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Introduction

This paper presents a new scheme for computation in the method so-called “an asymptotic expan-

sion approach” and extensions of the method with various financial applications and numerical

examples.

The ‘asymptotic expansion method’ was firstly introduced to a financial literature by [11]

and [28] with an application to the evaluation of an average option that is a popular derivative

in commodity markets. They derive the approximation formulas for the average option by the

asymptotic expansion method based on log-normal approximations of a distribution of an average

price when an underlying asset price follows a geometric Brownian motion. [45] applies a formula

derived through the asymptotic expansion of certain statistical estimators for small diffusion

processes to approximating average option prices. Thereafter, the asymptotic expansion have

been applied to a broad class of problems in finance: See [29], [30], Kunitomo and Takahashi [12],

[13], Matsuoka, Takahashi and Uchida [19], Takahashi and Yoshida [40], [41], Muroi [20], and

Takahashi and Takehara [31], [32], [33].

It is notable that the method has flexible applicability to a broad class of diffusion-type

stochastic settings in a unified way, and mathematical justification by Watanabe theory(Watanabe

[43], Yoshida [44]) in Malliavin calculus.

There are also other various approaches for approximation of solutions to pricing PDEs, Greeks

and heat kernels through certain asymptotic expansions: for instance, there are recent works such

as Fouque, Papanicolaou and Sircar [6], [7], Hagan, Kumar, Lesniewski and Woodward [9], Henry-

Labordere [14], [15], Siopacha and Teichmann [27], Ben Arous and Laurence [3] and Gatheral,

Hsu, Laurence, Ouyang and Wang [8].

Recently, not only academic researchers but also many practitioners such as Antonov and

Misirpashaev [1] or Andersen and Hutchings [2] have used the asymptotic expansion method

based on Watanabe theory in or combined with their techniques for a variety of financial issues.

e.g. pricing or hedging complex derivatives under high-dimensional underlying stochastic envi-

ronments. These methods fully or partially rely on the framework developed by [11], [28], [29] in
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a financial literature.

In theory, this method provides us the expansion, which has a proper meaning in the limit of

some ideal situations such as cases where these processes would be deterministic, of underlying

stochastic processes (for the detail see [43], [44] or [13]). In practice, however, we are often

interested in cases far from those situations, where the underlying processes are highly volatile

as seen in recent financial markets especially after the crisis on 2008. Then from view points of

accuracy or stability of the techniques in practical uses, it is desirable to investigate behaviors of

its estimators especially with expansion up to high orders in such environments.

In Chapter 1, we introduce a new computational scheme for an asymptotic expansion method

of an arbitrary order, based on the result in [34], [35], [37], and [38]. In the existing application of

the asymptotic expansion based on Watanabe theory, they calculated certain conditional expec-

tations which appear in their expansions and which play key roles in computation, by formulas up

to the third order given explicitly in [28], [29] and [31]. In many applications, these formulas give

sufficiently accurate approximation, but in some cases, for example in cases with long maturities

or/and with highly volatile underlying variables, the approximations up to the third order may

not provide satisfactory accuracies. Thus, formulas for higher-order computations are desirable.

But to our knowledge, the asymptotic expansion formulas higher than the third order in a general

setting have not been given yet. This paper provides a new scheme for computing unconditional

expectations which is completely equivalent to direct calculation of the conditional expectations

(Lemma 2). This enables us to derive the high-order approximation formulas in an automatic

manner (Theorem 2 and Theorem 3).

In Chapter 2, we present various applications and practical techniques of the asymptotic

expansion method including the high-order expansion introduced in Chapter 1 with numerical

examples. In Section 2.1, we apply new computation algorithm in Chapter 1 to the concrete

financial models, and confirms effectiveness of the high-order expansions by numerical examples

in the (λ-)SABR model.

Section 2.2 applies the high-order expansion scheme to pricing average options. This section

is based on the result in [26]. In particular, we describe the method using numerical examples

under the λ-SABR and SABR models and show that the fourth asymptotic expansion scheme

provides sufficiently accurate approximations.

In Section 2.3, we develop slightly different expansions from the usual asymptotic expansion,

which have the benchmark distribution other than the normal distribution. Namely, asymptotic

expansions around the log-normal distribution, the shifted log-normal distribution, and a expan-

sion around the jump diffusion process are introduced with numerical examples. 2.4 presents an
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extension of a general computational scheme of an asymptotic expansion described in Chapter 1.

This section is based on the result in [36]. In particular, through change of variable technique as

well as the various ways of setting perturbation parameters in an expansion, we provide flexibility

of setting the benchmark distribution around which the expansion is made. We also show some

concrete examples with numerical experiment.
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Chapter 1

A General Computation Scheme for

the Asymptotic Expansion Method

In this chapter, we introduce a new scheme for computation in the asymptotic expansion method.

This chapter is based on the paper [34], [35], [37], and [38].

1.1 An Asymptotic Expansion in a General Diffusion Setting

This section briefly describes an asymptotic expansion method in a general diffusion setting.

Let (W,P ) be a r-dimensional Wiener space. We consider a d-dimensional diffusion process

X
(ϵ)
t = (X

(ϵ),1
t , · · · , X(ϵ),d

t )′ which is the solution to the following stochastic differential equation:

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d) (1.1)

X
(ϵ)
0 = x0 ∈ Rd

where W = (W 1, · · · ,W r)′ is a r-dimensional standard Wiener process, and ϵ ∈ (0, 1] is a known

parameter.

Suppose that V0 = (V 1
0 , · · · , V d

0 )
′ : Rd × (0, 1] 7→ Rd and V = (V 1, · · · , V d): Rd 7→ Rd ⊗Rr

satisfy some regularity conditions(for example, V0 and V are smooth functions with bounded

derivatives of all orders).

Next, let a function g : Rd 7→ R be smooth and all of its derivatives have polynomial growth.

Then, a smooth Wiener functional g(X
(ϵ)
T ) has its asymptotic expansion:

g(X
(ϵ)
T ) ∼ g0T + ϵg1T + ϵ2g2T + · · ·

in D∞ as ϵ ↓ 0 where g0T , g1T , g2T , · · · ∈ D∞. For any k ∈ N, q ∈ (1,∞) and s > 0, this expansion
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means that

1

ϵk
∥g(X(ϵ)

T )− (g0T + ϵg1T + · · ·+ ϵk−1gk−1,T )∥q,s = O(1) (as ϵ ↓ 0),

where ∥G∥q,s represents the sum of Lq -norms of Malliavin derivatives of a Wiener functional G

up to the s-th order. Further, a Banach space Dq,s = Dq,s(R) can be regarded as the totality of

random variables bounded with respect to (q, s)-norm ∥ · ∥q,s, and D∞ = ∩s>0 ∩1<q<∞ Dq,s.

Coefficients gnT ∈ D∞(n = 0, 1, · · · ) in the expansion can be obtained by Taylor’s formula

and represented based on multiple Wiener-Itô integrals. See chapter V of Ikeda and Watanabe

[10] for the detail.

Let Akt =
1
k!

∂kX
(ϵ)
t

∂ϵk
|ϵ=0 and Aj

kt, j = 1, · · · , d denote the j-th elements of Akt. In particular,

A1t is represented by

A1t =

∫ t

0
YtY

−1
u

(
∂ϵV0(X

(0)
u , 0)du+ V (X(0)

u )dWu

)
(1.2)

where Y denotes the solution to the ordinary differential equation:

dYt = ∂V0(X
(0)
t , 0)Ytdt; Y0 = Id.

Here, ∂V0 denotes the d×d matrix whose (j, k)-element is ∂kV
j
0 =

∂V j
0 (x,ϵ)
∂xk

, V j
0 is the j-th element

of V0, and Id denotes the d× d identity matrix.

For k ≥ 2, Aj
kt, j = 1, · · · , d is recursively determined by the following equation:

Aj
kt =

1

k!

∫ t

0
∂kϵ V

j
0 (X

(0), 0)du

+

k∑
l=1

(l)∑
l⃗β ,d⃗β

1

(k − l)!

1

β!

∫ t

0

 β∏
j=1

A
dj
lju

 ∂β
d⃗β
∂k−l
ϵ V j

0 (X
(0)
u , 0)du

+

(k−1)∑
l⃗β ,d⃗β

1

β!

∫ t

0

 β∏
j=1

A
dj
lju

 ∂β
d⃗β
V j(X(0)

u )dWu (1.3)

where ∂lϵ =
∂l

∂ϵl
, ∂β

d⃗β
= ∂β

∂xd1
···∂xdβ

,

Ln,β =

l⃗β = (l1, · · · , lβ);
β∑

j=1

lj = n, lj ≥ 1, j = 1, · · · , β

 (1.4)

and

(n)∑
l⃗β ,d⃗β

=

n∑
β=1

∑
l⃗β∈Ln,β

∑
d⃗β∈{1,··· ,d}β
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for n ≥ 1, and

(0)∑
l⃗β ,d⃗β

=
∑
β=0

∑
l⃗0=(∅)

∑
d⃗0=(∅)

.

Then, g0T and g1T can be written as

g0T = g(X
(0)
T ),

g1T =

d∑
j=1

∂jg(X
(0)
T )Aj

1T .

For n ≥ 2, gnT is expressed as follows:

gnT =

(n)∑
l⃗β ,d⃗β

1

β!
∂β
d⃗β
g(X

(0)
T )Ad1

l1T
· · ·Adβ

lβT
. (1.5)

Here, we note that each Aj
lt(j = 1, · · · , d, l = 1, 2, · · · , k, 0 ≤ t ≤ T ) (and thus each gnT s)

has all finite moments due to a grading structure as follows: Consider the stochastic differential

equation of the form

dSt = µ(St, t)dt+ σ(St, t)dWt; S0 = s0 ∈ Rd (1.6)

where µ : Rd ×R+ → Rd and σ : Rd ×R+ → Rd ⊗Rr.

Definition 1. A grading of Rd is a decomposition Rd = Rd1 × · · · ×Rdq with d = d1 + · · ·+ dq.

The coordinates of a point in Rd are always arranged in an increasing order along the subspace

Rdi, and we set M0 = 0 and Ml = d1 + · · ·+ dl for 1 ≤ l ≤ q. We say that the coefficients µ and

σ are graded according to the grading Rd = Rd1 × · · · ×Rdq if µi(s, t) and σij(s, t), j = 1, · · · , r

depend upon only through the coordinates (sk)1≤k≤Mp when Mp−1 ≤ i ≤Mp.

Theorem 1. We assume the coefficients µ and σ in (1.6) have a Lipschitz lower triangular

structure, and are graded according to Rd = Rd1 × · · · ×Rdq . Moreover for F (s, t) = µ(s, t) or

σj(s, t), j = 1, · · · , r, we assume F is differentiable in s in Rd and

1. |F i(0, t)| ≤ Zt for i = 1, · · · , d

2. | ∂
∂sj
F i(s, t)| ≤ Ẑt(1 + |s|θ) for all i, j

3. | ∂
∂sj
F i(s, t)| ≤ ζ if Mp−1 ≤ i, j ≤Mp for some p ≤ q

where ζ, θ ≥ 0 are constants, and Z, Ẑ are predictable processes such that ∥Z∥p and ∥Ẑ∥p are

finite for all p ≥ 1 where ∥Z∥p =
{∫ T

0 E[|Zt|p]dt
}1/p

. Then (1.6) have a unique solution S, and

for every p ≥ 1 there are constants cp and γp depending only upon (ζ, θ, {||Ẑ||p′}p′≥1), such that

|| sup
0≤t≤T

St||Lp ≤ cp(s0 + ||Z||γp).
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For the detail of the definition and theorem above, see pp.45-47 in Bichteler, Gravereaux and

Jacod [4].

Applying Theorem 1 to the system of stochastic differential equations consists of Ai
lt(i =

1, · · · , d, l = 1, · · · , k, 0 ≤ t ≤ T ) and any products of them, we obtain the following lemma.

Lemma 1. Each coefficient of the expansion Ai
lt(i = 1, · · · , N, l = 1, · · · , k, 0 ≤ t ≤ T ) has all

finite moments.

(proof) Consider the system of stochastic differential equations whichA1
1, · · · , Ad

1, A
1
1A

1
1, · · · , Ad

1A
d
1,

A1
2, · · · , Ad

2,· · · follow. Note that the system of equations is linear and the coefficients of the linear

equations are represented by the derivatives at ϵ = 0 of Ṽ0(X
(ϵ)
u , ϵ) and Ṽ (X

(ϵ)
u ) which are bounded

in [0, T ]. Then it is easily shown that the coefficients of the equation have a grading structure

and satisfy the conditions in Theorem 1. Hence the coefficients Ai
kt have all finite moments.2

Next, let normalize g(X
(ϵ)
T ) to

G(ϵ) =
g(X

(ϵ)
T )− g0T
ϵ

for ϵ ∈ (0, 1]. Then, we have

G(ϵ) ∼ g1T + ϵg2T + · · ·

in D∞. Moreover, let

V̂ (x, t) = (∂g(x))
′
[YTY

−1
t V (x)]

and make the following assumption:

(Assumption 1) ΣT =

∫ T

0
V̂ (X

(0)
t , t)V̂ (X

(0)
t , t)

′
dt > 0.

