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abstract

The nuclear shell model is one of the most powerful tools to explore the various properties of the
nuclei in wide region of the nuclear chart. In the shell-model studies of nuclei, effective interactions
are widely used inputs. The effective interactions are derived from microscopic theories or based on
fitting selected properties of nuclei in specific mass regions.

The commonly used unperturbed basis functions are given by the harmonic oscillator, reflecting
the shell structure. Until recently, most shell-model calculations have been confined to a single os-
cillator shell like the sd-shell or the p f -shell. However, recent experiments enabled us to obtain the
wide knowledge away from the stability line. Those require larger shell-model spaces than only single
oscillator shell. On the other hand, the derivation of microscopic effective interactions has been lim-
ited to degenerate model spaces because of the divergences appearing in the theory. Therefore, there
are both conceptual and practical limits to perform shell-model calculations with the non-degenerate
model spaces.

In this work, we present a novel microscopic method to calculate effective nucleon-nucleon (NN)
interactions for the nuclear shell model. Our method enables us to calculate the interaction defined in
non-degenerate model space as well as the degenerate model space. The formalism is presented in the
form of many-body perturbation theory based on the recently developed Extended Kuo-Krenciglowa
(EKK) method [1, 2]. The application of EKK method to many-body problem can be interpreted as
the re-definition of the unperturbed Hamiltonian and the perturbation. We show that this is exactly the
re-summation of the perturbation series, avoiding the divergences appearing in the existing theories.
There exist several non-trivial points in applying the EKK method to many-body problem, which we
explore in detail in the thesis.

We present numerical results using effective interactions within a single oscillator shell like the
sd-shell and the p f -shell, as examples so-called degenerate model space, and two major shells like
the sd f7 p3-shell and the p f g9-shell, as examples so-called non-degenerate model space. We also
present energy levels of several nuclei which have two valence nucleons on top of a given closed-
shell core. Several properties of the resultant effective interactions are also investigated. We compare
the effective interaction with the phenomenological interactions, which is fitted to experimental data.
We also investigate the convergence property of our perturbation theory. As a glance at the utility
of our effective interactions, we apply them and perform the shell-model calculations for to selected
cases where two major-shell degrees of freedom are essential.

As a conclusion, the present method works excellently in shell-model spaces that comprise several
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oscillator shells, as well as in a single oscillator shell. We show in particular that the microscopic inter-
shell interactions are much more attractive than has been expected by degenerate perturbation theory.
We also show that our method provide us a tool to estimate the error according to the approximations.
It is also shown that the consequences for shell-model studies using our effective interactions with the
model space consist of two-major shell are promising though preliminary.
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Chapter 1

Introduction

The nuclear shell model, a sophisticated theory based on the configuration interaction method, has
been one of the central theoretical tools for understanding a wealth of data from the experiments for
nuclear structure.

In 1950s, Mayor and Jensen invented the nuclear shell model [3, 4, 5]. They found that the atomic
nuclei have the similar shell structure to electrons in atom. The nucleons in nuclei successively fill
the orbits one by one, which are the eigenstates of the mean-field potential made by the nucleons
themselves. Those potentials were often approximated by harmonic oscillator potential or Woods-
Saxon potential. In addition, they introduced the strong spin-orbit force, which is relatively small for
atomic nuclei, as follows;

H =
p2

2m
+

1
2
ωx2 + α l · s. (1.1)

The experimental data at that time provided us the knowledge that the nuclei which have the specific
numbers of protons or neutrons show the special stability, and those numbers 2, 8, 20, 28, 50, 82, 126
are called magic numbers. The naive consideration of harmonic-oscillator potential gives us the magic
numbers of 2, 8, 20, 40, 70, · · · , but with the inclusion of the strong spin-orbit potential, they explained
the magic numbers correctly.

This nuclear shell model reproduced the properties of nuclei especially near the closed shell, with
a great success. Since the closed shell nuclei are quite stable and have zero angular momentum and
positive parity, the properties of nuclei with one particle or hole in addition to closed shell nuclei can
be mainly explained by the motion of single particle or hole in the mean potential. This was called
the independent shell model (ISM) and gave a great success in the description of the various property
of those nuclei, including spin-parity of the low-lying states, life-time, magnetic moments, and so
on. However when there are more than one particle with the closed-shell core, all the states with the
same configuration of filling the orbits are all degenerate, which is different from the experimental
observations. Therefore, obviously the inclusion of the effect of residual two-body interaction to ISM
is necessary as a next step.

For example, in 1960s, Talmi and Unna analyzed the shell-model calculation with two-body in-
teraction [6]. This method is based on the configuration interaction method. The Hamiltonian matrix
elements are calculated with all the possible combinations of the configurations, using the sophisti-
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8 Chapter 1. Introduction

cated angular-momentum algebra. Due to the rapid growth in the dimensionality of the Hilbert space
with increasing degrees of freedom, we usually have to work within a reduced Hilbert space, the
so-called model space. In their work, they regarded the residual two-body interaction as parameters
and fitted those parameters to reproduce the experimental data the best. They analyzed the nuclei like
40
19K21, 38

17Cl21 as the simple example, where two particles or holes on top of the core interact each other.
Their model space was, in this case, d3/2 orbit for proton particle or hole, and f7/2 orbit for neutron.
They also discuss the Calcium isotopes, with the degrees of freedom of the neutrons in the f7/2 only
and the two-body interactions with free parameters. They succeeded to reproduce the ground state
energies of Calcium isotopes in the framework of shell model [6]. In 1964, McCllen and his collabo-
rators covered the wider range of nuclei with 20 ≤ N, Z ≤ 28, using the Hamiltonians only consist of
f7/2 orbits of protons and neutrons. The experimental data of the various nuclei including spin parities
and the magnetic moments were reproduced [7].

For the attempts to extend the shell-model studies, the enormous efforts have been made. The
effective interaction forms an essential input to all shell-model studies. Therefore, once we know that
the shell model framework works, the central problems are how large matrix we can diagonalize, and
how we obtain the appropriate effective interactions. These two problems are inseparable, because
the effective interactions are designed for given model spaces. The developments of computer science
enable us to diagonalize the Hamiltonian matrix of larger model space. Then, the effective interactions
appropriate for those model spaces were constructed, correspondingly.

For the latter point, there exist two main approaches to determine effective interactions for the
nuclear shell model. One is based on the fitting of the matrix elements to reproduce the observed
experimental data, like the works we mentioned above. This approach has been widely used in nuclear
structure studies, and has been rather successful in reproducing properties of known nuclei and in
predicting properties of nuclei not yet measured experimentally. The other approach is to derive the
effective interaction using many-body theories, starting from bare NN interactions.

In 1966, the attempts to derive the effective interaction for the shell model were started. Kuo and
Brown reported the applicability of free NN interaction to the 18O and 18F, constructing the effective
interaction for the model space of sd-shell [8]. They treated the short-range repulsion of the NN in-
teraction with Brueckner’s G-matrix theory [9], and renormalized the virtual excitation to the outside
of the model space perturbatively, at second order in G-matrix.

Then, the folded-diagram method appeared on this line of works. In 1971, Kuo and his col-
laborators constructed the effective interactions with folded-diagram method. In this method, the
divergences appear in the perturbative expansion of the effective interaction are elegantly removed by
factorizing out the divergent parts of the diagrammatic series. Simultaneously, the folded diagram
theory include the infinite-order summation of the selected diagrams [10, 11].

On the other hand, with the development of calculational technique and the computer resources for
the diagonalization, the shell-model calculation of full sd-shell became tractable in late 1970s. Since
the microscopic methods do not have the parameters to fit the experimental data, the agreement to
experimental data was not satisfactory when the shell-model calculations were performed very good
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with the interaction. Then, the interactions which designed to fit the experimental data in the full
sd-shell were considered. The interaction is called universal sd-shell interaction, in short, USD by
Wildenthal and Brown [12, 13]. Then it became possible to reproduce the experimental data almost
whole range of the sd-shell nuclei with a great precision. The USD interaction became one of the
standard and most reliable interactions defined in sd-shell and is used even nowadays [14, 15]. There
have been the numerous efforts to construct the effective interactions in other regions as well, and
there are several effective interactions in p f -shell region [16, 17, 18]. This kind of interactions are
often called empirical effective interactions, in contrast to the effective interaction derived via the
microscopic theories.

The large-scale shell-model calculations have also been developed at the same time. As one of
them, in around 2000, the Monte-Carlo shell model calculation was developed and it enabled us
to diagonalize the even heavier nuclei. The effective interaction within sd f7/2 p3/2-shell degrees of
freedom is implemented at the same time [19]. With this interactions, they succeed to reproduce the
properties of “island of inversion”, which indicate the breaking the magic number of N = 20.

However, the main goal of effective interaction theory is still to construct and understand such
sophisticated effective interactions starting from the underlying nuclear forces and so-called ab initio
or first principle many-body methods. Most microscopic effective interactions, except for those used
in no-core shell-model studies [20, 21, 22], are based on many-body perturbation theory, starting in
many cases with the standard non-Hermitian Bloch-Brandow scheme [23, 24, 25, 26, 27] or with
Hermitian effective Hamiltonians [28] (see for example Ref. [29] for a recent review). The situation,
however, is far from being satisfactory. In spite of several developments in many-body perturbation
theory, many properties of nuclei are still awaiting a proper microscopic description and understand-
ing.

The standard approach to derive microscopic effective interactions for the shell model via many-
body perturbation theory, is so-called folded diagrams [11] approach. Two widely used approaches are
the Kuo-Krenciglowa (KK) [30] and the Lee-Suzuki (LS) [31] schemes. These approaches, however,
are feasible only with degenerate perturbation theory and are thereby constrained to a model space
consisting of typically one major oscillator shell. This poses a strong limitation on the applicability
of the theory. Many unstable nuclei require at least two or more major oscillator shells for a proper
theoretical description. As we mentioned above, for example, the physics on island of inversion are
only described by the empirical effective interaction [19], defined for a model space consisting of the
sd-shell and the p f -shell. It is therefore absolutely necessary to establish a microscopic theory that
allows us to construct an effective interaction for the model spaces composed of several oscillator
shells, starting from realistic nuclear forces.

We show the nuclear chart in Fig. 1.1. The black squares are stable nuclei, the dark gray squares
are experimentally known but unstable nuclei. The light gray squares are experimentally unknown
nuclei but theoretically predicted to exist. For the many stable nuclei, the nuclear shell model within
one-major shell degrees of freedom is enough to explain the various properties of those nuclei, as
we can expect from the figure. However, there are plenty of nuclei where one-major shell degrees
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Figure 1.1: Nuclear chart. The black squares are stable nuclei, the dark gray squares are experimen-
tally known nuclei and the light gray squares are experimentally unknown but theoretically predicted
to be existing nuclei. The nuclei in the red dashed square require inter-shell interactions.

of freedom are not enough, for example the nuclei in the red dashed squares. This areas include, for
example, the dripline of the light to medium-mass nuclei, and many of medium to heavy-mass nuclei.
This areas also include the island of inversion.

Recently, the KK and the LS methods have been extended to the non-degenerate model spaces [1,
2]. In this work, we present the extended KK (EKK) method in many-body systems, which allows us
to construct a microscopic effective interaction for several major shells. We shall see that our theory
is a natural extension of the well-known folded-diagram theory of Kuo and his collaborators (see for
example Refs. [30, 11]).

This thesis is structured as follows. In Chap. 2, we review the existing theories to derive the effec-
tive interaction for the shell model, starting from NN interaction. We briefly explain the concept of
the effective interaction in a given model space, and explain Kuo-Krenciglowa method. In Chap. 3 we
introduce our EKK theory for effective interactions. The formal theory of EKK method is presented
in Sec. 3.1, which is mainly a summary of references [1, 2]. After Sec. 3.2 until the end of this thesis
is devoted to the original works for this thesis, and the main part of them will be published in ref. [32],
including some figures. We discuss in some detail the difference between the EKK method and the
conventional KK approach which applies to degenerate model spaces only. In Chap. 4, we present test
calculations and discussions. Here we construct effective interactions for the nuclear shell model in
a single-major shell (sd-shell, p f -shell) and also in two major shells (sd f7/2 p3/2-shell, p f g9/2-shell).
We then calculate energy levels of several nuclei that have two valence nucleons on top of a closed-
shell core. We also show several features of the effective interaction derived via EKK method. We
demonstrate that our method establishes one possible way to reliably compute microscopic effective
interactions for model spaces composed of several major oscillator shells. In Chap. 5, we briefly
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explore the possible application of our effective interaction. We apply our effective interactions to
selected nuclei where two-major shell degrees of freedom is essential. These results are preliminary,
but are promising and provide us the insight for the future direction of the work. In Chap. 6 we give
a conclusion and a summary.





Chapter 2

Review of effective interaction for the shell
model

In this chapter, we review the various theories of the effective interaction of the nuclear force, focusing
on the renormalization scheme related to the effective interaction for the shell model.

Nuclear shell model is a configuration interaction method, which is based on usually two-body
interactions and single-particle energies.

Nuclear shell model starts from the following second quantized Hamiltonian,

H =
∑

i

ϵia†i ai +
∑

i jkl

Vi j,kl a†i a†jalak. (2.1)

The input parameter is the single particle energies ϵi and the two-body interactions Vi j,kl. Then, we
calculate the Hamiltonian of many-body states, and diagonalize it to obtain the eigenenergies and the
wave functions.

The creation (annihilation) operators create (annihilate) the nucleons in some discrete orbits. Usu-
ally, these orbits are defined as the eigenfunctions of the harmonic oscillator or the Woods-Saxon
potential, for example. Nuclei have several tens of nucleons typically, which usually give rise to in-
tractably large dimensions. Therefore we have to restrict ourselves to the finite small dimension, to
diagonalize the Hamiltonian matrices. We define a subspace of whole Hilbert space which is called
the model space, where the nucleons can move inside. We also in many cases consider a frozen-core
states like 16O, whose degrees of freedom are killed. As an approximation, the particles are assumed
to move only outside of the core, because these degrees of freedom are enough to explain many
part of the properties of the nuclei heavier than the core. This assumption enlarges the region of the
calculation drastically as well.

Therefore, we have to determine the suitable parameter ϵi and Vi j,kl appropriate to relevant degrees
of freedom. Once we have a reliable Hamiltonian, we can calculate the Hamiltonian of many-body
states and diagonalize it, to obtain the binding energies, wave functions, the strength of the transitions
and the other various useful physical quantities. These parameters are often called effective interaction
for the shell model calculations.
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14 Chapter 2. Review of effective interaction for the shell model

There exist two major ways to determine the effective interactions. One is determine the ϵi and
Vi j,kl by hand, to fit the experimental physical quantities like binding energies, spin-parities and so
on. This line of researches made a great success and explained many properties of various nuclei
as well as predicted the properties of experimentally unknown nuclei. The other is to derive the
matrix elements, starting from the NN interaction determined by the NN scattering experiments. The
extension of the second approach is the main purpose of this thesis.

In the derivation of the matrix elements from the NN interaction, there are two major problems to
concur. The first is that nucleon nucleon interaction has strong short-range repulsion, unlike electro-
magnetic force. Therefore, naive integral to calculate matrix elements almost diverges and we need
special treatments.

The other is that we need to include the indirect effects of the truncation to the model spaces,
not just calculate the matrix elements of the initial NN interaction. This is accomplished by the
perturbation theory. For degenerate perturbation theory, we have special technique called the folded-
diagram method.

In this section we review the formalism to derive effective interactions defined in a model space.
The process consists of two steps. First, nuclear force has strong short-range repulsion which we have
to renormalize, before the perturbative expansion. In Sec. 2.1, we review the two different approaches
of the renormalization of short-range repulsion, one of which is traditional and the other is modern.
In Sec. 2.2, a framework to derive the effective interaction appropriate for the chosen model space is
introduced. This is formulated as a similarity transformation of the Hamiltonian. The formal solutions
are given in Sec. 2.3, in two different ways. One is called the Kuo-Krenciglowa method and the other
is the Lee-Suzuki method. At last, in Sec. 2.4, the solution for many-body problem is presented. The
folded diagram method appears as the method to give a solution.

2.1 Renormalization of short-range repulsion

2.1.1 Nuclear force and short-range repulsion

The pioneering work on nuclear force has been done by H.Yukawa in 1935 [33]. He proposed the
theory of pion which account for strong and finite range attractive nature of the nuclear force. The
range of the nuclear force caused by exchange of meson of finite mass ma is given by the following
Compton length,

λa =
!

mac
. (2.2)

Therefore, the range of nuclear force is determined by the lightest meson mass, pion (mπ ≈ 140 MeV),
corresponding range is λπ = 1.4 fm. On the other hand, when the distance of two nucleons is less than
λπ, other mesons such as ω,σ, η . . . contribute to the nuclear force.

The experiment of NN scattering up to several hundred MeV revealed that nuclear force is strongly
repulsive at short range, typically in the range closer than 0.5 fm. This strong repulsion is called
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repulsive core. In such a range, the nuclear force is considered to be affected by the internal structure
of nucleons whose charge radius is approximately

√
⟨r2⟩e = 0.8 fm in the case of proton.

The nuclear force depends not only on distance of two particles, but also on the states of two
nucleons. Here the word state indicates total spin, total isospin and angular momentum quantum
numbers of two nucleons. This feature of the nuclear force gives variety of phenomena in nuclear
structure physics. In late 1950s, many experiments have been done for the purpose to know the state
dependence of the nuclear force using facilities of polarized nucleons.

In 1951, Taketani, Nakamura and Sasaki gave an important proposal [34]. They claimed that the
long range part of nuclear force should be determined by the meson exchange mechanism and the
short range part by phenomenological considerations because it includes many complicated effects at
short range.

Although quantitative understanding is greatly improved, the basic philosophy of this field does
not widely change from that period. At the present condition, the long range part (distance r > 2
fm) is determined completely by one pion exchange potential (OPEP) not only qualitatively but also
quantitatively. The part where r < 2 fm is separated into two ranges, the intermediate range and the
short range. The intermediate range part is considered to result from exchange of mesons heavier
than pion, but quantitative structures are determined by phenomenological fit. The short range part
is considered to result from internal structure of nucleons, but at the actual calculations of nuclear
structure, phenomenological potentials are used in many cases.

Nowadays, there are plenty of experimental data to determine the nuclear force. Several potentials
were made that reproduce scattering data of two-nucleons and properties of deuteron. These potentials
are often called realistic nuclear force.

The Argonne potentials are example of such potentials. These are series of realistic nuclear forces,
written in local operator form [35, 36]. Long range part is OPEP and intermediate and short range
are determined by the phenomenological fit with experimental data of deuteron and phase shift of
elastic scattering of two nucleons. Local operators are considered to include many mesons’ degrees
of freedom implicitly.

2.1.2 Brueckner’s theory

The Brueckner’s theory is the theory to renormalize the short-range repulsion of the nuclear force.
When we calculate the matrix elements naively with the basis of plain waves eikx or harmonic oscilla-
tor wave functions, the short-range repulsion makes the results singular. This fact makes the nuclear
many-body problem complicated. The attempt to apply the realistic NN interaction directly to many-
body theory fails, because of this singularity of the potential. However, in the actual nuclei or nuclear
matter, the distance between two nucleons are larger than the range of short-range repulsion. In other
words, the wave functions of two nucleons do not have the overlap in short range, and the matrix ele-
ments result in finite even if the nuclear force have the singularity. The philosophy of the Brueckner’s
theory is that the combination of the singular nuclear force and the normal wave function results in
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the same as the combination of the singular wave function and the renormalized nuclear force. In the
other words, the simultaneous transformation of the basis states and the interaction makes the results
finite and reasonable.

