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Quantum cryptography?=8 exploits the fundamental law of quantum mechanics to provide

a secure way to exchange private information. The basic idea behind quantum key distri-
bution (QKD) has widely been understood as the property that any attempt to distinguish
encoded quantum states causes disturbance on the signal. As a result, implementation of
a QKD protocol involves estimation of experimental parameters influenced by eavesdrop-
per’s intervention through randomly sampled signals. This sacrificed portion of signals af-
fects the efficiency of the protocol when it requires estimation of many parameters with high
precision®0. Here we propose a QKD protocol based on an entirely different principle. The
sender encodes a bit sequence onto nonorthogonal quantum states and the receiver randomly
dictates how a single bit should be calculated from the sequence. The eavesdropper, who is
unable to learn the whole of the sequence, cannot guess the bit value correctly. A secure key
rate is calculated by considering complementary choices over quantum measurements of two
conjugate observable¥'. We found that a practical implementation using a laser pulse train
achieves a key rate comparable to a decoy-state QKD protocét'4 a commonly used tech-
nigue for lasers. It also has a better tolerance on bit errors and on finite-sized-key effects.
We anticipate our finding to give new insight into how the probabilistic nature of quantum
mechanics can be related to secure communication, and to open up a new route towards

simple and efficient use of conventional lasers for QKD.

In a QKD protocol, the sender Alice and the receiver Bob repeat transmission of quantum
signals and accumulate raw bits of data through quantum measurements. Using public communi-
cation, each of them discards the apparently useless portion of the raw data to form a bit sequence

called a sifted key. The sifted key of lengthis then processed into the final key of a shorter length



through error reconciliation and privacy amplification. Denoting the costs of the two procedures

asHgr and Hpy, the net production lengtfy of the secure final key is given by
G = N(1 — Hgr — Hpa). (1)

When the bit errors between Alice’s and Bob'’s sifted key occur at aratehe ideal cost of error
reconciliation in the asymptotic limit of largd' is given by Hgr = h(epi;) @s Shannon entropy,
with h(z) ;= —zlogy  — (1 —x) logy(1 —x). The costHp, depends on how much information on
the sifted key has leaked to an eavesdropper Eve. For example, it is givépaby: h(ep;) in @
simple proot® for the BB84 protocdl. In general, the formula varies depending on protocols and
security proofs, and parameters other thgpare often monitored in the protocol and enter into
the formula of Hps. Nevertheless, so fafp, was always an increasing function of the amount
of disturbance. This implies that the conventional QKD protdcdfé-14inherently rely on the
original version of Heisenberg’s uncertainty principle, which dictates that the more information
Eve has obtained, the more disturbance she should have caused on the signal.

What we propose here is an entirely new approach to establish private correlations between
Alice and Bob under the presence of an eavesdropper Eve, in which the leaked information to Eve
is bounded regardless of the disturbance that she causes on the quantum signal. The main idea is
to encode many raw key bits on quantum systems coherently such that only a few bits can be read
out at the same time, which enables Bob to specify randomly how the sifted key bit is calculated
from the raw key bits. This randomness makes it hard for Eve to guess the calculated bit from
what little knowledge on the raw key bits she has acquired.

Let us explain our QKD protocol in more detail using the schematics shown in &iglride
protocol proceeds as follows. (I) Alice encodes a randoiit sequencea; s, - - - s;, on a weak
signal. For the understanding of the basic idea, here we assume that the encoded signal is a single-
photon state of. optical pulses,

Lkzl ) (k) (2)

where the photon is in the-th pulse for statek). (ll) After possible intervention by Eve, Bob
receives the signal. (Ill) An independent random number generator (RNG) announces a random
valuer € {1,---, L — 1}. (IV) Through an optical interference measurem&htBob tries to de-
termine the value of; © s; for a pair of indiceq7, j} C {1,---, L} satisfyingj —i = £r(modL).

