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Abstract

First-principles electronic structure calculation is now regarded as an effective and pow-

erful tool for studying condensed-matter physics. Most of the first-principles calculations

for solids are carried out using the density functional theory (DFT), which provides the

electronic structures with sufficient accuracy and low computational cost in many cases.

Despite the great successes of DFT, generally-used approximations have serious drawbacks

in accuracy, and to deal with this situation, the transcorrelated (TC) method, in which one

uses the Jastrow-Slater-type many-body wave function, is one of the promising theories

for accurate first-principles electronic structure calculations.

The TC method has several advantages for solid-state calculations; it partially takes

account of some electron correlation effects such as the screening effect and short-range

correlation by the Jastrow factor with reasonable computational cost, which is the same

order of magnitude as the HF method, and the band structure and total energy can

be obtained. Moreover, a similarity between the HF and TC methods allows ones to

apply some sophisticated wave function theories, which conventionally use the one-electron

orbitals and their orbital energies of the HF wave function, to the TC method just in the

same way as the HF method. This possibility provides a simple way to improve accuracy

of the TC method systematically. In spite of these great advantages, the TC method has

a problem to overcome in accuracy, e.g., for the band gaps.

In this thesis, we achieved theoretical improvements for the TC method by two ways

and apply them to the band structure calculations and excited state calculations of solids.

The first way for improving accuracy is to optimize the Jastrow factor based on the

random-phase approximation (RPA) and pseudo-variance minimization, and the other one

is to apply the second-order Møller-Plesset (MP2) perturbation theory to the biorthogonal

TC (BiTC) method. For both methods, we investigated their effects on the calculated band

structures, and we found that (i) the long-range behavior of the Jastrow factor, which

describes the screening effect of the electron-electron interaction, can be well optimized

by our RPA treatment and the band gap of a large-gap insulator is improved, (ii) the

short-range behavior of the Jastrow factor, however, does not affect the calculated band

structures so much by using our Jastrow function with limited degrees of freedom, and
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(iii) the BiTC-MP2 theory yields somewhat unsatisfactory results considering its expensive

computational cost; the BiTC method, a starting point of the perturbation, shows good

accuracy comparing with the HF method and then the calculated band gaps change very

little by the MP2 correction in some cases. Theoretical investigation of the MP2 correction

to the BiTC method suggests that the short-range correlation described with the Jastrow

factor is important for calculating the accurate total energy, but the screening effect also

plays an important role for the band structure calculations. These observations suggest

that, to obtain more accurate band structures, we should describe the screening effect in

more rigorous manner than the present treatment with only one Jastrow parameter.

Finally, we proposed a tractable method of excited state calculations by an extension

of the TC method and applied it to calculations of the optical absorption spectra of

solids using the optimized Jastrow function. Accurate excited-state calculations are also

important for studying optical response or other rich phenomena related to the electron

excitation. We verified that our method predicts the optical absorption spectra with

satisfactory accuracy. Although this accuracy can be obtained also by other methods such

as GW+BSE method, it is important that we can obtain the accurate optical absorption

spectra and perform accurate excited state calculations using the TC method, which can

provide both the total energy and accurate band structures.
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Chapter 1

Introduction

First-principles electronic structure calculation now plays an essential role in studying

condensed-matter physics. Calculated electronic structures provide an important clue to

understand the microscopic origins of various phenomena and properties observed in con-

densed matters. First-principles calculations also help one to interpret the experimental

results such as spectra obtained by photoemission spectroscopy. Moreover, by these stud-

ies, one can obtain some guidelines for an efficient exploration of new devices for industrial

applications. Despite these great significances, there are several problems to overcome in

the study of the first-principles calculation. One of the most important issues is a problem

of accuracy; it is still difficult to describe the electronic structures of some kinds of systems

such as strongly correlated systems. We shall briefly review some kinds of methods for the

first-principles electronic structure calculation especially from the viewpoint of accuracy.

Hartree atomic units (me = e2 = ~ = 1/(4πε0) = 1, where me, e, and ε0 are the electron

mass, elementary charge, and electric permittivity of free space, respectively.) are used

throughout this thesis.

1.1 Density functional theory (DFT)

Density functional theory (DFT) [1, 2] is one of the most popular and successful approaches

for first-principles electronic structure calculation of various systems including molecules

and solids. We briefly describe its formalism and features in this section. We ignore a spin

index of an electron in this section for simplicity.

The idea of the DFT is based on the two Hohenberg-Kohn theorems [1]. When we

consider a many-particle system under an external potential v(r), the theorems say that (i)

v(r) can be uniquely (to within an additive constant) determined by the realized ground-

state particle density n0(r), and (ii) the ground-state total energy E is written as

E[n, v] =

∫
drv(r)n(r) + F [n], (1.1)
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CHAPTER 1. INTRODUCTION

where F [n] is a universal functional, that is, a functional independent on v(r), and n0(r)

gives minimum value of E[n, v] for each v(r). Then the many-body problem, which is

usually described with a many-body function of 3N -dimensional variables for N -particle

systems, can be reduced to a variational problem of a 3-dimensional variable, n(r). This

simplification is a great advantage of the DFT, which enables us to tackle many-body

problems with reasonable computational effort.

In addition, we always make use of the Kohn-Sham method [2]. This method is based

on an assumption that the many-body problem of interacting particles under vext(r) can be

reduced to that of non-interacting particles under some external potential veff(r), with the

same ground-state particle density n0(r) and same total energy E as the original system

being realized in the non-interacting system. In the Kohn-Sham method, one should solve

a self-consistent-field (SCF) equation,

[−1

2
∇2 + veff(r)]φi(r) = εiφi(r), (1.2)

where φi is a one-electron orbital, εi is its orbital energy. veff(r) is written as

veff(r) = vext(r) +

∫
dr′

n(r′)

|r− r′|
+
δExc[n]

δn
, (1.3)

where the second term in the right-hand side is the Hartree potential and Exc[n] is called

the exchange-correlation energy functional. Since veff(r) depends on the particle density

n(r), Eq. (1.2) should be solved self-consistently. This SCF equation, called the Kohn-

Sham equation, provides the band structure of solids, which is guaranteed by the Janak’s

theorem [3]. This is a great benefit of the DFT.

However, this strategy requires the exchange-correlation energy functional Exc[n],

which includes all the difficulties of the many-body problem and so is quite non-trivial.

The accuracy of DFT-based methods depends on the quality of the approximations for

the exchange-correlation energy functional. Some simple approximations, such as the local

density approximation (LDA) [4] and generalized gradient approximation (GGA) [5, 6],

are widely used and provide satisfactory results in many cases. However, it is known

that these approximations have serious drawbacks in accuracy, e.g., underestimation of

the band gaps, inaccuracy of the activation energy in chemical reactions, and difficulty in

describing strongly correlated systems or reproducing the London dispersion force. These

shortcomings prevent broader applications of the first-principles calculations. While there

are some developments in accuracy along the DFT formalism, such as hybrid DFT [7, 8, 9],

DFT+U , and exchange-correlation functionals that can describe van der Waals interac-

tions, it is still difficult to take account of various correlation effects all at once and find

a systematic way for further improvement of accuracy.
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1.2. WAVE FUNCTION THEORY

1.2 Wave function theory

To resolve the difficulties in accuracy mentioned above, the wave function theory, an-

other framework of the first-principles electronic structure calculation, is expected to be a

promising alternative. In the wave function theory, one explicitly handles the many-body

wave function of 3N dimension for the system of N interacting electrons, in contrast to

the DFT where only 3-dimensional functions, one-electron orbitals and electron density,

are used. Non-trivial Kohn-Sham mapping to the non-interacting systems used in the

DFT formalism is not employed in the wave function theory. Because of these features,

accuracy of the wave function theory can be improved by refining the 3N -dimensional

many-body wave function in a systematic manner.

The HF method, the simplest wave function theory, is a starting point of most of

the other wave function theories. In the HF method, one assumes that the many-body

wave function is represented with a single Slater determinant that consists of one-electron

orbitals:

Φ =
1√
N !

det


φ1(x1) φ1(x2) · · · φ1(xN )

φ2(x1)
. . .

. . .
...

...
. . .

. . .
...

φN (x1) · · · · · · φN (xN )

 , (1.4)

where φi is an one-electron orbital with the usual notation that xi represents a position ri

and a spin σi of the i-th electron. To minimize the total energy of this trial wave function

under the external potential vext(x), one-electron orbitals should satisfy the following

equation:(
−1

2
∇2

1 + vext(x1)

)
φi(x1) +

N∑
j=1

∫
dx2 φ

∗
j (x2)

1

|r1 − r2|
det[φi,j(x1,2)] = εiφi(x1), (1.5)

where det[φi,j(x1,2)] means φi(x1)φj(x2) − φj(x1)φi(x2) and one-electron orbitals are or-

thonormalized. We call this equation the HF-SCF equation, an operator which acts on

φi(x1) on the left-hand side of Eq. (1.5) the HF-Fock operator, and its matrix representa-

tion with some basis functions of one-electron orbitals the HF-Fock matrix hereafter. In

other words, when we rewrite Eq. (1.5) as ĥ(x1)φi(x1) = εiφi(x1), ĥ(x1) is the HF-Fock

operator and 〈φbasis,p|ĥ|φbasis,q〉 is a (p, q) element of the HF-Fock matrix where φbasis is

a basis function used to expand the one-electron orbitals. This SCF equation is solved

self-consistently, and the eigenvalues εi can be interpreted as the orbital energies. This is

guaranteed by the Koopmans’ theorem [10].

The HF method is very simple and known not to have enough accuracy for applications

in many cases. In particular, for solid-state calculations, the HF method is known to largely

overestimate the band gaps (e.g., about 7eV for bulk silicon while it experimentally has
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CHAPTER 1. INTRODUCTION

the band gap of about 1 eV.) [11, 12, 13], because the HF method cannot describe the

screening effect of the electron-electron Coulomb interaction. This fundamental effect is

caused by a large number of interacting electrons and cannot be described with a mean-

field approach like the HF method. It is also known that the density of states of the

uniform electron gas unphysically vanishes at the Fermi energy in the HF method, owing

to a logarithmic divergence of the derivative of the energy dispersion with respect to the

wave vector. (see, e.g., Ref. [14].)

There are several wave function theories to improve accuracy beyond the HF method

[15], for example, by considering linear combination of many Slater determinants con-

structed with the HF orbitals. This method is called the configuration interaction (CI)

method. Other famous and successful examples are the Møller-Plesset (MP) perturbation

theory, which is the many-body perturbation theory with the unperturbed Hamiltonian

set to the HF-Fock operator, and the coupled-cluster (CC) theory. These methods that

are based on and go beyond the HF wave function are called the post-HF methods.

Systematically improvable accuracy is an important advantage of these wave function

theories, and is essential for high-accuracy calculation. However, the computational cost

of these post-HF methods is often too expensive to apply to solid-state calculations. One

of the reasons is a large number of electrons in solids, and another one is the need to

consider many excited configurations owing to the inaccuracy of the HF method.

Therefore, it is desirable to discover another theory replacing the HF method as a

starting point of the wave function theories for solid-state calculations. For this purpose,

the transcorrelated (TC) method is one of the promising alternatives.

1.3 Transcorrelated (TC) method

The TC method [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] is also one of the wave

function theories. In this method, the many-body wave function is approximated as a

product of a Jastrow factor, which is a symmetric product of a two-body positive function,

and the Slater determinant. The many-body Hamiltonian is similarity-transformed by the

Jastrow factor, and then the Shrödinger equation is transformed to an eigenvalue problem

of the similarity-transformed Hamiltonian and its eigenstate is assumed to be the Slater

determinant. In this sense, the TC method can be interpreted as the HF approximation

applied to the similarity-transformed Hamiltonian. This similarity between the HF and TC

methods is advantageous because the post-HF methods described in the previous section,

such as the CI method and CC theory, can also be applied to the TC method, which

enables one to improve accuracy of the TC method in a systematic manner. Moreover,

electron correlation effects such as the screening effect are partially taken into account with

the Jastrow factor in the TC method. In the TC calculation of the homogeneous electron
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gas, it was reported that anomaly at the Fermi energy observed for the HF method does

not appear [24, 28] and a fairly good estimate of the ground-state correlation energy was

obtained [29]. Calculations of the total energies and band structures for some solids were

performed and it was shown that the TC method is a great improvement over the HF

method [24, 25] with the same order of magnitude of the computational cost as that of

the HF method [25]. It is also remarkable that the Jastrow factor can describe the short-

range correlation effects caused by such as the Coulomb hole and the electron-electron

cusp condition [30], which cannot be described with the HF method and are considered

to be the origins of slow convergence of CI expansions in highly accurate calculations of

molecules. Therefore, the TC method can be a good replacement of the HF method for

solid-state calculations.

Another aspect of the TC method is its relevance to the state-of-the-art quantum

Monte Carlo (QMC) method [31], which also makes use of the Jastrow-Slater-type wave

function. It is now established that QMC calculations provide very accurate total energy,

and are widely applied to both molecules and condensed matters. In the QMC calculation,

optimization of the one-electron orbitals in the Slater determinant is important in some

cases [32] but difficult to achieve owing to its expensive computational cost. The TC

method can be a fascinating way to optimize the one-electron orbitals with reasonable

computational effort and has already been employed and combined with the fixed-node

diffusion Monte Carlo (DMC) calculations for small atoms [33]. It is also noteworthy that

the band structure, which can be easily obtained by the TC method, is computationally

expensive to obtain by QMC calculations [34, 35].

Despite these great advantages, the TC method has some problems to overcome. One

problem is that, though the TC method really improves the HF method, the calculated

band gaps are not necessarily satisfactory in accuracy. Table 1.1, the data in which are

taken from Table 3.2, presents the band gaps of some kinds of solids calculated using the

LDA, HF, and TC methods. We can see that the TC method predicts the band gaps with

good accuracy comparing with the LDA or HF method, but the band gaps of large-gap

insulators, such as lithium chloride and lithium fluoride, are underestimated, and the band

gap of silicon is a bit overestimated. Of course, when we consider the TC method as a

starting point of systematic improvement of accuracy, these results are not discouraging,

but at present, (i) there have been no studies that realizes systematic improvement of

accuracy of the TC method for solid-state calculations, and moreover, (ii) the reason why

the calculated band gaps exhibit the above-mentioned behavior is not clearly understood.

Some post-HF methods combined with the TC method have been investigated and applied

to molecular systems [21, 17, 36, 37, 38, 39], but not to solids yet.
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LDA TC HF Exp.

Si 0.5a 1.7a 6.7a 1.17b

β-SiC 1.4a 2.4a 8.9a 2.4c

LiH 2.6 5.4 10.5 5.0d

C (diamond) 4.2a 5.9a 12.9a 5.48c

LiCl 6.2 8.6 15.5 9.4e

LiF 9.9 10.5 21.7 14.2f

Table 1.1: Band gaps (eV) for several solids calculated using various methods. These data

are taken from Table 3.2. a Ref. [25], b Ref. [40], c Ref. [41], d Ref. [42], e Ref. [43], f

Ref. [44].

