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Abstract

Effective mass plays important roles in the particle physics models of the very early
Universe. For example, thermal effective mass may be the origin of some cosmological
phase transitions like electroweak symmetry breaking. Another example is that the so-
called Hubble-induced mass, which is generated by supergravity effects during inflation, is
a key for the Affleck-Dine baryogenesis, the adiabatic solution for the cosmological moduli
problem and so on.

In this thesis, we consider the effective masses of scalar fields in the radiation dominated
Universe. We in particular pay attention to the effective mass of a weakly coupled scalar
field φ which interacts with the thermal plasma via Planck-suppressed interactions. Such
a Planck-suppressed interacting scalar field φ often appears in particle physics models.
However, what magnitude of the effective mass of φ arises in the radiation dominated era
has not been clarified so far. We investigate this issue, for the first time, by using the
techniques of thermal field theory which is the most reliable method for treating the finite
temperature system. At first, we consider a toy model in which scalar fields or fermion
fields consist of the thermal bath and these thermal fields generate the effective mass for φ.
Despite the fact that we use thermal field theory, we face some difficulties in the analysis.
To overcome the difficulties, we propose a solid and more transparent strategy for the
analysis of the effective mass of φ. Finally, we apply the improved method to the analysis
of the effective mass of φ which is generated by the minimal supersymmetric standard
model (MSSM) plasma. The resultant effective mass for φ is of the order of the Hubble
scale times some powers of the coupling constants of the thermalized fields.
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Chapter 1

Introduction

Effective mass plays important roles in particle physics models of the early Universe. Be-
fore the electroweak phase transition, the zero-temperature masses of particles we observe
today, which are generated by the Higgs scalar vacuum expectation value (VEV) [1–4],
are absent. However, there are possibilities that some fields have VEV or finite energy
density in that era (for instance the inflationary era [5–9]). Then, such VEV or finite
energy density serve as sources for the effective masses of fields.

The effective masses of fields can be generated by the thermal effect (radiation energy
density). (See for example Refs. [10–12]. We will review the thermal field theory in
Chap. 2.) In principle, if there is a thermal bath, all fields can be affected by thermal
effect and the dynamics of the fields can be changed qualitatively. For example, the
symmetry preservation occurs by a thermal potential, which eventually causes the phase
transition [13–15]. Also, the reheating process after inflation would be affected by the
thermal dissipation of energy [16–22].

The effective mass can also be provided by the Planck-suppressed interactions with
some field VEV or finite energy density. Such a Planck-suppressed interaction is provided
for example by supergravity (SUGRA) effect (with, for instance, the inflation energy) [23–
27]. Supergravity is the local version of supersymmetry (SUSY) [28], which provides many
interesting phenomenology. Here, SUSY is an attractive candidate for the physics beyond
the standard model of particle physics. One of the most interesting feature of SUSY for
cosmology is that there are naturally many scalar fields. In particular, there are many flat
directions in the field space in the minimal supersymmetric standard model (MSSM) [29].
These scalar fields may be responsible for the important phenomena in the early Universe
like inflation, baryogenesis and so on (for review see for example Refs. [30]).

In this thesis, we consider the effective mass of a scalar field φ in the radiation domi-
nated (RD) era. We in particular pay attention to the case in which the scalar field φ is
not directly coupled to the thermal bath. Even in this case, the scalar field φ would have
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some interactions with the bath thorough supergravity effects (Plank-suppressed interac-
tions). Whether or not this supergravity effect in the RD era provides the Hubble scale
effective mass for φ was an issue [31,32]. Furthermore, the magnitude of such an effective
mass in the RD era is important for some models of the early Universe. However, these
issues on the effective mass have not been resolved so far. Thus, it is important to clarify
what magnitude of the effective mass the Planck-suppressed interacting field φ acquires by
using a reliable method. This is the motivation of this thesis. Namely, the purpose of this
thesis is to investigate the effective mass of φ in the RD era by using thermal field theory
which is the most reliable technique for treating the finite temperature system [33–35]. As
a result, we for the first time clarify the magnitude of the effective mass of φ in the RD era,
which is of the order of the Hubble scale times the coupling constants of the thermalized
fields.

The rest of this thesis is organized as follows. In Chap. 2, we briefly overview the RD
era after inflation. In particular, we will see the standard picture of the cosmic reheating
process. Then in Chap. 3, we review thermal field theory. There, we see how the Green
functions are defined in the so-called imaginary-time and real-time formalism. We also
summarize the self-energy, dispersion relation and free energy for a scalar field and QED
fields. In Chap. 4, we summarize the form of the kinetic terms and interaction terms in the
supergravity framework. Then, we briefly review the effects of the Hubble scale effective
mass in the inflaton dominated era. In Chap. 5, we review what has been done in the
previous studies [31, 32] for the evaluation of the effective mass of the Planck-suppressed
interacting scalar field φ. Here, we point out the problem of the previous studies and we
attempt to improve the situation by using thermal field theory. However, there are some
difficulties in the procedure. To overcome the difficulties, in Chap. 6, we propose a solid
and more transparent procedure for the evaluation of the effective mass in which we have
only to evaluate the free energy density of the system. As a demonstration, we apply this
improved method to the case in which the thermal bath consists of the MSSM particles.
Finally, Chap. 7 is devoted to conclusions.

Chapters 5 and 6 are based on Refs. [33, 34] and Ref. [35], respectively.

Notation

In this thesis, we adopt the following notations:

• The signs of metric gµν are defined as (+ −−−).

• For coordinate vectors and momentums, Greek indices µ, ν, · · · represent 4-dimensional
spacetime coordinates, running over (0, 1, 2, 3) in the Minkowski spacetime or (4, 1, 2, 3)
in the Euclidean spacetime. On the other hand, Latin indices i, j, · · · represent 3-
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dimensional space coordinate, (1, 2, 3).

• We use the natural unit ! = c = kB = 1.

• ϵ is a positive infinitesimal parameter ϵ→ +0.
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Chapter 2

The early radiation dominated
Universe

In this chapter, we briefly review the standard picture of the early Universe [36] in par-
ticular the cosmic reheating after inflation. The overview of the thermal history of the
Universe is as follows. Let us start with the epoch of the cosmic reheating after inflation
where the inflaton converts its energy to the radiation. Then the Universe is dominated by
the cosmic plasma with temperature T which decreases as the Universe expands. When
the temperature drops to the electroweak energy scale, T ∼ O(100) GeV, the electroweak
phase transition occurs and the standard model particles acquire the zero-temperature
masses by the Higgs mechanism. Furthermore, when the temperature becomes the QCD
energy scale, T ∼ O(100) MeV, the QCD phase transition occurs and the quarks and
gluons become confined in hadrons. At the temperature T ∼ 1 MeV, neutrinos decouple
from the photon thermal bath and then electron annihilates. After that the Big Bang
Nucleosynthesis occurs. Finally, at the temperature T ∼ 1 eV, the RD era ends (the
matter-radiation equality) and the matter dominated (MD) era begins. The recombina-
tion takes place at the temperature T ∼ 0.1 eV.

The rest of this chapter is organized as follows. In Sec. 2.1, we summarize the Friedman-
Robertson-Walker (FRW) Universe. Then in Sec. 2.2, we see the standard picture of the
cosmic reheating after inflation. We will derive the reheating temperature which is the
initial condition for the RD era.

2.1 The flat Universe with the FRW metric

The dynamics of the Universe is governed by the Einstein equation:

Rµν − gµνR = 8πGTµν , (2.1)
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where Rµν is the Ricci tensor, R is the Ricci scalar , gµν is the metric, G is the Newton
constant and Tµν is the energy-momentum tensor. Here, we consider the flat Universe
with the FRW metric and thus the line element is given by

ds2 = dt2 − a2(t)dx2, (2.2)

where a(t) is the scale factor. In this case, the (0, 0) component of the Einstein equa-
tion (2.1) leads to the following Friedman equation:

H2 =
1

3M2
P

ρ, (2.3)

where H is the Hubble parameter, MP ≃ 2.4 × 1018 GeV is the reduced Planck mass
and ρ is the total energy density of the Universe. Since we assume that the Universe is
homogeneous and isotropic, the energy-momentum tensor of the Universe is taken to be
the perfect fluid form: Tµ

ν = diag(ρ,−p,−p,−p) (p is the pressure). Thus, the energy
conservation law T 0ν

;ν = 0 (the symbol “ ; ” represents the covariant derivative) leads to
the following equation:

d
dt
ρ = −3H(1 + w)ρ, (2.4)

where w represents the equation of state for the energy density and the pressure: p = wρ.
Note that Eq. (2.4) is equivalent to the first law of thermodynamics with dS = 0 (S is the
total entropy):

d(ρa3) = −pd(a3). (2.5)

(The other conservation law T iν
;ν = 0 is automatically satisfied for the FRW metric and

the perfect fluid form of Tµ
ν .) From Eq. (2.4), if w is constant, the total energy density ρ

scales as

ρ ∝ a−3(1+w). (2.6)

Corresponding to the energy dominating the Universe, w takes the following values:

w =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/3 (radiation-dominated),

0 (matter-dominated),

−1 (vacuum energy-dominated).

(2.7)

Thus, from Eq. (2.6), we obtain the scaling law of ρ as

ρ ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a−4, a ∝ t1/2 (radiation-dominated),

a−3, a ∝ t2/3 (matter-dominated),

a0 , a ∝ eHt (vacuum energy-dominated),

(2.8)
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2.2 The cosmic reheating after inflation

The standard picture of the cosmic reheating after inflation is as follows [36]. After
inflation, the inflaon field oscillates around the potential minimum. We here consider the
case in which the inflaton oscillates with the quadratic potential around the potential
minimum. In this case, the equation of state for the inflaton is w = 0 and thus behaves
like a pressureless matter. The inflaton dissipates its energy through the decay process
into the radiation. Below, we neglect the back reaction by the radiation, namely the
scattering process between the inflaon and the radiation. From the energy conservation
and the Friedman equation, the evolution equations for ρI and ρr (the energy densities of
the inflaton and radiation, respectively) are given by

d
dt
ρI = −3HρI − ΓIρI ,

d
dt
ρr = −4Hρr + ΓIρI ,

H2 =
1

3M2
P

(ρI + ρr) ,

(2.9)

where ΓI is the inflaton decay rate (here we assume it as a constant). Note that Eq. (2.9)
assumes that the decay products of the inflaton thermalize instantaneously and form the
radiation. Thus, the energy density of the radiation ρr has the following form determined
by the thermodynamics:

ρr =
π2g∗
30

T 4, (2.10)

where g∗ is the relativistic degrees of freedom in the thermal bath and T is the temperature
of the radiation.

In the sudden decay approximation, the inflaton is assumed to decay suddenly at
H = ΓI and inflaton energy is completely converted to the radiation energy. In this case,
the relation 3H2M2

P = ρr gives the following reheating temperature TRH:

TRH =
(

90
π2g∗

)1/4√
MPΓI . (2.11)

Considering the very early times in which the inflaton coherent oscillation dominates
the Universe (the MD era), we can estimate the maximum temperature as following. The
formal solution to Eq. (2.9) is given by

ρI(t) = ρI(t0)
(

a(t0)
a(t)

)3

e−ΓI(t−t0),

ρr(t) = ρr(t0)
(

a(t0)
a(t)

)4

+ ΓIρI(t0)
(

a(t0)
a(t)

)4 ∫ t

t0

dt′
(

a(t′)
a(t0)

)
e−ΓI(t′−t0),

(2.12)
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where t0 is an initial time. Since we consider the MD era with ΓI(t − t0) ≪ 1, the scale
factor changes as a(t) ∝ t2/3 and we obtain

ρr(t) ≃ ΓIρI(t0)
(

t0
t

)8/3

t

(
t

t0

)2/3

=
ΓIρI(t0)t20

t
. (2.13)

Here, we have assumed that the radiation does not exist at the initial time (ρr(t0) = 0).
Now, if we write ρI(t0) = M4 and t ≃ t0 ≃ 2

3H ≃ 2MP√
3M2 , we obtain

ρr(t) ≃
2√
3
M2ΓIMP =

√
2π2g∗

45
M2T 2

RH (2.14)

for the very early times. Thus, using ρr = (π2g∗/30) T 4
max, the maximum temperature

Tmax is estimated as

Tmax ≃
(

40
π2g∗

)1/8√
MTRH. (2.15)

Since M > (π2g∗/30)1/4 TRH, Tmax > TRH is verified. From this result, we can see
that even if ΓI is suppressed and thus TRH is low, the Universe experiences much higher
temperature Tmax.

Before we close this chapter, let us comment on the studies beyond the above simple
picture of the cosmic reheating. In Refs. [37–40], the non-perturbative decay of the infla-
ton, which is called preheating, is studied. In Refs. [16–22], the thermal dissipation effect
to the reheating process is investigated. These effects are very interesting itself and impor-
tant to the reheating process once we want to look it closely. However, we do not pursue
these subjects in this thesis and we simply take Eq. (2.11) as the reheating temperature
of the Universe which is the highest temperature in the RD era.
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Chapter 3

Review of thermal field theory

In this chapter, we review thermal field theory. (See for example Refs. [10–12].) The
most interesting feature of thermal field theory is that there is a typical energy scale, i.e.,
the temperature T . The existence of the temperature T and thus thermal effects make
differences from the zero-temperature field theory. For example, the dispersion relation
of a thermalized field generically has complicated structure, fields acquire effective masses
characterized by T , the least-free energy state is realized instead of the least-energy state
and so on. We will see the basis of the thermal field theory below and we will use the
techniques in later chapters.

The organization of this chapter is as follows. In Sec. 3.1, we introduce the Green
function and the spectral function which are the most important ingredients in thermal
field theory. Also, we will see two kinds of formalism which are necessary for concrete
calculations: the imaginary-time (Matsubara) formalism and the real-time formalism.
Then, in Sec. 3.2, we investigate the property of the self-energy. In particular, we carefully
consider the analytic continuation of the self-energy. We also calculate the self-energies of
a real scalar field and QED fields. In Sec. 3.3, we derive the dispersion relations for a real
scalar field and QED fields. Finally, in Sec. 3.4, we evaluate the free energies for a yukawa
plasma and a QED plasma, which will be the basis for a later chapter.

3.1 Elements of thermal field theory

3.1.1 Path-integral formulation of thermal field theory

In this subsection, we formulate thermal field theory of a real scalar field by using the
path-integral method. Assigning the time-contour of the path-integral, we will introduce
both the imaginary-time formalism and real-time formalism. For a fermionic field, we
briefly derive the properties of propagators in Appendix. B.
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A physical quantity A in a finite temperature system is defined as the thermal average:

⟨Â⟩ ≡ 1
Z

tr
(
e−βĤÂ

)
, (3.1)

where the quantities with ˆ are the quantum operators, β = 1/T is the inverse temperature,
Ĥ is the Hamiltonian of the system and Z is the partition function given by

Z = tr
(
e−βĤ

)
. (3.2)

Here and hereafter, we neglect the chemical potential for simplicity. As for the thermalized
system of a real scalar field ϕ, using the complete set of state {|ϕ(x), ti⟩} at an initial time
ti, the partition function Z can be written as

Z =
∫

Πxdϕ(x) ⟨ϕ(x), ti| e−βĤ |ϕ(x), ti⟩

=
∫

Πxdϕ(x) ⟨ϕ(x), ti − iβ|ϕ(x), ti⟩

= N
∫

C
Πt,xdϕ(t,x) exp

{
i

∫

C
d4x L

} ∣∣∣
periodic

≡
∫

C
Dϕ exp

{
i

∫

C
d4x L

} ∣∣∣
periodic

,

(3.3)

where |ϕ(x), t⟩ (= eiĤt|ϕ(x), 0⟩) is the eigenstate of the Heisenberg field operator ϕ̂(t,x).
In the second line in Eq. (3.3), we have identified e−βĤ as the (inverse) time evolution
operator e−iĤt with the imaginary time t = −iβ. Also, we have expressed the transition
matrix ⟨ϕ(x), ti−iβ|ϕ(x), ti⟩ by the path-integral in the third line. N is a constant and L is
the Lagrangian of the system. C is a time-contour in the complex time plain, which starts
from an initial time t = ti and ends at a final time t = ti − iβ. The above path-integral
must satisfy the periodic boundary condition [41,42]:

ϕ(t = ti − iβ,x) = ϕ(t = ti,x), (3.4)

which is shown in Eq. (3.3) by “periodic”. This is due to the fact that the trace in Eq. (3.2)
sandwiches the operator between the same states.

The generating functional for the n-point Green functions ZC [J ], with ZC [0] = Z, is
given by

ZC [J ] =
∫

C
Dϕ exp

{
i

∫

C
d4x (L + Jϕ)

} ∣∣∣
periodic

= Z ⟨T̂C exp
{

i

∫

C
d4x J(x)ϕ̂(x)

}
⟩,

(3.5)

where T̂C is the time ordering operator along the time-contour C and J(x) is a classical
source function. Note that the full propagator DC(x − x′) (here x, x′ ∈ C and we write
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DC(x, x′) = DC(x−x′) by the translational invariance of the thermal equilibrium system)
is given by the functional derivative of Z[J ]:

DC(x − x′) =
1
Z

δ2ZC [J ]
iδJ(x)iδJ(x′)

∣∣∣∣∣
J=0

=
1
Z

∫

C
Dϕ ϕ(x)ϕ(x′) exp

{
i

∫

C
d4x L

}

= ⟨T̂C ϕ̂(x)ϕ̂(x′)⟩.

(3.6)

Thus, we can evaluate the full propagator DC(x − x′) by the thermal averaged two-point
function. Note that, from Eq. (3.4), the full propagator DC(x − x′) satisfies the periodic
boundary condition [41,42]:

DC(x − iβ) = DC(x). (3.7)

Writing the Lagrangian as L = 1
2∂µϕ∂µϕ− 1

2m2ϕ2 +Lint(ϕ), the generating functional
ZC [J ] can be written as

ZC [J ] = exp
{

i

∫

C
d4x Lint

(
δ

iδJ

)}
ZF

C [J ]. (3.8)

Here, ZF
C [J ], with ZF

C [0] = ZF (the free partition function), is the free generating func-
tional given by

ZF
C [J ] =

∫

C
Dϕ exp

{
i

∫

C
d4x

(
1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 + Jϕ

)} ∣∣∣
periodic

= ZF exp
{∫

C
d4x

∫

C
d4x′ −1

2
J(x)DF

C (x − x′)J(x′)
}

,

(3.9)

where DF
C (x − x′) is the free propagator given by

DF
C (x − x′) =

1
ZF

δ2ZF
C [J ]

iδJ(x)iδJ(x′)

∣∣∣∣∣
J=0

. (3.10)

Note that, from Eq. (3.4), the free propagator DF
C (x− x′) satisfies the periodic boundary

condition [41,42]:

DF
C (x − iβ) = DF

C (x). (3.11)

In the following two subsections, we briefly summarize two formalisms, i.e., the imaginary-
time and real-time formalisms. In the imaginary-time formalism, the time-contour C is
taken to be the simplest one: C = [0,−iβ] along the imaginary axis. On the other hand,
in the real-time formalism, the time-contour C is taken to be more complicated one which
includes the real axis.
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3.1.2 Imaginary-time formalism

In this subsection, we take the contour as CI = [0,−iβ] along the imaginary axis. This is
the case for the so-called imaginary-time (Matsubara) formalism [43]. In this formalism,
the time coordinate is taken to be pure imaginary and the metric is now the Euclidean
one:

x0 = −ix4 (0 ≤ x4 ≤ β),

gµν = −δµν (µ, ν = 4, 1, 2, 3).
(3.12)

Also, we denote the coordinate four-vector in the Euclidean spacetime as

xEµ = (x4,x). (3.13)

Accordingly, we have
∫

CI

d4x = −i

∫ β

0
d4xE = −i

∫ β

0
dx4

∫
d3x,

{γµ, γν} = −2δµν (µ, ν = 4, 1, 2, 3),

γ0 = −iγ4,

(3.14)

where γµ is the Dirac gamma matrix.
Below, we consider a real scalar field ϕ as the simplest example. For other types of

field like fermion or gauge field, the basic procedure is almost the same as the one in the
real scalar field case. First of all, let us write down the imaginary-time action for the real
scalar field ϕ. The action for ϕ in the Minkowski spacetime is given by

iS = i

∫
d4x L(ϕ)

= i

∫
d4x

(
1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 + Lint(ϕ)

)
.

(3.15)

Here, we assume that the interaction term Lint(ϕ) does not include derivative interactions.
In order to go to the imaginary-time formalism, we need to replace the time coordinate as
x0 → −ix4 and

∂µϕ∂
µϕ→ −∂µϕ∂µϕ. (3.16)

Thus, the transition of the action (3.15) to the imaginary-time formalism one, SE , is as
follows

iS → i(−i)
∫ β

0
d4xE

(
−1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 + Lint(ϕ)

)

= −
∫ β

0
d4xE

(
1
2
∂µϕ∂µϕ+

1
2
m2ϕ2 − Lint(ϕ)

)

≡ −SE .

(3.17)
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The generating functional for the n-point Green functions in the imaginary-time for-
malism ZCI [J ], with ZCI [0] = Z, is given by

ZCI [J ] =
∫

CI

Dϕ exp
{
−
∫ β

0
d4xE (L(ϕ) − Jϕ)

} ∣∣∣
periodic

= exp
{∫ β

0
d4xE Lint

(
δ

δJ

)}
Z(F )

CI
[J ],

(3.18)

where ZF
CI

[J ] is the free generating functional with the time-contour CI as given in
Eq. (3.9). The propagator in the imaginary-time formalism, ∆(xE − x′

E) (here we use
the short-hand notation ∆(xE) = ∆(x4,x)), can be obtained from the functional deriva-
tive of ZCI [J ] as

∆(xE − x′
E) =

1
Z

δ2ZCI [J ]
δJ(xE)δJ(x′

E)

∣∣∣∣∣
J=0

=
1
Z

∫

CI

Dϕ ϕ(xE)ϕ(x′
E) exp {−SE}

= ⟨T̂CI ϕ̂(xE)ϕ̂(x′
E)⟩.

(3.19)

From the generating functional (3.18), we can obtain the Feynman rule in the imaginary-
time formalism which we summarize in Appendix C. The advantage of this formalism
is that the calculation is simple. However, since the energy is pure imaginary in this
formalism, respecting the periodic (anti-periodic for fermions) boundary condition (3.4),
we have to make analytic continuation for physical quantities in order to have the real
energy.

Before we go to the real-time formalism, let us discuss more about the propagator in
the imaginary-time formalism, ∆(xE − x′

E), for later convenience. From Eq. (3.19), we
have

∆(xE − x′
E) = ⟨T̂CI ϕ̂(xE)ϕ̂(x′

E)⟩

= θCI (x4 − x′
4) ∆>(xE − x′

E) + θCI (x
′
4 − x4) ∆<(xE − x′

E),
(3.20)

where θCI (x4 − x′
4) is the step function on the time-contour CI . Here, we have defined

∆>(<)(xE − x′
E) as

∆>(xE − x′
E) = ⟨ϕ̂(xE)ϕ̂(x′

E)⟩,

∆<(xE − x′
E) = ⟨ϕ̂(x′

E)ϕ̂(xE)⟩.
(3.21)

Note that, from Eq. (3.4), the full propagator in the imaginary-time formalism, ∆(xE),
satisfies the periodic boundary condition [41,42]:

∆(xE + β) = ∆(xE), (3.22)
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which is a special case of Eq. (3.7). For taking into account of the periodicity (3.22), we
have only to represent ∆(xE) by the Fourier series and integral:

∆(xE) = T
∞∑

n=−∞

∫
d3k

(2π)3
e+iKµxEµ∆(iωn,k), k4 = −ωn = −2nπ

β
, (3.23)

where n runs all integers (n = · · · ,−1, 0, 1, · · · ). Here and hereafter, we denote the
Euclidean four-momentum by capital letter as3-1

Kµ = (k4,k) = (−ωn,k) (3.24)

and KµxEµ = k4x4 + k · x = −ωnx4 + k · x (we have defined xEµ = (x4,x)), while we
use small letter like kµ for the four-momentum in the Minkowski spacetime. The inverse
transformation of Eq. (3.23) is given by

∆(K) = ∆(iωn,k) =
∫ β

0
dx4

∫
d3x e−iKµxEµ∆(xE). (3.25)

Here and hereafter, we use the notation ∆(K) = ∆(iωn,k).
The discussion so far is valid for the full propagator in the imaginary-time formalism,

∆(xE). Before we go, let us see the consequence for the free propagator ∆F (xE). (Below,
we use the superscript “ F ” for the functions of free fields.) The equation of motion for
the free propagator is given by

(−∂xµ∂xµ + m2)∆F (xE − x′
E) = δ(4)(xE − x′

E). (3.26)

From Eqs. (3.23) and (3.26), the Fourier component ∆F (iωn,k) satisfies the following
equation:

(K2 + m2)∆F (iωn,k) = 1, (3.27)

where K2 = KµKµ = k2
4 +k2 = ω2

n +k2. Thus, we arrive at the following free propagator
in the imaginary-time formalism:

∆F (K) =
1

K2 + m2
=

1
ω2

n + k2 + m2
. (3.28)

3.1.3 Real-time formalism

In this subsection, we take the time-contour C to be more complicated than in the
imaginary-time formalism. Namely, we take C = CR = C1∪C2∪C3∪C4, where C1 = [ti =
−∞, tf = +∞] along the real axis, C2 = [+∞− iσ,−∞− iσ] along the horizontal straight

3-1The minus sign of −ωn is just a convention.
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line, C3 = [+∞, +∞− iσ] along the vertical straight line and C4 = [−∞− iσ,−∞− iβ]
along the vertical straight line (here, 0 ≤ σ ≤ β). This is the standard choice of the path
in the so-called real-time formalism. Note that we have chosen the initial and the final
time as ti = −∞ and tf = +∞, respectively. In this formalism, the time coordinate is
allowed to be complex, but real time actually has the major role. Also, we work with the
Minkowski metric in this formalism.

Below, we consider the real scalar field ϕ as the simplest example. For other types of
field like fermion or gauge field, the basic procedure is almost the same as the one in the
real scalar field case. First, let us write down the action for ϕ in the real-time formalism:

iS = i

∫

CR

d4x L(ϕ)

= i

∫

CR

d4x

(
1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 + Lint(ϕ)

)
,

(3.29)

where we assume that Lint(ϕ) does not include derivative interactions. The generating
functional for the n-point Green functions in the real-time formalism is given by

ZCR [J ] =
∫

CR

Dϕ exp
{

i

∫

CR

d4x (L + Jϕ)
} ∣∣∣

periodic

= exp
{

i

∫

CR

d4x Lint

(
δ

iδJ

)}
ZF

CR
[J ].

