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Abstract

Stars keep hydrostatic equilibrium during most of their lifetimes. But many of them show some
variability of the brightness in short timescales. While the causes for the variability are mass
ejecting, rotation, flare, etc., pulsation is also responsible. Stellar pulsations are phenomena
that a star repeats to expand and shrink periodically. They are powerful tools to investigate
stellar interiors. Simultaneously, they are thought to affect profiles of stellar structure by
inducing mass loss, angular momentum transfer, etc. It had been originally known that there
had been two types of pulsation modes, p (pressure) and g (gravity) modes. Their physical
properties are well-understood with the adiabatic approximation, since their pulsations only
slightly deviate from adiabatic processes. In theoretical models of very luminous stars with
L/M >∼ 104L�/M� such as massive stars, helium stars and Wolf-Rayet (WR) stars, etc., on
the other hand, there exist eigenmodes which show different behaviors from p and g modes,
and they have been called “strange-modes”. Due to the extremely high luminosity, heat
capacity of envelopes of such stars is much smaller than thermal energy flux flowing from the
stellar center. In this situation, pulsations significantly differ from adiabatic processes. Then,
the adiabatic approximation is no longer valid, and properties of strange-modes have not been
understood enough. But since amplitude of strange-modes grows much more rapidly than
that of ordinary modes, strange-modes may have higher possibility for nonlinear phenomena,
such as mass loss, and be influential on stellar evolutions.

So far calculations of strange-modes have been carried out with the frozen-in convection
(FC) approximation, under which convective luminosity is assumed to be constant during
pulsations. One of reasons for this is that there are still lots of uncertainties on convection
theories. In envelopes of hot massive stars, particularly, convection is not so dominant as in
those of stars in the redder side of the classical instability strip. In a convection zone at around
200,000K, which is caused by the opacity bump due to ionizations of Fe group elements, of
hot massive stars, however, convection contributes a few dozen percent in energy transport.
Then, we cannot definitely neglect a process that pulsation changes convective luminosity, and
that the change in the convective luminosity in turn gives the pulsation the feedback.

In this study, calculations of strange-modes are carried out by adopting the time-dependent
convection (TDC) theory, which deals with convection-pulsation interactions. This study
found that convection suppresses pulsational instability of some of the strange-modes. The
excitation of such modes takes place at the Fe opacity bump, around which convection certainly
contributes to energy transport. But it is confirmed that the strange-mode instability certainly
exists even if convective effects are included. Massive stars experience the luminous blue
variable (LBV) stage, at which substantial amount of mass is lost. Although the mass-loss
mechanism has not yet been established, the instability of strange-modes has been suggested
as one of the candidates for the mechanism by calculation with FC. This study supports this
suggestion even with the convective effects.

Nonradial pulsations are also analyzed in the main-sequence stage. Nonradial modes have
an additional parameter l, which indicates the number of node lines on the stellar surface. In



the low l cases, the mode amplitude is confined to the outer layer including the Fe bump. As
the l increases, however, waves become propagate in the radiative zone below the Fe bump
convective zone. That is, the amplitude leaks to this zone and the mode comes to suffer from
radiative damping. The instability becomes weaker with increasing l, and finally disappears
with l = 4. That is, the radial pulsation (l = 0) is most responsible for the instability.

This study also investigates the physical origin of strange-modes. In fact, there are two
types of strange-modes, one with and without adiabatic counterparts. The type having adia-
batic counterparts appears in the main-sequence stage, while the other type dominantly does
in the post main-sequence stage. The type with adiabatic counterparts has the corresponding
solutions in the adiabatic analysis. This type is excited by the classical κ-mechanism like the
ordinary modes. But since waves are trapped in a narrow region around the Fe bump, the
excitation works very strongly, and leads to the extremely rapid growth of the amplitude.

On the other hand, the second type, the strange-modes without adiabatic counterparts,
are not excited by the κ-mechanism. Instead, dominance of radiation pressure is important.
This study demonstrates that this type of instability is suppressed and needs higher luminosity
in the zero-metallicity case, where radiation pressure is weaker than the Population I case due
to lack of the Fe opacity bump. While this type of instability takes place for >∼ 50M� in the
Population I case, it does for >∼ 100M� in the Population III case. With the zero-metallicity,
however, we can expect that very massive stars were formed due to lack of cooling process due
to heavy element emission lines. Particularly, the pair-instability supernova (PISN) is proposed
in the mass range of 130 − 300M�. Its existence is controversial since it produces peculiar
chemical composition, which is inconsistent with observations of extremely metal poor stars.
This study finds that the instability of the strange-mode occurs during evolution of stars which
could evolve toward PISN, and suggests the possibility for non-existence of PISN in agreement
with the observation.
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1
Introduction

1.1 Pulsations of stars

Stars keep hydrostatic equilibrium in their own structure during most of their lifetimes. That
is, they almost keep their constant shapes, or change them very slowly. Thus, their brightness
should not change abruptly. But some of them show some variability of the brightness in much
shorter timescale than that of their lives. While it can be caused by mass ejecting, rotation,
flare, etc., pulsation is also responsible for the variability. Stellar pulsation is a phenomenon
that a star repeats to expand and shrink periodically. It was first found in ø Ceti by Fabricius
in 1596 (Ledoux and Walraven, 1958). It was observed that the brightness of the star changed
by 8 magnitude with period 332 days. Then, the star was named “Mira”, and had become the
prototype of Mira variables. After that, pulsations were also found in η Aquila and δ Cepheid,
for which the brightness changed by 1 magnitude with period 6 days. These stars are now
categorized as pulsating stars called “Cepheids”. At that time, however, pulsations had not
yet been regarded as the cause for the brightness change of these stars.

Pulsations have been thought to be responsible for some stellar variability from Shapley
(1914), and was given a firm mathematical foundation by Eddington (1918a,b). On the other
hand, Leavitt and Pickering (1912) found the period-luminosity relation among Cepheids in
the Small Magellanic Cloud, and then stellar pulsations have been widely used as distance
indicators in the universe.

While improvement in precision of the observation has made the roles as the distance
indicators broader, it enabled us to observe other types of pulsations around 1970. In pulsations
of Miras and Cepheids, stars repeat shrinking and expanding while keeping their spherical
symmetry. Such phenomena are called “radial pulsations”. But we also became able to
observe “nonradial pulsations”, phenomena that a star loses the spherical symmetry during
pulsations. That is, some parts on a surface of a star shrink, while others expand at the
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Figure 1.1: Distribution of different types of pulsating stars in the HR diagram. Provided
by Jørgen Christensen-Dalsgaard.

same time. In general, stars having nonradial pulsations are likely to show pulsations with
plural different periods, or different pulsational modes. Pulsations are caused by propagation
of waves in stellar interiors, and properties of the waves reflect those of media in which they
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propagate. Then, we can investigate the interiors by use of them. In particular, having a lot of
pulsational modes gives us advantages to obtain information in the interiors. A field to study
stellar interiors by use of pulsations is called “asteroseismology”. In this field, there are a lot of
attempts to reveal properties in stellar interiors. As representative examples, asteroseismology
in the Sun (“helioseismology”) has been finding that the outer convection zone has differential
rotation, while the inner core has rigid rotation. Recently, the evidences for large difference
in rotational frequency between inner and outer parts of red giants have been found by use of
Kepler data. In roAp stars, 3D information of atmosphere can be obtained thanks to pulsations
having short wavelength near the surface by use of line profile variations (Nomura et al., 2012).

On the other hand, stellar pulsations itself can affect structure of stars. Asymptotic Giant
Branch (AGB) stars pulsate as Mira variables, and the pulsation is thought to play an important
role in mass loss and to lead to evolution toward white dwarfs. The pulsationally-driven mass
loss has been also considered to give the upper limit mass of main sequence stars (Appenzeller,
1970b,a; Talbot, 1971a,b; Papaloizou, 1973a,b). Pulsations can also cause angular momentum
transport and affect the rotation profile (Ando, 1982). This idea has been applied to Be
phenomena. As angular momentum is transported toward the stellar surface, surface rotational
velocity is raised and episodic mass loss takes place (e.g. Ando, 1986; Lee, 1993; Shibahashi
and Ishimatsu, 2013). In the case of the Sun, on the other hand, internal gravity waves excited
at the bottom of convective envelope might propagate in the inner radiative core, transport
angular momentum and realize the rigid rotation profile of the core as introduced above (e.g.
Charbonnel and Talon, 2005).

Fig.1.1 shows distribution of different types of pulsating stars. Stellar pulsations happen as
waves propagate and standing waves are formed. In general, there are two types of standing
waves in pulsating stars. The first type is ”p (pressure) mode”, which is a standing wave or
an eigenmode of acoustic waves. The second type is “g (gravity) mode”, which is that of
internal gravity waves. The restoring force of this type of wave is buoyancy. In cases of main
sequence stars, p modes propagate in outer envelopes, while g modes in deep interiors. That
is, the former and the latter are useful to investigate structure of outer and inner regions,
respectively. In cases of white dwarfs, on the other hand, g modes cannot propagate in the
deep interiors due to degeneracy of the cores, but instead propagate in the outer envelopes.

1.2 Pulsational instability

When pulsation is generated with tiny amplitude, it may be damped or grow in time. If it
is damped, this situation is referred to as being “pulsationally stable”. If it grows, as being
“pulsationally unstable”(Fig.1.2).

In fact, one star has a number of eigenmodes. Ideally speaking, a star thought to have
no pulsations has no unstable modes, and all the eigenmodes are pulsationally stable. In a
pulsating star, some of the eigenmodes are unstable, but the others are stable. Unstable
modes correspond to phenomena of stellar pulsations. Stars in the hatched regions of Fig.1.1
are thought to have some unstable modes. The most famous region is “classical instability
strip”, which is between the two dashed straight lines and includes the zones of Cepheid, RR
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Figure 1.2: Pulsational instability.

Lyrae, and δ Scuti. Many of stars in the strip have some unstable p modes.
What causes pulsational instability? In most cases, heat engine mechanisms are responsible

for it. In case of the Cepheid instability strip, the pulsations are excited by the κ-mechanism,
which is one type of heat engine mechanisms. In the κ-mechanism, thermal flux is absorbed
more in shrinking phase of pulsation, while dissipated more in expanding phase. Through this
process, the absorbed thermal energy is converted into work or mechanical pulsational energy,
and pulsational amplitude grows, which means pulsational instability.

1.3 Strange-modes

Properties of p and g modes are well-understood, and then reliable for investigating inter-
nal structure. In theoretical models of very luminous stars, on the other hand, there exist
eigenmodes which show different behaviors from p and g modes, and they have been called
“strange-modes”. Strange-modes are originally found by the numerical study of Wood (1976),
who analyzed radial (spherically symmetric) modes in high luminosity helium stars. As a matter
of fact, those modes had not yet called as “strange-modes” at that time, but Cox et al. (1980)
named them in the study of pulsations in hydrogen deficit carbon stars. Shibahashi and Osaki
(1981) found radial and nonradial (non-spherically symmetric) strange-modes while analyzing
pulsations in the higher temperature side of the Cepheid instability strip. After that, many
authors have been working on analyses of strange modes in helium stars (Saio and Jeffery,
1988; Saio et al., 1984; Gautschy and Glatzel, 1990; Gautschy, 1995; Saio, 1995), Wolf-Rayet
stars (Glatzel et al., 1993; Kiriakidis et al., 1996), hot massive stars (Gautschy, 1992; Glatzel
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Figure 1.3: The lowest three frequency modes of ordinary radial pulsations (left) and
modal diagram for radial modes in ZAMS stars, of which the abscissa is stellar mass
of ZAMS stars and the vertical axis is nondimensional frequency multiplied by free-fall
timescale, from Glatzel and Kiriakidis (1993b, right).

and Kiriakidis, 1993b,a; Kiriakidis et al., 1993; Glatzel and Mehren, 1996; Saio et al., 1998;
Saio, 2009, 2011; Saio et al., 2013; Godart et al., 2010, 2011), etc.

What is the difference between strange-modes and ordinary p, g modes? Fig.1.3 shows an
example of radial modes. Note that radial modes correspond to p modes. The left part of
the figure shows ordinary radial modes. As for radial modes, there exists the lowest limit of
frequency. An eigenmode with the lowest frequency is called “fundamental mode”, for which
the phase of the pulsation is homogeneous in a whole star. An eigenmode having the second
lowest frequency is “1st overtone”. In this case, a star has a node, and the pulsational phases
are opposite in both sides of the node. The next one is “2nd overtone”, which has two nodes.

The right part of Fig.1.3 shows frequencies of radial modes for Zero Age Main Sequence
(ZAMS) stars. Such a diagram in which eigenmodes are plotted with the abscissa indicating
some parameter and with the vertical axis indicating frequency is called modal diagram. Here,
the abscissa is the mass of the ZAMS stars. The frequencies are normalized by multiplying the
free-fall timescale. The sequences labeled “F”, “1O” and “2O” correspond to the fundamental
mode, the 1st overtone and the 2nd overtone, respectively. The frequencies on these sequences
are almost constant along the change of the stellar mass. On the other hand, there are
descending sequences with increase in the mass, labeled “S*u” or “S*s”. They actually
correspond to strange-modes. That is, we can find different behaviors of strange-modes from
ordinary modes in modal diagrams.

The previous studies also have found the other characteristics of strange-modes. For
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Figure 1.4: Observed Milky Way stars and Humphreys-Davidson (HD) limit, which is
expressed as the solid line (Humphreys and Davidson, 1979).

instance, they appear in very luminous star models with L/M >∼ 104L�/M�. In the outer
regions of such stars, heat capacity is relatively small compared with the flowing energy from
the stellar center. It causes that timescale of heat transport or thermal timescale becomes so
short that heat can leak easily. Then, the short thermal timescale has been thought to be
responsible for appearance of strange-modes. Besides, excitation or damping of strange-modes
is extremely strong compared with that of ordinary modes. That is, unstable strange-modes
have so high growth rate that it could be influential on stellar evolution.

1.4 Evolution of massive stars

While core of a star with M <∼ 8M� encounters degeneracy and evolves toward white dwarfs,
that of a star with M >∼ 8M� never does, and instead experiences different burning cycles
until the central part becomes an iron core, after which the star explodes as a core-collapse
supernova. By this phenomena, it provides its surrounding with different types of elements
made by nuclear reactions. Besides, the more massive a star is, the stronger radiation-driven
mass loss it suffers from.

Due to the mass loss, their evolution becomes very interesting. Humphreys and Davidson
(1979) gave a limit line so-called “Humphreys-Davidson (HD) limit”, over which there is a
lack of observed stars, on the HR diagram on the basis of observed samples in the Milky Way
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Figure 1.5: Distribution of luminous blue variables (LBVs) on the HR diagram. The
crosses are observed LBVs listed in van Genderen (2001). The solid lines are evolutionary
tracks with X = 0.70, Z = 0.02, which are results of computation without taking into
account mass loss.

(Fig.1.4) and in the Large Magellanic Clouds. This phenomenon implies that massive stars
with M >∼ 50M� never evolve toward red supergiants, and that some instability takes place
before evolving beyond the HD limit. As a matter of fact, drastic variability has been observed
in the higher temperature side of the limit (Fig.1.5). Stars showing such variability are called
“luminous blue variables (LBVs)”, or “S Dor variables”. P Cyg is the first LBV, which was
observed in 1600. In August of that year, it suddenly appeared as a very luminous star. In
1655, it became very luminous again, and had been able to be observed by naked eyes. After
that, it has been seen again from around 1700, has been gradually increasing its brightness,
and now brightening at V ' 5. LBVs in the high effective temperature side on the HR diagram
are dark in the visible light, and thought to be at quiescence. But LBVs abruptly eject matter
comparable to the solar mass, and the ejected matter expands and hides the core. This causes
that the pseudo-photosphere is formed in the ejected matter, and that the apparent effective
temperature decreases. By this, the LBVs become luminous in the visible light. When the
eruption ceases and the core becomes exposed again, the LBVs get back toward the higher
effective temperature side.

LBVs are thought to repeat the above phenomena, that is, quiescence → eruption →
quiescence . . . After that, they are thought to become Wolf-Rayet (WR) stars. WR stars
are located in the high temperature and luminosity side on the HR diagram. Because of the
existence of emission lines, WR stars are thought to have stellar wind around themselves. The
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mass loss rate exceeds 10−5M� yr−1. Considering that the lifetime of WR stars is in the order
of 105 yr, the stellar wind should substantially affect the stellar evolution. While stars with
the initial mass of >∼ 25M� are thought to be WR stars, the mass of WR stars are 5 to a few
ten times of solar mass. When the initial mass is in the range of 25− 50M�, stars first evolve
from main sequence to red supergiants, and then might be WR stars. When the initial mass
is over 50M�, on the other hand, stars never become red supergiants, instead evolve toward
LBVs, and then might be WR stars.

We have not yet obtained an established mechanism for the sporadic eruptions occurring
in LBVs, although many authors have proposed different explanations by effects of radiation
pressure in the situation near the Eddington limit, close-binary models, rapid rotations, etc
(see Humphreys and Davidson, 1994). Pulsational instability is also one of the candidates
for the LBVs’ eruption trigger. Glatzel and Kiriakidis (1993a) suggested that the instability
of strange-modes appears around the HD limit. But their analysis did not take into account
effects of convection, although the strange-modes are excited at convection zones.

1.5 Aim of this study

As mentioned above, strange-modes have been analyzed by many studies. Most of them
have been working on pulsational stability analyses of strange-modes, and have found unstable
strange-modes in very luminous stars. By the way, most of stars have convection zones. Con-
vection should have some effects on pulsations. However, we still have difficulty in theoretical
description of convection itself, and also of convection-pulsation couplings. Then all of the
previous stability analyses of strange-modes have been carried out by neglecting the effects of
convection.

We need to adopt a time-dependent convection (TDC) theory to carry out a pulsational
stability analysis with effects of convection. So far several TDC theories have been proposed by
Unno (1967), Gough (1965, 1977), Xiong (1989) and others. Particularly, the theory of Unno
(1967) was extended to nonradial pulsations by Gabriel et al. (1974), and recently adopted to
calculation of the pulsational stability analysis by Grigahcène et al. (2005) and Dupret et al.
(2005), who analyzed the stability of δ Scuti stars and has succeeded in explaining suppression
of the pulsational instability in the redder side of the classical instability strip, where convection
plays a significant role in energy transfer in the stellar envelopes.

This study focuses on strange-modes in hot massive stars. As a matter of fact, convection
in envelopes of hot massive stars is not as dominant as in those in the redder side of the
classical instability strip. But unstable strange-modes are excited in convection zones and we
cannot definitely conclude that convection never affects the stability of the strange-modes.
Then, this study carries out a pulsational stability analysis of strange-modes with the TDC
theory originally derived by Unno (1967), although the previous studies neglected effects of
convection. As mentioned above, the strange-modes seem responsible for the LBV phenomena.

Although strange-modes have been found by many previous studies, it is still puzzling
why strange-modes exist as eigenmodes and how unstable strange-modes are excited. Phys-
ical properties of ordinary modes can be explained by the WKB approximation based on the
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adiabatic approximation. But such a procedure is no longer available for some of the strange-
modes. It has been found that the strange-modes appear only in pulsations of very luminous
stars with L/M >∼ 104L�/M�. In envelopes of such stars, the luminosity is too high that
matter can save thermal energy flowing from the stellar center. In this very nonadiabatic
situation, adiabatic scheme may not be suitable for some of the strange-modes, and then this
study carries out local analyses suitable for the situation.

16



Part I

Equilibrium structure and pulsations
of stars
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2
Hydrostatic structure of stars

2.1 Introduction

Stars are born from molecular clouds. The dense part in the clouds experiences gravitational
collapse and then a protostar, in which the hydrostatic equilibrium is realized, is generated in
the central region. In this phase, the surrounding gas accretes into it and the protostar’s mass
increases. It brights by the release of the gravitational energy through the accretion. Its light,
however, is absorbed and re-emitted by the surrounding dust. Hence it can be observed not
by the visible light, but by the infrared. Later, the surrounding matter gets blown away by the
stellar wind and the accretion stops. Then, the star can become observed by the visible light.

Next, the star experiences the gravitational contraction while keeping the hydrostatic equi-
librium. This stage is called “pre–main-sequence stage.” The energy flows from the hot center
to the cool surface, and is emitted as the stellar light. Since the equilibrium between the in-
come and outgoing of the energy must be realized, the gravitational energy is released by
contraction. Some of the energy flows to the surface as described above, the rest is converted
into the internal energy, which raises up the central temperature.

When the central temperature reaches 107 K, the nuclear burning of hydrogen is set up. It
provides the energy required for the energy flow due to the temperature gradient between the
center and the surface. That terminates the gravitational contraction, which means reaching
“Zero Age Main Sequence” (ZAMS) stage.

This study deals with stars after the ZAMS stage, at which structure realizes the hydrostatic
equilibrium as well as the pre–main-sequence stage. In the following, we discuss prescription
for hydrostatic structure of stars.
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2.2 Differential equations

Structure of stars is described by four differential equations of hydrostatic equilibrium. The
first one is the equation of continuity,

∂r

∂Mr

=
1

4πr2ρ
, (2.1)

where r denotes distance from the center, Mr enclosed mass in the sphere with radius r, and
ρ local density.

The second equation is the equation of hydrostatic equilibrium,

∂p

∂Mr

= −GMr

4πr4
, (2.2)

where p denotes pressure. It describes balance between gravity and force due to pressure
gradient.

The third one is the equation of the diffusion approximation for radiative transfer,

∂T

∂Mr

= − 3κLR

64π2acr4T 3
, (2.3)

where T denotes temperature, κ opacity, LR radiative luminosity, a radiative constant, c light
speed. It represents the radiative energy transfer in regions where movement of photons can be
described as diffusion. In stellar interiors, a mean free path of photons is very short compared
with the scale in which the structure changes. Thus the radiative energy transport can be
regarded as a diffusive process. The derivation of this approximation is introduced in §A.

The last one is the equation of energy conservation,

∂Lr

∂Mr

= ε− T
dS

dt
, (2.4)

where Lr denotes local, total luminosity, ε nuclear energy production rate, S entropy. The
second term in the right hand side (RHS) represents thermal energy transformed from gravi-
tational energy released by gravitational contraction.
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2.3 Additional conditions described as algebraic equa-

tions

We still need some more conditions to solve the above fourth differential equation system.
The first one is of a relation among thermodynamical variables p, ρ and T ,

p = p(ρ, T,Xi), (2.5)

where Xi is abundances of different chemical elements. This study mainly adopts the OPAL
EOS table (Rogers and Nayfonov, 2002) to calculate p. The EOS tables are also used to

get thermodynamical variables, e.g.
(

∂ ln p
∂ lnT

)
ρ
, which appears the differential equations for

stellar pulsations, shown in §3. They are also required for calculation of stellar structure with
the relaxation method, although it does not explicitly appear in the differential equations,
Eqs.(2.1)–(2.4).

Like the above, opacity κ, and nuclear energy production rate ε are functions of ρ, T , Xi

as

κ = κ(ρ, T,Xi) (2.6)

ε = ε(ρ, T,Xi). (2.7)

The opacity is calculated by using the OPAL opacity table (Iglesias and Rogers, 1993, 1996),
while the nuclear energy production rate with Caughlan and Fowler (1988) and Angulo et al.
(1999).

The last condition is that luminosity is composed of radiative and convective luminosities,

Lr = LR + LC , (2.8)

In most cases including this study, the convective luminosity is evaluated with Böhm-Vitense
(1958)’s mixing length theory (MLT), which will be discussed in the next section.

2.4 Mixing length theory (MLT)

In most of stars, temperature becomes maximum at the center and decreases toward the
surface. Then, thermal energy flows from the center to the surface along the temperature
gradient. But temperature gradient is different by location. Thermal energy is transferred by
radiation in a place with low temperature gradient. But convection comes to contribute to
energy transfer in case radiative temperature gradient exceeds adiabatic temperature gradient,
∇ad ≡

(
∂ lnT
∂ ln p

)
ad
. Namely, the temperature gradient can be evaluated as

d lnT

d ln p
≡ ∇ =

{
∇rad (∇rad < ∇ad, radiative)
“?′′ (∇rad > ∇ad, convective)

(2.9)

where ∇rad is called radiative temperature gradient, of which the definition is described as
Eq.(A.12). It is the fictional gradient in case all energy is transported only by radiation. To be
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Figure 2.2: Ranges of EOS tables used in MESA code, adopted by this study to calculate
stellar evolution and structure, on the ρ− T plane (Paxton et al., 2011).

exact, convection comes to contribute when the radiative temperature gradient ∇rad exceeds
the adiabatic temperature gradient ∇ad. When ∇rad < ∇ad, temperature gradient and total
luminosity are identical to radiative temperature gradient and radiative luminosity, respectively.
But when ∇rad > ∇ad, we have to evaluate convective luminosity and temperature gradient
by considering physics of convection.

In most cases including this study, the Böhm-Vitense (1958)’s mixing length theory (MLT)
is usually adopted to evaluate the convective luminosity and temperature gradient. In con-
vection of MLT, a gas clump having slightly higher temperature than its surrounding is rising
mixing length Λ. Then, it mixes with the surrounding and releases the exceeding energy. On
the other hand, the clump cooler than its surrounding goes down Λ.

Let us consider the equation of motion for the clump. We now write density as ρ = ρ0+∆ρ
where the subscript “0” denotes values at the point r in the equilibrium state of the clump.
In this state, we have ρ = ρ0, and the equation of motion becomes

r̈0 = −g0 −
1

ρ0

(
∂p

∂r

)
0

= 0. (2.10)
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Figure 2.3: Convection in MLT

In general, the equation is

r̈ = −g0 −
1

ρ0

(
∂p

∂r

)
0

[
1− ∆ρ

ρ0

]
= −g0

∆ρ

ρ0
(2.11)

This says that the clump rises or sinks due to the buoyancy force fB = −g∆ρ.
Next, we will notice the work done in moving the clump. We suppose that the clump

starts moving with zero velocity at r and is accelerated upward through the distance ∆r. We
assume that the excess density is virtually zero at r and increases linearly with ∆r until it has
the value ∆ρ(∆r) at r + ∆r. Neglecting the variation of g over the distance ∆r, the work
done on unit volume in moving it through the distance ∆r is then

W (∆r) =
∫ ∆r

0
fB(∆r)

′d(∆r)′ = −g
∫ ∆r

0
∆ρ((∆r)′)d(∆r)′ = −1

2
g∆ρ(∆r)∆r (2.12)

The factor 1/2 in the last term is added since ∆ρ increases linearly with (∆r)′. Note that
W (∆r) increases quadratically with ∆r. We should next average W (∆r) over all possible
values of ∆r. To obtain the consistency with Böhm-Vitense (1958), we should set

W (Λ) =
1

4
W (Λ) = −1

8
g∆ρ(Λ)Λ (2.13)

The work is transformed into the kinetic energy of the clump. But the clump has to push
aside other masses, and thereby imparts some of its kinetic energy to them. Thus we assume
that the average of the kinetic energy is equal to that of the work:

1

2
ρ(∆u)2 ' 1

2
ρ(∆u)2 =

1

2
W (Λ) = − 1

16
g∆ρ(Λ)Λ (2.14)

22



Hence, we have obtained the excess of velocity as

(∆u)2 = −1

8
g
∆ρ(Λ)

ρ
Λ. (2.15)

On the other hand, how is the excess of temperature? As shown in the left panel of Fig.2.3,
the clump, at the initial height r, has the same temperature as its surrounding, but gradually
comes to have higher temperature than it. When the clump rises length ∆r, temperature in
the clump T ′ is described as

T ′(r +∆r) = T (r) +
dT ′

dr
∆r (2.16)

Hence, the temperature excess becomes

∆T (r +∆r) = T ′(r +∆r)− T (r +∆r) =

(
dT ′

dr
− dT

dr

)
∆r (2.17)

Introducing the expressions for temperature gradients

∇(′) ≡ d lnT (′)

d ln p
, (2.18)

and replacing ∆r with Λ, we have

∆T (r + Λ) = (∇−∇′)
TΛ

Hp

(2.19)

where Hp denotes pressure scale height defined as

Hp ≡ − dr

d ln p
=

pr2

GMrρ
. (2.20)

The convective flux, which means transferred energy by the clump, is defined as

FC(∆r) = ρcp∆u∆T. (2.21)

Taking average over all possible ∆r, and using Eqs.(2.15) and (2.19), we have

LC = 4πr2FC = 4πr2ρcp∆u ∆T ' 4πr2ρcp

√
(∆u)2∆T (2.22)

= 4πr2ρcpT

(
Λ

2Hp

)2 (
vTp

2ρ

)1/2

(∇−∇′)3/2 (2.23)

where we have assumed pressure equilibrium while the clump is rising or sinking, and have
used the relation

∆ρ

ρ
= −vT

∆T

T
with vT ≡ −

(
∂ ln ρ

∂ lnT

)
p

. (2.24)
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By use of ∇rad, we can describe the local total luminosity as

Lr =
16πacGMrT

4

3pκ
∇rad. (2.25)

Transforming Eq.(2.3), we get an expression of the radiative luminosity as

LR =
16πacGMrT

4

3pκ
∇. (2.26)

Substituting Eq.(2.23), Eq.(2.25) and Eq.(2.26) into Eq.(2.8), we have

∇rad = ∇+
3κρ2cpΛ∆u

4acT 3
(∇−∇′) (2.27)

Here we introduce a new parameter, efficiency of convection Γ, defined as

Γ =
“Excess heat content′′ just before dissolving

Energy radiated during life time
=

3

4ac

cpκρ
2∆u

T 3

Vclump

Aclump

, (2.28)

where Vclump and Aclump are the volume and the surface area of the convective clump. For
example, we have Vclump/Aclump = Λ/6 for a sphere with diameter Λ. Following Böhm-Vitense
(1958), we here set Vclump/Aclump = (2/9)Λ, and we have

Γ =
cp
6ac

κρ2∆uΛ

T 3
(2.29)

Using this, Eq.(2.27) becomes

∇rad = ∇+ a0Γ(∇−∇′) with a0 ≡
9

4
(2.30)

We then require a second expression for Γ. Let us consider the energy lost toward the surround-
ing while the convective clump is rising or sinking. By considering the diffusion approximation,
we can estimate the lost energy as

∆Ulost = −4acT 3

3κρ
∇T × τCAclump ∼ 4acT 3

3κρ

∆T

Λ/2
τCAclump, (2.31)

where τC denotes the convective timescale, which is the average lifetime of convective clumps.
We roughly have τC = Λ/∆u. With the ration Vclump/Aclump = (2/9)Λ, the energy lost by
volume unity is

∆Ulost

Vclump

=
4acT 3

3κρ
(∇−∇′)

T

Hp

9

2∆u
(2.32)

This loss of energy is made at the expense ρ∆q of the internal energy by volume unity, where
ρ∆q is given by the first law of thermodynamics as

ρ∆q = ρcp∆T +
ρcpT∇ad

p

dp

dr
∆r = ρcpT (∇′ −∇ad)

∆r

Hp

(2.33)
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Replace ∆r with Λ, and since Eqs.(2.32) and (2.33) equal each other, we have

∇−∇′

∇′ −∇ad

=
cp
6ac

κρ2∆uΛ

T 3
= Γ, (2.34)

which is the second expression for Γ. From Eq.(2.15), we can obtain the expression for ∆u as

∆u '
√
(∆u)2 =

Λ

2Hp

(
vTp

2ρ

)1/2

(∇−∇′)1/2, (2.35)

then, Γ also can be described as

Γ = A(∇−∇′)1/2 with A ≡ cp
6ac

κρ2Λ

T 3

Λ

2Hp

(
vTp

2ρ

)1/2

(2.36)

Now we have three equations for Γ, Eqs.(2.30), (2.34) and (2.36). The first one is derived
from the summation of luminosities, Lr = LR+LC , the second one from the discussion of the
heat loss during convection, and the third one from the expression of the average convective
velocity ∆u. Hereafter, we are going to derive the equation to evaluate ∇ or LC . First, we
eliminate ∇′ by combining Eqs.(2.30) and (2.36):

Γ = A
(∇rad −∇

a0Γ

)1/2

(2.37)

In addition, we also eliminate ∇′ by combining Eqs.(2.30) and (2.34):

Γ =
∇rad −∇

(a0Γ + 1)∇−∇rad − a0Γ∇ad

(2.38)

⇒ ∇ =
(Γ + 1)∇rad + a0Γ

2∇ad

Γ(a0Γ + 1) + 1
(2.39)

By using this, we eliminate ∇ in Eq.(2.37), and after some manipulation we get a cubic
equation for Γ,

a0Γ
3 + Γ2 + Γ− A2(∇rad −∇ad) = 0 (2.40)

The last term −A2(∇rad − ∇ad) is negative in convection zones, and this equation has one
positive real solution for Γ. Once getting the value of Γ, we can evaluate ∇, for example, by
using Eq.(2.37), and LC by Eq.(2.23).

2.5 Boundary conditions, atmosphere model and nu-

merical procedures

When we solve structure of a star, we should integrate Eqs.(2.1)–(2.4) between the center and
the photosphere. The total mass of the star M and the abundance profiles Xi(Mr) should
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Figure 2.4: Numerical procedure for solving structure of a star

be given, and we should try to obtain the values of the distance from the center r, the local
luminosity Lr, the pressure p and the temperature T at each layer by integration. Since the
system has the fourth order, we need four boundary conditions. In the usual manner, we set
two conditions at each of inner and outer boundaries. At the inner boundary, we set

r = 0, Lr = 0 at Mr = 0. (2.41)

On the other hand, the outer boundary conditions at the photosphere are obtained with
integration from the surface layer over the photosphere. Above the photosphere, the diffusion
approximation (2.3) is no longer valid due to the low optical depth, and we have to introduce
another treatment.

This study adopts the Eddington approximation to construct atmosphere models (Here
we define a region above the photosphere as “atmosphere”). The details for the physics of
the atmosphere are discussed in §B. As shown in Fig.2.4, the integration in the atmosphere
is carried out by setting Mr and Lr to be homogeneously the total mass M and the total
luminosity L, respectively, since the atmosphere occupies negligible amount of the total mass
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of a star, and has no energy source and no gradient of luminosity. That is, we do not need
to integrate the equation of continuity (2.1), and the equation of energy conservation (2.4).
Instead, we integrate

dτ = −κρdr, (2.42)

which is the definition of the optical depth τ . Thus, we have the third order system of
the differential equations. The relaxation method is adopted for the integration between the
center and the photosphere, while the shooting method from the atmosphere surface to the
photosphere. When we start the numerical integrations, we have to guess the values of the
pressure pc and the temperature Tc at the center, and the temperature Teff and the luminosity
L at the photosphere. Note that the temperature at the photosphere Teff is called “effective
temperature”, which is observed in the visible light, but not exactly surface temperature. The
values at the atmosphere surface (rs, ps and Ts in Fig.2.4) can be evaluated once Teff , L is
determined by using

(B.10) : Ts = 2−1/4Teff ,

(B.11) : Rs =

(
L

8πσBT 4
s

)1/2

,

ps = p(ρ = 2× 10−11g cm−3, Ts, Xi) (2.43)

where the pressure is evaluated by the EOS table by assuming the surface density is ρs =
2 × 10−11 g cm−3 in this study. Note that chemical abundances Xi are homogeneous in the
whole of the atmosphere. Then, we can integrate the third order differential equations from
τ = 0 to 2/3 to obtain the physical quantities (Reff , peff in Fig.2.4) at the photosphere.

