illustrated in Fig.1.1 and Fig.1.2.
This application uses both KINECT and Swiss Ranger to perceive target objects. We will
see the comparison of their performance and the feasibility of my algorithm. The second
one is multi-robot co-operation. This application was widely studied by Sudsang, Wang
and Pereira, etc. My work here is different from them and it uses the faster robust caging
algorithm to calculate caging positions of each robots. The second application uses a V100:R2
OptiTrack [NaturalPoint, 2013] to track and control the motion of each mobile robot. We will
see how the algorithm work with it. Note that the “graping by caging” part of this algorithm
is not used in the applications. That is because the “grasping by caging” part requires local
sensors to perceive the contacts between agents and target objects. Local sensors are not
available to the applications of this thesis. However, readers may see the “grasping by caging”
procedure in Fig.3.30. In that case, “grasping” is a simple demonstration, it is blind and
suffers from the danger of squashing target objects.

4.1 Caging on the Distributed End-effector
4.1.1 Details of the end-effector
4.1.1.1 Hardware implementation

The same as the conceptual illustration in Fig.1.1 and Fig.1.2, the Distributed End-effector
is composed of an x− y− θ actuator and several distributed fingers. The x− y− θ actuator
works as the palm of a robotic hand while the distributed fingers work as the fingers of a
robotic hand. Fig.4.1 shows the implemented x − y − θ actuator. It has two motors to
control x and y translation, one motor to control θ rotation and an extra motor to control
the insertion of pins. Readers may refer to the connecting module of Fig.6.14 and related
texts to better understand the θ motor and pin-insertion motor.
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Figure 4.1: The implemented x− y − θ actuator and the roles of four motors.

The x−y−θ actuator actuates a finger with three steps. In the first step, it attaches itself
to a finger by inserting pins to the fingers. Then, it translates and rotates the attached finger
to the position calculated by the faster robust caging algorithm. After that, the x − y − θ
actuator detach itself from the upper part of the finger and finish the actuation. Readers
may review Fig.1.2 to recall this procedure. Fig.4.2 shows the details of one distributed
finger. It involves a prismatic module which stretches fingers down and a nail module which
will be inserted into the bottom of target objects.

Figure 4.2: The implemented one distributed finger.

Since there are not enough room to install a manipulator shown in the left part of
Fig.4.1 and Fig.4.2 to move this end-effector, I use some tricks to test the performance of
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my algorithm. Rather than moving the end-effector, I install a sliding plate under the end-
effector and move the sliding plate instead. The lower-left dialog box of Fig.4.3 shows the
sliding plate. At the corners of this sliding plate, four markers are installed to help calibrate
perception devices which are installed on the top. The perception devices involve a KINECT
and a Swiss Ranger, they are emphasized in the upper-left dialog box of Fig.4.3.

Figure 4.3: The sliding plate and the perception devices.

The right dialog box of Fig.4.3 shows an action where the distributed end-effector cages
a cylindrical target object. Note that in this application I use some dummy fingers instead
of the complete version shown in Fig.4.2. These dummy fingers have the same mechanical
structure as Fig.4.2 except that they are not equipped with motors. These dummy fingers
save costs of our implementation as well as being enough to demonstrate the faster caging
algorithm.

4.1.1.2 Software integration

In the lower level, the end-effector is controlled by a AVR Atmega2560 micro-controller
which can perform basic commands from computers. On the one hand, the micro-controller
encapsulates low-level controls like proportional-integral-derivative algorithms and deals with
the low-level protocols like formats of encoder data. On the other hand, it receives commands
from computers through serial communications and interrupts and controls motors according
to those commands.

In the higher level, the end-effector is controlled by MATLAB2011b running on a Mac-
Book. Fig.4.4 shows the MATLAB interface of the high-level controller and its relationship
with the low-level micro-controller.
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Figure 4.4: Connections between the high-level computer and the low-level micro-controller.

It can be seen from Fig.4.4 that the high-level computer performs the following tasks
consequently. (1) Processing the information collected from perception devices. This task is
shown by the orange boxes and the green box in Fig.4.4. (2) Calculating an optimized caging
formation. This task is shown by the blue box in Fig.4.4. (3) Calibrating the perception
devices. This task is shown by the purple box in Fig.4.4. (4) Planning actuation paths
of each finger. This task is shown by the yellow box in Fig.4.4. After that, the high-level
computer encode the results of those tasks into commands and send the commands the
micro-controller through serial communication. This is shown by the cyan box (command
panel) in Fig.4.4. The micro-controller actuates the motors on the end-effector according to
the received command to perform caging.
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4.1.2 Demonstration and analysis
We have reviewed the hardware implementation and software integration in foregoing texts.
Next, it is time to see the results of the faster robust caging algorithm. We will see two
topics in this sub-section. One is comparison between KINECT and Swiss Ranger and the
other one is the demonstration with different convex objects.

4.1.2.1 Comparison between KINECT and Swiss Ranger

I tested two different perception devices, namely the KINECT and the Swiss Ranger. The
two perception devices have different precisions so that we can better see the robustness of
the faster robust caging algorithm.

KINECT and Swiss Ranger represent two different types of depth cameras. The KINECT
calculates the offset of the dot patterns from their factory calibrated ideal positions. Depth
of a certain point is evaluated by the offset. The KINECT camera is composed of an IR
source, an IR camera and a RGB camera. Its resolution is 640 × 480. The Swiss Ranger
measures changes in the light phase at each image sensor signal. The phase difference divided
by period length indicates a portion of maximum measurement, namely the depth value. The
Swiss Ranger is composed of a light source and an image sensor. Its resolution is 176× 144.
Although the Swiss Ranger is lower in resolution, it is higher in precision and of course higher
in price.

Precision of the depth camera, especially the KINECT camera, depends on its distance
to the scenarios. Therefore, I install the two cameras to four different positions to compare
their precisions. The four different positions are shown in the upper-left part of Fig.4.5.
I measure the distance between two markers shown in the upper-right part of Fig.4.5 and
compare the measured results with ground truth value. Groundtruth value of the distance
between markers is 510mm. However, the measured results differ conspicuously. They are
shown in the lower bar-graph of Fig.4.5.

The Swiss Ranger has relative higher precision. Its error is less than 10mm. The
KINECT, however, is much worse and introduces an error of nearly 50mm. The preci-
sion of devices introduces limitation to their caging applications. By comparing the caging
regions of objects in Fig.3.33, we can roughly have a reference value that the robustness of
caging is about 1

10
of object diameter 1. Note that this is a rough value. It cannot be used to

evaluate robustness but it can be used to check whether the perception devices are suitable
to some caging applications. The Swiss Ranger is potentially fine to work with objects with
target objects whose diameters are no less than 100mm. The KINECT is much worse. It
may fail to work as a suitable perception device unless the diameter of target objects are
larger than 500mm.

Fig.4.6 shows the results with the cylinder object shown in Fig.3.33. The diameter of this
cylinder object is 100mm and the height of this cylinder object is 50mm. The caging results
at those four different heights in the upper-left part of Fig.4.5 are shown in Fig.4.6(a), (b),

1Object diameter can be considered as the diameter of largest outer circle that covers the object
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Figure 4.5: Perception errors of KINECT and Swiss Ranger.

(c) and (d) respectively. Both Swiss Ranger and KINECT are involved at each height. The
ideal caging results, namely the caging results calculated with perfect shape and position
information, are rendered in red while the caging results calculated with cloud points from
the perception devices are rendered in green. The Swiss Ranger, especially when its height
is higher than H2=1100mm, is robust enough to our faster robust caging algorithm. On the
contrary, the KINECT fails due to dramatic offset.

4.1.2.2 Demonstration with various target objects

According to the results of Fig.4.6, I choose the Swiss Ranger and fixed it at height H3=1200mm
to provide objects information to the distributed end-effector. The faster robust caging algo-
rithm is carried out on different objects shown in Fig.4.7. It involves a cylinder, a frustum,
a trapezoid and a set of reconfigurable cuboids. In total, there are 7 convex objects tested.
These objects are not as complex as those used in the simulation, however, they are more
common in real world. Most of the objects in real world are of these shapes. Moreover, the
trapezoid and the frustum are more challenging due to their inclined side surfaces. That is
because the inclined side surfaces cause ambiguity in depth and consequently increase the
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Figure 4.6: Comparing the caging results of different devices.

noises of boundary detection.

Figure 4.7: The objects used in demonstrating the distributed end-effector.

Fig.4.8 exemplifies a caging process with the circular object. The high-level perception
and planning has been shown in Fig.4.3. Fig.4.8 is the low-level control of each distributed
finger. The last figure of Fig.4.8 is the caging state of the cylinder object. The caging fingers
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offer robustness to collision while maintains a loose closure. Without caging, the distributed
fingers may (1) squash target objects or (2) lose target objects.

Figure 4.8: The caging process of the circular object.

Fig.4.9 shows in detail the results of each object. Since the frustum and trapezoid have
inclined side surfaces, their boundaries are more ambiguous to the Swiss Ranger and there
are more noise. In most cases, the noise results into smaller perception results. Smaller
perception results cause the fingers to be nearer to target objects. If there is no caging,
the nearer fingers would surely squash the objects. The results in figure Fig.4.9(b) and (c)
validates this analysis. As the perceived objects become smaller, the gaps between fingers
and objects become smaller. If the faster robust caging is not employed and we do not retract
fingers from the boundaries of percepted objects, the fingers would sure squash into the target
object. The small gap is more obvious in Fig.4.9(c). That is because the inclination of the
trapezoid is even larger so that the perceived boundary is even smaller. In the case shown
in Fig.4.9(c), there is nearly no gap between fingers and target objects. The operation is
on the boundary of failure. The gaps of the other objects are robust enough to guarantee
successful caging. They either constrains objects and avoids collision.

All of these six objects can be successfully caged by the distributed end-effector. An
exception is the one-cuboid object. Fig.4.10 shows the status when the end-effector fails.
The algorithm can find an optimized caging configuration, however, the real-world nail fail
to reach beneath the bottom. Actually, this one-cuboid object is like the “Polygon C” object
which was analyzed in the simulation of section 3.3.4.1. The one-cuboid object is too thin
and it is not suitable for caging. However, if we do want to safely cage it, we may increase
the number of fingers.

4.2 Caging on Multi-robot Co-operative
Transporation

Multi-robot cooperative transportation is tightly coupled cooperation which aims to finish
a complex transportation task with several simple robots. Classical works in this realm



CHAPTER 4. APPLICATIONS I – DISTRIBUTED AGENTS 103

Figure 4.9: Detailed caging results of each object.

relates to task allocation, application-specific control analysis and sensor fusion. Although
there are lots of publications in these aspects, I recommend readers refer to [Parker, 1998],
[Gerkey and Mataric, 2002], [Montemayor and Wen, 2005] and [Cheng et al., 2008] for a rough
review. They are representative works of the last decade. The delicate analysis and design,
like prehensile manipulation in the realm of robotic manipulators, are usually target-specific
or robot-specific. This makes it difficult to implement general and intelligent systems. Many
researchers introduce caging into this field to alleviate the toughness in force and timing
design. I have shown a review of the multi-robot cooperation research based on caging in
Chapter 2.

Although caging-based multi-robot cooperative transportation is promising, the foregoing
works are not satisfying. They either employ redundant robots to ensure successful caging or
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Figure 4.10: The one-cuboid object is not suitable to four-finger caging.

employ fixed number of robots due to the limitation of their algorithms. Different from those
works, we can take the merits of the algorithms shown in Chapter 3 and use the least number
of robots or proper number of robots as well as maintain large caging robustness. Fig.4.11(a)
compares the difference between classical multi-robot cooperation and caging-based multi-
robot cooperation while Fig.4.11(b) compares the advantages of my work with previous
caging-based solutions. Here references [Rus, 1997] and [Sudsang et al., 2002] fall in category
previous work I while references [Pereira et al., 2004], [Wang et al., 2005], [Fink et al., 2008]
and [Cappelleri et al., 2011] fall in category previous work II. My work uses 3 plus x robots
where x depends on the requirements on quality. In the least case, it could be 3. In most other
cases, 4 would be enough. My work maintains the advantages of caging-based cooperation
(see the red texts of Fig.4.11(a)) while reduce the number of robots as much as possible.
Its robustness to uncertainty is between previous work I and previous work II (see the last
row of Fig.4.11(b)). In summary, my work owns superiority in the following aspects. (1)
Least number of robots. (2) Application independent. (3) Robust to low control quality. (4)
Implicit force control. Let us see its details in following contents.

4.2.1 Simulation
Firstly, I carry out some simulations by using Webots robot simulation software. Like the
caging tests with pole fingers in section 3.3.4, the Open Dynamic Engine (ODE) embedded
in Webots offers us a powerful tool to test cooperative transportation with least number of
robots and minimum caging.

Fig.4.12 shows the scene of our experiments. The task defined in this scene is to transport
the target object cooperatively from initial position to goal region at the other side of the
slope. The inclination of slope at either side is 0.2rad. Friction coefficients of target objects
are set to 0, indicating that target objects may move freely in the cage formed by robots.
The free motion from 0 coefficient brings ultimate challenge and ensures exhaustive tests
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Figure 4.11: Advantages of my work comparing with other works.

against caging. Each robot is run as an independent process so that they result into random
errors like multiple robots in real world. Four different kinds of target objects are employed
in our experiments. Their dimensions are shown in Fig.4.12(a), Fig.4.12(b), Fig.4.12(c) and
Fig.4.12(d). The core algorithm for robust caging works with the Minkowski sum of target
shape and robot dimension. The target shape is its projection on ground. In that case,
the ball object suffers more from breaking. Dimensions of the four mobile robots are the
same and their height is 280mm. It is lower than boundary of ball projection (500mm).
Therefore, ball objects suffer more from breaking. We will revisit the problems of ball object
later. According to the results in Chapter 3.3.4.1, I set the filtering parameter τ into 0.3τmax
and retract robots from the surface of target object with 0.1τmax.

Fig.4.13 shows my strategy in formation control. It is a leader-follower solution. In each
formation control step, a leader robot is chosen. The follower robots locomote following the
leader as well as maintain the whole robot formation, namely maintain the relative distances
between robots. Note that this implementation may not guarantee maximum safety since
we do not want to incorporate explicit specification of motion orders, directions and leaders.
However, each robot could move with certain offset from its formation owing to the robustness
of optimized caging. Motion of each robot is decided by decentralized planners. I use
potential field planner to calculate the dragging and repelling force between current positions
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Figure 4.12: Simulation scene and the target objects.

and goal positions. Readers may refer to Chapter 4 of reference [Choset et al., 2005] for more
details o potential field methods and how to conquer problems caused by local minima. In
this procedure, each robot could be driven along any direction. Surely, if the motion of
robots at one time step are too drastic, jam may appear. However, I expect that robust
caging could avoid jam and endure certain formation deviation appeared in the locomotion
of each single robot since it offers satisfying robustness to caging breaking and consequently
enough tolerance to control errors. In real applications, of course practitioners could attain
better performance by defining motion orders, locomotion directions and specific leader.

Figure 4.13: One control step of the leader-follower control strategy.
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4.2.1.1 Transportation by formations control

Fig.4.14 and Fig.4.15 respectively shows the tolerance of optimized caging to errors of for-
mation control in manipulating the object in Fig.4.12(a) and the object in Fig.4.12(b). The
same as our expectation, at least four robots are needed for the object in Fig.4.12(a) while
at least three robots are required for the object in Fig.4.12(b). The left parts of Fig.4.14
and Fig.4.15 show the formation formed by robots in transportation. The other parts show
the variation in inter-robot distance during transportation. Initial inter-robot distance is
emphasized with blue color in these parts. The data in Fig.4.14 and Fig.4.15 are taken
from the first 70 formation control steps (see the horizontal axis). Although the distance
varies dramatically (see the vertical axis), our optimized caging transportation can offer
great tolerance and perform robustly. The length of a single formation control step is set
to 64milisecond, namely the formation control strategy shown in Fig.4.14 and Fig.4.15 are
performed every 64milisecond.

Figure 4.14: Simulation results of the object in Fig.4.12(a).

When the length of a formation control step changes, the uncertainty changes accordingly.
A longer control step usually results into larger uncertainty. Fig.4.16 demonstrates the
changes of uncertainty in formation control with different time steps. Like our intuition,
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Figure 4.15: Simulation results of the object in Fig.4.12(b).

as the length of one time step increases, the uncertainty or the deviation errors increase
accordingly. Although larger deviation errors appear as the length of time step increases,
our robust caging algorithm can endure them. With the objects in Fig.4.12(a) and (b), our
caging algorithm can be robust to all the three control steps of Fig.4.16. The optimized
caging formation from my algorithm can reduce robot number as much as possible as well
as offer satisfying robustness.

The ball object, namely the object in Fig.4.12(a), is a special case as its size is rel-
atively small comparing with robots and different from its projection on the ground. In
our experiments, only formation control at every 64miliseconds could guarantee successful
transportation. Actually, circular objects with small dimension could be most challenging
to formation control and could be vulnerable to caging breaking. After changing the sphere
into a cylinder with larger size (radius = 1000mm, see object (d)), the robots can perform
successful transportation at not only 64milisecond but also 128milisecond intervals. How-
ever, the ball object cannot be successfully caged and transported when control step becomes
as long as 256milisecond.

Fig.4.17 shows some frames extracted from the video clip that records the 3-robot caging
transportation of object (b). Specifically, in Fig.4.17(a), (b) and (c) the robots are driven to
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Figure 4.16: Changes of uncertainty in formation control with different time steps.

the optimized caging positions while in Fig.4.17(d), (e) and (f) the formation formed by the
robots cooperatively transport target object from initial position to goal position. Readers
may refer to the video clips related to this thesis (http://goo.gl/3ddrNn) for more details.