1.4 Purpose of this study

In this study, we mainly concentrate on a problem: how one can predict the correct

band structure by wave function theories. Correct band structures are indispensable, e.g.,

for treating the impurity problems, for which the relative position of the impurity level

to the band structure of bulk solid is important, for studying the chemical reactions at

the solid surfaces, and for predicting the optical response of solids. These issues are of

much importance both for theoretical interests and for industrial applications, e.g., for

electrochemical reactions or photocatalysis. Moreover, incorrect band gaps sometimes can

falsely predict a metal to be an insulator, and vice versa. Though the well-known GW

method [45, 46, 47], which is the many-body perturbation theory using the Green function,

can predict the band structures of solids very accurately, it is still important to pursue

the accurate band structure calculations by the wave function theory, because the GW

method cannot be used for structural optimization. Hybrid DFT can provide relatively

accurate band structures and also the total energies, but the self-interaction error, by

which an electron is unphysically affected by the potential the electron itself produces,

remains though the self-interaction error is suspected to be an origin of several inaccuracy

of the DFT-based methods [48]. The TC method has no self-interaction error and can

provide the total energy, and so development of the TC method is important for achieving

accurate calculations and broadening the applicability of the first-principles calculation to

condensed matter physics, but has not been investigated well for solid-state calculations.

For these purposes, in this thesis, we improve the Jastrow-Slater wave function used

in the TC method by two ways. One way is to optimize the Jastrow factor, and the

other one is to apply the second-order MP (MP2) perturbation theory to the similarity-

transformed Hamiltonian, which means that “beyond a single Slater determinant” effects

are partially included. For the former study, we develop a new method for optimization
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1.5. OUTLINE OF THIS THESIS

aiming to determine the parameters in the Jastrow factor efficiently. Related to the

latter study, we should note that the application of the post-HF methods such as the

MP perturbation theory and CC theory to 3D solids have been actively reported in recent

years [49, 50, 51, 52, 53], which shows that these post-HF methods are feasible in terms

of the computational effort also for solid-state calculations. Of course, feasibility of the

“post-TC” methods, i.e., the post-HF methods applied to the TC method, in terms of

the computational cost should be carefully investigated because such a study has not

been performed yet and the similarity-transformed Hamiltonian used in the TC method

includes complicated interaction terms, which can increase the computational cost. We

investigate how each approximation affects to the calculated band structures, and what

kinds of correlation effects are retrieved in each theory. We often compare results obtained

by the TC method with those for the HF method to clarify the role of the Jastrow factor.

As a result of the improvements in accuracy, accurate excited-state calculations using

the TC method are enabled. Accurate excited-state calculations are also important for

studying optical response or other rich phenomena related to the electron excitation.

Though some other methods such as the GW+BSE [54, 55, 56] method also can predict

the accurate optical absorption spectra, it is important that we can obtain the accurate

optical absorption spectra and perform accurate excited state calculations using the TC

method, which can provide both the total energy and accurate band structures.

1.5 Outline of this thesis

A graphical abstract of this thesis is depicted in Figure 1.1. In Chapter 2, we will briefly

review a formalism of the TC method. Our new method to optimize the Jastrow factor is

presented in Chapter 3. Biorthogonal formalism of the TC method (BiTC method), which

is required for applying the MP perturbation theory to the TC method, is described in

Chapter 4. MP2 perturbation theory applied to the BiTC method is presented in Chapter

5. In Chapter 6, we perform the excited-state calculations using the improved Jastrow

factor. Some results of test calculations are presented in each chapter. By these studies, we

try to improve accuracy of the TC method, broaden its applicability to material science,

and investigate how the electron correlation effects are retrieved (or not retrieved) by our

explicitly correlated wave functions.

Another problem of the TC method not mentioned in previous sections is inaccuracy

of the calculated lattice constants or bulk moduli, which are worse than those calculated

using the LDA [25]. This issue seems to relate to the problem of the pseudopotential, i.e.,

treatment of the core electrons, because it is known that the choice of the pseudopotential

can affect the accuracy of these quantities to some extent while the band structure are

not affected so much. (see, e.g., [57].) This is an important future problem, but out of the
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range of this thesis, and so not mentioned hereafter.
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Jastrow factor Slater det. (      )

Optimize (Chapter 3)

*            are optimized by solving an SCF equation.

Go beyond a single Slater det. by applying the perturbation 

theory to the similarity-transformed Hamiltonian (Chapter 5)

Ground state

Excited state

: using the linear combination of the determinants (Chapter 6)

: singly excited configurations

Figure 1.1: Graphical abstract of this thesis.
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Chapter 2

Transcorrelated (TC) method

The TC method was proposed by Boys and Handy in late 1960’s [16, 17, 18, 19, 20]. This

method was recently reconstructed by Umezawa and Tsuneyuki [23], and description in

this chapter is mainly based on it.

2.1 Basic idea

The basic idea of the TC method is taking into account the electron correlation effects

through similarity transformation of the Hamiltonian. First, a many-body wave function

Ψ is rewritten as Ψ = FΦ: a product of the Jastrow factor F , which is a symmetric

product of a two-body positive function,

F = exp

−1

2

N∑
i=1

N∑
j=1(6=i)

u(xi, xj)

 (2.1)

where a Jastrow function u(xi, xj) is symmetric with respect to an exchange of arguments,

and a many-body function Φ formally defined as Ψ/F . Then the Schrödinger equation,

HFΦ = EFΦ, (2.2)

is completely equivalent to the similarity-transformed eigenvalue equation,

HTCΦ = EΦ

(HTC = F−1HF ). (2.3)

When we apply the TC method to an electron system described with the Hamiltonian,

H =
N∑
i=1

(
−1

2
∇2
i + vext(xi)

)
+

1

2

N∑
i=1

N∑
j=1(6=i)

1

|ri − rj |
, (2.4)
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the TC Hamiltonian HTC is written as

HTC = H+
1

2

N∑
i=1

N∑
j=1(6=i)

(∇2
iu(xi, xj)− (∇iu(xi, xj))

2 + 2∇iu(xi, xj) · ∇i)

−1

2

N∑
i=1

N∑
j=1(6=i)

N∑
k=1(6=i,j)

∇iu(xi, xj) · ∇iu(xi, xk). (2.5)

In the TC method, Φ is assumed to be a single Slater determinant,

Φ =
1√
N !

det


φ1(x1) φ1(x2) · · · φ1(xN )

φ2(x1)
. . .

. . .
...

...
. . .

. . .
...

φN (x1) · · · · · · φN (xN )

 . (2.6)

This can be interpreted as the HF approximation applied to the similarity-transformed

Hamiltonian, and so the one-electron orbitals in the Slater determinant are optimized by

solving an SCF equation like the HF method. This procedure is described in detail in the

next section.

2.2 Derivation of the one-body self-consistent-field (SCF)

equation

As for the HF method, the variational principle is employed to derive the one-body SCF

equation. However, non-Hermiticity of the TC Hamiltonian owing to the non-unitarity of

the Jastrow factor disables ones from applying the variational principle to the expectation

value of the TC Hamiltonian,

Eps =
〈Φ|HTC |Φ〉
〈Φ|Φ〉

. (2.7)

Therefore the variance of the TC Hamiltonian for a real eigenvalue E is introduced:

σ2
TC =

〈Φ|(H†TC − E)(HTC − E)|Φ〉
〈Φ|Φ〉

, (2.8)

and minimization of this quantity is employed as the guiding principle to optimize our trial

wave functions. Now σ2
TC can be considered to be a function of {E,Φ,Φ∗,HTCΦ, (HTCΦ)∗},

σ2
TC =

∫
(HTCΦ)∗(HTCΦ)− E

∫
((HTCΦ)∗Φ + Φ∗(HTCΦ)) + E2

∫
Φ∗Φ∫

Φ∗Φ
, (2.9)
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and a condition δσ2
TC/δΦ

∗ = 0 yields a one-body SCF equation for the TC method,1(
−1

2
∇2

1 + vext(x1)

)
φi(x1)

+

N∑
j=1

∫
dx2 φ

∗
j (x2)

(
1

|r1 − r2|
+

1

2

(
∇2

1u(x1, x2) +∇2
2u(x1, x2)

−(∇1u(x1, x2))2 − (∇2u(x1, x2))2
)

+∇1u(x1, x2) · ∇1 +∇2u(x1, x2) · ∇2

)
×det[φi,j(x1,2)]− 1

2

N∑
j=1

N∑
k=1

∫
dx2dx3 φ

∗
j (x2)φ∗k(x3)

×
(
∇1u(x1, x2) · ∇1u(x1, x3) +∇2u(x2, x1) · ∇2u(x2, x3) +∇3u(x3, x1)∇3u(x3, x2)

)
×det[φi,j,k(x1,2,3)] =

N∑
j=1

εijφj(x1),

(2.10)

where one-electron orbitals are orthonormalized. We call an operator which acts on φi(x1)

on the left-hand side of Eq. (2.10) the TC-Fock operator, and its matrix representation

with some basis functions of one-electron orbitals the TC-Fock matrix, hereafter. The total

energy E is evaluated as E = Re[Eps], which is derived from a condition δσ2
TC/δE = 0.2

It is noteworthy that we can avoid evaluation of 3N -dimensional integrals usually

required when we use the Jastrow-Slater-type wave function and calculate, for example,

an expectation value of the total energy: 〈ΦF |H|FΦ〉/〈ΦF |FΦ〉. This is a great advantage

of the TC method. Moreover, we can obtain the band structure because the Koopmans’

theorem holds for φi and Re[εii] in the TC method alike for φi and εi in the HF method.

Koopmans’ theorem in the TC method states that the ionization energy (for the occupied

states, the electron affinity for the unoccupied states) of φi equals to −Re[εii] if we take

no account of orbital relaxation. This theorem provides physical meanings of one-electron

orbitals and their energies.

2.3 Jastrow factor

While we can optimize the Slater determinant in the manner described in the previous

section, to optimize the Jastrow factor is computationally much more expensive. One

scheme uses the Fermi hypernetted-chain method [58, 59, 60, 61, 62], but it uses some

approximations and is very complicated. The variational Monte Carlo (VMC) method,

1In more rigorous manner, σ2
TC should be treated as a function of

{E, φ1, φ2, . . . , φN , φ
∗
1, φ
∗
2, . . . , φ

∗
N ,HTCΦ, (HTCΦ)∗} and a condition δσ2

TC/δφ
∗
i = 0 is used.

2How about other conditions? In fact, δσ2
TC/δφi = 0 yields Eq. (2.10), and both δσ2

TC/δ(HTCΦ) = 0

and δσ2
TC/δ(HTCΦ)∗ = 0 yield Eq. (2.3).
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which is a kind of the QMC methods, is nowadays the most popular approach to optimize

the Jastrow factor using minimization of the total energy or its variance as the guiding

principle. VMC has succeeded in predicting the electronic structure with high accuracy,

but it is well known that QMC-based methods require high computational cost because

they need to evaluate 3N -dimensional integrations for the N -electron system. In addition,

it is not easy to obtain the band structure using many k-points along the symmetry

directions of solids using QMC methods, although the energy levels for some limited k-

points are well reproduced by the fixed-node DMC calculations [35, 63, 64, 65, 66, 67, 68,

69].

Some alternative methods for the Jastrow-factor optimization based on the TC method

have been proposed and applied to some atomic and molecular systems. Ten-no deter-

mines parameters in the Jastrow factor so that an effective two-body interaction of the

TC Hamiltonian becomes small in the short-range region, and therefore these parameters

are independent of the system under calculation [21]. This strategy works well for TC

calculations as a starting point when combined with elaborate post-HF theories for molec-

ular systems, but does not seem to work well for periodic systems because three-body

terms of the TC Hamiltonian play an important role, i.e., describing the screening effect

in periodic systems [70, 71, 28, 25], but are neglected in optimization process. An original

set of equations for the TC method proposed by Boys and Handy includes an equation to

optimize the Jastrow factor [17]. This equation was recently applied to some atomic and

molecular systems by Luo et al. using Monte Carlo sampling [26]. Alternatively, Handy

proposed minimization of the variance of the TC Hamiltonian and applied it to a helium

atom [20] because the TC Hamiltonian is non-Hermitian and the variational principle does

not hold, i.e., the minimization of the expectation value of the TC Hamiltonian does not

work as the guiding principle for optimization. Later, Umezawa and Tsuneyuki developed

the TC+VMC method, in which one uses Monte Carlo sampling to evaluate the variance

of the TC Hamiltonian, and applied it to several small atomic systems [23]. However,

these methods mentioned above are computationally expensive for solid-state calculations

because many-body, such as five- or six-body, terms are involved. In regard to compu-

tational cost, a promising alternative was proposed and applied to a neon atom by Boys

and Handy [17, 18]. There, some determinants like excited configurations were used to

evaluate how far a trial wave function is from the exact eigenstate. They used a weighting

factor for each configuration to achieve a practical computational cost at that time, but

arbitrariness of the weighting factor seems to affect the results.

Owing to these difficulties, in previous works of the TC method for solids, we have

used the following simple Jastrow function without adjustable parameters: [29, 24, 72, 25]

u(x, x′) =
A0

|r− r′|
(
1− exp

(
−|r− r′|/C0;σ,σ′

))
, (2.11)
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2.3. JASTROW FACTOR

where A0 =
√
V/(4πN) (N : the number of valence electrons in the simulation cell, V : the

volume of the simulation cell) and C0;σ,σ′ =
√

2A0 (spin parallel: σ = σ′),
√
A0 (spin anti-

parallel: σ 6= σ′). The former condition is derived from the random-phase approximation

(RPA) analysis of the uniform electron gas whose electron density is N/V [73], and the

latter condition from the cusp condition [30]. Thus we can take the screening effect into

account to some extent with the RPA and have the many-body wave function satisfy the

cusp condition even though we use such a simple Jastrow function.

However, some unfavorable features exist in this function. First, we impose the condi-

tions only for |r−r′| → ∞ (RPA) and |r−r′| → 0 (cusp condition), and so the intermediate

region is not necessarily well described. Second, RPA is applied not to a target system but

to the uniform electron gas, resulting in over-screening of the electron-electron Coulomb

interaction, especially for wide-gap insulators. To resolve these problems, we develop a new

scheme to optimize the Jastrow factor for periodic systems with reasonable computational

effort, which is described in the next chapter.
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Chapter 3

Optimization of the Jastrow factor

The Jastrow function used in the previous studies of the TC method for solid-state cal-

culations, Eq. (2.11), has some unfavorable features described in the previous chapter.

To resolve this problem, we develop a new scheme for optimizing the Jastrow factor for

periodic systems. A part of contents in this chapter is published under licence in J. Phys.:

Conf. Ser. by IOP Publishing Ltd. (M. Ochi and S. Tsuneyuki, J. Phys.: Conf. Ser.

454 012020 (2013). http://iopscience.iop.org/1742-6596/454/1/012020).

3.1 Parameters in the Jastrow function

We use a more general form of the Jastrow function than the original form, Eq. (2.11).

