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Alea iacta est.
The die is cast.

(Gaius Julius Caesar)

Abstract

We have considered and calculated equilibrium states with magnetic field and meridional flow
in astrophysics under the assumptions of stationary and axisymmetric barotropes. We have
obtained many equilibrium states across the widely astrophysical areas in order to understand
equilibrium configurations deeply.

In our present formulation, arbitrary functions of the magnetic flux function appear in the
expression for the current density in case of magnetic field configurations. By appropriately
choosing the functional form for one of the arbitrary functions that corresponds to the distri-
bution of the non force-free toroidal current density, we have obtained magnetized equilibrium
states with extremely strong but highly localized poloidal magnetic fields in the second chap-
ter. The absolute values of the central magnetic fields are stronger than those of the surface
region by two orders of magnitude. By applying our results to magnetars, the internal magnetic
poloidal fields could be 107 G, although the surface magnetic fields are about 10'° G in the case
of magnetars. For white dwarfs, the internal magnetic poloidal fields could be 10'? G, when
the surface magnetic fields are 10°~!° G. If the star has such extremely strong but localized
poloidal magnetic field deep inside, the contributions from higher order magnetic multipole
moment to the outer fields around the star cannot be neglected.

We have showed the importance of coexistence of oppositely flowing ¢ currents for mag-
netized stars to sustain strong toroidal magnetic fields within the stars by analysing stationary
states of magnetized stars with surface currents which flow in the opposite direction with re-
spect to the bulk currents within the stars in the third chapter. If the stars could have the toroidal
surface currents which flow in the opposite directions to the internal toroidal currents, the pos-
itively flowing internal toroidal currents can become stronger than the upper limit value of the
current for configurations without surface toroidal currents. Thus, the energies for the toroidal
magnetic fields can become much larger than those for the magnetized stars without surface
toroidal currents.

The physical meaning of the oppositely flowing toroidal current density has been discussed
in the fourth chapter. We have showed a sufficient condition for magnetized star with large
toroidal magnetic fields in stationary and axisymmetric system. As we have seen in the third
chapter, the magnetized star with large toroidal magnetic field has oppositely flowing non force-
free toroidal current density, and such oppositely flowing toroidal current density changes the
stellar shape prolate. These results mean that the large toroidal magnetic fields result in and re-

sult from the prolate stellar deformation and oppositely flowing non force-free toroidal current
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density. A condition that a star has oppositely flowing non force-free toroidal current density

and its shape is prolate is sufficient for large toroidal magnetic fields inside the star.

We have succeeded in obtaining magnetic field configurations with both poloidal and toroidal
components throughout magnetized stellar interior and exterior in the fifth chapter. We have di-
vided the magnetized star into a hydromagnetic equilibrium core, a Hall equilibrium crust and
a twisted force-free magnetosphere. We have calculated these regions under various boundary
conditions simultaneously and systematically using the Green function relaxation method and
found four interesting characteristics of numerical results. First, the core toroidal magnetic
fields and the twisted magnetosphere make the size of the crustal toroidal magnetic field re-
gion large in Hall equilibrium. Second, the current sheet on the core-crust boundary affects
both internal and external magnetic field configurations. Especially, the negative and positive
current sheets make the core magnetic field energy ratio Mco/ M large and small respectively.
Finally, the twisted magnetosphere makes a cross-point of magnetic field lines such as X-point
geometry in the magnetosphere. The X-point geometry appears and disappears according to the
strength of the twisted field in the magnetosphere or the core-crust boundary conditions. Our
results mean that both Hall MHD secular evolution and magnetospheric dynamical evolution

would be deeply affected by conditions of another region and core-crust stress of magnetars.

We have obtained the general forms for the current density and the vorticity from the inte-
grability conditions of the basic equations which govern the stationary states of axisymmetric
magnetized self-gravitating barotropic objects with meridional flows under the ideal magneto-
hydrodynamics (MHD) approximation in the sixth chapter. As seen from the stationary con-
dition equations for such bodies, the presence of the meridional flows and that of the poloidal
magnetic fields act oppositely on the internal structures. The different actions of these two
physical quantities, the meridional flows and the poloidal magnetic fields, could be clearly seen
through stationary structures of the toroidal gaseous configurations around central point masses
in the framework of Newtonian gravity because the effects of the two physical quantities can
be seen in an amplified way for toroidal systems compared to those for spheroidal stars. The
meridional flows make the structures more compact, i.e. the widths of toroids thinner, while the
poloidal magnetic fields are apt to elongate the density contours in a certain direction depending
on the situation. Therefore, the simultaneous presence of the internal flows and the magnetic
fields would work as if there were no such different actions within and around the stationary
gaseous objects such as axisymmetric magnetized toroids with internal motions around central
compact objects under the ideal MHD approximation, although these two quantities might exist

in real systems.

We have evaluated the stellar deformation by the meridional flows in the seventh chapter.
We have shown analytically that shapes of incompressible stars could be prolate if appropriate
meridional flows exist. Although this result is strictly valid only if either the meridional flow or
the rotation is absent and the vorticity is associated uniformly with meridional flow, this implies
that perpendicular forces against centrifugal and/or magnetic forces might play important roles

within stars. A consequence of the presence of meridional flows might be to decrease stellar



oblateness due to centrifugal and/or magnetic fields.

iX






Omnia mala exempla ex rebus bonis orta sunt.
All bad precedents begin as justifiable measures.

(Gaius Julius Caesar)

Introduction

The main theme of this thesis is the investigation of equilibrium states with magnetic field and
meridional flow in astrophysics. The physical origin and mechanism of magnetic field and
meridional flow in the stellar interior are different from each other. They are often considered
as different physics in different aspects of the astrophysics, but the mathematical formalism and
treatment of them are very similar in many respects. Magnetic fields offer us important hints
for meridional flows, and vice versa.

The structures of the magnetic fields and meridional flows are interesting themselves. The
structures are important for various astrophysical phenomena in a wide ranging scale, because
they affect both dynamical events and secular evolutions of stellar objects. Magnetic field and
meridional flow change the stellar structure and shape by the Lorentz force and ram pressure,
respectively. Although I have focused on the magnetic fields and developed the method for
magnetized equilibrium states mainly in this thesis, I also consider the meridional flows using
the method and results. We go back and forth between magnetic fields and meridional flow in

order to solve problems and gain an new insight for astrophysics.

1.1 Various stellar magnetic fields among the stars

Magnetic fields play very important roles in many fields of astrophysics, the Sun, stars and
compact objects such as white dwarfs and neutron stars. The magnetic fields have influence on
both dynamical events and secular evolutions significantly. They are important energy sources
of active astrophysical events such as jets, flares and bursts. They also affect the angular mo-
mentum transport of the stellar rotation and thermal evolution within the interior of compact

stars on secular timescale.
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Those stars have detectable magnetic fields. The magnitude of the magnetic field ranges
from a few hundred G to over a few billion G. The typical values of their magnetic fields on
their surface are ~ 10°G (the sunspots), ~ 10 G (strongly magnetized O stars), ~ 103 — 10*
G (strong magnetized Ap stars and Bp stars), 106 — 10° G (strongly magnetized white dwarfs)
and 10° — 10'% G (neutron stars). Above all things, Anomalous X-ray Pulsars (AXPs) and Soft
Gamma-ray Repeaters (SGRs) have extremely strong magnetic fields whose dipole magnetic
field strength reach 104~1°G at their surfaces (Harding & Lai 2006). They are considered as
strongly magnetized neutron stars, magnetars (Thompson & Duncan 1995). They have the
strongest magnetic fields among the stars in the universe. They show intense high-energy
emissions, bursts and flares by releasing their strong magnetic field energy. Recently, however,
we have found low magnetic field SGRs (Rea et al. 2010; Rea et al. 2012). They exhibit
the observational characteristics of typical SGRs, but their dipole magnetic field strength (~
10271 G) is much weaker than those of typical dipole magnetic fields of SGR. They would
have strong internal magnetic fields in order to show the typical activity of SGR, but we can not
observe the internal magnetic fields directly. Therefore, we need to calculate them theoretically
in order to obtain the magnetic field configurations. We consider and calculate magnetized star

with extremely strong poloidal magnetic field in chapter 2.

The origin of the magnetic fields inside the star is not still understood well. According to the
recent progresses of the theoretical researches, there are two possibilities for the mechanism to
generate and sustain magnetic fields, i.e. 1) the dynamo theory and 2) the fossil field theory (see
Moss 1994). Stars which have convective regions regenerate and sustain the magnetic fields
by the dynamo mechanism. On the other hand, A, B, O stars have a convective core where
dynamo action develops (e.g. Brun et al. 2005 ). However, the timescale for the dynamo-
generated field in this core to reach the surface is too long (Charbonneau & MacGregor 2001).
Therefore the magnetic field observed at the stellar surface is supposed to be fossil field. Recent
observations show the observed magnetic fields’ properties confirm this hypothesis (see Wade
etal. 2011). Consequently, it has long been considered that magnetic fields of such stars would
come from fossil magnetic fields. According to the fossil field theory, the magnetic fields of
such stars would be originated from magnetized interstellar media. If the magnetic fluxes would
be conserved during star formation processes, the magnetic fields could be concentrated to
smaller regions of the stars by the gravitational contraction and result in strong magnetic fields
inside the stars. Since the electric conductivities of the stars are very large, those magnetic
fields do not diffuse during their formation stages. As for neutron stars, the origin of their
strong magnetic fields is much more uncertain. If the fossil field theory could be applied, the
strong magnetic fields could be reached by the same mechanism as those mentioned above for
stars without external convective regions. On the other hand, if we could adopt the dynamo
theory, the strong magnetic fields would be formed by the dynamo due to the rapid differential
rotations in the convective regions of the proto-neutron stars (Duncan & Thompson 1992).
The differential rotation could wind up the initial poloidal magnetic fields to produce strong

toroidal magnetic fields before the crusts would crystallize. In either case, the magnetic fields
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of neutron stars would be present even at birth and survive on much longer timescales than
the Alfvén timescale (= /4wpr,/B ~ 100 s for typical neutron stars with magnetic fields of
order of B = 10'2G). Here 7, is the radius of the stellar surface which is, for axisymmetric
configurations, a function of 6 of the polar coordinates (7,0, ¢), i.e. r5(6). In order to sustain
these kinds of fossil magnetic fields for a long time, these magnetic fields must be stationary
and stable. Thus, in order to understand the magnetic fields originated from the fossil fields,
it would be useful and important to obtain stationary and stable configurations of magnetized
stars.

On the other hand, the magnetized equilibria have been studied theoretically for over sixty
years, which was long before the discovery of neutron stars. Babcock detected the evidence
of the Zeeman splitting due to the stellar magnetic fields in the spectrum of Ap star (Babcock
1947). The observation showed that stars other than the sun have detectable magnetic fields
for the first time. After this important discovery by Babcock, several classical works were
published by Chandrasekhar and his colleagues. They calculated and considered the magnetic
field configurations and its influence on the stellar structures.

1.2 Classical magnetized equilibrium studies

The basic ideas and methods for magnetized equilibrium states have already been investigated
by the classical works (Chandrasekhar & Fermi 1953, Ferraro 1954, Prendergast 1956 and
Woltjer 1959a,b, 1960). Chandrasekhar & Fermi (1953) considered several problems related
to magnetized stars and estimated the maximum strength of magnetic fields in the stellar in-
terior, but they did not calculate magnetic field configurations. Ferraro (1954) calculated a
purely poloidal magnetic field configuration of incompressible star analytically and evaluated
the small stellar deformation by the poloidal magnetic fields. Prendergast (1956) suggested
that a stable stellar magnetic fields require both poloidal and toroidal magnetic fields and con-
sidered incompressible magnetized equilibria with both poloidal and toroidal magnetic fields
(Chandrasekhar 1956b; Chandrasekhar & Prendergast 1956, Woltjer 1959a). Woltjer (1959b,
1960) calculated compressible star with both poloidal and toroidal magnetic fields (Wentzel
1961). Several recent works (Haskell et al. 2008; Broderick & Narayan 2008; Duez & Mathis
2010 in Newtonian framework and Ioka & Sasaki 2004 in General relativistic framework) are
essentially same as these classical works. These studies, however, assumed that the magnetic
fields are too weak to change the stellar structures. They fixed the background structure and
did not calculated magnetic deformation self-consistently. Following these classical works,
Miketinac (1973) calculated magnetized equilibria with purely toroidal magnetic fields and
Miketinac (1975) calculated magnetized equilibria with purely poloidal magnetic fields.
However, only a few works had calculated magnetized equilibrium consistently under lim-
ited conditions. Ostriker & Hartwick (1968) obtained magnetized equilibria with both poloidal
and toroidal magnetic fields consistently, but their boundary condition was special one. All

magnetic field lines in the work are closed within the star. These studies have been extended to
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general relativistic formulations such as purely poloidal magnetic fields self-consistent study
(Bocquet et al. 1995) and purely toroidal magnetic fields self-consistent study (Kiuchi & Yoshida
2008).

On the other hand, stability analysis of the magnetic fields is also an important problem
in order to keep the stellar magnetic fields for a long time. It was suggested by Prender-
gast (1956) that both poloidal and toroidal components are required for stable stellar magnetic
fields. Markey & Tayler (1973) showed that purely poloidal magnetic fields in the star become
unstable (see also Flowers & Ruderman 1977). Tayler (1973) showed that the purely toroidal
magnetic fields becomes also unstable by kink instability. Stable magnetized stars should have
both poloidal and toroidal magnetic fields. Moreover, the magnitudes of the toroidal fields
must be comparable with those of the poloidal fields as Tayler (1980) suggested. However,
the stability analysis for magnetized stars with both magnetic fields are too difficult to calcu-
late systematically. Nobody have succeeded in showing the stability criteria for magnetized

equilibria analytically and systematically.

1.3 Recent progress of the studies

Recent progress of numerical simulations have showed new insights about the magnetic field
stability. Braithwaite & Spruit (2004) succeeded in obtaining the stable magnetic fields config-
urations numerically after a few Alfvén timescale computations. As Tayler (1980) described,
their solution has both poloidal and toroidal magnetic fields. The toroidal magnetic field lo-
cates within the torus region in the stellar interior and poloidal magnetic field lines exist around
the torus. They named this magnetic field configuration twisted-torus configurations (Braith-
waite & Nordlund 2006). Braithwaite also studied stability of purely toroidal magnetic field
configuration (Braithwaite 2006) and purely poloidal magnetic field configuration with rotation
(Braithwaite 2007). These studies showed those purely magnetic field configurations become
unstable within a few Alfvén timescale. The progress of these numerical simulations and ob-
servations of magnetars (e.g. Kouveliotou et al. 1998, 1999) are promoting magnetized equilib-
rium studies. We consider and obtain the stationary magnetic field configurations of magnetar
throughout its interior to exterior in chapter 5.

Tomimura & Eriguchi (2005) succeeded in obtaining twisted-torus magnetized equilibrium
states with both poloidal and toroidal magnetic fields self-consistently in Newtonian gravity.
Their formulation and calculations were developed by Yoshida & Eriguchi (2006) and Yoshida
et al. (2006). Yoshida & Eriguchi (2006) changed the functional form and obtained the solu-
tions with locally strong toroidal magnetic field. Yoshida et al. (2006) calculated magnetized
equilibria with differential rotation. Especially noted these twisted-torus magnetized equilib-
rium states are poloidal magnetic field dominated configurations (see also Lander & Jones
2009). We can see the same tendencies in general relativistic perturbative calculations by Ciolfi
et al. (2009, 2010).

On the other hand, Braithwaite (2009) and Duez et al. (2010) have showed a stability criteria
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of stellar magnetic fields as below:

a% < % <0.8, (1.1)
where M /|W| is the ratio of the magnetic energy to the gravitational energy. M, /M is the
ratio of the poloidal magnetic energy to the total magnetic energy and a is a certain dimen-
sionless factor of order 10 for main-sequence stars and of order 10% for neutron stars. The
value of M /|W| is about 10~ even for magnetars and is expected to be M /|W| < 107> for
other real stars. Thus the left hand side of this inequality could be less than about 10~ even
if the value of @ might be ~ 1000. Therefore, this criterion means the configurations with the
twisted-torus magnetic fields are stable even if the toroidal magnetic fields are much stronger
than the poloidal magnetic fields. In contrast, the right hand side of this inequality means that
the strong poloidal magnetic field configurations are unstable. As shown in dynamical sim-
ulations mentioned above, configurations with the strong poloidal magnetic fields are likely
to become unstable within several Alfvén timescales. This criteria would not be applied to
all situations because we might be able to consider various kinds of magnetic field configura-
tions as the initial states and different choices of the initial conditions might influence on the
evolutions of the magnetic fields. However, it seems to be the case that there is a tendency
to become more unstable even for the twisted-torus magnetic field configurations with larger
poloidal magnetic field energies. Therefore, it would be a natural consequence to consider that
there would be stable magnetized stars with strong toroidal magnetic fields which satisfy the
condition M,/ M < 0.8,i.e. M;/M > 0.2 where M, is the energy of the toroidal field.

Many magnetized equilibrium studies had failed to obtain the toroidal magnetic fields dom-
inated solutions as I have described. In some of their solutions the toroidal magnetic fields
are almost as strong as the poloidal magnetic fields only in the particular local regions inside
the stars, but the total energies of the toroidal magnetic fields as a whole are much smaller
than those of the total poloidal magnetic fields. In other words, the ratios of M,/ M in their

solutions are much bigger than 0.8.

By contrast this, some studies of magnetized stationary configurations (Glampedakis et al.
2012; Duez & Mathis 2010; Yoshida et al. 2012) have succeeded in obtaining the magnetized
equilibria with strong toroidal magnetic fields by choosing very special boundary conditions
for the poloidal magnetic fields. Their boundary conditions are different from those adopted
by many other studies (e.g. Tomimura & Eriguchi 2005; Lander & Jones 2009; Ciolfi et al.
2009). However, they did not explain the reason why the magnetized stars can sustain such

configurations with large toroidal magnetic energies under their special boundary conditions.

Therefore there are some important questions to be answered: how strong magnetic fields
magnetized star sustain inside, and why these special configurations have large toroidal mag-

netic fields. These questions are addressed in chapters 2, 3 and 4 in this thesis.
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1.4 Equilibrium studies with meridional flow

Meridional flow inside the stellar object is also interesting physical process. Since the first
suggestion by Eddington (1925), meridional flow of rotating stars have been studied by many
works. Roxburgh (1974) calculated the meridional flow structures inside the star under special
boundary condition. The mathematical formulation and treatment of meridional flow is similar
to magnetic field in stationary axisymmetric barotropic system. In this thesis, we give new
expression for the current density and the vorticity inside the stationary and axisymmetric self-
gravitating barotropes (chapter 6).

Such flows can change the stellar shape as magnetic fields do, because meridional flows
have non-zero ram pressure inside the star. Eriguchi et al. (1986) investigated and calculated
self-gravitating objects with meridional flow self-consistently. Recently, Birkl et al. (2011)
extend the formulations of Eriguchi et al. (1986) and calculated general relativistic neutron
star with arbitrary meridional flow self-consistently. These works showed that such meridional
flow tends to make stellar shape prolate. We also evaluate the stellar deformation by the merid-
ional flow using the method which have been developed for magnetized equilibrium studies in
chapter 7.

1.5 Organization of the thesis

In this thesis, I consider and calculate equilibrium states with magnetic field and meridional
flow in order to solve these problems. We calculate the magnetized equilibrium states with
strong highly localized poloidal magnetic fields in chapter 2 ®. We see that the oppositely
flowing toroidal current density can sustain the strong toroidal magnetic fields energy within
the star in chapter 3 ®. We consider and find the physical meaning of the oppositely flowing
toroidal current density in chapter 4 . Using these results, we investigate stationary magnetic
field configurations throughout magnetar interior to exterior as an astrophysical application in
chapter 5 Y. We formulate and calculate magnetized equilibrium states with meridional flow,
which is the most general case in stationary and axisymmetric barotropes in chapter 6 ©. We
also find the influence of meridional flow on the equilibrium states in the chapter. We consider
prolate stars due to meridional flows quantitatively in chapter 7 ¥, Finally, I summarise and

conclude this thesis in chapter 8.

@Fujisawa et al. (2012).
®Fujisawa & Eriguchi (2013).
(©Fujisawa & Eriguchi (submitted).
@Fujisawa & Kisaka (submitted).
(©Fuyjisawa et al. (2013).
(®Fujisawa & Eriguchi (2014).



As a rule, men worry more about what they can’t see
than about what they can.
(Gaius Julius Caesar)

Magnetized stars with extremely strong poloidal fields

At first, we consider magnetized stars with strong poloidal magnetic fields. We choose an arbi-
trary functional form so as to achieve such magnetic field configurations. Since the arbitrary
function relates to the Lorentz force of the magnetic fields inside the star, the distribution of the

Lorentz force is affected by different choice of the functional form.

2.1 Introduction

The magnetic field inside a star is scarcely detectable by direct observations but has been con-
sidered to affect stellar evolutions and activities in many aspects. For instance, if strong mag-
netic fields are hidden inside degenerate stars such as white dwarfs or neutron stars, they may
significantly affect the cooling process of the stars by providing an energy reservoir or by
modifying heat conduction. Highly localized, anisotropic and relatively strong magnetic field
configurations, on the other hand, may affect accretion modes onto degenerate stars in close
binary systems by providing a well-focused channel of accretion to their magnetic poles. In
order to know the possible distributions and strengths of the magnetic fields inside the stars,
we have to rely on theoretical studies. Until very recently, however, theoretical investigations
could give us few hints about the interior magnetic fields. The reason for that may be twofold:
one is related to the difficulty of the evolutionary computations of stellar magnetic fields and
the other is related to the lack of methods to obtain stationary configurations of the magnetized
stars.

Concerning the evolution of the stellar magnetic fields, since it has been very difficult to
pursue evolutionary computations of the global magnetic fields for both interiors and exteriors

of stars, few results have been obtained. Recently, however, Braithwaite and his collabora-
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tors have succeeded in following the evolution of global stellar magnetic fields (Braithwaite
& Spruit 2004; Braithwaite & Nordlund 2006; Braithwaite & Spruit 2006; Braithwaite 2006;
Braithwaite 2007; Braithwaite 2008; Braithwaite 2009; Duez et al. 2010). They found that
the twisted-torus configurations of the magnetic fields inside stars seem to be stable across the
dynamical timescale.

On the other hand, to investigate possible structures of the interior and exterior magnetic
fields by imposing stationarity is a different theoretical approach. Concerning this problem,
many attempts have been made but it has also been difficult to obtain stellar structures with
both poloidal and toroidal non force-free magnetic fields self-consistently, not only in the New-
tonian gravity but also in general relativity (see e.g. Chandrasekhar & Fermi 1953; Ferraro
1954; Chandrasekhar 1956b; Chandrasekhar & Prendergast 1956; Prendergast 1956; Woltjer
1959a; Woltjer 1959b; Woltjer 1960; Wentzel 1961; Ostriker & Hartwick 1968; Miketinac
1973; Miketinac 1975; Bocquet et al. 1995; Ioka & Sasaki 2004; Kiuchi & Yoshida 2008;
Haskell et al. 2008 ; Duez & Mathis 2010). It is only recently that axisymmetric and stationary
barotropic stellar structures have been successfully solved for configurations with both poloidal
and foroidal magnetic components (Tomimura & Eriguchi 2005; Yoshida & Eriguchi 2006;
Yoshida et al. 2006; Lander & Jones 2009; Otani et al. 2009) in a non-perturbative manner.

It should be noted that the twisted-torus magnetic configuration that appears during the evo-
lutionary computations by Braithwaite & Spruit (2004) is qualitatively the same as one of the
exact axisymmetric and stationary solutions obtained in Yoshida et al. (2006). Moreover, sta-
ble configurations of stellar magnetic fields must have a twisted-torus structure according to
Braithwaite (2009). Concerning the stability analysis, this type of configurations is expected to
be stable, while magnetic fields with purely poloidal configurations or purely foroidal config-
urations have been shown to be unstable (see e.g. Tayler 1973; Wright 1973; Markey & Tayler
1973; Flowers & Ruderman 1977).

In this chapter, we apply the formulation developed by Tomimura & Eriguchi (2005), Yoshida
& Eriguchi (2006) and Yoshida et al. (2006) in order to find out how strong and localized
poloidal magnetic fields can exist inside stars, as far as equilibrium configurations are con-
cerned. In this formulation, the electric current density consists of several terms with different
physical significances which contain arbitrary functionals of the magnetic flux function. These
arbitrary functions correspond to the degrees of freedom in magnetized equilibria. One of the
arbitrary functionals in the expression for the electric current density corresponds to the cur-
rent in the foroidal direction. By choosing this functional form properly, we would be able to
obtain equilibrium configurations of axisymmetric barotropic stars with highly localized and

extremely strong poloidal magnetic fields.

2.2 Formulation and numerical method

Here we summarize the main scheme and formulation briefly. We describe the details of for-

mulation in Appendix A.l and numerical method in Appendix B.2.
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2.2.1 Assumptions and basic equations

We make the following assumptions in this chapter. The system is in a stationary state and
the configurations are axisymmetric. The systems are treated in the framework of Newtonian
gravity. The rotation is rigid and we neglect meridional flows in this chapter. The conductivity
of the stellar matter is infinite (ideal MHD). No electrical current is assumed in the vacuum

region. The barotropic equation of state is assumed :

p=0p(p) - .1

Here p and p are the pressure and the mass density, respectively. Assumptions of axisymmetric
and equatorial symmetries as well as rigid rotation are adopted here in order to simplify our

investigations.

Under these assumptions, the basic equations are written as follows. The continuity equation

is expressed as
V- (pv) =0, (2.2)

where v is the fluid velocity. The equations of motion in the stationary state are written as:
1 9 1/
-Vp=-Vo¢,+ RQ¥ep+—-(=xB), (2.3)
p p\c

where ¢4, €, j, c and B are gravitational potential, angular velocity, electric current density,
speed of light and magnetic field, respectively. Here we use the cylindrical coordinates (R, ¢, z)
and e, is the unit vector in the R-direction. We also use the spherical coordinate (r, 6, ¢) in

this thesis. The gravitational potential satisfies Poisson equation:
Ag, = 4nGp , (2.4)

where G is the gravitational constant. Maxwell’s equations are written as,

V- E =4mp, , (2.5)
V-B=0, (2.6)
VXxE=0, (2.7)

VxB = ‘”% , 2.8)

where p. and FE are the electric charge density and the electric field, respectively. Notice that

we neglect the displacement current term in Eq. (2.7) as is common in MHD approximation.
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The ideal MHD condition, or the generalized Ohm’s equation, can be expressed as:
E— —% X B. (2.9)
We choose two kinds of barotropic equations of state. One is the polytropic equation of state:
p = Kop'™/", (2.10)

where N and K| are the polytropic index and the polytropic constant, respectively. The other
is the degenerated Fermi gas at zero temperature, defined as

p=a[z(22* — 3)Va2 + 1+ 3In(z + Va2 + 1)), (2.11)

where
p = bz, (2.12)
a = 6.00 x 10? dyn/cm2, (2.13)
b=9.825x10°u, g/cm’. (2.14)

Here 1. is the mean molecular weight. We fix p. = 2 in all our computations here, which
corresponds to a fully ionized pure hydrogen gas. This choice of parameters is same as that in
Hachisu (1986a).

2.2.2 The form of the current density and the boundary condition

From the assumptions of axisymmetry and stationarity, we introduce magnetic flux function W

as follows:

1 oV 1 oV
Br:ﬂsinG%’ Be:_rsiHHE’ 215

where B, and By are magnetic field components in the r-direction and #-direction, respectively.
We assume this flux function is positive in the entire space. By introducing this magnetic flux
function, Eq. (2.6) can be automatically satisfied. It should be noted that the magnetic flux

function ¥ can be expressed as:
U =rsinfA, , (2.16)

where A, is the ¢-component of the vector potential defined by B =V x A.

As shown in Tomimura & Eriguchi (2005), for axisymmetric and stationary barotropes with

rigid rotation we can constrain the form of the electric current density by using an integrability



2.2. FORMULATION AND NUMERICAL METHOD 11

condition of the equations of motion, Eq. (2.3):

j_ 1 de(¥)

¢ 4m AU

B + rsinfpu(¥e, , (2.17)

where k(W) and p(W) are arbitrary functions of the magnetic flux function ¥. Notice, in
particular, that the foroidal component of magnetic field is given as
v
B, = ~(0) (2.18)

rsind

which can be derived from Eqgs. (2.3), (2.8) and (2.17). It should be noted that these two arbi-
trary functions are conserved along the poloidal magnetic field lines. Although the meanings
of these two functions are described in previous works (see, e.g., Lovelace et al. 1986), in this

chapter we will explain their meanings differently from our point of view.

Since we have assumed that there is no electric current in the vacuum region, in other words
that there is no foroidal magnetic field outside the star (see Eq. 2.17), the form for x needs to
be a special one. The simplest form can be x = constant, but for this choice of x the toroidal
magnetic field would extend to the vacuum region. In order to avoid this possibility, we choose

the functional form of x as follows:

0, for U<V, .,
k(W) = Ko (0 — W), for U > Wy | (2.19)
kE+1

This choice of « is the same as that in Yoshida & Eriguchi (2006) and Lander & Jones (2009).
In this chapter we fix £ = 0.1. Egs. (2.18) and (2.19) ensure that the foroidal magnetic field
vanishes smoothly at the stellar surface. Incidentally, using these functionals, we obtain the
first integral of Eq. (2.3) as follows:

% = —¢y + %(rsin 0)%Q2 + /u(\p) dv + C, (2.20)
where C' is an integration constant. The first term of the right-hand side is the gravitational
potential. The second term on the right hand side is related to rotation. We can consider it
as a rotational potential. Similarly, the third term means the potential of Lorentz force. We
can regard this term as the magnetic force potential. Therefore, [ ;1d\V is considered to be
non-force-free contribution from the current density, as is seen in Eq. (2.17). Since the Lorentz
force is given by the cross product j/c x B, the first term of Eq. (2.17) has no effect on the
equation of motion, i.e, it is force-free, and only the second term contributes to the Lorentz
force, i.e., non force-free. The distribution of Lorentz force could be changed by adopting
different functional forms for p. All previous works (Tomimura & Eriguchi 2005, Yoshida &

Eriguchi 2006, Yoshida et al. 2006, Lander & Jones 2009, Otani et al. 2009) fixed p = pyo
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(constant). We choose a different functional form for x in this chapter as follows:

w(¥) = (¥ +e)™, (2.21)
_ Ho m+1
/M(\If) AV = (U (2.22)

where m and € are two constant parameters. In order to avoid singular behavior, we fix
€ = 1.0 x 107% in all calculations. As we shall see below, the parameter m determines a degree
of localization of the interior poloidal magnetic field. We assume that poloidal magnetic fields
extend throughout the whole space and that there are no discontinuities even at the stellar sur-
face. The global magnetic field configurations of our models are nearly dipole-like because of
the requirement of the functional form for « at the stellar surface. These configurations contain
closed poloidal magnetic field lines inside the star. The flux function W attains its maximum at
the central parts of these closed field lines and it takes its minimum on the symmetric axis and
at infinity. The minimum value is zero because of ¥ = rsin A, and the boundary condition
for A, = 0 at infinity. The magnetic potential ( f ,ud\ll) changes its qualitative behavior in its
spatial distribution when m = —1. If we adopt m < —1, as W decreases from its maximum to
zero on the axis of the star the value of the magnetic potential increases unboundedly if € — 0.
As a result, the poloidal magnetic field lines are concentrated near the axis in order to fulfill
such magnetic potential distributions. On the other hand, if we choose m > —1, the value of
the magnetic potential decreases as W decreases from its maximum to zero, which is realized
on the axis. Then the poloidal magnetic field lines are distributed more uniformly than those
for configurations with m < —1. If we choose m = 0, we obtain ;. = constant configurations.

They are the same as those investigated by other authors.

It is remarkable that the only freedom that we can take in our formulation is related to the
choices of functional forms and the values of the parameters which appear in those functions.
It implies that degrees of freedom for choices for these functions and parameters correspond to
degrees of freedom for many kinds of stationary axisymmetric magnetic field configurations.
In fact, as we see from our results, different values for m result in qualitatively different dis-
tributions for the magnetic potentials and the poloidal magnetic fields. In other words, we can
control the magnetic field distributions to a certain extent by adjusting the value for m. This is

the reason why we use this functional form of p in this chapter.

After we choose the functional form of the current density, by using Eq. (2.17) and the
definition of the vector potential, we obtain the following partial differential equation of the

elliptic type:

A =

— 4y sin 622, (2.23)
C

0*U N sin@ﬁ 1 8_\11
or? r2 06 \ sinf 00

or

A(A,sin @) = —4722 sin . (2.24)
C
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As we have seen in the previous paragraph, all the physical quantities related to the vector
potential can be expressed solely by W. Therefore we need not solve for A, and Ay. It implies
that our present formulation does not depend on the gauge condition for the vector potential A.
Next we impose the boundary conditions for the gravitational potential and the vector potential,
chosen as follows:

bg ~ O (%) , (r—o00), (2.25)
A, ~ O (%) C (r—o0). (2.26)

This boundary condition for A, results in

1
B,~ O (7"_2) , (r—o00). (2.27)
where B, is the poloidal magnetic field. From these boundary conditions and using a proper
Green'’s function for the Laplacian, we have the integral representations of Egs. (2.4) and (2.24)
as follows:

gg(r) = =G / _’f(Z«i/| &’r', (2.28)

Ay(r)sing = Am [ Je(r)sing’ r’ . (2.29)

c |r — 7|
Therefore, we can obtain smooth potentials, ¢, and A, by integrating these equations. Since
we have chosen the functional form of the current density which decreases near the surface and
vanishes at the stellar surface sufficiently smoothly, we obtain continuous poloidal magnetic

fields from A,.

2.2.3 Global characteristics of equilibria

To see the global characteristic of magnetized equilibria, we define some integrated quantities

as follows:
1 3
W= 3 Ggpd’r (2.30)
_1 2 53
T= 5 plv|* d°r (2.31)
II= / pdir | (2.32)

U= NI, (2.33)
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for polytropic models and

U= /g(a:) &r (2.34)

g(z) = a{82%[(x* + 1)z — 1]} — p, (2.35)

for the Fermi gas configurations (see. Chandrasekhar 1939),
] 1
M= /r- (1 X B) &r = —/|B|2d3r. (2.36)
c 8T

K:/(VXA)-Ad3r:/B-Ad3r, (2.37)

where W, T', II, U, M and K are the gravitational energy, rotational energy, total pressure,
internal energy, magnetic field energy and magnetic helicity, respectively. In order to evaluate
the structures of magnetic fields, we define some physical quantities related to the magnetic

fields as follows:

B.  — 027r fo7T r3(0) sin 0| B(rs, 0)| dfdy

S : (2.38)

where 75(0) and | By,,| are the stellar radius in the direction of # and the surface magnetic field

strength, respectively, and the surface area of the star is defined as:

21 T
S = / / r2(0) sin 0 df dep. (2.39)
0 0

The volume-averaged magnetic field strength in the central region of the star is defined as

02# Jo Joc r?sin6|B(r,0)|drdfdy

B, = 0 v (2.40)

where we choose 1. = 0.017, and V' is the volume of the central region with r < r., defined as

2 T Te
V= / / / r? sin Odr dfdy . (2.41)
0 o Jo

This central region seems to be very small, but we can resolve it sufficiently because we use
non-uniform and centrally concentrated meshes in this chapter (see Fig. 2.1 and Eq. 2.49 in

Appendix B). We have 77 meshes to resolve the region in actual numerical computations.

In order to know the contributions of the poloidal magnetic field and the toroidal magnetic

field separately, we define the poloidal magnetic energy M, and the toroidal magnetic energy
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M, as

1 27 T o]
M, = —/ / / r? sin @ | B2 + Bj|drdfdy , (2.42)
81 Jo o Jo

1 2 s [e%¢]
M, = —/ / / r? sin 6 |B§,|drd9dgp , (2.43)
81 Jo o Jo

As for the magnetic multipole moment seen outside a star, we compute each multipole compo-

nent by solving the following equation in a vacuum:
A(A,sing) =0. (2.44)

Considering the boundary conditions at infinity and the symmetry of the magnetized stars, the

solution of the above equation can be expressed as

A,sing = Z A, psing = Z b " Y000, ¢) (2.45)
n=1 n=1

where Y, 1(0, ¢) is the spherical harmonics of degree n and order m = 1. The coefficients b, ;

correspond to the magnetic multipoles.

2.2.4 Setting for Numerical Computations

For numerical computations, the physical quantities are transformed into dimensionless ones
using the maximum density pp.x, the maximum pressure p,,.. and the equatorial radius 7. as

follows:

L — (2.46)

Te

for polytropic configurations and

(RN S— (2.47)

for the Fermi gas models, and

(2.48)

pmax

Here [ is introduced so as to make the distance from the center to the equatorial surface of the
star to be unity. Arbitrary functions are also transformed into dimensionless ones. Quantities
with"are dimensionless. For example, the dimensionless length is 7 and the dimensionless arbi-
trary functions are /i and &, respectively. Dimensionless forms of other quantities are collected
in App. B.1.
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The computational domain is defined as 0 < 6 < % in the angular directionand 0 < 7 < 21in
the radial direction. Since the equation of magnetohydrostationary equilibrium is defined only
inside the star and the source terms of the elliptic equations for the gravitational potential and
the magnetic flux function vanish outside the star, our computational domain covers a region of
the space that is sufficient for obtaining equilibria. In order to resolve the region near the axis
sufficiently, we use a special coordinate in actual numerical computations.

In the 7-direction, we divide the whole space into two distinct regions: [0, 1.0] (region 1),

and [1.0, 2.0] (region 2). In each region, the following mesh points are defined:

_VI-VO

’LUZ:(Z—l)A’LUl, Awlz R for 1§2§n1,
P = w] \/7””—1_—\1/1 (2.49)
w; = 1.0+ (i —ny)Awy, Awy=———, for ny <i.
Nog — 1
where n; and ny are the mesh numbers defined as follows:
3
n, = Z(nr -1 +1, (2.50)
1
ng = Z(nr —1)+1. (2.51)

Here n, is the total mesh number in the r-direction. In practice, since we use a difference
scheme of the second-order accuracy for the derivative and Simpson’s integration formula, we
divide each mesh interval defined above further into two equal size intervals in the r coordinate.
We use n,, = 513 and thus the actual total number of the mesh points is (2n, — 1) = 1025.
Concerning the #-direction, we have to resolve the region near the axis, because for m < 0
values the magnetic fields seem to be highly localized to the axis region. In order to treat such

magnetic fields near the axis region, we introduce the following mesh in the #-direction:

/2

ej:,\Z,Aj:(j—l)A)\,1§j§n9,A>\: ,
ng—l

J

(2.52)

where ny is the total mesh number in the f-direction. We also divide each mesh interval defined
above further into two equal size intervals. Then, we use ny = 513 and thus the actual total
number of the mesh points is 1025. Fig. 2.1 shows the relations between the order of the grid

points and the r- or f-coordinate value.

