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Abstract 

 

The nature of the computational principles of syntax remains to be elucidated. One promising 

approach to this problem is to construct formal and abstract linguistic models that 

parametrically predict the activation modulations in the language areas of the brain. In this 

dissertation, I verify computational principles of syntax in the language areas. First, I 

introduce the two fundamental linguistic operations: Merge (which combines two words or 

phrases to form a larger structure) and Search (which searches and establishes a syntactic 

relation of two words or phrases). I also illustrate certain universal properties of human 

language, and I propose Degree of Merger (DoM) as a key computational concept, which can 

be defined as the maximum depth of merged subtrees (called Mergers) within a given domain. 

I present hypotheses on how sentence structures are processed in the brain. Hypothesis I is 

that the DoM is a key computational concept to properly measure the complexity of tree 

structures. Hypothesis II is that the basic frame of the syntactic structure of a given linguistic 

expression is essentially determined by functional elements, which trigger Merge and Search. 

I then present our recent functional magnetic resonance imaging (fMRI) experiment, 

demonstrating that the DoM is indeed a key syntactic factor that accounts for syntax-selective 

activations in the left inferior frontal gyrus (L. F3op/F3t) and supramarginal gyrus (L. SMG). 

Using jabberwocky sentences with distinct constructions, I fitted various parametric models 

of syntactic, other linguistic, and nonlinguistic factors to activations measured with fMRI. I 

demonstrated that the models of the DoM and “DoM + number of Search” were optimum 

measures for explaining activations in the L. F3op/F3t and L. SMG, respectively. I further 

introduced letter strings, which had neither lexical associations nor grammatical particles, but 

retained both the matching and symbol orders of sentences. By directly contrasting 

jabberwocky sentences with letter strings, I found that localized activations in the L. 
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F3op/F3t and L. SMG were indeed independent of matching and symbol orders. Moreover, 

based on the dynamic causal modeling and diffusion tensor imaging results, I revealed the 

significance of the top-down connection from the L. F3op/F3t to L. SMG, suggesting that 

information about the DoM is transmitted through this specific dorsal pathway. These results 

indicate that the identified network of the L. F3op/F3t and L. SMG subserves the calculation 

of DoM in recursively merged sentences. Hypothesis III is that the DoM domain changes 

dynamically in accordance with iterative Merge applications, the Search distances, and/or 

task requirements. I confirm that the DoM accounts for activations in various sentence types. 

Hypothesis III successfully explains activation differences between object- and subject-

relative clauses, as well as activations during explicit syntactic judgment tasks. Future 

research on the computational principles of syntax will further deepen our understanding of 

uniquely human mental faculties. 
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Tree structures are among the most ubiquitous structures in nature, appearing in the 

branching of rivers, lightning, snowflakes, trees, blood vessels, nervous systems, etc., and can 

be simulated in part by fractal geometry (Mandelbrot, 1977). To properly quantify the 

complexity of such tree structures, various models have been proposed. The number of nodes 

would be one of the simplest models; this approach consists of simply counting the total 

number of nonterminal nodes (branching points) and terminal nodes of a tree structure 

(Figure 1A). This model obviously cannot capture hierarchical levels within the tree (“sister 

relations” in linguistic terms). To properly measure the hierarchical levels of a tree structure, I 

have proposed the Degree of Merger (DoM) as a key computational concept (Figure 1B) 

(Ohta, Fukui, & Sakai, 2013a, 2013b). The DoM is defined as the maximum depth of merged 

subtrees (called Mergers) within a given domain. With this model, the same numbers are 

assigned to the nodes with an identical hierarchical level. The DoM corresponds to the 

number of iterations for generating fractal figures, when the tree structures are self-similar. 

In this dissertation, I examine whether parametric models based on modern 

linguistics can account for activations in the language areas of the brain measured with 

functional magnetic resonance imaging (fMRI). I first explain certain universal properties of 

human language discovered in modern linguistics, and I present hypotheses of how sentence 

structures are processed in the brain (Ohta, Fukui, & Sakai, 2013b). I then introduce our 

fMRI study, which demonstrates that the DoM is indeed a key syntactic factor that accounts 

for syntax-selective activations in the language areas (Ohta, Fukui, & Sakai, 2013a). I also 

show that the top-down connectivity from the left inferior frontal gyrus to the left 

supramarginal gyrus is critical for the syntactic processing. Next, I clarify that the DoM can 

account for activation modulations in the frontal region, depending on different sentence 

structures. Finally, I hypothesize that the DoM domain changes dynamically in accordance 

with iterative Merge applications, the distance required for Search operations (or simply the 
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“Search distance”), and/or task requirements. This hypothesis accounts for activation 

differences between subject- and object-relative clauses, as well as activation during explicit 

syntactic judgment tasks. 

 

Figure 1. Two models for measuring the complexity of tree structures. 
(A) The “number of nodes” counts the total number of nonterminal nodes (branching points) and 
terminal nodes of a tree structure. The number of nodes in the tree structure shown is 17. (B) The 
“Degree of Merger” (DoM) quantifies the maximum depth of merged subtrees, or the degree of 
branching. We increased the number one by one for each node, starting from the trunk (zero) to 
terminal nodes. The DoM of the tree structure shown is 5.
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1.1. Theoretical background 

Modern linguistics has clarified universal properties of human language that, directly 

or indirectly, reflect the computational power, or engine, of the human language faculty. A 

sentence is not a mere string of words, but is made of phrase structures (called constituent 

structures). Moreover, a single phrase contains the key element (i.e., the “head”) that 

determines the basic properties of the phrase. Furthermore, a sentence can be recursively 

embedded within other sentences, as in “I think that John believes that Mary assumes that…,” 

and there is in principle no upper bound for the length of sentences. This property is the so-

called discrete infinity made possible by the computational power, or engine, of the human 

language faculty. These universal properties can be adequately and minimally expressed by 

hierarchical tree structures with a set of relevant structural relations defined on such 

structures (Chomsky, 1957; Chomsky, 1965). 

To construct hierarchical tree structures, modern linguistics has proposed the 

fundamental linguistic operation of Merge (capitalized in linguistics to indicate a formal 

operation). Merge is a structure-building operation that combines two syntactic objects 

(words or phrases) to form a larger structure (Chomsky, 1995). Merge would be theoretically 

“costless,” requiring no driving force for its application (Saito & Fukui, 1998; Chomsky, 

2004; Fukui, 2011). Besides Merge, Fukui and Sakai (2003) have proposed the Search 

operation, which applies to a syntactic object already constructed by Merge, to search for 

syntactic features. Search couples and connects two distinct parts of the same structure, 

thereby assigning relevant features from one to the other part. Various other “miscellaneous” 

operations that have been employed in the linguistics literature, such as Agree, Scope 

determination, Copy, etc., are in fact different manifestations of one and the same, i.e., more 

generalized, operation of Search (Fukui & Sakai, 2003). Thus, Agree, which has been 

assumed to be an operation mainly responsible for the agreement of grammatical features, is 
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actually not an operation specific to agreement, but rather is just an instance of the basic 

operation of Search, when it assigns specific features. Human language, therefore, should 

minimally contain two universal operations, Merge and Search. The total number of Merge 

and Search applications within an entire sentence are simply denoted here as “number of 

Merge” and “number of Search,” respectively. The number of Merge applications in a 

sentence is always one less than the number of terminal nodes, irrespective of sentence 

structures (see Chapter 2, Materials and methods, Stimuli). 

 

1.2. Symbol sequences and formal languages 

Three specific types of languages have been discussed in the linguistics literature for 

formal symbol sequences beyond the bounds of finite state languages: (i) “counter language,” 

(ii) “mirror-image language,” and (iii) “copying language” (cf. Chomsky, 1957, p. 21). 

 

(i) ab, aabb, aaabbb, …, and in general, all sentences consisting of n occurrences of 

a followed by n occurrences of b and only these; 

(ii) aa, bb, abba, baab, aaaa, bbbb, aabbaa, abbbba, …, and in general, all 

sentences consisting of a string X followed by the ‘mirror image’ of X (i.e., X in 

reverse), and only these; 

(iii) aa, bb, abab, baba, aaaa, bbbb, aabaab, abbabb, …, and in general, all 

sentences consisting of a string X of a’s and b’s followed by the identical string X, 

and only these. 

 

Counter languages can be handled by a counting mechanism to match the number of each 

symbol, while the mirror-image language contains a mirror-image dependency, requiring 

more than a simple counter. If the number of symbols is not fixed (i.e., infinite), both of these 
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languages are beyond the bounds of finite-state grammars and are to be generated by context-

free (simple) phrase structure grammars. Furthermore, copying languages with a cross-serial 

dependency clearly go beyond the bounds of even context-free phrase structure grammars, 

requiring a more powerful device, viz., context-sensitive phrase structure grammars or 

transformational grammars (Chomsky, 1959; Hopcroft & Ullman, 1979). 

It remains a central issue in cognitive sciences whether the faculty of language is 

also shared by animals. Animals have thus been tested with regular symbol sequences such as 

An Bn (n ≥ 2; i.e., AABB, AAABBB, …) and (AB)n (n ≥ 2; i.e., ABAB, ABABAB, …), 

which differ in symbol order. In an animal study, songbirds were trained to discriminate 

patterns of An Bn and (AB)n in more than ten thousand trials (Gentner et al., 2006). However, 

this learning can be achieved by tracking symbol repetition or counting strategy alone 

(Corballis, 2007). There is also a recent report that songbirds seemed to discriminate strings 

with or without nesting (Abe & Watanabe, 2011); however, this learning can be achieved by 

simply remembering partial strings (Beckers et al., 2012). Along the lines of contrasting An 

Bn and (AB)n, fMRI studies have tested participants with different symbol sequences, such as 

A2 A1 B1 B2 versus A1 B1 A2 B2 (each subscript denotes a matching order), which also differ in 

matching order (Bahlmann, Schubotz, & Friederici, 2008). The difference in activation 

patterns can be simply explained by differences in any factor associated with matching and 

symbol orders, i.e., temporal order-related factors. It is thus necessary to completely control 

these general factors when extracting any syntactic factor from among the cognitive factors 

involved in actual symbol processing. 

Since the number of symbols is inevitably fixed (i.e., finite) in any actual 

experiment, it should be noted that any symbol sequence can be expressed by a regular (finite 

state) grammar, i.e., the least powerful grammar in the so-called Chomsky hierarchy. 

Therefore, one cannot, in principle, claim from experiments that individual grammars (e.g., 
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context-free phrase structure grammars vs. regular grammars) are represented differently in 

the brain. Thus, the neural representation of individual grammars was not within the scope of 

the present study. In addition to the various models examined, other nonstructural and 

nonsymbolic models with simple recurrent networks have been proposed to process even 

some context-free and context-sensitive phrase structure languages, generalizing these 

models to some degree to longer strings than the training set (Rodriguez, 2001). However, 

these models do not account for any parametric modulation of the activation reported in the 

present study, except for the length of sentences. 

In the present experiment, I introduced letter strings with no lexical associations but 

having both symbol orders (e.g., AABB and ABAB) and matching orders (e.g., A2 A1 B1 B2). 

There were two basic types of strings: reverse-order strings (Reverse) and same-order strings 

(Same). In the Reverse strings, the first and second halves of the strings were presented in the 

reverse order, while in the Same strings, the halves were presented in the same order (Figure 

2). Under these conditions, there was actually no path connecting the nonterminal nodes of 

Figure 2. Two basic types of letter strings related to formal languages. 
We tested two string conditions with short [(S) as a subscript] stimuli: Reverse(S) and Same(S). Each 
letter string was formed by jumbling letters of either a pseudonoun or pseudoverb (see Figure 4). 
We also tested the long stimuli with six items. Each curved arrow with an arrowhead denotes a 
Search operation, as in the following figures. 
Symbols used: A, sample stimulus; B, comparison stimulus. 
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symbol pairs (e.g., A1 B1 and A2 B2), as there was no Merge application to connect the 

multiple pairs. Both the Reverse and Same strings took type (i) above (An Bn) in terms of 

symbol order. With regard to the matching orders, the Reverse strings took the type (ii) (A2 

A1 B1 B2 or A3 A2 A1 B1 B2 B3), while the Same strings took the type (iii) (A1 A2 B1 B2 or A1 A2 

A3 B1 B2 B3). 

 

1.3. Hypothesis I 

Given a tree structure with a formal property of Merge and iterativity (recursiveness) 

(Fukui, 2011), we propose the following hypothesis (Hypothesis I):  

 

(1) The DoM, which can be defined as the maximum depth of merged subtrees 

within a given domain, is a key computational concept to properly measure the 

complexity of tree structures. 

 

The DoM can be used to quantify and compare various syntactic phenomena, such as self-

embedding, scrambling, wh-movement, etc. Furthermore, when Search applies to each 

syntactic object with its hierarchical structure, the calculation of the DoM plays a critical role. 

Indeed, from a nested sentence “[[The boy2 [we3 like3]2]1 sings1]0” (subscripts denote the 

DoM for each node), two sentences “[The boy … ]1 sings1” and “we3 like3” are obtained, 

where relevant features (numbers and persons here) are searched and matched between the 

nodes with the identical DoM. Since such analyses of hierarchical structures would produce 

specific loads in syntactic computation, we expect that the DoM and associated “number of 

Search” would affect performances and cortical activations. 

Sentences with various constructions have been previously discussed in terms of 

sentence acceptability (cf. Chomsky, 1965, p. 12). 
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(i) nested constructions 

(ii) self-embedded constructions 

(iii) multiple-branching constructions 

(iv) left-branching constructions 

(v) right-branching constructions 

 

Nested constructions are created by centrally embedding a phrase within another phrase (with 

some non-null element to its left and some non-null element to its right), and self-embedded 

constructions are a special case of nested construction in which nesting occurs within the 

same type of phrases (e.g., noun phrases). Multiple-branching constructions consist of 

conjoining phrases at the same hierarchical level, and left/right-branching constructions are 

yielded by merging a phrase in the left-most or right-most phrase. The degrees of nesting and 

self-embedding have already been proposed for modeling the understanding of sentences 

(Miller & Chomsky, 1963). By generalizing this attractive idea to include any construction 

with merged phrases, I introduced DoM as a key computational concept. 

Based on nested (self-embedded), left/right-branching, and multiple-branching 

constructions, three basic types of sentences can be distinguished: the nested sentence 

(Nested), simple sentence (Simple), and conjoined sentence (Conjoined), respectively. Figure 

3 shows some examples in Japanese. Given syntactic structures like the ones shown, the 

correspondence of each subject–verb pair becomes fixed. Here N and V denote a noun phrase 

and a verb phrase, respectively. For the sentence shown in Figure 3A, an entire sentence is 

constructed by nesting sentences in the form of [N2[N1 V1]V2], in which [Ni Vi] represents a 

subject–verb pair of a sentence. Since Japanese is a head-last, and hence an SOV (verb-final) 

language, main verbs appear after subordinate clauses. Therefore, Japanese sentences 
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naturally yield nested structures without having to employ, as in English, object-relative 

clauses (e.g., “The boy whoi we like ti sings”), which require “movement” of an object (i.e., 

with more Merge applications) and thus leave behind a “trace” (ti, subscripts denote the same 

entity). For the sentence shown in Figure 3B, a simple sentence is constructed by adding the 

same number of left/right branches to both Ns and Vs. The last noun (i.e., head) in the 

branches of Ns creates a subject–verb pair with the last verb (the head) of a compound verb. 

Figure 3. Japanese sentences with three major constructions. 
The figure shows three basic types of sentences in Japanese: the nested sentence, simple 
sentence, and conjoined sentence. Based on contemporary linguistics (O’Grady et al., 2010), each 
diagram represents a unique tree structure of each sentence (S and S’) constructed from Ns and 
Vs. Below each example, word-by-word translations in English are shown. (A) A sentence (S) at 
the lowest hierarchical level was nested into an entire sentence (S’) (“Taro-ga Hanako-ga utau-to 
omou”: “Taro thinks that Hanako sings”). (B) A simple sentence was constructed by adding the 
same number of left/right branches to both nouns and verbs (“Taro-no ani-ga tabe hajimeru”: 
“Taro’s brother starts eating”). (C) An entire sentence (S’) was constructed by conjoining two 
sentences (“Taro-ga utatte Hanako-ga odoru”: “Taro sings, and Hanako dances”). 
Symbols used: S and S’, sentence; N, noun phrase; V, verb phrase; -ga, nominative case marker; -
no, genitive case marker; -to, complementizer; -te, gerundive form; Nom, nominative case; Gen, 
genitive case; Comp, complementizer. 

 



13 

Each simple sentence thus takes the form [(NN1) (VV1)]. For the sentence shown in Figure 

3C, an entire sentence is constructed by conjoining sentences in the form of [N1 V1][N2 V2]. 

When considering longer sentences such as N3 N2 N1 V1 V2 V3, these constructions have 

distinct values for DoM. 

  

1.4. Hypothesis II 

In any sentence, functional elements, such as inflections, auxiliary verbs, and 

grammatical particles, serve an essentially grammatical function without descriptive content. 

We thus propose the following hypothesis (Hypothesis II) for the fundamental roles of these 

functional elements: 

 

(2) The basic frame of the syntactic structure of a given linguistic expression (e.g., 

sentence) is determined essentially by functional elements, which trigger Merge and 

Search operations. 

