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Abstract

Requirement of scalability has made solid-state implementations exceptionally

attractive in the search for future quantum computing architectures. Spins in

quantum dots (QDs) are regarded as one of the most promising among them.

Recent experiments have shown that spins in electrically-controlled semicon-

ductor QDs meet many prerequisites for quantum computers. However, the

ability to manipulate qubits on timescales much shorter than the coherence

time, which lies at the heart of quantum computation, has been elusive in this

system. In contrast to exchange-mediated two-qubit operations in less than a

nanosecond, single spin rotations via ESR are slow, due to small amplitudes of

the Rabi a.c. magnetic field. Despite intensive efforts, it is still technically chal-

lenging to achieve spin flip times (Tπ) much shorter than the ensemble phase

coherence time (T ∗2 ) limited by the interaction with the surrounding nuclear

spins in the host material.

This thesis presents high-speed manipulations of a single electron spin con-

fined in GaAs semiconductor QDs. To overcome the problem of a weak ESR

driving field compared with the hyperfine field, we utilize an on-chip micro-

magnet (MM). The MM-induced stray field gradient couples the electron’s spin

degrees of freedom to an oscillating electric field or microwave (MW) and al-

lows for electrically driven ESR. In order to achieve spin rotations faster than

the dephasing, we refine the MM design and the QD device design of the pre-

ceding MM-ESR experiments. We achieve above 120 MHz Rabi oscillations,

the fastest in the electrically-controlled QDs, with Tπ roughly an order of mag-

nitude shorter than T ∗2 . Vanishing effects of nuclear spins in the fast Rabi

oscillation are evidenced by observation of no initial π/4 phase shift and a

chevron interference pattern. We also establish for the first time direct control

of spin phase, which serves as a single-step z-rotation gate. We demonstrate

above 50 MHz phase rotation, providing a faster implementation of phase gates

such as the so-called π/8 gate than with the 120 MHz ESR.
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Based on the fast spin operations demonstrated in this thesis, all required

gate-times will become an order-of-magnitude shorter than T ∗2 of the system,

allowing high-fidelity single-qubit gates in a highly scalable platform with an

established fast entangler. We therefore believe these achievements contribute

to future advances in quantum information processing in QD systems, e.g. state

tomography by fast ESR gates, CNOT gates incorporating phase shift gates.

The observed recovery of the exponential coherence decay of the strongly-driven

spin qubit (albeit coupled to the nuclear-spin bath with a long memory time)

would be crucial for realization of quantum error correction. The MM tech-

niques studied here should be also applicable to other material systems with

longer coherence times, e.g. isotropically purified silicon- or carbon-based QDs.
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Chapter 1

Introduction

1.1 Background

Recent advances in semiconductor processing technology have realized nano-

meter scale artificial structures called quantum dots (QDs) [1]. As the number

of trapped electrons approaches zero, these structures behave as quantum sys-

tems rather than as just tiny charged boxes. QDs are also referred to as artifi-

cial atoms, owing to the similarity in the electronic properties and the richness

of observed quantum phenomena [2, 3]. A big difference from natural atoms,

though, is in their external tunability. With QDs, electrostatic gates can be

used to change the exact number of trapped electrons as well as the shape of

the confinement potential. Furthermore, electrical contacts can be made to

measure the electronic property on a single-electron level in a real-time man-

ner [4, 5]. The QD system therefore offers an excellent experimental platform

for investigating individual electrons and spins.

In 1998, Loss and DiVincenzo pointed out that a coupled QD array can

physically implement quantum computation with single spins in a QD as quan-

tum bits (qubits) [6]. The architecture is considered remarkably promising

especially in terms of scalability, since it can be integrated in principle with

the help of advanced industrial semiconductor technology. Multiple spins in

a QD array will hold a long-lived superposition and entangled state, as spins

are relatively insensitive to the environment in solid-state quantum systems [7].

Since the proposal, considerable scientific interest has been devoted to the spin
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1.2 Motivation of the Present Work

physics in electrically-controlled QDs, and now many of the prerequisites for

quantum computers have been fulfilled, including preparation, manipulation

and measurement of single spins in QDs [8].

1.2 Motivation of the Present Work

Any quantum operation on a collection of qubits can be approximated by a

sequence of quantum gates from a finite set, a universal gate set [9]. A uni-

versal set can be constructed from only single- and two-qubit gates [10], the

most canonical example being probably the controlled-NOT (CNOT) gate and

single qubit rotations [11]. For single-electron-spin qubits with QDs, electron

spin resonance (ESR) and the Heisenberg exchange interaction are the time-

honored resources of single- and two-qubit gates, respectively. The group of

gates induced by these interactions suffice for a universal gate set.

A general enemy to quantum computing is decoherence, in which the quan-

tum information encoded in qubits is lost through interactions with the other

systems [12]. At the same time, measurable susceptibility is required to control

qubit states for information processing. This gives rise to a stringent require-

ment that a qubit has to be in uncontrolled manners isolated from, and in

controlled ways tightly coupled to its environment.

The dominant source of decoherence in the case of electron spin qubits in

QDs is the hyperfine interaction with surrounding nuclear spins in the host

material [13, 14]. All manipulations must be performed within the imposed

phase coherence time in order to be meaningful in light of quantum information.

Prior to this study, single-qubit rotation in this system was slow enough

(typical gating time was several tens of nanoseconds in GaAs QDs), to let the

electron spin heavily mix with the nuclear spins during operation. The long in-

teraction with hyperfine fields makes the Rabi oscillations qualitatively deviate

from the one expected from the Markovian Bloch equations [15, 16]. On the

other hand, the two-qubit gating can be completed on much shorter timescales

(less than a nanosecond) [17]. Realizing fast single-qubit gates compared with

the hyperfine-induced dephasing in this architecture is, hence, an essential step

toward quantum computation. Fast ESR would also provide means to probe

single electron spin dynamics in solids from a viewpoint of basic science, and
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1. Introduction

may find applications in spintronics [18,19].

In this work, we explore the micro-magnet (MM) technique [20, 21] to

achieve fast electrical control of a single electron spin. Our tailored MM placed

near the QD produces the large stray field gradient that strongly mediates the

electron’s spin coupling to an electric field, which allows for fast spin gating.

We obtain above 120 MHz ESR, making the single-qubit gating time much

shorter than the time-ensemble phase coherence time (T ∗2 ). The improved

qubit control fidelity is evident from observations distinct from the conven-

tional non-Markovian driven-spin dynamics. We also prove that the MM stray

field can further be exploited for a single-spin rotation around the z-axis at

above 50 MHz, which is not directly implementable by ESR rotations. We

estimate the highest fidelities for spin- and phase-flip to be 97 % and 98 %,

respectively, with substantially smaller infidelities than previously reported.

These high-fidelity single spin operations are fast enough to perform all neces-

sary gates in key quantum circuits within a fraction of T ∗2 , together with the

established two-qubit gates through the exchange interaction.

1.3 Organization of this Dissertation

Chapter 2 describes the basic electrical properties of QDs. Transport currents

and stability diagrams of single, double and triple QDs are discussed.

Chapter 3 gives a brief introduction to spin qubits with QDs. Spin states in

few-electron QDs are explained. Important previous achievements in this field

are partially listed. Methods for spin manipulations in QDs, including various

ESR implementations, are theoretically reviewed.

In Chapter 4, optimization of the MM design is discussed. Required prop-

erties of the stray field for fast electrical spin manipulations are clarified. Based

on simulation taking into account the effect of misalignment, a general scheme

to properly design MMs for QD-based spin qubit devices is presented.

In Chapter 5, fast MM-ESR experiments with a GaAs-based double QD

are described. Enhanced inhomogeneity in the local magnetic field induced

by the MM is exemplified by a large (∼ 100 mT) ESR peak separation. The

shortest spin flip time of no longer than 4 nanoseconds is much shorter than T ∗2 ,

several tens of nanoseconds. The maximum Rabi frequency of 127 MHz in this

3



1.3 Organization of this Dissertation

experiment is the largest ever reported in electrically controlled QD systems.

In Chapter 6, distinct features of fast ESR are analyzed. ESR driving

stronger than the Overhauser field fluctuation is evidenced by the phase shift

and the decay function of Rabi oscillations. Chevron pattern of ESR spin flip

signals is presented, together with simulation results, as another proof of strong

driving.

In Chapter 7, direct control of single-spin phase is demonstrated. Electrical

gating of the Zeeman field is shown by utilizing the spatial distribution of the

MM stray field. This gives a control knob around the z-axis of a single spin,

which is not directly accessible with ESR. Above 50 MHz Z gate operation

is presented, providing an even faster implementation of small phase rotations

than with 100 MHz ESR.

In Chapter 8, an attempt to expand the technique to a triple QD system is

described.
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Chapter 2

Theory of Quantum Dot

Transport

QDs are small, typically nanometer scale, artificial structures in solids. Prog-

ress in nanotechnology has made it possible to fabricate QDs in semiconductors

with a precise but gate-tunable number of electrons. QDs show many parallels

with natural atoms, as the energy levels are quantized due to the confinement of

the electrons in all three dimensions. Arising from their larger sizes and lower

energy scales, however, QDs show different physical properties and provide

better control over individual electrons.

This chapter explains the electronic properties of QDs. The basics of a

single QD and laterally defined QDs are reviewed. Then charge configuration

in multiple QDs such as double and triple QDs is theoretically discussed.

2.1 Electronic Properties of a Single Quantum

Dot

In order to investigate its transport properties, a QD needs to be contacted

to reservoirs with tunnel barriers, through which electrons can be exchanged

(Fig. 2.1). To tune the electrostatic potential, gate electrodes can be incor-

porated, which are capacitively coupled to the QD. In such a setup, current-

voltage measurements can be conducted while changing the QD properties,

such as the number of trapped electrons and the couplings to the reservoirs, by
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2.1 Electronic Properties of a Single Quantum Dot

Vsd

source QD

gate

drain

Vg I

Figure 2.1: Schematics for electrical characterization of a QD. A QD is contacted
with two reservoirs, source and drain. Finite bias Vsd is applied across the reservoirs
and the current through the QD can be measured. In real devices more than one
capacitively-coupled gates can be used to facilitate fine tuning of QD parameters.

sweeping the gate voltage. Notably, if properly tuned, currents through a QD

oscillate as a function of the gate voltage, a characteristic behavior known as

Coulomb oscillation. Current suppression at valleys of Coulomb oscillations is

called Coulomb blockade. The aim of this section is to give a brief theoretical

description of these unique phenomena observed in QDs.

2.1.1 The Constant Interaction Model

We introduce the Constant Interaction (CI) model to explain the basic trans-

port features of a single QD [3]. The model approximates the energy level

spectra in a single QD based on the following two important assumptions:

(1) Coulomb interactions of a trapped electron with all other surrounding elec-

trons, inside and outside the QD, are parameterized by a single constant ca-

pacitance C. (2) The non-interacting, single-particle energy level spectrum of

the electrons is unchanged by the interactions. The total energy U of a QD

with N electrons in the ground state is then given by

U(N) =
1

2C
[−e(N −N0) + CSVS + CDVD + CGVG]2 +

N∑
n=1

En(B), (2.1)
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2. Theory of Quantum Dot Transport

where −e is the single electron charge and N0e is the amount of charge in the

QD that compensates for the positive background charge in the environment.

The total capacitance C is given by C = CS +CD +CG. The capacitances CS,

CD, CG are those of the QD with the source, the drain and the gate electrodes,

respectively. VS, VD, and VG are the voltages applied to the source, drain, and

gate electrodes, respectively. The terms CSVS, CDVD, and CGVG represent the

charges induced by the voltages that change the electrostatic potential of the

QD. The last term in Eq. (2.1) is the sum of the occupied single-particle energy

levels, En(B), which depend on the confinement potential and the external

magnetic field B.

The electrochemical potential µ(N) is defined as the energy difference be-

tween the N -electron ground state GS(N) and the (N − 1)-electron ground

state GS(N − 1), i.e. µ(N) ≡ U(N)− U(N − 1). From Eq. (2.1),

µ(N) =

(
N −N0 −

1

2

)
EC −

EC

e
(CSVS + CDVD + CGVG) + EN , (2.2)

where EC = e2/C is the charging energy. The first two terms are the elec-

trostatic part and the last term is the chemical part. By definition, µ(N)

corresponds to the energy required to add the N -th electron to the QD ground

state. The addition energy is the difference in the electrochemical potentials

between successive ground states and is given by

Eadd(N) ≡ µ(N + 1)− µ(N) = EC + ∆E. (2.3)

Eadd(N) contains the charging energy, EC = e2/C, and the energy spacing

∆E = EN+1−EN . ∆E = 0 only when two spin-degenerate electrons are added

to the same orbital.

Tunneling through a QD is determined by how electrochemical potentials

in the QD are aligned with those of the source, µS, and the drain, µD. Here the

electron temperature is assumed low enough compared with the charging energy

EC and the energy spacing ∆E, i.e. kBT � EC,∆E with kB the Boltzmann

constant. A bias voltage VSD = VS − VD across the source and the drain opens

an energy window, or a bias window, between µS and µD with a gap of e|VSD|.
When the QD electrochemical potentials lie within the bias window, electrons
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2.1 Electronic Properties of a Single Quantum Dot

Gate voltage, Vg

N-3

∝ Eadd

N-2 N-1 N

(a) (b) (c)

N+1I do
tμS

μD

μ(N+1)

μ(N)

μ(N-1)

ΓS ΓD

μ(N+1)

μ(N)

μ(N-1)

Figure 2.2: Coulomb oscillation. (a) Electrochemical potentials of a single QD in
the Coulomb blockade. Tunneling is blocked since there is no level in the bias window.
(b) Electrochemical potentials at a Coulomb peak. At Coulomb peaks, a single
electron can tunnel from the source into the QD with N−1 electrons, and can tunnel
out from the QD with N electrons to the drain. (c) Idot oscillation in the low bias
regime as a function of gate voltage. Note that the electrochemical potential is shifted
proportionally to the gate voltage, while the total energy is changed quadratically.
The dependence on the electron number N is also linear. Therefore, the whole ladder
of the electrochemical potentials can be shifted up and down by the gate voltage while
keeping the energy-level separation constant. At the Coulomb peaks of Idot, single-
electron tunneling takes place since an electrochemical potential exists in the bias
window. Between the peaks, on the other hand, the number of electrons in the QD
is fixed due to the Coulomb blockade effect. When Idot is completely pinched off in
the Coulomb blockade regime, the electron number can be controlled precisely by
tuning the gate voltage.

can tunnel via those energy levels. In the following, transport through the

QD is categorized into two regimes, depending on the size of the bias window:

the low-bias regime, where |eVSD| � EC,∆E and the high-bias regime, where

|eVSD| > EC and/or ∆E.

2.1.2 Coulomb Oscillation

In the low-bias regime at most one level can contribute to the transport. Tun-

neling is only allowed when an electrochemical potential µ(N) is in the bias

window, i.e. µS ≥ µ(N) ≥ µD. Otherwise electrons cannot tunnel through the

QD and the number of electrons in the QD is fixed. This is known as Coulomb

blockade (Fig. 2.2(a)). Coulomb blockade can be lifted by aligning an electro-

chemical potential µ(N) within the bias window, by sweeping the gate voltage.

In such configuration, the number of electrons can be both N − 1 and N , and

the current through the QD, Idot, shows a peak, which is called the Coulomb

8



2. Theory of Quantum Dot Transport

peak. Since only one electron can tunnel at a time, QDs are sometimes referred

to as single electron transistors (SETs). A characteristic oscillatory pattern of

Idot as the gate voltage is swept is a common observation in QD transport and

is called Coulomb oscillation (Fig. 2.2(c)).

Since µS and µD are fixed, µ(N, VG) = µ(N + 1, VG + ∆VG), with ∆VG

denoting the Coulomb peak separation. Together with Eqs. (2.2) and (2.3),

Eadd is shown to be proportional to ∆VG. Indeed, ∆VG = C
eCG

Eadd(N) =
α
e
Eadd(N), with α the so-called α-factor defined by C/CG.

2.1.3 Coulomb Diamonds

In the high-bias regime where |eVSD| > EC and/or ∆E, the bias window is large

enough for multiple levels to participate in the electron transport. To discuss

QD transport when excited states are involved, the electrochemical potential,

so far limited to transitions between ground states, needs to be generalized.

The electrochemical potential for the transition between an (N − 1)-electron

state |a〉 and an N -electron state |b〉 can be defined as

µa↔b = Ub(N)− Ua(N − 1), (2.4)

where Ua(N−1) and Ub(N) represent the total energies of a QD in the states |a〉
and |b〉, respectively. In the following, we assume for simplicity that the source-

drain bias voltage VSD is negative (hence µS > µD), and the drain reservoir is

grounded (µD = 0).

As VSD becomes more negative, µS increases since µS = −eVSD, and the

bias window becomes wider. When |eVSD| ≥ ∆E and both electrochemical

potentials for the ground state and excited state are tuned in the bias window,

more than one tunnel paths contribute to the transport (Fig. 2.3(a)). In general,

increase in the number of QD transport paths results in changes in Idot, with

the amount depending on the tunnel couplings of the levels involved with the

reservoirs. By further increasing |VSD|, the electrochemical potential for the

next ground state also enters the bias window for |eVSD| ≥ Eadd (Fig. 2.3(b)).

In such a situation, double-electron tunneling occurs and the electron number

fluctuates between N − 1, N , and N + 1.

Multi-path transport in the high-bias regime allows excited-state spectro-
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2.1 Electronic Properties of a Single Quantum Dot
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Figure 2.3: QD transport in the high bias regime. (a) Multi-path tunneling. Elec-
trons can tunnel through the excited state when |eVSD| ≥ ∆E. The corresponding
electrochemical potential is indicated by the blue line. (b) Double-electron tunneling.
It can take place when |eVSD| ≥ Eadd. (c) The map of Idot as a function of VG and
eVSD. Here we focus on transitions between the ground states, GS(N−1) and GS(N),
and the excited states ES(N − 1) and ES(N) of (N − 1) and N electrons. Along
the line of VSD = 0 Coulomb oscillation is observed (the low-bias regime). The dot
current or Coulomb peak is only observed at the VG where the GS(N − 1)↔ GS(N)
transition takes place, and the QD is otherwise in the Coulomb blockade. When
finite VSD is applied, the GS(N − 1)↔ GS(N) transition outlines a V-shaped region
where electron tunneling is possible. Outside of the V-shape region the transport
through the QD is Coulomb blockaded, since either GS(N − 1) or GS(N) is sta-
bilized. Therefore, other transitions involving the excited states are allowed only
in this V-shaped region and the differential conductance dIdot/dVSD become non-
zero only on the solid lines. The slopes of the boundaries of the V-shaped region,
d(−eVSD)/dVG, are determined by the relative capacitances. For VD = 0, they are
−CG/(C − CS) and +CG/CS. (d) Differential conductance measured in a vertical
QD. Typical Coulomb diamond structures are clearly recognized. Unusually large
diamonds are observed for N = 2, 6, and 12, which correspond to filled shells [22].
Figure is adopted from [2].
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2. Theory of Quantum Dot Transport

scopy. Since Idot changes when a new transport path enters the bias window,

the energy spectrum of excited states can be obtained from the differential

conductance measurement. For instance, the level-spacing of an excited state

can be evaluated by the eVSD where the excited-state transition line intersects

with the boundary of the Coulomb blockade region. The dependence of the

electrochemical potentials on VG and eVSD is plotted in Fig. 2.3(c). All electro-

chemical potentials of the relevant transitions can be calculated using Eq. (2.4).

If |VSD| is large enough for multiple electron tunneling, the V-shaped tunneling

regions for different charge transitions overlap each other. The Coulomb block-

ade region therefore forms a diamond shape in the VSD-VG plane, a so-called

Coulomb diamond. Figure 2.3 shows typical Coulomb diamonds observed with

a vertical QD.

2.2 Lateral Quantum Dots

QDs come in various sizes and materials. The kinds of electrically-accessible

QDs include “vertical” QDs [22] and “laterally-defined” QDs [23] in a semicon-

ductor heterostructure, “self-assembled” QDs with nano-gap electrodes [24],

InAs nanowire QDs [25] and carbon-nanotube QDs [26]. For the research of

spin qubits, lateral QDs are widely adopted, since they offer excellent tunability

of tunnel couplings and flexibility in the device design that allows integration

into a highly-sensitive electrometer.

Lateral QDs are formed in a clean two-dimensional electron gas in a semi-

conductor heterostructure (Fig. 2.4). In addition to the vertical confinement

at the hetero-junction, electrons are laterally confined by the electrostatic po-

tential of the gate electrodes, which are fabricated on the surface of the semi-

conductor substrate. This device structure makes it relatively straightforward

to fabricate multiple QDs by just adding the defining gates. As the number

of gate electrodes can be made larger than that of confined QDs, the lateral

QD offers high degrees of freedom in the device tuning. For instance, the gates

can be used to tune the tunnel couplings by several orders of magnitude, while

keeping the electron number fixed. The ability to independently change QD

parameters is crucial for electrical spin manipulations. In this section we briefly

explain the basics and the important techniques with lateral QDs.
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2.2 Lateral Quantum Dots
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Figure 2.4: Lateral QD and HEMT. (a) Schematic of the lateral QD structure.
Lateral QDs are formed in the 2DEG (colored green). Negative voltages on the
surface metal Schottky gates (colored yellow) deplete the 2DEG underneath and
form the electrostatic potential which traps electrons. Ancillary nanostructures such
as a quantum point contact and a single electron transistor can be incorporated as
sensors (see §2.2.3). (b) A typical heterostructure of HEMT. The specific parameters
are for wafer 090402A that was grown by Hong Lu in the group of A.C. Gossard at
U.C. Santa Barbara and is used in the experiments described in Chapters 5, 6 and 7.
(c) Schematic of corresponding energy profile of the conduction band. One subband
lies below the Fermi level (indicated by the dashed line) in the triangle well and forms
the 2DEG at low temperatures.
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2. Theory of Quantum Dot Transport

2.2.1 High Electron Mobility Transistor and

Two-Dimensional Electron Gas

Developments in ultra-thin film growth by molecular beam epitaxy have en-

abled fabrication of quantum wells and heterojunctions with an atomically

flat interface between two layers of semiconductors with dissimilar lattice con-

stants [27]. Such heterostructures can be designed to host a two-dimensional

electron gas (2DEG), where the electron momentum in the growth direction

is quantized by strong confinement in the thin conduction layer formed at the

junction.

In the high electron mobility transistor (HEMT) [28], donor electrons are

confined in the steep triangular well in the conduction band, formed as a result

of the band gap discontinuity at the heterointerface (Figs. 2.4(b),(c)). The

doped layer is spatially separated from the 2DEG to suppress electron scatter-

ing by the ionized donors, the dominant scattering mechanism at low temper-

atures. The electron mobility of the HEMT 2DEG can be very high, typically

106 cm2/Vs at liquid Helium temperature. HEMTs with highest mobility are

based on a modulation doped heterostructure of GaAs/n-AlxGa1−xAs, an alloy

between GaAs and AlAs with a larger band gap than GaAs, owing partially

to the small lattice mismatch between GaAs and AlAs. Due to suppressed

scattering in the HEMT, electron transport is ballistic even on sub-micrometer

scales at cryogenic temperatures, making the HEMT an appealing platform for

those experiments in low-dimensional electron systems in which ballisticity is

important.

2.2.2 Quantum Point Contacts

To fabricate nano-structures in the 2DEG, further confinement of carriers in

the lateral directions is necessary. To this end, metal gates with Schottky bar-

riers can be used to locally change the electric potential. The Schottky barrier

is a current-rectifying junction formed at the metal-semiconductor interface,

with appropriate choices of metal and semiconductor materials. The 2DEG re-

gions beneath the gates can be depleted by application of sufficiently negative

voltages on the Schottky gates. This gives in-situ tunability of confinement of

the electrons in the 2DEG in the lateral directions. The 2DEG can be elec-
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2.2 Lateral Quantum Dots

trically contacted, on the other hand, by an Ohmic contact, another type of

metal-semiconductor interface with no current rectification. For GaAs-based

heterostructures, an Ohmic contact can be made, for example, through a mix-

ture of Au and Ge that diffuses to the 2DEG by thermally annealing.

