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Quantum cryptography1–8 exploits the fundamental law of quantum mechanics to provide

a secure way to exchange private information. The basic idea behind quantum key distri-

bution (QKD) has widely been understood as the property that any attempt to distinguish

encoded quantum states causes disturbance on the signal. As a result, implementation of

a QKD protocol involves estimation of experimental parameters influenced by eavesdrop-

per’s intervention through randomly sampled signals. This sacrificed portion of signals af-

fects the efficiency of the protocol when it requires estimation of many parameters with high

precision9,10. Here we propose a QKD protocol based on an entirely different principle. The

sender encodes a bit sequence onto nonorthogonal quantum states and the receiver randomly

dictates how a single bit should be calculated from the sequence. The eavesdropper, who is

unable to learn the whole of the sequence, cannot guess the bit value correctly. A secure key

rate is calculated by considering complementary choices over quantum measurements of two

conjugate observables11. We found that a practical implementation using a laser pulse train

achieves a key rate comparable to a decoy-state QKD protocol12–14, a commonly used tech-

nique for lasers. It also has a better tolerance on bit errors and on finite-sized-key effects.

We anticipate our finding to give new insight into how the probabilistic nature of quantum

mechanics can be related to secure communication, and to open up a new route towards

simple and efficient use of conventional lasers for QKD.

In a QKD protocol, the sender Alice and the receiver Bob repeat transmission of quantum

signals and accumulate raw bits of data through quantum measurements. Using public communi-

cation, each of them discards the apparently useless portion of the raw data to form a bit sequence

called a sifted key. The sifted key of lengthN is then processed into the final key of a shorter length
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through error reconciliation and privacy amplification. Denoting the costs of the two procedures

asHER andHPA, the net production lengthG of the secure final key is given by

G = N(1−HER −HPA). (1)

When the bit errors between Alice’s and Bob’s sifted key occur at a rateebit, the ideal cost of error

reconciliation in the asymptotic limit of largeN is given byHER = h(ebit) as Shannon entropy,

with h(x) := −x log2 x−(1−x) log2(1−x). The costHPA depends on how much information on

the sifted key has leaked to an eavesdropper Eve. For example, it is given byHPA = h(ebit) in a

simple proof15 for the BB84 protocol1. In general, the formula varies depending on protocols and

security proofs, and parameters other thanebit are often monitored in the protocol and enter into

the formula ofHPA. Nevertheless, so farHPA was always an increasing function of the amount

of disturbance. This implies that the conventional QKD protocols1–8,12–14inherently rely on the

original version of Heisenberg’s uncertainty principle, which dictates that the more information

Eve has obtained, the more disturbance she should have caused on the signal.

What we propose here is an entirely new approach to establish private correlations between

Alice and Bob under the presence of an eavesdropper Eve, in which the leaked information to Eve

is bounded regardless of the disturbance that she causes on the quantum signal. The main idea is

to encode many raw key bits on quantum systems coherently such that only a few bits can be read

out at the same time, which enables Bob to specify randomly how the sifted key bit is calculated

from the raw key bits. This randomness makes it hard for Eve to guess the calculated bit from

what little knowledge on the raw key bits she has acquired.

Let us explain our QKD protocol in more detail using the schematics shown in Fig. 1a. The

protocol proceeds as follows. (I) Alice encodes a randomL-bit sequences1s2 · · · sL on a weak

signal. For the understanding of the basic idea, here we assume that the encoded signal is a single-

photon state ofL optical pulses,

|Ψ1⟩ :=
1√
L

L∑
k=1

(−1)sk |k⟩ , (2)

where the photon is in thek-th pulse for state|k⟩. (II) After possible intervention by Eve, Bob

receives the signal. (III) An independent random number generator (RNG) announces a random

valuer ∈ {1, · · · , L− 1}. (IV) Through an optical interference measurementM , Bob tries to de-

termine the value ofsi⊕sj for a pair of indices{i, j} ⊂ {1, · · · , L} satisfyingj−i = ±r(modL).

Here the symbol⊕ denotes summation modulo 2. In measurementM , Bob splits each pulse by
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a half beam-splitter and then superposes thek-th and thek′-th half pulses (k′ = k + r(modL),

k = 1, . . . , L) to measure the phase difference by detecting a photon. Whenever a photon is de-

tected from the superposedi-th andj-th pulses, Bob announces{i, j} and records the measured

phase difference as his sifted key bitsB. Alice recordssA = si⊕sj as her sifted key bit. As shown

in Methods section, if Bob receives the state|Ψ1⟩ intact, he learnssA without errors.

