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Abstract

This thesis presents experiments studying coherent electron transport in nanostructures. In
coherent transport transmission phase of electrons plays an important role. Control of the
phase enables leads to qubit operations and therefore can be applied to quantum informa-
tion. Measurement of the phase also provides deep understandings of coherent scattering
phenomena. The simplest way to control and measure the transmission phase of electrons
is utilizing a quantum two-path interferometer.

We realize a pure two-path interferometer by employing a complex system of an Aharonov-
Bohm ring and tunnel-coupled wires (chapter 3). Then we measure transmission phase shift
across a quantum dot (QD). Firstly we focus on the Kondo regime (chapter 5), where π/2-
phase shift resulting from the many-body singlet Kondo ground state is expected theoreti-
cally [1, 2]. We succeed in observing the π/2-phase shift when the temperature T is lower
than the Kondo temperature TK, with a pronounced π/2 plateau at the Kondo valley around
T ∼ TK. Above TK, the phase shifts by more than π/2 at each Coulomb peak, approaching
the behavior observed for the standard Coulomb blockade regime. We compare these results
with 2-level numerical renormalization group calculations and find remarkable agreement.
The work thus allows for obtaining a detailed and consistent understanding of the behavior
of the Kondo phase shift. Secondly we measure the transmission phase shift across a QD
with a relatively large number of electrons (chapter 6), where an universal phase behavior
was observed in previous experiments [3, 4] regardless of intrinsic properties of the QD. In
particular we study the QD around the crossover from single level to multi-level transport.
In contrast to the previous experiments the universal phase behavior is not observed in our
large QDs. This result suggests that the universal phase behavior is not so robust as expected
from the previous experiments. For further understanding of the universal phase behavior
we need more experiments to examine what kind of conditions are required to observe it.

Our original two-path interferometer also works as a flying charge qubit. We perform
qubit operations about two independent rotation axes by electrostatic gate voltages in an AB
ring and a tunnel-coupled wire respectively (chapter 4). From the temperature dependence
we confirm that our flying qubit is highly coherent at low temperatures. Finally we study
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electron transport by surface acoustic waves (SAWs). The SAW gives a way to control
highly coherent single electrons, which is important to further improve the visibility of
our flying qubit. Once a flying qubit with high enough visibility is realized, it is possible
to create and confirm a non-local quantum entangle state [5]. Here we achieve a beam
splitter for single flying electrons transferred by SAWs in a depleted tunnel-coupled wire
(chapter 7). This technique is an important step to realizing the high visibility flying qubit
and is a key tool for quantum electron optics using SAWs. We also develop a technique
to send a single electron from a QD through an isolated quantum channel and to catch it
at a distant QD with high efficiency (chapter 8). This result corresponds to the realization
of a single electron source and detector for quantum electron optics using SAWs. Further
more we show that the transfer of the electron can be triggered on a timescale shorter than
the coherence time T ∗

2 of GaAs spin qubits. Therefore this technique answers potential
scalability of the electron spin qubits.
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Chapter 1

General introduction

The continuous need for miniaturization and increase in speed of microelectronic devices
lead industry as well as the scientific community to a world where quantum effects are
crucial at the nanoscale. Understanding and harnessing the quantum mechanical behav-
ior of electrons in nanoscale circuits is the object of intensive work. Recent advances in
nano-fabrication and semiconductor technologies enable us to design and fabricate nano-
and micro-structures, where the phase relaxation length is longer than the device size and
hence electron-transport becomes coherent. In such coherent transport, the transmission
phase of an electron is the key ingredient. Indeed this is the case for a variety of quantum
interference phenomena such as the Aharonov-Bohm (AB) effect, universal conductance
fluctuations, weak localization etc. observed to date. To fully characterize the coherent
transport, study of transmission phase is required. However it cannot be directly measured
by normal conductance measurement since conductance is proportional to the square mod-
ulus of transmission coefficient as known from the Landauer-Büttiker formula [6, 7].

The simplest way to measure the transmission phase should be to utilize a quantum
two-path interferometer. Numerous attempts to realize a two-path interferometer have been
made using an AB interferometer [8–10]. However in a two-terminal AB ring, gauge in-
variance and time reversal symmetry between macro-scale contacts impose a boundary con-
dition, the so-called phase rigidity for the electron transport, in which linear conductance
is an even function of the magnetic field (Onsager’s law) [7, 11]. The two-path contribu-
tion is always accompanied by complicated multi-path interference to satisfy the boundary
condition, which scrambles the quantum phase difference between the direct two paths. To
avoid the phase rigidity and to realize a two-path interferometer, a multi-terminal AB in-
terferometer has been employed in a series of pioneering experiments by a group of the
Weizmann Institute in Israel [3, 4, 12, 13]. Lifting of the phase rigidity is then verified by
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the observation of a smooth phase shift induced by a gate voltage, i.e. each conductance
matrix element does not have to be an even function of the magnetic field. The transmis-
sion phase shift across a quantum dot (QD) has been intensively studied, where the phase
behavior described by Friedel’s sum rule [14] and the one reflecting spin screening of the
many-body singlet ground state in the Kondo regime [2] are predicted. The transmission
phase contains complementary information to the conductance and gives a deep insight into
the understanding of such scattering problems.

The π-phase shift across a Coulomb peak in the Coulomb blockade regime as expected
from Friedel’s sum rule was observed in the multi-terminal AB interferometer [3]. However
unexpected results were reported: universal phase lapse in many-electron QD [3, 4] and
the phase behavior contradicting to the theoretical expectations [2, 15] in the Kondo regime
[12, 13]. On the other hand it was pointed out theoretically that in a multi-terminal AB
interferometer, the two-path contribution is properly extracted only when the interferome-
ter is under the appropriate conditions [16–18]. Otherwise, multi-path contributions might
smear the correct transmission phase. This may not be ruled out in the multi-terminal AB
interferometer when gate voltages of the QD are varied to change the transmission phase.
A new scheme for measuring the transmission phase across a QD, in which contributions
from multiple paths are safely excluded, is therefore required.

In addition, once electrical control of the two-path interferometer becomes possible, it
can provide quantum information with flying qubits defined by propagating electrons be-
tween the two paths [19, 20]. An electron confined in semiconductor QDs is considered as
a promising candidate for a qubit since solid-state systems are assumed to be advantageous
to realize scalable quantum computers due to the similarity of such devices with classical
ones. Both spin and charge degrees of freedom are pursued and basic operations have al-
ready been performed [21–24]. However as these qubits are static in QDs, creation of a
non-local entanglement, which is a key concept in quantum information, requires to com-
bine them with other techniques to transfer a qubit from one place to another. In this respect
coherent transfer of a single electron between distant QDs should be important [25, 26],
which makes it possible to transfer information between separated static qubits. This tech-
nique is also attractive as a single electron source and detector for quantum electron optics,
aiming at the realization of photon experiments with flying electrons in nanostructures [27–
31]. On the other hand a flying qubit is an architecture, where a quantum state is controlled
during transfer, and hence it should be more suitable to create a non-local entangled state
compared to static qubits. The solid-state realization of a non-local entanglement known as
an essential quantum mechanical state, is not only attractive for understanding fundamen-
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tals of quantum physics but also inevitable for constructing scalable semiconductor quantum
information devices in which many qubits are manipulated.

1.1 Motivation of the present work

As mentioned above, a quantum two-path interferometer is a extremely useful tool to study
transmission phase shift across a QD and also works as a flying charge qubit. However
due to the boundary condition for linear transport it is not easy to realize a true two-path
interferometer in solid-state electronic systems. The motivation of the present work is to
realize an original true two-path interferometer utilizing an AB ring with tunnel-coupled
wires and pursue the application of the interferometer for measurements of the transmission
phase across a QD and a flying charge qubit.

Regarding the transmission phase across a QD, we focus on the two different regimes.
One is the phase behavior in the Kondo regime, where a π/2-phase shift reflecting spin
screening by a many-body singlet ground state is expected at T . TK but which has stayed
elusive until now. The other one deals with a QD with a relatively large number of elec-
trons, where the universal phase lapse between Coulomb peaks was observed in previous
experiments [3, 4]. Appearance of the phase lapses between Coulomb peaks itself can be
explained by theory [32]. However the origin of its universality in a relatively large QD
is not well understood since only a few experimental works related to this issue have been
reported. We address this issue in the present thesis.

Concerning the application for a flying qubit, we demonstrate how our original two-path
interferometer works as a flying qubit and actually perform full electrical control of the
single qubit. The robustness of the operation as a function of temperature is also examined
and its scalability is discussed.

Finally we study electron transport by surface acoustic waves (SAWs) [33]. It allows
us to manipulate highly coherent single flying electrons without backscattering, which is
necessary to improve the fidelity of our flying qubit for testing a non-local entanglement.
We manipulate single electrons in a depleted tunnel-coupled wire by injecting electrons one
by one using the potentials of the SAWs. We realized a beam splitter operation for single
electrons with much higher fidelity than that for ballistic electrons. This is an important step
towards realization of a high fidelity flying qubit. Further more a beam splitter for single
flying electrons is a key component to perform quantum electron-optical experiments in a
single electron unit. We also perform single electron transfer between distant QDs through
a depleted quantum channel using a SAW [25, 26]. This technique opens a way to generate
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a non-local entanglement in combination with static qubits. It can also be used as a single
electron source and detector for quantum electron optics.

1.2 Organization of the thesis

The organization of the thesis is as follows: in Chapter 2 we review the basic concepts to
understand this thesis, including the quantum wire, the quantum dots, some properties of
coherent electron transport, etc. Chapter 3 describes the distinct interference features ob-
served in an AB ring with a tunnel-coupled wires. We explains how can we understand
the appearance of the distinct interferences and how to realize a true two-path interfer-
ence. From Chapter 4 to 6, we show experimental results acquired by using the two-path
interferometer realized in Chapter 3. In Chapter 4 we demonstrate full flying charge qubit
operations by means of electrostatic gate voltages. Then we discuss the scalability of the
flying charge qubit. Chapter 5 is distributed to study the transmission phase shift across a
QD in the Kondo regime. We reveal the phase behavior from the strong Kondo correlation
regime T < TK to the weak Kondo correlation regime T ≫ TK across the crossover regime
T ∼ TK. In Chapter 6 we investigate the universal phase behavior in QDs with a relatively
large number of electrons. In particular we focus on the crossover region from single-level
to multi-level transport. In Chapter 7 electron transport by SAWs is studied to realize a high
fidelity flying charge qubit. As a first step, we perform the control of single flying electrons
transferred by SAWs in a depleted tunnel-coupled wire. Finally in Chapter 8 we develop a
technique to transfer single electron between distant QDs through a depleted quantum chan-
nel using a SAW. The possibility to create a non-local quantum entanglement is also pursued
by sending one of two electrons in a QD to the other separated QD. We show that such an
electron transfer can be performed within typical spin coherence time in GaAs based QDs.



Chapter 2

Background

A brief review of backgrounds needed for understanding experimental results of the present
thesis are described in this chapter. First in section 2.1 a quantum wire, a quasi one dimen-
sional system, is dealt with, and we explain its specific features. Next coherent properties
of electron transport are discussed in section 2.2. In the next section 2.3, characteristic fea-
tures of a quantum dot are shown. Section 2.4 describes the Kondo effect in a QD, which
is known as a typical many-body correlation. Then in section 2.5 theoretical expectations
and preceding experimental results about transmission phase across a quantum dot are ex-
plained. Finally section 2.6 explains how to generate a surface acoustic wave and transport
electrons by it.

2.1 Quantum wire

2.1.1 2 dimensional electron gas

Since 1970s, development of ultra thin film deposition technique by molecular beam epi-
taxy (MBE) allows to fabricate heterojunctions with flatness in the atomic scale. In a
GaAs/AlGaAs heterojunction electrons are accumulated at the heterointerface due to the
band gap discontinuity between the two semiconductors. Fig.2.1 shows the conduction
band edge profile of a GaAs/AlGaAs high electron mobility transistor (HEMT). The struc-
ture consists of a thick undoped GaAs layer, undoped AlGaAs spacer, a Si-doped AlGaAs
layer and GaAs cap layer. The conduction band of the GaAs thick layer bends due to the
electric field between the spatially separated electrons and donors, and this gives rise to the
formation of a triangular potential well at the GaAs/AlGaAs interface. Electrons, provided
by the Si donors, are trapped in this well, and their motion is quantized in the growth direc-
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tion. If the well contains only one occupied subband, an ideal 2 dimensional electron gas
(2DEG) is formed.

Z!

E
C!

E
F!

2-DEG!

Undoped 

AlGaAs spacer!

Si-doped 

AlGaAs!
+!
+!
+!
+!
+!
+!GaAs cap 

Fig. 2.1 The conduction band edge profile of a GaAs/AlGaAs high electron mobility transistor
(HEMT).

2.1.2 Quantum wire

A quantum wire is a quasi one-dimensional system, in which an energy spectrum of an
electron is quantized about two dimensions. In mesoscopic systems, a quantum wire formed
in a 2DEG using a split gate technique has been widely used (See Fig.2.2). By applying
negative gate voltage to split gates, electrons underneath these are depleted and a narrow
strip of electrons is left. If the width of this strip is comparable to the Fermi wavelength
of the 2DEG, one-dimensional channels are formed inside the strip. When the gates are
more negatively biased, the depletion regions spread out. Then the conducting channel is
narrowed and eventually pinched off.

The confinement potential for electrons in the y-direction (Fig.2.2) is approximated by a
parabolic potential since the realistic wire width is much smaller than the distance between
the metal split gates. If the potential in the x-direction is neglected, the Hamiltonian for the
wire is

H =
ppp 2

2m∗ +
1
2

m∗
ω

2y2 , (2.1)

where m∗ is effective mass (m∗ ≈ 0.067me for a GaAs-based semiconductor). By solving
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d

W

L

x

y

2DEG

Fig. 2.2 A schematic figure of a Schottky split-gate (Width W and Length L) wire device fabricated
on a wafer having a 2DEG (depth d).

the Schrödinger equation, total energies and eigenstates are derived:

En,kx =
h̄2k2

x
2m∗ +

(
n+

1
2

)
h̄ω n = 0,1,2, . . . (2.2)

ψn,kx(x,y) = (π
1
2 l2nn!)−

1
2 exp(ikxx)Hn

(y
l

)
exp
(

y2

2l2

)
, (2.3)

where kx is the Fermi wave vector of the one-dimensional electron system, l =
√

h̄
m∗ω

is
the spread of the wave function, Hn is the Hermite function, and n represents the subband
index. Since the confinement potential can be modulated by the Schottky gate voltage Vg,
the Fermi wave vectors and electron density in the wire are controlled by Vg.

The density of states in this quantum wire is the summation of the density of states in
each subband:

D(E) = ∑
En≤E

Dn(E)

= ∑
En≤E

gs

h

√
m∗

2(E −En)
(2.4)

En =

(
n+

1
2

)
h̄ω , (2.5)

where En is the energy of the n-th subband bottom and gs is the spin degeneracy.

Transport properties of a quantum wire have been studied for the past more than 25
years. One of the most characteristic features of this system is quantization of conductance.
At sufficiently low temperatures, a mean free path Lm in GaAs semiconductor 2DEGs is
typically tens of microns. In ballistic wires, where wire length and width are both much
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smaller than Lm, electrons are not scattered inside the wire and conductance becomes quan-
tized [34, 35] as discussed below.

2.1.3 Quantized conductance

When the wire length L is much shorter than the mean free path Lm in a quantum wire,
conductance of the wire becomes quantized. This property is usually robust for a short wire,
called a ballistic quantum point contact (QPC). Fig.2.3 shows the quantized conductance of
a QPC in units of 2e2

h [35].

In conductance measurement, a vanishingly small bias voltage δV is applied across the
wire, and all the occupied subbands contribute to the net current:

I = ∑
En≤EF

In ·Tn = ∑
En≤EF

Dn(EF)evn(EF)e ·δV ·Tn , (2.6)

where EF is the Fermi energy, Tn is the transmission probability of each subband and vn =√
2(EF−En)

m∗ is the Fermi velocity of each subband. Tn (En ≤ EF) is equal to 1 for a ballistic
QPC. Thus the conductance is given by

G =
I

δV
= Ngs

e2

h
=

2e2

h
N , (2.7)

where N is the number of subbands below EF. Eq. 2.7 indicates that conductance for each
subband is quantized in units of 2e2

h . In the experiment shown in Fig.2.3, the number of oc-
cupied subbands N decrease as the negative gate bias increase, resulting in the conductance
step as a function of the gate voltage. This remarkable feature happens since energy depen-
dent terms of devotion to conductance from each subband is canceled out in one dimensional
system.

2.1.4 Tunnel-coupled quantum wire

A tunnel-coupled wire is a system, where two parallel quantum wires are coupled through a
tunnel-barrier. In this subsection how an electron-state evolves in this system is described.
For simplicity only a single conducting mode for each part of the wire is considered. A
pseudo spin |↑⟩ (|↓⟩) is defined by a state, where an electron exists in an upper (a lower)
part of the wire. Using these pseudo spins, we can write down Hamiltonian of the system as
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Fig. 2.3 Quantized conductance of a quantum point contact as a function of the split-gate voltage
(cited from reference [34]).

follows:

H = HK +HT (2.8)

HK = ∑
k

εk |k⟩⟨k| (2.9)

⟨x|k⟩ = eikx, εk =
h̄2k2

2m∗ (2.10)

HT = ε↑ |↑⟩⟨↑|+ ε↓ |↓⟩⟨↓|− τ(|↓⟩⟨↑|+ |↑⟩⟨↓|) , (2.11)

where m∗ is effective mass of an electron, ε↑(↓) is confinement potential of the upper (lower)
part of the wire and τ is tunnel-coupling energy between two parts of the wire.

When symmetric confinement potential (ε↑ = ε↓ = ε0) is assumed, eigenstates in the
system become symmetric (|ψS⟩= |↑⟩+|↓⟩√

2
) and anti-symmetric (|ψAS⟩= |↑⟩−|↓⟩√

2
) hybridized

states of |↑⟩ and |↓⟩ as shown in Fig. 2.4. Eigen energies of HT for these states are ES =

ε0 − τ and EAS = ε0 + τ , respectively. In a 2DEG system with low energy excitation only
electrons at the Fermi surface contribute to transport and hence only state evolution of such
electrons is taken into account. Using kS, kA, which satisfy the relation ES +

h̄2k2
S

2m∗ = EA +
h̄2k2

A
2m∗ = EF, an electron-state in a tunnel-coupled wire |ψT⟩ can be expressed by

|ψT⟩= α |kS⟩ |ψS⟩+β |kAS⟩ |ψAS⟩ . (2.12)
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Fig. 2.4 A SEM picture of a tunnel-coupled wire in a GaAs/AlGaAs 2DEG system and an energy
diagram of the system. A state, where an electron exists in an upper (a lower) part of the wire is
defined as |↑⟩ (|↓⟩).

Then the state evolution from the initial state at the entrance (x = 0) to the final state at the
exit (x = L) of a tunnel-coupled wire is considered. At x = 0 an electron-state is

|ψT(x = 0)⟩ = α ⟨0|kS⟩ |ψS⟩+β ⟨0|kAS⟩ |ψAS⟩
= α |ψS⟩+β |ψAS⟩ . (2.13)

At x = L an electron-state is

|ψT(x = L)⟩ = α ⟨L|kS⟩ |ψS⟩+β ⟨L|kAS⟩ |ψAS⟩
= αeikSL |ψS⟩+βeikAL |ψA⟩

=
αeikSL +βeikAL

√
2

|↑⟩+ αeikSL −βeikAL
√

2
|↓⟩ . (2.14)

When an initial state is |↑⟩, α = 1√
2

and β = 1√
2
. As a result,

|ψT(x = L)⟩ =
eikSL + eikAL

√
2

|↑⟩+ eikSL − eikAL
√

2
|↓⟩

=
√

2ei kS+kA
2 L

[
cos(

kS − kA

2
L) |↑⟩+ isin(

kS − kA

2
L) |↓⟩

]
. (2.15)
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For an initial state of |↓⟩, α = 1√
2

and β =− 1√
2
. As a result,

|ψT(x = L)⟩ =
eikSL − eikAL

√
2

|↑⟩+ eikSL + eikAL
√

2
|↓⟩

=
√

2ei kS+kA
2 L

[
isin(

kS − kA

2
L) |↑⟩+ cos(

kS − kA

2
L) |↓⟩

]
. (2.16)

From these results, operation of a tunnel-coupled wire of length L can be rewritten in the
form as follows,

UT(θ) = cos
(

θ

2

)
[ |↑⟩⟨↑|+ |↓⟩⟨↓| ]+ isin

(
θ

2

)
[ |↑⟩⟨↓|+ |↓⟩⟨↑| ] , (2.17)

where θ = (kS − kA)L.

For the initial state |↑⟩ probabilities of finding the electron at x = L in the upper and the
lower contact are

| ⟨↑ |ψ f ⟩ |2 =
1+ cosθ

2
(2.18)

| ⟨↓ |ψ f ⟩ |2 =
1− cosθ

2
. (2.19)

Since L is a fixed parameter in this structure, output currents oscillate between the upper
and the lower contacts as functions of (kS − kAS), which can be controlled by τ through the
voltage on the thin tunnel-coupling gate.

2.2 Coherent electron transport

2.2.1 Landauer Büttiker formula

In a classical electric circuit, electron transport is diffusive and is described by Ohm’s law
and Kirchhoff’s law. However coherent transport in mesoscopic systems has no dissipation
and cannot be described in the same way but by Landauer Büttiker formula [6]. Here we
introduce Landauer Büttiker formula [36, 37].

We consider a multi-terminal device as shown in Fig. 2.5. The terminal p is connected
to a contact, whose electrochemical potential is µp = eVp. As shown in section 2.1.3, con-
ductance of a quantum wire can be written by G = N 2e2

h , where N is the number of occupied
subbands in a quantum wire. Therefore when we define the total transmission T̄qp from the
terminal p to q as sum of the transmission probability of all subbands, the current Jp flow
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Fig. 2.5 Model for introducing Landauer Büttiker formula

into the sample from the terminal p is

Jp =
2e2

h ∑
q
[T̄qp

µp

e
− T̄pq

µq

e
] . (2.20)

We define Gpq ≡ 2e2

h T̄pq and rewrite Eq. 2.20 as

Jp = ∑
q
[GqpVp −GpqVq] . (2.21)

This gives the general expression of the current.