The Jastrow function used in this chapter is

u(x, x′) =
A

|r− r′|
(
1− exp

(
−|r− r′|/Cσ,σ′

))
+

(
M−1∑
m=0

cm;σ,σ′

(
|r− r′|
L

)m)

×
(
|r− r′|
L

− 1

)3

Θ

(
1− |r− r′|

L

)
, (3.1)

where Θ(x) is the Heaviside step function defined as Θ(x) = 0 (x < 0), 1 (x > 0), and the

cusp condition is always satisfied by imposing a constraint condition,

A

2C2
σ,σ′

+
−3c0;σ,σ′ + c1;σ,σ′

L
=

1

4
(σ = σ′),

1

2
(σ 6= σ′), (3.2)

throughout optimization of the Jastrow parameters. In this thesis, we call the first term of

Eq. (3.1), (A/|r− r′|)(1− exp(−|r− r′|/Cσ,σ′)), the long-range term because it describes

asymptotic behavior at infinity (|r − r′| → ∞); the remaining terms we call the short-

range polynomials as these involve a cutoff length, L. No cutoff length is required for
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CHAPTER 3. OPTIMIZATION OF THE JASTROW FACTOR

the long-range term in the TC method because a special treatment exists for the 1/r-

type long-range function that was originally developed for the HF method by Gygi and

Baldereschi [74]. The short-range polynomials have the same form as the Jastrow function

used in Ref. [75], which is often used in QMC calculations of solids.

From the next section, we present our new method to optimize the parameters in the

Jastrow function, Eq. (3.1). Our optimization process comprises two steps. First, the

parameters in the long-range term in the Jastrow function are determined by using the

RPA, described in Section 3.2. Next, the parameters in the short-range polynomials are

optimized by the pseudo-variance minimization, described in Section 3.3.

3.2 Optimization of the Jastrow factor: RPA

First, the parameters in the long-range term of the Jastrow function (Eq. (3.1)), A and

Cσ,σ′ , are determined by using the dielectric constant ε calculated with the RPA relation.

Using the RPA for this purpose is a natural idea because a long-range asymptotic form of

the original Jastrow function, Eq. (2.11), was derived from the RPA analysis of the uniform

electron gas [73]. We assume that the dielectric constant is isotropic; an anisotropic case,

which is difficult to describe with only one long-range parameter A, is not investigated in

this study.

When the Jastrow function has a long-range asymptotic form

u(x, x′) ∼ A

|r1 − r2|
(|r1 − r2| → ∞), (3.3)

the electron-electron Coulomb interaction in the TC-SCF equation, Eq. (2.10), is effec-

tively screened as

1

|r1 − r2|
→
(

1− (
A

A0
)2

)
1

|r1 − r2|
(|r1 − r2| → ∞). (3.4)

This is caused by contributions from some three-body terms,

−
N∑
j=1

N∑
k=1

∫
dx2dx3 φ

∗
k(x2)φ∗j (x3)

×∇3u(x3, x1) · ∇3u(x3, x2)det[φi,k(x1,2)]φj(x3), (3.5)

which can be interpreted as the direct and exchange terms of the following two-body

potential acting on φi,

Vscreen(x1, x2)

≡
N∑
j=1

∫
dx3 |φj(x3)|2∇3u(x3, x1) · ∇3u(x3, x2)

=

∫
dx3 n(x3)∇3u(x3, x1) · ∇3u(x3, x2), (3.6)
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where n(x) is the valence-electron density for the TC method. Eq. (3.5) can now be

written as −
∑N

k=1

∫
dx2φ

∗
k(x2)Vscreen(x1, x2)det[φi,k(x1,2)]; cf. the direct and exchange

term of the electron-electron Coulomb interaction acting on φi is
∑N

k=1

∫
dx2φ

∗
k(x2)(1/|r1−

r2|)det[φi,k(x1,2)]. For the uniform electron gas, Eq. (3.4) is easily verified by substituting

a plane wave for the one-electron orbital in the above equations: φl(r) = (1/
√
V )eikl·r.

We do not present the derivation here because it is a special case of a case mentioned

below; moreover, a similar analysis of the uniform electron gas can be found in several

articles [70, 71, 28, 25]. For general periodic systems, Vscreen(x1, x2) depends not only

on r12 = r1 − r2 but on rM = (r1 + r2)/2 because of the inhomogeneity of the systems,

therefore it should be averaged in terms of rM to verify Eq. (3.4). Here we evaluate Vscreen

averaged over rM , using the Fourier transform by applying (1/V )
∫

dr12exp(−iG · r12) as

follows: (
1

V

∫
dr12e

−iG·r12
)
×
(

1

V

∫
drM

)
× Vscreen(r1, r2)

=
1

V 2

∫
dr′dr′′dr3 n(r3)∇u(r′) · ∇u(r′′)e−iG·(r

′′−r′)

(r′ = r3 − r1, r′′ = r3 − r2)

=
N

V 2

∣∣∣∣∫ dr ∇u(r)e−iG·r
∣∣∣∣2

∼ N

V 2

(4πA)2

|G|2
(|G| → 0, Eq. (3.3))

=

(
1

V

∫
dr12e

−iG·r12
)
×
(
A

A0

)2 1

|r1 − r2|
, (3.7)

where for simplicity the spin coordinates are omitted and the Jastrow function u(r, r′) is

assumed to be a function of r− r′. Therefore the electron-electron Coulomb interaction is

partially canceled by the three-body terms, Eq. (3.5), and hence the screening occurs as

Eq. (3.4).

For a more accurate treatment of the screening effect, we should not average the

interaction over rM and should use a more general form of the Jastrow function such as,

e.g.,
∑

pwp(r1)up(r1−r2)wp(r2), which reflects the structure of materials and is frequently

used in QMC calculations. Following this line of reasoning, Gaudoin et al. optimized the

long-range behavior of the Jastrow function with the inhomogeneous RPA treatment, but

reported that this method does not improve the accuracy as much when the cusp condition

is imposed [76]. Therefore, at present, we adopt our simple approach to achieve a low-cost

computation.

Using Eq. (3.4), we can determine the value of A as

A = A0

√
1− 1

ε
, (3.8)
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where ε is the dielectric constant introduced to reproduce the electron-electron Coulomb

interaction macroscopically screened as 1/(ε|r − r′|) for insulators. For metallic systems,

we take A = A0. Next, we determine the values of Cσ,σ′ to be

Cσ,σ′ =
√

2A (σ = σ′),
√
A (σ 6= σ′), (3.9)

to satisfy the cusp condition. To calculate ε for insulators, we use an RPA relation for

LDA orbitals and band energies [77],

ε = 1 +
8π

V
lim
q→0

1

|q|2
∑
k,σ

occ.∑
i

unocc.∑
a

|〈φLDA
k+q,σ,a|eiq·r|φLDA

k,σ,i〉|2

εLDA
k+q,σ,a − εLDA

k,σ,i

, (3.10)

where i and a are indices of the occupied and unoccupied bands for the ground states,

respectively, and k and q are wave vectors. Here we consider only electron-induced polar-

ization because our purpose is to optimize the many-body wave function of electrons within

the Born-Oppenheimer approximation. To evaluate the right-hand side of Eq. (3.10), we

interpolate
∑

k,σ

∑
i

∑
a |〈φLDA

k+q,σ,a|eiq·r|φLDA
k,σ,i〉|2/(εLDA

k+q,σ,a − εLDA
k,σ,i) with a quadratic func-

tion of qx, qy, and qz, and their coefficients determine the dielectric constant. Accuracy

for the dielectric constant is much affected by the fineness of the k-point mesh in this

procedure. Therefore, the resulting values of A corresponding to some finite numbers of

k-points are extrapolated to that for an infinite number of k-points by fitting a quadratic

function of the inverse of the number of k-points to the values of A. This is not an efficient

way compared with that described in Ref. [77], but simple to implement and even if using

this way, its computational cost is actually much smaller than the total cost. In addition,

convergence of A in terms of the number of k-points is verified in our calculations.

3.3 Optimization of the Jastrow factor: Pseudo-variance

minimization

Next, we determine the remaining parameters in the Jastrow function (Eq. (3.1)), cm;σ,σ′

and L, including in the short-range polynomials. For this purpose, we rewrite the variance

of HTC, called the TC variance, as follows:

σ2
TC = 〈Φ0|(H†TC − E0)(HTC − E0)|Φ0〉 (3.11)

=

∞∑
p

〈Φ0|H†TC − E0|Φp〉〈Φp|HTC − E0|Φ0〉 (3.12)

=

∞∑
p

|〈Φp|HTC − E0|Φ0〉|2, (3.13)

where Φp satisfies the completeness relation,
∑∞

p |Φp〉〈Φp| = id. The TC variance exhibits

some favorable features: (i) it is a non-negative real number, (ii) it equals zero if HTCΦ0 =
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E0Φ0 exactly holds, and (iii) if HTCΦ0 6= E0Φ0 then the TC variance is larger than

zero. In this sense, minimizing the TC variance is a good guiding principle to optimize

the parameters in the Jastrow function, but it is computationally extremely demanding

because the TC variance involves a six-body potential in H†TCHTC and an infinite sum in

terms of p in Eq. (3.13). Even if the summation over ‘p’ in Eq. (3.13) is limited to some

finite number of ‘p’, (i) and (ii) still hold, but (iii) does not. However, this quantity still

can be a good measure to gauge how Φ0 is far from the exact eigenstate. Therefore, we

define the pseudo-variance as

σ2
PS =

finite∑
p

|〈Φp|HTC − E0|Φ0〉|2, (3.14)

and employ its minimization as the guiding principle for optimizing the Jastrow function.

This approach was originally proposed by Boys and Handy [17, 18], but they use a slightly

different quantity,

finite∑
p

|〈Φ̃p|HTC − E0|Φ0〉|2

∆E

(∆E = 〈Φ̃p|HTC|Φ̃p〉 − 〈Φ0|HTC|Φ0〉), (3.15)

where Φ̃p are determinants with one or two orbitals in the Slater determinant of the ground

state being replaced with some basis functions, and (∆E)−1 is called a weighting factor,

which suppresses contribution from Φ̃p of high energy. The weighting factor was necessary

to perform calculations under practical computational cost for that time, but there is no

specific reason to choose this form of the weighting factor. Different choices may produce

different results. Moreover, minimization of this guiding variable can in principle yield

unstable behavior, because it is not necessarily positive if we change the values of the

Jastrow parameters for fixed Φ0 and Φ̃p. To overcome these problems, we eliminated the

weighting factor. Without the weighting factor, we can relate the pseudo-variance to the

TC variance in the way described at the beginning of this section. It is interesting that

variance minimization in the VMC calculation uses a similar idea to ours; that is, the

variance for a small number of samplings can be a guiding variable for optimization [78].

In principle, the choice of Φp is arbitrary, and we choose doubly excited configura-

tions, Φa,b
i,j ≡ (1/

√
N !)det[φ1,2,...,̂i,...,ĵ,...,N−1,N,a,b(x1,...,N )], where electrons of the i-th and

j-th occupied states of the ground state are excited to the a-th and b-th unoccupied

states. Here, because of the Brillouin’s theorem for the TC method, 〈Φp|HTC|Φ0〉 = 0

for a singly excited configuration, proved in the Appendix. Additionally, contributions

from a configuration involving excitations of more than three electrons equal zero because

the similarity-transformed Hamiltonian consists of up to three-body interactions. The

contribution from a triply excited configuration is non-zero but its calculation is computa-

tionally very expensive, hence not considered here. In addition, for an efficient calculation,
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we restrict the electron excitations. We use Nk as the number of k-point in solving the

TC-SCF equation Eq. (2.10) to obtain the one-electron orbitals and in describing the

occupied orbitals in the determinants, but we also use Nk,mini as the number of k-points

where the electron excitation should be included with Nk,mini taken to be smaller than Nk.

In other words, for a doubly excited configuration Φa,b
i,j , one-electron orbitals involved with

electron excitations, φi, φj , φa, and φb, should be chosen from a small, Nk,mini, k-point

mesh to lower computational cost, while occupied orbitals φ1,...,N belong to an Nk k-point

mesh. This idea that one can use different values between Nk and Nk,mini was used in

MP2 calculations for one-dimensional periodic molecules by Shimazaki et al. [79].

Because cm;σ,σ′ are linear parameters in the Jastrow function, the pseudo-variance is

written as a polynomial of cm;σ,σ′ (cf. Eq. (2.5), (3.1), and (3.14)). This fact enables us

to optimize these parameters efficiently because once we calculate the coefficients of this

polynomial at the beginning of the whole optimization process, the values of the pseudo-

variance and its gradient for each optimization step are obtained at very low computational

cost. A similar situation is investigated for some VMC calculations [80]. Similarly to the

approach in this reference, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

[81, 82, 83, 84] for pseudo-variance minimization, which is well known to be a robust and

efficient method for minimization problems. In contrast, the optimization of the value

of L is computationally costly because it appears non-linearly in the Jastrow function.

Therefore, we determine its value for now from (4/3)πL3 = Vunit cellNk,mini, where Vunit cell

is the volume of the unit cell. In this choice, we use the largest value of L within the size of

the region, for which the periodic boundary condition is imposed for Φp. A similar choice

for L is often taken in QMC calculations.

Pseudo-variance minimization requires computational cost ofO(((NkN
2
k,miniNb,filledN

2
bv)+

(N3
k,miniN

2
bvN

2
bc))Npw), where Nb,filled denotes the number of valence bands for the ground

state, and the electron excitation for doubly excited configurations is restricted to an

Nk,mini k-point mesh, Nbv(≤ Nb,filled) valence bands, and Nbc conduction bands from

the Fermi energy. Npw is the number of plane waves used in expanding the one-electron

orbitals. An overall computational cost strongly depends on how many excited configura-

tions are required, and we will present some related results in a later section.

3.4 Calculation process

Overall calculation process is presented in Figure 3.1. First, we perform an LDA calcula-

tion. Next, the dielectric constant ε is calculated with the RPA relation, Eq. (3.10), using

LDA orbitals. This is a similar procedure as the GW method [45, 46, 47], which is now

well known to be a reliable first-principles method for solid-state calculations. Using the

calculated dielectric constant, Eq. (3.8), and Eq. (3.9), we can determine the values of A
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LDA calculation

TC-SCF equation (Eq. (2.10)): orbital optimization

Calculate the dielectric constant using RPA (Eq. (3.10))

Determine the values of     and          (Eq. (3.8), (3.9))

Pseudo-variance minimization: optimization of                 (Eq. (3.14))

TC-SCF equation (Eq. (2.10)): orbital optimization

Is self-consistency achieved for

orbital & Jastrow optimization?

end

start

Yes

No

Figure 3.1: Calculation process for full optimization of the Jastrow-Slater-type wave func-

tion by the TC method.

and Cσ,σ′ in the Jastrow function. The TC-SCF equation, Eq. (2.10), is then solved with

u(x, x′) = (A/|r− r′|)
(
1− exp

(
−|r− r′|/Cσ,σ′

))
, to optimize the one-electron orbitals of

the TC method for this initial Jastrow function. Now we use a Jastrow function with the

short-range polynomials, Eq. (3.1), and optimize the coefficients cm;σ,σ′ using the pseudo-

variance minimization, Eq. (3.14). In this procedure, we use cm;σ,σ′ = 0 for the initial

guess. For bulk silicon with M = 4, we also tried other initial guesses constructed with

random values, but for most sets of initial values, we reached the same minimum for the

pseudo-variance as that for cm;σ,σ′ = 0. In the other cases we reached only one other local

minimum but its pseudo-variance value is several times as large as the lowest value. These

results support our idea to use cm;σ,σ′ = 0 as an initial guess to reach the global minimum

for bulk silicon. Finally, we obtain physical quantities such as the band gap and the total

energy by solving the TC-SCF equation again. Optimization of the Jastrow factor and

that for one-electron orbitals should be repeated self-consistently, but we verified that the

results presented in this paper are almost unchanged by such self-consistent iterations.
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3.5 Conditions for our calculations

One-electron orbitals in the HF and TC methods were expanded with LDA [4] orbitals

in our study. These LDA basis functions were used only to reduce the number of basis

functions: convergence was achieved with respect to the number of the LDA orbitals. The

LDA calculation was performed with a plane-wave basis. Non-local norm-conserving pseu-

dopotentials generated by the method developed by Troullier and Martins [85] were used

for the LDA, HF and TC calculations. Developing pseudopotentials for solid-state calcu-

lations using the TC method is one of the important aspects for the future. Singularities

of the electron-electron Coulomb interaction and the Jastrow function in the k-space for

the HF and TC methods were handled with a method proposed by Gygi and Baldereschi

[74], where we used an auxiliary function of the same form as that proposed by Massidda

et al. [86]. The Message Passing Interface (MPI) system was used for parallelization of

the calculations. The LDA calculations were performed with tapp code [87, 88], and the

HF and TC calculations with tc++ code [24, 25].