After that, we go to the two-point boundary value problem between the center and the
photosphere with the relaxation method. In the relaxation method, we can evaluate an error
of the solution (see §D). If the error is relatively large, we have to repeat the above procedure.
In turn, we adopt the values of pc, Tc, Teff and L obtained with the integration by hoping that
they have been improved compared with the initial guess, and again carry out the integration
from the atmosphere to the photosphere with the shooting method, and go to the relaxation
calculation between the center and the photosphere with the relaxation method. We should
continue the repetitive procedure until the error of the solution becomes much small.
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3
Theory of stellar pulsations with TDC

3.1 Introduction

Stellar pulsations are phenomena that a star expands and contracts periodically or cyclically.
The idea that stellar pulsation is responsible to variability of certain types of variable stars dates
from Shapley (1914), and was given a firm mathematical foundation by Eddington(1918a,
1918b). Originally, stellar pulsations had been studied by assuming spherical symmetry. We
call it “radial pulsation,” in which gas on the same spherical surface expands and contracts
with the same phase. Dziembowski (1971) then analyzed “nonradial pulsation” for the first
time. In nonradial pulsations, pulsation phase depends on the latitude θ or azimuthal angle
φ. That is, some areas expand while the other contract on the same spherical surface at the
same time.

This section introduces the theory of linear nonradial pulsations of stars. We will start from
the hydrodynamical equations, and linearize them to obtain description of nonradial pulsations.
We will discuss also radial pulsations as a special case.

Most of stars have convection zones, and we cannot avoid treating convection to describe
stars. In most cases, the mixing length theory (MLT, Böhm-Vitense, 1958) has been used
to describe convection in hydrostatic equilibrium stellar models. But when we deal with
convection in pulsations, we should consider its time dependence, which MLT does not take
into account. In nonradial pulsations, besides, we should be aware of its dependence on
the horizontal directions. So far most of studies have neglected the effect of convection on
pulsations because of the difficulty in the treatment.

But this study analyzes pulsations with the time-dependent convection (TDC) theory, which
carefully takes into account coupling between convection and pulsation. There are several
TDC theories proposed by different authors. We obtain the same equations at equilibrium
state, corresponding to MLT, in the different TDC theories. But when we consider perturbed
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situations, the different TDC theories give different pictures and equations. Gough (1965,
1977) and Unno (1967) assume phenomenological pictures of convection to derive the TDC
formulation. The former is based on Taylor (1915)’s and Prandtl (1925)’s original analogy
between turbulence and the kinetic theory of gases. In this description, the convective elements
are accelerated by the buoyancy force over a characteristic length (the mixing length) and
then exchange their thermal energy with their surroundings. On the other hand, the latter
is based on the original ideas of Prandtl (1932). In this description, a turbulent viscosity
acts in the opposite direction to the buoyancy force, which leads in the stationary case to
convective cells with constant velocities. Although the above two TDC theories are based on
the phenomenological pictures, Xiong (1989)’s TDC theory was derived directly from the basic
equations of hydrodynamics and turbulence theory with statistical procedures.

The TDC theory this study adopts was originally proposed by Unno (1967) for radial
pulsations. Later, Gabriel et al. (1974, 1975) arranged and applied it to nonradial pulsations,
and it has been improved by the following studies (Gabriel, 1987, 1996, 1998, 2000). Recently,
Grigahcène et al. (2005) has succeeded in adopting it to the nonadiabatic calculation for
nonradial pulsations, and Dupret et al. (2005) could explain the suppression of the pulsational
instability of δ Scuti stars in the redder side of the classical instability strip.

In the following, we derive the prescription describing the coupling between convection and
radial, nonradial pulsations. Specifically, we first decompose the variables into values for the
mean flow and for the convective fluctuation. The respective values will be next decomposed
into those for the hydrostatic equilibrium and for the pulsational perturbation (Fig.3.1).

3.2 Basic hydrodynamical equations

The basic equations that describe deformations of a star are equations of hydrodynamics.
We start from the following four hydrodynamical equations, i.e. the equations of continuity,
motion and energy conservations, and the Poisson’s equation:

∂ρ

∂t
+∇ · (ρu) = 0, (3.1)

ρ

(
∂

∂t
+ u · ∇

)
u = −ρ∇Φ−∇P , (3.2)

ρ

(
∂

∂t
+ u · ∇

)
U + (Pg + PR)⊗∇u = ρε−∇ · FR, (3.3)

∇2Φ = 4πGρ, (3.4)

where ρ is density, u velocity of fluid, Φ gravitational potential, T temperature, S entropy, U
internal energy, ε nuclear energy production rate per unit mass and time. P is gaseous and
radiative stress tensor, where Pg = pg1− βg, PR = pR1− βR. FR is radiative flux, which is
described with the diffusion approximation,

FR = −K∇T, (3.5)
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?
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(3.14), (3.18), (3.31)

?

puls. perturb.
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(3.62), (3.64), (3.86)

6

steady terms

MLT

(2.15), (2.19)

?
steady terms

eqs. for hydrostatic equilibrium

(2.1)–(2.4)

Figure 3.1: Procedure for solving linear pulsation with convection-pulsation coupling

where

K ≡ 4ac

3κρ
T 3 (3.6)

is the radiative conductivity. This represents the radiative energy transfer in regions where
movement of photons can be described as diffusion. In stellar interiors, mean free path of
photons is very short compared with the scale in which the structure changes. Thus the
radiative energy transport can be regarded as diffusive processes.

3.3 Equations for mean flow and convective fluctua-

tion

For exact treatment of convection, we will first consider fluctuation of physical variables due
to convection. A physical variable a is decomposed into mean flow and convective fluctuation
parts, a and ∆a respectively, as

a = a+∆a (3.7)

The bar means average in a coarse grain, an area having size much larger than convective
eddies, but much smaller than pulsational wavelengths or characteristic lengths of spatial
variations of physical quantities in stellar structure (Fig.3.2).
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Figure 3.2: Cartoon of a coarse gain. The size of a coarse grain is much larger than
convective eddies, but much smaller than pulsational wavelengths or stellar structure.

Below we will take procedures of averaging in a coarse grain by following the Reynolds’
rule:

a+ b = a+ b, ∆a = 0, ab = ab, ab = ab+∆a∆b,
∂a

∂x
=
∂a

∂x
. (3.8)

But as for velocity u, we adopt

ρ∆u = 0, ∆u 6= 0, (3.9)

which means that no mass is lost in the considered coarse grain.

Equation of continuity

By following the above procedure, we have the equation of continuity Eq.(3.1) as

∂(ρ+∆ρ)

∂t
+∇ · [ρ(u+∆u)] = 0 (3.10)

Taking coarse gain averages in both sides, we obtain the equation of continuity for mean flow
as

∂ρ

∂t
+∇ · (ρ u) = 0 (3.11)

Doing subtraction Eq.(3.10)−(3.11), we get the equation of continuity for convective fluctu-
ation as

ρ
D

Dt

(
∆ρ

ρ

)
+∇ · (∆ρu) = 0, (3.12)
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where the Lagrangian time derivative is defined as

D

Dt
=

∂

∂t
+ u · ∇. (3.13)

When we adopt the Boussinesq approximation, which neglects time variation of convective
fluctuation of density and assumes homogeneity of density in a coarse grain, this equation
becomes

∇ · (∆u) = 0 (3.14)

Equation of motion

Taking coarse grain average of both sides of Eq.(3.2), we can derive the equation of motion
for mean flow,

∂ρ u

∂t
+∇ · (ρ u u) +∇ · (ρ∆u∆u) = −ρ∇Φ−∇pth. (3.15)

where pth ≡ pg + pR. Taking difference between Eq.(3.2) and Eq.(3.15), and using Eq.(3.11),
we get the equation for convective fluctuation,

ρ
D

Dt

(
ρ∆u

ρ

)
= −ρ∆u · ∇u+

∆ρ

ρ
∇(pg + pR + pt)−∇∆(pg + pR + pt)

−∆ρ

ρ
∇ · (βg + βR + βt) +∇ · (∆βg +∆βR +∆βt) (3.16)

where convective fluctuations of gravitational potential Φ and pressure pth are neglected. We
adopt a scaling approximation as

∆ρ

ρ
∇ · (βg + βR + βt)−∇ · (∆βg +∆βR +∆βt) = Λ1

ρ∆u

τC
(3.17)

following Unno (1967). Λ1 is a free parameter, and set to be 8 in this study in order to get
consistency with Böhm-Vitense (1958)’s mixing length theory (MLT). Besides, neglecting ∆ρ

in D
Dt

(
ρ∆u
ρ

)
, we get

ρ
D∆u

Dt
=

∆ρ

ρ
∇p−∇∆p− ρ∆u · ∇u− Λ1

ρ∆u

τC
. (3.18)

Equation of energy conservation

Taking coarse grain average of both sides of Eq.(3.3), we obtain the equation for mean flow,

ρ
DU
Dt

+ (pg + pR)∇ · u = −∇ · (FR + FC) + ρε+ ρε2 +∆u · ∇(pg + pR) (3.19)
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where convective flux FC is defined as

FC ≡ (pg + pR + ρU)∆u = ρ∆H∆u (3.20)

where H is enthalpy. The first law of thermodynamics says

dH = d

(
pth
ρ

)
+ dU =

1

ρ
dpth + TdS, (3.21)

Assuming pressure equilibrium between a convective clump and its surrounding, ∆H can be
expressed as

∆H = T∆S (3.22)

The LHS of Eq.(3.19) is transformed as

ρ
DU
Dt

+ pth∇ · u =
pth
ρ

Dρ

Dt
+ T

DS

Dt
+ pth∇ · u = T

DS

Dt
(3.23)

where Eq.(3.11) is used. Eventually, Eq.(3.19) becomes

ρT
DS

Dt
= −∇ · (FR + FC) + ρε+ ρε2 +∆u · ∇pth (3.24)

where

FC = ρ T ∆S∆u (3.25)

Taking difference between Eq.(3.3) and Eq.(3.19), we obtain the equation for convective
fluctuation,

ρ
D

Dt

(
ρU
ρ

− U
)
+∇ ·

(
ρH∆u− ρH∆u

)
−∆u · ∇pth +∆u · ∇pth +∆pth∇ · u

−ρε2 + ρε2 = ρε− ρε−∇ ·∆FR (3.26)

We adopt a scaling approximation of Unno (1967) again like Eq.(3.17),

ρT
∆S

τc
= −ρT∆u · ∇S − ρε2 + ρε2 + (ρT∇S) ·∆u− (ρT∇S) ·∆u (3.27)

Then, Eq.(3.26) becomes

∆(ρT )

ρT

DS

Dt
+
D∆S

Dt
+∆u · ∇S =

ρε− ρε−∇ ·∆FR

ρT
− ∆S

τC
(3.28)

Since this study considers convection-pulsation coupling only in outer convective layers, we
can set ε = 0. Following the MLT approach (Böhm-Vitense, 1958), we set

∇ ·∆FR = −ωR∆SρT (3.29)
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with

ωR =
1

τR
=

4ac

3

T
3

cpκρ2L2
. (3.30)

τR is the cooling timescale of turbulent eddies due to radiative losses, L is representative
surface area of the eddies. It is related to the mixing length Λ by L2 = (2/9)Λ2 in our
equilibrium models. Eventually, we get the equation of energy conservation for convective
fluctuation as

∆(ρT )

ρT

DS

Dt
+
D∆S

Dt
+∆u · ∇S = −ωRτC + 1

τC
∆S (3.31)

As a result, we have gotten the equations for mean flow, Eqs.(3.11), (3.15), (3.19), and
the equations for convective fluctuation, Eqs.(3.14), (3.18), (3.31)

3.4 Equilibrium state (zeroth order terms)

To get equations for pulsations, we have to linearize both of the equations for mean flow and
convective fluctuation. Before doing so, however, let us make sure of the zeroth order terms,
that is, the description for the equilibrium state.

3.4.1 Equations for mean flow

First, we are going to extract the zeroth order terms of the equations for mean flow, and check
the consistency with the differential equations appearing in §2.2.

Equation of continuity

We are going to derive the equation of continuity in hydrostatic equilibrium. We start from
the mean flow equation,

(3.11) :
∂ρ

∂t
+∇ · (ρ u) = 0

→ Dρ

Dt
+ ρ(∇ · u) = 0 (3.32)

→ 1

ρ2
Dρ

Dt
+

∂

∂Mr

(
4πr2

Dr

Dt

)
= 0 (3.33)

where the mass coordinate dMr is adopted as

dMr ≡ 4πr2ρdr. (3.34)

Integrating Eq.(3.33) with time t, we have

−1

ρ
+ 4πr2

∂r

∂Mr

= const = 0, (3.35)
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which is identical to Eq.(3.34) since r is now independent of t, and the partial differentia-
tion of the second term becomes total differentiation. Namely, the equation of continuity in
hydrostatic equilibrium is

(2.1) :
dr

dMr

=
1

4πr2ρ

We have assumed here that the density ρ is steady.

Equation of motion

Secondly, we are going to derive the equation of motion in hydrostatic equilibrium. Like above,
we start from the mean flow equation,

(3.15) :
∂ρ u

∂t
+∇ · (ρ u u) +∇ · (ρ∆u∆u) = −ρ∇Φ−∇pth.

→ Dρu

Dt
+ ρu · ∇u+∇ · (ρ∆u∆u) = −ρ∇Φ−∇pth. (3.36)

Now we neglect the acceleration term since we think of hydrostatic equilibrium. The advection
term (the second term of the left hand side of Eq.(3.36)) is also neglected since the velocity
u is now much small, and this term has the second order of u. The third term expresses
divergence of Reynolds stress tensor. This term is known to be important when a star is
located in the cooler side of the HR diagram. But it is beyond the range of this study, and
this term is also neglected. That is, we neglect all the terms in the LHS. Assuming spherical
symmetry and adopting the mass coordinate, we eventually have the equation of motion in
hydrostatic equilibrium,

(2.2) :
dp

dMr

= −GMr

4πr4

where the radial gradient of the gravitational potential Φ is described as

dΦ

dr
=
GMr

r2
, (3.37)

which can be obtained by integrating the Poisson’s equation (3.4) with r by assuming spherical
symmetry.

Equation of energy conservation

Thirdly, we are going to derive the equation of energy conservation in hydrostatic equilibrium.
We start from the mean flow equation,

(3.24) : ρT
DS

Dt
= −∇ · (FR + FC) + ρε+ ρε2 +∆u · ∇pth
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The summation of the last two terms becomes zero in hydrostatic equilibrium (Grigahcène
et al., 2005). Assuming spherical symmetry and adopting the mass coordinate, we obtain the
equation of energy conservation in hydrostatic equilibrium,

(2.4) :
dLr

dMr

= ε− T
DS

Dt
.

3.4.2 Equations for convective fluctuation

Next, we are going to extract the zeroth order terms of equations for convective fluctuation,
and check the consistency with the descriptions by MLT (§2.4).

Equation of motion

We start from the equation of motion for convective fluctuation,

(3.18) : ρ
D∆u

Dt
=

∆ρ

ρ
∇p−∇∆p− ρ∆u · ∇u− Λ1

ρ∆u

τC

We should neglect the term of the time derivative in the LHS, and the third term in the RHS,
having the mean velocity u which is zero in the equilibrium state. In addition, we assume
pressure equilibrium between a convective clump and the surrounding following the discussion
in §2.4, and neglect the second term. Then, we have

∆u =
τC
Λ1ρ

dp

dr

∆ρ

ρ
(3.38)

= − 1

Λ1

gτC
∆ρ

ρ
(3.39)

Is this consistent with MLT? In §2.4, we have the expression about convective velocity as

(2.15) : (∆u)2 = −1

8
g
∆ρ

ρ
Λ (3.40)

We can replace Λ with ∆u/τc, and roughly speaking, we can have

∆u ∼ −1

8
g
∆ρ

ρ
τC , (3.41)

which is consistent with Eq.(3.39) if the free parameter Λ1 is set to 8 as mentioned in §3.3.

Equation of energy conservation

Next, we are going to check the consistency between MLT and the equation of energy con-
servation for convective fluctuation,

(3.31) :
∆(ρT )

ρT

DS

Dt
+
D∆S

Dt
+∆u · ∇S = −ωRτC + 1

τC
∆S
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In the hydrostatic equilibrium state, the following terms remain:

∆u
dS

dr
= −ωRτC + 1

τC
∆S (3.42)

Noting ∆u ∼ Λ/τC , Γ = (ωRτC)
−1 and ∆S = cp∆T/T under pressure equilibrium in con-

vective motions, we can transform this equation into

Λ
dS

dr
= −

(
1

Γ
+ 1

)
cp
∆T

T
(3.43)

The LHS becomes

dS

dr
= − cp

Hp

(∇−∇ad) (3.44)

= − cp
Hp

[(∇−∇rad) + (∇rad −∇ad)] (3.45)

= − cp
Hp

[
aΓ3

A2
− Γ

A2
(aΓ2 + Γ + 1)

]
(3.46)

= − cp
Hp

(∇−∇′)
(
1 +

1

Γ

)
, (3.47)

where Eq.(2.37) and (2.40) are used from Eq.(3.45) to (3.46), and Eq.(2.36) from Eq.(3.46)
to (3.47). Substituting it into Eq.(3.43), we obtain

(2.19) : ∆T = (∇−∇′)
TΛ

Hp

,

which appears in the discussion of MLT in §2.4.

3.5 Equations for pulsations of mean flow

In §3.3, we have derived equations for mean flow and convective fluctuation. Next, we linearize
the equations and derive equations to describe behaviors of both the mean flow and the
convective fluctuation in pulsations. In this section, we linearize equations for mean flow.
Linearization of the equations for convective fluctuation is introduced in §3.6.

Since we have assumed spherically symmetric structure of a star in the equilibrium state,
physical quantities in the state depend only on distance from the stellar center, r. When
nonradial pulsations take place in the structure, however, the quantities depend also on the
altitude θ, the azimuthal angle φ and the time t. When taking an Eulerian variation of a scalar
physical variable f0(r), we express in the following form:

f(r, t) = f0(r) + f ′(r)Y m
l (θ, φ)eiσt (3.48)
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Figure 3.3: Spherical harmonics Y m
l . The blue and the red parts are opposite in phase.

(Godart, 2011)

where Y m
l is the spherical harmonic function with the spherical degree l and the azimuthal

order m,

Y m
l (θ, φ) ≡ (−1)(m+|m|)/2

[
2l + 1

2π

(l − |m|)!
(l + |m|)!

]1/2
P

|m|
l (cos θ)eimφ. (3.49)

l means the number of nodal lines on the spherical surface, while m the number of longitudinal
ones (Fig.3.3). The bar expressing the coarse gain average is omitted in this section. For a
vector variable f(r),

f(r, t) = f0(r) +

[
f ′
r(r), f

′
h(r)

∂

∂θ
, f ′

h(r)
1

sin θ

∂

∂φ

]
Y m
l (θ, φ)eiσt. (3.50)

We assume u0 = 0, that is,
u(r, t) = u′(r, t). (3.51)
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Note that the relation between the Eulerian and the Lagrangian perturbations is, for example,
given by

δρ = ρ′ + ξ · ∇ρ0 (3.52)

for density and that the Eulerian and the Lagrangian perturbations of u, since u0 = 0, equal
each other,

u′ = δu =
Dξ

Dt
=
∂ξ

∂t
, (3.53)

where D/Dt is the Stokes derivative

D

Dt
=

∂

∂t
+ u0 · ∇. (3.54)

The third equal in Eq.(3.53) is explained by substituting u0 = 0 into Eq.(3.54).

Equation of continuity

First, we linearize Eq.(3.11). The formula of the first order terms is given by

∂ρ′

∂t
+ u0 · ∇ρ′ + u′ · ∇ρ0 + ρ0∇u′ + ρ′∇ · u0 = 0. (3.55)

Adopting u0 = 0 and Eq.(3.53), we get

∂ρ′

∂t
+
∂ξ

∂t
· ∇ρ0 + ρ0∇ · ∂ξ

∂t
= 0. (3.56)

Since all perturbations vary as eiσt, we have ∂/∂t→ iσ. Therefore, Eq.(3.1) becomes

ρ′ + ξ · ∇ρ0 + ρ0∇ · ξ = 0. (3.57)

Using the relation between the Lagrangian and the Eulerian perturbations, we have

δρ

ρ
+∇ · ξ = 0, (3.58)

where the subscript “0”, meaning the equilibrium state, is omitted, and

ξ = (ξr, ξθ, ξφ) (3.59)

Following Eq.(3.50), we define ξh as

(ξθ, ξφ) = ξh

(
∂

∂θ
,

1

sin θ

∂

∂φ

)
Y m
l , (3.60)

and the spherical harmonic function Y m
l (θ, φ) satisfies

[r2∇2
⊥ + l(l + 1)]Y m

l = 0. (3.61)

Then, Eq.(3.58) becomes

d

d ln r

ξr
r

= −3
ξr
r
+ l(l + 1)

ξh
r
− δρ

ρ
(3.62)
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Equation of motion

Similarly, Eq.(3.15) becomes

−σ2ξ +
1

ρ
∇p′ +∇Φ′ +

ρ′

ρ
∇Φ = 0, (3.63)

where the term of Reynold’s stress is neglected as well as the discussion in §3.4.1, since it is
important in the low temperature side on the HR diagram, where is beyond the range of this
study. Separate into the radial and horizontal component:

−σ2ξr +
1

ρ

dp′

dr
+
dΦ′

dr
+
ρ′

ρ

dΦ

dr
= 0 (3.64)

and

−σ2ξ⊥ +∇⊥

(
p′

ρ
+ Φ′

)
= 0, (3.65)

where

ξ⊥ = (0, ξθ, ξφ), ∇⊥ =
1

r

(
0,
∂

∂θ
,

1

sin θ

∂

∂φ

)
. (3.66)

By using ξh and canceling the terms depending on θ and φ, Eq.(3.65) can be written as

ξh =
1

σ2r

(
p′

ρ
+ Φ′

)
. (3.67)

Equation of energy conservation

Next, we will linearize the equation of energy conservation. Taking Lagrangian perturbation
of Eq.(3.19), we have

−iσρTδS = ρε

(
δρ

ρ
+
δε

ε

)
− δ [∇ · (FR + FC)] , (3.68)

where the term ρε2 +∆u · ∇pth is neglected. Dupret et al. (2005) showed that excita-
tion/dumping by this term compensates with that by the turbulent pressure. But we have
neglected the Reynold’s stress term, including the turbulent pressure, in the equation of mo-
tion, and it might be preferable to neglect also this term in terms of the excitation/dumping.
Defining F ≡ FR + FC , the last term becomes

δ(∇ · F) = ∇ · F′ + ξ · ∇(∇ · F) (3.69)

= ∇ · F′ + ξ · ∇
(
1

r2
d

dr
(r2Fr)

)
(3.70)

= ∇ · F′ + ξr
d

dr

(
1

r2
d

dr
(r2Fr)

)
(3.71)

=
1

r2
d

dr
(r2F ′

r) +∇ · F′
h + ξr

d

dr

(
1

r2
d

dr
(r2Fr)

)
(3.72)
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Transforming the first term by use of δLr = 4πr2
(
δFr + 2 ξr

r
Fr

)
, we have

1

r2
d

dr
(r2F ′

r) =
1

r2
d

dr

(
δLr

4π
− ξr

d

dr
(r2Fr)

)
(3.73)

= ρ
dδLr

dMr

− d

dr

[
ξr
d

dr
(r2Fr)

]
(3.74)

The summation of the second term of Eq.(3.74) and the third term of Eq.(3.72) becomes

− d

dr

[
ξr
d

dr
(r2Fr)

]
+ ξr

d

dr

[
1

r2
d

dr
(r2Fr)

]

= − 1

r2
dξr
dr

d

dr
(r2Fr)−

ξr
r

d2

dr2
(r2Fr)− 2

ξr
r

ξr
r3

d

dr
(r2Fr) (3.75)

= − 1

r2
d

dr
(r2Fr)

(
2
ξr
r
+
dξr
dr

)
(3.76)

= −ρε
[
l(l + 1)

ξh
r
− δρ

ρ

]
, (3.77)

where we have used the linearized equation of continuity Eq.(3.58) and the horizontal compo-
nent of the equation of motion Eq.(3.67). The second term of Eq.(3.72) can be decomposed
into the radiative and the convective components as ∇ · F′

h = ∇ · (F′
R,h + F′

C,h):

∇ · F′
R,h = − FR

dT/dr

l(l + 1)

r2
T ′ = − LR

4πr3
l(l + 1)

[
δT

r(dT/dr)
− ξr
r

]
, (3.78)

∇ · F′
C,h = ∇h · F′

C = ∇h · δFC − ξ · ∇hFC (3.79)

=
1

r sin θ

∂

∂θ

(
sin θδFC,h

∂Y m
l

∂θ

)
+

1

r sin θ

∂

∂φ

(
δFC,h

∂Y m
l

∂φ

)

−
[

1

r sin θ

∂

∂θ

(
sin θ

ξhFC

r

∂Y m
l

∂θ

)
+

1

r sin θ

∂

∂φ

(
ξhFC

r

1

sin θ

∂Y m
l

∂φ

)]
(3.80)

= − l(l + 1)

r

(
δFC,h − FC

ξh
r

)
Y m
l (3.81)

Between the first and the second terms of Eq.(3.78), we have used Eq.(3.5). Taking the
divergence and the Eulerian perturbation to the horizontal component of Eq.(3.5), we have

∇h · F′
R,h = ∇h · (−K∇hT

′) = −K∇h · ∇hT
′ = K

l(l + 1)

r2
T ′ = − FR

dT/dr

l(l + 1)

r2
T ′(3.82)

By use of Eqs.(3.74), (3.77) and (3.78), Eq.(3.72) becomes

δ(∇ · F) = ρ
dδLr

dMr

− ρε

[
l(l + 1)

ξh
r
− δρ

ρ0

]

− LR

4πr3
l(l + 1)

[
δT

r(dT/dr)
− ξr
r

]
+
l(l + 1)

r

(
δFC,h − FC

ξh
r

)
(3.83)
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Substituting it into Eq.(3.68), we obtain

iωcpT
δS

cp
= −d(δLR + δLC)

dMr

+

(
δε

ε
+ l(l + 1)

ξh
r

)
ε

+
l(l + 1)

4πr3ρ

[
LR

(
δT

r(dT/dr)
− ξr
r

)
− LC

ξh
r

]
+
l(l + 1)

ρr
δFC,h (3.84)

→ Lr

4πr3ρ

d

d ln r

(
δLr

Lr

)
+ ε

δLr

Lr

=

(
δε

ε
+ l(l + 1)

ξh
r

)
ε− iωcpT

δS

cp

+
l(l + 1)

4πr3ρ

[
LR

(
δT

r(dT/dr)
− ξr
r

)
− LC

ξh
r

]
+
l(l + 1)

ρr
δFC,h (3.85)

→ d

d ln r

(
δLr

Lr

)
=

4πr3ρε

Lr

(
−δLr

Lr

+
δε

ε
+ l(l + 1)

ξh
r

)

−iω̃4πr
3ρcpT

Lr

√
GM

R3

δS

cp
+ l(l + 1)

LR

Lr

(
d ln r

d lnT

δT

T
− ξr
r

)
+ l(l + 1)

LC

Lr

(
−ξh
r
+
δFC,h

FC,r

)
(3.86)

Diffusion approximation and Poisson’s equation

We have linearized the equations of continuity, motion and energy conservation for mean flow.
Besides those, we need to linearize the other two equations. The first one is the equation of
the diffusion approximation Eq.(3.5). We have already introduced the linearized form of the
horizontal component as Eq.(3.82). Here we linearize its radial component. Taking note of
Eq.(3.6) and LR = 4πr2FR,r, the linearized equation becomes

δLR

LR

= −δκ
κ

+ 4
ξr
r
− l(l + 1)

ξh
r
+ 4

δT

T
+
d
(
δT
T

)
/d ln r

d lnT/d ln r
. (3.87)

The second one is Poisson’s equation, of which the linearized form is

1

r2
d

dr

(
r2
dΦ′

dr

)
− l(l + 1)

r2
Φ′ = 4πGρ′, (3.88)

where Eq.(3.61) is used for the second term. Thus, we have obtained the equations for
pulsations of mean flow, Eqs.(3.62), (3.64), (3.86), (3.87) and (3.88).

3.6 Equations for pulsations of convective fluctuation

(TDC theory)

In the previous section, we have linearized the hydrodynamical equations for mean flow, and
have obtained the equations for its pulsations. In this section, we introduce the time-dependent
convection (TDC) theory by deriving the equations for pulsations of convective fluctuation,
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which describes how the excesses of physical variables in convective clumps over those in
the surroundings are perturbed by pulsations. Like the previous section, we will linearize
the hydrodynamical equations for convective fluctuation, Eqs.(3.14), (3.18), (3.31) following
Grigahcène et al. (2005).

We can find that these equations include spatial derivatives of variables for convective
fluctuation. Such variables vary in the spatial scales of convective eddies, which is much
smaller than the pulsational wavelengths or the scale of variation of the surrounding structure.
We define k as the wavenumber of convective eddies, and describe a variable for convective
fluctuation as

∆f = ∆fa(r)e
ik·reiσt, (3.89)

where eik·r expresses the spatial dependence due to the distribution of convective eddies, and
that due to the pulsation and the surrounding structure is included by the term ∆fa(r). We
introduce the parameter A relating to the relation between the components of k,

k2θ + k2φ = Ak2r , (3.90)

where A = 1/2 corresponds to isotropic turbulence. Then, the equation of continuity for
convective fluctuation, Eq.(3.14), becomes

k ·∆u = 0 (3.91)

Then, taking the Lagrangian perturbation of this equation, besides, Eqs.(3.18) and (3.31), we
have

(3.91) → k · δ∆u = 0, (3.92)

(3.18) → iσρδ∆u = δ

(
∆ρ

ρ

)
∇p+ ∆ρ

ρ
δ(∇p)− δ(∇∆p)

−ρ∆u · δ∇u− Λρ∆u

τC

(
δρ

ρ
− δτC

τC

)
− Λρδ∆u

τC
(3.93)

(3.31) →
(
∆ρ

ρ
+

∆T

T

)
iσδS + iσδ∆S + δ∆u · ∇S +∆u · δ(∇S)

= −ωRδ∆S − δωR∆S − δ
(
∆S

τC

)
. (3.94)

Below we use the following notations:

B =
iστC + Λ1

Λ1

, C =
ωRτC + 1

iστC + ωRτC + 1
, D =

1

iστC + ωRτC + 1
. (3.95)

Isolating (δ∆S/∆S) in Eq.(3.94), we then have

δ∆S

∆S
= D

{
−iστC

vT + 1

vT

δS

cp

+(ωRτC + 1)

[
δ∆ur
∆ur

+
∆u · ∇(δS)

∆ur(dS/dr)
− ∆u · ∇ξr

∆ur

]
+

(
δτC
τC

− ωRτC
δωR

ωR

)}
(3.96)
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Multiplying by ∆uj/∆ur and taking the average gives

δ∆S∆uj
∆S∆ur

= D
∆ur∆uj
(∆ur)2

[
−iστC

vT + 1

vT

δS

cp
+
δτC
τC

− ωRτC
δωR

ωR

]

+C

[(
∇kδS

dS/dr
−∇kξr

)
∆uj∆uk
(∆ur)2

+
δ∆ujδ∆ur
(∆ur)2

]
(3.97)

On the other hand, taking the divergence of Eq.(3.93) makes the determination of δ∆p
possible. Substituting the values obtained in Eq.(3.93) gives, for a given k,

B
δ∆uj
∆ur

=
A+ 1

A

δ∆ρ
ρ

∆ρ
ρ

Kjr +
A+ 1

A

[
dr

dp
∇iδp−∇iξr

]
Kji

− iστC
Λ

∆ui
∆ur

∇iξlKlj −
(
δρ

ρ
− δτC

τC

)
∆uj
∆ur

(3.98)

where

Kji = δji −
kjki
k2

and Kjr =
A

A+ 1

∆uj
∆ur

(3.99)

Since we can assume the pressure equilibrium between convective clumps and their surround-
ings, we have

∆ρ

ρ
=

1

vT

∆S

cp
(3.100)

Taking the Lagrangian perturbation to this gives

δ

(
∆ρ

ρ

)
=

∆ρ

ρ

(
δ∆S

∆S
− δvT

vT
− δcp

cp

)
(3.101)

From this, Eqs.(3.96) and (3.98), we find

B
δ∆uj
∆ur

=
∆uj
∆ur

{
−δvT
vT

− δcp
cp

− δρ

ρ
+
δτC
τC

+D

[
−iστC

vT + 1

vT

δS

cp
+
δτC
τC

− ωRτC
δωR

ωR

+(ωRτC + 1)

(
δ∆ur
∆ur

+
∆uk
∆ur

(
∇kδS

dS/dr
−∇kξr

))]}

+
A+ 1

A

[
dr

dp
∇iδp−∇iξr

]
Kji −

iστC
Λ

∆ui
∆ur

∇iξlKlj (3.102)

where the values of δτC/τC and δωR/ωR are obtained by

δτC
τC

=
δΛ

Λ
− δ∆ur

∆ur
, (3.103)

δωR

ωR

= 3
δT

T
− δcp

cp
− δκ

κ
− 2

δρ

ρ
− 2

δΛ

Λ
, (3.104)
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which can be derived from the definition of τC ≡ Λ/∆ur and Eq.(3.30). It seems normal to
assume that the perturbation of the mixing length Λ is evaluated as

δΛ

Λ
=
δHp

Hp

=
δp

p
− dδp

dp
+
dξr
dr
, (3.105)

which is coherent with the formula Λ = αHp. On the other hand, it can be expected that
the perturbation of the mixing length becomes negligible when the lifetime of the convective
elements is much longer than the period of pulsation. This can be reproduced, for example,
by adopting

δΛ

Λ
=

1

1 + (στC)2
δHp

Hp

. (3.106)

This study optionally adopts Eq.(3.105) when στC � 1, while Eq.(3.106) when στC � 1.
On the basis of Eq.(3.102), it is possible to determine explicitly the different perturbed

correlation terms. Integrating the particular solutions over all values of kθ and kφ while satis-
fying Eq.(3.90), and then taking horizontal averages. Considering the case j = r, Eq.(3.102)
gives an explicit form for the perturbation of radial convective velocity:

δ∆ur
∆ur

=
1

B + (iστC + 1)D

{
−δcp
cp

− δvT
vT

− δρ

ρ
+
dδp

dp
− dξr
dr

−iστCD
vT + 1

vT

δS

cp
+ C

[
dδS

dS
− dξr
dr

]
− A

A+ 1

iστc
Λ

(
dξr
dr

+
1

A

ξr
r
− l(l + 1)

2A

ξh
r

)

−ωRτCD

(
3
δT

T
− δcp

cp
− δκ

κ
− 2

δρ

ρ

)
+ (iστC + 3ωRτC + 2)D

δΛ

Λ

}
(3.107)

Multiplying Eq.(3.102) (with j = r) by ∆uθ and taking the average gives

∆uθδ∆ur
(∆ur)2

=
∂Y m

l /∂θ

B − C

{
1

2A

[(
δp

dp/d ln r
− ξr
r
+
ξh
r

)
+ C

(
δS

dS/d ln r
− ξr
r
+
ξh
r

)]

− 1

2(A+ 1)

iστC
Λ

(
dξh
dr

+
ξr
r
− ξh

r

)}
(3.108)