4.2.1.2 Choosing proper robot number

Besides the robustness in uncertain formation control, our algorithm could suggest proper
number of robots to obtain larger tolerance to formation control errors. As has been discussed
in the end of section 3.3.4.1, the fourth question, namely how to decide the number of
fingers, can be decided by the maximum retraction distance or a user-defined threshold.
Consequently, we can add redundant robots when the robustness is not satisfying. After
adding an extra mobile robot, both transportation of object (c), the ball, and object(d),
the cylinder, may endure formation control uncertainty caused by 256miliseconds formation
control step. Fig.4.18 demonstrates the advantages of introducing an extra mobile robot
by comparing the results of 3-robot and 4-robot caging of object (c). Control uncertainty
caused by 256miliseconds formation control step breaks 3-robot caging. On the contrary,
4-robot caging can be robust all the time.
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Figure 4.17: Frames extracted from the caging and transportation video.

Figure 4.18: Choosing the least or proper number of robots by considering requirements of
robustness.

4.2.2 Implementation with real robots
Besides the simulation, we further implement the algorithm with real mobile robots. The
mobile robots are hobby commercial products named Beauto Rover. They are produced
by Vstone Co. Ltd [Vstone, 2013]. We use the V100:R2 OptiTrack as perception devices
and track the orientation and position of both target object and mobile robots. Moreover,
in order to better evaluate the performance of the implementation, we install three caster
wheels at the bottom of the target object to reduce frictions and enable free motions. Fig.4.19
shows the target objects, the mobile robots, the installation of OptiTrack markers and the
workspace scene.

Like the scene in simulation, we build up a slope in the middle to induce ultimate challenge
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Figure 4.19: The real-world target objects, mobile robots and workspace scene.

to caging. Fig.4.19(c) illustrates this slope. Note that we did not use exactly the same 0.2rad
inclination but alternatively use 0.15rad due to the limitation of Beauto Rover. Again, like
the scene in simulation, the aim of this implementation is to transport target objects from
an initial position to a goal region beyond the slope.

4.2.2.1 Software integration

In the lower level, each mobile robot is controlled by an integrated ARM board installed on
its body. In the higher level, a control laptop computer communicates with those robots and
control robot formation by using OptiTrack. The control computer controls those mobile
robots through blue-tooth communication. Each robot has its own encoder installed on
motors for feedback control. Fig.4.20 shows the whole procedure of one formation control
step. This exactly corresponds to the formation control step discussed in the simulation
section.

Fig.4.21 shows the interface that performs the co-operative transportation task. It inte-
grates the following functions. (1) Caging optimization, namely finding an optimized forma-
tion of fingers that can cage the target object. This is done by the button enclosed by orange
frame in Fig.4.21 (2) Motion planning, namely actuating the mobile robots into their goal
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Figure 4.20: One formation control step of the real-world implementation.

positions without colliding with each other. This is done by the button enclosed by green
frame in Fig.4.21. Users can also set parameters like the length of formation control step
by using those input boxes. Specifically, we use time-based cell decomposition for motion
planning of multiple robots. There are many books that introduces the cell decomposition
algorithm, readers may refer to Chapter 6 of reference [Choset et al., 2005] or Chapter 6 of
reference [LaVelle, 2006] for more information. Like the implementation in simulation, we
use potential field approach to calculate the dragging and repelling force of each robot and
locomote them.

4.2.2.2 Formation control

In the simulation, the formation of robots is controlled by a leader-follower strategy shown
in Fig.4.13. This strategy, however, results into large uncertainty in real world. That is
because the strategy essentially ensures the precision of the leader robot while gives up the
precision of the follower robot. It causes large uncertainty to the precision of the followers.
In simulation, the uncertainty is not evidential since many factors are neglected. However,
when dealing with real robots, there is quite large deviation and the leader-follower formation
control fail to guarantee caging.

Consequently, we choose another formation control strategy. The formation control
strategy is named virtual leader and it is illustrated in the lower frame box of Fig.4.20. In
contrast of the leader-formation control strategy, virtual leader control select the center of
robot formation as the virtual leader. At each formation control step, it aims at ensuring the
precision of a virtual leader rather than a certain robot. In that case, control uncertainty is
distributed into each robot and a single robot would not suffer from large errors.
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Figure 4.21: Connections between the high-level computer and the low-level mobile robot.

Fig.4.22 shows the errors caused by control uncertainty with the two different formation
control strategies. The deviation of leader-follower formation control strategy could be larger
than 50mm while the deviation of virtual leader formation control is always smaller than
20mm. The virtual leader strategy is a better strategy and we use it in the real-world
implementation. Optimized caging with three mobile robots is robust enough to endure the
uncertainty caused by virtual leader formation control while cannot endure the uncertainty
caused by leader-follower formation control.

Figure 4.22: The errors caused by different strategies.

Fig.4.23 shows the extracted frames from a video clip related to this thesis (http://goo.gl/3ddrNn).
In Fig.4.23(a), we use leader-follower formation control strategy. In this case, the robots fail
to cage the target object when crossing over the slope. In Fig.4.23(b), we use the virtual
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leader formation control strategy. In this case, the robots can always cage target object and
perform successful caging-based transportation. We carried out 5 times of experiments with
the virtual follower strategy and all of them succeeded with the virtual leader formation
control strategy.

Figure 4.23: Results of leader-follower control and virtual leader control.

4.2.2.3 Robustness to perception uncertainty

We have repeated a lot in foregoing texts that caging optimization is promising in dealing
with two kinds of uncertainty – the perception uncertainty and the control uncertainty. The
uncertainty caused by formation control is control uncertainty. The uncertainty caused by
OptiTrack is perception uncertainty. Actually, the uncertainty from perception is quite small
since the precision of V100:R2 OptiTrack is on average smaller than 1mm. Therefore, we
manually add noises to vertices of the target object to test its robustness to both uncertainty.

Fig.4.24 shows the noisy objects and their successful rates in our experiments. The noises
are manually added to vertices by dragging them 23.55mm away from the geometric cen-
ter of the target object. 23.55mm is three times of the standard variation of virtual leader
strategy shown in Fig.4.22. We generate seven different noisy objects and perform five trans-
portation experiments for each of them. During the experiments, the algorithm calculates
an optimized caging formation by using the noisy object and performs transportation by
using the ground-truth object. The same as our expectation, when the aspect ratio of noisy
object becomes smaller like objects Fig.4.24(a) and Fig.4.24(b), the successful rates decrease
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accordingly. In all, we fail to get 100% successful rate in the presence of both control and
perception uncertainty. I think this is because the dimension of target object is relatively
small comparing with the dimension of robots and consequently the robustness of caging
is low. We may need extra robots to obtain 100% successful rate in the presence of both
uncertainty.

Figure 4.24: The noisy objects and their successful transportation rates.
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Chapter 5

Caging in The Configuration Space of
Fingers

5.1 Changing From Cobj to Cfrm

The simulations and real-world applications in second part of this thesis shows that perfor-
mance of the faster robust caging algorithm in Cobj is satisfying. However, it suffers from a
fatal drawback. Say, it can only be applicable to convex objects. How can we extend it to
many other objects? In order to solve this problem, we need to recall how our faster robust
caging algorithm in Cobj became limited to convex objects. The answer involves many fun-
damental techniques of the faster robust caging algorithm, for instance, Ac, immobilization
optimization and translational caging. That means if we would like to extend the algorithm
to various other objects, the whole algorithm should be redesigned. We should no longer
employ immobilization optimization and no longer employ translational caging. That is
difficult in Cobj and therefore in the third part of this thesis, I re-consider the algorithm in
the configuration space of finger formation. This configuration space of finger
formation will be denoted by Cfrm. I will show the details of it and the new algorithm in
following contexts.

5.1.1 Consider a different center
I introduced Cobj in section 2.1.2 when discussing about immobilization. In Cobj, the target
object becomes a 3D point while the fingers becomes 3D obstacles. The caging test in Cobj is
actually testing whether a point is enclosed by obstacles. During this procedure, the target
object is the center of planning and the configuration space encodes the position and
orientation of the target object.

We can consider the center in a reverse way. Recall that there are two conditions for a
caging test problem. I introduced it in the beginning of section 3.1. One condition is the
center of Cobj, namely the target object. The other condition is the positions of fingers. Can
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we take the position of fingers as the center and build a space that encodes these positions?
The answer is positive. Fig.5.1 illustrates this reverse consideration.

When target object is the center, caging test means to see if the target object can escape
from the formation of fingers. Fig.5.1(a) illustrates this idea. The correspondent configura-
tion space Cobj is a three-dimensional R2 × S space. When the positions of fingers are the
center, caging test means to see if the formation of fingers can escape, or go through, the
target object. Fig.5.1(b) illustrates this idea. The correspondent configuration space is a
2nf -dimensional R2×R2× . . .×R2 = R2nf space where nf is number of fingers. I name this
space Cfgr to emphasize its difference from Cfrm.

Figure 5.1: Comparison of different centers.

The bad news of taking positions of fingers as the center of consideration is it suffers from
curse of dimensionality. As we can see from Fig.5.1, the dimension could be as high as R2nf

with 2nf fingers. This makes it difficult to model the obstacles in this space. Works like Ro-
driguez [Rodriguez et al., 2011] and Pippattanasomporn [Pipattanasomporn and Sudsang, 2011]
are based on exploration of this space. However, they either take the space as a topological
space which cannot be modeled or reduce the number of fingers nf into 2 for easier anal-
ysis. That is not satisfying. There are two strategies to deal with the high dimensionality
of Cfgr. One is to consider some techniques in other research fields that can work in high-
dimension spaces. Probabilistic approaches in the research field of robotic motion planning
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provides such kinds of techniques. These techniques involve but are not limited to Prob-
abilistic Roadmap Method (PRM) [Kavraki et al., 1996] and Rapidly-Exploring Random
Trees (RRT) [Lavalle and Kuffner, 2000]. Unfortunately, these techniques only guarantee
weak probabilistic completeness ([Choset et al., 2005], pp.242�-246). Caging requires an ob-
ject to be completely constrained by fingers. It should be depend on a certain probability.
Therefore, this is not the best strategy. Another strategy is to reduce the dimension of R2nf .
I will take the second strategy and show the details in the next subsection.

5.1.2 The configuration space of finger formation
Let us review caging in Fig.5.1(b). When positions of fingers are the center of consideration,
caging means the formation formed by the fingers cannot escape from target objects. That
is to say, we do not need to consider the positions of every fingers. The positions of the
formation and its orientation is enough for caging test. This conclusion reduces R2nf into
a three-dimensional space. This space is different from both Cobj and Cfgr. I name it Cfrm

to indicate the difference. Fig.5.2 illustrates this Cfrm space. The planar two dimension of
Cfrm denote the position of f1 and the third dimension of Cfrm denotes the orientation of the
whole formation. Consequently, a point in Cfrm represents the position and orientation of a
fixed finger formation in work space.

Figure 5.2: The configuration space of finger formation.

Unlike Cobj, the obstacle in Cfrm has no correspondence in W space. Take Fig.5.3(a) for
instance. The obstacle in Cfrm is a compact set of configurations at which the formation
collide with target objects. It does not correspond to a single finger like Fi but correspond
to a whole formation. Caging means that (1) the formation does not collide with the target
object and (2) the formation cannot go to an infinite configuration without colliding with
the target object. In the Cfrm, caging correspond to some caging sub-spaces. If a formation
is at a configuration inside these caging sub-spaces, it fulfills the two conditions since (1)
the caging sub-space is free and it is not obstructed and (2) current configuration cannot
be connected to an infinite configuration unless it collides with the obstacles. Fig.5.3(b)
illustrates a caging status and an caging sub-space. The caging sub-space in Cfrm is like the
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caging sub-space in Cobj. They do have certain relations. I will show their relations later
after finishing solving the caging problems.

Figure 5.3: Caging in the configuration space of finger formation.

Cfrm has low dimensionality which makes it possible to be modeled. However, since the
Cfrm only encodes position and orientation of the whole formation, one modeled Cfrm only
corresponds to one finger formation. If the relative positions of fingers in a formation changes,
the Cfrm becomes totally different and we have remodel those caging sub-spaces and obstacles
following Fig.5.3. That is a boring task. Moreover, when the target object changes, the
obstacles should also be remodeled because checking whether formation and target objects
collides depends on both finger formation and the shape of target objects. How to decouple
the connection between Cfrm and finger formation and decouple the connection between Cfrm

and obstacles become the bottleneck. I will start discussing these details from section 5.2.
Before that, let us define the symbols that will be used in Cfrm and compare Cobj and Cfrm.

The symbols that will be used in Cfrm are as following.

W Work space. This is the same as Cobj.
ωi A discretized grid of W space. Since W space is 2D, this grid can be represented

by a coordinate (ωix , ωiy) when granularity of discretization is small enough.



CHAPTER 5. CAGING IN THE CONFIGURATION SPACE OF FINGERS 123

O The target object in W space. This is the same as Cobj.
fi A point finger in W space. This is the same as Cobj. The fi has two coordinate

elements {fix , fiy}. Mathematically, fi = ωi when granularity of discretization is
small enough. They both denote a position in 2D plane.

F A formation of fingers in W space. It is a set of W space point finger F = {fi =
{fix , fiy}|i = 1, 2, . . . , nf}.

Cfrm The configuration space of finger formation.
qfrm qfrm is a configuration in Cfrm. Since we have reduced the high dimensional Cfgr into

three-dimensional Cfrm, qfrm = {qfrm
x , qfrm

y , qfrm
θ } where the first two items denote the

position of f1, namely qfrm
x = f1x and qfrm

y = f1y . and the last item denotes the
orientation of the formation.

F[qfrm] F[qfrm] denotes a finger formation F at configuration qfrm. Mathematically, it
represents a set of 2D positions in W space occupied by F. For example, when
F = {fi = {fix , fiy}|i = 1, 2, . . . , nf}, F[qfrm] = {R(qfrm

θ ) · {fjx − f1x + qfrm
x , fjy −

f1y + qfrm
y , 1}|1 < j ≤ nf}. Note that this expression should be performed in with

homogeneous coordinates with an augmented “1” at the end of {fjx−f1x+qfrm
x , fjy−

f1y + qfrm
y }, namely {fjx − f1x + qfrm

x , fjy − f1y + qfrm
y , 1} The rotation matrix R(θ)

follows the same definition as section 3.1.
Cfrm

otl The obstacles in Cfrm. Mathematically, it is some sub-spaces/compact sets of con-
figurations qfrm where F[qfrm] ∩ O ̸= ∅.

Cfrm
free All free sub-spaces in Cfrm. Mathematically, it is the complementary space of Cfrm

otl .
Namely Cfrm

free = Cfrm \ Cfrm
otl .

Readers may compare these notations with those defined in section 3.1 for comparison of
Cfrm and Cobj. Recall that caging in Cfrm means two conditions and we can now express the
two conditions formally with the defined notations alike the expression in Cobj. When caging
is achieved, Cfrm

free is divided into several disconnected sub-spaces. Most of the sub-spaces are
enclosed by obstacles. The caging sub-space in Fig.5.3 is one enclosed example. However, it
is a special case since it is the only caging sub-space. Generally, there would be always more
than one caging sub-space. I denote these caging sub-spaces by Cfrm

fc =
u∪

i=1

Cfrm
fci

in accordance

with the caging sub-spaces in Cobj. Note that Cfrm is inherently different from Cobj. object is
convex, umay be still larger than 1. One other disconnected sub-spaces is the complementary
of Cfrm

fc which can be denoted by Cfrm
ff . In summary, Cfrm

free = Cfrm
fc ∪ Cfrm

ff = (
u∪

i=1

Cfrm
fci

) ∪ Cfrm
ff ,

Cfrm
fc ∩ Cfrm

ff = ∅. Whether O can be caged by a finger formation F can be validated by the
following expression.

(Cfrm
free = (

u∪
i=1

Cfrm
fci ) ∪ C

frm
ff ) ∧ (qfrm

0 ∈ Cfrm
fck ) ∧ (|Cfrm

fck | > 1), 1 ≤ k ≤ u (5.1)
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This expression is nearly the same as expression (3.1). |Cfrm
fck
| means the cardinality of

Cfrm
fck

. When |Cfrm
fck
| > 1, the target object is either in the state of caging or in the state of

contact caging. When |Cfrm
fck
| = 1, the target object is in the state of immobilization. Note

that qfrm
0 in expression (5.1) is the initial configuration of F. It is not the initial configuration

of O.
Everything seems to be following the same rule as Cobj. Unfortunately, we encounter

the bottleneck when trying to model and calculate Cfrm
fc . Recall Fig.3.1 and Fig.3.2. We

can model Fi in Cobj with wireframe modeling since there are correspondence between each
layer of Fi and orientation of the target object. We only need to consider one position,
name the position fi. In contrast, there is no correspondence between each layer of Cobj

otl and
orientation of the formation. That is because not only the orientation but also the position of
the formation may change during collision with a target object. Fig.5.4 shows the bottleneck.
I propose to solve this bottleneck with a space mapping technique widely used in motion
planning. It belongs to solid modeling and it has the advantage of decoupling from specific
shapes of targe objects. Let us view its details in the next few sections.

Figure 5.4: Cfrm
otl is difficult to be modeled with wireframe modeling.

5.2 Space Mapping
I borrow the W-C vertex mapping and W − C edge mapping algorithm proposed in
[Leven and Hutchinson, 2002][Kallman and Mataric, 2004] and [Liu et al., 2010] to perform
model Cobj

otl . The W-C vertex mapping and W − C edge mapping algorithm help a robot to
response quickly to avoid collision with changing obstacles. These mappings make it possible
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to deal with changing obstacle configurations or changing obstacle shapes. It decouples
planning from shapes of obstacles. That is one key factor to deal with the bottle neck.
Therefore, I employ these mappings. Following the W-C vertex mapping and W − C edge
mappings, I propose to pre-build a space mapping between discretized grids in 2D W space
and discretized voxels in 3D C space to quickly rebuild Cfrm

otl and recover Cfrm. Since caging
in Cfrm means exploiting the status of Cfrm

otl and Cfrm and checking the existence of holes
(expression (5.1)), quickly rebuild Cfrm

otl essentially makes caging test in Cfrm
otl efficient. We can

perform 2D caging test quickly in Cfrm with space mapping.

5.2.1 W-C vertex mapping and W-C edge mapping
Firstly, let us review W-C vertex mapping and W-C edge mapping. This is not a simple
review. It includes some of my own understanding and it is the supporting concepts to my
space mapping proposal.