2.2.5 Numerical method

We use the scheme of Tomimura & Eriguchi (2005). This scheme is based on the Hachisu
Self-Consistent Field (HSCF) scheme (Hachisu 1986a,b), which is the method for obtaining
equilibrium configurations of rotating stars. We define the ratio of the equatorial radius to the
polar radius as the axis ratio ¢g. This quantity ¢ characterizes how distorted the stars are due
to non-spherical forces. The stronger the non-spherical force becomes, the more distorted the

stellar shape is. The non-spherical force can be the centrifugal force, the magnetic force or both
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Figure 2.1: Left: the coordinate r/r, is plotted as a function of the grid points. The solid curve shows the
region 1 ([0, 1]) and the dashed curve shows the region 2 ([1, 2]). Right: the same as the left panel except
for the 6 coordinate.
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Figure 2.2: The virial quantity VC, plotted against the number of grid points in the r-direction.

of them. We fix the value of ¢ in order to obtain the magnetized equilibria. We also fix one of
1o and Qo. If we fix 19, we will obtain the value of QO after the relaxation and iteration. If we

fix (o, we will obtain ito. Then, we will obtain one magnetized equilibrium state.

2.2.6 Numerical accuracy check

In order to check the accuracy of converged solutions, we compute a relative value of the virial

relation as follows:

12T + W + 311 + M|

VC =
W]

(2.53)

Since this quantity VC must vanish for exact equilibrium configurations, we can check the
global accuracies of the numerically obtained models as a whole (see e.g. Hachisu 1986a).
Since the numerical results depend on mesh size, we have computed the same model by chang-
ing the number of grid points in the r-coordinate but fixing the number of grid points in the
f-direction as nyg = 513. Fig. 2.2 shows VC as a function of the number of grid points in

the r-coordinate for polytropic models. Since we use schemes of second-order accuracy, VC
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m_1-q Be/Bouw Mp/B  M/W| TI/|W] B fio K vC
N =10
-2.0 22E-2 1.03E+2 9987E-1 3.74E-5 3.33E-1 5.07E-2 228E-9 7.76E-7 5.132E-8
-1.5 19E-3  4.44E+1 9.982E-1 3.02E-5 3.33E-1 5.07E-2 9.65E-8 8.27E-7 2.646E-6
-1.1 42E-4 2.19E+1 9978E-1 2.60E-5 3.33E-1 5.07E-2 1.80E-6 8.33E-7 2.775E-6
-0.9 2.5E-4 1.62E+1 9.976E-1 245E-5 3.33E-1 5.07E-2 7.74E-6 8.35E-7 2.785E-6
-0.5 13E-4 1.02E+1 9.972E-1 221E-5 3.33E-1 5.07E-2 141E4 8.35E-7 2.788E-6
00 88E-5 7.17E+0 9.968E-1 1.99E-5 3.33E-1 5.07E-2 5.25E-3 831E-7 2.789E-6
05 7.0E-5 5.69E+0 9963E-1 1.83E-5 3.33E-1 5.07E-2 1.92E-1 8.23E-7 2.789E-6
1.0 6.1E-5 478E+0 9959E-1 1.70E-5 3.33E-1 5.07E-2 6.90E+0 &.11E-7 2.789E-6

Table 2.1: Physical quantities for Qo =0, Ao = 10 and B,,, = 1.5 x 10'®G polytropes with different values of
m.

decreases as the square inverse of the number of grid points (see also Lander & Jones 2009;
Otani et al. 2009).

2.3 Numerical Results

We give a brief summary of our numerical results here. First we show the basic features for
negative m models and the dependences of the magnetic field configurations on the values of m
for barotropes. We also show rotating and magnetized polytropic models in order to examine
the effect of rotation on magnetic fields. The influence of the equation of state on the interior
magnetic field is also displayed. We have computed N = 0.5, 1, 1.5 polytropic models and four
white dwarf models with p, = 1.0 x 107,1.0 x 10%, 1.0 x 10°, and 1.0 x 10'°gcm 3.

2.3.1 Effect of the distribution of the toroidal current density on the distribution of the
magnetic field

We show the results for the distributions of the magnetic fields for different values of m. In
particular, in order to examine the effect of magnetic fields alone, we consider configurations
without rotation. The effect of stellar rotation is discussed in Sec. 2.3.2. Thus we set Qo =0
and compute N = 1 polytropic equilibrium models with different values of m and appropriate
values of ¢ so that the surface magnetic field becomes roughly B,,, = 10 G when p. =
1.0 x 10%gem =3 and mass M = 1.4M,. By setting N = 1 and an appropriate choice of
polytropic constant K of p = K p?, we obtain models with M = 1.4M,,. It should be noted that
these models have the typical mass and radius for neutron stars. We choose N = 1 as a simple
approximation of neutron stars here. We searched and found the value of ¢ by calculating many
equilibrium states.

Physical quantities of these models are shown in Tab. 2.1. It can be seen that values of
IT1/|W| and § are almost the same among these models. Although the strength of the averaged
surface magnetic field is By, = 1.5 x 10 G, the values of M /|WW| are much smaller than
those of II/|W|. It implies that the effect of the magnetic fields in these configurations on their
global structures is very small. On the other hand, values of B./Bs,, and M /|W| vary rather

considerably for different values of m. As the value of m is decreased, values of B./B,, and
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Figure 2.3: Contours for the magnetic flux function (left panels) and for the logarithm of the strength of the
magnetic field normalized by the averaged surface magnetic field (right panels) are shown. The inner solid
circle corresponds to the surface of the star and the outer solid circle denotes the boundary of our compu-
tational region. The flux difference between two adjacent contours of thick lines is 1/10 of the maximum
value of U. In the left panels, the thick poloidal field line is the boundary of the foroidal magnetic field
region. The toroidal magnetic field exists only inside the region. In the right panels, the distribution of the
logarithm of the magnetic field normalized by the averaged surface magnetic field, log;, | B/Bsu:| con-
tour, is shown. The thick solid curve corresponds to the curve with log,( | B/Bsyr| = 0. Inside this curve
logyg |B/Bsur| > 0 and outside this curve log,, |B/Bsur| < 0. The difference between two adjacent
contours is 0.2.
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log plasma beta
N

r

Figure 2.4: Profiles of log 8, at § = 7/2, where 3, is the plasma (3. Solid line represents the distribution
for an m = 1.0 configuration, dashed line that for an m = 0.0 configuration and dotted line that for an
m = —2.0 model, respectively.
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Figure 2.5: Isocontours of j, for different values of m. These panels show N = 1, ¢ = 0.99 polytropic
equilibrium models. The outermost curve denotes the stellar surface. The difference between two adjacent
contours is 1/10 times the maximum of j,. The current is non-zero in the whole star except at the stellar
surface and the symmetric axis (z-axis).
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Figure 2.6: The ratio of the magnetic 2" -pole moment coefficient to the magnetic dipole moment coefficient,
|by,,1/01,1], is plotted against the multipole moment number n. Here b,, 1 is defined in Eq. (2.45).
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M /|W| increase. In Fig. 2.3 the structure and strength of magnetic fields are shown for three
different values of m, i.e. m = —2.0 (negative m model), m = 0.0 (&t = constant model) and
m = 1.0 (positive m model). The left-hand panels show the poloidal magnetic field lines and
the regions where the toroidal magnetic field exists. The right-habd panels display the strength
of the magnetic field | B| normalized by the averaged surface magnetic field By,

As seen from these figures, there are no discontinuities of the magnetic fields at the stellar
surfaces. Due to the choice of the functional form of the arbitrary function /%(kif) and the
distribution of the magnetic flux function, foroidal magnetic fields appear only in the region
that is bounded by the outermost closed poloidal magnetic field line inside the star (thick line).
Thus the toroidal magnetic fields exist inside the torus region.

As the value of m is increased, i.e. from top panels to bottom panels, the ratio of B./Bg,,
decreases (see left panels in Fig. 2.3) because the poloidal magnetic field becomes weaker. This
is also related to the fact that the interior poloidal magnetic field lines are much more localized
near the axis for negative m models. The contours of magnetic field strength also display the
same tendency. For the m = 1.0 model, the contour of |B| = By, (thick line) shows the
stellar surface and the shapes of contours are nearly spherical. By contrast, the contours of the
m = —2.0 model are highly distorted near the axis. The strength of the poloidal magnetic
fields for the negative m models could exceed 107G near the central region. Fig. 2.4 shows the
profiles of the plasma [, on the § = 7/2 plane, i.e. on the equatorial plane. Here, the plasma

f3p is defined as follows:
B, = 8mp/|B|*. (2.54)

This quantity denotes the contribution of the gas pressure effect compared with the magnetic
pressure effect. Fig. 2.4 shows profiles of 3, for models with m = —2.0,0.0,1.0. As seen
from Fig. 2.4, the profiles of /3, are very similar to each other near the stellar surface regions.
For the region around 7 ~ 0.6, however, the value of 3, for the m = —2.0 model is larger
than those for the m = 0 and m = 1.0 models. Since these models have almost the same mass
density distributions, this difference means a difference of magnetic pressure distribution. In
this region the magnetic field of the m = —2.0 configuration is weaker and thus the 3, becomes
larger. However, it should be noted that these contours for the model with m = —2.0 are rather
confined to the very narrow region near the central part. In other words, the gradient of the
magnetic field distribution for the model with m = —2 is much steeper than the gradient of
the gas pressure distribution compared with the models with m = 1.0 and m = 0.0. Thus the
value of log /3, becomes dramatically small within the 7[0 : 0.1] region and the minimum value
of 3, can reach about ~ 20 in the central part. Therefore, in the central region of the model
with m = —2.0 the influence of magnetic field on the local structure of the star is no longer
negligible.

Here we explain the reason why this kind of highly localized poloidal magnetic field con-
figuration can be realized. We need to note the distribution of the toroidal current density j,,

in order to analyse our models properly, because the current density is related to the magnetic
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field closely by the two equations (Eqgs. 2.8 and 2.17). In Fig. 2.5 we show the distributions
of the toroidal current density for models with different values of m. As seen from Fig. 2.5,
the distribution of the toroidal current density is concentrated toward the magnetic axis for the
configuration with negative values of m. This is due to the dependence of /i on the value of
m. The current density distribution spreads over a large region inside the star as the value of
m increases (from left panel to right panel). In other words, the distribution of the magnetic
flux function becomes more and more concentrated toward the magnetic axis as the value of
m decreases. It implies that the strengths of magnetic fields for models with negative values
of m become very great near the magnetic axis. Our results show one possibility that a strong
poloidal magnetic field can exist deep inside a star. If such a strong poloidal magnetic field
is sustained deep inside a star, the contours of the magnetic field strength are no longer nearly
spherical as in the bottom right panel of Fig. 2.3. Although this feature might be modified by
dropping the assumption of the axisymmetry, it would give us one possibility for the presence
of a strong poloidal magnetic field configuration deep inside a star.

Finally, to characterize the magnetic structure we show the magnetic multipole moments of
magnetized stars. In Fig. 2.6 the values of |b,1/b11| (Eq. 2.45) are plotted. There appear to
be only multipolar magnetic moments with odd degree (n = 1, 3, 5), because we have assumed
the equatorial symmetry. As seen from these figures, in configurations with negative values of
m the higher order magnetic multipole moments contribute (|b,, 1 /b1 1) significantly to the total
magnetic field, while in configurations with positive values of m the magnetic dipole moment
is the dominant component of the total magnetic field. These figures show that the external
magnetic field is nearly dipole when we adopt m = 0 but it is not simple dipole when m > 0
and m < 0. From the left panel, we see that the n = 3 (octupole) component reaches about a

few tens of per cent of the dipole component when m = —2.0.

2.3.2 Effect of stellar rotation

We calculate two sequences with rotation for different values of m in order to examine the
influence of rotation. We choose the value of /iy by obtaining a configuration with Qo = 0 and
g = 0.99 as a non-rotating limit of our equilibrium sequence. We choose ¢ = 0.99 here for
simplicity. The value of ¢ = 0.99 corresponds to an equilibrium configuration with By, ~ 10
G when we consider a typical neutron star model with negative m. We have obtained sequences
of stationary configurations by fixing the parameters m and /iy and changing the value of ¢. By
changing the value of ¢ for a fixed value of /iy, we have equilibrium configurations with shapes
that are deformed from spheres by rotational effect in addition to the magnetic force. Since we
fix the magnetic potential parameter /iy and m along one sequence, the equilibrium sequence is
the one with approximately constant magnetic effect. If the values of m and /i, are changed, we
will be able to solve another stationary sequence. We have calculated two stationary sequences
with negative m (m = —1.5) and with m = 0.0, i.e. ft = constant .

Physical quantities of stationary configurations are tabulated in Table 2.2. As seen from this
table, the quantities [1¥| and 8 or the ratio IT/|[1¥| and T//|W| depend on the strength of the
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¢  Be/Bsw My/M W] MW O/|W|  T/|W| B a2 K vC

m=—15 fio = 5.070E-7

099 4.75E+1 09979  9.71E-2 1.14E-4 3.33E-1 0.00E+0 5.06E-2 0.00E+0 3.33E-6 1.80E-6
09  4.54E+1 0.9972  8.00E-2 1.26E-4 3.19E-1 2.14E-2 451E-2 1.17E-2 3.61E-6 3.41E-5
0.8  4.36E+1 0.9960  6.16E-2 1.45E-4 3.02E-1 4.67E-2 3.87E-2 236E-2 3.95E-6 1.34E-5
0.7  4.19E+1 0.9940  4.40E-2 1.74E-4 2.85E-1 7.30E-2 3.22E-2 337E-2 432E-6 5.70E-6

m=0.0 fio = 5.520E-2

099 6.98E+0 09947  9.60E-2 2.31E-3 3.33E-1 0.00E+0 5.03E-2 0.00E+0 1.20E-4 1.85E-6
09 6.63E+0  0.9934  7.90E-2 2.35E-3 3.18E-1 2.14E-2 448E-2 1.16E-2 1.15E-4 1.24E-6
0.8 6.29E+0 09913  6.05E-2 2.39E-3 3.01E-1 4.73E-2 3.83E-2 237E-2 1.06E-4 1.36E-6
0.7  599E+0 09878  4.32E-2 2.39E-3 2.83E-1 7.40E-2 3.18E-2 3.37E-2 9.24E-5 1.5I1E-6

Table 2.2: Physical quantities of two sequences with m = 0.0 and m = —1.5.
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Figure 2.7: The value of B./Byy, is plotted against the value of m for polytropes (¢ = 0.99) and white
dwarfs (¢ = 0.999).

rotation. By contrast, magnetic quantities are almost unaffected by rotation. The dependence
of the ratio B,/ Bs,, on rotation is relatively small. The equilibrium configurations with highly
localized magnetic fields that we have obtained in this chapter are almost unchanged even by

rapid rotation. Therefore, we do not consider the effect of rotation any longer in this chapter.

2.3.3 Effect of equations of state

Thus far, we have discussed our magnetized configurations by showing the results for N = 1
polytropic models. The distribution of the foroidal current density, however, depends on the
mass density profile through Eq. (2.17). Thus we show other polytropic models, i.e. N = 0.5
and N = 1.5 polytropes, as well as configurations for degenerate gases, i.e. white dwarf
models, in order to examine the influence of equations of state on configurations with highly
localized magnetic fields.

We set ¢ = 0.99 for polytropes and ¢ = 0.999 for degenerate gases. The degenerate model
with ¢ = 0.999 corresponds to a configuration with a B,,, ~ 1.0 x 10°G magnetized white
dwarf with m = —3.0, the central density is 1.0 x 10%gcm 3. This central density results in
a white dwarf of about 1.16 M. Neither models rotates. We calculate 11 models with fixed
values for ¢ by setting m = —3.0,—2.5,—-2.0,—1.5,—-1.1,—-0.9,—-0.5,0.0,0.5,1.0,1, 3 and

examine the dependence of B../ By, on the equation of state.
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Figure 2.8: Isocontours for p and ¥ (top), j,, (middle) and log[| B|/|Bsy-|] (bottom). These panels are for
configurations with m = —0.99. The left panels are contours for the model of a N = 0.5 polytrope and the
right panels are for a N = 1.5 polytrope. The difference between two adjacent contours is 1/10 times the
maximum of the corresponding quantities.
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Figure 2.9: Same as Fig. 2.8 except for the equations of state. The left panels are for a white dwarf with
1.0 x 107gem ™3 and the right panels are for a white dwarf with 1.0 x 10'%gem =2 .
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Fig. 2.7 displays the ratio B./Bs,, against the value of m for different equations of state.
The dependency of this ratio on the value of m is qualitatively similar for these equations of
state. Whichever equation of state we choose, we obtain configurations with highly localized
magnetic fields, for which B./B,, can exceed 100. The same is true for white dwarfs with
highly localized magnetic fields. However, B,/ B, tends to become smaller for stiffer equa-
tions of state, as seen from Fig. 2.7.

Fig. 2.8 and Fig. 2.9 display the distribution of mass density, current density and the contour
of log,, | B|/Bsur of m = —0.99 configurations. Fig. 2.8 shows results for polytropes N = 0.5
and N = 1.5 (stiffest and softest equations of state among the polytropic models considered
here) and Fig. 2.9 shows results for white dwarfs with p. = 1.0 x 107gem ™ and p, = 1.0 x
101%em ™3 (stiffest and softest among the white dwarf models considered here). As seen from
top panels in each figure, the mass density distributions of the softer equation of state (N = 1.5
and p, = 1.0 x 10'°%gcm~?) are more centrally concentrated than those of the stiffer equation
of state (N = 0.5 and p. = 1.0 x 107gecm~3). The current density distributions are also
more centrally concentrated compared with the mass density distribution (middle panels). As
a result, the poloidal magnetic fields become more highly localized for the softer equation
of state (bottom panels). The mass of the white dwarf becomes higher for the higher central
density. This implies that higher mass white dwarfs can have stronger interior magnetic fields

deep inside if the magnetic field structure is fixed as in the present study.

2.4 Discussion and conclusions

In this chapter we have constructed axisymmetric and stationary magnetized barotropes that
have extremely strong poloidal magnetic fields around the central region near the magnetic
axis. The strength of the magnetic field in that region could be two orders of magnitude larger
than that of the surface magnetic field. In the context of the neutron star physics, this would
imply that there might be magnetars whose interior magnetic fields amounting to 1017 G if we
assume the surface field to be order of 10*°G and that there might be magnetized white dwarfs
with interior magnetic fields that reach 10'? G when the mass is nearly the Chandrasekhar limit
and the surface field is of the order of 10° G.

Moreover, it should be noted that highly localized magnetized stars could have higher order
magnetic multipole moments in addition to the dipole moment. Although in most astrophysical
situations magnetic dipole fields have been assumed, we may need to consider configurations
with contributions from higher multipole magnetic moments for some situations. In those

cases, configurations with negative values of m might be used to analyze such systems.

2.4.1 Higher order magnetic multipole moments with even n

It should be noted that in the analysis of this chapter only higher magnetic multipole moments
with odd n = 2/+1 where / is an integer, i.e. 22°*! moments, appear and that there are no higher

magnetic multipole moments with even n = 2¢. This is due to the choice of the current density.
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Our choice of the arbitrary function £(V) and the assumption of the symmetry of ¥ about the
equator necessarily result in magnetic field distributions that are symmetric about the equator.
It implies that the magnetic field should penetrate the equator and that 22 type distributions that
are confined the upper or lower half of the space of the equator are excluded. In order to obtain
closed magnetic field distributions in the half plane above or below the equator, the current
density must be chosen so as to flow in opposite directions above and below the equatorial
plane. It also implies that we need to set the current density on the equator in the (-direction
to vanish.

Concerning 22

multipole magnetic moments distributions, Ciolfi et al. (2009) have obtained
such configurations. Their solutions correspond to the choice of the current density distribu-

tions that are antisymmetric about the equator.

2.4.2 Forms of arbitrary functions

One might think it curious that functions appear in the formulation and that there is no physical
principle specifying how to choose those arbitrary functional forms. The same situation appears
for the problem of calculating equilibrium structures or stationary structures of rotating and
axisymmetric barotropes. For that problem, the three component equations of the equations
of motion do not remain independent but come to depend on each other. This implies that
one could not solve for all the three components of the flow velocity completely. Assumptions
of the stationarity and barotropy reduce the problem to a degenerate problem concerning the
components of the flow velocity. Although there are three component equations for the three
components of the flow velocity, those three component equations are no more independent.
They become dependent each other due to the barotropic nature of the assumption for the gas.
Therefore, one needs to specify the rotation law or corresponding relation in order to find
stationary or equlibrium configurations for axisymmetric barotropes. The form of the rotation
law is arbitrary.

The only requirement for the functional form regarding the rotation law comes from the
nature of the stability of the system. However, one needs to know the stability of the system
beforehand. If one does not have any information about the system to be solved, one has no
principle by which to choose the form of the rotation law.

The situation is the same for the stationary problem for axisymmetric magnetized barotropes.
For the stationary states of axisymmetric magnetized barotropes, the situation is more compli-
cated than that for rotating barotropes, because not only the flow velocity but also the magnetic
field appears in the problem. That also leads to the appearance of a greater number of arbitrary
functions in the problem. Thus it is very hard to specify the forms of arbitrary functions phys-
ically meaningfully. In such situations the only thing one can might be to explore many kinds
of arbitrary functions to find out the general consequences of the resulting magnetic fields.

Of course, if one could obtain a lot of information of the magnetic characteristics about
the equilibrium states at hand, one could constrain the arbitrary functions more appropriately

and more physically meaningfully. One possibility is to rely on the stability nature of the
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equilibrium, as in the rotating barotropic stars. Since there is no useful stability criterion for
the field configuration with both poloidal and toroidal fields and linear stability analysis of the
equilibrium is beyond our scope, we leave this issue of constraining the functional form for a

future study.

2.4.3 Application to magnetars

The typical strength of the surface magnetic field of Anomalous X-ray Pulsar (AXP) and Short
Gamma-ray Repeater (SGR) is considered to be 1014 — 105G by assuming the magnetic dipole
spin down (see e.g. Kouveliotou et al. 1998; Kouveliotou et al. 1999; Murakami et al. 1999;
Esposito et al. 2009; Enoto et al. 2009; Enoto et al. 2010). According to recent observational
evidences, some types of AXP and SGR are regarded as similar kinds of isolated neutron star
and are categorized as magnetars, although they were first considered to belong to two different
types of neutron star. (see e.g. Duncan & Thompson 1992; Duncan & Thompson 1996; Woods
& Thompson 2006; Mereghetti 2008).

For neutron stars with a strong magnetic field, such as magnetars, the strength of the max-
imum foroidal magnetic field inside has been estimated to be 10'” G (see e.g. Thompson &
Duncan 1995; Kluzniak & Ruderman 1998; Spruit 1999; Spruit 2009). Many authors have
considered that only foroidal magnetic fields could become extremely strong and be hidden
below the surfaces of the stars. Concerning poloidal magnetic fields, a very strong field is not
considered because it would be observed as a strong surface field since it is dipole-dominated.
However, as shown in this chapter, extremely strong poloidal magnetic fields can exist in the
very central region at r. ~ 0.01r., as seen from Tables 2.1 and 2.2 and Fig. 2.7 and the def-
inition of B., Eq. (2.40). If we apply our equilibrium models with negative values of m to
magnetars with mass 1.4M, central density pp.c = 1.0 x 10°gem ™3 and average strength
of the surface magnetic fields 10 G, the strengths of the poloidal magnetic fields could be
106 — 10'7G. We also consider weak magnetized magnetars with average strength of the sur-
face magnetic fields 10! G (Rea et al. 2010). If we apply our equilibrium models, the strengths
of the poloidal magnetic fields could be 10'* — 10'°G. Since these strong poloidal magnetic
fields located nearly along the magnetic axis in the central core region, the magnetic struc-
tures in the core region are highly anisotropic. If extremely strong magnetic poloidal fields
are hidden within the core region, there could be magnetic fields with higher order multipole
moments.

If the neutron star shape is deformed by a strong magnetic field and the magnetic axis is
not aligned the rotational axis, gravitational waves will be emitted (Cutler 2002; Haskell et al.
2008; Mastrano et al. 2011). Gravitational wave emission tends to become stronger as the
ellipticity of the meridional plane of the star becomes larger. For our models, decreasing m
increases the value of 1 — ¢ in the B,,, constant sequence (see the value of 1 — ¢ in Table
2.1). Thus those models with highly localized magnetic field here may be efficient emitters of

gravitational wave.
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2.4.4 Some features of highly magnetized white dwarfs

It is widely believed that the effect of the stellar magnetic fields play a significant role in as-
trophysics. For example, isolated magnetized white dwarfs tend to have a higher mass than
non-magnetic white dwarfs (Wickramasinghe & Ferrario 2000). According to observations,
the surface magnetic field strength of white dwarfs varies from very little to 10° G (Wickramas-
inghe & Ferrario 2000). Therefore, there are some strongly magnetized white dwarfs whose
surface magnetic field about 10®-10°G. For example, Jordan et al. (1998) estimated the field
range 3.0 x 10%-7.0 x 10® G in GD 299. EUVE J0317-855 is a massive high-field magnetic
white dwarf with rapid rotation. Its magnetic field was calculated by an offset dipole model
with 4.5 x 108G and period of 725 s. PG 10314234 is a high-field magnetized white dwarf.
Schmidt et al. (1986) and Latter et al. (1987) estimated its rotation period 3.4 h and its mag-
netic field as 5.0 x 108 - 1.0 x 10° G. The observed spectral variations cannot be fitted well by a
simple dipole magnetic or offset dipole model, so they have proposed a two-component model
composed of a nearly centered dipole and a strongly off-centered dipole. In other words, the
magnetic field structures of several strongly magnetized white dwarfs could not be explained
by applying simple dipole structures.

We have obtained strongly magnetized white dwarfs with higher order magnetic multipole
moments in this chapter. If we apply our configurations with negative m, some strongly mag-
netized star such as PG 10314234 may have strong interior magnetic fields. According to our
numerical results, B, could reach as high as 10?2 G when By, ~ 3.0 x 10° G for a highly
localized (m = —3.0) and high mass (p. = 1.0 x 10°, M ~ 1.34M_) model (see Fig. 2.7).
Since the central magnetic field strength 5. depends on the equation of state as we have shown
in Sec.3.6.2, it becomes higher as the central density increases. Thus high mass white dwarfs
could have strong poloidal magnetic fields according to our models with negative m. As we
have displayed in Sec. 2.3.1, N = 1.5 polytropes with negative values of m have rather large
higher order magnetic multipole moments. The same is the case for magnetized white dwarf
models, i.e. they have rather large higher order magnetic multipole moments. Therefore, the
magnetic fields outside of such stars are far from simple dipole fields if the magnetized white

dwarfs have highly localized strong poloidal magnetic fields deep inside the stars.

2.4.5 Comments on stability of magnetized barotropes

Once equilibrium configurations are obtained, it would be desirable to investigate their stability.
However, a satisfactory formulation for the linear stability analysis for general magnetic con-
figurations has not been fully developed, although there is a stability criterion only for purely
toroidal magnetic configurations (Tayler 1973). For purely poloidal or mixed poloidal-toroidal
magnetic configurations, magnetic configurations with rotation or other general situations, no
authors have ever succeeded in obtaining a clear stability criterion (see e.g. Markey & Tayler
1973; Wright 1973; Markey & Tayler 1974; Tayler 1980; Bonanno & Urpin 2008). Therefore

the stability of the configurations obtained in this chapter contain both poloidal and toroidal
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magnetic fields has not been investigated.

By contrast, the stability of magnetized stars may be investigated through that time-dependent
evolutionary computations of the magnetic configurations. Thanks to powerful computers,
some authors have recently employed magnetohydrodynamical codes to follow the time evolu-
tions of magnetized configurations and find out whether these configurations would settle down
to certain ’stable equilibrium states’. Such investigations concerning the magnetic configura-
tions have been carried out by Braithwaite and his coworkers as mentioned in Introduction (see
e.g. Braithwaite & Spruit 2004; Braithwaite & Nordlund 2006; Braithwaite & Spruit 2006;
Braithwaite 2006; Braithwaite 2007; Braithwaite 2009; Duez et al. 2010). According to their
results, purely foroidal configurations and purely poloidal configurations are shown to be all
unstable, as previously shown or expected (e.g. Tayler 1973; Markey & Tayler 1973; Flowers
& Ruderman 1977. However, see Geppert & Rheinhardt 2006 for some results about stabil-
ity). Concerning the mixed poloidal-toroidal magnetic configurations, recent numerical studies
(Braithwaite 2009; Duez et al. 2010) have shown that they are stable as long as the following
condition is satisfied:

M
W]

o} < % <0.8, (2.55)
where this « is a numerical factor of 10— 10? depending on the stellar structures. By performing
3D MHD simulations, it has been shown that non-axisymmetric perturbations to equilibrium
stars grow when this condition is not satisfied. Stars with mixed magnetic fields whose domi-
nant component is poloidal field seem to evolve toward non-axisymmetric configurations until
the amplitude of the perturbations reach nonlinear regime and saturate. As can be seen from
tables in this chapter, we have found no models that satisfy that criterion (Eq. 2.55) for our par-
ticular choice of functional forms presented above (see Sec.2.2.2), because the energy stored
in the foroidal magnetic field is at most a few per cent for all of our models. In order to ob-
tain configurations that satisfy the criterion, we need to choose different functional forms from
those used in this chapter. We should be careful to apply the criterion, however, to general con-
figurations of magnetic fields. The class of solutions with both foroidal and poloidal magnetic
fields obtained here may be rather different from the ones studied by Braithwaite and his col-
laborators, even if they share the obvious characteristics of twisted-torus structures of magnetic
fields. As is seen in completely different stability natures of seemingly similar configurations in
Geppert & Rheinhardt (2006) and Braithwaite (2007), it is quite uncertain at this moment that
failure to satisfy the criterion (Eq. 2.55) for our models here means unstable nature of them.
It would be interesting to study the stability nature of our configurations thorough either linear

perturbation analysis or direct MHD simulations.

2.4.6 Conclusions

In this chapter, we have presented an extended formulation for obtaining axisymmetric and

stationary barotropic configurations with both the poloidal and toroidal magnetic fields. We
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have shown the possibility that magnetized stars have strong poloidal magnetic fields inside

the star. Our findings and conjectures can be summarized as follows.

1. By choosing the functional form for one of the arbitrary functions that appear in the basic
formulation for the configurations under the assumptions mentioned before, we have ob-
tained magnetized configurations in which extremely strong poloidal fields are confined
within the central part of the near axis region. When we apply our models to magnetars,
the interior magnetic strength would be 10'7 G while the surface magnetic strength is
101415 G. On the other hand, if we apply our models to magnetized white dwarfs with
mass ~ 1.34 M, the surface field strength would be 10° G and B, reaches 10'% G.

2. If stars have extremely strong poloidal magnetic fields deep inside, the contours of mag-

netic field strengths are not spherical but rather column-like shapes as shown in the figures.

3. If stars have extremely strong magnetic fields deep inside, contributions from higher order
magnetic multipole moments to the outer fields around the stars cannot be neglected.
This implies that if stars have highly localized and extremely strong magnetic fields deep
inside, then observations of magnetic fields around the stars could not be explained by the

simple dipole models that have been used in most situations.
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What we wish, we readily believe, and what we our-
selves think, we imagine others think also .
(Gaius Julius Caesar)

Oppositely flowing toroidal current: key to large
toroidal fields

We have obtained magnetized equilibrium states with extremely strong poloidal magnetic fields
fixing and changing the functional form in chapter 2. Although these solutions have very strong
magnetic field deep inside the star, the magnetic field is highly localized near the center and
the toroidal component of the magnetic field is much smaller than the poloidal component.
Thereupon, we consider magnetized equilibrium states with large toroidal magnetic fields in

this chapter.

3.1 Introduction

Analytic studies have shown that any configurations with either purely poloidal or purely
toroidal magnetic fields are unstable (Tayler 1973; Markey & Tayler 1973). Stable magnetized
stars should have both the poloidal and the toroidal magnetic fields. Moreover, the magnitudes
of the toroidal fields must be comparable with those of the poloidal fields (Tayler 1980). This
argument has been shown to be the case from the recent simulations. Braithwaite & Spruit
(2004) have shown that an initial random magnetic field in stably stratified stellar layers re-
laxes on the stable twisted-torus magnetic field configuration after several Alfvén timescale.
Similar twisted-torus magnetic field configurations have been also obtained in many previous
works by numerically exact computations of the axisymmetric stationary states of magnetized
stars (Tomimura & Eriguchi 2005; Yoshida & Eriguchi 2006; Lander & Jones 2009; Lan-
der et al. 2012), structure separated Grad-Shafranov (GS) solving method (Ciolfi et al. 2009;
Glampedakis et al. 2012) or zero-flux-boundary method (Prendergast 1956; Ioka & Sasaki
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2004; Duez & Mathis 2010; Yoshida et al. 2012). The stabilities of these fields, however, have
not been clarified yet because it is difficult to analyze their stability by linear stability analyses
or other means based on the stationary configurations. On the other hand, Braithwaite (2009)
and Duez et al. (2010) have shown that the stability criteria of the magnetized stars could be
expressed as below:

M M,
a—— < — < 0.8, 3.1
WIS M S o
where M /|W| is the ratio of the magnetic energy to the gravitational energy. M, /M is the
ratio of the poloidal magnetic energy to the total magnetic energy and « is a certain dimension-
less factor of order 10 for main-sequence stars and of order 10? for neutron stars. The right
hand side of this inequality means that the strong poloidal magnetic field configurations are

unstable (we define that the poloidal fields are strong when M,/ M > 0.8 in this chapter).

On the other hand, the majority of investigations in which stationary states of the magne-
tized stars have been treated (e.g. Yoshida & Eriguchi 2006; Yoshida et al. 2006; Lander &
Jones 2009; Ciolfi et al. 2009; Lander et al. 2012) and chapter 2 in this thesis failed to obtain
configurations with strong toroidal magnetic fields. In these studies, stationary states of magne-
tized stars have been pursued either by numerically exact methods (e.g. Tomimura & Eriguchi
2005) or structure separated GS solving methods (e.g. Ciolfi et al. 2009). However, they have
only found that it was very difficult to obtain stationary states of magnetized stars with very
strong toroidal magnetic fields. In some of their solutions the toroidal magnetic fields have
been almost as strong as the poloidal magnetic fields only in the particular local regions inside
the stars, but the total energies of the toroidal magnetic fields as a whole are much smaller
than those of the total poloidal magnetic fields. In other words, the ratios of M,/ M in their
solutions are much bigger than 0.8.

By contrast, some studies of magnetized stationary configurations by structure separated
GS solving method (Glampedakis et al. 2012) by zero-flux-boundary method (Duez & Mathis
2010; Yoshida et al. 2012) have succeeded in obtaining the magnetized equilibria with strong
toroidal magnetic fields by choosing very special boundary conditions for the poloidal magnetic
fields. The boundary condition adopted by Tomimura & Eriguchi (2005) and Ciolfi et al. (2009)
in which they failed to obtain configurations with strong toroidal magnetic fields is that the
poloidal magnetic field lines should continue smoothly through the stellar surfaces into the
vacuum region which is considered to be outside of the stars. On the other hand, the boundary
condition employed by Glampedakis et al. (2012) is different. The poloidal magnetic field
lines need not continue smoothly at the stellar surfaces, because in some of their models it has
been allowed for the surface currents to exist. By specifying such a boundary condition, they
have succeeded in finding that magnetized configurations whose total energies of the toroidal

magnetic fields become much stronger as the surface currents are increased.

Duez & Mathis (2010) and Yoshida et al. (2012) also obtained the stationary configurations
with strong toroidal magnetic fields, but the boundary condition which they adopted is of dif-
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ferent kind from those mentioned above. Their assumptions are essentially the same as those
in the previous works (Prendergast 1956; Woltjer 1959a,b, 1960; loka & Sasaki 2004). They
imposed the boundary condition that the magnetic flux on the stellar surfaces should vanish, so
all of poloidal field lines are closed and confined inside the stars and no poloidal magnetic fields
penetrate to the vacuum region outside of stars. In their solutions, the region where the toroidal
magnetic fields exist inside the star is much larger than that of any other models. However, they
did not explain the reason why the magnetized stars can sustain such configurations with large
toroidal magnetic energies under their special boundary condition.

In this chapter we will deal with magnetized configurations with large amount of the mag-
netic energies in the toroidal fields and present the reason why the magnetized stars can sustain
strong toroidal magnetic fields within the stars. As will be shown, we have found that the total
currents of the magnetized stars are important keys to understand this problem systematically
and the values of the total currents seem to be deeply related to the boundary condition of the
magnetic fields.

It should be noted that for the stationary configurations the magnetic fields are governed by
the Grad-Shafranov equation which is of the elliptic type partial differential equation for the
magnetic flux function. Therefore, the solutions of the GS equation are necessarily strongly
depending on the boundary condition(s).

In this chapter, we use both the numerically exact non-force-free method (Tomimura &
Eriguchi 2005) and the method in which boundary conditions are applied at finite locations
from the stellar centre (e.g., Prendergast 1956; loka & Sasaki 2004; Duez & Mathis 2010). We
will show configurations with negative surface currents or with the regions where the current
become negative can sustain the strong toroidal magnetic fields inside the star. Here the term
‘negative’ means that the currents flow in the opposite direction to the flow direction of the bulk

of the interior currents.

3.2 Formulation

Our formulation of the problem and the numerical methods are essentially the same as that
of Tomimura & Eriguchi (2005) and chapter 2, i.e. the numerically exact method, and that of
Duez & Mathis (2010), i.e. the zero-flux-boundary method.

3.2.1 Grad-Shafranov equation

We calculate self-gravitating, axisymmetric, stationary magnetized stars in order to obtain mag-
netized equilibria with strong toroidal fields in the Newtonian gravity. We assume that the
system is in a stationary and axisymmetry state. For rotating stars, the rotational axis and the
magnetic axis coincide and the rotation is assumed to be rigid. The star has no meridional
flows. The conductivity of the stellar matter is infinite, i.e. the ideal MHD approximation is
employed. There is no magnetosphere around the star. In other words, no electric current exists

in the vacuum region. Therefore, the toroidal magnetic field is confined within the star and the
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only poloidal component can penetrate the surface and extend to the outside of the star. We
use the polytropic equation of state and fix N = 1 for simplicity when we compute stationary
configurations by using the numerically exact method. This choice of N is the same as that

adopted in the previous works (e.g. Lander & Jones 2009).

Using the flux function W, we derive the Grad-Shafranov equation from Maxwell equations

as follows:

— —4nrsin 922, (3.2)
C

AU =

0*U n sin@ﬁ 1 8_\If
or? r2 06 \ sinf 00

and the form of Grad-Shafranov equation can be rewritten as (see chapter 2):

4
A(A,sing) = ——j, sin g, (3.3)

c
where, A denotes the ordinary Laplacian operator. We consider the homogeneous general
solution of Eq. (3.3) in this chapter. By taking the boundary condition for the vector potential
into account and using Green’s function which satisfies the boundary condition, we derive the

integral form of the GS equation as follows:
1 (17
Ay (r)sing = - / % sin ' d®r' + A, (1, 0) sin p, (3.4)
c r—T

where A, is a homogeneous general solution to Eq. (3.3) as follows:

n+2 n

> r
Agp(r,0) = Z [ r"“ nr"’l Pl(cos9). (3.5)

n=0 0

Here, r( is a certain constant which is the stellar radius for spherical configurations, and a,, and
b,, are constant coefficients which are obtained by applying the boundary condition. We will
be able to obtain the stationary distributions of the magnetic vector potentials by solving this
equation. Since these equations are of elliptic type partial differential equations whose source
term is j,, the boundary conditions are very important and have significant influences on the
global structures of the vector potentials or the magnetic flux functions. We will deal with this

problem about the boundary condition in Sec. 3.3.

