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Abstract

There are unique clouds in the middle atmosphere in the polar regions, that is the
polar stratospheric clouds (hereafter referred to as PSCs) and polar mesospheric clouds.
The PSCs appear in the polar stratospheric winter and play a role in the significant
depletion of polar stratospheric ozone. First, PSC particles serve as an environment for
heterogeneous reactions that convert inactive chlorine and bromine reservoirs into
reactive forms. Second, the uptake of HNO; into PSC particles and subsequent
gravitational sedimentation of the particles remove reactive odd nitrogen from the lower
stratosphere (i.e., denitrification). Atmospheric waves affect the PSCs in terms of
occurrence frequency and composition because they modulate temperature in the polar
stratosphere. The adiabatic warming/cooling associated with residual circulation driven
by the wave forcing modifies temperature on large scales, which results in the
modulation of the PSC occurrence frequency. Furthermore, a recent study suggested
that as the stratospheric circulation becomes stronger, the cloud occurrence frequency
decreases not only in the stratosphere but also in the upper troposphere on
monthly-mean scales. This result implies that the stratospheric circulation can modify
the radiative budget in the troposphere.

For better understanding of variability of the stratospheric and upper-tropospheric
clouds in the polar regions, analyses on the effects of atmospheric waves are needed
from two viewpoints of (i) temperature fluctuations associated with the waves and (ii)
adiabatic warming/cooling with the stratospheric circulation driven by the wave forcing.
For this purpose, we examine these clouds based on two kinds of satellite observations

and reanalysis data.
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In the first part of research in the present thesis, we examined the simultaneous
appearance of PSCs and upper tropospheric clouds (UCs) in both hemispheres. Previous
studies have reported that PSCs are frequently observed simultaneously with upper
tropospheric clouds (UCs) over the Arctic and Antarctic. However, the mechanism of
this simultaneous occurrence was not clarified. Furthermore, it has not yet been
examined whether the UCs that simultaneously occur with PSCs are truly located below
the tropopause, because the tropopause height is modified by tropospheric disturbances.

From a correlation analysis and a statistical dependence test, it has been shown that
the simultaneous occurrence of clouds with an altitude range of 15-25 km and 9-11 km
is statistically significant. This result suggests that the lower clouds are also located in
the stratosphere, because the mean tropopause height is about 8-9 km. From an analysis
using the altitude relative to the locally determined tropopause height, it is also shown
that the PSC occurrence frequency is significantly correlated with the frequency of the
clouds around and slightly above the tropopause. This means that the lower clouds
should be regarded as tropopausal clouds (TPCs) rather than UCs.

It is also shown that the simultaneous occurrence of PSCs and TPCs is frequently
associated with blocking highs having large horizontal scales (several thousand
kilometers) and tall structures (up to a height of ~15km) causing deep negative
temperature anomalies extending up to about 20 km. The longitudinal variation of
blocking high frequency accords well with that of the simultaneous occurrence
frequency of PSCs and TPCs. This fact supports the inference that the blocking highs
provide a preferable condition for such simultaneous occurrence. It is also shown that
dominant PSC composition depends on the longitude relative to the center of blocking

highs. Ice PSCs are relatively rich above the blocking highs, while the proportions of



NAT-rich and STS-rich PSCs are large leeward of and windward of blocking highs,
respectively. It is confirmed that such relation among PSCs, TPCs and blocking highs is
seen in both hemispheres.

In February 2011, when an unprecedented ozone depletion occurred over the Arctic,
PSC frequency is highest of all analyzed years. The proportion of PSCs observed
simultaneously with TPCs in February 2011 is lower than those in January in the other
years. This result implies that the low temperature is not largely attributable to the above
blocking highs in 2011. According to previous studies, this high PSC frequency is likely
due to low stratospheric temperature related to low planetary waves activity in the
stratosphere. A plausible explanation is that a blocking high appearing in the western
Pacific region interfered with a climatological-mean trough, which resulted in
significant suppression of the upward propagating planetary waves.

In the second part of research in the present thesis, the variability of upper
tropospheric clouds in the polar regions during three SSW events in 2009, 2010, and
2012 is examined using two kinds of satellite observations and reanalysis data. It is
newly revealed that cloud frequency in the upper troposphere (an altitude range of 8-
12 km) decreased and downward displacement of mean cloud top heights occurred after
SSWs. After the sudden decrease in upper tropospheric cloud frequency, increase both
in temperature and static stability around the tropopause and a downward shift of the
tropopause height are simultaneously observed. These changes in the upper troposphere
are observed when the downward residual mean flow associated with SSWs becomes
stronger around the tropopause level. Furthermore, by using a recent theory on
three-dimensional residual mean flow and using a recently-proposed extended Hilbert

transform, the relation between cloud frequency and residual mean flow is examined in



Abstract

horizontal maps. It is shown that the geographical regions where characteristic decrease
in cloud frequency is observed accord well with those with strong downward residual
flow. This result suggests that residual mean downward flow at least partly affects the
horizontal distribution of cloud frequency in the upper troposphere. This suggests that
the relation between the cloud frequency decrease and the downward residual mean
flow, as seen in the zonal mean meridional cross section from the analysis using the
TEM equation system, is observed even in the horizontal distribution.

Another interesting feature is that the low cloud frequency in the upper troposphere
starting after SSWs continues for more than one month. It is considered that the slow
radiative relaxation time scale in the lower stratosphere may be partly responsible for
the long-lasting low cloud frequency. The change in the activity of tropospheric
disturbances after SSWs may be another important factor causing the continuous low
cloud frequency. However, the change of wave activity itself may be attributable to the
static stability structure modified by the enhanced downward residual mean flow in
association with the SSW events.

It is likely that SSWs play a major role in the dynamical coupling of the stratosphere
and troposphere as discussed in many previous studies. Our results imply that the SSWs
can affect the tropospheric radiative budget through the modification of cloud frequency

and cloud top heights because outgoing long-wave radiation varies.
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Chapter 1
General introduction
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Chapter 2
Simultaneous occurrence of PSCs and
upper tropospheric clouds

In this chapter, the simultaneous occurrence of PSCs and upper tropospheric clouds
are statistically examined using satellite observations and reanalysis data. It is shown
that low temperature associated with blocking highs in the troposphere has a primary
role in the simultaneous occurrence. The results strongly indicate the importance of the
phases of atmospheric waves on the PSC occurrence. Note that the results on SH in this

chapter have already been published as a peer-reviewed article (Kohma and Sato 2013).
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Chapter 3
Variability of upper tropospheric clouds
during stratospheric sudden warming

In this chapter, the variability of upper tropospheric clouds during SSWs in NH is
examined using two kinds of satellite observations and reanalysis data. It is found that
the decrease in the cloud frequency in the upper troposphere and downward shift of
mean cloud top heights are observed soon after SSWs. The results based on the TEM
equation system and a recent theory of three-dimensional residual mean flow (Kinoshita
and Sato 2013; Sato et al. 2013) are shown. The results suggest that the residual
circulation (RC) driven by atmospheric waves affects the cloud frequency and the

radiative budget in the upper troposphere.
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Chapter 4
Summary and concluding remarks
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