We are now interested in how well Eve can guess the value ofsA. Fig. 1a alone is not conclu-

sive in this regard, since she has a control over the decision process of the indices{i, j} through

feeding a modified signal to Bob at step (II). In order to show that Eve’s control is quite limited,

consider another measurement procedure by Bob shown in Fig. 1b. In measurementM ′, Bob sim-

ply measures the location of the photon in the incomingL pulses to determine one of the indices,

i. He also generates a random bitb. Subsequently, the RNG announcesr, which determines the

other index asj = i+ (−1)br(modL). As is proved in Methods section, this procedure is equiva-

lent toM as far as the production of outcome{i, j} is concerned. Hence, it suffices to show Eve’s

ignorance ofsA in Fig. 1b.

An intuitive reasoning for the ignorance is given as follows. Since Alice has emitted just one

photon, most of theL bits should be unknown to Eve whenL ≫ 1. In Fig. 1b, Eve’s intervention

only affects the decision of indexi, and the other indexj is chosen randomly from the rest ofL−1

bits through the random numberr. We may thus expect that Eve has little information onsj, and

hence onsA = si ⊕ sj.

What is remarkable here is that the above argument has no reference to how much Eve has

disturbed the signal received by Bob. To make a rigorous security proof, we have only to show

that Alice’s sifted key bitsA in Fig. 1b can be accumulated and converted to a secure final key,

based on the fact thatr is random and independent ofi. There is no need to mention directly the

state fed to Bob by Eve in the proof, and it is still valid for any attack strategy by Eve.

The difficulty in guessing the value of randomly chosen bitsj appearing in Fig. 1b was dis-

cussed in a slightly different context and called the information causality16. Our QKD scheme

may be regarded as the combination of the information causality, which holds for classical and

quantum signals alike, and the complementarity, which is unique to quantum mechanics. Bob’s

measurement in Fig. 1a reveals the phase difference, a wave-like property, while that in Fig. 1b

identifies the location of the photon, a particle-like property. In quantum mechanics, such different

measurements may result in incompatible consequences. In fact, Bob learnssA in Fig. 1a, whereas

in Fig. 1b the information causality forbids anyone from learningsA, including Bob. The mere
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possibility of Bob’s choosing the latter prevents Eve from learningsA even if Bob has actually

chosen the former.

It is also worth mentioning how our QKD protocol differs from the B92 protocol3. They are

similar in many points. In both, Alice encodes the bit values on nonorthogonal states. Bob dictates

which of the bits should be used. The dictation may be tampered by Eve via modifying the signals,

since it is based on the outcomes of Bob’s measurement on them. It is, however, only our protocol

that has a complementary scenario shown in Fig. 1b, which substantiates the existence of inherent

randomness in Bob’s dictation, beyond the reach of Eve’s tampering.

The above basic idea can be implemented simply by a weak coherent laser pulse train as a light

source and a variable-delay interferometer at the receiver (Fig. 2), which we call the round-robin

differential phase-shift (RRDPS) QKD protocol. The setup is exactly the same as the DPS QKD

protocol7,17,18except that the fixed delay line in the original is replaced by a variable delay line. For

a security proof, we adopt a simple characterisation of the source about the total photon numberν

in theL-pulse train stated in the form of

Pr(ν > νth) ≤ esrc, (3)

with an integerνth < L−1
2

and a constantesrc. LetQ be the empirical rate of detectionQ := N/Nem

when a sifted key of lengthN is generated throughNem rounds of transmittingL-pulse trains.

Then we can derive an asymptotic formula for the net production length of the secure key (see the

Methods section)

G = N

[
1− h(ebit)−

esrc
Q

−
(
1− esrc

Q

)
h
(

νth
L− 1

)]
. (4)

For clarity, let us consider the case where a nonclassical light source withesrc = 0 is used

instead of the laser, for which

G = N
[
1− h(ebit)− h

(
νth

L− 1

)]
. (5)

The case withνth = 1 corresponds to the state|Ψ1⟩ used in the explanation of the basic idea. In

equation (5), the third termHPA = h(νth/(L− 1)) is a constant, which is in a stark contrast with

the conventional QKD protocols for whichHPA depends on the disturbance. The constant value

of HPA leads to two advantages of the new QKD protocol: (i) It has high tolerance on bit errors.