A similar expression can be obtained for ∆uφδ∆ur/(∆ur)2. Taking the average of Eq.(3.98)
with j = θ, on the other hand, gives

δ∆uθ
∆ur

=
∂Y l

m/∂θ

2B

[
C

A

(
δS

dS/d ln r
− ξr
r
+
ξh
r

)
+
A+ 2

A

(
δp

dp/d ln r
− ξr
r
+
ξh
r

)

−iστC/Λ
A+ 1

(
ξr
r
− ξh

r
+ (A+ 2)

dξh
dr

)]
+
C

B
∆uθδ∆ur(∆ur)

2 (3.109)

Then, let us consider the perturbations of convective flux and luminosity, which are required
for solving the equation for pulsations of mean flow. Perturbing Eq.(3.25), we have

δFC = FC

(
δρ

ρ
+
δT

T

)
+ ρT

(
δ∆S∆u+∆Sδ∆u

)
. (3.110)
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Its radial component becomes

δFC,r

FC,r

=

(
δρ

ρ
+
δT

T

)
+
δ∆S

∆S
+
δ∆ur
∆ur

, (3.111)

which can be evaluated by using Eqs.(3.96) and (3.107). When we substitute them, we get

δFC,r

FC,r

=
δρ

ρ
+
δT

T
− iστCD

vT + 1

vT

δS

cp
+ C

[
dδS

dS
− dξr
dr

]

−ωRτCD

(
3
δT

T
− δcp

cp
− δκ

κ
− 2

δρ

ρ

)

+(iστC + 2ωRτC + 1)D
δ∆ur
∆ur

+ (2ωRτC + 1)D
δΛ

Λ
(3.112)

With this, the perturbation of convective luminosity,

δLC

LC

= 2
ξr
r
+
δFC,r

FC,r

(3.113)

can be also evaluated.
On the other hand, the θ-component of Eq.(3.110),

δFC,θ

FC,r

=
δ∆S∆uθ
∆S∆ur

+
δ∆uθ
∆ur

, (3.114)

can be evaluated with Eq.(3.97) and Eq.(3.109). Taking note of Eq.(3.50), we can get the
value of δFC,h by canceling the term ∂Y l

m/∂θ. Specifically, it becomes

δFC,h

FC,r

=
C(B + 1)

2A(B − C)

δS

dS/d ln r
+

1

2AB

[
C(B + 1)

B − C
+ A+ 2

]
δp

dp/d ln r

+

[
C(B + 1)(2BA+B + 1)

2BA(A+ 1)(B − C)
+

B − 1

2B(A+ 1)
+
A+ 2

2AB

](
ξh
r
− ξr
r

)

− B − 1

2B(A+ 1)

[
C(B + 1)

B − C
+ A+ 2

]
dξh
dr

(3.115)

3.7 Nondimensional expressions for nonradial pulsa-

tions

We have obtained the equations of nonradial pulsations for mean flow,

(3.62) :
d

d ln r

ξr
r

= −3
ξr
r
+ l(l + 1)

ξh
r
− δρ

ρ
,

(3.64) : −σ2ξr +
1

ρ

dp′

dr
+
dΦ′

dr
+
ρ′

ρ

dΦ

dr
= 0,
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(3.86) :
d

d ln r

(
δLr

Lr

)
=

4πr3ρε

Lr

(
−δLr

Lr

+
δε

ε
+ l(l + 1)

ξh
r

)
− iω

4πr3ρcpT

Lr

√
GM

R3

δS

cp

+l(l + 1)
LR

Lr

(
d ln r

d lnT

δT

T
− ξr
r

)
+ l(l + 1)

LC

Lr

(
−ξh
r
+
δFC,h

FC,r

)
,

(3.87) :
δLR

LR

= −δκ
κ

+ 4
ξr
r
− l(l + 1)

ξh
r
+ 4

δT

T
+
d
(
δT
T

)
/d ln r

d lnT/d ln r
,

(3.88) :
1

r2
d

dr

(
r2
dΦ′

dr

)
− l(l + 1)

r2
Φ′ = 4πGρ′

Since the last one is the second order differential equation with respect to r while the others
the first order equations, we have gotten the sixth order differential equation system. Practi-
cally, it is convenient to express these equations with nondimensional variables for numerical
calculations. We introduce

y1 =
ξr
r
, y2 =

1

gr

(
p′

ρ
+ Φ′

)
, y3 =

Φ′

gr
, y4 =

1

g

dΦ′

dr
, y5 =

δS

cp
, y6 =

δLr

Lr

, (3.116)

and will express the above differential equations with these variables. ξh/r can be transformed
with Eq.(3.65) as

ξh
r

=
1

c1ω2

1

gr

(
p′

ρ
+ Φ′

)
=

1

c1ω2
y2, (3.117)

where ω is the nondimensional frequency defined as

ω ≡
√
GM

R3
σ, (3.118)

and

c1 ≡
(r/R)3

Mr/M
(3.119)

The other perturbed variables also can be described with yi’s by using the following thermo-
dynamical relations,

δp

p
=
p′

p
+
d ln p

d ln r

ξr
r

= V (y2 − y1 − y3), (3.120)

δT

T
= ∇ad

δp

p
+
δS

cp
= ∇adV (y2 − y1 − y3) + y5, (3.121)

δρ

ρ
=

1

Γ1

δp

p
−∇ad

ρT

p
δS = Vg(y2 − y1 − y3)− vTy5, (3.122)

ρ′

ρ
=
δρ

ρ
− d ln ρ

d ln r

ξr
r

= A∗y1 + Vg(y2 − y3)− vTy5, (3.123)

δε

ε
= εad

δp

p
+ εS

δS

cp
= εadV (y2 − y1 − y3) + εSy5, (3.124)

δκ

κ
= κad

δp

p
+ κS

δS

cp
= κadV (y2 − y1 − y3) + κSy5 (3.125)
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where

V ≡ −d ln p
d ln r

=
GMrρ

rp
, Γ1 ≡

(
∂ ln p

∂ ln ρ

)
S

, Vg ≡
V

Γ1

, A∗ ≡ −d ln ρ
d ln r

− Vg,

εad ≡
(
∂ ln ε

∂ ln p

)
S

, εS ≡ cp

(
∂ ln ε

∂S

)
p

, κad ≡
(
∂ lnκ

∂ ln p

)
S

, κS ≡ cp

(
∂ lnκ

∂S

)
p

,

(3.126)

and the relation among the thermodynamical coefficients,

vT
cp

= ∇ad
ρT

p
(3.127)

is used.
Then, the expression of the differential equations of nonradial pulsations for mean flow

becomes

dy1
d ln r

= (Vg − 3)y1 +

[
l(l + 1)

c1ω2
− Vg

]
y2 + Vgy3 + vTy5, (3.128)

dy2
d ln r

= (c1ω
2 − A∗)y1 + (A∗ − U + 1)y2 − A∗y3 + vTy5, (3.129)

dy3
d ln r

= (1− U)y3 + y4, (3.130)

dy4
d ln r

= UA∗y1 + UVgy2 + [l(l + 1)− UVg]y3 − Uy4 − UvTy5, (3.131)

1

V

dy5
d ln r

= [∇ad(U − c1ω
2)− 4(∇ad −∇) + c2]y1

+

[
l(l + 1)

c1ω2
(∇ad −∇)− c2

]
y2 + c2y3 +∇ady4

+∇(4− κS)y5 −∇ 1

fR
y6 +∇1− fR

fR

δLC

LC

(y, ω), (3.132)

dy6
d ln r

= fR

[
l(l + 1)

∇ad −∇
∇

− εadc3V
]
y1

+

[
fR

{
εadc3V − l(l + 1)

(∇ad

∇
− c3
c1ω2

)}
− (1− fR)

l(l + 1)

c1ω2

]
y2

+fR

[
l(l + 1)

∇ad

∇
− εadc3V

]
y3 + fR

[
c3εS − l(l + 1)

V∇
− iωc4

]
y5 − fRc3y6

+l(l + 1)(1− fR)
δFC,h

FC,r

(y, ω), (3.133)

with

fR ≡ LR

Lr

, U ≡ d lnMr

d ln r
=

4πr3ρ

Mr

, c2 ≡ (κad − 4∇ad)V∇+∇ad

(
d ln∇ad

d ln r
+ V

)
,

c3 ≡
4πr3ρε

LR

, c4 ≡
4πr3ρTcp

LR

√
GM

R3
. (3.134)
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The coefficient c4 is a ratio of local thermal timescale τth ≡ 4πr3ρTcp/LR to free-fall or

dynamical timescale τdyn ≡
√
R3/(GM). δLC/LC and δFC,h/FC,r are perturbations of con-

vective luminosity and of horizontal component of convective flux, respectively. They can
be described as the linear combination of yi’s and depends on ω. The evaluation of these
quantities are discussed in §3.6.

In most cases, we can adopt the “Cowling approximation”, in which the perturbation of
the gravitational potential Φ is neglected. It is known that the perturbation of Φ would be
important when pulsational amplitude is significantly large in deep interior of a star like the
cases of low degree, low order g modes of low mass main sequence stars (e.g. Boury and
Noels, 1973; Christensen-Dalsgaard et al., 1974; Shibahashi et al., 1975; Noels et al., 1976;
Saio, 1980; Sonoi and Shibahashi, 2011, 2012a,b,c, 2013a,b). In the above expression, we
may exclude the Poisson’s equation, to which Eqs.(3.130) and (3.131) correspond, and also
remove y3 and y4 appearing in the other equations. Besides, the definition of y2 should be
changed to y2 =

p′

grρ
.

Then, we have

dy1
d ln r

= (Vg − 3)y1 +

[
l(l + 1)

c1ω2
− Vg

]
y2 + vTy5, (3.135)

dy2
d ln r

= (c1ω
2 − A∗)y1 + (A∗ − U + 1)y2 + vTy5, (3.136)

1

V

dy5
d ln r

= [∇ad(U − c1ω
2)− 4(∇ad −∇) + c2]y1 +

[
l(l + 1)

c1ω2
(∇ad −∇)− c2

]
y2

+∇(4− κS)y5 −∇ 1

fR
y6 +∇1− fR

fR

δLC

LC

(y, ω), (3.137)

dy6
d ln r

= fR

[
l(l + 1)

∇ad −∇
∇

− εadc3V
]
y1

+

[
fR

{
εadc3V − l(l + 1)

(∇ad

∇
− c3
c1ω2

)}
− (1− fR)

l(l + 1)

c1ω2

]
y2

+fR

[
c3εS − l(l + 1)

V∇
− iωc4

]
y5 − fRc3y6

+l(l + 1)(1− fR)
δFC,h

FC,r

(y, ω), (3.138)

On the other hand, the equations for the adiabatic approximation can be obtained by
setting y5 = 0 and excluding y6. That means the perturbation of entropy is fixed to zero,
δS = 0, and is equivalent with the exclusion of the diffusion approximation Eq.(3.132) and
the equation of energy conservation Eq.(3.133). Then, we have

dy1
d ln r

= (Vg − 3)y1 +

[
l(l + 1)

c1ω2
− Vg

]
y2 + Vgy3, (3.139)

dy2
d ln r

= (c1ω
2 − A∗)y1 + (A∗ − U + 1)y2 − A∗y3, (3.140)
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dy3
d ln r

= (1− U)y3 + y4, (3.141)

dy4
d ln r

= UA∗y1 + UVgy2 + [l(l + 1)− UVg]y3 − Uy4, (3.142)

In addition, we can reduce by two orders with the Cowling approximation:

dy1
d ln r

= (Vg − 3)y1 +

[
l(l + 1)

c1ω2
− Vg

]
y2, (3.143)

dy2
d ln r

= (c1ω
2 − A∗)y1 + (A∗ − U + 1)y2. (3.144)

The adiabatic approximation is valid in deep interiors of stars, where the thermal timescale
is much longer than dynamical timescale or pulsational periods due to high heat capacity. In
this situation, thermal energy hardly transfers during pulsations, and then we can neglect the
variation of entropy. In the outer layers, on the other hand, the thermal timescale can be
comparable to or shorter than the pulsational periods. The adiabatic approximation is then
no longer valid, and we should take into account the perturbation of the entropy.

We have here obtained several types of differential equation systems, having a form like

d

d ln r


y1
...
yN

 =


A1,1 . . . A1,N
...

...
AN,1 . . . AN,N



y1
...
yN

 . (3.145)

In the systems, ω is the eigenvalue, and yi’s are the eigenfunctions. On the other hand, l is a
free integer parameter. Given l, we will find a number of eigenvalues with sets of eigenfunctions
in a star. One set of an eigenvalue and eigenfunctions corresponds to one eigenmode of stellar
pulsation, and the eigenvalue indicates an eigenfrequency while the eigenfunction expresses
distribution of amplitude for each physical variable.

When we practically solve the differential equations, we have to impose the boundary
conditions. In the case of the 6th order system having one eigenvalue, Eqs.(3.128)-(3.133),
we have to set 6+1 boundary conditions. The details of the derivation and the explanation
of the boundary conditions is discussed in §C. Here we just see the equations required for
calculations. The first one is the normalization of the eigenfunction. In this study, it is set at
the outer boundary, i.e., the surface of a star, as

y1 = 1. (3.146)

Then three conditions are set at each of the inner boundary, i.e., the center of the star, and
the outer boundary. The inner boundary conditions are

c1ω
2y1 − ly2 = 0, (3.147)

ly3 − y4 = 0, (3.148)

y5 = 0, (3.149)
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while the outer boundary conditions are

β− − b11
b12

y1 − y2 −
[
α1(β− − b11)

b12
− α2

]
y3 = 0, (3.150)

(l + 1)y3 + y4 = 0, (3.151)

(2−∇adV )y1 + 4∇adV (y2 − y3) + 4y5 − y6 = 0. (3.152)

Eqs.(3.147) and (3.150) are called “mechanical conditions”, Eqs.(3.148) and (3.151) “po-
tential conditions”, and Eqs.(3.149) and (3.152) “thermal conditions”. When we adopt the
Cowling or adiabatic approximation, the order of the differential equations reduces and we have
to exclude some of the boundary conditions. If adopting the Cowling approximation, we should
exclude the potential conditions both at the inner and the outer boundaries, Eqs.(3.148) and
(3.151). On the other hand, if adopting the adiabatic approximation, we should exclude the
thermal conditions, Eqs.(3.149) and (3.152). As a matter of fact, (3.150) is available when
waves are evanescent at the stellar surface. When waves are propagative there, we should
adopt the running wave conditions Eq.(C.28) or Eq.(C.31). The detail is discussed in §C.

Note that the systems derived here do not depend on the azimuthal order m. In fact, the
solutions with differentm’s are degenerated without rotation and magnetic field. It means that
they have the identical eigenfrequency ω and eigenfunctions yi(r)’s. But the 3-dimensional
distribution of amplitude depends on m due to the difference in Y m

l (θ, φ).

3.8 Equations for radial pulsations

How are the equations for radial pulsations? As mentioned in the beginning of §3.5, l indicates
the number of nodal lines on the spherical surface. Thus, the case of l = 0 corresponds to
radial pulsations. In this situation, the equations for pulsations become simpler as

(3.62) → d

d ln r

ξr
r

= −3
ξr
r
− δρ

ρ
, (3.153)

(3.64) → −σ2ξr +
1

ρ

dp′

dr
+
dΦ′

dr
+
ρ′

ρ

dΦ

dr
= 0, (3.154)

(3.86) → d

d ln r

(
δLr

Lr

)
=

4πr3ρε

Lr

(
−δLr

Lr

+
δε

ε0

)
− iω

4πr3ρcpT

Lr

√
GM

R3

δS

cp
,

(3.155)

(3.87) → δLR

LR

= −δκ
κ

+ 4
ξr
r
+ 4

δT

T
+
d
(
δT
T

)
/d ln r

d lnT/d ln r
, (3.156)

(3.88) → 1

r2
d

dr

(
r2
dΦ′

dr

)
= 4πGρ′. (3.157)

The last equation (3.157) can be written by using the first equation Eq.(3.153) as

d

dr

(
r2
dΦ′

dr

)
+ 4πG

[
ρ
d

dr
(r2ξr) + r2ξr

dρ

dr

]
= 0 (3.158)
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Integrating this equation under the condition that dΦ′/dr is non-singular at r = 0, we obtain

dΦ′

dr
+ 4πGρξr = 0 (3.159)

With this, we can eliminate dΦ′/dr in Eq.(3.154):

1

ρ

dp′

dr
= (σ2 + 4πGρ)ξr −

GMr

r2
ρ′

ρ
(3.160)

In the case of radial pulsations, thus, we have the 4th order differential equation system of
Eqs.(3.153), (3.160), (3.155) and (3.156). Introducing the nondimensional variables,

Y1 =
ξr
r
, Y2 =

δp

p
, Y3 =

δT

T
, Y4 =

δLr

Lr

, (3.161)

we obtain the nondimensional expression,

dY1
d ln r

= −3Y1 −
1

χρ

Y2 + vTY3, (3.162)

1

V

dY2
d ln r

= (c1ω
2 + 4)Y1 + Y2, (3.163)

1

V∇
dY3
d ln r

= 4Y1 + (∇adκS − κad)Y2 + (4− κS)Y3 +
1− fR
fR

δLC

LC

(Y, ω), (3.164)

1

fR

dY4
d ln r

= [c3(εad −∇adεS) + iωc4∇ad]Y2 + [c3εS − iωc4]Y3 − c3Y4. (3.165)

We should set 4+1 boundary conditions in total at the inner and the outer boundaries for
the above system. We can adopt the normalization Eqs.(3.146) again as one of them:

Y1 = 1. (3.166)

And then we set two conditions at each of the inner and the outer boundaries. For non-
singularity of the eigenfunctions, we should impose

d

d ln r

(
ξr
r

)
= 0, at r = 0. (3.167)

d

d ln r

(
δLr

Lr

)
= 0 at r = 0, (3.168)

d

d ln r

(
δp

p

)
= 0 at r = R. (3.169)

Besides, we should put another condition at the outer boundary, and set the guarantee of
outward propagation of the energy flux at the surface

δLr

Lr

= 2
ξr
r
+ 4

δT

T
, (3.170)
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which is equivalent with Eq.(3.152). For the nonadiabatic case, Eqs.(3.162)-(3.165), then, we
have the inner boundary conditions,

−3Y1 − 1
χρ
Y2 + vTY3 = 0,

[c3(εad −∇adεS) + iωc4∇ad]Y2 + [c3εS − iωc4]Y3 − c3Y4 = 0
at r = 0, (3.171)

and the outer boundary conditions,

(c1ω
2 + 4)Y1 + Y2 = 0,

2Y1 + 4Y3 − Y4 = 0
at r = R. (3.172)

For the adiabatic approximation, we exclude the equations for diffusion approximation and
energy conservation, Eqs.(3.164) and (3.165), respectively, and impose the adiabatic condition,
δS = 0, or

∇adY2 = Y3, (3.173)

we obtain

dY1
d ln r

= −3Y1 −
1

Γ1

Y2, (3.174)

1

V

dY2
d ln r

= (c1ω
2 + 4)Y1 + Y2. (3.175)

We can use Eq.(3.167) and (3.169) as the inner and the outer boundary conditions, respec-
tively. They can be described as

−3Y1 −
1

Γ1

Y2 = 0 at r = 0, (3.176)

(c1ω
2 + 4)Y1 + Y2 = 0 at r = R. (3.177)

3.9 Numerical examples

Here we see the examples of calculations for radial and nonradial pulsations. Eigen solutions
of the differential equation systems introduced above correspond to eigenmodes of pulsations,
which are standing waves propagating in interiors of stars. One star has infinite number of
eigenmodes.

Fig.3.4 shows a few examples of eigen modes for radial pulsations. The mode labeled as
“F” is the fundamental mode, which has the lowest eigenfrequency. The curve of ξr/r never
intersects the zero line, which means the matter in the whole star moves in the same direction
during pulsations of this mode. The mode labeled as “1O” is the first overtone, which has
the higher frequency than the fundamental mode and has one cross point of the zero line
and the curve of ξr/r. The cross point is called as “node”. The movement of the matter is
opposite inside and outside of the node. As we go to “2O” (second overtone) and “3O” (third
overtone), the number of nodes increases one by one, and the frequency becomes higher.
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Figure 3.4: Profiles of the displacements ξr/r for the radial modes, the fundamental mode
(F), the 1st overtone (1O), the 2nd overtone and the 3rd overtone (3O), in a model
of a ZAMS star of 10M� with X = 0.70, Z = 0.02, calculated with the differential
equation system for the adiabatic approximation, Eqs.(3.174) and (3.175). The values of
the displacements are normalized as ξr/r = 1 at the stellar surface. The middle panel is
the enlarged figure of the left panel so as to make sure the nodes. The table shown in
the rightmost lists the frequencies for the radial modes shown in the left two panels. The

values are normalized by multiplying by the dynamical timescale
√
R3/(GM).
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Figure 3.5: Profiles of the displacements ξr/r for the nonradial modes with l = 3, f and p
modes (Left) and g modes (Middle) in the same stellar model as Fig.3.4, calculated with
the differential equation system for the adiabatic Cowling approximation, Eqs.(3.143) and
(3.144). The values of the displacements are normalized as ξr/r = 1 at the stellar surface.
The table shown in the rightmost lists the frequencies for the nonradial modes shown in
the left two panels. The values are normalized by multiplying by the dynamical timescale√
R3/(GM).

Fig.3.5 shows examples of nonradial modes with l = 3, which means there are three nodal
lines on the spherical surface. There are three types of nonradial modes, p, f and g modes.
p and radial modes are eigenmodes of acoustic waves, f modes are of surface gravity waves,
and g modes are of internal gravity waves.

The leftmost panel shows the displacement of p and f modes. The profile is quite similar
to that of radial modes, and the pulsational amplitude is concentrated to the surface layer.
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Figure 3.6: Profiles of the displacements ξr on a meridional plane for the radial 1O mode
(Left), and the nonradial p1 mode (l = 3, m = 0; Right), shown in Figs.3.4 and 3.5,
respectively. The top and bottom of the disc correspond to the polars of the stars.

But we find a difference when considering the horizontal directions.1 Fig.3.6 shows the profile
of ξr on a meridional plane. The top and the bottom of the discs correspond to polar regions
of the stars. From this figure, we can find that a nonradial mode has dependence on the
horizontal directions in the right panel, while a radial mode has no dependence as shown in
the left panel. The right panel is for a mode with l = 3 and m = 0. In fact, a mode with l = 3
has seven azimuthal orders m = 0,±1,±2,±3. m corresponds to the number of longitudinal
nodal lines. The sign indicates the way of propagation in the φ direction. According to the
definition of the spherical harmonics, Eq.(3.49), the positive value of m means that waves
propagate in the negative direction of the φ coordinate. Here we have m = 0, and all the
nodal lines at spherical surface are like latitudinal lines.

While the f mode has no node, the p modes has some nodes, and the subscript indicates
the number of the nodes along the radial direction.2 Like the radial modes, the frequency
becomes higher as the number of nodes increases.

The middle panel of Fig.3.5, on the other hand, shows the profile of g modes, which have
substantial amplitude in deep interior unlike the radial, the p and the f modes. Besides, the
frequency becomes lower as the number of nodes increases.

3.10 Local analyses

Here we carry out local analyses, in which we simplify the differential equations for pulsations
to understand their physics.

1Directions on the θ − φ plane.
2p1, p2 and p3 modes have one, two and three nodes, respectively, along the radial direction.
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3.10.1 Radial pulsations

First, we proceed a local analysis for radial pulsation following Saio et al. (1998). Combining
the differential equations for radial adiabatic pulsations, Eq.(3.174) and (3.175) gives

d2Y
dr2

+ LY = 0 (3.178)

with

L =
σ2ρ

Γ1p
+

1

Γ1pr

d

dr
[(3Γ1 − 4)p]− 1

2
√
Γ1pr4

d

dr

[
1√

Γ1pr4
d

dr
(Γ1pr

4)

]
(3.179)

where Y ≡
√
Γ1pr4ξr/r. We assume the solution to be locally of the form Y ∝ exp[ik(r)r].

Then, Eq.(3.178) becomes −k2Y + LY = 0. We can immediately find that

• when L < 0, we have k2 < 0 and Y exponentially and monotonously increases or
decreases along r, which means the wave is evanescent.

• when L > 0, we have k2 > 0 and Y becomes sinusoidal, which means the wave is
propagative.

When L = 0, we can derive

σc '
1

2Hp

, (3.180)

if the spatial variation of Γ1 is small. We have defined σ for which L = 0 as σc(r). From
this, we can find that the waves are propagative when σ > σc, while evanescent when σ < σc.
It means that σc(r) is the locally lowest frequency or the critical frequency for propagative
waves.

Fig.3.7 is a propagation diagram showing a profile of the critical frequency, and meaning
the waves are propagative over the curve. As discussed above, the local analysis includes some
simplifications, and is indeed rough estimation. Despite the poorness, this analysis suggests
that the nodes should appears in the propagative zone, and Fig.3.7 shows that 2O fairly fits
into the result of this analysis.

3.10.2 Nonradial pulsations

Next, we proceed into the local analysis of nonradial pulsations. For the analysis, we adopt
the differential equation system with the adiabatic Cowling approximation, Eqs.(3.143) and
(3.144), and assume that y1 and y2 vary much more rapidly in space than the other physical
variables appearing in these equations do so that those variables can be considered constant
over some limited range of the radial direction. To quantify this, we propose that, like §3.10.1,
both y1 and y2 vary spatially as exp(ikrr), where the wave number kr is very large compared
to r. Substituting this exponential into Eqs.(3.143) and (3.144), we obtain[

Vg − 3− ikrr
l(l+1)
c1ω2 − Vg

c1ω
2 − A∗ A∗ − U + 1− ikrr

] [
y1
y2

]
= 0. (3.181)
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To get nontrivial solutions, the determinant of the coefficient matrix in Eq.(3.181) must be
zero. Since the absolute value of ikrr is much larger than the other terms, we have the
dispersion relation as

k2r =
1

c2sσ
2
(σ2 − S2

l )(σ
2 −N2) (3.182)

where cs(≡
√
Γ1P/ρ) denotes the acoustic velocity. Sl is “Lamb frequency”, defined as

S2
l ≡ l(l + 1)

r2
c2s = k2hc

2
s, (3.183)

where k2h(≡ l(l + 1)/r2) is the squared horizontal wave number. The integer l, which is
the degree of the spherical harmonics, represents the number of nodal lines on the spherical
surface. l(l + 1) instead of l2 is due to the spherical effect. On the other hand, we have

N2 ≡ gr−1A∗, (3.184)

which is called “Brunt-Väisälä frequency”. From Eq.(3.182), we can say that

• If σ2 < N2, S2
l or σ2 > N2, S2

l , kr becomes a real number and exp(ikrr) reduces to
sines. Hence, the solutions implies propagating waves.
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• If N2 < σ2 < S2
l or S2

l < σ2 < N2, kr becomes a purely imaginary number. Hence,
the solutions show exponential, or evanescent behavior along r.

Thus N2 and S2
l are critical frequencies for the wave propagation of nonradial pulsations.

Let us think some cases of wave propagation. We define the total wave number K(≡
k2r + k2h). First, if σ

2 � N2, S2
l , we obtain

σ2 ≈ K2c2s (3.185)

from Eq.(3.182). This implies propagation of acoustic waves because only the acoustic velocity
enters. Eigenmodes in this frequency range corresponds to pmodes, where pmeans “pressure”,
because a restoring force of acoustic waves is difference of pressure among gases.

Secondly, if σ2 � N2, S2
l , we obtain

σ2 ≈ k2h
K2

N2. (3.186)

This implies propagation of internal gravity waves because of the appearance of the Brunt-
Väisälä frequency N , with which the vertically displaced clump oscillates due to the buoyancy.
Eigenmodes in this frequency range correspond to g modes, where g means “gravity”. Let
us discuss the Brunt-Väisälä frequency for more detail. The equation of motion about a
convective clump which oscillates due to the buoyancy is

d2∆r

dt2
= −g∆ρ

ρ
= −N2∆r (3.187)

where ∆r denotes the displacement of the clump, ∆ρ density difference between the clump
and its surroundings. The Brunt-Väisälä frequency N is given as frequency of the simple
harmonic motion. The expression of ∆ρ/ρ is given by

∆ρ(r +∆r)

ρ
≡ ρ∗(r +∆r)− ρ(r +∆r)

ρ

=

[(
∂ ln ρ

∂ ln p

)
S

d ln p

dr
− d ln ρ

dr

]
∆r. (3.188)

Therefore, the Brunt-Väisälä frequency is expressed as

N2 = −g
r

(
d ln ρ

d ln r
− 1

Γ1

d ln p

d ln r

)
, (3.189)

which is equivalent with the definition of A∗ in Eq.(3.126). The negative N2 implies con-
vectively unstable, while the positive one convectively stable. According to Eq.(3.186), when
N2 < 0, σ becomes purely imaginary, and the perturbation either grows or decays exponentially
in time. That is, internal gravity waves cannot propagate in convection zones.

The expression of the Brunt-Väisälä frequency with temperature gradient is given by

N2 =
gV

r

[
4− 3β

β
(∇ad −∇) +∇µ

]
. (3.190)
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Fig.3.8 shows a propagation diagram for nonradial l = 3 modes introduced in Fig.3.5. In
the nonradial case, a star has two types of propagation zones. The one appearing in the upper
part, corresponding to σ2 > N2, S2

l=3, is the propagation zone for acoustic waves, where
nodes of p modes show up, while another in the lower part, corresponding to σ2 < N2, S2

l=3 is
for internal gravity waves, where nodes of g modes do. The acoustic waves propagate from the
surface layer to the deep interior, but are reflected at the level where wave’s frequency becomes
equal to the Lamb frequency. On the other hand, the gravity waves are propagating inside the
limit of the Lamb frequency, and reach to the top of the convective core, at r/R ' 0.22. In
convection zones, we have N2 < 0 and the gravity waves cannot be propagating.

3.11 Excitation mechanisms

In the previous section, we have seen that a star has a number of eigenmodes. In practice,
however, all eigenmodes do not grow up to have substantial amplitude. Some eigenmodes
would be excited by some excitation mechanisms, and grow up during pulsations, while the
others would be damped. In this section, we discuss the excitation mechanisms for pulsations.
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3.11.1 Work integral

We start with the first law of thermodynamics,

TdS = dU + pd

(
1

ρ

)
, (3.191)

where U denotes the internal energy. The LHS means thermal energy which the noted matter
receive from its surroundings, and the second term in the RHS work done by the noted matter
against its surroundings. For a complete cycle, Eq.(3.191) becomes

∮
TdS =

∮
dU +

∮
pd

(
1

ρ

)
. (3.192)

If pulsating matter truly returns to its initial thermodynamic state over one cycle, we have∮
dU = 0 since U is a state variable. Then we obtain∮

TdS =
∮
pd

(
1

ρ

)
. (3.193)

This means that received thermal energy is converted to mechanical energy by heat engine
mechanism. That is, the LHS and the RHS of Eq.(3.193) expresses variations of the thermal
energy and the mechanical energy in one cycle, respectively. Particularly, the latter can be
regarded as the increment of pulsational energy eK .

Let us decompose the variables appearing in the RHS into the space and the time depending
terms: ∮

deK =
∮
pd

(
1

ρ

)
=
∮
<[δp(r, t)]<[dδρ−1(r, t)]

=
1

ρ2

∮
|δp(r)| cos[σRt+ φT (r)]σR|δρ(r)| sin[σRt+ φρ(r)]dt

=
σR
2ρ2

|δp||δρ|
∮
{sin[2σRt+ φp + φρ] + sin[φρ − φp]}dt

=
π

ρ2
|δp| |δρ| sin[φρ − φp], (3.194)

where φp and φρ are the initial phases of δp and δρ, respectively. As we can see, the work is
proportional to the amplitudes, |δp| and |δρ|, and to the sine of the phase lag between δp and
δρ. While the former values are absolute values, the latter can be either positive or negative,
and determine the sign of the work.

Fig.3.9 is a p − 1/ρ plane showing behaviors of pressure and density during one cycle.
The red path is for no phase lag between pressure and density, which corresponds to adiabatic
process. In this situation, any work is never done. On the other hand, the green and the blue
paths, having phase lags, correspond to nonadiabatic processes, and some work is done. The
area of the gray-colored zone indicates amount of work done during the cycle. When the values
of p and 1/ρ changes as orbiting counterclockwise along the path, the work becomes positive,
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Figure 3.9: p − 1/ρ plane showing behaviors of pressure and density during one cycle.
The red, the green and the blue lines are paths for the cases of different phase lags
φρ −φp. Particularly, the red line is for no phase lag between pressure and density, which
corresponds to adiabatic process. The area of the gray-colored zone indicates amount of
work done during the cycle in the case of the green line.

and vice versa. In other words, positive work is done when the density’s phase precede the
pressure’s. Since the amount of work is proportional to sin[φρ − φp], it becomes largest when
|φρ − φp| = 90◦, to which the blue path corresponds, if the amplitudes, |δp| and |δρ−1| are
fixed.

Next let us transform the LHS of Eq.(3.193). Taking the same procedure as Eq.(3.194)
gives ∮

deK =
∮
TdS =

∮
<[δT (r, t)]<[dδS(r, t)]

= −π|δT (r)||δS(r)| sin(φS − φT ) = −π=[δT ∗(r)δS(r)], (3.195)

where φT and φS denotes the initial phases of δT and δS, respectively. Assuming eK and
EK(r) to be the pulsational energy per unit mass and that inside of the radius r respectively,
the increment of EK(r) per one cycle is given by

W (r) ≡
∮
dEK =

∫ r

0

∫ π

0

∫ 2π

0

∮
deK(r)ρr

2 sin θdφdθdr

= −4π2
∫ r

0

∫ π

0

∫ 2π

0
=[δT ∗(r)Y m

l (θ, φ)∗δS(r)Y m
l (θ, φ)]ρr2 sin θdφdθdr
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= −4π2
∫ r

0
=[δT ∗(r)δS(r)]ρr2dr

= −π
∫ Mr

0
=[δT ∗(Mr)δS(Mr)]dMr (3.196)

Since the pulsational energy is proportional to the square of the amplitude, we have the relation
dEK(R)/EK(R) = exp(−2σIt)dt and then

W (R)

EK(R)
=
∮
exp(−2σIt)dt = −4π

σI
σR
. (3.197)

W is called “work integral”, which is useful to understand excitation mechanisms for pulsations.
The excitation occurs in regions where dW/dMr > 0, while the damping dW/dMr < 0.
Though the linear nonadiabatic analysis, solving the system Eq.(3.128)-(3.133), Eq.(3.135)–
(3.138) or Eq.(3.162)–(3.165), can evaluate σR and σI as eigenvalues by itself, the work
integral can evaluate the ratio of σI to σR if EK(R) is given. EK can be evaluated as

EK(r) =
∫ r

0

∫ π

0

∫ 2π

0
2× 1

2
〈v2〉(r)ρr2 sin θdφdθdr

=
σ2
R

2

∫ r

0

∫ π

0

∫ 2π

0
ξ∗ · ξρr2 sin θdφdθdr

=
σ2
R

2

∫ r

0
ρr2dr

[
ξ∗rξr

∫ ∫
Y m
l (θ, φ)∗Y m

l (θ, φ) sin θdθdφ

+ξ∗hξh

∫ ∫ (
∂Y m∗

l

∂θ

∂Y m
l

∂θ
+

1

sin2 θ

∂Y m∗
l

∂φ

∂Y m
l

∂φ

)
sin θdθdφ

]

=
σ2
R

2

∫ Mr

0
[ξ∗rξr + l(l + 1)ξ∗hξh]dMr. (3.198)

where 〈. . .〉 means the time average.
By using Eq.(3.68), let us decompose W into WN and WF , which are related to the

perturbations of the nuclear energy generation rate, and the flux gradient, respectively:

W =WN +WF (3.199)

with

WN =
π

σR

∫ Mr

0
<
[
δT ∗

T
δε

]
dMr, (3.200)

WF =
π

σR

∫ Mr

0
<
[
δT ∗

T
δ

(
−1

ρ
∇ · F

)]
dMr. (3.201)

where σ is extracted from the parenthesis and converted into σR since σI/σR � 1. More-
over, decomposing WF into WF,h and WF,r, which are related to the horizontal and radial
components of the perturbation of the flux gradient, we have

WF =WF,h +WF,r (3.202)
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with

WF,h =
π

σR

∫ Mr

0
<
[
δT ∗

T

(
−1

ρ
∇ · F′

h

)]
dMr, (3.203)

WF,r =
π

σR

∫ Mr

0
<
[
δT ∗

T

(
−dδLr

dMr

+ l(l + 1)
ξh
r

dLr

dMr

)]
dMr. (3.204)

3.11.2 ε-mechanism

The ε-mechanism is an excitation mechanism in which pulsations grow with nuclear energy.
The nuclear energy generation rate increases at shrinking phase in pulsations due to increase
in temperature. This makes expansion in the pulsations stronger and the nuclear energy
generation more largely drops in the expansion phase. This cyclical behavior makes a star act
as a heat engine and the pulsation amplitude will grow.

