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Abstract
The Efimov states are three-body bound states, which appear universally when thes-wave scat-

tering length between the particles is resonantly large. Since the Efimov states and their charac-
teristic discrete scale invariance have recently been observed in ultracold atoms, the Efimov states
and their associated few-body phenomena have attracted widening interest both theoretically and
experimentally. In this thesis, I theoretically study the Efimov physics and related phenomena,
focusing on the following three topics:
(i) Universal three-body physics for a mass-imbalanced Fermi system (Chapter 3).

For a system of two identical spinless (i.e., spin-polarized) fermions and one distinguishable
particle which interact via a short-range potential with a larges-wave scattering length, two classes
of universal three-body bound states have been known to appear in different regimes of the mass
ratio: the Efimov trimers and the Kartavtsev-Malykh trimers, which feature the discrete and con-
tinuous scale invariance, respectively. I have found the third class of universal three-body bound
states, which I call the “crossover trimers”. The crossover trimers show neither the discrete nor con-
tinuous scale invariance. I have identified the regions of these three classes of trimers as a function
of the mass ratio and thes-wave scattering length, and shown that the Kartavtsev-Malykh trimers
and the Efimov trimers can continuously transform into each other via the crossover trimers as the
mass ratio and thes-wave scattering length are varied.

Owing to the presence of the crossover trimers, the Kartavtsev-Malykh trimers dissociate into
a particle and a dimer when thes-wave scattering length is varied, inducing resonances in the
particle-dimer scattering. I have calculated the elastic particle-dimer scattering lengths in arbitrary
angular-momentum channels, and shown that the particle-dimer resonances indeed occur. From the
resonance positions, I have found accurate values of the critical mass ratios at which the Kartavtsev-
Malykh trimers in the higher angular-momentum channels appear.
(ii) Universal three-body parameter (Chapter 4).

In the Efimov physics, the three-body parameter fixes the short-range three-body phase and
hence the scale of the energy spectrum. Until quite recently, it has been widely held that the three-
body parameter should depend on the short-range part of the inter-atomic potential, and hence vary
almost randomly between different atomic species and hyperfine states. However, mounting evi-
dence in recent experiments suggests otherwise. While some theoretical studies have succeeded
in reproducing the universal behavior in the three-body parameter, the underlying physical mech-
anism has remained unclear and controversial. In this thesis, I elucidate the physical origin of the
universal three-body parameter. I propose that a non-adiabatic deformation of the three-body wave
function induced by a universal two-body correlation results in a universal three-body repulsion,
which prevents three particles from coming close and renders the three-body parameter universal.
This mechanism is verified by reproducing the universal three-body repulsion with a simple model
wave function.

The mechanism found here suggests that the three-body parameter would also be universal
for non-van der Waals types of potentials. For various classes of deep two-body potentials, it is
shown that the effective range is the relevant length scale to characterize the two-body correlation
and sets the three-body parameter. Depending on the shape of the two-body correlation, there
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exist two classes in which the value of the three-body parameter is universally determined. One
class corresponds to short-range two-body potentials decaying as a power law, relevant to atomic
interactions, for which the universal pair correlation behaves smoothly. The other corresponds
to deep two-body potentials decaying exponentially, relevant to nuclear systems, for which the
universal pair correlation shows discontinuity.
(iii) Effective interaction between heavy particles immersed in a Fermi sea of light fermions
(Chapter 5).

For a system of two heavy particles resonantly interacting with one light fermion, the Efimov
states generally appear. Recently, it has been shown numerically that the formation of the Efimov
states is suppressed when the number of light fermions is increased so that they form a Fermi
sea. I show that this is also true in the case ofN heavy particles. To be more specific, I consider
N heavy particles immersed in a Fermi sea of light, spinless (i.e., spin-polarized) fermions, and
study the interaction between the heavy particles induced by the surrounding light fermions at
zero temperature. With the Born-Oppenheimer method, I have analytically shown that the induced
interaction vanishes for anyN in the limit of high light-fermion density. The induced interaction
vanishes even in the unitarity regime. This suggests that the formation of the Efimov states and
their associatedN-body bound states is suppressed in the presence of the dense Fermi sea. I have
ascribed the vanishing induced interaction to the screening effect in the neutral Fermi system.
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Chapter 1

Introduction

1.1 Efimov states

In 1970, Vitaly Efimov found a new class of three-body bound states, which are now called the
Efimov states [1, 2]. He considered non-relativistic three identical bosons in three spatial dimen-
sions, where the three particles interact with each other via a short-ranged attractive interaction.
He fine-tuned the strength of the attractive interaction such that a two-body bound state is about to
appear in thes-wave channel, so that a resonant scattering occurs and thes-wave scattering length
between the particles gets divergently large. By analytically solving the three-body problem under
these conditions, he found that an infinite number of three-body bound states appear. The most re-
markable feature of these three-body bound states is that their properties are the same after a scaling
transformation: assume that you have found one of the three-body bound states. Then, all the other
three-body bound states can be obtained by a proper scale transformation. For example, the wave
functions and the binding energies of then-th and (n+ 1)-th three-body bound states are related to
each other asΨn+1(r i) = Ψn(r ie−π/s0), andEn+1 = e−2π/s0En, whereeπ/s0 = 22.7 . . . (s0 = 1.0024. . .)
is the universal scaling factor.

The Efimov states are universal three-body bound states that appear in any system when the
inter-particle interaction is short-ranged and resonant. The Efimov states have been sought in var-
ious systems for more than 30 years. Originally, Efimov investigated the possibility of the Efimov
states for three-body systems of nucleons§ (i.e., protons and neutrons), since the nuclear force is
short-ranged and the scattering lengths between the nucleons is relatively larger than the range of
the nuclear force [1, 2]. The Efimov physics has also been discussed in the context of neutron rich
nuclei [3, 4, 5]. For some nuclei containing much larger number of neutrons than typical stable
nuclei, such as6He [4] and11Li [4, 6], their radii have been found to be much larger than those for
typical nuclei, and the neutron’s wave function extends to a long distance. Such nuclei are called
halo nuclei, and it is argued that these halo nuclei are closely related to the Efimov states. The
Efimov states have also been studied in the atomic and molecular physics [7, 8, 9, 10]. For4He
atoms, there exists a weakly bound two-body bound states of4He atoms and the scattering length
between the two4He atoms is very large [11, 12, 13, 14]. A three-body problem of three4He atoms

§He also considered the possibility of the Efimov states for12C, which can be regarded as a three-body system ofα

particles.
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2 Chapter 1. Introduction

has been studied theoretically, and it has been suggested that there are two three-body bound states,
one of which is rather weakly bound and has an Efimov character [8, 9, 10].

However, the Efimov states have eluded experimental investigations for a long time. The main
difficulty is the necessity fortruly resonant interactions. The interaction between particles is reso-
nant only when it is, by coincidence or for some reasons, fine-tuned such that a bound state is about
to appear/disappear. Unfortunately, such fine-tuned systems are quite rare in Nature. Furthermore,
it turns out that one needs a fine-tuning with extreme precision to observe more than one three-body
bound state. In his original work [1], Efimov estimated the number of the Efimov states to be

N ≈ 1
π

log
|a|
r0
, (1.1)

wherea is thes-wave scattering length, andr0 is the range of the inter-particle interaction. From this
estimate, one can see that the scattering length must be extremely large to observe several Efimov
energy levels:N ≥ 2 corresponds to|a|/r0 & 500, andN ≥ 3 corresponds to|a|/r0 & 104. In all
the examples shown above, however, the scattering length is only moderately large|a|/r0 ∼ 5− 20,
and it is impossible to observe more than one three-body bound state. This has made it difficult to
study Efimov physics experimentally in these systems

A major breakthrough has occurred recently in the field of ultracold atoms. Advanced cooling
techniques such as the laser cooling [15, 16, 17, 18] and the evaporative cooling [19, 20] developed
in the 1970s to 1990s have enabled one to prepare neutral atoms at extremely low temperatures
T ∼ 1−100 nK. At such ultracold temperatures, the interaction between the atoms is dominated by
the s-wave scattering channel, which is characterized by thes-wave scattering lengtha. In 1998,
the s-wave scattering length has been found to be controllable by applying an external magnetic
field [21]. This technique is called the Feshbach resonance [22, 23]. Since its first experimental re-
alization, it has been the standard tool and widely used in the field of ultracold atoms (see Ref. [24]
for a review of the Feshbach resonance). The unique feature of the Feshbach resonance is that one
can prepare a system with a desired value of the interaction strength in experiments with extreme
precision. In Fig. 1.1, thes-wave scattering length between7Li atoms is shown as a function of the
external magnetic field. One can clearly see that thes-wave scattering length changes dramatically
as the strength of the magnetic field is varied. By precisely controlling the external magnetic field,
thes-wave scattering length can be changed by several orders of magnitude. With the Feshbach res-
onance, one can experimentally study few-body and many-body physics by continuously varying
the inter-atomic interaction from the weakly interacting limita→ 0 up to the strongly interacting
limit a → ±∞. This is in marked contrast with other systems, where the interactions between
particles is generally set by Nature and one has little control over it.

The Feshbach resonance has enabled the observation of the elusive Efimov states. In 2006, the
first signature of the Efimov states has been observed in ultracold atoms by a team of the Innsbruck
University [27]. In a subsequent experiment [28], two adjacent Efimov states have been observed.
As shown previously, thes-wave scattering length should be extremely large|a|/r0 & 500 to achieve
this, but such an extreme fine-tuning is possible with the Feshbach resonance. In this experiment,
the discrete scale invariance has been confirmed and the universal scaling factor has been found to
be 25± 4 [28], which is consistent with the theoretically predicted valueeπ/s0 = 22.7 . . ..
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Figure 1.1: Feshbach resonance observed for7Li atoms [25]. Thes-wave scattering lengtha is
shown in the atomic unita0 as a function of the external magnetic field. Thes-wave scattering
length is varied by seven orders of magnitude in the vicinity of the resonance. The red solid curve
and the blue dashed curve are the coupled-channel calculation and the Feshbach resonance fit in
Eq. (2.15), respectively. The inset is a blowup around the zero-crossinga ≈ 0. The scattering
length is estimated from a BEC size measurement [25], which is affected by beyond mean-field
effects and anharmonic contributions to a trapping potential at large scattering length. In Ref. [26],
a new measurement with less systematic uncertainties has been done by the same group. [Figure
reprinted with permission from S. E. Pollacket al., Phys. Rev. Lett.102, 090402 (2009). Copyright
c© (2009) by The American Physical Society.]

1.2 Efimov physics as a universal few-body phenomenon

Although the Efimov physics has eluded experimental investigations for more than 30 years, it
is a universal phenomenon and, in principle, it can appear in various physical systems. For non-
relativistic three identical bosons interacting via short-ranged two-body interactions, the Efimov
states appear when the following two conditions are satisfied:

• The inter-particle interaction is short-ranged, so that thes-wave interaction is dominant at
low energy.

• The s-wave scattering length between the particles is divergently large|a| � r0, wherer0 is
the range of the interaction.

Historically, the possibility of the Efimov states has been studied in various systems, such as the
halo states of the neutron rich nuclei,4He clusters, and ultracold atoms. In all these systems, the
two conditions are, to some extent, satisfied.

These conditions for the appearance of the Efimov states can be used as a guideline to search
for the Efimov states in novel systems. If one wants to know whether the Efimov states can appear
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for a given system, one can first check the above two conditions. If they are satisfied, it is very
likely that the Efimov states appear. In 2013, it has been theoretically predicted that the Efimov
states can appear in a quantum spin system [29, 30]. This new finding can be interpreted in the
above framework: in a quantum spin system described by the ferromagnetic Heisenberg model, the
low energy excitations are magnons. They behave as bosonic quasi-particles and their low-energy
dispersion is the same as that for non-relativistic free particles in the vacuumεk ∝ k2. Therefore,
their scattering problem can be treated in a manner similar to that of non-relativistic identical bosons
in the vacuum. In real quantum spin systems in solids, there are often some anisotropies§ which
can induce a short-ranged magnon-magnon interaction. If this magnon-magnon interaction is such
that the resonance of the magnon-magnon scattering occurs, the above two conditions are satisfied
at low energy and the Efimov states appear.

It is notable that the general features of the Efimov states in various systems are the same. If
one virtually changes the Hamiltonians of the halo nuclei, quantum spin systems,4He, or ultracold
atoms, and fine-tunes thes-wave scattering length to be 1/a = 0 in these systems, the Efimov states
appear in all these systems. The scaling factors for the Efimov states in these systems are exactly
the sameeπ/s0 = 22.7 . . ., and their low-energy properties are also quantitatively the same. This
seems to be quite remarkable, since the Hamiltonians of these systems are totally different: the
interactions between the nucleons and nuclei are the Yukawa interaction−e−κr/r at long distance,
while they are the on-site or nearest-neighbor interactions for a quantum spin system, and they
are the van der Waals interaction−C6/r6 at long distance for4He atoms and for typical neutral
atoms. Furthermore, the energy scales of these systems differ significantly. The energy scales of
the Efimov states in the nuclear system and the ultracold atoms areE ∼ 1 MeV andE ∼ 1 µK,
respectively. They are different by more than 15 orders of magnitude. In spite of these tremendous
differences, the emergent Efimov states behave in the same manner.

In other words, the Efimov physics is a universal few-body phenomenon. Here, the word “uni-
versal” means that seemingly different systems behave in the same fashion and they can be de-
scribed by a single unifying theory. The most famous example of the universal phenomena may be
the universality class in the theory of phase transitions. A magnetic phase transition and a liquid-
gas phase transition seems at first sight to be totally distinct phenomena, but they belong to the
same universality class and can be understood in a unified manner close to the critical temperature.
Similarly, the Efimov states in all the above examples can be described by a unifying theory, the
zero-range Efimov theory (see Sec. 2.2 for more details), as long as we are interested in their low
energy behavior close to resonance.

The analogy with the universality in the theory of phase transitions is rather helpful in un-
derstanding why such a universal few-body phenomenon can appear in the resonantly interacting
three-body system. One similarity between the Efimov physics and the phase transition is that in
both cases, one is concerned about their low-energy (i.e., long-distance) behavior. This allows us
to significantly decrease the number of relevant parameters and characterize the system in a sim-
ple manner. In the case of the phase transitions, this procedure is known as a “coarse graining”;
if one observes the system at a large length scale, all the microscopic details of the complicated
Hamiltonian are averaged out, and one is left with a simple low-energy effective field theory which

§In Ref. [29], the anisotropic Heisenberg model with the single-ion anisotropy term has been studied.
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contains only a few parameters. In the case of the few-body problem at low energy, a similar sim-
plification and reduction of variables occur. When one considers a two-body scattering problem at
low-energy and focuses on its long-range behavior, the role of the inter-atomic interaction is merely
to alter the asymptotic phase shift. At low energy, the asymptotic phase shift can be characterized
by a single parameter, thes-wave scattering length. Thus, the low-energy two-body physics can be
characterized by thes-wave scattering length, and all the other details of the inter-particle potential
is unimportant in discussing low-energy properties. Similarly, in the three-body problem, it turns
out that there are only two relevant parameters to characterize the system at low energy, thes-wave
scattering length and the three-body parameter (see Sec. 2.1 for more details about the universality
in the two-body and three-body physics).

Another similarity is the presence of a divergently large length scale. Close to the critical point
of the second order phase transitions, the correlation length becomes divergently large. On the other
hand, thes-wave scattering length is divergently large when the Efimov states appear. In the vicinity
of the critical point of the second order phase transitions, systems become scale invariant due to
the divergent correlation length, and the renormalization group method turns out to be a powerful
tool in analyzing the critical phenomena. Similarly, the scale invariance and the renormalization
group method are essential for studying the Efimov states [31, 32]. One spectacular difference
is that the scale invariance in the Efimov physics is discrete, while for the phase transitions it is
continuous. In the renormalization group language, the Efimov physics corresponds to the limit-
cycle solution [31], while the fixed-point solutions are playing essential roles in the theory of the
phase transitions. While the fixed-point solutions are rather common in Nature, in his pioneering
studies of the renormalization group studies [33, 34], K. G. Wilson pointed out that, in principle,
there can be limit-cycle solutions for the renormalization group trajectory. The limit-cycle solutions
are quite rare in Nature. Some mathematical models have been proposed which shows the limit
cycle [35, 36, 37], but the Efimov physics is the only example where the renormalization group
limit cycle in a quantum-mechanical system has clearly been observed.

The universality of the Efimov states can, in turn, be used as a criterion to judge whether a three-
body bound state can be called as an Efimov state. The Efimov states have several characteristic
features: they are weakly bound three-body bound states, whose spatial size is much larger than the
range of the interaction; they appear when the inter-particle scattering length is divergently large.
If a given thee-body bound state shows these properties, it is a good hint that it is the Efimov state,
but these criteria seem to be too vague and far from conclusive. Rather, the clearest signature of the
Efimov state would be the universal scaling factoreπ/s0 = 22.7 . . .. In ultracold atoms, the discrete
scale invariance has been confirmed in experiments and the observed scaling factor 25±4 [28] was
in excellent agreement with the universal predictioneπ/s0 = 22.7 . . .. These are the smoking-gun
experiments to conclude that the Efimov physics is indeed being observed in ultracold atoms.

1.3 Further development of the Efimov physics

Since Efimov studied a resonantly interacting three-body system of identical bosons, various
kinds of other resonantly interacting few-body systems have been theoretically investigated in sub-
sequent studies. It has gradually become clear that what Efimov found in 1970 is just a small
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fraction of broad classes of exotic few-body phenomena in resonantly interacting systems at low
energy. In this section, I will introduce some important generalizations of Efimov’s scenario and
recent progresses in the field of Efimov physics in ultracold atoms. There are many important de-
velopments, but here I only present those which are relevant to this thesis, and briefly summarize
how this thesis is related to them.

(i) Efimov physics in various types of three-body systems (Chapter 3)

In his first papers, Efimov considered a three-body system of identical bosons [1, 2], but he
subsequently extended his idea to three-body systems with different statistics of particles [38]. For
example, for a system of two identical bosons (B) and one distinguishable particle (A), both with
no internal degree of freedom, three-body bound states of B-B-A and A-A-B appear when the
interaction between A and B particles is resonant. In the case of three distinguishable particles,
three-body bound states generally appear when more than one of the two-body interaction is reso-
nant [38, 39, 40]. In all these cases, properties of the three-body bound states are mostly the same
as those of identical bosons: they are weakly bound three-body bound states and show the discrete
scale invariance. The only notable difference is that the value of the scaling factor is different from
that of three identical bosons of 22.7, but the other features mostly remain the same. Thus, the
Efimov physics is not something unique to a system of three identical bosons, but is a more general
phenomenon.

For a three-body system with identical fermions, the three-body states become more exotic.
One of the main work of this thesis (Chap. 3) deals with this fermionic three-body physics. For
identical fermions, the Pauli exclusion principle dictates that the relative orbital angular momentum
between the identical fermions must be nonzero. The system then acquires an additional centrifugal
repulsion. The centrifugal repulsion tends to suppress the formation of three-body bound states, and
there is a competition between the Efimov physics and the centrifugal repulsion. If the centrifugal
repulsion is strong enough, there is no three-body bound state, while the Efimov states appear
when the centrifugal repulsion is negligibly small. Since the centrifugal repulsion is inversely
proportional to the mass of the fermions, the presence or absence of the Efimov states strongly
depends on the mass of the fermions. In one of his pioneering studies, Efimov considered a three-
body system of two identical fermions (F) and one distinguishable particle (A) [38]. He found that
the Efimov states of F-F-A can appear when the mass of the fermions is much larger than that of
the other particle, while the Efimov states disappear when the mass of the fermions is comparable
to that of the other particle. Thus, the masses of the particles are essential parameters determining
the presence or absence of the Efimov states. If one can vary them, one can control the presence or
absence of the Efimov states. This is in marked contrast with the bosonic three-body systems, in
which the Efimov states appear for any mass ratio.

As one can see from these examples, the Efimov physics is not a unique phenomenon restricted
to a system of three identical bosons, but it is more general. The Efimov states can instead appear
for various kinds of resonantly interacting three-body systems. This is another reason why the
Efimov states are called “universal” three-body bound states.

In ultracold atoms, these three-body systems with different statistics of particles can also be ex-
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plored experimentally. For a neutral atom, its internal state is characterized by the hyperfine states.
Since ultracold atoms are prepared to be fairly dilute, the spin exchange processes are typically so
slow that the hyperfine states of the atoms can be regarded as well-defined internal states§. Since
the internal degree of freedom is frozen, the hyperfine states can be used as a “label” to distinguish
particles, so that atoms in different hyperfine states can be effectively regarded as “different” parti-
cles. Thus, in ultracold atoms, we typically deal with bosons or fermions with no internal degree
of freedom, and throughout this thesis, I also consider particles with no internal degree of free-
dom. Since the hyperfine states of the atoms can be controlled by microwaves, three-body physics
for desired statistics of particles can be explored in ultracold atoms. By preparing7Li atoms in
the same hyperfine states, for example, the Efimov states for three identical bosons have been ob-
served [26, 44, 45, 46, 47]. The Efimov states for three distinguishable particles have also been
realized by preparing6Li atoms in three different hyperfine states [48, 49, 50, 51, 52, 53, 54]. An-
other way to control the statistics of the particles is to prepare a mixture of totally different atomic
species or isotopes. For example, in 2009, it has been reported that the Efimov states have been ob-
served in a bosonic mixture of87Rb and41K atoms [55]. These atoms behave as bosons, since their
total numbers of the protons, neutrons and electrons are even. The Efimov states of87Rb-87Rb-41K
and87Rb-41K-41K have been claimed to be observed by performing the inter-species Feshbach res-
onance, i.e., the Feshbach resonance between87Rb and41K atoms. Atomic species such as6Li, 40K,
and173Yb, on the other hand, behave as fermionic atoms, since their total numbers of the protons,
neutrons and electrons are odd. Atomic mixtures with these fermionic atoms have been realized,
such as40K-6Li [56], and173Yb-6Li [57, 58]. A mass-imbalanced fermionic mixture under resonant
interaction has been achieved recently [56], and there has been growing experimental interest in its
few-body and many-body behaviors.

The fermionic few-body problem has also attracted theoretical interest recently. While the
Efimov states in the fermionic three-body system has been found in 1973 [38], there are major
theoretical breakthroughs in the late 2000’s [59]. In 2007, Kartavtsev and Malykh pointed out
that in addition to the Efimov states, a new class of universal three-body bound states can exist in
the resonantly interacting fermionic three-body system [59]. These novel three-body bound states
are called the Kartavtsev-Malykh states, and they show fairly distinct features from the Efimov
states. While the Efimov states show the discrete scale invariance, the Kartavtsev-Malykh states
show a continuous scale invariance. Furthermore, the Kartavtsev-Malykh states are expected to be
much more stable than the Efimov states [59, 60]. These two different types of universal three-body
bound states appear or disappear depending on the masses of the particles and thes-wave scattering
length. In previous work, these two universal three-body bound states have been studied separately,
and it has not been known for what values of the parameters the Efimov states and Kartavtsev-
Malykh states can exist, and how these two types of trimers change into each other as the masses
and thes-wave scattering length are varied. One of the main work of this thesis is to reveal a
“phase diagram” of the fermionic three-body system. In the first half of Chap. 3 of this thesis,
the fermionic three-body problem is investigated for the whole parameter space of the mass ratio

§In some special cases, the spin exchange process is significant, and one must deals with spinors [41, 42]. While
the interplay of the Efimov effect and the spinors has recently been studied theoretically in Ref. [43], I do not deal with
such cases throughout this thesis.
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and thes-wave scattering length. I have found that the Efimov states featuring the discrete scale
invariance can continuously transform into the Kartavtsev-Malykh trimers featuring the continuous
scale invariance as the mass ratio and thes-wave scattering length are varied. In between these two
types of universal trimers, I have found the third class of universal three-body bound states, which
I call the “crossover trimers”. The crossover trimers show neither the discrete nor continuous scale
invariance, but still behave and exist universally between the Kartavtsev-Malykh and the Efimov
regimes. I have identified the regions of these three classes of trimers as a function of the mass ratio
and thes-wave scattering length.

I have also found that the Kartavtsev-Malykh trimers dissociate into a particle and a dimer
when thes-wave scattering length is varied, inducing resonances in the particle-dimer scattering. I
have calculated the binding energies of trimers and the elastic particle-dimer scattering lengths in
arbitrary angular-momentum channels, and shown that the particle-dimer resonances indeed occur.
From the resonance positions, I have found accurate values of the critical mass ratios at which
the Kartavtsev-Malykh trimers in the higher angular-momentum channels appear, which have been
calculated only in an approximate manner in the previous study [61].

In 2013, a mass-imbalanced fermionic mixture of40K-6Li has been realized at the Innsbruck
University, and a precursor of the Kartavtsev-Malykh states has been observed [62]. On the other
hand, the Kyoto University group has realized a highly mass-imbalanced mixture of173Yb-6Li in
2011 [57]. In 2012, the magnetically controlled Feshbach resonance has been observed between
Yb atoms by transferring atoms into a metastable excited state [63], and it is expected that with the
same technique one may perform the magnetically controlled Feshbach resonant between Yb and Li
atoms [64]. For such a highly mass-imbalanced fermionic mixture, the Efimov states are expected
to appear at unitarity. The work in Chap. 3 would be helpful for these experimental investigations
of few-body and many-body physics in the mass-imbalanced Fermi systems.

(ii) Universal three-body parameter (Chapter 4)

The most important feature of the Efimov states is, as mentioned earlier, the discrete scale
invariance. At the resonant point where thes-wave scattering length diverges, the binding energies
of the adjacent Efimov trimers are related to each other asEn+1 = e−2π/s0En. Here, the discrete scale
invariance only fixes the ratio between the binding energies, and it does not determine their absolute
values. Once the binding energy of one of the Efimov trimers is known, the binding energies of all
the other Efimov trimers can be obtained by performing the discrete scale transformation§. Thus,
one parameter is necessary and sufficient to determine the binding energies of the Efimov states.
This parameter is called the three-body parameter. Once the three-body parameter is set, the energy
spectra of the Efimov states are uniquely determined. It turns out that the three-body parameter is
essential not only for the energy spectra, but also for various properties of the Efimov states, such
as the three-body wave function, or an atomic loss (see Secs. 2.2.2 and 2.2.4 for more details).
In all these physical quantities, the three-body parameter appears explicitly. Thus, the three-body
parameter is a crucial quantity for the Efimov states.

§In fact, finite-range corrections can deteriorate, to some extent, the discrete scale invariance of the tightly bound
Efimov trimers, especially the ground Efimov trimer, but here I neglect it for the sake of simplicity. See the discussions
on the finite-range corrections in Sec. 2.2.2 for more details.
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In ultracold atoms, one can prepare various atomic species under resonant conditions. So far,
the Efimov states have been observed for7Li [26, 44, 45, 46, 47, 65],39K [28, 66], 85Rb [67], and
133Cs [27, 68, 69] atoms by using Feshbach resonances. By comparing the observed three-body
parameters of all of these experiments, it has been found in 2011 that the three-body parameters
expressed in units of the van der Waals length agree excellently for all these atomic species. Further-
more, the three-body parameter for excited-state4He atoms has also been measured in 2012 [70],
and it has turned out to be consistent with that of alkalis.

These observations have surprised researchers working on the Efimov physics in ultracold
atoms. While the long-range part of the inter-atomic interaction shares the same van der Waals
form −C6/r6, the short-range part is rather complicated. The short-range part of the interaction
depends on the details of electronic configurations of the atoms, and it can vary significantly be-
tween different atoms and hyperfine states. It has long been believed that this short-range part of
the interaction would significantly affect the few-body behavior. Indeed, this is true for two-body
physics. Thes-wave scattering lengths for various atomic species and hyperfine states have been
measured experimentally, and their values have been found to vary almost randomly between differ-
ent atomic species and hyperfine states. There is no systematic law to relate thes-wave scattering
lengths for different atomic species. It has long been believed that the same reasoning should apply
to three-body physics: it has been widely believed that there is no systematic law to relate three-
body parameters for different atomic species and hyperfine states. In addition to the short-range
part of the two-body interaction, it has been suggested that an atomic species dependent three-
body force present at short range can also significantly affect the three-body parameter, rendering
it non-universal [71]. The experimental finding was, however, in a baffling contradiction to this
conventional belief. Recently, this universality of the three-body parameter has been regarded as
one of the most important issue in the Efimov physics in ultracold atoms.

Since the universal behavior of the three-body parameter has been found experimentally in
2011, people have started investigating when and why the three-body parameter should be univer-
sal. Some theoretical studies [72, 73, 74, 75] have confirmed that the three-body parameter should
be universal as experimentally found, and they obtain the three-body parameters consistent with
experiments. Furthermore, in Ref. [10], the three-body parameter has been numerically calculated
for three4He atoms, and it turns out to be consistent with those observed in ultracold atoms.

In spite of these progresses in the numerical calculations, the physical mechanism behind the
universal three-body parameter has remained unclear and controversial (see Sec. 2.4.2 for more
details). It is therefore of great interest and importance to reveal what is the physical origin of
the universal three-body parameter. This issue is addressed in Chap. 4, and clear answers to these
questions are presented. To be more precise, I elucidate the physical origin of the universality in
the three-body parameter as follows:

• For a deep two-body potential or a two-body potential with a hard-core repulsion at short
distance, the probability of two particles coming close is suppressed in a universal manner.

• This universal suppression of probability induces an abrupt deformation of the three-body
wave function as the hyper-radius is varied.

• This abrupt deformation of the wave function results in a strong non-adiabatic repulsion,
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which explains the appearance of the universal three-body repulsion reported in Ref. [73].
Since three particles cannot come close due to the universal three-body repulsion, three-body
physics is solely determined by the long-range van der Waals part, and is insensitive to atomic
species dependent short-range part.

This mechanism is verified by reproducing the universal three-body repulsion with a simple model
wave function. It is also shown that the three-body parameter becomes universal even for non van
der Waals types of deep two-body potentials. Two classes of two-body potentials are identified,
for which the three-body parameter has a universal value in units of their effective range. One
class corresponds to short-range two-body potentials decaying as a power law, relevant to atomic
interactions, for which the two-body probability is suppressed smoothly at short distance. The other
corresponds to deep two-body potentials decaying exponentially, relevant to nuclear systems, for
which the two-body probability decays abruptly at short distance. These findings may stimulate
further investigation of the three-body parameter of the Efimov physics in many fields of physics,
such as ultracold atoms,4He [8, 9, 10], nuclear physics [3, 4, 5], quantum spin systems [29, 30],
and possibly polyexcitons in solids [76].

(iii) Efimov physics for more than three particles (Chapter 5)

Soon after the Efimov states have been found theoretically in 1970, people have started investi-
gating what happens if the number of particles is further increased. Does a four-body bound state
exist? If so, does it show a discrete scale invariance? What about five-body, six-body, andN-body
bound states?

For resonantly interactingN identical bosons, these questions have been answered to some
extent both experimentally and theoretically. It has been theoretically shown that there appear four-
body bound states [77, 78, 79, 80], five-body bound states [81, 82, 83], ...., andN-body bound
states at least up toN ≈ 10− 40 [84, 85]. TheseN-body clusters seem to behave universally in
the resonantly interacting regime§. They seem to show the discrete scale invariance with the same
scaling factor as the three-body systemeπ/s0 = 22.7 . . ., which has been checked numerically for
N . 5−6 [78, 80, 86, 87]. Recently, signatures of the universal four-body bound states [26, 45, 68,
88] and five-body bound states [89] have been observed experimentally, and they are in excellent
agreement with theoretical predictions [77, 78, 80, 81].

For fermionic few-body systems, not much work has been carried out compared with the
bosonic ones. Experimentally, three-body bound states with two identical fermions, the Efimov
states, Kartavtsev-Malykh states, and crossover states, have not been observed yet, let alone four-
body, five-body bound states. Theoretically, the three-body bound states have been studied re-
cently and most of their properties are understood, as studied in Chap. 3. Fermionic four-body
physics has also been studied recently: four-body bound states of the Efimov characters [90, 91]

§There still remains a controversy over the number of parameters needed to universally characterize theseN-body
bound states. For four-body bound states, some studies suggest that thes-wave scattering length and the three-body
parameter are enough [77, 78, 79], while others point out the importance of an additional four-body parameter [79].
The number of the relevant parameters forN-body bound states are thus still under debate, but it is generally believed
thatN-body bound states can be universally characterized by only a few parameters, which should be less thanN.
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and Kartavtsev-Malykh characters [92] have been found in 2009 and 2012, respectively. The rela-
tion between these four-body bound states and three-body states still remains an open question, and
merits further study. Furthermore, there is still little knowledge on the fermionic five-body physics
and six-body physics [93].

These investigations ofN-body clusters forN ≥ 3 can be viewed as a “bottom-up” approach
to bridge the gap between the few-body and many-body physics. The Efimov physics discussed
above corresponds to strongly interactingN-body systems at smallN: N = 3,4,5.... It is of great
interest to know whether they may approach the thermodynamic limit asN gets large, and if they
do, what kinds of many-body phases may appear.

There is an alternative approach to connect the few-body and many-body physics. Recently,
few-body problems have been studied in the presence of some many-body backgrounds [94, 95,
96, 97, 98, 99, 100, 101]. In Ref. [94], for example, resonantly interacting (N+1+1)-body problem
is considered withN � 1, in which one of the three components is degenerate and forms a Fermi
sea. This system corresponds to a three-body problem in the presence of a many-body fermionic
environment, and its effect on the Efimov physics has been studied. Similar few-body systems
immersed in many-body backgrounds have been studied recently for both fermionic [94, 95, 96,
97, 98] and bosonic backgrounds [99, 100]. These systems correspond to (N+1+1)-body systems
or (N+2)-body systems in the limit ofN→ +∞.

For a fermionic environment, it has been suggested numerically that the Fermi sea tends to
suppress the Efimov effect for (N+1+1)-body [94] and (N+2)-body systems [97]. While these
studies have shown this numerically in the case of two particles immersed in the Fermi sea, in
Chap. 5, I show it analytically in the case of an arbitrary number of particles immersed in the Fermi
sea. To be more specific, I study a system ofNH heavy particles immersed in the Fermi sea of
NL light, spinless (i.e., spin-polarized) fermions (NH � NL) and the interaction between the heavy
particles induced by the light fermions under the Born-Oppenheimer approximation in Chap. 5.
This system is closely related to the three-body physics of two identical spinless fermions (A) plus
another distinguishable particle (B) studied in Chap. 3, and a four-body system of three identical
fermions plus another distinguishable particle studied in Refs. [90, 91, 92]. The fermionic three-
body (A-A-B) and four-body (A-A-A-B) bound states appear only when the fermionic A particle
is much heavier than the B particle. The highly mass-imbalanced Fermi system studied in Chap. 5
corresponds to a system where there are so many fermionic B particles that they are forming a Fermi
sea, and a few A particles are immersed in a Fermi sea of B particles. In Chap. 5, I analytically show
that the induced interaction between the heavy particles acquires an additional repulsion due to the
presence of the Fermi sea, and the interaction completely vanishes in the limit of high light-fermion
density. This suggests that the formation of the Efimov states and their associatedN-body bound
states is suppressed for anyN in the presence of a dense Fermi sea. The origin of this vanishing
induced interaction is ascribed to the screening effect in the neutral Fermi system, which is also
discussed in Chap. 5.

The few-body problems in the presence of many-body backgrounds can be interpreted as po-
laron problems once one regards the heavy particles as “impurities”. In the (N+1)-system whereN
particles withN � 1 interact with the minority particle, the minority particle will form a dressed
quasi-particle state. This dressed state is called a polaron. In ultracold atoms, the polaron state has
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been realized in 2011 [102] by preparing a two-component mixture of fermionic atoms with an ex-
treme population imbalance. The polaron physics has been actively studied in ultracold atoms both
experimentally [56, 103, 104] and theoretically [105, 106, 107, 108] (for a review of the polaron
physics in ultracold atoms, the readers may refer to Refs. [108] and [109]). The (N+1+1)-body
systems or (N+2)-body systems corresponds to two-polaron problems: when two particles are im-
mersed in theN-body environment, they form two polarons, which interact with each other via an
induced interaction mediated by the surrounding environment of theN particles. Thus, the few-
body studies in the presence of many-body backgrounds bring together the Efimov physics at large
N and the polaron physics.

The few-body systems immersed in many-body backgrounds are natural systems in terms of
ultracold atom experiments: few-body physics is typically studied in a system where many particles
(N ∼ 104−106) are prepared in a trap and the Feshbach resonance is utilized to make the scattering
length large§. If the s-wave scattering length becomes comparable or much larger than the inter-
particle spacing, the effect of the many-body background should be taken into account. It is notable
that such a system has recently been studied in experiments as a “unitary Bose gas” [113, 114]. The
s-wave scattering length in this system is much larger than the inter-particle spacing, and the atomic
loss rate, which is closely related with the Efimov effect, has been observed to be suppressed by the
presence of the many-body background. Further investigations of the unitary Bose gas experiments
and possibly analogous experiments in mass-imbalanced Fermi systems, are expected to go hand
in hand with theoretical studies which cover both few-body and many-body physics and cross their
boundary.

1.4 Organization of this thesis

This thesis is organized as follows (the flowchart of this thesis is shown in Fig. 1.2). In Chap. 2,
I review the Efimov physics in ultracold atoms. In Sec. 2.1, I introduce the universality of few-body
physics at low energy. I then introduce one of the most important tool to investigate low-energy few-
body systems, the boundary condition method, namely the zero-range model. By using this method,
in Sec. 2.2, the Efimov physics for resonantly interacting three identical bosons is explained. In
Sec. 2.2.2, I introduce experimental methods to investigate the Efimov states. In Sec. 2.3, I review
the three-body physics with fermions. I will show how the Pauli exclusion principle between the
identical fermions competes with the Efimov effect, and the role of the masses of the particles.
Two types of universal three-body bound states, the Efimov states [38] and Kartavtsev-Malykh
states [59], are introduced, together with their basic features. In Sec. 2.4, recent development in
experimental and theoretical studies on the three-body parameter of the Efimov states in ultracold
atoms is reviewed.