Here the symbolp denotes summation modulo 2. In measurem@ntBob splits each pulse by



a half beam-splitter and then superposesittle and thek’-th half pulses{’ = k + r(mod L),

k =1,...,L) to measure the phase difference by detecting a photon. Whenever a photon is de-
tected from the superposedh andj-th pulses, Bob announcgs, j} and records the measured
phase difference as his sifted key bjit Alice recordss, = s, @ s, as her sifted key bit. As shown

in Methods section, if Bob receives the stalg) intact, he learns 4 without errors.

We are now interested in how well Eve can guess the valug .0Fig. 1a alone is not conclu-
sive in this regard, since she has a control over the decision process of the ifidigethrough
feeding a modified signal to Bob at step (I). In order to show that Eve’s control is quite limited,
consider another measurement procedure by Bob shown inlzi¢n ineasurement/’, Bob sim-
ply measures the location of the photon in the incomingulses to determine one of the indices,

7. He also generates a random hitSubsequently, the RNG announeegsvhich determines the
otherindex ag =i + (—1)b7(mod L). As is proved in Methods section, this procedure is equiva-
lent to M as far as the production of outcorfig j} is concerned. Hence, it suffices to show Eve’s
ignorance of 4 in Fig. 1b.

An intuitive reasoning for the ignorance is given as follows. Since Alice has emitted just one
photon, most of the. bits should be unknown to Eve whén> 1. In Fig. 1b, Eve’s intervention
only affects the decision of indéxand the other indexis chosen randomly from the rest bf- 1
bits through the random number We may thus expect that Eve has little informationspnand
hence ors4 = s; ® s;.

What is remarkable here is that the above argument has no reference to how much Eve has
disturbed the signal received by Bob. To make a rigorous security proof, we have only to show
that Alice’s sifted key bits4 in Fig. 1b can be accumulated and converted to a secure final key,
based on the fact thatis random and independent ©f There is no need to mention directly the
state fed to Bob by Eve in the proof, and it is still valid for any attack strategy by Eve.

The difficulty in guessing the value of randomly chosenshitippearing in Fig. i was dis-
cussed in a slightly different context and called the information cau&alitpur QKD scheme
may be regarded as the combination of the information causality, which holds for classical and
guantum signals alike, and the complementarity, which is unique to quantum mechanics. Bob’s
measurement in Fig.alreveals the phase difference, a wave-like property, while that in Big. 1
identifies the location of the photon, a particle-like property. In quantum mechanics, such different
measurements may result in incompatible consequences. In fact, Bobdgamrisg. 1a, whereas

in Fig. 1b the information causality forbids anyone from learning including Bob. The mere



possibility of Bob’s choosing the latter prevents Eve from learningeven if Bob has actually
chosen the former.

It is also worth mentioning how our QKD protocol differs from the B92 protdcdlhey are
similar in many points. In both, Alice encodes the bit values on nonorthogonal states. Bob dictates
which of the bits should be used. The dictation may be tampered by Eve via modifying the signals,
since it is based on the outcomes of Bob’s measurement on them. It is, however, only our protocol
that has a complementary scenario shown in Rigwhich substantiates the existence of inherent
randomness in Bob’s dictation, beyond the reach of Eve’s tampering.

The above basic idea can be implemented simply by a weak coherent laser pulse train as a light
source and a variable-delay interferometer at the receiver (Fig. 2), which we call the round-robin
differential phase-shift (RRDPS) QKD protocol. The setup is exactly the same as the DPS QKD
protocol'1"*8except that the fixed delay line in the original is replaced by a variable delay line. For
a security proof, we adopt a simple characterisation of the source about the total photon number

in the L-pulse train stated in the form of
Pr(v > vy) < ege, 3)

with an integer;, < % and a constant,.. LetQ be the empirical rate of detectioh:= N/N.,
when a sifted key of lengtlv is generated through/,,,, rounds of transmitting_-pulse trains.
Then we can derive an asymptotic formula for the net production length of the secure key (see the