There are some restrictions for currents and conductance coefficients. From the current
conservation, current Jp must satisfy

∑
q

Jq = 0 . (2.22)

When the potential Vp of all the contacts are equal, the current should be zero:

∑
q
[Gqp −Gpq] = 0 . (2.23)

This is the so called gauge invariance and allows us to rewrite Eq. 2.21 in an equivalent
form

Jp = ∑
q

Gpq[Vp −Vq] . (2.24)
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Finally conductance coefficients (G) also obey the relation

Gqp(B) = Gpq(−B) . (2.25)

Eq. 2.25 is Onsager’s reciprocity law [38–40] and satisfied in the linear response regime
regardless of the nature of the transport.

Landauer Büttiker formula gives a general expression for describing transport.

2.2.2 Aharonov-Bohm effect

In classical electrodynamics, the vector potential was introduced as a convenient mathemat-
ical aid for calculating the field and does not play a role by itself. In the quantum mechanics,
however, the vector potential cannot be ignored and does play a role, which adds the extra
phase to a particle traveling through electromagnetic environment [41]. This phase is called
Aharonov-Bohm (AB) phase and can cause quantum interference [42, 43]. In the following
the mechanism of the AB effect is briefly explained.

Hamiltonian of an electron inside electromagnetic environment H and a wave function
ψ satisfying it are expressed by

H =
(ppp+ eAAA)2

2m
+V (rrr) (2.26)

ih̄
∂ψ

∂ t
= Hψ , (2.27)

where e is an elemental charge, AAA is the vector potential and V (rrr) is the other potential
energy. Here when we perform gauge transformation AAA = AAA

′
+∇χ , Hamiltonian becomes

H
′
=

(ppp+ eAAA
′
)2

2m
+V (rrr) (2.28)

and a wave function becomes

ψ
′
= ψei e

h̄ χ . (2.29)

Then when ∇χ is set to AAA, AAA
′
becomes 000. Therefore H

′
corresponds to H0, which is Hamil-

tonian without magnetic field, and ψ
′
becomes ψ0 (ih̄∂ψ0

∂ t = H0ψ0). Hence

ψ = ψ0e−i e
h̄
∫

AAA·drrr (2.30)

is obtained. As a result an electron traveling through the electromagnetic environment ac-
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quires the AB phase e−i e
h̄
∫

AAA·drrr, which is called AB effect.

2.2.3 Quantum interference in mesoscopic systems

P Q

B 

Path 1 

Path 2 

Electron  
as a wave 

S R

Fig. 2.6 An Aharonov-Bohm(AB) ring penetrated by the magnetic flux B and an electron as a wave.
The electron wave becomes superposition of two paths in the ring and those waves interfere at the
exit of the ring.

Observation of quantum interference is a powerful tool to measure quantum phase or
phase relaxation length of electrons. In mesoscopic systems,it is observed that a conduc-
tance of a small ring structure oscillates as a function of the magnetic flux enclosed by the
ring, which is usually referred to as AB oscillation since it originates from the AB phase.
This oscillation can be understood as interference of waves traversing two arms of the ring
(Fig. 2.6). When the waves are considered as plane waves, the wave in path 1 (path 2)
becomes ψ1 = exp

[
−i
∫

path1(kkk− e
h̄AAA) ·dlll

]
(ψ2 = exp

[
−i
∫

path2(kkk− e
h̄AAA) ·dlll

]
). In this case

the wave function at the exit Q of the ring becomes ψ1 +ψ2. As a result, the probability
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amplitude at Q becomes

|ψ1 +ψ2|2 =

∣∣∣∣exp
[
−i
∫

path1
(kkk− e

h̄
AAA) ·dlll

]
+ exp

[
−i
∫

path2
(kkk− e

h̄
AAA) ·dlll

]∣∣∣∣
2

= 2+2cos
[∮

kkk ·dlll − e
h̄

∮
AAA ·dlll

]

= 2+2cos
[∮

kkk ·dlll − e
h̄

∮
BdS

]

= 2+2cos
[∮

kkk ·dlll − e
h̄

BS
]

= 2+2cos
[∮

kkk ·dlll −2π
Φ

Φ0

]
, (2.31)

where
∮

kkk · dlll is the geometrical phase, Φ = BS is the magnetic flux enclosed by the two
paths and Φ0 =

e
h is a flux quantum.

In reality, the interference is not so simple because the electron going through one path
can be scattered to the other path depending on the nature of the beam splitter at P and Q.
Such paths enclose the ring many times and generate higher order oscillations, whose oscil-
lation period corresponds to h

e divided by integer N. However the higher order oscillations
are more difficult to observe since it is more difficult to maintain the phase coherence in
a longer path. The h

Ne oscillation involves a length NL (L: length of one arm), therefore
its amplitude reduces by a factor of exp(−2NL

Lφ
), where Lφ is a phase relaxation length of a

sample.

2.2.4 Phase rigidity

In subsection 2.2.1 we describe Landauer Büttiker formula and some restrictions in coherent
transport between contacts. When the restrictions (Eq. 2.23, 2.25) are applied to a two-
terminal AB ring structure in Fig. 2.6, we get relations below.

GRS(B) = GSR(B)

GRS(B) = GSR(−B)

When these relations are combined, we get a boundary condition

GRS(B) = GRS(−B) . (2.32)
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Eq. 2.32 shows that two-terminal conductance always has to be an even function of the
magnetic field. This restriction for a two-terminal devices is called phase rigidity.

The argument of the phase rigidity was presented by Levy Yeyati and Büttiker [14] to
explain the experimental results by Yacoby [8]. Since the conductance through the two-
terminal AB ring has to be an even function of B, G can be expanded in a Fourier series

G(B) = G0 +G1 cos(BS+δ1)+ ... , (2.33)

where S is the area enclosed by the two electron paths and the dots indicate the higher
harmonics. Combining expansion Eq. 2.33 with symmetry Eq. 2.32, one finds that the
phase δ1 can only be either 0 or π .

2.2.5 Source of decoherence

Quantum coherence of an electron is lost when it interacts with other degrees of freedom
such as electrons, phonons and electromagnetic field. Average length through which elec-
trons can coherently propagate is called phase relaxation length lφ and corresponding aver-
age time is called phase relaxation time τφ . lφ is determined by various scattering processes,
for example electron scattering, phonon scattering and spin scattering by magnetic impuri-
ties. When we define average time interval of such various inelastic scattering processes as
τi, Matthiessen-rule can be applied for the simplest approximation.

1
τφ

= ∑
i

1
τi

(2.34)

Another source of decoherence is thermal smearing of the Fermi surface. In electric
transport measurements, we measure flux of electrons whose energies are in the vicinities
of the Fermi surface. In subsection 2.2.3, we assume that all electrons have the same wave
vector, but which is not the case in general. An observed interference pattern generally
results from interferences of many electrons with slightly different wave vectors. When in-
terference patterns of each electron are too different, we loose a interference pattern. This
phase randomization by difference of wave vectors of electrons becomes larger when elec-
trons propagate through a longer path. In diffusive transport, the length in which electrons
loose their coherence is called thermal diffusion length lth and is expressed:

lth =
√

Dτth =

√
hD
kBT

, (2.35)
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where τth =
h

kBT is time in which electrons loose their phase coherence by thermal smearing
and D is a diffusion constant [37]. In ballistic transport, the length is called thermal length
and is expressed:

lth = vFτth =
hvF

kBT
(2.36)

lth can be determined with high accuracy since D and vF are relatively easy to estimate
and other parameters are universal constant. On the other hand, lφ has to be determined by
quantum interference phenomena and it is more difficult to estimate it with high accuracy.

2.2.6 Phase relaxation length in ballistic conductors

In diffusive one-dimensional (1D) and 2D conductors, the phase relaxation length at low
temperatures has been studied intensively, both theoretically and experimentally [44, 45].
Quantum interference phenomena such as weak localization and universal conductance fluc-
tuations (UCFs) are used as powerful tools to study phase coherence in diffusive systems.

On the other hand, there are less studies for clean electronic systems because weak lo-
calization and UCFs cannot be used. However recently several experimental and theoretical
works for ballistic conductors using the AB effect have been reported [46–49]. Hansen et

al. [46] experimentally studied the temperature dependence of AB oscillation amplitude in
a ballistic AB ring and measured a decoherence rate linear in temperature, which indicates
the phase relaxation length inversely proportional to the temperature lφ ∝ T−1. Around the
same period, Seelig et al. [48] theoretically explained a linear dependence of decoherence
rate in a AB ring formed by metallic gates, where fluctuation of charge induced by capacitive
coupling between the 2DEG and the metallic gates is considered as a decoherence source.

Later Kobayashi et al. [47] investigated the measurement-configuration dependence of
the decoherence rate in a AB ring with four terminals where two terminals served as current
probes and the other two terminals were used as voltage probes. They found a strong depen-
dence of the decoherence rate on the probe configuration. Seelig et al. [49] explained such
configuration dependence by considering voltage fluctuation in the measurement circuit.
According to their theory, when average injectivities from the leads to two different arms of
the AB ring are equal, effects of voltage fluctuation are cancelled out and the decoherence
is suppressed.
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2.3 Quantum dot

A quantum dot (QD) is a small droplet of electrons, where strong confinement from three
dimensions quantize orbital energy levels. Furthermore charging energy originating from
strong Coulomb interaction between electrons inside a QD lifts degeneracy of orbital and
spin degree of freedom. As a result energy levels inside a QD is completely quantized,
which allows to control the number of electrons inside a QD in a unit of single electron.
There are QDs of many different sizes and materials: for instance, InAs self-assembled
QDs [50], and vertically [51] or laterally [52] defined QDs in GaAs 2DEG systems. They
were shown to be rich test grounds for quantum mechanics [51, 53, 54] and recently also
attract a lot of interests as a candidate of a system for quantum computation [21–23, 55].

Measurements of electron-transport across a QD is performed by attaching source and
drain leads on both sides of a QD and energy levels are controlled by capacitively coupled
gate voltages (Fig. 2.7). With this setup a characteristic behavior called Coulomb oscillation

Vsd

SOURCE DOT

GATE

DRAIN

Vg I

Fig. 2.7 Schematic picture of a QD with setup for transport measurement.

is observed. In the following we explain the Constant Interaction (CI) model [56, 57] to
understand the Coulomb oscillation, which is the simplest way to describe main features of
a QD. Then we consider resonant tunneling in the one-dimensional double barrier structure.

2.3.1 Constant interaction model

The CI model based on the two assumptions:
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1. Coulomb interactions between electrons in the QD and those in the environment are
parameterized by a single constant capacitance C.

2. The single-particle energy level spectrum of the QD is independent of these interac-
tions.

Gate voltage Vg	

(a)	 (b)	

N	 N+1	N-1	

I do
t (

a.
 u

.) 	

(c)	

µ(N + 1)

µ(N + 1)

µ(N � 1)
µ(N � 1)

µ(N)
µ(N)

µS

µD

Eadd(N + 1)

e
· C

Cg

Fig. 2.8 Electrochemical potential ladders of a QD: (a) and (b) correspond to the Coulomb blockade
and the Coulomb peak, respectively. (c) Coulomb oscillations as a function of the gate voltage Vg.

Initially C is given by C =CS +CD +Cg, where CS, CD and Cg are the capacitance between
the QD and the source, the drain and the gate to control the energy level of the QD. Total
energy of the QD containing N electrons are then expressed by

U(N) =
N

∑
p=1

Ep(B)+
[−|e|(N −N0)+CSVS +CDVD +CgVg]

2

2C
, (2.37)
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where −|e| is the elementary charge and N0 is the charge in the QD compensating the
positive background charge originating from the donors in the heterostructure. VS, VD and
Vg are the voltage applied to the source, the drain and the gate. Ep(B) is the p-th orbital
energy level in the QD including spin degree of freedom at the external magnetic field B.
The terms CSVS, CDVD and CgVg represent the charges induced by the capacitive coupling
between the QD and the source, the drain and the gate. The electrochemical potential µ(N)

of the QD is hence defined as

µ(N) ≡ U(N)−U(N −1) (2.38)

=

(
N −N0 −

1
2

)
EC − EC

|e| (CSVS +CDVD +CgVg)+EN , (2.39)

where EC = e2/C is the charging energy.

When the electrochemical potential of the source and the drain is positioned in between
the ones of the QD, tunneling of electrons through the QD is blocked, which is so called the
Coulomb blockade (Fig. 2.8a). On the other hand when the electrochemical potential of the
QD is positioned in between the one of the source and the drain, the resonant tunneling (see
section 2.3.2) occurs and electrons tunnel from the source to the drain through the QD (Fig.
2.8b). As a result, the current oscillations are observed as a function of the Vg by changing
the electrochemical potential, which is the Coulomb oscillation (Fig. 2.8c). The distance
between Coulomb peaks for the gate voltage ∆Vg is given by

|e|∆Vg(N) · Cg

C
= Eadd(N) (2.40)

Eadd(N) ≡ µ(N +1)−µ(N) = EC +∆E(N) (2.41)

∆Vg(N) =
Eadd(N)

|e| · C
Cg

, (2.42)

where Eadd(N) is so called addition energy and ∆E(N) = EN+1−EN is the energy difference
between N-th and (N+1)-th orbital energy levels. ∆E becomes 0 when N-th and (N+1)-th
orbital energy levels are spin degenerated orbitals.

In the discussion above we only consider the ground state of the QD, which is ap-
propriate at the low bias regime (|e(VS −VD)| ≪ ∆E, EC). However at high bias regime
(|e(VS −VD)| ≥ ∆E) not only the ground state but also the excited state contribute to the
transport, which allows excitation spectroscopy. Fig. 2.9a shows the transport at µS >

µ(N)+∆E(N)> µ(N)> µD, where both the ground state and the first excited state are in-
side the bias window and hence the conductance across the QD depends on tunnel-coupling
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(a)	 (b)	

µ(N)
µ(N)
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µD
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µD

µ(N + 1)
µ(N + 1)

Fig. 2.9 Electron transport at high bias regime. (a) (µS > µ(N)+∆E(N) > µ(N) > µD), (b) (µS >
µ(N +1)> µ(N)+∆E(N)> µ(N)> µD).

of the both states. For the even larger source-drain bias as shown in Fig. 2.9b, the ground
state of the (N + 1)-th electron contributes to the transport, where the number of electrons
inside the QD fluctuates between (N −1)↔ N ↔ (N +1).

Finally we describe the excitation spectroscopy called a Coulomb diamond. It is a pow-
erful tool to examine the energy scale of the QD. Fig. 2.10a shows the energy diagram of

Fig. 2.10 (a)Energy diagram of the N and N + 1-th ground and the first excited state. (b) Electro-
chemical potential of the transition appeared in (a). (c) Coulomb diamond of a QD: map of non-zero
differential conductance (dIdot/dVsd) in the plane of −|e|Vsd =−|e|(VS−VD) and Vg. (cited from ref.
[57])

the ground and the first excited state of N and N + 1 electron-state. The electrochemical
potential appeared in Fig. 2.10a is shown in Fig. 2.10b. Fig. 2.10c illustrates the typical
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feature of a Coulomb diamond, where differential conductance dIdot
dVsd

is mapped in a plane of
a source-drain voltage Vsd = (VS−VD) and gate voltage Vg. Along the zero source-drain bias
three electrochemical potentials shown in Fig. 2.10b are pointed. Two lines are originated
from those points, where the differential conductance becomes finite. Left (right) going
lines are the condition, where the electrochemical potential is aligned with the one of the
source (the drain). Below the black solid line the number of electrons in the QD is fixed
to N for the left side and N + 1 for the right side. This region is called Coulomb blockade

region. The lines related to N (N + 1)-electron excited state is interrupted at the boundary
of the N (N + 1)-electron Coulomb blockade region since inside the blockade region the
N (N + 1)-electron ground state is occupied and hence N (N + 1)-electron excited state is
not available. From the Coulomb diamond it is possible to find the energy level spacing
∆E(N) as shown in Fig. 2.10c.

2.3.2 Resonant tunneling in one-dimensional double barrier structure

When the electrochemical potential of a QD is positioned in between that of the source
and the drain, resonant tunneling occurs and an electron tunnels from the source to the
drain through the QD. In this section we consider the resonant tunneling utilizing an one-
dimensional double barrier structure (Fig. 2.11). Suppose a plane wave of wave vector k is

eikx teikx

....	

w

x

Fig. 2.11 One dimensional double barrier structure.

injected to the structure, transmission coefficient t is considered. Here scattering matrix of
the left (right) barrier is defined by

S1(2) =

(
r1(2) t

′
1(2)

t1(2) r
′
1(2)

)
. (2.43)
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The transmission coefficient t becomes

t = t1eikwt2[1+ r2ei2kwr
′
1 +(r2ei2kwr

′
1)

2 + ...]

=
t1eikwt2

1− r2ei2kwr′1
(2.44)

The transmission probability T = |t|2 hence becomes

T =
T1T2

1+R′
1R2 −2

√
R′

1R2 cosθ

=
T1T2

(1−
√

R′
1R2)2 +2

√
R′

1R2(1− cosθ)
, (2.45)

where T (′)
1(2)= |t(

′)
1(2)|2, R(′)

1(2)= |r(
′)

1(2)|2, r
′
1 =
√

R′
1eiα1 , r2 =

√
R2eiα2 and θ =(2kw+α1+α2).

We are considering the situation, where each tunnel-barrier is very high (T (′)
1 ,T (′)

2 ≪ 1). As
a result T can be written in the form:

T ≈ T1T2

(
T ′

1+T2
2 )2 +2(1− cosθ)

. (2.46)

From Eq. 2.46, T becomes non-zero only at the vicinity of θ(Er) = 2nπ , so we expand
(1−cosθ) at the vicinity of the resonant energy Er and consider the leading order. Then we
obtain

T (Er) ≈ T1T2

(
T ′

1+T2
2 )2 +

( dθ

dE

)2
(E −Er)2

=
Γ1Γ2

(E −Er)2 +(
Γ
′
1+Γ2

2 )2
, (2.47)

where Γ
(′)
1(2) ≡ dE

dθ
· T (′)

1(2) ≈ h̄ · v
2w · T (′)

1(2) is physically h̄ times the rate at which an electron
confined between two barriers would tunnel out through the barriers in to the left (right )
lead. When we define Γ = Γ

′
1 +Γ2, T can be further deformed as follows:

T ≈ Γ1Γ2

Γ
· Γ

(E −Er)2 +(Γ

2 )
2
. (2.48)

The right hand part of this expression becomes Lorenzian function, so the transmission
probability shows a Lorenzian line shape when passing through the resonance. This ap-
proximation is only valid around the resonance (E ∼ Er). Therefore at low bias and low
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temperature (Γ > kBT, Vsd), we observe a Coulomb peak of the Lorentzian line shape when
scanning through the resonance by the gate voltage Vg.

2.4 The Kondo effect in a QD

The Kondo effect, a typical electron-correlation, arises from the interaction between a lo-
calized spin and surrounding conducting electrons [58]. It is characterized by a many-body
singlet ground state, often refereed to as the Kondo cloud. It was first observed in metals
with a small inclusion of magnetic impurities, manifests itself by the increase of the electri-
cal resistance at low temperatures. On the other hand, the advance in nanotechnology has
led to a revival of the Kondo effect, as it is now possible to study the interaction of a single
impurity spin in contact with an electron reservoir, in particular in semiconductor quantum
dots [59–61].

The Kondo effect originates from the interaction between the spin of a magnetic impurity
Si and conduction electron spin at the impurity site si and is described by so called s− d

Hamiltonian:

Hsd =− J
2NA

∑
kkkk′σσ

′
c†

kkkσ
σσσ

σσ
′c

kkk
′
σ
′ ·SSS , (2.49)

where J is the parameter characterizing the interaction, NA is the total number of atom,
c(†)kkkσ

is annihilation (creation) operator with the wave vector kkk and the spin σ(=↑, ↓), σσσ

is Pauli matrices and σσσ
σσ

′ is the element of it and SSS is the vector of spin operator for the
impurity. This effective Hamiltonian can be derived from the Hamiltonian of the Anderson
model, where the exchange term between a localized electron and conduction electrons is
treated by perturbation up to the second order. When the scattering rate by this effective
Hamiltonian is calculated using Born approximation up to the second order, logarithmic
dependence of the resistance can be obtained. The ground state of the localized spin and
the conduction electrons becomes a many-body singlet state usually referred to the Kondo
singlet state, where the localized spin is screened by surrounded conduction electrons due
to frequent scattering with spin flip. The corresponding resonant state appears at the Fermi
surface below the characteristic temperature defined as the Kondo temperature TK:

kBTK = Dexp
(

1
JN(εF)

)
, (2.50)

where D corresponds to the band width of the conduction band and N(εF) is the density of



2.4 The Kondo effect in a QD 25

state at the Fermi surface.

In a QD the number of electrons are fixed in the Coulomb blockade region. When
the number of electrons is even and all the electrons form spin pairs, the total spin inside
the QD becomes zero. On the other hand when the number of electrons is odd, the spin
should be always left and it is considered as a localized spin. Therefore the Kondo effect
occurs originating from the interaction between the conduction electrons in the source-drain
leads and the localized spin inside the QD. As a result, the Kondo resonant state appears at
the Fermi surface, through which electrons transport across the QD even in the Coulomb
blockade region. Indeed in the experiments [59–61] the Kondo effect in a QD is observed
with specific features listed below:

1. When lowering the temperature, the conductance increases in alternate Coulomb block-
ade valley. The conductance in the valley without the Kondo effect decreases with the
temperature, whereas the one with the Kondo effect increases.

2. The above mentioned increase of the conductance has logarithmic dependence on
temperature.

3. The Kondo state appears at the Fermi surface, which is on resonance at zero source-
drain bias. Therefore the conductance decreases with increasing the source-drain bias,
different from the usual case, which is called zero bias anomaly.

4. Since at strong magnetic field scattering with spin flip is suppressed, the Kondo effect
seems to disappear. However it comes back by applying the source-drain bias to
compensate the Zeeman energy. As a result, zero bias anomaly mentioned above
splits by applying the magnetic field.