(3.30)

Here, ZF
CR

[J ] is the free generating functional given by

ZF
CR

[J ] =
∫

CR

Dϕ exp
{

i

∫

CR

d4x

(
1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 + Jϕ

)} ∣∣∣
periodic

= ZF exp
{∫

CR

d4x

∫

CR

d4x′ −1
2

J(x)DF
CR

(x − x′)J(x′)
}

,

(3.31)

where ZF is the free partition function.
In order to obtain the relevant form of the full generating functional ZCR [J ] for the

Green functions with real time, let us consider the free generating functional ZF
CR

[J ] for
a moment. Since we have chosen the initial and the final time as ti = −∞ and tf = +∞,
respectively, the free propagator DF

CR
(x − x′) =

∫∞
−∞

dk0
2π

∫
d3k

(2π)3 e−ik·(x−x′)DF
CR

(k) drops
for x0 ∈ C12, x′

0 ∈ C34 (here Cij = Ci ∪ Cj) and x0 ∈ C34, x′
0 ∈ C12, which is the

consequence of the Riemann-Lebesgue lemma [10]3-2. Here, we have used the short-hand
notation: k · (x−x′) = k0(x0−x′

0)−k · (x − x′). Thus we can separate the free generating
functional as

ZF
CR

[J ] = ZF
C12

[J ] × ZF
C34

[J ], (3.32)
3-2Here, DF

CR
(k) needs to be integrable. Also, for x0 ∈ C12(C34) and x′

0 ∈ C34(C12), x0 ̸= ±∞ is needed.
In this case, we require J(x) → 0 (x0 → ±∞).
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where ZF
Cij

[J ] is given by

ZF
Cij

[J ] = NCij exp

{∫

Cij

d4x

∫

Cij

d4x′ −1
2

J(x)DF
Cij

(x − x′)J(x′)

}
. (3.33)

Here, NCij is a constant. Since we are interested in the Green functions which have the
time coordinates on the real axis C1, ZF

C34
can be considered as a multiple constant in

Eq. (3.32):

ZF
CR

[J ] = N ′ ZF
C12

[J ]. (3.34)

where N ′ is a irrelevant constant for ZC12 [J ] (namely, J(x) here lives only on C12).
Now, let us return to our subject. From Eqs. (3.30) and (3.34), we effectively have the

following full generating functional which contains real time:

ZCR [J ] = N ′ exp
{

i

∫

C12

d4x Lint

(
δ

iδJ

)}
ZF

C12
[J ]

=
∫

Dϕ1Dϕ2 exp
{

i

∫ ∞

−∞
d4x (L[ϕ1] − L[ϕ2] + J1ϕ1 − J2ϕ2)

} ∣∣∣
periodic

= Z ⟨T̂C12exp
{

i

∫

C12

d4x J(x)ϕ̂(x)
}
⟩,

(3.35)

where, we have used the short-hand notations J1 = J(x0,x), J2 = J(x0−iσ,x) (we use the
same notation for ϕi) and

∫∞
−∞ d4x =

∫∞
−∞ dx0

∫
d3x. From Eq. (3.35), the full propagator

in the real-time formalism, Dij(x − x′), is now given by

Dij(x − x′) =
1
Z

δ2ZCR [J ]
iδJi(x)iδJj(x′)

∣∣∣∣∣
J=0

=

(
D11(x − x′) D12(x − x′)
D21(x − x′) D22(x − x′)

)

=

(
⟨T̂ ϕ̂(x)ϕ̂(x′)⟩ ⟨ϕ̂(x′)ϕ̂(x)⟩
⟨ϕ̂(x)ϕ̂(x′)⟩ ⟨ ˆ̄T ϕ̂(x)ϕ̂(x′)⟩

)
,

(3.36)

where T̂ and ˆ̄T are the time-ordering and anti time-ordering operators, respectively, and
we have used the matrix notation (the (i, j) component corresponds to x0 ∈ Ci, x′

0 ∈ Cj

(i, j = 1, 2)). We have also used Eq. (3.6) in the last line. Thus, we have four types of
propagator in the real-time formalism. For the convenience in the next subsection, let us
write down the full propagator Dij(x − x′) without the matrix form:

Dij(x − x′) = ⟨T̂C12ϕ̂(x)ϕ̂(x′)⟩

= θC12(x0 − x′
0)⟨ϕ̂(x)ϕ̂(x′)⟩ + θC12(x

′
0 − x0)⟨ϕ̂(x′)ϕ̂(x)⟩

= θC12(x0 − x′
0)D

>(x − x′) + θC12(x
′
0 − x0)D<(x − x′),

(3.37)
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where θC12(x0−x′
0) is the step function on the time-contour C12, namely, θC12(x0−x′

0) = 1
(when x0 is after x′

0 on C12) and θC12(x0 − x′
0) = 0 (when x0 is before x′

0 on C12). Also,
we have defined D>(<)(x − x′) as

D>(x − x′) = ⟨ϕ̂(x)ϕ̂(x′)⟩,

D<(x − x′) = ⟨ϕ̂(x′)ϕ̂(x)⟩.
(3.38)

From the generating functional (3.35), we can obtain the Feynman rule in the real-
time formalism. The Feynman rule in this formalism is “almost” the same as in the usual
zero-temperature formulation (so we do not show it in this thesis). The difference is that
we have two types of vertex, Lint(ϕ1) and −Lint(ϕ2), since we have now two degrees of
freedom ϕ1 and ϕ2. One of the degrees of freedom ϕ2 can be interpreted as an unphysical
degrees of freedom living on the contour C2. This unphysical degrees of freedom inevitably
appears when we include the real axis in the time-contour since we have to “come back”
along the real axis in the path-integral in this case. We note that the physical quantities
have only the ϕ1 external lines. The advantage of the real-time formalism is that we do not
need any analytic continuation for Green functions which is needed in the imaginary-time
formalism to obtain the real energy. However, the price of this formalism is the complexity
of the calculation which is originated by the existence of the unphysical degrees of freedom
ϕ2.

3.1.4 Spectral function

The spectral function ρ(k) of the thermalized field ϕ is the most important function for
describing the state of ϕ, which is defined by

ρ(k) ≡ D>(k) − D<(k). (3.39)

Here, D>(<)(k) is defined as the Fourier component of D>(<)(x−x′) (defined in Eq. (3.38))
in the following equation:

D>(<)(x − x′) =
∫ ∞

−∞

dk0

2π

∫
d3k

(2π)3
e−ik·(x−x′)D>(<)(k), (3.40)

where k · (x − x′) = k0(x0 − x′
0) − k · (x − x′). Note that the spectral function ρ(k) is

defined in the real-time formalism. Since the spectral function ρ(k) is nothing but the
two-point Green function, ρ(k) contains the information about the state of ϕ, i.e., the
dispersion relation, the width and the residue of the quasi-particle pole of ϕ and so on
(see for example Refs. [11, 12]).

In this subsection, according to Ref. [15], we connect the spectral function ρ(k) defined
in Eq. (3.39) to the imaginary-time formalism. First, let us apply the analytic continuation
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to D>(<)(x) (which is defined by Eq. (3.38) ) into the imaginary-time. On the imaginary-
time contour CI , the analytically-continued quantity D>(<)(x) coincides with ∆>(<)(xE)
(which is defined by Eq. (3.21) ) as3-3

D>(<)(−ix4,x) = ∆>(<)(x4,x). (3.41)

Furthermore, since the periodic boundary condition (3.22) can be rewritten as ∆(x4−β) =
∆(x4), we have the following equation:

∆>(x4,x) = ∆<(x4 − β,x). (3.42)

Putting together Eqs. (3.41) and (3.42), and using the analytic continuation x4 = ix0

(here x0 is real), we have

D>(x0,x) = D<(x0 + iβ,x). (3.43)

Thus, writing the two-point Green functions D>(<) by the Fourier integral

D>(<)(x) =
∫

d4k

(2π)4
e−ik·xD>(<)(k), (3.44)

we obtain, from Eq. (3.43), the following important relation between the Fourier compo-
nents D>(<)(k) as

D>(k) = eβk0D<(k). (3.45)

Furthermore, defining a function D+(k)3-4 as

D+(k) ≡ 1
2
(D>(k) + D<(k)) (3.46)

and using the definition of the spectral function (3.39) and the relation (3.45), we obtain
the following relations:

D<(k) = fB(k0)ρ(k),

D>(k) = (1 + fB(k0))ρ(k),

D+(k) =
1
2

coth
(
βk0

2

)
ρ(k),

(3.47)

where fB(k0) = 1/(eβk0 − 1) is the Bose-Einstein distribution function.
3-3Do not confuse the symbol “∆” with “D”. We have denoted the propagator in the imaginary-time

formalism by the symbol “∆” which should be distinguished from the one in the real-time formalism, “D”.
When we have to explicitly show the time-contour C of a propagator, we will denote the propagator by
the symbol “DC” as in Sec. 3.1.1.

3-4D+(k) is sometimes called as statistical propagator.
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Now, let us write down the full propagator in the imaginary-time formalism, ∆(iωn,k),
in terms of the spectral function ρ(k). Using the inverse Fourier transformation (3.25),
the relation ∆(xE) = ∆>(xE) and Eqs. (3.41) and (3.44), we obtain

∆(iωn,k) =
∫ β

0
dx4 eiωnx4 ∆>(x4 − 0,k)

=
∫ β

0
dx4 eiωnx4 D>(−ix4,k)

=
∫ β

0
dx4 eiωnx4

∫ ∞

−∞

dk′
0

2π
e−ik′

0(−ix4) D>(k′
0,k)

= −
∫ ∞

−∞

dk′
0

2π
ρ(k′

0,k)
iωn − k′

0

.

(3.48)

Applying the analytic continuation to Eq. (3.48) as iωn → k0 ± iϵ, we obtain

∆(k0 + iϵ,k) − ∆(k0 − iϵ,k) = −
∫ ∞

−∞

dk′
0

2π

(
1

k0 − k′
0 + iϵ

− 1
k0 − k′

0 − iϵ

)
ρ(k′

0,k)

= iρ(k),
(3.49)

where we have used the relation 1
k0−k′

0±iϵ = P̂ 1
k0−k′

0
∓ iπδ(k0−k′

0) (P̂ 1
k0−k′

0
is the principal

value of 1
k0−k′

0
). Thus, we obtain the expression for the spectral function ρ(k), which

is defined in the real-time formalism (3.39), by the propagators in the imaginary-time
formalism, ∆(K), which are now analytically-continued ones as

ρ(k) = D>(k) − D<(k)

= (−i∆(k0 + iϵ,k)) − (−i∆(k0 − iϵ,k)).
(3.50)

This is a quite useful equation since, in the thermal equilibrium system, it is often more
convenient to evaluate quantities in the imaginary-time formalism than in the real-time
one.

Before we go to the next section, let us write down the Fourier components Dij(k)
of the real-time propagator Dij(x − x′) =

∫
d4k

(2π)4 e−ik·(x−x′)Dij(k) by using Eq. (3.37).
Since the time arguments of D11(x − x′) and D22(x − x′) are real, we can use the Fourier
transform D11(22)(k) =

∫
d4x eik·(x−x′)D11(22)(x − x′). Then, using the expression for the

step function θ(t) =
∫∞
−∞

idz
2π

1
z+iϵe

−izt for real t, we obtain the expression for D11(22)(k).
On the other hand, for D12(21)(k), it is convenient to express D12(21)(x−y) by the Fourier
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integral and then read off the Fourier component D12(21)(k). The result is as follows

D11(k) =
∫ ∞

−∞

idk′
0

2π
ρ(k′

0,k)
k0 − k′

0 + iϵ
+ fB(k0)ρ(k)

= P̂
∫ ∞

−∞

idk′
0

2π
ρ(k′

0,k)
k0 − k′

0

+
(

1
2

+ fB(k0)
)
ρ(k),

D22(k) = (D11(k))∗ ,

D12(k) = eσk0fB(k0)ρ(k),

D21(k) = e−σk0(1 + fB(k0))ρ(k).

(3.51)

The discussion so far is valid for the full spectral function ρ(k) and the propagators
Dij(k) and ∆(K). Here, let us see the consequences for the free spectral function ρF (k)
and the free propagator DF

ij(k) in the real-time formalism (the free propagator in the
imaginary-time formalism, ∆F (K), is given by Eq. (3.28)). First, from Eqs. (3.28) and
(3.50), we obtain the free spectral function ρF (k) as

ρF (k) =
i

(k0 + iϵ)2 − k2 − m2
− i

(k0 − iϵ)2 − k2 − m2

= 2π sign(k0) δ(k2 − m2),
(3.52)

where we have used the short-hand notation k2 = k ·k = (k0)2−k2. Then, from Eqs. (3.51)
and (3.52), we obtain the free propagator in the real-time formalism, DF

ij(k), as

DF
11(k) =

i

k2 − m2 + iϵ
+ fB(|k0|)2πδ(k2 − m2),

DF
22(k) = (D11(k))∗ ,

DF
12(k) = eσk0fB(k0)ρF (k),

DF
21(k) = e−σk0(1 + fB(k0))ρF (k).

(3.53)

3.2 Self-energy

3.2.1 Analytic continuation of the self-energy

Here, we derive the following important equation for the self-energy:

Π̄(k0,k) = Π(k0 + iϵk0,k), (3.54)

where Π̄(k0,k) (= Π̄(k)) is the component of the diagonalized self-energy defined below
in the real-time formalism and Π(k0 + iϵk0,k) is the self-energy analytically-continued
from the one in the imaginary-time formalism, Π(iωn,k) (= Π(K)). Namely, Π̄(k0,k) is
connected with Π(iωn,k) by the analytic continuation iωn → k0 + iϵk0. We will explicitly
calculate Π(iωn,k) for some kinds of field in Secs. 3.2.3, 3.2.4 and 3.2.5.
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First, let us consider the Dyson equation in the imaginary-time formalism:

∆(iωn,k) = ∆F (iωn,k) + ∆F (iωn,k)(−Π(iωn,k))∆(iωn,k), (3.55)

where ∆(iωn,k) and ∆F (iωn,k) are the full and the free propagators in the imaginary-
time formalism, respectively. From this equation, analytically-continued propagator D′(k)
defined by

D′(k) ≡ −i∆(k0 + iϵk0,k) (3.56)

satisfies the following equation:

D′(k) = D′F (k) + D′F (k)(−iΠ(k0 + iϵk0,k))D′(k). (3.57)

From Eqs. (3.48) and (3.56), the analytically-continued quantity D′(k) can be expressed
by the spectral function ρ(k) as

D′(k) =
∫ ∞

−∞

idk′
0

2π
ρ(k′

0,k)
k0 − k′

0 + iϵk0

= P̂
∫ ∞

−∞

idk′
0

2π
ρ(k′

0,k)
k0 − k′

0

+
1
2
sign(k0)ρ(k).

(3.58)

In particular, for the free propagator D′F (k), we have the following expression from
Eqs. (3.52) and (3.58):

D′F (k) =
i

k2 − m2 + iϵ
, (3.59)

which is equal to the zero-temperature part of DF
11(k) given in Eq. (3.53).

Now, we note that the matrix form3-5 of the propagator in the real-time formalism,
D̂(k) (= Dij(k) in the component notation), with the symmetric time-path (σ = β/2) can
be diagonalized by the symmetric matrix Û−1(k) given by

Û(k) =

(√
1 + fB(|k0|)

√
fB(|k0|)√

fB(|k0|)
√

1 + fB(|k0|)

)
, Û−1(k) =

(√
1 + fB(|k0|) −

√
fB(|k0|)

−
√

fB(|k0|)
√

1 + fB(|k0|)

)
.

(3.60)

3-5Here, we show matrix quantities with “ hat ”. Do not consider it as an operator for which we have
also used “ hat ”.
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In fact, from Eqs. (3.51), D̂(k) is diagonalized as follows

Û−1(k)D̂(k)Û−1(k) = U−1

⎛

⎝P̂
∫∞
−∞

idk′
0

2π
ρ(k′

0,k)
k0−k′

0
0

0 −P̂
∫∞
−∞

idk′
0

2π
ρ(k′

0,k)
k0−k′

0

⎞

⎠U−1

+ U−1

((
1
2 + fB(k0)

)
ρ(k) eβk0/2fB(k0)ρ(k)

eβk0/2fB(k0)ρ(k)
(

1
2 + fB(k0)

)
ρ(k)

)
U−1

=

⎛

⎝P̂
∫∞
−∞

idk′
0

2π
ρ(k′

0,k)
k0−k′

0
0

0 −P̂
∫∞
−∞

idk′
0

2π
ρ(k′

0,k)
k0−k′

0

⎞

⎠+

(
1
2 0
0 1

2

)
sign(k0)ρ(k)

=

(
D′(k) 0

0 D′(k)∗

)

≡ D̂diag.(k),
(3.61)

where in the third line we have used Eq. (3.58). Thus, we can see that the matrix Û(k) (or
Û−1(k)) connects the analytically-continued quantity D′(k) defined in Eq. (3.56) with the
real-time propagator Dij(k). In particular, in order to transform the free field propagator
D̂F (k) ( = DF

ij(k) in the component notation) by the matrix Û−1(k), we need only to
replace the spectral function ρ(k) by ρF (k) given in Eq. (3.52). As a result, D̂F (k) is
diagonalized as follows

Û−1(k)D̂F (k)Û−1(k) =

(
D′F (k) 0

0 D′F (k)∗

)
≡ D̂F

diag.(k). (3.62)

Furthermore, we note that the matrix form of the real-time propagator D̂(k) satisfies the
Dyson equation given by

D̂(k) = D̂F (k) + D̂F (k)(−iΠ̂(k))D̂(k), (3.63)

where Π̂(k) is the matrix form of the self-energy in the real-time formalism (Πij(k) in the
component notation). From Eqs. (3.61) and (3.62), multiplying the transformation matrix
Û−1(k) from left and right in Eq. (3.63), we obtain the diagonalized form of the Dyson
equation in the real-time formalism as follows

D̂diag.(k) = D̂F
diag.(k) + D̂F

diag.(k)

(
−iΠ̄(k) 0

0 (−iΠ̄(k))∗

)
D̂diag.(k). (3.64)

Here, since the propagators are diagonalized by the transformation matrix Û−1(k), the
self-energy is automatically diagonalized by Û(k): Û(k)Π̂(k)Û(k) = diag(Π̄(k), Π̄(k)∗) (we
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have denoted its (1,1) component as Π̄(k)). Eventually, we obtain the following equation:
(

D′(k) 0
0 D′(k)∗

)
=

(
D′F (k) + D′F (k)(−iΠ̄(k))D′(k) 0

0 D′F (k)∗ + DF (k)∗(−iΠ̄(k))∗D(k)∗

)
.

(3.65)

Comparing this equation with Eq. (3.57), we arrive at the analytic continuation (3.54).
From Eq. (3.54), we can calculate the diagonalized self-energy Π̄(k) by the self-energy in
the imaginary-time formalism, Π(iωn,k), vial the analytic continuation iωn → k0+iϵk0. In
the next subsection, we will connect Π̄(k) with the self-energy in the real-time formalism,
Πij(k).

3.2.2 Bogoliubov matrix

In this subsection, we at first derive the analytic continuation of the self-energy (3.54) with
a generic contour parameter σ(0 ≤ σ ≤ β). Then, we will connect Π̄(k) with the self-energy
in the real-time formalism, Πij(k). As we have done in the symmetric case (σ = β/2) in
the previous subsection, it is useful to diagonalize the propagators. The diagonalization
can be done by the so-called Bogoliubov matrix [44–46]. One of the important conclusion
of this subsection is that the diagonal component Π̄(k) (= Π(k0 + iϵk0,k)) is independent
of the parameter σ.

First, from Eqs. (3.51) and (3.58), we note that the propagator in the real-time for-
malism, Dij(k), can be written in the following form:

D11(k) = D′(k) cosh2 θ + D′(k)∗ sinh2 θ,

D22(k) = D11(k)∗,

D12(k) = e(σ−β/2)k0
(
D′(k) + D′(k)∗

)
sinh θ cosh θ,

D21(k) = e−(σ−β/2)k0
(
D′(k) + D′(k)∗

)
sinh θ cosh θ,

(3.66)

where cosh θ and sinh θ are given by

cosh2 θ = θ(k0)(1 + fB(k0)) − θ(−k0)fB(k0),

sinh2 θ = θ(k0)fB(k0) − θ(−k0)(1 + fB(k0)),

sinh θ cosh θ = sign(k0)eβk0/2fB(k0).

(3.67)

From Eqs. (3.66) and (3.67), we can explicitly check that the propagators can be summa-
rized into the matrix form as follows

D̂ =

(
D11(k) D12(k)
D21(k) D22(k)

)
= V̂ (k)

(
D′(k) 0

0 D′(k)∗

)
V̂ (k),

V̂ (k) =

(
cosh θ e(σ−β/2)k0 sinh θ

e−(σ−β/2)k0 sinh θ cosh θ

)
.

(3.68)
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The matrix V̂ (k) here is the Bogoliubov matrix [44–46]. From Eq. (3.68), we can see
that the inverse Bogoliubov matrix V̂ −1(k) converts the matrix form of the real-time
propagator D̂(k) into the diagonalized matrix diag(D′(k), D′(k)∗). Therefore, as we have
done in the previous subsection, we can diagonalize the Dyson equation of the real-time
propagator (3.63) by the Bogoliubov matrix V̂ −1(k). Namely, the matrix form of the
Dyson equation multiplied by the Bogoliubov matrix

V̂ −1(k)D̂(k)V̂ −1(k) = V̂ −1(k)D̂F (k)V̂ −1(k)

+ V̂ −1(k)D̂F (k)V̂ −1(k) × V̂ (k)(−iΠ̂(k))V̂ (k) × V̂ −1(k)D̂(k)V̂ −1(k),
(3.69)

leads to the following diagonalized equation:
(

D′(k) 0
0 D′(k)∗

)
=

(
D′F (k) 0

0 D′F (k)∗

)(
(−iΠ̄(k)) 0

0 (−iΠ̄(k))∗

)(
D′(k) 0

0 D′(k)∗

)
.

(3.70)

Consequently, we can conclude that Eq. (3.54) is verified for a generic contour parameter
σ. Note that Eq. (3.60) is the Bogoliubov matrix with σ = β/2.

From Eqs. (3.69) and (3.70), the diagonalized self-energy Π̄(k) is related to the self-
energy in the real-time formalism, Πij(k), as follows

(
−iΠ11(k) −iΠ12(k)
−iΠ21(k) −iΠ22(k)

)

=V̂ −1(k)

(
−iΠ̄(k) 0

0 (−iΠ(k))∗

)
V̂ −1(k)

=

(
−i
[
Π̄ cosh2 θ − Π̄∗ sinh2 θ

]
−i
[
−(Π̄ − Π̄∗)e(σ−β/2)k0 sinh θ cosh θ

]

−i
[
−(Π̄ − Π̄∗)e−(σ−β/2)k0 sinh θ cosh θ

]
(−i

[
Π̄ cosh2 θ − Π̄∗ sinh2 θ

]
)∗

)
.

(3.71)

Thus, we obtain the following equations:

Re Π11(k) = Re Π̄(k),

Im Π11(k) = sign(k0)(1 + 2fB(k0))Im Π̄(k),

Π22(k) = −(Π11(k))∗,

Π12(k) = −2ieσk0sign(k0)fB(k0)Im Π̄(k),

Π21(k) = e−2σk0eβk0Π12(k) (Π>(k) = eβk0Π<(k) for σ = 0).

(3.72)

We note that the self-energy Πij(k) is the Fourier component of the two-point function in
the real-time formalism, Π(x(i) − x(j)), with x(1)

0 ∈ C1 and x(2)
0 ∈ C2:

Π(x(i) − x(j)) =
∫

d4k

(2π)4
e−ik0Re(x

(i)
0 −x

(j)
0 )+ik·(x(i)−x(j))Πij(k). (3.73)
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Thus, we have Π12(k) ∝ eσk0 and Π21(k) ∝ e−σk0 . Combining this fact with Eq. (3.72),
we conclude that Π̄(k) (= Π(k0 + iϵk0,k)) is independent of the contour parameter σ.
Therefore, we can obtain the self-energy by using any σ in the real-time formalism. Now,
we have only to evaluate in more convenient formalism (either the imaginary-time one or
real-time one) and then, if necessary, use Eqs. (3.54) and (3.72) to obtain the self-energy
in the formalism under consideration.

3.2.3 Real scalar field

In the following three subsections, we summarize the self-energy of thermalized fields. For
details of the evaluation, see Appendix D.

Here, we consider a real scalar field ϕ which has the following yukawa interaction:

Lint. = −y2

2
ϕ2ψ̃∗ψ̃, (3.74)

where y is the yukawa coupling constant and ψ̃ is a complex scalar field. We assume
that ψ̃ is in thermal equilibrium. Below, we neglect the zero-temperature mass of ψ̃
compared with the temperature T of the thermal bath. From the interaction term (3.74),
we obtain the following self-energy Π of ϕ at the one-loop level by using the imaginary-time
formalism:

Π =
y2T 2

6
, (3.75)

which is real and momentum independent. Note that the dissipative (imaginary) part of
the self-energy of ϕ does not arise at the one-loop level with the interaction (3.74).

3.2.4 QED electron

Here, we consider the self-energy of electron in the plasma of QED. As we will see below,
the self-energy of electron has rather complicated structure compared with the case in the
previous subsection.

The QED interaction is given by

Lint. = eAµψ̄γ
µψ, (3.76)

where e is the QED coupling constant, ψ is the electron field and Aµ is the photon field.
Below, we neglect the electron zero-temperature mass compared with the temperature T of
the thermal bath. In order to evaluate the self-energy of electron at the one-loop level, we
use the Hard-Thermal-Loop (HTL) approximation [47–49]. Here, the HTL approximation
is an approximation for the diagrammatic calculation, in which the internal lines of the
loops are assumed to be dominated by the momentum of the order of T . Namely, the
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momentum of the external line is assumed to be less than the temperature T in the HTL
approximation. Using the this approximation, we obtain the following QED electron self-
energy Σ(P ) at the one-loop level in the imaginary-time formalism (see Appendix D for
details):

Σ(P ) = m2
f

∫
dΩ
4π

K̂/

PµK̂µ

, (3.77)

where we have used the short-hand notation for the angular integral of (θ,φ) as
∫

dΩ =∫ π
0 dθ sin θ

∫ 2π
0 dφ (θ is the zenith angle and φ is the azimuth angle with the direction of p

taken to be along the z-axis). Pµ = (−ω′
n,p), K̂µ = (−i, k̂), K̂/ = K̂µγµ = −iγ4 + k̂ ·γ and

PµK̂µ = iω′
n + p · k̂ 3-6 3-7. Here, ω′

n = (2n + 1)π/β (n is integer) is the imaginary-time
discrete energy for electron. We have to use the odd integer 2n + 1 for fermions since
fermions have the anti-periodic boundary condition in thermal field theory [41, 42] (see
Appendix B). In Eq. (3.77), mf is the electron thermal mass given by

m2
f =

e2T 2

8
. (3.78)

3.2.5 QED photon

Here, we consider the photon self-energy in the QED plasma with the interaction (3.76).
Using the HTL approximation, we obtain the following QED photon self-energy Πµν(Q)

at the one-loop level in the imaginary-time formalism (see Appendix D for details):

Πµν(Q) = 2m2
γ

∫
dΩ
4π

(
iωn

QρK̂ρ

K̂µK̂ν + δµ4δν4

)
, (3.79)

where Qµ = (−ωn,q)3-8, K̂µ = (−i, k̂) and mγ is the photon (asymptotic) thermal mass-
squared (which is identified by the dispersion relation of photon) given by

m2
γ =

e2T 2

6
. (3.80)

The so-called plasma frequency is given by ωP = 1
3eT =

√
2
3mγ .

3.3 Dispersion relations of quasi-particle poles

3.3.1 Real scalar field

Here, we consider again the real scalar field ϕ in Sec. 3.2.3 and derive the dispersion
relation of ϕ.

3-6Here, we use the symbol “ ˆ ” for the light-like four-vector K̂µ (with K̂2 = 0) and the three-dimensional
unit-vector k̂ = k/|k|.

3-7As a convention, we have used the notation Σ(P ) = Σ(iω′
n,p) for the imaginary-time self-energy.

