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SUMMARY

Cellular homeostasis is regulated by signals through
multiple molecular networks that include protein
phosphorylation and metabolites. However, where
andwhen the signal flows through a network and reg-
ulates homeostasis has not been explored. We have
developed a reconstruction method for the signal
flow based on time-course phosphoproteome and
metabolome data, using multiple databases, and
have applied it to acute action of insulin, an important
hormone formetabolic homeostasis. An insulin signal
flows through a network, through signaling pathways
that involve 13 protein kinases, 26 phosphorylated
metabolic enzymes, and 35 allosteric effectors, re-
sulting in quantitative changes in 44 metabolites.
Analysis of the network reveals that insulin induces
phosphorylation and activation of liver-type phos-
phofructokinase 1, thereby controlling a key reaction
in glycolysis. We thus provide a versatile method of
reconstruction of signal flow through the network
using phosphoproteome and metabolome data.

INTRODUCTION

Cellular homeostasis is dynamically regulated by signals that are

transmitted in global multiple molecular (‘‘trans-omic’’) networks

that include proteins and their phosphorylation, mRNAs, and

metabolites (Brazhnik et al., 2002; Buescher et al., 2012; Feist

et al., 2009; Gerosa and Sauer, 2011; Güell et al., 2009; Ishii

et al., 2007; Joyce and Palsson, 2006; Kühner et al., 2009; Loca-

sale et al., 2011; Oliveira et al., 2012; Shyh-Chang et al., 2013;

Vander Heiden et al., 2010; Yus et al., 2009). To understand
Cel
the mechanism of cellular homeostasis, we introduce here the

concept of signal flow. Signal flow consists of static signal flow

and dynamic signal flow. Static signal flow is the route of the

signal in a trans-omic network. Dynamic signal flow is the traffic

of the signal, or the temporal changes in molecular concentra-

tions that are transmitted through the route. Thus, traffic and

routes illustrate when andwhere signals flow in a network. Traffic

and routes characterize the dynamic nature of the homeostatic

system; however, signal flow has not been identified.

The analysis of signal flow requires simultaneous, global, mul-

tiple ‘‘omic’’ measurements under the same conditions. Quanti-

tative and global measurements in a single omic layer by use of

omic technology are now available (Bertone et al., 2004; Fiehn

et al., 2000; Fischer and Sauer, 2005; Ghaemmaghami et al.,

2003; Ishihama et al., 2005; Iwasaki et al., 2010; Nilsson et al.,

2010; Olsen et al., 2006; Soga et al., 2002). Measurements in a

single omic layer are often used in the screening of molecules

for specific cellular functions rather than in the identification of

trans-omic networks (Bartke et al., 2010; Lowery et al., 2007;

O’Connell et al., 2010). Connecting measurements of different

omic layers under different experimental conditions could allow

for the identification of possible trans-omic networks. However,

because molecular interactions between multiple omic layers

aremutually connected, signals that flow in a trans-omic network

cannot be reconstructed by integrating individual measurements

in single omic layers under different conditions; instead, these

signals should be reconstructed using simultaneous quantitative

measurements across trans-omic layers under the same condi-

tions (Wiley, 2011). A reconstruction method for the signal flow in

a trans-omic network based on simultaneously measured trans-

omic data has not yet been established.

Hormones regulate cellular homeostasis through selective

temporal control of multiple signaling pathways to exert specific

functions. Many hormones show distinct temporal patterns

in vivo (Brabant et al., 1992). For example, blood insulin, which
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Figure 1. Procedures of Reconstruction of

Signal Flow in the Trans-Omic Network

The procedures for the reconstruction of the signal

flow are based on phosphoproteome and metab-

olome data, which consist of seven successive

steps of retracing metabolites (the final output of

the system) to insulin (the input to the system). The

detailed procedures can be found in Supplemental

Experimental Procedures. See also Figure S2 and

Table S1.
is a key hormone for metabolic homeostasis (Whiteman et al.,

2002), reportedly exhibits several specific temporal patterns,

including additional secretion that is transiently observed in

response to meals and basal secretion that is characterized by

persistently low circulating insulin concentrations (Lindsay

et al., 2003; Polonsky et al., 1988). We have previously shown

that insulin selectively changes the signal flow through signaling

pathways, depending on the temporal patterns (Kubota et al.,

2012; Noguchi et al., 2013). However, signal flow in a limited local

network was analyzed in previous studies (Kubota et al., 2012;

Noguchi et al., 2013), and the static signal flow and dynamic

signal flow of insulin in a whole trans-omic network have yet to

be uncovered.
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In this study, we analyzed the signal

flow of acute insulin action in rat hepa-

toma FAO cells, which showed insulin-

dependent signaling activities similar to

those of primary hepatocytes (Kubota

et al., 2012). We developed the recon-

struction method of a static signal flow

in a trans-omic network using multiple

omic data and databases and identified

the static signal flow of acute insulin ac-

tion by retracing from the outputs of the

system (metabolites) to the input (insulin).

We analyzed the dynamic signal flow

of insulin-dependent glycolysis using

experiments with phospho-mimetic mu-

tants of liver-type phosphofructokinase

1 (PFKL), a key enzyme of glycolysis in

the liver, and kinetic modeling. We found

that insulin induces phosphorylation and

activation of PFKL and controls a key re-

action in glycolysis.