Though the Kondo effect is referred for various many-body phenomena, some of the
above features, such as the alternative appearance of the Kondo effect and the zero bias
anomaly in the energy spectroscopy, were first observed in QD systems owing to the vari-
ous tunable parameters. On the other hand the alternative appearance of the Kondo effect
depends on the confinement potential of the QD and is not always observed. It only appears
when the total spin of the QD changes between 0 and 1

2 according to the even and odd num-
ber of electron-occupation. In the QD other than the observations above, a variety of new
Kondo related phenomena have been reported [62–64], which contains rich physics about
electron-correlations.
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2.5 Transmission phase across a quantum dot

2.5.1 Transmission phase across a Breit-Wigner resonance

As known from the Landauer-Büttiker formula, electron transport in mesoscopic systems is
considered as a scattering problem, where scattering matrix is defined at each part of a cir-
cuit. Transmission probability is then calculated by using transmission coefficients, which
are elements of the scattering matrix. Transmission phase across a QD is the phase term
of the transmission coefficient of a QD (tQD = |tQD|eiα ). From Eq. 2.44 the transmission
coefficient across a QD at the low bias and the low temperature condition (Γ > kBT, Vsd) is
expressed by

tQD =
t1eikwt2

1− r2ei2kwr′1
. (2.51)

When we consider this coefficient around the resonance |tQD|2 ≈ 1, we can obtain approxi-
mated expression as follows:

tQD(E) =
√

Γ1Γ2eiβ

(E −Er)+ iΓ

2

, (2.52)

where Er is the energy at the resonance, Γ = Γ
′
1 +Γ2, β is the constant phase term. From
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Fig. 2.12 Transmission amplitude |tQD|2 (black curve and left axis) and transmission phase α (red
curve and right axis) as a function of energy around the resonance calculated from Eq. 2.52, where
the constant phase term β is set to 0.

this expression, the transmission phase across a QD changes by π through the resonance at
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a Coulomb peak (CP), as shown in Fig. 2.12.

Here the phase shift across the resonance can be also understood in terms of Friedel’s
sum rule, which relates a change of the number of electrons inside a QD ∆N to transmission
phase shift across the QD ∆α as follows [14]:

∆α = π ·∆N . (2.53)

∆N as a function of ∆Vp is given by the integrated area under the CP divided by the total
area of the CP. Therefore the number of electrons inside the QD changes by 1 across the CP.
The phase shift calculated from this ∆N and Eq. 2.53 is exactly the same and is shown in
Fig. 2.12.

First experiment concerning such transmission phase shift across a QD was performed
using the AB effect (section 2.2.2) [8], where, however, the observed phase was smeared
by multi-path interferences as expected from the phase rigidity (section 2.2.4) in the two-
terminal setup [11]. Two years later, in an experiment using a multi-terminal AB ring,
π-phase shift expected from the Lorentzian type of the resonance was confirmed [3], where
the phase rigidity was lifted by breaking the unitarity adding extra ohmic contacts inside the
AB ring.

2.5.2 Phase lapse and universal behavior in many electron QDs

In the experiment of ref. [3] abrupt phase lapse (PL) between Coulomb peaks (CPs) was
found, which occurred shorter energy scale than any other energy scale related to the QD
such as tunnel-coupling energy Γ and temperature kBT . It is theoretically proposed that the
PL can be understood by using the generalized Friedel’s sum rule [32]. When orbital parity
relation between CPs is the same, a singular point called transmission zero appears and the
PL occurs at the point. On the other hand when it is different, there is no singular point
between CPs and smooth phase evolution should be observed.

Another important findings in the experiment [3] is that a PL appears at all valleys be-
tween the CPs, which means that the orbital parity of all the CPs is the same. This observa-
tion contradicts with the naive expectation that there are both valleys with and without PLs.
Such phase behavior with and without PLs were reported later from the same group in a few
electron QD, which contains less than 10 electrons, using a similar multi-terminal AB ring
[4]. However also in this experiment when increasing the number of electron inside the QD
to more than 14, PLs in all successive Coulomb blockade valleys were recovered. This con-
tinuous PL behavior for large QDs containing many electrons observed in the multi-terminal
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AB ring is called universal PL problem since it is robust irrespective of QD parameters.
To explain the universal PL, several mechanisms such as the existence of strong cou-

pling state [65–67], elastic co-tunneling with finite Coulomb interaction at finite tempera-
ture [68, 69] and a chaotic QD within the constant interaction model [70] were proposed.
Regardless of such intensive theoretical works, the mechanism of the universal behavior is
still controversial. The problem is that there have only been a few experiments on this mat-
ter. Further experimental works are therefore needed for better understanding of the phase
behavior of many electron QDs.

2.5.3 Transmission phase across a QD with the Kondo correlation
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Fig. 2.13 Transmission amplitude (black line, left axis) and phase (red line, right axis) in the Kondo
regime (cited from NRG calculations performed by Arne Alex). It is calculated by using an 1-level
Anderson model [15]. The parameters used here are Γ/U = 0.2, T/U = 0.003.

As explained in section 2.5.1, transmission phase changes by π across a CP and it can
be understood in terms of Friedel’s sum rule. However across two CPs with the Kondo
correlation in the valley between them, which we call the Kondo valley, the phase behavior
is altered. At temperature lower than the Kondo temperature T . TK the Kondo singlet state
is formed at the Fermi energy in the Kondo valley. From the Noziéres’ Fermi liquid theory
[1] an electron scattered through the Kondo singlet state acquires π/2-phase shift without a
spin flip.

Across the first CP the phase shifts by π/2 during the formation of the Kondo singlet
state. In the valley an electron is scattered through the Kondo singlet state and hence the
phase shift stays at π/2. Then across the second CP the phase again evolves by π/2 as
shown in Fig. 2.13 [2]. Observation of the π/2-phase shift in the Kondo valley provides an
evidence of the Kondo singlet state.
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2.6 Electron transport by surface acoustic wave

Electron pumping by a surface acoustic wave (SAW) through a depleted quantum wire was
thought as a promising candidate for determining the value of the elementary charge. If that
value is determined with enough precision, Quantum metrological triangle is closed and the
units of practical measurement systems can be defined by true invariants of nature. Hence
it has been intensively studied for the past 20 years in the view point of field of quantum
metrology. Recently it has also become of considerable interest as a technique for coherent
transport of electrons [71]. In this section, we explain how to generate a SAW and transport
electrons.

2.6.1 Generation of surface acoustic wave by IDT

A SAW is a wave propagating on a surface of an elastic body. More than 90% of its energy
is concentrated on the depth shorter than its wave length due to exponential decay along
depth direction. Thus it is possible to generate, detect and reflect SAWs on the substrate
surface. In our experiment, we use Interdigital transducer (IDT) to generate SAWs. Fig.
2.14 shows the schematic picture of generation of SAWs. When we apply RF voltages on
the IDT deposited on a piezoelectric substrate, SAWs are generated due to the piezoelectric
effect. When the wave length of SAWs corresponds to the distance of IDT electrodes d,
SAWs generated by each electrode of the IDT are on resonance and strong SAWs propagate
along the surface. In contrast, when the wave length does not correspond to d, each wave
destructively interfere and SAWs are not generated.

Here the wave length of SAWs is determined by frequency of RF voltages and sound
velocity of the piezoelectric substrate. In our experiment, we used a GaAs/AlGaAs 2DEG
system. Since GaAs is a piezoelectric material, it is possible to generate SAWs by applying
RF voltages on a IDT evaporated on the surface. A crystal orientation of the surface in our
GaAs substrate is (001), where SAWs propagate along the crystal axis [110]. Accordingly
the sound velocity near the surface is about 2862 m/s [72]. A relation between the wave
length of a SAW and RF frequency is f = 2862/λ [Hz]. When the distance of the IDT
electrodes is 1µm (d = 1µm), the resonant frequency should be

f0 ∼
2862 [m/s]

1×10−6 [m]
= 2.862 [GHz]. (2.54)
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Piezoelectric substrate

d

2DEG

Fig. 2.14 Generation of SAWs. A pair of comb-shaped metallic electrodes on piezoelectric substrate
is called an interdigital transducer (IDT). d shows distance between electrodes in a comb-shaped
electrode. When resonant RF voltages are applied to the IDT, SAWs propagating both directions are
generated due to piezoelectric effect.

2.6.2 Electron pumping by a surface acoustic wave

When SAWs are applied to a 2DEG wafer, the potential wave generated by SAWs is basi-
cally screened by electrons. However when SAWs propagate through a depleted region of
the 2DEG, they effectively modulate the potential profile. Indeed when SAWs are applied
to a depleted quantum wire, electrons are picked up from the 2DEG and transferred across
the wire as follows.

Fig. 2.15a shows the potential profile around a depleted quantum wire when SAWs
are applied. The dark region is the area where electrons exist. Inside the quantum wire,
electrons are transported by moving QDs formed by the potential of SAWs and the quantum
wire. FIg. 2.15b is a plot of potential energy along the center of the quantum wire in
Fig. 2.15a. Since the wire is depleted without SAWs, the potential inside the wire exceeds
the Fermi energy EF. Confinement of the moving QDs can be controlled by amplitude of
SAWs and electrostatic gate voltages of the quantum wire. When the amplitude of SAWs is
strong enough to transfer electrons over the potential slop and the separation of the quantized
energy levels of the moving QDs is large enough, the number of electrons inside each QD is
quantized to an integer number. As a result, the observed current becomes I = ne f [74, 75],
where n is the number of electrons inside each QD, e is an elementary charge and f is a
frequency of SAWs.
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Fig. 2.15 Formation of moving QDs in a depleted quantum wire (cited from ref. [73]). (a) A
schematic picture of potential contours around a depleted quantum wire when SAWs are applied.
(b) A schematic picture of potential energy along the center of the quantum wire in (a). The dark
region is the area where electrons exist in both (a) and (b).





Chapter 3

Realization of a true two-path
interferometer

3.1 Introduction

A two-path interferometer is a strong tool to measure the transmission phase of an electron,
which is not readily apparent from standard conductance measurements. When a QD is
inserted into one of the two paths of the interferometer, it is possible to detect the transmis-
sion phase shift of electrons passing through the QD from measurement of the interference
pattern of the conductance. However realization of a true two-path interferometer is not a
simple task since in mesoscopic systems linear conductance is bound to a contact geometry
as discussed in the section 2.2.1. For example a conventional two-terminal AB interfer-
ometer, which could be considered as a two-path interferometer, suffers from the phase
rigidity problem (subsection 2.2.4), in which the interference becomes a complicated multi-
path interference. Realization of a true two-path interferometer requires a novel approach.
Multi-terminal AB ring structures [3, 9] have been employed to avoid the phase rigidity
problem and to realize a two-path interferometer. In these preceding experiments lifting
of phase rigidity was confirmed by the fact that the conductance was not an even function
of the magnetic field. However even if the phase rigidity is lifted, it is difficult to confirm
whether contributions from multi-path interferences are fully suppressed or not. Here we
employed an AB ring with tunnel-coupled wires to realize a true two-path interferometer
[76]. In the following the device structure and the measurement setup are presented. Then
we describe in detail how the device works.
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3.2 Device and measurement

The device was fabricated in a 2DEG (n ≈ 1.9× 1011 cm−2, µ ≈ 2× 106 cm2/Vs, depth
= 125 nm) formed at an AlGaAs/GaAs hetero-interface with a standard Schottky gate tech-
nique (Fig. 3.1). The AB ring at the center is connected to the leads at both ends through

1 µm	

VT2	

VM1	

VM2	

VT1	

Vsd	

I1	

I2	

AB ring	 Tunnel-coupled!
wire	

Tunnel-coupled!
wire	

Fig. 3.1 Scanning electron micrograph (SEM) picture of the device and measurement setup.

two parallel quantum channels coupled via a tunnel-barrier. The gate voltage VT1 is used
to form the AB ring and to control the tunnel-coupling between the two wires of the right
tunnel-coupled wire whereas the gate voltage VT2 is used only to control the tunnel-coupling
of the left tunnel-coupled wire. The gate voltages VM1 and VM2 allow to modulate the wave
vector of an electron traversing through the upper and lower path of the AB ring, respec-
tively. The three gates colored in pink are prepared to form a QD. However in the exper-
iment discussed in this section we did not use the QD but just applied the voltage on the
center gate out of three to form a quantum channel. For transport measurements we applied
a source-drain voltage on the lower or upper left contact and measured currents flowing
through the upper and lower right contacts, I1 and I2, using a standard lock-in technique
(Vsd = 50 µV, f = 23.3 Hz). The measurements presented in this chapter were performed
at 70 mK.

Fig. 3.2 shows the electrical circuit for the measurement. Each line is electrically filtered
by a copper powder filter and a two stage RC-filter at base temperature.
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Fig. 3.2 Electrical circuit for measurement.

3.3 Quantum interference in two different regimes

We describe distinct interference features of the output currents observed in two different
regimes in this section. For this measurement we applied zero voltage (VT2 = 0V) on the
center gate of the left tunnel-coupled wire and floated the upper-left ohmic contact. Then the
device has effectively three terminals having the AB ring connected to the left lead through
a single quantum wire and to the right lead through a tunnel-coupled wire. In the first
regime, which we call a Strong Coupling Regime (SCR), only small negative voltage VT1

was applied to the center gate of the right tunnel-coupled wire, so that the 2DEG underneath
the AB ring was fully depleted but the center tunnel-coupling of the right lead was still
strong. In this case the right tunnel-coupled wire behaves as a single quantum wire as well.
On the other hand in the second regime, which we call the Weak Coupling Regime (WCR),
we made VT1 more negative than in the SCR such that a tunnel-coupled wire was formed in
the right lead. In these two regimes we observed quantum interferences as a function of the
magnetic field and the gate voltage VM1.

Fig. 3.3 shows raw currents I1 and I2 in the SCR (a) and the WCR (b) as a function of
magnetic field applied perpendicularly to the surface of the device. Oscillations originating
from the AB phase (Section 2.2.2, 2.2.3) were clearly observed in both regimes. Visibility
of the oscillations defined by the oscillation amplitude divided by the mean value is about
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Fig. 3.3 Quantum interferences as a function of magnetic field in the SCR (a) and the WCR (b). The
black (red) curve in both (a) and (b) is the current observed at I1 (I2).

∼ 0.3 %. To see the interference features more clearly, we extracted the oscillating part of
the currents. Here we used two different methods since the observed interference contains
different contributions between the SCR and the WCR as we will see later. The first is to
subtract a smooth background current from the raw data, which can be regarded as a high
pass filter. The other is a band pass filter using a fast Fourier transform (FFT), where the
oscillating part is extracted by performing a complex FFT to filter out the noise outside
the peak region, followed by an inverse complex FFT. For the SCR we used a high pass
filter since not only a main frequency component but also a higher harmonics is expected to
appear in the signal. For the WCR we expected the signal only around a single frequency
and hence we used a band pass filter for analysis.

Fig. 3.4 shows the oscillating part of the currents in the two regimes. In the SCR (Fig.
3.4a) two output currents I1 and I2 oscillate in phase. This in-phase oscillation indicates os-
cillation of the total conductance through the AB ring, and therefore suggests that a standing
wave is generated inside the AB ring by interferences of electrons encircling the AB ring
multiple times and the total conductance oscillates depending on whether the interference
at the exit of the AB ring is either constructive or destructive as depicted in Fig. 3.5a. On
the other hand in the WCR (Fig. 3.4b) the two output currents oscillate with anti-phase.
These anti-phase oscillations reflect the fact that the total conductance through the AB ring
is almost independent of the magnetic field, and therefore means that there is no standing
wave inside the AB ring due to the absence of interferences of electrons encircling the AB
ring multiple times. The anti-phase oscillations also indicate that the electron state is formed
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Fig. 3.4 Oscillating parts of quantum interferences as a function of magnetic field in the SCR (a) and
WCR (b). The black (red) curve in both (a) and (b) is the current observed at I1 (I2).
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Fig. 3.5 Schematic image of probability density of electrons in the SCR (a) and the WCR (b).
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by superposition of symmetric and anti-symmetric states of the upper and lower part of the
coupled-wire, which leads to the oscillation of an electron between the two parts. As a re-
sult, coherent electrons, which contribute to the anti-phase oscillation, follow the two direct
trajectories without encircling the AB ring and oscillate between the upper and lower part in
the tunnel-coupled wire as shown in Fig. 3.5. We therefore consider anti-phase oscillations
with equal amplitude as such true two-path interferences. However the observed oscillation
amplitude in Fig. 3.4b is different in a certain range of the magnetic field. A possible reason
is that the series conductance to the right leads is different between the upper and the lower
path, which depends on the magnetic field probably because the magnetic field affects the
connection of the electron wave function.
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Fig. 3.6 Modulation of the geometrical phase in two regimes. For the SCR (a) and the WCR (b),
oscillations of the current as a function of magnetic field are plotted for different gate voltage of VM1
along the vertical axis. About the SCR we plotted the oscillation of sum of the currents I1 + I2 to
extract only in-phase components, whereas for the new regime we plotted the difference between the
currents I1 − I2 to extract only anti-phase components.

Next we tried to modulate the geometrical phase by linearly modulating the wave vector
of electrons with gate voltage VM1 in the two regimes (Fig. 3.6). In Fig. 3.6 AB oscillations
along the lateral axis is plotted for various voltages of VM1 along the vertical axis. In the
SCR (Fig. 3.6a) the phase of the AB oscillations jumps at some VM1 along the vertical axis.
At the zero magnetic filed the phase of the AB oscillation is fixed to either 0 or π and the
oscillation pattern is symmetric about zero magnetic field. This is a typical feature of the
phase rigidity (section 2.2.4) for a multi-channel AB ring. We therefore see in the SCR that
the interferometer effectively becomes a typical two-terminal interferometer bound to the
phase rigidity, consistent with the setup where the AB ring is connected to the leads through
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single quantum wires at the both sides. On the other hand in the WCR the phase of the AB
oscillation smoothly shifts with VM1 as expected for a direct two-path interference (Eq. 2.31
in section 2.2.3). This result also supports that the observed anti-phase oscillations in the
WCR are true two-path interferences.
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Fig. 3.7 FFT amplitude of AB oscillations. For the SCR an oscillating part of I1 + I2 is analyzed
by a complex FFT, whereas for the WCR an oscillating part of I1 − I2 is analyzed to obtain FFT
amplitude as a function of the reciprocal of the magnetic field. The large signal at around zero shows
dc components of currents.

Finally we refer to the difference of the area enclosed by an electron in the interferom-
eter, which appears in the different periods of the AB oscillations. Fig. 3.7 shows the FFT
spectrum of sum of the currents, I1 + I2, for the SCR (a) and difference between the cur-
rents, I1 − I2, for the WCR (b). The peak position in frequency is much higher in the WCR.
This peak position is proportional to the area enclosed by an electron in the interferometer.
Therefore Fig. 3.7 implies that an electron encloses a much larger area in the WCR. In the
WCR a more negative gate voltage of VT1 =−600 mV was applied to form a tunnel-coupled
wire at the right side than VT1 =−300 mV in the SCR. This difference of VT1 leads to a dif-
ference of the depleted area of the center island in the AB ring. However it does not explain
such a large difference (SCR: ∼ 425 [1/T], WCR: ∼ 680 [1/T]) observed here. When we
assume that an electron encloses the AB ring passing through the center of the quantum
wire defined by the metallic gate pattern, we expect the peak position of ∼ 455 [1/T]. In
this device the width of the quantum wire in the AB ring is about 375 nm. When we form
the quantum wire in GaAs/AlGaAs 2DEG systems using Schottky gates, the depleted re-
gion underneath the metallic gate typically expands from the edge of the metal by the length
scale comparable with the depth of 2DEG. The depth of 2DEG in this device is 125 nm and
hence the actual confinement of the quantum wire is expected to be narrower than 125 nm.
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~ 375 nm	

Depleted region	

~ 125 nm	

Controlled by the gate voltage	

~ 60 nm	

Fig. 3.8 Schematic image of the discussion about the area enclosed by electron trajectories.

Assuming that the center of the electron wave function can be controlled within half of the
actual confinement width by the gate voltage (blue region in Fig. 3.8), the peak position can
be modulated in the range of 390 ∼ 520 [1/T]. The peak position of the SCR is within the
range. However the peak at ∼ 680 [1/T] for the WCR is out of this range, which implies
that an electron also acquires the AB phase in the tunnel-coupled wire region.
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Fig. 3.9 Oscillating parts (a) and FFT amplitude (b) of the anti-phase oscillation in the WCR observed
at a different gate voltage condition of the right tunnel-coupled wire from the data shown in Figs.
3.3b, 3.4b, 3.6b and 3.7b.

There is another experimental evidence that in the WCR an electron also acquires AB
phase in the tunnel-coupled wire region. When we fixed VT1 and the gate voltages to form
the AB ring and only made the voltages on the upper and lower gate to form the right
tunnel-coupled wire more negative, we observed anti-phase oscillations with an FFT peak



3.4 Transition between two different regimes 41

at a smaller value of 1/B (= 533) as shown in Fig. 3.9. The difference of the peak position
between Fig. 3.7b and Fig. 3.9b originates from the different gate voltage configuration of
the right tunnel-coupled wire. This suggests that an electron acquires the AB phase in the
tunnel-coupled wire region.

3.4 Transition between two different regimes

In this section we discuss why distinct interferences appear in the two different regimes.
Of importance is the wave function matching in the transition region between the AB ring
and the tunnel-coupled wire. In a tunnel-coupled wire the eigenstates are the symmetric
and anti-symmetric hybridized states of the upper and lower part of the wire as discussed in
section 2.1.4. When the confinement energy of the two wires are the same (ε↑ = ε↓ = ε0),
the eigen energy is ES(AS) = ε0 − (+)τ , where τ is tunnel-coupling energy.

In the SCR VT1 is made slightly negative to deplete the region underneath the thicker
part of the gate to form the AB ring but still keep the tunnel-coupling strong such that the
tunnel-coupled wire behaves as a single quantum wire. Furthermore to observe nice in-
phase oscillations as shown in Fig. 3.4a, we also applied more negative voltages to the side
gates of the tunnel-coupled wire to make the wire narrower. As a result the width of the
effective single quantum wire becomes close to the one of the AB ring. In such a situation
the energy spacing between the transmitting modes of the effectively single quantum wire
is quite large, so that the lower (higher) mode is adiabatically connected with the lower
(higher) mode at the exit of the AB ring. Since the AB ring is connected to the two output
contacts through a single quantum wire and each mode of the wire is adiabatically connected
to that in the ring, i.e. with neither scattering nor interference between different modes of the
wire, we naturally expect in-phase behavior for the two output currents I1 and I2 as expected
for an interferometer with ideal single channel wires.