The simplest example of gate defined structures is a quantum point contact

(QPC), a quantum one-dimensional channel that is short enough to regard the

constriction as a point. A QPC can be formed in the 2DEG by negatively

biasing a pair of Schottky gates to deplete regions on two sides of a narrow

channel [29]. The conductance G through a QPC is quantized, and described

by the one-dimensional Landauer formula without scattering, G = Ne2/h,

where N is the number of the occupied one-dimensional subbands [30].

2.2.3 Charge Sensing Techniques

The conductance through a QPC changes drastically from one plateau to the

next when the number of the subbands in the bias window is changed one by

one. When the gate voltage is tuned at the steep slope between the plateaus,

the QPC conductance becomes highly sensitive to the electrostatic environ-

ment including arrangement of electrons trapped nearby. In lateral QDs, it is

possible to place QPCs in the vicinity of a QD. This enables the measurement

of the charge occupation in a QD from the conductance through an adjacent

QPC. The change of electron number configuration in a QD modifies the elec-

trochemical potential in the QPC channel, which is detected as a step-like rise

in the QPC current or a kink in the current derivative. This charge sensing

technique is especially useful when Idot is too small to detect on a realistic

timescale, as is often the case with the few-electron multiple QDs.

A proximal SET can be used in place of a QPC for detecting the QD

electron number, since the only necessary ingredient is the susceptibility to the

surrounding electrostatic potential. Indeed, an SET tuned at the slope of a

Coulomb peak has more than an order of magnitude higher sensitivity to the

charge rearrangement in the QD [31].
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2. Theory of Quantum Dot Transport

2.3 Charge Stability Diagrams of Double and

Triple Quantum Dots

A charge stability diagram plots a map of the equilibrium number of electrons in

multiple QDs in gate-voltage space. It offers a very powerful tool to understand

the electron states in multiple QDs and to identify the regime of interest in the

experiments. This section explains the charge stability diagrams of double and

triple QDs.

2.3.1 Charge Configuration in a Double Quantum Dot

A double quantum dot (DQD) is a QD array that consists of two single QDs

coupled to each other. It is a minimal QD system where inter-dot electron

correlations play essential roles.

Charge configuration in a DQD can be fully specified by (N1, N2), with

N1(2) denoting the number of electrons in QD1(2). Under realistic experimen-

tal conditions, the stability diagram of a DQD shows a characteristic honey-

comb structure, with each hexagon representing a gate-voltage region where the

DQD charge configuration is unchanged (Fig. 2.5). Nodes of hexagons are the

triple points, where three different charge states are energetically degenerate.

Since tunneling through a series-coupled DQD involves three charge states, the

current is only observed near triple points. In contrast, all charge transition

lines are visible in charge sensing measurements as they are sensitive to any

change in charge configuration including inter-dot charge exchanges such as

(N + 1,M)↔ (N,M + 1).

To investigate the electron states near the triple points in more detail, we

apply the CI model to DQDs [32] in a manner similar to §2.1.1. Suppose QD1

and QD2 of a series-coupled DQD are connected to the source and the drain,

respectively. The electrochemical potential of QD1, µ1(N1, N2) ≡ U(N1, N2)−
U(N1 − 1, N2) is given by

µ1(N1, N2) =

(
N1 −

1

2

)
EC1 +N2ECm −

EC1

e
(CSVS + C11VG1 + C12VG2)

+
ECm

e
(CDVD + C22VG2 + C21VG1), (2.5)
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Figure 2.5: DQD stability diagram. (a)-(c) Schematics of charge stability dia-
grams in a DQD. In (a), QD1 and QD2 are not capacitively coupled to each other,
and two gates, G1 and G2, are capacitively coupled to QD1 and QD2, respectively
with no cross-coupling between G1(2) and QD2(1). N1(2) is solely determined by
the gate voltage VG1(2) as in the single QD case and the charge transition lines are
either completely vertical or completely horizontal in the VG1-VG2 plane. In (b),
cross-capacitive couplings between G1(2) and QD2(1) are taken into account. In (c),
the effect of interdot capacitance is further included. Each intersection of charge
transition lines in (a) and (b), where four charge states are energetically degenerate,
splits into two triple points, whose separation is determined by the capacitive cou-
pling strength between the two QDs. Obtained honeycomb stability diagram well
approximates the experimental observation. (d) Measured DQD stability diagram.
Plotted is a derivative of current through a proximal QPC as a function of gate
voltage. NL(R) is the number of electrons in the left (right) QDs. In the lower left
region dark charge transition lines are absent, indicating that the DQD is completely
empty. At close inspection inter-dot charge transitions can be seen as bright lines
between triple points.
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2. Theory of Quantum Dot Transport

where Cij represents the capacitance between the gate Gj and QDi, and CS(CD)

the capacitance between QD1(2) and the source (drain) reservoir, respectively.

ECi
is the charging energy of QDi, and ECm is the capacitive coupling energy be-

tween two QDs and corresponds to the change in the electrochemical potential

of a QD when an electron is added to the other QD. The electrochemical poten-

tial of QD2, µ2(N1, N2), is also obtained by interchanging 1 with 2, and CDVD

with CSVS in Eq. (2.5). In the following, two different regimes of DQD trans-

port are separately discussed: the linear transport regime (|eVSD| � EC,∆E)

and the nonlinear transport regime (|eVSD| > EC and/or ∆E).

2.3.1.1 Linear Transport Regime

Figure 2.6(a) shows the charge stability diagram near a pair of neighboring

triple points in the linear transport regime. When the inter-dot tunnel coupling

tc is much smaller than the inter-dot capacitive coupling, the DQD is in the

weak-coupling regime, and charge transition lines are observed exactly where

the two lowest electrochemical potentials become degenerate.

If the DQD is in the strong-coupling regime and the tunnel coupling is not

negligible, electrons are not fully localized in either QD. Rather, they occupy

the molecular orbitals which distribute over the entire DQD. The bonding and

anti-bonding orbitals are superposition states of the single-QD orbitals localized

in either QD1 or QD2. Due to hybridization, when the single-QD states of both

QDs are aligned, the bonding orbital is lower in energy by |tc| than the single-

QD orbitals, while the anti-bonding orbital is higher by the same amount. The

effect of tunnel coupling is suppressed as the energy detuning between the two

localized states becomes large as compared to |tc|. This hybridization bends

honeycomb lines as depicted in the dashed lines in Fig. 2.6(a).

2.3.1.2 Nonlinear Transport Regime

When the source-drain bias voltage is increased, two different tunneling pro-

cesses can take place: elastic and inelastic tunneling. In the elastic tunneling

process, the initial and final electronic states have the same energy. In contrast,

in the inelastic tunneling process, there is an energy mismatch between the ini-

tial and final states, which must be compensated by e.g. phonons and photons
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Figure 2.6: Triple points and bias triangles. (a) Triple points in the DQD stability
diagram in the linear transport regime. Each line plots the gate voltages at which the
DQD electrochemical potential crosses that of the reservoirs. Solid lines are for the
weak tunnel coupling case and dashed lines are for the strong tunnel coupling case.
Encircled insets show the energy level diagrams at the indicated positions. (b) Bias
triangles in the DQD stability diagram in the nonlinear transport regime. When
the source-drain bias VSD is applied across the DQD, each triple point evolves into a
bias triangle (enclosed with black lines), in which charge transport through the dot
is energetically allowed. Out of the triangles the transport is Coulomb blockaded.
Here the source-drain bias is negatively applied (VSD < 0), so that the electrochemical
potential of the source µS is higher than that of the drain µD. In the left bias triangle,
electron transport cycle, (0, 0)→ (1, 0)→ (0, 1)→ (0, 0), takes place, whereas in the
right bias triangle, transport is by the hole cycle, (1, 1) → (1, 0) → (0, 1) → (1, 1).
Dark gray regions inside the bias triangles indicate where excited states are involved
in transport.
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2. Theory of Quantum Dot Transport

for energy conservation. Note that inelastic tunneling is a second-order process

and the average number of phonons and photons is usually negligibly small

at cryogenic temperatures. Still, inelastic tunneling becomes dominant when

there are no aligned levels for elastic processes. In semiconductor QDs, the

inelastic process is in principle dominantly mediated by the lattice vibration

(phonons)1.

Transport through a DQD is only observed when three different charge

states lie within the bias window. While this condition is only met at triple

points when VSD = 0, it is satisfied in triangular regions or bias triangles in

gate-voltage space as |VSD| is increased and the bias-window opens wider. Fig-

ure 2.6(b) draws an example of the bias triangles in the charge stability diagram

in the VG1-VG2 plane.

In order to see how the bias triangle is formed and to examine the electron

transport inside it, it is useful to introduce (level) detuning ε as the energy

difference between electrochemical potentials µ1 and µ2 of localized states. For

the moment, for simplicity we focus on the vicinity of the (0, 0)-(1, 0)-(0, 1)

charge transition and assume the source-drain bias is applied such that the

electrochemical potential of the left lead (source) is higher than that of the

right lead (drain). The bottom line of the bias triangle which runs parallel

to the (0, 1)-(1, 0) boundary is the zero-detuning line, on which ε = 0 (i.e.

µ1(1, 0) = µ2(0, 1)). As we go away from the zero-detuning line toward the

(0, 1) region, the detuning ε(= µ1(1, 0)− µ2(0, 1)) becomes larger. If we move

parallel to the zero-detuning line in the stability diagram, all chemical potentials

of (1, 0) and (0, 1) states shift by the same amount and ε is fixed. When

ε ≥ |eVSD| the condition of µS ≥ µ1(1, 0) ≥ µ2(0, 1) ≥ µD is not fulfilled in any

region so the bias triangle is closed at ε = |eVSD|.
Transport current and time-averaged charge configuration are not constant

within the bias triangle. Stripes are often observed which run parallel to the

zero-detuning line. Since they originate from elastic transport through excited

states, measuring these stripes, in either transport currents or charge sensing

signals, allows the energy-level spectroscopy. This bias spectroscopy is a power-

ful tool, as it also yields the energy scales such as charging energies, energy level

1An important exception is when QDs are irradiated with microwaves. Then the emission
and absorption of photons are enhanced, leading to photon-assisted tunneling (PAT) [33].
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Figure 2.7: Two representative TQD geometries. (a) In the fully symmetric
case three QDs form a triangle. (b) In the mirror-symmetric case they form a one-
dimensional array.

spacings and electrostatic or tunnel coupling strengths. However, the visibil-

ity of the stripes strongly depends on relative tunnel couplings and interaction

strengths, necessitating fine-tuning of the QD parameters.

2.3.2 Charge Configuration in a Triple Quantum Dot

A triple QD (TQD) is a set of three coupled QDs. Unlike a DQD, a TQD

has a degree of freedom in the relative inter-dot capacitive couplings; relative

inter-dot capacitances, and thus the stability diagrams are strongly affected by

how the three QDs are arranged (Fig. 2.7). Here only a series-coupled TQD

is considered, due to the ease of experimental realization. For simplicity, we

further assume that the capacitive couplings are symmetric against interchange

of 1 and 3 (Fig. 2.7(b)).

2.3.2.1 Electrostatic Energy of a Triple Quantum Dot

The CI model introduced in §2.1.1 describes the electrostatic energy of the

TQD states well enough to reproduce the stability diagrams observed experi-
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2. Theory of Quantum Dot Transport

mentally [34,35]. The total charge in the i-th QD, Qi, is given by

Qi = eNi =
∑
j

Cij(Vi − VGj) +
∑
j 6=i

Cmij(Vi − Vj), (2.6)

where Ni, Vi and VGj represent the electron number and the electrical potential

of the i-th QD and the gate voltage of the j-th electrode, respectively. Cij is

the capacitance between the i-th QD and the j-th electrode, Cmij the interdot

capacitance between the i-th and the j-th QD . Note that in general Cmij =

Cmji. Equation (2.6) forms a system of simultaneous equations with three

variables ~Q = C~VQD: Q1 +
∑

iC1iVGi

Q2 +
∑

iC2iVGi

Q3 +
∑

iC3iVGi

 =

 C1 −Cm12 −Cm13

−Cm21 C2 −Cm23

−Cm31 −Cm32 C3


 V1

V2

V3

 , (2.7)

with Ci =
∑

j Cij +
∑

j 6=iCmij. C is simplified in the mirror-symmetric TQD2

as

C =

 C1 −CM −Cm

−CM C2 −CM

−Cm −CM C3

 . (2.8)

The total energy of a TQD can then be written by U(N1, N2, N3, V1, V2, V3) =
1
2
~Q · ~VQD = 1

2
~Q · C−1 ~Q and the electrochemical potential in the i-th QD is

µi(N1, N2, N3, V1, V2, V3) = U(Ni + 1)− U(Ni).

Stability diagrams plot the Coulomb blockade regions with fixed equilibrium

numbers of trapped electrons. The condition for Coulomb blockade in a TQD

is that no electron exchange is allowed with the reservoirs or among the QDs.

The condition that no extra electron is exchanged with the leads is expressed

2Due to symmetry, CG = C11 = C22 = C33, Cg1 = C12 = C21 = C23 = C32, Cg2 =
C13 = C31, CM = Cm12 = Cm21 = Cm23 = Cm32 and Cm = Cm13 = Cm31. Therefore
C1 = C3 = CG + Cg1 + Cg2 + CM + Cm and C2 = CG + 2Cg1 + 2CM. See Fig. 2.7(b) for
visual description.
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2.3 Charge Stability Diagrams of Double and Triple Quantum Dots

by a set of inequalities such as3

µ1(N1, N2, N3, V1, V2, V3) ≤ 0 ≤ µ1(N1 + 1, N2, N3, V1, V2, V3),

where the electrochemical potentials of the reservoirs are assumed to be in the

low-bias regime and ∼ 0. The other condition that no intra-TQD transition is

allowed is expressed by a set of inequalities such as4

µ1(N1, N2, N3, V1, V2, V3) ≤ µ2(N1 − 1, N2 + 1, N3, V1, V2, V3),

µ2(N1, N2, N3, V1, V2, V3) ≤ µ1(N1 + 1, N2 − 1, N3, V1, V2, V3).

The Coulomb blockade regions where all the above conditions are met in

the gate-voltage space can be numerically calculated for various choices of

(N1, N2, N3), given the form of TQD electrochemical potentials. Figure 2.8

shows charge stability diagrams simulated in this manner around the electron

numbers (0, 0, 0)-(1, 1, 1).

2.3.2.2 Elastic Transport Through a Two-Terminal Triple Quantum

Dot

Charge transfer behavior in a multiple QD can be complex as its energy levels

become dense and complicated. The charge configuration map of a TQD is

essentially three dimensional, making it much less common for level alignment

to occur in two dimensional slices of the stability diagram [34,36,37]. Fine pa-

3To be specific, the other inequalities are as follows:

µ2(N1, N2, N3, V1, V2, V3) ≤ 0 ≤ µ2(N1, N2 + 1, N3, V1, V2, V3),

µ3(N1, N2, N3, V1, V2, V3) ≤ 0 ≤ µ3(N1, N2, N3 + 1, V1, V2, V3).

4The other inequalities that prohibit transitions between QD2 and QD3 and between QD1
and QD3 are given as follows:

µ2(N1, N2, N3, V1, V2, V3) ≤ µ3(N1, N2 − 1, N3 + 1, V1, V2, V3),

µ3(N1, N2, N3, V1, V2, V3) ≤ µ1(N1 + 1, N2, N3 − 1, V1, V2, V3),

µ1(N1, N2, N3, V1, V2, V3) ≤ µ3(N1 − 1, N2, N3 + 1, V1, V2, V3),

µ3(N1, N2, N3, V1, V2, V3) ≤ µ2(N1, N2 + 1, N3 − 1, V1, V2, V3).
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Figure 2.8: Numerically calculated charge stability diagrams of the mirror-
symmetric TQD. Each gate voltage VGi is normalized by e/Cii. Calculated for
CG = 20Cm and Cg = 5Cm. Diagrams (a)-(e) are plotted as a function of VG1

and VG3 for different VG2 . Diagram (f) gives a map when VG1 and VG3 are changed
simultaneously and symmetrically while VG2 is swept continuously. Four quadruple
points are indicated in (a), (b), (d) and (e). Figures are adopted from [35].
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2.3 Charge Stability Diagrams of Double and Triple Quantum Dots

rameter tuning is thus required to observe finite currents through TQD devices

contacted with leads at both ends5.

A TQD analogue to a triple point in DQDs is a quadruple point, where

four TQD electronic configurations are degenerate. In Figs. 2.8(a), (b), (d)

and (e), four quadruple points QP1 to QP4 are recognized. At these quadruple

points, one-by-one electron tunneling is allowed6. Along the red solid lines in

Figs. 2.8(c) and (f), the regions of the charge states (0, 1, 0) and (1, 0, 1) sit next

to each other. There the charge transition between these states can be caused by

the quantum cellular automata (QCA) co-tunneling processes [39], in which an

electron entering QD1(3) kicks the QD2 electron to QD3(1). Since this QCA

process involves a change in the total electron number, an effective current

is observed through the TQD. Therefore, transport currents can flow at four

quadruple points and on the QCA line in the charge stability diagrams [34,37].

5It is experimentally possible to fabricate and measure three-terminal TQDs. Such devices
can be seen as a pair of DQDs in primary approximation and the condition to observe
transport currents is much less severe [35,38].

6The tunneling sequence at each quadruple point is as follows:

QP1 : (0, 0, 0)←→ (1, 0, 0)←→ (0, 1, 0)←→ (0, 0, 1)

QP2 : (0, 1, 1)←→ (1, 0, 1)←→ (1, 1, 0)←→ (1, 1, 1)

QP3 : (1, 0, 0)←→ (0, 1, 0)←→ (0, 0, 1)←→ (1, 0, 1)

QP4 : (1, 1, 0)←→ (1, 0, 1)←→ (0, 1, 1)←→ (0, 1, 0).
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Chapter 3

Spin Qubits in Quantum Dots

Electron spins are the canonical example of a quantum mechanical two-level

system. They are promising candidates for qubits, because the spin is not

strongly affected by the environment and the charge degree of freedom offers

electrical knobs for manipulating the spin system [40–42]. Coherent operation

of single electron spins in QDs has been intensively studied since the seminal

proposal of QD-based quantum computers [6]. Three implementations of QD-

based spin computers, single-spin, two-spin and three-spin qubits1, have been

realized experimentally since then [17,45,46].

This chapter reviews the main achievements in the field of quantum comput-

ing with QD spins, with a primary focus on single-spin qubits, the simplest im-

plementation. Preceding experiments demonstrating prerequisites for quantum

computing [12] are partially reviewed, including the initialization and readout

of single spins, single-qubit operations, control of two-qubit entanglement and

measurement of coherence times.

3.1 Spin States in Quantum Dots

Understanding energy levels of spin states is essential to initialize, readout and

control single spins electrically. Here we theoretically discuss the spin states

1In the community jargon, these implementations, proposed independently [6,43,44], are
named Loss-DiVincenzo (LD), singlet-triplet (ST) and exchange-only (EO) qubits, respec-
tively.
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3.1 Spin States in Quantum Dots

in an array of singly-occupied QDs, which are particularly useful to implement

qubits.

3.1.1 Single-Electron Spin States

In non-magnetic semiconductors, spins interact only weakly and are treated

as non-interacting, independent quantum systems to first-order approximation.

However, the Landé g-factor deviates considerably from that of the free electron

(≈ 2) due mainly to enhanced spin-orbit interaction [47]. Confinement in a QD

can further modify the effective g-factor [48]. The Zeeman Hamiltonian of a

single spin in a QD under a magnetic field B is then simply given by

Hlab, Z =
gµB

2
B · σ, (3.1)

with g, the Landé g-factor, as a parameter, where µB is the Bohr magneton and

σi are the Pauli matrices. Up and down spin eigenstates, aligned to the direction

of B, are split by the Zeeman energy EZ = |g|µB|B|. In the laboratory frame

the spin precesses at the Larmor frequency fL = |g|µB|B|/h, with Planck’s

constant h.

To define qubits, it is convenient to take a reference frame rotating at an

angular frequency ω ∼ ωL(= 2πfL). A superposition spin state |ϕ〉ref in the

rotating frame can be expressed as |ϕ〉ref = exp
(
iωt
2
σz
)
|ϕ〉lab, where σz is the

Pauli z matrix and |ϕ〉lab is the spin state in the laboratory frame. By simply

substituting for |ϕ〉lab in the Schrödinger equation in the original frame, the

Hamiltonian that describes the time evolution in the reference frame is obtained

as,

Href = e
iωt
2
σzHlabe−

iωt
2
σz − ~ω

2
σz. (3.2)

Notably when ω = ωL, Href = 0 in the reference frame, and the spin is at rest.

Figure 3.1 shows the Bloch sphere of a single spin, a graphical representation

of the state of the two level system, in the original and reference frames [9].
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3. Spin Qubits in Quantum Dots

(a) (b) 

Figure 3.1: The Bloch sphere of a single spin. A pure spin state can be represented
by a Bloch vector pointing to the surface of the sphere. The inclination from the
z-axis θ is determined such that the up-spin probability P|↑〉 = cos2 θ, while the
azimuthal angle, as for a pure spin state, corresponds to the relative phase of up-
and down-spin states. The direction of the field is taken as z. (a) In the laboratory
frame, the spin precesses under a magnetic field. (b) In the reference frame rotating
at the spin precession frequency, spin appears static.

3.1.2 Two-Electron Spin States

Understanding two-electron spin states and interactions between single spins

are essential for entanglement control and two-qubit operation. Since spins are

not coupled to electric fields directly, electrical control of spin-spin interactions

is only possible when they are correlated with the charge degrees of freedom.

Such correlation is strongly enhanced at the charge degeneracy of (1, 1)-(2, 0)

(or equivalently (1, 1)-(0, 2)) in a DQD [17,49]. It is therefore crucial to under-

stand energy levels away from the (1, 1) Coulomb blockade regime, where two

qubits are well encoded.

To discuss spin states in the vicinity of (1, 1)-(2, 0) transition, it is con-

venient to introduce the level detuning, ε, as the difference of electrical po-

tentials between QD1 and QD2 (Fig. 3.2(a)). When ε is sufficiently large to

stabilize the (2, 0) charge occupancies, the ground state becomes the singlet,

|S(2,0)〉 = (|↑1↓1〉 − |↓1↑1〉) /
√

2 , since Pauli’s exclusion forces symmetric spins

to occupy different orbitals in QD1. The localized singlet-triplet energy dif-

ference, EST, is typically much larger than the interdot tunnel coupling, tc,

and the level detunings of interest. Given that the tunneling process preserves
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3.1 Spin States in Quantum Dots

spin, hybridization with (2, 0) states is exclusively allowed for the singlet2,

|S〉 = (|↑1↓2〉 − |↓1↑2〉) /
√

2. The Hamiltonian that describes the tunnel cou-

pling is then given by

HT = −ε |S(2,0)〉 〈S(2,0)|+
√

2tc
(
|S(2,0)〉 〈S|+ |S〉 〈S(2,0)|

)
. (3.3)

At negative detunings, the virtual tunneling to |S(2,0)〉 lowers the energy of |S〉
by the effective exchange energy J . From Eq. (3.3),

J(ε) =
√
ε2 + 8tc

2. (3.4)

When the levels are sufficiently detuned (ε � tc), the admixture with |S(2,0)〉
is suppressed and Eq. (3.3) simplifies to the Heisenberg Hamiltonian, J ~S1 · ~S2.

In the (1, 1) Coulomb blockade regime, the effective system Hamiltonian in

the laboratory frame is then approximated by

H = −J(ε) |S〉 〈S|+ ∆Z (|↑1↓2〉 〈↑1↓2| − |↓1↑2〉 〈↓1↑2|)
+EZ,0 (|T+〉 〈T+| − |T−〉 〈T−|) . (3.5)

Here EZ,0 is the average Zeeman energy and ∆Z is the difference in the (local)

Zeeman energy between the dots. If the g-factors are the same, ∆Z = gµB∆BZ,

where ∆BZ is difference of the local magnetic field along the quantization z-axis.

|T+〉 = |↑1↑2〉 and |T−〉 = |↓1↓2〉 are the (1, 1) triplet states with parallel spins.

These triplets with nonzero z-component Sz of the total spin are Zeeman split

under sufficiently large magnetic fields to define spin qubits. In the remaining

|↑↓〉-|↓↑〉 subspace, J and ∆Z compete with each other (Fig. 3.3).