Methods section)

€src €src Vth
G:Nll_h(ebit)_Q_<1_Q>h<L—1>1' 4)

For clarity, let us consider the case where a nonclassical light sourceewith- 0 is used

instead of the laser, for which

G:N[l—h(ebit)_h<[jjt_hl>:| . (5)

The case withy, = 1 corresponds to the staf@;) used in the explanation of the basic idea. In
equation (5), the third termipy = h(v/(L — 1)) is a constant, which is in a stark contrast with
the conventional QKD protocols for whicHp, depends on the disturbance. The constant value
of Hp, leads to two advantages of the new QKD protocol: (i) It has high tolerance on bit errors.
For example, for, = 128 andvy, = 1, G is positive up teey,;; = 0.35. There is no fundamental

limit on the error threshold smaller than 50%. (ii) The secrecy of the final key is established after



shortening the key length via privacy amplification by a fixed and predetermined fraétion
There is no need to sacrifice a randomly chosen subset of signals to estimate an appropriate value
of Hpa, Which affects the rate of finite-sized key:19-21

For the use of weak coherent pulses (WCPs) from a conventional laser, we show examples of
asymptotic key rates per puls€,/(LN.,), as a function of channel transmissigrin Fig. 3.

For ground-based transmission, an optical fibre of 50 km decredsgs factor of 10, whereas

n = 10"* ~ 107° is expected for satellite-based transmis&ioil Figure 3 also shows rates of the
BB84 protocol for comparison. When WCPs with the second order correlgfitio) = 1 or a
realistic single-photon sourge?” with ¢(2(0) = 0.01 are used for BB84, the multi-photon emis-
sion from the source is exploited by Eve via photon-number splitting (PNS) attgékesulting

in a poor key-rate scaling @?(n?). The present scheme with WCPs has a better scaling close to
O(n), and surpasses the WCP- or the single-photon-based BB84 protocol fomsmall

There is a popular technique called decoy-state &K'f in which pulses with different ampli-
tudes are randomly mixed in the signal to monitor the PNS attacks. It stands in sharp contrast to our
protocol. Fig. 3 also shows the asymptotic key rate for the ideal decoy-state BB84 pijtivcol
which the statistics of single-photon emission events are precisely characterised via decoy signals.
While the asymptotic rate is better than our protocol by one order of magnitude, for finite-sized
key the decoy-state BB84 protocol suffers from a trade-off between the overhead of processing a
large-sized key and the inefficiency from inserting many decoy signals to reach a required accu-
racy in the estimation of paramet&t8& Our protocol is much simpler in this regard, requiring no
sampling for determinind/p,. As a result, a positive key rate is achieved even witheing as
small as10® (see Methods section). For a higher bit-error rate, our protocol becomes better than
the decoy-state BB84 even in the asymptotic limit, owing to its high tolerance on the errors. If we
consider the use of modern digital coherent communication systems with 40 Gbits/s DPS signals
and assume the receiver’s overall detection efficiency of 10%, we can generate a secure key at a
rate of 200 bits/s for a channel length of 200 km and an error rate of 11%.

The variable delay used in our scheme will be implemented as a series of switchable optical
delay lines of 7", 2T, 4T, 8T, . . ., whereT is the time interval between the neighbouring pulses.
Since the delay is fixed for each train bipulses, the switching speed can be much slowerhan
and it only affects the duty ratio.

The proposed QKD protocol demonstrates that spreading quantum information coherently over

hundreds of quantum systems such as optical pulses provides a novel way of utilising it for secure



communication. The fact that the quantum effect survives under large noise suggests that similar
encoding techniques may be useful for other applications of quantum information to work under

the presence of noise.