Note that g1T follows a normal distribution with variance ΣT ; the density function of g1T denoted

by fg1T (x) is given by

fg1T (x) =
1√

2πΣT
exp

(
−(x− C)2

2ΣT

)
where

C :=
(
∂g(X

(0)
T )
)′ ∫ T

0
YTY

−1
t ∂ϵV0(X

(0)
t , 0)dt. (1.7)

Hence, Assumption 1 means that the distribution of g1T does not degenerate. In application,

it is easy to check this condition in most cases. Hereafter, Let S be the real Schwartz space of

rapidly decreasing C∞-functions on R and S ′ be its dual space that is the space of the Schwartz

tempered distributions. Next, take Φ ∈ S ′. Then, by Watanabe theory(Watanabe [43], Yoshida

[44]) a generalized Wiener functional Φ(G(ϵ)) has an asymptotic expansion in D−∞ as ϵ ↓ 0 where
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D−∞ denotes the set of generalized Wiener functionals. See chapter V of Ikeda and Watanabe

[10] for the detail. Hence, the expectation of Φ(G(ϵ)) is expanded around ϵ = 0 as follows: For

N = 0, 1, 2, · · · ,

E[Φ(G(ϵ))] =

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!
E

Φ(δ)(g1T )

 δ∏
j=1

g(kj+1)T

+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!
E
[
Φ(δ)(g1T )X

k⃗δ
]
+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R
Φ(δ)(x)E[X k⃗δ |g1T = x]fg1T (x)dx+ o(ϵN )

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R
Φ(x)(−1)δ

dδ

dxδ

{
E[X k⃗δ |g1T = x]fg1T (x)

}
dx+ o(ϵN )

(1.8)

where Φ(δ)(g1T ) =
∂δΦ(x)
∂xδ

∣∣∣∣
x=g1T

,

X k⃗δ =

δ∏
j=1

g(kj+1)T

for k⃗δ ∈ Ln,δ, and

(n)∑
k⃗δ

=

n∑
δ=1

∑
k⃗δ∈Ln,δ

.

In the preceding works on application of the asymptotic expansion, conditional expectations in

(1.8) were directly computed with some formulas given in [29] or [31] (for example, see Appendix

B of [31]). Recently, while the formulas had been given up to the third order by those papers,

[34] developed a high-order computation scheme for the conditional expectations using the fact

that each of these {Aj
k,t}j,k, {gnT }n and also {X k⃗δ}

k⃗δ
can be decomposed into a finite sum of

iterated multiple Wiener-Itô integrals by Itô’s formula, and a certain property of iterated multiple

Wiener-Itô integrals (see Nualart, Üstünel and Zakai [24] and Section 4 of [34]). On the other

hand, as shown in the next section, this paper develops a new method computing unconditional

expectations instead of the conditional ones.
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1.2 A General Computation Scheme for a High-Order Asymp-

totic Expansion

In this section we propose the new computational scheme in the asymptotic expansion, which is

an alternative to the direct calculation method for the conditional expectations given by [34].

To compute the conditional expectations in the right hand side of (1.8), we use the following

lemma which can be derived from a property of Hermite polynomials and leads us to compute

the unconditional expectations instead of the conditional ones.

Lemma 2. Let (Ω, F, P ) be a probability space. Suppose that X ∈ L2(Ω, P ) and Z is a random

variable with Gaussian distribution with mean 0 and variance Σ. Then, the conditional expectation

E[X|Z = x] has the following expansion in L2(R, µ) where µ is the Gaussian measure on R with

mean 0 and variance Σ:

E[X|Z = x] =

∞∑
n=0

an
Σn

Hn(x; Σ) (1.9)

where Hn(x; Σ) is the Hermite polynomial of degree n which is defined as

Hn(x; Σ) = (−Σ)nex
2/2Σ dn

dxn
e−x2/2Σ

and coefficients an are given by

an =
1

n!

1

in
∂n

∂ξn

∣∣∣∣
ξ=0

{
e

ξ2

2
ΣE[eiξZX]

}
. (1.10)

(proof) Since the system of Hermite polynomials {Hn(x; Σ)} is an orthogonal basis of L2(R, µ),

and E[X|Z = x] ∈ L2(R, µ), we have the following unique expansion of E[X|Z = x] in L2(R, µ):

E[X|Z = x] =

∞∑
n=0

an
Σn

Hn(x; Σ).

Since we have another Taylor expansion

eiξx = e−
ξ2

2
Σ

∞∑
n=0

Hn(x; Σ)

n!
(iξ)n,

then,

e
ξ2

2
ΣE[eiξZX] = e

ξ2

2
Σ

∫
R
eiξxE[X|Z = x]µ(dx)

=

∫
R

∞∑
m=0

Hm(x; Σ)

m!
(iξ)m

∞∑
n=0

anHn(x; Σ)µ(dx)

=

∞∑
n=0

an(iΣ)
nξn.

9



Comparing to the coefficients of the Taylor series of e
ξ2

2
ΣE[eiξZX] around 0 with respect to ξ, we

see that an can be written as (1.10).2

Here, we define ĝ1 = {ĝ1t; t ∈ R+} and Z⟨ξ⟩ = {Z⟨ξ⟩
t ; t ∈ R+} as the stochastic processes

ĝ1t =

∫ t

0
V̂ (X(0)

u , u)dWu

and

Z
⟨ξ⟩
t = exp

(
iξĝ1t +

ξ2

2
Σt

)
,

respectively.

Then, from Lemma 2, the conditional expectations appearing in the right hand side of the

equation (1.8) is expressed as

E[X k⃗δ |g1T = x] = E[X k⃗δ |ĝ1T = x− C]

=
∞∑
l=0

ak⃗δl
Σl
T

Hl(x− C,ΣT ) (1.11)

where

ak⃗δl =
1

l!

1

il
∂l

∂ξl
E[X k⃗δZ

⟨ξ⟩
T ]

∣∣∣∣
ξ=0

. (1.12)

Here it is noted that with this expression we now need to compute unconditional expectations

E[X k⃗δZ
⟨ξ⟩
T ] instead of the conditional expectations.

1.2.1 The Asymptotic Expansion of Density Function

In this subsection, we explain the new computational method through deriving a general formula

for the expansion (1.8) with an arbitrary specification of its order N . In particular, we show that

the coefficients in the expansion are obtained through a system of ordinary differential equations

that is solved easily.

First, we define η
d⃗β

l⃗β
(t; ξ) for l⃗β ∈ Ln,β and d⃗β ∈ {1, · · · , d}β (n ≥ β ≥ 1) as

η
d⃗β

l⃗β
(t; ξ) = E

 β∏
j=1

A
dj
ljt

Z
⟨ξ⟩
t

 , (1.13)

and for n = 0 as

η
(∅)
(∅)(t; ξ) = E

[
Z

⟨ξ⟩
t

]
. (1.14)
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Then, unconditional expectations E[X k⃗δZ
⟨ξ⟩
T ] appearing in the definition of ak⃗δl (1.12) can be

written in terms of η as follows:

E[X k⃗δZ
⟨ξ⟩
T ] = E

 δ∏
j=1

g(kj+1)T

Z
⟨ξ⟩
T



= E


 δ∏

j=1

(kj+1)∑
l⃗jβj

,d⃗jβj

1

βj !
∂
βj

d⃗jβj

g(X
(0)
T )A

dj1
lj1T

· · ·A
djβj

ljβj

Z
⟨ξ⟩
T


=

(k1+1)∑
l⃗1β1

,d⃗1β1

· · ·
(kδ+1)∑
l⃗δβδ

,d⃗δβδ

 δ∏
j=1

1

βj !
∂
βj

d⃗jβj

g(X
(0)
T )

 η
d⃗1β1

⊗···⊗d⃗δβδ
l⃗1β1

⊗···⊗l⃗δβδ

(T ; ξ)

(1.15)

where

d⃗iβi
⊗ d⃗jβj

:= (di1, · · · , diβi
, dj1, · · · , d

j
βj
),

l⃗iβi
⊗ l⃗jβj

:= (li1, · · · , liβi
, lj1, · · · , l

j
βj
).

So, we have to calculate η
d⃗β

l⃗β
(T ; ξ) to evaluate the asymptotic expansion (1.8).

In the following, we derive a system of ODEs satisfied by these {ηd⃗β
l⃗β
}. Before showing a

general result, we first derive the ODEs for few leading-low-order terms explicitly to give a better

intuition of a key idea of our method. Consider the evaluation of ηj(2)(T ; ξ) = E[Aj
2TZ

⟨ξ⟩
T ] which

appears in the ϵ-order. Here, for simplicity, we assume that V0 does not depend on ϵ, and write

V0(x, ϵ) as V0(x). First, applying Itô’s formula to Aj
2tZ

⟨ξ⟩
t , we have

d(Aj
2tZ

⟨ξ⟩
t ) = Aj

2tdZ
⟨ξ⟩
t + Z

⟨ξ⟩
t dAj

2t + d⟨Aj
2, Z

⟨ξ⟩⟩t

=

{
(iξ)

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t V̂ (X

(0)
t , t)∂j′V

j(X
(0)
t )′ +

d∑
j′=1

Aj′

2tZ
⟨ξ⟩
t ∂j′V

j
0 (X

(0)
t )

+
1

2

d∑
j′,k′=1

Aj′

1tA
k′
1tZ

⟨ξ⟩
t ∂j′∂k′V

j
0 (X

(0)
t )

}
dt

+

(iξ)Aj
2tZ

⟨ξ⟩
t V̂ (X

(0)
t , t) +

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t ∂j′V

j(X
(0)
t )

 dWt.

Since the last term is a martingale, taking expectation on both sides, we have the following

11



ordinary differential equation for ηj(2):

d

dt
ηj(2)(t; ξ) = (iξ)

d∑
j′=1

ηj
′

(1)(t; ξ)V̂ (X
(0)
t , t)∂j′V

j(X
(0)
t )′

+

d∑
j′=1

ηj
′

(2)(t; ξ)∂j′V
j
0 (X

(0)
t ) +

1

2

d∑
j′,k′=1

ηj
′,k′

(1,1)(t; ξ)∂j′∂k′V
j
0 (X

(0)
t ).

Here, ηj(1)(j = 1, · · · , d) appearing in the right hand side of the above ODE are evaluated in the

similar manner:

d(Aj
1tZ

⟨ξ⟩
t ) = Aj

1tdZ
⟨ξ⟩
t + Z

⟨ξ⟩
t dAj

1t + d⟨Aj
1, Z

⟨ξ⟩⟩t

=

(iξ)Z
⟨ξ⟩
t V̂ (X

(0)
t , t)V j(X

(0)
t )′ +

d∑
j′=1

Aj′

1tZ
⟨ξ⟩
t ∂j′V

j
0 (X

(0)
t )

 dt

+
{
(iξ)Aj

1tZ
⟨ξ⟩
t V̂ (X

(0)
t , t) + Z

⟨ξ⟩
t V j(X

(0)
t )
}
dWt,

hence, we have

d

dt
ηj(1)(t; ξ) = (iξ)V̂ (X

(0)
t , t)V j(X

(0)
t )′ +

d∑
j′=1

ηj
′

(1)(t; ξ)∂j′V
j
0 (X

(0)
t ).

ηj,k(1,1) and other higher-order terms can be evaluated in the same way. The key observation is

that each ODE does not involve any higher-order terms, and only lower- or the same order- terms

appear in the right hand side of the ODE. So, one can easily solve (analytically or numerically)

the system of ODEs and evaluate the expectations.

The following theorem provides a way to calculate general η
d⃗β

l⃗β
(T ; ξ) as a solution to the system

of the ordinary differential equations:

Theorem 2. For η
d⃗β

l⃗β
(t; ξ) defined in (1.13), the following system of ordinary differential equations

is satisfied:

d

dt

{
η
d⃗β

l⃗β
(t; ξ)

}
=

β∑
k=1

1

lk!

{
η
d⃗β/k

l⃗β/k
(t; ξ)

}{
∂lkϵ V

dk
0 (X

(0)
t , 0)

}

+

β∑
k=1

lk∑
l=1

(l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!

{
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)

}{
∂γ⃗̃
dγ
∂lk−l
ϵ V dk

0 (X
(0)
t , 0)

}

+

β∑
k,m=1

k<m

(lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!

{
η
(d⃗β/k,m)⊗ ⃗̃

dγ⊗ ⃗̂
dδ

(⃗lβ/k,m)⊗m⃗γ⊗m⃗δ
(t; ξ)

}{
∂γ⃗̃
dγ
V dk(X

(0)
t )

}{
∂δ⃗̂
dδ
V dm(X

(0)
t )

}

+ (iξ)

β∑
k=1

(lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!

{
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)

}{
∂γ⃗̃
dγ
V dk(X

(0)
t )

}
V̂ (X

(0)
t , t) (1.16)
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where

l⃗β/k := (l1, · · · , lk−1, lk+1, · · · , lβ)

l⃗β/k,n := (l1, · · · , lk−1, lk+1, · · · , ln−1, ln+1, · · · , lβ), 1 ≤ k < n ≤ β

l⃗β ⊗ m⃗γ := (l1, · · · , lβ,m1, · · · ,mγ)

for l⃗β = (l1, · · · , lβ) and m⃗γ = (m1, · · · ,mγ).

(Proof) First, Applying Itô’s formula to
(∏β

j=1A
dj
ljt

)
, we have

d

 β∏
j=1

A
dj
ljt

 =

β∑
k=1

 β∏
j=1

j ̸=k

A
dj
ljt

 dAdk
lkt

+

β∑
k,m=1

k<m

 β∏
j=1

j ̸=k,m

A
dj
ljt

 d⟨Adk
lk
, Adm

lm
⟩t

=

β∑
k=1

 β∏
j=1

j ̸=k

A
dj
ljt

 1

lk!
∂lkϵ V

dk
0 (X

(0)
t , 0)dt

+

β∑
k=1

lk∑
l=1

 β∏
j=1

j ̸=k

A
dj
ljt

 (l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ
d̃γ
∂lk−l
ϵ V dk

0 (X
(0)
t , 0)dt

+

β∑
k=1

 β∏
j=1

j ̸=k

A
dj
ljt

 (lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ
d̃γ
V dk(X

(0)
t )dWt

+

β∑
k,m=1

k<m

 β∏
j=1

j ̸=k,m

A
dj
ljt

 (lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!