The same conditions are used in the whole of this thesis, and so the conditions described

here are not mentioned in the later chapters.

3.6 Results: RPA optimization

In this section, we use a Jastrow function without the short-range polynomials, i.e., with

cm;σ,σ′ = 0 in Eq. (3.1), where the values of A and Cσ,σ′ are determined using the RPA

in the way described in Section 3.2. The dielectric constants and Jastrow parameter

A we used are listed in Table 3.1, which were obtained by extrapolation of the values

calculated with about 20× 20× 20 to 30× 30× 30 k-points. The calculated band gaps are

presented in Figure 3.2 and Table 3.2, comparing with those for the HF method, LDA, the

experimental values, and the TC method using the Jastrow function Eq. (2.11), with A0

and C0;σ,σ′ , which were determined from the analysis of the homogeneous electron gas. An

experimental lattice constant was used for each solid. We used a 4× 4× 4 to an 8× 8× 8

k-point mesh to have a finite-size error smaller than 0.1eV. We can see that our RPA

treatment remedies over-screening caused by A0, which was determined by an analysis

of the uniform electron gas, and the calculated band gaps increased for all materials,

compared with the results of the TC method using A0. In other words, the values of A

are smaller than those of A0 as listed in Table 3.1, so the resulting band gaps slightly

approach the HF (A = 0) band gaps. In particular, a wide-gap insulator like lithium

fluoride is much affected by the RPA treatment, and its band gap is much improved. It is

because the electronic structure of such a wide-gap insulator is much different from that of

the uniform electron gas, and so the original value A0 is quite inappropriate. In contrast,

the TC method with RPA is found to overestimate the band gaps about 1eV for other
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εcalc εexp A/A0

Si 13.73 11.9a 0.9629

β-SiC 7.213 6.52a 0.9281

LiH 4.810 3.6b 0.8900

C (diamond) 5.950 5.7a 0.9121

LiCl 3.430 2.79c 0.8417

LiF 2.117 1.93c 0.7264

Table 3.1: Calculated dielectric constants εcalc, experimental values εexp, and the values

of A/A0 calculated using εcalc.
a Ref. [41], b Ref. [89], c Ref. [90].

systems, which are sometimes worse than those obtained from the TC method using the

Jastrow function with A0 and C0;σ,σ′ . However, this situation is not surprising because

the value of A determined by RPA is not necessarily optimal for short-range description,

whereas the parameter A determines the behavior of the Jastrow function in the whole

region. Therefore, in the next section, we introduce the short-range polynomials as Eq.

(3.1) though we shall also see that such treatment does not yield satisfactory improvement.

Before going to the next section, we mention that the calculated values of the dielectric

constants are somewhat different from the experimental values (see Table 3.1.) and such

differences change the calculated values of the band gaps a bit, but do not affect our

conclusion in this section. For example, the band gaps calculated with A and Cσ,σ′ , for

which values are determined with experimental values of the dielectric constants, are 3.24

eV for β-SiC and 14.4 eV for LiF, which are respectively 0.08 and 0.4 eV larger than those

(3.16 and 14.0 eV) from calculated dielectric constants.

3.7 Results: pseudo-variance minimization

Convergence issues

In this section, we apply the pseudo-variance minimization to the optimization of the short-

range parameters of the Jastrow function for bulk silicon. Before showing the results for

the physical quantities, we present the convergence property of this scheme. Figure 3.3

presents the plot of the convergence of the total energy and the value of the Jastrow

parameter c0;para for bulk silicon in terms of the number of conduction bands Nbc taken

into consideration for the excited configurations in calculating the pseudo-variance. We

used Nk = 4× 4× 4, Nk,mini = 2× 2× 2, Nbv = 4 (full), and M = 3 in Eq. (3.1) for these

calculations. An experimental lattice constant (10.26 Bohr) [41] was used. The cutoff

energy for plane waves was 36 Ry, and the number of LDA orbitals used in expanding the
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Figure 3.2: Band gaps for several solids calculated with each method. ‘TC (Electron Gas)’

used a Jastrow function as Eq. (2.11). ‘TC (RPA)’ used the same form of the Jastrow

function, but A0 and C0;σ,σ′ are replaced with A and Cσ,σ′ , whose values are determined

in the way described in Section 3.2. The lines are drawn as visual guides.
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LDA TC (Electron Gas) TC (RPA) HF Exp.

Si 0.5a 1.7a 2.0 6.7a 1.17b

β-SiC 1.4a 2.4a 3.2 8.9a 2.4c

LiH 2.6 5.4 6.4 10.5 5.0d

C (diamond) 4.2a 5.9a 7.0 12.9a 5.48c

LiCl 6.2 8.6 10.2 15.5 9.4e

LiF 9.9 10.5 14.0 21.7 14.2f

Table 3.2: Band gaps (eV) for several solids calculated using various methods. ‘TC (Elec-

tron Gas)’ used a Jastrow function of Eq. (2.11). ‘TC (RPA)’ used the same form of the

Jastrow function, but A0 and C0;σ,σ′ are replaced with A and Cσ,σ′ , the values of which

were determined in the way described in Section 3.2. a Ref. [25], b Ref. [40], c Ref. [41],
d Ref. [42], e Ref. [43], f Ref. [44].

one-electron orbitals of the TC method was 100. In Figure 3.3, we can see that reasonable

convergence has been achieved with respect to the practical number of conduction bands.

In addition, we also investigated convergence in terms of the self-consistent repetition of

the Jastrow-factor optimization and orbital optimization as specified in the lower part

of Figure 3.1, and verified that it affects results such as the total energy minimally for

bulk silicon. For example, differences between results with a self-consistent repetition

in Figure 3.1 and those without, i.e., using one-electron orbitals optimized for u(x, x′) =

(A/|r−r′|)(1−exp(−|r−r′|/Cσ,σ′)) and the Jastrow function optimized for these orbitals,

are about 0.0008 Hartree and 0.0004, for the total energy per primitive cell and the Jastrow

parameter c0;para, respectively for Nbc = 48. (Cf. The total energy and the Jastrow

parameter c0;para calculated without this self-consistent repetition are -7.878 Hartree and

0.0064, respectively.) The minimal change seems to be because an optimized Jastrow

function is very similar to the one without short-range polynomials for bulk silicon as we

shall see in the next section.

Application to bulk silicon, lithium hydride, and silicon carbide

We investigate how the short-range terms affect some physical quantities using the pseudo-

variance minimization for bulk silicon. The whole calculation described in Section 3.4 was

performed for several values of M using Nk = 4 × 4 × 4, Nk,mini = 2 × 2 × 2, Nbv = 4

(full), and Nbc = 48. Table 3.3 presents several quantities obtained in our calculations: the

indirect and direct band gaps, valence bandwidths, lattice constants, bulk moduli, fraction

of the valence correlation energy retrieved within our calculations Rcorr (%), the values of

the pseudo-variances, and computation time for the pseudo-variance minimization using
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Figure 3.3: Convergence of the total energy per primitive cell and the Jastrow parameter

c0;para is shown for bulk silicon using Nk = 4× 4× 4, Nk,mini = 2× 2× 2, Nbv = 4 (full),

and M = 3 in Eq. (3.1). Differences in values for the total energy and c0;para for each Nbc

from those for Nbc = 196 (-7.870 Hartree and 0.0107, respectively) are plotted.
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64 MPI processes of the K-computer, Kobe, Japan. The pseudo-variance for the HF wave

function is defined as in Eq. (3.14) with HTC = H, i.e., the Jastrow factor F = 1. Rcorr

for the total energy E is defined as 100 × (EHF − E)/(EHF,ref − EDMC,ref) (%), where

EHF is the HF total energy calculated by us, EDMC,ref the DMC total energy using a

54-atom simulation cell obtained from Ref. [75], and EHF,ref the HF total energy from the

same reference. In evaluating Rcorr, the total energies for the HF and TC methods are

extrapolated in the limit Nk → ∞. For this purpose, we used an approximate relation

[25, 91],

Etot = Etot,inf + b×N−1
k , (3.16)

where the total energies, Etot, corresponding to Nk = 4 × 4 × 4 and 6 × 6 × 6 are used

for solving the SCF equations to obtain an extrapolated value, Etot,inf . Whereas the SCF

equations here are solved for two different k-point meshes, the Jastrow factor is always

optimized using the pseudo-variance minimization with Nk = 4×4×4 as mentioned above.

For all calculations in this subsection, the cutoff energy for plane waves was 36 Ry and the

number of LDA basis orbitals used in expanding the HF or TC orbitals was 100, except

for band calculations in the HF method, which was performed using an 8× 8× 8 k-point

mesh, 25 Ry cutoff energy, and 50 LDA orbitals, and other calculations performed in the

references. An experimental lattice constant (10.26 Bohr) was used.

We can see that the pseudo-variance decreases by inclusion of the additional degrees

of freedom in the Jastrow factor, and the values corresponding to the TC wave functions

are much lower than that for the HF wave function. These results show that the pseudo-

variance can be used as a measure of the quality of the wave function, which can be

evaluated with reasonable computational cost, though the computational cost is found to

be comparable to the QMC calculations. However, the band properties, i.e., the band gaps

and valence bandwidth, change very little by inclusion of the short-range terms regardless

of their number, M , for bulk silicon. This result suggests that an accurate description

of the band properties of bulk silicon requires more elaborate treatment of the electron

correlation, e.g., using more general forms of the Jastrow function like
∑

pwp(r)u(r −
r′)wp(r

′), or post-HF treatment beyond the single Slater determinant. Fig. 3.4 presents

Jastrow functions optimized with various conditions. Jastrow functions for M ≥ 4 are

not depicted here because they are almost indistinguishable with that for M = 3. In Fig.

3.4, these functions are almost identical, which means that the original Jastrow function

without short-range polynomial terms is a fairly good guess.

We also applied the pseudo-variance minimization and performed similar calculations

for lithium hydride and silicon carbide presented in Table 3.4 and Table 3.5, respectively.

For calculations of lithium hydride, we used Nk = 4× 4× 4, Nk,mini = 2× 2× 2, Nbv = 1

(full), and Nbc = 48 for pseudo-variance minimization, and 49 or 64 Ry cutoff energy

for plane waves and 100 LDA orbitals to expand one-electron orbitals of the HF and TC
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methods. As for silicon carbide, we used Nk = 4×4×4, Nk,mini = 2×2×2, Nbv = 4 (full),

and Nbc = 48 for pseudo-variance minimization, and 49 or 64 Ry cutoff energy for plane

wave and 200 LDA orbitals to expand one-electron orbitals of the HF and TC methods.

For both materials, HF band calculations are carried out using the large number of k-

points (8× 8× 8 at most) to obtain enough convergence. In both tables, we can observe

the essentially same behavior as bulk silicon, i.e., band energies are not altered so much

by inclusion of short-range polynomials. These results reinforce our argument about a

role of short-range terms and an effect of pseudo-variance minimization mentioned above

for the case of silicon. The direct band gap of silicon carbide slightly decreases when

M = 4, but we verified that it again increases to 9.4eV for M = 5. Moreover, the pseudo-

variance decreases by our RPA treatment for our three test cases (silicon, silicon carbide,

and lithium hydride) even though the Jastrow parameters A and C are not determined

by pseudo-variance minimization. It suggests that our RPA treatment works well for

optimization and also the pseudo-variance is a good measure of a quality of the trial wave

function.

In conclusion of this chapter, we optimize the Jastrow factor by two ways. First,

long-range parameters are determined by using the dielectric constant obtained with RPA

calculations. This treatment improves the band gap of a wide-gap insulator, LiF, but

the band gaps of other materials are not improved. Next, short-range parameters are

optimized by pseudo-variance minimization developed by us. It works with reasonable

computational cost, but it is found that band energies are not improved by inclusion of

short-range polynomials we used here.

To overcome this situation, we apply the MP2 perturbation theory to the TC Hamil-

tonian to go beyond a single-Slater-determinant assumption. For this purpose, we should

introduce a biorthogonal formulation of the TC method owing to the non-Hermiticity of

the TC Hamiltonian. Therefore, in the next chapter, we briefly introduce the biorthog-

onal formulation of the TC method, and in the following chapter, we apply the MP2

perturbation theory to the TC Hamiltonian.
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RPA opt. no yes yes yes yes yes yes - - - -

M 0 0 2 3 4 5 6 LDA HF DMC Exp.

Indirect bandgaps (eV) 1.7 2.0 2.1 2.1 2.1 2.1 2.1 0.5a 6.7a - 1.17b

Direct bandgaps (eV) 4.2 4.6 4.6 4.6 4.6 4.6 4.6 2.6 9.2 3.70c 3.40, 3.05d

Valence bandwidths (eV) 15.0 15.1 15.1 15.1 15.1 15.1 15.1 11.9a 16.8a 13.58c 12.5(6)d

Rcorr (%) 114 109 71 72 73 71 70 90a 0 - -

σ2
PS (10−3Hartree2) 6.82 6.34 4.61 4.54 4.53 4.49 4.40 - 54.1 - -

Computation time (hours) - - 0.9 1.6 2.8 4.2 6.0 - - - -

Table 3.3: Indirect and direct band gaps, valence bandwidths, fraction of the valence

correlation energy retrieved within our calculations (compared with the result from the

fixed-node DMC calculation of Ref. [75] using a 54-atom simulation cell) Rcorr (%), the

values of the pseudo-variances, and computation time for pseudo-variance minimization

using 64 MPI processes of the K-computer, Kobe, Japan, for bulk silicon calculated with

each type of the Jastrow function. See the main text for the definition of Rcorr. M = 0

corresponds to the Jastrow function without short-range polynomials. a Ref. [25], b Ref.

[40], c Ref. [35], d From the compilation given in Ref. [92].

RPA opt. no yes yes yes yes - - -

M 0 0 2 3 4 LDA HF Exp.

Direct bandgaps (eV) 5.4 6.4 6.4 6.5 6.7 2.6 10.5 5.0a

Valence bandwidths (eV) 6.7 6.8 6.8 6.7 6.6 5.5 7.5 6.3±1.1b

σ2
PS (10−4Hartree2) 11.87 10.54 8.54 8.34 8.20 - 114.5 -

Table 3.4: Band properties of lithium hydride calculated with several conditions for the

Jastrow function just as Table 3.3. a Ref. [42], b Ref. [93].

RPA opt. no yes yes yes yes - - -

M 0 0 2 3 4 LDA HF Exp.