Methods Summary

Bob’s alternative choices of measurements.
Let+, denote summation modula When a single-photon input staiés fed to measurement
M, Bob announce$k, k 4+, r} and obtains = s at probability(k, s| p |k, s) /2 with |k, s) :=
(|k) + (=1)% |k +L 7))//2. Since(k, s|¥,) = 0 whens # s, @ s, BOb’s guess is always
equal tos 4 if he has received stat@,). The probability of announcini, j} ({j,4} is regarded
as the same value) is calculated taldg:, j}) = [P (i) + P ())][0i+,r; + 0+ ,r:) /2, WhereP(k) =
(k| p |k) is the probability of finding a photon in tHeth pulse.
The calculation ofP({i, j}) for the case of Fig. i also leads to the same expression. This
shows that the relation between the quantum signal received from Eve and the announced value
{1, j} is identical for Fig. Aand b.

Derivation of secure key rates.

The random phase shiftenables Alice to tag each of the rounds with> v, in principle®.
We assume that this tagged portion, at mist,./( bits, is fully leaked to Eve, leading to the
—ege /@ term in equation (4).

For the untagged portion, it can be shown that the sequenee- - s;, is equivalent to the
outcome of{|0) , |1) }-basis measurement dn qubits prepared in a state fulfilling the promise
that, if they are measured in a conjugéte ) , |—) }-basis, no more tham,;, qubits are found to be
in |—) state. The key bity = s; @ s; is then given by{|0) , |1) }-basis measurement on qubit
after a controlled-NOT operation on qubitandj. It can be shown that the probability of finding

qubit j in state|—) is at most, /(L — 1), leading? to the remaining term in equation (4).

Methods

Bob’s alternative choices of measurements.
Let 4+, denote summation modulb, and P(|¢)) := |¢) (¢|. Bob’s measurement/ is fully
characterised by a set of operators

B ("“> izl ”), ©)




where the probability of outcom@, s) (k € {1,...,L},s € {0,1}) is given byTr(ﬁE’,ifs)) for
single-photon input staté From this outcome, he announdgs k +, r} (the order being irrele-
vant) and adoptsg = s. Since(\ | E,(fg (W) = 0whens # s, @ sk, ., BOD’S guess s is always
equal tos 4 if he has received stat@ ).

In measurement/, the probabilityP ({4, j}) of announcing{i, j} (i # j) is given by
S Te(PEN o4 s + s Te(PE))O54 i, Whered,, is 1 forz = y and O forz # y. This is
calculated to be

P{i,j}) = [P() + P()][0i+1rj + Gjril /2, (7)
whereP (k) = (k| p |k) is the probability of finding a photon in theth pulse.

In Fig. 1b, Bob announce$k, k +; (—1)r} (k = 1,...,L;b = 0,1) at probability P(k) /2.
Noticing thatP({i, j }) is contributed from the casés= i andk = j, we see that it is also given
by equation (7). This shows that the relation between the quantum signal received from Eve and
the announced valugi, j} is identical for Fig. & and b. Therefore, if a statement regarding

Eve’s knowledge about Alice’s sifted key is proved for Fig, &t should also be true for Figal

Derivation of secure key rates.

Here we give a security proof and derive the final key rate for the proposed QKD protocol
shown in Fig. 2. We first show that Alice’s random bit sequesice . s;, can be regarded as an
outcome ofZ-basis measurement dnqubits. Let|¥) be the state of at.-pulse train emitted
from the laser source. In the actual set up, Alice choases. s; randomly and applies phase
shifts accordingly, resulting in the emitted st@e(—1)*" |¥), wheren,, := a}.d, is the photon-
number operator for thie-th pulse. Insteadd, she could preparé qubits and the. pulses in an

entangled state

L
27 Q) D k), (1) (W), (8)

k=1 s,,=0,1
where{|0), , |1),} is theZ-basis states of thieth qubit. The states of the pulses are identical to
those in the actual set up, and if Alice needs bit valyeshe may simply measure thketh qubit
on theZ basis.

