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We fabricated SiO2/4H-SiC (0001) metal-oxide-semiconductor capacitors with nearly ideal

capacitance-voltage characteristics, simply by the control of thermal oxidation conditions which

were selected based on thermodynamic and kinetic considerations of SiC oxidation. The interface

with low interface defect state density <1011 cm�2 eV�1 for the energy range of 0.1–0.4 eV

below the conduction band of SiC was obtained by thermal oxidation at 1300 �C in a ramp-

heating furnace with a short rise/fall time, followed by low temperature O2 anneal at 800 �C.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891166]

Silicon carbide (SiC) has attractive properties, such as

high breakdown-field and high thermal conductivity, which

are suitable for high-voltage power electronic devices with

high energy-efficiency.1,2 In addition, its ability to grow

SiO2 by thermal oxidation is one of the unique advantages of

SiC over other wide-gap semiconductors. Among the typical

polytypes of SiC (3C, 4H, and 6H), 4H-SiC is the most suita-

ble polytype for electronic applications. However, thermal

oxidation of SiC has been believed to induce significant

amount of both interface defects3 and near-interface traps,4

which limit the inversion channel mobility of SiC metal-

oxide-semiconductor (MOS) field effect transistors, as well

as the performance reliability. For 6H-SiC surfaces, wet oxi-

dation has been reported to suppress the formation of those

defects, and the interface state density (Dit) is suppressed to

1011 cm�2 eV�1.5,6 In contrast it does not work efficiently for

4H-SiC,7,8 which is the most extensively investigated poly-

type of SiC, even though some reports indicate that pyro-

genic oxidation improves the interface of 4H-SiC (000�1)9

For the reduction of the effects of those interface defects on

4H-SiC, various passivation techniques including annealing

in NO.10,11 and H2
9,12 have been investigated. Among those

techniques, POCl3 treatment has been reported to work most

effectively to Dit,
11 though it does not contribute to improve

the threshold voltage stability. For further reduction of Dit,

we consider it is crucial to employ oxidation conditions suit-

able for the elimination of carbon-related byproducts from

the interface because the carbon residues are the most possi-

ble origin of those defects on 4H-SiC.3,4 In this study, we

demonstrate the formation of SiO2/4H-SiC (0001) interface

with Dit less than 1011 cm�2 eV�1, simply by the control of

thermal oxidation conditions without using those passivation

techniques.

Thermal oxidation kinetics of SiC has been discussed by

the modified Deal-Grove model,13 where the generation and

transport of CO are taken into account, in addition to the

transport and consumption of O2 at the interface of SiO2/

SiC. In this model, the overall reaction is expressed as

SiCþ 3

2
O2 ! SiO2 þ CO ": (1)

This simple consideration tells us that the oxidation condi-

tions to enhance an immediate out-diffusion of CO from the

SiO2/SiC interface are inevitably important. From the kinetic

viewpoint, it would be better to limit the oxide thickness

to enhance CO out-diffusion. We have already reported

that the thickness region �15 nm is thin enough for the inter-

face-reaction-limited growth for the dry oxidation at

1100–1300 �C on 4H-SiC (0001).14 In addition, from the

thermodynamic viewpoint, we also need to select the oxida-

tion temperature and the O2 partial pressure (pO2) suitable

for the enhancement of CO ejection. For the interface-reac-

tion-limited growth, it is reasonable to consider that the

interface is in non-equilibrium state where the gaseous prod-

ucts are immediately removed away from the interface.

Then, the reaction with the most negative free energy change

(DG) would be dominant among the possible reactions

between SiC and O2.15 For the ideal case, where the reaction

described by Eq. (1) occurs in one step, the SiO2 formation

is accompanied with the direct formation of CO molecule

from SiC. It is noticed that such reaction is predicted to give

the most negative DG only in the limited range of tempera-

ture for a given pO2. This is because carbon precipitation

(SiCþO2 ! SiO2þC) will be thermodynamically favored

for low temperature region, whereas active oxidation

(SiCþO2! SiOþCO) will be dominant for high tempera-

ture region.15 Taking into account the solubility limit of O2

in SiO2, �2.5� 1016 cm�3 16 for 1-atm O2 at around

1200 �C, one may assume that the effective pO2 at SiO2/SiC

interface is calculated to be �5� 102 Pa for a oxidation in

1-atm pO2 ambient. Then the temperature window for the

ideal reaction in 1-atm O2 is approximately estimated to

be 1100 – 1400 �C. Actually, we have observed a high

activation energy (�3.8 eV) of 4H-SiC (0001) oxidation at

1100 – 1300 �C in 1-atm O2,14 which is in good agreementa)Electronic mail: kikuchi@scio.t.u-tokyo.ac.jp
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with the calculated energy barrier for the direct CO ejection