The G-matrix is defined by the integral equation, which is a form of Bethe-Goldstone equation,

G = V + V
Q
e

G, (2.3)

where Q is the Pauli operator which exclude all the occupied states. The denominator e is defined as
e = E − Ei, where E is the sum of self-consistent initial energies of two nucleon, and Ei is the sum of
intermediate energies. This is clearly a self-consistent equation, for G is appearing left-hand side and
right-hand side. Therefore, it corresponds to the summation of ladder diagrams up to infinite order in
V .

The G-matrix also satisfies the following equation,

Gφ = VΩφ = Vψ (2.4)

where φ is the unperturbed wave function, Ω is the wave operator and ψ(= Ωφ) is the correlated wave
function which vanishes inside of the core radius. With the infinite summation of V in Eq. (2.3), even
if the V is infinite the resultant G-matrix is finite, because the correlated wave function in Eq. (2.4) is
vanished inside of the core radius.

We have to aware of one thing. When we use G-matrix as the effective interaction which do not
has repulsive core, we need to consider the energy dependence in Eq. (2.3). This energy is often
called starting energy and the resultant G-matrix is starting energy dependence. This feature is not
convenient to calculate the effective interaction for the shell model via the perturbation theory, because
we have to prepare the set of G-matrices for all the starting energies.

The newly invented Vlowk interaction explained in the subsequent section does not have such a
parameter dependent. In this thesis, we used the Vlowk technique to renormalize the repulsive core,
instead of G-matrix.

2.1.3 The low-momentum interaction Vlowk

The Vlowk approach is more recent approach than Brueckner’s G-matrix. The main merit of this new
approach is that the obtained effective interaction Vlowk is energy-independent, unlike G-matrix.

The Vlowk potential is invented in these references [37, 38, 39, 40].
By solving the Lippmann-Schwinger equation, we obtain the following Half-On-Shell T-matrix,

T (k′, k; k2) = VNN(k′, k) +
2
π
P

∫ ∞

0

VNN(k′, p)T (p, k; k2)
k2 − p2 p2dp (2.5)

for a given partial wave.
In the low-momentum effective theory, the interaction and T-matrix are defined in the region of

the momentum is lower than certain cutoff Λ. It is required that the low-momentum interaction leads
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the same physics, that is, T-matrix. Therefore, the Vlowk potential is defined by the following equation
parametrized by the cutoff parameter Λ,

T (k′, k; k2) = Vlowk(k′, k) +
2
π
P

∫ Λ

0

Vlowk(k′, p)T (p, k; k2)
k2 − p2 p2dp. (2.6)

Because T-matrix is invariant under the cutoff Λ, The scattering standing wave function |χk⟩ is
also invariant, and therefore expressed as the following standard equation of T-matrix,

|χk⟩ = |k⟩ +
2
π
P

∫ Λ

0
p2dp

1
k2 − p2 T (p, k; k2)|p⟩ (k < Λ). (2.7)

Then, taking the derivative with respect to Λ in Eq. (2.6), we obtain,

0 =
dVlowk(k′, k)

dΛ
+

2
π
P

∫ Λ

0

(
dVlowk(k′, k)

dΛ
T (p, k; k2)

k2 − p2 +
Vlowk(k′, k)

k2 − p2

dT (p, k; k2)
dΛ

)
p2dp

− 2
π

Vlowk(k′,Λ)T (Λ, k; k2)
1 − (k2/Λ2)

(2.8)
∫ Λ

0

dVlowk(k′, p)
dΛ

χk(p)p2dp =
2
π

Vlowk(k′,Λ)T (Λ, k; k2)
1 − (k2/Λ2)

. (2.9)

Multiplying ⟨χ̃k| from the left and using completeness relation, finally we have the following renor-
malization group flow equation,

dVlowk(k′, k)
dΛ

=
2
π

Vlowk(k′,Λ)T (Λ, k;Λ2)
1 − (k2/Λ2)

. (2.10)

Even if we know this RG equation exists, it is not easy to solve the differential equation directly
for the actual case. For our purpose of NN scattering problem, we can calculate Vlowk in the other way.
In the derivation of Vlowk RG equation, we impose that the T-matrix is invariant under the change of
the cutoff Λ, which means the wave function in the low-momentum sector is unchanged. In the case
of NN scattering problem, we can calculate the exact wave function numerically. For the numerical
capability, we discretize the momentum, k1, k2, . . . , kn. Then the solution of Schrödinger equation is
calculated by direct diagonalization of Hamiltonian matrix in momentum space,

H|ψi⟩ = Ei|ψi⟩. (2.11)

The wave functions in low-momentum sector are defined as,

|χ(ki)⟩ = |ψ(ki)⟩ (ki ≤ Λ) (2.12)

|χ(ki)⟩ = 0 (ki > Λ),

where |χ⟩ is the renormalized wave function for the low-momentum effective theory and |ψ⟩ is the
exact wave function. Then we can calculate the Vlowk interaction as

H0 + Vlowk =
∑

i

|χi⟩Ei⟨χ̃i| (2.13)
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where |χ̃i⟩ is bi-orthogonal basis which satisfies

⟨χ̃i|χ j⟩ = δi j. (2.14)

Usage of bi-orthogonal basis implies that the resultant Hamiltonian in the effective theory is non-
hermitian. This is clearly the consequence of momentum cutoff. However, because of the strong
repulsive property of the short range part of the nuclear force, the high-momentum component of the
exact wave function |ψ⟩ is generally small. In that case, we can remove the non-hermiticity by the
method of Andreozzi [41], not changing all the physical observables but changing the wave function
slightly. We will discuss the refinement of non-hermitian effective interaction to hermitian effective
interaction again, in Sec. 2.2.3.

Figure 2.1: Numerical calculation of the Vlowk interaction with various cutoff Λ. The original NN
interaction is Argonne V8’ potential, and the cutoff Λ = 1.0 − 5.0 fm−1.

Let us see the numerical example of Vlowk starting from the realistic nuclear force. Figure 2.1
shows Vlowk interaction with various cutoff. The interaction is shown in momentum space in 2D
plot, with the cutoff Λ = 5.0 − 1.0 fm−1. The initial potential is Argonne V8’ (AV8’) potential, as
an example [36]. The bare AV8’ potential has large repulsive low to high momentum coupling. This
corresponds to the repulsive core at short range. As the cutoff Λ getting smaller, The repulsion getting
smaller and smaller, and we can not see it at all at Λ = 2.0 fm−1. In this sense, the interaction getting
“softer” as cutoff Λ is small and therefore suitable for the perturbative calculation.

However, One should note the fact that the formalism of Vlowk is only defined in 2N system. The
transformation between 2N system inevitably induce the 3N or higher-body force, schematically,

Vbare(2N)→ Vlowk(NN) + Vind(3N) + Vind(4N) + · · · , (2.15)
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where subscripts ind indicate the force induced by the renormalization. In the limit of large cutoff Λ
the induced 3N force Vind is zero by definition, and with the small cutoff, induced 3N becomes large.
For this point, Nogga and his collaborators have done a elegant work in 2004 [42]. They calculated
the Vlowk potential starting from various realistic NN interaction, and then calculate the few nucleon
system by Faddeev-Yakubovsky equations only with two-body force. They showed the Λ dependence
of the binding energies of 3N or 4N system, which clearly depend on the size of induced higher-body
forces. They claimed that the Λ dependence is not very large at Λ ≥ 1.0 fm−1 region, which means
the induced higher-body force is not so large in this region. They also compare the calculated binding
energies of 3H and 4He to the experimental data and claim that the value around Λ = 2.0 fm−1 best
reproduce the experimental value of both two nuclei. There exists the three-body force initially in
nuclear force because the nucleons are composite particles consist of quarks. Therefore, the best
reproduction of the experimental data means, in turn, the effects of the initial and induced three or
higher-body force cancel out each other in those system.

In their work, only 3N and 4N systems are considered. Therefore, only if we believe that the
higher-body force cancel exactly including all the channel dependence and strength, we can calculate
the many-body system composed of more than four nucleons. However, there are some evidence that
the explicit inclusion of 3N force improves the reproduction of the physical quantities far from the
stability line. Combining those two facts, we may have to think about the cutoff issue again. We will
come back to this point in the framework of EKK method again.

2.2 Renormalization of the medium effects

In this section, we review the second step to calculate the effective interactions for the shell model.
The first step was to remove the repulsive core by changing the basis states. The resultant effective
interaction do not have short-range repulsion or high-momentum component and so do the renor-
malized wavefunctions. Therefore, the Vlowk interaction does not have singularity which prevent us
performing the perturbative calculations.

In the second step, starting from the renormalized interaction, we move on the perturbation theory
to calculate the effective interaction designed for suitable model spaces.

2.2.1 model space

First of all, we define the model space mathematically and clarify the notation. Suppose we describe
a quantum system by the following Hamiltonian

H = H0 + V, (2.16)

where H0 is the unperturbed Hamiltonian and V is the perturbation. In a Hilbert space of dimension
D, we can write down the many-body Schrödinger equation as

H|Ψλ⟩ = Eλ|Ψλ⟩, λ = 1, · · · ,D. (2.17)
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In shell-model calculations, however, the dimension D of the Hamiltonian matrix increases exponen-
tially with the particle number, limiting thereby the applicability of direct diagonalization procedures
to the solution to Eq. (2.17).

In this situation, we introduce a P-space (model space) of a tractable dimension d ≤ D that is
a subspace of the large Hilbert space of dimension D. Correspondingly, we define the projection
operator P onto the P-space, and Q = 1 − P onto its complement. We require that the projection
operators P and Q commute with the unperturbed Hamiltonian H0,

[P,H0] = [Q,H0] = 0. (2.18)

As a consequence, the projection operator P and Q satisfy the following relations,

P2 = P, Q2 = Q (2.19)

PQ = QP = 0, (2.20)

[P,Q] = 0. (2.21)

Figure 2.2: The model space is presented schematically. The black dashed line is the model space
and the gray dashed line is the particle states outside the model space. The circle indicate the inert
core, for example, 16O.

Figure 2.2 shows the schematic image of the model space. The gray circle is the inert core, and
the black dash lines are the model space, and the gray dash-doted lines are in the Q-space. The two
particles move only inside the model space. Two particles interact only inside the model space. The
presence of the core and the orbits outside the model space should be considered to affect the Veff

defined in P-space, and be not included to shell-model calculation as explicit degrees of freedom.

2.2.2 Energy-dependent approach

We start our explanation by introducing an energy-dependent effective Hamiltonian. By using the
projection operators P and Q, we can express Eq. (2.17) in the following partitioned form (λ =
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1, · · · ,D): ⎛
⎜⎜⎜⎜⎜⎝
PHP PVQ
QVP QHQ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ = Eλ

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ , (2.22)

where |φλ⟩ = P|Ψλ⟩ is the projection of the true eigenstate |Ψλ⟩ onto the P-space. The Q-space
component is written as |ρλ⟩ = |Ψλ⟩ − |φλ⟩. Then we obtain

|ρλ⟩ = (Eλ − QHQ)−1QVP|φλ⟩ (2.23)

|φλ⟩ = (Eλ − PHP)−1PVQ|ρλ⟩. (2.24)

Substituting these equations, we can decouple the equations to P-space and Q-space respectively as
follows,

(
PHP − 1

Eλ − QHQ
QVP

)
|φλ⟩ = Eλ|φλ⟩ (2.25)

(
QHQ − 1

Eλ − PHP
PVQ

)
|ρλ⟩ = Eλ|ρλ⟩. (2.26)

The first equation is exactly the secure equation defined purely in P-space and the second one is in
Q-space. For our purpose of obtaining the effective theory defined in P-space, we adapt Eq. (2.25)
and introduce the following Bloch-Horowitz effective Hamiltonian HBH defined purely in the P-space,

HBH(E) = PHP + PVQ
1

E − QHQ
QVP. (2.27)

Then Eq. (2.17) reads,
HBH(Eλ)|φλ⟩ = Eλ|φλ⟩, λ = 1, · · · ,D. (2.28)

Note that Eq. (2.28) requires a self-consistent solution, because HBH(Eλ) depends on the eigenen-
ergy Eλ. In the previous section, we saw the case of Vlowk in which we know the exact solution but
still we needed to calculate the effective interaction. In the present case, however, we do not know the
exact solution generally, because the Hamiltonian in the full space is supposed to have the intractably
large dimension. Therefore, the energy-dependence of the effective interaction is not a desirable prop-
erty for the shell-model calculation, and therefore we adopt the energy-independent approach below.

2.2.3 Energy-independent approach

Next we introduce the energy-independent effective Hamiltonian in the P-space. We first choose d
eigenstates {|Ψi⟩, i = 1, · · · , d} among D solutions of Eq. (2.17), with d ≤ D. Then we require that
|φi⟩ = P|Ψi⟩, the P-space component of the chosen d eigenstates, be described by the d-dimensional
effective Hamiltonian Heff as

Heff |φi⟩ = Ei|φi⟩, i = 1, · · · , d. (2.29)

This energy-independent effective Hamiltonian is most concisely described as

Heff =

d∑

i=1

|φi⟩Ei⟨φ̃i|, (2.30)
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which is equivalent to Eq. (2.13), appearing in the derivation of Vlowk. In the derivation of Vlowk, P-
space can be interpreted as the low-momentum space whose initial and final momentum k, k′ ≤ Λ and
Q-space is high-momentum space. However, Eq. (2.30) is also just a formal solution because we do
not know the exact solution |Ψi⟩ and its projection to P-space |φi⟩. Now we need to obtain the effective
interaction Veff without solving the original Schrödinger equation by the direct diagonalization.

To derive the energy-independent effective Hamiltonian Heff , let us consider the following simi-
larity transformation of the Hamiltonian H:

H = e−ωHeω, QωP = ω. (2.31)

By construction, the transformed Hamiltonian,H , gives the same eigenenergies as the original Hamil-
tonian H. The corresponding eigenstates |Ψi⟩, however, are transformed into e−ω|Ψi⟩. We require
therefore that the second relation in Eq. (2.31),

QωP = ω, (2.32)

satisfies
Pe−ω|Ψi⟩ = P(1 − ω)|Ψi⟩ = |φi⟩, (2.33)

that is, the transformation does not change the P-space component |φi⟩ of the eigenstates. Here we
used the fact that ω2 = 0. With this transformation, the P-space components of any wave-function is
unchanged.

Then, Our next step includes the determination of ω. The most convenient way to determine ω is
by using the following equation

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (2.34)

which decouples the P-space part in the transformed Schrödinger equation. Comparing to Eq. (2.27),
starting from this transformed Hamiltonian H , the Bloch-Horowitz Hamiltonian is just PHP. This
means that the P-space part of the transformed Hamiltonian, PHP, is exactly Heff in Eq. (2.29). Then
the effective Hamiltonian and the effective interaction can be written as

Heff = PHP

= Pe−ωHeωP

= P(1 − ω)H(1 + ω)P

= PHP + PVωP

= PHP + PVQω (2.35)

Veff = PVP + PVQω. (2.36)

We note here that Heff is energy-independent. Furthermore, the derivation of Heff requires the deter-
mination of ω in order to satisfy Eq. (2.34).
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As we discussed in Sec. 2.1.3, the resultant effective interaction is non-Hermitian. In the lan-
guage of ω, the similarity transformation Eq. (2.31) is not an unitary transformation because ω is not
Hermite. Now we see the way to remove this non-Hermite part of the effective Hamiltonian. Let us
consider the following operator defined in P-space (P + ω†ω) and we obtain

(P + ω†ω)Heff = H†eff(P + ω
†ω). (2.37)

By means of Cholesky decomposition, it can be rewritten by the lower-triangular matrix L and its
adjoint L†,

P + ω†ω = LL†. (2.38)

Then we get the following,

L−1H†effL = L†Heff(L†)−1 =
(
L−1H†effL

)†
(2.39)

This implies that the Hermitian effective interaction with the same eigenvalues as the original Heff ,

Hher
eff = L†Heff(L†)−1. (2.40)

The combined transformation U = eω(L†)−1 is an unitary transformation.
The unitary transformation does not change all the eigenvalues, therefore, the phase shifts and the

other physical quantities, but changes the wave function. Since the operator L is L = P + O(ω), if
ω is small the non-Hermiticity is also small and therefore the change of wave function is small. For
our problem of Vlowk potential, the Q-space high-momentum component of the exact wave function
is small and so ω is small. For the problem of shell model effective interactions, we find the same
observation. For example, if we consider the case of 18O, two neutrons are placed in the orbits
outside the 16O core. The lowest orbits are of course sd-shell and for low-lying states, the occupation
probability of p f -shell or higher-shell is almost negligible. This suggests the transformation from
non-Hermite effective interaction to Hermite effective interaction does not affect the wave function
and other physics, in the case that we calculate the effective interaction for the shell model.

In summary, we consider the similarity transformation Eq. (2.31) with the minimal transformation
condition, which changes neither selected d eigenvalues nor the P-space component of the wavefunc-
tions. Then we impose decoupling condition shown in Eq. (2.34), to decouple the P-space physics
from the Q-space. The resultant effective interaction Heff is slightly non-Hermitian and we further
transform it to Hermite Hamiltonian by using the operator obtained by means of Cholesky decompo-
sition of the operator defined in P-space, shown in Eq. (2.38).

In the next section, we will see the solution of Eq. (2.34). Since this is the non-linear equation of
ω, there exists no unique solution, and we have several ways to obtain the solutions.

2.3 Formal theory of effective interaction

The decoupling equation Eq. (2.34), being nonlinear, can be solved by iterative methods, to give Heff

and Veff of Eq. (2.36). Although the decoupling equation Eq. (2.34) itself is valid in the general cases,
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the following solutions need the condition of degenerate unperturbed eigenvalues in P-space. We first
explain the KK method [30] for the degenerate model space. Then we explain the LS method [31] for
the degenerate model space. Both methods eliminate the energy-dependence of HBH(E) of Eq. (2.27)
by introducing the so-called Q̂-box and its energy derivatives, resulting in an energy-independent
effective interaction Heff.

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provides us a one possible way to solve this decoupling equation. Multiplying
(ϵ0 − QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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to Q-space degrees of freedom. In addition, to obtain exact solution of Veff , we need to include
multiple scatterings to Q-space, that is, the P-space state has to be excited to Q-space once, come
back to P-space and excite to Q-space again. The infinite summation can be considered as the multiple
scattering to Q-space. The more concrete interpretation of the Eq. (2.46) is given in the framework of
time-dependent perturbation theory (See Sec. 2.4.2).

We stress here again that the above KK method can only be applied, by construction, to a system
with a degenerate unperturbed model space that satisfies PH0P = ϵ0P. It cannot be applied, for
instance, to obtain the effective interaction for the model space composed of the sd-shell and the
p f -shell.