×

 γ∏
j′=1

A
d̃j′
mj′ t

 ∂γ
d̃γ
V dk(X

(0)
t )

 δ∏
j′=1

A
d̂j′
mj′ t

 ∂δ
d̂δ
V dm(X

(0)
t )dt.

(1.17)

Note also that

dZ
⟨ξ⟩
t = (iξ)V̂ (X

(0)
t , t)Z

⟨ξ⟩
t dWt. (1.18)

Then, applying Itô’s formula again to
(∏β

j=1A
dj
ljt
Z

⟨ξ⟩
t

)
and taking expectations on both sides, we

obtain the result. 2

Remark 1. Due to the hierarchical structure of the ODEs with respect to n =
∑β

j=1 lj and

η
(∅)
(∅)(t; ξ) = E[Z

⟨ξ⟩
t ] = 1, one can easily solve these ODEs successively from lower-order terms to

higher-order terms with initial conditions η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ, d⃗β) ̸= (∅, ∅).
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Remark 2. Further, due to the structure of the system of the differential equations, it is easily

shown by induction that each η
d⃗β

l⃗β
(t; ξ) is expressed as a polynomial of degree n =

∑β
j=1 lj with

respect to (iξ). Then, we can also show that E[X k⃗δZ
⟨ξ⟩
T ] is a polynomial of degree (n + δ) with

respect to (iξ), and thus ak⃗δl = 0(l > n + δ) for k⃗δ ∈ Ln,δ. This ensures a convergence of the

infinite sum in (1.11).

Then, from Lemma 2 and (1.8), we have the following expression of E[Φ(G(ϵ))]:

E[Φ(G(ϵ))] =

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R
Φ(x)(−1)δ

dδ

dxδ

{
n+δ∑
l=0

ak⃗δl
Σl
T

Hl(x− C,ΣT )fg1T (x)

}
dx+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R
Φ(x)

{
n+δ∑
l=0

ak⃗δl
Σl+δ
T

Hl+δ(x− C,ΣT )fg1T (x)

}
dx+ o(ϵN )

Here we used the relation

dδ

dxδ
{Hl(x− C,ΣT )fg1T (x)} =

1

Σδ
T

Hl+δ(x− C,ΣT )fg1T (x).

In particular, let Φ be the delta function at x ∈ R, δx, we obtain the asymptotic expansion of

the density of G(ϵ):

fG(ϵ)(x) = E[δx(G
(ϵ))]

=
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!

n+δ∑
l=0

ak⃗δl
Σl+δ
T

Hl+δ(x− C,ΣT )fg1T (x) + o(ϵN ). (1.19)

We summarize the discussion above as the following theorem:

Theorem 3. The asymptotic expansion of the density function of G(ϵ) up to ϵN -order is given by

fG(ϵ)(x) = fg1T (x) +

N∑
n=1

ϵn

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x) + o(ϵN )

(1.20)

where

Cnm =
1

Σm
T

m∑
δ=1

∑
k⃗δ∈Ln,δ

(k1+1)∑
l⃗1β1

,d⃗1β1

· · ·
(kδ+1)∑
l⃗δβδ

,d⃗δβδ

1

δ!(m− δ)! δ∏
j=1

1

βj !
∂
βj

d⃗jβj

g(X
(0)
T )

 1

im−δ

∂m−δ

∂ξm−δ

{
η
d⃗1β1

⊗···⊗d⃗δβδ
l⃗1β1

⊗···⊗l⃗δβδ

(T ; ξ)

}∣∣∣∣
ξ=0

(1.21)

and η
d⃗β

l⃗β
(T ; ξ) are obtained as a solution to the system of ODEs given in Theorem 2.
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1.2.2 The Asymptotic Expansion of Option Prices

We apply the asymptotic expansion to option pricing. We consider a plain vanilla option on the

underlying asset g(X
(ϵ)
T ) whose dynamics is given by (1.1).

For example, an asymptotic expansion up to ϵ(N+1) of a call option price at time 0 with

maturity T and strike price K where K = X
(0)
T − ϵy for arbitrary y ∈ R is given by

Call(K,T ) = P (0, T )E[max(g(X
(ϵ)
T )−K, 0)]

= ϵP (0, T )

∫ ∞

−y
(x+ y)fG(ϵ),N (x)dx+ o(ϵ(N+1)). (1.22)

Here, P (0, T ) denotes the price at time 0 of a zero coupon bond with maturity T and fG(ϵ),N is

the asymptotic expansion of the density of G(ϵ) up to ϵN -order given by (1.20):

fG(ϵ),N (x) = fg1T (x) +

N∑
n=1

ϵn

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x)

Integrals appearing in the right hand side of (1.22) can be calculated by following formulas related

to the Hermite polynomials∫ ∞

−y
Hk(x; Σ)fg1T (x)dx = ΣHk−1(−y; Σ)fg1T (y) (k ≥ 1),∫ ∞

−y
xHk(x; Σ)fg1T (x)dx = −ΣyHk−1(−y; Σ)fg1T (y)

+Σ2Hk−2(−y; Σ)fg1T (y) (k ≥ 2).

1.2.3 Remarks on the Asymptotic Expansion for Multi-dimensional Density

Functions

In this section, we extend Lemma 1 in [35], which easily leads to the asymptotic expansion of a

multi-dimensional density function in the same manner as for the one dimensional case appearing

in the previous section. That is, we obtain the following result as an extension of Lemma 1 in

[35].

Let (Ω,F , P ) be a probability space. Suppose that X ∈ L2(Ω, P ) and Z⃗ is a d-dimensional

random variable with Gaussian distribution with mean 0⃗ and variance-covariance matrix Σ. Then,

the conditional expectation E[X|Z⃗ = x⃗] for x⃗ ∈ Rd has the following expansion in L2(Rd, µ⃗) where

µ⃗ is the Gaussian measure on Rd with mean 0⃗ and variance Σ:

E[X|Z⃗ = x⃗] =

∞∑
|n⃗|=0

an⃗!Hn⃗(x⃗ : Σ), (1.23)
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where n⃗ = (n1, n2, · · · , nd), |n⃗| = n1 + n2 + · · ·+ nd, n⃗! = n1!n2! · · ·nd! and

an⃗ =
1

n⃗

1

i|n⃗|
∂n⃗

∂ξ⃗

∣∣∣∣
ξ⃗=0⃗

{
e

1
2
ξ⃗⊤Σξ⃗E

[
eξ⃗

⊤Z⃗X
]}

. (1.24)

Here, Hn⃗(x⃗ : Σ) stands for the d-dimensional multiple Hermite polynomial of degree |n⃗| with

n⃗ = (n1, n2, · · · , nd):

Hn⃗(x⃗ : Σ) =
1

n[x⃗ : Σ]

(
− ∂

∂x1

)(
− ∂

∂x2

)
· · ·
(
− ∂

∂xd

)
n[x⃗ : Σ]; x⃗ = (x1, x2, · · · , xd) (1.25)

where

n[x⃗ : Σ] =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
x⃗⊤Σ−1x⃗

}
. (1.26)

Indeed, since the system of Hermite polynomials:

{Hn⃗(x⃗ : Σ) : n⃗ = (n1, n2, · · · , nd), ni = 0, 1, 2 · · · (i = 1, 2, · · · , d)}

is an orthogonal basis of L2(Rd, µ⃗), and E[X|Z⃗ = x⃗] ∈ L2(Rd, µ⃗), we have the following unique

expansion of E[X|Z⃗ = x⃗] in L2(Rd, µ⃗):

E[X|Z⃗ = x⃗] =

∞∑
|n⃗|=0

an⃗Hn⃗(x⃗ : Σ).

On the other hand, we know the relation:
∞∑

|⃗j|=0

(iξ⃗)j⃗

j⃗!
H̃j⃗(x⃗ : Σ) = eiξ⃗

⊤x⃗e
1
2
ξ⃗⊤Σξ⃗, (1.27)

and hence,

eξ⃗
⊤x⃗ = e−

1
2
ξ⃗⊤Σξ⃗

∞∑
|⃗j|=0

(iξ⃗)j⃗

j⃗!
H̃j⃗(x⃗ : Σ),

where

H̃n⃗(x⃗ : Σ) =
1

n[x⃗ : Σ]

(
− ∂

∂y1

)(
− ∂

∂y2

)
· · ·
(
− ∂

∂yd

)
n[x⃗ : Σ], (1.28)

y⃗ = (y1, y2, · · · , yd) = Σ−1x⃗.

Therefore,

e
1
2
ξ⃗⊤Σξ⃗E

[
eξ⃗

⊤Z⃗X
]

= e
1
2
ξ⃗⊤Σξ⃗E

[
eξ⃗

⊤Z⃗E
[
X|Z⃗ = x⃗

]]
=

∫
Rd


∞∑

|⃗j|=0

H̃n⃗(x⃗ : Σ)(iξ⃗)j⃗




∞∑
|n⃗|=0

an⃗Hn⃗(x⃗ : Σ)

µ(dx⃗) (1.29)

=
∞∑

|n⃗|=0

n⃗!an⃗i
|n⃗|ξ⃗n⃗; (ξ⃗n⃗ = ξn1

1 ξn2
2 · · · ξnd

d ), (1.30)

and making n⃗ = (n1, · · · , nd)-th order differentiation of both sides in the equation above with

respect to ξ⃗ = (ξ1, · · · , ξd) at ξ⃗ = 0⃗, we obtain (1.24) and hence the result, (1.23) - (1.26).
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Chapter 2

Applications and Extensions of the

Asymptotic Expansion Method

2.1 High-Order Asymptotic Expansions of Stochastic Volatility

Models

In this section, we test effectiveness of the asymptotic expansion method described in Chapter 1

through numerical examples. Also, we compare approximation accuracy of our method with that

of another existing approximation method.

2.1.1 An Asymptotic Expansion of the λ-SABR Model

To test efficiency of the expansion, we first consider a European plain-vanilla call and put prices

under the following λ-SABR model [14] (interest rate=0%) :

dS(ϵ)(t) = ϵσ(ϵ)(t)(S(ϵ)(t))βdW 1
t ,

dσ(ϵ)(t) = λ(θ − σ(ϵ)(t))dt+ ϵν1σ
(ϵ)(t)dW 1

t + ϵν2σ
(ϵ)(t)dW 2

t ,

S(ϵ)(0) = S0, σ(ϵ)(0) = σ0,

where ν1 = ρν，ν2 = (
√

1− ρ2)ν (an instantaneous correlation between S(ϵ) and σ(ϵ) is ρ ∈

[−1, 1]). Note that when λ = 0 the model becomes the original SABR model [9]. Rigorously

speaking, this model does not satisfy the regularity conditions since the coefficient function

V 1(σ, s) = σsβ is unbounded and has non-smooth derivatives at s = 0. However, as seen in

the following, our method is (formally) applicable to this model and gives better accuracies for

approximate prices in higher-order expansions for various ranges of strikes and parameters.
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To compute an option price on S(ϵ), we need the density function of S
(ϵ)
T whose asymptotic

expansion is given by (1.20) with setting g(S, σ) = S. The asymptotic expansion of the density

function is obtained by solving the system of the ordinary differential equations given in Theorem

2. For example, the corresponding differential equations up to the second order are given by

d

dt
ηS(1)(t; ξ) = (iξ)(S

(0)
t )2β(σ

(0)
t )2,

d

dt
ησ(1)(t; ξ) = (iξ)ν1(S

(0)
t )β(σ

(0)
t )2 − λησ(1)(t; ξ),

d

dt
ηS(2)(t; ξ) = (iξ)β(S

(0)
t )2β−1(σ

(0)
t )2ηS(1)(t; ξ) + (iξ)(S

(0)
t )2βσ

(0)
t ησ(1)(t; ξ),

where S
(0)
t = S0 and σ

(0)
t = e−λt(σ0 − θ) + θ. Since these equations are linear and have the

hierarchical structure, one can easily integrate them as

ηS(1)(t; ξ) = (iξ)

∫ t

0
(S

(0)
t1

)2β(σ
(0)
t1

)2dt1,

ησ(1)(t; ξ) = (iξ)

∫ t

0
e−λ(t−t1)ν1(S

(0)
t1

)β(σ
(0)
t1

)2dt1,

ηS(2)(t; ξ) = (iξ)2
∫ t

0

∫ t1

0
β(S

(0)
t1

)2β−1(σ
(0)
t1

)2(S
(0)
t2

)2β(σ
(0)
t2

)2dt2dt1

+(iξ)2
∫ t

0

∫ t1

0
e−λ(t1−t2)(S

(0)
t1

)2βσ
(0)
t1
ν1(S

(0)
t2

)β(σ
(0)
t2

)2dt2dt1.

Integrals appearing in the right hand side are analytically evaluated, which is omitted due to the

limitation of the space (they are available upon request).

