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Abstract

QCD matter at high densities and low temperatures is expected to be a color superconductor. At
extremely high densities, the ground state is the color-flavor locked (CFL) phase, that exhibits su-
perfluidity as well as color superconductivity. It is known that QCD matter in the CFL phase hosts
topologically stable vortices. An important feature of these vortices is that they have internal degrees
of freedom, that are bosonic and fermionic. These modes propagate along the vortices. The bosonic
modes are called orientational zero modes, and they are the Nambu-Goldstone modes associated with
the breaking of the color-flavor locked symmetry because of the presence of a vortex. On the other
hand, the fermionic modes are “Majorana” fermions, which emerge as a result of the particle-hole
symmetry.

This thesis consists of two investigations on the non-Abelian vortices in the CFL phase.
Firstly, we discuss the interaction of vortices with quasiparticles, such as phonons, gluons, CFL

mesons, and photons. The interaction Lagrangian with phonons and gluons is derived via a dual trans-
formation. It turns out the interaction with gluons is dependent on the orientation of a vortex. This
gives rise to an orientation-dependent interaction energy between two vortices. We also discuss the
interaction of vortices with CFL mesons. We extend the chiral Lagrangian, and derive the Lagrangian
of CFL mesons under the background of a vortex solution. We also investigate the interaction of vor-
tices with photons and its phenomenological consequences. The orientational zero modes localized
on vortices are charged with respect to U(1)EM symmetry. The interaction Lagrangian is determined
by symmetry consideration. Based on the low-energy Lagrangian, we discuss the scattering of pho-
tons off a vortex. We discuss an optical property of a vortex lattice. It is expected that a vortex lattice
is formed if CFL matter exists inside the core of a rotating dense star. We show that a lattice of
vortices serves as a polarizer of photons.

Secondly, we analyze the non-Abelian statistics of vortices, which is brought about by the ex-
istence of Majorana fermions inside vortices. We consider the exchange statistics of vortices each
of which traps an odd number of Majorana fermions. Exchange of two vortices turns out to be non-
Abelian, and the corresponding operator is further decomposed into two parts: a part that is essentially
equivalent to the exchange operator of vortices having a single Majorana fermion in each vortex, and
a part representing the Coxeter group. We obtain the basis of the Hilbert space by using the Dirac
fermions defined by combining two Majorana fermions trapped in separate vortices, and we find the
matrix representation of the exchange operators in the Hilbert space. We show that the decomposition
of the exchange operator implies tensor product structure in its matrix representation.
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Chapter 1

Introduction

Vortices appear in diverse fields of physics. Most familiar ones are the vortices in hydrodynamics. For
example in the Naruto Strait, one can find big tidal whirlpools, that have been fascinated people in past
and present. Big whirlpools are depicted in a ukiyo-e picture by Hiroshige Utagawa, a famous ukiyo-e
artist in the Edo period. Vortices exist in an exotic kind of fluid called a superfluid. Superfluids are
fluids without viscosity and they can be seen in various physical systems such as liquid helium [1] and
ultra-cold atomic gasses [2, 3, 4]. A superfluid accommodates quantized vortices, that can be viewed
as topological defects in a Bose-Einstein condensate. The quantization of circulation of a superfluid
vortex is first predicted by Lars Onsager [5], and later confirmed experimentally. The vortices are
important degrees of freedom in the dynamics of superfluids [6, 1, 7, 8]. A rotating superfluid is
threaded with numerous vortices and they form a vortex lattice. Vortices are also created at phase
transitions by the Kibble-Zurek mechanism [9, 10, 11, 12]. Superfluid vortices also play pivotal roles
in quantum turbulence in liquid helium and atomic BEC [13, 8]. In two dimensions, vortices are
considered to be responsible for the Berezinskii-Kosterlitz-Thouless (BKT) transitions [14, 15, 16].

Topological solitons like quantized vortices also manifest themselves in the condensed matter
physics of quantum chromodynamics (QCD), which is the theory of the strong interaction. QCD
matter exhibits a rich variety of phases at finite temperatures and/or baryon densities [17]. The stabil-
ity of topological solitons is closely related to the vacuum structure, or the residual symmetry of the
ground state. Depending on the symmetry of the ground state, QCD matter accommodates various
kinds of topological solitons such as vortices, skyrmions, and vortex-domain wall composites (see
Ref. [18]). Topological solitons have fascinated many researchers, and it is an important problem to
reveal the properties of the topological solitons from the phenomenological view point. They could
affect the properties of the matter realized inside compact stars or the matter created in heavy-ion
collisions.

A rough sketch of QCD phase diagram is shown in Fig. 1.1. At low temperatures and low baryon
chemical potentials, quarks are confined in color-singlet states called hadrons. At very high tempera-
tures, the deconfined plasma of quarks and gluons, which is called the quark-gluon plasma (QGP), is
expected to be realized [19]. The early Universe is a natural place for the QGP to appear. Recently, it
has become possible to create hot matter experimentally by means of the relativistic nucleus-nucleus
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8 Chapter 1. Introduction

Figure 1.1: Schematic phase diagram of QCD matter as a function of temperature (horizontal axis)
and baryon chemical potential (vertical axis). At low temperatures and low densities, QCD matter
takes the form of hadrons, that we can find around us. At high temperatures, the matter is in quark-
gluon plasma phase, which would be realized at heavy-ion collisions or in the early Universe. Color
superconducting phase would be realized at high densities and low temperatures like inside compact
stars.

collisions at the Relativistic Heavy Ion Collider (RHIC) in BNL and at the Large Hadron Collider
(LHC) in CERN.

Theoretical studies suggest that dense and cold quark matter is a color superconductor [20, 21,
22, 23, 24], in which two quarks form a Cooper pair and make a Bose-Einstein condensation. Such
a state of matter can be realized in the core of neutron stars. It is a theoretical and experimental
challenge to reveal the properties of a color superconductor and to verify its existence experimentally
or observationally. At asymptotically high densities, perturbation theory become reliable and we can
perform controlled calculations. It is believed that the phase in which all of the three light quarks
make pairs symmetrically and form condensates is realized. This is called the color-flavor locked
(CFL) phase [24, 25]. At lower densities, the effect of strange quarks comes into play, and other
pairing patterns can be favored. Various phases of color superconductivity are discussed, such as
the kaon condensation (CFL-K) phase [26], the two-flavor superconducting (2SC) phase [21], the
crystalline superconducting phase [27, 28], and the magnetic CFL (MCFL) phase [29, 30, 31]. For
reviews of the phase structure of QCD matter, see Refs. [32, 33, 34, 35, 17].

Among the various ground states of QCD matter the CFL phase is an important phase, since
it is realized at asymptotically high densities. The CFL phase has an interesting property that it
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exhibits both superfluidity and superconductivity. In the CFL phase, the original symmetry of QCD,
G = U(1)B×SU(3)C×SU(3)L×SU(3)R, is spontaneously broken down to the color-flavor locked
symmetry H = SU(3)C+L+R ≡ SU(3)C+F, apart from discrete symmetry. The system exhibits
superfluidity due to the breaking of the global U(1)B symmetry, as well as color superconductivity
because of broken color SU(3)C symmetry. As in a superfluid helium, we can expect the existence
of topological vortices from the consideration of the ground-state symmetry [36, 37]. Vortices in the
CFL phase would be created if the matter is rotated, as is observed in rotating superfluids in condensed
matter systems. Thus, if the CFL phase is realized in the cores of dense stars, vortices are inevitably
created since the stars rotate rapidly. The superfluid vortices discussed in Refs. [36, 37] have integral
winding numbers with respect to U(1)B symmetry. Later it turned out that such vortices are not
minimally winding vortices. Energetically, it is more favorable for a vortex with an integral winding
number to decay into a set of vortices with lower energies. The precise structure of minimally-winding
vortices is first pointed out by Balachandran, Digal, and Matsuura [38]. The stable vortices are so-
called non-Abelian vortices, which are superfluid vortices as well as color magnetic flux tubes. Since
they carry 1/3 quantized U(1)B circulations, an integer U(1)B vortex decays into three non-Abelian
vortices with different color fluxes that are canceled in total [39]. Color magnetic flux tubes were
studied before [37], but their stability is not assured by topology. The properties of non-Abelian
vortices have been studied using the Ginzburg-Landau theory [40, 39, 41, 42, 43, 44, 45] or the
Bogoliubov–de Gennes equation [46, 47].

A remarkable property of non-Abelian vortices is that both bosonic and fermionic zero energy
modes are localized in the cores of non-Abelian vortices and propagate along them as gapless excita-
tions. The bosonic zero modes are the Kelvin modes and orientational modes. The Kelvin modes are
the Nambu-Goldstone modes associated with the breaking of two translational symmetries transverse
to the vortex, and they also appear in the vortices in superfluids in condensed matter physics. Orien-
tational zero modes are also Nambu-Goldstone modes, and they originates from the breaking of the
CFL symmetry SU(3)C+F into its subgroup [SU(2)× U(1)]C+F inside the vortex core [39, 43]. The
low-energy effective field theory of the orientational zero modes is written as the CP 2 model inside
the 1 + 1 dimensional vortex worldsheet, where CP 2 $ SU(3)/[SU(2) × U(1)] is the target space
spanned by the Nambu-Goldstone modes [43]. On the other hand, Majorana fermion zero modes,
which belong to a triplet of the core symmetry SU(2)C+F, have been found in the Bogoliubov-de
Gennes equation and the low-energy effective theory in the 1 + 1 dimensional vortex worldsheet has
been derived [46]. The existence of these fermion zero modes is ensured by topology, which can be
seen as the index theorem [47].

In this thesis, we investigate phenomenological consequences caused by the existence of these
internal degrees of freedom. Firstly, we investigate the interaction of vortices with quasiparticles in
the CFL phase. The interaction is fundamental physical information for discussing the phenomena
related to vortices, since the quasiparticles mediates the forces between vortices.

Secondly, we study the non-Abelian statistics, which is a remarkable phenomenon caused by the
fermion zero modes inside vortices. There has been considerable interest recently in zero-energy
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fermion modes trapped inside vortices in superconductors [48]. Vortices in a chiral p-wave super-
conductor are endowed with non-Abelian statistics [49, 50] because of the zero-energy Majorana
fermions inside them [51]. Excitations which obey non-Abelian statistics are called non-Abelian
anyons. They are expected to form the basis of topological quantum computations [52, 53] and have
been investigated intensively [54, 55, 56]. In particular, a vortex in the CFL phase has multiple Ma-
jorana fermions. This results in a quite interesting structure. Because of the fermionic zero modes,
degenerate ground states appears. These states are mixed under the exchange of vortices. We will see
that the representation of a Coxeter group appears in the transformation matrix, due to the multiple
fermions in a vortex.

The thesis is organized as follows. In Chap. 2, we summarize basic aspects of color superconduc-
tivity. Special emphasis is put on the color-flavor locked phase in which non-Abelian vortices appear.
We also discuss the effective theories to describe the low-energy dynamics of color-superconducting
media. In Chap. 3, we review the basic properties of topological vortices in the CFL phase. We show
that the appearance of vortices is guaranteed by the topology of the CFL ground state. The explicit
form of a vortex solution is given by solving the equations of motion derived from the Ginzburg-
Landau Lagrangian. We also explain why the orientational zero modes appear. The effective low-
energy theory of the orientational zero modes is derived and it turns out to be the CP 2 model. We
then discuss the effects of finite strange quark mass on the effective theory. In Chap. 4, we study
the interaction of non-Abelian vortices with quasiparticles. In Sec. 4.1, the interactions between a
non-Abelian vortex and phonons or gluons are discussed. The interaction with phonons is obtained
by a dual transformation in which the phonon field is dualized to a Abelian two-form field, while
the interaction with gluons is achieved by non-Abelian dual transformation in which the gluon field
is dualized to a non-Abelian massive two-form field. The latter affects the interaction between two
non-Abelian vortices at short distances. We give the orientation dependence of the intervortex force,
that is mediated by the exchange of massive gluons. In Sec. 4.2, we derive the chiral Lagrangian
of the CFL mesons in the presence of a non-Abelian vortex. In Sec. 4.3, we study the interaction
between non-Abelian vortices and photons. Because of the orientational modes that are electromag-
netically charged, vortices interact with photons. The coupling of photons the orientational modes is
described by the U(1) gauged CP 2 model. We solve the scattering problem of photons off a vortex
and we obtain the scattering cross section per unit length of a vortex. As an interesting consequence
of the vortex-photon interaction, we show that a lattice of non-Abelian vortices behaves as a polar-
izer [58]. In Chap. 5, we discuss the non-Abelian statistics, which is brought about by the existence
of Majorana zero modes inside vortices. We first explain why Majorana zero modes appears inside
vortices in a superconductor in terms of the Bogoliubov–de Gennes equation, which is an eigenvalue
equation of the meanfield Hamiltonian. We then discuss exchange statistics of non-Abelian vortices
in d = 2+ 1 dimensions. It is shown that multiple zero-mode Majorana fermions inside vortices lead
to a novel kind of non-Abelian anyons [59, 60]. We show that the representation of exchange oper-
ations is decomposed into two parts: a part that is essentially equivalent to the exchange of vortices
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having a single Majorana fermion in each vortex, and a part representing the Coxeter group. We also
show that the decomposition of the exchange operator implies tensor product structure in its matrix
representation. Chapter 6 is devoted to the summary and discussion of future perspectives.

The original results in this thesis is based on the papers [58, 60, 18].





Chapter 2

Basics of color superconductivity in dense
QCD

The main subject of the thesis is the topological vortices in color superconductors. In the following,
we briefly review the basic properties of color superconductivity. In Sec. 2.1, we discuss why color
superconductivity occurs and what kind of pairing is favored. After reviewing the symmetry of QCD,
we discuss the color-flavor locked phase in detail, which hosts topologically stable non-Abelian vor-
tices. For a comprehensive review on color superconductivity, see Ref. [35] and references therein.
In Sec. 2.2, we give a review on an effective description of color superconductors near the critical
temperature, which is the Ginzburg-Landau theory. The effect of a finite strange quark mass is also
taken into account.

2.1 Color superconductivity

2.1.1 Why does color superconductivity occur?

The understanding of superconductivity is revolutionized by the BCS theory [61]. According to it,
the existence of a well defined Fermi surface and net attractive interaction is sufficient for the Cooper
instability to occur. This condition is satisfied for the QCD matter at low temperatures and high
baryon densities. At asymptotically high densities (large µ), perturbation theory is reliable and we
can perform controlled calculations1. Quarks can be regarded as degenerate Fermi liquids and they
have well-defined Fermi surfaces at low temperatures. The interaction between quarks through gluon
exchange has an attractive channel, which is sufficient for the Cooper instability to occur. This imply

1 At large µ, the typical momentum exchanged in a collision becomes large, since the states inside the large Fermi
sea are filled. For collisions with large momentum transfers, the effective coupling g(µ) is small, and we can use weak
coupling calculations. The small-angle collisions, in which momentum transfers are small, can be potentially dangerous,
but it turns out to be safe thanks to the medium effects. The propagator of exchanged gluons gets modifications from
the medium. Electric gluons are Debye-screened, and magnetic interactions are screened by Laudau-damping and color-
Meissner effect. Thus, small-angle scatterings can also be dealt with perturbatively.

13



14 Chapter 2. Basics of color superconductivity in dense QCD

the realization of color superconductivity at low temperature and high density goes back to the works
of Barrois, Bailin and Love [20, 21].

There are two origins of attractive interactions in QCD. One is from the perturbative point of
view. Quarks have an attractive channel in one-gluon exchange interaction, which is the leading order
contribution in perturbative expansion. Interaction energy of two quarks has the following structure
like (q̄1T aγµq1) (q̄2T aγµq2) where q1 and q2 are quark fields and T a are the generators of SU(NC)

color symmetry. The color generators satisfy

(T a)αβ(T a)γδ = −NC + 1

NC
(TA)

αγ(TA)
δβ +

NC − 1

NC
(TS)

αγ(TS)
δβ, (2.1)

where TS (TA) are the (anti)symmetric generators. This corresponds to the decomposition of the
tensor product into irreducible representations, 3 ⊗ 3 = 3̄A ⊕ 6S. The minus sign of the first term in
Eq. (2.1) indicates that the interaction is attractive. Intuitively, this means that combining two quarks
that are each in the color-3 representation to obtain a diquark that is in the 3̄ representation lowers the
total energy due to color flux. In the color superconductivity, the fundamental color interaction itself
has attractive channel, while in the metal superconductivity the electromagnetic interaction between
electrons is repulsive.

The other source of attraction is the instanton-induced interaction. Instantons are the solutions of
the classical equations of motion which correspond to the tunneling events between degenerate classi-
cal vacua. The instantons give rise to a vertex called the ’t Hooft interaction [62] which involves 2NF

quarks where NF is the number of flavors. If one considers three light flavors, the interaction involves
six quarks. The instanton-antiinstanton pairs lead to an effective four-quark vertex. Incorporating
these interactions to the BCS analysis, Rapp et al. has shown that the BCS gap is of order 100 MeV

[63] at intermediate density where instantons are abundant 2. While one-gluon exchange interactions
do not distinguish positive and negative parity states, instanton-induced interactions favor the positive
parity pairing. So the parity of the ground state is positive, if the system under consideration is an
eigenstate of parity.

Regarding the Lorentz indices, pairing with zero angular momentum is favored since it allows
condensation which utilize the entire Fermi surface to lower the energy. The antisymmetric property
in color and Lorentz indices require the flavor to be antisymmetric via the Pauli principle. Therefore,
the ground state of a color superconductor is characterized by the following diquark condensate,

Φαi
L = εαβγεijk〈(qL)TβjC(qL)γk〉, (2.2)

Φαi
R = εαβγεijk〈(qR)TβjC(qR)γk〉, (2.3)

where α, β, γ · · · and i, j, k · · · are color and flavor indices respectively, and C is the charge conju-
gation matrix. Here the transpose is with respect to spinor indices. For the positive parity pairing,

2 The instanton-induced interaction is strong at intermediate densities µ $ 400 − 800 MeV since it gives rise to the
constituent masses of quarks of order 100 MeV. In this case whether the quarks can be regarded as degenerate Fermi
liquids or not is a nontrivial question. Therefore the applicability of the BCS theory may have to be reexamined in this
region.
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ΦL = −ΦR. This pairing pattern is in the 3̄ representation in both color and flavor symmetry, and
JP = 0+ under Lorentz transformation 3 as denoted above.

2.1.2 Symmetry of QCD

Let us recall the symmetry of QCD. QCD matter consists of quarks and gluons. We regard quarks as
in the antifundamental representation 4 of both of the color SU(3)C symmetry and flavor SU(3)L(R)

symmetry. The fields qL(R) for left-handed and right-handed quarks transform as

qαLi → eiθB/2+iθA/2
(
ŪC

)α
β

(
ŪL

) j

i
qβLj, qαRi → eiθB/2−iθA/2

(
ŪC

)α
β

(
ŪL

) j

i
qβRj, (2.5)

where ŪC ∈ SU(3)C and ŪL(R) ∈ SU(3)L(R) are representation matrices of each symmetry group
in the antifundamental representations, and eiθB(A)/2 ∈ U(1)B(A). In the case of massless three-
flavor case, the QCD Lagrangian is invariant under SU(3)L, SU(3)R, U(1)B, and U(1)A symmetry,
although the axial symmetry U(1)A is broken the quantum anomaly5. The flavor symmetry becomes
approximate when the mass of quarks are considered.

It is evident from the definition that the diquark condensate fields are in the fundamental repre-
sentations of color and flavor groups. The color SU(3)C group, the flavor group SU(3)L × SU(3)R,
the U(1)B group and the U(1)A group act on ΦL and ΦR as

ΦL → eiθB+iθAUCΦLUL, ΦR → eiθB−iθAUCΦRUR, (2.6)

where UC ∈ SU(3)C, and UL(R) ∈ SU(3)L(R) are representation matrices in the fundamental repre-
sentations, and eiθB(A) ∈ U(1)B(A).

2.1.3 Phases of color superconductivity

Phases of color superconductivity are characterized by the expectation value of the Cooper pair (2.3).
Since the order parameter is a matrix, there can be several patterns of symmetry breaking depending
on the parameters such as density, temperature, and masses of quarks.

3 Under the parity transformation, the Dirac fermion q transforms as q → ηP γ0q where ηP = ±1 is the intrinsic parity
of the particle. The condensate wave function (2.3) transforms as

〈qTCγ5q〉 −→ η2P 〈qT γ0Cγ5γ0q〉 = 〈qTCγ5q〉 (2.4)

where we have used anticommuting property of γ matrices. Therefore the pairing (2.3) is a scalar under parity transfor-
mation.

4Here we assign the antifundamental representation to quarks so that the diquark field be in the fundamental repre-
sentation. The distinction between fundamental and antifundamental representations are just matter of definition and not
essential.

5 The axial U(1) symmetry is effectively restored at higher densities or temperatures at which the instanton density
gets lower [64].
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Color-flavor locked phase

At asymptotically high densities where up, down and strange quarks can be regarded as massless6,
particularly symmetric phase called the color-flavor locked (CFL) [25] phase is expected to be real-
ized. All the three light flavors take part in the pairing symmetrically in the CFL phase. The order
parameter takes the form 7

Φα
i = εαβγεijk〈(qT )jβCγ5q

k
γ〉 ∝ δαi ∆CFL, (2.7)

where ∆CFL is the gap parameter. The condensation (2.7) leads to the following symmetry breaking,

SU(3)C × SU(3)L × SU(3)R × U(1)B −→ SU(3)C+L+R. (2.8)

Equation (2.7) is called “color-flavor locked” pairing since it transforms nontrivially under separate
rotation of color/flavor and the ground state is invariant under simultaneous “locked” rotation of both.
The similar “locking” is also observed, for example, in the B phase of the superfluid 3He, where the
order parameter is not invariant under separate rotation of the spin and orbital degree of freedom, but
is unchanged if one rotates both simultaneously.

Matter in the CFL phase is a superconductor since the local color symmetry is completely broken.
It is also a superfluid due to the broken U(1)B symmetry. Note also that the chiral symmetry is broken
in the CFL phase. The condensate is not invariant under separate global flavor rotation of left and right
handed quarks.