So far there is no bona fide pulsator excited by the ε-mechanism. But recently a few
candidates have been found in observed stars. Shibahashi and Osaki (1976) originally suggested
possiblity of excitation of g modes due to the ε-mechanism at the H-burning shell in post-
main sequence massive stars. Recently, Moravveji et al. (2012) proposed that excitation of a g
mode shown in a B supergiant, Rigel could be explained by this mechanism. Theoretical works
have suggested that pre-white dwarfs also have a possibility to exhibit pulsations excited by
the ε-mechanism at the He-burning shell (Kawaler et al., 1986; Saio, 1996; Gautschy, 1997).
Recently, an observed pre-white dwarf VV47 was found to exhibit unusually short pulsation
periods (∼ 130 − 300 s). González Pérez et al. (2006) and Córsico et al. (2009) speculated
that such pulsations could be excited by the ε-mechanism. On the other hand, Maeda (2014)
found the excitation at the H-burning shell in models with relatively thick H envelopes.

In theory, the ε-mechanism instability is also predicted in the other types of stars. The
radial fundamental mode had been thought to be excited by this mechanism in massive main-
sequence stars with the solar-like composition (Ledoux, 1941; Schwarzschild and Härm, 1959;
Stothers and Simon, 1968; Aizenman et al., 1975; Stothers, 1992). However, after the new
opacity tables (Rogers and Iglesias, 1992) are released, the fundamental mode was found to
be more strongly excited by the κ-mechanism (§3.11.4) at the iron group element opacity
bump (Fe bump) rather than by the ε-mechanism. On the other hand, Baraffe et al. (2001)
found that the ε-mechanism still mainly acts on the excitation of the fundamental mode in
the Population III very massive main-sequence stars because of the lack of the Fe bump.

The ε-mechanism instability has also been considered by association with the solar neutrino
problem. Dilke and Gough (1972) suggested that the ε-mechanism by 3He reactions should
induce pulsational instability. This instability might induce nonlinear material mixing and
reduction of the neutrino flux due to temperature decrease in the nuclear reaction zone.
Following this suggestion, pulsational stability analyses demonstrated that low-degree low-
order g modes are likely to be destabilized by the ε-mechanism at a certain early evolutionary
stage of the Sun and solar-like stars (Boury and Noels, 1973; Christensen-Dalsgaard et al.,
1974; Boury et al., 1975; Shibahashi et al., 1975; Noels et al., 1976). However, the presence
of a convective envelope, which occupies the outer 20–30 per cent of the stellar radius has
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made it hard to reach a definite conclusion on the pulsational stability because of uncertainty
in the treatment of the convective envelope. Recently, Sonoi and Shibahashi (2011, 2012a,b,c,
2013a,b) showed that this kind of instability takes place in metal-free, -poor main-sequence
stars. Since convection hardly contributes to energy transfer in the envelopes of such stars,
their results are free from the uncertainty of the treatment of convection. On the other hand,
the g mode instability due to the ε-mechanism is also found in brown dwarf main-sequence
models (Rodŕıguez-López et al., 2012, 2013), and the radial fundamental mode is excited by
2D-burning core in the pre-main sequence stage (Palla and Baraffe, 2005; Rodŕıguez-López
et al., 2012, 2013). In brown dwarfs, convection dominantly contributes to energy transfer
and the uncertainty remains in their results. In spite of this, observational efforts are going on
(Baran et al., 2011).

WN expresses the work done exclusively by the ε-mechanism and hence is always positive.
δε is evaluated by Eq.(3.124), where εad and εS appears. By using the temperature and density
dependence of the energy generation rate, εT ≡ (∂ ln ε/∂ lnT )ρ and ερ ≡ (∂ ln ε/∂ ln ρ)T ,
these two thermodynamical coefficients can be expressed as

εad =

(
∂ ln ε

∂ ln p

)
S

= εT∇ad +
ερ
Γ1

(3.205)

εS = cp

(
∂ ln ε

∂S

)
p

= εT − vT ερ. (3.206)

For a stability analysis relevant to the ε-mechanism, it is important to evaluate εT and ερ in
the oscillation time scale, which are different from one in the stellar evolution timescale.

In the case of the pp-chain, p(p,e+ν)2H is the slowest reaction and its nuclear reaction
rate dominates that of the whole pp-chain in the time scale of stellar evolution. Therefore, εT
of the pp-chain is about 4 at log T = 7. However, in the time scale of oscillations, about a
few hours, εT of pp-chain is dominated by 3He(3He,2p) 4He. In this case, εT of the pp-chain
becomes about 11 (Dilke and Gough, 1972; Boury and Noels, 1973; Shibahashi et al., 1975;
Unno, 1975; Unno et al., 1989).

In the case of CNO-cycle, the timescale of the β-decays [e.g. 13N(e−, ν)13C, 15O(e−, ν)15N]
is comparable with the oscillation period (∼ 1 hr). This could cause the phase delay that are
introduced between creation and destruction of various reactants (Bethe, 1939; Cox, 1954,
1955; Kawaler, 1988).

In the following, the way of the evaluation of ερ and εT in the oscillation time scale
will be introduced following Unno et al. (1989) for the pp-chain and Kawaler (1988) for the
CNO-cycle.

pp-chain

Let Nj, Cj,k, and Qj,k be the number density of nuclei with the atomic weight j (j = e means
electron), the reaction rate of the j- and the k- nuclei, and the energy generated (minus
neutrino loss) by a single reaction, respectively. The asterisk will stand for 7Li in order to
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distinguish it from 7Be. The 8B- and 8Be-decays are assumed to occur instantaneously. Then,
we have

ρε =
1

2
N2

1C1,1 +N2N1C2,1Q2,1 +N3

(
1

2
N3C3,3Q3,3 +N4C3,4Q3,4

)
+N7(NeC7,eQ7,e +N1C7,1Q7,1) +N∗

7N1C
∗
7,1Q

∗
7,1 (3.207)

∂N1

∂t
+∇ · (N1v) = −N2

1C1,1 −N1N2C2,1 +N2
3C3,3

−N1N
∗
7C

∗
7,1 −N1N7C7,1, (3.208)

∂N2

∂t
+∇ · (N2v) =

1

2
N2

1C1,1 −N1N2C2,1, (3.209)

∂N3

∂t
+∇ · (N3v) = N1N2C2,1 −N3(N3C3,3 +N4C3,4), (3.210)

∂N4

∂t
+∇ · (N4v) =

1

2
N2

3 −N3N4C3,4 + 2N1N
∗
7C

∗
7,1

+2N1N7C7,1, (3.211)

∂N7

∂t
+∇ · (N7v) = N3N4C3,4 −N7(NeC7,e +N1C7,1), (3.212)

∂N∗
7

∂t
+∇ · (N∗

7v) = N7NeC7,e −N∗
7N1C

∗
7,1. (3.213)

where Cj,k’s are functions of temperature and the values of Qj,k used in this study are sum-
marized in table 3.1. A factor of 1/2 appears for reactions of identical particles since N2

j Cj,j

counts a single reaction twice; a factor 2 appears in the rate equations (3.208)-(3.213) if two
identical particles are integrated or created by a single reaction, and in some terms these two
factors cancel each other out.

Let us consider the variation of Nj’s in the oscillation. The lifetime of 2D is much shorter
than the oscillation period. Then, we have

N2 =
1

2
N1

C1,1

C2,1

. (3.214)

Table 3.1: Reactions in the pp-chain and their Q values (the neutrino loss subtracted)

branch reaction Q(MeV)
PP-I p(p,e+ν)2D 1.179

2D(p,γ)3He 5.493
3He(3He,2p)4He 12.859

PP-II 3He(4He,γ)7Be 1.587
7Be(e−, ν)7Li 0.049
7Li(p,γ)24He 17.347

PP-III 7Be(p,γ)8B 0.137
8B (,e+ν)8Be(,4He)4He 1.01
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On the other hand, those of other elements are much longer. Then, the contribution of the
nuclear reactions to the variation of Nj’s is negligible. We have

δN1

N1

=
δN3

N3

=
δN4

N4

=
δN7

N7

=
δN∗

7

N∗
7

=
δρ

ρ
. (3.215)

Equilibrium relations are derived if the right hand sides of (3.210), (3.211), (3.212) and
(3.213). In addition to (3.214), we get

N2
3E =

bI
2
N2

1

(
C1,1

C3,3

)
E

, (3.216)

N3E =
1− bI
2

N2
1

N4

(
C1,1

C3.4

)
E

, (3.217)

N7E =
bII
2

N2
1

Ne

(
C1,1

C7,e

)
E

=
bIII
2
N1

(
C1,1

C7.1

)
E

, (3.218)

N∗
7E =

bII
2
N1

(
C1,1

C∗
7,1

)
E

(3.219)

where the branching factors bI, bII and bIII defined by

bI
1− bI

≡ N2
3EC3,3E

N3EN4C3,4E

, (3.220)

bIII
bII

≡ N7EN1C7,1E

N7ENeC7,eE

, (3.221)

bI + bII + bIII ≡ 1 (3.222)

Take the Lagrange variation of (3.207) and use (3.214)-(3.222):

δε

ε
=
δρ

ρ
+

∑
i,j νi,jfi,jQi,j∑
i,j fi,jQi,j

δT

T
(3.223)

where

νi,j ≡
{
d lnC1,1/d lnT for (i, j) = (2, 1)
d lnCi,j/d lnT otherwise

(3.224)

and

f1,1 ≡ 1, f2,1 ≡ 1, f3,3 ≡
bI
2
, f3,4 ≡ 1− bI, f7,e ≡ bII, f7,1 ≡ bIII, f ∗

7,1 ≡ bII (3.225)

That is, we obtain ερ,pp[≡ (∂ ln εpp/∂ ln ρ)T ] = 1 and εT,pp is expressed as the coefficient of
δT/T in Eq.(3.223).
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CNO-cycle

The reactions in CN-cycle are introduced in Table 3.2. The reaction of 15N(p,γ)16O can occur
instead of the last reaction in the left column of Table 3.2 and this launches the NO-cycle, with
which CN-cycle composes CNO-cycle. However, we neglect the NO-cycle since the probability
that this reaction will occur is ∼ 10−4.

i’s are defined as the number of species and its decay reaction following Table 3.2. Then,
we have

N
dyi
dt

= −N2yiypCi +N2yi−1ypCi−1 (i = 1, 4) (3.226)

N
dyi
dt

= −Nyiλi +N2yi−1ypCi−1 (i = 2, 5) (3.227)

N
dyi
dt

= −N2yiypCi +Nyi−1λi−1 (i = 3, 6) (3.228)

where N denotes the total number density and yi the number fraction of the element i. Ci

denotes the rate of collisional destruction of species i per proton for i = 1, 3, 4, 6, and λi the
rate of decay of species i for i = 2, 5. If i = 1, i − 1 means i = 6. p means proton. The
reciprocal of the timescale for collisional destruction of species i is

Ki ≡ NypCi (3.229)

Since the lifetimes of 13N and 15O are comparable with the oscillation period, the phase
delay between creation and destruction of species could occur. Then, we have to consider the
perturbation of yi’s:

δyi
yi

= αi
δρ

ρ
+ βi

δT

T
(3.230)

Since Ci is a function of temperature, we obtain

δKi

Ki

=
δρ

ρ
+ νi

δT

T
(3.231)

Table 3.2: Reactions in CN-cycle and NO-cycle and their Q values (the neutrino loss
subtracted)

CN-cycle NO-cycle
i reaction Q(MeV) reaction Q(MeV)
1 12C(p,γ)13N 1.944 15N(p,γ)16O 12.127
2 13N(e−, ν)13C 1.511 16O(p,γ)17F 0.600
3 13C(p,γ)14N 7.551 17F(,e+ν)17O 1.822
4 14N(p,γ)15O 7.297 17O(p,α)14N 1.192
5 15O(e−, ν)15N 1.761
6 15N(p,α)12C 4.966
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where νi ≡ (∂ lnCi/∂ lnT )ρ,y. The nuclear energy productions are given by

εi =
NKiyiQi

ρ
(i = 1, 3, 4, 6) (3.232)

εi =
NλiyiQi

ρ
(i = 2, 5) (3.233)

Taking the Lagrange variation of εCN =
∑

i εi, we have

ερ,CN =

(
ε1 + ε3 + ε4 + ε6 +

∑
i

αiεi

)/
εCN (3.234)

εT,CN =

(
ν1ε1 + ν3ε3 + ν4ε4 + ν6ε6 +

∑
i

βiεi

)/
εCN. (3.235)

To evaluate the αi’s and βi’s, taking the Lagrange variation of (3.226)-(3.228):

δyi
yi

=
Ki

iσ +Ki

[
αi−1

δρ

ρ
+ (βi−1 + νi−1 − νi)

δT

T

]
(i = 1, 4) (3.236)

δyi
yi

=
λi

iσ + λi

[
(αi−1 + 1)

δρ

ρ
+ (βi−1 + νi−1)

δT

T

]
(i = 2, 5) (3.237)

δyi
yi

=
Ki

iσ +Ki

[
(αi−1 − 1)

δρ

ρ
+ (βi−1 − νi)

δT

T

]
(i = 3, 6) (3.238)

Then, we obtain the recursive formulae for the αi’s:

α1 =
K1

iσ +K1

α6, α2 =
λ2

iσ + λ2
(α1 + 1), (3.239)

α3 =
K3

iσ +K3

(α2 − 1), α4 =
K4

iσ +K4

α3, (3.240)

α5 =
λ5

iσ + λ5
(α4 + 1), α6 =

K6

iσ +K6

(α5 − 1) (3.241)

and for the βi’s:

β1 =
K1

iσ +K1

(β6 + ν6 − ν1), β2 =
λ2

iσ + λ2
(β1 + ν1), (3.242)

β3 =
K3

iσ +K3

(β2 − ν3), β4 =
K4

iσ +K4

(β3 + ν3 − ν4), (3.243)

β5 =
λ5

iσ + λ5
(β4 + ν4), β6 =

K6

iσ +K6

(β5 − ν6) (3.244)

Although Kawaler (1988) showed the analytical solution for the α’s and β’s derived by assuming
Ki � σ, they are evaluated by (3.239)-(3.241) without this assumption in this study since
the onset of CNO-cycle occurs at extremely high temperature (∼ 108K) in the Population III
stars and hence Ki’s can be comparable with σ. After getting the values of αi’s and βi’s, we
can obtain the values of ερ,CN and εT,CN from (3.234) and (3.235), respectively.
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On the Whole Hydrogen Burning

In this study, the temperature and the density dependences of the whole hydrogen burning are
given by

εT = (εppεT,pp + εCNεT,CN)/ε (3.245)

ερ = (εppερ,pp + εCNερ,CN)/ε. (3.246)

This study investigates the instability related to the ε-mechanism in the core hydrogen-burning
stage of the Population III stars. Actually, central temperature in such stars reaches ∼ 108 K
with which the triple alpha reaction can take place. But in a such stage, contribution of this
reaction is indeed negligible, and we should only take into account the temperature and the
density dependences of pp-chain and CNO-cycle.

3.11.3 Flux absorption and dissipation

WF denotes the work done by the flux absorption. That is, the flux absorption and hence
conversion from received heat to kinetic energy of pulsations occur in the region where
dWF/dr > 0, while the conversion from kinetic energy to heat, dissipated to the surrounding,
(flux dissipation) in the region where dWF/dr < 0. The flux absorption is one of the excitation
mechanisms. Let us modify the expression for WF given by Eq.(3.201) and change Eq.(3.87)
to a form in which all the terms are proportional to (δT/T )2 or [d(δT/T )/dr]2 following
Unno et al. (1989). For simplicity, we assume that the adiabatic temperature gradient ∇ad is
constant. From the relation between the Eulerian and the Lagrangian perturbation we have

p′

p
=
δp

p
− ξr
r

d ln p

d ln r
' 1

∇ad

δT

T
+
ξr
r
V. (3.247)

Using the equations for the adiabatic Cowling approximation, Eq.(3.143) and (3.144) with
Eq.(3.247), we obtain

ξr
r

' (∇adα0)
−1

[
S2
l

Γ1σ2
− δT

T
+Hp

d

dr

(
δT

T

)]
, (3.248)

where Hp(≡ −dr/d ln p) denotes the pressure scale height and

α0 ≡ 4− U − l(l + 1)

c1ω2
+ c1ω

2. (3.249)

Substituting Eqs.(3.247) and (3.248) into Eq.(3.87), we obtain

δLR

LR

' α1
δT

T
+

(
∇−∇ad

∇
− c1ω

2 − U

α0

)
Hp

∇ad

d

dr

(
δT

T

)
, (3.250)

where

α1 = 4− 1

∇ad

− κT − κρ
Γ3 − 1

+

(
1− S2

l

Γ1σ2

)(
c1ω

2 − U

α0∇ad

)
(3.251)
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and κT (≡ (∂ lnκ/∂ lnT )ρ) and κρ(≡ (∂ lnκ/∂ ln ρ)T ) are the temperature and the density
dependences of the opacity, which satisfy

κad =

(
∂ lnκ

∂ ln p

)
S

= κT∇ad +
κρ
Γ1

, (3.252)

κS = cp

(
∂ lnκ

∂S

)
p

= κT − vTκρ. (3.253)

Substituting these equations and disregarding Φ′, we obtain, after lengthy manipulations, an
approximate expression for WF :

4σRWF ' −1

2

α1LR

(
δT

T

)2

r=R

− 1

2

∫ R

0
dr

(
δT

T

)2
d

dr
(α1LR)

+
∫ R

0
drLR

Hp

∇ad

(
∇−∇ad

∇
− c1ω

2 − U

α0

)
[
d

dr

(
δT

T

)]2
+
l(l + 1)

r2

(
δT

T

)2


+l(l + 1)
∫ R

0
dr

(
δT

T

)2
1

∇ad

[
4− V

α0V

(
1

c1ω2

dLr

dr
− LR

r

)

+
c1ω

2 − U

c1ω2α0V

dLr

dr
+

1

2

d

dr

(
c1ω

2LR − dLr/d ln r

c1ω2α0V

)]
(3.254)

3.11.4 κ-mechanism

The κ-mechanism is the most common excitation mechanism for pulsating stars. It is associ-
ated with partial ionization zones. Pulsations of Cepheid, RR Lyrae and δ Scuti are excited at
the 2nd He ionization zone, while ones of β Cephei, SPB at the iron group element ionization
zone.

The first and the second terms in the RHS of Eq.(3.254) describe the “κ-mechanism”, the
excitation mechanism by the net positive flux blocking in the pulsation cycle due to the opacity
perturbation in phase with the temperature perturbation. In the outer radiative envelope, LR

is constant and the κ-mechanism works if

d

dr

(
κT +

κρ
Γ3 − 1

)
> 0. (3.255)

An example profile of opacity and its derivatives is shown in the top panel of Fig.3.10.
The opacity profile takes a form of a bump at an ionization zone. At log T ' 5.2, ionizations
of iron group elements make an opacity bump, which is called “Fe bump.” An bump at
log T ' 4.6 − 4.7 is called “He bump”, which is caused by the 2nd He ionization. At
log T ' 4.1, H and 1st He ionizations makes so-called “H bump.”

The value of κT increases around an ionization zone (compare Fig.5.16 and top panel of
Fig.5.17). This contributes to make a positive gradient of κT +κρ/(Γ3−1) toward the outside.
In an ionization zone, an adiabatic exponent (Γ3− 1)(> 0) is minimum. This spatial variation
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Figure 3.10: Top: Opacity κ and its temperature and density dependences, κT and κρ.
Bottom: Adiabatic exponent Γ3 − 1 and κT + κρ(Γ3 − 1)−1, whose spatial differential is
the criterion for κ-mechanism (Eq.3.255). The equilibrium model is of a 1.6M� ZAMS
star with X = 0.70, Z = 0.02

of (Γ3 − 1) enhances the effect of the κ-mechanism (bottom panel of Fig.3.10). This effect
is sometimes called the “γ-mechanism” (Cox et al., 1966).

As shown in the bottom panel, the value of κT + κρ/(Γ3 − 1) increases outward around
each opacity bump, which means the κ-mechanism can take place.

3.11.5 Convective blocking

The “convective blocking” is one of the excitation mechanisms which occurs at bases of con-
vective envelopes. As a matter of fact, this mechanism is not related to convective luminosity
perturbations, but to radiative luminosity perturbations. The cause of this mechanism is gra-
dient of radiative luminosity. At a base of a convective envelope, radiative luminosity LR

decreases with increase of convective luminosity LC as we go to the bulk of the convective
envelope. That causes the decrease in |δLR| outward and hence realizes d|δLR|/dMr < 0,
which will excite pulsations if dδLR/dMr < 0 is satisfied at the hot phase of the pulsations
(Eq.3.204).

This mechanism plays a major role in excitation of γ Doradus pulsations, which is con-
firmed by analyses both with the frozen-in convection (FC) approximation, under which the
perturbation of convective luminosity is neglected (Guzik et al., 2000; Warner et al., 2003),
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and TDC (Dupret et al., 2005). On the other hand, Dupret et al. (2005) showed the signif-
icant difference between results with FC and TDC in δ Scuti stars. In this case, the way of
treatment of δLC can change the behavior of δLR, and hence the picture of the convective
blocking.

3.12 Numerical procedures

In this study, eigenmodes of stellar pulsations are calculated by solving the differential equation
systems introduced in §3.7 and 3.8, such as Eqs.(3.128)–(3.133), with the boundary condi-
tions, for example, Eqs.(3.146)–(3.152) for nonadiabatic nonradial pulsations. The differential
equations are solved as eigenvalue problems. This study uses the relaxation code developed by
the author (Sonoi and Shibahashi, 2012b). The detail of the relaxation method is introduced
in §D.

In the relaxation method, we have to give the initial eigenvalue and eigenfunctions, and
to make them close to the solution through the iterative procedure. To avoid failing to
find the desirable eigenvalues, we have to give the initial value close to the true eigenvalue.
Since, moreover, the eigenvalue is complex number, we have to search for the initial value on
the complex plane following Shibahashi and Osaki (1981) before truly solving the eigenvalue
problem.

For such search, we remove one of the outer boundary conditions except one for the
normalization Eq.(3.146). We express the removed condition as D(ω̃) = 0, where ω̃ denotes
the true eigenvalue. We solve the differential equations against a given ω. This procedure is
a linear algebraic problem since the differential equations in §3.7 and 3.8 are linear. D(ω) is
used as the discriminant to find the true eigenvalue ω̃ and assumed to have no singular point
in the parameter area considered. Let us consider the mapping from the complex ω-plane to
the complex D-plane. A closed loop in the ω plane is mapped into one in the D-plane. If the
closed loop in the D-plane winds n times around the origin, there exist n eigenvalues inside
the loop of the ω-plane. Fig.3.11 illustrates such a mapping from the ω-plane to the D-plane.
The large rectangle ABCD on the ω-plane is mapped to the closed curve A’B’C’D’ on the
D-plane which winds around the origin once. By dividing the large rectangle into two by a
straight line EF, we find that an eigenvalue exists inside the rectangle AEFD but not inside
the rectangle EBCF.

This can be understood as follows: IfD(ω) is a regular function, and there are J eigenvalues
ω̃j (j = 1, 2, . . . , J), the discriminant D(ω) can be written as

D(ω) ∝
J∏

j=1

(ω − ω̃j). (3.256)

That is,

arg[D(ω)] =
J∑

j=1

arg(ω − ω̃j) + const. (3.257)
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Figure 3.11: Mapping from the ω-plane to the D-plane. The cross in the ω-plane indicates
the true eigenfrequency ω̃ for which D(ω̃) = 0 (from Shibahashi and Osaki, 1981)

When ω makes a closed loop C in the ω-plane, we obtain

∮
C
d[arg(ω − ω̃j)] =

{
2π if ω̃j is within the loop C
0 if ω̃j is outside the loop C

(3.258)

From Eq.(3.257), we have

1

2π

∮
C
d[arg(D)] = the number of eigenvalues within the loop C. (3.259)

Thus, what we should do for the search for the eigenvalue is evaluating D(ω)’s by solving
the above algebraic problem against the ω’s which make a loop in the ω-plane and determine
whether there exist the eigenvalues inside the loop by Eq.(3.259). If some eigenvalues exist
there, we should solve the eigenvalue problem with all the boundary conditions by using the
initial value of ω which is inside the loop. It should be noted that if the discriminant D(ω)
has singularities within the loop, it decreases the value of the integral in Eq.(3.259) by −2π.
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Part II

Origin and pulsational instability of
strange-modes
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4
Stability analysis of radial pulsations

Some parts of this chapter are included in “Analysis of strange-mode instability with time-
dependent convection in hot massive stars”, in the proceedings, volume 301 of IAU sym-
posium (Sonoi and Shibahashi, in press)

4.1 Introduction

This chapter shows results of pulsational stability analysis of radial pulsations in hot mas-
sive stars. In the analysis, eigenmodes of radial pulsations are calculated for different stellar
models. Simultaneously, pulsational stability is also investigated by evaluating the growth or
damping rate for each eigenmode. Growing eigenmodes are called “unstable modes”, while
damped ones “stable modes.” Unstable modes are expected to be observed as pulsations.
In particular, unstable strange-modes have extremely high growth rates and could be influen-
tial on stellar evolutions. Unstable strange-modes have been theoretically found in stars with
L/M >∼ 104L�/M�, for instance, hot massive stars (Gautschy, 1992; Glatzel and Kiriakidis,
1993b,a; Kiriakidis et al., 1993; Glatzel and Mehren, 1996; Saio et al., 1998; Saio, 2009, 2011;
Saio et al., 2013; Godart et al., 2010, 2011), Wolf-Rayet stars (Glatzel et al., 1993; Kiriakidis
et al., 1996), helium stars (Saio and Jeffery, 1988; Saio et al., 1984; Gautschy and Glatzel,
1990; Gautschy, 1995; Saio, 1995), etc.

The evolution of massive stars cannot be described by a classical stellar evolution theory
because of a lot of observed peculiar behaviors. Wolf-Rayet (WR) stars are located in the high
temperature and luminosity side in the HR diagram. We cannot reproduce a stellar evolution
toward such a domain in the HR diagram only by the classical theory. Since WR stars’ spectra
show a lot of wide emission lines, they are thought to be suffering from strong stellar winds.
The mass of WR stars is in the range of 5 to a few tens of solar mass, and they are thought
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to be objects into which O type stars evolves while losing substantial their mass. Humphreys
and Davidson (1979) found that there is a lack in observed stars in the high luminosity and
low temperature side in the HR diagram, and gave the boundary line so-called “Humphreys-
Davidson (HD) limit” (the dashed line in Fig.4.1). Luminous blue variables (LBVs) appear near
the limit. They irregularly show changes in their visual magnitude in a timescale of hours to
hundreds years. During the changes, on the other hand, the luminosity keeps constant. That
is, they horizontally move toward the lower effective temperature side in the HR diagram. It
might mean that sporadic mass eruptions make a thick envelope around the core, and that a
pseudo-photosphere is formed in the envelope. That could explain the apparent decrease in
the effective temperature. Stars with >∼ 25M� are expected to be finally WR stars. Ones
with 25− 50M� may first evolve from ZAMS toward the red giant phase. But they would go
back to the bluer side of the HR diagram due to stellar winds, and be finally WR stars. On the
other hand, ones with >∼ 50M� are not expected to evolve toward the red giant stage because
of the existence of the HD limit. Instead, they would experience the LBV phenomenon around
the HD limit, lose substantial mass and be WR stars.

However, we have not yet obtained an established mechanism for the sporadic eruptions
occurring in LBVs, although many authors have proposed different explanations by effects
of radiation pressure in the situation near the Eddington limit, close-binary models, rapid
rotations, etc (see Humphreys and Davidson, 1994). The strange-mode instability is also
one of the candidates for the mechanism. Glatzel and Kiriakidis (1993a) proposed that the
strange-mode becomes unstable around the HD limit.

So far the pulsational stability analyses of the strange-modes have been carried out with the
frozen-in convection (FC) approximation, in which perturbation of convective flux is neglected.
As a matter of fact, convection does not significantly contribute to energy transfer in envelopes
of hot massive stars compared with those of stars in the redder side of the classical instability
strip. Besides, theories of convection have still a lot of uncertainties. But most of unstable
strange-modes are actually excited in convection zones, and we cannot definitely conclude that
convection never affects stability of strange-modes. In particular, Glatzel and Mehren (1996)
carried out the stability analysis with the two types of FC approximations, and showed that the
extent of the instability sensitively depends on the types of FC. This implies that the instability
of strange-modes could be affected by convection.

Recently, Grigahcène et al. (2005) and Dupret et al. (2005) adopted the time-dependent
convection (TDC) theory to the pulsational stability analyses of δ Scuti stars, and successfully
explained the suppression of the instability in the redder side of the instability strip. The TDC
theory adopted by them is originally derived by Unno (1967) for radial pulsations, arranged
to deal with nonradial pulsations by Gabriel et al. (1974), and further developed by Gabriel
(1987, 1996, 1998, 2000). Here, this TDC theory is adopted to evaluate perturbation of
convective luminosity, and substitute it to the differential equation system for nonadiabatic
radial pulsations, Eqs.(3.162)–(3.165). Before the result with TDC is shown, however, we
discuss the result with FC for comparison. The stability analyses are first carried out with the
two types of the FC approximations adopted by Glatzel and Mehren (1996), under which zero
Lagrangian and Eulerian perturbations, δLC = 0 and L′

C = 0, are assumed.
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Figure 4.1: Evolutionary tracks of stars with X = 0.70, Z = 0.02 for which pulsational
stability analysis is carried out. The dashed line is the Humphreys-Davidson limit.

4.2 Results with the FC approximation of δLC = 0

4.2.1 Change of pulsational characteristics with stellar mass

Here, we discuss results of a pulsational stability analysis for radial modes in hot massive stars
with X = 0.70, Z = 0.02. Fig.4.1 shows evolutionary tracks of the massive stars in the HR
diagram. The evolutionary models are constructed with MESA (Paxton et al., 2011). The
mixing length parameter is set to α = 2. Many of studies about massive stars take into
account radiation-driven mass loss during the evolution. But the instability of strange-modes
could be another trigger for mass loss in the massive stars, as proposed by studies of nonlinear
pulsations (Dorfi and Gautschy, 2000; Chernigovski et al., 2004; Grott et al., 2005). In this
study, therefore, the radiation-driven mass loss is neglected to avoid confusing the two triggers.
The pulsational stability analysis is carried out with the relaxation code developed by Sonoi
and Shibahashi (2012b) in the range of log Teff > 3.9.

Fig.4.2 show modal diagrams, of which the vertical axis is the pulsational frequency (nor-

malized with the dynamical timescale
√
R3/(GM)) and the abscissa is some stellar parameter,

which is here the effective temperature. Here they show results of nonadiabatic analyses with
the frozen-in convection (FC) approximation of δLC = 0 for radial pulsations (l = 0). This
approximation has been so far commonly adopted in the nonadiabatic analyses by previous
studies. We may use the differential equations for the eigenfunction, Eqs.(3.162)–(3.165) for
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the approximation, but remove the last term in Eq.(3.164). Then, the equations become

dY1
d ln r

= −3Y1 −
1

χρ

Y2 + vTY3, (4.1)

1

V

dY2
d ln r

= (c1ω
2 + 4)Y1 + Y2, (4.2)

1

V∇
dY3
d ln r

= 4Y1 + (∇adκS − κad)Y2 + (4− κS)Y3, (4.3)

1

fR

dY4
d ln r

= [c3(εad −∇adεS) + iωc4∇ad]Y2 + [c3εS − iωc4]Y3 − c3Y4. (4.4)

The symbols in Fig.4.2 denote eigenfrequencies at each evolutionary stage corresponding
to the effective temperature in the abscissa. The nonadiabatic solutions are plotted while
being categorized in terms of the growth rates by use of different types of symbols.

As we can see, the plots compose sequences. The top panel of Fig.4.2 is for 10M�.
The lowest sequence corresponds to the fundamental mode, the second lowest one to the 1st
overtone, the third one to the 2nd overtone, . . . , etc. The frequencies are almost constant
with change in the effective temperature.

As the stellar mass increases, the sequences become waving, which is shown in the middle
and the bottom panels of Fig.4.2. Then, there become ascending and descending sequences.
In fact, the former and the latter correspond to ordinary modes and strange-modes, respec-
tively. We can see that strong instability, which is expressed as green dots, appears on the
descending sequences. In case of 30M�, the strong instability appears only in the high effective
temperature side. In case of 50M�, however, it appears also in the low temperature side. As
a matter of fact, those instabilities in the high and in the low temperature sides are caused by
different excitation mechanisms. This issue is discussed in the following section. We can see
that two sequences are close to each other at some points for >∼ 30M�. This phenomenon is
called “avoided crossing.” In that situation, they never cross each other, but characteristics
of pulsational stability move from one to another sequence (Fig.4.3).

4.2.2 Pulsational instability

As mentioned above, pulsational instability appears only in the higher temperature side for
<∼ 30M�. It is excited by the classical κ-mechanism, which is one of heat engine mechanisms
for excitation of stellar pulsations and works around an opacity bump where absorption of
photons is strong due to ionizations. In this case, the κ-mechanism works at the opacity bump
of Fe group elements.

Fig.4.4 shows the work integral of the radial fundamental mode for a model in the main
sequence stage of a 10M� star with X = 0.70, Z = 0.02. Work integral W is a function of
r, and means integrated local work from the center to the radius r. Excitation of pulsations
takes place at a location where work integral increases outward. In Fig.4.4, increase in the
work integral, that is, excitation appears around log T = 5.2−5.3, where the Fe opacity bump
is located (notice the green line of this figure).
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Figure 4.3: Avoided crossing. Two sequences of eigenfrequencies are close to each other,
but never crossover (dotted curves). On the other hand, characteristics of pulsational
stability move from one to another sequence (solid arrows).

