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QCD matter at high densities and low temperatures is expected to be a color su-
perconductor. At extremely high densities, the ground state is the color-flavor locked
(CFL) phase, that exhibits color superconductivity as well as superfluidity. It is known
that QCD matter in the CFL phase hosts topologically stable vortices. Important fea-
ture of these vortices is that they have internal degrees of freedom, which are bosonic
and fermionic modes. These modes are localized only around the core of vortices, and
they propagate along the vortices. The bosonic modes are called orientational zero
modes, which are a kind of Nambu-Goldstone modes. The symmetry group of QCD
is G =U(l)g x SU3)c x SU(3)L, x SU(3)r, where U(1)p is the baryon number sym-
metry, SU(3)c the local color symmetry, and SU(3)ymr) is the symmetry to rotate the
flavor of left(right)-handed quarks. In the CFL phase, G is spontaneously broken down
to the color-flavor locked symmetry H = SU(3)cir+r = SU(3)c4r, apart from discrete
symmetry. In the presence of a vortex, the symmetry group H is further broken down
to H = SU(2) x U(1) only around the core. The orientational zero modes are the
Nambu-Goldstone modes associated with the symmetry breaking H — H' and they are
the coordinates that parametrize the coset space H/H' ~ CP2. On the other hand, the
fermionic modes are “Majorana” fermions as a consequence of the particle-hole symmetry
of the effective Hamiltonian. There is one interesting feature in the case of vortices in the
CFL phase, which is that there appear multiple Majorana fermions in one vortex. This
results in a unique structure in the non-Abelian statistics of vortices as discussed later.
This thesis mainly consists of two investigations on the non-Abelian vortices in the CFL
phase. The first topic is the interaction between the vortices and quasiparticles in the
CFL phase. The latter topic is the properties of non-Abelian statistics of vortices with
multiple Majorana fermions.

Firstly, we discuss the interaction of vortices with quasiparticles, such as U(1)g phonons,



gluons, CFL mesons, and photons. It is necessary to determine the interaction to discuss
physical phenomena such as scattering or radiation of quasiparticles by vortices. We can
also investigate the interaction between vortices using vortex-quasiparticle interaction,
since the intervortex force is mediated by quasiparticles.

The interaction Lagrangian between vortices and phonons and gluons is derived via
the dual formation. While the phonons are blind to the orientations of vortices and only
couple to the position of a vortex, it turns out the interaction with gluons is dependent
on the orientation of a vortex. This gives rise to an orientation-dependent interaction
energy between two vortices. The orientation-dependent interaction works in such a way
to reduce the total color flux of two interacting vortices.

We discuss the interactions of vortices with CFL mesons. The CFL mesons are the
Nambu-Goldstone associated with the chiral symmetry breaking in the CFL phase, whose
dynamics is described by the chiral Lagrangian. We extend the chiral Lagranginan, and
derive the Lagrangian of mesons under the background of a vortex solution. The La-
grangian incorperates the modification of meson propagation or interaction in the presence
of a vortex.

We also investigate the interaction of vortices with photons and its phenomenological
consequences. The electromagnetic property of vortices can be phenomenologically im-
portant as it could lead to some observable effects. The orientational zero modes localized
on vortices are charged with respect to U(1)gm symmetry. The Lagrangian that includes
the interaction term of photons and orientational modes is determined by symmetry con-
sideration as
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where the covariant derivative is defined by D,¢ = (8a — i@\/éAaTg) ¢, and Ty = \/iédiag(—Q, 1,1)
is the generator of U(1)gy group in our choice of basis. Based on this interaction, we

discuss the scattering of photons off a vortex. The scattering cross section of photons per
unit length of a vortex is obtained as

do  (12Cse*f(9))

2 2
Z = - T\ = 2887 (Cyanf(6))? A, (2)

for photons whose electric fields are parallel to the vortex. Here, n is a constant of
order unity, « is the fine structure constant, and f(¢) is a function of ¢ defined as
(@) = ol (Tx)% + (¢'Tzp)?, and X is the wavelength of the incident photon. On the
other hand, if a photon’s electric field is perpendicular to the vortex, the photon is not
scattered.

