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Abstract

This dissertation is devoted to the study of three-point functions in the AdS5/CFT4 corre-

spondence, which is a conjectural duality between the N = 4 super Yang-Mills theory in

four dimensions and the type IIB superstring theory on a certain ten-dimensional curved

space called AdS5 × S5 spacetime. The main objective of the thesis is to explain how the

integrability-based approaches help to simplify the computation of three-point functions and

enable us to extract the structures common to both sides of the duality.

After a general introduction of the AdS/CFT correspondence, we begin with a brief

review of the integrability structures in the gauge and the string theory found originally in

the study of two-point functions. Then, in Part II, we review the perturbative computation

of the three-point functions in the gauge theory and explain that it can be reformulated as a

problem of evaluating the scalar products between two different states of a certain integrable

spin chain. Next we summarize several existing expressions for such scalar products and

discuss their behavior in the semi-classical limit, in which the length of the chain and the

number of excitations are both large. Then we derive a new concise formula for such scalar

products, which is expressed as a multiple integral akin to the eigenvalue integrals in the

matrix models, and discuss that it is potentially useful to get a more physical picture of the

semi-classical limit.

In Part III, which is a main part of this thesis, we explain the computation of three-point

functions in the string theory. The strong coupling limit of the gauge theory is known to

be described by the classical string theory on AdS5 × S5. Thus the three-point functions

in such a limit can be evaluated by computing the classical action of the three-pronged

world-sheet plus the boundary terms, which come from the wave function of each string

state. An important observation to be made is that both contributions are expressible in

terms of the quantities, called Wronskians, which fit naturally into the framework of the

integrability-based approach. We evaluate the Wronskians by setting up a certain Riemann-

Hilbert problem and solving it. The resultant expression for the three-point function turns

out to be remarkably simple in spite of the complexity of the contributions from various

parts in the intermediate stages. In addition, it exhibits the structure similar to the one

obtained in the gauge theory. We then perform a detailed comparison with the results in

the gauge theory and discuss the implications.

Finally, in Part IV, we summarize the results explained in this thesis and conclude by

mentioning open problems and future directions.
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Chapter 1

General introduction

1.1 Prelude

String theory, first conceived in the late 1960s as a theory of hadrons, was once abandoned

after the advent of quantum chromodynamics (QCD) because it predicted the existence of

unrealistic massless particles and required the spacetime dimension to be 10. However, it

was subsequently realized that these “unrealistic” massless particles could describe gravitons

and the theory resurrected as a leading candidate for the unified theory of all interactions

including gravity.

String theory, comprised not of zero-dimensional particles but of one-dimensional strings,

has two main features which make it distinct from conventional quantum field theories (see

Figure 1.1.1). The first feature, perhaps the most well-known one, is that a single string

is capable of describing infinitely many kinds of particles including gravitons as vibration

modes. This is often regarded as the most important and the most fundamental property

which makes string theory a candidate for a theory of everything. However, this feature

captures only a partial aspect of the theory as it tells just about the spectrum of the particles

and nothing about their interactions. What is truly important for string theory to be a

consistent theory of all interactions is the following second feature: Infinitely many types

of interactions for infinitely many kinds of particles are described in a unified way by the

geometric structure of the string worldsheet, which glues or splits when the interaction

occurs. This is quite a remarkable property since it is inconceivable anyhow in conventional

field theories that the interactions admit such sort of geometric interpretation.

Vigorous studies in the past thirty years have revealed another important but slightly

bizarre facet of string theory, called duality. Duality is a phenomenon that two seemingly

different theories secretly describe the same physical situation. Of course, duality itself is
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Figure 1.1.1: Two important characteristics of string theory: The realization of infinitely

many particles as vibration modes (left) and the geometric realization of the interactions

(right).

not peculiar to string theory as the longest-known example of duality is the century-old

electric-magnetic duality. However, a distinctive feature of string theory is that it predicts

various new dualities, some of which link theories in totally different guises; they often have

completely different properties and sometimes are defined in different dimensions. Today,

duality has become one of the essential ingredients in string theory, which helps to bring

together diverse theoretical ideas.

Among numerous dualities found in string theory, the one which has been intensively

studied in the past fifteen years is the AdS/CFT correspondence [1–3]. The AdS/CFT corre-

spondence is a conjectural duality between a d-dimensional conformally invariant field theory

and a d + 1-dimensional quantum gravity on the anti-de Sitter space. It is a concrete re-

alization of the old idea, called holography [4, 5], that the dynamics of quantum gravity is

describable in terms of the degrees of freedom living on the boundary of the spacetime. As

such, the AdS/CFT correspondence has had an immense impact on diverse areas of theoret-

ical physics: On the one hand, it is considered to provide a non-perturbative formulation of

quantum gravity in terms of conventional quantum field theories. On the other hand, it has

enabled us to explore the strongly-coupled regime of interacting gauge theories via gravity.

Looking back on the history of string theory, the discovery of the AdS/CFT correspondence

marks a major milestone. It fulfills the dearest dream in the early days of string theory in

rather an unexpected way: String theory indeed describes non-Abelian gauge theories, but

only indirectly through the holography.

Despite its theoretical importance, fundamental understanding as to why and how the

AdS/CFT correspondence holds is still missing even after fifteen years. To provide a motiva-

tional introduction for the rest of this thesis, below we shall attempt a brief but incomplete

“derivation” of the duality. The object, which plays an important role in the heuristic deriva-

tion below, is a D-brane, a higher-dimensional membrane-like object at which strings can

end. In the presence of the D-branes, the worldsheet of a closed string can have several holes,

at which the string interacts with the D-branes (see Figure 1.1.2). Thus, the scattering am-

plitude of the string off the D-branes is evaluated by summing over all possible worldsheets

with a different number, different positions and different sizes of the holes. In the low-energy
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limit, such summation is known to reproduce the summation over the Feynmann diagrams

of a certain non-Abelian gauge theory, and the scattering amplitude of the D-branes and the

string is interpreted as a physical observable of the gauge theory. As a result of summation

over the holes, the dynamics of the closed string will be substantially modified. Such a

modified dynamics can often be described alternatively in terms of the “effective theory”, in

which the effect of the D-branes is replaced with some “effective potential”. Since a D-brane

warps the spacetime by emitting gravitons, which are massless and non-negligible even in the

infrared limit, the effective description in the low-energy limit is provided by a certain curved

geometry. The equivalence of the above two descriptions, the gauge theory and the curved

geometry, is the gist of the AdS/CFT correspondence. The most difficult step to concretize

the above heuristic argument is to perform the sum over the holes explicitly and prove the

equivalence with the effective description in terms of the curved geometry. Such summation

has been performed only in a few examples, most of which are simple “toy models” such as

topological string [6–9] and non-critical string [10,11]. The only known example in the ordi-

nary string theory is the imaginary D-branes [12], the D-branes aligned along the imaginary

time axis. In all these examples, owing to simple dynamics or as a result of Wick rotation,

nontrivial contributions come mainly from holes of infinitesimal size. As an infinitesimal

hole can be naturally replaced with some local operator insertion W , the summation can be

performed explicitly in such cases as follows1:∑
n

gns
n!

(∫
d2zW

)n
→ exp

(
gs

∫
d2zW

)
. (1.1.1)

This expression makes it clear that the summation modifies the action of the closed string

by gs
∫
d2zW and deforms the background geometry2. However, in most of the nontrivial

examples of the AdS/CFT correspondence, including the AdS5/CFT4 correspondence to

be discussed in detail in this thesis, there is no a priori reason to expect that the sum is

1This explanation is intuitive but at the same time somewhat misleading. A more precise statement is as

follows: In general, the contributions from holes can be decomposed into those from the on-shell closed strings

and those from the off-shell closed strings. However, in all the solved examples, the off-shell contributions

are absent. Then, we can replace the remaining on-shell contributions with the vertex operators W by using

the standard state-operator correspondence. Owing to the marginality of the on-shell vertex operators,

the position integration
∫
d2zW is completely well-defined in such cases. Therefore, the summation can

be performed explicitly as shown in (1.1.1). Note that although the integration over the size of the holes

generally produces a propagator of the closed string, 1/(L0 + L̄0), which diverges when the state is on-shell,

such a factor cannot project away all the off-shell states. To realize the projection, we need the term of the

form δ(L0 +L̄0) instead of 1/(L0 +L̄0). In the case of imaginary D-branes, δ(L0 +L̄0) appears naturally from

the propagator as a result of Wick rotation. However, for more general cases, a supplementary mechanism

is necessary to realize such projection.
2To the author’s knowledge, the first work which discussed such a possibility is the paper by Green and

Polchinski [13].
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Figure 1.1.2: The worldsheet of a string in the presence of D-branes. The worldsheet has

several boundaries (depicted in red) at which the string interacts with the D-branes.

dominated by infinitesimal holes3 owing to the lack of any simplification mechanism. Thus,

in most cases, the above heuristic argument is yet to be made rigorous and the duality is

still to be proven.

In short of any rigorous arguments, the best thing we could try is to compute the ob-

servables on both sides of the duality and compare them. As the dual gauge theory is

conformally invariant, there is no clear notion of particles or asymptotic states, with which

we compute S-matrices. Instead, the most natural and the most fundamental objects in

the theory are local operators and the counterparts of the S-matrices are provided by their

correlation functions. Of particular interest among these are two- and three-point functions,

which together constitute the building blocks of the dual gauge theory: One can express any

correlation functions in the theory in terms of two- and three-point functions by performing

the operator product expansion4. Remarkably enough, they are intimately related to the

aforementioned two important characteristics of string theory; the realization of infinitely

many kinds of particles as vibration modes and the geometric description of their interac-

tions. In the AdS/CFT correspondence, the two-point function is considered to describe a

free propagation of a vibrating string in the AdS spacetime and the strength and the di-

rection of the vibration are reflected in the quantum numbers of the local operators. On

the other hand, the three-point function is believed to describe their interactions and the

interaction strength is encoded in the scalar factor, called the structure constant. Therefore,

3We should add that, in an attempt to sum over holes of the planar diagrams using the lightcone gauge

[14], it was suggested that the sum may be dominated by small holes also in the case of the AdS5/CFT4

correspondence.
4Operator product expansion itself can be performed in any quantum field theory. However, in general,

it is not clear if the expansion has a finite radius of convergence. In conformal field theories, it does have a

finite radius of convergence thanks to the conformal symmetry the theory possesses.
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although we lack a first-principle proof of the AdS/CFT correspondence, it would still be

possible to gain new insights into the fundamental mechanism of the duality, which is yet

enigmatic, by closely examining two- and three-point functions and clarifying their relations

to the attributes of string theory.

In this thesis, we mostly focus on three-point functions, and explain the efficient methods

to study them, which are based on the powerful techniques called integrability. As stated

above, three-point functions are of crucial importance since they encode the dynamical in-

formation of the gauge theory and are considered to describe the interactions of the strings.

However, it is not yet understood how the geometric structure of the worldsheet, which is

an essential feature of the dual string theory, is realized in the three-point functions in the

gauge theory. We believe that attempts made in this thesis will pave the way for deciphering

such mysteries in the AdS/CFT correspondence.

1.2 Outline of the thesis

This thesis is devoted to the study of three-point functions in the most typical example of

the AdS/CFT correspondence, called the AdS5/CFT4 correspondence, which is a conjectural

duality between the N = 4 super Yang-Mills theory in four dimensions and the type IIB

superstring theory on a certain ten-dimensional curved space, called AdS5 × S5 spacetime.

The main objective of the thesis is to explain how the integrability-based approaches help

to simplify the computation of three-point functions and enable us to extract the structures

common to both sides of the duality.

In the rest of Part I, we first give a general introduction of the AdS5/CFT4 correspon-

dence. Then, we review how the integrability-based techniques enabled us to compute two-

point functions on each side of the duality. In Part II, we review the perturbative compu-

tation of three-point functions in the gauge theory and explain that the computation can

be reformulated as a problem of evaluating the scalar products between two different states

of a certain integrable spin-chain. Next we summarize several existing expressions for such

scalar products and discuss their behavior in the semi-classical limit, in which the length

of the chain and the number of excitations are both large. Then we derive a new concise

formula for such scalar products, which is expressed as a multiple integral akin to the eigen-

value integrals in the matrix models, and discuss that it is potentially useful to get a more

physical picture of the semi-classical limit.

In Part III, which is a main part of this thesis, we explain the computation of three-point

functions on the string theory side. After recalling the well-known fact that the strong cou-

pling limit of the gauge theory can be described alternatively by the classical string theory

15



on AdS5 × S5, we explain that the three-point function in such a limit can be computed

by evaluating the classical action of a three-pronged worldsheet plus the boundary terms,

which come from the semi-classical wave function of each string. Then we describe the

integrability-based method to compute these two contributions: First, we show that both

of the contributions are expressible in terms of the important quantities, called Wronskians,

which fit naturally into the framework of integrability. Next, we examine the analytic prop-

erties of the Wronskians and set up the Riemann-Hilbert problem. Then, we determine each

Wronskian by solving the Riemann-Hilbert problem in terms of certain convolution integrals,

and present a fairly general formula for three-point functions at strong couping. In spite of

the complexity of the contributions from various parts in the intermediate stages, the final

answer for the three-point function takes a remarkably simple form, exhibiting the structure

reminiscent of the one obtained in the gauge theory. We then perform a detailed comparison

with the results in the gauge theory and discuss the implications.

Finally, in Part IV, we summarize the results explained in this thesis and conclude by

mentioning future directions.

Before ending this introductory chapter, let us clarify which parts of the thesis are based

on the author’s works. All of Part I and most of Part II are devoted to a review of known

results and hence do not contain any original materials. An exception is chapter 5 in Part

II, in which we derive a new integral formula for the scalar products of the XXX spin-chain,

based on the author’s work [15]. On the other hand, Part III is based heavily on the author’s

works [16–18] and most of the materials derived in this part are new and original.
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Chapter 2

AdS5/CFT4 correspondence

The goal of this chapter is to introduce basic facts about the AdS5/CFT4 correspondence.

In section 2.1, we present a heuristic argument connecting N = 4 super Yang-Mills theory

(N = 4 SYM) and type IIB superstring theory on the AdS5 × S5 spacetime based on the

seminal paper [1]. In the course of discussion, we also explain the basics of the WKB analysis

of quantum mechanics, which will play an important role later in Part III. Next, in section

2.2, we explain how the symmetry and the physical observables in two theories are related.

2.1 AdS5/CFT4 correspondence

In the ground-breaking paper [1], which appeared in late 1997, a remarkable duality between

certain superconformal field theories with maximal supersymmetry and superstring theories

on the anti-de Sitter spacetime was conjectured. The paper spurred rapid subsequent devel-

opments and an innumerable number of scientific articles discussing this duality have been

written since then. Among numerous variants of such dualities, the most well-studied one

is the duality between N = 4 super Yang-Mills theory and type IIB superstring theory on

the AdS5 × S5 spacetime, which is often called the AdS5/CFT4 correspondence. In what

follows, following the argument of [1], we will explain how to understand the existence of

such a correspondence.

The starting point of discussion is to consider a stack of D3-branes, which are 3 + 1-

dimensional membrane-like objects existing in type IIB superstring theory. As briefly men-

tioned in section 1.1, the AdS/CFT correspondence can be understood by describing this

physical system in two different ways. Below we shall explain two descriptions in order.
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2.1.1 Low-energy excitation on D-branes

Type IIB superstring theory is a closed string theory defined in ten-dimensional spacetime.

The only scale parameter in this theory is the tension of a string, Ts, which is related to the

length scale of a string `s as

Ts =
1

2π`2
s

. (2.1.1)

The tension and the length scale determine the strength of the quantum fluctuations on

the world-sheet and, when `s goes to zero (and Ts goes to infinity), the string becomes

infinitely rigid and the motion of strings becomes classical. The other important parameter

in this theory is the string coupling constant gs, which governs the interaction strength and

determines the joining and splitting probability of strings. In string theories defined on a

flat spacetime, a string acquires mass M depending on the strength of the oscillation as

M2 =
4Nosc

`2
s

. (2.1.2)

Here Nosc is an integer which describes the strength of the oscillation. Of particular im-

portance in the following discussion are massless modes, namely the modes with Nosc = 0,

which govern the low-energy dynamics of the theory. In the case of type IIB superstring

theory, massless modes consist of gravitons gµν , NS-NS two-forms Bµν , a dialton φ, an axion

χ, R-R two-forms Cµν and R-R four-forms Cµνρσ and their supersymmetric partners. The

theory which consists only of these massless modes is known as type IIB supergravity and

its action is schematically given as follows:

SIIB =
1

16πG
(10)
N

∫
d10x
√
−gR + · · · , (2.1.3)

where G
(10)
N is the ten-dimensional Newton constant. We can relate G

(10)
N with the parameters

in superstring theory by computing observables, such as tree-level scattering amplitudes, in

two theories and comparing their results. As a result of such comparison, we obtain the

following relation:

G
(10)
N = 8π7`8

sg
2
s . (2.1.4)

In the presence of N D3-branes, another kinds of excitations, the excitations of open

strings whose ends are attached to D-branes, also exist. By quantizing such open strings,

we obtain a set of modes akin to (2.1.2), whose massless part precisely coincides with the

spectrum of the maximally supersymmetric U(N) gauge theory, known as N = 4 SYM. The

action of N = 4 SYM is schematically given by

1

2g2
YM

∫
d4xtr

[
−1

2
(Fµν)

2 + · · ·
]
, (2.1.5)
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where gYM is the Yang-Mills coupling constant. gYM can also be related with the parameters

of string theory by comparing scattering amplitudes, and as a result we obtain the following

relation:

g2
YM = 4πgs . (2.1.6)

The full action describing N D3-branes in the flat R1,9 spacetime is thus given by the sum

of three parts; the action of closed strings, which include type IIB supergravity as a massless

sector, the action of open strings on D3-branes, which include N = 4 super Yang-Mills

theory as a massless sector and the action for the interaction between them. Schematically,

it is given by

Stotal = Sclosed + Sopen + Sint . (2.1.7)

Sint denotes the interaction between open strings, which describe field theoretical degrees

of freedom, and closed strings, which describe gravitational degrees of freedom. Since the

strength of such interaction is determined by the ten-dimensional Newton constant, G
(10)
N ,

we can separate out the open string sector and the close string sector by setting G
(10)
N to

zero. Now, owing to the relation (2.1.4), there are two possibilities to realize G
(10)
N → 0

within type IIB superstring theory. One is to set gs to zero and the other is to set `s to

zero. However, in the former case, the whole system becomes non-interacting and we cannot

expect any non-trivial dynamics. Thus, of particular interest is the limit where `s goes to

zero while keeping gs to be finite. In such a limit, the gravitational modes and the field

theoretical modes completely decouple. Therefore, this limit is often called the decoupling

limit. In the decoupling limit, all the massive modes become infinitely heavy owing to the

relation (2.1.2) and become irrelevant in the low-energy physics. As a result, we are left with

the following two mutually decoupled theories:

4d N = 4 U(N) SYM + Free type IIB supergravity . (2.1.8)

An important point here is that N = 4 SYM still has a finite value of the coupling constant

since we kept gs finite in the limiting procedure.

2.1.2 Effective description of the D-brane background

Let us derive an alternative description of the above system, in which the effect of D-branes

are replaced with some “effective potential”. Since D-branes are sources of gravitons, such

effective description is expected to be given by a certain curved geometry1. However, as

1Since D-branes are sources of other fields including the self-dual five-form flux, the effective description

must also includes nontrivial configurations of such fields. However, as they will not play important roles in

the subsequent discussion, we will not discuss them here.
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discussed in section 1.1, it is extremely difficult to derive the effective theory from first

principle starting from a complicated coupled system of open strings and closed strings.

Fortunately, in this case, a candidate of such effective description is already known in

the study of supergravity. The geometry relevant here is the one called the black 3-brane

geometry. The metric of this geometry is given by

ds2 = H(r)−1/2
(
−dt2 + dxidxi

)
+H(r)1/2

(
dr2 + r2dΩ2

5

)
, (2.1.9)

(i = 1, 2, 3)

where dΩ2
5 denotes the metric of the five sphere with a unit radius and H(r) is defined by

the characteristic size of the geometry, to be denoted by R, as

H(r) = 1 +
R4

r4
. (2.1.10)

This background also includes R-R five-form flux and its macroscopic quantum numbers,

most importantly the charge for the five-form flux, perfectly coincide with those of N D3-

branes if we set the radius R as

R4 = 4πNgs`
4
s . (2.1.11)

The use of the black 3-brane geometry as an effective description of closed string theory in

the presence of N D3-branes is an important working hypothesis, which should, ideally, be

proven rigorously from first principles. However, since such a rigorous argument is beyond

our current reach, below we will instead discuss the consequences of this hypothesis.

Let us then consider the decoupling limit of this geometry in order to extract the degrees

of freedom corresponding to N = 4 SYM. As described above, the decoupling limit is the

limit in which the string length `s goes to zero while the string coupling constant gs is finite.

In such a limit, the characteristic size of the geometry R goes to zero owing to the relation

(2.1.11) and the black 3-brane geometry separates into two distinctive regions: In the first

region r � R, H(r) approaches unity and the metric (2.1.9) becomes that of the flat ten-

dimensional spacetime. Then, because of the relation (2.1.2), all the stringy modes become

infinitely heavy. In addition, the Newton constant vanishes in the decoupling limit and, as a

consequence, we are left with free type IIB supergravity. On the other hand, in the second

region r ∼ R, which is close to the horizon, the background geometry remains highly curved.

To describe this near-horizon region, it is convenient to introduce the coordinate z ≡ R2/r

and express the metric in the limit as

ds2 = R2

(
−dt2 + dxidxi + dz2

z2
+ dΩ2

5

)
. (2.1.12)
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The geometry described by the metric (2.1.12) is nothing but the AdS5 × S5 spacetime, a

product of the five-dimensional anti-de Sitter space and the five-sphere, and the coordinate-

system used is known as the Poincaré coordinate. This process of obtaining a nontrivial

geometry by enlarging the region using a suitably scaled coordinate-system near the horizon

is generally called the near-horizon limit. The above argument shows that the decoupling

limit of the coupled system of open and closed strings naturally corresponds to the near-

horizon limit of the black 3-brane geometry. In the near-horizon region, we cannot neglect

massive stringy modes. This is because all the excitations in this region, including ones with

arbitrarily high energy, experience a strong red-shift owing to the warp factor H(r)−1/2, and

are observed by a distant observer as the low-energy degrees of freedom. As a consequence,

we obtain the following two decoupled theories:

Type IIB superstring on AdS5 × S5 + Free type IIB supergravity . (2.1.13)

Note that the theory on the left hand side in (2.1.13) is an interacting superstring theory

since the string coupling constant gs is kept finite in the limit.

2.1.3 Interlude: WKB analysis of quantum mechanics

A notable feature of the decoupling/near-horizon limit is that the system is decomposed into

two sectors and one of them is described by a nontrivial theory including all the stringy

modes while the other is simply given by free type IIB supergravity. It may seem slightly

counter-intuitive that one sector remains interacting and includes all the massive modes

even after the limit where the Newton constant G
(10)
N and the string length `s vanish. In the

discussions above, this peculiarity was attributed to the strong red-shift produced by the

black 3-brane geometry. To obtain a different perspective of this feature, let us now make

a small detour and discuss a much simpler topic; the WKB analysis of the semi-classical

quantum mechanics. Although the semi-classical limit of quantum mechanics certainly is

quite different from the system we have been discussing, it shares some common qualitative

features as we will see below. Another important purpose of making such a detour is to give

a general introduction to the idea of the WKB analysis, which will be heavily used in Part

III.

The WKB approximation is the approximation scheme for the semiclassical limit of quan-

tum mechanics, which is valid when the state has a macroscopic quantum number. In most

regions, such a state can be well-approximated by a simple plane-wave-like function as fol-

lows:

ψ ∼ exp

[
i

~

∫ √
2m(E − V (x′))dx′

]
. (2.1.14)
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However, the approximation (2.1.14) is known to break down in the vicinity of turning points,

which are defined by E − V (x) = 0. To understand the behavior around the turning points,

to be denoted by xt, we need to introduce the rescaled coordinate as

z ≡
(

2m|V ′(xt)|
~2

) 1
3

(x− xt) , (2.1.15)

and consider the scaling limit in which ~ goes to zero while z is kept finite. The Schrödinger

equation in this scaling limit is given as follows:

− ~2

2m

d2ψ

dx2
+ V (x)ψ = Eψ −→ d2ψ

dz2
∓ zψ = 0 , (2.1.16)

where the ∓ sign is chosen according to the sign of V ′(xt). Then the behavior of the wave

function in the vicinity of the turning points can be determined by solving the right equation

of (2.1.16) exactly. The exact solution to (2.1.16) is known to be given in terms of the Airy

function. From the asymptotic behavior of the Airy function, we can determine the behavior

of the wave function ψ in the scaling limit. For instance, when V ′(xt) is negative, we obtain

ψ(z) ∼ 1

2

1

(−z)1/4
exp

(
−2

3
(−z)3/2

)
as z → +∞ ,

ψ(z) ∼ 1

z1/4
sin

(
2

3
z3/2 +

π

4

)
as z → −∞ ,

(2.1.17)

The behavior of the wave function in the scaling limit (2.1.17) leads to the famous connection

formula of the WKB approximation, which tells us how a single-exponential wave function

transforms into a sum of exponentials such as sine or cosine after crossing a turning point.

When combined with the plane-wave-like approximation (2.1.14), which is valid away from

the turning points, the connection formula turns out to be very much powerful: It completely

determines the global structure of the wave function in the semi-classical limit and enables us

to compute various physical quantities, such as the Bohr-Sommerfeld quantization condition,

the energy-splitting in the multi-well potential, the resonance energy and the tunneling

probability. In Part III, we will also see that the method based on the WKB analysis can

be used to compute three-point functions of classical strings.

An important feature of the above analysis is that, although we considered the semi-

classical limit, we needed to solve the Schrödinger equation fully quantum-mechanically in

the vicinity of turning points, (2.1.17). This is somewhat reminiscent of the decoupling/near-

horizon limit, where we had to solve a non-trivial interacting theory near the horizon even

after the limit where G
(10)
N goes to zero. Given this apparent similarity2, it is tempting to

think that the quantum gravity in the near-horizon region is of crucial importance not just for

2To see the similarity more transparently, it is interesting to rewrite the classical action of a non-relativistic
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the study of holography but also for understanding more general properties of the quantum

gravity in a similar way the Schorödinger equation with a linear potential provided essential

information on the global structure of general wave functions. Indeed, there is some evidence

that the near horizon region contains major non-trivial information of quantum gravity. For

instance, it is known that the entropy of a black hole, which is one of the universal and

fundamental properties of quantum gravity, can be reproduced in some cases by studying

their near-horizon regions [20–24]. Therefore, hopefully, the study of AdS/CFT will have a

wider range of applicability, not just to holography, and will play a foundational role in the

future study of quantum gravity.

2.1.4 Basic statement of AdS/CFT correspondence

Let us now go back to the original problem and examine the consequences of two different

descriptions, given respectively in section 2.1.1 and section 2.1.2. By comparing (2.1.8)

and (2.1.13), we notice that both desciptions have the same trivial sector, free type IIB

supergravity. Thus, eliminating the trivial sector, we are led to the following conjectural

relation,

N = 4 SYM = Type IIB superstring theory on AdS5 × S5 , (2.1.18)

which is the basic statement of the AdS5/CFT4 correspondence.

Let us now study the precise mapping of parameters in two theories. Owing to (2.1.6)

and (2.1.11), the coupling constant on the gauge-theory side is mapped to the ratio between

the size of AdS5 × S5 and the string length as follows:

λ(≡ g2
YMN) =

R4

`4
s

, (2.1.19)

where λ is called ’t Hooft coupling constant, which is often used in the large N expansion

of the gauge theories. Since the coupling constants in both theories are related by (2.1.6),

we can express the string coupling constant gs in terms of ’t Hooft coupling constant λ and

the number of colors N as

gs =
λ

4πN
. (2.1.20)

particle into the form,

S =

∫
pidqi −

∫
Hdt =

(∫ √
2m(E − V (q))dqidqi

)
− E(tf − ti) .

This expression is sometimes used to determine the trajectory of a classically moving particle by the vari-

ational principle [19]. In this form of action, we can explicitly see that the turning points correspond to

horizon-like singularities of the “dynamical metric”, ds2 = 2m(E − V (q))dqidqi. It might be interesting to

study this connection but we will not pursue it any further here.
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Let us examine the consequences of the relations (2.1.19) and (2.1.20). Firstly, the

relation (2.1.20) shows that the string theory in AdS5 × S5 becomes non-interacting in the

limit where the number of the colors N goes to infinity and the ’t Hooft coupling constant

λ is kept finite. This limit is known as the ’t Hooft limit and is an ideal starting point for

the detailed analysis. Even in this limit, both sides of the duality remains highly nontrivial.

On the gauge theory side, the ’t Hooft limit is also known as the planar limit, in which

only a restricted class of Feymann diagrams, called planar diagrams3, contribute. The ’t

Hooft coupling constant λ serves as the effective coupling constant in this limit and the

interaction cannot be neglected as long as λ is kept finite. On the string theory side, the

interaction between strings vanishes in this limit. However, since the theory is defined

on a nontrivial curved geometry, the dynamics of a single string is still quite difficult to

understand. Secondly, the relation (2.1.19) is the manifestation of the strong/weak nature

of the AdS/CFT correspondence. For instance, when λ is close to zero, the string theory

becomes highly quantum whereas the dual description is the weakly-coupled N = 4 SYM,

which can be studied by the conventional perturbation. On the other hand, when λ is

sufficiently large, the gauge theory becomes strongly coupled and cannot be explored by any

conventional means while it is described by classically moving strings in the dual description.

The inherent strong/weak nature of the duality is a mixed blessing: On the one hand,

it enables us to explore the previously unaccessible region of each theory with relative ease.

On the other hand, it stands as a great obstacle for checking or proving the correspondence.

A powerful and promising framework which in principle can overcome such difficulties is the

use of integrability. In the rest of the thesis, we will exclusively study the ’t Hooft limit and

see how integrability comes into play in the AdS5/CFT4 correspondence.

2.2 Correspondence of symmetries and observables

Before delving into the details of the integrability-based analysis, let us explain how the

symmetries and observables in two theories are related with each other.

Since the action of N = 4 SYM has no scale parameters, the theory is scale-independent

and conformal at least at the classical level. The conformality is known to survive even at

the quantum level since the β-function of the coupling constant in N = 4 SYM vanishes

to all orders4 in perturbation theory [26]. Combined with the supersymmetry, it enhances

to the superconformal symmetry, which in this case is given by PSU(2, 2|4). On the other

hand, this symmetry is realized geometrically on the string-theory side. For instance, the

3Planar diagrams are diagrams which can be drawn on a two-sphere. Other diagrams are called non-planar

diagrams.
4For a non-perturbative argument, see [25].
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isometry of the AdS5 × S5 spacetime is known to be given by SO(4, 2)×SO(6), which is a

bosonic part5 of PSU(2, 2|4).

Let us next turn our attention to the correspondence of the observables. Since N = 4

SYM is conformal, natural observables in this theory are correlation functions of gauge-

invariant operators. Of particular importance are two-point functions and three-point func-

tions. This is because two-point functions encode the spectrum of the theory and three-point

functions determine the essential dynamics. Furthermore, they together determine all the

other correlation functions through the operator product expansion (OPE).

Given their importance, let us now take a closer look at these two quantities. Below we

will exclusively discuss correlation functions of special composite operators, called single-

trace operators, which consist of a single color-trace and are of the form tr (Φ1Φ2DµΨ · · · ).
Owing to conformal invariance, the spacetime dependence of two- and three-point functions

of such operators are completely determined as follows:

Gij(x1, x2) = 〈Oi(x1)Oj(x2)〉 =
δij

|x12|2∆i
, (2.2.1)

Gijk(x1, x2, x3) = 〈Oi(x1)Oj(x2)Ok(x3)〉

=
1

N

C123

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1|x31|∆3+∆1−∆2
. (2.2.2)

Note that, when the single-trace operators are defined such that they satisfy the normalized

two-point functions (2.2.1), the universal prefactor, 1/N , always appears in (2.2.2) to take

into account the normalization condition. As the spacetime dependence is completely fixed,

the dynamical details of the theory are encoded only in two observables, ∆i and Cijk.

The first quantity ∆i is called the conformal dimension and represents the eigenvalue of

the dilatation transformation, xµ → axµ. By conformal transformation, local operators in

R4 are mapped to certain states in R × S3. Under such a transformation, the dilatation

transformation in R4 is transformed into the “Hamiltonian” of R × S3, where R plays the

role of the time axis. Therefore ∆i’s can also be interpreted as the energy of the state in

R × S3. In general, ∆i’s receive quantum corrections and the difference between the exact

conformal dimension and the bare (tree-level) conformal dimension is called the anomalous

dimension. The second quantity Cijk is called the structure constant and determines the

“interaction” of the operators. More precisely, if we perform the OPE expansion of the first

two operators Oi and Oj, the third operator Ok appears in the expansion with a coefficient

proportional to Cijk.

5 If we also consider the fermionic coordinates, we can explicitly see that the full symmetry PSU(2, 2|4)

is realized geometrically.
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Let us next discuss the dual descriptions of these observables. In the AdS/CFT corre-

spondence, the single-trace operators in the gauge theory are considered to be dual to the

single string states in AdS5 × S5. Since the conformal transformation SO(4,2) is realized as

an isometry group on the string-theory side, the dimension of the operator ∆ is naturally

identified with the charge for the isometry transformation corresponding to the dilatation.

This point of view is useful when we discuss general correlation functions of the dual gauge

theory on R4. However, when we focus on the conformal dimension alone, it is more con-

venient to take the boundary to be R × S3 and identify ∆ with the energy E of the string

state in the following way:

E = ∆ . (2.2.3)

This is the key relation extensively used in the study of two-point functions. On the other

hand, the structure constant is related to the interaction of three different string states. In the

first-quantized formulation of string theory, a natural observable describing the interaction

of strings is the worldsheet correlation functions given schematically as follows:∫
d2z1 · · · d2zn

Möbius
〈V1(z1) · · · Vn(zn)〉 , (2.2.4)

where Möbius denotes the volume of the residual conformal Killing group, which is the Möbius

group for spherical worldsheets. In flat spacetime, the worldsheet correlation functions of the

form (2.2.4) describe the scattering amplitudes of strings. In this case, however, we expect

that they correspond to the correlation functions in the gauge theory, which are the most

natural observables in the present set-up. Of course, without any explicit construction of

vertex operators Vi, this is just a conjecture. However, as we will see in Part III, we can

reproduce several important properties of the gauge theory correlation functions starting

from the expression (2.2.4), at least in the classical limit of the string theory. In the case

of three-point functions, (2.2.4) simplifies since we can fix the positions of three operators

using the residual conformal Killing group. Thus, the correspondence relation for three-point

functions is given by

Gijk(x1, x2, x3) = 〈Vi(z1)Vj(z2)Vk(z3)〉 , (2.2.5)

where z1, z2 and z3 are arbitrary points on the worldsheet6. The detailed information of the

gauge theory operators, including their insertion points, are expected to be contained in the

detailed forms of the operators Vi’s.

The relations (2.2.3) and (2.2.4) show that the two important characteristics of string

theory, the existence of infinitely many kinds of particles and the geometrical realization of

6Since the vertex operators satisfy the physical-state condition, (2.2.5) will not depend on zi’s.
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their interactions, are related with the two fundamental building blocks of N = 4 SYM. In

the subsequent chapters, we will explore these relations further using the powerful techniques

of integrability.
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Chapter 3

Two point functions and integrability

In this chapter, we summarize basic facts on integrability in the AdS5/CFT4 correspondence,

which will be used in the subsequent chapters. In section 3.1, we discuss one-loop renormal-

ization of the operators which consist only of scalar fields, following the paper [27]. As a

result, we find that the mixing matrix, which determines the anomalous dimensions, coin-

cides with the Hamiltonian of a certain integrable spin chain. Then we focus on a particular

class of operators, belonging to the so-called SU(2)-sector, and explain the integrability-

based method to diagonalize the Hamiltonian. Next in section 3.2, we review the classical

integrability of the string theory. We first explain the full integrable structure of the string

theory on AdS5×S5. Then, we focus on strings moving in a subspace S3 and discuss a more

detailed structure. In section 3.3, we then discuss a certain limit where we can compare

the gauge theory side and the string theory side directly. Last in section 3.4, we briefly

summarize the subsequent developments on two-point functions and explain the motivation

to study three-point functions.

3.1 One-loop integrability in gauge theory

In this section, we review the one-loop integrability of gauge theory, found originally in

[27], and show that the dilatation operator at one-loop can be naturally identified with

the Hamiltonian of a certain integrable spin chain. We also explain an efficient method to

diagonalize such spin chains, which is called the algebraic Bethe ansatz.

3.1.1 N = 4 super Yang-Mills theory

Before starting to discuss the one-loop integrability, let us write down the action of the

N = 4 super Yang-Mills theory, which is a maximally supersymmetric gauge theory in
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four-dimensional spacetime. The fundamental fields in this theory are six real scalars Φi

(i = 1, . . . , 6), gluons Aµ (µ = 0, . . . , 3) and four Weyl spinors ψ, all of which are in the

adjoint representation of U(N). The four Weyl spinors can be expressed alternatively by

sixteen component Majorana-Weyl spinor Ψ in ten dimensions and we will use this notation

in what follows. Written explicitly, its action is of the following form:

SYM =
1

2g2
YM

∫
d4x tr

(
−1

2
(Fµν)

2 + (DµΦi)
2 −

∑
i<j

[Φi,Φj]
2 + iΨ̄ΓµDµΨ− Ψ̄Γi [Φi ,Ψ]

)
,

(3.1.1)

where the covariant derivative Dµ and the field strength Fµν are defined in a usual way as

Dµ• = ∂µ − i [Aµ, •] , Fµν = ∂µAν − ∂νAµ + [Aµ , Aν ] , (3.1.2)

and ΓA = (Γµ,Γi) is the 16×16 Dirac matrices in ten dimensions normalized to tr
(
ΓAΓB

)
=

16δAB. As mentioned in section 2.2, N = 4 super Yang-Mills theory is known to be conformal

and the coupling constant gYM does not run under the renormalization group flow1.

The main objects to study in the following discussions are the single-trace operators,

which are gauge-invariant and are of the following form,

O(x) = tr (Φi1DµΦi2DνΨΦi3 · · · ) (x) . (3.1.3)

An important point in the expression (3.1.3) is that all the fields in the trace are inserted

at the same point in the four-dimensional spacetime. Therefore, if we consider the quantum

corrections, the näıve expression (3.1.3), to be called bare operators, gives divergent results

unless we perform appropriate composite-operator renormalization.

3.1.2 SO(6) spin-chain from dilatation operator

As mentioned above, we need to renormalize composite operators in order to obtain finite

correlation functions at loop levels. Renormalized operators are in general given by linear

combination of bare operators as follows:

Oren
A = ZA

BO0
B , (3.1.4)

where Oren denotes a renormalized operator and O0 denotes a bare operator. The prefactor

ZA
B in (3.1.4) is determined such that the renormalized operators give finite correlation

functions and depends on the cut-off Λ. In the present context, it is convenient to take the

1By contrast, the wave-function renormalization exists in this theory.
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renormalized operators such that they provide the orthonormal basis of two-point functions

as

〈Oren
A (x1)Oren

B (x2)〉 ∝ δAB . (3.1.5)

Since N = 4 SYM is a renormalizable field theory in four dimensions, the divergence we

encounter is of the form ln Λ and ZA
B can in general be expressed as follows:

ZA
B(Λ) =

(
eĤ ln Λ

)
A

B , (3.1.6)

where the matrix Ĥ is defined by

Ĥ =
d lnZ

d ln Λ
, (3.1.7)

and is called the mixing matrix and the orthonormal basis for two-point functions can be

obtained by diagonalizing this matrix.

Owing to the explicit cut-off dependence of ZA
B, the renormalized operator has differ-

ent conformal dimension from the corresponding bare operators. To see this explicitly, let

us consider the eigenstate of Ĥ and denotes its eigenvalue by γ. Then, as the dilatation

transformation xµ → axµ also acts ln Λ as ln Λ → ln Λ − ln a, the renormalized operator is

transformed as

Oren → a−(∆0+γ)Oren , (3.1.8)

where ∆0 is the conformal dimension of the bare operator. The equation (3.1.8) clearly shows

that the conformal dimension of the renormalized operator is given by ∆0 +γ. Therefore, to

compute the loop corrections to the conformal dimensions, we need to perform the following

steps.

1. First, determine ZA
B by the perturbation such that the renormalize operators give

finite correlation functions.

2. Then, diagonalize ZA
B and compute the eigenvalues of Ĥ.

As two-point functions are determined completely by the conformal dimensions, these pro-

cedures also fix the quantum-corrected two-point functions.

Let us perform the above procedures to a special class of single-trace operators, which

consist only of scalar fields. Such a class of operators, which have the following form, is

called the SO(6)-sector:

Oi1i2i3... = tr (Φi1Φi2Φi3 · · · ) . (3.1.9)
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Since the details are given in [27], below we only explain the gist of the computation. At one-

loop, there are three types of diagrams which contribute to two-point functions of operators in

SO(6)-sector, the gluon-exchange diagram (Figure 3.1.1-(a)), the scalar-interaction diagram

(Figure 3.1.1-(b)) and the wave function renormalization of the fields (Figure 3.1.1-(c)).

Important simplification in the ’t Hooft limit is that the diagrams connecting non-adjacent

fields in the trace are suppressed by 1/N . Therefore, only diagrams we need to consider

are diagrams which connect neighboring two fields. To evaluate their contributions, let us

examine scalar-interaction diagrams as an example. Scalar-interaction diagrams come from

the commutator-squared term [Φi,Φj]
2 in the action (3.1.1). By expanding the squrare, we

can see that such interactions consist of the following two different terms:

[Φi,Φj]
2 = 2ΦiΦjΦiΦj − 2ΦiΦiΦjΦj . (3.1.10)

An important feature of (3.1.10) is that the relative weight of two terms depend on the

ordering of SO(6)-indices. This feature, together with the aforementioned property that

only neighboring two fields get quantum corrections, strongly indicate that the single-trace

operator can be interpreted as a certain spin chain with the nearest-neighbor interaction.

Figure 3.1.1: Diagrams which are relevant for the computation of the one-loop anomalous

dimensions. (a) Gluon exchange diagram. (b) Scalar interaction diagram. (c) Wave function

renormalization.

To explicitly compute the factor ZA
B, we need to calculate the following correlation

function,

〈Oi1i2···(x)Φj1(x1)Φj2(x2) · · · 〉 , (3.1.11)

and determine ZA
B such that the correlation function after the renormalization,

〈Oren
i1i2···(x)Φren

j1
(x1)Φren

j2
(x2) · · · 〉 , (3.1.12)

is completely finite. Here Φren
i is a renormalized scalar field defined by Φren

i = Z
−1/2
Φ Φi.

31



Carrying out this procedure, we find, for instance, that the contribution from the scalar-

interaction is given as follows:

Z
(scalar)
...ilil+1...

...jljl+1... = 1− λ

16π2

(
2δil

jl+1δil+1

jl − δiljlδil+1

jl+1 − δilil+1
δjljl+1

)
ln Λ , (3.1.13)

where the term 2δil
jl+1δil+1

jl comes from the first term in (3.1.10) and and the terms−δiljlδil+1

jl+1

and −δilil+1
δjljl+1 come from the second term in (3.1.15). Putting together all possible con-

tributions, we obtain the full one-loop result as follows:

Z...ilil+1...
...jljl+1... = 1 +

λ

16π2

(
−2δil

jl+1δil+1

jl + 2δil
jlδil+1

jl+1 + δilil+1
δjljl+1

)
ln Λ . (3.1.14)

Therefore, the mixing matrix at one-loop is given by

Ĥone−loop =
λ

16π2

∑̀
n=1

(−2Pn,n+1 + 2In,n+1 + Kn,n+1) , (3.1.15)

where the matrices, I, P and K, act on the SO(6)-indices as

I| . . . , i, j, . . .〉 = | . . . , i, j, . . .〉 ,

P| . . . , i, j, . . .〉 = | . . . , j, i, . . .〉 ,

K| . . . , i, j, . . .〉 = δij

6∑
k=1

| . . . , k, k, . . .〉 ,

(3.1.16)

where we denoted the SO(6)-indices as | . . . , i, j, . . .〉 in order to make clear the connection

with the spin chain. A crucial feature of the mixing matrix (3.1.15) is that it coincides with

the Hamiltonian of the SO(6) integrable spin chain [28, 29]. Making use of this connection,

we can diagonalize the mixing matrix using the standard techniques in integrability. In the

next subsection, we will explain one such technique, called the algebraic Bethe ansatz.

In the above computation, we have not heavily used the features peculiar to N = 4

SYM. This suggests that the identification of the mixing matrix with the Hamiltonian of

the integrable spin chain may work also in other theories. In fact, in [30], it was shown

that the one-loop mixing matrix in a sub-sector of the large N QCD can also be identified

with the integrable spin chains. However, a distinctive feature of N = 4 SYM is that such

identification works for all the single-trace operators and can be extended to higher-loop

orders, as we will mention shortly. Such features do not exist in most theories.

3.1.3 SU(2)-sector and algebraic Bethe ansatz

Having seen that the single-trace operators composed only of the scalar fields are identified

with SO(6) spin chains, let us now consider a more special class of operators, which are made
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up of two complex scalars,

Z = Φ1 + iΦ2 , X = Φ3 + iΦ4 . (3.1.17)

This class of operators is called the SU(2)-sector and the mixing is known to be closed within

this sector at all orders in perturbation theory. This is simply because the dilatation only

mixes the operators with the same bare conformal dimensions at the level of perturbation

theory and there are no scalar operators outside the SU(2)-sector which have the same bare

dimension and the same R-charges. This is why operators in the SU(2)-sector are widely

studied in the literature. However, let us stress that the notion of “sectors” exists only at

the level of perturbation theory and there is an indication that the SU(2)-sector is not closed

non-perturbatively [31].

The operators in the SU(2)-sector can be naturally identified with the states in the

ordinary SU(2) spin chain in the following way:

tr (ZXZXZZ · · · ) ↔ | ↑ ↓ ↑ ↓ ↑ ↑ · · · 〉 . (3.1.18)

Then, the mixing matrix reduces to the Hamiltonian of the well-known Heisenberg spin-

chain,

Ĥone−loop =
λ

8π2

∑̀
n=1

(In,n+1 − Pn,n+1) , (3.1.19)

which is known also as the XXX spin chain. The Hamiltonian (3.1.19) can be recast into a

more familiar form as

Ĥone−loop =
λ

4π2

∑̀
n=1

∑
i={x,y,z}

(
1

4
− SinSin+1

)
, (3.1.20)

where Sx,y,zn are local spin operators.

There are several ways to diagonalize the Hamiltonian (3.1.19). The most intuitive one

is called the coordinate Bethe ansatz, in which we first assume a rough form of the wave

function and later determine unfixed constants such that the wave function becomes the

eigenvector of Ĥ. A more sophisticated method, which we will explain below, is called the

algebraic Bethe ansatz. In this method, we use certain algraic relations and systematically

construct the eigenvectors. The third method is Sklyanin’s separation of variables2, which

we will fully describe in chapter 5.

Let us now explain the algebraic Bethe ansatz. The basic ingredient in the framework

of the algebraic Bethe ansatz is the so-called Lax operator acting on the product of the

2Originally, it was called the functional Bethe ansatz.
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spin-chain Hilbert space H and an auxiliary vector space. In the case of the XXX spin 1/2

chain with L sites, H is the tensor product of L copies of a two-dimensional vector space,

consisting of the up-spin state |↑ 〉 and the down-spin state |↓ 〉 at each site, and the auxiliary

space has the structure of C2. The Lax operator Ln(u) acting on the n-th site is then given

by

Ln(u) ≡ u1 + i
∑

k=x,y,z

Sknσ
k =

(
u+ iSzn iS−n
iS+

n u− iSzn

)
, (3.1.21)

where Skn are the local spin operators3 and u is the complex spectral parameter. We will

impose the periodic boundary condition so that Skn+L = Skn. Going around the spin chain,

we define the monodromy matrix Ω(u) as

Ω(u) ≡ L1(u− θ1) · · ·L`(u− θ`) ≡

(
A(u) B(u)

C(u) D(u)

)

= u`1 + iu`−1

( ∑
k=x,y,z

Skσk + i
∑̀
j=1

θj

)
+O(u`−2) . (3.1.22)

Here Sk =
∑

n S
k
n are the total spin operators and we have introduced the inhomogeneity

parameters θ = {θ1, . . . , θ`} at each site, which preserve the integrability. As will be discussed

in Part II, they are necessary for avoiding certain degeneracies in the intermediate steps of

computing three-point functions and are also useful for other purposes4. However, for the

purpose of this section, we can simply set them to zero.

Although the actions of the operators A(u)–D(u) on H are in general quite complicated

and non-local, they are known to satisfy rather simple exchange relations, which we call

3We define S±n as S±n ≡ Sxn ± iSyn.
4Although the physical meaning of the inhomogeneity parameters in the context of the three-point func-

tions has not been fully clarified, they are useful in generating loop corrections from the tree-level contribu-

tions [32,33]. See also the discussion part, Part IV.

34



Yang-Baxter algebra [34]. Written explicitly, they are given by

(u− v)A(v)B(u) = (u− v + i)B(u)A(v)− iB(v)A(u) ,

(u− v)B(v)A(u) = (u− v + i)A(u)B(v)− iA(v)B(u) ,

(v − u)D(v)B(u) = (v − u+ i)B(u)D(v)− iB(v)D(u) ,

(v − u)B(v)D(u) = (v − u+ i)D(u)B(v)− iD(v)B(u) ,

(v − u)C(v)A(u) = (v − u+ i)A(u)C(v)− iA(v)C(u) ,

(v − u)A(v)C(u) = (v − u+ i)C(u)A(v)− iC(v)A(u) ,

(u− v)C(v)D(u) = (u− v + i)D(u)C(v)− iD(v)C(u) ,

(u− v)D(v)C(u) = (u− v + i)C(u)D(v)− iC(v)D(u) ,

[C(v), B(u)] =
i

u− v
[A(v)D(u)− A(u)D(v)] =

i

u− v
[D(u)A(v)−D(v)A(u)] ,

[D(v), A(u)] =
i

u− v
[B(v)C(u)−B(u)C(v)] =

i

u− v
[C(u)B(v)− C(v)B(u)] ,

[B(u), B(v)] = [C(u), C(v)] = [A(u), A(v)] = [D(u), D(v)] = 0 .

(3.1.23)

Let us sketch the derivation of the algebra (3.1.23). Of extreme importance in the deriva-

tion are the commutativity of the Lax operators defined at different sites,

[Ln(u), Lm(v)] = 0 (n 6= m) , (3.1.24)

and the following “commutation relations” of the Lax operators defined at the same site:

[R(u− v)]ab ik [Ln(u)]i j [Ln(v)]k l = [Ln(v)]b k [Ln(u)]a i [R(u− v)]ik jl , (3.1.25)

where [Ln(u)]i j is a (i, j) component of the 2× 2 matrix (3.1.21). R(u− v) is the operator

acting on the tensor product of the auxiliary vector spaces, C2 ⊗ C2, and is given by

[R(u)]ik jl = uδijδ
k
l + iδilδ

k
j . (3.1.26)

Using the identity operator I, which preserves the structure of the auxiliary spaces, and the

permutation operator P, which exchanges the two auxiliary spaces, R(u) can be schematically

written as

R12(u) = uI12 + iP12 , (3.1.27)

where the subscript 12 signifies the first and the second auxiliary space respectively. Among

the aforementioned two important relations, (3.1.24) and (3.1.25), the commutativity (3.1.24)
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immediately follows from the explicit form of the Lax operators (3.1.21). On the other hand,

to prove (3.1.25), we need to re-express the Lax operator as follows:

Ln(u) =

(
u− i

2

)
Ia sn + iPa sn , (3.1.28)

where Ia sn and Pa sn are the identity operator and the permutation operator acting on the

tensor product of the auxiliary space, denoted by a, and the spin space at the n-th site, de-

noted by sn. One can verify that the expression (3.1.28) is equivalent to the original definition

(3.1.21) by direct computation. Then, the left hand side of (3.1.25) can be schematically

written as

((u− v)I12 + iP12)

((
u− i

2

)
I1 sn + iP1 sn

)((
v − i

2

)
I2 sn + iP2 sn

)
, (3.1.29)

whereas the right hand side can be written as((
u− i

2

)
I2 sn + iP2 sn

)((
u− i

2

)
I1 sn + iP1 sn

)
((u− v)I12 + iP12) . (3.1.30)

Now it is straightforward to show that the two expressions (3.1.29) and (3.1.30) are equiv-

alent. The matrix R(u), which governs the commutation relations of the Lax operators, is

called R-matrix and is the crux of the matter in the algebraic Bethe ansatz. An important

property of the R-matrix is that it satisfies the following Yang-Baxter relation:

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u) . (3.1.31)

This can be expressed also pictorially as in Figure 3.1.2. Since the Lax operator (3.1.28)

itself is a variant of the R-matrix in this case, (3.1.25) can be understood simply as a

consequence of the Yang-Baxter relation. Now, using (3.1.24) and (3.1.25), we can derive

the commutation relations of the monodromy as

[R(u− v)]ab ik [Ω(u)]i j [Ω(v)]k l = [Ω(v)]b k [Ω(u)]a i [R(u− v)]ik jl , (3.1.32)

which can be schematically written as

R12(u− v)Ω(1)(u)Ω(2)(v) = Ω(2)(v)Ω(1)(u)R12(u− v) . (3.1.33)

The commutation relation (3.1.32) is indeed equivalent to (3.1.23). To see why (3.1.32)

holds, let us consider a two-site chain. In this case, the monodromy matrix is a product of

two Lax operators, Ω(i)(u) = L
(i)
a (u)L

(i)
b (u), where we denoted two sites by a and b. Then,
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R12(u− v)Ω(1)(u)Ω(2)(v) can be computed by a repeated use of (3.1.24) and (3.1.25) as

R12(u− v)Ω(1)(u)Ω(2)(v) = R12(u− v)L(1)
a (u)L

(1)
b (u)L(2)

a (v)L
(2)
b (v)

=R12(u− v)L(1)
a (u)L(2)

a (v)L
(1)
b (u)L

(2)
b (v)

=L(2)
a (v)L(1)

a (u)R12(u− v)L
(1)
b (u)L

(2)
b (v)

=L(2)
a (v)L(1)

a (u)L
(2)
b (v)L

(1)
b (u)R12(u− v)

=L(2)
a (v)L

(2)
b (v)L(1)

a (u)L
(1)
b (u)R12(u− v)

= Ω(2)(v)Ω(1)(u)R12(u− v) , (3.1.34)

where we used the commutativity at different sites (3.1.24) in the equalities denoted in red

and we used the R-matrix commutation relation (3.1.25) in the equalities denoted in blue.

In this way, we have proved (3.1.32) for the two-site chain. For a longer chain, (3.1.32) can

be proven using the mathematical induction.

Figure 3.1.2: A pictorial expression of Yang-Baxter relation.

The asymptotic form of the monodromy matrix (3.1.22) reveals that B(u) and C(u)

are proportional respectively to S− and S+ when u is large. Thus they can be naturally

interpreted as a “creation” and an “annihilation” operator with respect to the vacuum state

| ↑`〉 ≡ |↑〉 ⊗ · · · ⊗ |↑〉︸ ︷︷ ︸
`

, in which all the spins are up. The excitations in this case are called

magnons and their number corresponds to the number of spins down. These features allow

one to construct the Hilbert space H as the Fock space spanned by the M -magnon states,

of the form |u〉 = B(u1)B(u2) · · ·B(uM)|↑`〉 while C(v)|↑`〉 = 0. Here ui’s are called the

rapidities of the magnons. The physical meaning of the rapidities is not clear in the algebraic

Bethe ansatz. However, if we compare the resultant states with the coordinate Bethe ansatz,

it becomes clear that the rapidities are related to the momenta of magnons by

pmagnon = ln

(
u+ i/2

u− i/2

)
. (3.1.35)
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Similarly, the bra-states are generated by the operator C(v)’s as 〈v| = 〈↑` |C(v1)C(v2) · · ·C(vM),

built upon the dual vacuum 〈↑` | satisfying 〈↑` |B(u) = 0 and 〈↑` |↑`〉 = 1. These Fock states

will be referred to as generic Bethe states.

Of particular importance is the transfer matrix given by T (u) ≡ tr Ω(u) = A(u) +D(u).

Owing to the algebra (3.1.23), T (u)’s mutually commute as follows:

[T (u), T (v)] = 0 . (3.1.36)

Therefore, when expanded in powers of u, the transfer matrix generates infinitely many

mutually commuting quantities including the Hamiltonian of the spin chain. More explicitly,

the Hamiltonian (3.1.19) can be obtained from T (u) in the following way (when θi’s are set

to zero):

Ĥ =
λL

8π2
+

λ

8πi

d lnT (u)

du

∣∣∣∣
u=0,θ=0

. (3.1.37)

We can also express the total momentum of the system P as

eiP = (−i)`T (0)
∣∣
θ=0

. (3.1.38)

The (dual) vacuum is known to be the eigenstate of T (u) in the manner

A(u)| ↑`〉 = Q+
θ (u)| ↑`〉 , D(u)| ↑`〉 = Q−θ (u)| ↑`〉 , (3.1.39)

〈↑` |A(u) = 〈↑` |Q+
θ (u) , 〈↑` |D(u) = 〈↑` |Q−θ (u) , (3.1.40)

where Qθ functions are defined as5

Qθ(u) ≡
∏̀
k=1

(u− θk) , Q±θ (u) ≡
∏̀
k=1

(
u− θk ±

i

2

)
. (3.1.41)

Using this fact, the action of T (u) on the generic Bethe state |u〉 =
∏M

i=1B(ui)|↑〉 can

be computed by pushing A(u) and D(u) through B(ui)’s using the exchange relations in

(3.1.23). One then finds that |u〉 becomes the eigenstate of T (u) if and only if the following

sets of equations, called the Bethe ansatz equations, for the rapidities are satisfied:

∏̀
k=1

(
uj − θk + i

2

uj − θk − i
2

)
=

M∏
l 6=j

(
uj − ul + i

uj − ul − i

)
. (3.1.42)

In the coordinate Bethe ansatz, this equation arise as a periodicity condition for the phases

of the magnon excitations as we go around the chain. When this equation is satisfied, the

5As in these definitions, each + (respectively −) superscript on a function signifies that its argument is

shifted by + i
2 (respectively − i

2 ). According to this convention, Q++
θ (u) means Qθ(u+ i), etc. When θk = 0,

the functions Q±θ (u) are often referred to as a(u) (for +) and d(u) (for −).
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Bethe state is said to be on-shell (otherwise called off-shell). In that case, the eigenvalue

tu(u) of the transfer matrix T (u) is given by

tu(u) = Q+
θ (u)

Q−−u (u)

Qu(u)
+Q−θ (u)

Q++
u (u)

Qu(u)
, (3.1.43)

which is sometimes called the Baxter equation (3.1.42) for the Q-function defined as

Qu(u) =
M∏
k=1

(u− uk) . (3.1.44)

The equation (3.1.43) is in fact equivalent to the Bethe ansatz equation. To see this, note

that tu(u) has no poles despite the presence of Qu(u) in the denominator of (3.1.43). Then

the condition that Q+
θ (u)Q−−u (u) + Q−θ (u)Q++

u (u) vanishes at u = uk leads to the Bethe

ansatz equation.

Before closing this section, let us make two additional remarks:

• The energy and the momentum of the on-shell Bethe states can be expressed in terms

of the rapidities as follows:

E =
λ

4π2

M∑
j=1

(
i

uj + i
2

− i

uj − i
2

)
, eiP =

M∏
j=1

uj + i
2

uj − i
2

, (3.1.45)

where E and P are eigenvalues of (3.1.37) and (3.1.38) respectively. As a spin-chain

state, the momentum P can be arbitrary. However, only the spin-chain states with

eiP = 1 correspond to the single-trace operators in the gauge theory, owing to the

cyclicity of the trace.

• The properties of the operators A(u), . . . , D(u) under the global SU(2) generators Si

are often quite informative. For instance, from the transformation properties

[Sz, B(u)] = −B(u) ,

[S+, B(u)] = A(u)−D(u) ,
(3.1.46)

and the algebra (3.1.23), one can show that if the Bethe state |u〉 is on-shell it is

the highest weight state with spin `
2
− M . On the other hand, if it is off-shell, al-

though having the same spin `
2
−M , it is a direct sum of states belonging to various

representations and is not a highest weight state.

3.2 Classical integrability in string theory

The aim of this section is to summarize basic facts on the classical integrability of the string

theory. First in subsection 3.2.1, we briefly review the classical integrability of a superstring
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on AdS5 × S5, reviewing the papers [35–37]. Then in subsection 3.2.2, we describe a string

moving in the S3-subspace of AdS5 × S5 more in detail.

3.2.1 Superstring on AdS5 × S5 as Z4 super-coset

In this subsection, we write down the action of superstring on AdS5 × S5 in terms of Z4-

symmetric super-coset and briefly describe its integrability structure following mainly [37].