In the following, we consider the evolution of the electron-state at the transition region
between the AB ring and the tunnel-coupled wire using pseudo spins |↑⟩, |↓⟩ and a wave
function of the propagating direction |k⟩ as defined in section 2.1.4. The final state of the
AB ring at the transition region is expressed by 1√

2
|k⟩(|↑⟩+ eiϕ |↓⟩), where ϕ is the phase

accumulated through the AB ring. Suppose that only the symmetric component is transmit-
ted to the wire in the right side and the anti-symmetric one is reflected. The output currents
are proportional to

∣∣∣∣⟨k|k⟩
(⟨↑|+ ⟨↓|√

2

)
·
( |↑⟩+ eiϕ |↓⟩√

2

)∣∣∣∣
2

=
1+ cosϕ

2
(3.1)
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and oscillate as a function of ϕ . In the discussion above we assumed that the interference
is a pure two-path interference, which is not smeared by multi-path interferences. How-
ever in this two-terminal situation as discussed in section 2.2.4 actual interferences include
complicated multi-path interferences to satisfy the boundary condition (G(B) = G(−B)).
Therefore the correct understanding of the observed in-phase interferences should be as fol-
lows. A standing wave is formed inside the AB ring due to multi-path interferences such
that the condition (G(B) = G(−B)) is satisfied. This standing wave is modified by applying
the magnetic field and the output currents oscillate depending on whether the interference at
the transition region is constructive or destructive as depicted in Fig. 3.5a. Nevertheless the
important point is still that the tunnel-coupled wire behaves as a single quantum wire with
large energy separation between the symmetric and anti-symmetric eigenstates so that the
connection of the wave function at the transition region is adiabatic.

In the WCR the tunnel-coupling energy is smaller compared to that in the SCR due to
existence of a tunnel-barrier and ES and EAS are close. Therefore both the symmetric and
anti-symmetric hybridized states can be connected to a certain eigenstate in the AB ring,
which allows to fully transfer an electron-state from the AB ring with a {|↑⟩, |↓⟩} basis to
a tunnel-coupled wire with a {|ψS⟩ = |↑⟩+|↓⟩√

2
, |ψAS⟩ = |↑⟩−|↓⟩√

2
} basis. In this case when the

confinement potential of each part of the wire at the transition region and that of each arm
of the AB ring are well aligned, an electron is not backscattered to the other arm of the
AB ring at the connection and oscillates between the two states because the typical length
scale of the tunneling becomes larger than the length of the transition region. This results in
anti-phase oscillation of the output currents I1 and I2 as shown in Fig. 3.4b and Fig. 3.9a.
Since there is no backscattering and an electron-state fully transfers from the AB ring to the
tunnel-coupled wire, the output currents which oscillate with anti-phase contain information
about true two-path interference or phase information of the electron wave function (details
are discussed in Chapter 4). Concerning the phase rigidity in the WCR the system becomes
a three-terminal device, so the requirement of an even function of the magnetic field is not
applied for each current of I1 and I2 but the sum of the currents I1 + I2. Indeed, anti-phase
oscillation of I1 and I2 means that the total current I1 + I2 is independent of the magnetic
field, which satisfies the boundary condition: G(B) = G(−B).

3.5 AB phase accumulation in a tunnel-coupled wire

In section 3.3 we have put forward that in the WCR an electron acquires an AB phase
not only in the AB ring but also in the tunnel-coupled wire. Here we discuss possible
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mechanisms of the appearance of an AB phase in a tunnel-coupled wire.

Electron transport under low-energy excitation is basically assumed to be adiabatic,
where an electron stays in its instantaneous eigenstates and the total energy is conserved dur-
ing transport. When transport of an electron at the Fermi surface is considered, the electron
state at the right exit of the AB ring can be expressed by 1√

2
|k0⟩(|↑⟩+eiϕ |↓⟩), where ϕ is the

phase accumulated across the AB ring and sum of the confinement energy in y-direction and
the kinetic energy in x-direction is equal to the Fermi energy (ε0 +

h̄2k2
0

2m∗ = EF). Then when
an electron enters the tunnel-coupled wire, the initial state becomes 1√

2
[1+eiϕ√

2
|kS⟩ |↑+↓⟩√

2
+

1−eiϕ√
2

|kA⟩ |↑⟩−|↓⟩√
2

] = 1
2 [(1+eiϕ) |kS⟩ |ψS⟩+(1−eiϕ) |kA⟩ |ψA⟩] by adiabatic evolution, where

|ψS⟩ = |↑⟩+|↓⟩√
2

, |ψA⟩ = |↑⟩−|↓⟩√
2

are the eigenstates of y-direction in the tunnel-coupled wire

and those energy satisfy ES +
h̄2k2

S
2m∗ = EF and EA +

h̄2k2
A

2m∗ = EF. In this adiabatic case the
electron-state is formed by a superposition of |ψS⟩ and |ψA⟩ and the phase accumulation
through the AB ring is terminated immediately after the electron enters the tunnel-coupled
wire, i.e. an electron does not acquire extra AB phase in the tunnel-coupled wire. This is
also confirmed by a detailed analytical calculation using a ladder model [77]. To reproduce
the large AB area with constant oscillation frequencies, we need to assume a potential offset
between the two parts of the tunnel-coupled wire, in which case |ψS⟩ and |ψA⟩ approaches
|↑⟩ and |↓⟩. However, this gives rise to a significant reduction of the oscillating amplitude,
which is inconsistent with the experimental result.

The above discussion does not take into account for the two dimensionality of the tunnel-
coupled wire. When we consider the Lorentz force, the center of the symmetric and anti-
symmetric wave functions shifts to the opposite directions along y-direction due to the or-
thogonality of the wave functions. Hence an extra AB phase can be accumulated between
those trajectories as discussed in the reference [78]. This effect also depends on the potential
profile of the tunnel-coupled wire. When the confinement is stronger, this effect should be
smaller. From the simulation in ref. [78], this effect becomes larger at higher magnetic field
and weaker tunnel coupling (wider tunneling barrier) because the difference of the center
of mass between the two states becomes larger. But this does not fully explain the exper-
imental observation for an obvious reason. Once the wave functions are shifted towards
y-direction, |ψS⟩ and |ψA⟩ approaches |↑⟩ and |↓⟩, similarly to the tunnel-coupled wire with
a potential offset. When the influence of the Lorentz force becomes more significant, it sim-
ply approaches the situation where the AB ring is not closed. According to the simulation
for a similar interferometer[78], the visibility is already reduced by an order of magnitude
when the AB area increases by less than 5%.
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The other possibility to account for the larger AB area is the "non-adiabaticity" where
an electron does not immediately fall onto the eigenstates when it enters a weakly tunnel-
coupled wire. But we need further careful studies in terms of reproducibility and consistency
for different parameters such as the wire length, wire width, the magnetic field, and the
tunnel-coupling strength.

3.6 Summary and future plans

We found distinct interferences in an AB ring with tunnel-coupled wires. In the SCR, where
an AB ring is connected to ohmic contacts through a single quantum wire, the system is
equivalent to a two-terminal AB ring structure and we observed in-phase oscillations in two
contacts. When the geometrical phase was modulated by the gate voltage, the phase of the
AB oscillation at zero field was fixed to either 0 or π , which is a clear signature of the
phase rigidity. On the other hand, in the WCR the AB ring is connected to the contacts
through the tunnel-coupled wire on the right, where a superposition state of the upper and
the lower path in the AB ring can be fully transferred to the one of the symmetric and
anti-symmetric hybridized states in the tunnel-coupled wire. Furthermore the system is
equivalent to a three terminal and for each of the output currents in the right leads phase
rigidity is no longer maintained. As a result the observed quantum interference becomes a
true two-path interference and the two output currents oscillate with anti-phase. When the
geometrical phase was modulated in this WCR, the phase of the AB oscillation smoothly
shifts as expected. The possibility of the unambiguous phase measurement was further
confirmed by both analytical and numerical calculations [77, 78].

We also found a difference of the area where an electron acquires the AB phase between
two regimes. In particular an electron seems to acquire the AB phase also in the tunnel-
coupled wire region in the WCR. However the mechanism of the AB phase acquisition
has still to be investigated and further studies using different length and width of a tunnel-
coupled wire will be required.



Chapter 4

Flying charge qubit operation in an
Aharonov-Bohm ring with
tunnel-coupled wires

4.1 Introduction

A qubit in solid-state systems is attractive for quantum information since it has an advantage
in scalability. In particular spin qubits with quantum dots made in GaAs/AlGaAs 2DEG sys-
tems are intensively studied and single qubit operation and two qubit operation have already
been reported [21–23]. These spin qubits are localized, and it is difficult to transfer infor-
mation from one place to the other, which should be useful for networking quantum systems
and performing complicated quantum calculations. As a technology to realize such infor-
mation transfer, recently a single electron transfer between distant QDs connected through a
depleted quantum channel driven by surface acoustic wave within its typical spin coherence
time T ∗

2 ∼ 10 ns has been demonstrated (see chapter 8) [25, 26]. Also information transfer
by capacitive coupling between qubits was proposed theoretically [79]. However there has
been no demonstration of scalable ’flying qubit’ architectures in solid-state systems, where
quantum operations on qubits are performed while they are coherently transferred.

When pseudo spin states are defined by a traveling electron in either of the two paths, a
two-path interferometer can be considered as a two-level system. It can be used to make a
flying qubit by controlling the phase difference and superposition of the two states. From
this point of view Mach-Zehnder interferometers of quantum Hall edge channels [80, 81]
are considered to be useful for making flying qubits and in addition are rich testing grounds
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for quantum physics such as two-particle interference [30, 82]. However, phase relaxation
length of such a device was shown to be 24µm at 20 mK [81]. This, together with the
requirement of a high magnetic field, limits their scalability. On the other hand, the AB ring
with tunnel-coupled wires described in chapter 3 works under a low magnetic field without
quantum Hall edge channels. As we will see later in this chapter, this makes the system less
sensitive to voltage fluctuations of the environment and this increases the phase relaxation
length of the system. In this chapter we describe quantum operations of a flying qubit and
explain its specific features [76].

4.2 Device and measurement

The device and the measurement technique used in this chapter are basically the same as
the one used in chapter 3 (See section 3.2). However we used two different setups in the
experiments. Setup A is the one shown in Fig. 3.2, where all lines are filtered by a copper
powder filter and a two stage RC-filter at base temperature. In Setup B we put cold grounds
connected to ohmic contacts through certain resistances (Fig. 4.1) in addition to Setup A.
Currents I1(2) flowing through the two contacts at the right side are converted from voltages
V1(2) measured across the load resistance R using I1(2)=V1(2)/R. When R is large, the output
voltage becomes large and the measurement resolution is improved, but the large resistance
reduces the currents flowing through the device since it is connected in series to the device.
Therefore we chose the resistance comparable to the resistance of the device (∼ 10kΩ) in the
experiments described in this chapter, where V1(2) becomes the most sensitive to the device
conductance. Usually in the low temperature measurement thermoelectric voltage between
the room temperature and low temperature parts of each line is different by a few tens of
µV, which produces an offset voltage between the ohmic contacts and reduces quantum
interference effect. In Setup B the electrical potential of each contact is determined at low
temperature by a cold ground and hence dephasing due to the thermoelectric voltage can be
suppressed. However we cannot make ohmic contacts floating during the measurement as
in Setup A. For the transport measurement a lock-in technique with a source-drain voltage
of 8 ∼ 50 µV and reference frequency f = 23.3 Hz was employed. All measurements
were done at the base temperature of ∼ 70 mK except when the temperature is specified.
Again in this chapter a QD was not used but we just applied a negative voltage on the center
plunger gate out of the three to form a quantum channel.
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Fig. 4.1 Measurement setup for Setup B. In this setup a cold ground is put for each ohmic contact
through resistance (R = 10kΩ). A current flowing through a contact is calculated by I =V/R.

4.3 Flying qubit operations

Flying qubit operations in an AB ring with tunnel-coupled wires are described in this sec-
tion. Operations of the system are considered in terms of pseudo spins (|↑⟩, |↓⟩) defined by
the presence of an electron in either of the two wires (Fig. 4.2a). Figure 4.2b shows the
Bloch sphere for a pseudo spin. We performed rotation about X-axis, and Z-axis in one of
the tunnel-coupled wires, and an AB ring, respectively. Combination of the two operations
allows to perform Ramsey-type interference experiments.
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Fig. 4.2 (a) Definition of pseudo spins and (b) Bloch sphere of the pseudo spins

Firstly the X-axis rotation is considered. When there is no energy detuning between the
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upper and lower part of the wire, operation of a tunnel-coupled wire can be written by

UT(θ) = cos
(

θ

2

)
[ |↑⟩⟨↑|+ |↓⟩⟨↓| ]+ isin

(
θ

2

)
[ |↑⟩⟨↓|+ |↓⟩⟨↑| ] , (4.1)

where θ = (kS − kA)L as discussed in section 2.1.4. In this operation an electron-state
accumulates phase difference θ between the two eigenstates in a tunnel-coupled wire ψS =
|↑⟩+|↓⟩√

2
, ψA = |↑⟩−|↓⟩√

2
, which corresponds to the rotation about X-axis (the axis connecting

ψS and ψA) in the Bloch sphere (Fig. 4.3). It is possible to control θ by applying a gate
voltage on the thin center gate of one of the two tunnel-coupled wires, which changes the
tunnel-coupling energy τ as well as (kS − kA) between the two parts of the wire. When the
kinetic energy of the propagating direction is large enough compared to the tunnel-coupling
energy, the rotation angle θ can be written by

θ = (kS − kA)L

≈ 2τ

h̄
·∆t

=
EA −ES

h̄
·∆t , (4.2)

where τ is the tunnel-coupling energy, ∆t is traversing time of an electron through the
tunnel-coupled wire and (EA −ES) is the energy difference between the two eigenstates. In
our measurement when anti-phase oscillations are observed in the Weak Coupling Regime
(WCR), this condition is usually satisfied.
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Fig. 4.3 Rotation about X-axis.

We initially perform the rotation about the X-axis in the tunnel-coupled wire in Setup A
at T ∼ 2.2 K to prevent current fluctuations due to impurity scattering which become larger
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at lower temperatures. Since we have two tunnel-coupled wires in the device, we use one
of them to demonstrate the X-rotation. We inject a current from the upper (lower) contact
at one end of the coupled two wires to initialize the spin state to |↑⟩ (|↓⟩), and measure the
current flowing through the upper or lower contacts at the other end. Fig. 4.4a shows the
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Fig. 4.4 Current oscillation as a function of VT1 (Fig. 2 in ref. [76]). (a) Raw data observed at
the upper and lower contacts when the current is injected from both the upper and lower contacts.
(b) Main: oscillating part of the current oscillation shown in (a). Inset: measurement setup. A
source-drain bias of Vsd = 50 µV, f = 23.3Hz is applied and the temperature is ∼ 2.2 K.

output currents as a function of the voltage VT1 applied to the right tunnel-coupling gate.
The black, and red curve is the data observed at the upper, and lower contact, respectively
when the current is injected from the upper contact as shown in the inset of Fig. 4.4b. The
green, and blue curve is the current observed at the lower, and upper contact, respectively
when the current is injected from the lower contact. The currents from |↑⟩ to |↑⟩ (|↓⟩) and
from |↓⟩ to |↓⟩ (|↑⟩) oscillate in the same way, which ensures that the observed oscillations
do not come from the balance of the conductance between the two wires. Fig. 4.4b shows
the oscillating part of the current in Fig. 4.4a when the current is injected from the upper
wire. At around VT1 =−0.68V the two wires are totally decoupled. For more positive gate
voltage, the current oscillations become clearer. One oscillation period corresponds to 2π

rotation and hence in total 3π rotation is observed. The oscillation disappears for more posi-
tive gate voltage than −0.54 V. This is because the tunnel-coupled wire approaches a single
quantum wire in such a strong tunnel-coupling condition.

Next the operation in the AB ring is described. When a pure two-path interference is



50 Flying charge qubit operation in an Aharonov-Bohm ring with tunnel-coupled wires

considered, an electron acquires a phase difference between the upper and lower arm of the
AB ring as discussed in section 2.2.3, which corresponds to the rotation about Z-axis (axis
connecting |↑⟩ and |↓⟩) in the Bloch sphere. This unitary operation can be written by

UAB(ϕ) = |↑⟩⟨↑|+ eiϕ |↓⟩⟨↓| , (4.3)

where ϕ =
∮

k ·dlll − e
h̄BS is the phase difference accumulated in the AB ring.
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Fig. 4.5 Rotation about Z-axis.

We also confirm this rotation about Z-axis in the WCR. For this measurement we employ
the three-terminal configuration and Setup A as in section 3.3. In that configuration the
initial state is |ψi⟩= |↑⟩+|↓⟩√

2
and then a phase difference ϕ is accumulated across the AB ring.

Finally the resulting state vector is rotated about X-axis in the right tunnel-coupled wire by
θ and the measurement of current I1 and I2 reads the projection onto Z-axis. Therefore the
two output currents are expected to be

I1 ∝

∣∣∣∣⟨↑|UT(θ)UAB(ϕ)

( |↑⟩+ |↓⟩√
2

)∣∣∣∣
2

=
1− sinθ sinϕ

2
(4.4)

I2 ∝

∣∣∣∣⟨↓|UT(θ)UAB(ϕ)

( |↑⟩+ |↓⟩√
2

)∣∣∣∣
2

=
1+ sinθ sinϕ

2
. (4.5)

In the measurement the tunnel-coupled wire is tuned to maximize the oscillation as a func-
tion of ϕ and hence θ is considered to be π/2 (mod π). As a consequence I1 and I2 are
expected to oscillate with anti-phase by the rotation about Z-axis. Fig. 3.4b and Fig. 3.9a
are the data of Z-rotation with ϕ controlled by the magnetic field. Fig. 3.6b also shows
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Z-rotation but with modulation of the geometrical phase through VM1.
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Finally we demonstrate the scheme of Ramsey interference employing Setup B, where
the initial state |↑⟩ is prepared by injecting electrons from the upper contact and two θ =

π/2-rotations about X-axis in the two tunnel-coupled wires and ϕ-rotation about Z-axis
in the AB ring are performed. The final state is projected to Z-axis and measured by the
currents I1 and I2 (Fig. 4.6). These currents I1 and I2 are expected to be as follows:

I1 ∝

∣∣∣⟨↑|UT

(
π

2

)
UAB(ϕ)UT

(
π

2

)
|↑⟩
∣∣∣
2

=
1− cosϕ

2
(4.6)

I2 ∝

∣∣∣⟨↓|UT

(
π

2

)
UAB(ϕ)UT

(
π

2

)
|↑⟩
∣∣∣
2

=
1+ cosϕ

2
. (4.7)

Therefore I1 and I2 should oscillate with anti-phase as in the three-terminal case.
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Fig. 4.6 Ramsey interference in an AB ring with tunnel-coupled wires.

For tuning the tunnel-coupled wires with θ = π/2 (mod π), we carefully adjust the gate
voltages VT1 and VT2 to maximize the oscillation amplitude. Fig. 4.7 shows the amplitude
of the magneto oscillation observed in I1 as a function of the tunnel-coupling gate voltage.
The oscillation amplitude is analyzed by a complex FFT and plotted as FFT amplitude. In
both wires a peak structure appears and hence we set the gate voltages VT1 and VT2 to these
values.

Then we perform the magnetic field control of ϕ . As expected from Eqs.4.6 and 4.7, the
two output currents oscillate as a function of magnetic field (Fig. 4.8). We also modulate
the rotation angle ϕ by changing the geometrical phase through VM1(2). For both VM1 and
VM2, the AB oscillation phase smoothly shifts (Fig. 4.9). The phase shift with VM1(2) is
opposite between Fig. 4.9a and 4.9b, because VM1 modulates the wave vector of the upper
path, whereas VM2 modulates that of the lower path. Here the shift of the geometrical phase
is given by ∆ϕ = ∆kF ·Li =

πCiLi
2e ∆VMi, where L1(2) is the length of the gate VM1(2) and C1(2)
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subtracted from raw data and only oscillating part is plotted. The black and red curves correspond to
the currents observed in I1 and I2, respectively, measured for Vsd = 50 µV.
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Fig. 4.9 Rotation about Z-axis in the scheme of Ramsey interference. Oscillating part of I2 as a
function of magnetic field extracted by subtraction of smoothed background is plotted for different
voltages of VM1 (a) or VM2 (b), measured for Vsd = 50 µV.

is the capacitance per length between the gate and the upper (lower) quantum wire. From
this relation and data in Fig. 4.9, we can estimate C1(2) as follows:

C1 =
2e(∆kF ·L1)

πL1∆VM1

=
2 ·1.6×10−19[C] ·4π

π ·2.73×10−6[m] ·0.16[V]

≃ 2.9 [pF/m] (4.8)

C2 =
2e(∆kF ·L2)

πL2∆VM2

=
2 ·1.6×10−19[C] ·π

π ·1.07×10−6[m] ·0.105[V]

≃ 2.9 [pF/m] (4.9)

These values are comparable to typical values of the geometrical capacitance of gates. In
Fig. 4.9a the rotation angle ϕ about the Z-axis is modulated more than 2π by VM1. The
rotation angle θ about the X-axis can also be controlled by the gate voltage VT and hence
full control of the flying qubit can be done only by means of electrostatic gate voltages,
which means that rapid manipulation of the qubit is possible. Furthermore considering the
fact that the traversing time L/vF of an electron through the entire structure is on the order of
10 ps, the operation time is much shorter than any of the other qubits in solid-state systems.
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4.4 Electron coherence of the flying qubit

Coherence of electrons is crucial for quantum interference and long phase relaxation length
is important for scalability of our flying charge qubit. Here we measure the temperature
dependence of the quantum interference and deduce the corresponding phase coherence
length lφ from the amplitude of the interference in two different configurations of the flying
qubit as schematically depicted in Fig. 4.10. In Configuration A the left tunnel-coupled

(a)	 (b)	

Fig. 4.10 Measurement configuration of temperature dependence: (a) The left tunnel-coupled wire is
used as a single quantum wire and only the right one is tuned to a half beam splitter (Configuration
A). (b) Both tunnel-coupled wires are tuned to a half beam splitter (Configuration B).

wire is not formed but just used as a single quantum wire, where a single rotation about the
Z-axis and one rotation about the X-axis can be performed. The right tunnel-coupled wire is
tuned to work as a half beam splitter to maximize the anti-phase oscillation as a function of
magnetic field (see Eqs. 4.4, 4.5). In Configuration B both tunnel-coupled wires are used,
so that a single rotation about the Z-axis and two rotations about the X-axis are performed.
Both tunnel-coupled wires are tuned to a half beam splitter, which also maximize the anti-
phase oscillation (see Eqs. 4.6, 4.7).