Traditional robotic motion planning research involves two steps. The first step is to
recover the configuration space of a robot or build a roadmap in the configuration space of
robot. Let us denote this “configuration space of robot” with Crbt. Sometimes, the Crbt has ow
dimensionality and it could be recovered completely. For instance, a two-joint manipulator’s
Crbt can be represented by its joint space which is two dimensional. The two dimensional
space could be recovered completely. If a manipulator has a large number of joints, its Crbt

would be high dimensional and therefore difficult to be recovered completely. In that case,
researchers usually build a roadmap in the high dimensional space instead of recovering it
completely. The W-C vertex mapping and W-C edge mapping can be employed to deal
either the completely recovered space or the roadmap. Fig.5.5(a) gives an example based
on a four-joint manipulator. The Crbt, or joint space of this four-joint manipulator is four
dimensional. This four dimensional space is shown in see Fig.5.5(b). Although we can recover
this four-dimensional Crbt completely, we do not go that far since four dimension space is
difficult to be visualized. Moreover, mappings with roadmaps are more general in motion
planning comparing with mappings with the whole space since most robots have quite high
dimensionality. Therefore, I will show a roadmap built in this four-dimensional Crbt and
show the basic ideas of W-C vertex mapping and W-C edge mapping with this roadmap.
The roadmap is a graph shown by blue segments in Fig.5.5(b). Let us denote this graph by
G. G is a graph composed of edges and vertices. Let us denote the edges with E and the
vertices with V. Then, G={E,V}. One vertex of V corresponds to a single configuration
of the manipulator while one edge of E corresponds to a set of configurations. The dialogue
frames in Fig.5.5 illustrates the correspondence. Here I use the symbol vi and ei to denote
one vertex and one edge respectively. Namely, vi ∈ V and ei ∈ E. ei corresponds to many
configurations so that ei={eij |j = 1, 2, . . . , ne}. Here ne means the number of discretization
along an edge. These notations and the discretization of one ei are shown in Fig.5.5(c).

The second step involves two sub-steps. The first sub-step is to delete the edges and
vertices that are obstructed by obstacles. This sub-step is called roadmap updating and is
shown in Fig.5.6(a). The vertices vj , vk and the edge em in Fig.5.6(a) are obstructed and
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Figure 5.5: A four-joint manipulator and its roadmap in configuration space.

they are rendered with black color for comparison. Note that an edge ei is considered to be
obstructed as long as one discretized configuration eij is obstructed. The black edges and
vertices will be deleted to update the roadmap. In this way, we can make sure that all the
edges and vertices in the updated roadmap are reachable. The second sub-step is to connect
the starting configuration and goal configuration of the robot to the updated roadmap and
plan a path through the updated roadmap that can connect the starting configuration and
goal configuration. Fig.5.6(b) shows the path planned in the second sub-step. It is rendered
in red color. After planning the path, we can control the manipulator and move it from
starting configuration to goal configuration without collision with obstacles. The right part
of Fig.5.6(b) shows the moving manipulator along the path and how it avoids collision with
obstacles. It is indeed a sequence of configurations that corresponds to every vi and eij

along the path.

Figure 5.6: Updating and planning a path in the roadmap.

An important problem in these steps is how to update the roadmap. The updating
procedure is to delete all obstructed edges and vertices which requires checking weather the
robot at a certain configuration collides with the obstacles in W space. Checking weather



CHAPTER 5. CAGING IN THE CONFIGURATION SPACE OF FINGERS 127

the robot at a certain configuration collides with the obstacles in W space is a traditional
research topic in Computer Graphics, namely Collision Detection. Collision detection
depends on configurations and geometric shapes of both robots and obstacles. Generally
speaking, the configurations of manipulators are limited to the vi and eij in G and the
geometric shape of a robot is usually fixed. Nevertheless the configurations and geometric
shapes of obstacles may change. As the configurations and geometric shapes of obstacles
change, we have to perform collision detection repeatedly. That is a time-consuming task.
In order to solve this problem and decouple planning algorithms from the configurations and
geometric shapes of obstacles, researchers proposed the idea of W-C vertex mapping and
W-C edge mapping.

The basic principle of W-C vertex mapping and W-C edge mapping is to divide the W
space into grids and pre-build a mapping between these grids and the vi and eij in G. Note
that I am explaining the mappings with 2DW space. If the space is 3D, it should be divided
into voxels. Here I use the notation ωk to denote a grid in the 2D W space. Then, the
two mappings can be calculated according to the expressions (5.2) and (5.3) respectively. In
these expressions, notation R denotes a robot in W space. R[vi] or R[eij ] denote the grids
occupied by R when the robot is at a configuration vi or eij . Note that vi and eij are both
configurations in Crbt.

Φv(ωk) = {vi|(vi ∈ V) ∧ (R[vi] ∩ ωk ̸= ∅)}
Ω(vi) = {ωk|(ωk ∈ W) ∧ (R[vi] ∩ ωk ̸= ∅)}

(5.2)

Φe(ωk) = {ei|(ei ∈ E) ∧ (R[eij] ∩ ωk ̸= ∅),∀eij ∈ ei}
Ω(ei) = {ωk|(ωk ∈ W) ∧ (R[eij] ∩ ωk ̸= ∅),∀eij ∈ ei}

(5.3)

Each mapping is calculated redundantly with two functions, namely Φ() and Ω(). The
Φ() function saves all the vertices and edges that corresponds to a ωk. The Φv(ωk) in
expression (5.2) and the Φe(ωk) in expression (5.3) denote them. The Ω() function saves all
the grids that correspond to vi or ei of a G. The Ω(vi) in expression (5.2) and the Ω(ei) in
expression (5.3) denote them.

The mapping can be pre-built off line before being used in real time. Therefore, it cost
little resources and offers the following benefits.

• (1): Given a vi or an ei, the mapping can quickly tell us the ωks that R[vi] or R[ei]
overlaps according to Ω(vi) or Ω(ei).

• (2): Given an ωk, the mapping can quickly tell us the vis or eis at which R[vi] or R[ei]
overlaps with the given ωk according to Φv(ωk) or Φe(ωk).

Fig.5.7 illustrates the details ofW-C mappings. Fig.5.7(a) is the Ω() function which maps
a configuration of the roadmap to a set of ωk in W space. Fig.5.7(b) is the Φ() function
which maps a grid in W space to a set of vertices and edges in G.
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Figure 5.7: Illustration of the functions in expression (5.3) and expression (5.2).

When obstacles change, perception devices can get the W space grids ωks occupied by
the obstacles. Then the algorithm check whether vis or eis of the G are obstructed by
looking up Φv(ωk) and Φe(ωk) following benefit (2). Note that the Ω() functions are not
used explicitly here. In this way, the algorithm does not need to perform collision detection
repeatedly to updated G since detailed obstacle information is encoded by the grids ωks and
an unique space mapping. It only needs to look up the pre-built mapping to update roadmap
G. This procedure is efficient and enables a robot to re-plan paths and avoid collision in
real time.

Fig.5.8 illustrates this procedure. Fig.5.8(a) updates the roadmap by considering the
grids occupied by the obstacle and by looking up the mappings of those grids. This is shown
in the left part of Fig.5.8(a). Then, a path is planned based on the updated roadmap in the
right part of Fig.5.8(a). The procedure is efficient since we do not need to perform on-line
calculations like collision detection. When configurations or shapes of the obstacle changes,
we can still quickly update and plan paths by detecting the occupied grids and by looking
up the mappings of those occupied grids. Fig.5.8(b) and Fig.5.8(c) illustrate the case where
the obstacle is at a different configuration and the case where the obstacle has a different
geometric shape respectively. TheW-C mappings successfully decouples planning algorithms
from specific obstacles and enables real-time computation.
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Figure 5.8: W-C mappings enables real-time motion planning.
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If this mapping technique can be employed in Cfrm, we may solve the bottleneck of Cfrm.
On the one hand, we can pre-build lots of off-line mappings for different formations. These
off-line mapping can be pre-built off line and can be employed efficiently to update many
different Cfrms in necessary cases. On the other hand, each Cfrm can be used to deal with
unknown target objects efficiently since target objects have been decoupled from algorithms.
I am going explain how to use this mapping technique in the next subsection.

5.2.2 Space mapping for caging test
5.2.2.1 From motion planning to caging test

The aim of motion planning is to plan a path in Crbt along which a robot can avoid collision
with obstacles. The aim of caging test in Cfrm is to check whether there exist an caging sub-
space. There seems to be no relationship between them. However, if we view the second aim
in another form, we can find their similarity. The aim of caging test in Cfrm is to check whether
there exist a path in Cfrm along which a formation of fingers can escape into infinity from
the target object without collision. We can find that there are some some correspondences
between these two problems. A robot in W space becomes a formation of fingers while the
obstacles become the target object. Fig.5.9 shows their correspondence. Especially, these two
correspondences are marked with “Correspondence 1” and “Correspondence 2” in Fig.5.9.
Note that both the two W spaces in Fig.5.9 are discretized into grids for mapping.

Figure 5.9: Correspondences between motion planning and caging test.

The discretization shows that a robot at a certain configuration is discretized into a
compact set of grids while a formation of fingers at a certain configuration is discretized into
several unconnected grids. Since we discuss the problem with point fingers. The number
of discretized grids of a formation of fingers is the same as the number of fingers in this
formation. That is to say, fi = {fix , fiy} is actually the same thing as ωj = {ωjx , ωjy}. They
both indicate a position on 2D plane. Formally, it can be expressed as following.
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F[qfrm] = {R(qfrm
θ ) · {fjx − f1x + qfrm

x , fjy − f1y + qfrm
y , 1}|1 < j ≤ nf} = {ωkx , ωky}|1 < k ≤ nf}

(5.4)
The C spaces of the two problems, unlike their correspondences in W spaces, are quite

different. That is because motion planning aims at finding a path. Therefore, we do not
need to update the whole Crbt. A roadmap of the space could be enough to find a path. In
contrast, the caging test problem aims at checking whether there exists a path. That means
we need to update the whole Cfrm and check the existence. Luckily the Cfrm is limited to a
single formation and it is three dimensional. We can recover and update the whole three
dimensional space by discretizing it into voxels. Fig.5.10 compares discretization of the two
C spaces.

Figure 5.10: Discretization of Crbt and Cfrm.

The W-C vertex mapping and W-C edge mapping in expression (5.2) and (5.3) become
a whole space mapping which is acctually the correspondence between grids inW space and
voxels in Cfrm. Expression (5.5) shows the space mapping for caging test. Here each voxel of
Cfrm is represented by a configuration, namely qfrm.

Φ(ωk) = {qfrm|(qfrm ∈ Cfrm) ∧ (F[qfrm] ∩ ωk ̸= ∅)}
Ω(qfrm) = {ωk|(ωk ∈ W) ∧ (F[qfrm] ∩ ωk ̸= ∅)}

(5.5)

Fig.5.11 shows the mapping between one voxel/one configuration of Cfrm and theW space
grids. It is the Ω() function.

The other function, Φ() is a little complicated. Given a grid, there are two possibilities of
obstruction. One possibility is translational obstruction. In this possibility the orientation
of a finger formation does not change and each finger overlaps with the grid. There are nf
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Figure 5.11: Illustration of the Ω() function of space mapping for caging test.

different collisions. The other possibility is rotational obstruction. In this possibility the
orientation of a finger formation changes and a finger overlaps with the grid continuously
during rotation. Fig.5.12 demonstrates the two possibilities of obstruction in W space with
the three-finger formation. Since the configuration of a finger formation is decided by the
position of f1 and the orientation of the whole formation, The two possibilities of obstruction
is mapped to some voxels in Cfrm. These voxels are shown in Fig.5.13. A gird in the left part
of Fig.5.13 is mapped into a set of helical voxels in the right part of Fig.5.13 and it indicates
the Φ() function.

We can pre-build and store the mappings between every grids inW space and the voxels
in Cfrm and reuse it in on-line procedures to efficiently perform caging test. Specifically, the
perception devices can get the W space grids ωks occupied by the target objects. Then the
algorithm recover and update the Cfrm by referring to the pre-built space mappings. This
procedure only uses the Φ() function while the Ω() function is not used explicitly. In this
way, the algorithm does not need to re-calculate the wire-frame model according to specific
geometric shapes of target objects. Detailed target object information is encoded by and
the grids ωks and the space mapping. We only needs to look up the pre-built mapping to
update Cfrm with solid modelling. This procedure is efficient and enables efficient caging
tests.

Fig.5.14 illustrates this procedure. Fig.5.14(a) recovers and updates Cfrm by considering
the grids occupied by the target object and by looking up the mappings of those grids. The
grids occupied by the target object are shown in the left part of Fig.5.14(a). When Cfrm

is updated, caging test can be quickly performed by checking the existence or isolation of
certain sub-spaces through labelling the voxels. The right part of Fig.5.14(a) shows the
result of labeling a certain object. The mapped voxels of those occupied grids are labeled
with “cyan” color in the right part of Fig.5.14(a) while the caging sub-spaces are labeled
with “red” color. Since the finger formation cannot cage the target object in Fig.5.14(a).
There is no “red” sub-spaces. When configurations or shapes of the targe object changes, we
can quickly update Cfrm and re-perform caging test by detecting the occupied grids and by
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Figure 5.12: A grid in W space may obstruct with fingers in two ways.

looking up the mappings of those occupied grids again. Fig.5.14(b) illustrate the case where
the target object has a different geometric shape. In this case, the finger formation could cage
the given target objects because there are caging sub-spaces and the initial configuration of
the finger formation is inside one of them. The space mapping for caging test successfully
decouples caging tests from specific target objects and enables real-time caging test.

Note that the target object in Fig.5.14(b) is not convex. This is another advantage of
using the space mapping and decoupling specific target objects from algorithms. We will
see later that the space mapping-based algorithm is not only applicable to both convex and
concave target objects but also applicable to target objects with hollow holes. The major
disadvantage of space mapping is we have to pre-build different mappings for different finger
formations. We will explore more about this disadvantage soon but firstly let us summarize
the mapping algorithm formally and analyze its performance.

5.2.2.2 The mapping algorithm and analysis

Fig.5.13 showed that the mapping of a grid in W space is a set of helical voxels in Cfrm.
In order to formally present the algorithm of calculating this mapping, we need to define
the granularity of discretization along orientation axis. Here I would like to keep coherent
with the discretization along orientation in Cobj and use 2m + 1 as the granularity of [-
π, π). Accordingly, the algorithm of calculating space mapping is as the pseudo code in
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Figure 5.13: A grid in W space corresponds to some helical voxels in Cfrm.
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Figure 5.14: Caging test by using the space mappings.

Alg.3. I recommend readers refer to Fig.5.13 to better understand this algorithm. Here the
notation ng indicates the number of discretized grids of the 2D W space. Note that the
translation and rotation obstruction illustrated in Fig.5.12 are not explicitly calculated in
Alg.3. Instead, I use {f1x − fjx + f1x , f1x − fjy + f1x} to calculate the positions of f1 and
the occupied voxels when rotation center is changed to finger fj , j ̸= 1. Fig.5.15 illustrates
this conversion. The positions of f1 in Fig.5.13(b),(c) or Fig.5.15(b),(c) are not calculate
explicitly. They are converted to the same rotation in Fig.5.15(a) and implicitly calculated
by {f1x − fjx + f1x , f1x − fjy + f1x}. This conversion saves us from repeated translation
and rotation of the finger formation. This conversion is low-level details of the algorithm
implementation but it could simplify the complexity of programs.

Results of this algorithm would be a set of mappings where each mapping in the set
records the correspondence between one grid and some voxels. This set of mappings is
denoted by Φ(ω) in Alg.3 while each element of this set is denoted by Φ(ωk).
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Figure 5.15: Converting translation and rotation to {f1x − fjx + f1x , f1x − fjy + f1x}.



CHAPTER 5. CAGING IN THE CONFIGURATION SPACE OF FINGERS 137

Algorithm 3: Pre-building the space mapping.
Data: ωk, ng, F
Result: Φ(ω)={Φ(ωk)|k = 1, 2, . . . , ng}

1 begin
2 Φ(ωk)← ∅
3 for k ∈ {1 : 1 : ng} do
4 for i ∈ {−m : 1 : +m} do
5 θfrm=(i/(2m+ 1)) ∗ 2π
6 qfrm

k ← {ωkx , ωky , θ
frm}

7 foreach fj ∈ F[qfrm
k ] do

8 if j==1 then
9 qfrm

j ← {fjx , fjy , θ
frm}

10 else
11 qfrm

j ← {f1x − fjx + f1x , f1x − fjy + f1x , θ
frm}

12 addToSet(Φ(ωk), qfrm
j )

13 end
14 end
15 appendToMapping(Φ(ω), Φ(ωk))
16 end
17 return Φ(ω)

18 end

The time complexity of this algorithm is O((2m + 1) · ng · nf ) = O(m · ng) since the
number of fingers nf has in most cases small value. Although O(m · ng) is asymptotic to
2nd-order curves, it costs lots of computational resources. This is because ng is the number
of discretized grids on 2D plane. It could be 10000 even if the plane is roughly divided into
100×100 grids. This is one drawback. Nevertheless, since the mappings could be computed
off line, this is not an important issue.

The storage complexity of this algorithm is also O((2m+ 1) · ng · nf ) = O(m · ng). Each
grid on W space corresponds to (2m + 1) · nf voxels in Cfrm. nf is neglected since it has
always small value. The storage complexity is troublesome because even if it is pre-built off
line, we have to spare enough memory to record the mapping.

I implement the space mapping algorithm in Alg.3 with different ng and different m to
better view the time and storage complexity. It is based on an Intel i7 M620 CPU with
MATLAB 2010b. The result is shown in Fig.5.16.

As ng increases, both time and storage costs increase dramatically since both of their com-
plexity are O(m·ng). It heavily depends on ng. Suppose we choose ng=150×150=22500, then
the time cost and storage cost of one finger formation would be 1.11s and 3.26MB respec-
tively. This value is acceptable. However, mapping of one finger formation is never enough.
We need to build the mappings for many different formations. Suppose that we pre-build the
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Figure 5.16: Time and storage cost of space mapping for caging test.

mappings for 1000 finger formations. Then, the total time cost of the off line mapping proce-
dure would be 1.11×1000s=1110s. The total storage cost would be 3.26MB×1000=3.26GB.
That is no longer acceptable. Moreover, the cost would be much higher if we use finer dis-
cretization. Consequently, it is necessary to make certain improvements to lower various
costs of the space mapping algorithm.