2.3.2 Lee-Suzuki (LS) method

In this section, we see another way to solve the decoupling equation Eq. (2.34). Starting from the
Eq. (2.34) in the following form, we obtain

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω

ω =
1

ϵ0 − QHQ
QVP − 1

ϵ0 − QHQ
ωVeff . (2.47)

In LS method, we transform the Veff in a different way as KK method, using the above expression of
ω as follows:

Veff = PVP + PVQω

= PVP + PVQ
(

1
ϵ0 − QHQ

QVP − 1
ϵ0 − QHQ

ωVeff

)

= Q̂(ϵ0) − PVQ
1

ϵ0 − QHQ
ωVeff (2.48)

therefore, Q̂-box can be rewritten by means of Veff ,

Q̂(ϵ0) =
(
1 + PVQ

1
ϵ0 − QHQ

ω

)
Veff

Veff =
1

1 + PVQ
1

ϵ0 − QHQ
ω

Q̂(ϵ0) (2.49)

To obtain the numerical solution, we apply the following iteration scheme according to Eqs. (2.47)
and (2.49),

V (n)
eff =

1

1 + PVQ
1

ϵ0 − QHQ
ωn

Q̂(ϵ0) (2.50)

ωn =
1

ϵ0 − QHQ
QVP − 1

ϵ0 − QHQ
ωn−1V (n−1)

eff . (2.51)



26 Chapter 2. Review of effective interaction for the shell model

By substitutingωn to the expression of V (n)
eff successively, finally we obtain the iterative formula written

in terms of Q̂-box and Veff ,

V (n)
eff =

1

1 − Q̂1 −
n−1∑

m=2

Q̂m

n−1∏

i=n−m+1

V (i)
eff

Q̂(ϵ0). (2.52)

The main merit of this iterative formula is that Veff appears in the denominator, in contrast to KK
method. Therefore, the divergence of Veff never happens. Therefore, the LS method reproduce the
lowest d eigenstates and will never affected by the intruder states. However, it is difficult to interpret
Eq. (2.52) with the time-dependent perturbation theory.

2.4 Many-body theory of effective interaction

For the purpose of obtaining the effective interaction for the shell model, we need to apply the formal
theory of the effective interaction in Sec. 2.3 to nuclear many-body systems. In Sec. 2.4.2, we explain
the standard Kuo-Krenciglowa (KK) theory in a many-body system. Its diagrammatic expression
can be established both in time-dependent [11] and time-independent [23] perturbation theory, and is
conveniently summarized by the Q̂-box expansion in terms of the so-called folded diagrams [11]. In
this thesis, we discuss the time-dependent version of the derivation of the effective interactions.

2.4.1 Model space in many-body system

Our quantum many-body system is described by the following second quantized form,

H = H0 + V

=
∑

ϵαa†αaα +
1
2

∑
Vαβ,γδa†αa†βaδaγ, (2.53)

where H0 is the unperturbed Hamiltonian and V is the two-body interaction. We limit ourselves,
for the sake of simplicity, up to two-body interactions only, although the theory can be extended to
include three-body or more complicated nuclear forces.

For specifying single-particle states, we use indices a, b, c, d for valence single-particle states (ac-
tive single-particle states), and p and h for passive particle and hole single-particle states, respectively.
In a generic case, we use Greek indices.

In a many-body system, the P-space is defined using the valence single-particle states that make
up the P-space. Let us take as an example the nucleus 18O, where we treat 16O as a closed-shell
core. In this case we can define the P-space by specifying the valence states to be determined by the
single-particle states of the sd-shell. The P-space is then composed by the 16O closed-shell core plus
two neutrons in the sd-shell.
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Explicitly, P-space taken as the d-dimensional subspace of the whole Hilbert space, which have
two nucleons on top of the core,

P =
d∑

i

|φi⟩⟨φi| (2.54)

|φi⟩ =
∑

a†λa
†
γ|c⟩. (2.55)

Hereafter we write the wavefunctions within P-space with small letters, and the capital letters usually
indicate the wavefunction defined in the whole Hilbert space.

In the following, we derive Heff (and Veff) in Eq. (2.36) with the above Hamiltonian Eq. (2.53),
which gives

Heff |φi⟩ = Ei|φi⟩, i = 1, · · · , d, (2.56)

for the many-body system.

2.4.2 Kuo-Krenciglowa (KK) method

In this section, we revisit the KK method in the framework of the many-body perturbation theory.
The theory is applied to degenerate P-space. As a consequence, Eq. (2.46) is lead in the framework of
the time-dependent perturbation theory. In the degenerate perturbation theory, the naive perturbative
treatments lead obvious divergences, originating from the zero energy denominator.

Actually, the iterative solution of the Eq. (2.46) shows that the KK method is more than a naive
perturbation theory.

We start our discussion from the following Schrödinger equation written in Schrödinger picture,

H|Ψn⟩ = En|Ψn⟩ (2.57)

with n being n = 1, 2, · · · ,N where N is the dimension of the Hamiltonian matrix. The Hamiltonian
consist of unperturbed H0 and perturbation H1,

H = H0 + H1. (2.58)

To formulate the time-dependent perturbation theory, we move to the interaction picture. In in-
teraction picture, the wave functions, the perturbative part of the Hamiltonian H1 and the operator
depend on the time t explicitly,

HI
1(t) = e−iH0tH1eiH0t

|ΨI(t)⟩ = e−iH0t|ΨI(t)⟩ (2.59)

ÔI(t) = e−iH0tÔeiH0t,

where the superscripts I indicate the operators and wavefunctions are written in interaction picture. In
the following, we usually omit the superscripts.
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Using the expressions of the interaction picture, the time-development operator is defined as the
operator to develop the wave functions at the time t′ to that of time t, that is,

|Ψ(t)⟩ = U(t, t′)|Ψ(t′)⟩ (2.60)

and with the Dyson equation the time-development operator is written down as the following pertur-
bative form,

U(t, t′) = lim
ϵ→0

lim
t′→−∞(1−iϵ)

∞∑

n=0

(−i)n

n!

∫ t

t′
dt1

∫ t

t′
dt2 · · ·

∫ t

t′
dtnT [H1(t1)H1(t2) · · ·H1(tn)]. (2.61)

Applying Eq. (2.59) with the notation in Eq. (2.53), the creation and annihilation operators of
nucleons in interaction picture are written down simply as

ai(t) = e−iϵitai

a†i (t) = eiϵita†i . (2.62)

Since the time-development is factorized out in this expression, one can evaluate time-development
operator shown in Eq. (2.61) as a diagrammatic form in a usual manner.

Now we consider the states defined in the P-space, called parent states. First we chose the D-
solutions of Eq. (2.57). Then consider a projection from the eigenvector |Ψλ⟩ to |ρλ⟩, |ρλ⟩ being a
member of P-space wave function. Therefore, the parent states |ρλ⟩ can be expanded with basis space
of P-space,

|ρλ⟩ =
d∑

α=1

C(λ)
α |ψα⟩. (2.63)

Taking the true eigenstates |Ψλ⟩ linearly independent, we can choose the projection such that |ρλ⟩
satisfies the following orthogonality conditions,

⟨ρλ|PΨµ⟩ = 0 (λ ! µ = 1, 2, · · · ,D). (2.64)

Note that the parent states |ρλ⟩ are only a mathematical tool, because |ρλ⟩ can be calculated only
knowing the effective Hamiltonian Heff. This projection is not available until we know the final result
Heff . Therefore, the final results should not depend on the knowledge of |ρλ⟩. We demonstrate the
results actually does not include |ρλ⟩ explicitly.

Using the orthogonality condition Eq. (2.64), the parent states correspond to true eigenstates by
the following equation,

|Ψλ⟩
⟨ρλ|Ψλ⟩

= lim
ϵ→0

lim
t′→−∞(1−iϵ)

U(0, t′)|ρλ⟩
⟨ρλ|U(0, t′)|ρλ⟩

(2.65)

and therefore,

H
U(0,−∞)|ρλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

= Eλ
U(0,−∞)|ρλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

. (2.66)
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This imaginary time development leads us to a d lowest eigenenergies Eλ with true eigenstates of
|Ψλ⟩ with non-zero overlap to P-space. In the actual calculation, however, for we only calculate the
effective interactions approximately, we might not necessarily obtain the lowest D eigenvalues.

Equation (2.65) can be expressed by the basis states in P-space |ψλ⟩ instead of |ρλ⟩, using the
expansion in Eq. (2.63) as follows,

D∑

α=1

C(λ)
α H

U(0,−∞)|ψλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

=

D∑

β=1

C(λ)
β Eλ

U(0,−∞)|ψλ⟩
⟨ρλ|U(0,−∞)|ρλ⟩

. (2.67)

Therefore, HU(0,−∞) is nearly the effective interaction Heff defined in P-space. However, the
perturbative expansion of HU(0,−∞) leads a divergence immediately, because of the zero energy
denominators.

The important point of KK method is the removal of those divergences. We will see that we can
factorize the divergent parts of Eq. (2.67), and cancel them out. We use the familiar factorization
theorem whose proof will be presented in Appendix B. The factorization theorem tells us that a
diagram consist of several disconnected pieces can be evaluated by the product of those individual
pieces. We factorize the numerator and denominators in Eq. (2.67), focusing on the states consist of
two-particle plus the inert core.

Let us start from the numerator. The factor U(0,−∞)|ψα⟩ includes all the contributions of the time
development of two particles plus the core states. Then, we can factorize the contribution which has
no connection to any of the valence states as follows:

U(0,−∞)|ψα⟩ = UV(0,−∞)a†i a†j |c⟩ × U(0,−∞)|c⟩, (2.68)

where the subscript V indicates the fact that the diagram has at least one connected valence line. The
first factor indicates the contributions of the process starting from two particles plus core and the
second factor is considered to be insertion of bubble diagrams and the contribution terminate at t = 0
as a states with equal numbers of particles and holes. We can express this consideration explicitly
using the factorization theorem again,

U(0,−∞)|c⟩ = UQ(0,−∞)|c⟩ × ⟨c|U(0,−∞)|c⟩, (2.69)

where the subscript Q means the diagram terminate as the state of Q-space at t = 0.
The first term of Eq. (2.68) UV(0,−∞)|ψα⟩ experiences the similar decomposition as Eq. (2.69).

As final states of the time development by UV(0,−∞), the states results in the states within P-space
and the states within Q-space at the time t = 0, that is,

UV(0,−∞)|ψα⟩ = |χP⟩ + |χQ⟩. (2.70)

where |χP⟩ is the term which terminates at t = 0 as P-space state and |χQ⟩ terminates as Q-space state.
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For further decomposition, we introduce two things. One is Q̂-box and the other is folded dia-
grams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method (See Eq. (2.45)). The
Q̂-box is the summation of all the contributions of the irreducible diagrams. Here the term irreducible
means that the diagrams cannot be divided into two pieces by cutting the P-space states by horizontal
lines. Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero
energy-denominator, if the P-space is degenerate and the unperturbed Q-space energy is different
from that of P-space.

Next, we move to the folded diagrams. Let us consider a diagram which includes two vertices at
t = t1 and t = t2, with 0 > t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly
we face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed
line is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is
obviously divergent. In the right hand side, the divergence only appears in the second factor in the
first term. In this sense, Eq. (2.72) shows a minimal example of factorization of the divergence. Our
purpose of implementing the factorization theorem and folded diagram procedure is that we factorize
the divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergences. The first term |χP⟩, which terminates at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circles represent the Q̂-box and the line is the two-body states within P-space. Since
we are considering of the degenerate P-space, this leads a clear divergence. On the other hand, the
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second term |χQ⟩, which terminates as Q-space at t = 0, is written as follows,

|χQ⟩ = ✉ + ✉✉ + ✉✉✉ + · · ·

=
( ✉ − ✉ ∫ ✉ + ✉ ∫ ✉ ∫ ✉ − · · · ) (2.74)

×
(

+ ✉ + ✉✉ + ✉✉✉ + · · ·
)

where integral represent the folding procedure. The railed lines represent the states within Q-space.
The folded diagrams here are defined as the contribution of the end of the former Q̂-box is placed
after the beginning latter Q̂-box. Note that the second factor is the exactly |χP⟩. Equivalently we can
write down the above as follows,

UV(0,−∞)|ψα⟩ =
D∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩. (2.75)

where UVQ represent the contributions of the first factor in Eq. (2.74). The point is that the divergence
is only appearing in the second factor in Eq. (2.75).

Combining Eqs. (2.68), (2.70), (2.74), (2.75) together,

U(0,−∞)|ψα⟩ = UQ(0,−∞)|c⟩⟨c|U(0,−∞)|c⟩ ×
d∑

β=1

UVQ(0,−∞)|ψβ⟩⟨ψβ|UV(0,−∞)|ψα⟩ (2.76)

Then, Eq. (2.67) reads,

d∑

γ=1

bλγHUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ =
d∑

δ=1

bλδEλUQ(0,−∞)|c⟩UVQ(0,−∞)|ψγ⟩ (2.77)

where b(λ)
γ is defined as

b(λ)
γ =

d∑

α=1

C(λ)
α

⟨ψγ|UV(0,−∞)|ψα⟩⟨c|U(0,−∞)|c⟩
⟨ρλ|U(0,−∞)|ρλ⟩

(2.78)

Note that there are divergences in the numerator and the denominator and they are canceled out. Then,
the coefficient b(λ)

γ is finite.
Now we define an operator UL as follows,

UL(0,−∞)|ψα⟩ ≡ UVQ(0,−∞)|ψα⟩UQ(0,−∞)|c⟩, (2.79)
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meaning that the contribution is linked diagrams.
Using the fact that

⟨ψβ|UVQ(0,−∞)|ψα⟩ = δαβ, (2.80)

and multiplying ⟨ψσ| from the left we obtain,

d∑

γ=1

b(λ)
γ ⟨ψσ|HUL(0,−∞)|ψλ⟩ = Eλ|ψσ⟩. (2.81)

Then we obtain the following secular equation defined only within P-space,

PHeffP|Ψλ⟩ = EλP|Ψλ⟩ (2.82)

where Heff is determined by

Heff = ⟨ψσ|HUL(0,−∞)|ψλ⟩. (2.83)

From Eq. (2.82), we can extract the core degrees of freedom. If the final interaction does not finish
with valence particles, it gives the energy of the core. Therefore, defining H0(V) and H1(V) as those
related to valence particles, we can extract the energy of the core as follows,

PHeffP|Ψα⟩ = (Eα − EC)P|Ψα⟩ (2.84)

where

Heff = ⟨ψσ|(H0(V) + H1(V))UL(0,−∞)|ψλ⟩. (2.85)

The presence of H0(V) and H1(V) means the diagram must terminate with valence particles at the
time t = 0. Then we have succeeded to extract the energy of the core. The next problem is how
to calculate the ⟨ψβ|UVQ(0,−∞)|ψα⟩ in a practical way. This factor corresponds to the first factor of
Eq. (2.74) and is calculated by the evaluation of Q̂-box and its folded diagram.

In summary, the effective interaction Veff can be calculated as follows,

Veff = Q̂(ϵ0) − Q̂′(ϵ0)
∫

Q̂(ϵ0) + Q̂′(ϵ0)
∫

Q̂(ϵ0)
∫

Q̂(ϵ0) · · · , (2.86)

where the integrals represent the folding procedures, and Q̂′ represents Q̂-box contributions which
have at least two NN interaction vertices. Note that, in order to have a degenerate P-space energy, ϵ0,
the single-particle energies in Eq. (2.53) for valence single-particle states, ϵa, ϵb, . . . are completely
degenerate. Equation (2.86) is the basis of the perturbative expansion of Veff in the folded diagram
theory (see for example Ref. [11] for more details).

There are two points to be noted here. First, because we cannot evaluate the Q̂-box defined
in Eq. (2.45) exactly (which implies including all terms to infinite order), we use the perturbative
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expansion in Eq. (2.71), which we can currently evaluate up to the third order in the NN interaction.
Second, the valence-linked diagram theorem states that we need to retain only the valence-linked part
(See Fig. 2.3), i.e., unlinked parts can be proved to cancel among themselves [11, 23]. At the same
time, the eigenvalue Ei in Eq. (2.56) changes its meaning; it is no longer the total energy of the system,
but is now the total energy measured from the true ground state energy of the core.

In actual calculations, however, we do not calculate Veff order by order using Eq. (2.86). Since
the contribution of folded diagrams can be calculated by energy derivatives when the model space is
degenerate (see Appendix B), we can translate Eq. (2.86) into the following equation

Veff = Q̂(ϵ0) +
∞∑

k=1

Q̂k(ϵ0){Veff}k, (2.87)

The above expression clearly shows that the iterative solution of Eq. (2.46) reaches at Veff in the limit
of n→ ∞ if it converges [11].

We can summarize the KK method as follows; we calculate the valence-linked Q̂-box diagrams
(usually up to second or third order) and the corresponding energy derivatives at the degenerate P-
space energy ϵ0, and carry out the iteration of Eq. (2.46) starting from V (0)

eff = V . This procedure
ultimately gives Veff = V (∞)

eff .

Figure 2.3: Valence-linked Q̂-box diagrams up to second order in V .

At the end, we stress again that the above KK method can yield Veff only for a degenerate model
space. Suppose we are working with the harmonic oscillator shell model of 18O, treating 16O as the
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core. If we take the P-space composed only of the degenerate sd-shell, the above KK method works
well as shown by many applications (see for example Ref. [29]). If, on the other hand, we take an
enlarged P-space defined by the non-degenerate sd f7/2 p3/2-shell, the KK method breaks down. A
naive calculation of Veff by Eq. (2.86) easily leads to divergences of the Q̂-box, as we shall see later.



Chapter 3

Extended Kuo-Krenciglowa method

In this chapter, we explain how the Extended Kuo-Krenciglowa (EKK) method is implemented. As
we stressed repeatedly, there has not been existing a microscopic method to derive the effective inter-
action in arbitrary non-degenerate model space. Focusing on the difference between KK method, we
will explore the new method which is able to be applied to not only degenerate but non-degenerate
model space. In Sec. 3.1, formal theory of EKK method is presented, which is mainly a summary of
references [1, 2].

After Sec. 3.2 is the original work for this thesis. In Sec. 3.2, EKK method in many-body systems
is presented. The formulation based on the folded-diagram method. Based on the second-quantized
form and the time-dependent perturbation theory, the folded-diagram theory formulated in KK method
can be applied also in this case with some modifications. However, there are a few non-trivial point in
the formulation and application of the folded diagrams in EKK method. Those things are discussed
in Appendix A and Appendix B more precisely.

As we will explain in Sec. 3.1 and Sec. 3.2, in EKK method an arbitrary parameter E with the
dimension of energy is introduced. Section 3.3 is devoted to explain the properties and the usage
of the parameter E. The numerical results are not presented in this chapter and will be presented in
Chap. 4.

3.1 Formal extended Kuo-Krenciglowa (EKK) method

The EKK method is designed to construct an effective Hamiltonian Heff for non-degenerate model
spaces [1, 2].

For the completeness, we start from repeating the discussion for the KK method. The similarity
transformation of the Hamiltonian is as follows,

H = e−ωHeω (3.1)

where the operator ω satisfies the following relation,

QωP = ω (3.2)

35
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Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.
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3.2 Extended Kuo-Krenciglowa method in many-body system

Here we derive the effective Hamiltonian Heff of the Extended Kuo-Krenciglowa (EKK) method, with
an emphasis on its similarity with the KK method discussed in the Chap. 2.