For both configurations we observe anti-phase oscillations as a function of magnetic
field and analyzed the amplitude of (I1 − I2) by performing a complex FFT to obtain the
amplitude of the FFT component. Because the coherence of the electrons has to be kept
over the interferometer to observe the oscillations, the amplitude of the oscillations reflects
the coherence.

Fig. 4.11 shows the temperature dependence of the FFT amplitude measured for both
configurations A and B. For both configurations the FFT amplitude exponentially decreases
with increasing temperature in agreement with the previous experimental [46, 47] and the-
oretical works [48, 49]. The reduction of the AB amplitude is mainly explained by mainly
two factors. One is the thermal smearing of the electron wave packet, which is expressed
in the ballistic case to be proportional to exp(−τLkBT/h̄), where τL = L/vF (vF: Fermi ve-
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Fig. 4.11 Temperature dependence of FFT amplitude in two different configurations: (a) configura-
tion A. (b) configuration B.

locity, L: length of the device). The other is the quantum decoherence, which contributes in
proportion to exp(−τL/τφ (T )). However a direct two-path interferometer with two arms of
equal length is not affected by the thermal averaging [81] and hence the main contribution
is the quantum decoherence.

As shown in Fig. 4.11, the oscillation amplitude of the present data can be fit by the
function α exp(−βT ), where α and β are the fitting parameters. This result implies that
τ
−1
φ

is proportional to the temperature. The obtained value of β is 2.18 K−1 for (a) and 1.08
K−1 for (b), respectively. The phase relaxation length lφ = L/βT is derived considering the
relation of L/lφ = τL/τφ (T ) = β T . The estimated lφ at T = 0.07K is 30 µm in (a) and
86 µm in (b), respectively. Here the length of the device is 4.7 µm in (a) and 6.5 µm in (b),
respectively. Note that the device length includes the length of the AB ring and one (two)
tunnel-coupled wire(s) for Configuration A (B). The coherence length of Configuration A is
estimated to be about three times shorter than that of Configuration B.

According to theories [48, 49], the main decoherence mechanism at low temperatures
(. 1K) is inelastic scattering induced by charge fluctuations inside the device or voltage
fluctuations of the external contacts. Such a mechanism does not play an important role
in the tunnel-coupled wire since the two eigenstates of the symmetric and anti-symmetric
hybridized state are not well spatially separated. Therefore decoherence is considered to
occur in the AB ring. Among the two different sources of decoherence, inelastic scattering
induced by voltage fluctuation of the external contacts can be suppressed when the average
injectivity of electrons from the contacts to the upper and lower path of the AB ring is set
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to be equal [49]. This may explain the large difference of the coherence length between the
two configurations. In Configuration A the average injectivity in the right side is controlled
to be equal by the tunnel-coupled wire, but it is not in the left side. On the other hand in
Configuration B it is controlled to be equal in both sides. More detailed studies about various
tunnel-coupling conditions are required to figure out the results clearly. Nonetheless the
important conclusion is that the coherence length of 86 µm at T = 0.07 K in Configuration
B ensures the scalability of our flying qubit. This value is much longer than that reported
for a Mach-Zehnder interferometer of a quantum hall edge state [81], in which limited
coupling between the interferometer and the reservoir via only a few edge channels makes
the interferometer sensitive to the charge fluctuations [48].

4.5 Summary and future plans

We have described the flying charge qubit operation in an AB ring with tunnel-coupled
wires in the WCR. Rotations about X, and Z axis were performed in a tunnel-coupled wire,
and an AB ring, respectively. Furthermore all operations can be performed by means of
electrostatic gate voltages, and therefore fast qubit control is possible. We also investigated
the temperature dependence of the oscillation amplitude and found that our flying qubit is
highly coherent at low temperatures especially when both tunnel-coupled wires are tuned to
work as half beam splitters.

The only drawback of the present arrangement is the low visibility of ∼ 0.3%. Because
the coherence length is found to be much longer than the interferometer length, decoher-
ence is not the origin of this low visibility. The visibility should be improved by optimizing
the device design. For example, there are two possible ’geometrical’ reasons for the low
visibility. First, the entrance and exit of the tunnel-coupled wires are so narrow that the
conductance may be restricted there and backscattering may occur. Second, there is a con-
tribution from several transmitting channels in each part of the tunnel-coupled wires and in
each arm of the AB ring, although only one in each wire contributes to the main oscilla-
tion. A possible remedy is to make use of a high-electron-density heterostructure to define
strongly confined single-mode channels, and to make the electrons propagate through them
without suffering from backscattering. Indeed, we have significantly improved the visibility
up to ∼ 10 % by using a high-electron density heterostructure and by defining narrower
channels.

In addition to the quantum information transfer, it should also be possible to create a
non-local entanglement state following the scheme proposed in refs [5] and [83], combined
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with single electron sources [84, 85] to synchronize qubits. This flying qubit can also be
used in combination with a static qubit [86]. Using a high-mobility heterostructure with a
mean free path exceeding 100 µm, we would in principle be able to integrate 100 qubits
because each quantum operation, including two-bit operation is performed within a 1 µm
scale.



Chapter 5

Transmission phase across a quantum
dot in the Kondo regime

5.1 Introduction

The Kondo effect, an archetype of many-body correlations, arises from the interaction be-
tween a localized spin and surrounding conduction electrons [58]. It is characterized by a
many-body singlet ground state, often referred to as the Kondo cloud. It was first observed
in metals with a small inclusion of magnetic impurities and manifests itself by the increase
of the electrical resistance at low temperatures. The advance in nanotechnology has led to a
revival of the Kondo effect, as it is now possible to study the interaction of a single impu-
rity spin in contact with an electron reservoir, in particular in semiconductor quantum dots
[59, 61]. These developments have also allowed access to the phase shift across a Kondo
impurity, a central ingredient of Noziéres’ celebrated Fermi-liquid theory for the low-energy
fixed point of the Kondo effect [1]: when an electron of sufficiently low energy is incident
on the impurity in the screened singlet state, it scatters coherently off the latter, acquiring
a π/2 phase shift, but with zero probability for a spin flip. This π/2 phase shift is one of
the hallmarks of the Kondo effect. Though it cannot be measured directly in conventional
Kondo systems, it has been suggested [2] to be possible for a semiconductor quantum dot
placed in one arm of an Aharonov-Bohm ring, where the transmission phase through the
dot can be extracted from the Aharonov-Bohm oscillations of the conductance as a function
of magnetic flux through the ring [3, 8]. For such geometries it has been predicted that the
π/2 phase shift should persist, perhaps surprisingly, even up to temperatures as high as the
Kondo temperature, TK [15, 87].

Such Kondo phase measurements have indeed been pursued in a number of pioneering
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experiments [12, 13, 88–90]. However, unexpected results have been obtained for the phase
shift in the Kondo regime (T . TK): Ref. [12] reported a (3/2)π-phase shift across two
successive Coulomb peaks (CPs) for T < TK and Ref. [13] reported a π/2-phase shift across
each CP, but at a temperature so high (T/TK & 30) that a π/2-phase shift is not expected
theoretically. The theoretically expected π/2-phase shift in the Kondo regime has therefore
stayed elusive.

Indeed, the measurement of the true transmission phase through a quantum dot in an
Aharonov-Bohm (AB) setup is not at all trivial. Contributions from electrons that encircle
the AB loop multiple times alter the phase of the observed AB oscillation and makes impos-
sible to extract the true transmission phase through a quantum dot. The most conspicuous
example is the so-called phase rigidity [7, 11] in a two-terminal setup. It has been shown
that employing multi-terminal devices can lift the phase rigidity [3, 9, 12, 13, 88]. In a se-
ries of previous phase measurements, suppression of multiple path contributions was then
assumed by observation of the smooth phase shift of the AB oscillation induced by the gate
voltage shift.

Here we employ an original approach to measure the transmission phase shift through a
quantum dot, using an AB ring with tunnel-coupled wires as a pure two-path interferometer
(see also chapter 3). The unique advantage of our method is that it is possible to exclude
multiple path contributions by checking the two output contacts, which is not possible for
other multi-terminal devices. In the following we describe the experimental study of the
phase behavior related to the Kondo effect in terms of our original method 1.

5.2 Device and measurement

We use two devices with slightly different geometries, which we call Device C and D, re-
spectively. Both devices are fabricated in a 2DEG (n ≈ 3.21× 1011 cm−2, µ ≈ 0.86×
106 cm2/Vs, and depth = 100nm) formed at an AlGaAs/GaAs hetero-interface with a stan-
dard Schottky gate technique. A current is injected from the lower left contact by applying
a source-drain voltage of 3 to 20 µV with f = 23.3 Hz and is measured at the right contacts.
The output current I1(2) is converted into the voltage V1(2) using the resistance R = 10 kΩ at
the base temperature. The upper left contact is grounded at the base temperature. The QD
is formed by three gates with voltages VL, Vp and VR. VL and VR are used to control the left

1Experiments presented in this section have been achieved in close collaboration with the group in Greno-
ble. In particular I performed the experiments in section 5.3, 5.4 using the equipments in Grenoble. I discussed
the results a lot with Sylvain Hermelin, Tristan Meunier and Christopher Bäuerle.
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Fig. 5.1 (a), (b) SEM pictures of Device C (a) and Device D (b). (c) A SEM picture of Device D
after the deposition of the metallic air bridge.
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and right tunnel-barrier, respectively and Vp is used to control the energy level of the QD.

The QD size in Device C (Fig. 5.1a) is smaller than that in Device D (Fig. 5.1b). Another
important difference is that the right tunnel-coupling gate with voltage VT1 is electrically
isolated from the AB ring. The AB ring is formed by the gate with voltage VB contacted via
a metallic air bridge in Device D as shown in Fig. 5.1c. This difference allows more flexible
tuning of the QD in Device D.

For the phase measurements the Ramsey interference scheme (see Fig. 4.9) is employed,
where the two output currents oscillate with anti-phase as a function of phase ϕ accumulated
across the AB ring. When we form the QD embedded into the lower arm of the AB ring,
ϕ also depends on the transmission phase ϕdot accumulated across the QD. Since the initial
state is |↓⟩ in the experiments here, the two output currents are represented by

I1(2) ∝
1+(−)cosϕ

2
(5.1)

ϕ =
∮

kkk ·dlll − e
h̄

BS+ϕdot . (5.2)

Therefore observation of such an anti-phase current oscillation allows us to detect the phase
shift across the QD.

5.3 Transmission phase shift across a Coulomb peak

We first examine the transmission phase across a normal QD without the Kondo correlation,
or by setting the temperature much higher than the Kondo temperature. Device C is used for
this measurement to form a small quantum dot so that transport is assumed to be mediated
by a single level. Transport only through the QD is achieved by depleting the left tunnel gate
VT2: the corresponding current I∗2 is shown in Fig. 5.2a. For the phase measurement, the left
tunnel-coupled wire is tuned to work as a half beam splitter. The magnetic field dependence
of the two output currents I1 and I2 are recorded for various values of Vp and the oscillating
parts are extracted by performing a complex fast Fourier transform (FFT) and filtering out
the noise outside the peak region, followed by an inverse complex FFT. The dependence
of the transmission phase shift on Vp is extracted from the phase evolution of the magneto
oscillations as it is shown in Fig. 5.2b. Reliable transmission phase can not be extracted for
Vp >−0.623V because the oscillation is significantly disturbed by charge noise. It must be
noted that it is very important to use only nice anti-phase oscillations for analysis, otherwise
extra contributions smear the real transmission phase.

The current I2 mimics nicely the CP, with background current due to the current flowing
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Fig. 5.2 (a) Coulomb peak of the QD in the Coulomb blockade regime in Device C, where I∗2 cor-
responds to the current passing only through the QD by completely depleting the left tunnel gate
VT1. The energy level of the QD is scanned across the Fermi energy by changing the plunger gate
voltage Vp. A charging energy U ∼ 1.8 meV, a tunnel-coupling energy Γ ∼ 40 µeV and a single level
spacing δ ∼ 230 µeV are estimated by mapping out the Coulomb diamond (not shown here). (b)
Phase evolution across the Coulomb peak extracted from the anti-phase oscillations is plotted on the
left axis (red circles). The current collected in I2 is plotted on the right axis (black triangles), where
I2 is averaged over one oscillation period of magnetic field. The solid line shows the transmission
phase determined from the shape of the Coulomb peak in I2 using Friedel’s sum rule (see text).
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through the upper path. The change in the transmission phase, ∆ϕdot, with changing plunger
gate voltage is related to the corresponding charge change ∆N in the QD (in units of the
electron charge) via Friedel’s sum rule, ∆N = ∆ϕdot/π [14]. ∆N as a function of Vp is given
by the integrated area under the CP (with the background subtracted), divided by the total
area of the CP. The measured phase shift shown by the red circles across the CP is in very
good agreement with the phase extracted using Friedel’s sum rule [14] shown by the solid
line.

5.4 Transmission phase shift in the Kondo regime

In the last section we have confirmed a π-phase shift across a CP in the Coulomb blockade
regime using Device C as reported in previous experiments [3]. The device is then tuned
into the Kondo regime by adjusting VL, Vp and VR (see Fig. 5.1a). We first characterize the
QD using transport measurements only through the dot. Fig. 5.3a shows the temperature
dependence of two CPs, where the Kondo effect appears in the valley between the two peaks
around Vp = −95 mV. The current I∗2 in the valley increases as the temperature is lowered,
a clear signature of the Kondo effect. As we do not reach the unitary limit, TK cannot be
determined with high precision, but we find an upper bound of approximately 100 mK from
the temperature dependence of I∗2 . Fig. 5.3b shows a Coulomb diamond in this Kondo
regime and a clear maximum (vertical yellow ridge) is observed around Vsd = 0 V in the
Coulomb blockade region, usually referred to as zero bias anomaly.

The transmission phase across these two CPs is then measured by opening the left tunnel
gate VT1, and recording the AB oscillations for various Vp in Fig. 5.4a. In this experiment
the energy scale of the magnetic field is lower than that of the temperature, so that spin
is not resolved [91], however, we see clear signatures of the Kondo effect. Already in the
raw data, a clear phase shift of approximately π/2 in the Kondo valley is observed, as
indicated by the dotted lines in Fig. 5.4a. To reveal the phase shift across the CPs even more
clearly, we determine the phase for each Vp by calculating the complex FFT over a field
range extending from −50 mT to −80 mT. The obtained transmission phase is presented
in Fig. 5.4b, together with I2. A total phase shift of π when scanning through the two
successive CPs is observed and a clear plateau appears at π/2 in the Kondo valley. This
result contrasts with the phase shift across a normal CP. Although the conductance does not
reach the unitary limit, the transmission phase shift in the Kondo valley already shows the
π/2-phase shift, which is consistent with theoretical predictions that the π/2-phase shift
survives for temperature as large as T ∼ TK [15, 87].
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served in I∗2 plotted as a function of Vp, where the left tunnel gate VT1 is depleted. Here Vsd ∼ 3.5 µeV
is applied to measure the current. (b) Coulomb diamond in the Kondo regime (T . TK).
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Fig. 5.4 (a) AB oscillation amplitude as a function of magnetic field, obtained by scanning the
plunger gate voltage Vp across two successive Coulomb peaks, showing Kondo correlations in the
valley between them (T . TK). The AB oscillation amplitude is obtained from I = I1− I2 by subtract-
ing a smoothed background. Dotted lines emphasize the phase shift. (b), (c), (d), The transmission
phase (red circles, left axis), determined by a complex FFT of the anti-phase oscillations, together
with I2 (black line, right axis), plotted as a function of the change ∆Vp in plunger gate voltage with
respect to its value at the center of the right CP, for three different regimes, (b): T . TK, (c): T & TK
and (d): T ≫ TK. I2 is averaged over one oscillation period of magnetic field. Parameters shown in
the figures are estimates, extracted from fitting NRG results to the measured phase curves. (e), (f),
(g), Transmission phase (red line) and conductance (black line) calculated by a two-level Anderson
impurity model with s = + and the lower level being the Kondo level, for an interaction energy
U = 650 µeV and a level spacing of δ = 0.5U (for details see Suppl. materials). Fitting parameters
used for the calculations are shown in the figures. Current I2 of the experimental data (b), (c), (d)
contains a linear background from the upper arm of the interferometer whereas the conductance G
in the theoretical calculations (e), (f), (g) is the bare conductance across a QD.
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When increasing the temperature to approximately 110 mK, the Kondo correlations are
reduced (T & TK) and the behavior of the transmission phase is slightly altered. The phase
climbs slightly above π/2 before decreasing slightly, forming an S-shape (Fig. 5.4c) in the
Kondo valley. To further reduce the Kondo correlations, we reduce the coupling energy
Γ by suitably tuning VL, Vp and VR to lower the Kondo temperature (Fig. 5.4d) such that
T ≫ TK. In this regime, the S-shape structure of the phase evolution is more pronounced
and becomes asymmetric with respect to the valley center and the value ϕdot = π/2. This
suggests that by further reducing the Kondo correlations the phase behavior across each CP
would become the same as that observed for normal CPs. These results differ strikingly
from the observation of ref. [13], where a π/2-phase shift is observed when T ≫ TK.

To further corroborate our findings we perform numerical renormalisation group (NRG)
calculations of the conductance as well as the transmission phase 2. We find that even when
the single level spacing δ is larger than Γ, the contribution from multiple levels on the dot
plays an important role for the phase behavior. In particular, taking into account only a
single level results in a phase evolution, which is symmetric with respect to the centre of the
Kondo valley, contrary to our experimental findings (see Fig. 5.4d). In order to accurately
reproduce the experimental phase data, we therefore employ a two-level Anderson model
(see Appendix A.1). It is crucial to choose correctly the relative sign of the tunnel-coupling
coefficients for fitting the data of Fig. 5.4d, since this sign characterizes the influence of the
nearby orbital level on the phase evolution. From fitting the predicted phase evolution to
the one observed experimentally (see Appendix A.2), it is possible to estimate experimental
parameters such as Γ and δ with good precision, which are not easily accessible from the
measured conductance data, due to renormalization of the CPs by the Kondo effect. In
addition, we can precisely evaluate the Kondo temperature, TK ∼ 50 mK for Figs. 5.4b and
c. From the temperature evolution of the π/2-plateau, which is most prominent close to
TK, we are able to evaluate the actual electron temperature of Te ∼ 40 mK, consistent with
previous measurements in the same electromagnetic environment [92]. The most important
finding, however, is the fact that the π/2-phase shift persists up to a temperature of TK and
then evolves into an S-shape at higher temperatures, which is extremely well captured by
the NRG calculations.

2NRG calculations presented here have been performed by Arne Alex, Andreas Weichselbaum and Jan
vonDelft in Ludwig Maximilians-Universität in Munich.
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5.5 The phase behavior below and around the Kondo tem-
perature

In the section 5.4 we have found that the phase was locked at π/2 in the valley already at
T . TK (Fig. 5.4b). This observation is somewhat surprising because the π/2-phase shift
is the feature of the Kondo singlet state, which should be robust only at T ≪ TK [61, 93].
We address this issue in this section and investigate the phase behavior below the Kondo
temperature (T < TK). We use Device D for these measurements.

First we characterize the CPs with the Kondo correlation from the temperature depen-
dence (Fig. 5.5a) and a zero bias anomaly of conductance in the Coulomb diamond (Fig.
5.5b) as performed in section 5.4. The centers of both tunnel-coupled wires are depleted
to make all the injected current pass through the QD. Since the conductance at the valley
center increases as the temperature is lowered and exceeds the value e2/h between 100 mK
and 120 mK, the Kondo temperature is assumed to be higher than 100 mK, and higher than
the base temperature of ∼ 70 mK. Therefore we can access the regime of T < TK.

We investigate the transmission phase across these two CPs with the Kondo valley in
between as slightly changing the gate voltages VrL, VL, Vp, VR and VrR. Basically when the
gate condition of the QD is changed while keeping the number of electrons inside the QD
unchanged, the charging energy U and δ are not so much affected but Γ can be modulated.
By making VrL, VL, VR and VrR more negative, Γ becomes small.

Fig. 5.6 shows the results. Γ is the largest for (a), slightly smaller for (b) and the
smallest for (c). The phase evolves smoothly by π with almost constant slope across the
two peaks in Fig. 5.6a. Then in Fig. 5.6b the slope of the phase in the valley starts to be
slightly moderate, which should be a signature of the phase locking feature around π/2.
This phase locking feature is further enhanced in Fig. 5.6c for the smallest Γ and therefore
for the largest T/TK. From the temperature dependence of conductance and the gate voltage
condition, we confirm that T < TK in Fig. 5.6a. Also for the condition in Figs. 5.6b and
c the S-shape behavior observed in Figs. 5.4c and d does not appear yet, which indicates
that the temperature is still lower than the Kondo temperature (T < TK). From the results
above the phase locking feature is enhanced when the Kondo temperature approaches the
temperature under the condition of T < TK. Considering also the result in section 5.4, it
should be most enhanced at T ∼ TK and then the S-shape phase appears for T > TK.