It is useful for later discussion to ask what happens if Alice measures tgbits in theX
basis{|+), |—)} with |£) := 271/2(|0) £|1)). Letn_ be the number of qubits found in state).
The statistics of._ is related to the photon number distribution|i). In fact, it is seen from
equation (8) that if thé-th pulse contains an even number of photons, the state éf-thejubit

is |[+),, and if the number is odd, the state|+s),. Hencen_ is no larger than the total photon



number. Since the argument so far holds for any pure $igteit is also true when the source

emits a mixed state. We thus conclude that, if the source fulfils equation (3),
Pr(n_ > ) < ege. 9)

Next, we relate Bob’s apparatus in Fig. 2 to measureméntWe assume that the detectors
can discriminate between a single photon from two or more photons, and that dark countings and
inefficiency can be equivalently ascribed to a property of the transmission channel. Bob declares
successful detection when a photon is detected from a superposed pulse and no other detection
occurs in the whole pulse train. This ensures that the detected signal comes from a single-photon
state. When the delay i8T", the measurement is characterised similarly to equation (6) by opera-

tors

fi e L (M) w0

except that it is defined only if < &’ < L — »’. To see that this is equivalent to measurement
M except an efficiency of /2, introduce an auxiliary random hitto definer = " andk = £’

if c=0,whiler =L —7"andk = k' + ' if ¢ = 1. Thenr is uniformly random. Givem, the
probability of outcomék, s) for input statep is written as

1 ~ (T 1 ~ 1a(L—1
Pr(k,s) = g Tr(PF)) + S Tr(pE, T ) (11)

where it is understood thﬂl;ﬁ’"g =0fork’ > L—r"+1ork’ <0. Itturns out that one of the terms
always vanishes ariéir(k, s) = Tr(ﬁE,gfz)/Q. We thus conclude that Bob’s apparatus is equivalent
to measurement/ preceded by a filter that allows only single-photon states to pass through with
efficiency 1/2.

To assess how much Eve knows about Alice’s keyhjtwe may assume that Bob carries out
measuremend/’. Learning:, b andr, Alice applies a controlled-NOT operation to the qubit
as control and qubif = i + (—1)’r(mod L) as target. The key bity = s; @ s; in the original
protocol is now equivalent to the outcome Bfbasis measurement on qubit If one measures
this qubit in X basis instead, the probability of a ‘phase error’, namely, of finding |it-instate is

no more thare,, defined by

6SI“C eSI‘C 1% 1
eph:QJr(l—Q)Lt_ll (12)

because the controlled-NOT operation does not affeckitedgenstates of the target, the index

is chosen uniformly from all qubits except tih via random number, and finally equation (9)



assures that among thé rounds contributing the sifted key, at leagt— N, e, rounds satisfy
n_ < vy, in the limit of largeN. Then, ife,, < 1/2, she can extract a secure final key of length
N[1 — h(epn)] by privacy amplificatioh'. Bob composes his sifted key from bit in each round.
The error reconciliation will be done by letting Alice seith(ey,;;) bits of encrypted information
to Bob such that he can reconcile his sifted key to Alice’s. The net production length is then given
by

G = N1 — h(ewit) — h(epn)]- (13)

This rate can be improved by applying a common random optical phase)dbifall the
pulses in the actual protocol. This makes the emitted quantum state of the train to be a classical
mixture of states with fixed total photon numbers, enabling Alice to tag each of the rounds with
v > 1y, in principle though she needs not to do so in praéfickVe may then assume that Eve
completely knows the sifted key bits for the tagged portion (at mast./Q bits), while the rest
is treated as ié,,. = 0. This leads to equation (4) in the main text and it is used in Fig. 3.

If we omit the random optical phase shiftthe rate forL, = 128 andey,;; = 0.03 decreases by
about 10% from the rate shown in Fig. 3. On the other hand, if we are allowed to assume that the
emitted photon number obeys a Poissonian distribution, the rate for128 andey;; = 0.03 is
larger than the one shown in Fig. 3 by about 30% even if we omit the random optical phase shift.

