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Ground states and low-energy excited states of low dimensional quantum spin systems can 

differ from ones of classical systems in quality. One of the simplest examples is the 

antiferromagnetic Heisenberg (AFH) dimmer. While the ground states of the classical one are 

continuously degenerate and there are excited states with infinitesimal energy gap, the ground 

state of the quantum one is a unique singlet pair and has a finite energy gap above the ground 

state. Another example is the AFH chain. For the classical AFH chain, the ground states are also 

continuously degenerated and infinitesimal excited state occurs (Goldstone mode). On the other 

hand, the ground states of the integer spin AFH chains are the non-degenerate Haldane states, 

which are non-magnetic states, total spin is zero, and have finite energy gap above them. The 

valence bond picture is a good tool to give us understandings about such ground states and 

excited states of quantum spin systems. In this picture, each local spin with angular momentum 

S is divided into 2S subspins with S=1/2, and a subspin of a local spin makes singlet pair 

(valence bond) with a subspin of another local spin. The states where each subspin is bound to 

one valence bond are the basis of the Hilbert space with total spin is zero, and each state is 

called the valence bond solid (VBS) state or the valence bond crystal (VBC) state. The ground 

state of S=1 AFH chain is the VBS state where each bond has one valence bond. Moreover, the 

parity of the number of valence bond on one fixed bond is a topological order parameter. Two 

VBS states are in the different phases if one state has the odd number of valence bonds on some 

bond and the other state has the even one on the same bond. For example, in S=1 dimerized 

AFH chain, where the strengths of coupling constants are alternately strong and weak. There is 

two-quantum phase transition with respect to the strength of dimerization. The number of 

valence bonds on some bond varies from zero to one and from one to two at the quantum phase 

transitions. 

The string order parameter and the twisted order parameter are observables to capture the 

parity of the number of valence bonds. These make us possible to draw phase diagrams of 

one-dimensional spin systems, such as a spin chain, a spin ladder, and a spin tube. These 

observables, however, can be defined well only in one-dimensional systems although the 

valence bond picture is still useful in higher dimensional systems.	
 In higher dimensional 

systems, of course, VBS picture still works well as in one dimension. Therefore an alternative 

observation that can be used in higher dimensional systems has been desired for long time. 

Recently, the local quantized Berry phase has been proposed as a new observable to catch the 

parity of the number of valence bond. This is a geometric phase that the state acquires when the 

state goes around an adiabatic cycle by some spatially local perturbation. Although this is one of 

the topological order parameters, this can be defined locally since it depends where the 

perturbation acts. Moreover, this is quantized due to the symmetry of the internal degree of 

freedom such as spin inversion symmetry or particle-hole symmetry, and is stable against any 



small perturbations as long as the energy gap remains finite. Therefore, the spatial pattern of this 

value and the change of it tell us a quantum phase transition. For the spin systems, a “twist” of 
one bond makes the value of local quantized Berry phase 0 or π when the number of valence 

bond on the twisted bond is even or odd, respectively. One of the strong points of the local 

quantized Berry phase is that this can be defined on any lattice in any dimension. Another one is 

that even in finite systems this is quantized so well that catches phase transitions. 

In the past numerical studies of the phase distinguishing via the local quantized Berry phase, 

the calculations have been done mainly by the exact diagonalization method and the tractable 

system size is severely limited. The local quantized Berry phase is quantized in such finite 

systems indeed, but of course the transition point is affected by the finite size effect. Therefore, 

the unbiased numerical method that can treat large systems in any dimension is required. 

Quantum Monte Carlo (QMC) method is one of the candidates. 

QMC is one of the most powerful numerical methods in the field of the quantum many-body 

physics. In the method, we can calculate the statistical expected value of some observable as 

follows. First, we expand the density matrix into the weighted summation of the world-line 

configurations by path-integral method. Next, we calculate the mean value of some observables 

over the world-line configurations by Markov chain Monte Carlo method. Many developments 

such as loop algorithm and continuous imaginary time algorithm have overcome many weak 

points of QMC. However, there are still some obstacles. One of them is that QMC can treat only 

the observables represented by the Monte Carlo expectation form. For example, the inner 

product of two states cannot be calculated directly by QMC. Another obstacle is the emergence 

of configurations with negative or complex weight for some (many, indeed) systems. This is 

well known as “the sign problem,” which is the most difficult problem in QMC. In this case, we 

need to extract information of the original system from another system free from sign problem. 

