
Artist-friendly Framework for Stylized 

Rendering
（アーティストによる陰影デザインのためのフレームワーク）

by

Hideki Todo

藤堂　英樹

A Doctor Thesis (Abstract)

博士論文（要約）

Submitted to

the Graduate School of the University of Tokyo

on September 27, 2013

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and Technology

in Computer Science

Thesis Supervisor: Takeo Igarashi五十嵐　健夫

Professor of Computer Science



ABSTRACT

In recent days, 3D computer graphics techniques are widely used in digital animation and
video games for efficiently producing animation. Advances in stylized rendering techniques that
can emulate hand-drawn stylized shading styles make 3D cartoon characters more common in
digital animation films. However, these stylized rendering results are generated from physical
lighting result according to predefined procedures. Providing efficient and intuitive interface for
artists to design their expressive shading styles remains as a challenge.

In this thesis, we introduce a new framework,integration of artistic depictions with physics-
based lighting, for designing artist-friendly shading model and interface. This framework is
based on two principles: (1) directable shading model for artistic control and (2) seamless in-
tegration with 3D lighting. Based on the principles, we apply this framework to the following
three different levels of shading design process, from small scale to large scale control.

First, we presentlocally controllable shading with intuitive paint interface. For directable
control over shaded area, we propose a method to modify computed lighting term with a scalar
offset function, obtained by painting process. Our approach enables appearance-based design for
the desired changes to light and shade.

Second, we presentshading stylization based on model features. This method allows inter-
active design for lighting enhancements based on model features, which would require time con-
suming painting process with the first method. Our system enables commonly used hand-drawn
lighting effects, such as straight lighting effect on flat planes and edge emphasizing lighting effect
on sharp edges.

Third, we presentpractical shading model for expressive shading stylesfor even larger scale
control. In this method we focus on overall shading appearance while the first and second meth-
ods are limited to simple shading tones. The artist can design his shading style directly on a
reference sphere. Our system then transfers the designed shading style to the target model based
on 3D light and view settings.

Our framework enables interactively design of expressive stylized shading styles using com-
pact and consistent representations. These successful results suggest the validity of our two
principles for stylized shading. Finally, we discuss limitations and future research directions
based on our finding in the thesis.



論文要旨

近年，3DCGは効率よくアニメーションを制作できるため，映像作品やゲームに幅広く

利用されている．3DCGの陰影を手描き風に表現する技術も身近になり，手描きと 3DCG

を組み合わせたアニメーション作品も数多く見られるようになった．しかし，既存の手描

き風の陰影表現の技術では，物理計算された明るさ情報を直接機械的に手描き風の陰影に

変換しており，アーティストが陰影を自在に制御するという点では課題が多く残っている．

そこで，我々は，アーティストが演出を行うための陰影の表現形式とインターフェース

を設計する際の指針として「物理と演出を融合した手描き陰影表現のフレームワーク」を

提案する．より詳細には，直観的かつ効率的な陰影のデザインを支援するため，(1)アー

ティストが演出可能な陰影モデルと (2)既存のライティングとの親和性の双方を満たすよ

うな形で設計する．本論文ではこの設計指針に基づき，局所的制御から大域的制御まで異

なる 3つのレベルの特性に応じたデザイン手法を提案する．

第一に，「ペイントによる局所的な陰影制御法」を提案する．この手法では，局所制御に

よる陰影の演出を実現するため，物理的に計算されたライティング結果をペイント情報に

基づいて補正する，というアプローチを取った．直観的なペイント UI を提供することで，

見た目ベースでの陰影のデザインを実現できる．

第二に，「形状の特徴表現のためのライティング強調手法」を提案する．この手法は，第

一の手法では調整が難しい大域的な形状の特徴部分に対し，アーティストのライティング

演出のデザインを支援するものである．手描きによく見られるような平坦さを強調する直

線的なライティングや鋭さを強調する輪郭線付近のライティングを，インタラクティブに

デザインすることができる．

第三に，さらに全体の見た目を調整する手法として，「手描風陰影のマテリアルデザイン

手法」を提案する．この手法では，第一・第二の手法では調整することができない陰影全

体の見た目に注目している．アーティストはガイドとなる球に手描き独特の陰影効果をペ

イントでデザインすることができ，デザインした陰影効果はライトの動きに合わせて３次

元オブジェクト全体に反映される．

どのシステムにおいても，物理と演出の融合を意識し，既存のライティングとの親和性

を実現している．提案したフレームワークを用いることで，アーティストの複雑な陰影表

現を，コンパクトかつ整合性のある表現形式でインタラクティブに作成することができる．

これらの結果は，我々が提案した物理と演出を融合したフレームワークの有効性を示唆し

ている．また，本研究で得られた知見を基に，将来研究の方向性についても議論する．
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Chapter 1

Introduction

Recent progress in computer graphics has led to many 3D rendering techniques that are
widely used in digital animation and video games. In 3D computer graphics, character
animations with illuminations are efficiently produced from pre-designed 3D scenes by
physical simulations. Accordingly, researches of stylized rendering have focused on
making use of 3D scenes to reproduce abstracted styles of artists. For example, Lake
et al. [50] proposed a real-time rendering technique to produce the banded, multi-tone
shading of traditional hand-drawn cartoons. In this technique, the continuous gradation
of light in diffuse, specular lighting is converted to multi-tone colors through a simple
1D color mapping process (see Figure 1.1). This technique, widely known as a cartoon
shading, is now available as the built-in feature of much commercial 3D software [8–
10, 60]. Beside the simple cartoon shading, artists can use various stylized shading
techniques [11,36,37,50,58,87,107]. As a result, 3D characters now commonly exhibit
stylized shading [19,59,72,102].

Figure 1.1: Cartoon shading process. (Left) Physical lighting, showing gradation of
light. The brightness values are computed from diffuse and specular reflectance models.
(Right) Cartoon shading. The banded multi-tone appearance is obtained through simple
1D color mapping of the brightness values.

However, conventional stylized shading techniques that produce rendering results as a
simple conversion of a physical lighting model are insufficient for most artists. In the
case of stylized shading applications such as digital cel animation, lights and shades
often include artistic depictions to not only convey illumination or material, but also
to emphasize character’s mood or geometric feature. Such shading effects are more
likely to be artificial, thus conventional shading approaches often result in undesirable
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shading. The top images in Figure 1.2 show such an example in the case of cartoon
shading, where the artist may want to add a shaded area below the right eye, as shown
on the left image. In the second example (middle images), the artist may desire straight
lighting with edge enhancement to show the flatness and sharp feature of the object.
The bottom images show another example, where the artist may want small-scale stroke
styles to have more expressive visual appearance. In all examples, the artist would like
to have the directability to modify the rendered shading.

To modify such undesirable shading results, conventional tricks are often used in produc-
tion work (see Figure 1.3). Additional lights would be a simple and efficient approach
to design small local lighting effects. However, it is difficult to design artificial shading
effects since this approach is strongly constrained by a physical lighting mechanism.
This physical constraint can be relaxed by changing the geometry, but its indirect editing
process requires additional trials and errors to obtain a desired result. The most flexible
way for designing physically-incorrect shading effects would be animating textures, but
it requires a lot of time consuming manual painting and key-framing tasks for artists.
Despite the crucial demands for an artist-friendly control of stylized shading, it is dif-
ficult to handle them just using conventional tricks. In production environments, artists
need both flexible and efficient way to support their creative process.

In the stylized rendering research fields, there are a few significant methods to support
stylized shading design tasks of artists. Related to the first and second issues in Fig-
ure 1.2, several approaches provide the artist with highlight shape control [4,5,20,68,74].
However, their approaches are not sufficient for the shading case in the first issue, where
the artist want to freely design an arbitrary shape that requires more integrations with
original lighting than the highlight case. In addition, they cannot be used for shading
stylizations in the second issue since their shape controls are applied to the overall light-
ing shapes. For the third issue, the multiple layered material design system [96] allows
the artist to design complicated shading styles beyond simple cartoon shading styles.
However, small-scale stroke styles as shown in Figure 1.2 cannot be designed using
their system. The challenge remains to provide an efficient and intuitive interface for
artists to design their own expressive shading styles.

1.1 Integration of Artistic Depictions with Physics-Based Lighting

The goal of this thesis is to establish efficient and effective stylized shading design meth-
ods for such practical demands in production work. As a first step toward a new
methodology, we consider how to improve shading design processes to overcome the
conventional shading issues shown in Figure 1.2. In contrast to previous researches,
our shading design targets are difficult because of two requirements: more fine-grained
controls over shading appearances and their 3D lighting interactions. First, artists want
to design more detailed physically-incorrect shading effects (arbitrary lighting shapes,
feature-dependent lighting effects, or small-scale stroke styles) beyond simple global
light shape controls. Second, we need to provide suitable interactions between the
physically-incorrect lighting effects and existing lighting controls to make use of the
efficiency of 3D lighting mechanisms. To fulfill these two requirements, we introduce
a new framework,integration of artistic depictions with physics-based lighting, for de-
signing an artist-friendly stylized shading model and its interface. Figure 1.4 illustrates
this framework, which consists of two principles:
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Principle 1: Directable Shading Model for Artistic Control

Our first principle to meet directional demands is to introduce effective, compact shad-
ing models that let the artist modify the shading appearance with intuitive, interactive
manners (Principle 1). In existing 3D systems, the artist needs to carefully control mul-
tiple elements at the same time: shapes, materials, cameras, and lights. These indirect
controls make the shading process difficult. Thus, it is helpful to design a compact shad-
ing model that lets the artist modify the original shading using an intuitive, interactive
design process. Its parameters and controls are designed to directly modify the shading
appearance, thus each shading design process becomes more simple and flexible to get a
desired shading result. For example, when we want to modify shaded areas, we can make
an arbitrary shape by painting. In addition, shading stylizations with appearance-based
parameters are also useful for emphasizing the specific model features such as surface
flatness and edge feature. Our directable shading models aim to provide new intuitive
shading design methodologies for stylized shading effects, which would be difficult to
achieve using conventional light controls.

Principle 2: Seamless Integration with 3D Lighting

Our second principle to meet directional demands is to provide the directable shading
models that fit into a existing 3D lighting process (Principle 2). In making 3D character
animation, light and camera controls are essential for efficiently changing the lighting.
To capitalize on these existing controls, we designed each directable shading model
in a manner that can be affected by dynamic lighting. In addition, we also provide a
Key-framing UI, which allows the artist to design desired animation in a convenient
and familiar way. By following this principle, we can combine artistic depictions for
expressive shading appearance and physics-based lighting for efficient rendering of the
3D scene.

1.2 Experimental Systems

To verify the effectiveness of our proposed stylized shading design framework, we
present three shading design systems for different levels of shading design processes,
from small scale to large scale controls.

Locally Controllable Shading with Intuitive Paint Interface . First, we present a 3D
stylized shading system to add local light and shade using paint operations. The basic
idea of this method is to modify the lighting term directly, adding a scalar offset func-
tion obtained from the painted area. The modified shading is consistent and seamlessly
integrated with the original 3D lighting. Our system demonstrates how our method lets
artists design light and shade locally as desired.

Shading Stylization Based on Model Features. Second, we present a 3D stylized
lighting method that enhances models’ features. Artists can create in 3D the same feature
enhancements as are commonly used in 2D manual artworks: straight lighting on flat
planes, edge enhancement on sharp edges, and detailed lighting for jagged shading. The
central idea of this method is to use simple lighting transforms and offsets based on the
model features. Our system demonstrates how our method is effective for designing
shading stylizations over model features.
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Practical Shading Model for Expressive Shading Styles. Third, we present a 3D styl-
ized material design system for designing overall shading appearance with prominent
features. Our system lets the artist paint his shading style on a reference sphere. The
designed shading style is interactively transferred to the target model while the artist
manipulates the light source. The basic idea is to introduce a new 2D texture projection
process for expressive shading styles based on light space surface normals. We also ex-
plore practical shading stylization techniques by making use of the light space normal
representation. Our system demonstrates how our method is useful for designing com-
monly used shading styles, such as minimal shading, illustrative shading, and stylized
metallic, etc.

1.3 Contributions

Our goal is to provide an artist-friendly shading model and user interface for designing
stylized shading effects which are effective for production work. The contributions of
this work include the proposed framework for this goal and three experimental systems
based on the framework.

New framework for an artist-friendly shading model and user interface. We present
a new framework, called “integration of artistic depictions with physics-based lighting”,
as a general key guideline for efficient and effective stylized shading design. We pro-
pose two principles for this key guideline.Principle 1 is directable shading model for
artistic control, which allows the artist to interactively design shading appearance using
intuitive user interfaces.Principle 2 is seamless integration of the directable shading
with 3D lighting, which enables dynamic controls of shading appearance using familiar
3D UIs. By following these principles, we can merge non-physical behavior of artistic
depictions and physical behavior of 3D lighting, which makes the shading design pro-
cess more flexible to make stylized character animation. In contrast to previous systems,
our framework can handle more detailed non-physical lighting effects with suited 3D
lighting interactions.

Three experimental shading design systems. Based on the proposed framework, we
developed shading design systems for small scale local shaded areas, middle scale model
features, large scale shading materials. The first system was developed to control local
shaded areas, where we provided a paint brush user interface to modify shaded area.
This system allows the artist to freely design arbitrary shapes of the target shaded area
for small scale controls. The second system was developed to enhance model features
such as surface normals and edges, where we provided a 3D light UI for straight light-
ing effects and appearance-based parameters for edge enhancement and detail lighting
effects. This system allows the artist to design the feature-dependent lighting effects
for middle scale controls. The third system was developed to design overall shading
materials, where we introduced a new shading model to design an expressive shading
style beyond simple cartoon shading styles. This system allows the artist to design light-
dependent shading stylizations for large scale controls. All systems are carefully de-
signed according to principles of our framework, which provides efficient and effective
stylized shading design process for each design target.
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1.4 Outline

This thesis is organized as follows. In Chapter 2, we review existing methods of stylized
shading. After briefly describing the overview, we review the stylized shading methods
used in three major areas of research: early stylized rendering, style extensions, and
directable cartoon shading. The last topic features artistic controls that are closely related
to our framework. We also briefly discuss other rendering techniques related to stylized
shading design.

In Chapter 3, we describe our approach for the artist-friendly shading design framework.
We first review and analyze a general cartoon shading process used in typical produc-
tion work. We then consider appropriate representation of directable shading models in
accordance with two proposed principles: directable shading model for artistic control
(Principle 1) and seamless integration with 3D lighting (Principle 2).

In Chapters 4-6, we present three experimental systems for the different levels of shading
design process: locally controllable shading with intuitive paint interface (small
scale) in Chapter 4,shading stylization based on model features(middle scale) in
Chapter 5, practical shading model for expressive shading styles(large scale) in
Chapter 6.

In Chapter 7, we examine the capabilities of the three experimental systems. We first
summarize the overall features of the three methods from the perspective of our frame-
work, and then compare the directable mechanisms used in these systems.

Chapter 8 presents our conclusions. We summarize the contributions of the experimental
systems, and then discuss the limitations of the framework. Finally, we discuss future
research directions.

1.5 Publications

The work presented in this thesis is the result of collaborations and projects that have
been published as follows:

• The system forlocally controllable shading with intuitive paint interfacedescribed
in Chapter 4 was presented as “Locally controllable stylized shading” [90] at
ACM SIGGRAPH 2007 in San Diego, USA, in collaboration with Ken Anjyo and
William Baxter from OLM Digital, Inc. and Takeo Igarashi from the University
of Tokyo.

• The system forshading stylization based on model featuresdescribed in Chapter 5
was presented as “Stylized lighting for cartoon shader” [91] at the 22nd Annual
Conference on Computer Animation and Social Agents (CASA 2009) in Amster-
dam, the Netherlands, in collaboration with Ken Anjyo from OLM Digital, Inc.
and Takeo Igarashi from the University of Tokyo.

• The system forpractical shading model for expressive shading stylesdescribed
in Chapter 6 was presented as “Lit-Sphere extension for artistic rendering” [92]
at Computer Graphics International (CGI 2013) in Hannover, Germany, in collab-
oration with Ken Anjyo from OLM Digital, Inc. and Shun’ichi Yokoyama from
IMI, Kyushu University.
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Figure 1.2: Comparison of hand-drawn shading (left) with conventional cartoon shad-
ing (right). (Top) The cartoon shading fails to render the shaded area blow the right eye
that emphasize the character’s fierceness. (Middle) The cartoon shading fails to cap-
ture shading stylizations that enhances model’s flatness and sharpness. (Bottom) The
cartoon shading fails to represent small-scale stroke styles.
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Figure 1.3: Conventional tricks to modify undesirable shading result.

Figure 1.4: Integration of artistic depictions with physics-based lighting. (Left) Artists
can modify the original shading result using intuitive appearance-based UIs or parame-
ters. (Right) Artists can manipulate the designed shading using existing 3D lighting and
animation controls.
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Chapter 2

Related Work

In this chapter, we review existing methods for stylized rendering and discuss how they
relate to our approach. Figure 2.1 shows the methods relevant to our work, the chapter
sections in which they are discussed, and their classification according to two prop-
erties: directability (from less to highly directable) and expressiveness (from less to
highly expressive). Highly directable methods focus on how to provide intuitive and
interactive controls over shading appearance, whereas less directable methods permit
limited controls using more automatic approaches. Highly expressive methods focus on
how to achieve a rich variety of shading styles with prominent features, whereas less
expressive methods are limited to simple shading styles such as cartoon shading. In
Section 2.2, we review several fundamental methods for interactive 3D stylized render-
ing. In Section 2.3, these fundamental methods are extended to yield more expressive
shading. There are several significant methods for directable control (Section 2.4 and
Section 2.5), which are the main focus, which are the main focus of this thesis. These
areas of research include our methods described in Chapters 4 and 5. We further ex-
plore how to establish both directability and expressiveness in Chapter 6. Finally, in
Section 2.6 we briefly review two several other stylized rendering methods: painterly
rendering and line drawing.

Figure 2.1: Stylized rendering methods.
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2.1 Lighting Design for Photorealistic Scenes

Before describing the stylized rendering methods, we review the lighting design methods
for photorealistic scenes, which form the foundations for the stylized rendering methods.
For photorealistic appearance, simple reflectance models can be used: Lambert (diffuse),
Phong (specular) [71], and Blinn-Phong (specular) [15]. For example, a lighting model
for diffuse and specular effects can be defined as:

c= cdId +csIs, (2.1)

where diffuse termId ∈ R and specular termIs ∈ R are obtained from the specific re-
flectance model. The final colorc is adjusted by the diffuse colorcd and the specular
color cs. Figure 2.2 illustrates a typical example using the Blinn-Phong lighting model.
This model uses as inputs a light vectorL , a view vectorV, a surface normal vectorN,
and the half vectorH := (L +V)/∥L +V∥. The diffuse termId and specular termIs are
obtained by the dot products ofL ·N andH ·N respectively.