In Chap. 3, I study the three-body system of two identical fermions (i.e., fermions in the same in-
ternal state) resonantly interacting with another distinguishable particle. In this system, two classes
of universal three-body bound states have been known to appear in different regimes of the mass

§In some specially designed systems, few-body systems have been prepared in a small trap under a deterministic
control of the particle number and the interaction strength [110, 111, 112].
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Chapter 2

Reviews of universal few-body physics in ultracold atoms

Chapter 3

Universal three-body physics for fermions

Chapter 4

Universal three-body parameter of the Efimov states

Chapter 5

Perfect screening of the inter-polaronic interaction

Figure 1.2: The flowchart of this thesis. Chapter 2 is devoted to reviews of previous studies which
are relevant to this thesis. The main results of this thesis are shown in Chapters 3, 4, and 5.

ratio: the Efimov trimers and the Kartavtsev-Malykh trimers. I show that there exists the third
class of universal three-body bound states, which I call the “crossover trimers”. While the Efi-
mov trimers and the Kartavtsev-Malykh trimers show the discrete and continuous scale invariance,
the crossover trimers show neither of them. I have identified the regions of these three classes
of trimers as a function of the mass ratio and thes-wave scattering length. I also show that the
Kartavtsev-Malykh trimers and the Efimov trimers can continuously transform into each other via
the crossover trimers as the mass ratio and thes-wave scattering length are varied. I have also
found that the trimers dissociate into a particle and a dimer as thes-wave scattering length is var-
ied, inducing particle-dimer resonances. I have also calculated the binding energies of trimers and
the elastic particle-dimer scattering lengths in arbitrary angular-momentum channels. I show that
the particle-dimer resonances occur at the points where the trimers dissociate into a particle and
a dimer. From the resonance positions, I have found accurate values of the critical mass ratios at
which the Kartavtsev-Malykh trimers in higher angular-momentum channels appear.

In Chap. 4, I address the physical origin of the universal three-body parameter. I explain in
Sec. 4.1 when and why the three-body parameter should be universal, and show that a non-adiabatic
deformation of the three-body wave function is the key to the universal three-body parameter. Based
on the physical mechanism elucidated in Sec. 4.2, I show that the three-body parameter becomes
universal even for non van der Waals types of deep two-body potentials. I identify two classes
of two-body potentials for which the three-body parameter has a universal value in units of their
effective range. One class corresponds to short-range two-body potentials decaying as a power law,
for which the two-body probability is suppressed smoothly at short distance. The other corresponds
to deep two-body potentials decaying exponentially, for which the two-body probability decays
abruptly at short distance.

In Chap. 5, I study the induced interaction betweenN heavy particles immersed in the Fermi sea
of the light spinless (i.e., spin-polarized) fermions at zero temperature. This induced interaction is
essential to know how the Efimov states are affected by the many-body fermionic background. With
the Born-Oppenheimer method, I show that the Efimov effect is generally suppressed by the Fermi
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sea for an arbitrary number of heavy particles by proving that the effective interaction between the
heavy particles vanishes in the limit of dense fermionic environmentkF → +∞. The origin of the
vanishing effective interaction is ascribed to the screening effect in the neutral Fermi system.

In Chap. 6, I conclude this thesis and discuss future prospects.



Chapter 2

Reviews of universal few-body physics in
ultracold atoms

In this chapter, I review few-body physics in ultracold atoms. In Sec. 2.1.1, universal properties
of low-energy two-body systems are explained, and a basic mechanism of the Feshbach resonance
is introduced. In Sec. 2.1.2, the three-body parameter is introduced. Some remarks on controversial
N-body parameters forN ≥ 4 are also presented. In Sec. 2.2, the Efimov physics for three identical
bosons is reviewed. Qualitative descriptions are presented in Sec. 2.2.1, followed by more quantita-
tive ones in Sec. 2.2.2. Finite-range effects are also discussed. In Sec. 2.2.4, experimental methods
to observe the Efimov states in ultracold atoms are reviewed. In Sec. 2.3, fermionic three-body
systems are reviewed. An essential role of the mass ratio in this system is discussed in Sec. 2.3.1.
The Efimov states and the Kartavtsev-Malykh states in the fermionic three-body system with mass
imbalance are introduced in Secs. 2.3.1 and 2.3.2, respectively. In Sec. 2.4, the universality of the
three-body parameter is reviewed. A short history on this issue is presented in Sec. 2.4.1, followed
by recent theoretical developments in Sec. 2.4.2. For more detailed reviews of the Efimov physics,
the readers are referred to Refs. [32, 115]. Experimental studies of the Efimov physics in ultracold
atoms are reviewed in Refs. [69, 116].

2.1 Universality of the few-body and many-body physics at low
energy

For non-relativistic, quantum-mechanical few-body systems, their Hamiltonians determine all
properties of the systems. If two systems have different microscopic Hamiltonians, one naturally
expects that these systems will behave differently. At low energy, however, two physically dif-
ferent Hamiltonians can indeed show the same behavior. In other words, a low-energy quantum
system exhibits universal properties. The universality allows us to replace a complicated potential
in the original Hamiltonian with a simpler pseudo-potential properly constructed to show the same
low-energy behavior. This dramatically reduces the difficulty in solving few-body and many-body
problems: we no longer have to deal with complicated inter-particle potentials, but rather we can
adopt a simple pseudo-potential. In ultracold atoms, the temperature of the system is so low that the
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universality holds fairly well. Therefore, the pseudo-potential method turns out to be a powerful
tool and is widely used in theoretical studies on ultracold atoms.

In addition to such simplification in the theoretical description, the universality has another
important implication. As will be explained in this section, two-body and three-body systems at
low energy are generally characterized by a few parameters, such as thes-wave scattering length,
the effective range, and the three-body parameter. The universality dictates that any system must
behave in the same manner at low energy as long as values of these relevant parameters are the
same. In other words, physically different systems, such as ultracold atoms,4He clusters, bound
states of magnons, or particles moving in a periodic lattice, can show the same behavior at low
energy. This suggests that by studying few-body and many-body physics in ultracold atoms, one
can gain insights into various kinds of low-energy systems. Theoretical and experimental studies
on ultracold atoms are therefore not only relevant for researchers in this field, but are important for
many other different fields in physics and thus concern general interest. Even for systems where
their energy scale is not so small and the low-energy approach is inadequate, knowledge on the
low-energy, dilute limit is a fundamental step toward understanding physical behaviors at higher
energy, or denser systems.

In this section, I present a short review of the universality of systems in which particles interact
via short-range potentials. For a two-body system, the universality can be seen most clearly, so I
start introducing the universality for two particles in Sec. 2.1.1. It turns out that a low-energy two-
body system can be universally characterized by just two parameters, namely thes-wave scattering
length, and the effective range. Furthermore, as will be explained in Sec. 2.1.1, the effective range
is irrelevant in the vicinity of a broad Feshbach resonance. For such a case, a single parameter,
thes-wave scattering length, uniquely characterizes low-energy properties of the two-body system.
The s-wave scattering length can be controlled experimentally by applying an external magnetic
field. Its mechanism will also be briefly explained. In Sec. 2.1.2, the universality is extended to
three-body systems, and the three-body parameter is introduced. The introduction of the three-
body parameter is closely related to the Thomas collapse [117], which is a precursor of the Efimov
effect. I will explain when and why the three-body parameter is necessary. While the universality
of two-body and three-body systems is largely understood, there still remains some controversies
on the universality for more than three particles. Some remarks on this issue will be presented.
For a more detailed review of the universality of a few-body system at low energy, the readers are
referred to Ref. [32].

2.1.1 Low-energy two-body physics

S-wave scattering length and the effective range

Let us consider the non-relativistic Schrödinger equation of two particles interacting via a cen-
tral potentialV(r) = V(r). The center-of-mass motion and the relative motion can be separated.
The relative motion obeys the following Schrödinger equation[

− ~
2

2µ12
∇2

r + V(r)

]
ψ(r) = Eψ(r), (2.1)
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wherer = r1 − r2 is the relative coordinate vector between the two particles, andµ12 =
m1m2

m1 +m2
is

the reduced mass.
For a central potential, the angular momentum is a good quantum number, so that the Schrödinger

equation can be separated into independent partial waves. The scattering amplitude in the`-th
partial-wave channel is related to the`-th wave phase shiftδ`(k) as [118]

f`(k) =
1

kcotδ`(k) − ik
. (2.2)

For a short-range potential which decays rapidly at large inter-particle separation, a low-energy
expansion of the phase shift can be performed, giving

k2`+1 cotδ`(k) = Const. +O(k2). (2.3)

This suggestsf`(k) ∝ k2` at low energy, so that the higher-partial-wave channels become irrele-
vant [118].

On the other hand, an inter-atomic interaction between neutral atoms is governed by the van der
Waals potential−C6/r6 at large inter-particle separation. This potential is not a genuine short-range
potential since it decays slowly, but still similar low-energy expansions can be made [118, 119,
120]:

kcotδ`=0(k) = −1
a
+

reff

2
k2 +O(k3), (2.4)

k3 cotδ`=1(k) = − 1
vp
+ r (1)

P k+O(k2), (2.5)

k4 cotδ`(k) = r (0)
` +O(k) (` ≥ 2). (2.6)

For a van der Waals type of potential, the van der Waals length§

rvdW ≡
1
2

(
2µ12C6

~2

) 1
4

(2.7)

sets an important length scale. All the higher partial-wave coefficients are of the order of the van der
Waals length if there is no accidental resonance:|vp| ∼ r3

vdW, |r (1)
P | ∼ r−2

vdW, |r (0)
` | ∼ r−4

vdW. Therefore,

if the energy of the particles is much smaller than the van der Waals energy|E| � ~2

2µ12r2
vdW

, the

s-wave scattering channel makes a dominant contribution, and the scattering amplitude is expressed
as

f (k) = − 1
1/a+ ik − reff

2 k2
. (2.8)

In ultracold atoms, this conditions can be realized; for example, the van der Waals energy is 83µK
for 87Rb atoms, while experiments are typically performed at temperatureT . 1 µK.

At this point, we can see the universality. All bound states and scattering states of the two parti-
cles are determined by the scattering amplitude, and the scattering amplitude is written as Eq. (2.8)

§Note that in some literature [119, 120, 121, 122], the van der Waals length is defined with coefficients different

from
1
2

.



18 Chapter 2. Reviews of universal few-body physics in ultracold atoms

for any two-body potential at low energy. This suggests that systems with two different potentials
must show the same behavior at low energy if thes-wave scattering length and the effective range
are the same. Therefore, low-energy two-body physics is universally described by these two pa-
rameters. The word “universal” is used here in a sense that physically different systems behave in
the same manner.

One can further proceed with the discussion of the universality by assuming the following two
conditions:

1. Thes-wave scattering length is much larger than the van der Waals length|a| � rvdW.

2. The effective range is at most of the order of the van der Waals length|reff | . rvdW.

When these conditions are satisfied, the effective-range term becomes irrelevant, and we obtain

f (k) = − 1
1/a+ ik

. (2.9)

Thus, two-body physics at low energy is simply described by a single parameter. A bound state,
corresponding to a pole on the positive imaginary axis, exists fora > 0 with its binding energy

E = − ~2

2µ12a2
, (2.10)

and the wave function

ψ(r) =
1
√

2πa

e−r/a

r
. (2.11)

It turns out that the above two conditions are satisfied in the vicinity of shape resonances for
typical two-body potentials. As a specific example, in Figs. 2.1 (a) and (b), thes-wave scattering
length and the effective range are shown for a soft-core van der Waals potential

VSCvdW(r) = − C6

r6 + σ6
SC

(2.12)

as a function ofrvdW/σSC. For a smallrvdW/σSC, the potential is weakly attractive, and there
is no bound state. AsrvdW/σSC is increased, the first, second, and third two-body bound states
appear atrvdW/σSC = 0.607,1.007,1.2602, respectively. At the point where a two-body bound
state appears, thes-wave scattering length diverges. This is a general phenomenon and is called a
shape resonance. While thes-wave scattering length is much larger than the van der Waals length
in the vicinity of shape resonances, the effective range remains finite and of the order of the van der
Waals length. For typical two-body potentials§, the two conditions described above are satisfied
close to shape resonances.

§One can mathematically construct a potential, where the effective range is negative with its magnitude much larger
than the range of the interaction on the shape resonance 1/a = 0 [123]. For such a potential, the second condition is
not satisfied around the shape resonant point. This is analogous to a narrow Feshbach resonance, which shows a large
and negative effective range.
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Figure 2.1:S-wave scattering length (a) and the effective range (b) for the soft-core van der Waals
potential given in Eq. (2.12). A largervdW/σSC corresponds to a deeper two-body potential. (c) The
zero-range wave function (black dotted line) fora/rvdW = −4.73 atE = 0 is compared with the zero-
energy solutions of the two-body Schrödinger equation for finite-range potentials. Wave functions
for the Lennard-Jones potential (red solid curve) and for the soft-core van der Waals potential (blue
solid curve) are shown. The Lennard-Jones potential (red dashed curve) and soft-core van der
Waals potential (blue dashed curve) are tunes so that they have the sames-wave scattering length
a/rvdW = −4.73 and no two-body bound state. The wave functions are unnormalized and shown in
arbitrary units.

While the above argument has been made in momentum space, an alternative description is
possible in real space. At low energy, a solution of the Schrödinger equation generally has the
following asymptotic form

rψ(r) ∝ r − a (rvdW � r � k−1), (2.13)

which can be obtained from a Fourier transformation of Eq. (2.9). In Fig. 2.1 (c), two-body wave
functions at zero energy are shown for two types of potentials corresponding to the sames-wave
scattering lengtha/rvdW = −4.73: the soft-core van der Waals potential and the Lennard-Jones
potential

VLJ(r) = −
C6

r6

(
1−

σ6
LJ

r6

)
. (2.14)

At large inter-particle separation, the two wave functions asymptotically approach to the same limit
given in Eq. (2.13) (black dashed line), while their difference becomes visible at short distance
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Figure 2.2: First experimental observation of a Feshbach resonance in ultracold atoms [21]. The
horizontal axis is an external magnetic field, and the vertical axis shows thes-wave scattering
length between23Na atoms. [Figure adapted with permission from S. Inouyeet al., Nature392151
(1998). Copyrightc© (1998) Nature Publishing Group.]

r . rvdW. If we observe the wave functions with a large length scale, there is almost no difference
between in the behavior of the wave function between the soft-core van der Waals potential and the
Lennard-Jones potential. In other words, details of potentials are irrelevant and a two-body wave
functions behave universally at long inter-particle separation. The low-energy theory in momentum
space is thus equivalent to the large-distance behavior in real space.

Feshbach resonance

The Feshbach resonance is one of the most important techniques in ultracold atom experi-
ments. It enables one to control inter-particle interactions experimentally by applying a uniform
external magnetic field. In Fig. 2.2, the first experimental observation of a Feshbach resonance is
shown [21]. Close to the resonant point, thes-wave scattering length gets divergently large and
behaves as

a(B) = abg

(
1− ∆B

B− B0

)
, (2.15)

whereabg ∼ rvdW is the background scattering length, and∆B characterizes the width of the Fesh-
bach resonance.

The Feshbach resonance occurs through a coupling between different internal states of atoms.
To explain the mechanism of the Feshbach resonance, let us consider two alkali atoms colliding
at low energy. When the two atoms are far apart, each atom can be considered to be independent.
For alkalis, internal states of atoms are characterized by the hyperfine quantum numbers. Let us
denote the hyperfine states of the two atoms asα andβ, respectively. As the atoms get close, they
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/ /
Closed-channel  potential

W

Figure 2.3: Schematic illustration of the Feshbach resonance. The diagonal potential in the two
channels (α, β) and (α′, β′) are shown, together with bound-state levels in the (α′, β′) channel. The
dotted curves show the asymptotic van der Waals potentials.

start to interact via the van der Waals potential§. Since the van der Waals part of the potential does
not depend on spin states of the electrons or nuclei, the atoms experience the same van der Waals
potential at large inter-atomic separation. If the two atoms get much closer, the electronic wave
function of the atoms start to overlap. The electronic contribution strongly depends on spin states
of the out-most electrons, and it is written as

V̂el(r) = Vsinglet(r)Pel
S=0 + Vtriplet(r)Pel

S=1, (2.16)

whereVsinglet(r) andVtriplet(r) are electronic contributions to the inter-atomic potential in the spin-
singlet and spin-triplet channels, respectively, andPel

S=0 andPel
S=1 are projection operators onto the

electronic spin singlet and triplet states, respectively. Since the singlet and triplet potentials behave
rather differently, the inter-atomic interaction is not diagonal in the hyperfine basis any longer. This
induces coupling between different hyperfine channels during the collision, and the atoms initially
in the hyperfine states (α, β) can make transitions into (α′, β′) states. Under such circumstances,
physics should be described by a multi-channel Schrödinger equation.

This channel coupling is essential for the Feshbach resonance. To see this point, let us assume
that there are only two relevant channels, and label these two channels by their hyperfine quantum
numbers (α, β) and (α′, β′), respectively. The sums of the inter-atomic potential and the hyperfine
interaction in the two channels are schematically illustrated in Fig. 2.3. At large inter-atomic sep-
aration, the inter-atomic potentials behave asεα + εβ − C6/r6 andεα′ + εβ′ − C6/r6 in the (α, β)

§Here, I neglect a dipole-dipole interaction, which is small for typical ultracold atom experiments. For some atomic
species, such as Cr [124], Er [125, 126], and Dy [127, 128], the dipole-dipole interaction is unusually large and cannot
be neglected.
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channel and (α′, β′) channel, respectively. For smaller inter-atomic separation, the potentials be-
have differently, i.e.,Vαβ , Vα′β′. Let us consider the initial in-coming channel of the two atoms to
be (α, β) channel. The in-coming (α, β) channel is often referred to as an open channel, while the
(α′, β′) channel is referred to as a closed channel. When the two atoms come close and the channel-
coupling becomes large, the transition into the (α′, β′) channel may occur at a length scale much
smaller thanrvdW. The depth of the potentialsVα′,β′ is of the order of eV, and there are manys-wave
bound-state levels. If one of the bound-state levels in the (α′, β′) hyperfine channel (denoted as a
red line in Fig. 2.3) is almost degenerate with the continuum threshold of the open channelεα + εβ,
a resonant scattering occurs and thes-wave scattering length diverges

a ∝ 1
εα + εβ − Em

, (2.17)

whereEm is the energy of the molecular level. By applying the external magnetic field, the threshold
energyεα + εβ can be changed by the Zeeman effect. If the change of the threshold energy as
a function of the external magnetic filed is linearized around the resonant magnetic fieldB0 as
εα + εβ − Em = δµ(B− B0), one obtainsa ∝ (B− B0)−1. This suggests that thes-wave scattering
length between the atoms can be controlled by applying an external magnetic field and fine-tuning it
so that the molecular level becomes degenerate with the threshold energy of the in-coming channel.

There are two classes of Feshbach resonances: a broad Feshbach resonance, and a narrow
Feshbach resonance. The width of a Feshbach resonance is characterized by the following positive,
dimensionless quantity [24]

sres=
4π(
Γ
(

1
4

))2

abg

rvdW

δµ∆B
εvdW

, (2.18)

whereεvdW = ~
2/2µ12r2

vdW is the van der Waals energy. Crudely speaking, this quantity measures
the magnetic field width in units of the van der Waals energysres ∼ δµ∆B/εvdW. Whensres� 1,
it is called a broad Feshbach resonance, which typically corresponds to a large magnetic resonance
width. On the other hand,sres . 1 is called a narrow Feshbach resonance, which typically corre-
sponds to a small resonance width. For a broad Feshbach resonance, the effective range is of the
order of the van der Waals lengthreff ∼ rvdW. Therefore, the effective-range term can be safely
neglected at low energy and the scattering amplitude can be described by the universal form in
Eq. (2.9). On the other hand, the effective range is not necessarily small for a narrow Feshbach res-
onance. Indeed, in the ultra-narrow limitsres� 1, the effective range is negative and its magnitude
gets very largereff ∝ s−1

res. In such a case, the effective-range term in Eq. (2.8) cannot be neglected.
Throughout this thesis, I mainly consider the former case: few-body and many-body problems in
the vicinity of a broad Feshbach resonance.

Pseudo-potential approach

In the case of a broad Feshbach resonance, thes-wave scattering length is the only relevant
parameter for the interaction. Therefore, one can take any artificially constructed model potential
to study low-energy two-body phenomena as long as the model potential has the sames-wave
scattering length. Such a model potential is generally called a “pseudo-potential”. The most famous
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pseudo-potential to model low-energy two-body systems around broad Feshbach resonances is the
Huang-Yang pseudo-potential [129]:

VHY(r) =
2π~2a
µ12

δ(3)(r)
∂

∂r
r. (2.19)

One can easily show that the scattering amplitude calculated with this pseudo-potential reproduces
Eq. (2.9), so it correctly captures the low-energy behavior close to a broad Feshbach resonance.

There is another equivalent way to reproduce the low-energy two-body physics by imposing
a boundary condition when the two particles come close. The basic idea of this method can be
understood easily by recalling how a two-body wave function behaves at low energy. When the
two particles are placed at a distance much larger than the typical range of the interactionr0 (in
ultracold atoms, this is the van der Waals length), but much closer than the inverse of the wave
numberr0 � r � k−1, the two-body wave function behaves as

rψ(r) ≈ C(r − a), (2.20)

or equivalently
d
dr

log
[
rψ(r)

] ≈ 1
r − a

. (2.21)

Since we are interested in low-energy behavior, the wave function atr . r0 is irrelevant. By taking
r0→ 0, one obtains the following zero-range boundary condition:

d
dr

log
[
rψ(r)

]∣∣∣∣∣∣
r=0

= −1
a
. (2.22)

By solving the free Schrödinger equation

− ~
2

2µ12
∇2ψ(r) = Eψ(r) (2.23)

with this boundary condition, one can easily show that the scattering amplitude becomes Eq. (2.9).
Thus, the low-energy universal behavior is accurately reproduced by this pseudo-potential. This
boundary condition is called the Bethe-Peierls boundary condition [130]. It is widely used to study
universal physics at low energy.

The pseudo-potential method is a general and powerful tool to investigate few-body and many-
body physics in the universal regime. For some light neutral atoms, realistic inter-atomic potentials
are known [12], but they are rather complicated, especially at small inter-atomic separation. If
one is allowed to replace such a complicated realistic potential with a simpler pseudo-potential
as presented above, theoretical calculations are dramatically facilitated. For heavier atoms, it is
almost impossible to obtain realistic inter-atomic potentials, since there are many electrons and one
needs to take into account correlations between these electrons. Even when a realistic potential is
unknown, we can still study their low-energy properties once thes-wave scattering length is known.
One can construct a pseudo-potential with the correspondings-wave scattering length and use it to
investigate few-body and many-body phenomena.

In the case of a narrow Feshbach resonance, on the other hand, the above zero-range approach
is no longer valid. One needs more sophisticated approaches which properly take into account
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the effective range contribution, such as two-channel models. Throughout this thesis, however, we
only deal with a broad Feshbach resonance, so we do not discuss them here. For more details of
the Feshbach resonance, the readers are referred to Refs. [24, 131].

2.1.2 Low-energy three-body physics and the three-body parameter

Three-body boundary condition

In the Bethe-Peierls boundary condition method, effect of the original short-range potential is
taken into account by the boundary condition which accurately captures the low-energy scattering
phase shift. This boundary condition method can be generalized for systems with more than two
particles. Let us consider three particles interacting via short-range interactions and consider its
low-energy behavior. In this system, there are two types of scattering events. When two particles
come close and scatter while the third particle stays far apart from them, the scattering event is
essentially a two-body process. Such a scattering event can be properly taken into account by the
Bethe-Peierls boundary condition. Another type of scattering is a genuine three-body one: three
particles come close simultaneously and scatter with each other. The three-body scattering cannot
be taken into account by the Bethe-Peierls boundary condition, because by construction it does not
include any information of a three-body system. Therefore, an additional boundary condition is
necessary to incorporate the phase shift induced by such a three-body scattering. The three-body
boundary condition is imposed in a manner similar to the Bethe-Peierls method:

d
dR

log
[
R f(R)

]∣∣∣∣∣∣
R=R0

= Λ, (2.24)

where

R=

√
2
3

[r2
12+ r2

13+ r2
23] (2.25)

is the hyper-radius. The hyper-radius characterizes the overall size of the three-body system, and
it can be small if and only if three particles come close. In Eq. (2.24),f (R) is the hyper-radial
wave function, whose definition can be found in Sec. 2.2. Crudely speaking,f (R) is the three-body
wave function describing the overall motion of the three-body system. In Eq. (2.24),R0 is taken in
the asymptotic regionR0 � rvdW. The genuine three-body scattering occurs when and only when
R. rvdW, andΛ characterizes the phase shift acquired by such a three-body scattering.

Note that the three-body boundary condition is, in general, independent of the two-body bound-
ary condition even when the interaction is a sum of pair-wise interactionsV(r1, r2, r3) = v(r12) +
v(r13)+ v(r23). In other words, one must not naively replace the two-body interaction in the Hamil-
tonian with the Bethe-Peierls boundary condition or the Huang-Yang pseudo-potential for systems
with more than two particles. Such a replacement amounts to taking only two-body scattering into
account while neglecting three-body scattering. The naive replacement is justified if and only if
the effect of three-body scattering is negligibly small. Whether the three-body scattering is relevant
or not is rather system dependent, and it can be known only after we have solved the three-body
problem. For example, for a system of three identical bosons, the three particles can come close and
scatter easily, so that the three-body boundary condition is relevant (see Sec. 2.2.1). In fact, if one
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tries to solve the three-body problem without imposing the three-body boundary condition, one en-
counters a pathological result: the ground-state energy is unbounded from below and tends to−∞ at
the unitarity limit 1/a = 0. This pathology is known as the Thomas collapse [117]. As will be dis-
cussed in Sec. 2.2.1, the Thomas collapse is closely related to the Efimov effect. The Thomas col-
lapse clearly shows that the naive replacement of the two-body potential with the pseudo-potential
is inadequate for this system. On the other hand, for systems with identical fermions, the Pauli
exclusion principle can suppress the three particles from getting close. In fact, for a three-body
system of two identical fermions interacting with one distinguishable particle, which corresponds
to a two-component Fermi system of↑↑↓ (↑ and↓ denote internal states of the fermions), the three
particles cannot come close for an equal mass systemm↑ = m↓. Therefore, the genuine three-body
scattering is negligible and the naive replacement is valid. However, when the mass imbalance is
largem↑ � m↓, the three particles can easily come close. Indeed, if the mass ratio exceeds a critical
valuem↑/m↓ > 13.6, the three-body boundary condition becomes relevant (see Sec. 2.3.1), and the
Thomas collapse occurs when one naively neglects the three-body boundary condition.

Is an N-body parameter necessary?

There is a similar issue forN-particle systems. For anN-body system, where particles interact
via the sum of pair-wise interactionŝV =

∑
i< j

v(r i j ), one needs to take great care before naively

replacing the two-body interactions with the Bethe-Peierls boundary condition or the Huang-Yang
pseudo-potential. The necessity of the three-body, four-body,..., andN-body boundary conditions
is a highly non-trivial many-body problem. For a two-component Fermi system without mass
imbalance, three-body and four-body problems have been solved, and it has been found that three-
body and four-body boundary conditions are irrelevant thanks to the Pauli exclusion principle [38,
132, 133]. This justifies us to use the Hamiltonian with the sum of pair-wise pseudo-potentials in the
many-body studies of the two-component Fermi system, such as the BEC-BCS crossover [134, 135,
136, 137] and its universal thermodynamics [138, 139, 140, 141, 142, 143, 144] (see Refs. [145,
146] for reviews of the BEC-BCS crossover). Since we only impose the two-body (Bethe-Peierls)
boundary condition, a single parameter, thes-wave scattering length, characterizes the interaction
between particles. For a two-component Fermi system with mass imbalance, three-body [38, 132]
and four-body [90, 91] Efimov states have been found in a highly mass-imbalanced regimem↑/m↓ &
13. This suggests that the three-body and four-body boundary conditions are relevant in this system.
Thus, in contrast to the BEC-BCS crossover, a highly mass-imbalanced Fermi system cannot be
described by a single interaction parameter, but one needs at least several parameters: thes-wave
scattering length, the three-body parameter, and the four-body parameter. For a system of more
than four particles, little has been known, and further studies will be needed to make a definite
statement.

The N-body parameter forN ≥ 4 is a controversial issue in the bosonic case. In some lit-
erature [77, 78, 79], properties of four-body bound states have been claimed to be universally
determined by thes-wave scattering length and the three-body parameter, so that the four-body
parameter is irrelevant. Some other researchers claim the opposite [79]: the four-body parameter is
indeed relevant. This issue is one of the most important issue in the field of Efimov physics. The
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same issue may also exist for a system with more than four particles. Does the five-body parameter,
six-body parameter,..., andN-body parameter necessary? Much work needs to be done to answer
these questions.

2.2 Efimov physics for three identical bosons

In this section, low-energy universal properties of a system of three identical bosons are dis-
cussed. Since we are interested here in the universal behavior at low energy, we consider a three-
body Schr̈odinger equaiton− 3∑

i=1

~2∇2
r i

2m
+ U(r1, r2, r3)

Ψ(r1, r2, r3) = EΨ(r1, r2, r3), (2.26)

where the two-body interaction is replaced with the Huang-Yang pseudo-potential

U(r1, r2, r3) = VHY(r12) + VHY(r13) + VHY(r23), (2.27)

and the three-body boundary condition in Eq. (2.24) is imposed at a small but nonzero hyper-radius
R = R0. As discussed in the previous section, this three-body problem with the pseudo-potential
and the boundary condition can predict low-energy properties of various systems, including the
Efimov states in ultracold atoms. Since finite-range realistic potentials are replaced by the zero-
range pseudo-potential and the boundary condition, it is often referred to as the zero-range Efimov
theory, or the zero-range theory.

Even in the zero-range Efimov theory, it is a genuine three-body problem. But still, we can
deal with it analytically, especially at the unitarity limit. In solving the three-body problem in real
space, it is convenient to introduce the Jacobi coordinates, hyper-radius, and hyper-angle:

Rtot =
1
3

(r1 + r2 + r3), (2.28)

r12 = r1 − r2, (2.29)

ρ3 = r3 −
1
2

(r1 + r2). (2.30)

Using the Jacobi coordinates, the kinetic term can be rewritten as

−
3∑

i=1

~2∇2
i

2m
= −
~2∇2

Rtot

6m
−
~2∇2

r12

m
−

3~2∇2
ρ3

4m
. (2.31)

(a) ~0α (b) ~π/2α

1 2

3

1 2
3

Figure 2.4: Schematic illustration of three-body configurations corresponding to (a) small and (b)
large hyper-angles.
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With the Jacobi coordinates, we can introduce the hyper-radius and hyper-angle§:

R2 ≡ 2
3

[
r2

12+ r3
23+ r2

31

]
= r2

12+
4
3
ρ2

3, (2.32)

α3 = arctan

 √3r12

2ρ3

 . (2.33)

Alternatively, the Jacobi coordinates can be written in terms of the hyper-radius and hyper-angle as

r12 = Rsinα3, (2.34)

ρ3 =

√
3

2
Rcosα3. (2.35)

The hyper-radiusR characterizes the overall size of the three-body system, and it can be small if
and only if three particles come close. The hyper-angleα3 characterizes the relative configuration
of the three particles and varies from 0 toπ/2. As shown in Fig. 2.4,α3 → +0 corresponds to a
configuration of a sharp triangle, whileα3 → π/2 corresponds to a linearly aligned configuration.
By using the hyper-radius and hyper-angle, the Schrödinger equation is written as

− ~
2

m

 1

R
5
2

∂2

∂R2
R

5
2 +

1
R2

∂2

∂α2
3

+
4
R2

cot 2α3
∂

∂α3
− 1

R2

 L̂2
ρ3

cos2α3
+

L̂2
r12

sin2α3

Ψ(r12, ρ3)

+ U(r1, r2, r3)Ψ(r12, ρ3) = EΨ(r12, ρ3),

(2.36)

whereL̂r12 and L̂ρ3 are the angular momentum operators of the Jacobi coordinatesr12 andρ3, re-
spectively.

In solving the three-body problem, it is convenient to separate the hyper-radial and the other
motions in a manner similar to a separation of radial and rotational motions for a two-body problem
interacting via a central potential. One essential difference between the three-body problem and the
two-body problem is that the hyper-radial motion cannot be separated in general from the other
part. Even when one tries to separate the hyper-radial and the other motions by an expansion

Ψ(r12, ρ3) =
1

R5/2

∑
n

fn(R)Φn(R, α3, r̂12, ρ̂3), (2.37)

where the basis functionΦn is the solution to the hyper-angular Schrödinger equation− ∂2

∂α2
3

− 4 cot 2α3
∂

∂α3
+

 L̂2
ρ3

cos2α3
+

L̂2
r12

sin2α3

 + U(r1, r2, r3)

Φn(R, α3, r̂12, ρ̂3)

= λn(R)Φn(R, α3, r̂12, ρ̂3),

(2.38)

§There are several conventions for the definition of the hyper-radius. We here chose the definition of Refs. [2, 147,

148]. In Refs. [71, 73, 149], the hyper-radius is defined asR ≡

√
r2

12 + r3
23 + r2

31√
3

, which is a factor of
31/4

√
2
= 0.931...

different from ours. In Refs. [32, 72, 74, 150], the hyper-radius is defined asR ≡

√
r2
12 + r3

23 + r2
31

3
, which is a factor

of
1
√

2
= 0.707... different from ours. In Refs. [115, 151], the hyper-radius is defined asR ≡

√
r2
12 + r3

23 + r2
31

3m̃
, where

m̃ is a normalization mass which can be chosen to be any value.
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non-adiabatic couplings between different basis functions necessarily appear. Indeed, the hyper-
radial Schr̈odinger equation can be obtained as

~2

m

− ∂2

∂R2
+
λn(R) + 15

4

R2

 fn(R) +
∑

m

[Qnm(R) + 2Pnm(R)] fm(R) = E fn(R). (2.39)

This equation involves the following non-adiabatic coupling terms:

Qnm(R) = −~
2

m

〈
Φn

∣∣∣∣∣∣ ∂2

∂R2

∣∣∣∣∣∣Φm

〉
, (2.40)

Pnm(R) = −~
2

m

〈
Φn

∣∣∣∣∣ ∂∂R

∣∣∣∣∣Φm

〉
. (2.41)

Here, the brackets denote the hyper-angular average:

〈Φn

∣∣∣Â∣∣∣Φm〉 =
∫

sin2α3 cos2α3dα3dΩr̂12dΩρ̂3Φ
∗
n(R, α3, r̂12, ρ̂3)ÂΦm(R, α3, r̂12, ρ̂3). (2.42)

The hype-radial and hyper-angular wave functions are normalized as∫ ∞

0
dR| fn(R)|2 = 1, (2.43)

〈Φn|Φn〉 =
∫

sin2α3 cos2α3dα3dΩr̂12dΩρ̂3 |Φn(R, α3, r̂12, ρ̂3)|2 = 1. (2.44)

By solving this three-body problem, one can show the appearance of the Efimov states. In
Sec. 2.2.2, we solve the three-body problem in a quantitatively reliable manner. Since the math-
ematical argument presented in Sec. 2.2.2 is involved and less intuitive, basic properties of the
Efimov states will be explained in Sec. 2.2.1 in a simpler and more intuitive manner.

2.2.1 Qualitative description of the Efimov effect

In Fig. 2.5, energy spectra of a system of three identical bosons close to a two-bodys-wave
resonance are schematically illustrated. These energy spectra correspond to the universal behavior
calculated with the zero-range Efimov theory. As discussed in Sec. 2.1.1, a two-body bound state
exists on the positive side of the resonance with its binding energy having a universal form in
Eq. (2.10). This is shown as a red solid line in Fig. 2.5, which corresponds to a particle-dimer
continuum. Around the unitarity limit 1/a = 0, there appear an infinite number of three-body
bound states (green curves), and (1/a,E) = (0, 0) corresponds to an accumulation point for the
spectrum of the three-body bound states. At the unitarity, there exist an infinite number of trimers.
Away from the unitarity, the number of trimers decreases and is finite. When the scattering length
is varied toward the positive side, the trimers finally dissociate into a particle and a dimer, while
they dissociate into three atoms on the negative scattering length side.

The discrete scale invariance of the Efimov states can be clearly seen in these schematic energy
spectra. At the unitarity, trimers can be related to each other by a discrete scale transformation:
the binding energies of then-th and (n + 1)-th three-body bound states are related to each other
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particle + dimer

Efimov trimers

free particles

(1) (2)

Figure 2.5: Energy spectra of a system of three identical bosons in the vicinity of a two-body
resonance. Green curves show the energy spectra of Efimov trimers, and a red line is that of the
universal dimer in Eq. (2.10).

asΨn+1(r i) = Ψn(r ie−π/s0), andEn+1 = e−2π/s0En, whereeπ/s0 = 22.7 . . . (s0 = 1.0024. . .) is the
universal scaling factor. The discrete scale invariance appears even away from the unitarity. When
the radial scale transformation is performed as 1/a→ enπ/s0/a, E → e2nπ/s0E (n = 1,2, . . .), all the
energy spectra of the Efimov trimers can be superimposed into a single energy spectrum. This is
why the energy spectra of the Efimov trimers in Fig. 2.5 have a similar shape.