 

In the nonsense poem “Jabberwocky” by Lewis Carroll, e.g., “’Twas (‘It was’) brillig, and 

the slithy toves did …,” the basic frames of syntactic structures are indeed determined by the 

functional elements “’Twas,” “and,” “the,” “-s,” and “did.” In the Japanese language, 

grammatical particles and morphosyntactic inflections are functional elements. The sentences 

shown in Figure 3 actually contain only three kinds of grammatical particles, which represent 

canonical (i.e., in a prototypical use) case markings and syntactic information in Japanese: -

ga, a nominative case marker; -no, a genitive case marker; and -to, a complementizer. It 

should be noted that both the nested and simple sentences have the same symbol order (Nn 

Vn), but they have different grammatical particles and syntactic structures. In contrast, both 

the simple and conjoined sentences have the same tree structures as a result, but different 
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symbol orders (Nn Vn or (NV)n (n ≥ 2)). It is the grammatical particles and morphosyntactic 

inflections, but not symbol orders or matching orders themselves, that determine the basic 

frame of syntactic structures of a sentence. 

Following morphosyntactic and phonological features of Japanese verbs (Tsujimura, 

2007), Vs take a nonpast-tense form (-ru), a past-tense form (-ta), or a gerundive form (-te); 

Vs ending with -to and -te introduce that-clauses and and-conjunctives, respectively. 

Gerundive forms can be used not only in and-conjunctives, but in compound verbs (e.g., 

“tabete-simau”: “to finish eating”; actual Japanese words will be translated hereafter), much 

as gerunds can in English. The -ga, -no, -to, and -te endings (green letters in Figures 3–5), 

together with the first verb of a compound verb in an adverbial form (e.g., “tabe”), are 

associated with Merge applications to connect multiple nouns/verbs or sentences, amounting 

to “number of Merge.” The Japanese language lacks “agreement features” (i.e., number, 

person, gender, etc.), but is nevertheless equipped with the general Search procedure 

employed in agreement phenomena in other languages. This Search mechanism is in fact 

attested for various other phenomena in Japanese (see Fukui and Sakai, 2003, for further 

discussion). For example, the Japanese language exhibits a phenomenon called 

“honorification,” in which a noun phrase denoting an honored person and the form of 

honorific used on a verb match (Gunji, 1987; Ivana & Sakai, 2007). 

In this chapter, I provided some theoretical discussions based on modern linguistics, 

focusing on two fundamental linguistic operations, Merge and Search. I hypothesized that the 

DoM is a key computational concept to properly quantify the complexity of tree structures, 

and that the basic frame of the syntactic structure of a given linguistic expression is 

determined essentially by grammatical particles and morphosyntactic inflections that trigger 

Merge and Search operations. 
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Chapter 2. Syntactic Computation in the Human Brain:  

The DoM as a Key Syntactic Factor Elucidated by an fMRI Experiment 
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2.1. Introduction 

It is widely accepted that in human language, a sentence can be expressed by a 

unique tree structure with recursive branches (Hopcroft & Ullman, 1979; O’Grady et al., 

2010). One possible way to elucidate the neural basis of the computational properties of 

natural language is to examine how the brain responds to the modulation of specified 

syntactic factors. An early attempt with fMRI reported that activations in the language areas 

were modulated by noncanonical/canonical word orders and the presence/absence of lexical 

contents (Röder et al., 2002), in which multiple factors, including memory-related and 

semantic factors, could account for these activations. Therefore, we should not be content 

with such a general cognitive factor as so-called “syntactic complexity” or “syntactic working 

memory,” which could involve both linguistic and nonlinguistic factors. We should instead 

identify minimal factors that sufficiently explain any activation change obtained. In addition, 

the size of linguistic constituents may also modulate cortical activations. A recent fMRI study 

reported that left frontal activations increased with the number of words or terminal nodes 

(symbols) in a phrase (Pallier, Devauchelle, & Dehaene, 2011), but, as rightly pointed out by 

the authors, precise phrase structures remained to be taken into account. We focused on 

different sentence constructions, and identified minimal syntactic factors associated with 

phrase structures, which parametrically modulated cortical responses measured with event-

related fMRI (Ohta, Fukui, & Sakai, 2013a). 

Modern linguistics has accumulated mounting evidence that the construction of any 

grammatical phrases or sentences can be adequately and minimally explained by hierarchical 

syntactic structures with a set of relevant structural relations defined on such structures 

(Chomsky, 1957; Chomsky, 1965). To properly measure the depth of a tree structure with a 

formal property of Merge and iterativity (recursiveness) (Fukui, 2011), we hypothesize that 

the DoM is a key computational concept, which can be defined as the maximum depth of 



17 

merged subtrees (i.e., Mergers) within a given domain. Moreover, the DoM can quantify and 

compare various syntactic phenomena, such as self-embedding, scrambling, wh-movement, 

etc. Furthermore, when Search applies to each syntactic object within a hierarchical structure, 

the calculation of the DoM plays a critical role. Indeed, from a nested sentence “[[The boy2 

[we3 like3]2]1 sings1]0” (subscripts denote the DoM for each node, see Figure 4A), two 

sentences “[The boy … ]1 sings1” and “we3 like3” are obtained, where relevant features 

(numbers and persons here) are searched and checked between the nodes with the identical 

DoM. Because such analyses of hierarchical structures would produce specific loads in 

syntactic computation, we hypothesize that the DoM and associated “number of Search” 

modulate neural activations. As mentioned in Chapter 1, Merge would be theoretically 

“costless” (Saito & Fukui, 1998; Chomsky, 2004), and thus the “number of Merge” itself 

may not affect activations, which can be easily expected for flat structures (see Figure 4B). 

In the present study, we used jabberwocky sentences, which consist of pseudonoun 

phrases (Ns) and pseudoverb phrases (Vs) that lack lexical associations but have grammatical 

particles and morphosyntactic inflections. According to Hypothesis II stated above, these 

jabberwocky sentences had the same syntactic structures as normal sentences (see Materials 

and methods, Stimuli). Based on the nested (self-embedded), left/right-branching, and 

multiple-branching constructions (see Chapter 1, Hypothesis I), we introduced three basic 

types of sentence constructions: nested sentences (Nested), simple sentences (Simple), and 

conjoined sentences (Conjoined) (Figure 4A). According to the second hypothesis stated 

above, the jabberwocky sentences had the same syntactic structures as normal sentences even 

without lexical meanings (Figures 3 and 4). When constructing syntactic structures like the 

ones shown in Figure 4A, the correspondence of each subject–verb pair is most crucial. To 

test whether participants actually paid attention to this correspondence, we used a matching 

task in which the vowel of a subject (Ni as a sample stimulus) was matched with the last  
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Figure 4. A paradigm for testing jabberwocky sentences and letter strings. 
Examples of short [(S) as a subscript] matching stimuli are shown here with the Romanization system, but 
actual stimuli were presented in hiragana without hyphens (see C and D). Note the syntactic structures of 
these jabberwocky sentences are same as those of real sentences in Figure 3. We also tested the long 
stimuli with six words. (A) Three sentence conditions with short stimuli: Nested(S), Simple(S), and 
Conjoined(S). The digits shown in red and blue denote the DoM for each node and “number of Search,” 
respectively (see Table 3). The curved arrows denote the matching of sequentially presented stimuli. (B) 
Two string conditions with short stimuli: Reverse(S) and Same(S). Each letter string was formed by jumbling 
letters of either N or V. (C and D) Examples of stimulus presentation. Here examples of matching stimuli are 
shown in hiragana for the Nested(S) and Reverse(S). Between the Nested(S) and Reverse(S), both of the 
symbol orders (the order of Ns, Vs, As, and Bs) and matching orders (denoted by subscripts) were identical.
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vowel of a corresponding verb root (Vi as a comparison stimulus) (e.g., “rara-ga tetaru,” 

underlined vowels within pseudowords), probing the goal with the same vowel as explained 

above. These features of vowels were only experimentally introduced, and this matching 

involved a factor of encoding (i.e., memorization of features necessary for matching). By 

generalizing the role of Search, we assumed that Search applied to a subject–verb pair (Ohta, 

Fukui, & Sakai, 2013a, 2013b). Because Vs lacked grammatical (agreement) features (e.g., 

number, person, gender, etc.), as do regular Japanese verbs, this matching property did not 

mimic agreement itself, but involved a formal association between sample and comparison 

stimuli. It follows that the same syntactic structures were constructed from matching and 

nonmatching stimuli (e.g., “rara-ga teturu,” Tables 1 and 2), which were both well-formed, 

i.e., grammatical, in Japanese. A matching strategy (counting, for example, the first and the 

fourth stimuli for matching) was useful in solving the task, but performing the task was not a 

prerequisite for constructing syntactic structures. The matching task differed from the 

classification tasks for symbol orders (e.g., AABB vs. ABAB, where A and B are symbols 

representing certain sets of stimuli), which can be solved by counting the maximum number 

of consecutively repeated symbols. We further examined whether cortical activations were 

modulated by the length of sentences: short (S as a subscript, e.g., Conjoined(S); four-phrase 

sentences) and long (L as a subscript, e.g., Conjoined(L); six-phrase sentences) (Figure 5A), 

where the DoM domain spanned four and six relevant words, respectively. 

We tested various parametric models of syntactic, other linguistic, and nonlinguistic 

factors (Table 3; see Materials and methods, Operational definitions of all factors examined), 

some of which were based on structure-based models (Figures 6–8). Given these factors with 

a limited number of experimental conditions, we wanted to narrow down the models as much 

as possible by adopting effective contrasts. For both short and long sentences, estimates for 

the “number of Merge,” as well as those for the “number of case markers (-ga/-no)” and the 
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“depth of postponed symbols,” were identical among the three sentence conditions. By taking 

one of sentence conditions as a reference, these three factors could be eliminated from the 

analyses. Moreover, a reference condition should be chosen separately for each of short and 

long sentences, as we tested the short and long stimuli on separate days. The Conjoined 

condition was actually simplest among the three sentence conditions and thus served as an 

appropriate reference, because the Conjoined condition had same or smaller estimates as 

Nested and Simple conditions for all factors except for numbers of Search and encoding. 

Table 1. Examples of short nonmatching stimuli. 

Condition Error type Stimulus example 

Nested sentence, short 

(Nested(S)) 

[N2[N1 V1]V2*] mumu-ga rara-ga tetaru-to hihoru 

[N2[N1 V1*]V2*] dodo-ga gugu-ga tetoru-to kikaru 

[N2[N1 V1*]V2] rara-ga mumu-ga sesotta-to kikatta 

Simple sentence, short 

(Simple(S)) 
[(NN1) (VV1*)] rara-no gugu-ga tete sesatta 

Conjoined sentence, short 

(Conjoined(S)) 

[N1 V1][N2 V2*] rara-ga hihatte gugu-ga tetoru 

[N1 V1*][N2 V2*] yoyo-ga hihutte rara-ga sesotta 

[N1 V1*][N2 V2] gugu-ga tetotte zaza-ga hiharu 

Reverse-order string, short 

(Reverse(S)) 

A2 A1 B1 B2* nododo rukiku rukiku donodo 

A2 A1 B1* B2* gayoyo settasa sasseta gadodo 

A2 A1 B1* B2 mugamu sessota kittako mugamu 

Same-order string, short 

(Same(S)) 

A1 A2 B1 B2* ruteta gugagu ruteta yogayo 

A1 A2 B1* B2* yonoyo rusesu donodo rususe 

A1 A2 B1* B2 norara kuruki noyoyo kuruki 

For each condition, nonmatching stimuli with errors in different positions are listed in descending 
order of frequency. Under the sentence conditions, Vs with asterisks represent matching errors 
(underlined vowels in stimulus examples here; no underline in the real stimuli). Under the string 
conditions, Bs with asterisks represent matching errors (underlined letter strings in stimulus 
examples here; no underline in the real stimuli). 
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We further introduced letter strings, which had neither lexical associations nor 

grammatical particles, but retained both the matching orders and symbol orders of sentences. 

There were two string conditions: reverse-order strings (Reverse) and same-order strings  

Table 2. Examples of long nonmatching stimuli. 

Condition Error type Stimulus example 

Nested(L) [N3[N2[N1 V1]V2]V3*] mumu-ga zaza-ga yoyo-ga kikotta-to hihatta-to tetatta 

[N3[N2[N1 V1]V2*]V3] dodo-ga rara-ga mumu-ga hihuru-to teturu-to kikoru 

[N3[N2[N1 V1]V2*]V3*] dodo-ga mumu-ga zaza-ga tetaru-to sesoru-to hihuru 

[N3[N2[N1 V1*]V2]V3*] rara-ga mumu-ga yoyo-ga hiharu-to teturu-to sesoru 

Simple(L) [((NN)N1) ((VV1)V1*)] rara-no gugu-no yoyo-ga kiki sesotte teturu 

[((NN)N1) ((VV1*)V1)] gugu-no zaza-no dodo-ga kiki tetatte sesoru 

[((NN)N1) ((VV1*)V1*)] yoyo-no rara-no mumu-ga tete hihotte kikotta 

Conjoined(L) [N1 V1][N2 V2][N3 V3*] dodo-ga tetotte mumu-ga sesutte zaza-ga hihoru 

[N1 V1][N2 V2*][N3 V3] gugu-ga kikutte zaza-ga tetotte dodo-ga sesoru 

[N1 V1][N2 V2*][N3 V3*] zaza-ga sesatte yoyo-ga kikutte gugu-ga tetotta 

[N1 V1*][N2 V2][N3 V3*] mumu-ga sesotte rara-ga kikatte dodo-ga hihutta 

Reverse(L) A3 A2 A1 B1 B2 B3* gazaza rusose gunogu gunogu rusose nozaza 

A3 A2 A1 B1 B2* B3* ragara hiruhu gayoyo gayoyo huruhi gazaza 

A3 A2 A1 B1 B2* B3 serusa gugagu hohiru hohiru nogugu serusa 

A3 A2 A1 B1* B2 B3* gunogu ruteta nododo noyoyo ruteta gugagu 

Same(L) A1 A2 A3 B1 B2 B3* hiruho gunogu haruhi hiruho gunogu hahiru 

A1 A2 A3 B1 B2* B3* dogado rutetu zagaza dogado suruse zanoza 

A1 A2 A3 B1 B2* B3 kattaki yonoyo tutetta kattaki nododo tutetta 

A1 A2 A3 B1* B2 B3* noyoyo tahihha munomu nododo tahihha mugamu 

For the Simple(L), there were other error types, i.e., V1*(VV1*), V1(VV1*), and V1*(VV1). For the 
Nested(L) and Conjoined(L), we included nonmatching stimuli with a maximum variety of vowels in 
Vs, as shown here; for the Simple(L), we included nonmatching stimuli with a least variety of 
vowels in Vs. Therefore, the strategy of noting the variety of vowels was not effective. Under all 
conditions, there were more variations in error for the long than short stimuli. 
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Figure 5. Examples of long matching stimuli. 
(A) Three sentence conditions with long [(L) as a subscript] stimuli: Nested(L), Simple(L), and Conjoined(L). (B) 
Two string conditions with long stimuli: Reverse(L) and Same(L). 
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Table 3. Estimates of various factors to account for activations under the sentence conditions. 
Syntactic factors Nested(L) Nested(S) Simple(L) Simple(S) Conjoined(L) Conjoined(S) 

Degree of Merger (DoM) 5 3 3 2 2 2 
No. of Search 3 2 2 1 3 2 
No. of Merge 5 3 5 3 5 3 

 
Nested(L) − 
Conjoined(L) 

Nested(S) − 
Conjoined(S) 

Simple(L) − 
Conjoined(L) 

Simple(S) − 
Conjoined(S) 

DoM 3 1 1 0 
DoM + No. of Search 3 1 0 −1 
No. of Search 0 0 −1 −1 
No. of Merge 0 0 0 0 
       
Other linguistic factors Nested(L) Nested(S) Simple(L) Simple(S) Conjoined(L) Conjoined(S) 

No. of case markers (-ga/-no) 3 2 3 2 3 2 
No. of tense markers (-ru/-ta) 3 2 1 1 1 1 
Degree of nesting 2 1 1 1 1 1 
Degree of self-embedding 2 1 1 0 1 0 
No. of nodes 11 7 11 7 10 7 
Depth of postponed symbols 3 2 3 2 3 2 
Integration costs 5 3 3 2 1 1 
Storage costs 3 2 2 2 1 1 
Syntactic interference 2 1 0 0 0 0 
Positional similarity 3 2 2 0 0 0 

 
Nested(L) − 
Conjoined(L) 

Nested(S) − 
Conjoined(S) 

Simple(L) − 
Conjoined(L) 

Simple(S) − 
Conjoined(S) 

No. of case markers (-ga/-no) 0 0 0 0 
No. of tense markers (-ru/-ta) 2 1 0 0 
Degree of nesting 1 0 0 0 
Degree of self-embedding 1 1 0 0 
No. of nodes 1 0 1 0 
Depth of postponed symbols 0 0 0 0 
Integration costs 4 2 2 1 
Storage costs 2 1 1 1 
Syntactic interference 2 1 0 0 
Positional similarity 3 2 2 0 
       
Nonlinguistic factors Nested(L) Nested(S) Simple(L) Simple(S) Conjoined(L) Conjoined(S) 

Memory span 4 2 2 1 0 0 
Counting 2 1 2 1 0 0 
No. of encoding 6 4 3 2 6 4 

 
Nested(L) − 
Conjoined(L) 

Nested(S) − 
Conjoined(S) 

Simple(L) − 
Conjoined(L) 

Simple(S) − 
Conjoined(S) 

Memory span 4 2 2 1 
Counting 2 1 2 1 
No. of encoding 0 0 −3 −2 
Memory span + counting 6 3 4 2 
Memory span + No. of encoding 4 2 −1 −1 

We define the estimate of a factor as the largest value that the factor can variably take within an entire 
sentence. For each factor, its unit load should be invariable among all sentence conditions, making an 
independent subtraction between estimates of the same factor possible. Estimates under the Conjoined 
condition as a reference were subtracted from those under the other Nested and Simple conditions (e.g., 
DoM for [Nested(L) − Conjoined(L)], 5 − 2 = 3), separately for long and short sentences. Excluding the “number 
of Merge,” the estimates of which were null for all four contrasts, we regarded the “DoM + number of Search” 
(i.e., adding the estimates of two factors) as an additional factor. Among the nonlinguistic factors, “memory 
span + counting” and “memory span + number of encoding” were regarded as additional factors, because 
they were temporal order-related and memory-related factors, respectively. 
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(Same) (Figures 4B, 5B, and Table 4). As with the sentence conditions, we used the same 

matching task under both string conditions, in which the first half of a string (Ai as a sample 

stimulus) was matched with the corresponding second half (Bi as a comparison stimulus) in 

the reverse or same order. These string conditions also controlled for any involvement of 

matching strategy stated above. Between the Nested (N2 N1 V1 V2 or N3 N2 N1 V1 V2 V3, where 

each subscript denotes a matching order) and Reverse (A2 A1 B1 B2 or A3 A2 A1 B1 B2 B3) 

conditions, the curved arrows shown in Figures 4 and 5 represent the same matching order of 

sequentially presented stimuli (e.g., for N2 N1 V1 V2, the inner symbol pair of N and V is 

matched first, and then the outer symbol pair is matched). The symbol order was also 

identical among the Nested, Simple, Reverse, and Same conditions, and took the form Nn Vn 

or An Bn. To control both matching and symbol orders, we directly compared the Nested with 

the Reverse, using the Simple and Same conditions as respective references (Table 4), i.e., 

(Nested − Simple) > (Reverse − Same), where we combined the short and long stimuli. 