3.1.3 Three-Electron Spin States

Three spins in a series-coupled singly-occupied TQD are coupled by nearest-

neighbor exchange interactions, J12 (J23) between QD1(2) and QD2(3). Since

they originate from virtual inter-dot tunneling of singlet-like states, J12 and J23

are enhanced as the TQD is tuned toward the (2, 0, 1) and (1, 0, 2) charge state,

2Note that the orbital part of the wavefunction is omitted. The singlet and the triplets
with (1, 1) charge occupancies have different orbital wavefunctions with the opposite sym-
metry under exchange.
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Figure 3.2: Two-electron spin energy levels and the level detuning. (a) DQD
stability diagram with a large source-drain bias. The level detuning (ε) axis is indi-
cated in the diagram. (b) Schematics of electrochemical potentials (relative to the
(1, 0) state) for the (1, 0) → (1, 1) → (2, 0) transport cycle at various points along
the detuning axis indicated in (a). For ε . −tc the (1, 1) states are stabilized. For
ε & tc the (2, 0) is the lowest level in the bias window. (c) Energy levels as a function
of level detuning. Away from the (1, 1) charge boundary (ε ∼ 0), J approaches 0,
so |↑↓〉 and |↓↑〉 become eigenstates due to finite interdot difference in the Zeeman
energy. The splitting between the triplet states (T+ and T−) is equal to twice the
Zeeman energy. Note that the sign of gµBB0 is negative here so that the T+ is lower
in energy. (d) Energy levels near zero-detuning. When ε = 0, two singlet states
anti-cross, with the size of the splitting equal to 2

√
2tc. Slightly away from ε = 0,

the eigenstates are |S〉 and |T0〉. |S〉 is lower in energy by the exchange interaction,
J(ε).
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3.1 Spin States in Quantum Dots

(b) (a) 

Figure 3.3: Bloch sphere representation of the Sz = 0 subspace. (a) When the
local Zeeman energy difference (∆Z) is much larger than the exchange energy (J),
the eigenstates are |↑↓〉 and |↓↑〉. (b) In the opposite limit, the eigenstates are |S〉
and |T0〉 = (|↑1↓2〉+ |↓1↑2〉) /

√
2.

respectively. The eigenstates are four quadruplets3 with S = 3/2, and four dou-

blets4 with S = 1/2, under the same Zeeman energies among QDs [50]. Away

from the energy degeneracy points, the biggest correction to these eigenstates

of exchange-coupling Hamiltonian comes from the local Zeeman energy differ-

ences, ∆Z,12 and ∆Z,23 between QD1(2) and QD2(3), which couple two doublet

states and a quadruplet state with the same spin projection Sz [46, 51, 52]. In

the middle of the (1, 1, 1) Coulomb blockade region where J12 and J23 are sup-

3Explicitly, the four quadruplets |QSz 〉 are

|Q+3/2〉 = |↑↑↑〉 ,
|Q+1/2〉 = |↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉 ,
|Q−1/2〉 = |↓↓↑〉+ |↓↑↓〉+ |↑↓↓〉 ,
|Q−3/2〉 = |↓↓↓〉 ,

with eigenenergies E(QSz
) = gµBB0Sz. Normalization factors are omitted for clarity.

4The four doublets |∆±Sz
〉 are

|∆±+1/2〉 = (J12 − J23 ± JΣ) |↑↑↓〉+ (J23 ∓ JΣ) |↑↓↑〉 − J12 |↓↑↑〉 ,

|∆±−1/2〉 = (J12 − J23 ± JΣ) |↓↓↑〉+ (J23 ∓ JΣ) |↓↑↓〉 − J12 |↑↓↓〉 ,

where JΣ =
√
J12

2 + J23
2 − J12J23 with eigenenergies E(∆±Sz

) = −(J12 + J23 ∓ JΣ)/2 +
gµBB0Sz. Normalization factors are again omitted for clarity.
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3. Spin Qubits in Quantum Dots

pressed, ∆Z,12 and ∆Z,23 dominate and therefore the eigenstates and eigenen-

ergies are defined by the Zeeman energy.

3.2 Qubit Readout

Single-spin detection is technically challenging in general, since the magnetic

moment of a single spin is very small. However, in QDs, it can be performed rel-

atively easily, for instance by combining spin-to-charge conversion and charge

readout. Here representative qubit readout techniques are reviewed and dis-

cussed.

3.2.1 Energy-Selective Readout

In energy-selective spin readout, the QD electrochemical potentials are tuned

so that only one of the two Zeeman-split sublevels is energetically higher than

the Fermi level in the reservoir. When the Zeeman energy is larger than the

thermal energy kBTe in the reservoirs (Te is the electron temperature), only

the electron with the higher energy spin can tunnel out, and the one with the

opposite spin remains trapped. This single-electron tunneling process can be

detected, for example by monitoring a charge sensor (see §2.2.3). In ref. [5]

single-shot readout of a single spin trapped in a singe QD is realized in this

manner. Moreover, in ref. [53] independent single-shot readout of two spins in

a DQD is demonstrated, and the correlations between two spins are probed.

Possible drawbacks of this scheme are that it requires either sufficiently high

Zeeman energy or low electron temperature and that it is inevitably destructive.

3.2.2 Pauli Spin Blockade

Since spin is generally preserved in the tunneling process, there are some cases

where the spin selection rule governs the electron transport through a QD. One

prominent example is the Pauli spin blockade (PSB), the phenomena that the

electron transport is blocked due to the Pauli exclusion principle. It was first

observed in a vertical GaAs DQD [54], and later in many DQD systems [14,

55–57].
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3.3 Electron Spin Resonance

The mechanism of the PSB is as follows. Let us focus for simplicity5 on

the detuning range EST > ε > 0 in the electron transport cycle (1, 0) →
(1, 1) → (2, 0) → (1, 0) (see Fig. 3.2). If in the (1, 0) → (1, 1) transition a

(1, 1) singlet state is formed, the electron in QD2 can tunnel to QD1, forming

the (2, 0) singlet state. Then the system can return to the initial (1, 0) charge

configuration, completing a cycle. If, on the other hand, one of the (1, 1) triplet

states is formed in the (1, 0)→ (1, 1) process, inter-dot tunneling is prohibited,

since (2, 0) triplet states are higher in energy due to the Pauli exclusion. The

electron in QD2 cannot tunnel back to the reservoir, either. Although the

T0 state can be mixed relatively quickly with the (1, 1) singlet due to the

Overhauser field (see §3.5), the decay time of T+ and T− is in the order of

milliseconds if they are sufficiently Zeeman lifted. Therefore, once a (1, 1)

triplet with parallel spins is formed, the system is stuck in the (1, 1) charge

configuration and the transport in this region is totally suppressed.

Detecting a current or charge configuration in the PSB region gives a mea-

sure of finding probability of anti-parallel spins. By waiting longer than the

decay time in the same region, the spin state is initialized in either T+ or T−,

since they are the only states that cannot escape quickly. Therefore, the PSB

effect is widely used in the proof-of-principle spin-qubit experiments, to initial-

ize as well as to readout the single-spin qubit state. Furthermore, a distinction

between the parallel spin states is also possible with a ramp pulse which is adi-

abatic with respect to tc. By gradually changing ε from (1, 1) to (2, 0) region,

the ground and excited state defined by local Zeeman energies are mapped to

(2, 0) singlet and T0, respectively [17,58].

3.3 Electron Spin Resonance

Single spin rotations, or single-qubit operations of a single-spin qubit, are com-

monly performed via electron spin resonance (ESR). This section first describes

a generic theory of ESR and then several schemes for realizing ESR of single

spins in QDs.

5PSB is commonly observed where transitions such as (2M + 1, 2N + 1)→ (2M + 2, 2N)
are involved.
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3. Spin Qubits in Quantum Dots

3.3.1 Theory of Electron Spin Resonance

ESR is a magnetic resonance where electron spins are flipped under field excita-

tion consistent with the Zeeman energy, say from |↑〉 to |↓〉. Such vertical spin

rotations require a control magnetic field that is perpendicular to the static

magnetic field B0 ‖ ẑ, applied to define the qubit (see Eq. (3.1)). However, the

Larmor precession tends to average out the effect of most interactions, static or

time-varying, in directions other than z, that work on timescales longer than

the precession period. Such an averaging effect is canceled in the reference

frame rotating at the Larmor frequency (see §3.1.1). This indicates that spin

flips can be caused by a perpendicular magnetic field rotating synchronously

with spin, even with the amplitude � B0. Moreover, the rotating magnetic

field can be replaced by an experimentally-accessible oscillating magnetic field,

which is a superposition of two counter-rotating fields.

From the above considerations, we apply a magnetic field oscillating in the

x direction at a frequency ω/2π(≈ fL) with an amplitude Bac. The time-

dependent Hamiltonian of the electron spin is

Hlab =
gµBB0

2
σz +

gµBBac

2
cos(ωt+ ϕ)σx, (3.6)

where σi are the Pauli matrices and ϕ is the phase of the applied field at

t = 0. In the reference frame rotating at the frequency ω/2π, the spin’s time

evolution becomes much simpler and clearer. From Eq. (3.2), the corresponding

Hamiltonian is

Href = −~δ
2
σz + ~ωR cos(ωt+ ϕ) [cos(ωt)σx − sin(ωt)σy] , (3.7)

where ωR = gµBBac/2~, δ/2π = (ω − ωL)/2π is the frequency detuning with

ωL = 2πfL.

When |ωR| � |ω|, which is the case in the regime of experimental interest,

terms in Eq. (3.7) that oscillate at 2ω cannot contribute much to spin evolu-

tion [59]. This is because their effect, only present on a timescale 2π/ωR, is

averaged by their own rotation with respect to the spin. The so-called rotating

wave approximation neglects these two terms of counter-rotating fields. The
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3.3 Electron Spin Resonance

effective Hamiltonian is then described as,

Href ≈ −
~δ
2
σz +

~ωR

2
[(cosϕ)σx + (sinϕ)σy] ≡ HESR. (3.8)

Under HESR, spin rotates around (ωR cosϕ)x̂ + (ωR sinϕ)ŷ − δẑ at a fre-

quency
√
ωR

2 + δ2/2π in the reference frame (Fig. 3.4). In particular, in the

ESR resonance condition of δ = 0 i.e. ω = ωL, spin will flip completely, at the

Rabi frequency ωR/2π. ESR suffices for arbitrary single-spin rotations, since

the rotation axis can be changed arbitrarily in the xy plane by choice of the

initial phase of the field ϕ [60, 61].

It is of experimental interest to capture the coherent time evolution of spin

under ESR drive. Suppose the initial spin state is |↑〉, the probability of finding

spin in |↓〉 at a time t is given by the Rabi formula,

Pflip =
ωR

2

2ΩR
2 [1− cos(ΩRt)] , (3.9)

where ΩR/2π =
√
ωR

2 + δ2/2π is the generalized Rabi frequency. At complete

resonance, Eq. (3.9) simplifies to 1
2

[1− cos(ωRt)], yielding an ideal Rabi oscilla-

tion. Figure 3.4(c) shows a characteristic chevron pattern in the 2-dimensional

plot of the spin flip probability as a function of time and the frequency detuning

from resonance.

3.3.2 Micro-Magnet Electron Spin Resonance

ESR requires an oscillating magnetic field perpendicular to a static magnetic

field. The main experimental challenge is how to feed a high-frequency effec-

tive magnetic field to the QDs at cryogenic temperatures. This favors the use

of electric fields in place of magnetic fields, as they are more localized and

free from the Joule heating, which inevitably accompanies a.c. current injec-

tion. However, unlike magnetic fields, electric fields do not directly couple to

spin. Therefore, some mediating mechanism is necessary to drive ESR electri-

cally [62]. One way of realizing such mediation is to impose a slanting magnetic

field by proximal micro-magnets (MMs) [20, 21] (Fig. 3.5(a)). This technique

is also advantageous for scaling, as the MMs designed in the right manner can
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3. Spin Qubits in Quantum Dots
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Figure 3.4: Electron spin resonance. (a) An oscillatory magnetic field can be
decomposed into two counter-rotating magnetic fields. In the laboratory frame time
evolution of spin under ESR drive is mutation: the Sz component changes slowly
during rapid precession. (b) In the reference frame rotating at the frequency of the
applied field, the field becomes static. The remaining effect of the external field B0 in
the z direction is ~δ in energy. The rotation axis and speed is given by the vector sum
of these contributions. (c) Chevron pattern of spin flip probability. The vertical axis
is the evolution time or equivalently the duration of ESR excitation. The horizontal
axis is (2π×) the frequency detuning normalized by (2π×) the ESR Rabi frequency.
At resonance, the probability oscillates from 0 to 1. A slightly off-resonant magnetic
field rotates spin only imperfectly with a shorter oscillation period.
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3.3 Electron Spin Resonance

make the resonance frequencies different from dot to dot [63] (Fig. 3.5(b),(c)).

Suppose a time-dependent electric field E(t) is applied to the electron con-

fined in a QD with a harmonic potential V (r) = m∗ω0
2(y2+z2)/2 and magnetic

field distribution B(r) [20, 64]. Here, m∗ is the effective mass of an electron.

The Hamiltonian is written as

Hlab =
p2

2m∗
+ V (r) + eE(t) · r +

1

2
gµBB(r) · σ. (3.10)

Consider a local magnetic field whose x component is slanted in the z direction:

B(x, z) = (B0 +bslx)ẑ+(Bx+bslz)x̂. Here B0 is the external magnetic field and

bslxẑ is added to satisfy Maxwell’s equations. Such magnetic field distribution

can be obtained experimentally for instance by placing a MM on top of a

lateral QD. The term bslxẑ can be neglected assuming strong confinement in

the x direction. Since Bx is much smaller than B0, it only slightly modifies the

quantization axis. A crucial role is played by the term bslzx̂, which mixes the

spin and charge degrees of freedom via the last term in Eq. (3.10).

When a microwave is applied in the z direction at a frequency of ω/2π,

Eq. (3.10) can be reorganized as follows:

Hlab = H0 +Hmix +Hexc(t) (3.11)

H0 =
p2

2m∗
+ V (r) +

gµBB0

2
σz (3.12)

Hmix =
gµBbslz

2
σx (3.13)

Hexc(t) = eEac sin(ωt)z. (3.14)

H0 does not mix the spin and orbital degrees of freedom. Then the eigenstates,

|m,n;σz〉, and eigenenergies, εm,n;σx , of H0 can be expressed as 〈y, z|m,n;σz〉
= φm(y)φn(z)ψσz and εm,n;σz = ~ω0 (m+ n+ 1) + gµBB0

2
σz, respectively, where

φm(y) and φn(z) are the orbital eigenstates in the harmonic potential, and ψσz is

a spinor. The perturbation of Hmix mixes spins with orbitals. The hybridized

two lowest levels can be regarded as pseudo-spins |σp〉. By calculating the

eigenstates and eignenergies of H0 +Hmix up to first order in the characteristic
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3. Spin Qubits in Quantum Dots
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Figure 3.5: ESR with a MM. (a) Device configuration for MM-ESR. The MM
is placed on top of the QD, and magnetized by the external field (‖ z). It is so
designed that the out-of-plane (x-) component of the stray field is slanted at the
QD position. The slanting field, bsl = dBx/dz, couples the spin states with the
orbital states. A high-frequency electric field is applied in the z direction to drive
ESR. A classical view of the scheme is that spin feels an oscillatory magnetic field
perpendicular to the external field when the time-varying electric field shakes the
QD electron in the slanting field. (b) A QD array integrated with a MM. QDs, metal
gates, an insulating layer and a MM are colored in purple, orange, green and yellow,
respectively. A properly-designed MM produces large differences of the z-component
of the stray field between the neighboring dots, making ESR conditions different from
dot to dot. (c) Expected ESR spectra from a QD array. The horizontal axis is the
external magnetic field, or the microwave frequency. The peak spacings are given by
interdot differences of the z-component of the MM field. When peaks are separate
from each other, a single spin can be rotated in an addressable manner, i.e. without
flipping other spins. (d) Formation of a qubit state. An “up” state of pseudo-spin is
a hybridized state of spin-up in the orbital ground state and spin-down in the orbital
excited states. Here only the first excited state, which has the largest contribution
among the excited states, is drawn for simplicity.
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3.3 Electron Spin Resonance

coupling energy Esl ≡ gµBbsl

√
~/m∗ω0, we obtain

|σp〉 = |0, 0;σz〉 −
∑
n>0

gµB
2
bsl 〈0, n|z|0, 0〉

n~ω0 − gµBB0σz
|0, n;−σz〉 . (3.15)

There is no renormalizaion of the eigenenergies in leading order of Esl, since

〈m,n|z|m,n〉 = 0 from confinement symmetry.

Now we can include the effect of the oscillatory electric field onto the pseudo-

spin |σp〉. The diagonal elements of Hexc are 0 up to first order in Esl, due to

the confinement symmetry and the linearity of the slanting magnetic field. The

non-diagonal elements can be calculated as 〈−σp|Hexc|σp〉 = gµBBac

2
sin(ωt) +

O(Esl)
2, where the amplitude of the effective magnetic field is,

Bac = −
∑
n>0

2n~ω0bsleEac

(n~ω0)2 − (gµBB0)2
| 〈0, 0|z|0, n〉 |2 ≈ −eEacbsl

m∗ω0
2
. (3.16)

The effective Hamiltonian of the pseudo-spin system in the slanting magnetic

field is, up to leading order of Esl,

Hlab = ~ω0σp0 +
gµBB0

2
σpz +

gµBBac

2
sin(ωt)σpx, (3.17)

with σpi the Pauli matrices of the pseudo-spin. This coincides with the ESR

Hamiltonian given in Eq. (3.6) up to the overall energy shift, indicating that

ESR can be electrically driven in a slanting magnetic field.

3.3.3 Comparison with Other Techniques

Single ESR in QDs has been achieved in several ways other than MM-ESR.

Magnetic drive is the scheme adopted in the first demonstration, where a.c.

current is injected to an on-chip coil [45]. The spin-orbit interaction (SOI) pro-

vides indirect coupling necessary for electrical spin control, which is favorable

in terms of addressability and the Joule heating problem [65]. Although in

GaAs, the Rabi frequency of SOI-mediated ESR is limited to a few MHz due

to the weak SOI [66], it greatly improves in materials with stronger SOI such as

InAs [61] and InSb [67]. The hyperfine interaction can also mediate electrically

driven ESR, with no coherent oscillations [68]. Table 3.1 summarizes spin flip
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3. Spin Qubits in Quantum Dots

Table 3.1: Spin flip time Tπ and phase coherence times of single ESR in QDs

ESR method Tπ T2
∗ T2

echo

Micro-coil ESR in GaAs QDs [45] 54 ns

SOI-ESR in GaAs QDs [66] 110 ns 37 ns [60] 400 ns [60]

MM-ESR in GaAs QDs [69] 33 ns

SOI-ESR in InAs QDs [61] 8.6 ns 8 ns 50 ns

SOI-ESR in InSb QDs [67] 4.8 ns 8 ns 34 ns

times and phase coherence times of single ESR in QDs.

3.4 Two-Qubit Operation

The simplest two-qubit gate implementation in the single-spin qubit system

is to use the exchange interaction between spins in neighboring dots [6, 70].

It is readily seen that the exchange term −J |S〉 〈S| in Eq. (3.5) swaps spin

states by rewriting it as J
2

(|↑↓〉 〈↓↑|+ |↓↑〉 〈↑↓|+ |T+〉 〈T+|+ |T−〉 〈T−|), ig-

noring the global shift in energy. From a viewpoint of qubit control it is crucial

that J(ε) can be switched by the gate voltage (see Eq. (3.4)). The SWAP

operation can be performed by starting deep in the Coulomb blockade regime

with J → 0 and activating the exchange interaction at some detuning εE for a

time tSWAP = π~/J(εE). By reducing the interaction time by half the
√

SWAP

gate is obtained, which is a maximally entangling gate.

To perform the SWAP gates, it is required that J(εE) can be made much

larger than the local Zeeman energy difference ∆Z (see §3.1.2). At the same

time, non-zero ∆Z is a must for addressable ESR rotations (see §3.3.2). By

properly tuning the interdot tunnel coupling, J(εE)/∆Z can be made� 1, and

above-GHz SWAP rotations have been demonstrated in GaAs lateral QDs [17].

In the opposite limit where J(εE)/∆Z � 1, the natural two-qubit gate evolves

from
√

SWAP to the controlled-phase (CPHASE), another maximally entan-

gling gate [6,71]. In this regime the change in J(ε) (from 0 to J(εE)) does not

change the system eigenstates from |T+〉 , |↑↓〉 , |↓↑〉 , |T−〉 but shifts the eigenen-

ergies of two anti-prallel spin states with finite singlet components. The phase

accumulation rate, which is proportional to energy, depends on the relative spin
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3.5 Sources of Decoherence

orientation when J is turned on.

Figure 3.6 illustrates a two-qubit experiment in a GaAs lateral DQD [72]. In

this experiment, the combination of an exchange operation and two single-spin

ESR rotations produces partially entangled states. The degree of entanglement

of the output state is simulated using the concurrence C as a measure. C = 1

for maximally entangled qubits, and C = 0 for uncorrelated qubits.

3.5 Sources of Decoherence

All qubits interact, if only very weakly, with their environments, which leads to

information loss [73]. Such loss of qubit information can be basically categorized

into two general types [9,59]. The first type is energy relaxation where the qubit

gradually evolves toward thermodynamic equilibrium, transferring energy to

the environment. The characteristic time, T1, is called the energy relaxation

time. The second is decoherence, where the qubit loses phase information

through interactions with the environment, while preserving its energy. The

time constant of this phase randomization process, T2, is called the (intrinsic)

phase coherence time. Phase information is lost more quickly when the average

is taken over ensembles in an inhomogeneous environment. T ∗2 , the ensemble

phase coherence time, gives the decay time of the ensemble qubit phase.

Using the density matrix formalism, the density matrix ρq of a qubit inter-

acting with its environment E is given by taking a partial trace of the whole

density matrix ρtot over those degrees of freedom in E : ρq = TrE [ρtot] [9]. Using

the Bloch vector vq, which is defined by ρq = 1
2

(σ0 + vq · σ), the Bloch sphere

is extended for general states, with the surface and the interior corresponding

to pure and mixed states, respectively6. The coherence decay of a qubit can

be represented as the decay of the off-diagonal elements of ρq. If the noise

is white, Markovian, the coherence is expected to decay single exponentially,

〈↑| ρq(t) |↓〉 ∝ e−t/T
∗
2 . If the Markovian noise has predominantly low frequency

components, the coherence decay will be Gaussian: 〈↑| ρq(t) |↓〉 ∝ e−(t/T ∗
2 )2 .

6For instance, immediately after initialization, the qubit is a pure state; all qubit infor-
mation is there, the state can be represented by a quantum state, and Tr

[
ρq

2
]

= 1 so that
|vq| = 1. If the qubit evolves into a mixed state via interactions, or in other words qubit
information is partially spread with the surrounding system, statistical treatment makes
Tr
[
ρq

2
]
< 1 and |vq| < 1.
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Figure 3.6: Entanglement control experiment via exchange interaction. (a) Sta-
bility diagram of the relevant device. The experiment is performed in the vicinity
of the (1, 1)-(0, 2) boundary. (b) Cycle of the two-qubit gate operation. S, D, L
and R mean source, drain, left, and right QDs, respectively. After PSB initialization
in either T+ or T− (on line A indicated in (a)), the left spin is rotated by 3π/2 in
(1, 1) Coulomb blockade by ESR (on line B). Then the exchange interaction is turned
on for a time τex by moving closer to (1, 1)-(0, 2) (on line C), followed by an ESR
π/2-rotation on the left spin in (1, 1) Coulomb blockade. The probability of finding
anti-parallel spins is subsequently measured in the PSB region. The ideal final state
for an initial state of |T+〉 is ( i2 sinαex−cosαex) |T+〉+ i

2 sinαex |T−〉− 1√
2

sinαex |S〉,
with αex = Jτex/~. Two ESR rotation angles are chosen such that the final state
has no T0 component for an initially T− case as well. (c) Result of the two-qubit
gate operation. ∆Z/J0 = 0.69, 0.73, 0.78, and 0.77, respectively for traces (A)-(D).
Signals take maximums (minimums) for τex equal to an odd (even) multiple of π~/J0,
when the exchange process approximates SWAP (no) operation. Here J0 is defined
by the oscillation period. The color plot shows calculated singlet probability PS as
a function of J0 and τex. (d) Simulated concurrence. C is maximized to 0.5 when
τex = (n+ 1

2)π~/J0, with n = 0, 1, 2 . . . Figures are adopted from [72].
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3.5 Sources of Decoherence

Relaxation and decoherence can be caused by any type of fluctuation: the

electrical noise in the control circuit, background moving charges, fluctuating

magnetic impurities, lattice vibrations and nuclear spin fluctuations. Qubit

coherence is strongly affected by the spectrum and dynamics of relevant fluc-

tuations and the system Hamiltonian (e.g. control field) [74]. For instance,

dephasing of exchange operations is dominated by the voltage noise, to which

spin is otherwise immune [49, 75, 76]. For an electron spin isolated in GaAs

QDs, the most important interactions with the environment are the hyper-

fine coupling, which limits T ∗2 , and the SOI+phonon coupling, which causes

qubit relaxation [8, 13, 49, 77]. This section explains these dominant sources of

relaxation and decoherence of the electron spins in GaAs-based QDs.