3-8As a convention, we have used the notation Πµν(Q) = Πµν(iωn,p) for the imaginary-time self-energy.
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From the Dyson equation ∆(K)−1 = ∆F (K)−1 + Π and Eqs. (3.28) and (3.75), we
obtain the imaginary-time propagator, ∆(K), at the one-loop level as

∆(K) =
1

K2 + Π
=

1
ω2

n + |k|2 + y2T 2

6

, (3.81)

where Kµ = (k4,k) = (−ωn,k) and K2 = ω2
n + |k|2 (remember that ωn = 2πn/β and n is

an integer). Here, the notation ∆(K) = ∆(iωn,k) is used.
Now, let us consider a general argument as follows. In the real-time formalism, the

retarded propagator DR(k) is an important quantity, which is defined by the analytic
continuation iωn → k0 + iϵ as DR(k) ≡ −i∆(k0 + iϵ,k). This is because DR(k) is the
propagator of the physical propagating particle. (Here and hereafter, we use the su-
perscript “ R ” for the retarded functions.) The definition of DR(k) is equivalent to the
definition in the coordinate space as DR(x−x′) ≡ θ(x0−x′

0)⟨[ϕ̂(x), ϕ̂(x′)]⟩ with x0, x′
0 ∈ C1

which gives the same DR(k) by the Fourier transform of DR(x − x′). The retarded self-
energy ΠR(k) is also important, which is defined by ΠR(k) ≡ Π(k0 + iϵ,k) (Π(iωn,k) is
the self-energy in the imaginary-time formalism), since the propagating particle pole of
DR(k) is determined by ΠR(k)3-9. Returning to our subject, since Eq. (3.75) is real and
momentum independent, the retarded self-energy with the interaction (3.74) is equal to
ΠR(k) = Re ΠR(k) = Re Π(k0 + iϵ,k) = Eq. (3.75).

From Eq. (3.81) and the analytic continuation iωn → q0 + iϵ, the retarded propagator
of ϕ at the one-loop level in the Minkowski spacetime, DR(k) ≡ −i∆(k0 + iϵ,k), is given
by

DR(k) =
i

(k0 + iϵ)2 − |k|2 − y2T 2

6

, (3.83)

In Eq. (3.83), the zero of the real part of the denominator determines the quasi-particle
pole of ϕ 3-10. Thus, the dispersion relation ω2

th(k), which is equal to k2
0 at the pole, is

given by

ω2
th(k) = |k|2 +

y2T 2

6
. (3.84)

From this equation, we find that ϕ has the following thermal mass-squared in the yukawa
plasma:

m2
th =

y2T 2

6
, (3.85)

3-9This can be understood by the Dyson equation in the imaginary-time formalism (3.55). In fact, after
the analytic continuation iωn → k0 + iϵ, Eq. (3.55) leads to the following Dyson equation for DR(k):

DR(k) = DRF (k) + DRF (k)(−iΠR(k))DR(k), (3.82)

where DRF (k) ≡ −i∆F (k0 + iϵ,k) is the free retarded propagator.
3-10We call the pole of the retarded propagator (or equivalently the spectral function) as the quasi-particle
pole which includes the thermal corrections.
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which is equal to ω2
th(0) at rest (k = 0).

We can also derive the dispersion relation of the quasi-particle pole by using the spectral
function. From Eqs. (3.50) and (3.81), we obtain the following spectral function of ϕ, ρ(k):

ρ(k) =
i

(k0 + iϵ)2 − |k|2 − y2T 2

6

− i

(k0 − iϵ)2 − |k|2 − y2T 2

6

= 2π sign(k0) δ(k2
0 − |k|2 − g2T 2

6
).

(3.86)

Then, we can read the dispersion relation of the quasi-particle pole, k2
0 = ω2

th(k), off
Eq. (3.86), which is the same as the one given in Eq. (3.84).

3.3.2 QED electron

Here, we derive the spectral function of QED electron and then read the quasi-particle poles
off the spectral function. (The spectral function of a fermion is defined in Appendix B.) For
this purpose, we explicitly evaluate the self-energy Σ(P ) in the imaginary-time formalism
given by Eq. (3.77):

Σ(P ) = m2
f

∫
dΩ
4π

K̂/

PµK̂µ

= m2
f

{
−iγ4

∫
dΩ
4π

1
iω′ + |p| cos θ

+ γi

∫
dΩ
4π

k̂i

iω′ + |p| cos θ

}

= −iγ4

m2
f

|p|Q0

(
iω′

|p|

)
+ γip̂i

m2
f

|p|

(
1 − iω′

|p|Q0

(
iω′

|p|

))
,

(3.87)

where Pµ = (p4,p) = (−ω′,p), the notation Σ(P ) = Σ(iω′,p) is used, K̂µ = (−i, k̂),
K̂/ = K̂µγµ = −iγ4 + k̂iγi, k̂i = ki/|k|, p̂i = pi/|p| and mf is the electron thermal
mass (3.78). ω′ is the fermionic discrete imaginary-time energy (though we do not show
the integer subscript). Also, Q0(x) = 1

2 ln x+1
x−1 is the Legendre function of degree 0 of the

second kind.
The Dyson equation for electron in the imaginary-time formalism is given by S(P )−1 =

SF (P )−1 + Σ(P ), where S(P ) is the (resumed) electron propagator and SF (P ) = P/ (we
neglect the zero-temperature electron mass) is the free one given in Eq. (C.10). From this
Dyson equation and Eq. (3.87), S(P )−1 is given by

S(P )−1 = P/ + Σ(P )

= iγ4

(
iω′ −

m2
f

|p|Q0

(
iω′

|p|

))
+ γip̂i

(
|p| +

m2
f

|p|

(
1 − iω′

|p|Q0

(
iω′

|p|

)))

= iγ4A0(P ) + γip̂iAs(P )

=
1
2
(iγ4 + γip̂i)(A0(P ) + As(P )) +

1
2
(iγ4 − γip̂i)(A0(P ) − As(P )),

(3.88)
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where we have defined A0(P )(= A0(iω′,p)) and As(P )(= As(iω′,p)) as

A0(P ) = iω′ −
m2

f

|p|Q0

(
iω′

|p|

)
,

As(P ) = |p| +
m2

f

|p|

(
1 − iω′

|p|Q0

(
iω′

|p|

))
.

(3.89)

Here, we note that 1
2(iγ4 + γip̂i) and 1

2(iγ4 − γip̂i) satisfy the following relations:

1
2
(iγ4 + γip̂i)

1
2
(iγ4 + γj p̂j) = 0,

1
2
(iγ4 − γip̂i)

1
2
(iγ4 − γj p̂j) = 0,

1
2
(iγ4 + γip̂i)

1
2
(iγ4 − γip̂i) = iγ4

1
2
(iγ4 − γip̂i) =

1
2
(iγ4 + γip̂i) iγ4,

1
2
(iγ4 − γip̂i)

1
2
(iγ4 + γip̂i) = iγ4

1
2
(iγ4 + γip̂i) =

1
2
(iγ4 − γip̂i) iγ4.

(3.90)

From Eqs. (3.88) and (3.90), we can check that the electron propagator in the imaginary-
time formalism, S(P ), is given by

S(P ) =
1
2
(iγ4 + γip̂i)∆+(P ) +

1
2
(iγ4 − γip̂i)∆−(P ), (3.91)

where we have defined ∆±(P ) as

∆±(P ) = (A0(P ) ∓ As(P ))−1 = (iω′ ∓ |p|− Π±(P ))−1. (3.92)

Here, Π±(P )(= Π±(iω′,p)) is given by

Π±(P ) =
m2

f

2|p|

[(
1 ∓ iω′

|p|

)
ln
(

iω′/|p| + 1
iω/|p|− 1

)
± 2
]

. (3.93)

Now, from Eqs. (3.91) and (B.25), the spectral function of electron, ρ̃(p), is given by

ρ̃(p) = (−iS(p0 + iϵ,p)) − (−iS(p0 − iϵ,p))

=
1
2
(−γ0 + γip̂i)((−i∆+(p0 + iϵ,p)) − (−i∆+(p0 − iϵ,p)))

+
1
2
(−γ0 − γip̂i)((−i∆−(p0 + iϵ,p)) − (−i∆−(p0 − iϵ,p)))

=
1
2
(−γ0 + γip̂i)ρ+(p) +

1
2
(−γ0 − γip̂i)ρ−(p),

(3.94)

where we have defined ρ±(p) as

ρ±(p) = (−i∆±(p0 + iϵ,p)) − (−i∆±(p0 − iϵ,p)). (3.95)
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From Eqs. (3.92), (3.93) and (3.95), ρ±(p) is evaluated as follows

ρ±(p)

= − 2 Im
1

(p0 + iϵ) ∓ |p|− Π±(p0 + iϵ,p)

= − 2 Im
1

p0 ∓ |p|− Re Π±(p0,p) + i
(
πm2

f
|p|∓p0

2|p|2 θ(|p|2 − p2
0) + ϵ

(
1 − ∂ReΠ±(p0,p)

∂p0

))

=θ(|p|2 − p2
0)β±(p) + θ(p2

0 − |p|2)2πsign
(

1 − ∂ReΠ±(p0, p)
∂p0

)
δ(p0 ∓ |p|− ReΠ±(p0,p)).

(3.96)

Here, we have defined the functions β±(p) as

β±(p) =
π

m2
f

|p| (1 ∓ x)
[
|p|(x ∓ 1) − m2

f

2|p|

(
(1 ∓ x) ln

∣∣∣x+1
x−1

∣∣∣± 2
)]2

+
π2m4

f

4|p|2 (1 ∓ x)2
, (3.97)

where x = p0/|p|. From Eqs. (3.92) and (3.96), the equations

Re
(
∆+(p0,p)−1

)
= p0 − |p|− Re Π+(p0,p) = 0,

Re
(
∆−(p0,p)−1

)
= p0 + |p|− Re Π−(p0,p) = 0

(3.98)

(with p2
0 − |p|2 > 0) determine the quasi-particle poles of electron. Since Re ∆±(p0,p)

have the parity property3-11

Re ∆+(p0,p) = −Re ∆−(−p0,p), (3.99)

denoting the poles of Re ∆+(p) as p0 = ω+(p),−ω−(p) (ω+(p) and ω−(p) can be taken
as positive), the poles of Re ∆−(p) are given by p0 = ω−(p),−ω+(p). From Eqs. (3.93)
and (3.98), these dispersion relations ω±(p) are determined by the following equations:

ω+(p) − |p|−
m2

f

2|p|

[(
1 − ω+(p)

|p|

)
ln
(
ω+(p) + |p|
ω+(p) − |p|

)
+ 2
]

= 0,

ω−(p) + |p|−
m2

f

2|p|

[(
1 +

ω−(p)
|p|

)
ln
(
ω−(p) + |p|
ω−(p) − |p|

)
− 2
]

= 0.

(3.100)

To solve these equations, we need numerical calculation. However, we can write down
analytically the limiting forms of ω±(p) as follows [11]

ω+(p) ≃

⎧
⎨

⎩
mf + 1

3 |p| (|p| ≪ mf ),

|p| + m2
f

|p| (|p| ≫ mf ),

ω−(p) ≃

⎧
⎪⎨

⎪⎩

mf − 1
3 |p| (|p| ≪ mf ),

|p| + 2|p| exp
(
−1 − 2|p|2

m2
f

)
(|p| ≫ mf ).

(3.101)

3-11Also, we have Im ∆+(p0,p) = Im ∆−(−p0,p) (for p2
0 − |p|2 < 0).
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Now, using Eq. (3.100) for the last line of Eq. (3.96), we arrive at the expression for
the spectral functions ρ±(p) as follows3-12

ρ±(p) = θ(|p|2 − p2
0) β±(p) + 2π (Z±(p)δ(p0 − ω±(p)) + Z∓(p)δ(p0 + ω∓(p))) . (3.103)

Note that, for p2 = p2
0 − |p|2 > 0, the imaginary-parts of Π±(p) given in Eq. (3.93) vanish

and thus the spectral functions ρ±(p) have the zero-width poles at p0 = ω±(p),−ω∓(p).
Here, the residues at the poles, Z±(p), are given by

Z±(p) =
(

1 − ∂Re Π±(ω±,p)
∂ω±

)−1

=
ω2
± − |p|2

2m2
f

. (3.104)

We can write down analytically the limiting forms of Z±(p) as follows [11]

Z+(p) ≃

⎧
⎪⎨

⎪⎩

1
2 + |p|

3mf
(|p| ≪ mf ),

1 +
m2

f

2|p|2

(
1 − ln2|p|2

m2
f

)
∼ 1 (|p| ≫ mf ),

Z−(p) ≃

⎧
⎪⎨

⎪⎩

1
2 − |p|

3mf
(|p| ≪ mf ),

2|p|2
m2

f
exp

(
−1 − 2|p|2

m2
f

)
∼ 0 (|p| ≫ mf ).

(3.105)

3.3.3 QED photon

Here, we derive the spectral function of QED photon and then read the quasi-particle poles
off the spectral function. For this purpose, we explicitly evaluate the self-energy (3.79):

Πµν(Q) = 2m2
γ

∫
dΩ
4π

(
iω

QρK̂ρ

K̂µK̂ν + δµ4δν4

)
,

where Qµ = (q4,q) = (−ω,q), the notation Πµν(Q) = Πµν(iω,q) is used, K̂µ = (−i, k̂)
and mγ is the photon thermal mass (3.80). Here, ω is the bosonic discrete imaginary-time
energy (though we do not show the integer subscript).

First, let us decompose the photon self-energy Πµν (Q). Since Πµν(Q) is orthogonal to
the four-vector Qµ:

QµΠµν(Q) = 2m2
γ

∫
dΩ
4π

(
iωK̂ν + Q4δν4

)
= 0, (3.106)

3-12From Eqs. (C.10) and (B.25), the spectral function of free electron, ρ̃F (p), is given by

ρ̃F (p) = (−iSF (p0 + iϵ,p)) − (−iSF (p0 − iϵ,p))

= π
˘
δ(p0 − |p|)

`
γ0 − p̂ · γ

´
+ δ(p0 + |p|)

`
γ0 + p̂ · γ

´¯

= 2π sign(p0) δ(p
2) p/.

(3.102)

Comparing this equation with Eqs. (3.94) and (3.103), one can see that free electron satisfies Z+(p) = 1,
Z−(p) = 0 and ω+(p) = |p| (massless).
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we can decompose Πµν(Q) into the longitudinal mode (denoted by L) and the transverse
mode (denoted by T ) by using the projection operators PL,T

µν (Q) as

Πµν(Q) = ΠL(Q)PL
µν(Q) + ΠT (Q)P T

µν(Q). (3.107)

Here, the projection operators, PL,T
µν (Q), are defined as follows

P T
44(Q) = P T

4i(Q) = 0, P T
ij (Q) = δij −

qiqj

|q|2 ,

PL
µν(Q) = δµν − QµQν

Q2
− P T

µν(Q),

PL
44(Q) =

|q|2

Q2
, PL

4i =
ωqi

Q2
, PL

ij =
ω2

Q2

qiqj

|q|2 .

(3.108)

We note that PL,T
µν (Q) satisfy the projection properties as follows

QµPL
µν = QµP T

µν = 0,

PL
µνP

T
νρ = P T

µνP
L
νρ = 0,

PL
µνP

L
νρ = PL

µρ, P T
µνP

T
νρ = P T

µν .

(3.109)

From Eqs. (3.107) and (3.108), the longitudinal and transverse self-energies, ΠL(Q) and
ΠT (Q), are given by

ΠL(Q) =
Q2

ω|q|Π43(Q),

ΠT (Q) = Π11(Q)(= Π22(Q)),
(3.110)

where we have taken the 3-axis parallel to the three-vector q.
From Eqs. (3.79) and (3.110), we can evaluate ΠL(Q) and ΠT (Q) (we take the 3-axis

parallel to the three-vector q as in Eq. (3.110)) as follows

ΠL(Q) =
Q2

ω|q| × 2m2
γ

∫
dΩ
4π

iω

iω + |q| cos θ
(−i) cos θ

=
Q2

|q|2 × 2m2
γ

(
1 − iω

|q|Q0

(
iω

|q|

))

≡ Q2

|q|2 Π̃L(Q),

(3.111)

where we have defined Π̃L(Q) = 2m2
γ

(
1 − iω

|q|Q0

(
iω
|q|

))
. Also,

ΠT (Q) =
1
2
(Π11(Q) + Π22(Q))

= m2
γ

∫
dΩ
4π

iω

iω + |q| cos θ
sin2 θ

= m2
γ

iω

|q|

(
iω

|q| +
q2

|q|2 Q0

(
iω

|q|

))
.

(3.112)
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The Dyson equation for photon in the imaginary-time formalism is given by ∆−1
µν (Q) =

∆F −1
µν (Q) + Πµν(Q), where ∆µν(Q) is the (resumed) electron propagator and ∆F

µν(Q) =
δµν/Q2 (Feynman gauge) is the free one given in Eq. (C.14). From this Dyson equation
and Eqs. (3.107) and (3.108), ∆−1

µν (Q) is given by

∆−1
µν (Q) = δµνQ

2 + Πµν(Q)

=
(

PL
µν(Q) + P T

µν(Q) +
QµQν

Q2

)
Q2 + ΠL(Q)PL

µν(Q) + ΠT (Q)P T
µν(Q)

=
(
Q2 + ΠL(Q)

)
PL

µν(Q) +
(
Q2 + ΠT (Q)

)
P T

µν(Q) + QµQν .

(3.113)

From Eqs. (3.109) and (3.113), we obtain the following photon propagator ∆µν(Q):

∆µν(Q) = PL
µν(Q)∆L(Q) + P T

µν(Q)
|q|2

Q2
∆T (Q) +

1
Q2

QµQν

Q2
, (3.114)

where ∆L(Q) and ∆T (Q) are the propagator of the longitudinal and the transverse mode
photons which are projected by the operators PL

µν and P T
µν :

∆L(Q) =
1

|q|2 + Π̃L(Q)
,

∆T (Q) =
1

Q2 + ΠT (Q)
.

(3.115)

(Π̃L(Q) is defined in Eq. (3.111).)
Now, let us define the spectral function of QED photon for the longitudinal and trans-

verse modes, ρL(q) and ρT (q), as follows3-13

ρL(q) ≡ (−i∆L(q0 + iϵ,q)) − (−i∆L(q0 − iϵ,q)),

ρT (q) ≡ (−i∆T (q0 + iϵ,q)) − (−i∆T (q0 − iϵ,q)).
(3.116)

For the longitudinal mode, the spectral function ρL(q) can be written as follows

ρL(q)

= − 2 Im
1

|q|2 + Π̃L(q0 + iϵ,q)

= − 2 Im
1

|q|2 + Re Π̃L(q0,q) + i
(
πm2

γ
q0
|q|θ(|q|2 − q2

0) + ϵ∂Π̃L(q0,q)
∂q0

)

=θ(|q|2 − q2
0) βL(q0,q) + θ(q2

0 − |q|2) 2π sign

(
∂Re Π̃L(q0,q)

∂q0

)
δ(|q|2 + Re Π̃L(q0,q))

(3.117)
3-13Note that the zeros of the retarded propagators ∆L,T (q0 + iϵ,q) are equivalent to the poles of ρL,T (q).
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Here, we have defined the function βL(q) as

βL(q) =
2πm2

γx
[
|q|2 + 2m2

γ

(
1 − x

2 ln
∣∣∣x+1
x−1

∣∣∣
)]2

+ π2m4
γx2

, (3.118)

where x = q0/|q|. From Eqs. (3.111) and (3.117), the equation

|q|2 + 2m2
γ

[
1 − q0

2|q| ln
(

q0/|q| + 1
q0/|q|− 1

)]
= 0 (3.119)

(with q2
0− |q|2 > 0) determines the quasi-particle pole of the longitudinal photon. To solve

Eq. (3.119), we need numerical calculation. However, we can write down analytically the
limiting form of ωL(q) as follows [11]

ωL(q) ≃

⎧
⎨

⎩
ω2

P + 3
5 |q|

2 (|q| ≪ mγ),

|q|2
(
1 + 2 exp

(
− |q|2+m2

γ

m2
γ

))2
(|q| ≫ mγ),

(3.120)

where ωP = 1
3eT =

√
2
3mγ is the plasma frequency. Using Eq. (3.119) in the last line of

Eq. (3.117), we arrive at the following expression for the spectral function ρL(q):

ρL(q) = θ(|q|2 − q2
0) βL(q0,q) + 2πZL(q) (δ(q0 − ωL(q)) − δ(q0 + ωL(q))) , (3.121)

Note that, for q2 = q2
0− |q|2 > 0, the imaginary-part of ΠL(q) given in Eq. (3.111) vanishes

and thus the spectral function ρL(q) has the zero-width poles at q0 = ±ωL(q). Here, the
residue ZL(q) is given by

ZL(q) =

(
∂Re Π̃L(ωL,q)

∂ωL

)−1

=
ωL(ω2

L − |q|2)
|q|2(|q|2 + 2m2

γ − ω2
L)

. (3.122)

We can write down analytically the limiting form of ZL(q) as follows [11]

ZL(q) ≃

⎧
⎨

⎩

ωP
2|q|2

(
1 − 3

10
|q|2
ω2

P

)
(|q| ≪ mγ),

2|q|
m2

γ
exp

(
− |q|2+m2

γ

m2
γ

)
(|q| ≫ mγ).

(3.123)

Note that, for |q| ≫ mγ , ZL(q) vanishes exponentially. This means that the longitudinal
mode of photon disappears when the thermal effect is negligible.

On the other hand, for the transverse mode, the spectral function, ρT (q), can be written



34 CHAPTER 3. REVIEW OF THERMAL FIELD THEORY

as

ρT (q)

=(−i∆T (q0 + iϵ,q)) − (−i∆T (q0 − iϵ,q))

= − 2 Im
1

(q0 + iϵ)2 − |q|2 − ΠT (q0 + iϵ,q)

= − 2 Im
1

q2
0 − |q|2 − Re ΠT (q0,q) + i

(
πm2

γ
q0(q2−q2

0)
2q3 θ(q2 − q2

0) + ϵ
(
2q0 − ∂ΠT (q0,q)

∂q0

))

=θ(|q|2 − q2
0) βT (q) + θ(q2

0 − |q|2)2πsign
(

2q0 −
∂ReΠT (q0,q)

∂q0

)
δ(q2

0 − |q|2 − ReΠT (q0,q)).

(3.124)

Here, we have defined the function βT (q) as

βT (q) =
πm2

γx(1 − x2)
[
|q|2(x2 − 1) − m2

γ

(
x2 + x(1−x2)

2 ln
∣∣∣x+1
x−1

∣∣∣
)]2

+ π2m4
γ

x2(1−x2)2

4

, (3.125)

where x = q0/|q|. From Eqs. (3.112) and (3.124), the equation

q2
0

|q|2 − 1 −
m2

γ

|q|2

[
q2
0

|q|2 +
q0(1 − q2

0/|q|2)
2|q| ln

(
q0/|q| + 1
q0/|q|− 1

)]
= 0 (3.126)

(with q2
0 − |q|2 > 0) determines the quasi-particle pole of the transverse photon. To solve

Eq. (3.126), we need numerical calculation. However, we can write down the limiting form
of ωT (q) analytically [11]:

ωT (q) ≃

⎧
⎨

⎩
ω2

P + 6
5 |q|

2 (|q| ≪ mγ),

|q|2 + m2
γ (|q| ≫ mγ).

(3.127)

From Eqs. (3.120) and (3.127), for |q| → 0, we cannot distinguish the frequencies of the
transverse and longitudinal modes (they are both ωP ). On the other hand, for |q| ≫ mγ ,
the dispersion relation of the transverse mode is the parabolic one with the “asymptotic”
thermal mass mγ , which is quite different from the longitudinal mode’s dispersion relation.
Using Eqs. (3.126) in the last line of (3.124), we arrive at the following expression for the
spectral function ρT (q):

ρT (q) = θ(|q|2 − q2
0) βT (q) + 2πZT (q) (δ(q0 − ωT (q)) − δ(q0 + ωT (q))) . (3.128)

Note that, for q2 = q2
0−|q|2 > 0, the imaginary-part of ΠT (q) given in Eq. (3.112) vanishes

and thus the spectral function ρT (q) has the zero-width poles at q0 = ±ωT (q). Here, the
residue ZT (q) is given by

ZT (q) =
(

2ωT − ∂Re ΠT (ωT ,q)
∂ωT

)−1

=
ωT (ω2

T − |q|2)
2m2

γω
2
T − (ω2

T − |q|2)2
. (3.129)
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We can write down analytically the limiting form of ZT (q) as follows [11]

ZT (q) ≃

⎧
⎨

⎩

1
2ωP

(
1 − 4

5
|q|2
ω2

P

)
(|q| ≪ mγ),

1
2|q| (|q| ≫ mγ).

(3.130)

For |q| ≫ mγ , ZT (q) reaches the zero-temperature form. Namely, in this limit, the thermal
bath does not affect the propagating transverse photon.

3.4 Free energy

In this section, we evaluate the free energy of thermal equilibrium systems. This will be
the basis for Chap. 6.

For the preparation in this section, we define the following four dimensional integral
in the imaginary-time formalism:

bn ≡
∫

[dQ]
(Q2)n

= T
∞∑

n=−∞

∫
d3q

(Q2)n
(for the bosonic discrete energy ωn = 2nπ/β),

fn ≡
∫ {dQ}

(Q2)n
= T

∞∑

n=−∞

∫
d3q

(Q2)n
(for the fermionic discrete energy ω′

n = (2n + 1)π/β).

(3.131)

Here, Qµ = (q4,q) = (−ωn,q) (for boson), (−ω′
n,q) (for fermion). bn and fn are the loop-

integrals over the massless bosonic and fermionic propagators, respectively. For example,
b1, f1 can be evaluated as

b1 =
T 2

12
,

f1 = −T 2

24
= −1

2
b1,

(3.132)

where we have removed the divergences which arise from the zero-point energies. Since
these are the temperature independent quadratic divergences, we can remove them by
the zero-temperature counter-terms [10, 50–54]. b1 and f1 are nothing but the one-loop
integrals of massless boson and fermion, respectively.

3.4.1 Yukawa plasma

In this subsection, we evaluate the free energy of the thermalized system consisting of
yukawa interacting fields:

Lint. = −yχψRψL + h.c., (3.133)
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where χ is a complex scalar field, ψR/L = PR/Lψ is the Dirac fermion projected by the
operator PR/L = (1 ± γ5)/2. Below, we neglect the zero-temperature masses of the boson
and fermion compared with the temperature.

The free energy Ω can be expressed by the partition function Z (all the chemical
potentials are assumed to be zero) as

Ω = −T lnZ. (3.134)

For the free field case, the free energy ΩF is given by

ΩF /V = −π
2T 4

90
×
(

2 + 4 × 7
8

)
= −11π2T 4

180
, (3.135)

where V is the spatial volume of the system. Here, the factor 2 (4) in the bracket comes
from the number of the physical degrees of freedom of the complex scalar field (fermions)
and the factor 7/8 originates from the Fermi statistics. The leading order correction to
the free energy comes from the two-loop contribution, Ω2, which is evaluated as

Ω2/V = y2
∫

[dQ]{dK}tr (PL(K/ − Q/)PRK/)
K2Q2(K − Q)2

= −y2f1(2b1 − f1)

=
5y2T 4

576
.

(3.136)

For higher order correction to the free energy, see for example Ref. [12].

3.4.2 QED plasma

In this subsection, we derive the free energy of the QED plasma. The interaction term is
given by Eq. (3.76). The free energy Ω can be expressed by the partition function Z (all
the chemical potentials are assumed to be zero) as

Ω = −T lnZ. (3.137)

For the free field case, the free energy ΩF is given by

ΩF /V = −π
2T 4

90
×
(

2 + 4 × 7
8

)
= −11π2T 4

180
, (3.138)

where V is the spatial volume of the system. Here, the factor 2 (4) in the bracket comes
from the number of the physical degrees of freedom of photon (electron) and the factor
7/8 originates from the Fermi statistics. The leading order correction to the free energy
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comes from the two-loop contribution, Ω2, which is evaluated as

Ω2/V =
e2

2

∫
[dQ]{dK}tr (γµ(K/ − Q/)γµK/)

K2Q2(K − Q)2

= −2e2 (f1b1 + f1b1 − f1f1)

=
5e2T 4

288
.