Let us examine the topology of the order parameter space in the spontaneous symmetry breaking
to the CFL phase in detail, paying attention to the discrete groups. Since we consider the positive-
parity states, ΦL = −ΦR ≡ Φ. The order parameter field Φ is transformed under the actions of the
symmetries of QCD as

Φ→ eiθBUCΦUF, (2.9)

where eiθB ∈ U(1)B, UC ∈ SU(3)C, and UF ∈ SU(3)L+R. Since there is a redundancy in the action
of the symmetries, the actual symmetry group is given by

G =
SU(3)C × SU(3)F × U(1)B

(Z3)C+B × (Z3)F+B
, (2.10)

where the discrete groups are defined by

(Z3)C+B :
(
ωk13,13,ω

−k
)
∈ SU(3)C × SU(3)F × U(1)B, (2.11)

(Z3)F+B :
(
13,ω

k13,ω
−k
)
∈ SU(3)C × SU(3)F × U(1)B, (2.12)

with k = 0, 1, 2 and ω is defined by
ω ≡ e2πi/3. (2.13)

6The masses of up and down quarks are about 5− 7 MeV while the mass of the strange quark is about 100 MeV. We
consider the case in which µ is much larger than these masses.

7 All the degenerate pairing pattern of the CFL phase is obtained by applying the transformation of the original
symmetry of QCD on (2.7).
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Note that the discrete groups can be rearranged as

(Z3)C+B × (Z3)F+B $ (Z3)C+F × (Z3)C−F+B, (2.14)

with

(Z3)C+F :
(
ωk13,ω

−k13, 1
)
∈ SU(3)C × SU(3)F × U(1)B, (2.15)

(Z3)C−F+B :
(
ωk13,ω

k13,ω
−2k
)
∈ SU(3)C × SU(3)F × U(1)B. (2.16)

In the CFL phase, we can take the diquark condensate field as

Φ = ∆CFL13, (2.17)

without loss of generality. In the ground state of the CFL phase, the full symmetry group G is
spontaneously broken down to the following group,

H =
SU(3)C+F × (Z3)C−F+B

(Z3)C+B × (Z3)F+B
$ SU(3)C+F

(Z3)C+F
. (2.18)

Thus, we find the order parameter space of the ground state as

G

H
$ SU(3)C−F × U(1)B

(Z3)C−F+B
$ U(3)C−F+B. (2.19)

This U(3) manifold is parametrized by 9 would-be Nambu-Goldstone (NG) modes, among which 8
are eaten by the gluons via the Higgs mechanism and only one massless scalar field (referred to as the
U(1)B phonon) associated with the U(1)B symmetry breaking remains in the physical spectrum8.

2.1.4 Elementary excitations in the CFL phase

Elementary excitations in the CFL phase are summarized as follows.

• Nambu-Goldstone bosons. There appear light eight NG bosons from the chiral symmetry break-
ing and one massless phonon from U(1)B breaking. Diquarks are in 3 representation of color
SU(3)C. Gauge invariant excitations can be constructed by combining the diquark qq to form
color singlets, which corresponds to integrating out the gauge fields. Although the U(1)A sym-
metry is explicitly broken in the vacuum by the instanton effect, when the baryon density is
high and instantons are dilute, η′ mesons become nearly massless and we can regard them as
the NG boson due to the breaking of U(1)A symmetry.

• Quarks. All of them acquire the mass gap of order ∆CFL.

• Gluons. All eight gluons are massive since SU(3)C symmetry is completely broken. Their
electric screening masses (the Debye mass) are of order gsµ [65] where µ is the baryon chemical
potential, while their pole masses are of order ∆CFL [66, 67, 68].

8 To be precise, the U(1)B is broken to Z2 which flips the signs of left and right quarks (qL → −qL and qR → −qR).
This Z2 cannot be described in the GL theory.
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Figure 2.1: Schematic figure of pairing patterns in the CFL and 2SC phases. In the CFL phase up,
down and strange flavors take part in the pairing, while in the 2SC phase only light two flavors form
a condensate.

2.1.5 Other phases of color superconductivity

There can be several other phases of color superconductivity depending on parameters such as mass,
density and temperature. Inhomogeneous superconducting phases are also discussed. For discussions
on other possible phases of color superconductivity, see Ref. [35] and references therein.

We do not discuss the other phases of color superconductivity in detail here since they do not
admit topological vortices. However, let us see another well-studied pairing pattern for comparison
with the CFL phase. The two flavor color superconductivity (2SC) phase is characterized by the
condensate [21]

〈(qT )αi Cγ5q
β
j 〉 ∝ εij3ε

αβ3∆2SC. (2.20)

In the 2SC phase, quarks with two colors and two flavors participate in the condensation. There is
no condensate which involves strange quarks. The 2SC phase is expected to be realized at densities
where the mass of the strange quark cannot be neglected and the pairing including the strange quarks
are suppressed.

Symmetry breaking pattern is9

SU(3)C × SU(2)L × SU(2)R × U(1)B −→ SU(2)C × SU(2)L × SU(2)R × U(1)B̃ , (2.21)

where U(1)B̃ is the combination of U(1)B and U(1)8 ∈ SU(3)C. The baryon number is conserved
by the condensate as a mixing of the original baryon number and one color generator T 8 which is
broken. We can say that matter in the 2SC phase is a superconductor, but not a superfluid since no
global U(1) symmetry is broken. This phase does not admit topologically stable vortices.

9We have assumed to start with massless up and down quarks.
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2.2 Low-energy description of a color superconductor

2.2.1 Ginzburg-Landau theory

A general tool to discuss the phase structure and low-energy excitations is the Ginzburg-Landau (GL)
theory [69, 70, 71], which is applicable near the transition temperature. GL theory is basically the
expansion in terms of the order parameter and its derivatives. Due to the instanton effects, the state
with positive parity is favored compared to the one with negative parity as a ground state [25, 23].
Thus we take the positive-parity state10,

ΦL = −ΦR ≡ Φ. (2.22)

The GL Lagrangian consists of the order parameter Φ and its derivatives. We add up possible
terms consistent with the symmetry of QCD, which is given by

L = Tr

[
−ε3

2
F0iF

0i − 1

4λ3
FijF

ij

]
− ε0

2
(FEM)0i(F

EM)0i − 1

4λ0
(FEM)ij(F

EM)ij

+Tr
[
2iγK0(D0Φ

†Φ− Φ†D0Φ) +K0D0Φ
†D0Φ+K3DiΦ

†DiΦ
]
− V, (2.23)

V = αTr
(
Φ†Φ

)
+ β1

[
Tr(Φ†Φ)

]2
+ β2Tr

[
(Φ†Φ)2

]
+

3α2

4(β1 + 3β2)
, (2.24)

where λ3 is a magnetic permeability, and ε3 is a dielectric constant for gluons, i, j = 1, 2, 3 are indices
for space coordinates, and the covariant derivative and the field strength of gluons are defined by

DµΦ = ∂µΦ− igsA
a
µT

aΦ, (2.25)

Fµν = ∂µAν − ∂νAµ − igs[Aµ, Aν ]. (2.26)

Here, µ, ν are indices for spacetime coordinates and gs stands for the SU(3)C coupling constant.
Note that the Lagrangian (2.23) no longer has the Lorentz symmetry, which is explicitly broken by
the existence of superconducting matter. At sufficiently high densities where perturbative calculations
are valid, the parameters α, β1,2, K0,3 are calculated as [69, 71]

α = 4N(µ) log
T

Tc
, (2.27)

β1 = β2 =
7ζ(3)

8(πTc)2
N(µ) ≡ β, (2.28)

K3 =
7ζ(3)

12(πTc)2
N(µ), (2.29)

λ0 = ε0 = 1, λ3 = ε3 = 1, (2.30)

K0 = K3/3, (2.31)
10 In general, the left-handed and right-handed diquark condensates can be different by a SU(3) phase, ΦL = −ΦRU

with U ∈ SU(3).
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where µ is the baryon chemical potential and N(µ) ≡ µ2/2π2 is the density of state at the Fermi
surface. The parameter K0 has not been calculated in the literature, but can be derived following the
same procedure in Ref. [72, 73].

The masses of the elementary excitations can be written in terms of the parameters above as

m2
g = 2λ3g

2
s∆

2
CFLK3, m2

1 = −
2α

K3
, m2

8 =
4β∆2

CFL

K3
. (2.32)

where mg is the gluon mass, and m1(8) is the mass of the massive mesons in singlet (adjoint) repre-
sentation of color-flavor locked symmetry SU(3)C+F. From this together with Eq. (2.31), we find the
following relation

mg ∼
√
λ3gsµ, m1 = 2m8 ∼ 2∆CFL. (2.33)

Since gsµ. ∆CFL at the high density limit, we have

κ1,8 ≡
m1,8

mg
/ 1. (2.34)

This implies that the CFL phase is in the type I superconductor 11 [74].

Effects of a strange quark mass

So far, we have considered the CFL phase at the asymptotically high densities where all the quark
masses mu,d,s are negligible compared to the baryon chemical potential µ. In this subsection, let us
consider the effect of a finite non-zero strange quark mass. We consider the situation where

0 $ mu,d < ms / µ. (2.35)

The effects of non-zero quark masses become important at smaller baryon chemical potentials. It
was found [75] that the non-zero quark mass together with the β-equilibrium and the electric charge
neutrality changes the CFL phase to the modified CFL (mCFL) phase where the color-flavor locking
symmetry is further broken as

SU(3)C+L+R → U(1)2. (2.36)

An important difference between the CFL and mCFL phases is that the quark chemical potentials
µu, µd, µs take different values. Hence, there appear difference between the Fermi momenta. This
makes ∆ud different from ∆ds = ∆us. If one further imposes the electric charge neutrality, the gaps
of the diquark condensation take different values as [75]

∆ud > ∆ds > ∆us. (2.37)
11 This does not mean that a state with vortices is unstable in the CFL phase. NG bosons for the U(1)B symmetry

breaking induce repulsive force between vortices, which stabilize multivortex states.
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This is responsible for the symmetry breaking in Eq. (2.36). The correction to quadratic order to the
GL potential in Eq. (2.23) was obtained as [76, 75]

δV =
2

3
ε tr

[
Φ†Φ

]
+ ε tr

[
Φ†X3Φ

]
, (2.38)

ε = N(µ)
m2

s

µ2
log

µ

Tc
, (2.39)

X3 = diag

(
0,

1

2
,−1

2

)
. (2.40)

The first term in Eq. (2.38) can be absorbed into the definition of α as

α′ ≡ α +
2

3
ε. (2.41)

If we ignore the second term in Eq. (2.38), all the results in the previous sections are still valid under
the understanding of the replacement α with α′ in all equations. Therefore, an essential difference
from the massless case is given rise to by the second term in Eq. (2.38). Since the term is sufficiently
small if ms / µ, we will treat it as a perturbation in Sec. 3.4.3.





Chapter 3

Vortices in color superconductors

In this section, we review the basic properties of vortices in the CFL phase. In Sec. 3.1, we review
the topological defects in general. We discuss the relation between the stability of topological defects
and the topology of order parameter spaces. In Sec. 3.2, we discuss the properties of U(1)B superfluid
vortices. In Sec. 3.3, we introduce the non-Abelian vortices (also called as the semi-superfluid vor-
tices). An interesting feature of the non-Abelian vortices is the existence of the internal orientational
zero modes. In Sec. 3.4 we give the low-energy effective theory for the orientational zero modes and
its derivation. The effects of the strange quark mass are also taken into account.

3.1 Topological defects at work

Existence of topological defects is closely related to the degeneracy of ground states. Topological
defects are solutions in field theories which are “winding” around some structures in the space of
degenerate ground states. Degeneracy of ground states typically happens together with a spontaneous
symmetry breaking. Here we consider the topological defects appearing in a spontaneous symmetry
breaking.

Before embarking on the discussion of vortices, let us look at some examples of topological
defects. They appear in various materials and they play important roles in determining the properties.
We list some examples below.

• Vortices in the two-dimensional XY model play a vital role in the transition from low temperature
to a high temperature disordered phase [16]. A vortex and an anti-vortex form a bound state
at low temperature. When the temperature is increased above some critical value, vortex pairs
dissociate and the phase coherence is broken.

• Vortices in atomic and helium superfluids have been extensively studied both theoretically and
experimentally. In the two-fluid model [77, 78], which is an effective theory for superfluids, the
super and normal components are basically independent on each other. However, their motion
becomes correlated in the presence of vortices. The vortices in superfluids are known to form

23
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a lattice when a superfluid is rotated. The dynamics of vortices is believed to play a key role in
determining the properties of quantum turbulence [79].

• Skyrmions are topologically nontrivial solutions in non-linear sigma models. They were first
proposed as a model of baryons [80]. A quantum Hall ferromagnet, whose effective theory is
described by O(3) sigma model in two spatial dimensions, accommodates skyrmions. A crystal
of skyrmions is experimentally observed [81].

• Domain walls and vortices appear in ferromagnetic materials. Magnetic domain walls can be
moved by an electric current [82] and they are expected to be applied to memory devices like
magnetoresistive random access memory (MRAM). Domain-wall racetrack memory proposed
by Parkin is one possibility for high-density storage device [83, 84].

3.1.1 Classification of topological defects

We briefly comment on how to argue the stability of topological defects.
Let us consider a symmetry breaking in which the original symmetry group G is spontaneously

broken to a smaller group H . The order parameter space is defined as the set of all possible values
of the order parameter field Φ. The order parameter is the label to distinguish degenerate ground
states. Since all the degenerate order parameter fields in the same phase are obtained by acting G on
a particular Φ0, the order parameter space M is expressed as

M = {ρ(g)Φ0|g ∈ G}, (3.1)

where ρ is some representation of G. The isotropy group HΦ at Φ ∈ M is defined by HΦ =

{h ∈ G|ρ(h)Φ = Φ}. Two isotropy groups HΦ, HΨ for Φ ∈ M,Ψ ∈ M are isomorphic and re-
lated by the conjugation gHΦg−1 = HΨ with g ∈ G such that ρ(g)Φ = Ψ. So we will omit the
subscript of H which denotes the point in M. Since the order parameter Φ is invariant under the
action of H , the order parameter space can be identified as M $ G/H .

Topological defects are solutions of equations of motion in a field theory, which are topologically
distinct from a trivial ground state. The theory of the homotopy group is a natural language to dis-
cuss the topology of the order parameter space. Topological defects are classified according their
homotopy classes. A solution cannot be deformed continuously into another one which belongs to
other homotopy class. If the n-th homotopy group of the order parameter space πn(M) consists of
only unit element, all the solutions are topologically equivalent and all of them can be continuously
deformed into trivial solutions. In this case there is no stable topological excitation. Existence of
stable topological defects corresponds to a nontrivial homotopy group of the order parameter space.

Various topological defects in ordered media in three dimensions are classified by homotopy
groups as in Table 3.1.1. The dimensionality of a topological defect and the order of homotopy
group to classify the defect is related as shown in Table 3.1.1. A general discussion on topological
defects can be found in Refs. [85, 86, 87].
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Topological defect Dimension of the defect Classification

Domain wall 2 π0(G/H)

Vortex 1 π1(G/H)

Monopole 0 π2(G/H)

Texture 3 π3(G/H)

Table 3.1: Classification of topological solitons in three spatial dimensions

3.2 Abelian vortices

As discussed above, topologically stable vortices appear when the first fundamental group of the
order parameter space π1(G/H) is nontrivial. The simplest case in which vortices appear is when
G = U(1) and H = {e} where e is the unit element. These vortices are called Abelian vortices. Here
we review basic properties of Abelian vortices.

QCD has two independent phase rotations, U(1)B and U(1)A symmetries, under which the quark
field is transformed as

q → eiθAγ5+iθBq. (3.2)

Accordingly, the diquark condensates are transformed as

ΦL = eiθA+iθBΦL, ΦR → e−iθA+iθBΦR. (3.3)

Therefore, the formation of diquark condensates breaks both of the U(1)B and U(1)A symmetries.
The U(1)A symmetry is also broken explicitly by the chiral anomaly. We here discuss the U(1)B
global vortices [36, 37], each of which has integral winding number with respect to the U(1)B sym-
metry. They turned out to be energetically unstable, and a U(1)B vortex should decay into vortices
with minimal energy [38]. There also exist vortices associated with the U(1)A symmetry, although
the U(1)A symmetry is explicitly broken by the quantum anomaly. As a result of this explicit break-
ing, a U(1)A vortex is always accompanied by a domain wall. The properties of vortex-domain wall
composites are investigated in Ref. [88].

3.2.1 U(1)B superfluid vortices

Here we discuss the properties of U(1)B superfluid vortices. We call a vortex with an integral winding
number with respect to U(1)B as a U(1)B vortex. The U(1)B vortices are basically similar to the
vortices in atomic or He superfluids in condensed matter physics. A U(1)B vortex does not carry a
color magnetic flux and there is no internal degree of freedom, which are not the case for non-Abelian
vortices discussed later.

We can find the solutions of U(1)B vortices by solving the equation of motion derived from the
GL Lagrangian, as follows. If one circles around a U(1)B vortex, the overall phase of the condensate
matrix is rotated once. Thus, in order to find such a solution, it is natural to take the condensate matrix
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Figure 3.1: Profile function fB(r) of a U(1)B vortex with k = 1.

to be proportional to the unit matrix, Φ(x) = φ(x)13/
√
3. Then, the Lagrangian is reduced to the

following form:

LU(1)B = K0|∂0φ|2 −K3|∂iφ|2 −
[
α|φ|2 + 4β

3
|φ|4 + 3α2

16β

]
. (3.4)

This is the Lagrangian of the Goldstone model, that describes a relativistic superfluid. In the ground
state, φ =

√
−3α/8β ≡

√
3∆CFL, and the U(1)B symmetry is broken. Topologically stable vortices

are characterized by an integer, since the first homotopy group of the order parameter space is given
by π1[U(1)B] $ Z. Let us find an axially-symmetric solution. A vortex placed along the z-axis can
be parametrized as

φ(r, θ) =
√
3∆CFLfB(r)e

ikθ, (3.5)

where (r, θ, z) is the cylindrical coordinates with x+ iy ≡ reiθ, fB(r) is a vortex profile function, and
k ∈ Z is the winding number of a vortex, which characterizes the strength of a vortex. Substituting
the ansatz (3.5), the equation of motion derived from the Lagrangian (3.4) reduces to an ordinary
differential equation,

f ′′
B +

f ′
B

r
− k2

r2
fB +

α

K3

(
f 2
B − 1

)
fB = 0. (3.6)

As a boundary condition, we take fB(0) = 0 so that the field is regular at the origin. At far distances
from the vortex core, we take fB(∞) = 1, which assures that the value of the field goes to the ground-
state value. The numerical solution of fB(r) is shown in Fig. 3.1. The function fB(r) approaches the
ground-state value at distances r > ∆−1

CFL. The asymptotic behavior at r → 0 and r → ∞ can be
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obtained analytically,

fB(r) = ck

(
r√
−α/K3

)k

+ · · · , r → 0, (3.7)

fB(r) = 1−O




(

r√
−α/K3

)−2


+ · · · , r →∞. (3.8)

The constants ck are obtained by numerical methods, for example, c1 = 0.58 · · · for k = 1 [89]. The
tension of a vortex, which is the energy of a vortex per unit length, is logarithmically divergent,

TU(1)B = 6π∆2
CFLK3k

2 log
L

ξ
+ · · · , (3.9)

where L is an IR cutoff scale representing the system size, and ξ is a UV cutoff of the order of the
inverse of the vortex core size, and · · · indicates finite contributions to the tension.

3.3 Non-Abelian vortices in the CFL phase

In this section, we introduce non-Abelian vortices, which are energetically the most stable vortices in
the CFL phase. The non-Abelian vortices are first introduced in Ref. [38].

Let us first discuss the existence of non-Abelian vortices in the CFL phase from the topological
point of view. Recall that, topological solitons, like vortices, are a type of solutions which are topo-
logically distinct from the vacuum solutions. If one circles around a topological vortex, the value of
the order parameter also makes a loop in the order parameter space. When the loop in the order pa-
rameter space cannot be continuously deformed to a point, the solution is topologically stable, which
means that the solution cannot be continuously deformed to the vacuum solution. In the case of the
CFL phase, the order parameter space is given by

G

H
$ SU(3)C−F × U(1)B

(Z3)C−F+B
$ U(3)C−F+B, (3.10)

as explained in Chap. 2. The space U(3) accommodates non-Abelian vortices, as explained below.
Let us consider a closed loop in U(3) that is nontrivial. The loop in U(3) can also be described by a
path in SU(3)× U(1), which becomes closed by Z3 identification. Consider a curve that starts from
(1,1) and end at (ω−1,ω) in SU(3)× U(1), where ω ≡ e−i2π/3, and U(1) is rotated in the clockwise
way. This path is nontrivial in SU(3) space, then, it is also a nontrivial closed loop l in U(3). Let us
denote the set of loops which are homotopically equivalent to l by [l]. Namely, [l] is the homotopy
class represented by l.

The associated loop in the order parameter space for a non-Abelian vortex take is in the class
[l]3n+1 or [l]3n+2 where n is an integer. In this case, the projection of a loop into the SU(3) space
is always a path, that cannot be contracted to a point. Accordingly, a color flux is present inside a
vortex. We can see that an Abelian vortex correspond to [l]3n. Take [l]3 for example. The loop [l]3 is
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associated with a closed loop in both SU(3) and U(1). A closed loop in SU(3) can be continuously
deformed to a point, since SU(3) is a simply connected space. Thus, [l]3 is a nontrivial loop only in
U(1) and corresponds to the Abelian vortices. In this case a vortex does not have a color flux, since
the order parameter is not transformed color generators along a loop.

Let us explicitly find the loops in the order parameter space for minimally winding loops [l] and
[l]−1. The projections of these loops in SU(3) and U(1) spaces are given by

l : (1,1)→ (ω−1,ω) ∈ SU(3)× U(1), (3.11)

l−2 : (1,1)→ (ω2,ω−2) = (ω−1,ω−2) ∈ SU(3)× U(1). (3.12)

In U(1)B space, the loop is generated by the baryon charge,

QB =
2

3
1. (3.13)

The U(1)B parts of these loops can be expressed as

l : eiφQB/2, (3.14)

l−2 : e−iφQB , (3.15)

with φ ∈ [0, 2π], which is a parameter of the circle. On the other hand, the SU(3) part is generated
by the following generator,

T8 ≡
1

2
√
3




−2 0 0

0 1 0

0 0 1



 . (3.16)

The projections of loops in SU(3) are the same, as is evident from Eqs. (3.11) and (3.12). Hence, we
obtain the parametrization of the loops l and l−2 as

l : M1(φ) = ∆CFLe
2iφT8/

√
3 · eiφQB/2 = ∆CFL




eiφ 0 0

0 1 0

0 0 1



 , (3.17)

l−2 : M2(φ) = ∆CFLe
−2iφT8/

√
3 · e−iφQB = ∆CFL




1 0 0

0 e−iφ 0

0 0 e−iφ



 . (3.18)

These are the loops in the order parameter space. The vortices that correspond to the loops above are
named as M1 and M2 vortices, respectively [38].