Combining these multiple conditions, we were able to properly examine whether different 

structures were actually constructed for sentences and strings. The goal of these thorough 

controls was to demonstrate that the purely syntactic factors of the DoM and “number of 

Search” actually modulate neural activations. 

It has been reported that more complex sentences elicit larger activations in the pars 

opercularis and pars triangularis of the left inferior frontal gyrus (L. F3op/F3t) (Stromswold 

et al., 1996; Dapretto & Bookheimer, 1999; Embick et al., 2000; Hashimoto & Sakai, 2002; 

Friederici et al., 2003; Suzuki & Sakai, 2003; Musso et al., 2003; Kinno et al., 2008), 

suggesting that the L. F3op/F3t is critical for syntactic processing as a grammar center (Sakai, 

2005). On the other hand, the left angular gyrus and supramarginal gyrus (L. AG/SMG) have 

been suggested as important for vocabulary knowledge or lexical processing (Lee et al., 

2007; Pattamadilok et al., 2010). To examine the functional specialization of any regions, 
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including the L. F3op/F3t and L. AG/SMG, in an unbiased manner, we adopted whole-brain 

analyses (Friston & Henson, 2006). The spatial and temporal resolution of fMRI, as well as 

its sensitivity, has been proven to be high enough to confirm various hypotheses, such as 

ours, about human cognitive functions. We also performed effective connectivity analyses by 

using dynamic causal modeling (DCM) (Friston, Harrison, & Penny, 2003) to examine the 

Table 4. Estimates of nonlinguistic and syntactic factors to account for activations. 

Nonlinguistic factors Nested(L) Nested(S) Simple(L) Simple(S) Reverse(L) Reverse(S) Same(L) Same(S)

Memory span 4 2 2 1 4 2 2 1 

Counting 2 1 2 1 2 1 2 1 

No. of encoding 6 4 3 2 6 4 6 4 

 Nested  Simple  Reverse  Same  

Memory span 6  3  6  3  

Counting 3  3  3  3  

No. of encoding 10  5  10  10  

 Nested − Simple   Reverse − Same   

Memory span 3    3    

Counting 0    0    

No. of encoding 5    0    

       

Syntactic factors Nested − Simple   Reverse − Same   

DoM 3    0    

DoM + No. of Search 5    0    

For Nested, Simple, Reverse, and Same conditions, estimates for short and long stimuli were added together 
because each factor’s unit load would be invariable between short and long stimuli under each of the 
sentence and string conditions. Because the matching orders or symbol orders were identical between the 
Nested and Reverse conditions, the unit load of memory span or counting was invariable between the Nested 
and Reverse conditions, which was also invariable between the Reverse and Same conditions, thus invariable 
among the Nested, Simple, Reverse, and Same conditions. Note that the estimates of memory span in 
[Nested − Simple] and [Reverse − Same] also became identical, and that the Reverse − Same contrast makes 
the listed estimates null, except memory span. The last two syntactic factors, whose models were best in 
Tables 7 and 8, consistently accounted for the results of Figure 11F. All estimates of the other factors unlisted 
here were null in [Reverse − Same], which cannot account for the results of Figures 13C and 13D. 
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functional integration of identified regions. To provide an empirical backup for the 

connection derived from DCM, we checked the anatomical plausibility of the network with 

diffusion tensor imaging (DTI). The findings of recent DTI studies have raised a debate about 

the functional roles of two different pathways in language processes: the dorsal tracts of the 

superior longitudinal fasciculus and arcuate fasciculus (SLF/AF), and the ventral tracts of the 

middle longitudinal fasciculus and extreme capsule (Saur et al., 2008; Wong et al., 2011; 

Wilson et al., 2011; Griffiths et al., 2013). Both pathways connect the inferior frontal and 

superior/middle temporal areas. The present study would elucidate the most crucial network 

and pathways for syntactic computation. 

 

2.2. Materials and methods 

2.2.1. Participants 

Eighteen native Japanese speakers (all males, aged 19–25 years), who had not 

majored in linguistics, participated in an fMRI experiment. Fifteen additional participants (14 

males, aged 19–40 years) were tested in a DTI experiment. All participants in the fMRI and 

DTI experiments were healthy and right-handed (laterality quotients: 11–100), according to 

the Edinburgh inventory (Oldfield, 1971). Prior to participation in the study, written informed 

consent was obtained from each participant after the nature and possible consequences of the 

studies were explained. Approval for the experiments was obtained from the institutional 

review board of the University of Tokyo, Komaba. 

 

2.2.2. Stimuli 

Each visual stimulus consisted of two to five yellow letters in hiragana (Figures 4C 

and 4D). The stimuli were visually presented against a dark background through an eyeglass-

like MRI-compatible display (resolution, 800 × 600; VisuaStim XGA; Resonance Technology 
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Inc., Northridge, CA). The visual stimuli were always presented at the center of the monitor. 

At the start of every trial of the Nested, Simple, and Conjoined conditions, the cue “G” (for 

grammar conditions with all grammatical sentences) was shown for 400 ms. The cue “R” (for 

reverse orders) was shown for the Reverse, and “M” (for memorizing orders) for the Same. 

Four (short) or six (long) stimuli were each sequentially presented to the participants for 600 

ms, with an interstimulus interval of 200 ms, leading to 4.5 s and 6 s trials for the short and 

long stimuli, respectively. For fixation, a red cross was always displayed at the center of the 

monitor. During fMRI experiments, stimulus presentation, as well as acquisition of responses 

and reaction times (RTs), was controlled using the LabVIEW software and interface (National 

Instruments, Austin, TX). 

Under the sentence conditions of Nested, Simple, and Conjoined with the same 

structures shown in Figure 3, the jabberwocky sentences consisting of pseudonoun and 

pseudoverb phrases alone were visually presented to participants in a phrase-by-phrase 

manner. We made six pseudonouns by repeating the same syllables with voiced consonants 

and any one of /a/, /u/, or /o/: rara, zaza, mumu, gugu, yoyo, and dodo. We also made four 

pseudoverb roots by repeating the same syllables with voiceless consonants and either /i/ or 

/e/: kiki, hihi, sese, and tete. The transitions between consecutive phrases or sentences were 

thoroughly randomized. Nonmatching stimuli included at least one odd vowel of Vi as a 

matching error (Tables 1 and 2). All matching and nonmatching stimuli were phonotactically 

allowable, but lacked lexical associations in Japanese. There were 10 conditions (Figures 4 

and 5); we prepared a set of 36 sentences for each of the sentence conditions, and a set of 36 

letter strings for each of string conditions. Each set consisted of 18 matching and 18 

nonmatching stimuli. 

We used only three kinds of grammatical particles, which represented canonical (i.e., 

in a prototypical use) case markings and syntactic information in Japanese: -ga, a nominative 
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case marker; -no, a genitive case marker; and -to, a complementizer. In all jabberwocky 

sentences, the distinction between Ns and Vs was clear without the need to memorize 

pseudowords, because Ns, but not Vs, ended with either -ga or -no, i.e., case markers in 

Japanese such as -ga and -no can be generally attached only to nominal phrases (e.g., “momo-

ga minoru” and “momo-no iro”: “the peach ripens” and “the peach’s color”). Moreover, Vs 

took a nonpast-tense form (-ru), past-tense form (-ta), or gerundive form (-te), consistent with 

the morphosyntactic and phonological features of regular Japanese verbs (Tsujimura, 2007); 

Vs ended with -to and -te introduced that-clauses and and-conjunctives, respectively (see 

examples in Figure 3 legend). Including the first verb of a compound verb in an adverbial 

form (e.g., “hihi” and “sese”), all Ns and Vs with -ga, -no, -to, and -te endings (green letters 

in Figures 3, 4A, and 5A) were associated with Merge applications to connect multiple 

nouns/verbs or sentences, amounting to the “number of Merge.” 

In the Japanese language, all regular verbs have either an ichidan (one-tier) or godan 

(five-tier) conjugation (Shibatani, 1990). In the present experiments, Vs took a nonpast-tense 

form (-ru), past-tense form (-ta), or gerundive form (-te) (e.g., “teteru,” “teteta,” and 

“tetete”), inflecting like normal ichidan verbs (e.g., “tateru,” “tateta,” and “tatete”: “build,” 

“built,” and “building”). In subordinate clauses, Vs took tense markers (-ru/-ta) just before -

to. The last V in an entire sentence always included a tense marker. As the tense of verbs can 

be independently marked in a Japanese nested sentence (e.g., “Taro-ga Hanako-ga utau-to 

omotta”: “Taro thought that Hanako would sing”), we regarded the “number of tense markers 

(-ru/-ta)” as another linguistic factor (Table 3). 

In Japanese, there are a number of morphologically/semantically related pairs of 

transitive and intransitive verbs with vowel changes (e.g., “kakeru” and “kakaru”: “hang up” 

and “hang down”) (Tsujimura, 2007). Not only vowel dissimilation, but vowel assimilation, 

i.e., vowel harmony, is commonly observed in natural languages (Nevins, 2010). Vowel 
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harmony is possible between adjacent or distant vowels within a word (Mailhot & Reiss, 

2007). Indeed, the presence of vowel harmony has been indicated in the history of the 

Japanese language (Shibatani, 1990). In the present study, vowel harmony was adopted to 

change the last, i.e., the second, vowel of the verb root, so that this vowel harmonized with 

the vowel (i.e., /a/, /u/, or /o/) of the corresponding subject (e.g., “rara-ga tetaru” and “rara-

ga tetatta” from “teteru” and “teteta,” respectively, underlined vowels within pseudowords). 

This property of vowel harmony made each Vi inflect like a normal godan verb, in which the 

root always ends in a consonant, and this change made Vi distinct from the original form of 

ichidan verbs. It should be noted that Vi in nonmatching stimuli also inflected like a normal 

godan verb (Tables 1 and 2). When a godan verb root ends in r, t, or w, a euphonic change to 

a geminated consonant t occurs before -ta or -te (e.g., “kakatta” from “kakari-ta”: “hung 

down”). Each Vi with -ta or -te (e.g., “tetatta”) was consistent with its adverbial form ri 

(“tetari-ta”), ti (“tetati-ta”), or (w)i (“tetai-ta”). On the other hand, the first verb of a 

compound verb remained an ichidan verb in an adverbial form (e.g., “tete”). 

A few grammatical, but noncanonical (i.e., in a special use), usages of -ga or -no 

exist: parallel subjects marked with -ga (e.g., “Taro-ga yuujin-ga sorezore utatta”: “Taro and 

his friend each sang”), an object marked with -ga (e.g., “Taro-ga yuujin-ga suki-da”: “Taro 

likes his friend”), an external possessor marked with -ga (e.g., “Taro-ga yuujin-ga sinsetu-

da”: “Taro’s friend is kind”), and a subject marked with -no (e.g., “Taro-no suki-na yuujin”: 

“the friend Taro likes”). Considering such canonicity, we regarded “number of case markers 

(-ga/-no)” as another linguistic factor (Table 3). However, these noncanonical case markings 

are rare in both comprehension and production, as shown by previous behavioral experiments 

(Uehara & Bradley, 2002; Miyamoto, 2002). We assured participants that case markings for 

the stimuli were always canonical (see Task instructions). Actual usage of canonical case 

markings was fully guaranteed by the high accuracy under the sentence conditions, as the 
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matching task could not be performed correctly if such noncanonical case markings were 

employed. 

Under the string conditions, for the first and second halves of the string, stimuli were 

presented in the reverse order for Reverse, whereas they were presented in the same order for 

Same (Figures 4B and 5B). Each letter string was formed by jumbling the letters of either the 

N or V, which had no lexical associations. For the Reverse and Same, there was actually no 

path connecting the nonterminal nodes of symbol pairs (e.g., A1 B1 and A2 B2) since there was 

no Merge application to connect the multiple pairs. The letter strings lacked -ga, -no, -to, or -

te endings, and their flat constructions were determined by the cue of “R” or “M” alone. We 

estimated the syntactic factors for the letter strings, but all estimates of these factors were null 

in [Reverse − Same] (see Table 4). 

We imposed the three following constraints on the letter strings. First, for the first 

half of a string (As), letter strings derived from Ns and Vs (denoted here as Ns and Vs, 

respectively) were in the order of NV or VN for the short stimuli, and NVN or VNV for the 

long stimuli. Secondly, we avoided endings with -ga/-no for Ns, but some Vs with -ru/-ta 

endings were used as stimuli. Lastly, neither Vs with -to/-te endings nor Vs in the adverbial 

form were used for making Vs. 

Examples of long sentences are shown in Figure 5A. For the Nested(L) condition, a 

sentence at the lowest hierarchical level (S) was self-embedded twice into an entire sentence 

(S”). For the Simple(L) condition, we tested both stimuli of (VV1)V1 and V1(VV1), where two 

verbs, i.e., VV1 (a compound verb) and V1, were conjoined. Branching constructions for Ns 

in the Simple(L) were ambiguous between (NN)N1 and N(NN1), like “Japanese history 

teacher” ([[Japanese history] teacher] and [Japanese [history teacher]], respectively), both 

of which yielded the same DoM. For Japanese relative clauses, as well as noun phrases with a 

genitive case marker -no, left-branching constructions predominate (cf. Miller & Chomsky, 
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1963, pp. 471–472). For the Conjoined(L) condition, the DoM for a node was increased by 

one from the top nodes of entire conjoined sentences (S’) to the same hierarchical level of 

conjoined sentences (Ss). Since all the conjoined sentences were equivalent with respect to 

their status in multiple branching, the two Merge applications involved here were assumed to 

follow, as a marked (i.e., “exceptional”) option, the associative law (i.e., [[a # b] # c] = [a # 

[b # c]], where # represents Merge). This type of associative Merge (which yields n-ary 

structures by applying n − 1 times) has been argued to be permissible for a certain class of 

marked constructions in human language (Fukui, 2011). In this way, the number of Merge 

operations in a sentence is always one less than the number of terminal nodes, irrespective of 

sentence structures. 

 

2.2.3. Task 

For each trial of a matching task under the sentence conditions or string conditions, 

participants judged whether all pairs of the sample stimulus (N or A) and comparison 

stimulus (V or B) matched, and responded by pressing one of two buttons (right for 

matching, and left for nonmatching) after the last stimulus appeared (Figures 4C and 4D). 

The accuracy and RTs were collected until 500 ms after the last stimulus disappeared. No 

feedback on any trial’s performance was given to any participant. 

For the Nested condition, an entire sentence was constructed by nesting sentences in 

the form of [N2[N1 V1]V2] or [N3[N2[N1 V1]V2]V3], where [Ni Vi] represents a subject–verb 

pair of a sentence (Figures 4A and 5A). In head-last languages, the key element (the “head”) 

that determines the properties of a phrase appears at the end of the phrase. Because Japanese 

is a head-last, and hence an SOV (verb-final) language, a main verb is placed after a 

subordinate clause. Therefore, Japanese sentences naturally yield nested structures of Nn Vn 

without having to employ, as in English, object-relative clauses (e.g., “The boy whoi we like ti 
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sings”), which require “movement” of an object (i.e., with more Merge applications) leaving 

behind a “trace” (ti). For the Simple condition, a simple sentence was constructed by adding 

the same number of left/right branches to both Ns and Vs. The last noun (i.e., head) in the 

branches of Ns made a subject–verb pair with the last verb (i.e., head) of a compound verb. 