3.2.2 Toroidal magnetic fields

Once we have obtained the flux function by solving the GS equation, it is easy to calculate
the poloidal magnetic fields directly. On the other hand, we can obtain the toroidal compo-
nent of the magnetic field by using the conserved quantity along the flux function which can be
expressed by an arbitrary function of W. This arbitrary function appears because of the assump-
tion of the axisymmetry. This function is called x(¥) in Tomimura & Eriguchi (2005) (chapter
2), F' in Duez & Mathis (2010) and 7" in Glampedakis et al. (2012). The toroidal component
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of the magnetic field is obtained from the following relation

B, — M) (3.6)

rsind’

This arbitrary function also appears in the expression of the current density as follows:

g _ 1 ds(Y)

¢ 4w dU

B + prsinfpu(¥)e, , 3.7

where, £(\V) is another arbitrary function of W. The arbitrary function x(¥) is the same as G in
Duez & Mathis (2010) and F' in Glampedakis et al. (2012). Then, we express the (o component
of the current density as below:

jo 1 dr(¥) k()

Pl m—l—prsm&u(\l/). (3.8)

The first term of Eq. (3.8) is the force-free current density part and the second term is the
non-force-free current part because of V x B = 4mj/c. If 4 = 0 in a certain region, the
magnetic field there is force-free, because 7 < aB in that region. We will call the first term
as the x term, and the second term as the ;. term of the current density in this chapter. In a
naive treatment, it seems to be enough to make the contribution from the ~ term larger in order
to make the toroidal magnetic fields larger. However, it has been very difficult to make the
influence from the x term strong. The reason for that is as follows. The distribution of W is
obtained by solving the GS equation, but the source term of the GS equation contains the &
term which is an arbitrary function of ¥ and is confined to a restricted region in the interior of
the star because we impose the magnetic flux function to be smoothly connected on the stellar
surface. Therefore, if we change the functional form and values of parameters which appear in
the functional form of x as well as the the region where « does not vanish, the distribution of
the flux function also changes according to the changes of x. We will discuss this difficulty in
Sec. 3.4.2.

3.3 Surface currents

In this section, we deal with the relation between the surface current and the magnetic field,
which is deeply influenced by the boundary conditions. The surface current can be defined ei-
ther by the discontinuity of the derivative of the magnetic flux function, or by the homogeneous
term in the integral representation for the vector potential. The both definitions for the surface

current give exactly the same values as we will see later.

3.3.1 Relation between the surface current and the discontinuity of the magnetic field

At first, we will show a relation between the surface current and the discontinuity of the mag-

netic field as follows. If the Ampére’s equation is applied to an area .S bounded by a boundary
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Figure 3.1: Poloidal magnetic field lines with a purely dipole (n=1) surface current (left) and a purely quadrupole
(n = 2) surface current (right).

0S5, we can write it by an integral form as follows:
4
B-dﬁ:l/j-ds, (3.9)
as ¢ Js

where d€ and dS are a line element and a surface element, respectively. We apply this equation

to an infinitely small area in the meridional plane of the star bounded by four lines as follows:

A
ro= 7"5(01)—7T, (3.10)
r = 7’5(91)+%7 (3.11)
0 = 0, (3.12)
6 = 0,+A0, (3.13)

where 6;, Ar and A@ are a constant, infinitesimal widths in the r-direction and in the 6-

directions, respectively. For this infinitesimal area, we obtain

B (10,0) = B (r3,0) | Ar + | Bi“(r,,0) = By'(r.,0) | r. 20

ret+Ar/2 (3.14)
Jo(r, 0)r drAd,

B 47
C Jro—Ar/2
where B and B are the exterior and interior values of the magnetic fields. Here, if the

current density is a surface current on the stellar surface (r = r,(¢)) defined by j,(r,0) =

Jsur(0)0(r — 75(0)), we can integrate the equation as below

rs+Ar/2 rs+Ar/2
/ Je(r,O)rdr = / Jsur(0)0(r — rs)r dr = 1sjeu(0). (3.15)

s—Ar/2 rs—Ar/2
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Since the r dependence of the magnetic fields are continuous on the stellar surface (r = r4(0)),

we obtain a relation as follows:

ex in dm .
Bg*(rs,0) — By*(rs,0) = 7351”(6’). (3.16)
The surface current is expressed by the discontinuity of the #-component of the magnetic field.
For more general situations, we can obtain the following equation for the surface current using

the parallel component B to the stellar surface,

ex n dm .

|| (TS,H) — || (7”3,9) = 7(]51”-(9) (317)
If the surface current exits, the parallel component of the magnetic field must be discontinuous.
We emphasize that the value of the discontinuity of the magnetic field between just inside and

just outside of the stellar surface equals the surface current density.

Glampedakis et al. (2012) expressed the surface current density in a different way as follows.
They defined the surface current by imposing the discontinuity of poloidal magnetic fields at
the stellar surface (see Eq. 67 in Glampedakis et al. 2012). Their discontinuous boundary

condition is just an assumption without a firm foundation as follows:
byt = &b = bET — byt = (1 — EbE" = Feur- (3.18)

Here b and ¢ indicate the magnetic field and a discontinuity parameter, respectively, in their
chapter. Since their model is a purely dipole configuration, the exterior solution of by is
b5"(z) = 5-dd/dzsing (Eq. 61 in Glampedakis et al. 2012). Here « and z indicate the 7-

component of the flux function and the dimensionless radius normalized by the stellar radius.

Then we can calculate the distribution of their surface current density as follows,

1d
o = [(1 = 6)— % sing — —josiné, (3.19)
2z dx (z=1)

where | 8a

. Q

Jo = {(f - 1)%%] o
Since they calculated only models with £ > 1 in their paper, the surface current density of their
models flows in the opposite direction to the interior bulk toroidal current density inside the
star. In other words their surface current is negatively flowing with respect to the bulk interior
currents. According to Glampedakis et al. (2012), if the value for the discontinuity for the
poloidal magnetic field is increased, the energy of the toroidal magnetic fields becomes larger
(see Fig. 5 in Glampedakis et al. 2012). Therefore we conclude that the negative surface current
sustain strong toroidal magnetic fields comparing with those in Tomimura & Eriguchi models

without surface currents.
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3.3.2 Surface currents in the integral representation

Using the integral representation for the vector potential, we can see the surface current from a
different point of view. We assume that a magnetized star has no currents in the stellar interior
except for the surface current. It implies that the source term for the GS equation consists only
of the surface current. We can obtain the magnetic field by calculating Eq. (3.4),

]‘ sur 0/
A,sing = - / ‘% sin ¢’ d®r’. (3.20)

Since the surface current exists on the stellar surface r = r,, we can describe the surface current

density using the Dirac’s delta function:

jSU/I“ (71/7 9,)

. =0(r" — ry)fsur(0) , (3.21)

where jg,, () is the surface current which flows along the surface. We can expand and integrate
Eq. (3.20) using the Legendre functions and the axisymmetry of the system. We obtain the

solutions for Acp as follows:

Z nln P1 (cos O) fr(r,rs)rs / sin @' Pl(cos 0)jeu(0')d0',  (3.22)
0

n=1

where f,, is a function defined by

n n+1
fulr,ms) = { e/t (2 : (3.23)

Pt (r < ry)

Now we calculate the vector potential and the magnetic field by giving a 6-distribution for the
surface current density. We assume the #-distribution of the surface current can be expressed

by the expansion using Legendre functions,
oo

Jour (0 Z

=1

where «,,’s are dimensionless coefficients related to the nth associate Legendre function P! (cos 6).

(cosB), (3.24)

Then using the orthogonality among the Legendre functions,

T 1
/ sin @' P} (cos ') P (cos ') dof = 2( nt )n) (3.25)
0

2n+1

we can obtain an analytically expressed solutions as follows:

Zanr fn(r,75)Pl(cosB), (3.26)
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and
U(r,0) = Z anrr2 fo(r,rs) P(cos 0) sin 6. (3.27)
n=1

If we set a, = a,, + by, the right hand side of Eq. (3.26) is exactly the same as homogeneous
general solutions of Eq. (3.5). Therefore, adding the homogeneous term to the inhomogeneous
solution of the GS equation corresponds exactly to adding the surface current at the boundary
surface.

Fig. 3.1 shows the poloidal magnetic field lines for configurations with the purely dipole
(n = 1) surface current (left panel) and with the purely quadrupole (n = 2) surface current
(right panel). It should be noted that each model has no interior currents except for the surface

currents as we have described in this section.

3.4 Numerically exact configurations for open magnetic fields with sur-

face currents

We will show numerically exact structures of magnetized stars with open field lines and with/without
surface currents in this section. At first, we will display configurations which have no surface
currents. Although they are the same as those obtained in Yoshida & Eriguchi (2006) and
Lander & Jones (2009), we will check these models from a different point of view, i.e. in the
context of the influence of the surface currents. Next, magnetized stars which have surface

currents will be treated and discussed.

3.4.1 Setting of the problem

As discussed before, we have solved the integral equation derived from the GS equation by

considering the presence of the surface currents as follows:

1 ' ! ‘SU/T ! .
Ay(r)sing = . / ]w(r&tjrq (r') sing’ d*r’ (3.28)

where j,, is the surface current density of the magnetized star. We choose the following two

different distributions for the surface currents:

jsur (T’ 0)

= —josin@d(r — r4(0)), (dipole distribution) , (3.29)
c

and
Jsur (Ta 9) o . .. .
2 = —jpsinfcos00(r — ry(f)). (quadrupole distribution) (3.30)
c

As for the arbitrary functions appearing in our formulation, we choose the following forms
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in this chapter:

u(®) = o, (3.31)
[uwyar = v, (3:32)
N 07 for ¥ S \I]Vmax ) 333
K = K .
( ) L _’E) 1 (‘If - \PVmax>k+17 for ¥ > \I/Vmax ) ( )

and

07 for ¥ S \Iijax ’

/
w0 = { o (¥ — Wy o), for U > Wy o G:3%
Here, 119, k and kg are constant parameters and Wy ,,,,, means the maximum value of ¥ in the
vacuum region. In this chapter, we fix £ = 0.1. These functional forms and the value of k are
the same as those chosen in other papers (Yoshida & Eriguchi 2006; Lander & Jones 2009) and
chapter 2. In this section, we set the polytropic index N = 1 (e.g. Lander & Jones 2009), and
q = 0.9 where g is the ratio of the polar radius to the equatorial radius defined by (see chapter
2)

Ts(e — 0)

Concerning the angular velocity €2, we choose values of Q) = constant = )y = 1.0E-2 for
rigidly rotating configurations and Qo = 0.0 for non-rotating models. Here quantities with

represent the corresponding ones transformed into dimensionless forms as shown in chapter 2.

Although the equations of state influence the strengths of the toroidal magnetic fields (see
Kiuchi & Kotake 2008), we have treated only N = 1 polytropes because the main concern in
this chapter is how the surface current density affects the distributions of the magnetic fields,

in particular to the toroidal magnetic fields.

In order to examine the accuracies of solutions, we have used the virial relation as shown in
chapter 2. As for mesh points, we use two computational regions because we need to integrate
poloidal magnetic field energy even at a far distant place from the star. One is # = [0, 1],
0 = [0,7], i.e. for the stellar interior region, and the other is 7 = [1,100], 6 = [0, 7], i.e.
for the vacuum region. We discretize the stellar interior region into mesh points with an equal
interval dr and the vacuum region into mesh points with an equal interval ds where 5 is defined
as below:

T
L+7

(3.36)

s =

The region of 7[1, 100] corresponds to the region of §[1/2,100/101]. We use the same mesh

number in these two regions. As for the #-direction, we discretize it into mesh points with an
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Figure 3.2: The ratio of the poloidal magnetic energy to the total magnetic energy against the parameter <o. The
solid line denotes a rigidly rotating sequence with (0o = 1.0E-2.0 and the dashed line denotes a non-rotating
sequence, i.e. a sequence with Qo = 0.0. Minimum values seem to be attained at o ~ 40 (for the non-rotating
sequence) and &g ~ 45 (for the rigidly rotating sequence).

equal interval (df). We compute some configurations and change the number of grid points.
If we use mesh numbers, N, = 513 and Ny = 513, the typical VC values are smaller than
1.0 x 107* ~ 1075, These values are small enough to be able to consider the systems are
in equilibrium states (see also chapter 2; Hachisu 1986a). Thus we fixed the mesh numbers
N, = 513 and Ny = 513 during all calculations in this chapter to obtain accurate magnetized

configurations.

3.4.2 Configurations without surface currents

Since the value of kg affects the local behavior of the toroidal magnetic field distributions, in
particular on its maximum value (see Lander & Jones 2009), we have solved the magnetized
configurations by changing the value of & for two values of Qo.

Obtained results are plotted in Fig. 3.2 which shows the ratio of M,/ M against <. As seen
from this figure, there is a minimum value of the ratio. It implies that the toroidal magnetic
field energy increases to its maximum value at Ky ~ 40 for non-rotating configurations and
at &y ~ 45 for rigidly rotating models. Since the term related to the rotation does not appear
in the current density formula (see Eq. 3.7), the rotation affects the toroidal magnetic field
distributions only slightly. Therefore, we will display and discuss only configurations with
rotation in the following part of this section.

In many investigations which have been done by applying numerically exact methods or by
structure separated GS solving method zero-flux-boundary methods, almost similar results as
ours shown in Fig. 3.2 have been obtained (see Table 2 in Lander & Jones 2009, Fig. 12 in
Ciolfi et al. 2009, Fig. 4 in Glampedakis et al. 2012). Therefore, this behavior of the toroidal
magnetic field against the value of K is likely to be a general feature of stationary magnetized
stars which have open magnetic fields.

In order to consider the reason of the presence of these minimum values, in Fig. 3.3 shown



44 CHAPTER 3. OPPOSITELY FLOWING TOROIDAL CURRENT: KEY TO LARGE TOROIDAL FIELDS

Ko=10.0 Ko = 10.0
0.15 — — 0.03
T B, - P
R Bth """"""" ~ K
0.1 e Bop ] 0.025
0.05 0.02
A\
0 - 0.015
-0.05 0.01
0.1 e 0.005
0.15 L 0L :
01 02 03 04 05 06 07 0.8 09 1 0 0.2 0.4 06 0.8 1
r r
Ko = 65.0 Ko = 65.0
0.15 — 0.45 :
g—
I 0.4 K A
0n [ /\
0.35 / \
0.05 03 / \
0.25
0 ||
; 0.2 B
-0.05 0.15 / \
A 0.1
0.1 /
0.05 /
-0.15 I e s w——
01 02 03 04 05 06 07 0.8 09 1 0 0.2 0.4 06 08 1
r r

Figure 3.3: Left panels: Distributions of the components of the magnetic field [ B,.(§ = 0), By(6 = 7/2), B, (6 =
m/2)] are shown. Right panels : Distributions of the two source terms on the equator, which appear in the current
density formula, are shown. Chosen values of & are <y = 10 (top) and <o = 65 (bottom).
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are the distributions of the magnetic field components (left panels) and those of the two com-
ponents of the current density formula (right panels). Different curves in the left panels mean
B,.( = 0) (dotted line), By(f = 7/2)(dashed line) and B, (f = 7/2)(solid line) distributions
for the region 70, 1.0]. In the right panels, the solid line denotes the force-free  term and the

dashed line denotes the non-force-free 1 term in the current density formula.

As seen from these panels, by increasing the value of kg, which corresponds to increasing
the maximum strength of the toroidal magnetic field, from top panels to bottom panels, we
can find that the width of the toroidal magnetic field region becomes narrower. The values of
the toroidal magnetic field energy seem to depend on the distributions of the toroidal magnetic
fields and of the current densities, in particular, on the maximum value and the width of the
toroidal magnetic field distribution. Although the maximum value of the x term of the current
density increases with &y, its width becomes narrower as kj is increasing. It implies that the
slope of the distribution of the x term becomes steeper for the large value of the current density.
This tendency is also seen in the distribution of 5. By contrast with this, the distributions of
the 1 term are almost the same because we fix ¢ and Qo which are related to the characteristic

nature of the non-force-free magnetic fields.

From Eq. (3.7) and our numerical results, we can find that in order to sustain strong toroidal
magnetic fields (appearing in the right hand side of the equation), the strong toroidal current
density (appearing in the left hand side of the equation) is required. It should be noted that
the strength of the toroidal magnetic field seems to be related deeply to the strength of the total
current density. This can be seen from the following argument. We introduce several definitions

about integrated currents as follows:

gy = / jHas, (3.37)
Iy = / j&ds (3.38)
JE, = / jeds, (3.39)
Jb, = / jhds (3.40)
Jor = / JeurdS = —Jo /0 Wrs(e)siné’dé, (3.41)
G = I+ I b o = T T o G42)

where S, denotes the meridional plane which is perpendicular to the p-coordinate and dS is
an area element in the meridional plane. Here, j’ff), j'if), jg and J;; the ¢-component of the
positively flowing interior current density, the p-component of the negatively flowing interior
current density, the x term of the current density and the p term. Furthermore, jt(; ), jt(o_t ), jt'j)t,
jt’f)t, jsw and jtot are the total positive bulk interior current, the total negative bulk interior

current, the total x term bulk interior current, the total ;o term bulk interior current, the total
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Figure 3.4: Left panels: The total current Jrot (thick solid line), the total 4 term interior current Jf,, (dashed line)
and the total  term interior current J[;,t (thin solid line) are plotted against £ for configurations without surface
currents. Right panels: Only the J £+ 1s plotted against £o. The magnitude of the Jt"ot has an upper bound near at
ko ~ 45 .

surface current and the total (bulk + surface) current in the meridional plane, respectively. As
we shall see, these quantities will play key roles to understand the problem.

In Fig. 3.4, the total current, the total x current and the total x current of the star is plotted
against ko. We find from Fig. 3.4 that the total current does not increase as x increases and the
total x current increases to its maximum value near at < ~ 45. We will denote the maximum

mam

value of the total current as Jt in this chapter. This &k value is the same as that for the
minimum value of M,,/ M. Therefore it is important to note that there is an upper bound of
the total current for configurations if we consider a stationary sequence with different values of
Ro-

This upper bound comes from our boundary condition for the current density. Since we
have imposed that the outside of the star is vacuum, the current density needs to vanish in that
vacuum region. As we have seen, the magnetized stars need large and strong toroidal currents
in order to sustain strong toroidal magnetic fields. However, the boundary condition sets limit
to the total current of the star as seen from Fig. 3.4. As a result, the region where the current
density attains a rather large value becomes smaller and the slope of the distribution of the
current density becomes steeper in order to sustain the stronger toroidal magnetic field in the
narrower region.

Moreover, larger values of & cause the maximum value of the magnetic flux function in
the vacuum region larger, in general. As far as our boundary condition for the magnetic flux
function to be smooth at the stellar surface is employed, the support of the x function becomes
smaller and smaller as the value of & is increased. In other words, increasing the value of
ko might, in ordinary situations, result in increasing the interior currents but at the same time
decreasing the support region of the function x because the maximum value of the magnetic
flux function in the vacuum region also becomes larger as explained before.

This is the reason why in the present investigation as well as in other works thus far done

nobody could obtain solutions which exceed this upper bound. To overcome this limitation
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Figure 3.5: The ratio of the poloidal magnetic energy to the total magnetic energy of the models with surface
current against the parameter 7.
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Figure 3.6: Left panel: jtot (thick solid line), jt(jt) (thin solid line) and jsw (thick dashed line) are plotted against
j’o. Right panel: ,]At(ot) (thick solid line), j,f‘t (thin dashed line) and jf(')t (thin solid line) are plotted against j’o.
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about the size of the confined region of the large toroidal magnetic field, the magnetized stars
needs other kinds of distributions for the toroidal current densities.

From these consideration, we need to devise some means to fulfill the following seemingly

contradicted requirements at the same time.

(1) p-currents must be increased. In ordinary situations, this would results in reducing the
support region of the function x because of the increase of the maximum value of the magnetic
flux function in the vacuum. (2) The support region for the function must be widened. In

ordinary situations, the support region of the function « is wider for the smaller values of k.

These two seemingly contradictory requirements could be realized by introducing negatively
flowing currents near/on the surface because the negatively flowing currents allow the positively
flowing interior currents to become larger and at the same time negatively flowing currents
near/on the surface could reduce the value of the magnetic flux function in the vacuum region

and result in the smaller value for ¥y/,,,40-
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3.4.3 Configurations with surface currents — Dipole currents

As explained in the previous subsection, in order to exceed the upper bound of Jioi found in this
chapter and to reduce the value of Wy/,,,.,, we will try to investigate the magnetized stars which
contain oppositely flowing surface toroidal currents against the interior ’bulk’ currents which
are flowing in a certain direction. We will call such oppositely flowing currents as negative
currents, hereafter. In short, we will assume that there could be toroidal surface currents which
flow to the negative direction compared to the flow direction of the interior main currents which
we will call the interior bulk currents. In fact the effects of the presence of the oppositely
flowing surface currents are similar to those of the boundary conditions treated in section 5.2
of Glampedakis et al. (2012) as we have shown in Sec. 3.3.1. As we shall show, magnetized
stars with negative surface currents will be able to sustain much stronger interior bulk currents
and have much stronger toroidal magnetic fields because the oppositely flowing surface current
cancels the effects of the interior toroidal currents to certain extent and results in configurations
which have the following two special characteristics.

7(max)

1. In such configurations, although the total currents .J,,; are below the upper bound tot

discussed before, much stronger positive interior bulk currents jt(;;) are allowed to exist.

2. At the same time, in such configurations, the absolute values of the magnetic flux function
in the outer vacuum region can become smaller than those of configurations without neg-
atively flowing surface currents. Thus the support region for the arbitrary function (V)

can become wider than that for configurations without surface currents.

In this subsection, as an example, the dipole-like distribution for the surface current as Eq.
(3.29) is employed. If the magnetized stars are purely spherical with no interior currents within
the stars, dipole-like surface currents result in uniformly distributed interior magnetic fields and
purely dipole exterior magnetic fields (see Fig. 3.1). Thus, if the surface current densities are
much stronger than the interior current densities, the interior magnetic fields become almost
uniform and there are no closed magnetic fields inside of the stars. The toroidal magnetic fields
could not appear in such configurations.

We have calculated many stationary configurations with surface currents for several values
of Rg. As a result, we found that a model with £y = 10 has the smallest value of M,/ M
in all our stationary solutions. Thus we will show only configurations with ko = 10 in this
chapter, but it should be noted that all other models show almost the same tendency as that
of configurations with 4~y = 10 which we will describe below. Fig. 3.5 shows the values of
M,/ M and Fig. 3.6 shows the values of .J,,; (thick solid line), .J\\” (thin solid line) and J,,,
(thick dashed line) in the left panel and the value of jt(;) (thick solid line), j[f,t (thin dashed
line) and jfot (thin solid line) in the right panel against the values of Jo for configurations with
ko = 10. In these models, there is no negative current ieo_) in the star. Therefore, jt(o_t ) = 0and
jt(;; ) = ;’Zt + jt‘z,t in these configurations. From this figures, we can see that if we increase the
value of Jo, the total bulk current of the magnetized star, jt(jt), becomes larger (Fig. 3.6) and
the value of M,/ M becomes smaller (Fig. 3.5). We can see from left panel of Fig. 3.6 that
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the total current .J,; is almost the same as the upper bound of the total current jfg? @) defined
before. However, the total positive current jt(;) becomes much larger than this upper bound.
Especially noted from the right panel in Fig. 3.6, the total x current term becomes much larger
and the total p current term becomes slightly small. This can be considered as an evidence
that the negative surface current cancels some contributions of the positively flowing interior
toroidal current from the ~ term current. It is remarkable that the value of M,,/ M attains about
0.7 when j, = 7.5 x 1073, It implies that the magnitude of the toroidal magnetic field energy
is almost the same order as that of the poloidal magnetic energy for those models around Jo =
7.5 x 1073, The ratio M, /M ~ 0.65 seems to be the minimum value in the present parameter
space because we could not succeed in obtaining numerical solutions when j, > 1.0 x 1072,
Since the surface current with j, = 2.0 x 102 should be considered tremendously strong, their
fields would become nearly uniform in the interior and purely dipole in the outside of the star
by the surface current as seen Fig. 3.1. Moreover, when there are no closed poloidal magnetic
field lines inside the stars, the magnetized stars cannot have toroidal magnetic fields because
the poloidal magnetic fields are originated from the closed current densities which are assumed
to be parallel to the closed poloidal magnetic fields as seen from the current density formula.

Fig. 3.7 shows the components of the magnetic fields (left) and the non-force-free and
the force-free term in the current density formula (right) are plotted against 7. We choose
Jo = 2.5 x 1073 (top panels) and j, = 7.5 x 1073 (bottom panels). From these panels,
we can see both the width and the strength of the s term are increasing as Jo, but that the
strength of the 1 term does not change so much. This result means that the oppositely flowing
surface current affects only the force-free term in the current density formula significantly.
As discussed before, since the p term is non-force-free and affected mainly from the global
structures of the stars, i.e. by the value of the axis ratio ¢q. The distributions of y term in the
current density formula would not show large change. We have computed these configurations
by fixing the values of ¢ and Q) and the total magnetic strengths of the stars are nearly the same
for the different configurations. Therefore, the distributions of the p terms are nearly the same

for different values of j’o.

It is needless to say that in order to increase the total current keeping the p term nearly the
same, the x term must become larger and stronger as we see in these panels and Fig. 3.6. Since
the stronger and steeper distributions of the « term result in the stronger toroidal magnetic
fields, the presence of the oppositely flowing surface current should be required for the larger
and stronger toroidal magnetic fields. In other words, the oppositely flowing surface current
density can sustain the strong toroidal magnetic fields. The maximum value of the toroidal
magnetic field and the size of the region where the most of the toroidal magnetic field exists
can be increased by adding and increasing the surface current densities.

In Fig. 3.8 the distributions of the magnetic flux functions on the equator (# = m/2) for
two configurations, one without surface current (left panel) and the other with surface current
(right panel), are displayed. As seen from left panel, the value of the magnetic flux function

at the equatorial surface for the configuration without surface current becomes bigger as the &
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Figure 3.8: The distributions of magnetic flux function on the equator (6 = 7/2). Left panel: These lines denote &
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line) model with surface current respectively.
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Figure 3.9: Distributions of the poloidal magnetic fields. Parallel components of the poloidal magnetic fields along
the surfaces are discontinuous on the stellar surfaces. The values of M,/ M ~ 0.8785 (left) and ~ 0.6979 (right).

increases, because the maximum value of the flux function becomes bigger. On the other hand,
the value of the magnetic flux at the equatorial plane with surface current (right panel) does not
change very much even if the values of W, increase. Therefore, the negative surface current
make the flux function at the equatorial surface smaller than that for the configuration without
surface current. This reduction of the value of the magnetic flux function in the vacuum region
can allow the wider support region to exist.

As for the geometry of magnetic fields, the surface currents bend the poloidal magnetic
fields on the stellar surface as we have described in Sec. 3.3.1. Fig. 3.9 shows that the poloidal
magnetic field lines bend due to the presence of the surface currents for configurations with
Jo = 2.5 x 1073 (left) and jo = 7.5 x 1073 (right).

Thus far, nobody has obtained configurations with the surface currents in previous works
(e.g. see Fig. 2 in chapter 2). On the other hand, configurations shown in Fig. 3.9 have
discontinuities on their surfaces. The directions of the discontinuities depend on the directions

of the surface currents. In the northern hemisphere, the outward poloidal field lines are bended



52 CHAPTER 3. OPPOSITELY FLOWING TOROIDAL CURRENT: KEY TO LARGE TOROIDAL FIELDS

to the left side by the oppositely flowing surface currents. On the other hand, if we add the
surface currents whose flowing direction is the same as that of the interior bulk current, they
are bended to the right side and the toroidal magnetic fields become weak because the surface
currents flowing to the same direction as the interior bulk currents work so as to reduce the
strengths of the interior bulk currents. The discontinuities of the magnetic fields in our models
are the same as those of Glampedakis et al. (2012) (see Fig. 5 in their paper carefully). In
fact, what they did in their paper, i.e. by imposing structures in which the magnetic fields on
the stellar surfaces have some amount of discontinuities are effectively the same as adding the

oppositely flowing surface currents to the magnetized stars.

3.4.4 Configurations with surface currents — Quadrupole currents

We consider configurations with other surface current distributions. We add the surface cur-
rents expressed by Eq. (3.30), which results in the quadrupole distribution of the poloidal
magnetic fields. However, the toroidal magnetic field for this surface current cannot become
large enough. As the strength of the surface current is increased, we get configurations with no
toroidal magnetic fields whose poloidal magnetic fields are not closed inside of the stars (see
the right panel in Fig. 3.1). The toroidal component of the magnetic field vanishes in such a
configuration.

In order to sustain strong toroidal magnetic fields, we need strong toroidal currents in the
stellar interior as discussed for the dipole-like distributions of the surface currents. However,
as seen from the results for the quadrupole-like surface currents, surface currents contain both
the negative component and the positive component in the surface currents. Moreover, the
strengths of those oppositely flowing currents are the same. Therefore, the total surface current

due to the purely quadrupole surface current of the purely spherical star vanishes as

/ jsurds = —/ rsjo sin 6 cos 6df = 0. (3.43)
mer 0

Consequently, this kind of surface current cannot counteract or cancel the effect of the interior
bulk current density. It implies that we need 2¢-th poles with £ = odd numbers of the magnetic
moments (dipole, octopole etc.) or locally strong surface currents which are not anti-symmetric

about the equatorial plane in order to sustain the strong toroidal fields.

3.5 Reasons for appearance of strong toroidal magnetic fields

In the previous section we have discussed that the presence of negative (oppositely flowing)
surface currents in addition to positive interior bulk currents could allow more interior currents
to exist within the stars. In particular, large interior toroidal currents could be realized by in-
troducing negatively flowing surface currents in addition to positively flowing interior currents.
Consequently, such negatively flowing toroidal currents lead to larger positively flowing total

currents, jt(;; ), within the stars, although the total currents, Jiot, have their upper bound as ex-
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plained before. Thus it is these larger positively flowing interior currents, jt(jt), that cause the
toroidal magnetic fields stronger.

Among stationary magnetized stars thus far obtained in many papers, some authors have
found configurations with large toroidal magnetic fields by treating the problem differently
(see Ioka & Sasaki 2004, Duez & Mathis 2010 and Yoshida et al. 2012). However, no authors
have explained reasons why there can appear such magnetic fields with large values of the

toroidal magnetic field energies.

3.5.1 Zero-flux-boundary approach: N = (0 magnetized spherical configurations

In this subsection, we will reconsider simple configurations with large toroidal magnetic fields
from our standpoint of taking the negatively flowing currents into account. In order to clarify
the reasons for existence of large toroidal magnetic fields, it would be helpful to employ as
simple configurations as possible.

As for the mechanical structures of the magnetized stars we consider N = 0 polytropes,
i.e, incompressible fluids. Although the magnetic fields might become very strong, the shapes
of the stellar configurations are assumed to be spheres. It is possible to consider that strongly
magnetized stars have spherical surfaces by confining all the magnetic fields within the sur-
faces. This situation could be realized by treating the closed magnetic fields not only for the
toroidal fields but also for the poloidal fields. Under these assumptions, the formulations used
by several authors (Chandrasekhar & Prendergast 1956; Prendergast 1956; Duez & Mathis
2010; Glampedakis et al. 2012; Yoshida et al. 2012) can be applied. Since our purpose of this
part of the paper is not to obtain 'new’ stationary configurations but to understand the reasons
for appearance of large toroidal magnetic fields, we will follow mostly the zero-flux-boundary
scheme of Prendergast (1956) (see also Duez & Mathis 2010), but we take account of the pres-
ence of negatively flowing surface currents as well as negatively flowing interior currents in
addition to positively flowing interior currents.

As for the arbitrary functions, we choose the functional form of « as follows:

K(V) = KoV, (3.44)
and consequently
dr(V) _
Ty = o (3.45)

This choice for (V) as well as the form for p(V) = po(constant) have been commonly used in
almost all zero-flux-boundary approaches which have treated configurations with closed dipole
magnetic fields (see Prendergast 1956, loka & Sasaki 2004, Duez & Mathis 2010 and Yoshida
et al. 2012). From Eq. (3.7), the form of the current density becomes as below:

. 2
Jo _ R—O_\If + prsinQuyg. (3.46)
c 47rrsin 0
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Since the GS equation is an elliptic type partial differential equation of the second order,
we need to impose boundary conditions to obtain solutions consistently. We should note that,
in all zero-flux-boundary approaches thus far carried out, the constant x( plays a role as an
eigenvalue of the problem because boundary conditions have been imposed at finite places in
the space in most investigations. One example of the boundary conditions might be as follows:

Ul,—o = 0, (atthe centre), (3.47)
0

= 0, (on the stellar surface) , (3.48)

|T:7‘S

where rgs) is the radius of the spherical incompressible magnetized stars treated in this section.

It should be noted that solutions with d¥/dr| _ () = 0 in our models, which can be found
only after we have obtained stationary conﬁgura:tions and checked values of the derivative
dW/dr| _ ) for all the models, are essentially the same as those of Duez & Mathis (2010).
It should l:;e stressed once again that solutions which satisfy the condition d¥/ dr|r:r<5> =0
would not always be found. It would be fortunate if one could find such solutionssnot by
imposing that condition as one of boundary conditions but by just calculating solutions with
the boundary conditions (3.47) and (3.48).

3.5.2 Magnetic flux functions for spherical incompressible fluids with magnetic fields
confined within the stellar surfaces

In this section, we continue to follow mostly the formulation of Prendergast (1956) (see also
Duez & Mathis 2010), in which the surface currents were not taken into account explicitly, but
in this chapter we include the surface currents explicitly by modifying their formulation.

They treated incompressible fluid stars, i.e. /N = 0 polytropes by specifying arbitrary func-
tions as we have already explained before. Although incompressible stars seem far from realis-
tic situations, from the standpoint of considering oppositely flowing currents including surface
currents stressed in this chapter, it is very useful to be able to get such solutions and discuss the
role of the oppositely flowing currents analytically. Nevertheless, in this chapter, we will also
compute N = 1 polytropes and discuss the effect of the equation of state. We see details of
solutions in chapter 4.

For the functional forms we have chosen, the Grad-Shafranov equation, Eq. (3.2), can be

written as below:
A"V + k3U = —drpepr? sin® 6 = S(r,0). (3.49)

where p is the averaged value of the density. It should be noted that this is a linear equation for
the magnetic flux function W. When p is constant throughout the stellar interior, we can inte-
grate this GS equation easily by expressing the solution in the integral form by using Green’s

function and spherical Bessel functions and Gegenbauer polynomials as follows:

U(r,0) =V, + 0y, (3.50)
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U, = Z v,
/=0

B 20+ 3 . 9 ~3/2
= 471’[1,02/{0([ T D+ 2)]5111 6C," " (cos )

(o /
r r
{ 7 e /io,e@)/ Yo (Ho,z@) pdr' (3.51)
rs T 7"5
r r , 7”/ - .
()Y£+1 fio,e@ ; ' Jog1 /’io,e@ pdr

1
X / S, cos 0)C2 P (cos §')d cos ¢

1

r r r r _
Uy, = [Kl,ﬂfo,fﬁjé—i-l <mo,e@> + Ky ero e~ Yo (/fuo,ef_s)) ] sin? 005’/2(005 0).
Ts T Ts T

/=0 S S

(3.52)

Here ¥, and ¥;, denote the inhomogeneous solution and the homogeneous solution to the GS
equation, respectively and J,’s and Y,’s are the spherical Bessel functions of the first kind
and the second kind, respectively and C’? /%5 are the Gegenbauer polynomials. W, ko, and
K, 4, Ko denote the /-th expansion terms of the magnetic flux function, the eigenvalues corre-
sponding to x for the /-th component equations appearing in the expansion of the magnetic flux
function as above, and coefficients of homogeneous solutions, respectively. It should be noted
that, here in this chapter, we consider only the dipole term (¢ = 0) which can be considered
as the simplest configuration for the spherical incompressible magnetized fluid star. Moreover
it is important to note that even such simple configurations contain the essential natures of the

configurations we are seeking to understand.

As we have described before, we impose boundary conditions for W. One conditionis ¥ = (
at the centre of the star. This condition can be fulfilled simply in our situation here by setting
KS = 0, because the spherical Bessel function of the second kind Y;—, does not vanish at the

centre (r = 0) for the homogeneous solutions. As a result, we obtain the general expression of

g )sm 0
e /
r — 13 3.
— 47 gk sin 9{ )/ Yi (/io B ) pre dr (3.53)
T TS

7,,/
+ —Y1 (FLO ) / Jh (ffo—) pr’ddr' b
() ) Jo 7o)

the solution as follows:

L Klli() ()J (

S
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Explicit forms of J;, Y7 and Cg’/ ? are as below:

Ji(A) = %(sin)\ — Acos ), (3.54)
1 :

Yi(A) = —ﬁ(cos)\%— Asin \), (3.55)

Gy (cos ) = 1. (3.56)

We denote ) as ko and K9 as K for simplicity in the following part of this chapter.

Next, we impose the other boundary condition ¥ = 0 at the stellar surface. This condition
is written as follows

() '

K1 Ji (ko) = 4mpeYs (/-@0)/ Ji (KJOT—)) pr'3 dr’. (3.57)
0

s
rt

From this equation we can obtain a relation between xy and K of our problem at hand. Thus
just by giving either x( or K, one complete solution in our problem can be obtained. This is a
nice feature of the simplest configurations, i.e. the N = 0 polytropic configurations only with
the ¢ = 0 component for the confined poloidal closed magnetic fields.

Finally, we will derive the surface current for our problem. The homogeneous term of this
solution is related to the surface current as we have calculated in Sec. 3.3.2. Thus the surface
current is expressed as

jsure 1 ex in 1 8\117",9
O _ Ligy - By = u

(3.58)

c A ~ 4rrsinf  Or )

r=rg

Since the solution for the magnetic flux function behaves as sin” f, the following quantity

becomes a constant and so we will write its constant value as j:

1 oV (r,0)
Arrsin®@  Or

= jo. (3.59)
(s)

T=Tg

Thus the distribution of the surface current can be written as below:

JSUT‘

— josin0. (3.60)

Explicit forms of K7 and j, are

Ky =dmpop 4
K

0

(s)2 .
Ts — COS Kg — Ko Sl Ko
Sin kg — Kg COS Kq

> ((3 — k2) sin(kg) — 3k cos /-co> . (3.61)
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Figure 3.10: Left: Plotted is jy against kg for configurations with the parameter satisfying rgs)Quo p=—1. We

can see that there are rwo solutions without surface currents at kg ~ 5.76 and at ko ~ 9.10 and that there exist
two singularities at ko ~ 4.49 and at o ~ 7.73 within the range 0. < x¢ < 10.. Right: The energy ratio M,/ M
is plotted against xg. The solid lines and dotted lines denote the values of k¢ for the solutions without surface
currents and the singularities, respectively. The toroidal magnetic field vanishes at kg = 0.

and
. 1 ov(r,0)
P = rrsinZd or e
1 K
= —1{(l€(2) — 1) sin kg + kg cos /{0}
I K
4mrg 0 (3.62)
Ar o pri? 5 2 4 2
+—5{(2/<a0 — 3kKo) sin® kg + (—2k, + 8k§ — 3) cos Ky sin /io}
Ko
Arpioprt” 2 2 2
+—3{ — Ko sin® kg + (kg — 1) cos kg sin kg + Ko cos /{0}
Ko

Therefore, if the star has negative surface currents, values of the magnetic flux functions in
the large part of the stellar interiors are positive because of 0¥ /0r < 0 on the stellar surfaces.