For example, forL = 128 andνth = 1, G is positive up toebit = 0.35. There is no fundamental

limit on the error threshold smaller than 50%. (ii) The secrecy of the final key is established after
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shortening the key length via privacy amplification by a fixed and predetermined fractionHPA.

There is no need to sacrifice a randomly chosen subset of signals to estimate an appropriate value

of HPA, which affects the rate of finite-sized key9,10,19–21.

For the use of weak coherent pulses (WCPs) from a conventional laser, we show examples of

asymptotic key rates per pulse,G/(LNem), as a function of channel transmissionη in Fig. 3.

For ground-based transmission, an optical fibre of 50 km decreasesη by a factor of 10, whereas

η = 10−4 ∼ 10−5 is expected for satellite-based transmission22–24. Figure 3 also shows rates of the

BB84 protocol for comparison. When WCPs with the second order correlationg(2)(0) = 1 or a

realistic single-photon source25–27 with g(2)(0) = 0.01 are used for BB84, the multi-photon emis-

sion from the source is exploited by Eve via photon-number splitting (PNS) attacks28,29, resulting

in a poor key-rate scaling ofO(η2). The present scheme with WCPs has a better scaling close to

O(η), and surpasses the WCP- or the single-photon-based BB84 protocol for smallη.

There is a popular technique called decoy-state QKD12–14, in which pulses with different ampli-

tudes are randomly mixed in the signal to monitor the PNS attacks. It stands in sharp contrast to our

protocol. Fig. 3 also shows the asymptotic key rate for the ideal decoy-state BB84 protocol13, in

which the statistics of single-photon emission events are precisely characterised via decoy signals.

While the asymptotic rate is better than our protocol by one order of magnitude, for finite-sized

key the decoy-state BB84 protocol suffers from a trade-off between the overhead of processing a

large-sized key and the inefficiency from inserting many decoy signals to reach a required accu-

racy in the estimation of parameters9,10. Our protocol is much simpler in this regard, requiring no

sampling for determiningHPA. As a result, a positive key rate is achieved even withN being as

small as103 (see Methods section). For a higher bit-error rate, our protocol becomes better than

the decoy-state BB84 even in the asymptotic limit, owing to its high tolerance on the errors. If we

consider the use of modern digital coherent communication systems with 40 Gbits/s DPS signals

and assume the receiver’s overall detection efficiency of 10%, we can generate a secure key at a

rate of 200 bits/s for a channel length of 200 km and an error rate of 11%.

The variable delay used in our scheme will be implemented as a series of switchable optical

delay lines ofT, 2T, 4T, 8T, . . ., whereT is the time interval between the neighbouring pulses.

Since the delay is fixed for each train ofL pulses, the switching speed can be much slower thanT ,

and it only affects the duty ratio.

The proposed QKD protocol demonstrates that spreading quantum information coherently over

hundreds of quantum systems such as optical pulses provides a novel way of utilising it for secure
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communication. The fact that the quantum effect survives under large noise suggests that similar

encoding techniques may be useful for other applications of quantum information to work under

the presence of noise.

Methods Summary

Bob’s alternative choices of measurements.

Let+L denote summation moduloL. When a single-photon input stateρ̂ is fed to measurement

M , Bob announces{k, k +L r} and obtainssB = s at probability⟨k, s| ρ̂ |k, s⟩ /2 with |k, s⟩ :=

(|k⟩ + (−1)s |k +L r⟩)/
√
2. Since⟨k, s|Ψ1⟩ = 0 whens ̸= sk ⊕ sk+Lr, Bob’s guesssB is always

equal tosA if he has received state|Ψ1⟩. The probability of announcing{i, j} ({j, i} is regarded

as the same value) is calculated to beP ({i, j}) = [P (i)+P (j)][δi+Lr,j+δj+Lr,i]/2, whereP (k) =

⟨k| ρ̂ |k⟩ is the probability of finding a photon in thek-th pulse.

The calculation ofP ({i, j}) for the case of Fig. 1b also leads to the same expression. This

shows that the relation between the quantum signal received from Eve and the announced value

{i, j} is identical for Fig. 1a and 1b.