5.3 Further Improvements
5.3.1 Improve space mapping by shifting
Space mapping can help us perform caging test against a fixed formation rapidly. However,
it has two disadvantages. One is we have to pre-build and record the mapping of every grids
in W space. This drawbacks make the time and storage cost of Alg.3 as high as O(m · ng).
It can only be pre-build off line and it is unavailable to be built in real time. The second
draw back is we have to pre-build many mappings in order to recover and update the Cfrm

of different finger formations. The storage cost could be O(m · ng · nF) with nF denoting the
number of formations. Can we improve it further? The answer is yes.

Actually, each ωk inW space corresponds to the same pattern of voxels. All mapping of a
given finger formation has the same helical pattern shown in Fig.5.13 except for the difference
in positions. That is because the two horizontal coordinates of the 3D Cfrm are defined as the
position of f1. Given a grid ωk and a finger formation, its correspondent helical voxels are as
following. Note that the expressions f1x − f2x +ωix and f1y − f2y +ωix in this expression (5.6)
are exactly the same thing as Fig.5.15 and the expressions {f1x − fjx + f1x , f1x − fjy + f1x}.
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This conversion saves us from repeated translation and rotation of the finger formation. in
Alg.3. They are just in different forms. {f1x−fjx +f1x , f1x−fjy +f1x}. This conversion saves
us from repeated translation and rotation of the finger formation. in Fig.5.15 and Alg.3 uses
two f1x because they are a finger from formation F[qfrm

k ]. Expresson (5.6) uses f1x and ωkx

because all fingers are from the initial orientation F[qfrm
0 ]. F[qfrm

k ] is not explicitly expressed.

Φ(ωk) = {qfrm|(qfrm ∈ Cfrm) ∧ (F[qfrm] ∩ ωk ̸= ∅)}
= {{ωkx , ωky , (j/(2m+ 1)) ∗ 2π},
{f1x − f2x + ωkx , f1y − f2y + ωky , (j/(2m+ 1)) ∗ 2π}, . . . ,
{f1x − fnf x

+ ωkx , f1y − fnf y
+ ωky , (j/(2m+ 1)) ∗ 2π}| −m ≤ j ≤ +m}

(5.6)

Given another grid ωi and a finger formation, its correspondent helical voxels are as
following.

Φ(ωi) ={qfrm|(qfrm ∈ Cfrm) ∧ (F[qfrm] ∩ ωi ̸= ∅)}
={{ωix , ωiy , (j/(2m+ 1)) ∗ 2π},
{f1x − f2x + ωix , f1y − f2y + ωiy , (j/(2m+ 1)) ∗ 2π}, . . . ,
{f1x − fnf x

+ ωix , f1y − fnf y
+ ωiy , (j/(2m+ 1)) ∗ 2π}| −m ≤ j ≤ +m}

(5.7)

We can see that Φ(ωk) and Φ(ωi) follow exactly the same helical pattern except the
difference in horizontal coordinates. That is to say,

Φ(ωk) = Φ(ωi) + {ωkx−ωix , ωky−ωiy , 0} (5.8)
Consequently, we do not need to calculate the mappings of every grid. We can firstly

calculate the mapping of a reference grid, say ω1. Then, the mappings of another grid, say
ωj, could be obtain by translating the mapped voxels in Φ(ω1) by expression (5.8). I name
this translating procedure “shifting” and name the space mapping algorithm with “shifting”
the improved space mapping.

The shifting procedure reduces storage cost of one finger formation from O(m · ng) to
O(m · 1)=O(m) and the storage cost of nF formations into O(nF · m). This saves lots of
storage resources. At the same time, it does loose much efficiency. In the improved space
mapping, the total time cost is the time cost of calculating the mapping of one reference
grid plus the time cost of shifting. Calculating the mapping of one grid costs O(m). It has
the same complexity of storage cost. Shifting depends on the number of grids occupied by
target objects. Surely we do not need to shift to any voxels on the horizontal plane. Simply
shifting to the grids occupied by the target object would be enough to recover and update
the whole Cfrm. Suppose the target object takes up no grids, then the cost of shifting would
be O(no). Reducing the mapping of every grids in the plane to those occupied by the target
object is like the idea of lazy evaluation in motion planning [Bohlin and Kavraki, 2000]. It
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lazily postpones the mapping until necessary grids instead of actively maps all of them. That
is the main advantage of shifting.

Now let us compare the original space mapping and improved mapping and shifting. In
order to make clear their difference, I use raw space mapping to denote the space mapping
proposed in section 5.2.2.2 and use improved space mapping to denote the space mapping
with shifting. In raw space mapping, the mapping of all grids inW space are pre-built off line
while in improved space mapping, only the mapping of one grid in W space is pre-built off
line. The mapping of the other obstructed grids are lazily shifted during execution. Fig.5.17
shows the time and storage costs of these two mappings.

Figure 5.17: Comparison of cost between raw space mapping and improved space mapping.

As shown in Fig.5.17, the total time cost of raw space mapping is O(m ·ng)(off line) while
the total time cost of improved mapping is O(m) (off line) plus O(no) (on-line shifting). Here
no denotes the number of grids occupied by target objects. Note that no is smaller than ng

since the occupied grids belong to a sub-region of W space.
It is true that if we only consider about on-line cost, improved space mapping is larger

than raw space mapping. Raw space mapping costs 0 + O(m · no)=O(m · no) in on-line
procedures while improved space mapping costs O(no)+O(m ·no). It has an extra cost from
on-line shifting. However, since the target object is always much smaller than W space, no

cannot be very large and we can expect that there is little loss in the on-line procedure of
improved space mapping.

I implement the improved space mapping algorithm with different ng and different m to
better view its time and storage complexity. This implementation uses the same settings
as raw space mapping in Fig.5.16. Its result is shown in Fig.5.18. Readers may compare
Fig.5.16 and Fig.5.18 to better compare the their performances.

The result is coherent with our analysis that the time cost and storage cost only depend
on m. When 2m + 1 is 36, time cost is 0.002s. When 2m + 1 changes to 72, time cost
changes to 0.006 0.008s. The storage cost is always smaller than 1KB and it is a satisfying
cost. There is no direct relationship between ng and the costs. It is different from where
the cost is O(m · ng) which heavily depends on ng. In the improved space mapping, all
costs depend on m. Suppose that ng is chosen to be 150 × 150=22500, then, the time cost
and storage cost of one finger formation is as low as 0.007s and less than 1KB respectively.
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Figure 5.18: Time and storage cost of improved space mapping for caging test.

Even if we pre-build the mappings for 1000 finger formations. The total time cost would be
0.007×1000s=7s and the total storage cost would be smaller than 1KB×1000=1MB. That
is a satisfying value.

5.3.2 Caging test with the improved space mapping
5.3.2.1 Algorithm flow and analysis

The shifting is an on-line procedure. When the grids occupied by the target objects are
detected, caging test can be performed by recover and update Cfrm through the improved
space mapping. Specifically, caging test algorithm labels all the voxels in the mapping of
all occupied grids with “cyan” color. These “cyan” voxels become elements of Cfrm

otl . Then,
the labeled Cfrm are labeled again according to their states and connectivity. The Cfrm may
be separated into several different components which follow our analysis in the beginning
of this Chapter. The

u∪
i=1

Cfrm
fci

components would be labeled with “red” color while the Cfrm
ff

component would not be labeled. This is exactly the same as Fig.5.14. If one component
fulfills expression (5.1), namely it is (1) in unobstructed state and enclosed by a surround-
ing obstructed component, (2) initial configuration of the given formation is inside that
component. Otherwise, vice versa.

Fig.5.19 shows details of caging test with improved space mapping. Comparing with the
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original space mapping in Fig.5.14, the flow chart in Fig.5.19 involves the on-line shifting
procedure which is emphasized with shadowed green box.

Figure 5.19: The flowchart of caging test with improved space mapping.

Note that the labeling procedure, especially the one which labels “red” sub-spaces out of
Cfrm, could be most time-consuming. My algorithm scans every grids inside the sub-space
enclosed by the “cyan” voxels. It costs O(nf ·m · no)=O(m · no) when the number of fingers
is constant.

Since both mappings have the same cost of labeling, there are not too much difference
in their time cost. The most significant merit of improved space mapping is that improved
space mapping has much smaller of storage cost. It is O(m) and it is much smaller than the
O(m · ng) of raw space mapping. This merit reduces the storage cost of mapping and makes
it possible to pre-build mappings for many different formations.

Actually, besides the small storage cost, improved space mapping has another merit. That
is, we can make everything on-line in improved space mapping. As shown in Fig.5.17, the
off-line procedure of improved space mapping is O(m). Even if we do it on line, the total
time cost is as small as O(m+ no). It only has 1st-order complexity and it is an acceptable
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value form on-line processing. The merit of making everything on line is key to different
formations. It helps to decouple caging test algorithms from pre-built mappings.
Given a finger formation and a target object, we no longer need the pre-building procedure
and we can test whether the given finger formation can cage the target object with total
time cost of O(m+ no +m · no)=O(m · no).

The results of Fig.5.18 is coherent with our analysis. Since the time cost is smaller
than 0.01s, we can use the improved space mapping as an on-line proedure. Improved space
mapping significantly reduces storage cost while maintains time efficiency. It can not only
decouple caging test algorithms from specific target objects but also decouple caging test
algorithms from specific finger formations. Using improved space mapping, we can perform
rapid caging test against many various finger formations and various target objects without
worrying about time and storage cost.

5.3.2.2 Implementation with three representative finger formations

Based on the flowchart introduced Fig.5.19, I performed caging test with three different
formations and some different target objects. The input of this problem are (1) one object
and (2) three finger formations. The output of this problem is which formation can cage the
object. The three formations are based on some eigen-shapes of a Barrett hand. The idea
of eigen-shape is developed by Prof. Peter K. Allen and his students. It is published in a se-
ries of papers [Miller et al., 2003][Ciocarlie et al., 2007][Ciocarlie and Allen, 2009]. It is also
referred to by some another active researchers in robotic grasping [Ekvall and Kragic, 2007]
[Jonathan Weisz, 2012]. Especially, [Jonathan Weisz, 2012] used the alike idea to simplify
the mechanical complexity of a robotic hand and it an interesting exploration into robotic
design. Eigen-shape claims that most shapes of a dexterous hand are redundant to real
applications. Only some essential shapes are useful and they name them eigen-shapes. The
eigen-shapes are considered to be able to cover most grasping tasks. If we use these eigen-
shapes to cage target objects, we may save ourselves from recovering, updating and labeling
thousands of Cfrm. We only need to perform caging test with the eigen-shapes, namely some
given finger formations. The three formations that will be used in the following part are
based on the idea of eigen-shape. It is the three most useful finger formations of a Barrett
hand. Fig.5.20 illustrates them and their mappings with respect to one reference grid ω1.

The positions of each finger and dimensions of each formation have been attached below
the left figures of Fig.5.20(a), (b) and (c). Note that in Fig.5.20, the mapping is built by
setting ng=150× 150 and m=36 (2m+ 1=73).

Implementation I: Correspondence between Cfrm
fc and W

Before presenting the results of various objects, let us first take a target object shown
in Fig.5.21(a) for example and see the correspondences between Cfrm

fc and W space. Here,
we use the two-finger formation F1 shown in Fig.5.20(a) to recover and update the Cfrm of
a concave target object. The W space is discretized into 150 × 150 grids while the Cfrm is
discretized into 150 × 150 × 73 voxels. I will use these settings continuously in later parts.
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Figure 5.20: The three eigen-formations of Barrett hand and their mappings.
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There is no specific reason why I chose these settings. We can set them to any satisfying
value as long as they do not result into high cost in the labeling procedure.

Figure 5.21: Caging test with improved space mapping – Concave object.

The middle part of Fig.5.21(a) shows a case where the formation of fingers is applied to a
Barrett hand and it is actuated to cage the target object. In this case, the two finger positions
with respect to the target object is shown in the upper-right dialog box of Fig.5.21. Those
two red points denote the positions of the two fingers while the cyan sub-space denotes the
grids occupied by the target object. Below this upper-right dialog box I shows the recovered

and updated Cfrm. The Cfrm
fc of this Cfrm has four components, namely Cfrm

fc =
4∪

i=1

Cfrm
fci

. When
the initial configuration of the formation is given, we can check whether it could cage the
target object by testing whether it is in one of these Cfrm

fci
.

Reversely speaking, this algorithm not only offers the possibility of testing whether an
initial configuration of the formation could cage the target object but also offers the possi-
bility of finding all configurations of the formation that can cage the target object. These
“all configurations” are the configurations in these four Cfrm

fci
. The details of them are shown

in Fig.5.21(b).
Each configuration in a Cfrm

fci
corresponds to a set of two-finger formations. Each two-finger

formation is rendered as two red points shown in the upper-right dialog box. Therefore, the
correspondent finger positions of formation configurations in each Cfrm

fci
are rendered into red

sub-spaces in the four lower figures of Fig.5.21(b). The number of voxels in Cfrm
fc1

, Cfrm
fc2

, Cfrm
fc3

,
Cfrm

fc4 are 478, 7, 393 and 22 respectively. That means there are totally 478+7+393+22=900
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different caging configurations. They in W space are all the possible caging positions of the
given finger formation.

In addition to the example in Fig.5.21, Fig.5.22 gives another example with the three-
finger formation F2 shown in Fig.5.20(b) and a convex target object. In this case, the

Cfrm
fc of this Cfrm has three components, namely Cfrm

fc =
3∪

i=1

Cfrm
fci

. Like Fig.]refcfrmexample, the

correspondent finger positions of formation configurations in each Cfrm
fci

are rendered into
red sub-spaces in the three lower figures in the right part of Fig.5.22. The number of
voxels in Cfrm

fc1
, Cfrm

fc2
, Cfrm

fc3
are 309, 168 and 29, respectively. That means there are totally

309+168+29=605 different caging configurations under settings ng=150 × 150 and m=36
(2m+ 1=73). They in W space are all the possible caging positions of F2.

Figure 5.22: Caging test with improved space mapping – Convex object.

Implementation II: Performance on different objects
Next, let us compare the performance of the caging test algorithm with improved space

mapping on different target objects. The target objects are tested in two ways. One is
to perform caging tests with four different target objects and the three pre-defined finger
formations while the other one is to perform caging tests with changing finger formation or
changing target object shapes.

In the first group of caging test, the caging test with improved space mapping is performed
on four different target objects. They involve O1: a grippable concave object, O2: a non-
convex object, O3: a convex polygon and O4: a circular object. The rows of Fig.5.23
illustrate the shapes of these target objects, their occupied number of grids no and their
time and storage costs.

Object O1: {{10.0, 10.0}, {2.0, 0.0}, {10.0, -10.0}, {0, -4}, {-10.0, -10.0}, {-1.0, 0.0},
{-10.0, 10.0}, {10.0, 10.0}}

Object O2: {{15.0, 15.0}, {4.0, 0.0}, {10.0, -10.0}, {-3.0, 0.0}, {15.0, 15.0}}
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Object O3: {{7.0, 7.0}, {9.0, 3.0}, {5.0, -4.0}, {0.0, -7.0}, {-5.0, -1.0}, {-3.0, 7.0}, {7.0,
7.0}}

Object O4: center = {0.0, 0.0}, radius = 7.0

As is shown in Fig.5.23, the first finger formation F1 shown in Fig.5.20(a) could cage O1.
The second finger formation F2 shown in Fig.5.20(b) could cage O1, O3 and O4. The third
finger formation F3 shown in Fig.5.20(c) could also cage O1, O3 and O4.

The mapping cost of these caging tests are always smaller than 0.01s. This is the same
as our analysis in Fig.5.17 and Fig.5.18. It only depends on m and it has no relationship
with no. Shifting cost is O(m · no), therefore it changes as no differs. Although shifting cost
is larger than mapping cost, it can be done in less than 0.2s. The most time consuming
procedure is labeling. It costs more than 0.5s in the worse case which appears with F2 and
O4. We can see from Fig.5.17 that with the parameter settings 150×150×73, the total cost
of mapping plus shifting plus labeling can be performed in less than 0.7s. This is a satisfying
value to performed on line.

Note that none of the given pre-shapes can cage O2. However, in our intuition, as the
inter-finger distance of 3-finger formation decreases, O2 shall be caged. We should introduce
more formations and perform more caging tests to get a successful finger formation that can
cage O2. We do this with the second group of caging test, namely performing caging tests
with changing finger formation or changing target object shapes.

Fig.5.24 shows the changes of Cfrm with O2 and a series of varying finger formations based
on F3. The object can be caged by formation variation 3 and formation variation 4 where
their inter-finger distances become much smaller comparing with F3.

We also performed caging test with a series of changing objects. Fig.5.25 shows the
results. In this case, the target shape is deforming dynamically while the finger formation is
fixed to pre-shape F3. The caging test algorithm with improved space mapping is fast enough
to response to the changing object shapes. The target objects in variation 1, variation 2 and
variation 3 of Fig.5.25 can be caged by F2 while the last two target objects cannot.

Implementation II: Real-world objects
Finally, I implement the algorithm with a miscellany of real-world objects for further

appreciation. The inputs of this implementation are pictures of each target object. These
pictures are shown in Fig.5.26. Readers can assume that the perception device in this case
is a camera while the percepted target object shape is those pictures. The pictures are
processed and approximated for caging tests.

Below each picture of Fig.5.26, I attached the result of caging tests. Note that in these
results, there are two extra operations. (1) all hollow holes are filled up. For example, the
target object #6 has a hollow hole. However, the approximated shape which is shown in the
lower-left block of Fig.5.27 does not save this hollow hole. It is filled up. (2) Only finger
formations F2 and F3 are tested. The two-finger formation F1 is not used for caging tests
here because it can cage none of these target objects when their hollow holes are filled up.
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Figure 5.23: Caging results with different objects.
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Figure 5.24: Caging test with improved space mapping – Changing formation.