As explained before, we can calculate one eigenfunction just by choosing one value of xy.
By changing the value of x( and calculating the corresponding solution for ¥, we have a series
of solutions which are shown in Fig. 3.10 and Fig. 3.11. Fig. 3.12 displays the various total
currents Jy,;.

Fig. 3.10 shows how j, behaves for different value of x, (left) and how M,/ M behaves
against the value of x (right). We set the parameters satisfying the relation r{®? fop = —1. As
seen from these panels, the function jy (ko) has two special solutions which contain no surface
currents at Ky ~ 5.76, and at ko ~ 9.10. Furthermore, there appear two singularities along this
curve at kg ~ 4.49, and at ko ~ 7.73. The sign of the magnetic flux function changes at the
singularities. The value of M,/ M decreases as the value of « increases until it reaches the
first solution without a surface current at o ~ 5.76 and the value of the M, /M reaches its
minimum of M, /M = 0.417. Hereafter we will call the eigenvalue x, of the first solution

without a surface current as ) and the eigenvalue r of the second solution without a surface
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Figure 3.11: The distributions of j,/c normalized by the maximum strength of |U,,./, i.e. the absolute value
of the maximum of the flux function, along the normalized radius on the equatorial plane. Each line denotes the
value of j,, (thick solid line), the component of j,, due to the  term (thin solid line) and the component of j, due
to the y1 term (thin dotted line). Type (a): In the range of 0 < kg < k. the  component of the current is negative
in the whole star and the contributions to the current from the x term and the p term are also negative. M, / M
=0.701 model. Type (b): In the range of ko ~ ., the contribution to the ¢ component of the current due to the
4 term is nearly zero because of the large contribution from the « term. M, / M =0.501 model. Type (c): In the
range of k! < Ko < K, the o component of the current is positive in most of the stellar interior. The contribution
to the current due to the x term is positive. whereas the contribution to the current due to the y term is negative.
M, I M =0.452 model. Type (d): At kg = /i}n, the surface current vanishes because jo becomes zero, It is
remarkable that not only the component of the current due to the « term but also its derivative with respect to the
position become 0 at the stellar surface. It corresponds to the null surface current. M, / M = 0.417 model.

current as ~2,. We also denote values of r at the first and the second singular points along this
curve as k! and x2, respectively.

We will discuss the behaviors of ¥ and j only around «., in this chapter. However we see
almost the similar behaviors for kg ~ x2,, which one can find in several papers (Ioka & Sasaki
2004; Duez & Mathis 2010; Yoshida et al. 2012).

We can classify the eigen solutions into four types according to the behaviors of the current
densities as follows: Type (a) — solutions with 0 < ko < k., Type (b) — solutions with rg ~ k!,
Type (c) — solutions with k! < k¢ < k!, and Type (d) — solution at k = k! . As we can see in
Fig. 3.10, concerning the ratio M,/ M, the following relations hold:

My M, My My
v (Type a) > v (Typeb)M (Type c) > v (Type d). (3.63)
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Figure 3.12: The total currents normalized |¥.,,x| are plotted against xo. We make J;,; positive in this figure.

The left panel: Each line denotes J;.; (thick solid line), J,,,, (thick dashed line), J .}’ (thin solid line) and .J;,’
(thin dashed line) respectively. The right panel: Each line denotes Jft, (solid line) and J}., (dashed line).

In Fig. 3.11, the distributions of j, normalized by the maximum value of the flux function
|W,nae| along the normalized radius on the equatorial plane are displayed. In this figure the
interior toroidal current j,,, the component of j, due to the s term and the component of j, due
to the p term are displayed. The values of (xo, M, /M) in the panels are (a) (3.0, 0.701), (b)
(~ 4.49, 0.501), (c) (5.0, 0,452), and (d) (5.76, 0.417). In Fig. 3.12, we make that the sign of
Jior 1 always positive. In other words, we multiply J;.; /| Jio¢| in order to plot the distributions
of Ji,:. In the left panel of Fig. 3.12, each line denotes J;,; (thick solid line), Jt(;;) (thin solid
line), J,,, (thick dashed line) and Jt(o_t) (thin dashed line). In the right one, we decompose the

Jt(;; ) into the total x current and the total it current. The solid line show the J;, and the dashed

o
line show the J};, respectively.

It is remarkable that these models have strong toroidal magnetic fields contrary to configura-
tions whose magnetic fields without surface currents extend to the infinity, i.e. open fields, and
cannot become large. From the panels in Fig. 3.11, the configurations of Types (a) and (b) have
the positive surface current in the ¢ direction which is opposite to the interior negative current
density in the ( direction, while the configurations of Type (c) have the negative -surface cur-
rent while the interior ¢-currents are positive in almost all of the interior region. The model of
Type (d) has no surface current. However, the ¢ component of the interior currents are negative
in the finite surface region while the ¢ component of the interior currents in the most inner
region is positive. Therefore, in the range of 0 < kg < k., Jt(ot) = Ji., + J£, and in the range
of k! < ko < kL, JS) = Jr, and J,) = J¥, respectively.

The signs of the  term, the x term and j,, of the solutions of Type (a) are all negative within
the whole region as seen from Fig. 3.11, while the surface current is positive because j, > 0.
Therefore, the strong toroidal magnetic fields of the solutions of Type (a) are sustained by the
oppositely flowing surface current as has been explained for the reasons why the numerically
exact open field configurations with surface currents can have large toroidal magnetic fields
in the previous section. For Type (a) solutions, the toroidal magnetic field energy increases

monotonously as the magnitude of the surface current becomes larger.
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The solutions of Type (b) show the extreme features corresponding to the singularity. Since
the strength of the surface current becomes infinite, the ~ term becomes larger and the con-
tribution from the p term becomes nearly zero compared with that of the « term. Thus the
non-force-free 1 term contributes essentially nothing to the ¢ component of the current density
and so those solutions of Type (b) can be considered to be almost the same as those force-free
configurations obtained by Broderick & Narayan (2008).

As seen from these panels, the signs of the y term and the x term are different from each
other for configurations of Types (c) and (d). In fact, the sign of the surface current changes
from negative values to positive values between solutions of Type (a) and those of Type (c). As
a result, the interior currents can become negative near the stellar surface region. Since the sur-
face currents are negative in this parameter range, the toroidal magnetic fields can be sustained
by both the negative surface currents and the negative interior currents near the stellar surface
region (see Fig. 3.12). The toroidal magnetic field energies become larger in this parameter
range than those in the parameter range where only oppositely flowing surface currents such as
solutions of Types (a) and (b) are allowed. Moreover, the toroidal magnetic field energy reaches
its maximum value for the model (d) which has no surface current. These phenomena imply
that the effects of the surface currents are not so large compared with those due to the interior

currents near the surface region which flow oppositely to the interior currents further inside.

The model (d) has only the interior negative current region without surface currents in ad-
dition to the interior positive currents in the inner part of the star. The effect of the interior
negative current is larger than that of configurations of Type (c) (see Fig. 3.12). The solutions
obtained by Ioka & Sasaki (2004) and Yoshida et al. (2012) can be considered to belong to the

same type as the model (d) except for the compressible densities.

As seen from the left panel of Fig. 3.12, the total current J;,; becomes only slightly larger as
Ko Increases. On the other hand, Jt(;;) increases rapidly beyond the g = k! where Jt((;) starts
decreasing. This means that the negative current region can cancel much larger interior bulk
positive current than the negative surface current. Therefore, as we can see in Fig. 3.12, the
total x current becomes larger and the total ¢ current decreases rapidly as k¢ increases beyond
the ko = k. Since the ratio of M, /M reaches the minimum value for the model (d), this kind
of configuration without surface currents but with the negative interior current region has the
strongest toroidal magnetic field energy among all the configurations as far as the functional

forms for x and p are the same as those chosen in this chapter.

We have also calculated N = 1 closed field configurations (see also chapter 4). We have
used the shooting method to obtain the eigen solutions for the boundary value problems (see
Ioka & Sasaki 2004). Obtained solutions of N = 1 polytropes have the same tendencies
as those for the N = 0 solutions. The ratio M,,/M reaches its minimum value 0.349 at
Kkl = T7.42. The toroidal magnetic field energy is slightly larger than that of the corresponding

N = 0 configuration.
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3.6 Discussion

3.6.1 Open field configurations vs closed field configurations

As we have calculated and seen in this chapter, the negative (oppositely flowing) surface cur-
rents and/or the negative (oppositely flowing) interior currents seem to generate strong toroidal
magnetic fields within the stars. We have obtained the configuration having the minimum value
of M,/ M ~ 0.697 when Jo = 7.5 x 1073 for the solutions of open fields by taking the surface
currents into account. On the other hand, the ratio M,, / M reaches 0.349 when all the magnetic
field lines are closed and confined inside the stellar surface for V = 1 polytropes. This value
is much smaller than that for open field configurations with surface currents. The functional
forms for the arbitrary functions and the boundary conditions of these two models, i.e. the
closed field solution and the open field solution, are different from each other (see Eq. 3.33
and Eq. 3.46), but both configurations contain the interior region where the interior currents
are negative (oppositely flowing) and there appear very strong toroidal magnetic fields.

From the right panels in Fig. 3.7, the signs of the x term and the x term are positive for our
open field models with negative surface currents. In other words, the models do not contain the
negative current regions. The open field models which we have obtained correspond to models
of the Type (a) for the closed field configurations. Therefore, the stars could have stronger
toroidal magnetic field energy if they can contain the negative interior current regions near the
stellar surfaces. However, we could not find the functional form of s for which the negative
interior current region appears as the model of Type (d) in this chapter. In any case, the toroidal
magnetic field energies of closed field models are larger than those of the corresponding open
field models with negative surface currents. It should be noted that the model of Type (d)
sustains the largest toroidal magnetic field energy among all of our solutions obtained in this
chapter. We can conclude that the magnetized equilibria with strong toroidal magnetic field

energies would be the closed field configurations.

3.6.2 Effects of compressibility to toroidal magnetic fields

We have employed polytropes with N = 1 and N = 0 in this chapter. Since we are mainly
interested in the effects of surface currents, we adopt polytropes as equations of state, although
polytropes are too simple equations of state. The different equations of state result in different
density distributions as well as different magnetic field structures, because the current density
formula contains the density depending term (Eq. 3.7). As we have described in Sec. 3.5.2,
configurations for polytropes with N = 1 can sustain slightly larger toroidal magnetic fields
than those with N = 0, i.e. the minimum value of M,,/M is 0.417 for the N = 0 polytropes
and the minimum value of M,,/ M is 0.349 for N = 1 polytropes as far as the other parameters
are the same. Therefore, the configurations with softer equations of state can sustain stronger
toroidal magnetic fields for polytropes.

How about for more realistic equations of state discussed by other authors ? Kiuchi & Ko-
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take (2008) calculated twisted-torus magnetized equilibrium states using some realistic equa-
tions of state at zero temperature. Their method is the same as our method. Fig. 4 - Fig. 7 in
their paper show the density contours and the magnetic field contours for different equations of
state. The structures of the poloidal magnetic field lines and the regions of the toroidal mag-
netic fields within the stellar surfaces are different among the different equations of state. For
example, among models of the Shen’s equation of state (EOS), the position where the toroidal
magnetic field attains its maximum strength is located near the stellar surface and the width
of the region where the toroidal magnetic fields appear is relatively small, but for models with
the FPS’s EOS, the position of the maximum toroidal magnetic field is shifted to the inner part
of the star and the size of the toroidal magnetic field region is much bigger than that for the
Shen’s EOS. Although they did not calculated the toroidal magnetic field energies and the ratio
M,/ M, they showed the ratio of the local strength of the toroidal magnetic field to the poloidal
magnetic field (h in Table 4). The value of h for FPS’s EOS is about as twice as that for Shen’s
EOS. Therefore, although the influence of the equation of state might become more impor-
tant if we would consider structures of neutron stars, it would not change the basic properties
discussed in this chapter dramatically, although the values and/or the regions for the toroidal

magnetic fields would surely be somewhat different from those obtained in this chapter.

3.6.3 Stability of configurations with oppositely flowing o-currents within and/or on the
stellar surfaces

It is very interesting and important to analyze stability of our models for open magnetic fields
with surface currents. Since some of our solutions satisfy the Braithwaite’s stability criteria,
Eq. (3.1), our models could be stable. Although it is very difficult to tell the stability for a
certain model exactly, we will be able to check the stability by several non-exact ways and get
rough idea about the stability of the configuration.

First of all, we consider the stabilities of the magnetized stars with pure surface currents and
with no interior currents (see the left panel in Fig. 3.1). The stability of the magnetized stars
with surface currents in the surface region of an infinitely thin width could be considered to
be essentially the same as that of configurations with pure surface currents. If the magnetized
stars possess only the surface currents which generate the pure dipole magnetic fields outside
the stars, their interior magnetic fields are uniform along the z axis (see the left panel of Fig.
3.1). The magnetic fields of this kind of configuration are unstable and decay within a few
Alfvén time, because there is no toroidal magnetic fields (Markey & Tayler 1973). As Flowers
& Ruderman (1977) also explained the instability of this kind of configuration and Braithwaite
& Spruit (2006) carried out non-linear evolution of the instability by numerical simulations and
showed unstable growth of the initial stationary states as explained above. Therefore, the fields
of the magnetized stars with pure surface currents can be considered to be unstable.

By contrast, as for the configurations with surface currents, which might lay in, for example,
the crusts of the neutron stars, the magnetic fields could become stable. In such configurations,

we can assume that the widths of surface current layers are not infinitely thin any more and
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the finite Lorentz force acts on the surface currents. Flowers & Ruderman (1977) considered
configurations with surface current layers as well as with uniform magnetic fields and dipole
magnetic fields inside and outside of the stellar surface, respectively, and found that those
configurations with current layers might be stable. In realistic situations as neutron stars, when
the solid crusts of neutron stars form after their proto-neutron phase, the crusts could sustain
the Lorenz force to themselves and they could prevent growth of the instability of magnetic
fields. For such situations, the magnetic fields can survive in much longer time than the Alfvén
timescale.

Concerning direct computations of the evolutions starting from the perturbed initial station-
ary states, Braithwaite & Spruit (2006) carried out numerical evolutions of the twisted-torus in-
terior magnetic fields with solid crusts. They included surface current layers with finite widths
as their boundary condition for the magnetar’s crust and used one of their quasi-stationary
twisted configurations which they had obtained after long time simulations as initial values.
Their numerical model is similar to our solution with surface currents. The magnetic fields of
such stars do not decay within the Alfvén time scale in their simulations as far as the crusts can
sustain the Lorentz force. Therefore, our twisted-torus models with surface currents would be
also stable configurations.

Evolutions and stabilities of configurations for closed magnetic fields were argued by Duez
et al. (2010). They performed numerical simulations using Duez & Mathis (2010) solutions
as their initial states. They concluded that models with closed fields both with poloidal and
toroidal magnetic fields do not show any sign of becoming unstable within their simulation
time if the initial model satisfy the stability criteria in Eq. (3.1). Therefore, the closed magnetic

field models which are obtained in this chapter would be stable configurations.

3.6.4 Application to magnetars

It is important to find out natural mechanisms to generate surface currents and/or their origins
if we apply our models with surface currents to real bodies such as magnetized neutron stars,
especially to magnetars. Magnetars are young neutron stars with very strong magnetic fields.
The magnetars are considered as source objects of special high energetic phenomena such as
the anomalous X-rays emission and the soft gamma-ray emission. Thus those pulsars are called
the anomalous X-ray pulsars (AXPs) and the soft gamma-ray repeaters (SGRs), In particular,
their high X-ray luminosities and giant flares have been considered to be deeply related to the
strong magnetic fields of the stars (Thompson & Duncan 1995, 2001). The magnetic fields
are nearly dipole poloidal fields globally, but there would be higher order (such as quadrupole
and octopole) poloidal magnetic fields near the surface or toroidal fields winded up by rapid
differential rotation during the proto-neutron star stages (Duncan & Thompson 1992) inside the
star. Before we apply our models with surface currents to the magnetars with strong toroidal
magnetic fields, we need to clarify or at least have some ideas about origins or formation
mechanisms for the oppositely flowing surface currents or the discontinuity of the magnetic

fields on the stellar surfaces. Then, what is the origin of the negative surface currents or the
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negative current region? There might be two possibilities to explain it. One is related to the

crusts of neutron stars and the other is related to the magnetospheres around neutron stars.

Since the physics of the crusts of the neutron stars is too complicated and difficult to deal
with, we only assume that the crusts consist of highly conductive solid matter. If the crusts
are highly conductive, the electric currents can exist within the crust regions. Then, the crusts
can make parallel components of magnetic fields discontinuous near the stellar surfaces by the
toroidal currents inside the crusts. The magnetic fields are frozen to the matter and fixed to the
crusts because of their high conductivity. On the other hand, the interior matter of the mag-
netars is not solid. Thus the matter inside of the crusts can move differently from the crusts
and the discontinuities of the magnetic fields would be born between the crusts and the interior
regions. The interior fields begin to spread toward the stellar surfaces by the some kind of
magnetic diffusion (Braithwaite & Spruit 2006) the discontinuities would be enlarged by the
magnetic pressure. As we have seen before, Braithwaite & Spruit (2006) simulated this kind
of configuration and found the growing of the Lorentz stress in the crusts. From the direction
of the discontinuity, we expect that the stress is tensile one globally. If the crusts are cracked
by the stress, it would result in flares of SGRs. Following this scenario, our models with strong
toroidal fields as well as surface currents are considered as stationary states of the crusts with
strong Lorentz forces before occurrence of giant flares. If a part of the crusts is cracking, the
magnetic energy and the helicity are injected from the stars and would produce magnetized
flows (Takahashi et al. 2009, 2011; Matsumoto et al. 2011). These kinds of magnetized out-
bursts would be giant flares of SGRs. We will consider this process by using our models with

surface currents in the following.

At first, the surface currents in the crusts can sustain the strong toroidal fields by bending
the poloidal magnetic fields as shown by the model with j, = 7.5 x 1072 in the right panel
of Fig. 3.9. When the Lorentz force exceeds a certain critical value, a part of the crust begins
to crack. We can consider this phenomena as decreasing the strength of the surface current,
because a part of the conductive matter is disturbed by the cracking. We assume that a certain
cracking reduces the value of j, from 7.5 x 1073 to 2.5 x 10~ as an extreme example. The
surface current with jo = 2.5 x 1073 cannot sustain the toroidal magnetic fields any more
which the surface current with j, = 7.5 x 10~ has sustained. The toroidal magnetic energy
and/or the magnetic helicity would be transferred out into the outside of the star in order to
relax to the stationary state with 50 = 2.5 x 10~ (transition from the right panel to the left
panel in Fig. 3.9). Through this cracking, the dimensionless toroidal magnetic field energy M,
changes from 2.49 x 1072 to 9.92 x 102 according to our calculations. Therefore, about 60
% of the toroidal magnetic field energy would be released during the cracking. Although this
is an extreme example, it is natural that the injection of the magnetic helicity and the release of
the toroidal field come from the transition of the magnetized equilibria by the phenomena such

as cracks of the crusts which reduce the surface current strength.

Another possibility is the effect due to the magnetosphere which excites oppositely flowing

current densities near the stellar surfaces. Colaiuda et al. (2008) discussed the importance
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of the magnetosphere as the boundary conditions for both the poloidal and toroidal magnetic
fields on the stellar surfaces. Our present models and many configurations in other previous
works assume that the outside of the star is vacuum where the current density and the toroidal
magnetic fields do not exist. However, the presence of the magnetosphere changes the boundary
condition for the magnetic field. This change of the boundary condition would significantly
influence on the magnetic field configurations as we have seen.

As for rotation powered pulsars, there have been many investigations about their magne-
tospheric phenomena such as pulsar winds (see e.g. Goldreich & Julian 1969). Their rapid
rotations produce enormously large electrical forces and the surface charged layers could not
stay in their stationary states. Charged particles run away from the stellar surfaces and form the
pulsar magnetospheres (see, for the recent particle pulsar wind simulations, Wada & Shibata
2007, 2011). This charged particles would produce the strong currents outside the star and the
twisted magnetosphere would form.

The rotational speeds and the strengths of the magnetic fields of the magnetars are different
from those of pulsars, but there would be some kinds of magnetospheres around the magnetars.
The recent X-ray spectral observations show the presence of a magnetosphere for the magnetar
(Reaet al. 2009). Very recently, Vigano et al. (2011) computed numerically a force-free twisted
magnetar magnetosphere. They treated the stationary state of the magnetized star as an inner
boundary condition for the magnetosphere. We can see the various magnetospheric structures
by applying different inner boundary conditions in their paper. If the magnetosphere forms the
oppositely flowing toroidal currents near the stellar surface, the magnetized star can sustain the
strong toroidal magnetic field energy inside the star. However, the details of the calculation are

beyond the scope of the present study.

3.7 Summary and Conclusion

In this chapter we have dealt with the effects of surface currents upon the interior toroidal mag-
netic fields. We have shown that the oppositely flowing surface currents can sustain the strong
toroidal magnetic field energy inside the star both for the open and closed field configurations.

In the open field models, we have found that there is an upper bound of the total current of the
star for a fixed set of parameter values. Increasing the maximum strength of the toroidal mag-
netic field decreases the region of the toroidal magnetic field due to this upper bound. Therefore
this upper bound limits the ratio of the poloidal magnetic field energy to the total magnetic field
energy. To exceed this upper bound, magnetized star needs the oppositely flowing surface cur-
rents to the interior toroidal currents. The interior current can overcome the upper bound and
the ratio M,,/ M decreases significantly, because the surface current counteracts the interior
toroidal current.

In the closed field models, we have found that a model with an oppositely flowing current
region but with no surface current can sustain the strongest toroidal magnetic field among all of

our magnetized stationary states. The negative surface currents can sustain the strong toroidal
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magnetic fields in the models with closed magnetic fields. However, the strengths of the toroidal
magnetic fields for models with negative surface currents cannot exceed a critical value even if
the strength of the surface current becomes infinity. In order to overcome the critical value, the
negative current region is required. Increasing the size of the negative interior current region
decreases the negative surface current. As a result, the toroidal magnetic fields become the
strongest when not only the negative interior current region becomes the largest but also the
surface current disappears.

It should be also noted that, although we have not imposed a condition d¥ / dr|r:rg5> =0,
the obtained two eigenfunctions without surface currents fulfill this condition and, moreover,
that the values of M,/ M are very small. This implies that by computing a series of eigen
states with surface currents as well as with oppositely flowing interior currents we could have
easily reached an eigen state whose eigen function behaves very smoothly for which the role of
the toroidal magnetic fields becomes very important. Furthermore, it is remarkable that these
solutions obtained by considering in the wider functional space without no restrictions about
the slopes of the functions correspond to those solutions obtained by other authors (Duez &
Mathis 2010).

We have applied the models of open magnetic fields with surface currents to explain the
strong hidden toroidal magnetic fields inside the magnetars. We have considered two possi-
bilities as the origin of their surface currents. One possibility is related to the crusts of the
magnetars. Since the crusts are made of the solid matter, it could make the magnetic fields dis-
continuous at the crusts and the surface currents would appear due to these discontinuities. The
magnetized stars can sustain the strong toroidal magnetic field energy by bending the poloidal
magnetic fields within the crust zones.

The other possibility for the excitement of oppositely flowing currents inside and/or on
the stellar surface might be related to magnetospheres which produce the oppositely flowing
toroidal currents near and/or on the stellar surface. This kind of magnetosphere would also
sustain the strong toroidal magnetic field energy inside the star. These models might be the key

to reveal the mechanism of the giant flares of the magnetars.
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Experience is the teacher of all things.
(Gaius Julius Caesar)

A sufficient condition for strong toroidal magnetic
field

We have found that the oppositely flowing toroidal current densities cancel out the force-free
toroidal current (k current) and sustain the large toroidal magnetic fields in chapter 3. How-
ever, the physical meaning of such oppositely flowing toroidal current density is unclear. We
consider and discuss the physical meaning of the oppositely flowing toroidal current density in

this chapter.

4.1 Introduction

Anomalous X-ray Pulsars (AXP’s) and Soft-Gamma-ray-Repeaters (SGR’s) are considered as
special classes of neutron stars, i.e. magnetars (Thompson & Duncan 1995). According to
observations of rotational periods and their time derivatives, magnitudes of global dipole mag-
netic fields of magnetars reach about 10'*~°G. Recently, however, SGR’s with weak dipole
magnetic fields have been found (Rea et al. 2010, 2012). Their observational characteristics
are very similar to those of ordinary SGR’s but their global dipole magnetic fields are much
weaker than those of ordinary magnetars. It might be explained by a possibility that such
SGR’s with small magnetic fields hide large toroidal magnetic fields under their surfaces and
drive their activities by their internal toroidal magnetic energy (Rea et al. 2010). Recent X-ray
observation of magnetar 4U 0142461 also implies the presence of large toroidal magnetic fields
(Makishima et al. 2014). By considering possible growth of magnetic fields of magnetars dur-
ing proto-magnetar phases, strong differential rotation within proto-magnetars would amplify
their toroidal magnetic fields (Duncan & Thompson 1992; Spruit 2009). Therefore, it would
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be natural that some magnetars sustain large toroidal magnetic fields inside.

The large toroidal fields are required from the stability analyses of magnetic fields. Stability
analyses have shown that stars with purely poloidal fields or purely toroidal fields are unstable
(Markey & Tayler 1973; Tayler 1973). Stable magnetized stars should have both poloidal and
toroidal magnetic fields. Moreover, the toroidal magnetic field strengths of the stable magne-
tized stars have been considered to be comparable with those of poloidal components (Tayler
1980). However, we have not yet known the exact stability condition and stable magnetic
field configurations, because it is too difficult to carry out stability analyses of stars with both
poloidal and toroidal magnetic fields.

Nevertheless, stabilities of magnetic fields have been studied by performing dynamical sim-
ulations. Braithwaite & Spruit (2004) showed that twisted-torus magnetic field structures are
stable magnetic field configurations on dynamical timescale. Stabilities of purely toroidal mag-
netic field configurations or purely poloidal magnetic field configurations have been studied in
the Newtonian framework (Braithwaite 2006, 2007) and in the full general relativistic frame-
work (Kiuchi et al. 2011; Lasky et al. 2011; Ciolfi et al. 2011; Ciolfi & Rezzolla 2012). Braith-
waite (2009) and Duez et al. (2010) have found a stability criterion of the twisted-torus mag-

netic fields. It could be expressed as

M M,
a—r < — < 0.8, 4.1
WS M b
where M /|| is the ratio of the total magnetic energy to the gravitational energy. M,/ M is
the ratio of the poloidal magnetic field energy to the total magnetic field energy. « is a certain
dimensionless factor of order of 10 for main-sequence stars and of order 10? for neutron stars.
The ratio of M /|W| is a small value (~ 107°) even for magnetars. Therefore, the criterion

becomes
M,
02<=—<0.99 4.2
SR ; 4.2)

where M, is the toroidal magnetic field energy. Therefore, stellar magnetic fields are stable
even for toroidal magnetic field dominated configurations. Therefore, it is very natural that the
stable stationary magnetized stars have large toroidal magnetic fields.

Until recently, however, almost all numerically obtained equilibrium configurations for sta-
tionary and axisymmetric stars have only small fractions of toroidal magnetic fields, typically
M, /M ~ 0.01, even for twisted-torus magnetic field configurations in the Newtonian gravity
(Tomimura & Eriguchi 2005; Yoshida & Eriguchi 2006; Yoshida et al. 2006; Lander & Jones
2009; Lander et al. 2012; Lander 2013, 2014) and in general relativistic perturbative solutions
(Ciolfi et al. 2009; Ciolfi et al. 2010). They do not satisfy the stability criterion mentioned
above.

On the other hand, there appeared several works which have successfully obtained the sta-
tionary states with strong toroidal magnetic fields by applying special boundary conditions.

Glampedakis et al. (2012) obtained strong toroidal magnetic field models imposing surface



4.2. SPHERICAL MODELS WITH WEAK MAGNETIC FIELDS 69

currents on the stellar surface as their boundary condition. Duez & Mathis (2010) imposed
the boundary condition that the magnetic flux on the stellar surface should vanish. Since the
magnetic fluxes of their models are zero on the stellar surfaces, all the magnetic field lines are
confined within the stellar surfaces. They obtained configurations with strong toroidal mag-
netic fields which are essentially the same as those of classical works by Prendergast (1956)
and Woltjer (1959a,b, 1960) and recent general relativistic works by Ioka & Sasaki (2004) and
Yoshida et al. (2012).

We have found and shown that the strong toroidal magnetic fields within the stars require the
oppositely (positively and negatively) flowing toroidal currents or oppositely flowing toroidal
surface currents in chapter 3. Such oppositely flowing currents can sustain large toroidal mag-
netic fields in magnetized stars. It is also very recent that Ciolfi & Rezzolla (2013) have
obtained stationary states of twisted-torus magnetic field structures with very strong toroidal
magnetic fields using a special choice for the toroidal current. Their toroidal currents contain
oppositely flowing current components and result in the large toroidal magnetic fields, although
their paper does not explain the physical meanings for appearances of such oppositely, i.e. pos-

itively and negatively, flowing toroidal currents.

In this chapter, we consider and analyze configurations with oppositely flowing toroidal
currents. In order to show the physical meaning of the oppositely flowing toroidal currents
clearly, simplified analytical models are solved and we give a sufficient condition for presence
of large toroidal magnetic fields within stars.

4.2 Spherical models with weak magnetic fields

4.2.1 Green’s function approach

We follow the formulation and method in chapter 3. Therefore, the stationary condition for the

configurations can be expressed as:

d—pp = ¢y + /M(\p) AV + C, (4.3)

In order to obtain analytical solutions, we choose the functional forms as follow

(V) = po, (4.4)

(V) = KoV, 4.5)
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where 11y and K are constants. If we impose the boundary condition ¥ = 0 at the centre of the

star, U is described as follow (see chapter 3):

v
—— = KrorJy (kor)
sin® 6
re r (4.6)
- 477#0"'%0{7“J1 (Kor) / Yi (kor") p(r')r" dr’ + 1Yy (ko) / Ty (ko) p(r')r” dr’},
r 0
where we set the stellar radius 7, = 1 in this chapter. J; and Y; are the spherical Bessel

functions of the first kind and the second kind, respectively and K is a coefficient which is
determined by a boundary condition of W at the surface. According to the -dependency of the

inhomogeneous term, we search for solutions of the following form:
a(r)sin®0 = U(r, ). 4.7)

Therefore we obtain the solution for a(r) by imposing the boundary condition at the surface
and integrating Eq. (4.6).

In this chapter, we treat spherical polytropes with the polytropic indices N = 0 and N = 1.
As for the configurations of the magnetic fields, we choose two types: (1) closed field models
(e.g. Duez & Mathis 2010) and (2) open field models (e.g. Broderick & Narayan 2008). For
closed field models, since all magnetic field lines are closed and confined within the star, the

magnetic flux must vanish at the stellar surface as follows:
a(rs) = 0. (4.8)

For open field models, since the poloidal magnetic field lines must continue smoothly through

the stellar surfaces into the outside. the boundary condition can be expressed as:

da(r
a(rs) = — d(r ) -~ ) 4.9)
The density profiles are
p(r) = pe; (4.10)
for N = 0 polytrope and
p(r) = Slr) (4.11)
r

for N = 1 polytrope and p. is the central density.

We calculate four analytical solutions according to these conditions. We can obtain four
different analytical solutions according to four different situations. We name them as agc(r)
(N = 0 with closed fields), ago(r) (N = 0 with open fields), a1 (r) (N = 1 with closed fields)
and a10(r) (N = 1 with open fields).
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Since the poloidal magnetic field lines are continuous smoothly at the surfaces for open field

models, their external solutions a*(r) must be expressed as:

aer(r) = Urs) 4.12)

It should be noted that the toroidal magnetic fields for open field models and the poloidal
magnetic fields for closed field models are discontinuous at the surfaces except for solutions
with special values of kg, i.e. eigen solutions with corresponding eigen values (Broderick &
Narayan 2008; Duez & Mathis 2010; chapter 3). Therefore, these non-eigen configurations
have toroidal and poloidal surface currents. Such surface currents make the Lorentz stress on
the stellar surface (Broderick & Narayan 2008).

The toroidal surface current density can be expressed as follows:

j%SUT(e) 1 ex mn
Jesurl?) — (B — B
c 471'( 6 0 )

r=rg

B 1 over B ow™m
"~ Adxrgsind \ Or or
B sinf [ da® B da™
dwrg \ dr dr

= j() sin 9,

(4.13)

r=rs

where superscript ©* denotes an internal solution and jj is a coefficient of the surface current
density.

4.2.2 Analytic Solutions

Four different inner solutions (0 < r < 1) can be obtained according to four different situations

as follows:
sin(kgr) — kor cos(kgr r?
aoc(r) :4W0pcl § 0 ) = (ror) _ —2} , (4.14)
rej(sin kg — Ko COSKg) K}
3{sin(kor) — kor cos(kor r?
Cloo(r):‘lﬁ,uopc{ {sin{#o >4 or cos(ror)} ——2}, (4.15)
rKgSin Ko K3
aro(r) = HopPe 8m{sin(kor) — kor cos(kor)}
e r(ki — w2)? sin kg — kg COS Ko
(4.16)

—{(4kg — 47) 1* + 8} sin(7r) + v cos(m“)] ,
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HopPe (473 — k) {sin(kor) — Kor cos(kor) }

aio(r) =
10(r) r(KkE — m2)? K3 sin Ko

(4.17)
— {(4K§ — 47*)r* + 8} sin(r) + 87 cos(mr)

The open field models (apo and a;0) continue to the external solutions (r > 1) expressed by
Eq.(4.12). Here it would be helpful to explain several different kinds of characteristic solutions.

First, for a1 (r) solutions there appears a singular solution at ky = 7w (Haskell et al. 2008),
while the solution ag¢ 1s not singular at Ky = 7 (see chapter 3).

Second, although most solutions are accompanied by surface currents, some special so-
lutions have no surface currents. We call such solutions without surface currents as eigen
solutions and the values of k( as eigen values.

Third, there are solutions whose magnetic flux functions become higher-order ones (see
figures in Broderick & Narayan 2008; Duez & Mathis 2010). Those solutions appear when the
value of x( exceeds the first eigen value of kg for each situation.

Fourth, special solutions with different polytropic indices come to coincide with each other.
In other words, those solutions do not depend on the matter distributions. As seen from the
expression for the current density, the contribution from the p current term needs to disappear.
It implies that those solutions are determined only by the « current. Since the x currents do not
contribute to the Lorentz force, these solutions can be called as the force-free solutions. The

force-free solution is expressed by the following form:

age(r) = Kﬁor {sin(kor) — Kor cos(ker)}. (4.18)

In Fig. 4.1, the ratio of the toroidal magnetic field energy M; to the total magnetic field
energy M = M, + M, of each model is plotted for different situations. The solution becomes
force-free at the point denoted by the vertical solid lines (Broderick & Narayan 2008; chapter
3). The dashed vertical lines denote the critical values of k( for appearance of higher-order
solutions (see figures in loka & Sasaki 2004; Broderick & Narayan 2008; Duez & Mathis
2010; Yoshida et al. 2012). Hereafter, we focus on solutions with g less than the lowest
eigenvalue. However, our analyses and results could be general and would be valid even when
the configurations are higher-order.

As seen from Fig. 4.1, N = 0 solutions and N = 1 solutions cross at ky ~ 4.49 and 7.73
for closed field models and ky ~ 3.14 and 6.28 for open field models. The solutions at these
points are force-free solutions as mentioned before.

We denote the value of x( in the n-th force-free solutions as kpo, for open field models
and k¢, for closed field models. The values are Kpo1 ~ 4.49, KFo2 ~ 7.73 and Kpcp = T,
krpco = 2m. These values are consistent with the result obtained by Broderick & Narayan
(2008). As seen from Fig. 4.1, the energy ratio is M;/M ~ 0.5 when the solutions are the

first force-free configurations.
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Figure 4.1: Energy ratio M;/M is plotted against the value of xy. Closed (left panel) and open (right panel)
field solutions are shown. The solid and dashed curves denote N = 1 and N = 0 solutions, respectively. The
vertical solid lines mean force-free solutions: Closed force-free solutions appear at kg ~ 4.49 and kg ~ 7.73 and
open force-free solutions at kg = 7 and kg = 2m. The toroidal current densities are composed of two oppositely
flowing components beyond the vertical dashed lines: «g ~ 5.76 for the ag. solution (dashed curve in left panel),
Ko ~ 7.42 for the a1, solution (solid curve in left panel), kg ~ 5.76 for the ag, solution (dashed curve in right
panel) and ¢ ~ 4.66 for the a;, (solid curve in right panel). The open circle in the left panel denotes the singular
solution for a;¢(r).
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Figure 4.2: Distributions of the toroidal current density normalized by the maximum strength of | U, | are shown
along the equatorial plane. Curves with different types denote the behaviors of the total toroidal current density,
Jo /¢, (thick solid line), the toroidal ¢ current density (thin solid line) and the toroidal po current density (thin
dotted line). We set o = —1 in order to plot these distributions. Left panels show the profiles of solution a1
with kp = 1.0 and 4.0 and right panels show those of solution a;¢ with k9 = 2.0 and 7.0.
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In Fig. 4.2, distributions of the normalized j,,/c (thick solid line), the s current (thin solid
line) and the p current term (dashed line) along the equatorial plane are shown for solutions of
a0 (with kg = 1.0,4.0) and a,¢ (with Ky = 2.0,7.0). We have fixed pyp = —1 following the
chapter 3 in order to plot these curves.

The energy ratios are M,/ M ~ 0.09 for the open field model with ko = 1.0, M/ M ~
0.63 for the open field model with ko = 4.0, M;/M ~ 0.16 for the closed field model with
ko = 2.0, and M;/ M ~ 0.68 for closed field model with oy = 7.0. Therefore, the solutions
with kg = 1.0 and Ky = 2.0 are poloidal magnetic field dominated configurations, while
solutions with ko = 4.0 and ko = 7.0 are toroidal magnetic field dominated configurations.
The configuration changes from poloidal magnetic field dominated to toroidal magnetic field
dominated models occur at the first force-free solutions (Fig. 4.1).

