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General Introduction

Quantum-mechanical properties of molecules are closely dependent on their electronic states.
In static problems, ab initio electronic state calculations [1] have been successfully applied
to accurately reproduce a wide variety of molecular properties including structure, thermo-
chemical and spectroscopic quantities. However, in dynamical problems where the Born-
Oppenheimer approximation [2] breaks down, static ab initio calculations are no longer suffi-
cient. Recent developments in laser techniques [3-8] have realized ultrafast intense laser pulse
with fs to sub-fs time duration, intensity exceeding 10 W/cm?, which reaches electronic
time scale and field strength exceeding that of a typical atomic Coulomb field. As a con-
sequence, there has been growing interest in chemical reactions under controlled pulse field
and real-time observation of electronic dynamics. These new types of experiments, which
have been renewing our understanding on chemical bond formation and possible engineer-
ing applications. Resolving highly nonadiabatic electronic dynamics taking place in these
experiments is hence one of the central tasks for theoretical study. This work is devoted for
developing theoretical foundation of electron nucleus coupled nonadiabatic dynamics from

modern standpoint as stated above.

Need for a new theory One may be skeptical of the need for ‘new’ theoreti-
cal approaches of quantum dynamics, which is perfectly described by the time-dependent
Schriédinger equation. Nevertheless we have two motivations to seek for an ‘improved’ the-
ory; (1) Needs for an appropriate representation for quantum-mechanical description of a
given phenomena : We have to seek for such representation that best describes the underly-
ing physics and most likely to contribute to our understanding. (2) Needs for an appropriate
computational method that compromises between the requirement of accuracy and currently
available resources: We have to find out such a numerical scheme that achieves requirements

within available resources. These points will be further specified in later discussion.

Formal description of nonadiabatic dynamics We start our discussion from the
formal theory of (non)adiabatic dynamics. The quantum-mechanical states of an electron-
nucleus coupled system can be described as

) = [ dRIR)|E: R) = [ dRIR) Y [0 s R)va (R (11)
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where |Q2)) represents the state of the whole system, | ¥ : R) is the electronic state projected on
the nuclear positional eigenstate |R) as |[¥ : R) = (R|Q2)) and the ath nuclear wave function
Xa(R) is the projection of | : R) onto the electronic state |®, : R). The Schrodinger
equation is given as
o 1 (Ao ?
ihxa(R,t) = [Ek: (_v’f —ihXF — Qc’“A>

2M, \ i +H§%(R)] xs(R) (1.2)

ap
Here M}, Q, and X* are the mass, charge and derivative coupling matrix!( (Xk)a 5= (P :
R|V¥|®5 : R) ) associated with the kth nucleus.

Static quantum-mechanical states of a molecule near its equilibrium configuration is in
many cases well-described using the static approximation on the nuclear degrees of freedom.
This approximation was derived by Born and Oppenheimer [2], based on the large mass
differences between an electron and a nucleus.

Under moderate conditions, the Born-Oppenheimer approximation can be extended to
the adiabatic approximation in explicitly time-dependent problems. The adiabatic approx-
imation reduces the original problem to an effective nuclear dynamical problem on a single
adiabatic electronic potential energy surface (PES). In such process, the electronic dynamics
does not take part in explicitly as it is fixed as electronic ground state. Dropping all but
a single state o in Eq. (1.2), the adiabatic dynamics is described by a single component

nuclear equation

2
ihY(R) = [2}; 2;@ <7ka _ QCkA) + 5a(R)] Y(R). (1.3)
In general, the validity condition for the adiabatic approximation is, for a set of adiabatic
states a and 3, AR - Xo5/(Ea — €5) < 1. The adiabatic approximation hence breaks down
in processes where the derivative coupling between a pair of states become non-negligible
compared to the difference of the corresponding adiabatic energies, which typically occurs in
the following situations; (1) two or more PESs avoid-cross or come close to each other (2)
the nuclear wavepacket velocity (in a semiclassical sense) is large (3) the system is exposed
in strong external perturbation. The resultant dynamics, which is referred to as nonadia-

batic dynamics, includes multiple PESs and non-trivial correlations (entanglements) between

electronic and nuclear states, as is seen in full-size expansion of Eq. (1.2).

! A practical method of analytical calculation of derivative couplings was established Ref. [22], which was
also reviewed in Ref. [89]. For completeness, essential points and related references are also reviewed in
Appendix E.



Here we further note that, in many cases in the field-free nonadiabatic dynamics, break-
down of the adiabatic approximation is actually limited in space and time, and the adiabatic
condition recovers in the asymptotic region. This is an implicit assumption in ‘non-’ adiabatic

dynamics.

Developments in the theory of nonadiabatic dynamics Study of nonadiabatic
dynamics dates back as early as 1932, when Landau [9] and Zener [10] (LZ) independently
derived the nonadiabatic transition probability in a linearized two-state model. It was soon
followed by more refined treatment by Stueckelberg [11] where he incorporated phase effects
arising from the curve-crossing and nuclear propagation between crossings (this is indeed a
large step forward from LZ’s treatment to incorporate electron-nucleus correlation within
one-dimensional model). The one-dimensional linearized curve-crossing problem thus estab-
lished was further studied until Zhu and Nakamura reached complete solution [12]. These
theories are remarkable in that it gives analytical solution, which includes a minimal number
of parameters in such a manner that elucidates the essential physics of nonadiabatic tran-
sitions 2. On the other hand, due to the drastic simplification in the model construction,
it certainly lacks quantitative accuracy when the results are compared to the experimental
observables. These are categorized as ‘classic’ approaches.

Modern approaches are contrasted with the ‘classic’ ones by intensive use of ab initio
calculations, which, within some limitations arise from finite-size numerical computation,
faithfully reproduce the true molecular properties such as the potential energy surfaces(PES)
and relevant matrix elements. Another important difference is the nuclear degrees of freedom,
which has much larger dimensionality and closely correlated to the electronic degrees of
freedom. Earlier works include surface hopping [13], classical mapping [14] and mean-field
approaches [15, 16]. Besides with refinement of the algorithm, these early version of methods
have been revised reflecting the progress in computational technology and the development
in the ab initio calculation techniques including efficient basis sets [17], refined post Hartree-
Fock calculation algorithms [18, 19], efficient analytical gradient methods [20]. Methods

that are favorably used in recent studies include the surface hopping [21], modern version

of semiclassical Ehrenfest theory (SET) [22], mean-field theory supplemented by “natural

2 For example, the exponential dependence on the system parameters of LZ formula reflects the fact that the
result is obtained by an asymptotic analysis rather than a perturbative analysis. The LZ exponent also has
correct limiting behavior both in the diabatic and the adiabatic limit.



decay” algorithm [23], spawning methods [24], branching algorithms [25].

Except for full-quantum approach, however, all these practical computational schemes
include a number of approximations and/or even some ‘prescriptions’, which have little jus-
tification except for numerical evidences. Additionally, many of these methods have been
designed to work best on field-free chemical reaction problems. In order to apply them to
unknown phenomena such as reactions in strong laser field, one has to at least re-examine
their validity from the first principle or even reformulate it so as to best-describe the under-
lying physics 3. We will thus going to seek for reformulation of nonadiabatic dynamics that

is appropriate for our needs in current view of interest.

Current state of the nonadiabatic dynamics In order to further clarify the re-
quirements for a “new” theory, we review the current state of this study field [26]. The scope
of nonadiabatic dynamics has much expanded from that in the early days. Dominant roles of
nonadiabatic transitions have been found in systems with vanishing level spacings including
metal surfaces [27], highly excited atomic/molecular states near continuums [28]. There have
also been renewed interests in its role in biological systems, chemical system with electronic
transfers [29] or nanoscale devices (in the form of inelastic tunneling) [30, 31]. Reviewing the
whole theory is thus far beyond our current scope. We therefore concentrate on our major

interest, dynamics in intense laser field and related phenomena.

Developments in the laser technology and nonadiabatic dynamics Dynamics
of our interest occurs in timescale shorter than relevant nuclear vibrational periods, which
typically range from 10° to 103fs. Such ultrafast dynamics has become direct observable
as the experimental probe realized sub-ps resolution [3]. Sub-ps pulse was achieved in mid
1970’s using mode-locked dye lasers [32], which was successively followed by achievements
of even shorter pulse of femto-second duration in 1980’s. Real-time spectroscopy of nuclear
wavepacket dynamics was pioneered by Zewail [3, 33, 34]. In Ref. [33], he established pump-
probe technique using the Nd:YAG-pumped pulsed dye amplifier and the molecular beam

technique to achieve real-time observation of slow wavepacket oscillation in Nal [33]. Here

3 Take, for example, the surface hopping algorithm [21] and consider its application to the field-induced
dynamics. The effectiveness of the stochastic approach is doubted when it is applied on the problem with
successive small bifurcations including their interferences. Moreover, the validity of stochastic hopping is
questioned when one is to calculate field-matter interaction including the quantum-mechanical phase. Use
of adiabatic basis may be inappropriate in quasiperiodic background.



the vibrational period of the excited state of Nal was around 1 ps whereas the pulse width
used for pump and probe was around 100 fs. The experiment has been a landmark in
the study of nonadiabatic dynamics in that it realized the first experimental observation
of the curve-crossing dynamics, which was the starting point in the theory of nonadiabatic
dynamics. Many theoretical calculations followed to reproduce the experimental results [35],
to predict details of outcomes such as angle-resolved dissociation probabilities [36]. Moreover,
it has been one of the strongest motivation for the development in advanced calculation
schemes [21, 22, 24].

Another important impact of the laser technology on atomic/molecular physics came from
its large field amplitude that is comparable to the intrinsic nuclear Coulomb field, which lead
to a variety of multiphoton effects. Multiphoton effects, which will be discussed in more detail
in PartIl, are first studied in the field of atomic physics. As the development of high-power
laser achieved intensity of ‘non-perturbative regime’, which is typically > 104 W /cm?, there
have been observed a number of multiphoton effects, including the above threshold ioniza-
tion (ATI) [37] and High-harmonic generation [38, 39]. It is also to be noted that in those
early days of the research, there have been important progress in the theory of multiphoton
ionization starting from Keldysh’s work [40-44]. From late 1980’s, study of high-field phe-
nomena has diverged to include molecules, where there have been found molecular analog
of ATT [45] and HHG [5, 46, 47]. Moreover, it has been found that the additional nuclear
degrees of freedom provides richer variety of physics including enhanced ionization [48, 49],
orientation effects [50], dissociation dynamics with bond softening [51-53]/hardening [54, 55],
Coulomb explosions [56-58]. These molecular multiphoton phenomena are characterized by
field-electron coupled states and nuclear dynamics driven by thus created unconventional
electronic states.

These effects clearly indicate the capacity of intense laser field of (a) inducing a high-
energy electronic response, HHG, which serves a time-resolved probe of dynamical electronic
states (b) inducing electronic dynamics that alters chemical bonds. Below we discuss these
two intriguing phenomena.

a. Probing the electronic dynamics through HHG
In order for a direct observation of time-dependent changes in the electronic state, one needs

resolution of 10°fs or even shorter? . Generation of pulses with sub-femto duration, which is

4 here we assume a typical value of level spacing is 107! eV or larger, which correspond to 40fs in the



shorter than a typical optical period of visible light (A = 780nm field of Ti:Sapphire laser has
T =~ 2.6fs), requires some sub-cycle mechanisms. High harmonic generation (HHG), whose
emission is restricted in a limited range of the (pumping) laser cycle [59, 60], is a source of
such short pulse. Isolated attosecond pulses are generated by restricting effective pumpings
to a single (or less) optical cycle. There have been developed several techniques to achieve
this to successfully generate pulses of duration 10%as [61] or less. However, due to the low
intensity of thus genrated pulse, attosecond pump-probe experiments have not been fully
established yet.

Another use of HHG is to directly extract electronic state informations on the source
molecules; its intensity profile (harmonic order dependence of intensity) and the recombina-
tion phase reflects the channel-dependent ionization potentials whereas the angular distribu-
tion reflects the distribution of the Dyson orbital in the source molecules. These points are
reviewed in Appendix A. Experimental measurement of these quantities was demonstrated
in Ref. [62] where they identified contributions from multiple ionization channels in the HHG
from a CO2 molecule. Reference [63] monitors the progress of a dissociation process in a
Bry molecule by observing the time-dependent interference pattern of HHG to probe the
internuclear distance dependent ionization potential. The advantages of HHG as a probe
of electronic state includes attosecond time-resolution, nanometer spatial resolution®, direct
relation to the electronic (Dyson) orbitals which includes potentially rich information such
as angular distribution. On the other hand, these experiments require a number of advanced
experimental techniques including phase measurement, and also theoretical calculations for
interpretation. The fact leaves possibility of wrong or biased interpretation, whereas, taken
optimistically, there are also possibility that advanced theoretical analysis may extract more
detailed information from these measurements.

b. Reaction engineering
The capacity of the high-intensity (typically > 10W/cm?), short pulse(~ 10%fs) field® on
changing chemical reaction has stimulated the study of reaction engineering [64-66]. Up to
date the most successful reaction control theory is the variational optimization theory pro-
posed by Rabitz and coworkers [66]. Their theory is distinguished from others in that they
oscillation period, and required the pulse duration to be an order or more shorter
5 90 th harmonic of a typical Ti:Sapphire laser has period 0.13 fs, wavelength 39 nm, whereas the de Brogile
wavelength of the corresponding colliding electron is around 4 Bohr.

6 the shortness of pulse, equal to or shorter than relevant nuclear vibration periods is again important to
produce some transient states like trapped state on an light-induced PES
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also propose a learning algorithm [67] to experimentally realize the optimization. Experi-
mental realization of their theory has achieved branching ratio control of field-dissociation of
inorganic/organic molecules [68-70] and induction of a rearrangement reaction (reaction to
yield CgH5CHs from CgH5;COCH3). Laser pulses used in these studies are Ti:Sapphire laser
pulses of A ~ 800nm, intensity around 10'3 to 104 W /cm?, pulse duration 60 to 100 fs with
optimized substructures.

These experiments are remarkable in that they actually demonstrated the reaction con-
trol, which otherwise had been highly hypothetical. Their current success partly owes to
independence on numerical calculations, which can be limited in accuracy. Instead, pulse
shapes are ‘automatically’ optimized using the feedback mechanism. On the other hand,
lack of theoretical reasoning leaves us a doubt in the “quality” of optimization in larger pa-
rameter space; there is little reason to believe the obtained pulse shape is still close to optimal
if the available parameter ranges were expanded, or more qualitatively different options, such
as the second laser field, were added. There need theoretical estimates for designing these
experimental settings before detailed optimization process. Establishing a method of such
estimate is one of the strongest motivation for this study.

Apart from Rabitz’s scheme, we also note on the work of Stolow [71], where he proposed
and demonstrated much simpler way of reaction control. His proposal, the dynamical Stark
control (DSC), controlles the shape of PESs and the velocity of the nuclear wavepacket at
the nonadiabatic crossing point to control the branching ratio. His theory was demonstrated
in field-dissociation experiment of IBr, which has two dissociation channels that couples
by spin-orbit (as well as the nonadiabatic) coupling but not by the direct dipole coupling.
Application of ‘control pulse’ achieved branching ratio control over several factors.

His study was carefully arranged so as to exclude direct contribution of dipole coupling.
The success of this control therefore suggest the importance of kinematic nonadiabatic cou-
pling in field-induced dissociation problems. However, it is more natural to consider that the
kinematic nonadiabatic coupling, which is undoubtedly key factor in field-free nonadiabatic
dynamics, may be of fundamental importance, even in dipole-coupled problems. We will later
consider fully nonadiabatic theory of laser-induced dynamics that incorporates field-induced
(dipole) transitions, nonadiabatic transition induced by nuclear motion, and nonadiabatic
transitions (among Floquet state) due to the change of laser parameters.

More recent attempts

Before concluding, we also note on more recent works on reaction engineering that uses
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carrier-envelope phase controlled few-cycle pulses. The mechanism of these experiments are,
according Ref. [72], high-energy electronic processes including recollisions and subsequent
double-ionizations. Although being intriguing as new methodology for reaction engineering,
we do not discuss them further as it is beyond our current scope. This work concentrates

longer timescale dynamics that extends over several cycles or more.

Scope and organization of this work From above observations on the new trends
in the study of nonadiabatic electron-nucleus coupled dynamics, we saw following require-
ments for new theoretical approach.

(i) Accurate reproduction of quantum-mechanical electron (or electron-field coupled) dynam-
ics : In the new types of dynamics including field-induced ones, unconventional dynamical
electronic states play key roles. Quantum-mechanically accurate description of electron dy-
namics, free of empirical prescriptions, is therefore indispensable for analysis.

(ii) Appropriate description of nuclear dynamics that couples to the electronic dynamics :
Nuclear dynamics should correctly reflect the above-calculated electronic state. It should
also correctly reproduce possible bifurcations in the electronic state.

(iii) Applicability to a certain variety of molecules : In order to deduce chemically meaningful
results, its applicability should not be limited to the simplest molecules, but should include
diatomics with different types of bond properties (ionic or covalent) and those with higher
degrees of freedom; triatomics or more.

(iv) Clear description of the underlying physics : It should provide clear insights into the
underlying physics that was not obtained in other approaches.

We hence start from reconstruction ( re-derivation starting from exact quantum-mechanical
theory ) of the mixed quantum-classical (MQC) formulation of nonadiabatic dynamical the-
ory. We then discuss several key problems arising from quantum-classical conflict including
wavepacket bifurcation. In doing so, we also seek for a practical implementation or numerical
computation method of such theory. We next apply it to the field-induced dynamics, and
develop a Floquet-based analysis that would provide accurate as well as conceptually clear
description of the phenomena. We also show some numerical results in order to show accu-
racy of the theory in simple problems where accurate results are available through quantum
wavepacket method. Application of thus established theory to larger size molecules (with
different implementation) is also discussed but much is left for future work.

This work consists of two parts. We work on the reconstructing the mixed quantum
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classical formulation in Part I and its application to the laser-induced dissociation problem

in Part II. Each part is self-contained with brief introduction and concluding remarks.

APPENDIX A: DERIVATION OF RELEVAMT QUANTITIES FOR
INTERPRETATION OF HHG EXPERIMENTS

Representation of (1;N-1) system We first neglect double or more ionizations. Then

all N particle electronic states can be expanded using N — 1 particle bound state as
@) = IR @a)) (A1)

where @, represents N — 1 particle electronic bound state (ionic state), |[-,]) represents
antisymmetrized electronic state, whereas ft(a) represents single particle states subject to

|2 = 1, the associated single particle wavefunctions are denoted as

normalization ) || f;
fi(r) and are subject to Y, [ d®r|fi(r)|*> = 1. In order for the expansion to be unique, we
first define a set of bound-state orbitals B = {¢y}x=1,...,1 with their associated annihilation
operators {¢;}r—1,.. 1 and assume that the N — 1 particle bound states can be expanded by
the Slater determinants {S,}, [Sq) = éLN_l...éal |0) where aq, ...,an—1 is aligned in increasing
order. Any N particle state that consist of N —1 those orbitals and one more (not necessarily

bound) orbital is then uniquely identified in the form of Eq. (A.1) by choosing the first
component, ft(a) to be either orthogonal to all B or those with the largest index (i.e. HOMO).

Single-particle reduced Schrédinger Equation The Schrodinger equation
iho | W) = H|Wy) (A.2)

is then converted into an effective single-particle equation by applying (¥ @b\z/;(r) from the
left, where 9 (r) is the electronic annihilation operator and (P®,| is a N — 1 particle state
obtained from the Slater determinant expansion of state (®,| = >, (Sk|C¥, by replacing each

Sk by (S| = (0] [TT3Y (1 - nj)} Coy g orrCioy_ ;. We then have

ind f" (r) = (P b () H S |1, @a)). (A.3)
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In order to obtain intuitive understanding, we show its orbital expansion assuming that each

state consist of a single Slater determinant: ®; ~ .Sj.

0 (r) = (81 + b+ Wit () 10 @) + (1= 0)(S3lh1S) SO ()

+ ) ha (Spl[F1Y, Sa™]) + > (SulhI[f1Y), Sa™]) b, (r) + R (A.4)
k k

where £ is the single-electron term in the electronic Hamiltonian; b = E—EA—M‘E—FU (r) with
U(r) being the nuclear Coulomb potential, &~ = (Sy|H|S;) is the ionic energy, W (r) is
the Hartree-Fock potential of the ionic state b and the rest of off-diagonal electronic repulsion
terms are represented as R®. Each term in Eq. (A.4) hence has the following meaning; The
second term represents ionic excitation.

The third term represents the exchange contribution of single-particle operator fz, which
becomes large if (f¢ is ond of the bound state orbital and) |[f(®), Séa’“b equals |Sp), which is
important for the ionization of inner orbital ay.

The fourth term also represents the exchange contribution, which becomes large if SC\L% equals

N — 2 of Sy, important for recombination of f to inner orbital.

Tunneling problem We next restrict Eq. (A.3) to single channel and derive tunneling

solution. The effective single-particle equation is rewritten as
. ® /oy _ [eN-1 | 3 bb (b)
ihdfy " (x) = |&' " + h+ Wik(r)| f;7(r) (A.5)

The tunneling amplitude to a final state outside the potential barrier with momentum #hk is

derived, using the first order perturbation expansion of path-integral,
1 ;
ft(b)(p) = /dSreZk'rih/dt//dgrlexp[;S(O)(r,t; v OV (e, P () (A.6)

where we take the starting point r’ inside deep in the barrier where the atomic potential is neg-

ligible compared to the field. Within the weak field approximation, u(®) (r,t') ~ u(® (r)e_igt// h

where u(®) (r) constitutes a bound state and ¢ is the minus of ionization potential in this chan-

nel. Here we take the radiation gauge; h = (p -1 )2, and the zeroth order propagator

q

1

2m
’ i [t 1 (p—1a 2 .

(=)= Jrdram (P—2A5)" e stationary phase

exp [%5(0) (r,t; r’,t’)} is expanded as fdpeip'

condition r gives p = hk, while that for ¢ gives

o (p-as) =c (A7)
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which fixes the starting time ¢ = L arcsinh(y — in) where v = \/2m|€]ﬁ and n =
hk./(qA/c), which is assumed to be small 7 < 1. The exponential damping factor is given as

% [(ﬁpi + le| + Up) arcsinh(y) — Upyv/1+ v+ Upnw/+/1 + 'yﬂ. which gives exponential

dependence on the channel-dependent ionization potential |e| = I,S”).

Recollision and recombination phase We temporarily neglect inter-channel terms

and rewrite the Schrodinger equation as
inf = [Vt +h] £ (A8)
expanding the single electron wavefunction as
/ Pr(r|m)ar + Y (r|bi)e; (A.9)
i

where 7 is meant to represent ‘kinetic momentum’ in the dipole gauge, ket |7) represents the
momentum eigenstate ((r|mw) = ﬁe”'r/ﬁ), whereas |b;) is the ith bound state, and {ax},
{¢;} are the continuum state and the bound-state expansion coefficients, respectively. The
Fourier transformation of single particle Schrédinger equation becomes
ility = [gng + %wQ — ihgF - 8} ax — Y _(m|plbi) - Frei (A.10)
m or

2

ihc'i = |:(5év_1 + 51') (Sij — M5 - Ft} Cj — /d3ﬂl<i’ulﬂl)aﬂ/ . Ft (A.ll)

If the ground state depletion is negligible, we can assume the ground state coefficient to be

unity ¢;(0) = d;0 at time ¢ = 0 and use the first order perturbative expansion to obtain

an(t) = /O t dt'_(’”’“;;(’) P o [_; /t t dT{(p el /2m}] expl—reot] (A1)

where p = m; + %At is the canonical momentum. The recombination matrix element is thus

obtained as

o= [ & [Catluip— Lane [ [l (p-1a.)" 2m -]

1 q
—(p— ~Au| — plby) - Fy. A.13
X Z.h(p . | — mlbo) - Fy ( )

here the single-particle energy &g is to be understood as the minus of the ionization potential
IZ(;b) of channel b. The stationary phase approximation on p gives ftf dr (p — %AT) /m =0,
which means that the classical returning at time ¢. Taking account of the fact (p — 2Ay| —

w|bo) takes nonzero value at p — %At/ = 0, the classical returning condition is to be solved
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with the initial condition p — 2Ay = 0 to give recombination time t,(t'). The recombination
phase in this approximation —% f;} dT{(p - %AT)2 /2m + I;()b)} depends on the ionization
potential as I]E,b) (t.(t') —t).
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Part 1
Mixed quantum classical representation of
electron-nucleus coupled nonadiabatic

dynamics
1. INTRODUCTION

In Part I, we reformulate electron-nucleus coupled nonadiabatic dynamics with special em-
phasis on the mixed quantum-classical representation. The mixed quantum-classical (MQC)
approximation refers to the approximation of quantum dynamics where the fast (electronic)
dynamical variables are treated in the quantum mechanical manner while the slow (nuclear)
ones are treated in a trajectory-type approximation. The most remarkable virtue of this
approximation is its low computational cost. Rough estimate of required memory gives,
[H]f;l L]} x Ny for the full quantum (FQ) calculations, f*+ Ny for a ‘typical’ semiclassical
(SC) calculations and f + Ny for the MQC approximation, where f, Ny, and L; denotes the
number of independent nuclear degrees of freedom, the electronic Hilbert space dimension,
and the number of spatial grid in the jth spatial direction, whereas o denotes a methodology-
dependent exponent 7 It also follows from the point-like treatment that one does not need
the knowledge of global potential energy surface (PES) and the electronic matrix elements in
advance of the calculation; one can instead perform on-the-fly calculations at each timeslice
during the calculation. Such drastic reduction of computational cost makes it a virtually
indispensable technique for calculations of large molecular systems.