(3.139)

For higher order correction to the free energy, see for example Ref. [12].
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Chapter 4

The Hubble-induced mass in the
inflaton dominated Universe

Supersymmetry (SUSY) is an attractive candidate for the physics beyond the standard
model (SM). Its local version, supergravity, leads to various phenomena in cosmology. In
particular, when the inflaton dominates the Universe during and after inflation, the super-
gravity effect induces an effective mass of order H, the Hubble expansion rate, for a general
scalar field φ coupled to the inflaton sector by Planck-suppressed interactions [23–27], un-
less its mass is protected by some symmetry. Such an effective mass of order H is called
a Hubble-induced mass and plays an important role in many cosmological scenarios. For
example, a negative Hubble-induced mass enables the Affleck-Dine baryogenesis mecha-
nism [55–57]. The enhanced Hubble-induced mass also is a key for solving the cosmological
moduli problem [58,59]. On the other hand, the Hubble-induced mass will be a main ob-
stacle for implementing the curvaton mechanism [60–62] in supergravity and it must be
suppressed at least by about one order of magnitude.

In this chapter, we will see the effects of the Hubble-induced mass in the inflaton
dominated era. In Sec. 4.1, we summarize the supergravity effects for kinetic term, scalar
potential and fermion interaction, which will be the basis for Chap. 6. Next, in Sec. 4.2, we
briefly review how the Hubble-induced mass play the important role in the early Universe.
We will see the effect for the eta problem of inflation models in supergravity, Affleck-
Dine baryogenesis, the adiabatic solution for the cosmological moduli problem and the eta
problem for curvaton models in supergravity.
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4.1 Scalar potential and fermion interactions in supergrav-
ity

In this section, we summarize the kinetic term, scalar potential and fermion interaction in
supergravity. In supergravity, the kinetic terms for scalar fields χi are given by [28]

Lkin. = Kij̄∂µχ
∗
i ∂

µχj , (4.1)

where K is the Kähler potential, and the subscripts i and j̄ of Kij̄ represent the derivatives
by a scalar field χi and χ∗

j , respectively. Also, the kinetic terms for fermions χ̃i are given
by [28]

Lχ̃
kin. = Kij̄χ̃iiσ

µ∂µχ̃
∗
j , (4.2)

where σµ = (1,σi) (σi are the Pauli matrices). Next, the F -term scalar potential is given
by the following formula [28]:

VF = eK/M2
P

(
DiWKij̄DjW − 3|W |2

M2
P

)
, (4.3)

where W is the superpotential, DiW = Wi +KiW/M2
P and Kij̄ is the inverse of Kij̄ . Also,

the D-term scalar potential is given by [28]

VD =
g2

2
Re f−1

ab DaDb∗, (4.4)

where g is the gauge coupling, fab is the gauge kinetic function and Da is given by

Da = Ki(T a)ijχj , Da∗ = χ∗
i (T

a)ijKj̄ . (4.5)

Here, T a is the generator of the gauge group. In this thesis, we consider the case fab =
δab only. Finally, the fermion interaction term in supergravity is given by the following
formula [28]:

Lf = −1
2
eK/(2M2

P) (DiDjW ) χ̃iχ̃j + h.c. + · · · , (4.6)

where χ̃i are two-component fermionic fields with the label of the field species i, and · · ·
includes interactions between ξi and gauge, gravity superfields. Here, DiDjW = Wij +
KijW/M2

P+KiDjW/M2
P+KjDiW/M2

P−KiKjW/M4
P−Γk

ijDkW/M4
P and Γk

ij = Kil̄(Kjl̄)i.
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4.2 Effects of the Hubble-induced mass in the inflationary
Universe

In this section, we consider the effects of the Hubble-induced mass in the inflaton domi-
nated era, which is generated by the supergravity effect and the inflaton energy density.
First of all, let us see how the Hubble-induced mass arises. If the Kähler potential includes
the minimal part

K = |φ|2 + · · · (4.7)

and if the inflation potential is given by the F -term potential, the F -term potential con-
tains the following effective mass term for φ during inflation [23–25]:

VF ⊃ |φ|2

M2
P

ρinf

≃ 3H2
I |φ|2,

(4.8)

where HI is the Hubble parameter during inflation and ρinf is the inflaton energy density.
Here, we have used the Friedman equation 3H2

I M2
P ≃ ρinf during inflation. Thus, the scalar

field φ acquires the Hubble scale effective mass and this is the so-called Hubble-induced
mass. Now, it should be noted that the contribution to the Hubble-induced mass can also
arise from the non-minimal part of the Kähler potential. In this case, the Hubble-induced
mass depends on model-dependent parameters in the non-minimal Kähler potential. In
fact, we will see such example in Sec. 4.2.2, in which the Hubble-induced mass has negative
sign. Also, the Hubble-induced mass is generated in the inflaton oscillation dominated era
after inflation.

4.2.1 The eta problem for inflation models

Here, we identify φ1 =
√

2 Re φ as a inflaton field. Since the Hubble-induced mass term in
Eq. (4.8) is generically generated for φ1 during inflation, the slow-roll condition for φ1 is
easily broken. Assuming that the slow-roll condition is satisfied unless the Hubble-induced
mass exists, we have

ϵ =
1
2
M2

P

(
V ′

V

)2

≃ φ2
1

2M2
P

, (4.9)

while

η = M2
P

V ′′

V
≃ 1, (4.10)

where V is the inflaton potential and the prime denotes the derivative by φ1. This is the
eta problem for the inflation model-building in supergravity [23–25].
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A solution for this problem is to adopt a superpotential linear in the inflaton [26,27,63]
which is realized by imposing the R-symmetry. Another solution is to assign the shift
symmetry of the inflaton for the Kähler potential [64,65]. The former leads to the Hybrid
or new inflation type potential, and the latter the chaotic or topological inflation type
potential. Furthermore, we can avoid the eta problem if the inflation is realized by the
D-term potential. For recent review, see for example Ref. [66].

4.2.2 The Affleck-Dine baryogenesis

Here, we will see that the (negative) Hubble-induced mass provides the initial condition
for the Affleck-Dine baryogenesis mechanism [55–57].

Let us consider the following potential for the Affleck-Dine field φ:

V =
(
m2

3/2 − cH2
)
|φ|2 + am3/2

(
φn

Mn−3
+ h.c.

)
+

|φ|2(n−1)

M2n−6
, (4.11)

where c > 0 and a are model-dependent parameter, m3/2 is the gravitino mass of order the
SUSY breaking scale, n ≥ 4 is an integer and M is a cut-off scale. The Hubble-induced
mass here has negative sign, which arises from the non-minimal Kähler potential like
K = |φ|2 + |I|2 + (1 + c/3)|φ|2|I|2/M2

P + · · · (I is the inflaton). The Affleck-Dine field φ is
originally a flat direction with baryon (or lepton) charge in the field space, but is lifted by
the SUSY breaking effect and the non-renormalizable term. During inflation, the Affleck-
Dine field φ is stabilized at the potential minimum φ0 where the negative Hubble-induced
mass and the non-renormalizable term is balanced:

φ0 ≃
(
HIM

n−2
)1/(n−1)

. (4.12)

After the inflation, the Universe is dominated by the inflaton coherent oscillation which
behaves as matter (ρm ∝ a−3). The Hubble-induced mass now decreases as H2(t) ∝
t−2 and the Affleck-Dine filed φ traces around the time-dependent potential minimum
φ0(t) ≃

(
H(t)Mn−2

)1/(n−1). Eventually, the SUSY breaking mass m3/2 dominates over
the potential when H(t) < m3/2 and then the Affleck-Dine field φ goes to the origin.4-1

4-1So far is the dynamics of the radial component of φ. Let us see the angular component to investigate
the baryogenesis. Assuming that the Affleck-Dine field φ has the baryon charge +1, the total baryon
number is given by the Noether theorem as

NB =

Z
d3x i

“
φφ̇∗ − φ∗φ̇

”

=

Z
d3x 2r × rθ̇

(4.13)

where the integral is over the co-moving coordinate. In the above second line, we have decomposed the
Affleck-Dine field φ as φ = reiθ, r > 0. From Eq. (4.13), we see that the baryon number is generated
by the “torque” r × rθ̇. In Eq. (4.11), this torque comes from the A-term: am3/2(φ

n + h.c.)/Mn−3 =
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4.2.3 The adiabatic solution for the cosmological moduli problem

In this subsection, we will see that the Hubble-induced mass can solve the cosmological
moduli problem, which is known as the adiabatic solution [58,59].

First, let us overview the cosmological moduli problem [73–75]. A moduli field is
originally a flat direction in the field space and has no charge. Since the moduli field φ1 is
light (its mass is lifted by SUSY breaking effect m ≪ HI) and has no charge, φ1 can have
any field value during inflation which is estimated to be around the Planck mass scale MP.
Because of this large field value, the moduli field φ1 stores huge energy density. If the
reheating temperature TRH is high enough (TRH > Tosc.) (Tosc. is defined in Eq. (4.15)),
the moduli field φ1 begins to oscillate when H(tosc.) = m in the RD era4-2, where tosc. is
given by

tosc. ≃ 3 × 10−29 sec
(

104 GeV
m

)
. (4.14)

At the onset of the moduli oscillation tosc., H = m, the Friedman equation leads to

π2g∗
30

T 4
osc. = 3m2M2

P. (4.15)

Using Eq. (4.15), the ratio of the energy density of the moduli φ1 and radiation is given
by

ρφ1

ρrad
=
φ2

1(tosc.)
6M2

P

(
a(t)

a(tosc.)

)
. (4.16)

Since ρφ1 and ρrad scale as a−3 and a−4, respectively, the energy density of the coherent
oscillation of the moduli field eventually dominates over the radiation at the time t∗ when
ρφ1 = ρrad. Here, t∗ is estimated to be

t∗ ≃ 36 tosc.

(
MP

φ1(tosc.)

)4

. (4.17)

Since the moduli field has no symmetry, the typical field value of the moduli field at the on
set of the oscillation, φ1(tosc.), is typically expected to be the Planck scale φ1(tosc.) ∼ MP.
If this is the case, Eqs. (4.14) and (4.17) lead to t∗ ∼ 10−27sec (104 GeV/m). On the other
hand, the lifetime of the moduli field φ1 is estimated as

τφ ≃ M2
P

m3
≃ 1 sec

(
104 GeV

m

)3

, (4.18)

2am3/2(r
n/Mn−3) cos(nθ). Finally, the parameters for NB are restricted to give the correct size of the

baryon to photon ratio today nB/nγ ∼ 10−9. We note that the scenario of the Affleck-Dine baryogenesis
is much altered if the Q-ball formation occurs [67–72].

4-2For the case with TRH < Tosc., the moduli field begins to oscillate during inflation. Even in this case,
the following discussion does not change significantly.
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where we have assumed that the moduli interaction is given by a dimension 5 operator
which is suppressed by MP. If the moduli interaction is suppressed by M2

P or higher, the
lifetime of the moduli is longer. Thus, for the wide range of the initial value φ1(tosc.), the
moduli field φ1 decays and produces huge entropy at around the Big-Bang Nucleosynthe-
sis (BBN), which spoils the success of BBN. This is the notorious cosmological moduli
problem [73–75].

It has been pointed out that the Hubble-induced mass is useful for solving the moduli
problem [58,59]. Denoting the moduli field value during inflation as φ1∗, the moduli field
is stabilized at φ1∗ during inflation by the positive Hubble-induced mass. Then, in the
inflaton oscillation dominated era the moduli filed potential is here given by

V =
1
2
m2φ2

1 +
1
2
cH2(t) (φ1 − φ1∗)2 , (4.19)

where c > 0 and H(t) = 2/(3t) (the inflaton MD era). For this potential, the time-
dependent potential minimum φ̄1(t) is given by

φ̄1(t) =
cH2(t)

m2 + cH2(t)
φ1∗. (4.20)

If the parameter c > 0 is sufficiently large (∼ 102 or more ), the minimum φ̄1(t) goes to
the origin with the time scale H−1 which is very slow compared with the time scale of
the moduli field φ, m−1, after cH2 ∼ m2. In this case, the moduli field φ1 follows the
time-dependent potential minimum φ̄1(t) [58,59]. Eventually, the amplitude of the moduli
oscillation is significantly suppressed and the entropy production is highly suppressed.
This is the adiabatic solution for the cosmological moduli problem.

4.2.4 The eta problem in the curvaton scenario

Here, we will see that the Hubble-induced mass during inflation is an obstacle for the
curvaton mechanism [60–62] in supergravity.

Below, we assume that the Kähler potential for the curvaton is the minimal form.
Then the curvaton acquires the positive Hubble-induced mass-squared m̃2 = 3H2

I through
supergravity effect as we have explained in Eq. (4.8). Thus the curvaton model with
quadratic potential has the following potential during inflation in supergravity:

V =
1
2
(
m2

σ + 3H2
I

)
σ2, (4.21)

where the curvaton zero-temperature mass is assumed to be much small: mσ ≪ HI . Since
the curvaton has a large (effective) mass compared with HI , the power spectrum of the
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curvaton fluctuation δσk(t) is given by4-3

Pδσ(k, t) =
k3

2π2
|δσk(t)|2

≃
(

HI

2π

)2( k

a(t)HI

)3

,

(4.22)

where k is the co-moving momentum, t is the cosmic time, and the scale factor a(t)
grows exponentially: a(t) = exp(HIt). Thus, the curvaton cannot acquire large super-
horizon fluctuation during inflation. This spoils the curvaton mechanism. The large
η = MPV ′′/V ≃ 3 is originated from the large Hubble scale effective mass term in
Eq. (4.21). Thus, in a word, this large η leads to the suppression of the curvaton fluctua-
tion during inflation. So, let us call this problem as the eta problem for the curvaton. If
we choose a non-minimal Kähler potential for the curvaton, the Hubble-induced mass can
be suppressed. However, in this case we have to tune the parameter in the non-minimal
Kähler potential. The curvaton eta problem may be solved by imposing the shift-symmetry
on the curvaton Kähler potential or using the D-term inflation model.

4-3Here, we have not removed the zero-point fluctuation. If we remove it, the power spectrum will be
suppressed more.
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Chapter 5

Issues on the Hubble-induced
mass in the RD era

As we have seen in the previous chapter, supergravity effects play important roles in the
inflaton dominated era in which scalar fields generally acquire the Hubble-induced effective
mass through the Planck-suppressed interactions. In a word, this Hubble-induced mass
is originated from the energy of the inflaton which dominates the Universe. After the
inflationary era, reheating process occurs and the radiation-dominated (RD) era follows.
Then a question may arise: is there any source for the effective mass of the order of H

after inflation? There is a possibility that the thermal plasma in the RD era provides the
source as expected in Ref. [56], since the inflaton energy seems to have converted to the
energy of the plasma through reheating process.

In the following two chapters, we investigate the question about whether or not scalar
fields acquire an effective mass of the order of the Hubble scale H in the RD era through
Planck-suppressed interactions. The starting point we adopt in this chapter is the same
as in Refs. [31, 32] in which the thermal expectation value of the kinetic terms of ther-
malized fields was discussed. These authors claimed opposite answers to the question,
i.e., the Hubble scale effective mass does arise and does not from the kinetic terms of the
thermalized fields. The crucial point was what dispersion relations we should use for the
thermal fields. Since their procedure was naive and they did not use reliable formulation
for the thermal fields, their claims could not be justified. In order to treat thermal fields,
we here use the techniques of thermal field theory which is the most reliable approach to
the issue [33,34]. This procedure clarifies what dispersion relation the thermal fields have.

However, this is not the end of the story. Even though we apply thermal field theory,
there is some problems, as we will see later, in the analysis in this chapter. Namely, this
procedure is not so transparent when we proceed analytical calculations, and even worse
the analysis suffers from the temperature dependent quadratic divergence. To overcome
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these difficulties, we propose a solid and more transparent strategy [35] in the next chapter.
For the sake of completeness of this thesis, in this chapter we review what has been
developed on the issue before the solid and transparent strategy appears.

The organization of this chapter is as follows. In Sec. 5.1, we briefly review the previous
studies on the issue and point out the problems of the naive estimations. In Sec. 5.2, we
consider the effective mass of φ which arises from the thermal expectation value of the
scalar field kinetic term in the thermal bath. This thermal expectation value is expressed
by the spectral function of the thermalized scalar field, which is evaluated by thermal field
theory. In Sec. 5.3, we consider the effective mass of φ which arises from the thermal
expectation value the fermion kinetic term in the thermal bath. Again, this thermal
expectation value is expressed by the spectral function of the thermalized fermion field,
which is evaluated by using thermal field theory with some approximations to proceed the
analytical calculation. In the course of these analysis, we clarify some difficulties in the
procedure we employ here.

5.1 Set-up and naive estimations

Here and hereafter, we consider two complex scalar fields φ and χ, whose masses are orig-
inally (i.e., at zero temperature) much smaller than the Hubble scale H, in supergravity
framework. Here, φ is assumed to be decoupled from the thermal bath, whereas χ is in
equilibrium with the bath in the RD era. It is assumed that these two fields φ and χ

interact with each other via the non-minimal Kähler potential given by

K = |φ|2 + |χ|2 + c
|φ|2|χ|2

M2
P

, (5.1)

where c = O(1) is a model-dependent parameter. Here, φ and χ are chiral superfields which
include the scalar φ and the scalar χ (and fermion χ̃) as component fields, respectively5-1.
Even if there are higher order corrections in terms of M−1

P in Eq. (5.1), these corrections
does not change the following discussions. Then, from Eqs. (4.1) and (5.1), the kinetic
term of χ has the following form:

Lχ
kin. =

(
1 + c

|φ|2

M2
P

)
∂µχ

∗∂µχ. (5.2)

Below, we consider the effecive mass-squared of the scalar field φ, m̃2
φ, especially in the

RD era after the inflationary era. In the RD era, where the Hubble-induced mass due to
the inflaton potential disappear, we are interested in what value the effective mass-squared

5-1Here and hereafter, we use the same symbols φ and χ for both the superfields and the component
scalar fields, unless otherwise stated.
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m̃2
φ takes. From Eq. (5.2), the kinetic term contribution is given by

m̃2
φ|kin. = − c

M2
P

⟨∂µχ̂
∗∂µχ̂⟩. (5.3)

Here and hereafter, ⟨· · · ⟩ ≡ tr(e−βĤ · · · )/tr(e−βĤ) represents the thermal expectation
value, where Ĥ is the Hamiltonian of the thermal bath. In Ref. [32], it is insisted that the
effective mass-squared which arises from the χ’s kinetic term takes a value much smaller
than the Hubble scale: m̃2

φ|kin. ∼
m2

χ

T 2 H2 ≪ H2, where mχ is the zero temperature mass of
χ and T is the temperature of the thermal bath. However, the following argument seems
possible [31]. The effective mass-squared of φ originated from Eq. (5.3) is determined by
the thermal average ⟨∂µχ̂∗∂µχ̂⟩ in the RD era. Using an equation of motion for χ, we
naively estimate the effective mass-squared as5-2

m̃2
φ|kin. ≃

c

M2
P

⟨χ̂∗!χ̂⟩

≃ −
cm2

th

M2
P

⟨χ̂∗χ̂⟩

≃ −cy2H2,

(5.4)

where y is a coupling strength of the scalar field χ to the thermal bath (see Eq. (??)).
Here, thermal mass mth ≃ yT for χ, ⟨χ̂∗χ̂⟩ ≃ T 2, and T 4 ≃ H2M2

p are used. In Eq. (5.4),
the nontrivial equalities are the first and second line, namely, it is ambiguous whether or
not we can use the equation of motion and the thermal mass in the equalities.

There is another naive estimation. Let us directly evaluate ⟨∂µχ̂∗∂µχ̂⟩ by using the
expansion of the scalar field χ:

χ̂(x) =
∫

d3k
(2π)32ωk

(
âke−ik·x + â†keik·x

)
(5.5)

where ωk =
√

|k|2 + M2
χ, Mχ is a kinetic mass of χ, and âk(â†k) is the annihilation (cre-

ation) operator. Then,

m̃2
φ|kin. = − c

M2
P

⟨∂µχ̂
∗∂µχ̂⟩

= −
cM2

χ

M2
P

∫
d3k

(2π)32ωk

1
eβωk − 1

,
(5.6)

where we have used k2 = M2
χ. One may consider Mχ is the zero temperature mass

Mχ = mχ ≪ T , leading to m̃2
φ ≪ H2. On the other hand, as the scalar field χ is

in the thermal bath, another may insist χ acquire a thermal mass and Mχ = mth ≃
5-2Such an estimate seems to have been raised in Ref. [56].
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yT , leading to m̃2
φ ≃ H2. These considerations should be confirmed by using a reliable

formulation. Therefore, the main purpose of this chapter is to investigate the question:
whether ⟨∂µχ̂∗∂µχ̂⟩ ≃ y2T 4 is correct or not. The essence is what dispersion relation we
should use for the thermalized field. The strategy here is to express ⟨∂µχ̂∗∂µχ̂⟩ by the
spectral function. By using the spectral function, we can investigate the above question
quantitatively by thermal field theory as we will see below. In the course of the analysis,
we will face some difficulties which will be resolved in the next chapter.

5.2 Scalar field contributions

In this section, we consider the effective mass of the scalar field φ which arises from the
kinetic term of the scalar field χ in the thermal bath. We assume here spatial homogeneity
and isotropy of the background metric. We also take the zero-temperature mass of χ as
mχ = 0 for simplicity, although the following argument can be applied for nonzero mχ

with mχ ≪ H.

Below, we decompose the complex scalar field as χ = 1√
2
(χ1 + iχ2) (χ1,2 are real scalar

fields). Then, the expectation value can be evaluated by ⟨∂µχ̂∗∂µχ̂⟩ = ⟨∂µχ̂1∂µχ̂1⟩ as long
as χ1 and χ2 are equivalent.

Now, let us evaluate the expectation value ⟨∂µχ̂1∂µχ̂1⟩ when the real scalar field χ1 is
in equilibrium with the thermal bath. The thermalization of χ1 is assumed to take much
less time than the Hubble expansion time scale, and the effect of Hubble expansion rate
is effectively included in the plasma temperature T . Moreover, assuming the relativistic
degrees of freedom in the thermal bath is large enough, we neglect the effect of φ -χ1

interaction Eq. (5.1) to the bath. The smallness of the back reaction of φ to the thermal
bath is also verified by the tiny coupling between them.

First of all, we express this expectation value by the so-called statistical propagator
for the real scalar field χ1. For this purpose, we note the following equation:

⟨∂µχ̂1(x)∂µχ̂1(x)⟩ = ∂x1
µ ∂x2µD+(x1, x2)|x1=x2=x, (5.7)

where we have introduced the two-point function (statistical propagator) D+(x1, x2) as

D+(x1, x2) =
1
2
⟨{χ̂1(x1), χ̂1(x2)}⟩. (5.8)

Since χ1 is in thermal equilibrium, two-point functions for χ1 depend only on the difference
of the two points: D+(x1, x2) = D+(x1 −x2). We firstly use the spatial Fourier transform
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as

⟨∂µχ̂1(x)∂µχ̂1(x)⟩ = ∂x1
µ ∂x2µ

∫
d3k

(2π)3
e+ik·(x1−x2)D+(t1 − t2,k)

∣∣∣∣
x1=x2=x

=
∫

d3k
(2π)3

(−∂2
y − |k|2)D+(y,k)

∣∣∣∣
y=0

,

(5.9)

where y = t1 − t2.
Next, we have to know the expression for the Fourier component D+(y,k). Since the

real scalar field χ1 is in thermal equilibrium, we can use the KMS relation [41, 42] (see
Eq. (3.47)):

D+(ω,k) =
1
2

coth
(
βω

2

)
ρχ1(ω,k), (5.10)

where ρχ1(ω,k) is the spectral function of χ1. Then, we obtain the following expression:

D+(y,k) =
∫ ∞

−∞

dω
2π

e−iωyD+(ω,k)

=
∫ ∞

−∞

dω
4π

e−iωy coth
(
βω

2

)
ρχ1(ω,k).

(5.11)

Now, the problem is reduced to what form the spectral function ρχ1(ω,k) takes. Once
the interaction of the scalar field χ1 is given, we can calculate the self-energy and the
spectral function of χ1 at the leading order of the coupling constants. Here, let us assume
that the self-energy of χ1, Πχ has the following form:

Πχ =
κy2T 2

12
≡ m2

th, (5.12)

which is real and here we parameterize the magnitude of the self-energy or thermal mass-
squared m2

th by κ = O(1). Such a self-energy can be realized at the leading order of the
coupling if the interaction of the real scalar field χ1 is dominated by, for example, quartic
interactions or yukawa interactions5-3. As we have done in Eq. (3.86), from Eq. (5.12), we
can obtain the spectral function of χ1, ρχ1(ω,k), at the leading order of the coupling y as

ρχ1(ω,k) =
i

(ω + iϵ)2 − |k|2 − m2
th

− i

(ω − iϵ)2 − |k|2 − m2
th

= 2π sign(ω)δ(ω2 − ω2
th(k)),

(5.13)

5-3For example, if the interaction term is given by Lint = − y√
2
χ1ψ̄ψ− y2

2 χ
2
1(ψ̃

∗
1 ψ̃1 + ψ̃∗

2 ψ̃2), the parameter

is κ = 3 in the one-loop HTL approximation. Here, ψ, ψ̃i (i = 1, 2) are massless Dirac Fermion and complex
scalar field, respectively, and both in the thermal bath. For finite-temperature system, a fermionic loop
has not only the same factor (−1) as in the zero temperature system but also has another factor (−1)
arising from the anti-periodicity of fermionic field. Thus, the bosonic and fermionic contributions to the
thermal mass of χ1 do not cancel out each other at least in the one-loop HTL approximation.
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where ωth(k) =
√

|k|2 + m2
th is the dispersion relation of the thermal field χ1.

Then, it is easy to obtain D+(y,k) from Eqs. (5.11) and (5.13) as

D+(y,k) =
Re
(
e−iωth(k)y

)

ωth(k)

(
1
2

+ fB(ωth(k))
)

. (5.14)

Now, we are in a position to evaluate the expectation value ⟨∂µχ1(x)∂µχ1(x)⟩. Sub-
stituting Eq. (5.14) into Eq. (5.9), we obtain the following expression:

⟨∂µχ1(x)∂µχ1(x)⟩ =
1

2π2

∫ ∞

0
d|k| |k|2

ω2
th(k) − |k|2

ωth(k)

(
1
2

+ fB(ωth(k))
)

, (5.15)

where we have used spatial isotropy for ωth(k) since χ1 is in thermal equilibrium. We
note that the time derivative in Eq. (5.9) picks up the thermally corrected poles, which
make sure the validity of substituting thermal mass in our naive estimates in Eqs. (5.4)
and (5.6).

Now, let us write down more explicit expression for ⟨∂µχ̂1(x)∂µχ̂1(x)⟩. Since ωth(k)

obey the dispersion relation ωth(k) =
√

|k|2 + m2
th, the factor in Eq. (5.15) becomes

ω2
th(k) − |k|2

ωth(k)
=

m2
th√

|k|2 + m2
th

(5.16)

and we obtain

⟨∂µχ̂1(x)∂µχ̂1(x)⟩ ≃
m2

th

2π2

∫ ∞

0
d|k| |k|2√

|k|2 + m2
th

(
1
2

+ fB

(√
|k|2 + m2

th

))

= m2
th

(
⟨χ̂2

1(x)⟩vac + ⟨χ̂2
1(x)⟩T

)
.