RESULTS

Procedures for Reconstruction
of Signal Flow in a Trans-Omic
Network
We attempted to identify signal flow in a

trans-omic network of acute insulin ac-

tion based on trans-omic data (Figure 1;

Experimental Procedures). We measured

time-course data from the metabolome,

phosphoproteome, and transcriptome of
acute insulin action (<60 min) under the same conditions in

FAO cells (Figure S1A), which consisted of 304 metabolites,

7,277 phosphorylated sites on 3,458 proteins, and 19,778 RNA

probes (Table S1; Figure S1B). Messenger RNAs of only two

related metabolic enzymes, including glucose-6-phosphatase

(G6Pase), changed within 60 min. G6Pase is known as a key

enzyme of gluconeogenesis and is rapidly responsive to insulin

(Figure S2A). However, the abundance of protein in G6Pase

did not vary within 60 min (Figure S2B). Therefore, we excluded

the contributions of protein and mRNA expression in acute insu-

lin action in this study. We postulated that acute insulin action in

metabolic control is primarily regulated by enzymatic activities

via protein phosphorylation and allosteric regulation rather than



by gene and protein expression. We analyze chronic insulin ac-

tion (>60 min) involving gene and protein expression in a sepa-

rate study.

We developed a reconstruction method of signal flow in a

trans-omic network of protein phosphorylation and allosteric-

regulation-dependent metabolism by acute insulin action. The

reconstruction method consists of the following seven proce-

dural steps (Figure 1; Experimental Procedures): (i) identification

of quantitatively changed metabolites (outputs of the system); (ii)

identification of ‘‘responsible metabolic enzymes’’ that poten-

tially regulate metabolite levels; (iii) identification of protein phos-

phorylation of responsible metabolic enzymes; (iv) identification

of protein-kinase-dependent insulin signaling; (v) identification

of the allosteric regulation; (vi) reconstruction of static signal

flow in a whole trans-omic network by integrating the results

from steps i through v; and (vii) kinetic modeling of dynamic

signal flow in the glycolytic pathway, which is one of the local

trans-omic networks.

Reconstruction of Static Signal Flow in a
Trans-Omic Network
Step i: Identification of Quantitatively Changed

Metabolites

We identified quantitatively changed metabolites and their

responsible metabolic enzymes and mapped them to the global

map provided in the Kyoto Encyclopedia of Genes andGenomes

(KEGG) PATHWAY database (Kanehisa et al., 2012), which in-

cludes a comprehensive metabolic pathway topology (Figures

2 and S3; Table S1). Hereafter, we refer to this map as the

KEGG global metabolism map. We succeeded in measuring

304 metabolites and observed that 44 metabolites were signifi-

cantly changed (27 increased and 17 decreased) in response

to insulin stimulation (Figures 2 and S1B; Table S1). Not all of

the measured metabolites and enzymes are shown in Figure 2A

because the KEGG global metabolism map does not include all

of the known metabolites. Eleven metabolites were mapped on

glycolysis, ten metabolites were mapped on the TCA cycle,

and 81 were mapped on proteogenic amino acid metabolism

(Figure 2; Table S1). In central carbon metabolism, there was a

decrease in the upstream metabolites of glycolysis, including

glucose 6-phosphate (G6P; Figure 2A, no. 8) and fructose

6-phosphate (F6P; Figure 2A, no. 6). In contrast, there was an

increase in the downstream metabolites of glycolysis such as

fructose 1,6-bisphosphate (F1,6BP; Figure 2A, no. 14), 3-phos-

pho-D-glycerate (3PG; Figure 2A, no. 12), 2-phospho-D-glycer-

ate (2PG; Figure 2A, no. 16), and phosphoenolpyruvate (PEP;

Figure 2A, no. 4). In the TCA cycle, five metabolites were

increased including citrate (Figure 2A, no. 11), 2-oxoglutarate

(Figure 2A, no. 2), succinyl-CoA (Figure 2A, no. 7), fumarate (Fig-

ure 2A, no. 9), and malate (Figure 2A, no. 17). In the glycogen

metabolism pathway, glycogen increased (Figure 2A, no. 22).

These observations imply that there is an insulin-dependent,

large-scalemigration of carbons from glycolysis to the TCA cycle

and glycogenesis in central carbon metabolism.

Several metabolites in adjacent locations in the metabolic

pathways showed positive correlations with each other over

time (Figure 2B). These metabolites are likely to compose a

‘‘rapid-equilibrium metabolite pool’’ in which the metabolites
Cel
are in rapid equilibrium and exhibit similar time courses (Cama-

cho et al., 2005; Palsson, 2011). We defined a group of metabo-

lite pairs that resided within two enzyme steps from one another

in the metabolic pathway and that had time courses with a cor-

relation of r R 0.8 (r is the Pearson correlation coefficient) and

composed a rapid-equilibrium metabolite pool. If a pair of me-

tabolites two enzyme steps away is connected only via hub me-

tabolites such as ATP, then the pair was excluded from the pool

to filter out trivial metabolite pairs. The hub metabolites were

determined according to previous studies of network topology

(Table S2) (Alves et al., 2002). We found six rapid-equilibrium

metabolite pools: three pools in glycolysis (Figure 2, P1, P2,

and P3); one large pool including the TCA cycle (Figure 2, P6);

one pool in nucleotide metabolism (Figure 2, P4); and one pool

involving acetylglucosamine phosphates (Figure 2, P5; Table

S2). The two glycolytic pools (P1 and P3) (Bennett et al., 2009;

Camacho et al., 2005; Palsson, 2011; Wittmann et al., 2005)

and part of the pool around the TCA cycle (P6) (Wittmann

et al., 2005) previously have been reported as rapid-equilibrium

metabolite pools indicating that our analysis successfully identi-

fied the knownmetabolic changes. The other pools (Figure 2, P2,

P4, and P5; Table S2) are novel. The correlation coefficients be-

tween the metabolite pairs in the rapid-equilibrium metabolic

pools were statistically significant (p < 0.001). Most of themetab-

olite pairs not in the rapid-equilibrium metabolic pools did not

exhibit statistical significance (p > 0.1) (Table S2).

