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Abstract

Due to the coexistence of phase coherence and magnetic order, Bose-Einstein condensates with
internal degrees of freedom, i.e., spinor BECs, are considered to serve as an ideal table-top

playground for the studies of various phenomena in different fields of physics. They have been
widely used in studying spin textures and topological defects, coherent spin dynamics, quantum

symmetry breaking, quantum phase transitions, etc. However, the theoretical framework used
in these works is based on the mean-field theory in which the effects of quantum fluctuations are

ignored. Despite the success of the mean-field theory in the description of spinor BECs, there
are particular features whose account must rely on a beyond-mean-field theory as the effects of
quantum fluctuations become significant. In this thesis, we develop the Beliaev theory, which

is a Green’s function approach beyond the Bogoliubov theory, for spinor BECs to study the
effects of quantum fluctuations on the condensates’ phase structures, elementary excitations,

stabilities, and phase transitions.
First, we point out that the Bogoliubov theory fails to capture the metastable states asso-

ciated with first-order quantum phase transitions in spin-2 BECs. In fact, we show that these
metastable states are induced by quantum fluctuations, and only by going to the next-order

approximation, i.e., the Beliaev theory, can we show that they indeed appear around the phase
boundaries. Besides the fluctuation-induced metastability, we find another important class of

first-order quantum phase transitions in both spin-1 and spin-2 BECs. In this class, there is
no metastable state to all orders of approximation since it is prohibited by a high symmetry
of the Hamiltonian at the phase boundary, resulting in a characteristic flat energy landscape.

Despite being first-order phase transitions, the flat energy landscape leads to the criticality in
the dynamics of the condensate through these transitions in a manner similar to second-order

phase transitions.
Second, we succeed in deriving the analytic expression for the energy gap of the so-called

quasi-Nambu-Goldstone (quasi-NG) modes, which are excitations not generated by spontaneous
symmetry breaking, in the nematic phase of spin-2 BECs. Although quasi-NG modes are gapless

at the mean-field level, we prove that with quantum corrections they acquire a nonzero energy
gap. From the obtained magnitude of the energy gap, we can evaluate the critical temperature

above which a topological defect such as a vortex of spin nematicity would decay by emitting
thermally excited quasi-NG modes. We also study how the propagation of quasi-NG modes in
space is affected by the particle-number density fluctuations of the condensate.

Third, we calculate the damping rates of various types of quasiparticles in a spin-2 BEC
including phonons, magnons, and quasi-NG modes. They actually have finite lifetime and decay

via numerous channels of collision with the condensate atoms. Using either the Fermi’s golden
rule or the spinor Beliaev theory, we obtain the analytic expressions for the damping rates

of phonons and magnons, from which the power-law dependence of the damping rates on the
momentum is deduced. In contrast, the damping of quasi-NG modes is suppressed due to the

energy conservation.
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Chapter 1

Introduction

In quantum fluids, the phase coherence between the constituent particles can amplify the effects

of a microscopic interaction so that they are observable in macroscopic properties [1]. Superfluid
4He, the first such system in Nature, was found by Kapitza [2], Allen, and Misener [3] in
1938, followed by the discoveries of a wide range of systems from the various superfluids and

superconductors in condensed-matter physics to neutron stars and color superconductors in
cosmology and high-energy physics. Among them, materials such as superfluid 3He and p-, d-

wave superconductors display a number of remarkable features due to the interplay between their
internal degrees of freedom and the coherent motion of the center-of-mass degree of freedom [4].

However, the parameters of the above systems, e.g., the magnitude of the interparticle
interaction, are predetermined by Nature and cannot be manipulated at will. Furthermore,

in such complex systems the primary physical principles governing the system’s properties are
sometimes masked by side effects, making it difficult for them to be unveiled. On the other hand,

since the first experimental realizations of Bose-Einstein condensates (BECs) in 1995 [5, 6, 7],
ultracold atoms have attracted attention of scientists not only in atomic physics but also in
many other fields of physics. The study of ultracold atoms, for example, in an optical lattice

is expected to help us understand further about high-Tc superconductors in condensed-matter
physics. Compared to other systems, the interaction between ultracold atoms can be described

to a good approximation in terms of a small number of well-defined parameters. This is because
the atomic gases are so dilute that the average distance between atoms is much larger than the

effective range of interaction, making the details of the interaction irrelevant. At ultralow
temperatures, the collision of two atoms is dominated by the s-wave channel, and the result of

the collision can be described by a single parameter: the s-wave scattering length a. As long as
a is not too large, physical properties of the system are functions of the dimensionless parameter

na3, where n is the particle-number density. Furthermore, the magnitude of the interaction,
which is proportional to the scattering length, can be varied under control by using the so-called
Feshbach resonance [8, 9]. Since the properties of ultracold atoms can be readily manipulated

and measured in experiments, they are considered to be an ideal table-top quantum simulator
to study universal properties of other physical systems.

For alkali-metallic atoms with a single electron in the s-orbital of the outermost shell, due
to the hyperfine interaction the eigenvalues of F̂2 and F̂z are the good quantum numbers with

F̂ = Î + Ĵ being the total spin of the atom. Here Î and Ĵ are the nuclear and electronic spins,
respectively. For these atoms, the hyperfine states |F,mF 〉 (mF = −F, . . . , F ) play the role of

internal degrees of freedom in a way similar to the spin degrees of freedom of a single electron.
In the beginning after the realization of the first BECs, atoms are confined in a magnetic trap

and only atoms in the low-field-seeking hyperfine states can be trapped by the magnetic field;
therefore, the internal degrees of freedom of the atoms become irrelevant. After that, thanks to
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the introduction of the optical trap [10], atoms in all hyperfine states can now be confined in the
trap as they feel almost the same trapping potential. This is due to the electric dipole moment

that is induced on the polarizable atoms by the optical electric field, leading to the “spinor”
behavior of the atoms. Similar to other quantum fluids with internal degrees of freedom, spinor
gases, in particular spinor BECs, have exhibited a number of fascinating features due to the

interplay between the phase coherence and the magnetic order [11, 12]. Noticeable examples
are the coherent spin-mixing dynamics [13], formation of spin domains and topological defects

due to spontaneous symmetry breaking [14], periodic magnetic patterns arising from dynamical
instabilities [15], collapsing dynamics of a condensate triggered by the magnetic dipole-dipole

interaction [16], etc. Remarkably, these phenomena can be well described at least qualitatively
based on the mean-field theory.

However, this is not always true. I, in collaboration with Prof. Masahito Ueda and Prof.
Yuki Kawaguchi, find that there are particular features of spinor BECs that the mean-field

theory cannot give an accurate description even qualitatively. This is because the essence of
these features is based on the effects of quantum fluctuations that are ignored in the mean-field
theory. As an illustration, let us consider a condensate of atoms in the F = 2 hyperfine spin

manifold. The order parameter of the system has five components corresponding to the five
magnetic sublevels mF = −2, · · · , 2. Depending on the relative strengths of spin-dependent

interactions, the ground state can be one of a number of phases, whose order parameters are
not transformed continuously between each other at the phase boundaries (see Fig. 1.1). The

distinct symmetries of these phases in spin space also imply that the phase transitions are
first order. From the conventional wisdom, it is expected that these first-order transitions

are accompanied by metastable states. However, the excitation spectrum obtained by the
Bogoliubov analysis indicates that there is no metastable state associated with any of these

phase transitions. Moreover, spin-dynamics measurements of the spin-2 87Rb BEC [17] seem
to have observed a metastability as the dynamics of the condensate was found to be extremely
slow if the system had been prepared in either one of two initial states: the ground state and a

metastable state. We point out that this inconsistency in fact originates from the fact that the
Bogoliubov spectrum [18] is obtained by considering a small amplitude expansion of the order

parameter around the mean field with the linearized Gross-Pitaevskii energy functional which
consists of only terms up to the fourth order in the order parameter [19]. This energy functional

is equivalent to the Landau’s φ2 + φ4 model of second-order phase transitions. In contrast, the
description of first-order phase transitions requires higher-order terms beyond φ4, and in gaseous

BECs these higher-order terms only arise from quantum fluctuations. In other words, in the
system under consideration the metastability, if it exists, is induced by fluctuations.

Consequently, it is necessary to develop a theoretical framework for spinor BECs in which
the effects of quantum fluctuations are taken into account. In fermionic systems, we often use
a formalism such as the Hartree-Fock approximation in which the motion of a particle and the

influence it receives from the interaction with the other particles are treated self-consistently.
In the language of Feynman diagrams, the Green’s function appearing in each diagrammatic

contribution to the self-energy is taken to be the interacting Green’s function, which is to be
updated by the newly obtained self-energy [20]. However, the situation becomes much more

complicated for the case of bosons. A similar approach applied to a BEC leads to an artifact of
the excitation spectrum of phonons having a nonzero energy gap [21, 22]. This contradicts the

Nambu-Goldstone theorem which states that the phonon excitations arising from spontaneous
symmetry breaking should be gapless [23, 24]. The origin of this discrepancy is that unlike the

case of fermions, the Green’s function and self-energy of a BEC contain the so-called anomalous
component besides the normal one. This anomalous component represents the creation of a pair

of noncondensed particles out of the condensate. The replacement of a noninteracting Green’s
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Figure 1.1: Ground-state phase diagram of F = 2 Bose-Einstein condensates. Depending on

the relative strengths of the spin-dependent interactions c1 and c2, the ground state can be
one of the four phases: ferromagnetic, cyclic, uniaxial-nematic (UN), and biaxial-nematic (BN)
phases. The spinor order parameter ξ = (ξ2, . . . , ξ−2)

T for each phase is given in Sec. 4.1.

The insets show the surface plots of |ψ(θ, φ)|2 ≡ |∑2
m=−2 ξmY

m
2 (θ, φ)|2, where Y m

2 ’s are the
spherical harmonic functions of rank 2 and the hue indicates the phase of ψ(θ, φ) according to

the color gauge on the right.
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function by an interacting one in the Feynman diagrams of the anomalous self-energy leads
to double counting of contributions from different diagrams [25]. Therefore, to avoid double

counting and the ensuing artifact of a gapful phonon mode, we apply a perturbation theory
in which for a given order of approximation the contribution from each Feynman diagrams
can be calculated in a fully controlled manner. Such a perturbation theory is valid as long as

the interaction in the atomic gas is not too strong, which is the case of typical experiments.
The Green’s function approach that takes into account the next-order approximation beyond

the Bogoliubov theory was first proposed by Beliaev in 1958 for a scalar BEC [26, 27]. In
this thesis, we develop the spinor version of the Beliaev theory to derive the excitation energy

spectrum of spinor BECs, from which numerous properties including the system’s stability can
be studied. Using the spinor Beliaev theory, we show in Sec. 4.3 that the metastable states

that cannot be captured by the Bogoliubov theory indeed appear around the phase boundaries.
The presence of a metastable condensate also implies an interesting possibility of a decay of the

metastable state into the ground state via macroscopic quantum tunneling (MQT) in which all
atoms tunnel simultaneously from one phase to the other. In Sec. 4.4, we evaluate the time scale
of the MQT for the cyclic-uniaxial nematic phase transition as it is relevant to experiments of

the spin-2 87Rb BEC.
Besides the first-order phase transitions whose metastable states are induced by quantum

fluctuations, we find that there is also in spinor BECs another class of first-order phase transi-
tions that have no metastable state around their phase boundaries. We show that in this case

the absence of metastability holds to all orders of approximation. This appears to be contrary to
the conventional wisdom that every first order phase transition is accompanied by a metastable

state, but in fact there are other examples of this kind of phase transitions such as the ferro-
magnetic XXZ spin model in which a level crossing happens as the interaction anisotropy is

varied [28]. Such phase transitions are characterized by the fact that the Hamiltonian possesses
a special symmetry at the phase boundary so that the energy landscape becomes flat. The
ground state would then abruptly change to an unstable state without undergoing a transient

regime of metastability as the system crosses the phase boundary. This is in contrast to the case
of conventional first-order phase transitions where the energy landscape features a double-well

structure at the transition point, and therefore, supports the coexistence of two phases [29].
In Sec. 4.5, we investigate in details the symmetry of the Hamiltonian that underlies the flat

energy landscape in both spin-1 and spin-2 BECs. It is a high symmetry of the Hamiltonian at
the phase boundary that prohibits the metastability to all orders of approximation.

Although first-order phase transitions are usually identified by a finite jump in the first
derivative of the ground-state energy with respect to the parameter that drives the transition,

the flat energy landscape at the phase boundary suggests the criticality appearing in the dy-
namics of these phase transitions. In Chap. 5, we investigate the dynamics of a spin-1 BEC
in the polar-antiferromagnetic phase transition which is a first-order phase transition without

metastable states. Both instantaneous and slow quenches of a system’s parameter are studied,
and we find that in either case the system’s dynamics demonstrates the critical features in a

manner similar to second-order phase transitions. In other words, such a phase transition show
the properties of either a first-order or a second-order phase transition depending on whether

its static or dynamical features are concerned.
Another remarkable effect of quantum fluctuations that we have found is the emergence of

a nonzero energy gap of the so-called quasi-Nambu-Goldstone (quasi-NG) modes, which are
the extra gapless excitations at the mean-field level that are not generated by spontaneous

symmetry breaking [30, 31]. This is similar to the quantum symmetry breaking or quantum
anomaly in high-energy physics in which the symmetry of the vacuum’s manifold is broken

only if the one-loop quantum correction to the tree approximation is taken into account [32].
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After first being introduced in the context of gauge theories, quasi-NG modes have become an
important element in the theories of technicolor and supersymmetry [33, 34, 35]. They are also

predicted to appear in the weak-coupling limit of the A phases of superfluid 3He [36] and spin-1
color superconductors [37]. Despite their prevalence in various fields of physics, no experimental
evidence of the quasi-NG modes has hitherto been observed. Recently, it was found that the

nematic phase of spin-2 BECs can be a host of quasi-NG modes, leading to a renewed interest in
this special kind of excitations [38]. At the mean-field level, all nematic phases are degenerate

and quasi-NG modes are gapless. However, the zero-point fluctuations lift this degeneracy in
a way similar to the vacuum alignment in quantum field theory. Consequently, it is predicted

that with quantum corrections the quasi-NG modes would acquire a nonzero energy gap whose
magnitude is of the same order as the zero-point energy. In Chap. 6, we prove explicitly the

above conjecture of quasi-NG modes becoming gapful by deriving the analytic expression for
the emergent energy gap in terms of the fundamental interaction parameters. Regarding the

magnitude of the energy gap, we find that it is not necessarily of the same order as the zero-
point energy. In fact, it depends on the relative strengths of the spin-dependent interactions.
From the obtained magnitude of the energy gap, we have been able to evaluate the critical

temperature above which a topological defect such as a vortex of spin nematicity would decay
by emitting thermally excited quasi-NG modes. Conversely, below this temperature the vortex

would be stabilized by suppressing the emission of these excitations. In Sec. 6.2, we examine
how the propagation velocity of quasi-NG modes is affected by the particle-density fluctuations

in the condensate. We find that it decreases as opposed to the enhancement of the sound
velocity.

At the level of the Bogoliubov theory, all the quasiparticles in spinor BECs including
phonons, magnons, and quasi-NG modes have infinitely long lifetimes. However, by going

to the next-order approximation, it can be shown that their lifetimes are actually limited by
their decays via the collisions with the condensate atoms. This mechanism is called the Beliaev
damping [26, 39]. In Chap. 7, we calculate the damping rates of various types of quasiparticles

in a spin-2 condensate. We find that a magnon can decay by forming a quasi-NG mode and
another magnon with a rate proportional to |p|3 where ~p is the momentum. The obtained

damping rate, which is a function of the coupling constants, also suggests an alternative ap-
proach to measuring precisely the magnitudes of the spin-dependent interactions. We then

propose an experimental scheme to measure the lifetime of magnons by temporarily switching
on an external magnetic field. On the other hand, the damping of phonons can occur via a

number of decay channels, leading to their damping rate being composed of two contributions
with different scaling laws with respect to the momentum: one is linear to |p| and the other

is proportional to |p|5. The former would dominate the damping rate in the low-momentum
regime, while the latter is the only contribution in scalar BECs. In contrast, there is no decay
channel for quasi-NG modes that satisfies the energy conservation.

This thesis is organized as follows (the flow chart is shown in Fig. 1.2). In Chap. 2 we
review the theoretical and experimental aspects of spinor BECs that are based on the mean-

field framework. The ground-state phase diagrams of spin-1 and spin-2 BECs at the mean-field
level are introduced in Sec. 2.3. The first-order (Bogoliubov) excitation spectra for all possible

phases are summarized in Sec. 2.4. In Chap. 3, we introduce the formalism of the Beliaev theory
of scalar BECs based on a Green’s function approach. We show the second-order (Beliaev)

spectrum of phonons in Sec. 3.2, from which it can be seen that the sound velocity is enhanced
and a Beliaev damping appears. In Chap. 4, we develop the spinor Beliaev theory and apply

it to spin-2 BECs to analyze the stability of each phase in the phase diagram. We find in
Sec. 4.3 a class of first-order quantum phase transitions whose accompanied metastable states

are induced by quantum fluctuations. The possibility of macroscopic quantum tunneling from
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Chapter 2

Spinor Bose-Einstein condensates

Chapter 3

Beliaev theory of scalar BECs

Chapter 4

Fluctuation-induced and 

symmetry-prohibited metastabilities

Chapter 5

Critical dynamics of first-order 

phase transitions without metastability

Chapter 6

Quasi-Nambu-Goldstone modes
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Figure 1.2: Flow chart of the thesis. Chapters 2 and 3 review spinor Bose-Einstein condensates
and the Beliaev theory of scalar BECs, respectively. Our results are presented in chapters 4–7.

a metastable state to the ground state is discussed in Sec. 4.4. Another class of first-order
quantum phase transitions for which the metastability is prohibited by the high symmetry of
the Hamiltonian at the phase boundary is investigated for both spin-1 and spin-2 BECs in

Sec. 4.5. In Chap. 5, we study the dynamics of these first-order phase transitions in the context
of both instantaneous and slow quenches, in which the criticality is revealed in a manner similar

to second-order phase transitions. In Chap. 6, we discuss the modifications of the quasi-NG
modes due to quantum fluctuations where the emergent energy gap and the suppression factor

of the propagation velocity are analytically derived in Sec. 6.1 and 6.2, respectively. In Chap. 7,
we examine in details the Beliaev dampings of various types of quasiparticles in a spin-2 BEC.

Finally, in Chap. 8, we summarize this thesis and discuss some outstanding open problems.
Some detailed calculations are relegated to the Appendices to avoid digressing from the main

subject.
The results in Chaps. 4–7 are based on Refs. [40, 41, 42, 43] which have been done in

collaboration with Y. Kawaguchi and M. Ueda.
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Chapter 2

Spinor Bose-Einstein condensates

Bose-Einstein condensation (BEC) was predicted by Einstein [44, 45] almost a century ago for

a system of bosons cooled to below a critical temperature. A system of noninteracting particles
undergoes the BEC as a macroscopic number of particles occupy the single-particle state with
the lowest energy. In a homogeneous system, it is the zero-momentum state. For an interacting

system, BEC can be formally defined by the presence of a macroscopic eigenvalue of the single-
particle reduced density matrix [46]. This macroscopic eigenvalue represents the number of

particles in the condensate. The system is then said to have an off-diagonal long-range order
(ODLRO).

The first dilute-gas BECs were first observed in 1995 using dilute gases of 87Rb [5], 23Na [6],
and 7Li atoms [7]. The atoms were confined in magnetic traps and cooled to temperatures

of the order of micro Kelvin by combining laser and evaporative coolings. The appearance of
the condensate was evident from the observed velocity distribution of atoms in which a narrow

peak at zero momentum arises above a broad background of thermal atoms. Since then, the
BECs of other isotopes and atomic species such as 85Rb [47], 41K [48], and 133Cs [49] as well as
hydrogen [50] and metastable helium [51] have been achieved.

2.1 Internal degrees of freedom of Bose gases

For alkali-metal atoms with a single electron in the s-orbital of the outermost shell, the eigenval-

ues of F̂ and F̂z are the good quantum numbers due to the hyperfine interaction. Here F̂ = Î+Ĵ

is the total angular momentum with Î and Ĵ are the nuclear and electronic spins, respectively.
The hyperfine states |F,mF 〉 (mF = −F, . . . , F ) then play the role of the internal degrees of

freedom. For the atomic species that form stable spinor condensates such as 87Rb and 23Na,
I = 3/2 and J = 1/2 so that the total angular momentum F can takes a value of either F = 1 or

F = 2. However, in a magnetic trap the atoms can only populate the so-called low-field-seeking
hyperfine states such as the |F = 1, mF = −1〉 and |F = 2, mF = 1, 2〉 states [19]. Atoms in

the other hyperfine states find a barrier potential at the center of the magnetic trap, and thus
escape from the confinement. This leads to the atoms not being able to transfer freely among

all of their hyperfine states.
In contrast, in an optical dipole trap [10], the atoms are subject to a potential that is almost

independent of the atomic hyperfine state. This potential is due to the electric dipole moment
that is induced by the optical electric field on the polarizable atoms. Analogous to the electronic
spin, the internal degrees of freedom of the atoms become relevant, leading to their “spinor”

behaviors. Since the hyperfine splitting has a magnitude of the order of 1 GHz corresponding to
a temperature much higher than the system’s temperature in typical experiments of ultracold

atoms, there is almost no possibility for atoms in the lower F = 1 spin manifold to jump into the
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Figure 2.1: Formation of the spin domains in a spin-1 23Na BEC. Absorption images of bal-
listically expanding spinor condensates show both the spatial and hypefine distributions. The
images of clouds with various dwell times in the trap show the evolution to the same equilibrium

state for condensates prepared in either a pure mF = 0 state (upper row) or in equally popu-
lated mF = ±1 states (lower row). The bias field during the dwell time was B0 = 20 mG, and

the field gradient was B′ = 11 mG cm−1. (Figure reproduced with permission from Ref. [52])

upper F = 2 spin manifold. The populations of atoms in the different hyperfine states within
a single spin manifold can be measured by using a magnetic field gradient to spatially separate

the atoms in the Stern-Gerlach experiment. This method was used to verify the theoretical
prediction of the ground-state phase diagram of the 23Na BEC in the F = 1 spin manifold

(see Fig. 2.1) [52]. To show that all the atoms in the condensate occupy a common single-
particle state, the observation of the coherent spin dynamics was performed with the spin-1
23Na BEC [53, 54]. On the other hand, the 23Na atoms prepared in the F = 2 spin manifold
have a very short lifetime due to their strong hyperfine relaxations by which the atoms’ excessive

internal energy is converted to their kinetic energy, accelerating their escape from the trapping
potential [55]. In contrast, it was observed that both spin-1 and spin-2 87Rb BECs are stable
in the optical dipole trap [13, 56, 57, 17, 58]. This is due to the fortuitous properties of the

molecular potential of the rubidium dimer [59].

2.2 Spin-dependent interactions

In dilute atomic gases with a typical particle-number density of n . 1015 cm−3, the mean
atomic distance is much larger than the effective range of interaction which is of the order of an
angstrom. Consequently, the details of the interaction become irrelevant, and the effect of the

interaction can approximately be described by binary collisions. The typical temperature of the
ultracold atoms is of the order of hundreds nano Kelvin to micro Kelvin. This temperature is

equivalent to an extremely small energy compared to the energy scale of the effective range of
interaction. This means that the two atoms with a nonzero relative orbital angular momentum

will confront such a high centrifugal potential barrier that prohibits their approach to a close
enough distance for the interaction. Therefore, in dilute weakly interacting ultracold atomic

systems, only the s-wave collision channel is relevant, and all the effects of the interaction are
encapsulated in a single parameter: the s-wave scattering length.
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In general, the interaction of two atoms is sensitive to their atomic states in a complicated
manner. However, for ultracold atoms which contain very few uncontrollable impurities, the

rotational symmetry simplifies the interaction to a great extent. In the absence of any source
of rotational symmetry breaking such as external fields, the sum of the total orbital angular
momentum Lpair and the total spin angular momentum Fpair of a pair of atoms is conserved.

Even under a weak enough magnetic field, the above rotational symmetry is essentially valid
to a good approximation. Moreover, except for the atomic species with a high spin angular

momentum such as 52Cr, the magnetic dipole-dipole interaction is small enough to be ignored.
This corresponds to the neglect of the hyperfine relaxation interaction in which a change in Fpair

is compensated by a change in Lpair so that the total is conserved. With this approximation,
both Fpair and Lpair are good quantum numbers.

Furthermore, the parity of Fpair is constrained by the quantum statistics of the constituent
particles. The total wavefunction of a system of identical spin-F atoms must acquire a factor

of (−1)2F under an exchange of any two particles. On the other hand, by the same exchange
of particles the orbital and spin parts of the wavefunction acquire factors of (−1)Lpair and
(−1)Fpair+2F , respectively. Therefore, to be consistent we must require that Lpair + Fpair be

even. Since only the s-wave scattering channel is relevant, i.e., Lpair = 0, Fpair is restricted to
even values. The interaction can then be expressed as

V̂ =
∑

(i,j)

δ(3)(ri − rj)
∑

even Fpair

4π~
2aFpair

M
P̂Fpair , (2.1)

where M is the atomic mass, aFpair and P̂Fpair denote the s-wave scattering length and the

projection operator onto the subspace of total spin Fpair, and the sum is taken over pairs of
particles, labeled by i and j. Here, we use the pseudopotential approximation with the contact
interaction, which is valid at the mean-field level [60]. At higher-order approximations, the

one-loop correction to the interaction is needed. The projection operators P̂Fpair are related to
the identity and the spin-product operators by

Î1 ⊗ Î2 =
∑

Fpair

P̂Fpair , (2.2)

F̂1 · F̂2 =
∑

Fpair

[

Fpair(Fpair + 1)

2
− F (F + 1)

]

P̂Fpair . (2.3)

In the following, we consider the interactions of spin-1 and spin-2 atoms.

2.2.1 Spin-1 atoms

For atoms in the F = 1 spin manifold, Fpair can take the value of either Fpair = 0 or Fpair = 2

since the interaction in the total spin Fpair = 1 channel is irrelevant due to the quantum
statistics. Equations (2.2) and (2.3) then reduce to

Î1 ⊗ Î2 = P̂0 + P̂2, (2.4)

F̂1 · F̂2 = P̂2 − 2P̂0. (2.5)

Combined with Eq. (2.1), the interaction of spin-1 bosons can be rewritten as [61, 62]

V̂F=1 =
∑

(i,j)

δ(3)(ri − rj)
[

c0Îi ⊗ Îj + c1F̂i · F̂j

]

, (2.6)
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where

c0 ≡
4π~2

M

a0 + 2a2

3
, (2.7a)

c1 ≡
4π~

2

M

a2 − a0

3
. (2.7b)

In the second quantization, the interaction Hamiltonian takes the form of

V̂F=1 =
1

2

∫

d3r [c0 : n̂2(r) : +c1 : F̂2(r) :], (2.8)

where the particle-density and spin-density operators are defined as

n̂(r) =

1
∑

j=−1

ψ̂
†
j(r)ψ̂j(r), (2.9)

F̂(r) =
1
∑

i,j=−1

ψ̂†
i (r)fi,jψ̂j(r) (2.10)

with ψ̂j(r) being the annihilation operator of a particle at position r in the magnetic sublevel

mF = j. The spin-1 matrices are given by

fx =
1√
2





0 1 0
1 0 1

0 1 0



 , fy =
i√
2





0 −1 0
1 0 −1

0 1 0



 , fz =





1 0 0
0 0 0

0 0 −1



 . (2.11)

2.2.2 Spin-2 atoms

Similarly, for F = 2 atoms Fpair = 0, 2, or 4. From the relations

Î1 ⊗ Î2 = P̂0 + P̂2 + P̂4, (2.12)

F̂1 · F̂2 = − 6P̂0 − 3P̂2 + 4P̂4, (2.13)

the interaction of spin-2 atoms can be rewritten as [63, 64]

V̂F=2 =
∑

(i,j)

δ(3)(ri − rj)
[

c0Îi ⊗ Îj + c1F̂i · F̂j + c2P̂
i,j
0

]

, (2.14)

where

c0 ≡
4π~

2

M

4a2 + 3a4

7
, (2.15a)

c1 ≡
4π~2

M

a4 − a2

7
, (2.15b)

c2 ≡
4π~

2

M

7a0 − 10a2 + 3a4

7
. (2.15c)

In the second quantization, the interaction Hamiltonian takes the form of

V̂F=2 =
1

2

∫

d3r [c0 : n̂2(r) : +c1 : F̂2(r) : +c2Â
†
00(r)Â00(r)], (2.16)
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where the particle-density and spin-density operators are defined in a way similar to those of
spin-1 atoms, and the spin-singlet-pair amplitude operator is introduced as

Â00(r) =
1√
5

2
∑

j=−2

(−1)jψ̂j(r)ψ̂−j(r). (2.17)

The spin-2 matrices are given by

fx =













0 1 0 0 0

1 0
√

3/2 0 0

0
√

3/2 0
√

3/2 0

0 0
√

3/2 0 1
0 0 0 1 0













, fy =













0 −i 0 0 0

i 0 −i
√

3/2 0 0

0 i
√

3/2 0 −i
√

3/2 0

0 0 i
√

3/2 0 −i
0 0 0 i 0













,

fz =













2 0 0 0 0

0 1 0 0 0
0 0 0 0 0

0 0 0 −1 0
0 0 0 0 −2













. (2.18)

2.3 Mean-field ground-state phase diagram

With Bose-Einstein condensation, a macroscopic number of particles occupy a common single-
particle state. In the mean-field approximation, quantum fluctuations are neglected and it is

assumed that at zero temperature all particles occupy a single spatial mode and a spin state
which is generally a superposition of different magnetic sublevels. For a spatially homogeneous

system, the spatial mode of the condensate is the zero momentum p = 0 state. Consequently,
the normalized state vector is written as

|ξ〉 = 1√
N !





