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Introduction

This paper presents a new scheme for computation in the method so-called “an asymptotic expan-
sion approach” and extensions of the method with various financial applications and numerical
examples.

The ‘asymptotic expansion method” was firstly introduced to a financial literature by [11]
and [28] with an application to the evaluation of an average option that is a popular derivative
in commodity markets. They derive the approximation formulas for the average option by the
asymptotic expansion method based on log-normal approximations of a distribution of an average
price when an underlying asset price follows a geometric Brownian motion. [45] applies a formula
derived through the asymptotic expansion of certain statistical estimators for small diffusion
processes to approximating average option prices. Thereafter, the asymptotic expansion have
been applied to a broad class of problems in finance: See [29], [30], Kunitomo and Takahashi [12],
[13], Matsuoka, Takahashi and Uchida [19], Takahashi and Yoshida [40], [41], Muroi [20], and
Takahashi and Takehara [31], [32], [33].

It is notable that the method has flexible applicability to a broad class of diffusion-type
stochastic settings in a unified way, and mathematical justification by Watanabe theory(Watanabe
[43], Yoshida [44]) in Malliavin calculus.

There are also other various approaches for approximation of solutions to pricing PDEs, Greeks
and heat kernels through certain asymptotic expansions: for instance, there are recent works such
as Fouque, Papanicolaou and Sircar [6], [7], Hagan, Kumar, Lesniewski and Woodward [9], Henry-
Labordere [14], [15], Siopacha and Teichmann [27], Ben Arous and Laurence [3] and Gatheral,
Hsu, Laurence, Ouyang and Wang [8].

Recently, not only academic researchers but also many practitioners such as Antonov and
Misirpashaev [1] or Andersen and Hutchings [2] have used the asymptotic expansion method
based on Watanabe theory in or combined with their techniques for a variety of financial issues.
e.g. pricing or hedging complex derivatives under high-dimensional underlying stochastic envi-

ronments. These methods fully or partially rely on the framework developed by [11], [28], [29] in



a financial literature.

In theory, this method provides us the expansion, which has a proper meaning in the limit of
some ideal situations such as cases where these processes would be deterministic, of underlying
stochastic processes (for the detail see [43], [44] or [13]). In practice, however, we are often
interested in cases far from those situations, where the underlying processes are highly volatile
as seen in recent financial markets especially after the crisis on 2008. Then from view points of
accuracy or stability of the techniques in practical uses, it is desirable to investigate behaviors of
its estimators especially with expansion up to high orders in such environments.

In Chapter 1, we introduce a new computational scheme for an asymptotic expansion method
of an arbitrary order, based on the result in [34], [35], [37], and [38]. In the existing application of
the asymptotic expansion based on Watanabe theory, they calculated certain conditional expec-
tations which appear in their expansions and which play key roles in computation, by formulas up
to the third order given explicitly in [28], [29] and [31]. In many applications, these formulas give
sufficiently accurate approximation, but in some cases, for example in cases with long maturities
or/and with highly volatile underlying variables, the approximations up to the third order may
not provide satisfactory accuracies. Thus, formulas for higher-order computations are desirable.
But to our knowledge, the asymptotic expansion formulas higher than the third order in a general
setting have not been given yet. This paper provides a new scheme for computing unconditional
expectations which is completely equivalent to direct calculation of the conditional expectations
(Lemma 2). This enables us to derive the high-order approximation formulas in an automatic
manner (Theorem 2 and Theorem 3).

In Chapter 2, we present various applications and practical techniques of the asymptotic
expansion method including the high-order expansion introduced in Chapter 1 with numerical
examples. In Section 2.1, we apply new computation algorithm in Chapter 1 to the concrete
financial models, and confirms effectiveness of the high-order expansions by numerical examples
in the (A\-)SABR model.

Section 2.2 applies the high-order expansion scheme to pricing average options. This section
is based on the result in [26]. In particular, we describe the method using numerical examples
under the A-SABR and SABR models and show that the fourth asymptotic expansion scheme
provides sufficiently accurate approximations.

In Section 2.3, we develop slightly different expansions from the usual asymptotic expansion,
which have the benchmark distribution other than the normal distribution. Namely, asymptotic
expansions around the log-normal distribution, the shifted log-normal distribution, and a expan-

sion around the jump diffusion process are introduced with numerical examples. 2.4 presents an



extension of a general computational scheme of an asymptotic expansion described in Chapter 1.
This section is based on the result in [36]. In particular, through change of variable technique as
well as the various ways of setting perturbation parameters in an expansion, we provide flexibility
of setting the benchmark distribution around which the expansion is made. We also show some

concrete examples with numerical experiment.



Chapter 1

A General Computation Scheme for

the Asymptotic Expansion Method

In this chapter, we introduce a new scheme for computation in the asymptotic expansion method.

This chapter is based on the paper [34], [35], [37], and [38].

1.1 An Asymptotic Expansion in a General Diffusion Setting

This section briefly describes an asymptotic expansion method in a general diffusion setting.
Let (W, P) be a r-dimensional Wiener space. We consider a d-dimensional diffusion process

Xt(e) = (Xt(g)’l, "o ,Xt(E)’d)’ which is the solution to the following stochastic differential equation:

dX(97 = vi(x') eydt + evI(X\Naw, (=1, ,d) (1.1)
X(()€) =2 € Rd

where W = (W!,.-- | W")"is a r-dimensional standard Wiener process, and € € (0,1] is a known
parameter.

Suppose that Vo = (Vi, -+, V@) : R4 x (0,1] = R¥and V = (V1,... . V9): RY = RI®@R"
satisfy some regularity conditions(for example, Vjy and V are smooth functions with bounded
derivatives of all orders).

Next, let a function ¢ : R? — R be smooth and all of its derivatives have polynomial growth.

Then, a smooth Wiener functional g(X:(F6 )) has its asymptotic expansion:

Q(Xq(f)) ~ gor + eqiT + €2 gor + -

in D* as € | 0 where gor, 917, 921, - - - € D*>. Forany k € N, g € (1,00) and s > 0, this expansion



means that

1 c B
GTCHQ(X;)) —(gor +eqir + -+ € gp_1.1) s = O(1) (as € 1 0),

where ||G||4,s represents the sum of L? -norms of Malliavin derivatives of a Wiener functional G
up to the s-th order. Further, a Banach space D, = D, (R) can be regarded as the totality of
random variables bounded with respect to (g, s)-norm || - ||4,s, and D> = Ng>0 Ni<geoo Dyg.s-

Coefficients g, € D*°(n = 0,1,---) in the expansion can be obtained by Taylor’s formula
and represented based on multiple Wiener-Ito integrals. See chapter V of lkeda and Watanabe
[10] for the detail.

Let Ay = ,i, akX( ! le=o and Akt, j=1,---,d denote the j-th elements of A;;. In particular,
Aq; i represented by

A”_/}Q (0Vo (X, 0)du + V(X()arr,) (1.2)
where Y denotes the solution to the ordinary differential equation:

dY, = 9Vo(X\"  0)Yudt; Yo = I,

. j .
Here, 0V} denotes the d x d matrix whose (j, k)-element is 9 Vj = 8‘/335“), Vi is the j-th element
of Vy, and I; denotes the d x d identity matrix.

For k > 2, Ait, j=1,---,d is recursively determined by the following equation:

= k'/ Vi (X 0)du

+22<im;/t I

AT | 95 oF I (X O 0)du
dp

]"lL
=17, d, j=1
A% | 98 vi(x©
+Z@/ 47, | 97 v e, (1.3)
Iy
! o' ,6’ _ Fol
where 0. = Bels 8 = D24, -0z,
) 8
Lng = Slg=(,- gk li=nlj>1j=1---,8 (1.4)
j=1
and
(n) n



for n > 1, and

Yoy Y Y

lp.ds  P=05=(0) do=(0)

Then, gor and g7 can be written as
0
gor = Q(X;)),
gir = 28]9 AiT

For n > 2, g, is expressed as follows:
1 (0 4 d
g = Z @a@jg( )AL A (1.5)
Ug,ds
Here, we note that each AJ (j=1,--,d1l=12,--,k0<t<T) (and thus each g,rs)
has all finite moments due to a grading structure as follows: Consider the stochastic differential

equation of the form

dSt = ,U(St,t)dt + O‘(St,t)th; S(] = Sg € Rd (1.6)
where 1 : R¢x Rt 5 R%and ¢ : R x Rt - RY®@R’.
Definition 1. A grading of R? is a decomposition R = R x --- x R% withd =d; +--- + dy.
The coordinates of a point in R% are always arranged in an increasing order along the subspace
R%, and we set My =0 and M; =dy +---+d; for 1 <1< q. We say that the coefficients j and
o are graded according to the grading R = R¥ x ... x R% if 4'(s,t) and a;-(s,t),j =1,.---,r

depend upon only through the coordinates (sk)lngMp when M,_1 <1 < M),

Theorem 1. We assume the coefficients p and o in (1.6) have a Lipschitz lower triangular
structure, and are graded according to R* = R4 x --- x R%. Moreover for F(s,t) = u(s,t) or

oj(s,t),j=1,---,r, we assume F is differentiable in s in RY and
1. |FY0,t)| < Z; fori=1,---.,d
|8 -Fi(s,t)] < Zt(l + |s|?) for all i, j
|85]F’(s t)| < Cif Mp—1 <1i,5 <M, for somep <q

where ¢,0 > 0 are constants, and Z, Z are predictable processes such that | Z]|, and ||Z||p are
1/p

finite for all p > 1 where ||Z||, = {fo |Zt|p]dt} . Then (1.6) have a unique solution S, and

for every p > 1 there are constants ¢, and v, depending only upon (¢, 0, {||Z||p/ }pr>1), such that

|| sup Sillrr < cp(so + 11 Z]]4,)-
0<t<T



For the detail of the definition and theorem above, see pp.45-47 in Bichteler, Gravereaux and
Jacod [4].
Applying Theorem 1 to the system of stochastic differential equations consists of Alit(i =

1,---,d,l=1,--+ k,0<t<T) and any products of them, we obtain the following lemma.

Lemma 1. Each coefficient of the expansion A%(i =1,--- ,N,l =1,--- k0 <t <T) has all

finite moments.