On the other hand, there are a number of difficulties arising from the contradicting nature
of quantum and classical mechanics. The most obvious ones being the absence of purely
quantum mechanical effects such as tunneling and interference effects, which we consider as
unavoidable and will not discuss further. There still remains a number of controversial points
in its implementation which severely affects the outcomes. Among all, we concentrate our

discussions on the following two difficulties.

7 Multiplication factors are ignored. In fact classical and semiclassical calculations often require a large
number of sampling over initial conditions. Possible wavepacket branching would also increase the cost by
a multiplication factor
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(1) Derivation of an effective nuclear dynamics in the presence of multiple
interacting PESs : If one introduces the adiabatic approximation, there remains only a
single PES, and the problem is trivially resolved ; the effective nuclear dynamics should be
the Newtonian dynamics driven by the gradient of PES.

The problem is no longer trivial in the presence of multiple adiabatic states; the Semiclas-
sical Ehrenfest theory (SET) derives an effective force as the electronic wavepacket average
of the Helmann-Feynmann force, F = (1;| — VH®¢|¢);) (hereafter referred to as the ”state-
averaged force”, whereas the surface hopping algorithms use the gradient force of a single
PES but introduces stochastic hopping across multiple PESs.

In a typical scattering or reaction problem, the state-average approach becomes clearly
unphysical when the system evolves into the asymptotic region. The hopping approach, on
the other hand, has to introduce effective stochastic transitions that apparently contradicts
the quantum-mechanical principle. It also has to introduce discontinuous change of momen-
tum at each hop so as to conserve energy of the whole state. There are also variants of
SET where correlation between the different asymptotic states are forced to diminish at the
end [23, 73, 74], however, there need some artificial “decoherence” terms which are absent in
the original Hamiltonian. For later convenience, those include “decoherence” terms are here-
after referred to as natural decay of mixing (NDM) approaches, although there are several
versions of this type of approaches.

(2) Classical representation of quantum-mechanical wavepacket bifurcations:
As for this problem, SET gives no answer as it keeps single nuclear trajectory, whereas surface
hop and NDM gives an effective representation within their own algorithm. Neither of them,
however, deal with quantum mechanical bifurcation of nuclear wavepackets; the surface hop
converts the problem to a semiclassical stochastic one which somewhat gives a reasonable
solution to the original problem through ensemble average, whereas NDM introduces an ar-
tificial term of ‘decoherence’, which does not exist in the original Hamiltonian, and eliminate
‘undesired’ components.

These difficulties are also characteristic to nonadiabatic dynamics as it does not arise in
the adiabatic dynamics. In order to discuss them on the firm ground, we reformulate the
MQC representation of electron-nucleus coupled dynamics from the first principle quantum

mechanical path integral.



18
2. FORMULATION

Notation: In Part I, we consider an electron-nucleus coupled system with N,, nuclei
and N, electrons. The mass, coordinate, and charge of the jth nucleus is denoted as Mj, R/
and @, respectively. Each component of R/ is denoted as RU% where a denotes either of
three dimensional component, a € {x,y, z}. We also use Greek indices to represent combined
indices in the sense p = (j,a). The electronic state is expanded in R-dependent N, body

electronic basis set {|¢, : R)} which satisfies the orthonormal condition (¢, : R|¢p : R) = d4p.

2-1. Formulation of MQC path integral

A path integral formulation of coupled slow and fast dynamical variables was established
by Pechukas[75]. One of the greatest feature of his formalism is that a classical-like equation
of motion can be derived in a systematic manner from the exact quantum-mechanical descrip-
tion. The resultant equation of motion is NOT an Ehrenfest-type dynamics driven by some
expectation value of the quantum system, but reflects quantum mechanical entanglement,
which is just what we are interested in. On the other hand, Pechukas did not give an explicit
expression of the electronic path integral, whereas we need an electronic equation of motion
including the nonadiabatic coupling terms. We resolve this problem using the coherent state
representation [76, 77]. Another missing point in this formulation is that he did not show
higher order expansion over the stationary phase approximation (SPA). The point will be

discussed separately in Sec. 6.

i. Integration by step

We consider the transition amplitude of the system from a state {R;,§;(R;)} at time ¢;

to a state {Rys,{¢(Ry)} at time ty. We discretize the time interval ¢; to ¢y into N equally

spaced time slices. Each time interval is € = b X,ti, N + 1 time points are denoted as {t,},

with ¢, = t; + en. The nuclear coordinate at each time point ¢, is denoted as R,,, which

satisfies, on either of the boundaries, Rg = R; and Ry = Ry, respectively. The propagator
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for the total system is represented, up to the first order in ¢, as
KRy, §r(Ry), trs Riy &i(Ry), i)

:/dRN_ldRN_g--- dR1D D ) ) (&5 Rylgay - Ruv)

aN anN-—1 ai ag
N-1 _
< T (Rjs1](baypr : Rysale 7 |ga, - Rj)|R;) (Gao : Rolé : Ra). (2.1)
j=0
This expression is equivalent in the sense of the path integration to

KRy, & (Ry), tr; Ry, §i(Ry), 1)

=/dRN1-~ AR S S SO es  Rylday : Rv){oay : Roléi : Ry)

aN aN—1 ar  ap

N-1 . J J\2
¢ Mj(Rn+1 - R3) —1eH (R,
X nl_[o exp ﬁ ; % - Unuc(Rn)E <¢an+1 : Rn—i—l‘e h ( )‘(ban : Rn> )

(2.2)

which is further rewritten as
KRy, E(Ry), tr; Ry, &i(Ry), 1)

N—-1 . .
= / I R exp |:’Z:LSnuC({R}) + %Seff R} : & (Ry), s &Gi(Re), 4 | (2.3)

n=1
where the nuclear coordinate integrals f dRy_1dRyN_2--- dR; is to be performed with an
appropriate normalization factor in what follows. Details of the Trotter decomposition in Eq.

(2.1) is summarized in Appendix A. The nuclear action Sy, ({R}) in Eq. (2.3) is defined as

Mj (RZH-l - R%)z

Snuc ({R}) - Z Z % — Unuc(Rn)E . (24)
n J
The effective action Serr ({R} : &r(Ry), tr;&(Ry),t;) arising from the electronic part is de-
fined as
h €
Serr ({R}: &r(Ry), tr: &Gi(RG), 1) = Jnk "R} : & (Ry), ty; &i(Ra), ), (2.5)

where the electronic propagator K¢ is defined as

KAARY - & Ry) i &Gi(R) 1) =D > D> (&5 : Rylday : Ruv)
Vot i | N aGN-—-1 1 0
% | T Ganer * Rule 5 @ Ry} | (da, : Roléi : Ra). (2.6)

n=0
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In the next step, rather than directly evaluating the path integral itself, we derive the equation
of motion of the most probable path using the stationary phase approximation. In this
course, we will further have to write down the path integral in an appropriate manner for
our purpose. This is because the result of such stationary phase approximation does depend

on the representation, even though the exact result would be independent of representation.

1.  The electronic path integral

The electronic path integral is expanded in the Hilbert space of electronic many-body
states dependent on the nuclear configuration. This choice of representation, which is never
an only choice[78], matches the (configuration interaction (CI) theory of) current ab initio
electronic state calculation, and crucial for deriving an electronic time evolution which is exact
within this calculation. We first consider general properties of the path-integral expanded on
the nuclear-configuration dependent basis, then we introduce the coherent state expansion
in order to write down the action in the coefficient space.

Evaluation of overlaps

We expand Eq. (2.6) up to the first order in time interval e. Since it includes the electronic
matrix elements between the state vectors of two different nuclear configurations R, the
overlap products, expanded up to the second order in nuclear coordinate difference R,,+1—R,,,

becomes
<¢a : Rn+1’¢b : Rn) = 5a,b - Z(RZ-H - RZ)XéLb(Rn+1/2)
“w
1 v v v
t3 Z(RZH — RN)(Ry 1 — RV (Rga2)- (2.7)
v

Here we have introduced the first and the second order derivative coupling matrices X* and

VY whose matrix elements are defined as

Oy

and

1 82¢a a¢a a¢b

HYR)==-(( —2—:R|¢p:R ) — 'R g
VHR) =g << oriore R > <8Ru ’8RV >
0¢q ) Oy
— R|—: R e . R|l——— : R . 2.

<8Rl’ DR > * <¢ ‘8R#8RV (29)

We have also introduced the notation R,, /o in Eq. (2.7), which denotes the middle point of
Rn + Rn+1

R, and Ry, 41, that is, Ry, 10 = . Nuclear coordinate derivatives that arise from

2
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overlaps of electronic brakets belonging to different nuclear coordinates, R, 1 and R,,, are
to be evaluated at the ‘mid-point’ Ry, 1 1/5. This rule is widely referred to as ‘mid-point rule’
[79], and we adopt it in what follows unless otherwise noted. For notational convenience,
we also use three-component (x, y, z) vector notation for X, X,(R) = (¢, : R|V?|¢y : R),
and three-component summed-up form of ), defined as J/(R) = Za:x,y,z y(j’a)’(j’a)(R).
Symbols with a hat denote the ‘operator forms’ of the corresponding quantities in the manner
O(R) = > ap |Pa : R)Oa(R)(¢p : R, where O is either V¥, X*, or V7. Derivation of Eq.
(2.9) is given in Appendix B.

We then make several assumptions on nuclear paths so that we can identify the terms that
contribute to the first order in e. (i) In discretized representation of paths {R}, |Ry+1 — Ry
is an O(e) quantity, and |R,41 + Rpn_1 — 2R,| is an O(e?) quantity. (ii) Each point R, in
discretized paths is to be integrated with an appropriate Gaussian kernel. We assume, up to
the first order in €, that

i i - iR
/ dRy_; - - dRyerSmue (R — RGO (RKD _ pk0)) — j,k(sa,b% for V. (2.10)

n
J
These assumptions are satisfied if the nuclear action of the system is given as Eq. (2.4). We

thus obtain, up to the first order in e,

<¢an+1: Royile” rene! Rn)‘¢an- R,)

e ;
= exp (-hEHaanrhan n) + Z ER‘LTLLX'U(Rn—i—l/Q)
W

1
+5 D (B — R)(Ry — RZ)y“’”(RnH/z)) ; (2.11)

where Rﬁe = Rgﬂ — RE.

Coherent state path integral

Here we discuss the path integral in coefficient space; the electronic degrees of freedom is
represented by coefficients over a specific many-body basis set. We denote the Ith base state
by |I : R), which satisfies the orthonormal condition (I : R|J : R) = d;;. The coherent state

is then defined as its superposition
R)=> &|l:R), (2.12)
I

which is NOT normalized. For later convenience, we also introduce an normalized notation

lc:R) =), ¢cr|] : R), where ¢; = ¢1/+/>_; |es|?. The closure is given as

1—/d “1le: R){(¢: R]. (2.13)



22

where the integration [ d[¢,¢*] is defined as

~ ,,,* & ddldgl _ EJ2
/d / 11 ¢ 2y 1el (2.14)
oo

where a! and b are real and imaginary degrees of freedom of & defined as a! = %(El + &)
and b! = 2\1/5(4 &), respectively.
With this set of bases, the electronic propagator becomes
KR} : &6(Ry) b1 &(Ry) 1) =
X /d[éN,é}kVKff : Rf|5N : Rf>d[50,56]<50 : Rl|fl : Rl>
il el
H (60, & ](Ens : Rugale  #H ®n)jz  R,,). (2.15)
n=1

Applying the same procedure as we derived Eq. (2.11), we obtain
KYERY : &5 (Ry), tr; &i(Ra), 1)

:/(d[CN7CN]<CN RN‘CN RN fo CN) (d[CO,CO]<CQ R()‘C() RO Zéé(* i )

N-1

I - i . e
X H d[Cn,](Cn : RylCn : Ry)exp 7 Z (zhcnﬂ_l(cf;_,_l — Yoy — el (Hel( n)17€ — ithRy, - X e
n=1 1,J

SR~ REY(RY - R,’;)J}?f) c;{> | (2.16)
wv
In what follows, the integral measure d [¢,, ¢:](¢, : Ry|G, ¢ Ry,) is simply denoted as d [¢,, ¢

by a redefinition of the notation. We also simplify the notation |¢: R) as |c: R).

The electronic equation of Motion Differentiation of Eq. (2.16) with respect to

cil | gives the stationary phase condition for the electronic state as

. e it th y 5 y
Zﬁc{z = z (’H l(Rn)]J —ihR,, - X175 + 5 Z(RZ—H — REN( 1l — Rn)yi’] > c;{“ (2.17)

J %
with ¢he = ¢l 11— c! in the discretized notation.

The last term in Eq. (2.17) has a subtle effect; although it is of the second order in nuclear
displacement, if we perform the path integral of the nuclear coordinates, or apply the steepest
descent method, it yields a contribution of an order O(e) as in Eq. (2.10). The physical
origin of this O(e) contribution is the quantal fluctuation of nuclear coordinates. If we apply

the stationary phase approximation for the nuclear degrees of freedom in the same level of
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approximation, the last term in Eq. (2.17), that is, 2 S (B — Ru) (R — RY)YYY s

replaced with > y 2?\2 y}' J8 , and thus we obtain

. L 22
ihéf, = (MY (Ry)rs — iRy - Xpy =) 5N Vi)e. (2.18)
J J
It is interesting that the term y}' 7 in Eq. (2.18), defined in Eq. (2.9) is manifestly Hermitian,
where the derivatives are evaluated at the mid-point R,, /2. A less symmetric expression is
obtained through ‘end-point’ derivative as
2
W i

J
TMJYU)C (2.19)

no

ih¢), =Y (HYRy) 1y — ihRy, - Xy — Y
J J

with
j 0?
YVij=(1:R ZaR(j,a)2

The last term in Eq. (2.19) is the same as the second order derivative coupling YIkJ in Eq.

J: R> . (2.20)

(8) of Ref. [82]. (More precisely, our YIJJ corresponds to the sum of Y}/, of Ref. [82] over
all the coordinate indices k that belong to the jth nucleus.) Apparent non-Hermicity of this
matrix; YIJJ =+ le* will be discussed in the Appendix C. The effect of this second order
derivative coupling is in fact not thoroughly discussed; the diagonal elements (in terms of
the adiabatic representation) of Y7 have been known as an energy correction arising from
the non-Born-Oppenheimer effect [83], however, the (nonadiabatic) effects of the off-diagonal
elements are not well known and are often dropped in practical calculations[21-23].

Basis set appropriate for nonadiabatic dynamical calculations

Although discussions in this section do not depend on the choice of basis set, a set of config-
uration state functions (CSF) basis may be one of the best choices. CSF-based nonadiabatic
dynamical calculations was studied in Ref. [22], where they have established several core
computational techniques including calculation of derivative coupling matrix elements and
methodology for keeping smooth ‘connection’ of basis sets over adjacent timesteps. Then it
has been confirmed, through many subsequent applications of these techniques [80], that
the CSF-based derivative couplings often behaves moderately (almost free of singularity) as

functions of nuclear configuration R. This is in contrast to the adiabatic-based counterpart,

8 In our formulation, the path integrations over the nuclear coordinates have to be performed after the
p,v

electronic path integrals. Thus, strictly speaking, the replacement of %L X:HW(RZ+1 —RE)(Rhy1— RV

to Zj %Zy}, effectively violates the order. Nevertheless, we adopt Eq. (2.18) on the ground that it gives
physically reasonable equations of motion.
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which often become large near the avoided crossings. Absence of singularity is particularly
important in numerical calculations. Although there is no general proof that the CSF basis
is an approximate diabatic basis, there are several reasons to expect this. In diatomics, for
example, in small nuclear separation, where correlation effects are small, the ground state
is well-approximated by a single Slater determinant, whereas in larger nuclear separation,
the adiabatic state becomes a superposition of CSF's reflecting the correlation effects. Then
it is the coordinate derivative of these coefficients, rather than the derivative of CSFs that

exhibit singular behavior near the avoided-crossings.

1. The nuclear path integral

Having formulated the electronic path integral, we can now evaluate the nuclear path
integral using Seyy = %ln K¢, We seek for the stationary phase condition with respect to
RY as

0
87}2;7: (Snuc[{R}] + Seff[{R}])
= -MR! 9 (u P KR < (R, by 6 (R), ¢
= - HG_TR% nuce_;n ({ }éf( f)a fafz( i)7 2)
=0, (2.21)
where

Rte* =Rh .+ RE_| —2RE. (2.22)

Thus we obtain the equation of motion for nuclei as

0 .
Unue + ‘7:7(57 )’[ff(Rf),tf;fi(Ri),ti}‘ (2.23)

MJ’R%]VG) = _8R% nuc

The quantity F in this expression is defined as

0 h o
frlf“gf(Rf)’tf;si(Ri)vti] = —6R¢: (—itf In K l({R} : ff(Rf)v tf§ fz(Rz)v tz))

= (ensr : Rual Fillen s R, ) sy (2:24)

where the operator FE is defined as

0

Fl=HNRp) X! — XU (Ry) = > | - Rp) o (1 R, |H(RL)[JT : Ry){(J : Ry
1,J "
e . OXV  OXH
. 14 LYV _ YVYU . v _
L AC O D )+¥th (3 — 32" (2.25)
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Here we have introduced an ‘expectation value over an electronic path’, which is defined, for

an arbitrary operator A as

_ 1
A ERNL] = d A 'R 'R
4040 = R G Ry GR 1 N le )
N-1
[T {aleecilers : Reple i ®jq, : Ry}
l=n+1

i

X d [cp, cr]{Cny1 Rn+1|6_ﬁ€Hel(R”)A|0n ‘Ry)
n—1 ]

<11 {d[ce,CWCZH { Ry |e# B, Ré>} x {co : Rol&; : Ri), (2.26)
=0

where rather lengthy subscripts represents the path, and recalls that the value is dependent
on the electronic as well as nuclear time evolution.
If we restrict the nuclear coordinate to be real, ‘F#’[éf(Rf),tf;éi(Ri),tJ in Eq. (2.23) should

be replaced by its real part

f#’[ﬁf(Rf):tﬁﬁi(Ri),tJ = Re <Cn+1 : Rn+1|ﬁ#|cn : Rn>[§f(Rf),tf§§i(Ri),t¢}‘ (2.27)

Equation (2.23) using the force in Eq. (2.27), which will be referred to as ‘Pechukas Force’,
is equivalent to Pechukas’ result. Restriction to real part is discussed in Appendix D

The operator F is referred to as ‘Force Matrix’ in what follows. It is equivalent to the
operator form of the force matrix formerly defined in Eq. (28) of Ref. [25]. We also note that
it is formally equivalent to the operator form of the Hellman-Feynman force —0H® /OR* al-
though in practical calculation within finite basis expansion, Eq. (2.25), based on derivative
calculation techniques [20] is known to give more accurate result rather than directly evaluat-
ing the Hellman-Feynman force. The quantity F* in Eq. (2.24) is called ‘Force Form’, which
is a c-number quantity corresponding to an evaluation of the force matrix along a ”path” in
{R}:&r(Ry), tr; &i(Ra), ti.

The nature of the electron-nucleus coupled equations of motion
Thus we have obtained a coupled equations of motion for the electrons (Eq. (2.18) ) as well as
for the nuclei (Eq. (2.23)). Being dependent on the ’future’ as well as the past trajectory, the
coupled equation does not have explicit solution. Coupled dynamics that would be derived
from the coupled equation will be referred to as ‘Pechukas dynamics’, which has hypothetical
nature in the sense that there is no practical computational method to realize it except for
mapping approach proposed by Mayer-Miller-Thoss[14, 84]. In the following section, we will

explore a practical method that somehow avoids the difficulty. On the other hand, this



26

difficulty, being manifestation of quantum mechanical entanglement of the two system, itself

worth studying and will be detailed in Subsec. 4-1.

2-2. Path branching and split path integral

As is clear from the nuclear equation of motion Eq. (2.23), the (electronic) path depen-
dence of the Force results in multiple trajectories, which is the origin of path bifurcation.

For example, in a typical chemical reaction problem with single initial state and multiple
final state(channel)s, each channel should yield a different nuclear trajectory due to the final
state dependence of the effective Force. In practice, however, there has been no established
way of reproducing branching trajectories in a self-consistent manner. Here we consider a
way to explicitly introduce (a possible) path branching in arbitrary time point

Consider an identical transformation of path integral by inserting the identity operator
1=2 ,ca [Ap)(Ap| at some fixed time tg 9, where tg lies in between t; and tf (t; < tg < ty),
and {Ap}penr is a complete basis set which satisfies the orthonormal relation, (Ay|\,) =
0 p- The choice of {\,}pen is otherwise arbitrary, and we specify it later on to meet our

convenience on a physical ground. We obtain, as an identical transformation of Eq. (2.2),

KRy, £ (Ry), tr; Ry, &i(Ry), 1)

— /dRNl cee dee%ante({Rn})

X Y OKARY G (Ry), tps Ao ts) KT ({RY 1 Ay, ts3 &i(R), )
P

— Z/dRNl .. dRyenSnuc{Rn}]
P
X KUARY = €5 (Ry), tp5 Ap, ts) K ({R) = Ny, B3 &(Ra), 1)
= ij / dRy_1-- dRyexp <;Snuc ({R})) exp (; S (RY) + %sg;;@ ({R})> .
(2.28)
As is seen in Eq. (2.28), the propagator is split, and each propagator has a state projection

|Ap) (Ap| at the time point tg. The effective action Sé?}gp ) ({R}) in this expression is defined

% Here, we do not specify the nuclear coordinate R. When we perform the electronic path integral, we fix
the nuclear position R at time points {¢,}, thus if ts coincides with one of ¢,s, the nuclear coordinate is
R, otherwise, the nuclear coordinate takes some intermediate value.
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as

S (R = Fin (KU(RY - &4(Ry) 7300 15)) (2.29)

Equation (2.28) is an identical transformation, provided that the integrations are performed
exactly. Nevertheless it gives a different result if we apply the stationary phase approxima-
tion; each split amplitude gives different stationary phase condition or nuclear path. We will
see that this transformation is indeed closely related to a practical path branching algorithm.

We emphasize that this procedure does not justify “decoupling” treatment on each
branches. In order for electronic dynamics to be correct, each split amplitude must be
coherently summed over. In practice, however, almost all existing algorithms introduce de-
coupling approximation between branches. We will come back to this problem later on in

Subsec. 4-2.

3. REDERIVATION OF PRACTICAL CALCULATION METHODS BY THE
PATH INTEGRAL FORMALISM

Having established the formal theory of electron-nucleus coupled dynamics, we will discuss
the central two problems stated in the introduction, by considering two practical calculation

algorithms.

3-1. Semiclassical Ehrenfest theory (SET)

We first consider the Semiclassical Ehrenfest theory (SET). To be specific, we consider
the formulation in Ref. [22], which we consider as a highly generalized and practical compu-
tational method in the modern context of nonadiabatic dynamics.