F
∑

j=−F

ξj âj,0





N

|vac〉, (2.19)

where |vac〉 and N denote the vacuum and the total number of particles, respectively, and the
weights ξj’s are normalized to unity:

F
∑

j=−F

|ξj|2 = 1. (2.20)

The operator âj,p which annihilates a particle with momentum ~p in the magnetic sublevel

mF = j is related to the field operator ψ̂j(r) by a Fourier transformation

âj,p =

∫

d3r
e−ip·r
√
V

ψ̂j(r), (2.21)

where V denotes the volume of the system. Using Eqs. (2.19) and (2.21), it is straightforward
to obtain the expectation value of different operator products with respect to the state vector
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|ξ〉:

〈ψ̂j(r)〉|ξ〉 = 〈ψ̂†
j(r)〉|ξ〉 = 0, (2.22)

〈ψ̂†
j(r)ψ̂j′(r)〉|ξ〉 =n ξ∗j ξj′ , (2.23)

〈ψ̂†
j1

(r)ψ̂†
j2

(r)ψ̂j′2
(r)ψ̂j′1

(r)〉|ξ〉 =

(

1− 1

N

)

n2 ξ∗j1ξ
∗
j2
ξj′1ξj′2 , (2.24)

where n = N/V is the total particle-number density. For a macroscopic condensate with

N ∼ 106, the factor 1/N in Eq. (2.24) can be ignored. As a result, the mean-field energy of a

BEC can be obtained by replacing the field operators ψ̂j and ψ̂
†
j in the Hamiltonian with the

condensate wavefunction ψ =
√
n(ξF , . . . , ξ−F )T and its complex conjugate, respectively. In

the following, we list the possible mean-field ground states of spin-1 and spin-2 BECs obtained

by minimizing the mean-field energy functionals [12].

2.3.1 Spin-1 BECs

In the presence of a homogeneous external magnetic field, the Hamiltonian of a spin-1 BEC is

given as

Ĥ =

∫

d3r

1
∑

j=−1

[

ψ̂†
j(r)

(

−~
2∇2

2M

)

ψ̂j(r) + qj2ψ̂†
j ψ̂j

]

+ V̂F=1, (2.25)

where V̂F=1 is the interatomic interaction given in Eq. (2.8) and the second term in the square
brackets describes the quadratic Zeeman shift of the atomic energy. Here the linear Zeeman en-

ergy is suppressed due to the conservation of the total longitudinal magnetization in an isolated
system. Since the ultracold atoms are confined in a vacuum chamber, they form an isolated
system to a good approximation. The constraint on the magnetization can be mathematically

replaced by the introduction of a Lagrange multiplier which cancels the linear Zeeman energy
completely for systems prepared in a state with zero total longitudinal magnetization. This is

equivalent to going onto a frame rotating at the same frequency as the Larmor precession of
the atoms’ spin vectors.

Applying the arguments below Eq. (2.24) to the Hamiltonian (2.25), we obtain the mean-
field energy functional as

E[ψ]

V
=

1
∑

j=−1

j2|ψj|2 +
c0
2
n2 +

c1
2

F2, (2.26)

where the spin density F is obtained from Eq. (2.10) with ψ̂j being replaced by ψj. The time
evolution of the condensate wavefunction ψ is given by the time-dependent Gross-Pitaevskii
(GP) equation

i~
∂ψj

∂t
=
δE

δψ∗
j

= qj2ψj + c0nψj + c1

1
∑

j′=−1

F · fj,j′ψj′ . (2.27)

A stationary state, whose time evolution are given by ψj(t) = ψj(0)e−iµt/~ with µ being the
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chemical potential, must satisfy the time-independent GP equation [12]

qj2ψj + c0nψj + c1

1
∑

j′=−1

F · fj,j′ψj′ = µψj, (2.28)

or written explicitly as

(q + c0n+ c1Fz − µ)ψ1 +
c1√
2
F−ψ0 =0, (2.29a)

c1√
2
F+ψ1 + (c0n− µ)ψ0 +

c1√
2
F−ψ−1 =0, (2.29b)

c1√
2
F+ψ0 + (q + c0n− c1Fz − µ)ψ−1 =0, (2.29c)

where F± ≡ Fx ± iFy.
All possible stationary states are obtained by solving Eqs. (2.29a)–(2.29c), and by comparing

their energies, the ground state can be found. Because the system has a rotationally invariant
symmetry about the z axis, without loss of generality we can take the transverse magnetization

vector to point in the x direction; i.e., we can set Fy = 0. This leads to Imψ1 = Imψ−1. From
the U(1) gauge invariant symmetry of the system, we can further choose ψ0 to be a real number.

By writing ξ±1 = Reξ±1 + iδ, Eqs. (2.29a)–(2.29c) reduce to

(q + c1nFz − µ+ c0n)ξ1 + c1n(Reξ1 + Reξ−1)ξ
2
0 =0, (2.30a)

[µ− c0n − c1n(Reξ1 + Reξ−1)(Reξ1 + Reξ−1 + 2iδ)]ξ0 =0, (2.30b)

c1n(Reξ1 + Reξ−1)ξ
2
0 + (q − c1nFz − µ+ c0n)ξ−1 =0. (2.30c)

From Eq. (2.30b), we have either ξ0 = 0 or µ = c0n+ c1n(Reξ1 + Reξ−1)(Reξ1 + Reξ−1 + 2iδ).

In the former case, we have three stationary states:
Ferromagnetic phase. The spinor order parameter and the energy density are given by either

ξFM1 = (eiχ1, 0, 0)T,
E

V
= q +

(c0 + c1)n

2
(2.31)

with the maximum longitudinal magnetization pointing in the positive z direction:

Fz/n = 1, or

ξFM2 = (0, 0, eiχ−1)T,
E

V
= q +

(c0 + c1)n

2
(2.32)

with the maximum longitudinal magnetization pointing in the negative z direction:

Fz/n = −1. The phases eiχ±1 are arbitrary due to the U(1) gauge invariant symmetry of the
system.

Antiferromagnetic phase. The spinor order parameter and the energy density are given by

ξAFM =

(

eiχ1

√
2
, 0,

eiχ−1

√
2

)T

,
E

V
= q +

c0n

2
. (2.33)

This state is unmagnetized: F = 0.
In the latter case, we have δ = 0 since the chemical potential µ should be a real number.

By solving Eqs. (2.30a) and (2.30c), we obtain two other stationary states.
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Polar phase. The spinor order parameter and the energy density are given by

ξPL = (0, eiχ0, 0)T,
E

V
=
c0n

2
. (2.34)

This phase is also unmagnetized.
Broken-axisymmetry (BA) phase. The spinor order parameter and the energy density are

given by [65]

ξBA
±1 =

ei(χ0∓χz)

2

√

q

2c1n
+ 1, ξBA

0 = eiχ0

√

1

2
− q

4c1n
,
E

V
=

(q + 2c1n)2

8c1n
+
c0n

2
, (2.35)

where the phases eiχ0 and eiχz correspond to the gauge and the rotation about the z axis,

respectively. This phase can be stable only if c1 < 0 (see Fig. 2.2). It has a nonzero transverse
magnetization:

F+ ≡ Fx + iFy = eiχz

√

1−
(

q

2|c1|n

)2

, Fz = 0. (2.36)

The direction of the transverse magnetization in the xy plane, which is determined by the value

of χz, breaks the rotational symmetry of the Hamiltonian about the z axis.
By comparing the energies of the above stationary states, we obtain the mean-field ground-

state phase diagram of spin-1 BECs as shown in Fig. 2.2. The phase diagram is the result of
the competition between the spin-dependent interaction with the coupling constant c1 and the

quadratic Zeeman shift with the coefficient q. The spin-dependent interaction can be either
ferromagnetic (i.e., c1 < 0, e.g., 87Rb) or antiferromagnetic (i.e., c1 > 0, e.g., 23Na). The sign

and the magnitude of the quadratic Zeeman coefficient q can be varied by adjusting the detuning
and the power of an applied microwave due to the AC Stark effect [66].

2.3.2 Spin-2 BECs

Similarly, the mean-field energy functional of a homogeneous spin-2 BEC in the absence of
external fields is given by

E[ψ]

V
=

1

2
(c0n

2 + c1|F|2 + c2|A00|2), (2.37)

where we have introduced the spin-singlet-pair amplitude A00 = (2ψ2ψ−2 − 2ψ1ψ−1 + ψ2
0)/
√

5
which is absent in spin-1 BECs. We then obtain the time-independent GP equation for a

stationary state as [63, 12]

(4q + c0n ± 2c1Fz − µ)ψ±2 + c1F∓ψ±1 +
c2√
5
A00ψ

∗
∓2 = 0, (2.38a)

(q + c0n ± c1Fz − µ)ψ±1 + c1

(√
6

2
F∓ψ0 + F±ψ±2

)

− c2√
5
A00ψ

∗
∓1 = 0, (2.38b)

(c0n− µ)ψ0 +

√
6

2
c1(F+ψ1 + F−ψ−1) +

c2√
5
A00ψ

∗
0 = 0. (2.38c)

Similar to the case of spin-1 BECs, by solving Eq. (2.38) we get all possible stationary states. By

comparing their energies, we obtain the mean-field ground-state phase diagram of spin-2 BECs
shown in Fig. 2.3. Depending on the relative strengths c1 and c2 of the two spin-dependent
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Figure 2.2: Mean-field ground-state phase diagrams of (a) spin-1 87Rb and (b) spin-1 23Na

BECs, where the spin-dependent interaction is ferromagnetic (c1 < 0) and antiferromag-
netic (c1 > 0), respectively. The ground-state phase depends on the ratio of the quadratic

Zeeman energy q to the interaction energy |c1|n. The insets show the surface plots of
|ψ(θ, φ)|2 ≡ |∑1

m=−1 ξmY
m
1 (θ, φ)|2, where Y m

1 ’s are the spherical harmonic functions of rank 1.

The longitudinal and transverse magnetizations are denoted by F‖ and F⊥, respectively. The

order parameter ξBA of the broken-axisymmetry (BA) phase varies continuously as a function

of q/|c1|n [see Eq. (2.35)].

interactions, the ground state is one of the following phases.
Ferromagnetic phase. The representative spinor order parameter and the energy density are

given by

ξFM = (1, 0, 0, 0, 0)T,
E

V
=
c0n

2
+ 2c1n (2.39)

with the maximum magnitude of magnetization: |F|/n = 1.

Cyclic phase. The representative spinor order parameter and the energy density are given
by

ξCL =

(

√

1

3
, 0, 0,

√

2

3
, 0

)T

,
E

V
=
c0n

2
. (2.40)

Both the magnetization and spin-singlet-pair amplitude of this state vanish: F = 0 and A00 = 0.

In the many-body state corresponding to the cyclic phase, every three atoms form a spin-singlet
trimer, and these trimers undergo the Bose-Einstein condensation [64, 67]. The energy difference

between the cyclic phase and the many-body state of condensed trimers approaches zero in the
thermodynamic limit (see, for example, Ref. [19]).

Nematic phase. The representative spinor order parameter of a nematic phase is character-
ized by an extra parameter η as [67, 68]

ξN(η) =

(

sinη√
2
, 0, cosη, 0,

sin η√
2

)T

. (2.41)

At the mean-field level, all nematic phases with different values of η are degenerate with the
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Figure 2.3: Mean-field ground-state phase diagram of spin-2 BECs. The ferromagnetic-nematic

phase boundary is given by c2 = 20c1 and c1 < 0. At the mean-field level, all nematic phases
including the uniaxial- and biaxial-nematic phases are degenerate. The insets show the spherical

harmonic representations of the spinor order parameters in the same way as Fig. 1.1.

energy density E/V = c0n/2+c2n/10. A similar degeneracy was found to appear in the d-wave

superconductors [63]. These nematic phases are unmagnetized F = 0 but have the maximum
value of the spin-singlet-pair amplitude A00/n = 1/

√
5. Similar to the cyclic phase, the many-

body state corresponding to the nematic phases involves a Bose-Einstein condensation of the
spin-singlet pairs of atoms [64, 67], and the energy difference between the nematic phases and

the state of condensed pairs vanishes at the thermodynamic limit.
Since the Hamiltonian (2.16) is invariant under an SO(3) rotation in spin space, the ground-

state manifold of each phase contains all states obtained by letting an SO(3) rotational oper-

ator U(α, β, γ) = e−ifzαe−ifyβe−ifzγ act on the above representative order parameter. Here,
α, β, and γ denote the Euler angles of the rotation. For example, the order parameter

(1, 0, i
√

2, 0, 1)T/2 = U(π/3, arccos(−1/
√

3),−π/3)(1/
√

3, 0, 0,
√

2/3, 0)T also represents one
state in the ground-state manifold of the cyclic phase.

2.4 First-order (Bogoliubov) excitation spectrum

Both quantum and thermal fluctuations create elementary excitations above the condensate. In
the presence of the condensate, the elementary excitations are superpositions of particle-like and

hole-like ones defined by the so-called Bogoliubov transformation [18]. This is a result of the
creation of a pair of noncondensed particles out of the condensate and the inverse annihilation

process. Due to the macroscopic occupation of atoms in the condensate, the annihilation and
creation operators of the condensate mode can be replaced to a good approximation by the

condensate wavefunction and its complex conjugate as discussed after Eq. (2.24). The field
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operator then can be decomposed into the condensate and noncondensate parts as

ψ̂j =ψj + δψ̂j

=
√
n0ξj +

∑

p 6=0

eip·r√
V
âj,p, (2.42)

where n0 denotes the particle-number density in the condensate. The total number density is
given by

n = n0 +
∑

j,p 6=0

â†j,pâj,p. (2.43)

If the excitations are weak enough, e.g., in a weakly interacting dilute Bose gas at zero tem-

perature, the Bogoliubov theory can be applied in which the noncondensate operators âj,p 6=0

and their Hermitian conjugates are retained up to the quadratic terms. The obtained Bogoli-

ubov Hamiltonian can be diagonalized using the Bogoliubov transformation, from which the
excitation spectrum is found. The Bogoliubov transformation is canonical in the sense that the

operators of the Bogoliubov quasiparticles satisfy the commutator relations for bosons.

2.4.1 Spin-1 BECs

Following the above procedure, the Bogoliubov Hamiltonian of spin-1 BECs is given by [65, 69]

ĤB
F=1 =

V n2

2
(c0 + c1|F|2) + qNF 2

z +
∑

p 6=0

[

1
∑

j=−1

(ε0p − c1n|F|2 + qj2 − qF 2
z )â†j,pâj,p

+ c1n

1
∑

j,j′=−1

F · fj,j′ â†j,pâj′,p +
c0n

2
(2D̂†

pD̂p + D̂pD̂−p + D̂†
pD̂

†
−p)

+
c1n

2
(2F̂†

p · F̂p + F̂p · F̂−p + F̂†
p · F̂†

−p)

]

, (2.44)

where ε0p ≡ ~
2|p|2/(2M) is the kinetic energy of a particle with momentum ~p and

F ≡
1
∑

j,j′=−1

ξ∗j fj,j′ξj′ , (2.45)

D̂p ≡
1
∑

j=−1

ξ∗j âj,p, (2.46)

F̂p ≡
1
∑

j,j′=−1

ξ∗j fj,j′ âj′,p. (2.47)

Here, D̂p and F̂p represent the density and spin fluctuation operators of the condensate, re-
spectively. In the following, we diagonalize the Bogoliubov Hamiltonian (2.44) for the different

phases given in Sec. 2.3.1.
Ferromagnetic phase. With the spinor order parameter ξFM = (1, 0, 0)T, the Bogoliubov
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Hamiltonian is diagonalized as

ĤB = EFM
0 +

∑

p 6=0

[~ω1,pb̂
†
1,pb̂1,p + ~ω0,pâ

†
0,pâ0,p + ~ω−1,pâ

†
−1,pâ−1,p], (2.48)

where EFM
0 is the zero-point energy containing the Lee-Huang-Yang correction to the Hartree

mean-field energy [70, 71], and the excitation spectra are given by

~ω1,p =
√

ε0p[ε0p + 2(c0 + c1)n], (2.49)

~ω0,p = ε0p − q, (2.50)

~ω−1,p = ε0p − 2c1n. (2.51)

The annihilation operator of the Bogoliubov quasiparticle is given by

b̂1,p = u1,pâ1,p + v1,pâ
†
1,−p (2.52)

with the coefficients

u1,p =

√

ε0p + (c0 + c1)n + ~ω1,p

2~ω1,p
, v1,p =

√

ε0p + (c0 + c1)n− ~ω1,p

2~ω1,p
. (2.53)

Polar phase. Similarly, with the spinor order parameter ξPL = (0, 1, 0)T, the Bogoliubov
Hamiltonian for the polar phase is diagonalized as

ĤB = EPL
0 +

∑

p 6=0

[~ω1,pb̂
†
1,pb̂1,p + ~ω0,pb̂

†
0,pb̂0,p + ~ω−1,pb̂

†
−1,pb̂−1,p], (2.54)

with the excitation spectra given by

~ω±1,p =
√

(ε0p + q)(ε0p + q + 2c1n), (2.55)

~ω0,p =
√

ε0p(ε0p + 2c0n). (2.56)

Here there is a twofold degeneracy in the excitation energy (2.55) of the polar phase due to the
equivalence of the two magnetic sublevels mF = ±1. The Bogoliubov transformations are made

for the three excitation modes:

b̂±1,p =u±1,pâ±1,p + v±1,pâ
†
∓1,−p, (2.57)

b̂0,p =u0,pâ0,p + v0,pâ
†
0,−p, (2.58)

where

u±1,p =

√

ε0p + q + c1n + ~ω±1,p

2~ω±1,p
, v±1,p =

√

ε0p + q + c1n− ~ω±1,p

2~ω±1,p
, (2.59)

u0,p =

√

ε0p + c0n+ ~ω0,p

2~ω0,p
, v0,p =

√

ε0p + c0n− ~ω0,p

2~ω0,p
. (2.60)

Antiferromagnetic phase. The excitation spectra of the antiferromagnetic phase with the
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spinor order parameter ξAFM = (1, 0, 1)T are calculated to be

~ω+,p =
√

ε0p(ε0p + 2c0n), (2.61)

~ω0,p =
√

(ε0p − q)(ε0p − q + 2c1n), (2.62)

~ω−,p =
√

ε0p(ε0p + 2c1n). (2.63)

The Bogoliubov transformations are given by

b̂+,p =u+,p
â1,p + â−1,p√

2
+ v+,p

â†1,−p + â†−1,−p

2
, (2.64)

b̂0,p =u0,pâ0,p + v0,pâ
†
0,−p, (2.65)

b̂−,p =u−,p
â1,p − â−1,p√

2
+ v−,p

â†1,−p − â
†
−1,−p

2
(2.66)

with

u+,p =

√

ε0p + c0n + ~ω+,p

2~ω+,p
, v+,p =

√

ε0p + c0n− ~ω+,p

2~ω+,p
, (2.67)

u0,p =

√

ε0p − q + c1n+ ~ω0,p

2~ω0,p
, v1,p =

√

ε0p − q + c1n− ~ω0,p

2~ω0,p
, (2.68)

u−,p =

√

ε0p + c1n + ~ω−,p

2~ω−,p
, v−,p =

√

ε0p + c1n− ~ω−,p

2~ω−,p
. (2.69)

BA phase. The Bogoliubov spectra of the BA phase can also be derived in a similar way.

Since their derivations and expressions are lengthy, we refer their details to Refs. [12, 68].

2.4.2 Spin-2 BECs

Following a similar procedure, the Bogoliubov Hamiltonian of spin-2 BECs can be written

as [68, 69]

ĤB
F=2 =

V n2

2
(c0 + c1|F|2 + 4c2|A00|2) +

∑

p 6=0

[

2
∑

j=−2

(ε0p − c1n|F|2 − 4c2n|A00|2)â†j,pâj,p

+ c1n

2
∑

j,j′=−2

F · fj,j′ â†j,pâj′,p + 2c2nÂ
†
pÂp + c2n

2
∑

j=−2

(−1)j(A00â
†
j,pâ

†
−j,−p + A∗

00âj,pâ−j,−p)

+
c0n

2
(2D̂†

pD̂p + D̂pD̂−p + D̂†
pD̂

†
−p) +

c1n

2
(2F̂†

p · F̂p + F̂p · F̂−p + F̂†
p · F̂†

−p)

]

,

(2.70)
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where D̂p and F̂p are defined in the same way as Eqs. (2.46) and (2.47), respectively, and

A00 ≡
1

2

2
∑

j=−2

(−1)jξjξ−j , (2.71)

Âp ≡
2
∑

j=−2

(−1)jξj â−j,p. (2.72)

Here Âp represents the fluctuation operator of the spin-singlet-pair amplitude. By diagonalizing
the Bogoliubov Hamiltonian (2.70), we obtain the excitation spectra for different phases of spin-

2 BECs as follows. There are a total of five excitation modes.
Ferromagnetic phase. The excitation spectra are given by

√

ε0p
[

ε0p + 2(c0 + 4c1)n
]

, (2.73a)

ε0p, (2.73b)

ε0p − 4c1n, (2.73c)

ε0p − 6c1n, (2.73d)

ε0p − (8c1 − 2c2/5)n. (2.73e)

From Eqs. (2.73c)–(2.73e), it is clear that a Landau instability with a negative excitation energy
would occur if either c1 > 0 or c2 < 20c1. Note that c1 = 0, c2 > 0 and c2 = 20c1, c1 < 0 are

the mean-field phase boundaries of the ferromagnetic-cyclic and ferromagnetic-nematic phase
transitions, respectively (see Fig. 2.3).

Cyclic phase. The excitation spectra are given by

√

ε0p
(

ε0p + 2c0n
)

, (2.74a)
√

ε0p
(

ε0p + 4c1n
)

, (2.74b)

ε0p + 2c2n/5, (2.74c)
√

ε0p
(

ε0p + 4c1n
)

, (2.74d)
√

ε0p
(

ε0p + 4c1n
)

. (2.74e)

From Eq. (2.74c), a Landau instability would occur if c2 < 0. Note that c2 = 0 and c1 > 0 define
the mean-field phase boundary of the cyclic-UN phase transition (see Fig. 2.3). On the other

hand, Eqs. (2.74b), (2.74d), and (2.74e) imply a dynamical instability in which the excitation
energy acquires a nonzero imaginary part if c1 < 0.

Uniaxial-nematic (UN) phase. The spinor order parameter is ξUN = (0, 0, 1, 0, 0)T, corre-
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sponding to η = 0 in Eq. (2.41). The excitation spectra are given by

√

ε0p
[

ε0p + 2(c0 + c2/5)n
]

, (2.75a)
√

ε0p
[

ε0p + 2(3c1 − c2/5)n
]

, (2.75b)
√

ε0p
[

ε0p + 2(3c1 − c2/5)n
]

, (2.75c)
√

ε0p
(

ε0p − 2c2n/5
)

, (2.75d)
√

ε0p
(

ε0p − 2c2n/5
)

. (2.75e)

Equations (2.75b)–(2.75e) indicate a dynamical instability if either c2 > 15c1, c1 < 0 or c2 > 0.

Biaxial-nematic (BN) phase. The spinor order parameter is ξUN = (1, 0, 0, 0, 1)T/
√

2, cor-
responding to η = π/6 in Eq. (2.41). The excitation spectra are given by

√

ε0p
[

ε0p + 2(c0 + c2/5)n
]

, (2.76a)
√

ε0p
[

ε0p + 2(4c1 − c2/5)n
]

, (2.76b)
√

ε0p
[

ε0p + 2(c1 − c2/5)n
]

, (2.76c)
√

ε0p
[

ε0p + 2(c1 − c2/5)n
]

, (2.76d)
√

ε0p
(

ε0p − 2c2n/5
)

. (2.76e)

From Eqs. (2.76b)–(2.76e), it is clear that a dynamical instability would occur if either c2 >
20c1, c1 < 0 or c2 > 0.

21



Chapter 3

Beliaev theory of scalar BECs

For an interacting Bose gas, even at zero temperature quantum fluctuations cause a depletion of

the condensate. The fraction of noncondensed particles which are excited out of the condensate
is given by [19]

nnc

n
' 8

3
√
π

√
na3. (3.1)

It is a function of the only dimensionless parameter na3 characteristic of a dilute Bose gas with
n and a being the total particle-number density and the s-wave scattering length, respectively.

The particle density in the condensate therefore decreases to

n0

n
' 1− 8

3
√
π

√
na3. (3.2)

The effects of quantum fluctuations on the excitation spectrum of a scalar (spinless) BEC

were studied for the first time by Beliaev [26, 27]. He used a Green’s function approach in
which the Feynman diagrams up to the second order were considered. In comparison, the

Bogoliubov excitation spectrum is reproduced by taking the Feynman diagrams up to the first
order. The Bogoliubov and Beliaev spectra thus involve the lowest-order and the next-to-the-

lowest-order terms, respectively, in the asymptotic expansion of the excitation spectrum with
respect to the dimensionless parameter na3, which satisfies na3 � 1 for dilute Bose gases in

typical ultracold atomic experiments. In fermionic systems, we often use a formalism such
as the Hartree-Fock approximation in which the motion of a particle and the influence of its

interaction with other particles are treated self-consistently. In the language of the Feynman
diagrams, the Green’s function appearing in each diagrammatic contribution to the self-energy
is taken to be the interacting Green’s function, which is to be updated by the newly obtained

self-energy [20]. However, the situation becomes much more complicated for the case of bosons.
A similar approach applied to a BEC leads to an artifact of the excitation spectrum of phonons

having a nonzero energy gap [21, 22]. This contradicts the Nambu-Goldstone theorem which
states that the phonon excitations arising from the spontaneous symmetry breaking should

be gapless [23, 24]. The origin of this discrepancy is that unlike the case of fermions, the
Green’s function and self-energy of a BEC contain the so-called anomalous component besides

the normal one. This anomalous component represents the creation of a pair of noncondensed
particles out of the condensate. The replacement of a noninteracting Green’s function by an

interacting one in the Feynman diagrams of the anomalous self-energy leads to double counting
of contributions from different diagrams [25]. Therefore, to avoid double counting and the
ensuing artifact of a gapful excitation mode, we need a perturbation theory in which for a given
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order of approximation the contribution from each of the Feynman diagrams can be calculated
in a fully controlled manner. The Beliaev theory is such a perturbation theory that gives us the

beyond-Bogoliubov excitation spectrum of the condensate in an analytic form. In the following,
we review the basics of the Beliaev theory for a scalar BEC and show how the spectrum of
phonons is modified by quantum fluctuations.