Figure 2.2: Blinn-Phong lighting model. (Top) Vectors for computing Blinn-Phong
lighting. The diffuse term Id and specular term Is are defined by dot products of these
vectors. (Bottom) Visual illustration of the Binn-Phong equation.

Beyond these simple reflectance models, more physically-plausible lighting effects can
be modeled by using a bidirectional reflectance distribution function (BRDF) [6,7,23,55,
104] and related techniques: bidirectional scattering distribution function (BSDF) [38],
and bidirectional surface scattering reflectance distribution function (BSSRDF) [32].
The fundamental difficulty in using these shading models is to finding the optimal light
placement and the choice of parameters to obtain the desired shading. Several good ap-
proaches have attempted to measure the scattering profiles of physical materials [1, 26,
31,41,76,83,94,103,105]. Other approaches have tried to find the proper light placement
from user-designated highlights and shadows in the scene [2,22,48,51,63,69,85,88].

The advantage of BRDF related approaches is their ability to illuminate models with
visual realism. Once the appropriate parameters are found for a specific material, it
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can be successfully used for 3D animation. On the other hand, these approaches are
a difficult for artists to use. Therefore, most stylized rendering approaches use simple
lighting models for their fundamental mechanisms.

2.2 Early Stylized Rendering

2.2.1 Artistic Stylization for 2D Static Images

In the early stage of stylized rendering techniques, most of these shading represen-
tations were 2D static grayscale images, which are used to reproduce traditional art-
works. In 1976, Floyd and Steinberg [35] proposed the fundamental idea of digital half-
toning where the brightness values are converted into black and white pixels through
thresholded quantization. Similar to this seminal work, 2D static grayscale brightness
had been used for various printing artworks: stippling [29, 86], pen-and-ink illustra-
tion [30,79–81], digital engraving [34,66,67], and woodcut illustration [57,108].

In summary, their idea is to define a color map functioncm: R 7→ C for the brightness
value I ∈ R, whereC denotes a color space. They considered only the simple case of
static 2D input of the brightness valueI . Thus, they were limited in handling dynamic
shading changes. In this thesis, we focus more on 3D rendering techniques, which pro-
vide the artist with interactive shading design for 3D character animation.

2.2.2 Stylized Rendering for 3D Scenes

In 3D rendering, stylized shading is based on the simple lighting models described in
Equation 2.1. For example, The Technical Illustration Shader of Gooch and Gooch
[36,37] uses the Half-Lambertian diffuse term to produce cool-to-warm color gradients.
One significant invention by Lake et al. [50] is an interactive cartoon shader where the
diffuse term is converted into banded multi-tone colors through simple 1D color map-
ping. Mitchell et al. [58] modified the Lambertian and the Phong shading models for a
customized illustrative look in their video game applications.

Figure 2.3: Examples of typical stylized rendering methods for 3D scenes. (Left) Tech-
nical Illustration Shader developed by Gooch and Gooch [36,37] (c⃝1999 ACM). (Mid-
dle) Interactive stylized rendering proposed by Lake et al. [50] (c⃝2000 ACM). (Right)
Illustrative rendering used by Mitchell et al. [58] (c⃝2007 ACM).

The primary advantage of these approaches is their simplicity: a single 1D color map
function is sufficient to model the stylized shading. The final shading colorc ∈ C is
obtained by:

c= cm1D
d (Id)+cm1D

s (Is), (2.2)
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where the 1D color map functionscm1D
d : R 7→ C andcm1D

s : R 7→ C are applied to the
diffuse termId and specular termIs. This simple mechanism permits interactive shading
design using a 3D lighting process, so it is widely used as a foundation for other stylized
rendering methods. In the next section, we review existing methods for more expressive
shading styles derived from the 1D color map approach.

2.3 Style Extensions for Expressive Shading

2.3.1 2D Color Map Functions

More complex effects can be obtained using 2D color map functions. Winnemöller and
Bangay [107] introduced a 2D color map function to capture the stylistic behavior of
specular effects:

c= cm2D(Id, Is), (2.3)

where the 2D color map functioncm2D : R2 7→C takes the two variablesId andIs. Barla
et al. [11] generalized this idea for various shading stylizations such as level-of-detail,
depth-of-field, and back-lighting. In their approach, the specular termIs is replaced by
a general attribute termIa ∈ R. Using these inputs, the final shading is controlled by
a 2D texture, which stores the 2D color map functioncm2D. Figure 2.4 illustrates this
application of a 2D color map to create a diffuse-dependent specular effect.

The Lit-Sphere model of Sloan et al. [87] takes another approach to the use of 2D texture:
the 2D shading tones are based on the view-space surface normals (see Figure 2.5). For
a given surface normal vector in view spaceNv := (Nvx,Nvy,Nvz), the Lit-Sphere shading
model maps a color as:

c= cm2D(Nvx,Nvy), (2.4)

where the 2D color map function (stored in a 2D texture) takes the components of the
surface normal vectorNvx andNvy. Sloan et al. demonstrated various examples of expres-
sive 2D shading tones to reproduce typical shading styles of traditional artworks. This
technique was extended to volume rendering with blended multiple Lit-Sphere shad-
ing [17].

Figure 2.4: Example of a 2D color map from X-Toon [11] (c⃝2006 ACM). The 2D
texture color is referenced by the diffuse term Id and the specular term Is. The highlight is
present only when both the diffuse term and the specular term are high, which effectively
emulates a metallic appearance.

While these approaches provide additional functionalities for designing expressive shad-
ing styles, 2D textures are not suitable for dynamic control, which is crucial for creating
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Figure 2.5: Example of a 2D color map using Lit-Sphere [87]. The 2D texture color is
referenced by the view space normal vectorNv := (Nvx,Nvy,Nvz). This enables a view-
dependent shading effect with effective 2D shading tones.

animation. In contrast, all of our methods presented in Chapters 4- 6 permit dynamic
control, which is seamlessly integrated with the familiar 3D shading design process.

2.3.2 Surface Feature Enhancement

Several approaches have used shape depiction to extend conventional stylized shading
styles. In practical applications such as video games, ambient occlusion [18, 70] is
widely used to add occluded shadow effects to diffuse shading. Exaggerate shading [75]
uses multiple scale normals to show the bumpy details of an object (see the left image
of Figure 2.6). The 3D Unsharp Masking technique of Ritschel et al. [73] modifies the
outgoing radiance to enhance local contrast. Vergne et al. proposed methods to enhance
shape depiction based on view-dependent geometric features [97, 98] (see the middle
image of Figure 2.6). They also proposed radiance scaling techniques [99, 100] that are
extensions of their previous methods for precomputed radiance data (see the right image
of Figure 2.6).

In summary, these methods define a vector transform functionfL : S2×G 7→ S2 for the
light vectorL ∈ S2 based on the geometric propertyG ∈G, whereG denotes the space
of the geometric property. The methods focus on use of the geometric propertyG for
providing better visual perception of geometric appearance. In contrast, our shading styl-
ization method presented in Chapter 5 focus on appearance-based control, determined
by model features.

2.4 Directable Control for Stylized Rendering

One important requirement of a shading design system is to provide the artist with di-
rectable control over the shading appearance. The cartoon highlights of [4, 5, 96] deal
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Figure 2.6: Surface Feature Enhancement. (Left) Exaggerate shading presented by
Rusinkiewicz et al. [75] (c⃝2006 ACM). (Middle) Light warping technique proposed by
Vergne et al. [97,98] (c⃝2009 ACM). (Right) Radiance scaling techniques presented by
Vergne et al. [99,100] (c⃝2010 ACM).

with shape transformations by dragging operations. Similarly, Ritschel et al. [74] pro-
posed a method to deform lighting properties through a cloth simulation.

Some approaches give more direct control over the shapes of highlights. For exam-
ple, Choi et al. [20] proposed the use of texture projection to design arbitrary highlight
shapes. Pacanowski et al. [68] provided intuitive painting methods to control highlight
shapes.

Figure 2.7: Directable control of stylized rendering. (Left) Directable cartoon highlights
presented by Anjyo et al. [4] (c⃝2006 ACM). (Right) Projective texture for highlights
proposed by Choi et al. [20] (c⃝2006 Springer).

Among these methods, the approach of Anjyo et al. [4] is the most relevant to our work
because they focused on an artist-friendly system that included dynamic control. The
highlight shape could be interactively designed using simple transform operations. In
their approach, the shape of the highlight is deformed by a vector transform function
fH : S2 7→ S2 for the half vectorH. With a set of simple parameters, the vector transform
function fH permits interactive design of symbolic highlight shapes.

Whereas Anjyo et al. [4] focused on the global transformation of a simple circular high-
light shape, our methods provide detailed control over the shape of local lighting effects
(Chapter 4) and shading stylization based on model features (Chapter 5). In addition,
our practical shading model (Chapter 6) creates a more expressive shading appearance
than simple shading appearance of these methods.
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2.5 Directable Control for Expressive Shading

Providing directable control of expressive shading is major challenge in stylized ren-
dering researches and their applications. There is a significant demand for fine-grained
control over expressive shading styles. However, there have been very few studies on
how to provide the interactive techniques to meet this demand.

Figure 2.8: Various shading styles presented by Vanderhaeghe et al. [96] (c⃝2011
ACM). Their method allows the design of multiple shading primitives, including dynamic
control over shapes and reflectance properties.

Among the many shading techniques, one recently proposed by Vanderhaeghe et al. [96]
may provide the best solution to date to the difficult problem of dynamic control. Their
method gives the artist control over shapes of multiple lighting and their reflectance
properties, based on proposed shading primitives. However, each shading primitive can
handle only conventional 1D, not 2D shading tones.

Inspired by their work, we explored practical shading models to design 2D shading tones
with suitable dynamic shading stylization (see Chapter 6). Although additional capabil-
ities are required to meet the many demands of artists, we believe that our approach
provides a practical solution to the key challenge of dynamic control of shading design
in stylized rendering.

2.6 Other Stylized Rendering Methods

In this section, we briefly review other stylized rendering methods for expressive artistic
styles, although not specifically related to shading.

2.6.1 Painterly Rendering

The approaches described so far focused on effective shading models for specific target
appearances. On the other hand, painterly rendering techniques focus on overlapping
brush strokes. In 1996, Meier [56] proposed a painterly rendering pipeline, in which
the system applies a brush stroke style to static object-space particles. This work was
extended to dynamic particle systems [12, 14, 47], where the particles are placed by
temporally coherent noise function. In this approach, shading information is used only
to specify the color of each particle. Kulla et al. [49] and Yen et al. [109] relied more
on shading information to determine the transition of brush stroke styles affected by
brightness values.
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Figure 2.9: Painterly rendering. (Left) Painterly rendering method presented by Meier
[56] ( c⃝1996 ACM). (Right) Recent method of coherent shading stylization proposed by
Bénard [13] ( c⃝2013 ACM).

Although these approaches can deal with detailed shading appearance using brush stroke
styles, few digital animations and computer games use these methods. Dynamic control
of brush strokes is more difficult and time-consuming than shading control. Never-
theless, the animation industry is researching intuitive and efficient control over brush
stroke styles [13, 25, 84, 106]. We expect that these rendering styles using appropriate
brush stroke controls will be employed by artists in the future.

2.6.2 Line Drawing

Another important element of stylized rendering is line drawing, which has been of in-
terest to the stylized rendering community since the work of Saito and Takahashi [78].
In 1997, Markosian et al. [53] proposed an interactive stylized line drawing method
responding to views. Northrup and Markosian [61] extended this work to include tem-
poral coherence and line stylization. A silhouette detection algorithm was improved
by Hertzmann et al. [39] and Sander et al. [82] for efficient line rendering. DeCarlo
et al. [27] proposed suggestive contours, which depict the shape with interior contours.
Lee et al. [52] presented an image space approach for finding edges and ridges. Appar-
ent ridges presented by Judd et al. [42] extract view-dependent ridges in an object space
approach.

Figure 2.10: Line drawing styles presented in WYSIWYG NPR [44] (c⃝2002 ACM).

WYSIWYG NPR proposed by Kalnins et al. [44] is unique in that the system allows the
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artist to design annotated strokes and brush styles directly on the 3D model. They ex-
tended this work to maintain temporal coherency for stylized silhouettes [45]. OverCoat,
a system recently presented by Schmid et al. [84] also aims to provide an artist-friendly
framework for line drawing.

Although this thesis is focused on shading design, line drawing is also an important
visual element of stylized rendering. More expressive results could be obtained by com-
bining such line stylization techniques with the shading methods of our system.

2.7 Summary

In this chapter, we reviewed existing methods of stylized rendering from the perspective
of directable controls which are essential for an artist-friendly stylized shading design
framework. Like the stylized shading methods described above, our approach is also
based on the fundamental methods of early stylized rendering in Section 2.2. Style ex-
tensions in Section 2.3 provide additional functionalities for designing expressive shad-
ing styles, but often lack the capability for dynamic control of the shading appearance
through an intuitive and interactive interface. Some approaches allow more direct con-
trol over the lighting shape (Section 2.4) but provide little in the way of shading style
controls.

Inspired by these approaches, we sought to provide an intuitive and interactive methods
for stylized shading design for production work using our artist-friendly shading design
framework. In contrast to other researches, our methods in Chapters 4- 6 provide new
shading representations for efficient shading design to meet typical directional demands
where non-physical artistic depictions are seamlessly integrated into physics-based light-
ing.
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Chapter 3

Our Approach for Artist-Friendly Stylized Shading
Design

In the reminder of this thesis, we will apply the proposed principles to different lev-
els of shading editing to verify the effectiveness of our artist-friendly shading design
framework. To achieve this, introducing well-designed behavior of shading models is
essential for an intuitive and efficient design process. In this chapter, we consider appro-
priate representations of directable shading models for different levels of shading design
processes, from small scale to large scale control. We start by reviewing and analyzing
the general cartoon shading process, that is commonly used in a production work. Based
on this analysis, we introduce directable shading mechanisms for the proposed shading
design systems in Chapters 4- 6.

3.1 Analysis of General Cartoon Shading Process

A general cartoon shading model is strongly constrained by a physical lighting model,
therefore it is difficult to control the shading appearance in an intuitive and appearance-
based way. To explain its shading mechanism more concisely, we details the cartoon
shading process in Equation 2.2:

c= cm1D
d (L ·N)+cm1D

s (H ·N), (3.1)

where the inputs are the light vectorL , the surface normal vectorN, and the half vector
H := (L +V)/∥L +V∥, whereV is the viewing vector. Based on the diffuse termL ·N∈
[−1,1] and specular termH ·N ∈ [−1,1], the final colorc is obtained from the 1D color
mapping functionscm1D

d : [−1,1] → C for diffuse shading andcm1D
s : [−1,1] → C for

specular shading. These elements are affected by the following sub design tasks:

• Shape modeling: a shape consists of a surface position and the surface normal
N. The surface normalN affects both the diffuse and specular term. The surface
position indirectly affects the half vectorH since per-position view vectorsV are
used to compute the half vector.

• Material design: the artist designs the color mapping functions (cm1D
d , cm1D

s ) using
a few simple parameters. These functions are used to determine sample shading
colors based on the brightness terms (diffuse, specular).

• Camera design: camera manipulation affects the view vectorV, which is used to
obtain the half vectorH.
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• Lighting design: the light vectorL is determined by the location of the light source
and the type of light. It is used to compute the diffuse term and affects the half
vectorH.

In these design tasks, the artist needs to control the shading elements carefully to obtain
the desired appearance. However, these indirect controls for shading design are time-
consuming and impractical in production environments. Ideally, artists would use more
intuitive and directable controls to obtain the shading desired.

3.2 Our Approach for Directable Shading Model

As explained above, the issue of the general cartoon shading process is that its editing
tasks are interconnected and indirect for changing the shading appearance. To solve
the issue, we consider appropriate directable shading models by following our artist-
friendly shading design framework. In accordance withPrinciple 1, the requirement of
a directable shading model is to provide intuitive controls which directly affect specific
visual features. In accordance withPrinciple 2, we extend the original cartoon shading
model to achieve seamless integration with existing 3D lighting controls. Accordingly,
we introduce a general form of directable shading model as:

c= cmd( fd(L ,N)+od(x))+cms( fs(H,N)+os(x)), (3.2)

where we use key directable mechanisms: lighting transforms and lighting offsets. The
lighting transformsfd(L ,N) and fs(H,N) deform the diffuse and specular lighting to
change the overall lighting shape. The lighting offsetsod(x) andos(x) are used to add
smaller scale local lighting effect. With these input lighting, the final colorc is ob-
tained through the color mapping functionscmd andcms. To meet directional demands
for different levels of the shading editing, we reformulate these key directable shading
mechanisms for each shading design system in Chapters 4- 6 as follows.

Locally controllable shading with intuitive paint interface : Our shading model in
Chapter 4 lets the artist modify the shaded area with a local painting operation. We
provide the directable control by adding lighting offsets to the brightness term directly:

c= cm1D
d (L ·N+o1D

d (p))+cm1D
s (H ·N+o1D

s (p)), (3.3)

where the diffuse termL ·N and specular termH ·N are modified by adding the corre-
sponding scalar offset functionso1D

d (p) ∈ [−1,1] ando1D
s (p) ∈ [−1,1] that are defined

on a surface pointp. This method is suitable for an artist who wants to freely add local
lighting effects. The paint operation has no direct effect on the light vectorL , surface
vectorN, or the half vectorH. In addition, the modification must be local on the painted
area. We therefore use the scalar offset functions defined on the surface in this method.

Shading stylization based on model features: Our shading model in Chapter 5 al-
lows the artist to design commonly used feature enhancements such as straight lighting,
edge enhancement, and detailed lighting effects. We provide the directable control by
applying lighting transforms and lighting offsets based on model features:

c= cm1D
d ( fd(L ,N)+o1D

d (E))+cm1D
s ( fs(H,N)+o1D

s (E)), (3.4)

where the diffuse and specular lighting are deformed by applying lighting transform
functions fd(L ,N) ∈ [−1,1] and fs(H,N) ∈ [−1,1], respectively.o1D

d (E) ando1D
s (E)

are lighting offset functions whereE ∈R is the edge distance. These lighting transforms
and lighting offset are designed based on the model features: the flat surface normal
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and the edge distance field. To show an object’s flatness, we linked the straight light-
ing with the surface normal vectorN. We chose to use the lighting transforms for this
lighting effect, because they are effective to control the shape of the lighting. In the case
of edge enhancements, the lighting effect is considered a local effect, compared with
straight lighting effect. Therefore, we chose the scalar offset functions defined in the
edge distance field for this lighting effect.