Fig.5.27 shows in detail some results of Fig.5.26. In each block of Fig.5.26, I shows
the dimension of the finger formation together with the dimension of the target object so
that readers can better compare them. The correspondent finger positions in W space are
rendered with yellow points. These yellow points are the same as the finger positions in
lower part of Fig.5.21 and Fig.5.22. I rendered them with yellow points instead of red grids
to better illustrate each finger in a formation. In each block of Fig.5.27, f1 is rendered with
light yellow color while the other fingers are rendered with dark yellow. Note that only
the first caging sub-space, namely Cfrm

fc1 , and their correspondent yellow finger positions are
rendered in Fig.5.27.

Surely the caging test algorithm introduced here can work with hollow objects. Fig.5.28
shows some of the caging results of target object #6 with finger formation F1 when the hollow
hole of target object #6 is not filled up. In this case, F1 can always cage target object #6.
Note that in this figure, only the finger configurations inside the blue circle of Fig.5.28(a)
are shown. The configurations inside the blue circle has three components. One is shown
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Figure 5.25: Caging test with improved space mapping – Changing target object.

Figure 5.26: Real-world objects in pictures.
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Figure 5.27: Details of some results in Fig.5.26.
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in Fig.5.28(b-1), the other two are shown in Fig.5.28(b-2) and (b-3). Readers may notice
that the components in Fig.5.28(b-2) and (b-3) should belong to the same component while
they are divided into two parts in my results. That is because the orientation axis of Cfrm

is set to [−π, π). The lower coordinates and the upper coordinates of the orientation axis
are actually connected with each other periodically and Fig.5.28(b-2) and (b-3) do belong
to the same component. The W space of Fig.5.28(b-2) and (b-3) give a clearer illustration
of the periodical connections.

Figure 5.28: The result of target object #6 when hollow holes are taken into account.

Now we can have a satisfying solution to caging test. Nevertheless, that only the first
step. We have discussed in the beginning of this thesis that besides caging test we need to
(1) find a set of finger formations that could cage the target object and (2) develop a robust
caging algorithm to find an optimized formation of fingers that could be most robust to
endure uncertainties. It is delightful that we have got the finger formation sets. They are
the red grids in lower part of Fig.5.21 and Fig.5.22 or the yellow points in Fig.5.27. These
sets can be obtained efficiently and they can be further employed in step (2). Our next step
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would be to the step (2), namely to find an optimized one from these sets. I will propose
the algorithms in the next part.

5.4 Robustness of Caging in Cfrm

5.4.1 Quality function and the robust caging algorithm
When we were finding an optimized three-finger caging in section 3.2.6, I proposed a two-step
solution. Namely, (1) finding an optimized three-finger immobilization with the immobiliza-
tion optimization algorithm and (2) retracting fingers to obtain certain robustness to avoid
collisions. Following this idea, I propose to define the robustness of caging in Cfrm with
two measurements. The first one is the “distance to escaping” while the second one is the
“distance to collision”.

In order to calculate the two measurements, we need to again analyze Cfrm. We have
known in expression (3.1) that this sub-space, when caging is obtained, can be divided into
the free sub-space Cfrm

ff , the caging sub-space Cfrm
fc and the obstacle sub-space Cfrm

otl . When
finger configurations fall into Cfrm

fc , they cage the target object. When finger configurations
fall into Cfrm

ff , they neither cage nor collide with the target object. Fingers at configurations in
this sub-space can go through or escape from the target object. When finger configurations
fall into Cfrm

otl , the fingers collide with target objects. Fig.5.29 illustrates these descriptions.

Figure 5.29: The meanings of configurations in different sub-spaces.

There is nothing new in Fig.5.29. It is simply a reverse view of the construction procedure.
Cfrm

fc , Cfrm
ff and Cfrm

otl have these meanings because we built them in this way. Readers may
review section 5.1.2 to refresh it.

What really concern are critical configurations between these sub-spaces. The critical
configurations, or namely the voxels on surfaces between the sub-spaces Cfrm

fc , Cfrm
ff and Cfrm

otl ,
are important to the measurement of robustness. Fig.5.30 shows the meanings of these
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furfaces. Here I denote the surface between Cfrm
fc and Cfrm

otl with symbol S frm
cln while denote the

surface between Cfrm
otl and Cfrm

ff with symbol S frm
esp . Configurations in Cfrm

fc means caging while
configurations in Cfrm

otl means collision. Therefore, configurations on the surface between Cfrm
fc

and Cfrm
otl , namely S frm

cln , means the critical condition of collision. Likewise, configurations in
Cfrm

otl ∪ Cfrm
fc means either collision or caging while configurations in Cfrm

ff means breaking of
caging. Therefore, configurations on the surface between Cfrm

otl and Cfrm
ff , namely S frm

esp , mean
the critical condition of escaping.

Figure 5.30: The meanings of configurations on critical surfaces.

Note that the case in Fig.5.30 is a quantitative illustration and there is only one caging
sub-space. In real cases, there could be many Cfrm

fci so that the surfaces between Cfrm
fci and Cfrm

otl
changes from S frm

cln to S frm
clni

correpondingly.
Since the two surfaces are critical conditions of collision and caging breaking, given a

configuration qfrm, qfrm ∈ Cfrm
fci , we can calculate the two measurements by measuring its

distance to the two surfaces. The following expressions show the two measurements. I denote
them with δcln and δesp.

for all qfrm
clnj
∈ S frm

clni
and qfrm

espk
∈ S frm

esp ,

δcln = min((qfrm − qfrm
clnj

)TW(qfrm − qfrm
clnj

))

δesp = min((qfrm − qfrm
espk

)TW(qfrm − qfrm
espk

))

(5.9)

In other words, given a configuration, we measure the “distance to collision” by calculat-
ing the minimum distance between this configuration and the surface of the caging sub-space
that this configuration belongs to. That is where caging becomes collision. Likewise, given a
configuration, we measure the “distance to escaping” by calculating the minimum distance
between this configuration and the critical boundary to Cfrm

ff . That is where fingers escape.
Moreover, we employ a weighing matrix W in expressions (5.9) to indicate the complicate

metrics of the two measurements. Of course, W should follow basic definition of metrics.
How to define the metrics have no strict criterion and it remains an open problem. We
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can even treat horizontal metrics and vertical metrics differently like the decomposition of
translational caging and rotational caging in Cobj. In my implementation, I simply choose
W as diag(1, 1, 1). In that case, the measurement degenerates into simple Euclidean norms
||qfrm− qfrm

clnj
|| and ||qfrm− qfrm

espk
||. For more pragmatic usage, W should be chosen according

to mechanisms of specific robotic systems. For instance, a hand on a Cartesian robot should
have higher weighing parameter on translational measurement than a hand on SCARA robot
since Cartesian robots have lower tendency of rotation. The W parameter is inherent to a
specific robotic system.

The next step after obtaining the two measurements is to combine them and define the
quality function of robustness. This step also suffers from ambiguous parameter settings.
Generally speaking, each measurement should has a weighing parameter like the wcln and
wesp in expression (5.10).

Qfrm
q = wclnδcln + wespδesp (5.10)

Different weighing parameters lead to different performance. In my implementation, I
simply choose wcln : wesp=1 : 1. For more pragmatic usage, wcln : wesp should be chosen
according to requirements of applications. For instance, if we are performing a grasping task
rather than multi-robot cooperation, we may concern more about collision. That is to avoid
collision with target objects as much as possible during grasping even if there are certain
perception errors. In that case, we may set a large value to wcln. I will discuss in detail the
importance of wcln and wesp in the implementation and analysis section.

Fig.5.31 illustrates the flowchart of finding a robust caging based on expression (5.10).
The basic idea of this flow chart is to traverse all voxels in all caging sub-spaces, namely
compare all the caging configurations in the caging sets to find an optimized one.

There are two remaining problems about this algorithm. The first one is its computational
complexity. The second one is how to extend to multiple finger formations. These two
problems have something in common. That is, we must make the cost of this algorithm as
small as possible to have it work with as many finger formations as possible. However, the
computational efficiency of this traversing algorithm is sometimes quite low. In the extreme
case, it could be as high as O(no ·m · ns) where ns is the number of voxels on the surface
of Cfrm

otl ∪ Cfrm
fc . ns is nearly the same order as no and therefore the complexity could be

written as O(no · no ·m) to avoid extra parameters. This is one drawback of this algorithm.
Fortunately, the extreme case is rare. It only appears when most of the no · (2m + 1) grids
belong to caging sub-spaces. In most cases, the algorithm complexity is in the same order
as O(no · m). Fig.5.32 gives the example of this rare and extreme case. It is actually the
same hollow object #6 of last section. In this example, there are too many candidate caging
configurations and it takes 122s to find a best configuration from this set. Readers may
compare the other candidate sets in Fig.5.27. They are much smaller and costs less. It
is easy to expect that the rare case happens only to a special series of concave or hollow
objects. It can be decided in the following way. (1) Calculate the size of the target object.
(2) Calculate the convex hull of the target object and calculate the size of this convex hull.
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Figure 5.31: Flowchart of finding a robust caging configuration.

(3) Compare the two sizes, if the size of (1) is much smaller than that of (2). It might be
time-consuming to find an optimized configuration. Note that the three steps are only rough
estimation. It not suitable for pragmatic use.

In order to avoid the time-consuming exceptions, I introduce a threshold and to filter the
cardinality of each Cfrm

fci . Firstly, I only choose the Cfrm
fci with proper cardinality for calculation.

That is to say, the green box of the flowchart in Fig.5.31 is changed into finding the Cfrm
fci in a

pre-defined range. Only the qfrm in those filtered Cfrm
fci will saved as the candidate caging sets.

If none of the cardinality of Cfrm
fci is in the pre-defined range. The target object is supposed

to be unsuitable for caging with the give formation. We may need to calculate with some
other finger formations or reject ensuing tasks. This algorithm depends on the pre-defined
range of set cardinality. If a practitioner would like to make complete evaluation of all caging
candidates without worrying about time cost, he or she may set upper bound of the range
to +∞.

Fig.5.33 is the flowchart of a whole robust caging algorithm. It not only shows in detail
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Figure 5.32: An extreme case which costs lots of computational resources.

the thresholds in finding one optimized configuration but also the whole procedure of deciding
an optimized finger formation. The pre-defined range is named (τrngl , τrngr) in this figure. It
is denoted by “Threshold 1” in Fig.5.33 and it can help avoid extreme high costs of resources.
Besides this “Threshold 1”, there is another “Threshold 2” in this flowchart. In the ideal case,
the finger formation that has largest Qfrm will be chosen as an optimized finger formation
while the qfrm that leads into this largest Qfrm will be chosen as the correspondent optimized
formation configuration. However, the largest Qfrm might be too small and it is not suitable
for caging. “Threshold 2” filters out the small Qfrm. When the branch of “Threshold 2” goes
to “no!”, none of the finger formations can robustly cage the target object and the algorithm
rejects ensuing tasks.

Readers might be interested in how to combine the caging test/caging optimization algo-
rithms (or more generally caging planning algorithms) with the motion planning algorithms
of manipulators. After all, a hand without arm (manipulator) is non-sense. However, this
thesis is not dedicated to this combination.1 It concentrates on the caging problems. If
practitioners would like to combine, one potential solution is to insert rewards to the loops
of Fig.5.33. The rewards could tune the selection of pre-defined finger formations and offer
proper configurations to specific manipulators. In that way, the planning of caging could be
extended to the planning of caging manipulation.

5.4.2 Implementations and analysis
Now let us see implementations of the algorithm shown in previous part. The implementa-
tions use the same platform and the same parameter settings as section 5.3.2.2. Since I have
shown lots of results of convex objects in section 5.3.2.2, I won’t discuss much about convex
objects in this part. I will spend most of the texts here to concave and hollow objects and
the performance of my quality function.

1This combination is actually another popular research topic named mobile manipulation.
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Figure 5.33: Flowchart of finding a robust caging (both formation and configuration).

5.4.2.1 Performance with object O1 of Fig.5.23

Visualization of the results
Firstly, I will show the performance of the quality function with the concave object

O1 of Fig.5.23 and a series of two-finger formations. This object and the series of two-
finger formations are chosen because they have better visual effects. The series of two-finger
formations include seven Fi. Their finger positions are shown in Fig.5.34.

Fig.5.35 shows the optimized qfrm and their correspondent Fi[q
frm] in W space of each

formation. Here the thresholds showed in Fig.5.33 are set as following. τrngr = 10, τrngl =
+∞. τQ is not employed. That means we consider a caging sub-space to be a set of candidate
caging configurations when it is composed of more than 10 grids. Note that the formations
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Figure 5.34: A series of seven two-finger formations.

F4 and F7 cannot cage the target object under these settings and they are not shown in
this figure. Fig.5.36 shows the δcln and δesp of largest Qfrm

max of each finger formation. Like
Fig.5.35, F4 and F7 cannot cage the target object and they are labeled as “caging breaking”
in Fig.5.36. As can be seen from Fig.5.36, the third finger formation F3 has the largest Qfrm

of all Qfrm
max = δcln + δdelta. Therefore, it is the result of robust caging in Cfrm. We may better

understand the performance of different Fi by referring to Fi[q
frm] in theW space of Fig.5.35.

Comparing with the other Fi[q
frm], F3[q

frm] ensures both large distance from object boundary
(large distance from collision) and large distance from caging breaking. It has the potential
of ensuring large robustness against perception and control noises and consequently indicates
a good choice for caging or grasping by caging tasks.

Necessity of both δcln and δesp

Another problem I would like to discuss in analyzing the performance of the quality
function is the necessity of both δcln and δesp for robust caging. I have shown in Fig.5.30 and
expression (5.9) that δcln and δesp mean distance to collision and distance to caging breaking
respectively. But are the real-world results in W space the same as our analysis? Fig.5.37
gives the answer.

Fig.5.37 compares the combined δcln + δesp measurement with a single δcln measurement.
Both δcln and δesp play important roles in optimization. Without δcln, the eigen-caging at
an optimized configuration may fall on (collide with) surface of the target object. Without
δesp, there will be no bias towards bulky parts of target objects. The lower row of figures
in Fig.5.37 shows the case of a single δesp measurement. Comparing with the combined
measurement (upper row), the most robust Fi[q

frm] in lower row does not have bias towards
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Figure 5.35: Optimized configurations of the seven formations.

Figure 5.36: The δcln and δesp of maximum Qfrm
max of each finger formation.
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Figure 5.37: The importance of both δcln and δesp.

the bulky parts of target objects. This is exactly the same as our expectation. Configurations
near the bulky part of the target object have larger δesp. If we take into account both δesp
and δcln, the most robust Fi[q

frm] would have a bias towards the bulky parts like the upper
row of Fig.5.37. If δesp is not considered, there would be no bias and the most robust Fi[q

frm]
would be a configuration that is equally offset target object boundaries like the lower row of
Fig.5.37. Caging and grasping the bulky part of an object is much safer and therefore the
combined measurement of δcln and δesp is promising.

Results of simulation
Besides the qualitative analysis, I further evaluate the robustness and control noise by

adding Gaussian noise to vertices of the groundtruth objects like section 3.41. Meanwhile,
whether a finger formation cages the target objects during simulation is checked by rotating
the end-effector, namely the twelve tests in introduced in the beginning of section 3.3.4. The
difference here is we no longer need to retract fingers to see the robustness. Instead, we have
already get the optimized results with the robust caging algorithm of Cfrm, the left job is to
record the largest endurable Gaussian noises and compare them.

The details are as following. In the first place, we calculate an optimized Fi[q
frm] of the

noisy object and actuate the robotic hand into Fi[q
frm]. Then, we evaluate the performance

of F[q] on the groundtruth object. This is the same as what we did in Fig.3.40. However,
note that we do not change the number of fingers and retract fingers this time since finger
formations are fixed to Fi while Fi[q

frm] is already offset object boundary due to δcln. Fig.5.38
shows the maximum N (0, σ2) of Gaussian noise that the seven two-finger formations in
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Fig.5.34 can endure. Here, we re-plot the bar graph sub-figure of Fig.5.36 in sum form
(δcln + δesp) for convenience. Like our analysis, F3[q

frm], which has the largest (δbkg + δcln),
can endure the largest Gaussian noise.

Figure 5.38: The (δcln + δesp) of each finger formation and their correspondent endurable
noise.

5.4.2.2 Performance on other objects

In this part we show the results of some other examples. Note that in this part I just would
like to illustrate the changes of Cfrm with respect to different finger numbers and objects so
that I wont take the bother to show their exact dimensions.

Firstly, let us see the result of a convex semi-circular object with finger formations of
three, four and seven fingers. The results are shown in Fig.5.39.

Three fingers cannot cage the semi-circular object so that Fig.5.39(a) doesn’t have in-
ner red holes. Our algorithm will reject this three-finger formation. Fig.5.39(b) and (c)
demonstrate the relationship between finger number and robustness. Redundant fingers can
be more robust. Comparing with four fingers which is the least number of fingers that are
required to cage a semi-circular object, seven fingers offer more voxels in caging sub-spaces
and hence offer more robustness. We can choose the preferable number of fingers by tuning
the threshold τQ which was shown in Fig.5.33.

Then, let us see performance of the algorithm on a hollow concave object. It is shown in
Fig.5.40.

The first and second rows of Fig.5.40 are the result with a large hollow hole. In these
two rows, I recover and update Cfrm and calculate the most robust caging with respect to a
one-finger formation (first row) and a two-finger formation (second row) respectively. The
third and fourth rows show the results with a smaller inner hole. In these two rows, I recover
and update Cfrm and calculate the most robust caging with respect to the same two-finger
formation as the second row (third row) and another two-finger formation which has larger
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Figure 5.39: The results of a semi-circular object with different number of fingers.

inter-finger distance (fourth row). The most robust Fi[q
frm] for “grasping by caging” and

their correspondent configuration voxels are shown in the “The most robust Fi[q
frm] in W

space” column and the “The most robust q” column respectively. When the hollow hole
is large enough, our algorithm prefer inserting a finger into the hole to ensure caging (see
the first and second row of Fig.5.40). When the hollow hole is small, our algorithm avoids
inserting a finger to prevent collision (the third row of Fig.5.40). However, if the inter-finger
distance of the eigen-shape is too large so that it cannot cage the object without inserting
into the hole (see the fourth row of Fig.5.40. In that case, there are only two caging sub-
spaces and the eigen-shape can only cage the object by inserting one finger into the hollow
hole.), our algorithm returns the configuration with one finger in the hole.