As seen from this figure (Fig. 4.2), directions (signs) of the p current, i.e. non force-
free current, and the  current, i.e. force-free current, are the same for poloidal magnetic
field dominated solutions (ko = 1.0 and ko = 2.0). By contrast, for toroidal magnetic field
dominated solutions (ko = 4.0 and ky = 7.0), the p current flows oppositely to the ~ current
(chapter 3). Moreover, most of the j,/c (thick solid line) for solutions with xy = 4.0 and
ko = 7.0 flows oppositely against the corresponding ;. current. Since the sign of the total
toroidal current determines the sign of the magnetic flux function, this implies that the sign of
oV changes from pgW > 0 to oW < 0 at the force-free solutions. The toroidal magnetic
fields are dominant for oWV < 0 models, while the poloidal magnetic fields are dominant for
oW > 0 models (see Fig. 4.1). The oppositely flowing non-force free current (oW < 0) is
required for large toroidal magnetic fields.

On the other hand, the surface toroidal currents in the closed field models are always op-
positely flowing to the total toroidal currents because of the zero-flux boundary condition Eq.
(4.8) and the form of the surface current Eq. (4.13).

4.2.3 Deep relation between the oppositely flowing toroidal current and the poloidal de-
formations of stars

The toroidal magnetic fields tend to deform stellar shapes prolate, while the poloidal magnetic
fields tend to deform them oblate (Haskell et al. 2008). The oppositely flowing toroidal current
seems to relate to the stellar deformations as well as to the presence of large toroidal mag-
netic fields, because the relation can be studied by investigating the Lorentz forces which are
produced by the interactions of the currents and the magnetic fields.

In our analytic models, the Lorentz force L is expressed using the arbitrary function p ()

as

L <% « B) _ pV/u(‘IJ) 0T = pp(T)V

da

:/)Mod

(4.19)

a
sin? fe, + 2ppio— sin O cos fey.
r r
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Figure 4.3: Poloidal magnetic field structures (dashed curves) and Lorentz force vector fields (arrows) for the open
field models (kg = 1.0, kg = 4.0) and the closed field models (xog = 2.0 and ko = 7.0) are displayed.Vectors
only show their directions but are not scaled to their absolute values.

In Fig. 4.3, the contours of W (dashed curves) and the directions of Lorentz force vectors
(arrows) are displayed. It should be noted that directions of the Lorentz forces are totally
opposite between models with smaller values of x( and those with larger values of x(. In other

words, force-free solutions divide two different types of the Lorentz force vectors.

Following Haskell et al. (2008), we consider the stellar quadrupole deformations of N = 1
polytropic stars. We assume that the influence of the magnetic fields to the stellar structures
are small and that their effects can be treated perturbatively. Due to the effects of the magnetic

fields, a certain physical quantity X (r, #) is assumed to be expressed as
X(r,0) = X(r)+ > _ 0X™(r)P,(cosb), (4.20)
n=0

where 0 X (™ denotes a small change of order O(B?) of the quantity X due to the Lorentz force.
The angular dependencies are treated by the Legendre polynomial expansions and the coeffi-
cient of each Legendre polynomial is expressed as 6 X (™) (r). This expansion is also applied to
the Lorentz force as follows:

L(r,0) = > L™ (r)P,(cos). (4.21)
n=0

From the perturbed equilibrium condition equations, the following relations can be derived:

dsp™ s
P tp ¢g

do
5o 229
dr +op

— L™ 4.22
dr dr r ( )

ap™ + pdp™ = rLy" . (4.23)
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Since we are interested in the quadruple deformation, we consider only n = 2 components of

Lorentz force as follows:

1@ _ 2Pk da(r)
" 3 dr
1@ _ _2pmoal(r)
0 3 r )
L2 = @ _ d(TLé ))
" dr

~ 2ppo da(r) n 2410 d(a(r)p(r))
3 dr 3 dr

20 o)

3 dr '

(4.24)
The change of the stellar surface to the order of the quadrupole term can be expressed as
ra(0) = ro{1 + ePy(cos0)} = r, {1 + 2(3 cos? — 1)} , (4.25)

where r4(0) denotes the deformed surface radius and ¢ is a small quantity which represents
the fraction of the stellar surface along the pole. Following this expression, the stellar shape is

prolate for € > 0 and oblate for ¢ < 0.

Deformation of N # 0 polytrope

Using these equations, the quadrupole change of the density is described by:

dp do,\
@ _ (Pss2 1@ (%P
5p ( 00 + L )( dr) . (4.26)

Since the surface of the deformed star is defined by a set of points where the pressure

vanishes, i.e.

d
p(ra(0)) = dp(rs) + ersPa(cos 0)—]; ~=0. (4.27)
we can derive
L) B C (4.28)
d?" r=rg r=rg

for polytropes with N # 0. For N = 0 polytrope, this equation is reduced to trivial relation
0 = 0 and so we will treat N = 0 polytrope differently as will be shown in the next section.

Therefore, the quadrupole surface deformation ¢ for N # 0 is obtained by

do\ "' 502
dr Ts

It is clearly seen that, since % < 0 at the surface, the stellar deformation is prolate for 6p(?) > 0

(4.29)

r=Ts
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Figure 4.4: The values of —2pga(x = 7)/3 (thin solid line) and —5(;55,2)(1: = 7) (thin dashed line) in closed field
model (left panel) and open field model (right panel) are plotted. The thick vertical lines denotes force-free limit.
The toroidal current densities consist of oppositely flowing flows beyond the dashed thick vertical lines. We set
o = —1 and p. = 1 in order to plot these graphs.

and oblate for §p(® < 0. In our situation, the explicit form of §p(®) can be expressed as

dp (2po g\~
op? = 2 (=2 5@ —2 4.30
P dr \ 3 alrs) + 095" (7s) dr r=rs (4.30)
and ¢ for N # 0 polytropes becomes as
~1
2410 . gy’
= — (?a(rs) ‘|‘5¢!(] )(’I")> <7 )
dp\ ™" ( 2u0 2
= (5) (?a(rs) + 0P (r) o (4.31)
As shown in App. A.2.1 the gravitational change for N = 1 polytrope can be obtained as
56 () — F®)(z) 1 dF® (1) .
Thus for x = 7, i.e. on the surface,
F(p)(ﬂ) 3 dF®)
@) () —
5¢g (77') = T — F d ) s (433)

where jo(7) = 3/7? is used. Here the function F(?)(z) is defined in App. A.2.1.

Since the expression for the function ') is so complicated, it is not clearly seen the sign of
the quantity (6% (rs) + 2p0a(rs)/3) which determines the sign of the quantity <. In Fig. 4.4
we show the behaviors of —5¢g2)(rs) and —2pupa(rs)/3 against the value of k. As seen from
this figure, the shape change from the effect due to the gravitational change is the same as that

from the Lorentz term. Thus the sign of the quantity ¢ is essentially determined by the sign of
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the Lorentz term, i.e., the sign of the quantity yia(r;). Since p(r)(dp/dr)~' < 0, the stellar
shape is oblate for 110U (rs, 0) > 0 and prolate for poW(rs,0) < 0 as far as the global poloidal
magnetic field is dipole.

On the other hand, as we have seen in Figs. 4.1 and 4.2, the poloidal magnetic field energy is
dominant for ;oW < 0 and toroidal magnetic field energy is dominant for poW > 0. Therefore,
what we have shown thus far is summarized as follows. The presence of the large toroidal mag-
netic field inside the star corresponds to the two conditions; (1) the presence of the oppositely
flowing non force-free toroidal current density whose contribution to the term [ 1(\)d¥ in the
stationary condition needs to be negative and (2) the oppositely flowing non force-free current

makes the stellar shape prolate.

Deformation for N = 0 polytrope

For N = 0 polytrope, the gravitational change and the shape change are written as follows as

shown in App. A.2.2:

4
5 = —ngpomﬂ , (4.34)
and
4 4 e 5
€= {—ngpO’r’g - <—57TGp0T§>} %a(’r’s) = —47Tgopoa(rs). (4.35)

Here we use the stationary condition
ap? + ppdp® =rLy (4.36)

and the surface condition Eq. (4.27).

Thus the sign of the quantity ¢ is exactly determined by the sign of the Lorentz term, i.e.,
the sign of the quantity ppa(rs). The stellar shape is oblate for 1oW (75, 6) > 0 and prolate for
oWV (rs,0) < 0 as far as the global poloidal magnetic field is dipole.

Sufficient condition for appearance of toroidal magnetic field dominated configurations

Consequently, we can conclude that a sufficient condition for appearance of toroidal magnetic

field dominated configurations is that the arbitrary function ;(\V) satisfies the following condi-

/ (1(D)dT

when the functional forms are Eqs. (4.4) and (4.5). Although, exactly speaking, these analyses

tion:

<0, (4.37)

r=rs

and conditions are valid within the present parameter settings, our results would be useful for
more general situations. This might be naively seen from the contribution of the term [ 1d¥

in the stationary condition equation Eq. (4.3). If this term is negative, it implies that the action
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of the Lorentz term is opposite to that of the centrifugal force which is expressed by the term
J Q(R)?RdR and is always positive. Thus the density distribution could be ’anti-oblate’, i.e.
prolate (see also chapter 7).

Although the sufficient condition presented in this chapter might not be always correct, we
could obtain the large toroidal magnetic fields by employing this criterion for more complicated

calculations.

4.3 Discussion and Conclusion

4.3.1 Oppositely flowing toroidal surface current density and Lorentz pressure

As we have shown in chapter 3, the oppositely flowing (negative) toroidal surface current den-
sity can sustain the strong toroidal magnetic fields, because the negative surface current cancels
out the x current and can have the relative large ~ current within the star. Although such config-
urations cannot have toroidal component magnetic field dominated structure (M; > M,), they
have relatively large toroidal magnetic field energy within the star. The typical value of the en-
ergy ratio is M;/M ~ 0.2 — 0.3 (chapter 3) for twisted-torus (open) fields configurations with
the negative surface current. We consider the physical meaning f the negative surface current
following the discussion in Sec. 4.2.3. If we consider the dipole negative surface toroidal cur-
rent, such surface current under the dipole magnetic fields exerts the §-component of Lorentz
pressure (Braithwaite & Spruit 2006) as

Sy ~ ‘%BT ~ —joPy(cos 0), (4.38)

where jo is a coefficient of surface current. Therefore the #-component of the quadrupole

(n = 2) stress (ng)) by the negative surface current is
S~ —jo. (4.39)

Since the toroidal surface current is negative (jo < 0), the sign of SéQ) is positive. The Lorentz
stress by the negative surface current is directed to the poles. Such stress makes the stellar shape
prolate. Therefore, the physical meaning of the negative surface current density is the Lorentz
pressure which tends to make the stellar shape prolate in the same way as the oppositely flowing

4 term does.

4.3.2 Twisted-torus configuration with large toroidal magnetic field

Almost all previously carried out investigations for magnetized equilibrium states having twisted-
torus magnetic fields had failed to obtain toroidal magnetic field dominated (M; > M) mod-
els. We have found that most models of their works do not satisfy the condition of Eq. (4.37)

and the magnetized stellar shapes are oblate due to the p current term. The x term in those



80 CHAPTER 4. A SUFFICIENT CONDITION FOR STRONG TOROIDAL MAGNETIC FIELD

works has been chosen as follows:
k(W) = ro(¥ — \IlmaX)kl+1@(\Ij — Uhnax), (4.40)

where, k; is a constant and © is the Heaviside step function and ¥, is the maximum value
of U on the last closed field line within the star. This functional form was used by Tomimura
& Eriguchi (2005) for the first time and results in the twisted-torus configurations. The same
choice for the s has been employed by many authors (e.g. Yoshida & Eriguchi 2006; Yoshida
et al. 2006; Kiuchi & Kotake 2008; Lander & Jones 2009; Ciolfi et al. 2009; Ciolfi et al. 2011
;Glampedakis et al. 2012; Lander et al. 2012; Lander 2013, 2014; chapters 2 & 3). While the
functional form p(W¥) = po (constant) has been used in many investigations, we have used a

different functional form in chapter 2 as
(W) = po(W + €)™, (4.41)

where m and € are positive constants. They have obtained highly localized poloidal magnetic
field configurations using this type of functional from. However, their works did not satisfy the

condition of Eq. (4.37) and did not obtain models with large toroidal magnetic fields.

Very recently, Ciolfi & Rezzolla (2013) have succeeded in obtaining magnetized equilibrium
states with twisted-torus magnetic fields whose toroidal fields are large. Their functional form

of K 1s
K(U) = koW (|V/Urnax| — DOV /W pnay| — 1). (4.42)

On the other hand, the functional form of x is

dr(¥)
av -’

(W) =co [(1 = |9/ )? O(L = |9/ Wy ]) — k] + Xor (V) (4.43)

where ¢y, k(> 0) and X, are constants. The toroidal magnetic field is confined within the
last closed field line in these functional forms. Outside the toroidal magnetic field region, the

function x vanishes and ;4 becomes
(W) = co [(1 = [ U/ Upae|)® — K] . (4.44)

Since the first term and the second term are positive and negative, respectively, this function
with larger k tends to satisfy the condition of Eq. (4.37). As they noted, larger values of
k result in larger energy ratios M, /M. As the value of k increases, the energy ratio M, /M
increases and the stellar shape becomes more prolate in general (see Tab. 1 in Ciolfi & Rezzolla
2013). However, they assumed that the magnetic field configuration is purely dipole but their
functional forms and toroidal current density distribution are far from dipole one (see bottom
panels of Fig. 2 in Ciolfi & Rezzolla 2013). We need to calculate magnetic field configurations

with higher order components for large toroidal models in the future.
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4.3.3 Concluding remarks

We have obtained four analytic solutions with both open and closed magnetic fields for spheri-
cal polytropes with weak magnetic fields.

Using the obtained solutions we have discussed the condition for which the toroidal mag-
netic field dominated configurations appear. The toroidal magnetic field become strong if there
appear oppositely flowing toroidal current components. Such oppositely current density makes
the stellar shape prolate. This situation can be related to the condition for the non force-free
toroidal current contribution, i.e. f p(W)dW, in the stationary state condition Eq. (4.3). The
sufficient condition (Eq. 4.37) for appearance of large toroidal magnetic fields in the stationary
axisymmetric magnetized stars found in this chapter means that it acts as decreasing the density

mainly in the equatorial direction, i.e. making the stellar shape prolate.
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Gallia est omnis divisa in partes tres.
All Gaul is divided into three parts.
(Caesar, The Gallic War)

Magnetic fields of magnetar throughout its interior

and exterior

We have found that the large toroidal magnetic fields result in and result from the oppositely
flowing non force-free toroidal current density and the direction of Lorentz force which tends to
stellar shape prolate in chapter 4. In this chapter, we consider the magnetic field configurations
of magnetar throughout its interior and exterior - core, crust and magnetosphere. The defor-
mation of the crust relates to the core toroidal magnetic fields. On the other hand, the change

of the stress on the crust has influence on the magnetic field structures in the magnetosphere.

5.1 Introduction

Neutron stars have the strong magnetic fields among the stars in the universe. Especially,
Anomalous X-ray Pulsars (AXPs) and Soft Gamma-ray Repeaters (SGRs) are considered as
special classes of magnetized neutron star, magnetar. Magnetars have very strong dipole mag-
netic fields whose typical strength reaches about 10 G at their surfaces. They show the station-
ary intense emissions and dynamical flares releasing magnetic energy (Thompson & Duncan
1995). Such magnetic activities are also considered as heating source of them (Pons et al.
2007). The magnetic field configurations are important for these astrophysical events, because
the magnetic energy decaying depends on their structure deeply. Especially for flares, both ex-
terior and interior magnetic fields structures are considered to be essential by many studies (e.g.
Thompson & Duncan 2001; Thompson et al. 2002; Beloborodov & Thompson 2007; Masada
et al. 2010). Recently, numerical simulations of crustal Hall magnetohydrodynamics (MHD)

secular evolutions (Perna & Pons 2011) and strongly twisted force-free magnetospheric dy-
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namical evolutions (Parfrey et al. 2013) have been performed in order to understand the flares.
However, since the magnetic field structures of both core-crust (interior) and magnetosphere
(exterior) should be coupled, we need to consider them at the same time. As a first step, we
have calculated equilibrium magnetic field structure of both internal and external simultane-
ously and systematically in this chapter.

The Hall drift within the crust is considered as a key for the magnetar internal magnetic
field structures. The Hall drift itself does not dissipate the magnetic fields, but it makes higher
order components of magnetic field during the Hall cascade process. Such higher order compo-
nents magnetic field promotes the Ohmic dissipation more efficiently (Jones 1988; Goldreich &
Reisenegger 1992; Naito & Kojima 1994; Urpin & Shalybkov 1995; Shalybkov & Urpin 1997;
Geppert & Rheinhardt 2002; Rheinhardt & Geppert 2002; Rheinhardt et al. 2004; Hollerbach
& Riidiger 2002; Hollerbach & Riidiger 2004; Cumming et al. 2004; Reisenegger et al. 2007,
Pons & Geppert 2007). The timescale of the Hall drift is determined by the strength of the
magnetic fields within the crust. The Hall drift is characterized by magnetic Reynolds number
R.. (Pons & Geppert 2007) as,

B o
Ry = =77 ( ) 5.1
tHall ECNe (1015G) 102551 ’ ( )

where top,, and ty,; are Hall drift and Ohmic dissipation timescale respectively. o, ¢, n. and

e are electrical conductivity of the crust, the speed of light, the electron number density and a
charge of an electron. This value would reach 1000 locally within the magnetar crust, because
the crustal magnetic fields of magnetar are sufficient large (> 10'°G). The Hall drift would
become very effective in the magnetar crust and its timescale is faster than or comparable to
the lifetime of magnetars. Recently, Hall MHD numerical simulations have been performed
(Kojima & Kisaka 2012; Vigano & Pons 2012; Vigano et al. 2012; Vigano et al. 2013; Gour-
gouliatos & Cumming 2014) and these works have succeeded in examining the Hall drift during

the secular timescale magnetic field evolution.

As recent works showed, the toroidal magnetic fields decrease rapidly during the Hall drift
timescale because the toroidal fields are changed into the higher order poloidal components
by the Hall cascade and the Ohmic dissipation is promoted by the higher order components
(Kojima & Kisaka 2012; Vigano et al. 2013; Gourgouliatos & Cumming 2014). The Hall
cascade becomes very effective when the initial toroidal magnetic field energy is much larger
than poloidal magnetic field energy. The toroidal magnetic field energy ratio and its evolution
are very important to consider the Hall drift and the magnetar secular evolution during its
lifetime. Therefore, we should include the Hall drift in order to consider the internal magnetic

field configurations in equilibrium. One approach is the Hall equilibrium study.

Gourgouliatos et al. (2013) have calculated Hall equilibrium states with both poloidal and
toroidal magnetic fields solving Grad-Shafranov equation. As Gourgouliatos et al. (2013) have
pointed out, the Hall equilibrium state is very similar to MHD equilibrium state which have

been studied for sixty years since Chandrasekhar and his colleagues pioneering works (Chan-



5.1. INTRODUCTION 85

drasekhar & Fermi 1953; Ferraro 1954; Chandrasekhar 1956b; Chandrasekhar & Prendergast
1956; Prendergast 1956; Woltjer 1959a; Woltjer 1959b; Wentzel 1961; Ostriker & Hartwick
1968; Miketinac 1973; Miketinac 1975; Bocquet et al. 1995; Konno et al. 1999; Ioka & Sasaki
2004; Kiuchi & Yoshida 2008; Haskell et al. 2008; Lander & Jones 2009; Ciolfi et al. 2009;
Ciolfi et al. 2010; Duez & Mathis 2010; Ciolfi & Rezzolla 2013). Both analytical and theoreti-
cal methods for magnetized stellar equilibrium states have been developed and investigated by
these works. Recently, some works have considered more realistic and complex physical condi-
tions in neutron star and magnetar interiors. Yoshida et al. (2012) have considered stratification
by chemical potentials in the neutron star interior and obtained stably stratified magnetized stars
in general relativistic equilibrium. Lander et al. (2012) and Glampedakis et al. (2012) have cal-
culated magnetized neutron star equilibria with stratification and type II superconductivity in
Newtonian framework. Lander (2013) and Lander (2014) have solved the superconducting flux
tube tension and obtained magnetic field configurations of neutron star with superconducting
core and normal MHD crust self-consistently, but these studies have not calculated a magneto-
sphere around the star. Very recently, Glampedakis et al. (2014) have studied MHD magnetized
star in equilibrium with force-free magnetosphere self-consistently. However, previous Hall
equilibrium studies (Cumming et al. 2004; Glampedakis et al. 2014) have considered crustal
magnetic fields only. They have not taken account of the influence of the core magnetic fields
and magnetosphere on the crustal fields. On the other hand, Glampedakis et al. (2014) have
not distinguished between its core and crust. Therefore, nobody have obtained magnetized
equilibrium state throughout core-crust-magnetosphere which would be essential for magnetar

understanding.

In this chapter, we have extended the recent Hall equilibrium study (Gourgouliatos et al.
2013) and magnetized star with magnetosphere study (Glampedakis et al. 2014) in order to take
one more step towards magnetic field structures of magnetars. We have succeeded in obtaining
the magnetic field structures across core, crust and magnetosphere simultaneously and system-
atically for the first time. We consider a magnetar with strong magnetic field whose magnitude
exceeds ~ 10 G at the surface in this chapter. Since the Hall drift would be very effective
within the crust of such magnetar (see Eq. 5.1), we assume that the crustal magnetic fields
structure in Hall equilibrium. As for core magnetic fields, we assume that they are in MHD
equilibrium for simplicity. As we have described, the formulation of Hall equilibrium state is
very similar to MHD equilibrium state (Gourgouliatos et al. 2013), but their physical meaning
is different from each other. The MHD equilibrium state depends on the mass density profiles,
because it describes the matter force balance. On the other hand, the Hall equilibrium state in
the crust is determined by electron density distribution within the crust only and neglects the
force balance of the crust. Therefore, the crust in this chapter is elastic and stressed by Lorentz
force of the crustal magnetic fields. We have considered magnetosphere as a twisted force-
free one. As simple examples of the twisted magnetosphere, we have calculated the equatorial
shearing and ring models (Parfrey et al. 2013). Since we are interested in the magnetosphere

near the star, we have neglected the rotation of the magnetosphere (Glampedakis et al. 2014).
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In summary, we have calculated MHD equilibrium core, Hall equilibrium crust and twisted

force-free magnetosphere in this chapter.

We have obtained both analytical and numerical solutions using Green function relaxation
method with arbitrary current sheets on boundaries developed in chapter 3. Since we are able
to include the boundary conditions easily using the Green function, we have calculated many

equilibrium states under various boundary conditions.

5.2 Formulation and models

5.2.1 Basic equations and integral form

We consider the MHD equilibrium core, the Hall equilibrium crust and twisted force-free mag-
netosphere simultaneously in this chapter. The ranges of each region are core (0 < r < ry,),
crust (r;, < r < ry) and magnetosphere (r > ry) respectively. 7, and r denote a core-crust

boundary radius and the stellar radius. The crust exists between r;,, and r, region in our models.

We assume the system is stationary and axisymmetry. In order to obtain the magnetized

equilibria, we also need to solve the elliptic type equation as follow:
A" = — 47y sin 022 (5.2)
c

The right hand side of this equation contains the toroidal current density as a source term. The

toroidal current density is derived from the matter equation in each region.

The Hall equilibrium state within the crust is described by the Hall equilibrium equation
(Gourgouliatos et al. 2013). The Hall evolution of the magnetic field is governed by the induc-
tion equation as,

0

EB =—cV x E. (5.3)

The electric field in the crust is expressed as (Goldreich & Reisenegger 1992),
E=24
o enec

(ij>+vm (5.4)

where V1 denotes the gradient of the total chemical potential term in the crust. Therefore, the

Hall MHD evolutionary equation is expressed by

0 c?

B x (V x B)|. (5.5)

Ten,

The first term is the Ohmic diffusion and the second one is the Hall drift. If the Hall drift is
much faster then the Ohmic diffusion and the magnetic field reaches nearly stationary, the left

hand side and the firs term of the equation vanish. The evolutionary equation becomes the Hall
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equilibrium condition as follow:

V x [ Bx(VxB)}:O. (5.6)

Ten,

Since c and e are physical constants, the equation implies the presence of a scalar function S' as

VS = 1 <B X l) . 5.7

Ne c
From the axisymmetry condition results in

1 (B x l) =0. (5.8)
Ne c),

These conditions are as same form as the stationary conditions in barotropic axisymmetric
MHD except for n.. The physical dimensions of these equations are different, but the physical
meaning of them is almost same. The Hall drift term comes from the Lorentz force to the
electron and these conditions mean the force balance condition in the axisymmetric system.

Therefore, we obtain following condition from toroidal component in Eq. (5.8)
VU xVk =0 k= r(V). (5.9

From meridional component in Eq. (5.7), the functional form of toroidal current density is

obtained as:

' U)K (¥
srde 2 BORY)  rsin0S(D), (5.10)
& rsin 6
As Gourgouliatos et al. (2013) pointed out, the toroidal current density in the Hall equilib-
rium system is similar to that of barotropic MHD equilibrium system. As we have seen, the
toroidal current density is described as
R(W)R (V)

An?® = ———= +4Amprsin Ou(¥), (5.11)
c 7 sin 0

The core toroidal current density is expressed by this equation.
The twisted magnetosphere without rotation satisfies the force-free condition as
J
C

x B =0, (5.12)

Using this condition, we derive the functional form of toroidal current density as

arde - SDFD) 5.13)

c rsin 6
The magnetospheric toroidal current density is described by arbitrary function (W) only.

We calculate magnetized equilibrium states using these functional forms of j,, throughout

the star. In order to include the boundary conditions easily, we calculate the integrated form of
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Eq. (5.2) using Green function,

v 1 (7’
(r) sinp = —/ Je(r') sin'dV’ + h.ts, (5.14)

rsind cJy|r—r|

where h.ts denotes a homogeneous term of Laplacian as below:

hts= Z (anr”Pé(cos 0) + b,r "1 P} (cos 9)) sin ¢. (5.15)
n=1

Where P!(cos®) is associated Legendre functions. The coefficients a,, and b, are determined
by the boundary conditions of W. These homogeneous terms come from current sheets on the

boundaries (see chapter 3).
The physical dimension of (V) is different from S(¥), because the dimensions of p and
n. differ (Gourgouliatos et al. 2013). Therefore, we consider that S and u can take different
values along one poloidal magnetic field line (¥ =constant line). In other word, the functional
forms of S and p are different from each other in each region. On the other hand, the physical
dimension of (W) in each region is same, because this conserved quantity is obtained from the
axisymmetry condition only. We treat that the x is the conserved quantity throughout stellar

interior and exterior in this chapter.

5.2.2 Models of internal magnetic fields

We have made four internal magnetic field models according to the core-crust toroidal current
density and boundary conditions. We must fix the functional forms of x(¥), p(V) and S(¥)
and the current sheet on the core-crust boundary in order to achieve these models. The magnetic
field configuration of each model is displayed in Fig. 5.1. We describe each model:

1. Model I is a purely crustal open magnetic fields in Hall equilibrium. Both poloidal and
toroidal magnetic fields satisfy the Hall equilibrium state. This model is equivalent to
configurations in Gourgouliatos et al. (2013). This model requires the opposite current
sheet on the core-crust boundary to prevent the poloidal magnetic fields entering the core
(see App. A.3). The inner boundary conditions in this case are ¥ = 0 and x = 0 on the

core-crust boundary.

2. Model 11 is a purely crustal current model. The poloidal magnetic fields can penetrate
the core region, but the toroidal magnetic field is confined within the crust region in this
model. The current density exists within the crust only. This model does not have the
opposite current sheet on the core-crust boundary. Therefore the core magnetic field is the
inner vacuum solution of the crustal current. The inner boundary condition in this model

is ¥ # 0 and x = 0 on the core-crust boundary.

3. Model III is a core-crust current model. Both poloidal and toroidal magnetic fields can

exist in the core and crust region. In other word, both poloidal and toroidal current density
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Figure 5.1: The contours of the ¥ of each analytical model (see App. A.3). The inner curve is core-crust boundary
and the outer curve is the stellar surface. Model I: This model has purely crustal open magnetic fields. There is
the negative current sheet on the core crust boundary in order to exclude the core magnetic fields. Model II:
This model has purely crustal toroidal current. The core magnetic fields are an inner vacuum solution of the
crustal toroidal current. Model III: This model has both crustal and core toroidal current. The core magnetic field
configuration is different from Model II. Model IV: This model has oppositely flowing toroidal current density.
The core magnetic fields are stronger than crustal magnetic fields.

can exist in the core and crust region. The toroidal current density in the core flows same
direction to the crust current in this model. The inner boundary condition in this model is
U # 0 and k # 0 on the core-crust boundary.

4. Model IV is a core-crust current model and the toroidal current density in the core flows
opposite direction to the crustal current in this model. The core magnetic fields energy in
this model is much larger than the crustal magnetic fields energy, because such oppositely
flowing toroidal current density makes the core magnetic fields energy much larger (chap-
ter 3). The inner boundary condition in this model is ¥ # 0 and x # 0 on the core-crust

boundary.

We have calculated analytical solutions of these models without toroidal magnetic fields (see
App. A.3). Model III and IV can have arbitrary current sheets on the core-crust boundaries.
Such current sheet means the arbitrary magnetic pressure on the bottom of the crust (Braith-
waite & Spruit 2006). We treat only dipole current sheet in these models but we can calculate
the arbitrary higher order current sheet (see details of the current sheet in chapter 3). We have
calculated solutions III and IV with and without current sheets in order to examine the influence
of the current sheet. Therefore, we have calculated a total of 6 type of solutions for internal
magnetic field in Sec. 5.3.1.

We must fix the functional forms in order to achieve the core and magnetosphere conditions
we have described in actual numerical calculations. There are two arbitrary functions in both
Hall equilibrium (S, x) and MHD equilibrium (u, <) regions. We choose ones of the simplest
form as S (Gourgouliatos et al. 2013) and p as

S(W) = S, (5.16)
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() = po. (5.17)

We can compute using more complex functional forms (see chapters 2 and 6 and Ciolfi &
Rezzolla 2013), but we are interested in magnetic field configurations throughout the star and
the influence of the boundary conditions in this chapter. As a first step, we use these forms
simples functional form in order to examine them easily and clearly. Especially noted, Sy and
1o must satisfy the conditions of Sy > 0 (model IIT) and Sypg < 0 (model V).

We need to choose the functional form of « satisfying the boundary condition on the stellar
surface and the core-crust surface. If we assume that the magnetosphere is not twisted (B, = 0,
outside the star), the toroidal current density must vanish outside the star. We need to choose

the functional form such as following one (Tomimura & Eriguchi 2005)

{ Ho(qj - \I]ex,nlax)k+1 (\P > \Ijex,max) (5 18)

0 (\IJ S \Ilex,max)

where, U, max 1S the maximum value of W in the stellar exterior. We fix the parameter k£ = 0.1
in all of our numerical computations. This choice of the parameter is exactly same by Yoshida
& Eriguchi (2006) (also Yoshida et al. 2006; Lander & Jones 2009; Ciolfi et al. 2009). As many
previous works obtained and we have obtained in previous chapters, the choice of £ = 0.1

results in the local strong internal toroidal magnetic fields.

The functional form of Eq. (5.18) is available in the model I, III and IV. When we calculate
the model II, we change V., 1,ax into the maximum value of W,y nax and W ., where We ax
is the maximum value of W in the core. If we choose this kind of functional form, the current
density vanishes outside the star and there are no toroidal magnetic fields. This functional form

always satisfies the boundary condition x = 0 at the stellar surface.

5.2.3 Models of twisted magnetosphere

We have calculated two types of twisted force-free magnetosphere, which are equatorial shear-
ing model and ring model (see Parfrey et al. 2013). In order to obtain these models, we have

chosen the functional forms below:

v — v max k+1 v v max
K(\I/) _ HO( t, ) ( > Wy, ) 7 (5.19)
O (\Ij S lIlt,max)

for equatorial shearing models and

RO(\I/ - \Ijex,nlax)k+1 \I] > \Ijt,max)

(
H(\I/) _ 0 <€\Ijem,max S \Ij S qjex,max) (5 20)
Hl{(elpex,max - \Ij)(\lj - \Ijt7max)}k2 (qjt,max S \Ij S E\Ijeac,max) ’
O (\II < qjt,rnax)
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for ring shearing model. Here, ~1, € and %y are parameters. W, ;. denotes the maximum value
of U outside the twisted magnetosphere. We define the value of the maximum radius of the
twisted field as r,,. The twisted field in magnetosphere is not allowed to exist beyond the 7.
The region of the twisted field in magnetosphere limited by the largest closed magnetic field
line inside the radius r,; by this functional form. When the twisted field in magnetosphere
is the ring model, the twisted field can exist within the limited region between the field lines
VU = WU ax and ¥ = €W,, nax (see Eq. 5.20). The value of € must take 0 < € < 1 and
this parameter determines the width of the twisted field. From the same reason why we select
k = 0.1 in Egs. (5.18) and (5.19), we fix k; = 1.0 and € = 0.5 in the ring model. We have
also examined k, > 1.0 models, but we have not obtained as strong toroidal magnetic fields
solutions as ky = 1.0. As a result, we have found that k; = 1 results in the local strong twisted

magnetic fields within the ring regions.

5.2.4 Numerical Setting

We assume that the background star is spherical N = 1 polytrope, because the stellar deforma-
tion by the magnetic fields (Lorentz force) is very small even when the magnetic fields strength
exceed 10'° G (see e.g. Haskell et al. 2008; Ciolfi & Rezzolla 2013). Therefore, the density
profile is depend on 7 component only as follow:

sin(7r/rg
plr) = M (5.21)
/T
We set the number density profile is a parabolic type (Gourgouliatos et al. 2013) as
ne(r) = (r2 —r?). (5.22)

We also calculated magnetic field configurations with realistic equation of state (see App. B.4).
We set the stellar radius at r; = 1 and the core-crust boundary at 7;,, = 0.75 following Kojima
& Kisaka (2012). The crust width of our model is thicker than that of typical value, but we have
adopted the thicker crust in order to compute easily. Some of our numerical solutions have a
current sheet on the core-crust boundary. We can calculate contributions from arbitrary current

sheets (chapter 3), but we have calculated solutions with dipole current sheet only.

In order to evaluate the energy ratio, we calculate the poloidal magnetic energy M, and
the toroidal magnetic energy M,. We define the total magnetic energy as M = M, + M,.
We also calculate the core magnetic energy (Mco), the crust magnetic energy (Mcr) and the
stellar magnetic energy (Mst = Mco + Mecr). Our numerical region is [0, 1] (stellar region)
and [1, 2] (non-twisted magnetosphere models), [1,32] (twisted magnetosphere models) and
6 = [0, 7]. We use the sufficient number of mesh in this chapter (see the numerical check in
App. B.3). In actual numerical calculations which are tabulated and displayed in this chapter,
we use Ny = 1025 (0 = [0 : 7]), N1 = 513, N0 = 513 (r = [1 : 2] no magnetosphere models)

N,o = 1025, (r = [1 : 32] magnetosphere models) in order to obtain more accuracy numerical
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ko  So po model Mecri/Mecer  Mcoi/Mco Mer/M  Mco/ M

(a 150 1.0 0.0 I 5.77E-3 0.0 0.89 0.00
(b)y 50 1.0 0.0 I 8.23E-2 0.0 0.34 0.44
() 25 1.0 1.0 11 1.54E-1 0.0 0.28 0.55 js = 1.0EO
(d 20 1.0 5.0 1 1.78E-1 3.52E-5 0.24 0.62
(e) 8 -1.0 1.0 v 1.36E-1 2.29E-1 0.14 0.84
(H 8 -1.0 1.0 v 1.41E-1 3.27E-1 0.07 0.92 js = —5.0E-1

Table 5.1: Parameters and numerical solutions of models with core magnetic fields. j, denotes the strength of the
current sheet on the core-crust boundary.

results. As for the Legendre polynomial, we sum of Pﬁ(cos 0) t0 Nymax = 21 in all numerical
calculations in chapter 5.

5.3 Results

5.3.1 Core-crust solutions with non-twisted magnetosphere

First, we show the solutions with non-twisted magnetosphere (B, = 0, outside the star). Since
the toroidal magnetic field energy ratio (within the crust, Mecr;/ Mcr) relates to the Hall drift
activity within the crust (Kojima & Kisaka 2012; Vigano et al. 2013; Gourgouliatos & Cum-
ming 2014), it is very interesting value to characterize the magnetized equilibrium states. We
have computed many equilibrium states changing the value of x for 6 type of solutions as we
have mentioned in Sec. 5.2.2. Each model displayed here has as strong toroidal magnetic field
energy ratio (Mcr;/Mecr) as possible within present functional forms. We label the obtained
6 solutions as following (a) - (f): solution (a) model I type, solution (b) model II type, solution
(c) model III type with positive current sheet, solution (d) model III type, solution (e) model
IV type, solution (f) model IV type with negative current sheet. The numerical solutions are
tabulated in Table 5.1. The configurations of the poloidal magnetic fields and the toroidal mag-
netic fields are displayed in Fig. 5.2. The magnitude of the toroidal magnetic fields in Fig. 5.2
is normalized by that of the magnetic dipole component of each solution at the stellar north
pole. As seen from Table 5.1, the core magnetic field energy ratio (Mco/M) increases from
the solution (a) to the solution (f) in order in Table 5.1. The value reaches Mco/M ~ (.92
in solution (f), while Mco/ M ~ 0.44 in solution (b). Since solutions (c) and (d) have current
sheets on the core-crust boundary, the poloidal magnetic field lines are bent at this boundary.
The direction of the bending depends on the sign of the current sheet.

First of all, the toroidal magnetic field energy ratios within the crust (Mecr;/ Mecr) of all
models are smaller than 0.5. Therefore, the magnetic energies are dominated by poloidal one
in all solutions, but the energy ratio changes according to the models. The size of the toroidal
magnetic field region becomes larger as the core magnetic field ratio (Mcr/ M) increases (Fig.
5.2). Clearly, the core magnetic fields have influence on the Hall equilibrium states within the
crust.

As seen from Table 5.1 and Fig. 5.2, the toroidal magnetic field region of solution (a)

is very small and the energy ratio is also very small (Mcr;/Mecr ~ 1072). This result is
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Figure 5.2: The contours of ¥ in each model (solid line). The inner curve and the outer curve denote the core-crust
boundary and the stellar surface respectively. The colour maps denote the the magnitude of the toroidal magnetic
field B, normalized by that of strength of the dipole component of the poloidal magnetic field at the north pole.



94 CHAPTER 5. MAGNETIC FIELDS OF MAGNETAR THROUGHOUT ITS INTERIOR AND EXTERIOR

almost consistent with computations by Gourgouliatos et al. (2013) (see Fig. 9 in the paper).
On the other hand, the energy ratio Mcr;/ Mecr of solution (b) is slightly larger than that of
solution (a). The toroidal magnetic field region also becomes slightly larger. Since the poloidal
magnetic field lines penetrate into the core region in this model, the ¥ > W .. region within
the crust becomes large (compare the analytical profiles of model I with model II in Fig. A.1).
As seen from Table 5.1, the core and the crustal magnetic energies of solution (b) are nearly
equal (Mcr ~ Mco). Therefore, solution (b) has the crustal magnetic field comparable to the
core magnetic field.