3.2.1 Derivation of the Extended Kuo-Krenciglowa method

We consider first the general situation where the energies of the valence single-particle states in PH0P
are not necessarily degenerate. In this case, we have to apply the EKK formula Eq. (3.6) to our many-
body systems.

We start from the Hamiltonian in many-body system,

H = H0 + V

=
∑

ϵαa†αaα +
1
2

∑

αβ,γδ

Vαβ,γδa†αa†βaδaγ, (3.11)

We can confirm that, in order to derive Eq. (3.6), we need to change the decomposition Eq. (2.53) of
the Hamiltonian in the KK method. Suppose we decompose the total Hamiltonian into the following
unperturbed Hamiltonian H′0 and the perturbation V ′

H′0 = PEP + QH0Q

V ′ = V − P(E − H0)P, (3.12)

or in the matrix form,

H = H′0 + V ′

=

⎛
⎜⎜⎜⎜⎜⎝
E 0
0 QH0Q

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
PH̃P PVQ
QVP QVQ

⎞
⎟⎟⎟⎟⎟⎠ , (3.13)

where H̃ ≡ H−E. With the above unperturbed Hamiltonian H′0 in Eq. (3.12), we can treat the P-space
as being degenerate at the energy E, and therefore we can follow the derivation of Eq. (2.86) in the
KK method, to achieve

H̃eff = H̃BH(E) − Q̂′(E)
∫

H̃BH(E) + Q̂′(E)
∫

H̃BH(E)
∫

H̃BH(E) · · · , (3.14)

which is then converted into

H̃eff = H̃BH(E) +
dQ̂(E)

dE
H̃eff +

1
2!

d2Q̂(E)
dE2 {H̃eff}2 + · · · . (3.15)

The point is that the derivative of Q̂-box is the same as derivative of HBH. Since the Q̂-box include
the interaction of QVP,PVQ and QVQ, all the interaction vertices are not affected by the shift of
unperturbed Hamiltonian from H0 to H′0.
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Note that Eqs. (3.14) and (3.15) are the EKK counterparts of Eqs. (2.86) and (2.87) of the KK
method. We can solve Eq. (3.15) iteratively as done for Eq. (2.87).

Note that the above derivation of the EKK method is the same as that of the KK method apart
from the decomposition of the Hamiltonian. However, for the application of EKK method to actual
problems, there are several non-trivial questions.

The first question is, the diagram rules for EKK method. Since we have the different unperturbed
Hamiltonian, the diagram rules have to be modified. Actually, as we will see in the next section, for
our unperturbed Hamiltonian is defined for the two-body states, the energy denominator is not sum
of all the single-particle energies in some cases.

Second question is the factorization theorem. In the derivation of Eqs. (3.14) and (3.15), we
need to apply the factorization theorem to remove the divergences appearing in the theory. However,
the straightforward application of the factorization theorem to EKK method might not be possible,
because the diagram rules are slightly different.

As a consequence, we need to retain only the valence-linked Q̂-box diagrams in Eqs. (3.14) and
(3.15), as we do for the KK method. To summarize, all that we have to know is, as in the KK method,
the Q̂-box and its energy derivatives, except that now it is defined at the parameter E.

3.2.2 Perturbative expansion of the Q̂-box

We discuss here how one can accommodate the perturbative expansion of the Q̂-box in the EKK
formalism. For the sake of simplicity, we will focus on a simple system composed of two particles
on top of a closed-shell core in what follows, although the discussion is not restricted to this specific
case. The projection operators P and Q are then given by

P =
∑

a,b

a†aa†b|c⟩⟨c|abaa, Q = 1 − P. (3.16)

where |c⟩ stands for the closed-shell core.
To become familiar with our new unperturbed Hamiltonian, H′0, we consider some selected exam-

ples; we show first the results from the operation of the new unperturbed Hamiltonian, H′0, on some
selected many-particle states shown in Fig. 3.1:

(i) H′0 a†aa†b|c⟩ = E a†aa†b|c⟩,
(ii) H′0 a†aa†p|c⟩ = (ϵa + ϵp) a†aa†p|c⟩, (3.17)

(iii) H′0 a†aa†ba†pah|c⟩ = (ϵa + ϵb + ϵp − ϵh) a†aa†ba†pah|c⟩.

Here we denote the single particle states in the valence orbits by a, b, · · · , the particle states outside of
the valence orbits by p, q, · · · and the hole states by h. The first line is an example of a P-space state
with two single-particle states on top of the closed-shell core, |c⟩, while the second and third lines
result in Q-space examples. The unperturbed energy of the P-space state a†aa†b|c⟩ is E, while that of a
Q-space state a†aa†p|c⟩ results in ϵa+ϵp, a sum of unperturbed single-particle energies. It is important to
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Figure 3.1: The examples of the states consist of core plus two particles. The diagram (i) is in P-space
and (ii) and (iii) are in Q-space.

get convinced that in diagram (iii) contains the single particle states of diagram (i), but as a whole, the
state is in Q-space. In diagram (ii), although the state a is in one of the valence orbits, the two-body
state as a whole is not in P-space. Therefore ϵa appears only in the Q-space energy, while a†a appears
in all of the above three states.

To implement the time dependent perturbation theory, we need to move onto the interaction pic-
ture. The interaction picture for those states are different from that of in KK method;

|ψi(t)⟩ =e−iH′0t|ψi⟩ =e−iEt|ψi⟩
{a†aa†p|c⟩}(t) =e−iH′0t{a†aa†p|c⟩} =e−i(ϵa+ϵp)ta†aa†p|c⟩, (3.18)

{a†aa†ba†pah|c⟩}(t) =e−iH′0t{a†aa†ba†pah|c⟩} =e−i(ϵa+ϵb+ϵp−ϵh)ta†aa†ba†pah|c⟩,

where |ψi⟩ is the state of P-space. It is important to notice that Eq. (2.59) is no longer valid for the
Hamiltonian of EKK method. This is because the expression of H′0,

H′0 = PEP + Q
∑

ϵαa†i aiQ (3.19)

includes projection operator to the core state wave function in the projection operator P and Q. The
commutations [H0, a] and [H0, a†] are not as simple as that in KK method.

Nevertheless, because Eq. (3.18) holds, we can retain the diagrammatic approach of EKK method
with a small modification of the evaluation of the diagram. The modification is that when we find
the two-body states in the P-space, we replace the energy denominator of that point to E instead of
the sum of single-particle energies. Corresponding to the fact that the diagram (iii) in Fig. 3.1 is in
Q-space, the energy denominator for the diagram (iii) is not E + ϵp − ϵh, but ϵa + ϵb + ϵp − ϵh. In the
perturbative expansion of Q̂(E) in Eq. (2.71), all the intermediate states are in the Q-space, and their
unperturbed energies are given as in (ii) and (iii) of the above example. The general structure of Q̂(E)
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can then be given schematically by

Q̂(E) =
∏ V

E − (
∑
ϵa +

∑
ϵp −

∑
ϵh)int
, (3.20)

where the subscript int indicates intermediate states between two interaction vertices. Note that the
parameter E appears in all the denominators in the EKK method.

To make our diagram rules clear, let us see an example. The diagram shown in Fig. 3.2 is a

Figure 3.2: Core-polarization diagram as a second-order contribution to the Q̂-box. The energy de-
nominator is written as D1 and D2.

member of Q̂-box diagram. The diagram is a contribution from the second-order term in Eq. (2.71).
The energy denominator for the lower dashed line is denoted as D1 and for the intermediate state we
use D2, and the energy denominator of this diagram should be calculated as D1 − D2. Therefore, it
gives the following contribution to Q̂(E)

Fig. 3.2 (EKK)→ Vah,cpVpb,hd

E − ϵc − ϵb − ϵp + ϵh
. (3.21)

If we on the other hand employ the KK method in order to calculate the contribution to Q̂(ϵ0) from
Fig. 3.2, we would get

Fig. 3.2 (KK) → Vah,cpVpb,hd

(ϵc + ϵd) − ϵc − ϵp + ϵh − ϵb

=
Vah,cpVpb,hd

−ϵp + ϵh
(3.22)

where, in going to the second line, we have used the fact that the P-space is degenerate, and therefore
ϵa = ϵb = ϵc = ϵd and ϵc + ϵd = ϵ0.

Two points should be noted from the above example; first, in a degenerate model space, the EKK
result Eq. (3.21) with E = ϵ0 coincides with the KK result Eq. (3.22). This is a direct consequence
of the fact that the EKK formula contains the KK formula as a special case. Second, we can see the
problem of divergence of the KK formula applied naively to a non-degenerate model space. Consider
the case of 18O as an example, and let the P-space consist of two major shells (1s0d and 1p0 f -shells).
The single particle states are taken as the eigenstates of harmonic oscillator potential. Then, the
denominator of the first line in Eq. (3.22) vanishes for b, c, p ∈ 1s0d-shell, a, d ∈ 1p0 f -shell, and
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h ∈ 0p-shell, leading thereby to a divergence. The above mechanism is just one of many examples
which show that we really need to use the EKK formalism in order to derive effective interactions for
model spaces consisting of several shells.

For the next point, let us discuss the problem of factorization theorem. Factorization theorem
in KK method is proved in the Appendix A to see the difference of KK method and EKK method
better. The factorization theorem tells us that the diagram consist of disconnected pieces can be
evaluated by the product of individual pieces. As we will discuss in Appendix A, in the proof of
factorization theorem, we use the fact that the energy denominator is calculated by the sum of the
energy denominators of individual disconnected pieces. However, in EKK method, for some cases
this is not true.

Let us see the example shown in Fig. 3.3. The particle states a and b are in the valence orbits and

Figure 3.3: An example of the diagram consist of two disconnected pieces. The particle states a, b are
in the model space and p1, p2, p3, p4 are in outside the model space. h1, h2 denote the hole states.

p1, · · · , p4 are outside of the valence orbits and h1, h2 denote hole states. The energy denominator
calculated with KK method is,

Fig. 3.3 (KK)→ 1
0 + ϵh1,h2

p3,p4

× 1
(ϵa + ϵb + ϵp1,p2 + ϵ

h1,h2
p3,p4)

(3.23)

where ϵ i, j
α,β is the abbreviation of

ϵ i, j
α,β = −ϵα − ϵβ + ϵi + ϵ j. (3.24)

As we mentioned, the energy denominator is obviously expressed as the sum of the denominator of
left piece and right piece.

On the other hand, the energy denominator calculated in EKK method is,

Fig. 3.3 (EKK)→ 1
(E + ϵa,b + ϵ

h1,h2
p3,p4)

× 1
(E + ϵp1,p2 + ϵ

h1,h2
p3,p4)

. (3.25)

The second denominator is actually the summation of the denominator of the left piece and the right
piece. However, the first energy denominator is not. Without the right piece, the intermediate state of
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the left piece is a†aa†b|c⟩ ∈ P. However, for the total state is a†aa†ba†p3a†p4ah1ah2|c⟩ ∈ Q, the denominator
should be evaluated by the sum of single-particle energies present. The resultant denominator is no
longer the sum of individual denominators.

With this diagram rule the factorization theorem is no longer valid. We saw in Chap. 2, that
we need to factorize the divergence appearing in the perturbation theory (see Eqs. (2.68), (2.70),
(2.74), (2.75)). For naive factorization theorem does not hold in EKK method, we need a further
resummation to utilize the same equations in EKK method. We rewrite the Hamiltonian as follows:

H = H0 + V

= H′0 + V ′

= H′0 − P(E − H0)P + V

= H′0 + V1 + V, (3.26)

where V1 = −P(E − H0)P defined purely in P-space is to be regarded as perturbation as well. What
we want to prove now is, for example, that the factorization like

U(0,−∞)|ψα⟩ = UV(0,−∞)a†i a†j |c⟩ × U(0,−∞)|c⟩ (3.27)

still hold in EKK method. We consider the following resummation ; once we find the state in P-space,
we insert V1 interaction up to infinite order. Explicitly, for a P-space state |ψi⟩ = a†aa†b|c⟩ in interaction
picture of EKK Hamiltonian,

|ψi(t)⟩ = e−iEt|ψi⟩ (3.28)

is changed as follows,

PeiV1tP|ψi(t)⟩ = Pei(E−H0)tP|ψi(t)⟩
= e−iH0t|ψi⟩
= e−i(ϵa+ϵb)t|ψi⟩. (3.29)

With this transformation, the energy denominators are always the sum of individual pieces. Schemat-
ically, the factorization shown in Eq. (3.27) and the insertion of V1 are shown in Fig. 3.4. The other
necessary factorizations are also true with the same discussion. Once we know that the factorizations
hold with the insertion of V1 up to infinite order, we know that the factorization can be performed and
we can remove the divergences in the same way as in KK method. Here we have to stress that in the
actual calculation, however, we do not need to insert V1 every time. After removing the divergence
by use of folded diagrams, we calculate Q̂-box with the Hamiltonian H = H′0 + V ′, with the diagram
rules we discussed.

Finally we obtain the following iterative formula,

H̃(n)
eff = H̃BH(E) +

∑
Q̂k(E){H̃(n−1)

eff }k. (3.30)
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Figure 3.4: Insertion of V1 in EKK method. The wavy line and the cross indicate the insertion of
V1 interaction up to infinite order in perturbation. The pairs of lines indicate the two-body states in
P-space and the gray circles and parabolas are the states in Q-space.

3.2.3 Poles of Q̂-box

In this subsection, we analyze the positions of the poles of the Q̂-box. It will be proved later that the
poles of the Q̂-box are not located at the energies no lower than certain point.

Figure 3.5: The harmonic oscillator potential. The red dashed square indicates the model space.

Figure 3.5 shows the schematic figure of unperturbed orbitals, which is often taken as the harmonic
oscillator eigenstates, and the valence particle states. The red dashed square represent the position of
P-space and the orbits below the box are the hole states and above the box are particle states outside
the model space. The positions of the poles of Q̂-box are easily extracted from Eq. (3.20),

Epole =
∑

int

(ϵa + ϵp − ϵh). (3.31)

Let us put the largest single particle energy of the hole state as ϵmax
h and the smallest single particle

energy of the particle state as ϵmin
p . Now we are concerning is two-body states. Therefore, in any

of intermediate states, the number of particles Np and the number of holes Nh fulfill the following
relation,

Np − Nh = 2, Nh ≥ 0 (3.32)
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Therefore, the following inequality holds for positions of the poles of Q̂-box for Nh ! 0,

Epole ≥Npϵ
min
p − Nhϵ

max
h

=(Nh + 2)ϵmin
p − Nhϵ

max
h (3.33)

=Nh(ϵmin
p − ϵmax

h ) + 2ϵmin
p ,

and if Nh = 0 and Np = 2 the intermediate states are constructed only with particles and hence at least
one particle should be outside of model space,

Epole ≥ϵmin
p + ϵ

min+1
p , (3.34)

where ϵmin+1
p is the smallest single particle energy of the particle state outside of the model space.

Suppose the single particle states are the eigenstates of harmonic oscillator potential. In this case,
the single particle energies are located equal spacing of !ω, which means ϵmin

p − ϵmax
h = !ω. Then,

combined Eq. 3.33 and Eq. 3.34, the lowest position of the pole can be determined with the following
inequality of Nh = 1,

Epole ≥ Emin
pole = 2ϵmin

p + !ω. (3.35)

Therefore, the parameter E should be at least less than Emin
pole. Actually, if E is too close to Emin

pole, the
energy denominator is too small and the iteration does not converge and the perturbation also does
not work. On the other hand, if E is too small and far from Emin

pole, the contribution to Q̂-box is too
small and we need to include intractably large n!ω excitations.

3.3 The energy parameter E

Here we make several points in connection with the new parameter E in the EKK theory.
First, by virtue of the arbitrariness of the parameter E, we can get around the problems of the

poles of the Q̂-box. As explained with the example in Fig. 3.2, the Q̂-box contribution, (3.22), is
divergent in the KK formula when we work in a non-degenerate model space. On the other hand, the
EKK counterpart, (3.21), becomes divergent only for specific values of E. This means that we can
always select a parameter E that makes the Q̂-box to behave smoothly as a function of E.

Second, the parameter E provides us with a reasonable test of the calculation. Equation (3.8)
shows that the resulting effective Hamiltonian Heff , does not depend on the value of E, provided
that we have the exact Q̂-box in Eq. (3.8). Any approximation may spoil the E-independence of
Heff , and thereby of other physical quantities described by Heff . This may in turn imply that a Q̂-
box that gives E-independent physical quantities is a good approximation to the exact Q̂-box. In
the most sophisticated calculations up to date, we can evaluate the Q̂-box diagrams only up to third
order in the perturbation V at most, and we can include only a limited number of excitations in the
intermediate states (typically including up to 10−20 oscillator quanta excitations), because of practical
computational limitations. In Chap. 4, we shall present numerical tests of the above E-independence.
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Here we explain how to fix the value of E in the actual calculations. If there are no intruder states
in the target states {|φi⟩, i = 1, · · · , d} that are to be described by Heff , it can be shown that there is a
finite range of E values that make the series in Eq. (3.15) convergent [2]. The convergence is usually
at its fastest when E is fixed around the mean value of the target energies, {Ei, i = 1, · · · , d}. Let us
come back to our specific case of two particles on top of a core, and employ a single-particle basis of
the harmonic oscillator. Let ϵmin

a be the minimum energy of active (valence) particle states. We then
expect that our target states are distributed around E ∼ 2ϵmin

a , which serve as the first guess for E. It is
also clear that the lowest energy of the Q-space states is 2ϵmin

a + 1!ω, which gives the lowest position
of the poles of Q̂(E).

In actual calculations, the allowed range of E, which is limited both from above and from below,
can be estimated as follows. Let us increase E from the above “optimal ” value 2ϵmin

a . As E approaches
the lowest pole 2ϵmin

a + 1!ω of Q̂(E), Q̂(E) and its derivatives in Eq. (3.15) would diverge. On the
other hand, if we choose too low a value of E ≪ 2ϵmin

a , the resultant energy denominators in the
Q̂(E) would be dominated by E, but not by the unperturbed energies of the intermediate states. In
this situation, we have to expect that our approximation, truncation of the intermediate states at some
unperturbed energies, cannot be justified.

In the next section, we present numerical examples where E is varied in some range around
E ∼ 2ϵmin

a .





Chapter 4

Application based on realistic interactions

In this chapter, we apply the EKK method to nuclear systems, starting from the realistic interactions.
In order to apply the EKK formalism to nuclear systems, we consider simple nuclei composed of
two nucleons on top of a given closed-shell core, 18O, 18F and 42Ca, 42Sc, employing a single-particle
basis defined by the harmonic oscillator unperturbed Hamiltonian. As the P-space for 18O and 18F, we
employ the sd-shell (degenerate case), and the sd f7/2 p3/2-shell (non-degenerate case) composed of the
sd-shell and the 0 f7/2 and the 1p3/2 single-particle states. The P-space for 42Ca, 42Sc is the p f -shell
(degenerate case), and the p f g9/2-shell (non-degenerate case) composed of all the p f -shell single-
particle states and the 0g9/2 single-particle state. In the degenerate P-space, both the KK and the EKK
methods can be used, while in the non-degenerate P-space only the EKK method is applicable.