We start from the formal coupled equation of motion Eq. (2.23), and Eq. (2.18), which
does not allow explicit solution due to the future time dependence of the Force form. It
is found, however, the difficulty is completely removed by two additional assumptions; (1)
Existence of single nuclear path, and (2) Assumption that the final electronic state is given

by a unitary electronic time evolution along such single nuclear path;
€7+ Ry) = [[e Bl s Ry) x e, (3.1)

where each R,, is the nuclear coordinate at time ¢, which should be determined self-

consistently, and e’ is a possible phase factor, which shall be canceled out in the final
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result. These assumptions drastically simplifies the Force form to give

KR} : Ep(Ry), ty; I ) FrOKA({RY « 60 &(RG), £)

FlerRotreRonl = D e RARRAR .
e I,J KR} : & (Ry), t1:&(Ra), 1)

-y (& Rylen ™=t | T R)FI (T Ryle”w M=t R,)
1,J

1
= Z chrFrel. (3.2)
1.J

Substitution of Eq. (3.2) to Eq. (2.23) yields the nuclear equation of motion, which is to be
solved self-consistently with Eq. (2.18) to reproduce the SET formulated in Ref.[22] (note
the second order derivative coupling is dropped).

Thus we can conclude that the SET is reasonable method provided that there is no
nuclear path bifurcation. It is indeed numerically confirmed that the electronic transition
probability estimated with SET is quite accurate in many cases with moderately large nuclear
translational energies [25]. On the other hand, it would be almost useless in cases with path
bifurcation. It is indeed known to give unphysical nuclear path in the asymptotic region

where two adiabatic states should take independent trajectory.

3-2. Method of phase-space averaging and natural branching (PSANB)

We next turn to a path branching algorithm. Here we consider the method of phase-space

averaging and natural branching (PSANB), proposed in Ref.[25], whose accuracy has been
numerically confirmed in Refs. [25, 85], and now is being applied to a number of important
problems[86]. Its algorithm is first derived using the variational principle in the Schrodinger
picture [25] and is summarized as follows;
(1) Let |Ap) be an eigenvector of force matrix along the system’s moving direction Fll = n-F,
where n = R/|RJ|. Branches of electronic state vector |¥;) are derived as the projection to
these eigenstates with weight w, = [(A,|¥;)|?. (2) The nuclear coordinate of each branch is
propagated using the corresponding Force nf, + (\,|F — nFll|)\,) (3) [averaging] If the
‘branching criterion’ does not apply, the displacements AR and AP are averaged over
branches (with weight w),) to give a single branch. [branching] On the other hand, if
the criterion applies, the displacements are not averaged and branches are propagated inde-
pendently.

A simplest branching criterion is to branch at the time points where the nonadiabatic

coupling between states |v - X|,, decrease to get smaller than a predetermined value Xy,



29

The criterion is, however, not unique and different criteria have been proposed in recent
researches. We will back to the discussion of these criteria later in Secs. 4 and 5, but here
we follow the simplest approach and examine if the above procedure can be explained using
the path-integral formulation.
The application of split path integral using the Force Matrix ( yal ) eigenstates yields the
multiple branches whose Force form, in its moving direction n = R/|R/, evaluated as
(Ele”# Fly)
(le™ 7! A,)

= fps (3.3)

where the electronic state after the short time propagation is temporarily represented as |£).
Because of the eigenstate property, (3.3) holds independent of |£), and gives correct Force
form for the short time. Forces in the other directions, F may be well approximated by its
equal time expectation value, (\,|FL|)\,).

On the other hand, the path integral formulation does not justify the procedure of ‘av-
eraging’. The procedure should be therefore understood as a ‘prescription’ to avoid infinite
number of branching. It is then required that such prescriptions are to be optimized using
formal theory as a guiding principle. In the next section, formal theory is reexamined in

order to seek for requirements for practical algorithms.

4. REQUIREMENTS FOR MQC DYNAMICS

4-1. Conservation laws for branching paths

In spite of practical difficulties, Pechukas dynamics satisfies a set of important conservation
laws, which are often violated in practical calculation methods. Consider an energy-like

quantity defined as

5™ (1)’ + e BIDCD0 0 ) m

E(t) = —
v B0 1)]a)

| =

J
Assuming no explicit time-dependence in H®, the quantity £(¢) can be easily proven to
be conserved under the Pechukas dynamics. Although £(¢) is not an energy in the strict
sense and there is no reason to believe that the quantity should be conserved during the
time-evolution, it becomes a true energy (in the sense of MQC ) when R asymptotes to the

stationary configuration R; and Ry where we assume that a and 3 are the Energy eigenstates
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of eigenvalue E,(R;) and Eg(Ry), respectively!
") = ZM R/, + Es(Ry) (4.2)

E(t) =5 Z MRI,, + Eo(Ry), (4.3)

where ¢ and the minus of ¢’ are assumed to be positive large number. The conservation of

E(t) then lead to a physically meaningful relation
ZMR +Eg(Rf ZM Rt, + E.(Ry). (4.4)

Considering the same type of relations for all possible final states from the same initial state,
we see that the energy is conserved for each asymptotic channel. This conservation law is
physically correct and also crucial in some experimental techniques including time of flight
measurements|[87].

In a central symmetric system, conservation of the angular momenta can also be discussed
in the same manner using the quantity defined as

(B0, HT40 (1))
BT, 0)]a)

= ZMjRj x R? + Re (4.5)

J
where J¢ = Jt - j M jRj x RJ is the angular momentum operator for the internal degrees
of freedom.

These simple conservation laws are nevertheless not assured, in fact they are sometimes
even severely violated, in many of existing calculation methods including mean-field meth-
ods like the Semiclassical Ehrenfest theory (SET). In some calculation methods including
the surface hopping[13, 21] method and the multiple spawning method[24], the problem is
circumvented by adjusting the linear momenta of nuclei on hopping or spawning. We will
revisit the point in the next subsection.

In case of SET, what is explicitly conserved is a different type of quantity, namely, state-

averaged quantities such as

1= % )3 MRS + (afU(, 0 HET (8, )] ) (4.6)

10 Here, for simplicity, we assume the situation where the nonadiabatic transitions asymptotes to zero in the
limit ¢ — =+o0.
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for the energy and

J(t)=> MR xR+ (a|UH, ) TU(t,1)|c) (4.7)

for the angular momentum. This conservation law is reasonable up to where there is no clear
wavepacket bifurcation. Moreover, it can be clearly shown that the mutual exchange of these
conserved quantities between the electronic and nuclear subsystems can be described using
the ‘work’ and ‘torque’ of the Force Form, respectively[88].

On the other hand, it leads to unphysical result in case there is clear branching to distinct
asymptotic states. For example, the Energy conservation law in such case indicates that the
nuclear kinetic energy is given as K¢ = E;y — > wgEg(Ry), where wg is the branching
weight of each asymptotic state.

A truly challenging issue is then for a branching algorithms like PSANB, which adopts
mean-field like scheme in the strongly interacting region and does not introduce discontinuous
momentum shift, to reproduce this conservation laws in ‘natural’ manner. The requirement
is that each branch, whose asymptotic electronic energy is Eg(Ry), asymptotically acquires
the kinetic energy Kz = Eyor — Eg(Ry). It is clearly insufficient to apply a single branching
procedure at the endpoint of interacting region, which would give results close to K%Y€,
irrespective to channel. Clearly one would have to apply multiple branching inside the

interacting region to reflect the channel dependence on the wavepacket motion.

4-2. Requirements for branching algorithm

Based on the above discussion, we propose the following two requirements for a branching
algorithm.
(1) Reproduction of correct electron dynamics: Calculation should reproduce the correct
quantum-mechanical (nonadiabatic) time evolution of the electronic state.
(2) Reproduction of the correct nuclear wavepacket velocity in the asymptotic region. The
requirement is, for each asymptotic channel,

Biot = % (Rl’)z + Eg(Ry) (4.8)
J

where Ej is the total energy of the system and Eg(Ry) is the electronic energy in the
asymptotic configuration Ry. The conservation rule is, however, required in the asymptotic

region and does not restrict occurrence of ‘classically forbidden’ hops [91].
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Another point to be taken into account is that almost all known MQC implementation of
branching introduce decoupling between branches.

It is then obvious that the two requirements contradicts each other. As we have discussed
before, in order to satisfy the requirement (2), there have to be multiple branchings in the
region where nonadiabatic transitions still exist. On the other hand, however, decouplings
introduced by the branching would generally lead to wrong electron dynamics. In more
practical sense, the resultant electronic dynamics would deviate from SET, which is known
to give relatively accurate result with respect to the electronic dynamics.

These observation, suggests a need for an improved treatment of branches that in-
cludes corrections over the decoupling treatment, together with that for correct treatment of
“Force”, which, through multiple branchings, somewhat reproduce the correct conservation

law, Eq. (4.8).

5. GENERAL DISCUSSIONS ON BRANCHING CRITERIA

This section is meant to discuss the problem from more general standpoint. We do not
necessarily stick to the path-integral formulation but examine other known implementation
in broader perspective. A central problem is to find out hints for better branching algorithm,

in particular, criteria for when one should actually introduce branching.

5-1. Sketch of the problem

We start by recalling the Schrédinger picture full-quantum description. The exact decom-
position of the electron-nucleus coupled state, and the corresponding Schrédinger equation
are given in Eq. (1.2). In this viewpoint, our problem is (1) to find out the best approximation
of the wavefunctions x7(R,t) as a superposition of a small number of localized wavepackets
{xx}. One may further add an additional condition that (2) the time evolution of these
wavepackets are uniquely derived from an effective equation of motion, which is either some
semiclassical time-evolution equation or the classical equation of motion of the position Qy(t)
and the momentum Py(t) associated with the center of the wavepacket x.

We first consider an intuitive description of the problem. We temporary consider an

electronic state expansion and write its short time evolution in Trotter form

Xi(R,t+¢) = /dR/ (a%f”)u (Re~#(THH11) Ry 5 (R, 1) (5.1)



33
where T is the kinetic operator, Kiy; = Hry— 32, ihXJ - %Vj -2 Qh—]\ZAj includes all
off-diagonal terms. The first operator is electronic state diagonal but in general change
the position; it is known to be well-described by the frozen Gaussian approximation on the
wavepacket, which is equivalent to the gradient dynamics on a single potential energy surface.
whereas the second operator is position diagonal but state off-diagonal. On the other hand,
however, if one of the summation in the third term, for example, J is dominant, the peak
position of x; should be the same as that of y;. SET is constructed on the assumption that
all peak positions of nonadiabatically coupled states should be the same.

Based on the observations, the simplest scheme would be as follows.
e unbiased expansion
Expand the true wavefunctions x7(R,t) by xs(R,t), which assumes the form
vwR,t) = Y, ckg(R;Tk(t)) with standard normalized Gaussian g¢(R;T) =
4 det (2%) exp [£ [P+ (R— Q(t) + ih(R® — Q(t))vap(R® — Q*(£))]].  Parameters are

set so that it minimizes the squared deviation at time ¢ = 0;

/ dR [x;(R,0) - $7(R, 0)? (5.2a)
‘2

/ dR [x1(R,t) — x1(R, t) (5.2b)

where in the second line, x; is given by the Schrodinger equation.

For a given set of expansion parameters at ¢t = 0, {T';(0)}, optimization of coefficients c¥

and its time-derivatives gives

(g7lxr) =) 57" (5.32)
k
4 ) ik A
iy Stk =" (T + Hy - ih8t>] &+ (Kpp)" e, (5.3b)
k k

where the inner products are defined as (g}|O| 9=/ ng;(R)*O(R) g%(R)) and matrices are
denoted as (O7)"" = (g}]O\gﬁ) and S}k = (gﬂg’f) Egs. (5.3a), (5.3b) are usual derivation
of the expansion coefficients and (an expansion of) the Schrédinger equation.

On the other hand, optimization of Gaussian parameters {I'y} requires another set of
variational equations. If these equations were solved, it would give an ‘unbiased description’
of the dynamics and gives a definite branching criterion.

e The multiple spawning method

Equations (5.3a), (5.3b) are are similar to those appears in the formulation of the multiple
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spawning method [24]. In fact ‘full-numerical’ version of the spawning method can be seen
as Gaussian expansion of the exact Schrodinger equation. On the other hand, as for the
Gaussian parameters, the multiple spawning method does not apply variational optimization;
the Gaussian width is fixed In the multiple spawning method, however, Gaussian parameters,
(wavepacket center momentum and position, and Gaussian width ) are not variationary
optimized. the Gaussian width ~ is fixed at a predetermined value, the wavepacket center
positions Q; and momenta P; are fixed by the classical equation of motion. Moreover, extra
basis sets needed for branched wavepackets are generated in an analogous manner to the
surface hopping method. It may be necessary to make the method practical but would
certainly ‘bias’ the result. Interestingly, in Ref. [89], the spawning method is not considered
as Gaussian expansion of the Schrodinger equation but frozen-Gaussian modification of the
surface hopping approach.
e Semiclassical approach

Miller and George [90] generalized the Stueckelberg’s formulation to propose a semiclassical
theory of nonadiabatic transition of nuclear wavepackets. The original Stueckelberg’s theory
solves one-dimensional two-state problem by the asymptotic, or equivalently, semiclassical
analysis. In his formulation, the coupled (diabatic) Schrédinger equation for the original

two-state problem

h2

—mu/{ + WlUl + VUQ = EUl (54&)
h? "

o2t Waug + Vur = Eug (5.4b)

is reduced to a single component quartic differential equation,
uy = (uf + piur) /o (5.5a)

up” + _ZO/U{” + (pf + 93— O;:/ +2 <Z/)2> up! + (2(19?)' - 22{19?) uy
o 0@ oy o o o] o
#(0d =2ty + -5 227 ) m =0, (5.5b)
where p; = \/m /h are the ‘diabatic’ wavenumbers, o = 2MV/A? is the reduced
diabatic coupling.

The asymptotic behavior of the solution of the quartic equation, in the lowest order of A,

is ‘adiabatic solution’; exp[+% [vydr] with v2 = (p? + p3)/2 £ /(p? — p3)?/4 + a2. In the
complex 7 plane, there is a cut associated to the root in the equation of v2 along Rer = 0

connecting the two points (7. and its complex conjugate), where two adiabatic wavenumbers
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vy degenerate. The solution to the left of crossing point » = 0 is therefore connected to the
solution to the right by a contour integral around the cut. Hence it gains an exponential
factor Im [ (v4 — v_) dt, which would give the Landau-Zener (LZ) exponent w% if
the assumptions in the LZ model were to be applied.

Miller’s idea is to generalize the argument to higher dimension and describe the nonadia-
batic transition of the nuclear degrees of freedom by the complex contour integral connecting
the avoided-crossing point of the original PES R, complex crossing point R, and the point
on another PES where all component of R except that of the reaction coordinate becomes
real.

The approach is remarkable in that it ‘analytically’ derives non-classical motion of the
wavepacket center. It may give practical guideline for deriving an appropriate branching
point or time. On the other hand, it is not clear that this approach is truly mathemati-
cally correct; the Stueckelberg’s theory is based on the WKB asymptotic expansion, which
have no established higher-order generalization. Moreover, introducing complex-valued R
in the electronic Hamiltonian may violate the Hermicity of H®(R). We thus see that full
implementation of this approach, if any, may not be suited for our purpose.

e Meyer-Miller implementation of the Pechukas Dynamics
Pechukas dynamics, in formal sense, satisfies the both requirements. However, as we have

emphasized before, its numerical implementation is not simple. One implementation is to

change the equation of Force form, Eq. (2.24), by an equal-time expectation value

Fim 641 (< 5g ) ) (5:6)

but requires that the electronic state to evolve smoothly from a given initial state |§;) to the
specified final state [£f) (up to the phase). This actually requires solution of double boundary
problem from {R;,P;,[&)} to {Ry, Py, [&f)}. Such problem has never solved in the original
form, but becomes solvable if one applies a mapping procedure and converts into an effective
classical problem [14]. The double boundary problem is then solvable to reproduce Pechukas
dynamics.
e Other implementation of the Pechukas Dynamics

In fact the Pechukas dynamics does not necesarrily requires the quantum state to evolve from
|&) to |€f). The fact suggests unnecessity of the electronic double boundary problem. The

equation of the Force form, Eq. (2.24), with an explicit real-value projection, is rewritten as
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follows

€201 (-2 17 @)
GRGITRG)

F.,—Re (5.7)

where ‘backward-propagated’ bra vector <§](cB)(t)\ and ‘forward-propagated’ ket vector

\ﬁi(F) (t)) are defined as

(P 0)] = (€510 (tg, ) (5.8)
€5 (1)) = U(t, 1)) (5.9)

where the time-evolution operator U implicitly depend on the nuclear path. In fact these
two do not have to be mutually conjugate to each other. We can therefore consider multiple
final states (branches) and propagate backward to obtain branch-dependent Force form from
Eq. (2.24). Numerical implementation of such dynamics is under development. In stead
of double boundary problem, we now have to seek for self-consistent solutions for implicit

problem. Possible outcomes of this study is to be reported elsewhere.

Summary Seeking hints for branching algorithm, we have examined three types of
possibilities, each related with an existing approach. We first examined possible “unbiased”
expansion in Gaussian wavepackets, where we saw a certain difficulty in optimization of
Gaussian parameters (the centers of wavepackets). This approach actually shares two of
the core equations with the multiple spawning method, although in the multiple spawning
method, addition of new basis functions (‘spawning’) is governed by an algorithm similar to
the Surface Hopping approach, thereby introducing a certain “biases”. We can then suggest
that modification of this process may answer our question of when to introduce branching.

We next examined semiclassical approach with imaginary trajectories where we saw that,
at least in simplest case, the branching path can be uniquely drawn by imaginary path. This
would give us a definite branching criterion. However, it is far from obvious how to introduce
imaginary R coordinate in a consistent manner to the electron-nucleus coupled dynamics in
general dimension.

Finally we discussed possible implementations of Pechukas dynamics. We saw that there is
no known algorithm to solve a coupled double boundary problem except for classical mapping
approach. However, we have pointed out that such ‘double boundary problem’ may not be

necessary to realize Pechukas dynamics.
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6. HIGHER ORDER EXPANSION

We discuss higher order expansion beyond the stationary phase approximation. It is
well known that higher order approximation of path-integral can be obtained from Gaussian
integrals using the second order expansion of the action around the stationary phase path. In
case of ordinary path-integrals in an external potential, the Gaussian kernel is given by the
second order derivative of potential energy function. In case of path-integrals with a coupled
degrees (electron-nucleus) of freedom, on the other hand, there is nontrivial contribution from
functional derivative of different time point in the form of a special correlation function. We
will then see that inclusion of such correlation function in the pre-exponential factor is crucial
for obtaining the correct path-integral of coupled dynamics, in particular near the caustic
singularity.

Notation In this section, in order for simplicity, the second derivative of nuclear potential

02U,
. MV nuc
Ujue is denoted as Ujye = DRAOR
6-1. General procedures

We start from the formal nuclear path integral Eq. (2.3). We expand the action in
Eq. (2.3) around the stationary phase solution (or “classical” solution) RF. Using the
fluctuation variable Y; = R; — RtSP , which is subject to the Dirichlet boundary condition

Yti - th =0
S =8P 4 %w(?) (Y] +6S'[Y] (6.1)

where S5, 652 and 65’ denotes the stationary phase action, the second order expansion,
and higher order expansion, respectively. The second order expansion is rewritten as §.5 @) =
[dt [dt'Y} G71,,(t,s)YY where the kernel is defined as G™1,,, (¢, s) = m‘ii%ng. The path-

integral becomes

i i — 1 (i "
K= ehSSP/QYte%‘SS(Q)[Yt]T;n! <h55/>

i gSP M 12 =1 [ "
= e HM;_:T (detg—) ™" <Zn‘(h55’> dg-1 (6.2)

" n=0

where the average (- - -)g-1 denotes the average using Gaussian kernel ;
(O)g-1 = /@Ytezin dede’Y“(s)Q—lw(s,s/)Y”(s’)O//@Yte;h [ds [ds'YH(s) G, (5,8 )Y (s")

(6.3)
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The higher order terms are to be decomposed into pairs of Y*s and evaluated according
to (Y/'Y))g-1 = ihG,,(t,s). An order estimate of such fluctuation is, in analogy to the
harmonic oscillator, (Y/'Y?)g-1 ~ % where M, @ is a typical value of nuclear mass and its
eigenmode frequency. The 2nth order expansion terms are thus estimated as, denoting the
2nth order derivative of potential as Uﬁg), %Uﬁ’é) (%)n We can hence regard these terms
as small because of the difference of electronic length scale and nuclear fluctuation length
scale, however, this estimate does not take into account of singularity which may occur at
some special value of ¢ and s.

We now discuss the singularity, which is, as we see below, enhancement of fluctuation in
the parameter space where the second order fluctuation kernel takes zero mode. In ‘ordinary’
path-integrals in an external potential with Lagrangean £ = %X o Unue, the second order

fluctuation kernel is G™1,,, (¢, s) = §(t—s) (_Mu @ ;ﬁ%) The derivative of classical path

dtz
X*# with respect to the initial momentum pg', %ﬁ: formally satisfies
oxv
-1 .
/ds;g o (t, s)@ =0. (6.4)

It therefore becomes a zero-mode, i.e. zero-eigenvalue mode of the second order fluctuation

kernel, if it satisfies the Dirichlet boundary condition. Here %f: = 0 is obvious whereas
i lt=t;
the other condition
oxH
= =0 (6.5)
apl t=ty

is satisfied if and only if the point (Xy,t¢) is a caustic point. It then follows that the
singularity occurrence of S, at the caustics should be consistent to that of the pre-exponential
factor (det g*l) —1/2
in the harmonic oscillator path integral; limtfﬁ% \/%eéscl(zf’tfm’o) =0(xy — ;).

In fact Pechukas considered the term to be negligible. Rewriting his discussion in Ref. [75],

due to the emergence of a zero-mode. The simplest example can be found

he considered that the term

mainly arises from the phase fluctuation of the time-evolution operator sU (tf,t), which is
symbolically written as 6U (¢ £ b) = Ut £,1)0¢¢. And considered this to be irrelevant for the

second order fluctuation of his action; Im (hln K]eci) On the other hand, in our formulation,
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the second order fluctuation Eq. (6.6) is evaluated as

-  OH (Ry - OH (R
[ttty (<3 25 orpoe (P ) srev.ai)
t/

_ / dt’Z?WW(t/,t)éRﬁ;éR;. (6.7)
uv

6-2. Correlation function of force

The second order derivative of the effective action (Eq. (2.5)) is given as

i 0t R (<5 ) 1 Ut s Re) (<5 ) e Ut Ro)6)
W (t7t):ﬁ Kel(é_fvgﬁ 7')
- %F“(t)]—'”(t’), (6.8)

where t- and t. indicate the larger and smaller one of ¢ and t', respectively, and (-) |
indicates that the dynamical variables in the bracket should be fixed at corresponding value
at time ¢. Symbols F#(t) indicate the continuous time representation of force form, which
is dependent on the system’s time-evolution. The quantity in Eq. (6.8), divided by factor
%, is the correlation function of the force operator, and will be referred to as ‘force-force
correlation function’.

We now evaluate the second order derivative of the action and obtain
d? ~ —~ ~,
552 [Y,] = /dt/dt ZY“ [( w s~ ﬁ’&) 5(t —t') = W (t,t) | Y, (6.9)

where we have adopted mass-weighted representation l~/t“ = VMHY} and associated deriva-
MY Upue o~ N o §28elt .
tive are denoted as Unuc = Soak and W, (t,t') = T eT (@) Because of the Dirichlet
boundary condition YT“:T = YT“: o = 0, time-dependent fluctuation coordinates can be ex-
panded in the Fourier sine series \/% sinv,t, with discrete frequencies v, := 7. The second
order action becomes
{Ci Clf (viowe — (Titi)  — Wiy )¢y 6.10
e =33 (o - (T),, W) (6.10)

where {C}'} are the Fourier sine expansion coefficients of the fluctuation Y, while (~ﬁﬁfé)

”

and W,ﬁ , are the Fourier sine expansions of U;l(t) and Wh (t,t"), respectively. The formal

path integral, corresponding to Eq. (6.2) is given as

/Hdcﬂegfds(”[{()“}} i;<;5’[{0{:}]>p . (6.11)

p=0
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The kernel now has non-trivial correlations over different time points because of the force-
force correlation. Our major interest is then how this kernel behaves and how this affects to
the transition amplitudes. We rewrite the action as follows

DUCN =Dt ((a )y W) e =S e (97 ey (6.12)

Iy, Y.

where g, Lis ‘zero-th order kernel’ whose component is zZth component is 1/,35;@( — (~,’L’$Ié>k ,
whereas G is the full kernel G~ = 9o L _W. By extension of the discussion given before, a
caustics (of coupled dynamics) occur when there is a zero-mode of the kernel G~1, ¥ with the
correct Dirichlet boundary condition. It hence means det (g—l) = det (ga ! (1-— goVV)) =
Assuming that such zero-mode is different from that of original g, 1 a zero mode emerges
at the point an eigenvalue of goWW equals unity so that det (1 — goW) = 0. Only the correct

N
1
2mih

prefactor, which is given as (det G_l) -V 2, has singularity at the same point, whereas

N
uncorrected prefactor 4/ ﬁ (det gil) ~1/2 Gould have singularities at wrong point. We can
thus conclude that inclusion of the force-force correlation recovers the correct prefactor, which
is crucial near the caustics of the electron-nucleus coupled mode.