Practical shading model for expressive shading styles: Our shading model in Chap-
ter 6 lets the artist design an overall material with detailed shading appearance. We
provide directable control by introducing a new lighting procedure:

c= cm2D
d ( f 2D

d (L ,N)+o2D
d (h))+cm2D

s ( f 2D
s (H,N)+o2D

s (h)), (3.5)

where we introduce the 2D shading functions for more expressive global 2D shading
effects. The lighting transform functionsf 2D

d (L ,N) ∈ [−1,1]× [−1,1] and f 2D
s (H,N) ∈

[−1,1]× [−1,1] are reformulated to fit into the 2D coordinate representations. We also
reformulate the offset functionso2D

d (h) ando2D
s (h) as functions of the attribute value

h ∈ [−1,1]. The final colorc is obtained by the 2D color mapping functionscm2D
d :

[−1,1]× [−1,1] 7→ C andcm2D
s : [−1,1]× [−1,1] 7→ C. The primary challenge here is

to achieve more expressive shading styles beyond the simple styles of cartoon shading.
We chose the 2D shading representation because it can represent a more complex 2D
color distributions than the limited 1D color distributions of cartoon shading.

3.3 Summary

In this chapter, we introduced key directable shading mechanisms for our artist-friendly
stylized shading design framework. Analyzing the general cartoon shading process used
in production work, we found that the main difficulty consists in that conventional con-
trols are indirect for changing the shading appearance. Based on the analysis, our di-
rectable shading models aim to achieving intuitive behaviors for supporting creative de-
sign of artists.

In the following Chapters 4-6, we will present how these directable shading models in
greater detail and verify the effectiveness of our proposed framework.
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Chapter 4

Locally Controllable Shading with Intuitive Paint
Interface

4.1 Overview

The first experiment is to apply our framework to artist-friendly user interface for local
edits of stylized shading. In the case of local controls, the ability to add intentional, but
often unrealistic shading effects is indispensable for cartoon animations. In this chapter,
we present an interactive system that allow the artist to freely paint local lights and
shades to a model. In accordance withPrinciple 1 (directable shading model for artistic
control), we design the shading model which enables an intuitive, direct manipulation
method based on a paint-brush metaphor, to control and edit the light and shade as
desired. The key idea for this directable shading model is to modify brightness term
directly, adding a scalar lighting offset function. This complies with ourPrinciple 2
(seamless integration with 3D lighting) in that the modified shading can be manipulated
by multiple different light types of light sources such as directional lights, points lights,
and spot lights. Besides, artists can also use a convenient key-framing technique for
fine-tuning of stylistic animation in a familiar way. Finally, our system demonstrates
how our method can enhance both the quality and range of applicability of conventional
stylized shading for interactive applications.

4.2 Introduction

Here we consider the problem of how to provide artists with intuitive, fine-grained con-
trol over stylized light and shade on a 3D object. Over the past decade, a variety of
stylized rendering techniques have been developed to facilitate visual interpretation of
3D objects. Most of these techniques are designed to elucidate particular attributes in-
herent to the object. For example, Gooch and Gooch [36] developed a lighting model
that changes hue to convey surface orientation, edge locations, and highlights for 3D
technical illustration. The multi-scale shading method by [75] depicts 3D shape details
at all frequencies possible.

On the other hand, in application fields such as digital animation and video games,
there is a significant demand for locally controllable stylized light and shade, which
can achieve results that are directable, intentional, and often fictive, yet ultimately more
attractive for it. For example, the conventional cartoon shader used routinely in 3D an-
imation often creates undesirable shaded areas. These can arise from the complexity of
the underlying geometry or the complexity of the lighting, or just as a result of the basic
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ResultOur result

Original lighting

Figure 4.1: Comparison of conventional cartoon shading (top row) with our result (bot-
tom row). Edits were made at the three key frames indicated including: added shaded
area below left eye for expressive impact, deleted dark area around right eye, and added
shaded area below nose to emphasize three-dimensionality. These local edits integrate
seamlessly with the global lighting, animate smoothly, and require no modification to
the external lighting setup.

physics of illumination. The left image in Figure 4.1 shows such an example, where the
dark area partly covers the right eye of the character. Directors would like to have the
ability have such features removed while retaining other dark areas. In other cases, they
might like to request that a shaded area be added below the left eye, as shown in the
second image from the left in Figure 4.1, in order to emphasize the character’s fierce-
ness. However, satisfying these diverse artistic requirements simultaneously would be
very hard or almost impossible using only existing conventional lighting control and/or
by fine-tuning the parameters used. Changing the geometry of the model or animating
textures or light maps might be helpful for achieving this, but these are time-consuming
and impractical on a production schedule. Despite the crucial importance of such fine-
grained artistic control of stylized light and shade, very little research exists on how to
provide such control or suitable interactive techniques to support it.

Our goal is to develop such artist-friendly methodologies for stylistic depiction of light
and shade. To explain our approach more concisely, we restrict the discussion for now
to making 3D cartoon animation. In this case, due to the nature of stylistic depiction, the
techniques used need not be physically realistic; however, they must possess a certain
sense ofplausibility while meeting directorial demands. This emphasis on expressive-
ness over physical-realism implies that we must rely on the animator’s creativity–more
than automatic physically-based algorithms–to get a desired animation. Therefore, a
stylized shading approach should provide a simple, intuitive user interface so that the
animator can easily and interactively translate his or her creative vision into reality. Fig-
ure 4.2 shows the proposed requirements of a user interface to fulfill the demands of
artists. Paint brush metaphor is a simple but effective way to specify a desired shaded
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area. A keyframe-based technique is appropriate, since it allows fine-tuning of stylistic
animation in a traditional, but convenient and familiar way for animators. Additionally,
real-time preview of the animation is also indispensable. These basic requirements for
making stylized animation have led us to consider naı̈ve key-framing as a first approach
towards a new methodology.

The central idea of our approach is to effect the desired changes to light and shade
boundaries by modifying the LambertianL ·N brightness term directly, adding a scalar
lighting offset function. This avoids the need to manipulate light vectors and normals
and can be efficiently implemented using scalar-valued radial basis functions [101]. The
right images in Figure 4.1 are from an animation created using our techniques, while the
leftmost shows the scene before modifications.

The rest of the chapter is organized as follows. After briefly surveying related work in
Section 4.3, we describe the main ideas underlying the algorithms in Section 4.5. In Sec-
tion 4.6, we describe some implementation details of our prototype system. Section 4.7
demonstrates animation examples and discusses our results. We conclude with some
limitations and future work in Section 4.8.

Paint brush metaphor Key-framing

Figure 4.2: Intuitive user interface proposed in our system. (Left) Paint brush metaphor
provides an easy way to modify the shaded area. (Right) Key-framing is convenient and
familiar for artists to control animation.

4.3 Background

A number of stylized rendering techniques, such as those in [36], have been developed
to emulate various stylistic appearances. For stylized rendering of 3D objects, Lake
et al. [50] proposed several fundamental real-time rendering techniques, including a
traditional cartoon shader. The Lit-Sphere method by Sloan et al. [87] can describe
view-independent tone detail, using a painted spherical environment map. The WYSI-
WYG system by Kalnins et al. [44] allows direct drawing of strokes onto 3D objects,
while learning strokes by example. The multi-scale shading technique by Rusinkiewicz
et al. [75] can also control the appearance of shape detail by tuning parameters of the
lighting model. Barla et al. [11] proposed an extension of the traditional cartoon shader,
which can control view-dependent tone detail, including such effects as aerial perspec-
tive and depth of field. The cartoon highlights in [4, 96] allows a user to directly click-
and-drag the highlights on a surface to design and animate them. After our work was
published, Pacanowski et al [68] proposed an intuitive painting method for highlight
design.
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Existing work on user-specified indirect lighting design for photorealistic scene render-
ing is to some extent related to our approach as well. The design issue in photorealistic
lighting is to find the light placement that results in the user-specified highlights and
shadows in the scene (see [51] for more detailed discussion). There exist several good
approaches ( [48,69,85], for instance). The geometry-dependent lighting method by [51]
may also be a useful indirect light design tool for visualizing scientific data. Okabe et
al. [63] and Akers et al. [2] take other approaches to modifying lighting, providing an
intuitive painting method for modifying the illumination of 3D models.

Our approach is inspired by all of the above methods. However, ours is unique in that it
allows a user to add light and shade by painting them directly onto 3D objects without
elaborate lighting control, to make stylistic animation by key-framing. In addition, we
demonstrate that continuous tone detail can also be painted and animated as an extension
of our approach.

4.4 User Interaction

This section describes a typical shading design process using our prototype system. As
illustrated in Figure 4.3, our approach is based on the direct painting of shaded areas,
displayed on a 3D view. For making animation, our system also provides a time slider to
specify a target frame for each painting operation. The overall process of the approach
we propose is:

1. Begin by making an initial 3D scene, which includes the lighting and animation
settings, using a conventional 3D software tool. Multiple directional and/or light
sources can be used for the initial lighting design.

2. At each keyframe, the artist designs and/or modifies the shaded area on a sur-
face, using a paint-brush interface. This process is performed at interactive rates,
prescribing the boundary constraint of the obtained area. Thereafter the new sur-
face brightness distribution is automatically generated considering the boundary
constraint.

3. The new surface brightness distributions at the keyframes are automatically trans-
mitted to all the frames by linear interpolation. We thus obtain the desired anima-
tion of the shaded areas.real-time preview of the stylistic animation.

During the shading design process, the artist can freely change the viewpoint. Our sys-
tem also provides real-time feedback to the editing actions at any time.

4.5 Algorithm

4.5.1 Overall Process

We begin by restricting ourselves to 3D cartoon animation, where each shaded area is
assigned a uniform color by 1D color mapping [50]. Starting from a 3D scene cre-
ated using conventional lighting and key-framing techniques, we consider how to lo-
cally add light and shade onto surfaces. In particular, we describe how to use a paint-
brush metaphor to design the shaded area at keyframes. The painting process at a given
keyframe involves interactively adding light and shade details or sculpting the shapes of
shade boundaries. Such editing is straightforward with our technique, while it would be
very time-consuming and difficult to manage using conventional lighting.
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Figure 4.3: A screen snapshot of our prototype system. On the 3D view, the user can
paint shaded areas with real-time preview. The time slider is used to specify a target
frame to paint.

Our implementation is capable of dealing with deforming geometry and multiple direc-
tional, point, and/or spot light sources; however, without loss of generality, we explain
our idea below in the context of a single light source. The extension to deformations and
multiple light sources is straightforward. For a given threshold 0< d0 < 1 a thresholded
1D color mapping creates two (possibly disconnected) regions, which we will call the
light anddark areas. More precisely, using set notation we define thelight areaB0 on a
surfaceS, for a given thresholdd0 to be:

B0 := {p ∈ S | L(p) ·N(p)≥ d0}, (4.1)

whereL(p) andN(p) are the unit vectors representing the light direction and surface
normal at a pointp on S, respectively. The boundary between light and dark areas is
obtained by replacing inequality (≥ d0) with equality (= d0) above. We will refer to
the dot productL(p) ·N(p) in Equation 4.1 as theintensity distribution. Given these
definitions, let us consider how to enlarge a portion of the light area, for example on
the character’s face in Figure 4.4, where the light areaB0 is flesh colored. Let the area
C0 with boundary∂C0 (drawn in red in Figure 4.4) be an area painted with our brush-
type interface (see the next section for specifics). The areaC0 −B0 is the area that
the user wishes to add to the original areaB0. The core idea behind our approach is
to modify the intensity distributionin order to make the light area change as desired,
i.e. so that it becomesB0∪C0. The intensity distribution is a scalar function, so this
greatly simplifies the problem when compared to working directly with light vectors
and normals. The overall strategy is as follows. We first construct anoffset function
o1(p) defined globally onS. This prescribes the new light area by replacing the original
intensity distribution in Equation 4.1 withL(p) ·N(p)+o1(p)(see Figure 4.4). Note that,
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∂B0∩(D0-C0)
∂C0-B0

B0

C0

D0

paint operation

∂D0

∂C0

B0

o1(p)
d0

modified
(L･N+o1)

original
(L･N)

Figure 4.4: Modifying a shaded areaB0 with the paint brush interface: The result-
ing new areaB0∪C0 can be represented functionally by introducing an offset function
that modifies the standardL ·N lighting term. The bottom graph shows a 1D intensity
distribution along the green line.

though globally defined, the offset function should be mostly zero except in the region
immediately surrounding the desired edit.

After making a modification at one keyframe, we can create a different offset function to
define the light area at a second keyframe. By smoothly interpolating the offset functions
between keyframes, we can achieve smooth animation of the light areas between frames
as well. The procedure can be repeated for every pair of adjacent keyframes, resulting
in an animated light area onS using just local edits with a paint-brush.

4.5.2 The Lighting Offset Function and Key-framing

Next, we describe how to construct the lighting offset function for a “painted” light area.
Given the original light areaB0 from Equation 4.1 and the painted areaC0, as shown in
Figure 4.4. The offset functiono1(p) for B0∪C0 should satisfy

B1 := {p ∈ S | L(p) ·N(p)+o1(p)≥ d0}= B0∪C0, (4.2)

whereo1(p) is generated when the user finishes drawingC0. To fulfill condition (Equa-
tion 4.2), it is clear that the offset function should take values that are equal tod0 −
L(p) ·N(p)(≥ 0) on the new boundary∂C0−B0. On the other hand, to make the offset
function “active” only in the neighborhood ofC0, we wish to have an areaD0, which
includesC0, that limits the extent of the domain where modifications to the lighting are
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applied (see Figure 4.4). In our current implementation, the distance between∂D0 and
∂C0 is controlled by a slider in the user interface. The size of this region gives the user
a way to limit the scope of modification (also see the detail in Section 4.7). Therefore
o1(p) should minimally satisfy the following conditions:

o1(p) =
{

0 p ∈ (S−D0)∪ (∂B0∩ (D0−C0))
d0−L(p) ·N(p) p ∈ ∂C0−B0

(4.3)

If we choose foro1 a continuous function satisfying the above conditions, then the re-
sultant areaB1 will have a continuous boundary. We can consider the new shaded area
B1, to have a “generalized” intensity distribution given byL(p) ·N(p)+o1(p), instead
of L(p) ·N(p). The above procedure can be repeated for each stroke, building upon the
offset function created by the previous stroke. The user’skth stroke providesCk andDk.
From this new input, the resulting light area can be defined recursively as:

Bk+1 := {p ∈ S | L(p) ·N(p)+ok+1(p)≥ d0}= Bk∪Ck, (4.4)

where we assume thatok+1(p) is a continuous function satisfying the constraints:

ok+1(p) =
{

ok(p) p ∈ (S−Dk)∪ (∂Bk∩ (Dk−Ck))
d0−L(p) ·N(p) p ∈ ∂Ck−Bk

. (4.5)

Dk includesCk and serves the same role forCk asD0 does forC0. The conditions in
Equation 4.3 can be seen to be a special case of (Equation 4.5) if we defineo0 = 0.
Again we note that, outside ofDk, no modifications will be made to the lighting (i.e.,
ok+1(p)= ok(p)). In theDk−Ck region, no modification will be visible under the current
lighting conditions, but some modification may be visible when either the lights or the
model are moved. Having aDk −Ck band allows for smooth transition from modified
ok(p) values to the original values.

To make the above strategy computationally tractable at interactive rates, we represent
the offset functionok(p) with a sum of Radial Basis Functions (RBF), denoted by ˆok(p).
Thus in practice we use:

B̂k := {p ∈ S | L(p) ·N(p)+ ôk(p)≥ d0} (4.6)

in place ofBk, and the boundary constraint (Equation 4.5) is only discretely enforced
at a finite number of points. The RBF approximationB̂k is made from the shaded area
obtained by the paint operation. Rigorously, the boundary ofB̂k may not exactly match
that of the original painted area. To allow fine adjustment, we provide two additional
types of brushes: anintensity brushand asmoothing brush, which will be described in
Section 4.5.4.

Keyframing: Modifications made according to the above algorithm integrate smoothly
with standard lighting equations, and for many animations a single offset functionok

may suffice. However, in order to create more elaborate modifications, it is possible
to create several keyframes, with a unique offset functionok, f at each framef , leading
to more complex animation of light and shade. Lighting of the animation as a whole
can then be accomplished by interpolating the offset functionsok, f (see Figure 4.5).
In our prototype we have used simple linear blending for this purpose, though more
complicated blending functions are possible and worth exploring.
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Key-frame 
Animation

Offset Data

Figure 4.5: Creating key-frame animation (top row) using lighting offset data (bottom
row). (orange arrow) In order to allow the user to modify shaded area at several key-
frames, we construct and store unique lighting offset data at each painted key-frame in
the process as described previous. (blue arrow) Lighting offset distributions between
key-frames are interpolated from key-frame offset data used simple linear functions.
Then the final cartoon shading result can be obtained based on these offset distribu-
tions.

∂Bk∩(Dk-Ck)
∂Ck-BkBk

Ck

Dk

∂Dk

∂Ck
xi

pm
pn

xj

Figure 4.6: The boundary constraint points used in finding the new offset function
ôk+1(p). The orange points{xi} take the value d0 − L ·N, while the blue points are
constrained to ok(p).
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4.5.3 RBF Approximation of The Lighting Offset Function

Suppose thatS consists of polygon meshes, as shown in Figure 4.6. We will assume
for simplicity thatB̂k = Bk. After obtainingôk(p) andBk in Equation 4.6, we want to
find ôk+1(p), which satisfies the boundary conditions (Equation 4.5) at a finite number of
discrete points. We find a set of such points{xi} ∈ ∂Ck−Bk by the following procedure.
For each vertexpm insideCk, we check adjacent edges for intersection with the boundary
∂Ck−Bk. For each intersecting edge, linear interpolation betweenpm and the vertex at
the other end,pn, is used to determine the approximate location of the boundary point
xi . Note that we record stroke data per-vertex only and reconstruct the stroke linearly,
thus no edge can cross the boundary more than once.

Now let f ≡ ôk+1. We find a continuousf satisfying Equation 4.5 for{xi} in the follow-
ing form [33,95,101]:

f (x) =
l

∑
i=1

wiφ(x−xi)+P(x), (4.7)

whereφ is a radial basis function,{wi} are weights, andP is a polynomial whose degree
depends upon the choice ofφ . In our case,l is the number of the boundary constraint
points shown in Figure 4.6.

We employφ(x) = ∥x∥ as the basis function after experimenting with various options.
This corresponds to the solution of a generalized thin-plate spline problem onR3 [33,
101], and the curvature minimizing properties of this basis function seem to be well
suited to this task. Satisfying a discretized version of Equation 4.5 reduces to solving
a linear system of equations for the unknown weights{wi}, and the four coefficients of
the linear polynomialP onR3.