In addition to thes-wave scattering length, one additional parameter is needed to uniquely
specify the energy spectra. This parameter is called the three-body parameter. There are many
equivalent ways to define the three-body parameter. One way is to determine it from the binding
energy of the ground-state Efimov trimer at unitarity: when the binding energy of the ground-state

Efimov trimer isE = −~
2(κ∗)2

m
, κ∗ can be defined as the three-body parameter. One can alternatively

define the three-body parameter as the negative scattering length at which the ground-state Efimov
trimer dissociates into three particles, which is denoted asa(1)

− and is indicated in Fig. 2.5. The
three-body parameter can also be defined as the positive scattering length at which the ground-state
Efimov trimer dissociates into a particle and a dimer, which is denoted asa∗ in Fig. 2.5. Since the
energy spectra of the Efimov states are universal, these three quantities are related to each other in
the zero-range Efimov theory as follows: 1/a∗ = 14.1κ∗ and 1/a(1)

− = −0.64κ∗ [32]. If one of these
quantities is fixed, all the other can be determined. This allows us to choose any definition of the
three-body parameter as long as it fixes the energy scale of the Efimov states. As will be explained
in Sec. 2.2.4,a(1)

− can be observed experimentally by an atomic loss measurement, so this definition
is often used in recent studies on the Efimov states in ultracold atoms, especially when it comes to
the universality of the three-body parameter (see Sec. 2.4 and Chap. 4).
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The Efimov states are often called Borromean states. A three-body bound state can exist even
in the absence of a two-body bound state fora < 0. In this sense, it is a genuine three-body bound
state in this regime. The Borromean feature can be qualitatively understood by a simple argument
as follows: crudely speaking, the resonant two-body interaction means that a zero-point energy
in the relative motion is exactly balanced by the attractive interaction. For three particles, on the
other hand, there are two relative kinetic motions and three attractive interactions. Thus, the effect
of the interactions is dominant, and three particles can be more easily bound than two particles.
Such a genuine three-body binding phenomenon is similar to the “Borromean ring”, and this is
why the Efimov states on the negative scattering length side are often called Borromean states.
With a similar argument, one can expect thatN+1 particles are more easily bound thanN particles
and have a larger binding energy. This has been confirmed with recent theoretical calculations for
N . 10− 40 [77, 78, 80, 81, 82, 83, 84, 85] and in experiments forN ≤ 5 [26, 45, 68, 88, 89].

The physical origin of the discrete scaling law is a scale-invariant behavior due to the divergence
of the s-wave scattering length. Indeed, at unitarity 1/a = 0, one can make a qualitative argument
explaining the origin of the discrete scale invariance of the Efimov states as follows: at unitarity,
the hyper-angular equation (2.38) does not contain any length scale. Therefore, hyper-angular
eigenstatesΦn and eigenvaluesλn(R) become independent of the hyper-radius:Φn(R, α3, r̂12, ρ̂3) =
Φ0(α3, r̂12, ρ̂3), andλ(R) = λ0 = const.. The non-adiabatic couplingsQnm(R) andPnm(R) vanish,
and the hyper-radial Schrödinger equation becomes

~2

m

− d2

dR2
+
λ0 +

15
4

R2

 f0(R) = E f0(R). (2.45)

This hyper-radial Schrödinger equation can be solved analytically. Three-body bound states exist
whenλ0 < −4. From the physical argument presented in the previous paragraph, one can expect
that three particles can be bound more easily than the two particles and three-body bound states
exist at unitarity. This suggestsλ0 + 4 ≡ −s2

0 < 0. Thus, the hyper-radial potential in Eq. (2.45) is
an inverse-square attractive potential. When such a potential appears, solutions of the Schrödinger
equation show the discrete scale invariance with a scaling factoreπ/s0. Indeed, a solution of the
Schrondiger equation (2.45) is

f (R) =
√

xKis0(x), (2.46)

whereKn is the modified Bessel function, andx = κR =

√
m|E|
~2

R is the energy-scaled hyper-

radius. For a smallx, the modified Bessel function with an imaginary index shows the following
asymptotic form:

Kis0(x→ 0) = sin
[
s0 ln

( x
2

)
− ∆

]
, ∆ =

1
2

arg

(
Γ(is0 + 1)
Γ(−is0 + 1)

)
. (2.47)

Note that this wave function is invariant under the scale transformationx → xenπ/s0, wheren is
an arbitrary integer. This leads to the discrete scale invariance of the Efimov states. Indeed, by
imposing the three-body boundary condition (2.24), one finds an infinite number of three-body
bound states with their energy eigenvalues given as

|κn| =
√

m|En|
~2
= exp

(
−nπ

s0

)
exp

 1
s0

arccot

ΛR0 − 3
2

s0

 + ∆ (n ∈ Z). (2.48)
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These binding energies show the discrete scale invariance:

|En|
|En+1|

= exp

(
2π
s0

)
. (2.49)

While the above argument is qualitative and is applicable only at unitarity, it still captures the most
important features of the Efimov physics.

The log-periodic asymptotic wave function shown in Eq. (2.47) is closely related to the Thomas
collapse [117]. The wave function shown in Eq. (2.47) is singular atR= 0. The three-body bound-
ary condition is imposed not atR= 0 but at a nonzero hyper-radiusR= R0 to avoid this singularity.
The singularity leads to a pathological result in the energy spectrum if one does not impose the
three-body boundary condition at a nonzero hyper-radius. In 1935, L. H. Thomas solved the three-
body problem without imposing the three-body boundary condition, and found that energies are
unbound from below and the ground-state energy becomes−∞ [117]. This phenomenon is known
as the Thomas collapse. The Thomas collapse is closely related to the Efimov effect. Indeed, if one
does not impose the three-body boundary condition, the wave function of the Efimov states (2.47)
should be believed to be valid down toR = 0. Then, for any three-body state there always exists
nodes and hence lower-lying states, since the presence of nodes suggests the existence of bound
states with lower energy. Thus, the Thomas collapse is a natural consequence of the log-periodic
oscillation in Eq. (2.47). Since the Efimov effect is closely related to the Thomas collapse, the
Efimov effect is sometimes referred to as the Thomas-Efimov effect.

2.2.2 Quantitative description of the Efimov physics

Hyper-spherical approach

To solve Eq. (2.38), one performs the Faddeev decomposition [152]:

Φn(R, α3, r̂12, ρ̂3) = χn(R, α1, r̂23, ρ̂1) + χn(R, α2, r̂31, ρ̂2) + χn(R, α3, r̂12, ρ̂3). (2.50)

Since the zero-angular-momentum channel is energetically most stable, let us restrict ourself to this
channel:χn = χn(R, α). In fact, the zero-angular-momentum channel corresponds to the channel in
which the Efimov effect occurs. The hyper-angular equation can then be rewritten as[

− ∂2

∂α2
i

− 4 cot 2αi
∂

∂αi

]
χn(R, αi)

+
mR2

~2
VHY(Rsinαi)

[
χn(R, α1) + χn(R, α2) + χn(R, α3)

]
= λn(R)χn(R, αi).

(2.51)

Since the Huang-Yang pseudo-potentialVHY is non-zero only atαi = 0, this equation is equivalent
to the non-interacting equation[

− ∂2

∂α2
i

− 4 cot 2αi
∂

∂αi

]
χn(R, αi) = λn(R)χn(R, αi) (2.52)

with a boundary condition imposed atαi = 0. Introducingλn(R) + 4 = −s2
n(R), a solution of

Eq. (2.52) is obtained as

χn(R, α) =
1

sin 2α
[c1 sinh(sn(R)α) + c2 cosh(sn(R)α)] . (2.53)
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There are two important boundary conditions. First of all, the Faddeev wave function (2.53) should
not be singular atα = π

2. This condition fixes the relative value betweenc1 andc2, giving

χn(R, α) =
C

sin 2α
sinh

[
sn(R)

(
π

2
− α

)]
. (2.54)

The second boundary condition is imposed atα = 0 such that Eq. (2.51) holds atαi = 0. Substitut-

ing Eq. (2.54) into Eq. (2.51) and settingαi = 0, the other hyper-angles becomeα j,i =
π

3
and one

obtains the following transcendental equation [2, 32]:

8
√

3
sinh

[
sn(R)

π

6

]
− sn(R) cosh

[
sn(R)

π

2

]
= −R

a
sinh

[
sn(R)

π

2

]
. (2.55)

WhenR/a = 0, the transcendental equation supports a single real solutions0 = 1.00624. . . and an
infinite number of pure imaginary solutionss1 = ±4.5i, s2 = ±6.8i,. . .. At the unitarity, these solu-
tions are valid for any hyper-radius. The real solution suggests an attractive inverse-square hyper-
radial potential, while the pure imaginary solutions suggest repulsive inverse-square hyper-radial
potentials. As argued in Sec. 2.2.1, the inverse-square attractive potential leads to the appearance
of Efimov states and their discrete scale invariance. In the repulsive channel, on the other hand, no
three-body bound state can exist.

Away from the unitarity, the hype-radial potential can depend non-trivially onR/a. In the
Efimov channel, the inverse-square attraction appears at short distanceR/|a| � 1. At larger distance
R & |a|, the hyper-radial potential is no longer in the inverse-square form. The breakdown of the
inverse-square attraction atR& |a| suggests a decrease in the number of log-periodic oscillations in
the wave function (see Eq. (2.47)). The number of three-body bound states can be estimated from
the number of nodes, and one obtains an estimate of the number of three-body bound states as [1]

N ≈ s0

π
log(κ∗|a|) . (2.56)

As argued in the introduction, this estimate suggests that the scattering length must be extremely
large to observe several Efimov energy levels:κ∗|a| & 500 for two trimers, andκ∗|a| & 104 for three
trimers.

Some remarks on the non-adiabatic couplings are in order. At the unitarity, as argued in
Sec. 2.2.1, the hyper-angular wave function is scale-invariant, and the non-adiabatic couplings van-
ish. On the other hand, whena is finite, the non-adiabatic couplings are non-zero, and one needs
to solve the multi-channel Schrödinger equation (2.38). However, in the zero-range Efimov theory,
the non-adiabatic couplings have only a minor role [32], and one can obtain the Efimov spectra
shown in Fig. 2.5 even when the non-adiabatic couplings are neglected. If one wants to obtain the
universal energy spectra of the Efimov states quantitatively, however, the non-adiabatic couplings
should be taken into account.

The advantage of the hyper-spherical formalism is its clear physical picture. Solutions of the
hyper-angular and hyper-radial equations are directly related to the three-body wave function in
real space. Furthermore, the hyper-radial potential often helps us physically understand properties
of a three-body system. This point will be exemplified in Chap. 4, where the physical origin of the
universality of the three-body parameter is explained by using the hyper-radial potential and the



33

hyper-angular wave function. One disadvantage of the hyper-spherical formalism is the channel
couplings. While one can manage to solve the coupled-channel Schrödinger equation numerically,
it is practically easier to use an alternative approach which naturally incorporates the effect of the
channel couplings. In the next few paragraphs, one of such methods is introduced.

Momentum-space approach: Skorniakov–Ter-Martirosian equation

While the hyper-spherical formalism is a real-space approach, one can alternatively solve the
three-body problem in momentum space. One famous momentum-space method is use of the
Skorniakov–Ter-Martirosian equation [148]. The Skorniakov–Ter-Martirosian equation is a one
dimensional integral equation as follows:

√
3
4

p2 + κ2 − 1
a

 aAD(p) =
p2

p2 + κ2
+

2
π

∫ Λ

0
dq

p
q

log

(
p2 + q2 + pq+ κ2

p2 + q2 + pq+ κ2

)
aAD(q), (2.57)

whereκ =

√
m|E|
~2

(E < 0) corresponds to the energy of three particles,p is the relative in-coming

momentum between the particle and the dimer, andaAD(q) is the momentum-dependent particle-
dimer s-wave scattering length. The Skorniakov–Ter-Martirosian equation was originally derived
to obtain the particle-dimer scattering lengths [148]. Indeed, by taking the energy at the particle-

dimer thresholdE = − ~
2

ma2
and solving Eq. (2.57), the particle-dimers-wave scattering length can

be obtained asaAD(p = 0).
Since the three-body problem is equivalent to the particle-dimer scattering problem, one can

also use Eq. (2.57) to investigate the properties of trimers. Binding energy of three-body bound
states can be obtained by seeking for the value ofκ at whichaAD(p = 0) diverges. This can be
done by finding the value ofκ at which the eigenvalue of the right-hand side of Eq. (2.57) (seen as
an operator acting onaAD(q)) vanishes. To avoid the Thomas collapse [117], the cut-off Λ of the
momentum integration must be taken to be finite. This momentum cutoff introduces a three-body
scale which fixes the energy spectra of the Efimov states. Indeed, one finds the ground-state energy
of the Efimov states which is calculated with Eq. (2.57) to beκ∗ = 0.18Λ.

The Skorniakov–Ter-Martirosian equation has several advantages over the hyper-spherical equa-
tion. One advantage is its simplicity: it is a linear one-dimensional integral equation, and can be
solved numerically with little difficulty. In addition, two physical quantities, the particle-dimer
s-wave scattering length and the binding energy of the trimers, can be obtained from a single equa-
tion. Once a numerical code to solve the Skorniakov–Ter-Martirosian equation is prepared, these
quantities can be obtained easily. Finally, the Skorniakov–Ter-Martirosian equation incorporates
the channel couplings appearing in the hyper-shperical formalism.

While the above Skorniakov–Ter-Martirosian equation describes a system of three identical
bosons in theL = 0 channel, similar one-dimensional integral equations can be derived for higher
angular momentum channels [148], and for three-body systems of different statistics of parti-
cles [60, 153, 154, 155, 156]. In Chap. 3, a three-body problem of two identical particles res-
onantly interacting in thes-wave channel with another distinguishable particle is solved numeri-
cally with the Skorniakov–Ter-Martirosian type of equation. In Sec. 3.1, I show a derivation of
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Figure 2.6:S-wave scattering length (upper panel) and energy spectra of dimers (red curves) and
trimers (green ones) as a function of the strengthV0 of an attractive potential.

the Skorniakov–Ter-Martirosian type of equation for a system of two identical particles and an-
other distinguishable particle in an arbitrary angular momentum channel and for both bosons and
fermions (i.e., 2 identical bosons+ 1 particle, and 2 identical fermions+ 1 particle).

2.2.3 Efimov effect for finite-range potentials

In Secs. 2.2.1 and 2.2.2, the Efimov states have been introduced and discussed using the Huang-
Yang pseudo-potential in (2.19) and the three-body boundary condition in (2.24). Since the pseudo-
potential and the boundary condition method properly reproduce low-energy properties of any sys-
tem, most properties of the Efimov states presented in Secs. 2.2.1 and 2.2.2 can also be applied
to the Efimov states in a three-body system interacting via a short-range two-body potential. In
Fig. 2.6, energy spectra of a three-body system interacting with an attractive two-body potential
are schematically illustrated. As the two-body potential is made more attractive, successives-wave
shape resonances occur at the points where two-body bound states start to appear. In the vicinity of
each of these resonances, the Efimov trimers appear, as shown by green curves. The ground-state
energy of the Efimov states is of the order of the range of the interactionr0, and the three-body
parameters areκ∗ ≈ r−1

0 , a(1)
− ≈ −r0, anda∗ ≈ r0. For particles interacting via a potential decaying



35

as−C6/r6 at long distance,κ∗ ≈ 1/rvdW, a(1)
− ≈ −rvdW, anda∗ ≈ rvdW. While the three-body pa-

rameter has been known to be of the order of the range of the interaction, their precise value has
been believed to be sensitive to microscopic details of two-body potentials. Recently, however, the
three-body parameter has been suggested to be universally determined by the van der Waals length
asa(1)

− = −8-10rvdW. This issue will be discussed in detail in Sec. 2.4 and Chap. 4.
Some remarks on finite-range corrections are in order. The binding energy of the ground-state

trimer is of the order of the range of the interaction, and thus it may not be adequate to describe it
by the zero-range theory. For example, for a4He potential, the energy of the ground-state trimer
disagrees significantly from what is expected from the zero-range Efimov theory [10]. Furthermore,
it does not dissociate into an atom and a dimer, contrary to the behavior presented in Fig. 2.5. On
the other hand, the first-excited Efimov trimer is less affected by the finite-range effect, since it is
rather weakly bound thanks to a large universal scaling factore2π/s0 ≈ 500. The finite-range effects
of the Efimov trimers will also be studied in Chap. 3 for a three-body system of two fermions and
a distinguishable particle.

While the non-adiabatic couplings have a minor role and it exactly vanishes at the unitarity
limit in the zero-range theory introduced in Secs. 2.2.1 and 2.2.2, it can be relevant for finite-range
potentials. In fact, even at unitarity, the non-adiabatic couplings do not vanish for finite-range
potentials. As discussed in Chap. 4, the diagonal part of the non-adiabatic couplingQnn(R) turns
out to be crucial in explaining the physical origin of the universal three-body parameter.

2.2.4 Experiments on the Efimov physics in ultracold atoms

In ultracold atom experiments, atoms are held in a vacuum chamber by an electromagnetic
potential. The number of atoms in a trap decreases gradually since atoms escape from the trap via
loss processes. Among various kinds of loss processes, the Efimov states manifest themselves in a
three-body recombination. The three-body recombination is a chemical reaction process in which
a dimer is created via a collision of three atoms. The conservation of energy and momentum during
the three-body recombination dictates that the binding energy of the dimer should be released into
a kinetic energy of the atom and the dimer. The binding energy of the dimer and hence the released
kinetic energy are so large that the recombination products are lost from the trap. The three-body
recombination rate can be quantified by the coefficientL3 in the rate equation

dn
dt
= −L3n

3. (2.58)

The recombination process is strongly affected by the Efimov states. The clearest signature of the
Efimov states appear when one measuresL3 for variables-wave scattering lengths on the negative
side. In Fig. 2.7, the three-body loss rate observed by the team of the Innsbruck University is
shown [27]. There is a characteristic peak in the three-body recombination coefficient. This peak
corresponds to the point where the Efimov states dissociate into three atomsa ≈ a(1)

− , where the
three atoms are resonantly coupled to the final state of a dimer and an atom via the Efimov states
(see also Figs. 2.8 (a) and (b)). In the zero-range theory at zero temperature§, the three-body loss

§Recently, the three-body loss rate has also been calculated for a finite temperature system based on the zero-range
theory, and has been compared with experiments [47].
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Figure 2.7: Recombination lengthρ3 ∝ L1/4
3 as a function of thes-wave scattering length [27]. The

dots, filled triangles, and open diamonds correspond to data with different experimental conditions.
The dots are measured at a lower temperatureT = 10 nK, while the filled triangles and the open
diamonds are measured at higher temperaturesT = 200 nK, and 450 nK. The thick solid curve is a
theoretical prediction in Eq. (2.59), and the thin lines are theL3 ∝ a4 trend. [Figure adapted with
permission from T. Kraemeret al., Nature440315 (2006). Copyrightc© (2006) Nature Publishing
Group.]

rate coefficient is obtained as [157, 158]

L3 = C
~a4

m
sinh 2η−

s0 log
(

a
a(1)
−

)
+ sinh2 η−

(a < 0). (2.59)

Here,η− is called the inelasticity parameter, which characterizes the transition probability from
three atoms into a tightly bound dimer and an atom. The theoretical prediction fits fairly well with
the experimental observations as shown by a solid curve in Fig. 2.7, and this is a clear signature of
the appearance of the Efimov states in ultracold atoms.

The Efimov states can also be observed by the loss rate for a positive scattering length side. As
shown by a black solid curve in Fig. 2.8 (b), there is no loss peak in the three-body recombination
rate for a positive scattering length, but still a periodic structure characterizing the discrete scale
invariance of the Efimov states appears [32]. As shown in Fig. 2.8 (c), the observed three-body
recombination rate indeed shows the periodic structure. From this period, the scaling factor of the
Efimov states have been estimated to be 25±4, which is consistent with the universal scaling factor
22.7 of the Efimov states. While there is no clear peak in the three-body recombination rate for
a > 0, a resonantly enhanced peak appears in the atom-dimer relaxation rate. In the atom-dimer
relaxation process, a collision of weakly bound dimer and an atom ends up with a tightly bound
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Figure 2.8: a. Schematic illustration of the energy spectrum of the Efimov states (red curve) and the
dimer (blue line). b. Theoretically predicted three-body recombination rate (black curve) and the
atom-dimer relaxation rate (blue curve) [32, 157]. The dotted line is thea4 line. c. Experimentally
observed three-body recombination rates. Solid curves are theoretical fits based on the zero-range
Efimov theory. In a subsequent paper [66], it has been pointed out that the three-body loss peak
at a ≈ −1500a0 is a misidentified one. The three-body loss peak corresponds to the adjacent peak
located ata ≈ −600a0. [Figure adapted with permission from M. Zaccantiet al., Nature Physics5
586 (2009) [28]. Copyrightc© (2009) Nature Publishing Group.]

dimer and an atom, which are lost from the trap. As shown by a blue solid curve in Fig. 2.8 (b),
the atom-dimer relaxation rate is enhanced close to the point where the Efimov states dissociate
into an atom and a dimer. This maximum in the atom-dimer relaxation rate has also been observed
experimentally [159].

While the three-body recombination rate and the atom-dimer relaxation rate can lead to signa-
tures of the Efimov states and their measurements have been quite useful for studying the Efimov
states, they are not the direct evidence of the Efimov states. Recently, a direct association of the
Efimov states has been realized [51, 52, 160]. In Refs. [51, 52], a gas of atoms and weakly bound
dimers is initially prepared, and a microwave with variable frequency is applied. The atoms and
dimers are then converted into Efimov trimers. This radio-frequency association technique has suc-
cessfully been used to associate and observe the Efimov trimers in ultracold6Li atoms [51, 52]. In
Refs. [160], the radio-frequency association has been applied to a gas without dimers, and Efimov
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states have been created from the three-atom continuum. The radio-frequency association tech-
nique offers a direct access to the Efimov trimers, and one can measure the binding energy of the
Efimov trimers.

2.3 Three-body physics for fermions

In this section, a fermionic three-body problem is reviewed. When the three particles are identi-
cal fermions with no internal degree of freedom (i.e., spinless fermions, or spin-polarized fermions),
they cannot interact in thes-wave channel and behave as free particles at low energy. The simplest
case in which non-trivial effect of the Fermi statistics on the Efimov physics can be studied is a
three-body system of two identical fermions§ and one distinguishable particle, where the fermions
are resonantly interacting with the other particle in thes-wave channel. Such a system is often
called a “2+1 system.” I review this 2+1 system for a variable mass ratio. The mass ratio between
the two fermions and the other particle is an important parameter which determines the presence or
absence of a three-body bound state. In the previous studies [38, 59, 132], two types of three-body
bound states have been demonstrated to appear in this system, the Efimov states [38, 132] and the
Kartavtsev-Malykh states [59]. I describe these two trimers and discuss the role of the mass ratio
in this section.

While the three-body problem can be solved exactly with the hyper-spherical method [38, 59],
I present an analysis using the Born-Oppenheimer method in this section. It is far simpler and more
intuitive than exactly solving the three-body problem. As we will see, three-body bound states
appear when the fermions’ mass is much larger than that of the other particle. Therefore, the Born-
Oppenheimer method is a good approximation, and reproduces the hyper-spherical results fairly
well.

2.3.1 Efimov effect and the critical mass ratio at unitarity

For resonantly interacting three identical bosons, an inverse-square attraction appears in the
hyper-radial Schr̈odinger equation, and the Efimov states appear. For a fermionic three-body sys-
tem, an essential difference from the bosonic case is that in addition to the Efimov attraction, a
centrifugal repulsion appears due to the antisymmetrization between the identical fermions. To
see this point, let us assume that two fermions is much heavier than the other particle, so that the
Born-Oppenheimer approximation can be used [38]. In the Born-Oppenheimer approximation, we
first solve the Schr̈odinger equation of the light particle (massmL) and obtain an energy eigen-
value when the positions of the heavy fermions (massmH) are fixed atx1 andx2. The Schr̈odinger
equation of the light particle is (r ≡ |x1 − x2|)

−
~2∇2

y

2mL
φ(y) = E(r)φ(y) (2.60)

§Again, I assume throughout this thesis that fermions do not have any internal degree of freedom, i.e., spin-polarized
fermions.
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with the Bethe-Peierls boundary conditions at|y− x1| → +0 and|y− x2| → +0. This equation can
be solved analytically, giving

φ(y) =
exp

(
−κ(r) |y−x1|

r

)
|y− x1|

+
exp

(
−κ(r) |y−x2|

r

)
|y− x2|

, (2.61)

whereκ(r) is determined from the Bethe-Peierls boundary condition as

κ(r) − e−κ(r) =
r
a
. (2.62)

A solution of this transcendental equation is

κ(r) =
r
a
+W(e−r/a), (2.63)

whereW is the Lambert W function. The energy eigenvalue of the light particleE(r) is then
obtained as

E(r) = −~
2κ(r)2

2mLr2
. (2.64)

This appears as an effective interaction in the Schrödinger equation of the relative motion between
the fermions [

−~
2∇2

r

mF
+ E(r)

]
ψ(r) = Eψ(r). (2.65)

Since the wave function must be antisymmetrized, the relative angular momentum between the
fermions must be an odd integer, so that a centrifugal repulsion appears. At the unitarity, the
effective interaction between the heavy particles becomes

V(r) =
~2L(L + 1)

mFr2
− ~

2Ω2

2mLr2
, (2.66)

whereΩ =W(1) = 0.5671. . .. The first term is the centrifugal repulsion, and the second term is the
attraction induced by the light particle, i.e., the Efimov attraction. These two contributions compete,
and their strength varies as the mass ratio is changed. When the mass of the fermions is much larger
than that of the other particle, the Efimov attraction dominates the centrifugal repulsion, and the
Efimov states appear. On the contrary, whenmF . mL, the potential is repulsive and there is no
three-body bound state. In the most stableL = 1 channel, the critical mass ratio which delimits
these two behaviors is (

mF

mL

)
E

=
2
Ω2

[
L(L + 1)+

1
4

]
= 13.992. . . . (2.67)

While the Born-Oppenheimer method has been used in the above analysis, the three-body
Schr̈odinger equation can be solved analytically with the hyper-spherical method. One finds no
qualitative difference from the Born-Oppenheimer analysis. The exact value of the Efimov’s crit-
ical mass ratio is obtained as (mF/mL)E = 13.606. . . [132], which is in excellent agreement with
the Born-Oppenheimer result (see Table. 2.1).
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Table 2.1: Critical mass ratio at which the Efimov states and the first and second Kartavtsev-Malykh
states appear. The mass ratio calculated with the Born-Oppenheimer approximation and the exact
hyper-spherical calculation [59, 132] are shown.

Born-Oppenheimer Exact
1st Kartavtsev-Malykh state 9.62 8.172
2nd Kartavtsev-Malykh state 13.74 12.917

Efimov states 13.992 13.606

2.3.2 Kartavtsev-Malykh trimer

Away from unitarity 1/a , 0, the effective interaction between the heavy particles is

V(r) =
2~2

mFr2
− ~

2κ2(r)
2mLr2

(2.68)

In Fig. 2.9, we showV(r) for various mass ratiosα = mF/mL. For a small mass ratio, the potential
is repulsive, so that no trimer can exist. For a sufficiently large mass ratio, especially formF/mL >

13.992. . ., the potential is strongly attractive, so that trimers can be formed. For an intermediate
mass ratio 10. mH/mL < (mF/mL)E, an attractive force appears at a distancer ∼ a for a positive
scattering length while the short-range part is a repulsive inverse-square potential. A potential
well-like structure appears, and this supports one bound state whenmH/mL > 9.62. . ., and two
bound states whenmH/mL > 13.74. . .. When one uses the hyper-spherical formalism and solves
the three-body problem exactly, one can show that these three-body bound states appear at mass
ratios (mH/mL)(1)

KM = 8.172. . . and (mH/mL)(2)
KM = 12.917. . . [59], which agree with the Born-

Oppenheimer results fairly well (see Table. 2.1).
These three-body bound states below the Efimov’s critical mass ratio were found in 2007 by

Kartavtsev and Malykh [59], and they are called the Kartavtsev-Malykh states. The Kartavtsev-
Malykh states have distinct properties from the Efimov states. In Table. 2.2, basic properties of
the Kartavtsev-Malykh states and the Efimov states are compared. First of all, the number of the
bound states are different. There are an infinite number of bound states for the Efimov states, while
there are only two Kartavtsev-Malykh states. Universal properties of these states also show marked
contrast to those of the Efimov states. While the Efimov states depend on the two parameters, thes-
wave scattering length and the three-body parameter, the there-body parameter is irrelevant for the
Kartavtsev-Malykh states. This is because there exists a strong repulsive potential at short distance
whenmH/mL < (mF/mL)E, and it prohibits three particles from coming close. As a consequence,
the Kartavtsev-Malykh states have a continuous scale invariance: if the scattering length is scaled
asa → βa, the binding energyEn (n = 1,2) and the mean radius〈r〉 are scaled asE → β−2E,
〈r〉 → β〈r〉 for an arbitrary continuous value ofβ.

Furthermore, the stability of the Efimov trimers and that of the Kartavtsev-Malykh trimers dif-
fers significantly. The Efimov trimers are known to be unstable against a three-body loss [27]:
the trimer dissociate into a tightly bound dimer and an atom, thereby releasing its binding en-
ergy into the kinetic energy and are lost from the trap. On the contrary, such a decay channel for
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Figure 2.9:V(r) in Eq. (2.68) for a positive scattering length (main figure), and a negative scattering
length (inset) for several mass ratiosα = mF/mL.

the Kartavtsev-Malykh trimers is suppressed, since there is a large potential barrier at short dis-
tance [60]. The wave function of the Kartavtsev-Malykh states attenuates at short distance, so that
there is little overlap with the wave function of the tightly bound dimer.

As a final remark, the allowed value of the scattering length is different between the Efimov
states and Kartavtsev-Malykh states. The Efimov states can exist for a negative value of the scat-
tering length. Since the two-body bound state does not exist fora < 0, they are sometimes termed
as Borromean states: three-body bound states in the absence of a two-body bound state. This can
be seen by observing the potential formF/mL > (mF/mL)E. As shown in the inset, for a negative
scattering length, the potential has an inverse-square attraction forr/|a| � 1 when the mass ratio
exceeds the Efimov’s critical mass ratio. Thus, the three atoms are subject to a strong enough short-
range attraction when|a| is large, and they can form trimers. When the mass ratio is smaller than
the Efimov’s critical mass ratio, on the other hand, the potential for a negative scattering length is
repulsive for anyr, so that no trimer can be formed. Thus, the Kartavtsev-Malykh states are not
Borromean states.

In one dimension and two dimensions, three-body bound states similar to the Kartavtsev-
Malykh states have been found recently [161, 162]. The three-body bound states of the Kartavtsev-
Malykh character exist formF/mL > 1 [161] andmF/mL > 3.3 [162] in one and two dimen-
sions, respectively. These are also distinct from the Efimov states, since the Efimov states do
not appear in one and two spatial dimensions [32, 115, 163]. Indeed, by generalizing the hyper-
spherical formalism to a continuous number of spatial dimensions and solving the hyper-angular
equation ind dimensions, one can show that the Efimov states appear for a range of dimensions
2.3 < d < 3.8 [32, 115].
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Table 2.2: Properties of the Kartavtsev-Malykh trimers and Efimov trimers are compared.

Efimov trimers Kartavtsev-Malykh trimers
Number of bound states Infinite 2

Scaling property Discrete Scaling Continuous Scaling

Relevant parameter
S-wave scattering length

S-wave scattering length
Three-body parameter

Stability Unstable Stable
Trimers fora < 0 Possible Impossible
Other dimensions Impossible Possible

2.4 Universal three-body parameter

Recently, the three-body parameter of the Efimov states has attracted great theoretical and
experimental interest. In Sec. 2.4.1, a short history on this issue is sketched out, followed by a
review of recent developments in experimental studies of the three-body parameter. In Sec. 2.4.2,
all the theoretical studies on the universal three-body parameter are listed up to the best of the
author’s knowledge, and they are reviewed briefly. Note that the results presented in this section is
quite new, most of them reported during 2011-2013. Therefore, both experimental and theoretical
results presented in this section may be subject to some revisions with updated results in the near
future.

2.4.1 History and recent experiments in ultracold atoms

The three-body parameter fixes the energy scale of the Efimov states, and it is an important
parameter in the Efimov physics. In the zero-range Efimov theory, the three-body parameter is in-
troduced as a parameter characterizing a short-range three-body phase, and its value cannot be de-
termined by itself. In fact, in ultracold atom experiments shown in Figs. 2.7 and 2.8, the three-body
parameter and the inelasticity parameter are treated as fitting parameters to compare the zero-range
Efimov theory with the experimental data. To determine the value of the three-body parameter
for a given system, one needs to take into account a finite-range part of inter-particle interactions,
and perform a three-body calculation numerically. In some literature [71], the three-body prob-
lem has been solved theoretically for some finite-range potentials, and it has been claimed that the
three-body parameter is rather sensitive to details of potentials. In the language of ultracold atoms,
this means that the three-body parameter is rather sensitive to atomic species, hyperfine states, and
which Feshbach resonances one chooses. While the long-range part of the inter-atomic interaction
share the same van der Waals form−C6/r6, the short-range part depends on electronic configu-
rations of the atoms, and it is strongly dependent on atomic species, and hyperfine states. This
non-universal short-range part of the inter-atomic interaction has been believed to alter the value
of the three-body parameter significantly, rendering it non-universal. In addition to the short-range
part of the two-body interaction, it has been suggested that an atomic species dependent three-body
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Figure 2.10: Three-body loss rate coefficient K3 ∝ L3 observed experimentally for two different
hyperfine states are show by red solid circles and blue open diamonds [46]. The solid curves are the
zero-range Efimov theory fitted to experimental data. The dotted line shows thea4 trend. [Figure
reprinted with permission from N. Grosset al., Phys. Rev. Lett.105, 103203 (2010). Copyrightc©
(2010) by The American Physical Society.]

force present at short-range [164] can also significantly affect the three-body parameter, rendering
the three-body parameter non-universal [71].

The first experiment suggesting the universality of the three-body parameter was performed
by the team of Bar-Ilan University in 2010 [46]. In this experiment, a three-body loss was ob-
served in the vicinity of a Feshbach resonance for two different hyperfine states. As shown in
Fig. 2.10, three-body loss rates for two different hyperfine states agree excellently. This suggests
that the three-body parameter and the inelasticity parameter are almost the same for the two hyper-
fine states. With hindsight, this experiment was the first to find the universality of the three-body
parameter. However, at that time it was not clear whether the agreement is a mere coincidence
or not. The universality of the three-body parameter was clearly realized in the community by a
subsequent paper published in 2011 [68]. In this experiment, the team of the Innsbruck University
has measured three-body loss rates for four different Feshbach resonances for133Cs atoms. Surpris-
ingly, contrary to the conventional wisdom [71], the three-body parameters for the four different
Feshbach resonances agree with each other. Furthermore, when these three-body parameters for
133Cs atoms are compared with those observed for7Li atoms [44, 45, 46], they also agree when the
three-body parameter is normalized by the van der Waals lengtha(1)

− /rvdW =-8-10.
These observations have surprised researchers working on the Efimov physics in ultracold

atoms, and the three-body parameter for other atoms has subsequently been measured by a num-
ber of groups. Until now, the three-body parameter has been observed for four bosonic alkalis:
7Li [26, 44, 45, 46, 47, 65],39K [28, 66], 85Rb [67] and133Cs [68, 69]. Three-body parameters
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Figure 2.11: The scattering lengths at the triatomic resonance threshold,a(1)
− , for various atomic

species. The plotted data are taken from the following references (see Table. 2.4 for more detail):
6Li [50, 53], 7Li [26, 47, 65], 39K [66], 85Rb [67] and133Cs [68]. We also show the result of a
theoretical calculation for a realistic4He potential [10] (see Sec. 2.4.2). The red solid line is the
best fit to the dataa(1)

− = −9.4± 0.2rvdW.

observed so far are shown in Fig. 2.11 and Table. 2.4. Except for some data on39K atoms which
will be discussed later, the three-body parameter seems to be universally determined by the van der
Waals lengtha(1)

− = −8-10rvdW.
The Efimov states have also been realized for a three-component Fermi system of6Li atoms [48,

49, 50, 51, 52, 53, 54]. The Efimov physics of three identical bosons and that of fermions in
three different internal states are mostly the same. The only difference is that there are three inter-
particle scattering lengthsa12, a23, anda13. For 6Li atoms, these three scattering lengths can be
simultaneously made resonant. In Ref. [50], a three-body parameter has been estimated for6Li
atoms based on the assumption that the loss rate behaves in the same manner as that of identical
boson in Eq. (2.59) with the mean scattering length

a4
m =

1
3

(a2
12a

2
13+ a2

12a
2
23+ a2

13a
2
23). (2.69)

The three-body parameter estimated this way has been found to bea(1)
− /rvdW = −9.3, which agrees

excellently with the bosonic case. In Ref. [53], the three-body threshold for the first-excited Efimov
trimer has been observed for6Li atoms. By using the above method and multiplying the universal
scale factor, one obtainsa(1)

− /rvdW = −8.1. These data are also shown in Fig. 2.11.
Recently, the three-body loss rate for excited-state4He atoms has been measured [70]. While

the Feshbach resonance cannot be used for the excited4He atoms, a natural scattering length be-
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Figure 2.12: |a(1)
− |/rvdW as a function of the resonance width parametersres for various atomic

species. The plotted data are the same as those in Fig. 2.11. The theoretical calculation for a
realistic4He potential [10] corresponds to the broad Feshbach resonance limitsres→ +∞. The red
solid curve corresponds toa(1)

− = −9.4± 0.2rvdW. In this figure, the data of6Li atoms is not plotted
since it is not clear how one can define the mean resonance width.

tween them is resonantly large. The three-body parameter extracted from the loss rate measurement
has been found to be consistent with that of alkalis, although this data is not shown in Fig. 2.11.

Two remarks are in order for experimental data not shown in Fig. 2.11. First of all, for133Cs
atoms, a three-body parameter of the Feshbach resonance atB = 818.89 G is not shown, since it
has been reported that it may suffer from a large systematic error [69]. Secondly,39K data reported
in Ref. [28] is not plotted here. In Fig. 2.8, the experimental data reported in Ref. [28] is shown.
For a negative scattering length, two peaks are visible. In Ref. [28], the peaks ata = −1500a0 and
a = −600a0 are identified as three-body and four-body loss peaks, respectively. This identification
results ina(1)

− /rvdW = −23, in total disagreement with the universal behavior. In a subsequent paper
by the same team [66], these identifications have been revised. In Ref. [66], they assigned the
a = −600a0 peak as the three-body loss peak, while the peak ata = −1500a0 is not present in their
new observation. In Fig. 2.11, the older data reported in Ref. [28] is not shown, and only the recent
data reported in Ref. [66] is shown.