3.5.1 Spin-Orbit Interaction in Quantum Dots

There are two main sources of the SOI for electrons in a 2DEG formed in III-V

semiconductors. The first one is the Dresselhaus term [78], which is present in

crystals with bulk inversion asymmetry (BIA). The second one is the Rashba

term [79], which results from the structural inversion asymmetry (SIA), or

asymmetry of confining potentials, for example at a heterointerface [80]. Due

to the SOI, the eigenstates become admixtures of spin and orbital states [77].

The two lowest pseudo-spin states are

|σz〉p = |0, 0;σz〉+
∑

(m,n)6=(0,0)

〈m,n;−σz|HSO |0, 0;σz〉
E0,0 − Em,n − EZσz

|m,n;−σz〉 , (3.18)

where HSO is the spin-orbit Hamiltonian, and m and n are the quantum num-

bers to characterize the orbitals in the QD. Unlike pure spin states, these

pseudo-spin states are susceptible to the electrical noise, produced predomi-

nantly by phonons. Since only phonons with a specific energy can contribute

from energy conservation, the relaxation time is

1

T1

=
2π

~

[
p〈↑|He,ph |↓〉p

]2

Dph(EZ,p), (3.19)

where Dph(E) is the phonon density of states, EZ,p is the Zeeman energy of the

pseudo-spin, and He,ph is the electron-phonon coupling Hamiltonian.

42



3. Spin Qubits in Quantum Dots

T1 depends on the phonon density of states at the energy splitting of the

pseudo-spin due to conservation of energy. Due to small energy scales, the effect

of piezoelectric phonons dominates over that of deformation potential phonons

and optical phonons. An elaborate calculation of the EZ,p dependence of all

elements predicts that T1 ∝ B−5 in the low temperature limit [77]. Experi-

mentally measured values for T1 between Zeeman sublevels in a one-electron

GaAs QD range from 120 µs at 14 T to 170 ms at 1.75 T, with the expected

B−5 dependence [5, 8, 81]. In leading order in HSO, there is no pure phase

randomization, such that in fact T2 = 2T1 [82].

3.5.2 Interaction with Nuclear Spins

Due to its orbital spread, an electron spin in a QD interacts with abundant

nuclear spins in the host material, unless the nuclei are spinless (see Fig. 3.7(a)).

The complex interplay between a single electron spin and the nuclear spin bath

is known as the central spin problem [83,84]. Since the electron wave function

is non-zero at the nucleus, the Hamiltonian of hyperfine interactions is given

by the Fermi contact hyperfine interaction,

HHF =
N∑
k

AkIk · S, (3.20)

where Ik and S are the spin operators for the k-th nuclear spin and the electron

spin, respectively. The coupling strength Ak between the k-th nuclear spin and

the electron spin is k-dependent, due to inhomogeneous overlap of the elec-

tron and the nucleus wave functions. The dynamics of nuclear-nuclear flipflop,

mediated by the hyperfine interaction, then becomes a complex many-body

problem. A useful semiclassical description is to treat the effect of collective

nuclear spins as an effective magnetic field,

HHF =

(
N∑
k

AkIk

)
· S = gµBBN · S, (3.21)

where BN is the Overhauser field, the effective nuclear field seen by electron

spins due to nuclear spins.
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Figure 3.7: Effect of the hyperfine interaction. (a) Electron wave function overlap.
One electron spin interacts with lots of nuclear spins in a semiconductor QD. The
coupling strength with each nucleus is inhomogeneous, proportional to the overlap
squared between the nucleus and the electron wave function. (b) Correction due
to the Overhauser field. Longitudinal Overhauser field BN,z adds directly to the
external field B0. Transverse components BN,x and BN,y, in contrast, only change
the total effective field in second order when B0 � |BN|. The Larmor frequency is
modified as fL = |g|µB(B0 +BN,z)/h. (c) Dephasing of an ensemble spin. Gray lines
show 〈σx〉 (the amplitudes of the x component) of the electron spins initialized in
(|↑〉 + |↓〉)/

√
2, under free precession about (B0 + BN,z)ẑ for three different values

of BN,z/B0 = −0.05, 0, +0.05. The solid black line is 〈σx〉 of an ensemble of spins,
initially (|↑〉 + |↓〉)/

√
2, under Gaussian distributed BN,z. The standard deviation√

〈(BN,z)2〉/B0 = 0.05. Broken lines indicate a Gaussian decay of the envelope, and
of the phase coherence. (d) Schematics of dephasing in the Bloch sphere. In the spin
reference frame, spin precesses in an uncontrollable manner, at a rate proportional
to the longitudinal Overhauser field BN,z. The ensemble spin Bloch vector evolves
inwards, indicating loss of coherence. In this process, qubit energy is preserved, and
only the phase information is lost.
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3. Spin Qubits in Quantum Dots

In GaAs-based QDs, all natural isotopes of Ga and As, 69Ga, 71Ga and
75As are spin 3/2, and |BN|max ∼ 5 T when the nuclear spins are fully polar-

ized [85]. This magnitude is independent of N given the host material. Under

typical experimental conditions, nuclear spins are in thermodynamic equilib-

rium, as their Zeeman energies are much smaller than the thermal energy even

at cryogenic temperatures. The Boltzmann distribution then gives (almost)

zero average nuclear polarization. From the central-limit theorem the statis-

tical fluctuation about the average follows the Gaussian distribution with a

standard deviation
√
〈|BN|2〉 ∼ |BN|max/

√
N . In GaAs QDs, N ' 106 and the

nuclear field fluctuation is typically a few mT [14,17].

The effective magnetic field the electron spin feels is a sum of the external

field B0 (‖ ẑ) and the Overhauser field: Beff = B0 + BN. For |B0| � |BN|,
the contribution of the transverse components becomes negligible, and Beff ≈
(B0 + BN,z)ẑ (Fig. 3.7(b)). Time-ensemble average over fluctuations of BN,z

results in dephasing (Fig. 3.7(c)). Assuming frozen BN,z following a Gaussian

distribution, the spin coherence decay is Gaussian with a characteristic time [86]

T ∗2 =
~
√

2

|g|µB

√
〈(BN,z)2〉

. (3.22)

In GaAs QDs with g ≈ −0.4,
√
〈(BN,z)2〉 = 1 mT corresponds to T ∗2 as short

as 40 ns. Corrections to Markovian spin dynamics and the usual exponential

decay of coherence due to hyperfine interaction are extensively discussed in

ref. [87].

In systems coupled to a bath with a long memory time, including the elec-

tron spin interacting with nuclear spins, T ∗2 does not reflect the intrinsic co-

herence of the system, i.e. T2 � T ∗2 . A better characterization of the lower

bound on T2 is provided by echo measurements such as Hahn echo and the

Carr-Purcell-Meiboom-Gill (CPMG) decoupling, which partially cancel the dy-

namics caused by low frequency fluctuations [59]. The phase coherence time

can be extended by echo pulses up to 100 µs (= T echo
2 ) for electron spin qubits

coupled to a nuclear bath in GaAs QDs [60,88]. This is more than three orders

of magnitude longer than the typical operation time in this system, 1 - 100 ns.

Preparation of less fluctuating nuclear environment will considerably extend

T ∗2 and increase the quantum gate accuracy. The hyperfine interaction offers a
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control knob of the nuclear bath via the electron spin; it mediates electron-

nuclear flip-flops and generates dynamic nuclear polarization (DNP) under

asymmetric spin pumping rates [84]. Under most conditions, however, DNP

is small because pumping is suppressed due to the Zeeman energy mismatch

between the nuclear and electron spins. Still, DNP can be observed in electron

transport in the PSB region including S-T+ and/or S-T− degeneracy points,

as hysteretic, oscillatory and bistable leakage current behavior [14, 89–91]. In

a similar manner, spin transfer into the nuclear bath can be controlled by adi-

abatic passage across the S-T+ degeneracy point [58, 92, 93]. ESR can drive

DNP away from degeneracy points, compensating the energy cost for electron-

nuclear flip-flops by a resonant a.c. excitation [68, 94, 95]. Observed complex

interplay between slow nuclear spin dynamics and fast electron spin dynamics

has triggered a large amount of theoretical work on explanations for observation

and proposals for suppressing fluctuations [87,96–102].
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Chapter 4

Optimization of Micro-Magnet

Designs for Spin-Qubit

Quantum-Dot Devices

Single electron spins in QDs integrated with MMs are appealing as a scalable

quantum computing architecture, where arbitrary quantum gates can be elec-

trically performed. To fully explore the potential of the MM technique, here

we optimize the MM design for spin control. We first simulate the MM field in

the preceding experiments on spin control with MMs and clarify requirements

for high-fidelity rotations via ESR. We then examine closely the misalignment

effects which were not attentively treated previously, and propose a design

scheme that realizes a befitting MM stray field in the presence of realistic fab-

rication errors. We further discuss uses of the inhomogeneous MM fields for

other types of qubit operations.

4.1 Introduction

Single-qubit manipulations of single-spin qubits are commonly performed by

ESR. ESR can be driven by effective oscillating magnetic fields, whose fre-

quency is consistent with the electron’s Zeeman energy. Rotations via ESR of

a single electron spin have been realized in several ways in GaAs-based lateral

QDs [21, 45, 66, 68]. For practical purposes, electrical drive is favorable, which
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4.2 Field Simulation of Previous Micro-Magnet Designs

however requires some indirect coupling between spin and electric fields [62]. A

slanting magnetic field induced by proximal MMs offers such a driving mecha-

nism (MM-ESR) [20, 21], which can coherently rotate spins at above 10 MHz

in GaAs QDs [69]. This technique is highly scalable [63] and is applicable

to QDs fabricated in materials with longer electron spin coherence times, e.g.

nuclear-spin-free semiconductors [103].

In MM-ESR, two properties of the magnetic field are mainly utilized: a

gradient of the magnetic field component normal to the spin quantization axis,

bsl, and a difference in the Zeeman field between QDs, ∆BZ (see §3.3.2). The

slanting field bsl hybridizes the electron’s spin and orbital degrees of freedom

and allows electrically driven ESR. The local Zeeman field difference ∆BZ, on

the other hand, yields different resonance frequencies from dot to dot and allows

access to a single spin without flipping others. The values of these magnetic

field properties, bsl and ∆BZ, are heavily dependent on the MM shape, device

geometry and QD positions. Therefore, MM shapes need to be tailored so that

the stray field suffices for spin-qubit experiments [63,104].

4.2 Field Simulation of Previous Micro-Magnet

Designs

In order to refine MM-ESR performance, various MM designs have been em-

ployed in previous GaAs DQD devices for MM-ESR [21, 72, 105] (Fig. 4.1). In

each device two ESR peaks, corresponding to left and right spins, are observed

with a separation larger than the nuclear field fluctuations, which demonstrates

control addressability in this scheme. Our interest after these proof-of-principle

experiments is how much stray field can be induced by MMs and how efficiently

spins can be controlled with this technique.

∆BZ gives a readily-accessible measure of inhomogeneous MM fields, as it

can be directly extracted from the ESR peak spectra. The exact values of bsl,

on the other hand, are somewhat more difficult to evaluate experimentally. Al-

though the value of the ESR Rabi frequency fR is reflected in the ESR peak

height [69, 106] or can be measured directly from time-resolved ESR experi-

ments, it alone does not allow us to extract bsl directly. This is because fR is
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Figure 4.1: Previous MM-ESR experiments. (a)-(c) Scanning electron micrographs
of GaAs DQD devices with Co MMs on top adopted from ref. [21] (a), ref. [72] (b),
and ref. [105] (c). These DQDs are defined by negatively biasing Schottky metal gates
deposited on a GaAs/AlGaAs HEMT wafer. The 2DEG is 90 nm below the substrate
surface. A ∼ 100 nm thick Co ferromagnet (shown in bright yellow) is deposited on
a ∼100 nm thick insulating Calixarene layer and are magnetized under an in-plane
external magnetic field, B0 & 1 T, much larger than the coercive field. The direction
of the external field is indicated by an arrow. Lift of spin blockade is detected by
measuring either a transport current through a DQD ((a)) or a QPC ((b),(c)). (d)-
(f) ESR spectra measured in these devices. Spins are rotated under a.c. gate-voltage
excitation when the excitation frequency matched their Larmor frequency.
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4.2 Field Simulation of Previous Micro-Magnet Designs

proportional to both bsl and Eac, the amplitude of the microwave field. From

Eq. (3.16), in MM-ESR

fR ≈
|g|µBeEacbsl

2m∗ω0
2

=
|g|µB~2eEacbsl

2m∗∆ST
2 . (4.1)

∆ST can be evaluated relatively easily from bias spectroscopy (see §2.3.1). The

only unknown parameter Eac other than bsl cannot simply deduced from the

microwave power at the source and the line attenuation due to frequency-

dependent transmission property of the feed line inside a dilution refrigerator

in the experiments. Instead, it can be evaluated for instance from PAT mea-

surements [33,66]. However, it is a bit involved and performed only in the first

MM-ESR device [21,69].

We therefore numerically simulate MM field properties, bsl and ∆BZ, of the

MMs employed in the previous MM-ESR experiments1. In the simulation we

assume that the MM is magnetized uniformly in the direction of the in-plane

external field (‖ ẑ). To fully simulate real experimental conditions, we allow

for a 75 nm misalignment of the MM pattern with respect to the QDs in both

lateral directions. Such MM-QD misalignment is possibly present in the real

devices due to imperfect overlay in the fabrication process, and errors in the

QD confinement potential simulation (QDs may not be formed exactly at the

expected positions). Table 4.1 compares simulated and observed values of bsl

and ∆BZ. Two figures for each entry of simulated values are maximum and

minimum in the presence of MM-QD misalignment. Throughout this work, we

assume that the inter-dot distance is 150 nm and the Co magnetization is 1.8 T

in the simulation. Other device-dependent parameters are the same as in the

real experiments (specified in the table note).

Agreement with experimental observation supports the validity of our simu-

lation. Evident from the table is that small displacement on the order of 75 nm

can largely spoil MM field properties. We also learn that different MMs show

different misalignment susceptibility. These results strongly suggest that in

designing MMs the effect of MM-QD misalignment, so far treated only lightly,

should be taken into account properly. Even in the presence of displacement,

1For MM field calculations we use Mathematica Radia package available at
http://www.esrf.fr/.
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4. Optimization of Micro-Magnet Designs for Spin-Qubit Quantum-Dot Devices

Table 4.1: Simulated and observed MM field properties of MMs employed in
previous MM-ESR experiments and those of the proposed design.

simulation a observation

larger bsl smaller bsl ∆BZ bsl
b ∆BZ

[mT/nm] [mT/nm] [mT] [mT/nm] [mT]

ref. [21] c 0.51, 0.46 0.50, 0.0 61, −9.2 0.8 13± 2

ref. [72] d 0.67, 0.51 0.62, 0.48 11, 6.3 − 15± 5

ref. [105] e 0.62, 0.48 0.48, −0.15 84, 31 − 40± 5

this work f 1.53, 1.11 1.46, 0.90 48, 21 − 80± 20
a Maximum and minimum values within the 150 nm × 150 nm region, cen-

tered at the designed QD position.
b In most experiments bsl is not extracted (at least directly) from exper-

imental results. This is because its extraction requires another type of
experiment to evaluate Eac (see the main text).

c-f The thickness of the Co MM is 70, 160, 160, 250 nm and the vertical

distance between the bottom of the MM and the 2DEG constituting QDs

is 170, 170, 210, 140 nm for c, d, e and f, respectively.

all MMs are shown to roughly satisfy a set of conditions bsl & 0.4 mT/nm and

∆BZ & 10 mT in the simulation. Together with the experimental outcomes

(Figs. 4.1(d)-(f)), we conclude that this is a sufficient condition to observe and

discern individual ESR peaks in GaAs QDs.

4.3 Required MM Field Properties

Realizing faster ESR rotations is a key to quantum computation in this system,

since single-qubit gates are by far the most time-consuming operations in the

universal gate set. fR > 50 MHz would be necessary to perform even a small

number of ESR π pulses within T ∗2 , a few tens of ns [60]. Then the condition

for implementing nontrivial quantum circuits would be severer than the above

condition for ESR detection in the following ways.

First, larger bsl is necessary. From Eq. (4.1), fR > 50 MHz corresponds

to bsl & 0.8 mT/nm if we plug in typical values in GaAs QDs: g = −0.40,

Eac = 5 µV/nm, m∗ = 0.067m0 and ∆ = 0.5 meV, where m0 is the mass of a

free electron [66, 69]. We note that the upper bound on Eac is set by photon-
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4.3 Required MM Field Properties

assisted-tunneling (PAT), which leads to state leakage [21,33]. Therefore, there

could be room for further improvement in this aspect by refining QD gate

designs, microwave frequency and so on.

Secondly, larger ∆BZ is needed as well for addressable single-spin control, if

ESR rotations become faster. Indeed, from simple analysis, the required ∆BZ

gets larger proportionally to fR in the strong driving regime where fR � 1/T ∗2 .

The reason is that the resonance peak is broadened by nature under strong

drive [59,106]. In the weak driving limit, ESR spectral width is predominantly

broadened by the statistical fluctuations of the Overhauser field. Assuming that

fluctuations follow the Gaussian distribution and the nuclear spin dynamics is

sufficiently slow, a full width at half-maximum (FWHM) of inhomogeneously

broadened ESR spectra would be

δf ∗ESR = 2
√

2 ln 2|g|µB

√
〈(BN,z)2〉/h. (4.2)

From Eq. (3.22), one would expect that δf ∗ESR = 4
√

ln 2π/T ∗2 . However, in

reality, ESR linewidths observed experimentally are typically wider even for

small fR, due to DNP [45, 97, 98]. In the strong driving regime, we have to

take into account the fact that spins can be rotated even if the excitation fre-

quency is slightly detuned from resonance. From the Rabi formula (Eq. (3.9)),

the maximum spin flip probability for frequency detuning δfac is given by a

Lorentzian profile, fR
2/
(
fR

2 + δfac
2
)
, which alone yields the FWHM of the

ESR spectrum, δfESR = 2fR. Combination of these contributions gives the

so-called Voigt profile [100], with the FWHM width approximated as [107]

δfESR ≈ 1.07fR +
√

0.858fR
2 + δf ∗ESR

2. (4.3)

The above expression is valid only when the assumption of Gaussian broadening

by nuclear spins holds. In the limit of strongly driven ESR, however, δfESR is

expected to be ≈ 2fR, irrespective of the actual dynamics of the nuclear bath.

Supposing Rabi frequencies are more or less the same in all QDs, fast yet

addressable ESR is only possible when |g|µB∆BZ > 2fR. This corresponds to

∆BZ > 18 mT for fR = 50 MHz in GaAs QDs with |g| = 0.40.

Third, MMs should be tolerant of a finite relative misalignment. MM-QD
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4. Optimization of Micro-Magnet Designs for Spin-Qubit Quantum-Dot Devices

misalignment is practically inevitable in real devices; it can arise from overlay

fabrication errors and inaccurate estimation of QD positions. This distance

is difficult to reduce, especially for a multi-qubit system, typically below 50-

100 nm even with the state-of-the-art semiconductor processing technology.

Its effect must be taken into serious consideration since as seen from Table 4.1,

this amount of displacement can spoil the MM properties. This may not be

surprising given that small dimensions of MMs tend to produce a fine spatial

distribution of the stray field.

4.4 Novel Micro-Magnet Design

In what follows, we optimize the MM design to meet all requirements for im-

plementing quantum circuits in GaAs QDs clarified above:

(i) bsl & 0.8 mT/nm

(ii) ∆BZ > 18 mT

(iii) 75 nm misalignment robustness, i.e. conditions (i) and (ii)

are satisfied in the presence of 75 nm MM-QD misalignment.

(4.4)

4.4.1 Classification of Micro-Magnet Designs

There are two general types of simple MMs, a single MM and a paired MM

(Fig. 4.2(a)). The shape of a single MM can be specified by a length lMM(y)

measured in the magnetization direction (‖ ẑ), as a function of y. The design

of a paired MM can be specified likewise by a gap opening dgap(y). When

dgap(y) = lMM(y), these MMs produce the same stray fields with the opposite

sign except near the edge. They can be considered equivalent as far as MM

field properties in the core region are concerned. Therefore, in the following

we mainly discuss the design of a paired MM only, with a notion in mind that

the same discussion can in principle be directly applied to an equivalent single

MM. We note that the sign of the stray field can make a difference if SOI comes

in. SOI can add to or partially cancel the effective slanting field that mediates

MM-ESR [21]. Only with a paired MM, can we fully utilize both Rashba and

Dresselhaus contributions in GaAs QDs by applying a.c. electric fields along
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Figure 4.2: Equivalent MMs and axis definition. (a) Top views of two equivalent
MMs, a single MM (left) and a paired MM (right). The region where bsl is large (in
the 2DEG plane) is schematically highlighted in green. (b) Schematics of magnetic
lines of force around MMs. A single MM and a paired MM yield equivalent but
opposite fields. (c) Definition of the QD axis and the MM center line, shown in a
zoom-in image of the core region of a paired MM. QD positions are shown by purple
dots and a MM is colored orange. The QD axis is defined by a line that connects
QDs. The MM center line defines the mirror-symmetry center of the MM. Here the
perpendicular configuration is adopted for explanation (see the main text).

the [110] crystal axis [63].

MM designs can be divided further into two types with respect to the angle

of the magnetization axis and the QD axis (see Fig. 4.2(c) for definition). In

the first type of MMs these axes are aligned, as in Figs. 4.1(a) and (c), which

we denote as the parallel configuration. In this configuration, ∆BZ can be

obtained by positioning a MM slightly off the DQD center. It is relatively easy

to make ∆BZ large, by simply shifting the MM position. In the other type,

the axes are normal to each other as in Fig. 4.1(b), which we denote as the

perpendicular configuration. In this configuration, tapered MMs whose dgap(y)

linearly varies as a function of y are conventionally used to produce sufficiently

large ∆BZ [35, 63,72].
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4. Optimization of Micro-Magnet Designs for Spin-Qubit Quantum-Dot Devices

4.4.2 Misalignment-Robust Slanting Field

For bsl to be robust against misalignment, the perpendicular configuration

proves favorable. More specifically, the tolerance of bsl is large when the QD

axis is on top of the MM center line. This is simply because in most relevant

cases bsl decays monotonously as a function of the distance from the MM center

line. In the parallel configuration, the QDs are placed on average at least half

the inter-dot distance away from the MM gap center.

To learn more about misalignment robustness of bsl, we analyze the spatial

distribution of bsl induced by a paired MM with a constant gap width. In gen-

eral, bsl is much more susceptible to displacement in the magnetization direction

than in the other direction. Figure 4.3 shows the gap dependence of bsl field

distribution in the magnetization direction produced by a parallel, paired MM.

From the contour plot we see that there is an optimal range of MM gap width

to maximize the guaranteed bsl in the presence of misalignment. A smaller

gap will make bsl more susceptible to misalignment, whereas a larger gap will

weaken bsl at the gap center. This appropriate range of gap width is typically

250 - 400 nm for realistic device parameters and for 75 nm misalignment.