Step ii: Identification of ResponsibleMetabolic Enzymes

Changes in the levels of a metabolite are caused by changes in

the reaction rates of the production (influx) or consumption

(efflux) of that metabolite. A reaction rate is determined by the

enzymatic activity, amount of enzyme, amount of substrate,

and product levels. Hereafter, we define the enzymes that

directly produce or consume at least one quantitatively changed

metabolite as ‘‘responsible metabolic enzymes.’’ In other words,

a changed metabolite is a substrate or a product of responsible

metabolic enzymes.We identified 198 responsible metabolic en-

zymes for 44 changed metabolites from the KEGG PATHWAY

database (Figure 2A, black lines; Figure S1B). Only 25 of the

44 changed metabolites and 132 of the 198 responsible meta-

bolic enzymes are exhibited in Figure 2A. Hereafter, the number

of enzymes is counted in terms of enzyme commission (EC)

numbers (IUBMB, 1999). Changes in the activities of responsible

metabolic enzymes can be regulated by phosphorylation and

allosteric regulation via metabolites.

Step iii: Identification of Protein Phosphorylation of

Responsible Metabolic Enzymes

We examined protein phosphorylation of responsible metabolic

enzymes, which can potentially change their enzymatic activities

(Figure 3A). From the phosphoproteomic data, 199 phospho-

peptides derived from 49 responsible metabolic enzymes were

identified (Figure S1B). Among these phosphopeptides of the

responsible metabolic enzymes, we selected quantitatively

changed phosphopeptides. A total of 106 phosphopeptides of

26 responsible metabolic enzymes were selected as the signifi-

cantly phosphorylated phosphopeptides (Figures 3A and S1B;

Table S3). These 26 phosphorylated responsible metabolic en-

zymes corresponded with 19 quantitatively changed metabolites

(Figure 3A). We found that 23 phosphorylated sites of the
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responsible metabolic enzymes had already been registered in

the PhosphoSitePlus (http://www.phosphosite.org) database

(Hornbeck et al., 2012) and that 48 phosphorylated sites of the

responsible metabolic enzymes were novel. One phosphoryla-

tion site could be covered by multiple phosphopeptides. Some

responsible metabolic enzymes with insulin-dependent phos-

phorylation, including ATP-citrate lyase (ACLY) at S455 (Berwick

et al., 2002), carbamoyl-phosphate synthetase 2 (CAD) at S1859

(Hsu et al., 2011), and 6-phosphofructo-2-kinase/fructose 2,6-bi-

sphosphatase (PFKFB3) at S461 (Atsumi et al., 2005) have

already been reported, indicating that our analysis successfully

identified the known protein phosphorylation of the responsible

metabolic enzymes. Given that phosphorylation of responsible

metabolic enzymes is considered to be relayed by the protein

phosphorylation-dependent signaling network of insulin, these

26 phosphorylated responsible metabolic enzymes are potential

primary targets of insulin signal flow in the metabolome layer.

Step iv: Identification of Protein-Kinase-Dependent

Insulin Signaling

Next, we attempted to identify the signal flow in the protein-ki-

nase-dependent insulin-signaling network that connects insulin

to the responsible metabolic enzymes. First, we identified poten-

tial upstream protein kinases for the phosphorylated responsible

metabolic enzymes through the amino acid sequences of the

phosphorylated peptides derived from the responsible meta-

bolic enzymes (Table S3). Hereafter, we denote these upstream

kinases as ‘‘responsible protein kinases’’ for responsible meta-

bolic enzymes. We selected the most probable kinases pre-

dicted by NetPhorest as the responsible protein kinases (see

Table S3 for distributions of scores [posterior probability] for

each phosphorylation site). NetPhorest is an analytical tool that

predicts responsible protein kinases by probabilistic models us-

ing the amino acid sequence of phosphopeptide (Miller et al.,

2008). We identified 13 responsible protein kinases of the phos-

phorylated responsible metabolic enzymes as a whole (Figures

3B and S1B; Table S3). Hereafter, we counted the numbers of

the responsible protein kinases using the kinase classifiers of

NetPhorest. These 13 responsible protein kinases include AKT,

glycogen synthase kinase-3b (GSK3b), and p70 ribosomal pro-

tein S6 kinase (p70S6K), which are key signaling molecules in

the insulin-signaling pathway. With the phosphorylated res-

ponsible metabolic enzymes in step iii, we connected the insu-

lin-signaling pathway map provided by the KEGG PATHWAY

database to the responsible protein kinases (Figure 3C). Here-

after, we refer to the insulin-signaling pathway map in Figure 3C

as the insulin-signaling pathway. Among the 13 responsible pro-
Figure 2. Identification of Quantitatively Changed Metabolites and Res

(A) Quantitatively changed metabolites and responsible metabolic enzymes pro

black lines represent responsible metabolic enzymes. For the metabolites, the do

no changes in response to insulin, respectively. Numbers adjacent to the dots ar

together with corresponding metabolite names in Table S1. The numbers surro

respectively, in response to insulin stimuli. P1 through P6 indicate the locations

plemental Experimental Procedures).