First note that the AdS5 × S5 space can be realized as a coset space,

SO(4,2)× SO(6)

SO(4,1)× SO(5)
, (3.2.1)

where SO(4,2)(' U(2,2)) is the isometry group of AdS5 and SO(6)('U(4)) is the isometry

group of S5. Since we are considering superstring theory, the string moves not only in the

bosonic space but also in the fermionic space. The full super-space in which the string moves

is given by the following super-coset,

PSU(2,2|4)

SO(4,1)× SO(5)
. (3.2.2)

Before writing down the action using the coset structure, let us briefly explain the basic

properties of this super-coset. The elements of superalgebra su(2, 2|4) are given by (4|4) ×
(4|4) supermatrices,

M =

(
A B

C D

)
, (3.2.3)

satisfying the following three conditions: First, the bosonic parts A and D belong to u(2, 2)

and u(4) respectively. Second the fermionic parts C and D satisfy

C = B†

(
12×2 0

0 −12×2

)
(3.2.4)

Third, M satisfies the supertraceless condition,

strM = trA− trD = 0 . (3.2.5)

Modding by the matrices proportional to the identity, we obtain the psu(2, 2|4) superalgebra

from su(2, 2|4). The su(2, 2|4) has the following automorphism,

S [M ] =

(
EAtE −ECtE

EBtE EDtE

)
, E =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , (3.2.6)
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which satisfies

S4 = 1 . (3.2.7)

Using this Z4-automorphism, one can decompose the elements of the algebra as

M =
3∑
i=1

M (i) ,
(
S
[
M (n)

]
= inM (n)

)
. (3.2.8)

Written explicitly, they are given by

M (0) =
1

2

(
A+ EAtE 0

0 D + EDtE

)
, M (1) =

1

2

(
0 B + iECtE

C − iEBtE 0

)
,

(3.2.9)

M (2) =
1

2

(
A− EAtE 0

0 D − EDtE

)
, M (3) =

1

2

(
0 B − iECtE

C + iEBtE 0

)
.

(3.2.10)

From the explicit forms of M (0), one can conclude that M (0) precisely corresponds to the

degrees of freedom projected out upon taking the coset, namely the denominator of (3.2.2),

SO(4,1)×SO(5).

Now we are in a position to write down the action of the superstring in AdS5 × S5. For

this purpose, let us consider the current,

J = −g−1dg , (3.2.11)

where g(τ, σ) is a group element of PSU(2,2|4), and decompose it using the aforementioned

Z4-symmetry as J =
∑4

i=1 J
(i). Then, the Green-Schwartz-type action for the superstring

in AdS5 × S5, first constructed by Metsaev and Tseytlin in [38], is given by6

S =

√
λ

4π

∫
str
(
J (2) ∧ ∗J (2) − J (1) ∧ ∗J (3)

)
+ Λ ∧ strJ (2) , (3.2.12)

where we have introduced the Lagrange multiplier Λ to enforce the supertraceless condition

strJ (2) = 0. Here J (2) corresponds to the bosonic coordinates of AdS5 × S5 whereas J (1,3)

correspond to the fermionic corrdinates. Note that J (0) does not appear in the action (3.2.2)

as it represents the degrees of freedom projected out upon taking the coset. The equation

of motion can be derived by considering the first-order variation of this action. The easiest

6The action for the string usually contains the prefactor, 1/(2π`2s). Such a prefactor, combined with the

radius of AdS5 × S5, give the prefactor in (3.2.12), owing to the relation (2.1.19).
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way is to consider an infinitesimal left transformation7, g → δGLg, and see how the action

changes. Then the result is given as the following conservation law:

d ∗ k = 0 , (3.2.13)

where k is the Noether current associated with the global left-transformation symmetry

defined as

k = gKg−1 ,

K = J (2) +
1

2
∗ J (1) − 1

2
∗ J (3) − 1

2
∗ Λ .

(3.2.14)

Let us now discuss the integrable structures of the superstring in AdS5 × S5. Using the

equation of motion (3.2.13) and the flatness condition,

dJ − J ∧ J = 0 , (3.2.15)

which trivially follows from the definition of J , J = g−1dg, we can show that the connection

A(x) = J (0) +
x2 + 1

x2 − 1
J (2) − 2x

x2 − 1

(
∗J (2) − Λ

)
+

√
x+ 1

x− 1
J (1) +

√
(x− 1)

(x+ 1)
J (3) (3.2.16)

is flat regardless of the value of the complex number x, which is called the spectral parameter.

This property is the clearest manifestation of the integrability the system possesses. To see

the integrability more explicitly, consider the following path-ordered exponential of A(x),

called the monodromy matrix, along a nontrivial closed cycle of the worldsheet:

Ω(x; z0) = P exp

(∮
A(x)

)
. (3.2.17)

As indicated, the matrix Ω(x) depends on the base-point of the cycle z0. Owing to the

flatness of A(x), the monodromy matrix will not be affected by the local deformation of the

cycle and its expansion as a function of x around some point yields an infinite number of

conserved charges. Quantities independent of the base-point z0 can be extracted from the

eigenvalues of the monodromy matrix, called the quasi-momenta. In the present case, there

are the following eight quasi-momenta:

u(x; z0)Ω(x; z0)u(x; z0)−1 = diag{eip̂1 , eip̂2 , eip̂3 , eip̂4|eip1 , eip2 , eip3 , eip4} , (3.2.18)

where p̂i’s denote the eigenvalues corresponding to u(2, 2)-part and describe the dynamics

in AdS5 whereas pi’s denote the eigenvalues corresponding to u(4)-part and describe the

7By performing an infinitesimal right transformation, we can derive the conservation laws for the right

Noether current. However, as it is not independent of (3.2.13), we will not write it down here.
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dynamics in S5. Expansions of p̂i and pi as functions of x yield an infinite number of

mutually commutative charges. For instance, the expansions around x =∞ give the global

charges associated the Cartan generators at the leading order,

p̂1

p̂2

p̂3

p̂4

p1

p2

p3

p4


=

2π

x
√
λ



+∆− S1 + S2

+∆ + S1 − S2

−∆− S1 − S2

−∆ + S1 + S2

+J1 + J2 − J3

+J1 − J2 + J3

−J1 + J2 + J3

−J1 − J2 − J3


+O(x−2) , (3.2.19)

where ∆ is the dilatation charge and Si and Ji are angular momenta for AdS5 and S5

respectively. For the string moving in S3, more detailed descriptions, including the explicit

definitions of charges, will be given in the next subsection.

3.2.2 Classical integrability of string on S3

In the previous subsection, we have explained that the superstring theory in AdS5 × S5

possesses classical integrability. However, the argument above was somewhat abstract. Below

we give a detailed description of a string which does not have angular momenta in AdS5 and

moves in the S3-subspace8 of the full S5. The goal of this section is to provide necessary

backgrounds for the computation of three-point functions, which will be discussed in Part

III. A more specific details will be explained in section 7.1.

Let us first write down the action and the equation of motion for the string on S3. The

Polyakov action of a string on S3 is given by9

SS3 ≡
√
λ

π

∫
Σ

d2z∂Y I ∂̄YI , (3.2.20)

where the contraction of indices is defined by V IVI ≡
∑4

i=1(Vi)
2 and Y I are the embedding

coordinates of S3, which satisfy

Y IYI = 1 . (3.2.21)

8In the following discussions, we will concentrate on the bosonic degrees of freedom since the fermionic

part does not give the leading contribution in the classical limit.
9In the study of the spectrum of the string, the worldsheet is often taken to be Minkowskian. However,

to study three-point functions, the worldsheet must be Euclidean.
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Since our main focus in this thesis is on the large N limit of the gauge theory, which

corresponds to the gs → 0 limit in the string theory, we take the worldsheet of the string, Σ,

to be a sphere. We also allow the worldsheet to have several punctures, which correspond to

the insertion points of the vertex operators. Owing to the constraint (3.2.21), the equation

of motion becomes

∂∂̄Y I +
(
∂Y J ∂̄YJ

)
Y I = 0 . (3.2.22)

In addition to the equation of motion (3.2.22), the solutions which describe physical string

states must obey an additional constraint called the Virasoro constraint, which requires the

sum of the AdS contribution and the S contribution to the stress-energy tensor to vanish,

TAdS + TS = 0.

TAdS and TS become singular at the punctures. Near such points, the behavior of the

solution will be determined solely by the operators inserted there and will not depend on

other operators inserted at different points. This means that, for any solutions, the behavior

near the puncture is the same as that of the solution for the two-point function, which

is known explicitly. Since we take the external states to be those without AdS spin, the

AdS part of the solutions for two-point functions can be easily obtained: It is given by an

appropriate SO(4,2) global transformation of the following simple solution10:

zAdS = e2κτ , (3.2.23)

where τ is the cylinder-coordinate, ln z = τ + iσ, and zAdS is the radial coordinate11 of AdS,

which we denoted previously by z in (2.1.12). Since the dilatation charge of the solution

(3.2.23) is computed as

∆ =

√
λ

π

∫ 2π

0

dσ
∂τzAdS

2zAdS

= 2
√
λκ , (3.2.24)

we can express the constant κ in terms of the conformal dimension ∆ as

κ =
∆

2
√
λ
, (3.2.25)

Using the solution (3.2.23), we can compute the AdS part of the stress-energy tensor for

two-point functions TAdS,2pt as follows:

TAdS,2pt =
∂zAdS∂̄zAdS

z2
AdS

=
κ2

z2
. (3.2.26)

10The solution (3.2.23) describes the trajectory of the string which starts from the boundary of AdS at

τ = −∞ and is absorbed by the horizon at τ =∞. The general solution describing two-point functions can

be obtained by performing a SO(4,2) transformation which maps the point at the horizon to an arbitrary

point on the boundary. For details, see [39].
11Since we denote the worldsheet coordinate by z in this section, we used a slightly different notation for

the radius coordinate here.
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Thus, near each puncture zi, TAdS and TS behave generally as

TAdS(z) ∼ κ2
i

(z − zi)2
, TS(z) ∼ −κ2

i

(z − zi)2
as z → zi , (3.2.27)

where κi is related to the conformal dimension of each operator ∆i as κi = ∆i/(2
√
λ).

The embedding coordinates of S3 can be conveniently assembled into a 2×2 matrix with

unit determinant as

Y =

(
Z X

−X̄ Z̄

)
, detY = 1 . (3.2.28)

where Z and X are given by Z = Y1+iY2 and X = Y3+iY4 and Z̄ and X̄ are their conjugates.

Under the isometry group SO(4, 2) = SU(2)L × SU(2)R, they transform as follows:

Y→ ULYUR , UR ∈ SU(2)R , UL ∈ SU(2)L . (3.2.29)

The quantities of central importance in the following discussion are the right current j and

the left current l, defined respectively by

j = Y−1dY , l = dYY−1 . (3.2.30)

Evidently, two currents are related by l = YjY−1. Under the transformation (3.2.29), they

transform covariantly as

j → U−1
R jUR , l→ ULlU

−1
L . (3.2.31)

Then, owing to the equation of motion (3.2.22), we can define two one-parameter families of

flat connections, [
∂ +

jz
1− x

, ∂̄ +
jz̄

1 + x

]
= 0 , (3.2.32)[

∂ +
xlz

1− x
, ∂̄ − xlz̄

1 + x

]
= 0 , (3.2.33)

which we call the right connection and the left connection respectively in the rest of this

thesis. The two connections are related by the gauge transformation of the form

Y
(
∂ +

jz
1− x

)
Y−1 = ∂ +

xlz
1− x

, Y
(
∂̄ +

jz̄
1 + x

)
Y−1 = ∂̄ − xlz̄

1 + x
. (3.2.34)

One of the manifestations of integrability is the existence of an infinite number of con-

served charges. As we have seen in the previous section, they are constructed from path-
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ordered exponentials of the connections (3.2.32) and (3.2.33), which are called the mon-

odromy matrix12,

Ω(x; z0) ≡ P exp

(
−
∮
dz

jz
1− x

+ dz̄
jz̄

1 + x

)
. (3.2.35)

Here we only displayed the monodromy matrix constructed from the right connection since

the monodromy matrix constructed from the left connection Ω̃ is related to Ω as Ω̃ = YΩY−1.

In the present case, the integration path is taken to be a contour encircling a puncture. By

virtue of the flatness of the connection, an expansion of Ω(x) as a function of x around

some point yields an infinite number of conserved charges as coefficients. In particular,

expansions around x = ∞ and x = 0 yield global charges, corresponding to SU(2)R and

SU(2)L respectively, at the leading order in the following way:

Ω(x; z0) = 1− 4πi√
λx
QR +O(x−2) (x→∞) , (3.2.36)

Y(z0)Ω(x; z0)Y−1(z0) = 1 +
4πix√
λ
QL +O(x2) (x→ 0) . (3.2.37)

where the matrices QR and QL are given by

QR ≡
i
√
λ

4π

∮
(jzdz − jz̄dz̄) , QL ≡

i
√
λ

4π

∮
(lzdz − lz̄dz̄) . (3.2.38)

To characterize the string states, it is often more convenient to use quantities independent

of the base point z0. Such quantities can be extracted from the eigenvalues of the monodromy

matrix:

u(x; z0) Ω(x)u(x; z0)−1 =

(
eip(x) 0

0 e−ip(x)

)
, (3.2.39)

where u(x; z0) is the matrix which diagonalizes Ω and the function p(x) is called quasi-

momentum. Reflecting the asymptotics of Ω around x = ∞ and x = 0, p(x) exhibits the

following behavior:

p(x)− p(∞) = − 4π√
λx
R +O(x−2) (x→∞) , (3.2.40)

p(x)− p(∞) = 2πm+
4πx√
λ
L+O(x2) (x→ 0) . (3.2.41)

Here the conserved charges R and L are the (upper) eigenvalues of QR and QL respectively

and m is an integer. Let us now make comments on the definition of p(x). Since p(x) is

12Mathematically speaking, the monodromy matrix should be defined using the anti-path-ordered expo-

nential. It would be more appropriate to call the object defined in (3.2.35) the holonomy matrix. However,

here we adopted the convention extensively used in the literature on integrability in AdS/CFT.
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Figure 3.2.1: Analytic structure of the spectral curve of a string in S3. The wavy lines denote

square-root cuts. There are essential singularities at x = ±1, corresponding to simple poles

of p(x). The node-like points, denoted by crossed accumulate to these points.

defined as a logarithm of the eigenvalue of Ω, it is ambiguous by a multiple of 2π. However,

since most of the important quantities to be discussed below will be defined solely in terms

of the differential dp, such ambiguity is inessential. In addition to the 2π-ambiguity, there

is Z2 ambiguity, p(x)↔ −p(x), which comes from the exchange of two different eigenvalues

of Ω. Such ambiguity will be fixed when we discuss the pole structure of p(x) shortly.

To discuss other nontrivial conserved charges, it is important to study the analytic prop-

erties of p(x). Such analytic structures are encoded in the spectral curve defined by

Γ : Γ(x, y) ≡ det (y1− Ω(x; z0)) = 0 , (3.2.42)

which is equivalent to
(
y − eip(x)

) (
y − e−ip(x)

)
= 0. As we shall show, the spectral curve

Γ has three kinds of analytic structures, namely essential singularities, cusp-like points and

node-like points (see Figure 3.2.1).

Let us first focus on the essential singularities. It is known that the essential singularities

arise at x = ±1, where the Lax connection (3.2.32) becomes singular [40]. To see this, recall

the definition of the monodromy matrix (3.2.35). Near x = ±1, it behaves as

Ω(x; z0) = P exp

[
−
∮
dz

jz
1− x

+O((x− 1)0)

]
(x→ 1) , (3.2.43)

Ω(x; z0) = P exp

[
−
∮
dz

jz̄
1 + x

+O((x+ 1)0)

]
(x→ −1) . (3.2.44)

Since the stress-energy tensor can be expressed in terms of the right currents as

TS(z) = −1

2
Tr (jzjz) , T̄S(z̄) = −1

2
Tr (jz̄jz̄) , (3.2.45)

we can determine the behavior of the eigenvalues from the behavior of TS(z) around the

puncture (3.2.27) as

u(x; z0)Ω(x; z0)u(x; z0)−1 = exp

[
2iπκ

x∓ 1
σ3 +O((x∓ 1)0)

]
(x→ ±1) , (3.2.46)
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where we dropped the subscript i since, in the rest of this section, we focus on the properties

of one particular operator neglecting other operators. The behavior (3.2.46) clearly shows the

existence of essential singularities at x = ±1 (see Figure 3.2.1). Evidently, they correspond

to the simple pole singularities of p(x) of the form

p(x) = − 2πκ

x∓ 1
+O(1) (x→ ±1+) , (3.2.47)

where the superscript + signifies the point on the first sheet of the spectral curve. Note

that requiring p(x) to behave as (3.2.47), not as ∼ +2πκ/(x ∓ 1), completely fixes the

aforementioned Z2 ambiguity.

Next, let us discuss the remaining analytic structures, i.e. the cusp-like points and the

node-like points. These points are collectively called singular points. Both of them are

defined as the zeros of the discriminant ∆Γ of the spectral curve given by

∆Γ ≡
(
eip(x) − e−ip(x)

)2
. (3.2.48)

Note that, although they are singular points of the spectral curve, the quasi-momentum p(x)

is not singular at these points. They are classified according to the order of the zero. If the

order of the zero is odd, i.e. ∆Γ ∼ (x−x(c)
i )2r+1, then such a point is called cusp-like. If it is

even, like ∆Γ ∼ (x−x(n)
i )2r, it is called node-like. Around such a zero, the quasi-momentum

is approximated as

eip(x) ∼ ±
(

1 +

√
∆Γ

2

)
⇒ p(x) ∼ mπ +

√
∆Γ

2i
m ∈ Z . (3.2.49)

This shows that, at the cusp-like points, the spectral curve develops branch cuts. Another

important property of a cusp-like point is that, as shown in Proposition 7.3 in [41], the

monodromy matrix at such a point always takes the form of a Jordan block, namely

Ω(x
(c)
i ) ∼ ±

(
1 ∗
0 1

)
. (3.2.50)

Now consider the properties of the node-like points. The formula (3.2.49) shows that in

this case the spectral curve does not develop a branch cut and such a point is characterized

simply by some integer mi as

p(x
(n)
i ) = miπ . (3.2.51)

As concerns the form of the monodromy matrix, there are two possibilities at a node-like

point. It either takes the form of a Jordan block or is proportional to the identity matrix:

Ω(x
(n)
i ) ∼ ±

(
1 ∗
0 1

)
or ± 1 . (3.2.52)
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Figure 3.2.2: The definition of the a- and b-cycles. On the left figure, we depicted the case

where the branch cut has a finite size while, on the right figure, we depicted the case where

the branch cut shrinks to a point. The reference cut is depicted in red.

As we will see in Part III, in the case of three-point functions, the monodromy matrix nec-

essarily takes the form of a Jordan block at node-like points, owing to the global consistency

of the monodromy on the worldsheet. On the other hand, in the finite gap method, which is

a powerful method to construct the solutions for two-point functions and is briefly reviewed

in section 7.1, the monodromy matrix is assumed to be proportional to the identity matrix

at node-like points.

It is often convenient to regard the node-like points as infinitesimal branch cuts. In fact,

it is known that the node-like points correspond to unexcited modes of the string [41–43]

and one can perturb the classical string solution by inserting a small cut at the position

of the node-like points [37]. This perspective will play a crucial role also when we discuss

three-point functions in Part III.

To extract nontrivial information from the spectral curve, we now introduce a basis of

cycles on the spectral curve. As shown in Figure 3.2.2, a convenient choice is to define the

a-cycles as those which surround branch cuts (including node-like points) counterclockwise

and the b-cycles as those connecting some “reference cut” and the other cuts. Under an

appropriate choice of the branch of the logarithm and the positions of the branch cuts, the

integrals of the differential dp along a- and b-cycles take the following form [42,43]:∮
ai

dp = 0 ,

∫
bi

dp = 2πni , ni ∈ Z . (3.2.53)

In addition to these cycles, it is convenient to introduce four more cycles a0, a∞, b0 and b∞.

The cycles a0 and a∞ surround the points x = 0 and x = ∞ counterclockwise respectively,

while b0 and b∞ connect the reference cut with x = 0 and x = ∞. As discussed in [41],

one can treat these cycles essentially on equal footing with the other cycles. Now using the

a-type cycles, one can define a set of conserved charges called filling fractions as

Si ≡
i

2π

∮
ai

p(x)dz

(
=

∮
ai

zdp

2πi

)
, (3.2.54)
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where

z =

√
λ

4π

(
x+

1

x

)
(3.2.55)

is called the Zhukovsky variable. As will be discussed in section 7.1, when interpreted ap-

propriately as dynamical variables of a string system, p(x) and z are canonically conjugate

and hence the definition (3.2.54) is nothing but that of an action variable. For this reason

the filling fractions are of extreme importance and we will construct the angle variables as

their conjugates in section 7.1. In addition, as will be explained in section 3.3, the filling

fractions can be naturally identified with the number of Bethe roots in the spin chain in

certain limits. Among the Si’s, S0 and S∞ are of special interest since they correspond to

the global charges R and L in the following way:

S0 = L , S∞ = −R . (3.2.56)

It should be remarked that the filing fractions for the node-like points vanish, since p(x) is

not singular at those points:

Sk =
i

2π

∮
xk

p(x)dz = 0 . (3.2.57)

This is consistent with the interpretation of the node-like points as representing unexcited

modes of the string.

3.3 Weak/strong match: Frolov-Tseytlin limit

In the preceding two sections, we have seen that the integrable structures exist both at one

loop in the gauge theory and at the classical limit of string theory. However, these two

descriptions work well in a totally different range of validity, λ→ 0 and λ→∞ respectively.

Thus it is hard to directly relate these two structures. The key to overcome this difficulty is to

consider the states with a sufficiently large R-charge J . Then, we can formally expand both

sides of the duality in powers of λ/J2 and compare the leading terms13 directly. Physically,

this is due to the fact that any quantum system, whether it is spin chain or string, can

be well-approximated by the WKB-approximation when the quantum number is sufficiently

large.

To see this more explicitly, below we take the following steps. First, in subsection 3.3.1,

we discuss the semi-classical limit of the XXX spin chain and its Bethe equation, and show

that the dynamics in such a limit can be well-described by the so-called Landau-Lifshitz

13The comparison of the subleading terms will be briefly mentioned in section 3.5.
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Figure 3.3.1: Condensation of the Bethe roots. In the semi-classical limit, the Bethe roots

align on a certain curve on the rapidity plane and form a branch cut

sigma model. Then, in subsection 3.3.2, we discuss strings with large angular momenta and

show that, in such a limit, the string sigma model on S3 coincides with the Landau-Lifshitz

sigma model at the level of integrable structures.

3.3.1 Semi-classical limit of the XXX spin chain

We have seen that the integrable structure governs both the gauge theory side and the string

theory side. However, an important difference is that the system is inherently defined on a

discretized lattice on the gauge theory side whereas it is defined on a continuous worldsheet

on the string theory side. In order to directly compare the results on both sides and extract

the common structures, it is useful to consider the particular low-energy limit of the spin

chain when the length of the spin waves are large and magnon excitations exhibit collective

motion. In such a limit, one can effectively neglect the discrete lattice structure and describe

the system in terms of the classical motion of collective fields.

To be more precise, we consider the limit where the length of the chain ` and the number

of the magnons M are both large and the ratio M/` is finite. In addition, we scale the

rapidities of the Bethe roots with the length of the chain as u ∼ L. Since the rapidities

are related to the momenta of magnons by (3.1.35), this corresponds to considering the

excitations whose wave lengths are comparable to the length of the chain.

Let us first examine the Bethe equation in such a limit. Setting inhomogeneities to zero

and taking the logarithm, (3.1.42) can be rewritten as follows:

` ln

(
uj + i

2

uj − i
2

)
+ 2mjπi =

∑
l 6=j

ln

(
uj − ul + i

uj − ul − i

)
, (3.3.1)

where an integer mj corresponds to the mode number of the magnon excitation. In order

to study the collective behavior of the magnon excitations, we need to consider a solution
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to the Bethe equations in which a macroscopic number of Bethe roots have the same mode

number. If we take the scaling limit of such solutions, where ` goes infinity and M and uj

are of the order `, the Bethe roots condense into several cuts on the rapidity plane as shown

in Figure 3.3.1. To study such situations, it is convenient to introduce the the resolvent,

G(u) =
M∑
j=1

1

u− uj
, (3.3.2)

and define the “density” of the Bethe roots as

ρ(u) =
1

2πi
(G(u− ε)−G(u+ ε)) for u ∈ C . (3.3.3)

Here ε is an infinitesimally small positive number and C = C1 ∪ C2 ∪ . . . is a set of contours

on which Bethe roots condense, where, on Cj, the roots have the mode number mj. Then,

the logarithmic Bethe equation (3.3.1) in the scaling limit takes the following form14:

2mjπ = G(u+ ε) +G(u− ε)− `

u
for u ∈ Cj . (3.3.4)

The equations (3.3.3) and (3.3.4) can be compactly expressed using the quasi-momentum,

p(u) = G(u)− `

2u
, (3.3.5)

as

p(u+ ε)− p(u− ε) = −2πiρ(u) ,

p(u+ ε) + p(u− ε) = 2πmj ,
for u ∈ Cj . (3.3.6)

Then, the end points of the cut Cj, at which the density ρ(u) vanishes, can be characterized

by

p(u∗) = πmj . (3.3.7)

Notice that the equation (3.3.7) is of the same form as the equation characterizing the branch

points of the quasi-momentum of the classical string (3.2.49). Later in this section, we will

see that the two quasi-momenta are directly related. Note also that the number of magnons

can be read off from the asymptotic behavior of p(x) as

p(x) ∼ M − `/2
x

as x→∞ . (3.3.8)

14Although we take the rapidities to be large, the difference between two rapidities, uj − ul on the left

hand side of (3.3.1), is not necessarily large. Therefore, precisely speaking, we cannot simply replace the

logarithm on the right hand side of (3.3.1) with 2i/(ui−uj) on the right hand side of (3.3.2). However, such

an effect, called the anomaly in the literature, is known to be suppressed by 1/`.
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The similarity with the classical string signa model indicates that the XXX spin chain in

this limit can be described by a certain classical system. Such an expectation is natural in

view of the fact that any quantum system has a semi-classical (WKB) description when the

quantum number is sufficiently large. However, the problem in the present case is that the

fundamental degrees of freedom in the XXX spin chain are given by the spin variables Sx,y,zn ,

which do not have direct classical counterparts. This difficulty can be overcome by the use

of the coherent states of the spin chain. Since the coherent-state description is very effective

to explore the connection with the string sigma model, below we shall review it slightly in

detail.

As a first step, let us discuss the coherent-state description of a single spin-1/2 state. In

what follows, we will use the following definition of the coherent state,

|~n〉 = exp

[
i
θ

sin θ
(~n0 × ~n) · ~S

]
|↑〉 , (3.3.9)

where ~n0 is a unit vector along 3-axis and θ is defined by

~n0 · ~n = cos θ . (3.3.10)

The definition, (3.3.9), can also be expressed in a more explicit manner:

|~n〉 = cos
θ

2
|↑〉 − eiφ sin

θ

2
|↓〉 , (3.3.11)

where φ is defined by n1 + in2 = sin θeiφ. Then the inner product between two coherent

states can be calculated as

〈~n′|~n〉 = cos
θ

2
cos

θ′

2
+ ei(φ−φ

′) sin
θ

2
sin

θ′

2

= exp

(
i
Φ(~n′ , ~n)

2

)√
1− (~n− ~n′)2

4
, (3.3.12)

where Φ(~n′ , ~n) is the area of the triangle drawn on a unit sphere with vertices at ~n1, ~n2 and

~n0:

tan
Φ(~n′ , ~n)

2
≡ sin(θ/2) sin(θ′/2) sin(φ− φ′)

cos(θ/2) cos(θ′/2) + sin(θ/2) sin(θ′/2) cos(φ− φ′)

=
det (~n′ , ~n , ~n0)

1 + ~n0 · ~n+ ~n0 · ~n′ + ~n · ~n′

(
=

(~n′ × ~n) · ~n0

1 + ~n0 · ~n+ ~n0 · ~n′ + ~n · ~n′

)
. (3.3.13)

The (over)completeness of coherent states is given by

1 =
1

2π

∫
d3n δ(~n2 − 1)|~n〉〈~n| , (3.3.14)
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which can be verified as follows:

1

2π

∫
d3nδ(~n2 − 1)|~n〉〈~n| = 1

2π

∫
dθdφ sin θ

(
cos

θ

2
|↑〉 − eiφ sin

θ

2
|↓〉
)(

cos
θ

2
〈↑ | − eiφ sin

θ

2
〈↓ |
)

= |↑〉〈↑ |+ |↓〉〈↓ | . (3.3.15)

Finally the diagonal matrix element of ~S is given by

〈~n|~S|~n〉 =
1

2
~n (3.3.16)

We are now in a position to derive the semi-classical description of the XXX spin chain.

In what follows, we denote the one-loop dilatation operator in SU(2)-sector,

Ĥone−loop =
λ

4π2

L∑
i=1

(
1

4
− ~Si~Si+1

)
, (3.3.17)

simply by H to keep the expressions short. First, we re-express the time evolution operator

e−iHt as an infinite product of discrete time evolutions,

eiHt = lim
ε→0

(1− iεH)t/ε , (3.3.18)

and insert the decomposition of unity (3.3.14) at each step. This leads to the following

expression of the transition amplitude15

〈~nfinal|e−iHt|~ninitial〉 = lim
δ→0

∫
D~n

t/ε∏
I=1

〈~nI | (1− iεH) |~nI−1〉 , (3.3.19)

(~nI=0 ≡ ~ninitial , ~nI=t/δ ≡ ~nfinal) .

Here and below, ~nI denotes a tensor product of ` coherent states at I-th discretized time,

~nI = |~n(I)
1 〉 ⊗ · · · ⊗ |~n

(I)
` 〉. Each factor 〈~nI | (1− iεH) |~nI−1〉 can be evaluated as

〈~nI | (1− iεH) |~nI−1〉 = exp

(
i
∑̀
i=1

Φ(~n
(I)
i , ~n

(I−1)
i )

2

)√
1− (~nI − ~nI−1)2

4
− iε〈~nI |H|~nI−1〉

= exp

(
i

∑`
i=1 δΦ(~n

(I)
i , ~n

(I−1)
i )

2

)
− iε〈~nI |H|~nI−1〉+O(ε2) , (3.3.20)

where δΦ is the infinitesimal change of the area of the spherical triangle given by

δΦ(~n
(I−1)
i , ~n

(I)
i )

2
'
ε
(
~n

(I)
i × ∂t~n

(I)
i

)
· ~n0

2(1 + ~n
(I)
i · ~n0)

. (3.3.21)

15 We use an uppercase letter to denote a discretized time whereas we use a lowercase letter to denote a

site number.

54



Therefore, the transition amplitude can be re-expressed as

〈~nfinal|e−iHt|~ninitial〉 =

∫
D~n(t)eiS , (3.3.22)

where S is defined by

S =
∑̀
i=1

∫
dt

[
(~ni × ∂t~ni) · ~n0

2(1 + ~ni · ~n0)
− λ

32π2
(~ni − ~ni−1)2

]
. (3.3.23)

Note that the first term on the right hand side of (3.3.23) can be re-written as the Wess-

Zumino term as follows:

1

2

∑̀
i=1

∫
dt

∫ 1

0

ds~ni · (∂t~ni × ∂s~ni) , (3.3.24)

where s-dependence of ~ni is defined such that ~ni(s = 1) = (0, 0, 1) and ~ni(s = 0) = ~n.

The equivalence of two expressions can be confirmed in the following way. First let us take

s-dependence of ~n to be

~n(s) = (sin((1− s)θ) cosφ , sin((1− s)θ) sinφ , cos((1− s)θ))t . (3.3.25)

Then the expression (3.3.24) can be rewritten as

1

2

∫
dt

∫ 1

0

ds θ∂tφ sin((1− s)θ) = −1

2

∫
dt cos θ∂tφ . (3.3.26)

On the other hand, the first term in (3.3.23) can be expressed as∫
dt sin2 θ

2
∂tφ = −1

2

∫
dt cos θ∂tφ+ (surface term) (3.3.27)

Since the surface term does not change the dynamics of the system, we thus conclude that

the two expressions are exactly equivalent.

Let us next consider the long wave-length limit of (3.3.23). By taking the näıve continuum

limit of (3.3.23), we obtain the action

SLandau−Lifshitz =

∫
dt

∫ `

0

dσ

[
(~n× ∂t~n) · ~n0

2(1 + ~n · ~n0)
− λ

32π2
∂σ~n · ∂σ~n

]
, (3.3.28)

which is nothing but the action of the famous Landau-Lifshitz model. Although we cannot

usually take the continuum limit in such a näıve way, in this case, the näıve continuum limit

correctly reproduces the scaling limit of the quantum results as we will see shortly. From

(3.3.28), we can derive the following equation of motion:

(∂t~n× ~n0)

2(1 + ~n · ~n0)
− ∂t

(
(~n0 × ~n)

2(1 + ~n · ~n0)

)
− ~n0

1 + ~n · ~n0

(~n× ∂t~n) · ~n0

2(1 + ~n · ~n0)
+

λ

16π2
∂2
σ~n+ C~n = 0 ,

(3.3.29)
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where the constant C is the Lagrange multiplier necessary to incorporate the normalization

condition, ~n · ~n = 1. Although the equation (3.3.29) looks complicated, we can simplify it

by writing the first three terms in terms of the basis of vectors, ~n, ∂t~n and ∂t~n× ~n:

(First 3-terms in (3.3.28)) =
1

2
(∂t~n× ~n) + (Complicated factor)~n (+0× ∂t~n) . (3.3.30)

The coefficients in (3.3.30) can be determined by calculating the inner product between first

three terms in (3.3.29) and ~n, ∂t~n and ∂t~n× ~n. Since the complicated factor in front of ~n in

(3.3.30) can be absorbed into the Lagrange multiplier C, (3.3.29) can be re-expressed as

1

2
∂t~n× ~n+

λ

16π2
∂2
σ~n+ C ′~n = 0 . (3.3.31)

By taking the cross product of ~n and (3.3.31), we finally arrive at the familiar form of the

equation of motion of the Landau-Lifshitz model.

∂t~n =
λ

8π2
~n× ∂2

σ~n . (3.3.32)

The Landau-Lifshitz model is by itself classically integrable and has the following one-

parameter family of connections16:

[∂σ − Jσ , ∂t − Jt] = 0 , (3.3.33)

Jσ =
i

2x
~n~σ =

i

2x

(
n3 n1 − in2

n1 + in2 −n3

)
, (3.3.34)

Jt =
iλ

8π2x2
~n~σ +

iλ

8π2x
(~n× ∂σ~n)~σ . (3.3.35)

From the above connection, one can construct the monodromy matrix as follows.

Ω(x) ≡ P exp

(∫ `

0

dσJσ

)
. (3.3.36)

The quasi-momenta can be defined similarly as in the string sigma model. Namely, we define

the quasi-momenta as the logarithm of the eigenvalue of the monodromy matrix as follows

Ω(x) ∼

(
eipLL(x) 0

0 e−ipLL(x)

)
. (3.3.37)

The main difference from the string sigma model is the singularity of the quasi-momentum:

In the case of the string sigma model, the connection and the quasi-momenta have the

16For a more compact representation, see [40].
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singularity at x = ±1. On the other hand, since the connection of the Landau-Lifshitz sigma

model is singular at x = 0, the quasi-momenta has the singularity at x = 0 as follows:

pLL(x) = − `

2x
+O(1) . (3.3.38)

In addition to the singularity at x = 0, there are cusp-like points (branch points) and the

node-like points, characterized by

pLL(x
(c,n)
j ) = πmj mj ∈ Z . (3.3.39)

The total spin of the system can be read off from the behavior at infinity as

pLL(x) = −S
z
tot

x
+O(x−2) . (3.3.40)

The above three features of pLL(x), (3.3.38)–(3.3.40), exactly coincide with those of the

quasi-momentum in the scaling limit of the XXX spin chain, (3.3.5)–(3.3.8). Since the above

three features can also be regarded as defining relations of the spectral curve, the equivalence

of these features means that the spectral curves of the Landau-Lifshitz model and the scaling

limit of the XXX spin chain coincide.

Before ending this subsection, let us make one extra comment regarding the semi-classical

limit. It may seem slightly bizarre that the low energy limit of the XXX spin chain is

describable by such a näıve continuum limit since we usually need to take into account

the effect of nontrivial renormalization in order to derive the low-energy effective action

correctly. This peculiarity is partly due to the simplicity of the model considered. In [45],

it was shown that the Landau-Lifshitz model is quantum-integrable and the resultant Bethe

equation precisely matches with the continuum limit of the Bethe equation of the XXX spin

chain. In the course of analysis, certain non-renormalization properties have been found and

played an important role. Such non-renormalization properties probably accounts for the

aforementioned peculiarity, although details needs to be worked out.

3.3.2 String with large angular momentum

Having seen that the semi-classical limit of the XXX spin chain is described by the classical

Landau-Lifshitz sigma model, we now move our focus onto the string theory side. The limit

we will discuss below was first discussed by Frolov and Tseytlin [44] and is known as the

Frolov-Tseytlin limit.

In [46], it was shown that the dynamics of fluctuations around such a fast-moving string

can be directly mapped to the dynamics of the Landau-Lifshitz model. In such a limit,

the angular momentum J for the S3 rotation becomes quite large so that the ratio
√
λ/J
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becomes vanishingly small. This limit is useful since we can expand the string-theory result

with respect to the small parameter
√
λ/J and compare it with the gauge-theory result. At

the level of the quasi-momentum, the limit corresponds to taking κ to be sufficiently large

with the mode numbers,
∮
bi
dp, fixed. In order to keep the mode numbers finite, we need to

scale the positions of the branch cuts with κ.

Let us see the relation with the Landau-Lifshitz model at the level of the integrable

structures following the argument of [40]. For this purpose, we consider a string solution

whose left and right SU(2) charges are both proportional to σ3, and subtract off the center

of mass motion in the following way:

Z = e2κτU1 , X = e2κτU2 ,

Z̄ = e−2κτ Ū1 , X̄ = e−2κτ Ū2 .
(3.3.41)

In terms of the variables U1,2 and Ū1,2, one can express the Frolov-Tseytlin limit as follows:

κ→∞ with κ∂τU1,2 , κ∂τ Ū1,2: fixed . (3.3.42)

Let us next study the currents and the connections in the limit. Using (3.3.41), one can

write down the time component of the right current in the Frolov-Tseytlin limit:

jτ = Y−1∂τY = 2κ

[(
n3 n+

n− −n3

)
+O(1/κ)

]
= 2κ [~n · ~σ +O(1/κ)] , (3.3.43)

where 3-vector ~n is related to U1,2 in the following way:

n3 = U1Ū1 − U2Ū2 , (3.3.44)

n+ ≡ n1 + in2 = 2U2Ū1 , (3.3.45)

n− ≡ n1 − in2 = 2U1Ū2 . (3.3.46)

The sigma component of the right current can be determined by the flatness condition,

[∂τ + jτ , ∂σ + jσ] = 0 . (3.3.47)

Owing to the scaling behavior (3.3.42), the flatness condition (3.3.47) can be expressed as

∂σjτ − [jτ , jσ] = O(1) , (3.3.48)

where the left hand side is of the order κ whereas the right hand side of of the order 1 and

thus can be neglected. By expressing jτ as 2κ~n · ~σ and solving (3.3.48), one can express jσ

as

jσ = i (~n× ∂σ~n) · ~σ +O(1/κ) . (3.3.49)
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Therefore, the flat connection in the limit takes the following form:

∂τ +
2κ

1− x2
~n · ~σ +

x

1− x2
(~n× ∂σ~n) · ~σ , ∂σ +

1

1− x2
(~n× ∂σ~n) · ~σ + i

κx

1− x2
~n · ~σ .

To explicitly see the relation with the Landau-Lifshitz model, we introduce rescaled coordi-

nates as

σ̃ =

√
λκ

π
σ , τ̃ = κτ , (3.3.50)

and identify the parameters as

2
√
λκ = ` . (3.3.51)

Note that the rescaling (3.3.50) changes the periodicity of the space-coordinate from 2π to

`. Then, scaling x with κ and neglecting the subleading term, the connection takes the

following form:

∂τ̃ −
λ

8π2z2
~n~σ − λ

8π2z
(~n× ∂σ̃~n) ,

∂σ̃ − i
1

2z
~n · ~σ ,

(3.3.52)

where z is the Zhoukovsky variable defined by

z =

√
λ

4π

(
x+

1

x

)
. (3.3.53)

The connection (3.3.52) coincides in form with that of the Landua-Lifshitz model (3.3.34)

and (3.3.35) under the Wick rotation, t→ −iτ̃ . From the relation (3.3.51), we can conclude

that the Frolov-Tseytlin limit κ → ∞ is essentially equivalent to the semi-classical limit

` → ∞, which we discussed earlier. Therefore, from the results of this and the previous

subsections, we conclude that the classical string and the quantum XXX spin chain coincide

in the Frolov-Tseytlin/semi-classical limit at the level of the integrable structure. This limit

also plays an important role in the study of three-point functions in Part III.

Before ending this section, let us now make two comments. First, under the identification

(3.3.51) and (3.3.53), the quasi-momentum on the string theory side is mapped directly to

the quasi-momentum on the gauge theory side as

pstring(x) ' pLL(z(x)) . (3.3.54)

In particular, the behavior at infinity is mapped correctly as

pstring(x) ∼ −
√
λR

4πx
−→ pLL(z) ∼ −S

z
tot

z
, (3.3.55)
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under the identification R ↔ Sztot. The correspondence of the spectral parameters in two

theories, x ↔ z(x), is motivated also by the form of the all-loop asymptotic Bethe ansatz,

which we will briefly describe in the next section. Second, in the limit we discussed above,

the time component of the left current is given trivially by

lτ = 2κ

[(
1 0

0 1

)
+O(1/κ)

]
. (3.3.56)

Thus, we cannot construct a nontrivial flat connection from the left currents in this limit.

3.4 Further developments

In this section, we briefly review the subsequent developments of the integrability-based

approach to two-point functions17. Although they are not directly relevant to the materials

discussed in the rest of this thesis, it would be important to know the past developments on

two-point functions to motivate the study of three-point functions.

Soon after the seminal work by Minahan and Zarembo [27], one-loop integrability was

extended to include all sorts of single-trace operators in the gauge theory. Subsequently,

the main subject of study gradually shifted to the search of integrability at higher-loop. At

higher-loop, the dilatation operator is described by a long-range spin-chain, with a range of

interaction proportional to the loop order. In [49], it was shown that the dilatation operator

in SU(2)-sector up to three-loop order can be matched with the Hamiltonian of an existing

integrable spin-chain, called Inozemtzev model [50]. In seek of a spin-chain description at

even higher loop order, another integrable spin-chain which also reproduces the three-loop

results in SU(2)-sector, called BDS spin-chain, was found in [51]. The Hamiltonians of these

spin-chains are diagonalizable by the Bethe ansatz when the chain is infinitely long. The

resultant equations, which are correct only in the infinite-length limit, are often referred to

as asymptotic Bethe ansatz equations. Based on the explicit result up to three-loop order,

the all-loop asymptotic Bethe ansatz equation, known today as the BDS equation, was

17It is impossible to cover all the developments so far in this single section. For a comprehensive review

including a number of references, see [47].
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conjectured18 in [51]. Its explicit form is given as follows:(
x+(ui)

x−(ui)

)`
=
∏
j 6=i

ui − uj − i
ui − uj + i

,

u = x(u) +
g2

x(u)
, g2 ≡ λ

16π2
, f±(u) ≡ f(u± i/2) ,

(3.4.1)

However, it was later recognized that the equation needs to be supplemented by an extra

scalar factor σ2 called the dressing phase in the following way:(
x+(ui)

x−(ui)

)`
=
∏
j 6=i

σ2(ui, uj)
ui − uj − i
ui − uj + i

. (3.4.2)

The corrected equation (3.4.2) was generalized to all the sectors [52]. The equations thus

obtained are nowadays called the Beisert-Staudacher equations.

The discovery of the dressing phase is a major achievement in the development of inte-

grability in AdS/CFT. To fully appreciate its importance, let us for the moment turn our

eyes to the relation with the string theory. As explained in section 3.2, when the operator

(or the string) has a large R-charge J , a consistent expansion in powers of λ/J2 seems to

exist on both sides of the duality. Indeed, the leading contribution on both sides completely

coincide [40,44]. Such comparison was subsequently performed at the subleading orders and

discrepancy was found at three-loop order [49]. This is the notorious three-loop discrepancy,

which puzzled people for a considerable time. In [49], it was already suggested that such

discrepancy may occur because two different limits, the weak coupling limit and the large

charge limit, do not commute with each other. However, detailed understanding as to how

such non-commutativity arises was missing for a while. Only after the discovery of the dress-

ing phase, it became clear that the origin of such non-commutativity precisely is the dressing

phase.

The Beisert-Staudacher equations, first conjectured in [52], were later re-derived by Beis-

ert based on a firmer group-theoretical argument [53]. His approach is to consider the

S-matrix of magnons without specifying details of the underlying spin-chain and constrain

it using the symmetry. In the case of N = 4 SYM, this indeed determines the S-matrix

uniquely up to a scalar factor, which is nothing but the dressing phase. Owing to these

works, the existence and the importance of the dressing phase became widely known. How-

ever, a complete expression of the phase was not available at that time. A breakthrough

was brought about by Janik, who first wrote down so-called crossing equations which the

18The relation between x(u) and u in (3.4.1) is essentially the same as the relation between the spectral

parameter x and the Zhukowski variable z(x) used in the study of classical string in section 3.2. However,

owing to the difference in normalization of rapidities, here it takes a slightly different form.
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dressing phase must satisfy [54]. The solution to the equation was then obtained in [55, 56]

and the fully explicit form of the Beisert-Staudacher equations finally became available.

Although the Beisert-Staudacher equations work remarkably well on both sides of the

duality, it is applicable only to sufficiently long operators. When the operators have finite

size, another type of corrections, called wrapping corrections, are known to appear. They

represent contributions from the Feyman diagrams which wrap around the spin-chain. In [59],

it was shown that such corrections can be computed by generalizing the method which was

developed by Lüscher to study the relations between S-matrices and finite size corrections in

general quantum field theories [57,58]. In the case of integrable field theories, there exists a

more systematic integrability-based approach, called Thermodynamic Bethe Ansatz (TBA).

This method is called “Thermodynamic” because it was originally invented to compute

observables at finite temperature in [60] before it was utilized to compute the finite size

corrections of integrable field theories by exchanging roles of space and time in [61]. By three

different groups [62–66], TBA was applied to the spectrum problem of the AdS5/CFT4

correspondence and a complete interpolation between the gauge theory result and the string

theory result was obtained. The result obtained in this approach was recently checked against

the perturbative computation of the gauge theory up to five loops [67]. Subsequently, the

method of TBA was refined and applied to various observables [68,69]. Quite recently, it was

further reformulated in terms of quantized spectral curves [70] and the anomalous dimension

at nine-loop order is now in hand.

3.5 What have we learned?

The developments reviewed in the previous section is truly remarkable: This is the first

time in the long history of theoretical physics that people succeeded in exactly computing

anomalous dimensions of a fairly large class of operators in a 4d interacting gauge theory.

However, we should also keep in mind that our ultimate objective is not to exactly compute

quantities in a theory far distant from the real world, but to deepen our understanding of

the AdS/CFT correspondence through such computation. Therefore, it seems appropriate

to pause here, and ask the following question: Do the remarkable achievements reviewed

above give any new insight into the understanding of the AdS/CFT correspondence?

The answer is, unfortunately, not so clear because of the following reasons: Firstly, the

method of computation relies heavily on the integrability of the system, whose existence is

not yet proven neither on the gauge theory side nor on the string theory side. Secondly, in

the computation, we utilized the properties of both the gauge theory and the string theory

at the same time. For instance, the idea of characterizing the states as a collection of

magnon excitations on top of a certain vacuum state came originally from the perturbative
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computation of the gauge theory while we needed to resort to a continuous worldsheet picture

to exchange roles of space and time and apply the TBA. These two features to some extent

obscure the implication of the whole computation.

Nevertheless, there are several important observations we can make. First, a remarkable

success of the integrability-based approach provides strong evidence that it is highly effective

to regard the composite operators in the gauge theory as certain 1+1-dimensional spin-

chains when we explore the connection with strings in AdS. Although such an idea was put

forward originally in the paper by Berenstein, Maldacena and Nastase [71] shortly before

all the above developments, the subsequent success of the integrability-based approach have

revealed unexpected power and profoundness of such an idea. Second, the most pertinent way

to interpret the aforementioned results would be to regard them as giving a new framework

to quantize the string sigma-model, which is based on integrability (in particular on the

TBA). Unlike the conventional methods of quantization, the integrability-based approach

does not tell the details of the quantization procedures, such as the operator-ordering or

the detailed form of states. Instead, it indirectly confirms the existence of a quantization

scheme which preserves the integrable structure, by checking a set of nontrivial consistency

conditions required for the existence of integrability.

To further explore the underlying mechanism of the AdS/CFT correspondence based

upon the above two observations, it is important to see if the integrability-based approach

can be generalized to compute other observables. This is because of the following two inter-

related reasons: First computing other observables serves as a further consistency check

of the integrability-based quantization of the string sigma-model. Second, since we only

considered the cylindrical worldsheet in the computation of the spectrum, it is of crucial

importance to consider observables defined on other worldsheet geometry, in order to fully

understand the 2d CFT structures of the string sigma-model. One such observable is a

three-point function, which is described by the worldsheet with three long legs.

Studying three-point functions is by itself important for several reasons: First, two- and

three-point functions are building blocks of conformally invariant theories since they deter-

mine all the other correlation functions through the operator product expansion. Second,

the three-point function on the string theory side corresponds to the interaction of strings,

which is an important building block for the string theory in AdS5×S5. Third, the fact that

the interaction of strings is encoded in the geometry of the worldsheet is one of the most

important characteristics of string theory, as mentioned in section 1.1. Thus, to understand

the mysterious relation between the gauge theory and the string theory, it would be crucial

to examine the gauge theory three-point functions and try to uncover how the geometric

properties of the worldsheet are realized in a perturbative computation of the gauge theory.
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These are the main reasons we study three-point functions in the AdS5/CFT4 correspon-

dence in the rest of this thesis. In the next part, we will start off the exploration with the

computation on the gauge-theory side.
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Part II

Three Point Functions in Perturbative

Gauge Theory
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Chapter 4

Three-point functions and spin-chains

Having discussed the integrable structures of the spectrum problem, we are now in a position

to discuss three-point functions, which are the main subject of study in this thesis. In this

chapter, we review the computation of three-point functions on the gauge-theory side. In

section 4.1, we first review the basic facts on the three-point functions and explain the

basic set-up to be used throughout this chapter. Then, in section 4.2, we describe how the

computation of the structure constants in the gauge theory is mapped to the computation

of the scalar products of the XXX spin chain. Finally, in section 4.3, we review various

formulas to compute such scalar products and discuss their semi-classical limit. The structure

constants in the semi-classical limit turn out to be expressed by certain integrals on the

spectral curve. We will see in Part III that similar expressions can be derived on the string

theory side.

4.1 Basic set-up

On the gauge theory side, the structure constants are expanded in powers of the ’t Hooft

coupling as

C123(λ) = C
(0)
123 + C

(1)
123λ+ C

(2)
123λ

2 + · · · , (4.1.1)

The leading term C
(0)
123 is the tree-level result, which in principle can be computed by counting

the number of Wick contractions among three operators. However, in practice, such com-

putation is quite involved for the following reasons: At λ = 0, a large number of operators

have the identical conformal dimension. Since such degeneracy will be lifted by the one-loop

corrections, we need to compute the tree-level Wick contractions using the eigenstates of the

one-loop dilatation operator to obtain a consistent expansion (4.1.1). Note that this is just a

standard statement of the degenerate perturbation of the quantum mechanics. As a result of
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such diagonalization, the explicit forms of the single-trace operators become quite nontrivial

especially when the operator is long. Thus, it becomes an extremely difficult combinatorial

problem to compute all the Wick contractions. In the subsequent sections, we will see that

such computation greatly simplifies by mapping the problem to the computation of the scalar

products in the spin chain. Here we will review the basics of the three-point functions and

explain the set-up.

Three-point functions of N = 4 SYM were systematically studied in the context of the

AdS/CFT correspondence first by [72]. They studied the three-point functions of half-BPS

operators and found that the tree-level results in the gauge theory precisely agree with

the results in the supergravity. This led them to conjecture that such BPS three-point

functions are tree-level exact. This conjecture was later proven1 in the papers [74–76]. The

integrability-based approach to the three-point functions were first proposed in the pioneering

papers [77–79]. In [77], it was shown that the algebraic Bethe ansatz can be used to compute

tree-level three-point functions. In [78] and [79], it was found that the one-loop correction

to the three-point functions in the so-called SO(6)-sector can be computed by inserting the

Hamiltonian of the spin chain at the splitting points, which separates the operator into two

parts depending on with which operator they are contracted. Building on these earlier works,

the integrability techniques to compute three-point functions were developed in [80].

The three-point functions studied in [80] consist of the following three types of operators:

O1 = tr (ZZXZ · · · ) , O2 = tr
(
Z̄Z̄X̄Z̄ · · ·

)
, O3 = tr

(
ZZX̄Z · · ·

)
,

where roles of the scalar fields for the operators Oi are summarized as follows:

vacuum excitation

O1 Z X

O2 Z̄ X̄

O3 Z X̄

(4.1.2)

They are the simplest three-point functions that can produce non-extremal three-point func-

tions2, which satisfy ∆i 6= ∆j + ∆k, and are usually referred to as three-point functions

in “SU(2)-sector”3. The Wick contractions for such three-point functions are depicted in

Figure 4.1.1. A special feature of this class of three-point functions is that all X̄ fields in O3

1Recently, the proof was simplified in [73].
2When the conformal dimensions of three operators satisfy the extremal condition, ∆i = ∆j + ∆k, it is

known that the 1/N correction is not suppressed and one needs to take into account the mixing with the

double-trace operators [81,82].
3Precisely speaking, each operator is in a different SU(2)-subsector and three-point functions as a whole

are not contained in a single SU(2)-sector. This is the reason we study the string moving on the S3 subspace

in Part III, which has the SU(2)R×SU(2)L isometry, not just a single SU(2).
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Figure 4.1.1: Tree-level Wick contraction for an example of the simplest non-extremal

three-point functions of SU(2) operators.

are contracted with X fields in O1 and all Z fields in O3 are contracted with Z̄ fields in O2.

On the other hand, the contractions between O1 and O2 are complicated since they consist

of both X-X̄ contractions and Z-Z̄ contractions.

To deal with such complicated contractions, it is useful to translate the computation

into the computation in the spin-chain. To carry this out, first recall that the single-trace

operators can be mapped to the states in the XXX spin chain,

tr (ZZXZ) 7→ |↑↑↓↑〉 . (4.1.3)

Here we only wrote down the mapping of the operator made of Z and X, but we can do the

same also for other operators showin in (4.1.2), by mapping the “vacuum” field to ↑ and the

“excitation” field to ↓. Then the three-point functions can be computed by going through

the following steps:

1. We start with three closed spin chains with length `1, `2 and `3 respectively. Then we

consider the eigenstate |Ψi〉 of the Hamiltonian on each of the chains.

2. Next we break each chain into two parts. To be more explicit, we break the i-the closed

chain into left and right open sub-chains of length (`i + `j − `k)/2 and (`i + `k − `j)/2.

Then, the state defined on the closed chain can be expressed as an entangled state of

left and right open sub-chains as

|Ψi〉 =
∑
a

|Ψ(a)
i 〉l ⊗ |Ψ

(a)
i 〉r . (4.1.4)
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3. To perform the Wick contraction, we first flip4 the kets on the left sub-chains into the

bras as |Ψ(a)
i 〉l ⊗ |Ψ

(a)
i 〉r → |Ψ

(a)
i 〉l ⊗ r〈Ψ̃(a)

i | and then compute the scalar products as

r〈Ψ̃(a)
i |Ψ

(b)
j 〉l.

4. Finally we need to divide the resultant expressions by the norm of each state to obtain

correctly normalized three-point functions.

As a result of such computation, we obtain the following expressions of the structure con-

stants at tree-level:

C
(0)
ijk =

`i`j`k
∑

a,b,c r〈Ψ̃
(a)
i |Ψ

(b)
j 〉lr〈Ψ̃

(b)
j |Ψ

(c)
k 〉lr〈Ψ̃

(c)
k |Ψ

(a)
i 〉l√

`i〈Ψi|Ψi〉
√
`j〈Ψj|Ψj〉

√
`k〈Ψk|Ψk〉

. (4.1.5)

Here the factors of `i, `j and `k come from the summation over all possible ways of cutting

closed chains into two open sub-chains. In the next section, we will evaluate the expression

(4.1.5) more explicitly and explain how the integrability-based approach is useful for such

computation.

Before ending this section, let us make several comments. First, by examining Figure

4.1.1, we can conclude that the contractions do not exist and the structure constant vanish

unless the following “conservation laws” are satisfied:

M1 = M2 +M3 , (4.1.6)

`1 + `3 − `2 = 2M3 , (4.1.7)

where `i and Mi denote the length and the number of magnons of each spin chain respectively.

On the gauge theory side, they seems to be a consequence of simplicity of the tree-level

contractions. However, as we see in Part III, the same conditions can be reproduced on the

string theory side as a consequence of the structures of the global symmetry. Second, the

above computation is a structurally similar to the interaction vertex of string field theory.

This is of course quite natural since the three-point functions in the gauge theory are expected

to be dual to the interaction vertex of three strings in AdS5 × S5 spacetime. The action

of string field theory is known to be severely constrained by the gauge-invariance and the

algebraic structure. Thus it would be interesting to see how the perturbative computation of

the gauge theory, which is based on the Feynman diagrams, fit into such a framework. Third,

the aforementioned procedures of computing three-point functions are somewhat reminiscent

of the computation of the entanglement entropy. In fact, the entanglement entropy of the

4Such a flipping operation is defined such that it reproduces the contraction rule of the gauge theory.

Therefore, precisely speaking it is not completely the same as the Hermitian conjugation of the spin-chain

state. However, we will not delve into the details of the flipping operation in this thesis as we will not use

it directly. For details of the flipping operation, see [80].
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spin chain can be computed by first expressing the state as an entangled state of two sub-

chains, then introducing the reduced density matrix defined as

ρ̂ =
∑
a

r〈Ψ(a)
i |Ψ

(a)
i 〉r|Ψ

(a)
i 〉l ⊗ l〈Ψ(a)

i | ,

and finally computing the entropy by SEE = − ln (ρ̂ ln ρ̂). From this point of view, the

structure constant can be regarded as an observable defined for three spin-chain states which

measures how strongly the three states are entangled with each other. The entanglement

entropy is now widely studied in condensed matter physics to characterize exotic quantum

properties of strongly correlated materials [83–86]. It would be interesting if some analogue

of the structure constant plays an important role also in such a context.

4.2 Connection to the scalar products of the XXX spin-chain

Let us now discuss how to compute (4.1.5) using the integrability techniques. The key

observation is that the contractions between O3 and the other two operators are trivial for a

particular set of three operators described in the previous section. Then, instead of cutting

open three chains and summing over all possible intermediate states, the structure constants

for such operators can be computed in the following simpler way:

1. The operator O3 is given by a complicated linear combination of simple spin-chain

states, |↑↑↓ · · · 〉 etc. However, in the present case, only the state of the form

| ↓ · · · ↓︸ ︷︷ ︸
(`3+`1−`2)/2

↑ · · · ↑︸ ︷︷ ︸
(`3+`2−`1)/2

〉 , (4.2.1)

which corresponds to tr
(
X̄ · · · X̄Z · · ·Z

)
, can be contracted with the other operators.

Thus, O3 contributes to the structure constant only through the coefficient of the state

(4.2.1), which can be computed by the following scalar product:

〈↓ · · · ↓↑ · · · ↑ |Ψ3〉 . (4.2.2)

2. On the other hand, the contractions between the other two operators are quite compli-

cated. However, owing to the simplicity of the contractions involving O3, they can be

computed alternatively by going through the following steps: First, identify a string of

letters

Z̄ · · · Z̄︸ ︷︷ ︸
(`2+`3−`1)/2

, (4.2.3)
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in the operator O2 and remove it. Next, insert the following string of letters into the

position where we removed (4.2.3):

X̄ · · · X̄︸ ︷︷ ︸
(`1+`3−`2)/2

. (4.2.4)

If we denote the spin-chain state obtained in this way by |Ψ′2〉, the contractions between

O1 and O2 can be computed by

〈Ψ′2|Ψ1〉 . (4.2.5)

3. When the operator O2 is characterized by a set of magnons v, the aforementioned state

〈Ψ′2| can be obtained by creating those magnon excitations on top of the “deformed

vacuum” 〈↓ · · · ↓↑ · · · ↑ | as

〈Ψ′2| = 〈 ↓ · · · ↓︸ ︷︷ ︸
(`1+`3−`2)/2

↑ · · · ↑︸ ︷︷ ︸
(`1+`2−`3)/2

|
∏
j

C(vj) . (4.2.6)

This statement would perhaps be understood at relative ease pictorially using Figure

4.1.1.