3.3.1 M1 vortices

Let us find the solution of equations of motion which corresponds to the loop l in the order param-
eter space. We consider the solutions of the Euler-Lagrange equations derived from the following
Ginzburg-Landau free energy,

F = Tr

[
−K3DiΦ

†DiΦ−
F 2
ij

4λ3

]
− αTr

[
Φ†Φ

]
− β

([
Tr(Φ†Φ)

]2 − Tr
[
(Φ†Φ)2

])
+

3α2

16β
, (3.19)
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where we discarded the terms irrelevant for the discussions below. We take λ3 = 1 in the rest of this
section.

Let a vortex be placed along the z-axis. We can parametrize the solution which corresponds to the
loop given by Eq. (3.17) in the order parameter space as

Φ(r, θ) = ∆CFL




eiθf(r) 0 0

0 g(r) 0

0 0 g(r)



 , (3.20)

Ai(r, θ) =
εijxj

gsr2
(1− h(r))




−2

3 0 0

0 1
3 0

0 0 1
3



 , (3.21)

where i = 1, 2, (r, θ) is the radial coordinate in xy-plane, and f(r), g(r), and h(r) are the profile
functions that characterize the vortex solution. Note that this is not the only lowest-energy solution.
The solutions with of the following form,

Φ(r, θ) = ∆CFL




g(r) 0 0

0 eiθf(r) 0

0 0 g(r)



 , (3.22)

Ai(r, θ) =
εijxj

gsr2
(1− h(r))





1
3 0 0

0 −2
3 0

0 0 1
3



 , (3.23)

or

Φ(r, θ) = ∆CFL




g(r) 0 0

0 g(r) 0

0 0 eiθf(r)



 , (3.24)

Ai(r, θ) =
εijxj

gsr2
(1− h(r))





1
3 0 0

0 1
3 0

0 0 −2
3



 , (3.25)

have the same energy as that of the solution like Eqs. (3.20) and (3.21). In fact, there are infinitely-
many degenerate vortices with the same energy, as is discussed later in Sec. 3.4. We impose the
following boundary condition at spatial infinities,

f(∞) = 1, g(∞) = 1, h(∞) = 0. (3.26)

The last condition means that the gauge field is pure gauge at spatial infinity. The condition (3.26) is
consistent with the loop (3.17) in the order parameter space. For r → 0, we take

f(0) = 0, g′(0) = 0, h(0) = 1. (3.27)



30 Chapter 3. Vortices in color superconductors

The decomposition of the action of the U(3) group in Eq. (3.20) to the U(1)B and SU(3)C actions
can be found as

Φ = ∆CFL




eiθf(r) 0 0

0 g(r) 0

0 0 g(r)



 = ∆CFLe
iθ
3




e

2iθ
3 f(r) 0 0

0 e−
iθ
3 g(r) 0

0 0 e−
iθ
3 g(r)



 . (3.28)

If one circles around the vortex along a loop, the SU(3) and U(1) contributions becomes (ω−1,ω),
which is consistent with Eq. (3.11).

Let us determine the behavior of the profile functions f, g, h. The Euler-Lagrange equations that
the profile functions should satisfy are given by

f ′′ +
f ′

r
− (2h+ 1)2

9r2
f − m2

1

6
f
(
f 2 + 2g2 − 3

)
− m2

8

3
f(f 2 − g2) = 0, (3.29)

g′′ +
g′

r
− (h− 1)2

9r2
g − m2

1

6
g
(
f 2 + 2g2 − 3

)
− m2

8

6
g(f 2 − g2) = 0, (3.30)

h′′ − h′

r
−

m2
g

3

(
g2(h− 1) + f 2(2h+ 1)

)
= 0. (3.31)

Perturbatively calculated values of the masses m1, m8, and mg are given in Eq. (2.32). Vortex con-
figurations can be obtained by solving the coupled equations above of the functions f(r), g(r), and
h(r).

Let us find the asymptotic behaviors of the profile functions at large distances from the vortex
core, which can be studied analytically. We consider small fluctuations around the asymptotic values
(f, g, h) = (1, 1, 0) and define

δF (r) = (f(r) + 2g(r))− 3, δG(r) = f(r)− g(r), δh(r) = h(r). (3.32)

Here, δF (r) is the fluctuation of the trace part of Φ and δG(r) is the one for the traceless part propor-
tional to T8. In terms of the functions defined in Eq. (3.32), the order parameter is written as

Φ = ∆CFL13 +∆CFL





1
3 0 0

0 1
3 0

0 0 1
3



 δF (x) +∆CFL





2
3 0 0

0 −1
3 0

0 0 −1
3



 δG(r) + · · · . (3.33)

At far distances from the vortex core, we can linearize the field equations in δF (r), δG(r), and δh(r)
as

[(
d

dr

)2

+
1

r

d

dr
−m2

1 −
1

9r2

]
δF =

1

3r2
, (3.34)

[(
d

dr

)2

+
1

r

d

dr
−m2

8 −
1

9r2

]
δG =

2

3r2
δh, (3.35)

[(
d

dr

)2

− 1

r

d

dr
−m2

g

]
δh =

2

3
m2

gδG. (3.36)



3.3. Non-Abelian vortices in the CFL phase 31

The approximate solution of the first equation is given by [40]

δF = q1

√
π

2m1r
e−m1r − 1

3m2
1r

2
+O

(
(m1r)

−4
)
. (3.37)

The first term is much smaller than the others which is usually neglected as in the case of the U(1)

global vortex. The dominant terms decrease polynomially. At the high baryon density where mg .
m1,8, the solutions of Eqs. (3.35) and (3.36) are given by

δG = q8

√
π

2m8r
e−m8r, δh = −2

3

m2
g

m2
g −m2

8

δG. (3.38)

Here q1,8 are numerical constants.
The behavior of δh is interesting. The gluon has the magnetic mass mg by the Higgs mechanism

in the CFL phase, so naively one expects the tail of the gauge field is determined by mg like δh ∼
e−mgr. However, the function δh actually decays as δh ∼ e−m8r, namely the asymptotic behavior
is determined by the mass of adjoint scalar fields, m8. The intervortex forces of the non-Abelian
vortices in CFL could be quite different from those in conventional metallic superconductors, since the
asymptotic behaviors of the vortex string is deeply related to the intervortex forces1. In the opposite
case mg / m8, the asymptotic behaviors are changed from Eq. (3.38) as

δG = −2qg
3

1

(m2
8 −m2

g)r
2

√
π

2m8r
e−mgr, δh = qg

√
πmgr

2
e−mgr. (3.39)

In this case the asymptotic behaviors are governed by mg which is smaller than m8. The coefficients
q8 and qg depend on the masses m1, m8 and mg and can be determined numerically [40].

The full numerical solutions for Eqs. (3.29), (3.30) and (3.31) were obtained in Ref. [40]. The
behaviors of the profile functions depend on the mass parameters m1,8,g. In particular, the value of
g(0) at the origin is quite sensitive to the ratio m1/m8. The value g(0) becomes lager than 1 for
m1 > m8, and is smaller than 1 for m1 < m8, see Fig. 3.2. Since f(r) − g(r) plays a role of an
order parameter for the breaking of SU(3)C+F, information of the profile functions f(r) and g(r) are
important. Perturbative calculations indicate that m1 = 2m8 / mg. In this case, g(0) is convex
near the center of a vortex. So in the case of a realistic non-Abelian vortex in the CFL phase, g(0) is
greater than 1 as shown in the right panel of Fig.3.2. The profile functions f(r), g(r), h(r), the energy
and the color-magnetic flux densities for a particular choice of the parameter ratio (m1,m8,mg) =

(2, 1, 10) are shown in Fig. 3.3. In this case mg is much greater than m1,8, the color-magnetic flux has
almost same width as the scalar density distribution. This is consistent with the asymptotic behavior
discussed before. The asymptotic tail of the gluon field behave like ∼ e−m8r, which depends only on
m8 when the scalar mass is lighter than the mass of gluons, m8 < mg.

1 In the case of vortices in the Abelian-Higgs model[90, 91], the tail of the scalar field behave like exp(−mHr) with
the Higgs mass mH, while that of magnetic flux behaves like exp(−mer) where me is the photon mass. However, when
(me > 2mH), the tail of the gauge boson becomes exp(−2mHr) [92, 93, 94].
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Figure 3.2: Profile functions {f(r), g(r), h(r)} = {green, blue, red} of a non-Abelian vortex
in the CFL phase (taken from Ref. [18]). The ratios of the masses set to {mg,m1,m8} =

{5, 1, 1}, {1, 5, 1}, {1, 1, 5}. The radial coordinate is in the unit of m1(= m8), mg(= m8), mg(= m1)

for the three pictures, respectively. g(r) is almost flat when m1 $ m8.

Let us compare the non-Abelian vortices explained in this section with the Abelian vortices in
the previous section Sec. 3.2. A U(1)B vortex is characterized by an element of the first homotopy
group, π1[U(1)B]. As can be seen from Eq. (3.5), a U(1)B vortex has an integer winding number. A
non-Abelian vortex is also characterized by an element of π1[U(1)B], but its winding number can be
a fractional number. The winding number of a non-Abelian vortex is a multiple of 1/3. A minimal
vortex has the winding number 1/3. This can be explicitly seen by writing the asymptotic behavior
of Φ given in Eq. (3.28) at r →∞ as

Φ ∼ ∆CFLe
iθ
3 13. (3.40)

Here “∼” stands for the equivalence under the gauge transformation. This explicitly shows that the
minimally winding non-Abelian vortex has only 1/3 winding number in the U(1)B space.

Finding a minimally winding solution is important, because such a solution is most stable. A
non-Abelian vortex is a global vortex, so its tension consists of two parts: a logarithmically divergent
part and a finite part.

TM1 = Tdiv;M1
+ Tfin;M1

. (3.41)

The dominant contribution to the tension (logarithmically divergent) comes from the kinetic term,

Tdiv;M1
$ K3

∫
d2x trDiΦ(DiΦ)

† =
1

9
× 6π∆2

CFLK3 log
L

ξ
. (3.42)

This should be compared with the tension of U(1)B integer vortex given in Eq. (3.9). The tension of
a vortex is proportional to the square of the winding number. Since the minimal winding number of a
non-Abelian vortex is 1/3, the tension of the non-Abelian vortex is 1/32 = 1/9 times that of a U(1)B
integer vortex. That is why a non-Abelian vortex is most stable in the CFL phase.

3.3.2 M2 vortices

Here let us briefly discuss a vortex configuration called the M2 vortices. This solutions corresponds to
the loop l−2 in the order parameter space. The ansatz for the M2 vortex is similar to that in Eqs. (3.20)
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Figure 3.3: Energy density (red) and the non-Abelian magnetic flux (blue) for a minimally winding
non-Abelian vortex as a function of the distance from the center of the vortex (taken from Ref. [18]).
We chose the ratio of parameters as (mg,m1,m8) = (10, 2, 1). The radial coordinate is in the unit
of m−1

8 . While the energy density has a long tail, the magnetic flux exponentially goes to zero at
r ∼ m−1

8 .

and (3.21),

Φ(r, θ) = ∆CFL




q(r) 0 0

0 e−iθp(r) 0

0 0 e−iθp(r)



 , (3.43)

Ai(r, θ) =
εijxj

gsr2
(1− h(r))




−2

3 0 0

0 1
3 0

0 0 1
3



 . (3.44)

The ansatz for Φ can be rewritten as

Φ(r, θ) = ∆CFLe
−i 2θ3




ei

2θ
3 0 0

0 e−i θ3 0

0 0 e−i θ3








q(r) 0 0

0 p(r) 0

0 0 p(r)



 . (3.45)

This shows that an M2 vortex has the winding number−2/3 with respect to U(1)B, whose magnitude
is twice larger than that of an M1 vortex. For the rest part, the ansatz goes into the SU(3)C orbit, more
explicitly, S1 ⊂ SU(3)C which is generated by T8. Like in the case of an M1 vortex, the tension of
the M2 vortex consists of a divergent part and a finite part. The divergent part is given by

Tdiv;M2
=

4

9
× 6π2∆2

CFLK3 log
L

ξ
. (3.46)
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This is four times larger than the tension of an M1 vortex. This implies that an M2 vortex with a red
flux decays into two M1 vortices with green and blue colors. The contributions to the tension from
the color-magnetic flux are the same as that of an M1 vortex.

3.4 Orientational zero modes of non-Abelian vortices

3.4.1 What are orientational zero modes?

We here explain the orientational zero modes, which are a kind of Nambu-Goldstone modes. Inside a
vortex, the symmetry of the CFL ground states is further broken to a smaller group. This results in a
Nambu-Goldstone mode, which propagates only along a vortex.

Let us identify the symmetry breaking pattern. A vortex of the lowest energy placed along the z

axis takes the form,

Φ0(x) =




f(r)eiθ 0 0

0 g(r) 0

0 0 g(r)



 , Ai(x) =
1

g

εijxj

r2
[1− h(r)]




−2/3 0 0

0 1/3 0

0 0 1/3



 , (3.47)

where {f(r), g(r),h(r)} are the profile functions. The orientational zero modes are identified as
follows. The solution Φ0 can be gauge-transformed into the form,

Φ0 = ∆CFLdiag(f(r)e
iθ, g(r), g(r)) ∼ ∆CFLe

iθ
3

(
F (r)

3
13 +

√
2

3
G(r)T8

)
, (3.48)

Because of the term proportional to T8 in Eq. (3.48), the SU(3)C+F symmetry is now broken to

H ′ = U(1)C+L+R × SU(2)C+L+R, (3.49)

where U(1)C+L+R is the Abelian subgroup generated by T8 and SU(2)C+L+R is SU(2) subgroup
which commutes with U(1)C+L+R.

As a consequence, there appear further Nambu-Goldstone modes [39] that parametrize the coset
space,

H

H ′ =
SU(3)C+L+R

U(1)C+L+R × SU(2)C+L+R
$ CP 2. (3.50)

This space is known as the two-dimensional complex projective space. There are degenerate family
of vortex solutions with different color magnetic fluxes2. Each solution corresponds to a point in the
CP 2 space. The general solutions of the same energy can be obtained by applying the SU(3)C+F

transformations on Φ0 as

Φ→ ∆CFLe
iθ
3

(
F

3
13 +

√
2

3
GUT8U

†

)
, U ∈ SU(3)C+L+R. (3.51)

2The degeneracy is broken if we include quantum effects [95][96].
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Φ = UΦ′
0U

−1 = eiθ/3
{
F (f, g) +G(f, g)

(
φφ† − 1

3
13

)}
, (3.52)

where φ is the parameter of the orientational moduli, and we have defined

F ≡ f + 2g, G ≡ f − g. (3.53)

The order parameter of the breaking of SU(3)C+L+R is |G| = |f(r) − g(r)|. Since both f(r) and
g(r) asymptotically reach 1 at spatial infinities, the color-flavor locked symmetry is restored at far
distances from the vortex core. As can be seen in Fig. 3.3, |G| takes a maximum value at the center of
the non-Abelian vortex. Hence, the orientational NG modes are localized on the non-Abelian vortex.

As is derived in the next section, the low-energy effective dynamics on the vortex is described by
a CP 2 model [40], whose Lagrangian is given by

Llow = C
∑

µ=0,3

Kµ

[
∂µφ†∂µφ+ (φ†∂µφ)(φ†∂µφ)

]
, (3.54)

where C and Kµ are constants and φ(t, z) is a complex three-component field normalized as φ†φ = 1.
φ transforms as the fundamental representation under SU(3)C+F. At first sight, the parametrization
of CP 2 by φ has 6 − 1 = 5 dimensions, since φ is 3 dimensional complex vector which satisfies the
condition φ†φ = 1. However, the action (3.54) has a local U(1) invariance. The Lagrangian (3.54) is
invariant under the local transformation φ → eiα(x)φ [97, 98]. One can gauge away one component,
so φ correctly has 4 degrees of freedom.

3.4.2 Low-energy effective theory of orientational zero modes

As discussed above, a non-Abelian vortex has internal CP 2 orientational modes, that are associated
with the spontaneous breaking of the color-flavor locked symmetry. The orientational modes are
massless and they propagate along non-Abelian vortices. Here we derive the low-energy theory that
describes the orientational modes. We neglect the massive modes in the rest of this subsection, since
we are interested in the low-energy dynamics.

Let us first identify the orientational zero modes in the background fields Φ and Aµ. We start with
a particular non-Abelian vortex solution,

Φ)(x, y) = ∆CFLe
iθ
3

(
F (r)

3
13 +G(r)

√
2

3
T8

)
, A)

i (x, y) = −
1

gs

εijxj

r2
h(r)

√
2

3
T8. (3.55)

A general solution can be obtained by transforming this solution by SU(3)C+F transformation,

Φ(x, y) = UΦ)U † = ∆CFLe
iθ
3

(
F (r)

3
13 −G(r)

〈
φφ†〉

)
, (3.56)

Ai(x, y) = UA)
iU

† =
1

gs

εijxj

r2
h(r)

〈
φφ†〉 , (3.57)
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where 〈O〉 is the traceless part of a square matrix O, and we introduced a complex 3-component
vector φ that satisfies the following relation

−
√

2

3
UT8U

† = φφ† − 1

3
13 ≡

〈
φφ†〉 . (3.58)

Taking the trace of Eq. (3.58) gives a constraint on φ,

φ†φ = 1. (3.59)

Thus, we find that φ represents the homogeneous coordinates of CP 2 space.
Now we promote the moduli parameters φ to the fields depending on the coordinates (t, z) of the

vortex worldsheet by using the so-called moduli space approximation. This method is first introduced
by Manton for BPS monopoles [99, 100], and is widely used for obtaining the effective low-energy
theory of topological solitons. Since we describe the low-energy dynamics of the orientational moduli
fields, we restrict ourselves to the study of the dynamics with a typical energy scale much lower than
the mass scales of the original theory, m1, m8, and mg. Namely, we consider the situation where

|∂αφ(z, t)|/ min {m1,m8,mg} , (α = 0, 3). (3.60)

Neglecting the higher derivative terms with respect to z and t, the low-energy effective theory for
the orientational moduli field can be obtained by plugging Φ(x, y;φ(z, t)) and Ai(x, y;φ(z, t)) into
the original Lagrangian (2.23). Note that Φ(x, y;φ(z, t)) and Ai(x, y;φ(z, t)) depend on the full
spacetime coordinates, which are obtained by replacing the moduli parameter φ with the moduli field
φ(z, t) in Eq. (3.57). In order to construct the Lagrangian of the effective theory, we also have to
determine the xα dependence of the gauge fields Aα, which are zero in the background solution. For
this purpose, we make an ansatz following [101],

Aα =
iρα(r)

gs

[〈
φφ†〉 , ∂α

〈
φφ†〉] , (3.61)

where ρα(r) (α = 0, 3) are the functions of the radial coordinate r. The functions ρα(r) are deter-
mined later.

Substituting all the fields Φ and Aµ into Eq. (2.23), we find the effective Lagrangian at low ener-
gies,

Leff = L(0)
eff + L(3)

eff , (3.62)

where

L(0)
eff =

∫
dx1dx2 tr

[
−ε3

2
F0iF

0i +K0D0Φ
†D0Φ

]
, (3.63)

L(3)
eff =

∫
dx1dx2 tr

[
− 1

2λ3
F3iF

3i +K3D3Φ
†D3Φ

]
. (3.64)

The terms in the Lagrangian can be written in the following way,

L(α)
eff = CαL(α)

CP 2 , (3.65)

L(α)
CP 2 = ∂αφ†∂αφ+

(
φ†∂αφ

) (
φ†∂αφ

)
, (3.66)
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where no summation is taken for α. The coefficient Cα in Eq. (3.65) can be determined as follows.
After straightforward calculations, we find that the coefficients are expressed as

C0 =
4πα3

λ3g2s

∫
dr

r

2

[
ρ′0

2 +
h2

r2
(1− ρ0)2 +

β3m2
g

α3

(
(1− ρ0)(f − g)2 +

f 2 + g2

2
ρ20

)]
, (3.67)

C3 =
4π

λ3g2s

∫
dr

r

2

[
ρ′3

2 +
h2

r2
(1− ρ3)2 +m2

g

(
(1− ρ0)(f − g)2 +

f 2 + g2

2
ρ23

)]
, (3.68)

where α3 ≡ ε3λ3 and β3 ≡ K0/K3. The coefficients C0,3 should be determined in such a way that
the energy is minimized. To this end, we regard the coefficients as “Lagrangian” for the undetermined
scalar fields ρα. Namely, we solve the following the Euler-Lagrange equations

ρ′′0 +
ρ′0
r

+ (1− ρ0)
h2

r2
−
β3m2

g

2α3

[
(f 2 + g2)ρ0 − (f − g)2

]
= 0, (3.69)

ρ′′3 +
ρ′3
r

+ (1− ρ3)
h2

r2
−

m2
g

2

[
(f 2 + g2)ρ3 − (f − g)2

]
= 0, (3.70)

with the boundary conditions

ρ0,3(0) = 1, ρ0,3(∞) = 0. (3.71)

Numerical solutions of ρ0(r), ρ3(r) and the Kähler class density c0(r) and c3(r) (Ci = (4π/g2s )
∫
dr rci(r))

with λi = εi = 1 (i = 0, 3) for the mass choices {m1,m8,mg} = {1, 5, 1}, {5, 1, 1}, {1, 1, 5} are
shown in Fig. 3.4. The corresponding background solutions are shown in Fig. 3.2.
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Figure 3.4: Numerical solutions of ρ0(r) (blue) and ρ3(r) (purple) for {mg,m1,m8} =

{1, 5, 1}, {5, 1, 1}, {1, 1, 5} (taken from Ref. [18]). The Kähler class density c0(r) (blue) and c3(r)

(purple) are shown in the second row.
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3.4.3 Effects of a strange quark mass

At lower densities, the effects of a finite strange quark mass is not negligible. Let us consider what
happens to the effective theory orientational zero modes as a result of a finite strange quark mass.
The results here are obtained in Ref. [44]. We assume that the chemical potential is still substantially
larger than ms and we treat the effect as a perturbation. We can asborb the term ε ∝ m2

s given in
Eq. (2.39) into α as Eq. (2.41), and the background non-Abelian vortex solution is given by solving
the same equations as Eqs. (3.29)–(3.31) with α → α′. Furthermore, the leading order terms in the
Lagrangian for the orientational fields is the same as those given in Eqs. (3.62), (3.65), (3.66) with
the replacement α→ α′.