Indirect bandgaps (eV) 2.4a 3.2 3.3 3.2 3.2 1.4a 8.9a 2.4b

Direct bandgaps (eV) 8.5 9.3 9.5 9.5 8.9 6.4 15.4 6.0c

Valence bandwidths (eV) 19.4 19.6 19.6 19.6 19.6 15.3 21.3 -

σ2
PS (10−3Hartree2) 17.34 14.48 10.78 10.64 10.59 - 88.8 -

Table 3.5: Band properties of silicon carbide calculated with several conditions for the

Jastrow function just as Table 3.3. a Ref. [25], b Ref. [41], c Ref. [94].
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No opt.

Long-range opt.

Long-range opt. + short-range opt. (M=2)

Long-range opt. + short-range opt. (M=3)

(a)

No opt.

Long-range opt.

Long-range opt. + short-range opt. (M=2)

Long-range opt. + short-range opt. (M=3)

(b)

Figure 3.4: Jastrow functions for parallel (a) and anti-parallel (b) spins optimized with

various conditions. The solid black line plots the Jastrow function without optimization,

i.e., Eq. (2.11), the dot-dash red line the same form of the Jastrow function where A0

and C0;σ,σ′ are replaced with A and Cσ,σ′ , whose values are determined in the manner

described in Section 3.2, the short-dashed blue line the Jastrow function as in Eq. (3.1)

with M = 2, and the long-dashed green line one with M = 3.
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Chapter 4

Biorthogonal formulation of the

TC method (BiTC method)

To apply the MP2 perturbation theory to the TC method, we should introduce a biorthog-

onal formulation of the TC method, called the BiTC method. The BiTC method was

already developed and applied to the molecular systems [95], but not yet to the periodic

systems like solids. In this chapter, we introduce the BiTC method and show our results

of its application to solid-state calculations.

4.1 Formalism of the BiTC method

In the biorthogonal formulation of the TC method, we assume Slater determinants X =

(1/
√
N !)det[χi(xj)] and Φ = (1/

√
N !)det[φi(xj)] are left and right eigenstates of the TC

Hamiltonian, respectively. The total energy is evaluated as Re[〈X|HTC |Φ〉], and an SCF

equation for the BiTC method is (
−1

2
∇2

1 + vext(x1)

)
φi(x1)

+

N∑
j=1

∫
dx2 χ

∗
j (x2)

(
1

|r1 − r2|
+

1

2

(
∇2

1u(x1, x2) +∇2
2u(x1, x2)

−(∇1u(x1, x2))2 − (∇2u(x1, x2))2
)

+∇1u(x1, x2) · ∇1 +∇2u(x1, x2) · ∇2

)
×det[φi,j(x1,2)]− 1

2

N∑
j=1

N∑
k=1

∫
dx2dx3 χ

∗
j (x2)χ∗k(x3)

×
(
∇1u(x1, x2) · ∇1u(x1, x3) +∇2u(x2, x1) · ∇2u(x2, x3) +∇3u(x3, x1)∇3u(x3, x2)

)
×det[φi,j,k(x1,2,3)] = εiφi(x1),

(4.1)
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where the one-electron orbitals for the left determinant, χ(x), are biorthogonal to those

for the right determinant, φ(x): ∫
dx χ∗i (x)φj(x) = δij , (4.2)

and normalization condition we use is∫
dx φ∗i (x)φi(x) = 1. (4.3)

In the original formalism of the TC method, εij on the right-hand side of the SCF equation

Eq. (2.10) is not diagonalized (i.e., εij for i 6= j are not necessarily zero) because the one-

electron orbitals is orthogonalized and so are not the eigenstates of the TC-Fock operator.

On the other hand, εij is diagonalized (i.e., εij = 0 for i 6= j and rename the diagonal

elements εii as εi) in the BiTC-SCF equation Eq. (4.1). This is because the right and left

eigenstates of the general linear operator can be biorthogonalized.

4.2 Differences between the TC and BiTC methods

Differences between the TC and BiTC methods are summarized in Table 4.1. Orthogo-

nality among the one-electron orbitals, diagonalization of εij , and evaluation of the total

energy are mentioned in the previous section. Koopmans’ theorem is proved for the TC

method in Ref. [23], and that for the BiTC method can be verified in the same manner.

Hellmann-Feynman theorem [96, 97] states

dEλ
dλ

= 〈Φλ|
dHλ
dλ
|Φλ〉, (4.4)

where λ is a general parameter and is usually coordinates of the nucleus, and the left

eigenstate should be replaced with X for the BiTC method. Impressive feature of this

theorem is that dΦλ/dλ does not appear on the right-hand side, which enables one to

explore the stable structures of systems easily. However, for the conventional TC method,

this theorem does not hold owing to the fact that 〈Φλ| is not the left eigenstate of the

Hamiltonian. There is no such problem for the BiTC method, which enables one to

optimize the crystal structure using the Hellman-Feynman force defined as the above

equation, and is one of the great advantages of the BiTC method. Brillouin’s theorem

is mentioned and proved in Appendix A, and is utilized in the MP2 perturbation theory

(Chapter 5) and CIS method (Chapter 6). We shall see that the biorthogonal formulation

is required for applying the MP2 perturbation theory to the TC method in Chapter 5.

In addition to this table, computational cost for the BiTC method is about 1.5 times

as expensive as that for the TC method because some Hermitian terms in the TC method

can be evaluated with small computational cost (e.g., for arbitrary Hermitian operator
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TC method BiTC method

Orthogonality 〈φi|φj〉 = δij 〈χi|φj〉 = δij , 〈φi|φi〉 = 1

Eigenvalues εij not diagonalized diagonalized

Koopmans’ theorem holds for Re[εii]

Total energy Re[〈Φ|HTC |Φ〉]/〈Φ|Φ〉] Re[〈X|HTC |Φ〉]/〈X|Φ〉]
Hellmann-Feynman theorem does not hold holds

Brillouin’s theorem partially holds holds

(〈Φa
i |HTC |Φ0〉 = 0) (〈X0|HTC |Φa

i 〉 = 〈Xa
i |HTC |Φ0〉 = 0)

MP perturbation theory not applicable applicable

(in the regular manner)

Table 4.1: Differences between the TC and BiTC methods.

ĥ, 〈φi|ĥ|φj〉 = (〈φj |ĥ|φi〉)∗ can be utilized, but 〈χi|ĥ|φj〉 6= (〈χj |ĥ|φi〉)∗.). Also, memory

requirements are higher for the BiTC method than for the TC method owing to the

necessity to store both φ and χ.

4.3 Results: band gaps and total energies

The TC and BiTC methods have many differences as we have seen in the previous section,

and so the calculation results of the physical quantities such as the band gaps can differ.

Table 4.2 presents the calculated band gaps using the TC and BiTC methods. For sili-

con, lithium hydride, and diamond, the band gaps do not differ so much between the TC

and BiTC methods, but other materials, especially lithium fluoride, show not small dif-

ferences. This is because we use different formalisms, i.e., solve different SCF equations,

between these two methods. Comparing with experimental results, the BiTC method

shows systematic overestimation of the band gaps. In the next chapter, we consider the

MP2 correction to the band energies calculated with the BiTC method to improve this

situation.

For bulk silicon, we further checked the differences between the TC and BiTC methods

in detail. Table 4.3 presents some kinds of physical quantities calculated using the TC

and BiTC methods. We can see that all quantities listed here are very similar between

these two methods.
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TC BiTC Experiment

Si 2.0 2.2 1.17a

β-SiC 3.2 3.9 2.4b

LiH 6.4 6.4 5.0c

C (diamond) 7.0 7.1 5.5b

LiCl 10.2 11.0 9.4d

LiF 14.0 17.1 14.2e

Table 4.2: Calculated band gaps (eV) using the TC and BiTC methods. a Ref. [40], b

Ref. [41], c Ref. [42], d Ref. [43], e Ref. [44].

TC BiTC Experiment

Indirect band gaps (eV) 2.0 2.2 1.17a

Direct band gaps at the Gamma point (eV) 4.6 4.6 3.40, 3.05b

Valence bandwidths (eV) 15.1 15.1 12.5(6)b

a (Bohr) 10.08 10.09 10.24(10.26)c

B (GPa) 113 113 101(99)c

Valence correlation energies retrieved (%) 109 110 -

Table 4.3: Several physical quantities of bulk silicon calculated using the TC and BiTC

methods. Valence correlation energy retrieved is defined in Chapter 3. The experimental

lattice constant and bulk modulus are corrected for zero-point vibrational effects and

those in parentheses correspond to uncorrected experimental values. a Ref. [40], b From

the compilation given in Ref. [92], c Ref. [98] and references therein.
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Chapter 5

The second-order Møller-Plesset

(MP2) perturbation theory

Using the biorthogonal formalism of the TC method introduced in the previous chapter, we

apply the MP2 perturbation theory to the TC Hamiltonian. Band structure calculations

by using the BiTC-MP2 method are presented.

5.1 MP2 perturbation theory for the HF method

We briefly review the conventional MP2 perturbation theory applied to the HF method

[15]. In the MP2 perturbation theory, Hamiltonian is divided into two parts,

H = H0 + V, (5.1)

where H0 =
∑

i ĥ(xi) and ĥ(xi) is the HF-Fock operator appeared in the SCF equation of

the HF method, Eq. (1.5). V is defined as H−H0. Here we apply the many-body pertur-

bation theory to this partitioning of the Hamiltonian. (V is treated as the perturbation

term.) The ground state is assumed not to be degenerated here.

Unperturbed (zeroth-order) state and energy

Because ĥ(x)φi(x) = εiφi(x) holds for each orbital φi, the Slater determinant, i.e., the

HF wave function Φ0 = (1/
√
N !)det[φ1,...,N (x1,...,N )], is the eigenstate of H0. The zeroth-

order contribution of the total energy is E
(0)
HF =

∑
i εi, which is the eigenvalue of the H0

corresponding to its eigenstate Φ0.
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First-order contribution

The first-order contribution of the total energy E
(1)
HF is calculated as

E
(1)
HF = 〈Φ0|V |Φ0〉 = E0 −

∑
i

εi, (5.2)

where E0 is the HF total energy of the ground state, 〈Φ0|H|Φ0〉. Therefore, the HF total

energy E0 equals to E
(0)
HF + E

(1)
HF.

Second-order contribution

The second-order contribution of the total energy E
(2)
HF is calculated as

E
(2)
HF = −

∑
i 6=0

|〈Φi|V |Φ0〉|2

Ei − E0
, (5.3)

where Φi and Ei are the eigenstates and the corresponding eigenvalues of H0, respectively.

The summation runs over all the eigenstates of H0 except Φ0.

To calculate Eq. (5.3), we can easily verify that only doubly-excited configurations

Φa,b
i,j = (1/

√
N !)det[φ1,2,...,̂i,...,ĵ,...,N−1,N,a,b(x1,...,N )], where electrons belonging to the i- and

j-th occupied states are excited to the a- and b-th unoccupied states, can have non-zero

contribution to E
(2)
HF [15]. Therefore, E(2) can be rewritten as

E
(2)
HF = −

occup∑
i<j

unocc∑
a<b

|〈a, b||i, j〉|2

εa + εb − εi − εj
, (5.4)

where

〈a, b||i, j〉 ≡
∫

dx1dx2 φ
∗
a(x1)φ∗b(x2)

1

|r1 − r2|
det[φi,j(x1,2)]. (5.5)

This is called the MP2 theory, which is known as a simple but efficient and powerful

method for calculating more accurate electronic structure of molecular systems than the

HF method. However, for solid-state calculations, the MP2 theory is known to provide

inaccurate band gaps for narrow-gap systems, e.g., Si and β-SiC exhibit metallic band

structures [51] (also, see our results presented later in this chapter). It seems to be

because the starting point of this perturbation, the HF-Fock operator, is much inaccurate

for describing the electronic structure in solids. In particular, the screening effect, which

is considered to be retrieved with the infinite series of the diagrams like the ring diagrams

of RPA, is difficult to take into account by the second-order perturbation, especially for

the narrow-gap semiconductors where the dielectric constants are large and perturbation

is considered to converge slowly with respect to the order of the perturbation series. To

overcome this problem, we apply the MP2 theory to the BiTC method, which is considered

to be better starting point than the HF method, for solid-state calculations.
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5.2 MP2 perturbation theory for the BiTC method

MP perturbation theory can be applied to the TC Hamiltonian in the similar manner to

that for the HF method, as described and applied to molecular systems in Refs. [21, 95].

However, we should use the biorthogonal formalism for the TC method to derive the similar

relations to the HF-MP2 method because of the non-Hermiticity of the TC Hamiltonian.

The MP2 correlation energy for the ground state of the BiTC method [95] is

E
(2)
BiTC = −Re

[ occup∑
i<j

unocc∑
a<b

〈X0|HTC|Φa,b
i,j 〉〈X

a,b
i,j |HTC|Φ0〉

εa + εb − εi − εj

+

occup∑
i<j<k

unocc∑
a<b<c

〈X0|HTC|Φa,b,c
i,j,k 〉〈X

a,b,c
i,j,k |HTC|Φ0〉

εa + εb + εc − εi − εj − εk

]
(5.6)

where i, j, k and a, b, c denote occupied and unoccupied one-electron states respectively,

and Φa,b,c
i,j,k and Xa,b,c

i,j,k are triply excited configurations.

We can see that the Brillouin’s theorem for the TC Hamiltonian [95] makes the con-

tribution from singly excited configurations zero just like the HF-MP2 method. However,

there are some differences between the BiTC-MP2 and HF-MP2 methods. First, non-

Hermiticity of the TC Hamiltonian requires the biorthogonal formulation, and so two

kinds of one-electron orbitals (φ and χ) appear and the above equation includes complex

numbers. Second, the three-body terms are included in the TC Hamiltonian, and then,

(i) the contribution from triply excited configurations is non-zero, and (ii) also the con-

tribution from doubly excited configurations involves three-body terms. This situation

is similar to that for the pseudo-variance described in Chapter 3, and in this thesis, we

ignore the contribution (i), i.e., the second term on the right-hand side in Eq. (5.6) just

as in Chapter 3 because of computational cost. Moreover, the contribution from triply

excited configurations is expected to be small because one- or two-body operators in the

TC Hamiltonian cannot have non-zero contribution for these configurations and also an

important contribution of the three-body terms as described in Chapter 3 (Eq. (3.7)) does

not appear here.