In fact a perturbative expansion is possible using the form Eq. (6.12).

det (gal — W) = exp [trln (gg1 — Wﬂ

= det (90 ) exp [tr In (1 — gOWﬂ
00 1 n
= det (90W) .
et (g9 )exp[ Zn goW ] (6.13)
n=1
It does not give the correct pole unless one can perform the infinite summation, however, it

clearly suggests the existence of singularity at det(1 — gOW) = 0.

6-3. Model studies

In order to illustrate the effect of force-force correlation, we study simplified models based
on coupled harmonic oscillators. Although it does not correspond to any realistic electron-
nucleus coupled system, singularities are clear.

In this section, we temporarily consider the following model problem

P2 M
H= K L TEO2 X2
> |t + s
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where {X,} and {z,} denote coordinates of quantum-mechanical oscillators whose mode
frequencies are {€,} and {w, }, respectively. These are linearly coupled by coupling constants
Gu,r- The subscripts ¢ and r runs through 1 to N,, and 1 to IN,, respectively. Although the
problem is symmetric, we refer to variables {P,, X,} as ‘nuclear’ while variables {p,,z,}
as ‘electronic’. We first observe that the whole problem can be decomposed into IV, + N,
independent modes with their eigenfrequencies obtained by diagonalizing We first observe
that the whole problem can be decomposed into N,, + N, independent modes with their

eigenfrequencies obtained by diagonalizing

02 gii g12 - GIN.

Q% 521 522 §2Ne

0% GNu1 N2 - ONoN.

Qo= _ " ) ; (6.15)
911 921 ... gN,1 Wi
g12 g22 - GN,2 w3
JIN. G2N. - gN,N. o wh
where g, = —2%~—. The eigenvalues of the matrix £,,, is denoted as {\2}, « = 1,2, ..., N, +

v/ My

N.. for simplicity, we assume all the frequencies, {Q}, {w}, as well as {\} to be real-valued,

which is indeed the case at sufficiently weak coupling. The propagator becomes

/ Aa L8, ({X s b s bt X b {mhte)
IZIMMHmT 1;1 2mi sin /\aTeh ' (6.16)

We next consider the same problem using the stepwise path integral The electronic propagator

becomes

MW i
Kcel = T £ 200 Sap(@rpitpirts) 6.17
l:[ 271 sin wTTe ( )

where Sy, (xf,tf;24,t;) is the action integral of forced oscillator

MW
Sy, (:L'rfy Lfs Ty, ti) = ﬁ [(xrff + :L'MQ) coswl' — 2mrf1'ri
2z b 2z, [
—G—Tm;i/tz dtsinw, (t —t;)J,(t) + mr::r /tl dtsinw,(ty —t)J-(t)

2 ty t
/ dt dt'Jr(t)sinwr(tf—t)Jr(t')Sinwr(t’—ti)} (6.18)

2,2
mrwr ti t;
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hence we have S¢// = 3~ SZM Gun Xy T %ln[ II M} The force-force correlation

r 2mwisin w, T

function is thus obtained as

8 S] Gg# Txr sin(wyt<) sinw, (T — t)
. = ’ 6.19
Z 0X,( ) - Z Jusr G wy sinwT (6.19)

which forms, except for a constant factor, the inverse of the Matrix form of the integration

kernel in the sense

d? 9| sin(wyt<)sinw, (T —ts)
—— = =0(t—1t). 2
[ dt? wT] wy sinwT ( ) (6:20)
Hence we have, in the Fourier series representation,
1 ~ -1
=3 Ch PR - Q-G (W2 - w) T § G, (6.21)
n

where 1 is the unit matrix and Q,[ we | is a diagonal matrix with its p [r] th diagonal element
Qi [w?], and g is a N, x Ne matrix composed of g, . The kernel, what is in the square bracket
[--+] is denoted as M. We define, in a similar manner, M as the electronic kernel w21 — w,,

M a5 the total kernel l/,%l — Q40t. These kernels indeed satisfy
det MP det M, = det M'*,, (6.22)

hence the total propagator becomes

=

1 _1 —
2 2

P MyWr S0 _ P ! 1840
(E[detMn> HMQ}E tot (gdetMn> (HdetMe ) entot

_ 1 i (6.23)
det Mtot

Hence the inclusion of force-force correlation term in the second order fluctuation integral
here reproduces the correct preexponential factor including mode coupling effects between the
‘nuclear’ and ‘electronic’ subsystems. It can be seen as another manifest of nonadiabaticity,
or the fact that electron-nucleus coupled dynamics can not be simply reduced to classical
nuclear dynamics on a fixed PES.

There is another model problem hinted by study of frame conversion in Ref. [92], which
further indicates the close relation to mode coupling. The assumptions and discussions

leading to the conclusion is almost prarell to the above example and will be given in Appendix

H.
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7. CONCLUDING REMARKS

In Part I, we have reformulated the electron-nucleus coupled nonadiabatic dynamics in
MQC representation, seeking for a reliable theory that is free from empirical prescriptions
so as to applicable to unconventional dynamics such as that in an intense optical field. We
have first pointed out two major difficulties in MQC description of nonadiabatic dynamics,
which arises from conflict of quantum and classical logics; (1) derivation of an effective
nuclear dynamics in the presence of multiple interacting PESs (2) classical representation
of quantum-mechanical wavepacket bifurcations. We started our discussion from the exact
full quantum-mechanical path integral and reduced it in form of MQC equations of motion
through a systematic applications of the stationary phase approximations. The resultant
formal theory of MQC dynamics, free from empirical prescriptions, was close to the Pechukas’
theory with several modifications. Several favorable properties of this formal theory was
further confirmed through conservation laws. A formal solution for the first difficulty (1) was
thus found to be an effective classical dynamics driven by the ‘force form’, which is a path-
dependent average of the Hellmann-Feynman force operator. It also solves the second one
(2); branching solutions of nuclear path should arise from path-dependence of the force form.
These formal solutions, however, is not very practical since derivation of the exact force form
requires self-consistent solutions of implicit equations of motion for which there have been
known no established approaches. In seek for more practical approach, we proposed split path
integrals to explicitly introduce branching. Standing on this formal framework, we further
examined practical computational methods. We have found that SET can be obtained by
an additional assumption of ‘single path’, which accounts for several favorable behaviors of
this method in problems with no nuclear path bifurcations as well as a catastrophic fault
in presence of branchings. We have also found that a key idea in PSANB is accountable
using the split path integral technique but there remains several prescriptions unproven;
most notably, its ‘branching criteria’.

In an attempt to fix the remaining part, we have clarified central requirements for branch-
ing and have further discussed possible branching algorithms. Further discussions as well as
numerical tests are left for future work.

In Sec. 6, we have discussed a slightly different type of problem, concerning to the higher
order expansion of the path integral. We have pointed out that higher order expansion

of the nuclear dynamics on PES requires evaluation of the force-force correlations. Here
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the difference from an ‘external potential’, which is assumed in many textbook examples of
path integrals, is in the fact that what represented by PES originates from electron-nucleus
interactions. Inclusion of force-force correlation term is essential for correctly account for

mode-mode couplings.

APPENDIX A: DETAILS OF THE TROTTER DECOMPOSITION

Here we prove the validity of the Trotter decomposition in Eq. (2.1). We first decompose

the total Hamiltonian into nuclear position diagonal terms and off-diagonal terms
H = Toue + Unue + M, (A1)

where True, Unue and HE are the nuclear kinetic energy terms, nuclear Coulombic interaction,
and the electronic Hamiltonian, respectively. Thus the infinitesimal propagator turns out,

up to the first order in €, to be

<Rn+1 | <¢an+1 : Rn+1‘ei%enuce_%e([]mc—i_%el)‘(Zsan : Rn> |Rn>

= (Rous1|(Bapss : Rura] Y o) (o

Jemeton L o o
i p? i
= /dP(Rn+1|P> exp —he; m (Pan> exp [—hEUnUC(Rn)]

i

x Z<¢an+1  Rpyi]a) <a’eihEHEl(Rn)’¢an :Ry)

1 1 1
= /dPeXp ﬁP : (Rn+1 — Rn) — ﬁﬁz ﬁ - %EUnuc(Rn)
; J
J

%> (Gunr : Ruga|a)(afe #H Bjg, - R,,)

M; (RiH-l - R%)z

Z. —16 el
e eXp % ; 26 — Unuc(Rn)E <¢an+1 : RnJrl’e I H (Rn)|¢an : Rn>
(A.2)
. . P
Here, |P) is the momentum eigenstate of the nuclear system, and [ dP = [ ]] i @rh)? is the
7r

momentum integral. {|a)} is a complete set of electronic basis that is independent of nuclear

position.
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APPENDIX B: DERIVATION OF OVERLAP PRODUCT

We here derive Eq. (2.9). We evaluate the overlap product of state vectors of different
nuclear positions, (¢4 : Rnt1]¢p : Ry). The ket vector |¢y : Ry,) is expanded around R, /9

up to the second order in coordinate difference R,11 — R, as

RL., —Rh
|6 s R} = [ : Ry o) = Y (+12)au|¢b :Ryt1)2)
,u,

R, 1 — Bn) (Ryy, — Ry)
Y Z Z +1 +12 OOy - Rn+1/2>

O(Rnt1 — Ra|%), (B.1)

where 0,, indicates %. The ‘bra’ vector (¢, : Ry41] is also expanded in the similar manner.

Hence the product becomes
(¢a : Rny1]gp : Rn) = Gap — Z(RZH — R)XH(Ry11)2)

(Rn+1 - Rn)u n+1 — Z Z y% (B'Q)

N -

_|_

In the first line, we used the relation

<¢a : R|8,u¢b : R> + <au¢a : R’be : R> =0, (B.S)

which is obtained by differentiating the orthonormal relation (¢, : R|¢p : R) = 04p. Thus we
obtain Eq. (2.9). Yet a different expression is obtained if we evaluate the derivative at the

end point as follows

(G0 Rt 6y Rer) = b — S (R — B (X0 +Z T 2 1) 5, xv(w,)

m

+ 5 (Rng1 — Rn)*(Rng — ZZQV”’ Ry y1/2)

DN

= 00— (B — RX"(Ry)
17
1
+ 520 (Bu1 = Ru) (Russ = Ru) (60 : Ra|0u00p : Ron). (B.4)
7 v

Here, terms with the third order or higher in R, 11 — R, has been neglected, because they
vanish or give O(e?) contribution to the path integral after the Gaussian integration. We

have also used the following relation obtained by the second derivative of the orthonormal



46

relation (¢, : R|ép : R) = 0gp

(0u0vba: Rlgy - R) + (Oua - RO,y : R)
+ (0yda : R|0uty : R) + (¢ : R|0u0y : R) = 0. (B.5)

APPENDIX C: THE SECOND ORDER DERIVATIVE COUPLING AND
NON-HERMICITY

Here we discuss the origin of apparent non-Hermicity of the second order derivative term.
We first reconsider the full-quantum formulation, Eq. (1.2). We rewrite the RHS of Eq.
(1.2) with slight different form with external vector field dropped,

(O Q) = /dRX;(R) [Z 2]\14 (hvk —ihX >2 +Hglﬂ(R)] x3(R). (C.1)
k ap

Using the relation V,X* + X* . X* = Y* the RHS is rewritten as
hQ
QHE"Q) = [ dRyL(R (Ak+2x"- Y) + HL(R)| ys(R). (C.2
(@lmeio) = [ ar( >lzsz (4 2XF T, L) | xa(R). (C2)
Although Y(fﬁ being non-Hermitian, Eq. (C.2) is still its Hermitian because this can be

rewritten as

2

(Q Q) — / dRys(R) [Zﬂ(mu(vk Xk, + Xy Vi) 4, )+H6“(R)] VE(R)
k

/ dRxs(R { [Zk: ;‘2 T SRR O Heg(R)] X;(R)}
(C.3)
where we used the relation Y(fﬁ — 2Vkaa5 = Yﬁ’“a, which can be obtained from the derivative
of Xk, + X%, =0.

The key for the Hermicity is in the term X ap " Vi whose Hermitian conjugate is Vy, -
X’Za + Xka - Vi, whereas in MQC correspondence of Eq. (C.2), V is replaced by iPy/h and
the Hermicity is lost.

In Schrodinger picture, we can construct the expansion that is free from the second or-
der derivative. In stead of the expansion Eq. (1.1), we consider an approximate expan-
sion, assuming that the nuclear wavefunction written in the superposition of time-dependent

wavepackets centered at Q,

Q) =Y IRV : QHN(R; Q) (C4)
A
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Neglecting all overlap integrals of wavepackets with different center coordinate Qf‘, the cor-
responding Schrodinger equation becomes,
ihxa(R; Q) = Zi Ev 25 + B (R) —ihQF - (9, : Q yiycb Q)| xs(R)
Xa ’ t) — - 2Mk i k afs af t [ 2K t an a - t Xﬁ ’
(C.5)

where JEISZB(R) = (9, : Q) H(R)|®s : Q). Taking the small width limit of the wavepacket,

however, Eq. (C.5) looks as equally appealing as Eq. (1.2).

APPENDIX D: RESTRICTION TO REAL-VALUED TRAJECTORIES

As we mentioned in the main text, Pechukas modified the straightforward SPA result
Eq. (2.24) by projecting to the real part to define what is now referred to as the Pechukas
Force. Eq. (2.27). Although taking the real part should be necessary to produce a strictly
real-valued trajectory, there is, up to author’s knowledge, no concrete justification for this
procedure. Mathematically, in order for the asymptotic expansion to be valid (i.e. the
expansion series damps as the power series of /), the first order derivative term of the action
should be zero, or if any, should be small as S, ~ h. Then we have to show that the neglected
imaginary contribution to be of order &, up to our knowledge, no proof has been ever known.

On the other hand there is a possibility of constructing meaningful complex-valued tra-
jectory. As we see in Sec. 5, Miller and George [90] proposed a complex trajectory scheme
as an generalization of Stueckelberg’s nonadiabatic transition theory. Recalling that we are
discussing some effective representation of nuclear motion, there is no reason to restrict R
to be real-valued as long as it gives some consistent description.

In practice, however, introducing complex R in our problem introduces further compli-
cations including the Hermicity of the electronic equation of motion. There seems to be no
general complex representation to achieve this.

From these consideration, we keep unprojected formula, Eq. (2.24) as formal result. We
do use this in the context of SET and PSANB where the evaluation of Force form do yield the
real solution. On the other hand, in general procedure, we are forced to use real-projected

force form unless we can establish a consistent complex trajectory representation.
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APPENDIX E: CALCULATION OF DERIVATIVE COUPLING

Here we show an analytic calculation of the derivative coupling [93]. The set of atomic and
molecular orbitals are denoted as {x,(r)} and {u.(r)}, respectively. The overlap of AOs are
denoted as S, whereas MOs are assumed to be mutually orthonormal. The inner product
is defined in an obvious manner as (ug|Aluy,) = [ drug(r)A(r)um(r). AO expansion of MOs
are denoted as uy(r) = 3, Xu(r)CY

What we need for our calculation is (® 1\(%&@ g) for an arbitrary pair (I, J) of N-body
basis set {|®)}.

[ar@iite) ST dwles) = [ @ Clunte) ()Gl e)
OR? ORe
) (£.1)
where al/ = (¥ I]C’g Cpn|® ) is R-independent “occupation number” for the pair (I, J).

= a@m(uf‘

We next evaluate the inner product

0 0 a(R a
(e o [um) = /drue(r) ORY (%: Xu(l’)%’i) = 5p 1 Ug, (E.2)
where Uj,, = > uv C“ Sy %%a is the MO rotation matrix, whereas derivative overlaps SZ&LR)
are defined as S ZW C)'Cy, [ dryu(r) 8Ra Xv(r). Equation (E.2), together with Eq.

(E.1) gives the desired derivative coupling matrix element. We can further simplify the

result using the relation

Upn + Uty + S = 0 (E.3)

where the (full) derivative overlap is defined as =X cycy, %‘2‘;’ , which satisfies S7, =
Sea? + 5.

If the MOs are obtained in the Hartree-Fock calculation, orbital rotation matrix is ob-
tained by the Coupled Perturbed Hartree-Fock method [94]. The orbital rotation matrices for

occupied-occupied or virtual-virtual pairs are symmetric and given as Uj, = U?, = =S}, /2,

whereas those for occupied-virtual pairs satisfy
SolY 4+ Uty = SoY = Upy — S = =S50 = Uy, (E.4)

hence we have

@il = X il (S0 -siP)+ 3% (abh—alk) (Ui + 5.

¢,meEocp. £E€ocp. mewvirt.
£,mevirt.

(E.5)
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APPENDIX F: MOLECULAR VIBRATION

In MQC implementation of nonadiabatic dynamics, treatment of low-energy vibration
mode, in particular the zero-point vibration mode introduce subtle problems, which are
regarded as another manifestation of quantum-classical conflict.

In MQC simulation of chemical reaction problems, the initial nuclear coordi-
nates/velocities are set so that they correspond to classical oscillations around the equi-
librium point with zero-point energy. These classical analogue of “zero point vibrations”,
however, induce spurious electronic state transitions through the nonadiabatic coupling term
—ihR - X7 (the nonadiabatic term with R substituted the vibrational velocity induce elec-
tronic transition ). The problem arises due to the absence of quantization in the classically
represented vibrations. It does not always lead to severe problem if the vibration frequency is
far smaller than the electronic transitions, and/or the collisional energy, or the translational
energy in reaction coordinate, is large enough for this transition to be relatively negligible.
On the other hand, it does cause problem if one deals with low energy problem, especially

those with low-lying electronic excitation levels.

APPENDIX G: OTHER REQUIREMENTS TO BE CONSIDERED

In the main text, we discussed the requirements for “correct” MQC dynamics based on
the conservation laws. The subject has also been a long dispute in literatures. Here we
review and discuss some of these arguments.

Tully in Ref. [95] points out following two problems as the deficiencies of SET;

SET-1. Absence of correlation: driving ‘Force’ for the wavepackets belonging to different
electronic states should not be averaged but different.

SET-2. Absence of microscopic reversibility: he considers that, in weak nonadiabaticity,
an wavepacket started as state 1 but branched to the state 2 would be driven by the PES of
2 in backward process.

He also discuss other problems of SET in Ref. [26] as

SET-3. Absence of decoherence : he discusses that the spatially separated wavepackets
should lose coherence.

SET-4. Lack of detailed balance : if the system is coupled to a finite temperature (classical)

bath, the quantum system evolves into infinite temperature
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SET-1. was thoroughly discussed in the main text, whereas we do not completely agree
with SET-2.; in the described situation, if one propagates back the ‘mixed’ state wavepacket,
it should be track back to the initial state.

As for SET-3., the “decoherence problem”, we have completely different views. We
first point out that there do exist coherence between nuclear wavepackets as is seen in the
Stueckelberg oscillation. Secondly, most importantly, what is often called “decoherence”
in this type of discussion, which is described, for example in the NDM approach [73], is
not a decoherence in the standard terminology; the term decoherence should refer to the
statistical process where the off-diagonal elements of the density matrix diminishes through
coupling to some random perturbations by thermal bath or impurities. There should be no
decoherence in pure ensemble dynamics with no external perturbation, and the population
of wavepacket, which belongs to the diagonal part of density matrix, should not diminish
by decoherence. Thirdly, we can see that quantum wavepacket calculation do reproduce
the correct dynamics without any decoherence. Problems in approximate methods should
be attributed to incompleteness of the method. Fourth, one should be much careful in
introducing terms that is absent in the original Hamiltonian (possibly never), for it would
limit the applicability to unknown problems.

SET-4. deals with statistics and is beyond our curent scope.

Truhlar, on the other hand, also discusses the “decoherence” problem, but he also points
out that the branched wavepacket, if any, should converge to a pure adiabatic state. The point
is important, as an inappropriate branching may end in some mixed state in the asymptotic
region, but it is not of large problem since in the asymptotic region, another branching is
enough to decouple uncorrelated states.

He also points out following defects of surface hopping scheme:

SH-1 Representation dependence: The result is known to be representation (either adiabatic
or diabatic) dependent.
SH-2 Discontinuous jump in the momentum and the effective potential on the hop

We do not fully agree with SH-1, since representation dependence is not a fatal defect in
approximate methods although there should be definite prescription (as well as reasoning)
on which representation to be adopted. PSANB adopts Force matrix eigenstate with clear
reasoning while SET is known to be representation independent.

SH-2 was among motivations in the “natural” branching approach [25]. In addition, the
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Pechukas dynamics, if possible, would reproduce the correct velocity of each branch with no
discontinuity. On the other hand, there is no strong reason to believe that the wavepacket
velocity should be continuous. We have also seen that in the imaginary time approach, the
trajectory goes into imaginary time and emerges on the other surface with shifted momentum.

We can also see that the Pechukas dynamics is almost free from these problems; We first
exclude SET-3. and SET-4. for above-stated reasons. What is called “correlation”, or
the channel dependence of nuclear driving force is reproduced by the path dependence of
the Force form. The electronic path integral is fully covariant with respect to representation

choice

APPENDIX H: FRAME CONVERSION

We next discuss a different type of problem. Up to here we have used the notion of
electronic Hamiltonian H®¢(X;) in the form exactly equal to that in the frozen nucleus
model. Although it is quite common in the literature, however, as has recently been pointed
out by Sutcliffe [92], an exact analysis of Lagrangean yields mass-polarization terms due to
the kinematic coupling of electronic and nuclear degrees of freedom. Sutcliffe [92] further
pointed out that, the correct (infinitesimal) electronic time-evolution operator, or the “correct
electronic Hamiltonian” should include terms of the form p;py|;.k, which we hereafter refer

to as the momentum-momentum coupling term, with small but nonzero coefficients (typically

of order ]\"}Z, where M,, represents a typical nuclear mass).

Here we show that in the path-integral formalism, the electronic Hamiltonian can be
defined without the electronic momentum-momentum coupling term, but with nuclear ve-
locity that couples to the electronic term in the form of the gauge coupling. The electronic
problem here is simplified than that of the Hamiltonian formalism in the sense the inter-
action terms (momentum-momentum coupling terms) are replaced by the couplings to ”an
external field”, V. We argue that, on the other hand, the remaining nuclear path integral,
including the result of the first path integral as an effective action, should recover the correct
momentum-momentum coupling effects to give the equivalent result as those obtained from
the Hamiltonian formalism. We will show the equality in a simple model, although general
proof is left for future study.

We consider the electronic coordinate relative to the center of mass (COM) of the nuclear

subsystem. As we have formulated in Sec. 2, we first ‘fix’ the nuclear variables and calculate
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the electronic path integral as a functional of those nuclear variables. Here we set nuclear
COM velocity V- and other nuclear coordinates as X ;. The Lagrangian for the electronic

part is written as
el 1 . 2
£ =32 me (Ej +Vr) = Vee(€) = Uen (& Xr)- (H.1)
J

Since the nuclear quantities are regarded as purely external fields, the Lagrangian transforms
into the following Hamiltonian

MV, Xo) = 5= 37 () = eV )P 4 Veel®) + Uen (€. X,) = S0 oV, (H2)

2m, “— -
J J

which includes a “vector potential” m.V,, but is (at least formally) free of momentum-

momentum couplings. The electronic transition amplitude is calculated as
. _Lcpel
Ko(€r &1 X7, Vy) = (€p| lim JJenH Ve, (H.3)
N—o00 ;

which gives the effective action S¢/f = ?111 Ko as a functional of nuclear variables.