(B) The time courses of metabolites in rapid-equilibrium metabolic pools (P1–P6

metabolite concentration is 1 nmol/1.73 107 cell. Insulin concentrations are as fol

between themetabolites represent that the metabolites are one enzyme step awa

metabolites correspond to Pearson correlation coefficients (red: r R 0.9; black:

See also Figure S3 and Table S2.
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tein kinases, five kinases (AKT, GSK3b, p70S6K, PKA, and PKC;

Figure 3C) were connected to the insulin-signaling pathway and

eight kinases (AKT, CK2, CLK, GSK3, NEK1, PKA, PKC, and

p70S6K; Table S3) were phosphorylated (Figure S1B). There

were 71 phosphorylation sites on the 26 responsible metabolic

enzymes connected to the 13 responsible protein kinases (Table

S3; Figure S1B). The resulting insulin-signaling pathway included

the phosphorylation of signaling molecules, such as IRS, Raptor,

TSC1, and S6 (Cheng et al., 2010), the responsible protein ki-

nases, such as AKT, GSK3b, p70S6K, and ERK1/2 (Cheng

et al., 2010), and the phosphorylated responsible metabolic en-

zymes, such as ACLY (Berwick et al., 2002) and liver-type phos-

phofructokinase 1 (PFKL), which catalyze F6P into F1,6BP, a key

enzyme in glycolysis (Figure 3C). This result indicates that our

analysis successfully identified the known protein phosphoryla-

tion of the responsible metabolic enzymes and demonstrates

how insulin transmits its signal to the responsible protein ki-

nases and responsible metabolic enzymes through the signaling

pathways.

Step v: Identification of Allosteric Regulation

In addition to the protein phosphorylation-dependent changes in

the activities of the responsiblemetabolic enzymes, the activities

of the responsible metabolic enzymes are regulated by allosteric

effectors (activators and inhibitors) that are metabolites (Fig-

ure 4A). We searched the allosteric effectors of all the respon-

sible metabolic enzymes (198 enzymes) from the BRENDA

(http://www.brenda-enzymes.org/) database (see Experimental

Procedures) (Schomburg et al., 2013), which provides informa-

tion regarding allosteric effectors and their target enzymes

from a comprehensive literature search. We found that 35

quantitatively changed metabolites function as allosteric effec-

tors for the 94 responsible metabolic enzymes via 226 allo-

steric regulation (36 activation, 190 inhibition) (Figure 4B;

Figure S1B; Table S4). A metabolite can operate as an activator

for some enzymes and as an inhibitor for others. We also found

quantitative changes in 24 substrates for 74 responsible meta-

bolic enzymes and 25 products for 122 responsible metabolic

enzymes from the KEGG PATHWAY database (Figures 4C and

4D; Table S4).

Step vi: Reconstruction of theStatic Signal Flowof Acute

Insulin Action in a Trans-Omic Network

We integrated the results of steps i through v and reconstructed

the static signal flow of acute insulin action in a trans-omic

network (Figure 5; Movie S1). An insulin signal was first trans-

mitted through insulin receptors (IRs) to signaling pathways

including the 13 responsible protein kinases, such as AKT and
ponsible Metabolic Enzymes Corresponding to Steps i and ii

jected on the KEGG global metabolism map. Dots represent metabolites and

ts with red, blue, and green backgrounds represent an increase, decrease, and

e unique identifiers of quantitatively changed metabolite, which are presented

unded by red and blue indicate the metabolite was increased or decreased,

of six rapid-equilibrium metabolite pools (surrounded by dashed lines) (Sup-

). The means and SDs of three independent points are shown. The unit for the

lows: 0.01 nM (blue); 1 nM (green); and 100 nM (red). The bold and dashed lines

y and two enzyme steps away, respectively. The colors of the lines between the

0.8 % r < 0.9).
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p70S6K (Figure 5, top layer; Figure S1B). The responsible protein

kinases potentially transmit a signal to the 26 phosphorylated

responsible metabolic enzymes through 71 phosphorylation

sites (Figure 5, orange arrows from the top to the middle layer;

Figure S1B). A protein kinase can phosphorylate multiple meta-

bolic enzymes, and a metabolic enzyme can be phosphorylated

by multiple kinases. The 35 changed metabolites serve as allo-

steric effectors and feedback signals to the 94 responsiblemeta-

bolic enzymes through 36 activation and 190 inhibition (Figure 5,

red and blue arrows from the bottom to the middle layer; Fig-

ure S1B). The 198 responsible metabolic enzymes, including

26 phosphorylated and 94 allosterically regulated enzymes, led

to changes in the 44 metabolites (Figure 5, white arrows from

the middle to the bottom layer; Figure S1B). The integration of

steps i through v revealed the global landscape of the signal

flow of acute insulin action in a trans-omic network (Figure 5).

Reconstruction of Dynamic Signal Flow in a Trans-Omic
Network of Glycolytic Pathway
Step vii: Reconstruction of Dynamic Signal Flow in a

Glycolytic Pathway of a Local Trans-Omic Network

Wenext examined the dynamic signal flow of insulin and attemp-

ted to construct a kinetic model of the trans-omic networks

based on the time-course omic data. However, because there

were many unmeasured metabolites, we could not develop the

kinetic model of the whole trans-omic network. Instead, we

focused on a local trans-omic network of the glycolytic pathway

between F6P and F1,6BP because of three reasons: insulin

induced phosphorylation of PFKL, a key enzyme in glycolysis;