Our input interaction V in the Hamiltonian Eq. (3.11) is the low-momentum interaction Vlowk with
a sharp cutoff Λ = 2.5 fm−1, derived from the chiral χN3LO interaction of Entem and Machleidt [43,
44]. Calculations with the different cutoffs Λ are presented in Sec. 4.6. Our total (P + Q) Hilbert
space is composed of the harmonic oscillator basis states in the lowest nine major shells. The Q-
space degrees of freedom come into play either by the KK method or the EKK method through the
Q̂-box that is calculated to third order in the interaction V . The final effective interactions are thus
obtained in the P-space of one or two major shells.

We ought to mention two points. First, the amount of oscillator quanta excitations in each term in
perturbation theory, may not be fully adequate if one is interested in final shell-model energies that are
converged with respect to the number of intermediate excitations in the Q̂-box diagrams. We discuss
the convergence of the Q̂-box in Sec. 4.7 more in detail. Second, neglected many-body correlations,
like those arising from three-body forces are not taken into account. Such effects, together with other
many-body correlations not included here are expected to play important roles, see for example the
recent studies of neutron-rich oxygen and calcium isotopes [45, 46, 47, 48, 49]. However, the main
purpose here is to study the effective interactions that arise from the KK and the EKK methods in one
and two major shells. The application to the various isotopic chains will be presented in Chap. 5, but
the results are thus preliminary.

In the actual calculation of the Q̂-box using the harmonic oscillator basis functions, we drop the
Hartree-Fock diagram contributions, assuming that it is well simulated by the harmonic oscillator

47
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potential, as in many of the former works [29].
In order to show how the EKK method works, we present separate studies of (i) the two-body

matrix elements (TBMEs) of the effective interaction Veff , and (ii) several low-lying energy levels
obtained by shell model calculations. In particular, we focus on the E-independence of the numerical
results; as discussed in Sec. 3.3, the effective Hamiltonian Heff obtained with the exact Q̂-box is
independent on the energy parameter E, and so are physical quantities calculated with Heff. In other
words, the explicit E-dependence of the first term HBH(E) (or equivalently Q̂(E)) in Eq. (3.15) is
canceled by other terms that represent the folded diagram contributions, making thereby Heff (and
therefore Veff) energy independent. In actual calculations, however, we can calculate the Q̂-box only
up to third order in V , and we have to examine the E-dependence of the right hand side of Eq. (3.8).
In what follows, we shall see clearly that the Q̂-box up to third order is sufficient to achieve an almost
E-independent effective interaction Veff (or Heff).

The rest of this chapter is devoted to the detailed analysis of the Veff . In Sec. 4.4, we analyze the
spin-tensor decomposition of the effective interaction focusing on the property of the tensor force.
The tensor force is of great importance particularly when we explore the neutron-rich nuclei, for
example. The tensor force has the special property that the monopole interaction between j> orbit
and j′ orbit and that of between j< orbit and j′ orbit have opposite sign. Here we define j> and j< to
represent the spin-orbit partners, that is, j> = l + 1/2 and j< = l − 1/2, where l stands for the orbital
momentum of a given single-particle state. This special feature of tensor force changes the spin-orbit
splitting between j> and j< and therefore the shell structure as well. In particular, when we have a
sizable number of neutrons in the single-particle state j′, the effects play the important roles.

In Sec. 4.5, we compare the effective interaction obtained by EKK method with the phenomeno-
logical interactions. We compare both in degenerate and non-degenerate model spaces. In particular,
the effective interaction in non-degenerate model space is only obtained via the phenomenological
fitting to experimental data, while the EKK method enable us to derive them from the realistic inter-
action and the microscopic theories.

As the supplemental analyses, we discuss the above-mentioned points last two sections in this
chapter. In Sec. 4.6, we repeat the calculation with the various cutoff Λ appearing in Vlowk interactions
to see how the results depends on the cutoff parameter. Finally, in Sec. 4.7, the convergences with
respect to the inclusion of the higher intermediate excitations are discussed.

4.1 EKK method in sd-shell and sd f7/2p3/2-shell

In this section, we consider 18O and 18F as two-nucleon systems on top of the 16O closed-shell core.
We calculate the effective interactions Veff in the degenerate sd-shell, and in the non-degenerate
sd f7/2 p3/2-shell model spaces. The input of the EKK method is the Q̂-box calculated up to third
order in V with the harmonic oscillator basis of !ω = 14 MeV. We set the origin of the energy as
ϵsd = 0, which suggests that the optimal choice of E is E ∼ 0.
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4.1.1 Degenerate sd-shell model space
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Figure 4.1: (Color online) E-dependence of the EKK results of neutron-neutron channel in the sd-
shell (degenerate model space). The figure shows the monopole part, of Veff (denoted by Vnn), see
Eq. (4.1), and the level energies of 18O with respect to 16O. In panel (a), the monopole panel,
dotted lines (which make the shaded area) show the results without the folded diagram contribu-
tions for −3 ≤ E ≤ 1.5 MeV. The full line, dashed line and dot-dash line show the Vnn for
E = −3, 0, 1.5 MeV, respectively. In the lower panels (b) and (c), energy levels are calculated
for E = −3, − 1.5, 0, 1.5 MeV (b) without and (c) with the folded diagram contribution. Triangles,
diamonds, squares and circles show the energy levels of the ground, the first excited, the second and
third excited states, respectively.

In Fig. 4.1, we show our numerical results for the two-body matrix elements and level energies
calculated in the degenerate sd-shell model space for the neutron-neutron channel (18O) and in Fig. 4.2
the proton-neutron channel (18F).

To see the E-independence of the numerical results for Veff , calculations are performed for several
values of E. As explained before, the optimal value of E may be estimated as E ∼ 2ϵsd = 0. Note also
that E = 0 is far from the lowest pole of Q̂(E), E = Emin

pole = 1 !ω = 14 MeV, and the calculation is free
from the divergence problem of the Q̂-box. We have thus varied E in the range of −3 ≤ E ≤ 1.5 MeV
in Fig. 4.1 and 4.2. Obviously, the EKK method with E = 0 coincides exactly with the KK method
because our P-space is degenerate now (compare Eqs. (3.21) and (3.22)).

In order to study the effect on the various matrix elements, we analyze the monopole term in the
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Figure 4.2: (Color online) E-dependence of the EKK results of proton-neutron channel in the sd-
shell (degenerate model space). (a) monopole part of the interaction, (b) level energies of 18F without
folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.1.

neutron-neutron channel in Fig. 4.1 (a). The monopole part of Veff , is defined as

Veff
T
j, j′ =

∑
J(2J + 1)⟨ j j′|Veff | j j′⟩JT∑

J(2J + 1)
. (4.1)

Let us look at the dotted lines (which make a shaded band in the figure) that are calculated by dropping
the folded diagram contributions, i.e., by replacing Veff simply by Q̂(E). We can see clearly that Q̂(E)
depends strongly on E. Next, let us turn to the EKK results that include all the folded diagram contri-
butions in the right hand side of Eq. (3.15). They are shown by solid lines for E = −3, 0, 1.5 MeV,
whose difference can hardly be seen. The above observation suggests that the folded diagrams cancel
the E-dependence of Q̂(E) and yield an almost E-independent H̃eff (and Veff) in Eq. (3.15).

In the lower panels (b) and (c) of Fig. 4.1, we show several energy levels of 18O with respect to
16O obtained by shell-model calculations with our effective interaction Veff . Here the single particle
energies in the shell-model diagonalization are taken from the USD interaction [50, 13]; the single-
particle energies of the states (in the isospin formalism) ϵd5/2 , ϵs1/2 , and ϵd3/2 are −3.9478 MeV, −3.1635
MeV and 1.6466 MeV, respectively.

Panels (b) and (c) show the results without and with folded diagram contributions, respectively.
We note that in panel (b) the energy levels are decreasing functions of E, which is explained by the
E-dependence of Q̂(E). On the other hand, in panel (c), we see that the energy levels are almost
independent of the parameter E, as they should.
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The above observation also implies that the evaluation of the Q̂-box up to third order in V is
sufficient to establish a seemingly E-independence of the right hand side of Eq. (3.15), and therefore
of Veff in the left hand side.

Figure 4.2 shows the results for Veff in the proton-neutron channel and level energies for 18F with
the same setting as for 18O. We can repeat exactly the same arguments as we did for 18O and realize
that the folded diagram contribution eliminates the E-dependence, to a large extent, of Q̂(E) to give,
almost, an E-independent Veff and energy levels.

4.1.2 Non-degenerate sd f7/2 p3/2-shell

Here we examine 18O and 18F in the non-degenerate P-space, labelled the sd f7/2 p3/2-shell here, com-
posed of the sd-shell and the 0 f7/2 and 1p3/2 single-particle states. In this non-degenerate model
space, the standard KK method cannot be applied, since it leads to divergences, as discussed above.
The EKK method offers however a viable approach to this system. To date, therefore, there have been
only empirical interactions in this model space, see for example the effective interaction employed in
Ref. [51]. A comparison between empirical and our effective interaction is given in Sec. 4.5.
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Figure 4.3: (Color online) E-dependence of the EKK results of neutron-neutron channel in the
sd f7/2 p3/2-shell (non-degenerate model space). (a) monopole part of the interaction, (b) level en-
ergies of 18O without folded diagrams and (c) with folded diagrams. Else, we use the same notation
as in Fig. 4.1.
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Figure 4.4: (Color online) E-dependence of the EKK results of proton-neutron channel in the
sd f7/2 p3/2-shell (non-degenerate model space). (a) monopole part of the interaction, (b) level en-
ergies of 18F without folded diagrams and (c) with folded diagrams. Else, we use the same notation
as in Fig. 4.2.

Figures 4.3 and 4.4 show the numerical results of the EKK method in the sd f7/2 p3/2-shell model
space, in the same way as Figs. 4.1 and 4.2 for the degenerate sd-shell. In what follows, we will intro-
duce the wording inter-shell interaction for the interaction between particles in different major shells,
for example we can have one particle in the sd-shell and the other one in the p f -shell. Similarly,
we will use the naming intra-shell interaction for interactions between particles within a single major
shell.

Let us first study the the monopole part of the TBMEs of Veff (Fig. 4.3 (a) for neutron-neutron
channel and Fig. 4.4 (a) for proton-neutron channel). Here we have inter-shell interactions in ad-
dition to the intra-shell interactions within the sd-shell and within the p f -shell. We see that the
inter-shell interactions depend more strongly on E without the folded diagrams than the intra-shell
interaction within the sd-shell. This feature is due to the fact that Q̂(E) for the inter-shell interaction
has intermediate states with small energy denominators. This figure clearly shows that the folded
diagram contributions cancel the strong E-dependence of the Q̂(E), and the resulting Veff becomes al-
most independent of E, showing that the EKK method is stable and useful also in the non-degenerate
sd f7/2 p3/2-shell.

From the panels of the energy levels of 18O and 18F, we can draw the same conclusion for the
degenerate sd-shell; the folded diagram contribution makes the energy levels independent of the pa-
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rameter E.

4.1.3 Comparison of KK and EKK methods

The main advantage of our EKK method is that it allows for a fully consistent treatment of the non-
degenerate model space. On the other hand, in the KK method, the naive perturbative calculation of
Q̂-box by Eq. (2.86) leads to divergence in non-degenerate sd f7/2 p3/2-shell, as discussed in Sec. 3.2.

One possible ad hoc way to avoid this divergence is to artificially force the sd f7/2 p3/2-shell to
be degenerate in energy by shifting the single-particle energies [46]. Although there is no physical
justification for this artificial shift, it removes the poles which arise in the various Q̂-box diagrams.

Note, however, that the obtained Veff is defined with artificially degenerate single-particle energies.
Furthermore, in actual calculations, this method dose not necessarily lead to a convergent result even
with all the folded diagrams in Eq. (2.86).

For the purpose of comparing the EKK method with the ad hoc treatment of the non-degeneracy
in the KK method, we apply the EKK method to both sets of unperturbed Hamiltonians; one with the
artificially degenerate sd f7/2 p3/2-shell, and the other with the non-degenerate sd f7/2 p3/2-shell. Note
that the EKK method in the artificially degenerate sd f7/2 p3/2-shell simulates the ad hoc KK method
explained above. In this calculation, in order to obtain the convergent result, we set E = −1.5 MeV
in both cases.
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particle energies (dashed line). Both calculations are performed in the neutron-neutron channel. As a
reference, the monopole part of the first-order effective is shown with dash-dotted line.

Figure 4.5 shows the monopole part of the effective interaction Veff in the sd f7/2 p3/2-shell interac-
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tion for the neutron-neutron channel. The dashed lines show the results with the ad hoc modification
of the unperturbed Hamiltonian as explained above. The full lines display the results in the non-
degenerate model space. To show the contribution of the Q̂-box and folded diagrams, we display also
the monopole part of the first-order term of the Q̂-box. This term is energy independent.

It is interesting to note that the inter-shell (pf-sd) interaction and the intra-shell (sd-sd) interaction
are more attractive in the EKK method than in the ad hoc KK method. This discrepancy clearly comes
from the difference in the energy denominator in the Q̂-box. Suppose we have two particles within
f7/2 or p3/2 states. The magnitude of the energy denominator shown in Eq. (3.20) is larger, making
thereby the Q̂-box smaller in the EKK method than in the ad hoc KK method. For the inter-shell
(pf-sd) interaction and the intra-shell (sd-sd) interaction, this difference makes the interaction for the
artificially degenerate single-particle states more repulsive. On the other hand in the intra-shell (pf-pf)
interaction, the EKK results are more repulsive than the ad hoc KK results. This can be understood as
follows; the effect of the folded diagram contribution is quite large in the EKK method since we use
PH̃P in the folding procedure instead of PVP. This difference makes the contribution of the folded
diagrams larger.

The above comparison shows that there is a sizable difference between the effective interaction
in the EKK method and in the ad hoc KK method, and the difference affects mostly the inter-shell
interaction.

4.2 EKK method in p f -shell and p f g9/2-shell

We apply the EKK method to the nuclei 42Ca and 42Sc as well. These nuclei can be described as two
nucleons on top of a 40Ca core. Here the degenerate model space is composed of the single-particle
states of the p f -shell, while our non-degenerate model space is defined by the single-particle states
of the p f -shell and the single-particle state 0g9/2. We have performed the calculation in the same way
as in Sec. 4.1.2, but with an oscillator parameter !ω = 11 MeV, which is appropriate for 40Ca region.
We have taken ϵp f = 0 and therefore our first guess for the energy parameter is E = 0.

4.2.1 Results for p f -shell

Figure 4.6, 4.7 shows the effective interaction Veff defined in the degenerate p f -shell. In Fig. 4.6,
the panel (a) shows the neutron-neutron monopole interactions and the panels (b) and (c) display the
energy levels of 42Ca. Figure 4.7 shows the results for 42Sc, the proton-neutron channel, in the same
manner. In the shell-model diagonalization, the single particle energies are taken from the GXPF1
interaction [16]; the particle energies (in the isospin formalism) of ϵ f7/2 , ϵp3/2 , ϵp1/2 and ϵ f5/2 are equal
to −8.6240 MeV, −5.6793 MeV, −4.1370 MeV and −1.3829 MeV, respectively.

We have carried out the calculation by varying E in the range of −3 ≤ E ≤ 1.5 MeV. Clearly, we
can make the same observation as in Sec. 4.1.1; the shaded bands in the monopole panels shrink when
we include folded diagrams, making the monopole part of Veff almost independent of E. Moreover,
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Figure 4.6: (Color online) E-dependence of the EKK results of neutron-neutron channel in the p f -
shell (degenerate model space). (a) monopole part of the interaction, (b) level energies of 42Ca without
folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.1.

from the energies levels of 42Ca (Fig. 4.6 (b) and (c)) and 42Sc(Fig. 4.7 (b) and (c)), we observe that
the folded diagrams restore nicely the E-independence of all the lowest-lying levels, which is a natural
consequence expected by the theory.

4.2.2 Results for p f g9/2-shell

As our final example, we present the results for the p f g9/2-shell in Fig. 4.8 for the neutron-neutron
channel and Fig. 4.9 for the proton-neutron channel. The parameter E is varied in the range of
−3 ≤ E ≤ 1.5 MeV. The particle energies (in the isospin formalism) of ϵ f7/2 , ϵp3/2 , ϵp1/2 , ϵ f5/2 and ϵg9/2

are equal to −8.6240 MeV, −5.6793 MeV, −4.1370 MeV, −1.3829 MeV and 2.1000 MeV, respec-
tively. We note again the role played by folded diagrams; they remove the E-dependence of the Q̂(E),
resulting in an almost E-independent effective interaction Veff and energy levels of 42Ca (Fig. 4.8 (b)
and (c)) and 42Sc (Fig. 4.9 (b) and (c)).

4.3 Application of the EKK method to shell-model calculations

With effective Hamiltonians derived by the EKK method, we can study the role of such Hamiltonians
in actual shell-model calculations. Here we focus on the previously discussed systems, with at most
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Figure 4.7: (Color online) E-dependence of the EKK results of proton-neutron channel in the p f -shell
(degenerate model space). (a) monopole part of the interaction, (b) level energies of 42Sc without
folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.2.

two valence nucleons outside a closed-shell core. Results from large-scale shell model calculations
will be presented in Chap. 5.

For this purpose, Fig. 4.10 shows the low-lying energy levels for 42Ca obtained by the shell-model
calculation with the same setting as in Sec. 4.2.1. The TBMEs are derived by the EKK method, with
the Q̂-box calculated to first, second and third order in the interaction V . The parameter E is varied
in the range of −3 ≤ E ≤ 0 MeV in the calculation of the second-order and the third-order Q̂-box.
Note that the first-order Q̂-box is V itself, and is independent of E. The leftmost levels show the
result with the first-order Q̂-box. The middle two levels represent the results with the second-order
and third-order Q̂-box, where the shaded bands show the range of the energy levels corresponding to
−3 ≤ E ≤ 0 MeV. The rightmost levels are the experimental data.

As discussed above, by construction, all the physical results are independent of E if our Q̂-box is
calculated without any approximation. In other words, the weaker dependence on E implies a better
approximation to the Q̂-box (see Figs. 4.1-4.4, 4.6-4.9). This means that the width of the shaded band
may be taken as a measure of the size of the error.

In Fig. 4.10, independently of the comparison to experiment, two types of convergence can be
seen; the first one is (i) the convergence of the energy levels with respect to the order of the pertur-
bation, and the second one is (ii) the convergence of the band widths (E-dependence of the energy
levels) with respect to the order of the perturbation.
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Figure 4.8: (Color online) E-dependence of the EKK results of neutron-neutron channel in the p f g9/2-
shell (non-degenerate model space). (a) monopole part of the interaction, (b) level energies of 42Ca
without folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.1.

Let us start with discussions on the convergence issue (i). Figure 4.10 shows that the magnitude of
the third-order contribution is approximately 30% as large as that of the second-order contribution. A
simple estimate from these observations tells us that the perturbation series make a geometric series
with common ratio ∼ 0.3. We can then expect that the fourth-order correction to the Q̂-box are small.