from the interface via carbonyl structure.17

4H-SiC (0001), Si face, wafers with �1� 1016 cm�3

doped n-type epitaxial layers were cleaned in diluted HF,

followed by the oxidation at 1100 and 1300 �C in 1-atm dry

O2 with the ramp-heating furnace. A short rise/fall time

(>600 �C/min) was employed to minimize the unwanted

additional oxidation at lower temperature where the carbon

precipitation would be more pronounced. After the growth,

some films were annealed additionally at 800 �C in O2 for

30 min aiming for the reduction of interface defects. Such

post-oxidation annealing (POA) in O2 has been reported to

work efficiently for the elimination of carbon residues and/or

the annihilation of oxygen vacancies.5 Note that 800 �C is

sufficiently low temperature to neglect the additional growth

of oxide in 30 min, which does not contribute to the interface

deterioration by the oxidation at non-ideal temperature. The

POA at high temperature in inert gas has been employed in

some reports;6,8,18 however, we avoided such POA condi-

tions to suppress the possible formation of oxygen vacancies.

This is because the window for the thermodynamically ideal

reaction moves to lower temperature for lower pO2, as is

concluded from thermodynamic consideration.15 The back-

contact was formed by Ni evaporation followed by post-

metallization anneal in N2. Finally, Au electrodes were de-

posited as top-contact to form the MOS capacitors.

The bidirectional capacitance-voltage (C-V) characteris-

tics measured with various frequencies from 1 kHz to 1 MHz

are shown in Fig. 1 for the MOS capacitor fabricated with

oxidation at 1300 �C and POA at 800 �C. The oxide thick-

ness was determined to be �14 nm by grazing incidence

x-ray reflectivity. Not only the hysteresis but also the fre-

quency dispersion of the C-V curves are well suppressed

except for the depletion region where the effects of interface

states appear slightly. The ideal C-V curve, calculated from

Poisson’s equation, is also shown in Fig. 1 as a broken line.

For the calculation of the ideal curve, the oxide thickness,

the doping density of substrate, and the flatband voltage

(VFB) were set to 13.5 nm, 1.5� 1016 cm�3, and 1.7 V,

respectively. Note that the ideal curve agrees well with the

experimental high-frequency one at 1 MHz, which indicates

the formation of interface with low density of interface

defects. Especially, the good coincidence in accumulation

region clearly shows that the effects of near-interface traps,

which have been observed frequently in SiC MOS devi-

ces,10,19,20 are well suppressed.

The Dit values were estimated by the conductance

method21 assuming the equivalent circuit shown in Fig. 2(a).

Cox is the capacitances of gate oxide. Gp and CP are the con-

ductance and capacitance of SiC, respectively. Since the

maximum value of Gp/x, which was determined in the fre-

quency range from 20 Hz to 2 MHz in our experimental con-

dition, is directly related to the capacitance of interface

traps, Dit is approximated as the following relationship:

Dit ffi
2:5

q

Gp

x

� �
max

; (2)

where q and x are the elementary charge and the angular fre-

quency, respectively. Note that this method is quantitatively

more accurate and reliable, as long as the MOS capacitors

have nearly ideal C-V characteristics, than the high-low fre-

quency method which is often employed in the analysis of

SiC MOS capacitors.10,11

Before applying the conductance method, we deter-

mined series resistance (Rs) by the extrapolation of high-

frequency limit of the real part of impedance measured in

accumulation region. Then, Rs was removed from the meas-

ured impedance. The typical results of frequency dependence

FIG. 1. Bidirectional C-V characteristics of the MOS capacitor

(Tox� 14 nm) fabricated by 1300 �C oxidation followed by POA at 800 �C
in O2. Measurement was conducted at various frequencies from 1 kHz to

1 MHz. Broken line shows the ideal C-V curve calculated by Poisson’s

equation.

FIG. 2. (a) Equivalent circuit of MOS capacitors for conductance method.

(b) Frequency dependence of Gp/x measured at room temperature for the

MOS capacitor fabricated by 1300 �C oxidation followed by POA at 800 �C
in O2. (c) Interface defect state density as a function of energy level below

the conduction band, estimated from the peak values of Gp/x measured at

various temperatures from 150 – 300 K. The oxides grown at 1100 �C,

1300 �C, and 1300 �CþPOA at 800 �C in O2 are compared.
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of Gp/x are shown in Fig. 2(b). From the peaks, Dit values

were determined at each gate voltage, and shown in Fig. 2(c)