(5.17)

Here, ⟨χ2
1(x)⟩vac and ⟨χ2

1(x)⟩T are given by

⟨χ̂2
1(x)⟩vac =

1
4π2

∫ ∞

0
d|k| |k|2√

|k|2 + m2
th

,

⟨χ̂2
1(x)⟩T =

1
2π2

∫ ∞

0
d|k| |k|2√

|k|2 + m2
th

fB

(√
|k|2 + m2

th

)
=

T 2

2π2
J (βmth) ,

(5.18)

and J(α) is defined by

J(α) ≡
∫ ∞

α
dx

√
x2 − α2

ex − 1
. (5.19)

The “vacuum” contribution ⟨χ̂2
1(x)⟩vac can be evaluated if we adopt the momentum cut-off

MP which is the cut-off scale in the supergravity framework. Unfortunately, this vacuum
contribution leads to the temperature dependent quadratic divergence for m̃2

φ and we
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cannot remove this divergence by the procedure itself we have employed here. We return
to this difficulty in the end of this section. Here, in order to proceed the analysis, we
simply neglect the vacuum contribution ⟨χ̂2

1(x)⟩vac. Then, we obtain

⟨∂µχ̂1(x)∂µχ̂1(x)⟩ ≃
m2

thT
2

12
=
κy2T 4

144
, (5.20)

where we have used an approximation J (βmth) = J (κy) ∼ J(0) = π2/6 in the last line
assuming the coupling y is small enough. Eq. (5.20) leads to the conclusion that the
statement “⟨∂µχ1(x)∂µχ1(x)⟩ ∼ y2T 4” for the real scalar field χ1 is verified. It is easy to
extent Eq. (5.20) to the kinetic term for the complex scalar field χ:

⟨∂µχ̂
∗(x)∂µχ̂(x)⟩ = ⟨∂µχ̂1(x)∂µχ̂1(x)⟩

≃ κy2T 4

144
.

(5.21)

Then, the effective mass-squared for the scalar field φ arising from the kinetic term of the
thermalized field χ is given by [33]

m̃2
φ|kin. ≃ − cκ

144
y2T 4

M2
P

= − 15cκ

24π2g∗
y2H2,

(5.22)

where the relation 3M2
PH2 = π2g∗

30 T 4 in the RD era is used. Here, g∗ is the effective number
of the relativistic degrees of freedom in the thermal bath. This is the result which answer
the question we raise in Sec. 5.1, namely, the thermal plasma in the early universe provide
a source for the Hubble-induced mass-squared ≃ y2H2/g∗ under the Kähler potential
Eq. (5.1). We note that if there are N complex scalar fields like χ in the thermal bath,
the Hubble-induced mass-squared Eq. (5.22) would be enhanced by the factor N .

As we have pointed out, we have neglected the vacuum contribution in Eq. (5.20).
Since supergravity framework has a cutoff scale MP, we can write down the divergent vac-
uum contribution ⟨χ̂2

1(x)⟩vac. Unfortunately, there is a temperature-dependent quadratic
divergence ⟨∂µχ1(x)∂µχ1(x)⟩ ⊃ m2

thM
2
P/(8π2) and we have simply neglect it in Eq. (5.20).

In order to remove this temperature dependent divergence, we may have to redefine the
effective mass-squared m̃2

φ rather than using Eq. (5.3). However we do not pursue this
problem, since we have another strategy for the analysis of the effective mass of φ, which
is a solid and transparent procedure. We will investigate the detail of this strategy in the
next chapter.

5.3 Fermion contributions

So far, we have considered the scalar field (χ) contribution to the effective mass-squared
m̃2

φ. In supersymmetry framework, however, there is also fermionic counterpart χ̃. It is
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expected that the kinetic term and the interaction term of χ̃ also contribute to m̃2
φ. Using

again the spectral function, we evaluate the contribution from fermion as well as the scalar
field.

In the following, we consider the scalar field φ and a chiral fermion χ̃ (we use two-
component notation) in supergravity framework. We assume that masses of φ and χ̃ are
originally (i.e., at zero temperature) much smaller than the Hubble scale H, and that φ
and χ̃ are interacting only via the non-minimal Kähler potential given by Eq. (5.1):

K = |φ|2 + |χ|2 + c
|φ|2|χ|2

M2
P

.

Here, φ and χ are superfields which include the scalar φ and the chiral fermion χ̃, respec-
tively. Then, from Eq. (4.2) the kinetic term of χ̃ is given by

Lχ̃
kin. =

(
1 + c

|φ|2

M2
P

)
ˆ̃χ(x)iσµ∂µχ̃

∗(x). (5.23)

Below, we consider the effective mass-squared for the scalar field φ, m̃2
φ, in the RD

era. From the kinetic term Eq. (5.23), the effective mass-squared m̃2
φ from the φ - χ̃

Planck-suppressed interaction is given by

m̃2
φ|fermion

kin. = − c

M2
P

⟨ ˆ̃χ(x)iσµ∂µ ˆ̃χ∗(x)⟩. (5.24)

In this chapter, we assume that the chiral fermion χ̃ is in thermal equilibrium. Here and
hereafter, again ⟨· · · ⟩ represents the thermal expectation value.

Below, we assume the chiral fermion zero-temperature mass m0 = 0 for simplicity,
although the following argument can be applied for m0 ≪ mf (mf is the thermal mass
for the fermion χ̃)5-4. Since the thermalization rate of the fermion is much larger than the
Hubble expansion rate, we evaluate the expectation value in Eq. (5.24) in Minkowski space-
time in the following discussion. The Hubble expansion rate relates to the evaluation only
through the thermal bath temperature T . Moreover, assuming the relativistic degrees
of freedom in the thermal bath is large enough, we neglect the back reaction of φ - χ̃
interaction to the bath. The smallness of the back reaction of φ to the thermal bath is
also verified by the tiny coupling between them.

First of all, we note the following equation:

⟨ ˆ̃χ(x)iσµ∂µ ˆ̃χ∗(x)⟩ = −iσµ
αα̇∂

x1
µ

(
Ḡ(+)α̇α(x1, x2) +

i

2
Ḡ(−)α̇α(x1, x2)

) ∣∣∣∣
x1=x2=x

, (5.25)

5-4When the zero-temperature mass is relatively large, m0 ≃ mf (≪ T ), we have to reconsider the
following discussion. On the other hand, as we assume the chiral fermion is in thermal equilibrium,
m0 " T case is irrelevant here.
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where α, α̇ are the spinor indices. Here, we have defined the Green functions Ḡ(±)α̇α(x1, x2)
as

Ḡ(+)α̇α(x1, x2) =
1
2
⟨
[
ˆ̃χ∗α̇(x1), ˆ̃χα(x2)

]
⟩,

Ḡ(−)α̇α(x1, x2) = i⟨
{

ˆ̃χ∗α̇(x1), ˆ̃χα(x2)
}
⟩.

(5.26)

Since the chiral fermion χ̃ is in thermal equilibrium, the Green functions depend only on
the difference x1 − x2: Ḡ(±)α̇α(x1, x2) = Ḡ(±)α̇α(x1 − x2). Thus, applying spatial Fourier
transform, we obtain the following expression:

⟨ ˆ̃χ(x)iσµ∂µ ˆ̃χ∗(x)⟩

= −iσµ
αα̇∂

x1
µ

∫
d3p

(2π)3
eip·(x1−x2)

(
Ḡ(+)α̇α(t1 − t2,p) +

i

2
Ḡ(−)α̇α(t1 − t2,p)

) ∣∣∣∣
x1=x2=x

=
∫

d3p
(2π)3

tr
{

(−i∂y + p · σ)
(

Ḡ(+)(y,p) +
i

2
Ḡ(−)(y,p)

)} ∣∣∣∣
y=0

,

(5.27)

where y = t1 − t2. To go further, we can use the following KMS relation between the
Green functions for the chiral fermion χ̃ [41, 42]:

Ḡ(+)(ω,p) = − i

2
tanh

(
βω

2

)
Ḡ(−)(ω,p). (5.28)

From this relation, we obtain

Ḡ(+)(y,p) +
i

2
Ḡ(−)(y,p) =

∫ ∞

−∞

dω
4π

e−iωy

(
tanh

(
βω

2

)
− 1
)
ρ̃χ(ω,p), (5.29)

where we have used the relation Ḡ(−)(ω,p) = iρ̄χ(ω,p).
Now, we are in a position to use the formula for the spectral function ρ̄χ(ω,p) under

quasi-particle approximation. In this approximation, the interactions are assumed to be
included in the thermally corrected effective masses of quasiparticles [76–78]. Then, quasi-
particles interact only weakly, and the imaginary parts of poles of the spectral function are
assumed to be much smaller than the real counterparts. Namely, in this approximation,
we neglect the continuum (or multi-particle) state contribution. Assuming that the width
of the pole is negligible and using the quasi-particle approximation, the spectral function
ρ̄χ(ω,p) is given by [11]

ρ̄χ(ω,p) = π [Z+(p)δ(ω − ω+(p)) + Z−(p)δ(ω + ω−(p))] (1 + p̂ · σ)

+ π [Z−(p)δ(ω − ω−(p)) + Z+(p)δ(ω + ω+(p))] (1 − p̂ · σ) ,
(5.30)
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where p̂ = p/|p| and Z±(p) are the residues of the poles ω±(p). The brief derivation of
Eq. (5.30) is given in Appendix E5-5. Using Eqs. (5.29) and (5.30), Eq. (5.25) is reduced
to a relatively simple form as follows

⟨ ˆ̃χ(x)iσµ∂µ ˆ̃χ∗(x)⟩ =
1
π2

∫ ∞

0
d|p| |p|2

{
Z+(p) (ω+(p) − |p|)

(
fF (ω+(p)) − 1

2

)

+ Z−(p) (ω−(p) + |p|)
(

fF (ω−(p)) − 1
2

)}
,

(5.31)

where fF (ω) = 1/(eβω + 1) is the Fermi-Dirac distribution function. For the evaluation
of Eq. (5.31), basically we need the numerical integration since Z± and ω± have rather
complicated form. Here, under a reasonable approximation, we evaluate Eq. (5.31) ana-
lytically.

To proceed the analysis further, let us approximate fF (ω±(p)). The approximation
we use here is based on the following three observations. First, fF (ω±(p)) has a cutoff
around ω±(p) ≃ T . Second, when ω±(p) is small (when |p| ≪ T ), we can neglect ω±(p)
dependence of fF (ω±(p)). Finally, ω±(|p|) ≃ |p| for |p| ≫ mf , where m2

f = κ′y2T 2/12 is
the thermal mass for the chiral fermion χ̃. Here, y is a coupling constant and κ′ = O(1) is
a model-dependent constant.5-6. From the above observations, it is reasonable to use the
following approximation formula for fF (ω±(p)) for all intervals of |p|:

fF (ω±(p)) ≃ 1
eβ|p| + 1

. (5.32)

Then, the expectation value for the kinetic term Eq. (5.31) becomes

⟨ ˆ̃χ(x)iσµ∂µ ˆ̃χ∗(x)⟩

=
1
π2

∫ ∞

0
d|p| |p|2 {Z+(p) (ω+(p) − |p|) + Z−(p) (ω−(p) + |p|)} 1

eβ|p| + 1
,

(5.33)

where we have neglected the “vacuum” contribution, which is independent of the distri-
bution function. This vacuum contribution leads to the temperature dependent quadratic
divergence for m̃2

φ and we cannot remove this divergence by the procedure itself we have
employed here. We return to the difficulty accompanied with this vacuum contribution
at the end of this section. Here, to proceed the analysis, we simply neglect this vac-
uum contribution. The contributions from the integration intervals [mf , T ] and [0,mf ]
in Eq. (5.33) give the leading and the next leading order contributions in terms of the

5-5We use the symbol Ḡ for real-time propagator, while we use G for the imaginary-time one in Ap-
pendix E.

5-6For example, if the interaction term is given by Lint. = −yϕχ̃λ̃+ h.c. (ϕ is a complex scalar field and
λ̃ is a chiral fermion), we obtain κ′ = 3/4 under the one-loop HTL approximation.
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coupling y, respectively. Thus, assuming the coupling y is small enough, we apply the
approximation formulae ω+(p) ≃ |p| + m2

f/|p|, ω−(p) ≃ |p|, Z+ ≃ 1, Z− ≃ 0 (see
Eqs. (3.101) and (3.105) ) to the whole interval [0,∞] although these formulae are valid
only within the interval [mf , T ]:

⟨ ˆ̃χ(x)iσµ∂µ ˆ̃χ∗(x)⟩ ≃ 1
π2

∫ ∞

0
d|p| |p|2 ×

m2
f

|p|
1

eβ|p| + 1

=
m2

fT 2

12
=
κ′y2T 4

144
.

(5.34)

From Eq. (5.34), the effective mass of the scalar field φ originated from the kinetic term
of the chiral fermion is given by [34]

m̃2
φ|fermion

kin. ≃ − cκ′

144
y2T 4

M2
P

= − 15cκ′

24π2g∗
y2H2,

(5.35)

where m2
f = κ′y2T 2/12 and the relation 3M2

PH2 = π2g∗
30 T 4 in the RD era is used, and g∗

is the effective number of the relativistic degrees of freedom in the thermal bath.
Eq. (5.35) is the result of this section. This effective mass of φ has almost the same

magnitude as the one from scalar field kinetic term in the thermal bath [33]. Thus, we
find that the chiral fermion kinetic term gives the effective mass-squared ∼ y2H2/g∗ to
the scalar field φ under the quasi-particle approximation for χ̃. As in the scalar field
kinetic term case, if there are N chiral fermions, the effective mass-squared (5.35) would
be enhanced by the factor N .

We have neglected the “vacuum” contribution in Eq. (5.33). The ”vacuum” contri-

bution may lead to ⟨ ˆ̃χ(x)iσµ∂µ ˆ̃χ∗(x)⟩vac ≃ −1
2π2

∫MP

0 d|p| |p|2 × m2
f

|p| = −m2
f M2

P

4π2 , where we
have introduced the cut-off scale MP. Unfortunately, this is the temperature dependent
quadratic divergence, which we have simply neglect it in Eq. (5.33). As in the case with
the scalar field contribution, in order to remove this temperature dependent divergence,
we may have to redefine the effective mass-squared m̃2

φ rather than using Eq. (5.24). How-
ever, again we do not pursue this problem here, since we have another strategy for the
analysis of the effective mass of φ, which is a solid and more transparent procedure. We
will investigate the detail of this anticipated upgrade in the next chapter.
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Chapter 6

Analysis of the Hubble-induced
mass in the RD era

In the previous chapter, the effective mass-squared of φ was expressed in terms of the
thermal expectation value of the kinetic term of the coupled (scalar or fermion) fields
in the thermal bath. There, the thermalized fields were implicitly assumed to be gauge
singlets and the thermal expectation value was evaluated based on thermal field theory.
However, the procedure given in the previous chapters would become complicated if we
considered all the contributions to the effective mass of φ from a realistic thermal bath
like SUSY SM particle plasma. This is because the thermal expectation values of the
gauge covariant kinetic terms would have to be evaluated. Also, we have to use the quasi-
particle approximation and some non-trivial approximations for the analytical evaluation
in the procedure employed in the previous chapter. These makes the analysis less trans-
parent. Even worse the analysis in the previous chapter was suffered from the temperature
dependent quadratic divergence and we have simply neglected it.

In this chapter, we propose a solid and more transparent procedure for evaluating
the effective mass of φ [35]. Our observation is as follows: the evaluation will become
simple and transparent, if we first rescale the chiral superfields so that the φ-dependence
is absorbed into yukawa and gauge couplings. This enables us to read off the effective
mass term for φ from the free energy density calculated with the rescaled couplings, since
the free energy density plays the role of the potential term in the equation of motion for
φ as we will see later.

The main purpose of this chapter is to propose a systematic evaluation of the effective
mass of the Planck-suppressed interacting scalar field φ. For the first time, the magnitude
of the effective mass of such a scalar field in the RD era is clarified with a reliable pro-
cedure. The procedure employed in this chapter is free from the complexity, non-trivial
approximation and the temperature dependent quadratic divergence. As a demonstration,
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we show an example calculation with the MSSM plasma. As a first estimate, we give a
complete analytic expression for the leading order (in terms of couplings) contribution
to the effective mass of φ. The rest of this chapter is organized as follows. In Sec. 6.1,
we explain our strategy for evaluating the effective mass of φ from yukawa couplings. In
Sec. 6.2, we also explain how to incorporate the contributions of the gauge couplings.
Then, in Sec. 6.3, we give an analytic expression for the effective mass of φ arising from
MSSM plasma. We also show the numerical result for the temperature dependence of the
effective mass of φ. In Sec. 6.4, we discuss about the dynamics of the scalar field φ which
is decoupled from the thermal bath. Finally, Sec. 6.5 is devoted to a brief summary of this
chapter.

6.1 Contribution from a yukawa coupling

In this section, we consider a scalar field χ and a fermion χ̃ in the thermal bath in SUSY.
For the moment, we omit the gauge fields for simplicity, though the following procedures
can be applied directly to the case with the gauge fields. The scalar field φ, which is
decoupled from the thermal bath, is assumed to have a coupling with χ and χ̃ only
through the following non-minimal Kähler potential given by Eq. (5.1):

K = |φ|2 + |χ|2 + c
|φ|2|χ|2

M2
P

.

In the following subsections, we evaluate the contributions to the effective mass of the
scalar field φ, m̃φ, from the thermalized fields χ and χ̃. In the evaluation, we neglect the
zero-temperature masses of χ and χ̃ for simplicity6-1.

6.1.1 Scalar field contributions

In this subsection, we will take into account the supergravity effects that appear both in
the kinetic term of the scalar field χ and in the F-term potential. We note that the latter
effects were neglected in Chap. 5.

From Eqs. (5.1) and (4.1), the scalar field χ has the following kinetic term:

Lχ
kin. =

(
1 +

c|φ|2

M2
P

)
∂µχ

∗∂µχ. (6.1)

On the other hand, the F-term potential in supergravity is given by Eq. (4.3):

VF = eK/M2
P

(
DiWKij̄DjW − 3|W |2

M2
P

)
.

6-1The following argument is valid when the zero-temperature masses of χ and χ̃ are much smaller than
ms and mf , respectively. Here, ms (mf ) is the thermal mass of χ (χ̃). When the zero-temperature
masses of χ, χ̃ are comparable to the thermal masses ms, mf , we have to include contributions from the
zero-temperature masses to m̃φ.
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Assuming that the superpotential is independent of φ, i.e., W = W (χ), we can extract
the φ-dependent term from Eq. (4.3) as

VF |φ-dep. =
(

1 +
(1 − c)|φ|2

M2
P

)
|Wχ|2 + O

(
M−4

P

)
. (6.2)

Below, in order to regard the scalar field φ as a quasi-static external field for χ (and χ̃), we
assume that the zero-temperature mass of φ is much smaller than the thermalization rate
of χ (and χ̃). Then, we have the canonical kinetic term for the scalar field χ by rescaling:

Lχ
kin. = ∂µχ

′∗∂µχ′, χ′ ≡
(

1 +
c|φ|2

M2
P

)1/2

χ. (6.3)

Now, we consider the following yukawa interaction in the superpotenital for χ:

W =
y

3!
χ3. (6.4)

Then, from Eqs. (6.2) and (6.3), we obtain

VF |φ-dep. =
(

1 +
(1 − c)|φ|2

M2
P

)(
1 +

c|φ|2

M2
P

)−2
y2

4
(
|χ′|2

)2 =
y′2

4
(
|χ′|2

)2
, (6.5)

where we have replaced the coupling y2 with y′2 defined by

y′2 ≡ y2

(
1 +

(1 − 3c)|φ|2

M2
P

)
. (6.6)

Here and hereafter, we neglect O(M−4
P ) terms. In Eq. (6.6), the kinetic term contribution

and the scalar potential contribution are corresponding to y′2 ⊃ y2 × −2c|φ|2
M2

P
and y′2 ⊃

y2 × (1−c)|φ|2
M2

P
, respectively. Note that, using the canonically normalized scalar field χ′, the

supergravity effects in the kinetic term (6.1) and the F-term potential (6.2) are eventually
absorbed into the rescaled yukawa coupling y′2. What we have to do for evaluating m̃φ is,
then, to extract the effective mass term for φ from the free energy density generated by
the rescaled yukawa coupling y′2, since the free energy density is nothing but the potential
term in the equation of motion for φ (we will see in Sec. 6.4). We note that since the
scalar field kinetic term and the interaction terms are now canonical and renormalizable,
respectively, in the sense of the zero-temperature system, the free energy density is free
from the temperature dependent divergence once we prepare the zero-temperature counter
terms [10,50–54]. Thus, the 4-point interaction (6.5) gives rise to the 2-loop contribution
to the (renormalized) free energy density of the system, Ω̃2, which is given by

Ω̃2 =
y′2T 4

288
=

y2T 4

288
−
(
c − 1

3

)
y2|φ|2

96
T 4

M2
P

. (6.7)
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From this free energy density, we obtain the following effective mass-squared m̃2
φ from the

4-point yukawa interaction (6.5):

m̃2
φ = −

c − 1
3

96
y2T 4

M2
P

. (6.8)

In Eq. (6.8), the kinetic term contribution is corresponding to m̃2
φ ⊃ − c

144
y2T 4

M2
P

, which
is the same as the one in Eq. (5.22) with κ = 1 which is the case here (4-point scalar
interaction V = y2

4 |χ|4 in Eq. (6.5) and without the fermion interactions). Note that m̃2
φ

naturally vanishes for c = 1/3 in Eq. (6.8), since c = 1/3 corresponds to the sequestered
Kähler potential form with which the Planck-suppressed interaction between φ and χ is
essentially absent. As a remark of this subsection, when we consider contributions to m̃φ

from MSSM plasma in Sec. 6.3, the above procedure is applied to 4-point interactions
which consist of squarks, sleptons and Higgs fields.

6.1.2 Fermion contributions

In this subsection, we will take into account the supergravity effects in a yukawa interaction
involving the fermion χ̃ as well as in the kinetic terms for χ and χ̃. We note that the
supergravity effects in the yukawa interaction were neglected in Chap. 5.

From Eqs. (5.1) and (4.2), the fermionic field χ̃ has the following kinetic term:

Lχ̃
kin. =

(
1 +

c|φ|2

M2
P

)
χ̃iσµ∂µχ̃

∗. (6.9)

On the other hand, the fermion interaction term in supergravity is given by Eq. (4.6):

Lf = −1
2
eK/(2M2

P) (DiDjW ) ξiξj + h.c. + · · · .

Since φ is treated as a quasi-static external field for the fermion χ̃, we have the canonical
kinetic term for χ̃ by rescaling:

Lχ̃
kin. = χ̃′iσµ∂µχ̃

′∗, χ̃′ =
(

1 +
c|φ|2

M2
P

)1/2

χ̃. (6.10)

The rescaling factor coincides with the scalar field case (see Eq. (6.3)), since it is actually
possible to rescale the superfield χ to absorb the φ-dependence.

Assuming the non-minimal Kähler potential (5.1) and the superpotential (6.4), Eq. (4.6)
gives rise to the following φ - χ̃ interaction:

Lf = −
(

1 +
|φ|2

2M2
P

)(
1 +

c|φ|2

M2
P

)−3/2
y

2
χ′χ̃′χ̃′ + h.c. = −y′

2
χ′χ̃′χ̃′ + h.c., (6.11)
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where y′ is identical to the one given in Eq. (6.6)6-2. In Eq. (6.11), the scalar field kinetic
term contribution, the fermion kinetic term contribution and the scalar-fermion-fermion
interaction contribution are corresponding to y′ ⊃ y × −c|φ|2

2M2
P

, y′ ⊃ y × −c|φ|2
M2

P
and y′ ⊃

y × |φ|2
2M2

P
, respectively. Note that the supergravity effects in the kinetic terms (6.3), (6.10)

and the scalar-fermion-fermion interaction (6.11) are absorbed into the rescaled yukawa
coupling y′. Then, all we need to do is to extract the effective mass term for φ from the
free energy density arising from the rescaled yukawa coupling. This is because the free
energy density is nothing but the potential term in the equation of motion for φ (we will
see in Sec. 6.4). We note that since the kinetic terms and the interaction terms are now
canonical and renormalizable, respectively, in the sense of the zero-temperature system, the
free energy density is free from the temperature dependent divergence once we prepare the
zero-temperature counter terms [10,50–54]. The scalar-fermion-fermion interaction (6.11)
generates the 2-loop contribution to the (renormalized) free energy density of the system,
Ω̃2, which is given by

Ω̃2 =
5y′2T 4

1152
=

5y2T 4

1152
−

(c − 1
3)5y2|φ|2

384
T 4

M2
P

. (6.12)

From this free energy density, we obtain the following effective mass-squared m̃2
φ from the

yukawa interaction (6.11):

m̃2
φ = −

5(c − 1
3)

384
y2T 4

M2
P

. (6.13)

In Eq. (6.13), the fermion kinetic term contribution is corresponding to m̃2
φ ⊃ − 5c

576
y2T 4

M2
P

.
The comparison with Eq. (5.35), however, is difficult since in the previous chapter we
have made some approximations (including the quasi-particle approximation) in order to
obtain the analytical expression (5.35). Before closing this subsection, we note that when
we consider contributions to m̃φ from MSSM plasma in Sec. 6.3, the above procedure is
applied to the quark-(s)quark-Higgs(ino) and lepton-(s)lepton-Higgs(ino) yukawa interac-
tions originated from the MSSM superpotential.

6.2 Contribution from a gauge coupling

We have seen in Sec. 6.1 that the φ-dependences are absorbed into the yukawa couplings
by the rescaling (6.3) and (6.10). In this section, we will see that, if the coupled field is
charged under gauge symmetry, the rescaling of the chiral fermion generates φ-dependent
corrections in the gauge coupling at one-loop level. As we shall see later, the numerical

6-2The superficial gap of order O
`
M−4

P

´
is due to the approximation employed here.
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coefficient of this correction turns out to be relatively large especially for the SU(3)c,
which partially cancels the one-loop suppression.

In this section, we assume that there are chiral supermultiplets χi which have gauge
charges, and that the corresponding gauge supermultiplet V = V aT a (T a is the generator)
in the thermal bath interacts with φ only through the Kähler potential.6-3 The non-
minimal Kähler potential (5.1) is now modified to

K = |φ|2 +
∑

i

(
1 +

ci|φ|2

M2
P

)
χ†

ie
2gV χi, (6.14)

where the sum runs over all the chiral supermultiplets χi. In order to obtain the canonical
kinetic term, we rescale the chiral supermultiplets χi as

χ′
i ≡

(
1 +

ci|φ|2

M2
P

)1/2

χi. (6.15)

We note that this rescaling also absorbs the φ-dependences in the D-terms and the scalar-
fermion-gaugino interaction. Namely, at the tree level, we do not have to rescale the
gauge couplings. However, since the chiral supermultiplets χi have the gauge charge, the
rescaling (6.15) gives rise to the following rescaling anomaly [79,80]:

∏

i

DχiDχ†
i =

∏

i

Dχ′
iDχ

′†
i exp

{
i

∫
d4x

∑

i

−1
16

∫
d2θ

t2(χi)
8π2

ci|φ|2

M2
P

W a
α(Vh)Wαa(Vh) + h.c.