3.1 Formalism

We consider a homogeneous system of spinless bosons, whose Hamiltonian is given as the sum

of the kinetic and the interaction energies:

Ĥ = Ĥ0 + V̂

=

∫

d3r ψ̂†(r)

(

−~2∇2

2M

)

ψ̂(r) +
1

2

∫

d3r

∫

d3r ′ ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r). (3.3)

As in the Bogoliubov theory, the field operator is decomposed into the condensate part which

can be replaced by a c-number and the noncondensate part which contains only the nonzero-
momentum components:

ψ̂(r) =
√
n0 + δ̂(r). (3.4)

Substituting Eq. (3.4) in Eq. (3.3), we obtain

V̂ = E0 +

7
∑

n=1

V̂n, (3.5)

where

E0 =
1

2
n2

0

∫

d3r

∫

d3r ′V (r− r′), (3.6a)

V̂1 =
1

2
n0

∫

d3r

∫

d3r ′V (r− r′)δ̂(r′)δ̂(r), (3.6b)

V̂2 =
1

2
n0

∫

d3r

∫

d3r ′δ̂†(r)δ̂†(r′)V (r− r′), (3.6c)

V̂3 =n0

∫

d3r

∫

d3r ′δ̂†(r′)V (r− r′)δ̂(r), (3.6d)

V̂4 =n0

∫

d3r

∫

d3r ′δ̂†(r)V (r− r′)δ̂(r), (3.6e)

V̂5 =n
1/2
0

∫

d3r

∫

d3r ′δ̂†(r)δ̂†(r′)V (r− r′)δ̂(r), (3.6f)

V̂6 =n
1/2
0

∫

d3r

∫

d3r ′δ̂†(r)V (r− r′)δ̂(r′)δ̂(r), (3.6g)

V̂7 =
1

2

∫

d3r

∫

d3r ′δ̂†(r)δ̂†(r′)V (r− r′)δ̂(r′)δ̂(r). (3.6h)

These interactions are classified by the number of noncondensed particles involved and are
schematically illustrated by the Feynman diagrams in Fig. 3.1. Note that in Eqs. (3.6a)–(3.6h)
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Figure 3.1: Feynman diagrams representing the terms (3.6a)–(3.6h) in the interaction Hamilto-
nian. The dashed, solid, and wavy lines represent condensate particles, noncondensate particles,

and the interaction, respectively.

there is no term of the first order in δ̂(r) since

∫

d3r δ̂(r) =
∑

p 6=0

∫

d3r
eip·r√
V
âp = 0. (3.7)

We consider a grand canonical ensemble of the above system, and introduce the generalized
Hamiltonian

K̂ ≡ Ĥ − µN̂ , (3.8)

where µ denotes the chemical potential and N̂ is the total particle number operator

N̂ =

∫

d3r ψ̂†(r)ψ̂(r). (3.9)

Using Eqs. (3.3),(3.4),(3.5), and (3.8), we have

K̂ = E0 − µN0 + K̂ ′, (3.10)

where E0 given by Eq. (3.6a) and N0 = V n0 are the interaction energy and the total number
of the condensate particles, respectively, and

K̂ ′ ≡ K̂0 + K̂1 (3.11)

is the corresponding Hamiltonian for the noncondensed particles with

K̂0 ≡
∑

p 6=0

(ε0p − µ)â†pâp, (3.12)

K̂1 ≡
7
∑

n=1

V̂n. (3.13)

Here ε0p ≡ ~
2|p|2/(2M). In the following, K̂0 and K̂1 are referred to as the noninteracting

Hamiltonian and the interaction of the noncondensed particles, respectively. For a weakly
interacting system, K̂1 can be treated as a perturbation to K̂0.
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3.1.1 Green’s function

The Green’s function can also be decomposed into the condensate and noncondensate parts

as [20, 27]

iG(x, y) = n0 + iG′(x, y), (3.14)

where x = (r, t), y = (r′, t′) are spatial-temporal four-vectors. The noncondensate part of the

Green’s function is defined as

iG′(x, y) ≡ 〈O|T δ̂H(x)δ̂
†
H(y)|O〉

〈O|O〉 . (3.15)

Here |O〉 is the ground state of the Hamiltonian (3.11), and T and H denote the time-ordering

operator and the Heisenberg representation, respectively.
In the presence of the condensate, we must take into account the creation of a pair of

noncondensed particles out of the condensate and the inverse pair annihilation process. To

this end, in addition to the normal Green’s function G′(x, y) in Eq. (3.15), it is necessary to
introduce the so-called anomalous Green’s functions defined by

iG12(x, y) ≡ 〈O|T δ̂
†
H(x)δ̂†H(y)|O〉
〈O|O〉 , (3.16)

iG21(x, y) ≡ 〈O|T δ̂H(x)δ̂H(y)|O〉
〈O|O〉 . (3.17)

In energy-momentum space, the Dyson’s equation for the noncondensate Green’s function
is given in terms of the proper self-energy Σ and the noninteracting Green’s function G0 as

Ĝ(p) = Ĝ0(p) + Ĝ0(p)Σ̂(p)Ĝ(p), (3.18)

where p ≡ (ωp,p) denotes a frequency-wavenumber four-vector, and Ĝ, Ĝ0, and Σ̂ are 2 × 2
matrices:

Ĝ(p) ≡
[

G11(p) G12(p)

G21(p) G22(p)

]

, Σ̂(p) ≡
[

Σ11(p) Σ12(p)

Σ21(p) Σ22(p)

]

. (3.19)

Here G11(p) ≡ G′(p), G22(p) ≡ G′(−p), and Σ22(p) ≡ Σ11(−p). The Dyson’s equation (3.18) is
represented by the Feynman diagrams in Fig. 3.2.

The solution to Eq. (3.18) can be written as

Ĝ(p) =
[

1− Ĝ0(p)Σ̂(p)
]−1

Ĝ0(p). (3.20)

The noninteracting Green’s function is defined as

iG0(x, y) ≡ 〈0|T δ̂0(x)δ̂
†
0(y)|0〉

〈0|0〉 , (3.21)

where δ̂0 indicates the free evolution of δ̂ for the noninteracting Hamiltonian K̂0 given by
Eq. (3.12), and |0〉 represents the noninteracting ground state, which is the vacuum with respect
to the noncondensate operators; i.e., âp|0〉 = 0 for any p 6= 0. Substituting Eq. (3.12) in
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Figure 3.2: Dyson’s equations for the normal and anomalous Green’s functions (see Eq. (3.18)).
The thick, thin lines, and the oval represent the interacting Green’s functions, the noninteracting

Green’s functions, and the proper self-energy, respectively. Here G and Σ11 denote the normal
components, while G12;21 and Σ12;21 denote the anomalous components.
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Eq. (3.21), we obtain the Fourier transform of G0(x, y) as

G0(p) =

∫

d4x e−ip(x−y)G0(x, y)

=
1

ωp − (ε0p − µ)/~ + iη
, (3.22)

where η is an infinitesimal positive number. Note that the anomalous Green’s functions in a
noninteracting system vanish invariably, and thus the matrix Ĝ0(p) in Eq. (3.20) is diagonal

with the matrix elements given by Eq. (3.22).
Substituting Eq. (3.22) in Eq. (3.20), the normal and anomalous Green’s functions can be

expressed in terms of the self-energies as

G11(p) =
−[G0(−p)]−1 + Σ11(−p)

D
=

ωp + (ε0p − µ)/~ + Σ11(−p)
D

, (3.23a)

G12(p) = − Σ12(p)

D
, G21(p) = −Σ21(p)

D
, (3.23b)

where

D = − [G0(p)]−1[G0(−p)]−1 + Σ11(p)[G0(−p)]−1 + Σ22(p)[G0(p)]−1 −Σ11(p)Σ22(p)

+ Σ21(p)Σ12(p)

=ω2
p −

[

Σ11(p)−Σ22(p)
]

ωp + Σ21(p)Σ12(p)−
[

ε0p − µ
~

+
Σ11(p) + Σ22(p)

2

]2

+

[

Σ11(p)− Σ22(p)

2

]2

+ iη. (3.24)

3.1.2 T -matrix

For a weakly interacting dilute Bose gas, the contributions from all ladder-type diagrams to

the self-energy have been shown to be of the same order of magnitude [20, 26], and thus all of
them must be taken into account. The T -matrix is defined as the sum of an infinite number of

ladder-type diagrams as illustrated in Fig. 3.3. It is written explicitly as

Γ(p1, p2; p3, p4) =V (p1 − p3) +
i

~

∫

d4q

(2π)4
G0(p1 − q)G0(p2 + q)V (q)V (p1 − q− p3) + . . .

=V (p1 − p3) +

∫

d3q

(2π)3
1

~(ωp1 + ωp2)− ε0p1−q − ε0p2+q + 2µ+ iη

× V (q)V (p1 − q− p3) + . . . (3.25)

Here, in deriving the second equality in Eq. (3.25), we used Eq. (3.22) to carry out the inte-

gral
∫

dωq. The T -matrix describes a two-body scattering under the influence of the medium
containing the other particles which is implied by the chemical potential in Eq. (3.25).

The T-matrix Γ(p1, p2; p3, p4) can be expressed in terms of the vacuum scattering amplitude
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Figure 3.3: T -matrix of the two-body scattering. The interaction of two atoms with momenta
~p3 and ~p4 causes a change in momenta to ~p1 and ~p2. The T -matrix is defined as the sum

of an infinite number of ladder-type diagrams which describe multiple virtual scatterings [see
Eq. (3.25)].

as (see Appendix A)

Γ(p1, p2; p3, p4) = Γ(p,p′, P )

= f̃(p,p′) +

∫

d3q

(2π)3
f̃(p, q)

(

1

~ωP − ~2P2

4M + 2µ− ~2q2

M + iη

+
1

~2q2

M − ~2p′2

M − iη

)

f̃∗(p′, q). (3.26)

Here −Mf̃(p,p′)/(4π~
2) is the vacuum scattering amplitude of the two-body collision in which

the relative momentum changes from ~p′ to ~p. As seen in Eq. (3.26), it can be shown that
Γ(p1, p2; p3, p4) depends only on the center-of-mass four-vector ~P ≡ ~p1 + ~p2 = ~p3 + ~p4

and the relative momenta ~p ≡ (~p1 − ~p2)/2, ~p′ ≡ (~p3 − ~p4)/2, and neither on ωp ≡
[ωp1 − ωp2 ] /2 nor ωp′ ≡ [ωp3 − ωp4] /2.

3.1.3 First-order (Bogoliubov) energy spectrum

In the following, we make the asymptotic expansions of Σ and µ with respect to the charac-
teristic dimensionless parameter na3, which is much smaller than unity for typical ultracold

atomic experiments. These expansions are represented by the sums of the Feynman diagrams
at different orders of approximation:

Σαβ =

∞
∑

n=1

Σαβ(n), (3.27a)

µ =
∞
∑

n=1

µ(n), (3.27b)

where Σαβ(n) and µ(n) are the contributions to the self-energy and the chemical potential from

the nth-order Feynman diagrams. The Bogoliubov and Beliaev theories consist of the con-
tributions from the Feynman diagrams up to the first order (Fig. 3.4) and the second order
(Figs. 3.5–3.8), respectively.

In the first-order approximation, we can neglect the
∫

d3q integral in Eq. (3.26) since its
contribution is of the second order whose magnitude is smaller than the first order by a factor of
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Figure 3.4: First-order diagrams of the proper self-energies (a)-(c) and the chemical potential
(d). The squares represent the T -matrix, and we choose the convention that the condensate

particles are not explicitly shown. In fact, in (a) there are one condensate particle moving in
and another moving out; in (b) and (c) there are two condensate particles moving in and two
moving out, respectively; in (d) all four particles belong to the condensate. This convention

would help simplify the second-order diagrams in Sec. 3.2.

√
na3 � 1 (see Sec. 3.2). On the other hand, in the low-energy regime |p| � 1/a, the momentum

dependence of the vacuum scattering amplitude is negligible, and f̃(p,p′) approaches g ≡
4π~2a/M in the limit of zero momenta p,p′ → 0. The T -matrix then reduces to

Γ(p,p′, P ) ' g. (3.28)

The proper self-energies and the chemical potential at the first-order approximation, whose
Feynman diagrams are shown in Fig. 3.4, are given by

~Σ11(1)(p) = Γ(p/2,p/2, p)n0 + Γ(p/2,−p/2, p)n0

' 2gn0, (3.29a)

~Σ12(1)(p) = ~Σ21(1)(p) =Γ(p, 0, 0)n0

' gn0, (3.29b)

µ(1) = Γ(0, 0, 0)n0

' gn0. (3.29c)

By substituting Eqs. (3.29a)–(3.29c) in Eqs. (3.23a) and (3.23b), we obtain the first-order

Green’s functions as

G11(1)(p) =
ωp + (ε0p + gn0)/~

ω2
p − [ω

(1)
p ]2 + iη

, (3.30a)

G12(1)(p) = G21(1)(p) = − gn0/~

ω2
p − [ω

(1)
p ]2 + iη

, (3.30b)

where the excitation spectrum, which can be determined from the pole of the Green’s functions
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according to the Lehmann representation [80], is given by

~ω
(1)
p =

√

ε0p[ε0p + 2gn0]. (3.31)

This is the energy spectrum of phonons obtained by using the Bogoliubov theory [18]. There-

fore, the first-order approximation reproduces the Bogoliubov excitation spectrum. In the
low-momentum regime ε0p � gn, the dispersion relation is linear

~ω
(1)
p '

√

2gn0ε0p

'
√

2gnε0p

=v(1)
s ~|p|, (3.32)

where v
(1)
s =

√

gn/M is the sound velocity. Here we used relation (3.2) between n0 and n and

ignored terms of the order of
√
na3 � 1.

To faciliate the second-order calculations in Sec. 3.2, we rewrite the first-order Green’s
functions in Eqs. (3.30a) and (3.30b) as

G11(1)(p) =
Ap

ωp − ω(1)
p + iη

− Bp

ωp + ω
(1)
p − iη

, (3.33a)

G12(1)(p) = G
21(1)
11 (p) =−Cp

(

1

ωp − ω(1)
p + iη

− 1

ωp + ω
(1)
p − iη

)

, (3.33b)

where

Ap =
~ω

(1)
p + ε0p + gn0

2~ω
(1)
p

, (3.34a)

Bp =
−~ω

(1)
p + ε0p + gn0

2~ω
(1)
p

, (3.34b)

Cp =
gn0

2~ω
(1)
p

. (3.34c)

3.2 Second-order (Beliaev) energy spectrum

The second-order contributions to the proper self-energies and the chemical potential consist

of two components. The first one results from the second-order contribution to the T -matrix
in the first-order diagrams (Fig. 3.4). It is obtained by substituting the

∫

d3q integral and the
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imaginary part of f̃(p,p′) in Eq. (3.26) in the first lines of Eqs. (3.29a)–(3.29c). We then have

~Σ11(p) : i Imf̃(p/2,p/2)n0 + i Imf̃ (p/2,−p/2)n0

+ 2n0g
2

∫

d3q

(2π)3

(

1

~ωp + 2gn0 − ε0q − ε0k + iη
− 1

ε0p − ε0q − ε0k + iη

)

, (3.35a)

~Σ12,21(p) : n0g
2

∫

d3q

(2π)3

(

1

2gn0 − 2ε0q + iη
+

1

2ε0q

)

, (3.35b)

µ : n0g
2

∫

d3q

(2π)3

(

1

2gn0 − 2ε0q + iη
+

1

2ε0q

)

, (3.35c)

where Im denotes the imaginary part and k ≡ q−p. Using the optical theorem for scattering,
the imaginary part of the on-shell vacuum scattering amplitude f̃ (p,p′) (|p| = |p′|) is given by

[20]

Imf̃(p,p′) =− πM

~2

∫

d3q

(2π)3
f̃(p, q)f̃∗(p′, q)δ(p2− q2)

=
−|p|M
16π2~2

∫

dΩqf̃(p, q)f̃∗(p′, q), (3.36)

where Ωq denotes the solid angle of the on-shell momentum q (|q| = |p| = |p′|). Therefore, we
obtain the imaginary part of f̃ (p/2,±p/2) in Eq. (3.35a) to the second-order approximation as

Imf̃(p/2,±p/2) =
−|p|M
8π~2

g2, (3.37)

where we replaced f̃(p, q) and f̃(p′, q) on the right-hand side of Eq. (3.36) by their zero-

momentum limit g.
The second component of the second-order contributions to the proper self-energies and

the chemical potential arises from the second-order Feynman diagrams shown in Figs. 3.5–3.8.
It is calculated straightforwardly by using Eqs. (3.33a) and (3.33b) for the first-order Green’s

functions. By summing the obtained two components, we find the second-order contributions
to the self-energies and the chemical potential to be

~Σ11(2)(p) = ~Σ22(2)(−p)

=
−i|p|Mn0g

2

4π~2
+ 2n0g

2

∫

d3q

(2π)3

(

1

~ωp + 2gn0 − ε0q − ε0k + iη
− 1

ε0p − ε0q − ε0k + iη

)

+ n0g
2

∫

d3q

(2π)3

(

2 {Aq, Bk}+ 4CqCk − 4 {Aq, Ck}+ 2AqAk

~

[

ωp − ω(1)
q − ω(1)

k

]

+ iη

− 2 {Aq, Bk}+ 4CqCk − 4 {Bq, Ck}+ 2BqBk

~

[

ωp + ω
(1)
q + ω

(1)
k

]

− iη
− 2

~ωp − ε0q − ε0k + 2gn0 + iη

)

+ 2g

∫

d3q

(2π)3
Bq, (3.38)
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Figure 3.5: Second-order diagrams for the proper self-energy Σ11(p). The intermediate propa-

gators are classified into three different categories, depending on the number of noncondensed
atoms moving into and out of the condensate. They are represented by curves with one arrow

(−→), two pointing-out arrows (←→), and two pointing-in arrows (→←), and are described
by the first-order normal Green’s function G11(1)(p) and anomalous Green’s functions G12(1)(p)
and G21(1)(p), respectively. Here, the two horizontal dashes in diagrams (e1) and (e2) indicate

that we need to subtract from these diagrams the terms involving the noninteracting Green’s
function to avoid double counting of the contributions that have already been taken into account

in the T -matrix and the first-order diagrams. As in Fig. 3.4, we use the convention that the
condensate particles in diagrams (a1)–(e2) are not explicitly shown.
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Figure 3.8: Second-order diagrams for the chemical potential µ.
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~Σ12(2)(p) = ~Σ21(2)(p)

=n0g
2

∫

d3q

(2π)3

(

1

2gn0 − 2ε0q + iη
+

1

2ε0q

)

+ n0g
2

∫

d3q

(2π)3

[

(

2 {Aq, Bk}+ 6CqCk

− 2 {Aq + Bq, Ck}
)

(

1

~

[

ωp − ω(1)
q − ω(1)

k

]

+ iη
− 1

~

[

ωp + ω
(1)
q + ω

(1)
k

]

− iη

)]

+ g

∫

d3q

(2π)3

(

− Cq +
gn0

2ε0q − 2gn0 − iη

)

, (3.39)

µ(2) =n0g
2

∫

d3q

(2π)3

(

1

2gn0 − 2ε0q + iη
+

1

2ε0q

)

+ 2g

∫

d3q

(2π)3
Bq

+ c0

∫

d3q

(2π)3

(

−Cq +
gn0

2ε0q − 2gn0 − iη

)

, (3.40)

where ω
(1)
q and Aq, Bq, Cq are given by Eqs. (3.31) and (3.34a)–(3.34c), and {Aq, Bk} ≡ AqBk+

AkBq.
Since the shift of the energy spectrum of phonons from its first-order value is expected to

be small: |ωp/ω
(1)
p − 1| � 1 for a weakly interacting dilute Bose gas, which can be justified

a posteriori from the final result, we can make Taylor series expansions of Σ11(2), Σ22(2), and

Σ12(2) in powers of ωp − ω(1)
p as

Σ11(2)(p) =A11 + B11(ωp − ω(1)
p ) +O[(ωp − ω(1)

p )2], (3.41a)

Σ22(2)(p) =A22 + B22(ωp − ω(1)
p ) +O[(ωp − ω(1)

p )2], (3.41b)

Σ12(2)(p) =A12 + B12(ωp − ω(1)
p ) +O[(ωp − ω(1)

p )2], (3.41c)

where

Aαβ =Σαβ(2)(ωp = ω
(1)
p ,p), (3.42)

Bαβ =
∂Σαβ(2)

∂ωp

∣

∣

∣

∣

∣

ωp=ω
(1)
p

. (3.43)

In the low-momentum regime ε0p � gn, the coefficients Aαβ and Bαβ can be further expanded in

powers of ~ω
(1)
p /(gn0)� 1. Substituting Eqs. (3.31) and (3.34a)–(3.34c) in Eqs. (3.38)–(3.40),

we obtain [25]

~ReA11 =
8
√
n0a3gn0√
π





(

14

3
− 2D1

)

+

(

2D1 −
1

2

)

~ω
(1)
p

gn0
+

(

161

1440
− D1

2
− 3D3

32

)

(

~ω
(1)
p

gn0

)2


 ,

(3.44)

~ReA22 =
8
√
n0a3gn0√
π





(

14

3
− 2D1

)

−
(

2D1 −
1

2

)

~ω
(1)
p

gn0
+

(

161

1440
− D1

2
− 3D3

32

)

(

~ω
(1)
p

gn0

)2


 ,

(3.45)
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~ReA12 =
8
√
n0a3gn0√
π



(3− 2D1) +

(

− 79

1440
+
D1

2
− 3D3

32

)

(

~ω
(1)
p

gn0

)2


 , (3.46)

~ImA11 = −
√

πn0a3gn0

[

1− ~ω
(1)
p

gn0
− 1

24

(

~ω
(1)
p

gn0

)2

+
7

24

(

~ω
(1)
p

gn0

)3

+
13

1920

(

~ω
(1)
p

gn0

)4

− 193

1920

(

~ω
(1)
p

gn0

)5

+
307

35840

(

~ω
(1)
p

gn0

)6 ]

, (3.47)

~ImA22 = −
√

πn0a3gn0

[

1 +
~ω

(1)
p

gn0
− 1

24

(

~ω
(1)
p

gn0

)2

− 7

24

(

~ω
(1)
p

gn0

)3

+
13

1920

(

~ω
(1)
p

gn0

)4

+
193

1920

(

~ω
(1)
p

gn0

)5

+
307

35840

(

~ω
(1)
p

gn0

)6 ]

, (3.48)

~ImA12 = −
√

πn0a3gn0

[

1− 13

24

(

~ω
(1)
p

gn0

)2

+
293

1920

(

~ω
(1)
p

gn0

)4

− 1255

21504

(

~ω
(1)
p

gn0

)6 ]

, (3.49)

ReB11 =
8
√
n0a3

√
π

[

−
(

1

2
− 2D1

)

−
(

1

15
+
D1

4
+ 16D3

)

~ω
(1)
p

gn0

]

, (3.50)

ReB22 =
8
√
n0a3

√
π

[

(

1

2
− 2D1

)

−
(

1

15
+
D1

4
+ 16D3

)

~ω
(1)
p

gn0

]

, (3.51)

ReB12 =
8
√
n0a3

√
π

(

7D1

4
− 16D3 −

1

15

)

~ω
(1)
p

gn0
, (3.52)

ImB11 = −
√

πn0a3

[

− 1− 1

2

~ω
(1)
p

gn0
+

25

24

(

~ω
(1)
p

gn0

)2

+
13

48

(

~ω
(1)
p

gn0

)3

− 1133

1920

(

~ω
(1)
p

gn0

)4

− 97

768

(

~ω
(1)
p

gn0

)5 ]

, (3.53)

ImB22 = −
√

πn0a3

[

1− 1

2

~ω
(1)
p

gn0
− 25

24

(

~ω
(1)
p

gn0

)2

+
13

48

(

~ω
(1)
p

gn0

)3

+
1133

1920

(

~ω
(1)
p

gn0

)4

− 97

768

(

~ω
(1)
p

gn0

)5 ]

, (3.54)
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ImB12 = −
√

πn0a3



−3

2

~ω
(1)
p

gn0
+

13

16

(

~ω
(1)
p

gn0

)3

− 613

1280

(

~ω
(1)
p

gn0

)5


 , (3.55)

µ(2) =
40
√
n0a3gn0

3
√
π

, (3.56)

where

D1 ≡
∞
∫

0

dx
1

x(x2 + 4)3/2
, (3.57)

D3 ≡
∞
∫

0

dx
1

x3(x2 + 4)7/2
. (3.58)

Although D1 and D3 are infrared divergent, their divergences do not affect the final result of the
excitation spectrum since they cancel each other as shown below. These infrared divergences,

which result from the gapless excitation mode, is characteristic of Bose-Einstein condensates.
The excitation spectrum determined from the poles of the Green’s function is obtained by

equating the right-hand side of Eq. (3.24) to zero. The two roots of the quadratic equation result
in the two poles of the Green’s function with the same absolute value and the opposite signs in
the Lehmann representation, which correspond to the particle and hole excitations, respectively.

Unlike fermionic systems, since an elementary excitation of a Bose-Einstein condensate can be
constituted from a superposition of a particle and a hole excitations, we only need to take one

out of the two roots for each count of excitation modes. The excitation spectrum is then written
in terms of the second-order self-energies as

ωp =
Σ11 − Σ22

2
+

√

√

√

√

[

ε0p − µ
~

+

(

Σ11 + Σ22

2

)

]2

− Σ12Σ21

=
Σ11(2)− Σ22(2)

2
+

{[

ε0p + gn0

~
+

(

Σ11(2) + Σ22(2)

2

)

− µ(2)

~

]2

−
(gn0

~
+ Σ12(2)

)2
}1/2

' Σ11(2)− Σ22(2)

2
+

{

[

ω
(1)
p

]2
+

(

Σ11(2) + Σ22(2)− 2µ(2)/~
) (

ε0p + gn0

)

~
− 2

gn0

~
Σ12(2)

}1/2

' Σ11(2)− Σ22(2)

2
+

[

ω
(1)
p +

(

Σ11(2) + Σ22(2)− 2µ(2)/~
)

(ε0p + gn0)

2~ω
(1)
p

− gn0

~ω
(1)
p

Σ12(2)

]

=ω
(1)
p + Λ, (3.59)

where

Λ ≡
(ε0p + gn0)

(

Σ11(2) + Σ22(2)− 2µ(2)/~
)

2~ω
(1)
p

− gn0Σ
12(2)

~ω
(1)
p

+
Σ11(2) −Σ22(2)

2
. (3.60)

Note that Λ is an implicit function of both p and ωp via the self-energies. Substituting

Eqs. (3.41a)–(3.41c) and (3.44)–(3.56) in Eqs. (3.59) and (3.60), we obtain the second-order
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energy spectrum of phonons in the low-momentum regime as

~ω
(2)
p =

(

1 +
28
√
n0a3

3
√
π

)

√

2gn0ε0p − i
3
√
π
√
n0a3(ε0p)5/2

80(n0g)3/2

=

(

1 +
8
√
na3

√
π

)

√

2gnε0p − i
3
√
π
√
na3(ε0p)5/2

80(ng)3/2

=

(

1 +
8
√
na3

√
π

)

~v(1)
s |p| − i

3~
2|p|5

640πMn
. (3.61)

Here in deriving the second equality, we used relation (3.2) between n0 and n. Comparing this

result with the Bogoliubov first-order spectrum [Eq. (3.32)], it is evident that the sound velocity
increases by a factor of

v(2)
s =

(

1 +
8
√
na3

√
π

)

v(1)
s , (3.62)

and a nonzero imaginary part of the excitation energy appears, describing a finite lifetime of
the phonons with a damping rate

Pdamp =
3~|p|5

320πMn
. (3.63)

Here we used the relation Pdamp = −2Im ~ω
(2)
p resulting from the fact that the probability of

finding a quasiparticle is proportional to the square of its wavefunction.
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Chapter 4

Fluctuation-induced and
symmetry-prohibited metastabilities

Since the order parameters and the associated symmetries of the different phases of spin-2 BECs
in Fig. 2.3 cannot be transformed continuously at the phase boundary, these phase transitions
must be first order. This can be justified by a finite jump in the first derivative of the ground-

state energy with respect to the parameter that drives the transition (see Appendix C). First-
order phase transitions are usually accompanied by metastable states. However, the Bogoliubov

analysis predicts either a dynamical instability with a complex excitation energy or a Landau
instability with a negative excitation energy at the mean-field phase boundaries as shown in

Sec. 2.4.2. This implies no metastability. Such discrepancy is due to the fact that the Bogoliubov
spectrum is obtained by considering a small amplitude expansion of the order parameter around

the mean field. This is carried out by linearizing the Gross-Pitatevskii energy functional which,
for a homogeneous system with contact interactions, consists of only terms up to the fourth order

in the order parameter [19]. We note that the Gross-Pitaevskii energy functional is equivalent
to that of Landau’s φ2 + φ4 model which plays the key role in the treatment of second-order
phase transitions. However, to describe the first-order phase transitions, terms of higher orders

in φ are needed [29], and in gaseous BECs these higher-order terms can only be obtained by
taking into account quantum fluctuations. In other words, in spin-2 BECs the metastability,

if it exists, is induced by quantum fluctuations. In Sec. 4.3, we show that metastable states
indeed appear as we go to the next-order approximation, i.e., the spinor Beliaev theory [40].

In this chapter, we first construct the beyond-mean-field ground-state phase diagram of
spin-2 BECs at the level of the Lee-Huang-Yang (LHY) correction (Sec. 4.1). We then develop

the Beliaev theory of spin-2 BECs, from which the excitation spectra of the ferromagnetic
and uniaxial-nematic (UN) phases are derived (Sec. 4.2). From the obtained spectra, we show

that the fluctuation-induced metastable states appear around the ferromagnetic-BN and UN-
cyclic phase boundaries (Sec. 4.3). With the presence of a metastable condensate, we then

discuss the possibility of macroscopic quantum tunneling (Sec. 4.4). On the other hand, we
find no metastability at the other two phase boundaries. We will show that the absence of
metastability holds to all orders of approximation since the metastable state is prohibited by

the high symmetry of the Hamiltonian at the phase boundary (Sec. 4.5). Therefore, the spinor
Beliaev theory gives fully consistent results for all of the first-order phase transitions in spin-2

BECs.
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4.1 Beyond-mean-field ground-state phase diagram

The ground-state phase diagram with the Lee-Huang-Yang (LHY) correction is shown in Fig. 4.1.