Solutions (c) and (d) are model III type solutions. They have core toroidal current density.
Solution (c) has the positive current sheet on the core-crust boundary. The positive current
sheet makes the core magnetic field energy slightly small (see Table 5.1). The core magnetic
field energy ratios (Mcr/M) of solutions (c) and (d) are larger than that of solution (b). The
energy ratios (Mecr;/ Mecr) of solutions (c¢) and (d) reach about 0.15-0.17 and are much larger
those that of solutions (a) and (b). On the other hand, the core toroidal magnetic fields are
almost zero in solutions (c) and (d). As seen from solutions (c¢) and (d) in Fig. 5.2, almost all
of the toroidal magnetic fields exist in the crusts. These numerical results show that the core
magnetic field structures are important in order to consider the toroidal magnetic field energy

in Hall equilibrium within the crust.

Solutions (e) and (f) are model IV type solutions. They have the opposite toroidal currents
because the value of 1495 is always negative. As seen form Table 5.1, such oppositely flowing
crustal toroidal current makes the core magnetic field energy ratio (Mecr/M) large. These
tendencies are consistent with the arguments in chapter 3. The ratio Mcr/M reaches about
0.8-0.9. These values are the strongest among our solutions. These solutions also sustain the
large toroidal magnetic field energy in both core and crust region. The core toroidal magnetic
field energy ratios are Mco;/ Mco ~ 0.2 — 0.3. The size of the toroidal magnetic field region
is much larger than those of any other solutions. The boundary conditions of « at the core-crust
boundary are x # 0 and the values of s continue smoothly at the boundary. These numerical
results means that the x # 0 boundary conditions on the core-crust boundary broaden the size

of the toroidal magnetic field regions within the crust of the Hall equilibrium.

The solutions (¢) and (f) have the positive and negative current sheets respectively. The
physical meaning and origin of the current sheet are unclear and difficult to understand in
terms of micro physics (Lander 2013, 2014), but we can regard the current sheet under the
magnetic fields as magnetic stress on the bottom of the crust (Braithwaite & Spruit 2006).
The sign of the current sheet means the direction of the stress in the case. The positive and
negative current sheets denote the magnetic stresses in the direction of the equator and polars
respectively. As seen from Table 5.1, the positive current sheet decreases the core magnetic
fields energy ratio Mcr /M (see solutions ¢ and d), while the negative current sheet increases
the ratio (see solutions e and f ). Moreover, solution (c) has smaller value of Mecr,/M than
solution (d). Solution (f) also has larger values of Mcr;/ M and Mcr;/ M than solution (e).
Especially noted, the maximum magnitude of the core toroidal magnetic fields in solution (f)
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rum/rs ko So  po model Meri/Mer  Mery/Mer Mer/M Mer/M - Mst/M o rx/[rs

(m-a) 8.0 01 1.0 00 I 2.21E-4 0.0 0.90 0.0 0.90 -
(m-b) 8.0 1.0 1.0 00 I 1.58E-2 0.0 0.88 0.0 0.88 -
(m-c) 8.0 14 1.0 00 I 1.63E-2 0.0 0.87 0.0 0.87 3.34
(m-d) 8.0 01 1.0 1.0 I 8.34E-4 3.08E-4 0.16 0.68 0.84 -
(m-e) 8.0 1.0 1.0 10 I 4.11E-2 7.29E-2 0.16 0.64 0.80 -
(m-f) 8.0 12 1.0 10 I 3.92E-2 1.02E-2 0.16 0.63 0.79 3.20
(m-g) 8.0 0.1 -1.0 5.0 1AY 6.13E-4 4.19E-4 0.12 0.83 0.95 -
(m-h) 8.0 05 -1.0 5.0 v 1.40E-2 9.33E-3 0.12 0.82 0.94 -
(m-i) 8.0 1.1 -1.0 50 v 3.35E-2 2.28E-2 0.11 0.80 0.91 3.40

Table 5.2: Parameters and solutions with equatorial shearing models. Model I magnetic solutions (m-a, m-b, m-c),
model III magnetic solutions (m-d, m-e, m-f) and model IV magnetic solutions (m-g, m-h, m-i) are tabulated.

reaches about 18 times as large as the its dipole magnetic component at the north pole. This
means that the current sheet (magnetic stress) at the bottom of the crust can sustain the strong
core toroidal magnetic fields (see also 3.6.4 in chapter 3). These results show that the core-crust
stress affect both crustal and core toroidal magnetic fields strength.

As we have seen, the magnitude of the toroidal magnetic field energy ratio within the crust
is significantly affected by the boundary conditions and the core magnetic field configurations.
This means that the Hall MHD evolution is also dependent on the core magnetic field condition
strongly as recent numerical simulation by Vigano et al. (2013). We discuss the boundary

condition influence on the Hall MHD evolution in Sec. 5.4.1.

5.3.2 Solutions with equatorial shearing model

We have calculated solutions with equatorial shearing using functional form (V) in Eq. (5.19).
At first, we have obtained nine solutions changing the value of xy and using three types of
internal magnetic field models (I, III, IV). In increasing order of the value of kg, they are
solutions (m-a), (m-b), (m-c) (with model I internal field), solutions (m-d), (m-e), (m-f) (with
model III internal field) and solutions (m-g), (m-h), (m-i) (with model IV internal field). The
numerical results are tabulated in Table 5.2 and displayed in Fig. 5.3. Three contours of W
(m-d, m-e and m-f) are displayed in Fig. 5.3. We also display the profiles ¥ normalized by
its surface values on the equatorial plane in Fig. 5.3. The equatorial shearing becomes strong
as the value of kg increases, because the value of k( represents the twisted strength (toroidal
component) of the magnetic fields.

As seen from Fig. 5.3, the exterior poloidal magnetic field configuration changes as the
shearing (the value of k) increases. The poloidal magnetic field lines near the equatorial
plane are stretched outward by equatorial shearing current (compare m-d with m-e in Fig. 5.3).
Since the energy ratio Mst/M decreases as the value of kg increases from Table 5.2, the
magnetic field energy increases in the stellar exterior. We have found an interesting magnetic
field structure near r/rs ~ 3.2 in the left bottom panel in Fig. 5.3 (solution m-f). As seen from
the bottom right panel in Fig. 5.3, solutions (m-d) and (m-e) decreases monotonically outside
the star (r > r), but solution (m-f) has the local minimum value near r/r; ~ 3.2 where r

derivative of W becomes 0. Since the sign of r derivative of W represents the direction of By,
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Figure 5.3: Top panels and bottom left panel: The contour of ¥ of solutions (m-d), (m-e) and (m-f). The inner
curve denotes the stellar surface. As the value of kg increases, the X-point geometry appears near r/rs ~ 3.2.
Bottom right panel: The profiles of ¥ on the equatorial plane normalized by each surface value. Each line denotes
(m-d) (solid line), (m-e) (dashed line) and (m-f) (dotted line). The outside of the star (r/rs > 1), (m-d) and (m-e)
decreases monotonically, but (m-f) has the local minimum value at r/r; because of X-point geometry.



5.3. RESULTS 97
rMm/Ts Ko So  po model Mere/Mer  Mere/Mer Mer/M - Mer/ M Mst/M rx/rs

(s-a) 8.0 1.0 -1.0 5.0 v 5.45E-2 2.15E-2 0.11 0.80 0.91 -

(s-b) 8.0 1.0 -10 5.0 v 6.00E-2 1.88E-2 0.15 0.73 0.88 -

(s-¢) 8.0 1.0 -1.0 5.0 v 6.46E-2 1.54E-2 0.17 0.68 0.85 3.34
(s-d) 8.0 1.0 -1.0 50 v 6.70E-2 1.37E-2 0.18 0.66 0.84 3.17
(e-a) 4.0 3 1.0 0.0 I 2.84E-3 0.0 0.84 0.0 0.84 1.53
(e-b) 8.0 1.45 1.0 0.0 1 3.91E-3 0.0 0.87 0.0 0.87 3.17
(e-c) 15.0 0.8 1.0 0.0 1 2.63E-3 0.0 0.89 0.0 0.89 6.10

Table 5.3: Parameters and solutions with equatorial models. The solutions with current sheet (s-a, s-b, s-c, s-d)
and without current sheet changing the value of r,; (e-a, e-b, e-c) are tabulated. The magnitude of the current
sheet is j5 =0.0EO (s-a), js = 1.0EO (s-b), js = 3.0EO0 (s-c) and j5 = 5.0EO (s-d).

the direction of the poloidal magnetic fields reverses at the point. Therefore, poloidal magnetic
field lines cross and an X-point geometry forms at the point. We define rx as the distance to
the point. We have also found the X-point geometries in solutions (m-c) and (m-i), but we have
not obtained them when the parameter £ > 0.1 in Eq. (5.19). This X-point geometry of the
poloidal magnetic field have not seen in the previous equilibrium studies (Glampedakis et al.
2014; Vigano et al. 2011) and the equilibrium models by numerical simulation study (Parfrey
et al. 2013). The X-point geometry would be unstable because it would cause the magnetic
reconnection as Parfrey et al. (2013) have calculated. Our numerical result shows that the
X-point geometry appears as the strength of the equatorial shearing (magnetospheric toroidal

current density) exceed a certain value.

Next, we have calculated the structures with X-point in the magnetosphere when a solution
has current sheet on the core-crust boundary. This X-point geometry is formed by the strong
magnetospheric twisted field (magnetospheric toroidal current density) comparing to the stel-
lar magnetic fields (stellar toroidal current density) (see the values of Mst/M in Table 5.2).
Therefore, the stronger magnetospheric twisted field (Fig. 5.3) or weaker stellar magnetic fields
are required to form the X-point geometry in the magnetosphere. In order to weaken the stellar
magnetic fields by the current sheet on the core-crust boundary, we have studied the influence
of the current sheet and obtained four solutions. They are solutions (s-a), (s-b), (s-¢) and (s-d)
(with model IV core magnetic fields). We have calculated them using same parameter sets ex-
cept the strength of the current sheet on the core-crust boundary. We add the positive current
sheet to change the stellar toroidal current density. The numerical results are tabulated in the
upper column of Table 5.3 and displayed in Fig. 5.4. Fig. 5.4 shows the ¥ profiles on the
equatorial surface normalized by each surface value.

As seen from the Table 5.3, the presence of the current sheet decreases the stellar magnetic
field energy ratio (see Mst/M). Fig. 5.4 shows that the maximum values of W in the stellar
interior (0 < r/r; < 1) also become small by the current sheet. In the exterior of the star
(r/rs > 1), the profiles of solutions (s-a) and (s-b) shows the monotonic decrease of W, but the
profile of solution (s-d) has the local maximum value near 7 /r; ~ 3.17 where the r derivative
of the ¥ becomes 0. Therefore, the stellar toroidal current density is decreased by the presence
of the positive current sheet on the core-crust boundary. As a result, the X-point geometry is

formed within the twisted region in the solutions (s-c) and (s-d) (see the bottom left panel in
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Figure 5.5: Left panels :The counter of ¥ (solid line) and the distribution of B, (color map) normalized by
the magnetic dipole component strength at the north pole. Right panels: The counter of ¥ (solid line) and the
distributions of j,,/c (color map) of the equatorial models. The toroidal magnetic field region within the crust
becomes large as the size of the magnetosphere increases. Right panels :The contour of ¥ (solid line) and the
distribution of j,/c (color map). Both (e-a) and (e-c) have X-points geometry field near r/rs ~ 1.53 (e-a),

r/rs ~ 6.10 (e-c).
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rm/rs Ko o K1 € So  po  Merig/Mer Merg/Mer. Mer/M o Mer/M o Mst/M rx/rs
(r-a) 0.0 50 00 00 -1.0 5.0 4.38E-2 4.81E-2 0.12 0.81 0.93
(r-b) 4.0 50 240 05 -10 5.0 4.40E-2 4.79E-2 0.12 0.81 0.93
(r-c) 8.0 50 80 05 -1.0 50 4.37E-2 4.77E-2 0.12 0.81 0.93
(r-d) 15.0 50 40 05 -10 5.0 4.37E-2 4.79E-2 0.12 0.81 0.93 -
(r-e) 30.0 50 22 05 -10 50 4.37E-2 4.80E-2 0.12 0.81 0.93 12.6

Table 5.4: Parameters and solutions with type IV core magnetic field and ring sharing (r-a, r-b, r-c, r-d, r-e).

Fig. 5.4). These numerical results imply that the core-crust boundary condition can change the
magnetospheric configurations and make the X-point geometry within the twisted region. We
have discussions of X-point geometry in Sec. 5.4.2.

Finally, we see the interior magnetic field configurations changing the value of ;. We have
calculated three solutions (e-a) (ry; = 4.0), (e-b) (rp; = 8.0) and (e-¢) (ry; = 15.0) with model
I internal magnetic fields. The numerical solutions are tabulated lower column in Table 5.3 and
displayed in Fig. 5.5. The right panels in Fig. 5.5 shows the U contours (poloidal magnetic
field) and B, colour map normalized surface dipole magnetic field strength. The left panel in
Fig. 5.5 shows the exterior poloidal magnetic field configurations and magnetospheric toroidal
current density (colour maps). As seen from the right panels in Fig. 5.5, the size of the toroidal
magnetic field region within the crust becomes much larger than those without magnetosphere
(compare with Fig. 5.2). As the size of the twisted field becomes larger (from e-a to e-c
in order), the size of the toroidal magnetic field region within the crust becomes also larger
dramatically. As seen from the Table 5.3, however, the internal toroidal magnetic fields energy
ratio Mcry/ Mecr does not change very much even if the star has large twisted magnetosphere
in (e-c). Since the boundary condition of x is k # 0 in the region (V > ¥, ,...), the nonzero
boundary condition of x broadens the size of the toroidal magnetic fields region within crust
significantly.

All these solutions have X-point geometries. The energy ration Mst/M increases from
0.84 (e-a) to 0.89 (e-c) as the size of the twisted field becomes large, in other words, the mag-
netospheric magnetic energy decreases. This result implies that the we need stronger magne-
tospheric toroidal current (twist) to make X-point geometry near the stellar surface (e-a) than
those of (e-b) and (e-c). We see this tendency in following subsection.

5.3.3 Solutions with ring shearing model

Finally, we have calculated magnetized equilibrium states of model IV internal magnetic fields
with ring shearing (Parfrey et al. 2013). The numerical results are tabulated in Table 5.4 and
shown in Fig. 5.6. The twisted region is limited between the field lines ¥ = W, .. and
U = eV, max (see Eq. 5.20). The magnetospheric toroidal current density of ring model has
both positive and negative values (see bottom panels in Fig. 5.6) in the magnetosphere. This
distribution is similar to the solutions by Parfrey et al. (2013) (see the figure 4 in the paper).
The energy ratio Mecr;/ Mecr of solutions (r-b, 1-c, 1-d, r-¢) do not change well comparing

to the vacuum solution (r-a) (see Table 5.4). As we have seen the bottom panels in Fig. 5.6, the
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effective total amount of the magnetospheric toroidal current density (the value of fv ﬁdv
within the ring magnetosphere) is much smaller than that of the equatorial model, because the
magnetospheric toroidal current is limited within the narrow regions and takes both positive
and negative values. The ring magnetospheric current density does not have influence on the
internal magnetic field configurations very well.

The solutions (r-b, r-c, r-d) do not have X-point geometries, because the magnetospheric
toroidal current density within the ring shearing model is much smaller than that of equatorial
shearing model. In order to form the X-point geometry, we need larger size of twisted region
in magnetosphere because the weak magnetospheric toroidal current cannot make it near the
surface as we have seen previous subsection. The X-point geometry appears only when the size
of the ring twist is sufficient large such as solution (r-e) (r);/rs = 30). These numerical result
show that the X-point geometry in the ring shearing model cannot appear near the stellar surface
such as the equatorial shearing models. The X-point geometry in the ring shearing model tends
to appear the outer region of the equatorial shearing X-point geometry. The minimum value
of rx/rs in the ring shearing model is much larger than equatorial shearing model in these
calculations. This result means that the minimum value of ry /ry changes according to the
shearing model and the size of the twisted field in the magnetosphere.

5.4 Discussion and concluding remarks

5.4.1 The influence on the Hall MHD evolution

The boundary conditions of the crust play very important roles for the Hall MHD secular evolu-
tions. Very recently, Vigano et al. (2013) performed Hall MHD simulations under three types of
core magnetic fields models (see Fig. 2 in Vigano et al. 2013). They showed that the evolution-
ary path is affected by the core magnetic field. We discuss the influence of the core magnetic
fields on the crustal magnetic fields in Hall equilibrium using our equilibrium solutions.

We have calculated six solutions and found the Hall equilibrium states within crust are af-
fected by boundary conditions significantly. As we have seen in Sec. 5.3.1, the core magnetic
field configurations would change the crustal toroidal magnetic fields strength in Hall equilib-
rium. The strong core magnetic fields would make the magnitude of the crustal toroidal mag-
netic field strong (solutions c, d, e, f) in Hall equilibrium. On the other hand, the core toroidal
magnetic fields and the twisted magnetosphere around the star broaden the crustal toroidal
magnetic field regions in Hall equilibrium. These influences of the boundary conditions affect
the Hall cascade during the secular magnetic field evolution.

As we have described in Sec. 5.1, the initial strong toroidal magnetic fields strengthen the
Hall drift activity (Kojima & Kisaka 2012; Gourgouliatos & Cumming 2014). If the crustal
magnetic fields are large (> 10'°G) enough to drive the Hall cascade very effectively, the
timescale of the Hall drift is much faster than Ohmic timescale (see Eq. 5.1). In the case, the

Hall drift would stop when the initial toroidal magnetic fields have been changed into poloidal
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component by the Hall cascade and have reached Hall equilibrium configurations. Therefore
the energy ratio Mcr;/ Mer of the Hall equilibria would represents the efficiency of the Hall
cascade, if the magnetar has strong initial toroidal component magnetic fields at the beginning
of the Hall MHD secular evolution.

The initial magnetic field configurations in the magnetar interior are sill unclear, but they
would have strong toroidal magnetic fields by the rapid differential rotation (Duncan & Thomp-
son 1992; Spruit 2009). The magnetar would become stable MHD equilibrium state during the
proto-magnetar because the Alfvén timescale (= /4w pr,/B ~ 0.1s for typical magnetar with
magnetic fields of order of B = 10'°G) is much faster than the dynamical and crust forming
timescale. The MHD equilibria with strong toroidal magnetic fields would be stable because it
satisfies Braithwaite’s stability criterion (Braithwaite 2009; Duez et al. 2010):

M Mp
a|W’ < v 0.8,

Thus, the left-hand side of this inequality could be less than about 10~2. Therefore, this cri-
terion means the configurations with the twisted torus magnetic fields are stable even if the
toroidal magnetic fields are much stronger than the poloidal magnetic fields. As a result, it is

natural that the magnetar has strong initial toroidal magnetic fields in their interiors.

Here we assume that the magnetar has very large strong initial toroidal magnetic fields and
the toroidal magnetic fields are changed into the poloidal components by the Hall cascade until
the system reaches the Hall equilibrium state. This situation is different from initial models in
Vigano et al. (2013) except for A14T, because they do not have initial toroidal magnetic fields.
If the value of Mecr;/Mecr in Hall equilibrium is very small (~ 0.1%), the Hall drift would be
effective because the almost of all initial toroidal magnetic components are changed into the
poloidal magnetic components by the Hall drift. On the other hand, if the value of Mecr,/ Mer
in Hall equilibrium is not small (~ 10%), the Hall drift would not be less effective. Therefore,
we can evaluate the efficiency of the Hall drift using the toroidal magnetic field energy ratio of

each solutions.

The Hall drift of the model I such as the solution (a) would be very active because the
almost of all toroidal magnetic field component would be changed into the poloidal magnetic
fields component. This is consistent with the calculations by Kojima & Kisaka (2012) (see the
left panel of Fig. 5 in Kojima & Kisaka 2012). By contrast this, the values of energy ratio
Mery/ Mer of (c) and (d) are much larger than that of (a). These numerical results mean that
the Hall cascade in these configurations would be more passive than the configuration such as
solution (a). Therefore, the presence of the core magnetic fields could tend to weaken the Hall

drift within the crust region.

The crustal magnetic field in Hall equilibrium with magnetosphere also have very large size
of the toroidal magnetic field region. Since the size of the toroidal magnetic field region of the
equatorial twisted model is much larger than that of non-twisted model, the Hall cascade with
magnetosphere would decrease. We see same tendency in 2.1.2 of Pons & Geppert (2007).
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They calculated force-free boundary models and argued that the Hall drift within the crust is
reduced by magnetosphere.

5.4.2 Magnetic X-point geometry and flare

We have calculated core-crust magnetic field configurations with twisted force-free magneto-
sphere. We have found the interesting poloidal magnetic field configurations in the magne-
tosphere. When the magnetospheric toroidal current density is sufficient large, the magnetic
X-point geometry is formed in the equatorial plane of the magnetosphere. This X-point ge-
ometry constitute anti-parallel poloidal magnetic fields around the point. These anti-parallel
magnetic fields would cause the magnetic reconnection and result in the giant-flare of the mag-
netar ( Masada et al. 2010; Parfrey et al. 2013). The distance of the X-point geometry changes
according to the shearing models. The equatorial sharing model can make the X-point geome-
try near the stellar surface and a minimum value of 7y /r is ~ 1.53 in solution (e-a) (Table 5.1).
By contrast this, the ring model cannot make the X-point geometry near the stellar surface and
a minimum value of rx /7, is ~ 12.6 in solution (r-e) (Table 5.3). The location of the magnetic
reconnection in the magnetosphere would depend on the magnetospheric models deeply.

Next, we consider the physical process for the X-point geometry. We have obtained the
X-point geometry by changing three parameters. The X-point geometry appears by (1) increas-
ing the value of toroidal magnetic fields (k) (solutions m-c, m-f and m-i), (2) increasing the
magnitude of the current sheet (j,) on core-crust boundary (solutions s-c and s-d) and (3) in-
creasing the size of twisted magnetosphere (/) (the size of the surface toroidal magnetic field)
(solution r-e).

Condition (1) is satisfied such as the case that the magnetospheric toroidal current is accu-
mulated by the fixed stellar current (Parfrey et al. 2013). The value of g increases as the energy
of the toroidal magnetic field in the magnetosphere increases in the case. Condition (2) is sat-
isfied such as the case that the internal magnetic field configurations and elastic force balance
in the crust are changed by the dynamical events such as glitch or elastic crust cracking. Since
the core-crust boundary condition would be changed by these events, the value of j, varies in
the case as we have changed the current sheet on the boundary. Condition (3) is satisfied such
as the case that the toroidal magnetic fields emerge out of the crust. The size of the surface
toroidal magnetic fields (twisted magnetosphere) is enlarged as we have changed the value of
ry- The largely crust cracking would result in the toroidal magnetic fields emerging. Such
cracking release stress on the crust and decrease the negative current sheet on the core-crust
boundary. The internal magnetic field configurations would change from a configuration such
as solution (f) to solution (e) during this process. Since the energy ratio Mcr;/ Mecr decreases
from solution (f) to (e), the core toroidal magnetic field would be ejected from the star (Thomp-
son & Duncan 2001). Probably, such toroidal magnetic energy injection would make the giant
magnetic loops (Gourgouliatos & Lynden-Bell 2008; Takahashi et al. 2009, 2011; Matsumoto
etal. 2011). These dynamical events in the stellar interior and the changes of the toroidal mag-

netic field on the surface would result in the reconnection within the magnetosphere and giant
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flare. Our numerical result would be a key to the physical mechanisms of magnetar giant flare.

5.4.3 Concluding remarks

We have calculated magnetized equilibrium states throughout MHD equilibrium core, Hall
equilibrium crust and twisted force-free magnetosphere with both poloidal and toroidal mag-
netic fields using Green function method under the various boundary conditions simultaneously
and systematically. We have found that the magnetic field configuration in each region is af-
fected each other deeply.

We have found that the Hall equilibrium states are affected by both inner (core) and outer
(twisted-magnetosphere) boundary conditions significantly. The strong core toroidal magnetic
fields models as solutions (e) and (f) broaden the size of the crustal toroidal magnetic fields re-
gion. The twisted force-free magnetosphere around the star also widens the size of the crustal
toroidal magnetic field region. We would evaluate the efficiency of the Hall cascade from
the toroidal magnetic field energy ratio Mcr;/ Mecr in Hall equilibrium. The presence of the
strong core magnetic fields would weaken the efficiency of the Hall cascade, because they have
not small crustal toroidal magnetic field energy when the magnetic fields reach in Hall equi-
librium. Since the twisted magnetosphere also widen the size of the crustal toroidal magnetic
field region, it also weakens the Hall cascade within the crust.

The magnetosphere around the star forms the magnetic X-point geometry when the magne-
tospheric toroidal current density is sufficient large or the stellar total current is sufficient small.
The magnetic X-point geometry can be made by the stellar interior physical event between core
and crust such as glitch or magnetic fields changing. The X-point geometry causes the mag-
netic reconnection which would be an origin of the giant flare of magnetar. The location of
the X-point geometry depends on the shearing model. The equatorial shearing can make the
X-point geometry near the stellar surface (rx/rs ~ 1.53), but the ring sharing cannot make
the X-point geometry near the surface. The X-point geometry in the ring model appears at the
distant region near rx /s ~ 12.6. These numerical results show that both Hall MHD secular
evolution and magnetospheric dynamical evolution would be affected by magnetic field config-
urations of another regions and the core-crust boundary conditions. We need to consider core,
crustal and magnetospheric magnetic field configurations simultaneously in order to investigate

the magnetar physics.
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Sed fortuna, quae plurimum potest cum in reliquis re-
bus tum praecipue in bello, parvis momentis magnas
rerum commutationes efficit; ut tum accidit.

Fortune, which has a great deal of power in other
matters but especially in war, can bring about great
changes in a situation through very slight forces.
(Gaius Julius Caesar, The Civil War)

Counter effects of meridional flows and magnetic
fields

Meridional flows inside the stellar object are also interesting physical mechanism for equilib-
rium states. We extend the formulation without meridional flows in the previous chapters and
present the most general formulation for the stationary and axisymmetric barotropic systems.

The meridional flows have the influence on the stellar structures.

6.1 Introductory analysis and motivation

6.1.1 Theoretical treatment of stationary states of axisymmetric magnetized self-gravitating
barotropes under the ideal MHD approximation

In this chapter, we give new expressions for the current density and the vorticity vector inside
the stationary and axisymmetric magnetized self-gravitating barotropes with internal gaseous
motions under the ideal magnetohydrodynamics (MHD) approximation. Although stationary
states of the magnetized self-gravitating barotropes without internal flows have been investi-
gated in many classical papers (e.g., Chandrasekhar & Fermi 1953; Liist & Schliiter 1954;
Ferraro 1954; Gjellestad 1954; Roberts 1955; Chandrasekhar 1956a; Chandrasekhar 1956c;
Chandrasekhar & Prendergast 1956; Prendergast 1956; Sykes 1957; Woltjer 1959a; Woltjer
1959b; Woltjer 1960; Ostriker & Hartwick 1968) and in recent papers (e.g., Tomimura &
Eriguchi 2005; Yoshida & Eriguchi 2006; Yoshida et al. 2006; Otani et al. 2009), the effects of
the internal flows on structures of magnetized self-gravitating barotropes have barely studied
so far.
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Dynamic equilibrium equations for stationary states of magnetized self-gravitating bodies

with internal flows are given by
1 1 2 L.
-Vp=-V¢, —Vo.— Vo[ +vxw+—3 x B, (6.1)
p 2 cp

where w is the vorticity. In this chapter, the gravitational potential of external objects is as-

sumed to be given by

GM,
Pe = — ; (6.2)

r

where M., GG, and r denote the mass of the central external object, the gravitational constant,
and the distance from the central object, respectively. Using the expressions for the current
density and the vorticity vector inside the stationary, axisymmetric and infinitely conducting

barotropes we may simplify the forth term in the right-hand side of Eq. (6.1) as

QU)V(Ro,) + ﬁd?igp)B Xw, (for B#0,v,#0)
Ve vve., (for B =0,v, #0) (6.3)
sV(R*Q*(R)) + R¥*(R)er (for B = 0,v, = 0)

where () is the stream functions, €2 and v are arbitrary functions of the given argument, and R
and ey are the radial coordinate and base vector for the cylindrical coordinate with respect to
the symmetry axis, respectively. Here, v, and v,, stand for the poloidal velocity and the toroidal

velocity, given by

1
v, = —VQ x Vo, (6.4)
Amp
1 dQ(w)
=RO+ —— 6.5
vp =1 +47rc,0 dav 7’ (6.5)

with ¢ and B, being the azimuthal angle and the toroidal magnetic field, respectively. The
stream function () is a function of the flux function V if and only if B # 0 and v,, # 0. Thus,
equi-stream function surfaces are similar to equi-magnetic flux function surfaces if B # 0 and
v, # 0. Similarly, the Lorentz force term appearing in the fifth term in the right-hand side of
Eq. (6.1) may be rewritten as

1 dQ(¥)
ij « B — V(QV))Rv, + p(V)VE + Incp dU w x B, (for B #0)

P 0, (for B =0)

(6.6)

where (W) is an arbitrary function. From Egs. (6.1)—(6.6), we obtain Bernoulli’s equations
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for the present situation:

( GM, 1 v
—¢g + — 5([0pl* +0%) + R Q) + / p()dv + C,
(for B # 0)
GM, 1, ., @
dp_ ) =0y + S Slof o)+ [ v@igC .
P (for B = 0,v, # 0)
M R
—¢g + Gr - +/ RO?dR+C,
(for B=0,v, =0)

\

where C' is an integration constant. It should be emphasized that these three expressions
cannot be united to a single expression as can be understood from Egs. (6.3) and (6.6), but the
formulations of (B # 0) and (B = 0,v, # 0) can be treated systematically using the master
potential by Gourgoulhon et al. (2011). Note that in this study, we do not consider the case of
B, = 0 and B, # 0, for which Bernoulli’s equations differ from Eq. (6.7).

By comparing Bernoulli’s equation for the case of B = 0 and v, = 0 with that for the case
of B = 0 and v, # 0, we may expect that the presence of the meridional flows tends to decrease
the volume occupied by the fluid. This is because the kinetic energy of the meridional flow con-
tributes to the fluicd as positive ram pressures (dynamic pressure), which result in reducing the
fluid pressure and consequently decreasing the density of stationary fluid objects. In contrast to
the effect of the meridional flow, for magnetized equilibrium configurations with v, = 0 whose
magnetic fields are generated by positive toroidal currents, the poloidal magnetic field is apt to
expand the fluid region to the direction perpendicular to the symmetry axis like the centrifugal
force (see, e.g. classical papers Ferraro 1954; Gjellestad 1954; Roberts 1955; and recent pa-
pers Tomimura & Eriguchi 2005; Yoshida & Eriguchi 2006; Yoshida et al. 2006). Therefore,
simultaneous presence of the meridional flows and the poloidal magnetic fields could result in
almost no changes in the matter distributions. So far, such effects have not been investigated
because stationary states of axisymmetric magnetized barotropes with meridional flows have
not been obtained. Thus it is one of the purposes in this study to show the above statements

could be proved to hold in some numerical examples.

6.1.2 Toroids: Best astrophysical systems in which both meridional flows and magnetic
fields would work simultaneously but differently

In order to show clearly the oppositely working effects of the above mentioned two quantities,
meridional flows and poloidal magnetic fields, we will show numerical results of stationary
configurations of axisymmetric magnetized self-gravitating toroidal barotropes with merid-
ional flows which locate around central point masses in the framework of Newtonian gravity
under the ideal MHD approximation. For toroidal configurations, matter distribution changes in

wider space would be expected compared to size changes of spheroidal objects because toroids
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could change their shapes to two opposite directions, i.e. to the outside direction and to the in-
side direction of the toroids. Thus we will solve stationary states of axisymmetric magnetized
barotropic toroids with meridional flows under the ideal MHD approximation and clarify the

oppositely working effects explicitly in this study.

Concerning self-gravitating toroidal configurations or disks, we need to take recent results
of fully general relativistic (GR) numerical simulations into account. These simulations show
that a few-solar-mass black hole and a highly dense toroid whose maximum density can reach
100 - 10tg/ cm® around the black hole could be formed after merging of binary neutron stars
(Shibata & Uryai 2000; Shibata et al. 2003; Shibata et al. 2005; Kiuchi et al. 2009; Hotokezaka
et al. 2011), after merging of a neutron star and a black hole in binary systems (Shibata & Uryu
2006;Shibata & Uryu 2007; Shibata & Taniguchi 2008; Kyutoku et al. 2010; Kyutoku et al.
2011) or after collapsing of a supermassive rotating star (Shibata 2000; Shibata & Shapiro
2002; Shibata 2003; Sekiguchi & Shibata 2004; Sekiguchi & Shibata 2007; Sekiguchi & Shi-
bata 2011). Therefore, dense toroids and central compact objects could be formed after col-
lapsing or merging of compact objects. Similar kinds of systems with magnetic fields have
also been investigated by several groups (e.g. Narayan et al. 2001; Shibata & Sekiguchi 2005;
Duez et al. 2006; Shibata et al. 2007). Although, in order to understand the origin and dynam-
ical formation processes of these systems, we must take into account many realistic physics
and compute stationary configurations with magnetic fields in GR, nobody has yet succeeded
in solving stationary states both with poloidal and toroidal magnetic fields in GR at present.
Therefore, we explore such stationary states of axisymmetric magnetized barotropic systems in
the framework of Newtonian gravity. Although there were many papers to obtain magnetized
stationary states of disks/toroids only with poloidal magnetic fields (e.g. Bisnovatyi-Kogan
& Blinnikov 1972; Bisnovatyi-Kogan & Seidov 1985; Baureis et al. 1989; Li & Shu 1996)
and disks/toroids only with toroidal magnetic fields inside the disks/toroids (e.g. Okada et al.
1989; Banerjee et al. 1995; Ghanbari & Abbassi 2004), no solutions both with poloidal and
toroidal components of magnetic fields have been obtained yet. This is because it has been
difficult to solve the Grad-Shafranov equation as well as the equations of motion consistently
by some means. Concerning this type of systems, the most general formulation was derived
by Lovelace et al. (1986) systematically. However, Lovelace et al. (1986) computed solutions

only with poloidal magnetic fields for non-self-gravitating disks.

Recently, Otani et al. (2009) have obtained magnetized self-gravitating equilibrium states
both with poloidal and toroidal magnetic fields self-consistently in the framework of Newtonian
gravity. Their method is based on Tomimura & Eriguchi (2005). In this study we have extended
the method employed in Otani et al. (2009) to the most general configurations for the stationary
states of axisymmetric magnetized barotropic toroids with meridional flows under the ideal
MHD approximation and obtained sequences of stationary states. Comparing these results with
those of non-magnetized toroids without meridional flows (e.g. Ostriker 1964; Wong 1974),
with those of magnetized toroids without meridional flows (e.g. Otani et al. 2009) or with those

of non-magnetized toroids with meridional flows (e.g. Eriguchi et al. 1986), we will be able
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to clearly see the effect of the presence of both physical quantities, i.e. meridional flows and

magnetic fields as explained in the previous subsection.

6.2 Brief description of the problem

In this study, as mentioned, we investigate stationary configurations of axisymmetric magne-
tized polytropic toroids with internal fluid motions. We consider inviscid and infinitely conduc-
tive toroids with equatorial symmetry located around central point masses in the framework of
Newtonian gravity. Since a similar problem, but without meridional flows, was already treated
by Otani et al. (2009) and our strategy is basically the same as theirs, we briefly summarize the
basic equations, boundary conditions, and solving scheme. We use similar scheme in chapter
6.

Pressure balance equations for stationary states are respectively given by

1 GM, 1 1/
—vpz—v¢g+v( )——V|v2|+vxw+—<lx3). (6.8)
p r 2 p \c
In order to obtain the magnetized configurations, we also solve the equation as
A" = —47R7Z. (6.9)
C

This equation is equivalent to the so called Grad-Shafranov equation for this problem, but we
treat the right-hand side of Eq. (6.9) as the source term of the differential operator in the left-
hand side of Eq. (6.9) even though j, includes the term proportional to the left-hand side of
Eq. (6.9) if v, # 0. Explicit expression for j, is given as

o |,

— [ (V) + Ru,Q" ()] g + Q’(\I/)% + pR (W) + Ru, ' (W)]e,.  (6.10)

As we have calculated in previous chapters in this thesis, we use Green function in order to
solve the equation and include the boundary condition as infinite.

In general, the toroid cannot approach indefinitely to the central object because gravitational
effects of the central object can unboundedly increase as the distance from the central object
to the toroid decreases and any forces counteracting the gravity cannot stanch the matter flow
shedding from the inner edge of the toroid if their distance is shorter than some critical value. In
the present numerical scheme to obtain magnetized toroids, the distance from the central object
to the inner edge of the toroid (or the width of the toroid) is characterized by a dimensionless
parameter ¢, defined by

Rinner
)
Router

q= 6.11)

where Riner and Royuer are the shortest and the longest distances from the symmetry axis to

the toroid, respectively. In terms of ¢, this disappearance property of the equilibrium states
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describes as the existence of ¢. such that there is no stationary solution of the toroid for ¢ < ..
Note that the value of ¢. depends on what parameters characterizing equilibrium sequences
keep constant when the value of ¢ changes. Following Otani et al. (2009), we call equilibrium
solutions characterized by ¢ = ¢. the critical configuration or the critical state. The distance
from the symmetry axis to the inner edge of the toroid for the critical configuration is named
the critical distance. In this study, we focus only on the critical configurations.

Otani et al. (2009) investigated the critical configuration for the magnetized toroids without
meridional flows and found the following properties. (i) The critical configuration features
cusp-like structures at the inner edge of the toroids. (ii) The critical configuration rotates very
slowly. This implies that the critical toroids are mainly sustained by the balance among the
magnetic forces, the gravity of the central objects and the pressure gradients. (iii) The critical
distances are almost independent of the mass ratio of the toroids to the central objects. (iv) The
critical distances are much larger than 6G M./ 2, the radius of the innermost stable circular
orbit for the Schwarzschild black hole with the gravitational mass M .. This means that making
use of Newtonian gravity is reasonable to investigate structures of the toroids considered in
Otani et al. (2009).

6.3 Numerical results

Following Otani et al. (2009), we consider two polytropic indices N = 1.5 and N = 3 only in
the present study. As for the arbitrary functions, which need to be specified to obtain particular
solutions, we employ the same functional forms as those used in Yoshida et al. (2006) and
Otani et al. (2009) except for the toroidal current function p. For the toroidal current function
1, we choose the same functional form as that used in chapter 2 in order for the inner edge
of the toroid to have stronger magnetic fields. As for the stream function (', which does not
appear in Otani et al. (2009), a similar functional form to that of the poloidal current function

r is employed. The functional forms are as follow:

O ) fOr \P S \I]nlax I
/{:(\Ij) = Ko (\:[] . ‘Ilrnax)k-_;’_l 7 fOI‘ \Ij Z \Ifmax : (6.12)

k+1
0 ) for W S EQ\IJmaX ’
Q'(V) = Qo (6.13)
2 I 1 (\If — EQ\IJmaX)k+1 s for W Z EQ\IfmaX y
QU) = QT2 +d*)~, (6.14)
(V) = po(¥+e)™, (6.15)

where, ko, k, Qo, €, {20, d, 14, €, o, and m are constant parameters. This choice of & is the
same as that employed in Tomimura & Eriguchi (2005), Yoshida & Eriguchi (2006), Yoshida
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et al. (2006), and Otani et al. (2009). We introduce the parameter € in Eq. (6.13) and set
eg = 1.1 in order to restrict the region where meridional flows exist well inside the surface of
the toroid. Choosing these functional forms, we can avoid singular behavior of the solutions
which could appear on the surface of the toroid.