The pronounced feature of the phase locking at T ∼ TK can be qualitatively understood
by the following scenario. At finite temperatures scattering across a QD involves both elastic
and inelastic processes. However in our phase measurement only coherent electrons that
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are elastically scattered through a QD contribute to the interference. Theoretically when
electrons are elastically scattered through the Kondo state with the energy shift ∆ε from the
resonance for T ≤ TK, they acquire the phase shift as follows:

∆ϕ(∆ε) =
π

2
+

∆ε

kBTK
. (5.3)

In our phase measurement we observe the thermally averaged phase shift of electrons over
the energy window of ∼ kBT around the Fermi energy. When the two CPs are well separated
and the stable impurity spin is established around the valley center for T ≤ TK, the Kondo
state of Lorentzian type resonance in the energy domain is formed centered exactly at the
Fermi energy. Since it is symmetric about the Fermi surface, the contributions from the
above and below the Fermi energy are cancelled out and the averaged phase shift in the
energy window becomes π/2. On the other hand closer to the CP the occupation of the
impurity spin starts to fluctuate, which makes the Kondo resonance asymmetric about the
Fermi energy with the resonance center slightly displaced from the Fermi energy. As a
result the observed phase shift becomes different from π/2. For the one side the phase
shift is smaller than π/2 and for the other it is larger. In Fig. 5.6 the phase smoothly
evolves π across the two CPs and there is no π/2-plateau in the valley. This means that
the impurity spin fluctuates over the valley due to the overlap of the tails of the two CPs.
Only at the center of the valley the influence of the left and right CPs are balanced and the
Kondo resonance becomes symmetric about the Fermi energy, where the π/2-phase shift is
observed.

The smaller Γ is, the narrower the CPs become and the weaker the fluctuation of the
impurity spin in the valley becomes. Consequently the phase shift inside the valley gets
close to π/2 as shown in Fig. 5.6. Following this trend the π/2-phase shift in the valley is
most enhanced at T ∼ TK. For T > TK the energy window becomes broader than the Kondo
state and hence the relation in Eq. 5.3 does not apply, and therefore the S-shape behavior
is observed in Fig. 5.4c and d. Here we modulated Γ. We also expect the enhancement of
the phase locking feature when the temperature is increased below the Kondo temperature.
For higher temperature the energy window of the transport becomes larger. As a result
even when the Kondo state is slightly asymmetric about the Fermi energy around the valley
center, the resonance giving a π/2-phase shift is covered by the energy window. The π/2-
phase shift around the valley center is, hence, more robust for higher temperature as long as
T ≤ TK.

Conversely from the discussion above we can determine the Kondo temperature from the
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temperature dependence of the transmission phase and by finding the temperature, where the
π/2-phase shift is the most enhanced. This estimation has less uncertainty than the one ob-
tained from the standard conductance measurement. The estimation from the conductance
measurement requires a wide range of the temperature dependence. At higher temperatures
unknown cotunneling contributions smear the conductance. Also the conductance usually
suffers from unwilling series resistance and does not reach the unitary limit of conductance,
which leads to another uncertainty. On the other hand, the estimation from the phase mea-
surement only requires measurements around the Kondo temperature.

5.6 Phase behavior in the weak Kondo regime

In section 5.4 we have found that to reproduce the asymmetric phase behavior about the
valley center and π/2 in the NRG calculations of Fig. 5.4d, the relative sign of the tunnel-
coupling coefficients t j

α between level j and channel α (i.e. s = sgn(t1
Lt1

Rt2
Lt2

R)) plays an
important role. The sign of s corresponds to the parity relation between the orbitals of
nearby CPs, and it is theoretically predicted that it is also related to the appearance of a
phase lapse (see also section 2.5). s = +(−) means that the parity relation between the
orbitals of nearby CPs is the same (different). In this section we experimentally investigated
the relation between the asymmetric phase behavior at T ≫ TK and the orbital parity relation
as well as the phase lapse. For the measurements described in this section we use Device D.

Here we study the phase behavior at the two different sets of the CPs with the Kondo
correlation (Region A and B). We initially characterize the Kondo effect from the temper-
ature dependence of the CPs and the zero bias anomaly (Fig. 5.7). Fig. 5.7a and c show
the data in Region A and Fig. 5.7b and d show the data in Region B. For both regions,
the conductance at the valley center decreases as the temperature increases. In Fig. 5.7a
the conductance of the left peak decreases as the temperature increases, whereas the one
of the right peak increases. This is because the asymmetry of the dot-lead coupling which
is different between the two peaks determines the peak height at the higher temperature,
but the asymmetry is masked by the renormalization due to the Kondo effect at the lower
temperatures. A clear zero bias anomaly is also observed for the both regions.

We modulate Γ by changing the gate voltages VrL, VL, Vp, VR and VrR around the QD and
measure the transmission phase in the two different regions. Firstly we measure the phase at
a relatively large Γ. A smooth phase shift across the two peaks is observed in both regions
in Fig. 5.8 as expected in the Kondo regime. Therefore we assume T . TK in this condition.
In Fig. 5.8a the total phase shift across the two peaks is about 0.4π , rather smaller than π .
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There are two reasons for this: First when Γ is relatively large compared to U , the tails of the
nearby CPs overlap and prevent a full phase shift of π . Second around the tail of a CP the
conductance is usually small, and it is more difficult to perform reliable phase measurement
due to small signal to noise ratio. This also prevents the observation of a full phase shift
over the CP.

Then by tuning the gate voltages we reduce Γ as well as TK and measure the transmission
phase shift. The results are shown in Fig. 5.9, where the phase shows the asymmetric S-
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Fig. 5.9 Transmission phase shift at Region A (a) and B (b) in the weak Kondo regime (T ≫ TK).

shape behavior as observed in Fig. 5.4d and hence we consider that T > TK. In Region A
(Fig. 5.9a) the phase evolves more across the left CP than the right one, whereas in Region
B (Fig. 5.9b) it is opposite. When we compare the asymmetry of the phase behavior with the
NRG calculations in the weak Kondo regime (T ≫ TK) shown in Fig. A.1, the asymmetry
of Fig. 5.9a is similar to the one in the two right CPs of Fig. A.1a and the two left CPs of
Fig. A.1b. Accordingly the orbital parity relation between the corresponding orbital and the
nearby orbital at the left of Region A is most probably s = + and hence appearance of the
phase lapse is expected between the left CP of Fig. 5.9a and the next CP at its left. On the
other hand the nearby orbital at the right of Region A should have the orbital parity relation
s =− and no phase lapse is expected. From the same discussion s =−, i.e. no phase lapse
is expected at the left of Region B and s =+, i.e. appearance of the phase lapse is expected
at the right of Region B.

To confirm the above expectations, we measure the phase shift over the region including
the nearby CPs. Fig. 5.10 shows the results. For Region B we measure the phase at the
slightly different gate voltage condition from the one for Fig. 5.9b, but similar asymmetry
is still maintained. Here we only plot the phase as a function of plunger gate voltage Vp,
at which anti-phase oscillations are observed. This is because when the oscillations are
not anti-phase, the interference is smeared by multiple-path contributions and hence the
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observed phase is not reliable. We indeed observe the phase lapse at the Coulomb valley
predicted for s =+ and a smooth phase shift without the phase lapse at the valley predicted
for s =−.

Consequently we confirm the correspondence between the experimentally observed asym-
metric phase behavior and the one predicted by NRG calculations. Our observations lead
to the conclusion that the asymmetric phase behavior in the weak Kondo regime depends
on the orbital parity relation and which is further confirmed by the appearance of the phase
lapse at the Coulomb valley with the nearby CPs.

5.7 Summary and future prospects

We studied the transmission phase shift across a QD with Kondo correlation. Firstly we
confirmed the π-phase shift across a normal CP without the Kondo correlation to confirm
the fact that our interferometer can be indeed used to measure the transmission phase across
a QD with high precision. Then we observed the transmission phase shift in the Kondo
regime. For temperatures lower than the Kondo temperature (T . TK), we observed a clear
π/2-phase shift across each CP with a plateau in the valley in between. When the temper-
ature becomes slightly higher than the Kondo temperature (T & TK), an S-shape behavior
appears in the valley. The S-shape behavior is further enhanced by increasing the temper-
ature compared to the Kondo temperature (T ≫ TK) and the phase behavior approaches to
the one of normal CPs without Kondo correlation. We confirmed that these features are well
reproduced by NRG calculations.

We also investigated the phase behavior in the Kondo regime (T < TK) and in the weak
Kondo regime (T ≫ TK). From the experiment in the Kondo regime we found that the
phase locking feature around π/2 is enhanced when the temperature approaches the Kondo
temperature. This result offers a new tool to determine the Kondo temperature with less
uncertainty compared to the one using the normal conductance measurement. From the
experiment in the weak Kondo regime we found that the asymmetry of the phase behavior
about the valley center and π/2 is determined by the orbital parity relation between nearby
CPs, which is also related to the appearance of the phase lapse.

The remaining problem is that when we carefully compare the Fig. 5.4b and e, c and
f, correspondence between the current and the phase is different. In Fig. 5.4b across the
right CP the phase starts to evolve near the middle of the peak (∆Vp ∼ 0.15 V), whereas
in Fig. 5.4e the phase starts to evolve with increasing current. This difference may come
from the fact that I2 in Fig. 5.4b includes the current passing through the reference path,
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whereas G in Fig. 5.4e is the conductance only through the QD. The other possibility is
that in the experimental data the phase is determined only by elastic tunneling through the
QD, whereas the NRG calculations of the phase include not only elastic processes but also
inelastic processes. In this respect further studies are required.





Chapter 6

Transmission phase through a quantum
dot near crossover from single level to
multi-level transport

6.1 Introduction

Transmission phase across a QD with a relatively large number of electrons shows an uni-
versal behavior regardless of the details of the QD. The phase evolves by π across a CP. In
the valleys between two CPs phase lapses appear. The phase jumps by π and returns to the
initial phase before crossing the CP. Therefore the phase shift across two neighboring CPs
becomes in-phase. This tendency is repeated over an extremely large number of CPs. Such
an universal phase behavior has been observed in measurements employing a multi-terminal
AB interferometer [3, 4], which works as a direct two-path interferometer and allows to ex-
tract the transmission phase under suitable conditions [94]. This universal behavior is a long
standing puzzle in mesoscopic physics. Although it has been intensively studied theoreti-
cally [65–70], satisfactory explanation has not been given yet. Since the realization of a
pure two-path interferometer is not trivial at all (see also chapter 3), only a few experiments
related to this issue were reported [3, 4]. From these experiments the universal behavior is
robust in wide range of parameters of QDs except for a small QD with only a small number
of electrons (Γ < δ , N ≤ 8). The only other approach was to investigate the Fano effect in
a quantum interferometer, where the in-phase behavior is expected to produce asymmetric
tails of the CPs on the same side [95]. To further proceed understanding of the universal
behavior, experiments in a true two-path interferometer are necessary.
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transport

Here we use our original two-path interferometer (chapter 3) to measure the transmission
phase across a QD, which shows typical features of relatively large QDs. In particular we
investigate the QD in the crossover region from Γ < δ to Γ > δ .

6.2 Device and measurement

We use Device D (Fig. 5.1b, c, see also section 5.2), which has a relatively large QD. We
employ the same measurement setup as in chapter 5 to perform the phase detection using
the Ramsey interference scheme (see Fig. 4.9 and section 5.2).

6.3 Basic properties of the QD

We characterize the QD of Device D from the Coulomb diamond (Fig. 6.1a, c). We measure
the phase in two different regions: (a) Region A and (b) Region B. The important feature of
these diamonds is that the size of the Coulomb diamond is almost constant or only gradually
smaller from the left to the right in a monotonic way, which is a typical feature of QDs with
a relatively large number of electrons. When a QD is in the few electron regime, the size of
the diamond changes non-monotonically reflecting the energy spectrum of orbitals [51].

In Region A the charging energy U is about 0.8 ∼ 0.9 meV. From the excitation line
appeared around the peak 2A we estimate the single level spacing δ ∼ 0.2 meV, which is
the upper bound of δ in this region. Although in this chapter we do not focus on the Kondo
correlation, it is seen in the valleys between the peak 5A and 6A and between the peak 7A
and 8A.

In Region B U gradually changes from 0.9 meV at the left (more negative Vp) to 0.5
meV at the right (more positive Vp) in Fig. 6.1a and c. To estimate δ we retune the QD to
make the peak width narrower by reducing the coupling energy Γ between the QD and the
leads and then observe the excitation lines. In this way δ is estimated to be about 0.2 meV
around the peak 1B and hence for the peaks at more positive Vp δ is expected to be smaller.
In Region B we also see the Kondo correlation in the valley between the peak 1B and 2B,
between the peak 3B and 4B, and between the peak 7B and 8B though in fig. 6.1c and d it
is only weakly featured. As known from the charging energy, Region B covers the region
where a larger number of electrons are contained in the QD than that in Region A.
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Fig. 6.1 Coulomb diamond (a), (c) and Coulomb oscillations at a zero bias voltage (b), (d) in two
different regions. (a), (b) shows the data in Region A. (c), (d) shows the data in Region B. The
differential conductance dI∗2/dVsd is measured by sweeping a DC voltage with a small AC voltage
imposed on it, where I∗2 shows the current only through the QD by depleting underneath the both
tunnel-coupled wire. The CPs are labeled for discussion.
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6.4 Transmission phase across a QD in the many-electron
regime

Firstly we measure the transmission phase shift in Region A. Fig. 6.2 shows the result. The
black curve is the observed current I2, showing the CPs on top of the background current
flowing through the reference path. The red circle is the phase extracted from anti-phase
oscillations by a complex fast Fourier transform (see Fig. 6.2). We can not measure the
phase in some regions, where the current is so small that the signal to noise ration is not
enough to resolve anti-phase oscillations. For each CP we estimate Γ from the full width
of half maximum (FWHM). For the peak 1A and 2A Γ is smaller than δ and for the peak
3A to 8A Γ is larger than δ . In this crossover region from Γ < δ to Γ > δ the transmission
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Fig. 6.2 The transmission phase (red circles and left axis) and the current (black line and right axis)
as a function of the plunger gate voltage Vp in Region A.

phase behaves as if the system is mesoscopic. This means that the transmission phase shows
various behaviors including valleys with and without a phase lapse, which is reflecting the
characters of the QD. The total phase shift across the two peaks 7A and 8A (5A and 6A)
should be π since the Kondo correlation is observed in the valley between them (see also
chapter 5). From Fig. 6.2 the total phase shift across the two peaks 1A and 2A and those
3A and 4A is also π . In the valley between the peak 4A and 5A a phase lapse is observed,
whereas in the valley between the peak 2A and 3A and between the peak 6A and 7A the
phase smoothly evolves without a phase lapse.

For a peak with Γ < δ , the phase behavior can be rather simply understood. It evolves π

across the peak as expected from Friedel’s sum rule [14]. It is the case observed for the peak
1A and 2A. On the other hand when Γ > δ , electron transport across the QD is mediated by
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more than two quantized levels. This makes the phase behavior more complicated compared
to the single level case. It often leads to a smaller phase shift than π across a peak as seen
for the peak 3A.
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Fig. 6.3 The transmission phase (red circles and left axis) and the current (black line and right axis)
as a function of the plunger gate voltage Vp in Region B for two different tuning conditions. In (a)
the dashed line is added to emphasize the valley without the phase lapse.

Next we perform the phase measurement in Region B, which covers the region with
more electrons than in Region A. The results are shown in Fig. 6.3, where the condition of
the QD is changed between (a) and (b). In the condition of Fig. 6.3a Γ is estimated to be
0.23 to 0.31 meV and hence it is larger than δ (. 0.2 meV). The valley without the phase
lapse, a typical mesoscopic behavior, is still observed between the peak 2B and 3B. For the
peaks 7B and 8B the phase behavior in the Kondo regime is observed.

To investigate the universal phase behavior in the region with even more electrons in
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the QD, we tune the QD to reduce Γ and measure the phase (Fig. 6.3b). In this region U

becomes small and hence we have to reduce Γ to observe a clear phase shift 1. However
especially for the peaks 11B and 12B we can not reduce Γ enough to measure a clear phase
shift due to limited tunability of our QD. Therefore we can not measure the phase in the QD
with a larger number of electrons than this region. Γ in the condition of Fig. 6.3 is estimated
to be 0.16 to 0.24 meV. δ for the peaks 7B to 12B should be smaller than ≈ 0.2 meV for the
peak 1B. Therefore Γ is considered to be larger than δ .

From Fig. 6.3b the phase seems to pile up between the peak 8B and 9B without a
phase lapse. Although the phase shift across the peak 11B and 12B is very small, the total
phase shift from the peak 7B to the peak 12B exceeds π , which suggests that our QD does
not show the universal phase behavior but instead still maintains somewhat the mesoscopic
behavior. As a result we do not find the universal phase behavior in our QD. This result is
in contrast with previous reports [4], where the universal behavior appears with a smaller
number (∼14) of electrons in a QD whose dimension is a bit smaller than the one used
in this work. According to theory, crossover from the mesoscopic to universal behavior
can occur when the number of the electrons becomes large or Γ becomes much larger than
δ . Our work shows that the mesoscopic behavior is still dominant in our QD even when
the number of electrons is relatively large and Γ is slightly larger than δ . To achieve the
universal behavior, we probably need to measure the phase with even larger QDs.

6.5 Phase lapse and Fano line shape

Finally in this section we focus on the asymmetric tail of CPs in FFT amplitude, which is
related to Fano effect. We investigate the relation between the Fano line shape and the phase
lapse. As discussed in section 5.6, the appearance of the phase lapse is connected to the
orbital parity relation between nearby QD levels. The Fano effect is quantum interference
between a discrete energy state and a continuous energy state [96]. It has been observed
for an AB ring with a QD embedded into one of the two arms [97, 98] and a quantum
wire with a side coupled QD [99]. They observed CPs having an asymmetric tail about the
center of the peak as a signature of the Fano effect, and utilized the Fano interference to
investigate the universal phase behavior in a large QD [95], where the in-phase behavior in
the universal phase behavior is expected to produce asymmetric tails of the CPs on the same
side. When the asymmetric tail is present on the opposite side between two neighboring

1When the tails of CPs overlap, the phase shift of π reflecting full occupation of one quantized level cannot
be observed.
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CPs, the orbital parity relation should be opposite between the two peaks and hence no
phase lapse is expected in the valley between them.
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Fig. 6.4 The transmission phase and the FFT amplitude as a function of the plunger gate voltage Vp
in Region B.

Fig. 6.4 shows the phase (red circles) and the FFT amplitude (blue curve) as a function
of plunger gate voltage Vp. The phase data is the same as the one plotted in Fig. 6.3a. The
current in Fig. 6.3a does not show any clear asymmetric feature but the FFT amplitude in
Fig. 6.3 does. This may be because the current contains both coherent and in-coherent com-
ponents, whereas the FFT amplitude only contains information about coherent electrons.
Since the Fano effect is a coherent phenomenon, it is considered to appear more strongly
in the FFT amplitude. On the other hand previous works [97] reported that an asymmetric
tail of a Fano resonance is flipped by magnetic field. The FFT amplitude is averaged over
the magnetic field and hence such an asymmetric feature is expected to be smoothed out.
However it is also pointed out that the asymmetry can appear more strongly in one side
when sweeping magnetic field [98]. In such a case the asymmetry is expected to remain in
the FFT amplitude as observed in Fig. 6.4.

From the data in Fig. 6.4 the phase lapse appears between the peaks with the asymmetric
tail on the same side, whereas in the valley between the peak 2B and 3B the asymmetry
seems to be flipped and no phase lapse occurs as discussed above. This result suggests that
the asymmetric Fano line shape is indeed related to the phase lapse as well as the orbital
parity relation between nearby levels as discussed in the preceding experiment [95]. If so,
we may also expect the quasi-universal behavior of the transmission phase in a larger QD,
where a level strongly coupled to the leads determines the orbital parity of many successive
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CPs [66, 67].

6.6 Summary and future plans

We investigated the transmission phase shift across a QD with a relatively large number
of electrons. In particular the phase was investigated around the crossover from Γ < δ

to Γ > δ . We found that the transmission phase behaves in the same way as that of the
mesoscopic regime in the crossover region. When Γ is smaller than δ , electron-transport is
only mediated by a single level. The observed phase behavior could be simply understood
from Friedel’s sum rule and the orbital parity relation between nearby levels. On the other
hand when Γ is larger than δ , more than two levels contribute to electron transport. The
phase behavior becomes influenced by hybridization of multiple orbitals. But in our QD,
we still observed the mesoscopic behavior of the phase even for Γ > δ . Then as the QD
is made larger to find the universal phase behavior predicted for Γ ≫ δ , at some point
Γ/U becomes so large that neighboring CPs overlap, where a clear phase shift can not be
observed. Indeed we could not find the universal phase behavior in the large QDs studied
here. This result suggests that the universal phase behavior is not so robust as expected from
previous experiments [3, 4]. We also found coincidence between the phase lapse and the
Fano line shape. This result, combined with the previous experiment of the Fano line shape
in a larger QD, suggests possibility of observing quasi-universal behavior of the phase for
Γ ≫ δ . For a future plan, we would like to measure the transmission phase shift in a much
larger QD, where Γ is much larger than δ , to confirm the quasi-universal behavior.



Chapter 7

Towards realization of single electron
flying charge qubit using surface acoustic
waves

7.1 Introduction

A flying qubit is in general implemented by an architecture, where a quantum state is con-
trolled during transfer, and hence it should be suitable to create a non-local coherence or
quantum entanglement, which is a key concept in quantum mechanics. Creation of the
non-local entanglement can be confirmed by demonstrating the violation of Bell’s inequal-
ity [100], which has been tested in various quantum systems [101–104]. In chapter 4 we
have demonstrated the realization of an electron flying qubit with a two-path interferometer
[76]. However the visibility of the qubit gate is as low as ∼ 10%, which is far below the
value required for quantum operations with entanglement including quantum teleportation
and violation of Bell’s inequality. The visibility is limited by backscattering of electrons
and existence of a few transmitting channels. Therefore it is important to prepare a highly
coherent single transmitting channel without backscattering.

A surface acoustic wave (SAW) is a sound wave propagating near the surface of mate-
rials, which is generated by applying a radio frequency voltage on metallic gates deposited
on the surface (see also section 2.6). In GaAs/AlGaAs 2DEG systems when we combine
the potential of surface acoustic waves with that of a quantum wire, it is possible to make
moving QDs and transfer an integer number of electrons in each potential minimum of the
waves. As a result, a quantized current of I = ne f is observed, where n is an integer number,
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e is an elementary charge and f is a SAW frequency. Initially this technique was developed
to determine the value of e [33] in the field of quantum metrology. Recently the moving
QDs have been used to investigate the dynamics of single electrons [105, 106] or to develop
a single electron source and detector (see chapter 8) [25, 26] as important tools to perform
quantum electron optical experiments [28, 30, 31].