F6P together with upstream molecules decreased (Figure 2B,

P1), whereas F1,6BP together with downstream molecules

increased (Figure 2B, P2 and P3), and F6P and F1,6BP exhibited

a strong negative correlation (r = �0.552), indicating that insulin

facilitates conversion of F6P into F1,6BP, and all metabolites

surrounding F6P and F1,6BP were measured (Figure 6A), which

is necessary for development of a kinetic model. Because the

functional role of phosphorylation at S775 of PFKL remains un-

known, we first examined the effect of phosphorylation at S775

of PFKL on its kinase activity by making phospho-mimetic

(S775D or S775E) and nonphospho-mimetic (S775A) mutants

(Figure 6B). Both phospho-mimetic PFKL mutants (S775D or
Figure 3. Identification of Protein-Kinase-Dependent Insulin Signaling

(A) Identification of protein phosphorylation of responsible metabolic enzymes (s

indicates all of the significantly changed phosphorylation sites of the enzyme exhib

of the significantly changed phosphorylation sites of the enzyme exhibited a de

significantly changed phosphorylation sites of the enzyme exhibited either an in

colored lines (e.g., E3) are unique identifiers for 26 phosphorylated responsible m

(B) The 13 identified responsible protein kinases of phosphorylated metabolic e

kinase tree (Miller et al., 2008). The detailed relationship between the responsible

S3. The colors indicate the phosphorylated protein kinases; red and green indicat

was not changed by insulin. Gray indicates not phosphorylated. *The kinases w

indicates that CDK and MAPK families belong to the CMGC superfamily.

(C) Identification of protein-kinase-dependent insulin signaling to responsible me

ovals represent the following phosphorylation states: red and green indicate the

unchanged by the insulin; andwhite indicates no phosphorylation. Five kinases ou

(AKT, GSK3b, p70S6K, PKA, and PKC). The names in the boxes are phosphoryla

and inhibition, respectively. Orange denotes phosphorylation and black denotes

See Table S3 for the abbreviations of the phosphorylated metabolic enzymes.
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S775E) exhibited increased kinase activity compared with the

wild-type PFKL, whereas the nonphospho-mimetic mutant

(S775A) did not (Figure 6B), indicating that insulin phosphory-

lates and activates PFKL. PFKL activity is regulated positively

by fructose-2,6-bisphosphate (F2,6BP); it is regulated negatively

by citrate, PEP, isocitrate, 2-oxolgutarate and malate (Passon-

neau and Lowry, 1963) (Figure 6A). PFKL activity also has been

shown to be regulated by ATP, ADP, AMP, and othermetabolites

(Mor et al., 2011; Schöneberg et al., 2013); however, because

these metabolites were unchanged in response to insulin (Table

S1), they were not considered in this study. The reverse reaction,

conversion of F1,6BP to F6P, is catalyzed by a different enzyme,

fructose-1,6-bisphosphatase (FBPase), whose activity is regu-

lated negatively by F2,6BP (Rakus et al., 2000) and positively

by citrate (Nimmo and Tipton, 1975) (Figure 6A).

We examined which phosphorylation and allosteric regulation

selectively contributed to conversion between F6P and F1,6BP

using a kinetic model of dynamic signal flow of insulin in the

glycolytic pathway (Figure 6C; Supplemental Experimental Pro-

cedures). In our experiments, therewas a transient and sustained

increase of F1,6BP (Figure 6C, dots); however, in our simulations,

only sustained increase of F1,6BP was reproduced (Figure 6C,

lines). This suggests the existence of the unknown signal flow

responsible for the transient increase of F1,6BP. We examined

which phosphorylation and allosteric regulation selectively

contributed to sustained increase of F1,6BPby variable selection

in the kinetic model (Figure 6D; Supplemental Experimental

Procedures). We selected five variables as the minimum set gov-

erning the dynamic signal flow (Figures 6D andS4A). The five var-

iables included phosphorylation of PFKL at S775 and allosteric

regulation by F2,6BP, PEP, citrate, and malate (Figures 6D and

6E). We made a kinetic model with five variables. This model ap-

peared to be comparable with the original full model using eight

variables (Figures 6E and S4B), confirming that the five variables

we used are the dominant factors for dynamic signal flow be-

tween F6P and F1,6BP (Figure 6E). Given that PEP, citrate, and

malate are downstream of F1,6BP, these metabolites serves as

negative-feedback regulators for F1,6BP production (Figures

6E, dashed line; Figures S4C–S4E), consistent with previous ob-

servations (Nimmo and Tipton, 1975; Passonneau and Lowry,

1963; Rakus et al., 2000). Insulin positively regulates F1,6BP
to Responsible Metabolic Enzymes Corresponding to Steps iii and iv

tep iii). Colored lines are phosphorylated responsible metabolic enzymes. Red

ited an increase (>1.5-fold) in response to the insulin stimulus. Blue indicates all

crease (<0.67-fold) in response to the insulin stimulus. Green indicates all the

crease or a decrease in response to the insulin stimulus. Numbers next to the

etabolic enzymes, which are presented in Table S3.

nzymes. Boxes represent superfamilies of each protein kinase based on the

protein kinases and phosphorylated metabolic enzymes can be found in Table

e the same information as described in (A). Black indicates the phosphorylation

ere included in the insulin-signaling pathway. A dashed box labeled CMGC

tabolic enzymes (step iv). An oval corresponds to a protein. The colors of the

same information described in (A) and (B); gray indicates phosphorylation was

t of the 13 responsible kinases were connected to the insulin-signaling pathway

ted metabolic enzymes. An arrow and a bar-headed arrow indicate activation

other molecular interactions.
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Figure 4. Identification of Allosteric Regulation of Responsible

Metabolic Enzymes by Metabolites Corresponding to Step v

(A) The level of a metabolite (X) is determined by the balance between the

influxes and effluxes, i.e., the reaction rates of enzymes E1 and E2, respec-

tively. S denotes the substrate of E1, and P is the product of E2. Here, allosteric

regulation includes the regulation of influxes and effluxes by the binding of

metabolites acting as allosteric effectors (activators and inhibitors) to the en-

zymes and by the levels of the substrates and products.