The LHY correction is the leading-order correction to the Hartree mean-field energy, which
arises from quantum fluctuations of the condensate [70, 71]. Recent experiments on ultracold
atoms have demonstrated that the LHY correction can accurately account for the deviation of

the ground-state energy from the Hartree energy up to the strongest interaction available for a
stable condensate [72]. The LHY corrections were calculated for the different phases in spin-1

and spin-2 BECs in Refs. [68, 73, 74]. Using the LHY corrections, we find that the ground-state
phase diagram is modified from that in Fig. 2.3 as follows. The detailed calculations are given

in Appendix B.
Uniaxial nematic (UN) - biaxial nematic (BN) phase boundary. As shown in Refs. [73, 74],

zero-point fluctuations lift the degeneracy in the nematic phase, rendering the ground state
either the UN phase (η = nπ/3) for c1 > 0 or the BN phase (η = π/6 + nπ/3) for c1 < 0. Here

η is the parameter characterizing the nematic phases as introduced in Sec. 2.3.2. Therefore, the
UN-BN phase transition occurs at c1 = 0. Note that all the states whose order parameters are
characterized by different values of n = 0, . . . , 5 are degenerate and belong to the same ground-

state manifold. For example, the BN phase includes the states with the order parameters
(
√

2, 0, 2
√

3, 0,
√

2)T/4 (η = π/6) and (1, 0, 0, 0, 1)T/
√

2 (η = π/2).

Ferromagnetic-BN phase boundary. By comparing the ground-state energies with the LHY
corrections of the ferromagnetic and BN phases [see Eqs. (B.2)-(B.4) in Appendix B], we find

that the ferromagnetic-BN phase boundary is shifted from its mean-field counterpart at c2 =
20c1 to

cFM−BN
2 ' 20c1− 1521

(|c1|
c0

)3/2√
na3 |c1|; (4.1)

i.e., the region of the ferromagnetic phase is enlarged. Here a ≡ (4a2 + 3a4)/7 so that c0 =
4π~2a/M .

UN-cyclic phase boundary. Similarly, the phase boundary between the UN and cyclic phases
is given by [see Eqs. (B.5)–(B.7) in Appendix B]

cUN−CL
2 ' − 342

(

c1
c0

)3/2√
na3 c1. (4.2)

Comparing this with the mean-field UN-cyclic phase boundary given by c2 = 0 and c1 > 0, we

know that the region of the cyclic phase is enlarged.
Ferromagnetic-cyclic phase boundary. The LHY correction does not shift the ferromagnetic-

cyclic phase boundary. In fact, this phase boundary stays at c1 = 0 to all orders of approxima-
tion. Indeed, from the order parameters ξFM = (1, 0, 0, 0, 0)T and ξCL = (1, 0, 0,

√
2, 0)T/

√
3, it

is evident that the ground-state energies of the ferromagnetic and cyclic phases are independent
of c2 since the excitations caused by c2 vanish due to the absence of spin-singlet pairs in both

of these phases. Because c0 is the coupling constant of the spin-independent interaction, the
energies of these two phases should be equal at c1 = 0. Therefore, the phase boundary is not
shifted by quantum fluctuations (see also Sec. 4.5.2).

Note that the failure of the Bogoliubov theory in capturing the metastability leads to a
disagreement with the ground-state phase diagram (Fig. 4.1). For example, the ground state is

the ferromagnetic phase for c2 > cF−BN
2 and c1 < 0 [see Eq. (4.1)], whereas the Bogoliubov spec-

trum indicates an instability of the ferromagnetic phase for cF−BN
2 < c2 < 20c1 (see Sec. 2.4.2).

In Secs. 4.3 and 4.5 below, we will show that the spinor Beliaev theory gives results which are
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c2

c1

CyclicFerromagnetic

BN
UN

0

π2

Figure 4.1: Ground-state phase diagram of spin-2 BECs obtained with the Lee-Huang-Yang
(LHY) correction (solid lines). The dashed lines indicate the phase boundaries obtained with

the Hartree mean-field approximation (Fig. 2.3). The representative spinor order parame-
ters of the ferromagnetic, cyclic, uniaxial-nematic (UN), and biaxial-nematic (BN) phases

are given by ξFM = (1, 0, 0, 0, 0)T, ξCL = (1, 0, 0,
√

2, 0)T/
√

3, ξUN = (0, 0, 1, 0, 0)T, and
ξBN = (

√
2, 0, 2

√
3, 0,
√

2)T/4, respectively. The insets show the spherical harmonic repre-

sentations of the spinor order parameters as explained in Fig. 1.1. Note that the ground-state
manifold of each phase includes all the states obtained by applying SO(3) rotations in spin space

to the representative order parameter; e.g., the order parameters ξBN = (1, 0, 0, 0, 1)T/
√

2 and
ξCL = (1, 0, i

√
2, 0, 1)T/2 belong to the BN and cyclic phases, respectively. The LHY correction

due to quantum fluctuations lifts the degeneracy in the manifold of the nematic phases, ren-
dering the ground state either the UN phase for c1 > 0 or the BN phase for c1 < 0. Quantum
fluctuations also shift the cyclic-UN and ferromagnetic-BN phase boundaries as indicated by

the solid lines. However, the ferromagnetic-cyclic phase boundary is not affected to all orders
of approximation (see text). (Figure reproduced from Ref. [40])
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fully consistent with the ground-state phase diagram of spin-2 BECs with the LHY correction.
In the presence of an external magnetic field, the quadratic Zeeman shift with the coefficient

q may compete with the shift due to the LHY correction whose order of magnitude is ∆E ∼
M3/2c

5/2
1 n3/2/π2~3 (see Appendix B). The phase diagram, therefore, depends on the relative

strength of these two effects. In the limit of high magnetic field q � ∆E, the effect of quantum
fluctuations can be ignored, and the ground-state phase diagram is obtained by the Hartree

mean-field theory [75]. This is the condition for the experiments of the spin-2 87Rb BEC
described in Ref. [17]. For 87Rb under a high magnetic field, the ground state is the BN phase,

while the dynamics starting from the unstable UN phase could populate all magnetic sublevels.
In the opposite limit of low magnetic field q � ∆E, quantum fluctuations dominate, and the

quadratic Zeeman energy becomes negligible. In this case, the ground-state phase diagram is
shown in Fig. 4.1. The crossover between these two distinct regimes occurs at q ∼ ∆E, which

corresponds to a magnetic field of the order of 7 mG for the parameters of 87Rb [76, 77] with
an atomic density n = 1015 cm−3. All these regimes can, in principle, be studied since the
lowest magnetic field that has been achieved in ultracold atomic experiments is as small as 0.1

mG [78]. In the next section, however, we only consider the case of spin-2 BECs in the absence
of a magnetic field.

4.2 Beliaev theory of spin-2 BECs

In this section, we develop the spinor Beliaev theory for spin-2 BECs based on a Green’s function
approach, and then apply it to calculate the excitation spectra of the ferromagnetic and UN

states. The formalism is a generalization of the scalar Beliaev theory introduced in Sec. 3.1 to
spin-2 condensates. It also shares many similarities with the spin-1 Beliaev theory developed

in Ref. [79]. From the obtained excitation spectra, we can determine the points in the phase
diagram at which instabilities set in.

The Dyson equation for the Green’s function is given by Eq. (3.18) as for scalar BECs,
but now Ĝ, Ĝ0, and Σ̂ are 10 × 10 matrices with the superscripts labeling the normal (11

and 22) and anomalous (12 and 21) components and the subscripts indicating the magnetic
sublevels. For the ferromagnetic and UN states with order parameters ξFM = (1, 0, 0, 0, 0)T and

ξUN = (0, 0, 1, 0, 0)T, the self-energies are given by

Σ̂FM =



































Σ11
2,2 0 0 0 0 Σ12

2,2 0 0 0 0

0 Σ11
1,1 0 0 0 0 0 0 0 0

0 0 Σ11
0,0 0 0 0 0 0 0 0

0 0 0 Σ11
−1,−1 0 0 0 0 0 0

0 0 0 0 Σ11
−2,−2 0 0 0 0 0

Σ21
2,2 0 0 0 0 Σ22

2,2 0 0 0 0

0 0 0 0 0 0 Σ22
1,1 0 0 0

0 0 0 0 0 0 0 Σ22
0,0 0 0

0 0 0 0 0 0 0 0 Σ22
−1,−1 0

0 0 0 0 0 0 0 0 0 Σ22
−2,−2



































(4.3)
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and

Σ̂UN =



































Σ11
2,2 0 0 0 0 0 0 0 0 Σ12

2,−2

0 Σ11
1,1 0 0 0 0 0 0 Σ12

1,−1 0

0 0 Σ11
0,0 0 0 0 0 Σ12

0,0 0 0

0 0 0 Σ11
−1,−1 0 0 Σ12

−1,1 0 0 0

0 0 0 0 Σ11
−2,−2 Σ12

−2,2 0 0 0 0

0 0 0 0 Σ21
2,−2 Σ22

2,2 0 0 0 0

0 0 0 Σ21
1,−1 0 0 Σ22

1,1 0 0 0

0 0 Σ21
0,0 0 0 0 0 Σ22

0,0 0 0

0 Σ21
−1,1 0 0 0 0 0 0 Σ22

−1,−1 0

Σ21
−2,2 0 0 0 0 0 0 0 0 Σ22

−2,−2



































. (4.4)

Here Σ22
jj′(p) ≡ Σ11

jj′(−p), and Σ12
jj′(p) = Σ21

jj′(p) because the corresponding diagrams are the

same. In Σ̂UN, only the anomalous components Σ12;21
j,−j (j = 2, · · · ,−2) are nonzero due to the

spin conservation applied to the creation of a pair of noncondensed particles out of a condensate

in the spin state mF = 0. The Green’s functions ĜFM and ĜUN have the same forms of matrix
as Σ̂FM and Σ̂UN, respectively, i.e., Gαβ

j,j′ = 0 provided Σαβ
j,j′ = 0.

By solving the Dyson equation, we can express the Green’s functions in terms of the self-
energies, and according to the Lehmann representation [80, 20], the excitation spectra are

obtained from the poles of the Green’s functions. Since the low-energy long-wavelength ex-
citation modes give rise to the instabilities near the phase boundaries, we will focus on the

zero-momentum excitation energies. The results for the ferromagnetic and UN states are sum-
marized as follows.

Ferromagnetic state. The mF = 2 excitation mode, which is in the same spin state as

the condensate, correspond to the phonon excitation. It features the nonzero anomalous self-
energies Σ12;21

2,2 in Eq. (4.3) and thus has a linear dispersion relation in the low-momentum

regime characterized by the sound velocity as in scalar BECs. The sound velocity is always
positive as long as c0 � |c1|, |c2|, which is the case of atomic species such as 87Rb and 23Na;

therefore, no instability should occur with this mode. In contrast, the mF = j 6= 2 modes
are single-particle-like excitations due to the vanishing of the anomalous self-energies, and their

Green’s functions are given by

G11
j,j(p) =

1

[G0
j (p)]

−1 −Σ11
j,j(p)

, (4.5)

where the noninteracting Green’s function G0
j (p) in the absence of an external magnetic field

is independent of j and given by the right-hand side of Eq. (3.22). From Eq. (4.5), the zero-
momentum energy of the mF = j excitation mode satisfies

ωj,p=0 = Σ11
j,j (ωj,p=0,p = 0)− µ/~. (4.6)

UN state. The Green’s function of the mF = 0 mode describes the phonon excitation which

does not bring about any instability for c0 � |c1|, |c2|. For the other mF 6= 0 modes, the
corresponding Green’s functions are given by

G11
j,j(p) =

−[G0
j (−p)]−1 + Σ11

j,j(−p)
Dj

, (4.7)

43



where

Dj =− [G0
j (p)]

−1[G0
−j(−p)]−1 + Σ11

j,j(p)[G
0
−j(−p)]−1 + Σ22

−j,−j(p)[G
0
j(p)]

−1 − Σ11
j,j(p)Σ

22
−j,−j(p)

+ Σ21
−j,j(p)Σ

12
j,−j(p) + iη. (4.8)

The zero of Dj gives the excitation energy spectrum, which is calculated for p = 0 to be

ωj,p=0 =

(

Σ11
j,j − Σ22

−j,−j

)

2
+

{

− Σ12
j,−jΣ

21
−j,j +

[

− µ

~
+

(

Σ11
j,j + Σ22

−j,−j

)

2

]2}1/2

. (4.9)

Here, with the same argument as given above Eq. (3.59), we take only the plus sign in front
of the square root in Eq. (4.9). For the UN phase with a symmetric order parameter ξUN =

(0, 0, 1, 0, 0)T, there is an equivalence between the mF = ±j magnetic sublevels, leading to

Σ11
j,j = Σ11

−j,−j , Σ22
j,j = Σ22

−j,−j , (4.10a)

Σ12
j,−j = Σ12

−j,j =Σ21
j,−j = Σ21

−j,j , (4.10b)

Dj =D−j. (4.10c)

Equation (4.10c) implies twofold degeneracies in the excitation energies given by Eq. (4.9) with

j = ±1 and ±2.
In the next section, we make expansions of Σ and µ with respect to na3, which is the

characteristic dimensionless parameter of a dilute weakly interacting Bose gas. These expansions
are represented by the sums of Feynman diagrams similar to Figs. 3.4–3.8. Compared with
the Feynman diagrams of scalar BECs, we need to add the spin degrees of freedom to each

propagator in the diagrams of spinor BECs. Furthermore, the T -matrix, which represents the
two-body scattering in a medium composed of the other particles, now have the contributions

from both the spin-independent and spin-dependent interactions with the coupling constants
c0, c1, and c2 defined in Eq. (2.15). The Bogoliubov and Beliaev theories are constucted from

the contributions of the Feynman diagrams up to the first and second order, respectively. In
comparison, there appear virtual excitations, i.e., quantum fluctuations, of the condensate with

momenta q and p− q in the second-order diagrams, which are absent in the first-order ones (see
Figs. 3.4–3.8). It is these quantum fluctuations that generate the higher-order terms beyond

φ4 in the energy functional which play an essential role in the first-order phase transitions of
spin-2 BECs, as discussed at the beginning of this chapter.

4.3 Fluctuation-induced metastability

With the excitation energies obtained in the previous section, we can identify the points in
the phase diagram at which instabilities set in. Combined with the conditions on the phase

boundaries discussed in Sec. 4.1, we find that the fluctuation-induced metastable states appear in
the ferromagnetic-BN and UN-cyclic phase transitions, while there is no metastability associated
with the ferromagnetic-cyclic and UN-BN phase transitions. In the latter case, the absence of

metastability holds to all orders of approximation due to the symmetry of the Hamiltonian as
will be discussed in Sec. 4.5.

Ferromagnetic-BN phase transition. From the order parameters of the ferromagnetic [ξFM =
(1, 0, 0, 0, 0)T] and BN [ξBN = (1, 0, 0, 0, 1)T/

√
2] states, it is clear that starting from the ferro-

magnetic phase, the excitation mode that drives this phase transition is the one with mF = −2.
We thus examine the zero-momentum energy of this mode. The expansion of Eq. (4.6) up to

44



the first-order Feynman diagrams reproduces the Bogoliubov result:

~ω
(1)
−2,p=0 ' ~Σ

11(1)
−2,−2 − µ(1)

=

(

−8c1 +
2c2
5

)

n0. (4.11)

By summing all the contributions to Σ11
−2,−2 and µ from the second-order diagrams, we obtain

[see Eq. (D.12) in Appendix D]

~Σ
11(2)
−2,−2 − µ(2) ' (36

√
3 + 64)|c1|5/2(Mn0)

3/2

2
√

2π~3
(4.12)

near the ferromagnetic-BN phase boundary where c1 < 0 and c2 ' 20c1 [see Eq. (4.1)]. From
Eqs. (4.6), (4.11), and (4.12), the zero-momentum energy of the mF = −2 excitation mode of

the ferromagnetic phase is obtained up to the second order as

~ω
(2)
−2,p=0 '

(

−8c1 +
2c2
5

)

n0 +
(36
√

3 + 64)|c1|5/2(Mn0)
3/2

2
√

2π~3
. (4.13)

From Eq. (4.13), we find that the Landau instability of the ferromagnetic phase arises if

~ω
(2)
−2,p=0 < 0, or equivalently, if

c2 < cFM−unstable
2 ≡ 20c1 −

5(36
√

3 + 64)M3/2n
1/2
0 c

5/2
1

4
√

2π~3

' 20c1 − 1584

(|c1|
c0

)3/2
√

n0a3 |c1|

' 20c1 − 1584

(|c1|
c0

)3/2√
na3 |c1|. (4.14)

In the last (approximate) equality in Eq. (4.14), we used the relation between the condensate’s

particle density and the total atomic density n0/n = 1−8
√
na3/(3

√
π), and retained only terms

up to the order of
√
na3, which is the order of magnitude under consideration in the Beliaev

theory. It follows from Eqs. (4.1) and (4.14) that the ferromagnetic phase is metastable for

−1584 <
c2 − 20c1

(

|c1|
c0

)3/2√
na3|c1|

< −1521. (4.15)

From the hysteretic feature of a first-order phase transition, the BN phase is also expected to
be metastable for cFM−BN

2 < c2 < cBN−unstable
2 .

UN-cyclic phase transition. As shown in Sec. 4.2, for the UN phase with a symmetric order
parameter ξUN = (0, 0, 1, 0, 0)T, there are two degenerate excitation modes which are super-

positions of the magnetic sublevels mF = ±2. Since the order parameter (1, 0, i
√

2, 0, 1)T/2,
which has equal weights of mF = ±2 components, describes a state of the cyclic phase (see
Sec. 2.3.2), it is evident that the instability in the mF = ±2 modes causes the UN-cyclic phase

transition. By separating the contributions to Σ and µ in Eq. (4.9) from the first- and second-
order Feynman diagrams, the zero-momentum excitation energies of these modes are given up
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to the second order by

ω±2,p=0 =
Σ

11(2)
22 − Σ

22(2)
22

2
+

{

−
[c2n0

5~
+ Σ

12(2)
2,−2

]2
+

[

− c2n0

5~
− µ(2)

~
+

Σ
11(2)
22 + Σ

22(2)
22

2

]2}1/2

,

(4.16)

where Eqs. (4.10a) and (4.10b) were used. Since it is expected that ~ω±2,p=0 � c1n0 near the
phase boundary which can be justified a posteriori from the final result, we can make Taylor

series expansions of Σ
11(2)
2,2 , Σ

22(2)
2,2 , and Σ

12(2)
2,−2 in powers of ~ω±2,p=0/(c1n0) as (see Appendix D)

~Σ
11(2)
2,2 =A +B~ω±2,p=0 +O

[

(

~ω±2,p=0

c1n0

)2
]

, (4.17)

~Σ
22(2)
2,2 =A −B~ω±2,p=0 +O

[

(

~ω±2,p=0

c1n0

)2
]

, (4.18)

~Σ
12(2)
2,−2 =C +O

[

(

~ω±2,p=0

c1n0

)2
]

, (4.19)

where we ignored the quadratic and higher-order terms. Substituting Eqs. (4.17)-(4.19) into
Eq. (4.16), we obtain

~ω±2,p=0 '

√

[

− c2n0
5 + A− µ(2)

]2 −
[

c2n0
5 + C

]2

1−B . (4.20)

Therefore, a dynamical instability will arise if ω±2,p=0 is a complex number with a nonzero

imaginary part, i.e., if

0 >
[

−c2n0

5
+A− µ(2)

]2
−
[c2n0

5
+ C

]2

=
[

A− µ(2) + C
]

[

−2c2n0

5
+A − µ(2) −C

]

. (4.21)

By summing all the contributions to Σ and µ from the second-order Feynman diagrams, we find
that around the UN-cyclic phase boundary where c1 > 0, c2 < 0 and |c2| � c1 [see Eq. (4.2)],

the coefficients A, B, and C in Eqs. (4.17)–(4.19) are given by [see Eqs. (D.32)–(D.34) in
Appendix D]

A− µ(2)

(Mn0)3/2
' − 4

√
3c

5/2
1

π2~3
+

(

42
√

3c
3/2
1 − 10c

3/2
0

)

c2

15π2~3
+O

[

( |c2|
c1

)2
]

, (4.22)

B

M3/2n
1/2
0

' −

(

c
3/2
0 + 3

√
3c

3/2
1

)

3π2~3
−

(

c
1/2
0 +

√
3c

1/2
1

)

c2

30π2~3
+O

[

( |c2|
c1

)2
]

, (4.23)

C

(Mn0)3/2
' 12

√
3c

5/2
1

π2~3
+

(

10c
3/2
0 − 30

√
3c

3/2
1

)

c2

15π2~3
+O

[

( |c2|
c1

)2
]

. (4.24)
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By substituting Eqs. (4.22)–(4.24) in Eq. (4.21), we find that the UN phase becomes dynamically
unstable and the system makes a transition to the cyclic phase if

c2 > cUN−unstable
2 ≡ − 40

√
3M3/2n1/2c

5/2
1

π2~3

' − 313

(

c1
c0

)3/2√
na3 c1. (4.25)

It follows from Eqs. (4.2) and (4.25) that the UN phase is metastable for

−342 <
c2

(

c1
c0

)3/2√
na3 c1

< −313. (4.26)

From the hysteretic feature of a first-order phase transition, the cyclic phase is also expected to

be metastable for cUN−CL
2 > c2 > cCL−unstable

2 . Therefore, by using the spinor Beliaev theory,
we have shown explicitly the existence of the metastable states that are induced by quantum

fluctuations. This result also finds a qualitative agreement with the slow dynamics of the spin-2
87Rb condensate that has been observed in spin-dynamics measurements [17].

4.4 Macroscopic quantum tunneling

The presence of a metastable condensate as shown in the previous section suggests an interest-
ing possibility of a decay of the metastable state into the lower energy state via macroscopic

quantum tunneling (MQT); i.e., all atoms tunnel simultaneously from one phase to the other.
We consider this possibility for the metastable state near the UN-cyclic phase boundary, as

the parameters of the spin-2 87Rb BEC are thought to lie in the vicinity of this phase bound-
ary [76, 77, 81]. Equation (4.26) shows that there is a parameter regime for which the UN phase

is metastable and the cyclic phase is the ground state. By neglecting the quantum depletion,
these state vectors are expressed by

|UN〉 '
(

â
†
0,p=0

)N
|vac〉, (4.27a)

|Cyclic〉 '
(

â†2,p=0

2
+
â†0,p=0√

2
+
â†−2,p=0

2

)N

|vac〉. (4.27b)

Since these states are not the exact eigenstates of the many-body Hamiltonian (2.16), they will

undergo quantum diffusions in spin space [82, 83, 84, 85] and induce MQT. We now estimate
the time scale of MQT by using the two-level model in which the Hilbert space is restricted to

the two states at the local energy minima. The time scale of MQT is then given by τ = ~/∆
with ∆ = 2〈Cyclic|V̂ |UN〉 being the off-diagonal element of the Hamiltonian. Substituting

Eqs. (4.27a) and (4.27b) in Eq. (2.16), we obtain

τ ' ~
2N/2

c0n(N − 1)
, (4.28)

where N is the total number of particles. The exponentially large factor of 2N/2 reflects bosonic
stimulation in a BEC. To observe MQT, τ must be equal to or smaller than the lifetime of

the BEC, which is typically of the order of a second. Using the parameters of 87Rb [81], we
can estimate the upper bound for the total number of particles: Nmax ' 36 for τ . 1 s. Such
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microcondensates have been extensively studied recently [86, 87, 88]. A similar time scale is
expected for MQT in the ferromagnetic-BN transition.

4.5 Symmetry-prohibited metastability

In Sec. 4.3, we have shown the existence of the metastable states that are induced by quantum
fluctuations in the ferromagnetic-BN and UN-cyclic phase transitions. Now we examine the

possibility of metastability at the level of Beliaev approximation in the remaining ferromagnetic-
cyclic and UN-BN phase transitions of spin-2 BECs.

Ferromagnetic-cyclic phase transition. From the order parameters of the ferromagnetic
[ξFM = (1, 0, 0, 0, 0)T] and cyclic [ξCL = (1, 0, 0,

√
2, 0)T/

√
3] phases, it is clear that the exci-

tation mode that causes the ferromagnetic-cyclic phase transition is the one with mF = −1.
Expanding the right-hand side of Eq. (4.6) up to the first-order Feynman diagrams, we reproduce
the Bogoliubov result:

~ω
(1)
−1,p=0 ' ~Σ

11(1)
−1,−1 − µ(1)

= − 6c1n0. (4.29)

By summing all the contributions to Σ and µ from the second-order Feynman diagrams, we
obtain [see Eq. (D.15) in Appendix D]

~Σ
11(2)
−1,−1 − µ(2) ' −18c1c

3/2
0 (Mn0)

3/2

π2~3
. (4.30)

Substituting Eqs. (4.29) and (4.30) in Eq. (4.6), we find the zero-momentum energy of the
mF = −1 excitation mode as

~ω
(2)
−1,p=0 = −6c1n0 −

18c1c
3/2
0 (Mn0)

3/2

π2~3
. (4.31)

Equation (4.31) indicates that a Landau instability of the ferromagnetic phase sets in, i.e.,
ω−1,p=0 < 0, for c1 > 0. This implies that there is no parameter regime for a metastable

ferromagnetic state since the ferromagnetic-cyclic phase boundary lies at c1 = 0. However,
although the ferromagnetic state is unstable for c1 > 0, it becomes an excited state, indicating

that a level crossing occurs at the ferromagnetic-cyclic phase boundary.
UN-BN phase transition. Similar to the UN-cyclic phase transition, since the order param-

eter ξBN = (1, 0, 0, 0, 1)T/
√

2 with equal weights of the mF = ±2 components describes a BN
state (see Sec. 4.1), we know that a dynamical instability in the degenerate mF = ±2 excitation

modes of the UN state would bring about the UN-BN phase transition. The condition for this
instability is given by Eqs. (4.20) and (4.21). Around the UN-BN phase boundary where c2 < 0

and |c2| & |c1|, the coefficients in Eq. (4.21) are calculated to be (see Appendix D)

A− µ(2) + C

(Mn0)3/2
=

1

π2~3

(

8
√

3c̃
5/2
1 − 32√

3
c̃
3/2
1 c̃2 +

16

3
c̃1c̃

3/2
2 +

8√
3
c̃
1/2
1 c̃22 −

16

9
c̃
5/2
2

)

(4.32)

and

−2c2n0

5
+ A− µ(2) −C ' −2c2n0

5
, (4.33)

where c̃2 ≡ −c2/5 and c̃1 ≡ c1 − c2/15. It follows from Eqs. (4.21), (4.32), and (4.33) that a
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dynamical instability arises if

f(x) ≡ 8
√

3x5/2 − 32√
3
x3/2 +

16

3
x+

8√
3
x1/2 − 16

9
< 0, (4.34)

where x ≡ c̃1/c̃2. The function f(x) on the left-hand side of Eq. (4.34) is plotted in Fig. 4.2,
from which we find that the UN state becomes dynamically unstable and the system is driven
towards the BN phase if x < 1/3, or equivalently, if c1 < 0. That the UN-BN phase boundary

lies at c1 = 0 implies that there is no parameter regime for which the UN state is metastable.
However, it should be noted that for c1 < 0, where the BN phase is the ground state, the UN

state becomes dynamically unstable and cannot exist as an excited state since the excitation
modes would grow exponentially. In other words, in contrast to the ferromagnetic-cyclic phase

transition there is no level crossing in the UN-BN phase transition. It should be stressed that
this result, which has been derived from a stability analysis, is stronger than the previous result

obtained in Refs. [73, 74] since it implies not only that the UN phase is no longer the ground
state for c1 < 0 but also that it is not even an excited state due to the dynamical instability.

0

1

2

3

-1

0.2 0.4 0.6 0.8 1.0
x

)(xf

Figure 4.2: Plot of f(x) defined in Eq. (4.34). (Figure reproduced from Ref. [40])

The above stability analysis based on the spinor Beliaev theory shows that the ferromagnetic-
cyclic and UN-BN phase transitions are not accompanied by metastable states. In the following

two subsections, we show that the absence of metastability holds not only at the level of the Be-
liaev approximation but to all orders of approximation since the metastable state is prohibited

by the high symmetry of the Hamiltonian at the phase boundary. We investigate these under-
lying symmetries which result in flat energy landscapes at the phase boundaries in both spin-1

and spin-2 BECs. It is these flat energy landscapes that prohibit a coexistence of two phases
as opposed to the double-well structure that supports metastability in conventional first-order
phase transitions.