Then, from Theorem 3 the asymptotic expansion of the density function of G(ϵ) =
S
(ϵ)
T −S

(0)
T

ϵ

can be expressed as

fG(ϵ)(x) ∼ fg1T (x) + ϵC13H3(x; ΣT )fg1T (x) + · · · (2.1)

where

fg1T (x) =
1√

2πΣT
exp

(
− x2

2ΣT

)
with

ΣT =

∫ T

0
(S

(0)
t )2β(σ

(0)
t )2dt

and

C13 =
1

Σ3
T

∫ T

0

∫ t1

0
β(S

(0)
t1

)2β−1(σ
(0)
t1

)2(S
(0)
t2

)2β(σ
(0)
t2

)2dt2dt1

+
1

Σ3
T

∫ T

0

∫ t1

0
e−λ(t1−t2)(S

(0)
t1

)2βσ
(0)
t1
ν1(S

(0)
t2

)β(σ
(0)
t2

)2dt2dt1.
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Note also that C13 is calculated in closed form; the expression is omitted, which is available upon

request. Moreover, by a similar calculation to that in Section 3.2, an approximate price of a call

option on S(ϵ) at time 0 with maturity T and strike K = S
(0)
T − ϵy up to ϵ2-order is given by

C(K,T ) = ϵP (0, T )

(
ΣT fg1T (y) + yN

(
y√
ΣT

))
−ϵ2P (0, T )C13Σ

2
T yfg1T (y) + o(ϵ2) (2.2)

whereN(·) is a cumulative distribution function of the standard normal distribution. Higher-order

asymptotic expansions can be calculated in a similar manner.

2.1.2 Numerical Example: λ = 0 (SABR case)

First, we consider European plain-vanilla call and put prices under the original SABR case (λ = 0

in the λ-SABR model). We calculate approximated prices by the asymptotic expansion method

up to the fifth order. Note that all the solutions to the differential equations are obtained in

closed form. Thus, the computation is very fast(e.g. the computation time is within 10−5 ∼ 10−6

second for the fifth-order expansion). We also calculate approximated prices by Hagan et al.[9]

to compare accuracy of its approximation with ours. Benchmark values are computed by Monte

Carlo simulations. In the simulations for the benchmark values, we use Euler-Maruyama scheme

as a discretization scheme with 1024 time steps, and generate 108 paths in each simulation. ϵ is

set to be one and other parameters used in the test are given in Table 2.1.

Table 2.1: Parameters used in the SABR (λ = 0) case

Parameter S(0) β σ(0) ν ρ T

i 100 0.5 3.0 0.3 -0.7 10

Results are in Table 2.3 and Figure 2.1. From the results, we can see that the higher-order

asymptotic expansion almost always improves accuracy of the approximation by the lower ones.

While sometimes the third-order approximation does not perform well, particularly in OTM

options, the fifth-order one approximates the prices almost perfectly in these settings. This

strongly supports importance of computing high-order terms, and hence of our method. We also

see the fifth-order expansion has equal or smaller approximation errors than Hagan et al.[9]’s

formula. Moreover, as seen in the next example, the asymptotic expansion method can be easily

extend to the λ-SABR (λ ̸= 0) case.
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2.1.3 Numerical Example: λ ̸= 0

Next, we consider the European option prices under the λ-SABR model with λ ̸= 0. Parameters

used in the test are given in Table 2.2 (and ϵ = 1 as well as in the previous examples).

Table 2.2: Parameters used in the λ-SABR (λ ̸= 0) case

Parameter S(0) β σ(0) λ θ ν ρ T

ii 100 0.5 3.0 0.1 3.0 0.3 -0.7 10

iii 100 1.0 0.3 0.1 0.3 0.3 -0.7 10

We calculate approximated prices by the asymptotic expansion method up to the fifth order.

Note that all the solutions to the differential equations are obtained analytically. Further, for

the case of β = 1 in the λ-SABR model (case iii), we can also apply the log-normal asymptotic

expansion method given in Section 2.3. This gives the slightly different approximation formula

from that with the normal asymptotic expansion method. Note also that the system of ODEs

appearing in the log-normal expansion formula are solved analytically as in the normal asymptotic

expansion case. We calculate approximated prices by the log-normal asymptotic expansion up to

the forth order. We also calculate option prices by Hagan et al.[9]’s formula by setting λ = 0 in

the model which can be thought as the SABR approximation to the λ-SABR model. Benchmark

prices are computed by Monte Carlo simulations with Euler-Maruyama discretization scheme with

1024 time steps, and we generate 108 paths in each simulation.

Results for the normal asymptotic expansion are in Table 2.3 and Figure 2.2 and 2.3, and

results for the log-normal expansion for case iii are in Table 2.4 and Figure 2.4. Note that the

0th-order log-normal expansion (indicated by ‘LogNormal’ in Table 4 and Figure 4) gives a simple

log-normal approximation of the model.

From the results, in each case, as well as the examples in the original SABR model the higher-

order expansion or log-normal expansion almost always improve accuracy of the approximation

by the lower-order expansions. On the other hand, a naive application of Hagan et al.[9]’s formula

to λ-SABR model(λ ̸= 0) seems to fail to capture the underlying distribution and the resulting

option prices. This might be caused by the fact that it cannot be directly applied to the λ-

SABR setting while our method is applicable to a general setting in the unified manner. Further,

unlike Hagan et al.[9]’s one whose high-order expansions are difficult to calculate, our method

easily provides us the approximation with an arbitrary-high order as we have already seen. These

results support flexibility of ours in financial practice.

In addition, for SABR and λ-SABR models we compare computation times of our method
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with the ones of the method by Hagan et al. [9]. As the computation times of both methods are

very fast (10−5 ∼ 10−6 second per option), we implement 10,000 times calculations of 20 options

with different strike prices for comparison. Then, the computation times are of the same order for

both methods: the ratios of the times based on our method relative to the ones by Hagan et al.[9]

are approximately 0.3 ∼ 1.6 for the cases in which both methods achieve the similar accuracies.
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2.2 Pricing Average Options under Stochastic Volatility

This section applies the high-order expansion scheme to pricing average options.

In particular, we describe the method using numerical examples under the λ-SABR and SABR

models.

2.2.1 Average Options under λ-SABR and SABR Models

We consider the average European call and put options under the λ-SABR model ([14]) with

interest rate=0% for simplicity. In particular, when λ = 0 the model becomes the SABR model.

Further, we define

S
(ϵ)
A (t) =

∫ t

0
S(ϵ)(u)du.

Then, the average European call option price with strike K and maturity T can be written as

C
(ϵ)
A (K,T ) = E

[
max

{
1

T
S
(ϵ)
A (T )−K, 0

}]
.

Thus, if we consider the following three-dimensional diffusion process, we can easily see that it is

a special case of (1.1) and the general method can be applied:

dS
(ϵ)
A (t) = S(ϵ)(t)dt,

dS(ϵ)(t) = ϵσ(ϵ)(t)(S(ϵ)(t))βdW 1
t ,

dσ(ϵ)(t) = λ(θ − σ(ϵ)(t))dt+ ϵν1σ
(ϵ)(t)dW 1

t + ϵν2σ
(ϵ)(t)dW 2

t (2.3)

with S
(ϵ)
A (0) = 0, S(ϵ)(0) = S0 and σ(ϵ)(0) = σ.

The corresponding differential equations up to the second order are given by

d

dt
ηS1,1(t; ξ) = (iξ)(S

(0)
t )βσ

(0)
t V̂ (t),

d

dt
ησ1,1(t; ξ) = (iξ)ν1σ

(0)
t V̂ (t)− λησ1,1(t; ξ),

d

dt
ηSA
2,1(t; ξ) = ηS2,1(t; ξ),

d

dt
ηS2,1(t; ξ) = 2(iξ)β(S

(0)
t )β−1σ

(0)
t V̂ (t)ηS1,1(t; ξ) + 2(iξ)(S

(0)
t )βV̂ (t)ησ1,1(t; ξ),

where S
(0)
t = S0, σ

(0)
t = e−λt(σ − θ) + θ and

V̂ (t) = (T − t)(S
(0)
t )βσ

(0)
t .

Then, the asymptotic expansion of the density function of G̃(ϵ) = SAT
(ϵ)−SAT

(0)

ϵ can be obtained

as

fG̃(ϵ)(x) ≈ fg1T (x) + ϵC̃13H3(x; Σ̃T )fg1T (x) + · · · (2.4)
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where

fg1T (x) =
1√
2πΣ̃T

exp

(
− x2

2Σ̃T

)
with

Σ̃T =

∫ T

0
V̂ (t)2dt

and

C̃13 =
1

Σ̃3
T

∫ T

0

∫ t1

0

∫ t2

0
β(S

(0)
t2

)β−1σ
(0)
t2
V̂ (t2)(S

(0)
t3

)βσ
(0)
t3
V̂ (t3)dt3dt2dt1

+
1

Σ̃3
T

∫ T

0

∫ t1

0

∫ t2

0
e−λ(t2−t3)(S

(0)
t2

)βV̂ (t2)ν1σ
(0)
t3
V̂ (t3)dt3dt2dt1.

As in the plain vanilla case described in the previous section, integrals appeared in the coefficients

of the expansion can be analytically evaluated, but the expressions are lengthy and hence omit-

ted. Moreover, by a similar calculation to the previous case, we have the following closed-form

approximation formula for the average European call option up to ϵ2:

C
(ϵ)
A (K,T ) = ϵP (0, T )

(
Σ̃T

T
fg1T (y) +

y

T
N

(
y√
Σ̃T

))

−ϵ2P (0, T )
C̃13Σ̃

2
T y

T
fg1T (y) + o(ϵ2), (2.5)

where y = TS0−TK
ϵ and P (0, T ) denotes the price at time 0 of a zero coupon bond with maturity

T .

2.2.2 Numerical Examples

This subsection provides some numerical examples of our asymptotic expansion method for pricing

average options under the λ-SABR and SABR models to see the effectiveness of the higher order

asymptotic expansions. Further, as a special case of the SABR model, we apply our method to

the constant volatility case (Black-Scholes model) and compare approximation accuracies of our

method with those of other approximation methods.

Constant Volatility Case

First, we apply our method to the constant volatility case (the Black-Scholes model) which is

obtained by setting λ = νi = 0(i = 1, 2) and β = 1 in (2.3). Then, the asymptotic expansion of

the density function (2.4) can be simplified as

fBS
G̃(ϵ)(x) ≈ fBS

g1T
(x) + ϵC̃BS

13 H3(x; Σ̃
BS
T )fBS

g1T
(x) + · · · ,
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where

fBS
g1T

(x) =
1√

2πΣ̃BS
T

exp

(
− x2

2Σ̃BS
T

)

with

Σ̃BS
T =

∫ T

0
(T − t)2σ2S2

0dt =
1

3
σ2S2

0T
3,

C̃BS
13 =

1

(Σ̃BS
T )3

∫ T

0

∫ t1

0

∫ t2

0
(T − t2)(T − t3)σ

4S3
0dt3dt2dt1 =

1

5
σ2S0T

2. (2.6)

A closed-form approximation formula to the average European call option under the Black-Scholes

model can be obtained by replacing Σ̃T and C̃13 by Σ̃BS
T and C̃BS

13 respectively in (2.5).

In the Black-Scholes case, unlike the stochastic volatility cases, there are several approxima-

tion methods for pricing an average option. Here we compare approximation accuracies of our

asymptotic expansion method with those of these existing methods.

We consider the average European call option under the Black-Scholes model. We calculate

approximated prices of average options by the asymptotic expansion method up to the fifth order

and we also calculate approximated prices by the moment matching method given by Levy[16]

and by the lower bound for average options given by Nielsen and Sandmann[21].

In the numerical examples, ϵ is set to be one and other parameters are given in Table 2.5.

Table 2.5: Parameters for the Black-Scholes Models

Case S(0) σ T

i 100 0.3 1

ii 100 0.3 2

iii 100 0.5 2

Benchmark values are computed by Monte Carlo simulations. We use the second order scheme

given by Ninomiya-Victoir[22] as a discretization scheme with 128 time steps for case i, and with

256 time steps for case ii and iii respectively. We adopt Mersenne-twister as a random number

generating engine, and generate 5 × 107 paths with antithetic sampling in each simulation. We

calculate the lower bound given by Nielsen and Sandmann with 1024 time steps.

Benchmark prices by Monte Carlo simulations and their standard errors are given in Table

2.6. Also, approximation errors of the moment matching method(Levy), the lower bound given

by Nielsen and Sandmann(N-S) and of our asymptotic expansions are reported in Table 2.6.

From the results above, asymptotic expansions almost always improve the accuracy of the

approximation as the order of expansion increases and the forth or fifth order asymptotic expansion
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Table 2.6: Approximation errors for average call options under Black-Scholes model.

Levy N-S A.E.(Difference)

Case Strike(C/P) MC(s.e.) (Diff.) (Diff.) 1st 2nd 3rd 4th 5th

i 70 Call 30.081 (0.002) 0.026 -0.001 0.212 -0.065 -0.007 0.001 0.000

90 Call 12.667 (0.001) 0.082 0.001 0.363 0.012 -0.002 -0.001 -0.001

100 Call 6.896 (0.001) 0.031 0.003 0.014 0.014 -0.001 -0.001 -0.001

110 Call 3.367 (0.001) -0.031 0.002 -0.336 0.015 0.000 -0.001 -0.001

130 Call 0.622 (0.000) -0.054 -0.001 -0.329 -0.051 0.008 0.000 -0.001

ii 70 Call 30.555 (0.002) 0.126 -0.002 0.751 -0.080 -0.026 -0.002 0.001

90 Call 14.993 (0.002) 0.169 0.003 0.582 0.043 -0.001 0.002 0.002

100 Call 9.729 (0.002) 0.092 0.005 0.043 0.043 0.001 0.001 0.002

110 Call 6.067 (0.001) 0.000 0.004 -0.491 0.048 0.004 0.001 0.002

130 Call 2.168 (0.001) -0.103 -0.001 -0.862 -0.031 0.022 -0.002 0.001

iii 70 Call 33.179 (0.004) 0.568 -0.016 2.319 0.081 -0.063 -0.006 0.002

90 Call 20.639 (0.004) 0.536 -0.006 1.134 0.186 -0.014 0.000 0.003

100 Call 16.095 (0.003) 0.415 -0.003 0.192 0.192 0.000 0.000 0.003

110 Call 12.509 (0.003) 0.271 -0.003 -0.736 0.212 0.013 -0.001 0.002

130 Call 7.542 (0.002) 0.008 -0.008 -2.045 0.193 0.050 -0.006 0.002

have smaller or equal approximation errors to those of other methods. Further, as seen in the

next subsection, our method can be extended in the same framework to the stochastic volatility

case where these other methods cannot be applied.