Let us turn to the convergence case (ii). Figure 4.10 exhibits also that, compared with the second-
order Q̂-box, the band widths are smaller for the third-order Q̂-box, as we would expect. Besides
these theoretical features, the agreement with experiment is acceptable.

Next we examine the proton-neutron channel using 42Sc as our testcase. The results are shown in
Fig. 4.11. The experimental values (right-most levels) are shifted by −7.2 MeV so that the 0+ state
forms the T = 1 triplet state with corresponding 0+ ground state of 42Ca, since we presently do not
take into account any isospin dependence of the nuclear force or the Coulomb interaction.

Here we observe similar patterns to those seen in the neutron-neutron channel of Fig. 4.10. How-
ever, we notice that as far as the convergence case (i) is concerned, the contribution of third-order
terms is not necessarily smaller than second-order contributions.

On the other hand, for the convergence case (ii), we observe smaller band widths for the third-
order Q̂-box results as compared with those obtained with the second-order Q̂-box. This may indicate
that the third-order Q̂-box represents a better approximation than the second-order Q̂-box.

The agreement with experimental data is rather nice for the 0+, 7+, 3+ states, but we observe a
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Figure 4.9: (Color online) E-dependence of the EKK results of proton-neutron channel in the p f g9/2-
shell (non-degenerate model space). (a) monopole part of the interaction, (b) level energies of 42Sc
without folded diagrams and (c) with folded diagrams. Else, we use the same notation as in Fig. 4.2.
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slight overbinding for the 1+ state. From the convergence property of the 1+ state, it is unlikely
that fourth-order contributions to the Q̂-box could play an important role. Several explanations for
this discrepancy are possible. One possibility for this overbinding is that the single particle energies
presently used are not fully adequate. As mentioned above, we have employed the single-particle
energies determined from the GXPF1 [16] interaction. These energies are the results of a fit together
with the two-body interaction to reproduce experimental data. The experimental data that enter the
fitting procedure consist of selected observables from p f -shell nuclei. Since the GXPF1 interaction
differs from those derived here, other sets of single-particle energies could have been more appropri-
ate. Another possibility is that our Q-space and order in perturbation theory may not be large enough.
Thus, there may be missing many-body correlations which could play an important role. Three-body
forces [45, 46, 47, 48, 49] are examples of many-body contributions not studied here. However, the
aim of this work has been to study the recently developed EKK formalism for deriving effective in-
teractions for more than one major shell. The role of more complicated many-body correlations are
the scope of future works.

4.4 Spin-tensor decomposition of the effective interaction

Spin tensor decomposition of Veff is presented in this section. In previous studies [52], the tensor-
force component in effective interactions for shell-model calculations was, for the sake of simplicity,
modeled via the exchange of π and ρ mesons only. To a large extent, this yields results close to the
tensor force in realistic NN interactions. In fact, this model describes rather well the experimental data
in several mass regions [53]. However, it is far from trivial that the tensor force in effective interactions
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for the shell-model can be considered to be given by the exchange of π and ρ mesons only. In this
section, we show that the tensor force is in a large extent unchanged from the original interaction.
This special property of the tensor force is referred as Renormalization-persistency, in ref. [54], and
shown in the framework of KK method, Here we show the same with EKK method, therefore, not
only in degenerate model spaces but also in non-degenerate model spaces. The decomposition of the
effective interaction is accomplished as follows,

⟨ABLS |Vp|CDL′S ′⟩J′T = (−1)J′(2p + 1)

⎧⎪⎪⎨
⎪⎪⎩

L S J′

S ′ L′ p

⎫⎪⎪⎬
⎪⎪⎭
∑

J

(−1)J(2J + 1)

⎧⎪⎪⎨
⎪⎪⎩

L S J
S ′ L′ p

⎫⎪⎪⎬
⎪⎪⎭ ⟨ABLS |V |CDL′S ′⟩JT , (4.2)

where the subscript p represent the rank of the operator. When p = 0, Vp is central and p = 1, 2,
the contributions have LS and tensor force spin-tensor property. The matrix elements are written by
LS-coupled form, which is given by the following relation to ordinary jj-coupled matrix elements,

⟨ABLS JT |V |CDL′S ′JT ⟩

=[(1 + δAB)(1 + δCD)]1/2
∑

ja, jb, jc, jd

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

la
1
2 ja

lb
1
2 jb

L S J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

lc
1
2 jc

ld
1
2 jd

L′ S ′ J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× [(1 + δab)(1 + δcd)]1/2⟨abJT |V |cdJT ⟩ (4.3)

where parentheses represent transformation bracket and defined by
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1 j2 J12

j3 j4 J34

J13 J24 J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (Ĵ12 Ĵ34 Ĵ13 Ĵ24)

1
2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j1 j2 J12

j3 j4 J34

J13 J24 J

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (4.4)

The hat Ĵ = 2J + 1 and the parentheses are the ordinary 9 j coefficients. Note that this decomposition
uniquely determine the central, the spin-orbit and the tensor component of the given interaction. Note
also that to obtain the reasonable results we need to choose the model space which fully include
the spin-orbit partners, that is, j> and j< spontaneously. Therefore, for the example of the effective
interaction in two-major shell, full sdp f -shell is adequate, while sd f7/2 p3/2-shell is not.

Sections 4.4.1 and 4.4.2 are devoted to make it sure that the Renormalization-Persistency in de-
generate model space, and the Sec. 4.4.3 is for that of full sdp f -shell. As a result, we will see that
the Renormalization-Persistency is the common feature of both degenerate and non-degenerate model
spaces.

Throughout this section, the word “bare tensor” indicates the tensor force in Vlowk. By the previous
work of the author and collaborators [54], it is already known that the tensor force is not changed by
the renormalization of the strong short-range repulsion, in other word, the tensor force in Vlowk is
almost the same as that of bare nuclear force. This is because the matrix element of the tensor force is
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mainly reflect the property of the long-range part of the tensor force, and short-range renormalization
produce mainly the central and LS force only. Tensor force, which has rank 2 angular-momentum
structure, is hardly happen to be produced by the complexity of the short-range renormalization. In
this thesis, we do not repeat those calculations, regarding bare tensor force is almost the same as
tensor force in Vlowk.

4.4.1 Results for sd-shell

Figure 4.12 shows the monopole part of the tensor force in degenerate sd-shell. Because of the angular
momentum restriction, the monopole parts of the tensor force which include s1/2 orbit are equal to
zero. The circle and the solid line is that of bare NN interaction, the square and the dashed line is Veff
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Figure 4.12: Monopole part of the tensor force in sd-shell (a) T=0 channel and (b) T=1 channel. The
circles and the solid lines are that of bare NN interaction, the squares and the dashed lines are Veff

with second order Q̂-box and the triangles and dot-dashed lines are Veff with third order Q̂-box.

with second order Q̂-box and the triangular and dot-dashed line is Veff with third order Q̂-box. In both
T = 0 and T = 1 channel, we observe that the renormalization persistency of the tensor force under
the inclusion of the medium effects.

4.4.2 Results for p f -shell

In this section, we show the spin-tensor decomposition of Veff in degenerate p f -shell.
Figure 4.13 shows the monopole part of the tensor force in degenerate p f -shell. The renormaliza-

tion persistency of the tensor force is maintained to a large extent but less than sd-shell case. Except
for p1/2 channel, the renormalization persistency is almost perfect. For p1/2 channel, only 2 nucleons
can fill the orbit, and therefore the influences to nuclear structure are not as significant as the other
orbits.
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Figure 4.13: Monopole part of the tensor force in p f -shell (a) T=0 channel and (b) T=1 channel. The
other notations are the same as Fig. 4.12.

4.4.3 Results for sdp f -shell

Finally, we present the result of sdp f -shell. Figures 4.14 and 4.15 shows the monopole part of the
tensor force in bare tensor force, Veff calculated using Q̂-box up to second order, and that of third
order. The left 6 channels are for intra-shell sd-sd interaction, the middle 12 channels are for inter-
shell sd-p f interaction, and the right 10 channels are for again intra-shell p f -p f interaction.
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Figure 4.14: Monopole part of the tensor force in sdp f -shell (T = 0).

What is interesting and important is that the renormalization persistency of the tensor force is, to
a amazingly large extent, maintained even for the inter-shell interactions. For effective interaction for
the inter-shell interaction has been only determined empirically, the renormalization persistency of
the inter-shell interaction derived by the microscopic theory has a great importance. This feature can
be one of the guide when we consider the effective interaction in this model space.
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Figure 4.15: Monopole part of the tensor force in sdp f -shell (T = 1).

4.4.4 Renormalization persistency

We saw the results that the renormalization persistency of the tensor force is observed in sd-shell,
p f -shell for degenerate model space and sdp f -shell for non-degenerate model space. The results
mean that the monopole part of the tensor force is dominated by the first-order term in the Q̂-box
and the contributions from second or higher-order terms are remarkably small. These results can
be understood by considering the specific angular momentum structure of the tensor force, which is
a scalar product of two rank 2 tensors in spin and coordinate spaces. In a perturbative correction
to second or higher-order, such a complicated structure is smeared out and the resulting interaction
consists mainly of a central force contribution. Therefore, as for the tensor-force component in the
monopole interaction, it is the first-order contribution which is the dominant one.

To elucidate why higher-order terms in many-body perturbation theory are small, we consider as
an example a contribution from second order in the interaction, by far the largest higher-order term.

The Hamiltonian causing the present second-order perturbation can be written as

H1 =
∑

p=0,1,2

wp(U (p) · X(p)), (4.5)

where wp represents an interaction strength, U (p) and X(p) are operators of rank p in spin space and
coordinate space, respectively. A contribution from second-order in perturbation theory to a state φ
can then be written as

η(φ) = −
∑

j

⟨φ|H1|ψ j⟩⟨ψ j|H1|φ⟩
∆E j

, (4.6)

where ψ j defines an intermediate state with energy denominator ∆E j. The summation is done over all
intermediate states ψ j. As far as ψ j varies in this summation, within a fixed configuration with respect
to harmonic-oscillator (HO) shells, ∆E j remains constant due to the degeneracy of single-particle
energies in a given HO shell. We mention that the usage of non-degenerate perturbation theory yields
only small changes.
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Such a configuration for a given HO shell is denoted by S . As ∆E j is a constant within a fixed
shell S , we label it as ∆ES . Note that S corresponds to a part of the Q-space, while φ is in the P-space.
The term η(φ) can then be decomposed into contributions from individual S ’s as

η(φ) = −
∑

S

ζ(φ, S )
∆ES

, (4.7)

where
ζ(φ, S ) =

∑

j∈S
⟨φ|H1|ψ j⟩⟨ψ j|H1|φ⟩. (4.8)

For a given S , all ψ js are included, and the summation can be replaced by the closure relation as

ζ(φ, S ) = ⟨φ|{H1H1}S |φ⟩, (4.9)

where the parentheses { }S are introduced to indicate that the second H1 changes φ to an S -configuration
state in the Q-space and the first H1 moves it back to state φ in the P-space. In other words, H1H1 in
this equation cannot be a simple product, but a certain contraction is needed as we shall show soon.

By utilizing Eq. (4.5), we obtain

{H1H1}S =
∑

p1,p2

wp1wp2{(U (p1) · X(p1))(U (p2) · X(p2))}S

=
∑

k=0,1,2

(2k + 1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑

p1,p2

wp1wp2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p1 p2 k
p1 p2 k
0 0 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
{
[
[U (p1) × U (p2)](k) × [X(p1) × X(p2)](k)

](0)}S

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.10)

where the terms in curly brackets are 9 j symbols and k implies the rank of the recoupling. The
operator {[U (p1) × U (p2)](k)}S acts in the P-space as a rank-k two-body operator in spin space, while
{[X(p1) × X(p2)](k)}S acts as a rank-k two-body operator in coordinate space. Because the contraction
due to the elimination of the Q-space does not affect the angular momentum properties, the variable
k = 0, 1, 2 represents induced central, spin-orbit and tensor forces in the P-space, respectively.

Since we are mainly interested in the tensor component, we focus on the case of k = 2, with the
obvious restriction p1+ p2 ≥ 2. Since the above 9 j symbols is proportional to 1/

√
(2p1 + 1)(2p2 + 1),

it is easy to convince oneself that the central force component receives the largest contribution from
the 9 j symbol. Furthermore, for our analyses it is important to keep in mind that the expectation value
of the central component is the largest in absolute value, the tensor component the second largest and
the spin-orbit term gives rise to the smallest contribution to the renormalized Vlowk interaction.

From these considerations, for k = 2 the largest contribution comes from the combination p1 =

0, p2 = 2 or p1 = 2, p2 = 0 in Eq. (4.5), that is either a central-tensor or a tensor-central combination.
Let us now discuss this case. We assume without loss of generality that the tensor component of H1

acts on the ket state of the matrix element being considered. While the central component of H1 acts
afterward on this state, we can also consider that this central force acts to the left on the bra state.
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We then take the overlap between these two states by considering one by the tensor on the ket side,
and the other by the central on the bra side. These two states are sum-rule states for the two forces
within the S -configuration space. As the central force and the tensor force are very different in nature,
such sum-rule states are very different from each other in general, leading to a very small overlap.
This is the main reason why the combination of the central force and the tensor force produces small
contributions.

This argument does not hold for the case where the tensor component of H1 acts twice in the
term to second-order in perturbation theory. However, due to the angular momentum coupling, the
product of two tensor forces (p1 = p2 = 2 in Eq. (4.5)) yield small contributions to the k = 2 terms of
Eq. (4.5). For higher orders, other tensor-force components may show up, but there is no mechanism
to enhance their contributions.

The small contribution of the tensor force in MBPT can be viewed to be reasonable also under
the following intuitive picture: after multiple actions of the forces, the spin dependence is smeared
out, and only the distance between two interacting nucleons becomes the primary factor to the whole
processes. This results in the dominance of the induced effective interaction by the central components
and yields only a minor change in the tensor component.

It is instructive to study in more detail the contributions to second-order in perturbation theory.
To do so, we single out the by far largest second-order term, namely the so-called core-polarization
term, depicted in Fig. 2.3. For the core-polarization diagram we can show that the contribution to the
tensor force vanishes by simple angular momentum algebra arguments. The contribution to a specific
core-polarization matrix element can then be written as

⟨amabmb|Vcp−eff
T |cmcdmd⟩ =

∑

p,mp,h,mh

⟨ama pmp|VC |cmchmh⟩⟨hmhbmb|VT |pmpdmd⟩/∆E

=
∑

np,lp,nh,lh

( ∑

jp,mp, jh,mh

⟨ama pmp|VC |cmchmh⟩⟨hmhbmb|VT |pmpdmd⟩
)
/∆ES

=
∑

np,lp,nh,lh

( ∑

mlp,msp,mlh,msh

⟨amanplpmlpmsp|VC |cmcnhlhmlhmsh⟩

×⟨nhlhmlhmshbmb|VT |nplpmlpmspdmd⟩
)
/∆ES , (4.11)

where Vcp−eff
T is the induced tensor force, VT and VC are the tensor force and central force components

from H1, respectively. With a harmonic oscillator basis, the term ∆ES represents an energy denomi-
nator which is constant for a given set of quantum numbers np, nh, lp and lh, as discussed above. Here
a = (na, la, ja), and ma denotes magnetic substate of la. Note that the two-body states are not anti-
symmetrized. The states p and h represent particle and hole states, respectively. In the third line of
the equation, only particle and hole states are transformed to the ls coupling scheme. Note that the
intermediate states are summed up to fulfill spin-saturation within each HO major shell.

We can divide the contribution into two different types according to the spin dependence of the
central force. One comes from the terms whose central force part VC includes σ · σ (type I) and the
other does not (type II). With our summation tailored to a spin-saturated core or an excluded Q-space
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with all spin-orbit partners, we can prove that type II contributions always vanish because the first
factor is diagonal with respect to spin, that is msp = msh, and the second factor is zero when we
sum over spin-saturated contributions. Therefore, only a spin-dependent central force results in non-
vanishing contributions to the tensor force for higher-order terms in VSM

eff . Finally, the contribution
to the tensor force from the spin-dependent central force is quite small because the spin-dependent
central force is generally by far smaller than the spin-independent central force in modern realistic
NN potentials.

In conclusion, medium effects produce minor contributions to the tensor-force component, result-
ing in a tensor-force component that is dominated by the bare NN interaction. Our hypothesis about
Renormalization Persistency is fulfilled to a good extent by the tensor force.

4.5 Comparison with phenomenological interactions

In this section, we compare our effective interaction Veff to the phenomenological interactions. As
the phenomenological interactions, we take USD as sd-shell interaction [12, 13], GXPF1 as p f -shell
interaction [16] and SDPF-M as sd f7/2 p3/2-shell interaction [19].

Since in the phenomenological interactions they fix the matrix element one by one, the reproduc-
tion ability of the experimental data is much better than the interaction derived by the microscopic
theories. Moreover, our method does not include the effect of three-body force, the continuum states,
the difference of wave function from harmonic oscillator basis, which sometimes are crucial to explain
the physics in extreme cases.

In this sense, it is interesting to see how our method reproduce and does not reproduce the phe-
nomenological interactions in each mass region.

When we find the differences between the interactions derived via the EKK method and the phe-
nomenological interactions, we can consider two aspects of the fact.

For phenomenological interaction reproduce the experimental data well by construction, such an
interaction is kind of “answer” of the effective interaction for the shell model. From this standpoint,
the deviation from the “answer” of the microscopic effective interaction should be corrected in some
way. The major points we can improve are the better approximations in the evaluation of Q̂-box and
including the physics we did not consider in the EKK method. For the first point, we will see the
Vlowk cutoff Λ dependence of the results and the convergence property of the Veff . The E-dependence
of the results also tells us how the approximation works. For the second point, for example, what is
convincing is that we do not include the effect from the genuine three-body force at the beginning of
the calculation. The perturbative treatment of three-body force is considered to be sometimes crucial
when we consider the physics far from the stability line.

On the other hand, since the effective interaction derived by EKK method is originated in bare re-
alistic NN interaction, the interaction is expected to include such rich features of the realistic NN inter-
action as it is, for example, the spin-tensor structures. Those features appear as a channel dependence
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of the monopole interaction. The phenomenological interactions are fit to tremendous experimental
data in the corresponding region. By construction, they reproduce the experimental data in a great
precision. However, one should be careful with this fitting, because the experimental data include ev-
ery configuration of the nuclei, meaning that some of those states are not adequate to express the states
within the shell-model framework. For example, for the physics of dripline, the continuum degrees
of freedom is important. It is known that there exist the cluster-like structures in some nuclei. On the
other hand, the shell model should not reproduce those states. Although most of phenomenological
interaction is designed to be reproduce only shell-model like states, the one of the role of effective
interaction derived from microscopic theory is to clarify which states are shell-model like and which
states are not. Therefore, the deviation between EKK method and phenomenological force should not
be always considered negatively, but especially the difference of channel dependence might imply the
interesting physics, which is not described only by phenomenological theories.