(B) The allosteric regulation of the responsible metabolic enzymes (E) by the

allosteric effectors. The row labels are the responsible metabolic enzymes (E),

and the column labels are the activators and inhibitors of the influxes and ef-

fluxes (Table S4). A black dot is provided at row i column j if a responsible

metabolic enzyme of row i is regulated by an allosteric effector of column j.

Such information for allosteric regulation was obtained using the BRENDA

database (Experimental Procedures).

(C and D) The substrates (S) and the products (P) of the responsible metabolic

enzymes (E), respectively. A black dot is provided at row i column j if a

metabolite of column j is a substrate or a product of a responsible metabolic

enzyme of row i.

See Table S4 for complete information for (B)–(D).
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production by phosphorylation of PFKL at S775 and by

increasing F2,6BP (Figures S4F and S4G); the latter is a well-

known and conserved mechanism throughout eukaryotes

(Rider et al., 2004). Our data indicate an additional role for insulin:

phosphorylation-dependent regulation of glycolytic enzymes

including PFKL. Thus, these results demonstrate that insulin co-

ordinately regulates the dynamic flow in the glycolytic pathway

by insulin-dependent activation of PFKL via phosphorylation

and increase of F2,6BP and by the negative-feedback loop via

downstream allosteric regulators.

DISCUSSION

In this study, we reconstructed static signal flow of acute insulin

action in a whole trans-omic network using time-course trans-

omic data combined with multiple databases and analyzed the

dynamic signal flow of a local network of the glycolytic pathway

using kinetic modeling. We first identified the quantitatively

changed metabolites, which are the outputs of the system

(step i; Figure 2).Weconnected thequantitatively changedmetab-

olites and potential responsible metabolic enzymes by using the

KEGGglobalmetabolismmap (step ii; Figure2). Among thepoten-

tial responsible metabolic enzymes, we identified the phosphory-

lated responsible metabolic enzymes with phosphoproteomic

data (step iii; Figure 3A). We connected the phosphorylated

responsible metabolic enzymes and the responsible protein ki-

nases with the amino acid sequences of phosphopeptides using

the NetPhorest and further connected the responsible protein ki-

nases and insulin-signaling pathway (step iv; Figures 3B and 3C;

Table S3). Finally,weconnected the allosteric regulationofmetab-

olites to the responsible metabolic enzymes using the BRENDA

database (step v; Figures 4A and 4B). Thus, we reconstructed

the static signal flow of acute insulin action by retracing the signal

flow from the outputs of the system (metabolites) to the input (in-

sulin) (step vi; Figure 5). Moreover, we reconstructed the dynamic

signal flow in a local network of the glycolytic pathway using the

kinetic modeling with variable selection (step vii; Figure 6).

The reconstruction of dynamic signal flow allowed us to iden-

tify a regulation of insulin-dependent glycolysis. We experimen-

tally found that insulin increases phosphorylation at S775 of

PFKL, leading to an increase in its kinase activity. With the vari-

able selection of the kinetic model, we demonstrated that insulin

can coordinately regulate the dynamic flow between F6P and

F1,6BP by insulin-dependent activation of PFKL via phosphory-

lation and increase of F2,6BP, and by the negative-feedback

loop via downstream allosteric regulators. The regulation of

the glycolytic pathway by F2,6BP and regulation by the nega-

tive-feedback loop via downstream metabolites are well-known

and conserved mechanisms throughout eukaryotes (Bloxham

and Lardy, 1973; Rider et al., 2004). Moreover, the phosphoryla-

tion site of S775 is specific to PFKL (liver-type PFK), but not to

other isoforms of PFKs, such as PFKM (muscle-type PFK) or

PFKP (platelet-type PFK) (Simpson and Fothergill-Gilmore,

1991). Given that the liver is the main target organ of insulin

and that it is specialized for controlling systemic glucose homeo-

stasis, and given the ubiquitous controlling mechanisms by

F2,6BP and downstream metabolites, special regulation of

glycolysis by insulin may be needed for tight control of glucose
s



Figure 5. A Global Landscape of the Static

Signal Flow of Acute Insulin Action in a

Trans-Omic Network by Integrating the Re-

sults from Steps i through v Corresponding

to Step vi

The insulin signal flows across three layers:

the insulin-signaling pathway (the top layer); the

metabolic enzymes (the middle layer); and the

metabolites (the bottom layer). Orange arrows

(from the top to the middle layer) indicate the

signal flow from the responsible protein kinases to

the responsible metabolic enzymes, white arrows

(from the middle to the bottom layer) indicate the

signal flow from the responsible metabolic en-

zymes to the metabolites, and the red and blue

arrows (from the bottom to the middle layer) indi-

cate the signal flow of the allosteric regulation (red,

activator; blue, inhibitor). A 3D video file and a

network structure file of the static signal flow are

provided. The 3D video of the static signal flow can

be seen in Movie S1.
metabolism in the liver. Our result suggests that insulin-de-

pendent phosphorylation of PFKL at S775 is one such special

mechanism of glucose metabolism in the liver. Further study is

necessary to address the role of phosphorylation of PFKL at

S775 in glucose metabolism in the liver.