Going through the above procedures, one can compute the structure constants as a product

of two scalar product, 〈↓ · · · ↓↑ · · · ↑ |Ψ3〉 and 〈Ψ′2|Ψ1〉. We can further simplify the

computation by expressing the deformed vacuum as a off-shell Bethe state. For this purpose,

it is convenient to introduce inhomogeneities to the spin chain. Then the deformed vacuum

can be expressed as

〈↓K↑`−K | ∝
K∏
j=1

〈↑` |C(θj +
i

2
) . (4.2.7)

The relation (4.2.7) was shown in [87] by using the correspondence between the scalar prod-

ucts of the XXX spin chain and the partition functions of a certain two dimensional integrable

lattice model, called the six-vertex model. As the derivation is somewhat technical, here we

will instead confirm that the relation (4.2.7) indeed holds for the two-site spin chain. For

two-site spin chains, the operator C(u) can be written explicitly as

i(u− θ2 + iSz2)S+
1 + i(u− θ1 − iSz1)S+

2 . (4.2.8)

When acted upon the vacuum state 〈↑↑|, it produces

i(u− θ1 −
i

2
)〈↑↓|+ i(u− θ2 +

i

2
)〈↓↑| . (4.2.9)
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Then it is easy to see5 that we obtain i(θ1 − θ2 + i)〈↓↑| upon setting u = θ1 + i/2.

As a result of such manipulations, we finally arrive at the following simple expression for

the structure constant, which was derived in [87]:

C
(0)
123 =

√
`1`2`3

〈v ∪ z|u〉θ(1)
〈z|w〉θ(3)√

〈u|u〉θ(1)
〈v|v〉θ(2)

〈w|w〉θ(3)

, (4.2.10)

where u, v and w denote the rapidities of O1, O2 and O3 respectively and θ(i) denote the

total inhomogeneities associated with the i-th chain. The rapidities z are given in terms of

the inhomogeneities common to the first and the third operators θ(13) as

z = θ(13) +
i

2
. (4.2.11)

Note that all the inhomogeneities are set to zero at the end of the calculation.

The expression (4.2.10) allows us to evaluate the structure constant in terms of the scalar

products between an on-shell and an off-shell Bethe states. As we will see in the next section,

simple formulas for such quantities are already known and we can employ them to efficiently

compute the structure constants.

4.3 Determinant formulas for the scalar products and the semi-

classical limit

As we have seen in the previous section, the computation of the structure constant reduces

to the computation of the scalar products between an on-shell and an off-shell Bethe states,

〈v|u〉 = 〈↑` |
M∏
i=1

C(vi)
M∏
j=1

B(uj)| ↑`〉 . (4.3.1)

Traditionally, the computation of such a product has been pursued in the framework of the

algebraic Bethe ansatz reviewed in section 3.1.3. Although the computation is conceptually

quite straightforward as one simply needs to move C(vi)’s all the way through B(uj)’s,

using the exchange algebra, and act on the vacuum |↑`〉, in practice this procedure produces

a multitude of terms which grow exponentially in the number of magnons and becomes

intractable. Fortunately, in the case of the product between an on-shell and an off-shell Bethe

states, Slavnov discovered a much more concise expression in the form of a determinant,

which was to be called Slavnov’s determinant formula [88]. More recently, various other

types of determinant formulas have been developed, which are intimately related to the

5We can continue this line of argument and prove (4.2.7) by mathematical induction.

72



Slavnov’s determinant. Below we shall review these variants of determinant formulas and

explain their semi-classical limit. As the derivations will be technically complicated and

lengthy, we basically present the formulas without detailed proofs although we make several

important comments on the physical interpretation of such formulas.

As stated above, let us consider the case where either one of the set of rapidities u or

v are on-shell. For definiteness, let us take v to be on-shell. Then the original Slavnov’s

formula computes the scalar product 〈v|u〉 as a M ×M determinant of the form

〈v|u〉 =

∏M
i=1Q

+
θ (ui)Q

−
θ (vi)∏

i<j(ui − uj)(vj − vi)

× det

(
1

um − vn

(
M∏
k 6=n

(um − vk − i)−
M∏
k 6=n

(um − vk + i)
∏̀
l=1

um − θl − i
2

um − θl + i
2

))
1≤m,n≤M

.

(4.3.2)

Very recently, Kostov and Matsuo [89] showed that this expression is equivalent to an alter-

native determinantal expression of the form

〈v|u〉 = (−1)MZKM(z|θ) , z ≡ u ∪ v (4.3.3)

where ZKM(z|θ) is now a 2M × 2M determinant given by

ZKM(z|θ) =

∏2M
i=1 Q

−
θ (zi)∏

i<j(zi − zj)
det

(
zn−1
m −

∏̀
l=1

zm − θl + i/2

zm − θl − i/2
(zm + i)n−1

)
1≤m,n≤2M

. (4.3.4)

They also pointed out that this equivalence is due essentially to the following equality valid

when u or v are on-shell:

〈↑` |
M∏
i=1

C(vi)
M∏
j=1

B(uj)| ↑`〉 ∝ 〈↓` |(S−)`−2M

M∏
i=1

B(vi)
M∏
j=1

B(uj)| ↑`〉 . (4.3.5)

Intuitively this can be understood in the following way. Suppose the set of rapidities v are

on-shell. Then the Bethe state
∏M

i=1 B(vi)| ↑`〉 built on the up vacuum is the highest weight

state of global SU(2) with spin `
2
−M . On the other hand, the state

∏M
i=1 C(vi)| ↓`〉 generated

by the action of C(v) on the down pseudovacuum has the same eigenvalue for the transfer

matrix T (u). Generally, an on-shell state corresponding to the same solution of the Bethe

ansatz equations is expected to belong to the same SU(2) multiplet. Since
∏M

i=1C(vi)| ↓`〉 is

a lowest weight state with spin − `
2

+ M , we can make it into the highest weight state with

spin `
2
−M by the action of (S+)`−2M . Therefore we should have the equality

M∏
i=1

B(vi)| ↑`〉 ∝ (S+)`−2M

M∏
i=1

C(vi)| ↓`〉 . (4.3.6)
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Taking the conjugate of this relation, we obtain (4.3.5). This identification will be of crucial

importance when we develop the method based on the separation of variables (SoV) for the

computation of the scalar product in section 5.3.

Another variant of the determinant formula was found by Foda and Wheeler [90]. They

showed that the Kostov-Matsuo expression ZKM(z) can be identified with the so-called

partial domain wall partition function (pDWPF) ZpDWPF(z|θ), which naturally arises in the

context of the six vertex model:

ZpDWPF(z|θ) =

∏2M
α=1Q

+
θ (zα)Q−θ (zα)∏

α<β(zα − zβ)
∏

i<j(θj − θi)

× det



i
(z1−θ1+i/2)(z1−θ1−i/2)

· · · i
(z1−θ`+i/2)(z1−θ`−i/2)

...
...

i
(z2M−θ1+i/2)(z2M−θ1−i/2)

· · · i
(z2M−θ`+i/2)(z2M−θ`−i/2)

θ`−2M−1
1 · · · θ`−2M−1

`
...

...

θ0
1 · · · θ0

`


. (4.3.7)

These determinant formulas are remarkably compact as compared to the results of the

brute force computation, for which the number of terms increases exponentially in the num-

ber of magnons. However, they are still impractical for the purpose of studying the semi-

classical limit, in which the length of the chain and the number of magnons are both large.

This difficulty was overcome for the case of one non-BPS and two BPS correlation functions

in [91]. They studied the limiting form of the determinant expressions carefully and man-

aged to derive a simple integral expression for the logarithm of the structure constant. Their

computation was generalized to the case of three non-BPS correlation functions in [92, 93].

In [92,93], the determinant expression was first rewritten as a correlator of the chiral fermions

and then bosonized. The resultant expression is given by the expectation value of a product

of two operators, which completely factorizes in the semi-classical limit. Then by approxi-

mating the expectation values of the operators by their classical counterparts, we arrive at

the following intriguingly simple formula for the scalar products6:

ln〈v|u〉 '
∮
Au∪Av

du

2π
Li2
(
eipu(u)+ipv(u)

)
, (4.3.8)

whereAu andAv are contours which respectively encircle the distributions of the Bethe roots

u and v counter-clockwise and pu and pv are the quasi-momenta for |u〉 and |v〉 defined as

6Precisely speaking, we sometimes need to deform the integration contour to avoid the singularities in

the integrands. For details, see [93].
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the semi-classical limit of the following quantities:

pu(u) =
M∑
i=1

1

u− ui
−
∑̀
k=1

`

2(u− θk)
,

pv(u) =
M∑
i=1

1

u− vi
−
∑̀
k=1

`

2(u− θk)
,

(4.3.9)

where ` is the length of the chain and θk’s are the inhomogeneities. Using the formula (4.3.8),

the semi-classical limit of the structure constants (4.2.10) can be evaluated as follows:

lnC
(0)
123 '

∮
Au∪Av

du

2π
Li2
(
eipu+ipv+i`3/(2u)

)
+

∮
Aw

du

2π
Li2
(
eipw+i(`3−`1)/(2u)

)
− 1

2

∮
Au

du

2π
Li2
(
e2ipu

)
− 1

2

∮
Av

du

2π
Li2
(
e2ipv

)
− 1

2

∮
Aw

du

2π
Li2
(
e2ipw

)
. (4.3.10)

Note that the prefactor
√
`1`2`3 is negligible in the semi-classical limit.

It is quite remarkable that the semi-classical limit of the seemingly complicated determi-

nant formulas can be expressed so concisely as shown in (4.3.10). In addition, the fact that

the result is given only in terms of the quasi-momenta of the spin chains suggests that we

can derive a similar expression from the Frolov-Tseytlin limit of the string theory side since

the quasi-momenta on both sides coincide in the Frolov-Tseytlin limit as discussed in section

3.3. This expectation will turn out to be partially correct. In Part III, we will derive an

expression which is structurally quite similar to (4.3.10). However, the resultant expression

does not precisely match with (4.3.10) even after taking the Frolov-Tseytlin limit.

Before ending this section, let us stress that although the semi-classical expression for

the structure constant is remarkably simple, the derivation is, unfortunately, technically

complicated. To better understand the structure of three-point functions and explore the

connection with the string theory, it is important to derive the above formulas in a more

physical way and uncover the physical mechanism behind such computation. As a first step

toward this goal, we will derive a new formula for the scalar products in the next chapter

based on the so-called Sklyanin’s separation of variables.
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Chapter 5

A new integral expression for the

scalar products

In the previous chapter, we have seen that the computation of the structure constants,

in some cases, reduces to the computation of the scalar products of the spin chain, and

the semi-classical limit of the structure constants can be computed by taking the limit of

determinant formulas for the scalar products. In this chapter, however, we shall take a

different route for the calculation of this scalar product. This alternative is the method

of separation of variables (SoV), which was advanced substantially by Sklyanin [94]. The

resultant expression is given by a multiple-integral over the separated variables and is akin

to the eigenvalue integrals of a matrix model.

In section 5.1, we review the preceding works on the application of SoV to the compu-

tation of scalar products, giving a brief overview of our methods of computation. Then in

section 5.2, we give a general introduction to the idea of the separation of variables with-

out delving into the specific details. After that, in section 5.3, we discuss the separation of

variables of the XXX spin chain and derive the integral expression for the scalar products.

Lastly in section 5.4, we briefly discuss that the multiple-integral formula may be useful to

derive a semi-classical result in a more intuitive way.

5.1 Overview on the application of Sklyanin’s separation of vari-

ables

The concept of SoV represents the most primitive and fundamental form of integrability,

where one reduces the interacting many-body system to mutually decoupled set of dynamical

systems, each with a single degree of freedom. Of course the highly non-trivial question is
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how to actually construct such separated variables {xk} and the corresponding canonically

conjugate momenta {pk}. For the integrable systems which admit the formulation with Lax

operators, Sklyanin proposed a powerful concrete recipe for the construction. Relegating

more detailed description to section 5.2, the prescription applied to the case of XXX spin 1/2

chain says that the solutions xk of the operator equation B(xk) = 0 provide the separated

coordinates, while their conjugate momenta pk are given essentially by D(xk). One can

indeed check that they satisfy (with appropriate ordering in the quantum case) the canonical

Poisson-Lie commutation relations. Therefore if one can diagonalize and factorize B(u) as

B(u) ∝
∏`

k=1(u − xk), with precisely ` zeros, xk provide a complete basis of separated

coordinates. Once this is achieved, one can figure out the measure factor µ(x1, . . . , x`) and

compute the scalar products between various states in the x-representation.

Indeed such a method has been applied successfully to some cases where the conventional

algebraic Bethe ansatz is not readily applicable. One example is the non-compact SL(2)

spin chain in the unitary representation, studied in [95]. One gratifying feature of this

case is that in such a unitary representation the hermitian conjugate of B(u) operator is

basically itself and hence can be easily diagonalized. The integration measure is found

and the scalar product is thus defined in the SoV framework. More recently, the results

were applied to the computation of three-point functions in the so-called SL(2)-sector [96].

Another system for which the SoV analysis has been performed is the SU(2) spin chain

with anti-periodic boundary condition [97, 98]. In this case, due to the insertion of the

twisting matrix K =

(
0 1

1 0

)
which flips the spin at the boundary, the operator which

should be diagonalized to yield separated variables changes from B(u) to D(u). Since this

operator is hermitian and naturally diagonalizable the subsequent analysis à la Sklyanin is

straightforward.

Now for the more fundamental case of the SU(2) spin chain with the periodic bound-

ary condition, there are two apparent obstacles in computing the scalar products using the

Sklyanin’s procedure. The first problem is that because the hermitian conjugate of B(u) is

C(u), the basis in which B(u) is diagonal is different from the one in which C(u) is diagonal.

Hence the scalar product of our interest 〈v|u〉 = 〈↑` |
∏M

i=1C(vi)
∏M

i=1B(ui)|↑`〉 cannot be

easily computed in B(u)-diagonal basis. The second problem is that B(u) operator as it

stands is actually not a good operator in the SoV framework, since the coefficient of the

highest power u` in the expansion of B(u) is proportional to S− = Sx − iSy belonging to

the global SU(2), which is obviously not diagonalizable. It is perhaps for these reasons

that this important basic model has not been treated in the SoV basis. In the subsequent

sections, we will see how these two problems are overcome by making use of the obser-

vation made by Kostov and Matsuo [89] that the scalar products can be rewritten in the
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form 〈↓` |(S−)`−2M
∏M

i=1 B(vi)B(ui)| ↑`〉, and by the introduction of an appropriate twisting

matrix at the boundary.

5.2 Separation of variables for integrable models

As explained in section 3.1.3, excited states in the XXX spin chain
∏

iB(ui)| ↑`〉 are char-

acterized as a collection of magnon excitations on top of the ground state and they are

distinguished by a set of complex parameters called the Bethe roots, {ui}, which are nor-

mally interpreted as the rapidities of the magnons. Then the periodicity condition for such

excitations leads to the Bethe equation (3.1.42). In this chapter, however, we advocate an

alternative view of the excited states, namely that the states are characterized by the nodes

(zeros) of their wave functions and the Bethe roots are interpreted instead as the positions

of the nodes. In this perspective, the Bethe equation arises as a consistency condition for

the nodes of the wave function.

To illustrate the basic idea, let us first discuss a simpler example, a one-dimensional

harmonic oscillator1. As is well-known, the Schrödinger equation for the harmonic oscillator

can be explicitly solved in terms of the Hermite polynomials. However, here we shall take

a slightly different route and try to determine the spectrum without explicitly solving the

equation. For this purpose, let us first re-express the Schrödinger equation by dividing both

sides by the wave function ψ(x):

− ~2

2mψ(x)

d2

dx2
ψ(x) +

mω2x2

2
= E . (5.2.1)

Then, by studying the behavior of (5.2.1) at large x, we conclude that ψ(x) should behave

as ψ(x) ∼ exp (−mωx2/2~) when x is large. For excited states, ψ(x) must also contain

a polynomial prefactor, which gives rise to nodes of the wave functions. Therefore, to

characterize ψ(x) by the position of the nodes, let us write down the following ansatz for

ψ(x),

ψ(x) =
N∏
i=1

(x− xi)e−mωx
2/2~ . (5.2.2)

Substituting this ansatz into (5.2.1), we obtain the following equation

∑
i<j

2

(x− xi)(x− xj)
+ ~ω

(∑
i

x

x− xi
+

1

2

)
= E . (5.2.3)

1This toy model is discussed in a similar manner also in [37]
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Then from its large x behavior, the energy E is determined in terms of the number of nodes

as E = ~ω(N + 1/2). In addition, since the RHS of (5.2.3) is a constant and free of poles,

we must demand that the residue of the poles at x = xi on the LHS must vanish. This leads

to a Bethe-ansatz-like equation for the positions of the nodes of the wave function,

xi =
~

2mω

∑
j 6=i

1

xi − xj
. (5.2.4)

Although this idea of characterizing the excited states in terms of the number and the

positions of the nodes is quite elementary and intuitive, it is technically difficult to apply

this idea directly to the system with many degrees of freedom. However, in the case of

the integrable models, it is often possible to decompose the system into a set of mutually

decoupled one dimensional problems. The systematic method to carry this out is the method

of separation of variables developed by Sklyanin, which we will explain in the rest of this

section. By applying this method, we will see explicitly in section 5.3 that the Bethe equation

for the XXX spin chain can indeed be interpreted as a consistency equation for the nodes of

the wave function as in (5.2.4).

5.2.1 Basic notions of the separation of variables

Before delving into the details of the method developed by Sklyanin, here we briefly sum-

marize the basic notion of the separation of variables. In classical mechanics, separation of

variable is applicable only if there are as many number of conserved charges, h1, . . . , hd, as

the dynamical variables. In such a case, by a judicious choice of canonical variables, it is

often possible to write down a set of equations, each of which contains only one canonical

pair {xk, pk}:

Wk(xk, pk;h1, . . . , hd) = 0 , k = 1 . . . d . (5.2.5)

This type of equation is analogous to the expression of the energy of the harmonic oscillator,

E = p2/2m + mω2x2/2, and one can determine the classical motion of the system in much

the same way as in that case.

When we consider the quantum system, the equations (5.2.5) are replaced by the following

equations for the eigenstates of the conserved charges,

Wk(x̂k, p̂k;h1, . . . , hd)|Ψ〉 = 0 , k = 1 . . . d . (5.2.6)

In terms of the wave function in the coordinate representation, Ψ(x1, . . . , xd), (5.2.6) can be

re-expressed as

Wk

(
xk,

~
i

∂

∂xk
;h1, . . . , hd

)
Ψ(x1, . . . , xd) = 0 , k = 1 . . . d . (5.2.7)
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It is easy to see that (5.2.7) admits a completely factorized solution, Ψ =
∏

k ψk(xk), each

factor of which satisfies the following one dimensional equation,

Wk

(
xk,

~
i

∂

∂xk
;h1, . . . , hd

)
ψk(xk) = 0 . (5.2.8)

In this way, the original system with many degrees of freedom can be reduced to a set of

mutually decoupled one dimensional systems.

5.2.2 Sklyanin’s magic recipe

The most nontrivial step in the procedure above is the construction of the separated variables

satisfying the equations of the form (5.2.5) or (5.2.6). This is indeed a difficult problem for

interacting many-body systems. However, for the integrable models which can be formulated

in terms of the Lax operators, Sklyanin proposed a systematic method for the construction,

often referred to as the Sklyanin’s magic recipe. In what follows, we sketch the essence of

this recipe2 applied to systems with a 2 × 2 monodromy matrix. More precise analysis for

the case of the XXX spin chain will be given in the next section.

For simplicity, let us first consider the classical case. In a classically integrable system

with a 2× 2 monodromy matrix

Ω(u) =

(
A(u) B(u)

C(u) D(u)

)
, (5.2.9)

there is an immediate candidate for the set of equations (5.2.5). It is the characteristic

equation for the monodromy matrix

det (z − Ω(x)) = 0 , (5.2.10)

where z is the eigenvalue of the matrix Ω(x). Since the expansion of Ω(x) in powers of x

yields a set of conserved charges as its coefficients, (5.2.10) is indeed of the form of (5.2.5) if

we can somehow identify x and z with dynamical variables. The recipe proposed by Sklyanin

is to use the solutions xk’s to the equation B(u) = 0 as x-variables:

B(u) = (u− x1)(u− x2) · · · . (5.2.11)

In the case of the lattice models, such as the XXX spin chain discussed in the previous

section, B(u) is a polynomial in u, whose order basically equals the lattice size. Therefore,

this prescription indeed provides the correct number of variables. Furthermore, owing to the

2The discussion here is basically restricted to the simplest class of the integrable models, called rational

models. For trigonometric or elliptic models, nontrivial modification of the method is required [94].
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Poisson commutativity among B(u)’s, xk’s also commute with each other and thus they are

mutually independent separated variables. On the other hand, the z-variables, which are

the eigenvalues of Ω(x), are provided by the diagonal components, A(xk) or D(xk), since

Ω(xk) becomes a lower triangular matrix owing to B(xk) = 0. Then the remaining task is

to understand the relation of A(xk) and D(xk) to the conjugate momenta pk, which satisfy

the standard commutation relations:

{xk, xl} = 0 , {pk, pl} = 0 , {xk, pl} = δkl . (5.2.12)

In most cases, by explicitly computing the Poisson brackets of A(xk) and D(xk) with xk, we

can show that they are related to pk roughly as

A(xk) ∼ eipk , D(xk) ∼ e−ipk . (5.2.13)

In the case of the quantum integrable models, separated variables xk’s become a set of

commuting operators x̂k’s, which are characterized as the roots of the operator equation

B(u) = 0. Just as for the classical case, the conjugate operators, eip̂k and e−ip̂k , are given3

essentially by A(x̂k) or D(x̂k). To derive a set of one dimensional equations of the type

(5.2.7), let us consider the wave function in the xk-basis:

Ψ(x1, . . . , xd) = 〈x1, . . . , xd|Ψ〉 , (5.2.14)

where 〈x1, . . . , xd| is an eigenstate of the operators x̂k’s. Now if the state |Ψ〉 is an eigenstate

of T (u) = A(u) +D(u), a generating function of the commuting set of Hamiltonians, we can

compute 〈x1, . . . , xd|T (x̂k)|Ψ〉 as

〈x1, . . . , xd|T (x̂k)|Ψ〉 = t(xk)Ψ(x1, . . . , xd) , (5.2.15)

where t(u) is the eigenvalue of T (u) for |Ψ〉. We can evaluate the same quantity also by

acting T (x̂k) to the left on 〈x1, . . . , xd|. To carry this out we use the relation of T (x̂k) with

the momenta p̂k, i.e.

T (x̂k) = A(x̂k) +D(x̂k) ∼ eip̂k + e−ip̂k . (5.2.16)

Then we find

〈. . . , xk, . . . |T (x̂k) ∼ 〈. . . , xk + 1, . . . |+ 〈. . . , xk − 1, . . . | . (5.2.17)

In this way we arrive at the following equation for the wave function Ψ:

t(xk)Ψ(. . . , xk, . . .) ∼ Ψ(. . . , xk + 1, . . .) + Ψ(. . . , xk − 1, . . .) , k = 1, . . . , d . (5.2.18)

3Note, in the quantum case, we need to consider the ordering of the operators. In the case of the XXX

spin chain, this is explicitly worked out in section 5.3.
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Assuming the factorized form of the wave functions Ψ(x1, . . . , xd) =
∏

k ψk(xk), we can

decompose (5.2.18) into a set of mutually decoupled one dimensional equations:

t(xk)ψk(xk) ∼ ψk(xk + 1) + ψk(xk − 1) . (5.2.19)

This equation is the analogue of the Schrödinger equation for the harmonic oscillator. There-

fore, as in that case, we can derive a consistency condition for the nodes of the wave function.

Assuming a form of ψk as ψk(x) =
∏

l(x− ul) and setting xk = uj in (5.2.19), we obtain the

algebraic relations for the positions uj of the nodes:

1 ∼
∏
l 6=j

uj − ul + 1

uj − ul − 1
. (5.2.20)

Note that this is identical with the Bethe equation. Therefore, as mentioned at the beginning

of this section, the Bethe roots can be interpreted as the nodes of the wave function in this

approach. In the next section, we will see that the logic outlined here is explicitly realized

in the case of the XXX spin chain.

5.3 Integral representation of the scalar products for XXX spin

chain

In the preceding section, we sketched the basic idea of the method of separated variables for

integrable models. In this section, we will apply it to the periodic SU(2) XXX spin chain

and derive a multiple integral representation of the scalar products in the basis where the

separated variables are diagonal. The resultant expression can be brought to a form which

resembles the integral over the eigenvalues of a matrix model.

5.3.1 Construction of the separated variables

Recall the definition of the monodromy matrix Ω(u) for the XXX spin chain with inhomo-

geneity parameters θk:

Ω(u) =

(
A(u) B(u)

C(u) D(u)

)
≡ L1(u− θ1)L2(u− θ2) · · ·L`(u− θ`) , (5.3.1)

Lk(u) ≡

(
u+ iSzk iS−k
iS+

k u− iSzk

)
. (5.3.2)

As outlined in the previous section, the separated variables for integrable models with a

2× 2 monodromy matrix are usually given by the roots of the operator equation, B(u) = 0.
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However, as already pointed out in section 5.1, in the case of the periodic SU(2) spin chain,

the operator B(u) is proportional to S− in the large u limit as B(u) ∼ iS−u`−1 + · · · , and

is not diagonalizable. This problem can be circumvented by introducing a twisting matrix

Kε =

(
1 ε

−ε 1

)
, which changes the boundary condition and modifies the monodromy

matrix as

Ωε(u) = KεΩ(u) ≡

(
Aε(u) Bε(u)

Cε(u) Dε(u)

)
. (5.3.3)

Although such a twisting changes the dynamical properties of the spin chain, it does not

affect the computation of the scalar products since, as we shall show explicitly later in this

section, they can be re-expressed in terms of quantities independent of the twisting parameter

ε. After twisting, the large u behavior of Bε(u) is modified to Bε(u) ∼ εu` + i(S− − εSz +

i
∑

j θj)u
`−1 + · · · and Bε(u) becomes diagonalizable. Then it can be factorized as

Bε(u) = ε
∏̀
k=1

(u− x̂k) , (5.3.4)

where x̂k’s are the roots of the operator equation, Bε(u) = 0. As the twisting preserves the

algebra among the elements A(u), · · · , D(u), the operators Bε’s continue to commute with

each other, namely [Bε(u), Bε(v)] = 0, and this implies that x̂k’s also mutually commute:

[x̂k , x̂l] = 0. These operators are the “coordinates” of the separated variables and one can

consider their left eigenstates and right eigenstates, 〈x1, . . . , x`| and |x1, . . . , x`〉, upon which

Bε(u) acts in the following way:

〈x1, . . . , x`|Bε(u) =

(
ε
∏̀
k=1

(u− xk)

)
〈x1, . . . , x`| , (5.3.5)

Bε(u)|x1, . . . , x`〉 =

(
ε
∏̀
k=1

(u− xk)

)
|x1, . . . , x`〉 . (5.3.6)

As explained in the Appendix A.1, the eigenvalue of the operator x̂k takes only two values

given by θk ± i
2
. As a consequence, the dimension of the Hilbert space spanned by the

eigenstates of the separated variables is 2`, which precisely matches that of the spin chain

Hilbert space. This assures the completeness of the separated variable basis.

At x̂k the operator Bε vanishes and the form of the monodromy matrix becomes lower

triangular. Therefore the two eigenvalues are given by Aε(x̂k) and Dε(x̂k), which are expected

to be identified as e±ip̂k , where p̂k is the momentum operator conjugate to x̂k. To see this

more precisely, since Aε(u) and Dε(u) are polynomials in u with operator-valued coefficients,

we need to specify the ordering of x̂k and the coefficients, which are also operators in general.
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The ordering appropriate for the left eigenstates, to be denoted by : • :L, turns out to be

placing all the x̂k’s to the left of the coefficients, namely

:F (x̂k):L ≡
∑
n

x̂nk F̂n , for F (u) =
∑
n

unF̂n . (5.3.7)

Then the commutation relation between Aε(u) and Bε(u), given by (u − v)Aε(v)Bε(u) =

(u− v + i)Bε(u)Aε(v)− iBε(v)Aε(u), leads to

:(u− x̂k)Aε(x̂k)Bε(u):L = :(u− x̂k + i)Bε(u)Aε(x̂k):L − i:Bε(x̂k)Aε(u):L . (5.3.8)

Since the second term on the RHS of (5.3.8), containing Bε(x̂k), vanishes, and since Bε(u)

commutes with x̂k, we can simplify (5.3.8) to

(u− x̂k):Aε(x̂k):LBε(u) = (u− x̂k + i)Bε(u):Aε(x̂k):L , (5.3.9)

where the normal-ordering is now imposed only on Aε(x̂k). Then by acting (5.3.9) to the

left eigenstate, we obtain

(u− xk)〈x1, . . . , x`|:Aε(x̂k):LBε(u) = ε(u− xk + i)
∏̀
l=1

(u− xl)〈x1, . . . , x`|:Aε(x̂k):L .

Dividing both sides by (u − xk), we see that B(u) acting on the state 〈x1, . . . , x`|:Aε(x̂k):L
vanishes at u = xk − i. This means that the operator :Aε(x̂k):L indeed effects the shift of

the eigenvalue of x̂k by −i, namely4

〈. . . , xk, . . . |:Aε(x̂k):L ∝ 〈. . . , xk − i, . . . | . (5.3.10)

A similar argument for Dε(u) leads to the conclusion that :Dε(x̂i):L shifts the eigenvalue of

x̂k by +i,

〈. . . , xk, . . . |:Dε(x̂k):L ∝ 〈. . . , xk + i, . . . | . (5.3.11)

The constants of proportionality in (5.3.10) and (5.3.11) can be determined by the analysis

detailed in the Appendix A.1. Since these results, together with the spectrum of x̂k already

quoted, are basic to the rest of the analysis, we shall display them as a theorem:

Theorem

4For the literal identification of :Aε(x̂k):L with eip̂k , it is more natural to rename x̂k as −ix̂k. Then, the

new x̂k gets shifted by +1 and its spectrum becomes real at θk = 0. But we shall not do this and stick to

the customary definition.
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(i) The spectrum of x̂k is given by the two values5

xk = θk +
i

2
, θk −

i

2
. (5.3.12)

(ii) The operators :Aε(x̂k):L and :Dε(x̂k):L act on the left eigenstates in the following

manner

〈. . . , xk, . . . |:Aε(x̂k):L =
√

1 + ε2Q+
θ (xk)〈. . . , xk − i, . . . | , (5.3.13)

〈. . . , xk, . . . |:Dε(x̂k):L =
√

1 + ε2Q−θ (xk)〈. . . , xk + i, . . . | . (5.3.14)

For the right eigenstates, an appropriate ordering prescription is to put all xk’s to the right

of the coefficients of Aε(u) and Dε(u):

:F (x̂k):R ≡
∑
n

F̂nx̂
n
k , for F (u) =

∑
n

unF̂n . (5.3.15)

Then the action of :Aε(x̂k):R and :Dε(x̂k):R on the right eigenstates are expressible as

:Aε(x̂k):R| . . . , xk, . . .〉 =
√

1 + ε2Q−θ (xk)| . . . , xk + i, . . .〉 , (5.3.16)

:Dε(x̂k):R| . . . , xk, . . .〉 =
√

1 + ε2Q+
θ (xk)| . . . , xk − i, . . .〉 . (5.3.17)

Since Aε(u) and Dε(u) are `-th order polynomials in u with a unit leading coefficient, the

action of these operators at ` distinct values of u, (5.3.13) and (5.3.14), completely determines

the explicit forms of the operators as follows:

Aε(u) =
∏̀
k=1

(u− x̂k) +
∑̀
k=1

(∏
j 6=k

u− x̂j
x̂k − x̂j

)
:Aε(x̂k):L , (5.3.18)

Dε(u) =
∏̀
k=1

(u− x̂k) +
∑̀
k=1

(∏
j 6=k

u− x̂j
x̂k − x̂j

)
:Dε(x̂k):L . (5.3.19)

They are expressible also in terms of the right-ordered operators, :Aε(x̂k):R and :Dε(x̂k):R,

as

Aε(u) =
∏̀
k=1

(u− x̂k) +
∑̀
k=1

:Aε(x̂k):R

(∏
j 6=k

u− x̂j
x̂k − x̂j

)
, (5.3.20)

Dε(u) =
∏̀
k=1

(u− x̂k) +
∑̀
k=1

:Dε(x̂k):R

(∏
j 6=k

u− x̂j
x̂k − x̂j

)
. (5.3.21)

5 As shown in Appendix A.1, what one can show is that the spectrum of each x̂j is of the form θk ± i
2

for some k. Here and hereafter we adopt the natural convention to associate the spectrum θk ± i
2 with x̂k.
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From (5.3.18) and (5.3.19), we can derive a difference equation for the eigenstate |ψ〉
of the (twisted) transfer matrix, Tε(u) ≡ Aε(u) + Dε(u). This is done by computing

〈x1, x2, . . . , x`|Tε(u)|ψ〉 in two different ways: First by acting Tε(u) on 〈x1, x2, . . . , x`| us-

ing (5.3.18) and (5.3.19), and second by acting it on |ψ〉. By setting u = xk in the resulting

equation, we obtain the following simple equation for the wave function of the eigenstate,

Ψ(x1, . . . , x`) ≡ 〈x1, . . . , x`|ψ〉:

tε(xk)√
1 + ε2

Ψ(. . . , xk, . . .) = Q+
θ (xk)Ψ(. . . , xk − i, . . .) +Q−θ (xk)Ψ(. . . , xk + i, . . .) . (5.3.22)

Here tε(u) is the eigenvalue of Tε(u), i.e. Tε(u)|ψ〉 = tε(u)|ψ〉. Assuming a factorized form

of the wave function, Ψ(x1, x2, . . . , x`) = ψ1(x1)ψ2(x2) . . . ψ`(x`), (5.3.22) can be decom-

posed into a set of ` one-dimensional equations, which can be regarded as the “Schrödinger

equations” for the separated variables:

tε(xk)√
1 + ε2

ψk(xk) = Q+
θ (xk)ψ

−−
k (xk) +Q−θ (xk)ψ

++
k (xk) . (5.3.23)

In the ε→ 0 limit, the equation (5.3.23) for ψk apparently takes the same form as the Baxter

equation (3.1.43) for the Q-function, Qu(u). However one should keep in mind that Qu and

ψk(xk) are conceptually quite different: While Qu is introduced as a polynomial with zeros

at the rapidities of the magnon excitations and can be defined on the whole complex plane,

ψk is the wave function in the separated variable basis and is defined only on the discrete

eigenvalues xk = θk ± i/2. Therefore it is a priori not clear whether we can identify ψk with

Qu. Nevertheless, as we shall later see explicitly, the factor representing the wave function

in the multiple integral formula is given indeed by the Q-function. Therefore, as far as the

multiple integral formula is concerned, ψk can be identified with Qu and the Bethe equation

can be interpreted as the consistency condition for the zeros of the wave function. This

evidently parallels the case of the harmonic oscillator discussed in section 5.2.

5.3.2 Multiple integral representation for scalar products

Having constructed the separated variables, our next goal is to express the scalar product be-

tween an off-shell and an on-shell Bethe states given by 〈v|u〉 = 〈↑` |
∏M

i=1 C(vi)
∏M

i=1 B(ui)| ↑`〉
as the overlap between two wave functions of separated variables. Our basic strategy for

deriving such a expression is to insert into the scalar product a resolution of unity in the

SoV basis, namely

1 =
∑

xk=θk±i/2

µ(x) |x〉〈x| , (5.3.24)
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where x stands for {x1, . . . , x`} and µ(x) is the measure factor for the summation, to be

specified later. Unfortunately, this procedure cannot be carried out straightforwardly because

the scalar product of our interest contains the operator C(u) and its action on the B-diagonal

SoV basis is quite complicated. In addition, to employ the SoV basis, we need to introduce

the twist in the boundary condition as in (5.3.3), which is not present in the original scalar

product as above.

The first problem can be circumvented by the trick due to Kostov and Matsuo [89], which

converts C(vi) to B(vi) within the scalar product provided vi’s satisfy the Bethe equation.

Although not explicitly given in [89], one can work out the precise factors in the conversion

formula and obtain the expression

〈↑` |
M∏
i=1

C(vi)
M∏
j=1

B(uj)| ↑`〉 =
(−1)M

(`− 2M)!
〈↓` |(S−)`−2M

M∏
i=1

B(vi)
M∏
j=1

B(uj)| ↑`〉 , (5.3.25)

which contains only the operator B(u). This rewriting has another gratifying feature: It

allows us to introduce the twist of the boundary condition without changing the value of the

scalar product. This is done by replacing the right hand side of (5.3.25) with

〈↓` |(S− − εSz + i
∑̀
l=1

θl)
`−2M

M∏
i=1

Bε(vi)
M∏
j=1

Bε(uj)| ↑`〉 . (5.3.26)

Although (5.3.26) has apparent dependence on ε as well as an extra dependence on θl’s, such

unwanted terms actually vanish6 thanks to the conservation of the total spin Sz along the

z-axis.

Then, inserting a resolution of unity (5.3.24) into (5.3.26) and using the action of Bε(u)

on the SoV basis (5.3.5) and (5.3.6), we obtain the following expression7

〈↓` |(S− − εSz + i
∑̀
l=1

θl)
`−2M

M∏
i=1

Bε(vi)
M∏
j=1

Bε(uj)| ↑`〉

=
∑

xk=θk±i/2

ε`µ(x)fL(x)fR(x)

(∑̀
j=1

xj

)`−2M∏̀
k=1

Qu(xk)Qv(xk) , (5.3.27)

where fL,R are given by

fL(x) ≡ 〈↓` |x〉 , fR(x) ≡ 〈x| ↑`〉 . (5.3.28)

6To see this, it suffices to recall that Bε(u) is composed of B(u) + εD(u) and S− and that B(u) lowers

the eigenvalue of Sz by 1/2 while Sz and D(u) leave it unchanged.
7Note that the combination S−−εSz+i

∑
j θj appears inBε(u) asBε(u) ∼ εu`+i(S−−εSz+i

∑
j θj)u

`−1+

. . . and its action on the SoV basis is thus given by (S− − εSz + i
∑
j θj)|x1, . . . , x`〉 = ε

∑
i xi|x1, . . . , x`〉.
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Note that both the measure µ(x) and the functions fL,R(x) depend on the twist parameter

ε but the total expression (5.3.27) should be ε-independent as argued above.

Let us now determine µ(x) and fL,R(x). To determine µ(x), we consider the overlap8

between the left and the right eigenstates in the SoV basis, 〈x′|x〉. First, since 〈x′| and

|x〉 are both eigenstates of the operators x̂k’s, the overlap vanishes unless the eigenvalues

coincide. Therefore, we conclude that 〈x′|x〉 is proportional to δx′1,x1
δx′2,x2

. . . δx′`,x` . Second,

when we act the right hand side of (5.3.24) on the state 〈x′|, the state should not change as

the left hand side of (5.3.24) is just an identity operator. Owing to this condition, we can

express 〈x′|x〉 in terms of the measure factor µ(x) as

〈x′|x〉 = µ−1(x) δx′1 ,x1
. . . δx′` ,x` . (5.3.29)

This suggests that µ(x) can be determined by computing the matrix element

〈x′|Aε(u)|x〉 (5.3.30)

in two different ways: First, by acting Aε(u) on the bra using (5.3.13) and (5.3.18) and

setting x′j = xj for j 6= k and x′k = xk + i, we obtain

µ−1(. . . , xk , . . .)

(∏
j 6=k

u− xj
xk − xj + i

)
Q+++
θ (xk) . (5.3.31)

Second, by acting Aε(u) on the ket using (5.3.16) and (5.3.20) and setting x′j = xj for j 6= k

and x′k = xk + i, we obtain

µ−1(. . . , xk + i , . . .)

(∏
j 6=k

u− xj
xk − xj

)
Q−θ (xk) . (5.3.32)

By equating (5.3.31) and (5.3.32), we arrive at the following recursion relation for µ(x):

µ(. . . , xk + i, . . .)

µ(. . . , xk, . . .)
=

Q−θ (xk)

Q+++
θ (xk)

∏
j 6=k

xk − xj + i

xk − xj
. (5.3.33)

The solution to this equation can be obtained as

µ(x) ∝
∏
i<j

(xi − xj)
∏
k

e−π(xk−θk)
∏
l 6=m

1

(xl − θm + i
2
)(xl − θm − i

2
)
. (5.3.34)

Similarly, we can derive the recursion relations for fL,R(x) by computing 〈↓` |Aε(u)|x〉 and

〈x|Aε(u)| ↑`〉 in two different ways. First, by acting Aε(u) on the bra using the formula,

〈↓` |Aε(u) = 〈↓` | (A(u) + εC(u)) = Q−θ (u)〈↓` | , (5.3.35)

8Note 〈x′|x〉 cannot be regarded as a norm since the left and the right eigenstates are not Hermitian

conjugate to each other. Therefore 〈x′|x〉 can be in general complex-valued.
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and (5.3.18), we obtain

〈↓` |Aε(u)|x〉 =Q−θ (u)fL(x) , (5.3.36)

〈x|Aε(u)| ↑`〉 =
∏̀
k=1

(u− xk)fR(x)

+
√

1 + ε2
∑̀
k=1

(∏
j 6=k

u− xj
xk − xj

)
Q+
θ (xk)fR (. . . , xk − i , . . .) . (5.3.37)

Second, by acting Aε(u) on the ket using (5.3.20) and the formula

Aε(u)| ↑`〉 = (A(u) + εC(u)) | ↑`〉 = Q+
θ (u)| ↑`〉 , (5.3.38)

we obtain

〈↓` |Aε(u)|x〉 =
∏̀
k=1

(u− xk)fL(x)

+
√

1 + ε2
∑̀
k=1

(∏
j 6=k

u− xj
xk − xj

)
Q−θ (xk)fL (. . . , xk + i , . . .) , (5.3.39)

〈x|Aε(u)| ↑`〉 =Q+
θ (u)fR(x) . (5.3.40)

By equating (5.3.36) with (5.3.39) and (5.3.37) with (5.3.40) and setting u = xk, we can

derive the following recursion relations for fL,R(x):

fL(. . . , xk + i , . . .) =
1√

1 + ε2
fL(x) , (5.3.41)

fR(. . . , xk − i , . . .) =
1√

1 + ε2
fR(x) . (5.3.42)

Solving these recursion relations, fL,R(x) can be determined as

fL(x) ∝ exp

(
i

2
ln(1 + ε2)

∑̀
k=1

xk

)
, fR(x) ∝ exp

(
− i

2
ln(1 + ε2)

∑̀
k=1

xk

)
. (5.3.43)

Let us now convert the summation over the discrete spectrum of x̂k’s to contour integrals

over the continuous variables xk. To carry this out, we utilize the following relations:

e−π(xk−θk) = Resz=xk

[
1

(z − θk + i
2
)(z − θk − i

2
)

]
. (5.3.44)

Note that xk takes only two values, θk ± i
2

, and (5.3.44) is either +i or −i depending on

which value xk takes. Then, by re-expressing the factor
∏

k e
−π(xk−θk) in (5.3.34) using the
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relations (5.3.44), we can rewrite the whole measure as the residue of the following simple

function:

µ(x) ∝ Res{zk}={xk}

[ ∏
i<j(zi − zj)∏

lQ
+
θ (zl)Q

−
θ (zl)

]
, (5.3.45)

where Qθ is given by
∏`

k=1(u − θk) as defined previously in (3.1.41). The constants of

proportionality in (5.3.43) and (5.3.45), which are left undetermined, are functions of the

twist parameter ε and the inhomogeneity parameters θk’s. These constants are related to the

overall normalization of the scalar products and will be fixed by the analysis presented in

the Appendix A.2, which compares it with the other known formula for the scalar product.

Taking into account the constants of proportionality in (5.3.43) and (5.3.45), we finally

arrive at the following multiple integral formula9 for the scalar product between an off-shell

Bethe-state and an on-shell Bethe state:

〈↑` |
M∏
i=1

C(vi)
M∏
j=1

B(uj)| ↑`〉 =

∏
j<k(θj − θk)(θj − θk + i)(θj − θk − i)

(`− 2M)!

×
∏̀
n=1

∮
Cn

dxn
2πi

(∑̀
j=1

xj

)`−2M∏
k<l

(xk − xl)
∏̀
m=1

Qu(xm)Qv(xm)

Q+
θ (xm)Q−θ (xm)

. (5.3.46)

In this formula, Cn denotes the integration contour which encloses θn± i/2 counterclockwise.

Actually the prefactors in front of the integral are unimportant when computing physical

observables, since they drop out upon normalizing the Bethe states.

5.3.3 Symmetrization and simplification of the multiple integral

The multiple integral formula (5.3.46) derived in the last subsection has one unsatisfactory

feature: This expression becomes singular as we take the homogeneous limit, θn → 0. There

are two sources for the singular behavior. One is that the integration contours Cn get pinched

and collide when all the θn’s move to the origin. Another source is that at the same time the

prefactor
∏

j<k(θj − θk) will vanish. To get around this difficulty, we wish to deform each

integration contour into the one, to be denoted by Call, which encloses all the singularities

in the integrand. However, if we näıvely make such deformations, obviously we will pick up

unwanted contributions coming from different integration variables encircling the poles from

the same group θn ± i/2. We can avoid such contributions by inserting a factor of the form∏
k<l(e

2πxk−e2πxl), which vanishes for all the undesired cases. For the genuine contributions

for which this factor does not vanish, we must normalize properly to reproduce the original

9In the Appendix A.2, we will give a direct analytical proof of the equivalence between (5.3.46) and the

known determinant formulas.
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value of the integral. In this way, with the factor `! coming from the permutation of xn’s,

we obtain the following more symmetric expression for the scalar product:

〈↑` |
M∏
i=1

C(vi)
M∏
j=1

B(uj)| ↑`〉 =
Ξ

`!(`− 2M)!

×
∏̀
n=1

∮
Call

dxn
2πi

(∑̀
j=1

xj

)`−2M∏
k<l

(xk − xl)(e2πxk − e2πxl)
∏̀
m=1

Qu(xm)Qv(xm)

Q+
θ (xm)Q−θ (xm)

, (5.3.47)

where the prefactor Ξ is given by

Ξ ≡
∏
j<k

(θj − θk)(θj − θk + i)(θj − θk − i)
(e2πθj − e2πθk)

. (5.3.48)

Note that for this expression the prefactor Ξ is indeed finite in the homogeneous limit.

Although the expression above is symmetric in all the variables and hence quite useful,

it is of interest to point out that actually we can integrate out one of the xk’s and obtain

a slightly simpler expression containing `− 1 integration variables. To derive it, let us first

re-express the factor
∏

k<l(e
2πxk − e2πxl) as a determinant of Vandermonde type:∏

k<l

(e2πxk − e2πxl) = det
(
e2π(j−1)xk

)
1≤j,k≤` . (5.3.49)

Then, by using the basic definition of the determinant, we can rewrite it into a sum over

permutations of the form
∑

σ(−1)σe2π(σ(j)−1)xj . Now note that the remaining terms in the

integrand is completely antisymmetric with respect to permutations. Hence, all the terms

in the above sum contribute equally and we arrive at the following expression:

Ξ

(`− 2M)!

∏̀
n=1

∮
Call

dxn
2πi

(∑̀
j=1

xj

)`−2M∏
k<l

(xk − xl)
∏̀
m=1

Qu(xm)Qv(xm)e2π(m−1)xm

Q+
θ (xm)Q−θ (xm)

. (5.3.50)

Notice that the integral is over meromorphic factors, except for exp(2π(m−1)xm). However

for x1 this factor is absent. Hence we can easily integrate out this variable by closing its

contour at infinity. At infinity all the factors become power functions and the only non-

vanishing integral to be performed is
∮
dx1/(2πix1) = 1. After this procedure, we may

convert the factor e2π(m−1)xm back to the determinant and further to the original expression∏
k<l(e

2πxk−e2πxl). In this way we obtain the following simple formula with `−1 integration

variables:10

〈↑` |
M∏
i=1

C(vi)
M∏
j=1

B(uj)| ↑`〉 =
Ξ

(`− 1)!(`− 2M)!

×
`−1∏
n=1

∮
Call

dxn
2πi

∏
k<l

(xk − xl)(e2πxk − e2πxl)
`−1∏
m=1

Qu(xm)Qv(xm)e2πxm

Q+
θ (xm)Q−θ (xm)

. (5.3.51)

10For simplicity, we have renamed x2, . . . , x` as x1, . . . , x`−1.
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Note that the factor, (
∑

j xj)
`−2M , which was present in the previous expressions, disappeared

upon integration over x1. Therefore (5.3.51) is structurally similar to the eigenvalue integral

of a matrix model. Namely, Q-functions correspond to a potential term for the eigenvalues

and
∏

k<l(xk − xl)(e2πxk − e2πxl) can be interpreted as a modified Vandermonde factor. It

is intriguing to note that this modified Vandermonde factor is a hybrid of the ordinary

Vandermonde factor for the Hermitian matrix model,
∏

k<l(xk − xl)2, and the generalized

Vandermonde factor for the unitary matrix model and the Chern-Simons matrix model [99],

which is essentially given by
∏

k<l(e
2πxk − e2πxl)2. This resemblance to a matrix model

strongly suggests that the semi-classical limit for the scalar product can be analyzed by

applying the method of large N expansion familiar for matrix models as we shall discuss in

the next section.

5.4 Attempt to derive the semi-classical limit

Having derived the integral formula, let us now turn our eyes to how the formula can be put

to use. Below, we describe our so-far unsuccessful attempt to derive the semi-classical limit

of the scalar products. Although we have not succeeded in deriving the expression (4.3.8),

we believe the argument below partially clarifies the physical mechanism behind it.

For this purpose, it is instructive to first consider the semi-classical limit of a one-

dimensional harmonic oscillator, whose Schödinger equation is given in (5.2.1), and consider

the expectation value,

〈O(x)〉 =
〈ψ|O(x)|ψ〉
〈ψ|ψ〉

. (5.4.1)

As discussed in section 2.1.3, the wave function in the semi-classical limit can be approxi-

mated by the WKB wave function. In the present case, it is given as follows:

ψ(x) ∼ 1

p(x)1/2
cos

[
1

~

∫ x

x1

p(x′)dx′ − π

4

]
for x1 ≥ x ≥ x2 ,

ψ(x) ∼ 1

ρ(x)1/2
exp

[
−1

~

∫ x1

x

ρ(x′)dx′
]

for x < x1 ,

ψ(x) ∼ 1

ρ(x)1/2
exp

[
−1

~

∫ x

x2

ρ(x′)dx′
]

for x2 < x ,

(5.4.2)

where x1 < x2 are two real solutions for

E − V (x) = E − mω2x2

2
= 0 , (5.4.3)

and p(x) and ρ(x) are given respectively by p(x) =
√

2m(E − V (x)) and ρ(x) =
√

2m(V (x)− E).

Owing to the exponential suppression factor, we can neglect the contributions from the two
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regions, x < x1 and x2 < x, in the semi-classical limit. Furthermore, since the argument of

the cosine-function in (5.4.2) is rapidly oscillating in the semi-classical limit, we can replace

the square of the cosine-function by

cos2

[
1

~

∫ x1

x

p(x′)dx′ − π

4

]
∼ 1

2
, (5.4.4)

in the limit. Therefore, (5.4.1) can be approximated as∫ x2

x1
O(x)p(x)−1dx∫ x2

x1
p(x)−1dx

. (5.4.5)

Since, classically, the momentum p can be expressed by the velocity of the particle as

p = mv = m
dx

dt
, (5.4.6)

the expression (5.4.5) can be recast into the following form:

〈O(x)〉 '
∮
O(x(t))dt∮

dt
, (5.4.7)

which is nothing but the classical time average.

This elementary example shows clearly how the classical motion emerges from the quan-

tum observable. What is more interesting is that the branch cut of p(x) originates from the

condensation of poles. To see this, let us consider the exact wave function, given in (5.2.2),

ψ(x) =
N∏
i=1

(x− xi)e−mωx
2/2~ . (5.4.8)

We can define the quantum analogue of p(x) as the logarithmic derivative of the wave function

as

pexact(x) = −id lnψ

dx
=

N∑
i=1

−i
x− xi

+
imωx

~
. (5.4.9)

This expression makes it clear that the branch cut of p(x) originates from the condensation of

poles. This feature is reminiscent of the semi-classical limit of the XXX spin chain, in which

the condensation of the Bethe roots results in the branch cuts in the spectral curve. This

analogy indeed goes further and the formula (5.4.5) can also be expressed as the integration

around the branch cut just like the semi-classical formula for the scalar products of the XXX

spin chain (4.3.8): ∮
O(x)p(x)−1dx∮
p(x)−1dx

. (5.4.10)
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The above observations suggest the possibility that we can directly derive the semi-

classical limit of the scalar products starting from our integral formula. In fact, the following

combination of the Q-functions can be approximated as follows in the semi-classical limit:

Qu(x)√
Qθ(x)

' exp

(∫ x

pu(x′)dx′
)
, (5.4.11)

where pu is the quasi-momentum defined in (4.3.9). Let us study the norm of the scalar

product 〈u|u〉 using this approximation. Unfortunately the discussion below is very much

hand-waving and far from a rigorous proof. We nevertheless explain it since it gives us

certain insights into the semi-classical limit of the scalar products. Substituting (5.4.11) into

the expression (5.3.50), which we derived in the intermediate step of the symmetrization of

the scalar products, and setting v = u, we obtain the following expression:

∏̀
n=1

∮
Call

dxn
2πi

(
∗
) ∏̀
m=1

e2
∫ xm pu(x′)dx′+2π(m−1)xm , (5.4.12)

where various other factors are denoted by
(
∗
)
. If we perform a saddle-point approximation

to (5.4.12) neglecting the factor
(
∗
)
, we arrive at the following saddle point equation:

pu(xm) = π(m− 1) . (5.4.13)

Note that the equation (5.4.13) is the same in form as the defining equations for the branch

points and the node-like points (3.3.39). This is consistent with the observation to be made

in section 7.1 that most of the separated variables are confined in the node-like points in the

classical solutions describing two-point functions. By evaluating the integrand on the saddle

point and neglecting the contributions from
(
∗
)
, we obtain the following expression for the

semi-classical limit:

ln〈u|u〉 '
∮ (

2

∫ x

pu(x′)dx′ − 2pu(x)x

)
d ln sin pu(x)

dx
dx . , (5.4.14)

where the integration contour is taken to encircle all the poles in the integrand counterclock-

wise. Let us explain the meaning of each factor on the right hand side of (5.4.14). The terms

in the big parenthesis simply denote the logarithm of the integrands in (5.4.12). On the other

hand, the term (ln sin pu)′ produces poles at pu(x) = nπ. Therefore, upon integration, we

obtain the values of the integrands in (5.4.12) evaluated on the saddle points (5.4.13). Since

the integration contour of (5.4.13) encircles all the poles in the integrand, we can deform

it such that the contour after integration only encircles the branch cuts of pu(x), Au, as

follows:

ln〈u|u〉 '
∮
−Au

(
2

∫ x

pu(x′)dx′ − 2pu(x)x

)
d ln sin pu(x)

dx

dx

2πi
. (5.4.15)
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By partial integration, this expression can be further converted as

= 2

∮
−Au

x
pu(x)

dx
ln sin pu(x)

dx

2πi
=

∮
Au

dx

2π
Li2
(
e2ipu(x)

)
, (5.4.16)

where we neglected terms, which only changes the overall phase of the norm, on the right

hand side. In this way, the semi-classical limit of the norm (4.3.8) can be reproduced.

We should keep in mind that the above derivation is far from rigorous since we deliberately

neglected various important terms including the Vandermonde factor
∏

i<j(xi − xj), which

plays a crucial role in the large N limit of the ordinary matrix model. However, the fact that

the known semi-classical result can be reproduced by neglecting such terms indicate that

their contributions are in fact suppressed in the semi-classical limit. This of course should

be validated by some rigorous argument but, at present, we have no convincing proof. Thus,

the rigorous derivation of the semi-classical limit starting from the integral formula still

remains an important open question.
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Part III

Three Point Functions in Classical

String Theory
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Chapter 6

Correlation functions and classical

strings

Having seen that the three-point functions at weak coupling can be computed using the

integrability-based techniques, let us start discussing the main theme of this thesis: The

computation of three-point functions at strong coupling using the classical string and inte-

grability.

The aim of this chapter is to give a general overview of the computation of three-point

functions in the classical string theory. In section 6.1, we explain how the correlation func-

tions in the strong coupling limit of the gauge theory can be computed by the classical

string. In particular, we explain how various types of the operators in the gauge theory are

described on the string theory side. Then in section 6.2, we review various previous works

on the computation of three-point functions at strong coupling, and motivate the discussions

in the next chapter.

6.1 Correlation functions at strong coupling from the saddle-point

approximation

Let us get started by overviewing the computation of three-point functions in the classical

string theory.

As explained in section 2.2, the correlation function in the gauge theory is computed on

the string theory side by the worldsheet correlation function given as follows:

〈O1(x1) · · · On(xn)〉 =

∫
d2z1 · · · d2zn

Möbius
〈V1(z1) · · · Vn(zn)〉 . (6.1.1)
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In terms of the path integral, the right hand side of (6.1.1) is re-expressed schematically as∫
d2z1 · · · d2zn

Möbius

∫
DXe−

√
λS[X]V1[X(z1)] · · · Vn[X(zn)] . (6.1.2)

Owing to the
√
λ factor in front of the action S[X], the path integral (6.1.2) will be dominated

by the saddle-point contribution when the ’t Hooft coupling constant λ goes to infinity. Then,

the saddle-point equation is given by

δS[X]

δX(z)
=

1√
λ

n∑
i=1

δ lnVi[X(zi)]

δX(z)
. (6.1.3)

If we take the λ→∞ limit assuming that lnVi’s are much smaller than
√
λ, the right hand

side of (6.1.3) simply vanishes and the saddle point equation becomes identical with the one

without any vertex operator insertions. Then the dominant contribution is provided by a

point-like worldsheet with zero area, irrespective of the vertex operators. In such a case, the

leading semi-classical result is trivial and one needs to compute the quantum correction in

order to take into account the detailed information of the vertex operators. On the other

hand, when lnVi is of order
√
λ, the right hand side of (6.1.3) cannot be neglected even in the

limit. Then the dominant contribution is provided by a nontrivial worldsheet configuration,

which in general has a long leg at each insertion point. Unlike the previous case, the detailed

information of the vertex operators is already reflected in the saddle-point configuration and

we just need to evaluate the integrand of (6.1.3) on the saddle point to obtain the leading

result in the λ→∞ limit.

To estimate the magnitude of the logarithm of the vertex operator lnVi, let us first recall

the form of the vertex operator of the rotating string in the flat spacetime,

V = (X1 + iX2)JeikµX
µ

, (6.1.4)

where J is the angular momentum on the X1-X2 plane whereas kµ is the spacetime momen-

tum. The equation (6.1.4) shows clearly that lnV is proportional to the charges (quantum

numbers), J and kµ. This property is quite universal and is true also for the string theory

on the AdS5× S5 spacetime. To see this clearly, it is convenient to map the vertex operator

to the wave function using the state-operator correspondence. Then as we will see in section

7.3, the semi-classical limit of the wave function, which is related to the vertex operator

through the state-operator mapping, can be expressed as

Vi 7→ Ψ ∼ exp

(
i
∑
i

Siφi

)
, (6.1.5)

where Si’s are charges of the string state and φi’s are the conjugate angle variables. The

expression (6.1.5) makes it clear that the logarithm of the vertex operator is of the order of
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the charges Si’s. Since the charges are typically of the order of conformal dimension ∆ in the

string theory on AdS5×S5, we conclude that lnVi is roughly proportional to ∆. This means

that only the vertex operators whose conformal dimension are of the order of
√
λ affect the

saddle point configuration.

Let us now give a more physical description of the above statement. When λ goes to

infinity, the string becomes infinitely rigid and the ratio between the string length `s and

the AdS radius R scales as

`s
R
∼ λ−1/4 → 0 . (6.1.6)

In such a situation, it is convenient to classify the string states depending on their conformal

dimensions.

• First, the strings with zero oscillation number Nosc (see (2.1.2)), which correspond to

the supergravity modes, typically have the O(1) energy (conformal dimension):

E ∼ ∆ ∼ O(1) . (6.1.7)

Since such states cannot modify the saddle point, the quantum correction needs to be

considered. In what follows, we call these states the light states. It is known that these

light supergravity states are dual to the 1/2-BPS operators in the gauge theory.

• On the other hand, if the string has a finite number of oscillation modes, its energy

scales as

E = ∆ ∼ 1

`s
∼ λ1/4 . (6.1.8)

Although this is divergent in the limit λ → ∞, it is still much smaller than
√
λ.

Therefore, such states do not affect the saddle point either. These states are often

called the medium states and are considered to be dual to the short non-BPS operators

in the gauge theory.

• The string states which do modify the saddle points are called the heavy states, whose

oscillation number scales as Nosc ∼ λ1/4 and whose energy is given by

E = ∆ ∼ Nosc

`s
∼
√
λ . (6.1.9)

Since the angular momenta of such states are of the same order as ∆, the string can

extend macroscopically owing to the strong centrifugal force. The operators dual to

these states are given by long non-BPS operators in the gauge theory.
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A summary of the above classification is given as follows:

∆ String theory Gauge theory

Light ∆ ∼ 1 Supergravity BPS operator

Medium ∆ ∼ λ1/4 String with finite excitations Short non-BPS operator

Heavy ∆ ∼ λ1/2 Macroscopic string Long non-BPS operator

(6.1.10)

In the next chapter, we focus on three-point functions of heavy string states. In the case

of three-point functions, we can fix the insertion points of the vertex operators using the

Möbius transformation and the path integral expression is schematically given by∫
DX V1[X1]V2[X2]V3[X3] e−

√
λS . (6.1.11)

The saddle point of such a path integral is provided by the worldsheet with three long legs

(see Figure 6.1.1). However it is practically impossible to determine the precise shape of the

saddle point owing to the complicated dynamics of the string on AdS5 × S5. In addition,

since we do not know the explicit way to quantize the string sigma model on AdS5× S5, we

cannot construct the exact form of the vertex operator. In the next chapter, we will see how

these two difficulties can be overcome by an ingenious use of integrability.