Each simple sentence thus took the form of [(NN1) (VV1)], etc. For the Conjoined condition, 

an entire sentence was constructed by conjoining sentences in the form of [N1 V1][N2 V2] or 

[N1 V1][N2 V2][N3 V3]. 

In a single run of 60 trials for the short stimuli, there were 10 trials each for the 

sentence conditions (Nested(S), Simple(S), and Conjoined(S)), and 15 trials each for the string 

conditions (Reverse(S) and Same(S)). Trials alternated between sentence and string conditions. 

If the sentence and string sequences were separated, the order of the Nested, Simple, and 

Conjoined was pseudo-randomized without repetition, and the order of the Reverse and Same 

was counterbalanced as Same-Reverse-Reverse-Same-… or Reverse-Same-Same-Reverse-… 

In a single run of 50 trials for the long stimuli, there were 10 trials each for the sentence 

conditions (Nested(L), Simple(L), and Conjoined(L)) and string conditions (Reverse(L) and 

Same(L)), in the order of string-sentence-string-sentence-sentence-string-… With a maximum 

of nine runs, the same sentence stimulus appeared no more than three times for each 

participant. 

 

2.2.4. Task instructions 

Before the experiments, all participants were fully informed about the stimuli and 

the task. We instructed and trained them in the sentence conditions in the order of Simple(S), 

Conjoined(S), Nested(S), Simple(L), Conjoined(L), and Nested(L), as the number of vowel 

extractions increased in this order. The following is a translation of the Japanese-language 

task instructions. 
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[Day 1 instructions] 
Words used in a task 

Special pseudowords and letter strings will be used in a task. You don’t have to 
remember the following words. 

Pseudowords used as nouns (six items) are “rara,” “zaza,” “mumu,” “gugu,” “yoyo,” 
and “dodo.” 

Grammatical particles attached to nouns (two items) are “-ga,” which marks a 
subject, and “-no,” which marks a modifier (e.g., “zaza-ga,” “mumu-no,” etc.). 

 
Pseudowords used as verbs (four items) are “hihi,” “kiki,” “sese,” and “tete.” 
Verb endings (five kinds) and verb conjugation patterns are the following:  

1. Verb endings: “-ru” (present tense), “-tta” (past tense), “-tte” (e.g., 
“utatte”), “-ru-to” (e.g., “odoru-to”), and “-tta-to” (e.g., “odotta-to”); and  
2. Verb conjugation: When a subject corresponds to a verb within a 
sentence, the latter vowel (second syllable) of the verb root will change to 
match the vowel of the corresponding subject. You don’t have to recall the 
root form of the verb. 

 
Correct examples:  

“rara-ga hiharu” (conjugation of “hihi”) 
“mumu-ga kikutta” (conjugation of “kiki”) 
“dodo-ga sesoru” (conjugation of “sese”) 
“rara-ga tetatta” (conjugation of “tete”) 

 
Wrong examples:  

“zaza-ga hihoru” 
“gugu-ga kikotta” 
“yoyo-ga sesuru” 
“zaza-ga tetoru” 

 
Other letter strings include “ragara,” “nogugu,” “huhhita,” “kottaki,” etc. 
 

Types of conditions 
1) Grammar (G) conditions, 2) Memory (M) condition, and 3) Reverse (R) condition. 

You will perform a task under the three types of conditions during scanning of your 
head images inside the MRI scanner. At the beginning of each trial, a cue (“G,” “M,” or “R”) 
denoting a condition will appear. By noting these cues, please judge which condition will be 
presented. During the task, a small red cross will remain at the center of the monitor. Focus 
on this red cross as much as you can, but you may blink. Please do not speak or read aloud 
during the task. 

During the task, please respond by pressing a button. Hold the switch box with both 
hands, with the red button to your right. When you press a button, use your right thumb 
without looking at the buttons. Please note the following crucial points:  
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• Press a button only once, when necessary. 
• Please press the button as fast as you can, while the stimuli are still being 

presented. 
• Every stimulus consists of a cue denoting a condition and of four or six phrases 

or strings. 
• Do not press a button before the last stimulus. 
 

1. Grammar conditions 
There are six patterns under the Grammar conditions. The task is to judge whether 

the vowel of the subject matches the last vowel of the corresponding verb root. At the 
beginning of each trial, the cue “G” denoting a condition will appear. Do not overlook this 
cue, so that you can answer correctly. For every pattern shown below, “G” will appear. 
 
1.1 Pattern 1 (Simple(S)) 

Pattern 1 is similar to “Taro-no ani-ga sinobi aruita” (“Taro’s brother sneaked 
around”). The subject is “ani,” and the verb is “aruita.” Please judge whether the vowel of 
the second phrase (subject) matches that of the fourth phrase (corresponding verb). Please 
press the rightmost button if correct, and press the second one from the right if wrong. Press 
the button quickly with your right thumb, while the fourth stimulus is presented. 
 

Correct examples:  
“zaza-no yoyo-ga hihi tetoru” 

 
“zaza-no yoyo-ga hihi tetotta” 

Wrong examples:  
“zaza-no yoyo-ga tete sesuru” 

 
“zaza-no yoyo-ga tete sesatta” 

 
1.2 Pattern 2 (Conjoined(S)) 

Pattern 2 is similar to that in “Taro-ga utatte Hanako-ga odoru” (“Taro sings, and 
Hanako dances”). Please judge whether the vowel of the first phrase matches that of the 
second phrase, and the vowel of the third phrase matches that of the fourth phrase. 
 

Correct examples:  
“zaza-ga tetatte yoyo-ga kikoru” 

 
 “zaza-ga tetatte yoyo-ga kikotta” 

Wrong examples:  
“zaza-ga tetatte yoyo-ga kikuru” 

 
 “zaza-ga tetotte yoyo-ga kikatta” 

 
1.3 Pattern 3 (Nested(S)) 

Pattern 3 is similar to that in “Taro-ga Hanako-ga utau-to omotta” (“Taro thought 
that Hanako would sing”). Please judge whether the vowel of the first phrase matches that of 
the fourth phrase, and the vowel of the second phrase matches that of the third phrase. 

×

×

×

××
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Correct examples: 

“zaza-ga yoyo-ga tetoru-to kikaru” 

  
“zaza-ga yoyo-ga tetotta-to kikatta” 

Wrong examples:  
 

“zaza-ga yoyo-ga tetoru-to kikoru” 
 

 
“zaza-ga yoyo-ga tetatta-to kikutta” 

 
Tips 

1. Please do not forget the first noun. 
2. Some sentences have multiple errors; please check them all the way through the 
last phrase. 
3. Please press the button as fast as you can, while the last phrase is still being 
presented. 
4. When the last phrase disappears, please stop pressing the button, and concentrate 
on the next trial. 

 
2. Memory condition (Same(S)) 

The task is to memorize the presented letter strings. At the beginning of each trial, 
the cue “M” denoting a condition will appear. Do not overlook this cue, so that you can 
answer correctly. 

Four strings will appear one by one on the monitor. Please memorize these four 
strings, and judge whether the first and third strings, and the second and fourth ones, are 
exactly the same. 

 
Correct examples:  

“yogayo tarute yogayo tarute” 
“hiruhu garara hiruhu garara” 

Wrong examples:  
“yonoyo tettata yonoyo tatetta” 
 “hihhata nogugu settaso gunogu” 

 
3. Reverse condition (Reverse(S)) 

The task is to memorize the presented letter strings. At the beginning of each trial, 
the cue “R” denoting a condition will appear. Do not overlook this cue, so that you can 
answer correctly. 

Four strings will appear one by one on the monitor. Please memorize these four 
strings, and judge whether the first and fourth strings, and the second and third ones, are 
exactly the same. 
  

Correct examples:  
“yogayo tarute tarute yogayo” 
“hiruhu garara garara hiruhu” 

×
×

×



36 

Wrong examples:  
“yonoyo tettata tatetta yonoyo” 
“hihhata nogugu nogugu settaso” 

 
[Day 2 instructions] 
1. Grammar conditions 
1.1 Pattern 4 (Simple(L)) 

Pattern 4 is similar to that in “Taro-no ani-no yujin-ga hasiri mawatte utatta” 
(“Taro’s brother’s friend run around and sang”). The subject is “yujin,” and the verbs are 
“mawatte” and “utatta.” Please judge whether the vowel of the third phrase matches that of 
the fourth or fifth phrase, and the vowel of the third phrase matches that of the sixth phrase. 
Please press the rightmost button if correct, and press the second one from the right if wrong. 
Press the button quickly with your right thumb, while the sixth stimulus is being presented. 

 
Correct examples:  

“zaza-no yoyo-no mumu-ga tete kikutte hihuru” 

 
“zaza-no yoyo-no mumu-ga tetutte kiki hihutta” 

 
Wrong examples:  

“zaza-no yoyo-no mumu-ga tetutte kiki hiharu” 
 

 
“zaza-no yoyo-no mumu-ga tete kikatte hihotta” 

 
1.2 Pattern 5 (Conjoined(L)) 

Pattern 5 is similar to that of “Taro-ga odotte Hanako-ga utatte Jiro-ga asobu” 
(“Taro dances, Hanako sings, and Jiro plays”). Please judge whether the vowel of the first 
phrase matches that of the second phrase, the vowel of the third phrase matches that of the 
fourth phrase, and the vowel of the fifth phrase matches that of the sixth phrase. 
 

Correct examples:  
“zaza-ga tetatte yoyo-ga kikotte mumu-ga hihuru” 
 
“zaza-ga tetatte yoyo-ga kikotte mumu-ga hihutta” 

Wrong examples:  
“zaza-ga tetatte yoyo-ga kikotte mumu-ga hiharu” 

 
“zaza-ga tetutte yoyo-ga kikotte mumu-ga hihatta” 

 
1.3 Pattern 6 (Nested(L)) 

Pattern 6 is similar to that of “Taro-ga Hanako-ga Jiro-ga utau-to omou-to 
kangaeta” (“Taro supposed that Hanako would think that Jiro would sing”). Please judge 
whether the vowel of the first phrase matches that of the sixth phrase, the vowel of the second 
phrase matches that of the fifth phrase, and the vowel of the third phrase matches that of the 
fourth phrase. 

×

×
×

×

× ×
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Correct examples:  

“zaza-ga yoyo-ga mumu-ga teturu-to kikoru-to hiharu” 

 

 
“zaza-ga yoyo-ga mumu-ga tetutta-to kikotta-to hihatta” 

 

Wrong examples:  
“zaza-ga yoyo-ga mumu-ga teturu-to kikoru-to hihoru” 
 

 

“zaza-ga yoyo-ga mumu-ga tetutta-to kikatta-to hihotta” 
 

2. Memory condition (Same(L)) 
Six strings will appear one by one on the monitor. Please memorize these six strings, 

and judge whether the first and fourth strings, the second and fifth ones, and the third and 
sixth ones, are exactly the same. 

 
Correct examples:  

“yogayo teruta gagugu yogayo teruta gagugu” 
“huruhi garara ruseso huruhi garara ruseso” 

Wrong examples:  
“noyoyo tattate gunogu noyoyo tattate munomu” 
“huttahi ranora sottase hihhuta ranora tattate” 

 
3. Reverse condition (Reverse(L)) 

Six strings will appear one by one on the monitor. Please memorize these six strings, 
and judge whether the first and sixth strings, the second and fifth ones, and the third and 
fourth ones, are exactly the same. 

 
Correct examples:  

“yogayo teruta gagugu gagugu teruta yogayo” 
“huruhi garara ruseso ruseso garara huruhi” 

Wrong examples:  
“noyoyo tattate gunogu munomu tattate noyoyo” 
“huttahi ranora sottase tattate ranora hihhuta” 

 

2.2.5. Training procedures 

Experiments with short or long stimuli were performed on separate days with short 

stimuli presented before long. Before scanning, the participants were trained until they scored 

80 % at each of the following stages. Each of the Simple, Conjoined, and Nested conditions 

were separately tested with self-paced reading in 10 to 30 trials with this order. Only one 

×

×
×
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participant completed 50 trials for the Nested(L). When these conditions were randomized, all 

participants took additional 20 or 40 trials. The Reverse and Same conditions were much 

easier to perform, and so required only 10 or 20 trials for a randomized sequence from the 

beginning. When all of these conditions were mixed, participants additionally took 20 or 40 

trials. Finally, participants were tested on a sequence of all conditions at the regular rate of 

presentation (see Figures 4C and 4D) in 40 and 20 trials for the short and long stimuli, 

respectively. Only three participants required 60 or 80 trials for the short stimuli. Due to 

technical problems, four participants were retested with short or long stimuli on another day; 

two participants received 20 trials for the mixed conditions with self-paced reading, and all 

received 20–60 trials for the final stage. 

 

2.2.6. Operational definitions of all factors examined 

We operationally defined syntactic factors within an entire sentence (see Table 3) as 

follows. If a tree structure [a Phrase-marker (P-marker) associated with a linguistic 

expression] contains as its subtree a domain in which a node N immediately dominates n 

elements (n > 1), then we can say that the domain constitutes a merged structure. Note that 

under the binary Merge hypothesis, n equals 2, except for relatively rare “multiple branching” 

structures (see Stimuli). In the present study, we abstract away from the noun/verb vs. noun 

phrase/verb phrase distinction, as well as the sentence vs. complementizer phrase distinction. 

The operational definitions of syntactic factors examined here are as follows (see Figures 4A 

and 5A). “Number of Merge” is the total number of binary branches. “Number of Search” is 

the total number of correspondences between sample and comparison stimuli. The DoM is 

the largest integer m meeting the following condition: There is a continuous path passing 

through m + 1 nodes N0, …, Nm, where each Ni (i ≥ 1) is merged in the subtree dominated by 

Ni − 1. 
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From both theoretical and experimental points of view, we also examined in detail 

the validity of other structure-based models, here categorized as “other linguistic factors.” If a 

merged structure is surrounded by non-null elements on both sides, we get a “nested” 

structure. If a nesting structure occurs within the same type of elements, the structure is called 

a “self-embedded” structure. “Degree of nesting” (or “degree of self-embedding”) is the 

largest integer m meeting the following condition (Figure 6A): There is a continuous path 

passing through m + 1 nodes N0, …, Nm, where each Ni (i ≥ 1) is nested (or fully self-

embedded) in the subtree dominated by Ni − 1 (Miller & Chomsky, 1963). “Number of nodes” 

is the total number of nonterminal nodes and terminal nodes (Figure 6B). 

 

Figure 6. Application of other structure-based models to sentences with complex 
structures, I. 
(A) The digits shown in red and blue denote “degree of nesting” and “degree of self-embedding,” 
respectively. Nested and self-embedded constructions occur within sentences (Ss). Note that each 
shortest “zigzag path” counts one for the degree of nesting or self-embedding. For the Nested(L), S1 
dominates [N2 S2 V2], and S0 in turn dominates [N3 S1 V3], i.e., [N3[N2 S2 V2]V3]; the degree of nesting 
or self-embedding is thus two (the number of blue dots minus one). For the Simple(L), both of 
(NN)N1 and N(NN1) yield the same maximum degree of nesting or self-embedding for an entire 
sentence. (B) The digits shown in red denote the “number of nodes.”
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As for “depth of postponed symbols,” its original definition was for producing a 

given output sequence (Yngve, 1960). As we tested stimuli for understanding a given input 

sequence, we reversed the numbering to reflect the listener/reader’s perspective as follows: 

“Depth of postponed symbols” is the amount of temporary storage needed to parse a given 

input sequence, which can be calculated in the following way: First, number the branches of 

each node from 0 to n − 1 (Figure 7, the digits shown in red), where n is the number of 

branches from that node. Start numbering from the left. Then, compute the depth d of each 

terminal node by adding together the numbers written along all branches leading to that 

terminal node, starting from the leftmost branch (i.e., the first input for the listener/reader). 

According to the dependency locality theory (Gibson, 2000), two components of 

sentence parsing consume computational resources: “integration costs,” which are the costs 

 

Figure 7. Application of other structure-based models to sentences with complex 
structures, II. 
The digits shown in red and blue denote the number of branches from each node and “depth of 
postponed symbols,” respectively (Yngve, 1960). The largest estimate can be obtained by adding 
together the digits shown in red with circles. For the Simple(L), the largest estimate of “depth of 
postponed symbols” is obtained, when Vs take a right-branching construction of V1(VV1). For the 
Conjoined(L), the depth of postponed symbols is increased by two to reach the rightmost branches, 
when conjoining three sentences at a multiple-branching node. 
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of connecting words in the structure for the input thus far, and “storage costs,” which are the 

minimum number of words required to complete the current input as a grammatical sentence  

(Figure 8A). Integration costs are the sum of “new discourse referents” (Ns and Vs in the 

present paradigm) and “structural integrations” (the number of discourse referents in the 

intervening region). According to similarity-based interference theory (Lewis & Nakayama, 

2002), processing costs are the combined effects on syntactic attachments of “retroactive 

interference” (the number of nominative noun phrases between the subject–verb pair when a 

verb is processed) and “proactive interference” (the number of nominative noun phrases 

preceding the subject and still active in the parse) (Figure 8B). By adding both interference 

Figure 8. Application of other structure-based models to sentences with complex 
structures, III. 
(A) The digits shown in red and blue denote “integration costs” and “storage costs,” respectively 
(Gibson, 2000). Integration costs are estimated for every stimulus by adding together “new 
discourse referents” and “structural integrations.” For example, at V2 of the Nested(L), N1 and V1 
intervene while making [N2[N1 V1]V2] (structural integrations = 2), and one verb completes the 
input with -to or -te (storage cost = 1). Note that the estimate of maximum structural integrations 
in a sentence matches with that of memory span in the present paradigm. (B) The digits shown 
in red and blue denote “syntactic interference” and “positional similarity,” respectively (Lewis & 
Nakayama, 2002). Syntactic interference is estimated at every stimulus by adding together 
“retroactive interference” and “proactive interference.” For example, at V2 of the Nested(L), the 
attachment of V2 to N2 suffers from one unit of retroactive interference from N1, and from one 
unit of proactive interference from N3 (syntactic interference = 2). There are three adjacent 
nominative noun phrases in this sentence (positional similarity = 3). 
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effects together, “syntactic interference” is determined. Another source of interference is 

“positional similarity” which is the number of adjacent syntactically similar noun phrases 

(i.e., marked with similar case markers). 