The reliability of the signal flow analysis depends on the quality

and quantity of the trans-omic data, the criteria for the selection

of the data, and the comprehensiveness and reliability of the in-

formation available in the databases. With respect to the quality

of the trans-omic data, the current metabolome and phospho-

proteome data did not fully encompass all of the metabolites

and phosphopeptides, mostly because of technical reasons,

such as the lack of standard samples for some metabolites

and the low sensitivity of detection of the phosphopeptides.

Regarding the quantity of the trans-omic data, the sample

numbers of the trans-omic data, especially phosphoproteomic

data, were limited because of the slow throughput speed.

This method relies on several selection criteria such as the fold

change for selecting the changed metabolites and phosphopep-

tides and a residual sum of squares for selecting essential vari-

ables by variable selection. Because other criteria might improve

the reliability of our analysis, other criteria should be tested in the

future. For comprehensiveness and reliability of the information

available in the databases, we used the KEGG PATHWAY data-

base for a global metabolic map and the insulin-signaling

pathway, the latter of which does not encompass all of the

signaling molecules. We used the NetPhorest to connect the

phosphorylated metabolic enzymes to protein kinases. Because

many protein kinases recognize a similar consensus motif of

amino acid sequences of substrates, some of the relationships

between the metabolic enzymes and protein kinases might not

be accurately predicted and should be experimentally tested

further. Additionally, information regarding biological and cellular

contexts such as colocalization and network could be used for

predicting in vivo kinase-substrates relationships (Joughin

et al., 2012; Linding et al., 2007).We used the BRENDA database

for identifying allosteric regulation. In general, the allosteric regu-

lation has been examined in vitro, and it is difficult to validate the
Cel
allosteric regulation at the cellular level. Here, we propose kinetic

modeling with the variable selection method to eliminate the

nonessential variables and to identify the essential variables for

dynamic signal flow. In addition, because the numbers and qual-

ity of the trans-omic data in this study might not be sufficient, the

parameters in the kinetic model might not be reliable. In the

future, whenmore quantitative high-throughput omic technology

becomes available, this problem will be solved and our method

will become more valid and useful.

Trans-omic analyses of global networks ofmetabolic control in

Escherichia coli (Ishii et al., 2007), Bacillus subtilis (Buescher

et al., 2012), and Saccharomyces cerevisiae (Oliveira et al.,

2012) have been reported. Ishii et al. measured transcripts, pro-

tein abundance, metabolites, and metabolic fluxes of E. coli

under four growth conditions and 24 disruptants; they found

that the metabolite levels remained stable against environmental

perturbations by enzyme-level regulation and against genetic

perturbation by flux rerouting (Ishii et al., 2007). Buescher et al.

measured time courses of transcripts, protein abundance, me-

tabolites, and metabolic fluxes of B. subtilis using two nutrient-

shift experiments and also identified transcriptional regulatory

networks based on chromatin immunoprecipitation (ChIP)-on-

chip (Buescher et al., 2012). They analyzed the mechanism of

adaptation tomalate and glucose across the transcriptome layer

and the metabolome/fluxome layer and showed that the meta-

bolic fluxes of B. subtilis are primarily changed by transcriptional

regulation when the nutrient source is shifted from malate to

glucose, but that posttranscriptional modulation is utilized

when the nutrient shift is from glucose to malate. Oliveira et al.

measured protein phosphorylation and metabolites of S. cerevi-

siae and combined them with protein abundance and flux data

(Oliveira et al., 2012). These authors concluded whether the

phosphorylation of metabolic enzymes work positively or nega-

tively regarding reaction rates of the enzymes based on the cor-

relations of phosphorylation and flux; this has been further

confirmed by measuring the concentration of substrates and

products of the enzymes. Furthermore, recent advances

allow systematic identification of allosteric protein-metabolite
l Reports 8, 1171–1183, August 21, 2014 ª2014 The Authors 1179



Figure 6. Analysis of the Dynamic Signal Flow in a Local Trans-Omic Network of Conversion of F6P to F1,6BP Corresponding to Step vii

(A) The local trans-omic network of F1,6BP regulation. White boxes and green boxes indicate metabolites and metabolic enzymes, respectively. Solid arrows

indicate enzymatic reactions. Dashed lines with arrow heads and with flat heads indicate the allosteric regulation of activators and inhibitors, respectively. Black

and gray metabolites are essential and nonessential variables, respectively (see D). The location of the network in central carbon metabolism is indicated by red

(inset). ALDO, aldolase. The other abbreviations for the molecules are shown in Table S5.

(legend continued on next page)
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interactions that control enzyme activity in vivo (Link et al., 2013).

In addition to these trans-omics studies, phosphoproteomic

analysis is extensively used to estimate interaction networks in

insulin signaling (Friedman et al., 2011; Humphrey et al., 2013;

Monetti et al., 2011) and other signaling networks (Jørgensen

et al., 2009; Olsen et al., 2006). We measured time-course

data for protein phosphorylation and metabolites in mammalian

cells in response to insulin and reconstructed static signal flow

from insulin to metabolites through phosphorylation and allo-

steric regulation. We analyzed the dynamic signal flow by kinetic

modeling with variable selection and found that insulin coordi-

nately regulates the dynamic flow in the glycolytic pathway by

insulin-dependent activation of PFKL via phosphorylation and

an increase in F2,6BP, and by the negative-feedback loop via

downstream allosteric regulators.

Insulin reportedly exhibits several temporal patterns, including

additional secretion (observed in response to meals) and basal

secretion (characterized by persistently low circulating insulin

concentrations) (Lindsay et al., 2003; Polonsky et al., 1988).