(proof) Consider the system of stochastic differential equations which A}, ... A4, AtAl ...  AdA¢,
AL Ag,‘ -+ follow. Note that the system of equations is linear and the coefficients of the linear

equations are represented by the derivatives at e = 0 of %(Xf,(f), €) and V(Xq(f)) which are bounded

in [0,7]. Then it is easily shown that the coefficients of the equation have a grading structure

and satisfy the conditions in Theorem 1. Hence the coefficients A};t have all finite moments.O

Next, let normalize g(Xj(q6 )) to

alo — Q(Xj(f)) — gor
€

for e € (0,1]. Then, we have
G ~ gir + egar + -+

in D®. Moreover, let

V(w,t) = (9g(x)) [YrY, 'V (2)]
and make the following assumption:
T A A~ ’
(Assumption 1) Yp = / v(x©Q v x©,odt > o.
0

Note that g7 follows a normal distribution with variance ¥p; the density function of g;7 denoted

by fg.r () is given by

- (z - C)?
Jor(0) = st e (-0
where T
C = (09(x{")) / YrY, ' 0vo (X", 0)at. (1.7)
0

Hence, Assumption 1 means that the distribution of g17 does not degenerate. In application,
it is easy to check this condition in most cases. Hereafter, Let S be the real Schwartz space of
rapidly decreasing C*°-functions on R and &’ be its dual space that is the space of the Schwartz
tempered distributions. Next, take ® € §’. Then, by Watanabe theory(Watanabe [43], Yoshida

[44]) a generalized Wiener functional ®(G()) has an asymptotic expansion in D> as € | 0 where



D~ denotes the set of generalized Wiener functionals. See chapter V of Tkeda and Watanabe
[10] for the detail. Hence, the expectation of ®(G() is expanded around € = 0 as follows: For
N=0,1,2,

N (n) b
1
E[®(GY)] = Z e Z gE o (g17) H 9kj+1)T | | T o(e")
n=0 Es ’ j=1
N (n) 1 .
= Z e Z EE [<I>(6) (ng)Xk‘S} + o(eM)
n=0 Eé ’

N —
= Y5 [ OB gir = o]y (21 + o)
ks

n=0
N (n) 5
— n 1 é d k _ N
= nzoe ;z 5!/R<I>(:c)(—1) @{E[X 5|91T—$]fng(:U)}d:B—|—o(e )
- é
(1.8)
where ®©)(g;7) = agigm) ,
r=g1T
B 5
xh = Hg(kj+1)T
j=1

for E& € Ly s, and

(n)

2= >

ks 0=1Ese n,s

3

In the preceding works on application of the asymptotic expansion, conditional expectations in
(1.8) were directly computed with some formulas given in [29] or [31] (for example, see Appendix
B of [31]). Recently, while the formulas had been given up to the third order by those papers,
[34] developed a high-order computation scheme for the conditional expectations using the fact
that each of these {Ai,t}j,kv {gn1}n and also {X’55 }125 can be decomposed into a finite sum of
iterated multiple Wiener-Ito6 integrals by It6’s formula, and a certain property of iterated multiple
Wiener-It6 integrals (see Nualart, Ustiinel and Zakai [24] and Section 4 of [34]). On the other
hand, as shown in the next section, this paper develops a new method computing unconditional

expectations instead of the conditional ones.



1.2 A General Computation Scheme for a High-Order Asymp-

totic Expansion

In this section we propose the new computational scheme in the asymptotic expansion, which is

an alternative to the direct calculation method for the conditional expectations given by [34].
To compute the conditional expectations in the right hand side of (1.8), we use the following

lemma which can be derived from a property of Hermite polynomials and leads us to compute

the unconditional expectations instead of the conditional ones.

Lemma 2. Let (Q, F, P) be a probability space. Suppose that X € L*(Q, P) and Z is a random
variable with Gaussian distribution with mean 0 and variance 3. Then, the conditional expectation
E[X|Z = x] has the following expansion in L*(R, u) where p is the Gaussian measure on R with

mean 0 and variance X:
o0

ElX|Z =] = z: (1.9)
where Hy,(x;Y) is the Hermite polynomial of degree n which is defined as

2 d” 2
H,(x:2) = _Enx/in —z? /2%
(05%) = (-x)e /™ e

and coefficients a,, are given by

110" C g itz
= e, {7 B 0

(proof ) Since the system of Hermite polynomials { H, (z; ©)} is an orthogonal basis of L?(R, ),
and E[X|Z = x] € L*(R, i), we have the following unique expansion of F[X|Z = z] in L*(R, p1):

o0

ElX|Z=a]= &

E”H n(z; X).

Since we have another Taylor expansion

2y = Hy(x; %)
T = ¢ 222 nn! (i)™,
n=0
then,
2y icZ €5 )
e 7 Ble®?X] = w/ eTE[X|Z = 2)p(dx)

= /Z Zan wu(dz)
= Zan(iE)"fn.
n=0



2 .
Comparing to the coefficients of the Taylor series of e%ZE[eﬁZ X around 0 with respect to &, we

see that a, can be written as (1.10).0

Here, we define §; = {g11;t € Rt} and Z(& = {Zt@;t € R'} as the stochastic processes

t
Gt = / V(X w)dw,
0

and ,
Zt<£> = exp (Zf@lt + 2&) ;
respectively.

Then, from Lemma 2, the conditional expectations appearing in the right hand side of the

equation (1.8) is expressed as

E(X"|gr =2] = E[X™|jir=21-C]

00 aézé
- ZE—lHl(a@—C, ) (1.11)

=0 7T

where l
* 110 7
ks ks (&)

= -—E[X"Z . 1.12
a, Il 8§l [ T ] e=0 ( )

Here it is noted that with this expression we now need to compute unconditional expectations

E[X Fs Zj@ | instead of the conditional expectations.

1.2.1 The Asymptotic Expansion of Density Function

In this subsection, we explain the new computational method through deriving a general formula
for the expansion (1.8) with an arbitrary specification of its order N. In particular, we show that
the coefficients in the expansion are obtained through a system of ordinary differential equations
that is solved easily.

First, we define n?ﬁ (t;€) for fg € L,z and Jg e{l,---,d} n>pB>1)as
5

- B
d d;
=8 || [T47 | 2] (1.13)
B e
and for n =0 as
0
n% (t:;6) =E [Zfﬂ : (1.14)

10



<5>]

Then, unconditional expectations E[X Fs Zy'] appearing in the definition of af % (1.12) can be

written in terms of 1 as follows:

5
E[X’%Z}@] = E Hg(kj+1)T Zq@
| \7=1
"1 s o | e
= E 7(‘9J X AT .. A 7
]Hlpz B! CP ) I i, T

k1+1) k5+1

o Bog \g=1"7" "
i dy  Body \I

(1.15)
where
_i®d_j — (z il dj)
Bi B; 1 » 4B Y1 198 )
llﬁi®ﬁﬂj = (e U He 1)

So, we have to calculate 77?’3 (T';€) to evaluate the asymptotic expansion (1.8).
8

In the following, we derive a system of ODEs satisfied by these {n?ﬂ }. Before showing a

s
general result, we first derive the ODEs for few leading-low-order terms explicitly to give a better
intuition of a key idea of our method. Consider the evaluation of 77{2) (T;¢) = [A%T 74 >} which
appears in the e-order. Here, for simplicity, we assume that Vj does not depend on ¢, and write

Vo(x, €) as Vy(x). First, applying 1t6’s formula to AthlfQ

, we have
(AL, 7)) = Agtdz<f> +Z<f>dAgt+d<Ag,Z<€>>t
_ {zf ZA V(X2 )0,vi(xy +ZA © o, v (xV)
j'=1
+ Z AL A% 790,06, VI (X (0))}dt

/k./ 1

d
+ 2 (i6) 45,2V (x 0,0 + Y AL, 280, vi(X[") § dWs.
i'=1

Since the last term is a martingale, taking expectation on both sides, we have the following

11



ordinary differential equation for 77{2):

d
268 = @) Zn v(x”, 00, v (x”
d , d
+ > iy (5:6)0; Vi (X kZ ()05 00V (X)),
i'=1

Here, n{l)(j =1,---,d) appearing in the right hand side of the above ODE are evaluated in the

similar manner:
a7 = A{tdZEQ+Z§f>dAjt+d<A{,z<f>>
= @)z (x0 v xV)y + ZA 0,V (xO) b at
+ {04,257 (x". 1)+ 2 v <X§ >>} AW,

hence, we have

d ; 0) 0
) (6:8) = (VX VI (X0 + Zln (1: )0V (X)),
]/
ng’lkl) and other higher-order terms can be evaluated in the same way. The key observation is

that each ODE does not involve any higher-order terms, and only lower- or the same order- terms
appear in the right hand side of the ODE. So, one can easily solve (analytically or numerically)
the system of ODEs and evaluate the expectations.

The following theorem provides a way to calculate general 174 7(T; €) as a solution to the system

of the ordinary differential equations:

Theorem 2. For 77?5 (t;€) defined in (1.13), the following system of ordinary differential equations
B

18 satisfied:
ibwo) = YL i eo) {pvien)
dt ’ = ! ko e ’0 t

B
LI (d"/‘“)@)d” 7 gty (0)

B8 (lg=1) (lm—1)

L (dypm)@ds@ds [, di (5 (0) 5 1m0
FY Y Y 7,6,{(fWWM(,@}{a}vk(Xt ) Lo vt (x(9)

k,m=1 4 5 v
Ty, dry 1h5,ds

k<m

g (k—1)
(i) Z Z { dﬂ/k ®dw( 5)}{87 de( ())}V(Xt(o),t) (1.16)

lﬁ/k @iy dy

12



where

l_:B/k = (L, sl gy -+ 5 1)
l_;?/k,n = (Zla"' ,lk‘—lvlk-‘rlv"' alnfl)l’n+17"' alﬂ)a 1§k‘<n§ﬂ
fﬁ@’rﬁ'y = (llu"'7lﬁ7m17"'7m’7)
for fg = (li, -+ ,lg) and My = (M1, -+ ,my).
(Proof) First, Applying It6’s formula to (H ) we have
B i B B i J B i . .
11 An | = > HAZJ-]t dAS + Z 11 Ay | (AL A
Jj=1 k=1 \ j=1 kom=1\ j=1
J#k k<m j#km
B B J
= >[40 | L oo (x(©, 0)at
k=1 | j=1 k:
J#k
B I B . U] 0 o
+ 2> [ [T4n _l H At | 7 o (10 oy
k=11=1 | j=1 3 ( 7 !
J#k T
B B L (lk_l) ©
+ > | 1140 Z II A ) o3 v e®)aw,
k=1 |\ j=1 . j'=1
J#k S
B B (le—1) (lm—1)

DS DI E D3 o
m= j=

,d 7d
k<m j#km My,dy Mig,ds

H Am o | O3 V(X H Am | 85 v (x)t.
(1.17)
Note also that
= (i) V(xV, )z aw,. (1.18)

Then, applying [t6’s formula again to (Hle Aijth)) and taking expectations on both sides, we

obtain the result. O

Remark 1. Due to the hierarchical structure of the ODEs with respect to n = Z@

=1 l; and

77(8)) (t;€) = E[Zt@] =1, one can easily solve these ODFEs successively from lower-order terms to

higher-order terms with initial conditions 77;3’3(0;5) =0 for (l;;,c%) #(0,0).