Let us find the contribution of the second term in Eq. (2.38) to the low-energy effective Lagrangian
of orientational zero modes. By substituting Eq. (3.57) into the second term in Eq. (2.38), we get the
following potential term in the CP 2 nonlinear sigma model,

VCP 2 = D
(
|φ3|2 − |φ2|2

)
, (3.72)

D ≡ πε∆2

∫ ∞

0

dr r
(
g2 − f 2

)
, (3.73)

where (φ1,φ2,φ3) is the homogeneous coordinate of CP 2 space. Note that ∆, f , and g are obtained
from the GL Lagrangian where α is replaced with α′. The quantity D is positive and finite, since g−f
is positive for any r and is exponentially small at far distances from the vortex (see Eq. (3.38)). If we
take ε → 0, the low-energy effective theory reduces to the massless CP 2 model where all the points
φ ∈ CP 2 are degenerate. In other words, the non-Abelian vortices with different orientations have
the same tensions. Once non-zero ε is turned on, almost all the points of CP 2 are lifted and only one
point (φ1,φ2,φ3) = (0, 1, 0) becomes the global minimum of the effective potential, see Fig. 3.4.3.
This means that the non-Abelian vortex with the specific orientation with color “blue-red” and flavor
“s-u” is energetically favored,

Φsu → diag(∆ds, ∆sue
iθ, ∆ud), as r →∞. (3.74)

As shown below, all configurations except for the (0, 1, 0) vortex are no longer stable, including the
(1, 0, 0) and (0, 0, 1) vortices.

Let us estimate the lifetime of unstable vortices. For simplicity, we consider the decay of a (1, 0, 0)
vortex into a (0, 1, 0) vortex (from the left-bottom vertex to the right-bottom vertex of the triangle in
Fig. 3.4.3. Since the effective potential is lifted for |φ3| 3= 0 direction, it is reasonable to set φ3 = 0

from the beginning. Then we only have to the CP 1 submanifold in the CP 2. It is useful to introduce
an inhomogeneous coordinate u(t) ∈ C, which is related to φ as

φ1 =
1√

1 + |u|2
, φ2 =

u√
1 + |u|2

. (3.75)

Then the low-energy effective Lagrangian can be rewritten as

LCP 1 = C0 |u̇|2

(1 + |u|2)2 +D
|u|2

(1 + |u|2) . (3.76)
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Figure 3.5: Contour plot of the potential (3.72) for the CP 2 modes in the |φ1|2-|φ2|2-|φ3|2 space (taken
from Ref. [18]). The colors represent the values of the potential.

The typical time scale appearing in this Lagrangian is

τ =

√
C0K0

D
. (3.77)

Let us make an estimation of τ . Since the profile function f(r) (g(r), h(r), and ρ(r)) increases
(decrease) with a typical scale r ∼ ∆−1

CFL for mg . m1,8 as shown in Eqs. (3.37) and (3.38), we find
from Eq. (3.67)

C0 ∼
m2

g

g2s∆
2
CFLλ3

∼
(

µ

∆CFL

)2 1

λ3
. (3.78)

Furthermore, D is estimated from Eq. (3.73) as

D ∼ ε ∼ m2
s log

µ

∆CFL
. (3.79)

Thus, the typical time scale of a (1, 0, 0) vortex change into a (0, 1, 0) vortex is estimated as

τ ∼ 1

ms

√
λ3

(
µ

∆CFL

)2(
log

µ

∆CFL

) 1
2

. (3.80)

In the limit ms → 0, τ →∞ as anticipated.
The results above can be relevant to the state inside the core of neutron stars. When the core of a

neutron star cools down below the critical temperature of the CFL phase, a network of non-Abelian
vortices will be formed by the Kibble mechanism. Remarkably, the extrapolation of the formula
(3.80) to the intermediate density regime relevant to the core of neutron stars (µ ∼ 500 MeV) with
∆CFL ∼ 10 MeV and ms $ 150 MeV suggests that all the vortices decay radically with the lifetime
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of order τ ∼ 10−21 second. Although this result should be taken with some care due to the uncertainty
of numerical factor in Eq. (3.80), it is reasonable to expect that only one type of non-Abelian vortices,
which correspond to the point (0, 1, 0) in the CP 2 space, survive as a response to the rotation of
neutron stars. The other decaying non-Abelian vortices will emit Nambu-Goldstone bosons, quarks,
gluons, or photons during thermal evolution of neutron stars.



Chapter 4

Interactions of non-Abelian vortices with
quasiparticles

In this section, we discuss the interaction of non-Abelian vortices with quasiparticles in the color-
superconducting medium. It is necessary to determine the interaction to discuss physical phenomena
such as scattering or radiation of quasiparticles by vortices. We can also investigate the interaction
between vortices using vortex-quasiparticle interaction, since the intervortex force is mediated by
quasiparticles. In Sec. 4.1, we discuss the interaction of vortices with phonons, which are the Nambu-
Goldstone mode associated with the breaking of the U(1)B symmetry, and gluons. In particular, the
interaction with gluons is dependent on the orientation of a vortex. This gives rise to an orientation-
dependent interaction energy between two vortices. In Sec. 4.2, we discuss the interaction of vortices
with CFL mesons. The CFL mesons are the Nambu-Goldstone bosons for the breaking of chiral sym-
metry. In Sec. 4.3, we investigate the interaction of vortices with photons and its phenomenological
consequences. The orientational zero modes localized on vortices are charged with respect to U(1)EM
symmetry. The interaction Lagrangian is determined by symmetry consideration. Based on the in-
teraction, we discuss the scattering of photons off a vortex. We also discuss the optical property of a
vortex lattice, which is expected to be formed if CFL matter exists inside the core of a rotating dense
star (see Appendix B). We show that a lattice of vortices serves as a polarizer of photons.

4.1 Interaction with phonons and gluons

Here we discuss the interaction of vortices with gluons and phonons. For this purpose, we use a
method called dual transformation. This method is useful in dealing with topological defects, since
topological defects in an original theory are described as particles in its dual theory. After a dual
transformation, we can deal with the interaction of topological defects by the methods of ordinary
field theories. The action of the dual theory is derived by using the method of path integration.
For example, let us take phonons in three spatial dimensions, which are described by a massless
scalar field. In the dual action, phonons are described by a massless antisymmetric tensor field Bµν

[102, 103]. Antisymmetric tensor fields have been utilized in describing vortices in superfluids or

41
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perfect fluids [104, 105, 106]. In a dual formulation, the field Bµν is introduced via the method of
path integration. On the other hand, the gluons, which are massive because of the Higgs mechanism,
are described by massive antisymmetric tensor fields in the dual theory [57].

4.1.1 Topological defects and dual transformations

Here we briefly review what a dual transformation is. A dual transformation relates theories that have
different Lagrangians and variables but possess equivalent equations of motion. Under this transfor-
mation, particles and solitons typically interchange their roles, i.e. Noether currents are interchanged
with topological currents, and vice-versa. The advantages of using a dual transformation against using
the original theory are as follows:

1. Under a dual transformation, coupling constant of the original theory g, is replaced by 1/g in
the dual theory. So one can map a strong coupling theory into a weakly coupled one in which
perturbative calculations are reliable.

2. Topological defects in the original theory are described as particles in the dual theory. After
a dual transformation, it is possible to deal with the interaction of topological defects by the
methods of ordinary field theories. See Fig. 4.1

For example, in three spatial dimensions, a massless scalar field φ is dually related to a massless
two-form field Bµν . Some examples are shown in Table 4.1.1. The duality relation can be generalized
to h-forms in d-spatial dimensions, which is also summarized in Table 4.1.1.

spatial dimension original field dual field number of d.o.f

2 massless scalar φ massless vector Bµ 1
3 massless scalar φ massless two-form Bµν 1
3 massless vector Aµ massless vector Bµ 2
3 massive vector Aµ massive two-form Bµν 3
d massless h-form massless d− h− 1 d−1Ch

d massive h-form massless d− h− 1 dCh

Table 4.1: Correspondence under the dual transformation. The field φ is a real field.

One might think that there can be a mismatch in the number of degrees of freedom between the
original and dual fields. In fact, the number of degree of freedom in the dual field is identical to that
in the original one, as shown in Table 4.1.1. For example, let us take a massless real scalar field in
three spatial dimensions. This field has one degree of freedom. A massless two-form field, which
is the dual field to a massless scalar field, is an antisymmetric tensor, so it has six components. The
action of a massless two-form field Bµν is given by

S =
1

12

∫
d4xHµνσH

µνσ, (4.1)
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Figure 4.1: Schematic picture of a dual transformation. The left figure shows a vortex-like solution in
the XY model in 2+1 dimensions. After changing the variable of the Nambu-Goldstone mode from
a real scalar field to a vector field, the vortex appears as a charged particle for the vector field (right
figure). The duality in the XY model is first discussed in Ref. [107].

where Hµνσ ≡ ∂µBνσ + ∂νBσµ + ∂σBµν is the field strength of Bµν . Among the six components of
Bµν , three are not dynamical, because the conjugate momentum fields of B0i automatically vanish,

Π0i =
∂L

∂(∂0B0i)
= 0. (4.2)

There remain three components. Two are in fact redundant, since they can be removed by making use
of a gauge symmetry. The action (4.1) is invariant under the following local transformation,

Bµν → B′
µν = Bµν + ∂µΛν − ∂νΛµ, (4.3)

where Λµ is a massless vector. Thus, since Λµ has two degrees of freedom, a massless two-form Bµν

correctly has only one degree of freedom.
A dual transformation is written simply in the language of differential forms at least when the

gauge group is Abelian [108]. Let us consider the case in which πh(G/H) = Z in d+ 1 dimensional
space. In this case there is a topological invariant which can be written as

∫

Sh

ωh, (4.4)

where Sh is an h-dimensional sphere surrounding the defect and ωh is an h-form which is exact
outside Sh, i. e. there exists an (h − 1)-form φh−1 such that ωh = dφh−1. For example, in the case
of global vortices in 3 + 1 dimensions, φh−1 is a zero-form (a scalar field), which is the phase of the
order parameter field. The action for φh−1 is written as

S =

∫
(−)h−1dφh−1 ∧ ∗dφh−1, (4.5)



44 Chapter 4. Interactions of non-Abelian vortices with quasiparticles

where ∗ is the Hodge dual operator. A dual transformation corresponds to rewriting the action as

S = (−)h−1

∫
dφh−1 ∧ ∗dφh−1

≡ (−1)h−1

∫
∗(dB) ∧ ∗(∗(dB)),

(4.6)

where B is an (d− h)-form, which is the dual field of φh−1. The fields φh−1 and Bd−h are related by

dφh−1 = ∗(dBd−h). (4.7)

For example, if one considers the global vortices in (3+1)-dimensions, the above relation is written
explicitly as

∂µφ =
1

2
εµνρσ∂

νBρσ. (4.8)

4.1.2 Dual action and vortex-quasiparticle interaction

In order to obtain the dual action, the starting point is the time-dependent Ginzburg-Landau effective
Lagrangian in the CFL phase (2.23). After changing variables via the method of path integration,
gluons and phonons are described by antisymmetric tensors, Ba

µν and B0
µν , respectively. The low-

energy action for phonons and gluons interacting with vortices is given by [45]

S = S0 + Sint, (4.9)

where the free part S0 is defined as

S0 =

∫
d4x

[
− 1

12K̃µνσ

(
Ha

µνσH
a,µνσ +H0

µνσH
0,µνσ

)
− 1

4
mg

2
(
Ba

µν

)2
]
. (4.10)

See Appendix A for the derivation. In the equation above, Ha
µνσ ≡ ∂µBa

νσ + ∂νBa
σµ + ∂σBa

µν and
H0

µνσ ≡ ∂µB0
νσ + ∂νB0

σµ + ∂σB0
µν are field strength tensors of gluons and phonons, and mg is the

mass of the gluons, and m0 is a space-dependent function written by the profile functions of a vortex.
The factor K̃µνσ ≡ ερµνσKρ comes from the lack of Lorentz invariance, where we have defined
Kµ = (K0, K1, K1, K1)T . The first(second) term is the kinetic term for gluons(phonons). The third
one is the mass term for gluons, which is induced via the Higgs mechanism. In the presence of a
vortex, the mass of gluons is dependent on the distance from the center of the vortex according to the
change of the values of diquark condensates.

The interaction part Sint is written as

Sint = −
∫

d4x

[
2πm0B0

µνω
0,µν +

mg

gs
Ba

µνω
a,µν

]
, (4.11)

where ω0
µν and ωa

µν are vorticity tensors, which depend on the vortex configuration. Their specific
forms are discussed later. In the original description, the interaction of vortices with phonons and
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gluons are complicated and defies intuitive understanding. In the dual theory, the information of
interactions is captured in the vorticity tensors. The vorticity tensors have finite values only around
the core of a vortex. Gluons and phonons propagate in the four-dimensional spacetime, and the
interaction is localized around the vortex.

Now we discuss the properties of the interaction (4.11). First, let us look at the interaction of
vortices with U(1)B phonons. This part is essentially the same as the case of vortices in a superfluid.
For a general vortex configuration we can write the Abelian component of the vorticity tensor as

(
ω0
)
ρσ

(x) ≡ 1

2π
εµνρσ∂

ν∂µπMV(x). (4.12)

where πMV(x) is the multivalued part of the phase of the order parameter fields. The multivalued part
is in general allowed, since it is a phase. Equation (4.12) appears to automatically vanish, but in fact
it does not, since the two derivatives do not commute, which reflects the multivaluedness of πMV(x).
For a general vortex configuration, the vorticity tensor can be written as

(ω0)µν(x) =
1

N

∫
dτdσ

∂(Xµ, Xν)

∂(τ, σ)
δ(4)(x−Xµ(τ, σ)), (4.13)

where N is the number of colors (N = 3) and Xµ(τ, σ) is the the spacetime position of the vortex
parametrized by worldsheet coordinates τ and σ. The interaction of vortices with U(1)B phonons is
rewritten as

SPh
int = −

2πm0

N

∫
dσµνB0

µν , (4.14)

where dσµν ≡ ∂(Xµ,Xν)
∂(τ,σ) dτdσ is an area element of the vortex world sheet. The interaction (4.14) is a

natural generalization of the gauge interaction of a point particle,

S =

∫
dxµAµ. (4.15)

The factor 1/N , which is equal to the U(1)B winding number of vortices with the lowest energy, that
reflects the fact that the strength of the interaction is proportional to the winding number with respect
to U(1)B symmetry. We also note that U(1)B phonons B0

µν do not couple to the orientational zero
modes, namely U(1)B phonons are blind to the orientation of a vortex.

Next, let us look at the interaction of vortices with gluons. The non-Abelian vorticity tensor ωa
µν

is written as

ωa
λσ = ελσµν

{
∂ν
{
−16

N
γ(r) (∂µθ + 2Nγδµ0)φ

†T aφ

+ iα(r)(1 + β(r))
(
φ†T a∂µφ− ∂µφ†T aφ+ 2φ†T aφ∂µφ

†φ
)}

− 4

N
α(r)γ(r)(1 + β(r))

(
∂[µφ

†T aφ+ φ†T a∂[µφ
)(

∂ν]θ +
NK ′

0

2K0
δν]0

)

− i

2
α(r)2(1 + β(r)2)

×
[
φ†T aφ∂[µφ

†∂ν]φ+ ∂[µφ
†T a∂ν]φ+ φ†T a∂[µφ∂ν]φ

†φ+ ∂[µφ
†T aφ∂ν]φ

†φ
]}

. (4.16)
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where α(r), β(r) and γ(r) are functions of the distance from the vortex core and are written in terms
of vortex solutions, and the parameter γ is the coefficient of the term with one time derivative in
Eq. (2.23). The leading-order part in the deviation of the order parameter from the ground-state value
is given by

ωa
λσ = ελσµν∂

ν

[
−16

N
γ(r)

{
∂µθ + 2Nγδµ0

}
φ†T aφ

]
. (4.17)

As can be seen in Eq. (4.16), gluons couple to the orientational zero modes on the vortex. As a
result, gluons are emitted through the interaction (4.16) when a wave of the CP 2 orientational modes
propagates along a vortex-line. By using the interaction derived above (4.16), we can estimate the
amount of radiated gluons from a propagating wave in CP 2 orientational space.

4.1.3 Orientation dependence of the vortex-vortex interaction

Figure 4.2: Values of G(φ1,φ2) as a function of |(φ2)2|2 and |(φ2)3|2 (taken from Ref. [18]). If the
orientation φ2 is in the red zone the interaction is repulsive, while in the blue zone the interaction is
attractive.

As an application of the dual Lagrangian obtained above, let us discuss the orientation dependence
of the interaction energy of two parallelly-placed vortices. We assume that the orientation of each
vortex is constant along the vortex. The interaction energy due to the gluon exchange is proportional
to

G(φ1,φ2) ≡ φ†
1T

aφ1 φ
†
2T

aφ2, (4.18)

where φ1 and φ2 denote the orientations of the first and second vortices respectively. We have shown
in Fig. 4.2 the value of G(φ1,φ2) as a function of φ2. We have taken φ1 as φ1 = (1, 0, 0)T without
loss of generality. Figure 4.2 indicates that, if the two orientations are close in the CP 2 space, the
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interaction through gluon exchanges is repulsive, while if the orientations are far apart, the interaction
is attractive. This orientation dependent interaction is expected to be important when the distance
between two vortices is small, for example when two vortices cross.

4.2 Interaction with mesons

The interactions with phonons and gluons are topological, in the sense that the interaction term does
not involve the metric. In contrast, the interaction with photons is not topological. Here, we dis-
cuss the interaction with mesons, which is also non-topological. In this case, one cannot use a dual
transformation to obtain the interaction Lagrangian.

First, let us recall the effective action of mesons, which is the chiral perturbation theory. The
effective degree of freedom is the following gauge invariant quantity,

Σ = Φ†
LΦR, (4.19)

which transforms under the flavor symmetry U(1)A × SU(3)L × SU(3)R as

Σ→ eiαg†LΣgR, eiα ∈ U(1)A, gL ∈ SU(3)L, gR ∈ SU(3)R. (4.20)

The chiral symmetry is broken to the vector symmetry SU(3)L+R with gL = gR in the CFL ground
state Σ = ∆CFL13. The mesons are Σ = ∆2

CFLg
†
LgR = ∆2

CFLg
2(x) = ∆2

CFLU(x) with g†L = gR =

g(x).
In a non-Abelian vortex background, ΦL = −ΦR = diag(f(r)eiθ, g(r), g(r)), the gauge invariant

Σ takes the form of

Σv = diag(f 2(r), g2(r), g2(r)) [→ diag(0, g20, g
2
0) at r = 0], (4.21)

with a constant g0 = g(r = 0). In the presence of the vortex, the gauge invariant Σ becomes

Σ =
√
U

†
Σv

√
U (4.22)

Then, the chiral Lagrangian can be written as

L =
∑

µ

fµtr (∂µΣ
†∂µΣ) =

∑

µ

fµtr [2αLΣvαRΣv − (α2
L + α2

R)Σ
2
v] (4.23)

with the decay constants fµ = (1/2)(fπ, fπvπ), and the left and right Maurer-Cartan forms

αR ≡
√
U

†
∂µ
√
U, αL ≡

√
U∂µ
√
U

†
. (4.24)

Far apart from the vortex core, it reduces to

L = −∆2
CFL

∑

µ

Kµtr (U
†∂µU)2, (4.25)

which is expected because the effect of a vortices should vanish at very far from the vortex. The
Lagrangian (4.23) describes the mesonic excitations in the presence of a vortex.
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4.3 Interaction with electromagnetic fields

Here we discuss the electromagnetic properties of non-Abelian vortices in the CFL phase, and their
phenomenological consequences. Although the bulk CFL matter is electromagnetically neutral, the
orientational zero modes are charged, as discussed later. So, the vortices interact with photons. In
order to deal with the photon-vortex interaction, we consider the low-energy effective action of ori-
entational zero modes interacting with photons. Based on the action, we discuss the scattering of
photons off a vortex.

In the following analysis, we neglect the mixing of photons and gluons. The gauge field, A′
µ,

which remains massless in the CFL phase, is a mixture of the photon Aµ and a part of gluons A8
µ,

A′
µ = − sin ζAµ + cos ζA8

µ. Here, the mixing angle ζ is given by tan ζ =
√
3gs/2e [25], where gs

and e are the strong and electromagnetic coupling constants. At accessible densities (µ ∼ 1GeV), the
fraction of the photon is given by sin ζ ∼ 0.999, and so, the massless field A′

µ consists mostly of the
ordinary photon and includes a small amount of the gluon. As a first approximation, we neglect the
mixing of the gluon to the massless field.

We denote the orientational zero modes by a complex three-component vector φ ∈ CP 2, which
satisfies φ†φ = 1. When we neglect the electromagnetic interaction, the low-energy effective theory
on the vortex that is placed along the z axis is described by the following CP 2 nonlinear sigma model
[43],

LCP 2 =
∑

α=0,3

Cα

[
∂αφ†∂αφ+ (φ†∂αφ)(φ†∂αφ)

]
, (4.26)

where the orientational moduli φ are promoted to dynamical fields, and Cα are numerical constants.
Under the color-flavor locked transformation, the CP 2 fields φ transform as

φ→ Uφ, (4.27)

with U ∈ SU(3)C+F.

4.3.1 Coupling of orientation modes with electromagnetic fields

Now, let us consider the electromagnetic interactions. The electromagnetic U(1)EM group is a sub-
group of the flavor group SU(3)F. The generator of U(1)EM is T8 = 1√

6
diag(−2, 1, 1) in our choice

of basis. The effect of electromagnetic interaction is incorporated by gauging the corresponding sym-
metry. The low-energy effective action on the vortex should be modified to the following gauged CP 2

model,
LgCP 2 =

∑

α=0,3

Cα

[
Dαφ†Dαφ+ (φ†Dαφ)(φ†Dαφ)

]
, (4.28)

where the covariant derivative is defined by

Dαφ =
(
∂α − ie

√
6AαT8

)
φ. (4.29)
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Thus, the low-energy behavior is described by the CP 2 modes localized on the vortex and photons
propagating in three-dimensional space. Hence, the effective action is given by

S =

∫ (
ε0
2
E2 − 1

2λ0
B2

)
d4x+

∫
LgCP 2dzdt, (4.30)

where ε0 and λ0 are the dielectric constant and permeability of the CFL matter, respectively. We can
formally recover the Lorentz invariance in the kinetic terms of the photons by the following rescaling,

A′
0 =
√
ε0A0, A′

i =
1√
λ0

Ai, t′ = vt, (4.31)

where v ≡ 1/
√
ε0λ0. By further rescaling the parameters as

e′ =
√
λ0e, C ′

0 = C0v, C ′
3 =

C3

v
, (4.32)

we can write the Lagrangian in the following form,

vS = −1

4

∫
FµνF

µνd4x+

∫
L′

gCP 2dzdt, (4.33)

where

L′
gCP 2 =

∑

α=0,3

C ′
α

[
D′αφ†D′

αφ+ (φ†D′αφ)(φ†D′
αφ)
]
, D′

αφ =
(
∂α − ie′

√
6AαT8

)
φ. (4.34)

In the discussions below, primes are omitted for notational simplicity.