Finally, we briefly discuss an expected behaviour of our protocol for a finite-sized key. Let
f(kin,p) == Yo P’ (1 — p)"~In!/[j!(n — j)!] be the tail distribution for finding more than
successful events in a binomial distribution. Except for a probakility= f(N71; New, €see), WE
may chooseVr, bits among theV sifted key bits to include all the tagged portion. We make no
assumption on the phase errors for the chaSen bits. If we count the number of phase errors
for the remainingV’ := N(1 — r;) bits, it should be no larger thai’r, except for a probability
€2 := f(N'ro; N, vy /(L — 1)). The imperfection in the final key is characterised through the
failure probabilitye in identifying the phase error pattern whaiHp, bits of error syndrome are
given®1120 Givens > 0, we choose; andr, to satisfye; = ¢, = 27°. Then, we have < 3x27°
for Hpp = r1 + (1 — r1)h(r2) + s/N. The commonly assumed quality of the key corresponds to
s =70 ~ 160.

As an example, consider the case with= 128, n = 2 x 1073, andey;; = 0.03. The results
below do not change significantlysifis chosen to be smaller, suchias- 10~°. Asymptotically,
the rate is optimised whep = 0.0541 with vy, = 17, leading top; = egcNewm/N = 0.047,
po =y /(L — 1) = 0.134, andHpa = Hpy = p1 + (1 — p1)h(p2) = 0.588. For a finite length
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N, let us first use a crude Gaussian approximatiomgf(k; n, p) = —(k — np)?/[(2np(1 — p)].
This leads to; = p; + \/(2111 2)p1(s/N) andry = py + \/(2111 2)pa(1 — pa)(s/N’). FOrN > s,

substituting numerics giveps = Hpy (14 1.98,/s/N). A better estimate is given by a rigorous

boundlog, f(k;n,p) < —nD(k/n||p) with D(q|p) := qlog,(q/p)+ (1 —q)log,[(1—q)/(1 —p)].
We calculated the finite-size rate after optimising oveanduv,, for eachN, and then derived its

fraction R to the asymptotic optimal rate af16 x 10~°. Fors = 100, we foundR = 3.3% for
N =103, R =53% for N = 10%, R = 84% for N = 105, andR = 95% for N = 106.
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Figure legends

Figure 1 | Basic idea behind the proposed QKD scheme. a,Quantum signals flow through
thick lines and classical ones through thin lines, in order indicated by Roman numerals. Eve tries
to guess Alice’s bit4, = s; @ s; in both figures. Ima, Bob conducts measuremeht following
random number generator RNG to guegs In b, Bob conducts measuremehlt’ prior to RNG,
making it hard for anyone to guess. Since the procedures to generate indi€eg} in both
figures are identical, every strategy by Evaishould work equally well irb.

Figure 2 | Practical implementation of the proposed QKD scheme Alice’s laser emits a
train of L pulses with intervall. She applies phase shift, 7} on each pulse according to a
random bit sequence ... s;. Bob splits the received train in two beams and superposes them
after a random delay'T" (' € {1,...,L — 1}). Detection of a photon determines Bob'’s sifted
key bit sz, and he announces the indicgs;j} of corresponding pair of pulses. Alice adopts

sa = s; @ s; as her sifted key bit. The key rate is improved by applying random phasesach
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train (see the Methods section).

Figure 3 | Key rates vs channel transmission. aThe rates fory;, = 0.03. (i)—(iii) The
proposed protocol witli, = 128,32, 16. The rates are optimised over the choicesgfand the
mean photon number of a weak coherent pulse (WCP) through the relatiba= Lnue=Lm /2
andeg,. = 1 =Y, u=/v!. The optimised value qgf is around).05 for (i) whenn < 0.01. (iv)—

(vi) BB84 protocols with double-pulse phase coding, using (iv) WCPs, (v) realistic single-photon
source with the second-order correlatig® (0) = 0.01, and (vi) WCPs with infinite decoy states.
b, The rates for,;; = 0.11.
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