Roughly speaking, the κ-mechanism works in a region satisfying Eq.(3.255), d[κT+κρ(Γ3−
1)−1]/dr > 0 or

d

d log T

[
κT +

κρ
Γ3 − 1

]
< 0. (4.5)

In Fig.4.4, we can find that this condition is satisfied in the excitation zone (notice the blue
line). By the way, heat engine mechanism works efficiently in case that the thermal timescale
is comparable with the pulsational period. If the thermal timescale is much shorter or longer
than the period, heat engine mechanism hardly works. The case of long thermal timescale
corresponds to adiabatic situation, and heat transfer hardly proceeds in a pulsational cycle. On
the other hand, the case of short thermal timescale corresponds to isothermal situation, and
heat transfer occurs instantaneously, and it avoids making change of temperature. The black
thick horizontal line segment in Fig.4.4 indicates the pulsational period of the fundamental
mode, and the cross point of the line segment and the black curve indicates the location where
the thermal timescale is identical to the period. We can find that the location matches with the
Fe bump. On the other hand, there are other regions with d[κT + κρ(Γ3 − 1)−1]/d log T < 0,
but the κ-mechanism does not work in the regions. This is because the thermal timescale
does not match with the pulsational period.

As the stellar mass increases, other kinds of instability come to appear on the descending
sequences in the modal diagram, which we can see in the panels for 30 and 50M� of Fig.4.2.
The instability on the ascending sequences has the same characteristics as in cases of lower
mass stars, while that on the descending sequences has different characteristics. One of the
characteristics is that the growth rates of the unstable modes are much higher than that on
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the ascending sequences. We can confirm it in Fig.4.5. In the figure, there are two types of
labels, A∗ and D∗, which indicate the ascending and the descending sequences, respectively,
in the panel for 50M� of Fig.4.2.

The top panel of Fig.4.6 shows that the fundamental mode, which is on the ascending
sequence A1, is excited at the Fe bump, where d[κT + κρ(Γ3 − 1)−1]/d log T < 0 is satisfied.
On the other hand, the bottom panel of Fig.4.6 shows the work integral for the strange-mode
on the descending sequence D1. The bottom panel apparently looks identical with the top
panel. But the value of W/(4πE) and hence the growth rate of amplitude are much higher
than those of the fundamental mode. Fig.4.7 shows the distribution of kinetic energy density
for the two modes. We can recognize that while the kinetic energy of the fundamental mode
distributes evenly in the whole star, that of the strange-mode is confined to the narrow range
near the surface. The strange-mode is excited by the κ-mechanism similarly to the fundamental
mode, but the excitation is much stronger because of the confinement of the amplitude to the
excitation zone. The cause for the confinement of the amplitude will be discussed in §5.2.

In case of 50M�, by the way, instability of strange-modes appears also in the low temper-
ature side. The excitation mechanism for this instability is different from the κ-mechanism.
Fig.4.8 is for the unstable strange-mode on the descending sequence D2 in the panel for
50M� of Fig.4.2, and shows that excitation occurs not only in the region with d[κT +κρ(Γ3−
1)−1]/d log T < 0 around the Fe bump, but also in the outer region, having d[κT + κρ(Γ3 −
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Figure 4.8: Same as Fig.4.6, but for the strange-mode on the descending sequence D2
shown in the panel for 50M� of Fig.4.2.

1)−1]/d log T > 0. This implies that the excitation mechanism would be different from the
κ-mechanism. The excitation mechanism for this type of instability has been a long-standing
problem. Glatzel (1994) and Saio et al. (1998) tried to obtain the physical picture by local
analyses with the WKB approximation and the two zone model, respectively. According to
the two studies, if we assume short thermal timescale and dominance of radiation pressure, a
large phase lag between perturbations to pressure and density would take place in pulsations.
This then leads to the strong instability. More details are discussed in §5.4.

The extent of the instability for 50M� by this study is slightly stronger than the result for
60M� by Kiriakidis et al. (1993) and Glatzel and Mehren (1996). They adopted evolutionary
models with radiation-driven mass loss. Due to the mass loss, increase in the central temper-
ature is suppressed, and the stellar luminosity increases less rapidly during the evolution. The
lower luminosity may have resulted in the weaker instability.

4.3 Results with the FC approximation of L′
C = 0

The results shown in the previous sections are obtained with the FC approximation of δLC = 0.
But we do not have convincing reasons for the approximation, which has left uncertainty in
results of pulsational stability analyses for many years. We actually have plural ways to neglect
effects of convection. Here, we will see results with the approximation of L′

C = 0. In this
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case, the differential equations for the eigenfunctions become

dY1
d ln r

= −3Y1 −
1

χρ

Y2 + vTY3, (4.6)

1

V

dY2
d ln r

= (c1ω
2 + 4)Y1 + Y2, (4.7)

1

V∇
dY3
d ln r

=

[
4 + c3 −

d lnLR

d ln r

]
Y1 + (∇adκS − κad)Y2 + (4− κS)Y3, (4.8)

1

fR

dY4
d ln r

= [c3(εad −∇adεS) + iωc4∇ad]Y2 + [c3εS − iωc4]Y3 − c3Y4. (4.9)

Fig.4.9 shows modal diagrams for the approximation of L′
C = 0. The definitions of symbols

and lines are the same as Fig.4.2. First, we can find that the ordinary modes, which appears
in the lower mass stars (' 10M�) and on the ascending sequences in the higher mass stars
( >∼ 30M�), are stable or less unstable compared with the case of δLC = 0. This implies that
additional effects caused by the change from δLC = 0 to L′

C = 0 stabilize the modes. The
instability of strange-modes on the D1 and D2 sequences are also weakened or suppressed.
But the range and the strength of the instability on the sequence D3 are comparable to in the
case of δLC = 0. These tendencies are also found by Glatzel and Mehren (1996). For 50M�,
a new sequence labeled as “L” appears at the lower frequency than that of the sequence D1,
and has strong instability.

Then, let us discuss why the instability is weaker in whole that in the δLC = 0 case.
Fig.4.10 shows work integrals of the fundamental mode in the FC approximations of δLC = 0
(top panel) and of L′

C = 0 (bottom panel). Particularly, the work integral W are decomposed
into WLR

and WLC
as

W (Mr) =
π

σR

∫ Mr

0

δT ∗

T

(
−dδLr

dMr

)
dMr (4.10)

=
π

σR

∫ Mr

0

δT ∗

T

(
−dδLR

dMr

)
dMr +

π

σR

∫ Mr

0

δT ∗

T

(
−dδLC

dMr

)
dMr (4.11)

= WLR
(Mr) +WLC

(Mr). (4.12)

In the case of δLC = 0, no work is done in association with convective luminosity perturbation,
and the total work integralW is identical to that by the radiative luminosity perturbationWLR

.
In the convection zone, the fundamental mode is excited by the κ-mechanism related to the
Fe-bump. In the case of L′

C = 0, on the other hand, the Lagrangian perturbation of the
convective luminosity δLC is not zero, since we have

L′
C = δLC − ξr

dLC

dr
= 0. (4.13)

Then, the work by the convective luminosity perturbation takes place. In this case, the δLC

has the nonzero value in regions with gradient of convective luminosity. The work integrals
of the radiative and the convective luminosity perturbations roughly cancel each other out.
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This implies that when a layer moves along the conflicting gradients of the radiative and the
convective luminosities1 in a pulsation cycle, its radiative luminosity LR increases (decreases)
while its convective luminosity LR decreases (increases). In fact, the two types of work by
the radiative and convective luminosity perturbations, WLR

and WLC
, do not exactly balance

each other. That is, one of them slightly dominates over another, and the difference between
the two becomes the total work W . In this case, WLC

dominates over WLR
in the whole of

the convection zone. WLC
and hence W are positive in the lower part of the convective zone

while negative in the upper part. The negative work dominates and leads to the stability of
the fundamental mode.

In most cases, the approximation with L′
C = 0 show less unstable results than that with

δLC = 0. But the instability corresponding to D3 does not depend on the types of the
approximations. This is because the unstable mode of D3 is excited in a convection zone
in which the convective luminosity is negligible to the total luminosity. More details will be
discussed in §4.4.

In the bottom panel of Fig.4.9, we can find an additional sequence L, which is never present
in the case of δLC = 0. Fig.4.11 shows the work integral for a mode on the sequence L. The
excitation takes place around the Fe bump. But it works not only in the zone with d[κT +
κρ/(Γ3−1)]/d log T < 0, but also in the outer side zone with d[κT +κρ/(Γ3−1)]/d log T > 0.

1For example, at the bottom of the convection zone, the convective luminosity increases outward and
has the positive gradient along r, while the radiative luminosity decreases and has the negative gradient.
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We can also see that the location where the thermal timescale is identical to the pulsational
period fails to match with the excitation zone. This implies that the excitation may not be
classical the κ-mechanism.

4.4 Results with TDC and comparison with FC cases

Next, we discuss the result with TDC. To solve the eigenmodes, the system of differential
equations, Eqs.(3.162)–(3.165) is adopted. As a matter of fact, we cannot obtain physically
valid results if we directly adopt the TDC theory introduced in §3.6. Although different
authors have proposed different TDC theories, the closure problem in the turbulence theories
still remains now. That leads to non-physical spatial oscillations of the thermal eigenfunctions
with a wavelength much shorter than the mixing length, which is in contradiction with the
basic assumptions of the MLT (Baker and Gough, 1979; Gonczi and Osaki, 1980). In this
study, the code has been independently developed, and tested in a 1.8M� model near the red
edge of the classical instability strip, corresponding to a δ Scuti star. The red curve of Fig.4.12
shows the fictional spatial oscillation in the lower part of the convective envelope.

Let us consider the cause for the phenomenon following Grigahcène et al. (2005). First,
we describe the linearized equation of energy conservation for radial pulsations in case where
most of the energy is transported by convection,

iσTδS = −dδLC

dMr

(4.14)

Isolating the term dδS/dS in Eq.(3.112) and considering the case of στC � 1 � ωRτC , we
can have

δLC

LC

'
(
δLC

LC

)
1

+
1

iστC

dδS/dr

dS/dr
. (4.15)

Combining Eqs.(4.14), (4.15) and the equilibrium relations of the MLT, we find, after some
algebra,

τC
T

[
(δLC)1
dMr

+
2iπ

σ

d(ρr2T (∆ur)2)

dMr

dδS

dr

]
− 1

2

Λ2

iστC

d2δS

dr2
+ iστCδS = 0 (4.16)

This is the equation of an oscillator whose solutions have a wavelength of
√
2πΛ/(στC). When

we deal with convection, we inevitably encounter the closure problem. In the TDC theory this
study adopts, we neglect some complex physical phenomena such as turbulent cascade. The
simplifications should lead to non-physical results like the spatial oscillations.

Then, Grigahcène et al. (2005) proposed a countermeasure against the spatial oscillations.
When these oscillations take place, we have στC � 1, and the radial derivatives of δS and
δ∆S are in the order of (στC/Λ)δS and (στC/Λ)δ∆S respectively. In the derivation of the
TDC theory in §3.6, by the way, we have adopted the mathematically natural relation,

δ
(
∆S

τC

)
=

∆S

τC

(
δ∆S

∆S
− δτC

τC

)
(4.17)
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The figure shows examples for the parameter in the TDC theory β =0 and 1. The value
of δLr/Lr is given by the normalization of ξr/r = 1 at the stellar surface.

from Eq.(3.94) to Eq.(3.96). But if we take Eq.(4.17) in case of στC � 1, we see that the
order of magnitude of the perturbation of the RHS of Eq.(3.27) would be στC times larger
than the LHS. To have the same order in both sides, the perturbation of the LHS should rather
be given by

δ
(
∆S

τC

)
= βσδ∆S −∆S

δτC
τ 2C

(4.18)

where β is a coefficient of the order of unity. In order to get a formula that switch continuously
from Eq.(4.17) to (4.18), an expression

δ
(
∆S

τC

)
=

∆S

τC

[
(1 + βστC)

δ∆S

∆S
− δτC

τC

]
(4.19)

is proposed and adopted. When we adopt this expression, the coefficient D = (iστC +
ωRτC + 1)−1 in Eq.(3.95) is replaced by D = ((i + β)στC + ωRτC + 1)−1. Therefore,
in the case of στC � 1, the coefficient of d2δS/dr2 in Eq.(4.16) becomes approximately
−(1/2)Λ2/[(i+ β)στC ] instead of −(1/2)Λ2/(iστC). Thanks to the real part of β, the non-
physical spatial oscillations are no longer present in the eigenfunctions.
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By introducing the new parameter β in the order of unity, we indeed get thermal eigen-
functions without the fictional spatial oscillations. Fig.4.12 shows that the spatial oscillation
disappears when we adopt β = 1. As mentioned above, some complex phenomena in turbu-
lence is neglected in the TDC theory. However, phase lags between the pulsations and the
way the neglected phenomena adapts to them are allowed to take place by introducing the
parameter β.

Fig.4.13 shows modal diagrams for the nonadiabatic analysis with TDC. The parameter is
set as β = 1. Similarly to the FC approximations, the sequences become waving, and finally
ascending and descending sequences are formed as the stellar mass increases. Unstable modes
on the ascending sequences have moderate growth rates with |ωI |/ωR < 0.01, while some of
unstable modes on the descending sequences have high growth rates with |ωI |/ωR > 0.01.
The additional sequence in the low frequency found in the L′

C = 0 case is not seen in this
case.

Figs.4.14–4.16 show the instability range of each sequence for each treatment of convection
in the HR diagram. The dots are observed pulsating stars. Roughly speaking, the extent of
the instability derived with TDC can be said to be between those with δLC = 0 and L′

C = 0.
As mentioned in §4.3, convection does not make any work with δLC = 0, while damping
takes place due to convective luminosity gradient appearing at edges of convection zones with
L′
C = 0. In this TDC case, on the other hand, some phenomena in convection other than the

convective luminosity gradient should be included. Most of the modes shown in Figs.4.14–
4.16 are excited in convection zones. Fig.4.17 shows the distribution of convection zones in
envelopes of the 50M� stars. The convection zone appearing at log T ' 5− 5.5 corresponds
to the Fe opacity bump. In stellar envelopes, convection is caused mainly by ionization. It
efficiently absorbs the thermal energy flux from the center, which means the opacity κ is
significantly large. Then substantially large temperature gradient is required to transfer the
energy. It also raises up the radiative temperature gradient,

(A.12) : ∇rad ≡
(
d lnT

d ln p

)
rad

=
3

16πacG

κp

T 4

Lr

Mr

,

due to the increase of κ. As introduced at the beginning of §2.4, convection occurs when
∇rad exceeds the adiabatic temperature gradient ∇ad. The convection zone appearing around
log T = 4.5 corresponds to the opacity bump by the second ionization of helium (so-called
“He bump”), and one appearing around the surface does to the opacity bump of the first
ionization of hydrogen and helium (so-called “H bump”). The convection zone of the Fe
bump has substantial contribution of convective luminosity, while the others have less than
10% contribution of local total luminosity.

In Fig.4.14, the ordinary modes on the sequences A1 and A2 are excited in the cases of
δLC = 0 and TDC. The instability ranges for δLC = 0 keep the almost constant width, while
ones for TDC become narrower or disappear with increase in the stellar mass. This is because
convection occurring around the Fe bump comes to contribute more and more to energy
transport. Then, damping effects of convection depresses the instability of these modes. The
green dot indicates an observed β Cephei listed in Sterken and Jerzykiewicz (1993). In terms
of the location in the HR diagram, the pulsation of this star can be explained by the A1 mode.
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Figure 4.13: Same as Fig.4.2, but for TDC.
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Figure 4.14: The instability domains of the ordinary mode on the sequences A1 (left) and
A2 (right) in the HR diagram for δLC = 0 (top), L′

C = 0 (middle) and TDC (bottom). The
black thin lines are evolutionary tracks, and the red thick parts of them correspond to
evolutionary stages with pulsational instability. The green dot are an observed β Cephei
star listed in Sterken and Jerzykiewicz (1993), and the grey ones α Cygni variables in the
Milky Way listed in Saio et al. (2013). The green filled triangle is HD 50064, a candidate
for a strange-mode pulsator observed by Aerts et al. (2010).
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Figure 4.15: The instability domains of the strange-modes on the sequences D1 (left) and
D2 (right) in the HR diagram for δLC = 0 (top), L′

C = 0 (middle) and TDC (bottom).
The definition of the lines and the dots are the same as Fig.4.14.
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Figure 4.16: The instability domains of the strange-modes on the sequence D3 in the HR
diagram for δLC = 0 (top), L′

C = 0 (middle) and TDC (bottom). The definition of the
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The left panels of Fig.4.15 show that the strange-mode on the sequence D1 has a similar
tendency of difference due to treatments of convection to the ordinary A1 and A2 modes. The
D1 mode is also excited at the Fe bump, around which convective luminosity substantially
contributes to energy transport. The top panel of Fig.4.18 shows the work integral of the
D1 mode, and the one for δLC = 0 increases in the Fe bump convection zone due to the
κ-mechanism. The one for L′

C = 0, on the other hand, drastically decrease, since damping due
to convective luminosity gradient overcomes the κ-mechanism excitation. In the TDC case,
the work integral increases and shows that the damping effects of convection is not so strong
as those in the case of L′

C = 0. While the FC approximation of L′
C = 0 considers convective

luminosity perturbation due to displacement in regions having convective luminosity gradient,
the TDC theory adds the other phenomena such as effects on convective flux due to change
in temperature. From this, the latter effects could be thought to compensate the former one.
In the left top panel of Fig.4.15 (δLC = 0), the instability appears above the HD limit as
well as in the main sequence. As shown by Fig.4.17, the contribution of convective luminosity
becomes stronger with decrease in the effective temperature. Then, the D1 mode does not
become unstable above the HD limit due to damping by convection in the TDC case.

The right panels of Fig.4.15 shows that instability of D2 around log Teff = 4.3 appears in
the cases of δLC = 0 and TDC, but does not exist for L′

C = 0 like the above cases of A1, A2
and D1. The middle panel of Fig.4.18 shows the work integrals at an evolutionary stage with
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log Teff = 4.373 having the unstable D2 mode only for δLC = 0. The D2 mode is excited in
the middle and at the top of the Fe bump convection zone with δLC = 0. But the damping
dominates over the excitation in cases of L′

C = 0 and TDC. The work integral for L′
C = 0

also here shows much stronger damping than for the other treatments.
On the other hand, the other D2 instability appearing in the other effective temperature

ranges shows different tendencies from the above cases. First, the instability appears around
the ZAMS stage with all of the three treatments. In this case, the D2 mode is excited at the
He bump, which does not have convection around the ZAMS stage. This is why the instability
invariably appears in all the treatments. The instability at log Teff = 4.6−4.5 appears in the two
FC approximations. But the excitation mechanism is not the κ-mechanism, since it occurs not
only at the Fe bump κ-mechanism excitation zone satisfying d[κT +κρ/(Γ3−1)]/d log T < 0,
but also in the upper layers. The corresponding work integral is shown in Fig.4.8. The
instability at log Teff = 4 − 3.9 appears only in the TDC case. It is slightly excited around
the Fe bump and mainly around the He bump. Also in this case, the excitation zone does
not fit into the κ-mechanism zone. Although the situation is complicated for the D2 mode,
the stability is dependent of treatments of convection since the Fe bump having substantial
contribution of convective luminosity.

On the other hand, Fig.4.16 shows the instability range of the D3 mode is independent
of the treatments. This mode is excited exclusively around the He bump, where convective
luminosity is negligible. Then, the work integrals for all the three treatments resemble one
another (the bottom panel of Fig.4.18).

Fig.4.19 gives HR diagrams indicating evolutionary stages with at least one unstable radial
mode for the two types of FC and TDC. The instability range by TDC is almost the same as the
case of δLC = 0 for <∼ 30M�. For the more massive stars, the instability is slightly weakened
in the main-sequence stage, and the instability region is separated into several parts. But the
instability domain by TDC looks to cover locations of β Cephei. The computed periods are
consistent with the observed ones as shown in Fig.4.20, and in the order of a few hours. As the

stellar mass increases, the dynamical timescale
√
R3/(GM), which is representative timescale

of stellar pulsations, and hence the period of β Cephei becomes longer. On the other hand,
the treatment of L′

C = 0 makes so strong damping that the instability domain is too small to
explain the β Cephei.

The α Cygni variables are located in the post–main-sequence region and below the HD
limit. They are outside of the instability domain shown by this study. Saio (2011) found
unstable nonradial oscillatory convection (g−) modes having substantial amplitude at the
surface of post–main-sequence stars. He also found that the periods of those modes match
with those of α Cygni variables. Saio et al. (2013) further pursued the explanation for the
pulsations of α Cygni variables, and analyzed evolutionary models which experience the blue
loop stage. According to them, while strange-modes are not excited in 20 and 25M� stars
evolving from the main sequence into red supergiants, blue loop stars, which have experienced
the red giant stage and are going back to the higher effective temperature side, have unstable
strange-modes. In the red supergiant stage, the stars lose substantial amount of mass. This
makes the L/M ratio increase so much that the strange-modes can be excited.

Although Saio et al. (2013) adopted the FC approximation, the pulsations at such an
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Figure 4.19: Domains having at least one unstable radial mode (red lines). The green
and the magenta dots are observed β Cephei listed in Sterken and Jerzykiewicz (1993)
and Saio et al. (2013) respectively, and the grey ones α Cygni variables in the Milky
Way listed in Saio et al. (2013). The green filled triangle is HD 50064, a candidate for a
strange-mode pulsator observed by Aerts et al. (2010).
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et al. (2013).

evolutionary stage are here re-examined with TDC. Saio et al. (2013)’s calculations of the
stellar evolution with stellar wind mass loss showed that the star with the initial mass of 25M�
reduced their own mass to 11.6M� at log T ' 4.1 on the blue loop. In this study, therefore,
the envelope models with M = 12M� and logL/L� = 5.25 are constructed in the range
of log Teff = 4.3 − 3.9. Since the amplitude of radial pulsations is confined to the stellar
surface at the considered stage, it is allowable to neglect the central part of the stars. The
inner boundary conditions ξr = 0 and δL = 0 are imposed at the layer with log T = 6, where
r/R = 0.04 − 0.19. The modal diagram in Fig.4.21 shows that the strange-modes on all of
the sequences D1 to D3 are excited. The result for each mode in each treatment is also shown
in the HR diagram of Figs.4.15 and 4.16. Also here the instability of the D3 mode invariably
appear in all of the treatments, while the result about the D1 and D2 modes depends on the
treatments. The periods of the computed unstable modes and the observed α Cygni variations
are compared in Fig.4.20. The grey line segment indicates the period range of variations for
each α Cygni variable. The blue open circles are the periods of the unstable modes in the
envelope model, and overlap the periods in the 50 and 60M� post–main-sequence stars, while
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the envelope models are located at the substantially lower luminosity than the post–main-
sequence stars. Since the stellar mass of the envelope models is much lower, the dynamical

timescale
√
R3/(GM) is likely to be longer, and to be comparable to that of the more massive

post–main-sequence stars. The periods of α Cygni match with that of the envelope models.
From the above results, we can say that convection can affect the pulsational stability

of massive stars, and that we have to take into account effects of convection to consider
the stability. On the other hand, the instability of the strange-mode on the sequence D3
should definitely exist regardless of the treatments of convection, since its excitation zone
has negligible contribution of convective luminosity. The instability of the D3 mode is found
around the HD limit, and in the envelope models for α Cygni variables. Although we can
expect the responsibility for the HD limit phenomenon and the α Cygni variations, what
happens after the growth of the pulsations is beyond this study. It might be possible that
the amplitude is saturated at some level (Buchler et al., 1997). On the other hand, there are
also attempts to explain the connection of the strange-mode instability to pulsationally driven
mass-loss by nonlinear hydrodynamic calculations (Dorfi and Gautschy, 2000; Chernigovski
et al., 2004; Grott et al., 2005), although the results seem to remain inconclusive. Aerts et al.
(2010) observed pulsation of a luminous B star, HD 50064, of which the period is 57 days
and may correspond to a strange-mode (Godart et al., 2011). In addition, they found change
of mass-loss rate on a timescale of the period of photometric and spectroscopic variation,
which suggests a correlation between mass-loss and pulsations. The location of HD 50064
in the HR diagram is shown as the filled green triangle in Figs.4.14-4.16 and 4.19, and looks
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in the instability domains of the strange-modes. The period is slightly higher than ones of
the computed modes (Fig.4.20), but the dynamical timescales of the evolutionary models and
hence the theoretical strange-mode periods could be longer if mass loss takes place by some
mechanisms.

4.5 Conclusion

This section has shown results of pulsational stability analysis of radial pulsation in hot massive
stars. First, we have discussed change of properties of modal diagrams with increase in stellar
mass. In case of stars with ' 10M�, normalized frequencies are almost constant with change
of effective temperature. As the stellar mass is raised up, the sequences become waving and
come to have ascending and descending sequences in the higher effective temperature side.
The ascending and descending sequences correspond to ordinary modes and strange-modes,
respectively. Pulsational instability is caused by the κ-mechanism on both of the sequences.
But growth rates of unstable strange-modes on the descending sequences is much higher than
those of unstable ordinary modes on the ascending sequences. When the stellar mass reaches
∼ 50M�, instability comes to appear on the descending sequences also in the low effective
temperature. But this instability is not excited by the κ-mechanism.

Next, we have compared results with different treatments of perturbation of convective
luminosity. This study adopts two types of FC approximations with δLC = 0 and L′

C = 0, and
TDC. First, we have compared the results with the two types of FC, and have found that the
result with L′

C = 0 shows weaker instability than that with δLC = 0. When we have δLC = 0,
no work is done by convective luminosity perturbation. When L′

C = 0, on the other hand,
substantial work due to convective luminosity perturbation is done in regions having certain
gradient of convective luminosity. Eventually, strong damping occurs in convection zones and
the modes are likely to be less unstable. Then, we have discussed the result with TDC. Roughly
speaking, the result shows weaker instability than that with δLC = 0, and stronger instability
than that with L′

C = 0. Anyway, we have confirmed that the strange-mode instability certainly
exist even if convection is taken into account. Particularly, the instability of the sequence D3
invariably appears in all the treatments. It can mean that the existence of the D3 instability
does not depend on the treatment of convection. In the HR diagram, this instability appears
around the HD limit, and might be responsible for the lack of observed stars over the limit.
Recent observation found a luminous B star, HD 50064, to change mass-loss rate in a timescale
of a strange-mode period, and implies connection between the strange-mode and mass loss.

On the other hand, it is confirmed with TDC that periods of unstable strange-modes in
envelope models for mass-lost stars in the post main-sequence stage corresponds to those of
α Cygni variations. To know the resultant phenomena following the pulsational instability,
we need nonlinear analyses. Indeed, some authors are making efforts to determine truth or
falsehood of the above suggestions (Dorfi and Gautschy, 2000; Chernigovski et al., 2004; Grott
et al., 2005).
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5
Existence and excitation of strange-modes

Some parts of this chapter are included in “Vibrational instability of Population III very
massive main-sequence stars due to the ε-mechanism”, published in Monthly Notices of
the Royal Astronomical Society Letters, vol. 421. pp. L34–L38 (Sonoi and Umeda, 2012)

5.1 Introduction

§4 has shown that strange-modes exhibit different behaviors from ordinary modes in modal
diagrams. Specifically, while the sequences of ordinary mode frequencies ascend with decrease
in effective temperature, those of strange-mode frequency descend. We also have seen that
unstable strange-modes are likely to have much higher growth rates than unstable ordinary
modes. The above characteristics have been found by previous studies from Wood (1976).
In addition, amplitude of strange-modes are known to be confined to thin surface layers.
Shibahashi and Osaki (1981) found that strange-modes appear only in very luminous stars
with L/M >∼ 104L�/M�.

Theoretical studies have found strange-modes in hot massive stars, Wolf-Rayet stars, he-
lium stars (references shown in §4.1) and others. Then, the cause for the existence and
excitation has been thought to be related to high nonadiabaticity in surface layers of such
stars. But we have not yet obtained clear physical pictures of strange-modes in spite of efforts
by many authors.

To investigate the origin of the strange-modes, Shibahashi and Osaki (1981) carried out
a numerical experiment in which they artificially changed the thermal timescale appearing
in the linearized equation of energy conservation. They found that the strange-mode found
in the normal stability analysis with the unchanged realistic thermal timescale might become
oscillatory convection mode (g− mode) in the limit of infinite thermal timescale, corresponding
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to an adiabatic situation. Saio et al. (1984) performed a similar experiment, and found a
relation to thermal waves.

Gautschy and Glatzel (1990) showed the existence of strange-modes not associated with
thermal waves. They carried out a stability analysis with nonadiabatic reversible (NAR) ap-
proximation, which is equivalent with setting the thermal timescale to zero in Shibahashi and
Osaki’s experiment. They demonstrated that strange-modes appear even in the NAR approxi-
mation. Although they analyzed stability of hydrogen deficit carbon stars, they found unstable
strange-modes both in the normal nonadiabatic analysis and in the NAR approximation. In
the latter, particularly, the classical κ-mechanism can no longer work, and hence an alternative
physical explanation was needed. To understand the existence and the instability of the above
type of strange-mode, Glatzel (1994) exhibited a local analysis with the WKB approximation.
He suggested that the derivative of opacity with respect to temperature κT is important for the
wave propagation of the strange-mode. Besides, dominance of radiation pressure leads to large
phase lag between density and pressure perturbations, and to the strange-mode instability.

Since the strange-modes introduced above appear in the environment with short thermal
timescale, adiabatic approximation is no longer available for them. But recently, strange-modes
were discovered even in the adiabatic approximation in stellar models with newly available
opacity tables (Rogers and Iglesias, 1992) by Kiriakidis et al. (1993) and Gautschy (1993).
Kiriakidis et al. (1993) argued that the Fe opacity bump, which appears after the new opacity
tables were released, causes a sound speed inversion, and that sound waves are partially
reflected. Then, amplitude is extremely confined to surface layers.

Saio et al. (1998) contributed considerably to understanding the characteristics of the
strange-modes. They proposed that strange-modes are categorized into two types; ones with
and without the adiabatic counterpart. The strange-mode with the adiabatic counterpart
behaves similarly to the corresponding adiabatic strange-mode in a modal diagram. And
the unstable modes are excited by the classical κ-mechanism. On the other hand, solutions
of strange-modes without the adiabatic counterparts do not have corresponding adiabatic
solutions in a modal diagram. Their instability might not be caused by the κ-mechanism.
Instead, it was proposed that the restoring force may be radiation pressure gradient, and that
the large phase lag is important like Glatzel (1994).

In this section, the causes for the existence and the excitation of the strange-modes are
investigated along massive star models, which is used for the stability analyses in §4. First, we
consider the existence of the strange-modes by adopting the WKB approximations. Strange-
modes with adiabatic counterparts can be explained with the adiabatic local analysis introduced
in §3.10.1. On the other hand, it is difficult to investigate ones without adiabatic counterparts
since the equations are complicated compared with the adiabatic case. Their origins are dis-
cussed by considering the quasi-isothermal (QIT) and the radiation-pressure dominant (RPD)
cases with the Saio et al.’s procedure. Secondly, the excitation mechanism of the latter type of
strange-modes is investigated by comparing the zero-metallicity case with the solar metallicity
case, and by extending the Saio et al.’s analysis. In addition, we discuss the phase lags of the
computed eigenfunctions.
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5.2 Strange-modes with adiabatic counterparts

As shown in §4, the sequences of strange-modes come to appear with increase in stellar mass.
What generates strange-modes as eigenmodes? To consider this problem, first, let us compare
the results in §4 with solutions by the adiabatic approximation. As introduced in §3.8, we set
entropy perturbation to zero in this approximation.

Fig.5.1 is the same as Fig.4.13, but the adiabatic solutions are also plotted. In case of
10M�, frequencies of nonadiabatic solutions are almost constant with change in the effective
temperature, and almost correspond to the adiabatic ones. As the stellar mass increases,
however,

a) the nonadiabatic sequences come to deviate from the adiabatic sequences in the low
temperature side.

b) both the adiabatic and the nonadiabatic sequences become waving in the high temper-
ature side.

In the following, we discuss the above two properties.

About a)

As the stellar mass increases, nonadiabatic sequences come to deviate from adiabatic sequences
especially in the low effective temperature side (, although there are some nonadiabatic se-
quences which do not have the corresponding adiabatic ones even in the high temperature
side). The adiabatic approximation is valid when the thermal timescale is much longer than
the dynamical timescale. Fig.5.2 shows the profiles of the ratio of the local thermal timescale
to the dynamical timescale. The top panel compares models with log Teff = 3.9 for 10, 30
and 50M� stars. It shows that the ratio goes down in the bulk of a star with increase in
stellar mass. The cause for this is increase in luminosity. On the other hand, the bottom panel
compares 50M� models with different effective temperatures. The ratio comes to go down
with decrease in the effective temperature. This is because the density becomes lower in the
bulk, while it becomes extremely high at the small central region. Those imply that pulsations
become out of touch with the adiabatic process with increase in luminosity or with decrease
in effective temperature.

About b)

In the high temperature side, most of the nonadiabatic sequences fairly matches with the
adiabatic sequences. This implies that properties of nonadiabatic solutions can be discussed
in the adiabatic scheme. As mentioned in §4, the ascending and the descending sequences
correspond to ordinary modes and strange-modes, respectively. In the panels for 30 and 50M�
in Fig.5.1, all the ascending sequences correspond to the adiabatic sequences, while not all
the descending sequences do so. But it is common in both of the panels that the lowest
descending sequence (labeled as D1 in the panel for 50M�) matches with the adiabatic one.
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The unstable strange-modes in the lowest descending sequence has the much higher growth
rate than the ordinary unstable modes in the ascending sequences. As discussed in §4.2.2,
the excitation mechanism for the unstable strange-modes is the classical κ-mechanism like for
the ordinary modes. Since the amplitude is strongly confined to the narrow area near the Fe
opacity bump (Fig.4.7), the κ-mechanism works very efficiently.

What causes such confinement of the amplitude? The local analysis is very convenient to
discuss this. Here we consider the critical frequency for adiabatic radial pulsations introduced
in §3.10.1,

(3.180) : σc(r) '
1

2Hp

=
GMrρ

r2p
,

which is the lower limit of frequency for propagating waves. The top panel of Fig.5.3 shows
the profile of the critical frequency in ZAMS stars. The profile means that acoustic waves are
propagative over the curves of the critical frequency. As the stellar mass increases, a valley
of the critical frequency comes to appear at r/R > 0.9, and waves become trapped there.
This is the reason for the appearance of the strange-modes in the lowest descending sequence.
Eq.(3.180) says that the critical frequency is proportional to density ρ. Indeed, the valley of
the critical frequency is generated due to the profile of the density. The top part of the bottom
panel of Fig.5.3 shows that the density profile becomes flat around the location of the valley
with increase in stellar mass. We can particularly find density inversion in the profile for 60M�.
The gradient of density can be described as

d ln ρ

dr
=

(
∂ ln ρ

∂ ln p

)
T

d ln p

dr
+

(
∂ ln ρ

∂ lnT

)
p

d lnT

dr
(5.1)

= −GMrρ

r2pg

[
1− κLR

4πcGMr

(
1 +

pg
4pR

)]
(5.2)

' −GMrρ

r2pg

[
1− κL

4πcGM

]
(5.3)

where the equations of hydrostatic equilibrium and the diffusion approximation is used from
the first to the second line. From the second to the third line, it is assumed that L ' LR,
Mr ' M and pR � pg, which corresponds to the state of the location near the opacity
bump in the massive ZAMS stars’ envelopes. The gradient of radiation pressure is written as
dpR/dr = −κρLR/(4πr

2c). That is, radiation pressure gradient becomes strong around the
opacity bump. In case of 10M�, the radiation pressure is not so dominant even around the
opacity bump. As the stellar mass increases, however, the luminosity goes up and the radiation
pressure dominates over the gas pressure. Then, the density gradient can be described as
Eq.(5.3), and the condition for the density inversion is

L/L�

M/M�
>∼

4πcG

κ

M�

L�
∼ 104 (5.4)
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where we have assumed κ ∼ 1 cm2 g−1. Indeed, the ratio (L/L�)/(M/M�) increases with
the stellar mass; 5× 102, 4× 103, 7× 103 and 9× 103 for 10, 30, 50 and 60M�. In envelopes
of massive stars, thus, the high L/M ratio leads to the flat density profile or density inversion,
and then creates the valley of the critical frequency. We should also note that the dominance
of radiation pressure leads to increase in radiative temperature gradient. It is favorable for
occurrence of convection, and the third top panel shows that the higher the stellar mass is, the
more convective luminosity contributes, although the contribution is about 10% of the total
luminosity even for 60M�. As a matter of fact, the flat profile of density corresponds to the
convection.