4.3.2 Scattering of photons off a vortex

We can discuss the consequences of the charged degrees of freedom on the vortex using the low-
energy action (4.33). For example, let us consider the photon scattering off a vortex. The equation of
motion of the photon field derived from the effective action is given by

∂µFµν = −Cνie
√
6 δ(x⊥)(δ0ν + δ3ν)

×
{
φ†T8Dνφ− (Dνφ)

†T8φ− 2φ†Dνφφ
†T8φ

}
,

(4.35)

where δ(x⊥) ≡ δ(x)δ(y) is the delta function in the transverse plane. We consider a situation where
a linearly polarized photon is normally incident on the vortex. We assume that the electric field of
the photon is parallel to the vortex. Then, the problem is z-independent and we can set θ = θ(t),
At = Ax = Ay = 0, and Az = Az(t, x, y). The equation of motion is rewritten as

(∂2t − ∂2x − ∂2y)Az(t, x, y)

= 12C3e
2
{
φ†(T8)

2φ+ (φ†T8φ)
2
}
Az(t, x, y) δ(x⊥)

≡ 12C3e
2f(φ)Az(t, x, y) δ(x⊥),

(4.36)
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where we have defined
f(φ) ≡ φ†(T8)

2φ+ (φ†T8φ)
2. (4.37)

Equation (4.36) is the same as the one discussed by Witten in the context of superconducting strings
[109], except for the orientation-dependent factor, f(φ).

If we take Az(t, x, y) = Az(x, y)e−iω, Eq. (4.36) reduces to

(
−(∂2x + ∂2y) + 12C3e

2f(φ) δ(x⊥)
)
Az(x, y) = ω2Az(x, y). (4.38)

This is the non-relativistic Schrödinger equation for scattering from a delta-function potential in two
dimensions. The scattering solution obeys

Az(x, y) = eik⊥·x⊥ −
∫

dx′dy′G(x⊥,x
′
⊥)12C3e

2f(φ) δ(x′
⊥)

= eik⊥·x⊥ − 12C3e
2f(φ)G(x⊥,0),

(4.39)

where G(x⊥,x′
⊥) is the Green function, which is written as

G(x⊥,x
′
⊥) =

∫
d2k⊥

(2π)2
eik⊥·(x⊥−x′

⊥)

k2
⊥ − ω2 − iε

. (4.40)

Equations (4.39) and (4.40) imply that

Az(0) =
1

1 + 12C3e2f(φ)G(0,0)
. (4.41)

This needs to be interpreted with care, since G(0,0) is infinite. The integral in Eq. (4.40) is ultra-
violed divergent, and is written with a cutoff Λ as

1

2π
ln(Λ/ω). (4.42)

This divergence comes from the fact that we considered an infinitely-thin vortex.
So we interpret Eq. (4.40) to mean

Az(0) =
1

1 + 12C3e2f(φ) ln(Λ/ω)/2π
. (4.43)

The electric field at the core of the vortex is proportional to Az(0). Since we took the incident
wave to be eik⊥·x⊥ , the incident wave corresponded to Az(0) = 1. The fields induced by the currents
excited on the string reduce Az(0) by a factor

η ≡ 1

1 + 12C3e2f(φ) ln(Λ/ω)/2π
. (4.44)

Thus, the solution of the scattering problem is obtained as

Az(x, y) = eik⊥·x⊥ − 12C3e
2f(φ)ηG(x⊥,0), (4.45)
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The asymptotic behavior of the Green function G(x⊥,0) at large distances from the vortex core is
given by

G(x⊥,0) −→

√
i

8πω|x⊥|
eiω|x⊥|, as |x⊥|→∞. (4.46)

Using the asymptotic expression, the scattering amplitude M can be written as

M = −12C3e
2f(φ)η

√
i

8πω|x⊥|
. (4.47)

We obtain the the cross section per unit length of a vortex, dσ/dz, as

dσ

dz
=

(12C3e2f(φ))
2 η2

8π
λ = 288π (C3αηf(φ))

2 λ, (4.48)

where λ ≡ 2π/ω is the wavelength of the incident photon, and α is the fine structure constant.
On the other hand, if the electric field of the wave is perpendicular to the vortex, the photon is not

scattered, since current can flow only along the vortex.

4.3.3 Vortex lattice as cosmic polarizer

The electromagnetic property of vortices can be phenomenologically important as it may lead to some
observable effects. As an illustration of such an effect, we show that a lattice of vortices works as
a polarizer of photons. The rotating CFL matter is expected to be threaded with quantum vortices
along the axis of rotation, resulting in the formation of a vortex lattice, as discussed in Appendix B
[39, 41, 42]. This is basically the same phenomenon as when one rotates atomic superfluids. Suppose
that a linearly polarized photon is incident on a vortex lattice as shown in Fig. 4.3. If the electric field
of the photon is parallel to the vortices, it induces currents along the vortices, which results in the
attenuation of the photon. On the other hand, waves with electric fields perpendicular to the vortices
are not affected. This is exactly what a polarizer does. A lattice passes electromagnetic waves of
a specific polarization and blocks waves of other polarizations. This phenomenon, resulting from
the electromagnetic interaction of vortices, may be useful for finding observational evidence of the
existence of CFL matter.

We consider a situation where electromagnetic waves of some intensity normally enter the vortex
lattice. We first assume that the electric fields of the waves are parallel to the vortices. The fraction of
the loss of intensity when the wave passes through the lattice for a distance dx is

〈
dσ

dz

〉
nvdx ≡

dx

L
, (4.49)

where nv is the number of vortices per unit area. We defined the length L by

L ≡ 1/

(
nv

〈
dσ

dz

〉)
= 52/

〈
dσ

dz

〉
, (4.50)
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Figure 4.3: Schematic figure of two linearly polarized photons entering a vortex lattice (taken from
Ref. [18]). Photons propagate in the direction of the big arrow. The small arrows indicate the electric
field vector. The waves whose electric fields are parallel to the vortices are attenuated inside the
lattice, while the ones with perpendicular electric fields passes through it.

with the inter-vortex spacing 5. As the cross section depends on the internal state (value of φ) of the
vortex, we have introduced the averaged scattering cross section 〈dσ/dz〉 over the ensemble of the
vortices. Let us denote the intensity of waves at distance x from the surface of the lattice as I(x).
I(x) satisfies

I(x+ dx)

I(x)
= 1− dx

L
. (4.51)

Therefore, the x dependence of I(x) is characterized by the following equation

I ′(x)

I(x)
= − 1

L
. (4.52)

This equation is immediately solved as I(x) = I0e−x/L, where I0 is the initial intensity. Hence, the
waves are attenuated with the characteristic length L.

Let us make a rough estimate of the attenuation length. The total number of vortices can be
estimated, as in Ref. [37], as

Nv $ 1.9× 1019
(
1ms

Prot

)(
µ/3

300MeV

)(
R

10km

)2

, (4.53)

where Prot is the rotation period, µ is the baryon chemical potential and R is the radius of the CFL
matter inside dense stars. We have normalized these quantities by typical values. The intervortex
spacing is then written as

5 ≡
(
πR2

Nv

)1/2

$ 4.0× 10−6 m

(
Prot

1ms

)1/2(300MeV

µ/3

)1/2

. (4.54)
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Therefore, the characteristic decay length of the electromagnetic waves is estimated as

L =
52

288π (C3αη)
2 〈f(φ)2〉λ

$ 1.2× 10−11 m2

λ
. (4.55)

Here we have determined the value of f(φ) by considering the effect of a finite strange quark mass
ms. The finite strange quark mass breaks the flavor SU(3) symmetry and gives rise to a potential
in the CP 2 space, as discussed in Ref. [44]. When ms is larger than the typical kinetic energy of
the CP 2 modes, which is given by the temperature T ≤ Tc ∼ 101 MeV, and is small enough that
the description by the Ginzburg-Landau theory based on chiral symmetry is valid, the orientations of
vortices fall into φT

0 = (0, 1, 0). This assumption is valid for the realistic value of ms ∼ 102 MeV. The
orientation dependence of the cross section is encapsulated in the function f(φ) defined in Eq. (4.37).
Since f(φ0) = 1/3 3= 0, photons interact with a vortex with this orientation. Therefore, we have
taken 〈f(φ)2〉 = f(φ0)2 = 1/9. We have also taken η = 1, µ = 900 MeV and ∆CFL = 100 MeV,
from which the values of C3 is determined[44].

If we adopt R ∼ 1 km for the radius of the CFL core, the condition that the intensity is signifi-
cantly decreased within the core is written as L ≤ 1 km. The condition can also be stated in terms of
the wavelength of the photon as

λ ≥ 1.2× 10−14 m ≡ λc. (4.56)

Hence, a lattice of vortices serves as a wavelength-dependent filter of photons. It filters out the waves
with electric fields parallel to the vortices, if the wavelength λ is larger than λc. The waves that pass
through the lattice are linearly polarized ones with the direction of their electric fields perpendicular
to the vortices, as shown schematically in Fig. 4.3.

One may wonder why a vortex lattice with a mean vortex distance 5 can block photons with
wavelength many-orders smaller than 5. It is true the probability that a photon is scattered during
its propagation for a small distance (∼ 5, for example) is small. However, while the photon travels
through the lattice, the scattering probability is accumulated and the probability that a photon remains
unscattered decreases exponentially. Namely, the small scattering probability is compensated by the
large number of vortices through which a photon passes. This is why the vortex mean distance and
the wavelength of the attenuated photons can be different.

4.4 Brief summary

In this chapter, we have discussed the interaction of non-Abelian vortices with quasiparticles in the
color-superconducting medium. In the first subsection, we discuss the interaction of vortices with
phonons, which are the Nambu-Goldstone mode associated with the breaking of the U(1)B symme-
try, and gluons. The interaction Lagrangian is obtain by using the dual transformation. We have
found that the interaction with gluons is dependent on the orientation of a vortex. We studied the
orientation-dependent interaction energy between two vortices. In the second subsection, we dis-
cussed the interaction of vortices with CFL mesons, which are the Nambu-Goldstone bosons for the
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breaking of chiral symmetry. In the third subsection, we investigated the interaction of vortices with
photons and its phenomenological consequences. The orientational zero modes localized on vortices
are charged with respect to U(1)EM symmetry. The interaction Lagrangian is determined by sym-
metry consideration. Based on the effective Lagrangian, we discuss the scattering of photons off a
vortex. We also discussed the optical property of a vortex lattice (see Appendix. B), which is expected
to be formed if CFL matter exists inside the core of a rotating dense star. We have shown that a lattice
of vortices serves as a polarizer of photons.



Chapter 5

Non-Abelian statistics of vortices

We consider the exchange statistics of vortices, each of which traps an odd number (N ) of Majorana
fermions. We assume that the fermions in a vortex transform in the vector representation of the
SO(N) group. Exchange of two vortices turns out to be non-Abelian, and the corresponding operator
is further decomposed into two parts: a part that is essentially equivalent to the exchange operator
of vortices having a single Majorana fermion in each vortex, and a part representing the Coxeter
group. Similar decomposition was already found in the case with N = 3, and the result shown here
is a generalization to the case with an arbitrary odd N . We can obtain the matrix representation of
the exchange operators in the Hilbert space that is constructed by using Dirac fermions non-locally
defined by Majorana fermions trapped in separated vortices. We also show that the decomposition of
the exchange operator implies tensor product structure in its matrix representation.

In Sec. 5.1, we give an introduction to the studies of Majorana fermions inside vortices and explain
our motivations. In Sec. 5.3.1, we review how the non-Abelian statistics emerges in the case of
vortices each of which contains one Majorana fermion. In Sec. 5.3.2, summarizing the case in which
a vortex captures three Majorana fermions [59], we present the generalization to the case of multiple
(N) Majorana fermions. We explicitly show factorization of the exchange operators into the known
part similar to the case with a single Majorana fermion, and the part corresponding to the Coxeter
group. We also show an interesting decomposition of the Majorana fermion operators, which clarifies
the action of the Coxeter group on Majorana fermions. In Sec. 5.5 we discuss the relation between
the decomposition of the exchange operator and its matrix representation. Section 5.7 is devoted to
summary.

5.1 Introduction

There has been considerable interest recently in zero-energy fermion modes trapped inside vortices
in superconductors [48]. Vortices in a chiral p-wave superconductor are endowed with non-Abelian
statistics [49, 50] because of the zero-energy Majorana fermions inside them [51]. Excitations which
obey non-Abelian statistics are called non-Abelian anyons. They are expected to form the basis of
topological quantum computations [52, 53] and have been investigated intensively [54, 55, 56]. A

55
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recent classification of topological superconductors clarifies the condition that vortices have zero-
energy Majorana (or Dirac) fermions in their cores [110, 111]. It has been argued that, in three spatial
dimensions non-Abelian anyons [112, 113, 114] can also be realized by monopoles with Majorana
fermions trapped inside their cores, and give a new non-Abelian statistics, the projective ribbon per-
mutation statistics [115].

More recently, the non-Abelian statistics of vortices with multiple Majorana fermions has been
investigated and shown to have a novel structure [59]. In this case, the Majorana fermions form the
vector representation of the SO(3) group. It is shown that the representation under the exchange
of two vortices can be written as the tensor product of two matrices. One matrix is identical to the
exchange matrix for vortices with a single Majorana fermion in each core, found by Ivanov [50]
modulo trivial change of basis, and the other matrix is shown to be a generator of the Coxeter group,
which is a symmetry group of certain polytopes in high dimensions [116, 117, 118] .

The non-Abelian vortex in the CFL phase, discussed so far, is a physical example of such vortices.
Color superconductivity is induced by condensation of diquarks, which are pairs of two quarks. The
order parameter of a color superconductor is given by a 3× 3 matrix,

Φαi = εαβγεijk〈
(
qT
)j
β
Cγ5 (q)

k
γ〉, (5.1)

where q is the quark field, α, β, γ = r, g, b (i, j, k = u, d, s) are color (flavor) indices, and the
transpose is employed with respect to the spinor index. At asymptotically high densities, the ground
states are expected to be in the CFL phase, in which the diquark acquires an expectation value like
Φαi = ∆δαi, where ∆ is a BCS gap function. The original color SU(3)C and flavor SU(3)F symmetry
break down to an SU(3)C+F symmetry, the elements of which are given by “locked” rotations of
color and flavor, Φ → UΦU−1. This structure is similar to that of the Balian-Werthamerer (BW)
state of the 3He superfluids, in which the order parameter is invariant under the locked rotations of
spin and orbit states. It is shown that there exist topologically (and energetically ) stable vortices
[38] in the CFL phase, by examining the symmetry-breaking pattern. The vortices in the CFL phase
are color flux tubes as well as superfluid vortices, since both local and global symmetries are broken
in the ground state. In the presence of a vortex, the order parameter takes the value like Φ(r) =

∆diag{f(r)eiθ, g(r), g(r)} where r is the radial coordinate and f(r) and g(r) are functions of r.
This kind of vortex solution breaks the SU(3)C+F symmetry down to SU(2)C+F × U(1) symmetry
inside the core [39, 119, 40, 43, 44, 45, 96, 95] and fermion zero modes belong to representations of
SU(2)C+F. It has been shown[46, 47] that one CFL vortex has triplet and singlet Majorana fermions
inside it 1. Thus vortices in a color superconductor provide an example of the system with fermion
zero modes in the vector representation of SO(3) in their cores, since the triplet of SU(2) is equivalent
to the vector representation of SO(3). However, it should be emphasized that the results obtained
in Ref. [59] do not depend on details of specific models. The only assumption adopted there is
that a vortex has Majorana fermions which transform in the vector representation of SO(3), and

1 The singlet Majorana fermion found in [46] was in fact shown to diverge at the origin and consequently to be
non-normalizable [47].
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Figure 5.1: Schematic figure of how Majorana fermions appear in a superconductor. Take a hole for
example (denoted by a white circle). Because of the interaction with Cooper pairs, a hole can attract
and bind to a Cooper pair, , and acquire negative charge. A cluster of Cooper pairs is formed around
a hole, and in such a way that no rigorous distinction between a particle and a hole remains.

therefore we expect that such a system can be found in condensed matter systems such as exotic
superconductors or ultra-cold atomic gasses.

In this chapter, we generalize the results of Ref. [59] obtained for SO(3) to the case of SO(N)

where N is an arbitrary odd integer N ≥ 3. We discuss the exchange statistics of two vortices having
N Majorana fermions trapped in their cores, which are transformed in an SO(N) group. Notice that
the SO(N) symmetry is the maximum symmetry in the presence of N Majorana fermions which
are real fields. We discuss the exchange statistics at both the operator and representation levels. We
find that both the operator and the matrix representation of the exchange operation generally have
factorized structures for arbitrary odd N . In particular, the matrix representation is written as a tensor
product of two matrices, as previously found in the SO(3) case. One of the two matrices is the
one discussed in Ref. [50] in the case that a single fermion is trapped in each vortex. We show that
the other is again a generator of the Coxeter group, as in the case of SO(3). When one Majorana
fermion is topologically protected in the vortex core such as in class-D topological superconductors,
it is robust against perturbations and remains zero energy under the exchange operation. In addition
to that, N Majorana fermions remain zero energy as far as the SO(N) symmetry remains intact.

5.2 Majorana fermions in a vortex in superconducting medium

Let us first explain why “Majorana” modes appear inside vortices of a superconductor, even though
the original fermions are charged. First let us give an intuitive explanation (see Fig. 5.1). Take a
hole for example. A hole interact with the sea Cooper pairs. Because of this interaction, a hole can
attract and bind to a Cooper pair, , and acquire negative charge. A composite of a hole and a Cooper
pair acquire a negative charge, and look like an particle. This is the reason why there is no rigorous
distinction between a particle and a hole.

The emergence of Majorana fermions can be formally described by the BdG equation, which is the
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eigenvalue equation of the mean-field Hamiltonian of a superconductor. The essential ingredient is
the particle-hole symmetry. We here take a superconducting system with a single species of fermions
for simplicity. The BdG equation for this system is given by

[H,ψ†(E)] = Eγ†(E), (5.2)

where E is the energy measured from the chemical potential, and the fermion operator γ is a superpo-
sition of the creation and annihilation operator of the original fermions,

ψ =

∫
d2x

(
u(x)q̂†(x) + v(x)q̂(x)

)
. (5.3)

Suppose that the Hamiltonian has a particle-hole symmetry, by which we mean that there is an oper-
ator C that anticommutes with the Hamiltonian,

[C,H] = 0. (5.4)

This indicates that the energy eigenfunctions satisfy the following relation,

ψ†(E) = ψ(−E). (5.5)

Hence, the states with E = 0 becomes self-conjugate,

ψ†(0) = ψ(0). (5.6)

This is nothing but the property of Majorana fermions.
Let us elaborate on the emergence of Majorana fermions in more detail. We here derive the

effective theory of Majorana fermions inside vortices. For a superconducting system made of a single
species of fermions, the BdG equation in the Nambu-Gor’kov representation Ψ = (ϕ, η)T (particle in
the upper component and hole in the lower component) is given by

HΨ = EΨ , (5.7)

where H is the Hamiltonian in the mean-field approximation,

H ≡
(
−iγ08γ · 8∇− µ ∆(8x)γ0γ5
−∆∗(8x)γ0γ5 −iγ08γ · 8∇+ µ

)
. (5.8)

The gap profile function ∆(8x) (three dimensional coordinate 8x = (x, y, z)) is given as ∆(8x) ∝
〈ΨTΨ〉, where the expectation value is given by the sum over all the fermion states in the ground
state. This Hamiltonian has the particle-hole symmetry,

C−1HC = −H∗, C ≡
(

0 γ2
γ2 0

)
. (5.9)

Thus, HΨ = EΨ implies H(CΨ) = −E(CΨ) and the spectrum is symmetric above and below the
Fermi sea.
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If one considers a vortex solution, because of the translational invariance along the vortex (z)
axis, the gap is a function of the distance r =

√
x2 + y2 from the center of the vortex and θ an angle

around the vortex; ∆(8x) = |∆(r)|eiθ. The gap profile function also satisfies the following boundary
conditions; |∆(r = 0)| = 0 at the center of the vortex and |∆(r = ∞)| = |∆CFL| at the position far
from the vortex with a bulk gap ∆CFL. Since the system is translationally invariant along the vortex
axis, we can always take the fermion states to be eigenstates of the momentum in the z-direction kz,

Ψkz
±,m(r, θ, z) = Ψ±,m(r, θ) e

ikzz, (5.10)

where Ψ±,m(r, θ) is the wave function on the x-y plane. Here ± is for chirality, left and right, of the
fermion and an integer m is related to the z component of the total angular momentum Jz. In the
Nambu-Gor’kov formalism, the wave function Ψ±,m(r, θ) is given as

Ψ±,m(r, θ) =

(
ϕ±,m(r, θ)

η∓,m−1(r, θ)

)
, (5.11)

with the particle component ϕ±,m(r, θ) and the hole component η∓,m−1(r, θ). The z component of Jz
is m + 1/2 for the particle and (m− 1) + 1/2 for the hole, respectively. Note that the chirality ± of
the particle is assigned in opposite to that of the hole.

The solution of the BdG equation (5.7) gives all the fermion modes in the vortex. They include the
scattering states with energies |E| > |∆CFL| as well as the bound states with energies |E| < |∆CFL|. It
is a nontrivial problem to obtain all the fermion solutions. In the present discussion, we concentrate on
the fermion states with the lowest energy inside the vortex, which are the most important degrees of
freedom at low energies. Furthermore, we here regard the gap profile function |∆(r)| as a background
field and do not analyze the self-consistent solution for the gap profile function and the fermion wave
functions. Such study will be left for future works.

As a result of the particle-hole symmetry, we find that the state with E = 0 is a “Majorana
fermion”, which has a special property that a particle and a hole are equivalent. The explicit solution
of the wave function of the Majorana fermion is given as, for the right mode (+ for a particle, − for
a hole)

ϕ+,0(r, θ) = C e−
∫ r
0 |∆(r′)| dr′

(
J0(µr)

iJ1(µr) eiθ

)
, (5.12)

η−,−1(r, θ) = C e−
∫ r
0 |∆(r′)| dr′

(
−J1(µr) e−iθ

iJ0(µr)

)
, (5.13)

and for the left mode (− for a particle, + for a hole)

ϕ−,0(r, θ) = C ′ e−
∫ r
0 |∆(r′)| dr′

(
J0(µr)

−iJ1(µr) eiθ

)
, (5.14)

η+,−1(r, θ) = C ′ e−
∫ r
0 |∆(r′)| dr′

(
J1(µr) e−iθ

iJ0(µr)

)
, (5.15)
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where C and C ′ are normalization constants, and Jn(x) is the Bessel function. We have represented
the solutions in the Weyl (2-component) spinors.