Derivation of secure key rates.

The random phase shiftδ enables Alice to tag each of the rounds withν > νth in principle30.

We assume that this tagged portion, at mostNesrc/Q bits, is fully leaked to Eve, leading to the

−esrc/Q term in equation (4).

For the untagged portion, it can be shown that the sequences1s2 · · · sL is equivalent to the

outcome of{|0⟩ , |1⟩}-basis measurement onL qubits prepared in a state fulfilling the promise

that, if they are measured in a conjugate{|+⟩ , |−⟩}-basis, no more thanνth qubits are found to be

in |−⟩ state. The key bitsA = si ⊕ sj is then given by{|0⟩ , |1⟩}-basis measurement on qubitj

after a controlled-NOT operation on qubitsi andj. It can be shown that the probability of finding

qubit j in state|−⟩ is at mostνth/(L− 1), leading11 to the remaining term in equation (4).

Methods

Bob’s alternative choices of measurements.

Let +L denote summation moduloL, andP̂ (|ϕ⟩) := |ϕ⟩ ⟨ϕ|. Bob’s measurementM is fully

characterised by a set of operators

Ê
(r)
k,s :=

1

2
P̂

(
|k⟩+ (−1)s |k +L r⟩√

2

)
, (6)
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where the probability of outcome(k, s) (k ∈ {1, . . . , L}, s ∈ {0, 1}) is given byTr(ρ̂Ê(r)
k,s) for

single-photon input statêρ. From this outcome, he announces{k, k +L r} (the order being irrele-

vant) and adoptssB = s. Since⟨Ψ1| Ê(r)
k,s |Ψ1⟩ = 0 whens ̸= sk⊕sk+Lr, Bob’s guesssB is always

equal tosA if he has received state|Ψ1⟩.

In measurementM , the probabilityP ({i, j}) of announcing{i, j}(i ̸= j) is given by∑
sTr(ρ̂Ê

(r)
i,s )δi+Lr,j +

∑
s Tr(ρ̂Ê

(r)
j,s )δj+Lr,i, whereδx,y is 1 for x = y and 0 forx ̸= y. This is

calculated to be

P ({i, j}) = [P (i) + P (j)][δi+Lr,j + δj+Lr,i]/2, (7)

whereP (k) = ⟨k| ρ̂ |k⟩ is the probability of finding a photon in thek-th pulse.

In Fig. 1b, Bob announces{k, k +L (−1)br} (k = 1, . . . , L; b = 0, 1) at probabilityP (k)/2.

Noticing thatP ({i, j}) is contributed from the casesk = i andk = j, we see that it is also given

by equation (7). This shows that the relation between the quantum signal received from Eve and

the announced value{i, j} is identical for Fig. 1a and 1b. Therefore, if a statement regarding

Eve’s knowledge about Alice’s sifted key is proved for Fig. 1b, it should also be true for Fig. 1a.

Derivation of secure key rates.

Here we give a security proof and derive the final key rate for the proposed QKD protocol

shown in Fig. 2. We first show that Alice’s random bit sequences1 . . . sL can be regarded as an

outcome ofZ-basis measurement onL qubits. Let|Ψ⟩ be the state of anL-pulse train emitted

from the laser source. In the actual set up, Alice choosess1 . . . sL randomly and applies phase

shifts accordingly, resulting in the emitted state
⊗

k(−1)skn̂k |Ψ⟩, wheren̂k := â†kâk is the photon-

number operator for thek-th pulse. Instead18, she could prepareL qubits and theL pulses in an

entangled state

2−L/2
L⊗

k=1

∑
sk=0,1

|sk⟩k (−1)skn̂k |Ψ⟩ , (8)

where{|0⟩k , |1⟩k} is theZ-basis states of thek-th qubit. The states of theL pulses are identical to

those in the actual set up, and if Alice needs bit valuesk, she may simply measure thek-th qubit

on theZ basis.

It is useful for later discussion to ask what happens if Alice measures theL qubits in theX

basis{|+⟩ , |−⟩} with |±⟩ := 2−1/2(|0⟩ ± |1⟩). Letn− be the number of qubits found in state|−⟩.