4.5.4 Additional Brushes

The previous sections described how we enable users to add and editlight areas using a
paint-brush metaphor. In a similar way we can add and editdark areas. In that case the
only difference is the selection of boundary points used in Equation 4.5. Instead of using
∂Ck−Bk, we use the opposite half of∂Ck, that is,∂Ck∩Bk. The user simply switches
the editing mode fromlight to dark. In both cases, the paint brush is used for roughly
specifying the shading boundary. We call this type of brush aboundary brush.

The boundary brush works well to get a desired shape, but the intensity distribution
may not change as smoothly as desired. This can be due to the radial basis function
we select or due to too many conflicting constraints. For example, we have seen in our
experiments that even a smooth radial basis function may result in a rapidly changing
intensity distribution in the area where the distribution contours are very close to one
another. This may cause the resulting keyframe animation to look unnatural. For this
case, we have created asmoothing brush. By painting on the surface with the smoothing
brush, the lighting offset values are filtered, while preserving the original value ofL(p) ·
N(p). In our implementation, the offset values stored per vertex are updated using a
simple weighted average of values at connected vertices for each stroke operation. In this
way we achieve shading effects that fade in and out more gradually and have smoother
boundaries (see Figure 4.7).

In some cases it is useful to be able simply to add or remove an isolated light or dark
area. For these situations we provide a simpler alternative to the boundary brush, which
we call theintensity brush. This brush simply adds to or subtracts from the lighting
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Contours of the intensity distribution,L ·N, as influenced by our brush
operations. (a) Initial distribution. (b) A boundary brush specifies a region which should
become dark. (c) The new distribution with the lighting offset function prescribed by the
region. (d) The distribution modified by a smoothing brush. (e–f) Details from (c–d).

offset functionok. The amount added is determined by a magnitude parameter and the
radius of the brush. The magnitude is the amount to add took along the centerline of the
stroke. We fade the added intensity smoothly to zero at the edges of the stroke using a
“smooth-step” cubic polynomial falloff.

Figure 4.7 shows a simple example of how to use these brushes. In Figure 4.7(a), an
initial intensity distribution on the character is displayed using green contour lines. The
boundary brush is then applied in (b). After getting the lighting offset function in Equa-
tion 4.6, we have the new intensity distribution as shown in (c). Using the smoothing
brush, it is made smoother, as shown in (d).
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4.5.5 Extensions

In order to get more variations of stylized light and shade, we add a few simple, but
useful, extensions of the main algorithms above.

Specular Highlight: We can deal with stylized highlights in the same framework as
the shaded area. In our system we simply need to replace the Lambertian term (the dot
product,L ·N) in Equation 4.6 withH ·N from Blinn’s specular highlight model [15],
whereH is the normalized half-way vector between the light and the eye. The user can
easily edit the highlights by the brushes in the same manner as the shaded area.

Continuous tone control: The thresholdd0 in Equation 4.1 is a global constant which
controls the shaded area in accordance with Equation 4.6, but this is not an essential
assumption. Similarly, we can use the paint-brush metaphors to locally control and edit
continuous tone on a surface by dispensing with the threshold and defining the lightness
at a given point to be simplyL(p) ·N(p)+ok(p), or any continuous function thereof.

4.5.6 Lighting Offset Function Interpolation Based on Light Parameters

The methods presented so far assumes the key-framing control for lighting offset func-
tions. In order to apply our method to more interactive applications, we extend our
methods to a light-dependent framework. The user interface is almost same: the artist
modifies shaded area at each state of light parameters. Similar to the key-framing case,
it is possible to create several key-offset functions, with a unique offset functionok,PLi

for each state of light parametersPL i . With the necessary set of offset functions, we can
interactively animate designed lighting by interpolating offset functions{ok,PLi} based
on the input light parametersPL .

Here we also use the RBF interpolation for this purpose. Now letf ≡ ok,PL representing
lighting offset function for arbitrary input light parameter setPL . In this case, we design
a continuous functionf satisfying the following conditions for{PL i}:

f (PL i) = ok,PLi , (4.8)

where the states of light parameters{PL i} is used for the conditions of Equation 4.7, by
replacing the constraint points{xi} with them. This functionf lets the user change the
light setting interactively with the desired shading designed using our system.

However, computing the RBF for each vertex is time-consuming due to the large number
of vertices. To reduce the heavy computation, we approximate the RBF interpolationf
by pose space interpolation. We first replace the RBF conditions in Equation 4.8 with:

f ′(PL i) = t i , (4.9)

wheret i is the pose weight vector for each state of light parametersPL i . In interpolation
process, we first compute the pose weight vectort for the input light parametersPL .
With the weight vector, the final lighting offset function is obtained by simple blending
of offset functions{ok,PLi}.

4.6 Implementation

We implemented our prototype system as a Maya plug in. As we described in Section 3,
our system is based on the highly customizable feature of Maya.
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GPU Implementation

To greatly reduce CPU’s load, we have implemented the rendering algorithms using
Maya’s hardware shader functionality that allows shader code to be written using stan-
dard OpenGL and GLSL. In our rendering algorithms, for each vertexi with position
vi on surface meshes, the lighting offset function valueok, f (vi) at each keyframe is as-
signed and stored as a vertex color data in Maya. To transfer the offset function value to
GPU as a varying parameter, the vertex color data is interpolated and decoded in CPU
process. In our GPU programs, the intensity value is efficiently updated in the vertex
shader, then the conventional cartoon shading process is computed in the pixel shader
using the modified intensity value. Our rendering algorithms are quite simple, but effec-
tive and efficient for our use.

Paint-brush Metaphor

We need to find all of the vertices inside the brush stroke region and calculate their
distances from the stroke centerline. This information is used to determine the locations
of the points on the boundary in Figure 4.6, as well as to implement the smooth falloff of
the intensity brush. We accomplish this using a depth first search from seed points along
the brush centerline. From each seed point, we find all the vertices with distance less
than the brush radius, and set their distance values using the minimum of their current
value and their distance from the current seed point. This data is needed only for the
duration of a single stroke operation and can be discarded immediately afterward. After
the locations of points on boundary are computed, we can use an RBF interpolation
technique to obtain lighting offset values as described in Section 4.5.3. The obtained
offset values are encoded as the vertex color data in Maya for rendering process as we
described above.

4.7 Results and Discussion

We have applied our prototype system to making various stylistic animations. Our sys-
tem currently runs at interactive rates on a 2.16GHz Intel P4 Core Duo CPU with an
NVIDIA GeForce QuadroFX 350M GPU. In editing and previewing the animations, the
frame rate ranges from 6 to 20 fps for all the examples in this chapter.

In making facial animation, controlling light and shade on the face is crucial. Figure 4.1
illustrates how effectively and efficiently our algorithms work for this important case. As
shown in the figure, even for making a simple facial animation, a 3D head model often
creates many unnecessary dark areas, and it is very hard to remove them selectively
using conventional lighting control. On the other hand, our approach can eliminate them
easily and interactively. Moreover it allows the user to successfully add a variety of
effects, each of which dramatically changes the character’s impression.

Figure 4.8 demonstrates a typical case where an artist uses our system to make the ani-
mation less realistic, but more expressive. Comparing with the animation under conven-
tional lighting (left of Figure 4.8), we note several effects that have been added to the
animation. Most obvious is the smoothing and simplification of the moving highlight
on the protruding forehead. But also for example, the artist has added a light area to
accentuate the jawline; a bright, firm line above the left eye; and delayed emergence of
the face into the light, as shown in the right of Figure 4.8. Some of these effects might be
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achieved by conventional lighting techniques. However, it is almost impossible to add
all of them into the same shot without resorting to frame-by-frame modifications.

Figure 4.10 shows the use of our techniques on an animated character with a highly
deforming cape using a moving point light and a fixed directional light. This type of
situation can result in light and shade areas that are distracting because they change
too rapidly. The animation in the figure demonstrates that our techniques are effective
in eliminating such unnecessary shading and in simplifying light and shade to make it
suitable for cartoon animation.

Our method also enables local controllability of continuous tone with our intensity brush
described in Section 4.5.4. Even when adjusting the continuous tone on this object, our
approach allows local tone control, adding a back-light effect around the character’s
shoulder (see Figure 4.9). We were able to create this animation without modifying the
initial lighting setup. However, in cases where the viewpoint and/or lights are moving
more dynamically, it may be more difficult to achieve the same effect using our tech-
nique.

#Verts |{wi}| RBF(solve) RBF(dist) Transfer Total

2011 68 0.63 5.0 38.8 44.4

8001 114 3.96 19.5 154 178.

31921 311 27.3 88 630 745.

Table 4.1: Algorithm performance for strokes of various sizes. (All times in millisec-
onds). #Verts is the number of vertices in the stroke region.|{wi}| is the number of
unknown weights in the RBF system being solved for, while RBF(solve) is the time taken
to solve the linear system. RBF(dist) is the time taken to compute the RBF distance func-
tion for calculating ok(p). Transfer is the time taken to transfer vertex data to and from
Maya in our plug in.

In making these animations, we used either of boundary brush or the intensity brush,
depending on the type of modification desired. The boundary brush is appropriate when
the user wants to specify exactly where the new boundary should lie. If the goal is just to
generally make a light or dark shape bigger or smaller, then the intensity brush is more
effective. In the examples we determined the size of the paint brushes by experimenta-
tion. For example, we chose the width of the boundary brush so that one stroke of the
brush includes at least two adjacent vertices of the surface mesh. Similarly, the distance
between∂C0 and∂D0 in Figure 4.4, it is also set to include at least two adjacent vertices
of the mesh, which can be accomplished using a slider. The small value of the lighting
offset function specified by the intensity brush in Section 4.5.4 is also set empirically.
Given the interactivity of our system, results of a particular parameter setting can be seen
immediately, so we have not found it burdensome to search for these values via trial and
error.

Table 4.1 shows the performance of our current implementation. The computation cost,
however, depends on the number of vertices contained inDk. Since we do not paint very
large regionsDk in practice, this cost seems not to be a serious bottleneck in our system.
The most significant part was the basic cost of transferring vertex data between Maya
and our plug in. The performance data in Table 4.1 also makes it clear that the algorithm
itself is sufficiently fast for interactive editing.

Our prototype system has been made and tested in close collaboration with professional
artists in our workplace since the very early stages of development. Initially, we gave
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a 20-minute tutorial to the artists. Since our system is implemented as a Maya plug-in,
they were able to try it out on their own models immediately. The reaction has been
positive: they do seem to find the system capable of producing the desired results easily
and quickly. Most of the animations in this chapter were designed with the artists so
as to clearly display the capabilities of the proposed technique. Typically animations
such as those shown in this chapter take a few hours to complete, which is a drastic
improvement over the previous techniques available to the artists. They also claimed
that the conventional tricks such as texture animation or modifications to the character’s
geometry would make it difficult to maintain consistency between different shots with
the same character. Therefore, with such conventional techniques, these kind of edits
would simply be infeasible on a production schedule.

We also tried to integrate the experimental system into an animation production pipeline.
Some of the results are shown in animated feature films. First example is the Tamagotchi
feature film: “Tamagotchi: Happiest Story in the Universe!” [93], produced by OLM
Digital, Inc. In this film, our system is used to modify undesired shading of a charac-
ter’s lip. The artist could create a desired shading appearance easily in a way similar
to the case of making facial animation (see Figure 4.1). Another example is Takashi
Murakami’s digital animation film: “Kaikai&Kiki” [43]. In making one of the scenes
of this film, the conventional lighting method created distracting shaded areas on a char-
acter’s face due to the rapid movement of the character’s head. Similar to the case of
deforming cape, our system is also effective in eliminating the undesired light and shade
movements to be suited for cartoon animation. These examples demonstrate that our
system is capable of improving quality of the animation in professional use. The mod-
ified version of this system is presented as a production tool: “Shade Painter” on OLM
Digital R&D web site [65].

We feel that there are considerable applications of our algorithms not only in feature
films, but also for television animation and even illustrative visualization. In addition,
our extension lets the user animate the designed shading with dynamic lighting, which
is suited for interactive video games. In these contexts, our system could be useful for
artists to pursuit animation of desired shading, since playback using our technique is
lightweight and real-time on any modern GPU.

4.8 Summary

In this chapter, we proposed a system for directalbe stylistic depiction of light and shade
in 3D animation. According to our interface design framework, we introduced a shading
model for local and interactive edits of light and shade by painting directly on 3D objects.
Moreover the local edits integrate seamlessly with the conventional global lighting and
animate smoothly regardless of the conventional lighting setup used. The animation
examples illustrate these advantages over previous methods.

These algorithms, however, are exploratory. There are several things left to accomplish.
In our approach, the RBF-based algorithm is used to obtain the rough boundary of the
painted shaded area. In addition, we make the assumption that the vertices defining the
object will not be added or removed during animation. We do not handle objects that
change topology during an animation. We may need a more sophisticated algorithm to
obtain a more precise approximation of the painted area. When applying this method
to cartoon animation, highlights with very sharp edges are sometimes desired. But our
per-vertex offsetting cannot give such a sharp highlight directly. Providing boolean op-
erations as in [4] may be of use here (see Figure 4.11).
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c⃝YOUN IN-WAN, YANG KYUNG-IL/Shin Angyo Project 2004

Figure 4.8: Editing shade and highlights. The animation(top row) created using a
standard toon shader was modified(bottom row)using the techniques described in Sec-
tion 4.5.4. First the excessive highlight on the forehead was removed using the intensity
brush, and then the boundary brush was used to create a light region around the chin,
which was otherwise invisible.

Our method allows us to add locally controllable light and shade, but at the same time
conventional lighting control cannot be replaced by our approach. For example, as a very
simple case, suppose that we want to move a small rounded highlight on an apple from
one location to another. This could be easily accomplished by moving the light source.
However, with the approach presented in this chapter, the highlight would not move, but
fade off at the original point, and fade in at the destination (see Figure 4.12). This clearly
demonstrates a difference between our approach and the conventional one. We believe
that these approaches are complementary. Our approach is local, which means not only
that it enables local editing, but also that the movement of light and shade is local.

We are currently investigating how to make cast shadows also locally controllable. We
believe that a modified version of the approach described here has promise for achieving
this. Another challenging avenue of future work would be to transfer designed local
shading to different 3D objects. In the case, we need to obtain a good vertex correspon-
dence between different topologies. In particular, such an approach would be essential
for reusing the local shading of human faces. In this chapter we have focused on the
area of 3D stylized animation. However, this is an important practical area where there is
a clear need for new techniques to help bridge the gap between artistic direction and the
animator’s heavy load. We hope our approach indicates a promising direction to serving
such a practical need.
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c⃝2006 DELTORA QUEST PARTNERS

Figure 4.9: Modifying shading with gradations. Here ShadePainter has been used to
make a directional lighting setup appear to be a more dramatic back-lit situation.

c⃝2006 DELTORA QUEST PARTNERS

Figure 4.10: Editing light and shade on a highly deforming object.(top row)original
frame. (bottom row)edited frame. Using the intensity brush, we edited the light and/or
dark areas on the deforming cape under rapidly changing lighting conditions.

Figure 4.11: Limitation: our method cannot give sharp features. Our per-vertex offset-
ting results in soft edges. We may use boolean operation [4] to create sharp features.
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Figure 4.12: Limitation: our method cannot move a highlight. Edits were made at the
two key frames indicated. Highlight would fades off at the original point, and fade in at
the destination.
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Chapter 5

Shading Stylization Based on Model Features

5.1 Overview

The second experiment is to apply our framework to an artist-friendly user interface for
shading stylizations based on model features such as surface normals and edges. In this
chapter, we focus on how to control feature-dependent lighting effects, rather than the
local shading effects described in Chapter 4. In the context of stylized shading design for
mechanical objects, it is helpful for the artist to have a method for designing the shading
appearance derived from the geometric properties or artistic directions. We present an
interactive system that enables straight lighting, edge enhancement, and detailed lighting
effects, all of which are commonly used in 2D hand-drawn cartoon animations. In ac-
cordance withPrinciple 1 (directable shading model for artistic control), we design the
shading model which allows the artist to interactively design the these stylized lighting
effects for mechanical objects using simple 3D light UIs and appearance-based param-
eters. The key idea for this directable shading model is to introduce simple lighting
transforms and lighting offset based on the model features, such as surface flatness and
edge distance field. This complies withPrinciple 2 (seamless integration with 3D light-
ing) in that the proposed stylized shading effects can be manipulated by multiple point
light sources. Besides, our system also enables dynamic control over these lighting ef-
fects base on a familiar key-framing technique. Thanks to the simple formulations of our
algorithms, shading process can be implemented on GPU for real-time preview. Finally,
we demonstrate our system by presenting several stylized shading animation results that
are effectively designed using our method.

5.2 Introduction

Here we consider the problem of how to provide artists with intuitive and useful con-
trol over shading stylization based on model features. First we show 2D hand-drawn
examples, where an artist draws typical stylized lighting effects. Figure 5.1 (a) shows
straight lighting on windows, which is used to emphasize the flatness of the objects. In
Figure 5.1(b), the artist combines the lighting effects derived from the model features.
Around the edge of the aircraft, a sharp lighting effect was used to enhance the edge.
Another example is a detailed lighting effect, which was used to show that a surface is
bumpy. Because of the recent increase in the use of hybrid 2D and 3D models, it is
desirable to achieve these lighting effects in a 3D system.

As described in previous Chapter 4, cartoon shading [50] is a standard approach used to
design 3D shading in a cartoon style. In this process, the final shading color is obtained
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c⃝Nintendo·Creatures·GAME FREAK·TV Tokyo·ShoPro·JR Kikaku c⃝Poḱemon c⃝2008 PIKACHU PROJECT

(a)

c⃝Nintendo·Creatures·GAME FREAK·TV Tokyo·ShoPro·JR Kikaku c⃝Poḱemon c⃝2008 PIKACHU PROJECT

(b)

Figure 5.1: Hand-drawn stylized lighting effects. (a) Straight lights on windows. The
straight light portrays the flatness and shininess of the windows. (b) Edge enhancement
and detailed lighting effects on the aircraft. The sharp lighting is drawn to enhance the
edge features. The detailed lighting effect shows that the surface is bumpy.

using simple 3D lighting processes and 1D color mapping processes. First brightness
terms (diffuse and specular) are computed from pre-designed 3D scenes, and then 1D
texture maps are used to convert these brightness terms into multi-tone colors. The
mechanism is quite simple but effective enough to reproduce a cartoon shading style in
a 3D system.