as a function of energy level with reference to the conduction

band edge of SiC. The measurements were done not only at

room temperature but also at 150 and 200 K to extend the

energy range of the characterization toward the conduction

band edge of SiC. As a result, for all the samples, we

observed interface state density as low as �1011 cm�2 eV�1

or less, which are lower than the reported values of as-

oxidized films on 4H-SiC (0001).20,22 In previous reports, it

has been indicated that, for as-oxidized films on 4H-

SiC(0001), Dit increases sharply to the values ranging from

1012 to 1013 cm�2 eV�1 near the conduction band edge.20

We believe such significant improvement is attributable to

the two factors: the limited oxide thickness to assure the re-

moval of CO accumulation, and the oxidation with ramp-

heating furnace which suppresses the unwanted low-

temperature oxidation of the interface. Both 1100 �C- and

1300 �C-oxidized interfaces show �1011 cm�2 eV�1 or less

for the energy range of 0.1–0.4 eV below the conduction

band edge of SiC. For 1300 �C oxidation, slightly lower Dit

is suggested than that of 1100 �C oxidation for deep energy

region. We speculate this might come from the fact that

1100 �C is closer to the lower limit of the temperature range

for thermodynamically ideal reaction.

It should be noted that the best results were demon-

strated by the oxidation at 1300 �C followed by the low-

temperature POA at 800 �C in O2 where Dit< 1011 cm�2

eV�1 was attained even 0.1 eV below the conduction band

edge of SiC. This POA temperature is sufficiently low to

neglect the additional oxidation of SiC at the interface, but

expected to annihilate the defects at the interface or in the

near-interface oxide. The oxidation temperature of 1300 �C
is high enough to avoid the unwanted low-temperature mode

as discussed above. On the other hand, oxidation at such a

high temperature possibly induces oxygen vacancies, since it

is suggested from the thermodynamic consideration that the

generation of SiO would be enhanced at 1300 �C, which is

close to the higher limit of the temperature range for the

ideal reaction. Therefore, we speculate that the improvement

by the low-temperature POA in O2 should be mainly attrib-

uted to the annihilation of oxygen vacancies induced by

high-temperature oxidation. The observed Dit after POA is

even less than the best reported ones with NO- or

P-passivated interfaces,10,11 especially for the shallow

energy levels which have influences on n-channel field effect

transistor operations. These results indicate that appropriate

selection of oxidation conditions is more effective for the

reduction of Dit compared with the conventional passivation

process employing NO. Further reduction of Dit would be

expected by combining our process with those passivation

techniques. It is reported that defects with very fast time con-

stant were observed for SiC MOS capacitors, which are

detected by the measurements at as high-frequency as 100

MHz and low temperature conductance method.20,23

However, our samples did not show any additional peaks in

our measurement range even at 150 K where the time con-

stant is expected to become more than three orders longer

than 300 K. This fact shows that there is no additional com-

ponents called “very fast states”23 in our samples. From

these results, we can conclude that one of the best way to

reduce the interface defect state density at SiO2/4H-SiC

(0001) is to control the thermal oxidation conditions.

The fact that Dit< 1011 cm�2 eV�1 is achievable simply

by the thermal oxidation even without any passivation tech-

niques, indicates that SiO2/4H-SiC (0001) system is poten-

tially favorable to form the interface with less dangling

bonds. In general abrupt change of atomic arrangement indu-

ces significant strains at the oxide-semiconductor interfaces,

which is one of the intrinsic driving forces to generate the

interface defects. We have reported that near-interface struc-

ture of thermally grown oxides on 4H-SiC (0001), Si face, is

less strained than that on (000�1), C face,24 and even less than

those on Si (001).25,26 We believe that this advantage of 4H-

SiC (0001) would be one of the reasons why only low den-

sity of interface state defects are intrinsically introduced at

this interface.

Last but not least, the stability of VFB against the electri-

cal stress was investigated at room temperature. The constant

voltage stress 63 MV/cm was applied repeatedly and shift

of VFB was observed. The leakage current levels of the three

samples were almost identical and less than �10�6 A/cm2

for þ3 MV/cm stress. They did not change significantly

throughout the stress test. As shown in Fig. 3, it was found

that POA at 800 �C was quite effective to suppress the stress-

induced VFB shift, which was well below 100 mV after

104 second stress. This shift is not so small but comparable to

the typically reported results of well-passivated 4H-SiC

MOS devices.27 Our results seem to have the rooms for fur-

ther improvement by optimization of POA conditions.

In conclusion, we demonstrated nearly ideal C-V charac-

teristics for SiO2/4H-SiC (0001) MOS capacitors, simply by

the control of thermal oxidation conditions. The low interface

defect state density, <1011 cm�2 eV�1 for the energy range of

0.1–0.4 eV below the conduction band edge of SiC, was

observed for the interface fabricated by thermal oxidation at

1300 �C, followed by POA at 800 �C. These results indicate

that the interface with low interface defect density is achieva-

ble for 4H-SiC (0001) simply by thermal oxidation.
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