Tapering MMs is a convention to obtain finite ∆BZ in the perpendicular

configuration, as mentioned before. The simulation reveals, however, that this

can harm bsl robustness if not properly done. This can be understood by

applying the notion of the appropriate range of gap width, introduced above

for parallel MMs, to tapered ones: if the gap width exceeds the range, bsl

will become either small or displacement-sensitive. The problem is that ∆BZ

cannot be large enough if the change of the gap width is limited within the

range. The tapered-MM method does not seem to simultaneously satisfy the

condition for misalignment-robust bsl and that for sufficiently large ∆BZ.

4.4.3 Bridge Structure

So far we have seen the following relationships between MM design and the

field properties. A (nearly) constant gap width is favorable for large, robust bsl.

However, to obtain ∆BZ with almost parallel MMs, only the parallel configu-

ration can be used, which makes bsl small at least at one of the QD positions

(Fig. 4.4(a)). By contrast, if the gap is strongly tapered to achieve sufficiently
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Figure 4.3: Contour plot of bsl by a paired MM with a parallel gap. Unit of
the labels is mT/nm. Calculation is done for a 250 nm thick, 1 µm wide Co MM,
deposited 140 nm above the 2DEG. z is the direction of magnetization. For this pa-
rameter set, by choosing a gap width from the range of approximately 250 - 400 nm,
bsl > 1.2 mT/nm even in the presence of 75 nm misalignment in the magnetization
direction. Gaps smaller than ∼ 250 nm will make bsl susceptible to 75 nm misalign-
ment. On the other hand, gaps larger than ∼ 400 nm will produce smaller bsl even
at the gap center.
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4. Optimization of Micro-Magnet Designs for Spin-Qubit Quantum-Dot Devices

large ∆BZ in the perpendicular configuration, bsl will be prone to misalignment

(Fig. 4.4(b)).

This dilemma can be lifted if there is a way to provide ∆BZ even with a

constant gap width. Here we propose a bridged MM as such a mechanism. A

bridged MM consists of two parts: a parallel, paired MM which produces large,

robust bsl, and a bridge MM on one side that connects the parallel MM pair

and induces a large inhomogeneous Zeeman field (Fig. 4.4(c)). A bridge part

of MM can be considered also as an effectively “negative” gap as it creates

the Zeeman field as well as the slanting field opposite to that induced by the

rest with a “positive” gap. This change in sign causes an abrupt change of
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Figure 4.4: Various MM design schemes and a MM bridge. (a) Parallel MMs. QDs
have to be arranged in the parallel configuration for ∆BZ. (b) Tapered MMs. QDs
can be arranged in the perpendicular configuration. (c) A bridged MM. Parallel MM
pairs are linked on one side by a rectangular MM. QDs are supposed to be arranged
in the perpendicular configuration. (d) Simulated field property arising from a bridge
part alone. |bsl| and ∆BZ are plotted as a function of y of the QD position, and of the
DQD center, respectively. In the range of |y| < 150 nm where the QDs are located,
decrease in the total |bsl| decays < 0.12 mT/nm (= 15% of the required value). In
the range of |y| < 75 nm where the DQD center is located, ∆BZ > 12 mT (= 67% of
the required value). The inset schematically shows the bridge part in dark orange.
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the Zeeman field distribution and hence large ∆BZ can be produced among

QDs. Since ∆BZ decays slower as a function of distance, putting a bridge MM

does not influence bsl severely while supplying enough ∆BZ, if properly done

(Fig. 4.4(d)).

Figure 4.5(a) shows the optimized MM design for specific device parameters.

The constant gap of a split-pair part is chosen to maximize the minimum bsl

within 75 nm from the MM center line, so that bsl becomes misalignment-proof

by design. The position and the size of the bridge are chosen to keep ∆BZ >

18 mT in the presence of 75 nm misalignment with care taken not to spoil bsl

too badly. Figures 4.5(c) and (d) show the simulated spatial distribution of the

magnetic field properties. Within a 150 nm × 150 nm area, bsl is larger than

0.9 mT/nm for both QDs and ∆BZ is larger than 19 mT, meaning that the set

of conditions for realizing fast addressable ESR rotations, Eq. (4.4), is satisfied

with this MM design.

4.5 Other Types of Qubit Operations

The MM technique offers many other electrical control knobs of spin other than

MM-ESR. One such example is a single-step phase rotation by the spatial dis-

tribution of the Zeeman field within a single QD, δBZ. This is theoretically

discussed in more detail and experimentally demonstrated in Chapter 7. An-

other example is a CPHASE gate via ∆BZ as discussed in §3.4. We would like

to note that bridged MMs can be also designed to supply ∆BZ exceeding 50 mT

by tuning the bridge position. This brings a single-step CPHASE operating at

∼20 MHz within experimental reach in GaAs QDs [71]. ∆BZ can also be used

for single-spin readout with PAT [108]. Possible uses of the MM field properties

in spin-qubit experiments are summarized in Table 4.5.

Throughout this chapter we implicitly assume that ESR rotations are per-

formed at all QDs, but this is not truly mandatory. Another approach is also

possible, in which fast ESR rotations are performed in only some of the QDs

(e.g. every other QDs) and single-qubit gates in other QDs are implemented

by combining high-fidelity SWAP operations. This may well be worth consid-

eration since SWAP gates generally operate much faster and it is much less

demanding if large bsl is required in only some of the QDs. However, one must
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Figure 4.5: Proposed MM. (a) Design of a bridged MM optimized for a 250 nm
thick Co MM deposited 140 nm above the 2DEG. (b) Spatial distribution of bsl
near the left and right QDs. bsl is smaller at the left QD position, as it is partially
canceled by the bridge part. (c) Spatial distribution of ∆BZ as a function of MM-
QD misalignment. The bridge part as well as the absence of the parallel split part
produces ∆BZ, which as a result is larger on the left side.

59



4.6 Summary

Table 4.2: Properties of MM-induced inhomogeneous magnetic fields that can be
utilized for spin-qubit experiments

Magnetic field resources Operation

Slanting magnetic field, bsl = dBx/dz ESR (X, Y gates)

Intradot Zeeman field difference, δBZ Single-step Z gate

ESR addressability

Interdot Zeeman field difference, ∆BZ Single-step CPHASE

Spin-selective PAT readout

be reminded that in this approach dynamical decoupling pulses [9, 59, 88, 109]

cannot be applied simultaneously on all qubits, and dephasing rates can change

for different operations. To conclude which approach is better in real experi-

ments would involve evaluation of gate fidelity and process tomography [9,48],

which are not fully performed in this system yet.

4.6 Summary

In this chapter, requirements on MM stray fields for high-fidelity spin manipu-

lations are discussed, and a novel design scheme to satisfy them is presented. It

is shown that misalignment robust bsl and ∆BZ can be produced by employing

a parallel MM and a bridge MM, respectively. Proposed bridged MM produces

bsl > 0.9 mT/nm and ∆BZ > 19 mT for realistic device parameters even when

the MM is 75 nm misaligned. This MM design is expected to facilitate fast

addressable ESR (& 50 MHz) and other quantum gates requiring multiple ESR

pulses. The MM field property can further be enhanced by bringing the MM

closer to the QDs as well as by using a material with stronger magnetization

than Co.

In the experiments described in the following Chapters 5, 6, 7 and 8, MMs

of the proposed design are incorporated to DQD and TQD devices. The effec-

tiveness of the bridged-MM design is validated also in these experiments.
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Chapter 5

Single Electron Spin Resonance

in a Large Inhomogeneous

Magnetic Field

Electron spin in QDs [6] is a promising candidate for implementing qubits in

a quantum computer [40–42] owing to its long coherence time [60,88,110] and

potential for scalability. Experiments based on GaAs quantum dots have so far

realized two fundamental building blocks for universal quantum gates: defining

spin-1/2 qubits via single electron-spin-resonance (ESR) [21,45,66,68], and con-

trolling the entanglement through inter-dot exchange coupling [53,72]. In con-

trast to a large, tunable Heisenberg interaction between neighboring spins [17],

however, it remains a big technical challenge to obtain strong magnetic fields to

manipulate single spins within the time-ensemble phase coherence time (T ∗2 ).

Here we demonstrate that strongly inhomogeneous magnetic fields induced by

a tailored micro-magnet (MM) can realize fast arbitrary single-spin rotations

up to 127 MHz, with a fidelity exceeding 95 %.

5.1 Introduction

In the system of single-spin qubits with QDs, ESR rotations that, at present,

are comparably slow with respect to the dephasing present a severe limitation

on the number of single-qubit gates in implementing quantum circuits. This
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is in the first place because large a.c. magnetic fields are difficult to produce

locally on chip in a dilution refrigerator. This problem can be overcome by

coupling the gate-driven electron motion with an inhomogeneous magnetic field

that is produced for example by a proximal MM (we refer to this technique as

MM-ESR henceforth) [20,21]. From simulation (see Chapter 4), it is expected

that by properly preparing MMs a Rabi frequency fR as large as 50 MHz

(corresponding to 20 mT a.c. magnetic field) is readily achievable in GaAs QDs.

This would greatly improve the single-qubit gate fidelity F (so far F = 73%

is reported with fR ≈ 10 MHz in GaAs QDs in ref. [45]) and therefore the

ease of demonstrating small-scale quantum circuits, including CNOT and state

tomography as important examples.

MM-induced inhomogeneous magnetic fields are also appealing as sources

of other qubit operations such as electrical gating of spin rotations [111] (see

also Chapter 7), one-step CPHASE [71] and nondestructive multiple spin read-

out [108].

5.2 Device and Setup

5.2.1 Device Design

Figures 5.1(a) and (b) illustrate the DQD device structure used in the experi-

ment. The MM is designed such that both in- and out-of-plane components of

the stray field are largely slanted while their gradients depend only moderately

on geometrical misalignment of the QD and MM of ∼ 75 nm, which is inevitable

in real devices. In the numerical simulation we see that the slanting field that

mediates MM-ESR, bsl ≡ ∂Bx/∂z ≈ 1.2 mT/nm while ∂Bz/∂y ≈ 0.3 mT/nm,

and ∂Bz/∂z ≈ 1.0 mT/nm (Figs. 5.1(b) and (c)). In MM-ESR fR is propor-

tional to the product of the magnetic field gradient bsl and the amplitude of

the a.c. electric field Eac that oscillates an electron inside the QD, as seen from

Eq. (4.1). Therefore, to maximize fR, both bsl and Eac need to be large. To ob-

tain large inhomogeneous magnetic fields, we employ an AlGaAs/GaAs HEMT

wafer with a shallow 2DEG (57 nm below the surface) and reduce the distance

between the MM and QDs. In addition, the thickness of the Co MM (250 nm)

is more than twice as thick as those in previous MM-ESR devices [21, 72]. In
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order to make Eac as large as possible, the two QDs are “parallel”-coupled to

gate electrode C, to which a microwave (MW) is applied. This is because for

the two QDs “tandem”-coupled to the MW gate the photon-assisted-tunneling

(PAT) [33] imposes a severe upper limit on Eac [32, 112].

5.2.2 Measurement Setup

On gate C, both sinusoidal MW (a few GHz) and square, pump-and-probe pulse

are applied, which are generated from different instruments, Agilent E83650B

and Tektronix AWG520, respectively. MW from E83650B is switched with a

commercial PIN switch that is synchronously triggered by AWG520, and com-

bined with the pump-and-probe pulse from AWG520 at room temperature.

E83650B is operated in the pulse modulation mode if high switching isolation

(> 30 dB from PIN switch alone) is necessary under strongly driven ESR.

After passing through SMA coaxial lines inside the dilution refrigerator with

3×3 dB attenuators, the high-frequency pulse is added to the d.c. gate voltage

with a commercial, 50 Ω-matched bias-tee at the mixing chamber plate. The

device is connected via bonding wires to an order-made chip carrier with two

coplanar-wave guides inside a home-made sample holder with two sliding con-

tacts. During cool down positive voltages are applied on the surface gates and

at the base temperature ∼ 100 mK the MM is negatively biased (as a global

top gate) to reduce charge noise [113,114].

To improve the signal-to-noise ratio, a lock-in trans-conductance technique

is used throughout experiment. A 216 Hz voltage excitation is applied to the

gate R, and the moulated current through a nearby QPC, IQPC, is homodyne-

detected with a lock-in amplifier to obtain charge sensing signals proportional

to the QPC current derivative, dIQPC/dVR. The R gate is chosen since in

terms of dynamic reserve of the lock-in signal, it is better to make the gate

lever-arm to the relevant transition (in our case the inter-dot tunneling) large

compared with that to the QPC channel. We note that in this experiment due

to instability of the device the trans-conductance signal is not stable enough to

extract the absolute charge configuration probability.
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Figure 5.1: Device structure and simulated stray fields. (a) Scanning electron
micrograph image of a similar device. The coordinate system used in the main text
is also shown. The y-axis is along the coupling direction of the QDs and the x-
axis is normal to the 2DEG plane. The shape of a Co MM is drawn in orange.
We choose the z-axis along the crystallographic direction of [110] because the spin-
orbit interaction then provides a local a.c. magnetic field to be added to bsl for the
ESR rotation [63]. High frequency pulses are applied on gates C and R and MW
is irradiated solely on C. Both the external magnetic field and the a.c. electric field
are applied in the z direction. (b) Layer structure of the QD device. The Co MM
and the wafer surface are separated by ∼ 90 nm by an insulator (Calixarene) and
a Ti adhesive layer. (c) Numerically simulated distribution of the x component of
the stray field. The origin of the QD plane is taken at the center of the two QDs.
(d) Numerically simulated distribution of the z component of the stray field, or the
local Zeeman field.
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5.3 Continuous-Wave ESR Measurements

5.3.1 Observation of a Large ESR Peak Separation

To detect spin signals, the device is tuned to the Pauli spin blockade (PSB)

regime near the (1,1)-(2,0) charge boundary (see §3.2.2). We here apply a

source-drain bias VSD = 0.5 mV (the chemical potential of the right lead is

energetically higher than that of the left). Since we measure the derivative

of the QPC current, dIQPC/dVR, PSB manifests itself as the disappearance of

the charge transition line at zero level-detuning, where ε = 0 [115]. At zero

external magnetic field, Bext, and with the exchange coupling small enough,

PSB is lifted by nuclear fluctuation [14]. All three (1,1) triplet states, |T0〉,
|T+〉 and |T−〉, are admixed with the (1,1) singlet |S〉 by inter-dot difference

of the Overhauser field; for instance, |T0〉 = (|↑↓〉+ |↓↑〉) /
√

2 evolves into

|S〉 = (|↑↓〉 − |↓↑〉) /
√

2 due to its z component, while |T+〉 = |↑↑〉 and |T−〉 =

|↓↓〉 evolve into |S〉 due to its in-plane components. In this condition, charge

transport through the DQD makes the time-average charge configuration inside

the bias triangles different from (1,1), making the zero-detuning line visible in

the stability diagram (Fig. 5.2(a)). When Bext is much larger than the nuclear

field, the triplet states with parallel spins, |T+〉 and |T−〉, are split off in energy

and the admixing with |S〉 becomes negligible. Since these (1,1) triplets cannot

tunnel to (2,0) states due to the Pauli exclusion principle, the transport is

stuck in the (1,1) charge state for a long time. Then the time-average charge

configuration in the bias triangles is almost (1,1), resulting in an invisible zero-

detuning line (Fig. 5.2(b)).

After tuning to the PSB region, we apply MW to gate C under a large

Bext (> 0.5 T in most cases, but 50 mT is sufficient for PSB and MM-ESR

depending on DQD parameters) to drive MM-ESR. ESR takes place when the

MW frequency fMW is equivalent to the electron Zeeman energy, hfMW =

|g|µB(Bext + BMM,z) with BMM,z the local Zeeman field induced by the MM.

We rely on the PSB effect to detect ESR: the blockade is only lifted by ESR,

to generate a transition of the charge state to the (2,0) state. This change of

charge configuration is detected by monitoring dIQPC/dVR at ε = 0.

Figure 5.3 shows the observed ESR signals (∝ dIQPC/dVR at ε = 0) under
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Figure 5.2: Observation of PSB. (a) Stability diagram at Bext = 0. We sweep
the voltage of gate R, VR, and that of gate C, VC, to facilitate pump-and-probe
measurements described later (these are the only gates to which high-frequency pulses
can be applied in our setup). The zero detuning line is bright as the transport inside
the bias triangle is not blocked. Signal is stronger for the hole transport cycle, related
to the QPC sensitivity ratio of the left and right dots, and the ratio of tunneling
rates (see Appendix B for further discussion on device tuning and expected signals).
(b) Stability diagram at Bext = 0.5 T, in the same gate-voltage condition as (a). The
zero detuning line disappears due to thick center tunneling barrier, indicating that
the Zeeman-split parallel spin states are stuck in the (1,1) charge configuration.
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5. Single Electron Spin Resonance in a Large Inhomogeneous Magnetic Field

continuous-wave (CW) MW excitation when fMW is swept and Bext is stepped.

Two ESR peaks are clearly observed at two different fMW separated by ≈
440 MHz, which corresponds to ≈ 80 mT. Based on the MM field distribution,

the peak at lower (higher) frequency is attributed to the ESR signal from the left

(right) spin. Since these peaks are almost parallel we attribute this separation

to the local Zeeman field induced by the MM, not the difference of g-factor [116].

Indeed, from fitting we obtain almost the same g-factors, |g| = 0.331±0.004 for

the left spin and |g| = 0.334± 0.004 for the right spin. The peak separation is

larger by more than a factor of 5 than that observed in the previous MM-ESR

experiments, indicating enhancement of the field inhomogeneity (∂Bz/∂y) by

roughly the same amount. Assuming a typical value of 100 nm for the inter-dot

distance, we get ∂Bz/∂y ∼ 0.8 mT/nm, which is consistent with the calculation.

We note that this large peak separation allows independent manipulation of the

two spins even when fR > 120 MHz.

5.3.2 Peak Broadening

We observe broadening of the Rabi resonance with MW power in the CW-ESR

measurement (see §4.3 for a detailed theoretical description). The ESR peak

widths extracted from fitting to the Voigt function grow linearly with the square

root of MW power PMW, indicating that fR ∝
√
PMW in this range (Fig. 5.4).

We evaluate the ESR peak width using the approximation of the FWHM of the

Voigt profile (Eq. (4.3)) and assuming fR ∝
√
PMW, and derive the standard

deviation
√
〈(BN,z)2〉 of a Gaussian profile due to inhomogeneous broadening by

extrapolating PMW to 0 as shown in Fig. 5.4. We extract
√
〈(BN,z)2〉 = 3.1 mT,

which corresponds to T ∗2 of 16 ns (calculated for |g| = 0.33), consistent with

previous measurements [17, 60]. We speculate however that this is a relatively

poor lower bound on T ∗2 (when Bext is fixed as is the case with most spin-

qubit experiments): Bext sweep can pump dynamic nuclear polarization (DNP),

which is evident in this data set as a shift in the peak center. DNP seems to

be pronounced under CW excitation, although Bext is swept downwards to

suppress DNP pumping [94,95,97,99].
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Figure 5.3: Color map of ESR signal as a function of fMW and Bext.
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Figure 5.4: Broadening of CW ESR spectrum. (a) PMW dependence of CW ESR
spectrum. Each trace is an average over 5 magnetic field sweeps. Peak width as well
as peak height increases with PMW, which is stepped by 5 dBm in the order of red,
green, blue. (b) PMW dependence of ESR peak width, half-width at half maximum
(HWHM). Each data point is plotted in the same color as in (a). The solid line is a
fit by a function that approximates HWHM of the Voigt profile.

5.4 Time-Resolved ESR Measurements

5.4.1 Fast Rabi Oscillation

To demonstrate that driven spin rotations are coherent, we next measure the

time evolution of the spin state under ESR drive, using a pump-and-probe

technique. From here we focus on one of the two ESR peaks, corresponding to

the right spin. First, we wait at ε = 0 sufficiently long to initialize the two spins

in the parallel configuration, |↑↑〉 or |↓↓〉, via PSB. Without loss of generality

we will henceforth assume that the initial spin state is |↑↑〉 for brevity. We then

apply a burst of resonant MW for a time tMW at ε ∼ −0.5 meV in the (1,1)

Coulomb blockade. The right spin rotates ideally about the x-axis of the Bloch

sphere to |↑↓〉 when tMW is an odd multiple of the π-flip time, tπ = 1/(2fR).

When tMW is an even multiple of tπ, the spin will flip back to |↑↑〉. Finally we

move to ε = 0 and measure dIQPC/dVR, whose change is proportional to the

flipping probability of the right spin. Coherent Rabi oscillations observed in

the dIQPC/dVR signal as a function of tMW are plotted in Fig. 5.5(a).
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Figure 5.5: Fast Rabi oscillations. (a) Rabi oscillations measured at Bext = 0.51 T
with fMW = 3.0 GHz. MW power is stepped by 3 dB from bottom trace to top.
Traces are offset for clarity. Solid lines are fit to Eq. (5.1). (b) Pulse sequence for
observation of Rabi oscillation. Spin is pumped with MW in the Coulomb blockade
at a detuning εO ≈ −0.5 mV, and then probed at ε = 0. Dwell time at ε = εO is
tO = 2 µs, and dwell time at ε = 0 is tM = 80 µs. (c) Rabi frequency vs

√
PMW.

Solid line is a guide to the eye for linear dependence.
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To extract fR, Rabi oscillation signals are fit to

Pflip(tMW) = C + A e−(tMW/T2,R)
2

cos(2πfRtMW) (5.1)

with fR and T2,R as fitting parameters. fR increases linearly up to ∼ 100 MHz

with the square root of MW power PMW and then progressively saturates to the

value of fR ∼ 130 MHz (Fig. 5.5(c)). The highest fR achieved in this experiment

is 127 MHz with tπ = 3.9 ns, which is the fastest spin flip ever reported in

electrically-controlled semiconductor QDs (Table 3.1). We note that the spin-

orbit interaction (SOI) can drive the Rabi oscillation with fR ∝ Eac × Bext

[61,65–67]. However, we speculate that the high speed Rabi oscillation obtained

here is mostly due to the MM-induced inhomogeneous field, since in GaAs the

SOI mechanism is not so efficient (ref. [66] reports fR ∼ 4.7 MHz of SOI-ESR

with Eac ∼ 4 µV/nm and Bext ∼ 3 T). In the present device bsl is estimated to

be roughly 3 times larger than in the previous report. Another factor of 3 to

account for the 10-fold enhancement of fR can be attributed to at least 3-fold

larger Eac as a result of the parallel-coupled configuration (in ref. [69] where

tandem-coupled configuration is used, Eac is estimated to be 1.4 µV/nm).

We estimate the fidelity F of the initial π-flip from the ESR signal level.

Here we define the fidelity between an intended state |ψ〉 and the output density

matrix ρ as F = Tr [ρ |ψ〉 〈ψ|] [9,117]. In our case, |ψ〉 = |↓〉 and ρ is the density

matrix of the right spin after π-flip, so F is simply given by Pflip(tπ). Since our

measurement does not yield the absolute probability, we normalize traces such

that A = C = 1/2 in Eq. (5.1) and convert the signal to Pflip. Then, for the

123 MHz Rabi oscillation with tπ = 4.1 ns, we obtain F = 96.6 %. We note

that this conversion works only when the settling probability Pflip(tMW =∞) is

1/2. This assumption is only valid for sufficiently large fR, as will be explained

below [15, 74]. When spin feels fluctuating nuclear fields with the distribution

function DN(δω), which detune fMW from the Larmor frequency fL by δω/2π =

fMW − fL, the spin flip probability is given as

Pflip(tMW) =

∫ ∞
−∞

dδωDN(δω)Pflip(tMW; δω), (5.2)
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where from the Rabi formula (Eq. (3.9)),

Pflip(t; δω) =
ωR

2

2(ωR
2 + δω

2)

[
1− cos

(
t
√
ωR

2 + δω
2
)]
. (5.3)

The distribution function DN(δω) is well approximated by a Gaussian with stan-

dard deviation σ centered at δω = 0, for a large number of random, unpolarized

nuclear spins (due to the central-limit theorem):

DN(δω) = D(δω;σ) =
1√
2πσ

e−δω
2/(2σ2). (5.4)

Then we obtain

Pflip(tMW =∞) =

∫ ∞
−∞

dδω
1√
2πσ

e−δω
2/(2σ2) ωR

2

2(ωR
2 + δω

2)

=

√
π

8

ωR

σ
e ωR

2/(2σ2)Erf

(
ωR√
2σ

)
(5.5)

=
1

2
− 1

2

(
σ

ωR

)2

+O
(
σ

ωR

)3

, (5.6)

where Erf(x) is the error function. From Eq. (5.6), when ωR/σ > 7, the

deviation from 50 % decreases to < 1 %. Given the typical value of σ/2π =

7.0 MHz [15], for fR > 50 MHz we can assume that Pflip(∞) = 0.5.

5.4.2 Discussions

5.4.2.1 Origin of Saturation

The knowledge of what causes fR to saturate (Fig. 5.5(c)) would be useful

for further improvement of MM-ESR. Saturation implies that at least one of

the assumptions made in derivation of Eq. (3.17) is invalid under strong Eac.