Due to nontrivial functional dependence on V., it is difficult to directly show the equality
of two formulation in general case. Below we consider a simple solvable model where S¢/7 is
quadratic in V.

Simplified model

Here we consider a model problem where two nuclei and two electrons interact via the
harmonic potential on the mass-center of nuclei. We further assume the spatial dimension
to be one, although simple extension to higher dimension is almost obvious. The Lagrangian

reads

M . . me . 1
?XQ + %YQ —Unn(Y)+ ) [2%2 B Qmewjz(xj - X)? (H-4)
J

where X and Y are the nuclear COM and the relative coordinates, respectively, and M and
u are corresponding total mass and reduced mass. The jth electronic coordinate is denoted
as z;j. Using the Euler-Lagrange equations, the problem is solved as follows;

Nuclear relative coordinate Y is decoupled and is to be solved separately. The kinetic equa-

tions for the remaining nuclear COM coordinate X and the electronic coordinates are ob-

tained as
d. )
p (med;) = —Mew; (zj — X) (H.5)
d . 9
= (MX) = me?(X — ;) (HL6)
J
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One can see that the total momentum is the constant of motion; % [M X+ > mex"j} =0.
Since the potential term is quadratic, the solution for this problem is derived from the stan-
dard procedure; transformation to mass-weighted coordinate and diagonalize the potential

matrix;

¥ -
FRN ¥ (m.7)
~VEF VIR 5, B
Assuming w; = we = w, one obtain the eigen modes ( in terms of mass-unweighted coordinate

) 21 — z2 with eigenvalue A} = w?, VM (21 + z2) — 2/m.X with eigenvalue A3 = (1+ 22w,

and mex; + mexo + M X with eigenvalue 0. Path integral with respect to these coordinate
yields the total transition amplitude as the direct product of transition amplitude of these
modes.

One can, on the other hand, formulate the problem with fixed nuclear COM and relative
displacement coordinate of electrons; {; = z; — X as

1= 3 |gmelly + P - gl (H8)
J

We first treat nuclear COM velocity V; as external variable and solve the electronic problem
influenced by V. Using n; = me(éj + V), which is the momentum conjugate to ;, one can

write the Hamiltonian

m
?eW?g‘? s (Hg)

. 1 Me
H¢ = Z |:2me (77] — meV)2 — 7‘/2 +
J

which is the Harmonic oscillator with external gauge field m.V;. The classical action for this
problem is Sjl(f r, &1, T) of the forced HO, with J replaced by the “vector field”, —meV. The
resulting action S is a functional of V, but using the partial integration twice, it can be
converted as the functional of X.

One then solves the nuclear path integral with the effective action S[X,], functionally
dependent on the function X,.. Here we note that the quadratic part of the functional
becomes

In particular, the quadratic term becomes

m T T T
—276 {/ drVv? sinij—l—/ dT/ dr'V, V,.g(r, 7'/)} (H.10)
r 2wjsinw;T" )y 0 0
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/) — _ sinw(T—t>)sinwt<
- wsinwT

where g(7,7 , which is the Green’s function for m, <5 dt2 + mew?. Using

the Fourier transformation, the total action for nuclear COM mode becomes

1 ) A 1 1
n j n J J
where v, = 7% and X, is the Fourier series expansion coefficient of the fluctuation part of

Xee Xo =), \/> sin(v,t)X,,. Just in the analogous way as that in the linearly coupled
oscillator model we analyzed in the main text, the matrix kernel inside the bracket in Eq.

(H.11) is transformed as

" TR — )02 — ) (H12)

hence the square root inverse of this bracket [[, y/1/D, times the ‘temporary’ prefactor

2m)?

obtained through the electronic path integral \/

Mm?2
2wt sin A\ T sin AT *

2
me .
S TonosT yields the correct prefactor
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Part 11

Application to dynamics in intense laser

fields

1. INTRODUCTION

Notation In this section, we use symbol I and Ej to represent the laser intensity and
the electric field amplitude, respectively. Vectors A and E are used to represent the vector
field and the electric field, p is used for the (total) molecular dipole momentum. Standard
notations, m, ¢, w and A are used to represent the electronic mass, the speed of light,
the angular frequency and the wavelength of the field, respectively. Symbol g, is used to
represent the electronic charge (—1 in the atomic unit). U, represents the (nonrelativistic)
quiver energy in spatially uniform laser field U, = ﬁ (%A)Q. The field-matter interaction

term in the Hamiltonian is represented by Vg, which is Vp = —p - E in the dipolar gauge

and Vp = —2£ A .p+ ;- ((*’—C‘EA)2 in the radiation gauge.

1-1. Characterization of strong field

We first characterize the term ‘strong field’ in order to clearly define the scope of this

study.

The electric field amplitude The electric field amplitude £ in the atomic unit is the
simplest measure of intensity, which is related to the laser field intensity as I = cE2 /8,
which gives Fy = 0.1 x %/{:nﬂ] Assuming that the scale of dipole matrix element to
be unity in the atomic unit, it characterizes the strength of field-matter interaction term (in
the dipole gauge) u - E. It then follows that 3.51TW/cm? and 351TW /cm? give the value
0.01 and 0.1, respectively. Typical values of atomic field strength in diatomic molecules can
be found from the Morse function fit of the ground state PES; which gives 0.037, 0.079 and
0.067 for Hy , HCI* and LiF!!, hence field strength of 0.1 is strong enough for these molecules

to totally change the geometry of their intrinsic PESs.

1 We first fit the ground state PES by the Morse function W (R) = K (e 2P(E~Rea) _ 9o~ D(E-Feq)) 5pd
estimated the typical value of the gradient force as F' = DK /2, which is the maximum value of ‘%’ in the
range R > Req.
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Estimate on the field-matter correlation From theoretical point of view, however,
the field strength Ej alone does not determine the behavior of the system independently
on the intrinsic properties of the molecule. There need a different measure which directly
characterizes field-matter correlation, or the multiphoton-coupled behavior of the wavefunc-
tion. In this viewpoint, we characterize the matter (often electron) wavefunctions as showing
correlated (multiphoton) behavior if their Fourier series expansion in the laser frequency has
non-negligible weights over multiple components. To confirm the validity of this definition,
we first consider an electron that interacts only with a classical monochromatic vector field of

long wavelength limit; A(r,¢) = Agcoswt. The Schrédinger equation in the radiation gauge

o de 2
ar = ( ——A) o 1.1
i o, (P~ (1.1)

has solution (Volkov state) ¥; = e’PXexp [—% ft dTﬁ (p — %AT)Q]. 12 Tts fourier series
expansion is given as

Ap Up

\I/t — e_%(€p+Up)t Z Jn,Qk(_qe mcﬁw) k(%

n,k

Je (1.2)

where Jy(z) are Bessel functions. This superposition is essential in derivation of non-
resonant ionization rate in strong optical field in the Keldysh’s pioneering paper[40]. In
fact Ref. [40] is based on rather a straightforward time-dependent perturbation theory using

the Volkov state as the final state. In Eq. (1.2) the Fourier series typically extends over

¢ ~ sup <|qew‘2—§u|, ]f%\) Then our definition applies if |g, mﬁ}lﬁ)ﬂ 2 1lor \f%| 2 1, which states
dominance of the scale of field-matter interaction term or that of the quiver energy over the
photon energy, respectively.

In order to extend this idea to more general problems in an atomic potential, we recall the
Floquet theory, which, in this case, states that the solution of time-dependent Schrodinger

equation is given by a (superposition of) eigenstate(s) of the Floquet operator H = H —ihdy;
Uy = By (t)e i (13)
[e%

where ®,(t) is the eigenstate of the Floquet operator, or Floquet state, with quasi energy

Aa; Hi®@o(t) = Mo Pa(t). It is a periodic state that represents a ‘field-dressed’ quastationary

12 Tn the length gauge,

ihl = ( ! pzfqer-E)\IJ
2me
is solved as Wy = '(P=EAL)x gy [—% Jdrs= (p— qu’T)ﬂ with A} = —c [ d7E., which is mere a gauge

transformation of the previous one
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state. Due to the periodicity, Floquet states can be expanded in the Fourier series. We hence

have an expansion, using an arbitrary time-independent basis set {|I)},
[®a) =Y 1) > Chln]e™ ™" (1.4)
I n

For convenience of later discussion, we introduce subvector C,[n] which is a column vector
of nth Fourier coefficients whose Ith component is Cl[n], and submatrix H,, ,,, which acts
on the mth Fourier coefficient vector to give nth Fourier coefficient vector. The definition
of multiphoton behavior is characterized as nonnegligible weight distribution over different
n subvectors. Such distibution should be governed by the scale of off-diagonal submatrices
relative to fuww. The condition for ‘multiphoton behavior’ is then given as Hff > hw.

In the mean time, we should also be careful of the validity of the Floquet state expansion,
in realistic situations, where the perfect periodicity is broken due to the nonperiodic change of
pulsed field amplitude. Generalized Floquet anslysis in Sec. 2 will suggest that the sufficient
condition is smallness of nonadiabatic coupling terms among the Floquet states relative to

the quasienergy differences;

((a|ihé“%|ﬁ)) < |Ag — Mal? A practical requirement for the

Vg

pulse shape is HhAOTAO < inf Vp,w (in a typical situation where w > Vg/h, it requires

that the time scale of amplitude variation should be longer than the Rabi-cycle).

Relativistic scale as the upper limit Validity of non-relativistic treatment is lim-
ited by the condition ‘qe%’ < me. For laser wavelength A = 780nm, the limit is around
10*® W/cm?. Beyond this scale, one should take into account relativistic effects, including
Coulomb field correction, magnetic interaction, pair creation, which are absent our current

scope.

Realistic estimates We should also examine a ‘realistic’ or empirical estimate that
takes account of properties of existing molecules and various experimental observations. Refs.
[5, 96] suggests the typical lower limit to be 10'® W/cm?. The value matches with experi-
mental reports [55, 69, 71], which suggest that it is a threshold value for causing a significant
change in field-induced PES, resulting in the bond hardening in HJ [55]. The field strength of
10" to 10" W/cm? is also important scale for moderate reaction engineering [69, 71] which
avoids fast ionization. It will also be shown that model calculation of simplest molecule H; ,
assumed to be perfectly aligned in the polarization axis, dissociates at intensity I > 1013

W/cm?.
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As for the upper limit, Ref. [5] sets a value I“?P = 10'® W/cm?, beyond which, according
to Ref. [5], the valence electrons get rapidly strip off and their behavior is dominated by
the field rather than the intrinsic atomic field. The condition appears to be empirical but
important in the context of chemistry. This I"PP corresponds to E ~ 5, which may justify
the scale as the threshold for molecules to keep its valence electron.

Our scope of strong field is then summarized as follows;

1. Strong non-resonant effects on the electronic potential field, or large deformation of original
PES to form field-dependent Quasi Energy Surface (QES). This is characterized by strength
of field; E 2 (atomic Coulomb field strength) as well as significant multiphoton behavior;
1Mo 2 o

2. The upper limit should be limited by the requirement of small relativistic effect 24 < me.
It should also be restricted by some material-specific parameters where the molecule can keep
its inner core electrons.

3. For Floquet-type description to be valid, the scale of nonperiodic changes Hh%?—["f f I
should be limited by the square of a typical quasienergy difference. Furthermore, if one is to
exclude ionization processes, the intensity will be further limited by a material-specific value

beyond which a significant amount of ionization occur.

These remarks are basically consistent to literatures; in Ref. [5], for example, field intensity
is characterized in more intuitive manner using the Rabi frequency wr =~ |Vr|/h, and the
field is described as ‘super’ intense if it exceeds w. The condition is essentially in accord with
the above discussions. On the other hand, the Keldysh parameter, which often appears in
literature, is irrelevant here since we do not consider ionization.

In practical calculation, one should check relative scale of the optical frequency and the
relevant nuclear vibration mode frequency. This is not directly related to field-matter corre-

lation, but related to electron-nucleus correlation. We will come back on this issue later.

1-2. Molecules in intense laser field

We next review two characteristic field-induced phenomena in molecules; field-induced
ionization and dissociation. As we have discussed in the General Introduction, these are

closely related to the probing (by HHG) and the reaction engineering.
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1.  Field-induced ionization

Although our current calculation method is not applicable to ionization problems, we
briefly review the field-ionization and its effects relevant for our study. Its relevance for
our study include drastic effects on the chemical bond and its use as an experimental probe.
Moreover, ionization is a fundamental process in the field-induced dynamics in that there can
be no definite bound state in presense of an electric field. All field-induced effects therefore
occur in competition with the ionization, although in practice, the occurrence of the latter

in weak to moderate field is exponentially suppressed.

Perturbation theory The simplest approach to this problem is the time-dependent
perturbation theory. Assuming the boundary condition [1;) — |¢g) in the long past t — —oo
and neglecting any depletion effects in the intermediates, nth order perturbative estimate of

n photon absorption is given as

(n) — %Eo—i—nhwt |: +:| 1.5
") =e H Eﬁkmﬂo 3 |60), (1.5)

~wt) of the field-matter interaction

where V;f is the ‘absorption’ part (those propotional to e
term. The unit time n-photon ionization probability dP,,/dt is given as

Do = 27 eslvi e[ o) (1.6

where E is the final state energy Ey = Eyg+Nhw > 0, while k¢ and p(Ef) are the momentum
and the energy density corresponding F¢. Within this approximation, dP,/dt o< I™, which
is indeed an appropriate estimate in the weak field limit. Perturbative approach, however,
breaks down when the depletion of the ground state becomes non-negligible. Ref. [4] suggests
its severe deviation from the reality at around I > 10'® W/cm? in a typical rare gas ionization

experiments.

Tunnel ionization in a static field Another approach to this problem is tunneling
analysis. The tunneling effect in a static electric field was calculated by Landau [97]. A
generalized version for Hydrogen-like atom with nuclear charge Z, angular momentum ¢ in
static field of amplitude F', the ionization probability per unit time, in atomic unit, is given

as[41, 97]

2’£ 22—1 )
—\Cmg| (20 + 1)( ) e 3F, (1.7)
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where £ is the asymptotic (imaginary) wavenumber corresponding to the bound-state en-
ergy as —x2/2 = Ep, and the bound state wave function is assumed to asymptote as
C’Hg\/?(mr)z_le_“rl/gm(&gb). Here the exponential dependency with the exponent —%

is to be remarked.

Improved perturbation theory using the Volkov state The tunneling ionization
theory in optical fields is pioneered by Keldysh[40]. He used time-dependent perturbation
theory like those discussed above, but assumed the final state to be the Volkov state (thereby
incorporating a part of expansion of Eq. (1.5) in infinite order). In his approach, the first
order expansion in the perturbation series is enough to describe multiphoton effects due
to the intrinsic multiphoton character in the Volkov state. His result can be expanded in
the nondimensional quantity, which is now called the Keldysh parameter, v = \/IP/TUP,
more intuitively, v = w7p, the product of optical frequency and typical ‘tunneling time’
=1,/ \/m. The tunneling limit, in particular, v < 1 is obtained as an infinite sum-
mation over the v expansion. Later, a similar approach with different form of perturbation
expansion is proposed by Perelomov, Popov and Terrent’ev (PPT) [41], which has correct
asymptotic behavior in the static limit w — 0, which is Eq. (1.7). Their conclusion is ap-
plied on Hydrogen-like atomic model by Ammosov, Delone and Krainov (ADK)[42] to derive
a tunneling ionization probability formula for general atomic problems, which is now called
the ADK formula. The ADK formula has been favorably applied to many experimental
situations and its accuracy has been, at least qualitatively, established.

These approaches, however, involve a number of approximations including (a) approxi-
mation on the final state as the potential free Volkov state (b) approximation on the initial
state as the eigenstate of the field-free atomic Hamiltonian and (c) neglect of higher order
effects such as recollisions. Perturbative corrections to the Keldysh’s approach has been

investigated by Faisal and coworkers [98].

Extension to molecular systems Up to here all the theories assume atomic
problems with central symmetry. In particular, in PPT-ADK approach, the ini-
tial state, in the asymptotic region with r > 1/k, was assumed a Coulombic form
Che (%)1/2 (%)n*_l exp(—n%r)ng(G, ®). A molecular extension of ADK approach, which

is now called as ‘molecular ADK’, was formulated in Ref.[99]. In this approach, the HOMO

of a given molecule is expanded in central symmetric form with its coefficient C,,y determined
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by numerical calculations to apply the PPT’s result. Here an implicit assumption is the cor-
respondence to the atomic problem with the same ionization potential. The correspondence
is experimentally observed in some molecular species such as Ny (correspondence to Ar) and
Oz (Xe), but there have also been found exceptions such as Fy (Ar)[99]. In addition, large
deviation of angular dependence is found in CO2 [100, 101].

The approximations in MO-ADK, aside with those inherent in the atomic ADK, include
(d) neglect of ionization from lower-lying orbital than HOMO and (e) neglect of nuclear
configuration dependence beyond the central symmetric expansion. For example, the origin
of wrong angular distribution of the COs ionization has been attributed to the assumption
(d) [62, 102]; MO-ADK predicts dip of ionization probability in the direction from geometrical
property of HOMO, but detailed calculation show that contribution from the second HOMO
partly fills the dip. Also, breakdown of the assumption (e) is seen in the enhanced ionization
in Hy at the ‘critical internuclear distance’ R.. [48], which is the point where nuclear potential
changes its shape from the single-well structure to the double-well one Due to its simplicity,
however, MO-ADK has been accepted as a standard reference. It is then possible to use

deviations from the MO-ADK prediction as a clue for the effects neglected in the MO-ADK.

Numerical approaches Numerical approaches to field-ionization problem include
numerical integration of the time-dependent Schrédinger equation (TDSE) [103, 104], time-
dependent density functional theory (TDDFT) [102, 105]. Among all, TDSE is the most
unbiased approach but its direct application is severely limited for multielectron problems.
Number of variants have also been proposed in expence of the original exactness [106].
TDDFT [107], which reduces the original problem to an effective single electron problem,
is much adapted to large scale multielectron problem, however, its accuracy depend on the
choice of exchange-correlation potential [105]. Another possibility is an extension of R-matrix
method [108]. There have been proposed R-matrix Floquet theory [109] for periodic problem
and time-dependent R-matrix theory [110] for more general problems. The key advantage of
these methods is division of the whole space into the ‘inner region’” where standard bound-
orbital expansion is valid and the ‘outer region’ where reduction to single electron problem
is easier. Disadvantages, on the other hand, arise from difficulty of the boundary condition

posed on the expansion basis.
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1. Field-induced dissociation

In principle there are two approaches to induce molecular dissociation with an optical
field; (a) Inducing electronic (dipole) transition to non-bonding orbital and/or (b) exciting
nuclear vibration mode. Field effect on a nucleus is, in general, estimated to be far smaller
than that on an electron because of smaller specific charge. Exception occurs in the case the
optical frequency is close to the nuclear vibrational frequency, where dominance of nuclear
excitation is observed from numerical calculations assuming A 2 2000pm [111, 112].

Here we have to reconsider the relative scale of optical frequency and relevant vibrational
mode frequency. If the latter is small enough, we can first combine the In what follows,
however, we assume the optical frequency to be much larger than relevant nuclear vibrational

frequencies and concentrate on the electronic excitation scenario.

Quasiclassical analysis based on the field-induced PES Slow nuclear dynamics in
quasiperiodic optical field can be understood as nonadiabatic dynamics on the field-induced
PES or what we will call the quasienergy surface (QES) in later sections. In this description,
deformation of the field-induced PESs from those in the zero-field limit, describes the field-
matter coupled effects. From an analogy to the standard field-free nonadiabatic dynamics,
maximum deformation of order |V13L | occurs near resonance points.

In view of chemical bond, there can be two possibilities; bond softening due to lowering
barrier height or bond hardening due to nuclear wavepacket trapping (to be strict, bonds are
referred to be hardened if the unit time dissociation probability decreases with increasing
field strength). Theoretical analyses using Floquet analysis [53, 54] predict occurrence of
both effects in continuous wave (CW) laser. In practice, however, details of wavepacket
dynamics do depend on time-dependent raise and fall of pulsed field strength [113] (see also
our discussion in the numerical part).

On application of this type of theory, however, much care has to be payed on the possibility
of ionization, which is beyond this analysis. As we have discussed before, field-induced
dynamics always accompany possible ionizations, which often lead to fast dissociation with
higher energy ionic fragments (in case of H; , lonization causes a Coulomb explosion). In
practice, however, due to exponential dependence on the field strength, ionization probability
can be suppressed in weak to moderate field intensities (for example, Ref. [49] suggests

the threshold intensity of the ionization of H to be 8 x 10* W/cm? or more). In some
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cases, ionic fragments generated by Coulomb explosions can be distinguishable by their large
kinetic energy release [114], but other numerical study [115] suggests significant mixture of

its contribution to other processes.

Experimental Observations We next review experimental studies. Ref. [52] is among
the earliest experimental observation of the bond-softening effect, where broadening of photo-
electron kinetic energy spectrum from Hy in strong field as 100TW /cm? was attributed to the
subsequent low-energy dissociation. Later studies [49, 113-115] directly observe of dissociated
ionic fragments, and low-energy ionic fragments with relatively sharp angular distribution
(i.e. strongly aligned in the polarization axis) is attributed to arise from the bond softening.
As for the bond hardening, the experimental evidence is much more controversy; an ear-
lier report by Zavriyev and co-workers[55] observed the ionic kinetic energy spectrum from
H}L /D;r and attributed the higher energy peak to arise from ionization from trapped state
followed by Coulomb explosion. Whereas later studies by Frasinski and coworkers [113, 114]
attribute lowest (near zero) energy proton fragments with a broad angular distribution to be
arising from the trapped state.

In these experimental studies, key observables are the kinetic energy distribution of the
ionic fragments or ionized electrons, either angle-resolved or angle-integrated. Earlier stud-
ies, for example, Ref. [113] used the time-of-flight (TOF) measurement techniques [116] to
measure the kinetic energy of ionic fragments released in the direction parallel to the detector
axis. They also measured energy-integrated angular distribution to supply the orientational
information. In more recent studies, the velocity map imaging techniques [117] have been
particularly favored, in which the velocity distribution perpendicular to the axis is projected

on the detector plane.

Theory-Experiment correspondence Quantitative correspondence of theoretical
calculation and experimental observation (from theoretical side) was studied in Ref. [115].
The first step to achieve this was to solve the time-dependent Schrédinger equation in three-
dimensional space with molecular rotational degrees explicitly taken into account [118]. They
thus obtained energy-angle-resolved probability distribution P, ;. (0, k), where v, J and m
denotes the inital state vibrational and angular quanta. Then in the second step the results
are then averaged over initial state distribution (experimentally determined vibrational dis-

tribution and the Boltzmannian angular state distribution). The numerical results compared
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well with the experimental ones in the finite angle (7/7 and mw/4) but not in zero-angle to
the laser polarization. The divergence was attributed to small-angle Coulomb explosion, that
was missing in the theoretical treatment. A critical factor for such correspondence, suggested
in Refs. [115, 118] is the channel-dependent energy/angular distribution of ionic fragments.
Correctness of such distribution as well as branching ratio then makes a test of theoretical
calculations.

Studies in the opposite direction, experimental identification of the underlying dissociation
pathway has also been investigated [119]. In fact such attribution has not been established

in molecules other than H2+

Reaction engineering One of the most intriguing application of laser-induced dy-
namics is reaction engineering. Rabitz’s learning algorithm [67] automatically finds out the
optimal pulse shape without any need of theoretical estimate. As we have discussed in the
introduction, however, the method is not complete and there are still needs for theoretical
development. Some studies [122] directly calculate Rabitz’s variational functional so as to
numerically find out optimized pulse shape. This work does not take this approach but seek
for development of fundamental theory. One of our expectations, however, is that devel-
opment in the nonadiabatic Floquet analysis can be used for estimate or interpretation of
optimization results to design or improve the experimental setting before actual process of

optimization.