However, the conventional cartoon shading process often creates undesirable shading
results. These can be caused by the physical lighting part and the multi-tone color rep-
resentation in the shading model. Figure 5.2 (a) shows such an example, where the flat
polygons were illuminated using a directional light source. The movement of the shaded
area (bright area) is discontinuous while the directional light smoothly changes its di-
rection. We refer to this problem as thediscontinuous light appearance problem, which
arises from the constant intensity distribution across the flat surface. To create smooth
animation of light and shade, the artist can use point light sources. However, the shaded
area will always result in a rounded shape on a flat surface (see Figure 5.2 (b)). While
smooth animation is achieved, the rounded shape is not suitable for flat surfaces. As
shown in Figure 5.1 (a), it is more helpful if the artist can use straight shapes for lighting
on a flat surface. Here we will call this problem:straight lighting problem. To solve
these issues, artists sometimes use conventional 3D tricks: changing the geometry of the
model, animating textures, bump maps, or light maps. However, these require indirect
and time-consuming tasks, which are not practical for production work.

Some recent approaches may work well in reducing or partially solving the above prob-
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Figure 5.2: Cartoon shading results with different lighting. (Top row) Directional light.
Thediscontinuous light appearance problemoccurs from the second frame to the third
frame when the directional light smoothly changes its direction. (Middle row) Point
light. This type of shading results in smooth animation; however, thestraight lighting
problemis not addressed. (Bottom row) Our stylized lighting effect. Straight shaded
areas and edge lighting effects are achieved in smooth light and shade animation.

lems. Our method for local light and shade described in Chapter 4 and the cartoon
highlight shader [4] are helpful for designing the arbitrary shaped lights. However, with
these methods it is difficult to enhance the model features, which may become a time-
consuming task of adding edge enhancement or emphasizing a bumpiness feature. To
enhance the model features, the multi-scale shading method [75] or XToon [11] can be
used to control the shading appearance based on geometric features, such as edge en-
hancement, depth of field, or back lighting. However, these methods support only one
additional defined stylization of the original shading result.

Our goal is to develop new 3D lighting methods that can achieve stylized lighting control
based on multiple model features. As an initial step toward this goal, we focus on the
integration of straight lighting, edge enhancement, and detailed lighting for reproducing
the important elements of 2D manual stylized shading styles. To achieve this, we extend
the lighting part and texture mapping part of a typical cartoon shading process as follows:

• We introduce a light coordinate system to produce a smooth animation of straight
lighting effects. The central idea for straight lighting is to apply a lighting trans-
form to the incoming light vectors based on the surface normal. Our light coordi-
nate system defines the local transformation space according to the designed 3D
lighting.

• We extend the conventional texture mapping part to enhance multiple features. In
our extension, the threshold values of multi-tone texture are deformed by scalar
lighting offset functions. We separately design the offset functions for edge en-
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hancement and detailed lighting in a manner whereby the artist can control each
effect using intuitive, appearance-based parameters.

5.3 Background

As in Chapter 4, our main focus is on cartoon shading [50], which is commonly used in
production environments. Based on the computed brightness terms, this approach effec-
tively reproduces multi-tone shading styles in cartoon animation. Similar to this work,
several methods have been proposed to reproduce particular stylized shading styles from
3D scenes. Gooch and Gooch [36] proposed the technical illustration shader for cool-
to-warm shading effects. The Lit-Sphere method [87] can describe view-independent
tone detail, using a painted spherical environment map. Mitchell et al. [58] presented
an illustrative shading style for video game applications. However, these fundamental
approaches often lack the ability to control the shading appearance to establish symbolic
lighting and enhancements of model features.

Several methods have been developed to change the original lighting result, and hence
provide symbolic lighting effects in cartoon animation. DeCoro et al. [28] proposed
several stylized shadow effects using image space deformations. Our method described
in Chapter 4 allows the artist to paint local lighting effects directly onto a 3D model.
Anjyo et al. [4] proposed a cartoon highlight shader which can make various symbolic
highlight shapes. While these methods provide creative control over the shape of the
lighting, artists may desire further control over the smaller scale appearance.

A number of methods have been developed to design the shading based on geomet-
ric or scene properties, providing such control. For instance, the multi-scale shading
method [75] and the 3D unsharp masking method [73] can accentuate the edges or the
silhouettes of a target model. Several methods focus on the geometric deformation with
2D texture inputs, including bump mapping [16], displacement mapping [24], and re-
lief mapping [64]. More complex extension is obtained with 2D tone controls. Barla
et al. [11] proposed X-Toon, where a 2D texture is used to integrate additional controls,
including depth of field, back lighting effects, and diffuse-dependent specular effects.
These techniques allow the artist to control the appearance of a specified model feature,
but they do not permit the integration of multiples features.

In contrast to related work, our approach provides a simple interactive method for styl-
ized shading design, where a symbolic lighting effect (straight lighting) is seamlessly
integrated with enhancements based on multiple model features (edge enhancement, and
detailed lighting).

5.4 User Interaction

In our approach, shading stylizations can be controlled with three proposed lighting
effects: straight lighting effect, edge enhancement effect, and detail lighting effect. In the
lighting design process, their parameters can be dynamically modified to check results in
real-time. User control parameters of our shading model are summarized in Table 5.1.

To provide convenient and familiar methods for artists, we propose the overall process
in the following manner. The artist begins by making an initial 3D scene, including the
geometries of the models and their animation settings, using a conventional 3D software
tool. In the next step, the artist designs the straight lighting effect by manipulating a 3D
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Effect Parameter

Straight lighting (Figure 5.3) Orientation of the straight lighting

· Translation

· Rotation

Edge enhancement (Figure 5.4)Curved edge appearance

· Width

· Height

Detail lighting (Figure 5.5) Wavy shape

· Strength

· Frequency

Table 5.1: User control parameters of our shading model.

light UI (see Figure 5.3). This allows the artist to control lighting shape with translation
and rotation operations. The designed lighting can be further controlled using edge en-
hancements and detailed lighting effects. Figure 5.4 shows the user interface for edge
enhancement effects. The artist can adjust the curved shape of the edge appearance using
the width and the height parameters. Our system also provides a way to control the wavy
shape of a detail lighting effect using the strength and the frequency parameters for its
wave form (see Figure 5.5). For both small scale stylizations, the artist can adjust the en-
hancements using a few appearance-based parameters. All the lightning and parameters
are designed using key-frame editing, which efficiently produce interpolated sequences.
By relying on our simple algorithms, the artist can preview the result in real-time.

Figure 5.3: User interface for straight lighting effect. The user controls the lighting
shape by manipulating the 3D light UI.
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Figure 5.4: User interface for edge enhancement effect. The curved shape of the edge
appearance can be controlled using the width and the height parameters.

Figure 5.5: User interface for detail lighting effect. The wavy shape of the detail lighting
effect can be controlled using the strength and the frequency parameters.

5.5 Light Shape Control

In this section, we describe how to design a symbolic lighting effect in the case of the
straight lighting in our context. We first consider the conventional cartoon shading pro-
cess and how to achieve the stylized shape of light and shade. Here we use the thresh-
olded 1D color mapping to define each shaded areaDi for the given threshold value
δi :

Di := {p ∈ S | δi−1 ≤ Id(p)< δi} (i = 1,2, ...,m), (5.1)

wherep ∈ S is an arbitrary point of the surfaceS, Id(p) := L(p) ·N(p) is the diffuse
term computed from the light vectorL and the surface normal vectorN, andm is the
number of tones, which is typically set to 2 or 3. As described in Section 5.2, this simple
mechanism often results in discontinuous light appearance and straight lighting problems
on flat surfaces (see Figure 5.2). To solve these problems caused by the physical lighting
process, we apply a lighting transform to the light vectorL to achieve the straight lighting
effect in a similar manner to the highlight vector transform proposed by Anjyo et al. [4].
The difference is that we introduce a light coordinate system to dynamically define the
transformation space, whereas while their method relies on the static tangent space.

5.5.1 Light Coordinate System

In our lighting transform approach, we use a point light for the initial lighting, because
the point light source produce a continuous light appearance on a flat surface (see Fig-
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(a)

(b)

Figure 5.6: Light coordinate system for the initial lighting design. (a) Light shape con-
trol with the light coordinate system. The light vector is transformed through the straight
function according to the projection coordinates (Lu,Lv). (b) Automatic transform direc-
tion control. The new transformation axis dvnew is assigned depending on the surface
normal direction (Nu, Nv).

ure 5.2 (b)). With the location of point light sourcepl , we introduce a light coordinate
system to specify the transform orientation (see Figure 5.6). We use additional coordi-
nate axes (du, dv, dw) for light shape control. With these elements, we can introduce a
different representation of the light vectorL :

L(p) = Lu(p)du+Lv(p)dv+Lw(p)dw, (5.2)

whereLu, Lv, andLw are the projection coordinates which are computed fromLu :=
L ·du, Lv := L ·dv, andLw := L ·dv. Based on this representation of the light vector,
we can apply a vector transform to control the light shape. To create a straight lighting
effect on a flat surface, we define a straight functionfst as:

fst(L) := Lu(p)du+(1−α)Lv(p)dv+Lw(p)dw, (5.3)

where the directional scaling term 1−α is applied to the projection coordinateLv(p).
The straight functionfst makes the light vector straight along thedv direction if α ap-
proaches 1. As shown in Figure 5.2, the point light vector transformed by the straight
function successfully produces a straight lighting shape. In our system, the artist can
control the transform direction by manipulating the position and rotation of a 3D line-
shaped light UI, which is easily converted into the elements of the light coordinate sys-
tem (pl , du, dv, dw).
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5.5.2 Transform Orientation Control

In the previous section, we described a simple case where the transform orientation was
constantdv. Here we consider a transform orientation control for the more general case
of multiple polygons. From our observations, artists typically use different transform
orientations for different polygons. The obvious solution is local control, whereby the
animator can set the transform direction for each flat polygon. However, such local
controls would require a time consuming key-framing process to create the animation.
To reduce the artist’s workload, we introduce automatic transform orientation control.
Here we try to satisfy the following requirements in our transform orientation control:

• The transform orientations are perpendicular to the surface normal vector (Re-
quirement 1).

• Stable and coherent motion of the transform orientation during the animation (Re-
quirement 2).

For these practical requirements, we provide a method for automatically defining coor-
dinate axes (du, dv, dw) depending on the surface normal directionN (see Figure 5.6
(b)). Similar to Equation 5.3, we can introduce a representation of the surface normal
vector for the given coordinate axes (du, dv, dv):

N(p) = Nu(p)du+Nv(p)dv+NL(p)dw, (5.4)

whereNu, Nv, andNw are defined in the same way asLu, Lv, andLw in Equation 5.3. For
theNu andNv, we first consider a new transform orientationdv1 that satisfies Require-
ment 1:

dv1 = normalize(Nvdu−Nudv), (5.5)

wheredv1 is the vector perpendicular toN anddw. This definition satisfies Require-
ment 1; however, Requirement 2 is not satisfied. For instance, suppose that an animator
rotates the light along thedu direction. This results in an undesirable rotation of shaded
area, whereby the angle betweendw andN approaches 0◦. To avoid such undesirable
rotations, and to satisfy Requirement 2, we integrate stable behavior into the definition
in Equation 5.4 by rewriting the definition of Equation 5.5 as:

dvnew= normalize(φ(Nu,Nv)Nvdu−Nudv), (5.6)

where the scaling functionφ(Nu,Nv) is applied to the projection coordinateNv. We
designed the scaling functionφ(Nu,Nv) as follows:

φ(Nu,Nv) :=


0 if ∥(Nu,Nv)∥< r1

∥(Nu,Nv)∥−r1
r2−r1

r1 ≤ ∥(Nu,Nv)∥< r2

1 otherwise

(5.7)

wherer1 and r2 are the user-given parameters satisfying that 0< r1 < r2 < 1. With
this scaling function, our method can seamlessly blenddv1 (φ(Nu,Nv) = 1) anddv
(φ(Nu,Nv) = 0).

5.6 Threshold Offset to Enhance Multiple Features

In this section, we consider how to apply multiple enhancements to the designed straight
lighting result. Barla et al. [11] used a 2D texture to extend the conventional texture
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mapping process to enhance one additional feature. Inspired by this approach, we design
an extension of the 1D color mapping process to enhance of multiple features. In our
approach, we use procedural scalar lighting offset functions to modify the threshold
values of multi-tones. Figure 5.7 shows our lighting offset process. The final threshold
valueδ new

i is computed according to:

δ new
i := δi +oe

i (E)+od
i (D), (5.8)

whereoe
i (E) andod

i (D) are the scalar offset functions of the edge lighting effect and the
detailed lighting effect, respectively. We use these two offset functions in our method;
however, we can easily provide additional enhancements if required. Our system runs at
interactive rates with the two detailed features for three shaded areas and one highlight
area, as described later.

(a)

(b)

(c)

Figure 5.7: Lighting offset for multiple enhancements. (a) The original texture mapping
assigns the three tone colors according to the Lambertian diffuse term Id. (b) The edge
offset function and detailed offset function deform the threshold values of the multi-tones.
(c) The final texture mapping enhances the edge features and the detail features through
the combined offset functions.
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5.6.1 Edge Enhancement

Here we describe a method for providing intuitive control over the edge appearance
with our lighting offset approach. Edge enhancement typically uses a sharp curved
lighting effect around the edge of the object (see Figure 5.1 (b)). To achieve this, we
design the edge offset functionoe

i that is a function of the edge intensity value and a
few appearance-based parameters (width control and height control). The edge inten-
sity value is referenced from the image space edge field computed from the 3D scene.
With the input edge intensity value, the final edge appearance can be controlled using
the defined appearance-based parameters.

Image Space Edge Field

To specify a deformation space, we need to define an edge field on the target 3D model.
While our method is independent of the choice of the edge intensity representation, we
chose the image space edge field, because it can be dynamically extracted from screen-
space information, which provides an efficient way to control the edge appearance in
real-time.

To compute the image space edge field, we use an approach similar to the ray-tracing
algorithm for the NPR-Line [21], where the feature lines are extracted based on the
parametric distance of sampling points. Figure 5.8 shows an overview of our image
space edge detection algorithm. The parametric distance is computed from the image
space property vectors:

d(x,y) := ||P(x)−P(y)||, (5.9)

wherex and y are the sampling points,P(x) is the surface property vector atx, and
d(x,y) is the parametric distance betweenx andy. Figure 5.9 describes the overall

Figure 5.8: Image space edge detection. (Left) A scene rendered with color mapped
surface normals. Each surface normal is used as part of an image space property vector
in our edge detection algorithm. (Right) Our image space edge detection algorithm
searches for discontinuities in the property vectors to compute the image space edge
field.

process of computing an edge intensity at a sampling pixelx. Based on the paramet-
ric distance definition, a nearby pixely aroundx can be classified as a similar pixel
(d(x,y) ≤ c ) or a dissimilar pixel (d(x,y) > c) using a threshold valuec. We use the
minimum distancedE(x) between the sampling pixelx and the dissimilar pixels to define
the edge intensityE(x):

E(x) := max(0,1− tdE(x)), (5.10)

wheret is the thickness control parameter for an image space edge field. To reduce
the computational expense, we approximate the edge intensity using sparse sampling.
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Figure 5.9: Edge intensity at a sampling pixel (the blue point). Based on the parametric
distance, each nearby pixel is classified as a similar pixel (the green points) or a dissim-
ilar pixel (the red points). The minimum distance dE between the sampling pixel and the
dissimilar pixels is used to compute the edge intensity E.

The precision of the edge intensity depends on the number of sampling pointsM. We
use 16≤ M ≤ 32, which we have found provides a trade-off between precision and
efficiency.

Edge Offset Function

Figure 5.10: Lighting offset with edge offset functions. Our edge offset functions de-
form the threshold values with appearance-based parameters (width control and height
control).

With the definition of the image space edge field, we design the edge offset function
to deform the threshold values using a few simple appearance-based parameters (see
Figure 5.10). For the computed the edge intensity valueE, the edge offset function
oe

i (E) is defined as:

oe
i (E) := β w

i (1−sin(acos(
E−β h

i

1.0−β h
i

)), (5.11)
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whereβ w
i (for width control) andβ h

i (for height control) are the user-specified parame-
ters for controlling the curved shape of the edge appearance.

5.6.2 Detailed Lighting Effect

Another application of our lighting offset function approach is detailed lighting effect.
Here we describe how to design effective jagged highlights and shaded areas using a
few intuitive parameters. As shown in Figure 5.1 (b), typical jagged lighting has a wavy
shape used to depict a bumpy surface. With this observation in mind, we empirically
design the following offset function to achieve a detail lighting effect.

Detail Offset Function

Figure 5.11: Lighting offset with detail offset functions. Our detail offset functions
deform threshold values using appearance-based parameters (strength and frequency).

Figure 5.11 shows how our detail offset function deforms threshold values. LetD be the
detail feature parameter (vertical axis in the figure) to specify a deformation space. For
the given detail feature parameterD, we define the detail offset function as:

od
i (D) := γs

i sin(γ f
i D), (5.12)

whereγs
i andγ f

i are the user-specified parameters to control the strength and frequency
of the wavy shape. While any kinds of parameter can be used forD, we use one of the
object-space texture coordinatesv, because the artist is familiar with the layout design
of (u,v) coordinates. By changingγs

i andγ f
i , we can easily adjust the appearance of the

detailed lighting effect.

5.7 Implementation

To integrate the proposed methods into an existing 3D shading design process, we imple-
mented our stylized shading algorithms as a Maya plug-in. Our implementation makes
use of the highly customizable features of this plug-in. To reduce the computational
expense, we implemented the rendering algorithms using Maya’s hardware shader func-
tionality, which allows the shader code to be written using standard OpenGL and GLSL.
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Since the tessellation of mechanical objects is generally not suited for per-vertex light-
ing, we need to calculate the lighting process using a pixel shader.

Straight Lighting Effect

To implement the straight lighting effects, we provided a simple 3D line-shaped light
UI to specify the position and the orientation of the light coordinate system. These data
and the parameters for the shape control are transferred to the pixel shader, and then the
lighting transforms are applied to the per-pixel light vector.

Image Space Edge Field

The most time-consuming part of our rendering algorithms is computing the edge dis-
tance field. To perform this process in real-time, we compute the per-pixel edge intensity
on the GPU using multiple passes. In the first pass, the target 3D model data are raster-
ized into three property textures: the surface depth, the surface normal, and the surface
material ID. In the second pass, we use the pixel shader to compute the per-pixel edge
intensity values of these property textures. Finally, our system merges these edge fields
by choosing the maximum edge intensity value. The computed edge field is referenced
by the edge offset process, which is implemented as a part of lighting process in the pixel
shader. In our prototype system, we can compute an edge field at interactive rates with
an image resolution of 512×512 pixels.

5.8 Results and Discussion

We applied our prototype system to create various stylistic animations. Our system runs
at interactive rates on a 2.16GHz Intel P4 Core Duo CPU with an NVIDIA GeForce
QuadroFX 350M GPU. In editing and previewing the animations, the frame rate was in
the range 6 - 20 fps for all of the examples in this chapter.