Let us adopt such discussion also to considering the change with the decrease in effective
temperature. The top panel of Fig.5.4 shows profiles of the critical frequency. The valley
appears at r/R >∼ 0.9 around the ZAMS stage. As the star evolves toward the lower effective
temperature side, it becomes wider and deeper. That makes lower frequency waves become
trapped in the valley. Indeed, the frequency of the sequence D1 decreases with the decrease in
effective temperature. The middle panel of Fig.5.4 shows the profiles of kinetic energy density
of the D1 modes, and that the distribution of the energy density becomes wider with the
valley. The extension of the valley is caused by the change of the density profile as well as the
above case of the increase in the mass of a ZAMS star. Also in this case, the density profile
becomes flat, while radiation pressure and convection comes to contribute more strongly.

5.3 Existence of strange-modes without adiabatic coun-

terparts

§5.2 introduces the origin of strange-modes having adiabatic counterparts, which appears in
the high effective temperature side. On the other hand, the nonadiabatic solutions are likely
not to match with the adiabatic ones in the low effective temperature side, since the thermal
timescale tends to be as short as the dynamical timescale. In such a situation, the adiabatic
approximation is no longer valid, and we should consider the other approaches.

5.3.1 Solutions with NAR approximation

First, let us consider extremely nonadiabatic case, corresponding to the case of zero thermal
timescale. In this situation, the ratio of thermal timescale to dynamical timescale becomes
zero, τth/τdyn → 0. Then, the linearized equation of energy conservation for radial pulsations
(3.155) becomes

d

d ln r

(
δLr

Lr

)
= 0, (5.5)

where we have set ε = 0. This means that the perturbation of luminosity δLr/Lr has a
constant value in a whole star, and the physically valid solution is

δLr

Lr

= 0. (5.6)
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This procedure is called nonadiabatic reversible (NAR) approximation. The reason for the
naming is explained below. In the top panel of Fig.5.5, the solutions with the NAR approx-
imation is plotted with the ordinary nonadiabatic solutions. The figure shows that the NAR
solutions fairly fit to the ordinary solutions in the low effective temperature side, and implies
that the pulsations come to take on the extremely nonadibatic feature with decrease in effective
temperature.

On the other hand, the bottom panel of Fig.5.5 shows only the NAR solutions, for which
the symbols are categorized in terms of the stability. In this approximation, the solutions
can be real solutions or complex solutions having complex conjugates. Of the coefficients of
eigenfunctions yi or Yi in the differential equations for pulsations (§3.7), only ω can have a
complex value. In the differential equation system of radial pulsations Eqs.(3.162)–(3.165),
ω appears in Eqs.(3.163) and (3.165). But now the terms having ω’s in Eq.(3.165) vanish
since c4 = τth/τdyn = 0. Eq.(3.163) includes ω2, and if some complex value is the solution
of ω, its complex conjugate should also be the solution for which the imaginary parts of the
eigenfunctions Yi should have the opposite sign. That is the reason why this approximation is
called “reversible”.

5.3.2 WKB approximations

We have made sure that the NAR approximation can explain pulsations in the low effective
temperature side. To understand the properties of the strange-modes further, we here carry
out the WKB approximations following Saio et al. (1998). The differential equations for radial
pulsations in the NAR case become

δρ

ρ
= − 1

r2
d

dr
(r2ξr) (5.7)(

σ2 + 4
GMr

r3

)
=
dδp

dr
=

d

dr

(
pχρ

δρ

ρ
+ p

χT

4

δpR
pR

)
(5.8)

δLr

Lr

= 4
ξr
r
− κρ

δρ

ρ
− κT

4

δpR
pR

+
1

dpR/dr

dδpR
dr

= 0 (5.9)

where we have neglected the perturbation of convective luminosity as δLC = 0 for simplicity.
Here the perturbation of temperature are replaced with that of radiation pressure as 4δT/T =
δpR/pR. Below we discuss two cases, quasi-isothermal (QIT) and radiation-pressure–dominant
(RPD) situations. In the former case, we assume that |κρδρ/ρ| � |(κT/4)δpR/pR| and neglect
the spatial change of χTp/pR. This approximation is suitable for a case where temperature
perturbation is much smaller than density perturbation. In the latter case, on the other hand,
we assume that perturbation of radiation pressure is much larger than that of gas pressure.
Specifically, we neglect the term pχρδρ/ρ in Eq.(5.8). Under the above assumptions, we are
going to reduce Eqs.(5.7)–(5.9) to a second-order differential equation.
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Quasi-isothermal (QIT) modes

Neglecting the term (κT/4)δpR/pR in Eq.(5.9) and the spatial variation of χTp/pR in Eq.(5.8),
we obtain a second-order differential equation,

d2ζ

dr2
+

ζV

r2χρ

c1(ω
2 − ω2

QC) = 0, (5.10)

where

ζ = ξr
√
pχρ exp

[∫ κρχT

8χρ

d ln pR
dr

dr

]
, (5.11)

ω2
QC =

1

c1

[
4χT∇− 4 +

χρ

V

(
B2 +

dB

d ln r
−B

)]
(5.12)

B =
1

2

[
d ln(pχρ)

d ln r
− 2 +

κρχT

4χρ

d ln pR
d ln r

]
(5.13)

We then assume that the dependence of ζ on r is exp(ikr), and the condition for a propagative
solution of ζ becomes

ω2 > ω2
QC. (5.14)

The top panel of Fig.5.6 shows the profiles of ωQC. The waves are propagative over the curves
of ωQC. The bottom panel of Fig.5.6 shows the distribution of the kinetic energy density
for the modes on the sequence D2. This sequence does not have a corresponding adiabatic
sequence, and its properties cannot be understood with the adiabatic approximation. The
bottom panel shows that the energy density is distributed more deeply in the interior with
the decrease in the effective temperature. It means that the waves become propagative more
deeply. According to the top panel, a propagative cavity appearing at 0.65 <∼ r/R <∼ 0.95 for
log Teff = 4.45 is broadening with the decrease in effective temperature. That allows waves to
propagate in the deeper interior. Besides, lower frequency waves become able to be trapped
in the cavity. That may be the reason why the frequency of the sequence D2 goes down with
the decrease in effective temperature.

In Eq.(5.10), the wavenumber of QIT modes is

kQC =
1

r

√
c1V

χρ

(ω2 − ω2
QC) (5.15)

Then, the condition for standing waves is∫ b

a
kQCdr =

(
n+

1

2

)
π (5.16)

where a and b represent the lower and the upper boundaries of a propagation zone, and n
is an integer. The solutions of Eq.(5.16) are plotted as the open circles in Fig.5.7. In the
higher temperature side of the contraction phase, which appears as a hook-like shape in an
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evolutionary track on the HR diagram, the frequencies of the sequences are descending with the
decrease in effective temperature, while they keep the almost constant value with the change
of effective temperature in the lower temperature side. We can recognize this tendency in most
of the sequences in the modal diagrams by the normal nonadiabatic and the NAR analyses
(See Fig.5.5).

Radiation-pressure–dominant (RPD) modes

Next, we consider radiation-pressure–dominant modes. In this case, we neglect the term
pχρδρ/ρ in Eq.(5.8). After some manipulations, we obtain a second-order differential equation,

d2η

dr2
+
η

r2

A0 + A1
c1ω

2

q
−
(
c1ω

2

2q

)2
 = 0 (5.17)

where

η ≡ ξrr
1+hp1/2 exp

[
−ω

2

2q

∫ c1(r
′)

r′
dr′
]
, (5.18)

A0 ≡ V

[
4(4− κT )

χTκρ
+
U

2
+
V

4
+

1

2

d ln ρ

d ln r
− 2− 2

κρ
− 2

q

]
− (h+ 1)(h+ 2), (5.19)

A1 ≡ h+ V (4− κT )∇+
U − V

2
, (5.20)
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q ≡ χTκρ∇, (5.21)

h ≡ 2(χT∇− 1)/q (5.22)

Then, the condition for a propagative solution of η is

ω2
CRP− < ω2 < ω2

CRP+, (5.23)

where

ω2
CRP± =

2q

c1

(
A1 ±

√
A2

1 + A0

)
. (5.24)

The top panel of Fig.5.8 shows the runs of the critical frequencies ωCRP±. Waves are
propagative when the frequency ω is between the two critical frequencies ωCRP±. In the
panel, the white areas are propagation zones, while the grey areas are evanescent zones. It
shows the change in the distribution of the propagation zones with the stellar evolution from
log Teff =4.31 to 4.04. At log Teff = 4.31, propagation zones appear at r/R <∼ 0.71 and
r/R >∼ 0.82. Then, the latter zone extends to the inner side with the evolution.

Similarly to the above case of the QIT modes, we perform the WKB approximation analysis
for the RPD modes. In the second-order differential equation (5.17), we can interpret that the
wavenumber is expressed as

kCRP =
1

r

√√√√A0 + A1
c1ω2

q
−
(
c1ω2

2q

)2

. (5.25)

Then, we should find the value of ω satisfying the standing wave condition,∫ b

a
kCRPdr =

(
n+

1

2

)
π. (5.26)

The solutions for this equation are plotted as the red dots in Fig.5.7. They compose steeper
sequences than ones of the QIT modes. This feature is similar to that of the sequence D3. The
bottom panel of Fig.5.8 shows the distribution of the kinetic energy density of the D3 mode
in the evolutionary stages corresponding to the top panel. The distribution extends to the
interior side with the stellar evolution as if to correspond to the extension of the propagation
zone for the RPD modes, shown in the top panel of Fig.5.8.

5.4 Excitation mechanism for strange-modes without

adiabatic counterparts

As discussed in §4.2.2, the unstable strange-modes having adiabatic counterparts are excited
by the classical κ-mechanism. The excitation takes place in regions where the condition
d(κT + κρ/(Γ3 − 1))/dr > 0 is satisfied. On the other hand, the excitation for the strange-
modes having no adiabatic counterparts occurs even in regions where the above condition is not
satisfied. It implies that the excitation mechanism should be different from the κ-mechanism.
Here we try to clarify the excitation mechanism for this type of strange modes.
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5.4.1 Plane-parallel approximation and two-zone model

Criterion for the instability of strange-modes without adiabatic counterparts

While numerical calculation is powerful to pursue and simulate exact physical phenomena,
it often has difficulty in letting us grasp the essential physical points because of a lot of
complexities. Here, we try to understand the cause for the instability of the strange-mode
having no adiabatic counterparts such as the D3 instability by an analytic approach like §5.3.2.
First, we follow the procedure by Saio et al. (1998) to obtain a criterion for the instability.
Since amplitude of the strange-modes is generally confined to thin surface layers, the plane
parallel approximation is available to understand the instability. We define r0 as the distance
from the stellar center at the bottom of the considered zone. We introduce the height z from
the bottom. Then, we define r ≡ r0 + z. We also use a mass coordinate m defined as

dm = ρdz (5.27)

so that dMr = 4πr20dm. Then the equations of motion, continuity and the diffusion approxi-
mation are

z̈ = − ∂p

∂m
− g, (5.28)

∂z

∂m
=

1

ρ
, (5.29)

F = −4ac

3κ

∂T

∂m
= − c

κ

∂pR
∂m

(5.30)

where F denotes radiation flux. Taking the Lagrangian perturbations of the above three
equations, and neglecting non-linear terms of the perturbed quantities, we obtain

−σ2δz = −∂(δpg + δpR)

∂m
, (5.31)

∂δz

∂m
= −δρ

ρ2
, (5.32)

δF

F
= −κT

4

δpR
pR

− κρ
δρ

ρ
− c

κF

∂δpR
∂m

= 0 (5.33)

where δ indicates the Lagrangian perturbation. The perturbed quantities are proportional to
exp(iσt). Eq.(5.33) represents the extremely nonadiabatic limit. We assume, for simplicity,
the gas pressure obeys the ideal gas law,

δpg
pg

=
δρ

ρ
+

1

4

δpR
pR

. (5.34)

Then, we adopt a two-zone model to the above equations (5.31)–(5.33). The lower zone
is bounded by z0 and z1, and the upper zone by z1 and z2. The stellar surface coincides with
z2. Both zones have the same thickness µ in terms of the mass coordinate m. We define pg,
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pR and ρ at the middle of each zone. We write these quantities as pgi, pRi and ρi with i = 1
and 2 for the lower and upper zones, respectively. Then, Eqs.(5.31) to (5.33) are written as

σ2δz1 = (δpg2 − δpg1 + δpR2 − δpR1)/µ, (5.35)

σ2δz2 = −2(δpg2 + δpR2)/µ, (5.36)

δz1
µ

= −δρ1
ρ21
, (5.37)

δz2 − δz1
µ

= − δρ2
ρ− 22

, (5.38)

κT1

8

δpR1

pR1

+
κT2

8

δpR2

pR2

+
κρ
2

(
δρ1
ρ1

+
δρ2
ρ2

)
= 0, (5.39)

κT2

4

δpR2

pR2

+ κρ
δρ2
ρ2

− 2c

κFµ
δpR2 = 0 (5.40)

where we have used the fact that δp vanishes at the surface, and have neglected the spatial
variation of κ and κρ. Applying equations from (5.35) to (5.40) and (5.34) to each zone, we
obtain a quadratic equation for σ2,

σ4µ4 − σ2µ2Ψ+ 2Φ1Φ2 = 0, (5.41)

where

Ψ = Φ1 + 3Φ2 − 2
ρ2f1Qκρ
s1s2

(5.42)

with

Q =
µFκ

2c
=
pR,1 − pR,2

2
, (5.43)

Φi = ρi

(
pgi +Qκρ

fi
si

)
, (5.44)

si = 1− QκTi

4pRi

, (5.45)

fi = 1 +
pgi
4pRi

(5.46)

for i = 1, 2. We note that the value of Q roughly represents the value of pR (see Eq.(5.30)).
The determinant for the quadratic equation (5.41) is given by

D = ψ2 − 8Φ1Φ2 (5.47)

The sign of D gives the property of the solution σ2. That is, when D < 0, σ2s are complex,
while σ2s are real when D > 0. It means that the necessary condition for the instability is
D < 0. When κρ is zero, the discriminant becomes D = (ρ1pg1−ρ2pg2)

2+8ρ2pg2 > 0. Then
we need a nonzero value of κρ for the instability.
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counterpart, for the 50M� star model at a stage with log Teff = 4.118. Middle: the pressure
and the density profiles at the same evolutionary stage as the top panel. Bottom: the
opacity derivatives with respect to temperature and density, κT and κρ, at the same
evolutionary stage.

Contribution of radiation pressure to the instability

As we can see in §4, the instability of the strange-modes becomes stronger with increase
in the stellar luminosity. As the luminosity increases, radiation pressure contributes more
and more. Here, the above discussion is further developed to investigate the contribution of
radiation pressure. We introduce β(≡ pg/p) into the formulation, and assume that β and
κT,i are homogeneous through the considered two zones, i.e. β = pg1/p1 = pg2/p2 and
κT = κT,1 = κT,2. Specifically, we obtain

Φ1 = ρ1p1

β + (4− 3β)
κρ
8

1− p2
p1

1− κT

8

(
1− p2

p1

)
 , (5.48)

Φ2 = ρ2p2

β + (4− 3β)
κρ
8

1− p2
p1

p2
p1

− κT

8

(
1− p2

p1

)
 , (5.49)

ρ2f1Qκρ
s1s2

= ρ2p2
(4− 3β)

(
1− p2

p1

)
κρ[

1− κT

8

(
1− p2

p1

)] [
p2
p1

− κT

8

(
1− p2

p1

)] . (5.50)

With the above formulations, we obtain an expression of D1(≡ D/(p1ρ1)
2) as a function of

β with parameters, p2/p1, ρ2/ρ1, κT and κρ.
Fig.5.9 shows the model with an unstable D3 strange-mode. The top panel shows the

work integral. It is increasing in a region from log T =4.6 to 4.2, which means that the mode
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Figure 5.10: Profiles of the determinant D1. The positive value of D1 means that the
imaginary part of the complex frequency σ is equal to zero, that is, perturbation is
neutrally stable. On the other hand, the negative value of D1 indicates a nonzero value of
the imaginary part, which is necessary condition for the pulsational instability. The top
two panels show D1 as a function of β, the ratio of gas to total pressure. The top-left and
the top-right panels show D1 profiles with different values of p2/p1 and ρ2/ρ1, respectively.
The left-bottom and the right-bottom panels show D1 as a function of p2/p1 and ρ2/ρ1,
respectively, with β = 0, corresponding to the limit of dominance of radiation pressure.
The values of κT and κρ are fixed to 0.1 in all the panels. The value of ρ2/ρ1 is fixed to
1 in the left panels, while that of p2/p1 to 0.1 in the right panels.

is excited there. In this region, the density profile is flat compared with the pressure profile as
shown in the middle panel. This flat profile corresponds to convection. In the bottom panel,
we can see that κρ has an almost constant value of ∼ 0.1. On the other hand, κT has a
negative value in most of the regions, but a positive value in the middle of the excitation zone.
The maximum value is almost the same as the value of κρ.

Fig.5.10 shows profiles of the determinant D1. In all of the panels, the values of κT and
κρ are fixed to 0.1. The top panels show D1 as a function of β. The top-left panel shows D1

with different values of the ratio p2/p1. The value of ρ2/ρ1 is fixed to 1, which is based on
the flat profiles in the computed evolutionary models such as the one in Fig.5.9. The positive
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value of D1 means that the imaginary part of the complex frequency σ is equal to zero, that
is, perturbation is neutrally stable. On the other hand, the negative value means that the
imaginary part has nonzero value, and is the necessary condition for the instability. As we can
see in the top-left panel, roughly speaking, the value of D1 is likely to decrease with decrease
in β. The negative value tends to appear with the low value of β. This means that dominance
of radiation pressure is necessary for the instability. But the situation differs according to
the value of p2/p1. The negative value of D1 appears in the limited range of p2/p1. The
bottom-left panel shows D1 as a function of p2/p1 with β = 0, and that a negative value of
D1 appears within the range of 10−2 <∼ p2/p1 <∼ 1.

The similar tendency can be found in the right panels. The top-right panel shows D1 as
functions of β with different values of ρ2/ρ1. When the density decreases outward like the
cases of ρ2/ρ1 =0.1, 0.01, D1 does not become negative for any value of β. But it can be
negative when ρ2/ρ1 >∼ 1. This implies that a flat density profile is required for the instability.
But similarly to the ratio of p2/p1, there is a finite range of ρ2/ρ1 for the negative D1. The
right-bottom panel shows that D1 becomes negative within the range of 0.1 <∼ ρ2/ρ1 <∼ 6
when β = 0.

Thus, dominance of radiation pressure is favorable for the instability of the strange-modes
without adiabatic counterparts, although gradients of pressure and density, to which the ratios
p2/p1 and ρ2/ρ1 correspond, should be within the limited ranges. In particular, a flat density
profile is favorable for the instability. In §5.5.2, the effect of radiation pressure on the instability
is examined with realistic stellar models.

5.4.2 Large phase lag

Eq.(5.33) represents the extremely nonadiabatic limit. In other words, heat capacity is too
small to save thermal energy flowing from the stellar center. This situation would cause
isothermal perturbations. Then, we neglect the term (κT/4)(δpR/pR)(= κT δT/T ). On the
other hand, we consider the gradient of temperature perturbation is still substantial, and keep
the term [c/(κF )]∂δpR/∂m(= ∂δT/∂T ). Then, we have

∂δpR
∂m

= −κρκF
c

δρ

ρ0
. (5.51)

When the matter shrinks (δρ > 0), the opacity increases and it should receive stronger
radiation. Then the matter should save thermal energy from the radiation. But we now
consider the situation that the radiation is too strong for the matter to save the transferred
energy. Then, since the energy must continue to flow instead of being saved, the temperature
(or radiation pressure) gradient should take place. When we assume the spatial dependence
of the perturbed quantities is exp(ikr), Eq.(5.51) becomes

ikδpR = −κρκL
c

δρ. (5.52)

This says that there is a 90◦ phase lag between δpR and δρ. As discussed in §3.11, work
during pulsations is product of pulsational amplitude and sine of a phase lag between total
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Figure 5.11: Top: Work integral and phase lag between pressure and density for the
fundamental mode on the sequence A1, and the run of κT + κρ/(Γ3 − 1) for 50M� with
X = 0.70, Z = 0.02. Bottom: phase lag, κT + κρ/(Γ3 − 1) and work integral are shown
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124



-180

-120

-60

 0

 60

 120

 180

 4.5 5 5.5 6 6.5
-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02
φ(

δρ
)−

φ(
δp

),
 (

κ T
+

κ ρ
/(Γ

3-
1)

)×
60

W
/(

4π
E

)

log T

50Msun X=0.70 Z=0.02 log Teff=4.214

D2 (post MS)

φ(δρ)−φ(δp)
W/(4πE)

κT+κρ/(Γ3-1)

-180
-120
-60

 0
 60

 120
 180

φ(
δρ

)−
φ(

δp
) 50Msun X=0.70 Z=0.02

D3

-2

 0

 2

κ T
+

κ ρ
/(Γ

3-
1)

 0

 0.03

 0.06

44.24.44.64.855.25.45.65.86

W
/(

4π
E

)

log T

log Teff=4.293
4.173
4.069

Figure 5.12: Top: Work integral and phase lag between pressure and density for the
strange-mode without the adiabatic counterpart on the sequence D2, and the run of κT +
κρ/(Γ3− 1) for 50M� with X = 0.70, Z = 0.02. Bottom: phase lag, κT +κρ/(Γ3− 1) and
work integral are shown from top to bottom. These are for the strange-mode without the
adiabatic counterpart on the sequence D3 in different evolutionary stages. The magenta
colored regions around log T = 5.3 and 4.6 are the Fe and the He bump excitation zones,
respectively, satisfying the condition for the κ-mechanism, d[κT +κρ/(Γ3−1)]/d log T < 0.

125



pressure and density. If we assume that radiation pressure is dominant (that is, total pressure
is occupied by radiation pressure), the 90◦ phase lag significantly contributes to excitation or
damping. Below, phase lags are compared between ordinary modes and strange-modes in the
results of the stability analysis.

First, we check a phase lag in a case of the classical κ-mechanism. The top panel of
Fig.5.11 shows the property of the fundamental mode, appearing on the sequence A1. The
work integral is increasing in a zone where d(κT + κρ/(Γ3 − 1))/d log T < 0 is satisfied. It
means that the mode is excited by the κ-mechanism. Damping takes place just inside the
excitation zone, and the value of the phase lag φ(δρ) − φ(δp) is negative there. At the
boundary between the damping and the excitation zones, the phase lag becomes zero, which
means the perturbations of pressure and density are in phase. In the excitation zone, the phase
lag becomes positive. It has a maximum value in the middle of the excitation zone.

The bottom panel of Fig.5.11 is the profile of the strange-mode on the sequence D1 in
different evolutionary stages with log Teff = 4.519, 4.426, 4.373. As discussed in §4, the
D1 strange-mode has an adiabatic counterpart and is excited by the κ-mechanism in the early
evolutionary stage. The excitation takes place within a zone with d(κT+κρ/(Γ3−1))/d log T <
0 at least at log Teff = 4.519, 4.426. The phase lag is not so large and zero at the boundary
between the damping and the excitation zones similarly to the case of the fundamental mode
(A1). As the stellar evolution proceeds and the effective temperature decreases, however, the
excitation zone shifts to the outside of that zone. At log Teff = 4.373, we can see that the
excitation occurs also in a zone without d(κT + κρ/(Γ3 − 1))/d log T < 0. This phenomenon
should correspond to the fact that the D1 sequence comes to deviate from the adiabatic
sequence around log Teff = 4.4 − 4.3 shown in the modal diagram of the bottom panel in
Fig.5.1.

In the case of strange-modes without adiabatic counterparts, on the other hand, profiles
of phase lags are significantly different from the above. Fig.5.12 shows the profiles for the
strange-modes of the sequences D2 and D3. The D2 mode has two excitation zones. The
inner one at log T = 5.1−5.3 corresponds to the Fe opacity bump. In this zone, the mode can
be said to be excited by the κ-mechanism since the excitation takes place within a zone with
d(κT +κρ/(Γ3− 1))/d log T < 0. On the other hand, most parts of the outer excitation zone
has d(κT + κρ/(Γ3 − 1))/d log T > 0 except near the top part of the zone, and the excitation
should not be caused by the κ-mechanism. On the other hand, the D3 mode has only one
excitation zone around the He opacity bump, and the excitation may not be the κ-mechanism.

This figure also shows that the phase lags of such modes are much larger than the above
cases of A1 and D1. Although Eq.(5.52) predicts the phase lag between pressure and density
is 90 degree, that of the actual eigenfunctions indeed exceeds 90 degree. At the boundary
between the damping and the excitation zones, they reach 180 degree, which means density
and pressure are opposite in phase instead of being in phase as seen in the κ-mechanism case.
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5.5 Zero-metallicity case

Metallicity is one of important parameters to determine stellar structure and also pulsations.
In massive stars, ionizations of Fe group elements substantially contribute to opacity. The
ordinary modes like A1 and A2, and some of the strange-modes like D1 and (partially) D2 are
excited by the κ-mechanism of the Fe opacity bump. We can expect that such modes should
not be excited in case of zero-metallicity. On the other hand, the D3 mode is excited around
the He opacity bump, and seems to have nothing to do with the Fe bump.

On the other hand, as an envelope should have smaller opacity, it should receive weaker ra-
diation. This reminds us that radiation should become weaker when the metallicity is reduced.
In fact, existence or non-existence of the Fe bump affects strength of radiation pressure around
the He bump as shown below. Then, the instability of the D3 mode can be also affected by the
metallicity. Besides, zero-metallicity very massive stars can be formed in the early Universe.
Since they might significantly contribute to chemical evolution of the early Universe, their
stability is worth analyzing.

5.5.1 Overview of Population III very massive stars and the ε-
mechanism instability

The first-generation stars born in the early Universe are thought to have no or few heavy
elements. They might play an important role in the chemical evolution of the early Universe.
The initial mass function for the first-generation stars has not been definitively determined
yet. However, a lack of heavy elements leads to a deficiency of the coolants in the star
formation stage and hence to an expectation that very massive stars might have been formed
(e.g. Bromm et al., 1999; Abel et al., 2002; Omukai and Palla, 2003).

Many authors have proposed and analyzed the ε-mechanism instability in very massive stars.
It began to be noticed from Ledoux (1941), who suggested that the influence of high radiation
pressure makes the effective ratio of specific heat γ, close to 4/3. Then the pulsational
amplitude in the core becomes comparable with that in the envelope. This situation is favorable
for instability due to the ε-mechanism since excitation by this mechanism in the core can
exceed flux dissipation in the envelope. Then, the following studies have carried out stability
analyses in models of massive stars with solar-like composition, and proposed the critical mass
above which the instability occurs (Schwarzschild and Härm, 1959; Stothers and Simon, 1968;
Aizenman et al., 1975; Stothers, 1992). Schwarzschild and Härm (1959) proposed that the
fundamental mode becomes unstable for >∼ 60M� with pure electron scattering opacity, while
Stothers (1992) suggested that the critical mass is 121M� with the recent OPAL opacity table
(Rogers and Iglesias, 1992). In the latter case, the fundamental mode is excited mainly by the
κ-mechanism of Fe bump rather than the ε-mechanism.

In the zero-metallicity case, however, no or very little metal exists, and Fe bump does not
appear. Then, the ε-mechanism is important for the instability in this case. Baraffe et al.
(2001) analyzed pulsational stability in zero-metallicity very massive stars with 120− 500M�.
It was found that the radial fundamental mode becomes unstable due to the ε-mechanism
in the main-sequence stage. The ε-mechanism is one of excitation mechanisms for stellar
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Table 5.1: Property of zero-metallicity ZAMS models.
M R log Teff logL log Tc Mcc

(M�) (R�) (K) (L�) (K) (M�)
500 10.4 5.04 7.10 8.17 445
1000 14.7 5.06 7.46 8.19 898
3000 25.6 5.07 7.99 8.21 2731

Mcc denotes convective core mass.

pulsations. In this mechanism, nuclear energy is the source of thermal energy, and converted
into mechanical pulsation energy through heat engine mechanism. In general, nuclear energy
increases with temperature. During pulsations, change in amount of nuclear energy is in phase
with temperature and density. That is, more nuclear energy is given as the thermal energy
source in a shrinking phase. It accelerates pulsation more than the previous cycle, and lets the
amplitude grow.

Population III very massive stars might have released a significant amount of heavy elements
by supernova explosions and contributed to the chemical evolution of the early Universe. The
stars with >∼ 300M� experience a core-collapse supernova explosion at the end of their life,
while those with 130 − 300M� experience a pair-instability supernova explosion (Ohkubo
et al., 2009). In addition, the former stars leave intermediate-mass black holes, for which
several candidates have been found as ultraluminous X-ray sources (Feng and Soria, 2011).
Then, the evolution of very massive stars is very important for the above phenomena, and has
been investigated by several groups (e.g. Klapp, 1983, 1984; Heger et al., 2003; Bahena and
Klapp, 2010).

In this study, therefore, the ε-mechanism instability is investigated in more massive stars
with 500− 3000M�. The equilibrium models with 500, 1000 and 3000M� are constructed by
stellar evolution code developed by Umeda and Nomoto (2002), Umeda and Nomoto (2005)
and Ohkubo et al. (2006) during the core hydrogen-burning stage.

For the zero-metallicity stars, the only possible way of stating hydrogen burning is the pp-
chain no matter how massive the star is. Hence, the temperature near the stellar center is much
higher than in the case of metal-rich stars. During the pre–main-sequence stage, gravitational
contraction releases energy so that the energy equilibrium in the whole star can be kept. When
the central temperature reaches ∼ 107 K, the pp-chain is activated and releases enough energy
to stop the gravitational contraction for stars with <∼ 20M�. For more massive stars, however,
the gravitational contraction cannot be stopped by the pp-chain burning (Marigo et al., 2001).
When the central temperature reaches ∼ 108K, the triple alpha reaction produces enough 12C
to activate the CNO cycle and then the contraction stops. Thus, the main energy source
for core hydrogen-burning of Population III massive stars is the CNO cycle. Table 5.1 shows
the properties of the equilibrium models for the zero-age main-sequence (ZAMS) stage, as
which we define the time when the gravitational contraction stops. The central temperature
is hardly different among the different mass models and corresponds to the occurrence of the
triple alpha reaction. Due to the large nuclear energy generation, the convective core is very
large and occupies ' 90 per cent of the stellar mass.
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Table 5.2: Property of pulsations for the models marked with open circles in Fig.5.13
Periods (h) Growth timescale τg (yr)

Mode 500M� 1000M� 3000M� 500M� 1000M� 3000M�
F 4.31 6.17 10.4 1.63× 104 1.22× 104 8.99× 103

1H 1.70 2.13 2.98 −6.81× 10 −2.90× 10 −1.97× 10
2H 1.24 1.59 2.28 −2.35 −7.12× 10−1 −5.45× 10−1

As described above, the gravitational contraction continues while only the pp-chain works.
When the CNO cycle is activated, the contraction stops since the energy generation of the
CNO cycle is much higher than the pp-chain and can maintain energy equilibrium without the
contraction.

Such high energy generation induces vibrational instability due to the ε-mechanism. Fig.5.13
shows the variation of the growth rate, −σI/(2π), of the radial fundamental mode for 500,
1000 and 3000M� stars and the profiles of the equilibrium models for 500M� star with stellar
evolution. The positive value of the growth rate means instability. As the nuclear energy
generation abruptly increases just before the ZAMS stage due to the onset of the CNO cycle,
the growth rate does as well and becomes positive.

Fig.5.14 shows the work integral for the fundamental mode and the nuclear energy gener-
ation rate for 500M�. Before the abrupt increase in the nuclear energy generation rate, the
ε-mechanism does not work efficiently in the core. However, after the increase, excitation by
the ε-mechanism causes the instability.

Table 5.2 shows the results of the stability analysis of the models marked with the open
circles in Fig.5.13. The growth timescale is defined as τg ≡ −2π/σI, i.e. the e-folding time of
the amplitude. The positive values of the growth time-scale mean the instability. The radial
fundamental mode becomes unstable since the amplitude is relatively large in the core and
excitation by the ε-mechanism there exceeds flux dissipation in the envelope. On the other
hand, the other radial modes are pulsationally stable since the amplitude is much larger in the
envelope.

The instability of the fundamental mode continues during the early stage of core hydrogen
burning. The most unstable models, marked with the open circles in Fig.5.13, are at age
5× 105 yr and the growth time-scale is ∼ 104 yr. As pointed out by Baraffe et al. (2001), the
growth time-scale in the case of the ε-mechanism is relatively long. Besides, since the central
temperature does not increase efficiently from 500 to 3000M�, the effect of the nuclear energy
generation and the growth rate do not change with stellar mass.

After the activation of the CNO cycle, the stellar radius expands. With this, the density
contrast between the inner and outer parts of the star, or the ratio of the central density
to the average density in the whole star, ρc/〈ρ〉, increases. This causes the amplitude in
the envelope to be much larger than in the core. Fig.5.14 shows that in such a stage flux
dissipation in the envelope exceeds excitation by the ε-mechanism, which works efficiently in
the core. The instability disappears at age ' 1 × 106 yr, or Xc ' 0.4. According to Baraffe
et al. (2001), the duration of the unstable phase becomes longer as the stellar mass increases
from 120 to 500M�. In this mass range, the stellar structure may become more favorable to
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the ε-mechanism instability as the stellar mass increases. In the mass range analyzed in this
study, on the other hand, the stellar structure and hence the duration of the unstable phase
do not change substantially with stellar mass.

Compared with the result of Baraffe et al. (2001), the duration of the unstable phase for
500M� is longer, while the maximum value of the growth rate is lower. In their analysis,
around the ZAMS stage, the growth rate initially has a positive and extremely high value, and
then shows a rapid variation with time due to the adjustment of the stellar structure when the
initial CNO is produced (see their fig. 4). In our analysis, on the other hand, the growth rate
is initially negative and becomes positive just after the onset of the CNO cycle. This implies
a difference in the methods to calculate evolutionary models.