Figure 6.1.1: A typical saddle-point configuration in AdS spacetime for the three-point

function.

6.2 Various attempts on the string-theory side

Before we move on to the actual computation, let us review various preceding works on the

three-point functions on the string-theory side.

The most well-studied three-point functions at strong coupling are those with three light

states. Since the light states are nothing but the supergravity modes, one can compute such
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three-point functions using the supergravity and it was found that the result completely

matches the one obtained in the gauge theory [72]. Another class of well-studied three-

point functions are the so-called “Heavy-Heavy-Light” three-point functions, which were

first studied in [100–102]. Since the third operator is light in this case, we can compute such

three-point functions by using the known saddle-point trajectory of two heavy states and

evaluating the third supergravity mode on that trajectory. In [91], it was found that such

three-point functions completely agree with the gauge-theory results if we take the Frolov-

Tseytlin limit. Recently, a method to compute the three-point functions of the medium

states was proposed in [103, 104]. They assumed that the medium states are insensitive to

the curvature of the AdS spacetime since they are almost point-like. Then they approximated

the states by those on the flat space and computed three-point functions using the flat-space

scattering amplitude. Although it is not clear at present to what extent we can approximate

the medium state by the string state on the flat spacetime, it is certainly a direction worth

to be explored.

We should also mention that there is a number of works studying three-point functions

in the BMN limit using the light-cone string field theory. The string states in the BMN limit

are the states with an angular momentum much larger than
√
λ and with a finite number

of mode excitations. They share common properties with all three aforementioned states:

First, they are certainly heavy since the conformal dimension ∆ is larger than
√
λ. Second,

they have a finite number of mode excitations similarly as the medium states. Third, since

the number of excitations is negligibly small as compared to ∆, the string is of infinitesimal

size as the light state. Therefore, studying such three-point functions is certainly interesting

and will probably be rewarding. However, a crucial limitation in this approach is that

only near-extremal three-point functions, which satisfy ∆i + ∆j ∼ ∆k, can be computed.

The near-extremal limit is a singular and degenerate limit and the trajectory of the string

approaches to that of the two-point function in such a limit.

To explore the genuine characteristics of three-point functions of the string theory on

AdS5× S5, we need to consider three-point functions of heavy states. However, as stated at

the end of the previous subsection, the computation of such three-point functions is known

to be extremely difficult and only a few papers were written regarding this topic. In the first

of such attempts [105], the contribution from the AdS2 part was evaluated for the string in

AdS2 × Sk, where the string is assumed to be rotating only in Sk. Since the contribution

from the sphere part was not computed in [105], the complete answer for the three-point

function was not given. In this context, the computation to be explained in the next chapter

can be regarded as the completion of the work initiated by [105].

At about the same time, computation of the three-point functions for different type of

external states was attempted in [16]. We took as the external states the so-called Gubser-
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Klebanov-Polyakov (GKP) strings [106] spinning within AdS3 with large spins. In this work,

the contribution to the three-point function from the action evaluated on the saddle point

configuration was computed by a method similar to the one in [105]. However, unlike the case

of [105], the GKP string is not point-like on the boundary, and hence the contributions from

the non-trivial vertex operators were needed to give the complete answer. Since the precise

form of such vertex operators were not known, again the computation had to be left unfin-

ished. This difficulty was later overcome by the development of a new integrability-based

method built on the state-operator correspondence and the contribution of the non-trivial

wave functions of the external states was obtained [17]. Combined with the contribution

from the action evaluated previously, this gave the full answer for the three-point function

of the GKP strings in the large spin limit [17].

However, three-point functions of the operators dual to the GKP strings are not well

studied on the gauge theory side. This made it impossible to compare the results on both

sides and extract a common structure. Thus, in the next chapter, we set out to discuss a

class of three-point functions which were well-studied in the gauge theory side; three-point

functions in “SU(2)-sector”, discussed in Part II.
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Chapter 7

Three-point functions in SU(2)-sector

at strong coupling

In the previous chapter, we have seen that the three-point functions in the strong coupling

limit of the gauge theory can be computed by the classical string on the three-pronged

worldsheet and that the contribution can be split into two parts, the action and the vertex

operators. In this chapter, we explicitly carry out such computation. More precisely, we

study three-point functions of strings which do not have angular momenta in AdS5 and

move in the S3-subspace of the full S5. In particular, we discuss the three-point functions

of one-cut string solutions, which have only one branch cut on the spectral parameter plane.

They include the ones, which are dual to the three-point functions in the “SU(2)-sector” of

the gauge theory discussed in detail in Part II.

First in section 7.1, we summarize several known facts on the classical strings in S3, to

be used in the subsequent discussions. Then in section 7.2, we begin with the computation

of the action-part and show that the contribution from the action can be re-expressed in

terms of the Wronskians of the auxiliary linear problem. Next, in section 7.3, we discuss the

contribution from the vertex operators and find that this contribution can also be expressed

in terms of the Wronskians. Based on these observations, we next proceed to evaluate the

Wronskians in section 7.4. We first determine the analytic property of the Wronskian using

an appropriate generalization of the WKB analysis. Using this information, we next set up

the Riemann-Hilbert problem and solve it in terms of certain convolution integrals on the

spectral curve. In section 7.5, we then put together all the results obtained up to this point

and write down the general formula for three-point functions of strings rotating in S3. The

resulting formula is surprisingly simple and highly resembles the result in the gauge theory

before taking any limits. Lastly in section 7.6 we examine the formula using several explicit

examples and perform a detailed comparison with the results in the gauge theory. As a result,
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we find a small mismatch between the string theory and the gauge theory even after taking

the Frolov-Tseytlin limit. We then briefly discuss the possible origin and interpretation of

this mismatch.

7.1 Classical strings in S3 and three-point functions

Let us begin by setting up the formalism to deal with the three-point functions in the classical

string theory.

7.1.1 A word on the set-up

The three-point function we wish to compute in the semi-classical approximation has the

following structure1:

G123(x1, x2, x3) = 〈V1V2V3〉 ∼ e−S[X∗]ε

3∏
i=1

Vi[X∗;xi, Qi]ε . (7.1.1)

It consists of the contribution of the action and that of the vertex operators, evaluated

on the saddle point configuration denoted by X∗. The subscript ε signifies a small cut-off

which regulates the divergences contained in S and Vi. As we shall show, these divergences

cancel against each other and the total three-point function is completely finite. The vertex

operator Vi[X∗;xi, Qi]ε is assumed to carry a large charge Qi of order O(
√
λ) and is located

at xi on the boundary of the AdS space.

In this chapter, we will consider the string propagating in the product space of the

Euclidean AdS3 subspace of AdS5 (to be denoted by EAdS3) and the sphere S3. The external

string states we use are those with nontrivial S3 angular momenta but without EAdS3

angular momenta. Therefore, we will mostly concentrate on the S3 part in the subsequent

discussions. An exception is section 7.5.2, where we take into account the contributions from

the EAdS3-part.

In the case of a string in EAdS3×S3, the action and the vertex operators are split into the

EAdS3 part and the S3 part. Their contributions are connected solely through the Virasoro

constraint T (z)EAdS3 + T (z)S3 = 0 (and its anti-holomorphic counterpart). In the semi-

classical approximation, an external state is characterized by the asymptotic behavior of a

classical solution, which should be the saddle point configuration for its two-point function.

However, a conformally invariant vertex operator which creates such a state is practically

impossible to construct at present. Moreover, even if one had the vertex operator, it is of

1A more detailed explanation on the structure will be given in subsection 7.1.7.
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no use since the explicit saddle point solution X∗ on which to evaluate the vertex operator

(and the action) cannot be obtained by existing technology.

Such difficulties, although seemingly insurmountable, can be overcome with the aid of

the integrable structure of the system as we will see in the following sections. In the rest

of this section, we recall several known facts on the classical integrability, which we did not

explain in section 3.2.2, in order to provide enough background knowledge for the subsequent

computation.

7.1.2 More on the classical integrability of the string in S3

Let us explain several necessary facts on the classical integrability of the string in S3 for the

analysis in the subsequent sections.

The auxiliary linear problem

Of crucial importance in the analysis in the following sections is the so-called auxiliary

linear problem, to be abbreviated as ALP. They are the following coupled linear differential

equations for vector functions:

right ALP : (∂ +
jz

1− x
)ψ = 0 , (∂̄ +

jz̄
1 + x

)ψ = 0 , (7.1.2)

left ALP : (∂ +
xlz

1− x
)ψ̃ = 0 , (∂̄ − xlz

1 + x
)ψ̃ = 0 . (7.1.3)

Compatibility of the system of the ALP implies the original equations of motion. Since the

left and the right connections are related by the gauge transformation, the solutions to the

ALP, ψ and ψ̃, are also related with each other as follows:

ψ̃ = Yψ . (7.1.4)

Pohlmeyer reduction

The formulation of the classical integrability in terms of the left and the right currents l

and j is convenient for analyzing the property of the system under the global symmetry

transformations. Hence it will be used as the basis of the construction of the wave function

corresponding to the vertex operators in section 7.3. On the other hand, for the analysis

of the contribution of the action, which is invariant under the global transformation, the

formalism of the Pohlmeyer reduction [107,108] will be more convenient.
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The essential idea of the Pohlmeyer reduction is to describe the motion of the string

in a suitably defined moving frame. This then leads to the Lax equations in terms of the

connections which are invariant under the global symmetry transformations. Below we shall

only sketch the procedures and then summarize the basic equations we will need later.

Further details will be given in Appendix C.2.

In what follows we shall denote a 4-component field AI simply as A and use the notations

A · B = AIBI , A
2 = AIAI . The basic moving frame of 4-component fields, to be called

qi, (i = 1, 2, 3, 4), are taken as q1 ≡ Y, q2 ≡ a∂Y + b∂̄Y, q3 ≡ c∂Y + d∂̄Y and q4 ≡ N , where

N is the unit vector orthogonal to Y, ∂Y and ∂̄Y , and the (field-dependent) coefficients

a, b, c, d are chosen so that the simple conditions q2 ·q3 = −2, q2
2 = q2

3 = 0 are satisfied. (Note

that since Y 2 = 1, we automatically have q2
1 = 1, q1 · q2 = q1 · q3 = 0.) Let us define an

SO(4)-invariant field γ by the relation

∂Y · ∂̄Y =
√
T T̄ cos 2γ . (7.1.5)

Then, the coefficients a, b, c, d can be expressed in terms of T, T̄ and γ, giving q2 and q3 of

the form

q2 = − i

sin 2γ

[
eiγ√
T
∂Y +

e−iγ√
T̄
∂̄Y

]
, (7.1.6)

q3 =
i

sin 2γ

[
eiγ√
T̄
∂̄Y +

e−iγ√
T
∂Y

]
. (7.1.7)

Once the moving frame is prepared, one can compute the derivatives of qi and express them

in terms of qi again. The result can be assembled into the following equations

∂W +BL
zW +WBR

z = 0 , ∂̄W +BL
z̄W +WBR

z̄ = 0 , (7.1.8)

where W is given by

W =
1

2

(
q1 + iq4 q2

q3 q1 − iq4

)
, (7.1.9)

and BL,R
z,z̄ are matrices whose components are expressed in terms of T, T̄ and γ. (Explicit

forms are given in Appendix C.2.) From the equations (7.1.8) one deduces that the left and

the right connections BL and BR, given in (C.2.21)–(C.2.24), are flat, namely

[∂ +BL
z , ∂̄ +BL

z̄ ] = 0 , [∂ +BR
z , ∂̄ +BR

z̄ ] = 0 . (7.1.10)

These relations give the equations of motion for the invariant fields in the form

∂∂̄γ +

√
T T̄

2
sin 2γ +

2ρρ̃√
T T̄

1

sin 2γ
= 0 ,

∂ρ̃+
2∂̄γ

sin 2γ
ρ = 0 , ∂̄ρ+

2∂γ

sin 2γ
ρ̃ = 0 ,

(7.1.11)
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where ρ and ρ̃ are defined by

ρ ≡ 1

2
N · ∂2Y , ρ̃ ≡ 1

2
N · ∂̄2Y . (7.1.12)

Just as in the case of the sigma model formulation, the integrability of the system allows

one to introduce a spectral parameter ζ, related to x by

ζ =
1− x
1 + x

, (7.1.13)

without spoiling the flatness conditions. The Lax equation so obtained is given by

[∂ +Bz(ζ), ∂̄ +Bz̄(ζ)] = 0 , (7.1.14)

where

Bz(ζ) ≡ Φz

ζ
+ Az , Bz̄(ζ) ≡ ζΦz̄ + Az̄ ,

Φz ≡

(
0 −

√
T

2
e−iγ

−
√
T

2
eiγ 0

)
, Φz̄ ≡

(
0

√
T̄

2
eiγ

√
T̄

2
e−iγ 0

)
,

Az ≡

(
− i∂γ

2
ρeiγ√
T sin 2γ

ρe−iγ√
T sin 2γ

i∂γ
2

)
, Az̄ ≡

(
i∂̄γ
2

ρ̃e−iγ√
T̄ sin 2γ

ρ̃eiγ√
T̄ sin 2γ

− i∂̄γ
2

)
.

(7.1.15)

One can consider the auxiliary linear problem also for the Pohlmeyer connection (7.1.14),

(∂ +Bz(ζ)) ψ̂ = 0 ,
(
∂̄ +Bz̄(ζ)

)
ψ̂ = 0 . (7.1.16)

As shown in Appendix C.3.2, the Pohlmeyer connection (7.1.14) is related to the connections

in the sigma model formulation, (7.1.2) and (7.1.3), by the gauge transformation. Thus the

solutions to the ALP are also related by the gauge transformation as2

ψ = G−1ψ̂ , ψ̃ = G̃−1ψ̂ , (7.1.17)

where ψ and ψ̃ are the solutions to the right ALP and the left ALP respectively. Here

and below, we often call the choice of the gauge which gives the Pohlmeyer connection the

Pohlmeyer gauge.

7.1.3 One-cut solutions in S3

We now describe a particular class of solutions to the equations of motion and the Virasoro

constraints, which can be constructed by the so-called finite gap integration method3 [41–43].

2The explicit forms of G and G̃ will be given in Appendix C.3.2.
3For a comprehensive review, see [41].
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The finite gap method is a powerful framework which allows us to construct a large class of

solutions describing two-point functions. In addition, as we shall emphasize in section 7.1.6,

they also characterize the local behaviors of the saddle point solution for the three-point

function in the vicinity of the vertex insertion point. Among various solutions constructible

by the finite gap method, the class of our interest in this chapter is the simplest one; the one-

cut solutions, which are characterized by the associated spectral curve having one square-root

branch cut of finite size.

Before writing down the explicit form of the one-cut solutions, let us first sketch the

general procedures of the finite-gap integration method. As the first step, the solutions to

the left and the right ALP, called the Baker-Akhiezer functions, are constructed by treating

the problems as Riemann-Hilbert problems on a finite genus Riemann surface. Namely,

by proving that the function satisfying all the required analytic properties is unique, one

constructs such a function in terms of the Riemann theta functions and the exponential

functions. Then, as the second step, one develops the “reconstruction” formula4 , which

constructs the solutions to the original equations of motion from the knowledge of the Baker-

Akhiezer functions. Important features of the finite gap solutions are

1. the spectral curve has only a finite number of branch points (cusp-like points),

2. the monodromy matrix is proportional to the identity matrix at all the node-like

points5.

These features will play an important role when we discuss the difference between the finite-

gap solutions, which describe two-point functions, and more general solutions describing

three-point functions in subsection 7.1.6.

Let us now see explicitly how the aforementioned procedures are applied to the case of

the one-cut solutions.

Baker-Akhiezer vector

Consider first the right ALP given in (7.1.2) and let ψ±(x, z, z̄) be the Baker-Akhiezer vector

which are at the same time the eigenvectors of the monodromy matrix Ω(x) corresponding to

the eigenvalues e±ip(x) respectively. According to the general theory of finite gap integration,

4Although it is usually referred to as the “reconstruction” formula, in practice it is used as a solution-

generating formula.
5For a discussion on the behavior of the monodromy matrix at cusp-like points and node-like points, see

section 3.2.2.
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ψ± corresponding to the one-cut solution are given by simple exponential functions as

ψ+(x; τ, σ) =

(
c+

1 exp
(
iσ
2π

∫ x
∞+ dp+ τ

2π

∫ x
∞+ dq

)
c+

2 exp
(
iσ
2π

∫ x
∞− dp+ τ

2π

∫ x
∞− dq

) ) , (7.1.18)

ψ−(x; τ, σ) = ψ+(σ̂x; τ, σ) . (7.1.19)

where c+
i are constants, σ̂x denotes the point x on the opposite sheet, and ∞+(∞−) is the

point at infinity on the first (resp. second) sheet. The quantity dp is the differential of the

quasi-momentum p(x), while dq is the differential of the quasi-energy q(x). Just like p(x),

the quasi-energy q(x) is defined by the pole behavior at x = ±1+ of the form

q(x) ∼ −2πκ

x− 1
+O((x− 1)0) , (x→ 1+) , (7.1.20)

q(x) ∼ +2πκ

x+ 1
+O((x+ 1)0) , (x→ −1+) . (7.1.21)

The structure and the signs of the residue at x = ±1 for q(x) are determined so that the

holomorphicity of the solution (7.1.18) at x ' ±1 is as dictated by the ALP. For example at

x = 1 the holomorphic part of the ALP is dominating and hence the Baker-Akhiezer vector

should be holomorphic. This is in fact realized since p(x) = q(x) near x = 1 and hence the

exponent of ψ± is a function of the combination z = τ + iσ. In the same way, at x = −1 the

exponent of ψ± becomes anti-holomorphic as desired.

Now for the left ALP, the Baker-Akhiezer eigenvectors, denoted by ψ̃±(x, z, z̄), are given

by

ψ̃+(x; τ, σ) =

(
c−1 exp

(
iσ
2π

∫ x
0+ dp+ τ

2π

∫ x
0+ dq

)
c−2 exp

(
iσ
2π

∫ x
0−
dp+ τ

2π

∫ x
0−
dq
) ) , (7.1.22)

ψ̃−(x; τ, σ) = ψ̃+(σ̂x; τ, σ) , (7.1.23)

where the notations are similar and should be self-explanatory.

We will be interested in the case where the branch cut runs between u and its complex

conjugate ū on the spectral curve. Such a cut is described by a factor of the form

y(x) ≡
√

(x− u)(x− ū) . (7.1.24)

We define the branch of y(x) to be such that the sign of y(x) is +1 at x = 1+. Then p(x)
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and q(x) satisfying the prescribed analyticity properties are fixed to be

p(x) = −2πκy(x)

(
1

|1− u|
1

x− 1
+ ε

1

|1 + u|
1

x+ 1

)
, (7.1.25)

q(x) = −2πκy(x)

(
1

|1− u|
1

x− 1
− ε 1

|1 + u|
1

x+ 1

)
, (7.1.26)

ε =

{
+1 for |Reu| > 1

−1 for |Reu| < 1
. (7.1.27)

Here we fixed p(x) and q(x) such that they vanish at the branch points although the ana-

lyticity properties only determine the differential dp and dq. This choice is suitable for the

purpose of this chapter since the solutions to the ALP in the Pohlmeyer gauge. The forms

of p(x) and q(x) depend on whether the cut is placed to the right or to the left of x = 1.

Substituting these forms into the formulas for ψ± and ψ̃± we get the one-cut solutions for

the ALP.

Reconstruction formula

Let us now describe the second step, the reconstruction of the solutions of the equations of

motion from the Baker-Akhiezer vectors. Although this has been discussed in the literature

[41–43], we present below a more transparent formula. Let us form a 2 × 2 matrix Ψ in

terms of the two independent Baker-Akhiezer column vectors ψ± satisfying the right ALP

as Ψ = (ψ+ ψ−) and consider the quantity

Ψ̃ ≡ YΨ . (7.1.28)

Then, by using the definitions lz = ∂YY−1 and jz = Y−1∂Y, we can easily show that(
∂ +

xlz
1− x

)
Ψ̃ = Y

(
∂ +

jz
1− x

)
Ψ = 0 , (7.1.29)(

∂̄ − xlz̄
1 + x

)
Ψ̃ = Y

(
∂ +

jz̄
1 + x

)
Ψ = 0 . (7.1.30)

If we express Ψ̃ in terms of two column vectors ψ̃± as Ψ̃ = (ψ̃+ ψ̃−), the above equations show

that ψ̃± are actually two independent solutions to the left ALP. This means that there exist

solutions ψ± and ψ̃± to the right and the left ALP respectively so that Y can be expressed

as

Y = Ψ̃Ψ−1 . (7.1.31)

This general relation by itself, however, is not useful since even if we provide a solution Ψ

explicitly, finding Ψ̃ which satisfies (7.1.31) tantamounts to finding Y itself. Now the formula
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(7.1.31) turns into a genuine reconstruction formula when we consider the special values of

the spectral parameter x. If we set x = 0, it is evident from the form of ALP redisplayed

above in (7.1.29) and (7.1.30) that the left ALP equations for Ψ̃ reduce to ∂Ψ̃ = ∂̄Ψ̃ = 0, and

hence Ψ̃(x = 0) becomes a constant matrix. Therefore the solution Y is reconstructed from

the right ALP solution Ψ as Y(z, z̄) = Ψ̃(x = 0)Ψ−1(z, z̄;x = 0), where the constant matrix

Ψ̃(x = 0) represents the freedom of making a global transformation from left. Similarly,

by setting x = ∞, we can make the right ALP equations trivial, namely ∂Ψ = ∂̄Ψ = 0.

Then Ψ(x =∞) becomes a constant matrix and Y can be reconstructed from the left ALP

solution Ψ̃ as Y(z, z̄) = Ψ̃(z, z̄;x = ∞)Ψ−1(x = ∞). Summarizing, we have two types of

simple reconstruction formulas

Y(z, z̄) = Ψ̃(0)Ψ−1(z, z̄; 0) , (7.1.32)

Y(z, z̄) = Ψ̃(z, z̄;∞)Ψ−1(∞) . (7.1.33)

By using the reconstruction formula given above, one can write down the general basic

one-cut solution explicitly. It can be written in the form [40,41]

Y =

(
cos θ0

2
eν1τ+im1σ sin θ0

2
eν2τ+im2σ

− sin θ0
2
e−ν2τ−im2σ cos θ0

2
e−ν1τ−im1σ

)
, (7.1.34)

where the parameters νi,mi and θ0 must satisfy the following conditions expressing the

equations of motion and the Virasoro conditions:

ν2
1 −m2

1 = ν2
2 −m2

2 , (7.1.35)

4κ2 = (ν2
1 +m2

1) cos2 θ0

2
+ (ν2

2 +m2
2) sin2 θ0

2
, (7.1.36)

ν1m1 cos2 θ0

2
+ ν2m2 sin2 θ0

2
= 0 . (7.1.37)

Applying the reconstruction formula (7.1.32) with the constant matrix Ψ̃(0) taken to be the

identity matrix and using the form of ψ+ given in (7.1.18), we easily find that the parameters

mi and νi can be expressed in terms of p(x) and q(x) as

m1 =
1

2π

∫ ∞+

0+

dp , ν1 =
1

2π

∫ ∞+

0+

dq , (7.1.38)

m2 =
1

2π

∫ ∞−
0+

dp , ν2 =
1

2π

∫ ∞−
0+

dq . (7.1.39)
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Left and right charges

The right and the left Nöether charges R and L can be computed directly from the solution

(7.1.34) and are given in terms of the parameters νi, mi and θ0 in a universal manner as

R√
λ

=
1

2

(
−ν1 cos2 θ0

2
+ ν2 sin2 θ0

2

)
, (7.1.40)

L√
λ

=
1

2

(
−ν1 cos2 θ0

2
− ν2 sin2 θ0

2

)
. (7.1.41)

Explicit expressions of R and L in terms of the position of the cut are given in Appendix

C.1.1. As a result, we find that the charges R and L are positive irrespective of the position

of the cut. This means that they should be regarded not as the charges themselves but as

their absolute magnitudes. On the other hand, the relative magnitude of R and L depends

on the position of the cut as

R < L for |Reu| > 1 , (7.1.42)

R > L for |Reu| < 1 . (7.1.43)

In section 7.3.4, we will see that the difference in the relative magnitude corresponds to the

difference of the class of vertex operators for which the solution is the saddle point of the

two-point function.

7.1.4 Action-angle variables and infinite-gap solutions

Let us now discuss the action-angle variables which we will utilize later in section 7.3 to

compute the contribution from the wave functions. The action-angle variables for the string

on S3-subspace was first constructed in [41, 43] by employing the so-called Sklyanin’s sepa-

ration of variables [94]. The discussion below will closely follow such works. However, there

is an important difference. While the works [41, 43] focused exclusively on the solutions

constructible by the finite-gap method, which we reviewed in the previous subsection, we

shall deal with an enlarged category of solutions which have an infinite number of cusp-like

points but no node-like points. We will refer to such solutions as “infinite-gap” solutions.

We exclude the presence of node-like points in the above definition because such a point can

be universally described by shrinkage of a branch cut between two cusp-like points. The

framework of infinite gap solutions is extremely important and useful in controlling the com-

plete degrees of freedom of the string. Of course all the other solutions, including the finite

gap solutions discussed in the previous subsection, can be obtained by certain degeneration

limits6 of such infinite gap solutions.

6Details of the limiting procedure will be discussed in section 7.1.5.
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Now let us describe the Sklyanin’s method, as applied to a string in S3. It is a powerful

method for constructing canonically conjugate variables and is known to be applicable to a

wide variety of integrable systems possessing Lax representation. The main object of concern

is again the Baker-Akhiezer vector, which is the eigenvector ψ of the monodromy matrix Ω

and satisfies the eigenvalue equation of the form

Ω(x; τ, σ)ψ(x; τ, σ) = eip̂(x)ψ(x; τ, σ) . (7.1.44)

Actually, it is of crucial importance to consider the normalized Baker-Akhiezer vector h(x; τ),

defined to be proportional to ψ(x; τ, σ = 0) and normalized by the condition

n · h = n1h1 + n2h2 = 1 , (7.1.45)

h =

(
h1

h2

)
. (7.1.46)

The constant vector n = (n1 , n2)t is called the normalization vector and will be determined

later in section 7.3 from the consideration of global symmetry property. At present, however,

it can be chosen arbitrarily. It is known that for a finite gap solution associated to a genus

g algebraic curve the normalized Baker-Akhiezer vector has g + 1 poles as a function of

x. By contrast, for an infinite gap solution of our interest it has infinite number of poles.

We will denote the positions of these poles on the spectral curve by {γ1, γ2, · · · }. Since

the monodromy matrix Ω is constructed out of the string variables, through the relation

(7.1.44) the positions of the poles γi on the spectral curve as well as the quasi-momentum at

these poles p(γi) become dynamical variables. As described in [41,43], it turns out that the

variables (z(γi) ,−ip(γi)), where z is the Zhukovsky variable given in (3.2.55) and p is the

quasi-momentum, form canonically conjugate pairs satisfying the following Poisson bracket

relations

{z(γi) ,−ip(γj)} = δij , (7.1.47)

{z(γi) , z(γj)} = {p(γi) , p(γj)} = 0 . (7.1.48)

This shows that the filling fractions Si defined previously provide the action variables of the

system. Since the derivation of the Poisson bracket (7.1.48) is technically complicated, we

will not write it down in this thesis. Instead, we describe in detail the construction of the

action-angle variables in a related simpler system, the Landau-Lifshitz model, in Appendix

B, to illustrate the basic logic.

To construct the angle variables φi conjugate to Si, we need to find the generating function

F (Si , z(γi)) which provides the canonical transformation from the pair (z(γi) ,−ip(γi)) to
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(φi, Si). Such a function is defined by the following properties:

∂F

∂z(γi)
= −ip(γi) , (7.1.49)

∂F

∂Si
= φi . (7.1.50)

In the present context, the first equation should be viewed as the definition of F , while the

second equation should be regarded as the definition of the angle variables φi. Therefore, to

determine F , we need to integrate the first equation with Si’s fixed. Since the filling fractions

are given by the integrals of pdz along various cycles on the spectral curve, fixing all the

filling fractions is equivalent to fixing the functional form of p(x). Therefore, the integration

can be performed as

F (Si , z(γi)) = −i
∑
i

∫ z(γi)

z(x0)

p(x′)dz′ . (7.1.51)

The initial point of the integration x0 on the spectral curve can be chosen arbitrarily. A

change of x0 can be absorbed by the change of overall normalization of the wave function.

Similarly, a possible integration constant in F , which may depend only on Si, can be ignored

as it can also be absorbed in the normalization of the wave function.

Next we compute φi = ∂F/∂Si. This requires changing the value of Si with all the other

filling fractions fixed. This is equivalent to adding to pdz a one-form whose period integral

along a-cycles is nonvanishing only for ai. Such a one-form should be proportional to a

normalized holomorphic differential ωi, which satisfies the following properties:∮
aj

ωi = δij . (7.1.52)

Using such ωi, the partial derivative ∂F/∂Si can be expressed as7

φi =
∂F

∂Si
= 2π

∑
j

∫ γj

x0

ωi . (7.1.53)

This is an appropriate generalization of the so-called Abel map, which normally maps an

algebraic curve to its Jacobian variety, for non-algebraic curves8.

We have now obtained an infinite set of action-angle variables, which satisfy the following

canonical form of Poisson bracket relations:

{φi , Sj} = δij , {φi , φj} = {Si , Sj} = 0 . (7.1.54)

7Here and hereafter, we regard ωi as a differential in x.
8When restricted to finite gap solutions, this expression exactly reproduces the definition of the Abel

map.

114



However, there is an important caveat: Since the above construction is based purely on the

right current j, which is invariant under the left global transformation Y→ VLY, the angle

variable conjugate to the right global charge S0 cannot be obtained by this method9. To

obtain such a variable, we need to make use of the left current l. In an entirely similar

manner, we can construct from the left current a set of angle variables φ̃i, which satisfy

{φ̃i , Sj} = δij , {φ̃i , φ̃j} = {Si , Sj} = 0 . (7.1.55)

The set {φ̃i} contains the desired angle variable φ̃0 conjugate to S0. However, it does

not contain φ̃∞, which is conjugate to S∞. Therefore, to construct a complete set of angle

variables, we must utilize the two individually incomplete sets, (φi 6=0,∞ , φ∞) and (φ̃0 , φ̃i 6=0 ,∞).

A näıve guess would be to use (φi 6=0 ,∞ , φ∞) plus φ̃0. This, however, is not guaranteed to be

correct since φi and φ̃0 do not commute in general. Nevertheless, we can use (φ̃0 , φi 6=0,∞ , φ∞)

as if they constituted a complete set of angle variables, for the following reason. Suppose we

find the “correct” angle variable φ0 satisfying the following properties:

{φ0 , S0} = 1 , {φ0 , Si} = {φ0 , φi} = 0 (i 6= 0) . (7.1.56)

Then, from the Poisson bracket relations, we immediately see that the difference δφ0 = φ0−φ̃0

commutes with all the action variables, namely {δφ0 , Si} = 0 for all i. This means that it

commutes with the worldsheet Hamiltonian, which is made up of the action variables Si,

and hence is conserved. Therefore δφ0 merely causes a constant shift of the angle variable

and it can be absorbed in the normalization of the wave function. Thus, in practice, we can

use (φ̃0 , φi 6=0 ,∞ , φ∞) as a set of angle variables.

7.1.5 From infinite gap to finite gap

Let us next discuss the relation between the materials discussed in the two preceding sec-

tions, the finite gap solutions and the infinite gap solutions, and explain how the method

of construction of the action-angle variables developed above for infinite gap solutions can

be applied to the case of the familiar finite gap solutions, which describe two-point func-

tions of various string states. We shall see below that this procedure requires some careful

considerations.

As is well-known, for a finite gap solution of genus g, there are g + 2 non-vanishing

filling fractions (S0 , S∞;S1 , · · · , Sg) and the associated normalized Baker-Akhiezer vector

has g + 1 dynamical poles. To obtain such a solution from an infinite gap solution, we must

first set an infinite number of filling fractions to zero, except for (S0 , S∞;S1 , · · · , Sg), by

9In other words, the motion of such an angle variable is completely decoupled from the rest and cannot

be seen from j.
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shrinking the corresponding cuts into node-like points. Through this degeneration process,

the infinitely many poles of the Baker-Akhiezer vectors must somehow “disappear”, leaving

g + 1 dynamical poles of the finite gap solutions. To understand what really happens, it is

helpful to study similar degeneration limit for known finite gap solutions [41]. By closely

analyzing the motion of the poles in such a degeneration limit, we find that actually the

unwanted poles do not disappear. Instead, they cease to be dynamical. These nondynamical

poles cannot be seen if we use a solution with lower genus from the beginning. They can

be seen only through the degeneration limit from a higher genus solution. This observation

strongly suggests that, to obtain a complete set of action-angle variables, we should start

from an infinite gap solution, construct the angle variables from infinitely many poles and

then consider the limit of those angle variables. Carrying out this procedure, we can trace

all the poles including non-dynamical ones and obtain the following expression for the angle

variables of a finite gap solution with genus g:

φi = 2π

g+1∑
j=1

∫ γj

x0

ωi + 2π
∑
J

∫ γJ

x0

ωi . (7.1.57)

Here, γj’s denote the dynamical poles, while γJ ’s signify the non-dynamical ones.

Let us discuss the nature of the contributions from the non-dynamical poles. A detailed

argument on the motion of the poles given in Appendix E of [42] shows that non-dynamical

poles are trapped either at node-like points or at cusp-like points. Since such points are

discretely placed on the spectral curve, the positions of the non-dynamical poles γJ do

not change under any continuous deformations of the solution which keeps the spectral

curve intact. In particular, they do not change under the (continuous) global symmetry

transformations. As we shall discuss later, the only necessary information for the evaluation

of the correlation functions is the shift of angle variables under such global transformations.

Thus, in practice, the second term in (7.1.57) gives the same constant contribution, which can

be absorbed into the normalization of the wave function. Consequently, the angle variables

for the finite gap solution can be effectively defined without the second term10 as

φi = 2π

g+1∑
j=1

∫ γj

x0

ωi . (7.1.58)

This expression is quite convenient in practice since we do not have to consider the degen-

eration limits from the infinite gap solutions. Thus we will use (7.1.58) instead of (7.1.57)

as the definition of angle variables for finite gap solutions when we evaluate the correlation

functions later in section 7.3.
10The expression (7.1.58) coincides with the one derived in [41, 43] for finite gap solutions. There it was

derived within the finite dimensional subspace of the total phase space, appropriate for finite gap solutions

with fixed genus. Our discussion in this section corroborates the result of [41,43] from a more general point

of view.
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7.1.6 Structure of three-pronged solutions

The method of construction of the angle variables given above is for finite gap solutions,

which serve as saddle point configurations for two-point functions. Since we are interested in

computing three-point functions as well, we must discuss how the method can be generalized

to such cases.

Before giving the simple procedure, which turns out to require only the knowledge of the

local behavior of the saddle point solution in the vicinity of each vertex insertion point, it is

instructive to first clarify the difference of the analytic structures between two-pronged and

three-pronged solutions11 in the framework of the finite gap method.

Although a solution with three prongs is much more difficult to construct compared to the

corresponding two-pronged solution, the behavior around each prong should be the same if

it is generated by the same vertex operator. This implies that the spectral curve constructed

from the local monodromy matrix should be the same as that of the two-point solution.

Therefore the knowledge of the spectral curve alone cannot distinguish between two-point

and three-point solutions.

What can distinguish between the two is the number of dynamical poles of the normalized

Baker-Akhiezer vector. In the case of a finite gap solution of genus g relevant for a two-point

function, there are g + 2 non-vanishing filling fractions, which are dictated by the spectral

curve, and g+1 dynamical poles of the normalized Baker-Akhiezer vector. The reconstruction

formula then tells us that these two sets of data determine the (two-point) solution uniquely,

up to a global symmetry transformation. What this implies is that for more general finite

gap solutions, relevant for three-point functions etc., the number of dynamical poles can be

larger than g + 1, while the number of branch cuts of finite length on the spectral curve

remains to be g + 1. This possibility has been overlooked until quite recently and is first

utilized in [109] to reconstruct the solution which describes a correlation function of a circular

Wilson loop and a half-BPS operator from the algebraic curve perspective12. The easiest

way to obtain solutions with more than g + 1 dynamical poles is to take the degeneration

limit of the infinite gap solutions. Although only g + 1 poles remained dynamical in the

special degeneration limit considered in section 7.1.5, more general limits can be considered

in which more than g + 1 dynamical poles survive. An example of such a procedure will be

explained later in this subsection. In principle, it is even possible for the Baker-Akhiezer

vector to have an infinite number of poles when the spectral curve has only a finite number

11The discussion to follow is applicable to higher-prong solutions as well.
12In [109], the authors reconstructed the solution by requiring the existence of two distinct poles in the

Baker-Akhiezer vector. Since the spectral curve of this solution has no branch cuts with finite length, this

certainly goes beyond the ordinary finite gap construction.
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of branch cuts. This phenomenon is demonstrated for a string in flat spacetime explicitly in

Appendix C.4.

An important feature of the solution obtained by such nontrivial degeneration is that

its monodromy matrix is not proportional to the identity matrix but takes the form of the

Jordan block at node-like points obtained by the degeneration. The reason is quite simple.

As we have seen in section 3.2.2, the monodromy matrix is always of the Jordan-block form

at the branch points. If we take nontrivial degeneration limit, such a property is retained

even after the branch points coalesces into a node-like point13. As we will later see in section

7.4.1, the monodromy matrix for the three-point function take the form of the Jordan block

at all the node-like points. This means that one must necessarily start from an infinite gap

solution to obtain the solution for the three-point functions.

Despite the existence of important structural differences between two- and multi-pronged

solutions as analyzed above, we now emphasize that as far as the evaluation of the angle

variables needed to compute the contribution of the wave functions is concerned, only the

local asymptotic behavior of the solution near the vertex insertion point suffices. This should

indeed be the case because the vertex operator is defined locally and it produces the local

source term for the equations of motion (6.1.3). Therefore possible local behavior around

such a point is the same for two and higher-point functions14. More explicitly, the crucial

information about the angle variables of the three-point solutions needed for the evaluation

of the wave functions can be extracted from the behavior of the angle variables for two-point

functions under suitable global symmetry transformations.

An example of nontrivial degeneration

To understand what really happens in the aforementioned degeneration processes discussed

above, we shall now discuss the degeneration from g = 1 (two-cut) to g = 0 (one-cut). The

Baker-Akhiezer vector for general finite-gap solutions are given by the following expressions

13We can check this statement by analyzing the explicit degeneration process discussed later in this sub-

section although we will not demonstrate it in this thesis.
14Indeed we can show, by using the explicit examples discussed below, that the aforementioned nontrivial

degeneration procedure does not modify the asymptotic behavior in the vicinity of the vertex operator.
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containing ratios of Riemann theta functions Θ(z) in addition to the exponential part:

ψ1 = h+(x)
Θ(A(x) + kσ − iωτ − ζγ−(0))Θ(A(∞+)− ζγ−(0))

Θ(A(x)− ζγ−(0))Θ(A(∞+) + kσ − iωτ − ζγ−(0))
exp

(
iσ

2π

∫ x

∞+

dp+
τ

2π

∫ x

∞+

dq

)
,

(7.1.59)

ψ2 = h−(x)
Θ(A(x) + kσ − iωτ − ζγ+(0))Θ(A(∞−)− ζγ+(0))

Θ(A(x)− ζγ+(0))Θ(A(∞−) + kσ − iωτ − ζγ+(0))
exp

(
iσ

2π

∫ x

∞−
dp+

τ

2π

∫ x

∞−
dq

)
.

(7.1.60)

As it is not our purpose here to review the details of the finite gap construction, below we

will only explain the minimum of the ingredients and refer the reader to a review article such

as [41].

For a g = 1 two-cut solution, the Riemann theta function Θ(z) reduces to the elliptic

theta function θ(z) defined by

θ(z) ≡
∑
m∈Z

exp
(
imz + πiΠm2

)
, (7.1.61)

where Π is the period given by the integral of the holomorphic differential w over the b-cycle

of the torus

Π =

∮
b

w . (7.1.62)

As usual, w is normalized by the integral over the a-cycle as
∮
a
w = 1. A(x) appearing in

the argument of the Θ-functions is the Abel map defined by

A(x) = 2π

∫ x

∞+

w . (7.1.63)

h±(x) are normalization constants and k and ω are the “momentum” and the “energy”

defined by the integrals

k ≡ 1

2π

∮
b

dp , ω ≡ 1

2π

∮
b

dq . (7.1.64)

A quantity of importance is the constant ζγ±(0) defined by

ζγ±(0) ≡ A(γ±(0)) +K , (7.1.65)

In this formula, K is the “vector of Riemann constants”, which for a torus is simply a number

proportional to the period Π as15

K = πΠ . (7.1.66)

15For its definition for a general genus g surface, see for example [110].
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Finally γ±(0) are certain points16 on the Riemann surface, which determine the initial con-

ditions for the solution.

Let us now study what happens when we pinch the a-cycle. In order to keep the normal-

ization condition
∮
a
w = 1 intact, w must behave near the position of the infinitesimal cut

xc as

w ∼

{
1

2πi
1

x−xc for x on the first sheet

− 1
2πi

1
x−xc for x on the second sheet

. (7.1.67)

This means that the imaginary part of the period Π defined by the integral over the b-cycle

approaches positive infinity in the manner

Π =

∮
b

w ∼ 1

2πi

∫ xc+ε

xc−ε

dx

x− xc
∼ − i

π
ln ε→ +i∞ . (7.1.68)

Now writing the θ-function as

θ(z) =
∑
m∈Z

exp
(
imz + πi(Re Π)m2

)
· exp

(
−πIm Πm2

)
, (7.1.69)

we see that the last factor vanishes as Im Π→∞, except for m = 0. Therefore in this limit

we get θ(z)→ 1 and one gets the usual genus 0 solution with only the exponential part.

Now if we identify z = kσ− iωτ in the formulas for ψi given in (7.1.59) and (7.1.60), the

arguments of the θ-functions containing z are actually of the form z − a, with a constant

shift a given by a = ζγ±(0) + · · · . What is important is that ζγ±(0) diverges as we pinch the

a-cycle. First, obviously ImK diverges as πIm Π. Second, if γ±(0) is at the position of the

shrunk cut xc, ImA(γ±(0)) diverges just like πIm Π:

A(γ±(0)) = 2π

∫ xc+ε

∞+

dw ∼ 2π
1

2πi
ln ε ∼ iπIm Π→ i∞ . (7.1.70)

SinceA(γ±(0)) is finite otherwise, we must distinguish two cases: case (a) Im ζγ±(0) ∼ 2πIm Π

for γ±(0) = xc and case (b) Im ζγ±(0) ∼ πIm Π for γ±(0) 6= xc. Therefore let us write

a = lIm πΠ + c, where l = 2 or l = 1 and c is a finite constant. Then the θ-function with

this shift can be written as

θ(z − a) =
∑
m∈Z

exp
(
im(z − πRe Π− c) + πi(Re Π)m2

)
· exp

(
−πIm Π(m2 − lm)

)
.

(7.1.71)

First consider the case (a). It is easy to see that terms with negative m all vanish in the

limit Im Π→∞. On the other hand, the terms with m = 0 and m = 2 are finite and those

16Precisely speaking, γ±(0) are certain divisors γ±(t) depending on the infinite set of higher times t =

(t0, t1, t2, . . .) evaluated at t = 0. For a detailed definition, see [41].
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with m ≥ 3 vanish in the degeneration limit while the single term with m = 1 diverges. In

other words,

θ(z − a)→ Ĉeiz , Ĉ →∞ . (7.1.72)

As the θ-functions occur in pairs in the numerator and the denominator in ψi, their ratio

goes to a z-independent finite constant in the degeneration limit and we get back the usual

g = 0 one-cut solution. In fact, by repeating this type of process, one can produce a finite

gap solution describing a two-point function from an infinite gap solution.

Now the truly nontrivial case is the case (b). For l = 1, two terms in the series survive in

the limit Im Π→∞, namely m = 0 and m = 1. Therefore we obtain a non-trivial function

of the form

θ(z − a)→ 1 + Ceiz = 1 + Ceikσ+ωτ , (7.1.73)

where C is a constant. In particular, this function can vanish at certain points, the number of

which depend on the magnitude of k. Such a θ-function in the denominator of the expressions

for ψi gives rise to additional simple poles on the worldsheet. Such additional poles are

necessary to construct the solution with several prongs, including the ones which correspond

to the three-point functions. However, precisely speaking, the singularities constructed above

do not carry any charges because the solution is obtained without changing the form of p(x).

Therefore, we expect that the monodromy around them is trivial. Thus, as far as we consider

the degeneration process in which only a finite number of cuts shrinks, one cannot obtain

the solution for the three-point function, which has nontrivial monodromy around the third

puncture. The situation will change if we consider the limit where an infinite number of cuts

degenerate. In such a limit, we expect an infinite number of monodromy-free singularities

pile up and can produce nontrivial monodromy. Although it is technically difficult to justify

this statement, we can at least say that a similar phenomenon happens in the case of the

string in the flat space, which is discussed in Appendix C.4. This provides a further reason

why the solutions with infinite cuts and their degeneration are of extreme importance when

we consider three-point functions.

Before closing this section, let us make one additional remark. The above analysis shows

that the existence of additional singularities are quite common if we consider infinite gap

solutions and their degeneration. This implies that the solution for the three-point function

may also have such (monodromy-free) singularities in addition to the ones which correspond

to the vertex operators. At the end of section 7.6.5, we discuss that the existence of such

additional singularities can modify the contours of the integrals which express the three-point

functions and may play an important role in the interpretation of our final result.
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7.1.7 Preliminary remarks on three-point functions

Let us now discuss the general properties of the three-point functions and clarify the notations

and the assumptions used in the subsequent analysis.

In the case of three-point functions, the saddle-point configuration is given by a spherical

worldsheet with three vertex operators. The points at which the vertex operators are in-

serted, z1, z2 and z3, are also referred to as punctures. Since the contribution from the action

and the contribution from the vertex operators are separately divergent, we regularize them

by cutting out a small disk of radius εi at each puncture and then evaluate the following two

contributions (see Figure 7.1.1):

1. The action outside the disks.

2. The wave functions defined on the boundaries of the disks.

As we can perform the computation of the EAdS3 part and the S3 part separately, the

three-point functions computed in this way have the following structure:

〈V1V1V3〉 ∼ exp (FS3 + FEAdS3) , (7.1.74)

where

FS3 = Faction + Fvertex , (7.1.75)

FEAdS3 = F̂action + F̂vertex . (7.1.76)

Here Faction and F̂action denote the regularized contributions from the action whereas Fvertex

and F̂vertex denote the regularized contributions from the vertex operators, which are re-

placed with the wave functions. An assumption we make in the subsequent analysis is that

the saddle-point configuration has singularities only at the insertion points of the vertex op-

erators and the rest of the worldsheet is completely smooth. Since a generic classical string

solution may have additional singularities as discussed in the previous section, this is indeed

an important assumption.

Since there are three punctures on the worldsheet, one can define the monodromy matrix

Ωi for each puncture. The eigenvectors and the eigenvalues of Ωi are denoted by i± and

e±ipi(x) respectively and satisfy the following relation:

Ωii± = e±pi(x)i± . (7.1.77)

Of crucial importance in the computation of three-point functions are the SL(2,C) invariant

product,

〈ψ, χ〉 ≡ det (ψ, χ) , (7.1.78)
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Figure 7.1.1: Regularization of the action and the vertex operators. We cut out a small

disk of radius εi around the puncture zi. The wave function is evaluated on the small circle

whereas the action is evaluated only in the shaded region outside the disks.

of the eigenvectors, 〈i±, j±〉. In the rest of this chapter, we refer to this skew-product as

Wronskian. Since the Wronskians are invariant under the gauge transformation, we can use

the results in various gauges interchangeably:

〈i±, j±〉 = 〈̃i±, j̃±〉 = 〈̂i±, ĵ±〉 , (7.1.79)

where i±, ĩ± and î± are the eigenvectors in the right connection, the left connection and the

Pohlmeyer connection respectively.

For later convenience, let us now fix the normalization of the eigenvectors i±. Part of the

normalization is determined by the condition for the Wronskian,

〈i+, i−〉 = 1 . (7.1.80)

However, this cannot fix the normalization completely since we can rescale i± without vio-

lating the condition (7.1.80) as i+ → ai+ and i− → a−1i−. To determine the normalization

completely, we will fix the asymptotic behavior of i± around the puncture zi. For this pur-

pose, it is convenient to use the ALP in the Pohlmeyer gauge, which is invariant under the

global transformation. Although the explicit form of the solution for the three-point function

is not known, it should be approximated by the solution for the two-point function in the

vicinity of the punctures. Therefore, we determine the normalization of each eigenvectors

using the explicit form of the eigenvectors for the two-point function as

î±(x; τ (i), σ(i))→ î2pnt
± (x; τ = τ (i), σ = σ(i)) , (7.1.81)

where (τ (i), σ(i)) is a local coordinate around zi, defined by

τ (i) + iσ(i) = ln

(
z − zi
εi

)
. (7.1.82)
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The eigenvectors for the two-point function î2pnt
± are computed using the results in Appendix

C.1 as

î2pnt
+ (x; τ, σ) =

 eπi/8√
2

(
x−ūi
x−ui

)1/4 (
ū2
i−1

u2
i−1

)1/8

eπi/8√
2

(
x−ui
x−ūi

)1/4 (
u2
i−1

ū2
i−1

)1/8

 exp

(
qi(x)τ + ipi(x)σ

2π

)
, (7.1.83)

î2pnt
− (x; τ, σ) =

 e−πi/8√
2

(
x−ūi
x−ui

)1/4 (
ū2
i−1

u2
i−1

)1/8

− e−πi/8√
2

(
x−ui
x−ūi

)1/4 (
u2
i−1

ū2
i−1

)1/8

 exp

(
−(qi(x)τ + ipi(x)σ)

2π

)
, (7.1.84)

where ui and ūi are the positions of the branch points of the quasi-momentum for the i-th

puncture pi(x). The conditions, (7.1.81), (7.1.83) and (7.1.84), determine the normalization

of i± completely. Importantly, the eigenvectors thus normalized transform in the following

way when they cross the branch cut17:

î+(x)
∣∣∣
on 2nd sheet

= î−(x)
∣∣∣
on 1st sheet

, î−(x)
∣∣∣
on 2nd sheet

= − î+(x)
∣∣∣
on 1st sheet

. (7.1.85)

This relation will be used in section 7.4.5 to determine the normalization of the Wronskians.

7.2 The action in terms of Wronskians

Let us now start our study of the three-point functions. In this section, we focus on the

contribution of the action for the S3 part, namely Faction. First, in subsection 7.2.1, we

rewrite the action as a boundary contour integral using the Stokes theorem and then apply

the generalized Riemann bilinear identity derived in [16] to bring it to a more convenient

form. Next we turn in subsection 7.2.2 to the analysis of the WKB expansion of the auxiliary

linear problem. We then find that the same contour integrals we used to rewrite the action

appear also in the WKB expansion of the Wronskians of the solutions to the ALP. Using

this relation, we re-express the action in terms of the Wronskians in subsection 7.2.3. The

resultant expression will be used for the explicit evaluation of the contribution of the action

in section 7.5.

17Note that the extra minus sign is necessary in the second equation of (7.1.85) in order to retain the

condition (7.1.80).
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7.2.1 Contour integral representation of the action

For the three-point function of our interest, the (regularized) action for the S3 part of the

string is given by

SS3 =

√
λ

π

∫
Σ\{εi}

d2z∂YI ∂̄YI , (7.2.1)

where the symbol Σ\{εi} denotes the worldsheet for the three-point function, which is a

two-sphere with a small disk of radius εi cut out at each puncture zi. In [105] and [111],

such worldsheet cut-offs are related to the spacetime cut-off in AdS in order to obtain the

spacetime dependence of the correlation functions without introducing the vertex operators.

In contrast, as we shall separately take into account the contribution of the vertex operators,

εi’s can be taken to be arbitrary in our approach, as long as they are sufficiently small and

the same for the S3 part and the EAdS3 part.

As the action is invariant under the global symmetry transformations, it is natural to

express (7.2.1) in terms of the quantities used in the Pohlmeyer reduction. From (7.1.5), we

can indeed write

SS3 =

√
λ

π

∫
Σ\{εi}

d2z
√
T T̄ cos 2γ . (7.2.2)

We further rewrite (7.2.2) by introducing the following one-forms:

$ ≡
√
Tdz , (7.2.3)

η ≡ −
√
T̄ cos 2γdz̄ +

2√
T

(
−(∂γ)2 +

ρ2

T

)
dz . (7.2.4)

The second term on the right hand side of (7.2.4) is added to make η closed, as one can

verify using the relation (7.1.11). With these one-forms, we can re-express the action (7.2.2)

as a wedge product of the form

SS3 =
i
√
λ

2π

∫
Σ\{εi}

$ ∧ η , (7.2.5)

where an extra prefactor i/2 comes from the definition of the volume form, dz∧dz̄ = −2i d2z.

Then denoting the integral of $(z) as

Π(z) =

∫ z

z0

$(z′)dz′ , (7.2.6)

the action can be rewritten, using the Stokes theorem, as a contour integral along a boundary

∂Σ̃ of a certain region Σ̃ (see Figure 7.2.1):

SS3 =
i
√
λ

4π

∫
Σ̃

$ ∧ η =
i
√
λ

4π

∫
Σ̃

d (Πη) =
i
√
λ

4π

∫
∂Σ̃

Πη . (7.2.7)
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Figure 7.2.1: The boundary ∂Σ̃ of the double-cover of the worldsheet Σ̃. There are three

logarithmic branch cuts attached to the punctures and one square-root branch cut. ∂Σ̃ is

determined such that the function Π is single-valued on Σ̃.

To determine the proper region of integration Σ̃, we need to know the analytic structure of

Π(z), which in turn is dictated by that of T (z). As shown in (3.2.27) in section 3.2.2, the

asymptotic behavior of T (z) at each puncture zi is determined by the spacetime conformal

dimension. In the case of three-point functions, this information is sufficiently restrictive to

determine T (z) exactly to be of the form

T (z) =

(
κ2

1z12z13

z − z1

+
κ2

2z21z23

z − z2

+
κ2

3z31z32

z − z3

)
1

(z − z1)(z − z2)(z − z3)
, (7.2.8)

zij ≡ zi − zj .

From this, one can show that Π(z) has three logarithmic branch cuts running from the

punctures zi, and one square-root branch cut connecting two zeros of T (z), to be denoted by

t1 and t2. Therefore, we should take Σ̃ to be the double cover (y2 = T (z)) of the worldsheet

Σ with an appropriate boundary ∂Σ̃, so that Π(z) is single-valued on the whole integration

region. In what follows, we will consider the case where the branch cut is located between

z1 and z3 as depicted in Figure 7.2.1. In such a case, the branch of the square-root of T (z)

can be chosen so that it behaves near the punctures on the first sheet as√
T (z) ∼ κi

z − zi
as z → zi (i = 1, 3) ,

∼ −κ2

z − z2

as z → z2 .

(7.2.9)

Although the discussion to follow is tailored for this particular case, the final result for the

three-point function, to be obtained in section 7.5, will turn out to be completely symmetric

under the permutation of the punctures.

At this point, we shall apply the generalized Riemann bilinear identity (gRBI), derived

in [16], to the integral (7.2.7). The gRBI can be derived straightforwardly by evaluating
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Figure 7.2.2: The portions of the contour we used to explain the generalized Riemann bilinear

identity.

the rightmost side (7.2.7). However, as the derivation explained in detail in [16] is lengthy,

here we just explain the idea of the derivation. First, notice that the integration contour ∂Σ̃

contains a line which approaches the puncture zi (li in Figure 7.2.2) and a line which moves

away from the puncture zi (l−1
i in Figure 7.2.2). Along these lines, which have mutually

opposite directions, the one-form η takes exactly the same value while the function Π has

different values. The difference of these values is given by the integral of $ along the small

circle Ci which encircles the puncture zi. Therefore the sum of the integrals along these two

lines can be computed as ∫
li+l

−1
i

Πη =

∮
Ci
$

∫
li

η . (7.2.10)

Performing a similar analysis for other portions of the contour, we arrive at the following

formula: ∫
Σ̃

$ ∧ η = Local + Double + Global + Extra , (7.2.11)

where the definition of each term will be given successively below18. The first term, Local,

denotes the contribution from the product of contour integrals, each of which is just around

the puncture and hence called “local”. It is of the form

Local =
∑
i

∮
Ci
$

∮
Ci
η +

∑
i<j

(∮
Ci
$

∮
Cj
η − ($ ↔ η)

)
, (7.2.12)

where Ci is a contour encircling the puncture zi counterclockwise. Here and hereafter, the

symbol ($ ↔ η) stands for the contribution obtained by exchanging $ and η in the preceding

18In [105] and [111], the ordinary Riemann bilinear identity was applied to derive an expression similar

to (7.2.11) but without the terms Local and Double . In their cases, Local and Double vanish and the use of

the ordinary Riemann bilinear identity is justified. On the other hand, these two terms do not vanish in our

case and we must use the generalized Riemann bilinear identity.
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term. The second term, Double, denotes the double integrals around the punctures given by

Double = −2
∑
i

∮
Ci
η

∫ z

z∗i

$ . (7.2.13)

The third term, Global, denotes the contribution from the product of contour integrals, one

of which is along a contour connecting two different punctures. It is given by

Global =

(∮
C1+C2̄−C3

$

∫
`21

η +

∮
C2̄+C3−C1

$

∫
`23

η +

∮
C3+C1−C2̄

$

∫
`3̄1

η

)
− ($ ↔ η) . (7.2.14)

More precisely, `ij denotes the contour connecting z∗i and z∗j , where z∗i is the point near the

puncture zi satisfying z∗i −zi = εi. The barred indices indicate the points on the second sheet

of the double cover y2 = T (z). For instance, Cī is a contour encircling the point zī, which is

on the second sheet right below zi. Finally, the term Extra denotes additional terms which

come from the integrals around the zeros of
√
T , to be denoted by tk, at which η becomes

singular, and is given by

Extra =
∑
k

∮
Dk

Πη . (7.2.15)

Here Dk is the contour which encircles tk twice as depicted in Figure 7.2.3.

Figure 7.2.3: Definitions of the contours used to rewrite the action: The contours which

enclose the punctures (Ci) are shown in the left figure and the ones which connect two

punctures (`ij) are shown in the right figure. In both figures, the portions of the contours on

the second sheet are drawn as dashed lines. Also depicted in the right figure are the starting

points and the end points of the contours, z∗i ’s.

Among these four terms, Local and Double are expressed solely in terms of the integrals

around the punctures and are easy to compute. The explicit results, computed in Appendix
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C.1.3 are19 ∮
Ci
$ = 2πiκi ,

∮
Ci
η = 2πiκiΛi , (7.2.16)∮

Ci
η

∫ z

z∗i

$ = −2πκ2
iΛi , for i = 1, 2̄, 3 . (7.2.17)

Here Λi’s are given in terms of γi and ρi, defined in (C.1.21) and (C.1.22) respectively, as

Λi = cos 2γi +
2ρ2

i

κ4
i

. (7.2.18)

It is important to note that Local and Double are real since κi and gi are all real. Therefore

they contribute exclusively to the imaginary part of the action (7.2.7) and hence only yield an

overall phase of the three-point functions. We shall neglect such quantities in the discussions

below.