Summary Relevant indications for our study, obtained in this review subsection is sum-
marized as follows;
1. The idea of nonadiabatic dynamics on the field-induced PES is potentially powerful with
clear physical insights, but detailed verification is required for practical applications. This
will be the central theme in the Part II.
2. The obtained analyses have to be applied extensively on wider variation of molecules other
than H2+ where much less of the mechanisms have been established. In this work, an attempt
in this direction will be made through the analysis of LiF, whereas much extensive study has
to be performed in the future.
3. In order to further validate theory against experimental results up to quantitative level,
three-dimensional calculation of kinetic energy release including its energy/angular distribu-

tion need to be clarified. This will be left as our future task.
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1-3. Generalized Floquet Hamiltonian method

We have thus seen a rapid progress in the experimental researches and growing needs for
advanced theoretical calculation methods. On the other hand, the applicability of exact full-
quantum treatment is limited to simplest molecules [120, 121] due to the large computational
cost.

We here investigate MQC approach. We have seen the possibility of interpreting the
field-induced nuclear dynamics as quasiclassical dynamics on the field-induced PES. In order
to ensure the accuracy, we first establish the exact theory of generalized Floquet Hamilto-
nian method. Combining this theory and our discussions in Part I, we derive the gradient
approximation with definite application conditions. We then perform a numerically exact
(equivalent to the full-quantum treatment of TDSE) calculations on model systems to estab-
lish the exactness of the theory and validity of the gradient approximations.

In order to convert the intuitive idea of field-induced PES to exact theory, there are several
problems to be resolved. We first see that the notion of the field-induced PES needs concrete
definition. Its mathematical basis is on the Floquet theorem [126], which, in this case, states
the stationarity of the Floquet state (eigenstate of the Floquet HamiltonianH = H —ihd;) in
the periodic background Field. A field-induced PES is nothing but a quasi energy (eigenvalue
of Floquet Hamiltonian) as a function of nuclear coordinate. In this view, we hereafter use
the term quasi energy surface (QES) in place of field-induced PES.

The validity of the intuitive analysis is hence ambiguous when the exact periodicity (of
the electronic Hamiltonian) is broken due to the nonperiodicity of the laser field and/or
nuclear motion. Moreover, nuclear dynamics accompany kinematically induced nonadiabatic
transitions through the intrinsic derivative couplings. In order to obtain an exact result, one
has to generalize the Floquet Hamiltonian method to incorporate this nonstationarity in form
of generalized nonadiabatic transitions among Floquet states. In fact such generalization has
first emerged in the literature by Ho and Chu’s work [128].

Here we derive the generalized Floquet Hamiltonian method using the two-time formalism
of Pesikin and Moiseyev [127] (or what theses authors call (¢,t')-formalism). It was found
that a generalization equivalent to the Ho and Chu’s work can be established in more robust
ground with broader applicability.

The theory thus implemented is applied to field-induced bond dynamics mainly to see how

it works. We first calculate H;r and its isotope D; , using a modeled Hamiltonian without
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nuclear derivative couplings, to verify the present formalism. We will also examine whether
this approach can provide clearer insights into the underlying mechanisms such as the bond
softening[51-53] and the bond hardening[54, 55]. We next treat a problem, in which the
intrinsic nuclear derivative couplings are explicitly involved. We are particularly interested
in such systems where the nuclear kinematic effects play an essential role in a dissociation
process. Such system can be found, for example, in a typical ionic bound diatomics, such
as LiF, in which the lowest ionic and covalent PESs have an avoided crossing. We calculate
ab initio PESs and matrix elements of LiF' to perform dynamical calculations with all nona-
diabatic effects fully taken into account. These results all show in the end that the present
theory is promising as a general method for unified treatment of field-induced and intrinsic
nonadiabatic transitions.

The organization of Part II is as follows; We first formulate the theory and method in
Sec. 2. Numerical calculations of Hy /Dj and LiF are then discussed in Sec. 3 and Sec. 4,

respectively. This part concludes in Sec. 5.

2. FORMULATION OF GENERALIZED FLOQUET HAMILTONIAN METHOD

In this section, we formulate a generalized Floquet Hamiltonian method that is appli-
cable to nonperiodic dynamics. Our derivation is based on an extended formulation of
time-dependent quantum dynamics that uses two time-like variables, originally developed
by Peskin and Moiseyev[127] as the name of (¢,¢') formalism. After briefly outlining the
basic formulation in Subsec. 2-1, we formulate a nonadiabatic Floquet analysis in Subsec.

2-2.

2-1. Two-time formulation of quantum dynamics

Let us begin with the time-dependent Schrodinger equation

ih i) = Hilvn) 2.)

where [1;) is the state vector of the system. Up to this point, no restriction is imposed on
the time dependence of the Hamiltonian H;. The state vector [¢;) is then extended to a

function of two time variables |1Zt,s>, which is related to the original, or the physical state,

by

1,8 e=s = [t1)- (2.2)
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The Schrodinger equation for the extended state is then given by

0 0\, ~ ~
(Zhat + Zhas> |’(7Z)t,s> = Ht|¢t,3> (23)
or, equivalently,
B2 1) = ool (2.4)
7 ot t,s) — Tilt,s|Wt,s '

with the Floquet-type operator H; s = H; — ih%.

2-2. Formulation of quasiperiodic quantum dynamics

Now we impose quasiperiodic assumption (the terms inducing nonperiodicity will be spec-
ified below) on the Hamiltonian. In so doing, our formalism deviate from that in Ref. [127].
We first introduce an extended Hamiltonian ﬁt, s that is dependent on the two time variables.

It has a formal periodicity in the second variable s in the sense
Hyoyr = Hyg, (2.5)

where the fundamental period T is assumed to be a fixed constant'®. The t-variable de-
pendence of the extended Hamiltonian I:Qs is arbitrary except that it is assumed to have a
timescale T},, (np stands for nonperiodic) much longer than T’ (%p < 1) so that the Hamil-
tonian Hy is quasiperiodic in the sense Hyyp = Hy + O(%p) The physical Hamiltonian is

related to ﬁtﬁs by
H; = Hy ooy (2.6)

An example of quasiperiodic Hamiltonian is that of a system under a time-dependent optical

field
H,=Hy— p-eE(t) coswt, (2.7)

where Hy is the time-independent part, p and € are the dipole operator and field polarization
vector, respectively. The field amplitude E(t) varies slowly with the variable ¢ over multiple

optical periods. One can then construct a two-time counterpart of this Hamiltonian as
ﬁms = Hy—p-eE(t)cosws, (2.8)

13 This restriction can be lifted to allow time-dependence of the frequency as is shown in the Appendix. B
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which has formal periodicity in the variable s for a fixed value of ¢, and is related to the
original Hamiltonian by Eq. (2.6).

Let Ry collectively represent slowly-varying system-parameters. It can be readily seen
that a two-time extended Hamiltonian of the form H. s(R¢), which is periodic in the variable
s and dependent on the variable t only through R;, has the same type of periodicity. The
parameters most relevant for the later discussions are the nuclear positions, represented by
a collective vector R = (R!,R? ..., RN)T, with each R’ being the position of Ith nucleus.
The other examples are laser parameters such as the field amplitude and the polarization,
which are formally represented as (* (see Eq. (2.13))

In this paper, laser frequency w is assumed to be a constant, although it can also be among
time-dependent parameters as in the case of chirped pulse. Extension of our formalism to
such more general case is discussed in Appendix B

Substituting the parameterized Hamiltonian H s(R¢) into Eq. (2.4), the Floquet-type
operator becomes Hs(R;) = H s(Ry) — ih%, which is now a true Floquet operator in the
sense that it has the exact periodicity in the variable s. It thus follows that the eigenstates
of this Floquet operator Hs(R;) are also periodic in the variable s. We define parameterized

Floquet states
/Hs(Rt) ‘(I)a(s);Rt> = )\Q(Rt)|(1)a(s);7?’t>a (29)

where A\y(R:) is the ath Floquet quasienergy. Restricting our attention to the discrete
spectrum, we can further impose mutual orthonormality with respect to the inner product

{(-)) defined as

~ (Tds
(ufvh = [ o5 (uslvs), (2.10)
0
where T is the fundamental period as indicated in Eq. (2.5).
We now consider an electron-nucleus coupled system. We denote the two-time extension
of the total state as \le. The corresponding Schrédinger equation, in the nuclear coordinate

representation, becomes

. 0 0 ~ B 1 h 0 QI 2 rrele I
Zh(a + £)<R"I’t,s> = [; oMy [z@RI - CA] + Unue(R, ) + HS(Re) | (R[4 s),

(2.11)
where (R is the bra vector associated with the position eigenstate of nuclei |R), M and Q;

are the mass and charge of the Ith nucleus and U,,.(R,t) is the nuclear potential term.
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A is the vector potential. Throughout this paper, optical fields are treated within the
long wavelength approximation. H €le(R;) is the electronic Hamiltonian including electron-
nucleus interactions. We then define the Floquet states {|®,(s); R¢)} as the eigenstates of
the electronic Floquet operator Hele = Hele — iha%. The parameter set R; in this problem
therefore includes nuclear coordinate in addition to laser parameters. The total state \Tlt,s is

then expanded in the form
B =Y [ ARIR)[@a () Re)a (R, ), (212)

where xo(R,t) is the nuclear wavefunction associated with the electronic state |®q(s); Ry).

Then the coupled Schrédinger equations for y, (R, t) become

_ 1 h 0 Qr E
= E S E DT RIA
ihxa(R) I oITP 4 ([2 SRI - th} ; X3 + Unue(R)Xa + AaXa

. ; w
—in >Ny, (2.13)
5 B
where Xéﬁ = <<@a’%’¢g>> is the nuclear derivative coupling term, while Xc(g) =

<<<I>a|%\<1>ﬁ>> are nonadiabatic coupling terms that are associated with a laser parameter
¢t

In this paper, the notion of (non)adiabaticity is meant to be the (non)stationarity of the
Floquet states. Under the exact periodicity as well as the absence or neglect of nuclear deriva-
tive couplings, the Floquet theorem ensures the stationarity of Floquet states. Conversely,
any deviation from the periodicity can cause transitions among the Floquet states, which
are, in our present formalism, uniformly treated as the generalized nonadiabatic transitions
(see the first and the last terms in the right hand side of the Eq. (2.13)).

Equation (2.13), which is somewhat similar to Eq. (12) in Ref. [128], brings about several
key concepts in (generalized) Floquet formalism. Examples are the formal periodicity of
the Floquet operator Hs(R:) and the formal definition of the inner product, Eq. (2.10).
Both are defined under a fixed value of ¢, and hence are independent of the ¢-dependence of
parameters R;. This formal independence ensures broader applicability of this formalism.
In fact it is formally applicable even in the cases with poor periodicity, T'/T;, ~ 1 14 In

practice, however, as nonperiodicity T'/T},;, grows, nonadiabatic contributions in Eq. (2.13)

4 This is in contrast to the derivation of Ref. [128], in which smallness of ¢-dependence is explicitly assumed
in formulation (see derivation of Eq. (12) of Ref. [128]).
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become larger, and hence the advantages of Floquet state expansion diminish. In this aspect,
it should be noted that the quasiperiodicity in our formalism is not a key assumption but a
requirement for an effective use of this method.

In our formalism, the Floquet-type analysis is applied to the electronic Hamiltonian H¢,
but not to the total Hamiltonian. As a consequence, the electronic states are expanded in the
(parameterized) electronic Floquet basis, which are the eigenstates of the electronic Floquet
operator. It thus follows that the eigenvalues are real if possible ionization processes are
ignored. If, on the other hand, we used the total Hamiltonian (including the nuclear kinetic
part) in constructing the Floquet Hamiltonian, the total state would be expanded in the
electron-nucleus coupled Floquet basis. The eigenvalues would be complex-valued reflecting
finite dissociation rates. This latter type of treatment has been studied[54, 129, 130] to
reach many important results including life-time analysis of the bond hardening[54], time-
independent analysis of photodissociation[129], and discussions on the exceptional points
which induce intriguing quantum dynamics[130]. Moreover, if the relevant nuclear vibration
mode were comparable to optical frequency, one cannot separate the nuclear modes in the
Floquet analysis but need to take the latter approach. In this research, however, we assume
the nuclear vibration mode to be slower than electronic we take the former approach to
formulate a direct analogue of nonadiabatic dynamics among the field-induced PESs, whose

advantages are emphasized in the introduction.

2-3. Physical observables

The two-time extended state |1Zt75> bears arbitrariness in the variable s. In the dynamical
calculations, an arbitrariness exists in the s-dependence of the initial (¢ = 0) extended-state
vector, \\T/t:078>, which can be set to any function as long as the extended-state equals the
physical initial state vector W) at s = 0, that is, |\Tlt:0,o> = |¥y). For example, two extreme
choices are |¥g ) = |¥g)d(s) and |Pgo) = |Pp) (independent of s).

The s-dependence can be fixed for the sake of convenience in actual calculations. This
arbitrariness, however, should not affect the final result as far as the “physical observables”
are concerned, which are quantities obtained from physical state vector \\T/t,ty It is then clear
from the above two extreme choices that the population of an individual Floquet state is not
a physical observable and is indeed affected by the choice of the s-dependence of the initial

state. In order to proceed, we recall that for any Floquet state |®,(s)) with quasienergy Aq,
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scalar multiplication of e~"$

yields another Floquet state with a quasienergy A\, — nhw,
which is hereafter referred to as an “nw-shift” of the original one. We also describe any two
Floquet states to be “distinct” if one of them is not a nw-shift of the other. To obtain physical
observables related to the Floquet state population, we consider the following summation over

nw-shifts;
Ea(R,1) =D e ™ ya nu(R), (2.14)

which is the projected amplitude of physical state vector <R\\T/t(s)>\ s=t on the Floquet eigen-
state at s = t; |P(5); Re)|s=t, hence is a physical observable. Taking square and neglecting
the fast oscillating components, (or equivalently, taking an average over one optical cycle)

we obtain
Pla)(Ret) = D Xamnw (R, (2.15)

where the subscript [a] indicates that the state a and its all nw-shifts are not mutually

distinguished.

2-4. On the validity of quasiclassical approximation

Having formulated a generalized Floquet Hamiltonian method, we examine the validity of
the gradient approximation on quasienergy surface(QES); an approximation for the nuclear
dynamics by classical dynamics of a point-like particle driven by the minus of the gradient
of a single QES.

Using a formal theory of mixed quantum classical representation of nonadiabatic dynam-
ics [89] developed in Part I (also see Appendix C), the effective force acting on nuclei is given

as,

6Hel
F 2 (@0 (1) Rel = S [0 (£); Re). (2.16)

OR
provided that the effects of nonadiabatic transitions are negligible. Further assuming that
the timescale of nuclear dynamics is large compared to the fundamental period T, we can

take cycle average of Eq. (2.16) to obtain

OHEZ a)\a (Rt)

87R|(I>a(t)§Rt>> = T T a0 (2'17)

F = (®alt); Rl - R

which is the gradient of QES.
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From this derivation, we obtain three validity conditions for the gradient approximation;
(a) smallness of nonadiabaticity(see Appendix C for details), (b) longer timescale of nuclear
dynamics, and (c) absence of purely quantum mechanical effects, such as tunneling, where
the last one being the assumption in the discussions in Part I.

Conversely, the gradient approximation breaks down around the avoided-crossings on
QESs, where strength of the nonadiabatic coupling becomes large compared to the difference
of adjacent quasi energies. Avoided-crossings of QESs in the weak field limit typically occur
around resonant points, where the energy difference of two dipole-coupled adiabatic states
equals to nhw with n being an integer (referred to as nw resonances). Resonant points, along
with intrinsic avoided crossings on the original field-free PESs are to be treated with special
care in the following analysis.

Here the advantage of using Floquet state representation, rather than other choices of ba-
sis, for example, time-dependent adiabatic state is stationarity of the Floquet state; formally
exact expression of the Force form, Eq. (2.24) is best-approximated by equal-time expecta-
tion value of a quasistational state. Conversely, it means, there would be little reason to use
Floquet basis if the approximate stationarity of the Floquet states is severely broken or the

cycle average is not appropriate.

3. APPLICATIONS TO THE FIELD-INDUCED BOND DEFORMATION OF Hj
AND D}

To verify the theory presented above, we implement Eq. (2.13) in a computational scheme
to actually obtain the extended wavefunction \Tlt,s. Each xo(R) in Eq. (2.13) is represented
on a spatial grid and propagated using the split-operator technique. Although this imple-
mentation scarifies applicability to larger systems, we can expect the most accurate results
that are directly comparable to those obtained by a standard full quantum calculations. We
first examine the method with the field-induced dynamics of H; and D;, in which no nuclear
derivative coupling is involved, and then in the next section we present a unified treatment
of field-induced nonadiabatic dynamics and intrinsic one due to the nuclear kinetic couplings
in LiF' molecule.

The field-induced dynamics of H and DJ has been intensively studied in literature and
hence the properties are well-known to serve as reference data. For the simplest assessment

of the method, we use the two-state model proposed in Ref. [131]. The two-state models are
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known to sufficiently reproduce the essential effects in the field-induced bond dynamics; the
bond softening and the bond hardening. We can therefore check if these two fundamental

effects are correctly treated in the present method.

3-1. Systems and computational methods

We use the two-state model potential proposed in Ref. [131], whose R-dependent elec-
tronic states are denoted as |7; R), with either j = g or j = u corresponding to the gerade and
ungerade states, respectively. The derivative couplings between these states (j'; R|%| Jj; R)
are neglected, and hence they are treated as the diabatic states in the simulation, although
they are more like the adiabatic states in the context of field-free quantum chemistry. The
molecular orientation is fixed so as the molecular axis to be parallel to the polarization vector
of the applied laser in, say, x axis, and we concentrate only on the one-dimensional vibrational
motion. The Schrédinger equation is

2 92
o (R) = Y [—gwfmaaﬁ T+ HES(R, )| wa(R), (3.1)
where M is the reduced mass of the nuclear relative motion and H¢* is the electronic Hamil-

tonian given as

Uy(R —p(R)E(t) cos(wt
Hele(R,t): 9( ) :u( ) ( ) ( ) (32)
—u(R)E(t) cos(wt) Uu(R)
with E(t) cos(wt) being the electric field, and p(R) is the dipole matrix element between the

g and u state. Here the electric field amplitude E(t) is chosen to be of a single Gaussian

2
form with the full width half maximum (FWHM) being 150 fs; E(t) = Epexp (— (tt;t) >

w

with ¢, = 162.15 fs, t,, = 90.08 fs. The effective potential and the dipole matrix element are,

following Ref. [131], given as

Up(R) = K (exp(—2D(R — Ry)) — 2exp(~D(R — Ry))) (33)
Un(R) = K (exp(—2D(R — By)) — 2aexp(—D(R — Ry)) (3.4
() = i+ 2 (1 — exp(-Dy(R— o). (3.5)

Here the parameters are set, following Ref. [131], D = 0.72, K = 0.10262, Ry = 2.0,
po = 1.07, py = 0.396, y = —0.055 and a = —1.11, respectively. We use the atomic units

throughout, except for time.
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The Schrodinger equation (3.1) was numerically solved using a standard grid-based split
operator method[132]. Here the one-dimensional space is limited to the range [0, Ryqz]
and divided into Ng equal-spaced lattice, whose lattice points are given as Ry = kRﬁ—?,
k=0,...,Ng — 1. The actual parameters used are Ng = 4096 and R, = 20. The results
were confirmed to be qualitatively independent of the system size by comparison with those

of the smaller size simulation Ng = 2048 and R,,q; = 16. An imaginary potential term V7j is

applied near the boundary in order to eliminate unphysical reflections by absorption;

2
—ido (%) R, <R<R,

Vi = (3.6)

0 otherwise,
where we chose Ay = 2.4K (this K is the parameter introduced in Eq. (3.3) and below),
Ry = 3.6, Ry = 14.0 and R, = 18.0.

The extended state |‘Ift,s>, is propagated using the Trotter formula (see Eq. (3.7) below).
We use the Fourier series expansion to represent the s-dependence of the extended state
as |U, ) = >on e~ mws|UF [n]), where |UF[n]) represents the nth Fourier component of the
extended state vector, and n runs through —N,, to N, with a fixed large number N, for
cutoff (actually set to 50). The Fourier series is then represented in the column vector as
|OF) = <\\T/f[—Nw]), (WF [Ny + 1)), ..., ]\Tlf[Nw}))T, where the superscript T indicates the

vector transposition. We then have

P—1
) = T {erie™ e it G ia ™™ | jug), (3.7)
j=0
where P is the number of the time steps in the Trotter decomposition, ¢ = % is the in-

finitesimal time step, t; = je is the jth time point, T™"¢ and Helf (tj) are the Fourier
series representation of the nuclear kinetic term 77%¢ and the effective electronic Hamilto-
nian H¢f/ = H° 4V in a matrix form, respectively. In the actual computation, the nuclear
kinetic term was calculated using the fast Fourier transformation (FFT) technique[132]. The
electronic state was expanded with the Fourier-transformed diabatic basis; e=“%|j; R). The
total state in this representation has the form |¥) = D2k Zg;”wa e " | R )45 Rk nl
where x; r[n] is the nth Fourier series component of the discretized nuclear wavefunction
Xjk = X (R)-

The initial conditions of the present dynamical simulation are chosen such that the elec-
tronic state is in the ground (gerade) state and the nuclear state is at one of the vibrational
eigenstates (quantum number v) of the gerade electronic state. The corresponding extended-

state vector at ¢ = 0 is then fixed as xji[n] = d;40n00u(Rr), with the vth vibrational
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eigenstate wavefunction ¢,(R). As stated above, the initial choice of the extended state at
t = 0 has arbitrariness with respect to the dependence on the variable s. The choice here
corresponds to |{IVJt:0, s) = |¥o) (independent of s) and is found to be favorable for the present
numerical implementation since, by this choice (together with the only weakly nonperiodic
nature of the problem), only a small number of n is populated during the whole simulation.
The simulation starts at ¢ = 0 fs and end at ¢ g 400 fs. The duration of simulation time
is taken long enough. (We recall that the pulse is Gaussian of FWHM= 150 fs centered at
te = 162.15 fs.)

The Floquet state population at an arbitrary time point is obtained by projecting the
extended state vector on the Floquet eigenstate vector, which is obtained by diagonalization
of the Floquet operator 1. Formally, the physically meaningful quantity should be given
as in Eq. (2.14). However, within the parameter choice in our practice, the Floquet states
of the higher order are scarcely populated, and therefore the summation in Eq. (2.14) was

replaced with a single term.

3-2. Typical QES and positions of nw resonances

Some of the relevant QESs in the zero field limit are plotted in Fig. 1. Also plotted are
squared amplitudes of the initial wavefunctions to show their spatial distributions. In Fig.
1, one can see two resonances; a 3w resonance at around R ~ 3 and an lw resonance at
R =~ 5. The corresponding QESs under finite field intensity are shown in Fig. 2, where,
and throughout this paper, the temporal and the pulse-peak field intensity are indicated
by I; and I, respectively, in units of TW /cm?. Since QESs are dependent on the temporal
field amplitude F, the different lines of Fig. 2 can also be understood as snapshots of time-
dependent QESs as they evolve according to the time-dependent pulsed laser field. From Figs.
1 and 2, one can see that the gap already exists at lower intensity as I; = 10TW /cm? around
the 1w resonant point, while that around 3w resonant point opens around I; = 50TW /cm?,
reflecting the difference in the strength of dipole coupling around the each resonant point.

Smooth QESs are obtained by smoothly connecting a set of local data (the Floquet states
and the corresponding quasienergies) at each grid-point. The connection process starts from
the innermost grid-point, where the dipolar coupling is negligibly small relative to the field-
independent terms in the Hamiltonian. The Floquet states at this point is almost identical

to either gerade(g) or ungerade(u) state, or their n-shifts, hence they are labeled accordingly.
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FIG. 1: The spatial distribution of the initial wavefunctions for several vibration quantum numbers.
Panels in the left vertical row show the results for H;‘, from the top to bottom, v = 3,4,5,6. Panels
in the right vertical row show that for D;ﬂ from the top to bottom, v = 6,7,8,9. The red solid lines
indicate the squared amplitude of the wavefunction, whereas the black dashed lines indicate QESs
corresponding to the gerade, lw shift of the ungerade and 3w shift of the ungerade states in the zero
field limit, indicating the location of the lw resonance (at R ~ 5) and the 3w resonance (at R ~ 3)

as the crossing points.