Stochastic Volatility Case

Next, we consider the stochastic volatility case such as λ-SABR/SABR model described in (2.3).

In the following numerical example, approximated prices by the asymptotic expansion method

are calculated up to the fourth order for the λ-SABR model and up to the fifth order for the SABR

model respectively. Note that all the solutions to differential equations are obtained analytically.

Benchmark values are computed by Monte Carlo simulations. ϵ is set to be one and other param-

eters used in the test are given in Table 2.7 for the λ-SABR case (i, ii and iii) and the SABR case

(iv, v and vi).
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Table 2.7: Parameters for the λ-SABR models

Case S(0) β σ(0) λ θ ν ρ T

i 100 1.0 0.3 1.0 0.3 0.3 -0.5 1

ii 100 1.0 0.3 1.0 0.3 0.6 -0.5 1

iii 100 1.0 0.3 1.0 0.3 0.3 -0.5 2

iv 100 1.0 0.5 0 - 0.5 -0.5 1

v 100 0.5 3.0 0 - 0.3 -0.5 1

vi 100 1.0 0.5 0 - 0.5 -0.5 2

In Monte Carlo simulations for benchmark values, we use Euler-Maruyama scheme as a dis-

cretization scheme with extrapolation method with 256 and 512 time steps for case i, ii, iv, v

and with 512 and 1024 time steps for case iii and vi respectively. In each simulation, we generate

5× 107 paths with antithetic sampling.

Results are in Table 2.8 for the λ-SABR case and in Table 2.9 for the SABR case respectively.

Since the solution to the system of ordinary differential equations is solved analytically, computing

time for the asymptotic expansions is less than 10−3 seconds which is much shorter than that for

the Monte Carlo simulations.

From the results above, in each case the higher order asymptotic expansion almost always

improves the accuracy of approximation by the lower expansions. In particular, the higher order

asymptotic expansions effectively approximate the prices in long-term cases or high-volatility of

volatility (ν) cases in which the lower order asymptotic expansions can not approximate the prices

well.

Finally, we remark that in the asymptotic expansion method the approximate density func-

tions are expressed as a product of polynomials and the Gaussian density function: Because these

polynomial-based approximation functions have wavy forms, higher order approximation some-

times provides worse approximation to the density at particular values (and to the option prices

at particular strikes) than lower ones as seen in Table 12 and 13. However, on average absolute

differences decrease as higher order correction terms are included.

2.3 A Log-Normal Asymptotic Expansion and its Family

In this section, we develop a slightly different expansion from the usual asymptotic expansion.
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Table 2.8: Asymptotic expansions for average options under the λ-SABR model up to the fourth

order

A.E.(Difference)

Case Strike(C/P) MC 1st 2nd 3rd 4th

i 50 Put 0.000 (0.000) 0.009 -0.010 0.003 -0.001

80 Put 0.804 (0.000) 0.261 0.011 0.004 0.003

100 Call 6.873 (0.001) 0.036 0.036 0.005 0.005

120 Call 1.306 (0.000) -0.240 0.010 0.004 0.005

150 Call 0.046 (0.000) -0.036 -0.017 -0.004 0.000

ii 50 Put 0.005 (0.000) 0.005 -0.001 0.007 -0.001

80 Put 0.988 (0.000) 0.078 0.002 0.030 0.007

100 Call 6.886 (0.001) 0.024 0.024 0.007 0.007

120 Call 1.183 (0.000) -0.117 -0.042 -0.014 0.009

150 Call 0.035 (0.000) -0.025 -0.020 -0.012 -0.004

iii 50 Put 0.024 (0.000) 0.162 -0.076 -0.001 0.001

80 Put 2.251 (0.001) 0.609 0.060 0.004 0.003

100 Call 9.685 (0.002) 0.088 0.088 0.001 0.001

120 Call 3.348 (0.001) -0.488 0.061 0.005 0.006

150 Call 0.495 (0.000) -0.309 -0.071 0.004 0.002

2.3.1 A Log-Normal Asymptotic Expansion for Stochastic Volatility Models

Suppose that an underlying one-dimensional asset process S(ϵ) and d-dimensional stochastic pro-

cess X(ϵ) follow

dS
(ϵ)
t = g(X

(ϵ)
t )S

(ϵ)
t σ̄dWt; S

(ϵ)
0 = s0,

dX
(ϵ)
t = V0(X

(ϵ)
t , ϵ)dt+ ϵV (X

(ϵ)
t )dWt; X

(ϵ)
0 = x0 ∈ Rd

respectively, where g:Rd → R and σ̄ is a constant vector in Rr. First, let we define X̂(ϵ) as

X̂
(ϵ)
t = log

(
S
(ϵ)
t

s0

)
.

Then, we have

X̂
(ϵ)
t = −|σ̄|2

2

∫ t

0
g(X(ϵ)

u )2du+

∫ t

0
g(X(ϵ)

u )σ̄dWu,

30



Table 2.9: Asymptotic expansions for average options under the SABR model up to the fifth order

A.E.(Difference)

Case Strike(C/P) MC(s.e.) 1st 2nd 3rd 4th 5th

iv 50 Put 0.137 (0.000) 0.351 -0.034 0.027 -0.014 -0.012

80 Put 3.496 (0.001) 0.679 0.136 0.038 0.014 0.002

100 Call 11.359 (0.002) 0.158 0.158 0.020 0.020 0.007

120 Call 4.623 (0.001) -0.448 0.096 -0.001 0.023 0.011

150 Call 0.964 (0.001) -0.476 -0.091 -0.029 0.013 0.015

v 50 Put 0.008 (0.000) 0.002 0.002 0.003 0.001 0.000

80 Put 1.054 (0.000) 0.012 0.012 0.013 0.005 0.004

100 Call 6.897 (0.001) 0.013 0.013 0.007 0.007 0.006

120 Call 1.070 (0.000) -0.004 -0.004 -0.003 0.005 0.003

150 Call 0.012 (0.000) -0.002 -0.002 -0.002 0.000 -0.000

vi 50 Put 0.854 (0.000) 1.324 0.170 0.132 -0.020 -0.067

80 Put 6.883 (0.001) 1.321 0.454 0.120 0.049 -0.020

100 Call 15.824 (0.003) 0.463 0.463 0.073 0.073 0.002

120 Call 8.713 (0.002) -0.509 0.357 0.023 0.093 0.024

150 Call 3.339 (0.001) -1.162 -0.008 -0.046 0.106 0.060

and note that

X̂
(0)
T ∼ N(µ̂T , Σ̂T ),

where

µ̂T = −|σ̄|2

2

∫ T

0
g(X(0)

u )2du = −1

2
Σ̂T ,

Σ̂T = |σ̄|2
∫ T

0
g(X(0)

u )2du.

Moreover, an asymptotic expansion of X̂
(ϵ)
T up to ϵN -order is expressed as

X̂
(ϵ)
T = X̂

(0)
T +

N∑
n=1

ϵnÂnT + o(ϵN ),

where Ânt =
1
n!

∂nX̂
(ϵ)
t

∂ϵn |ϵ=0. Note that S
(ϵ)
T is now expanded around a log-normal distribution since

X̂
(0)
T has the Gaussian distribution (hereafter we call this expansion ‘the log-normal asymptotic
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expansion’ of S
(ϵ)
T in contrast to calling the usual asymptotic expansion ‘the normal asymptotic

expansion’).

Next, define Z⟨ξ⟩ = {Z⟨ξ⟩
t ; t ∈ R+} as

Z
⟨ξ⟩
t = exp

(
iξ

∫ t

0
g(X(0)

u )σ̄dWu

)
.

Then, the result in the usual asymptotic expansion case is applied to deriving the density function

of X̂
(ϵ)
T with replacement of G(ϵ) by X̂

(ϵ)
T .

Similar to the normal case, the log-normal asymptotic expansion of the price of the call option

on X̂
(ϵ)
T is given by

Call(K,T ) = P (0, T )

∫ ∞

log K
s0

(s0e
x −K)f

X̂
(ϵ)
T

(x)dx.

2.3.2 An Asymptotic Expansion around the Shifted Log-Normal

In this subsection, we derive an approximation formula to the option price in the shifted log-

normal model with stochastic volatility:

dS
(ϵ)
t

S
(ϵ)
t + α

= h(X
(ϵ)
t )dt+ g(X

(ϵ)
t )dWt (2.7)

dX
(ϵ),i
t = V i

0 (X
(ϵ)
t , ϵ)dt+ ϵV i(X

(ϵ)
t )dWt (i = 1, · · · , N)

S
(ϵ)
0 = S0 ∈ R, X

(ϵ)
0 = X0 ∈ RN

First, we consider the change of variable:

F
(ϵ)
t = S

(ϵ)
t + α.

Then,

dF
(ϵ)
t = h(X

(ϵ)
t )F

(ϵ)
t dt+ g(X

(ϵ)
t )F

(ϵ)
t dWt; F

(ϵ)
0 = S0 + α.

Thus, F
(ϵ)
t is a log-normal type diffusion with stochastic volatilities and the usual log-normal

asymptotic expansion introduced in previous subsection can be applied.

Further, the price of the call option on S(ϵ) with strike K and maturity T , Cα(K,T ) can be

written as

Cα(K,T ) = P (0, T )E
[
(S

(ϵ)
T −K)+

]
= P (0, T )E

[
((S

(ϵ)
T + α)− (K + α))+

]
= P (0, T )E

[
(F

(ϵ)
T − (K + α))+

]
.

32



Thus, the approximation formula of the call option price is given by

Cα(K,T ) = P (0, T )

∫ ∞

log K+α
S0+α

((S0 + α)ex − (K + α))f
X̂

(ϵ)
T

(x)dx (2.8)

where f
X̂

(ϵ)
T

is an asymptotic expansion of density of X̂
(ϵ)
T :=

F
(ϵ)
T

S0+α which is calculated in a similar

way as in the previous subsection. Note that, since S(0) is a shifted log-normal process (displaced-

diffusion), this gives an asymptotic expansion around a shifted log-normal process.

2.3.3 An Asymptotic Expansion around the Jump Diffusion

In this subsection, we apply the log-normal asymptotic expansion developed in previous subsec-

tions to the jump-diffusion stochastic volatility models where the underlying process S(ϵ) is the

solution to the following stochastic differential equation with jumps:

dS
(ϵ)
t

S
(ϵ)
t−

=
(
h(X

(ϵ)
t )− λm

)
dt+ g(X

(ϵ)
t )dWt + (eYt − 1)dNt (2.9)

dX
(ϵ),i
t = V i

0 (X
(ϵ)
t , ϵ)dt+ ϵV i(X

(ϵ)
t )dWt (i = 1, · · · , N)

S
(ϵ)
0 = S0 ∈ R, X

(ϵ)
0 = X0 ∈ RN

where Nt is a counting Poisson process with intensity λ, {Yt} are i.i.d. Gaussian random variables

with mean µ and variance δ2, and define m = E[eYt −1] = eµ+
1
2
δ2 −1. Note that Wt, Nt and {Yt}

are mutually independent.

Define X̂
(ϵ)
t := log

S
(ϵ)
t
S0

, then,

X̂
(ϵ)
t =

∫ t

0

(
h(X(ϵ)

s )− 1

2
∥g(X(ϵ)

s )∥2 − λm

)
ds+

∫ t

0
g(X(ϵ)

s )dWs +

Nt∑
i=1

Yi, (2.10)

and define a continuous part of X̂
(ϵ)
t denoted by X̂

(ϵ),c
t as

X̂
(ϵ),c
t =

∫ t

0

(
h(X(ϵ)

s )− 1

2
∥g(X(ϵ)

s )∥2
)
ds+

∫ t

0
g(X(ϵ)

s )dWs. (2.11)

Note that, we can apply the log-normal asymptotic expansion in the previous subsection to X̂
(ϵ),c
T ,

and obtain the approximation formula to the characteristic function of it:

ϕ
X̂

(ϵ),c
T

(ξ) =

{
1 + ϵ

3∑
l=1

C1l(iξ)
l + ϵ2

6∑
l=1

C2l(iξ)
l + · · ·

}
exp{iξµ̂T − 1

2
ξ2Σ̂T }

(2.12)

where

µ̂T =

∫ T

0

(
h(X

(0)
t )− 1

2
∥g(X(0)

t )∥2
)
dt,

Σ̂T =

∫ T

0
∥g(X(0)

t )∥2dt,
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and the coefficients C1l, C2l, · · · are obtained from the solutions to the differential equations.

Moreover, since Nt and {Yi} are independent of W , and {Yi} are i.i.d. normal random vari-

ables, the characteristic function of X̂
(ϵ)
T can be written as

ϕ
X̂

(ϵ)
T

(ξ) = E
[
exp{(iξ)X̂(ϵ)

T }
]

= E

[
exp

{
(iξ)

(
X̂

(ϵ),c
T − λmT +

NT∑
i=1

Yi

)}]
= e−iξλmTϕ

X̂
(ϵ),c
T

(ξ)E
[
(E[exp{(iξ)Y1}])NT

]
=

∞∑
n=0

e−λT (λT )n

n!
e−iξλmTϕ

X̂
(ϵ),c
T

(ξ)eiξnµ−
n
2
ξ2δ2

=

∞∑
n=0

e−λT (λT )n

n!