However, the strength of Eac is difficult to quantify exactly. While it would

be possible to measure the amplitude of the MW that arrives at the gate,

for instance by applying a square pulse, the conversion factor between the

modulation of the MW gate voltage and the strength of Eac is not accurately

known. The PAT process would give a rough indication but in our device it

is not observed presumably because our dots are parallel-coupled to the MW
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Figure 5.6: Harmonicity of QD confinement. (a) Harmonic QD confinement. The
red trace shows the harmonic potential with orbital energy spacing of 500 µeV in the
absence of MW irradiation, while the green and blue traces are under the MW with
the amplitude of 4 µV/nm and 8 µV/nm, respectively. The potential shape does not
change in the presence of MW irradiation. (b) Hard-wall confinement. Under MW
irradiation the potential becomes asymmetric if a small quartic component is added.

gate. We therefore roughly estimate the order of Eac from Eq. (4.1). Given

∆ST ∼ 0.5 meV, fR ∼ 100 MHz and bsl ∼ 1 mT/nm, and by assuming that the

lateral confinement is symmetric, Eac ∼ 8 µV/nm.

One likely scenario that explains the saturation behavior is the anharmonic-

ity of the in-plane QD confinement [118]. Linear response to Eac is a special

property of the harmonic potential. For instance, if the confinement potential

has a hard wall, the dot becomes less sensitive to large Eac, which can explain

the observed saturation behavior (Fig. 5.6). However, the anharmonicity of the

potential would be difficult to quantify or control experimentally.

Another possible cause of saturation is decrease of bsl under large displace-

ment. From Eac ∼ 8 µV/nm and ∆ST ∼ 0.5 meV, we expect the amplitude

of displacement to be ∼ 20 nm. This only accounts for 10 - 20% decrease of

bsl from field simulation, which is insufficient to reproduce the observed strong

saturation of fR.

5.4.2.2 Damping Mechanism and Coherence

In Fig. 5.5(a), it seems as if the Rabi oscillation decays faster as fR gets larger.

This is in contradiction with the naive expectation that the stronger ESR drive
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will protect spin more securely from the low-frequency noise. One likely expla-

nation is population leakage to non-qubit states due to photon mediated pro-

cess, or PAT [66]. Under MW irradiation, a voltage drop Vac cos(2πfMWt) across

a tunnel barrier modifies the tunnel rate, and the probability that an electron

absorbs or emits n photons of energy hfMW is described by |Jn(eVac/hfMW)|2,

with Jn(α) being the nth-order Bessel function of the first kind [32]. Thus a

single-electron state with the energy E splits into a set of states with E+nhfMW

(n = 0,±1,±2, . . . ) in the presence of a classical, oscillating electric field. Jn(α)

is very small for α � |n| (i.e. when eVac � |n|hfMW), but starts to increase

around α ≈ |n|. In the present experiment fMW = 3 GHz, and the single-photon

energy hfMW ∼ 12 µeV. Spin-blocked (1,1) triplets are energetically away from

both (2,0) triplets and the Fermi level of the left reservoir by & 500 µeV. Thus

to lift PSB n & 40 photons are required, and this process is usually suppressed.

However, under very strong electric field, eVac & 500 µeV, spin-independent

tunneling is allowed, resulting in decrease of ESR signal which increases with

tMW. Indeed, the highest Vac (for fR ∼ 100 MHz) is estimated to be ∼ 800 µeV,

based on the estimated value of Eac ∼ 8 µV/nm and a rough approximation

that the voltage drops linearly over the distance of ∼ 100 nm between the two

dot centers or between the dot center and the reservoir. Therefore, the PAT

process can be relevant to the enhanced decay of Rabi oscillations.

It is expected that the decay envelope of Rabi oscillations contains infor-

mation about the underlying noise spectrum [119, 120]. In our case, qubit

leakage due to PAT would yield a single-exponential decay, while hyperfine-

induced dephasing would result in a quadratic, Gaussian initial decay [121].

We therefore compare fitting qualities by single- and double- exponential decay

functions (Fig. 5.7(a)). Unfortunately, however, our data is not large enough

to conclusively determine the decay envelope.

We further characterize spin coherence under free evolution in a large in-

homogeneous MM field [122], using the following echo pulse sequence. First

an ESR π/2 pulse is applied and the spin experiences free induction decay for

a dwell time t1. Then spin is flipped by π and the phase is refocused for a

rephasing time t2. Finally a 3π/2 pulse rotates spin ideally into a flipped state.

Figure 5.7(b) plots the echo amplitude, as a function of the difference in de-

phasing and rephasing times. As the dwell time difference increases, the echo
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Figure 5.7: Phase coherence of driven and static spins. (a) Fitting of
an 86 MHz Rabi oscillation by single- and double-exponential decays, C +

A e−(tMW/T2,R)
n

cos(2πfRtMW). (b) Echo signals plotted as a function of t1 and
t2. Red, green and blue traces are for t2 =180, 330 and 990 ns, respectively. t1 is
swept around t2.

signal decreases on a characteristic time scale T ∗2 [60]. The best-fit width of a

Gaussian with adjustable height and width gives T ∗2 = 94 ns on average, which

(although slightly longer) basically agrees with the previously reported value

of T ∗2 = 37 ns in GaAs QDs without a MM [60].

5.5 Summary

In this chapter, we realize ESR of single electron spins in a semiconductor QD

in a strongly inhomogeneous magnetic field induced by a MM which is tai-

lored for electrical spin manipulations. We observe two clear ESR peaks with

an unprecedentedly large ESR peak separation of 80 mT or 440 MHz, which

implies 5-fold enhancement of an inhomogeneous MM field. We demonstrate

the Rabi frequency exceeding 120 MHz with a spin-flip fidelity above 95 %.

The Rabi frequency saturates for strong electric fields (estimated amplitude of

∼ 8 µV/nm), possibly because of small anharmonicity of QD lateral confine-

ment. We observe no indication of enhanced spin dephasing in a free evolution
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condition, with T ∗2 = 94 ns extracted from partially-refocused echo measure-

ments. For the largest Rabi frequencies, coherent oscillations could be damped

by PAT. However, the dominant dephasing mechanism in a driven condition is

not determined conclusively in the present experiment. Observation of coherent

oscillations for longer time, which probably involves improvement in measure-

ment stability, will be illustrative to this end. The demonstrated speed-up of

single-qubit gates will facilitate full qubit tomography and quantum error cor-

rection in this spin-qubit system. We anticipate that our scheme can bring

200 MHz ESR gates within experimental reach by using a thinner insulator to

further reduce the distance between the MM and QDs.

76



Chapter 6

Distinct Features in Fast Rabi

Oscillations

We study distinct single-electron-spin dynamics coupled to a nuclear-spin bath,

when strongly driven by ESR. Unlike in previous experimental reports, our

coherent oscillations show no “universal” π/4 phase shift and the decay is

exponential within the first few Rabi periods. These findings contradict the

long-time behavior expected for a non-Markovian, non-dissipative bath and

indicate that we are in the strong driving regime, where the Rabi field is much

larger than the coupling to the nuclear bath. This is further evidenced by

observation of a “chevron” interference pattern in the time-spectral domain.

The improved control of the coupled electron-nuclear system is an important

step toward quantum computing using electron spins as qubits. Furthermore,

recovery of exponential coherence decay will be beneficial for error-correction

schemes which usually do not account for non-exponential decays.

6.1 Introduction

Coherence of an electron-spin qubit formed in semiconductor QDs is affected

predominantly by nuclear spins in the host material. The hyperfine coupling

leads to spin decoherence with a characteristic time T ∗2 of the order of tens of

nanoseconds when time averaged over experimental runs. The dynamical be-

havior strongly depends on the nuclear-spin dynamics. Both Markovian [123]
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and non-Markovian [87] decoherence dynamics are predicted in different situa-

tions of time and energy scales. Just as with free induction decay, the driven

spin coherence is strongly influenced by the nuclear spins. Theory predicts that

interaction with a quasi-static bath results in a fast initial decay of the oscilla-

tion envelope followed by a power-law decay, and non-trivial phase shifts [74].

Indeed, these features are observed in all previous works on single-ESR in

electrically controlled semiconductor QDs [15,61,66,67,69,72]. Coherent oscil-

lations in these experiments are well fitted by

Pflip(t) = Pflip(∞) + A′ t−d cos(2πfRt+ φ), (6.1)

where d ∼ 0.5 and the overall phase shift φ is ∼ π/4 universally, i.e. indepen-

dently of many of the parameters of the bath.

We report that fast Rabi oscillations (with the Rabi frequency fR & 40 MHz

in GaAs QDs) show unconventional characteristics. In the regime of interest

in spin-qubit experiments, i.e. at least up to ∼ 6π rotations, they are poorly fit

by the conventional expression (Eq. (6.1)) but are well represented instead by

an exponentially decaying envelope with no oscillation phase shift (Eq. (5.1)).

We compare these experimental results with numerical simulations in the static

limit of a nuclear-spin bath. To gain more insight, we probe the dynamics of an

electron spin driven by ESR in the presence of frequency detuning. When fR is

sufficiently large, expected chevron patterns are recognized in the map of spin

flip probability in the time-frequency domain, which are otherwise averaged

out by nuclear fluctuations.

6.2 Fast and Slow Rabi Expressions

6.2.1 Model in the Static Bath Limit

To drive fast spin flips, we use a MM-ESR technique; a burst of MW with the

angular frequency ω is applied along the external magnetic field Bext (‖ ẑ) in the

MM’s stray magnetic field, whose x-component is slanted at the position of the

QD. The Fermi contact hyperfine interaction between the electron spin S and

the surrounding nuclear spins is effectively described by gµBBN ·S, whereBN is
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the so-called Overhauser field (effective magnetic field for an electron spin due

to the nuclear-spin bath). The Landé g-factor g is ∼ −0.33 in our GaAs QDs.

For a large number of nuclear spins (N ∼ 106 in GaAs QDs) BN,α (α = x, y, z)

is Gaussian distributed (due to the central-limit theorem) [13, 86]. A large

static Bext ∼ 0.5 T, together with the z-component of the MM stray field

BM,z, produces a Zeeman splitting gµB(Bext + BM,z) = ~ωL (ωL is the Larmor

precession frequency). Due to Zeeman energy mismatch between nuclear- and

electron-spins, we may neglect the transverse terms of the Overhauser field that

give rise to electron-nuclear-spin flip-flops and BN,z shifts the resonance angular

frequency by ωN = gµBBN,z/~. Although our measurements are performed

in a DQD with one electron in each dot, the relevant dynamics is that of a

single electron spin, since the Larmor precession frequency fL(= ωL/2π) is well

separated between the two dots (∼ 400 MHz� fR) and the exchange coupling

is suppressed by large level-detuning (|ε| ∼ 500 µeV) during ESR excitation.

Thus our experimental settings can be modeled by the following Hamilto-

nian of a single spin,

Hlab(t) =
~(ωL + ωN)

2
σz +

~ωR

2
cos(ωt)σx, (6.2)

where σα (α = x, z) are the Pauli matrices and ωR = 2πfR. Using the ro-

tating wave approximation, which is valid for |ωR| � |ωL + ωN|, the effective

Hamiltonian in the frame rotating at ω is simplified to

Href(t) =
~δω
2
σz +

~ωR

2
σx, (6.3)

where the angular frequency detuning δω = ωL + ωN − ω.

Nuclear-spin dynamics is typically very slow because the nuclear spins are

only weakly dipole-coupled with each other and the bath itself is coupled very

weakly to its dissipative environment such as phonons. The correlation time of

the fluctuations in the nuclear-spin system is typically � 1 µs [124,125] and is

much longer than the timescale for electron-spin dynamics considered here (up

to 800 ns). Therefore, we assume that δω is frozen during a single electron-spin

time evolution, but fluctuates between experimental runs. The distribution

function of δω is also Gaussian following that of the Overhauser field. Under
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6.2 Fast and Slow Rabi Expressions

the resonance condition (that is, 〈δω〉 = 0), the standard deviation of δω is

given by σ = gµB

√
〈(BN,z − 〈BN,z〉)2〉/~. Then, the probability of flipping the

target spin is given by Eq. (5.2).

6.2.2 Different Regimes of the Rabi Oscillation

The spin flip probability Pflip(tMW) under resonant ESR excitation can be de-

composed to a time-independent term Pflip(∞) and a time-dependent term

P̃flip(tMW):

Pflip(tMW) = Pflip(∞)− P̃flip(tMW). (6.4)

When we assume that the Overhauser field fluctuates following a Gaussian

distribution (Eq. (5.4)) but is static during each spin-manipulation process,

from Eq. (5.3), Pflip(∞) is given in Eq. (5.5) and P̃flip(t) reads

P̃flip(t) =

∫ ∞
0

dδω
e−δω

2/(2σ2)

√
2πσ

ωR
2

ωR
2 + δω

2 Re
[
eit
√
ωR

2+δω
2
]
. (6.5)

To capture the oscillation form, it is convenient to introduce dimensionless

parameters, τ = ωRt and γ = ωR/σ. We change the variable from δω to x

such that x =
(√

ωR
2 + δω

2 − ω
)
/σ. Noting that δω = σ

√
x(x+ 2γ) and

dδω/dx = σ(x+ γ)/
√
x(x+ 2γ),

P̃flip(τ) =
γ2

√
2π

∫ ∞
0

dx
Re
[
exp

(
−x2

2
− γx+ iτx

γ

)
eiτ
]

√
x(x+ 2γ)(x+ γ)

. (6.6)

We introduce another parameter λ = γ − iτ/γ (=
√
γ2 + (τ/γ)2ei arctan(γ2/τ)),

and expand the kernel of the integral only to the lowest order of x using the

stationary phase approximation [15,74,121],

P̃flip(τ) ≈ 1

2

√
γ

π

∫ ∞
0

dx
Re
[
e−λx+iτ

]
√
x

=

√
γ

2
Re
[
eiτ/
√
λ
]

=
cos
(
τ + 1

2
arctan(γ2/τ)

)
2 4
√

1 + (τ/γ2)2
. (6.7)

In the weak driving regime with γ . 1, this approximation is valid for τ/γ �
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6. Distinct Features in Fast Rabi Oscillations

1, because only x . γ/τ can contribute to the integral in Eq. (6.6). Otherwise

the integrand function oscillates rapidly as a function of x and averages to

zero, as a result of large susceptibility of electron spin dynamics to nuclear

fluctuations. From Eq. (6.7), in the weak driving limit γ2 � τ , we obtain

P̃flip(τ) ≈ γ

2
√
τ

cos
(
τ +

π

4

)
. (6.8)

This expression is equivalent to Eq. (6.1). In this regime, coherent oscillation is

damped rapidly even before the first spin flip time tπ, followed by a relatively

slow damping.

By contrast, in the strong driving regime where γ � 1, the approximation

becomes valid for all range of τ . This is due to the exponential cutoff at x & 2/γ,

which essentially arises from increased immunity of electron spin dynamics to

nuclear fluctuations. From Eq. (6.7), we obtain the expression for γ � 1,

P̃flip(τ) ≈ 1

2
e−(τ/2γ2)2 cos (τ) . (6.9)

This expression is equivalent to Eq. (5.1). In this regime, the initial phase shift

vanishes and the initial Gaussian (quadratic) decay lasts for τ ∼ γ2.

To check the validity of these expressions for “slow” and “fast” Rabi oscil-

lations, we numerically compare them with the exact calculation. Figure 6.1(a)

plots the simulated Rabi oscillations Pflip(τ) obtained from Eqs. (6.6) and (5.5).

For γ . 2, besides reduced maximum spin flip probability, the oscillation phase

is shifted by ∼ π/4, as expected from the slow Rabi expression, Eq. (6.8). For

γ & 4, this phase shift vanishes and the spin flip probability for τ = 1/2 (π-

rotation) approaches 1. In this regime the fast Rabi expression, Eq. (6.9), well

describes the oscillation (Fig. 6.1(c)).

6.2.3 Fitting of the Real Data

The slow Rabi expression (Eq. (6.1)) is featured by a rapid damping before the

first spin flip, followed by a relatively slow decay of oscillation and an initial

phase shift ∼ π/4. These features are commonly observed in previous ESR ex-

periments with semiconductor QDs but are absent in the Rabi oscillations with

fR & 40 MHz observed here. These oscillations are well fit, for at least up to
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Figure 6.1: Simulated Rabi oscillations for different γ = ωR/σ. (a) Numerically
simulated spin flip probability as a function of renormalized time τ for different values
of γ. γ is stepped from 0 to 10 in step of 0.2. Thick lines represent traces for integer
γ. Traces are offset for clarity. (b) Numerically simulated spin flip probability (black
trace), along with the fast (red) and slow (blue) Rabi expressions for γ = 1. (c) Same
type of plot for γ = 5. Slow Rabi expression (blue trace) produces an unphysical
outcome in this regime.
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(a) (b)

Figure 6.2: Simulated driven spin trajectories in the Bloch sphere. (a) Repre-
sentation of the Bloch vector evolution of ensemble spin. Spin is initialized in the
up-spin state at τ = 0 and is driven by ESR for up to τ = 3. The blue trace is for
γ = 1 and the red one is for γ = 5. When spin is strongly driven the vector remains
near the Bloch sphere (approximated by a pure state), whereas weakly driven spin
rapidly goes inwards (i.e. mixed), approaching the z-axis. (b) Projection of the same
trajectories onto the yz plane.

6π spin flips with no initial phase shift, by the fast Rabi expression (Eq. (5.1)),

which shows large initial oscillations with no π/4 phase shift, followed by a

rapid decay of oscillation (Fig. 6.3(a)). On the other hand, the Rabi oscil-

lation with fR . 15 MHz is well approximated by the slow Rabi expression

(Fig. 6.3(b),(c)). We note that the fR ranges of fast and slow Rabi oscillations

are consistent with the theoretical prediction (Fig. 6.1). Indeed, fR = 15 and

40 MHz corresponds to γ = 2.1 and 5.7, respectively, with a typical value of

σ = 2π × 7.0 MHz in GaAs QDs [15]. To illustrate the deviation of the fast,

86 MHz Rabi oscillation from the slow Rabi expression, we plot fitting param-

eter dependence in Fig. 6.3(d). Irrespective of values of fitting parameters, the

slow Rabi expression cannot account for the experimental result, owing to the

qualitative difference of the decay function and the oscillation phase.

6.3 Chevron Pattern

The electron-spin dynamics under detuned ESR driving gives further informa-

tion about the effects of nuclear spins. The ESR spin flip probability when

driven by detuned ESR in the presence of slow Gaussian-distributed nuclear
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Figure 6.3: Comparison of fitting qualities. (a) Comparison of different fit functions
of 86 MHz Rabi data. The top panel shows the least-square fit to the fast Rabi
expression, whereas the bottom one is to the slow Rabi expression. (b),(c) Same
type of comparison as in (a) for the 15 MHz and 4 MHz Rabi data. To resolve
these slow oscillations, which are more susceptible to the nuclear field, Bext is swept
and the signal is processed following the procedure presented in ref. [66]. We note
that with the present setup and device stability, the probability cannot be directly
determined from the trans-conductance charge-sensing signal. Data presented here
are therefore all linearly converted, whose scale is data dependent. (d) Parameter
dependence of fit quality of the 86 MHz Rabi oscillation by the slow Rabi expression.
In the top panel, the oscillation amplitude A′ in Eq. (6.1) is intentionally changed
by a factor of

√
2 or 1/

√
2. In the bottom panel, fR is changed by a factor of 1.1 or

0.9.
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fluctuations can be expressed, in a similar manner to Eq. (5.2), as

Pflip(tMW, δ;σ) =

∫ ∞
−∞

dδωD(δω;σ)Pflip(tflip; δ + δω), (6.10)

where δ is the angular frequency detuning of the MW, σ is the standard de-

viation of the angular frequency detuning due to the nuclear field and tMW is

the MW burst duration. By introducing dimensionless parameters, τ = ωRt,

γ = ωR/σ, ν = δ/ωR and y = δ/σ, it can be equivalently expressed as

Pflip(τ, ν; γ) =

∫ ∞
−∞

dy
e−(y−νγ)2

√
2π (1 + ν2)

(
1− cos

(
τ
√

1 + ν2
))

. (6.11)

In the coherent limit with σ → 0 (or equivalently γ → ∞), a map of

Pflip(tMW, δ; 0) (or Pflip(τ, ν;∞)) makes chevron patterns in the time-spectral

(tMW-δ) domain or in the τ -ν plane. The patterns become blurred, when we

take into account the effect of static Gaussian-distributed Overhauser field.

Figure 6.4 shows maps of Pflip for different values of γ = ωR/σ. Chevrons can

be recognized only for γ & 4, which corresponds to fR & 28 MHz for a typical

value of σ = 2π × 7 MHz for GaAs QDs.

Figure 6.5(a) plots the map of the Rabi oscillation intensity with fR =

86 MHz as a function of tMW and Bext. Chevron interference patterns are

clearly recognized, indicating that we are in the strong driving regime with

γ & 4. This implies that driven electron-spin states are relatively immune to

the nuclear spin noise on the timescale of interest. Otherwise, the chevron

patterns would be blurred due to ensemble averaging over sizable Overhauser

fluctuations within the integration time for each data pixel, and scattered due

to slow drift within the whole measurement time. Indeed, these effects are

evident in the map of the slow Rabi oscillation intensity with fR = 15 MHz

(Fig. 6.5(b)). The slow drift of the interference pattern is due to the dynamical

nuclear polarization (DNP), whose amplitude is comparable to that of the

fluctuation. We discover that both effects of the fluctuating nuclear field and

DNP are minimal or absent for the fast Rabi oscillation.
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Figure 6.5: Map of ESR signals as a function of Bext and duration of MW burst.
Yellow is high signal, black is low. (a) fR = 86 MHz. Chevron patterns are clearly
recognized. (b) fR = 15 MHz. Chevron patterns are scattered and blurred.

6.4 Summary

In this chapter we study the driven single-electron-spin dynamics coupled to

a nuclear-spin bath. We observe distinct features when the electron spin is

strongly driven by ESR. First, fast Rabi oscillations with fR & 40 MHz show

no oscillation phase shift and the decay is exponential within the first few Rabi

periods. Second, chevron interference patterns are recognized in the Rabi os-

cillation intensity in the time-spectral domain. These features contradict a

theoretical expectation from strong coupling to the slow environment which

would invalidate the well-known Markovian Bloch equations. They are instead

well captured by our standard static-bath model, when the Rabi field is at least

4 times larger than the bath fluctuation. Qualitative improvement of control-

lability of the coupled spin system demonstrated here will be a foundation of

high fidelity quantum information processing with electron spin qubits. The

exponential coherence decay observed here will be essential for quantum error

correction, which is indispensable for quantum computation.
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Chapter 7

Phase Rotation of a Single

Electron Spin

Electron spin in QDs offers a distinguished platform for quantum computation

in solids. In this system rotations about the x- and y-axes via ESR are widely

accepted as the only resource for single spin-qubit operations, and to date

fast rotation about the z-axis within the ensemble phase coherence time T ∗2
is yet to be demonstrated. Here we propose a novel scheme for a single-step

electrical phase rotation utilizing an inhomogeneous magnetic field induced by

a proximal MM, and demonstrate up to 50 MHz operation. This is the fastest

phase flip ever reported for single-electron spin qubits and can perform a π/4

phase rotation in 2.4 ns, an order of magnitude shorter than T ∗2 , several tens

of nanoseconds. We anticipate that the single-step z-rotation demonstrated

here will facilitate experimental realization of various quantum gates such as

CNOT.