5.5.2 Strange-mode instability in zero-metallicity case and ef-
fects of lack in heavy elements

In the main-sequence stage, only the above ε-mechanism instability takes place. Due to the
lack of metal, the stars do not have the Fe bump, and the κ-mechanism does not work to
excite ordinary modes and strange-modes. In the post–main-sequence stage, on the other
hand, the stars have instability of the strange-modes on the sequence D3. Fig.5.15 is the
result of the nonadiabatic analysis about D3. In the zero metallicity case, the other sequences,
A1, A2, D1 and D2 never possess unstable modes. For this analysis, the evolutionary models
are constructed by MESA.
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The D3 instability appears in stars having higher luminosity compared with the Population
I case. In the discussion of §4.4, we have found that the D3 modes are excited at the He bump
(see the bottom panel of Fig.4.18). From this, the D3 instability seems to have nothing to
do with existence or non-existence of the Fe bump. Fig.5.16 shows opacity profiles of models
having similar effective temperature with Z = 0 and Z = 0.02. The representative properties
of the models are introduced in Table 5.3. The models with Z = 0.02 have the Fe bump
around log T = 5.2 − 5.3, while those with Z = 0 do not. On the other hand, both of
models with Z =0 and 0.02 have the He bump. As the stellar mass and hence the luminosity
increases, the opacity decreases due to decrease in density. Both in cases of Z =0 and 0.02,
on the other hand, the D3 mode becomes unstable as the luminosity increases.

If the opacity were related to the excitation, the derivatives would be responsible. Fig.5.17
shows the profiles of κT and κρ in the models of Table 5.3. The top panel is for κT . The bump
of κT appears around log T ' 4.5, corresponding to the second helium ionization zone both in

Table 5.3: Stellar models for comparison in different metallicity
M/M� X Z log Teff logL/L� D3
40 0.70 0.02 4.01 5.76 stable
60 0.70 0.02 4.09 6.03 unstable
70 0.75 0 4.09 6.15 stable
120 0.75 0 4.08 6.49 unstable
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Table 5.4: Property of instability of D3 strange-mode in Z = 0 case
M(M�) age (yr) log Teff Periods (h) Growth timescale τg (yr)
120 2.8×106 4.191 290 1.87
200 2.3×106 4.201 378 0.88

the cases of Z =0 and 0.02. For Z =0.02, another bump appears around log T = 5.1− 5.2,
corresponding to the Fe group element ionization zone. As mentioned above, the excitation
of the D3 mode takes place around the second helium ionization zone. For Z = 0.02, the D3
mode is stable in the 40M� model, while unstable in the 60M�. But there is no substantial
difference between the κT profiles of the two models. The same is true between the 70M�
and 120M� models with Z = 0. The bottom panel shows the profile of κρ. Similarly to the
case of κT , there is no significant difference between stable and unstable models, though more
luminous models are likely to have lower values of κρ.

By the way, existence or non-existence of the Fe bump should causes some differences
in envelope properties. As a matter of fact, as an envelope has larger opacity, it becomes
subjected to radiation pressure. Fig.5.18 shows the ratio of gas to total pressure, β ≡ pg/p.
The smaller value of β, the more radiation pressure dominates over gas pressure. The 60M�,
Z = 0.02 model and the 70M�, Z = 0 model have the close luminosity in addition to the
close effective temperature. But the former model has much stronger dominance of radiation
pressure due to the Fe bump. Similarly, when we compare stable and unstable models in the
same metallicity, the unstable models have the stronger dominance. This implies that radiation
pressure could be the cause for the D3 instability.
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The growth rate of the D3 mode is extremely high compared with that of ordinary modes
such as the unstable fundamental mode excited by the ε-mechanism (§5.5.1). Then, its
instability might be influential on the stellar evolution as discussed at the last of §4.4. The
growth timescale of the D3 is ∼ 1 yr (Table 5.4), while that of the fundamental mode excited
by the ε-mechanism is ∼ 104 yr (Table 5.2). In the Population III case, particularly, stars
with the initial mass of 130 − 300M� are thought to experience pair-instability supernova
(PISN) explosion, which provides peculiar chemical composition, which is very different from
one provided by normal core collapse supernovae. But recent detailed comparisons between the
observations of extremely metal poor (EMP) stars (Cayrel et al., 2004) and the nucleosynthesis
yields of PISN models (Umeda and Nomoto, 2002; Heger and Woosley, 2002) have shown
that the PISN yields are not suitable to reproduce the abundance patterns of EMP stars. The
instability of the D3 mode might affect the theoretical scenario of the evolution toward the
PISN, and more detailed investigations such as nonlinear analyses are worth doing.

5.6 Conclusion

In this section, we have discussed the cause for the existence and the pulsational instability
of strange-modes. There are two types of strange-mode, ones with and without an adiabatic
counterpart. First, we discussed one with an adiabatic counterpart. The existence of this
type can be explained by the profile of the critical frequency derived from the adiabatic WKB
approximation. In the lower mass stars, density monotonically goes down outward. As the
stellar mass increases, radiation pressure around the opacity bump comes to dominate over gas
pressure, and to push the outer layer more strongly. Then, the density profile becomes flat,
since the outer layer needs gravity enough to compete with the radiation pressure. This makes
a valley of the critical frequency. Waves are trapped there, and the strange mode appears
with large amplitude in this valley. This type of strange-mode is excited by the κ-mechanism
as discussed in §4.2.2.

Secondly, we have discussed the strange-modes without adiabatic counterparts. First,
we have considered the cause for the existence of the modes. The two types of the WKB
approximations are carried out along the model sequence of a massive star evolution for the
quasi-isothermal (QIT) and for the radiation-pressure–dominant (RPD) modes. In a modal
diagram for the massive star model sequence, the behavior of the QIT modes represents stable
strange-modes without adiabatic counterparts, while the RPD modes correspond to unstable
ones, that is, the D3 mode. Next, we have investigated the cause for the instability by the
local analysis, and found that dominance of radiation pressure is required for the instability.
The extremely nonadiabatic situation makes waves having a large phase lag between radiation
pressure and density, since flowing radiation flux is too strong for matter to save the flux energy.
Profiles of the phase lags are carefully investigated, and it has been found that it changes in the
range of from 0 to 180 degree in the excitation zone unlike the κ-mechanism case. The large
phase lag substantially contributes to strong excitation, when radiation pressure is dominant.

Finally, we analyzed pulsational instability of the zero-metallicity very massive stars. The
ordinary modes and some of strange-modes are excited by the κ-mechanism of the Fe opacity
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bump in case of Population I composition. In the zero-metallicity case, the κ-mechanism of
the Fe opacity does not work, and these modes become no longer unstable. On the other hand,
the D3 mode becomes unstable, but in higher luminosity stars compared with the Population
I case. Although the D3 mode is excited around the He bump, its instability is indeed affected
by the existence or non-existence of the Fe bump, since the Fe bump leads to dominance of
radiation in massive star envelopes in the metal-rich case. In the zero-metallicity case, the
D3 mode is unstable for M >∼ 100M�. In this mass range, the ε-mechanism instability also
appears in the main-sequence stage. But the D3 mode instability has much higher growth rate
than the ε-mechanism instability, and might affect the evolutionary scenario toward the pair-
instability supernova (PISN). Although PISN has the possibility to provide peculiar chemical
abundance to their surroundings, its existence is controversial. The result of this study is in
disagreement with the existence of PISN.
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6
Stability analysis of nonradial pulsations

6.1 Introduction

Today, many nonradial pulsators are known as well as radial pulsators. While Cepheids, RR
Lyrae stars mainly show radial pulsations, other main sequence stars, red giants and white
dwarfs experience nonradial pulsations. Radial pulsations take place by propagation of acoustic
waves. On the other hand, nonradial pulsations do by that of internal gravity waves besides
acoustic waves. Eigenmodes of acoustic and internal gravity waves are called p and g modes,
respectively. Nonradial modes extend our possibility to extract information of stars. Observed
nonradial pulsations often show so-called “rotational splitting”, which appears in frequency
spectra. The width of the splitting indicates rotational frequency. The Sun shows a lot of
nonradial p modes. By use of inversion techniques with the modes, the interior profiles of e.g.
internal rotation and acoustic velocity has been obtained.

As for hot massive stars, β Cephei variables are classically-known pulsators. They have
masses with M = 8− 18M�. The period is in the range of 2 to 8 hours. The corresponding
unstable modes are low-order1 radial modes, and nonradial p and g modes. The excitation of
β Cephei pulsations had been a long-standing problem, since old opacity tables had underes-
timated the opacity due to the Fe group elements. In the early 1990’s, the OPAL and the OP
opacity projects provided new opacity tables, in which the opacity of the Fe group elements
are enhanced compared with in the old tables. That gave the Fe opacity bump around 200,000
K in the stellar interiors. Especially, it drastically changed models of hot massive stars. Until
then, they are believed to have radiative envelopes. But it was found that the Fe bump makes
a convection zone having a certain size. Besides, stability analyses demonstrated that the

1Roughly speaking, it means low number of nodes. With increase in the order, a frequency of p and
g modes becomes higher and lower, respectively.
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bump leads to the κ-mechanism excitation against the low-order p and g modes, and provides
the β Cephei type pulsations.

On the other hand, Waelkens (1991) brought attention to a group of seven young Popu-
lation I variable mid-B stars, and introduced the term slowly pulsating B (SPB) stars. They
show high-order g mode pulsations with the period between 0.5 and 5 days. Their mass is in
the range of 2 − 7M�. Unstable modes of SPB stars are also excited by the κ-mechanism
of the Fe opacity bump. Recently, Saio et al. (2006) and Godart et al. (2009) explained a
SPB supergiant (SPBsg) star, HD 163899, in the post main-sequence stage are pulsating with
high-order g modes. In such an evolutionary stage, the g modes had been believed to experi-
ence strong radiative damping in the core, which has the high density gradient, and never to
become unstable, even if they are excited at the Fe bump in the envelope. But if the star has
an intermediate convection zone above the hydrogen burning shell, the g mode waves can be
reflected by the convection zone, and avoid the damping in the core. This implies the existence
of the intermediate convection zone in spite of uncertainties on treatment of convection in
stellar models.

In this chapter, we discuss results of stability analysis of nonradial pulsations in hot massive
stars. Even though convection zones of the hot massive stars are not so thick as those of the
red giants, the Fe opacity bump gives a certain size of convection zone. The pulsations of β
Cephei and SPB stars and strange-modes are excited there. Then, the analysis is carried out
with the FC approximation and TDC, and effects of convection is discussed. As explained in
§3, nonradial pulsations have a number of patterns of node lines on a spherical surface. Then,
the dependence of nonradial strange-modes on the spherical degree is also discussed.

6.2 Theoretical unstable nonradial modes

Stability analyses for nonradial pulsations are carried out with the FC approximation and TDC.
This study adopts the Cowling approximation, under which the perturbation of gravitational
potential is neglected. The corresponding differential equation system is Eqs.(3.135)-(3.138).
For the FC approximation, we set δLC = 0 and F ′

C,h = 0. Here we discuss the main se-
quence stage of a 40M� star. Fig.6.1 shows modal diagrams of l = 2 modes for the 40M�
main-sequence stage. The abscissa is the effective temperature, and the left and right sides
correspond to the ZAMS and the terminal age of main sequence (TAMS) stages. The top
panel shows solutions by the adiabatic approximation with the differential equation system
Eqs.(3.143)-(3.144). In the middle panel, we can see a descending sequence having green
dots, which indicate unstable modes with high growth rates. It corresponds to the strange-
mode sequence D1 in the radial pulsation case. As we can see by comparing with the top panel,
this sequence has a corresponding adiabatic sequence like the sequence D1 of the radial case.
Many ascending sequences cross the descending sequence D1. Around the cross points of the
ascending sequence and the sequence D1, modes on the former become unstable. They are
excited by the κ-mechanism of the Fe bump, and correspond to the β Cephei type pulsations.
The ascending sequences correspond to g modes. In general, g modes have large amplitude
in deep interior compared with p modes in the early stage of main-sequence. But they come
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to have large amplitude in the outer envelope including the Fe opacity bump with the stellar
evolution.

Fig.6.2 shows propagation diagrams at the two evolutionary stages with log Teff =4.634
(ZAMS), 4.488. In these diagrams, the N2 profile is shown only in the range where the
value of N2 is positive. In the top panel, N2 is negative in the range of 0 < r/R <∼ 0.37,
which corresponds to the convective core. On the other hand, the zone with N2 < 0 at
r/R ' 0.97 corresponds to the convective zone around the Fe bump. With the stellar evolu-
tion, the convective core shrinks due to decrease in opacity. In the deep interior, the electron
scattering opacity is dominant, and expressed as 0.2(1 + X) cm2 g−1. It means that con-
sumption of hydrogen abundance due to nuclear burning reduces the opacity. Then, at the
stage with log Teff = 4.488, the radius of the convective core is less than r/R = 0.1. Since
the convective core is shrinking with converting hydrogen to helium, a mean molecular weight
gradient (µ-gradient) is generated just above the convective core. This gradient makes a
large density gradient, and hence raises up the Brunt-Väisälä frequency. Above the µ-gradient
zone, an additional convective zone appears at r/R ' 0.15 due to strong radiation pressure.
It makes the µ-gradient propagation zone separated from the above thick propagation zone
(0.18 <∼ r/R <∼ 0.7).

The blue line segments indicate the frequency and the propagative range of the g2 mode,
indicated as red crosses in Fig.6.1. At the ZAMS stage, the g2 mode is propagative in the
range of 0.4 <∼ r/R <∼ 0.8. As we can see in Fig.6.1, the frequencies of the g modes steeply
increase compared with those of the p modes. The increase in the g-mode frequencies is
caused by the growth of the µ-gradient just above the convective core. In this situation, some
of g modes become propagative in the outer p-mode propagation zone as shown in the bottom
panel of Fig.6.2.

The top panel of Fig.6.3 shows work integrals for representative four unstable modes. The
top part of the panel shows that the strange-mode is strongly excited at the Fe bump. The
situation is similar to the case of the radial D1 mode in §4. The bottom panel of Fig.6.3 shows
the distribution of the kinetic energy density deK/dr. The top part of the bottom panel shows
that energy of this mode is mainly distributed in the outer envelope.

The second top part of each panel shows the ordinary g mode having a frequency ω =

Table 6.1: Representative unstable modes (l = 2) at the stage with log Teff = 4.488 for
40M�, shown in Fig.6.3 and 6.4.

ωR ωI Period(hr) e-folding time (yr) remarks
3.064 -9.435E-2 1.53778E+01 5.70000E-02 D1 strange-mode by FC
3.147 -1.255E-2 1.49714E+01 4.28470E-01 by TDC
2.133 -2.275E-7 2.20849E+01 2.36353E+04 β Cephei-type by FC
2.133 -6.966E-8 2.20849E+01 7.72026E+04 by TDC

8.885E-1 -3.101E-6 5.30228E+01 1.73495E+03 SPB-type by FC
8.885E-1 -2.801E-6 5.30231E+01 1.91970E+03 by TDC
8.189E-1 -1.284E-2 5.75300E+01 4.19006E-01 strange-mode by FC
7.988E-1 -2.019E-2 5.89782E+01 2.66275E-01 by TDC
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Figure 6.1: Modal diagrams of l = 2 modes in the 40M� main-sequence stage by adiabatic
(top) and FC approximation (middle), and TDC (bottom). The definition of symbols in
the middle and the bottom panels are the same as Fig.4.2.
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4.488. The abscissa is the distance from the stellar center divided by the stellar radius.
The blue line segments indicate the frequency and the range of the propagation for the
g2 mode, indicated as the red cross in Fig.6.1.

2.133, which is close to the frequency of the above strange-mode. This mode experiences the
strong damping in the deep interior at log T = 7.3− 7.4. The energy of this mode is mainly
trapped in the µ-gradient zone as shown in the bottom panel. But even though the amplitude
in the outer envelope is much small, the excitation at the Fe bump overcomes the radiative
damping in the µ-gradient zone. As the reason for this, the outer zone has smaller density,
and excitation or damping work more easily. This mode is categorized as a low-order g mode,
corresponding to the β Cephei-type pulsations.

In the modal diagrams of Fig.6.1, there is another group of unstable modes with ω ' 0.7.
They are high-order g modes, and most of them correspond to SPB-type pulsations. The
representative mode is shown in the third top part of each panel of Fig.6.3. The mode energy
is trapped mainly in the µ-gradient, but the excitation at the Fe bump overcomes the damping
in the µ-gradient zone like the above case.

On the other hand, we can see green dots, which indicates unstable modes with high
growth rates, in that group of the unstable high-order g modes in Fig.6.1. This mode may
be categorized as a strange-mode, since it is strongly excited at the Fe bump, and its kinetic
energy is mainly distributed there like the D1 strange-mode as shown in the bottom part of
each panel of Fig.6.3. Unstable modes with ωR = 0.2 − 0.4 appearing in the earlier stages
with log Teff >∼ 4.55 are the same type. Fig.6.4 displays the propagative ranges of the four
unstable modes shown in Fig.6.3. All of the four modes are propagative both in the inner and
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Figure 6.3: Work integrals (top) and kinetic energy density distributions (bottom). Each
panel shows the strange-mode (ω ' 3.1), the β Cephei type pulsation (ω = 2.133), the
SPB type pulsation (ω ' 8.885× 10−1), and the high-order g mode with the high growth
rate (ω ' 8 × 10−1) from top to bottom. The red and the green lines correspond to FC
and TDC, respectively. The top part of the top panel shows the opacity κ profile as the
blue line, while that of the bottom panel the Brunt-Väisälä frequency N and the Lamb
frequency for l = 2, Sl=2, as the blue and the magenta lines, respectively. The equilibrium
model is for the 40M� star at the evolutionary stage with log Teff = 4.488.
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in the outer zones. But there are several evanescent zones in between them, which act as
potential barriers. They generate the two types of modes, ones trapped in the deep interior
and in the envelope.

Table 6.1 gives the e-folding times of the unstable modes. Those of the strange-modes is
in the order of 0.1 yr, and much shorter than those of the ordinary modes, ∼ 103 − 104 yr.
But since the TAMS age of the 40M� is about 4× 106 yr, the ordinary modes also can grow
to finite amplitude.

6.3 Effects of convection

As we can see in Figs.6.1 and 6.3, the D1 strange-mode and the β Cephei-type pulsations are
less unstable in the TDC case. Like radial modes, convection stabilizes these types of modes
while competing with the excitation by the κ-mechanism. Comparing with the work integrals
by FC and TDC, the damping effect by convection is the largest for the D1 mode having the
highest frequency. On the other hand, the effect is much smaller for the other lower frequency
modes.

Fig.6.5 compares the reciprocal of the convective timescale and the pulsational frequencies.
The convective timescale becomes longer, and finally infinity toward the end of the convection

143



 0.1

 1

 10

 4.9 5 5.1 5.2 5.3 5.4 5.5

τ d
yn

/τ
C

, ω

log T

40Msun, log Teff=4.488

τdyn/τC
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quencies of the four unstable modes introduced in Table 6.1 and Fig.6.3. The values are
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√
R3/(GM).

zone, while it becomes shortest in the middle. In the limit of much long convective timescale,
convection does not react to pulsational changes. In the opposite limit, it is very sensitive to
the changes. We may be able to say that convection is most effective when the convective
timescale is comparable to the pulsational period. This discussion has the analogy to that about
the effective excitation zone of the κ-mechanism, which works effectively in zones where a
pulsational period and thermal timescale are comparable. If the thermal timescale is much
longer than the period, the situation is close to an adiabatic process, and thermal flux cannot
change effectively enough to enhance the heat engine mechanism. On the other hand, if the
thermal timescale is much shorter than the period, the situation becomes very nonadiabatic.
That is, thermal energy flows too fast that matter can save the energy, and that the heat
engine mechanism can work efficiently. Similarly, convection with extremely long timescale
might not be able to produce changes in convective flux like the adiabatic case, while that
with extremely short timescale might cause too fast changes in the convective flux to cause
the heat engine mechanism.

In this case, we can guess that the convective timescale is, in a whole, comparable to the
period of the high frequency modes such as the D1 strange-mode, and that much shorter than
that of the high order g modes including SPB-types.

Such a tendency was also found in pulsations of δ Scuti and γ Doradus stars by Dupret
et al. (2005). By the FC approximation, p modes of δ Scuti stars are unstable beyond the
observed red edge of the classical instability strip. But their TDC computation demonstrates
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that the convective damping stabilizes the δ Scuti p modes, and realized the red edge of
the theoretical instability domain. While convection hardly affect the stability of high-order
g modes corresponding to γ Doradus pulsations. Instead, they are excited mainly by the
convective blocking as proposed by Guzik et al. (2000).

In Fig.6.1, we can find that high-order g modes have wider instability range in the TDC
case than in the FC case. Fig.6.6 compares two high-order g modes obtained by FC and TDC
at the evolutionary stage with log Teff = 4.424. In this stage, unstable high-order g mode
exists for TDC, while does not for FC (see Fig.6.1). Although the two modes have almost
the same frequencies, ω ' 3.59, the one by TDC is pulsationally unstable, while the one by
FC is stable. The top panel of Fig.6.6 shows that the kinetic energy distributions resemble
each other in a whole, but are different in the outer envelope. But the eigenfunctions of
luminosity perturbations are significantly different due to effects of convection (the middle
panel of Fig.6.6). Then, even though the convective effects on excitation and damping is
weak for the high-order g modes, the distribution of amplitude can be affected by convection,
and, as a result, becomes favorable for the κ-mechanism excitation compared with the FC
case.

6.4 l-dependence of strange-modes

Nonradial modes have a number of patterns for node lines on a horizontal surface. The
spherical degree l represents the number of the node lines (see Fig.3.3)2. l = 0 corresponds
to radial pulsations. When we change l, profiles of eigenfunctions vary not only on a surface,
but also along the radial direction. This should cause changes in pulsational stability. Here we
discuss l-dependence of the strange-mode on the sequence D1 in the main-sequence stage.

Fig.6.7 shows l = 2 modes in the main-sequence stage of the 50M� star. Here the
modal diagram displays only modes having over 0.2% of their kinetic energy in the p-mode
propagation zone in order to pursue the sequence of the strange-modes. This result is obtained
by TDC. In this diagram, only the D1 shows instability among the descending sequences. This
sequence has the adiabatic counterpart, and the instability is excited by the κ-mechanism.
Fig.6.8 shows the growth rates of the D1 modes for l = 0 − 4. The radial mode (l = 0) is
unstable all during the main-sequence stage, and has the highest growth rate, and the e-folding
time is in the order of 10−1 yr. As the l increases, the growth rate decreases, and finally the
mode keeps stable with l = 4 all during the main-sequence stage.

Fig.6.9 compares the modes with l = 0− 4 at an evolutionary stage with log Teff = 4.496,
of which properties are summarized in Table 6.2. The top panel shows a propagation diagram.
The critical frequency for l = 0 shown as a red line is the lower limit frequency for propagative
waves. The profile of the critical frequency forms a valley in the outer envelope, and implies
that waves having logω2 ' 1 is trapped there. As for l = 1− 4, the Brunt-Väisälä frequency
N2 and the Lamb frequency S2

l are given as the critical frequencies. As the spherical degree l
increases, the Lamb frequency is shifted up. Due to this, the outer p-mode propagation zones

2Eigenfrequencies and radially dependent parts of eigenfunctions never depends on the azimuthal order
m when we do not consider rotation and magnetic field.
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Figure 6.6: Kinetic energy density distribution (top), luminosity perturbations (middle)
and work integrals (bottom) for the high-order g modes by FC and TDC at the stage with
log Teff = 4.424 for 40M�. The two modes have close frequency and similar kinetic energy
distribution. But the one by FC is stable, while the other by TDC is unstable.
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Table 6.2: D1 modes with l = 0− 4 at stage with log Teff=4.496 for 50M�.
l ωR ωI Period(hr) e-folding time (yr)3

0 2.733 -4.271E-02 1.96E+01 1.43E-01
1 2.709 -2.776E-02 2.16E+01 2.41E-01
2 2.827 -2.033E-02 1.90E+01 3.01E-01
3 2.912 -1.145E-02 1.84E+01 5.34E-01
4 3.022 4.152E-03 1.77E+01 -1.47E+00

with ω2 � N2, S2
l becomes narrower, while waves having higher frequencies become able to

be propagative in the g-mode propagation zone with ω � N2, S2
l and log T >∼ 5.4.

Although the frequencies of the D1 modes are in the range of ω =2.7 to 3.0, let us
consider a wave with logω2 = 0.2, to which the black horizontal dashed line corresponds in
the propagation diagram (the top panel of Fig.6.9). When l =1 and 2, the wave is evanescent
in the radiative region with log T >∼ 5.4 since S2

l < ω2 < N2 is satisfied. On the other
hand, it is propagative in the two convection zones, the Fe opacity bump convection zone
with log T ' 5.4 − 5, and the He opacity bump convection zone around log T = 4.6, since
ω2 � N2, S2

l . When l =3 and 4, it becomes propagative in the radiative region below the Fe
bump convection zone since ω2 < N2, S2

l . On the other hand, the propagation zone in the Fe
bump convection zone becomes narrower, and the lower part of the convection zone becomes
evanescent.

The middle panel of Fig.6.9 shows kinetic energy density distribution. In the lower l case,
the energy is confined to the zone above the bottom of the Fe bump convection zone. But
as the l increases, the energy becomes reduced in the lower part of the Fe bump convection
zone, since waves become evanescent there according to the propagation diagram. Instead,
the energy increases in the radiative zone. In other words, the amplitude is confined to the Fe
bump excitation zone in the lower l case. With the increasing l, the amplitude comes to leak
into the radiative zone with log T >∼ 5.4, and the mode comes to suffer from the radiative
damping there, and finally to be pulsationally stable. In the main-sequence stage, therefore,
the lower l mode is responsible for the instability. The e-folding time is in the order of 10−1

as shown in Table 6.2, and much shorter than the evolutionary timescale ∼ 106 yr.

6.5 Conclusion

This chapter has introduced results of pulsational stability analyses for nonradial modes. In the
main-sequence stage of massive stars, low-order p and g modes (β Cephei type), high order
g modes (SPB type) and strange-modes become unstable. All of them are excited by the
κ-mechanism at the Fe bump. Unstable strange-modes are likely to appear near the frequency
of the ordinary unstable modes. Especially, the strange-modes appearing in the frequency
range of the SPB type are new type, and never found in radial pulsations. They have as high
growth rate as the strange-mode on the sequence D1. In the TDC case, higher frequency
modes are likely to be less unstable compared with the FC case due to damping by convection.
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The l-dependence of the stability of the strange-mode, which appears on the sequence D1 in
a modal diagram, is also investigated. As the spherical degree l increases, the amplitude is
less confined to the Fe bump κ-mechanism excitation zone, and the mode energy leaks to the
radiative zone below the Fe bump convection zone. Then, the instability becomes weaker and
finally disappears with l = 4. In the main-sequence stage, thus, the radial strange-mode is
most responsible for the instability. The e-folding time is in the order of 10−1 yr, and much
shorter than the evolutionary timescale ∼ 106 yr.
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7
Conclusions and prospects

7.1 Conclusions

This study examines the properties of the strange-modes. Specifically, their pulsational stability
and physical origin are investigated. As for the former, previous studies have carried out
pulsational stability analyses with the frozen-in (FC) convection approximation, under which
convective effects on pulsations are neglected. This study, however, adopts the time-dependent
convection (TDC) theory to the stability analyses of the strange-modes for the first time.

This study focuses on strange-modes in hot massive stars. In the case ofM ' 10M�, all of
eigenmodes are ordinary modes. A normalized frequency which is multiplied by the free-fall or

dynamical timescale
√
R3/(GM) for each mode keeps constant from the main-sequence to the

red giant phase. As the stellar mass increases, however, the ordinary mode frequencies tend to
increase with the stellar evolution. Simultaneously, for M >∼ 30M�, the strange-modes come
to appear while showing that their frequencies going down with the evolution. Some of them
are unstable, and have much higher growth rates than the ordinary modes. As the stellar mass
increases, unstable strange-modes appear in the lower effective temperature. Especially, some
of them are found in evolutionary models around the Humphreys and Davidson (HD,1979)
limit.

In this study, the stability analyses are carried out by two types of FC approximation with
δLC = 0 and L′

C = 0, and with TDC. With δLC = 0, three strange-modes labeled as D1, D2
and D3 become unstable for M >∼ 50M�. When we adopts L′

C = 0 and TDC, however, the
instability of the D1 and the D2 modes is weaken or suppressed due to convective damping
in the Fe bump convection zone, but certainly exists along the evolution of massive stars.
On the other hand, the instability of D3 invariably appears in all cases of the two types of
FC and TDC, since it is excited around the He bump convection zone having tiny convective
luminosity. Then, we can conclude that this instability should definitely appear regardless of

152



uncertainties on convection. This instability indeed takes place around the HD limit, and could
be responsible for the lack of observed stars above the HD limit.

The strange-modes have significantly different properties from the ordinary modes. Un-
stable strange-modes have extremely high growth rate, and might be influential on stellar
evolution. Physical properties of ordinary modes can be explained by the WKB approximation
based on the adiabatic approximation. But such a procedure is no longer available for some
of the strange-modes. It has been found that the strange-modes appear only in pulsations
of very luminous stars with L/M >∼ 104L�/M�. In envelopes of such stars, the luminosity
is too high that matter can save thermal energy flowing from the stellar center. In this very
nonadiabatic situation, adiabatic scheme may not be suitable for some of the strange-modes,
and then this study carries out local analyses suitable for the situation.

In hot massive stars, there are two types of strange-modes, ones with and without adiabatic
counterparts. The type having an adiabatic counterpart appears in the main-sequence stage,
while the other type is dominant in the post–main-sequence stage. The former type has the
corresponding solutions in the adiabatic approximation. According to the WKB approximation
based on the adiabatic approximation, a propagative cavity is formed around the Fe opacity
bump due to small density gradient. Then, waves are trapped in the propagative cavity, and
the mode amplitude is confined there. This leads to strong excitation of the κ-mechanism at
the Fe bump.

On the other hand, the latter type, the strange-modes without adiabatic counterparts,
can be explained by the WKB approximations assuming quasi-isothermal (QIT) and radiation-
pressure–dominant (RPD) perturbations. In a modal diagram, the latter type seems to corre-
spond to unstable strange-modes without adiabatic counterparts, while the former to most of
the other strange-modes.

The unstable modes are not excited by the classical κ-mechanism. Instead, dominance
of radiation pressure is important. The excitation of this type of strange-mode is subject to
the scheme for the diffusive process of photons. In case that thermal energy flux is extremely
strong, matter cannot save the thermal energy efficiently. When some perturbation takes place
and one region is compressed, the opacity increases due to the higher density, and the region
receive stronger radiation than its surroundings. But since it cannot save the extra received
thermal energy generated by the perturbation, temperature (radiation pressure) gradient is
produced so that the energy can flow to the other zones. In this process, a large phase lag
occurs between the density and the radiation pressure. Indeed, the computed unstable strange-
modes without adiabatic counterparts show that the phase lag changes in the range of 0 to
180 degree through the excitation zone unlike the classical κ-mechanism case.

The unstable D3 mode, which does not have an adiabatic counterpart, is excited by the
above mechanism around the He bump. Apparently, the instability of this mode seems inde-
pendent of the metallicity. But this study found that this instability is suppressed by decrease
in the metallicity. In the zero-metallicity case, the Fe opacity bump no longer exists. Due
to this, radiation pressure is less dominant in the envelope than in the Population I case.
Indeed, the opacity profiles around the He bump are almost identical in the Population I and
III models having the same effective temperature and luminosity. But we found that the D3
mode becomes unstable for M >∼ 100M� in the Population III case, while for M >∼ 50M�
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in the Population I case. In the Population III case, cooling process through line emission of
heavy elements lacks during the star formation stage. Due to this, core of protostars has high
temperature and hence high accretion rate. Then, we can expect that very massive stars were
formed in the early Universe. Particularly, the pair-instability supernova (PISN) explosion is
proposed in the mass range of 130 − 300M� (Ohkubo et al., 2009). Its existence is contro-
versial since it produces peculiar chemical composition, which is not suitable for observational
evidences. The instability of the D3 mode could be inhibitory on the evolutionary scenario
toward PISN.

Finally, pulsational stability analysis of nonradial pulsations is carried out in the main-
sequence stage of massive stars. As for the ordinary modes, low-order g and p modes, and high-
order g modes become unstable and correspond to β Cephei-type and SPB-type pulsations,
respectively. Unstable strange-modes appear in the frequency ranges of the both types. In
particular, ones with frequencies close to that of the β Cephei type corresponds to the D1
mode of radial pulsation. The instability of low-order ordinary modes and the strange-modes
corresponding to D1 is substantially suppressed by the TDC treatment. In addition, the
dependence of the D1 mode instability on the spherical degree l is investigated. In the low
l cases, the mode amplitude is confined to the envelope including the Fe bump. As the
l increases, however, waves become propagative in the radiative zone below the Fe bump
convection zone. That is, the amplitude leaks to this zone and the mode suffers from radiative
damping. The instability becomes weaker with increasing l, and finally disappears with l = 4.

7.2 Future prospects

Finally, we discuss future works following this study.

• This study shows pulsational instability domains in the HR diagram by using TDC, and
has found that convection cannot be negligible and influential on pulsational stability.
But still now we have a lot of uncertainties on convection theories. In the field of stellar
pulsations, several TDC theories have been proposed so far (e.g. Gough, 1965, 1977;
Xiong, 1989). Then, it is worth doing that we try to adopt different TDC theories to
pulsational stability analyses. Stability analyses with TDC have been mainly carried out
for pulsations at the red edge of the classical Cepheid instability strip. In this region, stars
have substantially thick convective envelopes due to He and H opacity bumps. On the
other hand, convection layers around the Fe bump in hot massive star envelopes is thinner
compared with the case of the Cepheid strip. But they have turned out to be influential
on pulsational stability by this study. Besides, it is desired to increase the number of
observed pulsating massive stars to check the validity of the TDC theories. Recently,
solar-like oscillations are detected in massive stars (Belkacem et al., 2009). This type
of oscillations is stochastically excited in convection zone. Saio (2011) suggested that
unstable oscillatory convection (g−) modes having substantial amplitude on the stellar
surface are excited in the range of log Teff >∼ 4 and logL/L� >∼ 4.5, and that they could
be responsible for variations observed in main-sequence and post–main-sequence massive
stars. Godart (in press) demonstrated that the TDC treatment affects the excitation of
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g− modes. The above recent results imply that considering convective effects should be
indispensable for dealing with pulsations in hot massive stars.

• It is found that the instability of the D3 mode definitely appears around the HD limit
regardless of treatments of convection. It could be responsible for the lack of observed
stars over the HD limit in the Population I case, and could affect the evolutionary scenario
toward PISN in the Population III case. On the other hand, Saio et al. (2013) shows
variations of α Cygni variables can be explained by unstable strange-modes in stellar
models experiencing the blue-loop evolution. This study also confirmed that by TDC
with envelope models. To understand phenomena following the pulsational instability,
we need to perform nonlinear analyses. As for the Population I (and II) cases, luminous
blue variables (LBVs) are observed near the HD limit. They experience sporadic eruption
repetitively, and are thought to be Wolf-Rayet (WR) stars after losing substantial mass.
Although the results seem to remain inconclusive, several nonlinear analyses for radial
strange-modes have been performed (Dorfi and Gautschy, 2000; Chernigovski et al.,
2004; Grott et al., 2005) to generate pulsationally-driven mass loss. On the other hand,
Aerts et al. (2010) found a luminous B star to change its mass loss rate on a timescale
of the 57 day period of photometric and spectroscopic variation, and Godart et al.
(2011) confirmed that the periodicity can be explained by a strange-mode. Recently,
there are a number of supernovae which seem to be strongly affected by the interaction
with circumstellar media whose densities are too high to be explained by the standard
radiation-driven mass loss (Moriya et al., 2013). The mass loss rates of the progenitors
before their explosions are estimated to be up to 0.1M� yr−1 (e.g. Fox et al., 2011;
Kiewe et al., 2012; Taddia et al., 2013), and a mechanism other than radiation-driven
mass loss is required.