Here we utilize this technique to make a single electron flying qubit architecture. We
inject single electrons into a depleted AB ring with tunnel-coupled wires using SAWs to
realize the flying qubit operations for single electrons. Since each single electron is trans-
ferred by large potentials of SAWs, it will not suffer from backscattering. Further more
an electron being transferred through a depleted quantum wire should not be affected by
electron-electron interactions, which is usually the main source of decoherence at low tem-
peratures.

In this chapter we describe the control of single electrons injected by SAWs in a tunnel-
coupled wire as a first step towards the full flying qubit operation. This demonstration also
corresponds to a beam splitter operation for single flying electrons, which is a key technique
for quantum electron optics using a SAW.

7.2 Device and measurement setup

The device is fabricated in a GaAs/AlGaAs heterostructure (n = 1.35× 1011 cm−2, µ =

1.5× 106 cm2/Vs at 4K) and fine structures are defined by surface Schottky gates. Fig.
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Fig. 7.1 SEM picture of the device and a schematic picture of the IDT.

7.1 shows the SEM image of the device and a schematic picture of an interdigital transducer
(IDT). By applying appropriate voltages Vq1, Vq2, Vq3 and Vq4 to the four blue gates current
through the gated channel is quantized. This channel is connected to an AB ring, and the
current path to either the upper arm or the lower arm can be controlled by the voltages Vr1,
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1 µm	

Fig. 7.2 SEM picture of the half wave length IDT.

Vr2, Vr3 and Vr4 applied to the four yellow gates. The output of the AB ring is connected to
a tunnel-coupled wire which is defined by the voltages VU, Vt and VL applied to the three
red gates. Vt mainly controls the tunnel-coupling energy between the two parts of the wire,
whereas VU and VL mainly control the energy detuning between them. The IDT to generate
SAWs is placed at about 1 mm apart from the fine structure. We employ the half wave
length IDT as shown in Fig. 7.2, which is made of 100 pairs of metallic finger gates 60 µm
in length and 250 nm in width with a 1 µm period. The IDT is orientated perpendicular to
the direction of the 1D channel defined along the crystal axis [110] of the GaAs substrate.

The measurement in this section is performed in a He3 refrigerator with the base temper-
ature of ∼ 0.3 K. A radio frequency voltage to generate SAWs is applied through a coaxial
cable with a −13 dB loss at 2 to 3 GHz from the top of the fridge to the bottom at the de-
vice. All dc lines are electrically filtered out by a RC-filter (R = 1kΩ, C = 1nF) at the base
temperature. The output currents I1 and I2 of the tunnel-coupled wire are measured after
conversion into voltages by current amplifiers at room temperature.

7.3 Current quantization in electron transport by surface
acoustic waves

In this section we describe a quantized current transferred by SAWs through the quantum
wire formed by the four blue gates in Fig. 7.1. For this measurement the upper right ohmic
contact is floated and the current is measured between two terminals. Initially we check the
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resonant frequency of the IDT. Fig. 7.3a shows the pinch off curve obtained by sweeping the
voltages Vq1 and Vq2. Then we set Vq1 and Vq2 to −0.96 V to suppress a normal dc current
and applied the radio frequency (RF) voltage to the IDT to generate SAWs. We sweep the
frequency to find the IDT resonance. The power of the RF voltage is set to be 5 dBm with
duty cycle of 1/10 to avoid the device heating. A peak due to the resonance is observed
at f0 = 2.6909 GHz as shown in Fig. 7.3b. This value is consistent with the expected
resonant frequency, i.e. sound velocity divided by the wavelength of the SAW defined by
the period of the IDT (∼ 2700 [m/s] /1 [µm] = 2.7 [GHz]). At the resonant frequency,
SAWs generated in each finger of the IDT are in-phase and hence strong potential waves
propagate through the device.
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Fig. 7.3 (a) Pinch off curve when the gate voltages Vq1 and Vq2 are swept at the same time. The
current observed in I2 is converted into conductance by using the value of the bias voltage and the
series resistance. (b) The current generated by SAWs as a function of the frequency of the RF voltage.
The RF power of 5 dBm is applied with duty cycle of 1/10.

Next we use the four blue gates in Fig. 7.1 to observe the quantized currents. A normal
dc current is suppressed by applying a more negative gate voltage than the channel pinch-off
voltage. The frequency of the RF voltage is set to f0 with the power of 15 dBm and the duty
ratio of 1/20 (= 100 [µs]/2000 [µs]). While a normal dc current is suppressed, the current
transferred by SAWs is observed. Fig. 7.4 shows the SAW current as a function of the gate
voltage Vq4. A clear plateau structure appears at around the value of ne f0, where n is an
integer and e is an elementary charge [33]. Here the potential of SAWs and the quantum
wire form moving QDs. The number of electrons inside the moving QDs are quantized due
to strong Coulomb interactions in the narrow confinement. At the n-th plateau n electrons
are included in each minimum of SAWs and transferred across the quantum wire. For the
higher plateau (n ≥ 3) the value becomes lower than ne f0. This is because charging energy,
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Fig. 7.4 The current transferred by SAWs ISAW as a function of the gate voltage Vq5. ISAW is scaled
in a unit of e f0, where e is an elementary charge and f0 = 2.6909 GHz is the resonant frequency of
the IDT.

which determines the stability of the plateau, is smaller for the larger QDs. For the smaller
charging energy more error events can occur during the quantization process, and reduce
the observed current. When we set the gate voltage at the first plateau (ISAW = e f0), single
electrons can be injected continuously. We use this technique in the following experiment.

In this device it is necessary to use the four blue gates (see Fig. 7.1) to establish the
potential profile required to observe nice quantized currents. This is because the power
of the SAW is not large enough to transfer quantized currents defined by the first (left)
two gates. Note that the number of electrons at each moving QD is determined by the
competition between the potential slope defined by the gate voltage and the amplitude of
the potential generated by the SAW. When we try to quantize the SAW current with only the
first two gates, potential slope at the entrance becomes so large that we need more amplitude
of the SAW potential, which is not accessible in our setup.

7.4 Control of single electrons transferred by surface acous-
tic waves in a tunnel-coupled wire

Here we control single electrons transferred by SAW-induced moving QDs in a depleted
tunnel-coupled wire. When we define a pseudo spin by the presence of an electron at either
part of the wire, tunneling of an electron between the two parts is equivalent to rotation of
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the flying qubit state in the Bloch sphere (Fig. 4.2b) as discussed in chapter 4. For zero
energy detuning between the two parts of the tunnel-coupled wire the qubit state is rotated
about the X-axis in the Bloch sphere. When the detuning is not zero, the rotation axis tilts
to the Z-axis in the XZ-plane, which in principle allows us to achieve an arbitrary qubit
state in the Bloch sphere. In this section we also modulate the energy detuning to confirm a
coherent electron oscillation in a tunnel-coupled wire. We measure a different device from
the one used in the experiment described in section 7.3 but with the same design.

For the measurement we control the gate voltages Vq1, Vq2, Vq3 and Vq4 to inject electrons
one by one into the tunnel-coupled wire formed by the gate voltages VU, Vt and VL. The
injection of single electrons into the tunnel-coupled wire is controlled by the gate voltages
Vr1, Vr2, Vr3 and Vr4. The resonant frequency f0 of the IDT is found to be 2.704 GHz for
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Fig. 7.5 Tuning of injected electrons to the tunnel-coupled wire. The SAW current ISAW is plotted
as a function of the voltage Vq4. The plotted current is sum of the current I1 and I2. The current is
shown in a unit of e f0. The dashed line indicate the gate voltage we set in the following experiment.

this device. The power of the RF voltage is set to 16 dBm and the duty cycle is set to 1/20
(=100 [µs]/2000 [µs]).

Fig. 7.5 shows the current transferred by SAWs as a function of Vq4, where a normal dc
current was pinched off. Compared to the data in Fig. 7.4, the plateau is less flat and the
value of the current is lower than e f0. At the gate condition in Fig. 7.5 all the gate voltages
in Fig. 7.1 are applied to form the whole structure for this experiment. In such a condition
more RF power is required to generate SAW currents compared to the situation where only
the four gate voltages Vq1, Vq2, Vq3 and Vq4 to control the quantized current are applied. On
the other hand 16 dBm is the maximum power we can apply in our setup. Therefore when
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we improve the setup and apply more RF power to the IDT, we expect to see a better plateau.
However in Fig. 7.5 the first plateau can still be resolved, and therefore we set the voltage
Vq4 to the value at the dashed line in Fig. 7.5. Here the current smaller than e f0 ensures that
each minimum of the SAWs contains either zero or one electron.

We apply large negative voltages Vr2 and Vr4 to prevent single electrons injected from
the upper side, whereas we apply less negative voltages Vr1 and Vr3, which are just enough
to form an one dimensional channel. As a result single electrons are injected only from the
lower part of the tunnel-coupled wire.

Before showing the experimental results, we discuss the expected output current in the
following. Here single electrons are transferred being confined in moving double QDs
formed by the potential of the SAWs and the tunnel-coupled wire. Hamiltonian of the
system can be written in terms of the pseudo spin notation used in section 4.3 (See also Fig.
4.2) as follows:

H = ε↑ |↑⟩⟨↑|+ ε↓ |↓⟩⟨↓|− τ(|↓⟩⟨↑|+ |↑⟩⟨↓|), (7.1)

where ε↑(↓) is the confinement energy of the upper (lower) QD and τ is the tunnel-coupling
energy between the two QDs. The eigenstate and eigenenergy of the Hamiltonian are

|ψ±⟩ =
τ√

τ2 +(∆ε ∓
√

∆ε2 + τ2)2

[
|↑⟩+ ∆ε ∓

√
∆ε2 + τ2

τ
|↓⟩
]

(7.2)

E± =
ε↑+ ε↓

2
±
√

∆ε2 + τ2, (7.3)

where ∆ε is defined by ε↑−ε↓
2 . Corresponding unitary operation can be written by
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θ =
2
√

∆ε2 + τ2

h̄
· t0 , (7.5)

where t0 = L/vSAW is the traveling time of a moving double QD through a tunnel-coupled
wire. In this experiment t0 is estimated to be about 0.74 [ns] (2 [µm]/2700 [m/s]).
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In the experiment single electrons are injected only from the lower part of the tunnel-
coupled wire and hence the initial state is |↓⟩. When we adopt the above unitary operation
to |↓⟩, the final state in the tunnel-coupled wire becomes

UT(θ) |↓⟩ =
iτ√

∆ε2 + τ2
sin
(

θ

2

)
|↑⟩

+

[
cos
(

θ

2

)
+

i∆ε√
∆ε2 + τ2

sin
(

θ

2

)]
|↓⟩ . (7.6)

Then the output currents I1 and I2 should be

I1 = | ⟨↑|UT(θ) |↓⟩ |2 · ISAW
0

=
τ2

∆ε2 + τ2 ·
(

1− cosθ

2

)
· ISAW

0 (7.7)

I2 = | ⟨↓|UT(θ) |↓⟩ |2 · ISAW
0

=

[
1− τ2

∆ε2 + τ2 ·
(

1− cosθ

2

)]
· ISAW

0 , (7.8)

where ISAW
0 (. e f0) is the injected current by SAWs. From Fig. 7.5 ISAW

0 is about 0.77e f0

in our measurement. ∆ε and τ are controlled by VU, Vt and VL in the experiment and oscil-
lations of the currents I1 and I2 are observed.

First we deplete the tunnel-coupled wire and modulate τ while keeping ∆ε equal to
zero. At the zero energy detuning the normalized output current T1(2) = I1(2)/(I1 + I2) =

I1(2)/ISAW
0 is

T1(2) =
1∓ cosθ

2
, (7.9)

where θ = 2τt0
h̄ is proportional to τ . The normalized current T1(2) as a function of VU, Vt

and VL is plotted in Fig. 7.6. From the right to the left Vt is swept to the negative direction,
whereas VU and VL are swept to the positive, to keep the width of the wire constant while
reducing the tunnel-coupling energy τ . At the left for sufficiently negative Vt, the two parts
of the wire are totally decoupled by depleting a region underneath the center tunnel-coupling
gate and hence all electrons injected from the lower part of the wire are observed in the lower
contact at the right. By increasing the tunnel-coupling energy τ to the right of Fig. 7.6, the
normalized currents oscillate in anti-phase as expected from Eq. 7.9. Since the peaks and
dips appears at θ = nπ , where n is an integer, τ can be estimated at the peaks and dips using
the expression of τ = θ h̄

2t0
as shown in Fig. 7.6. Note that τ does not change linearly with
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Fig. 7.6 Normalized current T1 (black curve) and T2 (red curve) as a function of Vt. VU, VL are also
swept along the lateral axis to keep the width of the wire constant (see text). θ and τ at the peak
position is written in the upper side.

the gate voltages along the lateral axis because τ depends on the details of the confinement
potential, which is generally not proportional to the gate voltages. At the right of Fig. 7.6
the 2DEG underneath the center tunnel-coupling gate starts to open, and the current flowing
directly between the two contacts in the right side prevents measurements for larger τ . The
visibility of the oscillation defined by |(I1 − I2)/(I1 + I2)| at θ = π/2 is calculated to be
about 40%, which is much larger than that for ballistic electrons shown in Fig. 4.4 since the
pseudo spin state is operated at a single transmitting channel at each part of the wire without
backscattering.

At zero energy detuning we observe the SAW current oscillation with a relatively high
visibility and assign it to quantum oscillation of an electron. However since we modulate
the three gate voltages at the same time, it would also be possible to explain the feature in
Fig. 7.6 by a classical picture in terms of balance of the conductance between the two parts
of the wire. To exclude this possibility, we measure the current oscillation at finite energy
detunings and try to confirm the coherent electron tunneling from Eq. 7.7, 7.8. The energy
detuning ∆ε is induced by increasing (VU−VL) from the zero detuning condition at each Vt.

Fig. 7.7 shows the normalized current T1 plotted in the plane of Vt or tunnel-coupling
energy τ along the lateral axis and ∆VU −∆VL or the energy detuning ∆ε along the vertical
axis. Only the oscillating component is plotted to show the feature clearly. Around the zero
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Fig. 7.7 Normalized current T1 plotted in the plane of VU, Vt, VL and (∆VU −∆VL). ∆VU(L) is shift
of gate voltage from zero detuning condition at each Vt. ∆VU and ∆VL are symmetrically moved to
opposite direction in 1 mV step from zero detuning. The smoothed background current is subtracted
from the raw data to show the feature clearly.

detuning a large oscillation with a longer period along the lateral axis is observed. As |∆ε|
increased, the oscillation amplitude becomes smaller and the period becomes shorter. This
behavior is indeed expected from Eq. 7.7. The oscillation amplitude should be proportional

to τ2

∆ε2+τ2 and the period should be proportional to dτ

dθ
=

h̄
√

1+(∆ε/τ)2

2t0
.

Although the observed tendency is consistent with the expectation from Eq. 7.7, the
observed pattern in Fig. 7.7 and the expected one in Fig. 7.8 do not perfectly coincide. Sev-
eral reasons are considered for this discrepancy. Firstly the tunnel-coupling energy and the
energy detuning are modulated by the gate voltages in this experiment. However generally
the relation between them is not linear and hence the axis of Fig. 7.7 and 7.8 should be non-
linearly scaled. Secondly although the 2DEG in the tunnel-coupled wire is depleted around
the zero energy detuning, at the detuning away from ∆ε = 0 the 2DEG can be recovered in
either of the two parts, which would also change the situation from the calculation because
gate voltages become less effective due to the screening. Nonetheless of importance is that
the expected feature for the coherent electron oscillation in the amplitude as well as the
period as shown in Fig. 7.8 is successfully observed in Fig. 7.7.
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Fig. 7.8 Normalized current T1 plotted in the plane of a tunnel-coupling energy τ and an energy
detuning ∆ε calculated from Eq. 7.7. A smoothed subtracted current is subtracted from the bare
current to only show the oscillating component for comparison with the experimental data in Fig.
7.7.

Finally we measure the SAW current oscillation around zero energy detuning at different
temperatures (Fig. 7.9). In Fig. 7.9a the observed oscillation is slightly different between
the base temperature and the higher temperature. However the oscillation amplitude itself is
unchanged. To compare the oscillation amplitude precisely, a smoothed background current
is subtracted from the raw data and the oscillating component is extracted as shown in Fig.
7.9b. The oscillation amplitude is almost equivalent between the base temperature and the
high temperature (∼ 1.9K). This result suggests that decoherence sources which depend on
the temperature such as electron-electron interaction and electron-phonon interaction do not
play an important role in limiting the visibility of the observed oscillations (∼ 40%). Since
single electrons are transferred through the depleted wire by moving QDs, suppression of
an electron-electron interaction can be simply understood. When an electron is confined
into a QD, phonons with smaller energy than energy separation of quantized levels in the
QD do not play a role. Further more an electron confined into a smaller space couples with
a smaller number of phonons. A SAW induced moving QD has a stronger confinement
than a standard static QD so that it has a larger energy spacing in the quantized levels and
a more confined wave function. Therefore an electron in the moving QD is less affected
by phonons. Also different from the static QD, the influence of phonons is averaged during
transport of the moving QD, which may also reduce the phonon induced decoherence.

The possible reasons for the limited visibility are as follows. In this experimental setup
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Fig. 7.9 Normalized currents T1 (black curve) and T2 (red curve) as a function of the gates VU, Vt and
VL at two different temperatures. The solid line is measured at the base temperature (∼ 0.3K) and the
dashed line is measured at about 1.9K. (a) Raw data. (b) Oscillation parts extracted by subtracting
smoothed background from the raw data.
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due to the limitation of the SAW power the 2DEG at the entrance of the tunnel-coupled
wire may not be fully depleted when electrons are injected into the depleted tunnel-coupled
wire. Therefore single electrons are picked up from the 2DEG at the entrance (lower arm
of the AB ring) and enter the tunnel-coupled wire. After this process an electron state
in the moving QD can become a superposition of eigenstates with different energy levels
which have different tunnel-coupling strengths. This lowers the visibility of the oscillation.
Another possibility is that again due to the limitation of the setup the parameter range we
can access is relatively narrow. As a result the tuning of the potential in the tunnel-coupled
wire might not be good enough and a finite energy detuning might be left at some parts of
the wire even at the zero energy detuning where we obtain the maximum visibility of the
oscillation.

To improve the visibility further, improvement of the setup to apply stronger SAWs to
the device is first required. This could be done by changing the material of the coaxial lines
for the RF voltages or by revising the design of the IDT. It should make the tunable range
wider and allow to deplete the whole structure to realize a smooth potential profile.

7.5 Summary and future plans

We performed the control of single electrons transferred by SAWs in a depleted tunnel-
coupled wire. We successfully observed an oscillation of single electrons as a function of
tunnel-coupling energy. At finite energy detuning the amplitude of the oscillation becomes
weaker and the period becomes shorter compared to the case of zero energy detuning. This
feature is expected for a coherent electron oscillation. The visibility obtained at zero energy
detuning is about 40%, which is much higher than the one for ballistic electrons as show
in section 4.3. Finally the measurement at two different temperatures revealed the robust-
ness of the oscillation against electron-electron interaction and electron-phonon interaction.
When we define pseudo spins by the presence of an electron at either part of the tunnel-
coupled wire, the transport electron can be considered as a flying qubit and the observed
electron oscillation corresponds to rotation of the qubit state.

The next step of the present study should be realization of a full qubit operation with two
independent rotation axes in an AB ring with a tunnel-coupled wire. Also improvement of
the visibility should be an important step modifying the experimental setup and the device
geometry. Once a high visibility flying qubit is realized, it will be realistic to generate the
non-local entanglement state and to confirm it by observing violation of Bell’s inequality in
the scheme proposed theoretically [5].
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Further more the electron control in the tunnel-coupled wire achieved here corresponds
to be a beam spitter operation for single electrons, which is a key component to perform
electron quantum optical experiments [28, 30, 31] using a SAW. When this technique is
combined with the single electron source and detector [25, 26], experiments to study the
quantum nature of electrons at the single electron level and by single shot measurement will
be within experimental reach.



Chapter 8

Single electron transfer between distant
quantum dots using a surface acoustic
wave

8.1 Introduction

Quantum electron optics [27–31] attracts particular interests since it is considered to be a
promising candidate to construct scalable quantum systems. In contrast with photons, elec-
trons are strongly interacting particles and they usually propagate in a Fermi sea filled with
other electrons. Each electron therefore inevitably mixes with the others of the Fermi sea,
which implies that the quantum information stored within the charge or the spin of the single
electron will be lost over short lengths. To perform quantum electron-optical experiments
at the single-electron level, one therefore needs a source of single electrons, a controlled
propagating medium and a single-electron detector. It has been proposed that edge states in
the quantum Hall effect can serve as a one-dimensional (1D) propagating channel for flying
electrons. As a result of Coulomb blockade, QDs have been demonstrated to be a good
source of single electrons [85, 107] and can also serve as a single-electron detector. Indeed,
once an electron has been stored in a QD, its presence can be inferred routinely by charge
detection [108]. Nevertheless, re-trapping the electron in another quantum dot after propa-
gation in an edge state turns out to be extremely difficult, and currently all the information
extracted from such experiments is coming from ensemble measurements [31, 80, 81]. Here
we show that a single flying electron can be sent on demand from a QD by means of a 1D
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quantum channel and re-trapped in a second QD after propagation 1 [25, 26]. The 1D quan-
tum channel consists of a depleted region several micrometers long in a 2DEG. The electron
is dragged along by exciting a SAW and propagates isolated from the other electrons inside
the 1D channel [74]. The processes of loading and unloading of the flying electron from
the quantum channel into a QD turn out to be highly efficient. Moreover, we show that the
transfer of the electron can be triggered with a timescale shorter than the coherence time T ∗

2

of GaAs spin qubits [22]. Because both electron spin directions are treated on the same foot
in the SAW quantum channel, one expects that the spin coherence during the transport is
conserved. Naturally, new possibilities will emerge to address the question of scalability in
spin qubit systems [21, 22, 109].