For a detailed list of the three-body parameters and the inelasticity parameters observed in
experiments, the readers are referred to Table. 2.4 placed in the last page of this chapter.
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Table 2.3: Experimental observations of the three-atom resonancea− < 0 and the atom-dimer
resonancea∗ > 0 of the hetero-nuclear Efimov states of 2 identical bosons+ 1 particle (A-A-B),
together with values of some fundamental parameters. The van der Waals lengths for a homo-
nuclear K-Rb atomsrAA

vdW is taken from Ref. [165], and that for a homo-nuclear K-K atoms and Rb-
Rb atomsrAB

vdW are taken from Refs. [166] and [167], respectively. The background homo-nuclears-
wave scattering lengthsaAA

bg for 41K atoms and87Rb atoms are taken from Refs. [168] and [24, 168],
respectively. The dimensionless Feshbach resonance widthsres is taken from Ref. [24].

Atoms mA/mB rAA
vdW(a0) rAB

vdW(a0) aAA
bg (a0) B0(G) sres a(1)

− (a0) a∗(a0)
41K41K87Rb [55] 0.4713 65.30(7) 72.22(1) 62 38.4 25.8 -22(+4,-6)×103 -

87Rb87Rb41K [55] 2.1217 82.59(3) 72.22(1) 100 38.4 25.8 -246(14) -
87Rb87Rb40K [169] 2.1747 82.59(3) 71.92(1) 100 546.62 1.96<-3000 or>-200 230(10)

Three-body parameter for a narrow Feshbach resonance

Until 2012, all the three-body parameters for three identical bosons observed in ultracold atoms
had been consistent with the universal behaviora(1)

− = −8-10 rvdW, except for those which have
turned out to be unreliable (see the previous paragraph). However, in 2013, a team of LENS has
observed a possible deviation from the universal behavior [66]. As one can see in Fig. 2.12, for most
atoms, three-body parameters have been observed so far for broad Feshbach resonancessres & 1.
The team of LENS has observed the three-body parameters of39K atoms for various Feshbach
resonances, including rather narrow Feshbach resonances ofsres ∼ 0.1. The results are shown as
solid rectangles in Fig. 2.12. For broad Feshbach resonances, the observed three-body parameters
are consistent with the universal behavior. However, for narrow Feshbach resonances, they have
found that the three-body parameters get significantly larger than the universal value for39K atoms.
On the other hand, the three-body parameters for7Li atoms observed at the Rice University [26, 45]
and the Bar-Ilan University [44, 46, 65] show the opposite trend: it gets slightly smaller than the
universal behavior. Because of such an apparent contradiction and of shortage of data, it is not yet
clear whether the three-body parameter should be universal or not for narrow Feshbach resonances.
As will be argued in the next section, it is also not yet understood theoretically, and requires further
studies.

For a detailed list of the three-body parameters and the inelasticity parameters observed in
experiments, the readers are referred to Table. 2.4 placed in the last page of this chapter.

Hetero-nuclear systems

As explained in the introduction, the Efimov states can appear for a three-body system of two
identical atoms resonantly interacting with another atom whose mass is different from that of the
others. Such a system is often called a hetero-nuclear system, since their atomic nuclei are dif-
ferent. Until now, the Efimov physics in hetero-nuclear systems have been investigated experi-
mentally only for a mixture of Rb atoms and K atoms by two groups: LENS in 2009 [55] and
JILA in 2013 [169]. In Table. 2.3, three-body parametersa(1)

− and atom-dimer resonant pointsa∗

reported in these studies are summarized, together with some basic properties of these systems.
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As shown in the table, the three-body parametera− has been reported to be observed only for two
cases,41K41K87Rb and87Rb87Rb41K [55], while the atom-dimer resonance has been reported to be
observed for87Rb87Rb40K [169]. It should be noted that the two studies report rather distinct be-
havior in the three-body loss rate for87Rb87Rb41K and87Rb87Rb40K: while a clear peak in the loss
rate has been visible ata = −246(14) in the former case [55], no peak has appeared in the region
−3000< a < −200 in the latter case [169]. The experimental data however is not yet sufficient,
and we cannot judge yet whether the three-body parameter is universal or not for the hetero-nuclear
systems.

Even if the three-body parameter is universal, it may show a different universal behavior from
that of three identical bosons. In the case of three identical bosons, a long-range part of inter-atomic
interactions is characterized by a single parameterrvdW, so once one assumes that the three-body
parameter is universally determined by this long-range part, one easily obtains the universal relation
a(1)
− ≈ rvdW. On the other hand, there are two van der Waals lengths for the hetero-nuclear system

of two A atoms and one B atom, namely a homo-nuclear van der Waals lengthrAA
vdW and a hetero-

nuclear van der Waals lengthrAB
vdW. Even when the three-body parameter has turned out to be

universal, it may non-trivially depend on these two van der Waals lengths. Furthermore, a homo-
nuclear scattering lengthaAA

bg remains of the order of the van der Waals length in the hetero-nuclear
Efimov states, which may also affect the three-body parameter.

Note that for the atomic species and Feshbach resonances reported in Table. 2.3, the homo-
nuclear scattering lengthaAA

bg does not vary significantly from the background homo-nuclear scat-
tering lengths and to a good approximation we can equate these two quantitiesaAA ≈ aAA

bg . This can
be checked from Fig. 14.2 of Ref. [170]. For Rb atoms, this can also be checked in Table IV of
Ref. [24].

2.4.2 Theoretical developments

In this section, theoretical studies on the universal three-body parameter is reviewed. To the
best of the author’s knowledge, all the theoretical studies on this issue until now have been listed
up.

3 identical bosons for broad Feshbach resonances

Shortly after the universality of the three-body parameter has been pointed out in Ref. [68], a
three-body problem of4He atoms has been numerically solved using a realistic4He potential [10].
A realistic 4He potential, LM2M2 potential [12], is varied by a scaling factor asV(r) → λV(r)
to virtually change thes-wave scattering length of4He atoms. Then, the three-body parameter
has been found to bea(1)

− /rvdW = −9.42, which is in excellent agreement with the universal value
observed in ultracold atom experiments. In Fig. 2.11, this theoretical value is shown as a black
down-pointing triangle. Since a three-body calculation with a single-channel potential corresponds
to the limit sres→ +∞, it is shown in Fig. 2.12 in the right-most position as a black down-pointing
triangle.

In Ref. [72], C. Chin attempts to explain the physical origin of the universal three-body param-
eter. He argues that a strongly attractive three-body potential between the atoms induces quantum
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W

Figure 2.13:|a(1)
− |/rvdW measured for39K atoms (blue dots) [66] versus the theoretical prediction

(red curve) reported in Ref. [75]. The open diamond is the mean value|a(1)
− |/rvdW = 9.73 observed

for broad resonances. The gray shaded region shows the variance of the experimental data. [Figure
adapted with permission from S. Royet al., Phys. Rev. Lett.111, 053202 (2013). Copyrightc©
(2013) by The American Physical Society.]

reflection between three atoms, so that they cannot come close and the three-body physics is deter-
mined solely by the long-range part of the inter-atomic interaction, i.e., the van der Waals interac-
tion. He has estimated the three-body parameter with a physical model, and obtaineda(1)

− /rvdW =

−9.48. In Ref. [73], however, J. Wang and coworkers argue that quantum reflection is insufficient to
prevent three particles from coming close. By numerically solving three-body Schrödinger equa-
tion for various two-body potentials, they have shown that a strong three-body repulsion appears in
the hyper-radial potential when a two-body potential either is strongly attractive or has a hard-core
repulsion at short distance. They have obtained three-body parameters for various types of poten-
tials to bea(1)

− /rvdW = −8 ∼ 12. In Ref. [74], P. K. Sørensen and coworkers have claimed that a
repulsive barrier in the two-body potential is essential for the three-body parameter. However, in
Ref. [73], J. Wang and coworkers have shown that a strong three-body repulsion can appear and the
three-body parameter becomes universal even for purely attractive two-body potentials.

To summarize, for a system of three identical bosons in the vicinity of broad Feshbach reso-
nances, the value of the three-body parameter has been found to be consistent with the experiments
in most theoretical studies. However, the physical mechanisms proposed to date have been rather
different from each other, and some of them are in total contradiction. In Chap. 4, the physical
origin of the three-body parameter is studied, and a clear and simple physical picture will be pre-
sented.
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3 identical bosons for narrow Feshbach resonances

The three-body parameter in the ultra-narrow resonance limit has been theoretically studied by
D. S. Petrov in 2004 [171]. He has found that the three-body parameter is universally described by
the effective range, and thus gets divergently large asa(1)

− ≈ |reff | ∝ s−1
res→ +∞ in the ultra-narrow

resonance limit. Interestingly, a slight increase of the three-body parameter for narrow resonances
reported by LENS (light-blue rectangles in Fig. 2.12) [66] is consistent with this behavior, although
they are yet far from the ultra-narrow resonance limit and hence the theory cannot be applied. It
should be noted that there is no increase in the three-body parameter for7Li atoms (purple diamonds
in Fig. 2.12) observed at the Rice University [26] and the Bar-Ilan University [44, 46].

In Ref. [75], R. Schmidt and coworkers have theoretically studied how the three-body parameter
varies as the resonance width is changed. In Fig. 2.13, their theoretical prediction is shown as a
red curve. It converges to|a(1)

− |/rvdW = 8.27 in the broad resonance limit, which is consistent with
the universal value. It also becomes divergently large in the ultra-narrow resonance limit, and is
consistent with Ref. [171]. However, as shown in Fig. 2.13, it is inconsistent with experimental
results.

Hetero-nuclear systems for broad Feshbach resonances

Until now, there is only one work on the three-body parameter for hetero-nuclear systems. In
Ref. [168], Y. Wang and coworkers claim that the three-body parameter is universal even for a
hetero-nuclear system of two identical bosons and one distinguishable particle. For a system of
two light and one heavy particles, they have found a strong three-body repulsion similar to the case
of three identical bosons. For a system of two heavy and one light particles, on the other hand, they
argue that an attractive interaction between the heavy particles, rather than the three-body repulsion,
makes the three-body parameter universal.
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Table 2.4: Experimentally observed three-body parametersa(1)
− and inelasticity parametersη− for

6Li, 7Li, 39K, 85Rb, and133Cs. For4He atoms, the three-body parameter calculated theoretically
with a realistic4He potential is shown [10]. In most cases,sres is taken from the references below
or Ref. [24]. For7Li, sres is estimated from the Feshbach resonance data in Ref. [65].

Atom rvdW[a0] B0 [G] a(1)
− [a0] a(1)

− /rvdW sres η− Reference

133Cs 101.0

553.30 -1029±58 -10.188±0.574 0.9 0.12±0.01 [68]
853.07 -955±28 -9.455±0.277 1470 0.08±0.01 [68]
554.71 -957±80 -9.475±0.792 170 0.19±0.02 [68]
7.56 -872±22 -8.634±0.218 560 0.10±0.03 [68]

818.89 -1400±150 -13.86±1.49 12 0.18±0.03 [69]

7Li 32.49
738 -274 -8.43 0.61 0.21 [47]
738 -265±16 -8.16±0.49 0.61 0.253±0.062 [46, 65]
738 -252±10 -7.76±0.30 0.61 0.12 [26, 45]
894 -238±25 -7.33±0.76 0.73 0.180±0.048 [44, 65]

6Li 31.26
- -292 -9.34 - 0.072 [50]
- -253 -8.11 - 0.016±0.010 [53]

4He(Theory) 4.935 - -48.4 -9.81 +∞ - [10]

39K 64.49

471.0 -640±100 -9.92±1.55 2.8 0.065±0.011 [66]
402.6 -690±40 -10.70±0.62 2.8 0.145±0.012 [66]
33.64 -830±140 -12.87±2.17 2.6 0.204±0.010 [66]
560.72 -640±90 -9.92±1.40 2.5 0.22±0.02 [66]
162.35 -730±120 -11.32±1.86 1.1 0.26±0.05 [66]
65.67 -950±250 -14.73±3.88 0.14 - [66]
58.92 -950±150 -14.73±2.33 0.11 - [66]

85Rb 82.10 155.04 -759±6 -9.244±0.07 28 0.057±0.002 [67]
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Universal three-body physics for fermions

For a three-body system of two identical fermions with no internal degree of freedom reso-
nantly interacting in thes-wave channel with another distinguishable particle, as in introduced in
Sec. 2.3, two types of trimers have been demonstrated to exist in theL = 1, odd parity chan-
nel: the Efimov trimers [38, 132] and the Kartavtsev-Malykh trimers [59]. When the mass ratio
between the fermions and the other particlemF/mL is larger than the Efimov’s critical mass ra-
tio (mF/mL)E = 13.606. . . [132], the Efimov states appear. When the mass ratio is smaller than
(mF/mL)E, the Efimov states do not appear, but still universal three-body bound states can exist.
Indeed, there exist one three-body bound state when (mH/mL)(1)

KM < mF/mL < (mH/mL)(2)
KM and two

three-body bound states when (mH/mL)(2)
KM < mF/mL < (mF/mL)E, where (mH/mL)(1)

KM = 8.172. . .
and (mH/mL)(2)

KM = 12.917. . . [59]. These three-body bound states below the Efimov’s critical mass
ratio are called the Kartavtsev-Malykh states after two researchers who found these three-body
bound states in 2007 [59].

As compared in Table. 2.2, universal properties of the Kartavtsev-Malykh states are in marked
contrast to those of the Efimov states. The Efimov states can exist for a negative value of the
scattering length, and show the energy spectrum as schematically illustrated in Fig. 3.1 (b). There
are an infinite number of three-body bound states featuring the discrete scale invariance. On the
other hand, the Kartavtsev-Malykh states exist only for a positive scattering length. Thanks to
a strong three-body repulsion originating from a centrifugal force, the three-body parameter is
irrelevant for the Kartavtsev-Malykh states, and their properties are universally determined by the
s-wave scattering length. For example, the binding energy of the Kartavtsev-Malykh states behaves
asE ∝ a−2. When (mH/mL)(2)

KM < mF/mL < (mH/mL)E, two Kartavtsev-Malykh states exist, and the
energy spectra behave as schematically illustrated in Fig. 3.1 (a) close to unitarity.

A natural question arises: as the mass ratio of the system is varied, how the energy spectra
below the Efimov’s critical mass ratiomF/mL < (mH/mL)E shown in Fig. 3.1 (a) can change into
those above the critical mass ratiomF/mL > (mH/mL)E shown in Fig. 3.1 (b)? When the mass ratio
is varied across the critical mass ratio, the number of trimers should change from two to infinite.
How this can occur? The scale invariance should also change dramatically at the critical mass ratio:
above the critical mass ratio, the Efimov states appear, showing the discrete scale invariance. On
the other hand, the Kartavtsev-Malykh states show the continuous scale invariance: if one finds one
of the Kartavtsev-Malykh states at a specific value of thes-wave scattering length, properties of

51
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fermion + dimer

(a)

fermion + dimer

Efimov

(b)

trimers

KM trimers

Figure 3.1: Schematic illustration of the energy spectra of (a) the Kartavtsev-Malykh (KM) trimers

(thick blue lines) and (b) the Efimov trimers (thick green curves).µFL =
mFmL

mL +mF
is the reduced

mass between the fermion and the other particle,a is the s-wave scattering length between the
fermions and the other particle, andΛ is the three-body parameter, or equivalently the cutoff mo-
mentum in the Skorniakov–Ter-Martirosian equation (3.20). The rightmost thin yellow lines show
the universal dimer binding energy in Eq. (2.10). [Figure adapted with permission from S. Endoet
al., Phys. Rev. A86, 062703 (2012). Copyrightc© (2012) by The American Physical Society.]

trimers for different values of thes-wave scattering length can be predicted by rescaling thes-wave
scattering length and the energy for a continuous value ofβ asa→ βa, E→ β−2E, and〈r〉 → β〈r〉.
While the three-body problem of two fermions and an additional particle has been studied in some
literature [59, 60, 172, 173], there has not yet been a systematic study that clarifies the relation
between different types of trimers and show how the energy spectra changes as the mass ratio and
s-wave scattering length are varied.

This issue is addressed in Sec. 3.2. I show in Sec. 3.2 how the Kartavtsev-Malykh states can
change into the Efimov states as the mass ratio and thes-wave scattering length are varied. To
this end, I first I derive in Sec. 3.1 an integral equation in the Skorniakov–Ter-Martirosian form for
a system of two identical particles and one distinguishable particle for arbitrary masses, angular-
momentum channels, and statistics of particles (i.e., bosons or fermions). This allows us to calculate
particle-dimer`-wave scattering lengths and binding energies of trimers in an arbitrary angular-
momentum channel, mass ratio, and statistics from a single equation. Using this Skorniakov–Ter-
Martirosian equation, I solve the three-body problem numerically by varying the mass ratio and the
s-wave scattering length. I have found a new class of universal three-body bound states, “crossover
trimers”, which lie between the Kartavtsev-Malykh and the Efimov regimes. The crossover trimers
neither show the continuous nor discrete scale invariance, but they exist between the two regimes
model-independently and behave universally. As the mass ratio is increased, I have found that the
trimers of the Kartavtsev-Malykh character gradually lose their continuous scale invariance and
become the crossover trimers, and finally turn into the Efimov trimers.

While the Kartavtsev-Malykh states have been originally found in the fermionic 2+1 system in
the L = 1 channel [59], in Ref. [61], it has been pointed out that they can generally exist in the
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odd angular-momentum channels for the fermionic 2+1 system, and in the nonzero even angular-
momentum channels for the bosonic 2+1 system. However, the Kartavtsev-Malykh states in general
angular-momentum channels have been studied only in an approximate manner [61], and there has
been no precise three-body calculations. In particular, precise values of the critical mass ratios at
which the Kartavtsev-Malykh states appear have not been known. In Sec. 3.3, I study the three-
body problem of fermionic and bosonic 2+1 systems in arbitrary angular-momentum channels with
the Skorniakov–Ter-Martirosian equation derived in Sec. 3.1. I numerically obtain precise values of
the critical mass ratios at which the Kartavtsev-Malykh trimers appear, their binding energies, and
elastic particle-dimer scattering lengths in arbitrary angular-momentum channels for both fermionic
and bosonic 2+1 systems. The result suggests that similar crossover physics studied in Sec. 3.2 may
appear in the odd angular-momentum channels for the fermionic 2+1 systems and in the nonzero
even angular-momentum channels for the bosonic 2+1 systems.

In Sec. 3.4, I discuss experimental implications of the results presented in Secs. 3.2 and 3.3.

3.1 Higher-partial-wave Skorniakov–Ter-Martirosian equation

The Skorniakov–Ter-Martirosian equation (2.57) is a one-dimensional integral equation, which
allows us to numerically obtain the particle-dimers-wave scattering length and binding energies
of the Efimov trimers for a system of three identical bosons in theL = 0 channel. Similar equa-
tions have also been derived for various classes of three-body systems: three identical bosons in
the higher angular momentum channels [148, 153], three identical fermions with internal degree
of freedom [148], 2 bosons+ 1 particle system in theL = 0 channel [154]. In this section, I de-
rive a one-dimensional integral equation in the Skorniakov–Ter-Martirosian form for a three-body
system of two identical particles (bosons/fermions) and one distinguishable particle in an arbitrary
angular-momentum channel, for an arbitrary value of thes-wave scattering length and the mass ra-
tio. The Skorniakov–Ter-Martirosian equation allows us to obtain precise values of particle-dimer
`-th wave scattering lengths and binding energies of trimers in arbitrary angular-momentum chan-
nels by varying thes-wave scattering length and the mass ratio.

The Skorniakov–Ter-Martirosian is crucial for my studies presented in Secs. 3.2 and 3.3. Com-
pared with the other methods applied to solve the three-body problem of the 2+1 systems [59, 61,
172, 173, 174], the Skorniakov–Ter-Martirosian equation enables us to solve the three-body prob-
lem much faster and far more accurately. It facilitates the investigation of the fermionic 2+1 system
for the whole parameter space of thes-wave scattering length and mass ratio and the study on the
crossover physics of trimers in Sec. 3.2. It also helps us to obtain precise values of the critical mass
ratios at which the Kartavtsev-Malykh trimers appear, as will be studied in Sec. 3.3.

Derivation of the Skorniakov–Ter-Martirosian equation

Let us consider a three-body problem of two identical spinless (i.e., spin-polarized) particles
(massmF) and one distinguishable particle (massmL). The statistics of the identical particles can
be either bosons or fermions. The interactions between the identical particles and the other particle
are assumed to be nearly resonant in thes-wave channel, so that it can be modeled by the zero-range
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T3T3 = +

p
1

p
2

p
1P- p

2P-

Figure 3.2: Diagrammatic representation of the Dyson equation (3.1). The single line and the dou-
ble line are a single-particle Green function and a two-body T-matrix, respectively. The identical
particles are shown as black lines, while the distinguishable particle is shown as a red line.

interaction (2.19) at low energy. On the other hand, the interaction between the identical particles is
assumed to be non-resonant, so that it can be neglected to a good approximation. This assumption
is even more justified when the identical particles are fermions, since the interaction between the
fermions in thes-wave channel is prohibited.

The three-body problem is equivalent to solving the particle-dimer scattering problem, where
the dimer is composed of one of the identical particles and the distinguishable particle. The particle-
dimer scattering problem can be generally described by the following Dyson equation [175]

T3(p1, p2|P) = ±GL(P− p1 − p2) ± i
∫

dωqd3q

(2π)4
GL(P− p1 − q)GF(q)T2(P− q)T3(q, p2|P), (3.1)

whereT2(q) is the two-bodyT-matrix of one of the identical particles and the other distinguishable
particle,T3(p1, p2|P) is the particle-dimerT-matrix, andGF(q) andGL(q) are single-particle Green
functions for the identical particles and the other particle, respectively;p1 andp2 are in-coming and
out-going relative momentum and energy, respectively, andP is the total momentum and energy.
All momentum indices are written in the four-momentum notation. The plus sign is when the
identical particles are bosons, while the minus sign is when they are femrions. The Dyson equation
is diagrammatically illustrated in Fig. 3.2. For a system interacting via the zero-range interaction
(2.19), the two-bodyT-matrix can be analytically obtained as

T2(P) =

µFL

2πa
−
µ3/2

FL√
2π

√
P2

2(mF +mL)
− ωP − ı0+


−1

. (3.2)



55

Let us take the on-shell processes in Eq. (3.1) forp1 and p2: pi = pi =

(
p2

i

2mF
, pi

)
, where the

overline denotes the on-shell energy and momentum. Since we are only interested in the relative

motion of the atom and dimer, we take the total momentum to be zero:P = P0 =

(
− ~

2ε

2µFL
,0

)
,

whereµFL =
mFmL

mF +mL
is the reduced mass between one of the identical particles and the other

distinguishable particle.
One can carry out the frequency integration in the second term of the right-hand side in Eq. (3.1),

sinceGF(q) has a pole in the lower-half plane ofωq and the other terms are analytic in the lower
half-plane ofωq. After the frequency integration, one obtains

T3(p1, p2|P0) = ±GL(P0− p1− p2)± i
∫

d3q
(2π)3

GL(P0− p1− q)GF(q)T2(P0− q)T3(q, p2|P0). (3.3)

Now, we expand the Dyson equation into independent partial waves. To this end, the Green
function and the particle-dimerT-matrix are expanded as

−GL(P0 − p1 − p2) =
∞∑
`=0

g`(p1, p2)P`(cosθ12), (3.4)

T3(q, p2|P0) =
∞∑
`=0

t`(p1, p2)P`(cosθ12), (3.5)

whereθ12 is the relative angle betweenp1 andp2, andg`(p1, p2) is defined as

g`(p1, p2) =
2` + 1

2

∫ 1

−1
dxP̀ (x)

1

− ε
2µFL
+

p2
1

2µFL
+

p2
2

2µFL
+

p1p2

mL
x
. (3.6)

This integration can be carried out analytically by using the following mathematical formula:∫ 1

−1
dxPn(x)

1
1+ Ax

= 2(−1)n
1
A

Qn

(
1
A

)
(0 < A < 1), (3.7)

whereQn(x) is a Legendre function of the second kind. Then, one finds

g`(p1, p2) = (2` + 1)(−1)`
mL

p1p2
Q`

 mL
2µFL

[−ε + p2
1 + p2

2]

p1p2

 . (3.8)

Substituting Eqs (3.4) and (3.5) into Eq. (3.3), one obtains

t`(p1, p2) = ∓g`(p1, p2) ∓
1

2π2(2` + 1)

∫
q2dqg̀ (p1,q)T2(P0 − q)t`(q, p2), (3.9)

where we have used the addition theorem of the spherical harmonics:

P`(cosθ12) =
4π

2` + 1

∑̀
m=−`

Ỳ m(θ1, φ1)Y
∗
`m(θ2, φ2). (3.10)
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We define the momentum-dependent scattering length as

a`(p1) =
1

2` + 1
µDF

µ2
FL

lim
p2→0

t`(p1, p2)

p`1p`2
, (3.11)

whereµDF =
mF(mF +mL)

2mF +mL
is the reduced mass between one of the identical particles and the

dimer. Note that the low momentum limit ofa`(p) gives the`-th wave particle-dimer scattering
length when the total energy is set to the particle-dimer threshold energyε = a−2. To see this, recall
that the particle-dimerT-matrix can be related to the particle-dimer scattering amplitudefAD if we
set|p1| = |p2| as

T3(p1, p2|P0) = −
µ2

FL

µDF
fAD(p1, p2)

∣∣∣∣∣∣
|p1|=|p2|

. (3.12)

By expanding the particle-dimer scattering amplitude into partial waves as

fAD(p1, p2) =
∑
`

(2` + 1) f`(p1)P`(cosθ12), (3.13)

f`(k) =
k2`

− 1
a`
+ r`k2 + · · ·

, (3.14)

one can relate thè-th-wave particle-dimer scattering lengtha` andT3 as follows:

a` = − lim
p1→0

f`(p1)

p2`
1

=
1

2` + 1
µDF

µ2
FL

lim
p1,p2→0

t`(p1, p2)

p`1p`2
. (3.15)

From Eqs. (3.11) and (3.15), one can clearly see thata`(p = 0) gives the particle-dimer̀-th scat-
tering length.

Substituting Eq. (3.11) into Eq. (3.9), one obtains

a`(p1) = ∓
1

2` + 1
µDF

µ2
FL

g`(p1)

p`1
∓ 1

2π2(2` + 1)p`1

∫
dqq`+2g`(p1,q)T2(P0 − q)a`(q), (3.16)

where we have definedg`(p1) as

g`(p1) ≡ lim
p2→0

g`(p1, p2)

p`2
. (3.17)

By using the asymptotic expression for the Legendre function of the second kind

Qn(z)→
2n(n!)2

zn+1(2n+ 1)!
(z→ ∞), (3.18)

g` can be obtained analytically as

gn(p1) =
(−2)n(n!)2mt pn

1

(2n)!

 1
mL

2µFL
[−ε + p2

1]

n+1

. (3.19)
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Substituting Eq. (3.19) into Eq. (3.16), we obtain an integral equation in the Skorniakov–Ter-
Martirosian form [155]:

a`(p)
a2`+1

+
(−1)`mL

µFLπ

∫
dq

(
q
p

)`+1

Q`

 mL
2µFL

[−ε + p2 + q2]

pq

 1√
−ε + µFL

µDF
q2 − 1

a

a`(q)
a2`+1

=
(−2)`(`!)2

(2` + 1)!
µDFmL

µ2
FL

[
2µFL

mL

1
(−ε + p2)a2

]`+1

.

(3.20)

The same equation has also been derived recently in Ref. [156].
For a small̀ , the Legendre polynominal of the second kind are given as

Q`=0 =
1
2

log

(
x+ 1
x− 1

)
, (3.21)

Q`=1 =
x
2

log

(
x+ 1
x− 1

)
− 1, (3.22)

Q`=2 =
3x2 − 1

4
log

(
x+ 1
x− 1

)
− 3

2
x. (3.23)

In particular, for a mass-balanced system in the` = 0 channel, Eq. (3.20) becomes
√
−ε + 3

4
q2 − 1

a

 aAD(p) +
1
π

∫
dq

(
p
q

)
log

(
−ε + p2 + q2 + pq
−ε + p2 + q2 + pq

)
aAD(q) =

p2

(−ε + p2)a
, (3.24)

where

aAD(q) =
3
8

q2√
−ε + 3

4q2 − 1
a

a`=0(q). (3.25)

Equation (3.24) is almost equivalent to Eq. (2.57). The difference in the factor in front of the
integration originates from the absence of an interaction between identical particles.

By taking the energy at the dimer thresholdE = − ~2

2µFLa2
and solving Eq. (3.20), one can obtain

the particle-dimer̀ -th wave scattering length asa`(q = 0). Binding energies of trimers can also
be obtained from Eq. (3.20) by seeking for the values ofε at whicha`(q = 0) diverges. When one
regards the left-hand side of Eq. (3.20) as an operator acting ona`(q), the divergence ofa`(q = 0)
is equivalent to one of the eigenvalues of the left-hand side being zero. Therefore, binding energies
of trimers can be obtained by seeking for the values ofε at which one of the eigenvalues of the
left-hand side becomes zero. In Secs. 3.2 and 3.3, particle-dimer scattering lengths and binding
energy of trimers calculated with Eq. (3.20) will be presented.

When the Efimov effect does not occur, the integration in Eq. (3.20) can be taken to be infinite.
Binding energies of trimers and particle-dimer scattering lengths can then be universally described

by the s-wave scattering length asE ∝ − ~2

2µFLa2
, a` ∝ a2`+1. For a system where the Efimov

effect occurs, on the other hand, an upper cutoff in the integration must be introduced in Eq. (3.20).
Otherwise, the Thomas collapse occurs, and Eq. (3.20) does not have any finite solution. As long
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as the energy of the system is small and it behaves universally, the cutoff can be introduced in an
arbitrary manner. The most typical choice is a sharp momentum cutoff∫

dq→
∫ Λ

0
dq. (3.26)

The momentum cutoff can also be introduced in other ways. For example, a Gaussian type of cutoff

is also possible: ∫
dq→

∫ ∞

0
exp

(
− q2

2Λ2

)
dq. (3.27)

Since a three-body system should behave universally at low energy, the particle-dimer scattering
lengths and binding energies of trimers calculated with these two ways of the momentum cutoffs
should give the same result at low energy. This can in turn be used to investigate whether the three-
body system is in the universal regime or not. In Sec. 3.2.5, I study whether the 2+1 system is
universal by changing the ways of the momentum cutoff and comparing them.

Discussions

The Skorniakov–Ter-Martirosian equation (3.20) can be used to obtain particle-dimer scattering
lengths and binding energies of trimers for various system with a rather straightforward numerical
calculation. For example, by takingmF/mL = 1.0 and` = 0 and assuming the identical particles
to be fermions, the well-known value of the fermion-dimers-wave scattering length 1.18a is ob-
tained [132, 148]. Furthermore, by taking` = 1 and assuming the identical particles to be fermions,
one can show that the trimers appear at mass ratios 8.172 and 12.917, as predicted in Ref. [59]. This
clearly shows great advantage of the Skorniakov–Ter-Martirosian equation over other methods. In
some literature [59, 61, 172], the hyper-spherical formalism has been used to study the Kartavtsev-
Malykh trimers and the Efimov trimers. It has been pointed out that channel couplings should
be taken into account to obtain the mass ratios (mH/mL)(1)

KM and (mH/mL)(2)
KM accurately. Indeed,

if one neglects all the channel couplingsPnm andQnm, the critical mass ratios become 7.930 and
12.789 [61]. Even when the diagonal non-adiabatic termQnn is taken into account, the critical
mass ratios are 8.183 and 12.929 [59]. Therefore, one needs to solve the full coupled-channel
Schr̈odinger equation to obtain the correct critical mass ratios. Compared with the coupled-channel
Schr̈odinger equation, the Skorniakov–Ter-Martirosian equation can be numerically solved much
faster and far more accurately. This will be exemplified in Sec. 3.3, where the critical mass ratios
for the appearance of the Kartavtsev-Malykh trimers and the Efimov trimers are obtained with the
Skorniakov–Ter-Martirosian equation for both fermions and bosons in various angular-momentum
channels and compared with the previous studies [38, 59, 61, 115, 132].

To solve Eq. (3.20) numerically, one discretizes the momentum and transforms the integral
equation into a linear equation in a matrix form. The numerical calculation can be performed effi-
ciently if the momentum is discretized with unequal spacings. In the studies presented in Secs. 3.2
and 3.3, the following exponential form of the momentum mesh has been used:

pj = exp

(
j

Nmax
log(Λ + 1)

)
− 1 ( j = 0, 1, ...,Nmax) (3.28)
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whereNmax is the number of the mesh. This exponential momentum mesh suits well with the
log-periodic behavior of the Efimov states at large momentum, while it gives an equally spaced
mesh at small momentum. The exponentially spaced mesh allows one to obtain accurate binding
energies of highly-excited Efimov states. Indeed, in Sec. 3.2.3, energy spectra of the Efimov states
are obtained from up to the 4th to 8th excited trimers with a high precision.

3.2 Properties and identification of the trimers

In this section, I investigate the three-body system of two identical spinless (i.e., spin-polarized)
fermions resonantly interacting in thes-wave channel with one distinguishable particle. TheL = 1−

channel is studied in this section, while the other channels are studied in Sec. 3.3. This channel
corresponds to taking the relative angular momentum between the atom and the dimer to be` = 1
in Eq. (3.20). In this channel, two types of universal three-body bound states have been demon-
strated to exist in different regimes of the mass ratio: the Kartavtsev-Malykh trimers and the Efi-
mov trimers. While the Efimov trimers show the discrete scale invariance, the Kartavtsev-Malykh
trimers feature a continuous scale invariance. In addition to the scale invariance, their energy spec-
tra also differ significantly, as compared in Fig. 3.1.

In this section, I study how properties of the trimers change as the mass raio and thes-wave
scattering length are varied. In Sec. 3.2.1, the main results of this section are summarized. In
Secs. 3.2.2 to 3.2.5, the three-body problem is solved with the Skorniakov–Ter-Martirosian equa-
tion numerically and the energy spectra are obtained. In Sec. 3.2.2, properties of the trimers below
the Efimov’s critical mass ratio are studied. Those above the Efimov’s critical mass ratio are dis-
cussed in Sec. 3.2.3. In Sec. 3.2.4, I show that there exists the third class of universal trimers,
the crossover trimers, which continuously connect the Kartavtsev-Malykh trimers and the Efimov
trimers. In Sec. 3.2.5, I show that the crossover trimers are indeed universal: they exist irrespective
of details of the system and behave model-independently.

3.2.1 Summary of the main results

Let me summarize the main results of this section, which are enumerated from 1. to 7. First
of all, I have found a new class of universal three-body bound states, which I call the “crossover
trimers”:

1. There exist trimers between the Efimov and the Kartavtsev-Malykh regimes, which show
neither discrete nor continuous scale invariance.

2. These “crossover trimer” states are universal. They appear irrespective of short-range de-
tails of the potential, and can be universally characterized by two parameters: thes-wave
scattering length and the three-body parameter.

In other words, there are three classes of universal three-body bound states in this system: the
Kartavtsev-Malykh trimers, the Efimov trimers, and the crossover trimers.

As one varies the mass ratiomF/mL, the energy spectra of the trimers change as schematically
illustrated in Fig. 3.3. Namely, I have found the following features:
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Figure 3.3: (a)-(c) Schematic illustration of energy spectra for different regimes of the mass ratio.
Based on the scaling properties (see Sec. 3.2 for detail), the Kartavtsev-Malykh (KM) trimer region
(thick blue curves), the Efimov trimer region (thick green curves), the crossover trimer region
(thick orange curves), and the non-universal region (black dotted curves) are identified. The dashed
curves in (a) and (c) are the universal prediction of the continuous scaling law of the Kartavtsev-
Malykh trimers and the discrete scaling law of the Efimov trimers, respectively. The pink dots
shown fora > 0 represent the points at which the trimer dissociates into a fermion and a dimer and
the fermion-dimerp-wave scattering volume diverges. In Fig. (c), only four levels of the Efimov
series are shown. [Figure adapted with permission from S. Endoet al., Phys. Rev. A86, 062703
(2012) [176]. Copyrightc© (2012) by The American Physical Society.]

3. Below the Efimov’s critical mass ratiomF/mL < (mF/mL)E, the trimers show the continuous
scale invariance if and only if thes-wave scattering length is large and positive,Λa� 1. As
the s-wave scattering length gets small and one moves away from unitarity, the trimers start
to depend on the three-body parameter but still they behave universally. In other words, they
become the crossover trimers away from unitarity.

4. At the Efimov’s critical mass ratiomF/mL = (mF/mL)E, there exist two trimers for a positive
scattering length. These trimers show neither discrete nor continuous scale invariance around
unitarity. In other words, the trimers are the crossover trimers close to unitarity.

5. Above the Efimov’s critical mass ratiomF/mL > (mF/mL)E, the trimers satisfy the discrete
scale invariance characteristic of the Efimov states close to unitarity point. Away from uni-
tarity, on the other hand, the ground and first-excited trimers deviate significantly from the
behavior predicted by the discrete scale invariance and thus become crossover trimers, while
the higher-excited trimers satisfy well the discrete scale invariance for the entire region of the
scattering length.

6. Both for mF/mL < (mF/mL)E and for mF/mL ≥ (mF/mL)E, the trimers dissociate into a
fermion and a dimer on the positive scattering length side. At the dissociation point, ap-
wave resonance occurs in the fermion-dimer scattering. However, note that the ground-state
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Figure 3.4: Regions of (a) the ground-state, (b)(c) first-excited, and (d) second-excited trimers as a
function of the mass ratio and (Λa)−1, wherea is thes-wave scattering length andΛ is the cutoff
momentum, which corresponds to the three-body parameter. For the ground-state and first-excited
trimers, four regimes exist: the Efimov, Kartavtsev-Malykh (KM), crossover, and non-universal
regimes. For the second-excited trimer, only the Efimov region appears. A trimer dissociates into a
fermion and a dimer at the fermion-dimerp-wave resonance shown as a red curve on the positivea
side, while it dissociates into three particles at the three-body resonance shown as a red curve on the
negativea side. The black dotted curves and the blue dashed curves correspond torn = 0.40 (see
Eq. (3.29)) andqn = 0.40 (see Eq. (3.32)), which delimit the Kartavtsev-Malykh trimer region and
the Efimov trimer region, respectively. The black dashed-dotted curves correspond tosn = 0.90
(see Eq. (3.35)), which separates the crossover and non-universal (i.e., model-dependent) trimer
regions. The color contour is used for the sake of clarity. The non-universal region gets large with
increasing the mass ratio, and the Efimov region disappears for the mass ratio well above 50 due to
non-universal corrections (see discussions in Sec. 3.2.5). [Figure adapted with permission from S.
Endoet al., Phys. Rev. A86, 062703 (2012) [176]. Copyrightc© (2012) by The American Physical
Society.]
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trimer may not do so, since non-universal finite-range effects are significant for them in this
region.