Then in the following steps, each local Floquet state at a grid-point Ry, is given one of
these labels generated at the preceding point Rj in such a way that the largest overlap
|(@n; Ri|®o; Rei1))|? =~ 1 is ensured. Those grid-local Floquet states are thus connected in
a stepwise manner to form a global state. At resonant points, where two QESs come close to
each other, there are two possibilities. A straight-forward application of the above procedure

almost always connects the lower energy state on the left (smaller in R coordinate) of the
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Energy (Hartree)

R (Bohr)

FIG. 2: Typical QESs relevant to the dissociation dynamics. Red solid, green dashed and blue dotted
lines indicate the QES for (instantaneous) field intensity 10, 30 and 50TW /cm?, respectively. The
QES given by 50TW/cm? in the main panel shows the adiabatic connection at the 3w resonant point,
whereas the inset shows the diabatic connection (see the text). The small arrows show the point

where the difference of the connection occurs.

resonant point with the lower energy one on the right (larger in R coordinate ) and vice-versa
(“adiabatic connection”). Yet there is another way of connection, “diabatic connection”, in
which the lower energy state on the left is connected with the higher energy state on the
right. In some of the situations we will see below, the diabatic connection is favorable for
description of the spatial distribution of the wavepackets. In Fig. 2, the main panel exhibits
the adiabatic connection applied on the 3w resonant point, while the inset shows the QES
at temporal field intensity I; = 50 TW/cm? with the diabatic connection applied at the 3w

resonant, point.

3-3. Dissociation probability and underlying wavepacket dynamics

We next show the calculated dissociation probability in Fig. 3. The results for H; are in
good agreement with Fig. 18 of Ref. [47], in which no further analysis has been reported. As
we notice in Fig. 3, the dissociation probability versus the field intensity are classified into
three overall patterns.

Pattern 1. Near-zero probability at low field followed by rapid monotonic increase at higher
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FIG. 3: The dissociation probability calculated from the total population lost from the simulation
space 0 < R < R4, during the laser radiation. Left and right panel shows the results for H2+ and
Dy, respectively. Each line shows the result obtained from the initial vibration state indicated on the

right of each panel. The horizontal axis is plotted in log scale.

intensity: v =2,3,4 in HQ+ and v = 3,4,5,6 in D;r.

Pattern 2. Non-monotonic oscillatory behavior; v =5 in H; and v ="7,8 in D;
Pattern 3. Similar to the pattern 1, but the increase occurs at much lower field; v = 6 in
H;r and v =9 in D;.

In order to analyze the dynamics behind each pattern, we show in Fig. 4 selected snapshots
of wavepackets represented by the squared amplitude of the dominant Floquet state. The
time-dependent behavior of the related QESs are also superimposed in the figure. One
can observe that the wavepacket motion is in accordance with the QES gradient, thereby
qualitatively verifying the quasiclassical interpretation. Throughout the present simulation,
the population of the nw-shifts of the dominant Floquet state was negligibly small in the
entire parameter range. The population of the second-dominant Floquet state, which is
distinct from the dominant, is also negligible in the parameter region in Fig. 4. The second-
dominant state population, however, may grow to a finite value in other parameter region
(not plotted) especially around the resonant points. Discussions below are based on the
dominant state behavior, which nevertheless characterizes the overall behavior.

3-4. Mechanisms of the individual patterns

Pattern 1: Bond softening
The snapshots of the dynamics of initial state v = 3 and the peak field intensity I = 80

TW /cm? are shown in the three panels, (a-1) to (a-3) in Fig. 4, where one can see that the
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FIG. 4: Snapshots of the squared wavepacket amplitude and Floquet quasienergy surface. Each panel
shows the snapshot at the time point which is indicated at the right top. For each panel, the red
solid line represent the squared amplitude of the dominant Floquet state, and the blue dashed curve
does the corresponding quasienergy surface. Another closely related QES is also plotted with black
dotted line for reference. Three panels in each vertical row show snapshots of the dynamics starting

from the initial vibrational state and the peak field intensity indicated at the top.

wavepacket moves out through deformed QES after the opening of the gap at the 3w resonant
point, which is a typical behavior in the bond softening [47]. Dynamics in other parameters
categorized in this pattern also shows a similar behavior at intensities higher than an onset
intensity, where a sharp increase of dissociation probability (see Fig. 3) occurs. We thus
identify the present pattern as bond softening.

It is expected that the onset intensity is closely related to the suppression of the peak, or
the local maximum, of QES, which seems to act like a barrier near the 3w resonant point.
To verify this assertion, we show the value of the QES peak in Fig. 5. One can see that
the onset intensity approximately correspond to the value at which the QES peak becomes
smaller than the original vibrational energy. Since the energy does not have to be conserved
in this short-term dynamics under external field, the correspondence found above is rather

unexpected. From the viewpoint of the quasiclassical dynamics, however, QES peak position
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FIG. 5: Time evolution of the peak energy of the QES for different laser peak intensities. Each curve
is assigned to the individual laser peak as indicated in the figure. Horizontal solid lines and dashed

lines are the field-free vibrational energy levels of Hy and D, respectively.

is the point where the gradient force changes its sign, whereas the point where the original
vibrational energy crosses the QES (in the field free limit) roughly corresponds to the range
of the distribution of the wavefunction. Transfer of large population therefore should start

when these two points come close to each other.

Pattern 2: Bond hardening and inverse bond hardening

The snapshots of the wavepacket dynamics of v = 5 at the peak field intensity I = 60
TW /cm?, which is at the bottom of the dissociation probability oscillation (see Fig. 3), are
shown in the panels (b-1) to (b-3) of Fig. 4. One can see that the increase of the QES local
maximum near the 1w resonant point prevents the wavepacket from dissociation, which is a
typical behavior in the bond hardening[47, 54, 55, 133].

We also show, in the panels (c-1) to (c-3) in Fig. 4, the snapshots of the dynamics of
v = 5 with the peak field intensity I = 50 TW/cm?, which is at the peak of the dissoci-
ation probability oscillation. Here the development of a local maximum in QES near the
lw resonant point seems to push out a portion of the wavepacket. Hence the underlying
mechanism is the same as the normal bond hardening seen in the dynamics at the peak field
intensity I = 60TW /cm?, although the outcome is opposite. We thus term it “inverse bond

hardening”.
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Pattern 3: Bond softening (at lw resonant point)

The snapshots of the dynamics of v = 6 at the peak field intensity I = 22 TW /cm? are
shown in the panels (d-1) to (d-3) in Fig. 4. Here we can see the wavepacket move out
through the gap formed by the 1w resonance. The onset occurs at much lower intensity due
to the stronger dipole coupling at the lw resonant point than that at the 3w resonant point.

Nevertheless, the essential mechanism is the bond softening, the same as the Pattern 1.

3-5. Topography of QES and the spatial distribution of nuclear wavefunctions

Let us discuss the physical origin that consistently explains the different behaviors of
three patterns. We first note that the convention of the state connection in Fig. 4 are
different among the first vertical row (v = 3) and the rest (v = 5,6); that of the former being
adiabatic while that of the latter is diabatic. The state connection scheme is chosen so that
the spatially integrated Floquet populations do not have discontinuity in the timeline as the
3w gap increases. The traveling part of the wavepacket is therefore on the lower QES in case
of v = 3 and on the upper QES for v = 5,6. The quasiclassical analysis has been found to
be consistent with this attribution.

The above difference is more easily understood by comparing the spatial distributions of
the initial wavefunctions of v = 3 and v = 5, which are shown in Fig. 1. In the panels in
the left row in Fig. 1, one can see the entire wavefunction of v = 3 lying left (smaller in R
coordinate) of the 3w resonant point, while the rightmost (largest in R coordinate) peak of
the wavefunction of v = 5 stays to the right of the resonant point. Thus the outermost part
of the v = 5 wavefunction propagates into the upper QES. The v = 3 wavefunction, on the
other hand, does not have an amplitude right to the 3w resonant point at ¢ = 0 and it moves
out adiabatically on the lower QES after the n = 3 gap has developed, and hence the whole
motion remains on the lower QES. Thus the appropriate state connection and the origins of
pattern 1 and 2 are explained in terms of the spatial distribution of the initial wavefunctions
relative to the singular points on QES.

The same analysis applies to the case of v = 6 where the wavefunction distributes close to
the 1w resonant point although all the peaks are inside the resonant point. Thus the situation
in the state of v = 6 at the peak laser intensity around I = 10TW /cm? is analogous to that
of v = 3 in higher laser intensity, and therefore bond softening through the lw resonance is

expected.
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We also apply the same analysis to D; to explain the similarity of behavior as H; Since
the larger mass of DJ makes the spatial distribution of vibrational state narrower than that
of H;r with the same vibrational quantum numbers, the similar spatial distribution occurs
at larger vibrational quanta than that of H; The right side of Fig.1 shows v = 6,7,8,9 of
D;“, whose distribution relative to the resonant point show approximate correspondence to

v=3,4,5,6 of Hj.

3-6. Summary

We have thus verified the present formalism by successfully reproducing the dissociation
probabilities of H; reported in Ref. [47], including the oscillatory feature. We also show
that an interplay of bond softening and bond hardening can be clearly seen in the snapshots
of time-dependent QESs and wavepacket dynamics on them, which is clearly understood in
terms of quasiclassical approximation. In fact our simulation serves as a direct real-time
demonstration of possibly competing bond softening and bond hardening mechanisms. It
lead to detailed understanding of the interplay of the two mechanisms, including theoretical
possibility of inverse bond hardening®. The additional calculations for D; dissociation
have been found to be consistent with these interpretations. Thus the present theory and its

numerical realization have been shown to work well for this prototype field-induced dynamics.

4. APPLICATION TO THE CURVE-CROSSING DISSOCIATION DYNAMICS OF
LIF

We next proceed to a system in which the intrinsic nuclear derivative couplings directly
affect the dissociation process in laser fields. We take LiF as a case study, which is among the
simplest molecules having an avoided crossing of ionic and covalent PESs (see Fig. 6 (a)). In
such a system, the nuclear derivative interaction around the avoided-crossing should affect
the dissociation process by inducing transition between the dissociative (covalent) state and
non-dissociative (ionic) state. In the presence of strong laser field, these ionic and covalent
PESs are expected to be largely deformed, since these two and other possible excited states
are dipole-coupled. Thus a qualitative description of the field-induced dissociation dynamics

should require full consideration of nuclear kinematic effects as well as dynamical deformation

15 We note that the experimental observability of inverse bond hardening requires further discussions.
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of QES.

4-1. Systems and computational details

Theoretical studies on LiF in recent years include static ab initio calculation of PESs[134,
135], and calculations of field-induced dynamics[123, 136]. To the best of our knowledge, no
experimental study on its field-induced dynamics has ever been reported, but it still serves as
a prototype for studying an interplay of field-induced and intrinsic nonadiabatic transitions.

The full quantum-mechanical calculations in Ref. [136] suggests onset of dissociation
under strong infrared (A = 9.4 pm) laser field of order 10° to 10 TW/cm?. Mixed quantum
classical calculations in Ref. [123], on the other hand, reports dissociation under higher field
intensities around 102 to 103> TW /cm? although the laser wavelengths are different from Ref.
[136]. Here we consider the laser field of wavelength A = 227 nm.

ab initio calculation of electronic matrix elements

We first calculate PESs and relevant matrix elements of LiF by ab initio calculations. We
use the program package GAMESS[137] to perform configuration interaction calculations
limited to single and double excitation(CISD) using the graphical unitary group approach
(GUGA)[138] and obtain PESs as well as the relevant matrix elements including electronic
dipole and derivative couplings. Our choice of basis set is Dunning’s second order augmented
correlation-consistent basis set (aug-cc-pCVDZ)[139], which generates the total of 48 atomic
orbitals. In the CISD calculations, 2 core-like and 27 higher-lying orbitals out of 48 molecular
orbitals are frozen. The number of symmetry-adapted configuration state functions (CSFs)
was 870.

The adiabatic PESs are shown in Fig. 6. Although the calculation level is rather lower
than the previous works on the same molecule[135], it is however sufficient to qualitatively
reproduce the features obtained from more accurate calculations[135]. The position of the
avoided crossing of the lowest two PESs is obtained at around internuclear distance R, =
11.85. (Ref. [135] reports 12 < R, < 13 with larger size calculations.) Since the value of R,
is sensitive to the level and size of calculations, the present R, seems to be within a tolerable
range. The necessary matrix elements in the adiabatic representation are first calculated
using the Ny = 870 CSFs as described above. Dimension of the basis set is then reduced
by restricting to the lowest N, = 8 adiabatic states.

The obtained N, x N, matrices are further transformed to an approximately diabatic
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FIG. 6: The adiabatic PESs (panel (a)) and the relevant elements (panels (b) to (d)) of matrices
obtained by ab initio calculations. Matrices in (b) to (d) are in the approximate diabatic representa-
tion as describerd in the text. (a) Adiabatic energies of the lowest 8 adiabatic states. (b) Diagonal
elements of the Hamiltonian matrix. (c¢) Diagonal elements of the electric dipole matrix. (d) Off-
diagonal elements of the nuclear nonadiabatic coupling matrix. The adiabatic states are labeled as

112+ to 615+, 1M1, 211, where numbers are given in an increasing order in the adiabatic energies.

basis to avoid the derivative couplings. Here an approximate diabatization is applied to
the lowest two adiabatic states, whereas the rest N, — 2 basis states are kept as adiabatic
states. We diagonalize the lowest 2 x 2 block of the dipole matrix to obtain new states with
either ‘ionic’ or ‘covalent’ character. Thus the nonadiabatic coupling between these states has
been significantly reduced around the avoided crossing, although being finite. The residual
derivative couplings are evaluated as is separately described in Appendix D.

The relevant elements of thus obtained matrices are shown in Fig. 6. All the matrices
are calculated at 171 grid-points with the internuclear distance RP = 14+ 0.1p (p =
0,1,2,...,170).

Quantum wavepacket calculations
Here again we assume one-dimensional nuclear motion along the molecular axis, which

is fixed parallel to the field polarization. The quantum wavepacket calculations are then
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performed using Eq. (3.7) in a similar manner as was described in the preceding section but

with several modifications. The nuclear degrees of freedom is represented by internuclear

distance R, whose corresponding reduced mass is M.ry = % and the effective charge
Qeps = %, which are, in the atomic unit, 9265.97 and —0.591950, respectively.

The grid points are chosen as R = Rmm+kRm‘wN7_SR’WL withk=0,1,..., Ng—1, Rppin = 1.4
and R4, = 18.312. Number of grid points, Ng is set to 2048. An imaginary potential term
of the form Eq. (3.6) is applied with modified parameters; Ay = 0.5084, R, = 16.312, Ry =
18.312 and R,, = 2.0. Matrices at each grid point R are obtained by a linear interpolation
technique using the nearest two data points (R(p) and R®*tD which satisfies R?) < R;, <
R®+1). The cut-off of the Fourier series N,, is set to 30, which is confirmed to be sufficiently
large by comparing the results with those of N,, = 45.

Due to the existence of finite diagonal components in the dipole matrix, better conver-
gence is expected by using the velocity gauge rather than the length gauge. We calculate

the electronic dipole velocity momenta in the adiabatic representation using the formula

ge
MmeC

(P)ap = 1(Ea — Ep) (K),p, Where p and p are the electronic momentum and the dipole
matrices, &, is the ath adiabatic energy, respectively. We also redefine the field in terms of the
vector potential as A(t) cos(wt) with a Gaussian pulse envelope A(t) = Agexp (_ ( % )2
In this paper, pulse width is set 300 fs (FWHM) and ¢. and t,, are chosen to be 324.3 fs and
180.2 fs, respectively. The width is set longer than that used in H;r / D;r to take account of
the heavier reduced nuclear mass.

To obtain the initial vibrational states, we fit the first diagonal element of the Hamiltonian
matrix (this is almost equal to the ground adiabatic surface in the range of R in which

the vibrational states of our interest lie) to a Morse potential and derived the vibrational

eigenstates.

4-2. Dissociation dynamics

The graph of the dissociation probability against the laser intensity under a pulse of
FWHM 300fs is depicted in Fig. 7. It shows globally monotonic increase of the dissociation
probability with pulse peak intensity, but with a slight oscillatory behavior, which implies
existence of a trapping mechanism. However, this effect is less clear than in the case of H;
and D;

A typical dissociation process is shown in Fig. 8, which shows the behavior of the Floquet
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FIG. 7: Dissociation probability calculated from the total population lost from the simulation space
Rpin < R < Rpq, during the simulation time. Pulse FWHM was set 300 fs and the initial vibration

state was set to v = 3.
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FIG. 8: The squared Floquet state amplitudes and QESs in the dissociation dynamics of LiF under
a laser pulse of width 300fs (FWHM) and the peak intensity I = 126.36 TW /cm? (A,42/c = 0.30).
Each panel shows the snapshot at the time indicated on the panel; (a) t = 313 fs and (b) t = 459
fs from the pulse onset. The scale for the QES plot is indicated on the right of each panel, while
that for the amplitude plot is arbitrary. Each Floquet state population and the corresponding QES
is plotted with the same color and the same line style. 1’. Orange solid, 2’. light green dashed and
3. purple dotted lines in panel (a) are related to 1. red-solid (S1), 2. dark green dashed (S2) and 3.
blue dotted (S3) lines in panel (b) (see also text). The gray thin dotted curve in each panel, which
shows the QES of the fourth dominant Floquet state (S4), is plotted to help understanding although

the corresponding state population is almost negligible.
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populations and corresponding QESs obtained in the simulation under a laser pulse of width
300 fs (FWHM) and the peak intensity I = 126.36 TW /cm? (Ag/c = 0.30). Here again the
population of higher order Floquet states are small, and therefore we can use the single Flo-
quet state populations to represent the actual dynamics. Note the difference of the topology
of QESs between the two panels; the three QESs in panel (a), plotted with orange solid,
purple dotted and light green dashed lines correspond to those in panel (b), plotted with
red solid, blue dotted, and dark green dashed lines. The correspondence is one-to-one in the
asymptotic region, but not in the region with small R. For the sake of convenience of later
discussion, we label each Floquet state accordingly; those plotted with (1) red solid, (2) dark
green dashed and (3) blue dotted lines will be referred to as the Floquet state S1, S2 and
S3, respectively. The wavepacket begins to flow out of the initial bound potential (R < 4)
around the time when the laser pulse intensity reaches the peak. An example is seen in panel
(a) of Fig. 8, in which the field is strong enough to induce significant deformation of QES
at even around the equilibrium bond length (R ~ 3.0). In panel (a) three QESs avoid-cross
around R ~ 3 and part of the initially bound vibration state population goes out along the
QES plotted by the light green dashed line (see also the inset for details). The dynamics in
this region is therefore similar to that in the bond-softening pattern of H; / D;r .

In contrast to what we saw in HJ /D3, the outgoing wavepacket in this system further
undergoes trapping at a “later stage”, or at a larger value of R. As is shown in panel (b) of
Fig. 8, the outgoing wavepacket is trapped by the upward slope of the corresponding QES
around 8 < R < 12, which essentially comes from the character of the ionic PES. Some
proportion on it, on the other hand, undergoes nonadiabatic transition through the avoided
crossing at R ~ 9 to another Floquet state (a blue dotted curve) of the covalent type and
leading to dissociation. We note however that in this simulation, this later-stage trapping at

the intermediate region 8 < R < 12 is led to dissociation as the field diminishes.

4-3. Characterization of QESs

To facilitate understanding of the above dynamics, we correlate the field induced QESs in
Fig. 8 to those in the zero-field limit (ZF-QESs), which are field-free PESs and their nw-shifts
(see Fig. 6 (a)). Such an approximate assignment would allow an intuitive characterization
of the finite field QESs. Figure 9 presents the QESs of Fig. 8 and related ZF-QESs. We first

study the global features; the upward slope of QES seen in the region 8 < R < 12 reflects
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FIG. 9: The same QESs as Fig. 8 (b), with the zero-field limit QESs (ZF-QESs) being added in gray
lines (refer to Fig. 6). The characters of ZF-QESs are indicated in right hand side of the figure. The
red solid, blue dotted and dark green dashed lines, on the other hand, show QESs identical to Fig.
8(b).

—w-shifted 1'X%, whereas the blue dotted QES, the asymptote to —2w-shifted 6'XF, leads
to dissociation. We can also see that the QES forming the initial bound state (1'X* or
its finite-field correspondence) and those leading to dissociation (—2w shifted 5'XF, 6!2F or
their finite-field correspondence) are indirectly coupled with —2w shifts. This type of coupling
would be zero in the two-state model of Hf /DJ, but is finite here due to the existence of

more than two dipole-coupled states.

4-4. Role of the nuclear derivative couplings

We finally discuss the role of the nuclear derivative couplings. It is expected that the “later
stage trapping” observed above should be affected by the kinematically induced nonadiabatic
transitions at around the avoided crossing of QESs. In order to confirm this, we perform
additional calculations in which the nuclear derivative coupling terms (in Eq. (2.13)) are
intentionally ignored (zero nuclear derivative coupling limit denoted as Z-scheme). We note
that the nuclear derivative couplings here is partly reduced from those in the adiabatic

representation because of partial diabatic transformation. Nevertheless, the differences of
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the two schemes represent kinematic effects 6. The resultant nuclear wavepacket behavior
is shown in Fig. 10, contrasted to that of the full standard calculations of nuclear derivative
couplings (N-scheme)). Figure 10 shows the snapshots of the squared amplitudes and QESs
of the relevant Floquet states at each parameter shown in the figure. In particular, the panel
(b) shows the results obtained at the same parameters as those in Fig. 8 (b). The results of
N-scheme calculation is plotted in the same manner as that of Fig. 8 (b), whereas the results
of Z-scheme calculations are added using orange dash-dotted, light green dot-dot-dashed and
purple dot-dot-dot-dashed lines for the Floquet state S1, S2 and S3, respectively. We first
see Fig. 10 panel (b) where the differences of the two schemes are most pronounced. It shows
larger population of state S2 around R = 10 in the N-scheme result whereas larger population
have leaked off to dissociate through the state S3 in the Z-scheme result (compare the purple
dot-dot-dot-dashed lines against the blue-dotted ones), indicating enhanced trapping due to
the derivative coupling term. The result does not match naive perturbative expectation; if
one assumes the nonadiabatic term as small perturbation term added on the local Floquet
Hamiltonian, any addition of “small” off-diagonal term would induce transitions among the
Floquet states. Such simple guess, however, does not apply here because the nonadiabatic
term is not necessarily a small perturbation at the avoided crossing of Floquet states.

We further compare the result with those obtained in different values of laser parame-
ters. In the weakest peak field amplitude, I = 56.16TW /cm? (Aqes/c = 0.2) the effect of
derivative coupling is negligible because the population passes through the avoided cross-
ings is small. In stronger peak field amplitudes, I = 224.64TW /cm? (Aae/c = 0.4) and
I = 351.0TW/cm? (Aaz/c = 0.5), the differences are small. The difference appear to de-
crease with the peak intensity. This is partly accounted for as the suppression of nonadiabatic
transitions by larger gap among Floquet states.

In principle, the effect of nonadiabatic terms should be small when the (temporal) laser
intensity is large and gaps among the Floquet states are large, but it may become relevant
otherwise. It is also affected by the ‘velocity’ of the wave packet in the form iAv - X, where
v is the wavepacket velocity (more precise description will be given in the appendix E). In
dynamics under a pulsed laser field, one can then expect nonnegligible effect if an accelerated

wavepacket passes through the avoided crossing on the falling edge of the pulse. The reality

16 The dynamics in the adiabatic limit is independent of basis set. Any deviation from this, either through
diabatic coupling or derivative coupling arises from kinematic effects.
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FIG. 10: Comparison of the squared wavepacket amplitudes between the results obtained by the two
calculation schemes (see text). In each calculation, the laser pulse FWHM is fixed at 300 fs and the
peak intensity is set (a) I = 51.16 TW /cm? (4,42 /¢ = 0.20), (b)] = 126.36 TW /cm? (A qz/c = 0.30),
(e)I = 224.64TW /cm? (Ay4z/c = 0.40) and (d) = 351.0 TW/cm? (Apax/c = 0.50), respectively.
The snapshot at fixed time 1" = 459 fs from the pulse onset is taken for comparison. The external
conditions for the panel (b) is hence identical to that of Fig. 8 (b). The Floquet state populations
and their corresponding QESs obtained by the N-scheme calculations are plotted with the same line
styles as Fig. 8 (b) ; S1: red full, S2: green dashed, S3: blue dotted, and S4: black thin dotted,
respectively, whereas the Floquet state populations in the Z-scheme are plotted with S1’: orange
dash-dotted, S2’: light-green dash-dot-dotted, S3’: purple dash-dot-dot-dotted and S4’. gray thin

dotted lines, respectively.

is, however, that much is dependent on the details of dynamics.