7.1 Introduction

It is commonly known that x- and y-rotations via ESR are sufficient for ar-

bitrary rotation of a single spin. By choosing the phase of the a.c. driv-

ing field, ESR can rotate electron spin about an arbitrary axis in the xy

plane, but the rotation around the z-axis is an important exclusion. To im-

plement the z-rotation, a 3-step decomposition into ESR rotations, Rz(θ) =
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7.2 Concept for Electrical Phase Control

Ry(−π/2)Rx(θ)Ry(π/2), can be used instead, where Rα(θ) denotes a single-

spin rotation around the α-axis by an angle θ. However, this implementation

takes (1 + π/θ) times longer than the direct phase shift at the same speed

would take. The gate time difference due to overhead (two Ry rotations) can

be relevant, especially when θ is small. Indeed, even with 120 MHz ESR, a

sequence of Ry(−π/2)Rx(π/4)Ry(π/2) consumes 5.2 ns, which is competed by

Rz(π/4) operating at no faster than 24 MHz. In the meantime, most quantum

circuits contain phase-shift gates such as the π/8 gate T = Rz(π/4), the phase

gate S = Rz(π/2) and the Pauli-Z gate Z = Rz(π). For instance, performing a

CNOT gate with exchange gates and single qubit gates will involve three phase

rotations typically, although the details depend of course on the particular de-

composition scheme used (Fig. 7.1). Performing these gates would be much

simpler and faster, if the spin phase can be directly controlled by electrical

gating.

7.2 Concept for Electrical Phase Control

The kind of control magnetic field required for phase gates is quite different

from the one used for ESR. While ESR requires an a.c. field perpendicular to the

quantization axis, phase shift is induced by a parallel static field, which we call

the Zeeman field as it defines the Zeeman energy. The phase acquisition rate

of electron spin in the laboratory frame, or the so-called Larmor precession

rate, is determined by the local Zeeman field. In the qubit reference frame

where the spin phase is static under free evolution, the phase acquisition rate is

proportional to the change of the Zeeman field, δBZ. We note that δBZ is the

shift of the Zeeman field with respect to the one defining the single qubit frame.

If we can turn on and off this field, then the single-qubit phase can be gated,

possibly quickly. Indeed, in GaAs QDs (with the Landé g-factor |g| ∼ 0.4), for

δBZ = 10 mT the relative phase evolution is as fast as 50 MHz.

The challenge is then how to electrically control the Zeeman field within

a single QD. This is actually possible by utilizing the slating Zeeman field

induced by a proximal MM (Fig. 7.2). If we displace the electron wave-function

with gate voltages in the presence of the spatially inhomogeneous stray field,

spin feels a different field, δBMM. The x- and y-components of δBMM can be
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Figure 7.1: CNOT implementation and phase gates. (a) An example of decom-
position of a CNOT circuit into exchange gates and single qubit rotations. Two√

SWAP and two Ry(θ) operations per one CNOT gate can be directly induced by
exchange interaction and ESR, respectively. Three Rz(θ) gates per one CNOT can-
not be performed directly by these conventional control knobs. (b) Another example
of decomposition. Despite the increased total number of gates, this implementation
has a potential advantage since single qubit rotations involve only one spin.
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Figure 7.2: Phase gate concept. (a) The MM placed on top of the QD produces
a spatially distributed Zeeman field. If the electron is displaced, spin will precess
at a different frequency. (b) A qubit spin acquires phase due to change in the local
Zeeman field, at a rate proportional to δBZ, in the qubit reference frame.

disregarded, as they do not contribute to the total magnetic field to leading

order approximation under the large external magnetic field Bext ‖ ẑ, i.e. the

effective field can be approximated as δBMM,z ẑ. We can therefore gate control

δBZ (= δBMM,z) under the spatially distributed Zeeman field imposed by a

MM.

7.3 Electrical Control of the Zeeman Field

To demonstrate the proposed scheme of phase gate, we use a GaAs-based lateral

DQD. We employ a cobalt MM of the refined design (see Chapter 4) and use

a heterostructure with a shallow (57 nm deep) 2DEG in order to boost the

inhomogeneous Zeeman field necessary for phase gates as well as the slanting

field to drive ESR by MW irradiation. From stray field simulation if the QD

position can be displaced by 10 nm, δBZ is expected to be an order of 10 mT,

which is already sufficient for performing a 50 MHz phase gate. At a dilution

refrigerator temperature the device is tuned into the PSB regime near the (1,1)-

(2,0) charge transition to initialize and detect spin states with charge sensing

(see §5.2 for further details of experimentals). Increased spatial distribution of

the local magnetic field induced by our MM is exemplified by > 100 MHz Rabi
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oscillations (see §5.4) and a ∼ 100 mT ESR peak separation (see §5.3).

We further characterize the Zeeman field inhomogeneity from the pump-

and-probe ESR spectra (Fig. 7.3). After initializing spins into parallel triplet

states relying on PSB at zero level-detuning (ε = 0), a MW at a fixed fre-

quency fMW = 8.2 GHz is burst at various gate voltage configurations in the

(1,1) Coulomb blockade region, followed by PSB spin readout at ε = 0. The

ESR signal is peaked when fMW is consistent with the electron Zeeman energy

determined by the sum of Bext and the MM-induced local Zeeman field δBMM,z

at the pump position. The gate dependent δBZ will then be probed from the

Bext value at the ESR peak center. If we change the ESR pump position from

points A to D and 1 to 4 in the (1,1) Coulomb blockade region (Fig. 7.3(b)), the

two ESR peak centers shift fairly monotonically (Fig. 7.3(c)), reflecting the δBZ

tunability with gate voltage. The result indicates that the local Zeeman field

can be electrically controlled over the range of 12 mT due to the displacement

of the electron. This change δBZ is accounted for if the electron is displaced

by ∼ 10 nm from A to D or from 1 to 4. We note that a 10 nm displacement

can be induced by an electric field of reasonable strength (4 µV/nm given the

harmonic potential with orbital energy spacing of 500 µeV). δBZ = 12 mT cor-

responds to 55 MHz phase accumulation, and therefore only 2.2 ns is needed

to perform the π/8 gate, T = Z(π/4). To implement this T gate in the same

gating time would require 220 MHz ESR rotations with the conventional 3-step

sequence.

7.4 Time-Resolved Measurement of Phase Ro-

tation

7.4.1 Demonstration of Phase Control

Figure 7.4(a) shows the pulse sequence used to experimentally demonstrate

the phase gate we propose. We rely on the PSB effect to initialize and readout

the spin states. Since the PSB-based measurement is insensitive to spin phase

itself, we incorporate two π/2 pulses via ESR (tuned to the right spin resonance)

before and after the phase rotation to project the induced phase shift to the spin
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Figure 7.3: Probing local Zeeman fields. (a) ESR spectra. Two ESR peaks are
clearly resolved, 80 - 100 mT apart. The peak at the lower (higher) field plotted in
red (blue) is due to the resonance of the right (left) spin. The solid lines show the
fitting results by a Lorentzian profile. (b) Pump positions in the stability diagram
used for the field probe. The purple line indicates where ε = 0 at the (1,1)-(2,0)
charge transition. (c) ESR peak field dependence on pump positions. Each data
point represents the value of Bext where the ESR peak is observed, after averaging
over 50 Bext sweeps.
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z-component. Here the qubit reference frame is naturally defined by the local

Zeeman field at P0 (indicated in Fig. 7.4(b)) in the (1,1) Coulomb blockade

region, where two π/2 pulses are applied, so that δBZ = 0 at P0. When the

QD is biased at P1, the qubit phase is accumulated due to the finite δBZ. The

measured spin signal oscillates sinusoidally at fZ = 53.9 MHz as a function of

voltage pulse duration at P1 (Fig. 7.4(c)). This indicates δBZ = 12 mT at P1,

which can be accounted for by ∼ 10 nm shift of the electron wave-function in

the right QD. The time required for Z(π/4) is as short as 2.3 ns. Using the

conventional sequence the gating time would be more than twice as long even

with the 120 MHz rotation (the fastest ESR ever reported). We numerically

simulate the average gate fidelity1 F̄ for Z(π) to be as high as 97.9 %, with

fZ = 53.9 MHz and TZ2 = 36.0 ns. We note that unlike ESR gates, the gate

fidelity for phase gates cannot be extracted directly from the probability of

finding spin flip, as the signal may contain contribution from infidelity of ESR

pulses involved in the sequence.

7.4.2 Pulse Amplitude Dependence

We further confirm the validity of our phase gate operation, by taking the

amplitude dependence. Since δBZ is expected to linearly increase with dis-

placement, the phase accumulation rate fZ would be roughly proportional to

the pulse amplitude. To see this we use a slightly modified pulse sequence with

an extra echoing π ESR pulse inserted, which maps the induced phase shift

to the measurable z-component (Fig. 7.5(a)). In this π/2-π-π/2 sequence, the

three ESR pulses are equally spaced in time just as in a conventional spin echo

1The average gate fidelity that quantifies how well a quantum operation U approximates
a quantum gate U is here defined by [117,126]

F̄(U , U) =

∫
dψ 〈ψ|U†U(|ψ〉 〈ψ|)U |ψ〉 , (7.1)

where the integral is over the uniform Haar measure dψ on state space, normalized so that∫
dψ = 1. F̄(U , U) ≤ 1 and F̄(U , U) = 1 if and only if U implements U perfectly. F̄(U , U)

for single qubit gates can be expressed, using experimentally accessible quantities, as

F̄(U , U) =
1

2
+

1

12

∑
j=1,2,3

Tr
[
UσjU

†U(σj)
]
, (7.2)

where σj is the Pauli matrix.
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Figure 7.4: Demonstration of phase gate operation. (a) Pulse sequence and
schematic representation in the Bloch sphere. The two ESR pulses map the phase
flip to the bit flip. When the induced phase shift between these pulses is 0 the final
spin state is the same as the initial state, whereas if it is phase flipped, the final spin
state is (spin) flipped. (b) Specific gate voltage configuration used in the sequence.
At M, ε ≈ 0, and at P0, ε ≈ −200µeV, which should be enough to quench the ex-
change interaction. (c) Phase rotation at 54 MHz. The solid line is a least-square fit
by C +Aexp

[
−(tgate/T

Z
2 )2

]
cos(2πfZtgate), with fZ = 53.9 MHz and TZ2 = 36.0 ns.

sequence in order to rephase the unintended phase accumulation induced by

the nuclear fluctuation. During the second interval, a voltage pulse is applied

to perform a phase gate at various bias points of P0 to P3. The extracted os-

cillation frequency fZ ranges from 0 to 40 MHz, depending on the bias points,

or reflecting differences of local δBZ. The quasi-linear dependence of fZ on the

pulse amplitude implies that our operation is performed as intended.

7.4.3 Discussion

The dephasing rate during the phase-shift gate operations is expected to co-

incide with the free induction decay rate with a characteristic time T ∗2 , since

the form of the Hamiltonian is essentially unchanged. Indeed, the extracted

characteristic decay time TZ2 = 36 ns for the 54 MHz phase gate is roughly

consistent with T ∗2 = 94 ns evaluated in the same device from measurement of
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Figure 7.5: Amplitude dependence of phase gate operation. (a) The pulse se-
quence and the schematic representation in the Bloch sphere. Three ESR pulses
are applied after an interval of gate time tgate to rephase the unintended phase ac-
cumulation during the intervals, which could be there due to e.g. nuclear fluctua-
tions. (b) Specific gate bias configuration. Points Pn (n = 0, 1, 2, 3) are equally
spaced in the gate voltage space. (c) Observed phase oscillation. The color indi-
cates the gate bias Pn using the same color as in (b). Solid lines show best fits by
C+Aexp

[
−(tgate/T

Z
2 )2

]
cos(2πfZtgate). Signals are scaled using the fitting results of

an independent 62.5 MHz ESR Rabi oscillation (see §5.4). Note that the trace for P0

corresponds to the echo signal. Extracted values of fZ are 16.3, 26.3 and 40.1 MHz,
respectively for P1, P2 and P3.

97



7.5 Summary

free induction decay during echo sequence (see §5.4.2.2 for details). Neverthe-

less we observe rapid damping of the “echoed” phase rotations in Fig. 7.5(c).

The reason is not known at present, but it could be due to imperfection of ESR

pulses, or the increased instability of the device.

7.5 Summary

In this chapter we propose and demonstrate single-step phase-shift gate opera-

tions of a single electron spin qubit. Our proposal for electrical phase control is

to utilize a spatially distributed Zeeman field, which enables to turn on and off

the phase accumulation by displacing the QD electron with gate voltage. From

the pump-and-probe ESR spectra, the gate-induced change of the Zeeman field

is measured to be as large as 12 mT in the strongly inhomogeneous stray field of

a specially designed MM. Up to 54 MHz operation is revealed from observation

of the direct phase rotation, using pulse sequences with additional x-rotations

to map the phase rotation to spin rotation. Our phase gate has the ability to

perform the so-called π/8 gate, or the z-rotation by π/4, in 2.3 ns. This is an

order of magnitude shorter than T ∗2 and is less than half the gating time of the

same gate implemented in a conventional manner with 100 MHz ESR rotations.

We anticipate that on the order of 100 MHz z-rotation will be feasible with op-

timized, larger gate pulses. The single-step phase gates demonstrated here will

pave the way to experimental realization of various complicated quantum cir-

cuits of single spin qubits such as the state tomography of a single electron spin

and CNOT.
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Chapter 8

Toward Expansion to a Three

Qubit System

Realization of a three-qubit system would be a milestone for fault-tolerant

quantum computation with QDs, as quantum error correction of either a bit or

a phase error requires at least three qubits. With a view to realizing three single-

spin qubits in QDs, we endeavor to extend the MM technique to a three-qubit

system. By incorporating the technique of radio-frequency (rf) reflectometry,

we obtain a sufficient conductance sensitivity of the readout circuit to perform

a single-shot spin measurement as well as fast device characterization. A TQD

is tuned to a charge configuration relevant for qubit operations and shows fine

gate tunability of the dot energy levels. Pump-and-probe measurements are

conducted, and the possible causes of and remedies to the lack of spin-related

signals are discussed.

8.1 Introduction

Although essential building blocks for universal computation with spins in QDs

have been demonstrated experimentally, to date the number of QD-based spin

qubits is limited to two [72,127]. Extending to a TQD hosting three qubits is a

natural step toward a scalable multi-qubit system and will open the door to the

three-qubit error-correcting codes, the simplest code of their kind, which can

correct any single bit- or phase-flip error of one of the physical qubits, depending
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8.2 MM Effect on Three Spin States

on the choice of the code, by encoding a qubit state using an entangled three-

qubit state [9].

The TQD system has been actively studied recently. Following the observa-

tion of a charge stability diagram of a few electron TQD [36], the conductance

through a TQD, including the tunneling event due to a QCA effect (see §2.3.2),

was measured [34, 37] and device designs with greater tunablility [39, 128] or

with compatibility with the MM technique [63] were extensively examined.

Then the single-qubit operation and tomography using a three-spin state as a

qubit [46,50] as well as the coherent control of three spin states [52] employing

the Landau-Zener-Stückelberg interferometry [129] have been demonstrated.

Very recently, PSB has been observed in both two- and three-terminal TQD

devices [38, 51]. Interactions between distant dots have been shown to play a

role under some conditions [130, 131]. The response to MW irradiation is also

investigated [132], whose understanding is important in performing ESR.

Although we use a gate geometry similar to those in these pioneering works,

our approach presented here is unique in that a MM is incorporated so that

each single-spin qubit can be accessed independently. The addressable ESR is

a must to implement a three-qubit system with a TQD. This is because in the

conventional scheme the single qubit is coded by well-defined single-qubit gates

in a multi-qubit system.

8.2 MM Effect on Three Spin States

For high-fidelity qubit operations the difference of the local Zeeman field needs

to be much larger than the hyperfine coupling (see §4.3). Here we theoretically

study how the enhanced inhomogeneous magnetic field induced by a proximal

MM affects the energy spectra of the TQD spin states.

The effective Hamiltonian of the three spin states confined in a series-

coupled singly-occupied TQD subject to the MM stray field can be approx-

imated (except near level crossing points) as [50]

HTQD(ε) = J12

(
S1 · S2 −

1

4

)
+ J23

(
S2 · S3 −

1

4

)
+HZ, (8.1)

where Si is the spin operator of the spin in the i-th QD, Jij is the exchange cou-
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8. Toward Expansion to a Three Qubit System

pling between the spins in the i-th and j-th QDs and HZ describes the Zeeman

energies. J12(J23) is induced by the tunnel couplings tc,12(tc,23) between QD1(2)

and 2(3), and a function of the level-detuning ε, which is defined as half the

electrostatic potential of the QD3 state relative to that of QD1 (Fig. 8.1(a)).

By introducing EZ as the Zeeman energy at QD2 and ∆12(∆23) as the Zee-

man energy difference between QD1(2) and QD2(3), the last Zeeman term of

Eq. (8.1) can be expressed as

HZ = EZ

∑
i

Sz,i −∆12Sz,1 + ∆23Sz,3. (8.2)

Figure 8.1 illustrates the simulated energy diagrams of the three spin system

for representative parameter sets, and the effect of the inhomogeneous Zeeman

field. When ∆12 = ∆23 = 0, as discussed in §3.1.3, the eight eigenstates are

the four quadruplets |QSz〉 with Sz = ±3/2,±1/2 and the four doublets |∆±Sz
〉

with Sz = ±1/2 (see the rightmost panels in Fig. 8.1(c) and (d)). The energy

of the doublet states |∆±Sz
〉 with respect to that of the quadruplet state with

the same Sz is obtained as −(J12 + J23 ∓
√
J12

2 + J23
2 − J12J23)/2. Therefore

these states can be mixed only when both J12 and J23 are suppressed and the

energy difference becomes comparable to ∆12 or ∆23. In conventional TQD

devices without a MM, ∆12 and ∆23 are determined by the nuclear field, which

is usually small and fluctuates in time. In contrast, we design these values as

large as 1-2 µeV (corresponding roughly to a field difference of 50 - 100 mT

in GaAs QDs), to achieve fast but addressable ESR. This is not only much

larger than the hyperfine coupling, but can even compete with or overwhelm

the exchange energies deep in the Coulomb blockade region (see the leftmost

panels in Fig. 8.1(c) and (d)). Indeed, the spin Hamiltonian being dominated by

the Zeeman terms is a necessary condition to avoid exchange interactions from

being “always on” (which would complicate the calculation in the conventional

framework).

In this “Zeeman-dominated” regime, it is appropriate to start with the

eigenstates of HZ and then treat the tunneling effect as a perturbation. As

a result, the energy diagram and the eigenstates deviate from those when ex-

change interactions dominate. If we assume that the Zeeman energy is smallest

in QD1, and largest in QD3 for simplicity, |↓↑↑〉 is the unperturbed ground state
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Figure 8.1: Three-electron spin energy diagrams. For simplicity, we restrict our-
selves to the symmetric case with tc,12 = tc,23 (≡ tc) and ∆12 = ∆23 (≡ ∆Z).
(a) TQD stability diagram around the (1,1,1) region, with the level-detuning axis.
(b) Three-spin energy diagram as a function of detuning, simulated for EZ = 20 µeV,
∆Z = −1 µeV, tc = 20 µeV. The size of the (1,1,1) region is set to be 1 meV.
Due to suppressed exchange interactions the spectrum becomes dense near ε = 0.
(c) Comparison of Sz = −1/2 energy diagrams in the (1,1,1) region for different
parameters. (∆Z, tc) = (−1 µeV, 10 µeV), (−1 µeV, 20 µeV) and (0 µeV, 20 µeV) in
the left, middle and right panel, respectively. In the left panel, the transition from
the Zeeman-dominated domain to the exchange-dominated domain is marked by an
avoided crossing located at ε ≈ −360 µeV. For parameters used in the left panel,
each eigenstate at ε = 0 is well approximated by a single Zeeman eigenstate, with
the (Uhlmann) state fidelity > 90 %. On the other hand, for parameters used in the
center panel, the fidelities are in the range of 47 - 83 %. (d) Same type of comparison
for Sz = 1/2 states.
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8. Toward Expansion to a Three Qubit System

within the Sz = 1/2 subspace. Exchange interaction between the leftmost pair

mixes this state with the first excited state |↑↓↑〉, indicating the hybridized

state of these two will form the new ground state as J12 gets large. On the

other hand, this ground state is decoupled from the exchange interaction be-

tween the rightmost pair, as it cannot (virtually) tunnel to the (1,0,2) states

due to the Pauli exclusion principle. This means that there must exist a level

crossing with a superposition state of the other states in the Sz = 1/2 subspace

as J23 increases. The same argument applies for the Sz = −1/2 subspace, with

interchange of QD1 and QD3.

From Fig. 8.1(b) and (d) we see that for |∆Z| = 1 µeV, tc = 20 µeV

is so large that the exchange coupling is not quenched even at ε = 0 (the

detuning range, or the size of the (1,1,1) region, is limited by the finite charging

energy, typically to the value on the order of 1 meV in GaAs QDs). When tc is

reduced to 10 µeV (Fig. 8.1(c)), the spin-spin interaction is dominated by the

Zeeman terms and single-qubit states are not mixed near ε = 0. We can enter

the region where the exchange coupling is dominant by moving toward charge

boundaries, implying single- and two-qubit gate operations are compatible for

this set of parameters. We note that achieving the Zeeman-dominated condition

by substantially reducing tc may not be favorable for fast entangling gates.

8.3 Measurement Setup

The measurement setup used in Chapters 5-7 is not capable of acquiring a

number of stability diagrams (of a 3-dimensional nature [34,37,132]) necessary

for tuning a TQD on reasonably short timescales. With a view to performing

high-fidelity readout which will be involved in qubit experiments, here we im-

plement the methods pioneered in refs. [133, 134] to observe charge dynamics

rapidly.

8.3.1 Theory of Reflectometry Circuit

In the “conventional” d.c. charge sensing, the current through the sensor is mon-

itored with a current-voltage (I-V) convertor at room temperature. The mea-

surement bandwidth is limited to several tens of kHz because of the low-pass
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8.3 Measurement Setup

filter (LPF) formed by the parasitic capacitance Cp (due to the measurement

wires etc.) and the input impedance of the amplifier [135]. By using a cryo-

genic HEMT amplifier (and thus reducing Cp) the bandwidth can be increased

up to 1 MHz [136], but this method is still limited by the LPF formed by Cp.

An approach that circumvents this low-passing effect is to use an impedance

matching network to transform the high resistance of the detector to roughly the

Z0 = 50 Ohm characteristic impedance of a transmission line [133]. High mea-

surement bandwidth is achieved by applying this rf-reflectometry technique to

the QPC charge sensing (rf-QPC) [134], allowing for single-shot spin-to-charge

readout of a few-electron DQD [125]. The technique is applicable to an SET

with possibly higher sensitivity as a charge sensor (rf-SET) [4], which enables

single-shot spin measurement in ∼ 100 ns with a signal-to-noise ratio (SNR)

∼ 3 [31].

In rf-QPC, a QPC is embedded in an impedance matching network formed

by a chip inductor of L and the parasitic capacitance of the bond pads and

wires (Fig. 8.2(a)). We can express the frequency-dependent impedance of the

model circuit as

Z(ω) = iωL+
R

1 + iωRCp

. (8.3)

Z(ω) approaches Z0 at the resonance (angular) frequency

ωres =
1√
LCp

√
1− L

2Cp

(G2 +Gm
2), (8.4)

where Gm = Z0Cp/L is the conductance of the sensor resistor for the matching

circuit to be perfectly impedance matched on resonance. The reflected power

from the circuit is proportional to the square of the reflection coefficient Γ(ω) =

(Z0 − Z∗(ω))/(Z0 + Z(ω)), which can be calculated as [128]

|Γ(ω)|2 = 1− 4GGm

(G+Gm)2
[
1− L

4Cp
(G−Gm)2

]
+ L2Cp

2(ω2 − ωres
2)2
. (8.5)

If we Taylor expand |Γ(ωres)|2 around Gm we get

|Γ(ωres)|2 '
1

4Gm
2 (1− Z0Gm) (G−Gm)2, (8.6)
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8. Toward Expansion to a Three Qubit System

which implies that the signal is actually relatively insensitive to conductance

changes around Gm. As the pre-factor scales almost as 1/Gm
2 (note that

Z0Gm � 1), the response away from the matching conductance becomes sharper

with a lower Gm.

8.3.2 Characterization of the Circuit Performance

We install in our Triton dry fridge the setup for rf reflectometry as illustrated

in Fig. 8.2(b) and (c). With a test TQD device mounted, we first monitor the

reflected rf carrier power with a network analyzer, and observe a dip when the

QPC conductance GQPC approaches the matching conductance (Fig. 8.3(a)).