Then, the total energy we used in this thesis can be rewritten as

E
(2)
BiTC = −Re

[ occup∑
i<j

unocc∑
a<b

〈i, j||a, b〉TC〈a, b||i, j〉TC

εa + εb − εi − εj

]
, (5.7)

where

〈p, q||r, s〉TC ≡
∫

dx1dx2 χ
∗
p(x1)χ∗q(x2)v2body(x1, x2)det[φr,s(x1,2)]

−1

2

occup∑
m

∫
dx1dx2dx3 χ

∗
p(x1)χ∗q(x2)χ∗m(x3)v3body(x1, x2, x3)det[φr,s,m(x1,2,3)], (5.8)
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and v2body(x1, x2) and v3body(x1, x2, x3) are defined as

v2body(x1, x2) ≡ 1

|r1 − r2|
+

1

2

(
∇2

1u(x1, x2) +∇2
2u(x1, x2)− (∇1u(x1, x2))2 − (∇2u(x1, x2))2

)
+∇1u(x1, x2) · ∇1 +∇2u(x1, x2) · ∇2,

(5.9)

and

v3body(x1, x2, x3) ≡ ∇1u(x1, x2) · ∇1u(x1, x3) +∇2u(x2, x1) · ∇2u(x2, x3)

+∇3u(x3, x1) · ∇3u(x3, x2). (5.10)

5.3 Band correction calculated by the MP2 perturbation

theory

By using the MP2 theory, one can also calculate the correction of the band structure,

i.e., one-electron energy εi. For the HF-MP2 method, the below equations can be seen in

several articles [99, 51],

εHF−MP2
v = εv −

occup∑
i

unocc∑
a<b

〈i, v||a, b〉〈a, b||i, v〉
εa + εb − εi − εv

+

occup∑
i<j

unocc∑
a

〈i, j||a, v〉〈a, v||i, j〉
εa + εb − εi − εv

, (5.11)

εHF−MP2
c = εc −

occup∑
i

unocc∑
a<b

〈i, c||a, b〉〈a, b||i, c〉
εa + εb − εi − εc

+

occup∑
i<j

unocc∑
a

〈i, j||a, c〉〈a, c||i, j〉
εa + εc − εi − εj

, (5.12)

for the valence band v and conduction band c respectively, and for the BiTC-MP2 method,

εBiTC−MP2
v = εv −

occup∑
i

unocc∑
a<b

〈i, v||a, b〉TC〈a, b||i, v〉TC

εa + εb − εi − εv
+

occup∑
i<j

unocc∑
a

〈i, j||a, v〉TC〈a, v||i, j〉TC

εa + εb − εi − εv

+

occup∑
i<j

unocc∑
a<b

(
1

2

〈i, j||a, b〉TC〈a, b, v||i, j, v〉3 + 〈i, j, v||a, b, v〉3〈a, b||i, j〉TC

εa + εb − εi − εj

+
1

4

〈i, j, v||a, b, v〉3〈a, b, v||i, j, v〉3
εa + εb − εi − εj

)
,

(5.13)

εBiTC−MP2
c = εc −

occup∑
i

unocc∑
a<b

〈i, c||a, b〉TC〈a, b||i, c〉TC

εa + εb − εi − εc
+

occup∑
i<j

unocc∑
a

〈i, j||a, c〉TC〈a, c||i, j〉TC

εa + εc − εi − εj

+

occup∑
i<j

unocc∑
a<b

(
1

2

〈i, j||a, b〉TC〈a, b, c||i, j, c〉3 + 〈i, j, c||a, b, c〉3〈a, b||i, j〉TC

εa + εb − εi − εj

−1

4

〈i, j, c||a, b, c〉3〈a, b, c||i, j, c〉3
εa + εb − εi − εj

)
,

(5.14)
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where

〈p, q, r||s, t, u〉3 ≡
∫

dx1dx2dx3 χ
∗
p(x1)χ∗q(x2)χ∗r(x3)v3body(x1, x2, x3)det[φs,t,u(x1,2,3)].

(5.15)

These equations are derived by calculating the difference between the total energies of the

system of N and N ± 1 electrons.

5.4 Computational cost

The HF-MP2 method requires the computational cost of O(N3
kN

2
bvN

2
bcNpw) when ones use

the plane waves for calculations. This cost comes from the fact that the number of the

possible combinations of the indices i, j, a, and b in Eq. (5.4) is N3
kN

2
bvN

2
bc because of the

conservation law of the crystal momentum. To calculate the band correction described in

the previous section, N2
bvN

2
bc is replaced with NbvN

3
bc +N2

bvN
2
bc +N3

bvNbc.

As for the BiTC-MP2 method, the computational cost including the three-electron

excitation (Eq. (5.6)) is O(N5
kN

3
bvN

3
bcNpw), which is extremely expensive and intractable.

When we neglect the three-electron excitation as described in Section 5.2, the MP2 corre-

lation energy (Eq. (5.7)) requires the computational cost of O(N3
kN

2
bvN

2
bcNpw), which is

the same order as that of the HF-MP2 method. It is remarkable feature that the three-

body potentials included in Eq. (5.7) can be calculated with the same computational cost

as that for the two-body potentials using the similar technique to that for solving the

TC-SCF equation [25]. Moreover, as we shall see in the following sections, the amount

of the BiTC-MP2 correlation energy is much smaller than that for the HF-MP2 method,

which enables faster convergence with respect to the parameter such as the number of

k-points, and so rather lower computational cost is required for the BiTC-MP2 method

than for the HF-MP2 method in some cases.

Additionally, we should note that computational cost required for calculating the last

two lines of Eqs. (5.13) and (5.14) is a bit expensive: O(N3
kN

2
bvN

2
bcNpw) for each εv or

εc, which is larger than computational cost of remaining terms. However, we verified

that contribution of these expensive terms is small: less than 0.1 eV for all calculations

performed in this thesis. Therefore, we can neglect the last two lines of Eqs. (5.13) and

(5.14) with small error while we did not do so in this thesis.

5.5 Results: convergence issues

In this section, we investigate the convergence issues of the MP2 correlation energy with

respect to the number of conduction bands and k-points. This issue largely affects whether

calculations can be carried out with practical computational cost because computation

time increases rapidly as the number of these parameters become larger.
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Figure 5.1 presents the plot of convergence of the MP2 correlation energy with respect

to the number of conduction bands, Nbc, for lithium hydride. We used a 3 × 3 × 3 k-

point mesh, one (full) valence band, 36 Ry for the cutoff energy for plane waves, and 100

LDA orbitals for each k-point in expanding the one-electron orbitals of the HF and BiTC

methods.

We can see several interesting features here. First, the MP2 correlation energy can be

well extrapolated with a linear function of the inverse of the number of the conduction

bands both for the HF-MP2 and BiTC-MP2 methods. This is an advantageous feature

in terms of computational cost because calculations involving a very large number of the

conduction bands are not necessary. The reason why such a linear behavior is observed is

essentially the same as the reason explained in Ref. [100]. Second, the MP2 correlation

energy of the BiTC-MP2 method is much smaller than that of the HF-MP2 method, which

is also advantageous for the BiTC-MP2 method with respect to computational cost because

convergence is easily achieved comparing with the HF-MP2 method. This feature comes

from the fact that a large part of the correlation energy is already retrieved at the level

of the BiTC calculation. Actually, the correlation energy per primitive cell retrieved with

the BiTC method is −0.05 Hartree, which is a similar amount to the HF-MP2 correlation

energy seen in Figure 5.1, about −0.04 Hartree, which is also considered to be a major

part of the correlation energy. Finally, the MP2 correlation energy can be positive for the

BiTC-MP2 method while that for the HF-MP2 method is always negative (cf., Eq. (5.4)).

Figure 5.2 presents the plot of convergence of the MP2 band corrections to the valence-

band minimum and conduction-band minimum at the Γ point with respect to the number

of conduction bands for bulk silicon. Those are relative values to the MP2 band corrections

to the valence-band maximum at the Γ point, which are set to zero. We used a 2×2×2 k-

point mesh, four (full) valence bands, 25 Ry for the cutoff energy for plane waves, and 100

LDA orbitals for each k-point in expanding the one-electron orbitals of the HF and BiTC

methods. We can see that the MP2 corrections to the BiTC-MP2 method are smaller

than those for the HF-MP2 method similarly to the case of the total energy as seen above.

In addition, it is easier for the BiTC-MP2 method to achieve enough convergence than

for the HF-MP2 method, and linear extrapolation can work for both methods. We also

checked convergence of the MP2 band corrections to the band gap of lithium hydride with

respect to the number of conduction bands, which is presented in Figure 5.3. We used a

2 × 2 × 2 k-point mesh, one (full) valence bands, 36 Ry for the cutoff energy for plane

waves, and 200 LDA orbitals for each k-point in expanding the one-electron orbitals of

the HF and BiTC methods. For this material, values of the MP2 band correction show

oscillating behavior both for the HF-MP2 and BiTC-MP2 methods, but for large values of

the number of conduction bands, linear extrapolation is still valid. In calculations using

a large number of k-points in the following sections, it is sometimes difficult in terms of
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Figure 5.1: MP2 correlation energy per primitive cell of lithium hydride calculated using

the HF-MP2 and BiTC-MP2 methods.

computational cost to take a sufficiently large number of the conduction bands. In some

cases, we adopt the MP2 correction corresponding to a small number of the conduction

bands if oscillation as observed in Figure 5.3 is verified and the MP2 correction of the

chosen Nbc is considered to be near that for Nbc →∞.

Next, we investigate convergence with respect to the number of k-points, Nk. Figure

5.4 presents the plot of convergence of the MP2 band corrections to the direct band gap

at the Γ point with respect to the number of k-points for silicon. We used four (full)

valence band, 25 Ry for the cutoff energy for plane waves, and 100 LDA orbitals for each

k-point in expanding the one-electron orbitals of the HF and BiTC methods. Contribution

from 8 and 12 conduction bands was calculated for the HF-MP2 and BiTC-MP2 methods,

respectively. It is difficult to find some simple relationship between the number of k-points

and the corresponding values of the MP2 corrections for extrapolation to Nk →∞ limit.

However, the number of k-points largely affects the MP2 corrections and MP2 calculations

using a large Nk are enormously expensive. Therefore, in this thesis, we assumed that

the MP2 band correction is approximately a linear or quadratic function of the inverse of

the number of k-points for large Nk, and calculated the extrapolated value of the MP2

band correction corresponding to Nk →∞ limit. For band structure calculations, we did

not use the data corresponding to a 2× 2× 2 k-point mesh for extrapolation because our

extrapolation is not expected to work well for such a small Nk.
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Figure 5.2: MP2 band corrections to the valence-band minimum and conduction-band

minimum at the Γ point for silicon calculated using the HF-MP2 and BiTC-MP2 methods.

These are relative values to the MP2 band corrections to the valence-band maximum at

the Γ point, which are set to zero.
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Figure 5.3: MP2 band corrections to the direct band gap for lithium hydride calculated

using the HF-MP2 and BiTC-MP2 methods.
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Figure 5.4: MP2 band corrections to the direct band gap at the Γ point for silicon calcu-

lated using the HF-MP2 and BiTC-MP2 methods.

51



CHAPTER 5. THE SECOND-ORDER MØLLER-PLESSET (MP2) PERTURBATION
THEORY

LDA HF HF-MP2 TC BiTC BiTC-MP2

Rcorr (%) 90 0 102 109 110 89

Table 5.1: Valence correlation energy retrieved within our calculations Rcorr (%), which is

defined in Chapter 3, for each method.

5.6 Results: valence correlation energy

Valence correlation energy retrieved by our calculation, Rcorr (%), which is defined in

Chapter 3, for each method is listed in Table 5.1. MP2 correlation energies in this table

were obtained by quadratic fitting with respect to the inverse of the number of k-points

using results of 2×2×2, 3×3×3, and 4×4×4 k-point meshes. For MP2 calculations, 16

Ry cutoff energy for plane waves, 100 LDA orbitals to expand one-electron orbitals of the

HF and BiTC methods, and 4 (full) valence bands for excited configurations were used.

Extrapolation with respect to the number of conduction bands for excited configurations

was also performed. Since the reference DMC calculation and our calculations use a dif-

ferent pseudopotential, these values of the valence correlation energy should be considered

only as a rough estimate of accuracy of these methods, but we can see all of these methods

(except the HF method) give a good estimate of the total energy.

5.7 Results: band gaps

Band gaps of some simple solids calculated using the HF-MP2, BiTC-MP2, and several

other methods are presented in Table 5.2. Ref. [51] uses the PAW method [101], somewhat

different treatment of core electrons from the pseudopotential method we adopt here, but

their results of the HF method are similar to ours. Differences between the HF-MP2

results of theirs and ours seem to be because (i) treatment of core electrons is different

as mentioned above, (ii) they calculated the MP2 band correction with partially self-

consistent manner, i.e., εv and εc are updated as εHF−MP2
v and εHF−MP2

c , respectively, in

an iterative manner in Eqs. (5.11) and (5.12), and/or (iii) convergence with the number

of k-points is verified within a different amount of the error. Anyway, the calculated

HF-MP2 band gaps show the same behavior; the MP2 corrections are too large for solids

with relatively narrow band gaps, while for the wide-gap systems, the HF-MP2 method

provides good accuracy. This tendency is natural because the MP2 perturbation theory

cannot work for metallic systems, where the MP2 correlation energy diverges [102], and

so can provide inaccurate results also for narrow-gap systems. As for the BiTC-MP2

method, the MP2 correction is very small except for lithium fluoride, where the band gap

is improved. This situation seems to be because the BiTC method already retrieves a
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LDA HF HF (Ref. [51]) HF-MP2 HF-MP2 (Ref. [51]) TC BiTC BiTC-MP2 Exp.

Si (direct) 2.6 9.2 - -0.1 - 4.6 4.6 4.4 3.40, 3.05a

Si (indirect) 0.5 6.7 7.1 - -1.2 2.0 2.2 - 1.17b

SiC 1.4 8.9 8.7 -2.3 -0.8 3.2 3.9 4.0 2.4c

LiH 2.6 10.5 - 5.3 - 6.4 6.4 6.4 5.0d

LiF 9.9 21.7 21.8 14.6 14.2 14.0 17.1 14.8 14.2e

Table 5.2: Band gaps (eV) of some solids calculated with several methods. a From the

compilation given in Ref. [92], b Ref. [40], c Ref. [41], d Ref. [42], e Ref. [44].

large part of the correlation energy without the MP2 perturbation. These results are a bit

discouraging considering its expensive computational cost, and suggest that one should

take other measures to take account of electron correlation effects not retrieved here and

obtain the accurate band structures. To get some physical insights from these results, in

the next section, we investigate the MP2 correction for the BiTC method in detail.

5.8 Role of the effective interaction in the TC Hamiltonian

We investigate a role of the effective interaction in the TC Hamiltonian for the MP2 cor-

relation for further understanding of our results and the nature of the electron correlation

effects that can be retrieved with our treatment.

Table 5.3 presents the MP2 correlation for the total energy per primitive cell of bulk

silicon calculated with each condition: (i) HF-MP2, (ii) BiTC-MP2 with v2body(x1, x2) =

1/|r1 − r2| and v3body(x1, x2, x3) = 0 (i.e., only Coulomb interaction) in Eq. (5.8), (iii)

BiTC-MP2 with

v2body(x1, x2) =
1

|r1 − r2|
+

1

2
(∇2

1u(x1, x2) +∇2
2u(x1, x2)) (5.16)

=
1

|r1 − r2|
(1− αexp[−|r1 − r2|

C
]), (5.17)

where α = 1/2 (spin parallel), 1 (spin anti-parallel) and v3body(x1, x2, x3) = 0 (i.e., par-

tially canceled Coulomb interaction) in Eq. (5.8), (iv) BiTC-MP2 with full two-body

interaction and v3body(x1, x2, x3) = 0 (i.e., without three-body terms) in Eq. (5.8), and

(v) BiTC-MP2 with full interaction both for two- and three-body terms. Note that, for

(ii), (iii), and (iv), the BiTC-SCF equation was solved with full interaction, and only MP2

correction Eq. (5.7) was calculated with partial interaction. In the conditions (iii), (iv),

and (v), divergence of the electron-electron Coulomb repulsion at |r1−r2| = 0 is (partially)

canceled with the effective two-body potential as seen in Eq. (5.17), which is considered

to be an important contribution of the effective potential in the TC Hamiltonian for short-

range correlation. We used a 2 × 2 × 2 k-point mesh, 16 Ry cutoff energy for the plane
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(i) HF-MP2 (ii) BiTC-MP2 (iii) BiTC-MP2 (iv) BiTC-MP2 (v) BiTC-MP2

(partial) (partial) (partial)

MP2 correlation -0.232 -0.320 -0.090 -0.043 -0.031

Table 5.3: MP2 correlation for the total energy per primitive cell (Hartree) calculated

with each condition: (i) HF-MP2, (ii) only Coulomb interaction is used for calculating the

BiTC-MP2 correction, (iii) partially canceled Coulomb interaction is used for calculating

the BiTC-MP2 correction, (iv) BiTC-MP2 without three-body interaction, and (v) normal

BiTC-MP2. Each condition is explained in detail in the main text.

wave, 100 LDA orbitals to expand one-electron orbitals in the HF and BiTC methods,

and 4 (full) valence bands for excited configurations. Linearly extrapolated values of the

MP2 correlation energies with respect to the inverse of the number of conduction bands

Nbc using the MP2 correlation energies of Nbc = 24 and 32 were adopted.