The solutions above satisfy a “Majorana-like” condition (κ = ±1)2

Ψ = κC Ψ∗, (5.16)

which physically implies the equivalence between a particle and a hole. We note the Majorana fermion
is localized at around the center of the vortex. This can bee seen by setting |∆(r)| a constant |∆CFL|,
because the exponential functions in Eqs. (5.12) and (5.13) or Eqs. (5.14) and (5.15) exhibit the be-
havior like e−|∆CFL|r. Fermion zero modes (Majorana fermions) in relativistic theories were found
in the (Abelian) vortex in the vacuum [48], where the number of zero modes is determined by the
index theorem to be 2n for vortices with winding number n [120]. The Majorana-fermion solution
in a vortex in a p-wave superconductor was found first by Fukui [121] for non-relativistic fermions,
and later in Refs. [122, 46] for relativistic fermions. Although there exist Majorana-like solutions in
vortices in p-wave superconductors both for non-relativistic and relativistic fermions, they are absent
for non-relativistic fermions in vortices in s-wave superconductors [123]. We leave a comment that
the fermions bound in the vortex are intuitively understood also from a view of the Andreev reflection.
When the fermions meet the interface between the normal phase (inside of the vortex) and the super-
conducting phase (outside of the vortex), there appear the Cooper pairs created in the superconducting
phase and the holes reflected in the normal phase. This is called the Andreev reflection [124]. The
Andreev reflection was also considered in the CFL phase [125]. The multiple number of reflections
of the fermions (particle and holes) at the interface make the bound state inside the vortex.

The discussion above is generalized to the non-Abelian vortices in the CFL phase [46]. Important
difference is that, in the case of a vortex with minimal winding number, there appear three Majorana
fermions propagating along the vortex.

5.3 Vortices and non-Abelian statistics

We here explain the basics of the non-Abelian statistics. We show how the non-Abelian statistics
emerges from Majorana fermions trapped in vortices.

5.3.1 Vortices with N = 1

We briefly review how non-Abelian statistics emerges for a set of n vortices, each of which contains a
single Majorana fermion in its core [50]. This provides the simplest example of non-Abelian statistics
of vortices, but as we will see later we can always identify the same structure even for the case with
multiple Majorana fermions as far as the number of fermions N is odd.

2 κ = 1 is for the right mode and κ = −1 is for the left mode.
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Figure 5.2: Schematic picture of an exchange of two vortices. When a vortex goes across a cut, it
acquires a minus sign.

Consider an exchange of two vortices in a system of n = 2m vortices 3. Each vortex has a
single Majorana fermion localized at the core, and one can specify the position of a vortex on a two-
dimensional plane (we label the vortices k = 1, · · · , n). Notice that the trapped Majorana fermion
has zero energy, which gives rise to degeneracy of the ground states. Since the existence of Majorana
fermions are topologically guaranteed, the degeneracy is not disturbed by small perturbations, and
hence we treat the exchange of vortices as an adiabatic process.

Let an operation Tk be defined as an exchange of the k-th and (k + 1)-th vortices, in which the
(k + 1)-th vortex turns around the k-th vortex in an anticlockwise way. All the exchanges of two
vortices are realized by successive application of the exchanges of adjacent vortices Tk, and they
form a braid group Bn. They indeed satisfy the braid relations:

TkT0Tk = T0TkT0 for |k − 5| = 1, (5.17)

TkT0 = T0Tk for |k − 5| > 1. (5.18)

Recall that the vortices are accompanied by Majorana fermions, and one can express the action
of Tk on Majorana fermions as a transformation. To this end, we define a Majorana operator γk
corresponding to the Majorana fermion in the k-th vortex [50], satisfying the self-conjugate condi-
tion (γk)† = γk and the anticommutation relation {γk, γ0} = 2δk0 (the Clifford algebra). Then, the
operation Tk induces the following transformation [50]:

Tk :

{
γk → γk+1

γk+1 → −γk
, (5.19)

with the rest γ0 (5 3= k, k + 1) unchanged. One can explicitly check that the transformation (5.19)
satisfies the braid relations (5.17) and (5.18). There is a minus sign in the second line, which is
essential for the non-Abelian statistics because it gives T 4

k = 1 (the Bose-Einstein or Fermi-Dirac
statistics give just T 2

k = 1). This express the fact that the wave function of the Majorana fermion is a
3 The structure of the Hilbert space in the presence of an odd number vortices is recently discussed in Ref. [126].
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Figure 5.3: Schematic figure of the transformation of γi under the exchange of k-th and k + 1-th
vortices. The γi can be regarded as a vector, and the exchange of vortices act on γi as “spatial”
rotations in k-k + 1 plane.

double-valued function for the angle around the vortex axis This can be inferred from the form of the
BdG equations; when we shift the phase winding of a vortex as θ → θ + α, it can be canceled if the
phases of particle and hole wave functions are shifted by α/2 and −α/2, respectively. It implies that
when quasiparticles travel around a vortex at α = 2π, both particle and hole wave functions receive
minus sign. In order to regard the wave function as a singlevalued function, we need to introduce a cut
from the center of the vortex to infinitely far from the vortex. The directions of cuts are arbitrary and
gauge dependent. It means that the wave function acquires a minus sign when the Majorana fermion
goes across the cut (see Fig.5.2).

The transformation (5.19) is realized by the unitary operator

τk ≡ exp
(π
4
γk+1γk

)
=

1√
2
(1 + γk+1γk) . (5.20)

By explicit calculations, one can check

τkγkτ
−1
k = γk+1 , (5.21)

τkγk+1τ
−1
k = −γk , (5.22)

τkγ0τ
−1
k = γ0 (5 3= k, k + 1) . (5.23)

The expression (5.20) allows for an intuitive geometrical interpretation. If one regards the index i

as that of a cartesian coordinate, the transformation (5.19) is a π/2-rotation in the k-k + 1 plane (see
Fig. 5.3). The Equation (5.20) is in fact of the form of an exponentiated rotational generator. To see
this, first note that the anticommutations of fermion operators γi constitute the Clifford algebra. It
is known that, out of Clifford algebra, we can form the representation of the generators of rotational
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group SO(2m) [127],

Mij =
1

4i
[γi, γj]. (5.24)

It can also shown that, under the action of the rotational generator Mij , the operators γi transform in
the vector representation,

[Mij, γk] = i (δikγj − δjkγi) = [MD=2m
ij ]klγl, (5.25)

where MD=2m
ij is the 2m-dimensional representation matrix of the generator Mij . From these facts,

it is now obvious that the operator τk the representation of the group element which expresses the
π/2-rotation in k-k + 1 plane,

τk = exp

{
π

2
i · 1

4i
[γk, γk + 1]

}
= exp

{π
2
iMk,k+1

}
. (5.26)

Let us call the operator τk for this single Majorana case the “Ivanov operator,” since it was first
found by Ivanov [50]. One can explicitly see that this transformation is indeed non-Abelian in the
matrix representation of τk. To construct the Hilbert space on which the operator τk acts, we define
Dirac fermions 4 by using two Majorana fermions at adjacent vortices ΨK = (γ2K−1 + iγ2K)/2 with
K = 1, · · · ,m. These Dirac fermion operators satisfy the usual anticommutation relations,

{ΨK ,Ψ
†
L} = δKL, {ΨK ,ΨL} = {Ψ†

K ,Ψ
†
L} = 0. (5.27)

If one defines ΨK and Ψ†
K as the annihilation and creation operators, respectively, then one can

construct the Hilbert space by acting the creation operators Ψ†
K’s on the “Fock vacuum-state” |0〉

defined by ΨK |0〉 = 0 for all K. Within this Hilbert space, the operators τk’s are now expressed
as matrices which we call the Ivanov matrices. The Ivanov matrices contain off-diagonal elements
representing the non-Abelian statistics.

Let us find the explicit form of the matrix representations [50]. In the case of two vortices, the
two Majorana fermions are combined to a Dirac fermion, whose annihilation and creation operators
are given by Ψ = (γ1 + iγ2)/2 and Ψ† = (γ1 − iγ2)/2. We define the Fock vacuum by Ψ|0〉 = 0,
and we take the states {|0〉,Ψ†|0〉} as a basis. There is only one exchange operation T1, whose matrix
representation can be written as

τ1 = exp
(π
4
γ2γ1

)
= exp

[π
4
i
(
2Ψ†Ψ− 1

)]
= exp

(π
4
iσz
)
, (5.28)

where σz is a Pauli matrix. In the case of four vortices, we can define two Dirac fermions as Ψ1 =

(γ1 + iγ2)/2 and Ψ2 = (γ3 + iγ4)/2. There are three elementary exchange operations, T1, T2, and
T3. Let us take the states {|0〉,Ψ†

1Ψ
†
2|0〉,Ψ

†
1|0〉,Ψ

†
2|0〉} as a basis. Then, the exchange operations are

4We use k, $ = 1, · · · , n to label the vortices and the trapped Majorana fermions, while K,L = 1, · · · , n/2 = m to
label the Dirac fermions which are constructed from two Majorana fermions.
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represented as the following matrices:

τ1 =
1√
2





1− i 0 0 0

0 1 + i 0 0

0 0 1 + i 0

0 0 0 1− i




, (5.29)

τ2 =
1√
2





1 −i 0 0

−i 1 0 0

0 0 1 −i
0 0 −i 1




, (5.30)

τ3 =
1√
2





1− i 0 0 0

0 1 + i 0 0

0 0 1− i 0

0 0 0 1 + i




. (5.31)

The matrix τ2 has off-diagonal components, which makes the exchange operations non-Abelian.

5.3.2 Vortices with multiple Majorana fermions N ≥ 3

Now let us turn to the case with vortices having multiple Majorana fermions in their cores. We
consider the situation that each vortex traps N Majorana fermions γak (a = 1, · · · , N) which transform
in the vector representation of SO(N) symmetry. We take N to be an arbitrary odd number, and this
is a generalization of the simplest nontrivial case N = 3 in Ref. [59].

The non-Abelian Majorana operators γak satisfy the self-conjugate conditions and the anticommu-
tation relations:

(γak)
† = γak , {γak , γb0} = 2δabδk0 . (5.32)

We define the exchange of the k-th and (k+1)-th vortices so that the Majorana fermion operator with
each a transforms in the same way as the case with a single Majorana fermion (see Eq. (5.19)) 5:

Tk :

{
γak → γak+1

γak+1 → −γak
for all a , (5.33)

with the rest γa0 (5 3= k, k + 1) unchanged. The exchange operations Tk’s satisfy the braid relations
(5.17) and (5.18). Their action on γa0 ’s can be represented in terms of non-Abelian Majorana operators
γak ’s in the following way. Since the transformation (5.33) for each a is equivalent to the single Majo-
rana case, one can use the same expression for the unitary operator which induces the transformation
for each a:

τak ≡ exp
(π
4
γak+1γ

a
k

)
=

1√
2

(
1 + γak+1γ

a
k

)
. (5.34)

5One may allow for mixture of indices a under the exchange of two vortices, but here we discuss the simplest case
where such mixing does not occur.
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Thus, the exchange operator for the vortices having multiple fermions should be represented as the
product of them:

τ [N ]
k ≡

N∏

a=1

τak . (5.35)

This exchange operator is SO(N) invariant as shown in the next section. One can check that the
operator τ [N ]

k applied to γa0 indeed generates the desired transformation (5.33):

τ [N ]
k γak(τ

[N ]
k )−1 = γak+1 , (5.36)

τ [N ]
k γak+1(τ

[N ]
k )−1 = −γak , (5.37)

τ [N ]
k γa0 (τ

[N ]
k )−1 = γa0 (5 3= k, k + 1) . (5.38)

This transformation is again non-Abelian, which is explicitly seen in the matrix representation.
To obtain the matrix representation, we can perform the same procedure as in the case with single

Majorana fermions. Namely, by defining the Dirac fermion operators

Ψa
K ≡

1

2
(γa2K−1 + iγa2K), Ψa†

K ≡
1

2
(γa2K−1 − iγa2K) (5.39)

which satisfy (K,L = 1, · · · ,m)

{Ψa
K ,Ψ

b†
L } = δKLδ

ab, {Ψa
K ,Ψ

b
L} = {Ψa†

K ,Ψb†
L } = 0, (5.40)

we can construct the Hilbert space. Then, we can find matrix representation of τ [N ]
k . In Ref. [59],

three of us explicitly constructed the Hilbert space for the case of N = 3 and n = 2, 4, and found
matrix expression of τ [3]k according to different representations of SO(3). The matrices have off-
diagonal elements and thus they are non-Abelian. In principle, one can do the same thing for an
arbitrary odd N . In the present paper, however, we first look into interesting structure of the operator
τ [N ]
k , which was also suggested in the previous paper [59]. Namely, the operator τ [N ]

k itself can be
decomposed into two parts. Then, we discuss the relation between the decomposition of τ [N ]

k and the
matrix representation of τ [N ]

k in Sec. 5.5.

5.4 The Coxeter group for multiple Majorana fermions N ≥ 3

In the previous analysis [59] with N = 3, it is found that the matrix representation of τ [3]k in the
four-vortex sector can be decomposed into a tensor product of two matrices: one is the same as the
Ivanov matrix for the single Majorana fermion case, and the other is identified with generators of the
Coxeter group. We also found that the similar decomposition is possible at the operator level [59].
Namely, one can express τ [3]k as a product of two distinct operators which give rise to the correspond-
ing matrices in the matrix representation. In this section, we discuss that such a decomposition at the
operator level holds even for an arbitrary odd number of N .
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Before we go into details, let us define some useful notations. We first define a composite operator
Γa
k by

Γa
k ≡ γak+1γ

a
k , (5.41)

which have the following properties,

{Γa
k,Γ

b
l} = −2δkl for a = b and |k − l| ≤ 1 , (5.42)

[
Γa
k,Γ

b
l

]
= 0 for a 3= b, or (a = b and |k − l| > 1) . (5.43)

For later convenience, we define another composite operator (1 ≤ n ≤ N)

Γ(n)
k ≡

1

(n!)2
e

π
2 i(n−1)εa1···aN εb1···bN δan+1

bn+1
· · · δaNbN γa1k+1 · · · γ

an
k+1 γ

b1
k · · · γbnk , (5.44)

where εa1···aN is the completely antisymmetric tensor. It is evident that the operators Γ(n)
k ’s are SO(N)

invariants for all n. For example, for N = 3,

Γ(1)
k = Γ1

k + Γ2
k + Γ3

k, Γ(2)
k = Γ1

kΓ
2
k + Γ2

kΓ
3
k + Γ3

kΓ
1
k, Γ(3)

k = Γ1
kΓ

2
kΓ

3
k . (5.45)

With those composite operators, the exchange operator τ [N ]
k can be represented as

τ [N ]
k =

(
1√
2

)N N∏

a=1

(1 + Γa
k) = exp

{
π

4

∑

a

Γa
k

}
=

(
1√
2

)N N∑

n=1

Γ(n)
k . (5.46)

In the final expression, we confirm that the operator τ [N ]
k is SO(N)-invariant.

5.4.1 Coxeter group

Here let us introduce Coxeter groups, which are introduced by H.S.M Coxeter in 1934, as abstractions
of reflections group. The finite Coxeter groups are equivalent to the finite Euclidean reflection groups.

A Coxeter group S is defined as a group with distinct generators si ∈ S (i = 1, 2, 3, · · · ) satisfying
the following two conditions [116, 117, 118]:

(a) s2i = 1

(b) (si sj)mi,j = 1 with a positive integer mi,j ≥ 2 for i 3= j.

The property of the Coxeter group is characterized by the elements of the Coxeter matrix, (M)ij =

mi,j . The condition (a) gives mi,i = 1 for any i. As is shown later, in the case of the n = 2m vortices,
the Coxeter matrix is given by a (2m−1)×(2m−1) matrix whose elements are 1 (diagonal elements,
mi,i = 1), 3 (adjacent elements, mi,i+1 = mi+1,i = 3) and 2 (all the others), which can be explicitly
written as

M2m−1 =





1 3 2 2 · · ·
3 1 3 2

2 3 1 3

2 2 3 1
... . . .




. (5.47)



5.4. The Coxeter group for multiple Majorana fermions N ≥ 3 67

This Coxeter group is classified as A2m−1. It is also known as the symmetric group S2m, which is the
symmetry group of a regular (2m− 1)-simplex.

5.4.2 The case of SO(3)

The simplest nontrivial case with N = 3 provides us with useful information which is helpful in
discussing the decomposition for the general case N . Let us first recall that the operator τ [N=3]

k has
been found to be decomposed into two parts (see Appendix B in Ref. [59]):

τ [3]k = σ[3]
k h[3]

k , (5.48)

where both of the operators σ[3]
k and h[3]

k are given in terms of the Majorana operators γak as

σ[3]
k =

1

2

(
1− γ1k+1γ

2
k+1γ

1
kγ

2
k − γ2k+1γ

3
k+1γ

2
kγ

3
k − γ3k+1γ

1
k+1γ

3
kγ

1
k

)
, (5.49)

and

h[3]
k =

1√
2

(
1− γ1k+1γ

2
k+1γ

3
k+1γ

1
kγ

2
kγ

3
k

)
. (5.50)

One can also rewrite them compactly in new notations as (see Eqs. (5.44) and (5.45))

σ[3]
k =

1

2

(
1 + Γ(2)

k

)
, h[3]

k =
1√
2

(
1 + Γ(3)

k

)
. (5.51)

Note that σ[3]
k and h[3]

0 are commutative for any pair of k and 5. Thus, τ [3]k is the product of σ[3]
k and

h[3]
k . It was shown that the operators σ[3]

k ’s satisfy the Coxeter relations,

(σ[3]
k )2 = 1, (5.52)

(σ[3]
k σ

[3]
0 )3 = 1 for |k − 5| = 1, (5.53)

(σ[3]
k σ

[3]
0 )2 = 1 for |k − 5| > 1. (5.54)

This Coxeter group for the n = 2m vortices is classified as A2m−1, which is also known as the
symmetric group S2m.

In contrast, the other part h[3]
k works in the same way as the Ivanov operator τk defined in Eq. (5.20),

although h[3]
k has a more complicated structure. This is naturally understood if one notices that the

operator γ1kγ2kγ3k is SO(3) invariant (singlet), and thus it treats three Majorana fermions together as if
it does not have any SO(3) index. This picture is very useful when we consider the general case with
N .

5.4.3 The case of SO(N) with arbitrary odd N

The previous analysis suggests that it is possible to decompose the full exchange operator τ [N ]
k into

two parts. This is indeed the case. We find that the operator τ [N ]
k can be decomposed as

τ [N ]
k = σ[N ]

k h[N ]
k , (5.55)
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where σ[N ]
k and h[N ]

k are defined by using the notation introduced before as

σ[N ]
k ≡

(
1√
2

)N−1 (
1 + Γ(2)

k + Γ(4)
k + · · ·+ Γ(N−1)

k

)
, (5.56)

h[N ]
k ≡ 1√

2

(
1 + Γ(N)

k

)
. (5.57)

Note that σ[N ]
k and h[N ]

k are SO(N) invariant, and σ[N ]
k and h[N ]

0 are commutative for any k and 5. One
can readily verify the decomposition (5.55). By using Eqs. (5.56) and (5.57), one can check that the
product σ[N ]

k h[N ]
k is equal to the last equation in Eq. (5.46) if one uses Eqs. (5.42) and (5.43).

First of all, let us discuss the properties of h[N ]
k . The analysis for the case N = 3 suggests that if

one treats multiple Majorana fermions in a vortex in a unit, then the action of τ [N ]
k will be essentially

equivalent to the Ivanov operator. This motivates us to introduce the following “singlet Majorana
operator” locally defined on the k-th vortex:

γk ≡
1

N !
ei

π
4 (N−1)εa1a2···aNγa1k γ

a2
k · · · γaNk , (5.58)

which is manifestly invariant under the SO(N) transformation. The phase factor is included so that
the operator becomes self-conjugate (γk)

† = γk, and satisfies the Clifford algebra {γk, γ0} = 2δk0.
Notice that these properties of γk are the same as those of a single Majorana operator. For N = 3,
one finds γk = iγ1kγ

2
kγ

3
k , and the operator h[3]

k can be compactly expressed as h[3]
k = 1√

2
(1 + γk+1γk),

which has the same structure as the Ivanov operator (5.20). For arbitrary odd N , we find that h[N ]
k can

also be expressed as

h[N ]
k = exp

(π
4
γk+1γk

)
=

1√
2

(
1 + γk+1γk

)
, (5.59)

by noting the relation Γ(N)
k = γk+1γk. Then, h[N ]

k works on γ0 as

h[N ]
k γk(h

[N ]
k )−1 = γk+1, (5.60)

h[N ]
k γk+1(h

[N ]
k )−1 = −γk, (5.61)

h[N ]
k γ0(h

[N ]
k )−1 = γ0 (5 3= k, k + 1) , (5.62)

for an arbitrary odd N ≥ 3. Interestingly, this is the same as the transformation (5.21) – (5.23)
induced by the Ivanov operator with N = 1. Therefore, the operator h[N ]

k for the singlet Majorana
operator γk is equivalent to the Ivanov operator τk for the single Majorana operator γk.

Next, we discuss the properties of the operators σ[N ]
k . Similarly to the N = 3 case, σ[N ]

k are
generators of the Coxeter group. Indeed, it can be shown that σ[N ]

k satisfy

(σ[N ]
k )2 = 1, (5.63)

(σ[N ]
k σ[N ]

0 )3 = 1 for |k − 5| = 1, (5.64)

(σ[N ]
k σ[N ]

0 )2 = 1 for |k − 5| > 1, (5.65)

and these relations induce the same Coxeter group for n = 2m vortices.
Let us give a proof that the operators σ[N ]

k defined in Eq. (5.56) satisfy the Coxeter relations in
Eqs. (5.64) and (5.65) for arbitrary odd number N .
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Proof of (σ[N ]
k σ[N ]

0 )3 = 1 for |k − 5| = 1

Below we show Eqs. (5.63) and (5.64). Let us first note that the cube of the product of τ [N ]
k and τ [N ]

k+1

is written as

(τ [N ]
k τ [N ]

k+1)
3 = (σ[N ]

k h[N ]
k σ[N ]

k+1h
[N ]
k+1)

3. (5.66)

Since σ[N ]
k commutes with h[N ]

k and h[N ]
k+1, the relation above is written as

(τ [N ]
k τ [N ]

k+1)
3 = (σ[N ]

k σ[N ]
k+1)

3(h[N ]
k h[N ]

k+1)
3. (5.67)

The left hand side of Eq. (5.67) is equal to −1, which can be shown as follows.