The statistics ofn− is related to the photon number distribution in|Ψ⟩. In fact, it is seen from

equation (8) that if thek-th pulse contains an even number of photons, the state of thek-th qubit

is |+⟩k, and if the number is odd, the state is|−⟩k. Hencen− is no larger than the total photon
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number. Since the argument so far holds for any pure state|Ψ⟩, it is also true when the source

emits a mixed state. We thus conclude that, if the source fulfils equation (3),

Pr(n− > νth) ≤ esrc. (9)

Next, we relate Bob’s apparatus in Fig. 2 to measurementM . We assume that the detectors

can discriminate between a single photon from two or more photons, and that dark countings and

inefficiency can be equivalently ascribed to a property of the transmission channel. Bob declares

successful detection when a photon is detected from a superposed pulse and no other detection

occurs in the whole pulse train. This ensures that the detected signal comes from a single-photon

state. When the delay isr′T , the measurement is characterised similarly to equation (6) by opera-

tors

F̂
(r′)
k′,s :=

1

2
P̂

(
|k′⟩+ (−1)s |k′ + r′⟩√

2

)
(10)

except that it is defined only if1 ≤ k′ ≤ L − r′. To see that this is equivalent to measurement

M except an efficiency of1/2, introduce an auxiliary random bitc to definer = r′ andk = k′

if c = 0, while r = L − r′ andk = k′ + r′ if c = 1. Thenr is uniformly random. Givenr, the

probability of outcome(k, s) for input statêρ is written as

Pr(k, s) =
1

2
Tr(ρ̂F̂

(r)
k,s ) +

1

2
Tr(ρ̂F̂

(L−r)
k+r−L,s) (11)

where it is understood that̂F (r′)
k′,s = 0 for k′ ≥ L−r′+1 or k′ ≤ 0. It turns out that one of the terms

always vanishes andPr(k, s) = Tr(ρ̂Ê
(r)
k,s)/2. We thus conclude that Bob’s apparatus is equivalent

to measurementM preceded by a filter that allows only single-photon states to pass through with

efficiency 1/2.

To assess how much Eve knows about Alice’s key bitsA, we may assume that Bob carries out

measurementM ′. Learningi, b andr, Alice applies a controlled-NOT operation to the qubiti

as control and qubitj = i + (−1)br(modL) as target. The key bitsA = si ⊕ sj in the original

protocol is now equivalent to the outcome ofZ-basis measurement on qubitj. If one measures

this qubit inX basis instead, the probability of a ‘phase error’, namely, of finding it in|−⟩ state is

no more thaneph defined by

eph =
esrc
Q

+

(
1− esrc

Q

)
νth

L− 1
(12)

because the controlled-NOT operation does not affect theX eigenstates of the target, the indexj

is chosen uniformly from all qubits except thei-th via random numberr, and finally equation (9)
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assures that among theN rounds contributing the sifted key, at leastN − Nemesrc rounds satisfy

n− ≤ νth in the limit of largeN . Then, ifeph < 1/2, she can extract a secure final key of length

N [1− h(eph)] by privacy amplification11. Bob composes his sifted key from bitsB in each round.

The error reconciliation will be done by letting Alice sendNh(ebit) bits of encrypted information

to Bob such that he can reconcile his sifted key to Alice’s. The net production length is then given

by

G = N [1− h(ebit)− h(eph)]. (13)

This rate can be improved by applying a common random optical phase shiftδ to all theL

pulses in the actual protocol. This makes the emitted quantum state of the train to be a classical

mixture of states with fixed total photon numbers, enabling Alice to tag each of the rounds with

ν > νth in principle though she needs not to do so in practice30. We may then assume that Eve

completely knows the sifted key bits for the tagged portion (at mostNesrc/Q bits), while the rest

is treated as ifesrc = 0. This leads to equation (4) in the main text and it is used in Fig. 3.

If we omit the random optical phase shiftδ, the rate forL = 128 andebit = 0.03 decreases by

about 10% from the rate shown in Fig. 3. On the other hand, if we are allowed to assume that the

emitted photon number obeys a Poissonian distribution, the rate forL = 128 andebit = 0.03 is

larger than the one shown in Fig. 3 by about 30% even if we omit the random optical phase shift.