13



Remark 2. Further, due to the structure of the system of the differential equations, it is easily
shown by induction that each 174 P (t;€) is expressed as a polynomial of degree n = Ele l; with
respect to (i€). Then, we can also show that E[X’%ZQ] is a polynomial of degree (n + 0) with
respect to (i€), and thus a?‘s =0( > n+06) forks € L, s. This ensures a convergence of the
infinite sum in (1.11).

Then, from Lemma 2 and (1.8), we have the following expression of E[®(G(9))]:

N B (7 s
B[2(G)] = ZJ”Z& BT {IZ;leTHl(:c—c,zﬂfm(x)}dwo(efv)

Ea

n+d
- Z Z ! / { l+5Hl+5( -G, ET)fng(fL')} dx + 0(€N)

Here we used the relation

d5

E{Hl(l‘_ca ET)fng(x)} 5 Hl+5( -G, ET)fng(x)'

X5

In particular, let ® be the delta function at x € R, d,, we obtain the asymptotic expansion of

the density of G(©):

faw(x) = E[6,(G9)
(n) n+5 E(;

N
- Z Z ) Z El—i—é Hyys(z — O, X7) forr (2) + O(GN)- (1.19)

We summarize the discussion above as the following theorem:

Theorem 3. The asymptotic expansion of the density function of G up to €N -order is given by

N 3n
fG(e)(x) = fng(x) + Z e (Z Canm(x -C, ET)) fng<$) + O(EN)
n=1 m=0

(1.20)
where
m (k1+1) (ks+1)
Cm = s> S 3 - Z S 91
T s=1 1 7 I
0=1 EseL,s zBl dy, 1[35 D
5
1 3. (0) 1 om° d ,® ®d,
—03 9(X37) =5 Aem—s 11 °(T5€)
Eﬁj' d_%j T 1 J ag J [1 ® ®l_g<; £=0
(1.21)

and n?ﬁ (T';€) are obtained as a solution to the system of ODEs given in Theorem 2.
B

14



1.2.2 The Asymptotic Expansion of Option Prices

We apply the asymptotic expansion to option pricing. We consider a plain vanilla option on the
underlying asset g(X}6 )) whose dynamics is given by (1.1).
For example, an asymptotic expansion up to N+ of a call option price at time 0 with

maturity T and strike price K where K = X:(FO ) ey for arbitrary y € R is given by

Call(K,T) = P(0,T)E[max(g(X\") - K,0)]
— P(0,T) /_ (& + 1) f gt x (2)da + o(e VD). (1.22)

Here, P(0,T) denotes the price at time 0 of a zero coupon bond with maturity 7" and fao N 18

the asymptotic expansion of the density of G(©) up to eN-order given by (1.20):

N 3n
fG(E),N($) = fng(x) + Z € (Z Canm(SU -G, ET)) fng(.I)
n=1 m=0

Integrals appearing in the right hand side of (1.22) can be calculated by following formulas related

to the Hermite polynomials
/ Hy(z;3) fgr(x)dz = YHp1(-y; ) fg,(y) (k> 1),
-y

/OO xHy(x; Z)fng(iU)dl' = —XyHp 1(-y; Z)fng(y)

-y
+22Hk—2(_y; E)fgm (y) (k>2).

1.2.3 Remarks on the Asymptotic Expansion for Multi-dimensional Density

Functions

In this section, we extend Lemma 1 in [35], which easily leads to the asymptotic expansion of a
multi-dimensional density function in the same manner as for the one dimensional case appearing
in the previous section. That is, we obtain the following result as an extension of Lemma 1 in
[35].

Let (2, F, P) be a probability space. Suppose that X € L%(Q, P) and Z is a d-dimensional
random variable with Gaussian distribution with mean 0 and variance-covariance matrix ¥. Then,
the conditional expectation E[X|Z = Z] for & € R has the following expansion in L2(R¢, i) where

ji is the Gaussian measure on R¢ with mean 0 and variance X:

EX|Z == anHai:Y), (1.23)
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where 77 = (ni,ne, -+ ,ng), || =n1 +n2+ -+ ng, 7! =nilng!---ng! and

_ %% Zf {e3rep [£7x] ) (1.24)

£=0
Here, Hz(Z : X) stands for the d-dimensional multiple Hermite polynomial of degree |7i| with

= (nlan2a“' and):

19 = o (o) (Fan) - (o) nle B 7= e ) (125

n[i : X :fTE—lsz} . (1.26)

1 1
(2m)ir|g/z P {_2
Indeed, since the system of Hermite polynomials:
{Hﬁ(fZ) : ﬁ: (nl,ng,-~- ,nd),ni 20,1,2-~~(i = 1,2,"' ,d)}
is an orthogonal basis of L2(R<, /i), and E[X|Z = &] € L2(RY, [7), we have the following unique
expansion of E[X|Z = Z] in L2(RY, j7):

(o)
EX|Z=1]= ) a;Hz(3: %)

|7]=0
On the other hand, we know the relation:
00 .—'j‘ _ . R

> (Zf.) H(z:2) = & Test X, (1.27)

ji=o 7’
and hence,

00 - 2
& _ eze N W g
et P =e 2 Z 7 ](ac X),
l7]=0
where
- 1 0 0 0
w0 = s (o) (5 ) (Fo ) nle 2l (1.28)
n[z : X n Dy, Iy
37 - (y17y27 T ayd) - Z_lf'
Therefore,
g [£7x] = ¥R [ B [x|7 = 4]
oo 5 - oo
= [ Bal@ )€ § S Y anHn(s D) putdm) (1.29)
B =0 il=0
oo
= > iilagilET (&7 =€), (1.30)
|7]=0

and making 7 = (n1,---,ng)-th order differentiation of both sides in the equation above with

respect to € = (&1, - ,&4) at £ =0, we obtain (1.24) and hence the result, (1.23) - (1.26).
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Chapter 2

Applications and Extensions of the

Asymptotic Expansion Method

2.1 High-Order Asymptotic Expansions of Stochastic Volatility
Models

In this section, we test effectiveness of the asymptotic expansion method described in Chapter 1
through numerical examples. Also, we compare approximation accuracy of our method with that

of another existing approximation method.

2.1.1 An Asymptotic Expansion of the »-SABR Model

To test efficiency of the expansion, we first consider a European plain-vanilla call and put prices

under the following A-SABR model [14] (interest rate=0%) :

ds(t) = e I(t)(5 ) aWy,
do(t) = MO —oO)dt + ev10 () AW} + evoo' (1) dWE,
5©W0) = Sy, o90) = o,

where v; = prO vy = (/1 — p?)v (an instantaneous correlation between S and o9 is p €
[-1,1]). Note that when A = 0 the model becomes the original SABR model [9]. Rigorously
speaking, this model does not satisfy the regularity conditions since the coefficient function
V1(o,s) = os? is unbounded and has non-smooth derivatives at s = 0. However, as seen in
the following, our method is (formally) applicable to this model and gives better accuracies for

approximate prices in higher-order expansions for various ranges of strikes and parameters.
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(¢)

To compute an option price on S9, we need the density function of Sy’ whose asymptotic

expansion is given by (1.20) with setting ¢g(S,0) = S. The asymptotic expansion of the density
function is obtained by solving the system of the ordinary differential equations given in Theorem

2. For example, the corresponding differential equations up to the second order are given by

ds

— (; (0) (0)
S (6€) = @) (e,

(8 = (©n(s”) (") =y (1:9),

Catn(t:6) = GBS o)y (1:€) + () (5ot (1),

where Sio) = Sy and 0’150) = e M(og — 0) + 0. Since these equations are linear and have the

hierarchical structure, one can easily integrate them as
69 = @ [ S0P an,
(68 = (i) / it 1<s§1>> (010)2dt,

(i€) / / B(5)25-1 (51)2(59)28 (52 ap it

t1
Zf / / At1— t2 ))2,30151) 1(5«1520)) (0152)) dtodty.

E92) (t;:€)

Integrals appearing in the right hand side are analytically evaluated, which is omitted due to the

limitation of the space (they are available upon request).

() _¢(0)
Then, from Theorem 3 the asymptotic expansion of the density function of G(9) = %
can be expressed as
fG(G) (m) ~ fng (:C) + 6013H3(x; ET)fng (1‘) +-- (2'1)
where )
1 z
forr (z) = Lo exXp <_22T>
with
28, (0)
Sr = [ (800 ar
0
and

t1
/ / B2t )2(5)2 (010 dtadty

t1
At — 0 0 0 0
+E%/0 /0 e~ At t2)(5t(1)>260§1)’/1(5§2)) (O-t(g))ththl'
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Note also that ('3 is calculated in closed form; the expression is omitted, which is available upon
request. Moreover, by a similar calculation to that in Section 3.2, an approximate price of a call
option on S at time 0 with maturity 7" and strike K = SFEFO ) ey up to e?-order is given by

OK,T) = eP(0,T) <2nglT(y>+yN (\/yg?»

—P(0, T)C1355 fyrr () + 0le) (2.2)

where N(-) is a cumulative distribution function of the standard normal distribution. Higher-order

asymptotic expansions can be calculated in a similar manner.

2.1.2 Numerical Example: A =0 (SABR case)

First, we consider European plain-vanilla call and put prices under the original SABR case (A =0
in the A-SABR model). We calculate approximated prices by the asymptotic expansion method
up to the fifth order. Note that all the solutions to the differential equations are obtained in
closed form. Thus, the computation is very fast(e.g. the computation time is within 1075 ~ 1076
second for the fifth-order expansion). We also calculate approximated prices by Hagan et al.[9]
to compare accuracy of its approximation with ours. Benchmark values are computed by Monte
Carlo simulations. In the simulations for the benchmark values, we use Euler-Maruyama scheme
as a discretization scheme with 1024 time steps, and generate 10® paths in each simulation. e is

set to be one and other parameters used in the test are given in Table 2.1.

Table 2.1: Parameters used in the SABR (A = 0) case

| Parameter | S(0) | 8 |00 | v E B

’ i ‘ 100 ‘ 0.5 ‘ 3.0 ‘ 0.3 ‘ -0.7 ‘ 10 ‘

Results are in Table 2.3 and Figure 2.1. From the results, we can see that the higher-order
asymptotic expansion almost always improves accuracy of the approximation by the lower ones.
While sometimes the third-order approximation does not perform well, particularly in OTM
options, the fifth-order one approximates the prices almost perfectly in these settings. This
strongly supports importance of computing high-order terms, and hence of our method. We also
see the fifth-order expansion has equal or smaller approximation errors than Hagan et al.[9]’s
formula. Moreover, as seen in the next example, the asymptotic expansion method can be easily

extend to the A-SABR (X # 0) case.
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2.1.3 Numerical Example: )\ # 0

Next, we consider the European option prices under the A-SABR model with A # 0. Parameters

used in the test are given in Table 2.2 (and € = 1 as well as in the previous examples).