7. Close to the fermion-dimer dissociation point, non-universal finite-range effects are signifi-
cant for the ground-state trimer. For the first-excited trimer, except for a very small region
close to the fermion-dimer dissociation boundary, it behaves rather universally. The higher
excited trimers are universal over the entire region.

These results are summarized in Fig. 3.4, where properties of the ground, first-excited, and
second-excited trimers are shown as a function of the mass ratio and thes-wave scattering length.
The trimers are classified into the Kartavtsev-Malykh region (blue region), the Efimov region (green
region), and the crossover trimer region (orange region) according to their scaling features:

• Kartavtsev-Malykh trimer [59]: universal trimer with a continuous scale invariance.

• Efimov trimer [38, 132]: universal trimer with a discrete scale invariance.

• Crossover trimer: universal trimer with no scale invariance.

The gray region show the non-universal region, where finite-range effects are significant. This has
been judged by seeing whether the results are independent of the way one introduces the cutoff in
the momentum integration (see Sec. 3.2.5 for more details).

3.2.2 Energy spectra formF/mL < (mF/mL)E

In this section, binding energies of trimers calculated with the Skorniakov–Ter-Martirosian
equation (3.20) are discussed. Here, I have chosen the sharp momentum cutoff in Eq. (3.26). In
the inset of Figs. 3.5 (a) and (b), binding energies of trimers are shown as a function of 1/Λa
for several mass ratios. As predicted in Ref. [59], the ground trimer and the first-excited trimer
appear formF/mL > (mH/mL)(1)

KM = 8.172... andmF/mL > (mH/mL)(2)
KM = 12.917.... These three-

body bound states exist only on the positive scattering length side and lie slightly below the dimer
energy, which suggests that the three-body bound states are only loosely bound. This is consistent
with what has been found in Ref. [59]: binding energies of the Kartavtsev-Malykh trimers are small
except formF/mL ≈ (mF/mL)E.

To see the energy spectra of these trimers in more details, in the main panel of Figs. 3.5 (a)
and (b), binding energies of trimers measured from the particle-dimer threshold are shown. As one
can see in Fig. 3.5 (a), the ground trimer exists formF/mL > (mH/mL)(1)

KM = 8.172.... The binding
energy gets large as the mass ratio is increased. One finds that the energy spectra are almost linear
close to unitarity. The linear behavior suggests that the three-body parameter is irrelevant and the
trimers are universally described by thes-wave scattering length asE ∝ a−2. Thus, the linear
behavior in Fig. 3.5 suggests the continuous scale invariance. These trimers with the continuous
scale invariance close to the unitarity have been studied in Ref. [59]. Indeed, the scattering length
is assumed to be much larger than any other quantities in Ref. [59], so it corresponds to taking
1/Λa→ +0 in our system.
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Figure 3.5: (a)(b) Energy spectra of the trimers with several different mass ratiosα = mF/mL as
measured from the dimer binding energy for (a) the ground-state trimer and (b) the first-excited
trimer. The insets show the binding energies of the trimers as measured from the vacuum, together
with the dimer binding energy shown as the red solid curve. (c)(d) Contour plots ofrn defined
in Eq. (3.29) for (c) the ground-state trimer and (d) the first-excited trimer. The red solid curves
are the fermion-dimer dissociation threshold. The black-dotted curves represent thern = 0.40
curves, which delimit the region in which the continuous scale invariance is well satisfied (i.e., the
Kartavtsev-Malykh trimer regime). [Figure adapted with permission from S. Endoet al., Phys.
Rev. A86, 062703 (2012) [176]. Copyrightc© (2012) by The American Physical Society.]

As one moves away from unitarity, the linear behavior deteriorates and finally energy spectra
of the trimers merge into that of the dimer. Therefore, the trimers dissociate into a fermion and
a dimer when 1/Λa is varied toward the positive side. This means that there occurs a scattering
resonance in the fermion-dimer scattering. Since we are dealing with trimers in theL = 1− channel,
the fermion-dimer scattering resonance occurs in thep-wave channel. Thisp-wave resonance will
be studied in details in Secs. 3.3 and 3.4 (see Figs. 3.12 and 3.16). Thus, we have arrived at the
following conclusions (c.f. see statements 3. and 6. in Sec. 3.2.1):
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• Close to unitarityΛa� 1, the trimers show the continuous scale invariance.

• Away from unitarity, the continuous scale invariance deteriorates, and the trimers finally
dissociate into a fermion and a dimer.

As discussed in Sec. 3.2.5, the first feature is universal. On the other hand, trimers are rather sen-
sitive to non-universal finite-range effects close to the particle-dimer dissociation point. Therefore,
when one considers a system with different short-range details, or different ways of the momentum
cutoff, the trimers may not dissociate into an atom and a dimer.

The continuous scale invariance of the trimers can be quantified by introducing the following
quantity (x ≡ (Λa)−1):

rn(x) =
Kn(x) − Kdimer(x)

K(KM)
n (x) − Kdimer(x)

, (3.29)

whereKdimer(x) = x is the binding energy of the dimer, andK(KM)
n (x) =

√
2µFL|En|(x)
~2Λ2

= Cnx is

the trimer binding energy in the limit 1/Λa → +0 for the ground-state trimer (n = 1), and the
first-excited trimer (n = 2). Here,Cn ≥ 1 characterizes the binding energies of the trimers in
the universal limitΛa � 1 studied in Ref. [59];rn(x) is 1 when the continuous scaling law holds
exactly, while it vanishes when the trimers dissociate into an atom and a dimer. In Figs. 3.5 (c)
and (d),rn as a fucntion of 1/Λa and the mass ratio are shown for the ground-state and first-excited
trimers, respectively. Close to the unitarity limit,rn ≈ 1, suggesting that the trimers show the
continuous scale invariance. We can regard this region as the Kartavtsev-Malykh trimer region.
Away from unitarity, the continuous scaling deteriorates andrn gets small, and they finally become
rn = 0 at the particle-dimer dissociation point. In Figs. 3.4 (a)-(c) and Figs. 3.5 (c)(d), the black
dotted curves corresponding torn = 0.40 are shown. These can be regarded as curves delimiting a
regime with the continuous scaling and that with no scaling.

As the mass ratio is increased from (mH/mL)(1)
KM for the ground trimer and from (mH/mL)(2)

KM for
the first-excited trimer, the Kartavtsev-Malykh trimer region initially gets large. This is because
the trimers get more bound as the mass ratio is increased, leading to a larger universal region.
As the mass ratio is increased further, the Kartavtsev-Malykh trimer region gets smaller. This is
physically natural because the short-range repulsive barrier in the hyper-radial potential gets small
toward (mH/mL)E (see Fig. 2.9). It then becomes easier for the three particles to come close and the
system becomes more sensitive to the three-body parameter.

3.2.3 Energy spectra formF/mL > (mF/mL)E

In this section, the energy spectra of trimers formF/mL > (mF/mL)E are calculated with the
Skorniakov–Ter-Martirosian equation for a sharp momentum cutoff. Above the critical mass ratio
(mF/mL)E, the Efimov states appear [38, 115, 132]. With the zero-range theory applied at unitarity,
the discrete scale factor of the Efimov states above the critical mass ratio has been demonstrated to
beeπ/γ, whereγ is determined from the transcendental equation [59, 115]

0 =
1+ γ2

γ
tanhγ

π

2
− 2

sin 2ω
coshγω
coshγ π2

+
sinhγω

γ sin2ω coshγ π2
, (3.30)
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π
γ as a function of the mass ratio (red solid curve). The blue dotted

curve is the scaling factor for three identical bosonse
π
s0 = 22.7 . . .. The inset shows the strength

of the effective attractionγ as a function of the mass ratio, together withs0 = 1.00624 for three
identical bosons.

where

cotω =

√
1+ 2α
α

. (3.31)

The mass ratio dependence ofγ and the scaling factore
π
γ is shown in Fig. 3.6. Right above the

critical mass ratiomF/mL & 13.606, the strength of the hyper-radial attraction is small, so that the
scaling factor is large. As the mass ratio increases, the scaling factor gets small. For the mass
ratio mF/mL & 20.0, the scaling factor becomes smaller than that of three identical bosons or three
distinguishable fermionse

π
s0 , s0 = 1.00624 [27, 51]. In ultracold atom experiments, the scaling

symmetry of Efimov states has been observed for at most a few sequences. The small scaling factor
in the large mass ratio helps observe a longer series of Efimov states [69, 116].

In Fig. 3.5 (a), the energy spectra of the trimers are shown. Note that the following radial scale
transformation has been performed for the first-excited and second-excited trimers

first− excited :K2→ K2e
π
γ , (Λa)−1→ (Λa)−1e

π
γ ,

second− excited :K3→ K3e
2π
γ , (Λa)−1→ (Λa)−1e

2π
γ .

The energy spectra almost superimpose into a single universal curve, suggesting that the discrete
scale invariance of the Efimov states is satisfied well for most of the region of 1/Λa. In particular,
the discrete scaling holds excellently at unitarity. In Fig. 3.8 (a), binding energies of the ground
up to the fourth-excited trimers at unitarity are shown after multiplied by the scale factore

nπ
γ . The

binding energies of the trimers evolve smoothly from the critical mass ratio. The same behavior is
also reported in Ref. [177] for a system interacting with a narrow resonance. The energy spectra
superimpose into a single universal curve close to the critical mass (mF/mL)E, while the ground-
state trimer deviates from the other when the mass ratio gets as large asmF/mL & 50. This means
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Figure 3.7: (a) Energy spectra of the ground-state, first-excited, and second-excited trimers for
mF/mL = 20.0 andmF/mL = 30.0. The binding energy is measured from the vacuum. For the first
and second-excited trimers, the radial scaling transformation has been performed. On the positivea
side, the fermion-dimer dissociation points are shown for each trimer state. (b) Energy spectra close
to the atom-dimer dissociation point as measured from the dimer binding energy formF/mL = 20.0
andmF/mL = 30.0. The same radial scaling transformation is performed as in (a). [Figure adapted
with permission from S. Endoet al., Phys. Rev. A86, 062703 (2012) [176]. Copyrightc© (2012)
by The American Physical Society.]

that all the trimers show the discrete scale invariance with the scale factor predicted in Eq. (3.30) at
unitarity whenmF/mL . 50, while the ground-state trimer deviates from the universal scale factor
whenmF/mL & 50. This can be quantified further by taking the ratio of the binding energies of

the adjacent trimers

√
En

En+1
. The results are shown in Fig. 3.8 (b), together with the universal

predictione
nπ
γ shown as a black solid curve. For mass ratiosmF/mL . 50, the discrete scaling law

holds for all the trimers including the ground-state and first-excited trimers. This suggests that the
Kartavtsev-Malykh trimers formF/mL < (mF/mL)E anda > 0 change continuously into the Efimov
trimers formF/mL > (mF/mL)E and 1/a = 0 as the scattering length and the mass ratio are varied.
As the mass ratio increases further and so does the binding energy of trimers, the Efimov states
gradually become dependent on non-universal short-range details. This is why there appear slight
deviations from the universal scaling law in Figs. 3.8 (a) and (b).

As one moves away from the unitarity toward the positive scattering length side, the discrete
scale invariance deteriorates. In Fig. 3.7 (b), binding energies of trimers as measured from the
fermion-dimer threshold are shown. Again, the radial scale transformation with the scale factor
eπ/γ has been performed, so that trimers superimpose into a single curve when the discrete scale
invariance is precisely satisfied. One can see that the trimers become less scale invariant as one
moves toward the fermion-dimer dissociation point. This can be quantified by observing the posi-
tion of the fermion-dimer dissociation pointa(FD)

n . In Fig. 3.8 (d), the ratios ofa(FD)
n between the

adjacent levels are shown. There are two important features:
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Figure 3.8: (a) Binding energy of the ground to fourth excited trimers at the unitarity limit. The
radial scaling transformation has been performed. (b) Ratio of the binding energy between the ad-
jacent trimers at the unitarity limit. (c) Ratio of thes-wave scattering length at which the trimer
dissociates into three particles. (d) Ratio of thes-wave scattering length at which a trimer dissoci-
ates into a fermion and a dimer. In (b)-(d), the universal scaling ratio obtained from Eq. (3.30) is
also shown as black solid curves. [Figure adapted with permission from S. Endoet al., Phys. Rev.
A 86, 062703 (2012) [176]. Copyrightc© (2012) by The American Physical Society.]

• For n = 1 (ground – first-excited trimers) andn = 2 (first-excited – second-excited trimers),
the ratioa(FD)

n+1 /a
(FD)
n deviates significantly from the universal valueeπ/γ.

• Forn ≥ 3, the ratio agrees with the universal value if the mass ratio is not too largemF/mL −
(mF/mL)E . 20.

The clear difference between the highly excited trimers (≥ 3) and the ground and first-excited
trimers is the consequence of the presence of two Kartavtsev-Malykh trimers below the Efimov’s
critical mass ratio. Indeed, as shown in Fig. 3.5, the ground-state and first-excited trimers exist on
the positivea side below the critical mass ratio, and the fermion-dimer dissociation points are well
separated from the unitarity (see red solid curves fora > 0 in Figs. 3.4 (a)-(c)). This is in marked
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contrast with the highly excited trimers. The highly excited trimers appear at the critical mass
ratio, so that their fermion-dimer dissociation points are located close to the unitarity point when
mF/mL & (mF/mL)E (see a red solid curve fora > 0 in Fig. 3.4 (d)). This is why the ground-state
and first-excited trimers are no longer scale invariant close to the fermion-dimer dissociation point,
whereas they show a good scaling invariance forn ≥ 3.

While the ground and first-excited trimers become less scale invariant on the positive scattering
length side, they remain scale invariant on the negative scattering length side. One can see this
point by observing the position of the three-body thresholda(−)

n . In Fig. 3.8 (c), the ratios of the
three-body thresholda(−)

n between adjacent levels are shown. One finds that the discrete scaling law
holds rather well for most of the region. In contrast to the fermion-dimer dissociation point, the
three-body thresholds for all the trimers (red solid curve fora < 0 in Figs. 3.4 (a) to (d)) appear
from the unitarity point at the critical mass ratio, and the Kartavtsev-Malykh trimers do not affect
the behavior of the three-body threshold significantly. For a large mass ratiomF/mL & 50, a slight
deviation from the universal discrete scaling law is visible in Fig. 3.8 (c), especially for smalln. In
this region, the binding energy of the trimers is large, so that the non-universal finite-range effects
cannot be neglected.

We note that it is possible in general that the three-body thresholds may appear in the region
8.62 < mF/mL < (mF/mL)E if the interaction between the fermions is present and its strength is
fine-tuned [172]. In this work, the interaction between the fermions is not included, so we do not
find such three-body resonance below the Efimov’s critical mass ratio.

To summarize, we have arrived at the following conclusions in this section (c.f. statements 5
and 6 in Introduction):

• Close to the unitarity point, the trimers satisfy the discrete scaling law of the Efimov states.
Away from the unitarity, the two lowest trimers deviate from the discrete scaling law, while
the shallower trimers satisfy the discrete scaling law well for most of the region.

• The trimers dissociate into a fermion and a dimer on the positivea side.

These statements are valid as long as the mass ratio is not too large, so that non-universal short-
range effects are negligible. The finite-range effects are discussed in more detail in Sec. 3.2.5.

3.2.4 Crossover trimers

From the discussions so far, the following properties for the ground-state and first-excited
trimers have been obtained:

• FormF/mL < (mF/mL)E, the two trimers satisfy the continuous scale invariance fairly well if
and only if thes-wave scattering length is large,Λa� 1. This Kartavtsev-Malykh region gets
small as the mass ratio is increased toward the Efimov’s critical mass ratio (see Figs. 3.5 (c)
and (d)).

• For mF/mL > (mF/mL)E, the two trimers show the discrete scale invariance fairly well and
thus are the Efimov trimers close to the unitarity limit (see Fig. 3.8 (b)). However, the discrete
scale invariance deteriorates close to the fermion-dimer dissociation point (see Fig. 3.8 (d)).
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For mF/mL < (mF/mL)E, the Kartavtsev-Malykh trimer regime is identified byrn, as shown in
Figs. 3.4 (a)-(c) and Figs. 3.5(c)(d). In a similar manner, we introduce the following quantity to
identify the Efimov trimer region:

qn

(
e
π
γ x

)
≡

∣∣∣∣e− πγ Kn

(
e
π
γ x

)
− Kn+1(x)

∣∣∣∣
|Kn+1(x) − x| x ≡ (Λa)−1. (3.32)

Here,qn is zero when the discrete scale invariance holds precisely, and it quantifies how well the
trimers show the discrete scaling. In Fig. 3.4, the contours ofqn = 0.40 are shown as blue dashed
curves. Close to the unitarity point, the discrete scaling law holds well, so thatqn is small. As we
move away from the unitarity, the deviation from Efimov’s discrete scaling law becomes significant,
andqn increases. We can identify the Efimov trimer as a region with smallqn. As discussed in
Fig. 3.8 (d), the breakdown of the scale invariance is significant for the ground-state and the first-
excited trimers, while the higher excited trimers are rather scale invariant. If we delimit the Efimov
region according to the value ofqn, the Efimov region shrinks as the mass ratio is decreased toward
the critical mass ratio, as shown in Fig. 3.4. Close to the critical mass ratio, both the Kartavtsev-
Malykh trimer region and the Efimov trimer region shrink, suggesting that the trimers have neither
discrete nor continuous scaling invariance. Thus, we arrive at the following conclusions:

• The Kartavtsev-Malykh trimers formF/mL < (mF/mL)E change continuously into Efimov
trimers formF/mL > (mF/mL)E as the mass ratio and thes-wave scattering length are varied.

• In between the Kartavtsev-Malykh and Efimov trimer regions, there exist “crossover trimers,”
which have neither discrete nor continuous scale invariance.

A change in the scale invariance occurs as a crossover, rather than as an abrupt change. In Fig. 3.4,
the crossover trimer regions are shown as red regions. At the critical mass ratio, the trimers exist
but they show neither the discrete nor continuous scaling invariance. Thus, we arrive at the first and
fourth conclusions listed in Sec. 3.2.1.

The absence of both of the scale invariance can be understood when one sees the hyper-radial
potential. At the critical mass ratio, the hyper-radial potential becomes a Coulomb-type attraction
−1/R at short distance. This attraction is strong enough to support two bound states whena > 0.
However, since it is no longer an inverse square attraction, the trimers do not show the discrete
scale invariance. Furthermore, the three particles can get close easily since there is no repulsive
hyper-radial potential, suggesting that the three-body parameter is relevant for these trimers.

3.2.5 Universal and non-universal trimers

From Sec. 3.2.2 to Sec. 3.2.4, properties of the trimers have been studied by the Skorniakov–
Ter-Martirosian equation with a sharp momentum cutoff. The introduction of the momentum cutoff
amounts to assuming a certain form of a finite-range boundary condition when the atom and the
dimer come close, thereby imposing a specific value of the three-body parameter. However, one can
take other forms of short-range models, in general. Thus, one may ask the following question: do
the results obtained from Sec. 3.2.2 to Sec. 3.2.4 represent universal features of the trimers for the
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two fermions plus one particle system, or do they represent special features of the sharp momentum
cutoff? The word “universal” is used here in the sense that the trimers can be characterized only
by the three-body parameter and thes-wave scattering length. One way to answer this question is
to perform the three-body calculation with different short-range models and compare the results.
In this section, the results of the Skorniakov–Ter-Martirosian equation calculated with the two
different ways of the momentum cutoffs are compared: the sharp cutoff∫ ∞

0
dq→

∫ ΛS

0
dq, (3.33)

and the Gaussian cutoff ∫ ∞

0
dq→

∫ ∞

0
dqexp

(
− q2

2Λ2
G

)
. (3.34)

If the trimers are universal, the change in the choice of the momentum cutoff is equivalent to
changing the value of the three-body parameter. The energy spectra for the two models then differ
only by their energy scales specified by their three-body parameters. Thus, by rescaling the energy
spectra and thereby taking a common three-body parameter, one should obtain a common universal

energy spectrum for the two models. If the energy spectrumKG,S =

√
2µFL|EG,S|
Λ2

G,S

is plotted as

a function of (ΛG,Sa)−1, or K
1
4
G,S as a function of (ΛG,Sa)−

1
4 , then the rescaling of the three-body

parameter corresponds to a radial scale transformation. Thus, one can study the universality of the
trimers by performing a radial scale transformation of the energy spectra and seeing whether they
superimpose upon each other.

Note that the universal and non-universal regions determined this way are closely related to
the level of approximation of the Skorniakov–Ter-Martirosian approach. In the Skorniakov–Ter-
Martirosian equation, inter-particle interactions are replaced by two-body and three-body bound-
ary conditions, representing thes-wave scattering length and three-body parameter, respectively.
This approximation is justified by the universality: as long as the scattering length and the three-
body parameter are taken to be the same value, energy spectra calculated with the Skorniakov–
Ter-Martirosian equation should quantitatively agree with those calculated with other models. If
the system is non-universal, short-range details which are not incorporated in the Skorniakov–
Ter-Martirosian equation cannot be ignored, so that the results obtained with the Skorniakov–Ter-
Martirosian equation will in general deviate from the full quantum calculation with a realistic po-
tential.

The main conclusions in this section are statements 2 and 7 described in Sec. 3.2.1. More
specifically, we have found the following:

• For mF/mL < (mF/mL)E, the ground-state trimer is non-universal close to the fermion-dimer
dissociation point, while they are universal for the other region. The first-excited and higher-
excited trimers are universal for the most region.

• For mF/mL > (mF/mL)E, the ground-state and first-excited trimers are non-universal close to
the fermion-dimer dissociation point, while they are universal for the other region.
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Figure 3.9: Binding energy of the trimers as measured from the dimer binding energy for (a) the
ground-state trimer atmF/mL = 10.0 and (b) the first-excited trimer atmF/mL = 13.3. The binding
energy for the sharp momentum cutoff (red solid curve) and Gaussian momentum cutoff (blue
dashed curve) are compared. The binding energy of the Gaussian cutoff after a rescaling of the
three-body parameter is also shown as green dashed-dotted curves. The scaling factors are taken
to be 1.85 for (a) and 1.90 for (b). The black dotted lines are the linear fits in the largea region.
[Figure adapted with permission from S. Endoet al., Phys. Rev. A86, 062703 (2012) [176].
Copyright c© (2012) by The American Physical Society.]

• For mF/mL > (mF/mL)E, the higher excited trimers are universal for the entire region, even
close to the fermion-dimer dissociation point.

• For a mass ratio well above 50, the binding energy of the trimers becomes so large that the
non-universal short-range effects can no longer be neglected.

These results are summarized in Figs. 3.4 and 3.3, in which the universal and non-universal regions
are identified.

A. mF/mL < (mF/mL)E

In Fig. 3.9, the energy spectra of the trimers as measured from the dimer binding energy are
shown formF/mL < (mF/mL)E. The energy spectra for the sharp and Gaussian momentum cutoffs
agree close to the unitarity. This is a direct consequence of the continuous scale invariance of the
Kartavtsev-Malykh trimers: they only depend on thes-wave scattering length, so that a change in
the momentum cutoff does not affect the energy spectrum.

Away from unitarity, the energy spectra for the sharp and Gaussian cutoffs deviate from the lin-
ear behavior of the Kartavtsev-Malykh trimers, and they show different binding energy curves. The
two spectra, however, can be superimposed into a single universal curve after performing the rescal-
ing and setting a common value of the three-body parameter if the result is model-independent.
The energy spectra after the rescaling are shown in Fig. 3.9. The energy spectra overlap for
(Λa)−1/4 . 0.6 for the ground-state trimer. This suggests that the trimers are model-independent
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in this region. Close to the fermion-dimer dissociation point the two curves do not overlap, which
suggests that the ground-state trimer depends on non-universal short-range effects in this region.
On the other hand, the first-excited trimer is universal for almost the entire region, as we can see
in Fig. 3.9 (b). This difference originates from a smaller binding energy of the first-excited trimer.
Since they have smaller binding energy, the non-universal short-range effects are less significant for
the first-excited trimer. In particular, the position of the fermion-dimerp-wave resonance is rather
universal for the first-excited trimer, while it is non-universal for the ground-state trimer.

Note that the universal region is larger than the Kartavtsev-Malykh region both in Fig. 3.9 (a)
and (b). This fact supports our main conclusion schematically illustrated in Fig. 3.3 (a): below
the Efimov’s critical mass ratio, two trimers exist, which show the continuous scale invariance
for a larges-wave scattering length region. These trimers are the Kartavtsev-Malykh trimers. As
we vary thes-wave scattering length toward the positive scattering length side, the trimers lose
their continuous scale invariance in a model-independent manner. Thus, the Kartavtsev-Malykh
trimers changes into the crossover timers. As thes-wave scattering length is varied further, the
non-universal short-range effects become significant for the ground-state trimer, while the first-
excited trimer is universal for most of the region. As the mass ratio is increased toward the critical
value, the Kartavtsev-Malykh region shrinks. The ground-state and first-excited trimers then turn
into the crossover trimers for most of the region.

Since the non-universal effects are significant for the ground-state trimer close to the fermion-
dimer dissociation point, the fermion-dimer dissociation point may not appear when one considers
a system with different short-range details, or different ways of momentum cutoff. In the case of
three identical bosons, it has been shown that non-universal finite-range effects can prevent the
ground-state Efimov trimer from dissociating into a fermion and a dimer. This is the case for
instance for4He atoms with a scaled realistic potential [10]. For the two fermions and one particle
system we study here, a similar situation may occur for the ground-state trimer. In contrast, the
finite-range effects are less significant for the first-excited and higher-excited trimers, so they are
very likely to dissociate into a fermion and a dimer.

B. mF/mL > (mF/mL)E

In the inset of Fig. 3.10 (a), the energy spectra at the unitarity limit for the sharp and Gaussian
cutoffs are shown. As one can see, the energy spectra seem to be different for the two models. But
if the trimers are universal, the two spectra can be superimposed into a single universal curve by
rescaling the momentum cutoff and thereby taking a common three-body parameter as we did for
the lower mass-ratio region. In the main panel of Fig. 3.10 (a), the ratio of the binding energies at
unitarity for the two models are shown. The ratios are almost the same for all the trimer levels at
unitarity. This suggests that a common universal scaling factor can be used to perform the radial
scale transformation so that the energy spectra calculated with the sharp and Gaussian cutoffs give
the common curves. Therefore, the trimers are model-independent and hence universal at unitarity.
Note that the universality deteriorates slightly for a large mass ratiomF/mL & 50, since the binding
energy of the trimers is too large in this region.
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Figure 3.10: (a) Ratio of the binding energy between adjacent trimers at unitarity. Two models
are compared: the Skorniakov–Ter-Martirosian equation with a sharp momentum cutoff and the
Gaussian cutoff. (b) Energy spectra of the ground-state trimer up to the fourth-excited trimer at
mF/mL = 30.0 for the sharp momentum cutoff (blue dashed-dotted curves) and the Gaussian mo-
mentum cutoff (green dashed curves). The radial scaling transformation has been performed, so
that the energy spectra with the different cutoffs are superimposed onto universal curves. In the
inset, the energy spectra before the radial scaling transformation are shown. (c) Ratio of thes-
wave scattering length at which the trimer dissociates into three particles. (d) Ratio of thes-wave
scattering length at which the trimer dissociates into a fermion and a dimer. In (c) and (d), the uni-
versal scaling curves between the two models obtained from Fig. 3.10 (a) are shown as the black
solid curves. [Figure adapted with permission from S. Endoet al., Phys. Rev. A86, 062703
(2012) [176]. Copyrightc© (2012) by The American Physical Society.]

The rescaling factor between the two models obtained at the unitarity limit can be used to
perform the radial scaling transformation, which amounts to setting the same three-body parameter.
The energy spectra after this rescaling are shown in Fig. 3.10 (b). One can see that they give the
same universal binding energy curves for most of the region, which suggests that most of the
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features of the trimers are model-independent. A small disagreement is visible in regions well
separated from the unitarity point.

To investigate the universality of the trimers away from the unitarity in more detail, the fermion-
dimer dissociation point fora > 0 and the three-particle dissociation point fora < 0 are studied.
In Figs. 3.10 (c) and (d), the ratios between thea’s at which the three-body resonance and the
fermion-dimer resonance occur are shown. As shown in Fig. 3.10 (c), the ratio of the three-body
thresholds agree excellently with each other. They are consistent with the universal scale factor
between the sharp and Gaussian cutoffs obtained at unitarity from Fig. 3.10 (a). This suggests
that the trimers are model-independent in the negative side of 1/Λa. Small deviations are visible
only when the mass ratio becomes too large and the binding energy of the trimers becomes large.
In Fig. 3.10 (d), the ratios ofa at which the trimer dissociates into a fermion and a dimer are
shown. The ratio between the ground and first-excited trimer (n = 1) shows a significant deviation
from the universal rescaling factor between the sharp and Gaussian cutoff. This suggests that the
non-universal corrections are significant for the ground-state trimer close to the fermion-dimer
dissociation point. For the first-excited and higher-excited trimers, on the other hand, the deviation
is less significant. This is because the binding energy is small for these trimers, so that they are less
affected by the non-universal effects.

These results support our conclusions illustrated in Fig. 3.3 (c). For the second and higher
excited trimers, the spectra satisfy Efimov’s discrete scaling law, as discussed in Fig. 3.8, and they
are universal for the entire region. For the ground-state and first-excited trimers, the spectra satisfy
Efimov’s discrete scaling law for 1/a < 0 or close to the unitarity limit. As we changeΛa toward
the fermion-dimer dissociation point, there is a deviation from the discrete scaling law as presented
in Fig. 3.8 (d). This deviation is a universal feature due to the presence of the Kartavtsev-Malykh
states below the critical mass ratio, and it is distinct from that induced by non-universal short-range
effects. Indeed, one can define the following quantity to characterize the model-independence:

sn(x) ≡
∣∣∣KS

n (x) − βSGKG
n (β−1

SGx)
∣∣∣∣∣∣KS

n(x) − x
∣∣∣ x ≡ (Λa)−1, (3.35)

whereβSG ≡ KS
n/K

G
n is a scaling factor between the two models obtained by taking the ratio of the

binding energies at unitarity (c.f. see Fig. 3.10 (a)). Note that this quantity can be defined only
above the critical mass ratiomF/mL > (mF/mL)E. Close to the unitarity limit,sn is small, indicat-
ing that the trimers are model-independent. As we move away from unitarity toward the positive
scattering length side,sn increases, suggesting that the non-universal effects become significant for
the ground-state and first-excited trimers. In Figs. 3.4 (a) and (b), the contours ofsn = 0.90 are
shown as black dashed-dotted curves. These curves can be regarded as boundaries between the
universal (model-independent) regions and non-universal (model-dependent) regions. While the
boundaries between the Kartavtsev-Malykh trimer region and the Efimov trimer region shrink to-
ward the critical mass ratio, the curves delimiting the universal and non-universal regions are well
separated from the unitarity limit. Therefore, the trimers at the critical mass ratio are universal
states which are distinct from the Kartavtsev-Malykh trimers or Efimov trimers, as schematically
shown in Fig. 3.3 (b). These are universal three-body bound states which show neither continuous
nor discrete scale invariance, which we identify as the crossover trimers.
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3.3 Kartavtsev-Malykh states and Efimov states in the other
systems

In the previous section, the three-body problem of two identical fermions and one distinguish-
able particle is studied in theL = 1, odd parity channel. In this channel, there exist Kartavtsev-
Malykh states, Efimov states, and crossover states. In some previous studies, the Kartavtsev-
Malykh states and Efimov states have also been demonstrated to exist in other angular-momentum
channels [61, 115]: it has been demonstrated that they exist in the odd angular-momentum chan-
nels for a system of two identical fermions and one distinguishable particle. They can also exist
for a system of two identical bosons and one distinguishable particle in the non-zero even angular-
momentum channels. While precise values of the Efimov’s critical mass ratios have been obtained
in Ref. [115], the Kartavtsev-Malykh states in these higher angular-momentum channels have been
studied only in an approximate manner [61], and there has been no precise three-body calculations.
In particular, precise values of the critical mass ratios at which the Kartavtsev-Malykh states appear
have not been known. In this section, I study the three-body problem of both fermionic and bosonic
2+1 systems in arbitrary angular-momentum channels with the Skorniakov–Ter-Martirosian equa-
tion derived in Sec. 3.1. I numerically obtain precise values of the critical mass ratios at which
the Kartavtsev-Malykh trimers appear and their binding energies in arbitrary angular-momentum
channels for both fermionic and bosonic 2+1 systems. The elastic particle-dimer scattering lengths
are also calculated precisely with the Skorniakov–Ter-Martirosian equation. As we will see, the
particle-dimer resonances occur at the point where the trimer dissociates into an atom and a dimer.
The resonances originating from the Kartavtsev-Malykh states occurs in higher partial-wave chan-
nels. As the mass ratio is varied, we find that the Kartavtsev-Malykh states change into the Efimov
states. This suggests that similar crossover physics found in Sec. 3.2 may generally appear in the
odd angular-momentum channels for the fermionic 2+1 systems and in the nonzero even angular-
momentum channels for the bosonic 2+1 systems.

The binding energies of the elastic particle-dimer scattering lengths are obtained by solving
Eq. (3.20) numerically. The momentum cutoff is introduced to avoid the Thomas collapse. We
use the sharp momentum cutoff in this section. We have taken large cutoff momentaΛa & 1000 to
obtain the universal behavior of the Kartavtsev-Malykh trimers, since as we have shown in Sec. 3.2,
the trimers become crossover ones and thus depend onΛ whenΛa is not large. By comparing
the results calculated for different values of cutoff momenta, one can see whether the results are
universally determined by thes-wave scattering length or it explicitly depends on the three-body
parameter.

In Fig. 3.11, the particle-dimer elastic scattering lengths and binding energies of the trimers in
the` = 0 channel are shown for both bosonic and fermionic 2+1 systems. Here, I only investigate
the positive scattering length sidea > 0. One can clearly see that the trimers and their associated
particle-dimers-wave resonances exist for the bosonic 2+1 systems while there is no trimer for
the fermionic 2+1 system. For the bosonic 2+1 system in this channel shown in the left panel of
Fig. 3.11, the Efimov states appear for any mass ratio [115]. The cutoff momentum corresponding
to the three-body parameter is relevant for the Efimov states, so that the binding energies and
particle-dimer scattering lengths depend explicitly onΛ. On the other hand, as shown in the right
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Figure 3.11: S-wave scattering length and binding energy for the bosonic and fermionic
cases [155]. (a),(b)S-wave scattering length in units ofa, and (c), (d) binding energy of trimers

in units of
~2

2ma2
are shown. The gray and white regions are the universal and non-universal re-

gions, respectively. The dashed curves correspond to a momentum cutoff of Λa = 2000 and the
solid curve toΛa = 4000. [Figure reprinted with kind permission from Springer Science+Business
Media: S. Endoet al., Few-Body Systems51, 207 (2011). Copyrightc© Springer-Verlag 2011.]

pannel of Fig. 3.11, no trimer appears in this channel. Since there is no trimer and hence no Efimov
effect, the three-body system can be universally characterized by thes-wave scattering length.
The elastic particle-dimer scattering lengths forΛa = 2000 andΛa = 4000 agree excellently,
suggesting that the elastic particle-dimer scattering length is indeed universal. At equal mass we
obtainaAD = 1.18a, which is consistent with the well-known value of the fermion-dimer scattering
length [132, 148]. The result presented in the top right panel is the same as what was previously
reported in Refs. [132, 178].

In the higher angular-momentum channel, the mass ratio plays a crucial role. In Fig. 3.12, the
particle-dimer elastic scattering lengths and binding energies of the trimers in the` = 1 channel are
shown. There is no trimer and hence no scattering resonance for the bosonic 2+1 system. Since the
Efimov effect does not occur, the particle-dimerp-wave scattering volume is universal and hence
it does not depend on the cutoff momentum ifΛa � 1. On the other hand, as shown in the right
panel of Fig. 3.12, the fermionic system in the` = 1 channel supports three-body bound states. This
channel is what has been studied in Sec. 3.2. Two Kartavtsev-Malykh states appear at mass ratios
8.172.. and 12.917... [59], and the Efimov effect occurs formF/mL > 13.606 [38, 132]. The region
above the Efimov’s critical mass ratio is shown in gray. Below the Efimov’s critical mass ratio, the
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Figure 3.12:P-wave scattering volume, which is denoted here as the “particle-dimer scattering

length,” and binding energy in units ofa3 and
~2

2ma2
, respectively [155]. Notations are the same as

those in Fig. 3.11. [Figure reprinted with kind permission from Springer Science+Business Media:
S. Endoet al., Few-Body Systems51, 207 (2011). Copyrightc© Springer-Verlag 2011.]

binding energies and the elastic particle-dimer scattering lengths forΛa = 2000 andΛa = 4000
agree excellently, suggesting that they are universal. For a larger mass ratiomF/mL & 13.606, the
binding energies and the elastic particle-dimer scattering lengths forΛa = 2000 andΛa = 4000
disagree, suggesting that the Efimov effect occurs and the cutoff momenta corresponding to the
three-body parameter becomes relevant.