First, comparing (i) with (ii), a difference between these two energies comes from

differences of the one-electron orbitals and their orbital energies between the HF and

BiTC methods. We verified that two kinds of orbitals are very similar, but the orbital

energies exhibit a large difference as mentioned before: e.g., the band gap calculated with

the HF method (about 7eV) is much larger than that for the BiTC method (about 2eV).

This issue enlarges the MP2 correlation energy of the case (ii) (cf. Eq. (5.7)). Next,

a difference among (ii), (iii), (iv), (v) suggests that the BiTC-MP2 correlation energy is

largely affected by the effective two-body potential ∇2u rather than the other two-body

and three-body potential in the TC Hamiltonian. The cancelation shown in Eq. (5.17) is

due to the cusp condition imposed on the Jastrow factor, and so we can conclude that the

cusp condition, which describes the short-range correlation, plays very important role for

evaluation of the total energy of the BiTC-MP2 method.

On the other hand, as for the band structures, also the three-body terms have sig-

nificant contribution. Table 5.4 presents the MP2 corrections to the band structures of

bulk silicon calculated with the above-mentioned conditions of interactions, from (i) to

(v), using a 4 × 4 × 4 k-point mesh, 25 Ry cutoff energy for the plane wave, 100 LDA

orbitals to expand one-electron orbitals in the HF and BiTC methods, and 4 (full) valence

and 12 conduction bands for excited configurations. Γ25′ and X1c denote the maximum

of the valence band at the Γ point and the minimum of the conduction bands at the X

point, respectively. Note that the conduction-band minimum in the whole Brillouin zone

lies in a middle way between the Γ and X points, but the MP2 band correction to this

point is difficult to obtain, and so we calculated the transition energy between Γ25′ and

X1c instead. We can see that not only the two-body potential in the TC Hamiltonian but

also the three-body potential have a large contribution to the band energies comparing
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(i) HF-MP2 (ii) BiTC-MP2 (iii) BiTC-MP2 (iv) BiTC-MP2 (v) BiTC-MP2

(partial) (partial) (partial)

MP2 Correction to the -5.4 -12.8 -6.5 -10.3 -4.5

valence-band width

MP2 Correction to the -6.3 -9.2 -6.7 -7.2 -0.4

direct gap at the Γ point

MP2 Correction to the -6.1 -8.6 -6.4 -6.4 0.0

(Γ25′ to X1c) transition

Table 5.4: MP2 correction to the band structures (eV) for silicon calculated with each

condition, which is explained in detail in the main text.

with the small contribution of the three-body potential to the total energy presented in

Table 5.3. Three-body potential in the TC Hamiltonian describes the screening effect of

the electron-electron Coulomb interaction in the long-range region as shown in Chapter 3.

We also performed the same calculations for the MP2 correction to the band gap

of lithium fluoride. Table 5.5 presents the MP2 corrections calculated with the above-

mentioned variations of interactions taken into account ((i) to (v)) using a 3 × 3 × 3

k-point mesh, 81 Ry cutoff energy for the plane wave, 200 LDA orbitals to expand one-

electron orbitals in the HF and BiTC methods, and 4 (full) valence and 20 conduction

bands for excited configurations. We can see the same tendency as mentioned before; not

only the two-body but also the three-body potential makes an important contribution to

the MP2 correction to the band gap. Also, in Table 5.4 and 5.5, we can see that the other

two-body potentials than ∇2u also have a large contribution, but the total contribution

of the effective two-body potential yielded from the Jastrow function (i.e., a difference

between (ii) and (iv)) is much smaller than those of the three-body potential (i.e., a

difference between (iv) and (v)). At least for these materials, it is suggested that, to

obtain the correct band structure, the effect of the three-body potential is essential and

this is consistent with our study presented in Chapter 3; the long-range behavior of the

Jastrow function is crucial for band structure calculations and will affect the screening

effect described with the three-body potential. The knowledge obtained in Chapter 3 and

here suggests that it is important for accurate band structure calculations to describe the

screening effect in more rigorous manner comparing with the present treatment, where

the screening is described with only one Jastrow parameter, ‘A’. For this purpose, more

general Jastrow functions such as
∑

pwp(r)up(r−r′)wp(r
′), or the CC theory, where infinite

series of diagrams including the ring diagrams are considered [103], seem to be effective.

A study in this direction is an important future issue.
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THEORY

(i) HF-MP2 (ii) BiTC-MP2 (iii) BiTC-MP2 (iv) BiTC-MP2 (v) BiTC-MP2

(partial) (partial) (partial)

MP2 correlation -5.9 -6.8 -3.0 -5.7 -2.7

Table 5.5: MP2 correlation to the band gap (eV) for lithium fluoride calculated with each

condition, which is explained in detail in the main text.
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Chapter 6

Configuration Interaction Singles

(CIS) method

In the former chapters, we concentrate our attention on improvement of accuracy of the

ground-state calculation. Another expected development for the TC method is to perform

the excited-state calculation. In this chapter, we propose a new method for excited-state

calculation using the TC Hamiltonian. In particular, we shall show that accurate optical

absorption spectra of solids can be obtained by our method.

6.1 HF-CIS method

We briefly review the conventional configuration interaction singles (CIS) method based on

the HF method [15]. In the HF method, the many-body wave function of the ground state

is assumed to be the single Slater determinant: Φ0 = (1/
√
N !)det[φ1,...,N (x1,...,N )]. For the

excited-state calculation, the simplest way is to use the CIS approximation, in which we

assume the excited-state wave function to be the linear combination of the singly-excited

configurations,

Φa
i = (1/

√
N !)det[φ1,...,̂i,...,N,a(x1,...,N )], (6.1)

where an electron of the i-th occupied state is excited to the a-th unoccupied state. In

other words, the excited-state wave function Φexcited is represented as

Φexcited =
∑
i,a

ci,aΦ
a
i . (6.2)

Then, the eigenvalue problem, HΦexcited = EexcitedΦexcited, can be solved as the following

way: (i) solve an SCF equation in the HF method to obtain the optimized one-electron

orbitals and their orbital energies, (ii) calculate the matrix elements 〈Φa
i |H|Φb

j〉 (called the

CI matrix), and (iii) diagonalize the CI matrix. By the diagonalization, one can obtain the

coefficients ci,a in the Eq. (6.2), and the total energies Eexcited for several excited states.
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The CIS approximation is often used as the simplest way for the excited-state calcu-

lation because of its simple formalism and relatively low computational cost comparing

with other wave function theories. It is noteworthy that one can deal with the excitonic

effect by this method because the electron-hole interaction is taken into account in the

above matrix elements.

For solid-state calculation, however, the conventional CIS method based on the HF

method (we call it the HF-CIS method hereafter) has not enough accuracy to describe

the electronic structure of the excited states. The reason is the same as that of the failure

of the HF method applied to the solid-state calculations, that is, the HF-CIS method

cannot describe the screening effect, resulting in, e.g., too strong exciton binding energy.

Moreover, when we calculate the optical absorption spectrum, the calculated spectrum is

shifted to the high-energy region owing to the overestimation of the band gap by the HF

method. These features were investigated in recent studies [104, 49], and also we shall

see them in a later section. To overcome these shortcomings, we combine the TC method

with the CIS approximation, that we call the TC-CIS method.

6.2 TC-CIS method

In the TC-CIS method, we also use the singly-excited configurations, Eq. (6.1), and

represent the excited-state wave function Ψexcited as

Ψexcited = FΦexcited, (6.3)

where Φexcited = c0Φ0 +
∑
i,a

ci,aΦ
a
i . (6.4)

An obvious difference between Eq. (6.2) and Eq. (6.4) is the existence of the term, c0Φ0.

In the HF-CIS, c0 = 0 holds because of Hermiticity of the Hamiltonian [15], which does

not hold for our non-Hermitian TC Hamiltonian. In other words, for the TC Hamiltonian,

〈Φ0|HTC |Φa
i 〉 does not equal zero. (cf. Appendix A.) Electron correlation effect is partially

taken into account through the similarity-transformation of the Hamiltonian with the

Jastrow factor F , the same as the ground-state calculation.

TC-CIS calculation is performed in the same way as that of the HF-CIS method,

though the CIS approximation (Eq. (6.4)) is now applied to the similarity-transformed

Hamiltonian (TC Hamiltonian), HTC . In this thesis, we calculate the optical absorption

spectrum of solids using the TC-CIS method. For this purpose, states i and a in Φa
i

should have the same crystal momentum because the momentum transfer between light

and condensed matter is negligibly small.
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Some approximations for the TC-CIS method

We developed two techniques of the approximations used in the calculations of the opti-

cal absorption spectrum using the TC-CIS method, which is indispensable to have their

computational cost practical.

The calculation of the CI-matrix elements appears to be computationally expensive

because its cost scales as O(N3
k ) owing to the three-body terms in the TC Hamiltonian,

where Nk is the number of k-points. However, many part of the three-body terms can be

calculated at O(N2
k ) cost using a technique used in the ground-state calculation [25], e.g.,

the term, ∑
q

〈ajq|∇2u(x21)∇2u(x23)|bqi〉, (6.5)

where a and b denote the indices of the unoccupied states, and i, j, and q denote those of

the occupied states, is calculated as follows:

calculate (i) f1
q,i(x3) ≡ φ∗q(x3)φi(x3), (6.6)

(ii) f2
q,i(x2) ≡

∫
dx3∇2u(x23)f1

q,i(x3), (6.7)

(iii) f3
i (x2) ≡

∑
q

φq(x2)f2
q,i(x2), (6.8)

(iv) f4
i,j(x2) ≡ φ∗j (x2)f3

i (x2), (6.9)

(v) f5
i,j(x1) ≡

∫
dx2∇2u(x21)f4

i,j(x2), (6.10)

(vi) f6
i,j,a(x1) ≡ φ∗a(x1)f5

i,j(x1), (6.11)

(vii)

∫
dx1f

6
i,j,a(x1)φb(x1). (6.12)

Because a and i (also b and j, respectively) have the same crystal momentum, i.e., Φa
i

(and Φb
j) has the same total crystal momentum as Φ0, the above-mentioned calculations

require only O(N2
k ) computational cost. We verified that the remaining two kinds of terms

that require O(N3
k ) computational cost,∑

q

〈ajq|∇1u(x12)∇1u(x13)|bqi〉, and (6.13)∑
q

〈ajq|∇2u(x21)∇2u(x23)|qib〉, (6.14)

yield small contributions to the optical absorption spectra for the materials focused on in

this work (LiF and GaAs). Figure 6.1 shows the calculated optical absorption spectra of

solid LiF using a 4 × 4 × 4 k-point mesh with and without an approximation, for which

one does not calculate the above-mentioned expensive three-body terms Eq. (6.13) and

(6.14) that require O(N3
k ) computational cost. We can see that the neglected terms affect
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Figure 6.1: Calculated optical absorption spectra of LiF using a 4 × 4 × 4 k-point mesh

with (dashed line) and without (solid line) the approximation mentioned in the body text.

little to the calculated absorption spectrum of LiF, and the same also holds for GaAs, so

we shall adopt this approximation.

We also face another difficulty in calculating the optical absorption spectrum. The

optical absorption spectrum is obtained from the imaginary part of the dielectric function

ε2(ω),

ε2(ω) = (
2π

ω
)2
∑
n

|〈FΦ0|eλ · ∇|FΦn〉|2

〈FΦ0|FΦ0〉〈FΦn|FΦn〉
δ(ω − (En − E0)), (6.15)

where n denotes an index of an excited state, and eλ a polarization vector of the photon.

However, evaluation of this quantity requires evaluation of a 3N -dimensional integrations,

which is computationally very demanding. To avoid doing this integration for this study,

we calculate

(
2π

ω
)2
∑
n

|〈F−1Φ0|eλ · ∇|FΦn〉|2

〈Φ0|Φ0〉〈Φn|Φn〉
δ(ω − (En − E0)), (6.16)

instead of Eq. (6.15). The relation between these two quantities is described as follows:

first,

|〈F−1Φ0|eλ · ∇|FΦn〉|2

〈Φ0|Φ0〉〈Φn|Φn〉
=
|〈F−1Φ0|(

∑
j
|FΦj〉〈FΦj |
〈FΦj |FΦj〉 )eλ · ∇|FΦn〉|2

〈Φ0|Φ0〉〈Φn|Φn〉
, (6.17)

holds where j is summed over all eigenstates of H. Next, we suppose |〈Φ0|Φj〉| � 〈Φ0|Φ0〉
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for j 6= 0, and hence we only consider the j = 0 term in Eq. (6.17). This yields

Eq. (6.17) ' |〈FΦ0|eλ · ∇|FΦn〉|2

〈FΦ0|FΦ0〉〈FΦn|FΦn〉
× 〈Φ0|Φ0〉〈FΦn|FΦn〉
〈FΦ0|FΦ0〉〈Φn|Φn〉

. (6.18)

In addition, assuming 〈FΦ0|FΦ0〉/〈Φ0|Φ0〉 ' 〈FΦn|FΦn〉/〈Φn|Φn〉, the latter factor in Eq.

(6.18) becomes 1, and therefore we find that Eq. (6.15) and Eq. (6.16) are approximately

the same. The approximations we used here are not easily validated, but we shall see

that obtained spectra possess sufficient accuracy for a quantitative discussion. Eq. (6.16)

involves F−1∇F = ∇ −
∑

i<j(∇i + ∇j)u(ri, rj), which is easy to be evaluated, and in

particular, when we use the Jastrow function satisfying u(ri, rj) = u(ri−rj), F
−1∇F = ∇

holds.

Computational cost

As we have seen, computational cost to evaluate the CI-matrix elements such as 〈Φa
i |HTC |Φb

j〉
is originally O(N3

k ) but can be reduced to O(N2
k ) by neglecting few expensive terms with

slight change of the calculated spectrum. To mention in detail, the computational cost

scales as O(N2
kN

2
bvN

2
bcNpw), where Nbv, Nbc, and Npw are the numbers of the occupied,

unoccupied bands, and plane waves to expand one-electron orbitals, respectively.

Actually, diagonalization of the CI matrix requires O(N3
kN

3
bvN

3
bc) cost because the size

of the matrix is determined by the number of singly excited configurations (= O(NkNbvNbc)).

Because this diagonalization does not involve O(Npw) or O(NpwlogNpw) calculations, it

depends on the conditions of calculations which is more expensive, the diagonalization or

the calculation of the matrix elements.