Thirdly, in Fig.5.41, let us see the result of the caging optimization on the real-world
objects in Fig.5.26. Here we show the results of Target object #5 and Target object #6 since
they have better visual effects. Note that the upper bound τrngl is set to +∞, therefore the
case of Fig.5.32 is calculated. These results can be auxiliary materials to better understand
the simulation results in previous texts.

5.4.2.3 Grasping by caging

Like section 3.3.3.2, we can also perform “grasping by caging” by shrinking fingers of a
formation. In that case, “Grasping by caging” would be an additional step at the end of
Fig.5.33. The shrinking strategy could be exactly the same as the one introduced in the last
part of section 3.3.3.2 since we only would like to discuss shrinking caging here.

Fig.5.42, Fig.5.43 and Fig.5.44 show the frame series of grasping by caging based on the
results of the O1 object in section 5.4.2.1, the frame series of grasping by caging based on
the hollow concave object with a large hollow hole and the frame series of grasping by caging
based on the hollow concave object with a small hollow hole in section 5.4.2.2, respectively.
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Figure 5.40: The results of a hollow concave object.
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Figure 5.41: The results of Target object #5 and #6 in Fig.5.26.

Figure 5.42: The “Grasping by Caging” procedure of O1.
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Figure 5.43: The “Grasping by Caging” procedure of the hollow concave object with a large
hollow hole.

Figure 5.44: The “Grasping by Caging” procedure of the hollow concave object with a small
hollow hole.
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Chapter 6

Applications II – Hand Design

Caging can offer robustness to uncertainties in grasping. If a robotic hand is designed based
on the idea of caging, it would probably work well with noisy perception devices and low-
quality control. In this chapter we will see an application which design ands implements a
gripping hand based on the caging algorithm in Cfrm. The gripping hand is concise and offers
a low-cost alternative to co-operate with noisy data and low-quality control. This chapter
includes two sections. In the design section, I will show how I successfully simplify the
number of actuators into one by quantitatively analyzing finger formations with caging tests
conducted on both random objects and objects from MPEG-7 shape database. Following the
simplified one-actuator design I will in the implementation section show the implementation
and demonstration of a gripping hand by modifying a SCHUNK RH707 gripper and carried
out experiments with a manipulator built on the Neuronics Katana arm. The one-actuator
gripping hand could work with the Swiss Ranger and both convex and concave objects. It
demonstrates the merits of caging, especially the advantages of caging in Cfrm over Cobj.

6.1 Designing a Gripping Hand by Using Caging
Although lots of theories have been developed in the research field of manipulation and grasp-
ing. These theories involve not only some of the previously discussed topics like form/force
closure, caging and their optimization but also some of undisclosed topics like enveloping
[Trinkle et al., 1988]. However, a large gap exists between these theories and real-world de-
signs and applications. For example, robotic hand dimensions and finger numbers are neither
designed according to mathematical formulae of form/force closure nor designed according to
perception devices. They are, in most cases, decided by (1) purpose of usage, (2) biomimetic
study or (3) mechanical constraints and empirical experiences. In this part, I propose the
design a gripping hand according to the theory of caging. The hand has only one actuator.
It is concise, low-cost and owns all merits from caging (like robustness to uncertainties).
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6.1.1 Retrospecting the hand design
Firstly, let us retrospect the contemporary works of hand design. There are two problems
regarding the design of a robotic hand. The first problem is its complexity. Let us com-
pare the following three representative examples — (a) The Schunk JGZ industrial gripper
[SCHUNK, 2013], (b) the Barrett Hand [Barrett Technology, 2013] and (c) the Robonaut
Hand [Bridgwater et al., 2012]. Note that there are many alike candidates whereas I take
these three for instance. The three hands differ significantly in DoFs (Degree of Freedoms),
actuation types and purpose of usage. The JGZ gripper has one DoF. It is fully actuated
and designed for industrial usage. The Barrett Hand has four DoFs. It is under-actuated
and designed to manipulate versatile objects. The Robonaut Hand has twelve DoFs which
mimics a human hand. It is dexterous and designed for tele-operation. These hands are
designed either according to their usage, biomimetic study or empirical experiences. Com-
paring with the design strategies of these hands, I would like to take into account of caging
and design a hand that is both high in generality and low in DoFs.

Design belongs to the mechanism aspect discussed in the beginning of this thesis.
But we do need to take into account both sensing and mechanics as well. Reference
[Pollard, 2010] offers a good summary of hand design and the most related works to my
case are [Zhang and Goldberg, 2001], [Dollar and Howe, 2010] and [Hammond et al., 2012].
Robotic hands in these works are designed according to “constraining” models. Specially,
the SDM hand presented in [Dollar and Howe, 2010] follows principles of enveloping
[Trinkle et al., 1988][Dollar and Howe, 2005] and won great success in grasping in unstruc-
tured environments. [Hammond et al., 2012] discusses in detail how to reduce motor number
and designs an under-actuated robotic hand. Like these works, I also simplify and design
our gripping hand based on a “constraining” model. The “constraining” model is caging.
By performing caging tests on random objects and objects from MPEG-7 shape data base
libraries, I find an optimized actuator and finger setting that have highest successful caging
rate. The optimized actuator and finger setting help to reduce the number of actuators into
one. At the same time, it owns all merits from caging and endows us the potential to perform
safe and robust grasping.

The second problem is integration with perception devices. We have reviewed the popular
works that detect objects and synthesize grasping in section 3.3.3.2. In all the techniques and
devices employed by those works, database matching is effective in grasping known objects
but it is not as satisfying with unmodeled targets. RGB camera is affordable and applied to
many industrial systems. However it suffers a lot from unstructured environments. Depth
sensors can be summarized into two categories, namely scanners and rangers. Scanners have
high precision as well as high costs. Rangers are much cheaper. Examples of rangers involve
the ToF-based (Time of Flight) Swiss Ranger or structure light-based KINECT. These two
devices were discussed in detail in section 4.1.2.1. With the help of caging, the hand is
expected to work with the Swiss Ranger. Noises of the Swiss Ranger are +/-10mm in depth
and +/-7mm in horizontal plane. I believe if the hand could work with the Swiss Ranger, it
is suitable to most applications.
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6.1.2 A basic design based on qualitative analysis
There are some design candidates that are in well accordance with the caging theory. In
section 2.2 we have known that the number of fingers that are sufficient to cage an
object in ndim space is ndim + 1 to 2ndim. That is to say, we should install at least 2×2
= 4 fingers to cage any 2D shape. It is true that the performance becomes better if there
are more fingers. However, I prefer the least number 4 since I would like to reduce the
complexity as much as possible.

After deciding the number of fingers, the remaining problem is how to install the four
fingers and how to actuate them. One example is the distributed end-effector discussed in the
first subsection of Chapter 4. In that design, fingers are attached, actuated and detached
sequentially by the single x-y-θ actuator and only three motors are required. Although
the design lowers system cost, it introduces a time-consuming attaching-actuating-detaching
procedure which slows down operation. Unlike that design, I will in this part consider the
installation of actuators by quantitative evaluation with caging algorithms.

Fig.6.1 shows the candidate installations of actuators. Note that I do not consider the
shapes of fingers here and they are therefore rendered as simply poles. The first candidate,
Fig.6.1(a), is the most intuitive installation. It endows distributed control to each finger and
requires as many as eight actuators. The distributed end-effector is actually a variation of
it. The last candidate, Fig.6.1(d), drives four fingers simultaneously. It requires only one
actuator and the SDM hand [Dollar and Howe, 2010] follows its principle. The last candidate
fully ensure equal inter-finger distances which adds strong bias to rotational constraints
(recall section 3.3.1). However, it has no flexibility for translational caging. The SDM
hand solved this inflexibility problem by fabricating delicate under-actuated fingers (say,
delicate shapes of fingers). In our case which aims at a concise “gripping” hand, or namely
a hand with pole-like fingers, Fig.6.1(b) and Fig.6.1(c) are better choices.

The difference between Fig.6.1(b) and Fig.6.1(c) are their levels of biases towards equal
inter-finger distances. Fig.6.1(b) has higher flexibility in position control and it holds more
bias towards translational caging. Nevertheless, three actuators complicate the gripping
system. I prefer choosing the two-actuator candidate Fig.6.1(c) as the basic design. Fig.6.2
shows in detail of how this basic design works. Each actuator in this installation drives two
pairs of fingers and either caging or grasping by caging can be performed by this design.

The basic design is based on qualitative analysis. We would like find some quantitative
supports to demonstrate its advantages. In the next section, we will quantitatively analyze
this basic design with the caging algorithm in Cfrm and various objects and see if it has high
successful rates in caging. If the basic design has high successful caging rates, it is considered
to be a satisfying candidate to manipulation with caging and inherits the merits of caging
with the help of caging or grasping by caging algorithms.
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Figure 6.1: Four candidate installations of actuators.

Figure 6.2: The basic design and one of its caging or grasping by caging procedure.
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6.1.3 Quantitative analysis of the basic design
6.1.3.1 Objects for quantitative analysis

In order to find some quantitative supports for the basic design, I employ an object generator
to randomly generate some shapes and quantitatively evaluate the performance of the basic
design with these shapes and caging tests.

It is difficult for a random generator to cover any 2D shapes but we try to enlarge its
coverage as much as possible. This is done by setting a parameter ns, namely the number
of sectors. See bold segments in Fig.6.3(a) for details. The object generator generates
random shapes inside a background circle decided by different ns parameters. The figures in
in Fig.6.3(b) exemplify some randomized objects. Three groups of randomized objects are
generated according to different parameter settings. Readers may refer to Alg.4 to better
understand the roles of ns. The algorithm randomize a position along radial direction at
each sector. This position is saved as one vertex of the target object. Final list of target
object vertice indices are returned as Pbdry.

Figure 6.3: The random object generator.

This object generator is subject to the following limitations. (1) It cannot generate
shapes with inner holes. This limitation is acceptable since I would like to constrain the
caging into squeezing caging. (2) It may require thousands of randomization before reaching
a convincing conclusion. In order to conquer the second limitation, we generate objects
by three groups. Each group is randomized according to different ns. Their details are as
following. Group (a): ns=16. We expect the random shapes generated in this group may
be either smooth (small probability) or with sharp prostrusion (high probability). Shapes
in this group should be, in most cases, easy to be caged owing to their protrusions. Group
(b): ns=8. The random shapes generated in this group has higher bias towards smooth
objects and general polytopes while have less bias towards protrusion. We expect that shapes
in this group become more difficult to be caged comparing with Group (a). Group (c):
ns=4. The random shapes in this group help to fill up the loss of Group(a) and Group
(b). For instance, it has high probability of generating quadrilaterals and trilaterals which
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Algorithm 4: The random object generator
Data: ns
Result: Pbdry

1 begin
2 Pbdry ← ∅
3 for i ∈ {0 : na} do
4 /*Randomly select a position along radial direction*/
5 pi ←randomize a number between 0 and 9
6 Pbdry ← Pbdry

∩
pi

7 end
8 return Pbdry
9 end

are hardly generated in Group(a) and Group(b). Shapes in Group (c) should be easier
to be caged comparing with Group (b) as their inner angles become sharper. We expect
that comparing with a single-group generator, generating shapes by these three groups with
different parameter settings could offer convincing conclusions with fewer randomizations.

Besides the random object generator, I further evaluate the performance of the basic
design with objects extracted from the MPEG-7 shape library (see Fig.6.4). Shapes in the
MPEG-7 library are based on real-world objects, they are more realistic comparing with our
random generator. These objects can further confirm the performance of our basic design.

Figure 6.4: Some objects from the MPEG-7 shape library.

In total, we perform caging tests on 1000 shapes from Group (a), 1000 shapes from Group
(b), 1000 shapes from Group (c) and 1100 shapes from the MPEG-7 shape library.

6.1.3.2 Results and analysis

The caging test algorithm in Cfrm is limited to one finger formation and one object. It is not
applicable to testing the performance of a hand which could form into infinite number of
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formations. I propose to solve this problem by defining 20 candidate formations and assume
these 20 formations could be representative and cover the infinite number of cases. Fig.6.5
shows the 20 formations. It involves five columns of pair 1 and pair 2 along x axis and four
rows of pair 3 and pair 4 along y axis. Readers may refer to the texts in Fig.6.2 to recall the
pairs 1, 2, 3 and 4. Note that since x and y axes of the basic design are symmetric, 5 columns
× 4 rows complements 4 rows × 5 columns. In this way, using 5×4=20 formations is more
efficient than using symmetric multiplications like 5×5 or 4×4. Note that the background of
the object generator is illustrated together with the finger positions in Fig.6.5(b). Readers
may compare the dimensions of the twenty formations and the size of randomly generated
objects by referring to it.

Figure 6.5: The 20 representative finger formations of the basic design.

I quantitatively evaluate the 20 formations of the basic design with the 3000 random
objects and 1100 MPEG-7 shapes and the caging test algorithm in Cfrm. That is to say, we
carry out (1000+1000+1000+1100)*20 = 82000 caging tests. This is possible owning to the
rapidness and completeness of improved space mapping. Readers may review section 5.3.2.1
to recall the details of caging test in Cfrm.

Fig.6.6(a) shows the total successful caging rate of the 20 formations. In this result, if an
object can be caged by any of the 20 formation, then the basic design is assumed to be able
to cage that object. The result here is obtained by setting ng=150×150, m=72, τrngr=25
and τrngr=+∞.

The result indicates that the basic design can cage objects with more than 90% successful
rate and we can draw a conclusion that most “normal” objects, either they have convex,
concave or smooth boundaries, can be caged by the basic design. Exceptions are those tiny
or thin cases shown in Fig.6.6(b). The basic design is not suitable to cage those objects.
Actually, those objects are not suitable for general caging. An intuitive example is caging
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an eel in fishing. Eels cannot be captured by general fishing net and fish men use special net
to �cage� them.

Figure 6.6: The total successful caging rate and two examples of failure.

Note that the objects from MPEG-7 shape library is resized to fit into the background
of random object generator. That means the objects from MPEG-7 library cannot be too
small. That could be the reason why they can always be caged with 100% successful rate.
Objects from our random generator are harder to be caged comparing with MPEG-7 shapes.

More than 90% is quantitatively good performance. However, I wonder if it can be further
simplified. Dollar’s SDM hand has only one motor, whereas the basic design requires two. In
the next section I will further analyze the total successful rate and check if the basic design
can be further simplified.

6.1.3.3 Further simplification

The results in Fig.Fig.6.6(a) are the total rates of 20 formations. In another word, the basic
design is considered to be able to cage an object as long as a single one from the 20 formation
can cage it. This is reasonable as the basic design has two actuators and can be actuated
into any of the 20 formations.

If we would like to further simplify the basic design, the most intuitive way is to to delete
one actuator. However, deleting one actuator changes the 20 formations. For example, when
the x-actuator, namely the red one in Fig.6.2, is deleted, the basic design can no longer be
actuated from one column to another. That means the 5×4 = 20 formations become a single
column of 4 formations. When the y-actuator, namely the green one in Fig.6.2, is deleted,
the basic design can no longer be actuated from one row to another. That means the 5×4
= 20 formations become a single row of 5 formations.

Suppose we delete the y-actuator for simplification. Note that deleting the x-actuator
works in the same way as x axis and y axis are symmetric. Here I delete y because we dis-
cretized the formations into 5×4. Deleting the actuator along y direction leaves 5 formations
along x direction. The resolution is larger. If it were 4×5, it would be a better choice to
delete the actuator along x direction. After deleting the y-actuator, the basic design can



CHAPTER 6. APPLICATIONS II – HAND DESIGN 175

no longer be actuated from one row to another and we can only keep a single row. In that
case, the designing problem becomes which row should we retain to ensure high successful
caging rates. This problem could be solved by further analyzing the total successful rate
in Fig.6.6(a). Fig.6.7 shows the further analysis of Fig.6.6(a). In this figure, the decom-
posed rates of total results are illustrated. Successful caging rates of each row are shown
respectively in the left part. They indicate the successful caging rates of each row of the 20
formations on the three random groups and each row is rendered with different color bars.
The right figure is a copy of the left part of Fig.6.6(a) for easy comparison.

Figure 6.7: The successful caging rates of each row.

As is denoted in Fig.6.7, the third row of formations, namely the row with �cyan� color,
has highest successful caging rates. It is also the key row of the 20 formations. Readers can
compare successful caging rates of the “cyan” bars with total successful caging rates in the
left part of Fig.6.7 for better comprehension. Successful rates of the “cyan” row on the three
groups of random objects, namely the “cyan” bar in the left part of Fig.6.7, are nearly the
same as the total successful rates of all 20 formations. That is to say, the randomized
shapes are mainly caged by finger formations in the “cyan” row and we can
delete the other rows without much loss of successful rates.

Consequently, we can get the following simplification rule. The basic design can be
further simplified by fixing one actuator without much loss of successful caging
rates. The inter-finger distance of the fixed actuator should be around the “cyan”
row. Fig.6.8 shows the idea. After simplification, only the actuator along x axis remains.

Let us retrospect this simplified design and compare it with Fig.6.1(d). They both have
only one actuator. But is the simplified design really better? A confirming conclusion can be
drawn by deeper review of Fig.6.8. Fig.6.9 shows in depth the deeper details of the analysis
in Fig.6.7. In this figure, not only the successful caging rates of each row but also the
successful caging rates of each formation are illustrated. The finger formation with higher
successful caging rates have larger circle sizes. Successful caging rates of the simplified design
are roughly the sum of “cyan” circles. I use the word “roughly” because there is redundancy
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Figure 6.8: Further simplification of the basic design.

in addition. This is a rough analysis. In contrast, successful caging rates of the design in
Fig.6.1(d) is roughly the sum of diagonal circles. Note that like the simplified design, there
is redundancy in addition. The simplified design has larger sum of circle sizes and higher
successful caging rate. Therefore, it is indeed a better design comparing with Fig.6.1(d).