}
,

(6.16)

where t2(χi) is the Dynkin index and is equal to 1/2 when χi belongs to the fundamental
representation, and Vh is the gauge supermultiplet with holomorphic gauge coupling. (V
and g are the canonically normalized gauge supermultiplet and coupling before the rescal-
ing.) Here and hereafter, we neglect the O(M−4

P ) terms. Then, the gauge supermultiplet
has the following kinetic term:

Lgauge
kin. =

1
16

∫
d2θ

1
g′2

W a
α(g′V )Wαa(g′V ) + h.c., (6.17)

where we have defined the rescaled gauge coupling g′2 as

g′2 = g2

(
1 − g2

∑

i

t2(χi)
8π2

ci|φ|2

M2
P

)−1

≃ g2

(
1 +

∑

i

t2(χi)
2π

g2

4π
ci|φ|2

M2
P

)
. (6.18)

From Eq. (6.18), we see that the rescaled gauge coupling g′2 has the φ dependence but
with an extra loop-suppression factor compared to the yukawa coupling contribution (6.6).
We note that since all the kinetic terms and the interaction terms are now canonical and

6-3In particular, no dilatonic coupling is assumed.
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renormalizable in the sense of the zero-temperature system, the free energy density is free
from the temperature dependent divergence once we prepare the zero-temperature counter
terms [10, 50–54]. Thus, when g is the gauge coupling constant of an SU(Nc) SUSY
Yang-Mills theory, the SU(Nc) gauge interactions give rise to the 2-loop contribution to
the (renormalized) free energy density of the system, Ω̃2, which is give by [81]

Ω̃2 = Ng

(
Nc + 3

∑

i

t2(χi)

)
g′2T 4

64

=
(
N2

c − 1
)
(

Nc + 3
∑

i

t2(χi)

)(
1 +

∑

i

t2(χi)
2π

g2

4π
ci|φ|2

M2
P

)
g2T 4

64
,

(6.19)

where we have used Ng = N2
c − 1. Thus, we obtain the following effective mass-squared

m̃2
φ generated by the gauge coupling g:

m̃2
φ =

(
N2

c − 1
)
(

Nc + 3
∑

i

t2(χi)

)∑
i cit2(χi)
128π

g2

4π
g2T 4

M2
P

. (6.20)

Note that the numerical coefficient, (N2
c − 1)(Nc + 3

∑
i t2(χi)), can be large, partially

canceling the the one-loop suppression factor. Therefore we cannot simply neglect the
contribution to m̃2

φ from the gauge coupling. In the next section, we evaluate all the 2-
loop free energy density generated by the rescaled yukawa and gauge couplings in MSSM.
There, we will see that the gauge coupling contributions to m̃φ can be large corrections to
the top yukawa coupling contribution.

6.3 Hubble-induced mass from MSSM plasma

In this section, we provide an analytic expression for the effective mass m̃φ from the
yukawa and gauge couplings in MSSM. We also estimate the temperature dependence of
m̃2

φ/H2 numerically.
We have explained in the previous sections how to evaluate m̃φ for the given non-

minimal Kähler potential and superpotential. In the following, we assume the non-minimal
Kähler potential (6.14) where i is now regarded as the MSSM chiral supermultiplet and
we replace gV with the MSSM gauge superfields (times gauge couplings). We also assume
sufficiently high temperature of the plasma and neglect all the zero-temperature (soft
SUSY-breaking) masses of MSSM particles6-4.

First, let us evaluate the contribution to m̃φ from the MSSM yukawa couplings. We
6-4We neglect the soft SUSY-breaking masses in the analytic expression for m̃φ, while we take it into

account in the renormalization group running of the couplings.
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consider the following MSSM superpotential:

WMSSM = yt
(
t̄RtLH0

u − t̄RbLH+
u

)
+ yb

(
b̄RbLH0

d − b̄RtLH−
d

)
+ yτ

(
τ̄RτLH0

d − τ̄RντH
−
d

)
,

(6.21)

where tL, bL, τL, ντ ,H+
u ,H0

u, H0
d and H−

d are the SU(2)L charged chiral superfields, and
t̄R, b̄R and τ̄R are the SU(2)L singlet anti-particle chiral superfields. Here, we have omitted
the 1st and 2nd generation yukawa couplings since they are are much smaller than the
3rd generation ones. Now, we include the supergravity effect which we have discussed in
section 6.1. Namely, we rescale all the chiral supermultiplets and yukawa couplings in
order to absorb the supergravity effects in the kinetic terms, F-term potential and fermion
interactions into the yukawa couplings yt, yb and yτ . As a consequence, we find that
the rescaling results in the following replacement for the yukawa couplings |y|2 → |y′|2

(y = yt, yb, yτ ):

|y′|2 = |y|2
(

1 +
(1 − ci − cj − ck)|φ|2

M2
P

)
, (6.22)

where ci, cj and ck are the coefficients in the non-minimal Kähler potential (5.1) for the
corresponding chiral fields. As an illustration, let us consider the interactions arising from
the term W = yτ τ̄RτLH0

d in Eq. (6.21). From this term, we obtain a 4-point yukawa
interaction |∂W/∂τL|2 = y2

τ |˜̄τR|2|H0
d |2 (˜̄τR,H0

d are the scalar component of the superfields
τ̄R,H0

d). In this case, the coefficients in Eq. (6.22) are determined as ci = cτL , cj =
cτ̄R , ck = cH0

d
. On the other hand, one of the yukawa interactions involving fermions we

obtain from the term W is −yτ τ̄RτLH0
d +h.c. (τ̄R, τL are fermions and H0

d is a scalar). For
this interaction, we determine the coefficients in Eq. (6.22) as ci = cτL , cj = cτ̄R , ck = cH0

d

which are identical to the above 4-point yukawa interaction contribution. Now, taking
into account of Eq. (6.22), the sum of the 2-loop contributions to the free energy density,
Ω̃2, from the 3rd generation yukawa couplings are summarized as following:

Ω̃2|yukawa =
9πT 4

8

∑

i=t,b,τ

γiαyi

(
1 −

3(c̄i − 1
3)|φ|2

M2
P

)
. (6.23)

where we have defined αyi ≡ |yi|2/(4π), γt = γb = 1 and γτ = 1/3. Here, c̄t, c̄b and c̄τ are
defined by c̄t = 1

3

(
ct̄R + ctL + cHu

)
, c̄b = 1

3

(
cb̄R

+ ctL + cHd

)
and c̄τ = 1

3 (cτ̄R + cτL + cHd),
respectively. Since the chiral superfields which are included in the same gauge multiplet
should have the same coefficient ci, we have set cbL = ctL , cH0

u
= cH+

u
, cH0

d
= cH−

d
, cντ = cτL .

Each contribution to Ω2 is briefly described in Appendix F. From Eq. (6.23), we can extract
the contribution to m̃2

φ from the yukawa couplings yt, yb and yτ .
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Next, let us evaluate the contribution to m̃φ from the MSSM gauge couplings. Using
the formula Eq. (6.18), we obtain the rescaled gauge couplings in MSSM as

α′
s = αs

(
1 +

3
π

c̄sαs|φ|2

M2
P

)
, α′

2 = α2

(
1 +

7
2π

c̄2α2|φ|2

M2
P

)
, α′

Y = αY

(
1 +

11
2π

c̄Y αY |φ|2

M2
P

)
.

(6.24)

And, from Eq. (6.20), the resultant contribution to m̃2
φ|2-loop is summarized as follows

m̃2
φ|SU(3)c

=
63
2

c̄sα2
sT

4

M2
P

, m̃2
φ|SU(2)L

=
483
32

c̄2α2
2T

4

M2
P

, m̃2
φ|U(1)Y

=
363
32

c̄Y α2
Y T 4

M2
P

, (6.25)

where αi = g2
i /(4π), and gs, g2 and gY are the gauge couplings of SU(3)c, SU(2)L and

U(1)Y , respectively. Here, we have defined c̄s = 1
12

∑SU(3)ctriplet
i ci, c̄2 = 1

14

∑SU(2)Ldoublet
i ci

and c̄Y =
∑

i Y
2
i ci/

∑
i Y

2
i . In the definition of c̄Y , i runs all the U(1)Y chiral supermulti-

plets.
Now, we are in a position to evaluate the total amount of the effective mass of the

Planck-suppressed interacting scalar field φ. From Eqs. (6.23) and (6.25), the total con-
tribution to m̃2

φ from the MSSM plasma is given by [35]

m̃2
φ = −27π

8

∑

i=t,b,τ

γi

(
c̄i −

1
3

)
αyi

T 4

M2
P

+
(

63
2

c̄sα
2
s +

483
32

c̄2α
2
2 +

363
32

c̄Y α
2
Y

)
T 4

M2
P

=

⎧
⎨

⎩− 81
61π

∑

i=t,b,τ

γi

(
c̄i −

1
3

)
αyi +

756
61π2

c̄sα
2
s +

1449
244π2

c̄2α
2
2 +

1089
244π2

c̄Y α
2
Y

⎫
⎬

⎭H2,

(6.26)

where, in the second line, we have used the Friedmann equation in the RD era 3M2
PH2 =

π2g∗
30 T 4 and g∗ = 228.75 = 915/4 for the MSSM plasma as the relativistic degrees of

freedom in the thermal bath. Here, the thermalization rate of the MSSM particles are much
larger than the Hubble expansion rate, and thus the Hubble expansion rate is involved
in the above evaluation only through the temperature of the thermal bath. Furthermore,
we neglect the back reaction of φ to the thermal bath since the coupling between them
is tiny (suppressed by M2

P). Eq. (6.26) is the analytic expression for m̃2
φ and is one of

the main result of this chapter. Note that the largest contributions to m̃2
φ come from the

top yukawa coupling yt and SU(3)c gauge coupling gs in typical temperature (see figures
below).

Let us comment on higher-loop contributions to m̃2
φ. In QCD at finite temperature,

it has been recognized that the higher-loop contributions to the free energy density are
important and the convergence is poor in the ordinary perturbation theory. A lot of
effort has been paid to the calculation of the higher-loop contributions to the free energy
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density and even the O(g6
s ln gs) result was obtained [82]. On the other hand, improved

perturbation theories are also investigated and the resultant free energies are found to have
good convergence [83–85] (for reviews see Ref. [86–88]). From the results in these studies,
we observe that the leading order result in the ordinary perturbation theory is different
from the convergence-improved result at most by a factor of order unity. Returning to
our subject, the poor convergence of the free energy density evaluation in the ordinary
perturbation theory would be true also in MSSM at finite temperature. In fact, we evaluate
the next-to-leading order contributions to m̃2

φ in Appendix F, and find that the next-to-
leading order contribution is comparable to the leading order (2-loop) one. However, from
the observation in the QCD results, even if we include the higher-loop contributions, the
magnitude of m̃2

φ would change from the leading order one at most by a factor of order
unity. Thus, the leading order result (6.26) can serve as the first estimate of m̃2

φ from the
MSSM plasma. Since our main purpose of this paper is to propose a systematic evaluation
of m̃φ and show an example calculation with the MSSM plasma, we do not pursue the
effect of the higher-loop contributions on m̃φ here.

Lastly we show the numerical results for the temperature dependence of m̃2
φ/H2. In

all the figures, we use the public code SOFTSUSY [89] in order to evolve the coupling
constants according to the renormalization group equations. For the sake of simplicity,
we apply the boundary condition of the minimal supergravity model. However, it should
be emphasized that the resultant value of m̃φ does not change significantly even if we
impose other boundary condition like the minimal gauge-mediated SUSY breaking or
minimal anomaly-mediated SUSY breaking model one. Below, we take m0 = m1/2 =
3 TeV, A0 = 0, tanβ = 20 (and 40), sign(µ) = +1 in the minimal supergravity model.
Here, m0,m1/2 and A0 are the unified scalar mass, gaugino mass, trilinear scalar coupling
at the GUT scale, respectively, and sign(µ) is the sign of the supersymmetric µ term.
Also, tanβ = ⟨H0

u⟩/⟨H0
d⟩ is the ratio of the Higgs field vacuum expectation values at the

weak scale. m̃2
φ/H2 has only small dependence on the parameter choice as long as the soft

SUSY-breaking masses are O(1 ∼ 10) TeV.

Fig. 6.1 shows m̃2
φ/H2 for tanβ = 20, 40. Here, we set ci = 1 for all the chiral super-

fields i. The black solid line is the total (yukawa + gauge) contributions to m̃2
φ/H2. The

red dashed line, blue dotted line are the sum of the yukawa, gauge coupling contributions
to m̃2

φ/H2, respectively. From Fig. 6.1, one can see that |m̃2
φ| is about H2/100, though

m̃2
φ mildly depends on the plasma temperature and tanβ. Although we do not show here,

we have checked that the largest contributions to m̃2
φ come from yt and gs in most of the

temperature range.

In Fig. 6.2, we set ci = 0 (minimal Kähler potential case) for all the chiral superfields
i. Here, we again choose tanβ = 20, 40 cases. The black solid line, red dashed line, green
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Figure 6.1: Hubble-induced mass-squared m̃2
φ for tanβ =

20 (left panel), 40 (right panel) [35]. We set ci = 1 for all chiral superfields i.
The black solid line is the total (yukawa + gauge) contribution to m̃2

φ/H2. The red
dashed line, blue dotted line are the sum of the yukawa, gauge coupling contributions to
m̃2

φ/H2, respectively.

dotted line and blue dash-dotted line are the total, yt, yb and yτ contributions to m̃2
φ/H2,

respectively. Note that the gauge coupling contributions vanish since no rescaling of the
coupled fields is required. From Figs. 6.2, one can see that m̃2

φ is about H2/100. We note
that m̃2

φ is always positive in this minimal Kähler potential case (ci = 0).
Finally, in Fig. 6.3, we set ci = 1/3 (sequestered Kähler potential case) for all the chiral

superfields i. The black solid line, red dashed line, green dotted line and blue dash-dotted
line are the total, gs, g2 and gY contributions to m̃2

φ/H2, respectively. The yukawa coupling
contributions vanish in this case since the chiral superfields are essentially decoupled from
the scalar φ. Nevertheless the gauge coupling contributions appear because of the rescaling
anomaly. From Fig. 6.3, one can see that m̃2

φ is about H2/1000 ∼ H2/500. We note that
m̃2

φ is independent of tanβ and is always positive in this sequestered Kähler potential case
(ci = 1/3).

6.4 The scalar field dynamics and the effective mass

Here, we discuss the dynamics of the Planck-suppressed interacting scalar field φ which is
decoupled from the thermal bath. In the above evaluations, we have mentioned that the
free energy density serves as the potential term in the equation of motion for the scalar
field φ. However, it is not a trivial fact since the free energy density of the thermal bath
itself seems nothing to do with the decoupled scalar field φ. In order to discuss about the
dynamics of φ and its relation to the free energy density, we have to use the knowledge of
the non-equilibrium field theory (for a review, see for example Ref. [90]) since the scalar
field φ is in non-equilibrium.
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Figure 6.2: Hubble-induced mass-squared m̃2
φ for tanβ = 20 (left panel),

40 (right panel) [35]. We set ci = 0 (minimal Kähler potential case) for all chiral su-
perfields i. Here, all the gauge coupling contributions are absent because of the choice
ci = 0. The black solid line, red dashed line, green dotted line and blue dash-dotted line
are the total, yt, yb and yτ contributions to m̃2

φ/H2, respectively.

Let us start the discussion with the generating functional for the Green functions of φ
and the thermalized field χ, which is given by [91] (see also [17])

Z[Jφ, Jχ] =
∫

DφiDφ′i(ρφ)φiφ′
i

∫ φ′
i

C;φi

Dφ exp
{

i

∫

C
d4x (Lφ(φ) + Jφφ)

}

×
∫ χi

C+CI ;χi

Dχ exp
{

i

∫

C+CI

d4x (Lχ(χ) + Jχχ+ Lint.(φ,χ))
}

= ⟨TCI

{
ei

R
CI

d4x Jχχ̂
}

TC

{
ei

R
C d4x (Jφφ̂+Jχχ̂)

}
⟩full,

(6.27)

where Lφ(φ),Lχ(χ) and Lint.(φ,χ) are the Lagrangian density for φ, χ and their interac-
tion, respectively. C and CI stand for the time contour along the real axis: [ti → +∞ → ti]
(the Keldysh contour [92]) and parallel with the imaginary axis: [ti, ti − iβ], respectively.
TC and TCI are the time-ordering operator along the path C and CI , respectively. For
a moment, we omit the effect of the cosmic expansion since we at first integrate out the
thermalized field χ which is governed by the bath temperature T (≫ H). Here, we have
defined ⟨· · · ⟩full = tr(ρ̂full · · · ) and we have assumed that the full density matrix of the
system ρ̂full is given by ρ̂full = ρ̂φ

⊗
ρ̂(eq)

χ at the initial time ti. Also, we have used the
notation φi = φ(ti,x) and ⟨φi| ρ̂φ |φ′i⟩ = (ρφ)φi,φ′

i
. The path integral

∫ φ′
i

C;φi
Dφ means that

the time contour is C and the initial and final field configurations are φi and φ′i, respec-
tively. Since we are interested in the dynamics of the scalar field φ, let us set Jχ = 0.
Then, integrating out the thermalized field χ, we obtain the reduced generating functional
for φ as

Z[Jφ, 0] =
∫

DφiDφ′i(ρφ)φiφ′
i

∫ φ′
i

C;φi

Dφ exp
{

i

∫

C
d4x (Lφ(φ) + Jφφ) + iSinfl.[φ]

}
, (6.28)
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Figure 6.3: Hubble-induced mass-squared m̃2
φ [35]. We have set ci = 1/3 (sequestered

Kähler potential case) for all chiral superfields i. In this case, all the yukawa coupling
contributions vanish and only gauge couplings contribute to m̃2

φ. Here, m̃2
φ has a negligible

dependence on tanβ. The black solid line, red dashed line, green dotted line and blue
dash-dotted line are the total, gs, g2 and gY contributions to m̃2

φ/H2, respectively.

where Sinfl.[φ] is the influence functional [93]. We note that Sinfl.[φ] depends on the thermal
bath temperature T since χ is in the bath. In the case we have considered in this chapter,
the influence functional Sinfl.[φ] is nothing but the free energy F [φ]:

Sinfl.[φ] = −
∫

C
d4x

(
Ω̃0 + Ω̃1[φ] + Ω̃2[φ] + · · ·

)

= −
∫

C
d4x

(
Ω̃0 + Ω̃2[0] + m̃2

φφ
∗(x)φ(x) + · · ·

)

= −F [φ],

(6.29)

where Ω̃n[φ] is the n-loop free energy density with the rescaled couplings, Ω̃0 is independent
of φ and “· · · ” represents the higher loop contributions to the free energy. In the second
line in Eq. (6.29), we have used the results of the previous sections: Ω̃2[φ] = Ω̃2[0]+m̃2

φφ
∗φ.

Also, we have neglected Ω̃1[φ] in the second line in Eq. (6.29) since Ω̃1[φ] is the higher
order correction than Ω̃2[φ] in terms of the couplings. The effective action for ϕ = ⟨φ̂⟩full,
Γ[ϕ], is obtained from the Legendre transformation of W [Jφ] = −i lnZ[Jφ, 0]:

Γ[ϕ] = W [Jφ] −
∫

C
d4x Jφ(x)ϕ(x),

(
ϕ(x) =

δW [Jφ]
δφ(x)

= ⟨φ̂(x)⟩full

)
. (6.30)

For the tree level, we obtain the following effective action for ϕ:

Γ[ϕ]|tree =
∫

C
d4x Lφ(ϕ) − F [ϕ]. (6.31)
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The equation of motion for ϕ is obtained by the variational principle. Since we now have
the Keldysh contour C, there are two kinds of fields ϕ+ and ϕ−, corresponding to each
branch of the path (C+ = [ti → +∞] and C− = [+∞ → ti]). However, one of the degrees
of freedom is unphysical since we have only one value ϕ(x) for each space-time coordinate
x. Thus, the center of mass coordinate ϕc = 1

2(ϕ+ + ϕ−) and the relative coordinate
ϕ∆ = ϕ+−ϕ− is often used and ϕ∆ = 0 is taken after variating Γ[ϕc,ϕ∆] by ϕ∗

∆. Namely,
the equation of motion for ϕc(x) is given by the following formula:

δΓ[ϕc,ϕ∆]
δϕ∗

∆(x)

∣∣∣∣∣
ϕ∆=0

= 0. (6.32)

For our cases in this chapter, Sinfl.[ϕc,ϕ∆] = F [ϕc,ϕ∆] is given by Eq. (6.29). Thus the
equation of motion for ϕc(x) is given by

ϕ̈c(x) + 3Hϕ̇c(x) − ∇2

a2(t)
ϕc(x) = −δF [ϕc,ϕ∆]

δϕ∗
∆(x)

∣∣∣∣∣
ϕ∆=0

, (6.33)

where we have inserted the effect of the cosmic expansion. Assuming that the effective
mass term for ϕ±, F [ϕc,ϕ∆] ⊃

∫∞
−∞ d4x (m̃2

φϕ
∗
c(x)ϕ∆(x) + h.c.), dominates over Sinfl.

(= −F ), the equation of motion for ϕc is given by6-5

ϕ̈c(x) + 3Hϕ̇c(x) − ∇2

a2(t)
ϕc(x) ≃ −m̃2

φϕc(x). (6.34)

Now, it is clear from Eq. (6.33) that the free energy F [ϕc,ϕ∆] is nothing but the potential
term in the equation of motion for ϕc(x). This is what we would like to show in this
section. In particular, Eq. (6.34) clearly shows that the effective mass term with m̃φ

serves as the mass term for the equation of motion for ϕc. In other words, the effective
mass m̃φ is an important quantity for the dynamics of ϕc.

Before we discuss the effect of the m̃φ on the dynamics of φ, let us mention about the
back reaction of φ to the thermal bath. Since the coupling between φ and the thermal
bath is suppressed by M2

P, the relaxation rate of φ, Γφ, is about Γφ/H ∼ (H/MP)4 ≪ 1
as long as the Hubble scale effective mass dominates the φ’s potential. Thus, φ is always
decoupled from the thermal bath. The back reaction of φ to the thermal bath is also
characterised by Γφ which is much smaller than the bath temperature T . This means that
the back reaction of φ to the thermal bath is always negligible in our cases.

Now, we are in a position to discuss the impact of the “Hubble-induced mass” in
the RD era (6.26) on cosmology. As for the adiabatic solution of the cosmological moduli

6-5In general, the influence functional Sinfl.[φ] (in our case the free energy F [φ]) includes the non-local
terms which entail the dissipative coefficient (friction term) and the noise term in the equation of motion
(see for example Refs. [17–22,91]).
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problem, our findings show that, even if the couplings between the modulus and the MSSM
sector are enhanced by two orders of magnitude, i.e., |c| = O(100), the Hubble-induced
mass for the modulus is not sufficient to suppress the modulus abundance when it starts
to oscillate after reheating. This results in a rather robust upper bound on the reheating
temperature [59,94] for the adiabatic solution to work. Also, the Hubble-induced mass in
the RD era may be useless for the Affleck-Dine baryogenesis scenario since there is often
much larger thermal correction of order α2

sT
4 log(φ2/T 2) [95]. On the other hand, it may

be good for the model building of the curvaton scenario in supergravity framework, since
the curvaton does not suffer from the Hubble-induced mass at least in the RD era.

6.5 Brief summary and discussion

In this chapter, we have proposed a systematic evaluation of the effective mass of a Planck-
suppressed interacting scalar field φ. The virtue of this procedure is that the analysis is
solid and transparent. In fact, we have overcome the difficulties we faced in the previous
chapter. The strategy we have used is as follows. First, we have rescaled the chiral
superfields so that the supergravity effects in the kinetic terms, F-term potential and
fermion yukawa interactions are absorbed into the rescaled yukawa and gauge couplings.
The gauge couplings receive φ-dependent corrections from the rescaling anomaly, which
is accompanied by a one-loop suppression factor (see Eq. (6.18)) compared to the yukawa
couplings (6.22). However, there are relatively large numerical factors in the rescaled gauge
couplings and thus we have to include the gauge coupling contributions in the evaluation
of m̃φ. Then invoking the free energy density with the rescaled couplings, we have read off
the expression for m̃φ. As a concrete and realistic example, we have shown the calculation
of m̃φ arising from the MSSM plasma through Planck-supressed interactions in the non-
minimal Kähler potential like Eq. (6.14). The resultant m̃2

φ arising from the sufficiently
high temperature MSSM plasma is given in Eq. (6.26), which is about 10−3H2 ∼ 10−2H2

for typical parameter sets.
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Chapter 7

Conclusions

In this thesis, we have investigated the effective mass of the weakly coupled scalar filed
φ which interacts with the thermal bath via the Planck-suppressed interaction in the RD
era. Such a very weakly coupled scalar filed often appears in the particle physics models in
the early Universe. The scalar field φ does not have the ordinary coupling to the thermal
field and does not acquire the usual thermal mass of order gT (g is the coupling). However,
through the Planck-suppressed interaction to the thermal bath, φ is expected to have an
effective mass of order T 2/MP ∼ H in the RD era. Whether or not such a Hubble scale
effective mass really arises was an issue. Also, clarifying the magnitude of this effective
mass is important for some scenarios of the early Universe.

In this thesis, in order to obtain a reliable result, we have based on thermal field
theory. The procedure we have used in Chap. 5 is evaluating the thermal expectation value
in terms of the spectral function. This enables us to see how the Hubble scale effective
mass is generated and resolves the difficulty the previous studies faced (what dispersion we
should use for the thermalized fields). However, this procedure is not so transparent, needs
some approximations and even worse suffers from the temperature dependent quadratic
divergence. To overcome these difficulties, in Chap. 6, we have proposed a solid and
more transparent procedure in which we have only to evaluate the free energy density
of the system. The strategy is that we first rescale the chiral fields and the couplings
of the thermal bath in order to obtain the canonical form of the kinetic terms and the
renormalizable form of the interaction terms for the thermalized fields. Then, we evaluate
the free energy density of the system and read off the effective mass of φ. The virtue of
this procedure is that the analysis is systematic and free from the temperature dependent
quadratic divergence. As a demonstration for the complete analysis at leading order of
coupling constants, we consider the MSSM plasma and evaluate the effective mass of φ.
For the first time, we clarify the magnitude of the effective mass-squared of φ in the RD
era and the result is |m̃2

φ| = O(10−2 ∼ 10−3) H2 for typical parameter sets. This is rather
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small value in the sense that we cannot use this Hubble scale effective mass (we call it
Hubble-induced mass) for the adiabatic solution of the cosmological moduli problem as
well as the Affleck-Dine baryogenesis. On the other hand, it may be good for the model
building of the curvaton scenario in supergravity framework, since the curvaton does not
suffer from the Hubble-induced mass at least in the RD era.
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Appendix A

Statistical mechanics

In this appendix, according to Ref. [96], we briefly summarize the consequences of statis-
tical mechanics as the basis of thermal field theory. For definiteness of our argument, we
consider quantum statistical mechanics. Below, we consider a thermal equilibrium system
surrounded by a thermal bath. This (sub)system consists of sufficiently many particles
but is rather few compared with its environment. The system is characterized by some
thermodynamical variables, e.g., internal energy E, entropy S, temperature T , pressure
P and volume V . These thermodynamical variables are related each other and we need
only two variables (or more if chemical potentials exist) to characterize the system.