In Fig. 3.13 to Fig. 3.15, the particle-dimer elastic scattering lengths and binding energies
of the trimers in thè ≥ 2 channels are shown. Generally, trimers appear in the odd angular-
momentum channels for the fermionic 2+1 systems and in the even angular-momentum channels
for the bosonic 2+1 systems. This reconfirms the conclusion of the previous pieces of work [61,
179]. Here, we note that the fermionic 2+1 systems in the odd angular-momentum channels and
for the bosonic 2+1 systems in the nonzero even angular-momentum channels, the energy spec-
tra and particle-dimer scattering lengths behave in a manner similar to Fig. 3.12. At lower mass
ratio, the binding energies of the trimers and the particle-dimer scattering lengths are universal.
There are three, four, and five Kartavtsev-Malykh states in the` = 2, ` = 3, and` = 4 channels,
respectively. The critical mass ratios at which the Kartavtsev-Malykh states appear are shown in Ta-
ble. 3.1. In Ref. [61], these Kartavtsev-Malykh states have been predicted to exist in these channels,
and approximate values of the critical mass ratios have been obtained by solving the hyper-radial
Schr̈odinger equation in the single-channel approximation. Since the Skorniakov–Ter-Martirosian
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Figure 3.13: D-wave scattering length and binding energy in units ofa5 and
~2

2ma2
, respec-

tively [155]. Notations are the same as those in Fig. 3.11. [Figure reprinted with kind permis-
sion from Springer Science+Business Media: S. Endoet al., Few-Body Systems51, 207 (2011).
Copyright c© Springer-Verlag 2011.]

equation naturally incorporates all the channel couplings, the mass ratios we find in Table. 3.1 are
precise values, refining the approximate mass ratios reported in Ref. [61].

In Table. 3.1, we also show the widths of the particle-dimer resonances in terms of the mass
ratio∆α for the resonances corresponding to the Kartavtsev-Malykh states. They are obtained by
fitting

aAD

a2`+1
≈ ∆α

α − α0
, (3.36)

whereα0 is the mass ratio at which the Kartavtsev-Malykh states appear. Note that the width
of the resonances atmF/mL = 8.172... for the fermionic 2+1 system corresponding to the first
Kartavtsev-Malykh states is rather broad. Therefore, even when the mass ratio of the system is
not close tomF/mL = 8.172..., a signature of the first Kartavtsev-Malykh states can be observed
from an enhanced particle-dimerp-wave cross section. Note that an enhancement of thep-wave
particle-dimer scattering well below the mass ratio 8.172 was previously reported in Refs. [59, 60].
The broad width of the resonance is closely related to the small binding energy of the Kartavtsev-
Malykh states, as one can see the insets of Figs. 3.5 (a) and (b). This enhancement of the particle-
dimer p-wave cross section has been observed in 2013 by the Innsbruck University in a mass-
imbalanced fermionic mixture of6Li-40K (mass ratio 6.64) [62]. We also note that the width of
the resonances for some of the Kartavtsev-Malykh states in the other channels are also broad. In
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Figure 3.14: F-wave scattering length and binding energy in units ofa7 and
~2

2ma2
, respec-

tively [155]. Notations are the same as those in Fig. 3.11. [Figure reprinted with kind permis-
sion from Springer Science+Business Media: S. Endoet al., Few-Body Systems51, 207 (2011).
Copyright c© Springer-Verlag 2011.]

particular, the bosonic 2+1 system shows a broadd-wave atom-dimer resonance aroundmF/mL =

22.637 andmF/mL = 31.523. These mass ratios are surprisingly close to that of6Li-133Cs (mass
ratio 22.095) [180, 181] and that of6Li-174Yb-174Yb (mass ratio 28.917) [57, 58]. These highly
mass-imbalanced atomic mixtures have recently been realized in ultracold atoms, and one may
observe a signature of the Kartavtsev-Malykh states in the` = 2 channel from the enhanced atom-
dimerd-wave cross section, in a manner similar to what has been done in Ref. [62]. As the angular
momentum gets larger, the widths of the resonances tend to get smaller, suggesting that observing
the Kartavtsev-Malykh states from the resonant atom-dimer scattering would be more challenging,
especially for̀ ≥ 4.

The behavior of the binding energies and the particle-dimer scattering length presented in
Fig. 3.12 are similar to those in Figs. 3.13 to 3.15. This implies that the crossover physics studied
in Sec. 3.2 may also apper in the higher angular-momentum channels` ≥ 2. Indeed, when one
closely looks at Fig. 3.12 to 3.15, one finds that the binding energies and particle-dimer scattering
lengths forΛa = 2000 andΛa = 4000 deviate from each other not abruptly but gradually. This
suggests that the universality gradually deteriorates and turn into the Efimov trimers, as what have
been found in Sec. 3.2. Therefore, it is likely that the crossover trimers also appear in the higher
angular-momentum channel` ≥ 2, although this point should be studied in more detail in future
studies.
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Figure 3.15: G-wave scattering length and binding energy in units ofa9 and
~2

2ma2
, respec-

tively [155]. Notations are the same as those in Fig. 3.11. [Figure reprinted with kind permis-
sion from Springer Science+Business Media: S. Endoet al., Few-Body Systems51, 207 (2011).
Copyright c© Springer-Verlag 2011.]

3.4 Experimental implications

In this section, I discuss experimental implications of the results presented in Sec. 3.2 and
Sec. 3.3. To experimentally observe the properties of the three-body system of two identical
fermions and another particle discussed in Sec. 3.2, the following conditions are necessary:

• We need a mixture of fermions without internal degree of freedom (i.e. spin-polarized
fermions) and another particle. The statistics of the other particle is arbitrary.

• The interaction between the fermions and the other particle is resonant:a� Λ−1 ∼ r0, where
r0 is the range of the interaction.

• The fermions should be much heavier than the other one, i.e.,mF/mL & 5.

In ultracold atoms, one can prepare a mixture of two different atomic species. Thes-wave scattering
length between atoms can be fine-tuned by using a Feshbach resonance [27]. So the first and
second conditions seem plausible. It is not easy to realize an atomic mixture with a large mass
imbalance, but still it is still feasible. For example, a mixture of6Li and 40K has been realized,
and the Feshbach resonances between6Li atoms and40K atoms have been performed [56, 62].
A fermionic mixture with a large mass imbalance is also available, such as a mixture of6Li and
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Table 3.1: Mass ratios at which the Kartavtsev-Malykh states appear, the width of the particle-
dimer resonance, and the Efimov threshold for various angular-momentum channels and statistics.
For the case of̀ = 1, the results are the same as those obtained in Ref. [59]. For higher-angular
momenta, we refine the values obtained in Ref. [61]. The Efimov’s critical mass ratios shown in
the rightmost column are taken form Ref. [115]. Note that the fourth Kartavtsev-Malykh states for
` = 3 has been overlooked in Ref. [155].

` statistics Kartavtsev-Malykh state width of the resonance Efimov threshold

1 fermions
8.172 9.2

13.607
12.917 8.1

2 bosons
22.637 5.9

38.63031.523 11.9
37.766 8.1

3 fermions

43.395 1.3

75.994
56.166 3.7
67.336 5.4
74.822 9.9

4 bosons

70.457 0.14

125.765
87.027 0.50
115.534 0.99
102.486 1.27
124.167 0.81

173Yb atoms [57, 58]. Although the Feshbach resonance between6Li and 173Yb atoms has not been
realized yet since its width is rather narrow [182], in 2012, the magnetically controlled Feshbach
resonance has been observed between Yb atoms by transferring atoms into a metastable excited
state [63]. It is expected that with the same technique one may overcome the difficulty and perform
the magnetically controlled Feshbach resonant between Yb and Li atoms [64]. We also note that
other atoms with a very large mass are currently being cooled down, such as Dy [127, 128], and
Er [125, 126]. Atomic mixtures with a large mass imbalance can be realized in ultracold atom
experiments.

In Table. 3.2, the mass ratios for some atomic combinations are presented. To observe three-
body bound states, one needs a mass ratio larger than (mF/mL)(1)

KM = 8.172.... To realize such
a highly mass-imbalanced atomic mixture, one must prepare light atoms, such as Li, and heavy
atoms, such as Sr, Yb, Er, and Dy. One can see from Table. 3.2 that among those satisfying
mF/mL > (mF/mL)(1)

KM , most of them are in the regionmF/mL > (mF/mL)E = 13.606.... The Efimov
trimers and the crossover trimers can be observed with those atomic combinations. To observe the
Kartavtsev-Malykh trimers and associated crossover trimers, on the other hand, there are only a few
candidates. With current technique, it seems rather challenging to prepare these atomic mixtures
and utilize a Feshbach resonance. We note that in ultracold atoms, the effective masses of the
atoms can be varied by an optical lattice [183]. If thes-wave scattering length is fine-tuned to be
much larger than the lattice spacing of the optical lattice, the effect of the lattice is only to alter the
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Table 3.2: Mass ratios for some atomic species. The horizontal lines corresponds to the critical
mass ratios for the appearance of the Kartavtsev-Malykh states (mF/mL)(1)

KM = 8.172... and the
Efimov states (mF/mL)E = 13.606..., respectively.

Species Mass ratio
7Li–40K 5.70

7Li–43Ca 6.12
6Li–40K 6.64

23Na–161Dy 7.00
23Na–167Er 7.26
23Na–173Yb 7.52

7Li–53Cr 7.55
6Li–53Cr 8.80
9Be–87Sr 9.64
7Li–87Sr 12.39
6Li–87Sr 14.45

7Li–161Dy 22.94
7Li–167Er 23.79
7Li–173Yb 24.65

effective mass of the atoms. By tailoring the shape and depth of the optical lattice, one may alter
the masses of the particles and study the three-body system by varying both the mass ratio and the
s-wave scattering length. We also note that the Kartavtsev-Malykh trimers appear for smaller mass
ratios in one and two spatial dimensions [161, 162], although the crossover physics may not appear
in these systems due to the absence of the Efimov effect in one and two dimensions [32, 115].

In ultracold atoms, Efimov states has often been observed indirectly by measuring the atomic
losses [27, 69], but recently a photoassociation technique has been used to observe the Efimov
trimers directly [51, 52, 160]. With this technique, one can directly associate the trimers and mea-
sure their binding energy. By precisely measuring the binding energies of the trimers by varying the
s-wave scattering length, one can check how well the continuous or discrete scaling law holds. The
deviation from the scale invariance as described in Fig. 3.3 (a) and (c) can be a clear signature of the
crossover trimers. Note that the breakdown of the continuous and discrete scaling is essentially dif-
ferent from that induced by non-universal corrections discussed for the ground-state Efimov trimer
in Refs. [54, 69]. While the latter depends significantly on short-range details of each atoms, the
continuous and discrete scaling is lost in a universal manner, which can be quantitatively predicted
theoretically with the universal theories, such as the Skorniakov–Ter-Martirosian equation, or the
effective field theory [32].

The three-body bound states can be also studied by observing thep-wave atom-dimer reso-
nance. The atom-dimer cross section is easier to observe than directly measuring binding energies
of the trimers. In Fig. 3.16 the atom-dimers-wave scattering length (inset) andp-wave scattering
volume (main panel) are shown as a function of 1/Λa for several mass ratiosmF/mL > 8.172. The
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Figure 3.16: Atom-dimerP-wave scattering volumev(AD)
p for 6Li–53Cr (red solid curve,mF/mL =

8.80), 7Li–87Sr (green dashed curve,mF/mL = 12.39), and7Li–173Yb (blue dotted curve,mF/mL =

24.65), calculated with the Skorniakov–Ter-Martirosian equation with the sharp momentum cutoff.
In the inset, thes-wave atom-dimer scattering length for each atomic combination is shown. The
points show thep-wave atom-dimer resonance positions for each atomic combination. [Figure
adapted with permission from S. Endoet al., Phys. Rev. A86, 062703 (2012) [176]. Copyrightc©
(2012) by The American Physical Society.]

three-body bound states induce atom-dimer scattering resonances, as discussed in Sec. 3.3. Close to
the atom-dimer dissociation point, the atom-dimerp-wave scattering volume becomes resonantly
large, while the atom-dimers-wave scattering length remains of the order of the atom-atoms-wave
scattering length. For 8.172 < mF/mL < 13.606, the atom-dimerp-wave resonance is a smoking
gun for the existence of the crossover trimer: the trimers can dissociate into an atom and a dimer
due to the breakdown of the continuous scaling of the Kartavtsev-Malykh states as illustrated in
Fig. 3.3 (a). In particular, the position of thep-wave atom-dimer resonance for the first-excited
trimer is determined universally.

Even whenmF/mL < 8.172 and no trimer exists, one can observe a signature of the trimers
by measuring thep-wave atom-dimer cross section. As studied in Ref. [60] and Sec. 3.3, the
width of the atom-dimerp-wave resonance in terms of the mass ratio is rather broad and one
can still observe a signature of the Kartavtsev-Malykh trimer even for a fermionic mixture with a
smaller mass imbalance. In 2013, the enhancement of the atom-dimerp-wave cross section has
been observed spectroscopically for a mass-imbalanced fermionic mixture of6Li-40K (mass ratio
6.64) [62]. While the Kartavtsev-Malykh trimer has not been observed yet, this experiment is a
good evidence for the Kartavtsev-Malykh trimer in the fermionic 2+1 system. From the results
presented in Sec. 3.3, I predict that a similar enhancement of the atom-dimer scattering can be
observed in a Bose-Fermi mixture of6Li-133Cs atoms (mass ratio 22.095) [180, 181] and6Li-174Yb
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atoms (mass ratio 28.917) [57, 58]. The mass ratios for these atomic mixtures are surprisingly close
to the mass ratios at which the Kartavtsev-Malykh trimers appear in the` = 2 channel, 22.637
and 31.523. This suggests that thed-wave atom-dimer scattering length is enormously large for
these atomic mixtures. In fact, thed-wave atom-dimer scattering lengths areaAD/a5 = −24.18
andaAD/a5 = −21.14 for mass ratios corresponding to6Li-133Cs and6Li-174Yb, respectively. A
mixture of 6Li and 133Cs atoms have been realized and the inter-species Feshbach resonance has
been performed recently [180, 181]. Although the Efimov states in the` = 0 induces an atomic
loss in this system, the enhancedd-wave atom-dimer cross section may be observed in this system.
For 6Li and 174Yb atoms, the Feshbach resonance has not been realized yet, but may be realized in
near future by transferring atoms into long-lived excited states [63, 64].



Chapter 4

Universal three-body parameter of the
Efimov states

As explained in detail in the introduction and in Sec. 2.4, the Efimov states have recently been
observed in ultracold atom experiments for various atomic species, and their three-body parameters
have been found to be universally determined by the van der Waals length for a system of three
identical bosons in the vicinity of a broad Feshbach resonance. These observations have surprised
researchers working on the Efimov physics in ultracold atoms. While the long-range part of the
inter-atomic interaction share the same van der Waals form−C6/r6, the short-range part depends
on details of electronic configurations of the atoms, and it can thus vary significantly for different
atoms and hyperfine states. Until quite recently, it had been widely held that this non-universal
short-range part can significantly affect the short-range three-body phase, rendering the three-body
parameter non-universal.

In this chapter, I elucidate the physical origin of the universal three-body parameter, explaining
under what conditions and why the three-body parameter can be universal. But before proceeding
to the main part of this chapter, let me first rephrase the issue in more theoretical terms and try
to define when the three-body parameter is called “universal” or “non-universal”. In this chapter,
we consider a system of three identical bosons in the vicinity of a broad Feshbach resonance. For
two particles interacting via a broad Feshbach resonance, the particles mostly reside in an open
channel, so that one can model their low-energy behavior accurately by a single-channel potential
in the vicinity of a shape resonance (see Sec. 2.1.1 and Ref. [24]). Let us therefore consider a
three-body Schr̈odinger equation− 3∑

i=1

~2∇2
r i

2m
+ V(r12) + V(r23) + V(r13) + V3B(r1, r2, r3)

Ψ(r1, r2, r3) = EΨ(r1, r2, r3), (4.1)

whereV(r) is a two-body potential which is fine-tuned to be in the vicinity of a shape resonance,
andV3B is a three-body potential. For neutral atoms, the inter-atomic potential has the van der

Waals tail, so let us assume here thatV(r)→ −C6

r6
at long distance. The three-body potentialV3B is

effective only when three particles get close simultaneously. For neutral atoms, its range is known
to be rather smallr0 � rvdW [164], so we assume that the range ofV3B is much smaller than the
van der Waals length. By solving the three-body Schrödinger equation for a specific choice ofV
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andV3B, one obtains the three-body parameter numerically. Now, let us prepare another pair ofV
andV3B by changing the short-range part of the two-body or three-body potentials while keeping
thes-wave scattering length:

V′ = V(r) + ∆V(r), (4.2)

V′3B = V3B(r) + ∆V3B(r). (4.3)

Here,∆V(r) and∆V3B(r) are introduced to model changes in the short-range part of the inter-atomic
potentials when an atomic species or a hyperfine state is varied. The ranges of∆V(r) and∆V3B(r)
are assumed to be much smaller thanrvdW. Now, let us solve the three-body Schrödinger equation
for V′ andV′3B and compare its three-body parameter with that ofV andV3B. If the three-body
parameters forV andV3B and forV′ andV′3B agrees with high precision for a wide variety of choice
of ∆V(r) and∆V3B(r), the three-body parameter is regarded as universal.

To the best of the author’s knowledge, it has not yet been defined clearly in any literature what is
the theoretical definition of the universality in the three-body parameter, but it seems that the above
definition has been used implicitly in most theoretical studies on this issue [72, 73, 147, 168, 184].
Therefore, I adopt this definition in this chapter too. Note however that the definition is rather
subjective and mathematically not well-defined: it depends on what one regards as “high precision”
or “ a wide variety of potentials”. For the criterion of the “high precision”, the universal scale factor
is one possible reference value to compare with. If one assumes that∆V(r) and∆V3B(r) can alter the
short-range three-body phase significantly, the three-body parameter should vary randomly within
a factor of the fundamental periodeπ/s0 = 22.7.... If the ratio between the three-body parameters
for different pairs ofV andV3B is much smaller than 22.7, one may regard it as universal. Another
experiments-based criterion is to compare with the experimental resultsa(1)

− /rvdW =-8-10 and see
whether the theoretically found three-body parameter is consistent or not.

Now that the universality has been defined from a theoretical point of view, let us introduce
some relevant previous studies. In Ref. [72], C. Chin points out that a strongly attractive van der
Waals interaction is essential. For typical neutral atoms, an inter-atomic potential supports many
two-body bound states, which implies that the strength of the van der Waals interactionC6 is rather
strong. He assumes that the strong two-body van der Waals attraction leads to a strong hyper-radial
potential−3 × C6/R6. SinceC6 is large and the hyper-radial potential is strongly attractive, he
then argues that it can induce quantum reflection between three atoms. Since three particles are
reflected in the van der Waals regionR & rvdw, they are insensitive to a change in the short-range
part of an inter-atomic potential, so that three-body physics is determined solely by the long-range
part of the inter-atomic interaction, i.e., the van der Waals interaction. At first sight this argument
seems plausible, but there are several problems. First of all, in Ref. [10], the three-body parameter
for 4He atoms has been calculated theoretically by using a realistic4He potential (LM2M2), and
found to bea(1)

− /rvdW = −9.42, which is in excellent agreement with the universal value observed
in ultracold atom experiments. Since the van der Waals interaction between4He atoms is rather
weak and supports only one two-body bound state, the argument presented in Ref. [72] cannot
explain why the three-body parameter for4He atoms agrees with the universal value reported in
ultracold atom experiments. Furthermore, the quantum reflection scenario can be similarly applied
to two particles, and it suggests that that thes-wave scattering length should also be universally
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determined by van der Waals length. However, this is not the case: thes-wave scattering length is
known to vary almost randomly between different atomic species and hyperfine states.

This second point is worthwhile to note. For ultracold atoms, thes-wave scattering length,
which characterizes a two-body short-range phase, is known to be strongly dependent on atomic
species and hyperfine states. On the other hand, the three-body parameter, which characterizes a
three-body short-range phase, has been found to be independent of atomic species and hyperfine
states. Why is two-body physics non-universal, while three-body physics is universal? If one tries
to explain the physical origin of the universal three-body parameter, one must at the same time
explain consistently why thes-wave scattering length is non-universal.

In Ref. [73], J. Wang and coworkers have numerically solved the three-body problem for various
types of two-body potentials, and they have shown that a strong three-body repulsion appears in the
hyper-radial potential when a two-body potential is strongly attractive or has a hard-core repulsion
at short distance. Typical neutral atoms correspond to the former, while the4He potential corre-
sponds to the latter. The shape of the three-body repulsion has been found to be rather universal, in
the sense that it is independent of details of a two-body potential. The repulsion appears at a rather
large distanceR ≈ 2rvdw, rendering changes in the short-range part∆V(r) and∆V3B(r) irrelevant.
By solving the three-body Schrödinger equation numerically, they have obtained the three-body
parametera(1)

− = −(8-12)rvdW for various types of strongly attractive two-body potentials and for
potentials with a hard-core repulsion. While it has become clear with this work that the three-body
parameter should be universal for a strongly attractive two-body potential or a two-body potential
with a hard-core repulsion, the physical mechanism still remains unclear. Namely, the following
questions remain unresolved:

Q1. What is the physical origin of the three-body repulsion?

Q2. Why is the three-body repulsion universal?

Q3. Why are a strongly attractive two-body potential and a two-body potential with a hard-core
repulsion relevant?

Q4. Why is thes-wave scattering length non-universal, while the three-body parameter is univer-
sal?

I address the physical origin of the universal three-body parameter and give clear answers to all
these questions§. In Sec. 4.1, I present answers to the above questions as follows:

A1. When three particles get close, a non-adiabatic deformation of the three-body wave function
occurs due to a suppression of probability which occurs when two particles get close. This
deformation of the three-body wave function results in a strong three-body repulsion.

A2. Because the suppression of the two-body probability occurs in a universal manner.

§A remark on the contribution:The work presented in this chapter has been done in close collaboration with P.
Naidon at RIKEN. The author’s contribution and the coworker’s contribution are rather complimentary, so I include in
this thesis some of the results obtained by the coworker in addition to my contribution.
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A3. Because the suppression of the two-body probability occurs for a strongly attractive two-body
potential and for a two-body potential with a hard-core repulsion.

A4. Because the deformation can occur only for a system with more than two particles: a three-
body system has the hyper-angular degree of freedom which characterizes the deformation
of the three-body configuration, while a two-body system has no such degree of freedom.

In Sec. 4.2, the three-body parameter for non-van der Waals types of potentials is discussed based
on the physical mechanism elucidated in Sec. 4.1. It is argued in Sec. 4.2.1 that the three-body
parameters for a wide class of potentials should be characterized by the effective range. This con-
jecture is confirmed numerically in Sec. 4.2.2, and two classes of two-body potentials are identified,
for which the three-body parameter has a universal value in units of their effective range. One class
corresponds to short-range two-body potentials decaying as a power law, relevant to atomic in-
teractions, for which the two-body correlation behaves smoothly. The other corresponds to deep
two-body potentials decaying exponentially, relevant to nuclear systems, for which the two-body
correlation shows a discontinuity.

4.1 Physical origin of the universal three-body parameter for
atomic Efimov states

In this section, we elucidate the physical origin of the universal three-body parameter for par-
ticles interacting via a van der Waals type of potential. Throughout this section, we use the low-
energy Faddeev equation to deal with the three-body problem [150]. There are several different
ways of formulating the low-energy Faddeev equation [32, 115, 150], which can often confuse the
readers. Therefore, in Sec. 4.1.1, I briefly summarize the low-energy Faddeev equation we use
in this chapter. The advantage of the low-energy Faddeev equation is its simplicity: it is a one-
dimensional linear integro-differential equation, which is much simpler than solving the original
three-body Schr̈odinger equation. One drawback of the low-energy Faddeev equation is that it ne-
glects higher-partial-wave channels. In Sec. 4.1.1 solutions of the low-energy Faddeev equation are
compared with those obtained in Ref. [73], which includes most of the higher-partial-wave chan-
nels. It is then shown that the low-energy Faddeev equation qualitatively reproduce all the features
reported in Ref. [73], justifying the use of the low-energy Faddeev equation to study the univer-
sality of the three-body parameter. Thus, Sec. 4.1.1 is devoted mostly to review and confirm the
previous results.

One of the main parts of our work§ is presented in Sec. 4.1.2. I explain in Sec. 4.1.2 the physical
mechanism why the three-body parameter becomes universal, giving answers to all the questions
listed above.

§A remark on the contribution:Contributions of the author and the coworker P. Naidon in this section are as follows:
• Numerical calculations of the low-energy Faddeev equation: P. Naidon
• Proposal of the non-adiabatic deformation scenario described in Sec. 4.1.2: S. Endo
• Proposal of the model wave function in Eq. (4.19) and calculations with it: S. Endo
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4.1.1 Hyper-radial potential in the low-energy Faddeev formalism

Low-energy Faddeev equation

While the low-energy Faddeev equation was first derived in Ref. [150], we use a slightly different
formalism from the original one. Throughout this chapter, we use the low-energy Faddeev equation
formulated in Ref. [115]. It turns out that the theoretical description becomes much simpler in this
formalism compared with that in Refs. [32, 150].

In the formalism introduced in Ref. [115], one first expands the three-body wave function by
adiabatic hyper-angular bases as in Eq. (2.37). One then decomposes the hyper-angular wave func-
tionΦn(R, α3, r̂12, ρ̂3) into Faddeev components (see Eq. (2.50)):

Φn(R, α3, r̂12, ρ̂3) =
ψn(R, α1)
sin 2α1

+
ψn(R, α2)
sin 2α2

+
ψn(R, α3)
sin 2α3

. (4.4)

Here, we have neglected the angular dependence of the Faddeev componentψn(R, αi , r̂ jk , ρ̂i) ≈
ψn(R, αi), since the zero-angular-momentum channel is energetically most favored and gives the
most dominant contribution. The Faddeev components then obey the following equation (see
Eq. (2.52)):

0 =

[
− ∂2

∂α2
3

− 4+ R2u(Rsinα3) − λn(R)

]
ψn(R, α3)

+ R2u(Rsinα3)

[
sin 2α3

sin 2α1
ψn(R, α1) +

sin 2α3

sin 2α2
ψn(R, α2)

]
,

(4.5)

where

u(x) =
m
~2

V(x). (4.6)

By taking the angular average of Eq. (4.5) with respect tor̂12 andρ̂3, the last term written in terms
of α1 andα2 can be rewritten by the coordinateα3:〈

sin 2α3

sin 2α1
ψn(R, α1)

〉
r̂12,ρ̂3

=

〈
sin 2α3

sin 2α2
ψn(R, α2)

〉
r̂12,ρ̂3

=
2
√

3

∫ π
2−| π6−α3|

|α3− π3 |
dβψn(R, β). (4.7)

This procedure is called the kinematic rotation [32, 115, 150]. One then obtains the low-energy
Faddeev equation:

0 =

[
− ∂2

∂α2
3

− 4+ R2u (Rsinα3) − λn(R)

]
ψn(R, α3)+

4
√

3
R2u (Rsinα3)

∫ π
2−| π6−α3|

|α3− π3 |
dβψn(R, β). (4.8)

Solving this one-dimensional integro-differential equation numerically, one obtainsλn(R) andψn(R, α).
The hyper-radial part obeys the hyper-radial Schrödinger equation (2.39). Onceψn is obtained nu-
merically, the non-adiabatic couplingsQnm andPnm can be computed numerically from Eqs. (2.40),
(2.41), and (4.4).
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The low-energy Faddeev equation is a simple one-dimensional integro-differential equation so
it can easily be solved numerically. The hyper-radial equation is a coupled one-dimensional second-
order differential equation, and it is also numerically feasible. Note that these procedures are far
easier than solving the full three-body Schrödinger equation. One major disadvantage is that we
have assumed that the higher-partial-wave contributions to the Faddeev component is small, and
we have taken it to beψn(R, αi , r̂ jk , ρ̂i) ≈ ψn(R, αi). Crudely speaking, this approximation amounts
to assuming that thei-th particle affects the relative motion between thej-th andk-th particles in a
manner similar to the “mean field”, which is averaged out for all possible angular configurations.
As we will discuss later, this approximation does not affect our qualitative argument on the physical
origin of the three-body parameter, but it does affect some quantitative details.

From the normalization of the hyper-angular wave function in Eq. (2.44), the diagonal part of
the non-adiabatic couplings can be shown to be

Pnn(R) = 0, (4.9)

Qnn(R) = −~
2

m

〈
Φn

∣∣∣∣∣∣ ∂2

∂R2

∣∣∣∣∣∣Φn

〉
=
~2

m

〈
∂Φn

∂R

∣∣∣∣∣∣∂Φn

∂R

〉
≥ 0. (4.10)

Thus, if one neglects the couplings to different channels, one obtains a single-channel hyper-radial
equation: [

−~
2

m
∂2

∂R2
+ Un(R) − ~2

4mR2

]
fn(R) = E fn(R), (4.11)

Un(R) =
~2 [λn(R) + 4]

mR2
+ Qnn(R). (4.12)

One can see that the effect of the non-adiabatic part is to add a repulsive hyper-radial potential
Qnn(R) ≥ 0. As we will find in Sec. 4.1.2, this repulsive non-adiabatic term plays a crucial role in
explaining the physical origin of the universal three-body parameter.

In Refs. [32, 150], the low-energy Faddeev equation has been introduced in a manner slightly
different from above. In the above formalism, the Faddeev decomposition is performed after
the three-body wave function is expanded by the hyper-angular bases. On the other hand, in
Refs. [32, 150], the three-body wave function is first decomposed into Faddeev components, and
then the Faddeev component is expanded by the hyper-angular bases. This difference in the order
of the Faddeev decomposition and the expansion by the hyper-angular bases leads to a rather dif-
ferent behavior inPnm andQnm. In the latter formalism, the diagonal partPnn does not vanish in
general [32, 150]. Similarly, one cannot perform the integration by parts forQnm, as has been per-
formed in Eq. (4.10). The difference originates from the normalization of the hyper-angular wave
function and the Faddeev component. In the above formalism, the non-adiabatic couplings are de-
fined in terms of the hyper-angular wave function (see Eqs. (2.40) and (2.41)), which is normalized
indeed. On the other hand, the Faddeev component itself is not normalized, but only their sum (i.e.,
the hyper-angular wave function in Eq. (4.4)) is normalized.

Numerical Solutions of the low-energy Faddeev equation

Let us solve Eq. (4.8) numerically for various van der Waals type of potentials, and show the
diagonal hyper-radial potentialUn(R). Here, we consider three classes of potentials: the soft-
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Figure 4.1: Hyper-radial potentialsUn(R) for different two-body potentials at unitarity [147]: the
soft-core van der Waals potential in Eq. (2.12) (blue curves) withnb = 1 up to 10s-wave two-body
bound states, the Lennard-Jones potential in Eq. (2.14) (green curves) withnb = 1 up to 10s-wave
two-body bound states, the4He potential [12] (red curve) rescaled to reach unitarity withnb = 1
s-wave two-body bound state.U0(R) and U1(R) are the hyper-radial potentials for the Efimov
channel and non-Efimov channel, respectively. There are many non-Efimov channels, but only the
one adjacent to the Efimov channel is drawn. The black dashed curve shows the asymptotic Efimov

attraction−
~2s2

0

mR2
. [Figure adapted from Ref. [147] with permission. Copyrightc© (2014) by The

American Physical Society.]

core van der Waals potential in Eq. (2.12), the Lennard-Jones potential in Eq. (2.14), and the4He
potential (LM2M2 potential) [12]. For the soft-core van der Waals potential and the Lennard-Jones
potential, the parametersσSC andσLJ are chosen so that the system is at the shape resonance point
1/a = 0. As can be seen in Fig. 2.1, there are many possible choices ofσSC andσLJ, corresponding
to different potential well depths, or equivalently different numbers ofs-wave two-body bound
states. We therefore consider various shape resonances corresponding to the appearance of the first
two-body bound state (nb = 1) up to the tenth two-body bound state (nb = 10). The4He potential is
known to be close to a shape resonance, and support one weakly bound two-body bound state [12].
To compare it with the results calculated for the soft-core van der Waals potential and the Lennard-
Jones potential at unitarity, we multiply the4He potential by a scale factorV(r) → λV(r) so that
the4He potential is artificially fine-tuned to be at unitarity:λ = 0.97412 [10].

Note that there are an infinite number of solutions for Eq. (4.8), but here we mainly focus on
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the solution which shows the Efimov effect. Namely, there exists a channeln where the solution

asymptotes toUn(R) → −
~2s2

0

mR2
whenrvdW � R� |a|. We call this channel as the Efimov channel,

and denote it asn = 0.
In Fig. 4.1,U0(R) for the three classes of potentials is shown. One can see that all the curves

corresponding to the Efimov channeln = 0 asymptotically approaches to the universal Efimov
attraction curve (black dashed curve) whenrvdW � R, while they deviate significantly from it when
R. rvdW. One of the non-Efimov channelsU1(R) is also shown in Fig. 4.1 .

One important feature in Fig. 4.1 is that most of theU0(R) curves almost superimpose onto
each other. Indeed, the4He potential, the Lennard-Jones potential for allnb, and the soft-core van
der Waals potential fornb & 5 almost superimpose into a single universal curve. This behavior is
rather non-trivial if one recall a huge difference in the two-body potentials. While the potentials
behave as−C6/r6 at long distance, they differ significantly at short distance: the soft-core van der
Waals potential behaves smoothly at short distance, while the Lennard-Jones potential and the4He
potential has a steep repulsive core. Furthermore, the depth of the potential differs significantly
whennb is changed. For example, the ratios of the depth of the soft-core van der Waals potential
are

VSCvdW(r = 0)|nb=2

VSCvdW(r = 0)|nb=1
= 21,

VSCvdW(r = 0)|nb=5

VSCvdW(r = 0)|nb=1
= 401,

VSCvdW(r = 0)|nb=10

VSCvdW(r = 0)|nb=1
= 3366 (4.13)

The difference inU0(R) shown in Fig. 4.1 is much smaller than this huge difference in the depth of
the two-body potential.

Another important feature is thatU0(R) agrees with each other excellently for the4He potential
and the Lennard-Jones potential for allnb, while U0(R) for the soft-core van der Waals potential
gradually converges to those for the4He potential and the Lennard-Jones potential asnb is in-
creased. Thus, for two-body potentials with a hard core, the hyper-radial potential is universal for
any depth. On the other hand, for the soft-core van der Waals potential which does not have a hard
core, the hyper-radial potential becomes universal when the two-body potential is deep enough
nb � 1. The universal hyper-radial potential shows a strong universal repulsion atR ≈ 2rvdW

§.
This universal repulsion prevents three particles from coming close, so that the system becomes
insensitive to short-range details.

All these features shown above are the same as what have been previously reported in Ref. [73],
in which the three-body problem has been solved with all the higher-partial-wave channels and the
channel couplings included. This suggests that it is adequate to use the low-energy Faddeev equa-
tion to address the issue of the universal three-body parameter at least qualitatively. We therefore
mainly use the low-energy Faddeev equation in this section.

We finally note that the repulsive barrier atR ≈ 2rvdW appears even for a purely attractive
potential: the soft-core van der Waals potential is monotonical and thus purely attractive, but still it
shows a strong three-body repulsion. In Ref. [73], the hyper-radial repulsion has also been found to
appear for other types of purely attractive potentials. These results suggest that the repulsive barrier

§Note that the hyper-radius used here is different by a factor of
31/4

√
2
= 0.931... from the hyper-radius used in

Ref. [73]. See a footnote in P. 27.
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at R ≈ 2rvdW does not originate from a repulsion in the two-body potential. In Ref. [74], P. K.
Sørensen and coworkers have claimed that a repulsive barrier in the two-body potential is essential
for determining the three-body parameter, but this is inconsistent with our result and Ref. [73].

4.1.2 Non-adiabatic deformation as the physical origin of the universal three-
body parameter

As shown in Ref. [73] and in the previous section, the hyper-radial potential behaves universally
and shows strong universal repulsion atR ≈ 2rvdW for a two-body potential with a hard core at
short distance and for a deep two-body potential. The following questions, however, have yet to be
answered:

• What is the origin of the strong universal repulsion atR≈ 2rvdW?

• Why does the three-body potential behave universally?

• Why does it appear for a two-body potential with a hard-core or a deep two-body potential?
What is special about these potentials?

In this section, we answer these questions. We first point out that a significant suppression of
probability occurs for two particles interacting via a two-body potential with a hard-core or a deep
two-body potential. This suppression of probability occurs in a rather universal manner. Using this
universal two-body suppression of probability, we answer why there appears a strong three-body
repulsion. Namely, we show that the universal two-body suppression of probability induces an
abrupt change in the shape of the three-body wave function when three particles get close. This
deformation results in a large non-adiabatic forceQ00(R) and leads to a strong universal repulsion
atR≈ 2rvdW. The resulting hyper-radial potential is universal because the two-body suppression of
probability occurs in a universal manner. We confirm this scenario by reproducing the hyper-radial
potential shown in Fig. 4.1 with a simple model wave function which incorporates the universal
two-body suppression of probability into the Efimov wave function.