Figure 6.9: Comparison of the simplified design and the design in Fig.6.1(d).

6.2 Implementation of the Design
Now, we can implement a one-actuator gripping hand by using the simplification rule. The
implementation would be concise as well as effective. It could benefit from all merits of
caging. We will be more confident in that after the following parts through applications like
dealing with noisy perception devices and low-quality control.

Firstly, let us digitalize the “cyan” row. According to ratios of the formation rows in
Fig.6.5, I set fingers as following. For an object in a background circle of diameter 8, we
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choose 3 as its fixed inter-finger distance. That is to say, the “cyan” row is digitalized
into a 8:3 ratio. Then, we can implement a gripping hand based on this ratio. Fig.6.10(a)
illustrate settings of fingers and their installation on a RH707 hand. Here, the range of x
axis actuation is set between 10mm and 80mm while the fixed inter-finger distance along y
axis is fixed to 30mm to maintain the 8:3 ratio. There is no special mechanisms in this
implementation. It is nothing more than a simple “gripping” hand. However, the
8:3 ratio, which is based on lots of caging tests in last section, changes the essence
of “gripping”. According to the foregoing analysis, this implementation should
be able to cage or grasp by caging objects inside a 80mm-diameter background
circle with more than 90% successful caging rate. Moreover, it would be robust
to co-operate with noisy devices and low-quality control.

Figure 6.10: Implementation of the “gripping” hand and its integration with the Katana
Arm.

The implemented hand is integrated with a 5-DoF Katana Arm and the same SR4000
Swiss Ranger as Chapter 4 to perform various caging and grasping by caging tasks. Fig.6.10(b)
shows an overview of the integration. Perception device, namely the Swiss Ranger, is in-
stalled on top of the arm and it is not shown in this figure. The Swiss Ranger is installed
at a height of 1200mm from the operation plate. As was discussed in Chapter 4, the Swiss
Ranger suffers from perception noises and perceives top-view 2D shapes of target objects
with 10mm noise. Fig.6.11 demonstrates the noises. It compares an ideal object shape and
its correspondent approximated polytope based on point clouds perceived from the Swiss
Ranger. The ideal shape should be a triangle. However, The perceived polytope becomes a
quadrilateral. The perceived polytope differs a lot from the ideal shape. Explicitly calculat-
ing force/form closures based on this noisy polytope is quite tough and causes danger like
squashing in “picking up” tasks. Fig.6.12 shows the failure case when caging is not employed.
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Figure 6.11: Comparison between the approximated shape and the ideal shape.

Figure 6.12: Comparison between successful caging and failure caused by perception noises.
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The implemented hand should collaborate together with the robust caging algorithm of
last Chapter to deal with various noises. Algorithm flow of robust caging has been shown
in Fig.5.31. Here in the following part I repeatedly summarize the whole procedure of
a “grasping by caging” task performed by the hand. Readers may collaboratively review
Fig.5.31 to better understand the procedure.

Performing the “grasping by caging” task with the implemented hand requires the fol-
lowing four steps. For convenience and better comprehension. I illustrate each step with
figures in Fig.6.13. Readers may refer to it in case of confusion.

Step 1 Get the cloud points from the Swiss Ranger and detect the target objects. In the
first step, the basic shape of target object is extracted by using the cloud points
collected from Swiss Ranger.

Step 2 Calibrate the object position and simplify the extracted shape into a polytope.
In the second step, the extracted shape is approximated into a polytope and
calibrated with respect to the calibration marker denoted in Fig.6.10(b).

Step 3 Rebuild and update the Cfrm space with the approximated polytope of Step 2
and find the candidate caging configurations.

Step 4 Find an optimized caging configuration from the candidates and actuate the ma-
nipulator. This optimization procedure is done by measuring expression (5.10).

Like the results in Fig.5.27, Fig.5.28 and Fig.5.29, the yellow points in Step 3 and Step
4-1 of Fig.6.13 show the caging finger formations of the gripping hand. They correspond
to configurations in all configuration voxels in the isolated sub-space in the middle part
of Fig.6.13, Step 4-1. Any one of the caging formations could cage the object and we
can choose an optimized one from the them as the pre-grasp caging formation. We can
calculate the optimized caging formation for the hand on line and pick up objects robustly
in a “grasping by caging” way.

The Step 4-2 of Fig.6.13, or Fig.6.14(b), shows the actuation of a “grasping by caging”
procedure of the triangle object. The original RH707 hand accepts only the open control and
close control. It cannot close to a certain position. I install a photo-interrupter to the RH707
hand as the encoder of close control. The photo-interrupter interrupts at five gaps so that
the modified hand could close to five different positions that correspond the five different
columns shown in Fig.6.5. The five different closing positions are shown in Fig.6.14(a). When
the robust caging algorithm find an optimized caging formation, the Katana Arm moves the
hand to the optimized position and orientation. Then, the hand opens itself to the optimized
photo-interrupter stop. When performing “grasping by caging” task, the hand closes itself to
the neighbour photo-interrupter stop to ensure enough friction or enough force to insertion
of finger tips and pick up target objects (There is an extra neighbour inside the fifth stop).
Note that this closing procedure is not safe. It is totally blind as there is no local sensors on
fingers.
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Figure 6.13: The four steps to perform a “grasping by caging” task with the implemented
hand.
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Figure 6.14: Five stops of the modified RH707 hand and the “grasping by caging” procedure
of a triangle object.

Besides the triangular object, I make demonstrations with several other objects to show
the superiority of the design and the robust caging algorithm. Fig.6.15 shows the details of
the other objects. More complete demonstrations have been compiled into a video attach-
ment accompanying this thesis. The video not only includes caging and �grasping by caging�
tasks of various objects like boxes, octagons and concave polytopes but also includes lots
of comparisons with other designs and failures. I strongly recommend readers refer to the
video to better comprehend the design, especially the fingers settings and caging.

Figure 6.15: The other four objects used in the demonstration.
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Chapter 7

In-depth analysis of Cobj and Cfrm

7.1 The Relationship Between Cobj and Cfrm

We have explored the caging problem in two spaces. The first one is the configuration space
of target object, namely Cobj. The second one is the configuration space of finger formation
Cfrm. These two spaces are actually equal to each other with a linear transformation. Let us
analyze their relationship in this section. The symbols used here are the same as those used
in previous contexts of this thesis.

7.1.1 The expressions of Cobj
otl

In order to compare these two spaces, we discretize Cobj into voxels like Cfrm and express Cobj
otl

and Cfrm
otl as two sets of voxels and compare the relationship between them.

Firstly, I am going to deduce the expressions of Cobj
otl . According to Fig.3.1, we need

to choose a pivot point to build the correspondence between a W space object to a Cobj

configuration. This pivot point can be chosen arbitrarily so that I use the first coordinate of
target object v1x , v1y as the pivot point1. Consequently, the initial configuration of a target
object is qobj

0 = {qobj
0x , q

obj
0y , q

obj
0θ
} = {v1x , v1y , 0θ}. After one counter-clockwise rotation (CCW)

layer, the configuration becomes qobj
1 = {v1x , v1y , 1θ}. Likewise, after one clockwise rotation

layer (CW) the configuration becomes qobj
−1 = {v1x , v1y ,−1θ}.

If we denote all vertices of the target object with V = {{v1x , v1y}, {v2x , v2y}, . . . , {vnvx , vnvy}},
then the ∂O[{v1x, v1y, 0θ}] (see Fig.3.1) can be expressed as following.

T (−v1x ,−v1y )V ={T (−v1x ,−v1y )v1, T
(−v1x ,−v1y )v2, . . . , T

(−v1x ,−v1y )vm}
={v1 − v1, v2 − v1, . . . , vm − v1}

(7.1)

1This is different from the contexts in Chapter 3. That is because in Chapter 3, I chose a pivot point
different from fingers to make clear the illustrations. In contrast, I choose v1x , v1y in this section to make it
coherent with our deduction of Cfrm

otl .
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∂O[{v1x, v1y, 0θ}] = R(0θ)T (−v1x ,−v1y )V
={R(0θ)T (−v1x ,−v1y )v1, R

(0θ)T (−v1x ,−v1y )v2, . . . , R
(0θ)T (−v1x ,−v1y )vnv}

(7.2)

Here, T (δx,δy) means the translation matrix with respect to a shifting pair (δx, δy). The
shifting pair indicates the shift between two grids of W space, namely (δx, δy) = ωi − ωj =
(ωix − ωjx , ωiy − ωjy). T (δx,δy) can be written as a matrix in the following form.

T (δx,δy) = T (ωi−ωj) =

 1 0 ωix − ωjx

0 1 ωiy − ωjy

0 0 1

 (7.3)

The expression (7.1) moves rotation center to the pivot point v1. Then, expression (7.2)
rotates the target object vertices according to its orientation. Since expression (7.2) aims to
express O[{v1x, v1y, 0θ}], the rotation matrix is set to R(0θ). At another layer, say layer 1,
expression (7.2) would become ∂O[{v1x, v1y, 0θ}] = R(1θ)T (−v1x ,−v1y )V.

Based on these expressions and the expressions (3.2), (3.3), (3.4) and (3.6) in Chapter 3,
we can express F1[q

obj
iθ
] as expression (7.4). Note that there is nothing new here. Expression

(7.4) is actually exactly the same as expression (3.6) except that I change ∂O[{f1x , f1y , q
obj
jθ
}]

into the form of vertices.

F1[q
obj
iθ
] = T (f1x,f1y)RπR(iθ)T (−v1x,−v1y)V (7.4)

Consequently, the whole F1 can be expressed as the union of all layers, namely
∪m

i=−mF1[q
obj
iθ
].

Expression (7.5) shows it. Like the relationship between expression (7.4) and expression (3.6),
the expression (7.5) is exactly the same as expression (3.7).

m∪
i=−m

T (f1x,f1y)RπR(iθ)T (−v1x,−v1y)V (7.5)

Likewise, the Fobj
j of any other finger fj is composed of

m∪
i=−m

T (fjx,fjy)RπR(iθ)T (−v1x,−v1y)V, j = 2, 3, . . . ,m (7.6)

In summary, Cobj
otl is the set of voxels enclosed by expression (7.5) and (7.6).

7.1.2 The expressions of Cfrm
otl

Then, let us deduce the expressions of Cfrm
otl . According to Fig.5.2, we denote the configuration

of finger formation by the coordinates of its first finger and the orientation of the whole finger
formation. Therefore, the initial configuration of a finger formation is qfrm

0 = {f1x , f1y , 0θ}.
In accordance with the rules in rotating a target object, after one CCW rotation layer, the
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configuration of finger formation rotates reversely and becomes {f1x , f1y , 1θ}. After one CW
rotation step, it becomes {f1x , f1y ,−1θ}. Like ∂O[{v1x , v1y , 0θ}], the F[{f1x , f1y , 0θ}] can be
expressed by the following two expressions where the first one is to move rotation center to
the first finger position while the second one is to rotate the finger formation according to
its orientation.

T (−f1x ,−f1y )F ={T (−f1x,−f1y)f1, T
(−f1x,−f1y )f2, . . . , T

(−f1x ,−f1y )fnf
}

={f 1 − f 1,f 2 − f 1, . . . ,fnf
− f 1}

(7.7)

F[{f1x , f1y , 0θ}] = R(0θ)T (−f1x ,−f1y)F
={R(0θ)T (−f1x,−f1y)f 1, R

(0θ)T (−f1x ,−f1y )f 2, . . . , R
(0θ)T (−f1x ,−f1y )fnf

}
(7.8)

At another layer, say layer 1, expression (7.8) would become F[{f1x , f1y , 0θ}] = R(1θ)T (−f1x ,−f1y)F.
We can also express Cfrm

otl according to specific fingers. This procedure has been discussed
when we were building the helical pattern in Fig.5.12 and Fig.5.13. The first component
of Cfrm

otl involves the configurations (namely voxels) that fulfills the following two conditions.
(1) The formation rotate around finger f 1. (2) When the formation is at those configura-
tions, f 1 in inside the target object, namely it is inside V. Here the first condition ensures
that this component is correspondent with f 1 while the second condition ensures that the
configurations belong to Cfrm

otl . This first component can therefore be expressed as following.
m∪

i=−m

V (7.9)

The other components which correspond to the other fingers besides f 1 are a bit compli-
cated. Take a finger f j for example. Like f 1, its correspondent component of Cfrm

otl involves
the configurations that fulfills the following two conditions. (1) The formation rotate around
finger f j. (2) When the formation is at those configurations, f j in inside the target object,
namely it is inside V. The second condition, according to Fig.5.15, can be converted to the
rotation around f j plus the translation f 1− f j (It was f 1− f j + f 1 in Fig.5.15 because we
only consider the grid that was occupied by f 1.). Therefore, the component that correspond
to a finger f j can be expressed by the following expression.

m∪
i=−m

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

V, j = 2, 3, . . . , nf (7.10)

Consequently, Cfrm
otl is the set of voxels enclosed by expression (7.9) and (7.10).

7.1.3 The relationship between Cobj
otl and Cfrm

otl

Now let us compare the relationship between Cobj
otl and Cfrm

otl and make clear their relationship.
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Consider the expression between a layer in Fobj
i and a layer in the first component of

F frm,
m∪

i=−m

T (f1x ,f1y )RπR(iθ)T (−v1x ,−v1y )V and
m∪

i=−m

V (7.11)

They essentially differ with a linear transformation T (f1x ,f1y )RπR(iθ)T (−v1x ,−v1y ). If the
expressions

m∪
i=−m

T (fjx,fjy)RπR(iθ)T (−v1x,−v1y)V, j = 2, 3, . . . ,m

and
m∪

i=−m

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

V, j = 2, 3, . . . , nf

(7.12)

share the same difference, we can draw a conclusion that Cobj
otl and Cfrm

otl can be converted in
layer level by a linear transformation T (f1x,f1y)RπR(iθ)T (−v1x,−v1y).

By left-multiplying

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

V with the difference T (f1x,f1y)RπR(iθ)T (−v1x,−v1y),

we can get

T (f1x,f1y)RπR(iθ)T (−v1x,−v1y)

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

V

=T (f1x,f1y)RπR(iθ)

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

T (−v1x,−v1y)V

(7.13)

since

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

 is a translation matrix in the form of T (δx, δy) and it is

inter-changeable with T (−v1x ,−v1y ).
Considering that ∀ϕ, ∀δx and ∀δy

RϕT (δx,δy) =

 1
0
0

 0
1
0

Rϕ

 δx
δy
1

Rϕ (7.14)

expression (7.13) becomes
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T (f1x,f1y)RπR(iθ)

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

T (−v1x,−v1y)V

=T (f1x,f1y)R(π+iθ)

 1 0
0 1
0 0

R(−iθ)

 f1x − fjx

f1y − fjy

1

T (−v1x,−v1y)V

=T (f1x,f1y)

 1 0
0 1
0 0

R(π+iθ)R(−iθ)

 f1x − fjx

f1y − fjy

1

R(π+iθ)T (−v1x,−v1y)V

=T (f1x,f1y)

 1
0
0

1
0
0
T (fjx−f1x ,fjy−f1y )

 0
0
1

R(π+iθ)T (−v1x ,−v1y )V

(7.15)

Since the first and second column of the translation matrix T (δx, δy) are [1 0 0]′ and
[0 1 0]′ respectively,

T (f1x ,f1y )

 1
0
0

1
0
0
T (fjx−f1x ,fjy−f1y )

 0
0
1

R(π+iθ)T (−v1x ,−v1y )V

=T (f1x ,f1y )

T (fjx−f1x ,fjy−f1y )

 1
0
0

T (fjx−f1x ,fjy−f1y )

 1
0
0

T (fjx−f1x,fjy−f1y)

 0
0
1


R(π+iθ)T (−v1x ,−v1y )V

=T (f1x ,f1y )T (fjx−f1x ,fjy−f1y )R(π+iθ)T (−v1x ,−v1y )V
=T (fjx ,fjy )R(π+iθ)T (−v1x ,−v1y )V
=T (fjx ,fjy )RπR(iθ)T (−v1x ,−v1y )V

(7.16)

The result is exactly the same as expression (7.6) so that we are confirmed that at each
layer Cobj

otl and Cfrm
otl differ with a linear transformation T (f1x ,f1y )RπR(iθ)T (−v1x ,−v1y ). Fig.7.1

graphically illustrates the relationship between layers of the two spaces. The dashed polygon
shape (one slice of Cfrm) in the right part of Fig.7.1 can be converted to the dashed polygon
shape (one slice of Cobj) in the left part of Fig.7.1 by multiplying a linear transformation
matrix T (f1x ,f1y )RπR(iθ)T (−v1x ,−v1y ).

This conclusion indicates that the difference of the two spaces are their metrics which are
essential to caging robustness. In Cobj, our metrics aim to measure the distance from caging
sub-space to free sub-space (see the left part of Fig.7.2). However, due to high computational
cost, the metrics were difficult to be employed explicitly so that I decomposed the constraints
into translational caging together with a rotational component for approximation. In Cfrm,
the metrics become clear and we combine the distances to critical surfaces as the quality
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Figure 7.1: The slices in Cfrm and Cobj can be converted to each other by a linear transfor-
mation.

Figure 7.2: The metrics of the two spaces are essentially different.

function (see the right part Fig.7.2). If we analyze the relationship between the metrics
in these two spaces in detail, it could be in the following form. Note that there is no
transformation along rotational axes, namely the transformation between Cfrm and Cobj are

independent of the rotation. Take a 3-D vector −→uij =

 uix − ujx

uiy − ujy

θi − θj

 in Cfrm for example. A

metric with weighting matrix W in Cfrm can be expressed by

−→uij
′
W−→uij (7.17)

In Cobj, it becomes the following expression.
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  1 0 0
0 1 0
0 0 θi − θj

T (f1x,f1y)RπR(iθ)T (−v1x,−v1y)

 uix − ujx
uiy − ujy

1

 ′

W

  1 0 0
0 1 0
0 0 θi − θj

T (f1x,f1y)RπR(iθ)T (−v1x,−v1y)

 uix − ujx
uiy − ujy

1

 
(7.18)

With the same weighting matrix W , the metrics in these two spaces are quite different
from each other. The metrics heavily relate to the quality functions and the ro-
bustness of caging. From this viewpoint, Cfrm, comparing with Cobj, offers a more
intuitive way to choose satisfying metrics.