As mentioned before, recent numerical simulations performed with numerical relativity
show that geometrically thick toroids rotating around black holes form after mergers of neutron
star binaries, mergers of black hole-neutron star binaries, or collapses of supermassive rotating
stars (e.g. Sekiguchi & Shibata 2007; Sekiguchi & Shibata 2011). Typical values of physical
quantities of such black hole-toroid systems are given by M; = 1.0 x 10~ M, M. = 5.0M
(M;/M,. = 2.0 x 1072), and ppax = 1.0 x 10*g/cm3, where M; and py,. are the mass and
the maximum density of the toroid, respectively. Since these black hole-toroid systems are of
large significance in high energy astrophysics, we focus on the models characterized by the
mass ratio M; /M. = 2.0 x 1072 and use these values of the mass of the central object and
the maximum density of the toroid to estimate values of other physical quantities with physical
dimension, e.g. |B| and Rjpe-

To check numerical accuracies of the stationary configurations obtained in this study, we

estimate values of a virial relation, which vanishes for exact stationary solutions:

2T+ W 43T+ M

VC
w

(6.16)

In the present study, we choose the grid number as N, = 513 and Ny = 513 because this
grid number is sufficiently large to obtain numerical solutions with acceptable accuracy. Since
we assume that the gravitational potential of the central object has a singularity at © = 0, we
consider the region defined by 7# € [1.0 x 1072,4.0] and § € [0,7/2] as our computational
space. In order to resolve structures of the toroid properly, we use non-uniformly distributed

grid points used in chapter 2.

6.3.1 Widening of the widths of toroids: Effect of the localized poloidal magnetic fields

The counter effects of the meridional flows against the magnetic forces on structures of magne-
tized toroids would be clearly seen for toroids with rather widened shapes due to poloidal mag-
netic fields. Thus, in this subsection, we will try to compute magnetized toroids with highly
localized poloidal magnetic fields because such equilibrium configurations could be toroids
with a rather small value of ¢, i.e. the width of toroids on the equatorial plane being rather wide
(see e.g. chapter 2).

To investigate effects of the localized poloidal magnetic fields on the toroid structures, no
fluid flow inside the toroid is considered here.

Thus, values of the parameters QO, Qg, a, and d are taken to be QO = 0, 02 = 0, =0,
and d = 0 Here, physical quantities with (") are dimensionless quantities defined in App. B.1.
As for kg, following Otani et al. (2009), we take iy = 4.5. Since there are no rotation and

no meridional flows, the toroids are in stationary states by the balance among the gravitational
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m_ g fio re(cm) W MW U/ Ve
N=15
0.5 0.680 6.960E+00 2.984E+07 2.573E-02 6.509E-01 1.164E-01 2.763E-05
0.3 0.650 4.700E+00 2.791E+07 3.893E-02 6.421E-01 1.193E-01 2.713E-05
0.0 0598 2.984E+00 2.518E+07 7.401E-02 6.272E-01 1.243E-01 2.610E-05
-0.1  0.578 2.661E+00 2.432E+07 9.226E-02 6.218E-01 1.261E-01  2.575E-05
-0.3  0.533 2.238E+00 2.264E+07 1.449E-01 6.100E-01 1.300E-01  2.525E-05
-0.5 0481 2.033E+00 2.105E+07 2312E-01 5.966E-01 1.345E-01  2.444E-05
-0.7 0419 1.996E+00 1.954E+07 3.754E-01 5.812E-01 1.396E-01 2.381E-05
-0.9 0344 2.117E+00 1.812E+07 6.201E-01 5.631E-01 1.456E-01  2.329E-05
-1.1  0.252  2.408E+00 1.683E+07 1.036E+00 5.415E-01 1.528E-01  2.274E-05
-14  0.067 2956E+00 1.564E+07 1.923E+00 5.111E-01 1.630E-01 2.471E-05
N =3
0.5 0720 1.159E+01 4.653E+07 1.747E-03  6.910E-01  1.030E-01  6.433E-05
0.3 0.687 6.031E+00 4.243E+07 3.080E-03  6.807E-01  1.065E-01  6.073E-05
0.0 0.628 2.742E+00 3.656E+07  7.732E-03  6.639E-01 1.121E-01  5.472E-05
-0.1  0.605 2.227E+00 3.473E+07 1.064E-02 6.578E-01 1.141E-01  5.279E-05
-0.3  0.554 1.600E+00 3.129E+07  2.044E-02  6.446E-01 1.185E-01  4.880E-05
-0.5 0495 1.289E+00 2.814E+07 3.993E-02 6.297E-01 1.234E-01 4.470E-05
-0.7 0425 1.164E+00 2.529E+07 7.927E-02 6.127E-01 1.291E-01  4.064E-05
-0.9 0342 1.173E+00 2.274E+07 1.593E-01 5.926E-01 1.358E-01  3.644E-05
-1.1  0.242  1.298E+00 2.057E+07  3.195E-01 5.678E-01 1.441E-01 3.224E-05
-14  0.057 1.467E+00 1.901E+07 6.864E-01 5.261E-01 1.580E-01  2.944E-05

Table 6.1: Physical quantities for the critical configurations with Qo = 0.0 (no meridional flow), Qg = 0.0 (no
rotation) and <g = 4.5.
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Figure 6.1: The density contours on the meridional cross section for four critical configurations with different
values of m. From left to right, the density contours correspond to the toroids with m = —1.4, m = —0.7,
m = —0.1, and m = 0.5, respectively. Values of the other parameters are N = 3, QO =0, = 0, and
ko = 4.5. The tear-shaped closure curves with a cusp-like structure indicate the surfaces of the toroids. The
density difference between two adjacent contours is one-tenth of the maximum density. It is observed that the
width of the toroid on the equator becomes wider as values of m decrease.
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Figure 6.2: Top panel: The poloidal magnetic fields on the meridional plane for the N = 3 toroids withm = —1.4
(solid curves) and m = 0.5 (dashed curves). Values of the other model parameters are the same as those of the
models given in Fig. 6.1. The tear-shaped closure curves with a cusp-like structure indicate the surfaces of the
toroids. Middle left and bottom left panels: log; | B| on the equator for two critical configurations with m = —1.4
(middle) and m = 0.5 (bottom), given as functions of R/r.. The horizontal axises range from R;pner/Te(= ¢c)
t0 Router /Te(= 1). Middle right and bottom right panels: — M. /47 (thick dashed curve), ég (thin dashed curve),
— f [L(\il) dv — C (dotted curve), and sum of these three potentials (solid curve) on the equator for the critical

configurations with m = —1.4 (middle) and m = 0.5 (bottom), given as functions of R/r.. The horizontal axises
range from Ripner/Te(= ¢c) 10 Router /Te(=1).
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force of the central object, the Lorentz force and the gas pressure gradient. If there could be
very strong poloidal magnetic fields near the central objects, stronger gravitational forces of the
central objects could be balanced by the strong magnetic forces near the central objects. For

such situations the toroids could be elongated toward the central objects and have wider widths.

We have showed that the poloidal magnetic field distributions substantially depend on the
parameter m in the arbitrary function p (W) for magnetized stars in chapter 2. In particular,
we have found that negative values of m result in concentration of the poloidal magnetic fields
near the symmetry axis of magnetized stars. Thus, it is expected that we may obtain toroids in
which poloidal magnetic fields are concentrated near the inner edge of the toroids by choosing

an appropriate value of m.

We show our numerical results for critical configurations of N = 1.5 and N = 3 poly-
tropic sequences in Table 6.1 and density contours on the meridional cross section of N = 3
polytropes with m = —1.4, m = —0.7, m = —0.1 and m = 0.5 in Fig. 6.1. As seen from
these table and figure, the critical distance decreases as the value of m decreases. The density
distribution of the m = —1.4 toroid is stretched toward the central object because of the strong
gravity of the central object. In addition to this, the cusp-like shape at the inner edge of the
toroids becomes ’sharper’ as the value of m becomes smaller. We find the same tendency for
the N = 1.5 polytropes.

The top panel of Fig. 6.2 shows the structures of the magnetic fields on the meridional plane
for the N = 3 critical configurations with m = —1.4 (solid curves) and m = 0.5 (dashed
curves). In this figure, the surfaces of the toroids are indicated by the tear-shaped closure
curves. The structures of the magnetic fields for the model with m = —1.4 are remarkably
different from those for the model with m = 0.5. The shapes of the contours of the magnetic
flux function for the toroid with m = 0.5 look nearly circle, but those for the toroid with
m = —1.4 deform oblately. Moreover, the magnetic field lines are more densely distributed
near the inner edge region of the toroid for the toroid with m = —1.4 compared to those for
the toroid with m = 0.5. In other words, the magnetic fields are highly localized toward the

central object for the toroid with m = —1.4 compared to those of the toroid with m = 0.5.

The panels in the middle left and the bottom left of Fig. 6.2 show distributions of log, | B|
on the equatorial plane, and the panels in the middle right and the bottom right of Fig. 6.2 show
values of each term in the right-hand side of the first line of Eq. (6.7) on the equatorial plane.
Note that the horizontal axises of these figures range from Rjpner/Te(= ) 10 Router/Te(= 1).
As seen from the middle left and the bottom left panels of Fig. 6.2, the distributions of the
magnetic fields are significantly different for the two equilibrium configurations. The ring of
maximum magnetic field strength locates near the inner edge of the toroid for the model with
m = —1.4, while it locates near the central region of the meridional cross section of the toroid
for the model with m = 0.5. The toroids with m = —1.4 can sustain highly localized and
strong magnetic fields in the nearer region from the central object compared to the toroids with
m = 0.5 and can extend themselves toward the central object although the gravitational force

of the central object is much stronger there. This implies that the toroids with m = —1.4 can



6.3. NUMERICAL RESULTS 117

produce strong magnetic force near their inner edge, which is balanced against the gravitational
force of the central compact object as shown later.

In the middle right and the bottom right panels of Fig. 6.2, the gravitational potential of
the central object, —MC /4nr (thick dashed curve), the gravitational potential of the toroids, ég
(thin dashed curve), the magnetic potential (chapter 2), — [ i d¥ — ' (dotted curve) and the
sum of all the potentials (thick solid curve) are shown as functions of R/r.. From these figures,
it is clearly seen that the magnetic force is the primary agent supporting the toroid against the
gravitational force of the central object. The gradient of the gravitational potential of the central
object for the toroid with m = —1.4 is steeper than that for the toroid with m = 0.5 because the
m = —1.4 toroid is located closer to the central object than the m = 0.5 toroid. The magnetic
potentials behave very differently for these two equilibrium configurations with different values
of m. For the m = 0.5 toroid, the magnetic potential curve has a substantial local minimum at
R/re ~ 0.9. For the m = —1.4 toroid, however, the magnetic potential curve is shallower and
extends within a broader region and its slope is steepest near the inner edge of the toroid. As
a result, the strong magnetic fields can exist near the inner edge region of the toroid and their
magnetic force supports the toroid against the gravitational force of the central compact object.
In this way, the m = —1.4 toroid can be in a stationary state even if the gravitational potential

becomes much steeper as approaching to the central object.

6.3.2 Effects of the meridional flows on the magnetized configurations

Basic features of magnetized configurations with meridional flows

Concerning the parameters which appear in the arbitrary functions, to examine effects of the
meridional flow on toroid structures, the following values are chosen in this subsection: kg =
0.5, = —0.5,d = 0.1, m = 0 and Q2 = 1.0 x 10-5. Note that smaller values of &, result
in more rapid meridional flows and that this small value of Qo gives equilibrium configurations
with almost no rotation. Parameters for the rotation law are the same as those in Yoshida et al.
(2006).

The left panel of Fig. 6.3 shows contours of the flux function ¥ on the meridional plane
for the critical configuration of an N = 1.5 polytrope with meridional flows. Direction of the
fluid velocity on the meridional cross section in the critical configuration is shown in the right
panel of Fig. 6.3. Here, the lengths of the vectors are not proportional to the absolute values of
the fluid velocities. Note that the region where the meridional flows are present is only a part
of the meridional cross section of the toroid because a particular functional form for Q’(¥) is
used to avoid singular behaviors of the meridional flow near the toroid surface (see Eq. 6.13).
The bottom panel of Fig. 6.3 displays the velocity distributions normalized by the local Kepler
velocity, on the equatorial plane. The solid and dashed curves denote the absolute value of
the meridional velocity and the rotational velocity, respectively. As seen from this panel, the
rotational velocity is sub-Keplarian, because our rotational parameter Qo is assumed to be small

in this chapter. On the other hand, the meridional velocity is slightly faster than the rotational
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Figure 6.3: The poloidal magnetic fields (left), the meridional flow pattern (right) on the meridional plane for the
toroid with N = 1.5, Qo =20,00 = 1.0 x 1075, m = 0, q = 0.6, and 5yp = 0.5. The tear-shaped closure
curves with a cusp-like structure indicate the surfaces of the toroids. Length of vectors given in the right panel
is not proportional to the speed of the meridional flows and does not have any physical meaning. The bottom
panel shows the distribution of the absolute value of the meridional velocity (solid line) and the rotational velocity
(dashed line) normalized by the local Kepler velocity on the equatorial plane.
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Qo Qe fio  re(em)  M/|W| /|W| T/Ww|  T/[W] V€
N=15

0 0597 3.047E+00 2.500E7 6.213E-01 1.262E-01 8.322E-05 0.000E+00 2.656E-05

20 0.600 3.020E+00 2.514E7 6.226E-01 1.255E-01 4.138E-04  3.185E-04  3.032E-05

40 0.605 2.942E+00 2.555E7 6.268E-01 1.235E-01 1.431E-03  1.314E-03 4.271E-05

60 0.615 2817E+00 2.627E7 6.338E-01 1.199E-01 3.217E-03  3.063E-03  6.505E-05

80 0.629 2.653E+00 2.759E7 6.437E-01 1.148E-01 6.101E-03  5.875E-03  1.595E-04
N =3

0 0.625 2.810E+00 3.551E7 6.583E-01 1.133E-01 9.202E-04 0.000E+00  5.497E-05

20 0.628 2.784E+00 3.570E7 6.598E-01 1.125E-01 1.464E-03  4.866E-04  3.642E-05

40 0.632 2.711E+00 3.622E7 6.639E-01 1.101E-01 2.935E-03  1.842E-03 3.115E-05

Table 6.2: Physical quantities for the critical configurations with meridional flows. Model parameters are ~o =
0.5,03 =1.0 x 107>, and m = 0.

velocity in this parameter region (Qo =20).

As shown in Figs. 6.2 and 6.3 (see, also, Table 6.2 given later), general structures of the
toroids and their magnetic fields do not change significantly even when the fluid flows exist on
the meridional plane. As argued later, however, the presence of the meridional flows changes

the density distributions of the toroids slightly and increases the critical distance a little bit.

Critical distances for magnetized toroids with meridional flows

In order to study the influence of the meridional flows on the critical distances, we calculate
two polytropic sequences (N = 1.5, N = 3) by changing the value of QO for the m = 0
toroidal current function. We fix the other parameters as ko = 0.5, « = —0.5, d = 0.1, and
Q% = 1.0 x 107° in this subsection. Physical quantities for several models belonging to the
two polytropic sequences are tabulated in Table 6.2. Here, 7;, denotes the kinetic energy of the
meridional flow.

As seen from this table, the energy ratio 7,,/|WW| is much smaller than that of M/|W
thus, the kinetic energy of the meridional flow is much smaller than the magnetic energy for

’

the models obtained in the present study. This means that the magnetic forces mainly support
the toroids against the gravitational forces of the central objects even when the meridional
flow becomes stronger in the present parameter space. The meridional flow cannot change
global structures of the toroids and their magnetic fields significantly. However, the energy
ratio T,,/|W| reaches ~ 1.0 x 1073 when Qo > 40 (N = 1.5) and Qy = 40 (N = 3). In
fact, the critical distance ¢. increases as Qo increases as shown in Table 6.2. This implies that
the toroids tend to shed their mass when the meridional flow becomes stronger. In some sense,
therefore, the influence of the meridional flow on the density distribution of the toroids should
not be considered to be small. The rotational velocities of these models are also sub-Keplarian.
The typical value is about 2 % of the Kepler velocity which is similar to that given in Fig. 6.3.
On the other hand, the meridional flow velocity is about several times as large as the rotational
velocity. The maximum velocity of the meridional flow for the QO = 80 model reaches about
10 times as large as that of the rotational velocity.

In order to clarify the effects of the meridional flows, let us investigate the density distri-

butions of toroids and the profiles of potential terms on the equatorial planes for the N = 1.5
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Figure 6.4: Top left and middle left panels: Density contours on the meridional cross section for the critical
configurations with QO = 0 (top left) and QO = 80 (middle left). The heavy curves indicate the surfaces of the
toroids. The density difference between two adjacent contours is one-tenth of the maximum density. Top right and
middle right panels: 5 Lo2] — R’UV,Q (solid curve), —M, o/4m? (thick dashed curve), — [ fi dv — C (dotted curve)

for the critical configurations with Qo = 0 (top right) and Qo = 80 (middle right), given as functions of R/r.
The horizontal axis ranges from Rinner/7e(= gc) t0 Router/Te(= 1). Bottom left panel: Densities normalized
by pmax on the equatorial plane for the critical configurations with Qo = 0 (dashed curve) and QO = 80 (solid
curve), given as functions of R/r.. The horizontal axises range from Ripner /Te(= qc) to Router/Te(= 1).
Bottom right panel: The dimensionless velocity potent1a1 term, 5 Lo?] - R’U@Q on the equatorial plane for the the
critical configurations with Qo = 20 (solid curve), Qo = 40 (dashed curve) and Qo = 80 (dotted curve), given as
functions of R/r.. The horizontal axis ranges from R;,ner/Te(= gc) t0 Royter/Te(= 1). The model parameters
arem =0, N = 1.5, ko = 0.5, and Q3 = 1.0 x 1075,
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toroids with and without meridional flows. Fig. 6.4 shows the density contours on the merid-
ional plane (top left and middle left) and the profiles of the potentials on the equator (top right
and middle right). Bottom panels of Fig. 6.4 show the profiles of the density on the equator
(left) and the velocity potential term, §|0%| — R@SOQ, on the equator (right) as functions of R /7.
In the top right panel of Fig. 6.4, each curve denotes 3|0?| — RﬁWQ (solid curve), — M, /47
(thick dashed curve), ngbg (thin dashed curve) and — f ,&d\i/ —C (doted curve). As seen from
these profiles, in both the models, the gravitational potentials of the toroid make a tiny con-
tribution to the equilibrium solutions and the balance between the term — [ fid¥ — C and the
gravitational potential of the central object mainly determines the stationary states of the toroid.
Taking a detailed look at the middle right panel of Fig. 6.4, we observe that the potential terms
due to the meridional flow and rotation (solid curve) show their maximum value near the radius
of R/r. = 0.95 for the N = 1.5 models with Qo = 80.0. This very tiny protuberance is con-
sidered to appear due to the presence of the meridional flows because as shown in Table 6.2,
the kinetic energy due to rotation is negligibly small. More detailed structures of the velocity
potential terms can be seen by enlarging these tiny protuberances. The bottom right panel of
Fig. 6.4 shows the profiles of % 02| —I%f)%,fl on the equator for NV = 1.5 polytopes with QU =20
(solid curve), QO = 40 (dashed curve) and QO = 80 (dotted curve). These profiles have double
peaks which locate at R ~ 0.85 and R ~ 0.92. These double peaks appear from the balance of
the density distributions of the toroids and the meridional flows. As we have described in Sec.
6.1, the presence of the poloidal velocity fields results in reducing the density of toroids (see
Eq. 6.7). For our numerical examples, the presence of the poloidal velocity fields decreases the
density on the equatorial plane around radii of R ~ 0.85 and R ~ 0.92, which can be observed

in the bottom two panels of Fig. 6.4 (more detailed considerations are given below).

The top left and middle left panels of Fig. 6.4 show the density distributions of N = 1.5
toroids with QO = 0.0 and QO = 80, respectively. Comparing the top left panel with the middle
left panel, we see that the matter distribution of the toroid with Qo = 80 is shifted outward
slightly. The bottom left panel of Fig. 6.4 displays the density profiles on the equator for each
toroid. The dotted and solid curves denote the density profiles for the models with @0 = 0.0
and Qo = 80, respectively. As seen form this panel, the meridional flows shift the place where
the density takes its maximum value outward and make the density gradient around R~ 0.92
steeper. This is due to the double peak structure of the velocity potential profiles. The inner
peak of this potential affects to decrease the density around R ~ 0.85 where the density takes
the maximum value if there is no meridional flow. On the other hand, the outer peak of this
potential also leads to decrease in the density around R ~ 0.92. Since the density decreases
around R ~ 0.85 and R ~ 0.92 by the presence of the meridional flows, the place where
the density becomes maximum moves outward and the density gradient becomes steeper if the
toroids have rapid meridional flows (QO = 80 model). These effects result in decreasing the

critical distances.

Next, we deal with the influence of the equation of state on the critical distance. As we

have seen in Table 6.2, the critical distances of the N = 3 toroids are larger than those of the
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Figure 6.5: Top panels: The density contours on the meridional cross section for the critical configurations with
Qo = 0.0 (left panel) and QO = 15 (right panel). The heavy curves denote the surfaces of the toroids. The density
difference between two adjacent contours is one-tenth of the maximum density. Bottom left panel: Densities
normalized by pmax On the equatorial plane for critical configurations with Qo = 0 (dashed curve) and Qo = 15
(solid curve), given as functions of R/r.. The horizontal axis ranges from R;,ner/Te(= Ge) t0 Router/Te(= 1).
Bottom right panel : The dimensionless velocity potential term, % |92] — Rf)v,fl, on the equatorial plane for critical

configurations with Qo = 10 (dashed curve), Qo = 15 (solid curve), given as functions of R/r.. The horizontal
axis ranges from Rinner/Te(= ¢c) to Royter/Te(= 1). The model parameters are m = —1.4, N = 1.5, 4o = 0.5,
and Q32 = 1.0 x 107°.

N = 1.5 toroids. The same tendency in the equilibrium configurations without meridional
flows found in Otani et al. (2009). This is because that the mass shedding from the inner edge
of the toroids is more likely to occur for softer equations of state.

Effects of meridional flows on equilibrium configurations with highly localized poloidal magnetic fields

Finally, we unveil the effects of the meridional flows on structures of the toroid having highly
localized poloidal magnetic fields. We consider the N = 1.5 toroid models only in this subsec-
tion because basic properties are independent of the equation of state. Fig. 6.5 displays typical
models characterized by highly localized magnetic fields with and without strong meridional
flows. Here, we take m = —1.4, with which highly localized poloidal magnetic fields are
obtained inside the toroid as argued in Sec. 6.3. Other parameters are kg = 0.5, a = —0.5,

= 0.1, and 02 = 1.0 x 10~°, which are the same as those used in Sec. 6.3.2. The top two

panels of Fig. 6.5 show the density distributions on the meridional cross section for the toroids
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Figure 6.6: A, (0,m,;0,0) vs. m (left panel) and AqC(QO, m,;0,m) vs. T,,/|W]| for the critical configurations
with m = 0.5, 0, —0.7, —1.4 (right panel). Here, A, (Q1,m1;Q2,m2) = ¢.(Q1,m1)/q:.(Q2,m2) — 1 and
T,/|W| is given as a function of () for the sequence of the critical configurations.

with no meridional flow (left) and with strong meridional flows (right). The bottom two panels
of Fig. 6.5 display the densities (left) and the velocity potential terms (right) on the equatorial
plane as functions of R/r.. In the bottom left (right) panel, the solid and dashed curves are
correspond to the models with Qo =15 (Qg = 15) and Qo =0 (Qo = 10), respectively.
Comparing the bottom two panels of Fig. 6.5 to those of Fig. 6.4, we observe that the density
profiles of the m = —1.4 models are substantially different from those of the m = 0 models
though behaviors of their velocity potential terms are similar in the sense that they show similar
double peaks. The toroids with highly localized magnetic fields (the m = —1.4 models) are
extended inward due to the strong gravity of the central object in comparison with the m = 0
models (Compare the bottom left panels of Figs. 6.4 and 6.5 ). As shown in the bottom left
panel of Fig. 6.5, the positions of the maximum density rings for the m = —1.4 models are
nearly independent of values of Qo, but the density gradient of the Qo = 15 model is steeper
than that of the QO = 0 model around R ~ (.85 because of the presence of the meridional
flows. As a result, the matter distribution around R ~ 0.7 is stretched outward. The presence
of the meridional flows also decreases the critical distance slightly as shown in the bottom left
panel of Fig. 6.5, which can be seen more clearly for the m = 0 models (see the bottom left
panel of Fig. 6.4).

As we have exhibited in numerical examples so far, values of ¢. decrease as values of m
decrease, while they increase as values of Qg(> 0) increase. In other words, the poloidal
magnetic fields generated by positive toroidal currents are apt to expand the toroids to the
directions normal to the equi-flux function surfaces in particular when the magnetic fields are
highly localized around the inner edge of the toroids and the meridional flows act as an agent
for shrinking the region where the fluid matter occupies. In order to quantify the influence
of the highly localized magnetic fields and the meridional flows on the critical distance, we
introduce a quantity A, (@1, m1; Q2, m2), defined by

QC(Qla ml)

Ay (Q1,m1; Q2,ms) = (O, 1)

-1, (6.17)
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Figure 6.7: The magnetic energy normalized by the value of the equilibrium configuration with m = 0.0 and
N = 3, given as functions of m. The solid and dashed curves correspond to the N = 1.5 and N = 3 polytropes,
respectively.

where ¢.(Qo, my) is the critical distance of the equilibrium sequence of the toroid characterized
by N = 1.5, M;/M, = 2.0 x 1072, Q = o, and m = m,. Positive (Negative) values of A,
mean that the critical distance for the sequence with (@1, m;) increases (decreases) or its width
of the toroid decreases (increases) compared to that with (Q)2, m2). In the left and right panels
of the Fig. 6.6, A,.(0,m;0,0) is given as a function of m and AqC(QO, m;0.,m)’s are given as
functions of 7),/|W| for several fixed values of m, respectively. The left panel shows that the
values of A, range from about —0.9 to 0.2. Highly localized magnetic fields (for models with
negative values of m) show the significant influence on the critical distances. On the other hand,
the right panel shows that A, can reach about 0.05 due to the effects of the meridional flows.
Regardless of the sign of m, the values of 7,,/|WW| range up to ~ 0.006 and the maximum value
of A, canreach 0.05 as the values of Qo are changed. Thus, the maximum value of A, would
be 0.05 when the meridional flows exist. This means that the influence of the meridional flows
on the critical distances is much smaller than that of the highly localized magnetic fields, but it
is certainly true that the meridional flows work as an increasing factor for the critical distances.
We also find that the effects of the poloidal magnetic fields and the meridional flows may nearly
cancel out for the toroids characterized by 7,,/|W| ~ 0.005 and m = —0.2. For this model,
the critical distance or the width of the toroids is similar to that of the model with 7,/|W| =0
and m = 0. As expected in Sec. 6.1.1, thus, we confirm that the oppositely working effects of
the highly localized magnetic fields and the meridional flows result in nearly no change in the

critical distance for some particular toroid model.
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6.4 Discussion and concluding remarks

6.4.1 Strength of the magnetic fields inside the toroids

As shown in the middle left and bottom left panels of Fig. 6.2, for some particular set of the
parameters, the toroids in the critical states have very strong magnetic fields and their strength
are about 10 G if we take M, = 5.0M, and py.x = 1.0 x 10*g/cm?. Fig. 6.7 shows the
magnetic energy of the toroids as functions of m. Here, the magnetic energy is normalized
by that of the m = 0.0 and N = 3 model. From this figure, it is found that the magnetic
energy becomes larger as the value of m decreases. The magnetic energies of the m = —1.4
models are nearly three times larger than that of the m = 0.0 and N = 3 model. Therefore,
we conclude that larger magnetic energy can be sustained in the toroids whose magnetic fields
are highly localized around the inner edge of the toroids and which locate closer to the central

compact object.

6.4.2 Critical distances for magnetized toroids with meridional flows and highly local-
ized magnetic fields

Assuming the toroidal current function x to be constant (m = 0), Otani et al. (2009) showed
that there appears a critical distance in the self-gravitating toroids with the magnetic fields and
that the critical distances are much larger than the radii of the inner-most stable circular orbit
(ISCO) of the Schwarzschild black hole with the mass M = M,. In this study, we show that
their conclusions hold true when the meridional flows are taken into account and the functional
form of 1 is generalized to the cases of m > 0. For the cases of m < 0, however, we find that
the critical distance can be much shorter than that of the m = 0 case. The radius of ISCO of

the Schwarzschild black hole with the mass M = M., rsco, is given by

TISCO = 662\/[6 : (6.18)
If M, = 5.0M_, which is the fiducial value in this study, 71500 ~ 4.43 x 10cm. For the N = 3
models with m = 0.0 and m = —1.4, using results given in Table 6.1, we respectively obtain
Tin = ¢ X Te ~ 2.30 x 107cm > 715¢0 , (6.19)
and
Tin = q X 1o ~ 1.08 x 10°cm < ri5c0 - (6.20)

Therefore, the critical distance can be the same order or even smaller than the radius of the
ISCO in this parameter space. Since this study is done within the framework of Newtonian
gravity, the quantitative evaluation is not correct if 7, = O(r15co), While the results given in
the present study are reasonable as long as r;, > risco. We need to use general relativity for

the toroids with r;, = O(rsco). However, this is beyond the scope of the present study as
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mentioned before.

6.4.3 Concluding remarks

In this chapter, we have investigated and calculated the stationary states of magnetized self-
gravitating toroids with meridional flows and various kinds of the magnetic fields around central
compact objects. As a result, we have obtained the toroids with strong meridional flows and

with strong poloidal magnetic fields. Our findings and conjectures are summarized as follows.

1. Choosing the functional forms of arbitrary functions, we can change the strengths of the
meridional flows. The critical distances for stationary toroids with meridional flows be-
come larger than those for stationary toroids without meridional flows. In addition to this,
the distances increase as the strengths of meridional flows becomes larger. This is what
we have discussed in Sec. 6.1, i.e. the effects of the meridional flows and the magnetic

fields are oppositely working.

2. Changing the value of the parameter m in the certain choice of the arbitrary function
1, we can change the distributions of the poloidal magnetic fields inside the toroids. In
particular, the critical distances could be smaller as the value of m is decreased. If we
adopt M, = 5.0M, and the maximum density of the toroid to be puax = 1.0x 10" g /cm?®,
the critical distance for the m = —1.4 toroids becomes the same order as that of the ISCO
of the Schwarzschild black hole with mass M,.. For such toroids, a general relativistic

treatment is necessary for their correct description.

3. The magnetic energy for the critical configuration could increase as the value of m is
decreased. The magnetic energy for the critical configuration with m = —1.4 is about

three times larger than that for the m = 0.5 critical configuration.

4. By obtaining stationary configurations of axisymmetric magnetized self-gravitating poly-
tropic toroid with meridional flows under the ideal MHD approximation, we have shown
that the effects of the meridional flows would work oppositely to those of the poloidal
magnetic fields. In other words, the oppositely working effects can be easily understood
if we consider that the dense magnetic field lines expand the gaseous configurations due
to the repulsive nature of the magnetic field lines and that the presence of the meridional
flows works as lowering the gas pressure due to the appearance of the ram pressure as

seen from the stationary condition equation.
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Fere libenter homines id quod volunt credunt.
Men generally believe what they want to.
(Gaius Julius Caesar, The Gallic War)

Prolate stars due to meridional flows

Meridional flow changes the stellar shape as we have calculated in chapter 6. Following the
magnetized equilibrium studies as we have seen in this thesis, we consider the meridional
flow as poloidal velocity inside the star and evaluate the deformation by the meridional flow

quantitatively.

7.1 Introduction

Stellar shapes have long been considered to be oblate (including a spherical shape) due to
the effects of centrifugal and/or magnetic forces. However, recently Kuhn et al. (2012) have
revealed that the shape of our Sun is ‘perfectly round’ against the common expectation of an
oblate shape due to its rotation. At present, no clues have been proposed to solve this ‘strange’
problem (see e.g. Gough 2012).

Concerning stellar deformation, the effect of magnetic fields has been widely investigated
(see e.g. Chandrasekhar & Fermi 1953; Ferraro 1954; Tomimura & Eriguchi 2005; Yoshida &
Eriguchi 2006; Haskell et al. 2008; Yoshida et al. 2006; Lander & Jones 2009; and chapter 2).

The results found thus far are that purely poloidal magnetic fields make stars oblate, while
purely toroidal magnetic fields lead stars to become prolate. Very recently, Ciolfi & Rezzolla
(2013) succeeded in obtaining equilibrium states of magnetized stars with mixed poloidal-
toroidal magnetic fields, even for configurations with very large toroidal magnetic fields. They
showed that configurations with strong toroidal magnetic fields could be prolate. Thus, poloidal
and toroidal magnetic fields act as increasing and decreasing mechanisms for the stellar oblate-

ness, respectively.



128 CHAPTER 7. PROLATE STARS DUE TO MERIDIONAL FLOWS

However, we should point out that flows within stars might work as one deforming mecha-
nism of stellar configurations as we have seen in chapter 6. In particular, the effect of merid-
ional flows might make stellar shapes prolate, as shown in Eriguchi et al. (1986) and Birkl et al.
(2011), although they did not describe their results quantitatively from the point of deformation
due to meridional flows.

In this chapter, we deal analytically with meridional circulations of incompressible stars with
slow flow velocities in order to show the deformation due to meridional flows quantitatively and

clearly.

7.2 Problem and Solution

7.2.1 Stationary states of axisymmetric barotropic stars

Axisymmetric barotropic stars in stationary states need to satisfy the following condition:

dp 1, 5 9 / W / 9
4 = + — + | ROdR+C . A
p ¢g 2 (/UT’ U@) pr SiIl 6 dw d C (7 )

Here w,, and 7 are ¢-component of vorticity and the stream function defined in this chapter.

We assume the density is a constant in order to find analytical solutions, i.e
p(r,0) = po(constant) . (7.2)
We also assume the star has no wind external to itself, i.e
p(r,0) = O(outside) . (7.3)

The stream function in this chapter is defined by

1 o
I 7.4
U= P 2sin Opo 00 74)
_ 1L o
Y= sin Gpoa ’ (7.5)

and ¢ = 47 (), where () is a stream function defined in chapter 6. It should be noted that
in this expression the following situations must be taken into account in order to satisfy the

integrability condition of the equations of motion:

;;—j% — (), (7.6)
Q = QR), (7.7)

where (1)) is an arbitrary function of the stream function and the angular velocity €2 is an

arbitrary function of R.
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We need to note that our calculations should be used either for purely rotating stars or for
stars with purely circulating flows within meridional planes. The reason for this is that we have

not taken into account the ¢-component of the equation of motion, i.e.
v-V(RQ)=0. (7.8)

As is explained in Eriguchi et al. (1986), for non-singular angular velocity distributions, this
condition results in two situations: (i) purely rotating stars, i.e. v, = 0 and vy = 0, or (ii)
configurations with constant angular momentum throughout the whole star, i.e. ) needs to
vanish to avoid singular behavior of the angular velocity on the rotation axis. Thus our solutions
in this chapter need to be used for either rotating stars without meridional flows or for non-
rotating stars with meridional flows.
The stream function must satisfy the following equation:
0% sinf O ( 1 oY

e+ i (g ) = st 7

This equation is similar to Eq. (2.23) in chapter 2, Eq. (3.2) in chapter 3, Eq. (5.2) and Eq.
(6.9) in chapter 6, but we solve this equation for stream function v in this chapter.

The distributions of the density, pressure and stream function can be obtained from the
above stationary condition and the equation for the stream function, once the forms of arbitrary
functions v(v) and ©(R) and the barotropic relation between the density and the pressure are
specified.

The boundary conditions for the gravitational potential and the stream function are as fol-
lows: (i) the gravitational potential behaves as 1/r at infinity and the steam function is constant
along the (unknown) stellar surface. Considering these boundary conditions, the gravitational
potential and the stream function can be expressed by the integral forms as

00 /2 7s(0")
bg(r,0) = —4nG Z Py, (cosb) /0 db’ sin 0 Py, (cos 0") /0 dr'r” fon(r,7")po , (7.10)

n=0

1
P, (cos®)

/2 rs(0”)
P(r,0) = rsmez / ay’ SiHQ/P;n_l(COSQI)/ dr'r'” fon_1(r,r")
0

2n(2n — 1)
Y : 1 2n—1
X powy(r', 8') +rsm€2a2n_1P2n_1(cos O)r : (7.11)
n=1

where P, is the Legendre function and 7,(#) expresses the shape of the deformed surface of the

star,

m n+1 /
fulr,r') = { et ez, (7.12)

rt (e < o).

and «,, are coefficients. Since we have assumed that there is no external wind, the » component
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of the velocity (v,.) must vanish at the surface. Therefore, the boundary condition for the stream

function on the surface is as follows:

P(ry,0) = 0. (7.13)

We fix the coefficients to fulfill this boundary condition (Eriguchi et al. 1986; chapter 3).

7.2.2 Stationary configurations of incompressible fluids with very slow flow velocities

In order to find analytical solutions to the basic equations described above, we further assume

the following situation. (i) The form of the arbitrary function (1)) is specified as follows:
v(1) = evp(constant) . (7.14)
(i1) The rotational velocity is a constant, i.e.,
Q2 = Qp(constant) , (7.15)

where ¢ is a small constant that expresses the slow fluid velocities in both the meridional plane

and the ¢-direction.

For an incompressible body, we need only to solve for the surface shape by setting p = 0 on
the surface, instead of solving for the density distribution. Thus, the solutions for our problem

can be studied by expanding the quantities with respect to the small quantity ¢, as

r(0) = Y (o), (7.16)
n=0

o(rf) = Y e"p"(r0), (7.17)
n=0

where 7*" and (™ are corresponding quantities of the surface shape and the stream function,

respectively. Other physical quantities are also expanded, as
F(r,0)=> "F"(r,0), (7.18)
n=0

where F'(r, ) expresses a certain physical quantity.