Table 2.2: Parameters used in the A-SABR (A # 0) case

Parameter ‘ S(0) ‘ Jé] ‘ a(0) ‘ A ‘ 0 ‘ v ‘ p ‘ T ‘
ii 100 0.5 3.0 0.1 3.0 0.3 -0.7 10
iii 100 1.0 0.3 0.1 0.3 0.3 -0.7 10

We calculate approximated prices by the asymptotic expansion method up to the fifth order.
Note that all the solutions to the differential equations are obtained analytically. Further, for
the case of 5 = 1 in the A-SABR model (case iii), we can also apply the log-normal asymptotic
expansion method given in Section 2.3. This gives the slightly different approximation formula
from that with the normal asymptotic expansion method. Note also that the system of ODEs
appearing in the log-normal expansion formula are solved analytically as in the normal asymptotic
expansion case. We calculate approximated prices by the log-normal asymptotic expansion up to
the forth order. We also calculate option prices by Hagan et al.[9]’s formula by setting A = 0 in
the model which can be thought as the SABR approximation to the A-SABR model. Benchmark
prices are computed by Monte Carlo simulations with Euler-Maruyama discretization scheme with
1024 time steps, and we generate 108 paths in each simulation.

Results for the normal asymptotic expansion are in Table 2.3 and Figure 2.2 and 2.3, and
results for the log-normal expansion for case iii are in Table 2.4 and Figure 2.4. Note that the
Oth-order log-normal expansion (indicated by ‘LogNormal’ in Table 4 and Figure 4) gives a simple
log-normal approximation of the model.

From the results, in each case, as well as the examples in the original SABR model the higher-
order expansion or log-normal expansion almost always improve accuracy of the approximation
by the lower-order expansions. On the other hand, a naive application of Hagan et al.[9]’s formula
to A-SABR model(A # 0) seems to fail to capture the underlying distribution and the resulting
option prices. This might be caused by the fact that it cannot be directly applied to the A-
SABR setting while our method is applicable to a general setting in the unified manner. Further,
unlike Hagan et al.[9]’s one whose high-order expansions are difficult to calculate, our method
easily provides us the approximation with an arbitrary-high order as we have already seen. These
results support flexibility of ours in financial practice.

In addition, for SABR and A-SABR models we compare computation times of our method
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with the ones of the method by Hagan et al. [9]. As the computation times of both methods are
very fast (107° ~ 1075 second per option), we implement 10,000 times calculations of 20 options
with different strike prices for comparison. Then, the computation times are of the same order for
both methods: the ratios of the times based on our method relative to the ones by Hagan et al.[9]

are approximately 0.3 ~ 1.6 for the cases in which both methods achieve the similar accuracies.
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2.2 Pricing Average Options under Stochastic Volatility

This section applies the high-order expansion scheme to pricing average options.
In particular, we describe the method using numerical examples under the A-SABR and SABR

models.

2.2.1 Average Options under \-SABR and SABR Models

We consider the average European call and put options under the A-SABR model ([14]) with
interest rate=0% for simplicity. In particular, when A\ = 0 the model becomes the SABR model.

Further, we define
SI(:) (t) = /Ot S (u)du.
Then, the average European call option price with strike K and maturity 1" can be written as
C (K, T)=FE [max {;SX)(T) - K, oH .

Thus, if we consider the following three-dimensional diffusion process, we can easily see that it is

a special case of (1.1) and the general method can be applied:

as ) = SO,

dSOM) = el (t)(S () dw},

doD(t) = MO —o9)dt + ev1o'D () AW} + evoo' (t)dW? (2.3)
with S(0) = 0, $©(0) = Sy and o9 (0) = 0.

The corresponding differential equations up to the second order are given by

d N
Sndite) = ()(SMPaOV (1),

dt

d 5 (. — (s )y, o (4.
%771,1(157&) = (i§vio, V(t) — i1 (t6),
d

T4 (5O = 05(56),

d

a8 = 2885”0V (@i (:€) +266) (5, V (1 1 (1),

where Séo) = So, Jt(o) =e Mo —0)+0 and

V() = (T - 1)($”) e

(e (0)

— Sar can be obtained

Then, the asymptotic expansion of the density function of G );SAT

as

fé(6> (37) ~ f91T (1:) + 6C~’13I_I3(x; ST)féhT (‘77) + e (2'4)
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where

1 x?
forr () = ———=exp <—~>
nr vV 27TET 2ET
with
~ T A
Sr= / V(t)2dt
0
and

B t1 pt2 N
013 = / / BS(O) p-1 (O)V( )(S(O))Baﬁg)V(tg)dtgdthtl

t1 to A
gs/ / / M2t (SN (1)l V (t3) dtsdtadty.
+Jo Jo Jo

As in the plain vanilla case described in the previous section, integrals appeared in the coefficients
of the expansion can be analytically evaluated, but the expressions are lengthy and hence omit-
ted. Moreover, by a similar calculation to the previous case, we have the following closed-form

approximation formula for the average European call option up to €2:

Cge)(K,T) = €eP(0,7T) (%nglT(y)Jr;N( yN ))

C'13 ET?J

—€P(0,T) 7= four (y) + 0(€?), (2.5)

where y = TSO%TK and P(0,T) denotes the price at time 0 of a zero coupon bond with maturity
T.

2.2.2 Numerical Examples

This subsection provides some numerical examples of our asymptotic expansion method for pricing
average options under the A-SABR and SABR models to see the effectiveness of the higher order
asymptotic expansions. Further, as a special case of the SABR model, we apply our method to
the constant volatility case (Black-Scholes model) and compare approximation accuracies of our

method with those of other approximation methods.

Constant Volatility Case

First, we apply our method to the constant volatility case (the Black-Scholes model) which is
obtained by setting A = v; = 0(¢ = 1,2) and 8 = 1 in (2.3). Then, the asymptotic expansion of
the density function (2.4) can be simplified as

£E8 () ~ f25(2) + eCHF Ha(2; DB £ 55 () + -
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where

with

T

- 1

Z?S = / (T — t)QUQSgdt = §02ng 3
0

N 1 T t1 to 1
cBs — ~/ / / T — t5)(T — t3)o* S3dtsdtadt; = =2 SeT?. 2.6
13 (E%S)?’ 0 0 0 ( 2)( 3) oatzata2at] 5 0 ( )

A closed-form approximation formula to the average European call option under the Black-Scholes
model can be obtained by replacing X7 and Ci3 by i?s and C’lB?)S respectively in (2.5).

In the Black-Scholes case, unlike the stochastic volatility cases, there are several approxima-
tion methods for pricing an average option. Here we compare approximation accuracies of our
asymptotic expansion method with those of these existing methods.

We consider the average Furopean call option under the Black-Scholes model. We calculate
approximated prices of average options by the asymptotic expansion method up to the fifth order
and we also calculate approximated prices by the moment matching method given by Levy[16]
and by the lower bound for average options given by Nielsen and Sandmann[21].

In the numerical examples, € is set to be one and other parameters are given in Table 2.5.

Table 2.5: Parameters for the Black-Scholes Models

’ Case | 5(0) ‘ o ‘ T ‘
i 100 0.3 1
ii 100 0.3 2
iii 100 0.5 2

Benchmark values are computed by Monte Carlo simulations. We use the second order scheme
given by Ninomiya-Victoir[22] as a discretization scheme with 128 time steps for case i, and with
256 time steps for case ii and iii respectively. We adopt Mersenne-twister as a random number
generating engine, and generate 5 x 107 paths with antithetic sampling in each simulation. We
calculate the lower bound given by Nielsen and Sandmann with 1024 time steps.

Benchmark prices by Monte Carlo simulations and their standard errors are given in Table
2.6. Also, approximation errors of the moment matching method(Levy), the lower bound given
by Nielsen and Sandmann(N-S) and of our asymptotic expansions are reported in Table 2.6.

From the results above, asymptotic expansions almost always improve the accuracy of the

approximation as the order of expansion increases and the forth or fifth order asymptotic expansion
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Table 2.6: Approximation errors for average call options under Black-Scholes model.

Levy ~ N-S A E.(Difference)
Case | Strike(C/P) MC(s.e.) (Diff.) (Diff.)  1st 2nd 3rd 4th 5th

i 70 Call 30.081
90 Call 12.667
100 Call 6.896
110 Call 3.367
130 Call 0.622

0.002
0.001
0.001
0.001
0.000

0.026 -0.001 0.212 -0.065 -0.007 0.001  0.000
0.082 0.001 0.363 0.012 -0.002 -0.001 -0.001
0.031 0.003 0.014 0.014 -0.001 -0.001 -0.001
-0.031  0.002 -0.336 0.015 0.000 -0.001 -0.001
-0.054 -0.001 -0.329 -0.051 0.008 0.000 -0.001

ii 70 Call 30.555 (0.002 0.126 -0.002 0.751 -0.080 -0.026 -0.002 0.001
90 Call 14.993 (0.002 0.169 0.003 0.582 0.043 -0.001 0.002 0.002

110 Call 6.067 (0.001 0.000 0.004 -0.491 0.048 0.004 0.001 0.002
130 Call 2.168 (0.001) | -0.103 -0.001 -0.862 -0.031 0.022 -0.002 0.001

iii 70 Call 33.179 (0.004 0.568 -0.016 2.319 0.081 -0.063 -0.006 0.002
90 Call 20.639 (0.004 0.536 -0.006 1.134 0.186 -0.014 0.000 0.003
100 Call 16.095 (0.003 0.415 -0.003 0.192 0.192 0.000 0.000 0.003
110 Call 12.509 (0.003 0.271 -0.003 -0.736 0.212 0.013 -0.001 0.002
130 Call 7.542 (0.002 0.008 -0.008 -2.045 0.193 0.050 -0.006 0.002

(0.002)
(0.001)
(0.001)
(0.001)
(0.000)
(0.002)
(0.002)
100 Call | 9.729 (0.002) | 0.092  0.005 0.043 0.043 0.001 0.001  0.002
(0.001)
(0.001)
(0.004)
(0.004)
(0.003)
(0.003)
(0.002)

have smaller or equal approximation errors to those of other methods. Further, as seen in the
next subsection, our method can be extended in the same framework to the stochastic volatility

case where these other methods cannot be applied.