Universal two-body correlation

Let us consider a two-body Schrödinger equation at zero energy:[
−~

2

m
d2

dr2
+ V(r)

]
ϕ(r) = 0. (4.14)

In Fig. 4.2, two-body probability density distributions|ϕ(r)|2 are shown for the soft-core van der
Waals potential, the Lennard-Jones potential, and the rescaled4He potential. Here, thes-wave
scattering length is taken to be at unitarity 1/a = 0. At large distance, the two-body wave function
asymptotically approaches to the zero-range resultϕ(r) = Const. (see Eq. (2.20)). In Fig. 4.2, the
wave function is normalized so thatϕ(r)→ 1 at large distance. As two particles get closer . rvdW,
the two-body probability becomes smaller than the zero-range predictionϕ(r) = 1. One remarkable
feature is that the two-body wave functions behave rather similarly for the Lennard-Jones potential
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Figure 4.2: Zero-energy two-body probability density distribution|ϕ(r)|2 as a function of inter-
particle distance for different two-body potentials [147]: the soft-core van der Waals potential (blue
curves) withnb = 1 up to 8 s-wave bound states, Lennard-Jones potential (green curves) with
nb = 1 up to 8s-wave bound states,4He potential (red curve) rescaled to reach the unitarity with 1
s-wave bound state. The corresponding potentials are shown as thin curves. The probability density
corresponding to the universal van der Waals correlation given in Eq. (4.15) is also shown by the
dashed black curve. [Figure adapted from Ref. [147] with permission. Copyrightc© (2014) by The
American Physical Society.]

for all nb, for the 4He potential, and for the deep soft-core van der Waals potentialnb & 4. As
discussed later, this universal suppression of the two-body probability is crucial for the origin of
the universal three-body repulsion found in Ref. [73] and in Sec. 4.1.1. For the4He potential and
the shallowest Lennard-Jones potential, the suppression of probability occurs at a distance where
a hard-core repulsion appears. This suppression can be ascribed to the hard-core repulsion. For
a deeper Lennard-Jones potentialnb ≥ 2, however, the suppression of the two-body probability
occurs at a distance much larger than the hard-core radius. In this case, the suppression of the
probability is induced not by a hard-core repulsion, but rather by quantum reflection. Quantum
reflection is a phenomenon where particles get reflected by a strong attractive potential due to
an impedance mismatch [185]. The attractive part of the Lennard-Jones potential fornb ≥ 2 is
so strong that quantum reflection occurs and the two-body probability is suppressed atr ≈ rvdW.
Quantum reflection also explains the suppression of the probability for the deep soft-core van der
Waals potential. While the origin of the reflection mechanism is different for a deep potential and
a potential with a hard core, their wave functions behave in the universal manner. Indeed, they can
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be characterized by the analytical solution of the two-body Schrödinger equation for the van der
Waals potential at zero energy [119, 121, 122]

ϕ(r) = Γ

(
5
4

) √
xJ1

4

(
2
x2

)
− rvdW

a
Γ

(
3
4

) √
xJ− 1

4

(
2
x2

)
x ≡ r

rvdW
, (4.15)

whereΓ andJn are the Gamma and Bessel functions, respectively. This is shown in Fig. 4.2 as a
black dashed curve. The universal two-body suppression of the probability can be characterized
rather accurately by this two-body wave function.

The only notable different between the two-body wave functions for the Lennard-Jones potential
for all nb, for the4He potential, and for the deep soft-core van der Waals potentialnb & 4 is a small
oscillations occurring at short distance. The number of oscillations characterizes the number of
two-body bound states and thus changes whennb is varied. This difference however does not affect
the three-body physics so much, since the probability of finding particles in this region is already
very small.

Non-adiabatic deformation of the three-body wave function

In the hyper-radial potentialU0(R), there are two contributions: the adiabatic term~2[λ0(R) +
4]/mR2 and the non-adiabatic termQ00(R). In the left panel of Fig. 4.3, the adiabatic term (dotted
curves), the non-adiabatic term (dashed curves), and the total hyper-radial potential (solid curves)
are shown for the Lennard-Jones potential fromnb = 1 up tonb = 5. While the adiabatic part
is attractive except for a very small hyper-radius, the non-adiabatic part shows a strong repulsion.
Indeed, as shown in Eq. (4.10), the non-adiabatic partQ00(R) is a positive definite quantity, so that
it leads to a repulsive force. As can be seen from Eq. (4.10),Q00(R) describes a change in the hyper-
angular wave function as the hyper-radius is varied. A large non-adiabatic contribution shown in
the left panel of Fig. 4.3 suggests that the hyper-angular wave function changes rather abruptly as
the hyper-radius is varied. To visualize this point, in Fig. 4.4, we plot the probability of finding a
particle 3 when we put particles 1 and 2 at a given separationr12. To be more specific, we show a
contour plot of the following quantity in Fig. 4.4:

Pr1,r2(r3) = sin2α3 |Φn(R, α3, r̂12, ρ̂3)|2 . (4.16)

In the zero-range theory at unitarity, shown in the left panels, the hyper-angular wave function can
be written analytically as

Φ
(ZR)
0 (R, α3, r̂12, ρ̂3) =

∑
k=1,2,3

ψ(ZR)
n (R, αk)
sin 2αk

, (4.17)

whereψ(ZR)
n is the solution of the hyper-angular equation for the zero-range interactions at unitarity

(see Eq. (2.54)):

ψ(ZR)
0 (R, α) = sinh

[
s0

(
π

2
− α

)]
. (4.18)

This hyper-angular wave function does not involve any scale. Therefore, even when the hyper-
radius is varied, the shape of the hyper-angular wave function remains unchanged. The probability
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Hyper-radius Hyper-radius

Figure 4.3: Hyper-radial potentials calculated with the Faddeev three-body calculations (left) and
the simple two-body correlation model described in the main text (right) [147]. The dashed curves
show the non-adiabatic kinetic energyQ00(R) for the Lennard-Jones potentials of different depths,
corresponding to the unitarity limit with different numbers of two-body bound states ranging from
nb = 1 (blue) tonb = 5 (red). The solid curves show the full three-body potentialU0(R) obtained
by adding the adiabatic contribution~2[λ(R) + 4]/mR2 (dotted curves) obtained from Faddeev cal-
culations, which is shown by the dotted curves. [Figure adapted from Ref [147] with permission.
Copyright c© (2014) by The American Physical Society.]

density therefore remains the same up to a scale transformation, as shown in the left panel of
Fig. 4.4. The third particle is always located close to one of the two particles, as shown by green
dots in Fig. 4.4. This invariance of the hyper-angular wave function with respect to the hyper-radius
results inQ00(R) = 0.

On the other hand, for a finite-range potential, the hyper-angular wave function can have a
scale. It can therefore change its shape as the hyper-radius is varied, leading toQ00(R) > 0. In the
right panels of Fig. 4.4, the hyper-angular wave functions calculated with the low-energy Faddeev
equation for the Lennard-Jones potential (nb = 4) are shown. At large inter-particle separation,
the hyper-angular wave functions look almost similar to the zero-range one. One clear difference
is that there are two regions where the probability gets suppressed compared with the zero-range
counterpart. In these two spherical regions with their radius∼ rvdW, two of the three particles come
close, so that the universal two-body suppression of the probability seen in Fig. 4.2 occurs. At
large inter-particle separation, these excluded regions do no affectQ00(R) significantly, andQ00(R)
is small. However, as the two particles come closer12 ≈ rvdW, this two-body suppression leads
to an abrupt change in the hyper-angular wave function. Indeed, the two-body suppression pushes
out the wave function to a region forming a ring in-between the two particles, corresponding to an
equilateral shape. This change of shape happens very suddenly, making it difficult for the system to
follow the Efimov channel adiabatically and resulting in a strong repulsionQ00(R) > 0. As argued
above, the two-body suppression occurs in a universal manner for a deep potential or a potential
with a hard-core, so the abrupt change in the hyper-angular wave function also occurs universally
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Figure 4.4: Three-dimensional contour plots of the probability distribution in Eq. (4.16) of finding
a third particle for a given separation of the two other particles (indicated by a pair of small gray
balls connected by a black line) [147]. For clarity, the view is cut along a plane containing the
two particles. The top figures correspond to a separation of 6.0rvdW, while the bottom ones to a
separation of 1.4rvdW. The darker, the higher the probability of finding the third particle. In order to
appreciate the change in configuration between the figures, a typical location of the third particle is
indicated by a small green ball connected to the other two particles by green lines. The left figures
are calculated from the zero-range Efimov theory at unitarity. The right figures are calculated for
the Lennard-Jones potential at unitarity supporting four two-body bound states. [Figure adapted
from Ref. [147] with permission. Copyrightc© (2014) by The American Physical Society.]

for these classes of potentials.

Pair correlation model

To verify the above scenario, let us consider a trial hyper-angular wave function of the Bijl-
Jastrow form [186, 187]:

Φ
(model)
0 = Φ

(ZR)
0 ϕ(r12)ϕ(r23)ϕ(r13), (4.19)

whereϕ is the solution of the zero-energy Schrödinger equation (4.14). In this model hyper-angular
wave function, the zero-range Efimov configuration is taken into account byΦ

(ZR)
0 , while the two-

body suppression of the probability is taken into account byϕ’s. This model wave function may be
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seen as the simplest wave function ni which both the Efimov effect and the two-body suppression
of probability are properly taken into account, while all the other complicated effects are neglected.
If the hyper-angular wave function in Fig. 4.4 and the hyper-radial potential in Fig. 4.3 can be
reproduced with this model wave function, one can be rather sure that the non-adiabatic deforma-
tion scenario explains the physical origin of the universal three-body repulsion and the universal
three-body parameter.

We have confirmed that the model wave function in Eq. (4.19) shows a probability density
distribution which looks almost the same as those shown in the right panel of Fig. 4.4, with almost
no notable difference. We have also calculated the non-adiabatic termQ00 from Eq. (4.19), which
are shown as dashed curves in the right panel of Fig. 4.3. The non-adiabatic potentialsQ00 agrees
excellently with the one presented in the left panel, which shows the solution of the low-energy
Faddeev equation. This confirms our claim that the non-adiabatic deformation of the three-body
configuration originates from the suppression of two-body probability.

Summary

We have elucidated the physical origin of the universal three-body parameter as follows: for
particles interacting via a deep two-body potential or a two-body potential with a hard core at
short distance, the probability gets suppressed when two particles come close due to quantum
reflection or a hard-core repulsion, respectively. The two-body suppression leads to a non-adiabatic
deformation of the three-body wave function, resulting in a large non-adiabatic repulsionQ00(R).
This non-adiabatic deformation is the origin of the hyper-radial repulsion found in Ref. [73] and
Sec. 4.1.1. Since the two-body suppression occurs universally for a deep two-body potential or a
two-body potential with a hard core, the non-adiabatic repulsion also appears universally for these
potentials.

Our scenario can naturally explains why the three-body parameter is universal while thes-wave
scattering length is non-universal: the deformation of the wave function can occur for three particles
thanks to the hyper-angular degree of freedom, whereas there is no such degree of freedom for two
particles.

4.1.3 Some remarks

In Secs. 4.1.1 and 4.1.2, we present our argument based on the low-energy Faddeev equation
and on the single-channel approximation. These approximations have facilitated the physical argu-
ment greatly. As shown in Sec. 4.1.1, they successfully reproduce most features of the hyper-radial
potential obtained with a full three-body calculation, so they give qualitatively correct results. How-
ever, the low-energy Faddeev equation and the single-channel approximation are not quantitatively
reliable. Indeed, if one calculates the three-body parameter with the low-energy Faddeev equation
and with the single-channel approximation, the value of the three-body parameter disagrees with
experimentally observed value by a factor of about 50%. One therefore needs to take into account
higher-partial-wave contributions and solve the coupled equation to obtained the precise theoretical
values reported in Refs. [10, 73]. In Sec. 4.2, an alternative approach to calculate the three-body
parameter is introduced, which is inspired by the physical mechanism presented in this section. It
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turns out that the method is much more quantitatively accurate than the single-channel low-energy
Faddeev equation, successfully reproducing the experimentally observed universal value of the
three-body parameter.

4.2 Three-body parameter for general two-body potentials

4.2.1 Physical argument

In the previous section, the physical origin of the universal three-body parameter has been
clarified for potentials with the van der Waals tail. It is pointed out that the universal suppression
of the two-body probability is essential, because it induces a strong non-adiabatic repulsion and
renders the three-body parameter universal. Here, we recall that properties of the van der Waals
interaction have been used only to show that the suppression of the two-body probability occurs
universally. Therefore, even for a non-van der Waals type of potential, one can naturally expect that
the three-body parameter becomes universal from the same physical mechanism if the universal
suppression of the two-body probability occurs.

In Fig. 4.6, I show the zero-energy two-body wave functions at unitarity for various potentials:
the Lennard-Jones potential, the 8-4 potential

V84(r) = −
C4

r4

(
1− σ

4

r4

)
, (4.20)

the Gaussian potential

VGauss(r) = −CG exp

(
− r2

r2
0

)
, (4.21)

the Yukawa potential

VY(r) = −CY

exp
(
− r

r0

)
r

, (4.22)

the P̈oschl-Teller potential§ (see Fig. 4.5 (a) for its shape) [188, 189]

VPT(r) = CPT

 α(α − 1)

sinh2
(

r
r0

) − α(α + 1)

cosh2
(

r
r0

) , (4.23)

and the Morse potential (see Fig. 4.5 (b) for its shape) [189, 190]

VM(r) = CM

(
exp

[
−2

r − βr0

r0

]
− 2 exp

[
− r − βr0

r0

])
. (4.24)

All these potentials are assumed to be at unitarity with sixs-wave bound states (nb = 6) by adjusting
the parametersσ or C. One can see that the suppression of the two-body probability occurs for all
the potentials. Another notable feature is that the suppression occurs at a length scale characterized
by the effective rangereff for all the potentials. Indeed, for most physical potentials, the length scale

§The P̈oschl-Teller potential withα = 1 is sometimes referred to as the modified Pöschl-Teller potential, and it has
a hard repulsive core at short distance whenα > 1, while it is a smooth attractive potential whenα = 1
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Figure 4.5: (a) P̈oschl-Teller potential withα = 1 (black),α = 2 (red),α = 3 (blue),α = 5 (orange),
andα = 9 (purple). (b) Morse potential withβ = 1 (black),β = 2 (red), andβ = 3 (blue). An
arbitrary unit is taken for the vertical axis.

for this suppression can be generally characterized by the effective range through the following
formula [118]:

reff = 2
∫ ∞

0
dr

[
|ϕZR(r)|2 − |ϕ(r)|2

]
, (4.25)

whereϕ(x) andϕZR(x) = 1 − r
a

are the two-body wave functions at zero energy for a finite-range

potentialV(x) and for a zero-range potential, respectively. While the effective range is convention-
ally defined as a low-energy expansion parameter of the phase shift (see Eq. (2.4)), this formula
relates the effective range to a length scale associated with the pair correlation at zero energy.

As discussed in the previous section, this suppression of the two-body probability creates the
three-body repulsion through the non-adiabatic deformation of the three-body wave function. Al-
though the precise shape of the repulsive barrier may depend on shape of the two-body potential,
the effective range sets the location of the suppression of probability, and hence the hyper-radius
at which the universal hyper-radial repulsion appears. For most physical potentials, the two-body
wave function gets suppressed at short distance as the depth of the two-body potential is increased.
Therefore, one can expect that the three-body parameter can be characterized by the effective range
for most two-body potentials when they get sufficiently deep and the suppression of the two-body
probability occurs. This conjecture will be numerically confirmed in Sec. 4.2.2.

For a single-channel potential with the van der Waals tail, the effective range can be related to
the van der Waals length and thes-wave scattering length as [119, 120, 122]

reff =
2
3π
Γ2

(
1
4

) (1− a
a

)2

+

(
a
a

)2 rvdw, (4.26)

where

a =
4π

Γ2
(

1
4

)rvdw. (4.27)
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Figure 4.6: Two-body wave functions for the Lennard-Jones potential in Eq. (2.14) (pink), the 8-
4 potential in Eq. (4.20) (purple), the Gaussian potential in Eq. (4.21) (green), the Pöschl-Teller
potential in Eq. (4.23) withα = 1 (blue) andα = 2 (orange), the Morse potential withβ = 1
(black). The depth of these potentials is set to be at unitarity 1/a = 0 with 6 s-wave two-body
bound statesnb = 6. The wave function is normalized so thatϕ(r) → 1 at large distance. The red
dashed lineϕ(r) = 1 corresponds to the zero-range two-body wave function at unitarity.

In particular, the effective range is proportional to the van der Waals length at unitarity:

reff =
2
3π
Γ2

(
1
4

)
rvdw = 2.79rvdw. (4.28)

Therefore, the conjectured relation between the three-body parameter and the effective range incor-
porates the van der Waals class of potentials studied in Sec. 4.1, and can be regarded as a natural
generalization to systems interacting with a non-van der Waals type of potentials.

For most classes of potentials, the two-body wave function shows the suppression of the two-
body wave function as the depth of the two-body potential is increased. However, for some patho-
logical cases, there is no well-converged universal pair correlation. One clear example is the square-
well potential. For the square-well potentialV(r) ∝ −Θ(r0 − r), the zero-energy two-body proba-
bility density distribution|ϕ(r)|2 at unitarity is

|ϕ(r)|2 =
 1 (r > r0)

sin2
[

(2nb−1)π
2

r
r0

]
(r < r0)

(4.29)

This is shown in Fig. 4.7 for variousnb. One can see that the two-body wave functions do not show
any suppression of probability. This may be due to the discontinuity in the two-body potential. If a
two-body potential is continuous, particles can be accelerated in a semiclassical manner when the
two-body potential is attractive. This accelerated motion can lead to a mismatch in the impedance,
resulting in the suppression of probability when two particles get close. On the other hand, a
discontinuous jump does not allow any semiclassical acceleration of particles. This may explain
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Figure 4.7: Zero-energy two-body wave functions for the square-well potential at unitarity for
nb = 1 (blue),nb = 2 (black), andnb = 3 (orange) two-body bound states. A red dashed line
ϕ(r) = 1 which corresponds to the zero-range two-body wave function at unitarity.

why the wave function is not suppressed for the square-well potential near unitarity. Since the
suppression of the probability does not occur, one can expect that the three-body parameter for the
square-well potential does not converge to any universal value when the depth of the potential is
increased.

To summarize, for most physical interactions (except for some pathological cases such as the
square-well potential), the suppression of the two-body probability occurs at a length scale on the
order of the effective range when the depth of the potential is increased. This fact and the physical
mechanism shown in Sec. 4.1 suggest that for a wide class of deep two-body potentials, the three-
body parameter should be universal and can be characterized by the effective range. This conjecture
will be confirmed numerically in the next section.

Note that in Ref. [73], the three-body parameter of the Pöschl-Teller potential withα = 1 has
been obtained numerically by varying its depth, and it has been found to converge to a universal
value characterized by the effective range in the deep potential limit. While the relation between the
three-body parameter and the effective range has been shown only for the Pöschl-Teller potential
with α = 1 in Ref. [73], with hindsight it was the first example of the universal relation. Our
argument presented above elucidates why the three-body parameter should be characterized by the
effective range in their work. The physical argument presented in this section also suggests that this
relation is not a special feature of the Pöschl-Teller potential, but rather should hold universally for
a broad class of potentials.

4.2.2 Universality classes of the three-body parameter

In this section, we study the three-body parameter for various classes of two-body potentials.
In general, a three-body calculation with a deep two-body potential is rather formidable and re-
quires sophisticated numerical methods [73]. This is due to coexistence of a large length scale
∼ |a(1)

− | associated with the Efimov physics and a short wave length appearing inside the strongly
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attractive potential region for a deep two-body potential∼

√
~2

mV0
, whereV0 is the typical depth

of the two-body potential. To circumvent this difficulty, a simpler method is introduced. We use a
separable potential, which is constructed to reproduce the universal pair correlation of the original
two-body potential at zero energy. The separable potential constructed in this way naturally repro-
duces two-body properties at low energy, such as the effective range. A three-body problem with
the separable potential reduces to the Skorniakov–Ter-Martirosian type of one-dimensional integral
equation, which is much simpler than solving the three-body Schrödinger equation with the origi-
nal two-body potential. It is first shown that the three-body parameter calculated with the separable
potential agrees excellently with that obtained by solving the three-body Schrödinger equation.
This justifies us to use the separable potential as a much simpler and efficient way to evaluate the
three-body parameter of a system interacting with rather deep two-body potentials, facilitating our
study dramatically. Using the separable potential, the three-body parameter is calculated for vari-
ous classes of two-body potentials for a variable depth. It is shown that the three-body parameter
becomes universal when expressed in units of the effective range when the depth of the potential
gets large, confirming the conjecture presented in Sec. 4.2.1. We identify two classes of two-
body potentials, for which the three-body parameter shows the universality. One class corresponds
to short-range two-body potentials decaying as a power law, for which the two-body probability
is suppressed at short distance in a smooth fashion. The other corresponds to potentials decaying
faster than any power law, for which the two-body probability is suppressed abruptly whenr < 1

2reff.
The former one is relevant for the Efimov states in atomic physics, such as4He cluster [7, 8, 9, 10]
and ultracold atoms in the vicinity of a broad Feshbach resonance, while the latter is relevant for
the Efimov states in nuclear systems, such as halo states in the neutron rich nuclei [3, 4, 5].

Separable potential constructed to reproduce the pair correlation

A separable potential is a non-local potential first introduced by Y. Yamaguchi [191]:

V̂ =
~2

m
ξ |χ〉〈χ| . (4.30)

The advantage of the separable potential is its simplicity: the two-body Schrödinger equation with
the separable potential can be solved analytically, and the scattering amplitude and the wave func-
tion are obtained as

f (k) = −|χ(k)|2
4π

(
1
ξ
+

∫
d3q

(2π)3

|χ(q)|2
q2 − k2 − ı0+

)−1

, (4.31)

and

ψk(r) = eikr + 4π f (k)
∫

d3q
(2π)3

eiqr

q2 − k2 − ı0+
χ(q)
χ(k)

. (4.32)

By assuming an isotropic separable potentialχ(k) = χ(k) and taking the low-energy limit, the
scattering length is obtained as

a = − f (k = 0)

=

(
4π
ξ
+

2
π

∫ ∞

0
dq|χ(q)|2

)−1

|χ(0)|2 .
(4.33)
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The zero-energy wave function is obtained as

ψ0(r) = −
a
r
ϕ(r), (4.34)

where

ϕ(r) =
2
π

∫ ∞

0
dq

sinqr
q

χ(q)
χ(0)

− r
a
. (4.35)

One can easily see that this is consistent with the long-distance behavior shown in Eq. (2.13) if one
uses

lim
r→∞

∫ ∞

0
dq

sinqr
q

χ(q)
χ(0)

=
π

2
. (4.36)

The separable potential is one of the most commonly used pseudo-potential. Typically, for a
few-body problem in the vicinity of a broad Feshbach resonance, the separable potential is con-
structed to reproduce thes-wave scattering length of the original two-body potential, since the low-
energy two-body problem in the vicinity of a broad Feshbach resonance can be universally charac-
terized by thes-wave scattering length (see Sec. 2.1). In this approach, the value ofξ is determined
from Eq. (4.33) by fixinga, while χ(q) can be taken at one’s discretion. Therefore, simple func-
tions such as the Gaussian or the exponential functions are often used forχ(q). With the separable
potential, the three-body problem can also be solved much more easily than solving the three-body
Schr̈odinger equation for a system interacting with a pair-wise potential. Indeed, the three-body
problem with the separable potential reduces to the following Skorniakov–Ter-Martirosian type of
one-dimensional integral equation:

D(P)F(P) +
∫ ∞

0

q2dq
2π2

H(P,q)F(q), (4.37)

where

D(P) =
1
ξ
+

∫ ∞

0

dq
2π2

q2 |χ(q)|2

q2 − mE
~2
+ 3

4P2
, (4.38)

and

H(P,q) =
∫ 1

−1
du
χ∗

(√
q2 + 1

4P2 + qPu
)
χ
(√

P2 + 1
4q2 + qPu

)
P2 + q2 + Pqu− mE

~2

. (4.39)

Equation (4.37) can be easily solved numerically§ with the same technique as was done for Eq. (3.20)
in Chapter 3.

While choosing a simple functional form such as Gaussian forχ(q) simplifies the calculations,
one disadvantage of this treatment is that the two-body correlation of the original two-body poten-
tial is not correctly reproduced except for thes-wave scattering length. Since the two-body corre-
lation at low-energy is important in determining the value of the three-body parameter as has been
argued in Sec. 4.1, the three-body parameter calculated with the separable potential constructed
above would differ significantly from that of the original two-body potential. Therefore, it would
be inadequate to use this naive pseudo-potential.

§A remark on the contribution:Most of the three-body numerical calculations in this section has been performed
by P. Naidon.
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Figure 4.8: Solutions of the two-body Schrödinger equation at unitarity for the Gaussian potential
in Eq. (4.21) corresponding tonb = 2 (solid curves) and the separable potential calculated from

Eqs (4.30), (4.33), and (4.40) (dashed curves). The energies are taken asE =
~2

2mr2eff
(black),

E =
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mr2
eff

(blue), andE =
3~2

mr2
eff

(orange).

However, taking advantage of the freedom of choice forχ(q), we can chooseχ(q) such that
the zero-energy wave function for the separable potential exactly reproduces the pair correlation
of the original two-body potential. From Eq. (4.35), one obtains the relation betweenχ(q) and the
zero-energy pair correlation as

χ(q)
χ(0)

= 1+ q
∫ ∞

0
dr

[ r
a

(
1− a

r
− ψ0(r)

)]
sinqr

= 1− q
∫ ∞

0
dr

(
1− r

a
− ϕ(r)

)
sinqr.

(4.40)

One can reproduce any form of the zero-energy pair correlation exactly by constructingχ(q) from
Eq. (4.40). To be more specific, we construct a separable potential and solve the three-body problem
according to the following procedure:

1. Solve the two-body Schrödinger equation for the two-body potential one wants to deal with,
and obtainψ0(r) (or equivalently the pair correlationϕ(r)).

2. Substituteψ0(r) (or ϕ(r)) into Eq. (4.40) and obtainχ(q).

3. Substituteχ(q) into Eq. (4.33) and obtainξ for a fixed value ofa.

4. Usingχ(q) andξ obtained in 2. and 3., solve the three-body problem with Eq. (4.37).

The separable potential constructed in this way has the advantage of being easily tractable thanks
to its separability while at the same time reproducing the zero-energy pair correlation accurately.
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Figure 4.9: Trimer (red solid curve) and dimer (black solid curve) energies for the separable po-
tential in Eqs (4.30), (4.33), and (4.40) as a function of the inverse scattering length [184]. The
trimer curve is calculated with the pair correlation of a sufficiently deep van der Waals potential in
Eq. (4.15). The dotted line represents the universal dimer energy in Eq. (2.10). The dashed curve
represents the dimer energy for a sufficiently deep van der Waals potential obtained by solving
the two-body Schr̈odinger equation numerically. [Figure adapted from Ref. [184] with permission.
Copyright c© (2014) by The American Physical Society.]

Furthermore, from Eq. (4.25), one can see that the separable potential also reproduces the effective
range of the original two-body potential. This suggests that the separable potential reproduces not
only the zero-energy two-body physics but also finite-energy properties. In Fig. 4.8, I compare
two-body wave function of the Gaussian potential and the separable potential constructed as above
at finite energy. One can see that the two-body wave functions agree excellently for most of the

region whenE .
~2

mr2
eff

. A slight discrepancy is barely visible at short distance, which gets larger

at higher energy.

In addition to the low-energy continuum states, weakly bound two-body bound states can also
be reproduced fairly well with the separable potential. In Fig. 4.9, binding energy of a weakly
bound dimer for a deep van der Waals potential is compared with that calculated with the separable
potential. They agree excellently at low energy, while they deviate from each other when|E| &
~2

mr2vdw

. Note that the agreement is much better than the universal dimer energy
~2

ma2
. This can be

naturally understood by noting that the effective range is accurately reproduced with the separable
potential, while the universal dimer formula amounts to takingreff = 0.

In Fig. 4.9, we also show the binding energy of the ground-state Efimov trimer calculated with
the separable potential for the van der Waals correlation in Eq. (4.15), corresponding to an infinitely
deep van der Waals potential. We found the universal values of the binding energy at unitarity and
the three-body threshold to beκ∗ = 0.187(1)r−1

vdW anda(1)
− /rvdW = −10.86(1), respectively. Similar

results can be obtained for pair correlationsϕ(r) with a similar tail. For example, the pair correlation
for the Lennard-Jones potential withnb = 1 leads toκ∗ = 0.205(1)r−1

vdW anda(1)
− /rvdW = −10.23(1).
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Table 4.1: Scattering length at the three-body thresholda(1)
− and binding energy at unitarityE3 =

−~
2(κ∗)2

m
of the ground-state trimer for various potentials withnb = 1. The data in the right column

are taken from Ref. [192], and those in the left column are calculated with the separable potential
introduced in Eqs (4.30), (4.33), and (4.40). [Table adapted from Ref. [184] with permission.
Copyright c© (2014) by The American Physical Society.]

Separable potential Ref. [192]

Potential a(1)
− [r0] E3

[
~2

mr2
0

]
a(1)
− [r0] E3

[
~2

mr2
0

]
Yukawa -6.55 -0.134 -5.73 -0.172

Exponential -11.0 -0.042 -10.7 -0.047
Gaussian -4.47 -0.223 -4.27 -0.236

Morse (β = 1) -12.6 -0.0299 -12.3 -0.0325
Morse (β = 2) -16.3 -0.0166 -16.4 -0.0174

Pöschl-Teller (α = 1) -6.23 -0.123 -6.02 -0.135

These values are consistent with the experimentally reported value of the three-body parameter
a(1)
− = −(8− 10)rvdW (see Figs. 2.11 and 2.12), providing further support for our scenario shown in

Sec. 4.1 as the physical origin of the universal three-body parameter.

In Table. 4.1, the scattering length at the three-body thresholda(1)
− and the binding energy at

unitarity E3 = −
~2(κ∗)2

m
of the ground-state Efimov trimer calculated with the separable poten-

tial and the original two-body potential are compared. For the latter ones, the data is taken from
Ref. [192], in which the three-body Schrödinger equation has been solved numerically with a vari-
ational method. One can see that the separable potential reproducesa(1)

− and E3 fairly well for
various classes of two-body potentials. This can also be seen in Fig. 4.10, in whichκ∗ obtained
with the separable potential is plotted against those obtained by solving the three-body Schrödinger
equation with the original two-body potential [192]. They agree with each other within a few per-
cents for various classes of potentials. This justifies the use of the separable potential to evaluate
the three-body parameter and investigate its universality. Compared with solving the three-body
Schr̈odinger equation, Eq. (4.37) can be solved much faster and more easily, so it is a powerful
tool in investigating the three-body parameter for various classes of potentials, especially when the
potential is strongly attractive. More generally, the separable potential method has a potential to be
applied to study low-energy few-body systems in various kinds systems with formidable interaction
potentials in a rather simple and efficient manner.

Universality classes of the three-body parameter

Now that we have established the separable potential as a quantitatively reliable method to
evaluate the three-body parameter, we shall investigate the three-body parameter for various types
of two-body potentials by varying their depth. Figure 4.11 shows the binding wave number of the
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Figure 4.10: Binding wave numberκ∗ of the ground-state Efimov trimer at unitarity calculated with
the separable potential in Eqs (4.30), (4.33), and (4.40) versusκ∗ obtained by solving the three-body
Schr̈odinger equation for the original two-body potential. The latter values are taken from Ref. [73]
for the Lennard-Jones potential (nb = 1) and from Ref [192] for all the other potentials (nb = 1).
The shaded area represents the region of 10% or less deviation. [Figure adapted from Ref. [184]
with permission. Copyrightc© (2014) by The American Physical Society.]

ground-state Efimov trimer at unitarity for various classes of potentials: the Gaussian potential,
the P̈oschl-Teller potential withα = 1 (see Eq. (4.23) for its definition), the Yukawa potential,
the Morse potential withβ = 1 (see Eq. (4.24) for its definition), the Lennard-Jones potential,
the 8-4 potential defined in Eq. (4.20), as well as the neutron-neutron interaction potential in the
1S0 channel [193]. For all of these potentials, the three-body parameter converges to a certain
value as the depth of the potential is increased. The converged values are characterized by the

effective range, and they are in the narrow window ofκ∗ = (0.2 − 0.4)
( reff

2

)−1

. This is consistent

with the argument presented in Sec. 4.2.1, which predicts that the three-body parameter should be
characterized by the effective range for a broad class of two-body potentials.

One also finds in Fig. 4.11 thatκ∗ converges to the same value for all the rapidly decaying poten-
tials (the Gaussian potential, the Pöschl-Teller potential, the Yukawa potential, the Morse potential,
and the neutron-neutron potential), whileκ∗ for the potentials with a power-law decaying tail con-
verges to slightly different values from them. This discrepancy can also be explained naturally with
the physical mechanism presented in Sec. 4.1 by noting the difference in the behavior of the pair
correlation. In Fig. 4.12, the zero-energy two-body wave functions are shown for the Pöschl-Teller
potential and the Gaussian potential. If the two-body wave functions are shown in units ofr0 (see
the insets), they seem to show no universal behavior. However, if they are plotted in units of the
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Figure 4.11: Binding wave numberκ∗ of the ground-state Efimov trimer at unitarity calculated with
the separable potential in Eqs (4.30), (4.33), and (4.40) as a function of the depth of the potential
quantified by the number ofs-wave two-body bound statesnb. The two horizontal dashed lines
represent the three-body parameters obtained from the universal pair correlation for the power-law
class of potentials in Eq. (4.42) withn = 4 (purple dashed line) andn = 6 (blue dashed line), and
the universal stepwise pair correlation in Eq. (4.41) (orange dashed line). [Figure adapted from
Ref. [184] with permission. Copyrightc© (2014) by The American Physical Society.]

effective range (see the main panels), they converge to a stepwise pair correlation:

ϕ(r) =

{
0 (r < 1

2reff)
1 (r > 1

2reff)
(4.41)

This is because the effective range gets progressively larger as the depth of the potential is increased,

which means that there is a sharp drop of probability in the two-body wave function nearr =
1
2

reff

when distances are expressed in units ofreff. It can be shown that this rescaled two-body wave
function converges to the step function in the limit of strongly attractive potentials. In Fig. 4.11,
the three-body parameter calculated with this universal stepwise correlation is also shown (orange
dashed line). The three-body parameter for the rapidly decaying potentials slowly converges to this
universal value.

On the other hand, for potentials with a power-law decaying tail, the pair correlation behaves
rather differently from that of the rapidly decaying potentials. In Fig. 4.13, the zero-energy two-
body wave functions are shown for potentials with−1/r4 and−1/r6 tails. As the depth of the
potential is increased, the pair correlation converges to a smooth universal function. For poten-
tials with a power-law tail−1/rn, the zero-energy pair correlation can be derived analytically by
assuming that the probability amplitude is mostly located in the tail region, which is the case if the
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Figure 4.12: Zero-energy two-body wave function at unitarity for (a) the Pöschl-Teller potential,
and (b) the Gaussian potential. In each graph, the solid curves correspond in order of opacity to
potential depths supporting 1, 2, 10, and 120s-wave bound states, respectively. The dashed curve
shows the universal pair correlation limit in Eq. (4.41). The horizontal axis is scaled in units of1

2reff

in the main graphs, while it is shown in units ofr0 in the insets. [Figure adapted from Ref. [184]
with permission. Copyrightc© (2014) by The American Physical Society.]

short-distance region is strongly repulsive or attractive [194]:

ϕ(r) = Γ

(
n− 1
n− 2

) √
xJ 1

n−2

(
2x−

n−2
2

)
− rn

a
Γ

(
n− 3
n− 2

) √
xJ− 1

n−2

(
2x−

n−2
2

)
, (4.42)

wherern =

(
1

n− 2

√
mCn

~

) 2
n−2

is the length scale characterizing the tail of the power law potential

andx = r/rn. Whenn = 6, rn becomes identical to the van der Waals lengthr6 = rvdw, and Eq. (4.42)
becomes identical to the van der Waals pair correlation shown in Eq. (4.15). The universal pair
correlation in Eq. (4.42) is shown in Fig. 4.13 as dashed curves. The pair correlation is suppressed
smoothly at short distance, which is in marked contrast to the discontinuous pair correlation in
Eq. (4.41). In Fig. 4.11, the three-body parameters calculated with the universal correlation in
Eq. (4.42) are also shown (purple dashed line and blue dashed line). The three-body parameter for
the power-law potentials converges to this universal value much more rapidly than the exponentially
decaying potentials. This originates from the rapid convergence of the pair correlation shown in
Fig. 4.13, while the convergence is much slower for the exponentially decaying potentials as shown
in Fig. 4.12.

Universal three-body parameter described by Eq. (4.42) therefore seems rather distinct in na-
ture from the first class characterized by Eq. (4.41), so it would be natural to classify them as two
different classes of universality: those characterized by the stepwise pair correlation, and those
characterized by the power-law class of smooth pair correlation. The first universality class is rel-
evant for the Efimov states in the nuclear systems, in which the inter-neucleon potentials decays
rapidly at large inter-particle separation. The second universality class is relevant for atomic sys-
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(a) 8-4 potential

(b) Lennard-Jones

Figure 4.13: Zero-energy two-body wave function at unitarity for (a) the 8-4 potential, and (b) the
Lennard-Jones potential. In each graph, the solid curves correspond in order of opacity to potential
depths supporting 1, 2, and 3s-wave bound states, respectively. The dashed curve represents the
universal pair correlation in Eq. (4.42). [Figure adapted from Ref. [184] with permission. Copyright
c© (2014) by The American Physical Society.]

tems ranging from4He cluster to ultracold alkali atoms which are fine-tuned in the vicinity of a
broad Feshbach resonance.



Chapter 5

Perfect screening of the inter-polaronic
interaction

Recently, there has been growing interest in bridging the Efimov physics and many-body
physics. For identical bosons which interact resonantly with each other, it has been demonstrated
theoretically that there appear four-body bound states [77, 78, 79, 80], five-body bound states [81,
82, 83], ...., andN-body bound states associated with the Efimov states at least up toN ≈ 10−
40 [84, 85]. Some of these theoretical predictions have been confirmed in recent experiments in
ultracold atoms. Indeed, signatures of the universal four-body bound states [26, 45, 68, 88] and five-
body bound states [89] have recently been observed. Few-body physics studied for more than three
particles can be regarded as an attempt to reach many-body physics in the bottom-up approach, by
increasing the number of particles one by one.

There is an alternative approach to connect few-body physics and many-body physics. In some
literature [94, 95, 96, 97, 98, 99, 100, 101], an interplay between few-body and many-body physics
has been studied by considering a few-body problem in some many-body backgrounds. Two par-
ticles immersed in a Fermi sea has been studied in Refs. [94, 95, 96, 97], while two particles
immersed in a Bose-Einstein condensate has been studied in Refs. [99, 100]. These (N + 2)-body
systems are closely related to the few-body problems for more than three particles. Indeed, when
one considers a three-body system of two particles resonantly interacting with another particle B,
and starts increasing the number of the B particle, one can regard a system of two particles im-
mersed in a many-body background as the limit where the number of B particles is large and the
thermodynamic limit is taken for B particles.