(τ [N ]
k τ [N ]

k+1)
3 =

N∏

a=1

{
1√
2
(1 + Γa

k)
1√
2
(1 + Γa

k+1)

}3

=
N∏

a=1

{
1

2

(
1 + Γa

k + Γa
k+1 + Γa

kΓ
a
k+1

)}3

=
N∏

a=1

1

2

(
−1 + Γa

k + Γa
k+1 + Γa

kΓ
a
k+1

) 1
2

(
1 + Γa

k + Γa
k+1 + Γa

kΓ
a
k+1

)

= (−1)N

= −1,

(5.68)

where in the third line we have used the relation,

{
1

2

(
1 + Γa

k + Γa
k+1 + Γa

kΓ
a
k+1

)}2

=
1

2

(
−1 + Γa

k + Γa
k+1 + Γa

kΓ
a
k+1

)
, (5.69)

which follows from the anticommuting property of Γa
k and Γa

k+1. In the fourth line, we have again
used the anticommuting property.

On the other hand, we can also show that (h[N ]
k h[N ]

k+1)
3 is equal to −1 as

(h[N ]
k h[N ]

k+1)
3 =

{
1

2

(
1 + Γ(N)

k + Γ(N)
k+1 + Γ(N)

k Γ(N)
k+1

)}3

=
1

2

(
−1 + Γ(N)

k + Γ(N)
k+1 + Γ(N)

k Γ(N)
k+1

) 1

2

(
1 + Γ(N)

k + Γ(N)
k+1 + Γ(N)

k Γ(N)
k+1

)

= −1,

(5.70)

where we have used the relation
{
1

2

(
1 + Γ(N)

k + Γ(N)
k+1 + Γ(N)

k Γ(N)
k+1

)}2

=
1

2

(
−1 + Γ(N)

k + Γ(N)
k+1 + Γ(N)

k Γ(N)
k+1

)
. (5.71)

From Eqs. (5.67), (5.68), and (5.70), we can conclude (σ[N ]
k σ[N ]

0 )3 = 1 for |k − 5| = 1.
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Proof of (σ[N ]
k )2 = 1 and (σ[N ]

k σ[N ]
0 )2 = 1 for |k − 5| > 1

To prove Eqs. (5.63) and (5.65), we first note that by squaring both sides of Eq. (5.55) and using the
relation (

1√
2
(1 + Γa

k)

)2

=
1

2
(1 + 2Γa

k − 1) = Γa
k, (5.72)

one finds
Γ(N)
k = (σ[N ]

k )2 Γ(N)
k . (5.73)

Then, by multiplying (Γ(N)
k )−1 on both sides from right, we obtain

(σ[N ]
k )2 = 1. (5.74)

It follows that (σ[N ]
k σ[N ]

0 )2 = 1 for |k − 5| > 1 since σ[N ]
k and σ[N ]

0 with |k − 5| > 1 commute.

We have thus shown that, for an arbitrary odd N , the operators σ[N ]
k again obey the Coxeter

relations of A2m−1. Therefore, for an arbitrary odd N , the exchange operator τ [N ]
k is expressed as a

product of a generator of the Coxeter group A2m−1 (for the vortex number n = 2m) and the Ivanov
operator for a single Majorana fermion.

5.4.4 Decomposition of the Majorana operators

Let us recall that the exchange of the Majorana operators γa0 ’s is originally defined as the operation
Tk in Eq. (5.33). It is not apparently clear how the decomposed structure of the operator τ [N ]

k indeed
works in the exchange operation Tk. To understand this, it is instructive to notice that the Majorana
operator γak can be rewritten as

γak = γ̃ak γk , (5.75)

where γ̃ak is a composite operator in the vector representation of SO(N) defined locally on the k-th
vortex as

γ̃ak ≡
1

(N − 1)!
ei

π
4 (N−1)εaa1···aN−1γa1k · · · γaN−1

k , (5.76)

and γk is the singlet Majorana operator defined in Eq. (5.58). The two operators γ̃ak and γ0 commute
with each other for any pair of k and 5. This expression allows us to extract, from the Majorana
operator γak , the part of a singlet Majorana fermion γk whose properties are well understood. Notice
that γk (γ̃ak ) is composed of an odd number N (an even number N−1) of Majorana fermion operators.

Since γ̃ak and γk are expressed in terms of the original Majorana operator γak , one can immediately
find how they are transformed in the exchange Tk. Namely, we find the transformation of γ̃ak and γk
by Tk as

Tk :

{
γ̃ak → γ̃ak+1

γ̃ak+1 → γ̃ak
, for all a , (5.77)
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without a minus sign, and

Tk :

{
γk → γk+1

γk+1 → −γk
, for all a , (5.78)

with a minus sign, while the rest γ̃a0 and γ0 (5 3= k and k + 1) are unchanged 6. It is easily checked
that the simultaneous transformation of γ̃ak and γk reproduces the transformation of γak in Eq. (5.33).
Therefore, we observe from Eq. (5.77) that γ̃a0 ’s are transformed by a symmetric group S2m, or the
Coxeter group of A2m−1 (for the vortex number n = 2m), and from Eq. (5.78) that γ0’s are trans-
formed as in the same way as the Ivanov operators for single Majorana fermions 7.

The exchange properties of γ̃ak and γk in Eqs. (5.77) and (5.78) can be discussed at the operator
level. Because σ[N ]

k and γl (h[N ]
k and γ̃al ) are commutative for any pair of k and 5,

[σ[N ]
k , γ0] = [h[N ]

k , γ̃a0 ] = 0 , (5.79)

the transformation τ [N ]
k γa0 (τ

[N ]
k )−1 is decomposed as

τ [N ]
k γa0 (τ

[N ]
k )−1 =

{
σ[N ]
k γ̃a0 (σ

[N ]
k )−1

} {
h[N ]
k γ0(h

[N ]
k )−1

}
. (5.80)

Therefore, γ̃al and γl are transformed by σ[N ]
k and h[N ]

k , respectively. From Eqs. (5.56) and (5.76), γ̃ak
is transformed as

σ[N ]
k γ̃ak(σ

[N ]
k )−1 = γ̃ak+1, (5.81)

σ[N ]
k γ̃ak+1(σ

[N ]
k )−1 = γ̃ak , (5.82)

σ[N ]
k γ̃a0 (σ

[N ]
k )−1 = γ̃a0 (5 3= k, k + 1) , (5.83)

without a minus sign. Thus, the operator σ[N ]
k acting on γ̃al reproduces the transformation (5.77). We

note that σ[N ]
k can be expressed in terms of γ̃ak only. On the other hand, γk is transformed by the

operator h[N ]
k like a single Majorana fermion as demonstrated in Eqs. (5.60)-(5.62), and hence h[N ]

k

reproduces the transformation (5.78).
To summarize this subsection, in correspondence to the product of τ [N ]

k = σ[N ]
k h[N ]

k , the Majorana
operator γak is also expressed by the product of the two parts, γ̃ak obeying the Coxeter group given by
σ[N ]
k and γk obeying Ivanov’s exchange given by h[N ]

k .

6In general, a composite operator made by an even (odd) number of the Majorana operators is transformed as in
Eq. (5.77) (Eq. (5.78)).

7 If one considers the case when N is an even number, one may define a composite operator by γ′k ≡
1
N !e

iπ
4 Nγ1kγ

2
k · · · γNk . The operator is self-conjugate (γ′k)

† = γ′k, but does not satisfy the Clifford algebra. Further-
more, since N is even, the operation Tk gives the transformation, γ′k → γ′k+1, γ′k+1 → γ′k and the rest γ′! ($ 3= k and
k + 1) unchanged. Hence the composite operator γ′k for even N does not transform like a singlet Majorana fermion
operator.
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5.5 Operator decomposition and matrix representation

So far, we have been discussing the factorized structure of the exchange operation of two vortices at
the operator level. Everything was written in terms of the Majorana operators, and the decomposition
into the Coxeter and Ivanov parts was naturally understood by using the Majorana operators. In
contrast, in order to obtain the matrix representation, the usual procedure is to define Dirac fermion
operators and use them in constructing the Hilbert space. Since the Dirac fermion operators are
constructed from two Majorana fermions located separately at different vortices, it is not trivial if
the factorized structure at the operator level is preserved in the matrix representation. For example,
the Dirac fermion operator defined in Eq. (5.39) can not be decomposed similarly as the Majorana
fermion operator as shown in Eq. (5.75). In this section, we are going to show that the decomposition
holds even in the matrix representation in a suitable basis, and discuss the relation between the the
decompositions in the operator- and matrix-representation levels.

In the following, we discuss the case with N = 3 for simplicity, but the results below can be easily
generalized to any odd N .

5.5.1 Construction of the Hilbert space

Let us consider an even number n = 2m of vortices. Then we can construct m Dirac fermion
operators Ψa

K (a = 1, 2, 3; K = 1, · · · ,m), given in Eq. (5.39), in the vector representation of
SO(3). The Fock vacuum |0〉 is defined by the Dirac fermion operators as

Ψa
K |0〉 = 0 , for all K and a . (5.84)

One can construct the basis of the Hilbert space by acting the Dirac fermion operators Ψa†
K on the

Fock vacuum |0〉. The explicit forms of the basis were given in Ref. [59] for N = 3 and n = 2, 4.
Now let us construct the Hilbert space in a way different from Ref. [59]. To this end, we define the
number operator for the triplet Dirac fermions of the K-th pair of vortices by

N a
K ≡ Ψa†

KΨa
K . (5.85)

A generic state for the K-th pair of vortices can be expressed in terms of the eigenvalues of this
number operator as

|N 1
K ,N 2

K ,N 3
K〉K (5.86)

where N a
K = 0 or 1 is the occupation number of the fermion created by Ψa†

K (here we use the same
character for the operator and its eigenvalues). Then the basis of the whole Hilbert space is composed
of the tensor product of the states for each K,

{ m⊗

K=1

|N 1
K ,N 2

K ,N 3
K〉K

}
. (5.87)
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5.5.2 Singlet Dirac operators

When N = 3, the singlet Majorana operators γk defined in Eq. (5.58) are given by

γk =
1

3!
iεabcγakγ

b
kγ

c
k . (5.88)

By using these operators, we define singlet Dirac operators

ΨK ≡
1

2

(
γ2K−1 + iγ2K

)
, Ψ

†
K ≡

1

2

(
γ2K−1 − iγ2K

)
. (5.89)

These operators play a particular role when they act on the states. Let us examine the action of the
singlet Dirac operators ΨK’s and Ψ

†
K’s on the Hilbert space (5.87), which is constructed by acting the

triplet Dirac operators Ψa†
K ’s and Ψa

K’s on the Fock vacuum |0〉. To this end, we express the singlet
Dirac operators ΨK and Ψ

†
K in terms of the triplet Dirac operators Ψa

K and Ψa†
K . For that purpose, we

note that the singlet Majorana operators γ2K−1 and γ2K defined in Eq. (5.58) can be written in two
ways:

γ2K−1 = ΨK +Ψ
†
K

=
1

3!
iεabc(Ψa

K +Ψa†
K )(Ψb

K +Ψb†
K)(Ψ

c
K +Ψc†

K),

γ2K = (ΨK −Ψ
†
K)/i

=
1

3!
iεabc

(
1

i

)3

(Ψa
K −Ψa†

K )(Ψb
K −Ψb†

K)(Ψ
c
K −Ψc†

K),

(5.90)

respectively. From these two relations, we can express the singlet Dirac operators ΨK and Ψ
†
K in

terms of the triplet Dirac operators Ψa
K and Ψa†

K as

ΨK =
1

3!
iεabc

(
Ψa

KΨ
b
KΨ

c†
K +Ψa

KΨ
b†
KΨ

c
K +Ψa†

KΨb
KΨ

c
K +Ψa†

KΨb†
KΨ

c†
K

)
,

Ψ
†
K = − 1

3!
iεabc

(
Ψa†

KΨb†
KΨ

c
K +Ψa†

KΨb
KΨ

c†
K +Ψa

KΨ
b†
KΨ

c†
K +Ψa

KΨ
b
KΨ

c
K

)
. (5.91)

For the later convenience, we define the fermion number operator for the K-th pair of vortices in
terms of the singlet Dirac operators Ψ†

K and ΨK :

NK ≡ Ψ
†
KΨK . (5.92)

The meaning of this number operator will be clarified below.
Now let us see how the singlet Dirac operators ΨK and Ψ

†
K act on the Fock states (5.86) defined

by the triplet Dirac operators Ψa
K and Ψa†

K , which has a particular intuitive meaning. The action of the
singlet Dirac operators ΨK and Ψ

†
K on |N 1

K ,N 2
K ,N 3

K〉K can be read off from Eqs. (5.91) as

ΨK |0, 0, 0〉K = |1, 1, 1〉K ,
ΨK |1, 0, 0〉K = ΨK |0, 1, 0〉K = ΨK |0, 0, 1〉K = 0,

ΨK |0, 1, 1〉K = |1, 0, 0〉K , ΨK |1, 0, 1〉K = |0, 1, 0〉K , ΨK |1, 1, 0〉K = |0, 0, 1〉K ,
ΨK |1, 1, 1〉K = 0, (5.93)
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for ΨK , and

Ψ
†
K |0, 0, 0〉K = 0,

Ψ
†
K |0, 0, 1〉K = |1, 1, 0〉K , Ψ

†
K |0, 1, 0〉K = |1, 0, 1〉K , Ψ

†
K |1, 0, 0〉K = |0, 1, 1〉K ,

Ψ
†
K |0, 1, 1〉K = Ψ

†
K |1, 0, 1〉K = Ψ

†
K |1, 1, 0〉K = 0,

Ψ
†
K |1, 1, 1〉K = |0, 0, 0〉K , (5.94)

for Ψ†
K .

Let us define the total fermion number operator for the K-th pair of vortices as the sum of the
number operator N a

K in Eq. (5.85) of the triplet Dirac fermions:

FK ≡
N∑

a=1

N a
K . (5.95)

Then we can deduce that the states annihilated by ΨK are those with odd eigenvalues of FK (see the
second and fourth lines of Eq. (5.93)), while those with even eigenvalues of FK are annihilated by
Ψ

†
K (see the first and third lines of Eq. (5.94)):

Ψ
†
K |even〉K = 0, ΨK |odd〉K = 0, (5.96)

where |even〉K and |odd〉K are eigenstates of the parity operator

PK ≡ (−1)FK , (5.97)

namely,
PK |even〉K = +1|even〉K , PK |odd〉K = −1|odd〉K . (5.98)

It should also be noted that, when Ψ
†
K and ΨK do not annihilate the state, they create a state with

opposite parity:
Ψ

†
K |odd〉K = |even〉K , ΨK |even〉K = |odd〉K . (5.99)

These facts imply that the parity operator PK anticommutes with ΨK and Ψ
†
K :

{PK ,ΨK} = 0, {PK ,Ψ
†
K} = 0. (5.100)

We claim that the fermion number operator NK is related with the parity operator PK as

PK = 1−NK . (5.101)

Namely, the fermion number operator NK expresses the parity of the total fermion number for each
index K. This relation results from Eq. (5.96), which is obvious from the structure of the operators
shown in Eqs. (5.91).

By repeating the same argument, the above relation can be generalized to an arbitrary odd N as

PK = 1−NK for N = 45+ 3, (5.102)

PK = NK for N = 45+ 1. (5.103)
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5.5.3 The tensor product structure of the Hilbert space

From Eqs. (5.93) and (5.94), we can say that the action of the singlet Dirac operators ΨK or Ψ†
K is a

kind of “NOT” operation, which “flips” the fermion number for each component of the SO(3) vector.
Namely, under the action of ΨK , one finds |N 1

K ,N 2
K ,N 3

K〉 K → |1−N 1
K , 1−N 2

K , 1−N 3
K〉K . We

can divide the states into pairs, in each of which the two states are related by the NOT operation.
When N = 3, there are four pairs:

|0, 0, 0〉K ↔ |1, 1, 1〉K , |0, 0, 1〉K ↔ |1, 1, 0〉K ,
|0, 1, 1〉K ↔ |1, 0, 0〉K , |1, 0, 1〉K ↔ |0, 1, 0〉K . (5.104)

It is important to note that the singlet Dirac operators ΨK and Ψ
†
K induce the transition only within

these pairs when they act on states (e.g. a transition between |0, 0, 0〉K and |1, 1, 1〉K), but they never
induce an inter-pair transition. This fact is essential in the following discussion.

Now we are ready to discuss how the decomposition of the exchange operator τ [N ]
k results in the

tensor-product structure in a matrix representation. From the analysis above, we can take the basis of
the Hilbert space which is labeled by the parity PK of the number of fermions with index K, and an
additional index mK which labels the choice of a pair in Eq. (5.104). We denote the states by

|PK ,mK〉K ≡ |PK〉K ⊗ |mK〉K . (5.105)

Let us consider the matrix elements K〈PK ,mK |τ [N ]
k |P ′

K ,m
′
K〉K of the exchange operator τ [N ]

k in this
basis. Now we show that these matrix elements can be written as the tensor product of the Ivanov
matrix and the Coxeter matrix:

K〈PK ,mK |τ [N ]
k |P ′

K ,m
′
K〉K = K〈mK |σ[N ]

k |m′
K〉K · K〈PK |h[N ]

k |P ′
K〉K . (5.106)

Namely, the Coxeter operator σ[N ]
k acts only on |mK〉K , while the Ivanov operator h[N ]

k acts only on
|PK〉K . To prove this, we show the following two statements for any k and K:

(i) h[N ]
k acts as an identity on |mK〉K .

(ii) σ[N ]
k acts as an identity on |PK〉K .

Proof of (i).
We can see that the statement (i) is true in the following way. The Ivanov operator h[N ]

k is written
by the singlet Majorana operators γk (see Eq. (5.59)), and hence by the singlet Dirac operators ΨL

and Ψ
†
L, see Eq. (5.89). When the singlet Dirac operators ΨL or Ψ†

L act on states, the only state that
can be created is the one in which the fermion numbers are flipped. So, the action of the singlet Dirac
operators ΨL or Ψ†

L never induce an inter-pair transition. Therefore, the Ivanov operator h[N ]
k does not

change the index mK , which labels the pair in Eq. (5.104).
Proof of (ii).
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The statement (ii) is equivalent to the statement that the Coxeter operator σ[N ]
k and the total fermion

number operator NK commutes. The total fermion number operator NK is written by the singlet
Majorana operators γ2K−1 and γ2K , which commute with the Coxeter operator σ[N ]

k as in Eq. (5.79).
We thus find that the Coxeter operator σ[N ]

k and the total fermion number operator NK also commute.

By showing the statements (i) and (ii), we have shown that the factorization of the exchange
operator τ [N ]

k of vortices into the Ivanov operator h[N ]
k and the Coxeter operator σ[N ]

k results in the
tensor-product structure in the matrix representation.

5.6 Comments

The SO(N) symmetry considered in this paper is the largest symmetry group in the presence of N
Majorana fermions. Whether the symmetry is SO(N) or its subgroups depends on the details of the
systems. For instance, a higher (pseudo-)spin S representation of SO(3) contains 2S + 1 Majorana
fermions, but the symmetry acting on them does not have to be SO(2S + 1). Also the representation
does not have to be irreducible; for instance four Majorana fermions may be decomposed into one
singlet and one triplet of SO(3), but the symmetry group does not have to be SO(4). It will be
interesting to extend our results to general representations including reducible representations. An
extension to general groups also remains as an interesting future problem to be explored.

For vortices with an even number N of Majorana fermions with the SO(N) symmetry, we have
not found any meaningful factorization of the exchange operator τ [N ]

k so far. It remains as a future
problem to identify the non-Abelian statistics for even N Majorana fermions. When the symmetry
group inside the vortex core is restricted to the unitary subgroup U(N/2) ⊂ SO(N), N Majorana
fermions can be rearranged into N/2 complex Dirac fermions in each vortex. In this case, the situa-
tion is rather different because Dirac fermions are locally defined, and we do not need to define Dirac
fermions non-locally by using two spatially separated vortices. Nevertheless we found a rather differ-
ent kind of non-Abelian statistics in the case of N = 2 with the U(1) symmetry [128] and N = 4 with
the U(2) symmetry [129]. Identifying the statistics for the general even N of N/2 Dirac fermions
also remains as a future problem.

Finally, it will be important to look for actual condensed matter systems realizing multiple Majo-
rana fermions in the vortex core, and to study an impact of our results on applications to topological
quantum computations.

5.7 Brief summary

We have considered non-Abelian statistics of vortices, each of which has N Majorana zero-energy
states inside its core on which an SO(N) symmetry acts. We have investigated how the degenerate
states induced by zero modes are transformed under an exchange of neighboring vortices. We have
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shown that, for an arbitrary odd N , the exchange operator τ [N ]
k defined in Eq. (5.35), generating the

exchange of two neighboring vortices, can be factorized into two parts τ [N ]
k = σ[N ]

k h[N ]
k as seen in

Eq. (5.55). The part which is given by h[N ]
k defined in Eq. (5.57) is essentially equivalent to the

exchange operator introduced by Ivanov. If it is expressed in terms of the composite singlet Majorana
operator γk defined in Eq. (5.58), then it has the same form as the exchange operator τk in the case of
the single Majorana fermion. The other operator σ[N ]

k defined in Eq. (5.56) is a new part. In Sec. 5.5,
we have given a proof that they constitute the Coxeter group of the type A2m−1 (the symmetric group
S2m) for n = 2m vortices. We have also shown in Sec. 5.5 that the factorization of the exchange
operators results in the tensor-product structure in its matrix representation in a suitable basis.





Chapter 6

Summary and concluding remarks

In this thesis, we have studied the dynamics of non-Abelian vortices, that appear in a color supercon-
ductor. Summary of the original results is described below.

In Chap. 4, we have discussed the interaction of non-Abelian vortices with quasiparticles in the
color-superconducting medium. In Sec. 4.1, we discussed the interaction of vortices with phonons,
which are the Nambu-Goldstone mode associated with the breaking of the U(1)B symmetry, and
gluons. The interaction Lagrangian is obtain by using the dual transformation. We have found that
the interaction with gluons is dependent on the orientation of a vortex. We studied the orientation-
dependent interaction energy between two vortices. In Sec. 4.2, we discussed the interaction of vor-
tices with CFL mesons, which are the Nambu-Goldstone bosons for the breaking of chiral symmetry.
In Sec. 4.3, we investigated the interaction of vortices with photons and its phenomenological con-
sequences. The orientational zero modes localized on vortices are charged with respect to U(1)EM
symmetry. The interaction Lagrangian is determined by symmetry consideration. Based on the ef-
fective Lagrangian, we discuss the scattering of photons off a vortex. We also discussed the optical
property of a vortex lattice , which is expected to be formed if CFL matter exists inside the core of a
rotating dense star. We have shown that a lattice of vortices serves as a polarizer of photons.