The continuous appearance of straight lights is crucial for creating 3D animations of
mechanical objects composed of multiple flat polygons, and suggest that the surfaces are
flat and shiny. Figure 5.12 (a) demonstrates how effective and efficient our algorithms
are for such requirements. As described in Section 5.2, even for a simple object such as
a computer monitor, conventional lighting results in the discontinuous light appearance
problem and the straight lighting problem on flat surfaces. In contrast, our stylized
lighting method enables interactive design of the straight lighting effect by manipulating
a 3D light source UI. Moreover, the designed lighting can be further controlled using
edge enhancement and the detailed lighting effects, which can give the viewer different
impressions or nuances of the objects. (see the right of Figure 5.12 (a)).
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(a)

(b)

Figure 5.12: Typical lighting examples. (a) A computer monitor model including mul-
tiple flat surfaces. The left image is illuminated using a point light source and the right
is designed using our method. Our straight lighting and detailed lighting effects por-
tray the flatness as well as the bumpiness of the surface. (b) A model of a gun. The
left image was illuminated using a point light source and the right is designed using
our method. Our straight lighting effect produced the straight shaded areas on the flat
polygons, while rounded shaded areas were preserved on the smooth surface.

In creating animations with the gun model shown in Figure 5.12 (b), lighting control is
more difficult due to the complexity of the geometry. Compared to the results generated
using a point light source (the left of Figure 5.12 (b)), our method allows the artist to
design the straight lighting effect easily and interactively. Note that the rounded shaded
areas are preserved on the smooth surface. This would be difficult to achieve using
conventional lighting control without locally controlling the lighting on a per-polygon
basis.

Edge enhancement and detailed lighting are important when drawing mechanical ob-
jects, as shown in Figure 5.1 (b). Figure 5.13 demonstrates an example where an artist
used our system to design such expressive shading styles for a mechanical object. The
conventional lighting was limited to a simple shading appearance, and it was difficult to
add detail. In contrast, our approach enabled interactive control of the detailed appear-
ance (using edge enhancement, and detailed lighting effects) by adjusting a few simple
appearance-based parameters.

Figure 5.14 shows another example where our tools were used to produce a crystal ap-
pearance. In this example, it would be desirable to design a straight lighting effect to
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Stylized lighting result
　

Original lighting result
(close-up)　

Our lighting result
(close-up)　

c⃝Nintendo·Creatures·GAME FREAK·TV Tokyo·ShoPro·JR Kikaku c⃝Poḱemon c⃝2008 PIKACHU PROJECT

Figure 5.13: Edge enhancement and detailed lighting effects on an aircraft. Top row:
our stylized lighting result (left), close-up of the original lighting result using a point
light (middle), and close-up of our stylized lighting result (right). Middle row and bottom
row: a comparison between the original lighting result and our lighting result. The
sharpness and the bumpiness of the aircraft are emphasized using our edge enhancement
and detailed lighting effects.

emphasize the shiny surface properties of the crystal. However, a discontinuous light
appearance would be problematic if using a directional light source, as shown in the
top row of Figure 5.14. The bottom row of Figure 5.14 demonstrates that our straight
lighting effects allows a continuous light appearance for flat surfaces, making it suitable
for the images of crystals. In addition, our edge enhancement effects allows the artist to
design sharp lighting on the edges.

While these examples do not include any deforming object, our techniques can be ap-
plied to a highly deforming object (see Figure 5.15). In this case, it would be time-
consuming to compute the edge field in the object space because the geometry changes
rapidly. On the other hand, our image space algorithm extracts the edge features inter-
actively due to the mechanism independence of the complexity of the target geometry.

Our prototype system has been tested by professional artists in our work place. Most
of the animations in this chapter were easily and quickly designed, taking only a few
hours to complete. In addition, we were able to demonstrate the system and examples to
many artists. Their reactions were positive: they felt that the methods were effective for
reproducing typical lighting styles that are commonly used in hand-drawn cartoon im-
ages. Furthermore, they commented that conventional lighting processes are not capable
of producing such stylized lighting results, and that manually drawing the lighting frame
by frame is the most reliable way to achieve these effects using existing methods. We
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Figure 5.14: Straight lighting effects and edge enhancements for crystal appearance.
(Top row) The original lighting result using a directional light. (Bottom row) Our light-
ing result using the straight lighting and the edge enhancement effects. First, a discon-
tinuous light appearance was replaced by our smooth straight lighting effects; then, the
sharp lighting was designed using the edge enhancement.

feel that there is considerable potential for our methods to replace these time-consuming
tasks for artists.

5.9 Summary

In this chapter, we presented a system for shading stylization based on model features,
including straight lighting, edge enhancement, and detailed lighting effects. According
to our interface design framework, we extended the simple cartoon shading model, pro-
viding additional control over specific model features based on the lighting transforms
and the lighting offsets. Moreover, our shading stylization can be seamlessly integrated
with the conventional lighting techniques that use point light sources. The animation
examples illustrate the advantages of our system over existing methods.

Some additional capabilities are required to realize the full potential of our system in
practice. For example, our stylized lighting methods only permit global controls to
change the shading appearance. As shown in Section 5.8, our methods allow the artist
to quickly design plausible lighting results to generate expressive shading appearances.
However, the artist may require local controls over the highlights and shading of each
surface patch for fine-tuning (see the left image of Figure 5.16). Besides, small scale
controls for complex edge appearance would also be effective for further adjustment of
the character’s appearance (see the right image of Figure 5.16). Establishing such local
controls with suited interactive design process is an important area of future work, and
is planned to integrate the experimental system into an animation production pipeline.

Our image space edge field is effective for interactive design of effects; however, for off-
line rendering, we may require a more precise approach to obtain a temporally coherent
edge field. In restricting ourselves to 3D cartoon animation, we feel that the current
prototype system has the capability to create good results with high resolution images.
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We are also investigating stylized shadow effects. The main challenge is thus to establish
a generalized framework and interface that allows the artist to easily create a number of
simultaneous light effects using the global lighting, local lighting, and shadows.
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Stylized lighting result
　

Original lighting result
(close-up)　

Our lighting result
(close-up)　

Our result

Original lighting

Figure 5.15: Edge enhancement for a highly deforming object. The silhouettes of the
deforming cape were emphasized using our edge enhancement.
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Figure 5.16: Limitations of our method. (Left) Our stylized methods only permit global
controls. (Right) Our edge enhancement cannot handle a complex shape beyond our
simple formulation.
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Chapter 6

Practical Shading Model for Expressive Shading
Styles

6.1 Overview

The third experiment is to apply our framework to artist-friendly user interface for prac-
tical shading model for stylized shading styles. In this chapter, we focus on how to
design overall appearance with expressive shading styles whereas the first and second
methods are limited to simple shading tones. For global control of stylized shading
appearance, the Lit-Sphere shading model proposed by Sloan et al. [87] is state-of-art
method for emulating expressive stylized shading styles. Assuming that stylized shad-
ing styles are described by view space normals, this model produces a variety of stylized
shading scenes beyond traditional 3D lighting control. However, it is limited to the static
lighting case: the shading effect is only dependent on the camera view. In addition, it
cannot support small-scale brush stroke styles. To address these issues, we propose an
extension of the Lit-Sphere shading model that allows the artist to design expressive
shading styles for dynamic lighting. In accordance withPrinciple 1 (directable shad-
ing model for artistic control), we design the directable shading model which provides
intuitive painting process for the Lit-Sphere shading and appearance-based controls for
prominent features. The key idea for the directable shading model is to reformulate
the Lit-Sphere shading model using light space surface normals. Thanks to the light
space representation, our shading model addresses the issues of the original Lit-Sphere
approach, and allows artists to use a light source to obtain dynamic diffuse and spec-
ular shading. Besides, the shading appearance can be refined using stylization effects
including highlight shape control, sub lighting effects, and brush stroke styles. Our ex-
tension complies withPrinciple 2 (seamless integration with 3D lighting) in that all the
proposed shading effects can be controlled by a single global directional or point light
source. Besides, the designed shading style results in coherent animation, to which 3D
object deformation can be applied. Finally, our algorithms are easy to implement on
GPU, so that our system allows interactive shading design.

6.2 Introduction

Stylized rendering techniques in computer graphics have been widely used to emulate
shading styles of artists. Among them, cartoon shading is popular in a variety of produc-
tion software, including AutodeskR⃝ MayaR⃝ and 3ds MaxR⃝. This approach is based
on computed illumination, and effectively reproduces the abstracted shading styles of
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Figure 6.1: Typical hand-drawn shading style. Pictorial shading tones are enhanced
with rim lighting effects and shading strokes.

comics or cartoons. However, the shading appearance is limited to simple shading tones,
whereas hand-drawn shading styles may have rich variations as follows.

Figure 6.1 shows a typical hand-drawn shading style. In this scheme, the artist designs
complicated shading tones in the pictorial space, which cannot be simply described by
the typical diffuse and specular terms. We term such shading tonespictorial shading
tones. These shading tones can be enhanced using the following stylization effects. The
character silhouette is accentuated by a sharp lighting effect, which is commonly called
rim lighting (also known as back lighting). In addition, the boundary of the shading tones
are often drawn with brush strokes, which we will refer to asshading strokes. Here we
will call these kinds of effects:secondary stylizations.

In this chapter, we consider how to design such stylized shading with dynamic 3D light-
ing. As with the static lighting case, the Lit-Sphere shading model [87] is attractive
because it can deal withpictorial shading tones(see Figure 6.2). Versions of this ap-
proach have been successfully used in commercially available software tools such as
MudBox R⃝ and ZBrushR⃝. However, the Lit-Sphere model is limited to this static light-
ing appearance; the resulting shading will not be dynamically affected by the lighting
since the shading effect is totally dependent on the view space normals (see Figure 6.3).
In addition, the generation of small-scale stylizations such asshading strokesusing this
method may result in unwanted visual artifacts (see Figure 6.4).

We propose to extend the Lit-Sphere model with dynamic lighting and shading styliza-
tions while preserving pictorial shading tones. To achieve this, we introduce the concept
of the light space normals, which enhance the Lit-Sphere model by including the follow-
ing new features:

• Light-dependent diffuse and specular behavior.

• Secondary stylizations including highlight shape control, rim lighting, and shading
strokes.

• Coherent animation of the shading styles, to which 3D object deformation can be
applied.

The remainder of this chapter is organized as follows. First, we briefly summarize re-
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lated work in Section 6.3 and then we explain how to extend the Lit-Sphere approach for
dynamic diffuse and specular behavior in Section 6.5. In Section 6.6, we describe how
the secondary stylizations can be combined with the original shading tones. Combining
these techniques, we demonstrate a variety of shading appearances in Section 6.8. Fi-
nally, we discuss the limitations and possible extensions of our approach in Section 6.9.

Figure 6.2: Lit-Sphere shading. The pictorial shading tones are captured using the
Lit-Sphere model.

Figure 6.3: Lit-Sphere issue 1: static lighting appearance. Manipulations of the light
do not affect the shading result.
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Figure 6.4: Lit-Sphere issue 2: artifacts of small-scale stylizations. The regular pattern
of shading strokes is extremely deformed in Lit-Sphere shading result.

6.3 Background

Early stylized rendering techniques are typically described by simplified shading tones
computed using diffuse and specular terms. Gooch and Gooch [36] used cool-to-warm
shading tones for their technical illustration shader. Alternative 1D texture representa-
tion has been used to emulate illustrative shading styles for video games [58]. For more
complex shading styles, X-Toon [11] extends 1D shading tones to a 2D function, stored
in a 2D texture. The additional dimension is used to convey specular, depth or surface
orientation. However, this kind of simple mapping of the computed diffuse and specular
shading tones permits less control over the shading appearance.

To give the artists more control on the top of stylized rendering results, several tech-
niques have been developed that modify the shape of the shading effect. The cartoon
highlights of [4] [96] deal with shape transformation by dragging operations. The styl-
ized highlight shape is adjusted via translation, rotation and scaling operators achieved
using vector-field transforms. Ritschel et al. [74] describe a shading deformation tech-
nique that is based on a virtual piece of cloth. By modifying sample points of the shading
components, reflections and shadows can be dragged on the surface. Todo et al. [90] and
Pacanowski et al. [68] give more direct control on the highlight shapes by providing in-
tuitive painting methods. Although these methods allow additional flexibility to achieve
the desired shape of the shading effects, the final shading appearance is limited to the
specification of the stylized materials.

For further shading stylizations, several good approaches have been developed that allow
artists to design custom textures to achieve finer controls over the shading appearance.
The Lit-Sphere model [87] allows an artist to design shading tones in pictorial space
using a 2D texture of a shaded sphere; however, this approach does not support dynamic
lighting. As for hatching styles, Kulla et al. [49] and Yen et al. [109] proposed procedural
methods for generating coherent stroke animation using structured brush stroke textures.
These methods focus on variation in shading styles, but shape control is not considered.

The Lit-Sphere model [87] has the advantage that complex shading tones can be de-
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signed in the pictorial space. For this reason, we chose to extend it to provide additional
controls that will result in a scheme where both highlight shape control and shading
stylizations are seamlessly combined.

6.4 User Interaction

Our prototype system allows the artist to design a shading style with three shading design
processes: Lit-Sphere map design, highlight shape design, and small scale stylization de-
sign. In these shading design processes, editing results are interactively updated through
user operations. The operations of our system are summarized in Table 6.1.

Design process User operation

Lit-Sphere map design (Figure 6.5) Paint shading on a reference sphere

· Diffuse component

· Specular component

Highlight shape design (Figure 6.6) Adjust transform parameters

· Directional scaling

· Rotations

· Translations

Small scale stylization design (Figure 6.7)Adjust stylization parameters

· Rim lighting

· Shading strokes

Table 6.1: User operations of our system.

We now proceed to describe these user operations in detail. The artist starts with Lit-
Sphere map design on a reference sphere (see Figure 6.5) by painting a diffuse com-
ponent first and then adding a specular component. In our implementation the designed
diffuse and specular components are stored in the 2D textures, which are then transferred
to a target 3D object. The artist can animate these shading components by manipulating
a single directional or point light source. After the initial design of shading tones, light-
ing shape can be adjusted using a few simple transform parameters including directional
scaling, rotations, and translations (see Figure 6.6). The artist can further control and
enhance the small scale features using the rim lighting effects and the shading strokes,
if desired (see Figure 6.7). Except painted Lit-Sphere textures, the lightning and pa-
rameters are designed using key-frame editing, which enable dynamic control over the
shading appearance. Besides, our system also provides real-time feedback to the editing
operations, which are essential for interactive shading design.

6.5 Dynamic Lit-Sphere: Defining The Light Space Normals

In this section, we describe how to extend the Lit-Sphere model to deal with dynamic 3D
lighting. By introducing the concept of light space normals, we can animate the shading
using common diffuse and specular behavior.
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Figure 6.5: Lit-Sphere design for shading tones. The artist designs Lit-Sphere maps by
intuitive painting process. The designed shading tones are stored into 2D texture, and
then transferred to the target 3D model. The artist can manipulate the shading tones
using a single directional or point light source.

Figure 6.6: Highlight shape design. These simple transform parameters including di-
rectional scaling, rotation, and translations are used to adjust the highlight shape.

6.5.1 Original Lit-Sphere Model

Sloan et al. [87] described an effective method for generating stylized shading using a
reference sphere map. The essence of the technique is to capture the shading style of
an object as a function of view space normals (see Figure 6.8). This function is stored
in a 2D texture, which is then transferred to a target 3D object. We compute the texture
coordinates(u,v) ∈ [−1,1]× [−1,1] at a pointp on a surfaceS as follows:

(u(p),v(p)) = (Nvx(p),Nvy(p)). (6.1)

We use the texture coordinates to sample color from the texture, andNvx(p) andNvy(p)
are the components of the view space normalNv(p) := (Nvx(p),Nvy(p),Nvz(p)), where
Nvx := (N ·Vx) andNvy := (N ·Vy) are obtained from the surface normal vectorN and
view plane vectorsVx, Vy. This approach is effective for designing pictorial shading
tones for static scenes. Here, we want to obtain such expressiveness with dynamic light-
ing.

61



Figure 6.7: Rim lighting effects and shading stokes. These stylization effects are used to
design the small scale shading appearance.

Figure 6.8: The original view Lit-Sphere shading model compared to the dynamic dif-
fuse Lit-Sphere (our approach). The original view Lit-Sphere uses view space normals
to represent the shading of an object. The dynamic diffuse Lit-Sphere uses light space
normals, enabling dynamic lighting environments.

6.5.2 Dynamic Diffuse Behavior

To animate the Lit-Sphere model with dynamic lighting control, we introduce a new
space normal representation: light space normals. For a given light directionL(p),
we define the light space using three orthogonal vectorsL(p), L x(p) andL y(p) (see
Figure 6.8). The precise definition of two other vectorsL x andL y will be provided in
Section 6.5.4. We refer to the plane spanned byL x andL y as the light view throughout
the rest of this chapter. Because the space is light dependent it can handle dynamic
lighting. While our shading model is capable of dealing with specular behavior (see
Section 6.5.3), we first describe the simpler diffuse behavior. For a given light space, we
define a light space normalNl := (Nlx,Nly,Nlz) as follows:

Nlx(p) := (N(p) ·L x(p)),

Nly(p) := (N(p) ·L y(p)),

Nlz(p) := (N(p) ·L(p)), (6.2)
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where the surface normalN is transformed to the light space normalNl . With this light
space normal definition, we obtain the texture coordinates(r,θ) ∈ [0,1]× [0,2π] for a
diffuse Lit-Sphere map using the following relations:

r(p) = arccos(Nlz(p))/π,
θ(p) = arctan(Nly(p)/Nlx(p)), (6.3)

whereθ is the angle in the light view andr denotes the radial coordinate derived from
the brightness termNlz = N ·L . The final shading color is sampled from the Cartesian
coordinates(u,v) = (rcosθ , rsinθ), which is readily transformed from the polar coordi-
nates(r,θ).

These texture coordinates are directly related to lighting information, i.e., brightness(r)
and light view angle(θ). We will show how these can be used efficiently to add various
shading stylizations in Section 6.6.

6.5.3 Dynamic Specular Behavior

Unlike diffuse, specular is dependent on the view direction. Using our light space normal
definition, we implemented two common specular models: the Phong model and the
Blinn-Phong model. Figure 6.9 illustrates our specular map in the case of the Blinn-
Phong model. In practice, the specular layer is composited over the diffuse layer, which
provides more plausible shading appearance.

Figure 6.9: The specular Lit-Sphere map based on the Blinn-Phong model. The specular
layer is composited over the diffuse layer. The half vectorH is used to integrate specular
behavior into our shading process.