6.3 Results: optical absorption spectra of solid LiF and

GaAs

Conditions

All conditions described in Chapter 3 were used also in this chapter. Experimental lattice

constants (7.59 Bohr for LiF [105] and 10.68 Bohr for GaAs [106]) were used. In this

chapter, we used the Jastrow function optimized following a way mentioned in Chapter

3.2:

u(x, x′) =
A

|r− r′|

(
1− exp

(
−|r− r′|

Cσ,σ′

))
, (6.19)

where A =
√

1− (1/ε) × A0 =
√

1− (1/ε) ×
√
V/(4πN) (ε: the dielectric constant

calculated with an RPA relation using LDA orbitals, N : the number of valence electrons,

V : the volume) and Cσ,σ′ =
√

2A (spin parallel: σ = σ′),
√
A (spin anti-parallel: σ 6= σ′).
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Long-range behavior of this function was determined to reproduce the screened electron-

electron interaction in solids as 1/r → 1/(εr), and short-range behavior was determined

by imposing the cusp condition, as we have seen in previous chapter. Using this Jastrow

function, these electron correlation effects are taken into consideration through the TC

Hamiltonian. The values of A/A0 were 0.7264 for LiF and 0.9596 for GaAs.

Optical absorption spectra of solid LiF

First, we calculated the optical absorption spectrum of solid LiF, which is known for its

very strongly bound exciton. Figure 6.2 presents the optical absorption spectra calculated

using the TC-CIS and HF-CIS methods with a 10 × 10 × 10 k-point mesh, 81 Ry cutoff

energy for plane waves, and 100 LDA orbitals for the expansion of the one-electron or-

bitals for both the HF and TC methods. Three valence bands and six conduction bands

from the Fermi energy were used for electron excitation. We can see the overall struc-

ture of the experimental spectrum is well reproduced with both the TC-CIS and HF-CIS

methods. However, the HF-CIS method has two problems. First, the band gap is heavily

overestimated in the HF level, and therefore, the spectrum is shifted to the high-energy

region. Second, the exciton binding energy for the HF-CIS method is over 4eV, which is

much larger than the experimental value, from 1.4 to 1.9eV [44]. Recall that the binding

energy is defined as the difference between the energy corresponding to the sharp excitonic

peak (see Figure 6.2) and the direct band gap at the Γ point obtained with the ground-

state calculation. This large derivation reflects the fact that the HF-CIS method cannot

describe the screening effect of the electron-electron interaction, yielding overbinding ex-

citon. The TC-CIS method notably overcomes these problems and yields a surprisingly

accurate spectrum. The band gap is correctly reproduced and the exciton binding energy

is about 1.5eV, which falls within the range of experimental values. Our simple Jastrow

factor enables an accurate description of the electronic structure in solids, including the

exciton.

Optical absorption spectra of solid GaAs

Next, we calculated the optical absorption spectra of solid GaAs, presented in Figure

6.3. We used a 10× 10× 10 k-point mesh, 36 Ry cutoff energy for plane waves, 80 LDA

orbitals in the expansion of the one-electron orbitals, and three valence bands and six

conduction bands from the Fermi energy for electron excitation. For this material, we

shifted the k-point mesh where electron excitations occur for −0.01b1 − 0.02b2 + 0.03b3

with {b1,b2,b3} being the basic reciprocal-lattice vectors. The idea to use a shifted grid

to achieve a good spectral resolution was originally proposed by Rohlfing and Louie [108],

and using this constant shift is the same way as Ref. [109]. In using the HF-CIS method,
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10 22 261814

12

0

4

8

 [eV]

Experiment

HF-CIS

TC-CIS

Figure 6.2: Calculated optical absorption spectra of LiF using the TC-CIS (solid line)

and HF-CIS (dashed line) methods. Broadening is performed using the Lorentz function

f(x;x0, γ) = (1/π)(γ/((x − x0)2 + γ2)) with γ = 0.3eV. Experimental data [107] are

represented by dots.
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Figure 6.3: Calculated optical absorption spectra of GaAs using the TC-CIS (solid line)

and HF-CIS (dashed line) methods. Broadening is performed using the Lorentz function

with γ = 0.15 and 0.2eV for the TC-CIS and HF-CIS methods, respectively. Experimental

data [111] are represented by dots.

there is a large discrepancy between the experimental data and the calculated spectrum,

where we see a large shift of the whole spectrum to the high-energy region and a wrong

strongly-bound excitonic peak with very strong intensity. The direct band gap calculated

using the HF method is 7.8 eV, and hence the calculated exciton binding energy is about

1eV, whereas experimentally it is a few meV with very small intensity [110]. These trends

in the results from the HF-CIS method are similar to those of LiF. Although the spectrum

calculated with the TC-CIS method is also shifted to the high-energy region, through

the overestimation of the band gap in the ground-state calculation, the characteristic two

peaks are reproduced.

Discussion

The TC-CIS method well reproduces the experimental spectra, both for the sharp excitonic

peak of LiF and for the entire structure of both LiF and GaAs. To obtain a more accurate

spectrum of small-gap systems like GaAs, an accurate prediction of the band gap for small-

gap systems in the TC calculation is indispensable. For this purpose, the correlation effects

not captured with our simple treatment will be necessary by means of, e.g., combination

of the TC method with more elaborate post-HF methods described in the former chapters.

While we use the TC method (not the BiTC method) in this chapter, the BiTC-CIS
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method can be performed in a similar, but slightly different manner. In the BiTC-CIS

method, c0 = 0 holds in Eq. (6.4) because the Brillouin’s theorem holds (see, Appendix

A). However, the major difference is the difference between the calculated band gaps with

the TC method and those with the BiTC method, which largely affects the accuracy of

the obtained optical absorption spectrum.

Although similar or sometimes better agreement with experiment can be obtained by

using GW+BSE [54, 55, 56] or time-dependent DFT with long-range kernels [112, 113,

114], an accurate description of the spectra based on the first-principles wave function

theory, i.e., using a many-body wave function explicitly, is helpful to understand how we

describe electron correlations by means of such wave functions, and will be the basis for

systematic improvements in the spectral calculations. The success of our rather simple

formalism suggests great potential of the wave function theory for excited-state calcula-

tions of solids. In addition, we believe that some approximation techniques we developed

in this work are valuable also for other wave-function-based theories when obtaining the

optical absorption spectra.

Interestingly, although our TC-CIS method is an apparently different approach from

the GW+BSE method, which is well known as an accurate method based on the many-

body perturbation theory for excited-state calculation, there are some interesting similar-

ities. The screening effect of the electron-electron interaction is described by the Jastrow

factor in the TC method, and by the screened interaction W in GW; also, the CIS approxi-

mation is usually used also in GW+BSE calculations as the Tamm-Dancoff approximation.

Some examples of the differences between the two methods are: (i) the screening effect

is described by only one parameter in our Jastrow factor, which is too simple compared

with the way screening is considered in GW+BSE, and (ii) the cusp condition is taken

into account by the Jastrow factor in the TC-CIS method whereas it is difficult to do so in

GW+BSE. Such differences can lead to the differences observed in the calculated spectra.

(cf., Ref. [56].) In the TC-CIS method, it is advantageous that one can obtain the total

energy of the excited state, which can be utilized to find the stable structure of the excited

state in future application.
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Chapter 7

Conclusion

In this thesis, we achieved theoretical improvements for the TC method by two ways and

apply them to the band structure calculations and excited state calculations of solids.

First, in Chapter 3, we developed a new method to optimize the Jastrow factor with

reasonable computational cost and applied this method to some simple solids. We found

that the long-range behavior of the Jastrow function largely affects the band structures

of solids while the short-range polynomial terms does not so much. The former results

relate to the strength of the screening effect of the electron-electron interaction, which cor-

responds to the ‘A’ parameter in the Jastrow function and is determined using the value

of the dielectric constant. The latter results suggest that our simple Jastrow function

that is a function of |r − r′| does not have enough accuracy. In terms of the computa-

tional cost, the long-range parameter is determined very efficiently by our RPA treatment.

Also pseudo-variance minimization to optimize short-range parameters requires reasonable

computational cost, but this cost was found to be comparable to usual QMC calculations.

Despite this fact, development of our new formalism has two significances. First, we obtain

another efficient way to optimize the Jastrow factor in addition to QMC. This is helpful

to check validity of optimization ansatz and compare accuracy of calculations with each

other. Moreover, because pseudo-variance minimization does not employ the local energy

or local variance as used in QMC, one can easily apply our method also to somewhat ill-

conditioned Jastrow functions, e.g., those not satisfying the cusp condition. This means

that our method exhibits robustness in some situations and it can be helpful for some

kinds of theoretical investigation.

Next, in Chapter 5, the MP2 perturbation theory combined with the BiTC method

was applied to solid-state calculations. We found that the BiTC-MP2 method shows

favorable convergence behavior because a large part of the correlation energy is already

retrieved at the BiTC level and so the MP2 correction for the BiTC method is much

smaller than that for the HF method. However, because of such a small amount of the
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correction, MP2 treatment changes the band gaps of the BiTC method very little except for

lithium fluoride, and so satisfactory improvement of accuracy is not achieved for most solids

calculated in this thesis. Observation presented in this chapter suggests that, to obtain

the accurate band structures, we should describe the screening effect in more rigorous

manner than the present treatment, in which the screening effect is described with the

only one Jastrow parameter, ‘A’. Description of the screening effect can be improved

by using more sophisticated Jastrow functions such as
∑

pwp(r)up(r− r′)wp(r
′) or those

with more complex long-range behavior, or by combining with more sophisticated wave

function theories such as the CC theory, which takes account of infinite series of diagrams

including the ring diagrams. These treatments will also improve the description of the

short-range correlation effects.

As a result of the improvement in accuracy, in Chapter 6, the excited-state calcula-

tions were performed using the TC-CIS method with the optimized Jastrow factor. We

showed that the accurate optical absorption spectra are obtained with our rather simple

formalism using the optimized Jastrow factor and the linear combination of the singly ex-

cited configurations. This is an important step for future development of the excited-state

calculations based on the wave function theory. Moreover, it is meaningful to verify that

our simple wave function is able to describe the screened electron-hole interaction and the

formation of the exciton by this interaction in an intuitive manner.

For applying the first-principles calculations to broad types of materials including the

strongly correlated systems, improvement of the accuracy is a very important and urgent

problem. A comprehensive study of the TC method for solid-state calculations presented

in this thesis provided a new insight about how we can take account of the electron

correlation effects by using the explicitly correlated wave functions. We believe that our

strategy to make use of the Jastrow-Slater-type many-body wave function is verified to

be powerful, efficient, intuitive, and promising for high-accuracy calculation; the Jastrow

factor retrieves a large part of the electron correlation and the Slater determinant allows

one to employ the band picture. Important future issues are to use the more general

Jastrow factor, which is suggested by our study of Jastrow optimization (Chapter 3)

and MP2 (Chapter 5), and to combine the TC method with sophisticated wave function

theories such as the CC theory. These studies require massive computational effort, but

will provide important insight to understand the nature of the electron correlation effects.

It is also desirable to use the TC method for exploring the stable structures of solids

because availability of the Hellmann-Feynman force is an important advantage of the

(Bi)TC method, and in several cases a slight energy difference is crucial for predicting

the stable structure; high-accuracy calculation is required. This is an important future

problem, which may require to develop the pseudopotential for the TC method, and to

investigate the Hellmann-Feynman force in the TC method in detail.
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Appendix A

Brillouin’s theorem for the TC

method

We provide a proof of the Brillouin’s theorem for the TC method here, which states that

〈Φa
i |HTC|Φ0〉 = 0, (A.1)

for any singly excited configuration Φa
i defined as Φa

i ≡ (1/
√
N !)det[φ1,2,...,̂i,...,N−1,N,a(x1,...,N )],

where an electron of the i-th occupied state is excited to the a-th unoccupied state. This

relation is easily verified by explicitly calculating the left-hand side of Eq. (A.1) as follows:

LHS of Eq. (A.1)

=

∫
dx1 φ

∗
a(x1)

(
− 1

2
∇2

1 + vext(x1)

)
φi(x1)

+

N∑
j=1

∫
dx1dx2 φ

∗
a(x1)φ∗j (x2)v2body(x1, x2)det[φi,j(x1,2)]

− 1

2

N∑
j=1

N∑
k=1

∫
dx1dx2dx3 φ

∗
a(x1)φ∗j (x2)φ∗k(x3)

× v3body(x1, x2, x3)det[φi,j,k(x1,2,3)]

=

∫
dx1 φ

∗
a(x1)

N∑
j=1

εijφj(x1) (∵ Eq. (2.10))

= 0 (∵ φa is orthogonal to every φi.) (A.2)

Note that 〈Φ0|HTC|Φa
i 〉 6= 0 is caused by the non-Hermiticity of the TC Hamiltonian.

However, if we use a biorthogonal formulation of the TC method, we can obtain the

Brillouin’s theorem for both sides: 〈X0|HTC|Φa
i 〉 = 〈Xa

i |HTC|Φ0〉 = 0 where X is the left

determinant appearing in the biorthogonal formulation [95]. Contents in this appendix is
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published under licence in J. Phys.: Conf. Ser. by IOP Publishing Ltd. (M. Ochi and

S. Tsuneyuki, J. Phys.: Conf. Ser. 454 012020 (2013). http://iopscience.iop.org/1742-

6596/454/1/012020).
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[32] J. Kolorenč, S. Hu, and L. Mitas. Phys. Rev. B, 82:115108, 2010.

[33] R. Prasad, N. Umezawa, D. Domin, R. Salomon-Ferrer, and W. A. Lester, Jr. J.

Chem. Phys., 126:164109, 2007.

[34] L. Mitáš and R. M. Martin. Phys. Rev. Lett., 72:2438, 1994.

[35] A. J. Williamson, Randolph Q. Hood, R. J. Needs, and G. Rajagopal. Phys. Rev.

B, 57:12140, 1998.

[36] N. Umezawa and S. Tsuneyuki. J. Chem. Phys., 121:7070, 2004.

[37] Y. Suzuki and H. Matsumura. Prog. Theor. Phys., 113:87, 2005.

[38] S. Tsuneyuki. Prog. Theor. Phys. Supplement, 176:134, 2008.

[39] S. Ten-no. Chem. Phys. Lett., 353:317, 2002.

74



BIBLIOGRAPHY

[40] C.Kittel. Introduction to Solid State Physics, 6th ed. Wiley, New York, 1986.

[41] P. Y. Yu and M. Cardona. Fundamentals of Semiconductors, 3rd corrected ed.

Springer-Verlag, Berlin, 2005.

[42] V. G. Plekhanov, A. A. O’Connell-Bronin, and T. A. Betenekova. Fiz. Tverd. Tela,

19:3297, 1977.

[43] G. Baldini and B. Bosacchi. Phys. Status Solidi, 38:325, 1970.

[44] M. Piacentini, D. W. Lynch, and C. G. Olson. Phys. Rev. B, 13:5530, 1976.

[45] L. Hedin. Phys. Rev., 139:A796, 1965.

[46] M. S. Hybertsen and S. G. Louie. Phys. Rev. Lett., 55:1418, 1985.

[47] M. S. Hybertsen and S. G. Louie. Phys. Rev. B, 34:5390, 1986.

[48] V. Polo, E. Kraka, and D. Cremer. Mol. Phys., 100:1771, 2002.
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