Among the remaining two types of terms, Extra can be explicitly evaluated as fol-

lows. Since the worldsheet is assumed to be smooth except at the punctures, the quantity√
T T̄ cos 2γ, which is the integrand of the action integral given in (7.2.2), should not vanish

even at the zeros of T (z). This in turn implies that γ is logarithmically divergent at such

points in the manner

γ ∼ ± i
2

ln |z − tk| as z → tk . (7.2.19)

Then, by approximating T (z) as T (z) ∼ c(z − tk) around tk, we can write down the leading

singular behavior of η around tk as

η ∼ − 2√
T

(∂γ)2dz̄ ∼ dz̄

8
√
c(z − tk)5/2

. (7.2.20)

Thus the integral along Dk can be computed as∮
Dk

Πη =

∮
Dk

2
√
c(z − tk)3/2

3

dz̄

8
√
c(z − tk)5/2

= −πi
6
. (7.2.21)

Since there exist two zeros, Extra is twice this integral and hence is given by

Extra = −πi
3
. (7.2.22)

For later convenience, we shall derive another expression for the action using a different

set of one-forms given by

$̄ =
√
T̄ dz̄ , (7.2.23)

η̃ = −
√
T cos 2γdz +

2√
T

(
−(∂̄γ)2 +

ρ2

T̄

)
dz̄ , (7.2.24)

19The one-forms $ and η flip the sign under the exchange of two sheets. Therefore (7.2.16) is odd whereas

(7.2.17) is even under such sheet-exchange. In (7.2.17), κi for i = 2̄ is set to be equal to κ2.
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and then consider the average of the two expressions. Using the forms above, the action can

be written as

SS3 = −i
√
λ

4π

∫
Σ̃

$̄ ∧ η̃ . (7.2.25)

As compared to (7.2.7), the expression (7.2.25) has an extra minus sign, which is due to the

property dz∧dz̄ = −dz̄∧dz. Applying the generalized Riemann bilinear identity to (7.2.25),

we get

−
∫

Σ̃

$̄ ∧ η̃ = −
(
Local + Double + Global + Extra

)
, (7.2.26)

where Local, Double and Global are given respectively by (7.2.12), (7.2.13) and (7.2.14) with

$ and η replaced by $̄ and η̃. The integrals of $̄ and η̃ around the punctures are given by20∮
Ci
$̄ = −2πiκi ,

∮
Ci
η̃ = −2πiκiΛ̄i , (7.2.27)∮

Ci
η̃

∫ z

z∗i

$̄ = −2πκ2
i Λ̄i , for i = 1, 2̂, 3 (7.2.28)

where Λ̄i’s are given in terms of γi and ρ̃i, defined in Appendix C.1.2, as

Λ̄i = cos 2γi +
2ρ̃i

2

κ4
i

. (7.2.29)

Again Local and Double are real and they contribute only to the overall phase. On the other

hand, Extra can be evaluated just like Extra and yields +πi/3. Thus, by averaging over the

two expressions (7.2.11) and (7.2.26) and neglecting terms which contribute exclusively to

the overall phase, we arrive at the following more symmetric expression:

1

2

(∫
Σ̃

$ ∧ η −
∫

Σ̃

$̄ ∧ η̃
)

= −πi
3

+
1

2

(
Global− Global

)
. (7.2.30)

The quantity (7.2.30) consists of various integrals along the contours Ci and `ij. Among

them, the ones along Ci can be easily computed using (7.2.16) and (7.2.27). The integral of

$ along `ij can also be computed in principle as we know the explicit form of $. Thus the

major nontrivial task is the evaluation of
∫
`ij
η and

∫
`ij
η̃. In the rest of this section, we will

see how these integrals are related to the Wronskians of the form 〈i± , j±〉, where i± are the

Baker-Akhiezer eigenvectors at zi of the ALP, corresponding to the eigenvalues e±ipi(x).

20(7.2.27) is odd and (7.2.28) is even under the exchange of the first and the second sheets, as in the case

of the integrals of $ and η given in (7.2.16) and (7.2.17).
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7.2.2 WKB expansions of the auxiliary linear problem

We now perform the WKB expansion of the auxiliary linear problem and observe that the

contour integrals of our interest,
∫
`ij
η and

∫
`ij
η̃, appear in the expansion of the Wronskians

between the eigenvectors of the monodromy matrices.

Let us first consider the WKB expansion of the solutions to the ALP. For this purpose,

it is convenient to use the ALP of the Pohlmeyer reduction (7.1.16). The use of (7.1.16) has

two main virtues. First, as Φ’s are given explicitly in terms of T (z) and T̄ (z̄), it is easier

to perform the expansion around ζ = 0 or around ζ = ∞. Second, since the connection

(7.1.14) is expressed solely in terms of the quantities invariant under the global symmetry

transformation, we can directly explore the dynamical aspect of the problem setting aside

all the kinematical information.

We shall first perform the expansion around ζ = 0. To facilitate this task, it is convenient

to perform a further gauge transformation and convert (7.1.16) to the “diagonal gauge”,

where the ALP take the form(
∂ +

1

ζ
Φd
z + Adz

)
ψ̂d = 0 ,

(
∂̄ + ζΦd

z̄ + Adz̄
)
ψ̂d = 0 . (7.2.31)

In the above, ψ̂d in the diagonal gauge is defined by

ψ̂d ≡ 1√
2

(
eiγ/2 −e−iγ/2

eiγ/2 e−iγ/2

)
ψ̂ , (7.2.32)

and Φd’s and Ad’s are given by

Φd
z =

√
T

2

(
1 0

0 −1

)
, Φd

z̄ =

√
T̄

2

(
− cos 2γ i sin 2γ

−i sin 2γ cos 2γ

)
,

Adz =

(
− ρ√

T
cot 2γ iρ√

T
− i∂γ

− iρ√
T
− i∂γ ρ√

T
cot 2γ

)
, Adz̄ =

−ρ̃√
T̄ sin 2γ

(
1 0

0 −1

)
.

(7.2.33)

Note that the leading terms in the ALP equations as ζ → 0, namely Φd
z for the first equa-

tion and Adz̄ for the second, have been diagonalized. Because of this feature, the leading

exponential behavior of the two linearly independent solutions around ζ ∼ 0 can be readily

determined as

ψ̂d1 ∼

(
0

1

)
exp

[
1

2ζ

∫ z

z0

$

]
, ψ̂d2 ∼

(
1

0

)
exp

[
−1

2ζ

∫ z

z0

$

]
, (7.2.34)

By performing the WKB expansion around ζ ∼ 0 systematically, one can also determine the

subleading terms of (7.2.34) in ζ, as shown in Appendix C.5.1.
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The quantities of prime interest in the subsequent discussions are the Wronskians of the

eigenvectors of the monodromy matrices. To perform the WKB expansion of such Wron-

skians, we need to have a good control over the asymptotics of the Wronskians 〈i± , j±〉
around ζ = 0. For this purpose, both of the eigenvectors in the Wronskian need to be small

solutions since big solutions can contain a multiple of small solutions and hence are ambigu-

ous [112, 113]. When ζ is sufficiently close to zero, one can show that the plus solutions i+

are the small solutions if Re ζ is positive whereas it is the minus solutions i− which are small

if Re ζ is negative. Thus, the Wronskians that can be expanded consistently around ζ = 0

are 〈i+ , j+〉’s for Re ζ > 0 and 〈i− , j−〉’s for Re ζ < 0. The detailed form of the expansion

can be determined by employing the Born series expansion explained in Appendix C.5.2 and

the results are given in the following simple form:

For Re ζ > 0 ,

〈2+ , 1+〉 = exp (−S2→1) , 〈2+ , 3+〉 = exp (−S2→3) , 〈3+ , 1+〉 = exp (−S3̂→1) ,

(7.2.35)

For Re ζ < 0 ,

〈2− , 1−〉 = exp (S2→1) , 〈2− , 3−〉 = exp (S2→3) , 〈1− , 3−〉 = exp (S3̂→1) . (7.2.36)

In these expressions, Si→j stands for the quantity

Si→j =
1

2ζ

∫
`ij

$ +

∫
`ij

α +
ζ

2

∫
`ij

η + · · · , (7.2.37)

where the one-form α is given in (C.5.41) in Appendix C.5.2. A remarkable feature of (7.2.37)

is that the integral of our interest
∫
`ij
η makes its appearance in the exponent Si→j.

Now to make use of the averaging procedure described in the previous subsection, we

need the other type of integrals
∫
`ij
η̃ which appear in Global. To obtain them, we need

to expand the Wronskians this time around ζ = ∞. Since the discussion is similar to the

expansion around ζ = 0, we will not elaborate on the details and simply give the results:

For Re ζ > 0 ,

〈2+ , 1+〉 = exp
(
−S̃2→1

)
, 〈2+ , 3+〉 = exp

(
−S̃2→3

)
, 〈3+ , 1+〉 = exp

(
−S̃3̂→1

)
,

(7.2.38)

For Re ζ < 0 ,

〈2− , 1−〉 = exp
(
S̃2→1

)
, 〈2− , 3−〉 = exp

(
S̃2→3

)
, 〈1− , 3−〉 = exp

(
S̃3̂→1

)
, (7.2.39)
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Here S̃i→j is defined by

S̃i→j =
ζ

2

∫
`ij

$̄ +

∫
`ij

α̃ +
1

2ζ

∫
`ij

η̃ + · · · , (7.2.40)

where α̃ is a one-form given in (C.5.42) in Appendix C.5.2. Making use of these two types

of expansions, we will be able to rewrite the action in terms of the Wronskians, as described

in the next subsection.

7.2.3 The expression of the action in terms of the Wronskians

We are now ready to derive an explicit expression of the action in terms of the Wronskians.

As shown in the previous subsection, the integrals we used to rewrite the action, namely∮
`ij
η and

∮
`ij
η̃, can be extracted from the Wronskians. For instance, consider the integral∮

`21
η, which appears in 〈2−, 1−〉. Differentiating ln〈2−, 1−〉 with respect to ζ using (7.2.36)

and (7.2.37), we get

∂ζ ln〈2−, 1−〉 = − 1

ζ2

∫
`21

$ +
1

2

∫
`21

η +O(ζ) . (7.2.41)

Therefore we can get the integral
∮
`21
η by subtracting the first divergent term and then

taking the limit ζ → 0. Similarly
∮
`21
η̃ can be obtained from 〈2−, 1−〉 in the ζ → ∞ limit.

Such procedures can be compactly implemented if we use the variable x instead of ζ, which

are related as in (7.1.13). Then, we can write∮
`21

η = −4:∂x ln〈2− , 1−〉:+ ,

∮
`21

η̃ = −4:∂x ln〈2− , 1−〉:− , (7.2.42)

where the “normal ordering” symbol :A(x):± is defined by

:A(x):± ≡ lim
x→±1

[A(x)− (double pole at x = ±1)] . (7.2.43)

This precisely subtracts the divergent term mentioned above. Substituting such expressions

to the definitions of Global and Global, we can express them in terms of the Wronskians.

Then, using (7.2.30), we arrive at the following expression for the contribution from the S3

part of the action Faction:

Faction = −SS3 =

√
λ

6
+A$ +Aη . (7.2.44)
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The first term in (7.2.44) expresses the contributions of Extra and Extra. The second term

A$ denotes the contribution of
∫
`ij
$ and

∫
`ij
$̄ in Global and Global and is given by

A$ =
√
λ

4

(
(κ1Λ1 + κ2Λ2 − κ3Λ3)

∫
`21

$ + (κ1Λ1 − κ2Λ2 + κ3Λ3)

∫
`3̂1

$

+ (−κ1Λ1 + κ2Λ2 + κ3Λ3)

∫
`23

$

)
+
(
Λi → Λ̄i , $ → $̄

)
, (7.2.45)

where Λi and Λ̄i are as given in (7.2.18) and (7.2.29) and
(
Λi → Λ̄i , $ → $̄

)
in the last

line denotes the terms obtained by replacing Λi and $ in the second line with Λ̄i and $̄

respectively. The third term Aη is the contribution of
∫
`ij
η and

∫
`ij
η̃, which is expressed in

terms of the Wronskians in the following way:

Aη =
√
λ
[
(κ1 + κ2 − κ3) (:∂xln〈2− , 1−〉:+ − :∂xln〈2+ , 1+〉:−)

+ (κ1 − κ2 + κ3) (:∂xln〈3− , 1−〉:+ − :∂xln〈3+ , 1+〉:−)

+ (−κ1 + κ2 + κ3) (:∂xln〈2− , 3−〉:+ − :∂xln〈2− , 3−〉:−)
]
. (7.2.46)

The general formula (7.2.44) will later be used in section 7.5 to compute the three-point

functions.

7.3 Vertex operators in terms of Wronskians

Having found the structure of the contribution of the action part, we shall now study that

of the vertex operators.

7.3.1 Basic idea and framework

Before plunging into the details of the analysis, let us describe in this subsection the basic

idea and the framework.

The precise form of the conformally invariant vertex operator corresponding to a string

solution in a curved spacetime, such as E!AdS5×S3 of our interest, is in general not known.

In particular, for a non-BPS solution with non-trivial σ-dependence the corresponding ver-

tex operator would contain infinite number of derivatives and is hard to construct. To

overcome this difficulty, we will employ the state-operator correspondence and construct the

corresponding wave function in terms of the action-angle variables21.

21This idea was successfully applied to the case of the GKP string in AdS3 in [17].
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Let us briefly overview the essential ingredients of the method22. The state-operator

correspondence, in the semi-classical approximation, is expressed by the following equation:

V [q∗(z = 0)]e−Sq∗ (τ<0) = Ψ[q∗]
∣∣
τ=0

. (7.3.1)

Here q∗ signifies the saddle point configuration, V [q∗(z = 0)] is the value of the vertex operator

inserted at the origin of the worldsheet z = eτ+iσ = 0, corresponding to the cylinder time

τ = −∞, the factor exp[−Sq∗(τ < 0)] is the amplitude to develop into the state on a

unit circle and the Ψ[q∗]
∣∣
τ=0

is the semi-classical wave function describing the state on that

circle. The relation (7.3.1) is nothing but the semi-classical approximation of the usual state-

operator correspondence. If we employ the action-angle variables basis (Si, φi), constructed

in section 7.1.4, and use {φi} as q, then the wave function evaluated at the cylinder time τ

can be expressed simply as

Ψ[φ] = exp

(
i
∑
i

Siφi − E({Si})τ

)
, (7.3.2)

where the action variables Si and the worldsheet energy E({Si}) are constant.

Now the serious problem is that we do not know the exact saddle point solution for the

three-point function. The only information we know is that in the vicinity of each vertex

insertion point zi, the exact three-point solution, to be represented by a 2×2 matrix Y given

by

Y =

(
Z X

−X̄ Z̄

)
, Z = Y1 + iY2 , X = Y3 + iY4 , (7.3.3)

which must be almost identical to the two-point solution produced by the same vertex

operator. Let us denote such a solution by Yref and call it a reference solution23. As we have

to normalize the three-point function precisely by such a two-point function for each leg,

what is important is the difference between Y and Yref . Note that even if they are produced

by the same vertex operator, they are different because Y is influenced by the presence of

other vertex operators in the three-point function.

Here and in what follows, the global isometry group G = SU(2)L × SU(2)R and its com-

plexification Gc = SL(2,C)L × SL(2,C)R play the central roles. Being the symmetry groups

of the equations of motion (and the Virasoro conditions), two solutions of the equations of

motion are connected by the action of G and/or Gc. The difference between their actions

are that (when expressed in terms of the Minkowski worldsheet variables) while G connects

a real solution to a real solution, Gc transforms a real solution to a complex solution. Since

22For a detail, see also section 3 of [17].
23A more precise definition of the reference solution will be given later in section 7.3.3.
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the three-point interaction is inherently a tunneling process, the saddle point solution for

such a process must be complex. Therefore near zi the two solutions Y and Yref must be

connected by an element of Gc in the manner

Y = Ṽ YrefV , Ṽ ∈ SL(2,C)L, V ∈ SL(2,C)R (7.3.4)

This means that the angle variables associated to Y, as defined relative to the ones associated

to Yref , should be computable from the knowledge of the transformation matrices Ṽ and V .

As will be discussed in Appendix C.6, it turns out that most of the angle variables are

invariant under the global transformations except those which are conjugate to the global

charges, φR and φL. In terms of the solutions to the right and left ALP, ψ(x) and ψ̃(x), their

shifts can be computed using a useful formula derived in Appendix C.6 as

∆φR = −i ln

(
(n · ψ+(∞))(n · ψref

− (∞))

(n · ψref
+ (∞))(n · ψ−(∞))

)
, (7.3.5)

∆φL = −i ln

(
(ñ · ψ̃+(0))(ñ · ψ̃ref

− (0))

(ñ · ψ̃ref
+ (0))(ñ · ψ̃−(0))

)
, (7.3.6)

where n and ñ are the normalization vectors for the right and the left sector and ψ±(x)

and ψref
± (x) are the Baker-Akhiezer eigenvectors corresponding to the solutions Y and Yref

respectively and are related by

ψ± = V −1ψref
± , ψ̃± = Ṽ ψ̃ref

± . (7.3.7)

How V and Ṽ can be obtained will be described in detail in subsection 7.3.3.

The remaining problem is to fix the normalization vectors n and ñ, relevant for the left

and the right sectors. In the case of the string which is entirely in EAdS3 [17], we can fix

them by the following argument. Consider for simplicity the wave function corresponding

to a conformal primary operator of the gauge theory sitting at the origin of the boundary

of AdS5. Such an operator is characterized by the invariance under the special conformal

transformation. Therefore the corresponding wave function and the angle variables compris-

ing it should also be invariant. Explicitly it requires that n · ψ and ñ · ψ̃ must be preserved

under the special conformal transformation and this determines n and ñ.

The essence of the argument we shall employ for the case of a string in S3 studied in

the present chapter is the same. Namely, we characterize the string state by certain highest

weight condition and determine the normalization vector. However because the structures of

the gauge theory operators and the corresponding string solutions are more complicated, we

need to generalize and refine the argument. As a result of this improvement, not only has the

determination of the normalization vectors become more systematic but also their physical

meaning has been identified more clearly. Moreover, the entire procedure of the constructions
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of the wave functions for the S3 part and the EAdS3 part has become completely parallel

and transparent. Below we shall begin the analysis first from the gauge theory side.

7.3.2 Characterization of the gauge theory operators by symmetry properties

As sketched above, in order to construct the wave functions expressing the effect of the

insertion of the vertex operators, we must study how to characterize the global symmetry

properties of the vertex operators and the classical configurations that they produce in their

vicinity.

For this purpose, it is convenient to first look at the symmetry properties of the corre-

sponding gauge theory operators. Recall that the operators in the “SU(2) sector” are com-

posed of the complex scalar fields Z ≡ Φ1 + iΦ2, X ≡ Φ3 + iΦ4 and their complex conjugates

Z̄ and X̄, where ΦI (I = 1, 2, 3, 4) are four of the six real hermitian fields in the adjoint repre-

sentation of the gauge group. Under the global symmetry group SO(4) = SU(2)R × SU(2)L,

these fields transform in the doublet representations of SU(2)R and SU(2)L with the right

and the left charges R and L given as follows:

R L
Z +1/2 +1/2

Z̄ −1/2 −1/2

X −1/2 +1/2

X̄ +1/2 −1/2

(7.3.8)

These transformation properties are succinctly represented by the 2× 2 matrix

Φ =

(
Z X

−X̄ Z̄

)
, (7.3.9)

which gets transformed as ULΦUR, where UL ∈ SU(2)L, UR ∈ SU(2)R. In spite of this

SO(4) symmetry, in the existing literature24 the operators Oi are taken to be composed of a

special pair of fields25 as indicated in (4.1.2) in section 4.1. For example, O1 is of the form

tr (ZZ · · ·XZZX · · ·Z). In the spin-chain interpretation, Z and X represent the up and the

down spin respectively so that O1 is a state built upon the all-spin-up vacuum state trZ`

on ` sites by flipping some of the up-spins into the down-spins which represent excitations.

Therefore at each site there is an SU(2) group acting on a spin, and according to (7.3.8), it

is identified with SU(2)R for this case. For the entire operator O1, what is relevant is the

total SU(2)R, the generator of which will be denoted by SiR.

24See, for example, [80].
25The reason for this choice is that it is the simplest one that can produce non-extremal three-point

functions.
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Let us now characterize the spin-chain states corresponding to the operators of the type

O1 from the point of view of this total SU(2)R. First, since the constituents Z and X

carry definite spin quantum numbers, every state of type O1 carries a definite right and

left global charges. Second, every such state is actually a highest weight state annihilated

by the operator S+
R = S1

R + iS2
R. For the vacuum state |Z`〉 = |↑`〉 it is obvious. As for

the excited states, they can be written as the Bethe states
∏

i=1 B(ui)|↑`〉, where B(ui) is

the familiar magnon creation operator carrying the rapidity ui. As we mentioned in section

3.1.3, such a state is a highest-weight state of the total SU(2)R and hence annihilated by the

same S+
R , provided that the Bethe state is on-shell. Thus all the operators of type O1 can

be characterized as the highest weight state of the total SU(2)R.

Now in order to deal with other operators built upon a “vacuum state” different from

trZ`, let us introduce the general linear combinations of ΦI as ~P · ~Φ =
∑4

I=1 PIΦI . To

discuss the transformation property under SU(2)R × SU(2)L, it is more convenient to deal

with the matrix

P ≡

(
P1 + iP2 P3 + iP4

−(P3 − iP4) P1 − iP2

)
= PIΣI , (7.3.10)

ΣI ≡ (1, iσ3, iσ2, iσ1) . (7.3.11)

Then, we have the representation

~P · ~Φ =
1

2
tr
(
σ2Ptσ2Φ

)
. (7.3.12)

In this notation, P corresponding to Z, Z̄,X, X̄ take the form PZ = 1−σ3,PZ̄ = 1+σ3,PX =

−(σ1 − iσ2),PX̄ = σ1 + iσ2.

As we argued above, all the on-shell states built upon a common vacuum are annihilated

by the same element of the global symmetry algebra, such as S+
R . In other words as long as

the global transformation property is concerned, the vacuum state can be considered as the

representative of all the states built upon it. As it will be slightly more convenient, instead

of the annihilation operator, we will use the “raising operator” K = exp(αâ), where α is any

constant and â is the element of the algebra which annihilates the corresponding vacuum

state. The vacuum is then characterized by the form of K that leaves its building block

invariant.

Let us explain this idea concretely for the simplest vacuum state trZ`. In the general

notation (7.3.12), we can express Z as Z = 1
2
tr (σ2PtZσ2Φ) with PZ = 1 − σ3. Now let us

look for the raising operators KZ and K̃Z for SU(2)R and SU(2)L respectively, which leave

Z invariant. Since Φ transforms into K̃ZΦKZ , the invariance condition reads

1

2
tr
(
σ2PtZσ2K̃ZΦKZ

)
=

1

2
tr
(
σ2PtZσ2Φ

)
. (7.3.13)
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This is equivalent to the condition

PZ = K̃−1
Z PZK−1

Z . (7.3.14)

It is easy to find the solutions, which read

KZ =

(
1 β

0 1

)
= e

1
2
βσ+ , K̃Z =

(
1 0

β̃ 1

)
= e

1
2
β̃σ− , (7.3.15)

where β and β̃ are arbitrary constants.

Next we consider a general case where the vacuum state is given by tr (~P · ~Φ)l, with

arbitrary ~P . We can characterize this family of states again by the raising operators K and

K̃ which leave ~P · ~Φ invariant. Just as in (7.3.14), this condition is expressed as

P = K̃−1PK−1 . (7.3.16)

where P corresponds to ~P . Since ~P · ~Φ can be obtained from Z by an SU(2)L × SU(2)R
transformation, P can be obtained from PZ by a corresponding transformation of the form

P = ULPZUR . (7.3.17)

Then combined with (7.3.16) we readily obtain the relation PZ = (U−1
L K̃−1UL)PZ(URK

−1U−1
R ).

Comparing this with (7.3.14) we can express the raising operators K and K̃ in terms of the

ones for the operator Z given in (7.3.15) in the form

K = U−1
R KZUR , K̃ = ULK̃ZU

−1
L . (7.3.18)

Now these raising operators can in turn be characterized by the two-component vectors

p and p̃, which are left invariant under the following action of K and K̃ respectively:

Ktp = p , K̃tp̃ = p̃ . (7.3.19)

Since the overall factor for these vectors are inessential, we can freely normalize them to

have unit length as p† · p = p̃† · p̃ = 1. We shall refer to them as polarization spinors, as

they characterize, so to speak, the “direction of polarization” of the highest weight operator
~P · ~Φ. It should be noted that from the knowledge of p and p̃, one can reconstruct P which

is invariant under the raising operators, as in (7.3.16). In fact, if we set

P = −2iσ2p̃p
t , (7.3.20)

one can easily check that this P satisfies (7.3.16), with the use of the defining equations

(7.3.19) and a simple formula σ2U
−1σ2 = U t valid for any invertible 2×2 matrix U satisfying

detU = 1.
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Let us illustrate these concepts by computing the polarization spinors for the operators

Z and Z̄ respectively. For the operator Z we already computed the right and the left raising

operators in (7.3.15). Then it is easy to see that the corresponding polarization spinors pZ

and p̃Z satisfying Kt
ZpZ = pZ and K̃t

Z p̃Z = p̃Z are given by

pZ =

(
0

1

)
, p̃Z =

(
1

0

)
. (7.3.21)

As a check, from the formula (7.3.20), we immediately get PZ =

(
0 0

0 2

)
, which is the

desired form. As for the operator Z̄, repeating the similar analysis, the raising operators

leaving PZ̄ = 1 + σ3 invariant can be readily obtained to be

KZ̄ =

(
1 0

α 1

)
, K̃Z̄ =

(
1 α̃

0 1

)
, (7.3.22)

with α and α̃ being arbitrary constants. The corresponding polarization spinors can be taken

to be

pZ̄ =

(
1

0

)
, p̃Z̄ =

(
0

1

)
. (7.3.23)

Finally consider the normalization spinors for a general operator ~P · ~Φ which is related to

Z = ~PZ · ~Φ through the relation of the form (7.3.17). Since the raising operators for such

an operator are obtained from those for Z in the manner (7.3.18), the polarization vectors

p and p̃ are expressed in terms of pZ and p̃Z as

p = U t
RpZ , p̃ = (U t

L)−1p̃Z . (7.3.24)

As an application of this formula, let us re-derive pZ̄ and p̃Z̄ from this perspective. Since

PZ̄ = 1 + σ3 and PZ = 1− σ3, it is easy to see that they are related by an SU(2)L × SU(2)R
transformation of the form

PZ̄ = ULPZUR , UL = iσ2 , UR = −iσ2 . (7.3.25)

In fact this transformation realizes the mapping (Z,X)→ (Z̄,−X̄). Substituting the forms

of UL and UR into the above formula (7.3.24), we obtain U t
RpZ = (1, 0)t and (U t

L)−1p̃Z =

−(0, 1)t ∝ (0, 1)t, which agree with (7.3.23).

The importance of the above analysis is that, as we shall describe below, precisely the

same characterization scheme must be valid for the vertex operators in string theory which

correspond to the gauge theory composite operators. Moreover, it will be shown that the

polarization spinors introduced purely from the group theoretic point of view above will be

identified with the normalization vectors that appeared in (7.1.45), which play pivotal roles

in the construction of the angle variables and hence the construction of the wave functions

describing the contribution of the vertex operators.
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7.3.3 Wave functions for the S3 part

Symmetry structure of the vertex operators and the classical solutions

We now begin the explicit construction of the wave functions contributing to the three-

point functions in string theory. As we see below, the contribution from the wave functions

separates into the kinematical and the dynamical factors. Although the dynamics is quite

different between the gauge theory and the corresponding string theory, the kinematical

symmetry properties correspond quite directly between the gauge theory operators and the

vertex operators of string theory. Therefore in this subsection we will describe how we

can implement the scheme of the symmetry characterization of the operators developed in

the preceding subsection for the gauge theory operators to the vertex operators and the

classical solutions produced by them. Since the analysis concerning the each factor of the

symmetry group SU(2)R×SU(2)L is completely similar and can be performed independently,

after some general discussions we will almost exclusively focus on the SU(2)R part of the

symmetry transformations and various corresponding quantities for clarity of presentations.

In the saddle point approximation scheme we are employing, we cannot directly deal

with the vertex operator: What we can deal with are the classical solutions produced by the

vertex operators carrying large charges. Therefore we need to extract the information of the

quantum vertex operators indirectly through such classical solutions.

For definiteness, we first focus on a solution with diagonal SU(2)R × SU(2)L charges

describing a two-point function of an operator built on the tr (Z l)-vacuum (O1 and O3 in

section 4.1) and its conjugate26. In what follows, we shall denote such a solution by Ydiag.

Then we can associate a pair of polarization spinors pZ and p̃Z and the raising operators

(7.3.15) to the vertex operator that produces the solution. For convenience, we display them

again with appropriate renaming:

pdiag =

(
0

1

)
, p̃diag =

(
1

0

)
, (7.3.26)

Kdiag(β) =

(
1 β

0 1

)
, K̃diag(β̃) =

(
1 0

β̃ 1

)
. (7.3.27)

All the solutions describing a two-point function of mutually conjugate operators, 〈OO〉,
can be obtained from this basic solution Ydiag by an SU(2)R × SU(2)L transformation27.

Since a normalized three-point function in the gauge theory can be obtained by dividing an

26Here the “conjugation” means the usual complex conjugation of the fields, Z → Z̄ and X → X̄.
27This class of solutions include the one-cut solutions (7.1.34) in section 7.1.3.
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unnormalized one by 〈OO〉-type two-point functions as

〈OiOjOk〉√
〈OiOi〉〈OjOj〉〈OkOk〉

, (7.3.28)

the aforementioned solutions, to be called reference solutions, play an important role to

obtain a correctly normalized wave function. Below, we will denote them by Yref . A dis-

tinctive feature of such solutions is that they are real-valued when expressed in terms of the

Minkowski worldsheet variables. This qualification will be extremely important since the

equation of motion is actually invariant under a larger group SL(2,C)R × SL(2,C)L and its

action can produce “complex” solutions which signify tunneling. Such a tunneling process

is necessary for the three-point interactions to take place, as we shall see.

From now on till the end of this subsection, we shall suppress all the left transformations

and display only the right transformations. The results for the left transformations will be

summarized later in this subsection.

Now consider a three-point function produced by vertex operators, corresponding to the

gauge theory operators, inserted at zi on the worldsheet. We will take the operators to

be those obtained by SO(4) rotations of the operators built on the tr (Z l)-vacuum. This

suffices for the present purpose since such three-point functions include28 the ones discussed

in section 4.1.

Although the saddle point solution for such a three-point function is so far not available

explicitly, let us denote the solution in the vicinity of zi by Y. Asymptotically as z → zi such

a configuration must be well-approximated by a two-point reference solution Yref , which is

produced by the same vertex operator. Even if they are produced by the same vertex

operator, Y and Yref are different since Y is influenced non-trivially and dynamically by the

other two vertex operators present. We write the transformation between them at z ' zi

as29

Y(z ' zi) = YrefV (z → zi) , V ∈ SL(2,C)R . (7.3.29)

This relative difference is the quantity of interest since we need to normalize the three-point

function by the two-point functions. In general V belongs to SL(2,C)R ⊃ SU(2)R, since the

three-point interaction is necessarily a tunneling process. In contrast the reference solution

Yref can be obtained from Ydiag by a transformation belonging to SU(2)R in the form

Yref = YdiagU ref , U ref ∈ SU(2)R . (7.3.30)

28Note that O1 and O3 in section 4.1 are built on the tr (Zl)-vacuum while O2 can be obtained from the

operator built on tr (Zl) by an SO(4) rotation (7.3.25), which effects (Z,X)→ (Z̄,−X̄).
29Note that Yref is the solution for the two-point function, expressed globally in terms of the cylinder

coordinate. Thus we need to express Y in terms of the local coordinate
(
τ (i), σ(i)

)
given in (7.1.82) to

compare two solutions.
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The relation among Y, Yref and Ydiag is summarized pictorially in Figure 7.3.1.

Figure 7.3.1: Schematic relation among Y, Yref and Ydiag. Yref is obtained from Ydiag

by the real global transformation while Y is obtained from Yref by the complexified global

transformation.

Now just as we did already for the solution Ydiag, we can associate to the solution Yref

the polarization spinor pref and the raising transformation Kref which leaves it invariant.

Then from the general formula (7.3.24) and (7.3.18) we can express them in terms of the

quantities associated to the diagonal solution as

pref = (U ref)tpdiag , (7.3.31)

Kref(β) = (U ref)−1Kdiag(β)U ref . (7.3.32)

By the same token we can associate the polarization spinor p and the raising transformation

K to the local solution Y. However since Y is produced by the same vertex operator as

Yref , we must have p = pref . On the other hand, K is given by K(β) = V −1Kref(β)V , as in

(7.3.32), since Y is obtained by performing the transformation V to Yref . Since K(β) must

leave p, which is equal to pref , invariant, the following identity must hold for some β′:

V −1Kref(β)V = Kref(β′) . (7.3.33)

Substituting the relation (7.3.32), we get

(V ′)
−1
Kdiag(β)V ′ = Kdiag(β′) ,

V ′ ≡ U refV (U ref)−1 .
(7.3.34)

This means that the operator V ′ transforms a raising operator into a raising operator for

the diagonal solution. Using the explicit form of Kdiag (7.3.27), it is not difficult to show

that the general form of such an operator is

(
a b

0 a−1

)
. Note that this contains a scale

transformation which is in SL(2,C)R but not in SU(2)R. From this result we can solve for

143



V and its inverse and obtain the following useful representations

V = (U ref)−1

(
a b

0 a−1

)
U ref , (7.3.35)

V −1 = (U ref)−1

(
a−1 −b
0 a

)
U ref . (7.3.36)

At this stage we need not know the actual values of a and b in these formulas. b will turn

out to be irrelevant and a will be expressed in terms of certain Wronskians.

Construction of the wave function for the right sector

We are now ready for the construction of the wave function for the right sector using the

formula for the shift of the angle variable φR given in (7.3.5).

First we need to fix the normalization vector n appearing in that formula. As we shall

show, the answer is that it coincides precisely with the polarization spinor n introduced

from the group theoretical point of view in (7.3.19) in subsection 7.3.2. Recall that the

zeros of n · ψ(x), where ψ is the Baker-Akhiezer vector and n is the normalization vector,

determines the angle variables. When one makes a global SL(2,C)R transformation VR on the

string solution Y like Y → YVR, the Baker-Akhiezer vector transforms like ψ → V −1
R ψ. In

particular, take VR to be the raising operator K under which the vertex operator producing

the solution Y is invariant. Then the wave function corresponding to the vertex operator and

hence the angle variables comprising it must also be invariant. This means that the zeros of

n·(K−1ψ) = (Ktn)·ψ must coincide with the zeros of n·ψ and hence we must have Ktn ∝ n.

However since K is similar to Kdiag, it is clear that the constant of proportionality can only

be unity and n must satisfy Ktn = n. This, however, is nothing but the definition of the

polarization spinor given in (7.3.19). In other words, the proper choice of the normalization

vector for constructing the wave function is precisely the polarization spinor associated to

the vertex operator to which the wave function corresponds. Therefore, we arrive at the

following crucial relation,

Normalization vector (n) = Polarization spinor (p) . (7.3.37)

Thus, we will henceforth denote the polarization spinors also by n. Note that various formulas

derived so far for the polarization spinors are valid also for the normalization vectors.

Having found the proper choice of the normalization vector in the formula (7.3.5) for the

shift of the angle variable φR, what remains to be understood is how to evaluate the inner

products n ·ψ±(∞) and n ·ψref
± (∞). Corresponding to the relation (7.3.29), in the vicinity of
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zi, ψ± and ψref
± are related by the constant transformation V as ψ±(z ' zi) = V −1ψref

± (z ' zi).

Now recall the form of the ALP for the right sector given in (7.1.2). We see that for x =∞
the coefficients of the connections jz and jz̄ vanish and hence the solutions ψ±(x =∞) and

ψref
± (x =∞) themselves become constant. Combining these pieces of information, we obtain

the relation

ψ±(∞) = V −1ψref
± (∞) . (7.3.38)

The right hand side can be evaluated using the representation (7.3.36) as

ψ±(∞) = (U ref)−1

(
a−1 −b
0 a

)
U refψref

± (∞) = (U ref)−1

(
a−1 −b
0 a

)
ψdiag
± (∞) , (7.3.39)

where ψdiag
± (x) is the Baker-Akhiezer vector for Ydiag, which is related to ψref

± (x) by

ψref
± (x) =

(
U ref

)−1
ψdiag
± (x) . (7.3.40)

We now need to know ψdiag
± (∞), which are the eigenstates of the monodromy ma-

trix near x = ∞ corresponding to the eigenvalues e±ip(x). For a charge-diagonal solution

Ydiag, the monodromy matrix near x = ∞ is diagonal and hence is either of the form (a)

diag (eip(x), e−ip(x)) or (b) diag (e−ip(x), eip(x)), depending on the solution. For the case (a)

the eigenvectors are ψdiag
+ (∞) = (1, 0)t, ψdiag

− (∞) = (0, 1)t, while for the case (b) their forms

are swapped. Since Ydiag is produced by the vertex operator with the definite polarization

spinor specified in (7.3.26), there should be a definite answer. To determine the proper

choice of (a) or (b), we need to construct the wave function for each choice and see if it has

the same transformation property as the corresponding operator in the gauge theory. As it

will be checked later in this subsection, it turned out that the case (b) is the correct choice.

Therefore we will take

ψdiag
+ (∞) =

(
0

1

)
, ψdiag

− (∞) =

(
1

0

)
. (7.3.41)

Substituting them into (7.3.39), we obtain the important relations

ψ+(∞) = (U ref)−1
(
aψdiag

+ (∞)− bψdiag
− (∞)

)
= aψref

+ (∞)− bψref
− (∞) , (7.3.42)

ψ−(∞) = (U ref)−1a−1ψdiag
− (∞) = a−1ψref

− (∞) . (7.3.43)

As for the polarization spinor, observe that by inspection the following relation holds:

ndiag = (−iσ2)ψdiag
− (∞) . (7.3.44)
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This relation is actually universally satisfied for any reference solutions. To see this, let us

act (U ref)t from left. Then the relation becomes(
(U ref)tndiag =

)
nref = (U ref)t(−iσ2)ψdiag

− (∞)

= (−iσ2)(U ref)−1ψdiag
− (∞)

= −iσ2ψ
ref
− (∞) ,

(7.3.45)

where we used the identity σ2(U ref)tσ2 = (U ref)−1. On the other hand, for the solution Y,

which describes the three-point function, the relation is slightly modified. In fact, using the

formula (7.3.43) we get the relation

n = −iaσ2ψ−(∞) . (7.3.46)

Compared to (7.3.45), (7.3.46) contains an additional prefactor a. This factor will be ex-

tremely important as we shall see below.

Let us now recall the formula (7.3.5) for the shift of the angle variable φR. Displaying it

again for convenience, it is of the form

∆φR = −i ln

(
(n · ψ+(∞))(n · ψref

− (∞))

(n · ψref
+ (∞))(n · ψ−(∞))

)
. (7.3.47)

From (7.3.42) and (7.3.45), we can write n · ψ+(∞) = an · ψref
+ (∞). As for n · ψ−(∞), use

of (7.3.43) gives n · ψ−(∞) = a−1n · ψref
− (∞). Now due to the relation (7.3.45), the quantity

n ·ψ−(∞) = nref ·ψ−(∞), which appears both in the numerator and the denominator of the

formula (7.3.47), vanishes. Therefore we must first regularize n slightly to make the quantity

n · ψ−(∞) finite, cancel them in the formula and then remove the regularization. As for the

same quantity appearing in n · ψ+(∞), we can safely set it to zero from the beginning since

n ·ψref
+ (∞) is non-vanishing. In this way we find that n ·ψref

± (∞)’s all cancel out and we are

left with an extremely simple formula for ∆φR given by

∆φR = −i ln a2 . (7.3.48)

Note that the shift depends only on the quantity a, which parametrizes the scale transfor-

mation not belonging to SU(2)R, showing the tunneling nature of the effect.

Let us now write the formula (7.3.46) for the operator at zi with a subscript i as ni =

−iaiσ2i−(∞). Then, from the definition of the Wronskian we obtain 〈ni, nj〉 = aiaj〈i−, j−〉
∣∣
∞.

Writing out all the relations of this form and forming appropriate ratios, we can easily extract

out each a2
i . The result can be written in a universal form as

a2
i =

〈j−, k−〉
〈i−, j−〉〈k−, i−〉

∣∣∣∣
∞

〈ni, nj〉〈nk, ni〉
〈nj, nk〉

. (7.3.49)
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Then substituting this expression into the formula (7.3.48) we obtain the shift of the angle

variable φR at the position zi as

ei∆φR,i =
〈j−, k−〉

〈i−, j−〉〈k−, i−〉

∣∣∣∣
∞

〈ni, nj〉〈nk, ni〉
〈nj, nk〉

. (7.3.50)

This formula is remarkable in that it cleanly separates the kinematical part composed of

〈ni, nj〉 and the dynamical part described by 〈i−, j−〉
∣∣
∞.

As the last step of the construction of the wave function, we need to pay attention to

the convention of [41] that we are adopting. In that work, the Poisson bracket is defined

to be {p, q} = 1 for the usual momentum p and the coordinate q. In this convention the

Poisson bracket of the action angle variables was worked out to be given by {φ, S} = 1. In

other words the action variable S corresponds to q and the angle variable φ corresponds to

p. Therefore upon quantization in the angle variable representation, we must set S = i∂/∂φ.

This means that the wave function that carries charge S is given by e−iSφ, not by eiSφ.

Recalling the relation (3.2.56) between the action variable S∞ and the right charge R,

namely S∞ = −R, and employing the formula (7.3.50), the contribution to the wave function

from the right sector is obtained as

ΨS3

R = exp

(
−i

3∑
i=1

(−Ri) ∆φR,i

)
=
∏
{i,j,k}

(
〈ni, nj〉
〈i−, j−〉

∣∣
∞

)Ri+Rj−Rk

, (7.3.51)

where {i, j, k} denotes the cyclic permutations of {1, 2, 3}.

At this stage, let us confirm that the wave function so constructed indeed carries the cor-

rect charge. To see this, it suffices to consider the U(1) transformation which corresponds to

the diagonal right-charge rotations. Let us examine the case of the charge-diagonal operator

built upon the Z-type vacuum, such as O1 or O3 in section 4.1. In such a case the reference

state is the charge-diagonal state itself, hence U ref = 1. Then if we set a = eiθ/2, b = 0 in the

formula (7.3.35), the SU(2)R transformation matrix V becomes diag (eiθ/2, e−iθ/2), which is a

U(1) transformation under which Z and Z̄, carrying the right charge 1/2 and −1/2 respec-

tively, transform as Z → eiθ/2Z and Z̄ → e−iθ/2. Now according to (7.3.48), under such a

transformation the wave function acquires the phase e−i(−R) ln a2
= eiRθ. This shows that the

wave function has the same (positive) charge R as the operator of the form tr (Z2R). This

proves that the choice of ψdiag
± (∞) we made in (7.3.41) is the correct one. If we had made

the other choice, the wave function would have acquired the phase e−iRθ, which contradicts

the fact that the corresponding operator in the gauge theory is built on the tr (Z`)-vacuum

and hence has the positive right charge. Similar argument can be made for the left sector

and again one can check that the wave function (7.3.51) carries the correct charges.
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Contribution of the left sector and complete wave function for the S3 part

We now briefly describe the analysis for the left sector, to complete the construction of the

wave function for the S3 part.

The procedure is exactly the same as for the right sector but there are a couple of

notable differences. First, the transformation matrices act from the left and consequently

in various formulas the matrices are replaced by their inverses. In particular, the formulas

corresponding to (7.3.35) and (7.3.38) for the transformation Ṽ that connects three-point

solution and the reference solution in the manner Y = Ṽ Yref take the form

Ṽ = Ũ ref

(
a 0

b a−1

)
(Ũ ref)−1 , (7.3.52)

ψ̃±(0) = Ṽ ψ̃ref
± (0) , (7.3.53)

where Ũ ref ∈ SU(2)L is the matrix effecting the connection Yref = Ũ refYdiag. Second, the

raising matrix for the diagonal solution is now lower triangular, namely

K̃diag(β) =

(
1 0

β 1

)
. (7.3.54)

Thirdly, the polarization spinor for Z is ñdiag = (1, 0)t, as discussed in (7.3.23). Lastly,

because of the form of the ALP for the left sector, the Baker-Akhiezer vector becomes

coordinate-independent at x = 0 instead of at x =∞.

Let us now list the basic results for the left sector, omitting the intermediate details.

Just as for the right sector, the formulas below are valid for any type of operator.

ψdiag
+ =

(
0

1

)
, ψdiag

− =

(
1

0

)
, (7.3.55)

ψ̃+(0) = a−1ψ̃ref
+ (0) + bψ̃ref

− (0) , ψ̃−(0) = aψ̃ref
− (0) , (7.3.56)

ñ = aiσ2ψ̃+(0) , ∆φL = −i ln a−2 . (7.3.57)

Using these formulas, we obtain the contribution to the wave function from the left sector

as

ΨS3

L = exp

(
−i

3∑
i=1

Li∆φL,i

)
=
∏
{i,j,k}

(
〈ñi, ñj〉
〈i+, j+〉

∣∣
0

)Li+Lj−Lk

, (7.3.58)

where we used the gauge invariance of the Wronskians and replaced 〈̃i+, j̃+〉 with 〈i+, j+〉.
Together with ΨS3

R obtained in (7.3.51) we now have the complete wave function for the S3
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part. It is of the structure

eFvertex = ΨS3

L ΨS3

R e
Venergy ,

Fvertex = Vkin + Vdyn + Venergy . (7.3.59)

Let us explain each term in (7.3.59) in order. The first term Vkin stands for the kinematical

part composed of the Wronskians 〈ni, nj〉 and 〈ñi, ñj〉,

Vkin =

(R1 +R2 −R3) ln〈n1, n2〉+ (R2 +R3 −R1) ln〈n2, n3〉+ (R3 +R1 −R2) ln〈n3, n1〉

+ (L1 + L2 − L3) ln〈ñ1, ñ2〉+ (L2 + L3 − L1) ln〈ñ2, ñ3〉+ (L3 + L1 − L2) ln〈ñ3, ñ1〉 .
(7.3.60)

The second term Vdyn refers to the dynamical part consisting of the Wronskians 〈i−, j−〉
∣∣
∞

and 〈̃i+, j̃+〉
∣∣
0
,

Vdyn =

− (R1 +R2 −R3) ln〈1−, 2−〉
∣∣
∞ − (R2 +R3 −R1) ln〈2−, 3−〉

∣∣
∞ − (R3 +R1 −R2) ln〈3−, 1−〉

∣∣
∞

− (L1 + L2 − L3) ln〈1+, 2+〉
∣∣
0
− (L2 + L3 − L1) ln〈2+, 3+〉

∣∣
0
− (L3 + L1 − L2) ln〈3+, 1+〉

∣∣
0
.

(7.3.61)

The last term Venergy denotes the contribution involving the worldsheet energy shown in

the last term of (7.3.2). Such a term is necessary to account for the time evolution of

the wave functions since we evaluate the wave function at τ (i) = 0, which corresponds

to ln |z − zi| = ln εi, whereas the state-operator mapping is performed on the unit circle,

ln |z − zi| = 0. As the energy of the each external state is given30 by 2
√
λκ2

i , Venergy can be

evaluated explicitly as

Venergy = 2
√
λ

3∑
i=1

κ2
i ln εi . (7.3.62)

Before ending this subsection, let us make two comments. First, it is not guaranteed at

this stage that the wave function thus constructed produces a correctly normalized two-point

function. In addition, as discussed in [17], there may be additional contributions which come

from the canonical change of variables, {Y, ∂τY} → {φi, Si}. However, in section 7.6.3, it will

be checked that our result for the three-point function correctly reproduces the normalized

two-point function in an appropriate limit. Therefore we can a posteriori confirm that the

30The energy can be computed from the behavior of the stress-energy tensor around the puncture (3.2.27).
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wave function is completely normalized and the additional contributions are absent. Second,

one recognizes that the power of 〈ni, nj〉, namely Ri +Rj −Rk, is the familiar combination,

made out of conformal weights and spins, for the coordinate differences in the three-point

functions of a conformal field theory, except for the overall sign. In the next subsection, we

will elaborate on this structure of the power from the point of view of the dual gauge theory.

Also in section 7.5.2, where we construct the wave function for the EAdS3 part, the above

difference in the overall sign will be explained.

7.3.4 Detailed relation with the operators in the gauge theory

The wave function constructed above is expressed in terms of the polarization spinors, which

depend only on the type of the vacuum on which the corresponding gauge theory operator

is built, the eigenvectors of the ALP in the vicinity of the insertion point zi, and the charges

carried by the vertex operators. A natural question is how we can distinguish the type of

vertex operators involved from these data. Operators of O1 and O2 in section 4.1 can be

distinguished by the structure of their polarization spinors because the vacuum on which

they are built are different. On the other hand, operators of O1 and O3, which are built on

the same type of the vacuum, are characterized by the same polarization spinors and hence

it appears that one cannot distinguish them from the formula for the wave function. Since

these operators differ only in the types of excitations, X or X̄, the question is how this is

reflected. The answer is in the relation between the absolute magnitude of the charges R and

L, which are given by R and L respectively. Because the charges carried by the operator X

are (R,L) = (−1/2, 1/2), the magnitude of the total charges of the type O1 operator built

upon Z-vacuum with X as excitations must satisfy the inequality R < L. Similarly, the

magnitudes of the total charges for the operator of type O2 also obey R < L. On the other

hand, for the operator of type O3, we have R > L.

Such distinction is reflected not only on the charges but also on the dynamical property

of the eigenstates i± appearing in the wave function formula. As discussed in (7.1.42) and

(7.1.43), the relative magnitude of R and L for a one-cut solution is determined by the

position of the cut in the quasi-momentum p(x): When the real part of the position of the

branch cut is in the interval [−1, 1] in the spectral parameter space such a solution has R > L

and hence corresponds to the operator of type O3. Contrarily the operator of type O1 having

R < L corresponds to a solution with the cut outside the above interval. Conceptually this

is quite intriguing. From the spin-chain perspective, since O1 and O3 form distinct types

of spin chains not related by the SU(2)R×SU(2)L symmetry, it is difficult to describe them

at the same time. On the other hand, in string theory the solutions corresponding to these

distinct spin chains are described in a more unified way. It would be interesting to realize
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such a unified treatment on the gauge theory side as well.

Let us next examine the role and the meaning of the kinematical factor Vkin from the

point of view of the dual gauge theory. In this regard, note that the quantity 〈ni, nj〉, being

a skew product, vanishes when ni and nj coincide. This in fact happens for the case of the

operators O1 and O3 discussed in section 4.1, which are built upon the same Z-vacuum and

hence carry the same polarization spinors. In such cases, the three-point function vanishes

unless the conservation laws, R1 + R3 − R2 = 0 and L1 + L3 − L2 = 0, are satisfied. On

the gauge-theory side, the charges of the composite operator can be easily computed from

the charges of the constituents (4.1.2). Then the conservation laws can be explicitly written

down in terms of the length of the operator `i and the number of magnons Mi as31

R1 +R3 −R2 = M3 +M2 −M1 = 0 ,

L1 + L3 − L2 =
1

2
(`1 + `3 − `2)−M3 = 0 .

(7.3.63)

This condition is precisely the same as the one we derived in section 4.1 from the Wick-

contraction rule in the gauge theory.

Up to this point we have obtained the general formulas for the contribution of the action

part and the wave function part, both of which are expressed in terms of the Wronskians of

the form 〈i±, j±〉. In the next section we will evaluate these quantities to substantiate the

general formulas.

7.4 Evaluation of the Wronskians

In the previous two sections, we have shown that both the contribution of the action and

that of the vertex operators are expressible in terms of the Wronskians 〈i±, j±〉 between the

eigenvectors of the monodromy matrices. The goal of this section is to evaluate those Wron-

skians. First, in section 7.4.1, we show that certain products of Wronskians are expressed

in terms of the quasi-momenta. Next, in sections 7.4.2 and 7.4.3, we determine the analytic

properties (i.e. poles and zeros) of each Wronskian as a function of the spectral parameter

x. With such a knowledge, we apply, in section 7.4.4, a generalized version of the Wiener-

Hopf decomposition formula to the products of the Wronskians and determine the individual

factor. Finally, in section 7.4.5, we compute the singular part and the constant part of the

Wronskian, which cannot be determined by the Wiener-Hopf method.

31Recall that R and L are absolute magnitudes of the charges.
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7.4.1 Products of Wronskians in terms of quasi-momenta

To obtain the information of the Wronskian 〈i±, j±〉 between the eigenvectors of the ALP at

different points, we need some condition which governs the global property of such Wron-

skians. As we shall see, such a condition is provided by the global consistency condition for

the product of the local monodromy matrices Ωi associated with the vertex insertion points

zi. Since the total monodromy must be trivial upon going around the entire worldsheet, we

must have

Ω1Ω2Ω3 = 1 . (7.4.1)

Although this appears to be a rather weak condition, it is sufficiently powerful to determine

the forms of certain products of the Wronskians in terms of the quasi-momenta pi(x), as

discussed in [16, 105]. Let us quickly reproduce those expressions. Take the basis in which

Ω1 is diagonal, namely

Ω1 =

(
eip1 0

0 e−ip1

)
. (7.4.2)

Since the set of eigenvectors j± at zj form a complete basis, one can expand the eigenvectors

i± at zi in terms of them in the following way:

i± = 〈i± , j−〉j+ − 〈i± , j+〉j− . (7.4.3)

Making use of this formula, Ω2 can be expressed in the Ω1-diagonal basis as

Ω2 = M12

(
eip2 0

0 e−ip2

)
M21 , (7.4.4)

where the matrix Mij, effecting the change of basis, is given by

Mij =

(
−〈i− , j+〉 −〈i− , j−〉
〈i+ , j+〉 〈i+ , j−〉

)
. (7.4.5)

Now owing to the constraint (7.4.1), Ω1 and Ω2 must satisfy the following relation:

tr (Ω1Ω2) = tr Ω−1
3 = 2 cos p3 . (7.4.6)

Substituting the equations (7.4.2) and (7.4.4) into (7.4.6), we obtain an equation for 〈1± , 2±〉
of the form

cos (p1 − p2) 〈1+ , 2+〉〈1− , 2−〉 − cos (p1 + p2) 〈1+ , 2−〉〈1− , 2+〉 = cos p3 . (7.4.7)
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This equation, together with the Schouten identity32 for 1± and 2± given by

〈1+ , 2+〉〈1− , 2−〉 − 〈1+ , 2−〉〈1− , 2+〉 = 〈1+ , 1−〉〈2+ , 2−〉 = 1 , (7.4.8)

completely determines the products of Wronskians, 〈1+ , 2+〉〈1− , 2−〉 and 〈1+ , 2−〉〈1− , 2+〉.
In a similar manner, products of certain other Wronskians can also be obtained, which are

summarized as the following set of equations:

〈1+ , 2+〉〈1− , 2−〉 =
sin p1+p2+p3

2
sin p1+p2−p3

2

sin p1 sin p2

, (7.4.9)

〈2+ , 3+〉〈2− , 3−〉 =
sin p1+p2+p3

2
sin −p1+p2+p3

2

sin p2 sin p3

, (7.4.10)

〈3+ , 1+〉〈3− , 1−〉 =
sin p1+p2+p3

2
sin p1−p2+p3

2

sin p3 sin p1

, (7.4.11)

〈1+ , 2−〉〈1− , 2+〉 =
sin p1−p2+p3

2
sin p1−p2−p3

2

sin p1 sin p2

, (7.4.12)

〈2+ , 3−〉〈2− , 3+〉 =
sin p1+p2−p3

2
sin −p1+p2−p3

2

sin p2 sin p3

, (7.4.13)

〈3+ , 1−〉〈3− , 1+〉 =
sin −p1+p2+p3

2
sin −p1−p2+p3

2

sin p3 sin p1

. (7.4.14)

What we need for the computation of the three-point functions, however, are the individ-

ual Wronskians and not just the products given in (7.4.9)–(7.4.14). Such a knowledge will

be extracted based on the analytic properties of the Wronskians regarded as functions of the

complex spectral parameter x. We will analyze such properties in the next two subsections.

7.4.2 Analytic properties of the Wronskians I: Poles

An individual Wronskian, viewed as a function of x, is almost uniquely determined33 by its

analytic properties, namely the positions of the poles and the zeros. From the expressions

exhibited in (7.4.9)–(7.4.14), we know that the products of Wronskians have poles at sin pi =

0 and zeros at sin ((±p1 ± p2 ± p3)/2) = 0. Therefore the question is which factor of the

product is responsible for such a pole and/or a zero. In this subsection, we will describe how

to analyze the structure of the poles.

32The general form of the Schouten identity is given by 〈i , j〉〈k , l〉 + 〈i , k〉〈j , l〉 + 〈i , l〉〈j , k〉 = 0. It can

be proven directly from the definition of the Wronskians.
33As we will discuss later, the Wronskian also contains essential singularities at x = ±1. In addition, an

overall proportionality constant cannot be determined by the positions of zeros and poles. These ambiguities

will be fixed in section 7.4.5.
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To illustrate the basic idea, we will consider the Wronskians 〈1+ , 2+〉 and 〈1− , 2−〉 as

examples, for which the product is given by

〈1+ , 2+〉〈1− , 2−〉 =
sin p1+p2+p3

2
sin p1+p2−p3

2

sin p1 sin p2

.

Let us focus on the pole associated with sin p1 = 0 and denote the position of the pole by

xpole. There are two types of points at which sin p1 vanishes, the branch points and the

“singular points”. First consider the case where xpole is a singular point, at which the two

eigenvalues of the monodromy matrix Ω1 degenerate to either +1 or −1. This, however, does

not mean that Ω1 is proportional to the unit matrix for the following reason: If Ω1 ∝ 1, the

monodromy condition Ω1Ω2Ω3 = 1 forces p2 to be equal to +p3 or −p3 modulo π. However,

since p1, p2 and p3 can be chosen completely independently, there is no reason for such

special relation to hold. Thus, the only remaining possibility is that the monodromy matrix

Ω1 takes the form of a Jordan-block at x = xpole, namely,

Ω1(xpole) ∼ ±

(
1 c

0 1

)
. (7.4.15)

In this case, the eigenvectors 1+ and 1− degenerate at x = xpole and we have one eigenvector.

To see what happens at x = xpole more explicitly, let us study the asymptotic behavior

of 1± near z1. In the vicinity of each puncture, the saddle point solution for the three-

point function can be well-approximated by an appropriate solution for a two-point function.

Consequently, the eigenvectors for the three-point function 1± can also be approximated near

z1 by the eigenvectors for the two-point function 12pt
± . As shown in (7.1.81), this structure can

be seen most transparently in the Pohlmeyer gauge. Working out the subleading corrections,

we obtain the following expansion for the eigenfunctions 1̂±:

1̂+ = 1̂2pt
+

(
1 + c1(σ, x)ea1τ (1)

+ c2(σ(1), x)ea2τ (1)

+ · · ·
)
, (7.4.16)

1̂− = 1̂2pt
−

(
1 + c̃1(σ(1), x)eã1τ (1)

+ c̃2(σ(1), x)eã2τ (1)

+ · · ·
)
. (7.4.17)

Here τ (1) and σ(1) are the local coordinates near z1 given in (7.1.82) and ck and c̃k are 2× 2

matrices dependent only on σ(1) and x. The constants ak in the exponents are such that

successive terms are becoming smaller by exponential factors as τ → −∞. An important ob-

servation is that since 1̂2pt
± are eigenfunctions corresponding to a two-point function, they are

insensitive to the global monodromy constraint (7.4.1) on the three-point function and hence

non-singular at x = xpole. An apparent puzzle now is how exponentially small corrections

can produce the degeneracy of 1̂±.

The answer is the following. Since one of the eigenvectors 1̂2pt
± is exponentially increasing

(i.e. big) and the other is decreasing (i.e. small) as τ → −∞, let us consider the case where
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1̂2pt
+ is big and 1̂2pt

− is small. Now for 1̂± to become degenerate at x = xpole, logically there

are three possibilities

(a) 1̂+ = α1̂− , α = finite , (7.4.18)

(b) 1̂+ = β1̂− , β →∞ , (7.4.19)

(c) 1̂− = β1̂+ , β →∞ . (7.4.20)

First, since 1̂2pt
+ , which is the leading term for 1+, is much larger than 1̂2pt

− , which is the

leading term for 1−, by assumption, the case (a) cannot occur. Now consider the case where

x is slightly different from xpole. Then β is large but finite and the relations (b) or (c) must

be realized approximately. But it is obvious that (b) is the only consistent relation since

exponentially small eigenvector can appear in the expansion of the big eigenvector but not

the other way around. Therefore we must have the situation

1̂+ = 1̂2pt
+ + · · ·+ β1̂− + · · · , (7.4.21)

As x→ xpole, β diverges and (7.4.21) goes over to the relation (b). The situation is the same

if 1̂− is the big eigenvector: Always the big eigenvector diverges at the degeneration point,

while the small solution remains finite.

Similar argument can be applied to the other Wronskians, making use of the general

asymptotic behavior of the eigenvectors in the Pohlmeyer gauge, which is of the form

î± ∼ e±q(x)τ (i)

(z ∼ zi) . (7.4.22)

It is clear from this expression that which one of the î± diverges as z → zi is governed by the

sign of the real part of the quasi-energy q(x). Since the divergence of the eigenvector produces

a pole on the Wronskian containing it, we can determine which Wronskian of the product

is responsible for the pole with the following general rule: At sin pi = 0, the Wronskians

behave as

Re q(x) > 0⇒ 〈i+ , •〉 = finite , 〈i− , •〉 =∞ , (7.4.23)

Re q(x) < 0⇒ 〈i+ , •〉 =∞ , 〈i− , •〉 = finite . (7.4.24)

Hence, for Re q(x) > 0 the pole occurs in 〈i− , •〉, while for Re q(x) < 0 it occurs in 〈i+ , •〉.

7.4.3 Analytic properties of the Wronskians II: Zeros

Having determined the pole structure, let us next discuss the zeros of the Wronskians. The

determination of the zeros is substantially more difficult since, in contrast to the poles which
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are local phenomena, the zeros are determined by the global properties on the Riemann

surface. As shown in the works [16, 105, 111–113], the notion of the WKB curve is one of

the main tools to explore such global properties. However, as its name indicates, the WKB

curve is useful only when the leading term in the WKB expansion is sufficiently accurate.

For this reason, it is not powerful enough to fully determine the zeros of the Wronskians

in the whole region of the spectral parameter space. In this subsection we shall introduce

an appropriate generalization of the WKB curve, to be called the exact WKB curve, to

overcome this difficulty.

WKB approximation and WKB curves

In order to motivate the generalized version, we shall first briefly review the ordinary WKB

curves defined in [112].