Recently, it has been found that the Fermi sea tends to suppress the formation of the Efimov
trimers [94, 97]. In Ref. [94], resonantly interacting (N+1+1)-body problem is considered with
N � 1, so that one of the three components is degenerate and forms a Fermi sea. By assuming that
the effect of the Fermi sea is merely to introduce a momentum cutoff in the three-body problem,
just like what L. N. Cooper did in the study of superconductivity [195], they have found that the
formation of the Efimov trimers is suppressed by the Fermi sea. A similar conclusion has also been
obtained numerically for a system of two heavy particles immersed in a Fermi sea [97]. While
these studies have demonstrated the suppression of the Efimov trimers for (N + 2)-body systems,
one may wonder whether a similar suppression can occur for a (N + 3)-body system,(N + 4)-body
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system, etc... Four-body systems of three identical particles resonantly interacting with another
particle have recently been studied for both bosonic [196] and fermionic systems [90, 91, 92].
For a four-body system of three heavy bosons resonantly interacting with one light particle, it has
been demonstrated that there is no four-body Efimov state, but still there exists four-body bound
states associated with Efimov trimers [196]. For a four-body system of three identical fermions and
one light particle, on the other hand, it has been demonstrated that four-body bound states of the
Kartavtsev-Malykh character and the four-body Efimov states appear when the mass ratio between
the fermions and the other particle is larger than 9.5 and 13.3, respectively [90, 92]. If the light
particle is assumed to be a fermion and their number is increased in these systems, one arrives at
the (N + 3)-body problem: three heavy particles immersed in the Fermi sea of the light particles.
Does the formation of the four-body bound states gets suppressed by the Fermi sea of the light
particles? What about four, five, ..., andNH heavy particles immersed in a light Fermi sea?

In this chapter, I answer this question by studying the effective interaction betweenNH heavy
particles immersed in a Fermi sea of light spinless (i.e., spin-polarized) fermions. With the Born-
Oppenheimer method, I analytically show in Sec. 5.1 that the effective interaction between the
heavy particles vanishes in the limit of high light-fermion density. To be more specific, I prove the
following theorem:� �

Theorem. Let us consider a mixture ofNH heavy particles with massM and spinless (i.e.,
spin-polarized) light degenerate fermions with massmat zero temperature. The statistics of the
heavy particles is arbitrary: they can be identical fermions, bosons, or distinguishable particles.
The number of the light fermions is assumed to be so large that the Fermi sea is formed and
the grand canonical ensemble can be applied to the light fermions. The interaction between the
heavy particles and the light fermions is assumed to be a zero-range interaction with thes-wave
scattering lengtha (see Eqs. (2.19) and (2.22)). The light spinless (i.e., spin-polarized) fermions
do not interact with each other at low energy due to the Pauli exclusion principle. The heavy
particles are assumed not to interact with each otherd. Then, within the Born-Oppenheimer
method, the effective interactionVeff(R1, R2, ..., RNH ) between theN heavy particles positioned
at (R1, R2, ..., RNH ) mediated by the light fermions vanishes in the limit ofkF → +∞:

lim
kF→+∞

Veff(R1, R2, ..., RNH ) = 0, (5.1)

wherekF is the Fermi momentum of the light fermions.

dThis assumption is justified when the heavy particles are identical fermions. Even when the interaction
between the heavy particles is present, it merely adds to the effective interaction in the Born-Oppenheimer ap-
proximation.� �

Thus, the effective interaction between the heavy particles becomes vanishingly small in the dense
fermionic environment. Note that the theorem is proved under a rather general condition:NH and
a can take on any value as long as|a|, |Ri − R j | � k−1

F → 0 is satisfied. Therefore, it incorporate
the unitarity limit 1/a = 0. The theorem suggests that the formation of theN-body bound states
associated with the Efimov effect is generally suppressed in the presence of a dense Fermi sea of
light particles. In the case of two heavy particles immersed in the Fermi sea, the suppression of the



114 Chapter 5. Perfect screening of the inter-polaronic interaction

trimer formation has been numerically found in Ref. [97]. In addition to providing an analytical
support for Ref. [97], our theorem generalizes it to arbitrary number of heavy particles immersed
in the Fermi sea.

The theorem is closely related to polaron physics, which has been realized recently in ultracold
atoms [102] and has been studied with great theoretical [96, 105, 106, 107, 108] and experimental
interest [56, 102, 103, 104, 197]. In a system with large population imbalance, minority atoms
interact with the surrounding majority atoms and form dressed quasi-particle states called polaron
states. Our system can be regarded asNH heavy polarons in a Fermi sea of light fermions. The
theorem claims that the Born-Oppenheimer interaction between the heavy polarons gets vanishing
small when the density of the surrounding fermions gets large.

We ascribe the physical origin of this vanishing effective interaction to the screening in the
neutral Fermi system. While the screening is a famous phenomenon in the charged Fermi system,
for a neutral Fermi system, little analytical results have been obtained, especially in the resonantly
interacting regimekF |a| � 1. The above theorem suggests that the screening phenomenon occurs
for the neutral Fermi system, including the resonantly interacting regime.

This chapter is organized as follows. In Sec. 5.1, I define the effective interaction between the
heavy particles within the Born-Oppenheimer method, and prove the main theorem. In Sec. 5.2,
the screening phenomenon in the neutral Fermi system is discussed. I ascribe the physical origin
of the vanishing interaction to the screening phenomenon in the neutral Fermi system. In Sec. 5.3,
physical implications of the theorem are discussed. In Sec. 5.4, the finite temperature effects and
the non-adiabatic effects beyond the Born-Oppenheimer approximation are discussed.

5.1 Theoretical description of the vanishing inter-polaronic in-
teraction

In this section, the effective interaction between the heavy particles is studied. In Sec. 5.1.1, the
effective interaction is defined with the Born-Oppenheimer approximation. In Sec. 5.1.2, I prove
the main theorem.

5.1.1 Inter-polaronic interaction in the Born-Oppenheimer approximation

The effective interaction between the heavy particlesVeff(R1, R2, ..., RNH ) is defined in the same
manner as in Refs. [96, 97]. With the Born-Oppenheimer approximation, one first solves the
Schr̈odinger equation for the light fermions by regarding the heavy particles as fixed impurities,
positioned atR1, R2, ..., RNH . Then, the energy eigenvalue of the light particles gives an effec-
tive interaction between the heavy particles. Since the light fermions are assumed not to interact
with each other, the solution of the Schrödinger equation for the light fermions is simply given
by the Slater determinantΨL(r1, r2, ...) = A

∏
i

ψ(i)
R (r i), whereA is the antisymmetrizer,r i is the

position of thei-th light fermion, andψ(i)
R ’s are the solutions of the single-particle Schrödinger

equation in the presence of the impurity potentials located atR = (R1, R1, ..., RNH ). The energy
eigenvalue of the light particles is the sum of the single-particle eigenvaluesεi(R) corresponding to
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ψ(i)
R : E(R) =

∑
i

εi(R). The effective interaction between the heavy particles induced by the light

fermions is obtained by subtracting the total energy ofN independent polarons:

Veff(R1, R2, ..., RNH ) = E(R) − lim
|Ri j |→∞

E(R), (5.2)

where lim
|Ri j |→∞

means that all the heavy particles are far apart from each other so that they may be

regarded asNH independent polarons:

lim
|Ri j |→∞

E(R) = E0 − NHµ0, (5.3)

whereE0 is the total energy of non-interacting Fermi gas, andµ0 is the energy shift induced by a
single heavy particle [105]:

µ0 =
~2k2

F

2πm

[
(1+ y2)

(
π

2
+ arctany

)
+ y

] (
y =

1
kFa

)
. (5.4)

For NH = 2 (i.e. two heavy particles immersed in the light Fermi sea),Veff has been studied
numerically in Ref. [96]. As the number of the heavy particles increases, however, it becomes im-
practical to calculateVeff numerically, since the effective interaction cannot be written as a simple
sum of two-body interactions, but rather it includes all the three-body, four-body, ..., andN-body
interactions. To circumvent this difficulty, I use a formal scattering theory to evaluateVeff analyti-
cally.

5.1.2 Proof of the theorem

To prove the theorem, one needs to evaluate the effective interaction in Eq. (5.2). The total
energy of the light fermionsE(R) is the sum of the contributions from the continuum states (εi ≥ 0)
and the bound states (εi < 0):

E(R) =
∑
εi≥0

εi(R) +
∑
εi<0

εi(R). (5.5)

To evaluate the continuum part, the scattering theory can be used by regarding the heavy particles
as fixed impurity potentials located atR1, R1, ..., RNH . Let us define the scattering phase shiftsδn(k)
induced by the sum of the impurity potentials as eigenvalues of the S-matrixS(k) [198, 199]:

S(k)vn(k) = e2iδn(k)vn(k). (5.6)

Since the heavy particles can be located rather randomly, the potential created by the heavy particles
generally do not have any symmetry. Thus, the scattering phase shift and theS-matrix are those for
a potential with no symmetry: non-central, parity non-conserving, etc... The scattering theory we
use in the following argument is also for a non-symmetric potential.

Let us first show that the continuum part of the effective interaction can be written by the
scattering phase shifts through the following lemma:
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� �
Lemma(generalized Fumi theorem)

E(R) = Econt(R) + EBS(R), (5.7)

where Econt(R) and EBS(R) are the continuum and bound-state contributions, respectively,
which are given by

Econt(R) = − ~
2

πm

∑
n

∫ kF

0
kdkδn(k) + E0, (5.8)

whereE0 is the total energy of non-interacting Fermi gas and

EBS(R) =
∑
εi<0

εi(R). (5.9)

� �
In the case of a single impurity (NH = 1) in the absence of bound states, this lemma reduces to the
Fumi theorem [200]:

E(R) − E0 = −
~2

πm

∑
n

∫ kF

0
kdkδn(k). (5.10)

In this case, the potential created by the heavy particle is a central potential, so that the angular
momentum becomes a good quantum numbern → (`,m). In the case of two heavy particles
immersed in the Fermi sea, the above theorem has been derived in Ref. [96]. In this case, the parity
is a good quantum number. ForNH ≥ 3, the configuration of the heavy particles can vary arbitrarily,
and there is no good quantum number.

Proof of lemma.We use the Friedel sum rule [201, 202]:

NI − N0 =
1
π

∑
n

δn(kF), (5.11)

wherekF is the Fermi momentum of the light fermions, andNI and N0 are the numbers of the
light fermions evaluated by the grand canonical ensemble with and without the impurity poten-
tial, respectively. For a central potential, the indexn represents the angular momentum quantum
numbers (̀,m), and one recovers the original Friedel sum rule. While the Friedel sum rule was
originally proved for an ideal Fermi gas interacting with a central impurity potential [201], it was
subsequently generalized for an interacting system with a non-central potential [202]. The impurity
potential produced byNH heavy particles, in general, is a non-central potential, but still the Friedel
sum rule remains valid.

The generalized Fumi theorem can be proved by using the Friedel sum rule. Recall that the
number of the light fermions is related to the thermodynamic functionΩ of the light fermions

through the thermodynamic relation

(
∂Ω

∂µ

)
T,V

= −N. By integrating this relation with respect to the

chemical potential for systems with and without the impurity potentials, and using the Friedel sum
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rule, we obtain

ΩI −Ω0 = −
∫
µ≥0

(NI − N0)dµ −
∫
µ<0

(NI − N0)dµ,

= − ~
2

πm

∑
n

∫ kF

0
kdkδn(k) −

∫
µ<0

NIdµ,
(5.12)

whereΩI andΩ0 are the thermodynamic potentials with and without the impurity potentials, re-
spectively. In deriving the second equality, we use the fact that there is no bound state in the
absence of any potential:N0 = 0 for µ < 0. Since the light fermions are non-interacting, we can

put µI ≈ µ0 =
~2k2

F

2m
in Eq. (5.12). Indeed, the shift in the energy level induced by the impurity

potential is of the order ofV−
1
3 , whereV is the volume of the system, and this shift is negligible

in the thermodynamic limit. SubstitutingNI =
∑

i

Θ(µ − εi(R)), whereΘ is the Heaviside step

function, the second term in the second line of Eq. (5.12) can be evaluated as∫
µ<0

NIdµ = −
∑
εi<0

εi(R). (5.13)

Substituting this into Eq. (5.12), we arrive at the following equation

ΩI −Ω0 = −
~2

πm

∑
n

∫ kF

0
kdkδn(k) +

∑
εi<0

εi(R). (5.14)

This is equivalent to the generalized Fumi theorem in Eqs. (5.7), (5.8), and (5.9).
Proof of the main theorem.By using the generalized Fumi theorem, we can prove the main

theorem. We first recall the following relation between the phase shiftsδn(k) and the Fredholm
determinantD(k) [198, 199]:∑

n

δn(k) = − k
4π

∫
dxUR(x) +

i
2

log

[
D(k)
D∗(k)

]
, (5.15)

whereUR is the sum of the impurity potentials produced by the heavy particles. The Fredholm de-
terminant is defined from the kernel matrixK(k) of the Lippmann-Schwinger equation asD(k) =
det[1− λK(k)]λ=1, and has the following properties for a general short-ranged, non-central poten-
tial [198, 199]:

1. D(k) is well-defined and analytic for Imk ≥ 0;

2. lim |k|→∞ D(k) = 1 for Imk ≥ 0;

3. For a realk, D∗(k) = D(−k);

4. The zero ofD(k = iκ) = 0 in the upper-half complexk-plane has a one-to-one correspondence

with a bound state with its energyε = −~
2κ2

2m
;
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5. The zero ofD(k) can appear either on a positive imaginary plane, or at the origink = 0 for a
short-range potential.

Substituting Eq. (5.15) intoEcont(R) and differentiating both sides with respect toRi, we obtain

∇Ri E
cont(R) = − i~2

2πm

∫ kF

0
kdk∇Ri log

[
D(k)
D∗(k)

]
= − i~2

2πm

∫ kF

−kF

kdk
∇Ri D(k)

D(k)
.

(5.16)

In deriving the second equality, we have used the property 3 to transform the integration ofD∗(k)
into that ofD(k) along the negative real axis. Now, let us take the limitkF → +∞. The properties
2 and 3 ensure that there is a well-defined limit for Eq. (5.16). Furthermore, the properties 1-3 also
justify the change of the integration contour into pathsC j ’s encircling the zeros ofD(k):

lim
kF→∞

∇Ri E
cont(R) = − i~2

2πm

∑
j

∫
C j

kdk
∇Ri D(k)

D(k)
. (5.17)

Note that we can putD(k) = α j(k − iκ j) +O((k − iκ j)
2) close to the zero pointk ≈ iκ j if the bound

state is not degenerate [198, 199]. Substituting this into Eq. (5.17) and performing the contour
integration, we obtain

lim
kF→∞

∇Ri E
cont(R) = ∇Ri

∑
j

~2κ2
j

2m

= −∇Ri E
BS(R).

(5.18)

This implies that the continuum contribution exactly cancels the bound-state one, and the effective
interaction vanishes:

lim
kF→∞

∇Ri E(R) = lim
kF→∞

∇Ri Veff(R1, R2, ..., RNH ) = 0. (5.19)

When the bound states aren-fold degenerate, on the other hand,D(k) behaves asD(k) ≈ α(k −
iκ j)

n+O((k− iκ j)
n+1) close to the zero point [198, 199]. Even with such a degeneracy, we can derive

Eq. (5.18) from Eq. (5.17), and the above result remains valid.

5.2 Physical origin of the vanishing inter-polaronic interaction

As can be seen in Eq. (5.18), the effective interactions originating from the bound states and
continuum states cancel exactly in the limitkF → +∞. For NH = 2, there is one bound state when

R12 � |a|. This bound state produces an attractive inverse-square potentialEBS(R) = − ~
2Ω2

2mR2
12

,

whereΩ = 0.5671... (see Sec. 2.3.1). When there is only one light fermion, the Efimov states of the
two heavy and one light particles are formed by this inverse square attraction. As the number of the
light fermions is increased, the continuum partEcont(R) starts to produce an additional repulsion,
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Figure 5.1: Density variations induced by a single heavy impurity for (a)a < 0 and (b)a > 0.
In Fig. (a),∆ρ(r) is shown forkFa = −10 (red dashed curve) andkFa = −30 (blue solid curve).
In Fig. (b), ∆ρc(r) is shown forkFa = 10 (red dashed curve) andkFa = 30 (blue solid curve).
The black dotted curve represents−∆ρB(r). The inset in Fig. (b) shows the total density variation
∆ρ(r) = ∆ρB(r) + ∆ρc(r). [Figure adapted from Ref. [203] with permission. Copyrightc© (2014)
by The American Physical Society.]

canceling the Efimov attraction and suppressing the Efimov effect. Thus, the continuum of the
Fermi sea tends cancel the attraction induced by the bound state.

The cancellation of the bound-state contribution by the continuum contribution can be physi-
cally understood as originating from the screening effect. Crudely speaking, one can think that the
effective interaction between the heavy particles is induced by the density variation caused by the
impurities. Let us then consider the density variation of the light fermions∆ρ(r) caused by a single
impurity. The density variation can be expressed as the sum of the bound-state and continuum-state
contributions∆ρ(r) = ∆ρB(r) + ∆ρc(r), where

∆ρB(r) =
θ(a)

2πar2
e−

2r
a ,

∆ρc(r) =
1

2π2r2

∫ kF

0
dk

[
sin2(kr + δ0(k)) − sin2 kr

]
,

(5.20)

andδ0(k) is thes-wave phase shift induced by the impurity: tanδ0(k) = −ka. In Fig. 5.1, we show
∆ρ(r)’s for several values ofkFa. For a < 0 (Fig. 5.1 (a)), there is no bound state and∆ρB(r) =
0. The density variation reflects the Friedel oscillations characterized bykF. As kF increases,
the oscillations become faster, but the amplitude remains the same. Fora > 0 (Fig. 5.1 (b)),
∆ρ(r) is the sum of∆ρB(r) and∆ρc(r). We note that∆ρc(r) follows the−∆ρB(r) curve on average,
so that the continuum states screen the bound-state contribution. Due to this screening effect,
∆ρ(r) undergoes fast oscillations around zero on both positive and negative sides ofa. Thus, the
interaction between the heavy particles mediated by this density variation should become weaker
askF increases regardless of the value of thes-wave scattering length or the distance between the
heavy particles.
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The screening is closely related to the Friedel sum rule. Indeed, the Friedel sum rule suggests∫
d3r∆ρB(r) +

∫
d3r∆ρc(r) =

1
π
δ0(kF). (5.21)

In the high-fermion density limit,δ0(kF → +∞)→ 0 and we obtain∫
d3r∆ρB(r) +

∫
d3r∆ρc(r) = 0. (5.22)

This suggests that the density variation of the continuum is canceled by that of the bound state, as
shown in Fig. 5.1.

Note that the screening in the neutral Fermi system is rather distinct from that in the charged
Fermi system. In the former case, the induced interaction vanishes due to the cancellation of the
bound-state contribution by the continuum one. If we add the Hamiltonian with a direct interaction
between heavy particles,, the direct interaction is not screened and the effective interaction between
the heavy particles remains non-vanishing. On the other hand, in the charged Fermi system, the
direct interaction between the heavy particles is canceled by the induced one.

5.3 Physical implications of the theorem

Suppression of the Efimov effect

The theorem suggests that the dense Fermi sea suppresses the formation of the Efimov states
and N-body bound states associated with the Efimov effect for any number of heavy particles.
Indeed, the theorem claims that the heavy particles do not interact in the limit ofkF → +∞, so they
cannot form any bound state in this limit. For a large but finitekF, the theorem implies that the
interaction between the heavy particles is small whenk−1

F � |a|,min
i, j
|Ri − R j |. This can be checked

for NH = 2 [96] by explicit calculation of the sub-leading contribution to the effective interaction
at high density. Whenk−1

F � |a|,R12 , one can show thatVeff behaves as

Veff(R12) = −
~2

2πmkFR3
12

cos 2kFR12−
~2

4πmk2
FR4

12

sin 2kFR12+
~2

πmR3
12k

2
Fa

sin 2kFR12

+
~2

m
O

(
1

k3
FaR4

12

,
1

k3
Fa3R2

12

,
1

k3
Fa5

, ...

)
.

(5.23)

Thus, the effective interaction is suppressed by a factor ofk−1
F , and becomes small askF increases.

The range of the interaction between the heavy particles is at most of the order ofk−1
F . More

specifically, the range of interaction between the heavy particles is min(|a|, k−1
F ). This gives a cut-

off length scale up to which the discrete scale invariance holds, so that the spatial size of the Efimov
states and their associatedN-body bound states cannot exceed min(|a|, k−1

F ). One can estimate the
number of the Efimov states and their associated bound states to be

NB ∼ log
[
κ∗min(|a|, k−1

F )
]
, (5.24)

whereκ∗ is the momentum scale characterizing the Efimov states. For the Efimov trimers, it is the
three-body parameter (see Sec. 2.2.1). For the four-body Efimov state found in a system of three
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identical fermions and one distinguishable particle for a mass ratio 13.3 < mF/mL < 13.6 [90],
κ∗ is the four-body parameter. In ultracold atoms,κ∗ is characterized by the van der Waals length
κ∗ ∼ r−1

vdw. At the unitarity, Eq. (5.24) becomes

NB ∼ log

(
κ∗

kF

)
. (5.25)

While some knowledge of Eq. (5.23) has been used to derive Eq. (5.24), the estimate in Eq. (5.25)
can be obtained by a dimensional analysis without using Eq. (5.23).

The estimates in Eqs. (5.24) and (5.25) also suggest that the dense Fermi sea suppresses the
Efimov effect. Indeed, according to Eqs. (5.24) and (5.25), the number of the Efimov states and their
associatedN-body bound states decreases askF increases, and finally vanishes whenkF ∼ κ∗ ∼ r−1

vdw.
For two heavy particlesNH = 2, the suppression of the Efimov effect was numerically demonstrated
in Ref. [97]. The theorem proved here and the above argument can be used to generalize what has
been found in Ref. [97] for an arbitrary number of heavy particles in an analytical manner. Since
the appearance of the Efimov states and their associated bound states is closely related to the loss
processes in ultracold atom experiments (see Sec. 2.2.4), one can expect that theN-body losses in a
resonantly interacting heavy-light mixture may be suppressed by the Fermi sea effects. This point
should be studied in more detail in future studies.

Note that some prefactors of the order of unity are neglected in Eqs. (5.24) and (5.25), so
they should be regarded as an order of magnitude estimates. One prefactor missing in Eqs. (5.24)
and (5.25) is the number of bound states associated with each Efimov state. For a system of identical
bosons, two four-body bound states exist for each Efimov trimer [78, 80]. Similar four-body bound
states have also been demonstrated to exist for a hetero-nuclear bosonic system [196]. For a system
of identical bosons, there also exists five-body bound states, six-body bound states associated with
the Efimov trimers [81, 82, 83]. In Eqs. (5.24) and (5.25), I only count the number of the log-
periodic oscillation of the Efimov effect, so one needs to multiply the number of bound states per
each period for a better estimate. Another factor missing in Eqs. (5.24) and (5.25) is the parameter
s appearing in the discrete scale factoreπ/s of the Efimov states. This parameter characterizes the
period of the log oscillation. The estimates Eqs. (5.24) and (5.25) can be improved by multiplying
s/π. These possible prefactors are neglected in Eqs. (5.24) and (5.25) since we do not know some
of their precise values yet forNH & 3, but from recent few-body studies [32, 78, 80, 81, 82, 83, 90,
91, 92, 196], it is natural to expect that these prefactors should be at most of the order of unity.

Note that the above argument is based on the Born-Oppenheimer approximation, and I have
neglected the non-adiabatic effects discussed in Sec. 5.4. In discussing whether heavy particles can
form bound states in the Fermi sea, dynamical motions of the heavy particles need to be considered.
As discussed in Sec. 5.4, the non-adiabatic effects can generally affect the dynamics of the heavy
particles significantly. However, one can expect that the above argument on the number of the
Efimov states and their associated bound states would not be affected so much by the non-adiabatic
effects because the Efimov effect is essentially a single-channel (i.e., adiabatic) effect. Indeed, for a
system of two heavy and one light particles, the inverse square attraction appears inEBS(R) and the
Efimov effect can be described properly with the Born-Oppenheimer approximation. The theorem
suggests that this Efimov attraction gets screened by the Fermi sea in the adiabatic channel, so one
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can expect that the conclusion remains unchanged even when the channel couplings induced by the
non-adiabatic effects are incorporated.

Screening of the effective interaction between heavy polarons

The system studied in this chapter is closely related to polaron physics§. Polaron has recently
been realized in ultracold atoms by preparing a two-component Fermi system with extreme pop-
ulation imbalance [102]. Under such conditions, minority atoms interact with the surrounding
fermions, forming dressed quasi-particle states called polarons. While the polaron state corre-
sponds to a single particle immersed in the Fermi sea, the effective interaction between the polarons
becomes relevant as the number of the minority atoms is increased. The inter-polaronic interaction
is a fundamental building block in bridging the gap between the polaron state in the population
imbalanced limit to many-body phases of population balanced Fermi systems [134, 135, 136, 137]
and imbalanced Fermi systems [103, 204, 205].

Our system ofNH heavy particles immersed in a Fermi sea of light particles can be regarded
as a system ofNH heavy polarons. The theorem implies that the effective interaction between
the heavy polarons would be vanishingly small as the light fermions’ density increases. Recently,
the polaron state has been realized in a mass-imbalanced mixture of40K-6Li atoms, and a heavy
polaron has been studied [56]. This is a first step toward the investigation of the polaron physics in
highly mass-imbalanced systems, such as133Cs-6Li [180, 181] or173Yb-6Li [57, 58]. Interestingly,
in Ref. [56], the inter-polaronic interaction has been found to be irrelevant up to a rather high
impurity concentration. The same feature has also been found for polarons in an equal-mass three-
dimensional system [102], and in an equal-mass two-dimensional system [104]. Although the mass
ratio in Ref. [56] is onlyM/m = 6.64 and therefore our analysis based on the Born-Oppenheimer
approximation cannot be justified, let alone Refs. [102, 104], it is interesting to note that the theorem
proved in this chapter is consistent with what have been observed in experiments. Equation (5.23)
also suggests that the Born-Oppenheimer interaction between the heavy particles can be significant
only whenR12 . k−1

F , meaning that the density of the heavy particles must be as large as that of the
light particle for the inter-polaronic interaction to be significant.

The theorem suggests that the Born-Oppenheimer interaction between the heavy polarons van-
ishes including the unitarity limit 1/a = 0. It is remarkable that the interaction can vanish in this
strongly correlated regime. It should be noted that some behaviors similar to a non-interacting gas
around the unitarity region has also been suggested in some literature. In the unitarity limit of the
BEC-BCS crossover, it has been shown analytically that the thermodynamics relation is identical

to that of the ideal gasE =
3
2

P [138, 142, 143, 144]. Furthermore, the temperature dependence of

the condensation fraction around the critical point was observed to behave in the same manner as
that of the ideal Bose gas [140]. These studies have been done for a equal-mass system, and the
theorem proved in this chapter is not applicable, but still it is worth noting the similarity.

As discussed in Sec. 5.4, the non-adiabatic effects can significantly affect the dynamics of the
heavy particles, and therefore the theorem does not necessarily mean that heavy polarons behave as
non-interacting quasi-particles. Thus, the above argument on the inter-polaronic interaction should

§For a review of the polaron physics in ultracold atoms, the readers may refer to Refs. [108] and [109].
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be at most qualitative.

5.4 Some remarks

Finite temperature effects

Finite temperature effects can also be estimated with the Born-Oppenheimer method. At low

temperatureT � TF =
~2k2

F

2m
, one can regard that all the bound state eigenstates of the light

particles are occupied, so that the effective interaction between the heavy particles is modified
through the thermally excited particle-hole excitations around the Fermi sea. If the number of the
heavy particles is not so largeNH ∼ O(1), the chemical potential and the density of states at the
Fermi energy do not vary significantly from those of the ideal Fermi gas. The Sommerfeld theory
of the ideal Fermi gas can then be used to estimate the finite temperature effects, and one obtains

Veff(T) − Veff(T = 0) ∼
(

T
TF

)2

TF . (5.26)

The finite temperature effects are therefore negligibly small at low temperatureT � TF. One
can also see that it gets small as the density of the light fermions is increased while keeping the
temperature. Thus, the main theorem should remain valid at finite temperature whenT � TF →
+∞.

Non-adiabatic effects

The non-adiabatic effects beyond the Born-Oppenheimer method need to be considered in
discussing the dynamics of the polarons. For systems with moderate mass imbalance, such as
a 40K-6Li mixture [56], the Born-Oppenheimer approach fails. Even for mixtures with extreme
mass imbalance recently realized, such as133Cs-6Li [180, 181] or 173Yb-6Li [57, 58], the non-
adiabatic effects may affect the dynamics significantly§. The dynamics of a single heavy particle
in a fermionic environment has been studied in the absorption spectra of X-ray [208, 209] or the
muon diffusion [210] in metals. It has been demonstrated that the motion of heavy particles can
create particle-hole excitations in the Fermi sea, which leads to dissipation [211]. Indeed, in the

temperature regime
k2

F

2M
� T �

k2
F

2m
, the effective action of the heavy particle is described by the

Langevin type of equation with a strength of dissipationγ =
~2k2

F

3πM
sin2 δ0, whereδ0 is thes-wave

phase shift [211, 212]. Such a dissipation cannot be taken into account with the Born-Oppenheimer
method. It has also been suggested that the non-adiabatic effects can create non-trivial correlation
between heavy particles [213, 214]. Our theorem only states that the adiabatic part of the inter-
action becomes small in the dense Fermi sea, so the effect of the non-adiabatic parts still remains

§Indeed, this is closely related to the Anderson orthogonality catastrophe [206, 207], which suggests that the Born-
Oppenheimer approximation is inadequate in describing the dynamics of a heavy particle immersed in the Fermi sea.
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unclear. Whether the interaction between the heavy particles induced by non-adiabatic effects re-
mains significant or becomes negligibly small in the high-density limit need to be clarified in order
to discuss the dynamics of the heavy particles.



Chapter 6

Conclusion and future prospects

Conclusion

In this thesis, I have theoretically studied the Efimov physics and related phenomena in ultracold
atoms. In Chapters 1 and 2, I have reviewed the universality of a low-energy few-body system and
the Efimov physics. I have also overviewed recent developments in theoretical and experimental
studies on the Efimov physics and related phenomena in ultracold atoms. The main contributions
of this thesis are presented in Chapters 3, 4, and 5.

In Chapter 3, I have studied a three-body system of two identical spinless (i.e., spin-polarized)
fermions and one distinguishable particle which interact via a short-range potential with a larges-
wave scattering length. In this system, two classes of universal three-body bound states have been
known to appear in different regimes of the mass ratio: the Efimov trimers and the Kartavtsev-
Malykh trimers, which feature the discrete and continuous scale invariance, respectively. I have
found the third class of universal three-body bound states, which I call the “crossover trimers”.
The crossover trimers show neither discrete nor continuous scale invariance, but still they exist
and behave universally close to unitarity. I have identified the regions of these three classes of
trimers as a function of the mass ratio and thes-wave scattering length. I have also shown that
the Kartavtsev-Malykh trimers and the Efimov trimers can continuously transform into each other
via the crossover trimers as the mass ratio and thes-wave scattering length are varied. I have
found that the Kartavtsev-Malykh trimers dissociate into a particle and a dimer when thes-wave
scattering length is varied, owing to the presence of the crossover trimers. I have calculated the
elastic particle-dimer scattering lengths in arbitrary angular-momentum channels, and shown that
the particle-dimer resonances occur at the points where the trimers dissociate into a particle and
a dimer. From the resonance positions, I have found accurate values of the critical mass ratios at
which the Kartavtsev-Malykh trimers in the higher angular-momentum channels appear.

In Chapter 4, I have studied the three-body parameter of the Efimov states for a system of
three identical bosons in the vicinity of a broad Feshbach resonance. I have elucidated the physical
origin of the universality in the three-body parameter recently found in ultracold atom experiments
as follows:

• For a deep two-body potential or a two-body potential with a hard-core repulsion at short
distance, the probability of two particles coming close is suppressed in a universal manner.
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• This universal pair correlation induces an abrupt deformation of the three-body wave function
as the hyper-radius is varied.

• This abrupt deformation of the wave function results in a strong non-adiabatic repulsion
Qnn(R) > 0, which explains the appearance of the universal three-body repulsion reported
in Ref. [73]. Since three particles cannot come close due to the universal three-body repul-
sion, three-body physics is solely determined by the long-range van der Waals part, and is
insensitive to atomic species dependent short-range part.

This mechanism is verified by reproducing the universal three-body repulsion with a simple model
wave function. It has also been shown that the three-body parameter becomes universal even for
non-van der Waals types of two-body potentials. Two classes of two-body potentials have been
identified, for which the three-body parameter has a universal value in units of their effective range.
One class corresponds to short-range two-body potentials decaying as a power law, for which the
universal pair correlation behaves smoothly. The other corresponds to two-body potentials decaying
exponentially, for which the universal pair correlation shows a discontinuity. The former class is
relevant for the Efimov states in ultracold atoms,4He cluster [8, 9, 10], and possibly polyexcitons
in solids [76], while the latter class should be relevant for the Efimov states in nuclear systems [3,
4, 5]. These findings may stimulate further investigation of the three-body parameter of the Efimov
physics in many fields of physics.

In Chapter 5, I have studied the induced the interaction between the heavy particles for a sys-
tem of N heavy particles resonantly interacting with a Fermi sea of the light spinless (i.e., spin-
polarized) fermions at zero temperature. With the Born-Oppenheimer method, I have analytically
shown that the induced interaction vanishes for anyN in the limit of high light-fermion density.
The induced interaction vanishes even in the unitarity regime. This implies that the formation of
the Efimov states and their associatedN-body bound states is suppressed by the dense Fermi sea.
The vanishing induced interaction has been ascribed to the screening effect in the neutral Fermi
system.

In most of the above studies, I have mainly dealt with few-body systems in ultracold atoms,
but they are also relevant for other physical systems, owing to the universality of a low-energy
few-body system. In particular, in Chapters 3 and 5, I have used the zero-range approximation, so
the results presented in Chapters 3 and 5 can be directly applied for any physical system if (i) the
interaction between the particles is short-range, (ii) the energy of the system is sufficiently low, and
(iii) the s-wave scattering length between the particles is resonantly large.

Future prospects

(i) Understanding the crossover physics studied in Chapter 3 in terms of the renormalization
group language

In Chapter 3, I have found that the Kartavtsev-Malykh trimers continuously transform into
the Efimov trimers via the crossover trimers as the mass ratio and thes-wave scattering length
are varied. In other words, the continuous scale invariance of the Kartavtsev-Malykh trimers is
gradually lost and then the discrete scale invariance of the Efimov trimers appear as the mass ratio
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and thes-wave scattering length are varied. In the renormalization group studies, it has been shown
that the Efimov states show the renormalization group limit cycle [31, 32]. It is of great interest
how the crossover physics found in Chapter 3 can be understood in terms of the renormalization
group: how does the limit cycle behavior change into a flow with the continuous scale invariance?
This issue is currently being studied by Issei Yoshimoto in Kyushu University. For more details,
the readers are referred to his Ph. D thesis [215].

(ii) Three-body parameter for hetero-nuclear (i.e., mass-imbalanced) systems

In Chapter 3, I have studied a three-body system of two heavy fermions and one light parti-
cle with the Skorniakov–Ter-Martirosian equation by imposing a momentum cutoff to introduce
the three-body parameter. Throughout Chapter 3, the momentum cutoff Λ is regarded as a mere
parameter, and I have expressed all the results in units ofΛ. One should relateΛ with some ob-
servables such as the van der Waals length to obtain realistic energy spectra. However, the relation
betweenΛ and physical quantities is yet to be clarified. This issue is closely related to the problem
of the three-body parameter for hetero-nuclear (i.e., mass-imbalanced) systems. While the three-
body parameter for a system of three identical bosons has been found to bea(1)

− = −8-10rvdw, little
is known for hetero-nuclear systems: to the best of the author’s knowledge, there are only three
pieces of work on this issue [55, 66, 168]. See Sec. 2.4 for more details. It is therefore quite de-
sirable to study the three-body parameter for the hetero-nuclear systems, and show all the results
presented in Chapter 3 in terms of realistic physical quantities. It is also desirable to understand how
the results in Chapter 3 obtained with the Skorniakov–Ter-Martirosian equation can be understood
in the hyper-spherical approach [216].

(iii) Universality of the N-body bound states associated with the Efimov trimers

In Chapter 4 and in Ref. [73], it has been shown for the van der Waals types of potentials
that there appears universal three-body repulsion atR ≈ 2rvdw, so that the three-body physics is
universally characterized by the van der Waals length and thes-wave scattering length. It is natural
to expect that the universal repulsion should also appear for four-body, five-body, ..., andN-body
systems: when the hyper-radius of aN-body (N ≥ 4) system gets small, either three of theN
particles must come close, so that the universal three-body repulsion between the three particles
gets significant and a repulsiveN-body hyper-radial potential would appear atR ∼ rvdw. This
simple physical argument leads us to the following conjecture: for an arbitrary number of particles,
N-body bound states associated with the Efimov trimers should be universally characterized by the
two parameters: the van der Waals length and thes-wave scattering length.

Recently, there has been an attempt to test this conjecture. In Refs. [217, 218], a four-body
problem of4He has been solved numerically with realistic4He potentials. The scattering length
at which the four-body bound states dissociates into four particles has been calculated and has
been found to be in excellent agreement with that for133Cs atoms observed experimentally [68] for
both the ground-state and first-excited tetramers tied to the ground-state Efimov trimer§. This is a
strong evidence that the above conjecture should be true at least for a four-body system. It would

§The four-body thresholds have also been observed for7Li atoms in Refs. [26, 45], but they seem to disagree with
those for133Cs atoms [68] and4He atoms [217, 218]. This discrepancy may be due to the width of the Feshbach
resonance: the7Li experiment has been performed for a moderately narrow Feshbach resonancesres ≈ 0.6, while a
broad resonance is used for the133Cs experiment.
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be important to show in the future studies whether the universality of the four-body system may
be explained by the appearance of the universal four-body repulsion, in a manner similar to the
three-body system. It would also be of great interests to test the universality forN ≥ 5.
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