4.5.1 Comparison with USD interaction in sd-shell

As our first example, we calculated the effective interaction in sd-shell and compare it to phenomeno-
logical interaction. Figure 4.16 shows the comparison of Veff obtained by EKK method and USD
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Figure 4.16: Comparison of monopole part of the interaction between USD and Veff (a) T = 0
channel and (b) T = 1 channel. Dashed lines are USD interaction and the solid lines are Veff derived
via the EKK method.

interaction. The left is the comparison in T = 0 channel and the right is T = 1 channel. Considering
the fact that we do not have any adjustment in EKK method, the agreement is generally no so bad.
However, more precisely watching the graphs, there are some differences between two interactions.
In T = 0 channel, Veff by EKK has more channel dependence and the monopole related to d5/2 orbit
is repulsive and inversely s1 − s1 channel is more attractive.
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Figure 4.17: Comparison of monopole part of the interaction between GXPF1 and Veff (a) T = 0
channel and (b) T = 1 channel. Dashed lines are GXPF1 interaction and the solid lines are Veff derived
via the EKK method.

4.5.2 Comparison with GXPF1 interaction in p f -shell

Figure 4.17 shows the comparison of Veff obtained by EKK method and GXPF1 interaction [16]. As
a general trend, the monopoles of EKK in T = 0 channel is less attractive than GXPF1 interaction,
but the relative channel dependence is similar. On the other hand, however, the channel dependence
in T = 1 channel are quite different in EKK and GXPF1, while the averages of this two interactions
agree better than T = 0 case.

4.5.3 Comparison with SDPF-M interaction in sd f7/2 p3/2-shell
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Figure 4.18: Comparison of monopole part of the interaction between SDPF-M and Veff (a) T = 0
channel and (b) T = 1 channel. Dashed lines are SDPF-M interaction and the solid lines are Veff

derived via the EKK method. Model space is sd f7/2 p3/2-shell, non-degenerate model space.
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Figure 4.18 shows the comparison of Veff obtained by EKK method and SDPF-M interaction.
In T = 0 channel, both SDPF-M and EKK interactions have the feature that the hierarchy of the
strength of monopole. The monopoles of sd-sd shell are the most attractive, those of sd-p f inter-
shell interaction are the next, and those of p f -p f shell are the least attractive. It is worth noticing
that in p f -p f channel two interactions are very much different. In T = 1 channel, the monopole of
sd-sd shell interaction is similar in strength, but the monopole of sd-p f inter-shell interaction is more
attractive in EKK method than SDPF-M.

4.6 Dependence on Vlowk cutoff

As we stated before, the nuclear force has strong short-range repulsion and we need to renormalize
those degrees of freedom to low-momentum interaction. The Vlowk cutoff is often refereed as the
Greeks Λ, which is the resolution of obtained low-momentum interaction. The physics with higher
momentum is not seen with this low-momentum interaction. In the nuclear many-body problem,
those degrees of freedom is not needed. The typical value of cutoff of Vlowk is Λ ≈ 2.0 − 2.5fm−1,
where the Vlowk is almost seems to be model independent [40, 38]. By the study of 3He and 4He with
exact solution within two-body interaction of three-body and four-body problem, the Vlowk reproduce
those binding energies the best with the same cutoff Λ ≈ 2.0fm−1 [42].

This fact can be explained as follows: the nuclear force includes three-body force because the
nucleons themselves are composite particles. The renormalization to a low-momentum space of the
nuclear force inevitably produces the “induced” three-body forces as well. If we can reproduce the
binding energy of 3He and 4He with two-body Vlowk interaction only, we can expect that the three-
body force happen to be canceled out, and we do not need to think about the three-body force in
whole mass region.

However, things is not that simple. This ansatz might only valid in three and four-body system,
because the spin-tensor property of three-body force can differ between “induced” three-body force
and genuine three-body force. Actually, there are many works where three-body force play a crucial
role in considering the neutron-rich isotopes [45, 46, 47, 48, 49].

In this section, we will explore the cutoff Λ dependence of Veff , varying the Λ in the region of
Λ ≈ 2.1 − 2.5 fm−1.

Figure 4.19 shows the cutoff Λ dependence of monopole part of the interaction in neutron-neutron
channel and proton-neutron channel. Model space is chosen as sd-shell as an example. The Λ depen-
dence in neutron-neutron channel is not large. The similar observation is in reference [40] as well,
they claim that the results are insensitive to cutoff Λ around Λ = 2.0 fm−1. On the other hand, the Λ
dependence in proton-neutron channel is relatively large.

To see how it affects the level energies of atomic nuclei, we performed shell-model calculations
with the same interaction, varying the cutoff Λ in the same region. The single particle energies are
taken from USD interaction, that is, ϵd5/2 = −3.94780 MeV, ϵd3/2 = −3.16354 MeV and s1/2 =
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Figure 4.19: Cutoff dependence of the monopole part of the effective interaction Veff . The cutoff is
taken from 2.1 fm−1 to 2.5 fm−1.

1.64658 MeV. In Fig. 4.20, the cutoff dependencies of the level scheme of 18O and 18F are presented,
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Figure 4.20: Cutoff dependence of the level scheme of 18O and 18F. The cutoff Λ is varied from
2.1 fm−1 to 2.5 fm−1 and the experimental data is listed at the right-most levels.

as an example to examine the neutron-neutron interaction and the proton-neutron interaction. For
the calculation of 18O, considering the energy scale and the fact that we do not have any adjustment
in EKK method, the agreement to experimental data is nice in general. Although we still see the Λ
dependence, especially for two 0+ states, the results looks stable.

On the other hand, the results for 18F depend on Λ. This dependence can be interpreted by two
reasons. One is that the effects of induced higher-body force. If we calculate the effective interaction
including all the induced higher-body force, results should be completely invariant under the change
of cutoff Λ, although practically it is not possible. The other reason is that our truncation of the Q-
space. The whole Hilbert should be theoretically infinite, while in the practical calculation we need to
truncate. In general, in the harmonic oscillator potential, the large (2n+ l) value corresponds to higher
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energy and therefore higher momentum. Therefore, the larger the cutoff Λ is, the larger Hilbert space
we need to include as Q-space. We included only nine major shells throughout these calculations,
independently of cutoff Λ. Therefore, the effective interaction and the resultant level energies depend
on Λ, but when we include larger shells as Q-space, it is expected that the dependence is suppressed.
We discuss those convergence properties of Veff in the next section with an example.

Therefore the issue that which cutoff we have to choose is non-trivial. It should be discussed with
full consideration with sufficiently large whole Hilbert space, and this is one of the important future
works. In this thesis, to save the computational time, we use the nine major shell as the whole Hilbert
space for most cases. Simultaneously, we used the cutoff of Λ = 2.5 fm−1, for this seems to reproduce
the experimental values the best. This choice of Λ does not contradict to the consideration by Nogga
and his collaborators [42]. Since their case for 3N and 4N system and ours is 18N system, with inert
core of 16O. It is no less logical to choose the Vlowk cutoff Λ to reproduce the level energies of 18O
and 18F, than choose the Λ to reproduce the biding energies of 3He and 4He the best. We have to
note that the effective two-body interaction originated from three-body force in T = 1 channel is also
non-negligible, and therefore we have to include this effect before finally fix the cutoff Λ. This point
will be the future work.

4.7 Convergence property of Veff

The Q̂-box expansion is exact if all the excitations are included as Q-space degrees of freedom and
infinite degrees of perturbation. Obviously, numerical calculation does not allow to include everything
exactly.

The perturbation can only be performed at most up to third order in V , and it seems fairly well
converged as we saw before. We also truncate Q-space. In the preceding sections, we only include
9 !ω shell space as whole (P + Q)-space, that means, the Q-space intermediate states consist of the
particles whose 2n + l value are less than 9 !ω are only included for the evaluation of the Q̂-box.

In this section, we will see how this truncation works. As a test, we calculated the sd-shell
interactions with the total (P + Q)-space with 7 !ω, 9 !ω (our preceding calculations), 11 !ω and
13 !ω.

Up to date, the largest calculations include 13!ω [55, 56]. The necessary inclusion of n!ω relate
to the cutoff of the Vlowk. The smaller the cutoff is, the less n!ω have to be included. It is explained
as follows: in Vlowk, the interactions above the certain cutoff Λ is not defined at all. The relative
momentum k is related to the kinetic energy of the colliding two particles by E = 2k2 in the scattering
unit (! = c = m = 1). Therefore, Λ = 2.0 fm−1 corresponds to the energy in MeV by

Erel =
2!2k2

m
= 2k2 (!c)2

mc2 ≈ 2 × (2.0)2 × 2002

1000
= 320 MeV (4.12)

In the case of Veff for sd-shell, we took the harmonic oscillator of !ω = 14 MeV. Relating this relative
energy between two nucleons directly to the eigenenergies of harmonic oscillator states, considering
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the fact that we have two nucleons, the necessary inclusion of n!ω is typically the order of 15−20 !ω.
When the cutoff is raised to 2.5 fm−1, Erel ≈ 500 MeV, the typical n!ω is 20 − 30 !ω. Of course,
because the interaction in momentum space is not completely transformed to harmonic oscillator
space with finite number of basis, this is not a mathematically rigorous estimation.
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Figure 4.21: Convergence property of the monopole part of the matrix element of Veff . The total
P + Q space is shown by n!ω, 7, 9, 11, 13 !ω.

Figure 4.21 shows the convergence property of the matrix elements of Veff obtained by EKK
method, by showing the monopole part. Both in neutron-neutron channel and the proton-neutron
channel the convergences are not perfect even for 13!ω, unfortunately. For proton-neutron channel,
however, the matrix elements looks enough well converged already 9 or 11 !ω, which is the same
as our truncation in the most of this thesis. For neutron-neutron channel, on the other hand, the
monopole part of the matrix element seems not to be converged yet even at 13 !ω. The calculation
done in 13 !ω is the best calculation up to date, and the indicate that more precise exploration about
the convergence property is important.

One should also note that the monopole reflect the matrix elements which have the large angular
momentum. To see the low angular momentum matrix elements, we also show the level schemes of
18O and 18N, in Fig. 4.22. Let us start from 18O. All the levels are nearly convergent, but are not fully
converged yet. The calculation in 15 !ω is expected. Next, we move to 18F. The general convergence
is better than 18O. However, the ground state 1+ state is only converged at 11 or 13 !ω, which is
different from our expectation from Fig. 4.21.
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Chapter 5

Shell-model calculation with the effective
interaction based on EKK method

In this chapter, we discuss the possible applications to calculate the various kinds of atomic nuclei
using newly derived interaction Veff by EKK method. Although the results are preliminary, it is useful
to present the future direction to proceed and show the utility of the EKK method.

The main purpose of EKK method is, of course, deriving the effective interaction defined with
more than one-major shell. We actually obtained the effective interaction for sd-shell and p f -shell for
degenerate model spaces, sd f7/2 p3/2-shell and p f g9/2-shell for non-degenerate model spaces. Then,
we can now move to calculate the physics of atomic nuclei with appropriate model space. When we
calculate the properties of the nuclei away from the stability line, the inclusion of two-major shell
degrees of freedom is essential. For example, the N = 20 magic number is known to be broken
in the wide region of the nuclear chart, where sdp f -shell or sd f7/2 p3/2-shell degrees of freedom is
essential [51]. The inclusion of g9/2 orbit to p f -shell is also interesting [55].

In Sec. 5.1, a specific nuclei 16N is studied. This nucleus has one neutron and one proton hole
with respect to 16O core, and therefore have a characteristic structure of the level scheme. In Sec. 5.2,
Fluorine isotope is studied in the model spaces of sd f7/2 p3/2-shell and sdp f -shell. The shell-model
calculation in this Chapter is performed using “KSHELL”, which enable us the massively parallel
computation, and is developed by N. Shimizu recently [57].

5.1 Shell-model calculation of 16N

The nucleus 16N is consist of seven protons and nine neutrons. When we consider the normal config-
uration, it has one proton hole in p1/2 orbit and one neutron in d5/2 orbit of s1/2, with respect to 16O
core.

Figure. 5.1 is the schematic picture of 16N. Because of the large shell gap between p-shell and
sd-shell, the low-lying levels of 16N should be explained with the degrees of freedom of one proton
hole in p1/2 orbit and one neutron in d5/2 or s1/2 orbit, respectively.

When we explore this nucleus with the shell-model, the inter-shell matrix elements are essential.
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Figure 5.1: Schematic image of 16N. Because of large shell gap between p-shell and sd-shell, the
low-lying levels of 16N should be explained with the degrees of freedom of one proton hole in p1/2

orbit and one neutron in d5/2 or s1/2 orbit, respectively.

The low-lying levels of 16N are expected to have negative parity reflecting the fact that the hole state
in 0p1/2 orbit has negative parity and the particle in the 0d5/2 has the positive parity. The possible
spin-parities are 3−, 2−, 1−. The particle state can also be 1s1/2, for the difference of single-particle
energies of 0d5/2 and 1s1/2 are just around 500 keV. For the particle state 1s1/2 the possible angular
momentum is 1−, 0−. Therefore, we expect that those states are nearly degenerate and low-lying and
there should be gap between the other states.

In the actual calculation, we prepared the effective interaction defined in psd-shell using EKK
method, and calculate the several low-lying states of 16N by shell-model calculations. The !ω =
14 MeV is designed appropriate for mass number A = 16. The single-particle energies are taken to
reproduce the low-lying states of 15O and 17O.

Figure 5.2 shows the result of shell model calculation of 16N with Veff by EKK method and the
experimental data. As we saw in Fig. 5.1, the natural configuration is one neutron and one proton
hole with respect to 16O core. Since the single particle energy of s1/2 orbit is near from that of d5/2,
the neutron can excite to s1/2 orbit as well. Then, the allowed angular momentum configurations
are J = 3, 2, 1, 0 and the allowed parity is negative. Beyond those natural configuration, the more
complex configuration which need the excitation beyond the shell gap between p-shell and sd-shell
are placed above the red filled circle as shown in Fig. 5.2. This structure in which the negative parity
states are placed as low-lying states and form a kind of multiplet is the characteristic feature of 16N
or 40K. In those nuclei, one neutron (proton) above the shell gap and one proton (neutron) below the
shell gap interact.

5.2 Application to sd f7/2p3/2-shell nuclei

In this section, the preliminary results of the isotopic chains of several nuclei above the Oxygen are
presented. The model space is sd f7/2 p3/2-shell.
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Figure 5.2: Level scheme of 16N calculated in psd-shell model space with EKK method. Below the
red filled circles are the states with natural configuration, where one neutron and one proton hole are
added to 16O core.

Throughout this section, we adapt a two-body effective interactions obtained via the EKK method,
starting from the Vlowk interaction with cutoff Λ = 2.5 fm−1 starting from the χN3LO realistic NN
interaction. We adapted, on the other hand, the single-particle energies (SPEs) of SDPF-M interaction,
after slightly modify them. Theoretically, the SPEs can also be calculated via the EKK method, but
the convergence with respect to higher !ω excitation is rather slow for SPEs and the contribution
from the three-body force is known to be sizable, order of MeV. Then, as in most of these studies, we
adapted the SPEs of phenomenological interaction basically. Modification is done in the manner that
we can reproduce the spin-parity of selected nuclei. The SPEs are shown in Table. 5.1.

orbit SPE (EKK) SPE (SDPF-M)

d5/2 -4.50000 -3.94780
s1/2 -2.16354 -3.16354
d3/2 1.64658 1.64658
f7/2 7.10000 3.10000
p3/2 7.10000 3.10000

Table 5.1: Single-particle energies defined in the model space sd f7/2 p3/2-shell. The energies given as
SPE (EKK) are adapted in the shell-model calculations. SPE (SDPF-M) is the single-particle energies
of the SDPF-M interaction, shown as a reference.

The major modification is that the SPEs of the particles in p f -shell. From SDPF-M, the ϵ f 7/2 and
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ϵp3/2 are raised by 4 MeV each, reflecting the fact that our inter-shell interaction is more attractive than
SDPF-M. Actually, the energy gap between sd-shell and p f -shell is 14 MeV, when we consider the
harmonic oscillator potential appropriate for 18O. Therefore, the values we adapted can be considered
as reasonable. The other modifications in ϵd5/2 and ϵs1/2 are to reproduce the spin-parities of odd-even
nuclei in the Fluorine isotopes and Sodium isotopes.

Note that we do not include the contribution of three-body force in these calculations. It is known
that the for the single particle energies the contribution of three-body force is order of MeV. The
contribution to two-body force is not also negligible, order of several hundred keV.
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Figure 5.3: The binding energies for Oxygen isotopes. The squares shows the experimental values
and the circles and lines show the theoretical values.

Figure 5.3 shows the results of the shell-model calculation of Oxygen isotopes. The ground state
energies are presented, with squares the experimental data and the circles and dashed line are the
results of the shell-model calculation done with the effective interaction derived via EKK method. The
general agreement of the binding energies are rather good. The dripline of Oxygen is experimentally
determined as 24O, which is not reproduced in our calculations. This is not a surprise because it is
also known that this dripline is well described by including the effective two-body force coming from
the three-body force, in which ∆(1232) is excited as an intermediate states [45, 46, 47, 48, 49]. This
effective two-body force originated in three-body force has repulsive contribution and makes the 26O
and 28O less bound.

Figure 5.4 shows the results of Fluorine isotopes. The Fluorine dripline is far longer than that
of Oxygen isotopes. A proton added to Oxygen changes the structure of effective single particle
energies. We do not consider neither the Coulomb force nor the charge symmetry breaking of the
effective interaction. Then we restrict ourselves to consider the binding energy with respect to 18F,
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Figure 5.4: The binding energies for Fluorine isotopes. The squares shows the experimental values
and the circles and lines show the theoretical values.

for we can expect that the effect of Coulomb force is nearly constant along the isotopic chain. In
Fig. 5.4, the experimental values are subtracted by constant, to make the binding energies of 18F by
experimental data and the calculation equal.

In the isotopic chain, the nuclei above the 29F can only calculated with the model space consist of
more than one major shell. In particular, it is striking that we can reproduce the experimental dripline
of 31F. We can interpret this by the following mechanism. If we assume natural occupation, 31F has
two neutrons in the f7/2 orbit. Knowing the fact that the curve of ground state energy around N = 29
is flat, the effective single particle energy of f7/2 at N = 29 should be nearly zero. Once neutrons
begin to fill the f7/2 orbit, the effective single particle energies of f7/2 gets higher, and at 31F, it reaches
the dripline.

For just a glance at the physics including island of inversion, we quickly see the results of Ne
and Na isotopes, as those nuclei have three and four protons outside the 16O core, respectively. In
Figs. 5.5 and 5.6, the ground state energies of Neon and Sodium isotopes are presented. The squares
are experimental values and the circles and the line are theoretical calculation. The subtractions of
the Coulomb force are the same as in the case of Fluorine isotope, that is, the ground state energies of
20Ne and 22Na are adjusted. Looking at the figure, the ground state spin-parities and binding energies
of Ne isotopes and the binding energies of Na isotopes are reasonably well described.

As a summary, we will mention the future work about the calculations. There results are pre-
liminary in several reasons. First, we should think about the convergence problem as discussed in
Sec. 4.3. Our calculation now is restricted to the P + Q-space of nine major shells, which is not fully
sufficient. Second, we need to include effective two-body force derived from the three-body force.
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Third, we still have the possibility to calculate SPEs by EKK method. For the SPEs, we need quite
larger P + Q-space for the convergence than those of two-body interaction. The effect of three-body
force is also large. Nevertheless, seeing from the results shown in Figs. 5.3 - 5.6, this line of work is
promising. We are then quite sure that we can access to the physics of island inversion, for example,
in near future.