4.5.1 Spin-1 BECs

The mean-field ground-state phase diagram of spin-1 BECs is shown in Fig. 2.2. Due to the
discontinuity in the transformation of the order parameter and the associated symmetry at the

phase boundary, the ferromagnetic-BA and antiferromagnetic-polar phase transitions are first
order. This can also be confirmed by a finite jump in the first derivative of the ground-state

energy with respect to the quadratic Zeeman coefficient q that drives these transitions (see
Appendix C). In contrast, the BA-polar phase transition is second order at the mean-field

level.
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c<cB-unstable
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Figure 4.3: Energy landscape in the first-order quantum phase transitions (a) with and (b)

without metastability [see Eq. (4.35)]. The transition between A and B phases is controlled by
a parameter c (e.g., the interaction c1 or c2 in Fig. 4.1 or the quadratic Zeeman coefficient q in

Fig. 2.2). Here, cA−B indicates the phase boundary between the two phases, while cA−unstable

represents the value of c at which the A phase becomes unstable. The energy landscape in (a)

features a double-well structure at c = cA−B , supporting metastable states around the transition
point, whereas the energy landscape in (b) becomes flat at c = cA−B , allowing no metastable
state. (Figure reproduced from Ref. [40])

We now show that the first-order quantum phase transitions in spin-1 BECs are not ac-

companied by metastable states, and this holds to all orders of approximation. For nonzero
q, the Hamiltonian has the U(1)φ×SO(2)fz

symmetry involving the gauge and rotational in-

variances about the z axis in spin space. Only at q = 0 does the Hamiltonian possess a larger
symmetry of U(1)φ×SO(3)f , corresponding to a full rotational invariance in spin space. On

the other hand, at q = 0 the order parameters of each pair of phases in the above first-order
phase transitions can be transformed between each other via an SO(3) rotation, ξBA(q = 0) =

eifyπ/2ξFM, ξPL = eifyπ/2ξAFM. Therefore, the two phases are degenerate at q = 0 at any order
of approximation. Namely, the phase boundary at q = 0 remains unchanged even if quantum

corrections are added to the ground-state energy. Furthermore, if we use a parameter θ to rep-
resent the order parameters of the intermediate states in the transformation from the ferromag-
netic (antiferromagnetic) to the BA (polar) phase: eifyθξFM = (cos2(θ/2), sinθ/

√
2, sin2(θ/2))T

(eifyθξAFM = (sin θ/
√

2, cos θ, sin θ/
√

2)T) (0 6 θ 6 π/2), all of these intermediate states are
degenerate, i.e., E(θ) is independent of θ, resulting in a flat energy landscape at q = 0. As q

traverses the phase boundary from the negative to the positive side, the ferromagnetic (antifer-
romagnetic) phase abruptly changes from the ground state to an unstable state, leading to no

parameter regime of metastability. Similarly, no metastable regime exists for the BA (polar)
phase as q crosses the phase boundary from the positive to the negative side. This can be

understood by looking at the mean-field energy landscapes

EFM−BA(θ)/V =
(c0 + c1)n

2

2
+ qn

(

1− sin2 θ

2

)

, (4.35)

EAFM−PL(θ)/V =
c0n

2

2
+ qn sin2 θ, (4.36)

where their maximum and minimum at θ = 0 and θ = π/2 are exchanged as q crosses the phase

boundary. A comparison with the conventional first-order phase transitions, whose energy land-
scapes feature double-well structures and thus support metastability, is illustrated in Fig. 4.3.

Note that the absence of metastability holds not only at the mean-field level but to all orders of
approximation since the above argument of the flat energy landscapes at the phase boundaries
is based on the consideration of the system’s symmetry.
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4.5.2 Spin-2 BECs

Now we show that the absence of metastability in the ferromagnetic-cyclic and UN-BN phase

transitions, which was proved up to the second-order approximation at the beginning of Sec. 4.5,
holds to all orders of approximation due to the symmetry of the Hamiltonian. For finite c1,

the Hamiltonian of spin-2 BECs [Eq. (2.16)] has the U(1)φ×SO(3)f invariant symmetry. Only
at c1 = 0 is its symmetry enlarged to U(1)φ×SO(5)f due to the invariance of the interac-

tion c2 : Â†
00Â00 : under SO(5) rotations in F = 2 spin space [68]. On the other hand, from

the order parameters ξFM = (1, 0, 0, 0, 0)T and ξCL = (1, 0, 0,
√

2, 0)T/
√

3, the ferromagnetic
and cyclic phases both have zero spin-singlet-pair amplitude 〈Â00〉 = 0. Conversely, the UN

(ξUN = (0, 0, 1, 0, 0)T) and BN (ξBN = (1, 0, 0, 0, 1/)T/
√

2) phases both have the maximum value
of the spin-singlet-pair amplitude 〈Â00〉 = n0/

√
5. In other words, the ferromagnetic and cyclic

phases (UN and BN phases) belong to the same group of the minimum (maximum) value of the
spin-singlet-pair amplitude whose elements can be transformed between each other by SO(5)

rotations. Therefore, these pairs of phases are degenerate at c1 = 0 where the Hamiltonian pos-
sesses the same symmetry. That the degeneracy strictly holds makes the phase boundaries stay

at c1 = 0 even when quantum corrections are taken into account. Furthermore, similar to spin-1
BECs, if the order parameters of the intermediate states in the transformation from the ferro-
magnetic (UN) to the cyclic (BN) phase are parametrized as U(η)ξFM = (cos η, 0, 0, sinη, 0)T

[U ′(η)ξUN = (sinη/
√

2, 0, cosη, 0, sinη/
√

2)T], where U(η) [U ′(η)] is an SO(5) rotation opera-
tor, all of these intermediate states are energy degenerate, resulting in a flat energy landscape

at the phase boundary (see Fig. 4.4). This is evident by, for example, looking at the energy
landscape of the nematic phases [Eq. (C.1)] [74, 68]

EUN−BN(η)

V
=ω

2
∑

j=0

[

1− 2c1
2c1 − c2/5

cos

(

2η +
2πj

3

)] 5
2

+ η-independent terms, (4.37)

where ω ≡ 8M3/2[n(2c1 − c2/5)]5/2/(15π2~3). EUN−BN(η) is η-independent for c1 = 0. Equa-
tion (4.37) has the minimum (maximum) at η = nπ/3 (η = π/6 + nπ/3) (n = 0, 1, . . .) corre-

sponding to the UN (BN) phase for c1 > 0 and vice versa for c1 < 0. It means that the UN
phase changes abruptly from the ground state to an unstable state as c1 traverses the phase

boundary, implying no parameter regime of metastable states. Since the above argument of the
flat energy landscape is based on the symmetry of the Hamiltonian, the absence of metastability

is valid to all orders of approximation.
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Figure 4.4: SO(5) rotations connecting (a) UN and BN phases and (b) ferromagnetic and cyclic
phases. The order parameters and the spherical harmonic representations of the initial, final,

and intermediate states are displayed. (Figure reproduced from Ref. [40])
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Chapter 5

Critical dynamics of a first-order
quantum phase transition without
metastability

As seen in Sec. 4.5, the first-order quantum phase transitions that are not accompanied by

metastable states are characterized by a flat energy landscape at the phase boundary. This
energy landscape implies that it costs no energy for the system to be excited. Therefore, it is
expected that the criticality that arises from the flat energy landscape can be observed. In this

chapter, we show that the dynamics of a spinor BEC through such a first-order quantum phase
transition exhibits critical features similar to second-order phase transitions.

There are a total of four first-order quantum phase transitions in spin-1 and spin-2 BECs that
are not accompanied by metastable states. They are classified into two categories as shown in

Table 5.1. The first one consists of the ferromagnetic-BA (spin-1) and ferromagnetic-cyclic (spin-
2) phase transitions. In these phase transitions, as the system’s parameter (q for spin-1 and c1
for spin-2 BECs) crosses the phase boundary, the ground state changes to an excited state with a
local maximum energy. Despite being an unstable state, the excited state can have a long lifetime

in an isolated system where energy dissipation is suppressed. The higher energy of this state is
exhibited in the excitation spectrum where a Landau instability is associated with a negative
excitation energy. In other words, a level crossing occurs in these phase transitions as illustrated

in Fig. 5.1. Since the excited state is an energy eigenstate, the dynamics of the system would be
closed within the subspace spanned by that state as the wavefunction merely acquires a phase. In

contrast, there is no level crossing in the second category which involves the antiferromagnetic-
polar (spin-1) and UN-BN (spin-2) phase transitions. As the system’s parameter traverses the

phase boundary, a dynamical instability arises with the excitation spectrum becoming a complex
number with a nonzero imaginary part. The excitation modes therefore grow exponentially and

drive the system away from the initial state, leading to a nontrivial dynamics. In the following we
study the dynamics of a spin-1 condensate through the antiferromagnetic-polar phase transition.

This phase transition has been observed in Refs. [89, 90] using 23Na atoms.

5.1 Instantaneous quench

First, let us consider an instantaneous quench of a spin-1 BEC with an antiferromagnetic in-

teraction, i.e., c1 > 0, through the polar-antiferromagnetic phase transition (see Fig. 2.2). The
condensate is initially prepared in the ground state of the polar phase by setting the quadratic

Zeeman coefficient q to a positive value. It is then suddenly switched to a negative value in close
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Phase transition Instability Level crossing Dynamics

Spin-1 BECs
FM-BA Landau Yes Closed
AFM-PL Dynamical No Nontrivial

Spin-2 BECs
FM-CL Landau Yes Closed

UN-BN Dynamical No Nontrivial

Table 5.1: Classification of the first-order quantum phase transitions in spin-1 and spin-2 BECs

that are not accompanied by metastable states. FM, BA, AFM, PL, CL, UN, and BN stand
for ferromagnetic, broken-axisymmetry, antiferromagnetic, polar, cyclic, uniaxial-nematic, and

biaxial-nematic phases, respectively.

0

N

E
BAFM− )FM(0=θ

)BA(
2

π
θ =

q

Figure 5.1: Energy level crossing in the ferromagnetic-BA phase transition of a spin-1 BEC. The

mean-field energy per particle EFM−BA/N given by Eq. (4.35) is plotted against the quadratic
Zeeman coefficient q. The phase transition occurs at q = 0. The intermediate states in the

transformation from the ferromagnetic phase to the BA phase is characterized by a parameter
θ (0 ≤ θ ≤ π/2) as discussed in the text above Eq. (4.35). The ferromagnetic and BA phases

correspond to θ = 0 and θ = π/2, respectively.
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proximity to the phase boundary q = 0. From the energy spectrum of the degenerate mF = ±1
excitation modes of the polar phase given by Eq. (2.55), it is evident that a dynamical instabil-

ity would arise if ω±1,p become complex numbers with nonzero imaginary parts. This results
in an exponential growth of atoms in the mF = ±1 magnetic sublevels at the beginning of the
dynamics when the populations of atoms in these hyperfine spin states are still small compared

to the number of condensate atoms. As long as n±1 � n0, we can apply the Bogoliubov theory
(see Sec. 2.4), in which the system is approximated by the Bogoliubov Hamiltonian [Eq. (2.44)].

The Heisenberg equations of motion for the operators â±1,p are then given by

i~
dâ±1,p(t)

dt
=
(

ε0p + q + c1n
)

â±1,p(t) + c1nâ
†
∓1,−p(t). (5.1)

They form closed sets of equations for the pairs of operators â±1,p and â†∓1,−p. The correspond-

ing solutions are [91]

â±1,p(t) =

[

cosh

(

Dpt

~

)

− i
ε0p + q + c1n

Dp

sinh

(

Dpt

~

)

]

â±1,p(0)− i c1n
Dp

sinh

(

Dpt

~

)

â†∓1,−p(0),

(5.2)

where Dp ≡
√

−(ε0p + q)(ε0p + q + 2c1n). Here q (|q| � c1n) indicates the final value of the

quadratic Zeeman coefficient after the quench. It is clear from the hyperbolic functions in
Eq. (5.2) that the population of atoms in the mF = ±1 spin states will grow exponentially.

This growing number of atoms would create a finite transverse magnetization in the system.
Using Eq. (2.10), the transverse spin-density operator F̂+(r, t) ≡ F̂x(r, t)+ iF̂y(r, t) is expressed

in terms of the field operators as

F̂+(r, t) =
√

2
[

ψ̂†
1(r, t)ψ̂0(r, t) + ψ̂†

0(r, t)ψ̂−1(r, t)
]

'
√

2n
[

ψ̂†
1(r, t) + ψ̂−1(r, t)

]

=
√

2n

[

∑

p

e−ip·r
√
V

â†1,p(t) +
∑

p

eip·r√
V
â−1,p(t)

]

, (5.3)

where in deriving the second equality we have replaced ψ̂0 and ψ̂†
0 by n due to the macroscopic

occupation of the condensate and n±1 � n0. Substituting Eq. (5.2) in Eq. (5.3), we have

F̂+(r, t) =

√
2n0√
V

∑

|p|<pc

e−ip·r
{[

i
ε0p + q

Dp

sinh

(

Dpt

~

)

+ cosh

(

Dpt

~

)

]

â†1,p(0)

+

[

− i
ε0p + q

Dp

sinh

(

Dpt

~

)

+ cosh

(

Dpt

~

)

]

â−1,−p(0)

}

. (5.4)

Here, since the dynamical instability results in an exponential growth, in the sum on the right-
hand side of Eq. (5.4) we took only the contributions from the dynamically unstable exci-

tation modes whose momenta satisfy |p| < pc ≡
√

2M |q|/~ and ignored those from stable

modes. Similarly, we obtain the expression for F̂−(r, t) = F̂ †
+(r, t). From these expressions, we

can evaluate the time evolution of the transverse spin correlation function F̂+(r, t)F̂−(r′, t) =

F̂x(r, t)F̂x(r
′, t) + F̂y(r, t)F̂y(r

′, t). Even if there is initially no atom in the mF = ±1 magnetic
sublevels at t = 0, the atomic seeds due to quantum fluctuations would trigger the dynamical
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instability, leading to the formation of a finite transverse spin correlation function. This is
parametric amplification of quantum fluctuations [92, 93]. Since the growth is exponential, we

can ignore the small fraction of atoms in the mF = ±1 spin states due to quantum depletion
at t = 0. The transverse spin correlation function at time t is then found to be

〈F̂+(r, t)F̂−(r′, t)〉 =2n

V

∑

|p|<pc

[

(ε0p + q)2

D2
p

sinh2

(

Dpt

~

)

+ cosh2

(

Dpt

~

)

]

eip·(r
′−r). (5.5)

At time t such that Dpt/~� 1, it reduces to

〈F̂+(r, t)F̂−(r′, t)〉 =2n

V

∑

|p|<pc

ε0p + q + c1n

ε0p + q + 2c1n
e2Dpt/~eip·(r

′−r). (5.6)

The maximally unstable mode is determined by the maximum value of Dp, which is that with
zero wavenumber p = 0. Since the fraction in Eq. (5.6) is a smooth function of p compared with
the exponential function e2Dpt/~, we can replace the wavenumber in the fraction by p = 0 for

which the exponent has the maximum value. The fraction then reduces to (q+c1n)/(q+2c1n) '
1/2, where we used |q| � c1n. On the other hand, the exponent 2Dpt/~ can be expanded around

p = 0 as [91]

2Dpt

~
=
t

τ

(

1− ξ2p2

4

)

+O(p4), (5.7)

where

τ ≡ ~
√

(−q)(q + 2c1n)
, (5.8)

ξ ≡
√

2(q + c1n)~2

(−q)(q + 2c1n)M
. (5.9)

In the thermodynamic limit the sum in Eq. (5.6) can be replaced by an integral, and by carrying

out the three-dimensional integral, we obtain

〈F̂+(r, t)F̂−(r′, t)〉 = n

4π2|r− r′|

√
2/ξ
∫

0

dp pe(t/τ )(1−ξ2p2/4) sin(p|r− r′|). (5.10)

Here the upper wavenumber pc was expressed in terms of ξ by pcξ = 2
√

(q + c1n)/(q + 2c1n) '√
2. It is evident from Eq. (5.10) that the transverse spin correlation is a function of the dimen-

sionless quantities t/τ and |r− r′|/ξ. The correlations at t/τ = 1 and t/τ = 10 are plotted in

Fig. 5.2 where the quadratic Zeeman coefficient is chosen to be q = (−2+
√

3)c1n so that the cor-
relation length ξ becomes equal to l, where l ≡ ~/

√
c1nM is the so-called spin coherence length

which is the characteristic length scale associated with the spin-dependent interaction c1. Since
at t/τ = 10 the ratio of the spin correlation to n2 is less than 60/(nl3) = 480(πc1/c0)

3/2
√
na3 �

1, the Bogoliubov approximation used in the foregoing arguments remains valid for a relatively
long time. This also justifies the assumption of t used in Eq. (5.6).

Since 〈F̂+(r, t)F̂−(r′, t)〉 is a function of only t/τ and |r − r′|/ξ, it is evident that τ char-
acterizes the time scale of the exponential growth of spin correlation induced by a dynamical

instability, i.e., the system’s response time, and ξ represents the system’s correlation length.
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Figure 5.2: Transverse spin correlation at time t = τ , where τ is defined by Eq. (5.8). The
spin correlation 〈F̂+(r, t)F̂−(r′, t)〉 and the distance |r − r′| are expressed in units of n/l3 and
l, respectively, where l ≡ ~/

√
c1nM is the spin coherence length. The quadratic Zeeman

coefficient is chosen so that the correlation length ξ becomes equal to l. The inset shows the
spin correlation at t = 10τ .

From Eqs. (5.8) and (5.9), it is clear that both τ and ξ diverge as q approaches the phase
boundary q = 0. This is similar to the case of second-order phase transitions where the phase

boundary is a critical point. This can be interpreted as a consequence of the flat energy land-
scape at the phase boundary of a first-order quantum phase transition that is not accompanied

by a metastable state. The vanishing cost of excitation energy at the transition point would
lead to a divergently long response time as shown above.

5.2 Slow quench

Now let us consider a slow quench, in which the quadratic Zeeman coefficient q is linearly varied
with time as q(t)/(c1n) = −t/τQ so that it acquires the value of −c1n at time t = τQ. As shown

in Sec. 5.1, the order of magnitude of the system’s response time τ is inversely proportional to
the energy gap of excitations. It becomes divergently large as the excitations become gapless at

the transition point q = 0 [see Eq. (5.8)]. For q < 0 the ground state is the antiferromagnetic
phase, and the excitation spectra are given by Eqs. (2.61)–(2.63). Among them, ω+,p indicates

the phonon mode, while ω−,p represents a spatially periodic modulation of the quantization axis
of the antiferromagnetic phase in the xy-plane. These two excitation modes are gapless since
they arise from spontaneous symmetry breaking of the Hamiltonian. In contrast, ω0,p gives the

energy spectrum of the magnon excitation and has a finite energy gap given by

∆(t) =
√

q(t)[q(t)− 2c1n]. (5.11)

It is a function of time via the time-dependent quadratic Zeeman coefficient q(t). As a result,

the system’s response time varies with time as τ(t) ∼ ~/∆(t). On the other hand, the time scale
of the variation of the system’s parameter can be evaluated via the time-dependent energy gap

by τ̃(t) ∼ ∆(t)/(d∆/dt). Right after crossing the phase boundary as t ' 0, we have τ(t)� τ̃(t)
due to the small energy gap ∆(t), and thus the system is dynamically frozen in response to
the change of parameter [94, 95, 96]. After that the system’s response time τ(t) decreases with

time, and the system starts to adiabatically follow the variation of the parameter from the time
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t∗ determined by equating the orders of magnitude of τ(t) and τ̃(t):

~

∆(t∗)
∼ ∆(t∗)

(d∆/dt)t∗
. (5.12)

Using Eq. (5.11) for the energy gap ∆(t), we obtain

~

c1n
√

(t∗/τQ)(t∗/τQ + 2)
∼ t∗(t∗/τQ + 2)

t∗/τQ + 1
, (5.13)

or equivalently,

τQ

[

t∗

τQ

(

t∗

τQ
+ 2

)]3/2

∼ ~

c1n

(

t∗

τQ
+ 1

)

. (5.14)

Here, we consider only slow quenches such that τQ � ~/(c1n) in order for the system to have

enough time to experience the criticality at the transition point. We assume a priori that the
solution of Eq. (5.14) satisfies t∗/τQ � 1. Then, Eq. (5.14) leads us to

t∗ ∼
(

~

c1n

)2/3

τ
1/3
Q , (5.15)

which justifies the assumption. From Eq. (5.9), since |q(t∗)| � c1n, we find ξ(t∗) to be propor-

tional to |q(t∗)|−1/2. Consequently, the correlation length at time t∗ can be evaluated as

ξ(t∗) ∝ 1
√

|q(t∗)|
=

1√
c1n

√

τQ
t∗
∝ τ1/3

Q . (5.16)

Since the system starts to adiabatically follow the variation of the quadratic Zeeman coefficient
from t∗, the correlation length at this time would determine the size of the spin domains, in

which the transverse magnetization evolve almost independently (see Sec. 5.1). According to
the Kibble-Zurek mechanism, ξ(t∗) also gives the mean distance between the topological defects

that emerge in a slow quenching dynamics [97, 98, 99, 100]. The density of topological defects
in a d-dimensional system then has the following scaling law with respect to the quench time:

ndef ∼ ξ−d(t∗) ∝ τ−d/3
Q . (5.17)

This scaling is identical to that associated with the dynamics of a second-order phase transi-
tion [91, 94, 101].
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Chapter 6

Quasi-Nambu-Goldstone modes

The Nambu-Goldstone (NG) theorem, which states that spontaneous breaking of a continuous

symmetry is accompanied by gapless excitations, should hold at any order of approximation [23,
24]. However, at the mean-field level we sometimes encounter extra gapless excitations that do
not stem from spontaneous symmetry breaking. They are called quasi-NG modes and were first

introduced in the context of gauge theories and high energy physics [30, 31]. Quasi-NG modes
later became an essential ingredient in models of technicolor and supersymmetry, which are

candidates of the beyond-standard model [33, 34, 35]. They are also believed to appear in the
weak-coupling limit of the A phase of superfluid 3He [36] and spin-1 color superconductors [37].

Despite their prevalence in various fields of physics, no experimental evidence of the quasi-NG
modes has hitherto been observed. Ultracold atomic systems are expected to be ideal for the

probe of this special kind of excitations since they are readily manipulated and measured in
experiments. Especially, it has recently been proposed that the nematic phase of spin-2 BECs

can be a host of quasi-NG modes [38].
Although the quasi-NG modes are gapless at the mean-field level, it is predicted that these

excitations would acquire a finite energy gap with quantum corrections. In this chapter, we

explicitly prove this conjecture by calculating the emergent energy gap of quasi-NG modes in a
spin-2 BEC caused by quantum fluctuations. At the mean-field approximation, all the nematic

phases are degenerate in the ground-state manifold and there are a total of five gapless excitation
modes (see Sec. 2.4.2). On the other hand, the number of symmetries of the Hamiltonian that are

broken is just three. This means that the remaining two gapless excitations are not generated by
spontaneous symmetry breaking; i.e., they are quasi-NG modes. However, since the zero-point

fluctuations lift the degeneracy in the manifold of nematic phases [73, 74], it is predicted that
the quasi-NG modes would become gapful as quantum corrections are taken into account [38].

By using the spinor Beliaev theory developed in Sec. 4.2, we succeed in deriving the analytic
expression for the energy gap of quasi-NG modes in terms of the atomic number density and the
fundamental interatomic interactions. These parameters can be readily measured and varied

under control in ultracold atoms using, for example, the Feshbach resonance [77, 8, 9]. From
the obtained magnitude of the energy gap, we can evaluate the critical temperature Tc above

which a topological defect such as a spin vortex would decay by emitting the thermally excited
quasiparticles. Conversely, below this temperature the vortex would be stabilized by suppressing

the emission of the quasi-NG modes.
In the previous study [38], the energy gap of quasi-NG modes is assumed to be of the same

order of magnitude as the zero-point energy. This assumption is based on the fact that the
zero-point energy lifts the degeneracy in the manifold of nematic phases at the mean-field level,

making the ground state either the UN phase for c1 > 0 or the BN phase for c1 < 0. However,
as shown at the beginning of Chap. 5, there is no level crossing in the UN-BN phase transition
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at c1 = 0. As c1 traverses the phase boundary from the positive (negative) to the negative
(positive) side, the UN (BN) state would become dynamically unstable with the excitation

spectrum becoming a complex number with a nonzero imaginary part. These excitations would
grow exponentially (see Sec. 5.1), rendering the UN (BN) state not an excited state. Therefore,
the energy gap of quasi-NG modes is not necessarily of the same order of magnitude as the

zero-point energy. We show in Sec. 6.1 that its magnitude depends on the relative strength of
the two spin-dependent interactions c1 and c2. Similarly, the scaling law of the energy gap with

respect to the characteristic dimensionless parameter na3 also varies with the ratio c2/c1.
Since the quasi-NG modes arise from the nematic phase of spin-2 BECs, these excitations

represent the spatially periodic modulations of the system’s density of spin nematicity. In
Sec. 6.2, we study how the particle-number density fluctuations affect the propagation of the

quasi-NG modes. A comparison with those effects on phonons and magnons is made. We
find that the propagation velocity of the quasi-NG modes is suppressed in a manner similar to

magnons but as opposed to phonons whose sound velocity is enhanced. The difference in the
effects on these types of quasiparticles will be discussed in terms of the particle-number density
correlation.

6.1 Emergent energy gap

Since the magnitudes of the spin-dependent interactions measured in spin-dynamics experi-

ments [77] imply that the ground state of the spin-2 87Rb BEC is likely to be the uniaxial-
nematic phase, in the following we consider the quasi-NG modes arising from the UN phase.

The magnitude of c1 is fairly well determinate but that of c2 suffers a large error bar:

c1
4π~2/M

= 0.99± 0.06 aB, (6.1)

c2
4π~2/M

= − 0.53± 0.58 aB, (6.2)

where aB ' 0.5 Å is the Bohr radius.
The Bogoliubov spectra of the UN phase consist of five gapless excitation modes given by

Eqs. (2.75a)–(2.75e). Among them, one phonon mode

~ω
(1)
0,p =

√

ε0p[ε0p + 2(c0 + c2/5)n] (6.3)

and two magnon modes

~ω
(1)
±1,p =

√

ε0p[ε0p + 2(3c1 − c2/5)n] (6.4)

result from spontaneous symmetry breaking of the Hamiltonian. The Hamiltonian of spin-2
BECs for generic c1 6= 0 has a U(1)φ×SO(3)f symmetry corresponding to the gauge and SO(3)

rotation invariances. On the other hand, the UN phase possesses an SO(2) rotation symmetry
about the z axis in spin space. The two magnon excitation modes represent the spatially periodic

modulations of the transverse magnetization whose direction is aligned in the xy plane. The
remaining two gapless modes

~ω
(1)
±2,p =

√

ε0p(ε0p − 2c2n/5) (6.5)

are therefore not generated by spontaneous symmetry breaking; they are quasi-NG modes.
Since the phonon and magnon excitations arise from spontaneous symmetry breaking of the
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Hamiltonian, they should be gapless at any order of approximation according to the Nambu-
Goldstone theorem [23, 24]. In contrast, the quasi-NG modes, which are gapless excitations at

the mean-field level, can generally acquire a finite energy gap at higher-order approximations.
In Sec. 4.3, we have calculated the zero-momentum energy of the quasi-NG modes of the UN
phase [Eq. (4.20)] by using the spinor Beliaev theory. As the right-hand side of Eq. (4.20) is

positive, the energy gap of the quasi-NG modes is given by

∆ '

√

[

A− µ(2) + C
] [

−2c2n0
5 + A− µ(2) − C

]

1−B , (6.6)

where A, B, and C are the coefficients in the frequency expansions of the second-order self-

energies [Eqs. (4.17)–(4.19)]. By summing all the contributions to the self-energies and the
chemical potential from second-order Feynman diagrams, we obtain

A − µ(2) +C

(Mn0)3/2
=

1

π2~3

(

8
√

3c̃
5/2
1 − 32√

3
c̃
3/2
1 c̃2 +

16

3
c̃1c̃

3/2
2 +

8√
3
c̃
1/2
1 c̃22 −

16

9
c̃
5/2
2

)

, (6.7)

A − µ(2) −C
(Mn0)3/2

= − 16
√

3c
5/2
1

π2~3
+O

(

c2n0

√
na3
)

, (6.8)

B = 0 +O
(√

na3
)

, (6.9)

where c̃1, c̃2, and a have been defined below Eqs. (4.33) and (4.1), respectively. Here we have

ignored terms containing the factor
√
na3 � 1. Substituting Eqs. (6.7)–(6.9) in Eq. (6.6), we

find the energy gap of the quasi-NG modes to be

∆ ' c1n
{[

8
√

3

(

c̃1
c1

)5
2

− 32√
3

(

c̃1
c1

) 3
2 c̃2
c1

+
16

3

c̃1
c1

(

c̃2
c1

)3
2

+
8√
3

(

c̃1
c1

)1
2
(

c̃2
c1

)2

− 16

9

(

c̃2
c1

) 5
2

]

×
[

2|c2|
5c1
− 128

√
3√

π

(

c1
c0

)
3
2 √

na3

]

8√
π

(

c1
c0

)
3
2 √

na3

}1
2

. (6.10)

Using the parameters of 87Rb with an atomic number density n = 1015 cm−3, in Fig. 6.1 we

plot ∆ as a function of |c2|/c1 over the uncertainty range of parameter c2. The magnitude of
the energy gap varies significantly with the relative strength of the spin-dependent interactions.