Stochastic Volatility Case

Next, we consider the stochastic volatility case such as A-SABR/SABR model described in (2.3).

In the following numerical example, approximated prices by the asymptotic expansion method
are calculated up to the fourth order for the A-SABR model and up to the fifth order for the SABR
model respectively. Note that all the solutions to differential equations are obtained analytically.
Benchmark values are computed by Monte Carlo simulations. ¢ is set to be one and other param-
eters used in the test are given in Table 2.7 for the A-SABR case (i, ii and iii) and the SABR case

(iv, v and vi).
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Table 2.7: Parameters for the A-SABR models

(Case [ S50) [ Jo@ [x o v |, |7 |
i w00 10| 03] 10| 03] o3| 05 1
ii wo| 10| 03| 10| 03] 06| -05 1
i 00| 10| 03| 10| 03] 03| 05 2
iv 00| 10| 05 0 1 05| 05 1
v 00| 05| 30 0 03] 05 1
vi 00| 10| 05 0 05| 05 2

In Monte Carlo simulations for benchmark values, we use Euler-Maruyama scheme as a dis-
cretization scheme with extrapolation method with 256 and 512 time steps for case i, ii, iv, v
and with 512 and 1024 time steps for case iii and vi respectively. In each simulation, we generate
5 x 107 paths with antithetic sampling.

Results are in Table 2.8 for the A-SABR case and in Table 2.9 for the SABR case respectively.
Since the solution to the system of ordinary differential equations is solved analytically, computing
time for the asymptotic expansions is less than 10~3 seconds which is much shorter than that for
the Monte Carlo simulations.

From the results above, in each case the higher order asymptotic expansion almost always
improves the accuracy of approximation by the lower expansions. In particular, the higher order
asymptotic expansions effectively approximate the prices in long-term cases or high-volatility of
volatility (v) cases in which the lower order asymptotic expansions can not approximate the prices
well.

Finally, we remark that in the asymptotic expansion method the approximate density func-
tions are expressed as a product of polynomials and the Gaussian density function: Because these
polynomial-based approximation functions have wavy forms, higher order approximation some-
times provides worse approximation to the density at particular values (and to the option prices
at particular strikes) than lower ones as seen in Table 12 and 13. However, on average absolute

differences decrease as higher order correction terms are included.

2.3 A Log-Normal Asymptotic Expansion and its Family

In this section, we develop a slightly different expansion from the usual asymptotic expansion.
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Table 2.8: Asymptotic expansions for average options under the A-SABR model up to the fourth

order

A E.(Difference)
Case | Strike(C/P) MC Ist 2nd 3rd 4th

i 50 Put 0.000
80 Put 0.804
100 Call 6.873
120 Call 1.306
150 Call 0.046

0.000
0.000
0.001
0.000
0.000

(0.000) | 0.009 -0.010 0.003 -0.001
(0.000) | 0.261 0.011 0.004 0.003
(0.001) | 0.036 0.036 0.005 0.005
(0.000) | -0.240  0.010  0.004  0.005
(0.000) | -0.036 -0.017 -0.004  0.000
ii 50 Put | 0.005 (0.000) | 0.005 -0.001 0.007 -0.001
80 Put | 0.988 (0.000) | 0.078 0.002 0.030 0.007
100 Call | 6.886 (0.001) | 0.024 0.024 0.007 0.007
(0.000)
(0.000)
(0.000)
(0.001)
(0.002)
(0.001)
(0.000)

120 Call 1.183 (0.000) | -0.117 -0.042 -0.014 0.009
150 Call 0.035 (0.000) | -0.025 -0.020 -0.012 -0.004
iii 50 Put 0.024 (0.000 0.162 -0.076 -0.001 0.001
80 Put 2.251 (0.001 0.609 0.060 0.004 0.003
100 Call 9.685 (0.002 0.088 0.088 0.001 0.001
120 Call 3.348 (0.001) | -0.488 0.061 0.005 0.006
150 Call 0.495 (0.000) | -0.309 -0.071  0.004 0.002

2.3.1 A Log-Normal Asymptotic Expansion for Stochastic Volatility Models

Suppose that an underlying one-dimensional asset process S(¢ and d-dimensional stochastic pro-

cess X (9 follow

ds) = g(X\)55dwy; S5 = s,
ax!? = (x edt + ev(X)awy; X7 =z € R

respectively, where g:R¢ — R and & is a constant vector in R". First, let we define X () as

Then, we have
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Table 2.9: Asymptotic expansions for average options under the SABR model up to the fifth order

A E.(Difference)
Case | Strike(C/P) MC(s.e.) Ist 2nd 3rd 4th 5th

iv 50 Put 0.137
80 Put 3.496
100 Call 11.359
120 Call 4.623
150 Call 0.964

0.000
0.001
0.002
0.001
0.001

(0.000) | 0.351 -0.034 0.027 -0.014 -0.012
(0.001) | 0.679 0.136 0.038 0.014  0.002
(0.002) | 0.158 0.158 0.020 0.020 0.007
(0.001) | -0.448  0.096 -0.001 0.023 0.011
(0.001) | -0.476 -0.091 -0.029 0.013  0.015
v 50 Put 0.008 (0.000) | 0.002 0.002 0.003 0.001  0.000
80 Put 1.054 (0.000) | 0.012 0.012 0.013 0.005 0.004
100 Call | 6.897 (0.001) | 0.013 0.013 0.007 0.007 0.006
(0.000)
(0.000)
(0.000)
(0.001)
(0.003)
(0.002)
(0.001)

120 Call 1.070 (0.000) | -0.004 -0.004 -0.003 0.005 0.003
150 Call 0.012 (0.000) | -0.002 -0.002 -0.002 0.000 -0.000
vi 50 Put 0.854 (0.000 1.324 0.170 0.132 -0.020 -0.067
80 Put 6.883 (0.001 1.321 0.454 0.120 0.049 -0.020
100 Call 15.824 (0.003 0.463 0.463 0.073 0.073 0.002
120 Call 8.713 (0.002) | -0.509  0.357 0.023 0.093 0.024
150 Call 3.339 (0.001) | -1.162 -0.008 -0.046 0.106 0.060

and note that

where
=12 T 1.
fir = —M/ g(X{)2du = -3,
2 J 2
. T
Sr = o / g(XO)2du.
0

)

Moreover, an asymptotic expansion of Xr}e up to eN-order is expressed as

N
X9 = X0 43" €Ay + oY),

n=1

1 877,)2'755)

15— le=0. Note that S¥ ) is now expanded around a log-normal distribution since

where flm =
(0)

X~ has the Gaussian distribution (hereafter we call this expansion ‘the log-normal asymptotic
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expansion’ of S(TE ) in contrast to calling the usual asymptotic expansion ‘the normal asymptotic

expansion’).

Next, define Z(€) = {Zt@;t eR'} as

t
78 = exp <z’§ / g(X{LO))aqu) .
0

Then, the result in the usual asymptotic expansion case is applied to deriving the density function
of er,f ) with replacement of G(¢) by X'z(f ),

Similar to the normal case, the log-normal asymptotic expansion of the price of the call option
on X¥ ) is given by

Call(K,T) = P(0,7) /100 (soex—K)fA(Te)(:n)d:I:.

X
og%

2.3.2 An Asymptotic Expansion around the Shifted Log-Normal

In this subsection, we derive an approximation formula to the option price in the shifted log-

normal model with stochastic volatility:
s’

St(e) +a

dX\ " = Vi(x©, e)dt + eViXNdW, (i=1,---,N)

= R(X N dt + g(X N aw, (2.7)

S =5 eR, X\ =Xx,eRN
First, we consider the change of variable:
F9 =59 +a.

Then,
dF9 = n(XNF9dt + g X FDaw,; F9 =8+ a.

Thus, Ft(é) is a log-normal type diffusion with stochastic volatilities and the usual log-normal
asymptotic expansion introduced in previous subsection can be applied.
Further, the price of the call option on S(©) with strike K and maturity 7', Co(K,T) can be

written as

Co(K,T) = P(0,T)E [(Sﬁ) - K)+}
= PO.DE (S +0) = (K +a))4 |

— P(0,T)E [(F}@ — (K + a))+] .
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Thus, the approximation formula of the call option price is given by

(o.9]
CallT) = POLT) [ ((S0-+a)e” = (K +)) o ()i (28)
log g:i T
N ()
where ff((;) is an asymptotic expansion of density of Xj(f ) .— Si:’jra which is calculated in a similar

way as in the previous subsection. Note that, since S (0) is a shifted log-normal process (displaced-

diffusion), this gives an asymptotic expansion around a shifted log-normal process.

2.3.3 An Asymptotic Expansion around the Jump Diffusion

In this subsection, we apply the log-normal asymptotic expansion developed in previous subsec-
tions to the jump-diffusion stochastic volatility models where the underlying process S is the
solution to the following stochastic differential equation with jumps:
ds.®
S
dX T = Vi) eydt + Vi X)W, (i=1,---,N)

_ (h(Xt(E)) - )\m) dt + g(X\NdW, + (e¥* — 1)dN, (2.9)

Si9=5eR, X7 =Xx,eRN
where NV is a counting Poisson process with intensity A, {Y;} are i.i.d. Gaussian random variables

with mean p and variance 62, and define m = E[e¥* —1] = et+29° _ 1. Note that Wi, Ny and {Y;}

are mutually independent.
)

O . 1og 5
Define X} :=log =, then,
. t 1 ! >
X© = /0 (h(Xée)) — 3 lg(XP ~ )\m) ds +/0 g(X{N)dw, +> Vi, (2.10)
i=1
and define a continuous part of )A(t(e) denoted by )A(t(e)’c as
o-(€),¢ ! € 1 € ! €
207 = [ (b0 - Gl ) ds+ [ g(xaw, 2.11)

Note that, we can apply the log-normal asymptotic expansion in the previous subsection to X'éf )’C,

and obtain the approximation formula to the characteristic function of it:

3 6
b0 = {1+eZCll(i§)l+622021(i§)l+~-}exp{i&ﬂT—;522T}
=1 =1
(2.12)

where

X r 1

ir = [ (W) = Slax)R) a
3 g (0)y12

2r o= [ lax O
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and the coefficients Cy;, Cyy, - - - are obtained from the solutions to the differential equations.

Moreover, since V; and {Y;} are independent of W, and {Y;} are i.i.d. normal random vari-

ables, the characteristic function of Xj(f ) can be written as

b20(6) = E[exp{(i6)%{"}]
Nt
- E exp{(z§)< (e)c )\mT—i—ZY)}
=1

= TG (€8 [ (Blexp{ (€))7 ]

-\ n
e T ; 252
( ) e 1EAm1 5 (e (6) Enp § &

vt n!
© AT
— ;}W{1+620u (i€) + € ZCQZ (i€)" }

x exp{iin — 5{2271}
(2.13)

where

Hn = ﬂT —axmT + np,
Yn = XA]T + né?.