8.2 Device and measurement setup

The device is defined by Schottky gates in an AlGaAs/GaAs 2DEG-based heterostructure
(the properties of the 2DEG are as follows: µ ≈ 106cm2/Vs, ns ≈ 1.4× 1011cm−2,
depth 125 nm) with standard split-gate techniques (Fig. 8.1). The charge configuration of
both dots is measured by means of the conductance of both QPCs [108] by biasing it with a
direct-current voltage of 300 µV; the current is measured with a current-to-voltage converter
with a bandwidth of 1.4 kHz. The voltage on each gate can be varied on a timescale down to
microseconds. In addition, the gate biased with voltage Vc, controlling the coupling between
the left dot and the 1D channel, is connected to a homemade bias tee to allow nanosecond
manipulation of the dot potential by means of an arbitrary function generator (Tektronix
AWG 5014). The IDT, which is place about 2mm to the left of the sample, is made of
70 pairs of lines 70 µm in length and 250 nm in width with a 1-µm spacing. The IDT is
orientated perpendicular to the direction of the 1D channel defined along the crystal axis
[110] of the GaAs wafer; it has a frequency bandwidth of about 20 MHz. By applying a
microwave burst 65 ns long on the IDT, a train of about 150 moving QDs is created in the
1D channel.

1The experiments presented in this chapter has been achieved by a close collaboration with the group in
Grenoble. The measurements and analysis were performed by Sylvain Hermelin et al. in Grenoble. We
designed and fabricated the device, and performed early states of the experiment in Japan.
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Fig. 8.1 SEM image of the single-electron transfer device, and diagram of the experimental setup.
Two quantum dots, which can be brought into the single-electron regime, are separated by a 1D
channel 3 µm long, as shown.

8.3 Single electron transfer between distant QDs

To transport a single electron from one QD to the other separated by a 3-µm 1D channel (see
Fig. 8.1), the following procedure is applied. First, the region between the two electrodes,
which define the 1D channel, is fully depleted. As a consequence, direct linear electron
transport from one end of the channel to the other is blocked because the Fermi energy
lies below the potential induced by the gates. Second, by applying microwave excitation
to the IDT, SAW-induced moving QDs are generated [74] as a result of the piezoelectric
properties of GaAs. By adding a QD to each side of the 1D channel and tuning both QDs
into the single electron regime, it is then possible to transport a single electron from one
QD across the 1D channel and catch it inside the second QD. Stability diagrams for both
QDs as a function of the applied voltage on the two gates controlling the two barriers of the
QD are shown in Fig. 8.2a, b. They demonstrate that the system can be tuned into a regime
consisting of few electrons. As expected, the charge degeneracy lines disappear when the
barrier height between each dot and the reservoir is increased (corresponding to increasingly
negative voltages Vb and Vb′). This also changes the position of the QD minimum and brings
the electron closer to the 1D channel, to a position where a better transfer to SAW QDs is
expected.

The protocol of the single-electron source for a SAW quantum channel is a sequence
made of three dot-gate voltage steps (see Fig. 8.2a). At working point A on Fig. 8.2a,
the left QD (the single-electron source) is loaded with one electron on a timescale close to
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Fig. 8.2 (a), (b) Stability diagram of the left (a) and right (b) dot obtained via charge detection by
varying respectively gate voltages (Vb or Vc) and (Vb′ or Vc′) (see Fig. 8.1). Sweeps in Vb and Vb′ are
fast and are performed within 1s from +0.15 V to -0.15 V (3 ms per point). When the barrier height
is made higher (Vb or Vb′ more negative), metastable charge states with timescales longer than the
Vb or Vb′ sweep time are observed. In the very negative Vb′ part of the diagram for the right dot, the
electrons will finally tunnel out. When the sweep direction of Vb′ is reversed, these charge detection
steps are absent. Inset to (a): schematic diagram of the dots and channel electrostatic potential
applied by the gates to the electron at different points in the stability diagram (see text).
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Fig. 8.3 Average QPC time trace along the voltage sequence of the single-electron source. Without
the microwave burst applied on the IDT, we observe a lifetime for the metastable one-electron charge
state of 700 ms. Applying a microwave burst, the electron in the metastable state is forced to quit the
quantum dot with very high probability.

microseconds and unresolved with the setup detection bandwidth. It is then brought rapidly
to working point B, where the chemical potential of the single electron state lies above the
Fermi energy and the coupling to the 1D channel is expected to be large. The actual position
of B is not crucial as long as the electron is sufficiently protected from tunneling out of the
dot and the dot potential is high enough to facilitate the charging of the electron into the
moving SAW dot (see inset to Fig. 8.2a). For each sequence, the QPC conductance time-
trace is recorded to observe single-shot loading and unloading of the dot. This sequence
is repeated 1,000 times to obtain measurement statistics; the resulting averaged time-trace
are shown in Fig. 8.3. An exponential decay of the presence of the electron in the dot
as a function of the time spent at working point B is observed in the experimental data,
corresponding to a tunneling time close to 1s as indicated by the green line. This gate pulsing
sequence is then repeated by adding a burst of microwaves to the IDT with a pulse length
of several tens of nanoseconds, applied 100 ms after the system is brought into position B.
The microwave burst creates a moving QD, which lifts the electron, initially trapped in the
left QD, above the tunnel barrier and drags it out of the QD. This results in a jump in the
QPC current, as shown by the red line.

To demonstrate that the electron has been loaded into a moving QD and not expelled
into the reservoir, it is essential to detect the coincidence between events when the electron
leaves the single-electron source (left dot) and when it is trapped in the single-electron
detector (right dot). This is realized by a second voltage pulse sequence on the right dot:
when the single-electron source is brought in position B, the detector dot is armed by pulsing
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Fig. 8.4 (a)-(d) Coincidence between the two single-shot QPC time traces at voltage working points
B and B′ corresponding to the different events N1001 (a), N1000 (b), N1100 (c) and N0000 (d). The
position in time of the RF burst is indicated by the black arrow. At this specific time, the small
peak or dip observed on time traces is the result of the SAW-induced enhancement or reduction,
respectively, of the QPC current. The notation Nαβγδ corresponds to the number of events with α or
β electrons in the source dot before or after the microwave burst, respectively, and to γ or δ electrons
in the receiver dot before or after the microwave burst, respectively. Event N1000 corresponds to the
situation in which the electron has been transferred from the source to the detector and is immediately
kicked out of the detector dot by the same RF burst and is therefore not detected. Events for which
β +δ > α + γ are called ’bad’ events.
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its gate to working point B′, where the steady state is the zero-electron state and the coupling
to the channel is large. At this working point both QPC traces are recorded simultaneously.
No charge variation is observed during the first 50 ms where the system is kept in position
B. A microwave pulse is sent with a time lag of 50 ms. After the recording, the detector
is reinitialized to zero electron at working point A′, where the captured electron can tunnel
efficiently into the reservoir. Typical single-shot readout curves are presented in Fig. 8.4a-d.
Coincidences are observed between events when an electron leaves the source QD and an
electron is detected in the receiver QD within the same time slot (Fig. 8.4a). These events
correspond to the situation in which one electron has been loaded in the electron source
(left dot), is then transferred in the quantum channel (the moving QDs) and is received
in the detector (right dot). In contrast with photon detectors, here the electron still exists
after detection. A set of experiments described in Fig. 8.4 allows the full characterization
of the high quantum efficiency of both the single-electron source and the single-electron
detector observed in the experiment: 96% for the single-electron source and 92% for the
single-electron detector (see Table. 8.1).

Table 8.1 Summary table for the different events over 10,001 traces for different source dot load-
ing probabilities (N1xxx) with or without the RF burst. When an index of N is replaced by x, the
corresponding output result is disregarded. The loading probability can be tuned on demand by
changing the voltage gate position A in the stability diagram around the charge degeneracy point.
The summation at the bottom table is for (β +α)> (δ + γ).

SAW
Event On Off On On On
N1xxx 9,841 10,001 16 5,154 1,462

N10xx 9,408 0 15 4,954 1395
(95.6%) (0%) (94%) (96.1%) (95.4%)

N100x 9,128 0 14 4,807 1,349

N1001 8,393 0 14 4,417 1,244
(91.9%) (0%) (100%) (91.9%) (92.2%)

ΣNαβγδ 0 1 0 0 0
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8.4 Two electron transfer between distant QDs

In QDs it is possible to load not just one but two electrons. By waiting long enough [110],
the two electrons will be in a singlet state at zero magnetic field and are hence entangled in
the spin degree of freedom. The ability to separate the two electrons and to bring only one
of them to the second QD is of potential interest for the transfer of quantum information and
is the essence of the quantum teleportation protocol [111–113]. By analogy with photons,
this is the equivalence of a two-photon entangled source [114]. Moreover, in contrast with
a photon detector, the electron detector can discriminate easily whether one, two or more
electrons have left the single-electron source and are captured in the single-electron detector
(see Fig. 8.2a). The protocol consists of loading the left dot with exactly two electrons by
moving gate voltages Vb and Vc into the two-electron regime of the stability diagram. The
quantum dot is then tuned towards the working point where loading of the moving QDs
is possible (point B). Different possibilities for the emission of electrons into the quantum
channel are observed. Indeed, when starting with exactly two electrons in the source dot,
one can achieve the outcome that either exactly one or both electrons are emitted from
the source and received in the detector dot, as shown by the single-shot traces for QPC
detection of the two dots (see Fig. 8.5a-d). The probability of each event varies with the
working voltage at point B. For very negative gate voltage Vc, about half of the time the two
electrons are separated, meaning that only one electron is transferred, and the other half of
the time both electrons are transported (see Table 8.2). For the events in which both electrons
leave the dot, the electrons are most probably loaded into two different moving QDs. More
interestingly, when pulsing gate voltage Vc more positively, a situation can be realized in
which only one of the two electrons of the left dot is efficiently emitted and consequently
captured by the right dot (see Table 8.2). In this case, the probability of sending the two
electrons is markedly reduced, to less than 3%, and the probability of effectively separating
the two electrons approaches 90%.

8.5 Measurement of time scale of single electron transfer

To use single-electron transfer in quantum operations using spin qubits, one has to show that
coherence of the electron spin after electron transfer is preserved. Measurement and coher-
ent manipulations of electron spins can be straightforwardly implemented in our setup, and
the spin coherence time T ∗

2 of an ensemble of electrons stored in SAW-assisted moving QDs
has been shown to be as long as 25 ns (ref. [71]). A necessary condition for investigating co-
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Fig. 8.5 (a)-(d) Coincidence between the two single-shot QPC time traces at voltage working points
B and B′ corresponding to the different events N2100 (a), N2101 (b), N2001 (c) and N2002 (d).
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Table 8.2 Summary table for the different events over 1,005 traces for dot configurations Vc =
−0.388 V and Vc =−0.322 V.

Vc (mV)
Event −388 −322
N21xx 445 970

(44.3%) (96.5%)

N2101 443 878
(99.6%) (90.5%)

N20xx 558 30
(55.5%) (3%)

N2001 62 4
(11%) (13%)

N2002 496 26
(88.9%) (87%)

herent transport of a single electron spin is to be able to trigger the electron transfer within a
timescale that is short compared with T ∗

2 . Indeed, a microwave pulse 250 ns in duration cor-
responds to about 700 moving QDs, and the experiments described above demonstrate the
ability to load the electron into one of the moving QDs produced by each SAW microwave
burst. We now show that the number of minima of the microwave burst in which the elec-
tron is loaded can be reduced to two. For this purpose, the single-electron source voltage
sequence is slightly modified. After charging of the quantum dot, the system is brought
to position B (see Fig. 8.2a) slightly on the more negative side with respect to Vc, and the
duration of the microwave pulse is shortened to a minimum of 65 ns. At this voltage posi-
tion, the barrier height to the quantum channel is increased and the transfer probability of an
electron into the quantum channel is as low as 5% when excited with the SAW microwave
burst. To trigger single-electron transfer, a 1-ns voltage pulse on Vc with a positive value
(voltage position C in Fig. 8.2a) is added to this sequence. In Fig. 8.6a the evolution of the
number of events in which one electron leaves the single-electron source and one electron is
detected in the single-electron detector (N1001) is plotted as a function of the delay between
the 1-ns gate pulse and the 65-ns microwave burst. High transfer probabilities reaching 90%
are observed only for time delays of roughly 765 ns, corresponding to the propagation time
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of the SAW from the IDT to the dot region. Taking into account the pulse length of the gate
and the distance between two minima of the SAW, only two moving quantum dots can then
be the hosts of the transported electron during the gate pulse, as indicated schematically
in Fig. 8.6b. This demonstrates the ability to load on demand and in a very reproducible
manner one of the two minima of the train of moving QDs with a single electron during the
1-ns gate pulse. The use of a faster arbitrary waveform generator should allow the electron
to be loaded on demand into the same moving QD.
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Fig. 8.6 (a) Evolution of the number of N1001 and N10xx events as a function of the delay between
the 1-ns gate pulse and the 65-ns microwave burst when a single electron is loaded into the single-
electron source. (b) Schematic diagram of the timing sequence between the 1-ns gate pulse and the
microwave burst applied to the IDT.

8.6 Summary and future prospects

The experiments performed here represent the first milestone on the road to a new exper-
imental platform for realizing quantum optics with flying electrons implemented in gated
2DEG heterostructures and transported by SAWs. High quantum efficiency of both the
single-electron detector and the single-electron source are shown and potentially enable the
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measurement of all moments of the electron correlations [115]. In comparison with other
implementations in similar systems, the propagating electron is physically isolated from
the other conduction electrons of the heterostructure. In bringing together two propagating
quantum buses separated by a tunnel barrier, a beam splitter for flying electrons can be im-
plemented (see also chapter 7) [19, 20] and Hanbury Brown and Twiss-type experiments in
which there are stronger Coulomb interactions between electrons could be realized. Future
experiments should allow coherent spin transfer and provide new insight into the feasibility
of quantum teleportation protocols and on the potential scalability of spin qubits.
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Appendix A

NRG calculations

A.1 Details of NRG calculations

We performed NRG calculations [116–119] using the generalized Anderson Hamiltonian
[15, Eq. (1)]

H = ∑
j,σ

ε jn j,σ +
U
2 ∑
j,σ ̸= j′,σ ′

n j,σ n j′,σ ′ + ∑
α,k,σ

εkc†
α,k,σ cα,k,σ + ∑

j,α,k,σ
(t j

αc†
α,k,σ d j,σ + H.c.) (A.1)

,where j = 1,2 labels the dot levels, σ =↑,↓ describes the electron spin, α = L,R denotes
the channel index, ε1 < ε2 are level positions, U is the Coulomb interaction strength, t j

α are
hopping amplitudes between level j and channel α , and εk denotes the dispersion relation
of a flat band. To avoid a proliferation of parameters, we choose the magnitudes of the
tunneling matrix elements to be left-right symmetric and level-independent, |t1

L| = |t1
R| =

|t2
L|= |t2

R|, with relative sign s= sgn(t1
Lt1

Rt2
Lt2

R), and characterize the overall coupling strength
in terms of the parameter Γ = (πρ)/2∑ j,α |t j

α |2. As the magnetic field is smaller than
all other energy scales, we have neglected its presence. Therefore, our calculations have
fully exploited U(1) charge and SU(2) spin symmetries. The discretization parameter was
set to Λ = 4, keeping approximately 6000 multiplets (corresponding to 20000 states) per
iteration, which is required for the spinful two-channel calculation under consideration.
NRG produces the correlation function of any pair of local operators; using Kramers-Kronig
relations yields the full Green’s function. Transmission amplitude and phase have been
obtained from the complex quantity [15, Eq. (3)]

tdσ (T ) =
∫

dE
(
−∂ f0(E,T )

∂E

)
∑

j, j′,σ
2πρt j

Lt j′
R G R

j,σ ; j′,σ (E,T ). (A.2)
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For Figs. 3e-g in the main paper, where s =+, the conductance through the dot is calculated
using ∑σ Im[tdσ (T )], which equals the prediction of the Meir-Wingreen formula [120].

A.2 Comparison between experimental data and NRG cal-
culations
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Fig. A.1 Transmission phase (red) and transmission amplitude (blue) of a quantum dot calculated by
a two-level Anderson model in the weak Kondo regime (T ≫ TK) for the case of s =+ (a) and s =−
(b). The fitting parameters, Γ/U = 0.038, T/U = 0.0055 and δ/U = 0.5 were used for both (a) and
(b).

In our fitting procedure in section 5.4 using the numerical calculations of a two-level
Anderson model, fitting parameters are the tunnel-coupling coefficients t j

α between the dot
level j and the channel α , the single level spacing δ , the temperature T and the bandwidth
of the leads D, which are all given in units of the charging energy U . In the whole fitting
process D is fixed to 20 times bigger than U . Here the choice of D does not change the result
when it is large enough compared to all the other parameters. To reduce the parameter space,
we set |t1

L| = |t1
R| = |t2

L| = |t2
R|. Prior to the fitting, the charging energy U is first estimated.

We obtained U ∼ 650 µeV from the gate capacitance extracted from the Coulomb diamond
at the base temperature and the Coulomb peak spacing at a temperature sufficiently high that
the Kondo effect is so weak that the renormalization of the charging energy is negligible.
Another important parameter to be fixed before fitting is the relative sign of the tunnel-
coupling coefficient for neighboring energy levels, s j = sgn(t j

Lt j
Rt j+1

L t j+1
R ). Figure A.1 shows

transmission phase and amplitude calculated numerically by a two-level Anderson model at
T ≫ TK for different signs of s. For s = +, a singular point called transmission zero [32]
appears, which leads to a π-phase lapse and zero transmission amplitude when the Fermi
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level lies symmetrically between the two different levels (Fig. A.1a). On the other hand
for s = −, there is no such singular point and the phase smoothly evolves between two
different levels (Fig. A.1b). We assume from the current around the Coulomb peaks shown
in Fig. 5.3a the relative sign between the Kondo level (governing the Kondo valley in
the conductance ) and the next-higher (next-lower) levels at more positive (negative) Vp is
s j = + (s j = −). For our two-level Anderson model calculations, we therefore focus on
the phase evolution of either a lower Kondo level with s =+, or an upper Kondo level with
s = − for comparison with the experimental data. This assumption is consistent with the
asymmetry of the phase evolution in the weak Kondo regime of the experiment (Fig. 5.4d).

Here we describe the fitting procedure for s = +, whose results are presented in chap-
ter 5. To determine the parameters used in Fig. 5.4f, we first fitted the data of Fig. 5.4c,
where we can safely assume that the electron temperature is comparable to the fridge tem-
perature of 110 mK, i.e. Te = 110 mK. We then tune only fitting parameters, Γ and δ . To
capture the most important feature of the phase evolution, we compared experimental data
and calculations for the phase slope around the middle of the Kondo valley, ∆Vp ∼ 0.125 V.
To fit the experimental data, δ has to be large enough compared to Γ (i.e. δ/Γ ≫ 1) and
we confirmed numerically that the precise value of δ only plays a minor role for the phase
behavior, as long as δ > 0.4 U . We therefore fixed δ to 0.5 U . By varying Γ as a single
fitting parameter, we obtained Γ ∼ 62.4 µeV. With these parameters, TK is determined to be
approximately 50 mK. The Kondo temperature is calculated by TK = χ0/4, where χ0 is the
local spin susceptibility at zero temperature.. Let us emphasize that a different choice of δ

does not lead to a significant change in TK, instead, it leads to a slightly different value of Γ.
In such a way a very similar TK-value is obtained. The phase evolution at this temperature
therefore allows for a precise evaluation of TK, with an uncertainty of ±10 mK.

To determine the parameters used in Fig. 5.4e, we proceeded as follows: with Γ =

62.4 µeV and δ = 325 µeV, temperature is then lowered as a fitting parameter to fit the
phase curve in Fig. 5.4b. We note that for these Γ/U values the π/2-plateau has still a finite
and temperature dependent slope, even at zero temperature. This allows for a relatively
precise determination of the electron temperature of about 40 mK, somewhat higher than
the fridge base temperature, but in good agreement with former measurements on 2DEGs
in the same electromagnetic environment [92].

Finally, to determine the parameters used in Fig. 5.4g, we proceeded as follows: with
T = 40 mK and δ = 325 µeV, Γ is varied to fit the data in Fig. 5.4d. The data is fit best
for Γ = 24.7 µeV. The determination of the exact Kondo temperature in this weak Kondo
regime is more delicate as the exponential dependence on Γ/U leads to relatively large
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uncertainties. Nevertheless we estimate TK to be more than 30 times smaller than the actual
electron temperature. Finally let us mention that the values for Γ extracted from the NRG
fitting are much smaller than if one would take simply the width of the CPs (in our case
24.7µeV compared to 130µeV). The asymmetry in the phase evolution in Fig. 5.4g around
∆Vp/U = −0.5 originates from the influence of the nearby level and reflects the orbital
parity, s j =+. We also performed the same fitting procedure with the other choice of sign,
s j =−, which led to very similar parameters.

For both fitting procedures we get remarkable agreement between the experimental data
and the NRG calculations for the phase evolution. The π/2-phase shift persisting up to TK

(Fig. 5.4b) clearly indicates that coherent current flows through the Kondo resonance once a
localized spin is formed in the quantum dot for T ≤ TK. Compared to the phase, agreement
between the current I2 in the experiment and the conductance G in the calculations is not as
good. This may arise from several reasons: one possibility is that in our calculation we did
not include left-right asymmetry of the tunnel-coupling between the leads and the quantum
dot whereas for the actual quantum dot this asymmetry exists. Another possible reason is
that in the experiment there is a linear background from the upper path of the interferometer
whereas the calculated conductance G does not contain such a contribution.

In the Vp regime in which the current I2 shows the Coulomb blockade peak on the right,
the phase decrease towards zero with increasing Vp occurs somewhat sooner (relative to the
position of the Coulomb peak) for the experimental data in Fig. 5.4c and d than for the NRG
calculations in Fig. 5.4f and g. This deviation between experiment and theory in the tails
of the phase curve may be due to the fact that we experimentally extract the phase from the
coherentâĂă part of the current whereas the total current I2 that is plotted in Figs. 5.4b - d
also contains the incoherent part. In this context, further theoretical studies are necessary.
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