Based on the properties stated above, we discuss the optical property of a vortex
lattice. The rotating CFL matter is expected to be threaded with quantum vortices along
the axis of rotation, resulting in the formation of a vortex lattice. This is basically the
same phenomenon as when one rotates atomic superfluids. If CFL matter exists inside the
core of a rotating dense stars, there should be a lattice of vortices in the core. It is shown
that a lattice of vortices serves as a polarizer of photons, because of the interaction of
orientational modes with the photons. Suppose that a linearly polarized photon is incident
on a vortex lattice as shown in Fig. 1. If the electric field of the photon is parallel to
the vortices, it induces currents along the vortices, which results in the attenuation of the



Figure 1: Photons entering a vortex lattice.

photon. On the other hand, waves with electric fields perpendicular to the vortices are not
affected. This is exactly what a polarizer does. A lattice passes electromagnetic waves of a
specific polarization and blocks waves of other polarizations. This phenomenon, resulting
from the electromagnetic interaction of vortices, may be useful for finding observational
evidence of the existence of CFL matter.

Secondly, we analyze the non-Abelian statistics of vortices, which is brought about by
the existence of Majorana fermions inside vortices. There has been considerable interest
recently in zero-energy fermion modes trapped inside vortices in superconductors. Vor-
tices in a chiral p-wave superconductor are endowed with non-Abelian statistics because
of the zero-energy Majorana fermions inside them. Excitations which obey non-Abelian
statistics are called non-Abelian anyons. They are expected to form the basis of topolog-
ical quantum computations and have been investigated intensively.

A vortex in the CFL phase has been also shown to have Majorana zero modes inside
the core. What is more, in the case of a CFL vortex, there are multiple Majorana zero
modes. The number of zero modes is closely related to the winding number of a vortex,
which is evident from the index theorem for this system. For example, a vortex with
minimal winding number has three Majorana fermions inside them. In this thesis, the
non-Abelian statistics of vortices with multiple Majorana fermions is investigated and
shown to have a novel structure. We show that the transformation matrix of the states
under the exchange of two vortices can be written as the tensor product of two matrices.
One matrix is identical to the exchange matrix for vortices with a single Majorana fermion
in each core, that is found by Ivanov, and the other matrix is shown to be a generator of
the Coxeter group, which is a symmetry group of certain polytopes in high dimensions.

We consider the exchange statistics of vortices, each of which traps an odd number
(N) of Majorana fermions. Let 7§ be the Majorana fermion operator localized to k-th
vortex with @ = 1--- N. They are self-conjugate, (v2)" = ;, and satisfy the Clifford
algebra, {72 '} = 20%6;;. We refer to the anticlockwise exchange of k-th and k + 1-th
vortex as Tj,. Under the operation T}, the fermion operators «} are transformed as

T, : { Tk 77 Tk for all a, (3)
Vi1 = Vi

with the rest 7§ (¢ # k, k + 1) unchanged. We can explicitly construct the operator that



induced the transformations above in terms of the fermion operators as
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The operator defined above indeed induces the appropriate transformation on 7 as
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It is shown that the exchange operator T,EN], generating the exchange of two neighboring

vortices, can be factorized into two parts as
[N] _ [Nl [N]
Ty =0 Ty (8)
The operator hECN} is essentially equivalent to the exchange operator introduced by Ivanov,

that corresponds to the case N = 1. If it is expressed in terms of the SO(N) singlet
Majorana operator 7, defined by
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then it has the same form as the exchange operator 7, in the case of the single Majorana
fermion, i.e. hkN] = exp (%7k+17k)- On the other hand, the other operator O'/EN] is a
generator of a Coxeter group, which is shown by checking that JLN] satisfies the Coxeter
relations of the type As,, 1 (the symmetric group Ss,,) for n = 2m vortices. We also
discuss relation between the operator decomposition and the tensor-product structure in
the Matrix representation. We show that the factorization of the exchange operators

results in the tensor-product structure in its matrix representation in a suitable basis.