{
1 + ϵ

3∑
l=1

C1l(iξ)
l + ϵ2

6∑
l=1

C2l(iξ)
l + · · ·

}

× exp{iξµn − 1

2
ξ2Σn}

(2.13)

where

µn = µ̂T − λmT + nµ,

Σn = Σ̂T + nδ2.

Then, applying the inverse Fourier transformation to ϕ
X̂

(ϵ)
T

, we have the following series expression

of the asymptotic expansion of the density function of X̂
(ϵ)
T :

f
X̂

(ϵ)
T

(x) =

∞∑
n=0

e−λT (λT )n

n!

{
1 + ϵ

3∑
l=1

C1l

Σl
n

Hl(x− µn; Σn) + ϵ2
6∑

l=1

C2l

Σl
n

Hl(x− µn; Σn) + · · ·

}
×n(x− µn; Σn)

(2.14)

An approximation formula to a option price can be obtained from the approximation of the

density above. Note that the first term of an approximation of the option price corresponds to

the Merton’s formula for the jump-diffusion process with a deterministic volatility function.

Remark 3. The asymptotic expansion around jump-diffusion explained above can be applied to the

shifted log-normal model with jumps where S(ϵ) is given by the solution to the following stochastic

differential equation:

dS
(ϵ)
t

S
(ϵ)
t− + α

=
(
h(X

(ϵ)
t )− λm

)
dt+ g(X

(ϵ)
t )dWt + (eYt − 1)dNt. (2.15)
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In this case, as in the previous subsection, an asymptotic expansion around the jump-diffusion

shifted log-normal model can be obtained by replacing X̂
(ϵ)
t = log

S
(ϵ)
t
S0

with X̂
(ϵ)
t = log

S
(ϵ)
t +α
S0+α in the

asymptotic expansion of jump-diffusion.

2.3.4 Numerical Examples

Shifted Log-Normal λ-SABR Model

Next, we consider the following shifted log-normal λ-SABR model:

dS(t) = σ(t)(S(t) + α)dW 1
t ,

dσ(t) = λ(θ − σ(t))dt+ ν1σ(t)dW
1
t + ν2σ(t)dW

2
t ,

where α is a shift parameter and assume that (S0 + α) > 0.

Then, we can apply the shifted log-normal asymptotic expansion method introduced in the

previous section. Parameter sets for the tests are given in Table 2.10, and the approximate prices

and their errors are given in Table 2.11.

Table 2.10: Parameter sets for Shifted Log-Normal λ-SABR model

Parameter S(0) α/S(0) σ(0) λ θ ν ρ T

iv 100 1.00 0.15 0.1 0.3 0.15 -0.7 10

v 100 1.00 0.15 0.1 0.3 0.15 0.0 10

vi 100 0.33 0.23 0.1 0.3 0.23 0.0 10
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Stochastic Volatility Model with Jumps

We consider the European plain-vanilla call and put option prices under the following jump-

diffusion stochastic volatility model:

dS(ϵ)(t) = −ηmS(ϵ)(t−)dt+ ϵσ(ϵ)(t)S(ϵ)(t−)dW 1
t + S(ϵ)(t−)(eYt − 1)dNt,

dσ(ϵ)(t) = λ(θ − σ(ϵ)(t))dt+ ϵν1σ
(ϵ)(t)dW 1

t + ϵν2σ
(ϵ)(t)dW 2

t ,

where W = (W 1,W 2) is a 2-dimensional standard Wiener process, N is compound Poisson

process with intensity η, {Yt} are i.i.d. Gaussian random variables with mean µ, variance δ2 and

m := E[eY − 1] = eµ+
δ2

2 − 1.

Note that, the log price of the underlying asset, denoted by X̂(ϵ)(t) = log S(ϵ)(t)
S0

is expressed

as

X̂(ϵ)(t) =

∫ t

0

(
−1

2
σ(ϵ)(s)2 − ηm

)
ds+

∫ t

0
σ(ϵ)(s)dWs +

Nt∑
i=1

Yi.

The parameters for the test is given in Table 2.12.

Table 2.12: Parameter sets for the Jump-Diffusion Stochastic Volatility model

case S(0) σ(0) λ θ ν ρ η m δ T

i 100 0.3 0.1 0.3 0.3 -0.7 1.0 0.0 0.3 1

ii 100 0.3 0.1 0.3 0.3 -0.7 0.5 0.0 0.5 1

iii 100 0.3 0.1 0.3 0.3 -0.7 1.0 0.0 0.3 5

In Monte Carlo simulations for the benchmark values, we first simulate the continuous part

of X̂ discretized by Euler-Maruyama scheme with time steps 512 in case i and ii and 1024 in case

iii, and combine X̂ with the independently generated NT and Yts to generate ST .

Results for the numerical experiments are given in Table 2.13.
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2.4 An Asymptotic Expansion Method with Change of Variables

This section presents an extension of a general computational scheme of an asymptotic expan-

sion described in Chapter 1. In particular, through change of variable technique as well as the

various ways of setting perturbation parameters in an expansion, we provide flexibility of setting

the benchmark distribution around which the expansion is made and an automatic way for com-

putation up to an arbitrary order in the expansion. We also show some concrete examples with

numerical experiment. This section is based on the paper [36].

2.4.1 A Framework

We consider a d-dimensional diffusion process Xt = (X1
t , · · · , Xd

t ) which is the solution to the

following stochastic differential equation:

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 1, · · · , d) (2.16)

X0 = x0 ∈ Rd

where W = (W 1, · · · ,W r) is an r-dimensional standard Wiener process; V j
0 : Rd 7→ R and

V j : Rd 7→ Rd are smooth functions with bounded derivatives of all orders.

Next, let C : Rd 7→ Rd be a C2-function which has the unique inverse function, C−1, and

define X̃t as X̃t = C(Xt). Then, the dynamics of X̃ is given by

dX̃j
t = Ṽ j

0 (X̃t)dt+ Ṽ j(X̃t)dWt (j = 1, · · · , d), (2.17)

X̃0 = x̃0,

where

Ṽ j
0 (x̃) :=

d∑
j′=1

∂j′C
j(x̃)V j′

0 (C−1(x̃)) +
1

2

d∑
j′,k′=1

∂j′k′C
j(x̃)V j′(C−1(x̃))V k′(C−1(x̃))′,

Ṽ j(x̃) :=

d∑
j′=1

∂j′C
j(x̃)V j′(C−1(x̃)),

and x̃0 = C(x0).

Next, we introduce a perturbation parameter ϵ ∈ (0, 1] as follows:

X̃t 7→ X̃
(ϵ)
t

Ṽ j
0 (x̃, ϵ) 7→ Ṽ

(ϵ),j
0 (x̃, ϵ)

Ṽ j(x̃) 7→ ϵṼ j(x̃),
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and hence, the dynamics of X̃(ϵ) is expressed as

dX̃
(ϵ),j
t = Ṽ

(ϵ),j
0 (X̃

(ϵ)
t , ϵ)dt+ ϵṼ j(X̃

(ϵ)
t )dWt (j = 1, · · · , d). (2.18)

Hereafter, let us apply the technique developed in [35] to the transformed SDE (2.18). Firstly,

take a smooth function g : Rd 7→ R with all of the derivatives having polynomial growth orders.

Then, a smooth Wiener functional g(X
(ϵ)
T ) has its asymptotic expansion:

g(X̃
(ϵ)
T ) ∼ g0T + ϵg1T + ϵ2g2T + · · · (2.19)

in Lp for every p > 1(or in D∞) as ϵ ↓ 0.

Let Akt =
1
k!

∂kX̃
(ϵ)
t

∂ϵk
|ϵ=0 and Aj

kt, j = 1, · · · , d denote the j-th elements of Akt. In particular,

A1t is represented by

A1t =

∫ t

0
YtY

−1
u

(
∂ϵṼ0(X̃

(0)
u , 0)du,+Ṽ (X̃(0)

u )dWu

)
, (2.20)

where Ṽ0 = (Ṽ 1
0 , · · · , Ṽ d

0 ): R
d × (0, 1] 7→ Rd, and V = (Ṽ 1, · · · , Ṽ d): Rd 7→ Rd ⊗Rr;

Y denotes the solution to the differential equation:

dYt = ∂Ṽ0(X̃
(0)
t , 0)Ytdt; Y0 = Id.

For k ≥ 2, Aj
kt, j = 1, · · · , d is recursively determined by the following:

Aj
kt =

1

k!

∫ t

0

∂k
ϵ Ṽ

j
0 (X̃

(0)
u , 0)du

+

k∑
l=1

(l)∑
l⃗β ,d⃗β

1

(k − l)!

1

β!

∫ t

0

(
β∏

j=1

A
dj
lju

)
∂β

d⃗β
∂k−l
ϵ Ṽ j

0 (X̃
(0)
u , 0)du

+

(k−1)∑
l⃗β ,d⃗β

1

β!

∫ t

0

(
β∏

j=1

A
dj
lju

)
∂β

d⃗β
Ṽ j(X̃(0)

u )dWu. (2.21)

Then, g0T and g1T can be written as

g0T = g(X̃
(0)
T ),

g1T =

d∑
j=1

∂jg(X̃
(0)
T )Aj

1T .

For n ≥ 2, gnT = 1
n!

∂ng(X̃
(ϵ)
T )

∂ϵn

∣∣∣∣
ϵ=0

is expressed as follows:

gnT =

(n)∑
l⃗β ,d⃗β

1

β!
∂β
d⃗β
g(X̃

(0)
T )Ad1

l1T
· · ·Adβ

lβT
. (2.22)
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Next, normalize g(X̃
(ϵ)
T ) to

G(ϵ) =
g(X̃

(ϵ)
T )− g0T
ϵ

for ϵ ∈ (0, 1]. Then,

G(ϵ) ∼ g1T + ϵg2T + · · ·

in Lp for every p > 1.

Moreover, let

V̂ (x, t) = (∂g(x))
′
[YTY

−1
t Ṽ (x)]

and make the following assumption:

(Assumption 1’) ΣT =

∫ T

0
V̂ (X̃

(0)
t , t)V̂ (X̃

(0)
t , t)

′
dt > 0.

Note that g1T follows a normal distribution with variance ΣT ; the density function of g1T denoted

by fg1T (x) is given by

fg1T (x) =
1√

2πΣT
exp

(
−(x− c)2

2ΣT

)
(2.23)

where

c = (∂g(X̃
(0)
T ))

′
∫ T

0
YTY

−1
t ∂ϵṼ0(X̃

(0)
t , 0)dt.

Hence, (Assumption 1) means that the distribution of g1T does not degenerate.

Let S be the real Schwartz space of rapidly decreasing C∞-functions on R and S ′ be its dual

space.

Next, take Φ ∈ S ′. Then, the asymptotic expansion of a generalized Wiener functional Φ(G(ϵ))

as ϵ ↓ 0 can be verified by Watanabe theory. In particular, if we take the delta function at x ∈ R,

δx as Φ, we obtain an asymptotic expansion of the density for G(ϵ).

That is, the expectation of Φ(G(ϵ)) is expanded as follows:

E[Φ(G(ϵ))] =
N∑

n=0

ϵn
(n)∑
k⃗δ

1

δ!
E

Φ(δ)(g1T )
δ∏

j=1

g(kj+1)T

+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R
Φ(δ)(x)E

[
X̃ k⃗δ |g1T = x

]
fg1T (x)dx+ o(ϵN )

=

N∑
n=0

ϵn
(n)∑
k⃗δ

1

δ!

∫
R
Φ(x)(−1)δ

dδ

dxδ

{
E
[
X̃ k⃗δ |g1T = x

]
fg1T (x)

}
dx+ o(ϵN )(2.24)

where Φ(δ)(g1T ) =
dδΦ(x)
dxδ

∣∣∣
x=g1T

,
∑(n)

k⃗δ
=
∑n

δ=1

∑
k⃗δ∈Ln,δ

, and

X̃ k⃗δ :=
δ∏

j=1

g(kj+1)T . (2.25)
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To compute the asymptotic expansion (2.24), we need to evaluate the conditional expectations

of the form

E
[
X̃ k⃗δ

∣∣∣ g1T = x
]

where X̃ k⃗δ is represented by a product of multiple Wiener-Itô integrals.

The next theorem shows a general result for an asymptotic expansion of the density function

for G(ϵ). In particular, the coefficients in the expansion are obtained through the solution of a

system of ordinary differential equations(ODEs). The key point is that each ordinary differential

equation(ODE) does not involve any higher order terms, and only lower or the same order terms

appear in the right hand side of the ODE. Hence, one can easily solve (analytically or numerically)

the system of ODEs.

Theorem 4. The asymptotic expansion of the density function of G(ϵ) =
g(X̃

(ϵ)
T )−g(X̃

(0)
T )

ϵ up to

ϵN -order is given by

fG(ϵ)(x) = fg1T (x)

+
N∑

n=1

ϵn

(
3n∑

m=0

CnmHm(x− c,ΣT )

)
fg1T (x) + o(ϵN ),

(2.26)

where Hn(x; Σ) is the Hermite polynomial of degree n which is defined as

Hn(x; Σ) = (−Σ)nex
2/2Σ dn

dxn
e−x2/2Σ, (2.27)

and

Cnm =
1

Σm
T

(m)∑
k⃗δ

(k1+1)∑
l⃗1β1

,d⃗1β1

· · ·
(kδ+1)∑
l⃗δβδ

,d⃗δβδ

1

δ!(m− δ)!