Then, applying the inverse Fourier transformation to ¢ (), We have the following series expression
T

¢ (O,

of the asymptotic expansion of the density function of X,

oo —)\T )\T 6

NE R praa z a0+ @3 A =)+
n=0 =1
Xn(z — pin; L)

(2.14)

An approximation formula to a option price can be obtained from the approximation of the
density above. Note that the first term of an approximation of the option price corresponds to

the Merton’s formula for the jump-diffusion process with a deterministic volatility function.

Remark 3. The asymptotic expansion around jump-diffusion explained above can be applied to the
shifted log-normal model with jumps where S is given by the solution to the following stochastic

differential equation:

dS(e)

—(h(X()) )\m)dt—l—g( X NdW, + (e¥* — 1)dN,. (2.15)
S(e)—i—a
tf
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In this case, as in the previous subsection, an asymptotic expansion around the jump-diffusion

: , o) S o) S 9%
shifted log-normal model can be obtained by replacing X, = log o with X, = log Foga In the

asymptotic expansion of jump-diffusion.

2.3.4 Numerical Examples

Shifted Log-Normal \-SABR Model

Next, we consider the following shifted log-normal A-SABR model:

dS(t) = o(t)(S(t) + a)dW},
do(t) = MO —o(t))dt + vio(t)dW} + vao(t)dWE,
where « is a shift parameter and assume that (Sp + a)) > 0.
Then, we can apply the shifted log-normal asymptotic expansion method introduced in the

previous section. Parameter sets for the tests are given in Table 2.10, and the approximate prices

and their errors are given in Table 2.11.

Table 2.10: Parameter sets for Shifted Log-Normal A-SABR model

Parameter ‘ S(0) ‘ a/S(O)‘ a(0) ‘ A ‘ 0 ‘ v ‘ p ‘ T ‘
iv 100 1.00 0.15 0.1 0.3 0.15 -0.7 10
v 100 1.00 0.15 0.1 0.3 0.15 0.0 10
vi 100 0.33 0.23 0.1 0.3 0.23 0.0 10
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Stochastic Volatility Model with Jumps

We consider the European plain-vanilla call and put option prices under the following jump-

diffusion stochastic volatility model:

dSOt) = —ngmS©(t=)dt + ' (t)S (t—)dW} + S (=) (e¥t —1)dNy,
do () = MO —oO)dt + a0 #)dW ]} + evoo' (1) dWE,

where W = (W' W?2) is a 2-dimensional standard Wiener process, N is compound Poisson
process with intensity 1, {Y;} are i.i.d. Gaussian random variables with mean y, variance 62 and
52
m:=E[eY —1]=etT7 — 1.
S (¢)

Note that, the log price of the underlying asset, denoted by X (t) = log 5 is expressed

as
) t 1 t Ny
X)) = / (-20@(8)2 - nm) ds + / o(s)dw, + > V.
0 0 i=1

The parameters for the test is given in Table 2.12.

Table 2.12: Parameter sets for the Jump-Diffusion Stochastic Volatility model

’case‘S(O) ‘0(0) ‘)\ ‘0 ‘I/ ‘p ‘77 ‘m ‘6 ‘T ‘
i 100 0.3 0.1 0.3 0.3 -0.7 1.0 0.0 0.3 1
ii 100 0.3 0.1 0.3 0.3 -0.7 0.5 0.0 0.5 1
iii 100 0.3 0.1 0.3 0.3 -0.7 1.0 0.0 0.3 5

In Monte Carlo simulations for the benchmark values, we first simulate the continuous part
of X discretized by Euler-Maruyama scheme with time steps 512 in case i and ii and 1024 in case
iii, and combine X with the independently generated Ny and Y;s to generate St.

Results for the numerical experiments are given in Table 2.13.
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2.4 An Asymptotic Expansion Method with Change of Variables

This section presents an extension of a general computational scheme of an asymptotic expan-
sion described in Chapter 1. In particular, through change of variable technique as well as the
various ways of setting perturbation parameters in an expansion, we provide flexibility of setting
the benchmark distribution around which the expansion is made and an automatic way for com-
putation up to an arbitrary order in the expansion. We also show some concrete examples with

numerical experiment. This section is based on the paper [36].

2.4.1 A Framework

We consider a d-dimensional diffusion process X; = (X},---, X{) which is the solution to the

following stochastic differential equation:

dX] = VI (Xp)dt + VI(Xp)dW; (j=1,---,d) (2.16)
Xo=z0 € R?
where W = (W' ... W") is an r-dimensional standard Wiener process; Voj : R — R and

V7 :R%— R® are smooth functions with bounded derivatives of all orders.
Next, let C' : RY — R% be a C2-function which has the unique inverse function, C~!, and

define X; as X, = C(X;). Then, the dynamics of X is given by

dX] = VJ(X)dt + VI(X)dw, (j=1,---,d), (2.17)

Xo = Zo,

Vi(7) = Za ot Z Oy CI(E)VI(C(&)VF (C™ (@),

Vi(e) = Z 0y @V (€ (@),
ji=
and To = C(xzo).
Next, we introduce a perturbation parameter € € (0,1] as follows:
X, — X
Vi (€)= Vi (&, )

VIi(E) — eVI(2),
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and hence, the dynamics of X(© is expressed as
dX( M = V(XD e)dt + VI (X Naw, (=1, ,d). (2.18)

Hereafter, let us apply the technique developed in [35] to the transformed SDE (2.18). Firstly,
take a smooth function ¢ : R? — R with all of the derivatives having polynomial growth orders.

Then, a smooth Wiener functional g(X. xle )) has its asymptotic expansion:

g(Xéf)) ~ gor + €qiT + €921 + - - (2.19)

in LP for every p > 1(or in D*) as € | 0.
de( €)
Let Akt = ]5 Je k

Ay is represented by

le=o0 and A{;t, j=1,---,d denote the j-th elements of Ay;. In particular,

A”_/ Y, (9,V0(X0, 0)du, +V(XO)arw,) (2.20)

where Vo = (Vi, -+, V): REx (0,1] = R4, and V = (V',--- ,V?): R~ RY®@R’;
Y denotes the solution to the differential equation:
dY, = aVp(X”, 0)Ydt; Yo = I,
For k > 2, Ait, j=1,--- d is recursively determined by the following:

. t ~ -~
A, = — / LT (X0, 0)du

t B
d' B ak—Llvri /v (0)
+Z Z k—1 '5'/ <H lJ?u) 85;306 Vi (X, 0)du

=17y dg 1

(k—1) + B8
+ % i <H A?ju> 95 VI (XO)dW.. (2.21)

Then, gor and g7 can be written as

gor = Q(XI(“O))’

qar = Zajg A{T

1 amg(X%)
n! Oe™

Forn > 2, g,r = is expressed as follows:

e=0

(n)
1 0)\ 1d d

gmzZ; @ajﬁ g(X) Ay A (2.22)

dg
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Next, normalize g()z';6 )) to

for € € (0,1]. Then,
G ~ gir + egar + - -

in LP for every p > 1.

Moreover, let
V(a,t) = (9g(x)) [YrY, 'V ()]
and make the following assumption:

T
(Assumption 1') Sp = / v(x©O Hv(x©O,o'dt > o.
0

Note that g7 follows a normal distribution with variance ¥7; the density function of g;7 denoted

by fgr(2) is given by

Tr—cC 2
o) = e (U5 ) (2:23)

c= (9g(X / VoY, 1o Vo (X9, 0)dt.

where

Hence, (Assumption 1) means that the distribution of g;7 does not degenerate.

Let S be the real Schwartz space of rapidly decreasing C°°-functions on R and &’ be its dual
space.

Next, take ® € §’. Then, the asymptotic expansion of a generalized Wiener functional @(G(E))
as € | 0 can be verified by Watanabe theory. In particular, if we take the delta function at x € R,
8, as ®, we obtain an asymptotic expansion of the density for G(©.

That is, the expectation of @(G(E)) is expanded as follows:

N (n) )
E[®(G©)] = Z Z g17) H Ik, 41y | + Ol (€M)
n=0 E Jj=1

N TL
= 30 [ PR [l = o] s e +olc)
n= ks

N ’I’L
1 d° ok
_Seyt / )P {E[XBlgir = o] fyur(@) | do+ o()(2:21)
n=0 ]2 ot
here 80)(gig) = 2 S S S
where (ng) A0 _ 9 ZE& 26:1 Zk(SELn’&? ann
. 4
Xks .= Hg(kj+1)T- (2.25)
7j=1



To compute the asymptotic expansion (2.24), we need to evaluate the conditional expectations

of the form

E [5(125

qaiT = l‘}

where X% is represented by a product of multiple Wiener-Ito integrals.

The next theorem shows a general result for an asymptotic expansion of the density function
for G(). In particular, the coefficients in the expansion are obtained through the solution of a
system of ordinary differential equations(ODEs). The key point is that each ordinary differential
equation(ODE) does not involve any higher order terms, and only lower or the same order terms
appear in the right hand side of the ODE. Hence, one can easily solve (analytically or numerically)

the system of ODEs.

(N _ (0
Theorem 4. The asymptotic expansion of the density function of G\9 = M up to
eN-order is given by
fG<€) (:C) = fg1T($)
N 3n
2. (Z Cum Hon(2 — . 2T>> Forr (@) + ole"),
n=1 m=0
(2.26)
where Hy(x;Y) is the Hermite polynomial of degree n which is defined as
Hy(2:%) = (—z)"er/QEie—x2/2E, (2.27)
dx™
and
(k1+1) (ks+1)
Crm = sm Z Z Z 5(m — 6)!
ks 1L d B &

B1°7B1 BsBs

) m—35 7 o..0d
(T g, o050 ) s gy 36+ 6= 229

7 — —5'In 70
1 d B aEm 0 l61®-~~®lﬂ5 €0
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77?5 (T;€) are obtained as a solution to the following system of ODEs:
s

B o
d 7, 1 dg, ;
Gl wol = S a0

1 1 (dﬁ/k ®d,y
(s — D @iy

(t; {)57 alk lvdk( (0) ,0)

k=1 1=1 ﬁ‘z»y,ciy
B (e—1) (lm—1 1 )®d:' ®5
L eg/km FQas .
" kz_l - o 5'n(l6/km)®mw®m6(t7€)
];TZ;Z m"/’d’Y T?Lg, )
<0 V(X v (X))
v 9
P01 @yed, Oy 50
. B/k . Y  7d X’ ) X t
+ (z@; 2. 7,n(lﬁ/k)%<,£>ad.wv (X0
T e,dy
d
nP(0:6) = 0 for (I.dy) # (0,0), ny)(1:6) = 1. (2:29)

Here, we use the following notations:

e = (I o1, by, )
in = (o ety bty S lnety g1, 4 lg), 1<k <n<p
Z}@m'\/ = (lla”'7lﬁ7m17"'7m’y)

for fﬁ = (li, -+ ,1lg) and My = (M1, -+ ,my).
The proof is given in Sections 3 and 5 of [35].