Nonlinguistic factors may also variably contribute to the processing load of 

sentences with different constructions. At least three basic nonlinguistic factors may be 

involved in the present experiment: memory span, counting, and “number of encoding.” The 

operational definitions of these nonlinguistic factors are as follows. Memory span is the 

maximum cost needed to maintain an item for matching against intervening or skipped 

stimuli (e.g., zero for N1 V1 in the Conjoined(S), and one for N1 VV1 in the Simple(S)), and its 

operational definition is the maximum number of cusps in the curved arrows (Figures 4 and 

5). Counting is an operation needed to track symbol repetition, and its operational definition 

is the maximum number of consecutively repeated symbols (e.g., zero for NVNV or 

NVNVNV, one for NNVV, and two for NNNVVV). Encoding is the memorization of 

features necessary for matching, and “number of encoding” is the total number of sample and 

comparison stimuli. Memory span and counting were considered temporal order-related 

factors in the present experiment; memory span was related to matching orders, while 

counting was related to symbol orders. On the other hand, memory span and “number of 

encoding” were memory-related factors. 

 

2.2.7. MRI data acquisition 

Depending on the time of the experiments, the fMRI scans were conducted on a 1.5 

T scanner (Stratis II, Premium; Hitachi Medical Corporation, Tokyo, Japan) with a bird-cage 

head coil, and the DTI scans were conducted on a 3.0 T scanner (Signa HDxt; GE Healthcare, 

Milwaukee, WI) with an 8-channel phased-array head coil. For the fMRI, we scanned 26 

axial slices that were 3-mm thick with a 1-mm gap, covering from z = −40 to 63 mm from the 
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anterior to posterior commissure (AC-PC) line, with a gradient-echo echo-planar imaging 

(EPI) sequence [repetition time (TR) = 3 s, echo time (TE) = 51 ms, flip angle (FA) = 90°, 

field of view (FOV) = 192 × 192 mm2, resolution = 3 × 3 mm2]. In a single scanning run, we 

obtained 92 volumes for the short stimuli and 101 volumes for the long stimuli following 

three dummy images, which allowed for the rise of the MR signals. For each participant, five 

to nine runs for each of the short and long stimuli were tested, and four to nine runs without 

head movement were used for analyses. After completion of the fMRI session, high-

resolution T1-weighted images of the whole brain (145 axial slices, 1 × 1 × 1 mm3) were 

acquired from all participants with a radio-frequency-spoiled steady-state acquisition with a 

rewound gradient echo sequence (TR = 30 ms, TE = 8 ms, FA = 60°, FOV = 256 × 256 mm2). 

For the DTI, we scanned 50 axial slices that were 3-mm thick without a gap, 

covering from z = −60 to 90 mm from the AC–PC line, with a diffusion-weighted spin-echo 

EPI sequence (b-value = 1,000 s/mm2, TR = 15 s, TE = 87 ms, FOV = 256 × 256 mm2, 

resolution = 2 × 2 mm2, number of excitations = 2). A single image without diffusion-

weighting (b0) was initially acquired, and then diffusion-weighting was isotropically 

distributed along 60 diffusion-encoding gradient directions. After completion of the DTI 

sessions, high-resolution T1-weighted images of the whole brain (192 axial slices, 1 × 1 × 1 

mm3) were acquired from all participants with a fast-spoiled gradient recalled acquisition in 

the steady state sequence (TR = 10 ms, TE = 4 ms, FA = 25°, FOV = 256 × 256 mm2). 

 

2.2.8. fMRI data analyses 

Data analyses of fMRI were performed in a standard manner using SPM5 statistical 

parametric mapping software (Wellcome Trust Centre for Neuroimaging, London, UK; 

http://www.fil.ion.ucl.ac.uk/spm/) (Friston et al., 1995), implemented on MATLAB software 

(MathWorks, Natick, MA). The acquisition timing of each slice was corrected using the 
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middle slice (the thirteenth slice chronologically) as a reference for the EPI data. We 

realigned the EPI data to the first volume in each run, and removed runs that included data 

with a translation of >2 mm in any of the three directions and with a rotation of >1.4° around 

any of the three axes; these thresholds of head movement were empirically determined from 

the previous studies (Hashimoto & Sakai, 2002; Suzuki & Sakai, 2003; Kinno et al., 2008). 

Each participant’s T1-weighted structural image was co-registered to the mean 

functional image generated during realignment. The co-registered structural image was 

spatially normalized to the standard brain space as defined by the Montreal Neurological 

Institute (MNI) using the “unified segmentation” algorithm with medium regularization, 

which is a generative model that combines tissue segmentation, bias correction, and spatial 

normalization in the inversion of a single unified model (Ashburner & Friston, 2005). All of 

the normalized structural images were visually inspected and compared with the standard 

brain for the absence of any further deformation. After spatial normalization, the resultant 

deformation field was applied to the realigned functional imaging data in each run, which 

was resampled every 3 mm using seventh-degree B-spline interpolation. All normalized 

functional images were then smoothed by using an isotropic Gaussian kernel of 9 mm full-

width at half maximum (FWHM). Low-frequency noise was removed by high-pass filtering 

at 1/128 Hz. 

In a first-level analysis (i.e., fixed-effects analysis), each participant’s hemodynamic 

responses induced by the trials were modeled with a boxcar function with a duration of 3.5 s 

(short stimuli) or 5.1 s (long stimuli), i.e., from the onset of the first stimulus (N or A) to 500 

ms after the disappearance of the last stimulus (Figures 4C and 4D), and the boxcar function 

was convolved with a hemodynamic response function. These functions were used as run-

specific covariates for matching or nonmatching stimuli for each condition in a general linear 

model (GLM). Only event-related responses to correct trials were analyzed. 
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For a second-level analysis (i.e., random effects analysis) using either an analysis of 

covariance (ANCOVA) with t-statistics or a one-sample t-test, contrast images were 

generated for each participant and used for intersubject comparisons. For all fMRI data 

analyses, the statistical threshold was set to P < 0.05 for the voxel level, corrected for 

multiple comparisons [family-wise error (FWE) correction] across the whole brain. To 

discount any general cognitive factors related to task difficulty from the evaluation of cortical 

activation, accuracy was used as a nuisance variable for each contrast of random effects 

analyses. Note that accuracy was more sensitive than RTs in the matching task (see Results, 

Condition and length effects on the accuracy/RTs). If a subtraction between conditions served 

as a reference, an exclusive mask (uncorrected P < 0.01) was applied to reduce the 

contribution of deactivation. For example, in (Nested − Conjoined) > (Simple − Conjoined), 

an exclusive mask of the [Conjoined − Simple] contrast was applied to reduce the 

contribution of deactivation in [Simple − Conjoined]. 

We used a factorial design for a two-way ANCOVA with condition [Nested − 

Conjoined, Simple − Conjoined] × length [Long, Short], where activations in [Nested − 

Conjoined] or [Simple − Conjoined] for long or short sentences were estimated for each 

participant, and then the main contrast (as denoted by a greater-than symbol) was calculated 

for intersubject comparisons. A one-way ANCOVA was used for a direct comparison of 

(Nested(L) − Conjoined(L)) > (Simple(S) − Conjoined(S)), and for (Nested − Simple) > (Reverse 

− Same) contrasting the sentence and string conditions. To ensure an independent statistical 

test in the latter contrast, the inclusive mask of (Nested − Conjoined) > (Simple − Conjoined) 

(corrected P < 0.05) was iteratively applied to the contrast image of each participant, thereby 

leaving out that participant from the calculation of the mask, i.e., the “leave-one-subject-out 

cross-validation” approach (Esterman et al., 2010). One-sample t-tests were used for 
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[Nonmatching − Matching] separately under the sentence and string conditions, and for 

[Reverse − Same]. 

For the anatomical identification of activated regions, we basically used the 

Anatomical Automatic Labeling method (Tzourio-Mazoyer et al., 2002). In region of interest 

(ROI) analyses, the percent signal changes averaged across the voxels in each activated 

region were extracted using the MarsBaR-toolbox (http://marsbar.sourceforge.net/). To fit a 

model of each factor to activations, we calculated a fitting scale and residual sum of squares 

(RSS) using MATLAB; we obtained the fitted values by multiplying the estimates by the 

fitting scale. For a no-intercept model, the coefficient of determination (r2) should be 

calculated as r2 = 1 − Σ(y − ŷ)2/Σy2, where ŷ and y denote the fitted values and the signal 

changes for each contrast, respectively (Kvålseth, 1985). For this calculation, we used R 

software (http://www.r-project.org/). By using a restricted maximum-likelihood method, we 

further fitted “linear mixed-effects models” with individual activations as dependent 

variables, the estimates of each factor as a regressor, and the participants as random effects. 

For this calculation, we used an nlme (linear and nonlinear mixed-effects models) package 

(http://cran.r-project.org/web/packages/nlme/) on R software. 

 

2.2.9. DCM data analyses 

Data analyses of DCM were performed using DCM10 on SPM 8 (Friston, Harrison, 

& Penny, 2003). We concatenated the scans from the separate runs, and reanalyzed the 

preprocessed data with GLM, which contained regressors representing the Nested, Simple, 

Reverse, and Same conditions for making a meaningful contrast (correct trials alone; see 

Table 4), as well as a regressor representing all conditions (correct trials alone including 

those for the Conjoined condition) for driving inputs. The regressor representing the Nested 
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condition was also used for a modulatory effect. In addition, the effects of transition between 

runs were taken into account by adding regressors for each run. 

We set the following functional and anatomical constraints for selecting ROIs of the 

L. F3op/F3t or L. SMG for each participant with individually preprocessed data (Stephan et 

al., 2007). The individual local maxima should be significant in (Nested − Simple) > 

(Reverse − Same) estimated for each participant (uncorrected P < 0.05); they should be 

nearest to the group local maxima of (Nested − Simple) > (Reverse − Same) within twice the 

FWHM of the smoothing kernel; and they should locate to the L. F3op/F3t or L. SMG. The 

averaged MNI coordinates of these individual local maxima were (−50, 26, 25) and (−39, 

−45, 43) for the L. F3op/F3t and L. SMG, respectively. With the volume-of-interest (VOI) 

tool in SPM8, the time series was extracted by taking the first eigenvariate across all 

suprathreshold voxels within 6 mm of the individual local maxima, defined as a ROI in this 

case. 

We specified nine models with systematic variations in a modulatory effect and 

driving inputs (Figure 9). After estimating all models for each participant, we identified the 

most likely model by using random-effects Bayesian model selection (BMS) on DCM10. 

Inferences from BMS can be based on the expected probability, i.e., the expected likelihood 

of obtaining the model for any randomly selected participants, or on the exceedance 

probability, i.e., the probability that the model is a better fit to the data than any other models 

tested. We adopted the family inference method (Penny et al., 2010), in which three 

modulatory families were compared first, and then the input models within the winning 

family were further compared. After determining the best model, the parameter estimates of 

this particular model were evaluated by a one-sample t-test (Stephan et al., 2010). 
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2.2.10. DTI data analyses 

Data analyses of DTI were performed using FSL [Oxford Centre for Functional MRI 

of the Brain’s (FMRIB) Software Library 4.1.7; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/] with 

FDT (FMRIB’s Diffusion Toolbox 2.0) (Smith et al., 2004). Diffusion-weighted images were 

first resliced to isotropic voxels of 1 mm3, and then eddy current distortions and motion 

artifacts were corrected using affine registration to the b0 image. We then extracted the brain 

shape from the b0 image and created the binary mask image (i.e., zero for the outside of the 

brain) for each participant. Markov Chain Monte Carlo sampling was performed to build up 

distributions on diffusion parameters at each voxel, which allowed for an estimation of the 

most probable pathway by Bayesian estimation (number of fibers modeled per voxel = 2) 

Figure 9. The DCM models tested. 
We assumed bidirectional connectivity between the L. F3op/F3t and L. SMG. The models were 
grouped into three modulatory families based on the modulations of the connections under the 
Nested condition: Family A (A1–A3), in which the connection from the L. SMG to the L. F3op/F3t 
was modulated, Family B (B1–B3), in which the connection from the L. F3op/F3t to the L. SMG 
was modulated, and Family C (C1–C3), in which both connections were modulated. Each family 
was composed of three “input models” with regard to the regions receiving driving inputs. 
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(Behrens et al., 2007). The implicit modeling of noise in a probabilistic model made it 

possible to track the fibers near the gray matter. 

By using FLIRT (FMRIB’s Linear Image Registration Tool) on FSL, the b0 image 

was first coregistered to the individual T1-weighted image for each participant, and the T1-

weighted image was spatially normalized to the MNI space by using both affine and 

nonlinear transformations with FLIRT and FNIRT (FMRIB’s Nonlinear Image Registration 

Tool). With the transformation matrices and estimated deformation fields, the peak MNI 

coordinates of each region were transformed back to the individual b0 images, and a sphere 

of 6-mm radius centered at the transformed coordinates was defined as a seed mask for the 

probabilistic tractography. All fiber tracking was conducted in an individual DTI space. To 

find the connections between two ROIs, we set two seed masks and retained only those tracts 

that passed through both seed masks. Probabilistic fiber tracking was initiated from all voxels 

within the seed masks to generate 10,000 streamline samples, with a 0.5-mm step length, a 

maximum number of steps of 2,000, a curvature threshold of 0.2 (±78.5°), and a loopcheck 

option. 

In the connectivity distributions obtained, each voxel value represented the total 

number of the streamline samples passing through that voxel. The connectivity probability 

maps were then created for each participant by dividing the connectivity distributions with a 

sum of the waytotal values, i.e., the total number of generated tracts from one seed mask that 

reached the other seed mask. This normalization approach allowed for a comparison of the 

connectivity probability values across participants; note that the pattern of connectivity did 

not change by this scaling. 

To remove any spurious connections, the pathways in individual participants were 

thresholded to include only voxels that had at least 1% connectivity probability values (Flöel 

et al., 2009). The thresholded pathways in each participant were then spatially normalized as 
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above and binarized using “fslmaths” on FSL. The binarized pathways were overlaid across 

participants to produce a population probability map for each pathway, in which the voxel 

values represent the number of participants with a pathway through that voxel. The 

population probability map with thresholding (at least seven out of 15 participants) was 

smoothed and presented using MRIcroN software 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/). 

 

2.3. Results 

2.3.1. Condition and length effects on the accuracy/RTs 

Accuracy data, as well as RTs measured from the onset of the last stimulus, are 

shown in Figure 10. The high accuracy under both sentence and string conditions indicated 

the participants’ reliable and consistent judgments on the matching task. A two-way repeated-

measures analysis of variance (rANOVA) with the condition [Nested, Simple, Conjoined, 

Reverse, Simple] × length [Long, Short] for the accuracy showed a significant main effect of 

condition [F(4, 68) = 15, P < 0.0001] and an interaction of condition by length [F(4, 68) = 

12, P < 0.0001], but a main effect of length was not significant [F(4, 68) = 3.8, P = 0.07]. 

The RTs also showed a significant main effect of condition [F(4, 68) = 43, P < 0.0001] and 

an interaction of condition by length [F(4, 68) = 13, P < 0.0001], but a main effect of length 

was not significant [F(4, 68) = 1.1, P = 0.30]. Post-hoc paired t-tests among all conditions 

(significance level at α = 0.005, Bonferroni corrected) showed that the accuracy for the 

Nested was significantly lower than that under the other conditions including the Reverse (P 

< 0.0001). This result indicates that the Nested was the most demanding condition, which 

cannot be explained by the nonlinguistic factors we examined (cf. the same estimates for the 

Nested and Reverse conditions in Table 4, as well as its notes). On the other hand, post-hoc 

paired t-tests showed that the RTs under each sentence condition were significantly longer 
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than those under each string condition (P < 0.0001). This difficulty was not in the task itself, 

but in vowel extraction; the sentence conditions, but not the string conditions, involved vowel 

extraction from the second syllable of Vi presented in hiragana, especially for the last Vi that 

were directly linked with RTs (Figures 4C and 4D). The load for vowel extraction would also 

be larger for the short stimuli, as we tested the short and long stimuli on separate days in the 

order short, then long. Indeed, the accuracy for the Conjoined(S) was significantly lower than 

that for the Conjoined(L) [t(17) = 3.1, P = 0.006] (significance level at α = 0.01, Bonferroni 

corrected), and the RTs for the Conjoined(S) were significantly longer than those for the 

Conjoined(L) [t(17) = 2.8, P = 0.01], probably reflecting associated effects for novices. For the 

Conjoined, length effects were apparently absent, and the estimates of both memory span and 

Figure 10. Condition and length effects on the accuracy/RTs. 
(A) The accuracy (mean ± SEM) for long (L) and short (S) stimuli, denoted by filled and open bars, 
respectively. Asterisks indicate the significance level at corrected P < 0.05 (paired t-tests). (B) RTs 
from the onset of the last stimulus. 
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counting, which were associated with length effects, were indeed null for the Conjoined alone 

(Table 3). In the present study, we mainly analyzed activations that would show length 

effects (i.e., Long > Short), excluding the involvement of vowel extraction or effects for 

novices. Moreover, we used the Conjoined condition, which showed such effects most 

strongly, as a reference for both the Nested and Simple conditions. Therefore, we can safely 

conclude that any elicited effects did not directly relate to the task. 