In the limit of |c2| ∼ c1
√
na3(c1/c0)

3/2� c1, the energy gap reduces to

∆ ' 32 4
√

3
√
π√

5
c1n
√
na3

(

c1
c0

)3/2
√

1

8π3/2
√
na3

|c2|
c1

(

c0
c1

)3/2

− 40
√

3

π2
. (6.11)

In this limit, we have

∆ ∼ c1n
(

c1
c0

)3/2√
na3. (6.12)

On the other hand, the zero-point energy that lifts the degeneracy in the manifold of nematic

phases is obtained from the difference in the LHY correction given by Eq. (C.1). Its order of

magnitude is δE(η)/N ∼ M3/2c
5/2
1 n3/2/~3 ∼ c1n(c1/c0)

3/2
√
na3. Equation (6.12) then implies

that ∆ has the same order of magnitude as the zero-point energy in the limit of |c2| � c1. The
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Figure 6.1: Energy gap of quasi-Nambu-Goldstone modes in the uniaxial-nematic (UN) phase of
spin-2 BECs as a function of the relative strength of the spin-dependent interactions [Eq. (6.10)].

For the ground state to be the UN phase, c2 must be negative [Eq. (4.2)]. We use the parameters
of spin-2 87Rb obtained from experimental measurements [77] with an atomic number density
n = 1015 cm−3 and plot the energy gap over a range of values of |c2|/c1 [Eqs. (6.1) and (6.2)] .

The inset shows the energy gap in the limit of |c2| � c1 [Eq. (6.11)]. There obviously exists a
lower bound ∆min for the energy gap of quasi-NG modes [Eq. (6.17)]. Note that the UN-cyclic

phase boundary is shifted from its mean-field counterpart at c2 = 0 due to the zero-point energy
[Eq. (4.2)].

scaling laws of ∆ with respect to c1 and n are given by

∆ ∝ c5/2
1 n3/2, (6.13)

where c1 is related to the difference between the s-wave scattering lengths [Eq. (2.15b)].
In contrast, in the limit of |c2| ∼ c1 the energy gap reduces to

∆ ' 4√
5π1/4

c1n
4
√
na3

(

c1
c0

)3/4
[

8
√

3

(

c̃1
c1

)5
2

− 32√
3

(

c̃1
c1

)3
2 c̃2
c1

+
16

3

c̃1
c1

(

c̃2
c1

) 3
2

+
8√
3

(

c̃1
c1

)
1
2
(

c̃2
c1

)2

− 16

9

(

c̃2
c1

)
5
2

]1/2

. (6.14)

Its magnitude is given by

∆ ∼ c1n
(

c1
c0

)3/4
4
√
na3; (6.15)

i.e., the energy gap of quasi-NG modes in this limit is much larger than the zero-point energy
since na3 � 1. The scaling laws of ∆ with respect to c1 and n also differ from those of the

zero-point energy:

∆ ∝ c7/4
1 n5/4. (6.16)

From these scaling laws, we know that the energy gap can be made much larger either by, for

example, loading the atoms into an optical lattice to raise the atomic number density n or by
adjusting the relative strengths of the s-wave scattering lengths to increase the ratio of c1/c0.
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Especially, with the latter approach the energy gap can be made as much as about 3000 times
larger if the difference a4 − a2 can be adjusted to be of the same order of magnitude as the

scattering lengths themselves.
Noting that due to the zero-point energy the UN-cyclic phase boundary is shifted from its

mean-field counterpart c2 = 0 to cUN−CL
2 given by Eq. (4.2). It indicates the lowest value of

|c2| for which the ground state is the UN phase. This is also obvious from Fig. 6.1. Since
|cUN−CL

2 | � c1, by substituting Eq. (4.2) in Eq. (6.11) we find the lower bound for the energy

gap of the quasi-NG modes to be

∆min '
64
√

2 4
√

3√
π

(

7
√

3− 8
√

2

5

) 1
2

c1n

(

c1
c0

) 3
2 √

na3

' 27.06 c1n

(

c1
c0

) 3
2 √

na3. (6.17)

Since the right-hand side of Eq. (6.17) is always positive, it is evident that the quasi-NG modes

acquire a finite energy gap due to quantum fluctuations. Thus, the conjecture of quasi-NG
modes becoming gapful with quantum corrections has been proved.

On the other hand, the precise magnitude of interaction c2 for spin-2 87Rb is still indeter-
minate from experimental measurements [77] with a large error bar [Eq. (6.2)]. The derived

analytic expression for ∆ as a function of c2 [Eq. (6.10)] also suggests an alternative way to
measure the magnitude of the interatomic interactions via the quasi-NG modes. The average

value of c2 determined from the measurement outcomes is cavr
2 ' 0.53×(4π~

2aB/M). Substitut-
ing this value in Eq. (6.14), we find the energy gap of the quasi-NG modes to be ∆ ' ~×6Hz.

Although this energy scale is small compared with that of typical ultracold atomic experiments,
it should be noted that this energy gap can be made much larger as discussed below Eq. (6.16).

In a previous study [38], it has been shown that at zero temperature a topological defect

such as a vortex of spin nematicity would be stable as long as the energy gap of the quasi-NG
modes is finite. However, as we artificially make the energy gap vanish, the vortex decays by

emitting the quasi-NG modes. This is illustrated by a numerical simulation, which is performed
by using the Gross-Pitaevskii equation, as shown in Fig. 1 of Ref. [38]. The vortex of spin

nematicity is displayed in terms of the spin-singlet trio amplitude

A30 ≡
3
√

6(ξ2ξ
2
−1 + ξ21ξ−2)

2
+ ξ0(ξ

2
0 − 3ξ1ξ−1 + 6ξ2ξ−2)

= cos(3η), (6.18)

which is a function of the parameter η characterizing a nematic phase [Eq. (2.41)]. Similar to the

mean-field approximation, that the energy gap is set to be zero is equivalent to that the ground-
state manifold is enlarged from the uniaxial-nematic phase to the whole manifold of degenerate

nematic phases. The original vortex then becomes unstable against the homotopy group of
the new ground-state manifold as it can continuously transform to a nonsingular configuration.

Now at finite temperatures, there should be a critical temperature above which the vortex
would decay by emitting the thermally excited quasi-NG modes as these excitations become

effectively gapless. Conversely, below this temperature the quasi-NG modes would behave as
gapful excitations, and thus the vortex is stabilized by suppressing the emission of quasi-NG
modes. With the obtained numerical value of the energy gap ∆ ' ~×6Hz for 87Rb, we find

the critical temperature to be T c ' 0.04nK. As mentioned above, the magnitude of the energy
gap of quasi-NG modes and the critical temperature can be raised to the regime accessible with

typical ultracold atomic experiments by, for example, adjusting the relative strengths of the
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Figure 6.2: Modification of the dispersion relation of quasi-NG modes due to quantum fluc-
tuations. Besides the emergence of a finite energy gap as shown in Sec. 6.1, there is a slight

modification of the propagation velocity of quasi-NG modes as indicated by the arrow.

s-wave scattering lengths.

6.2 Suppression of the propagation velocity

In addition to the emergence of a finite energy gap, quantum fluctuations can bring about a
slight modification of the propagation velocity of quasi-NG modes as illustrated in Fig. 6.2. In

the low-momentum regime, the Bogoliubov spectrum of the quasi-NG modes [Eq. (6.5)] has a

linear form of ω
(1)
±2,p = v

(1)
q−NG|p| with the propagation velocity given by

v
(1)
q−NG =

√

|c2|n
5M

. (6.19)

We now study how this propagation velocity is modified by quantum fluctuations. To this
end, we apply the spinor Beliaev theory developed in Sec. 4.2 to finite momenta to obtain

the dispersion relation of quasi-NG modes. For spin-2 87Rb, since c0 � c1, |c2|, the effects of
the spin-independent interaction, if it is nonvanishing, would dominate over the effects of spin-

dependent ones. Therefore, regarding the modification of the propagation velocity, we can focus
on the effects of c0 corresponding to the effects of the particle-number density fluctuations and

ignore those of the spin density fluctuations. In the regime ∆� ε0p � |c2|n where the modified
dispersion relation has a linear form, the spectrum of the quasi-NG modes can be expressed in

terms of the second-order self-energies as

ω±2,p 'ω(1)
±2,p +

Σ
11(2)
22 −Σ

22(2)
22

2
. (6.20)

Here we ignored terms containing small factors of ∆/ε0p and ε0p/|c2|n. By summing all the
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contributions to the self-energies from the second-order Feynman diagrams, we obtain

Σ
11(2)
22 (p) =A1 +B1(ω±2,p − ω(1)

±2,p) +O
[

(ω±2,p − ω(1)
±2,p)2

]

, (6.21)

Σ
22(2)
22 (p) =A2 +B2(ω±2,p − ω(1)

±2,p) +O
[

(ω±2,p − ω(1)
±2,p)2

]

(6.22)

with

A1 =
5M3/2n

3/2
0 c

5/2
0

3π2~3
− 8
√

2|c2|1/2n
1/2
0

3
√

5π

√

ε0p, (6.23)

A2 =
5M3/2n

3/2
0 c

5/2
0

3π2~3
+

8
√

2|c2|1/2n
1/2
0

3
√

5π

√

ε0p, (6.24)

B1, B2 = 0 +O(
√
na3). (6.25)

Here, since it is expected that quantum fluctuations in a dilute weakly interacting Bose gas would

bring about only a slight modification of the propagation velocity, i.e., |ω±2,p/ω
(1)
±2,p − 1| � 1,

we can make Taylor expansions in powers of ω±2,p−ω(1)
±2,p and ignore the quadratic and higher-

order terms. The validity of these expansions can be a posteriori justified from the final result.
Substituting Eqs. (6.21)–(6.25) in Eq. (6.20), we obtain the second-order dispersion relation of

the quasi-NG modes

~ω
(2)
±2,p '

(

1− 8

3
√
π

√

n0a3

)

√

2|c2|n0ε0p
5

=

(

1− 4√
π

√
na3

)

√

2|c2|nε0p
5

, (6.26)

which also has a linear form with the modified propagation velocity

v
(2)
q−NG =

(

1− 4√
π

√
na3

)

√

|c2|n
5M

. (6.27)

Here in deriving the second equality in Eq. (6.26) we used the relation (3.2) between the total
particle-number density n and that of the condensate n0. From Eqs. (6.19) and (6.27), it

is evident that the propagation velocity of the quasi-NG modes is suppressed by a factor of
1 − 4

√
na3/

√
π due to the particle-number density fluctuations. The suppression factor is

proportional to the fraction of noncondensed atoms [Eq. (3.1)], implying that the propagation
of the quasi-NG modes is hindered by the interaction with these particles. It is analogous to the

resistance to the motion of a particle or a quasiparticle in a random potential such as a medium
filled with random impurities [102]. This can be understood by noting that the quasi-NG modes
represent the spatially periodic modulations of the spin nematicity which have no correlation

with the particle-number density fluctuations and thus leading to the random behavior.
In contrast, the propagation velocity of phonons, i.e., the sound velocity, is enhanced due

to particle-number density fluctuations as

v
(2)
ph '

(

1 +
8√
π

√
na3

)

v
(1)
ph , (6.28)
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where

v
(1)
ph =

√

(c0 + c2/5)n

M
(6.29)

is the first-order (Bogoliubov) sound velocity. The modifications of the propagation velocities

of the quasi-NG modes and phonons as functions of the characteristic dimensionless parameter√
na3 are shown in Fig. 6.3. The enhancement of the sound velocity due to the particle-

number density fluctuations can be attributed to their correlations with phonons, which are
spatially periodic modulations of the particle-number density. It is this correlation that leads to

a nontrivial effect on the motion of phonons as opposed to the resistant effect on the quasi-NG
modes. Indeed, at zero temperature the population of noncondensed atoms with momentum
~p is given by [19]

Np =
1

2







ε0p + (c0 + c2/5)n0
√

ε0p[ε0p + 2(c0 + c2/5)n0]
− 1







. (6.30)

Their contribution to the particle-number density correlation can be calculated straightfor-
wardly, and we obtain

〈δn̂(r, t)δn̂(r′, t′)〉 = 2
n0Np

V
cos[p · (r− r′)− ω0,p(t− t′)], (6.31)

where δn̂ ≡ n̂−n0 denotes the deviation of the particle-number density operator from the homo-
geneous distribution of the condensate. This contribution to the density correlation is related
to the peak of the system’s dynamic structure factor S(p, ω) which can be directly measured

by using either the inelastic neutron scattering in superfluid 4He [103] or the Bragg scattering
in ultracold atoms [104]. The restoring force resulting from the inhomogeneity brought about

by the particle-number density correlation makes the system more rigid with a smaller com-
pressibility κ = −(1/V )∂V/∂p compared to a homogeneous state, and in turn leads to a larger

sound velocity c =
√

∂p/∂ρ.
As similar to the quasi-NG modes, the propagation velocity of magnons is suppressed due

to the particle-number density fluctuations as

v(2)
mag =

(

1− 4√
π

√
na3

)

v(1)
mag, (6.32)

where

v(1)
mag =

√

(3c1 − c2/5)n

M
. (6.33)

This suppression of the velocity of magnons is similar to the resistance to the motion of magnons
in spin-1 BECs, which is exhibited by an enhancement of the effective mass of these quasipar-

ticles [79]. From Eqs. (6.27) and (6.32), we know that the suppression factor of the magnons’
propagation velocity is the same as that of the quasi-NG modes. This can be understood by

noticing that the effects of the particle-number density fluctuations under consideration should
be spin independent. On the other hand, it follows from Eq. (6.28) that the enhancement factor

of the propagation velocity of phonons is twice the suppression factor of the magnons and quasi-
NG modes’ propagation velocities. Combined with the fact that there is a twofold degeneracy

in the magnons and quasi-NG modes compared with a single mode of phonons (see Sec. 4.2), it
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Figure 6.3: Modifications of the propagation velocities of the quasi-NG modes (red) and phonons
(blue) as functions of the dimensionless parameter

√
na3. Here n and a denote the atomic

number density and the s-wave scattering length defined below Eq. (4.1), respectively. v(1) and
v(2) represent the first- and second-order propagation velocities, respectively.

might suggest a total conservation of the effects of the particle-number density fluctuations on
the propagations of different types of quasiparticles in a spinor BEC.
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Chapter 7

Beliaev dampings of magnons and
phonons

In the previous chapters, we have seen how quantum fluctuations affect the phase diagram and
elementary excitations of a spinor BEC. In this chapter we study yet another important effect of
quantum fluctuations on the lifetime of a quasiparticle. At the level of the Bogoliubov approxi-

mation, quasiparticles have infinite lifetimes. However, as we go to higher-order approximations,
the lifetime of, for example, phonons becomes finite [26]. This physical phenomenon is called the

Beliaev damping and can be interpreted as a consequence of the collisions of phonons with the
condensate atoms [105]. Understanding the decay processes of quasiparticles gives us a deeper

insight into the beyond-mean-field interaction in a many-body system. The Beliaev damping
of phonons in liquid 4He has been observed in which the momentum threshold of the damping

determines the boundary between the phonon and roton regimes [106, 107, 108]. With the
realization of atomic Bose-Einstein condensates at ultralow temperatures, the Beliaev damp-

ings of collective modes in a trapped Bose gas [109] and of phonons in a locally homogeneous
system [110] have been observed and measured. The effects of confinement [111], an optical
lattice [112], and a presence of a single vortex [113, 114] on the damping rates of quasiparticles

have also been studied extensively.
In this chapter, we investigate the Beliaev dampings of various types of quasiparticles in a

homogeneous spin-2 87Rb BEC whose ground state is likely to be the uniaxial-nematic (UN)
phase. Compared with scalar BECs, in spin-2 BECs there exist magnons and quasi-NG modes

in addition to phonons as shown in Chap.6. Each type of these quasiparticles can, in principle,
decay via one of numerous collision channels. We find that the energy conservation in collisions

prohibits all decay channels of the quasi-NG modes, while there are one and four channels for
magnons and phonons, respectively. We will derive analytic expressions for the damping rates

of these quasiparticles as functions of the fundamental interatomic interactions. The obtained
damping rates also suggest an efficient approach to measure the magnitudes of the interactions

through the lifetimes of the quasiparticles. We propose a scheme to measure the Beliaev damping
rates of magnons in the spin-2 87Rb BEC by temporarily switching on an external magnetic
field.

The Hamiltonian of spin-2 BECs [Eq. (2.16)] is composed of three interactions

V̂ = V̂0 + V̂1 + V̂2, (7.1)
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where

V̂0 =
c0
2

∫

d3r : n̂2(r) :, (7.2)

V̂1 =
c1
2

∫

d3r : F̂2(r) :, (7.3)

V̂2 =
c2
2

∫

d3r : Â
†
00(r)Â00(r) : . (7.4)

Each of these interactions can contribute to its own possible decay channels of the quasiparticles.

In the low-momentum regime ε0p � c0n, c1n, |c2|n, the Bogoliubov spectra of phonons
[Eq. (6.3)], magnons [Eq. (6.4)], and quasi-NG modes [Eq. (6.5)] all have linear dispersion
relations characterized by their propagation velocities:

ω0,p ' v0|p| ≡
√

c̃0n

M
|p|, (7.5)

ω±1,p ' v±1|p| ≡
√

3c̃1n

M
|p|, (7.6)

ω±2,p ' v±2|p| ≡
√

c̃2n

M
|p|, (7.7)

where c̃0 ≡ c0 + c2/5, and c̃1 and c̃2 have been defined below Eq. (4.33). In the following, we
restrict our study to the low-momentum regime so that their dispersion relations are given by

the linear equations (7.5)-(7.7).
Let us consider a general decay channel of a quasiparticle with momentum p in spin state

mF = j in which the quasiparticle interacts with a condensate atom to generate two quasipar-
ticles with momenta q and p − q and spin states mF = j ′ and mF = j ′′, respectively. This

process is illustrated in Fig. 7.1. The damping rate is obtained by summing the probability of
the transition (j,p)+(0, 0)→ (j ′, q)+(j”,p−q) over all possible values of q, j ′, and j”. Since

the momentum q forms a continuum of the final state, the Fermi’s golden rule can be applied.
At the lowest order, it is given by

Pdamp '
2π

~2

∑

(q,j′,j′′)

|Vif |2 δ
(

ωj,p − ωj′,q − ωj”,p−q

)

, (7.8)

where the transition amplitude

Vif ≡ 〈vac|b̂j′,qb̂j”,p−qV̂ b̂
†
j,p|vac〉 (7.9)

is given by the matrix element of the interaction Hamiltonian V̂ with the initial state |i〉 =

b̂†j,p|vac〉 and the final state |f〉 = b̂†j′,qb̂
†
j”,p−q

|vac〉. Here b̂j,p (b̂†j,p) is the annihilation (creation)

operator of a quasiparticle with momentum p and spin state mF = j, and |vac〉 denotes the
vacuum of the quasiparticles, i.e., the ground state of the system. The Fermi’s golden rule

relates the transition probability in quantum mechanics to the classical energy conservation

ωj,p = ωj′,q + ωj”,p−q, (7.10)

which is expressed by the Dirac’s delta function in Eq. (7.8). Note that the sum in Eq. (7.8) is
taken over all possible final states of (q, j ′, j”). In the case of j ′ = j ′′, we need to multiply the

sum by a factor of 1/2 to avoid double counting of the final states.
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Figure 7.1: A general decay channel of a quasiparticle with momentum p and spin statemF = j.
Its interaction with a condensate atom (the dashed line) generates two quasiparticles with

momenta q and p− q and spin states mF = j ′ and mF = j ′′, respectively. Here V̂ denotes the
interaction Hamiltonian given by Eq. (7.1).

The Dirac’s delta function imposes a constraint on the possible decay channels for a given

quasiparticle with initial state (j,p). For the quasi-NG modes (j = ±2), by using the dispersion
relations (7.5)-(7.7), it can be shown that there is no channel satisfying condition (7.10) (see

Appendix E.1). Therefore, the quasi-NG modes in spin-2 BECs have long lifetimes compared
with the other quasiparticles.

7.1 Magnons

For j = ±1, the spin conservation combined with condition (7.10) allows the only final spin state
j ′ = ±2 and j” = ∓1 (see Appendix E.2). This decay process proceeds through interaction V̂1

[Eq. (7.3)], which is written explicitly as

V̂1 =
c1
2V

∑

p,q,k
j,j′,m,m′

fj,j′ · fm,m′ â†m′,p−k
â†j′,q+k

âj,qâm,p, (7.11)

where âj,p (â†j,p) is the annihilation (creation) operator of a bare particle, i.e., a single atom, and

fj,j′ are the matrix elements of the spin-2 matrices [Eq. (2.18)]. The transition amplitude (7.9)

can then be evaluated straightforwardly by using the relations between the operators b̂±j,p and

b̂†±j,p of the Bogoliubov quasiparticles and those of single atoms â±j,p and â†±j,p, which are given

for the UN phase as [12]

â±j,p =u±j,p b̂±j,p − v±j,pb̂
†
∓j,−p,

â†±j,p =u±j,p b̂
†
±j,p − v±j,pb̂∓j,−p. (7.12)
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Here uj,p and vj,p are the coefficients of the Bogoliubov transformations (see Sec. 2.4), which
are given by

u0,p =

√

ε0p + c̃0n+ ~ω0,p

2~ω0,p
, v0,p =

√

ε0p + c̃0n− ~ω0,p

2~ω0,p
, (7.13)

u±1,p =

√

ε0p + 3c̃1n + ~ω±1,p

2~ω±1,p
, v±1,p =

√

ε0p + 3c̃1n − ~ω±1,p

2~ω±1,p
, (7.14)

u±2,p =

√

ε0p + c̃2n+ ~ω±2,p

2~ω±2,p
, v±2,p = −

√

ε0p + c̃2n− ~ω±2,p

2~ω±2,p
. (7.15)

Here the minus sign in front of the square root in the expression for v±2,p in Eq. (7.15) results

from the negative coupling constant c2 of V̂2 [Eq. (7.4)], which is the only interaction that
can generate a pair of noncondensed atoms in spin states mF = ±2 out of the condensate. A

straightforward calculation of the matrix element Vif in Eq. (7.9) gives

Vif =
c1
√

6N0

V
F (u, v), (7.16)

where N0 = n0V is the total number of condensate particles, and

F (u, v) ≡ (u−1,k − v1,−k) (u1,pu2,q + v−1,−pv−2,−q)

− (u1,p − v−1,−p) (u2,qv1,−k + u−1,kv−2,−q) . (7.17)

On the other hand, the zero of the argument of the Dirac’s delta function in Eq. (7.8) is found

to be

|q| = q0 ≡2

(

3c̃1 cos θ −
√

3c̃1c̃2
3c̃1 − c̃2

)

|p|, (7.18)

0 6θ 6 θ0, (7.19)

where θ denotes the angle between q and p, and θ0 ≡
√

c̃2/3c̃1 < 1. By using the identity

δ(f(x)) = δ(x − x0)/|f ′(x0)|, where x0 is the zero of f(x), and replacing the sum in Eq. (7.8)
by an integral, the damping rate can be rewritten as

Pdamp '
3
√

2c21n0M
3/2

π~5

∞
∫

0

dε0q

√

ε0q

1
∫

cos θ0

d(cos θ)
F (u, v)2

|∂(ω1,p− ω2,q − ω−1,k)/∂ε0q|
δ

(

ε0q −
~

2|q0|2
2M

)

.

(7.20)

The integral in Eq. (7.20) can be calculated straightforwardly, giving the damping rate as

Pdamp '
3
√

2c21|p|3
π~(3c1− c2/5)

λ

(|c2|
c1

)

, (7.21)

where λ(|c2|/c1) ≡ λ̃(c̃2/3c̃1) with

λ̃(x) ≡
√
x
(

7 + 20
√
x+ 30x+ 10x3/2 + 5x2

)

15
√

2(1 +
√
x)5

. (7.22)

71



λ
0.06

0.04

0.02

0
20 40 60 80 100 2 1| | /c c

0
1.20.4 0.8

0.02

0.04

Figure 7.2: Function λ(|c2|/c1) in Eq. (7.21). The inset shows λ over the uncertainty region of
the ratio |c2|/c1 which is determined from the measurements [Eq. (6.2)] in Ref. [77]. Note that

we need c2 < 0 for the ground state to be the uniaxial-nematic phase.