When the expansion parameter ζ is sufficiently small, the leading term of the WKB

expansion for the solutions to ALP (7.2.31) around zi is given by

ψ̂ ∼ exp

(
±1

ζ

∫ z

z∗i

√
Tdz

)
. (7.4.25)

Of the two independent solutions given above, one is the small solution, which decreases

exponentially as it approaches zi and the other is the big solution, which increases exponen-

tially in the same limit. In order to make the variation of the magnitude of the solution

more precise, one defines the WKB curves as the curves along which the phase of the leading

term (7.4.25) in the WKB expansion is constant. More explicitly, they are characterized by

the equation

Im

(√
T

ζ
dz

)
= 0 . (7.4.26)

By analyzing the structure of (7.4.26), one finds the following three characteristic properties

of the WKB curves. (i) At generic points on the worldsheet, the WKB curves are non-

intersecting. (ii) At a puncture, the WKB curves radiate in all directions from the puncture.

(iii) At a zero of T (z), there are three special WKB curves which radiate from the zero and

separate three different regions of the WKB curves. For details, see Figure 7.4.1.

Along the WKB curve, the magnitude of the leading term in the WKB expansion (7.4.25)

increases or decreases monotonically, until they reach a zero or a pole of T (z). Thus, if two

punctures zi and zj are connected by a WKB curve and the spectral parameter ζ is sufficiently

small, the small solution si defined around zi will grow exponentially as it approaches the

other puncture zj. In other words, the small solution si behaves like the big solution around
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Zero Pole

Figure 7.4.1: Structures of the WKB curves around zeros and poles. The exact WKB curves,

to be introduced later, also have similar structures.

zj. Therefore si will be linearly independent of sj and hence the Wronskian between these

two small solutions 〈si , sj〉 must be non-vanishing.

With this logic, we conclude that the Wronskians 〈i± , j±〉 are non-vanishing if the fol-

lowing three conditions are satisfied: (a) Two punctures zi and zj are connected by a WKB

curve. (b) Two eigenvectors i± and j± are both small solutions. (c) The leading WKB

solutions (7.4.25) are sufficiently accurate.

Exact WKB curves

Evidently, the analysis above is valid only in a restricted region of the spectral parameter

plane where the approximation by the leading term of the WKB expansion is reliable. Ac-

tually, even if we improve the approximation by going to the next order approximation, we

still cannot cover the entire spectral parameter plane because such an expansion is only an

asymptotic series. It is indeed possible that as we change x the small and the big solu-

tions interchange their roles. Such a phenomenon is clearly non-perturbative and cannot

be captured by the usual expansion. So to understand the structure of the zeros on the

whole spectral parameter plane, it is necessary to generalize the notion of WKB curves in a

non-perturbative fashion.

In order to seek such an improvement, we need to look closely at the general structure of

the conventional WKB expansion. Let us denote the components of the solution ψ̂d to the
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ALP in the diagonal gauge (7.2.31) as

ψ̂d =

(
ψ(1)

ψ(2)

)
. (7.4.27)

By substituting (7.4.27) into the ALP (7.2.31), we obtain the equations for the components

ψ(1) and ψ(2). Then, upon eliminating ψ(2) in favor of ψ(1), we get a second-order differential

equation for ψ(1). To solve this equation, we expand ψ(1) in powers of ζ in the form

ψ(1) =

√
ρ

T
− ∂γ√

T
exp

[∫ z

z0

(
W−1

ζ
+W0 + ζW1 + · · ·

)]
. (7.4.28)

One can then determine the one-forms Wn order by order recursively. This procedure is

described in Appendix C.5.1. As a result of such a computation, we find that the WKB ex-

pansions for two linearly independent solutions to the ALP can be expressed in the following

form: (
f

(1)
±

f
(2)
±

)
exp

(
±
∫ z

z0

WWKB(z, z̄; ζ)

)
. (7.4.29)

Here WWKB ≡ W z
WKBdz + W z̄

WKBdz̄ is the one-form defined as a power series in ζ, with the

leading term given by
√
Tdz/(2ζ). On the other hand, the functions f

(1)
± and f

(2)
± are defined

in terms of W z
WKB by

f
(1)
± ≡ kWKB =

√
ρ−
√
T∂γ

T W z
WKB

, (7.4.30)

f
(2)
± ≡

−i√
W z

WKB

[
±W z

WKB +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln kWKB

2

)]
. (7.4.31)

With this structure in mind, we now introduce an improved notion of the WKB curve,

to be called the “exact WKB curve”, by writing the exact solutions to the ALP in the form

ψ̂d =

(
f

(1)
ex

f
(2)
ex

)
exp

(∫ z

z0

Wex(z, z̄; ζ)

)
, (7.4.32)

where f
(1)
ex and f

(2)
ex are given by

f (1)
ex =

√
ρ−
√
T∂γ

T W z
ex

, f (2)
ex =

−i√
W z

ex

[
W z

ex +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln f

(1)
ex

2

)]
. (7.4.33)

Note that the expression (7.4.32) is identical in form to (7.4.29) with the plus sign chosen.

However, there is an essential difference. While WWKB is given by the asymptotic series
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in powers of ζ and is hence ambiguous non-perturbatively, Wex on the other hand is un-

ambiguous as it is defined directly by the exact solution ψ̂. Of course, if we expand Wex

perturbatively in powers of ζ, the series will coincide with WWKB. In this sense, Wex can

be regarded as the non-perturbative completion of WWKB. Now one of the virtues of the

expression (7.4.32) is that we can easily construct another solution satisfying 〈ψ̂d , ψ̂′d〉 = 1

by choosing the opposite the signs as

ψ̂′d =

(
f ′ex

(1)

f ′ex
(2)

)
exp

(
−
∫ z

z0

Wex(z, z̄; ζ)

)
, (7.4.34)

where f ′ex
(1) and f ′ex

(2) are given by

f ′ex
(1) =

√
ρ−
√
T∂γ

T W z
ex

, f ′ex
(2) =

−i√
W z

ex

[
−W z

ex +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln f ′ex

(1)

2

)]
.

(7.4.35)

Using the definition (7.4.32), let us now discuss the generalization of the WKB curves.

The quantity
√
Tdz/ζ used to define the original WKB curves is proportional to the leading

term in the expansion of WWKB. Therefore the most natural generalization of the WKB

curves would be to use Wex, which is a non-perturbative completion of WWKB, to define them

as

Im (Wex(z; ζ)) = 0 . (7.4.36)

Unfortunately, there is a problem with this definition. Since there are many exact solutions

to the ALP, a different choice of the solution ψ̂d leads to a different Wex and thus to different

curves. We can avoid this problem by defining the curves in terms of the small solution si

(for a general value of ζ) near each puncture zi. We shall call them the exact WKB curves

and denote them by EWKB(i).

The precise definition is given as follows: The exact WKB curves associated to the

puncture zi are defined as the curves satisfying the equation

Im
(
W (i)

ex (z; ζ)
)

= 0 , (7.4.37)

where W
(i)
ex is the exponential factor for the solution si, which is the smaller of the two

eigenvectors i+ and i−. Explicitly, it is defined through the expression

si ∝

(
f

(1)
ex

f
(2)
ex

)
exp

(∫ z

z0

W (i)
ex (z, z̄; ζ)

)
. (7.4.38)
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Let us now make several comments. First, it is easy to see that this definition of the

exact WKB curves reduces to that of the ordinary WKB curves when ζ is sufficiently small.

Second, as in (7.4.34), with a flip of sign in the exponent, we can obtain another solution

bi ≡

(
f ′ex

(1)

f ′ex
(2)

)
exp

(
−
∫ z

z0

W (i)
ex (z, z̄; ζ)

)
, (7.4.39)

which is big near the puncture zi and satisfies 〈si , bi〉 = 1. Such a solution bi, however, is

not guaranteed to be an eigenvector since the eigenvector distinct from si is in general given

by a linear combination of the form bi + csi.

Now the definition of EWKB(i) given above refers to a specific puncture from which the

curves emanate. In order for the notion of the exact WKB curve to be valid for the entire

worldsheet, we must guarantee that the definitions of EWKB(i)’s for i = 1, 2, 3 are consistent

in the region where they overlap. To check this, let us consider the behavior of the small

solution si as we follow an EWKB(i). Along such a curve the phase of the exponential factor

of si stays constant, while its magnitude increases monotonically34, until it reaches some

endpoint. Consider the case in which this endpoint is the puncture at zj. In such a case, we

know that si grows exponentially as it approaches zj and in fact behaves like a big solution

bj, up to an admixture of the exponentially small solution sj. Thus, with sufficient accuracy,

si can be expressed in the small neighborhood of zj as

si ∝ bj =

(
f ′ex

(1)

f ′ex
(2)

)
exp

(
−
∫ z

z0

W (j)
ex (z, z̄; ζ)

)
. (7.4.40)

But since the exponent of the small solution sj, which is used to define EWKB(j), is the same

as that of bj except for the sign, we see that by definition the curve we have been following

becomes an EWKB(j) curve in the vicinity of zj, when zi and zj are connected by such a

curve. Therefore the definitions of EWKB(i) and EWKB(j) are indeed globally consistent.

Let us now make use of the exact WKB curves to determine the analytic properties of the

Wronskians. First, by following exactly the same logic as in the case of the ordinary WKB

curves, we can immediately conclude that the Wronskian involving two small solutions si

and sj must be nonzero if two punctures zi and zj are connected by some exact WKB curves.

Although this is an extremely useful information, the problem seems to be that, unlike the

ordinary WKB curves, we do not know the configurations of the EWKB curves since the

exact solutions to the ALP are not available.

34Strictly speaking the small eigenvector (7.4.38) also contains a prefactor in front of the exponential. This

prefactor, however, does not play a significant role in our discussion since it drops out if we consider the

ratio of two solutions si/bi. It is in fact sufficient to know the ratio in order to identify the small solution

and the big solution.
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Nevertheless, we shall show below that by making use of a characteristic quantity defined

locally around each puncture for the EWKB curves, it is possible to fully classify the topology

(connectivity) of the curves on the entire worldsheet. The quantity in question is the “number

density” of the EWKB curves emanating from a puncture at zi. To motivate its definition,

consider two such curves which emanate from zi and end at zj and let the constant phase of

W
(i)
ex along the two curves be φ1 and φ2. Evidently the magnitude of the difference |φ1− φ2|

is the same around zi and around zj, that is, it is conserved. If there is no singularity in

the region between these lines, we can draw in more EWKB curves connecting zi and zj.

Because of the property of the constancy of the phase difference noted above, it is quite

natural to draw the curves in such a way that the difference of the phases of the adjacent

curves is some fixed unit angle. Going around zi and counting the number of such lines, we

can define the number (density) of the EWKB(i) curves as35

Ni ≡
1

2π

∮
Ci
|Im W (i)

ex | , (7.4.41)

where Ci is an infinitesimal circle around zi. Although Ni is not an integer in general, we

will call it “a number of lines”. Actually we can express Ni in a more explicit way. From

the asymptotic behavior of i± (7.1.81), we can obtain the form of W
(i)
ex near zi as

W (i)
ex ∼ ±

(
qi(x)dτ (i) + ipi(x)dσ(i)

)
as z → zi . (7.4.42)

Here (τ (i) , σ(i)) is the local coordinate defined in (7.1.82), and + or− sign is chosen depending

on which of the solutions i± is small. Substituting (7.4.42) into the definition (7.4.41), we

obtain a simple expression

Ni ≡ |Re pi(x)| . (7.4.43)

Since the phase around the puncture is governed by the local monodromy, it is natural that

Ni can be expressed in terms of pi(x).

Before we make use of the concept of Ni in a more global context, let us derive two

important properties of the EWKB(i)’s which will be necessary for determining their config-

urations.

The first property will be termed the non-contractibility. It can be stated as follows:

“All the exact WKB curves which start and end at the same puncture are non-

contractible.”

In other words, such curves must go around a different puncture at least once. The proof

is simple. Recall that the Wronskians between small solutions should be nonzero if two

35In (7.4.41), we have chosen a convenient normalization of Ni.
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punctures are connected by an exact WKB curve. If we apply this statement to the same

puncture zi connected by an EWKB curve, we would conclude that 〈si, si〉 is non-zero, which

is clearly false. The only way to be consistent with the general assertion above is that the

curve is non-contractible and the solution gets transformed by the non-trivial monodromy Ω

as it goes around other punctures. In this case the Wronskian is of the form 〈si,Ωsi〉, which

need not vanish.

The next property is concerned with the endpoints of the exact WKB curves. It can be

stated as follows:

“ All but finitely many exact WKB curves terminate at punctures. ”

The proof can be given as follows. As in the case of the ordinary WKB curves, the possible

endpoints are the zeros or the poles of W
(i)
ex . Concerning the former, the number of exact

WKB curves flowing into a zero is always finite, as shown in Figure 7.4.1. On the other

hand, a pole can be the endpoint of infinitely many curves and thus plays a crucial role in

the study of the analyticity of the Wronskians. Now there are three different types of poles

for W
(i)
ex . The first is a puncture, at which the vertex operator is inserted. The second type

of a pole corresponds to the situation where the small eigenvector si develops a singularity

at a position different from the puncture. Since we only consider the worldsheet without

additional singularities as mentioned in section 7.1.7, such a singularity in si should not

occur. The last type of divergence for W
(i)
ex occurs when si develops a zero. Indeed, si

in general has several zeros on the Riemann surface. However, such points cannot be the

endpoints of the exact WKB curves for the following reason: At the zeros of si, the ratio si/bi

of the small and the big solutions must also vanish36. But this contradicts the basic property

of the exact WKB curve that such a ratio, determined by the exponential factor in (7.4.38),

monotonically increases along the exact WKB curve as we move away from zi. From these

considerations, we find that apart from a finite number of curves which can flow into zeros

of W
(i)
ex , the rest of the infinitely many exact WKB curves must end at the punctures.

The two properties we have proved above are extremely important for the following

reason. They provide certain global restrictions for the EWKB curves for all values of the

spectral parameter, about which we only know the local behaviors explicitly in the vicinity

of the punctures. Below, they allow us to show that there are essentially two distinct classes

of configurations for the exact WKB curves.

These two classes are distinguished by whether the number of lines Ni fully satisfy the

36The big solution bi cannot vanish at such points so as to ensure the normalization condition 〈si , bi〉 = 1.
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z2

z1

z3

(a) Symmetric case (Ni +Nj −Nk > 0)

z2

z1

z3

(b) Asymmetric case (N2 +N3 −N1 < 0)

Figure 7.4.2: Configuration of the exact WKB curves.

triangle inequalities or not37. When Ni’s satisfy the relations

Ni +Nj −Nk > 0 , (7.4.44)

for all possible combinations of distinct i, j, k, we refer to such a configuration as symmetric.

It is easy to show that if (7.4.44) is satisfied the number of lines connecting zi and zj cannot

be zero. As this holds for all the interconnecting lines, the three punctures must be piece-wise

connected to each other as in the left figure of Figure 7.4.2.

On the other hand, in the second case, which we shall call asymmetric, not all the triangle

inequalities are satisfied. For example, one is violated like

N2 +N3 −N1 < 0 . (7.4.45)

In this case, one can readily convince oneself that, while all the curves emanating from z2

and z3 end at z1, there must exist a non-contractible curve connecting z1 to itself. This is

depicted in the right figure of Figure 7.4.2.

In this way, we can completely classify the configurations of the exact WKB curves from

the local information Ni = |Re pi(x)|. Note that Ni depends on x. In fact it happens

that as x changes a symmetric configuration can turn into an asymmetric configuration and

vice versa. In an application of the present idea to the classical three-point function in

Liouville theory [114], it was checked that such a transition must be taken into account in

order to obtain the correct result. Below, we will see explicitly how the patterns of the

configurations of the exact WKB curves analyzed above can be used to determine the zeros

of the Wronskians.

37In the case of the usual WKB curves, Wex ∼
√
T (z)dz and hence Ni is proportional to κi.
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Determination of the zeros of the Wronskians

As an example, let us focus on the factor

sin

(
p1 + p2 + p3

2

)
, (7.4.46)

and determine which Wronskians develop a zero when this factor vanishes. (The logic below

applies to all the other cases straightforwardly.) From the relations (7.4.9)–(7.4.14), we find

that the products of Wronskians that become zero are

〈1+ , 2+〉〈1− , 2−〉 , 〈2+ , 3+〉〈2− , 3−〉 , 〈3+ , 1+〉〈3− , 1−〉 . (7.4.47)

For convenience, let us define the following two sets of eigenvectors, namely the set S+ ≡
{1+, 2+, 3+} and the set S− ≡ {1−, 2−, 3−}. An important feature of the quantities shown in

(7.4.47) is that only the Wronskians of the eigenstates in the same group, S+ or S−, appear.

This is in fact a general feature and holds also for other situations.

Now, let us present two theorems, which will be useful in the determination of the zeros.

The first theorem is the following assertion, which we have already proved:

Theorem 1. When two punctures zi and zj are connected by an exact WKB curve,

the Wronskian between the two small eigenvectors 〈si , sj〉 is non-vanishing.

The second theorem classifies the possibilities of the patterns of the zeros and is stated as

follows:

Theorem 2. There are only two distinct possibilities concerning the zeros of the

Wronskians in (7.4.47): Either (a) all the Wronskians among the members of S+ are

zero and those among S− are nonzero, or (b) all the Wronskians among S− are zero

and those among S+ are nonzero.

The proof is as follows. Let us first note that in each product of two Wronskians appearing

in (7.4.47), only one of them vanishes. In fact if both factors become zero simultaneously,

the product develops a double zero, which contradicts the fact that the zeros of (7.4.46) are

all simple zeros. This property implies that in the list given in (7.4.47), at least two of the

individual Wronskians which actually vanish must be between the members belonging to the

same set, which can be S+ or S−. Suppose they belong to S+. Since 〈i+, j+〉 = 0 means that

i+ and j+ are parallel to each other, vanishing of two such different Wronskians between the

states of S+ implies that in fact all the three states in S+ are proportional to each other.

Therefore the third Wronskian from the set S+ must also vanish. Obviously the same logic

applies to the S− case. This proves the theorem.
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We can now analyze the zeros of the Wronskians using these theorems. First consider

the symmetric case. Since one of the states i± must be a small solution, either S+ or S−
must contain two small solutions. For a symmetric configuration, they must be connected

by an exact WKB curve. Then by theorem 1 the Wronskian between them must be non-

vanishing. Theorem 2 further asserts that all the Wronskians for the members of that set

are non-vanishing, while the ones for elements of the other set all vanish.

Next, consider the asymmetric case. For simplicity, let us assume that N1 > N2 + N3 is

satisfied38. In such a case, there exist exact WKB curves which start from z1, go around z2

(or z3), and return to z1. To make use of the existence of such a curve, consider the following

Wronskians:

〈1+ ,Ω21+〉 , 〈1− ,Ω21−〉 . (7.4.48)

To compute them, we first note that 1± can be expressed in terms of 2± in the following

manner

1± = 〈1± , 2−〉2+ − 〈1± , 2+〉2− . (7.4.49)

Then, applying Ω2 to (7.4.49) and substituting them to (7.4.48), we can express (7.4.48) in

terms of the ordinary Wronskians as

〈1+ ,Ω21+〉 = 2i sin p2〈1+ , 2−〉〈1+ , 2+〉 , (7.4.50)

〈1− ,Ω21−〉 = 2i sin p2〈1− , 2−〉〈1− , 2+〉 . (7.4.51)

Consider the case where 1+ is the small solution. Since Ω21+ can be obtained by parallel-

transporting 1+ along the exact WKB curve which starts and ends at z1, Ω21+ must behave

as the big solution around z1. Therefore, the Wronskian 〈1+ ,Ω21+〉 is non-vanishing in this

case. Then from (7.4.50) it follows that 〈1+ , 2+〉 must also be non-vanishing. Applying the

theorem 2, we conclude that the Wronskians between the members of S+ are non-vanishing

and those of S− all vanish. In an entirely similar manner, when 1− is the small eigenvector,

we obtain the result where the roles of S+ and S− are interchanged.

Performing similar analyses for the other cases, we obtain the general rules summarized

below.

Rule 1: Decomposition of the eigenvectors into two groups.

When a factor of the form sin (
∑

i εipi/2) vanishes, the Wronskians which vanish are

the ones among {1ε1 , 2ε2 , 3ε3} or the ones among {1−ε1 , 2−ε2 , 3−ε3}.
38Generalization to other cases is straightforward.
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Rule 2: Symmetric case.

When the configuration of the exact WKB curves is symmetric, the Wronskians from

the group which contains two or more small solutions are nonzero whereas the Wron-

skians from the other group are zero.

Rule 3: Asymmetric case.

When the configuration of the exact WKB curves is asymmetric and Ni’s satisfy Ni >

Nj+Nk, the Wronskians from the group which contains the smaller of the two solutions

i± are nonzero whereas the Wronskians from the other group are zero.

In the next subsection, we will utilize these rules to evaluate the individual Wronskians.

7.4.4 Individual Wronskian from the Wiener-Hopf decomposition

Making use of the data for the analyticity of the Wronskians obtained in the previous sub-

section, we now set up and solve a Riemann-Hilbert problem to decompose the product of

Wronskians and extract the individual Wronskians.The standard method for such a proce-

dure is known as the Wiener-Hopf decomposition, which extracts from a complicated function

a part regular on the upper half plane and the part regular on the lower half plane. The

typical set up is as follows. Suppose F (x) is a function which decreases sufficiently fast at

infinity and can be written as a sum of two components F (x) = F↑(x) + F↓(x), where F↑(x)

is regular on the upper half plane while F↓(x) is regular on the lower half plane. Then, each

component, in the region where it is regular, can be extracted from F (x) as

F↑(x) =

∫ ∞
−∞

dx′

2πi

1

x′ − x
F (x′) (Imx > 0) , (7.4.52)

F↓(x) = −
∫ ∞
−∞

dx′

2πi

1

x′ − x
F (x′) (Imx < 0) . (7.4.53)

These equations can be easily proven by first substituting F (x′) = F↑(x
′) + F↓(x

′) on the

right hand side and then closing the integration contour for F↑(x
′) (F↓(x

′)) on the upper

(lower) half plane. Now when the argument x is not in the region specified in (7.4.52) and

(7.4.53), we need to analytically continue the above formulas. For instance, F↑(x) in the

region where Imx < 0 should be expressed as

F↑(x) = F (x)− F↓(x) = F (x) +

∫ ∞
−∞

dx′

2πi

1

x′ − x
F (x′) . (7.4.54)

Note that the first term F (x) on the right hand side can be thought of as due to the integral

along a small circle around x′ = x.
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To apply this method to the case of our interest, namely to the equations (7.4.9)–(7.4.14),

we take the logarithm and represent them in a general form as

ln〈iεi , jεj〉+ ln〈i−εi , j−εi〉 = ln sin

(
εipi + εjpj + pk

2

)
+ ln sin

(
εipi + εjpj − pk

2

)
− ln sin pi − ln sin pj . (7.4.55)

Here εi denotes a + or − sign. In this process, we have neglected the contributions of the

form ln(−1), since they only contribute to the overall phase of the three-point functions.

Our aim will be to express each of the terms on the left hand side of (7.4.55) in terms of

some convolution integrals of the functions on the right hand side. To put it in another

way, we wish to decompose each term on the right hand side into contributions coming from

each term on the left hand side. Since the quasi-momentum pi(x) is defined on a Riemann

surface with branch cuts, we need to generalize the Wiener-Hopf decomposition formula in

an appropriate way, as discussed below.

Separation of the poles

Let us first decompose the terms of the form − ln sin pi, which give rise to poles of the Wron-

skians. As shown in the previous section, which Wronskian develops a pole is determined

purely by the sign of the real part of the quasi-momentum qi(x). Therefore, we should be

able to decompose the quantity − ln sin pi by using a convolution integral along the curve

defined by Re qi = 0. For the ordinary Wiener-Hopf decomposition, the convolution kernel

is given simply by 1/(x− x′). In the present case, however, we have a two-sheeted Riemann

surface and hence we must make sure that the kernel has the simple pole only when x and

x′ coincide on the same sheet. When they are on top of each other on different sheets, no

singularity should occur. The appropriate kernel with this property is given by

K̂i(x′;x) ≡ 1

2(x′ − x)

(√
(x− ui)(x− ūi)
(x′ − ui)(x′ − ūi)

+ 1

)
. (7.4.56)

When x and x′ get close to each other but on different sheets, the square root factor tends

to −1 canceling the +1 term and hence the kernel is indeed regular. Furthermore, in the

limit that x′ tends to ∞, the kernel K̂i(x′;x) decreases like (x′)−2, which is sufficiently fast

for our purpose.

With such a convolution kernel, we can carry out the Wiener-Hopf decomposition in

the usual way. Namely the term − ln sin pi(x) can be decomposed into the contributions of
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〈i+ , jεj〉(x) and 〈i− , j−εj〉(x) as

〈i+ , jεj〉(x) 3
∮

Γi+

K̂i ∗ (− ln sin pi) , (7.4.57)

〈i− , j−εj〉(x) 3
∮

Γi−

K̂i ∗ (− ln sin pi) , (7.4.58)

where the convolution integral is defined as∫
A ∗B ≡

∫
dx′

2πi
A(x′;x)B(x′) . (7.4.59)

As for the contours of integration, Γi+ is defined by Re qi = 0 and Γi− stands for −Γi+ . The

direction of the contour Γi+ is defined such that 〈i+ , jεj〉(x) does not contain poles in the

region to the left of the contour39.

Now note that under the holomorphic involution x → σ̂x, the quasi-momentum pi(x)

and the square-root contained in (7.4.56) simply flip sign. Making use of this property, we

can re-express the convolution integrals (7.4.57) and (7.4.58) as integrals only on the first

(or the upper) sheet:

〈i+ , jεj〉(x) 3 −
∮

Γui+

Ki ∗ ln sin pi , (7.4.60)

〈i− , j−εj〉(x) 3 −
∮

Γui−

Ki ∗ ln sin pi . (7.4.61)

Here, Γui± denotes the portion of Γi± on the upper-sheet of the spectral curve and the kernel

Ki(x′;x) (without a hat) is defined by

Ki(x′;x) ≡ 1

x′ − x

√
(x− ui)(x− ūi)
(x′ − ui)(x′ − ūi)

. (7.4.62)

Again we have neglected the factors of the form ln(−1) arising from the sign flip of pi(x), as

they only modify the overall phase of the Wronskians and the three-point functions.

It is important to note that (7.4.57) and (7.4.58) are valid only when x is on the left

hand side of the contours, just as in the case of the ordinary Wiener-Hopf decomposition.

When the argument x is on the right hand side of the contour Γi± , we must add − ln sin pi

to (7.4.57) and (7.4.58), as explained in (7.4.54). Such effects can be taken into account

also in (7.4.60) and (7.4.61), if x is on the upper sheet, by adding a small circle encircling

x′ = x counterclockwise to the integration contours. In what follows, such contributions will

be referred to as contact terms.

39A typical form of the contour is depicted in Figure 7.6.4 in section 7.6, where we study explicit examples.
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Separation of the zeros

Next we shall discuss the decomposition of the first two terms on the right hand side of

(7.4.55), which are responsible for the zeros of the Wronskians. To perform the decompo-

sition, again we need to determine the appropriate convolution kernel and the integration

contour.

Let us first discuss the convolution kernel. As the terms of our focus depend on all

the quasi-momenta pi(x)’s, the appropriate convolution kernel must be a function on the

Riemann surface which contains all the branch cuts of the pi(x)’s. Such a kernel can be

easily written down as a generalization of the expression (7.4.56) and is given by

K̂all ≡
1

8(x′ − x)

3∏
i=1

(√
(x− ui)(x− ūi)
(x′ − ui)(x′ − ūi)

+ 1

)
. (7.4.63)

Since there are two choices of sign for each square root factor on the right hand side of

(7.4.63), K̂all is properly defined on the eightfold cover of the complex plane. In what

follows, we distinguish these eight sheets as {•, •, •}-sheet, where the successive entry • is

either “u” denoting upper sheet or “l” denoting lower sheet, referring to the two sheets for

p1(x), p2(x) and p3(x) respectively. It is clear that the kernel (7.4.63) has a pole with a

residue +1 at x′ = x only when two-points are on the same sheet. Therefore it has a desired

property for the Wiener-Hopf decomposition.

Let us next turn to the contour of integration. As discussed in the previous section, the

zeros of the Wronskians are determined by the following two properties: (i) The connectivity

of the exact WKB-curves and (ii) the relative magnitude of the eigenvectors i±. Therefore,

curves across which these two properties change can be the possible integration contours.

Corresponding to the properties (i) and (ii) above, there are two types of integration contours;

the curves defined by Re qi(x) = 0 and the curves defined by Ni = Nj + Nk. An important

point to bear in mind is that in general only some portions of these curves will be the proper

integration contours, since in some cases the analyticity of the Wronskians does not change

even when we cross these curves. In order to determine the correct integration contours

explicitly, we need to apply the general rules derived in the previous section. However,

as the form of the contours determined through such a procedure depends on the specific

details of the choice of the external states, we will postpone such an analysis until section

7.6, where we work out some specific examples. Thus, in what follows we will denote the

integration contours without specifying their explicit forms asM±±±, whereMε1ε2ε3 denotes

the contour we use to determine the contribution of the factor sin (
∑

i εipi) to 〈iεi , jεj〉. They

are defined such that they flip the orientation if we flip the signs of three indices, for example

M+++ = −M−−−
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Employing the kernel and the contours given above, let us perform the decomposition

of the product of Wronskians, taking that of 〈1+ , 2+〉 and 〈1− , 2−〉 as a representative

example. Applying the Wiener-Hopf decomposition to the relation (7.4.55) with i = 1, j = 2

and ε1 = +, ε2 = +, we obtain

〈1+ , 2+〉 3∮
M+++

K̂all ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M++−

K̂all ∗ ln sin

(
p1 + p2 − p3

2

)
, (7.4.64)

〈1− , 2−〉 3∮
M−−−

K̂all ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M−−+

K̂all ∗ ln sin

(
p1 + p2 − p3

2

)
. (7.4.65)

As in the case of the ordinary Wiener-Hopf decomposition, the expressions (7.4.64) and

(7.4.65) are valid only when x is located to the left of the integration contour. Additional

terms, to be discussed shortly, are needed when x is on the other side of the contour.

Let us now show that the kernel K̂all used in (7.4.64) and (7.4.65) can be effectively

replaced by simpler combinations of the form (Ki +Kj) /8. To explain the idea, consider the

following integral as an example:∮
M+++

dx′

2πi
K̂all(x

′;x) ln sin

(
p1 + p2 + p3

2

)
(x′) . (7.4.66)

As the first step, we make a change of integration variable from x′ to σ̂3x
′, where σ̂i denotes

the holomorphic involution with respect to pi, namely the operation that exchanges the two

sheets associated with pi. Although this clearly leaves the value of the integral intact, the

form of the integral changes. One can easily verify that the following transformation formulas

for the integrand and the contours hold:

ln sin

(
p1 + p2 + p3

2

)
(σ̂3x

′) = ln sin

(
p1 + p2 − p3

2

)
(x′) , (7.4.67)

K̂all(σ̂3x
′;x) = K̂(3)

all (x′;x) , (7.4.68)∮
M+++

d(σ̂3x
′) =

∮
M++−

dx′ . (7.4.69)

In the second line (7.4.68), the “sign-flipped kernel” K̂(3)
all is defined by

K̂(3)
all ≡

1

8(x′ − x)

(
−

√
(x− u3)(x− ū3)

(x′ − u3)(x′ − ū3)
+ 1

) ∏
`=1,2

(√
(x− u`)(x− ū`)
(x′ − u`)(x′ − ū`)

+ 1

)
. (7.4.70)
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Making such transformations, we can re-express the integral (7.4.66) as∮
M++−

dx′

2πi
K̂(3)

all (x′;x) ln sin

(
p1 + p2 − p3

2

)
(x′) . (7.4.71)

Performing similar analysis for all the possible sign-flips, we obtain 23 different expressions

for (7.4.66). Then averaging over all the 23 expressions, we find that the final expressions

are given in terms of the kernels Ki as follows:

〈1+ , 2+〉 3

1

16

(∮
M+++

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M++−

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)
+

∮
M+−+

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
M−++

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
,

(7.4.72)

〈1− , 2−〉 3

1

16

(∮
M−−−

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
M−−+

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)
+

∮
M−+−

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
M+−−

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
.

(7.4.73)

Just as before, we neglected the contributions of the form ln(−1) as leading to pure phases.

Also, the same remarks made below equations (7.4.64) and (7.4.65) on the position of x

relative to the contour lines apply to the expressions (7.4.72) and (7.4.73) above.

Finally, for later convenience, let us further re-write the above expressions as integrals

performed purely on the {u, u, u}-sheet. Each contourMε1ε2ε3 has parts on the eight different

sheets denoted byMu,u,u
ε1ε2ε3

,Mu,u,l
ε1ε2ε3

, etc., where the superscripts indicate the relevant sheet in

an obvious way. Consider for example the first integral in (7.4.72) along the contourM+++.

The form as given is for the portionMuuu
+++. For the portion denoted byMulu

+++ for example,

if we wish to express its contribution in terms of an integral on the {u, u, u}-sheet, we need

to change the sign of K2 and p2. Then the integral becomes identical to that of the first term

in the second line of (7.4.72), except alongMuuu
+−+. In similar fashions we can re-express the

contributions from the eight parts of M+++ in terms of the integrals on the {u, u, u}-sheet.

After repeating the same procedure for the rest of the three terms in (7.4.72), one finds that

the net effect is that each term of (7.4.72) is multiplied by a factor of eight, with each contour
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restricted to the {u, u, u}-sheet. In this way we obtain the representations

〈1+ , 2+〉 3

1

2

(∮
Muuu

+++

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
Muuu

++−

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)

+

∮
Muuu

+−+

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
Muuu
−++

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
,

(7.4.74)

〈1− , 2−〉 3

1

2

(∮
Muuu
−−−

(K1 +K2) ∗ ln sin

(
p1 + p2 + p3

2

)
+

∮
Muuu
−−+

(K1 +K2) ∗ ln sin

(
p1 + p2 − p3

2

)

+

∮
Muuu
−+−

(K1 −K2) ∗ ln sin

(
p1 − p2 + p3

2

)
+

∮
Muuu

+−−

(−K1 +K2) ∗ ln sin

(
−p1 + p2 + p3

2

))
.

(7.4.75)

The results obtained in this subsection and the previous subsection are both expressed in

terms of certain convolution integrals on the spectral curve. Thus, in what follows, we will

denote their sum by Conv〈i±, j±〉.

Before ending this subsection, let us make one important remark. Although each con-

volution integral obtained so far is divergent at x = ±1, the divergence cancels40 in the

sum Conv〈i±, j±〉. Thus the contribution singular at x = ±1 must be separately taken into

account as we will do in the next subsection.

7.4.5 Singular part and constant part of the Wronskians

In addition to the main non-trivial parts determined by the Wiener-Hopf decomposition de-

scribed above, there are two further contributions to the Wronskians. One is the contribution

singular at x = ±1, coming from such structure in the connections used in ALP. The other

is the possibility of adding a constant function on the spectral curve. In this subsection, we

will determine these two contributions.

Let us first focus on terms singular at x = 1. To determine such terms, we will need

the WKB expansions around x = 1 for all the Wronskians, not just the ones that were

discussed in section 7.2.2, namely 〈i+ , j+〉 and 〈i− , j−〉. This is because of the following

reason: Although the formulas we obtained for the contribution of the action and that of the

40One can confirm this by expanding the convolution integrals around x = ±1.
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wave function appear to contain Wronskians of the type 〈i+ , j+〉 and 〈i− , j−〉 only, we must

understand their behavior when they are followed into the second sheet as well in order to

know the analyticity property on the entire Riemann surface. As shown in (7.1.85), when we

cross the branch cut associated with pi(x) into the lower sheet, the eigenfunctions i+ and i−

behave like i− and −i+ on the upper sheet, respectively, . Therefore the behavior of 〈i+ , j+〉
on the {u, l, ∗}-sheet can be obtained from the behavior of 〈i+ , j−〉 on the {u, u, ∗}-sheet,

etc.

Now the WKB expansions of the Wronskians of the type 〈i+ , j−〉 can be obtained from

those of 〈i+ , j+〉 by the use of the following Schouten identities:

〈i+ , j−〉〈j+ , k+〉+ 〈i+ , j+〉〈j− , k+〉+ 〈i+ , k+〉〈j− , j+〉 = 0 . (7.4.76)

Indeed these identities can be regarded as the equations for the six unknown Wronskians of

the form 〈i+ , j−〉. If we consider all the combinations of i, j and k in (7.4.76), we obtain

three independent equations. Combining them with the equations (7.4.12)–(7.4.14) for the

products of the Wronskians, we can completely determine 〈i+ , j−〉’s in terms of 〈i+ , j+〉 in

the following form:

〈1+ , 2−〉 = e−i(p1+p2−p3)/2 sin
(
p1−p2−p3

2

)
sin p2

〈3+ , 1+〉
〈2+ , 3+〉

, (7.4.77)

〈1− , 2+〉 = ei(p1+p2−p3)/2 sin
(
p1−p2−p3

2

)
sin p1

〈2+ , 3+〉
〈3+ , 1+〉

, (7.4.78)

〈2+ , 3−〉 = e−i(−p1+p2+p3)/2 sin
(−p1+p2−p3

2

)
sin p3

〈1+ , 2+〉
〈3+ , 1+〉

, (7.4.79)

〈2− , 3+〉 = ei(−p1+p2+p3)/2 sin
(
p1+p2−p3

2

)
sin p2

〈3+ , 1+〉
〈1+ , 2+〉

, (7.4.80)

〈3+ , 1−〉 = e−i(p1−p2+p3)/2 sin
(−p1−p2+p3

2

)
sin p1

〈2+ , 3+〉
〈1+ , 2+〉

, (7.4.81)

〈3− , 1+〉 = ei(p1−p2+p3)/2 sin
(−p1+p2+p3

2

)
sin p3

〈1+ , 2+〉
〈2+ , 3+〉

. (7.4.82)

From these expressions, we can obtain the WKB-expansion for every Wronskian using the

results for 〈i+ , j+〉.

The singular term of the Wronskians is given simply by the leading term in the WKB

expansion. For instance, the singular terms for 〈i+ , j+〉 and 〈i− , j−〉 at x = 1 on the
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{u, u, u}-sheet is determined from the expansion (7.2.35) and (7.2.36) as

ln〈1+ , 2+〉
x∼1∼ 2

1− x

∫
`21

√
Tdz , ln〈1− , 2−〉

x∼1∼ 2

1− x

∫
`12

√
Tdz , (7.4.83)

ln〈2+ , 3+〉
x∼1∼ 2

1− x

∫
`23

√
Tdz , ln〈2− , 3−〉

x∼1∼ 2

1− x

∫
`32

√
Tdz , (7.4.84)

ln〈3+ , 1+〉
x∼1∼ 2

1− x

∫
`3̂1

√
Tdz , ln〈3− , 1−〉

x∼1∼ 2

1− x

∫
`13̂

√
Tdz . (7.4.85)

Then by using (7.4.77)–(7.4.82) we can determine the singular terms for 〈i+ , j−〉 on the

{u, u, u}-sheet as

ln〈1+ , 2−〉
x∼1∼ 2πi(κ1 + κ2 − κ3)

1− x
+

2

1− x

∫
`2̂3̂+`3̂1

√
Tdz , (7.4.86)

ln〈1− , 2+〉
x∼1∼ 2πi(−κ1 − κ2 + κ3)

1− x
+

2

1− x

∫
`13̂+`3̂2̂

√
Tdz , (7.4.87)

ln〈2+ , 3−〉
x∼1∼ 2πi(−κ1 + κ2 + κ3)

1− x
+

2

1− x

∫
`21+`13̂

√
Tdz , (7.4.88)

ln〈2− , 3+〉
x∼1∼ 2πi(κ1 − κ2 − κ3)

1− x
+

2

1− x

∫
`3̂1+`12

√
Tdz , (7.4.89)

ln〈3+ , 1−〉
x∼1∼ 2πi(κ1 − κ2 + κ3)

1− x
+

2

1− x

∫
`12+`23

√
Tdz , (7.4.90)

ln〈3− , 1+〉
x∼1∼ 2πi(−κ1 + κ2 − κ3)

1− x
+

2

1− x

∫
`32+`21

√
Tdz . (7.4.91)

In order to determine the singular terms completely, we also need to understand the

singular behavior on other sheets. As already described, this can be done by utilizing the

fact that i+ and i− transform into i− and −i+ respectively as one crosses a branch cut

associated to pi(x). For instance, applying this rule we can easily find that the singular term

for 〈1+ , 2+〉 must behave in the following way on each sheet:

〈1+ , 2+〉
x∼1∼ 2

1− x

∫
`21

√
Tdz (on the {u , u , ∗}-sheet) , (7.4.92)

〈1+ , 2+〉
x∼1∼ 2πi(κ1 + κ2 − κ3)

1− x
+

2

1− x

∫
`2̂3̂+`3̂1

√
Tdz (on the {u , l , ∗}-sheet) , (7.4.93)

〈1+ , 2+〉
x∼1∼ 2πi(−κ1 − κ2 + κ3)

1− x
+

2

1− x

∫
`13̂+`3̂2̂

√
Tdz (on the {l , u , ∗}-sheet) , (7.4.94)

〈1+ , 2+〉
x∼1∼ 2

1− x

∫
`12

√
Tdz (on the {l , l , ∗}-sheet) . (7.4.95)
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Combining all these results, it is possible to write down the expression on the entire

Riemann surface which gives the correct singular behavior on the respective sheet. It is

given by

Sing+ [〈1+ , 2+〉] =
1

1− x

√
(x− u1)(x− ū1)

(1− u1)(1− ū1)

(
πi(κ1 + κ2 − κ3) + 2

∫
`1̂2̂+`2̂3̂+`3̂1

√
Tdz

)

+
1

1− x

√
(x− u2)(x− ū2)

(1− u2)(1− ū2)

(
πi(−κ1 − κ2 + κ3) + 2

∫
`23+`31̂+`1̂2̂

√
Tdz

)
. (7.4.96)

Here and hereafter, we will use the notation Sing± [f(x)] to denote the singular term of f(x)

around x = ±1. In an entirely similar manner, we can determine the terms singular at

x = −1 as

Sing− [〈1+ , 2+〉] =
1

1 + x

√
(x− u1)(x− ū1)

(1− u1)(1− ū1)

(
πi(−κ1 − κ2 + κ3) + 2

∫
`1̂2̂+`2̂3̂+`3̂1

√
T̄ dz̄

)

+
1

1 + x

√
(x− u2)(x− ū2)

(1− u2)(1− ū2)

(
πi(κ1 + κ2 − κ3) + 2

∫
`23+`31̂+`1̂2̂

√
T̄ dz̄

)
. (7.4.97)

Singular terms for other Wronskians at x = ±1 can be determined in a similar manner.

The remaining issue is the ambiguity of adding a constant function to the logarithm of

the Wronskian. Such an ambiguity can be fixed by once more utilizing the property that i±

that i+ (i−) transforms into i− (−i+) as it crosses the branch cut of pi. This leads to the

following constraint for the Wronskians

〈i+ , j+〉(σ̂iσ̂jx) = 〈i− , j−〉(x) . (7.4.98)

It turns out that all the results obtained so far satisfy (7.4.98). Since this property gets lost

upon adding a constant to the logarithm of the Wronskian, it shows that our results are

already complete and we should not add any constant functions.

7.5 Complete three-point functions at strong coupling

Up to the last section, we have developed necessary methods and acquired the knowledge of

the various parts that make up the three-point functions of our interest. Now we are ready

to put them together and see that they combine in a non-trivial fashion to produce a rather

remarkable answer.

First in subsection 7.5.1, we obtain the complete result for the S3 part by putting together

the contribution of the action and that of the vertex operators. These two contributions
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combine nicely to produce a simple expression in terms of integrals on the spectral curve.

Then, adapting the methods developed for the S3 part, we evaluate in subsection 7.5.2

the EAdS3 part of the three-point function. Our focus will be on the differences between

the S3 and EAdS3 contributions. Finally in subsection 7.5.3, we present the full answer

by combining the contributions of the S3 part and the EAdS3 part. We will see that the

structure of the final answer closely resembles that of the weak coupling result. Detailed

comparison for certain specific cases will be performed in section 7.6.

7.5.1 The S3 part

Before we begin the actual computations, let us summarize the structure of the contributions

from the S3 part to the logarithm of the three-point function, which we denote by FS3 . As

was already indicated in section 7.1.7, FS3 consists of the contribution of the action and that

of the vertex operators, namely

FS3 = Faction + Fvertex . (7.5.1)

Each contribution can be further split into several different pieces as

Faction =

√
λ

6
+A$ +Aη , Fvertex = Vkin + Vdyn + Venergy . (7.5.2)

Among these terms, A$, Vkin and Venergy have already been evaluated respectively in (7.2.45),

(7.3.60) and (7.3.62). Thus, our main task will be to compute Aη and Vdyn. As shown in

(7.2.46) and (7.3.61), Aη is given by the normal ordered derivatives of the Wronskians,

:∂x ln〈i+ , j+〉:±, whereas Vdyn is given by the Wronskians evaluated at x = 0 and x = ∞,

ln〈i+ , j+〉|∞ and ln〈i− , j−〉|0. From the discussion in section 7.4, we know the Wronskians

are comprised of two different parts, the convolution-integral part Conv [ln〈i∗ , j∗〉] and the

singular part Sing± [ln〈i∗ , j∗〉]. They both contribute to Aη and Vdyn. In what follows, we

examine these two parts separately and evaluate their contributions to Aη and Vdyn.

Contributions from the convolution integrals

We begin with the computation of the convolution integrals. To illustrate the basic idea, let

us study Conv [ln〈2+ , 1+〉]|∞, Conv [ln〈2− , 1−〉]|0 and :∂xConv [ln〈2+ , 1+〉] :± as representa-

tive examples.

To compute the first two quantities, we need to know on which side of the integration

contours the points x = 0 and x =∞ are located. This is because the convolution integrals

derived in subsection 7.4.4 are valid only when x is on the left hand side of the contours.
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When x is on the right hand side of the contours, we must include the contact terms, which

originate from the integration around x′ = x. Unfortunately, the form of the contours depend

on the specific details of the solutions we use and hence we cannot give a general discussion.

We will therefore postpone the discussion of the contact terms until we study several explicit

examples in the next section.

Apart from such contact terms, Conv [〈2+ , 1+〉]|∞ and Conv [〈2− , 1−〉]|0 can be obtained

directly from (7.4.60), (7.4.61), (7.4.74) and (7.4.75) by setting the value of x in the convo-

lution kernels Ki(x′;x) to be 0 and ∞ respectively.

Next, consider the evaluation of the normal-ordered derivative :∂xConv [ln〈2+ , 1+〉] :±.

This quantity does not receive contributions from the contact terms since the integration

contours pass right through x = ±1 and we can compute :∂xConv [ln〈2+ , 1+〉] :± always on

the left hand side of the contour. In addition, since the convolution integrals are nonsingular

at x = ±1, as discussed at the end of section 7.4.4, the normal ordering is in fact unnecessary.

Thus, :∂xConv [ln〈2+ , 1+〉] :± can be obtained from (7.4.60) and (7.4.74) by simply replacing

Ki(x′;x) with their derivatives ∂xKi(x′;x)|x=±1.

Applying similar analyses to other Wronskians and using the formulas (7.2.46) and

(7.3.61), we can obtain the contributions of the convolution integrals to Aη and Vdyn, which

will be denoted by Conv [Aη] and Conv [Vdyn]. They are given by

Conv [Aη] =
√
λ

[∫
Muuu
−−−

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉
123
∗ ln sin

(
p1 + p2 + p3

2

)

+

∫
Muuu
−−+

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉3

12
∗ ln sin

(
p1 + p2 − p3

2

)

+

∫
Muuu
−+−

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉2

13
∗ ln sin

(
p1 − p2 + p3

2

)

+

∫
Muuu

+−−

〈〈
κi ∂xKi|+ − κi ∂xKi|−

〉〉1

23
∗ ln sin

(
−p1 + p2 + p3

2

)

−2
3∑
j=1

∫
Γuj−

(
κj ∂xKj|+ − κj ∂xKj|−

)
∗ ln sin pj

]
, (7.5.3)
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Conv [Vdyn] =

∫
Muuu
−−−

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉
123
∗ ln sin

(
p1 + p2 + p3

2

)

+

∫
Muuu
−−+

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉3

12
∗ ln sin

(
p1 + p2 − p3

2

)

+

∫
Muuu
−+−

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉2

13
∗ ln sin

(
p1 − p2 + p3

2

)

+

∫
Muuu

+−−

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉1

23
∗ ln sin

(
−p1 + p2 + p3

2

)

− 2
3∑
j=1

∫
Γuj−

(
Sj∞ Kj|∞ + Sj0 Kj|0

)
∗ ln sin pj . (7.5.4)

To simplify the expressions, we have introduced the double bracket notation
〈〈
•
〉〉

, to denote

sum of three terms with designated combinations of signs, defined as〈〈
ai

〉〉
123

= a1 + a2 + a3 ,
〈〈
ai

〉〉3

12
= a1 + a2 − a3 , etc. , (7.5.5)

Also, we have employed the abbreviated symbols ∂xKi|±, Ki|∞ and Ki|0, which are defined

by

∂xKi|± ≡ ∂xKi(x′;x)|x=±1 , Ki|∞ ≡ Ki(x
′;∞) , Ki|0 ≡ Ki(x

′; 0) . (7.5.6)

It turns out that the two contributions (7.5.3) and (7.5.4) combine to give a remarkably

simple expression displayed below. This is due to the crucial relation of the form

√
λκi ∂xKi|+ −

√
λκi ∂xKi|− + Si∞ Ki|∞ + Si0 Ki|0 = z(x′)

dpi(x
′)

dx′
, (7.5.7)

where z(x) on the right hand side is the Zhoukowski variable, defined in (3.2.55). Although

this equality can be verified by a direct computation using the explicit form of pi(x) for

the one-cut solutions given in (7.1.25), it is important to give a more intuitive and essential

understanding. Note that the right hand side of (7.5.7) is proportional to the integrand of the

filling fraction given in (3.2.54). Therefore when integrated over appropriate a-type cycles,

it produces the corresponding conserved charges. In other words, it is characterized by the

singularities associated with such charges. Now observe that the left hand side precisely

consists of terms which provide such singularities. The first two terms are responsible for

the singularities at x = ±1, while the last two terms contain the poles at x =∞ and x = 0

associated with the charges Si∞ and Si0 respectively. Furthermore, it should be emphasized

that the formula above unifies the contributions in two sense of the word. First, it unites

the contributions from the action, represented by the first two terms, and those from the
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vertex operators, represented by the last two terms. Only when they are put together one

can reproduce all the singularities of the right hand side. Second, the expression obtained

on the right hand side is universal in that all the specific data shown on the left hand side,

namely κi, S
i
∞ and Si0, are contained in one quantity pi(x). As we shall discuss in section

7.5.2, this feature allows us to write down the same form of the result (except for an overall

sign) given by the right hand side of (7.5.7) for the contributions from the EAdS3 part, using

the quasi-momentum for that part of the string.

Now, applying (7.5.7) we can rewrite the sum Tconv ≡ Conv [Aη] + Conv [Vdyn] into the

following compact expression:

Tconv =

∫
Muuu
−−−

z(x) (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)

+

∫
Muuu
−−+

z(x) (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)

+

∫
Muuu
−+−

z(x) (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)

+

∫
Muuu

+−−

z(x) (−dp1 + dp2 + dp3)

2πi
ln sin

(
−p1 + p2 + p3

2

)

− 2
3∑
j=1

∫
Γuj−

z(x) dpj
2πi

ln sin pj + Contact . (7.5.8)

In the last line, we included the possible contributions from the contact terms, denoted by

Contact.

Contributions from the singular part of the Wronskians

We now turn to the computation of the singular part Sing± [ln〈i∗ , j∗〉]. By substituting the

expressions for the singular part of the Wronskians, such as (7.4.96) and (7.4.97), into the

formulas (7.2.46) and (7.3.61), we can evaluate the contributions of the singular part in a

straightforward manner. From this calculation, we find that a part of the terms contribute

only to the overall phase of the three-point functions. For instance, the first and the third

term in (7.4.96), which are proportional to ±πi(κ1 +κ2−κ3), will only yield an overall phase

owing to the factor of πi. Just as before, we will ignore such contributions in this work. Then

the contributions of Sing+ [ln〈i∗ , j∗〉] to Aη and Vdyn, denoted by Sing+ [Aη] and Sing+ [Vdyn],
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are obtained as

Sing+ [Aη] =
√
λ

[〈〈
κi:∂xKi(1;x):+ − κi ∂xKi(1;x)|−

〉〉3

12

∫
`21

$

+
〈〈
κi:∂xKi(1;x):+ − κi ∂xKi(1;x)|−

〉〉1

23

∫
`23

$

+
〈〈
κi:∂xKi(1;x):+ − κi ∂xKi(1;x)|−

〉〉2

13

∫
`3̂1

$

]
, (7.5.9)

and

Sing+ [Vdyn] =

[〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉3

12

∫
`21

$ +
〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉1

23

∫
`23

$

+
〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉2

13

∫
`3̂1

$

]∣∣∣∣∣
x′=+1

. (7.5.10)

Note that in the present case, in contrast to the case of :∂xConv [ln〈i∗ , j∗〉] :± discussed

previously, the normal ordering in :∂xKi(1;x):+ is necessary since ∂xKi(1;x) is singular at

x = 1. In an entirely similar manner, the contributions of Sing− [ln〈i∗ , j∗〉] to Aη and Vdyn,

denoted by Sing− [Aη] and Sing− [Vdyn], are computed as

Sing− [Aη] = −
√
λ

[〈〈
κi ∂xKi(−1;x)|+ − κi:∂xKi(−1;x):−

〉〉3

12

∫
`21

$̄

+
〈〈
κi ∂xKi(−1;x)|+ − κi:∂xKi(−1;x):−

〉〉1

23

∫
`23

$̄

+
〈〈
κi ∂xKi(−1;x)|+ − κi:∂xKi(−1;x):−

〉〉2

13

∫
`3̂1

$̄

]
, (7.5.11)

and

Sing− [Vdyn] = −
[〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉3

12

∫
`21

$̄ +
〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉1

23

∫
`23

$̄

〈〈
Si∞ Ki|∞ + Si0 Ki|0

〉〉2

13

∫
`3̂1

$̄

]∣∣∣∣∣
x′=−1

. (7.5.12)

Now just as we did for Conv [Aη] +Conv [Vdyn], we can make use of the relation (7.5.7) to
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rewrite the sum Sing± [Aη] + Sing± [Vdyn] into much simpler forms. The results are

Sing+ [Aη] + Sing+ [Vdyn] =:z(x)

(
dp1

dx
+
dp2

dx
− dp3

dx

)
:+

∫
`21

$

+ :z(x)

(
dp1

dx
− dp2

dx
+
dp3

dx

)
:+

∫
`3̂1

$

+ :z(x)

(
−dp1

dx
+
dp2

dx
+
dp3

dx

)
:+

∫
`23

$ , (7.5.13)

and

Sing− [Aη] + Sing− [Vdyn] =− :z(x)

(
dp1

dx
+
dp2

dx
− dp3

dx

)
:−

∫
`21

$̄

− :z(x)

(
dp1

dx
− dp2

dx
+
dp3

dx

)
:−

∫
`3̂1

$̄

− :z(x)

(
−dp1

dx
+
dp2

dx
+
dp3

dx

)
:−

∫
`23

$̄ . (7.5.14)

The expressions :z(x) dpi/dx:± in (7.5.13) and (7.5.14) above can be evaluated using the

explicit form of the quasi-momentum, given in (7.1.25), as41

:z(x)
dpi
dx

:+ = −2πκi − πκiΛi , :z(x)
dpi
dx

:− = 2πκi + πκiΛ̄i . (7.5.15)

This provides fairly explicit forms for the expressions Sing± [Aη] + Sing± [Vdyn].

Result for the S3 part

We can now combine the results obtained so far and obtain the net contribution of the S3

part. Recall that the general structure of the S3 part of the three-point functions we have

computed is of the form

FS3 =

√
λ

6
+ 2
√
λ

3∑
i=1

κ2
i ln εi +A$ + Vkin + Conv [Aη] + Conv [Vdyn]

+ Sing+ [Aη] + Sing+ [Vdyn] + Sing− [Aη] + Sing− [Vdyn] . (7.5.16)

Among the various terms shown above, those which can be expressed in terms of the contour

integrals of $ or $̄ can be combined and evaluated using the explicit form of :z dpi/dx:±
41Definitions of Λi and Λ̄i are given in (7.2.18) and (7.2.29).
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given in (7.5.15). The result is

Tsing ≡A$ + Sing+ [Aη] + Sing+ [Vdyn] + Sing− [Aη] + Sing− [Vdyn]

=−
√
λ

2

[
(κ1 + κ2 − κ3)

∫
`21

($ + $̄) + (κ1 − κ2 + κ3)

∫
`3̂1

($ + $̄)

+(−κ1 + κ2 + κ3)

∫
`23

($ + $̄)

]
. (7.5.17)

Since $ and $̄ behave near the punctures as

$ → κi
z − zi

, $̄ → κi
z̄ − z̄i

, (z → zi) for i = 1, 2̄, 3 , (7.5.18)

the expression (7.5.17) diverges in the following fashion as the regularization parameters εi’s

tend to zero:

Tsing → −2
√
λ

3∑
i=1

κ2
i ln εi = −Venergy . (7.5.19)

Notice, however, that this divergence is precisely canceled by the second term of (7.5.16).

Therefore, the quantity (7.5.16) as a whole is finite in the limit εi → 0. This is as expected

for correctly normalized three-point functions.

Let us summarize the final result for the logarithm of the three-point functions coming

from the S3 part. It can be written in the form

FS3 =

√
λ

6
+ Venergy + Tsing + Vkin + Tconv , (7.5.20)

where Vkin is the kinematical factor depending only on the normalization vectors given in

(7.3.60), Tconv is the sum of the contributions from the convolution integrals (7.5.8), and Tsing,

which is given in (7.5.17), represents the sum of A$ defined in (7.2.45) and the contributions

from the singular parts of the Wronskians.

7.5.2 The EAdS3 part

We now discuss the contributions from the EAdS3 part. Since the logic of the evaluation is

almost entirely similar, we will not repeat the long analysis we performed for the S3 part.

In fact it suffices to explain which part of the analysis for the S3 part can be “copied” and

which part has to be modified.
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Contribution from the action

Let us begin with the contribution from the action integral. Since EAdS3 and S3 are formally

quite similar, the computation of the action integral can be performed in exactly the same

manner. There is, however, a simple but crucial difference. It is the overall sign of the

integral. The EAdS3-subspace is expressed in terms of the embedding coordinate as

XµXµ = −1 , µ, ν = −1, 1, 2, 4 , (7.5.21)

ηµν = diag (−1, 1, 1, 1) , (7.5.22)

which is related to the Poincaré coordinates as

X−1 +X4 =
1

z
, X−1 −X4 = z +

xrxr
z

, Xr =
xr

z
. (7.5.23)

In terms of the embedding coordinate, the action is given by

SEAdS3 =

√
λ

π

∫
d2z
(
∂Xµ∂̄Xµ

)
. (7.5.24)

For practical purposes, it is useful to express it in a matrix form as

X ≡

(
X+ X

X− X̄

)
, (7.5.25)

where

X± ≡ X−1 ±X4 , , X ≡ X1 + iX2 , X̄ ≡ X1 − iX2 . (7.5.26)

The right current is then defined as

ĵ ≡ X−1dX = ĵzdz + ĵz̄dz̄ . (7.5.27)

Now compare the expressions of the stress tensors and the action integrals for S3 and EAdS3,

expressed in terms of the respective right current. They are given by

T (z) ≡ TAdS(z) =
1

2
tr (ĵz ĵz) = κ2 , TS(z) = −1

2
tr (jzjz) = −κ2 , (7.5.28)

SAdS3 =

√
λ

2π

∫
d2z tr (ĵz ĵz̄) , SS3 = −

√
λ

2π

∫
d2z tr (jzjz̄) . (7.5.29)

This shows that while we have the equality tr (ĵz ĵz) = tr (jzjz̄) = κ2, the signs in front of the

action integrals are opposite. Therefore all the results for the action integral are formally the

same as those for the S3 case, but with opposite signs. This will lead to various cancellations

with the contributions from the S3 part, as we shall see shortly.
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Contribution from the wave function

As for the evaluation of the contribution from the wave function, the basic logic of the

formalism developed in section 7.3 for the S3 still applies. However, there are a few important

modifications, as we shall explain below.