Under the string conditions, the accuracy for the long stimuli was significantly lower 

than that for the short stimuli (P < 0.001), indicating length effects. For the Nested and 

Simple conditions, in contrast, the effects for novices and length would have been canceled 

out, as neither the accuracy nor RTs differed significantly between the short and long stimuli 

(P > 0.05). Under the string conditions, the accuracy was more sensitive than the RTs. 

 

2.3.2. Functional evidence of syntactic computation in the language areas 

We examined brain activation under the sentence conditions, focusing in particular 

on selective activations for the most-demanding Nested condition. In a two-way analysis of 

covariance (ANCOVA) with the condition [Nested − Conjoined, Simple − Conjoined] × 

length [Long, Short], the main effect of condition, i.e., (Nested − Conjoined) > (Simple − 

Conjoined) while combining Long and Short, resulted in left-dominant activation, especially 

in the L. F3op/F3t, left lateral premotor cortex and F3op (L. LPMC/F3op), and L. SMG 

(Figure 11A and Table 5). Other significantly activated regions were the right (R) F3op/F3t, 

R. LPMC, anterior cingulate cortex (ACC), and R. SMG. The main effect of length, i.e., 

Long > Short while combining [Nested − Conjoined] and [Simple − Conjoined], also showed 

significant activations in the same regions, while there were more significant voxels in the 

right hemisphere (Figure 11B). Therefore, length effects alone could not account for the 
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consistent activation in these regions. An interaction of condition by length did not show any 

significant activation. 

Figure 11. Functional evidence of syntactic computation in language areas. 
For (A) and (B), we used a two-way ANCOVA with condition × length; for (C) and (E), a one-way ANCOVA was 
used. Activations were projected onto the left (L) and right lateral surfaces of a standard brain. See Tables 5 and 
6 for their stereotactic coordinates. (A) Regions identified by the main effect of condition, i.e., (Nested − 
Conjoined) > (Simple − Conjoined). (B) Regions identified by the main effect of length, i.e., Long > Short while 
combining [Nested − Conjoined] and [Simple − Conjoined]. (C) Regions identified by (Nested(L) − Conjoined(L)) > 
(Simple(S) − Conjoined(S)), which reflected both main effects. (D) Percent signal changes for [Nested − Conjoined] 
and [Simple − Conjoined], averaged across the L. F3op/F3t and L. SMG in (C) (mean ± SEM). Overlaid red dots 
and lines denote the values fitted with the estimates (digits in red) for the best models: the DoM for the L. 
F3op/F3t and the “DoM + number of Search” for the L. SMG. (E) Regions identified by (Nested − Simple) > 
(Reverse − Same). (F) Percent signal changes for [Nested − Simple] and [Reverse − Same], averaged across 
the L. F3op/F3t and L. SMG in (E). 
Symbols used: L, long sentences; S, short sentences; n.s., not significant. 
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Table 5. Regions related to the sentence conditions. 

Contrast Brain region BA Side x y z Z Value Voxels

Main effect of condition, 
(Nested − Conjoined) > 
(Simple − Conjoined) 

F3op/F3t 44/45 L −51 27 24 5.6 109 

 LPMC/F3op 6/44 L −48 9 30 5.4 * 

 F3op/F3t 44/45 R 54 15 36 4.9 2 

 LPMC 6 R 33 3 51 5.3 12 

 Insula — L −30 24 −3 5.7 20 

 ACC 6/8/32 M −3 18 48 6.1 45 

 SMG 40 L −54 −33 48 5.3 101 

    −39 −42 39 5.9 * 

   R 42 −48 54 5.3 64 

 AG/SMG 39/40 L −30 −60 48 4.9 11 

 Cerebellum, lobule VI — R 27 −69 −21 5.6 26 

         

Main effect of length, 
Long > Short: 
Nested − Conjoined, 
Simple − Conjoined 

F3op/F3t 44/45 L −48 12 18 5.9 63 

 LPMC/F3op 6/44 L −48 3 39 4.7 3 

   R 48 6 30 6.0 129 

 F3op/F3t 44/45 R 54 12 30 5.8 * 

 LPMC 6 R 30 0 48 5.9 * 

 ACC 6/8/32 M 0 27 39 4.9 9 

 SMG 40 L −57 −30 36 4.7 1 

    −36 −45 39 5.3 26 

   R 42 −42 42 5.5 116 

 AG/SMG 39/40 R 33 −63 27 5.4 * 

Stereotactic coordinates (x, y, z) in the Montreal Neurological Institute (MNI) space (mm) are shown for 
each activation peak of Z values (corrected P < 0.05). BA, Brodmann’s area; L, left hemisphere; R, right 
hemisphere; M, medial; F3op/F3t, pars opercularis and pars triangularis of the inferior frontal gyrus; LPMC, 
lateral premotor cortex; ACC, anterior cingulate cortex; SMG, supramarginal gyrus; AG, angular gyrus. The 
region with an asterisk is included within the same cluster shown one row above. 
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To further narrow down candidate regions, we tested (Nested(L) − Conjoined(L)) > 

(Simple(S) − Conjoined(S)), which reflected both main effects, and found significant activation 

in the L. F3op/F3t and L. SMG (Figure 11C and Table 6). The data used for selecting these 

regions and those for subsequent analyses were not independent, which might cause a 

selection bias (Kriegeskorte et al., 2009). Among the four contrasts, however, [Nested(L) − 

Conjoined(L)] and [Simple(S) − Conjoined(S)] yielded two extremes of the estimates of most 

factors, without apparent bias among the factors (see Table 3). In addition to both main 

effects, the percent signal changes in the L. F3op/F3t and L. SMG (Figure 11D), averaged 

across significant voxels, showed a significant length effect within each of the [Nested − 

Conjoined] and [Simple − Conjoined] contrasts (paired t-test, P < 0.02; significance level at α 

= 0.025, Bonferroni corrected). For these two critical regions, we examined the percent signal 

changes under the Nested and Simple conditions by subtracting those under the Conjoined 

condition, which had the simplest tree structures (Figure 4 and Table 3), separately for long 

and short sentences. Since we used appropriate references of the Conjoined(L) and 

Conjoined(S), we examined whether likewise subtracted estimates of each factor (e.g., DoM 

for [Nested(L) − Conjoined(L)]; see Table 3) directly explained the parametric modulation of 

activations in the four contrasting pairs [Nested(L) − Conjoined(L)], [Nested(S) − Conjoined(S)], 

[Simple(L) − Conjoined(L)], and [Simple(S) − Conjoined(S)]. The percent signal changes in the 

L. F3op/F3t and L. SMG indeed correlated exactly in a step-wise manner to the parametric 

models of the DoM [3, 1, 1, 0] and “DoM + number of Search” [3, 1, 0, −1], respectively. 

We further examined 19 models proposed in theoretical linguistics, 

psycholinguistics, and natural language processing to verify that the models of the DoM and 

“DoM + number of Search” best explained the cortical activations in the L. F3op/F3t and L. 

SMG. All contrasts of [Nested(L) − Conjoined(L)], etc. predicted that the activations should be 

exactly zero when a factor produced no effect or load relative to the Conjoined. We thus 
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adopted a no-intercept model, in which the percent signal changes in each region were fitted 

with a single (thus minimal) scale parameter to a model of each factor using its subtracted 

estimates. For the four contrasts, a least-squares method was used to minimize the RSS for 

the four fitted values (i.e., four estimates multiplied by a fitting scale) against the 

Table 6. Regions related to the sentence conditions and/or string conditions. 

Contrast Brain region BA Side x y z Z Value Voxels

(Nested(L) − Conjoined(L)) > 
(Simple(S) − Conjoined(S)) 

F3op/F3t 44/45 L −45 18 18 4.8 1 

 SMG 40 L −42 −45 42 4.8 2 

         

(Nested − Simple) > 
(Reverse − Same) 

F3op/F3t 44/45 L −51 24 24 5.8 5 

 ACC 6/8/32 M −3 18 45 5.2 1 

 SMG 40 L −39 −45 42 5.7 27 

   R 39 −48 54 4.9 2 

 Cerebellum, lobule VI — R 27 −69 −24 4.9 1 

         

Nonmatching − Matching: 
Sentence 

F3op/F3t 44/45 R 54 18 30 5.2 14 

 LPMC/F3op 6/44 L −45 9 30 4.8 1 

 ACC 6/8/32 M 6 27 42 6.9 52 

         

Nonmatching − Matching: 
String 

F3op/F3t 44/45 R 54 18 30 5.3 21 

   R 39 18 33 4.7 1 

 SMG 40 R 42 −30 48 5.0 2 

         

Reverse − Same LPMC 6 R 27 −9 51 4.7 1 

         

BA, Brodmann’s area; L, left hemisphere; R, right hemisphere; M, medial; F3op/F3t, pars opercularis and pars 
triangularis of the inferior frontal gyrus; LPMC, lateral premotor cortex; ACC, anterior cingulate cortex; SMG, 
supramarginal gyrus; AG, angular gyrus. 
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corresponding signal changes averaged across participants (Tables 7 and 8). Among a 

number of parametric models tested, the model of the DoM for the L. F3op/F3t, as well as 

that of the “DoM + number of Search” for the L. SMG, indeed produced by far the least RSS 

(≤ 0.0020) and largest r2 (≥ 0.97). Goodness of fit was further evaluated for each model by 

using a one-sample t-test (significance level at α = 0.0125, Bonferroni corrected) between the 

fitted value for each contrast and individual activations. The model of the DoM for the L. 

F3op/F3t, as well as that of the “DoM + number of Search” for the L. SMG, produced no 

significant deviation for the four contrasts (one-sample t-test, P ≥ 0.17). For the L. SMG, the 

second-best model was the DoM (RSS = 0.0063, r2 = 0.92, and its smallest P = 0.013 was 

marginal). To further take account of interindividual variability, we fitted “linear mixed-

effects models” with individual activations (Tables 7 and 8), and found that the models of the 

DoM and “DoM + number of Search” were by far more likely for the L. F3op/F3t and L. 

SMG, respectively. 

Even if we took the Simple condition as a reference for subtracted estimates, we 

obtained the same results as the best models (RSS ≤ 0.0017, r2 ≥ 0.96). Moreover, these best 

models produced no significant deviation for the four contrasts (e.g., [Nested(L) − Simple(L)]) 

(P ≥ 0.17). The linear mixed-effects models also showed that these models were more likely 

than other models tested (likelihood ratio ≤ 0.19). These results demonstrated that the DoM, 

as well as the number of Search, was indeed a key syntactic factor that accounted for the 

syntax-selective activation of the L. F3op/F3t and L. SMG. 

Next, we examined whether the selective activation in these regions was replicated 

even after controlling both matching and symbol orders (e.g., N2 N1 V1 V2 and A2 A1 B1 B2) 

between the Nested and Reverse, i.e., in (Nested − Simple) > (Reverse − Same) combining 

the short and long stimuli, which further controlled various linguistic and nonlinguistic 

factors, such as the number of Merge, number of case markers, number of nodes, memory 
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Table 7. Fittings and likelihood of various models tested for the L. F3op/F3t. 

Syntactic factors RSS r2 P values for four contrasts 
Log-
likelihood 

Likelihood 
ratio 

*DoM 0.0007 0.99 0.17, 0.92, 0.97, 0.99 65.0 1.0 

DoM + No. of Search 0.0065 0.88 0.0035, 0.064, 0.63, 0.88 59.2 3.1 × 10−3 

No. of Search 0.052 <0.1 <0.0001, 0.018, 0.019, 0.031 33.4 2.0 × 10−14

No. of Merge 0.053 0 <0.0001, 0.0035, 0.018, 0.17 n/a n/a 

      

Other linguistic factors      

No. of case markers (-ga/-no) 0.053 0 <0.0001, 0.0035, 0.018, 0.17 n/a n/a 

No. of tense markers (-ru/-ta) 0.0067 0.87 0.0035, 0.17, 0.32, 0.56 59.7 4.8 × 10−3 

Degree of nesting 0.010 0.80 0.0035, 0.018, 0.17, >0.99 57.1 3.7 × 10−4 

Degree of self-embedding 0.015 0.71 0.0035, 0.0075, 0.019, 0.17 53.3 8.7 × 10−6 

No. of nodes 0.015 0.72 0.0050, 0.0082, 0.018, 0.17 53.7 1.2 × 10−5 

Depth of postponed symbols 0.053 0 <0.0001, 0.0035, 0.018, 0.17 n/a n/a 

Integration costs 0.0066 0.88 0.0017, 0,15, 0.48, 0.53 59.0 2.5 × 10−3 

Storage costs 0.014 0.74 <0.0001, 0.024, 0.83, 0.85 53.8 1.3 × 10−5 

Syntactic interference 0.0067 0.87 0.0035, 0.17, 0.32, 0.56 59.7 4.8 × 10−3 

Positional similarity 0.0055 0.90 0.051, 0.12, 0.17, 0.19 60.1 7.8 × 10−3 

      

Nonlinguistic factors      

Memory span 0.0066 0.88 0.0017, 0,15, 0.48, 0.53 59.0 2.5 × 10−3 

Counting 0.017 0.67 0.0003, 0.0013, 0.035, 0.72 50.8 7.0 × 10−7 

No. of encoding 0.051 <0.1 <0.0001, 0.014, 0.018, 0.12 32.9 1.2 × 10−14

Memory span + counting 0.0099 0.81 0.0007, 0.035, 0.15, 0.76 55.5 7.9 × 10−5 

Memory span + No. of encoding 0.015 0.72 <0.0001, 0.10, 0.46, 0.59 52.5 3.6 × 10−6 

Percent signal changes in the L. F3op/F3t were fitted with a single scale parameter to a model of each factor 
using its subtracted estimates (Table 3) for the four contrasts of [Nested(L) − Conjoined(L)], [Nested(S) − 
Conjoined(S)], [Simple(L) − Conjoined(L)], and [Simple(S) − Conjoined(S)]. The P values for the t-tests are shown 
in ascending order. Note that the models of the DoM (with an asterisk) resulted in the best fit of 19 models 
tested for explaining activations in the L. F3op/F3t, i.e., with the least residual sum of squares (RSS), largest 
coefficient of determination (r2), and larger P values. The likelihood of models with all null estimates was 
incalculable (n/a). The likelihood ratio was taken as the ratio of each model’s likelihood to the best model’s 
likelihood. The best models of the DoM for the L. F3op/F3t were by far more likely than the other models. 
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Table 8. Fittings and likelihood of various models tested for the L. SMG. 

Syntactic factors RSS r2 P values for four contrasts 
Log-
likelihood 

Likelihood 
ratio 

DoM 0.0063 0.92 0.013, 0.083, 0.44, 0.49 58.8 0.079 

*DoM + No. of Search 0.0020 0.97 0.22, 0.30, 0.42, 0.62 61.4 1.0 

No. of Search 0.075 <0.1 <0.0001, 0.0061, 0.045, 0.090 23.6 3.8 × 10−17

No. of Merge 0.076 0 <0.0001, 0.0061, 0.013, 0.22 n/a n/a 

      

Other linguistic factors      

No. of case markers (-ga/-no) 0.076 0 <0.0001, 0.0061, 0.013, 0.22 n/a n/a 

No. of tense markers (-ru/-ta) 0.0079 0.90 0.013, 0.023, 0.22, 0.34 55.9 4.1 × 10−3 

Degree of nesting 0.0088 0.88 0.0061, 0.013, 0.22, >0.99 55.5 2.8 × 10−3 

Degree of self-embedding 0.023 0.69 0.0002, 0.0018, 0.013, 0.22 45.5 1.2 × 10−7 

No. of nodes 0.033 0.56 0.0004, 0.0005, 0.0061, 0.013 40.1 6.0 × 10−10

Depth of postponed symbols 0.076 0 <0.0001, 0.0061, 0.013, 0.22 n/a n/a 

Integration costs 0.021 0.72 0.0001, 0.014, 0.028, 0.18 46.3 2.7 × 10−7 

Storage costs 0.032 0.58 <0.0001, 0.0014, 0.084, 0.49 40.3 7.1 × 10−10

Syntactic interference 0.0079 0.90 0.013, 0.023, 0.22, 0.34 55.9 4.1 × 10−3 

Positional similarity 0.020 0.73 0.0039, 0.0052, 0.013, 0.029 47.6 1.0 × 10−6 

      

Nonlinguistic factors      

Memory span 0.021 0.72 0.0001, 0.014, 0.028, 0.18 46.3 2.7 × 10−7 

Counting 0.041 0.46 <0.0001, <0.0001, 0.0039, 0.77 35.6 6.2 × 10−12

No. of encoding 0.076 <0.1 <0.0001, 0.0061, 0.017, 0.16 22.5 1.4 × 10−17

Memory span + counting 0.028 0.63 <0.0001, 0.0018, 0.0086, 0.44 41.3 1.9 × 10−9 

Memory span + No. of encoding 0.011 0.85 0.0034, 0.051, 0.13, 0.81 52.1 9.7 × 10−5 

Percent signal changes in the L. SMG were fitted with a single scale parameter to a model of each factor using 
its subtracted estimates for the four contrasts. Note that the model of the “DoM + number of Search” (with an 
asterisk) resulted in the best fit of 19 models tested for explaining activations in the L. SMG. The likelihood of 
models with all null estimates was incalculable (n/a). The likelihood ratio was taken as the ratio of each 
model’s likelihood to the best model’s likelihood. The best model of the “DoM + number of Search” for the L. 
SMG was by far more likely than the other models. 
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span, and counting. This contrast indeed resulted in significant activation in the L. F3op/F3t 

and L. SMG (Figure 11E and Table 6). In both regions, the signal changes in [Reverse − 

Same] were not significantly different from 0 (one-sample t-test, P > 0.1) (Figure 11F). 