×

 δ∏
j=1

1

βj !
∂
βj

d⃗jβj

g(X̃
(0)
T )

 1

im−δ

∂m−δ

∂ξm−δ
η
d⃗1β1

⊗···⊗d⃗δβδ
l⃗1β1

⊗···⊗l⃗δβδ

(T ; ξ)

∣∣∣∣
ξ=0

,
(
i =

√
−1
)
. (2.28)
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η
d⃗β

l⃗β
(T ; ξ) are obtained as a solution to the following system of ODEs:

d

dt

{
η
d⃗β

l⃗β
(t; ξ)

}
=

β∑
k=1

1

lk!
η
d⃗β/k

l⃗β/k
(t; ξ)∂lkϵ Ṽ

dk
0 (X̃

(0)
t , 0)

+

β∑
k=1

lk∑
l=1

(l)∑
m⃗γ ,

⃗̃
dγ

1

(lk − l)!

1

γ!
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)∂γ⃗̃

dγ
∂lk−l
ϵ Ṽ dk

0 (X̃
(0)
t , 0)

+

β∑
k,m=1

k<m

(lk−1)∑
m⃗γ ,

⃗̃
dγ

(lm−1)∑
m⃗δ,

⃗̂
dδ

1

γ!δ!
η
(d⃗β/k,m)⊗ ⃗̃

dγ⊗ ⃗̂
dδ

(⃗lβ/k,m)⊗m⃗γ⊗m⃗δ
(t; ξ)

×∂γ⃗̃
dγ
Ṽ dk(X̃

(0)
t )∂δ⃗̂

dδ
Ṽ dm(X̃

(0)
t )

+ (iξ)

β∑
k=1

(lk−1)∑
m⃗γ ,

⃗̃
dγ

1

γ!
η
(d⃗β/k)⊗

⃗̃
dγ

(⃗lβ/k)⊗m⃗γ
(t; ξ)∂γ⃗̃

dγ
Ṽ dk(X̃

(0)
t )V̂ (X̃

(0)
t , t)

η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ, d⃗β) ̸= (∅, ∅), η(∅)(∅)(t; ξ) = 1. (2.29)

Here, we use the following notations:

l⃗β/k := (l1, · · · , lk−1, lk+1, · · · , lβ)

l⃗β/k,n := (l1, · · · , lk−1, lk+1, · · · , ln−1, ln+1, · · · , lβ), 1 ≤ k < n ≤ β

l⃗β ⊗ m⃗γ := (l1, · · · , lβ,m1, · · · ,mγ)

for l⃗β = (l1, · · · , lβ) and m⃗γ = (m1, · · · ,mγ).

The proof is given in Sections 3 and 5 of [35].

Remark 4. Due to the hierarchical structure of the ODEs with respect to l =
∑β

j=1 lj and

η
(∅)
(∅)(t; ξ) = 1, one can easily solve these ODEs successively from lower order terms to higher order

terms with initial conditions η
d⃗β

l⃗β
(0; ξ) = 0 for (⃗lβ, d⃗β) ̸= (∅, ∅). For instance, ηj(1), η

j,k
(1,1) and ηj(2)

are evaluated in the following order:

ηj(1) → ηj,k(1,1) → ηj(2).

2.4.2 Applications to Option Pricing

Given the above theorem for an approximation of the density, we can easily derive approximation

formulas for option prices under various models.

For instance, let us evaluate a plain-vanilla call option on the underlying asset whose price

process is given by X1 where X1 denotes the first element of X. We first determine the change
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of variable function, C such that

C(x) = (C1(x
1), Cd−1(x

2, · · · , xd)),

where xj denotes the j-th element of x ∈ Rd, and C1 : R 7→ R and Cd−1 : Rd−1 7→ Rd−1 are

some invertible functions. Then, we have X̃t = C(Xt) for all t ∈ [0, T ].

Next, we introduce a perturbation parameter ϵ ∈ [0, 1] to get X̃
(ϵ)
t = (X̃

(ϵ),1
t , · · · , X̃(ϵ),d

t ) for

all t ∈ [0, T ] as in (2.18), and define X
(ϵ),1
T = C−1

(
X̃

(ϵ),1
T

)
. (In particular, X1 = C−1

(
X̃

(1),1
T

)
.)

Also, we set a smooth function g : Rd 7→ R (appearing in (2.19) of the previous subsection) as

g(x) = x1 for x = (x1, · · · , xd).

Let us consider an approximation of the call option price, Call(ϵ)(K,T ) with maturity T and

strike price K, whose payoff is given by(
X

(ϵ),1
T −K

)
+
:= max

{
X

(ϵ),1
T −K, 0

}
.

Then, we obtain an approximation of the call price as follows:

Call(ϵ)(K,T ) = P (0, T )E

[(
C−1
1

(
X̃

(ϵ),1
T

)
−K

)
+

]
= P (0, T )E

[(
C−1
1

(
ϵG(ϵ) + X̃

(0),1
T

)
−K

)
+

]
≈ P (0, T )

∫ ∞

y(ϵ)

(
C−1
1

(
ϵx+ X̃

(0),1
T

)
−K

)
fG(ϵ),N (x)dx,

where

G(ϵ) =

(
X̃

(ϵ),1
T − X̃

(0),1
T

)
ϵ

, (2.30)

y(ϵ) =
C1(K)− X̃

(0),1
T

ϵ
. (2.31)

Here, P (0, T ) stands for the price at time 0 of a zero coupon bond with maturity T , and fG(ϵ),N

denotes the asymptotic expansion of density of G(ϵ) up to ϵN -th order:

fG(ϵ),N (x) = fg1T (x) +
N∑

n=1

ϵn

(
3n∑

m=0

CnmHm(x− c,ΣT )

)
fg1T (x), (2.32)

which comes from the first and second terms of (2.26) in Theorem 4.

Particularly, when ϵ = 1, the payoff is given by(
X1

T −K
)
+
=
(
X

(1),1
T −K

)
+
. (2.33)

Then, an approximation of the call price, Call(K,T ) ≡ Call(1)(K,T ) with maturity T and strike

price K is obtained by

Call(K,T ) = P (0, T )E

[(
C−1
1 (X̃1

T )−K
)
+

]
= P (0, T )E

[(
C−1
1

(
G(1) + X̃

(0),1
T

)
−K

)
+

]
≈ P (0, T )

∫ ∞

y

(
C−1
1

(
x+ X̃

(0),1
T

)
−K

)
fG(1),N (x)dx, (2.34)
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where

G(1) = X̃
(1),1
T − X̃

(0),1
T , (2.35)

y = C1(K)− X̃
(0),1
T , (2.36)

and fG(1),N is given by

fG(1),N (x) = fg1T (x) +
N∑

n=1

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x). (2.37)

Various approximation formulas could be obtained through choice of change of variable func-

tion C or/and the way to setting the perturbation parameter ϵ in Ṽ j
0 (X̃

(ϵ)
t , ϵ) of (2.18), for instance,

Ṽ j
0 (X̃

(ϵ)
t ), ϵṼ j

0 (X̃
(ϵ)
t ), ϵ2Ṽ j

0 (X̃
(ϵ)
t ), · · · . Then, the limiting distribution of the underlying asset price

may become normal, log-normal, shifted log-normal, non-central chi-square, and so on. The next

subsection will illustrate option pricing under a local-stochastic volatility model.

Option Pricing under Local-Stochastic Volatility Model

We assume the underlying process is the unique solution to the following SDE:

dSt = σ(Xt)h(St)dWt

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 2, · · · , d) (2.38)

S0 = s0 ∈ R, X0 = x0 ∈ Rd−1,

where σ : Rd−1 → Rr, h : R → R, and W is a r-dimensional Brownian motion. Then, we

evaluate a call option with strike K and maturity T , whose underlying price process is given by

S. Under the zero discount interest, for simplicity, the call price Call(K,T ) is obtained by

Call(K,T ) = E[(ST −K)+]. (2.39)

First, for x = (x1, x2, · · · , xd), let

C(x) = (C1(x
1), x2, · · · , xd),

where C1 : R → R be an invertible C2-function. Then, S̃t = C1(St), and the dynamics of S̃ is

given by

dS̃t =
1

2
||σ(Xt)||2h(C−1

1 (S̃t))
2C

′′
1 (C

−1
1 (S̃t))dt+ σ(Xt)C

′
1(C

−1
1 (S̃t))dWt, s̃0 = C1(s0). (2.40)

Next, we introduce a perturbation parameter ϵ as follows:

dS̃
(ϵ)
t =

η(ϵ)

2
||σ(X(ϵ)

t )||2h(C−1(S̃
(ϵ)
t ))2C ′′(C−1(S̃

(ϵ)
t ))dt+ ϵσ(X

(ϵ)
t )C ′(C−1(S̃

(ϵ)
t ))dWt,(2.41)

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d),
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where η(ϵ) = ϵj and j is a nonnegative integer such as j = 0, 1, 2, · · · . Note that

St = C−1
1 (S̃t) = C−1

1 (S̃
(1)
t ).

According to Theorem 4, we have already an asymptotic expansion of the density function of

G(ϵ) =
S̃
(ϵ)
T −S̃

(0)
T

ϵ up to ϵN -order, denoted by fG(ϵ),N (x).

Therefore, an approximation formula of the call price is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
C−1
1

(
S̃
(1)
T

)
−K

)
+

]
(2.42)

≈
∫ ∞

y

(
C−1
1 (x+ S̃

(0)
T )−K

)
fG(1),N (x)dx, (2.43)

where y = C1(K)− S̃
(0)
T .

A simple example is the following. Set the local volatility function to be linear:

dSt = σ(Xt)StdWt

dXj
t = V j

0 (Xt)dt+ V j(Xt)dWt (j = 2, · · · , d). (2.44)

For x = (x1, x2, · · · , xd), let

C(x) = (log x1, x2, · · · , xd),

and set η(ϵ) = ϵj where j is 0, 1 or 2. Then, we have S̃
(ϵ)
t = logS

(ϵ)
t , where

dS̃
(ϵ)
t = −ϵ

j

2
σ(X

(ϵ)
t )2dt+ ϵσ(X

(ϵ)
t )dWt, (2.45)

dX
(ϵ),j
t = V j

0 (X
(ϵ)
t , ϵ)dt+ ϵV j(X

(ϵ)
t )dWt (j = 1, · · · , d).

This case corresponds to some existing researches. (e.g. [32], [42], [33], [34], [35], [39])

2.4.3 Examples

This section will provide concrete examples with numerical examination.

Constant Elasticity of Variance(CEV) Model

The first example is on the well-known CEV model (Cox [5]) :

dSt = σ(Sβ
t S

1−β
0 )dWt, σ and S0 are positive constants, β ∈ [0, 1], (2.46)

where the term S1−β
0 makes the level of σ is of the same order for different β. For x > 0, let us

take the change of variable function to be C(x) = log(x/S0), that is x = C−1(x̃) = S0 exp(x̃).

Hence, S̃t = log St
S0

and we have

dS̃t = −1

2
σ2e2(β−1)S̃tdt+ σe(β−1)S̃tdWt. (2.47)
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Next, we introduce a perturbation ϵ ∈ [0, 1], again as follows:

dS̃
(ϵ)
t = −η(ϵ)

2
σ2e2(β−1)S̃

(ϵ)
t dt+ ϵσe(β−1)S̃

(ϵ)
t dWt, (2.48)

where η(ϵ) = ϵj and j is a nonnegative integer.

Because

ST = C−1
(
S̃
(1)
T

)
= S0 exp

(
S̃
(1
T

)
= S0 exp

(
G(1) + S

(0)
T

)
,

an approximation formula of the call price with strike K and maturity T is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
S0 exp

(
G(1) + S̃

(0)
T

)
−K

)
+

]
≈

∫ ∞

y

(
S0 exp

(
x+ S̃

(0)
T

)
−K

)
fG(1),N (x)dx; (2.49)

y = C(K)− S̃
(0)
T = log

K

S0
− S̃

(0)
T . (2.50)

Note that fg1T , the first term in the asymptotic expansion of the density fG(ϵ) is a normal

density and hence, the underlying asset price is expanded around a log-normal distribution. Thus,

we could call this case a log-normal asymptotic expansion. We also remark that the case of

η(ϵ) = ϵ0 = 1 is harder to be evaluated than the other cases, which is essentially due to difficulty

in computation of S̃
(0)
t for η(ϵ) = 1.

The λ-SABR Model

Let us consider a stochastic volatility model so called λ-SABR Model [14]:

dSt = σt(S
β
t S

1−β
0 )dW 1

t ; S0 > 0, (2.51)

dσt = λ(θ − σt)dt+ νσtdW
2
t ; σ0 > 0

where β ∈ [0, 1], λ ≥ 0, θ > 0, ν > 0, and W = (W 1,W 2) is a two dimensional Wiener process

with correlation ρ ∈ [0, 1].

Remark 5. Previous works such as [42], [34] and [35] have considered an asymptotic expansion

based on the following perturbed process, where the change of variable function, C is set by C(x) =

x:

dS
(ϵ)
t = ϵσt(S

(ϵ)
t )βdW 1

t ; S
(ϵ)
0 = S0 > 0, (2.52)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0 > 0
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From a viewpoint of mathematical justification of our asymptotic expansion, we may consider

a smooth and bounded version of the local volatility function, xβ in the above model as follows:

dS
(ϵ)
t = ϵσtg1(S

(ϵ)
t )dW 1

t (2.53)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

where for prefixed very small K3 > 0 and very large K1 > K2(> K3),

g1(x) = h1(x)g2(x) + h2(x)K
β
1 , (2.54)

g2(x) = h3(x)x
β,

h1(x) =
ψ(K1 − x)

ψ(x−K2) + ψ(K1 − x)
, 0 < K2 < K1,

h2(x) =
ψ(x−K2)

ψ(x−K2) + ψ(K1 − x)
, 0 < K2 < K1,

h3(x) =
ψ(x)

ψ(x) + ψ(K3 − x)
, 0 < K3 < K2 < K1,

ψ(x) = e−1/x for x > 0, ψ(x) = 0 for x ≤ 0. (2.55)

Note that the local volatility function g1(x) shows the following feature:

g1(x) = 0, if x ≤ 0 (2.56)

= h3(x)x
β, if 0 < x ≤ K3

= xβ, if K3 < x ≤ K2

= h1(x)x
β + h2(x)K

β
1 , if K2 < x ≤ K1

= Kβ
1 , if x > K1(constant).