In the case of a string in EAdS3 the global symmetry group is SL(2,C)R×SL(2,C)L and

hence the the raising operators with respect to which we define the highest weight state are

the left and the right special conformal transformations given by

V sc
R =

(
1 0

βR 1

)
, V sc

L =

(
1 βL

0 1

)
, (7.5.30)

where βR and βL are constants. Applying our general argument for the determination of the

polarization spinors, we readily find that

(V sc
R )tndiag = ndiag , ndiag =

(
1

0

)
, (7.5.31)

(V sc
L )tñdiag = ñdiag , ñdiag =

(
0

1

)
, (7.5.32)

are satisfied for the solution corresponding to the operator inserted at the origin of the

boundary. It should be noted that, compared to the S3 case given in (7.3.21), ndiag here for

the right sector is the same as ñdiag for the left sector there and similarly ñ for the left sector

in the present case is identical to ndiag for the right sector for the S3 case. Now the algebraic

manipulations for the construction of the wave functions are the same as for the S3 case up

to the computation of the factor ei∆φ. Therefore, for the right sector, we get the same result

for the left sector in the S3 case, given in (7.3.57). For example at z1 we have

ei∆φR,1 = a−2
1 =

〈1+, 2+〉〈3+, 1+〉
〈2+, 3+〉

∣∣∣∣
∞

〈n2, n3〉
〈n1, n2〉〈n3, n1〉

(7.5.33)

This is the inverse of the result for S3 obtained in (7.3.50) with i− replaced by i+. The

result for the left sector is similar. What this means is that the wave function for the EAdS3

is obtained from the one for the S3 case by (i) reversing the sign of the powers and (ii)

exchanging i+ and i−. Abusing the same notations for the polarization spinors and the

eigenvectors as in the S3 case, we get

ΨEAdS3
R =

∏
{i,j,k}

(
〈ni, nj〉
〈i+, j+〉

∣∣
∞

)−(Ri+Rj−Rk)

, (7.5.34)

ΨEAdS3
L =

∏
{i,j,k}

(
〈ñi, ñj〉
〈̃i−, j̃−〉

∣∣
0

)−(Li+Lj−Lk)

, (7.5.35)
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where Ri and Li here are the combinations of the conformal dimension ∆i and the spin Si

given by

Ri =
∆i − Si

2
, Li =

∆i + Si
2

. (7.5.36)

This reversal of power relative to the S3 case is what is desired. Effectively it is equivalent to

employing e+iSφ as the form of the wave function. As we shall show below, correctness of this

power structure becomes obvious when we relate the Wronskian 〈ni, nj〉 to the difference of

the coordinates xi and xj, where xi is the position of the i-th vertex operator on the boundary

of EAdS3.

Recall now that the embedding coordinates of EAdS3 are taken to be Xµ (µ = −1, 1, 2, 4),

which is a vector of SO(1, 3) with signature (−,+,+,+), while the Poincaré coordinates are

given by z = 1/(X−1 + X4), xr = zXr, (r = 1, 2), with which X−1 − X4 is expressed as

z + (~x2/z). Consider approaching a point on the boundary z = 0 with finite values of xr.

Then the term z in X−1−X4 becomes negligible compared to ~x2/z and Xµ approaches a null

vector, with large components. Such a null vector, to be dented by X µ, can be parametrized,

up to an overall scale, by the boundary coordinates ~x = (x1, x2) as

X−1 =
1

2
(1 + ~x2) , X 4 =

1

2
(1− ~x2) , (X 1,X 2) = ~x , (7.5.37)

~x2 = xrηrsx
s = xrxr , ηrs = (+,+) , r, s = 1, 2 . (7.5.38)

As usual, one can map X µ to the matrix X µΣ̂µ, with Σ̂µ = (1, σ1, σ2, σ3), which transforms

from left under SL(2, C) and from right under SL(2, C)∗. Then, it is well-known that for

a null vector X µ the matrix elements of X µΣ̂µ can be written as a product of spinors (or

twistors) as

(X µΣ̂µ)αα̇ =

(
1 x

x̄ ~x2

)
= (σ1ñ)αnα̇ , (7.5.39)

where

x ≡ x1 + ix2 , x̄ ≡ x1 − ix2 , (7.5.40)

n =

(
1

x

)
, ñ =

(
x̄

1

)
. (7.5.41)

These spinors can be identified precisely as the polarization spinors characterizing a ver-

tex operator which is placed at ~x on the boundary for the following reasons. First they

transform in the correct way: Under the global transformation XµΣ̂µ → VL(XµΣ̂µ)VR, we

have (σ1ñ)α → (VLσ1ñ)α and nα̇ → (nVR)α̇. This is equivalent to ñ → V t
Lñ and n → V t

Rn,
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which are the right transformation laws. Second, these spinors coincide with the polarization

spinors given in (7.5.31) and (7.5.32) when we bring the point ~x to the origin of the boundary

by the translation by the vector −~x. This is effected by the right and the left translation

matrices given by

V tr
R (−x) =

(
1 −x
0 1

)
, V tr

L (−x̄) =

(
1 0

−x̄ 1

)
. (7.5.42)

Then we get

(V tr
R )tn =

(
1

0

)
, (V tr

L )tñ =

(
0

1

)
. (7.5.43)

Therefore n and ñ can be identified with the polarization spinors for the vertex operator

at ~x on the boundary. Now let n′ and ñ′ be similar polarization spinors corresponding to a

vertex operator at ~x′ on the boundary. Then we immediately get

〈n, n′〉 = x′ − x , 〈ñ, ñ′〉 = x̄′ − x̄ , (7.5.44)

〈n, n′〉〈ñ, ñ′〉 = (x′ − x)(x̄′ − x̄) = (x′ − x)2 . (7.5.45)

In this way, for the EAdS3 the Wronskians formed by the polarization spinors produce the

difference of the boundary position vectors. Therefore the relevant part of the wave function

becomes ∏
{i,j,k}

〈ni, nj〉−(Ri+Rj−Rk)〈ñi, ñj〉−(Li+Lj−Lk)

=
∏
{i,j,k}

(xi − xj)−(Ri+Rj−Rk)(x̄i − x̄j)−(Li+Lj−Lk) . (7.5.46)

In particular, for the case of spinless configurations that we are considering, this becomes∏
{i,j,k}

1

|xi − xj|∆i+∆j−∆k
, (7.5.47)

which exhibits the familiar coordinate dependence for the three-point function in such a case.

Total contribution from the EAdS3 part

As we have seen, the structure of the contribution from the EAdS3 part is essentially the

same as that from the S3 case, except for the important reversal of signs in the powers in

the contributing factor (or the terms contributing to the the logarithm of the three-point

coupling.) This change of sign occurred both for the action and for the wave function. As we
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compute the basic Wronskians in exactly the same way as before and use them to compute

the contributions to the logarithm of the three-point function from the action part and the

wave function part, we again obtain the expression of the form of the left hand side of (7.5.7),

with the overall sign reversed. Therefore, we can use the identity (7.5.7) again to obtain

the result −z(x′)dp̂i(x
′)/dx′, where p̂i denotes the quasi-momentum for the EAdS3 part of

the string. One can check that in fact this rule of correspondence, namely pi(x) → p̂i(x)

and the reversal of sign for the convolution integrals, applies to all the contributions. Thus,

combining all the results for the AdS part, the contribution to the logarithm of the three-

point function is given by the following expression:

FEAdS3 = −
√
λ

6
+ V̂energy + T̂sing + V̂kin + T̂conv . (7.5.48)

Here, V̂energy and T̂sing are equal to −Venergy and −Tsing respectively, V̂kin is the kinematical

factor given in (7.5.47), and T̂conv is the convolution integrals obtained from the unhatted

counterpart for the S3 case with the substitution rule described above.

7.5.3 Complete expression for the three-point function

We are finally ready to put together the contributions from the S3 part summarized in

(7.5.20) and those from the EAdS3 part given in (7.5.48) and present the full answer for the

three-point function. As we have already discussed, the divergent terms cancel with each

other for the S3 part and the EAdS3 part separately. On the other hand, the constant terms

proportional to
√
λ/6 cancel between S3 and EAdS3 contributions. Thus we are left with

the kinematical factors and the contributions from the convolution integrals which are of the

same structure except for the overall sign. Therefore, factoring the kinematical structure as

〈V1V2V3〉 =
1

N

C123

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2

× 〈n1 , n2〉R1+R2−R3〈n2 , n3〉R2+R3−R1〈n3 , n1〉R3+R1−R2

× 〈ñ1 , ñ2〉L1+L2−L3〈ñ2 , ñ3〉L2+L3−L1〈ñ3 , ñ1〉L3+L1−L2 ,

(7.5.49)

the logarithm of the structure constant C123 is finally given by
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lnC123 =∫
Muuu

−−−

z(x) (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)
+

∫
Muuu

−−+

z(x) (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)

+

∫
Muuu

−+−

z(x) (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)
+

∫
Muuu

+−−

z(x) (−dp1 + dp2 + dp3)

2πi
ln sin

(
−p1 + p2 + p3

2

)

−
∫
M̂uuu

−−−

z(x) (dp̂1 + dp̂2 + dp̂3)

2πi
ln sin

(
p̂1 + p̂2 + p̂3

2

)
−
∫
M̂uuu

−−+

z(x) (dp̂1 + dp̂2 − dp̂3)

2πi
ln sin

(
p̂1 + p̂2 − p̂3

2

)

−
∫
M̂uuu

−+−

z(x) (dp̂1 − dp̂2 + dp̂3)

2πi
ln sin

(
p̂1 − p̂2 + p̂3

2

)
−
∫
M̂uuu

+−−

z(x) (−dp̂1 + dp̂2 + dp̂3)

2πi
ln sin

(
−p̂1 + p̂2 + p̂3

2

)

− 2
3∑
j=1

∫
Γu
j−

z(x) dpj
2πi

ln sin pj + 2
3∑
j=1

∫
Γ̂u
j−

z(x) dp̂j
2πi

ln sin p̂j + Contact , (7.5.50)

where Contact stands for the contribution from the contact terms. Truly remarkable is

that, in spite of the complexity of both the analysis and the intermediate expressions, the

final answer takes such a simple form. Moreover, it exhibits essential similarity to the form

of the weak coupling result [92, 93, 115, 116] even before taking any further limits. In the

next section, we shall evaluate the structure constant (7.5.50) more explicitly, including the

quantity Contact, for several important examples and compare with the weak coupling results

more closely.

7.6 Examples and comparison with the weak coupling result

The results obtained in the previous section are quite general and applicable to three-point

functions of arbitrary one-cut solutions on EAdS3 × S3. In this section we focus on several

explicit examples, make some basic checks and discuss the relation with the results at weak

coupling.

In subsection 7.6.1, we first explain the basic set-up, which will be used throughout this

section. Then, in subsection 7.6.2, we study the correlation functions of three BPS operators

and see that the contributions from the S3 part and the EAdS3 part completely cancel out

in this case. The results thus obtained fully agree with the results obtained in the gauge

theory. In subsection 7.6.3, we study the behavior of the three-point function under the

limit where the charge of one of the operators becomes negligibly small while the other two

operators become identical. We confirm that the result reduces to that of the two-point

function, as expected. Next, in subsection 7.6.4, we study three-point functions of one non-

BPS and two BPS operators, which were studied on the gauge theory side in [115]. We

will focus on certain explicit examples and show that the full three-point functions can be
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expressed in terms of simple integrals which resemble the semi-classical limit of the results

at weak coupling [92,93,115,116]. Then, in subsection 7.6.5, we discuss the Frolov-Tseytlin

limit of such three-point functions. In this limit, the integrands in the final expression

approximately agree with the ones in the weak coupling, whereas the integration contours are

rather different. Lastly, we discuss the possible origin and the implication of this mismatch.

7.6.1 Basic set-up

Before starting the detailed analysis, let us clarify the basic set-ups to be used in this section

recalling several necessary facts.

The three-point functions studied extensively on the gauge theory side are those of the

following three types of operators (see also (4.1).):

O1 = tr
(
Z l1−M1XM1

)
+ · · · , O2 = tr

(
Z̄ l2−M2X̄M2

)
+ · · · , O3 = tr

(
Z l3−M3X̄M3

)
+ · · · .

As explained in section 7.3.4, such three-point functions vanish unless the conservation laws42

for the charges (7.3.63) are satisfied. Due to these conservation laws, one cannot in general

take the operators to be simple BPS states, such as tr (Z l) or tr (Z̄ l), which are the highest-

weight vectors of the global SU(2)R×SU(2)L symmetry. Instead, we need to use descendants

of the global symmetry to satisfy the conservation laws when we study three-point functions

involving BPS operators [80, 115]. While this can be done without problems on the gauge

theory side, it leads to certain difficulty on the string theory side. This is because all the

classical solutions of string are known to (or believed to) correspond to some highest-weight

states. To circumvent this difficulty, below we will utilize the global transformations to

make all three operators to be built on different “vacua”. On the string theory side, this

corresponds to taking the polarization vectors of the three operators, ni’s and ñi’s, to be all

distinct. Then no conservation laws will be imposed and we can safely take the limit where

some of the operators become BPS while keeping them to be of highest-weight. Since the

correlation functions involving descendants can be obtained from the correlation functions

involving the highest-weight states by simple group theoretical manipulations, knowledge of

the three-point functions for the highest weight states is sufficient. In addition, replacing

the highest-weight operator with its descendant only modifies the kinematical factor, Vkin,

of our result and the dynamical parts of three-point functions, which are main subjects of

study in this section, will not be affected.

After making the global transformations, the operators O1, O2 and O3 can be treated

almost on the same footing. However, there is an important difference between O3 and the

42As we have shown in section 7.3, such conservation laws can be derived also on the string theory side.
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other two in string theory: As explained in section 7.3.4, the quasi-momenta for the operators

O1 and O2 contain branch cuts in the |Rex| > 1 region, whereas the quasi-momentum for

the operator O3 contains a branch cut in the |Rex| < 1 region. This difference is important

in the analysis to follow, since the position of the branch cuts affects the contours for the

convolution integrals.

7.6.2 Case of three BPS operators

Let us first study the correlation functions of three BPS operators. In order to apply the

general formula for the three-point functions of one-cut solutions obtained in the previous

section, we need the explicit forms of p(x) and q(x) for the BPS operators, which in particular

determine the integration contours. Within the bosonic sector, the characteristic feature of a

BPS state is that, as it should correspond to a supergravity mode, it is “point-like”, meaning

that its two-point function is σ-independent. In the language of the spectral curve, it means

the absence of a branch cut, since a branch cut corresponds to a non-trivial string mode

with σ-dependence.

Now in fixing the forms of p(x) and q(x), there is a subtle problem with the configuration

without a branch cut. In the case of one-cut solutions corresponding to non-BPS operators,

the constant parts of p(x) and q(x) are fixed in such a way that they vanish at the branch

points. Obviously, for configurations without a branch cut, this prescription cannot be

applied. One natural remedy would be to start with a non-BPS solution, apply the usual

method above to fix the constants and then shrink the cut to obtain a BPS solution. This

idea, however, still does not cure the problem since the resultant p(x) and q(x) depend on

the points on the spectral curve at which we shrink the branch cut. The existence of such an

ambiguity possibly implies that the semi-classical three-point functions are affected by the

presence of infinitesimal branch cuts. Although such an assertion sounds counter-intuitive,

it is not totally inconceivable since similar effects were already observed in the study of

“heavy-heavy-light” three-point functions43 in [91].

Below we shall fix the ambiguity by employing a prescription which is quite natural from

the viewpoint of the correspondence with the spin chain on the gauge theory side. The

prescription is to shrink the branch cuts either at x = 0 or at x = ∞ in producing BPS

operators. This choice is based on the following fact: In gauge theory, adding a small number

of Bethe roots at x = 0 or x = ∞ correspond to performing a small global transformation

and keeps the operator to be BPS, whereas adding a small number of Bethe roots at generic

points on the spectral curve creates nontrivial magnon excitations and makes the operator

non-BPS.

43In [91], such effects were called back reactions.
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Having identified the classical solutions corresponding to BPS operators, let us now

determine the integration contours. First we focus on the S3-part of three-point functions.

As discussed in section 7.3.4, for O1 and O2, pi(x) and qi(x) can have branch cuts only in the

the |Rex| > 1 region and hence we take the infinitesimal branch cut to be placed at x =∞.

Then from the general form of the one-cut solution given in (7.1.25) and (7.1.26), we get

pi(x) = −2πκi

(
1

x− 1
+

1

x+ 1

)
, qi(x) = −2πκi

(
1

x− 1
− 1

x+ 1

)
, (7.6.1)

which vanish at x = ∞, as desired. On the other hand, for O3, since the branch cuts can

only be in the |Rex| < 1 region, we place an infinitesimal branch cut at x = 0. Then from

(7.1.25) and (7.1.26) we get

p3(x) = −2πκ3

(
x

x− 1
− x

x+ 1

)
= −2πκ3

(
1

x− 1
+

1

x+ 1

)
(7.6.2)

q3(x) = −2πκ3

(
x

x− 1
+

x

x+ 1

)
. (7.6.3)

These expressions vanish at x = 0.

As discussed in detail in section 7.4, the contours for the convolution integrals consist

of two types of curves. The first type are those defined by Re qi(x) = 0, across which

the relative magnitude of i+ and i− changes. They determine the integration contours Γui−
defined in section 7.4.4 and are depicted in Figure 7.6.1. Note that in the present case, the

contours Γu1− and Γu2− coincide since q1(x) = q2(x). The second type are the curves defined

by Ni = Nj +Nk, across which the connectivity of the exact WKB curves changes. Now for

a BPS operator, Ni = |Re pi(x)| is given by a common function |Re ((x+ 1)−1 + (x− 1)−1)|
times the factor −2πκi, as shown above. Since κi’s satisfy the triangular inequalities, this

means that Ni = Nj + Nk cannot be satisfied. Hence the second type of curves are absent

and the integration contours are determined solely by the first type of curves.

With this knowledge, we can now apply the general rules given at the end of section 7.4.3

to determine the integration contours Muuu
±±±. As an example, consider the contour Muuu

−−−,

which is used for the convolution integral involving sin 1
2
(−p1(x)− p2(x)− p3(x)). From the

Rule 1, either Wronskians among S− = {1−, 2−, 3−} vanish or those among S+ = {1+, 2+, 3+}
vanish. Then we must apply Rule 2, since the triangle inequalities are satisfied in the present

case. It states that if two of the members of S− (resp. S+) are small solutions, then the

Wronskians for the members of S+ (resp. S−) vanish. Now consider the curve Γu1−. From

its definition, it is along Re q1(x) = 0 with the direction such that to the left of this curve

1− is the small solution. The curve Γu2− is identical, as we already remarked. These curves

are depicted in the left figure of Figure 7.6.1, together with the states which are small in

the three regions separated by these curves. Together with the rules mentioned above, we
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see explicitly that the analyticity of Wronskians change across such curves and hence we can

identify Γu1−(= Γu2−) as the contour Muuu
−−−. Similarly, the curve Γu3−, identified as Muuu

+−−,

is shown in the right figure of Figure 7.6.1. In this way, we find the contours Muuu
±±± to be

given by

Muuu
−−− = Γu1−(= Γu2−) , Muuu

+−− = Γu3− ,

Muuu
−+− = Γu3− , Muuu

−−+ = Γu1−(= Γu2−) .
(7.6.4)

Figure 7.6.1: The contours Γui− , defined by Re qi = 0. In each region, we showed which of

the eigenvectors is the small solution.

Let us next consider the effects of the contact terms. As argued in section 7.5, such

contribution must be taken into account when x = 0 (x =∞) is on the left (right) hand side

of the integration contours. The effect is most conveniently done by adding a small circle

around x = 0 (x = ∞) to the contour for each integration in (7.5.8). However, in the case

of BPS operators, the integration contours terminate right at x = 0 or x = ∞. Therefore

we need to first regularize them by putting a small branch cut slightly away from x = 0 or

x =∞ and then take the limit where the branch cut shrinks to x = 0 or x =∞. An example

of such a procedure is depicted in Figure 7.6.2. Since the sine-functions in the convolution

integrals (7.5.8) turn out to vanish only on the real axis in the case of BPS operators, we

can further deform the contours into those on the unit circle. As a result, we find that the

S3-part of the three-point function is given by∮
U

z (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)
+

∮
U

z (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)
+

∮
U

z (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)
+

∮
U

z (−dp1 + dp2 + dp3)

2πi
ln sin

(
−p1 + p2 + p3

2

)

− 2
3∑
j=1

∫
U

z dpj
2πi

ln sin pj ,
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(a) Putting a small branch cut

away from x = 0.

(b) Shrinking the cut and

deforming the contour.

Figure 7.6.2: An example of the contour deformation. The contour depicted in (b) can be

further deformed into the contour on the unit circle.

where U denotes the contour which goes around the unit circle clockwise.

Next consider the EAdS3-part of the three-point function. The quasi-momenta and the

quasi-energies for the operators without spin in AdS are given in [105] by44

p̂i(x) = −2πκi

(
1

x− 1
+

1

x+ 1

)
, q̂i(x) = −2πκi

(
1

x− 1
− 1

x+ 1
− 1

)
. (7.6.5)

Then, performing a similar analysis as in the case of S3-part, we find that the result is again

given by the integrals along the unit circle. As the quasi-momenta pi(x) for the S3-part

and the ones p̂i(x) for the EAdS3-part coincide in the case of BPS operators, we see from

the general formula (7.5.50) that the contributions form these two parts cancel each other

completely. Therefore, the three-point function for three BPS operators is given purely by

the kinematical factors as

〈V1V2V3〉 =
1

|x1 − x2|∆1+∆2−∆3|x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2

× 〈n1 , n2〉R1+R2−R3〈n2 , n3〉R2+R3−R1〈n3 , n1〉R3+R1−R2

× 〈ñ1 , ñ2〉L1+L2−L3〈ñ2 , ñ3〉L2+L3−L1〈ñ3 , ñ1〉L3+L1−L2 ,

(7.6.6)

This is consistent with the result in the gauge theory that the three-point functions of BPS

operators are tree-level exact and have no dependence on the ’tHooft coupling constant λ.

7.6.3 Limit producing two-point function

Having seen that the BPS three-point functions are correctly reproduced from our general

formula, let us next discuss the limit where the three-point functions are expected to reduce

to two-point functions. As an example, we take two of the operators O1 and O2 to have

44The spectral parameter x used in (7.6.5) is related to the spectral parameter ξ used in [105] by ξ =

(x− 1)/(x+ 1).
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identical quasi-momenta and quasi-energy, while O3 is a BPS operator with vanishingly small

charge45.

(a) (b) (c)

Figure 7.6.3: The curves which determine the integration contours in the limit where three-

point functions reduce to two-point functions. In the left and the middle figures, the contours

Γui− , determined by Re qi(x) = 0 are depicted. The segment represented by a wavy line is

the branch cut. In the rightmost figure, the curve defined by N3 = N1 +N3 is drawn in blue.

For convenienece, we redisplayed the curves in figures (a) and (b) as dotted lines.

To understand what happens in such a limit, let us draw the two types of curves, namely

Re qi = 0 and Ni = Nj +Nk. The first type of curves are depicted in the first and the second

figures of Figure 7.6.3. As for the second type, the only curve we need to consider is the curve

given by N3 = N1 + N2. This is because the inequalities N1 + N3 ≥ N2 and N2 + N3 ≥ N1

are always satisfied since N1 = N2 in the present case. When the operator O3 is sufficiently

small, the curve defined by N3 = N1 +N2 almost vanishes and we can practically ignore the

effects of such a curve. Thus the integration contours are given purely by Re q1 = Re q2 = 0.

Applying the rules given in the previous section and taking into account the contact terms,

45Although the case considered here appears similar to the one studied in the gauge theory [91] with O3

taken to be small but nonvanishing, there is a difference: In [91], O1 and O2 must have slightly different

quasi-momenta in the presence of O3, due to the conservation law for the magnons. In the present case,

however, as we performed the global transformation, no conservation law is imposed and we can take O1

and O2 to have identical quasi-momenta.
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we find that the convolution integrals for the S3-part are given by∫
Γu1−

+C∞

z (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)
+

∫
Γu1−

+C∞

z (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)

+

∫
Γu3−

+C0

z (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)
+

∫
Γu3−

z (−dp1 + dp2 + dp3)

2πi
ln sin

(
−p1 + p2 + p3

2

)

− 2
2∑
j=1

∫
Γuj−

+C∞

z dpj
2πi

ln sin pj − 2

∫
Γu3−

+C0

z dp3

2πi
ln sin p3 , (7.6.7)

where C∞ is the contour encircling x =∞ counterclockwise and C0 is the contour encircling

x = 0 clockwise. Setting p1 = p2 and p3 = 0 in this formula, we see that in this limit all the

terms in (7.6.7) completely cancel out with each other. Similar cancellation occurs also for

the EAdS3-part. Therefore the structure constant C123 of the three-point function in this

limit becomes unity and the result correctly reproduces the correctly normalized two-point

function given by

〈n1 , n2〉2R〈ñ1 , ñ2〉2L

|x1 − x2|2∆
. (7.6.8)

Here, ∆, R and L are, respectively, the conformal dimension, the (absolute values of the)

right and the left global charges, which are common to O1 and O2.

7.6.4 Case of one non-BPS and two BPS operators

Having checked that our formula correctly reproduces the known results in simple limits,

let us now study more nontrivial examples. In this subsection, we take up the three-point

functions of one non-BPS and two BPS operators, which were studied on the gauge-theory

side in [115]. As in [115], we take O2 to be non-BPS and O1 and O3 to be BPS. In this case,

the typical forms of the curves corresponding to Re qi = 0 and Ni = Nj + Nk, are given in

Figure 7.6.4.

To perform a more detailed analysis, we need to specify the properties of the operators

more explicitly, since the precise form of the integration contours depend on such details.

As we wish to analyze the so-called Frolov-Tseytlin limit and make a comparison with the

results in the gauge theory in the next subsection, we will take as a representative example
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Figure 7.6.4: Typical configuration of the curves produced by the conditions Re qi = 0 and

Ni = Nj+Nk, for the three-point functions of one non-BPS operator and two BPS operators.

In the left figure, Re q1 = 0, Re q2 = 0 and Re q3 = 0 are drawn respectively in black, orange

and brown. In the right figure, N1 = N2 +N3 is drawn in blue and N2 = N1 +N3 is drawn

in green.

the following set of operators carrying large conformal dimensions:

O1 : BPS , 2πκ1 = 2500 ,

O2 : non-BPS , 2πκ2 = 3250 ,

p(u)− p(∞+) = −16π , p(0+)− p(∞+) = −2π ,

O3 : BPS , 2πκ3 = 3000 .

(7.6.9)

Here u denotes the position of an end of the branch cut for the non-BPS operator O2. For

these operators, the curves defined by Re qi = 0 and those defined by Ni = Nj + Nk are

depicted respectively in Figure 7.6.5 and Figure 7.6.6.

As in the case of the three BPS operators, we must now apply the general rules of section

7.4 to determine the integration contours. As an example, consider the contour Muuu
−−− in

the region where |Rex| � 1. Focus first on the left figure of Figure 7.6.5. Compared to

the typical configuration shown in the left figure of Figure 7.6.4, the curve determined by

Re q3 = 0 (shown in brown in Figure 7.6.4) is depicted here as a point in the middle since we

are considering the region where |Rex| � 1. Since the inside of the shrunken region is where

3+ is small, we have 3− as the small solution everywhere in this figure. From the direction

of the curves Γu1− and Γu2−, we can easily tell which of the states 1± and 2± are the small

solutions in each of the region separated by these curves.

Now, in distinction to the case of three BPS operators, we must also take into account

the possible change of the analyticity of the Wronskians as we cross the lines defined by

Ni = Nj +Nk. Thus, we must analyze relevant curves drawn in Figure 7.6.6 (a), where the

one in green corresponds to N2 = N1 + N3 and the one in blue represents N1 = N2 + N3.
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Figure 7.6.5: The contours Γui− , defined by Re qi = 0. The left figure shows the configuration

of contours in the |x| � 1 region, where as the right figure depicts the configuration of

contours in the |x| < 1 region.

Figure 7.6.6: The curves defined by Ni = Nj + Nk. We name the three figures (a), (b) and

(c) from the left. The figure (a) shows the configuration of curves in |x| � 1 region where as

the figure (b) shows the configuration of N1 = N2 + N3 in |x| < 1 region and the figure (c)

shows the configuration of N2 = N1 + N3 in |x| < 1 region. In the present case, the curve

N3 = N1 +N2 does not exist.
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Across these lines the configuration changes from symmetric to asymmetric. Accordingly,

the rule to find the non-vanishing set of Wronskians changes from Rule 2 to Rule 3. Let

us focus on the green curve, which is re-drawn in Figure 7.6.7, with additional information.

It turns out that the configuration is symmetric inside the green circles and asymmetric

outside, indicated by the letters S and A respectively. Now in the region outside of the arc

of the large green circle bordered by the lines representing Γu1−, shown in Figure 7.6.7 by the

red straight lines, 1−, 2+, 3− are the small solutions, as indicated in the figure. As this is the

asymmetric region we apply the Rules 1 and 3 and conclude that the Wronskians among the

states {1+, 2+, 3+} are non-vanishing. As we cross the arc into the shaded region inside of

the green circle where the configuration is symmetric, still 1−, 2+, 3− are the small solutions

but now we must apply the Rules 1 and 2. Then we learn that the Wonskians among the

states {1−, 2−, 3−} are non-vanishing instead. In other words, the analyticity property of

the Wronskians change across this portion of the green line and hence it must serve as a

part of the contour for the convolution integral. This explains the portion of the contour

along the arc of the large circle shown in the left-most figure in Figure 7.6.8. Now consider

what happens when this contour meets the Γu1− line. Across this line, the small solution

changes from 1− to 1+. Thus when we cross this line from inside the large circle, the set

of small solutions change from {1−, 2+, 3−} to {1+, 2+, 3−} as shown in Figure 7.6.7. As

we are still in the symmetric region, the Rules 1 and 2 apply and hence we learn that set

of non-vanishing Wronskians change across this line. Therefore this portion must consitute

a part of the contour. This explains the straight red line starting from the the point of

intersection with the large circle. In this fashion, we can uniquely obtain the integration

contour Muuu
−−−, shown in the leftmost figure of Figure 7.6.8, across which the analyticity

property of the Wronskians change. All the other contours Muuu
±±± can also be determined

in an entirely similar manner, the result of which are depicted in Figure 7.6.8 and Figure

7.6.9.

The contours shown in Figure 7.6.8 and Figure 7.6.9 can be simplified by continuous

deformation as long as we do not make them pass through the singularities of the integrands.

We can determine the positions of the singularities numerically and find that most of the

singularities lie on the real axis. Avoiding them, we can deform each contour into a sum of

the contour along the unit circle and the one which is far from the unit circle. The results

of this deformation are summarized as

Muuu
−−− 7−→

(
Muuu
−−−

)′
+ U , Muuu

−−+ 7−→
(
Γu2−
)′

+ U ,

Muuu
−+− 7−→

(
Muuu
−+−

)′
+ U , Muuu

+−− 7−→
(
Γu2−
)′

+ U ,

Γu1− 7−→ U , Γu2− 7−→
(
Γu2−
)′

+ U , Γu3− 7−→ U ,

(7.6.10)

where, as before, U denotes the unit circle and the primed contours are as depicted in Figure
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Figure 7.6.7: Magnified view of a part of the figure (a) of Figure 7.6.6, with data necessary

for determining the contour of integration. In each region separated by lines and/or the

cut (wavy line), the set of “small” eigenvectors are indicated. The green circle separates

the symmetric (S) and the assymetric (A) regions, to which different rules of analysis apply.

The result is that across the boundary of the shaded area, the analyticity of the Wron-

skian changes: In the shaded region, the Wronskians among {1−, 2−, 3−} are non-vanishing

whereas, outside the shaded region, the Wronskians among {1+, 2+, 3+} are non-vanishing.

For details of the analysis using this figure, see the explanation in the main text.

Figure 7.6.8: The integration contours Muuu
±±± in the region |x| � 1. From left to right,

Muuu
−−−, Muuu

−−+, Muuu
−+− and Muuu

+−−.

Figure 7.6.9: The integration contours Muuu
±±± in the region |x| < 1. From left to right,

Muuu
−−−, Muuu

−−+, Muuu
−+− and Muuu

+−−.
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7.6.10.

Figure 7.6.10: The contours obtained after the deformation. On the left figure, we depicted(
Γu2−
)′

and, on the right figure, we depicted
(
Muuu
−−−

)′
in black and

(
Muuu
−+−

)′
in blue.

Let us make a remark on the separation of the integration contours into the unit circle

and the large contours. It is intriguingly reminiscent of the expressions for the one-loop

correction to the spectrum of a classical string [37]. In that context, the integration along

the unit circle is interpreted as giving the dressing phase and the finite size corrections. Since

our results do not include one-loop corrections, it is not at all clear whether our results can

be interpreted in a similar way. However, the apparent structural similarity calls for further

study.

7.6.5 Frolov-Tseytlin limit and comparison with the weak coupling result

Frolov-Tseytlin limit of the three-point function

We are now ready to discuss the Frolov-Tseytlin limit of the three-point function and compare

it with the weak coupling result. Let us briefly recall how such a limit arises. As shown

in [46], the dynamics of the fluctuations around a fast-rotating string on S3 can be mapped

to the dynamics of the Landau-Lifshitz model, which arises as a coherent state description

of the XXX spin chain. In such a situation, the angular momentum J of the S3 rotation

can be taken to be so large that the ratio
√
λ/J becomes vanishingly small, even when λ is

large. For the spectral problem, it has been demonstrated that such a limit is quite useful in

comparing the strong coupling result with the weak coupling counterpart. We would like to

see if it applies also to the three point functions. For this purpose, we need to know how such

a limit is taken at the level of the quasi-momenta. Since the SO(4) charges of the external

states are proportional to κi, the appropriate limit is to scale all the κi to infinity while

keeping the mode numbers
∮
bi
dp finite. As already indicated, we have chosen the example

in the previous subsection to be such that we can readily take such a limit.
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Upon taking the Frolov-Tseytlin limit, two simplifications occur in our formula. First,

since the branch points are far away from the unit circle, we can approximate p2(x) on the

unit circle by a quasi-momentum for a BPS operator, namely

p2(x) ' pBPS
2 (x) = −2πκ2

(
1

x− 1
+

1

x+ 1

)
. (7.6.11)

Now recall that the contribution from the EAdS3 part is such that it precisely canceled the

S3 part in the case of the three BPS operators. Since the EAdS3 part is unchanged for the

present case, again the same exact cancellation takes place as far as the integrals over the

unit circles are concerned. Therefore we can drop such integrals and obtain

∫
(Muuu
−−−)

′
+C∞

z (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)
+

∫
(

Γu2−

)′
+C∞

z (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)

+

∫
(Muuu
−+−)

′
+C∞

z (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)
+

∫
(

Γu2−

)′
+C∞

z (−dp1 + dp2 + dp3)

2πi
ln sin

(
−p1 + p2 + p3

2

)

− 2

∫
(

Γu2−

)′
+C∞

z dp2

2πi
ln sin p2 , (7.6.12)

Second simplification occurs because on the large contours the integration variable x is of

order κi. This is precisely the situation where we can approximate the quasi-momenta of the

classical strings by the corresponding quantities for the spin-chains. Indeed, as explained

in [40], the quasi-momentum for the string can be identified with that of the Landau-Lifshitz

model, which describes the spin-chain on the gauge theory side in the above limit. More

precisely, we can use the following identification of the quasi-momenta on the large contour:

pstring(x) ' pspin(z(x)) . (7.6.13)

The use of the Zhukovsky variable z(x) on the right hand side is motivated by the fact that

in the all-loop asymptotic Bethe ansatz equation [51, 53], the rapidity of the spin-chain on

the gauge theory side is identified with the Zhukovsky variable on the string theory side. In

the present situation, however, since z(x) ' x for large x, the quasi-momenta in (7.6.12) can

be replaced simply with the quasi-momenta for the corresponding spin-chain states at the

same value of x.

With such a replacement, the expression (7.6.12) already appears rather similar to the

weak-coupling result. To make the resemblance more conspicuous, we can regard the integral

of sin ((−p1 + p2 + p3)/2) along (Γu2−)′ on the upper sheet as the integral of sin ((p1 + p2 − p3)/2)

along the reversed contour on the lower sheet for p2, which we denote by (Γl2−)′. Combin-

ing this with the integral of sin ((p1 + p2 − p3)/2) along (Γu2−)′ already present and defining
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(
Γ2−

)′
to be the sum of (Γu2−)′ and (Γl2−)′, we can write (7.6.12) as∫

(Γ2−)
′
+C∞

z (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)
−
∫

(Γ2−)
′
+C∞

z dp2

2πi
ln sin p2 + Mismatch ,

(7.6.14)

where Mismatch is given by

Mismatch =

∫
(Muuu

−−−)
′
+C∞

z (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)

+

∫
(Muuu

−+−)
′
+C∞

z (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)
. (7.6.15)

Now the corresponding weak-coupling result obtained in [115] can be re-cast into the follow-

ing form by the use of integration by parts,

∫
−A2

z
(
dpspin

1 + dpspin
2 − dpspin

3

)
2πi

ln sin

(
pspin

1 + pspin
2 − pspin

3

2

)
−
∫
−A2

z dpspin
2

2πi
ln sin pspin

2 ,

(7.6.16)

where A2 is the contour which encircles the branch cut of p2 counterclockwise. Comparing

(7.6.14) and (7.6.16), one notes the following: (i) The terms denoted by Mismatch in the

strong coupling result are not present in the weak coupling expression. (ii) The integrands

of the rest of the terms are precisely of the same form as for the weak coupling result, but

the contours of integrations are different. This makes a difference in the answer since in

deforming the contours from those for the strong coupling to those for the weak coupling

picks up non-vanishing contributions from the singularities of the integrands. Concerning

the three-point functions, there is no firm argument that the Frolov-Tseytlin limit must be

universal for all the observables. Therefore the discrepancies that we found above do not

immediately imply the breakdown of the duality. However, it is certainly of importance to

clarify the origin of these differences. As a part of the possible understanding, below we shall

offer a natural mechnism which can change the contours of integration.

A mechanism for modifying the contours

The mechanism that we wish to point out is based on the possibility of having extra sin-

gularities on the worldsheet. To see this, let us first recall that in the derivation of the

important rules which determine the analyticity of the Wronskians, we have made an im-

portant assumption that the only singularities on the worldsheet of the solutions of the ALP

occur at the positions of the vertex insertion points. This in turn means that if there exist
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extra singularities this assumption breaks down and affects the rules for determining the

contours of the convolution integrals46. Depending on the number and the positions of the

extra singularities, the contours can be modified in various ways and it might be possible to

obtain the contour which appear in the weak coupling result.

Now we can provide some arguments which indicate that indeed the existence of addi-

tional singularities is not uncommon. First, recall that the usual finite gap method is capable

of constructing solutions which correspond to the saddle point configurations for two-point

functions. As such they contain only two singularities, normally placed at τ = ±∞ in the

cylinder coordinates. In such a formalism designed to deal with two-point functions, descrip-

tion of three-point solutions would require additional singularities. In our treatment, due to

the inability to construct genuine three-point saddle solutions, we describe the effect of the

three vertex operators separately except for imposing the global monodromy condition that

reflects the essence of their interaction. However, as already emphasized in section 7.1.6, if

we wish to deal properly with the three- and higher-point functions using algebraic curve

setup, one should actually start from the infinite gap solutions and then consider the limits

where the infinite number of cuts on the spectral curve degenerate to zero size. This process

is rather non-trivial and it should be possible to produce some extra singularities on the

worldsheet. Although we cannot demonstrate this phenomenon explicitly for the three-point

solution, we know that already at the level of two-point solution such a mechanism exists, as

discussed in some detail in section 7.1.6. There we saw explicitly that a “one-cut” solution

obtained from a multi-cut solution in a certain degeneration limit can produce extra singu-

larities without affecting the infinite number of conserved charges carried by the solution.

It is certainly expected that such a mechanism would exist also in the case of higher-point

solutions. An interesting question is which of the saddle points, those with extra singularities

or those without, describe the correlator of the gauge-theory operators. In any case, further

studies are definitely needed to clarify this issue.

46A similar mechanism of changing the integration contour by the extra singularities is discussed in the

context of the so-called ODE/IM correspondence [117].
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Part IV

Conclusion
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Chapter 8

Summary and Prospect

The AdS/CFT correspondence has been and will continue to be a source of inspiration for

diverse areas of theoretical physics. The prototypical example of such correspondence is the

one between N = 4 supersymmetric Yang-Mills theory and type IIB superstring theory in

AdS5 × S5 spacetime. The aim of this thesis was to uncover the structures of three-point

functions on both sides of this correspondence. Below we shall discuss future prospects

reviewing what has been achieved in this thesis.

As explained in Part II, three-point functions in the gauge theory can be computed at

tree-level by evaluating overlaps of three different states in a certain integrable spin-chain.

This is based on the earlier discovery, reviewed in Part I, that the computation of anomalous

dimensions in the gauge theory can be mapped to the diagonalization of the Hamiltonian

of an integrable spin-chain. For deeper understanding of the AdS/CFT correspondence, of

particular importance are three-point functions of operators composed of a large number

of fields. When the operators are made up of two complex scalars, the results for such

three-point functions were obtained by taking the limit of known determinant formulas of

scalar products in the XXX spin-chain. The simple form of the resultant expression strongly

indicates the existence of simpler and more physical derivation. The integral expression

derived in this thesis is of particular interest in this respect. As discussed in section 5.4,

it seems to be possible to derive the semi-classical limit using our expression. It would be

important to work out the details and try to understand the physical picture behind the

simple expression.

Apart from the semi-classical limit, an important future problem on the gauge theory

side is to consider three-point functions of more general operators. Partial results for three-

point functions involving operators composed of three complex scalars (SU(3)-sector) were

obtained in [118]. More recently, partial results for operators containing derivatives (SL(2)-

sector) were obtained in [119]. However, owing to the lack of determinant formulas for
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scalar products in spin-chains with higher-rank symmetry groups, general results are still

unavailable. Our integral formula based on Sklyanin’s separation of variables may be of

use also for this purpose since the separation of variables itself is known to be applicable

to theories with higher-rank symmetry groups [120, 121]. What needs to be done is to

determine the spectrum of separated variables and derive the integration measure. A näıve

guess is that the final result will be given by a certain multiple integral akin to the eigenvalue

integrals of quiver matrix models [122]. This, of course, must be validated by the explicit

computation. Another important future problem is to consider loop corrections in the gauge

theory. There are two sources of loop corrections for three-point functions. The first one

is correction to the operators themselves. This can be taken into account if we use loop-

corrected Hamiltonians and consider the eigenstates of such Hamiltonians. The other is

correction to the contraction of operators. At one loop in the SO(6)-sector, they are given

by the insertions of Hamiltonian density at the splitting point of the spin chain. In [32,33],

it was found that the sum of these two corrections can be conveniently taken into account

by introducing the inhomogeneities to the spin-chain and performing the differentiation with

respect to such inhomogeneities. This procedure is called Theta-Morphism and is conjectured

to work also at higher loop if operators are sufficiently long. A more physical interpretation

of Theta-Morphism was given later in [123]. In [123], a somewhat mysterious success of

Theta-Morphism was attributed to the existence of a unitary transformation which maps

the long-range spin chain describing higher-loop corrections to the nearest-neighbor spin

chain with inhomogeneities. It is important to push on this line of research and try to

understand the general structures of three-point functions. In the case of the spectrum

problem, two nontrivial structures are known to appear at higher loop: The first one is the

scalar factor of the magnon-scattering matrix, called the dressing phase. The other is the

finite size corrections, which originate from the propagation of virtual particles. The results

on the string theory side, explained in Part III, suggests that these structures might be

present also in three-point functions. It would thus be interesting to understand how these

structures make appearance in the calculation on the gauge theory side.

On the string theory side, three-point functions for classical strings are computed by

evaluating the action and the vertex operators on the saddle point trajectory. As explained in

Part III, such computation can be performed without knowing the explicit form of the saddle

point trajectory if we ingeniously utilize the integrability of the string sigma model. One

conspicuous feature of our final result (7.5.50) is that even for rather general external states

the integrands of the integrals expressing the structure constant exhibit structures quite

similar to the corresponding result at weak coupling. This is quite non-trivial since the weak

coupling result in the relevant semi-classical regime is obtained from the determinant formula

for the inner product of the Bethe states, which is so different from the method employed
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for strong coupling. A possible future direction along this line of study is to generalize

the method explained in this thesis to strings moving in a larger subspace of AdS5 × S5.

Our method of calculation is built upon the notion of the WKB curves introduced in [112].

Generalization to a larger subspace would then necessitate the use of the spectral network1

defined in [124]. It would also be important to consider higher-point functions building upon

the work [111]. Although higher-point functions in conformal field theories can be computed

from two- and three-point functions and do not provide further information of the theories,

it is still important to understand how the structures of the operator product expansion

(OPE) in the gauge theory are realized in the string theory. A näıve expectation would

be that the OPE in the gauge theory is directly realized by the OPE on the worldsheet.

This, however, is not correct since the OPE on the worldsheet produce unphysical (off-shell)

states, which do not correspond to the operators in the gauge theory. To eliminate such

unwanted contributions, it would be important to consider the integration over the moduli

of the Riemann-surface. In fact, such integration generally produces the propagator of a

closed string, ∫
dτe−τ(L0+L̄0) ∼ 1

L0 + L̄0

, (8.0.1)

which gives a dominant (divergent) contribution when the state is on-shell. However, in order

to eliminate the off-shell contributions completely, we need a supplementary mechanism2

which replaces the propagator with a delta-functional factor δ(L0 + L̄0).

Clarification of such a supplementary mechanism will be important also for deeper un-

derstanding of the AdS/CFT correspondence itself. This is because a similar situation is

encountered also when we attempt a first-principle derivation of the AdS/CFT correspon-

dence. To see this, let us recall and expand the argument given in the footnote of section 1.1.

As explained in section 1.1, the worldsheet of a closed string can have several holes in the

presence of D-branes. As is well-known, the effect of such holes can be taken into account

by the use of a boundary state |B〉 as follows3:∫
dρ

ρ
ρL0+L̄0|B〉 , (8.0.2)

where ρ denotes the size of the hole. Performing the integration with respect to ρ, we

generally obtain a propagator,

∼ 1

L0 + L̄0

|B〉 . (8.0.3)

1Since the spectral network is a much less understood object than the WKB curve, such generalization

would require considerable effort.
2In this regard, there is an interesting work [125], which discusses the connection between the space-time

OPE and the worldsheet OPE.
3Precisely speaking, we also need to insert zero modes of b ghosts, b0 + b̄0. For details, see [12].
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The effect of the holes can be naturally replaced4 with the deformation of the background

geometry if we can project away all the off-shell closed string contributions contained in the

boundary state and substitute (8.0.3) with a sum of on-shell vertex operators. However,

as mentioned above, such projection is realized only when there is a delta-functional factor

δ(L0 + L̄0). In the case of imaginary D-branes, mentioned in section 1.1, such a factor

naturally arises from the propagetor as a result of Wick rotation5. For other examples,

however, we need some additional mechanism, which would be closely related to the one we

need for four-point functions.

Another important future direction is to study quantum corrections to the results ob-

tained in this thesis. However, as our method does not provide the explicit forms of saddle-

point trajectories, it is not straightforward to compute quantum corrections within our frame-

work. To overcome such difficulty, it would be instructive to study a simpler theory with

common features. The most suitable theory for this purpose would be the Liouville field the-

ory. The Liouville field theory is one of a few well-studied irrational conformal field theories

and is studied thoroughly in various contexts. The three-point function of this theory was

solved completely in [127–129]. Recently, the classical limit of such three-point functions was

re-derived in [114] using the techniques explained in this thesis. One of the virtues of study-

ing the Liouville field theory is that we can identify the quantum analogues of the Wronskians

〈i± , j±〉 and utilize them to determine fully quantum three-point functions [130,131]. Thus,

by studying the Liouville field theory further with the integrability-based methods and ex-

ploring its similarity with the string sigma model in AdS, we may be able to obtain a new

nonperturbative characterization6 of three-point functions in the AdS/CFT correspondence

in the near future. Such a characterization would probably involve the unification of two

methods; the method based on the integrability and the conventional method to study 2d

CFTs7. Once this is achieved, it would also be interesting to see if it is possible to construct

novel non-rational 2d CFTs utilizing the integrable structure, such as the solutions to the

Yang-Baxter equation.

As a last remark, let us hint a possible connection with the AGT correspondence [135],

which is a recently discovered mysterious relation between the four-dimensional N = 2

4For a detailed discussion, see the footnote of section 1.1.
5Even in general situations, some sort of Wick rotation or analytic continuation seems to be necessary to

realize the projection. In this respect, the iε-prescription of the propagator [126] will play an important role

because the propagator acquires an imaginary part proportional to δ
(
L0 + L̄0

)
after the introduction of the

iε factor.
6In the case of scattering amplitudes, such a nonperturbative characterization was proposed recently

in [132,133].
7Certain integrable structures in two-dimensional CFTs were found in their early days [134]. However,

to date, the connection with the integrable systems have not been fully explored in the study of 2d CFTs.
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supersymmetric gauge theories and the Liouville field theory. In the AGT correspondence,

the correlation functions in the Liouville field theory are related to the partition functions of

N = 2 gauge theories on a so-called omega-deformed background. In particular, the classical

limit of the Liouville field theory corresponds to the special limit of the gauge theory, called

Nekrasov-Shatashvili limit [136], where one of the omega-deformation parameters goes to

zero. As stated above, the classical correlation functions in the Lioville field theories can be

studied by the methods developed in this thesis. On the other hand, it was recently reported

[137] that the method used in the study of partition functions in the Nekrasov-Shatashvili

limit is effective also in the study of semi-classical limit of scalar products of the XXX

spin-chain. These two observations indicate that three-point functions in the AdS5/CFT4

correspondence has a similar mathematical structure as the AGT correspondence. More

concretely, it is tempting to speculate on the existence of the following relation:

Spin chain in N = 4 SYM
?←→ Partition function in N = 2 theories

String theory in AdS5 × S5 ?←→ Liouville field theory

Of course, this is just a speculation at the moment and we need to await further developments

in both fields to see if there really is such a relation. In any case, we hope the materials

explained in this thesis will play a foundational role in future progress.
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Appendices
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Chapter A

Details on the integral expression for

the scalar products

A.1 Proof of theorem

In this appendix, we shall provide a proof of the theorem in section 5.3, which gives the

action of the normal-ordered operators :Aε(x̂k):` and :Dε(x̂k):` on the SoV bra 〈. . . , xk, . . . |.
Essentially, what follows is a pedagogical adaptation of the argument given in [138].

The proof is by mathematical induction in the number of sites `. Begin with the ` = 1

case. The operators Aε(u), Bε(u), Cε(u), Dε(u) are given by1

A(u) = u− θ1 + iSz + iεS+ , B(u) = ε(u− θ1 − iSz) + iS− , (A.1.1)

C(u) = −ε(u− θ1 + iSz) + iS+ , D(u) = u− θ1 − iSz − iεS− . (A.1.2)

By solving B(x̂1) = 0 for x̂1 and substituting it into A(u) and D(u), we get

x̂1 = θ1 + iSz − iε−1S− =

(
θ1 + i

2
0

−iε−1 θ1 − i
2

)
, (A.1.3)

:A(x̂1):` = 2iSz − iε−1S− + iεS+ = i

(
1 ε

−ε−1 −1

)
, (A.1.4)

:D(x̂1):` = −i(ε+ ε−1)S− = −i(ε+ ε−1)

(
0 0

1 0

)
. (A.1.5)

Since x̂1 is lower triangular, its eigenvalues are read off as θ1 ± i
2

and the corresponding

normalized eigenbras 〈±| are given by 〈+| = (1, 0), 〈−| = (1, ε)/
√

1 + ε2. Then, we can

1We have dropped the subscript 1 for Sk for simplicity. Also subscripts ε for A(u), . . . , D(u) are sup-

pressed.
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compute the action of :A(x̂1):` and :D(x̂1):` explicitly and get

〈+|:A(x̂1):` = i
√

1 + ε2〈−| , 〈−|:A(x̂1):` = 0 , (A.1.6)

〈+|:D(x̂1):` = 0 , 〈−|:D(x̂1):` = −i
√

1 + ε2〈+| . (A.1.7)

This is precisely what the theorem says for ` = 1.

Next, assume that the formulas hold for up to ` = N and consider ` = N + 1 case. The

monodromy matrix for ` = N + 1 is given by

ΩN+1 = KL1 · · ·LNLN+1 , (A.1.8)

where K is the twisting matrix given by K =

(
1 ε

−ε 1

)
. Now in order to split this into the

monodromy matrix at the Nth level and the subsequent action of the Lax operator at the

(N + 1)th step, we should introduce in the final Lax operator a twisting matrix of a similar

form, which we denote as

K̃ ≡

(
1 η

−η 1

)
, (A.1.9)

with η being an arbitrary parameter, just like ε. Then we can write ΩN+1 = Ω̃NL
′
N+1, where

Ω̃N = (KK̃−1)L̃1L̃2 · · · L̃N , KK̃−1 =
1

1 + η2

(
1 + εη ε− η
−(ε− η) 1 + εη

)
, (A.1.10)

L̃i = K̃LiK̃
−1 , L′N+1 = K̃LN+1 . (A.1.11)

Since the conjugation by K̃ does not affect the structure of the algebra, we may regard Ω̃N

as the monodromy matrix for ` = N for which the theorem holds with the factor
√

1 + ε2 in

(5.3.13) and (5.3.14) replaced with
√

(1 + ε2)/(1 + η2). We now write the matrix elements

of Ω̃N and L′N+1 as

Ω̃N(u) =

(
ÃN B̃N

C̃N D̃N

)
, L′N+1 =

(
aN+1 bN+1

cN+1 dN+1

)
, (A.1.12)

and compute ΩN+1 =

(
AN+1 BN+1

CN+1 DN+1

)
. Then BN+1 operator is given by

BN+1(u) = ÃN(u)bN+1(u) + B̃N(u)dN+1(u) . (A.1.13)

Let us now write the SoV basis of bras for ` = N + 1 as 〈x1, . . . , xN ; y|. By the hypothesis of

the induction, B̃N(u) is diagonal in this basis and also bN+1, which acts only on the (N+1)th
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site, is diagonal. Explicitly, we have

〈x1, . . . , xN ; y|B̃N(u) =
ε− η
1 + η2

N∏
i=1

(u− xi)〈x1, . . . , xN ; y| , (A.1.14)

〈x1, . . . , xN ; y|bN+1(u) = η(u− y)〈x1, . . . , xN ; y| . (A.1.15)

We may now compute the action of B̃N+1(u) at u = x̂k and u = ŷ, where ŷ is the root of

bN+1(ŷ) = 0 given by ŷ = θN+1 + iS3
N+1 − iη−1S−N+1. Since B̃N(x̂k) and bN+1(ŷ) vanishes on

this state, we get

〈x1, . . . , xN ; y|BN+1(x̂k) = 〈x1, . . . , xN ; y|ÃN(x̂k)bN+1(x̂k) , (A.1.16)

〈x1, . . . , xN ; y|BN+1(ŷ) = 〈x1, . . . , xN ; y|B̃N(ŷ)dN+1(ŷ) . (A.1.17)

The RHS can be easily computed since ÃN(x̂k) shifts xk by −i, while dN+1(ŷ) shifts y by

+i, with certain known factors multiplied. In this way, we obtain the formulas

〈x1, . . . , xN ; y|BN+1(x̂k) = η

√
1 + ε2

1 + η2
(xk − y)Q+

θ (xk)〈. . . , xk − i, . . . ; y| , (A.1.18)

〈x1, . . . , xN ; y|BN+1(ŷ) =
ε− η
1 + η2

√
1 + ε2

1 + η2
(y − θN+1 − i/2)

N∏
k=1

(y − xk)〈. . . , xk, . . . ; y + i| .

(A.1.19)

Having understood the action of BN+1 at u = x̂k, ŷ on the SoV basis, we now wish

to deduce the spectrum of BN+1(u) using this information. Let |Φ〉 be the state which

diagonalizes BN+1(u). Then by taking the inner product with the above two equations, we

obtain

β(xk)Φ(x1, . . . , xn; y) = η

√
1 + ε2

1 + η2
(xk − η)Q+

θ (xk)Φ(. . . , xk − i, . . . ; y) , (A.1.20)

β(y)Φ(x1, . . . , xN ; y) =
ε− η
1 + η2

√
1 + ε2

1 + η2
(y − θN+1 − i/2)

N∏
k=1

(y − xk)Φ(. . . , xk, . . . ; y + i) ,

(A.1.21)

where Φ(x1, . . . , xN ; y) ≡ 〈x1, . . . , xN ; y|Φ〉 and we have denoted the eigenvalue of BN+1(u)

by β(u). Now to simplify the analysis of the spectrum, it is convenient to extract a factor

ρ(x1, . . . , xN ; y) from Φ(x1, . . . , xN ; y) in the manner

Φ(x1, . . . , xN ; y) = ρ(x1, . . . , xN ; y)Ψ(x1, . . . , xN ; y) (A.1.22)
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where ρ(x1, . . . , xN ; y) satisfies the first order difference equations

ρ(x1, . . . , xN ; y) = η

√
1 + ε2

1 + η2
(xk − η)ρ(. . . , xk − i, . . . ; y) , (A.1.23)

ρ(x1, . . . , xN ; y) =
ε− η
1 + η2

√
1 + ε2

1 + η2

N∏
i=1

(y − xk)ρ(. . . , xk, . . . ; y + i) . (A.1.24)

One can easily verify that the solution to these equations is unique2 up to an overall constant.

Now with such a factor removed, the reduced wave function Ψ satisfies the equations

β(xk)Ψ(x1, . . . , xN ; y) = Q+
θ (xk)Ψ(. . . , xk − i, . . . ; y) , (A.1.25)

β(y)Ψ(x1, . . . , xN ; y) = (y − θN+1 − i/2)Ψ(. . . , xk, . . . ; y + i) . (A.1.26)

It turns out that we can drastically simplify these equations by assuming the factorized form3

for Ψ, namely

Ψ(x1, . . . , xN ; y) = χ(y)
N∏
k=1

ξk(xk) . (A.1.27)

The equations for Ψ then get reduced to the following equations for each factor

β(x)ξk(x) = Q+
θ (x)ξk(x− i) , x ∈

{
θk −

i

2
, θk +

i

2

}
, (A.1.28)

β(x)χ(x) = (y − θN+1 − i/2)χ(x+ i) , x ∈
{
θN+1 −

i

2
, θN+1 +

i

2

}
. (A.1.29)

Note that we have used the induction hypothesis that the spectrum of each xk is two-valued

as above.

The rest of the analysis is elementary. First consider the equation (A.1.28) and set

x = θk − i
2
. Then due to the presence of the factor Q+

θ (x) the RHS vanishes and hence we

must have β(θk − i
2
)ξk(θk − i

2
) = 0. If ξk(θk − i

2
) 6= 0, then β(θk − i

2
) must vanish and θk − i

2

is in the spectrum. On the other hand suppose ξk(θk − i
2
) = 0. Then ξk(θk + i

2
) cannot

vanish since otherwise the whole wave function vanishes. Now set x = θk + i
2

in (A.1.28).

Then the RHS vanishes and so must the LHS, i.e. β(θk + i
2
)ξk(θk + i

2
) = 0. This leads to

β(θk + i
2
) = 0 and hence x = θk + i

2
is in the spectrum. Similar arguments for (A.1.29) tells

us that θN+1 ± i
2

are in the spectrum. Thus, for ` = N + 1, we continue to have the same

set of spectrum as stated in the theorem.

2 The uniqueness is guaranteed by the finiteness of the spectrum of x̂k and ŷ. One can construct the

solution ρ by starting from the end of the spectrum.
3This does not miss any solution since the solution is unique.
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From this analysis we learn that the finite discrete nature of the spectrum is due to two

reasons. One is that the operators :A(x̂k):` and :D(x̂k):` are essentially exponentials of the

momentum operator and hence they induce a finite shift in xk. The second ingredient is the

presence of the prefactor Q+
θ (x). Since it vanishes at finite discrete values of x, the shifting

must end after a finite number of steps, in the present case just one.

What remains is the determination of the constant of proportionality in the action of the

operators :A(x̂k):` and :D(x̂k):`. As there are only a finite number of states, such a constant

can be adjusted rather freely by the change of the normalization of states. Nonetheless, there

is a certain constraint coming from the following non-linear relations:

:AN+1(x̂k):`:DN+1(x̂k):` = (1 + ε2)
N+1∏
l=1

(x̂k − θl + i/2)(x̂k − θl − 3i/2) , (A.1.30)

:DN+1(x̂k):`:AN+1(x̂k):` = (1 + ε2)
N+1∏
l=1

(x̂k − θl − i/2)(x̂k − θl + 3i/2) . (A.1.31)

These relations can be obtained in the following way. From the commutation relations

between :AN+1(x̂k):`, :DN+1(x̂k):` and x̂k, one can show

:AN+1(x̂k) :`: DN+1(x̂k):` = det qΩN+1(x̂k − i/2) , (A.1.32)

:DN+1(x̂k):`:AN+1(x̂k):` = det qΩN+1(x̂k + i/2) , (A.1.33)

where det qΩN+1(u) is the so-called quantum determinant4 , which is a central element of

the Yang-Baxter exchange algebra. Then by using the co-multiplication rule, det q(AB) =

det qA det qB, one can explicitly compute the RHS and obtain the relations (A.1.30) and

(A.1.31). The constant of proportionality chosen in the theorem is compatible with these

relations and also to the explicit equations for ` = 1 case shown in (A.1.6) and (A.1.7)

obtained for unit-normalized states. This completes the proof of the theorem.

A.2 Relation to Izergin’s determinant formula

In this appendix, we give a direct proof that a slight generalization of our new integral

expression is equivalent to the Izergin’s determinant formula [139] for the domain wall parti-

tion function (DWPF) which appears in the six-vertex model. From this DWPF, the original

scalar product of our interest can be obtained by sending an appropriate subset of rapidities

to infinity as well as requiring half of the remainder to be on-shell.

4For a detailed account of the quantum determinant, we refer the reader to [34] and [138].
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We begin with the domain wall partition function, which is defined as follows:

Z`(w|θ) ≡ 〈↓` |
∏̀
i=1

B(wi)| ↑`〉 . (A.2.1)

Note that the number of B operators is equal to the number of sites ` and the rapiditiesw are

not restricted to an on-shell configuration. In [139], Izergin gave a determinant expression

for this quantity, which reads

Z`(w|θ) =

∏`
j,k=1(wj − θk + i

2
)(wj − θk − i

2
)∏

l<m(wl − wm)(θm − θl)
det

(
i

(wj − θk + i
2
)(wj − θk − i

2
)

)
1≤j,k≤`

.