The Phong model produces a stretched highlight shape described by the specular term
L ·V′ whereV′ := 2(V ·N)N−V denotes the reflected view vector. We integrate the
Phong model with the light space normal approach using the reflected view vectorV′

rather than the surface normal vectorN in Equation 6.2. The top images of Figure 6.10
show the reflectance properties in Phong: the highlight shape is more elongated near the
silhouettes.

The Blinn-Phong model preserves the original highlight shape. The behavior is de-
scribed by the specular termH ·N whereH := (L +V)/∥L +V∥ denotes the half vector.
We integrate the Blinn-Phong model using the half vectorH rather than the light vectorL
in Equation 6.2. While this modification effectively provides the Blinn-Phong behavior,
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it may result in an animation artifact when the light comes from the back of the object.
We address this issue by interpolating the specular and diffuse behavior according to the
angle of the light and the view vectors.

Figure 6.10: Comparison between Phong and Blinn-Phong models. The Phong model
produces a stretched highlight shape. The Blinn-Phong model preserves the highlight
shape.

Figure 6.10 shows a comparison between the visual appearance generated using the two
models. Our system allows an artist to use both specular models as the situation de-
mands: the Phong model is typically used to emphasize the reflection properties of ob-
jects whereas the Blinn-Phong model is more effective for preserving the shape of the
highlight.

While the Blinn-Phong offers a good property for preserving lighting shape, it leads to
animation artifacts without multiplying geometric term(N ·L). An undesirable rotation
of highlight is observed when the light direction comes from the back of the object
(see Figure 6.11). Incorporating the geometric term is not straight-forward, since our
shading model is not only determined by the brightness term(H ·N), but also thelight
view (L x,L y). As an alternative approach, we reduce the artifacts by modifying half
vectorH to H′:

H′ = Rt(H,L , t), (6.4)

whereRt computes spherical interpolation of vectorH andL , and its interpolation factor
is t. We definet heuristically as 2(π−arccos(L ·V))/π clamped to[0,1]. Intuitively, the
interpolation starts when the light starts coming from the back-side of the view (L ·V =
0), ends when the light and the view are opposite(L ·V =−1). As shown in Figure 6.11,
this simple modification works well for reducing the animation artifacts.

6.5.4 Light Space Definition

In our light space approach, lighting orientation is specified by the light view(L x,L y).
Although the user could manually specify the orientation of this light view, we provide
a method to automatically define it from the given view and light settings.
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Figure 6.11: Comparison between original Blinn-Phong and modified Blinn-Phong (our
method). The original Blinn-Phong model results in the undesirable rotation of high-
light. Our modified Blinn-Phong model reduces the animation artifact.

Figure 6.12: Rotation of the camera view to light view. The spherical rotationR is
obtained fromV and L . The camera view(Vx,Vy) is transformed to the light view
(L x,L y) with R.

An overview of our methodology is illustrated in Figure 6.12, where the camera view
(Vx,Vy) is transformed to the light view(L x,L y) as a function of the camera view and
the light direction. The transform is given by the minimum angle spherical rotationR
betweenV andL . Since the rotation angle is minimum, the light view(L x,L y) will be
similar to the camera view(Vx,Vy).

One approach is to use the static tangent space instead of the light space we defined.
Figure 6.13, 6.14 shows a comparison between our method and the static tangent space
given by the tangent vectort and the binormal vectorb. The lighting orientation based on
the tangent space is well-suited for depicting the surface flows. However, a minor draw-
back is that the lighting orientation is strongly constrained by the given tangent field.
The result is that the highlight becomes distorted at the singular point (see Figure 6.13).
Another issue is that if the anisotropic highlight orientation varies along the static tan-
gents, then this orientation will not be coherent throughout the model (see Figure 6.14).
Our light space approach preserves the highlight shape regardless of the tangent space
definition and results in a highlight orientation that is coherent along the view orienta-
tion.
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Figure 6.13: Lighting orientation comparisons for symbolic highlight. Static tangent
space causes distortion near to the singular point at the pole. The light space preserves
the highlight shape regardless of the tangent space definition.

Figure 6.14: Lighting orientation comparisons for a long thin highlight. The highlight
orientation varies along the static tangent direction. Employing the light space results
in the coherent orientation along the view orientation.

6.6 Shading Stylizations: Transforming The Light Space Normals

In this section, we describe how to apply secondary stylizations to the designed shading
tones. Thanks to the light space representation of our Lit-Sphere extension, transforma-
tion of the light space results in shading transformations. In the following sections, we
describe how we can use such transformations to implement secondary stylizations.

66



6.6.1 Highlight Shape Transforms

To give users finer control over the highlight shape, we apply lighting transforms similar
to those described in Section 5.5 and [4]. While these methods used a vector-field to
deform the highlight shape, we can use simple texture transforms to achieve the same
effects.

The texture transforms are designed as a composite transform functionA : [−1,1]×
[−1,1]→ [−1,1]× [−1,1] for the texture coordinates(u,v) such that

A(u,v) := Ad(Ar(At(u,v))), (6.5)

whereAt is the translation operator,Ar is the rotation operator, andAd is the directional
scaling operator.

The translation operatorAt is defined by two parametersα andβ as follows:

At(u,v) := (u−α,v−β ). (6.6)

The rotation operatorAr is defined by one parameterφ as follows:

Ar(u,v) := (u,v)

 cos(−φ) sin(−φ)

−sin(−φ) cos(−φ)

 . (6.7)

The directional scaling operatorAd is defined by two parametersγ andδ as follows:

Ad(u,v) := (u/γ,v/δ ). (6.8)

Figure 6.15: Highlight shape transforms. Starting from the initial state in the leftmost
image, the highlight shape is deformed by the transform operations.

Figure 6.15 demonstrates how these operations deform the highlight shape. The pa-
rameters are simple and straightforward so that the artist can adjust the highlight shape
intuitively.

6.6.2 Lighting Offset for Feature Enhancements

An artist can control and enhance the small-scale features using our lighting offset tech-
nique. This process is illustrated in Figure 6.16. In a similar manner to the traditional
bump mapping process, the attribute valueh∈ [−1,1] is used to modify the brightness
value (specific examples ofh will be described later). Whenh is a maximum (h = 1)
shading will be bright whereas at the minimum (h=−1) shading will be dark.

67



Figure 6.16: Lighting offset for feature enhancements. The original shading color is
sampled from the polar coordinates(r,θ). With the user-defined attribute value h, the
coordinate r is deformed to r′. Final shading is enhanced by the attribute with the
deformed polar coordinates(r ′,θ).

In contrast to bump mapping, our approach provides more direct control over the bright-
ness value without transforming the surface normal vectors. Thanks to the light space
representation of the texture coordinates(r,θ), we can modify the brightness value by
deforming the radial coordinater to r ′. For h = 0 (no offset), we use the coordinate
r ′ = r. For the brightest values (h= 1), we use the coordinater ′ = 0 corresponding to
the brightest point in the texture map. For the darkest values (h= −1), we use the co-
ordinater ′ = 1 corresponding to the darkest point in the texture map. For intermediate
values ofh, r ′ is interpolated according to

r ′ =

 C(h,−1,0)(r −1)+1 (−1≤ h≤ 0)

(1−C(h,0,1))r (0≤ h≤ 1)
, (6.9)

whereC(x,a,b) ∈ [0,1] computes the interpolation term ofx ∈ R betweena ∈ R and
b ∈ R. The functionC was a clamped cubic Hermite interpolation via the common
smoothstepfunction, which is available as a built-in feature of most GPU shading lan-
guages. Then the termr ′ in Equation 6.9 is used to sample the final shading color.

Using various choices ofh in Equation 6.9, we can easily specify different stylizations.
In the following, we will present typical usages ofh to achieve rim lighting and shading
strokes.

Rim lighting:

The rim lighting effect is the result of a light behind the objects. It results in a bright
glow effect on the shading around silhouettes. We can implement such effects using the
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facing ratio (N ·V) and defining the offsethr : S2×S2 → [−1,1]:

hr(N,V) := µC(|arccos(N ·V)|,η ,0), (6.10)

whereµ ∈ [−1,1] controls the brightness of the glow,η ∈ [0,π] is the size of the glow
andC is the same cubic Hermite interpolation function as in Equation 6.9. Figure 6.17
shows how different values ofµ andη allow an artist to design rim lighting appearances.
With a largerη , the rim lighting effect becomes sharper. Note thatµ can be negative,
which corresponds to darkening.

Figure 6.17: Rim lighting effects. By varyingµ andη , different rim lighting effects are
obtained. The designed effects are seamlessly integrated with the original shading tones.

Shading strokes:

As shown in Figure 6.4, specifying the shading strokes directly in the Lit-Sphere map
may result in shading artifacts. Therefore, we separate the shading strokes from the
shading tones. We use a structured brush stroke texture maphs(s, t) ∈ [−1,1] for the
shading stroke attribute, where(s, t) are the object space texture coordinates attached to
the model (see the middle image of Figure 6.16). By changing the structured texture
maps, we can combine various stroke styles with the original shading tones (see Fig-
ure 6.18). In contrast to the original Lit-Sphere approach, our shading strokes maintain
coherent motion using the object space textures as demonstrated in Section 6.8.

Figure 6.18: Shading stroke variation. By changing the structured brush stroke texture
maps, various shading stroke styles can be designed.

6.7 Implementation

To integrate the proposed methods into existing 3D shading design process, we imple-
mented our Lit-Sphere extension as a Maya plug-in.
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GPU Shading Process

To perform the rendering process at interactive rate, our rendering algorithms were im-
plemented using a CgFX shader that allows to design a custom GPU shading process.
The diffuse and specular Lit-Sphere maps are stored into 2D textures, which are ref-
erenced in the shading process. In our GPU program, most of the shading process
are computed in the pixel shader, including the secondary stylization (highlight shape
transforms and lighting offset). We use additional 2D brush stroke textures for shading
strokes, which is assigned to the object space texture coordinates.

Lit-Sphere Painting on A Reference Sphere

Separately from the GPU shading process, we use a CPU-based Maya painting mecha-
nism for our painting process for Lit-Sphere maps. Our system dynamically updates the
per-vertex texture coordinates of a reference sphere when the light and the view change.
The computational cost depends on the number of vertices of the reference sphere. Since
we do not need a highly tesselated sphere in practice, this computation is not a serious
bottleneck in our system. In making examples, we used the reference sphere with 1000
vertices for our Lit-Sphere painting.

6.8 Results

We have applied our prototype system to designing various artistic shading styles. In
making the following examples, our system enables interactive shading design with
NVIDIA Quadro 600 (more than 30fps for our examples). A variety of shading styles
are achievable by combining all of the system features (see Figure 6.19). These shading
styles can be dynamically controlled by a light source with coherent shading behavior
over time. In the following, we describe in more detail how we can achieve the typical
shading styles.

Typical artwork shading styles can be obtained by combining a few stepped shading
tones and simple stylization effects. In Figure 6.20, we demonstrate the use of our
shading model to achieve a minimal shading style similar to the illustration in [40].
We used simple black and white colors for the shading tones, and then applied shading
strokes to enhance the surface features.

A more complex illustrative shading style is shown in Figure 6.21, which is obtained
by layering diffuse and specular components. To create this style, we applied highlight
shape transforms to adjust the size and location of the highlight areas. As shown in the
figure, our shading model results in coherent transitions while maintaining the secondary
stylizations.

A stylized metallic appearance can be designed using complex reflection patterns. This
is illustrated in Figure 6.22, where we designed multiple long thin highlights to generate
a gold appearance. Our shading model can animate anisotropic diffuse and specular
shading, whereas this type of shading property would be hardly designed with existing
stylized rendering techniques.

Figure 6.23 shows the use of our technique with an animated object with a deforming
cape. Strong deformations of an object can often result in a lack of coherence of the
stylization. The animation in the figure shows that our techniques effectively create
coherent motion using the object space structured texture.
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Table 6.2 shows the performance of our current implementation. The time for shading
process depends on the complexity of the geometry of the target model (the number of
vertices and triangles). Even for the highly tesselated model used in the example of min-
imal shading style, the rendering cost seems not to be serious bottleneck in our system.
The performance data in Table 6.2 makes it clear that our GPU-based implementation is
sufficiently fast for interactive editing.

Figure 6.19: Material variation. Various shading styles are obtained using our system.

Title #Verts #Tris Shading process[fps]

Minimal shading 26850 53696 32.4

Illustrative shading 19985 39856 78.8

Stylized metallic 8001 15920 99.8

Highly deformed cape 3400 6422 120.1

Table 6.2: Performance of our shading process. Column describe (from left to right):
title, number of vertices of the target model, number of triangles of the target model,
time for the shading process.

6.9 Summary

In this chapter, we have demonstrated an extension for the Lit-Sphere model that enalbes
dynamic controls of pictorial shading tones with correlated stylization effects. Thanks
to our light space representation, the shading appearance can be controlled with high-
light shape transforms and lighting offsets while preserving the original shading tones.
The current prototype system allows an artist to design many commonly used artistic
shading styles; however, many additional capabilities are needed to meet the growing
requirements of artists.

For example, the current implementation of our shading model only allows for a sin-
gle light source (see Figure 6.24). However, our method can produce multiple lighting
appearances designed into a single specular Lit-Sphere map (see Figure 6.22). Work is
underway to implement a layered method that blends the Lit-Sphere shading effects with
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Our result

Figure 6.20: Minimal shading style.

the brightness term of each light source to give artists more direct control with multiple
light sources.

Another limitation of the current implementation is that our shading strokes only provide
indirect control whereas an artist may want to directly design brush strokes over the
shading tones (see Figure 6.25). Therefore, integrating more direct inverse stylization
methods [49] [109] into our system is an area for future direction.

A promising avenue would be dynamic control of brush stroke styles, taking into account
the temporal coherence. In our approach, we can obtain coherent shading strokes due
to the fixed stroke placement using the object space texture coordinates. Therefore, the
stroke placement itself is static during animation. Integrating the recent temporally co-
herent Image Analogy technique [13] might be helpful for establishing an artist-friendly
brush stroke control.

Since these demands depend on the range of shading styles and control that artists may
want, we plan to conduct extensive user feedback investigations to target areas where
additional functionality is desired, as well as ways to improve both effectiveness and
usability of our work.

72



Our result

Figure 6.21: Illustrative shading style.
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Our result

Figure 6.22: Stylized metallic appearance produced with our system.
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Our result

Original lighting

Figure 6.23: The shading tones and stylizations are coherently animated on the highly
deformed cape.
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Figure 6.24: Limitation 1: our shading model is limited to single light source.

Figure 6.25: Limitation 2: our shading model does not permit direct shading design on
a target model.
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Chapter 7

Discussions

In this chapter, we examine the capabilities of the three methods proposed in this thesis,
clarifying their strengths and weaknesses. Figure 7.1 summarizes our methods from the
perspective of the proposed framework. Depending on the level of the design process,
we introduced appropriate directable shading models that are seamlessly integrated into
existing 3D lighting controls.

Principle 1: For the directable shading models, we use three kinds of mechanisms:
lighting offset, lighting transform, and 2D color mapping. The lighting offset offers the
smallest scale control by directly modifying the brightness term. The lighting transform
provides larger scale control over the shape of the lights. The 2D color mapping provides
the largest scale control of the overall shading than the previous two mechanisms.

Principle 2: Our systems make use of these directable mechanisms with existing 3D
lighting controls. Multiple light sources can be used with both the lighting offset and the
lighting transform since the both methods are applied to the variables used for lighting
computation. On the other hand, we reformulated the entire lighting computation in the
case of 2D color mapping. Our reformulation provides expressive shading appearance
at the expense of limiting the control to a single light source.

In the following sections, we make detailed comparisons of three directable mechanisms.

Figure 7.1: Summary of our methods for an artist-friendly shading design system.
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7.1 Comparison of 1D Color Mapping and 2D Color Mapping

We have demonstrated how our methods achieve expressive shading appearance. We use
two types of color mapping for our shading models. The first is 1D color mapping used
in Chapters 4 and 5. The second is 2D color mapping used in Chapter 6.

Figure 7.2 shows a comparison of these methods. With 1D color mapping, we simply use
the computed brightness as the input of the color mapping function. Since the brightness
distribution is determined by the angle between the surface normal vector and the light
vector (or the half vector for specular effects), the final shading colors are distributed in
a circular shape (top row of Figure 7.2).

With 2D color mapping, the 2D Lit-Sphere maps are projected onto the target 3D model
based on light space normals. Since the projection coordinates are defined by light space
normals, this shading model allows the artist to design normal-dependent shading styles.
The bottom row of Figure 7.2 illustrates how 2D color mapping is effective for emulating
multiple lighting appearance.

In summary, 1D color mapping is limited to simple shading appearance, according to
the brightness distribution. On the other hand, 2D color mapping enables a normal-
dependent color distribution, which produces more expressive shading styles.

Figure 7.2: Comparison of 1D and 2D color mapping. (Top row) 1D color mapping
produces circular tone distributions. (Bottom row) 2D color mapping allows the artist
to design more complex normal-dependent tone distributions.

7.2 Comparison of Lighting Transform and Lighting Offset

To change the shape of lighting, we use two types of directable lighting mechanisms:
lighting transform and lighting offset. Figure 7.3 shows operation examples edited by
these lighting shape control mechanisms. In the second system (Chapter 5), lighting
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transform functions are used to change the round shape of lighting. Edge lighting offsets
provide a more local control over the shape of lighting based on specific model features.
In the first system (Chapter 4), local lighting offsets are calculated based on user pain-
ing operations, which enables fine-tuning of the lighting shape. In the following, we
compare these lighting shape control mechanisms with simple operation examples.

Figure 7.3: Operation example of lighting shape controls. Starting from the initial state
obtained with a point light source in the leftmost image, the lighting shape is deformed
by our lighting shape control mechanisms.

Figure 7.4 compares lighting transform and lighting offset for the case where a straight
lighting effect (lighting transform) is approximated by lighting offsets. For the compar-
ison, we begin with a simple flat surface illuminated by a point light source (first row).
The second row shows the ground truth for a straight lighting effect, where the lighting
transform function is applied to the light vector of original lighting result. The third row
shows an approximation of the straight lighting result by the offset function, using 10
key offset data calculated from the differences between the original lighting and straight
lighting results. 5 in-between frames shown in the third row were interpolated from the
key offset data. The fourth row of illustrates the regions where the lighting offset errors
are larger than 0.04. The red regions show positive errors and the blue region show nega-
tive errors. We can observe that the red regions are caused by insufficient blended offset
data, where the brightness values are less than those of the lighting transform result. The
blue regions are caused by the original lighting distributions, where the strong circular
lights are placed near the blue regions.