A.1 Entropy

Let us consider a thermal equilibrium system surrounded by a thermal bath. We denote
the energy of the (macro) system as En (n is the label of the state) which is basically
fluctuated by the interaction with the thermal bath. We also denote the distribution
function of the system as ρmn which is nothing but the density operator ρ̂ in the energy
basis. The thermal average of a physical quantity A is defined by

⟨Â⟩ = tr
(
ρ̂Â
)

=
∑

mn

ρmnAnm.
(A.1)

The interaction between thermal equilibrium (macro) systems can be neglected and thus
we can take the thermal equilibrium density matrix ρmn as diagonal in the energy basis:
ρmn = ρn(En)δmn. Since ρ̂ depends only on the (almost) conserved quantitiesA-1 and ln ρ̂

A-1This fact comes from the Liouville’s theorem. For the quantum mechanical case, the Liouville’s theorem
says that d

dt ρ̂ = i[ρ̂, Ĥ] = 0 (Ĥ is the Hamiltonian of the system).
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has the addition propertyA-2 we have

ρ̂ = exp
{

a + bĤ
}

, (A.2)

where a and b are constants. Here, we assume that the system is rest as a whole. Thus,
the thermal average of ln ρ̂, ⟨ln ρ̂⟩ =

∑
n ρn ln ρn, is given by

⟨ln ρ̂⟩ = a + b⟨Ĥ⟩

= ln⟨ρ̂⟩.
(A.3)

Furthermore, the distribution of the system has a peak with a width ∆Γ (number of
states), whose position is corresponding to the energy ⟨Ĥ⟩. We define the width ∆Γ by
the following equationA-3:

⟨ρ̂⟩ × ∆Γ = 1. (A.4)

Now, let us define the entropy S as

S ≡ ln ∆Γ, (A.5)

which is positive by this definition. Using Eq. (A.4), the entropy S can be written as

S = − ln⟨ρ̂⟩

= −⟨ln ρ̂⟩

= −
∑

n

ρn ln ρn.

(A.6)

From this equation, we can evaluate the entropy of the system once we know the distri-
bution function ρn(En).

A.2 Free energies and chemical potential

In this section, we review the definitions of various free energies. Here, we start with the
first law of thermodynamics. The total differential of the energy E (= ⟨En⟩ in the notation
of the previous section) of the system is given by

dE = TdS − PdV + µdN, (A.7)

where we have introduced the chemical potential µ for the particle number N in the
system.
A-2This property comes from the statistical independence of macro system.
A-3Note that, in the classical mechanics case, ρn corresponds to the distribution function in the phase

space and ∆Γ corresponds to the phase space volume ∆q∆p.
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Using TdS = d(TS) − SdT in Eq. (A.7), we obtain the following equation for the
Helmholtz free energy F = E − TS:

dF = −SdT − PdV + µdN. (A.8)

Furthermore, using µdN = d(µN)−Ndµ in Eq. (A.8), we have the following equation for
the free energy Ω = F − µN :

dΩ = −SdT − PdV − Ndµ. (A.9)

On the other hand, if we use −PdV = d(−PV ) + V dP in Eq. (A.8), we obtain the
following equation for the Gibbs free energy Φ = F + PV :

dΦ = −SdT + V dP + µdN. (A.10)

Now, since Φ is a function of T, P and N , the addition property of the free energyA-4

leads to the following expression:

Φ = Nf(T, P ), (A.11)

where f(T, P ) is a function of T and P . From Eqs. (A.10) and (A.11), we have

µ =
(
∂Φ
∂N

)

T,P

= f(T, P ) (A.12)

and thus

Φ = µN (= F + PV ). (A.13)

From this equation, we can conclude that the chemical potential µ is nothing but the
Gibbs energy Φ per particle. Also, from the above equation, we can express the free
energy Ω = F − µN as

Ω = −PV. (A.14)

Before we close this section, let us consider the chemical potential. The expression for
the chemical potential µ can be obtained from Eqs. (A.7), (A.8) and (A.10) as

µ =
(
∂E

∂N

)

S,V

=
(
∂F

∂N

)

T,V

=
(
∂Φ
∂N

)

T,P

. (A.15)

A-4Since E, S, V and N have the addition property, the free energies F = E − TS, Ω = F − µN and
Φ = F + PV also have the addition property (T , P and µ are the same for any subsystem in a thermal
bath).
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Thus, as is the case for photon, if the particle number N is not under control, N is
automatically determined by the least-free energy principle for the situation under con-
siderationA-5. Namely, if T, V = constant, the chemical potential for photon (or some
non-charged particles) is determined as

µ =
(
∂F

∂N

)

T,V

= 0. (A.16)

On the other hand, the average particle number of the system N can be obtained from
Eq. (A.9) as

N = −
(
∂Ω
∂µ

)

T,V

. (A.17)

A.3 Canonical distribution

In this section, we derive an important relation between the free energy F and the partition
function for a canonical ensemble. The canonical distribution is given by

ρn(En) =
1
Z

e−En/T , (A.18)

where Z is the partition function given by

Z =
∑

n

e−En/T . (A.19)

From Eqs. (A.6) and (A.18), the entropy for the canonical ensemble has the following
expression:

S = −
∑

n

(
1
Z

e−En/T

)
ln
(

1
Z

e−En/T

)

=
E

T
+ lnZ.

(A.20)

Thus, the partition function Z can be written by the Helmholtz free energy F = E − TS

as

Z = e−F/T . (A.21)

It is interesting to compare this expression with the definition of Z (Eq. (A.19)). In a
word, F is an effective potential of the system and thus should be minimized in a thermal
equilibrium state (this is nothing but the least-free energy principle). The free energy F

can be obtained from the partition function Z as

F = −T lnZ. (A.22)

This is the important relation we would like to derive here.
A-5The state of the least-free energy is equivalent to the thermal equilibrium state. If the free energy is

not the least value, the state is not in thermal equilibrium.
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A.4 Grand canonical distribution

Here, we derive an important relation between the free energy Ω and the partition function
for the grand canonical ensemble. The result is similar to the one in the previous section.
The grand canonical distribution is given by

ρn =
1
Ξ

e−(En−µNn)/T , (A.23)

where Ξ is the grand partition function given by

Ξ =
∑

n

e−(En−µNn)/T . (A.24)

From Eqs. (A.6) and (A.23), the entropy for the grand canonical ensemble has the following
expression:

S = −
∑

n

(
1
Ξ

e−(En−µNn)/T

)
ln
(

1
Ξ

e−(En−µNn)/T

)

=
E − µN

T
+ ln Ξ.

(A.25)

Thus, the grand partition function Ξ can be written by the free energy Ω = F − µN as

Ξ = e−Ω/T . (A.26)

Again, It is interesting to compare this expression with the definition of Ξ (Eq. (A.24)).
In a word, Ω is an effective potential of the system and thus should be minimized in a
thermal equilibrium state (this is nothing but the least-free energy principle). The free
energy Ω can be obtained from the partition function Ξ as

Ω = −T lnΞ. (A.27)

This is the important relation we would like to derive in this section.
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Appendix B

Fermion propagator

In this appendix, we derive the propagator of a fermion. We start with the full thermal
propagator of a fermion ψ(xE) in the imaginary-time formalism, S(xE − x′

E), defined by

S(xE − x′
E) ≡ 1

Z
tr
(
e−βĤT̂CI ψ̂(xE)ψ̂(x′

E)
)

= ⟨T̂CI ψ̂(xE)ψ̂(x′
E)⟩,

(B.1)

where the quantities with ˆ are the quantum operators, ψ̄ = ψ†γ0, β = 1/T is the inverse
temperature, Ĥ is the Hamiltonian of the system and Z is the partition function given by

Z = tr
(
e−βĤ

)
. (B.2)

Also, T̂CI is the time-ordering operator on the time contour CI = [0,−iβ] along the
imaginary-time axis. Here and hereafter, we neglect the chemical potential for simplicity.

Let us consider the property of S(xE − x′
E) with the imaginary-time x4 and x′

4 (0 ≤
x4, x′

4 ≤ β) in order to investigate the boundary condition of S(xE −x′
E). First, we define

S>(xE − x′
E) and S<(xE − x′

E) as

S(xE − x′
E) =

⎧
⎨

⎩
⟨ψ̂(xE)ψ̂(x′

E)⟩ = S>(xE − x′
E), (for x4 ≥ x′

4),

−⟨ψ̂(x′
E)ψ̂(xE)⟩ = S<(xE − x′

E), (for x′
4 ≥ x4).

(B.3)

Then, S>(xE − x′
E) and S<(xE − x′

E) satisfy the following relation at the boundary
x4 = 0,β (here, 0 ≤ x′

4 ≤ β):

S<(xE − x′
E)|x4=0 = S(xE − x′

E)|x4=0,

S>(xE − x′
E)|x4=β = S(xE − x′

E)|x4=β .
(B.4)
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From this relation, we obtain

S<(xE − x′
E)|x4=0 =

1
Z

tr
(
e−βĤ(−ψ̂(x′

4,x
′)ψ̂(0,x))

)

= − 1
Z

tr
(
ψ̂(x′

4,x
′)e−βĤψ̂(β,x)

)

= − 1
Z

tr
(
e−βĤψ̂(β,x)ψ̂(x′

4,x
′)
)

= −S>(xE − x′
E)|x4=β .

(B.5)

Here, we have cyclicly moved the operators in the trace. Namely, we do not have additional
minus sign in the third line in Eq. (B.5). Thus, we obtain the following anti-periodic
boundary condition for the fermion ψ(xE) [41,42]B-1:

S(xE − x′
E)|x4=0 = −S(xE − x′

E)|x4=β . (B.6)

For taking this anti-periodicity into account, we have only to represent S(xE) by the
Fourier series and integral:

S(xE) = T
∞∑

n=−∞

∫
d3p

(2π)3
eiPµxEµS(iω′

n,p), ω′
n =

(2n + 1)π
β

, (B.7)

where n runs all integers (n = · · · ,−1, 0, 1, · · · ). In this thesis, we denote the fermionic
discrete energy by the symbol with prime as ω′

n. Here and hereafter, we denote the
Euclidean four-momentum by capital letter asB-2

Pµ = (p4,p) = (−ω′
n,p) (B.8)

and PµxEµ = p4x4 + p · x = −ω′
nx4 + p · x (we have defined xEµ = (x4,x)), while we

use small letter like pµ for the four-momentum in the Minkowski spacetime. The inverse
transformation of Eq. (B.7) is given by

S(P ) = S(iω′
n,p) =

∫ β

0
dx4

∫
d3x e−iPµxEµ∆(xE). (B.9)

The discussion so far is valid for the full propagator in the imaginary-time formalism,
S(xE). Before we go, let us see the consequence for the free propagator SF (xE). (Below,
we use the superscript “ F ” for the functions of free fields.) The equation of motion for
the free propagator is given by

(−i∂/ + m)SF (xE − x′
E) = δ(4)(xE − x′

E), (B.10)
B-1This is quite different from the bosonic case: the bosonic field obeys the periodic boundary condition.
B-2The minus sign of −ω′

n is just a convention.
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where ∂/ = ∂µγµ = ∂4γ4 + ∂iγi in the imaginary-time formalism with γ4 = iγ0
B-3. From

Eqs. (B.7) and (B.10), the Fourier component SF (P ) satisfies the following equation:

(P/ + m)SF (P ) = 1, (B.11)

where P/ = Pµγµ = −ω′
nγ4 +p ·γ. Thus, we arrive at the following free propagator for the

fermion ψ in the imaginary-time formalism:

SF (P ) =
1
P/

=
−P/ + m

P 2 + m2
, (B.12)

where P 2 = PµPµ = ω′2
n + |p|2 + m2 B-4.

Next, we apply the analytic continuation to the full imaginary-time propagator S(P )
in order to investigate real-time propagators. The propagator on a contour C, S̄C(x−x′),
can be written as

S̄C(x − x′) = ⟨T̂C ψ̂(x)ψ̂(x′)⟩

= θC(x0 − x′
0) S̄>(x − x′) + θC(x′

0 − x0) S̄<(x − x′),
(B.14)

where we have allowed the complex values of x0 and x′
0 and defined S̄>(<)(x − x′) as

S̄>(x − x′) = ⟨ψ̂(x)ψ̂(x′)⟩,

S̄<(x − x′) = −⟨ψ̂(x′)ψ̂(x)⟩.
(B.15)

On the imaginary-time contour CI , S̄>(<)(x) coincides with S>(<)(xE) defined in Eq. (B.3)
as

S̄>(<)(−ix4,x) = S>(<)(x4,x). (B.16)

Furthermore, using Eq. (B.6) which is equivalent to S(x4 − 0,x) = −S(x4 − β,x) and
Eq. (B.3), we have

S>(x4 − 0,x) = −S<(x4 − β,x). (B.17)

Putting together Eqs. (B.16) and (B.17), and using the analytic continuation x4 = ix0

(here x0 is real), we have

S̄>(x0,x) = −S̄<(x0 + iβ,x). (B.18)
B-3In this thesis, we use the Dirac slash notation in both the Minkowski spacetime p/ = pµγ

µ and the
Euclidean spacetime (the imaginary-time formalism) P/ = Pµγµ.
B-4There is a useful formula in the imaginary-time formalism:

A/A/ = −A2. (B.13)

This is the consequence of {γµ, γν} = −2δµν .
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Let us the two-point Green functions S̄>(<)(x) by the Fourier integral

S̄>(<)(x) =
∫

d4p

(2π)4
e−ip·xS̄>(<)(p), (B.19)

where p · x = pµxµ = p0x0 − p · x. Then, we obtain the following important relation
between the Fourier components S̄>(<)(p) from Eq. (B.18) as

S̄>(p) = −eβp0S̄<(p). (B.20)

If we define the spectral function ρ̃(p) and a function S̄+(p)B-5 as

ρ̃(p) ≡ S̄>(p) − S̄<(p),

S̄+(p) ≡ 1
2
(S̄>(p) + S̄<(p)),

(B.21)

we obtain the following relations:

S̄<(p) = −fF (p0)ρ̃(p),

S̄>(p) = (1 − fF (p0))ρ̃(p),

S̄+(p) =
1
2

tanh
(
βp0

2

)
ρ̃(p).

(B.22)

Now, let us write down the full propagator in the imaginary-time formalism, S(iω′
n,p),

in terms of the spectral function ρ̃(p). The basic strategy to relate the propagator and
the spectral function is the same as in the scalar field case. Using the inverse Fourier
transformation (B.9), the relation S(xE) = S>(xE) and Eqs. (B.16) and (B.19), we obtain

S(iω′
n,p) =

∫ β

0
dx4 eiω′

nx4 S>(x4 − 0,p)

=
∫ β

0
dx4 eiω′

nx4 S̄>(−ix4,p)

=
∫ β

0
dx4 eiω′

nx4

∫ ∞

−∞

dp′0
2π

e−ip′0(−ix4) S̄>(p′0,p)

= −
∫ ∞

−∞

dp′0
2π

ρ̃(p′0,k)
iωn − p′0

.

(B.23)

Applying the analytic continuation to Eq. (B.23) as iω′
n → p0 ± iϵ, we obtain

S(p0 + iϵ,p) − S(p0 − iϵ,p) = −
∫ ∞

−∞

dp′0
2π

(
1

p0 − p′0 + iϵ
− 1

p0 − p′0 − iϵ

)
ρ̃(p′0,p)

= iρ̃(p),
(B.24)

B-5S̄+(p) is sometimes called as statistical propagator.
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where we have used the relation 1
p0−p′0±iϵ = P̂ 1

p0−p′0
∓ iπδ(p0 −p′0) (P̂ 1

p0−p′0
is the principal

value of 1
p0−p′0

). Thus, we can express the spectral function ρ̃(k), which is defined in
the real-time formalism (B.21), by the propagator S(P ) defined in the imaginary-time
formalism:

ρ̃(p) = S̄>(p) − S̄<(p)

= (−iS(p0 + iϵ,p)) − (−iS(p0 − iϵ,p)).
(B.25)

This is a quite useful equation since it is often more convenient to evaluate quantities in
the imaginary-time formalism than in the real-time one.
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Appendix C

Feynman rule

Here, we write down the Lagrangians for a scalar field, QED and QCD in the imaginary-
time formalism for the convenience of diagrammatic calculation.

C.1 Real scalar field

Here, let us write down the imaginary-time action for a real scalar field ϕ. The action for
ϕ in the Minkowski spacetime is given by

iS = i

∫
d4x L(ϕ)

= i

∫
d4x

(
1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 + Lint.(ϕ)

)
.

(C.1)

Here, we assume that the interaction term Lint.(ϕ) does not include derivative interactions.
In order to go to the imaginary-time formalism, we need to replace the time coordinate as
x0 → −ix4 and

∂µϕ∂
µϕ→ −∂µϕ∂µϕ. (C.2)

Thus, the transition of the action (C.1) to the imaginary-time formalism one, SE , is as
follows

iS → i(−i)
∫ β

0
d4xE

(
−1

2
∂µϕ∂µϕ− 1

2
m2ϕ2 + Lint.(ϕ)

)

= −
∫ β

0
d4xE

(
1
2
∂µϕ∂µϕ+

1
2
m2ϕ2 − Lint.(ϕ)

)

≡ −SE .

(C.3)

From this action, we obtain the free propagator of ϕ in the imaginary-time formalism as
follows

∆F (K) =
1

K2 + m2
=

1
ω2

n + |k|2 + m2
, (C.4)
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where Kµ = (k4,k) = (−ωn,k) is the four-momentum in the imaginary-time formalism,
K2 = KµKµ = ω2

n + |k|2 and ωn = 2πn/β (n is an integer).

C.2 QED

Next, we consider the QED action. Let us start with the QED action in the Minkowski
spacetime:

iS = i

∫
d4x

(
−1

4
FµνF

µν + ψ̄(i∂/ − m)ψ + eAµψ̄γ
µψ

)
. (C.5)

where Aµ is the photon field, Fµν = ∂µAν − ∂νAµ is the photon field strength and ψ

is the electron field. Also, e is the QED coupling constant. For the transition to the
imaginary-time formalism, we need the following replacements:

FµνF
µν → FµνFµν ,

ψ̄ψ = ψ†γ0ψ → ψ†(−iγ4)ψ = ψ†γ0ψ = ψ̄ψ,

A/ = γµAµ → −γµAµ = −A/,

(C.6)

where µ = 0, 1, 2, 3 on the left-hand side and µ = 4, 1, 2, 3 on the right-hand side and we
have used γ4 ≡ iγ0. In particular, the transition of the momentum is given by

(p0,p) = pµ = i∂µ → −i∂µ = Pµ = (p4,p) = (−ωn,p). (C.7)

and thus

∂/ = γµ∂µ → −γµ(−∂µ) = ∂/,

p/ = γµpµ → −γµPµ = −P/,
(C.8)

where again µ = 0, 1, 2, 3 on the left-hand side and µ = 4, 1, 2, 3 on the right-hand side.
Eqs. (C.7) and (C.8) are the consequences of the transition −iXµPµ → +iXµPµ in the
exponential in the Fourier transformation. From Eqs. (C.6) and (C.8), the transition of
the action (C.5) to the imaginary-time formalism one, SE , is as follows

iS → i(−i)
∫

d4xE

(
−1

4
FµνFµν + ψ̄(i∂/ − m)ψ − eAµψ̄γµψ

)

= −
∫

d4xE

(
1
4
FµνFµν + ψ̄(−i∂/ + m)ψ + eAµψ̄γµψ

)

≡ −SE .

(C.9)

From this action, we obtain the free propagators for the photon filed, ∆F
µν(K), and for the

electron field, SF (P ), in the imaginary-time formalism as follows

∆F
µν(K) =

δµν

K2
= δµν∆F (K) (Feynmann gauge),

SF (P ) =
1

P/ + m
=

−P/ + m

P 2 + m2
= (−P/ + m)∆̃F (P ),

(C.10)
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where Kµ = (k4,k) = (−ωn,k), ωn = 2nπ/β, Pµ = (p4,p) = (−ω′
m,p) and ω′

m =
(2m + 1)π/β. The even and odd numbers, 2n and 2m + 1, are originated from the
periodicity (for boson) and the anti-periodicity (for fermion) of the boundary conditions,
respectively [41, 42]. In Eq. (C.10), ∆F (K) is the same as the one given in Eq. (C.4) and
we have defined ∆̃F (P ) as

∆̃F (P ) =
1

P 2 + m2
=

1
ω′2

m + p2 + m2
. (C.11)

We note that ∆F (K) and ∆̃F (P ) have the same form at the first sight, though these have
the different types of the imaginary-time discrete energies, ωn and ω′

m, respectively.

C.3 QCD

Let us move to the QCD action. The QCD action in the covariant gauge is given by

iS = i

∫
d4x L

= i

∫
d4x

(
− 1

4
F a

µνF
aµν +

1
2ξ

(∂µAa
µ)2 + η̄a∂µ∂µη

a + gsf
abcη̄a∂

µ(Ac
µη

b)

+ ψ̄(i∂/ − m)ψ + gsA
a
µT aψ̄γµψ

)
,

(C.12)

where Aa
µ is the gluon field, F a

µν = ∂µAa
ν −∂νAa

µ+gsfabcAb
µAc

ν is the gluon field strength, ψ
is the quark field, ηa is the ghost field. Also, gs is the QCD coupling constant, fabc is the
structure constant of QCD and the superscripts a, b, · · · are the color indices. Using the
same procedure in the QED case in the previous section, the transition of the action (C.12)
to the imaginary-time formalism one, SE , is as follows

iS → i(−i)
∫

d4xE

(
− 1

4
F a

µνF
a
µν +

1
2ξ

(∂µAa
µ)2 − η̄a∂µ∂µη

a + gsf
abcη̄a∂µ(Ac

µη
b)

+ ψ̄(i∂/ − m)ψ − gsA
a
µT aψ̄γµψ

)

= −
∫

d4xE

(
1
4
F a

µνF
a
µν − 1

2ξ
(∂µAa

µ)2 + η̄a∂µ∂µη
a − gsf

abcη̄a∂µ(Ac
µη

b)

+ ψ̄(−i∂/ + m)ψ + gsA
a
µT aψ̄γµψ

)

≡ −SE ,

(C.13)
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Rρc

Pµa

Qνb

= igsfabc(δµν(P − Q)ρ + δνρ(Q − R)µ + δρµ(R − P )ν)

Figure C.1: 3-gluon vertex
aµ

c

b

P

= igsfabcPµ

Figure C.2: ghost-gluon vertex

From this action, we obtain the free propagators for the gluon field, ∆Fab
µν (K), the quark

field, SF (P ), and the ghost field, ∆Fab(Q), as follows

∆Fab
µν (K) =

δµνδab

K2
= δµνδ

ab∆F (K) (Feynmann gauge),

SF (P ) =
1

P/ + m
=

−P/ + m

P 2 + m2
= (−P/ + m)∆̃F (P ),

∆Fab(Q) =
δab

Q2
= δab∆F (Q),

(C.14)

where K = (k4,k) = (−ωn,k), P = (p4,p) = (−ω′
m,p) and Q = (q4,q) = (−ωl,q). Note

that the gluon and the ghost propagators have the even number imaginary-time discrete
energies, while the quark propagator has the odd number one. From Eq. (C.13), we also
obtain the QCD vertices as follows

− SE |quark-gluon = −
∫

d4xE gSψ̄γµAa
µT aψ,

− SE |ghost-gluon = +
∫

d4xE igsfabc(Pµη̄b)Aaµηc,

− SE |3-gluon = −
∫

d4xE gsfabc(∂µAa
ν)A

b
µAc

ν ,

− SE |4-gluon = −
∫

d4xE
1
4
g2
sfabcfadeA

b
µAc

νA
d
µAe

ν .

(C.15)
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Appendix D

Self-energy

In this appendix, we explicitly evaluate the self-energies of a real scalar field, QED electron
and QED photon in the imaginary-time formalism, which we have discussed in Secs. 3.2.3,
3.2.4 and 3.2.5.

D.1 Real scalar field

In this section, we evaluate the self-energy of a real scalar field ϕ. Here, we consider the
following yukawa interaction:

Lint. = −y2

2
ϕ2ψ̃∗ψ̃, (D.1)

where y is the coupling constant, ψ̃ is a complex scalar field. Below, we neglect the zero-
temperature mass of ψ̃ compared with the temperature T . The self-energy of ϕ, Π, at the
one-loop level which arises from Eq. (D.1) is evaluated as follows

−Π = −y2

2

∫
d4K

(2π)4
∆F (K) × 4

= −y2

2
× 4

∫
d3k

(2π)3
T

∞∑

n=−∞

1
ω2

n + |k|2 ,
(D.2)

where ∆F (K) is the free propagator given by Eq. (C.4). Here and hereafter, we use the
short-hand notation:

∫
d4K

(2π)4
= T

∞∑

n=−∞

∫
d3k

(2π)3
. (D.3)

The Euclidean four-momentum Kµ is given as Kµ = (k4,k) = (−ωn,k) and ωn = 2πn/β

(n is an integer and β = 1/T ).
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In order to perform the summation T
∑

n
1

ω2
n+|k|2 , we use the technique of the complex

integration as (see Ref. [11])

T
∑

n

1
ω2

n + |k|2 = T

∮

C

dz

2πi

1
−z2 + |k|2

eβz + 1
eβz − 1

β

2

=
1
|k|

(
1
2

+ fB(|k|)
)

,

(D.4)

where
∮
C dz shows the complex integration with the complex variable z along the contour

C = [+ϵ − i∞, +ϵ + i∞] ∪ [−ϵ + i∞,−ϵ − i∞] parallel with the imaginary-axis:
∮
C dz =∫ +ϵ+i∞

+ϵ−i∞ dz +
∫ −ϵ−i∞
−ϵ+i∞ dz. Also, fB(|k|) = 1/(eβ|k| − 1) is the Bose-Einstein distribution

function. The zero-point energy contribution 1
|k| ×

1
2 in Eq. (D.4) gives the divergent

contribution to the self-energy Π. Since this is a temperature independent quadratic
divergence, we can remove it by the zero-temperature mass counter-term [10, 50–54].
Thus we have the renormalized self-energy Π as follows

−Π = −2y2
∫

d3k
(2π)3

fB(k)
k

= −y2T 2

6
,

(D.5)

Consequently, we obtain the following self-energy Π of ϕ at the one-loop level in the
imaginary-time formalism:

Π =
y2T 2

6
, (D.6)

which is real and momentum independent.

D.2 QED electron

Here, we evaluate the self-energy of electron in the QED plasma. As we will see below,
the self-energy of electron has rather complicated structure compared with the case in the
previous section.