Hence, this model is be regarded as a smooth and bounded modification of the local volatility

function:

(min{max{x, 0},K1})β . (2.57)

Then, we are easily able to apply our asymptotic expansion to this modified λ-SABR model up to

an arbitrary order. In fact, because we can take K1 and K2 as arbitrarily large constants, and K3

as arbitrarily positive small constant, we may use the same asymptotic expansion both for (2.52)

and (2.53) as long as the deterministic process {S(ϵ)(t)
∣∣
ϵ=0

: 0 ≤ t ≤ T}. is in the range between

K2 and K3. If necessary, we could modify the volatility process as well.

The similar modification and consideration could be applied to the asymptotic expansions ap-

pearing in the current paper.
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Log-Normal Asymptotic Expansion Let us take a log-normal asymptotic expansion for the

underlying asset price S, that is for x1 > 0, set C(x1, x2) = (log(x1/S0), x2) and S̃t = log St
S0
:

dS̃t = −1

2
σ2t e

2(β−1)S̃tdt+ σte
(β−1)S̃tdW 1

t ; S̃0 = 0 (2.58)

dσt = λ(θ − σt)dt+ νσtdW
2
t ; σ0 > 0.

Next, we introduce a perturbation ϵ ∈ [0, 1], again as follows:

dS̃
(ϵ)
t = −η1(ϵ)

2
σ2e2(β−1)S̃

(ϵ)
t dt+ ϵσe(β−1)S̃

(ϵ)
t dWt; S̃0 = 0, (2.59)

dσ
(ϵ)
t = η2(ϵ)λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0,

where ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer. For instance, typical cases are given as

follows:

Case I

dS̃
(ϵ)
t = −1

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t (2.60)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

Case II (an extension of the Log-Normal Asymptotic Expansion in [42], [34])

dS̃
(ϵ)
t = − ϵ

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t (2.61)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

Case III (an extension of [31] to the CEV-type local volatility)

dS̃
(ϵ)
t = −ϵ

2

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t (2.62)

dσ
(ϵ)
t = λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t

An approximation formula of the call price with strike K and maturity T is given as follows:

Call(K,T ) = E[(ST −K)+] = E

[(
S0 exp

(
G(1) + S̃

(0)
T

)
−K

)
+

]
≈

∫ ∞

y

(
S0 exp

(
x+ S̃

(0)
T

)
−K

)
fG(1),N (x)dx; (2.63)

y = C(K)− S̃
(0)
T = log

K

S0
− S̃

(0)
T . (2.64)

Again, we note that Case I, that is η(ϵ) = ϵ0 = 1 is harder to be evaluated than the other cases,

which results from difficulty in computation of S̃
(0)
t for η(ϵ) = 1.
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CEV Asymptotic Expansion Let us take change of variable function C as C(x) = (C1(x1), x2)forx =

(x1, x2), where for x > 0 and β ∈ [0, 1),

C1(x) =
1

1− β

x1−β

S1−β
0

(
=

∫ x dz

zβS1−β
0

)
. (2.65)

That is,

C−1
1 (x̃) = S0(1− β)

1
(1−β) x̃

1
(1−β) . (2.66)

Then, as S̃t = C1(St), we have

dS̃t = −1

2

β

1− β
σ2t

1

S̃t
dt+ σtdW

1
t ; S̃0 =

1

1− β
(2.67)

dσt = λ(θ − σt)dt+ νσtdW
2
t σ0 > 0.

Again, we obtain a perturbed process as follows:

dS̃
(ϵ)
t = −η1(ϵ)

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
(2.68)

dσ
(ϵ)
t = η2(ϵ)λ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0,

where ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer.

For illustrative purpose, let us set η1(ϵ) = η2(ϵ) = ϵ. That is,

dS̃
(ϵ)
t = − ϵ

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
, (2.69)

dσ
(ϵ)
t = ϵλ(θ − σ

(ϵ)
t )dt+ ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0.

In this case, as S̃
(0)
t = 1

1−β and σ
(0)
t = σ0 for all t ∈ [0, T ], the first term in the asymptotic

expansion, g1t =
∂
∂ϵ

∣∣
ϵ=0

S̃
(ϵ)
t follows a Gaussian process:

dg1t =
−βσ20
2

dt+ σ0dW
1; g10 = 0. (2.70)

Then, by applying Itô’s formula to

ĝ1t := C−1
1 (g1t) = S0(1− β)

1
(1−β) g

1
(1−β)

1t , (2.71)

and using

g1t =
1

1− β

ĝ1−β
1t

S1−β
0

, (2.72)

we formally obtain the dynamics of ĝ1t though it is well-defined only for g1t ≥ 0:

dĝ1t =
σ20
2
ĝβ1t

[
−βS1−β

0 + S
2(1−β)
0 ĝβ−1

1t

]
dt+ σ0S

1−β
0 ĝβ1tdW

1
t ; ĝ10 = 0. (2.73)
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Here, the diffusion coefficient of ĝ1t = C−1
1 (g1t) is given by σ0S

1−β
0 (ĝ1t)

β. As we may think that

S is expanded around ĝ1, we call this case a CEV asymptotic expansion (though ĝ1 is not exactly

a CEV process).

In particular, when β = 1/2,

dĝ1t =
σ20
2

[
−
√
S0ĝ1t/2 + S0

]
dt+ σ0

√
S0ĝ1tdW

1
t ; ĝ10 = 0, (2.74)

and because

ĝ1T =
S0
4
g21T , (2.75)

ĝ1T follows a non-central χ-square distribution, around which the original underlying asset price

ST is expanded.

Finally, for ηi(ϵ) = ϵji , i = 1, 2 and ji is a nonnegative integer, an approximation formula of

the call price with strike K and maturity T is obtained as follows:

Call(K,T ) = E[(ST −K)+] = E
[
C−1
1 (S̃T )−K

]
= E

[({
S0(1− β)

1
(1−β) (S̃T )

1
(1−β)

}
−K

)
+

]
= E

[({
S0(1− β)

1
(1−β) (S̃

(1)
T )

1
(1−β)

}
−K

)
+

]
= E

[({
S0(1− β)

1
(1−β) (G(1) + S̃

(0)
T )

1
(1−β)

}
−K

)
+

]
≈

∫ ∞

y

({
S0(1− β)

1
(1−β) (x+ S̃

(0)
T )

1
(1−β)

}
−K

)
fG(1),N (x)dx; (2.76)

y = C1(K)− S̃
(0)
T =

1

1− β

(
K

S0

)1−β

− S̃
(0)
T . (2.77)

2.4.4 Numerical Examination

For numerical examination of approximation for European option prices, we take SABR [9] model

(λ-SABR with λ = 0):

dSt = σt(S
β
t S

1−β
0 )dW 1

t ; S0 > 0, (2.78)

dσt = νσtdW
2
t ; σ0 > 0

In particular, we apply the following three different expansions for approximation. (Although we

use the same notation fG(1),N (x) for the density approximations in all expansions, each represents

the density obtained by the corresponding expansion.)
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1. Normal expansion

This case corresponds to the original asymptotic expansion method. We apply the asymp-

totic expansion to the following perturbed stochastic differential equation:

dS
(ϵ)
t = ϵσt(S

(ϵ)
t )βS1−β

0 dW 1
t ; S

(ϵ)
0 = S0 > 0, (2.79)

dσ
(ϵ)
t = ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0 > 0

Then, an approximation of a call option price with maturity T and strike price K is given

by

C(K,T ) ≈
∫ ∞

y
(x− y)fG(1),N (x)dx, (2.80)

y = K − S
(0)
T = K − S0, (2.81)

where G(1) = G(ϵ)
∣∣
ϵ=1

,

G(ϵ) =
S
(ϵ)
T − S

(0)
T

ϵ
=
S
(ϵ)
T − S0
ϵ

, (2.82)

and fG(1),N denotes the asymptotic expansion of density of G(ϵ) up to ϵN -th order evaluated

at ϵ = 1.

Integrals may be calculated by the formulas:∫ ∞

y
(x− y)Hk(x; Σ)fg1T (x)dx = Σ2Hk−2(−y; Σ)fg1T (y). (2.83)

2. Log-normal expansion

We apply the expansion result in Section 2.4.3 with η1(ϵ) = ϵ:

dS̃
(ϵ)
t = − ϵ

2
σ
(ϵ)
t

2
e2(β−1)S̃

(ϵ)
t dt+ ϵσ

(ϵ)
t e(β−1)S̃

(ϵ)
t dW 1

t ; S̃
(ϵ)
0 = 0, (2.84)

dσ
(ϵ)
t = ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0

In this case, an approximation of a call option price with maturity T and strike price K is

given by

Call(K,T ) ≈
∫ ∞

y
(S0e

x −K) fG(1),N (x)dx; (2.85)

y = C(K)− S̃
(0)
T = log

K

S0
. (2.86)

3. CEV expansion
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We apply the result in Section 2.4.3 with η1(ϵ) = ϵ, that is,

dS̃
(ϵ)
t = − ϵ

2

β

1− β
(σ

(ϵ)
t )2

1

S̃
(ϵ)
t

dt+ ϵσ
(ϵ)
t dW 1

t ; S̃
(ϵ)
0 =

1

1− β
, (2.87)

dσ
(ϵ)
t = ϵνσ

(ϵ)
t dW 2

t ; σ
(ϵ)
0 = σ0.

Hence, an approximation formula of the call price with strike K and maturity T is obtained

as follows:

Call(K,T ) ≈
∫ ∞

y

({
S0(1− β)

1
(1−β)

(
1

(1− β)
+ x

) 1
(1−β)

}
−K

)
fG(1),N (x)dx;(2.88)

y = C1(K)− S̃
(0)
T =

1

1− β

(
K

S0

)1−β

− 1

(1− β)
. (2.89)

In the numerical examples below, we set the parameters as follows:

• The option maturity T , the current underlying asset price S0, the current volatility σ0, the

volatility on volatility ν:

S0 = 100, T = 1, σ0 = 0.30, ν = 0.30.

• The instantaneous correlation ρ between the asset price S and its volatility σ: three different

correlations;

ρ = 0.0,−0.5,−0.75.

• The CEV parameter β of the underlying asset price process S: nine different βs;

β = 0.0, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 1.0.

• Strike price K of the option: twenty different strikes;

K = 10, 20, · · · , 100, 110, 120, · · · , 200.

Benchmark prices are computed by Monte Carlo simulation with 108 trials, 1024 time steps and

the antithetic variable method, where Euler-Maruyama scheme is used for the discretization of the

stochastic differential equation (2.78). Then, the absolute error is given by |(approximation price)−

(benchmark price)| for each case. We have computed each expansion up to the third order. That

is, for each approximation we use ϵj , (j = 1, 2, 3)-order expansion for the density fG(1)(x), that is

f cev
G(1),j

(x):

fG(1),j (x) = fg1T (x) +

j∑
n=1

(
3n∑

m=0

CnmHm(x− C,ΣT )

)
fg1T (x). (2.90)
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For each expansion, the higher order expansion provides the better approximation. Particularly,

as for ϵ3-order expansion Figure 1-3 below show the average values of the absolute errors for

option prices with all the strikes K for each β, given the correlation value ρ.1 In the figures, the

horizontal axis is β while the vertical axis is the average absolute error; Normal A.E. 3rd, Log

A.E. 3rd and LV A.E. 3rd represent Normal expansion, Log-normal expansion and CEV expansion,

respectively. Because CEV expansion is not well-defined for β = 1, we use the same formula as

the one of Log-normal expansion.

We find that CEV expansion provides the most stable approximations for all the cases. On the

other hand, Log-normal expansion is not robust to the change in β in a sense that its approximation

becomes worse as β deviates from 1. As for Normal expansion, although its approximation in zero

correlation ρ = 0.0 becomes worse as β deviates from 0, it becomes stable for the higher (negative)

correlations such as ρ = −0.5,−0.75. For completeness, Appendix provides the results of the

first and second order expansions. Through investigation of the behavior of the the asymptotic

expansions up to the third order, we observe that CEV expansion becomes more precise with the

same level of absolute errors across the whole range of β along the higher order expansions. Thus,

we expect a higher order CEV expansion will produce the better and more stable approximation

than normal and log-normal expansions.

Figure 2.5: Correlation ρ = 0.0
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1The details of the numerical analysis are given upon request.
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Figure 2.6: Correlation: ρ = −0.5
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Figure 2.7: Correlation: ρ = −0.75
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2.4.5 Conclusion

This note extends a general computational scheme proposed by our previous results [42], [34], and

[35]. Particularly, we have constructed a scheme that enables us to set a distribution around which

we would like to expand a target random variable, and to approximate the target variable up to

any order based upon the distribution. As numerical examples, we have shown new Log-normal

and CEV expansions up to the third order for approximations of option prices under SABR model,

which demonstrate that the CEV expansion will be a candidate for a more precise and robust
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technique than other approximation schemes such as normal and log-normal expansions.
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