Table 7.1 summarizes the maximum lighting offset errors of in-between frames with
various numbers of key offset data. We observed that the quality of the lighting offsets
depended heavily on the number of key offset data used. Even for this simple model, 10
key offset data were insufficient to approximate the straight lighting result. To obtain a
smooth flow of the straight lighting effect, we needed at least 40 key offset data. This
means that use of the offset function requires numerous time-consuming paint operations
to obtain a straight lighting effect. Therefore, the lighting transform approach is more
suitable for a straight lighting effect.

On the other hand, the lighting offsets cannot be fully replaced by lighting transforms. In
designing the shading for cartoon animation, it is often necessary to adjust the lighting
in local areas in addition to adjusting the overall lighting shape. Figure 7.3 illustrates
such an example where we used the edge and local lighting offsets for fine-tuning. This
is easily designed by using the lighting offset approach which enables local lighting
effects. However, it is difficult to design such local lighting effects using the lighting
transform approach since it is limited to simple controls using its pre-defined transforms.
Therefore, integration of these two approaches are desirable.
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In summary, we have shown that the shape of lights can be easily deformed by the use
of lighting transforms. On the other hand, the lighting offset approach is optimized for
local lighting effects that cannot be achieved using lighting transforms. Therefore, we
believe these two approaches are complementary.

Figure 7.4: Comparison of the lighting transform and lighting offset. (First row) Orig-
inal lighting result obtained with a point light source. 5 frames were chosen from 48
frames. (Second row) Straight lighting result. The lighting transform was applied to
the light vector of the original lighting result. (Third row) Approximation of the straight
lighting result by use of the lighting offset. 10 key offset data, calculated from differences
between the original lighting and straight lighting results, were used to approximate the
vector transform. (Fourth row) Lighting offset errors. The red regions illustrate where
the brightness differences are greater than0.04. The blue regions illustrate where the
brightness differences are less than−0.04.

#Key offset data Brightness error

5 0.386

10 0.188

20 0.0679

40 0.0221

Table 7.1: Lighting offset errors as a function of the number of key offsets used to
approximate the straight lighting effect. #Key offset data is the number of key offset
data to approximate the straight lighting effect. The brightness errors are the maximum
errors of in-between frames.
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7.3 Comparison of Lighting Offset Spaces

In our shading models, the lighting offset functions are designed for different spaces.
In this section, we compare two representative examples: a local lighting offset defined
on a local area of a surface (Chapter 4) and an edge lighting offset defined in an edge
feature space (Chapter 5).

Figure 7.5 compares an edge enhancement that was controlled by using these two ap-
proaches. Similar to the previous section, we first introduced a ground truth result and
then we approximated it. The first row shows the original lighting result obtained using
the lighting transform to simulate a straight lighting effect. The second row shows the
ground truth result, in which the edge enhancement was controlled by the edge light-
ing offset function defined in the edge distance field. This animation was quite simple,
created from three key-frames using the edge lighting offset parameters. We then ap-
proximated this operation by using local lighting offsets defined on a local area of a
surface. The third row shows 5 in-between frames interpolated from the key offset data.
The fourth row of Figure 7.5 illustrates the regions where the local offset function errors
are greater than 0.02.

Table 7.2 lists the local lighting offset errors as a function of the number of key off-
set data. Compared to the result in the previous section, the approximation errors are
relatively small. We observed that 10 key offset data provided a visually sufficient ap-
proximation. However, we still needed a greater number of key offset data than the
number of key-frames for the edge function. Also, the continuous change of the edge
appearance would not be possible with a paint operation. Therefore, a specific model
feature is better enhanced by a suitable lighting offset function defined in the model
feature space.

On the other hand, local lighting offsets are still required for designing an arbitrary
shape. Figure 7.3 illustrates such an example, where we used the local lighting offsets
to adjust a small portion of the lighting shape. This could be easily achieved by a local
lighting offset function constructed from a paint operation, whereas the offset function
based on model features would be insufficient for representing the arbitrary shape be-
yond the limited feature space. Therefore, local lighting offsets cannot be replaced by a
lighting offset based on a specific model feature.

In summary, enhancing an edge by using an offset function benefits by defining the
offset function in a suitable model feature space. On the other hand, a local lighting
offset function is still the most effective for designing an arbitrary shape. Both types of
lighting offsets are desirable as directable controls.

#Key offset data Brightness error

5 0.3743

10 0.1304

20 0.0386

40 0.0104

Table 7.2: Local lighting offset errors as a function of the number of key offset data used
to approximate the edge enhancement. #Key offset data is the number of key offset data
to approximate the ground truth data. The brightness errors are the maximum errors of
in-between frames.
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Figure 7.5: Comparison of different lighting offset definitions. (First row) Original
lighting result obtained using a straight lighting effect. 5 frames were chosen from 48
frames. (Second row) Edge enhancement result. Edge lighting offset function applied to
the original lighting result. (Third row) Approximation of the edge enhancement result
by use of the local lighting offset. 10 key offset data, calculated from differences be-
tween the original lighting and edge enhancement results, were used to approximate the
edge lighting offset function. (Fourth row) Local lighting offset errors. The red regions
illustrate where the brightness errors are greater than0.02.

7.4 Summary

In this chapter, we examined the capabilities of three directable mechanisms: 2D color
mapping, lighting transform, and lighting offset. Each directable shading mechanism has
a different degree of controllability. The comparisons in this chapter are summarized as
follows:

• The 2D color mapping better emulates a complex color distribution better than the
1D color mapping, but it cannot be used with multiple light sources.

• The lighting transform is suitable for changing the overall shape of lighting than is
the lighting offset, but it cannot give a local lighting effect like the lighting offset.

• The lighting offset function defined in a model feature space provides better con-
trollability for a specific model feature than a lighting offset function defined on
the local area of the surface, but it cannot be used to create an arbitrary lighting
shape through a paint operation.

From these comparisons, we found that each directable shading mechanism is effective
for a specific design target and complementary to other directable mechanisms. This
suggests that our directable shading mechanisms are well-designed with suitable controls
for each shading design target.
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Chapter 8

Conclusion

In this chapter, we conclude the thesis by first summarizing our contributions, then dis-
cussing the limitations of our methods, and finally describing some possible directions
for future research.

8.1 Summary of Contributions

In this thesis, we focused on how to improve the design process of stylized shading in
3D animations. We found that existing approaches for shading design are difficult to
use intuitively and lack dynamic controls over the shading appearance. In many cases,
the existing stylized rendering methods are insufficient to meet the demands of artists.
Therefore, the artist must spend substantial time developing work-arounds, which only
work in special cases. To address this problem, we proposed a new framework,inte-
gration of artistic depictions with physics-based lighting, for designing an artist-friendly
stylized shading model and interface. The framework is based on the following two
principles.

• Principle 1: Directable shading model for artistic control. We simplified diffi-
cult shading design process by introducing appropriate shading models that allow
artistic control. Our shading models provide artists with not only easy and intu-
itive user interfaces but also interactive and dynamic controls, which are essential
for the animation design process.

• Principle 2: Seamless integration with 3D lighting. The proposed shading mod-
els are carefully designed to be seamlessly integrated into existing 3D lighting
controls. This allows artists to efficiently create animation with the desired shad-
ing appearances through use of 3D scene elements (models, lights, and cameras),
with which they are already familiar.

To verify the effectiveness of this artist-friendly framework for stylized shading design,
we provided three interactive systems that are appropriate for different levels of the de-
sign process, from small scale to large scale. We explored the capabilities of these
systems to improve the stylized shading design in production work. These interactive
systems are as follows.

• Locally controllable shading with intuitive paint interface (small scale). First,
we presented a 3D stylized shading system for adding local light and shade using
paint operations. The basic idea behind locally controllable shading is to modify
the brightness term directly, by adding a lighting offset function. With the light-
ing offset, obtained from the painted area, our shading model provides additional
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flexibility for changing an animated character’s appearance. The proposed offset
function mechanism is consistent and seamlessly integrated into the commonly
used 3D lighting process, including multiple light sources and different types of
lights (directional lights, points lights, and spot lights). We demonstrated with an-
imation examples how our method allows the artists to design the desired shading
appearance in making 3D animation.

• Shading stylization based on model features(middle scale). Our first system
permitted only local control using a paint operation, which is not suitable for de-
signing lighting enhancement of a specific feature of a model. Our second system
provided easy and intuitive controls for such practical requirements. This method
uses a lighting transforms to design a straight lighting effect. This effect can be en-
hanced by the edge enhancement and the detail lighting effect, which are provided
through lighting offset functions defined in the feature spaces. These methods are
seamlessly integrated into 3D lighting, with one exception: point lights must use
our straight light functions. Even with this limitation, our animation examples
demonstrate that artists can design commonly used feature enhancements.

• Practical shading model for expressive shading styles(large scale). This system
focuses on the overall shading appearance, whereas the first and second systems
are limited to simple shading tones of the conventional cartoon shading process.
As an extension of the Lit-Sphere model, our shading model enables more ex-
pressive 2D shading tones for diffuse and specular effects. For control of light
shape and correlated lighting effects, we reintroduced the lighting transforms and
the lighting offsets in a manner that is suitable for a 2D color map representa-
tion of the shading model. Although this shading model allows for only a single
light source, our animation examples demonstrate that the system is effective for
designing many commonly used artistic styles.

We carefully designed these systems to fulfill the requirement of the proposed frame-
work: integration of artistic depictions with physics-based lighting. Our systems allow
the artists to design their expressive shading styles using an intuitive editing process,
which would be difficult to accomplish by using only existing lighting controls or con-
ventional stylized shading systems. In addition, the designed shading appearance is
dynamically controlled, and seamlessly integrated into the 3D lighting. This provides a
flexible and efficient shading design process. All of the animation examples designed
using our systems indicate the effectiveness of the framework.

8.2 Limitations

While the proposed systems provide directable and efficient shading design mechanisms,
our methods are still inadequate to fulfill the growing demands of artists.

For example, most of the stylized rendering using our methods is limited to shading
effects. Our shading model cannot handle stroke-based rendering, which is used in many
painterly rendering techniques (Figure 8.1). In our shading model, we have focused on
providing directable controls for creating commonly desired shading. Our extensions are
relatively small because we wanted to maintain the integration with the usual 3D lighting
process. The lighting transforms and the lighting offset of our methods can handle only
shape controls. Even our Lit-Sphere extension, which enables effective shading strokes
for brush stroke styles, is still limited to shading effects.

On the other hand, typical painterly rendering methods can deal with overlapped strokes
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Overlapped brush strokes in painterly renderingOur result

Figure 8.1: Limitation of our brush stroke styles. (Left) Brush stroke style obtained
by using our approach. (Right) Overlapped brush stroke styles taken from painterly
rendering methods. Our approach, while effective for emulating brush strokes, cannot
fully support these kinds of overlapped brush stroke styles.

to emulate brush-based artistic styles. Each stroke placement is defined by various prop-
erties: camera-space positions, user-defined density parameters, and brightness terms.
These properties are also used to specify the color and the size of the brush strokes,
which adjusts the painterly rendering style. In stroke-based rendering methods, shading
is only one element that defines a brush stroke style, therefore it would be difficult to
handle such stroke-based rendering styles using only our shading-based approach.

Another limitation is that our methods cannot deal with extreme changes form the initial
lighting conditions. As discussed in Chapter 7, each directable shading mechanism has
a different degree of controllability; thus, each must be carefully controlled in an appro-
priate manner that is suitable for each shading design requirement. Our shading control
mechanisms, including the initial lighting, cannot be replace one other.

In summary, most styles designed using our systems are limited to shading effects, which
are based on the commonly used shading models: cartoon shading and the the Lit-Sphere
shading. Stroke-based rendering styles like those in painterly rendering systems would
be difficult to model in our system, even with our extension of the Lit-Sphere. Our
systems require appropriate controls of each shading mechanism to benefit from the
capabilities of the proposed methods. Exploring the shading styles and control that
artists want is essential for further improving both the effectiveness and usability of
our artist-friendly framework.

8.3 Future Directions

In this thesis, we have focused on establishing an artist-friendly framework that is based
on the integration of artistic depictions with physics-based lighting. Exploring a well-
designed artist-friendly framework opens up several interesting avenues for future re-
search in stylized rendering and its applications.

8.3.1 Example-based Shading Model from Painted Artwork

In the future, we would like to integrate more advanced example-based techniques into
our shading models. In this thesis, we demonstrated that our methods provide control-
lability to obtain desired shading with suited design process. Although these directable
mechanisms are effective for changing the designed shading appearance, artists may
want a more rapid prototyping of shading style in the early stage.
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Kulla et al. [49] and and Yen et al. [109] used manually painted examples to extract
shading models for their painterly rendering styles. Their key idea was to separate brush
strokes from shading tones. We could use a similar approach for our Lit-Sphere-based
shading representation. For other lighting effects using our shading models, the learning
approach used for pen-and-ink illustrations [46] might be appropriate. In their approach,
painting examples are analyzed with a focus on line-drawing style. If, in the future,
these kinds of example-based techniques are combined with our directable mechanisms,
artists would be able to obtain a desired shading style more quickly.

8.3.2 Applying the Framework to Different Stylized Rendering Elements

Another direction for future research is to apply our artist-friendly design framework to
other stylized rendering elements. In this thesis, we dealt only with two key stylized
rendering elements: diffuse shading and specular highlights. It would be desirable to
integrate directable mechanisms into other stylized rendering elements, such as shadows
and contours.

One possible idea is to reintroduce models of shadows and contours using the same ap-
proach of our lighting transforms and offset functions. However, the models would need
to handle discontinuous occlusions. It is very challenging to establish temporally coher-
ent directable mechanisms against discontinuous properties. Our approach described in
this thesis will provide a good start point for such further researches.

8.3.3 Stylized Control for Realistic Shading

In this thesis, we focused on designing stylized shading styles, mainly for cartoon shad-
ing. We believe that our stylized shading design methods are also useful for more re-
alistic shading styles. One possible application is Hollywood cartoon animation films,
where 3D characters are commonly designed with realistic shading styles, that clearly
require directable artistic depictions.

For example, Disney explored physically-based shading techniques for their realistic
shading styles [54, 62, 77]. It would be an interesting challenge to integrate our di-
rectable shading mechanisms into such realistic shading styles for further fine-tuning.
We believe it is essential to pursue a well-designed artist-friendly system to make signif-
icant contributions to the improvement of the shading design process in production work
as well as to the progress of rendering techniques for artists.
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Appendix A

Additional Examples

In this appendix, we present additional examples where we combined the shading effects
of the three independent systems in Chapters 4-6. While we have not yet implemented
a single unified system to combine our systems, we can combine some of the proposed
shading effects for off-line rendering. In the off-line rendering process, our directable
shading mechanisms are implemented as node components, which provide more flexible
shading functionalities by making networks of nodes. In making these examples, we
first separately design shading effects using each system, and then combine the effects
making use of Maya’s off-line rendering framework.

A.1 Implementation

As described in Chapters 4-6, our systems are based on Maya’s hardware shading func-
tionality that allows GPU shading process. This offers interactive shading process; how-
ever, the implemented shading pipelines are processed independent from Maya’s off-line
rendering process, which is used for final rendering. This off-line rendering process is
based on node components, which provide more flexible shading mechanisms by making
networks of nodes. To integrate our shading effects into the off-line rendering process,
we implemented some of the our directable shading mechanisms as Maya software ren-
dering node plug-ins. In our off-line rendering process, we make use of the following
node plug-ins and built-in features.

• Dynamic Lit-Sphere node. This node provides dynamic Lit-Sphere shading pro-
cess. It computes the projection coordinates(u,v) of the Lit-Sphere shading ac-
cording to the inputs of light and view setting and the geometry of a target model.
We also provide a user controlled parameter that interpolate diffuse and specular
shading behaviors.

• Lighting transform node. This node transforms the lighting shape for the 2D co-
ordinate representation of a dynamic Lit-Sphere node. It allows the artist to con-
trol the lighting shape intuitively based on the simple transform functions such as
translations, directional scaling, and rotations.

• Lighting offset node. This deforms the brightness for the 2D coordinate represen-
tation of a dynamic Lit-Sphere node. By changing input attributes, various small
scale stylization can be designed.

• Object space edge field node. In our current implementation for off-line rendering
process, edge field is computed in object space, which is much slower than the
GPU-based image space algorithm but more suitable for Maya’s off-line rendering
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framework. Similar to the image space edge field described in Chapter 5, we
provide a parameter to control the thickness. The edge field value is used for a
lighting offset node to design an edge enhancement effect.

• Local lighting offset texture (built-in feature). In our off-line rendering process,
local lighting effects are stored into 2D textures. These textures are simply con-
structed from the per-vertex key-frame local lighting offset data used in Chapter 4.
Local lighting offset data between key-frames are interpolated from key-frame off-
set textures used simple linear functions. The final offset data is used for a lighting
offset node to add a local lighting effect.

In the following, we experimentally apply these nodes and components to combine some
of the proposed effects.

A.2 Results

In making a facial animation, local lighting effects are effective to change the character’s
impression. Figure A.1 shows typical cases where we designed further small scale styl-
izations by applying brush strokes styles to the designed local lighting effects. To create
these styles, we first designed the local shading effects to obtain desired shading appear-
ances by painting operations as described in Chapter 4. Then we applied brush stroke
styles to the designed local lighting effects using lighting offset approach described in
Section 6.6.2. The examples in the figure demonstrates that our lighting offset mech-
anism also works well for combining brush stroke styles with local lighting effects to
apply small scale stylizations to the original shading.

In designing a shading style for mechanical objects, controlling edge appearance is cru-
cial. Figure A.2 demonstrates how our off-line rendering enables edge enhancements as
in Chapter 5 and the integration of expressive shading styles as in Chapter 6. As shown
in the original shading results of the figure, a variety of shading styles can be designed
even on flat surfaces using our dynamic Lit-Sphere approach with a single point light
source. In addition, our lighting offset mechanism can deal with edge enhancement ef-
fects taking the edge field as an input attribute of offsetting process. The examples in the
figure suggests that combining these directable mechanisms have a flexibility to control
more detailed shading behaviors, which would be difficult to achieve the same effect
using a single system.
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Figure A.1: Brush stroke styles for local lighting effects. Brush texture is a 2D struc-
tured texture to specify a brush stroke style. (Top) Original lighting result. The local
lighting effects were designed by user paint operations as described in Chapter 4. (Mid-
dle and bottom) Brush stroke styles combined with the original lighting result. Using
our shading strokes in Section 6.6.2, we applied brush stroke styles to the local lighting
effects.
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Figure A.2: Edge enhancements for expressive shading styles. Diffuse map is a Lit-
Sphere map to design the diffuse shading effect. Brush texture is a 2D structured texture
to specify a brush stroke style. Each diffuse map and brush texture were used to create
the original shading result illuminated by a single point light source. We then applied
edge enhancement effects to these original lighting results.
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