We must also note that the effects are transient and the total dissociation probability
(evaluated at large t from the onset, where laser pulse diminishes) is almost identical between
the two schemes. However, the result may differ if there are multiple dissociation channels
and one distinguishes between them|[71].

We have thus applied our generalized Floquet method on the field-induced dissociation
of ionic bound LiF using ab initio PESs and matrix elements, and observed that, even
in the presence of nuclear derivative couplings, wavepacket dynamics can be qualitatively

understood in terms of quasiclassical dynamics on QESs. We have also explicitly shown

Energy(Hartree)

Energy(Hartree)
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nontrivial effects of kinematically induced transitions on the wavepacket amplitudes.

5. CONCLUDING REMARKS

We have formulated a generalized Floquet Hamiltonian method that is applicable to dy-
namics including nonperiodicity arising from time-dependence of laser parameters and/or
the nuclear kinematic effects. Use of the two-time formalism led to a clear method that is
formally independent on the details of the time-dependent parameters. In this method, ef-
fects from these two types of nonperiodicity are treated in a unified manner under the notion
of generalized nonadiabatic transitions. This unified treatment naturally allows for quasi-
classical analysis in the (field-free) nonadiabatic dynamics with use of the gradients of QESs,
to which we have given analytic and numerical verification. A numerical implementation of
this method has been applied firstly to the field-induced dynamics of H;r / D;r within the two-
state model with no derivative coupling. The dissociation probabilities obtained for them
have been in good agreement with previously reported results. Analysis of time-dependent
QESs and wavepacket dynamics has exposed some more details about the bond softening,
bond hardening, and inverse bond hardening. In the second application to the curve-crossing
dynamics of LiF, we have performed calculations of the generalized Floquet-based method
in the level of ab initio electronic states, including the nuclear dervative coupling elements
among them. In fact we have shown a nontrivial effect of the intrinsic (kinematic) nonadia-
batic interaction in the system of field-induced nonadiabatic dynamics. The present method,
giving simple and clear view of field-induced and intrinsic nonadiabatic transitions will con-
tribute to the study of laser control of chemical reactions and therefore deserves further

study.

APPENDIX A: GAUGE CHOICE

In principle one can choose arbitrary gauge in calculation and the resultant physical
quantities are independent of gauge choice. In practical calculation, which is inevitably an
approximation, however, the result does depend on the gauge choice.

In non-relativistic quantum mechanics using Coulomb gauge, the Schrodinger electron
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interacting with transversal (external) vector field A", which satisfies V- A" = 0 is given as

2
iho, U = (21 [?v - ‘fA%} + V) v, (A1)

m
where V includes Coulombic interaction among materials. Here the scalar field as well as the
longitudinal vector field is absent but there is instantaneous Coulomb interactions. Noting
the original form in mind, we can dare rewrite Eq. (A.1) as follows;

[ih8; — qed] T = (1 [h - qceAqb] g V> T, (A.2)

2m |1

where we have introduced ‘scalar field’ ¢, whose role should be limited to a transformation
of the external field A given in Eq. (A.1) so that it does not contradict to the Coulombic
description of interactions in V. A general gauge transformation in this case can be given as

U= 73(13, and associated transformation of the Schrédinger equation

(ihdh — 4.9) ¥ + R |(ih; — ae) , R| T

1 - -\ -
_ (R—l [(ﬁv-%&) R
2m 7 c

In the simplest case, R = exp(%qex) so that only the potentials changes as (;NS = ¢+ x/c and
A=A-Vy

) c

2
+ (hv - qu) + 7%—1V7é> v, (A.3)

Important gauge choices in atomic problem is Dipole gauge: R = exp [C—ihqe i A - dr! ]
Velocity gauge: R = exp [—% ft dt' 5 (p — qut’)ﬂ
Acceleration gauge: R = exp [%ste p— L [at'sE (%At/)z} where s; = [ Lar de Ay assum-
ing linear polarization
Here the second one merely cancels the phase arising from the quiver energy.

In practical calculation using ab-initio quantum chemical calculation techniques, expo-

. . . iA.
nential transformations like e

usually cannot be exactly expanded in a finite number of
basis set. It follows that if, within some small number of basis set, one can describe the true
wave function in good approximation, the same basis set would give poor approximation of
the equivalent wave function in another gauge choice.

We can further see that, in analytic approaches, the appropriateness of favored assumption
that the initial bound state is well approximated by the field-free ground state ¥(0) ~ ¢y,

depends on the gauge choice; if it is good in the dipole gauge, the equivalent description in

the radiation gauge should be obtained using ¥(0) ~ exp [c%qe A, dr’] bg-



93

Since existing calculation packages work best for field-free low energy states, a practical
choices in molecular problem should then be judged by smallness of difference from the field-
free wavefunctions. The field interaction terms in each gauge choices are V7% = —LA-p+
% (%A)2 , Vel = —-LA -p, VéP = —qr- B and V% = U, (r — s;) — Uen(r), where Uy, is
the electron-nucleus interaction, respectively.

In adiabatic basis, + (P)as = 1(Eq — Eg)rap, hence the velocity /radiation gauge inter-

’m

action tends to be larger [smaller] than the dipole gauge interaction in core [outer] region.
On the other hand, the interaction term in the acceleration gauge tends to be large and
impractical in core-to-valence region but in the asymptotic region, far from the atomic core,
Ve diminishes as s;/72.

It then follows that, comparing the dipole gauge and velocity /radiation gauge;

1. bound state wavefunction, in particular, whose behavior near atomic core, should be best
described by the dipole gauge.

2. unbound state or high Rydberg state wavefunction in particular, whose behavior far from

atomic core, should be better described by the velocity or radiation gauge. The asymptotic

region would be best described by the acceleration gauge.

APPENDIX B: EXTENSION TO TIME-DEPENDENT FREQUENCY

In the (generalized) Floquet formalism, time dependent variation of the optical frequency
requires special care since it alters the fundamental period T'. Nevertheless laser frequency is
undoubtedly an important control parameter in experiments. Pulse chirping, for example, is
considered to be a powerful tool for molecular dissociation control and/or quantum popula-
tion control[140, 141]. The apparent difficulty in its Floquet based formulation, however, was
shown[142] to be circumvented by using the phase variable ¢ instead of periodic time variable
s[142]. Here we apply this idea to derive the nonadiabatic time evolution equation including
frequency variation in terms of two-time formalism. We use the phase variable 6 instead of
short time variable s to define the extended Hamiltonian ﬁtﬁ, which is periodic in 6 in the
sense I?tﬂ = ﬁt79+27r. It reduces to the physical Hamiltonian at § = ©(t), where ©(t) is the
physical phase as a function of t. The physical phase may be set as O(t) = w(t)t + const., as
Guerin assumed, but it may take other forms. We here introduce the instant (differential)

frequency Q; to define O(¢) = [ YdrQ,. The Schrédinger equation for the extended state
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becomes
ihat{f’tﬂ = %t,e‘it,a (B.1)

where H; g = H; g — ih82;0p is the Floquet Hamiltonian, which is formally periodic in 0. As
we did in the main text, we assume the ¢ dependence can be absorbed in the parameter and

rewrite the Floquet Hamiltonian as H(R+). The nonadiabatic time evolution equation reads
. 1 h 0 Qr o1’
FLaR: AT Ti_iA_ hX UnucR o /\aa
I B af
. : m
—ihy ¢y e, (B:2)
I B

The formal appearance of Eq. (B.2) is equivalent to that of Eq. (2.13), although the inner

product is now defined as

(alg) = [ gHa®I80), (B.3)

and the adiabatic parameter set {¢!'} includes €2, which accompanies corresponding nona-

()

diabatic coupling X ag given as

<<‘I)a; Ry |ih89\®ﬁ; Rt»
Ao — )\g

(B.4)

Q 0
XL = (@ai Ral o5 105 Re) =

If the physical phase is given by ©; = w(t)t+¢ (¢ is time-independent phase) after Refs. [140—
142], we have ; = w(t)t+w(t) and the resultant time-evolution of the physical wavefunction

‘I’t,0|9:®t is equivalent to Ref. [142].

APPENDIX C: DETAILS OF QUASICLASSICAL APPROXIMATION

Here we discuss the details of the quasiclassical approximation. We first discuss Eq.
(2.16). In Part I, it was shown that the best classical representation (within the stationary
phase approximation) of nuclear dynamics is Newtonian dynamics with force form given as
Eq. (2.24). Calculation of the force form requires the knowledge of the time-evolution of
the electronic degrees of freedom, which, in general case, lead to a difficult self-consistency
problem. In the region with negligible nonadiabatic transitions, however, the adiabatic state
| (t); Re), after a sufficiently short time, obviously evolves into the corresponding state on
the nearby nuclear position. The effective force is hence given by the adiabatic state average.

The argument here obviously extends to generalized nonadiabaticity, since it is the Floquet
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state which is (quasi)stationary under the laser field. The effective force is hence given by
Eq. (2.16) in the main text.

We next derive an explicit estimate of small nonadiabaticity. Using a non-dimensional
estimate of nuclear derivative contribution, smallness of nonadiabaticity between two Floquet
states |®qo; Ry) and |Pg; Ry) with quasienergy A, and \g is given as

lihv - Xqop]
—— K1 C.1
[Aa — )‘B‘ < ( )

where v = R is the velocity of the nuclei in the sense of classical representation. Using the

fact ((q)a\a%\@g» = ((®o] — 873—?6@5»/ (Aa — Ag), Eq. (C.1) is rewritten as

ihv - (Po; Ryl (—ay§e> \(I)ﬁ;Rt»’
(Aa — )‘ﬁ)2

<1, (C.2)

A similar estimate for the smallness of field-induced nonadiabaticity is given as, in the
dipole gauge,
ihEe - (®a; Relpe|®s; Re)
(Aa — )‘6)2

<1, (C.3)

where € is the field polarization vector, E and E are the electric field amplitude and its time
derivative (such as pulse envelope and its time derivative), and p is the dipole operator. The
corresponding expression for the velocity gauge can also be obtained in an obvious manner.

It obviously follows that near avoided-corssing points, adiabaticity is broken for the range
where the difference of two adjacent quasienergies is smaller than the energy scale given by

the square root of the numerator appearing in the left hand side of Eq. (C.2) or (C.3).

APPENDIX D: APPROXIMATE DIABATIZATION

We show some details of the approximate diabatization scheme. We start from an Ny
dimensional adiabatic basis set and corresponding matrices. We first select subset of adiabatic
vectors {|Fu; R) }aen where A is a fixed subset of the adiabatic vector index set Ag = [1, Nyot.
We first diagonalize the submatrix of the dipole matrix (parallel to the molecular axis)

I
Dab’a,beA as

!
ST Db = wUg. (D.1)
beA

where Uy denotes the ath component of pth eigenvector of the dipole submatrix and p) is

the corresponding eigenvalue. The corresponding state is defined as [Uy; R) = Y0 |Fu; R) Ug.
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The derivative couplings of these state vectors are evaluated as (the derivation will be given

later)

Zb JaEN Ub* ngA (Dl‘;err,a - Xb,rDvua) U;
P q

where Z; wca indicates the summation over subset A, while Er¢ A indicates the summation

{Up; R\

over the residual set Ag\ A. For the actual calculation of LiF in the main text, the lowest two
adiabatic states are thus transformed ( i.e. A ={0,1} ), to |Ur; R) and |Uc; R), which are
essentially ionic and covalent, respectively. These two transformed state vectors as well as
the lowest Nj, — 2 of remaining adiabatic vectors, {|Ur), |Uc), |F3), ..., |Fn,)} are used in the
calculation of dynamics. The derivative coupling obtained in this transformation is shown in
the panel (d) of Fig. 6.

We now evaluate the nuclear coordinate derivatives of state vector |Up; R) defined as
S |Fa)Uy where the summation with prime (37) is used to emphasize that the summation
of indices runs over the restricted set A. The derivative couplings among state vectors |Up; R)

are expanded as

/ )
(U RIS U R) = > Uy RIER) R Ui +Z (U Rl - |F RV
ax* a b* a
Z 0f5 a—RUq +3 U XU (D.3)
b,a

It follows from the fact that the coefficient vector Ug is the eigenvector of the matrix D||

that

9 >, ue 2 (Dl ) o
S U U = - pﬂjfiiq ) . (D.4)

a

Introducing the basis vector independent operator form of the dipole, ﬁ”, the derivative of

matrix element is evaluated as (using index i to emphasize unrestricted summation)

a?:{ (D(‘z‘b> aaR (Fa’ﬁ”|Fb> = Z <D(‘1‘Z‘Xz‘,b — Xaﬂ’Dy,b) , (D.5)

7

where the dipole operator itself, being a purely electronic operator, is assumed to be inde-

pendent of nuclear coordinates; 8%[)” = 0. We hence have

ZQ,QU;?* > (DIUin - szD” ) U

Uy R|—|U,;;R) = — +) U X, U
(Up; R aR| ¢ R) P bz;
Zb an* ZT‘¢A <Dl|;|rX7”,a - Xb,rDl!a> Ug

= , D.6
Hp — Hq ( )

which proves Eq. (D.2).
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APPENDIX E: EXACT DESCRIPTION OF NONADIABATIC TRANSITIONS

We show an exact expression of nonadiabatic transition moment taking into account of
the extended nature of the nuclear wavefunction. We use Eq. (2.13) to derive the time
derivative of the local Floquet state population p,(R,t) = |xa(R,t)[%. A straightforward
calculation gives

1 1
. I I I I I
pa(R,t) = _ZVI'Jaa _ZE [Xaﬂ 'Jag—kc.c.} +Z§ [X @ 'jﬁa—FC.C.]
I 1,8 Lp
. * 12
—23 " & Re (i (R Dxa(RD XS, ) (E.1)
o

where J é 3 denotes the ‘covariant’ current-like quantity related to the /th nuclear coordinate

defined as

1 . h q .
Tl = R > XL(R, 1) [(iv — CA) Sy — thév} x4 (R, t) (E.2)
gl
and J! is the projected current
[
J = 3 (T na + ). (E.3)

The meaning of Eq. (E.1) is now clear; the first term describes the drift contribution while
the second and the third terms (each including c.c.) describe the transition induced by nuclear
motion through the derivative coupling. The fourth term is the contribution from the time-
dependent change of the laser parameters. Mixed quantum classical description, or the
narrow wavepacket limit would give,

%|ca|2 =V (CiXE O+ ee) — 23 CRe (CiX905) (E.A)
1 Iz

where C,, denotes the coefficient of Floquet state o, v/ is the Ith nuclear velocity (in the
sense of mixed quantum classical representation). The first term in Eq. (E.4) corresponds
to the second and third terms in Eq. (E.1), while the second term in Eq. (E.4) corresponds

to the fourth term.
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APPENDIX F: INVERSE ITERATION METHOD TO DERIVE EIGENVALUES
FROM LARGE SCALE FLOQUET HAMILTONIAN

The inverse iteration algorithm for Floquet eigenvalue problem

We consider the Floquet state in A3 dimensional Hilbert space with the Fourier series
(photon number) cutoff set as Nf, which is to say that Fourier order n runs through —N;” <
n < N,f. The Floquet Hamiltonian has formal linear dimension (N, 41+ N,;") x N3, which
can be prohibitively large to perform with standard matrix diagonalization algorithm such
as Householder method [143]. Moreover, in practical calculations, we want Floquet states
for a few hundreds of spatial grid points and/or every time slices along the time-evolution.
There clearly need some better algorithms.

In order to discuss further, we introduce supermatrix notation where each block has linear
dimension Ny. The (n,m)-th block of the Floquet Hamiltonian is denoted as H, ,, where
n and m runs from —N, to N;r . The Floquet Hamiltonian for monochromatic field has
blockwise-tridiagonal structure (H, , = H el _nhw, Hot1n = fo and zero otherwise), which
is to be exploited for reducing computational cost.

We consider the inverse iteration method with LU algorithm [143]. The inverse iteration

method is an iterative method to solve eigenvalue problem.

Inverse iteration method

Purpose: Iterative derivation of Kth eigenvalue Ai and eigenvector ug
of a given Hermitian matrix A
Starting Conditions: Initial guess of eigenvalue Xg?), which is closest to Ax

(I x fo,?)\ < |Ag fX(Ig)| for any K’ # K),
(0)

and trial eigenvector u)’, which is not orthogonal to the true eigenvector ug

Procedure: (Tterate over the following steps until convergence.)
. N1 . , .
1. (Vector update) WSH) = (A - A;?) ﬁg? and renormalize the result; u5f+1) = WSZ-H)/ ‘WS—H)‘

2. (Eigenvalue update) X(I?H) = Xf,? + I/WSH) ),

The matrix inversion, required for the inverse iteration, is efficiently obtained using LU
algorithm [143], exploiting the tridiagonal structure. We first review the LU algorithm to

calculate matrix inversion.

For our purpose, we can use the idea of step 1, the LU decomposition, in a block-wise
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LU algorithm for matrix inversion

Purpose Derivation of the inverse matrix of A, which is assumed to be inversible
through LU-decomposition A = LU, or more explicitly,
Aij = 2 k<min(i,j) LikUks ()
where L and U are lower- and upper-triangle matrices, respectively.

without loss of generality, L;; can be set unity.

Procedure
1. (LU decomposition) Eq. (1) is solved for j = 1,2, ..., N:
in the jth step, one first solves for U;; for i = 1,2,..., J in this order
and then solves for L;; for i =j+1,...,N.
2. (Back-substitution) Matrix equation LUX =1 is solved column by column
as LUx; = e; with e; being the jth unit vector.
Coupled equations Ly = e;, Ux; =y are readily solved [143]
using the triangular property of L and U.

manner. To be explicit, block-tridiagonal matrix H

HY — (n—1)hw Vi 0
H = Vi H — nhw Vi (F.1)
0 Vi HY—(n+1)hw

is decomposed into blockwise LU matrix

1y, 0 0
L= VAUTL in, 0 (F.2)
0 V;Un_l 1NH

Thno1 Vi O
U= 0 T, Vg (F.3)
0 0 Tn+1
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where T,, are Ny x Ny dimensional submatrices subject to the equation
T = (H* — nhw) = VAT, Vi, (F.4)

which is to be solved starting from 7" Ny = He + N, hw
Here we note the mechanism of the inverse iteration. We formally expand the ith step
, . o —1
guess vector by the true eigenvectors as ﬁg? =3 uKCg) . Application of (.A — Ag?)

scales each component as Cé% — C’(Lzz( /(AL — 5\([?), hence through each step the component

with eigenvalue closest to S\g? magnifies the best.
In practical implementation, the initial guess at the onset of laser pulse can be set eigen-

values and eigenvectors of the field-free Hamiltonian.

Practical implementation

In the Floquet eigenvalue problem (in the limit Npi — o0), for any Floquet eigenvector
uy with eigenvalue g, its ”mw-shift”, defined as v[n| = u[n+m], is also a Floquet operator
with eigenvalue Ax + mhw. In the practical calculation with finite cut offs N;t, the exact
relation is lost but the approximate relation holds if the derived vector is well-described within
the truncated Fourier series expansion. We therefore have to calculate only Ny “distinct”
vectors.

The initial guess can be obtained from the eigenvalue Ex and eigenvector cx of the
field-free Hamiltonian as ﬁ% = (0,...,0,ck,0, ..., O)T, Ak = Ex, which is truly the Floquet
eigenvector in the zero-field limit. Once the Floquet vector for certain nuclear position and
time (R,t = 0) is obtained, subsequent calculations can use the previous results as starting
guess.

The algorithm is applied successfully to large scale problems with, for example, Ny = 50,
N, = 41. However, there have also been found a number of problems to be overcome.

1. Convergence to unwanted vector; Some iterations do not converge to “new” one, which is
distinct to already derived ones, but converge to one of the already derived vectors or their
nwshifts.

2. Sometimes iterations do not converge or converge to a superposition of eigenvectors. This
typically occurs on the (avoided) crossing points on the QESs, where eigenvalues come close
to each other.

These problems arise from the nature of the inverse iteration algorithm, which “filters” the
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trial vector only through the eigenvalues. A possible cure to avoid the former problem,
convergence to undesired vector, is to project out these undesired ones (including their mw
shifts) in each iteration step ﬁg? = 1=>. Zijl UK Uk ﬁg?.
As for the latter problem, application of other algorithm such as Lanczos algorithm [144] was
found effective in some cases.

Thus the inverse iteration algorithm tend to get more complex than initial expectation. As
a practical prescription, Floquet eigenvalue problem for small (Ny = 8, N,, = 61, for example)
size system is much easier solved by standard full-size matrix diagonalization procedures. The
numerical results in the main text was obtained by the latter method, not by the inverse
iteration. For larger size problem, however, inverse iteration should work better both in

terms of memory efficiency and time efficiency.
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General Conclusion and Perspectives

As we have already given summary of each part separately, here we put emphasis on relations
among sections and future perspectives.

We have first reviewed current trend in the study of nonadiabatic dynamics, with much
emphasis on the field-induced dynamics to derive requirements for a new theoretical ap-
proach; (i) accurate reproduction of electronic dynamics, (ii) appropriate description of nu-
clear dynamics that couples to the electronic dynamics (iii) applicability to a certain variety
of molecules (iv) clear description of the underlying physics.

In Part I, we have discussed MQC representation of electron-nucleus coupled nonadiabatic
dynamics. We have found that one of the most rigorous description, free from empirical
approximations, is the Pechukas theory, with several modifications. Although being unsuited
for direct numerical implementation, it serves as a guide for theoretical discussions. We did
use the formal expression of force form for derivation of QES gradient approximation in Part
IT Subsec. 2-4.

On the other hand, there is also a need for practical algorithms (even if we have to
allow some additional assumptions). We hence have examined existing algorithms, SET and
PSANB, along this framework, to clarify their properties and underlying assumptions. In
seek for further improvements of these algorithms, we have proposed central requirements
for branching algorithms (Sec. 4) and examined possible approaches. These discussions are
to be further developed with numerical tests to construct a practical algorithms.

The general theory of MQC dynamics thus obtained covers the requirements (i) (iii) and
(iv) on formal theory whereas we need further sophistication to satisfy the requirement (ii)
since there have been found no practical way to reproduce the “conservation laws in the
asymptotic region”.

In Sec. 6, we have discussed higher order expansion of the nuclear path integrals. Exis-
tence and roles of the force-force correlation term has been found to be related to possible
electron-nucleus mode couplings and is another manifest of nonadiabaticity. However, apart
from several toy-model examples we discussed in this work, its effects in more realistic molec-
ular models remains to be examined. In future work, we should also examine field effects on
such nuclear-electron couplings. In fact the effects of field-nuclear or electron-field-nuclear dy-
namical couplings are mostly omitted (as we have assumed laser frequency to be off-resonant

with respect to the nuclear vibration modes) in the discussions in Part II, but there are some
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intriguing findings in the literature [130].

In Part II, we have sought for a practical theory for electron-nucleus coupled nonadiabatic
dynamics in intense laser fields. We are hinted by intuitive observations on the validity of the
idea of field-induced PES. In order to construct physically clear as well as rigorous approach,
we formulated a generalized nonadiabatic Floquet Hamiltonian method based on the two-
time formalism of quantum mechanics. We thus have formulated a unified treatment of field-
induced as well as kinematically-induced nonadiabatic transitions among Floquet states. This
allows analogy from conventional theory of chemical reaction dynamics. Another important
outcome here was concrete formulation of the QES gradient approximation with explicit
validity conditions. Exactness of the theory and validity of the QES gradient approximation
have also numerically examined.

Here we note that the advantage of using the Floquet representation in evaluation of
the effective force is the sationarity of the Floquet state. It is interesting to examine the
validity of the QES gradient force against other derivations of effective force based on dif-
ferent representations including the adiabatic basis and so-called time-dependent adiabatic
basis [145].

Having constructed theoretical foundations, we have achieved (i) to (iv) in the formal
theoretical level let alone inclusion of higher energy processes such as field-ionizations. On
the other hand, in practical level, much is left for future work including (iii). Our next goal
is to construct a practical calculation method of Floquet-based field-induced dynamics in
MQC representation. In such implementation, accuracy of the asymptotic nuclear velocity
in each dissociation channel is crucial for reproducing the experimental observables. In order
to achieve this, we have to carefully formulate branching algorithms based on the discussions

on Part I. Study in this course is now going on.
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