Remark 4. Due to the hierarchical structure of the ODEs with respect to | = 25:1 l; and

"7((8)) (t;€) =1, one can easily solve these ODEs successively from lower order terms to higher order

terms with initial conditions 77;;6 (0;€) =0 for (l_:g,cfg) # (0,0). For instance, 77(1), 77{’ 1y and 77( )

are evaluated in the following order:
i ik i
Ty = My 7 My
2.4.2 Applications to Option Pricing

Given the above theorem for an approximation of the density, we can easily derive approximation
formulas for option prices under various models.
For instance, let us evaluate a plain-vanilla call option on the underlying asset whose price

process is given by X' where X! denotes the first element of X. We first determine the change
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of variable function, C' such that
C(z) = (Ci(z"), Car(a®,--- ,2%),

where 27 denotes the j-th element of z € R and C; : R — R and Cy_1 : R ! — R4 1 are
some invertible functions. Then, we have X; = C(X;) for all ¢t € [0,T7.

Next, we introduce a perturbation parameter € € [0, 1] to get f(t(e) = ()th(e)’l, e ,f(t(e)’d) for
all t € [0,7] as in (2.18), and define X:Ef)’l =C! ()N(:(Fem). (In particular, X! = C~! (X;l)’l))
Also, we set a smooth function g : R? — R (appearing in (2.19) of the previous subsection) as
g(z) = 2! for x = (2, ,z%).

Let us consider an approximation of the call option price, Calll® (K, T) with maturity T and

strike price K, whose payoff is given by

(X" = K) 1= max {x{ — K0}

+

Then, we obtain an approximation of the call price as follows:

P(0,T)E [(011 (Xj(f)’l) - K) J — P(0,T)E [(Cll (EG(E) + X;O)J) - K) J

Call') (K, T)

Q

ro) [ (e (o + XY = K) Joo @i,

where

G = : (2.30)

Oy (K) — X
y© = i )6 r (2.31)

Here, P(0,T) stands for the price at time 0 of a zero coupon bond with maturity 7', and fG(e)7 N

denotes the asymptotic expansion of density of G up to eV-th order:

N 3n
faon(@) = fur(@)+> € (Z CrumHm(z — ¢, zT)) Forr (), (2.32)
n=1 m=0

which comes from the first and second terms of (2.26) in Theorem 4.

Particularly, when e = 1, the payoff is given by
( T )+ ( T ) ( )

Then, an approximation of the call price, Call(K,T) = CallV (K, T) with maturity 7 and strike
price K is obtained by

Call(K,T) = P(0,T)E [(cll(f(}) - K) J = P(0,T)E [(Cll (G(l) + X§°>’1) - K) J
~ P(0,T) /yoo (C;l (33 + Xﬁ”’l) - K) fow n(@)dz, (2.34)
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where

¢ = XMt X0 (2.35)
y = Ci(K) - X (2.36)

and foa) y is given by

N 3n
fG(l),N (:E) = fng (:L') + Z (Z Canm(a? - C? ET)) fng (x) (2'37)
n=1 \m=0

Various approximation formulas could be obtained through choice of change of variable func-
tion C' or/and the way to setting the perturbation parameter € in W(Xfe), €) of (2.18), for instance,
‘70](5(15( )) V] (X (E)) 62‘73()215(6)), -+-. Then, the limiting distribution of the underlying asset price
may become normal, log-normal, shifted log-normal, non-central chi-square, and so on. The next

subsection will illustrate option pricing under a local-stochastic volatility model.

Option Pricing under Local-Stochastic Volatility Model

We assume the underlying process is the unique solution to the following SDE:
dS; = o(Xy)h(S)dW,
dX] Vj (Xy)dt + VI(X)dW; (j=2,---,d) (2.38)
So=s0€R, Xog=uzoec R,

where 0 : R - R", h : R — R, and W is a r-dimensional Brownian motion. Then, we

evaluate a call option with strike K and maturity 7', whose underlying price process is given by

S. Under the zero discount interest, for simplicity, the call price Call(K,T) is obtained by

Call(K,T) =E[(S7 — K)4]. (2.39)
First, for z = (2!, 22,--- , 29), let

C(‘T) = (Cl(x1)7$27 T 737d)7

where C; : R — R be an invertible C2-function. Then, S’t = C1(Sy), and the dynamics of S is
given by

dS; = *IIU(Xt)H (O (8))CL(CH(S)dt + o(X)Cy (O (S)dW, 5o = Ci(so).  (2.40)
Next, we introduce a perturbation parameter ¢ as follows:

a5 = M o (x(9) Ph(C 1 (SI)2C(C St + o (X() O (C (S aw.41)
dX(e)J VJ(X() )dt-i—er(Xt(e))th (j=1,---,d),
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where 7(¢) = ¢/ and j is a nonnegative integer such as j = 0,1,2,---. Note that
Si = 718 = e Y(SM).

According to Theorem 4, we have already an asymptotic expansion of the density function of
alo — 57-5¢

—T— up to ¢"-order, denoted by few y(@).
Therefore, an approximation formula of the call price is given as follows:

Call(K,T) = E[(Sp—K)i]=E [(011 (5;”) - K)J (2.42)
~ /y h (c;l(x + 50— K) fow n(@)da, (2.43)

where y = C1(K) — SXEFO).

A simple example is the following. Set the local volatility function to be linear:

dSy = 0(X3;) S dWy
dX] = V§(Xy)dt + VI(X)dW,  (j =2, ,d). (2.44)
For z = (2!, 22, ,2%), let
C(z) = (logz!, 22, x%),
and set 7(€) = €/ where j is 0, 1 or 2. Then, we have 5',5(6) = log St(e), where
sl = ia(x§f))2dt + eo(X\V)aw, (2.45)
dX\ M = V(X e)dt + VI (X )aw,  (j=1,--- ,d).

This case corresponds to some existing researches. (e.g. [32], [42], [33], [34], [35], [39])

2.4.3 Examples

This section will provide concrete examples with numerical examination.

Constant Elasticity of Variance(CEV) Model
The first example is on the well-known CEV model (Cox [5]) :
dS; = U(SfSé_B)th, o and Sy are positive constants, 5 € [0, 1], (2.46)

where the term Sé_ﬁ makes the level of o is of the same order for different 5. For x > 0, let us
take the change of variable function to be C(z) = log(z/Sp), that is z = C71(Z) = Sy exp(%).

Hence, S; = log g—é and we have

151 = —2o2*0 DSt 4 oePDS gy, (2.47)
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Next, we introduce a perturbation e € [0, 1], again as follows:

dngE) - _77(26)0—292(6_1)556)(115 + eae(ﬁ_l)gﬁe)th, (2.48)

where n(e) = ¢/ and j is a nonnegative integer.

Because
sr=C"1(S9) = Spexp () = Spexp (GO + 51,
an approximation formula of the call price with strike K and maturity 7" is given as follows:

Call(K,T) = E[(St—-K)y]=E [(SO exp (G(l) + S(TO)) — K)J

~ / (SO exp (:c + S'(TO)> - K) few n(z)dz; (2.49)
Yy
- K -
y = C(K)—S8Y =log o S, (2.50)
0

Note that f4,,, the first term in the asymptotic expansion of the density f() is a normal
density and hence, the underlying asset price is expanded around a log-normal distribution. Thus,
we could call this case a log-normal asymptotic expansion. We also remark that the case of
n(e) = € = 1 is harder to be evaluated than the other cases, which is essentially due to difficulty

in computation of gt(O) for n(e) = 1.

The \-SABR Model
Let us consider a stochastic volatility model so called A-SABR Model [14]:
dS; = a¢(S7 Sy P)aw}t; Sp > 0, (2.51)

doy = MO — oy)dt + vor dW2; o9 >0

where 3 € [0,1], A > 0,60 >0, v > 0, and W = (W', W?) is a two dimensional Wiener process

with correlation p € [0, 1].

Remark 5. Previous works such as [42], [34] and [35] have considered an asymptotic expansion
based on the following perturbed process, where the change of variable function, C is set by C(x) =
x:
S\ = €0y (S19)Paw}; S8 = Sy > 0, (2.52)
do? = A6 — O't(e))dt + el/at(e)thQ; a(()e) =09>0
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From a viewpoint of mathematical justification of our asymptotic expansion, we may consider

a smooth and bounded version of the local volatility function, ©° in the above model as follows:

dSt(E) = 60t91(5§6))th1 (2.53)
dol? = X0 —o\D)dt + evolDdW?

where for prefized very small K3 > 0 and very large K1 > Ko(> K3),

qi(z) = hi(2)ga(x) + ha(w) K7, (2.54)
ga(x) = ha(x)a’,
B V(K1 — )
hl(x) = LZJ(ZE—K2)+LZJ(K1—JJ)’O<K2<K1’
_ Y(r — Ka)
hg(x) = LZJ(ZE—K2)+LZJ(K1—JJ)’O<K2<K1’
_ Y(x)
hs(x) = ¢($)+w(K3_$),O<K3<K2<K1,
Ylx) = eV forz >0, ¥(x) =0 for z <0. (2.55)

Note that the local volatility function gi(x) shows the following feature:

gi(z) = 0, ifx<0 (2.56)
= ha(z)2?, if 0 <z < K3
= mﬂ, if K3 <z < Ky
= hi(2)2® + ho(2)K? | if Ko <2 < K

= KIB, if © > Ki(constant).

Hence, this model is be regarded as a smooth and bounded modification of the local volatility

function:
(min{max{z, 0}, K1 })° . (2.57)

Then, we are easily able to apply our asymptotic expansion to this modified \-SABR model up to
an arbitrary order. In fact, because we can take K1 and Ko as arbitrarily large constants, and Ks
as arbitrarily positive small constant, we may use the same asymptotic expansion both for (2.52)
and (2.53) as long as the deterministic process { S'¢) (t)‘e:() :0 <t <T}. is in the range between
Ky and Ks. If necessary, we could modify the volatility process as well.