Unfortunately, this operation makes the statistical error grow exponentially as the inverse 

temperature and the system size increase, and so QMC breaks down. Although some methods, 

the basis transformation, the meron cluster algorithm, the nested cluster algorithm, and so on, 

has been developed to tackle this problem, this problem can be solved or reduced at only few 

models or parameters. In the calculation of the Berry phase, there are the configurations with 

complex weight due to the local twist. 

In the present thesis, we propose a QMC scheme for the gauge-fixed Berry connection and 

the local quantized Berry phase. More concretely, this systematic scheme teaches us how to 

evaluate the coefficient of the term with arbitrary power of the perturbation of the inner product 

between a perturbated ground state and a non-perturbated ground state by QMC. The coefficient 

of the linear term is nothing but the gauge-fixed Berry connection. The Berry curvature and the 

susceptibility of the fidelity, which are other tools to catch the quantum phase transition, are 



derived from the coefficients of the quadratic terms. Moreover, the derivatives of these values 

are obtained from the ones of the higher order terms. The complex weight problem for the 

gauge-fixed Berry connection is overcome as follows. First, for some parameters such as twist 
angle is θ=π the meron cluster algorithm can be applied to solve or reduce the problem. Next, 

we fitted the data for discrete parameters by the series of cosine functions since the gauge-fixed 
Berry connection as a function of the twist angle has a period 2π and is an even function. 

Finally, the local quantized Berry phase was obtained by integrating the fitting function. The 

meron cluster algorithm teaches us that there are the twist patterns where the complex weight 

problem does not occur. Such twist patterns enable us to perform the large system simulations. 

We call such special pattern “the magic twist pattern.” For the demonstration, we calculated the 

local quantized Berry phase of the AFH model of the staggered dimerized ladder for some 

system sizes, say, 10000 sites. The estimated transition point by size extrapolation was 

consistent with the result of the previous studies. This is the first QMC calculation of Berry 

phase as far as we know. 

We also propose that the quantum phase transition point can be estimated efficiently by the 

gauge-fixed Berry connection. The curves of the gauge-fixed Berry connection of non-twisted 

systems for several system sizes cross at the transition point while the Berry curvature and the 

susceptibility of the fidelity diverge at the point. Since it is more difficult to find a peak than a 

crossing, the gauge-fixed Berry connection is more efficient. Furthermore, the precision of 

QMC calculation is higher for the gauge-fixed Berry connection than the other ones as the order 

of difference of the former is one less than the one of the latter.  

In order to demonstrate our method in two-dimensional systems, we calculated the Berry 

phase of the AFH model on the columnar dimerized square lattice defined by magic twist 

pattern. In this model, the gapped-gapless phase transition occurs and thus the Berry phase can 

be quantized in only one side (VBS phase) of the transition. Even in such case, our QMC 

method for the Berry phase can distinguish these phases, by using the difference of the system 

size dependence of the first excitation energy in the gapless Neel phase and the gapped VBS 

phase. The estimated critical point by the present method is consistent with the results by the 

past studies. 

Finally, we define the local quantized Berry phase for the SU(N) AFH model and apply our 

QMC method. First, we calculated the Berry phase defined by the magic pattern of the SU(N) 

AFH models on the square lattice for several N. We concluded that the ground states for N < 5 

are the Neel state and those for N >= 5 are the VBS state, which is consistent with the previous 

work. Next, we applied the present method for the 4 columns SU(4) AFH models on the 

dimerized chain in order to see the N quantization of the ZN Berry phase. The N quantization 

implies that the phase diagram of the SU(N) Heisenberg model can be more complex than that 



of the SU(2) Heisenberg model. Finally, We calculated the gauge-fixed Berry connection of 

SU(3) J-Q model, which is the Heisenberg model including the nearest neighbor interaction J 

and many-body interaction Q and has the quantum phase transition from Neel order to VBS 

order as the ratio of Q and J grows. We found that the gauge-fixed Berry connection analysis is 

also valid in the SU(N) model. Note that the present method allows us to see the valence bonds 

of SU(N) AFH model directly for the first time. 