It is evident from Eq. (7.21) that the damping rate of a magnon with momentum ~p is propor-

tional to |p|3, and the damping strength depends on the interatomic interactions via function
λ(|c2|/c1). It is plotted in Fig. 7.2 in which the inset shows λ over the uncertainty region of

parameter c2 for 87Rb [Eq. (6.2)].
Equation (7.21) suggests an alternative approach to measure the magnitudes of the interac-

tions through the damping rates of magnons. We therefore propose a scheme to measure their
damping rates. In ultracold atomic experiments, atoms can be prepared in arbitrary hyperfine

spin states by using an adiabatic passage [115]. For a spin-2 87Rb BEC, the ground state is
likely to be the uniaxial-nematic phase, i.e., almost all atoms occupy the mF = 0 spin state.
This is the initial state of the system. However, if an external magnetic field is applied, the

system becomes dynamically unstable as the excitation spectrum of the magnon mode

~ω±1,p =
√

(ε0p + q)(ε0p + q + 2c̃1n0) (7.23)

acquires a nonzero imaginary part. Here q denotes the quadratic Zeeman coefficient. Note that
q is negative for spin-2 87Rb, and its absolute value is proportional to the square of the field

strength. This dynamical instability results in an exponential growth of the number of atoms in
themF = ±1 spin states, which has been observed in the Stern-Gerlach measurement [17]. If the
external field is then suddenly switched off, the ground state returns to the uniaxial-nematic

phase, leading to a stop of the generation of new magnons due to the dynamical instability.
The lifetimes of the previously created magnons are then completely determined by the Beliaev

damping. Their damping rates can be deduced from the measured time evolution of the atomic
populations in the mF = ±1 spin states. It should, however, be noted that the obtained

damping rate (7.21) is restricted to the low-momentum regime ε0p � c0n, c1n, |c2|n.
The damping rates of magnons can also be derived from the beyond-Bogoliubov spectrum

of these excitations. Indeed, using the spinor Beliaev theory developed in Sec. 4.2, we find
the second-order energy spectrum of magnons with a nonzero imaginary part given by (see

Appendix F)

Im
{

ω
(2)
±1,p

}

=− 3c21|p|3√
2π~(3c1− c2/5)

λ

( |c2|
c1

)

, (7.24)
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where function λ(|c2|/c1) is the same as that in Eq. (7.21). On the other hand, the damping
rate of a magnon is related to the imaginary part of its energy spectrum by

Pdamp = −2Imω
(2)
±1,p (7.25)

since the probability density of finding a quasiparticle is equal to the square of its wavefunction.
It follows from Eqs. (7.24) and (7.25) that the damping rate (7.21) can be reproduced by using

the spinor Beliaev theory.
It is worth noting that the scaling law of the damping rate of magnons with respect to the

momentum Pdamp ∝ |p|3 can be obtained indirectly without a need to carry out the tedious
integral in Eq. (7.20). By a dimensional analysis, we find that the general expression for the
damping rate must take the form of

Pdamp =
c0n0

~

√

n0a3f

(

c1
c0
,
c2
c0

)

(

ε0p
c0n0

)α

, (7.26)

where f is a function of the only two dimensionless ratios of interactions c1/c0 and c2/c0.
Here the dimensionless parameter

√
n0a3 characteristic of a weakly interacting dilute Bose gas

appears in Eq. (7.26) since the Beliaev damping only emerges at the second-order approximation

[Eq. (7.25)] where the self-energies and the excitation spectra are evaluated up to the order of√
n0a3 (see, for example, Chap. 3). The power α in Eq. (7.26) would determine simultaneously

the scaling laws of Pdamp with respect to |p| and n0. Therefore, the scaling law with respect
to |p| can be obtained from that with respect to n0, which is much easier to be found. Using

Eqs. (7.13)–(7.15) for uj,p and vj,p, we find the first term on the right-hand side of Eq. (7.17)
to be

(u−1,k − v1,−k) (u1,pu2,q + v−1,−pv−2,−q)

=

√

c̃1c̃2n
2
0ε

0
k

4~3ω1,pω2,qω−1,k

[

~ω1,p

c̃1n0
+

~ω2,q

c̃2n0
+O

(

ε0p
c̃1n0

,
ε0p
c̃2n0

)]

∝n−1/4
0 , (7.27)

where we used ε0p,q,k � c̃1n0, c̃2n0 in the low-momentum regime, and ωj,p ∝ n
1/2
0 as shown in

Eqs. (7.5)-(7.7). Similarly, the second term on the right-hand side of Eq. (7.17) reduces to

− (u1,p − v−1,−p) (u2,qv1,−k + u−1,kv−2,−q)

=

√

c̃1c̃2n
2
0ε

0
p

4~3ω1,pω2,qω−1,k

[

~ω−1,k

c̃1n0
− ~ω2,q

c̃2n0
+O

(

ε0p
c̃1n0

,
ε0p
c̃2n0

)]

∝n−1/4
0 . (7.28)

The last contribution to the n0-dependence of Pdamp comes from the factor of 1/|∂(ω1,p −
ω2,q − ω−1,k)/∂ε0q| in Eq. (7.20), which is proportional to n

−1/2
0 since ωj,p ∝ n

1/2
0 . It follows

from Eqs. (7.17), (7.20), (7.27), and (7.28) that Pdamp ∝ n0
0. We then find that α = 3/2 in

Eq. (7.26), leading to the scaling law Pdamp ∝ |p|3.
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7.2 Phonons

Unlike magnons, phonons can decay through various collision channels for which the energy

conservation condition (7.10) is satisfied. The first one is that with the final state involving
two phonons; i.e., j ′ = j” = 0. This is similar to the case of scalar BECs [26]. However, for
spin-2 BECs the interaction in this channel can be either the spin-independent one V̂0 or the

spin-dependent one V̂2. Therefore, the net coupling constant for this channel would be given
by c̃0 = c0 + c2/5, where the factor of 1/5 stems from the spin-singlet amplitude [Eq. (2.17)] in

V̂2. The contribution of this decay channel to the damping rate of phonons is then found to be

P
(1)
damp =

3~

320πM

√

nc̃0
3 |p|5
(c̃0n)3/2

=
3~|p|5

320πMn
. (7.29)

It is identical to the damping rate of phonons in scalar BECs since it turns out to be independent

of the interaction in the low-momentum regime ε0p � c̃0n.
The second decay channel of phonons is that in which two magnons are generated in the

final state; i.e., j ′ = 1 and j” = −1. The interaction in this channel can be either V̂1 or V̂2. For
the former interaction, the transition amplitude is found to be

Vif =
3c1
√
N0

V

[

(u−1,k − v1,−k)(u0,pu1,q + v0,−pv−1,−q)

+ (u1,q − v−1,−q)(u0,pu−1,k + v0,−pv1,−k)
]

, (7.30)

where uj,p and vj,p are given by Eqs. (7.13)–(7.15). By replacing the sum over q in Eq. (7.8) by
an integral, the contribution to the damping rate of phonons can be straightforwardly calculated

to be

P
(2)
damp =

9c21nM |p|√
2π~3

γ1

(

3c̃1
c̃0

)

, (7.31)

where γ1(x) ≡ 1/(2
√

2x3/2). It is plotted in Fig. 7.3.
Similarly, for the latter interaction, i.e., V̂2, the transition amplitude is given by

Vif =− 2c2
√
N0

5V
(u0,pu1,qu−1,k − v0,−pv−1,−qv1,−k) . (7.32)

The contribution to the damping rate of phonons is then found to be

P
(3)
damp =

2
√

2c22nM |p|
25π~3

γ2

(

3c̃1
c̃0

)

, (7.33)

where γ2(x) ≡ (1 + x)2/(8
√

2x3/2). It is plotted in Fig. 7.4.
In the last decay channel of phonons, two quasi-NG modes are generated, i.e., j ′ = 2 and

j ′′ = −2, due to interaction V̂2. The transition amplitude is given by

Vif =
2c2
√
N0

5V
(u0,pu2,qu−2,k − v0,−pv−2,−qv2,−k) . (7.34)

It has a form similar to Eq. (7.32) with the spin state mF = ±1 being replace by mF = ±2.
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Figure 7.3: Function γ1(x) defined below Eq. (7.31).
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Figure 7.4: Function γ2(x) defined below Eq. (7.35).
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The contribution of this channel to the damping rate of phonons is then obtained as

P
(4)
damp =

2
√

2c22nM |p|
25π~3

γ2

(

c̃2
c̃0

)

. (7.35)

In summary, the total damping rate of phonons in spin-2 BECs can be expressed as a sum of
two contributions. Their scaling laws with respect to the momentum are Pdamp ∝ |p|5 and

Pdamp ∝ |p|, respectively. The former is the only contribution to the damping rate of phonons
in scalar BECs, while the latter would be dominant in the regime of low momenta.
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Chapter 8

Summary and Discussion

We have studied the effects of quantum fluctuations on the phase diagram, elementary excita-

tions, and phase transitions of spinor Bose-Einstein condensates (BECs). This study is based
on the development of the spinor version of the Beliaev theory. By taking into account the
contributions from the second-order Feynman diagrams, we have derived analytically the ex-

citation spectrum that contains a quantum correction to the Bogoliubov spectrum. From the
obtained Beliaev spectrum, we have been able to address various problems in spinor BECs

such as the stability of a quantum phase, the quantum symmetry breaking, and the lifetime of
quasiparticles. In the following, we summarize the main results of our study and discuss some

outstanding open issues.
In Chapter 4, we have discovered two special classes of first-order quantum phase transi-

tions in spinor BECs which are characterized by their possibilities of metastability. The first
one is accompanied with metastable states that are induced by quantum fluctuations. Conven-

tional first-order phase transitions are often associated with the existence of metastable states
around the phase boundaries [29, 116, 117, 118]; however, the Bogoliubov analysis implies no
metastability at all. Only by going to the next-order approximation, i.e., the Beliaev theory,

can we show that metastable states indeed appear around the phase boundaries. This result
has shed light on the pivotal role of quantum fluctuations in the study of the phase diagram

and the stability of a spinor condensate. The presence of a metastable condensate also suggests
an interesting possibility of macroscopic quantum tunneling (MQT) in which all atoms tunnel

simultaneously from a metastable state to the ground state. In Sec. 4.4, we have estimated the
time scale of the MQT for a spin-2 87Rb BEC and found that in order to observe MQT within

the lifetime of the BEC (i.e., a few seconds), the total number of atoms must be limited by that
of a microcondensate (i.e., a few tens). Since a large fraction of particles can be excited out

of a small condensate due to fluctuations, the effects of fluctuations in such a microcondensate
might become significant and thus merit a thorough investigation in the future.

In contrast, in the second class of first-order phase transitions, the metastability is absent

to all orders of approximation. This is because the metastable state is prohibited by the high
symmetry of the Hamiltonian at the phase boundary, resulting in a flat energy landscape. It

is this flat energy landscape that leads to the abrupt change of the system from the ground
state to an unstable state without undergoing a metastable regime. On the other hand, the

flat energy landscape brings about the criticality in the dynamics of the condensate through
these phase transitions. In Chapter 5, we have studied the dynamics of a spinor condensate and

found the critical features in both instantaneous and slow quenches of a system’s parameter.
Consequently, despite being first-order phase transitions, their dynamics is similar to that of

second-order phase transitions. Some of the quantum phase transitions in both spin-1 and spin-2
BECs are within reach of current experiments, bringing hope that our theoretical predictions can
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be verified experimentally. Furthermore, similar types of first-order quantum phase transitions
might also appear in other physical systems with internal degrees of freedom including the

superfluid 3He, superconductors with high angular momenta, and color superconductors.
In Chapter 6, we have succeeded in deriving the analytic expression for the energy gap of the

so-called quasi-Nambu-Goldstone (quasi-NG) mode in the nematic phase of spin-2 BECs. Quasi-

NG modes are the gapless excitations at the mean-field level that do not stem from spontaneous
symmetry breaking. However, it has been predicted that they would acquire a nonzero energy

gap with quantum corrections [38]. By deriving the emergent energy gap of the quasi-NG modes
due to quantum fluctuations, we have been able to prove the conjecture. To our knowledge,

this is the first time for the energy gap of the quasi-NG modes to be evaluated quantitatively.
Regarding the magnitude of the energy gap, it is predicted in a previous study [38] that it

is of the same order as the zero-point energy, which lifts the degeneracy in the manifold of
nematic phases. However, we show that the truth is beyond such a simple prognostication.

Since there is no level crossing in the phase transition associated with the nematic phases, the
energy gap of the quasi-NG modes and the zero-point energy do not necessarily have the same
order of magnitude. The energy gap turns out to strongly depend on the relative strengths of

the spin-dependent interactions. The scaling laws of the energy gap with respect to the system’s
parameters also vary with the ratio of interactions.

Furthermore, from the obtained magnitude of the energy gap, we have been able to evaluate
the critical temperature above which a topological defect such as a vortex of spin nematicity

would decay by emitting thermally excited quasi-NG modes. Conversely, below this temperature
the quasi-NG modes behave as gapful excitations, and thus the vortex would be stabilized by

suppressing their emission. The magnitude of the energy gap and the critical temperature can
be increased to a regime accessible with typical ultracold atomic experiments by, for example,

adjusting the relative strengths of the s-wave scattering lengths. In addition to the emergence of
a finite energy gap, we find that the propagation velocity of the quasi-NG modes is suppressed
due to the particle-number density fluctuations. This is opposed to the enhancement of the

sound velocity, and a qualitative account of the difference is given in terms of the particle-number
density correlation. Our study of quasi-NG modes is also related to the problems of Coleman-

Weinberg mechanism of quantum symmetry breaking [32] and the quantum anomaly [119] where
the effects of quantum fluctuations play an essential role.

In Chapter 7, we have calculated the damping rates of various types of quasiparticles in
spin-2 BECs. They include phonons, magnons, and quasi-NG modes, which represent the spa-

tially periodic modulations of the particle-number, spin-magnetic, and spin-nematic densities,
respectively. At the level of the Bogoliubov theory, all of these quasiparticles have infinite life-

times. However, with higher-order approximations, their lifetimes become finite since they can
decay through numerous channels of collision with the condensate atoms. By using Fermi’s
golden rule to calculate the transition probabilities, we find that the damping of the quasi-NG

modes is suppressed due to the energy conservation. In contrast, the damping rates of phonons
and magnons are found to be finite with their own scaling laws with respect to the momentum.

It is worth noting that the damping rates of these quasiparticles can be reproduced by using
the developed spinor Beliaev theory. The obtained analytic expressions for the damping rates

as functions of the fundamental interactions also suggest an alternative approach to measuring
precisely the magnitudes of the spin-dependent interactions. We have proposed a scheme to

measure the lifetime of magnons in the spin-2 87Rb condensate by temporarily switching on an
external magnetic field.

As shown above, spinor BECs provide us with a table-top playground for the study of the
effects of quantum fluctuations on various physical phenomena. They can be classified into two

categories. In the first one, the effects of quantum fluctuations become significant, leading to re-
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markable changes in the features of the system. Noticeable examples are the fluctuation-induced
metastability and the emergent energy gap of the quasi-NG modes. In the second category, the

system’s properties remain unchanged to all orders of approximation. It is because they are
protected by the symmetry of the Hamiltonian. Typical examples are the symmetry-prohibited
metastability and the gapless excitations generated by spontaneous symmetry breaking. In

contrast to the quasi-NG modes, these excitations, which include phonons and magnons, are
gapless at any order of approximation. In the language of Green’s functions, this is guaranteed

by the Hugenholtz-Pines theorem [120] which relates the self-energies at zero wavelength and
zero frequency to the chemical potential. In scalar BECs, it is written as

Σ11(p = 0)− Σ12(p = 0) = µ. (8.1)

For the uniaxial-nematic phase in spin-2 BECs, the Hugenholtz-Pines theorem is predicted to
have the form of

Σ11
00(p = 0)− Σ12

00(p = 0) = µ (8.2)

for phonons, and

Σ11
11(p = 0)−Σ12

1,−1(p = 0) = µ (8.3)

for magnons. Equalities (8.2) and (8.3) are expected to hold at any order of approximation.

Although Eq. (8.2) can be proved for a given order of approximation by using the relation
between the Feynman diagrams for Σ11

00 and Σ12
00 in a manner similar to scalar BECs [120],

the proof of Eq. (8.3) is nontrivial since we do not have a similar simple relation between the
diagrams for Σ11

11 and Σ12
1,−1. Even its proof at the second-order approximation requires a tedious

calculation. Therefore, an attempt to prove this fundamental theorem for spinor BECs at a
general order of approximation is left for a future study. On the other hand, a similar equality

for the quasi-NG modes

Σ11
22(p = 0)−Σ12

2,−2(p = 0) = µ (8.4)

holds only at the first-order approximation. From the second-order approximation, it breaks
down due to quantum fluctuations, leading to the emergence of a finite energy gap.
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Appendix A

T -matrix and vacuum scattering
amplitude

The T -matrix Γ(p1, p2; p3, p4) defined by Eq. (3.25) satisfies the Bethe-Salpeter equation [121]:

Γ(p1, p2; p3, p4) = V (p1 − p3) +
i

~

∫

d4q

(2π)4
V (q)G0(p1 − q)G0(p2 + q)Γ(p1 − q, p2 + q; p3, p4).

(A.1)

This iterative equation is illustrated in Fig. A.1 by using Feynman diagrams.
Let us introduce the center-of-mass four-vector ~P = ~p1 + ~p2 = ~p3 + ~p4, where the

second equality implies the conservations of momentum and energy, and the initial and final
relative four-vectors ~p = (1/2)(~p1 − ~p2), ~p′ = (1/2)(~p3 − ~p4) for a pair of scattering

particles. Equation (A.1) can then be rewritten as

Γ(p, p′, P ) =V (p− p′) +
i

~

∫

dωq

2π

∫

d3q

(2π)3
V (q)G0(P/2 + p− q)G0(P/2− p+ q)Γ(p− q, p′, P ),

(A.2)

or in the form of an infinite series as

Γ(p, p′, P ) =V (p− p′) +
i

~

∫

d3q

(2π)3
V (q)V (p− q− p′)

×
∫

dωq

2π
G0(ωP/2 + ωp − ωq,P/2 + p− q)G0(ωP/2− ωp + ωq,P/2− p + q)

+ · · · . (A.3)

Using the transformation of variables ωq = ω̃q +ωp, the integral in the second line of Eq. (A.3)

reduces to
∫

dω̃q

2π
G0(ωP/2− ω̃q,P/2 + p− q)G0(ωP/2 + ω̃q,P/2− p + q), (A.4)

which is independent of ωp. Similarly, the higher-order terms represented by the dots in
Eq. (A.3) can be shown to be independent of ωp and ωp′ by iteration. Therefore, the T -matrix

is independent of ωp and ωp′ and can be written as Γ(p,p′, P ).
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Figure A.1: Bethe-Salpeter equation (A.1) for the T -matrix Γ(p1, p2; p3, p4). The squares rep-
resent the T -matrix, while the free propagators given by the noninteracting Green’s function
G0 are represented by the solid lines with arrows. The wavy lines indicate the interatomic

interaction V .

Next, we introduce χ(p,p′, P ) which is the integration kernel of Γ(p,p′, P ) [26, 20]:

Γ(p,p′, P ) =

∫

d3q

(2π)3
V (q)χ(p− q,p′, P ). (A.5)

Equation (A.5) has a form similar to the equation relating the vacuum scattering amplitude
−Mf̃ (k, k′)/(4π~2) to the scattering wavefunction ψk(p) in momentum space:

f̃(k, k′) =

∫

d3q

(2π)3
V (q)ψk(k

′ − q). (A.6)

From Eqs. (A.2) and (A.5), we obtain the equation for χ(p,p′, P ) as

χ(p,p′, P ) =(2π)3δ(p− p′) +
i

~

∫

dωp

2π
G0(P/2 + p)G0(P/2− p)

∫

d3q

(2π)3
V (q)χ(p− q,p′, P ).

(A.7)

This is confirmed by substituting Eq. (A.7) in Eq. (A.5) so that Eq. (A.2) is reproduced. With

a straightforward calculation of the integral
∫

dωp in Eq. (A.7) using G0(p) = [ωp−(ε0p−µ)/~+
iη]−1, we obtain

χ(p,p′, P ) = (2π)3δ(p− p′) +
1

~ωP − ~2P2

4M + 2µ− ~2p2

M + iη

∫

d3q

(2π)3
V (q)χ(p− q,p′, P ).

(A.8)

On the other hand, the Schrodinger equation for the scattering wave function ψk(p) in momen-
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tum space is given by

ψk(p) = (2π)3δ(p− k)− 1
~2p2

M − ~2k2

M − iη

∫

d3q

(2π)3
V (q)ψk(p− q). (A.9)

Using Eqs. (A.6), (A.8) and (A.9), χ(p,p′, P ) can be expressed in terms of ψk(p) and f̃(k′, k)
as [20]

χ(p,p′, P ) = ψp′(p) +

∫

d3q

(2π)3
ψq(p)

( 1

~ωP − ~2P2

4M + 2µ− ~2q2

M + iη
+

1
~2q2

M − ~2p
′2

M − iη

)

× f̃(p′, q)∗. (A.10)

Substituting Eq. (A.10) in Eq. (A.5), we obtain the T -matrix as

Γ(p,p′, P ) = f̃(p,p′) +

∫

d3q

(2π)3
f̃(p, q)

( 1

~ωP − ~2P2

4M + 2µ− ~2q2

M + iη
+

1
~2q2

M − ~2p
′2

M − iη

)

× f̃(p′, q)∗. (A.11)

From Eq. (A.11), it is clear that the T -matrix Γ(p1, p2; p3, p4) = Γ(p,p′, P ) can be expressed

in terms of the vacuum scattering amplitude −Mf̃ (p,p′)/(4π~
2). This scattering amplitude is

well defined even for a singular interaction potential.
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Appendix B

Ground-state energy with the LHY
correction

For a dilute system of spinless bosons, the ground-state energy density with the LHY correction
is given by [70, 71]

E

V
=

2π~2an2

M

(

1 +
128

15
√
π

√
na3

)

, (B.1)

where n, a, and M are the particle-number density, the s-wave scattering length, and the atomic

mass, respectively. The first term on the right-hand side of Eq. (B.1) is the Hartree mean-field
energy, while the second term gives the leading-order correction first derived by Lee, Huang,

and Yang [70, 71]. The LHY correction arises from quantum fluctuations of the condensate and
is proportional to the fraction of quantum depletion nqd/n = 8

√
na3/(3

√
π). In the following,

we compare the energies of the different phases of spin-2 BECs, by which the phase boundaries
in Fig. 4.1 are determined.

Ferromagnetic-BN phase boundary. The energy densities with the LHY corrections of the
ferromagnetic and BN phases in the proximity of the mean-field phase boundary at c1 < 0 and

c2 = 20c1 are given by [68]

EFM

V
=
(c0

2
+ 2c1

)

n2

[

1 +
16M3/2

15π2~3

√

n(c0 + 4c1)3

]

(B.2)

and

EBN

V
=
(c0

2
+
c2
10

)

n2

[

1 +
16M3/2

15π2~3

√

n (c0 + 4c1)
3

]

+
8M3/2

15π2~3
(32 + 18

√
3)(|c1|n)5/2

+O





M3/2n5/2max
{

c
3/2
0 , |c1|3/2

}

|c2 − 20c1|
~3



 , (B.3)

respectively. By noting that |c2 − 20c1| ∼ M3/2n1/2|c1|5/2/~3 at the phase boundary [see

Eq. (4.1)], the last term on the right-hand side of Eq. (B.3) is smaller than the other terms by a
factor of

√
na3 � 1 with a ≡ (4a2 +3a4)/7 = c0M/(4π~2) and thus is negligible. Consequently,
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the ferromagnetic-BN phase boundary is shifted from the mean-field counterpart to

cFM−BN
2 ' 20c1 −

32(16 + 9
√

3)M3/2n1/2|c1|5/2

3π2~3

' 20c1 − 1521

(|c1|
c0

)3/2√
na3 |c1|. (B.4)

Thus, we have derived Eq. (4.1).
UN-cyclic phase boundary. Similarly, the energy densities with the LHY corrections of the

cyclic and UN phases for c1 > 0 and c2 ≤ 0 are given by [68]

ECL

V
=
c0n

2

2
+

8M3/2

15π2~3

[

(nc0)
5/2 + 12

√
2(nc1)

5/2
]

(B.5)

and

EUN

V
=
(

c0 +
c2
5

) n2

2
+

8M3/2

15π2~3

[

(nc0)
5/2 + 18

√
3(nc1)

5/2
]

+O





M3/2n5/2max
{

c
3/2
0 , c

3/2
1

}

|c2|
~3



 , (B.6)

respectively. Here EUN was expanded in powers of c2/c0 and c2/c1, which are expected to be

small near the cyclic-UN phase boundary. Indeed, since |c2| ∼ M3/2n1/2c
5/2
1 /~3 at the phase

boundary [see Eq. (4.2)], the last term on the right-hand side of Eq. (B.6) is smaller than the

others by a factor of
√
na3 � 1 and thus can be ignored. By comparing the energies in Eqs.

(B.5) and (B.6), we find that the UN-cyclic phase boundary is given by

cUN−CL
2 ' − 16(18

√
3− 12

√
2)M3/2n1/2c

5/2
1

3π2~3

' − 342

(

c1
c0

)3/2√
na3 c1. (B.7)

Thus, we have derived Eq. (4.2).
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Appendix C

First derivative of the ground-state
energy

By definition, a thermal phase transition is first order if there is a discontinuity in the first
derivative of the free energy with respect to temperature. Similarly, a quantum phase transition
is first order if a finite jump appears in the first derivative of the ground-state energy with respect

to the parameter that drives the transition. In the following, the first derivative of the energy
is evaluated at the phase boundaries in Fig. 4.1. The energies of the ferromagnetic and cyclic

phases are given by Eqs. (B.2) and (B.5), respectively, while those of the UN and BN phases
are obtained from the expression for the energies of nematic phases [74, 68]:

E(η)

V
=
(

c0 +
c2
5

) n2

2

[

1 +
16M

3
2n

1
2

15π2~3

(

c0 +
c2
5

)
3
2

]

+
8M

3
2n

5
2

15π2~3

{

( |c2|
5

)5
2

+
(

2c1 −
c2
5

) 5
2

2
∑

j=0

[

1− 2c1
2c1 − c2/5

cos

(

2η +
2πj

3

) 5
2

]}

, (C.1)

where η = nπ/3 (η = π/6 + nπ/3) corresponds to the UN (BN) phase.
Ferromagnetic-BN phase transition. We have

∂(EFM/V )

∂c2
=0, (C.2a)

∂(EBN/V )

∂c2

∣

∣

∣

c2=cFM−BN
2

=
n2

10

[

1 +O(
√
na3)

]

, (C.2b)

where cFM−BN
2 [Eq. (4.1)] indicates the ferromagnetic-BN phase boundary. Equation (C.2)

implies that there is a finite jump in ∂E/∂c2 for the ferromagnetic-BN transition, and thus it
is first order.

UN-cyclic phase transition. Similarly, the first derivatives of the energies at the UN-cyclic

phase boundary [Eq. (4.2)] are evaluated to be

∂(ECL/V )

∂c2
=0, (C.3)

∂(EUN/V )

∂c2

∣

∣

∣

c2=cUN−CL
2

=
n2

10

[

1 +O(
√
na3)

]

. (C.4)

Therefore, the UN-cyclic phase transition is first order.
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Ferromagnetic-cyclic phase transition. The first derivatives of the energies with respect to
c1, which is the parameter that drives the phase transition, are given at the phase boundary

c1 = 0 and c2 > 0 by

∂(EFM/V )

∂c1

∣

∣

∣

c1=0
=n2

[

2 +O(
√
na3)

]

, (C.5)

∂(ECL/V )

∂c1

∣

∣

∣

c1=0
=0. (C.6)

This implies that the ferromagnetic-cyclic phase transition is first order.

UN-BN phase transition. The first derivatives of the energies with respect to c1 at the phase
boundary c1 = 0, c2 < 0 are given up to the level of the LHY correction by

∂(EUN/V )

∂c1

∣

∣

∣

c1=0
=

8M3/2n5/2|c2|3/2

π2~3
, (C.7)

∂(EBN/V )

∂c1

∣

∣

∣

c1=0
=

8M3/2n5/2|c2|3/2

π2~3
. (C.8)

Up to this order, the first derivative changes continuously. However, since there is a discontinuity
in the transformation of the order parameter and the associated symmetry at the UN-BN phase

boundary, this phase transition must be first order. Therefore, it is expected that with higher-
order corrections to the ground-state energy, a finite jump in ∂E/∂c1 should appear at c1 = 0.

The difference in the order of approximation at which the discontinuity in the first derivative of
the ground-state energy appears between the UN-BN and the other phase transitions in spin-2

BECs is related to the fact that the UN-BN phase transition does not appear in the mean-
field phase diagram as opposed to the other phase transitions. The UN-BN phase transition is

exhibited only if the zero-point fluctuations are taken into account.
Similarly, the fact that the ferromagnetic-BA and antiferromagnetic-polar phase transitions

in spin-1 BECs are first order can be confirmed by a finite jump in the first derivative of the

ground-state energy with respect to the quadratic Zeeman coefficient q. These phase transitions
occur at q = 0.

Ferromagnetic-BA phase transition. The first derivatives of the energies with respect to q
at the phase boundary are given by [68, 12].

∂(EFM/V )

∂q

∣

∣

∣

q=0
=n, (C.9)

∂(EBA/V )

∂q

∣

∣

∣

q=0
=
n

2

[

1 +O(
√
na3)

]

. (C.10)

Antiferromagnetic-polar phase transition. Similarly, we obtain

∂(EAFM/V )

∂q

∣

∣

∣

q=0
=n
[

1 +O(
√
na3)

]

, (C.11)

∂(EPL/V )

∂q

∣

∣

∣

q=0
=0 +O(

√
na3). (C.12)
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Appendix D

Second-order self-energies

In this Appendix, we show the derivations of the second-order self-energies that are used in

Secs. 4.3 and 4.5.
Ferromagnetic-BN phase transition. The instability in the mF = −2 excitation mode of

the ferromagnetic state gives rise to the phase transition as discussed in Sec. 4.3. The energy

spectrum of this mode is given by Eq. (4.6) in terms of the self-energy Σ11
−2,−2 and the chemical

potential µ. In the following, we therefore evaluate their second-order contributions. The

contribution to Σ11
−2,−2 from each of the second-order Feynman diagrams can be calculated

straightforwardly (see, for example, Ref. [79]). By summing all of these contributions, we

obtain

~Σ
11(2)
−2,−2(p) =

[

(c0 − 4c1)
2 +

4c22
25

+
4c0c2

5
− 16c1c2

5

]

n0

∫

d3q

(2π)3

[

A2,k + B2,k − 2C2,k

~

(

ωp − ω(1)
−2,q − ω

(1)
2,k

)

+ iη

− P
1

ε0p − ε0q − ε0k + iη

]

+ 4
(

c1 −
c2
5

)2
n0

∫

d3q

(2π)3

[

1

~

(

ωp − ω(1)
−1,q − ω

(1)
1,k

)

+ iη

− P
1

ε0p − ε0q − ε0k + iη

]

+
2c22n0

25

∫

d3q

(2π)3

[

1

~

(

ωp − ω(1)
0,q − ω

(1)
0,k

)

+ iη

− P
1

ε0p − ε0q − ε0k + iη

]

+

(

c0 − 4c1 +
2c2
5

)∫

d3q

(2π)3
B2,q, (D.1)

where k ≡ q−p and P denotes the principal value of the integral. Here the first-order (Bogoli-
ubov) excitation spectra of the ferromagnetic phase are given by

~ω
(1)
2,p =

√

ε0p[ε0p + 2(c0 + 4c1)n0], (D.2)

~ω
(1)
1,p =ε0p, (D.3)

~ω
(1)
0,p =ε0p − 4c1n0, (D.4)

~ω
(1)
−1,p =ε0p − 6c1n0, (D.5)

~ω
(1)
−2,p =ε0p − 8c1n0 +

2c2n0

5
, (D.6)
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and

A2,k ≡
~ω

(1)
2,k + ε0k + (c0 + 4c1)n0

2~ω
(1)
2,k

, (D.7)

B2,k ≡
−~ω

(1)
2,k + ε0k + (c0 + 4c1)n0

2~ω
(1)
2,k

, (D.8)

C2,k ≡
(c0 + 4c1)n0

2~ω
(1)
2,k

. (D.9)

To find the zero-momentum excitation energy, we take p = 0. Moreover, since it is expected

that |ω−2,p=0 − ω
(1)
−2,p=0| � |c1|n, |c2|n, which is justified by Eq. (4.13), we can replace the

argument ωp in Σ
11(2)
−2,−2 by ω

(1)
−2,p=0. Equation (D.1) can then be evaluated straightforwardly,

and we obtain

~Σ
11(2)
−2,−2 =

(Mn0)
3/2

~3

{

4(c0 + 4c1)
1/2

3π2

[

(c0 − 4c1)
2 +

4c22
25

+
4c0c2

5
− 16c1c2

5

]

+

√
2

π

(

c1 −
c2
5

)5/2

+
1√
2π

(−c2
5

)5/2

+
1

3π2
(c0 + 4c1)

3/2

(

c0 − 4c1 +
2c2
5

)

}

. (D.10)

Similarly, the total contribution to the chemical potential µ from the second-order Feynman
diagrams is calculated to be

µ(2) =2(c0 + 4c1)

∫

d3q

(2π)3
B2,q + (c0 + 4c1)

∫

d3q

(2π)3

(

−C2,q +
(c0 + 4c1)n0

2ε0q

)

=
5(Mn0)

3/2(c0 + 4c1)
5/2

3π2~3
. (D.11)

Near the ferromagnetic-BN phase boundary where c1, c2 < 0 and c2 ' 20c1, from Eqs. (D.10)

and (D.11) we have

~Σ
11(2)
−2,−2 − µ(2) =

(36
√

3 + 64)|c1|5/2(Mn0)
3/2

2
√

2π~3
+O

(

|c1|5/2(Mn0)
3/2
√
na3/~3

)

. (D.12)

Here, we used na3 � 1 with a ≡ c0M/(4π~
2) so that the second term on the right-hand side of

Eq. (D.12) can be ignored. Thus, we have derived Eq. (4.12).