• In this study, analyses of nonradial pulsations are restricted to the main-sequence stage.
In the post main-sequence stage, the density gradient, and hence the Brunt-Väisälä
frequency in the deep interiors becomes so high that a number of eigenmodes can exist.
Although modes having higher frequency than the reciprocal of the dynamical timescale
are p modes which propagate only in the outer envelope in the main-sequence stage,
such modes become “mixed modes”, which behave like g modes in the deep interior
and like p modes in the envelope of post–main-sequence stars. This situation makes it
technically difficult to exactly obtain all of desired modes without missing any modes.
Then, we need further development of numerical techniques.

• Pulsations can be powerful tools to give constraints on stellar evolution. In particular,
massive stars are thought to experience strong mass loss during their evolution. But
mass loss theories still includes a lot of uncertainties. Saio et al. (2013) constructed
evolutionary models by taking into mass loss, and demonstrated the blue-loop evolution.
As mentioned above, they explained that the α Cygni variables correspond to blue-loop
stars evolving from red supergiants to the WR stars. But the abundance ratios N/C and
N/O on the surface of their models seem too high compared with spectroscopic results.
Then, further parametric investigations with theoretical models are desired as well as
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observational investigations.
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A
Radiative transfer

This section introduces description of radiative transfer. We are first going to derive the
general expression of radiative flux. Next we will derive the diffusion approximation usually
adopted in deep interiors of stars by introducing the Rossland-mean opacity and assuming the
isotropy of the intensity.

A.1 Radiative flux

Let us consider photons with frequency ν passing through an area. Energy passing through a
solid angle dΩ around a colatitude angle θ, which denotes angle with the pole perpendicular
with the area, per unit area and unit time is expressed as

Iν(θ) cos θdΩ (A.1)

where Iν(θ) denotes “intensity” of light passing in direction θ. cos θ is multiplied in the RHS
of Eq.(A.1) to take into account decrease in the effective area by inclination of direction of
the light.

Then, energy flux Fν , amount of energy passing through a unit area per unit time, is
written as

Fν =
∮
4π
Iν(θ) cos θdΩ. (A.2)

If the intensity Iν is completely isotropic, Fν = 0. Although Iν is in fact almost isotropic
in stellar interior, the intensity of outward light is slightly stronger than that of inward light
because of the temperature gradient. Therefore, the energy flows outward. The closer to the
surface, the stronger the anisotropy of the intensity. At the stellar surface, the intensity of the
inward light is zero.
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The spatial change of the intensity is caused by emission, absorption and scattering of gas
particles is given by

dIν
ds

= −(κν + σν)ρIν + ρην . (A.3)

Eq.(A.3) is called “radiative transfer equation”. ds denotes a linear element, κν , σν and ην
the coefficients of the absorption, scattering and emission of the light. For the simplicity, the
scattering and emission is hereafter assumed to be isotropic.

Assuming the angle between the pole perpendicular with the area through which the light
passing and the direction of ds to be θ and the positive direction of the pole to correspond to
the outward of the star, we have

ds = dr/ cos θ. (A.4)

Integrating the both sides of Eq.(A.3) after multiplying by cos θ and using Eq.(A.4), we obtain

Fν = − 1

(κν + σν)ρ

d

dr

∮
4π
Iν(θ; r) cos

2 θdΩ. (A.5)

A.2 Diffusion approximation

In deep interiors of stars, photons are repetitively absorbed and re-emitted, and the mean free
path is very short compared with scale over which the surrounding structure changes. Thus
the radiative energy transport can be described as a diffusive process. Such situation implies
the local thermodynamical equilibrium (LTE), and the isotropy of the intensity. In LTE, we
can assume the intensity is described as

Iν(θ; r) ≈ Bν(T ) (A.6)

where Bν denotes the Planck function, which is the intensity of the black-body radiation,

Bν =
2hν3

c2
1

ehν/kT − 1
(A.7)

where h is the Planck constant and k the Boltzmann constant. By use of this approximation,
Eq.(A.5) is transformed into

Fν = − 4π

3(κν + σν)ρ

dBν

dT

dT

dr
. (A.8)

Although κν depends on the frequency ν, let us introduce the Rossland-mean opacity κ
expressed as

1

κ
=
∫ ∞

0

1

κν + σν

dBν

dT
dν

(∫ ∞

0

dBν

dT
dν

)−1

. (A.9)

Thus we obtain radiative luminosity LR(r), the energy by the radiative transfer passing through
the sphere with the radius r per unit time:

LR(r) = 4πr2
∫ ∞

0
Fνdν = −4πr2

4ac

3κρ
T 3dT

dr
(A.10)
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where the following integrated Planck function is used:

B(T ) =
∫ ∞

0
Bν(T )dν =

ca

4π
T 4 (A.11)

Eq.(A.10) is the equation of “diffusion approximation.” By transforming Eq.(A.10), we obtain
the expression of radiative temperature gradient,

∇rad ≡
(
d lnT

d ln p

)
rad

=
3

16πacG

κp

T 4

Lr

Mr

, (A.12)

which is required gradient to transport energy by radiation.
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B
Atmosphere model

Above the photosphere, the diffusion approximation (A.10) is no longer valid because of the
thin opaque. While there are several strategies to overcome such difficulty, this study almost
follows Paczyński (1969), adopting the Eddington approximation, to construct atmosphere
models. This section introduces the derivation of the differential equations for the atmosphere.

B.1 T − τ relation in the Eddington approximation

The radiation pressure is described with the intensity as

pR =
2π

c

∫ π

0
I(θ) cos2 θ sin θdθ. (B.1)

In the local thermal equilibrium (LTE), the intensity is isotropic, and we have

pR =
4π

3c
I =

4π

3c
B =

1

3
aT 4, (B.2)

where Eqs.(A.6) and (A.11) are used. In the Eddington approximation, the intensity is assumed
to be isotropic everywhere, except at τ = 0.

At τ = 0, we assume that I(θ) is isotropic for all outgoing angles, 0 < θ < π/2, but set
it to be zero for π/2 < θ < π. It means that no radiation enters the true surface from the
outside. Then, the radiation pressure becomes

pR(τ = 0) =
2π

3c
I(τ = 0) (B.3)
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The luminosity L can be described with the intensity as

L = 4πR2
s

∫
4π
I(τ = 0) cos θdΩ

= 4πR2
s2π

∫ π/2

0
I(τ = 0) cos θ sin θdθ = 4πR2

sπI(τ = 0) (B.4)

where Rs is the stellar radius (distance from the center to the atmosphere surface). Use
Eq.(B.4) to eliminate I(τ = 0) in Eq.(B.3) and find

pR(τ = 0) =
2

3c

L

4πR2
s

=
2

3c
σT 4

eff (B.5)

Let us derive an expression for the radiation pressure at depth. Recall that we assume LTE
except at τ = 0. Then, we can use the diffusion approximation (A.10). By using Eq.(B.2),
we can describe the gradient of the radiation pressure as

dpR
dr

= − κρL

4πr2c
(B.6)

Integrate it from τ = 0 to some arbitrary depth τ and find

pR = −
∫ arbitrary point

true surface

L

4πr2c
κρdr =

∫ τ

0

L

4πr2c
dτ (B.7)

Since the luminosity L is constant and r is not so different between the photosphere and the
atmosphere surface, we can roughly estimate as

pR(τ) =
L

4πR2
sc
τ + pR(τ = 0) =

σT 4
eff

c
τ + pR(τ = 0) (B.8)

Substituting Eq.(B.3) into the second term and using Eq.(B.2), we obtain the T − τ relation
in the Eddington approximation,

T 4(τ) =
1

2
T 4
eff

(
1 +

3

2
τ
)
. (B.9)

In the approximation, thus, the optical depth at the photosphere becomes τ = 2/3, where
T (τ = 2/3) = Teff . Note also that the surface temperature Ts is nonzero, and

Ts = 2−1/4Teff (B.10)

On the other hand, we can evaluate the stellar radius Rs by using

Rs =

(
L

8πσBT 4
s

)1/2

, (B.11)

which is derived by combining Eqs.(B.3), (B.4), (B.5) and (B.10).
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B.2 Differential equations for structure of atmosphere

Here, the procedure to integrate the atmosphere structure will be discussed following Paczyński
(1969).

For the integration to construct an atmosphere model, we assume that the mass coordinate
Mr is homogeneously equal to the total massM , and that the local luminosity Lr to the stellar
luminosity L. Thus, we abandon the equation of continuity (2.1), and the equation of energy
conservation (2.4). Instead, we add the definition of the optical depth

(2.42) : dτ = −κρdr.

The equation of motion is unchangedly used:

(2.2) :
∂p

∂Mr

= −GMr

4πr4

The equation for the diffusion approximation Eq.(2.3) is modified to be adopted as follows.
Let us consider matter far from the star. If the coefficient of opacity of that matter were

independent on the wavelength of radiation, we would there have the temperature given by

T =
(

L

8πσr2

)1/4

(B.12)

With no appreciable optical thickness of that matter, there should be a temperature gradient
due to the dilution of stellar radiation according to Eq.(B.12). Something similar should be
present in the extended stellar atmosphere. Differentiate Eq.(B.12), we have

dT

dr
= −0.5TsR

1/2
s r−3/2 (B.13)

By using this, we modify the equation for the diffusion approximation into

dT

dr
= − 3κρL

64πσBr2T 3
− f × 0.5TsR

1/2
s r−3/2 (B.14)

where

f =

{
1− 3

2
τ for τ < 2

3
,

0 for τ ≥ 2
3

(B.15)

To construct atmosphere models in this study, Eqs.(2.42), (2.2) and (B.14) are integrated
with the surface boundary conditions Eqs.(B.10), (B.11) and ρ = 2× 10−11 g cm−3.
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C
Boundary conditions for nonradial pulsations

In this section, we derive the boundary conditions for nonradial pulsations. In §3.7, we derived
the sixth order system of differential equations, Eqs.(3.128)-(3.133), which has an eigenvalue
ω. To solve the system, we require 6+1 boundary conditions in total at the inner and the
outer boundaries, which correspond to the center and the surface, respectively, of a star. At
the beginning, we give a condition for the normalization of eigenfunctions yi’s,

y1(r = R) = 1 (C.1)

at the outer boundary. Then, we will set three conditions each at the center and the surface
of a star.

C.1 Inner boundary conditions

First, the boundary conditions at the center are derived. We use the equations Eq.(3.139)-
(3.142). Near the center, it is assumed that yi’s are written by the polynomial equations about
the radius:

yi = yi,0x
β + yi,2x

β+2 + · · · (C.2)

where x ≡ r/R. Substituting it into Eq.(3.139)-(3.142), we obtain the algebraic equations
composed of the coefficients of leading terms:

Vg − 3− β l(l+1)
c1ω2 − Vg Vg 0

c1ω
2 − A∗ A∗ − U + 1− β −A∗ 0
0 0 1− U − β 1

UA∗ UVg l(l + 1)− UVg U − β



y1
y2
y3
y4

 = 0 (C.3)
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Near the center (r → 0),

V =
GMrρ

rp
' 4πGr2ρ2c

3pc
→ 0 (C.4)

A∗ =
r

g
N2 =

3r

4πGρc
N2 → 0 (C.5)

U → 3 (C.6)

Then, we get the values of β as characteristic values:

β = l − 2, −(l + 3) (C.7)

The latter is improper since yi’s diverge toward the center. Then, we get the two inner
boundary conditions:

c1ω
2y1 − ly2 = 0 (C.8)

and
ly3 − y4 = 0 (C.9)

The first is called “mechanical condition” and the second “potential condition”. The last
condition is derived from the adiabatic condition, δS = 0. That is,

y5 = 0, (C.10)

which is called as ”thermal condition”.

C.2 Outer boundary conditions

Next, the boundary conditions at the surface are derived. Also in this case, the mechanical,
potential and thermal conditions will be derived and the former two from the differential
equations of adiabatic pulsations.

Like the above, the eigenfunctions yi’s are written by the polynomial equations and we get
Eq.(C.3). Near the surface (x→ 1), we can set as

U → 0 and c1 → 1, (C.11)

where the former is explained by that the density is reduced to zero toward the surface. Then,
characteristic values of the matrix in Eq.(C.3) are

β = −l, l + 1, (C.12)

and

β± =
1

2
[(Vg + A∗ − 2)± γ1/2], (C.13)

where
γ = (A∗ − Vg + 4)2 + 4[l(l + 1)/ω2 − Vg](ω

2 − A∗). (C.14)
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The general solution of Eq.(C.3) is then given by
y1
y2
y3
y4

 = A


α1

α2

1
−(l + 1)

x−l +B


β1
β2
1
l

xl+1

+C


1

(β− − b11)/b12
0
0

 xβ− +D


1

(β+ − b11)/b12
0
0

 xβ+ , (C.15)

where

α1 =
b12b23 − b13(b22 + l)

(b11 + l)(b22 + l)− b12b21
, (C.16)

α2 =
b21b13 − b23(b11 + l)

(b11 + l)(b22 + l)− b12b21
, (C.17)

β1 =
b12b23 − b13(b22 − l − 1)

(b11 − l − 1)(b22 − l − 1)− b12b21
, (C.18)

β2 =
b21b31 − b23(b11 − l − 1)

(b11 − l − 1)(b22 − l − 1)− b12b21
. (C.19)

Here the coefficient B should be set equal to zero:

B = 0, (C.20)

in order for the potential perturbation y3 not to increase outward.
The kinetic energy density of oscillations is related to x, y1 and y2 as

eK ≡ σ2ρ|ξ|2 ∝ x−(A∗+Vg−2)

[
y21 +

l(l + 1)

ω2
y22

]
(C.21)

For solutions associated with β = β±, the kinetic energy density is then given by

eK ∝ x−(A∗+Vg−2)x2β± = x±
√
γ (C.22)

and oscillations near the surface are evanescent waves or propagating waves depending on
whether γ > 0 or γ < 0. The roots of γ = 0 give two critical frequencies ωc1 and ωc2

(ωc1 < ωc2):

γ = −4Vg
ω2

(ω2 − ω2
c1
)(ω2 − ω2

c2
) (C.23)

In the case of ωc1 < ω < ωc2 , the quantity γ is positive and the oscillations associated with
β = β± are evanescent. In the case of ω < ωc1 or ω > ωc2 , on the other hand, the quantity
γ is negative, and solutions associated with β=β± represent progressive waves. The latter
case means that the oscillation energy leaks to the outside of a star and hence that the global

165



oscillation cannot grow to a finite amplitude. These critical frequencies ωc1 and ωc2 are similar
to N and Sl of the local analysis in §3.10. Thus ωc1 and ωc2 represent the critical frequencies
for propagating gravity waves and for propagating acoustic waves near the surface, respectively.

Let us consider the case that the eigenfrequency ω is between these critical frequencies
(γ > 0). The kinetic energy density of the β+-solution monotonically increases outward
while that of the β−-solution monotonically decreases. Therefore, the β+-solution should be
rejected, and

D = 0 (C.24)

Eliminating xl+1 and xβ+ from Eq.(C.15) with B = D = 0, we finally obtain two homogeneous
relations among y1, y2, y3 and y4, as follows:

(l + 1)y3 + y4 = 0 (C.25)

and
β− − b11
b12

y1 − y2 −
[
α1(β− − b11)

b12
− α2

]
y3 = 0 (C.26)

These are the two boundary conditions at the surface. Eq.(C.25) and (C.26) are the potential
and mechanical boundary conditions, respectively.

We have to be careful for the mechanical condition in case of γ < 0, which means that
waves are propagative at the surface. Such situation takes place when ω < ωc1 or ω > ωc2 .
The former corresponds to gravity running waves, while the latter to acoustic running waves.
Pulsational energy for both the waves leaks to the outside of a star.

When ω > ωc2 , the solution associated with β+ is improper, so that

D1 = 0 (C.27)

and the mechanical condition becomes

β− − b11
b12

y1 − y2 −
[
α1(λ− − b11)

b12
− α2

]
y3 = 0 (C.28)

with

β− =
1

2
[(Vg + A∗ − 2)− i|γ|1/2] (C.29)

When ω < ωc1 , on the other hand, the solution associated with β− should be rejected so that

C1 = 0. (C.30)

Then, the mechanical condition becomes

β+ − b11
b12

y1 − y2 −
[
α1(λ− − b11)

b12
− α2

]
y3 = 0 (C.31)

with

β+ =
1

2
[(Vg + A∗ − 2) + i|γ|1/2]. (C.32)
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As introduced above, in the case of the running waves, β± is complex number and the eigen-
value and the eigenfunctions can be also complex even under the adiabatic approximation.

The thermal outer boundary condition is derived from the assumption that there is no
inward radiative flux at the surface:

FR = fEJ = fE
σrad
π
T 4 (C.33)

where J is the mean intensity and fE the Eddington factor, which is reduced to 2π in the
Eddington approximation. Perturbing Eq.(C.33) gives

δFR

FR

=
δfE
fE

+ 4
δT

T
. (C.34)

However, it is very difficult to obtain the perturbation of the Eddington factor δfE since it
is necessary to solve nonlocal radiative transfer incorporating perturbations due to nonradial
oscillations (Christensen-Dalsgaard and Frandsen, 1983). Therefore, this term is not taken
into account for simplicity in this study. The expression of Eq.(C.34) with yi’s is given by

(2− 4∇adV )y1 + 4∇adV (y2 − y3) + 4y5 − y6 = 0. (C.35)
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D
Relaxation method

This section introduces the relaxation method, which is used for calculations for stellar structure
and pulsations in this study. In particular, differential equation systems for stellar pulsations
are eigenvalue problems. We then introduce the relaxation method which can simultaneously
determine eigenfunctions y and eigenvalues ω. On the other hand, the system for stellar
structure does not include any eigenvalues, which makes the method easier.

In the relaxation method, we have to give the initial eigenvalue and eigenfunctions and make
them close to the solution by the iterative procedure. As described in §3.12, to avoid failing to
find the desirable eigenvalues, we have to find the initial eigenvalue close to the true eigenvalue
by evaluating discriminant D(ω) 1 before solving the eigenvalue problem. The evaluation of
D(ω) is a linear algebraic problem since the equation systems, e.g. Eq.(3.128)–(3.133), are
linear differential equations, and can be done by using a part of the relaxation method. Below,
we first introduce the method for an eigenvalue problem, and then the procedure of evaluating
D(ω) at the end.

D.1 Difference equations

Let us consider solving an eigenvalue problem of N first-order differential equations and L
eigenvalues. The differential equations can be described as

dy

dx
= f(x,y,ω). (D.1)

where y denotes an N -dimensional eigenvector and ω is an Nω-dimensional vector containing
all the eigenvalues. Let us dividing the considered range of x into M meshes. Then, the

1In §3.12, the true eigenvalue is expressed with tilde as ω̃. But it is here written as ω. The bar means
the guess value.
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eigenvector at the mesh k and the vector of the eigenvalues are expressed as

yk =



yk1
...
yki
...
ykN

 , ω =



ω1
...
ωl
...

ωNω

 (D.2)

The i-th differential equation of Eq.(D.1) becomes

yki − yk−1
i

∆xk
= (1− θi)fi(xk, y

k
j ,ω) + θif(xk−1, y

k−1
j ,ω) (D.3)

for k = 2, . . . ,M and j = 1, . . . , N and where ∆xk ≡ xk − xk−1. θi should be set to 0.5
for the central difference scheme. In nonadiabatic analyses, however, we should encounter a
numerical instability, which may be caused by c4 appearing in the equation of energy conser-
vation. We can avoid this by adopting the forward and the backward difference schemes to
the difference equations for the linearized equations of energy conservation and of the diffu-
sion approximation. For example, we should set (θ5, θ6) = (0, 1) or (1, 0) for the system of
Eq.(3.128)–(3.133). Eq.(D.3) becomes the following N × (M − 1) difference equations:

Ek
i (xk−1, xk,y

k−1,yk,ω) ≡ yki − yk−1
i −∆xk[(1− θi)fi(xk, y

k
i ,ω) + θifi(xk−1, y

k−1
i ,ω)] = 0

(D.4)
for i = 1, . . . , N and k = 2, . . . ,M . Let us describe the inner boundary conditions as an
nib-dimensional vector

Bin(x1,y
1ω, ) = 0 (D.5)

and the outer boundary conditions as an nob-dimensional vector

Bout(xM ,y
M ,ω) = 0. (D.6)

The number of the boundary conditions have to be equal to the sum of the dimension of the
eigenvector yk and of the vector of eigenvalues ω:

nib + nob = N +Nω (D.7)

Thus, we have to calculate N ×M +Nω equations simultaneously.

D.2 Linearization

Let us linearize the difference equations and boundary conditions. We define y and ω as the
guess values for the true solutions y and ω, and δy and δω as the difference between them,
respectively:

yk = yk + δyk for k = 1, 2, . . . ,M (D.8)

ω = ω + δω (D.9)
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Then, the expansion of the inner boundary condition Eq.(D.5) to the first order becomes

0 = Bin
i (x1,y

1,ω) ' B
in
i +

∂Bin
i

∂y1j
δy1j +

∂Bin
i

∂ωl

δωl (D.10)

for i = 1, . . . , nib, where B
in
i ≡ Bin

i (x1,y
1) and the second and third terms of the RHS are

the sums for j = 1, . . . , N and l = 1, . . . , Nω, respectively. The expansion of the difference
equations Eq.(D.4) becomes

0 = Ek
i (xk−1, xk,y

k−1,yk) ' E
k
i +

∂Ek
i

∂yk−1
j

δyk−1
j +

∂Ek
i

∂ykj
δykj +

∂Ek
i

∂ωl

δωl (D.11)

for k = 2, . . . , N where E
k
i ≡ Ek

i (xk−1, xk,yk−1,yk) and

∂Ek
i

∂yk−1
δyk−1 =

[
−δi,j − θi∆xk

∂fi(xk−1,y
k−1,ω)

∂yk−1
j

]
δyk−1

j (D.12)

∂Ek
i

∂yk
δyk−1 =

[
δi,j − (1− θi)∆xk

∂fi(xk−1,y
k,ω)

∂ykj

]
δykj (D.13)

∂Ek
i

∂ωl

δωl =

[
−θi∆xk

∂fi(xk−1,y
k−1,ω)

∂ωl

−(1− θi)∆xk
∂fi(xk−1,y

k,ω)

∂ωl

]
δωl

(D.14)

where δi,j is Kronecker delta and becomes 1 when i = j or otherwise 0. Lastly, the expansion
of outer boundary condition Eq.(D.6) to the first order becomes

0 = Bout
i (x1,y

M) ' B
out
i +

∂Bout
i

∂yMj
δyMj +

∂Bout
i

∂ωl

δωl (D.15)

for i = 1, . . . , nob, where B
out

i ≡ Bout
i (xM ,y

M). Thus, we obtain the following N ×M +Nω

equations:

∂Bin
i

∂y1j
δy1j +

∂Bin
i

∂ωl

δωl = −Bin
i for i = 1, . . . , nib (D.16)

∂Ek
i

∂yk−1
j

δyk−1
j +

∂Ek
i

∂ykj
δykj +

∂Ek
i

∂ωl

δωl = −Ek
i for i = 1, . . . , N and k = 2, . . . ,M

(D.17)

∂Bout
i

∂yMj
δyMj +

∂Bout
i

∂ωl

δωl = −Bout
i for i = 1, . . . , nob (D.18)
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The matrix expression of these equations is

∂Bin

∂y1 0 0 . . . 0 0 0 ∂Bin

∂ω
∂E2

∂y1
∂E2

∂y2 0 . . . 0 0 0 ∂E2

∂ω
0 ∂E3

∂y2
∂E3

∂y3 . . . 0 0 0 ∂E3

∂ω
...

. . . . . .
...

...
...

...
...

...
...

. . . . . .
...

...

0 0 0 . . . ∂EM−1

∂yM−2
∂EM−1

∂yM−1 0 ∂EM−1

∂ω
0 0 0 . . . 0 ∂EM

∂yM−1
∂EM

∂yM
∂EM

∂ω
0 0 0 . . . 0 0 ∂Bout

∂yM
∂Bout

∂ω





δy1

δy2

δy3

...

...
δyM−1

δyM

δω


= −



B
in

E
2

E
3

...

...

E
M−1

E
M

B
out



.

(D.19)

We have gotten N ×M + Nω algebraic equations for the same number of unknown values,
N components of the errors for the eigenfunctions, δyk’s at M meshes, and Nω components
of the errors for the eigenvalue vector, δω.

D.3 Repartition of Matrix

Let us repartition the above matrix. Parting by N lines from above, we obtain ∂Bin

∂y1

U ∂E2

∂y1

 δy1 +

(
0

U ∂E2

∂y2

)
δy2 +

(
∂Bin

∂ω
U ∂E2

∂ω

)
δω = −

 B
in

UE2

 (D.20)

as the first band. U means the upper (N − nib) lines. For example, if v is a N -dimensional
vector,

Uv =


v1
...

vN−nib

 . (D.21)

Similarly, we introduce L meaning the lower nib lines. For example,

Lv =


vN−nib+1

...
vN

 . (D.22)

Next, the second band is expressed as

(
L∂E2

∂y1

0

)
δy1 +

 L∂E2

∂y2

U ∂E3

∂y2

 δy2 +

(
0

U ∂E3

∂y3

)
δy3 +

(
L∂E2

∂ω
U ∂E3

∂ω

)
δω = −

(
LE2

UE3

)
.(D.23)
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Then, the second and the following bands are generally expressed as(
L ∂Ek

∂yk−1

0

)
δyk−1 +

 L∂Ek

∂yk

U ∂Ek+1

∂yk

 δyk +

(
0

U ∂Ek+1

∂yk+1

)
δyk+1

+

(
L∂Ek

∂ω
U ∂Ek+1

∂ω

)
δω = −

 LEk

UEk+1

 (D.24)

for k = 2, . . . ,M − 1. The last band consists of the (N +Nω) lines:(
L ∂EM

∂yM−1

0

)
δyM−1 +

 L∂EM

∂yM

∂Bout

∂yM

 δyM +

(
L∂EM

∂ω
∂Bout

∂ω

)
δω = −

(
LEM

B
out

)
(D.25)

Let us rewrite Eq.(D.20) as

D1δy1 + U1δy2 +Q1δω = −R1 (D.26)

where D1 and U1 are N × N matrices, Q1 an N × Nω matrix and R
1
an N -dimensional

vector:

D1 ≡

 ∂Bin

∂y1

U ∂E2

∂y1

 , U1 ≡
(

0

U ∂E2

∂y1

)
, Q1 ≡

(
∂Bin

∂ω
U ∂E2

∂ω

)
and R1 ≡

 B
in

UE2

 (D.27)

Similarly, Eq.(D.24) becomes

Lkδyk−1 +Dkδyk + Ukδyk+1 +Qkδω = −Rk (D.28)

for k = 2, . . . ,M − 1 with

Lk ≡
(

L ∂Ek

∂yk−1

0

)
, Dk ≡

 L∂Ek

∂yk

U ∂Ek+1

∂yk

 , Uk ≡
(

0

U ∂Ek+1

∂yk+1

)
, (D.29)

Qk ≡
(

L∂Ek

∂ω
U ∂Ek+1

∂ω

)
and Rk ≡

(
L∂Ek

∂ω
U ∂Ek+1

∂ω

)
. (D.30)

Finally, Eq.(D.25) becomes

LMδyM−1 +DMδyM +QMδω = −RM , (D.31)

where LM and DM are (N +Nω)×N matrices, QM an (N +Nω)×Nω matrix and RM an
(N +Nω)-dimensional vector:

LM ≡
(

L ∂EM

∂yM−1

0

)
, DM ≡

 L∂EM

∂yM

∂Bout

∂yM

 , QM ≡
(

L∂EM

∂ω
∂Bout

∂ω

)
and RM ≡

(
LEM

B
out

)
(D.32)
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Thus, Eq.(D.19) becomes

D1 U1 0 0 . . . 0 0 0 Q1

L2 D2 U2 0 . . . 0 0 0 Q2

0 L3 D3 U3 . . . 0 0 0 Q3

...
. . .

. . .
. . .

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

0 0 0 . . . LM−2 DM−2 UM−2 0 QM−2

0 0 0 . . . 0 LM−1 DM−1 UM−1 QM−1

0 0 0 . . . 0 0 LM DM QM





δy1

δy2

δy3

...

...
δyM−1

δyM

δω


= −



R1

R2

R3

...

...
RM−2

RM−1

RM


.

(D.33)

D.4 Recurrence Formulae

Transforming Eq.(D.26), we have

δy1 = a1δy2 + b1 + c1δω (D.34)

with
a1 ≡ −(D1)−1U1, b1 ≡ −(D1)−1R1 and c1 ≡ −(D1)−1Q1. (D.35)

Substituting Eq.(D.34) into Eq.(D.28) for k = 2, we obtain

(L2a1 +D2)δy2 + U2δy3 + (L2c1 +Q2)δω = −(L2b1 +R2). (D.36)

This can be expressed as
δy2 = a2δy3 + b2 + c2δω (D.37)

with

a2 ≡ −(L2a1 +D2)−1U2, b2 ≡ −(L2a1 +D2)−1(L2b1 +R2)

and c2 ≡ −(L2a1 +D2)−1(L2c1 +Q2). (D.38)

In general, for k = 2, . . . ,M − 1, we have

δyk = akδyk+1 + bk + ckδω (D.39)

with

ak ≡ −(Lkak−1 +Dk)−1Uk, bk ≡ −(Lkak−1 +Dk)−1(Lkbk−1 +Rk)

and ck ≡ −(Lkak−1 +Dk)−1(Lkck−1 +Qk). (D.40)

Thus, we can obtain δyk by using Eq.(D.34) and (D.39), if δyk+1 is evaluated. It means that
we can get yk for all the meshes once δyM is evaluated. The evaluation of yM is realized by
eliminating δyM−1 in Eq.(D.31) with Eq.(D.39) for k =M − 1:

(LMaM−1 +DM)δyM + (LMcM−1 +QM)δω = −(LMbM−1 +RM) (D.41)
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Defining an (N +Nω)× (N +Nω) matrix Z as

Zij ≡


[
LMaM−1 +DM

]
ij

for j = 1, . . . , N[
LMcM−1 +QM

]
i(j−N)

for j = N + 1, . . . , N +Nω

, (D.42)

we have 

δyM1
...
δMN
δω1
...

δωNω


= −(Z)−1(LMbM−1 +RM). (D.43)

To solve the eigenvalue problem, we should first guess the values of yk for all k and ω, and
set them to yk and ω, respectively. Then we should iterate evaluating yk and ω until, for
example,

∑
k

∣∣∣δyk
∣∣∣ or |δω| becomes small enough.

Alternative Evaluation of δyM and δω

In the nonadiabatic analysis of this study, Qk’s and hence ck’s are vectors since Nω = 12.
Moreover, one of the outer boundary conditions is the normalization, yM1 = 1, which is
independent of y, ω and the used equilibrium models. Let us consider the method in which
the normalization is not included in the above matrices. That is, LM and DM are set to be
N ×N matrices, and QM to be an N -dimensional vector. Then, Eq.(D.41) becomes

δyM = bM + cMδω (D.44)

with

bM ≡ −(LMaM−1 +DM)−1(LMbM−1 +RM), (D.45)

cM ≡ −(LMaM−1 +DM)−1(LMcM−1 +QM). (D.46)

Substituting δyM1 = 1− yM1 , we have

δω = (1− yM1 − bM1 )/cM1 . (D.47)

Then, δyMi for i = 2, . . . , N can be obtained from Eq.(D.44).

2In the nonadiabatic code of this study, y and ω are calculated as complex variables, and are set to
be N dimensional vector and scalar, respectively.
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D.5 Evaluation of Discriminant

To search the region where there exist the eigenvalues in the complex plane, one of the outer
boundary conditions, except for the normalization y11 = 1, should be excluded and set to be
the discriminant D(ω) = 0. Note that the notations about ω are different from in §3.12.
Here the true eigenvalue is expressed as ω, while the temporal eigenvalue for the search as ω.
Excluding δω in the above discussion, Eq.(D.19) becomes

∂Bin

∂y1 0 0 . . . 0 0 0
∂E2

∂y1
∂E2

∂y2 0 . . . 0 0 0

0 ∂E3

∂y2
∂E3

∂y3 . . . 0 0 0
...

. . . . . .
...

...
...

...
...

...
. . . . . .

...

0 0 0 . . . ∂EM−1

∂yM−2
∂EM−1

∂yM−1 0

0 0 0 . . . 0 ∂EM

∂yM−1
∂EM

∂yM

0 0 0 . . . 0 0 ∂Bout

∂yM





δy1

δy2

δy3

...

...
δyM−1

δyM


= −



B
in

E
2

E
3

...

...

E
M−1

E
M

B
out



. (D.48)

And then the repartitioned matrix corresponding to Eq.(D.33) becomes

D1 U1 0 0 . . . 0 0 0
L2 D2 U2 0 . . . 0 0 0
0 L3 D3 U3 . . . 0 0 0
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . .

...
0 0 0 . . . LM−2 DM−2 UM−2 0
0 0 0 . . . 0 LM−1 DM−1 UM−1

0 0 0 . . . 0 0 LM DM





δy1

δy2

δy3

...

...
δyM−1

δyM


= −



R1

R2

R3

...

...
RM−2

RM−1

RM


.(D.49)

Since nib + nob = N here, Lk, Dk and Uk are N ×N matrices and Rk is an N -dimensional
vector for all k. To evaluate D(ω), we need only δyM , which can be obtained from

δyM = bM (D.50)

where b is defined by Eq.(D.45). Here the normalization yM = 1 is included in the matrices.
Thus, what we should do to evaluate D(ω) is to calculate ak and bk from k = 1 to M − 1
with Eq.(D.35) and Eq.(D.40) in order to obtain bM and then calculate δyM with Eq.(D.50).
Unlike the case of solving the eigenvalue problem, we do not have an iterative process when
Eq.(D.1) are linear differential equations since this is a linear algebraic problem.

D.6 About calculation of stellar structure

We can adopt Eq.(D.49) to calculate stellar structure. But the differential equations for
the stellar structure, Eq.(2.1)–(2.4), are nonlinear, and we require some iterations to get

175



Figure D.1: Schematic of some cell and face variables in MESA (from Paxton et al., 2011).

convergence. This study adopts MESA (Paxton et al., 2011) to construct stellar models. While
some stellar evolution codes use the method introduced above, MESA adopts the scheme of
staggered cells developed by Sugimoto et al. (1981). This scheme has two types of variables
as shown in Fig.D.1: the first type is the cell mass-averaged variables, which are density ρ,
temperature T and mass fraction of chemical elements Xi. The second one is the variables
defined at the boundaries of the cells, which are mass interior to the facem, radius r, luminosity
L and velocity v. In addition to these basic variables, the other different variables are calculated
for every cell and face, such as ε, κ. Refer to Sugimoto et al. (1981) and Paxton et al. (2011)
for the detail of the scheme and the way to apply it to the relaxation method.
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