(A.2.2)

In what follows, we shall show that this is equal to the multiple integral formula of the form

〈↓` |
∏̀
i=1

B(wi)| ↑`〉 = i`
∏
j<k

(θj − θk)(θj − θk + i)(θj − θk − i)

×
∏̀
n=1

∮
Cn

dxn
2πi

∏
k<l

(xk − xl)
∏̀
m=1

Qw(xm)

Q+
θ (xm)Q−θ (xm)

. (A.2.3)

First, we shall transform the Izergin’s formula to a form more convenient for comparison

with the integral expression. By a simple decomposition, the determinant in (A.2.2) can be

rewritten as a determinant of the difference of two matrices:

det

(
i

(wj − θk + i
2
)(wj − θk − i

2
)

)
1≤j,k≤`

= det (M−
jk −M

+
jk)1≤j,k≤` , (A.2.4)

M±
jk =

1

wj − θk ± i/2
. (A.2.5)

Then from the definition of the determinant, we can expand the RHS of (A.2.4) as

det (M−
jk −M

+
jk)1≤j,k≤` =

∑
σ∈P`

(−1)σ(M−
1σ(1) −M

+
1σ(1)) · · · (M

−
`σ(`) −M

+
`σ(`))

=
∑
εi=±

(−1)n+

∑
σ∈P`

(−1)σM ε1
1σ(1) · · ·M

ε`
`σ(`) , (A.2.6)

where n+ is the number of +’s in the set {εi} and the sign (−1)n+ is produced upon expanding

the product. Now by using the definition of determinant again to re-express each summand

back as a determinant, we obtain

det (M−
jk −M

+
jk)1≤j,k≤` =

∑
εi=±

(−1)n+det (M
εj
jk)1≤j,k≤` . (A.2.7)
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At this point, one can apply the Cauchy’s determinant identity,

det

(
1

xj − yk

)
1≤j,k≤`

=

∏
1≤j<k≤`(xj − xk)(yk − yj)∏`

l,m=1(xl − ym)
, (A.2.8)

to each term det (M
εj
jk)1≤j,k≤` = det ((wj − (θk − εji/2))−1)1≤j,k≤`. Putting altogether the

determinant (A.2.4) in the Izergin’s formula can be expressed as

det

(
i

(wj − θk + i
2
)(wj − θk − i

2
)

)
1≤j,k≤`

=
∑
εi=±

(−1)n+

∏
1≤j<k≤`(wj − wk)(θk − θj − i(εk − εj)/2)∏`

l,m=1(wl − θm + iεm/2)
.

(A.2.9)

Substituting it into (A.2.2), Izergin’s formula is finally transformed into the expression

Z`(w|θ) =
∑
εi=±

(−1)n+

∏̀
j,k=1

(wj − (θk + iεk/2))
∏

1≤l<m≤`

(θl − θm − i(εl − εm)/2)

θl − θm
, (A.2.10)

which is no longer of a determinant form.

Now we are ready to prove its equivalence to the multiple integral (A.2.3). This is done

essentially by explicitly performing the contour integrals using the residue formula. By

picking up the contributions from the zeros of the functions Q±θ (xm) in the denominator, the

integral is evaluated as∏
r<s

(θr − θs)(θr − θs + i)(θr − θs − i)

×
∑
εi=±

(−1)n+

∏
1≤l<m≤`

(θl − θm + i(εl − εm)/2)

(θl − θm)2(θl − θm + εl)(θl − θm − εm)

∏̀
j,k=1

(wj − (θk + iεk/2)) .

(A.2.11)

Now note the following relation, which can be checked for every pair (εl, εm), with εl = ±1:

(θl − θm + i)(θl − θm − i)
(θl − θm + iεl)(θl − θm − iεm)

=
(θl − θm − i(εl − εm)/2)

(θl − θm + i(εl − εm)/2)
. (A.2.12)

Using this formula, the expression (A.2.11) can be simplified into

∑
εi=±

(−1)n+

∏̀
j,k=1

(wj − (θk + iεk/2))
∏

1≤l<m≤`

(θl − θm − i(εl − εm)/2)

θl − θm
. (A.2.13)

This is exactly the same as (A.2.10), proving the assertion.

As already stated, the original scalar product of our interest can be obtained from this

domain wall partition function through certain manipulations. First, by sending ` − n of
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the ` rapidities to infinity, thereby decoupling them, one obtains the partial domain wall

partition function with n rapidities z (4.3.7) in the following way:

ZpDWPF(z|θ) =
1

(`− n)!
lim

{w1,...,w`−n}→∞

(
Z`(z ∪ {w1, . . . , w`−n}|θ)

iw`−1
1 · · · iw`−1

`−n

)
. (A.2.14)

If we now set n = 2M and z = u∪v, where either u or v are on-shell, we recover the original

scalar product 〈↑` |
∏M

i=1 C(vi)
∏M

j=1B(uj)| ↑`〉. On the other hand, if we apply the same

manipulations to the integral formula (A.2.2), we obtain the multiple integral formula for

the scalar product (5.3.46). This proves the equivalence of our formula and the determinant

formula derived by Foda and Wheeler [90].
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Chapter B

Action-angle variables in the Landau

Lifshitz model

In this Appendix, we derive the Poisson-bracket structure of the Landau-Lifshitz model

and construct the action-angle variables. Of crucial importance in the discussion is the so-

called classical r-matrix, which is a classical analogue of the quantum R-matrix reviewed in

section 3.1.3. The materials in this Appendix provide a simple and pedagogical toy model

to understand why and how Sklyanin’s separation of variables works in classical integrable

models, which we used in Part III to construct the semi-classical wave functions.

B.1 Poisson brackets

First we derive the Poisson (Dirac) bracket structure of the Lnadau-Lifshitz model. The most

straightforward way is to start from the action (3.3.28), regard ~n as the fundamental variable

and derive the Dirac bracket. However, it is practically much easier to first parametrize the

2-sphere by θ and φ and then derive the Dirac bracket. In terms of θ and φ, the action of

the Landau-Lifshitz sigma model is

S = −
∫
dτdσ

[
1

4
(cos θ∂τφ+ φ sin θ∂τθ) +

λ

32π2

(
∂σθ∂σθ + sin2 θ∂σφ∂σφ

)]
. (B.1.1)

From (B.1.1), the conjugate momenta can be determined as

Πφ = −1

4
cos θ , Πθ = −1

4
φ sin θ . (B.1.2)

Evidently, these two equations should be regarded as the constraints. The commutation

relation of these two constraints is given by

{Πφ +
1

4
cos θ

∣∣
σ
,Πθ +

1

4
φ sin θ

∣∣
σ′
} = −sin θ

2
δ(σ − σ′) . (B.1.3)
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Thus, the Dirac bracket of this system can be defined as

{A,B}D = {A,B}

+

∫
dσ

2

sin θ

(
{A,Πφ +

1

4
cos θ}{Πθ +

1

4
φ sin θ, B} − {A,Πθ +

1

4
φ sin θ}{Πφ +

1

4
cos θ, B}

)
.

(B.1.4)

Using (B.1.1), the commutation relation of ~n can be determined as

{ni(σ) , nj(σ
′)} = 2εijknkδ(σ − σ′) , (B.1.5)

which is the classical analogue of the commutation relation of spins.

B.2 Classical r-matrix

Having derived the commutation relation of ~n, our next task is to derive the Poisson bracket

between the Lax matrices. The Poisson bracket between Jσ can be calculated as

{Jσ(σ|x) ⊗, Jσ(σ′|y)} = − 1

16π2xy
{~n(σ) · ~σ ⊗, ~n(σ′) · ~σ}

= −δ(σ − σ′) 1

8π2xy
εijknk(σ)σi ⊗ σj . (B.2.1)

At this point, we can simplify the expression by using the Fiertz identity:

(σa)ij(σb)kl =
∑
c,d

tr (σcσaσdσb)

4
(σc)il(σd)kj , (B.2.2)

where σ0 is defined to be an identity matrix. The essence is that the factor εijkσi ⊗ σj can

be re-expressed by the use of the Fiertz identity as

εijk(σi)αβ(σj)γδ =
i

2
((σk)αδδβγ − (σk)βγδαδ) . (B.2.3)

Using such formulas, we arrive at the following expression1 of the Poisson bracket.

{Jσ(σ|x) ⊗, Jσ(σ′|y)} = δ(σ − σ′) [r(x− y) , − (Jσ(x)⊗ 1 + 1⊗ Jσ(y))] , (B.2.4)

where r(x) is the so-called classical r-matrix which, in this case, is defined as follows.

r(x) =
P

2πx
, (B.2.5)

1To arrive at the expression (B.2.4), we also need to use (xy)−1 =
(
y−1 − x−1

)
(x− y)−1.
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where P is the operator which permutes two spaces in the tensor product: V1⊗V2 7−→ V2⊗V1.

The classical r-matrix is an appropriate classical version of the R-matrix used in section

(3.1.3).

It is well-known that when the Poisson bracket between Lax matrices can be expressed

by the classical r-matrix as (B.2.4), the Poisson bracket between the monodromy matrices

can also be expressed by the classical r-matrix as follows.

{Ω(x)⊗, Ω(y)} = [Ω(x)⊗ Ω(y) , r(x− y)] . (B.2.6)

The proof of (B.2.6) can be found in [34]. In terms of the components,

Ω(x) ≡

(
A(x) B(x)

C(x) D(x)

)
, (B.2.7)

the commutation relation (B.2.6) can be expressed as

{A(x) ,B(y)} = − 1

2π(x− y)
(A(x)B(y)−A(y)B(x)) , (B.2.8)

{A(x) , C(y)} =
1

2π(x− y)
(A(x)C(y)−A(y)C(x)) , (B.2.9)

{A(x) ,D(y)} =
1

2π(x− y)
(B(x)C(y)− B(y)C(x)) , (B.2.10)

{B(x) , C(y)} =
1

2π(x− y)
(A(x)D(y)−A(y)D(x)) , (B.2.11)

{B(x) ,D(y)} =
1

2π(x− y)
(B(x)D(y)− B(y)D(x)) , (B.2.12)

{C(x) ,D(y)} = − 1

2π(x− y)
(C(x)D(y)− C(y)D(x)) , (B.2.13)

{A(x) ,A(y)} = {B(x) ,B(y)} = {C(x) , C(y)} = {D(x) ,D(y)} = 0 . (B.2.14)

These explicit expressions are useful when we construct the action-angle variables below.

B.3 Construction of action-angle variables

Having obtained the explicit expression of the Poisson bracket, we now proceed to the con-

struction of the action-angle variables2. In Sklyanin’s approach [94], the action-angle vari-

ables can be constructed from the poles of the normalized eigenvector of the monodromy

matrix:

Ω(x)~ψ(x) = eip(x) ~ψ(x) , ~n · ~ψ = 1 . (B.3.1)

2For the construction of the action-angle variables of string sigma models, see [43] and Appendix B of [17].
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Here ~n ≡ (n1, n2)t is the normalization vector3, which is chosen to be independent of the

spectral parameter x and satisfy the normalization condition n2
1 + n2

2 = 1. To construct the

action-angle variables from the poles of ~ψ(x), it is convenient to consider the transformed

monodromy matrix Ω̃(x) defined by

Ω̃(x) ≡

(
n1 n2

−n2 n1

)
Ω

(
n1 −n2

n2 n1

)
≡

(
Ã(x) B̃(x)

C̃(x) D̃(x)

)
. (B.3.2)

Owing to the symmetry of the Lax pair, the components of Ω̃ satisfy the same Poisson-

bracket relation as the components of Ω. Therefore we can directly use the results obtained

in the previous subsection.

At the poles of the Baker-Akhiezer vector, γi’s, the components of Ω̃ satisfy the following

relation4.

B̃(γi) = 0 , D̃(γi) = Ã(γi)
−1 = eip(γi) . (B.3.3)

In the following discussion, we use these relations to derive the commutation relation be-

tween γi’s and p(γi)’s. To derive the relation correctly, we should start from the analysis

of {B̃(x) , B̃(x′)} = 0. Since B̃ has zeros at γi and γj (i 6= j), it can be expressed as

B̃(x) = (x−γi)B′(x) or B̃(x) = (x−γj)B′′(x). The functions B′(x) and B′′(x) are not known

but what is important is that they have the properties B′(γi) 6= 0 and B′′(γj) 6= 0. Then the

commutation relation between B̃(x) and B̃(x′) can be rewritten as

(x− γi)(x′ − γj){B′(x) ,B′′(x′)} − (x′ − γj)B′(x){γi ,B′′(x′)}

− (x− γi)B′′(x′){B′(x) , γj}+ B′(x)B′′(x′){γi , γj} = 0 . (B.3.4)

Now at this stage, we can safely take the limit x → γi and x′ → γj. Then the first three

terms vanish manifestly and from the last term we obtain the relation

{γi , γj} = 0 . (B.3.5)

Next step is to consider the commutation relation of Ã(x) and B̃(x′). Here again, we should

substitute the expansion Ã(x) = Ã(γi) + (x − γi)A′(x) as well as the ones for B′ and B′′.
3As we saw in section 7.3.3, the normalization vector is intimately related to the global symmetry structure

and is determined by the highest weight condition. However, for the purpose of this section, we do not need

to specify it.
4To see this, it is helpful to consider the relation between the normalized eigenvector and the unnor-

malized eigenvector. The unnormalized eigenvector can be constructed from the normalized eigenvector by
~ψnormalized = ~ψunnormalized/(~n · ~ψunnormalized). Therefore the poles of the normalized eigenvector arise when

the unnormalized eigenvector satisfy ~n · ~ψunnormalized = 0. Thus, at the poles of the normalized eigenvector,

the vector (−n2 , n1)t, which is orthogonal to ~n, becomes the eigenvector of the monodromy matrix. Then,

it is easy to see that (B.3.3) follows.
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Then similarly to the previous case, the limit x → γi and x′ → γj can be taken easily and,

making use of the relation (B.3.5), we can deduce the important relation

{Ã(γi) , γj} =
Ã(γi)

2π
δij . (B.3.6)

Finally, similar calculation for {Ã(x) , Ã(x′)} = 0 leads to

{Ã(γi) , Ã(γj)} = 0 . (B.3.7)

From the equations (B.3.5)-(B.3.7), we can obtain the commutation relation for γi’s and

p(γj)’s as

{γi , γj} = {p(γi) , p(γj)} = 0 ,
2π

i
{γi , p(γj)} = δij . (B.3.8)

Therefore we conclude that (γi ,−2πip(γi))’s are canonical pairs of variables.

From (γi ,−2πip(γi))’s, one can easily construct the action variables a.k.a. the filling

fractions as follows5.

Si ≡
1

2πi

∮
ai

p(x)dx , (B.3.9)

where ai is the cycle on the spectral curve6. To construct angle variables φi’s, which are

conjugate to Si’s, we need to find the generating function F (Si , γi) which provides the

canonical transformation from (γi ,−ip(γi)) to action-angle variables. Such a function is

defined as follows,

∂F

∂γi
= −2πip(γi) , (B.3.10)

∂F

∂Si
= φi . (B.3.11)

In the present context, the first equation should be viewed as the definition of F while the

second equation should be regarded as the definition of φi. Therefore, to determine F , we

need to integrate the first equation with Si fixed. As the filling fractions are given by the

integral of p(x) on the spectral curve, fixing all Si’s is equivalent to fixing the functional

form of p(x). Therefore, F can be determined as

F = −2πi
∑
i

∫ γi

p(x)dx . (B.3.12)

5The normalization of th filling fractions we adopt here is the one used in [40].
6Since we are discussing the general formalism in this subsection and not focusing on the particular

solution, we need to consider the spectral curve with an infinite number of cuts. For details, see section

7.1.4.
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(We will not specify here the initial point of integration. As we will show momentarily, the

choice of the initial point is not important in the practical calculation.)

Next we compute φi = ∂F/∂Si. This requires changing Si with all the other filling

fractions fixed. This is precisely equivalent to adding to p(x)dx a one-form whose period

integral along a-cycles is non-vanishing only for ai. Such a one-form should be proportional

to a normalized holomorphic differential ωi, which satisfies the following property.∮
aj

ωi = δij . (B.3.13)

Using such ωi, the partial derivative ∂F/∂Si can be expressed as

φi = 4π2
∑
j

∫ γj

ωi . (B.3.14)

From the action-angle variables, the wave function can be constructed as follows. (Note

that in general the solution has an infinite number of gaps and thus the number of action-

angle variables is also infinite.)

Ψ [φ1 , φ2 , · · · ] ≡ 〈φ1 , φ2 , · · · |Ψ〉 = exp

[
i
∑
j

Sjφj

]
. (B.3.15)

It would be interesting to explore the possibility to use the above wave function to derive

the semi-classical limit of three-point functions in the gauge theory [92,93,115].
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Chapter C

Details on the three-point function in

the classical string theory

C.1 Details on the one-cut solutions

In this appendix, we will summarize the details on the one-cut solutions.

C.1.1 Parameters of one-cut solutions in terms of the position of the cut

By using the forms of p(x) and q(x) given in (7.1.25) and (7.1.26) one can evaluate the

parameters µi, mi and θ0 explicitly in terms of u. The results depend on the position of the

cut. It is convenient to express them in universal forms by introducing two additional sign

factors η1 and η0,1. Together with the factor ε already introduced in (7.1.27), we give their

definitions in the following table:

Table. Sign factors to distinguish between the positions of the cut.

Reu < −1 −1 < Reu < 0 0 < Reu < 1 1 < Reu

ε + − − +

η1 + + + −
η0,1 + + − +

Then, ν1 and ν2 are obtained as

ν1 = κ

[
−η1 + η0,1|u|
|u− 1|

+ ε
η1 − η0,1|u|
|u+ 1|

]
, (C.1.1)

ν2 = κ

[
η1 − η0,1|u|
|u− 1|

− εη1 + η0,1|u|
|u+ 1|

]
= εν1(u→ −u) . (C.1.2)
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As for mi, we can immediately obtain them form νi by the substitution ε→ −ε, because, as

seen in (7.1.25) and (7.1.26), this interchanges q(x) and p(x):

m1 = ν1(ε→ −ε) , (C.1.3)

m2 = ν2(ε→ −ε) . (C.1.4)

Now cos2(θ0/2) and sin2(θ0/2) can be deduced from the Virasoro condition (7.1.37) as

cos2 θ0

2
=
|u| − η1η0,1Reu

2|u|
, sin2 θ0

2
=
|u|+ η1η0,1Reu

2|u|
. (C.1.5)

The right and the left charges are obtained from (3.2.40) and (3.2.41) to be

R = −κ
√
λη1

2

(
Reu− 1

|u− 1|
+ ε

Reu+ 1

|u+ 1|

)
, (C.1.6)

L =
κ
√
λη0,1

2|u|

(
|u|2 − Reu

|u− 1|
+ ε
|u|2 + Reu

|u+ 1|

)
. (C.1.7)

From the definition of R and L as the Noether charges, they must be expressed in terms

of the parameters νi and θ0 in a universal manner independent of the position of the cut.

Indeed by using the formulas already obtained for the parameters and the charges in terms

of u, we can check the universal expressions

R√
λ

=
1

2

(
−ν1 cos2 θ0

2
+ ν2 sin2 θ0

2

)
, (C.1.8)

L√
λ

=
1

2

(
−ν1 cos2 θ0

2
− ν2 sin2 θ0

2

)
. (C.1.9)

Finally, let us discuss the signs and the relative magnitudes of the parameters and the

charges. The signs and the relative magnitude of νi depend on u. From the formulas for νi

we can check that

|Reu| > 1 : ν2 < ν1 < 0 , (C.1.10)

|Reu| < 1 : ν1 < 0 < ν2 , (|ν1| < ν2) . (C.1.11)

As for the angles, we always have

cos2 θ0

2
> sin2 θ0

2
. (C.1.12)

The signs of R and L can be checked to be always positive. ( R for the case |Reu| > 1 and

L for the case |Reu| < 1 are somewhat non-trivial to check.)
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The relative magnitude of R and L can be deduced easily from the difference

1√
λ

(R− L) = 2ν2 sin2 θ0

2
. (C.1.13)

As the sign of ν2 has already been obtained in (C.1.10) and (C.1.11), we immediately get

R < L for |Reu| > 1 , (C.1.14)

R > L for |Reu| < 1 . (C.1.15)

C.1.2 Pohlmeyer reduction for one-cut solutions

Let us next consider the variables appearing in the Pohlmeyer reduction, ρ, ρ̃ and γ for

one-cut solutions. From their definitions, we can express them in terms of the parameters of

the one-cut solution as

cos 2γ =
ν2

1 −m2
1

4κ2
=
ν2

2 −m2
2

4κ2
, (C.1.16)

ρ =
1

8
cos

θ0

2
sin

θ0

2

(
(ν1 +m1)2 − (ν2 +m2)2

)
, (C.1.17)

ρ̃ =
1

8
cos

θ0

2
sin

θ0

2

(
(ν1 −m1)2 − (ν2 −m2)2

)
, (C.1.18)

where we used z = τ + iσ coordinate when we compute these quantities1.

Using the results in the previous subsection, we can re-express (C.1.16), (C.1.17) and

(C.1.18) in terms of the branch points u and ū. They are given by

cos 2γ = ε
|u|2 − 1

|u2 − 1|
, sin 2γ =

2Im u

|u2 − 1|
, (C.1.19)

ρ = −κ2 Im u

|u− 1|2
, ρ̃ = κ2 Im u

|u+ 1|2
. (C.1.20)

The ALP in the Pohlmeyer gauge can be solved in a similar manner and the result is given

in (7.1.83) and (7.1.84).

In the case of three-point functions, we can compute these quantities separately for each

1Note that γ is invariant under the coordinate change z → z′ = f(z), whereas ρ and ρ̃ transform

respectively as ρ→ ρ′ = ρ/(∂f)2 and ρ̃→ ρ̃′ = ρ̃/(∂̄f)2.
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puncture as

γi =
1

2
arcsin

(
2Im ui
|u2
i − 1|

)
, (C.1.21)

ρi = −κ2 Im ui
|ui − 1|2

, (C.1.22)

ρ̃i = κ2 Im ui
|ui + 1|2

. (C.1.23)

They will be used in the computation of three-point functions.

C.1.3 Computation of various integrals

Using the above results, let us compute various integrals which appear in Local and Double

in section 7.2. Around a puncture, one can approximate the behavior of the world-sheet by

that of the two-point functions. Thus, when three string states are semi-classically described

1-cut solutions, we expect the following asymptotic behavior of the one-forms:

λ
z→zi∼ κidwi , ω

z→zi∼ −κi cos 2γi
2

dw̄i +
2ρ2

i

κ3
i

dwi , (C.1.24)

where wi is the local coordinate wi ≡ τ (i) + iσ(i) around the puncture zi.

Using (C.1.24), one can evaluate various integrals. First, the contour integrals of λ and

ω along Ci’s are given by∮
Ci
λ = 2πiκi ,

∮
Ci
ω = 2πi

(
κi cos 2γi

2
+

2ρ2
i

κ3
i

)
i = 1, 2̄, 3 . (C.1.25)

On the other hand, the double contour integral, which appears in Double can be computed

as follows: ∮
Ci
ω

∫ z

z∗i

λ =

∫ σ=2π

σ=0

(
−κi cos 2γi

2
dw̄i +

2ρ2
i

κ3
i

dwi

)∫ σ′=σ

σ′=0

κidw
′
i

= −
∫ 2π

0

dσ

(
κi cos 2γi

2
+

2ρ2
i

κ3
i

)
κiσ

= −2π2

(
κi cos 2γi

2
+

2ρ2
i

κ3
i

)
κi . (C.1.26)

These results are used in section 7.2.1 to explicitly evaluate Local and Double .
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C.2 Pohlmeyer reduction

In this appendix, we will give some details of the Pohlmeyer reduction for the string on S3.

In terms of the embedding coordinate YI (I = 1, . . . , 4), S3 is realized as a hypersurface

in R4 satisfying
∑

I Y
2
I = 1. The basic idea of the Pohlmeyer reduction is to describe the

dynamics of the string in terms of a moving frame in R4 consisting of four basis vectors

{YI , ∂YI , ∂̄YI , NI}, which satisfy the following properties:

N INI = 1 , N IYI = N I∂YI = N I ∂̄YI = 0 . (C.2.1)

Then, using the equation of motion, ∂∂̄Y I +
(
∂Y J ∂̄YJ

)
Y I = 0 and the Virasoro constraints,

∂Y I∂YI = −T (z) and ∂̄Y I ∂̄YI = −T̄ (z̄), we can express the derivatives of these basis vectors,

∂N I , ∂2Y I , etc. again in terms of the basis vectors:

∂N I =
2ρ

T sin2 2γ
∂Y I +

2 cos 2γρ√
T T̄ sin2 2γ

∂̄Y I , (C.2.2)

∂̄N I =
2ρ

T̄ sin2 2γ
∂̄Y I +

2 cos 2γρ̃√
T T̄ sin2 2γ

∂Y I , (C.2.3)

∂2Y = TY I +
∂ ln

(
T T̄ sin2 2γ

)
2

∂Y I +

√
T̄

T

2∂γ

sin 2γ
∂̄Y I + 2ρN I , (C.2.4)

∂̄2Y = T̄ Y +
∂̄ ln

(
T T̄ sin2 2γ

)
2

∂̄Y I +

√
T

T̄

2∂̄γ

sin 2γ
∂Y I + 2ρ̃N I , (C.2.5)

∂∂̄Y = −
√
T T̄ cos 2γY , (C.2.6)

where ρ, ρ̃ and γ are defined by

∂Y I ∂̄YI =
√
T T̄ cos 2γ , ρ ≡ 1

2
N I∂2YI , ρ̃ ≡ 1

2
N I ∂̄2YI . (C.2.7)

Using the equation of motion, one can also show that γ, ρ and ρ̃ satisfy the generalized

sin-Gordon equation, which is given in (7.1.11).

Let us next derive a flat connection associated with the system of equations (C.2.2)–

(C.2.6). For this purpose, it is convenient to introduce the following orthonormal basis:

q1 ≡ Y , q2 ≡ −
i

sin 2γ

[
eiγ√
T
∂Y +

e−iγ√
T̄
∂̄Y

]
, (C.2.8)

q3 ≡
i

sin 2γ

[
eiγ√
T̄
∂̄Y +

e−iγ√
T
∂Y

]
, q4 ≡ N , (C.2.9)

which satisfy the following normalization conditions:

q2
1 = q2

4 = 1 , q2q3 = −2 . (C.2.10)
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With these orthonormal vectors, (C.2.2)–(C.2.6) can be re-expressed as the following set of

equations,

∂q1 =

√
T

2

[
eiγq2 + e−iγq3

]
, (C.2.11)

∂q2 = e−iγ
√
Tq1 + i∂γq2 −

2iρ√
T sin 2γ

eiγq4 , (C.2.12)

∂q3 = eiγ
√
Tq1 − i∂γq3 +

2iρ√
T sin 2γ

e−iγq4 , (C.2.13)

∂q4 =
iρe−iγ√
T sin 2γ

q2 −
iρeiγ√
T sin 2γ

q3 , (C.2.14)

∂̄q1 = −
√
T̄

2

[
e−iγq2 + eiγq3

]
, (C.2.15)

∂̄q2 = −eiγ
√
T̄ q1 − i∂̄γq2 −

2iρ̃√
T̄ sin 2γ

e−iγq4 , (C.2.16)

∂̄q3 = −e−iγ
√
T̄ q1 + i∂̄γq3 +

2iρ̃√
T̄ sin 2γ

eiγq4 , (C.2.17)

∂̄q4 =
iρ̃eiγ√
T̄ sin 2γ

q2 +
iρ̃e−iγ√
T̄ sin 2γ

q3 . (C.2.18)

By expressing the basis in a matrix form,

W ≡ 1

2

(
q1 + iq4 q2

q3 q1 − iq4

)
, (C.2.19)

we can convert the above equations into the following form:

∂W +BL
zW +WBR

z = 0 , ∂̄W +BL
z̄W +WBR

z̄ = 0 , (C.2.20)

where BL,R
z,z̄ are matrices defined by

BL
z ≡

(
− i∂γ

2
ρeiγ√
T sin 2γ

−
√
T

2
e−iγ

ρe−iγ√
T sin 2γ

−
√
T

2
eiγ i∂γ

2

)
, (C.2.21)

BR
z ≡

(
i∂γ
2

− ρeiγ√
T sin 2γ

−
√
T

2
e−iγ

− ρe−iγ√
T sin 2γ

−
√
T

2
eiγ − i∂γ

2

)
, (C.2.22)

BL
z̄ ≡

 i∂̄γ
2

ρ̃e−iγ√
T̄ sin 2γ

+
√
T̄

2
eiγ

ρ̃eiγ√
T̄ sin 2γ

+
√
T̄

2
e−iγ − i∂̄γ

2

 , (C.2.23)

BR
z̄ ≡

 − i∂̄γ
2

− ρ̃e−iγ√
T̄ sin 2γ

+
√
T̄

2
eiγ

− ρ̃eiγ√
T̄ sin 2γ

+
√
T̄

2
e−iγ i∂̄γ

2

 . (C.2.24)
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(C.2.20) is equivalent to the flatness conditions of the connections BL and BR,

∂BL
z̄ − ∂̄BL

z + [BL
z , B

L
z̄ ] = 0 , ∂BR

z̄ − ∂̄BR
z + [BR

z , B
R
z̄ ] = 0 . (C.2.25)

Owing to the classical integrability of the string sigma model, we can “deform” the above

connection without spoiling the flatness by introducing a spectral parameter ζ = (1−x)/(1+

x) as

Bz(ζ) ≡ Φz

ζ
+ Az , Bz̄(ζ) ≡ ζΦz̄ + Az̄ . (C.2.26)

Φ’s and A’s are defined by2

Φz ≡

(
0 −

√
T

2
e−iγ

−
√
T

2
eiγ 0

)
, Φz̄ ≡

(
0

√
T̄

2
eiγ

√
T̄

2
e−iγ 0

)
, (C.2.27)

Az ≡

(
− i∂γ

2
ρeiγ√
T sin 2γ

ρe−iγ√
T sin 2γ

i∂γ
2

)
, Az̄ ≡

(
i∂̄γ
2

ρ̃e−iγ√
T̄ sin 2γ

ρ̃eiγ√
T̄ sin 2γ

− i∂̄γ
2

)
. (C.2.28)

The deformed connection (C.2.26) evaluated at ζ = 1 or ζ = −1 is related to the original

connection BL,R in the following way:

BL = B(ζ = 1) ,
(
BR
)t

= σ2B(ζ = −1)σ2 . (C.2.29)

Furthermore (C.2.26) is related to the usual left/right connection by an appropriate gauge

transformation as will be shown in Appendix C.3.

C.3 Relation between the Pohlmeyer reduction and the sigma

model formulation

In this appendix, we explain how the Pohlmeyer reduction and the sigma model formulation

are related.

C.3.1 Reconstruction formula for the Pohlmeyer reduction

In section 7.1.3 we presented the simple formulas (7.1.32) and (7.1.33) which reconstruct

the solution Y of the equations of motion from the eigenfunctions of the ALP in the sigma

model formulation. We now describe a similar formula for the Pohlmeyer reduction and by

2(C.2.26) is equivalent in form to the SL(2)-Hitchin system. However, the boundary conditions we impose

around the punctures are different from the ones used in the usual analysis of the Hitchin system.
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comparing such reconstruction formulas we can relate the two formulations. Consider the

left and the right ALP associated with the Pohlmeyer reduction,(
d+BL

)
ψL = 0 ,

(
d+BR

)
ψR = 0 , (C.3.1)

and let ψL,R1 and ψL,R2 be two linearly independent solutions satisfying the normalization

conditions

det
(
ψL1 , ψ

L
2

)
= 1 , det

(
ψR1 , ψ

R
2

)
= 1 . (C.3.2)

Then, similarly to the sigma model case, the embedding coordinates Y can be reconstructed

by the formula

Y = q1 =

(
Z1 Z2

−Z̄2 Z̄1

)
=
(
ΨL
)t

ΨR , (C.3.3)

where ΨL,R are 2× 2 matrices with a unit determinant, defined by

ΨL ≡
(
ψL1 , ψ

L
2

)
, ΨR ≡

(
ψR1 , ψ

R
2

)
. (C.3.4)

Concerning the property under the global symmetry transformations, we should note the

following. Since the Pohlmeyer connections BL and BR in the equation (C.3.1) are invariant,

ΨL and ΨR must also be invariant under such transformations acting from left. However,

as for transformations from right, they may transform non-trivially. In fact, as we shall

see shortly, they must transform covariantly from right so that the solutions of the ALP

for the Pohlmeyer and the sigma model formulations are connected consistently by a gauge

transformation.

Furthermore, one can check that the quantities q2 and q3, which consist of the derivatives

of Y, can be reconstructed as

q2 =
(
ΨL
)t( 0 2

0 0

)
ΨR , q3 =

(
ΨL
)t( 0 0

2 0

)
ΨR . (C.3.5)

From these formulas the derivatives of Y can be obtained as

∂Y =

√
T

2

[
eiγq2 + e−iγq3

]
, ∂̄Y = −

√
T̄

2

[
e−iγq2 + eiγq3

]
. (C.3.6)

Note that, in distinction to the case of the sigma model, the reconstruction formulas for the

Pohlmeyer reduction does not use the eigenvectors of the monodromy matrices, namely ψ̂±.

The solutions ψL,Ri used are simply two linearly independent solutions to the ALP, which

are not necessarily the eigenvectors of Ω.
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C.3.2 Relation between the connections and the eigenvectors

We now discuss the relation between the connections and the eigenvectors of the the Pohlmeyer

reduction and those of the sigma model.

First consider the relation to the right connection of the sigma model. From the formulas

for ∂Y and ∂̄Y given in (C.3.6), we can form the right connection j as

jz =
√
T
(
ΨR
)−1

(
0 eiγ

e−iγ 0

)
ΨR , jz̄ = −

√
T̄
(
ΨR
)−1

(
0 e−iγ

eiγ 0

)
ΨR . (C.3.7)

Then, comparing (C.3.7) with (C.2.26)–(C.2.28), we find that the following gauge transfor-

mation connects the flat connections of the two formulations:

1

1− x
jz = G−1Bz(ζ)G + G−1∂G , (C.3.8)

1

1 + x
jz̄ = G−1Bz̄(ζ)G + G−1∂̄G , (C.3.9)

where

G = iσ2ΨR . (C.3.10)

The eigevectors ψ± of the sigma model formulation and those of the Pohlmeyer reduction,

denoted by ψ̂±, are related as

ψ± = G−1ψ̂± . (C.3.11)

Note that the factor of i in (C.3.10) is needed to reproduce the correct normalization

condition 〈ψ+ , ψ−〉 = 1. Under the global SU(2)R transformation UR, ψ± transform as

ψ± → U−1
R ψ±. From the above formulas (C.3.10) and (C.3.11) we see that this corresponds

to the transformation ΨR → ΨRUR, as remarked previously.

In an exactly similar manner, we can construct the left current l’s by

lz =
√
T
(
ΨL
)t( 0 eiγ

e−iγ 0

)[(
ΨL
)t]−1

, lz̄ = −
√
T̄
(
ΨL
)t( 0 e−iγ

eiγ 0

)[(
ΨL
)t]−1

,

(C.3.12)

Comparing (C.3.12) with (C.2.26)–(C.2.28), we find that the following gauge transformation

connects the two connections:

x

1− x
lz = G̃−1Bz(ζ)G̃ + G̃−1∂G̃ , (C.3.13)

− x

1 + x
lz̄ = G̃−1Bz(ζ)G̃ + G̃−1∂̄G̃ , (C.3.14)
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where

G̃ =
[
(ΨL)t(−iσ2)

]−1
= iΨLσ2 . (C.3.15)

The eigenvectors are related as

ψ̃± = G̃−1ψ̂± . (C.3.16)

Using (C.3.11) and (C.3.16), one can show the equivalence between the reconstruction for-

mulas (7.1.32), (7.1.33) and (C.3.3).

C.4 Exact solution describing a scattering of three spinning strings

in flat space and its action-angle variables

Construction of three-pronged solutions in (the subspace of) AdS5 × S5 is an important

challenging problem. As discussed in section 7.1.5, their analytic structure is expected to

be qualitatively quite different from that of the two-point solutions. To give support to this

observation, we present below an exact solution describing a scattering of three spinning

strings in flat space and analyze its local behavior. This confirms some important structures

concerning the action-angle variables.

A solution describing three interacting strings spinning in the x1-x2 plane is given by

Xµ = −i (kµ1 ln |z|+ kµ2 ln |z − 1|+ kµ3 ln |z −∞|) , µ 6= 1, 2 , (C.4.1)

X =
w3

2i
(z − z̄) , X̄ =

w1

2i

(
1

z
− 1

z̄

)
+
w2

2i

(
1

z − 1
− 1

z̄ − 1

)
. (C.4.2)

Here, as indicated, Xµ denotes the directions other than the plane of rotation, X and X̄

stand for X1 + iX2 and its complex conjugate respectively and the momentum vectors ~ki and

the parameters wi, which are related to the spins of the prongs, must satisfy the following

conservation laws and the on-shell conditions demanded by the Virasoro conditions:

~k1 + ~k2 + ~k3 = 0 , w1 + w2 = w3 ,

(~k1)2 + w1w3 = (~k2)2 + w2w3 = (~k3)2 + (w3)2 = 0 . (C.4.3)

Let us study its local behavior by focusing on the vicinity of the singularity z = 0. The

expansion around this point reads

X =
w3

2i
(z − z̄) , X̄ =

w1

2i

(
1

z
− 1

z̄

)
− w2

2i
(z − z̄) +O(|z|2) . (C.4.4)
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This should be compared with the well-known two-point spinning string solution of given by

X =
w

2i
(z − z̄) , X̄ =

w

2i

(
1

z
− 1

z̄

)
. (C.4.5)

There are two important differences to be noted. First, the Fourier coefficient in front of the

structure (z − z̄) and the one in front of (1/z − 1/z̄) are different in (C.4.4), while they are

the same in (C.4.5). Since the log of the ratio of such Fourier coefficients describes the shift

of the angle variable, this means that the presence of the other vertex operator generated a

shift of the angle variable in the case of the three-pronged solution. This type of phenomenon

was observed also in the case of a string in S3 analyzed in section 7.3. The second feature

is that for (C.4.4) there are an infinite number of additional Fourier modes excited in X̄

besides (1/z−1/z̄). However, since there are no corresponding modes in X, these additional

excitations do not contribute to the action variable, namely the spin, given by

S =
i

4πα′

∫ 2π

0

dσ(X ˙̄X − ẊX̄) . (C.4.6)

This means that the infinite number of action variables corresponding to such additional

Fourier modes must vanish. Therefore, the solution above embodies the general feature

expected of the solution for the higher-point functions. Namely, such a solution has (possibly

infinitely many) dynamical angle variables for which the conjugate action variables are zero,

in addition to those associated with the action variables which are finite. This suggests that

solutions for higher-point functions in S3 may be constructed also by introducing infinitely

many additional degenerate cuts on the spectral curve.

C.5 Details of the WKB expansion

In this appendix, we explain the details of the WKB expansion for the solutions to the ALP.

We will describe two approaches, each of which has its own merit. First in subsection C.5.1,

we will perform a direct expansion in the small parameter ζ, which is useful for clarifying

the general structure of the expansion. This method, however, turned out to be not quite

suitable for deriving the explicit formulas for the expansion of the Wronskians. Therefore, in

subsection C.5.2, we take a slightly different approach based on the Born series expansion.

This allows us to derive the expressions for the Wronskians up to the O(ζ1) terms with

relative ease, with the results given in (7.2.35), (7.2.36), (7.2.38) and (7.2.39).
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C.5.1 Direct expansion of the solutions to the ALP

In this subsection, we will perform a direct expansion of the ALP in the “diagonal gauge”

introduced in section 7.2.2. In this gauge the ALP equations become(
∂ +

1

ζ
Φd
z + Adz

)
ψ̂d = 0 ,

(
∂̄ + ζΦd

z̄ + Adz̄
)
ψ̂d = 0 . (C.5.1)

Denoting the components of ψ̂d as

ψ̂d ≡

(
ψ(1)

ψ(2)

)
, (C.5.2)

and substituting the expressions for Φd
z, A

d
z, etc. given in (7.2.33), the ALP equations above

take the form

∂ψ(1) +

√
T

2ζ
ψ(1) − ρ√

T
cot 2γψ(1) + i

(
ρ√
T
− ∂γ

)
ψ(2) = 0 , (C.5.3)

∂ψ(2) −
√
T

2ζ
ψ(2) +

ρ√
T

cot 2γψ(2) − i
(

ρ√
T

+ ∂γ

)
ψ(1) = 0 , (C.5.4)

and

∂̄ψ(1) − ζ
√
T̄ cos 2γ

2
ψ(1) − ρ̃√

T̄ sin 2γ
ψ(1) + i

√
T̄ sin 2γ

2
ψ(2) = 0 , (C.5.5)

∂̄ψ(2) + ζ

√
T̄ cos 2γ

2
ψ(2) +

ρ̃√
T̄ sin 2γ

ψ(2) − i
√
T̄ sin 2γ

2
ψ(1) = 0 . (C.5.6)

Let us examine the first two equations (C.5.3) and (C.5.4). To perform the WKB expan-

sion, it is useful to introduce a coordinate w defined by

dw =
√
Tdz . (C.5.7)

By this coordinate transformation we can absorb the factor
√
T and bring the equations to

the simplified form

∂wψ
(1) +

1

2ζ
ψ(1) − ρ

T
cot 2γψ(1) + i

( ρ
T
− ∂wγ

)
ψ(2) = 0 , (C.5.8)

∂wψ
(2) − 1

2ζ
ψ(2) +

ρ

T
cot 2γψ(2) − i

( ρ
T

+ ∂wγ
)
ψ(1) = 0 . (C.5.9)

Let us express ψ(2) in terms of ψ(1) using (C.5.8). We get

ψ(2) = −i
( ρ
T
− ∂wγ

)−1
[
∂wψ

(1) +

(
1

2ζ
− ρ

T
cos 2γ

)
ψ(1)

]
. (C.5.10)
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Substituting (C.5.10) into (C.5.9), we obtain a second order differential equation for ψ(1) of

the form

∂2
wψ

(1) − ∂w ln
( ρ
T
− ∂wγ

)
∂wψ

(1) − Aψ(1) = 0 , (C.5.11)

where A is given by

A =

(
1

2ζ
− ρ

T
cot 2γ

)2

+ ∂w

( ρ
T

cot 2γ
)

+ ∂w ln
( ρ
T
− ∂wγ

)( 1

2ζ
− ρ

T
cot 2γ

)
+ (∂wγ)2 −

( ρ
T

)2

. (C.5.12)

We now make the WKB expansion of ψ(1) in powers of ζ in the form,

ψ(1) =

√
ρ

T
− ∂wγ exp

[
W−1

ζ
+W0 + ζW1 + · · ·

]
, (C.5.13)

and substitute it into (C.5.11). Then, at order ζ−2, we get the equation

(∂wW−1)2 =
1

4
, (C.5.14)

with the solutions given by ∂wW−1 = ±1/2. At the next order, we get the equation

∂2
wW−1 + 2∂wW−1∂wW0 =

1

2
∂w ln

( ρ
T
− ∂wγ

)
− ρ

T
cot 2γ . (C.5.15)

From this ∂wW0 is determined as

∂wW0 = ±
[

1

2
∂w ln

( ρ
T
− ∂wγ

)
− ρ

T
cot 2γ

]
, (C.5.16)

where the plus sign is for ∂wW−1 = +1/2 and the minus sign is for ∂wW−1 = −1/2. Similarly,

we can determine ∂wW1 as

∂wW1 =±
[
(∂wγ)2 −

( ρ
T

)2

+ ∂w

( ρ
T

cot 2γ
)
− 1

2
∂2
w ln

( ρ
T
− ∂wγ

)]
− 1

2
∂2
w ln

( ρ
T
− ∂wγ

)
, (C.5.17)

where the choice of the sign should be the same as in (C.5.16). Continuing in this fashion

using (C.5.5) and (C.5.6), we can determine ∂̄W−1, ∂̄W0 and ∂̄W1 to be

∂̄W−1 = 0 , ∂̄W0 = ±
[

1

2
∂̄ ln

( ρ
T
− ∂wγ

)
− ρ̃√

T̄ sin 2γ

]
,

∂̄W1 = ±
[
η

2
− 1

2
∂̄∂w ln

( ρ
T
− ∂wγ

)]
− 1

2
∂̄∂w ln

( ρ
T
− ∂wγ

)
.

(C.5.18)
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The results obtained above can be reorganized into a compact form. In fact we can write

the expansion (C.5.13) as

ψ(1) = exp [Wodd +Weven] , (C.5.19)

where Wodd (resp. Weven) denotes terms which (do not) change sign under the sign-flip of

∂wW−1. Then, by substituting (C.5.19) into (C.5.11) and extracting the terms odd under

the above flip of sign, we can obtain the following simple equation expressing Weven in terms

of Wodd:

Weven = −1

2
ln ∂wWodd . (C.5.20)

As is clear from the analysis above, the WKB expansion of Wodd is given in terms of the

integrals of certain functions of the worldsheet variables, such as γ, ρ and ρ̃. On the other

hand, the even part Weven, which depends only on the derivatives of Wodd, is expressed purely

in terms of the local values of the worldsheet variables. With such classifications, we can

recast the WKB expansion of the two linearly independent solutions of the ALP into the

following form:

ψ̂d =

(
f

(1)
±

f
(2)
±

)
exp

(
±
∫ z

z0

WWKB(z, z̄; ζ)

)
. (C.5.21)

Here we renamed Wodd to WWKB and the functions f
(1)
± and f

(2)
± are defined in terms of W z

WKB

by

f
(1)
± ≡ kWKB =

√
ρ−
√
T∂γ

T W z
WKB

, (C.5.22)

f
(2)
± ≡

−i√
W z

WKB

[
±W z

WKB +

(√
T

2ζ
− ρ cos 2γ√

T
+
∂ ln kWKB

2

)]
. (C.5.23)

C.5.2 Born series expansion of the Wronskians

In this subsection, we will derive the explicit form of the expansion for the Wronskians up

to O(ζ1) using the Born series method, which turned out to be more convenient compared

to the direct expansion described above. In particular, with this method it is much easier

to take into account the normalization conditions of the eigenvectors i± given in (7.1.81).

Although the method has been described in Appendix B of [111], we will spell out the details

of the derivation since several additional considerations are necessary in our case.

To illustrate the basic idea, let us take the Wronskian 〈2+ , 1+〉 as an example and discuss

its expansion. To compute 〈2+ , 1+〉, we need to parallel-transport the eigenvector 1+, which
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is defined originally in the neighborhood of z1, to the neighborhood of z2 using the flat

connection and compute the Wronskian with 2+. In the diagonal gauge, this procedure can

be implemented in the following way:

〈2̂d+ , 1̂d+〉 = 〈2̂d+(z∗2) ,P exp

[
−
∫ 1

0

dt

(
1

ζ
H0(t) + V (t)

)]
1̂d+(z∗1)〉 . (C.5.24)

In this expression t parametrizes the curve joining z∗1 (at t = 0) and z∗2 (at t = 1) and H0

and V are defined in terms of the connection in the diagonal gauge, given in (7.2.33), as

H0(t) ≡ Φ̃z ż , V (t) ≡ Ãz ż + Ãz̄ ˙̄z + ζΦ̃z̄ ˙̄z , (C.5.25)

with ż and ˙̄z standing for dz/dt and dz̄/dt respectively. The equation (C.5.24) is similar in

form to the transition amplitude in quantum mechanics, where H0(t)/ζ is the unperturbed

Hamiltonian and V (t) is the time-dependent perturbation. Therefore we can derive the

expansion of (C.5.24) by applying the familiar Born series expansion.

As the first step toward this goal, let us determine the expansion of the “initial states”,

1̂d+(z∗1) and 2̂d+(z∗2). As explained in section 7.1.7, the eigenvectors can be well-approximated

near the puncture by those of the corresponding two-point functions. Thus, the expansion of

the initial states can be obtained from the explicit form of î2pt
± given in (7.1.83) and (7.1.84)

as

1̂d+(z∗1) ∼ 1̂2pt,d
+ =

(
O(ζ1)

1 +O(ζ2)

)
, 2̂d+(z∗2) ∼ 2̂2pt,d

+ =

(
1 +O(ζ2)

O(ζ1)

)
. (C.5.26)

Let us now study the leading terms (i.e. the O(V 0) terms) in the Born series expansion

of (C.5.24). They can be expressed as

1
(2)
+ (z∗1)2

(1)
+ (z∗2)〈e2|e−

∫ 1
0 H0dt/ζ |e2〉 − 1

(1)
+ (z∗1)2

(2)
+ (z∗2)〈e1|e−

∫ 1
0 H0dt/ζ |e1〉 , (C.5.27)

where |e1〉 and |e2〉 stand for the unit vectors

|e1〉 =

(
1

0

)
, |e2〉 =

(
0

1

)
, (C.5.28)

and i
(1)
± and i

(2)
± are the upper and the lower component of îd± respectively, which can be

expressed as

îd± = i
(1)
± |e1〉+ i

(2)
± |e2〉 . (C.5.29)

Using (C.5.26), we can evaluate the expression (C.5.27) explicitly as(
1 +O(ζ2)

)
exp

(∫
`12

1

ζ
$

)
−O(ζ2) exp

(
−
∫
`12

1

ζ
$

)
, (C.5.30)
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where `12 is the contour that connects z∗1 and z∗2 , defined in section 7.2.1. Note that the

second term in (C.5.30), which has an overall O(ζ2) factor can be safely neglected only

when Re
(∫

`12
$/ζ

)
is positive so that the exponential exp

(
−
∫
`12
$/ζ

)
becomes vanishingly

small. The positivity of Re
(∫

`12
$/ζ

)
is guaranteed when the following two conditions are

satisfied:

1. The eigenvectors, 1+ and 2+, are small solutions.

2. z1 and z2 are connected by a WKB curve z(s) defined to be satisfying the condition

Im

(√
T
dz

ds

)
= 0 , (C.5.31)

where s parameterizes the curves.

This can be deduced in the following way: First, from the definition (C.5.31), one can show

that the real part of the integral
∫
$/ζ monotonically increases or decreases along the WKB

curve. Second, when 1+ and 2+ are both small solutions, Re
(∫

$/ζ
)

increases as we move

away from z1 in the vicinity of z1 while it increases as we approach z2 in the vicinity of z2.

From these two observations, one can conclude that Re
(∫

`12
$/ζ

)
is positive when both

of the eigenvectors are small and the punctures are connected by a WKB curve. Actually,

in practice the second condition above is inessential. This is because all the punctures are

always connected with each other by WKB curves, except at discrete values of Arg (ζ), due

to the triangular inequalities, ∆i < ∆j + ∆k (or equivalently κi < κj +κk), which hold in all

the cases we study in the main text.

Let us now move on to the study of the O(V 1) contributions. When 1+ and 2+ are small

solutions, the O(V 1) terms in the Born series expansion are given by

− 1
(2)
+ (z∗1)2

(1)
+ (z∗2)

∫ 1

0

dt1〈e2|e−
∫ 1
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e2〉

− 1
(1)
+ (z∗1)2

(1)
+ (z∗2)

∫ 1

0

dt1〈e2|e−
∫ 1
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e1〉

+ 1
(2)
+ (z∗1)2

(2)
+ (z∗2)

∫ 1

0

dt1〈e1|e−
∫ 1
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e2〉 .

(C.5.32)

Note that we have omitted the terms of the form, 〈e1| ∗ |e1〉, since they are proportional to

the factor exp
(∫

`12
$/ζ

)
, which, as discussed above, is exponentially small when 1+ and 2+

are small solutions. Since |e1〉 and |e2〉 are the eigenvectors of H0, we can evaluate (C.5.32)
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as

− 1
(2)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)

∫ 1

0

dt1〈e2|V (t1)|e2〉

− 1
(1)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)

∫ 1

0

dt1〈e2|V (t1)|e1〉e−
∫ t1
0 $/ζ

+ 1
(2)
+ (z∗1)2

(2)
+ (z∗2)e

∫
`12

$/(2ζ)

∫ 1

0

dt1〈e1|V (t1)|e2〉e−
∫ 1
t1
$/ζ

.

(C.5.33)

In the limit ζ → 0, the integral over t1 in the second term will be exponentially suppressed

by the factor exp
(
−2
∫ t1

0
$/ζ

)
, except when the interval is short, i.e. 0 < t1 < O(ζ1). Thus,

to O(ζ1), one can take $ in
∫ t1

0
$/ζ to be constant and replace V (t1) with V (0). We can

thus approximate the second term in (C.5.33) as

−ζ 1
(1)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)〈e2|V (0)|e1〉
(√

T (z∗1) ż(t = 0)
)−1

. (C.5.34)

Since the factor 1
(1)
+ (z∗1) is of O(ζ1), (C.5.34) as a whole is of O(ζ2) and thus can be neglected

to the order of our approximation. Similarly, one can also show that the third term of (C.5.33)

is of O(ζ2). Thus, up to O(ζ1), the contribution comes only from the first term proportional

to

−e
∫
`12

$/(2ζ)

∫ 1

0

dt1〈e2|V (t1)|e2〉 . (C.5.35)

Lastly let us examine the O(V 2) terms. The only term which contributes at O(ζ1) is

1
(2)
+ (z∗1)2

(1)
+ (z∗2)

∫ 1

0

dt2

∫ t2

0

dt1〈e2|e−
∫ 1
t2
H0dt/ζV (t2)e−

∫ t2
t1
H0dt/ζV (t1)e−

∫ t1
0 H0dt/ζ |e2〉 . (C.5.36)

Inserting the identity 1 = |e1〉〈e1|+ |e2〉〈e2|, this quantity can be computed as

1
(2)
+ (z∗1)2

(1)
+ (z∗2)e

∫
`12

$/(2ζ)

(
1

2

[∫ 1

0

dt1〈e2|V (t1)|e2〉
]2

+

∫ 1

0

dt1

∫ t1

0

dt2e
−
∫ t1
t2
$/ζ〈e2|V (t1)|e1〉〈e1|V (t2)|e2〉

)
. (C.5.37)

As in the discussion of the O(V 1) terms, we can take $ in
∫ t1
t2
$/ζ to be constant and

replace V (t2) with V (t1) in the second term of (C.5.37), thanks to the suppression factor

exp
(
−
∫ t2
t1
$/ζ

)
. Then (C.5.37) can be evaluated as

e
∫
`12

$/(2ζ)

(
1

2

[∫ 1

0

dt1〈e2|V (t1)|e2〉
]2

+ ζ

∫ 1

0

dt1
〈e2|V (t1)|e1〉〈e1|V (t1)|e2〉

ż
√
T

)
. (C.5.38)
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Putting together the expressions (C.5.30), (C.5.35) and (C.5.38), we find that the result can

be grouped into an exponential in the following way:

〈2+ , 1+〉 ∼ exp

(
1

2ζ

∫
`12

$ −
∫ 1

0

dt〈e2|V (t)|e2〉+ ζ

∫ 1

0

dt1
〈e2|V (t)|e1〉〈e1|V (t)|e2〉

ż
√
T

)
.

(C.5.39)

Thus we have obtained the expansion of 〈2+ , 1+〉 to be given by

〈2+ , 1+〉 = exp

(
− 1

2ζ

∫
`21

$ −
∫
`21

α− ζ

2

∫
`21

η +O(ζ2)

)
, (C.5.40)

where the one-form α is given by

α = − ρ√
T

cot 2γdz − ρ̃√
T̄ sin 2γ

dz̄ . (C.5.41)

The expansion of other Wronskians can be worked out in a similar manner leading to (7.2.35)

and (7.2.36). Furthermore, we can apply the same argument to the expansion around ζ =∞
and obtain (7.2.38) and (7.2.39), where the one-form α̃ appearing in the O(ζ0) term is given

by

α̃ = − ρ√
T sin 2γ

dz − ρ̃√
T̄

cot 2γdz̄ . (C.5.42)

C.6 Shift of the angle variables under the global transformation

In this section, we will derive the formula which computes the shift of the angle variables

under the global transformation (7.3.5) and (7.3.6).

Let ψref
± (x; τ, σ) be the eigenvectors of the auxiliary linear problem for the reference solu-

tion Yref . The normalized Baker-Akhiezer vector href(x; τ) is proportional to ψref
+ (x; τ, σ = 0)

and satisfies the condition

n · href(x; τ) = n1h
ref
1 + n2h

ref
2 = 1 , (C.6.1)

n =

(
n1

n2

)
, href =

(
href

1

href
2

)
. (C.6.2)

Now, under the global transformation Y→ YV , href gets transformed into V −1href . How-

ever, in order to retain the normalization condition (C.6.2), we must rescale it appropriately.

This gives

h′(x; τ) =
1

f(x; τ)
V −1href(x; τ) , (C.6.3)
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where the rescaling factor f is given by

f(x; τ) = n ·
(
V −1href(x; τ)

)
. (C.6.4)

Hereafter, we shall suppress the τ -dependence as our focus will be on the behavior of functions

and differentials on the spectral curve parametrized by x.

Let the positions of the poles of href and h′ on the spectral curve be {γ1, γ2, . . . , γg+1} and

{γ′1, γ′2, . . . , γ′g+1} respectively3. Then, division by f must remove the poles {γ1, γ2, . . . , γg+1}
while creating the new poles {γ′1, γ′2, . . . , γ′g+1}. In other words, the divisor of f is given by

(f) =

g+1∑
i=1

(γ′i − γi) . (C.6.5)

A natural meromorphic differential which encodes this information is

$ = d(log f) =
df

f
. (C.6.6)

From (C.6.5) $ must have poles at γ′i and γi with residues 1 and −1 respectively. Besides,

$ may have a holomorphic part, which can be written as a linear combination of the basic

holomorphic differentials ωi for i = 1 ∼ g. They are assumed to be normalized in the usual

way, namely
∫
ai
ωj = δij,

∫
bi
ωj = Πij, where Πij is the period matrix. To express this

structure, let us introduce the basic abelian differential of the third kind ωPQ characterized

by the properties ∮
P

ωPQ = 1 ,

∮
Q

ωPQ = −1 ,

∮
ai

ωPQ = 0 . (C.6.7)

Then, $ can be written as

$ =

g+1∑
i=1

ωγ′iγi +

g∑
j=1

cjωj . (C.6.8)

The expansion coefficients cj are determined by the integrals of $ over the aj-cycles. As $

is a differential of a logarithmic function, the possible contribution must be of the form∫
aj

$ = 2πimj , mj ∈ Z . (C.6.9)

This gives cj = 2πimj. Next, consider the integrals of $ over the bk-cycles. Again the

possible structure is ∫
bk

$ = 2πink , nk ∈ Z . (C.6.10)

3 As the number of poles in the normalized eigenfunction is dictated by the Riemann-Hurwitz theorem,

it does not change under the global transformation. See [41] for details.
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From (C.6.8) we then get

g+1∑
i=1

∫
bk

ωγ′iγi = 2πink − 2πi

g∑
j=1

mjΠjk . (C.6.11)

Now by using a variant of the Riemann bilinear identity4, one can rewrite∫
bk

ωγ′iγi = 2πi

∫ γ′i

γi

ωk . (C.6.12)

Thus, (C.6.11) becomes

g+1∑
i=1

∫ γ′i

γi

ωk = nk −
g∑
j=1

mjΠjk . (C.6.13)

Now note that nk and mj are integers which take discrete values. On the other hand, the

LHS clearly vanishes continuously in the limit γi → γ′i. Hence, we should set nk = mj = 0

and conclude

g+1∑
i=1

∫ γ′i

γi

ωk = 0 , k = 1 ∼ g . (C.6.14)

What this means is that the angle variables conjugate to the filling fractions Sk, k = 1 ∼ g

do not change under the global transformation.

Therefore, the only angle variable left to be examined is the one associated with the

differential ω∞ ≡ 1
2πi
ω∞+∞− , namely the one conjugate to the charge R. We will denote it

by φR. This can be studied by considering the integral over the contour b∞ running from

∞− to ∞+. Repeating essentially the same argument made for bk, except for the evaluation

of
∫
b∞
$, we readily obtain

∫
b∞

$ = log

(
f(∞+)

f(∞−)

)
= 2πi

g+1∑
i=1

∫ γ′i

γi

ω∞ , (C.6.15)

where we used an identity similar to (C.6.12), namely5
∫
b∞
ωγ′iγi = 2πi

∫ γ′i
γi
ω∞ . Since the

RHS of (C.6.15) expresses the shift ∆φR multiplied by i (see (7.1.58)), we have an important

formula

∆φ∞ = −i log

(
f(∞+)

f(∞−)

)
. (C.6.16)

4See Corollary 2.42 of [41].
5See Proposition 2.43 of [41].
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This can be recognized as the generalization of the formula given in Proposition 8.13 of [41],

which was derived for the U(1)R part of the global transformation. Our master formula

above is valid for an arbitrary global symmetry transformation.

Now by expressing href as

href =
1

n · ψref
+

ψref
+ , (C.6.17)

and using the relation ψ+ = V −1ψref , it is straightforward to see that the equation (C.6.16)

is indeed the same as (7.3.5). By performing a similar analysis for the left sector, we can

also obtain (7.3.6).
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