In Chap. 5, we have discussed the non-Abelian statistics of vortices, which occurs because of the
Majorana zero modes inside vortices. After an introduction about the fermion zero modes in Sec. 5.1,
we discussed why Majorana fermions appear in a superconductor in Sec. 5.2. In Sec. 5.3, we discussed
basics of the non-Abelian statistics. We have investigated how the degenerate states induced by zero
modes are transformed under an exchange of neighboring vortices in the case where a vortex core
captures one Majorana fermion. We have also extended the discussion of non-Abelian statistics to the
case where an odd number (N ) of fermions reside inside a vortex. In Sec. 5.4 We have shown that the
exchange operator τ [N ]

k defined in Eq. (5.35), generating the exchange of two neighboring vortices,
can be factorized into two parts τ [N ]

k = σ[N ]
k h[N ]

k as seen in Eq. (5.55). The part which is given by
h[N ]
k defined in Eq. (5.57) is essentially equivalent to the exchange operator introduced by Ivanov. If

it is expressed in terms of the composite singlet Majorana operator γk defined in Eq. (5.58), then it
has the same form as the exchange operator τk in the case of the single Majorana fermion. The other
operator σ[N ]

k defined in Eq. (5.56) is a new part. In Sec. 5.5, we have discussed relation between
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the operator decomposition and the tensor-product structure in the Matrix representation. We have
given a proof that they constitute the Coxeter group of the type A2m−1 (the symmetric group S2m) for
n = 2m vortices. We have also shown that the factorization of the exchange operators results in the
tensor-product structure in its matrix representation in a suitable basis.

Before closing this thesis, let us comment on the future directions on this topic. There are lots
of problems regarding the non-Abelian vortices to be solved as stated in the discussion of Ref. [18].
Several fundamental problems on the properties of vortices are left, such as reconnection of vortices,
breaking up of a U(1)B vortex into three non-Abelian vortices, dynamics of a non-Abelian vortex
loop, or effects of U(1)A anomaly on the vortices. From phenomenological view point, one important
direction is the application of the results here to the neutron star physics. We believe that the vortices
can be the witness of the quark matter. Despite the extensive theoretical studies on the color super-
conductivity, there has been no observational evidence that quark matter exists inside dense stars. If
color superconducting phase is realized inside the core of a neutron star, it should be threaded with
numerous vortices since the star is rapidly rotating. It is important to investigate phenomena caused
by vortices that could give some observational clue. For example, neutron stars are known to have
strong magnetic fields on their surface. Because of the electromagnetic charge of the orientational
modes, vortex interacts with the magnetic fields. The vortices and magnetic fields pushes each other.
That could affect the electromagnetic radiations from the stars, that are observable from the earth.
Another example would be pulsar glitches. A pulsar glitch is a rapid increase in the rotational period
of neutron stars observed intermittently. It is suggested by Anderson and Itoh [130] that unpinning of
vortices in neutron superfluid is triggering the glitches. If non-Abelian vortices exist inside neutron
stars, the discussion of glitches would be modified. For example, non-Abelian vortices in CFL matter
should be connected to superfluid vortices in the neutron superfluid in such a way that the circulations
remain the same. This would affect the suggested glitch mechanism. Regarding the non-Abelian
statistics of vortices, it is interesting to find condensed-matter realizations of vortices with multiple
Majorana fermions, since the discussion in Chap. 5 is based on the fact that a vortex hosts multiple
Majorana fermions and does not depend on the details of the system. Identifying the topological field
theory to describe such systems is an interesting problem. It is also useful to find a way to utilize such
systems to actual procedure of topological quantum computation.
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Appendix A

Derivation of the dual Lagrangians for
phonons and gluons

In this appendix, we derive the dual Lagrangians for phonons and gluons [45]. After a dual transfor-
mation, massive gluons are described by massive non-Abelian antisymmetric tensor fields [57] and
U(1)B phonons are described by massless antisymmetric tensor fields. In the dual description vortices
appear as sources which can absorb or emit these particles.

Low-energy effective theory of the CFL phase

We start with a time-dependent Ginzburg-Landau(GL) effective Lagrangian for the CFL phase, which
is given in Eq. (2.23),

L(x) =
ε3
2
(Ea)2 − 1

2λ3
(Ba)2 +K0Tr

[
(D0Φ)

† D0Φ
]
+K3Tr

[
(DiΦ)

† DiΦ
]

−4iγTr
[
Φ†D0Φ

]
− V (Φ), (A1)

where Ea
i = F a

0i, Ba
i = 1

2εijkF
a
jk. The effect of U(1)EM electromagnetism is neglected here. The

parameters ε3 and λ3 are the color dielectric constant and the color magnetic permeability. The
Lorentz symmetry does not have to be maintained in general since superconducting matter exists.
However, the kinetic term of gluons has a modified Lorentz symmetry in which the speed of light
is replaced by 1/

√
ε3λ3. It is always possible to restore the Lorentz invariance of the kinetic term

of gauge fields by rescaling x0, Aa
0, K0, γ and K3. Therefore we can start with the Lagrangian

in which ε and λ are taken to be unity. For notational convenience, we introduce a vector Kµ ≡
(K0, K3, K3, K3). Thus our starting point is the following GL Lagrangian,

L(x) = −1

4

(
F a
µν

)2
+KµTr

[
(DµΦ)

† DµΦ
]
− 4iγTr

[
Φ†D0Φ

]
− V (Φ). (A2)

The dual transformation

Here we perform dual transformations within the path integral formalism to derive a dual Lagrangian
for the CFL phase. After the transformation, massive gluons are described by massive non-Abelian
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antisymmetric tensor fields [57] and U(1)B phonons are described by massless antisymmetric tensor
fields. We show that in the dual description vortices appear as sources which can absorb or emit these
particles.

The dual transformation of massive gluons

The partition function of the CFL phase can be written as

Z =

∫
DAa

µ(x)DΦ(x) exp

{
i

∫
d4xL(x)

}
, (A3)

with the Lagrangian defined in Eq. (A2). We shall impose the gauge fixing condition on the field Φ

rather than on the gauge fields since they are integrated out in the end. The gauge fixing condition is
taken care of when we consider a concrete vortex solution.

We introduce non-Abelian antisymmetric tensor fields Ba
µν by a Hubbard-Stratonovich transfor-

mation,

exp

[
i

∫
d4x

{
−1

4
(F a

µν)
2

}]
∝
∫

DBa
µν exp

[
i

∫
d4x

{
−1

4

[
m2(Ba

µν)
2 − 2mB̃a

µνF
a,µν)

]}]
,

(A4)
where B̃a

µν ≡ 1
2εµνρσB

a,ρσ. The parameter m introduced above is a free parameter at this stage. We
will choose m later so that the kinetic term of Ba

µν is canonically normalized.
Substituting (A4) into (A3), we can now perform the integration over the gauge fields Aa

µ. The
degrees of freedom of gluons are expressed by Ba

µν after this transformation. Each term in the La-
grangian is transformed as follows:

KµTr{(DµΦ)
†(DµΦ)}− 4iγTr

[
Φ†D0Φ

]

= KµTr
{
Φ†(
←−
∂ µ + igsA

a
µT

a)(
−→
∂ µ − igsA

b,µT b)Φ
}
− 4iγTr

[
Φ†(∂0 − igsA

a
µT

a)Φ
]

= KµTr{(∂µΦ)†(∂µΦ)}− 4iγTr
[
Φ†∂0Φ

]
+ gsA

a
µJ

a,µ

+g2s gµν
√
KµKνA

a,µAb,νTr
[
Φ†T aT bΦ

]
, (A5)

with Ja
µ ≡ −iKµTr

[
Φ†(
←−
∂ µ −

−→
∂ µ)T aΦ

]
+ 4γTr

[
Φ†T aΦ

]
, and

−1

2
mB̃a

µνF
a,µν = −1

2
mB̃a

µν(2∂νA
a
µ + gsf

abcAb
µA

c
ν)

= mAa
µ∂νB̃

a
µν +

1

2
mgsf

abcAa
µA

b
νB̃

c
µν .

(A6)

Performing the integration over Aa
µ, the following part of the partition function is rewritten as

∫
DAa

µ exp

{
i

∫
d4x

[
1

2
g2sA

a,µKab
µνA

b,ν −m
(
∂νB̃a

µν −
gs
m
Ja
µ

)
Aa,µ

]}

∝ (detKab
µν)

−1/2 exp

{
i

∫
d4x

[
−1

2

(
m

gs

)2 (
∂ρB̃

a,µρ − gs
m
Ja,µ

) (
K−1

)ab
µν

(
∂σB̃

b,νσ − gs
m
J b,ν
)]}

,

(A7)
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where Kab
µν is defined by

Kab
µν =

1

2
gµν
√
KµKνTr

[
Φ†T aT bΦ

]
− m

gs
fabcB̃c

µν

≡ Φab
µν −

m

gs
B̂ab

µν ,
(A8)

with Φab
µν ≡ 1

2gµν
√

KµKνTr
[
Φ†T aT bΦ

]
and B̂ab

µν ≡ fabcB̃c
µν . We define the inverse of Kab

µν by the
power-series expansion in 1/gs

K−1 =

(
Φ− m

gs
B̂

)−1

= Φ−1
∞∑

n=0

(
m

gs
B̂Φ−1

)n

. (A9)

As a result, we obtain the following partition function

Z ∝
∫

DBa
µν(detK

ab
µν)

−1/2 exp

{
i

∫
d4xL∗

G(x)

}
, (A10)

where L∗
G denotes the gluonic part of the dual Lagrangian

L∗
G = −1

2

(
m

gs

)2 (
∂ρB̃

a,µρ − gs
m
Ja,µ

) (
K−1

)ab
µν

(
∂σB̃

b,νσ − gs
m
J b,ν
)
− 1

4
m2(Ba

µν)
2. (A11)

Now we define the non-Abelian vorticity tensor ωa
µν as the coefficient of the term linearly pro-

portional to Ba
µν . Collecting relevant terms in the above Lagrangian, the coupling between massive

gluons and the vorticity is given by

L∗
G ⊃ 1

2

m

gs

[
∂ρB̃

a,µρ(Φ−1)abµνJ
b,ν + Ja,µ(Φ−1)abµν∂ρB̃

b,νρ
]
− 1

2

(
m

gs

)
Ja,µ[Φ−1B̂Φ−1]abµνJ

b,ν

≡ −1

2

(
m

gs

)
Ba

λσω
a,λσ, (A12)

where we have defined the vorticity tensor ωa
µν as

ωa,λσ ≡ ελσµν
[
∂ν
{
(Φ−1)(abµρ)J

b,ρ
}
+ Je,α(Φ−1)ecαµf

cda(Φ−1)dbνβJ
b,β
]
. (A13)

Here A(abµν) is a symmetrized summation defined by A(abµν) ≡ Aab
µν+Aba

νµ. This expression for the non-
Abelian vorticity is valid for general vortex configurations. The information of vortex configuration
is included in Φ and Ja

µ .

The dual transformation of U(1)B phonons

In the following, we perform a dual transformation of the NG boson associated with the breaking
of U(1)B symmetry. This mode corresponds to the fluctuation of the overall phase of Φ which can
be parametrized as Φ(x) = eiπ(x)ψ(x), where π(x) is a real scalar field. Substituting this into the
following part in the Lagrangian (A2) leads to 1

KµTr{(∂µΦ)†(∂µΦ)}−4iγTr{Φ†∂0Φ} =

Kµ (∂µπ)
2M2 − ∂µπJ0

µ +KµTr(∂µψ)
2 − 4iγTr{ψ†∂0ψ},

(A14)

1 The term Tr
[
∂µψ†ψ − ψ†∂µψ

]
automatically vanishes since ψ can be decomposed as ψ = (∆ + ρ)1N + (χa +

iζa)T a and the modes ζa are absorbed by gluons.
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with J0
µ ≡ −4δµ0γM2 and M2 ≡ Tr

[
ψ†ψ

]
. We will transform the U(1)B phonon field π(x) into a

massless two-form field B0
µν . Note that the field π(x) has a multivalued part in general; since π(x)

is the phase degree of freedom, π(x) can be multivalued without violating the single-valuedness of
Φ(x). In fact the multivalued part of π(x) corresponds to a vortex. Let us denote the multivalued part
of π(x) as πMV(x).

The dual transformation of this U(1)B phonon field is essentially the same as the case of a super-
fluid. We basically follow the argument of [104]. Let us introduce an auxiliary field Cµ by linearizing
the kinetic term of π(x) in the partition function as follows

Z ∝
∫

DπDπMV exp i

[∫
d4x

(
M2Kµ {∂µ(π + πMV)}2 − ∂µ(π + πMV)J

0
µ

)]

∝
∫

DπDπMVDCµ exp i

[∫
d4x

(
−

C2
µ

M2
− 2Cµ

√
Kµ∂

µ(π + πMV)− ∂µ(π + πMV)J
0
µ

)]
.

(A15)

Integration over π(x) gives a delta function
∫

Dπ exp i
[∫

d4x
(
−2Cµ

√
Kµ∂

µπ + π∂µJ0
µ

)]
= δ

{
∂µ
(
2Cµ

√
Kµ + J0

µ

)}
. (A16)

Then let us introduce the dual antisymmetric tensor field B0
µν by

∫
DCµδ

{
∂µ
(
2Cµ

√
Kµ + J0

µ

)}
· · · =

∫
DCµDB0

µνδ
(
2Cµ

√
Kµ + J0

µ −m0∂νB̃0
µν

)
· · · (A17)

where the dots denote the rest of the integrand and m0 is a parameter. By this change of variables we
have introduced an infinite gauge volume, corresponding to the transformation δB0

µν = ∂µΛν − ∂νΛµ

with a massless vector field Λµ. This can be taken care of by fixing the gauge later. There is no
nontrivial Jacobian factor as the change of variables is linear. Integrating over Cµ, and transforming
a resultant term in the Lagrangian as

m0∂νB̃0
µν∂

µπMV = −m0B0,ρσεµνρσ∂
ν∂µπMV

≡ −2πm0B0,ρσω0
ρσ,

(A18)

where the first equality holds up to a total derivative and we have defined

ω0
ρσ ≡

1

2π
εµνρσ∂

ν∂µπMV . (A19)

We thus obtain the dual Lagrangian for the U(1)B phonon part

L∗
Ph = −

(
1

2M

)2

Kµ(m
0∂νB̃

0
µν − J0

µ)
2 − 2πm0B0,µνω0

µν . (A20)

Note that the term linear in B0
µν coming from the first term of (A20) is a total derivative and does not

contribute to the equation of motion. The partition function is proportional to

Z ∝
∫

DπMVDB0
µν exp i

[∫
d4xL∗

Ph

]
. (A21)

The U(1)B phonons are now described by a massless two-form field B0
µν and vortices appear as

sources for B0
µν .
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The dual Lagrangian

In summary, we have shown that the partition function Z of the CFL phase is proportional to Z∗ with
the dual Lagrangian L∗:

Z ∝ Z∗ =

∫
DBa

µνDπMVDB0
µνDψ (detKab

µν)
−1/2 exp

{
i

∫
d4xL∗(x)

}
, (A22)

where
L∗ = L∗

G + L∗
Ph +KµTr(∂µψ)

2 − 4iγTr{ψ†∂0ψ}− V (ψ). (A23)

Here L∗
G and L∗

Ph are given in (A11) and (A20), respectively. The result above is valid for general
vortex configurations. We can discuss the interaction between vortices and quasiparticles in terms of
the dual Lagrangian. Vortices are expected to appear as a source term for gluons and U(1)B phonons.





Appendix B

Vortex formation and vortex lattices as a
response to rotation

In this appendix, we discuss the response of CFL matter to rotation. Before discussing the CFL matter,
let us first recall what happens if one rotates an superfluid. Suppose one has a superfluid in a vessel
and let us rotate the vessel with angular velocity Ω. The ground state of the system can be determined
by minimizing the free energy. In a rotating system, the free energy is modified as F ′ = F −Ω · L,
where L is the angular momentum vector. At low temperatures, the entropy term can be neglected
and we just have to minimize H ′ = H −Ω · L, where H and H ′ are the Hamiltonian in the rest and
rotating frames.

The time-evolution of a rotating system is generated by H ′. Let us first recall the reason, in
a simple example, a non-relativistic point particle in a rotating frame. The Lagrangian of a point
particle with mass m is written as L = mv2/2, where v is the velocity in the rest frame. The
conjugate momentum and the Hamiltonian is given by

p =
∂L

∂v
= mv, H = p · v − L =

mv2

2
. (A1)

Now let us move to the description in the rotating frame at an angular velocity Ω. Let v′ be the
velocity of the particle in the rotating system. The two velocities are related by

v = v′ +Ω× r. (A2)

Since the Lagrangian mechanics is covariant under general coordinate transformation, we can switch
to the rotating frame just by substituting v′ into v,

L =
m

2
(v′ +Ω× r)2 , (A3)

The conjugate momentum and Hamiltonian in the rotating system is given by

p′ =
∂L

∂v′ = m(v′ +Ω× r) (= p) , H ′ = p′ · v′ − L =
p′2

2m
−Ω · (r × p′) , (A4)
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where we have used the cyclic property of the cross product, p′ · (Ω× r) = Ω · (r × p′). Noting that
p′ = p, we can rewrite the Hamiltonian in the rotating frame as

H ′ =
p′2

2m
−Ω · (r × p′)

=
p2

2m
−Ω · (r × p)

= H −Ω ·L,

(A5)

which connects the Hamiltonians in the rest and rotating frames. The discussion above can be straight-
forwardly extended to many-body systems, as long as the interaction potential is invariant under ro-
tation.

Now let us discuss the response of a superfluid to rotation. We consider the situation where a
superfluid is filled in a cylinder with radius R and there is one vortex in the center of the vessel. Then
the superfluid velocity is given by v = n

2πreθ with n the winding number. The energy of a vortex per
unit length is

E =

∫
d2x

1

2
ρv2 =

ρn2

4π
log

(
R

a

)
, (A6)

where ρ is the superfluid density and a is the core radius (R . a). The angular velocity per unit
length is written as

L =

∫
d2x (r × (ρv))z =

∫ R

a

2πr · rρ|v| $ 1

2
nρR2, (A7)

where the term proportional to a2 is neglected. Thus, the energy in the rotating system is given by

E ′ =
ρn2

4π
log

(
R

a

)
− 1

2
ΩnρR2. (A8)

If this energy is less than 0, one vortex state is favored compared to the state without a vortex. We can
define the critical angular velocity Ωc,

Ωc ≡
n

2πR
log

(
R

a

)
. (A9)

Thus, if Ω > Ωc, the state with vortex is more favorable than the trivial state.
If one further increases the rotational speed, multiple vortices are generated along the rotational

axis. They all have the same winding number, so the inter-vortex force is repulsive. All the vortices
repel each other, resulting in the formation of a vortex lattice. In the end, the vortex lattice corotates
with the vessel, which means that the superfluid velocity at the edge coincides with the speed of
wall. Then the circulation Γ can be calculated as 2πR · RΩ. This should be equal to the sum of the
circulations of all the vortices inside the vessel, Γ = nN , where N is the total number of vortices.
Therefore, the total number of vortices

N =
2SΩ

n
, (A10)
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where S is the cross section of the vessel. In the case of ordinary superfluid, the circulation of each
vortex equals to one, n = 1.

Let us see the creation of vortices from another point of view. We here consider a BEC and denote
the condensate by a complex scalar field Φ(x). In a rotating frame, the gradient term of the energy
functional can be written as (see Eq. (A5))

Egrad = Φ∗
(
p̂2

2m
−Ω · L̂

)
Φ =

1

2m
|[∂i − im(r×Ω)i]Φ|2 −

1

2
mr2Ω2|Φ|2 (A11)

where L̂i = iεijkrj∂k and p̂i = ∂i, and the equality is meant up to a total derivative. The combination
Di = ∂i − im(r × Ω)i can be seen as a covariant derivative on the field Φ. Then Ai ≡ m r × Ω

can be seen as a gauge field and this system looks like a charged field under a constant magnetic field
2Ω. Therefore, just as a type II superconductor under an external magnetic field, vortices come into
a rotating superfluid. Let us make a comment on the trapping potential. One should add an external
potential to trap the condensate, such as Vtrap = 1

2ω
2r2 for BECs. This term and the last term in

Eq. (A11) can be combined as −1
2r

2Ω2|Φ|2 + Vtrap = 1
2(ω

2 − Ω2)r2|Φ|2. When the rotation speed Ω

is less than ω, the condensates can be trapped.

Colorful vortex lattices

Then, what happens if one rotates CFL matter? We can repeat the energetical argument. When the
vessel is large enough, the energy of a vortex is dominated by the superfluid velocity part and the
contribution from the color flux is negligible, Thus, what is modified in the argument above is that n
should equal to one third, n = 1/3. For realistic neutron stars, the number of vortices can be estimated
as

Nv $ 1.9× 1019
(
1ms

Prot

)(
µ/3

300MeV

)(
R

10 km

)2

, (A12)

where Prot is the rotational period, µ is the baryon chemical potential and the parameters are normal-
ized by typical values. The corresponding intervortex spacing is given by

5 ≡
(
πR2

Nv

)1/2

$ 4.0× 10−6 m

(
Prot

1ms

)1/2(300MeV

µ/3

)1/2

. (A13)

Since the intervortex spacing is far larger than the size of a vortex core, which is given by inverse
gluon/meson masses, gluons and mesons would not affect the force between two vortices. The inter-
vortex force is dominated by the exchange of U(1)B phonons. This justifies the treatment above in
which we have only considered the contribution of U(1)B circulations.

In the discussion using the free energy, we can only determine the ground state of the system.
The dynamical process of vortex generation can be nontrivial especially for non-Abelian vortices.
Basically, as one increases the speed of rotation gradually, vortices enter one by one from the edge
of the superfluid. However, in the case of the non-Abelian vortices, it has a color flux and one vortex
can not be created because of the color conservation. A vortex with unit U(1)B winding number does
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not have a color flux, but it is energetically unstable. So, one plausible idea is that, a U(1)B vortex
is created first and then it decays into three non-Abelian vortices. Such two-fold vortex generation
is seen in the simulation of rotating three-component BEC [131], in which integer quantized vortices
are created first and they decay into fractional vortices.
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