Finally, we briefly discuss an expected behaviour of our protocol for a finite-sized key. Let

f̄(k;n, p) :=
∑

j>k p
j(1 − p)n−jn!/[j!(n − j)!] be the tail distribution for finding more thank

successful events in a binomial distribution. Except for a probabilityϵ1 := f̄(Nr1;Nem, esrc), we

may chooseNr1 bits among theN sifted key bits to include all the tagged portion. We make no

assumption on the phase errors for the chosenNr1 bits. If we count the number of phase errors

for the remainingN ′ := N(1 − r1) bits, it should be no larger thanN ′r2 except for a probability

ϵ2 := f̄(N ′r2;N
′, νth/(L − 1)). The imperfection in the final key is characterised through the

failure probabilityϵ in identifying the phase error pattern whenNHPA bits of error syndrome are

given10,11,20. Givens > 0, we chooser1 andr2 to satisfyϵ1 = ϵ2 = 2−s. Then, we haveϵ ≤ 3×2−s

for HPA = r1 + (1− r1)h(r2) + s/N . The commonly assumed quality of the key corresponds to

s = 70 ∼ 160.

As an example, consider the case withL = 128, η = 2 × 10−3, andebit = 0.03. The results

below do not change significantly ifη is chosen to be smaller, such asη = 10−5. Asymptotically,

the rate is optimised whenµ = 0.0541 with νth = 17, leading top1 := esrcNem/N = 0.047,

p2 := νth/(L− 1) = 0.134, andHPA = Hasy
PA := p1 + (1− p1)h(p2) = 0.588. For a finite length
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N , let us first use a crude Gaussian approximation ofln f̄(k;n, p) ∼= −(k − np)2/[(2np(1 − p)].

This leads tor1 ∼= p1 +
√
(2 ln 2)p1(s/N) andr2 ∼= p2 +

√
(2 ln 2)p2(1− p2)(s/N ′). ForN ≫ s,

substituting numerics givesHPA
∼= Hasy

PA (1+1.98
√
s/N). A better estimate is given by a rigorous

boundlog2 f̄(k;n, p) ≤ −nD(k/n∥p) with D(q∥p) := q log2(q/p)+(1−q) log2[(1−q)/(1−p)].

We calculated the finite-size rate after optimising overµ andνth for eachN , and then derived its

fractionR to the asymptotic optimal rate of1.16 × 10−5. For s = 100, we foundR = 3.3% for

N = 103, R = 53% for N = 104, R = 84% for N = 105, andR = 95% for N = 106.
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Figure legends

Figure 1 | Basic idea behind the proposed QKD scheme. a,b,Quantum signals flow through

thick lines and classical ones through thin lines, in order indicated by Roman numerals. Eve tries

to guess Alice’s bitsA = si ⊕ sj in both figures. Ina, Bob conducts measurementM following

random number generator RNG to guesssA. In b, Bob conducts measurementM ′ prior to RNG,

making it hard for anyone to guesssA. Since the procedures to generate indices{i, j} in both

figures are identical, every strategy by Eve ina should work equally well inb.

Figure 2 | Practical implementation of the proposed QKD scheme.Alice’s laser emits a

train of L pulses with intervalT . She applies phase shift{0, π} on each pulse according to a

random bit sequences1 . . . sL. Bob splits the received train in two beams and superposes them

after a random delayr′T (r′ ∈ {1, . . . , L − 1}). Detection of a photon determines Bob’s sifted

key bit sB, and he announces the indices{i, j} of corresponding pair of pulses. Alice adopts

sA = si ⊕ sj as her sifted key bit. The key rate is improved by applying random phaseδ on each
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train (see the Methods section).

Figure 3 | Key rates vs channel transmission. a, The rates forebit = 0.03. (i)–(iii) The

proposed protocol withL = 128, 32, 16. The rates are optimised over the choice ofνth and the

mean photon numberµ of a weak coherent pulse (WCP) through the relationQ = Lηµe−Lηµ/2

andesrc = 1−∑νth
ν=0 µ

−ν/ν!. The optimised value ofµ is around0.05 for (i) whenη < 0.01. (iv)–

(vi) BB84 protocols with double-pulse phase coding, using (iv) WCPs, (v) realistic single-photon

source with the second-order correlationg(2)(0) = 0.01, and (vi) WCPs with infinite decoy states.

b, The rates forebit = 0.11.
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Figure 1.

Figure 2.



15

Figure 3.
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