7.2 Choosing Proper Algorithms
Now we have explored the caging algorithms to solve the caging test problem and the caging
optimization problem in two spaces. One is the configuration space of target object, namely
Cobj. The other one is the configuration space of finger formation, namely Cobj. Both the two
spaces have some advantages and disadvantages. They can be summarized as Fig.7.3.

Figure 7.3: Comparing the advantages and disadvantages of the algorithms in Cobj and Cfrm.

There are two limitations to the algorithms in Cobj. Firstly, they are limited to convex
objects. Then, some of their parameters like combination of QT and QR and the retraction
of fingers are chosen empirically. However, the algorithms in Cobj are suitable to be used in
fully distributed applications like our distributed end-effector or the multi-robot co-operative
transportation. That is because in these applications, each finger or mobile robot can be
distributedly actuated to any position and there is no apparent eigen-shapes. Their potential
finger formations or mobile robot formations are infinite. It is difficult to recover and update
every Cfrm of those infinite formations. Cobj is therefore more suitable than Cfrm.

Comparing with Cobj, Cfrm is not limited to convex objects. It can be applied to arbitrary
2D objects, including either convex, concave objects or even objects with hollow holes. More-
over, we do not need the empirical parameters like Cobj. The algorithms in Cfrm is complete
to discretization resolution. That is to say, the algorithms can always solve the caging prob-
lems as long as the resolution of grids is high enough. In contrast, the algorithms in Cobj is
not complete since it may fail and reject to cage certain objects due to empirical parameter
settings. However, the algorithms in Cfrm requires us to maintain, say recover and update, a
Cfrm for each finger formation. That means the number of formations is limited. Although
the maintenance time of one Cfrm has been improved greatly by shifting pre-built mapping
structures, the algorithms in Cfrm are most suitable to robotic hands with eigen-shapes or
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robotic hands that can be represented by some pre-defined formations. It cannot cover as
many formations as the algorithms in Cobj.

I proved in the last section that when the orientation is fixed, Cobj
otl and Cfrm

otl can be
converted to each other by a linear transformation. Namely, using Cfrm instead of Cobj is
essentially using different metrics. The metrics heavily relate to the quality functions and
the robustness of caging. From that viewpoint, Cfrm, comparing with Cobj, offers a more
intuitive way to choose satisfying metrics.

At this point, we may have a question like this. How can we choose between them or
can we combine them, preserving the merits and making up the weakness? I maintain that
one may not smoothly combine the algorithms in these two spaces since they are essentially
different in metrics. However, both Cfrm and Cobj have disadvantages and advantages. I
recommend using Cobj and Cfrm separately according to mechanical structure of robots and
tasks. If all capture points are distributed and target objects are convex, I recommend
perform caging planning with the algorithms in Cobj. If capture points are kinematically
constrained or target objects have various shapes, I recommend performing caging planning
with the algorithms in Cfrm. Fig.7.4 shows this idea with concrete illustration.

Figure 7.4: Choosing the proper algorithms according to real applications.
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Chapter 8

Conclusions and Future Works

8.1 Summary of the Contents
This thesis proposes caging planning algorithms by using the configuration space of target
object (Cobj) and the configuration space of finger formation (Cfrm). It concludes that caging
is the loose form of grasping so that it can be used to deal with uncertainty caused by
perception and control. The effectiveness of the algorithms are demonstrated with simulation
and real-world platforms.

The thesis is composed of eight chapters. Besides this 8th chapter, the other 7 chapters
are as following.

Chapter 1 introduces the basic concepts of robotic manipulation and the basic structure
of an end-effector collaboratively developed by me and some students in my group. Along
with the introduction, this chapter explains how I started this research in caging and why I
am confident that caging is promising. This chapter proposes that caging can be used to deal
with uncertainty and can be a good supporting tool for the end-effector. It further defines the
caging test and caging optimization problems and gives an overview of thesis organization.
Specifically, caging test examines whether caging is attained or not while caging optimization
finds a robust finger formation against uncertainty.

Chapter 2 reviews the traditional research topics in grasping closure. It makes clear
that caging is the general form of grasping by connecting caging to such traditional grasping
research topics as force closure, form closure and immobilization based on an intensive review
of contemporary works in grasping closure. In detail, Fig.2.14 visualizes the shift between
caging and traditional concepts in grasping in Cobj.

Chapters 3∼6 propose several algorithms to the caging problems in two different con-
figuration spaces Cobj and Cfrm (Chapter 3 and 5), and apply the algorithms to real robotic
platforms (Chapter 4 and 6). Specifically, Chapter 3 proposes the caging algorithms by
evaluating the regions in which fingers guarantee caging (caging region) based on the re-
implementation of a previous work which aims to find the caging region of a third finger
given a 2D convex target object and two boundary contacts. Then, it explores how to
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push though the limitations of given fingers and extend the algorithms to this proposal to
general cases. The solution is fixing the two boundary contacts alternatively and reducing
the computational complexity of that algorithm by decomposing caging into translational
constraints and rotational constraints. The proposed algorithms solve the caging problems
of 2D convex objects. Their ability to endure uncertainty is demonstrated with simulation
and real-world platforms like the distributed end-effector and multi-robot cooperative trans-
portation in Chapter 4. Chapter 5 explores algorithms in Cfrm instead of Cobj. Since the
center of Cobj is the target object, it is inherently affected by object shapes. Unlike Cobj,
Cfrm is the configuration space of finger formation and is free from the affection of object
shapes. It therefore can be more flexible to various objects, including convex, concave and
even hollow ones. In detail, this chapter firstly compares Cobj and Cfrm. It discusses both
the advantages of Cfrm and the difficulties of implementing caging algorithms in Cfrm and
proposes to overcome the difficulties by introducing the space mapping idea. Raw space
mapping and especially its faster version, the improved space mapping, make it possible to
update the whole space of Cfrm completely and efficiently. Based on the updated Cfrm, the al-
gorithm can quickly find the caging candidates in the updated Cfrm, locate the optimal caging
configuration and solve the caging problems. The caging algorithms in Cfrm are applied to
the design and implementation of a gripping hand in Chapter 6. The algorithms play role in
both design and implementation procedures. During design, the algorithms are employed to
simplify and evaluate deign models. During implementation, the algorithms are employed
to control the hand to cage and grasp objects. The design and implementation demonstrate
advantages of the algorithms.

Chapter 7 explains the relationships of the algorithms and discusses how to select them.
It proves that at different orientations Cfrm is the linear transformation of Cobj. Consequently,
the metrics used in Cfrm and Cobj are different. Both the two tools and their correspondent
algorithms have reasons to exist. They therefore should be treated in parallel and selected
according to requirements of specific applications. The algorithms in Cobj are suitable to fully
distributed capture points but they are limited by object shapes since they are inherently
affected by target objects. In contrast, the algorithms in Cfrm are suitable to any 2D object
shape but they are subject to limited number of finger formations since they are inherently
affected by formations.

8.2 Contributions
The contributions of the thesis can be summarized in Fig.8.1.

As is shown in Fig.8.1, this thesis contributes in theoretical, algorithmic and application
aspects. In theoretical contributions, it initially explains the relationship between caging and
traditional research in grasping closure. Namely, caging is the extension of immobilization.
In algorithmic contributions, it initially uses caging to deal with uncertainty. The thesis on
the one hand proposes some rapid algorithms to deal with caging test while on the other
hand proposes the caging optimization problem and a series of solutions in both Cobj and
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Figure 8.1: Contributions of the thesis.

Cfrm. In application contributions, it applies the algorithms to robotic hands and multi-robot
cooperative transportation. The applications based on the caging algorithms can not only
robustly deal with various uncertainty but also help choose least or proper number of fingers
or mobile robots.

The algorithms in Cobj are limited to convex objects. However, they are suitable to be
used in fully distributed applications like our distributed end-effector or the multi-robot co-
operative transportation. That is because in these applications, each finger or mobile robot
can be distributedly actuated to any position and there is no apparent eigen-shapes. Their
potential finger formations or mobile robot formations are infinite. It is difficult to recover
and update every Cfrm of those infinite formations.

Comparing with Cobj, Cfrm is not limited to convex objects. It can be applied to convex,
concave objects and even objects with hollow holes. However, we have to maintain, say
recover and update, a Cfrm for each finger formation. That means the number of formations
is limited. Although the maintenance time of one Cfrm has been improved greatly by shifting
pre-built mapping structures, it is most suitable to robotic hands with eigen-shapes and it
cannot cover as many formations as the algorithms in Cobj.

Both the algorithms in Cobj and Cfrm have their advantages and disadvantages. They
actually correspond to different solutions of geometric modeling. The algorithm in Cobj

uses wireframe modeling while the algorithm in Cfrm uses solid modeling. Both modeling
technology plays important roles in geometric modeling and either algorithms in Cobj and
Cfrm should exist. I demonstrate their relationship and explain how to choose properly
between them in Chapter 7. Nevertheless, reader may have found that we can also use the
solid modeling technology of Cfrm in Cobj. That is possible. However, that would increase the
cost of evaluating one formation in Cobj, making it lose its advantages. The solid modeling
technology is working efficiently in Cfrm because the formations and grids imply an unique
mapping structure. Simple shifting and addition computation could help recover and update
Cfrm. The center of Cobj is the target object and there is no underlying unique mapping
structure.
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The concepts and algorithms proposed in this thesis can efficiently solve 2D caging prob-
lems in the presence of uncertainty. I believe that caging is a promising tool to deal with
perception and control uncertainty and would like to explore more about this tool in both
theory and application aspects in the future. Some potential future directions can be found
in the following texts.

8.3 Further Development of Caging Algorithms and
Prospective Application Fields

The future work could involve two aspects. One is further development of the caging algo-
rithms. The other is using it to challenge the difficulties caused by uncertainties in robotics.

8.3.1 Further development of caging algorithms
I have repeated lots of times that neither the algorithms in Cfrm nor the algorithms Cobj are
perfect. If one can develop an algorithm that can quickly find an optimized caging with no
limitation in the number of finger formations and the shape of target objects, that would be
an impressive contribution to caging. However, I wonder whether that impressive algorithm
exists with current computers.

Actually, like many researchers in robotics, I believe in data warehouse and cloud com-
puting rather than exact and perfect algorithms. The intelligence of machines should not be
limited to on-board computing, but rely to (1) grid computing and (2) large-scale database.
Of course, the robots based on data warehouse and cloud computing are limited to those
supporting resources. Nevertheless, I believe this solution would succeed. Resources on the
cloud shall one day make robots more intelligent than human beings and of course, solves
caging problems. In the future, giant corporations would run their own supporting data
warehouse and cloud computing resources and offer service to their terminal robots. Robots
would be no more than thin hardware clients. Actually, we can already see some publica-
tions that are working into this direction. In this year’s top conference on robotics, namely
ICRA2013, Ben from Prof. Goldberg’s group at the University of California, Berkeley pub-
lished a robot grasping work by using google object recognition engine [Kehoe et al., 2013].
It is motivating and I will continue tracking their publications to see their ensuing steps.

Another future development of the algorithms is how to deal with 2.5D objects. In this
thesis, all discussion concentrates on 2D objects. We did not discuss about 2.5D or 3D
objects. Actually, the algorithms in Cobj can be extended to 3D objects intuitively. Fig.8.2
illustrates the extension.

Fig.8.2(a) shows the extension of translational caging on 3D object with a simple cylinder
object. I use this simple cylinder because it is more readable comparing with other compli-
cated objects. Given three fingers f1, f2 and f3, the translational caging region of f4 could
be rendered as the intersection of the FF of f1, f2 and f3. This is exactly the same as the
case of calculating the translational caging region of a third finger with 2D objects. Readers
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may compare the shadowed region in Fig.8.2(a) and Fig.3.8 to understand their similarity.
After calculating the caging region of f4, we can measure the robustness of f4 by referring
to its distance to the boundary of its caging region. The distance of the cylinder object is
shown in Fig.8.2(b). Then, like Fig.3.23, we can evaluate the robustness of a finger formation
by alternatively fixing adjacent fingers and by recording the smallest robustness of a single
finger. The remaining steps are exactly the same as 2D cases shown in Fig.3.26. Namely
adding rotational constraints and retract fingers. This extension, of course, is still limited
to convex shapes. I implemented the extension with a regular octahedron. Fig.8.2(c) shows
the result of my implementation. Since regular octahedron is regular, the optimized fingers
locate exactly at the center of each surface. Readers may refer the points and segments
in Fig.8.2(c) for details. Here the points denote point fingers while the segments denotes
surface normals.

Figure 8.2: The algorithms in Cobj can be extended to 3D objects intuitively.

This extension and implementation were neither further explored nor included in the ma-
jor contents of this thesis because I think caging 3D objects with point fingers is impractical.
General robotic hands, even if they are dexterous, can hardly fulfill the kinematic require-
ments of an optimized caging formations. However, discussing about 2.5D objects deserves
efforts. Dealing with 2.5D objects means not only considering about top-view 2D shapes,
but also consider the convexity and concavity of side views. Considering side views requires
installing local sensors onto capture points. Some students in our group are working on that
aspect. They installed infrared sensor arrays to the inner finger surfaces of the distributed
end-effector and measure the shape of target object side views. Considering about side views
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and dealing with 2.5D objects would not only stop target objects from escaping the finger
formation but also stop target objects from “falling out of” the finger formation. Developing
those algorithms would be a promising direction.

8.3.2 Perspective application fields
The second aspect of the future work is to improve the robotic applications which are hin-
dered by the problems caused by uncertainties. An optimized caging offers robustness to
both caging breaking and collision with target objects, and consequently offers robustness
to uncertainties caused by perception and control. I believe that using the caging test and
caging optimization algorithms developed in this thesis would greatly improve those hindered
applications.

One example, which came into my view when I was exploring the problems caused by
uncertainty, is the filed of micro/nano manipulation. When the scale is between 1µm-100µm,
people will name it micro-manipulation. When the scale is lower than 1µm, people name it
nano-manipulation. The manipulation in micro/nano world suffers from lots of uncertainties.
On the one hand, perception in the micro/nano world is quite difficult. There is no existing
method to simultaneously image and manipulate atoms. On the other hand, surface forces
(e.g. electrostatic force, surface tension, van der Waals, casimir, etc) in the micro/nano
world play dominating roles over gravity or inertia forces. It is difficult to model these forces
mathematically. They are uncertain and deteriorate traditional control. Therefore, pure
geometric solution like caging would probably play a promising role.

Like the macro-world applications in this thesis, some of the micro/nano manipulation
systems are fully distributed while others are not. For example, manipulating objects with
optical tweezers or micro-robots usually fall in the first category while manipulating objects
with probe-tips or micro-grippers usually fall into the second category. Here are some works
that relate to these categories. For instance, the bubble robots in [Hu et al., 2011] are ex-
amples of micro-robots. David’s work [Cappelleri et al., 2012] and some earlier work of our
group [Sato, 1996] are examples of probe-tips. The electro-thermally activated cell manipu-
lator [Chronis and Lee, 2005] is an example of micro-manipulation. In the following part, I
would like to discuss in detail about optical tweezers.

Optical tweezers [Grier, 2003][Onda and Arai, 2011] use two highly focused laser beams
to trap very small crystal beads. That is possible owning to the attractive and repulsive
forces caused by optic photons. Each bead can be viewed as a distributed capture point
and researchers use many beads controlled by optical tweezers to co-operatively manipulate
target objects in the micro-world. Like the multi-robot co-operative application in chapter
4, the optical tweezer-based secondary micro-manipulation suffers from uncertainty caused
by formation control. Moreover, since controlling multiple beams requires more laser beams
or more complicated control of spatial real-time modulator to modulate a single beam,
researchers prefer less number of beads. Therefore, I strongly believe caging algorithms
would play important roles in this field.
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Figure 8.3: A typical micro-manipulation system (optical tweezers).

Fig.8.3 illustrates a typical micro-manipulation system. When spatial real-time modula-
tors are employed, the number of formations of beads is usually limited to pre-programmed
modulating patterns. In that case, the caging algorithms in Cfrm is preferable. When spatial
real-time modulators are not employed, independent beads are distributedly controlled by
independent laser beams. In that case, the caging algorithms in Cobj is preferable. I am going
to organize a workshop on “caging and its application in grasping/multi-agent cooperation”
in November, 2013 during the International Conference on Intelligent Robots and Systems
and discuss the possibility of these ideas with some researchers in micro/nano manipulation
fields.

Another example is using caging to deal with in-hand manipulation. In-hand ma-
nipulation means to hold and move an object with one hand. It requires that the ob-
ject should be constrained into the hand while being manipulated. The handle project
[Handle Project, 2013] gives an excellent collection of state-of-the-art researches in this field.

However, state-of-the-art researches in in-hand manipulation aims at the manipulation
of dexterous robotic hands which offer the possibility of rigid analysis of forces and force
closures. In another word, the robots hold and move objects in hand by using forces. Using
forces lead to the major difficulty of in-hand manipulation. That is, the state-of-the-art in-
hand manipulation is hindered by the uncertainty from perception and control. Caging can
be used to deal with uncertainty. Therefore, we have a perspective future research direction
that can we do in-hand manipulation without forces by caging? If that is possible, we can
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not only get merits from avoiding explicit force and control analysis but also do in-hand
manipulation with simple hands [Mason et al., 2012] and reduce platform costs. Caging-
based in-hand manipulation would greatly decrease the cost of deployment and real-world
applications. This is a passionating topic and I am going to study further into this aspect
in my postdoctoral research.

Caging is not only from the idea of bird cage but also from lots of nature creative (see
the Venus flytrap plant[Wikipedia, 2013b]1). I like caging, I believe in caging and I would
like to spread caging to related research and applications. As the last sentence of my thesis,
I would like to re-emphasize the merits of caging – Caging offers robustness to uncertainty.

1Plant suffers from perception/control uncertainty comparing with animals, they employ caging to com-
plement the drawbacks caused by the uncertainty.
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