The similar modification and consideration could be applied to the asymptotic expansions ap-

pearing in the current paper.
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Log-Normal Asymptotic Expansion Let us take a log-normal asymptotic expansion for the

underlying asset price S, that is for 1 > 0, set C(z1,22) = (log(z1/S0), x2) and S, = log g—é:

~ 1 g S 5
dSt = —50'15262(’871)Stdt + O'te(’Bil)Stde; SO =0 (258)

do; = X0 — oy)dt + vo dW?; oo > 0.
Next, we introduce a perturbation e € [0, 1], again as follows:

~(¢ _ ale) _ a(e ~
dSt( ) = _7712(6)0262(ﬂ DS dt + eoelP~D5 )th; So =0, (2.59)

do’t(ﬁ) = n2(e)\(0 — Ut(ﬁ))dt + eyalse)dWE; O'(()E) = 00,

where 7;(€) = €', i = 1,2 and j; is a nonnegative integer. For instance, typical cases are given as

follows:

Case I
G 1 (92 _1\8 € _1y&le)
dS’g ) = —§a§ )7e28-15" gy + eot( )(B=1)S; thl (2.60)
dol? = X0 — o\ dt + evo D aW?
Case IT (an extension of the Log-Normal Asymptotic Expansion in [42], [34])
(e €)2 _1a© c N G)
dSt( ) _ _ggg 0762818 gy 1 eat( ) (B=1)5, dW} (2.61)
dol? = X0 — o\ dt + evo D dW?
Case III (an extension of [31] to the CEV-type local volatility)

- 22 &(e G(e
430 — —%oﬁe) 2D g 1 oD gy (2.62)

dage) = A0 — Jge))dt + eyage)de
An approximation formula of the call price with strike K and maturity 7 is given as follows:

Call(K,T) = E[(St—K);]=E [(50 exp (Gu) + S,f;”) _ K) J

~~ / (So exp (fc + g(TO)> - K) few n(z)dz; (2.63)
y
_ K .
y = C(K)—S8Y =1log o S, (2.64)
0

Again, we note that Case I, that is n(¢) = ¥ = 1 is harder to be evaluated than the other cases,

which results from difficulty in computation of gt(o) for n(e) = 1.
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CEV Asymptotic Expansion Let us take change of variable function C as C'(z) = (C(z1), x2) forz =
(21, 22), where for z > 0 and 8 € [0,1),

1 zi-p T dz
O () — _ ) 2.65
(@) 1_Bséﬁ< /z55015> (2.65)
That is,
CTY(E) = So(1 — B)TF FT77. (2.66)

Then, as S; = C1(St), we have

~ 1 5 51 1. & 1
dSy = ————o;=dt AW, = — 2.67
St 21_/80.tst +Ut t7S0 1_5 ( )
doy = M0 — oy)dt + vo dW? og > 0.
Again, we obtain a perturbed process as follows:
s __me) B @ c©Qawt, §© = L
as,” = 5 1—5(Ut )2 S()dt+ awygs; Sy’ = 5 (2.68)
date) = n2(e)\(6 — (E))dt + evoy )th ; 0(()6) = 0y,
where 7;(e) = €/, i = 1,2 and j; is a nonnegative integer.
For illustrative purpose, let us set n;(e) = n2(€) = €. That is,
50 P (a2 (9 a0 _ 1
_ € _ 2.
a5 = 5750 N awi 3 = (2:69)
da,ge) =eAN0 — g ))dt + evo, )th ; ( ) = gy.
In this case, as gt(o) = ﬁ and 0150) = o¢ for all ¢t € [0,7T], the first term in the asymptotic
expansion, g1; = aa ’6 —0 S, 5(9) follows a Gaussian process:
—fBog 1
dgi = dt + ogdW=; g1 = 0. (2.70)
Then, by applying Ité’s formula to
1
g1t = Cy ' (gue) = So(1 = B)T=A gy ™7, (2.71)
and using
_ gy
g1t = 1— 6 Sé_ﬁ? (272)
we formally obtain the dynamics of §i; though it is well-defined only for g1; > 0:
2
i = %gft [ BSEP + S2P BT 4 o0 SPGB AW 1o = 0. (2.73)
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Here, the diffusion coefficient of g1, = C'(g1;) is given by (705'3_'8(5]”)'3. As we may think that
S is expanded around ¢, we call this case a CEV asymptotic expansion (though §; is not exactly
a CEV process).

In particular, when g =1/2,

. ol . . .
dgre = 50 [~ V/S0310/2 + So| dt + 007/ SegudW; i = 0, (2.74)
and because
R S
ar = ZOQ%T, (2.75)

g1 follows a non-central x-square distribution, around which the original underlying asset price
St is expanded.
Finally, for n;(¢) = /i, i = 1,2 and j; is a nonnegative integer, an approximation formula of

the call price with strike K and maturity 7" is obtained as follows:

Call(K,T) = E[(Sr—K)4]=E [c;l(éT) - K}

Q
T~ =

{8001 = B)T7 (2 + 80) T3 } — K) fow la)da;  (2.76)

. 1 (K\'"7? .

2.4.4 Numerical Examination

For numerical examination of approximation for European option prices, we take SABR [9] model

(A-SABR with A = 0):

dS; = oy(S7 5S¢ 7P yawt; Sp > 0, (2.78)

doy = I/O'tthQ; oo >0

In particular, we apply the following three different expansions for approximation. (Although we
use the same notation foa), ~ () for the density approximations in all expansions, each represents

the density obtained by the corresponding expansion.)
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1. Normal expansion

This case corresponds to the original asymptotic expansion method. We apply the asymp-

totic expansion to the following perturbed stochastic differential equation:

dSt(E) = eat(Sf))ﬁSé_ﬁthl; S(ge) =50 >0, (2.79)

dat(e) = el/a,ge)thQ; J(()e) =00>0

Then, an approximation of a call option price with maturity 7" and strike price K is given

by

CrED) = [ =g @) (2.80)
Yy

y = K-SY=K-5, (2.81)

where GV = G(E)L:l,
(© g0 ol
g =5t =5 _Sr =5 (2.82)

€ €

and foa) y denotes the asymptotic expansion of density of G up to eV-th order evaluated

at e = 1.

Integrals may be calculated by the formulas:
> 2
/ (z = y)Hi(2;5) fg,p (0)dr = X7 Hg_o(=y;5) fo,1(y)- (2.83)
y
2. Log-normal expansion
We apply the expansion result in Section 2.4.3 with 71(e) = e:

~ 2 o€ al€ ~
dSEE) = —%at(e) 62(’3_1)85 )dt + ecr,ge)e(ﬁ_l)si )thl; S(()e) =0, (2.84)

dage) = eya,ge)dWE; U(()e) =0y

In this case, an approximation of a call option price with maturity 7" and strike price K is

given by

Call(K,T)

Q

/ (o6 — K) fn (@) (2.85)
Y

y = C(K)—Sg))zlogg. (2.86)
0

3. CEV expansion
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We apply the result in Section 2.4.3 with 71(¢e) = ¢, that is,

€ € 1 € (€ 1
a5 = = Lol rdt + 0wl 5P = 1 -

21-4 50

da,gE) = eyaf)thZ; a((f) = 0y.

(2.87)

Hence, an approximation formula of the call price with strike K and maturity 7" is obtained

as follows:
o 1 -5
Call(K,T) = So(1—-0)08 (| ——— 4= K 1 n(x)dz(2.88
w1 ~ [ ({0( 7 (254 0) } )fa<>,N<> (2.55)
- 1-8
y = Cl(K)—Séo’zl_lﬁ<g) _(1i5)' (2.89)

In the numerical examples below, we set the parameters as follows:

e The option maturity 7', the current underlying asset price Sy, the current volatility o, the

volatility on volatility v:

So =100,T7 = 1,009 = 0.30, v = 0.30.

e The instantaneous correlation p between the asset price S and its volatility o: three different

correlations;

p=0.0,—0.5, —0.75.

e The CEV parameter [ of the underlying asset price process S: nine different fSs;

B8 =0.0,0.125,0.25,0.375,0.50, 0.625, 0.75, 0.875, 1.0.

e Strike price K of the option: twenty different strikes;

K =10,20,---,100,110,120, - - - , 200.

Benchmark prices are computed by Monte Carlo simulation with 10® trials, 1024 time steps and
the antithetic variable method, where Euler-Maruyama scheme is used for the discretization of the
stochastic differential equation (2.78). Then, the absolute error is given by |(approximation price)—
(benchmark price)| for each case. We have computed each expansion up to the third order. That

is, for each approximation we use €/, (j = 1,2, 3)-order expansion for the density f,) (), that is

fe8, (@):

J 3n
fg<1),j (m) = fng (:E) + Z (Z Canm(:E - Ca ET)) fng (:E) (2'90)

n=1 \m=0
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For each expansion, the higher order expansion provides the better approximation. Particularly,
as for e3-order expansion Figure 1-3 below show the average values of the absolute errors for
option prices with all the strikes K for each 3, given the correlation value p.! In the figures, the
horizontal axis is 8 while the vertical axis is the average absolute error; Normal A.E. 3rd, Log
A.E. 8rdand LV A.E. 3rdrepresent Normal expansion, Log-normal expansion and CEV expansion,
respectively. Because CEV expansion is not well-defined for § = 1, we use the same formula as
the one of Log-normal expansion.

We find that CEV expansion provides the most stable approximations for all the cases. On the
other hand, Log-normal expansion is not robust to the change in § in a sense that its approximation
becomes worse as 3 deviates from 1. As for Normal expansion, although its approximation in zero
correlation p = 0.0 becomes worse as [ deviates from 0, it becomes stable for the higher (negative)
correlations such as p = —0.5,—0.75. For completeness, Appendix provides the results of the
first and second order expansions. Through investigation of the behavior of the the asymptotic
expansions up to the third order, we observe that CEV expansion becomes more precise with the
same level of absolute errors across the whole range of 5 along the higher order expansions. Thus,
we expect a higher order CEV expansion will produce the better and more stable approximation

than normal and log-normal expansions.

Figure 2.5: Correlation p = 0.0
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!The details of the numerical analysis are given upon request.
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Figure 2.6: Correlation: p = —0.5

0.250
0.200
0.150
0.100
0.050

Y

0.000
0.0 0.2 0.4 0.6 0.8 1.0

—o—Normal A.E. 3rd-#-Log A.E. 3rd
LV A.E. 3rd

Figure 2.7: Correlation: p = —0.75
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2.4.5 Conclusion

This note extends a general computational scheme proposed by our previous results [42], [34], and
[35]. Particularly, we have constructed a scheme that enables us to set a distribution around which
we would like to expand a target random variable, and to approximate the target variable up to
any order based upon the distribution. As numerical examples, we have shown new Log-normal
and CEV expansions up to the third order for approximations of option prices under SABR model,

which demonstrate that the CEV expansion will be a candidate for a more precise and robust
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technique than other approximation schemes such as normal and log-normal expansions.
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