We have previously shown that insulin selectively changes the

signal flow through signaling pathways depending on the tem-

poral patterns (Kubota et al., 2012). Rapid pulse stimulation of in-

sulin, which resembles additional secretion of insulin in vivo,

selectively regulates GSK3b and p70S6K, whereas slow ramp

stimulation of insulin, which resembles basal secretion of insulin

in vivo, selectively regulates GSK3b and G6Pase. In another

study, we will apply this method using the trans-omic data in

response to pulse and ramp stimulations of insulin and will

examine the selective signal flow by the specific temporal pat-

terns of insulin in a trans-omic network. We will also expand

our analysis of chronic insulin action by measuring the transcrip-

tome, proteome, lipidome, and epigenome, which would reveal

the vital nature of cellular homeostasis.

Because acute cellular functions primarily use protein phos-

phorylation signaling pathways and secondarily use allosteric

regulation to adapt to extracellular stimuli, our method can visu-

alize signal flow from extracellular stimuli through protein phos-

phorylation pathways and an allosteric regulation network. Our

method can be widely applied to identify the signal flow of any

growth factors and the signaling network at thecellular and in vivo

levels. It would be interesting to apply this method to other

growth factors, such as epidermal growth factor and fibroblast

growth factors, and to compare signal flow between different

types of growth factors and receptors. This type of study would

reveal growth factor-specific or receptor type-specific regulation
(B) Enzymatic activities of PFKL. WT, wild-type PFKL. A, D, and E indicate the

glutamate, respectively. The means and SDs of three independent points are sho

Kramer test. ****p < 0.0001; ***0.0001 < p < 0.001; n.s., not significant (p > 0.1).

(C) Time course of F1,6BP in the kinetic model. Solid lines indicate the time cours

PFKL at S775 with 1 nM insulin (see Supplemental Experimental Procedures for d

time course of phosphorylation of PFKL at S775 with 0.01, 1, and 100 nM insulin.

the responses to 100, 1, and 0.01 nM insulin, respectively.

(D) The variable selection with 1 nM insulin stimulation. Residual sum of square

Experimental Procedures for details). Red indicates the threshold for the variable

variables. The variable selection with 100 nM insulin stimulation also provides th

(E) The dynamic signal flow in the kinetic model with the five variables. The time co

difference between PFKL and FBPase (Figure S4L).

See also Figure S4.

Cel
from the viewpoint of signal flow in a trans-omic network, which is

characterized by different modes of action at the systems level.

EXPERIMENTAL PROCEDURES

The detailed experimental procedures can be found in Supplemental Experi-

mental Procedures.

Cell Treatments and Comprehensive Measurements

Rat hepatoma FAO cells were stimulated by the indicated doses of insulin and

were used for phosphoproteome and metabolome measurements. The phos-

phoproteome data and metabolome data were processed to reconstruct the

static and dynamic signal flows of insulin by using the following seven steps.

Reconstruction of Static and Dynamic Signal Flow in a Trans-Omic

Network

Step i: S1 / S0 values (see Figure S3 and Supplemental Experimental

Procedures for definition) of each metabolite were calculated to identify

quantitatively changed metabolites that are equivalent to the metabolites

satisfying j S1 / S0 j > 1.

Step ii: responsible metabolic enzymes that produce or consume at least

one quantitatively changedmetabolite are identified using the KEGG data-

base in combination with the calculated S1 / S0 values.

Step iii: significantly phosphorylated responsible metabolic enzymes were

identified using the phosphoproteomic data. A phosphopeptide whose

phosphorylation intensity was greater than a 1.5-fold increase or less

than 0.67-fold decrease at more than one time point was determined as

a quantitatively changed phosphorylation.

Step iv: responsible protein kinases of the significantly phosphorylated

responsible metabolic enzymes were estimated using NetPhorest. The

responsible protein kinase was connected to the insulin-signaling pathway

if it was included in this pathway map.

Step v: the information regarding allosteric effectors acting on the respon-

sible metabolic enzymes was extracted from the BRENDA database.

Step vi: the static signal flow of acute insulin action in a trans-omic network

was reconstructed by integrating the results of steps i through v.

Step vii: dynamic signal flow around PFKL was identified using a kinetic

model.

PFKL Assay

HEK293 cells transfected with the indicated plasmids harboring cDNA of wild-

type and mutants of mouse PFKL were used for PFKL assay to determine the

function of phosphorylation of PFKL at S775. We performed a variable selec-

tion based on the residual sum of squares between the original full model and

reduced models.

ACCESSION NUMBERS

The Gene Expression Omnibus accession number for the microarray data in

this article is GSE58302. The mathematical models have been deposited

in BioModels Database (Li et al., 2010) and assigned the identifiers

MODEL1406130000 and MODEL1406130001.
mutants whose Ser 775 residues were substituted by alanine, aspartate, and

wn. *Statistically significant changes between groups determined by a Tukey-

e of F1,6BP based on the experimental time-course data of phosphorylation of

etails). Dashed lines indicate the time course of F1,6BP based on the simulated

The dots indicate experimental data of F1,6BP. Red, green, and blue represent

s (RSS) of the consecutive variable selections are shown (see Supplemental

selection (RSS = 0.001). The five variables above the threshold are essential

e same five variables (Figure S4A).

urse of F1,6BP is an integration of d[F1,6BP] / dt, which is primarily given by the
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Supplemental Information includes Supplemental Experimental Procedures,

four figures, five tables, and onemovie and can be found with this article online
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