Moreover, the models of the DoM and “DoM + number of Search” were also consistent with 

the signal changes in both [Nested − Simple] and [Reverse − Same] (Table 4). Number of 

encoding might explain the results of Figure 11F, but its estimates cannot consistently explain 

the results of Figure 11D. These results directly support Hypotheses I and II, such that the 

basic frames of syntactic structures are determined essentially by functional elements, 

whereas the DoM, along with the number of Search, is a key factor to properly quantifying 

the complexity of the syntactic structures. 

 

2.3.3. Significance of the connectivity between the L. F3op/F3t and L. SMG 

To elucidate the relationships between the L. F3op/F3t and L. SMG, we modeled 

effective connectivity between the L. F3op/F3t and L. SMG with DCM. Our interest was in 

identifying the direction of the connectivity modulated by the Nested condition with the 

largest DoM, which has the largest DoM of all conditions. First, we assumed intrinsic, i.e., 

task-independent, bi-directional connections, and the models were grouped into three 

“modulatory families”: families A, B, and C, corresponding to the modulation for the bottom-

up connection from the L. SMG to the L. F3op/F3t, for the top-down connection from the L. 

F3op/F3t to the L. SMG, and for both connections, respectively. Each family was composed 

of three “input models” corresponding to the regions receiving driving inputs (see Figure 9 

for all DCM models tested). Using a random-effects BMS, we found that family A was the 

most likely family (expected probability = 0.66, exceedance probability = 0.85) (Figures 12A 

and 12B). According to a second BMS for the input models within family A, model A1, in 

which the L. F3op/F3t received driving inputs, was the best and most probable model 
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(expected probability = 0.77, exceedance probability = 0.95). For this particular model, we 

further tested whether the parameter estimates were significantly different from zero. The 

intrinsic connection from the L. F3op/F3t to the L. SMG was significantly positive [+0.22; 

one-sample t-test, t(17) = 4.8, P < 0.0002] (significance level at α = 0.025, Bonferroni 

corrected within a parameter class of intrinsic connections) (Figure 12C), indicating that this 

top-down connection was consistent among the participants. The modulatory effect for the 

bottom-up connection was inhibitory [−0.17; t(17) = 1.4, P = 0.17], though it did not reach 

the significance level. 

To further confirm the anatomical plausibility of the network between the L. 

F3op/F3t and L. SMG revealed by DCM, we used DTI with a probabilistic tractography. 

Seed masks were set in the pair of the L. F3op/F3t and L. SMG, both of which were 

Figure 12. Effective and anatomical connectivity between the L. F3op/F3t and L. SMG. 
(A–C) The results of DCM, testing effective connectivity between the L. F3op/F3t and L. SMG (see Figure 
9). Bar graphs show expected probabilities (A) and exceedance probabilities (B) for each modulatory family 
and for the input models of the winning family A. The best model A1 (C) included a significant top-down 
connection from the L. F3op/F3t to L. SMG (a thick line). (D) Anatomical connectivity between the L. 
F3op/F3t and L. SMG revealed by DTI. The population probability map is shown on the left lateral and dorsal 
surfaces of a standard brain with maximum intensity projection. Blue spheres represent seed regions of the 
L. F3op/F3t and L. SMG. 
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significantly activated in (Nested(L) − Conjoined(L)) > (Simple(S) − Conjoined(S)). We observed 

that a single continuous cluster of the left SLF/AF that connected these regions (cluster size, 

3,189 mm3), together with much smaller clusters or islands (Figure 12D). Moreover, the left 

SLF/AF was consistently observed in all participants (see Appendices, Figure S1). 

 

2.3.4. Modulation of right frontal activation by nonlinguistic factors 

We further examined the involvement of any error-related factors, which were 

residual factors that might induce cortical activation or deactivation. It should be noted that 

the factors listed in Tables 3 and 4 were equivalent between the matching and nonmatching 

stimuli. The [Nonmatching − Matching] contrast under either the sentence conditions (i.e., 

[Nested + Simple + Conjoined]) or the string conditions (i.e., [Reverse + Same]) consistently 

resulted in right-dominant activation, especially in the R. F3op/F3t (Figures 13A and 13B), 

which was in accordance with the same demand of the matching task (Figures 4C and 4D). 

Other significantly activated regions were the L. LPMC/F3op and ACC under the sentence 

conditions, as well as the R. SMG under the string conditions (Table 6). As for the [Matching 

− Nonmatching] contrast, no significant activation was seen under either the sentence or 

string conditions. 

We also examined the activation in [Reverse − Same] for the effect of matching 

orders (e.g., A2 A1 B1 B2 vs. A1 A2 B1 B2; Figures 4B and 5B). The significant activation was 

observed only in the R. LPMC (Figure 13C and Table 6), which suggested that activations 

could indeed be estimated by one and only one non-null factor of memory span in [Reverse − 

Same] (Table 4). In [Nested − Simple], signal changes in the R. LPMC were also significant 

(one-sample t-test, P < 0.05), but were not significantly different between [Nested − Simple] 

and [Reverse − Same] (paired t-test, P = 0.98) (Figure 13D). This result was consistent with 

the equivalent estimates of memory span between [Nested − Simple] and [Reverse − Same]. 
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It should be noted that R. LPMC activation was also observed for the main effects of 

condition and length (Figures 11A and 11B), which probably reflected the factor of memory 

span. 

 

2.4. Discussion 

By employing a novel paradigm to directly contrast jabberwocky sentences (Nested, 

Simple, and Conjoined) with letter strings (Reverse and Same) (Figures 4 and 5), we obtained 

four striking results. First, we found that the DoM was indeed a key syntactic factor that 

Figure 13. Modulation of the right frontal activations by nonlinguistic factors. 
One-sample t-tests were used for the contrasts indicated. (A) Regions identified by the 
Nonmatching − Matching contrast under the sentence conditions, related to error-related factors. 
Note the right-dominant activation, especially in the R. F3op/F3t. (B) Regions identified by the 
Nonmatching − Matching contrast under the string conditions. (C) Regions identified by the 
Reverse − Same contrast. This contrast revealed the difference in matching orders (e.g., A2 A1 B1 

B2 vs. A1 A2 B1 B2). Note the significant activation in the R. LPMC. (D) The percent signal changes 
in the R. LPMC, which was consistent with the equivalent estimates of memory span (see Table 4).
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could account for syntax-selective activations in the L. F3op/F3t and L. SMG, localized by 

the (Nested(L) − Conjoined(L)) > (Simple(S) − Conjoined(S)) contrast (Figures 11C and 11D). 

By constructing a model of each syntactic, other linguistic, or nonlinguistic factor using the 

estimates of each factor (Table 3), we demonstrated that the models of the DoM and “DoM + 

number of Search” were the models that best accounted for L. F3op/F3t and L. SMG 

activation, respectively (Tables 7 and 8). Second, by directly contrasting jabberwocky 

sentences with letter strings, i.e., (Nested − Simple) > (Reverse − Same), we showed that 

selective activation in the L. F3op/F3t and L. SMG, which was consistent with the 

involvement of the syntactic factors demonstrated above, was replicated irrespective of 

identical matching and symbol orders (e.g., N2 N1 V1 V2 and A2 A1 B1 B2 for the Nested and 

Reverse, respectively) (Figures 11E and 11F). This point is particularly important, because 

temporal order-related or memory-related factors have often been confused with differences 

in structure or grammar type. Our results strongly support syntactic structures being 

recursively constructed when well-formed sentences are given. Third, by using DCM, we 

found the best model to be that with an inhibitory modulatory effect for the bottom-up 

connectivity from the L. SMG to L. F3op/F3t, and with driving inputs to the L. F3op/F3t 

(Figures 12A and 12B). For this best model, the top-down connection from the L. F3op/F3t to 

L. SMG was significantly positive (Figure 12C). By using DTI, we also confirmed that the 

left dorsal pathway of the SLF/AF consistently connected these two regions (Figure 12D). 

These results suggest a transmission of information about the DoM through this specific 

dorsal pathway. Finally, we established that nonlinguistic order-related and error-related 

factors significantly activated mostly right frontal regions. The difference in memory span 

significantly modulated the R. LPMC activation in [Reverse − Same], suggesting that this 

region plays a major role in tracking matching orders (Figures 13C and 13D), while error-

related factors in [Nonmatching − Matching] consistently modulated the R. F3op/F3t 
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activation under both sentence and string conditions (Figures 13A and 13B). In summary, 

these results indicate that the identified network of the L. F3op/F3t and L. SMG subserves the 

calculation of the DoM in recursively merged sentences, and that the R. LPMC monitors 

memory span to drive a memory-maintenance system. If multiple factors, such as the number 

of nodes, memory span, etc., are equally plausible for explaining activations, then a 

superordinate concept, such as “syntactic complexity,” can be a more useful factor than 

individual factors. However, in the present experiment, the minimal factor of the DoM 

sufficiently explained the activation pattern observed, while other factors were by far less 

likely to (see Tables 7 and 8). Therefore, syntactic complexity was restricted and replaced by 

the DoM as a more fundamental concept, just like the historical development from “gene” to 

DNA. 

Our finding that the L. F3op/F3t subserves the syntactic computation further extends 

the functional specialization of this region reported previously (Embick et al., 2000; Musso et 

al., 2003; Sakai, 2005; Kinno et al., 2008). Some previous fMRI studies have interpreted the 

L. F3op/F3t activation as reflecting temporal order-related or memory-related factors 

(Bahlmann et al., 2007; Santi & Grodzinsky, 2010). However, these previous studies 

contrasted hierarchically complex sentences with simpler sentences, while it is clear that 

syntactic factors, including the DoM, were also involved. Moreover, the previously reported 

modulation of L. F3op/F3t activation by scrambling word orders (Röder et al., 2002) can be 

consistently explained by the DoM, because scrambling requires “movements” of noun 

phrases to higher nodes by applying more Merge operations, thus increasing the DoM. The 

size of linguistic constituents also correlates with the DoM, especially when the number of 

left/right branches increases as in the case of Pallier, Devauchelle, and Dehaene (2011). In 

the present study, we characterized the neural substrates of syntactic computation by 

segregating a number of possible factors, and demonstrated that the exact activations in the L. 
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F3op/F3t can be used to calculate the DoM. Indeed, each structure of our jabberwocky 

sentences was uniquely represented by the DoM, together with the numbers of Merge and 

Search (see Table 3). 

A previous fMRI study involving the implicit learning of an artificial regular 

grammar has reported that the “ungrammatical − grammatical” contrast for symbol sequences 

activated the L. F3op/F3t, suggesting that such activation was due to artificial syntactic 

violations among any error-related factors (Petersson, Forkstam, & Ingvar, 2004). However, 

this result may not depend on the presence of errors themselves, but on other rule-related 

processes associated with error correction, etc. In contrast, we have previously demonstrated 

that an explicit syntactic decision enhanced the L. F3op/F3t activation under both 

grammatical and ungrammatical conditions (Suzuki & Sakai, 2003). On the other hand, a 

recent fMRI study has compared nested and branching constructions, suggesting that 

activation in the bilateral posterior superior temporal cortex reflects an integration of lexico-

semantic and syntactic information (Friederici, Makuuchi, & Bahlmann, 2009). However, 

this result also reflected the effects of semantic factors that were inevitably confounded with 

any structural processing, because real German sentences were used as stimuli in the study. 

Furthermore, according to our paradigm, the temporal cortex in neither of the hemispheres 

showed any significant activation for the Nested condition (Figure 11). It was thus quite 

important to verify that activation in the L. F3op/F3t, but not in the temporal cortex, is indeed 

crucial for syntactic processing. 

In the present study, we found that the L. SMG activations were modulated by the 

“DoM + number of Search.” Consistent with the suggested role of the L. AG/SMG for 

vocabulary knowledge or lexical processing (Lee et al., 2007; Pattamadilok et al., 2010), the 

number of Search is likely to induce such a modulation, in the sense that Search assigns a 

specific feature that can be linked with morphosyntactic changes. The Japanese language 
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happens to lack agreement of grammatical features, but it is nevertheless equipped with the 

general Search procedure attested for various phenomena in the language (Fukui & Sakai, 

2003). Our results suggest that Search actually applied to a subject–verb pair of a 

jabberwocky sentence in the present paradigm, where the relevant features (in this case, 

vowels) are experimentally “inserted.” It should also be noted in this connection that the 

Japanese language exhibits a phenomenon called “honorification,” in which the case of an 

honored person and the form of honorifics on the verb optionally match (Gunji, 1987; Ivana 

& Sakai, 2007). Search assigns such features as honorifics. Our previous fMRI study using an 

honorification judgment task reported activation in the L. F3op/F3t and L. LPMC, as well as 

in the left inferior parietal gyrus and L. AG (Momo, Sakai, & Sakai, 2008), which is 

consistent with activation in the L. AG/SMG in the present study (Tables 5 and 6). 

Our DCM and DTI results further indicate that L. SMG activation reflecting the 

DoM mirrored a top-down influence from the L. F3op/F3t through the left dorsal pathway of 

the SLF/AF. A recent DCM study with a picture–sentence matching task has suggested that 

the L. F3op/F3t received driving inputs (den Ouden et al., 2012), which was consistent with 

our DCM results. Moreover, our previous studies revealed that the functional connectivity 

between the L. F3t/F3O (pars orbitalis) and L. AG/SMG was selectively enhanced during 

sentence processing (Homae, Yahata, & Sakai, 2003), and that the L. AG/SMG was also 

activated during the identification of correct past-tense forms of verbs, probably reflecting an 

integration of syntactic and vocabulary knowledge (Tatsuno & Sakai, 2005). Considering the 

role of the L. AG/SMG in lexical processing, the Search operation based on the DoM would 

be essential in assigning relevant features to syntactic objects derived from lexical items. 

In [Nonmatching − Matching], the R. F3op/F3t was consistently activated under 

both sentence and string conditions (Figures 13A and 13B), whereas the L. LPMC/F3op, 

ACC, or R. SMG were activated under either condition. These four regions were also 
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activated in (Nested(L) − Conjoined(L)) > (Simple(S) − Conjoined(S)), and in Long > Short 

while combining [Nested − Conjoined] and [Simple − Conjoined]; the ACC and R. SMG 

were activated in (Nested − Simple) > (Reverse − Same) as well. It appears likely that a part 

of the activation in these four regions reflects error-related factors including the detection and 

correction of errors, which would be more demanding with the Nested condition as well as in 

the Long > Short contrast. Because the L. LPMC has been known to selectively subserve 

syntactic processing (Indefrey et al., 2001; Hashimoto & Sakai, 2002; Kinno et al., 2008), a 

weak activation in the L. LPMC/F3op only under the sentence conditions may reflect the 

confirmation of sentence constructions when confronted with nonmatching stimuli. On the 

other hand, it has been suggested that the dorsal ACC plays a major role during conflict 

monitoring during a highly demanding task, e.g., a Stroop task (Botvinick, Cohen, & Carter, 

2004). Our recent magnetoencephalography study also suggested that the anterior portion of 

the ACC is a candidate region for monitoring syntactically anomalous sentences (Iijima, 

Fukui, & Sakai, 2009). Moreover, previous studies on response inhibition, typically tested 

with a No-go task, suggested that the R. F3op/F3t, ACC, and R. SMG were also involved in 

monitoring anomalous stimuli (Chikazoe et al., 2007). In contrast to these factors that 

activated mostly the right and medial regions, it is noteworthy that syntactic factors clearly 

activated the left frontal and parietal regions. 