Ferromagnetic-cyclic phase transition. The instability in the mF = −1 excitation mode
of the ferromagnetic phase brings about the phase transition. Therefore, we now evaluate

the second-order contribution to Σ
11(2)
−1,−1 for the ferromagnetic phase. By summing all of the
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contributions to Σ11
−1,−1 from the second-order Feynman diagrams, we obtain

~Σ
11(2)
−1,−1(ωp,p) =n0(c0 − 2c1)

2

∫

d3q

(2π)3





A2,k +B2,k − 2C2,k

~

(

ωp − ω(1)
−1,q − ω

(1)
2,k

)

+ iη
− P

1

ε0p − ε0q − ε0k





+ (c0 − 2c1)

∫

d3q

(2π)3
B2,q + 12n0c

2
1

∫

d3q

(2π)3

[

1

~
(

ωp − ε0q − ε0k
)

+ iη

− P
1

ε0p − ε0q − ε0k

]

, (D.13)

where ω
(1)
−1,q, ω

(1)
2,k, A2,k, B2,k, C2,k are given by Eqs. (D.2)-(D.9). For a reason similar to that be-

low Eq. (D.9), the arguments ωp and p of Σ
11(2)
−1,−1 can be replaced by ω

(1)
−1,p=0 and 0, respectively.

Each term in Eq. (D.13) can then be calculated straightforwardly, and we obtain

~Σ
11(2)
−1,−1 =

c
5/2
0 (Mn0)

3/2

~3

[

4

3π2

(

c0 + 4c1
c0

)1/2(c0 − 2c1
c0

)2

+
1

3π2

(

c0 + 4c1
c0

)3/2(c0 − 2c1
c0

)

+
6

π

( |c1|
c0

)5/2
]

. (D.14)

Combined with µ(2) given by Eq. (D.11), we have

~Σ
11(2)
−1,−1 − µ(2) =

c
5/2
0 (Mn0)

3/2

π2~3

(

−18x+ 6π|x|5/2
)

, (D.15)

where x ≡ c1/c0. Since |c1| � c0 for typical alkali-metal atoms, the second term inside the
brackets in Eq. (D.15) is negligible compared to the first term. We thus have derived Eq. (4.30).

UN-cyclic phase transition. The excitation mode that drives the UN-cyclic phase transition
is a superposition of the magnetic sublevels mF = ±2 (see Sec. 4.3). Its zero-momentum energy

is given by Eq. (4.16). Now we evaluate the second-order self-energies in Eq. (4.16). By summing
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all of the contributions to Σ11
22 from the second-order Feynman diagrams, we obtain

~Σ
11(2)
22 =n0c

2
0

∫

d3q

(2π)3

{

(A0,k +B0,k − 2C0,k)

[

A2,q

~

(

ωp − ω(1)
2,q − ω

(1)
0,k

)

+ iη

− B2,q

~

(

ωp + ω
(1)
2,q + ω

(1)
0,k

)

− iη

]

− P
1

ε0p − ε0q − ε0k

}

+ 6n0c
2
1

∫

d3q

(2π)3

[

A1,q(2A1,k + B1,k − 4C1,k) +C1,qC1,k

~

(

ωp − ω(1)
1,q − ω

(1)
1,k

)

+ iη
− B1,q(2B1,k + A1,k − 4C1,k) + C1,qC1,k

~

(

ωp + ω
(1)
1,q + ω

(1)
1,k

)

− iη

− 2P
1

ε0p − ε0q − ε0k

]

+
4n0c0c2

5

∫

d3q

(2π)3

[

(C0,q −A0,q)C2,k

~

(

ωp − ω(1)
0,q − ω

(1)
2,k

)

+ iη

− (C0,q −B0,q)C2,k

~

(

ωp + ω
(1)
0,q + ω

(1)
2,k

)

− iη

]

+
4n0c

2
2

25

∫

d3q

(2π)3

[

A0,qB2,k

~

(

ωp − ω(1)
0,q − ω

(1)
2,k

)

+ iη

− B0,qA2,k

~

(

ωp + ω
(1)
0,q + ω

(1)
2,k

)

− iη

]

+ c0

∫

d3q

(2π)3
(3B2,q + 2B1,q + B0,q)

+ c1

∫

d3q

(2π)3
(2B1,q + 4B2,q) +

2c2
5

∫

d3q

(2π)3
B2,q. (D.16)

Here the first-order (Bogoliubov) excitation spectra of the UN phase are given by

~ω
(1)
±2,p =

√

ε0p[ε0p − 2c2n0/5], (D.17)

~ω
(1)
±1,p =

√

ε0p[ε0p + 2(3c1− c2/5)n0], (D.18)

~ω
(1)
0,p =

√

ε0p[ε0p + 2(c0 + c2/5)n0], (D.19)

and

A2,p ≡
~ω

(1)
2,p + ε0p − c2n0/5

2~ω
(1)
2,p

, B2,p ≡
−~ω

(1)
2,p + ε0p − c2n0/5

2~ω
(1)
2,p

, C2,p ≡
c2n0/5

2~ω
(1)
2,p

, (D.20)

A1,p ≡
~ω

(1)
1,p + ε0p + (3c1 − c2/5)n0

2~ω
(1)
1,p

, B1,p ≡
−~ω

(1)
1,p + ε0p + (3c1 − c2/5)n0

2~ω
(1)
1,p

,

C1,p ≡
(3c1 − c2/5)n0

2~ω
(1)
1,k

, (D.21)

A0,p ≡
~ω

(1)
0,p + ε0p + (c0 + c2/5)n0

2~ω
(1)
0,p

, B0,p ≡
−~ω

(1)
0,p + ε0p + (c0 + c2/5)n0

2~ω
(1)
0,p

,

C0,p ≡
(c0 + c2/5)n0

2~ω
(1)
0,p

. (D.22)
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The self-energy Σ
22(2)
22 is obtained from Σ

11(2)
22 by Σ

22(2)
22 (ωp,p) = Σ

11(2)
22 (−ωp,−p). Similarly,

we obtain

~Σ
12(2)
2,−2 =n0c

2
0

∫

d3q

(2π)3
C2,q(2C0,k − A0,k −B0,k)

[

1

~

(

ωp − ω(1)
2,q − ω

(1)
0,k

)

+ iη

− 1

~

(

ωp + ω
(1)
2,q + ω

(1)
0,k

)

− iη

]

+ 6n0c
2
1

∫

d3q

(2π)3

[

−C1,k(2A1,q + 2B1,q − 3C1,q)

+A1,qB1,k

]

[

1

~

(

ωp − ω(1)
1,q − ω

(1)
1,k

)

+ iη
− 1

~

(

ωp + ω
(1)
1,q + ω

(1)
1,k

)

− iη

]

+
2n0c0c2

5

∫

d3q

(2π)3

[

A2,qB0,k + A0,kB2,q − (A2,q +B2,q)C0,k

]

×





1

~

(

ωp − ω(1)
2,q − ω

(1)
0,k

)

+ iη
− 1

~

(

ωp + ω
(1)
2,q + ω

(1)
0,k

)

− iη





+
4n0c

2
2

25

∫

d3q

(2π)3
C2,qC0,k

[

1

~

(

ωp − ω(1)
2,q − ω

(1)
0,k

)

+ iη
− 1

~

(

ωp + ω
(1)
2,q + ω

(1)
0,k

)

− iη

]

+ c0

∫

d3q

(2π)3

(

−C2,q +
c2n0

10ε0q

)

+ 2c1

∫

d3q

(2π)3

[

−C1,q +
(3c1− c2/5)n0

2ε0q

]

− 4c1

∫

d3q

(2π)3

(

−C2,q +
c2n0

10ε0q

)

+
c2
5

∫

d3q

(2π)3

{

2

(

−C2,q +
c2n0

10ε0q

)

− 2

[

−C1,q +
(3c1 − c2/5)n0

2ε0q

]

+

[

−C0,q +
(c0 + c2/5)n0

2ε0q

]

}

, (D.23)

and

µ(2) =2c0

∫

d3q

(2π)3
(B2,q +B1,q +B0,q) + 6c1

∫

d3q

(2π)3
B1,q +

2c2
5

∫

d3q

(2π)3
B0,q

+ c0

∫

d3q

(2π)3

[

−C0,q +
(c0 + c2/5)n0

2ε0q

]

+ 6c1

∫

d3q

(2π)3

[

−C1,q +
(3c1 − c2/5)n0

2ε0q

]

+
c2
5

∫

d3q

(2π)3

{

2

[

−C2,q +
c2n0

10ε0q

]

− 2

[

−C1,q +
(3c1− c2/5)n0

2ε0q

]

+

[

−C0,q +
(c0 + c2/5)n0

2ε0q

]

}

. (D.24)

To find the zero-momentum excitation energy, we evaluate the above self-energies at p = 0.

Furthermore, since ω±2,p=0 � |c1|n0 near the phase boundary, which can be justified a posteriori

from the final result, we make Taylor series expansions of Σ
11(2)
22 , Σ

22(2)
22 , and Σ

12(2)
2,−2 in powers of

ω±2,p=0/(|c1|n0) and ignore the quadratic and higher-order terms as shown in Eqs. (4.17)-(4.19).
The second-order self-energies and chemical potential can then be evaluated straightforwardly,
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and we obtain

~4Σ
11(2)
22 (ω±2,p=0,p = 0)

M3/2

=
n0c

2
0

π2

√

n0c̃0 +
12n0c

2
1
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√
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n0c0
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n0(3c̃1)3

+
n0c0
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√
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3
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√
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4n0c1
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n0c̃
3
2 +

2n0c2
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√

n0c̃
3
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3
√
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1
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√
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(√
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√
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−
√
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5c0
√
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√

5c̃0 + 2(5c̃2)
3/2
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3(5c0 + 2c2)2n
1/2
0
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}

+
2
√

2n0c0c2
5π2

×
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c2n
1/2
0√

10(
√
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√

5c̃0)
+

[

c̃2

[

(
√
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√
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4
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√
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√
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√
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√
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√
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3
√
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√
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√
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√
c̃2)(c̃0 + c̃2) ln

(
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)
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(

2c̃
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0 − 3c̃0c̃

1/2 + 3c̃
1/2
0 c̃2 − 2c̃

3/2
2

)
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√
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√
c̃0c̃2(

√
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√
c̃2)√
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√
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~ω±2,p=0

}

, (D.25)

where c̃0 ≡ c0 + c2/5, c̃1 ≡ c1 − c2/15, c̃2 ≡ −c2/5, and

α ≡ 1

n
3/2
0

∫ ∞

0
dx

1

2x
√

(x+ 2c̃0)(x+ 2c̃2)(
√
x+ 2c̃0 +

√
x+ 2c̃2)

. (D.26)

Note that α is infrared divergent, but it does not affect the final results as in the case of scalar
BECs (see Sec. 3.2). Similarly, we have

~4Σ
12(2)
2,−2 (ω±2,p=0,p = 0)

M3/2

=
3
√

2n0c
2
1

π2

√

6c̃1n0 +
n

3/2
0 c20c2

5π2(
√
c̃2 +

√
c̃0)
− c0(c̃2n0)

3/2

π2
+

2c1(3c̃1n0)
3/2

π2

+
4c1(c̃2n0)

3/2

π2
+

c2
5π2

[

−2(c̃2n0)
3/2 − 2(3c̃1n0)

3/2 + (c̃0n0)
3/2
]

+
2
√

2n3
0c

2
2c̃2c̃0

25π2
α+

2c0c2
5π2

[

10c0n0

√
c̃0n0 + 5c2n0

√
c̃0n0 + (5c̃2n0)

3/2
]

15c0 + 6c2
, (D.27)
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and

~
3µ(2)

M3/2
=

2c0n0

3π2

(

√

n0c̃
3
2 +

√

n0(3c̃1)3 +
√

n0c̃
3
0

)

+
2c1n0

π2

√

n0(3c̃1)3 +
2c2n0

15π2

√

n0c̃
3
0

+
c0(c̃0n0)

3/2

π2
+

6c1(3c̃1n0)
3/2

π2
+

c2
5π2

[

−2(c̃2n0)
3/2 − 2(3c̃1n0)

3/2 + (c̃0n0)
3/2
]

.

(D.28)

Around the UN-cyclic phase boundary [Eq. (4.2)] where c2 < 0, c1 > 0, and |c2| � c1, we

can make expansions of the self-energies in powers of |c2|/c1 and ignore the quadratic and

higher-order terms. Then, Σ
11(2)
2,2 , Σ

22(2)
2,2 , and Σ

12(2)
2,−2 reduce to

~Σ
11(2)
2,2 (ω±2,p=0,p = 0) =A+ B~ω±2,p=0, (D.29)

~Σ
22(2)
2,2 (ω±2,p=0,p = 0) =A− B~ω±2,p=0, (D.30)

~Σ
12(2)
2,−2 (ω±2,p=0,p = 0) =C, (D.31)

with

A− µ(2)

(Mn0)3/2
' − 4

√
3c

5/2
1

π2~3
+

(

42
√

3c
3/2
1 − 10c

3/2
0

)

c2

15π2~3
+O

[

( |c2|
c1

)2
]

, (D.32)

B

M3/2n
1/2
0

' −

(

c
3/2
0 + 3

√
3c

3/2
1

)

3π2~3
−

(

c
1/2
0 +

√
3c

1/2
1

)

c2

30π2~3
+O

[

( |c2|
c1

)2
]

, (D.33)

C

(Mn0)3/2
' 12

√
3c

5/2
1

π2~3
+

(

10c
3/2
0 − 30

√
3c

3/2
1

)

c2

15π2~3
+O

[

( |c2|
c1

)2
]

. (D.34)

Thus, we have derived Eqs. (4.22)-(4.24).

UN-BN phase transition. The degenerate mF = ±2 excitation modes of the UN phase
also brings about the UN-BN phase transition at c1 = 0 and c2 < 0 (see Sec. 4.5). By using
Eqs. (D.16), (D.23), and (D.24), we obtain the coefficients A,B, C defined by Eqs. (4.17)-(4.19).

However, around the UN-BN phase boundary where c2 < 0 and |c2| & |c1|, we cannot make
Taylor series expansions in powers of c2/|c1| and ignore higher-order terms as for the UN-cyclic

phase transition. Instead, we have

A − µ(2) +C

(Mn0)3/2
=

1

π2~3

(

8
√

3c̃
5/2
1 − 32√

3
c̃
3/2
1 c̃2 +

16

3
c̃1c̃

3/2
2 +

8√
3
c̃
1/2
1 c̃22 −

16

9
c̃
5/2
2

)

, (D.35)

where c̃1, c̃2 > 0 have been defined below Eq. (D.25). On the other hand, the other term on the
right-hand side of Eq. (4.21) is calculated to be

−2c2n0

5
+ A− µ(2) −C =− 2c2n0

5
+O

(

c̃1c̃
3/2
1 (Mn0)

3/2/~3
)

+O
(

c̃2c
3/2
0 (Mn0)

3/2/~3
)

.

(D.36)

Here, the last two terms on the right-hand side of Eq. (D.36) are smaller than the first term by
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a factor
√
na3 � 1 and thus are negligible. Thus, we have derived Eqs. (4.32) and (4.33).
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Appendix E

Decay channels for quasiparticles

E.1 Quasi-Nambu-Goldstone modes

The interaction Hamiltonian (7.1) is a sum of three interactions with coupling constants c0, c1,
and c2. The transition amplitude (7.9) for the quasi-NG modes (j = ±2) then vanishes except

for the two following combinations of the final state: j ′ = ±2 and j” = 0 with interaction
V̂0 [Eq. (7.2)], and j ′ = ±1 and j” = ±1 with interaction V̂1 [Eq. (7.3)]. In the former case,

condition (7.10) becomes

ω±2,p = ω±2,q + ω0,p−q. (E.1)

Using the dispersion relations (7.5) and (7.7), Eq. (E.1) reduces to

|p| − |q|
|p− q| =

√

5c0 + c2
|c2|

. (E.2)

Since c0 � |c2| for spin-2 87Rb, the the right-hand side of Eq. (E.2) is much larger than unity,
where as the left-hand side is smaller than unity. As a result, there is no final state that satisfies

condition (7.10).
Similarly, in the latter case, the condition (7.10) is written as

ω±2,p = ω±1,q + ω±1,p−q. (E.3)

Substituting Eqs. (7.6) and (7.7) in Eq. (E.3), we obtain

|p|
|q|+ |p− q| =

√

15c1 − c2
|c2|

. (E.4)

Since c1 > 0 and c2 < 0, the right-hand side of Eq. (E.4) is invariably larger than unity, while
the left-hand side is smaller than unity. Therefore, there is no decay channel for the quasi-NG

modes that satisfies condition (7.10).

E.2 Magnon

We now consider the decay channels for a magnon with momentum ~p in spin state mF =

j = ±1. If the interaction is V̂0 [Eq. (7.2)], the final spin state must be j ′ = ±1 and j” = 0.

95



Condition (7.10) is then written as

ω±1,p = ω±1,q + ω0,p−q, (E.5)

which by using Eqs. (7.5) and (7.6) reduces to

|p| − |q|
|p− q| =

√

5c0 + c2
15c1 − c2

. (E.6)

Since c0 � c1, |c2|, the right-hand side of Eq. (E.6) is much larger than unity, while the left-hand

side is invariably smaller than unity. Therefore, there is no final momentum q for this decay
channel to satisfy condition (7.10).

If the interaction is V̂1 [Eq. (7.3)], the final spin state can be either j ′ = 0 and j” = ±1 or
j ′ = ±2 and j” = ∓1. In the former case, condition (7.10) reduces to

ω±1,p = ω0,q + ω±1,p−q, (E.7)

which cannot be satisfied for any final momentum q in a manner similar to Eq. (E.5). In the

latter case, condition (7.10) is written as

ω±1,p = ω±2,q + ω∓1,p−q. (E.8)

Using the dispersion relations (7.6) and (7.7), we obtain

|p| − |p− q|
|q| =

√

|c2|
15c1 − c2

. (E.9)

Since both sides of Eq. (E.9) are smaller than unity (c2 < 0, c1 > 0), there exist values of the

final momentum q that satisfy condition (7.10). This leads to a finite damping rate of magnons.
Finally, if the interaction is V̂2 [Eq. (7.4)], which is expressed in terms of only the spin-

singlet pair amplitude, the transition amplitude (7.9) is nonvanishing only if the two particles
in the initial state, i.e., a magnon and a condensate atom, form a spin-singlet pair amplitude.
However, since the magnon and condensate atom, whose spin states are mF = j = ±1 and

mF = 0, respectively, cannot form a spin-singlet pair, there is no contribution from interaction
V̂2 to the damping rate of magnons.

E.3 Phonon

For the decay of a phonon in spin state mF = j = 0, all of the three interactions contribute

to the damping rate. If the interaction is V̂0, which is spin independent, two phonons with
momenta q and p−q would be generated. Similar to the case of scalar BECs, the contribution
to the damping rate of the phonon is then given by

P
(1)
damp =

3~|p|5
320πMn

. (E.10)

If the interaction is V̂1, the final spin states must be j ′ = ±1 and j” = ∓1. Condition (7.10)
is then written as

ω0,p = ω±1,q + ω∓1,p−q, (E.11)
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which, by using Eqs. (7.5) and (7.6), reduces to

|p|
|q|+ |p− q| =

√

15c1 − c2
5c0 + c2

. (E.12)

Since c0 � c1, |c2|, there exist values of q that satisfy Eq. (E.12), leading to a nonvanishing
contribution of this channel to the damping rate of phonons.

If the interaction is V̂2, the possible final spin states are given by j ′ = m and j” = −m with
m = −2, . . . , 2. Condition (7.10) then becomes

ω0,p = ωm,q + ω−m,p−q. (E.13)

Substituting Eqs. (7.5)-(7.7) in Eq. (E.13), we obtain

|p|
|q|+ |p− q| =















√

|c2|
5c0+c2

for m = ±2;
√

15c1−c2
5c0+c2

for m = ±1;

1 for m = 0.

(E.14)

Since c0 � c1, |c2|, for any of the above final spin states, there exist values of q that satisfy

Eq. (E.14), leading to a finite contribution to the damping rate of phonons.
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Appendix F

Imaginary part of the excitation
spectrum of magnons

The damping rate of a magnon is related to the imaginary part of its energy spectrum by
Eq. (7.25). At the level of the Bogoliubov theory, the energy spectra of all quasiparticles are
real numbers [Eqs. (2.75a)–(2.75e)], implying that the quasiparticles have infinitely long life-

time. However, as we go to the next order of approximation, i.e., the Beliaev theory, nonzero
imaginary parts emerge in their energy spectra; thus, their lifetimes become finite. The decay

of these quasiparticles can be interpreted as due to their collisions with the condensate particles
as discussed in the main text. In this Appendix, we will show that the damping rate of magnons

for the uniaxial-nematic (UN) phase [Eq. (7.21)] can be reproduced from the imaginary part
of the second-order energy spectrum of these quasiparticles. The calculation is based on the

spinor Beliaev theory that has been developed in Sec. 4.2. According to the Lehmann represen-
tation, the energy spectrum of magnons can be obtained from the poles of the Green’s function

G11
±1,±1(p) given by Eqs. (4.7) and (4.8) with j = ±1. There is a twofold degeneracy due to the

equivalence of the magnetic sublevels mF = ±1 in the UN phase [Eqs. (4.10a)–(4.10c)]. The
poles of G11

±1,±1(p) at finite momenta are given by

ω±1,p =
Σ11

1,1 − Σ22
1,1

2
+

{

−
(

Σ12
1,−1

)2
+

[

ε0p − µ
~

+

(

Σ11
1,1 + Σ22

1,1

)

2

]2}1/2

. (F.1)

Note that the self-energies on the right-hand side of Eq. (F.1) are functions of p and ω±1,p, and
we take only the plus sign in front of the square root for a reason similar to the argument above

Eq. (3.59).
By separating the contributions to Σ and µ in Eq. (F.1) from the first- and second-order

Feynman diagrams, the excitation spectrum of magnons is given up to the second order by

ω
(2)
±1,p =

Σ
11(2)
1,1 −Σ

22(2)
1,1

2
+

{

−
[

c̃1n0

~
+ Σ

12(2)
1,−1

]2

+

[

ε0p + c̃1n0

~
− µ(2)

~
+

Σ
11(2)
1,1 + Σ

22(2)
1,1

2

]2}1/2

'
Σ

11(2)
1,1 −Σ

22(2)
1,1

2
+

{

[

ω
(1)
±1,p

]2
+
ε0p + c̃1n0

~

[

Σ
11(2)
1,1 + Σ

22(2)
1,1 − 2µ(2)

~

]

−
2c̃1n0Σ

12(2)
1,−1

~

}1
2

'ω(1)
±1,p + Λ, (F.2)

98



where ω
(1)
±1,p is the first-order (Bogoliubov) spectrum of magnons given by Eq. (6.4), and

Λ ≡
Σ

11(2)
1,1 −Σ

22(2)
1,1

2
+

c̃1n0

2~ω
(1)
±1,p

[

Σ
11(2)
1,1 + Σ

22(2)
1,1 − 2Σ

12(2)
1,−1 −

2µ(2)

~

]

+
ε0p

2~ω
(1)
±1,p

[

Σ
11(2)
1,1 + Σ

22(2)
1,1 − 2µ(2)

~

]

. (F.3)

Here, in deriving the second and third (approximate) equalities of Eq. (F.2), we used the fact
that the second-order self-energies and chemical potential are smaller than c̃1n0 by a factor of√
na3 � 1 so that their higher-order terms can be ignored. Since both ω

(1)
±1,p and µ(2) are real

numbers, the imaginary part of ω
(2)
±1,p reduces to

Im
{

ω
(2)
±1,p

}

= Im

{

Σ
11(2)
1,1 − Σ

22(2)
1,1

2
+

c̃1n0

2~ω
(1)
±1,p

[

Σ
11(2)
1,1 + Σ

22(2)
1,1 − 2Σ

12(2)
1,−1

]

+
ε0p

2~ω
(1)
±1,p

[

Σ
11(2)
1,1 + Σ

22(2)
1,1

]

}

. (F.4)

By summing all the nonvanishing contributions to the imaginary parts of Σ11
1,1 and Σ12

1,−1

from the second-order Feynman diagrams, we obtain

Im
{

Σ
11(2)
1,1

}

=
6n0c

2
1

~2

∫

d3q

(2π)3

[

4A2,qB−1,k + A−1,kB2,q + 4C2,qC−1,k − 2A−1,kC2,q

− 4A2,qC−1,k + A2,qA−1,k

]

(−iπ)δ
(

ω
(2)
±1,p − ω

(1)
±2,q − ω

(1)
∓1,k

)

, (F.5)

Im
{

Σ
22(2)
1,1

}

=
6n0c

2
1

~2

∫

d3q

(2π)3

[

4A−1,kB2,q + A2,qB−1,k + 4C2,qC−1,k − 2B−1,kC2,q

− 4B2,qC−1,k +B2,qB−1,k

]

(−iπ)δ
(

ω
(2)
±1,p − ω

(1)
±2,q − ω

(1)
∓1,k

)

, (F.6)

Im
{

Σ
12(2)
1,1

}

=
6n0c

2
1

~2

∫

d3q

(2π)3

[

2A2,qB−1,k + 2A−1,kB2,q + 6C2,qC−1,k − 2A−1,kC2,q

− 2B−1,kC2,q −A2,qC−1,k − B2,qC−1,k

]

(−iπ)δ
(

ω
(2)
±1,p − ω

(1)
±2,q − ω

(1)
∓1,k

)

,

(F.7)

where A±j,p, B±j,p, and C±j,p are defined by

A±j,p ≡
ε0p + c̃jn0 + ~ω

(1)
±j,p

2~ω
(1)
±j,p

, B±j,p ≡
ε0p + c̃jn0 − ~ω

(1)
±j,p

2~ω
(1)
±j,p

(F.8)

for j = 0, 1, 2, and

C0,p ≡
c̃0n0

2~ω
(1)
0,p

, C±1,p ≡
c̃1n0

2~ω
(1)
±1,p

, C±2,p ≡ −
c̃2n0

2~ω
(1)
±2,p

. (F.9)

Here c̃0, c̃1, and c̃2 are defined below Eqs. (4.33) and (7.7), and the minus sign in the expression
for C±2,p results from the negative coupling constant c2 as discussed below Eq. (7.15).

Since the effects of quantum fluctuations are expected to be small in a weakly interacting
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dilute Bose gas, we have |ω(2)
±1,p/ω

(1)
±1,p − 1| ∼

√
na3 � 1, which can be justified a posteriori

from the final result. Therefore, ω
(2)
±1,p in Eqs. (F.5)-(F.7) can be replaced by ω

(1)
±1,p up to the

second-order approximation under consideration. The integrals
∫

d3q in these equations can
then be calculated straightforwardly, and by substituting the obtained imaginary parts of the

self-energies in Eq. (F.4), we find

Im
{

ω
(2)
±1,p

}

= − 3c21|p|3√
2π~(3c1− c2/5)

λ

(

c2
c1

)

, (F.10)

where λ(c2/c1) is defined by Eq. (7.22). Thus, we have derived Eq. (7.24). It follows from
Eqs. (7.25) and (F.10) that the damping rate of magnons [Eq. (7.21)] can be reproduced by

using the spinor Beliaev theory.
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