Chapter 6

Summary and Concluding Remarks

We have presented a novel many-body theory (the so-called EKK method) to calculate the effective
interaction Veff for the shell-model calculation that is applicable not only to degenerate model spaces,
but also to non-degenerate model spaces.

In Chapter 1, the introduction is given. The former half of Chap. 2 is devoted to the brief review
of the history of the nuclear shell model and the nuclear force, including the theory to renormalize
the strong short-range repulsion. In the latter half, we reviewed the theory of effective interaction,
with the special emphasis on the Kuo-Krenciglowa method and Lee-Suzuki method. Chapter 3 is
the theoretical explanation of EKK method. In Sec. 3.1, we presented the formal theory of EKK
method, which is a summary of references [1, 2]. From Sec. 3.2 to the end of this thesis, we presented
our original work. The method is based on a re-interpretation of the unperturbed Hamiltonian and
the interacting part. A few non-trivial questions arise when applying the perturbation theory based
on the re-interpreted Hamiltonian of EKK method, but we presented that we can still formulate the
EKK method in the framework of many-body perturbation theory. We constructed the diagrammatic
rules for EKK method and proved that the factorization can be achieved also in EKK method. The
final expressions for the effective interactions can be understood as a Taylor series expansion of the
Bloch-Horowitz Hamiltonian around a newly introduced parameter E. Since the change in E should
not affect the effective interactions Veff , the E-independence of the numerical results provides us with
a sensible test of our framework and the approximations we make in the actual calculations.

In Chap. 4, we have presented numerical results for the effective two-body nucleon-nucleon in-
teractions Veff , with applications to shell-model calculations of selected nuclei, with and without the
contribution from the folded diagrams. The degenerate model spaces are the sd-shell for the nuclei
18O and 18F, and the p f -shell for the nuclei 42Ca and 42Sc. Our non-degenerate model spaces consist
of the single-particle states from the sd f7/2 p3/2-shell and the p f g9/2-shell. Based on our numerical
results, we have found that our method works well in practical situations. For degenerate model
spaces, our method gives the same results as the conventional KK method. In the non-degenerate
model space, which is beyond the applicability of the KK method, we have shown that our method
works nicely.

We have shown that our Veff and therefore the energy levels are almost independent of the pa-
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rameter E, as they should, if we calculate the Q̂-box up to third order. This in turn suggests that the
perturbative expansion of the Q̂-box through third order gives almost converged results.

In Sec. 4.1.3, the difference between the EKK method and the KK method with an ad hoc modi-
fication of the unperturbed Hamiltonian is significant, especially for inter-shell interactions. This can
have a large impact, for example, on the investigation of neutron-rich nuclei where the degrees of
freedom defined by two or more major oscillator shells are important.

In Sec. 4.4, the renormalization persistency of the tensor force in EKK method is presented. Not
only for degenerate model spaces, but also for non-degenerate model space, the tensor force has the
property of renormalization persistency.

Sections. 4.6 and 4.7 are devoted to the detailed verification of the robustness of the results
shown in EKK method. We still cannot say the results get converged completely, and we saw the
dependence on the Vlowk cutoffΛ. We should note that our work is the first attempt to construct a robust
way to derive the multi-shell effective interactions for the shell model starting from realistic nuclear
interaction. Therefore, for our purpose, our calculation is not necessarily completely converged. The
complete analysis on the convergence or cutoff dependence of the results is one of the important future
works.

In Chap. 5, we selected a few applications of our new interaction obtained via EKK method,
though the results are still preliminary. We prepared the effective interaction defined in psd-shell
and sd f7/2 p3/2-shell, and calculate 16N and O, F, Ne, Na isotopes, respectively. In particular, the
characteristic gap structure of the level scheme of the 16N, and dripline of the F isotopes are amazingly
well reproduced. We still need to work on these calculation to obtain the robust results, but we can
say that this line of work is really interesting and promising.

Finally, we stress that our method has established a robust way to calculate microscopically the
effective interaction in non-degenerate model spaces. These spaces involve typically more than one
major oscillator shell. We believe that this is an indispensable step to make the nuclear shell model
a reliable theory, in particular for exotic nuclei, based on a microscopic effective interaction derived
from the realistic NN interactions.
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Appendix A

Time-dependent formalism of Extended
Kuo-Krenciglowa method

In Secs. 2.4 and 3.2, we reviewed and presented the time-dependent theory of the KK method and
EKK method. To make the explanation clearer, in this appendix, we show here examples of the
evaluation of the diagrams appearing in the Q̂-box via the time-dependent formalism of KK and EKK
method.

A.1 Time-dependent formalism of Kuo-Krenciglowa method

First, we start from the evaluation of the diagrams in KK method. As we saw in Eq. 2.76, what we
need to evaluate is in the form of

⟨ψα|HU(0,−∞)|ψβ⟩. (A.1)

As the minimal example, let us focus on a second-order contribution and set ⟨ψα| = ⟨c|aaab and
|ψβ⟩ = a†ca†d|c⟩. Combined with Eq. (2.61), the second-order contribution is written as, apart from the
numerical factors,

lim
ϵ→0

lim
t′→−∞(1+iϵ)

∫ 0

t′
dt1⟨ψα|H1H1(t1)|ψβ⟩

= lim
ϵ→0

lim
t′→−∞(1+iϵ)

∑

i, j,k,l

∑

i′, j′,k′,l′
Vi j,klVi′ j′,k′l′ ⟨c|aaaba†i a†jalaka†i′a

†
j′al′ak′a†ca†d|c⟩

×
∫ t

t′
dt1ei(ϵc+ϵd−ϵl′−ϵk′ ϵi′+ϵ j′−ϵa−ϵb)t1 .9 (A.2)

The bracket should be calculated by the Fock’s theorem and a way to contract the creation and an-
nihilation operators corresponds to a diagram. One possible diagram is presented in fig. A.1. In this
case, Eq. (A.2) reads

Vah,cpVpb,hd

ϵc + ϵd − ϵc − ϵp + ϵh − ϵb
=

Vah,cpVpb,hd

ϵd − ϵp + ϵh − ϵb
(A.3)

where we used the notation of hole states, b†i = ai when the state i is below the closed core.
In the next section, we will discuss the difference between KK method and EKK method.
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Figure A.1: core-polarization diagram.

A.2 Time-dependent formalism of Extended Kuo-Krenciglowa
method

In EKK method, we start from the same Hamiltonian.

H = H0 + V

=
∑

ϵαa†αaα +
1
2

∑
Vαβ,γδa†αa†βaδaγ, (A.4)

As we presented in sec. 3.2.1, in EKK method we change the unperturbed Hamiltonian and perturba-
tion as follows,

H′0 = PEP + QH0Q

V ′ = V − P(E − H0)P, (A.5)

Note that in this case, H′0 does not commute with single creation or annihilation operators. The defi-
nition of P-space is the same as KK method, Eq. (2.55). But in the interaction picture, the following
equations are slightly different,

H′0 a†aa†b|c⟩ = E a†aa†b|c⟩,
H′0 a†aa†p|c⟩ = (ϵa + ϵp) a†aa†p|c⟩, (A.6)

H′0 a†aa†ba†pah|c⟩ = (ϵa + ϵb + ϵp − ϵh) a†aa†ba†pah|c⟩.

Therefore, the interaction picture is a little complicated and should be defined within core plus two-
body states.

|ψi(t)⟩ =e−iH0t|ψi⟩ =e−iEt|ψi⟩
{a†aa†p|c⟩}(t) =e−iH0t{a†aa†p|c⟩} =e−i(ϵa+ϵp)ta†aa†p|c⟩, (A.7)

{a†aa†ba†pah|c⟩}(t) =e−iH0t{a†aa†ba†pah|c⟩} =e−i(ϵa+ϵb+ϵp−ϵh)ta†aa†ba†pah|c⟩.



A.2. Time-dependent formalism of Extended Kuo-Krenciglowa method 89

Then, Eq. (A.2) is changed as follows,

lim
ϵ→0

lim
t′→−∞(1+iϵ)

∫ t

t′
dt1⟨ψα|H1H1(t1)|ψβ⟩

= lim
ϵ→0

lim
t′→−∞(1+iϵ)

∑

i, j,k,l

∑

i′, j′,k′,l′
Vi j,klVi′ j′,k′l′

∫ 0

t′
dt1⟨c|aaaba†i a†jalake−iH′0t1a†i′a

†
j′al′ak′eiH′0t1a†ca†d|c⟩ (A.8)

We will take the same example as in the previous section, that is, take the contraction corresponding
to fig. A.1. In this case, Eq. (A.8) is written as,

lim
ϵ→0

lim
t′→−∞(1+iϵ)

∑

p,h

Vdh,bpVhc,pa

∫ 0

t′
dt1⟨c|aaaba†aa†hapac e−iH′0t1 a†pa†badah (PeiEtP + QeiH0tQ) a†ca†d|c⟩

= lim
ϵ→0

lim
t′→−∞(1+iϵ)

∑

p,h

Vdh,bpVhc,pa

∫ 0

t′
dt1⟨c|aaaba†aa†hapac e−iH′0t1 a†pa†badaha†ca†d|c⟩eiEt⟨c|adaca†ca†d|c⟩

= lim
ϵ→0

lim
t′→−∞(1+iϵ)

∑

p,h

Vdh,bpVhc,pa

∫ 0

t′
dt1 eiEt ⟨c|aaaba†aa†hapac Qe−iH0tQ a†pa†baha†c |c⟩

= lim
ϵ→0

lim
t′→−∞(1+iϵ)

∑

p,h

Vdh,bpVhc,pa

∫ 0

t′
dt1 eiEt ⟨c|aaaba†aa†hapac e−i(ϵc+ϵp+ϵb−ϵh)t1 a†pa†baha†c |c⟩

=
Vah,bpVhc,pa

E − (ϵc + ϵp + ϵb − ϵh)
. (A.9)

Note that we used the fact that

P =
d∑

i

|φi⟩⟨φi| =
valence∑

i, j

a†i a†j |c⟩⟨c|ajai

Q = 1 − P

(P + Q)eiH′0t(P + Q) = PeiEtP + QeiH0tQ. (A.10)





Appendix B

Linked Cluster Theory in Extended
Kuo-Krenciglowa method

We presented the theory of EKK method in Chap. 3. The EKK method has been expressed as the
re-interpretation of the unperturbed Hamiltonian and the perturbation.

and we pointed out a few non-trivial issue to In this appendix,

B.1 Factorization theorem

First, we prove the factorization theorem briefly.
The factorization theorem insists that the unlinked pieces can be calculated independently and the

final answer results in the product of those pieces. Let us consider the unlinked diagram consist of
two pieces. Once the case of two pieces is proved, the cases of more than two pieces are also proved.
In general, however, the denominator for the evaluation of the diagram is changed by the presence
of the other disconnected pieces. Therefore, the fact that the disconnected pieces can be calculated
independently helps us much and also is not trivial. We restrict ourselves to the case all the diagrams
terminate at t = 0, because it is sufficient to prove it for our purpose.

Figure B.1: The example for the factorization theorem.

Figure B.1 shows the typical example of the usage of factorization theorem. The diagram is
consist of two disconnected pieces. The lines correspond to the states, which can be arbitrary many-
particle states, and the black circles indicate the interaction vertices. Energy denominators of the
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left disconnected piece are D1,D2,D3 and those of the right are D′1,D
′
2. The left one includes three

interaction vertices and the right one has two. The denominator is determined by the the ordering of
the interactions. For example, in the case of Fig. B.1, the denominator is

D = D1(D1 + D′1)(D2 + D′1)(D2 + D′2)(D3 + D′2). (B.1)

Factorization theorem tells us that when we add up all the diagrams, finally we obtain the energy
denominator of D1D2D3D′1D′2.

We prove this factorization theory by the induction. Before move to the proof, let us make the
notation clear. Since the numerator is not affected by the ordering of the interaction, we only have to
consider the denominator. We denote the sum of the denominator factors for all the possible relative
ordering, by S n,m. The indices n and m is the number of vertices included the left and the right
disconnected pieces, respectively. The D’s are the energy denominators between vertices, D1,D2, · · ·
are for left piece and D′1,D

′
2 are for right piece. For each diagrams, we write the products of energy

denominators in short by S n and S ′m, that is,

S n =

n∏

i=1

1
Di
, S ′m =

m∏

i=1

1
D′i
. (B.2)

First, we start from the case both of the two pieces have only one interaction line. The contribution
is written as S 1,1 Figure B.1 shows the possible ordering of the interactions appearing in the evaluation
of S 1,1.

Figure B.2: The diagrams appearing in the evaluation of S 1,1.

In the diagram (a), the left interaction is earlier than the right interaction, and in the diagram (b),
the right is earlier. In total, S 1,1 can be calculated as follows:

S 1,1 = (a) + (b)

=
1

D1

1
D1 + D′1

+
1

D′1

1
D1 + D′1

=
1

D1

1
D′1

= S 1 · S ′1. (B.3)
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As the assumption of the induction, we assume that the value can be calculated by the product of
two pieces, that is,

S k,l = S k · S ′l (k ≤ n, l ≤ m). (B.4)

Now we consider the quantity S n,m+1, that is, the second piece has m + 1 vertices. Depending on
the position of the last m + 1-th vertex, the sum of the denominator factors can be written as follows:

S n,m+1 = S n,m
1

Dn + D′m+1
+ S n−1,m

1
Dn + D′m+1

1
Dn−1 + D′m+1

+ · · · . (B.5)

Let us label the time of the vertex as (t1, t2, · · · , tn) and (t′1, t
′
2, · · · , t′m, t′m+1). Then, the first term of

Eq. (B.5) is for tn ≤ tm+1 < 0, and the second term is for tn−1 ≤ tm+1 < tn, and so on. Using the
assumption of the induction Eq. (B.4), S n,m+1 can be calculated as follows:

S n,m+1 = S n · S ′m
1

Dn + D′m+1
+ S n−1 · S m

1
Dn + D′m+1

1
Dn−1 + D′m+1

+ · · ·

= S n · S ′m
(

1
Dn + D′m+1

(
1 +

Dn

Dn−1 + D′m+1

(
1 +

Dn−1

Dn−2 + D′m+1

(
1 + · · ·

+
D2

D1 + D′m+1

(
1 +

D1

D′m+1

)
· · ·

)

= S n · S ′m ·
1

D′m+1

= S n · S ′m+1. (B.6)

This indicates that the Eq. (B.4) is also valid for the case of S n,m+1. The case of S n+1,m is the same.
Therefore, it is proved that Eq. (B.4) is valid for all the n and m.

B.2 The evaluation of folded diagrams

To show how the folded diagram is calculated, we show the minimal example of the folded diagram
in Fig. B.2. The railed line represents the state γ is in Q-space. The diagram Fig. B.2 is calculated as

t=0

t=t1

t=t2

δ

γ
β

α

Figure B.3: folded diagram differentiation
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(B.2) =
VαβVβγVγδ

(ϵα − ϵγ − (ϵα − ϵβ))(ϵα − ϵγ)

=VαβVβγVγδ

(
(ϵα − ϵγ) − (ϵα − ϵβ)

)−1 − (ϵα − ϵγ)−1

ϵα − ϵβ
(B.7)

since P-space is degenerate, we should take the limit of ϵβ → ϵα and obtain

=
d

dω

(
VβγVγδ

ω − ϵγ

)

ω=α

× Vαβ (B.8)

In the general case, the folded diagram including of the Q̂-box is calculated as the derivative of Q̂-box
with respect to energy parameter.

Using the expression of Q̂-box,

Heff = Q̂ − Q̂
∫

Q̂ + Q̂
∫

Q̂
∫

Q̂ − · · · . (B.9)

Knowing the fact that the Q̂-box can be written as follows,

Q̂(ω)αβ = Vαβ +
∑

i

VαiViβ

ω − ϵi
+

∑

i j

VαiVi jV jβ

(ω − ϵi)(ω − ϵ j)
+ · · · (B.10)

it is straight-forward to prove that the folded diagram can be calculated by derivatives with respect
to ω. After all, we reached the expression to calculate the effective interaction Veff in the iterative
formula,

V (n)
eff = Q̂ +

∞∑

m=1

1
m!

dmQ̂
dEm

0
{V (n−1)

eff }m. (B.11)

B.3 Linked Cluster Theory in Extended Kuo-Krenciglowa method

With the knowledge of Secs. B.1 and B.2, we summarize the folded-diagram method in EKK method
here in this section. As a consequence, what we need to evaluate is only valence-linked irreducible
diagrams and its derivatives for folded diagrams, as we claimed in Chap. 3.

First, we briefly repeat the proof of the factorization theorem in EKK method. The naive appli-
cation of the factorization theorem to the diagrams appearing in the diagrams of EKK method fails,
because the total energy denominator of the diagram consist of disconnected pieces is not equal to
the sum of the denominators of the individual pieces, when we have the states within P-space. This
problem is cured by the rewritten of the Hamiltonian of EKK method as follows:

H = H0 + V

= H′0 + V ′

= H′0 − P(E − H0)P + V

= H′0 + V1 + V, (B.12)
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Figure B.4: Example of factorization theorem in EKK method.

where V1 = −P(E − H0)P defined purely in P-space is to be regarded as another perturbation. As
far as we include the contribution up to all order in perturbation, we can freely change the order
of the interaction V and V1, without changing the final result. Therefore, only before we prove the
factorization theorem, we change the order as follows: whenever we find a line consist of two particles
both in valence space, we insert the V1 interaction up to infinite order. Then, the states are changed to

PeiV1tP|ψi(t)⟩ = Pei(E−H0)tP|ψi(t)⟩
= e−iH0t|ψi⟩
= e−i(ϵa+ϵb)t|ψi⟩. (B.13)

The wavy lines and the crosses represent the insertion of V1 in Fig. B.4. After the insertion, the
energy denominators for the states is calculated by the summations of single-particle energies. With
this insertion of V1 potential, we can apply the factorization theorem in exactly the same as Sec. B.1.
Once we can factorize and cancel out the divergences, we obtain the relation of Eq. 2.85. After
obtaining this equation, we can evaluate the diagrams as in the usual manner of EKK method without
the insertion of V1 interaction any more. Then we have achieved Eq. 3.14.

Next, we demonstrated that the folded diagrams can be calculated via the derivatives of the Q̂-
box. In Sec. B.2 we saw that the folded diagrams can be evaluated by the energy derivatives, using
the minimal example. We used the fact that the model space is degenerate in Eq. B.7. In our case of
EKK method, on the other hand, regarding that the states α, β and γ are two-body states and α and
β are in the P-space, we obtain ϵα = ϵβ = E. Therefore, we can calculate the folded diagrams can
be obtained by the derivatives with respect to E. One should note that this holds because we already
factorize out the disconnected pieces, as we discussed above. With the presence of extra particles and
holes states, the states no longer included in P-space.

Then we finally achieved our equation to derive the effective interaction for the shell model stud-
ies,

H̃eff = H̃BH(E) +
dQ̂(E)

dE
H̃eff +

1
2!

d2Q̂(E)
dE2 {H̃eff}2 + · · · . (B.14)
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