For simplicity, we choose the spherical configurations without flows as the n = 0 terms, i.e.

r0(0) = ro(constant) , (7.19)

s

VO 0) =0, (7.20)
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dp© (r, 6 dgy”
dp™(r,0) _ —po 2] . (7.21)
dr dr

The stationary equations are written to the second lowest order with respect to the small

quantity ¢ as follows:

PO e2p®

Po Po

== (r) +C?
1
+e? | =0 (r,0) — S (2 (r.0) + 05 (r.6)) (7.22)
1) L o202 (2)
+ v (r, ) + 5?" sin” Q5 + C ,
where

1 o0
W (r,0) = —%5pguor2(5rg — 3r?) sin?  + 7 sin O Z af) (PL o (cosO)r? Tt (7.23)

n=1

When we apply the boundary condition to the above stationary equation on a deformed

surface, i.e.
dp©®
P (ro) + 82pd—(r>!¢:ror9(9> +e*pP(ro,0) =0, (7.24)
r
we obtain
dgb(o) r
0 = 0~ (0) 4 OO
1
b [‘¢§2><ro, 0) = 5 (02(r0,0) + 5 (10, 0))
1
+ vpW(ro, 0) + 57‘8 sin? 902 + C@ | . (7.25)
Here
221G
0y (r) = =5—por® = 2nGpor (7.26)
PO (r,0) = rsind Z aé(,?_lPQIn_l(cos 0)yr*t =0, (7.27)
n=1

1 [e.9]
YW (r,0) = —%pgl/oﬁ(—?ﬂ"2 + 575) sin® § + 7 sin 0 Z oz%)flP;nfl(cos O)r*"=t . (7.28)

n=1

Since this quantity /") is the first order term with respect to &, we only need to consider the
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boundary condition for the stream function on the undeformed surface. Thus,

1
YW (r,0) = 1—0ng0 sin? 0r?(r* —r2) , (7.29)
1 2 _ 2
v (1, 0) = gpovo(r —rg)cost (7.30)
1 2 2\
vg(r,0) = —gpol/o(27" —rg)sind . (7.31)
can be obtained. These can be expressed by using ag’,?,l as follows:
aé(r]z)—l = 0,
1
1
045 = 1—5P3V07”§ ;
asly = 0, (7.32)

wheren =1,2,....
From the second order terms with respect to ¢, the following condition can be derived:

47G

0=-—
3

S w/2
pororP(0) + 4nGporo Z Py, (cos6) / b’ sin @' Py, (cos 6')rP(#)
n=0 0 (7.33)

1 1
— §vél)2(r0, 0) + 57“3 sin? 99(2) + 0O

By expanding the quantity ri? (0) as follows:

r@(9) = Z ﬁéi)Pgn(cos 0), (7.34)
n=0

where 65,21) are certain constants, we obtain the following results for unknown quantities:

e
c© — —%r% 7 (7.35)
8¢ 1 1
0P = —=ZB0ro5 + —phuir — 5133 (7.36)
1 [1 5

(2 _ LI By er 7.37
2 3<C | 5P0v0To o rodly| (7.37)
B =0(n=23,...) (7.38)

2n T — 4,9, ... ). .

Here if we require some condition for the scale of the star, we can calculate the value of B(()Q)
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and complete solutions for our problem to the second order in € can be obtained.

7.2.3 Rotation vs circulation

From the analysis in the previous subsection, the change of the surface due to circulation and/or

the rotation can be expressed to second order of a certain small quantity € as follows:

1 1
ro(0) =19 + % | fo + —— poygro TOQ Py(cosB)| . (7.39)
8t £o
From this equation
Tequator — T'pole 3 1 2,2 3 2
_Cquator pole _ —Q 7.40
ro BETE ( PovoTo — o V) (7.40)

where 7,01 and Tequator are the polar and equatorial radii, respectively. As is easily seen, uni-
formly rotating configurations without circulation (€2y # 0,v9 = 0) become oblate, while
non-rotating configurations with circulation () = 0, vy # 0) are prolate. In other words, the
presence of meridional flows acts as an effective force perpendicular to the equatorial plane.
This can be clearly seen by defining the effective force due to meridional flows with {2y = 0

as
Po 2 2
—5V’UT + vg| + po(v X W), (7.41)

The 7 and 6 components of this force for our incompressible configurations with €2y = 0 are

F.= I/opo { — 473 + 4r2r) + (87° — 6rir) sin® 9} , (7.42)

Iy = Vopo { (4r® — 6r3r) sin 6 cos (9} (7.43)

They are shown in the central panel of Fig. 7.1. In this figure, the centrifugal force due to
uniformly rotating configurations, i.e. R)2, is also shown in the right panel.
In order to estimate deformation by meridional flows quantitatively, we define the deforma-

tion ratio A as

Tc.equator — Tc.pole

A

, (7.44)

Tr.equator — T'r.pole

where subscripts ‘c’ and ‘r’ denote configurations with meridional circulation and with rota-

tion, respectively. For incompressible fluids with very slow flow velocities,

173 Vopo
A 25 QQ
vp(rsm/2)

A s 4
Ty (7.45)
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Figure 7.1: Left: contours of 1)(!)(7.60) in Eq. (7.29). The difference between two adjacent contours with lines is
1/10 of the maximum value of 1/(!)(r, §). The outermost curve denotes the stellar surface. Centre: the force due
to the meridional flows (Eq. 7.42 and Eq. 7.43). Right: the centrifugal force of uniform rotation.

where v, is the poloidal velocity, defined as vf, = vf +v§. Therefore, the stellar deformation de-
pends on the ratio of the meridional velocity to the rotational velocity at the equatorial surface.

When we use the solar radius and rotational velocity, for example,

2 —2 )

(% To QO
A~1.0 P — ] . 7.46
(1.81 X 105cm/s> (6.96 X 10100111) (27r/28.0day) (7.46)

The commonly believed solar convective flow or meridional flow velocities (e.g. Miesch 2005;

Nordlund et al. 2009) are a few tens or a hundred times smaller than the meridional flow velocity
chosen here, but those values are not too small to be neglected. Thus, this simple model shows
that the meridional flows have small but non-zero influence on stellar deformation comparing
with stellar rotation, which is considered as the most powerful deformation mechanism within

stars.

7.3 Discussion and conclusion

In this chapter, we have obtained the expression for stellar deformation due to meridional flows
analytically. In order to treat the problem analytically, we have assumed stationary incompress-
ible stars and imposed a 1) = 0 boundary condition on stellar surfaces.

We have shown that meridional flows make stars prolate under the conditions of our model.
This might imply that meridional flows within stars work to decrease the oblateness of rotating
stars. Although we have assumed incompressible fluids, the role of meridional flows would not
disappear for compressible stars. As explained in the Introduction, according to the recent very
accurate observation by Kuhn et al. (2012), the solar oblateness is unexpectedly smaller than
the theoretical value, which is derived by considering only rotation (Armstrong & Kuhn 1999).
Gough (2012) argued that magnetic fields and/or stresses due to turbulence could be possible
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mechanisms causing the small oblateness. However, they did not consider the influence of
meridional flows, which could be one of the possible mechanisms, as we have shown in this
chapter.

One might argue that the velocities of solar meridional flows are believed to be much smaller
than the values required to reduce the rotational effect, as seen from Eq. (7.46). This belief
has been based on theoretical analysis of many observational data on surface phenomena (Zhao
et al. 2012). On the other hand, we can rely on the theories that are used to ‘estimate’ physical
quantities within the solar interior. One approach for us is to take even the ‘curious’ obser-
vational data seriously and to consider possible mechanisms thoroughly, even though those
mechanism might seem to be far from the widely believed theories and/or values. The ‘per-

fectly round’ Sun might be offering us an important hint about its interior.
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In the end, it is impossible not to become what others
believe you are.
(Gaius Julius Caesar)

Conclusions and Remarks

Throughout this work, we have considered and calculated a number of different aspects of equi-
librium states with magnetic fields and meridional flows in many astrophysical objects, neutron
star, white dwarf, magnater, magnetosphere around the magnetar, compact toroid, and the Sun.
Although these studies seem to belong to different category each other, these phenomena are
very closely linked in many respects.

We have obtained magnetized equilibrium states with extremely strong but highly localized
poloidal magnetic fields in chapter 2. We have changed the functional from of the arbitrary
function p which represents the non force-free current density in order to obtain such a config-
uration. When we apply these models to magnetars, the interior poloidal magnetic field strength
near the central region would be 107G while the surface magnetic field strength is 104~ 15G.
If we apply these models to magnetized white dwarfs with mass ~ 1.34M, the strength of
the surface field would be 10° G and the magnetic fields near the central region would reach
10'?G. If the star has such extreme strong but localized poloidal magnetic field deep inside, the
contributions from higher order magnetic multipole moments to the outer fields around the star
cannot be neglected. The toroidal magnetic field energy in these solutions, however, is much
weaker than poloidal magnetic field energy.

We have investigated the boundary value problems for the axisymmetric stationary magnetic
fields using the integral form of solution and homogeneous terms in 3. These homogeneous
terms come from the surface current (current sheets) for the magnetic fields or the surface vor-
ticity (vorticity sheets) for yjr meridional flows at the boundaries. The homogeneous terms
appear as integral forms of general boundary conditions as we have seen in chapter 3. We can
impose the arbitrary boundary conditions of stationary magnetic fields and meridional flows

using the homogeneous terms. We have found the importance of the coexistence of the oppo-
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site flowing toroidal current density to the larger toroidal magnetic fields with surface current
adding the homogeneous terms in chapter 3. The oppositely flowing toroidal current density
cancel out the force-free toroidal current density which is related to toroidal magnetic fields. As
a result, the oppositely flowing toroidal current density can sustain the large toroidal magnetic
fields.

The physical meaning of the oppositely flowing toroidal current density has been discussed
in chapter 4. Using simple analytical solutions, we have found the large toroidal magnetic field
is deeply re;ated to the prolate stellar deformation by the oppositely flowing non force-free
toroidal current densities. We have found a sufficient condition expressed by the combination
of the arbitrary function ;2 and the flux function. The condition is required for large toroidal
magnetic field models and prolate stellar shape. This is the physical meaning of the oppositely
flowing toroidal current density.

We have investigated magnetic fields configurations of magnetar throughout its interior and
exterior - core, crust and magnetosphere in chapter 5. We have calculated many crustal mag-
netic field configurations in Hall equilibrium under various boundary conditions. These numer-
ical results imply that the Hall drift of the secular Hall MHD evolution would be affected by
both inner and outer boundary conditions. On the other hand, the magnetosphere around the
star forms the magnetic X-point geometry when the magnetospheric toroidal current density is
sufficiently large or the stellar total current is sufficiently small. The magnetic X-point geome-
try can be produced by the stellar interior physical event between core and crust such as glitch
or magnetic fields changing. The X-point geometry causes the magnetic reconnection which
would be an origin of the giant flare of magnetar.

We have investigated the most general formulation of magnetized equilibrium states in sta-
tionary and axisymetric barotropes. We have calculated magnetized toroid with meridional
flow and found the meridional flow changes the equilibrium structures effectively in chapter
6. We have shown that the effects of the meridional flows would work oppositely to those of
the poloidal magnetic fields. In other words, the oppositely working effects can be easily un-
derstood if we consider that the dense magnetic field lines expand the gaseous configurations
due to the repulsive nature of the magnetic field lines and that the presence of the meridional
flows works as lowering the gas pressure due to the appearance of the ram pressure as seen
from the stationary condition equation. This idea is very important for the stellar deformation
with circulation.

We have considered the stellar deformation by meridional flows in chapter 7. We have
evaluated the deformation by meridional flows analytically using similar methods we have
used in chapters 3 and 4. Our results have showed that the circulations inside the Sun would
have influence on the deformation comparing to the rotation quantitatively. This means that the
‘perfectly round’ Sun might be offering us an important hint about its interior.

This thesis shows that these astrophysical phenomena are very closely linked. We can solve
one problem easily using a method which has been investigated for another problem. We

understand these problems deeply using the simple models and formulations carefully. As we
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have seen in this thesis, the object orientated approach is not sufficient for different problems in
astrophysics, because we generally believe what we want to. We should employ many different
points of views and see problems from new directions different from prebious works in order

to understand them deeply and essentially and get new and wide insights about the problems.
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Veni, vidi,vici.
I came, I saw, I conquered.

(Gaius Julius Caesar, oral declaration)
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The greatest enemy will hide in the last place you
would ever look.
(Gaius Julius Caesar)

Details of formulations and equations

A.1 Derivations of equations

A.1.1 Flux function based formulation: Current density formula

Here, we derive the first integral of equations of motions. The basic equations are as follows:

The continuity equation of a fluid:
V- (pv)=0. (A.1)
The equations of motions:
J

1 1 1
“Vp=-V¢,— -V|ol>+v x w+ - (— x B) : (A-2)
P 2 p\c

The Poisson equation for the gravitational potential:
Ag, = 4nGp. (A.3)
Gauss’s law for magnetic field:
V- -B=0. (A.4)
Maxwell-Faraday equation:

VxFE=0. (A.S)
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Ampére’s law:

', (A.6)

C

V x B =4n

Ideal MHD condition:

E+2xB=0. (A7)
C

At first, we define the stream function () and the flux function ¥ using the continuity equa-
tion(A.1) and Gauss’s law, Eq. (A.4) as below:

100 100
= - — = — A.
R dmpR Oz vz drpR OR (A-8)
10V 1 0¥
BR = —Ea—, = E@ (A9)

Using the ideal MHD condition, Eq. (A.7), and the Maxwell-Fraraday equation, Eq. (A.S),
and Gauss’s law, Eq. (A.4), we obtain

VXE:—VX(%XB>=U

0 OFER aEz) 1
— e(p [

= —EweR‘(—az R R

o (RE,)e. = 0. (A.10)

Using F, = 0 and the ideal MHD condition, we have a relation as
B, ={ZxB} =Zp,-"p. <0 (A.11)
c © c c

Substituting this equation into Eq. (A.8), we obtain

19Q10¥ 19Q10v

pRORE0:  pRo: ROR
oQIvV IV oQ
Then, the stream function () is a function of ¥ only
Q=Q(1). (A.13)

This relation means that the directions of magnetic field and velocity are the same. In other
words, the magnetic field is froze in the fluid. From Ampére’s law (A.6), we express the

electric current density by the magnetic field,

o .

1 _ 10B, | (9Br OB. 110
B 47rv xB= ir 92 F * 47 ( 0z aR) ot 47TR83(RB¢)6Z’ (A.14)
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For vorticity w we have

Jvr  Ov, 1 0
w=Vxuv= _EeR+ <E— 8R> + R8R<R%) (A.15)

Since we have assumed axisymmetry, the ¢ component of Eq. (A.2) is
L. :
(V.wp — VRW) + P (j:Br — jrB.) = 0. (A.16)

Substituting Eqgs. (A.14) and (A.15) into this equation, we have

v, 19 110 1, ( 108,

Using Egs. (A.1.1) and (A.13), this equation is written as,

%% (RB, — Q'Ruv,) — %—f% (RB, — Q'Ruv,) =0, (A.18)
where we multiply pR? to Eq. (A.17). Defining
k = RB, — Q'Ru,, (A.19)
we obtain
k= k(V), (A.20)

from Eq. (A.18). The function « is an arbitrary function of ¥ and means the conservation of

the angular momentum along the W.

From Egs. (A.5) and (A.7), we have
OFEr OF,

(VxE),=0= =2 -S2 =0
o/ 100 Q ov o [ 100 Q ov_\

Then, we obtain a relation,

v 9 [ 1 Q v o [ 1 Q
PRI+ )22, L % B o A22
OR 9> ( R T ImpR “’) 9= OR ( R T 1R *ﬂ) 0 (A22)
Defining €2
o=l _ 9B (A.23)

R 4wpR’
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we obtain
Q= QW), (A24)

from Eq. (A.22). Where, {2 means the rotational law. The function € is an arbitrary function

of ¥ and means the rotational law.

Considering the poloidal components of the equations of motion, we operate the cross prod-

uct of Vx,
]
VX |lvXw+-(=xB|| =
p\ c
Using Egs. (A.14) and (A.15), we rewrite this equation as

0 v 8(R 2 — wy, 0Q N Jg/cOV B, 0B,
0z || ROR drpR OR pR 0z  4wpR 0z

9 w0 L w, 0Q jgo/c@_‘lf_ B, 0B,
OR { {R az(R%) 47pR 8,2} * {pR 0z  4mpR 0z = 0. (A.25)

Using x, ) and (), we obtain

N _ﬁlep o RQ//U@ o M@Q/ )
—Q
OR 0z ( i 47pR fto,
ov o0 (j, —KDB,—RQ"v,—w,Q , _
92 OR ( - + 1R (YRv, | =0. (A.26)
We define
Bk (V) ) v,Q"(V)B,  jo/c  w,Q(¥) _
4moR Ruv, 2 () mp + R 4R (W), (A.27)
and obtain
= (W), (A.28)

from Eq. (A.26). Now, we have four arbitrary functions and obtain the functional form of the
current density as follows:

L W0+ Q)R] D+ QU 4 pRu() + D Role,  (A9)

Using these functionals, we integrate the equations of motion and obtain the first integral.
Rewriting the third term and forth term of the right hand side of the equations of motion, Eq.
(A.2), we have

1/(3 ov 0 ov 90
“(I«B)= = 0 21 %0
'v><w+p(c>< ) { Hap aR( Rv¢)}eR+{uaZ+az( R%)}e

= V/ud\I/—f—V(QRv(p),
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Then, we obtain the first integral as,

dp_

1
; —¢y — 5|v2| + / (V) d¥ + Ru, QW) + C, (A.30)
s

where, the term of [ ;(¥)dV¥ + C means the conservation of the energy flow along the ¥
Lovelace et al. (1986).

It should be noted that in this current density formula, the four arbitrary functions appear
and that each function is related to different physical quantities corresponding to each term in
the right-hand side of Eq. (A.29). Lovelace et al. (1986) obtained the current density including
another arbitrary function which is related to the entropy. This arbitrary function, related to
the entropy, does not appear in our problem because uniform entropy distributions is implicitly

assumed.

A.1.2 Stream function based formulation: Vorticity formula

So far, we consider the situations in which the poloidal magnetic fields exist everywhere except
in vacuum region. For such situations, as already shown, the flux function W can be a principal
variable by which all the magnetohydrodynamical quantities are determined. If we assume that
the poloidal velocity fields exist everywhere inside the fluid region, the same problem as that
treated in this study may be formulated by considering the stream function () as a principal
variable, which is named “the stream function based formulation”. For this formulation, the

magnetic flux function is given by a function of the stream function,
U =U(Q). (A.31)

The other arbitrary functions of the magnetic flux function defined in Appendix A.1.1 are re-

garded as functions of (). Then, the vorticity vector may be written as:

dl d*v dv ] d
w = 47rp{ d(g) +R dC;zQ) BW} v+ 47r%@)% +pR {—V(Q) +R zg)&(,} e, (A.32)

where ¢(Q), v(Q) and o((Q) are another set of arbitrary functions of () for the stream function

based formulation. The arbitrary functions ¢(Q)) and o((Q) are related to the physical quantities
v, and B, through

Q) ,

/(@)= Rv,— R a0 D¢

(A.33)

B dr  dV(Q)
o(Q) = p—gj “R%Ta0 (A.34)
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A.2 Change of the gravitational potential

A.2.1 N =1 polytrope

We show the details of the change of the gravitational potential in chapter 4. The gravitational
potential perturbation for NV = 1 polytrope is governed by the quadrupole component of Pois-
son’s equation under two boundary conditions (5(;55,2) is regular at 7 = 0 and continues the

external solution smoothly at r = r,):

250 2dogY 6 )
Tt —ﬁ(5¢é):47r(}'5p(). (A.35)

Considering the density perturbation expressed by Eq. (4.26) in chapter 4, this equation can be

rewritten as

2662 2d5? 6 d
L (o B -wa(5) 0

By introducing the new variable x = 7r, the left-hand side of the equation is reduced to

256 2 dsplY _ 4nG (dg,\ ™
= 5 —2 ) LO(). A37
dx? + x dr + ¢ 72 \dr (r) ( )
The solution to this equation can be obtained by taking the boundary conditions into account
as follows:
F®(z) 1 dF®(r)
() N ;
06 (1) = ——5= = S| ja(w), (A.38)
where
(») 2 m 2.2 2 2\ 2,21 u: [ HO
F (I‘) = — 3#014 (—/{%P |:{67T Ko + (7T — 3%0) RgZ }Sln (?I')
— —m {67? (7?2 /-@8) moxz} cos (ﬁx)}
s
2 1 1 [ K3
—  —upAs x sinr + — H— — 1) 2z%cosz| . (A.39)
3 6 \ 72
Here the coefficients A; and A, are defined as
872#0% 1
A = A.40
YT (K2 — 72)2 (sin ko — ko COS Kg) (A.40)
4 c
Ay = _2THoPe (A.41)

(=
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for N = 1 closed configurations and

472 o pe. 1
A= P (A.42)
r§(KE — m2) sin kg
47ru0pc
Ay = ——— A43

for N = 1 open configurations.

A.2.2 Surface change for N = 0 polytrope

The change of the gravitational potential due to the change of the surface, i.e. er3P(cos ), can
be obtained by

s 7s(14¢€) P2(cos 8") 7’2
5o\ (r) = —4rGpy / df’ Py(cos 0 / dr'r® =
0 Ts
ArG

A.3 Analytical solutions for Hall equilibrium states

We show the analytical solution of each model in chapter 5. When the magnetic field is purely
poloidal (x = 0) and the functional forms are S = Sy and © = j19, we can calculate analytical
solutions easily. We obtain the exact solutions integrating j,, and throughout the whole region.
We set p = pg and n. = ng, but we can also obtain the solutions with arbitrary p and n,
distributions. The functional form of toroidal current density becomes

, poforsingd (0 < r < ry,)
% =9 neSorsinf (ry, <r <rg) . (A.44)
0 (rs <)

Now, we obtain the analytical solutions.

A.3.1 Model 1

The magnetic field within the core (0 < r < ry,) is excluded by the Meissner effect in this
model. The current density also does not exist in the core. Therefore, we fix y9p = 0. Then the

integration of the Green function is expressed by
P1 0)
U(r,0) = 2mrsin 050 (cos / fulr, 72’ / Pl(cos§)sin @#df’ (nor’ sin @)
:1

+ Z (an "1 pl(cosf) + b,r " Pl (cos 9)) sin 6. (A.45)

n=1
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Since the number density profile is independent of 6, we can integrate # component. From the

orthogonality of the associate Legendre function,

T 1
/0 sin @' P! (cos @) P} (cos 0')df = 2712<Z—:::1), (A.46)
higher terms (n > 2) must vanish. Then the equation becomes
4 o0
U(r,0) = gr sin? 95’0710/ fr(r, 7" )r3dr’ + (a1r2 + b1T_1> sin? 6. (A.47)
0

The electrons exit within finite region (r;, < r < ry) of the star. Then, the r integral classified
into three types, the inner vacuum solution, the interior solution and the outer vacuum solution
as below:

TSy oo 1,5 9
r / rr’ dr :57"7"—77” T (0 <r <rin)

2
/000 f1(r " )r2dr! = r (/T

179 1 1
—dr +/ T dr) = ( 4 5%) + (57"?7‘2 - 57‘4) (rin <r<mrs) - (A48)

s pl4 173 173,
(/ rzd) (37‘3 ) (ra <7)

in

Tin

If we neglect the homogeneous terms, there is not any current sheet in the system and
the crustal magnetic fields penetrate core. Since the magnetic field cannot penetrate within
r < r;, region by the Meissner effect in this model, we must impose the boundary condition
U(ry,0) = 0. We need to choose the coefficients of the homogeneous terms in the case. The
terms represent the contribution from toroidal current sheet on r = r;, (Fujisawa & Eriguchi
2013). Therefore, we add the toroidal current sheet on r = r;, in order to satisfy the boundary

condition W (r;,, §) = 0 as follow:

;

47 S, 1 1
Z0M0 2 g | - r2r? — —r2 r?| + jor?sin® 0 = 0 0<7r<ry)
3 |2 2
47 S, 1 1 1
U(r,0) = WTOnO sin? 6 (5 ) - (57"?7“2 -7 ﬂ + s r7tsin? 0 (ry, <7 <71y o

4 1r 5 5
AmSiotio sin? 0 (——S ﬂ)] + jsrd r~tsin® 6 (rs <)

L S5r r

(A.49)

where j is a strength of the toroidal current sheet (j; = a; = 7" > by). Since the a; term is the
inner solution and the b, term is the outer solution, a; is determined by the boundary condition

U(ryn, 0) = 0 and the explicit form of jj is

27?5()710

5 (= 7%) (0<rin) (A.50)

m S

js:

and the sign of j, is negative. This means that the Meissner effect equals the effective negative
current sheet on the core-crust boundary in order to exclude the magnetic field from the crustal

toroidal current (see Fig. 5 in Bonazzola & Gourgoulhon 1996).
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A.3.2 Model I1

Model II is crustal current model, but it does not have current sheet on the core-crust boundary.
Therefore the solution is below:

(

475, 1 1
T 30n0 sin? 6 _57"37“2 — 57‘22”7“2} (0<r<ry)
5
W(r,0) = AmSong sin’ @ 17‘4 lrl—” + 17“37“2 — —rt (rin <7 <'ry) (A.51)
3 L\ D 57 2 2
47, 15 100
\ 0T sin29 _(g%—g%)} (’I"S <T>

A.3.3 Model III & IV

These models have both core current and crustal current. Therefore the solutions are described
by the sum of the core current magnetic field ¥, and the crustal current magnetic field V...
The crustal current magnetic field W, is equal with the model II solution. We can also obtain

the profile of W, easily. The solution is as follow:

4 1 1 1
Wl;opo sin2 9 [<5T4> + <_r2 r? — 5#‘)} 0<7r<mrin)

2ZTL

5
Amhopo sin? 6 L1 (rin < 1)
3 ST

Weo(r, 0) = (A.52)

As aresult, the general solutions of the model III and IV are as below:

4 1 1 1 1 1
?ﬂ sin? 6 |:u0p0 { (gr‘l) + (§T’2”T2 - 57“4)} + Sono {57"27“2 — 57“1-27””2}} + jsr2sin? 6 0<r<rip)

4 172 1 172 1 1
Y(r,0) = ?ﬂ sin? @ {,uopo (5 T'm) + Somno { (§T4 - gh) + (57"21"2 - 57"4) }] +jsrd r~tsin? 0 (rip <r <7rg) o
I8 IS8
4 179 175 149
?ﬂ sin? 6 [uopo (g %) + Song {g% - gr;" }] + jsrd,r~Lsin? 6 (rs <)
(A.53)

where 1105y > 0 (model III) and 05, < 0 (model IV). Especially noted, model III and
IV can have arbitrary current sheet on the core-crust boundary. The last term represents the
contribution from the dipole current sheet (see Fujisawa & Eriguchi 2013). The j, denotes a

magnitude of the current sheet.

A.3.4 The magnetic field configurations of each model

We show some graphs of the analytical solutions. We set v, = 1 and r;,, = 0.75. The functional
parameters are 5Sgng = jopo (model III) and —5Syng = pppo (model IV). We have showed the
distributions of W in Fig.5.1. Fig.A.1 displays profiles of ¥ on the equatorial plane normalized

its surface value. As seen form these figures, the model I is a pure crustal open magnetic model,
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model | ——
B model Il
model [I] e 4
model [V s
0.5 1.5

Figure A.1: The ¥ profiles of each model on the equatorial plane. They are normalized by value of ¥ (rs, 7/2).

the model II is a strong crustal magnetic model, the model III is a strong core magnetic model
and the model IV is a very strong core magnetic model respectively.



153

I would rather be first in a little Iberian village than
second in Rome.
(Gaius Julius Caesar)

Details of numerical method

B.1 Dimensionless quantities

In chapters 2, 3 and 6 of this thesis, physical quantities are used in their dimensionless forms
for numerical computations, because we have calculated the matter equation self-consistently

using normalized radius (chapter 2) as

L — (B.1)
Te l Pmax
B 4nGp2
for polytropic configurations and
p=l o T (B.2)
Te 18a_ 1
B b AmGpZiax
for the Fermi gas models, and
p=-L (B.3)
pmax
Their explicit forms of other physical quantities are
N 10} g
=—2 B.4
% ATGr2pmax | B.4)
A Q
Q= (B.5)

VAT prax
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v

VATGpmaxre

S
Il

(B.6)

Q

V= T

(B.7)

N 2
= B.8
f TnGr, (B.8)

A Bsuffm:
Bouffio = 7, (B.9)
1 47TGrepmax

. A
A= —F B.10
L AT G2 prax ( )

A Y
V= — (B.11)
AT G132 prax

- K
K

- B.12
GO, (B.12)

~_ j(p
= Je B.13
T VATG praxC 19

A C
c = ———. B.14
A7 G2 prax ( )
Here By, i, is the component of the magnetic field where suf fiz may be c (center), sur

(surface), p (poloidal) and t (toroidal). Similarly we define normalized global quantities as

follows:

~ M

M= — , (B.15)
repmax

N W
- B.16
TG (.10
oL , (B.17)
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Figure B.1: Three points used HSCF scheme in case of the star (left) and in case of the toroid (right).

- II
= s B.18
G2, (B.18)
- U
U= 55— B.19
47TGr5pmax ’ ( )
~ M
B.20
M 47TGT5lea,X ( )
We obtain dimensionless equations using these dimensionless quantities as follows;
—1 dp 1 Lo A A
TG | p - G gl / (b) d¥ +7sin o, Q(8) + €, (B21)

in case of the magnetized star and

1 dp A Mc

AT G2 prax ? =0t 4rr

1, . A A A A
—§|'v]2—i-/ij,u(\ll)d\lf—l—rsm%@f)(‘ll)JrC, (B.22)

in case of the magnetized toroids. We change the left side of Eq. (B.21) using polytrope

relation,

1 dp Al
- N +1 /N B.23
G / p =B(N+1)p (B.23)

or using Fermi gas,

=

1 dp O E
TR / T ll + (?> ] . (B.24)
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B.2 Numerical Scheme

In our numerical studies, the generalized iteration scheme known as Hachisu’s Self-Consistent-
Field method, HSCF method (Hachisu 1986a,b). is adopted in order to solve the non-linear
system of equations for equilibrium stars. In this generalized HSCF method, the density, the
gravitational potential and the vector potential are iteratively solved (Tomimura & Eriguchi
2005). We assume the equatorial symmetry in this section and use the functional forms of i
and () as follow:

() = fio(T + €)™, (B.25)

QD) = Qo(T2 + d?)*. (B.26)
We start our computation by assuming initial guesses for the mass density and the mag-

netic field distribution. Using a trial density and a magnetic field distribution, the gravitational

potential ggg and the vector potential Aso are computed by expanding the potentials as

Tmax

. CS) w/2
Do(7,0) = — 3 Pou(cost) / 2y (5 7V / Pyu(cos &) sin 0'd0’ x ("), (B.27)
n=0 0 0

‘emax

) Pl 8 o 71'/2 A
Al ) =y i) /0 72 fon (7, 7' i’ /0 Pon(cos0') sin6'd0’ x jo (7, 6')

2n(2n — 1)
= (B.28)
+ Z (agn_1r*" " Py, _1(c0s8) + by " Py, 1 (cos b)),
n=1
7¢,/2n/,f,2n—|—1 (TA' > 7:/)
A ) =
an(T’T) - { 7§2n/72/2n+1’ (7@ < 72/) ’ (B.29)

where P, are the Legendre polynomials of degree n and P! are the associated Legendre func-
tions of order one. In the actual computations, we take 1., > 20, {1.x > 20.

In our formulation there appear some more constants, i.e. a length scale factor $ and an
integration constant C'. These two constants are not free parameters which should be specified
to solve the problem, but are unknown parameters which should be solved for. After the two
potentials are obtained, these two constants as well as the model parameter i.e. Qo or flo, are

solved by imposing the following three conditions at three special grid points.

B.2.1 The case of polytropic stars

First, we describe the case of the magnetized polytropic stars. (left panel in Fig. B.1). At the
polar surface (point P), i.e. at 7 = ¢ and § = 0, and at the equatorial surface (point Q), i.e. at
7 = 1 and = 7/2, the density must vanish. At the point where the density takes its maximum
value (point C), i.e. at 7 = T, and € = 6., the dimensionless density must be unity. These
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three conditions are expressed as follows:

~ 1 R R R { N m . oA ~ a N
0:—¢g|p—i(vrﬁp—l—v(;ﬁ;—i—vw\%)—i—muiil(\l’hv—ﬁ—e) 4 7 sin 06,9092 + d2)|p + C (B.30)
~ 1 . R R (0 ~ m .. A ~ o ~
0= —dola = 5[5 + bl +0p[&) + 7 (Flg + ™ +#sin 00,0 (¥ +d°)|o +C (B31)

~ 1 R R R ~ m . oA ~ o ~
5(1—|—N):—¢g\c—§(vr|é+ve\20+v¢|é)+mﬂil(\mc—&-e) 4 fsin 00,Q00(82 + d*)%c + €. (B.32)

From these equations we obtain three constants (3, C and € or 1o Using the three constants
and the two potentials, we solve the first integral of equation of motion for the matter density:

—g — 1(@3 02+ 02) + L0 (B 4 )™+ Fsin 00,00 (B2 + d2) 4 C. (B.33)

1
ON
B+ N)p 5 m1

B.2.2 The case of Fermi gas

Second, we describe the case of magnetized white dwarfs. Three points of the star (point P, Q
and C) are the same as in the case of neutron stars, but the terms on the left-hand side of Egs.
(B.30), (B.31), (B.32) are different. We use the right-hand side of the Eq. (B.24) and express
as follows:

~ 1,. R . (1 ~ m .. A ~ o -
ﬁ=f¢g|Pf§(vr|%+v9\%+m%)+m“jl(qf\p+e) T 7 sin 00, Q0 (82 + d*)*|p + €, (B.34)
~ 1,. R R { ~ m . oA ~ . ~
B=—bgla — 5 (0rlly + Dol +0,[5) + L5 (Flo + )™+ + #5in00,00(8° +d*)@ + €', (B.35)

I
[NE

[N

o (5) 5

In 1 ~ A~ ~ i T m A e ~ A e « A
} = —dle — 5 (0rfE + ol + 0p2) + s (Flo + ™ 4 7 sin 09,00 (87 +d)% e + €.
(B.36)

From these equations we obtain three constants /3, C and Qq or ftp. Using the three constants
and the two potentials, we solve the first integral of equation of motion for the matter density:

B

R 272 N
3 R 1 . .. .
1+ (p—g’o) ] = 3y — 507 + 0§ +03) + m“i (04" 4 7sin00,Q0(F + )+ O (B3D)

B.2.3 The case of toroids

Finally, we describe the case of the magnetized toroids (right panel in Fig. B.1). We consider
the gravitational potential from the central star <MG / 47rf’) in this case. At the inner surface

(point P), i.e. at 7 = ¢ and # = m/2, and at the outer surface (point Q), i.e. at 7 = 1 and
0 = /2, the density must vanish. At the point where the density takes its maximum value
(point C), i.e. at 7 = T,y and € = O,,,«, the dimensionless density must be unity. These three
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@ (b)

0.5 e e M &

0 0.2 0.4 0.6
r r

Figure B.2: Numerical (points) and analytical (lines) solutions of each model. Left panel(a): N,y = 65 (r = [0 :
1)), Ng = 257 (8 = [0 : 7)) solutions. Right panel(b): N,; = 129, Ny = 257 solutions. The solutions in (b)
represent the analytical solutions very well.

conditions are expressed as follows,

n MC 1 N N ~ 7 > m A s A~ A T @ A
0=—dglp+ 5| = 5@elb +00lb + 0, [3) + m“i C(Flp " 4 fsin00,Q(8 + d) | + O, (B3B)
0=—¢glq + Me —l(ﬁr|2Q+’f/9|2Q+’[} o) + fio (Ulg + &)™ + #5in 00,00 (U* + d*)*lo + C, (B.39)

g 4rr Q 2 ® m+1 ® )

~ MC 1 N N N (i = m A . A A T [e% A
B+ N) = —dgle + = — 5 T|é+vg\é+v¢|%)+m“jl(\l/|o+e) T4 #5in 00,Q0(U? + d*)|c + C (B.40)

From these equations we obtain three constants /3, C and Qq or f1p. Using the three constants
and the two potentials, we solve the first integral of equation of motion for the matter density:

M. _ 1(% 02 4+ 02) + L0 (B 4 )™ 4 sin00,00(F% + d2)* +C. (BAL)

1 ~
BN —
AL+ N)p St 17 T3 m+ 1

The newly obtained density and other quantities are used as a new guess for the next iteration
cycle. We carry out this iteration procedure until the relative changes of all physical quantities

between two iteration cycles becomes less than some prescribed small number, 10~% ~ 1076,

B.3 Accuracy check for numerical computations in chapter 5

We have seen the convergence of numerical solutions in order to check the numerical accuracy
in chapter 5. We see the differences between the analytical solution (App. A.3) and numerical
solution changing the mesh numbers (a: N,; = 65, b: N,y = 129 in Fig. B.2), where N4
means the mesh numbers within the stellar region (r = [0:1]). We display the four numerical
and analytical solutions (model I, II, IIT and IV) in Fig. B.2. As seen from the Fig. B.2, the

solutions in (b) represent the analytical solutions very well.
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Figure B.3: Mass density profile (left) and electron number density profile within the crust (right) are displayed.
The horizontal axis is normalized by the stellar radius 7. Dashed lines correspond to the crust-core interface.

ko So po model Mery/Mcer Mcoy/Mco Mer/M Mco/M  js

(Appa) 800 1 0 I 1.23E-4 0.0 0.98 0.00 -
(Appb) 250 1 0 I 1.40E-2 0.0 0.08 0.67 -
(Appc) 30 1 1 I 7.38E-2 3.71E-3 0.07 0.70 1.0
(App-d) 30 1 1 I 1.14E-1 2.41E-2 0.07 0.74 0.0
(App-e) 30 1 1 I 1.21E-1 2.92E-2 0.08 074  -0.05
(App-) 10 -1 01 IV 4.09E-3 6.11E-2 0.08 0.83 0.1
(App-g) 10 -1 01 IV 1.62E-2 3.37E-1 0.02 096  —1.0
(Apph) 10 -1 01 IV 7.73E-3 2.68E-1 0.02 0.95 0.0

Table B.1: Parameters and numerical solutions of models with core magnetic fields. j denotes the strength of the
current sheet on the core-crust boundary.

B.4 Hall equilibria with realistic equation of state

In this section, we employ SLy equation of state (Douchin & Haensel 2001) as a realistic
equation of state in order to treat core and crust simultaneously. The maximum mass reaches
2.05M and can explain ~ 2M, neutron stars (Antoniadis et al. 2013; Demorest et al. 2010).
We obtain both mass density and number density distributions using the SLy equation of state.

3 and calculate mass density and

We fix the maximum density pua.x = 1.0 x 10%g/cm
electron number density distributions (Fig. B.3). The stellar radius and the mass of the model
are M ~ 1.4M and r, ~ 1.3 x 10%cm respectively. The electron number density at the base
of the crust is n, ~ 2.67 x 103¢cm™2 in this model. We calculated 8 models using these mass
density and number density distributions. Numerical results are displayed in Table B.1 and Fig.

B.4.
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Figure B.4: The contours of ¥ in each model (solid line). The inner curve and the outer curve denote the core-crust
interface and the stellar surface respectively. The colour maps denote the magnitude of the toroidal magnetic field
B, normalized by the strength of the dipole component of poloidal magnetic field at the north pole.
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