Since the QED interaction in the imaginary-time formalism is given by

−SE |int. = −
∫

d4xE eAµψ̄γµψ, (D.7)

the self-energy of electron, Σ(P ), can be evaluated at the one-loop level in the imaginary-
time formalism as follows

−Σ(P ) = e2
∫

d4K

(2π)4
{
γµSF (P − K)∆F

µν(K)γν
}

, (D.8)
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where we have used the short-hand notation (D.3), Kµ = (−ωn,k), Pµ = (−ω′,p) and
Σ(P ) = Σ(iω′,p). Here, ωn is the bosonic imaginary-time discrete energy. Pµ = (−ω′,p)
is the external electron momentum and ω′ is the fermionic imaginary-time discrete energy
(though we do not show the integer subscript). SF (P − K) and ∆F

µν(K) are the free
electron and the (Feynman gauge) free photon propagators, respectively, which are given
in Eq. (C.10). Neglecting the electron mass and using the relation SF (P − K) = (K/ −
P/)∆̃F (P − K) (see Eq. (C.10)), we obtain

Σ(P ) = −e2
∫

d4K

(2π)4
{γµ(K/ − P/)γµ}∆F (K)∆̃F (P − K). (D.9)

Let us apply the HTL approximation to our evaluation, in which we assume that the
internal lines are dominated by the momentum of the order of the temperature T and the
momentum of the external line is less than T . In our case here, this approximation means
that K/ − P/ ≃ K/ in Eq. (D.9) and thus Σ(P ) reduces to

Σ(P ) = −2e2
∫

d4K

(2π)4
K/ ∆F (K)∆̃F (P − K)

= −2e2
∫

d3k
(2π)3

{
−T

∑

n

ωn∆F (K)∆̃F (P − K)γ4 + T
∑

n

kl∆F (K)∆̃F (P − K)γl

}
,

(D.10)

where k̂l = kl/|k|.
In order to evaluate Eq. (D.10), we use the HTL approximation more and the frequency

sum shown below. Let us define ∆F
s (K) and ∆̃F

s (K) by

∆F (K) =
∑

s=±1

∆F
s (K) =

∑

s=±1

−s

2Ek

1
iωn − sEk

, (ωn = 2nπ/β),

∆̃F (K) =
∑

s=±1

∆̃F
s (K) =

∑

s=±1

−s

2Ek

1
iω′

n − sEk
, (ω′

n = (2n + 1)π/β),
(D.11)

where Ek =
√

|k|2 + m2 (for a moment, we leave the zero-temperature mass of electron,
m). Then, we have the following frequency sum:

T
∑

n

∆s1(K)∆̃s2(P − K) = T
∑

n

∆s1(iωn,k)∆̃s2(i(ω
′ − ωn),p − k)

=
−s1s2

4E1E2

1 + fB(s1E1) − fF (s2E2)
iω′ − s1E1 − s2E2

,

(D.12)

where E1 =
√

|k|2 + m2 and E2 =
√

|p − k|2 + m2. Here, fB(E) = 1/(eβE − 1) and
fF (E) = 1/(eβE + 1) are the Bose-Einstein and Fermi-Dirac distribution functions, re-
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spectively. Carrying out the summation over s1, s2 = ±1 in Eq. (D.12), we have

T
∑

ns1s2

∆s1(K)∆̃s2(P − K) =
−1

4E1E2

{
1 + fB(E1) − fF (E2)

iω′ − E1 − E2
− 1 + fB(E1) − fF (−E2)

iω′ − E1 + E2

− 1 + fB(−E1) − fF (E2)
iω′ + E1 − E2

+
1 + fB(−E1) − fF (−E2)

iω′ + E1 + E2

}

≃ fB(|k|) + fF (|k|)
4|k|2

{
−1

iω′ + |p| cos θ
+

1
iω′ − |p| cos θ

}

=
fB(|k|) + fF (|k|)

4|k|2

{
−1

PµK̂µ

+
1

PµK̂ ′
µ

}
,

(D.13)

where we have defined K̂µ = (−i, k̂), K̂ ′
µ = (−i,−k̂) and p · k̂ = |p| cos θ (θ is the angle

between the two three-vectors p and k̂). Also, we have PµK̂µ = iω+ |p| cos θ and PµK̂ ′
µ =

iω− |p| cos θ. In Eq. (D.13), we have set m = 0 again and used the HTL approximation in
the second line. Namely, fB(E1) = fB(|k|) and we have approximated as fF (E2) ≃ fF (|k|)
and iω′ ±E1 ∓E2 ≃ iω′ ± |p| cos θ. Also, we have neglected the contributions which have
the denominator iω′ ± (E1 + E2) ≃ iω′ ± 2|k| since these do not lead to the leading order
contribution (proportional to T 2) to the self-energy. Likewise, we can check the following
frequency sums [11]:

T
∑

ns1s2

ωn∆s1(K)∆̃s2(P − K) ≃ fB(|k|) + fF (|k|)
4|k|

{
K̂4

PµK̂µ

+
K̂ ′

4

PµK̂ ′
µ

}
,

T
∑

ns1s2

kl∆s1(K)∆̃s2(P − K) ≃ fB(|k|) + fF (|k|)
4|k|

{
−k̂l

PµK̂µ

+
k̂l

PµK̂ ′
µ

}
.

(D.14)

From Eqs. (D.10) and (D.14), we obtain the following electron self-energy in the HTL
approximation at the one-loop level in the imaginary-time formalism:

Σ(P ) = m2
f

∫
dΩ
4π

K̂/

PµK̂µ

, (D.15)

where

m2
f =

e2T 2

8
(D.16)

is the electron thermal mass-squared.
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D.3 QED photon

In this section, let us evaluate the photon self-energy in the QED plasma. The photon
self-energy, Πµν(Q), at the one-loop level is given by

−Πµν(Q) = −e2
∫

d4K

(2π)4
(8KµKν − 4K2δµν)∆̃F (K)∆̃F (Q − K), (D.17)

where we have used the notation (D.3), Kµ = (−ω′
n,k), Qµ = (−ω,q) and Πµν(Q) =

Πµν(iω,q). Here, ω′
n is the fermionic imaginary-time discrete energy. Qµ = (−ω,q) is the

external photon momentum and ω is the bosonic imaginary-time discrete energy (though
we do not show the integer subscript). ∆̃F (K) is given by Eq. (C.11).

First of all, let us rewrite Eq. (D.17) as

Πµν(Q) = 8e2
∫

d4K

(2π)4
KµKν∆̃F (K)∆̃F (Q − K) − 4e2δµν

∫
d4K

(2π)4
∆̃F (K), (D.18)

where we have used the relation K2∆̃F (K) = 1 and
∫

d4K
(2π)4 ∆̃F (Q − K) =

∫
d4K
(2π)4 ∆̃F (K)

in the second term. Neglecting the electron zero-temperature mass, the second term is
evaluated as

∫
d4K

(2π)4
∆̃F (K) =

∫
d3k

(2π)3
T

∞∑

n=−∞

1
ω′2

n + |k|2 . (D.19)

In order to perform the summation T
∑

n
1

ω′2
n +|k|2 (here ω′

n = (2n + 1)π/β), we use the
technique of the complex integration as (see Ref. [11])

T
∑

n

1
ω′2

n + |k|2 = T

∮

C

dz

2πi

1
−z2 + |k|2

eβz − 1
eβz + 1

−β
−2

=
1
|k|

(
1
2
− fF (|k|)

)
,

(D.20)

where
∮
C dz shows the complex integration with the complex variable z along the contour

C = [+ϵ − i∞, +ϵ + i∞] ∪ [−ϵ + i∞,−ϵ − i∞] parallel with the imaginary-axis:
∮
C dz =∫ +ϵ+i∞

+ϵ−i∞ dz +
∫ −ϵ−i∞
−ϵ+i∞ dz. Also, fF (|k|) = 1/(eβ|k| + 1) is the Fermi-Dirac distribution

function. The zero-point energy contribution 1
|k| ×

1
2 in Eq. (D.20) gives the divergent

contribution to the self-energy Πµν(Q). Since this is a temperature independent quadratic
divergence, we can remove it by the zero-temperature counter-term [10, 50–54]. Thus,
from Eqs. (D.19) and (D.20), we obtain

∫
d4K

(2π)4
∆̃F (K) = −T 2

24
, (D.21)
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where we have removed the zero-point energy as mentioned above. Then, from Eqs. (D.18)
and (D.21), the self-energy of photon, Πµν(Q), to be evaluated becomes

Πµν(Q) = Iµν(Q) +
e2T 2

6
δµν ,

Iµν(Q) = 8e2
∫

d4K

(2π)4
KµKν∆̃F (K)∆̃F (Q − K).

(D.22)

Below, we evaluate Iµν(Q).

First, we evaluate the following quantity:

Jij(Q) =
∫

d4K

(2π)4
kikj∆̃F (K)∆̃F (Q − K). (D.23)

Using Eqs.(D.3) and (D.11) to Eq. (D.23), we obtain

Jij(Q) =
∫

d3k

(2π)3
kikj

∑

s1,s2=±1

s1s2

4E1E2
T

∞∑

n=−∞

1
iω′

n − s1E1

1
i(ω − ω′

n) − s2E2
, (D.24)

where we have defined E1 = |k| and E2 = |q − k| (we neglect the zero-temperature mass
of electron). In order to perform the summation T

∑
n

1
iω′

n−s1E1

1
i(ω−ω′

n)−s2E2
(remember

that ω′
n is fermionic imaginary-time discrete energy, while ω is the bosonic one), we use

the technique of the complex integration as (see Ref. [11])

T
∞∑

n=−∞

1
iω′

n − s1E1

1
i(ω − ω′

n) − s2E2
= T

∮

C

dz

2πi

1
z − s1E1

1
iω − z − s2E2

eβz − 1
eβz + 1

−β
−2

= −1 − fF (s1E1) − fF (s2E2)
iω − s1E1 − s2E2

,

(D.25)

where
∮
C dz shows the complex integration with the complex variable z along the contour

C = [+ϵ − i∞, +ϵ + i∞] ∪ [−ϵ + i∞,−ϵ − i∞] parallel with the imaginary-axis:
∮
C dz =∫ +ϵ+i∞

+ϵ−i∞ dz +
∫ −ϵ−i∞
−ϵ+i∞ dz. Using this sum rule for Eq. (D.24), we obtain the following

equation:

Jij(Q) =
∫

d3k
(2π)3

kikj

∑

s1,s2=±1

−s1s2

4E1E2

1 − fF (s1E1) − fF (s2E2)
iω − s1E1 − s2E2

. (D.26)
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Carrying out the summation over s1, s2 = ±1, Jij(Q) reduces to

Jij(Q) =
∫

dΩ
4π

∫
d|k| |k|2

2π2

−|k|2k̂ik̂j

4E1E2

{
1 − fF (E1) − fF (E2)

iω − E1 − E2
− 1 − fF (E1) − fF (−E2)

iω − E1 + E2

− 1 − fF (−E1) − fF (E2)
iω + E1 − E2

+
1 − fF (−E1) − fF (−E2)

iω + E1 + E2

}

≃
∫

dΩ
4π

∫
d|k| |k|2

2π2

−|k|2k̂ik̂j

4|k|(|k|− q · k̂)

×
{

1 − fF (|k|) − fF (|k|− q · k̂)
iω − 2|k| + q · k̂

− fF (|k|) − fF (|k|− q · k̂)
iω − q · k̂

− fF (|k|) − fF (|k|− q · k̂)
iω + q · k̂

+
1 − fF (|k|) − fF (|k|− q · k̂)

iω + 2|k|− q · k̂

}
,

(D.27)

where we have used the relation 1 − fF (E) − fF (−E) = 0, E1 = |k| and E2 = |q − k| ≃
|k| − q · k̂ (the HTL approximation). Using the HTL approximation furthermore as we
have done in Eq. (D.13), we obtain

Jij(Q) ≃
∫

dΩ
4π

∫
d|k| |k|2

2π2

−k̂ik̂j

4

{
1 − 2fF (|k|)

−2|k| +
q · k̂

QµK̂ ′
µ

∂fF (|k|)
∂|k|

− q · k̂
QµK̂µ

∂fF (|k|)
∂|k| − 1 − 2fF (|k|)

2|k|

}

≃ − 3
4π2

∫ ∞

0
d|k| |k|fF (|k|)

∫
dΩ
4π

k̂ik̂j +
1

2π2

∫ ∞

0
d|k| |k|fF (|k|)

∫
dΩ
4π

iω

QµK̂µ

k̂ik̂j

= −T 2

48
δij +

T 2

24

∫
dΩ
4π

iω

QµK̂µ

k̂ik̂j ,

(D.28)

where K̂µ = (−i, k̂) and K̂ ′
µ = (−i,−k) and we have removed the zero-point energy (the

temperature independent quadratic divergence) in the second line. Also, we have used∫
dΩ
4π k̂ik̂j = 1

3δij in the last line. Now, the (i, j) component of Iµν(Q) in Eq. (D.22) is
given by

Iij(Q) = 8e2Jij(Q) = −e2T 2

6
δij +

e2T 2

3

∫
dΩ
4π

iω

QµK̂µ

k̂ik̂j . (D.29)

Next, we evaluate I4i. For this purpose, we consider the following quantity:

J4i(Q) =
∫

d4K

(2π)4
(−ω′

n)ki∆̃F (K)∆̃F (Q − K). (D.30)
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Here, there is a useful relation for dealing with the ω′
n factor:

ω′
n∆̃F (K) =

∑

s=±1

(−isEk)∆̃F
s (K), (D.31)

where ∆̃F (K) =
∑

s=±1 ∆̃F
s (K) (see Eq. (D.11))D-1D-2. Now, using the same procedure in

the evaluation of Jij(Q), J4i(Q) is evaluated as

J4i(Q) =
∫

d3k
(2π)3

ki

∑

s1s2=±1

is2

4E2
T

∞∑

n=−∞

1
iω′

n − s1E1

1
i(ω − ω′

n) − s2E2

=
∫

d3k
(2π)3

ki

∑

s1s2=±1

−is2

4E2

1 − fF (s1E1) − fF (s2E2)
iω − s1E1 − s2E2

≃
∫

d3k
(2π)3

−i|k|k̂i

4(|k|− q · k̂)

{
1 − fF (|k|) − fF (|k|− q · k̂)

iω − 2|k| + q · k̂
+

fF (|k|) − fF (|k|− q · k̂)
iω + q · k̂

+
fF (|k|) − fF (|k|− q · k̂)

iω − q · k̂
+

1 − fF (|k) − fF (|k|− q · k̂)
iω + 2|k|− q · k̂

}

(D.33)

where we have used the relation 1 − fF (E) − fF (−E) = 0, E1 = |k| and E2 = |q − k| ≃
|k| − q · k̂ (the HTL approximation). Using the HTL approximation furthermore as we
have done in Eq. (D.13), we obtain

J4i(Q) ≃
∫

d3k
(2π)3

(−i)k̂i

4

{
q · k̂

QµK̂µ

+
q · k̂

QµK̂ ′
µ

}
∂fF (|k|)
∂|k|

=
1

4π2

∫ ∞

0
d|k| |k|2∂fF (|k|)

∂|k|

∫
dΩ
4π

q · k̂
QµK̂µ

(−i)k̂i

=
T 2

24

∫
dΩ
4π

iω

QµK̂µ

(−i)k̂i,

(D.34)

where we have used
∫

dΩ
4π k̂i = 0 in the last line. Thus, we obtain

I4i(Q) = Ii4(Q) = 8e2J4i(Q) =
e2T 2

3

∫
dΩ
4π

iω

QµK̂µ

(−i)k̂i. (D.35)

D-1From Eq. (D.11), we can easily prove Eq. (D.31) as

ω′
n∆̃F (K) =

X

s=±1

is
2Ek

iω′
n

iω′
n − sEk

=
X

s=±1

is
2Ek

+
X

s=±1

−s
2Ek

−isEk

iω′
n − sEk

=
X

s=±1

(−isEk)∆̃F
s (K).

(D.32)

D-2However, this relation does not mean the replacement ω′2
n → (−isEk)2. For the ω′2

n factor, it is
convenient to use the relation ω′2

n = K2 − |k|2.
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Finally, we evaluate I44(Q). Using the relation ω′2
n = K2 − |k|2, we have

I44(Q) = 8e2
∫

d4K

(2π)4
ω′2

n ∆̃F (K)∆̃F (Q − K)

= 8e2

{∫
d4K

(2π)4
∆̃F (K) − Jii(Q)

}

≃ e2T 2

6
+

e2T 2

3

∫
dΩ
4π

iω

QµK̂µ

(−i)(−i).

(D.36)

where we have used the relation K2∆̃F (K) = 1,
∫

d4K
(2π)4 ∆̃F (Q − K) =

∫
d4K
(2π)4 ∆̃F (K) and

Eq. (D.23) in the second line. Also, we have used Eqs. (D.21) and (D.28) in the last line.
The results in the above, (D.29), (D.35) and (D.36), can be summarized as follows

Iµν(Q) =
e2T 2

6
(δµ4δν4 − δij) +

e2T 2

3

∫
dΩ
4π

iω

QρK̂ρ

K̂µK̂ν . (D.37)

Now, we are in a position to obtain the resultant QED photon self-energy, Πµν(Q), at the
one-loop level. From Eqs. (D.22) and (D.37), the result is given by

Πµν(Q) = 2m2
γ

∫
dΩ
4π

(
iω

QρK̂ρ

K̂µK̂ν + δµ4δν4

)
, (D.38)

where

m2
γ =

1
6
e2T 2 (D.39)

is the photon (asymptotic) thermal mass-squared, as we can identify from the dispersion
relationD-3. We note that the so-called plasma frequency, ωP , is given by ωP = 1

3eT =√
2
3mγ .

D-3Note that the existence of mγ does not mean the spontaneous breaking of the gauge symmetry [47–49].
In fact, the gauge symmetry breaking term does not arise in the effective Lagrangian for photon.
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Appendix E

Spectral function of chiral fermion

In this appendix, we derive the spectral function for a chiral fermion χ̃. Let us start with
the following thermally corrected self-energy of the chiral fermion, Σ̄(P ) (we here use the
two-component notation):

Σ̄(P ) = a + b p̂ · σ, (E.1)

where the notation Σ̄(P ) = Σ̄(iω,p) is used, Pµ = (p4,p) = (−ω,p) is the fermion
external momentum, p̂ = p/|p| and we have neglected the chiral fermion zero-temperature
mass. For the one-loop Hard Thermal Loop approximation with yukawa and/or gauge
interactions, the parameters a and b have the following form:

a =
m2

f

2|p| ln
(

iω + |p|
iω − |p|

)
,

b =
m2

f

|p|

(
1 − iω

2|p| ln
(

iω + |p|
iω − |p|

))
,

(E.2)

where mf is the fermion thermal mass. For instance, if we assume an interaction term
Lint. = −gϕχ̃λ̃ + h.c. (ϕ is a complex scalar field and λ̃ is a chiral fermion), we obtain
m2

f = g2T 2/16.

The inverse propagator for χ̃ including the thermally corrected self-energy, G(P )−1, is
evaluated from the Dyson equation as

G(P )−1 = Pµσµ − Σ̄(P )

= (iω − |p|− a − b)
−1 − p̂ · σ

2
+ (iω + |p|− a + b)

−1 + p̂ · σ
2

,
(E.3)

where σµ = (i,σ) in the Euclidean spacetime (in the imaginary-time formalism). Here,
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−1±p̂·σ
2 are the projection operators which satisfy the following equations:

−1 + p̂ · σ
2

−1 + p̂ · σ
2

=
−1 + p̂ · σ

2
,

−1 − p̂ · σ
2

−1 − p̂ · σ
2

=
−1 − p̂ · σ

2
,

−1 + p̂ · σ
2

−1 − p̂ · σ
2

=
−1 − p̂ · σ

2
−1 + p̂ · σ

2
= 0.

(E.4)

Thus, from Eqs. (E.3) and (E.4), the propagator for χ̃, G(P ) , can be written as following:

G(P ) = (iω − |p|− a − b)−1−1 − p̂ · σ
2

+ (iω + |p|− a + b)−1−1 + p̂ · σ
2

. (E.5)

Now, the spectral function for the chiral fermion χ̃, ρ̄(p), is given by

ρ̄(p) = (−iG(p0 + iϵ,p)) − (−iG(p0 − iϵ,p))

= ρ̄+(p)
1 + p̂ · σ

2
+ ρ̄−(p)

1 − p̂ · σ
2

,
(E.6)

where

ρ̄±(p) = −2 Im
1

(p0 + iϵ− a) ∓ (|p| + b)
. (E.7)

We note that, from Eqs. (E.2) and (3.93), the spectral functions ρ̄±(p) given by Eq. (E.7)
have the same form as in Eq. (3.96). This is what we would like to derive here. The
limiting formulae for the dispersion relations for the poles ω±(p) and the residues Z±(p)
under the one-loop HTL approximation are given by Eqs. (3.101) and (3.105), respectively.
In the originally (i.e., at zero-temperature) massless limit, Dirac and Majorana fields have
the same form of the dispersion relations as in Eqs. (3.101) and (3.105) [97].
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Appendix F

The free energy density of the
MSSM plasma

F.1 The 2-loop contributions

In this appendix, we show each contribution to the 2-loop free energy density from the
yukawa couplings (6.23) and the gauge couplings (6.19).

First, we write down the contributions to Eq. (6.23):

Ω̃ssss
2 =

|y|2T 4

144
×

⎧
⎨

⎩
3 (with squark),

1 (without squark),

Ω̃sff
2 =

|y|2T 4

144
×

⎧
⎨

⎩

15
4 (with squark),
5
4 (without squark),

(F.1)

where, Ω̃ssss
2 , Ω̃sff

2 are the 2-loop contributions to the free energy density which are gen-
erated by the 4-point scalar interaction ssss, the scalar-fermion-fermion interaction sff ,
respectively. Here, we have used s, f as symbols for the scalars and fermions in the rel-
evant interactions. There are six 2-loop diagrams from 4-point scalar interactions for
each yukawa coupling (|yt|2, |yb|2, |yτ |2). Also, there are six 2-loop diagrams from scalar-
fermion-fermion interactions for each yukawa coupling. After taking the sum of these
contributions, we finally obtain Eq. (6.23).
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Next, we write down each 2-loop contribution to Eq. (6.19) from SUSY SU(Nc) theory:

Ω̃Aff
2 = Ng

(
∑

i

t2(i)

)
× 5

4
× g2T 4

144
, Ω̃sfλ

2 = Ng

(
∑

i

t2(i)

)
× 5

2
× g2T 4

144
,

Ω̃ssss
2 = Ng

(
∑

i

t2(i)

)
× 1

2
× g2T 4

144
, Ω̃ssA

2 = Ng

(
∑

i

t2(i)

)
× −3

2
× g2T 4

144
,

Ω̃ssAA
2 = Ng

(
∑

i

t2(i)

)
× 4 × g2T 4

144
,

Ω̃Aλλ
2 = NgNc ×

5
4
× g2T 4

144
, Ω̃Acc

2 = NgNc ×
1
4
× g2T 4

144
,

Ω̃AAA
2 = NgNc ×

−9
4

× g2T 4

144
, Ω̃AAAA

2 = NgNc × 3 × g2T 4

144
.

(F.2)

where, Ω̃Ô
2 is the 2-loop contribution to the free energy density which is generated by the

interaction Ô. Here, we have used s, f, A,λ and c as symbols for the chiral scalar, chiral
fermion, gauge field, gaugino and ghost field in the relevant interactions, respectively.
Summing up the contributions in Eq. (F.2), we eventually obtain Eq. (6.19). Here, the
summation

∑
i runs all the SU(Nc) chiral supermultiplet i. The Dynkin index t2(i) = 1/2

when the chiral supermultiplet i belongs to the fundamental representation. We note that
for SUSY U(1)Y theory, we can apply the formula (6.19) with Ng = 1, Nc = 0, t2(i) = Y 2

i .

F.2 The next-to-leading order contributions

In this appendix, we derive an analytic expression for the next-to-leading order contribu-
tion to m̃φ from the MSSM plasma. To do this, we evaluate the contribution to the free
energy density from the ring diagrams [12, 98] generated by the rescaled couplings (6.22)
and (6.24). Then, from the expression for the ring diagram free energy density, we read
off the effective mass m̃φ at next-to-leading order.

First, we consider the contribution from the ring diagrams of gluon, W -boson and
B-boson in MSSM to the free energy density, Ω̃gauge

3 . These gauge field ring diagrams can
be evaluated by the usual method in thermal field theory [12] and is given by [81]

Ω̃gauge
3 = − T

12π
(
8m′3

D,g + 3m′3
D,W + m′3

D,B

)
, (F.3)

where m′
D,g,m

′
D,W and m′

D,B are the Debye masses of gluon, W -boson and B-boson,
respectively, and are given by [99]

m′2
D,g =

9
2
g′2s T 2, m′2

D,W =
9
2
g′22 T 2, m′2

D,B =
11
2

g′2Y T 2. (F.4)
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Note that we have already rescaled the chiral superfields. Now, using Eqs. (6.24) and
(F.4), the gauge field ring diagram contribution (F.3) reduces to

Ω̃gauge
3 = − T 4

12π

{
54

√
2g′3s +

81
2
√

2
g′32 +

11
√

11
2
√

2
g′3Y

}

= −
{

162
√

2√
π

c̄sα
5/2
s +

567
4
√

2π
c̄2α

5/2
2 +

121
√

11
4
√

2π
c̄Y α

5/2
Y

}
T 4

M2
P

|φ|2 + (φ-indep.).

(F.5)

Thus, we obtain the following contribution to m̃2
φ from the gauge field ring diagrams in

MSSM:

m̃2
φ|

gague
ring = −

{
162

√
2√

π
c̄sα

5/2
s +

567
4
√

2π
c̄2α

5/2
2 +

121
√

11
4
√

2π
c̄Y α

5/2
Y

}
T 4

M2
P

= −
{

3888
√

2
61π5/2

c̄sα
5/2
s +

1701
√

2
61π5/2

c̄2α
5/2
2 +

363
√

22
61π5/2

c̄Y α
5/2
Y

}
H2,

(F.6)

where we have used the Friedmann equation in the RD era 3M2
PH2 = π2g∗

30 T 4 and g∗ =
228.75 = 915/4 as in Eq. (6.26). We note that the numerical coefficients of the gauge
couplings in Eq. (F.6) are about five times larger than the ones in Eq. (6.25) and have
opposite sign.

Next, let us evaluate the contribution from the ring diagrams of the MSSM chiral scalar
fields to the free energy density, Ω̃scalar

3 . The usual method in thermal field theory [12] can
be applied for the evaluation of Ω̃scalar

3 and the result is given by [81]F-1

Ω̃scalar
3 = − T

6π

scalar∑

i

m3
i , (F.7)

where i runs all the chiral scalar fields in MSSM. Here, mi is the thermal mass of the scalar
field i and is summarized in Ref. [99]. From Eqs. (6.22), (6.24) and (F.7), after rescaling
the MSSM chiral superfields, the ring diagrams of the chiral scalar fields contribute to the
free energy density as

Ω̃scalar
3 = −

scalar∑

i

ξi
4π

m3
i T

M2
P

|φ|2 + (φ-indep.), (F.8)

where O(M−4
P ) terms are neglected and ξi is defined by

ξi
|φ|2

M2
P

=
m′2

i ||φ|2
m2

i

. (F.9)

F-1In Ref. [81], the factor
Ng

12Nc
should be replaced by

Ng

4Nc
in Eqs.(5) and (6) . This corrected factor

Ng

4Nc

agrees with Ref. [99].
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Here, m′2
i ||φ|2 is the φ-dependent part of the thermal mass-squared m′2

i in which the
couplings are replaced by the rescaled ones (6.22) and (6.24). From Eq. (F.8), we obtain
the following contribution to m̃2

φ from the scalar field ring diagrams in MSSM:

m̃2
φ|scalar

ring = −
scalar∑

i

ξi
4π

m3
i T

M2
P

= −
scalar∑

i

6ξi
61π3

m3
i

T 3
H2. (F.10)

Here, we have used the Friedmann equation in the RD era as in Eq. (6.26).
Now, we are in a position to sum up the ring diagram contributions. From Eqs. (F.6)

and (F.10), the total ring diagram contribution m̃2
φ|ring is obtained as follows

m̃2
φ|ring =

{
scalar∑

i

−6ξi
61π3

m3
i

T 3
− 3888

√
2

61π5/2
c̄sα

5/2
s − 1701

√
2

61π5/2
c̄2α

5/2
2 − 363

√
22

61π5/2
c̄Y α

5/2
Y

}
H2.

(F.11)

We note that the ring diagram contribution (F.11) is rather significant compared with
the leading order (2-loop) one given in Eq. (6.26). This would be the signature of the
poor convergence of the ordinary perturbation theory as mentioned below Eq. (6.26).
Thus in order to obtain a reliable result for m̃2

φ, we have to proceed the evaluation up
to sufficiently higher-loop order or apply the improved perturbation theory. However,
since the leading order result in ordinary perturbation theory would be different from the
convergence-improved result at most by a factor of order unity as we observe in literatures
like Ref. [83], the leading order result (6.26) can serve as the first estimate of the systematic
evaluation of m̃2

φ from the MSSM plasma.
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