Any factors associated with matching and symbol orders might influence activation 

in the language areas, but we clearly showed that the R. LPMC was activated in [Reverse − 

Same] (Figure 13C) for the effect of memory span related to matching orders. The study of 

real German sentences also reported activation in the right dorsal premotor area for the 

contrast between nested vs. branching constructions (Friederici, Makuuchi, & Bahlmann, 

2009); however, the right dorsal premotor area was not the same region as the R. LPMC in 

the present study. In this German study, memory span was controlled by the insertion of 
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some words, while matching and symbol orders still differed, and thus factors other than 

memory span were inevitably introduced to interpret the right dorsal premotor activation. The 

identification of critical factors in language processing thus inevitably depends on an 

experimental design that involves an effective contrast of conditions. One promising direction 

for research is further clarifying activations modulated by other linguistic and nonlinguistic 

factors, which may eventually make possible the elucidation of all aspects of linguistic 

information in the human brain. 
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Chapter 3. Further Confirmation of Hypotheses I and II 
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3.1. A picture–sentence matching paradigm 

We further examined whether our hypotheses held for various cases discussed in 

previous studies. In our fMRI study (Kinno et al., 2008), we used a picture–sentence 

matching task with three sentence types in Japanese: active, passive, and scrambled sentences 

(Figure 14A). In the picture–sentence matching task, participants read a sentence silently and 

judged whether the action depicted in a picture matched the meaning of the sentence. Each 

sentence had two arguments, noun phrases that each assume a different grammatical relation 

(“subject, direct object, or indirect object” in linguistic terms) in a sentence, as well as a 

different semantic role (“agent, experiencer, or patient” in linguistic terms, i.e., an agent 

performs the action, and an experiencer/patient is affected by it). These three conditions were 

thus called Two-argument conditions. More specifically, the active, passive, and scrambled 

sentences corresponded to “agent and patient” (subject and direct object), “experiencer and 

agent” (subject and indirect object), and “patient and agent” (direct object and subject) types, 

respectively. Pictures consisted of two stick figures, each of which was distinguished by a 

“head” symbol: a circle (○), square (□), or triangle ( ). These sentences excluded the 

involvement of pragmatic information about word use (e.g., “An officer chases a thief” is 

more acceptable than “A thief chases an officer”). To minimize the effect of general memory 

demands, a whole sentence of a minimal length was visually presented for a longer time than 

was needed to respond. 

In Japanese syntax, grammatical relations are first marked by grammatical particles 

(nominative, dative, or accusative), which in turn allow the assignment of semantic roles. In 

the active sentences we used, a noun phrase with the nominative case marker -ga (green 

letters in Figures 14) is associated with an agent, and the one with the accusative case marker 

-o is associated with a patient. For the passive sentences we used, however, a noun phrase 

with the nominative case marker -ga is associated with an experiencer (a person experiencing 
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a situation), whereas a passive bound verb “-(r)areru” marks passiveness, making a subject–

verb pair with the experiencer. In contrast, a noun phrase with the dative marker -ni is 

associated with an agent, whereas an action verb (e.g., “hik(u)”: “pull”) makes a subject–verb 

pair with the agent, forming a subordinate clause within the main clause “○-ga … -(r)areru.” 

Note that similar causative structures exist in both Japanese and English: “Hanako-ga kare-ni 

hik-aseta”: “Hanako made him pull.” Actually, there are two types of passivization in 

Japanese: ni passive (e.g., “Hanako-ga Taro-ni hik-areru”: “Hanako is affected by Taro’s 

pulling her”) and ni yotte passive (e.g., “Hanako-ga Taro-ni yotte hik-areru”: “Hanako is 

pulled by Taro”). According to Kuroda (1992), the ni passive involves no noun-phrase 

Figure 14. A picture–sentence matching paradigm in Kinno et al. (2008). 
(A) A picture–sentence matching task under either Two-argument conditions or a One-argument condition. Each 
stimulus consisted of one picture (top) and one sentence (bottom). Below each example, word-by-word and full 
translations in English are shown. An identical picture set was used under the Two-argument conditions, where 
they tested three sentence types: active sentences (“ -ga ○-o hiiteru”), passive sentences (“○-ga -ni hik-
areru”), and scrambled sentences (“○-o -ga hiiteru”). Under the One-argument condition, they presented 
syntactically simpler active sentences (“□-to -ga aruiteru”). (B) The syntactic structures of three sentence types. 
The digits shown in red and blue denote the DoM for each node and “number of Search,” respectively. 
Symbols used: S and S’, sentence; N, noun phrase; V, verb phrase; Nom, nominative case; Acc, accusative 
case; Dat, dative case; -ga, nominative case marker; -o, accusative case marker; -ni, dative case marker; -to, 
coordinator; ti, trace (subscripts denote the same entity).
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movement, while the ni yotte passive involves a movement similar to that in English. For the 

scrambled sentences, an object moves from its canonical position to higher nodes by 

undergoing another Merge operation. This type of construction is perfectly normal, not only 

in Japanese but in German, Finnish, and other languages. We also tested the One-argument 

condition, under which each sentence was presented with an intransitive verb and double 

agents. This condition did not involve two-argument relationships, and was thus syntactically 

simpler than any of the Two-argument conditions. 

 

3.2. Hypothesis III 

Here we present the following hypothesis (Hypothesis III): 

  

(3) The DoM domain changes dynamically in accordance with iterative Merge 

applications, the Search distances, and/or task requirements. 

 

Since Merge combines two syntactic objects to form a larger structure, it always produces a 

one-level higher node. When Merge applies iteratively to an existing phrase or sentence, the 

DoM domain becomes thus larger in accordance with the number of Merge applications. The 

Search distance is the structural distance between two distinct parts to which the Search 

operation applies, regardless of the nodes that are irrelevant to the Search operation. As 

observed from Figure 4, the DoM domain changes in accordance with the Search distance. 

On the other hand, for every sentence stimulus in the present study, the construction of 

syntactic structures was ensured by task requirements: The three sentence types were 

completely mixed and had to be distinguished. Task requirements include not only certain 

constraints required by experimental tasks, but also the detailed parsing naturally required to 
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understand a part of phrases or sentences (e.g., subject–verb relationships and noun–pronoun 

(coreference) relationships). 

In the above-mentioned paradigm (Kinno et al., 2008), the four task conditions 

(three sentence types under the Two-argument conditions, as well as one type under the One-

argument condition) were completely mixed (see Figure 14A). With such task requirements, 

the DoM domain spanned three relevant words for all sentence types under the Two-

argument conditions. Under the One-argument condition, the action of two stick figures was 

always identical, and thus a subject (a triangle just below N in Figure 14B) was regarded as a 

unit. Under these four task conditions, participants were required to check at least one of the 

argument–verb relationships, demanding Search at least once. For the scrambled sentences 

alone, an additional Search operation should match the identical indices of the moved object 

and its trace. For the active, passive, and scrambled sentences, the estimates of DoM were 2, 

3, and 3, respectively, while those of the DoM was 1 under the One-argument condition. 

 

3.3. Applying the DoM to various sentence types 

In the study of Kinno et al. (2008), we directly contrasted passive and active 

sentence conditions to identify a cortical region activated by purely syntactic processes. This 

stringent contrast resulted in significant activation in the left dorsal F3t (L. dF3t) alone [(−48, 

24, 21), Z = 3.8] (Figure 15A), which was very close to the L. F3op/F3t activation in our 

study (Ohta, Fukui, & Sakai, 2013a). The L. dF3t activation was significantly enhanced under 

both the passive and scrambled sentence conditions compared to that under the active 

sentence condition (P ≤ 0.033) (Figure 15B), whereas there was no significant difference 

between the passive and scrambled sentence conditions (P = 0.15). Taking the One-argument 

condition as a reference for subtracted estimates, the signal changes in the L. dF3t were 

precisely correlated in a step-wise manner with the parametric model of the DoM [1, 2, 2], 
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producing the RSS of 0.0001 and r2 of 0.99, without significant deviation for the three 

contrasts (P ≥ 0.87). The model of the DoM thus sufficiently explains the L. dF3t activations. 

It should be noted that the parametric model of the “number of nodes” [2, 4, 4] also yielded 

the same fitting results in this case. The design of experimental paradigms limited the 

separation of multiple factors. 

In a recent fMRI study, only right-branching constructions were examined, and 

activations in the L. F3t were modulated by the size of constituents (i.e., number of terminal 

nodes) (Pallier, Devauchelle, & Dehaene, 2011). Since the estimates of the DoM were 

identical to those of the “number of Merge” or the “number of nonterminal nodes” in this 

case, it was not possible to separate these factors. Taking the simplest condition (lists of 

unrelated words) as an appropriate reference, the model of the DoM actually showed a 

comparable or better goodness of fit for activations in the L. F3t, when compared with their 

log-fitting models. 

 

Figure 15. Activations in the L. dF3t modulated by the DoM. 
(A) A region identified by the Passive − Active contrast (see Figure 14). Activations were projected 
onto the left (L) lateral surface of a standard brain. (B) Percent signal changes for the active, 
passive, and scrambled sentence conditions in the L. dF3t, taking the One-argument condition as a 
reference. Overlaid red dots and lines denote the values fitted with the estimates (digits in red) for 
the model of the DoM. 
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Chapter 4. General Discussion 
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4.1. The effect of the Search distance on the DoM 

Neuroimaging and psycholinguistic studies have reported that English sentences 

with object-relative clauses have higher processing loads than those with subject-relative 

clauses (Stromswold et al., 1996; Just et al., 1996; Gibson, 2000). To properly parse relative 

clauses, the relative pronoun and its antecedent are coindexed; “whoi” and “the boyi,” 

respectively, in the example shown in Figure 16. In a subject-relative clause, a relative 

pronoun “whoi” was displaced from the subject position denoted by a trace ti (originally, “the 

boyi likes the girl”), while in an object-relative clause, a relative pronoun was displaced from 

the object position (originally, “the girl likes the boyi”). Following the proposal by Hawkins 

(1999), we assume that the relative pronoun searches the corresponding trace within tree 

structures of a sentence (see curved arrows in Figure 16). In a subject-relative clause, Search 

ends at the initiation of the verb phrase, whereas in an object-relative clause, Search ends 

after a verb appears within a subordinate clause. In accordance with the Search distances for 

these examples, the DoM would become one unit larger for the object-relative clause than the 

subject-relative one. Higher processing loads observed with object-relative clauses are 

consistent with this inference. 

 

4.2. The effect of task requirements on the DoM 

If Hypothesis III is correct, then L.F3op/F3t activation can differ by task 

requirements, even when the same sentences are presented. In our previous fMRI study, we 

compared three explicit linguistic tasks with the same set of normal two-word sentences: 

syntactic decision, semantic decision, and phonological decision tasks (Suzuki & Sakai, 

2003). In the syntactic decision task, the participants judged whether the presented sentence 

was syntactically correct, and this judgment required syntactic knowledge about the 

distinction between transitive and intransitive verbs (e.g., normal sentence, “yuki-ga tumoru”: 
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“snow lies (on the ground)”; anomalous sentence, “yuki-o tumoru”: “(something) lies snow”). 

In the semantic decision task, lexico-semantic knowledge about selectional restrictions was 

indispensable. In the phonological decision task, phonological knowledge about accent 

patterns was required. Neither the semantic decision task nor the phonological decision task, 

both with implicit syntactic processing, elicited significant activations in the L. F3op/F3t 

(−57, 9, 6), which was significantly activated during explicit syntactic processing, even by a 

direct comparison between the syntactic decision task and the other tasks. These results 

suggest the presence of the DoM domain in accordance with the task requirements of explicit 

syntactic processing. 

 

Figure 16. DoM domains varied with the Search distances. 
(A) A sentence with a subject-relative clause. (B) A sentence with an object-relative clause. In 
these relative clauses, a relative pronoun whoi is displaced from its subject or object position 
denoted by a trace ti. A set of red straight arrows corresponds to the DoM domains. The digits 
shown in red denote the DoM for each node within the domain. 
Symbols used: S and S’, sentence; N, noun phrase; V, verb phrase; ti, trace (subscripts denote the 
same entity). 
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4.3. The mixed effects of Search distances and task requirements on the DoM 

In another fMRI study, we directly compared syntactic decision and short-term 

memory tasks (Hashimoto & Sakai, 2002). In this unique paradigm, we visually presented 

nested sentences that included two proper nouns, two verbs, and one pronoun, in which either 

a verb or pronoun was underlined. After presenting one complete sentence in a phrase-by-

phrase manner, paired phrases, including an underlined phrase, were shown. In one syntactic 

decision task (SYN-1), participants were required to judge whether the subject of an 

underlined verb corresponded to the person in paired phrases (Figure 17A). In this case, the 

Search distance was the structural distance between the subject and verb of the same clause. 

In the other syntactic decision task (SYN-2), the participants were required to judge whether 

an underlined pronoun was able to refer to the person in paired phrases (Figure 17B). In this 

case, the Search distance was the structural distance between the coindexed noun and 

pronoun. In these syntactic decision tasks, the Search distance, and consequently the DoM 

domain, changed dynamically in accordance with the different task requirements, even when 

the same sentences were presented. The estimate of the resultant DoM was 2 for both cases. 

In a short-term memory task with a sentence, the participants memorized the linear order of 

the phrases, and judged whether the left-hand phrase preceded the right-hand one in the 

original sequence (Figure 17C). With such a task requirement, the factor of DoM would 

become less effective. Indeed, we found that activations in the L. F3op/F3t were equally 

enhanced in both syntactic decision tasks when compared with the short-term memory task. 
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Figure 17. DoM domains varied with the Search distances and task requirements. 
In this task, participants read Japanese nested sentences (“Taro-wa Saburo-ga jibunjishin-o 
homeru-to omou”: “Taro thinks that Saburo praises himself”), in which phrases were sequentially 
presented. (A) A syntactic decision task 1, in which participants judged subject–verb relationships. 
A set of red straight arrows corresponds to the DoM domains. The digits shown in red denote the 
DoM for each node within the domain. (B) A syntactic decision task 2, in which participants judged 
noun-pronoun (coreference) relationships (subscripts denote the same entity). (C) A short-term 
memory task with a sentence, in which participants judged the temporal order of the phrases. 
Symbols used: S and S’, sentence; N, noun phrase; V, verb phrase; Top, topic; Nom, nominative 
case; Comp, complementizer. 
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Conclusions 

 

In this dissertation, I tried to elucidate the computational principles of syntax in the 

language areas from the following perspectives. First, I provided theoretical discussions 

about the hierarchical tree structures of sentences, and introduced the two fundamental 

linguistic operations of Merge and Search. I also proposed the DoM as a key computational 

concept. I then presented our hypotheses that the DoM is a key computational concept to 

properly measure the complexity of tree structures (Hypothesis I), and that the basic frame of 

the syntactic structure of a given linguistic expression is determined essentially by functional 

elements, which trigger Merge and Search operations (Hypothesis II). Second, I presented 

our fMRI studies, which have demonstrated that the DoM, together with the number of 

Search, is indeed the key syntactic factor that accounts for syntax-selective activations in the 

L. F3op/F3t and L. SMG (Ohta, Fukui, & Sakai, 2013a). Moreover, based on the DCM and 

DTI results, I revealed the significance of the top-down connection from the L. F3op/F3t to 

L. SMG, suggesting that information about the DoM is transmitted through this specific 

dorsal pathway. Third, I further hypothesized that the DoM domain changes dynamically in 

accordance with iterative Merge applications, the Search distances, and/or task requirements 

(Hypothesis III). I showed that the DoM sufficiently explains activation modulations due to 

different structures reported in previous fMRI studies (Kinno et al., 2008; Pallier, 

Devauchelle, & Dehaene, 2011). Finally, I confirmed that Hypothesis III accounts for higher 

processing loads observed with object-relative clauses, as well as activations in the L. 

F3op/F3t during explicit syntactic decision tasks, reported in the previous neuroimaging and 

psycholinguistic studies (Stromswold et al., 1996; Just et al., 1996; Gibson, 2000; Hashimoto 

& Sakai, 2002; Suzuki & Sakai, 2003). It is likely that the DoM serves as a key 

computational principle for other human-specific cognitive capacities, such as mathematics 
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and music, both of which can be expressed by hierarchical tree structures. A future 

investigation into the computational principles of syntax will further deepen our 

understanding of uniquely human mental faculties. 
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Appendices 

 

 In the present study, we regarded the “DoM + number of Search” (i.e., adding the 

estimates of two factors) as an additional syntactic factor. Here we discuss the validity of 

adding these two factors. When Search applies to each syntactic object, the number of Search 

operations covaries with the DoM in most cases. For example, from a sentence “[[The boy1 

sings1]0” (subscripts denote the DoM for each node), the estimate of the DoM increases by 

one, while relevant features (numbers and persons here) are searched and matched between 

the nodes with the identical DoM. The estimates of the DoM and number of Search can be 

manipulated independently (see the Simple(S) and Conjoined(S) conditions in Figure 4A). 

Considering the possibility that the Merge and Search operations are additively applied, we 

added the metrics of the DoM and “number of Search” together. Among the nonlinguistic 

factors, we also regarded “memory span + counting” and “memory span + number of 

encoding” as additional factors, because they were temporal order-related and memory-

related factors, respectively. 

Formal linguistic theories have demonstrated that a pushdown automaton accepts 

and generates context-free languages, such as the counter language and mirror-image 

language (Chomsky, 1963). A “stack” (i.e., pushdown storage) is a critical component of the 

pushdown automaton (Searls, 2002), and we quantified the stack as counting in the present 

study. 

In the present study, there was no region whose activations were modulated by the 

number of Search alone. As the Conjoined condition had equal or larger estimates of the 

number of Search than the other conditions, the number of Search may not be an explicit 

factor in the present paradigm. If another control condition is introduced, it would be possible 

to observe any effects of the number of Search separately from the DoM. 
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Figure S1. Anatomical connections between L. F3op/F3t and L. SMG for individual participants. 
Connectivity probability maps are shown on the left (L) lateral and dorsal surfaces of individual brains (P1–
P15) with maximum intensity projection (cluster size = 629 ± 33 mm3; cluster threshold, 30 mm3). Blue 
spheres represent the seed regions of the L. F3op/F3t and L. SMG, the centers of which are activated foci 
(Figure 11C) transformed to individual brains. All participants showed the left dorsal pathway of the SLF/AF. 
For one participant (P15), the ventral pathway of the middle longitudinal fasciculus and extreme capsule was 
observed. 
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