From a resonance frequency of 277.7 MHz and given L = 560 nH (here the

left sensor channel is used in Fig. 8.2(b)), we can estimate Cp ≈ 0.58 pF from

Eq. (8.4). The lumped-element model described in §8.3.1 predicts the matching

resistance of 19 kOhm, which is consistent with the observation. We then use

the demodulation circuit to obtain signals Vrf proportional to the reflected

voltage. The relation between Vrf and the QPC current IQPC is obtained by

monitoring these signals simultaneously, yielding a quasi-linear dependence as

shown in Fig. 8.3(b).

We evaluate the readout sensitivity following the procedure described in

ref. [134]. The performance of the reflectometry setup can be assessed, inde-

pendently of the device sensitivity, by the conductance sensitivity SG. SG can

be determined experimentally by observing the amplitude modulation (AM)

spectrum of the reflected signal under gate-voltage modulation. When we ex-

cite one of the surface gate voltages, two sidebands which are symmetric about

the carrier frequency are observed, reflecting the modulation of GQPC, ∆GQPC,

at the modulation frequency. The spectral power of the sidebands is propor-

tional to ∆GQPC, which is not the case with the center band. SNR for a given

bandwidth ∆f is then obtained by the ratio of the height of a sideband to the

noise floor, where ∆f is given by the resolution bandwidth of the spectrum

analyzer. We can then obtain SG from

SG =
1

2
∆GQPC (∆f)−1/2 10−SNR/20, (8.7)

105



8.3 Measurement Setup

φ

Switch

MixerDirectional 
couplerLO

45 dB

BPF

10 dB

10 dB

40 dB
Sapphire

sink

BPF

21 dB

Directional 
coupler

100 pF

100 pF

820 nH

100 pF

560 nH

100 pF

2.2 kΩ 2.2 kΩ

RCp
LZ0

d.c. bias

PCB
(b)

(c)(a)

(b)

800 mK

50 mK

300 K

LPF
Vrf

Atten.

Atten.

Atten.

Figure 8.2: Reflectometry circuit. (a) L-network model that transforms the high
resistance of the sensor R using the stray capacitance Cp and the inductance L to-
ward the characteristic impedance of the transmission line Z0. (b) Device and the
surface-mount elements on the printed circuit board (PCB). Two matching circuits
with different coils (and thus different resonance frequencies) are used for frequency-
multiplexed readout of two sensor channels [50]. The bias-tees consisting of a capac-
itor and a resistor enable d.c. measurement. (c) Cryogenic and room-temperature
measurement circuit. An rf carrier is applied to the device via a directional coupler
(Minicircuits ZEDC-15-2B), which transmits solely the reflected signal with low loss
to the cryo-amplifier (Caltech CITLF1) mounted at 800 mK. The phase shifter (Pul-
sar Microwave SO-06-411) shifts the phase of one of the split carrier signals before
applied to the device, so that the reflected voltage becomes in phase with the other
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duct experiments using pulse sequences with a small dwell-time ratio at the readout
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8. Toward Expansion to a Three Qubit System

where the factor 1/2 comes from the number of sidebands and the unit of SNR

is dB. From a 1 MHz AM spectrum we obtain SG = 10 × 10−6 (e2/h)/
√

Hz,

which is comparable to the value of 5× 10−6 (e2/h)/
√

Hz reported in ref. [134]

(we note that a smaller SG gives better sensitivity). Given SG, the integration

time tM necessary to measure a conductance change of ∆GQPC with a desired

SNR in dB is expressed as

tM = 2

(
SG

∆GQPC

)2

10SNR/10. (8.8)

We note that this is valid only when tM is longer than the system response time

determined by the circuit bandwidth, which can be evaluated, for instance, by

taking the SNR dependence of AM modulation frequency (Fig. 8.3(d)). Our

reflectometry circuit (with SG = 10 × 10−6 (e2/h)/
√

Hz) therefore allows, for

instance, a conductance change of 0.003 e2/h to be detected in tM = 20 µs

with unity SNR (i.e. SNR = 0 dB), which would be fast enough to perform

single-shot spin detection.

8.4 Device Characterization

8.4.1 Device and the Simulated Magnetic Field

Figure 8.4(a) shows the TQD device measured. The plunger gates are con-

nected to the high frequency lines (18 GHz-bandwidth) so that we can con-

duct pump-and-probe measurements. Gate S is chosen as the MW gate, be-

cause it is expected to have more or less the same lever-arms to all QDs. The

MM is designed following the scheme proposed in Chapter 4, and guarantees

bsl(≡ ∂Bx/∂z) & 0.7 mT/nm and ∆BZ & 25 mT. The former is required for

fast ESR, while the latter protects the qubit from ESR-crosstalk and exchange

couplings and thus realizes high-fidelity single-qubit operations.

The upper charge sensor channel, operated as a QPC or an SET, is incor-

porated into a matching circuit formed by L = 820 nH and Cp ∼ 0.57 pF. It

resonates at 233.3 MHz when all sensor gates are negatively biased enough.

We find out that the resonance frequency can be modulated by up to 6 MHz,

depending on the choice of gates to deplete the channel. This is presumably

107



8.4 Device Characterization

-60

-50

-40

Sp
ec

tra
l p

ow
er

 (d
B)

 

279
Frequency (MHz)

278277276

SN
R

1 MHz AM

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.8 -0.6 -0.4 -0.2

12

10

8

6

4

2

0

Gate voltage (V)

IQ
PC

(A)V r
f(

V) -0.5

0.0

0.5

100 IQPC (A)

V r
f(

V)

(a) (b)

(c) (d)

-30

-20

-10

0

320280240
Frequency (MHz)

R
ef

le
ct

io
n 

(d
B)

GQPC = 0

GQPC ~ 4e2/h

GQPC ~ e2/h

SN
R

 (d
B)

AM frequency (MHz)

25

20

15

10

5
3020100

Figure 8.3: Characterization of the reflectometry circuit. (a) Reflection coefficient
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around gQPC ∼ e2/h and recovers as the QPC is further pinched off. (b) Demodulated
response Vrf as a function of the QPC gate voltage, with the d.c. current. Inset shows
transfer function of Vrf against IQPC. (c) AM response of the reflected signal to
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estimated from the gate lever-arm. The estimated carrier power at the board is
−80 dBm. (d) SNR as a function of modulation frequency. Above ∼ 10 MHz, the Q
factor of the impedance matching circuit limits the SNR and thus the measurement
bandwidth.
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because the geometric capacitance between the Schottky gates and the 2DEG

(estimated to be ∼ 9 fF from the 10 µm2 area size) adds to the effective Cp

when the resistance between the coil and the 2DEG underneath the gate is

low. We believe that this gate-tunablility can be an alternative to the varac-

tor diode technique [137] to in-situ tune the resonance condition away from

destructive interference due to the standing wave in the readout setup. Our

technique is advantageous in that it requires no extra components to install

and can minimize an undesirable increase of Cp.

8.4.2 TQD Stability Diagram

Figure 8.5(a) shows the TQD stability diagrams in the few electron regime. To

boost our characterization speed, we use a digitizer (AlazarTech ATS9440) to

record a time trace of the charge sensing signal Vrf synchronously with a low-

frequency (∼ 1 Hz) saw-tooth modulation to VPL, from which we deduce the

Vrf dependence on VPL [134]. This “ramped” measurement is possible owing to

the high-bandwidth of the rf-reflectometry readout and allows us to obtain a

diagram in a minute, which is roughly a 10-fold time-saving compared with the

conventional d.c. data taking. This way, the few electron regime can be reached

in a relatively straightforward manner. The acquisition time of a diagram is

limited by the ramping rate which cannot exceed the tunneling rates to measure

a charge configuration at equilibrium.

To evaluate the device tunability we probe the 3D nature of the TQD sta-

bility diagram by tuning VPC and taking the slice at the VPL-VPR plane. In this

way we can cover the whole VPL-VPC-VPR 3D gate voltage space. Figure 8.5(b)

gives an example of such measurements, where the position of the middle-dot

charging line is changed by VPC, allowing for fine and independent tuning of

the size of the (1,1,1) region. This confirms that in our device geometry the

plunger gates can shift the energy level of each dot quite efficiently and selec-

tively, which is crucial for pump-and-probe measurements.

8.4.3 Pump-and-Probe Measurements

Unlike DQDs or three-terminal TQDs [35, 38], detecting PSB in the conven-

tional bias spectroscopy in a two-terminal TQD can be intricate [51]. To observe
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Figure 8.4: TQD device structure and simulated stray fields. (a) Scanning elec-
tron micrograph image of a similar device measured with the shape of a Co MM
false-colored orange. The heterostructure (13729) is grown by the group of A.D.
Wieck at Ruhr-Universität Bochum. The axes used in the main text are also shown.
High frequency pulses can be applied on gates PL, PC, PR and S. (b) Numerically
simulated distribution of the slanting field bsl at each QD position. (c) Numerically
simulated distribution of the local Zeeman field, between the left and middle QD
(the left panel) and the middle and right QD (the right panel). The axes origin is at
the center of the two relevant QDs.
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Figure 8.5: Few-electron TQD stability diagrams. (a) Diagram for charge assign-
ment. The formation of a TQD is evident from the third slope of the transition line
in the stability diagram. In the lower left region the charge transition lines are no
longer observed, indicating that the TQD is completely empty. (b) Diagrams in the
PL-PR voltage space as a function of the gate voltage of PC. The values of VPC go
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Figure 8.6: Examples of pulse sequences used in search of spin-related signals. M
denotes the bias position during the measurement stage in the stability diagram. The
two-stage pulses (the left panel) let the system evolve at P in the (1,1,1) region and
measure the finding probability of (1,1,1) states. In the three-stage pulses (the right
panel) another point P1 in the (2,0,1) region is inserted before resting at P2 in the
(1,1,1) region to hopefully increase the initialization fidelity. A plane is subtracted
from the original stability diagram to account for the gate leverarm.

spin-related phenomena such as PSB and ESR, we use instead the pump-and-

probe technique [110], which has been used in refs. [46,52,138] to observe PSB

under gate pulses. We try several types of pulse cycles with varying the dwell

times or the voltage heights. Typical examples of sequences are shown schemat-

ically in Fig. 8.6. If the system is spin blocked, we expect Vrf measured either in

the (1,0,2) or in the (2,0,1) region to approach the value for the (1,1,1) charge

configuration only at finite magnetic fields. Unfortunately, however, we are

yet to observe any conclusive spin-related signals. Our list of possible reasons

includes 1) slow dot-lead and/or interdot tunneling rates with respect to the

ramping rate or to the dwell time, 2) some trapping state which only relaxes in

the slow co-tunneling processes, 3) fast spin relaxation at the readout stage due

to Zeeman field gradients [139] and 4) imperfection of high-frequency pulses. It

may be insightful to measure the interaction strength and the energy spectrum,

for instance from the observation of a so-called spin-arch [52] to check the pulse

(non-)adiabaticity conditions [129,140].
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8. Toward Expansion to a Three Qubit System

8.5 Summary

In this chapter our attempt to realize a three-spin-qubit system is described.

The rf-reflectometry technique for fast sensing is installed in our fridge and is

demonstrated to yield a reasonably good conductance sensitivity of the readout

setup, 10 × 10−6(e2/h)/
√

Hz. Our gate geometry as well as the fast data-

acquisition technique facilitates to reach the (1,1,1) charge state neighbored by

the (1,0,2) and (2,0,1) configurations, a regime of interest for implementing a

three-qubit system. The device shows a satisfying tunability of the dot energy

levels, a necessary ingredient for qubit operations. Unfortunately, spin-related

signals are still elusive after trials of pump-and-probe measurements. Possible

mechanisms and means are considered, with no fundamental obstacles found

in the way toward our goal.
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Chapter 9

Summary

This thesis focuses on single-electron spin qubits confined in GaAs quantum

dots [6] and employs the micro-magnet technique [21] for high-fidelity qubit

manipulation. The presented results can be summarized as follows.

1. We present a novel micro-magnet design to meet the requirements on

the stray fields for high-fidelity spin control in the presence of a realistic

amount of misalignment. (Chapter 4)

2. We find evidence of the strong inhomogeneous magnetic field by our tai-

lored micro-magnet from an exceptionally large ESR peak separation of

∼ 80 mT and above 120 MHz Rabi oscillations with a spin-flip fidelity of

97 %. (Chapter 5)

3. We demonstrate that the fast Rabi oscillations (& 40 MHz) feature the

zero oscillation phase shift and the exponential coherence decay, in clear

contrast to the conventional breakdown of the Markovian Bloch equations

by the strong coupling to a nuclear-spin bath. We also show that chevron

patterns of the spin-flip intensity can be resolved in the time-spectral

domain as an indication of the strong ESR drive. (Chapter 6)

4. We propose and demonstrate for the first time single-step phase-shift

gate operations of a single electron spin qubit. We achieve above 50 MHz

electrical phase rotation by utilizing the micro-magnet’s inhomogeneous

stray field. (Chapter 7)
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We believe these improvements in controlling the coupled spin system will

contribute to quantum information processing with electron spin qubits. The

demonstrated fast single-qubit gating, together with the established rapid en-

tangling gates, will make operation times necessary to implement fundamental

quantum circuits much shorter than the ensemble phase coherence time T ∗2 .

The exponential coherence decay observed here may be integral to quantum

error correction.

We anticipate that the ESR rotation speed can be doubled in future exper-

iments by using a ferromagnet with stronger magnetization than cobalt and/or

a thinner insulator (20 nm would be possible for instance with atomic-layer-

deposition technology). We also expect that on the order of 100 MHz phase

rotations will be feasible with optimized, larger gate pulses. Nuclear spin prepa-

ration [93,94,97–102] as well as dynamically error-corrected gates [141,142] may

be combined to further improve the control fidelity in the nuclear spin bath.

The presented micro-magnet technique can be directly applied to quantum

dots based on other materials, such as carbon nanotubes [26, 143–145], Si/Ge

2DEGs [56,103,146], or Ge/Si nanowires [147] where long coherence times are

expected due to weak hyperfine interactions. Indeed, the large control fields

(∼ 20 mT) achieved here would implement single-qubit π-rotations within 1 ns

in Si-based QDs (with g ∼ 2), suggesting a fault-tolerant single-qubit gate

fidelity [148] given the observed T ∗2 = 360 ns [146] (the value would be further

improved by isotope purification [103]).
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Appendix A

Device Fabrication Recipe

A.1 Recipe Overview

Integrating magnets to QD devices obviously complicates device fabrication

to a certain extent. Although it is a relatively straightforward extension of

the conventional process for GaAs lateral QDs, our recipe for MM-QD devices

involves as many as seven steps, so fabricating a new device usually means one

week of work in the clean room. During my PhD course, lots of modifications

were made as we learned better ways for higher yields. In this appendix, a

recipe used for TQD devices with a MM is reviewed.

The first step fabricates alignment marks, needed to make all the following

steps aligned with each other. Most importantly, one wants to overlay the gate

electrodes and the micro-magnet within the specified precision of the ebeam

machine, in our case (Exlionix ELS7700) 40 nm.1 You may well skip the first

step and combine it with the second by reducing the size of Ohmic contacts

and changing the metal of alignment marks from Ti/Au to AuGe/Ni. However,

marks fabricated in an independent step are more reliable especially when AuGe

is thin or less visible after annealing.

The second step is to make Ohmic contacts. Note that the best rapid ther-

mal annealing condition is different from wafer to wafer, so it needs retesting

for each new wafer. This seems particularly important for wafers with low

1The wrong alignment strategy such as to use different chip sizes can easily spoil this
accuracy.
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A.2 Step-by-Step Recipe

2DEG carrier density, which are presumably suitable for making multiple QDs

and/or low voltage operation. If the contact resistance is more than kOhms, it

becomes difficult to perform sensitive charge sensing measurements.

The third step is to define the mesa, where the 2DEG layer is formed. This

is the only step where photo-resist is used for patterning in our recipe. This is

because ZEP is relatively weak against acid, and therefore not a good choice for

wet etching. For rf-reflectometry measurement, it seems somehow important

to etch the 2DEG thoroughly in terms of depth and/or area.

The fourth step fabricates fine gates. Here a thinner resist is used to prop-

erly deposit fine patterns and cold development technique is used for a better

contrast. At the ebeam exposure, we first expose the core region and the rest,

with all writing orders specified, to minimize the effect of the stage drift. For

maximized alignment precision, we believe it is important that the core region

be arranged at the chip center.

The fifth step is for bonding pads. The metal needs to be thick enough

to electrically connect the gate on the mesa and the pad off the mesa. It is

important to note that easily-broken pads can spoil the whole process.

The sixth step is Calixarene, an insulating layer between the gate and the

MM. We use a solution of a mixture of Calix[6]-arene and Calix[9]-arene to

monochloro-benzene, whose concentration is calibrated (through trial and error

and color inspections) to 60 - 80 nm when spun twice. Monochloro-benzene

needs to be added from time to time to obtain the same thickness. Two layers

of Calixarene are necessary to avoid pinholes.

The final step fabricates the magnet. We use double layer ZEP simply to

deposit cobalt thickly. The device must be kept in vacuum after deposition of

the MM to avoid oxidization. We found that depositing a layer of gold on top

of the MM did not help to reduce deterioration of Co.

A.2 Step-by-Step Recipe

Step 1. Mark

1. Cleave a 5 mm × 5 mm chip from the GaAs HEMT substrate.

2. Sonicate in Acetone for 3 mins, then in IPA for 3 mins for solvent cleaning.
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A. Device Fabrication Recipe

3. Bake in an oven at 110 ◦C for 10 mins.

4. Spin ZEP 520A. Start at 500 rpm for 3 secs, ramp for 7 secs and keep at

4000 rpm for 50 secs. Thickness is typically 400 nm.

5. Bake on a hotplate at 180 ◦C for 3 mins, after cleaning the backside.

6. Expose with ebeam at 75 kV, with 60 pA for 1.0 - 1.8 µsecs, using 0.3 mm

chips with a 60,000 dot resolution. Use OLA 1 and M 6 of our ELS7700.

7. Develop in Xylene at 20 ◦C for 30 secs, then rinse in IPA 30 secs.

8. Deposit Ti/Au = 30/170 nm at 1/3 Å/sec using ebeam.

9. Dip in NMP at 90 ◦C for ∼15 mins. Lift off with a pipette, and Acetone

spray. Clean in Acetone and in IPA.

Step 2. Ohmic

1. Keep in Acetone for 3 mins, then in IPA for 3 mins for solvent cleaning.

2. Bake in an oven at 110 ◦C for 10 mins.

3. Spin ZEP 520A. Start at 500 rpm for 3 secs, ramp for 7 secs and keep at

4000 rpm for 50 secs. Thickness is typically 400 nm.

4. Bake on a hotplate at 180 ◦C for 3 mins, after cleaning the backside.

5. Expose with ebeam at 75 kV, with 2 nA for 4.0 µsecs, using a 1.2 mm

chips with a 20,000 dot resolution. Use OLA 3 and M 3 of our ELS7700.

6. Develop in Xylene at 20 ◦C for 30 secs, then rinse in IPA 30 secs.

7. Deposit AuGe(12wt%)/Ni = 110/10 nm at 3/0.5 Å/sec using ebeam.

8. Dip in NMP at 90 ◦C for ∼15 mins. Lift off with a pipette, and Acetone

spray. Clean in Acetone and in IPA.

9. Anneal in the H2/N2 atmosphere. Ramp to 420 ◦C in 2 mins, keep at

420 ◦C for 2 mins, and stop heating.

Step 3. Mesa
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A.2 Step-by-Step Recipe

1. Keep in Acetone for 3 mins, then in IPA for 3 mins for solvent cleaning.

2. Bake in an oven at 110 ◦C for 10 mins.

3. Spin S1813. Start at 500 rpm for 3 secs, ramp for 7 secs and keep at

4000 rpm for 50 secs. Thickness is typically 1 µm.

4. Bake on hotplace at 90 ◦C for 5 mins.

5. Expose to UV for 15 secs, using a photo-mask.

6. Develop in S351:H2O=1:5 for 60 secs. Clean in DI wafer (overflow) for

2 mins.

7. Bake in an oven at 110 ◦C for 20 mins.

8. Etch in H3PO4:H2O2:H2O = 4:1:90, at 20 ◦C. Etching rate is typically

1 nm/sec. Aim for around 120 nm when the depth of the 2DEG is 100 nm,

for example.

9. Remove resist in Acetone at 90 ◦C for 5 mins. Rinse in IPA.

Step 4. Gate

1. Keep in NMP at 90 ◦C for 3 mins, in Acetone at 90 ◦C for 3 mins, then

in IPA for 3 mins for solvent cleaning.

2. Bake in an oven at 110 ◦C for 10 mins.

3. Spin ZEP 520A:Anisole = 1:1. Start at 500 rpm for 3 secs, and immedi-

ately keep at 5000 rpm for 50 secs. Thickness is typically 100 nm.

4. Bake on a hotplate at 180 ◦C for 3 mins, after cleaning the backside.

5. Expose with ebeam at 75 kV, with 60 pA for 7 µsecs (line) and 3 µsecs

(dot/area), using 0.3 mm chips with a 60,000 dot resolution. Use OLA 1

and M 6 of our ELS7700. Use as mark A the one that is closest to the fine

pattern, and as mark B the one that is far enough away, to maximize the

alignment precision. If the liftoff of gate metal on the bumpy AuGe/Ni

is problematic, the Ohmic area should be exposed as well.

6. Develop in Xylene at 5 ◦C for 30 secs, then rinse in IPA 30 secs.
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A. Device Fabrication Recipe

7. Deposit Ti/Au = 10/20 nm at 0.5/0.7 Å/sec using ebeam.

8. Dip in NMP at 90 ◦C for ∼ 25 mins. Lift off with a pipette, and Acetone

spray. Clean in Acetone and in IPA.

Step 5. Bonding Pad

1. Keep in Acetone for 3 mins, then in IPA for 3 mins for solvent cleaning.

2. Bake in an oven at 110 ◦C for 10 mins.

3. Spin ZEP 520A. Start at 500 rpm for 3 secs, ramp for 7 secs and keep at

4000 rpm for 50 secs. Thickness is typically 400 nm.

4. Bake on a hotplate at 180 ◦C for 3 mins, after cleaning the backside.

5. Expose with ebeam at 75 kV, with 2 nA for 4.0 µsecs, using 1.2 mm chips

with a 20,000 dot resolution. Use OLA 3 and M 3 of our ELS7700.

6. Develop in Xylene at 20 ◦C for 30 secs, then rinse in IPA 30 secs.

7. Deposit Ti/Au = 20/220 nm at 0.7/3 Å/sec using ebeam.

8. Dip in NMP at 90 ◦C for ∼ 15 mins. Lift off with a pipette, and Acetone

spray. Clean in Acetone and in IPA.

Step 6. Calixarene

1. Keep in Acetone for 3 mins, then in IPA for 3 mins for solvent cleaning.

2. Bake in an oven at 110 ◦C for 10 mins.

3. Spin diluted Calixarene. Start at 500 rpm for 3 secs, immediately2 keep

at 4000 rpm for 50 secs.

4. Bake on a hotplate at 180 ◦C for 5 mins, after cleaning the backside.

5. Spin diluted Calixarene (2nd layer). Start at 500 rpm for 3 secs, imme-

diately keep at 4000 rpm for 50 secs. Thickness is typically 60-100 nm.3

2Skipping a 7 sec ramp makes the Calixarene considerably thinner.
3The thickness is indicated by the color.
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6. Bake in an oven at 180 ◦C for 30 mins, after cleaning the backside.

7. Expose with ebeam at 75 kV, with 210 pA for 47 µsecs, using 0.15 mm

chips with a 20,000 dot resolution. Use OLA 1 and M 9 of our ELS7700.

8. Develop in Xylene at 20 ◦C for 30 secs, then rinse in IPA 30 secs.

Step 7. Magnet

1. Keep in Acetone for 3 mins, then in IPA for 3 mins for solvent cleaning.

2. Bake in an oven at 110 ◦C for 10 mins.

3. Spin ZEP 520A. Start at 500 rpm for 3 secs, ramp for 7 secs and keep at

4000 rpm for 40 secs.

4. Bake on a hotplate at 180 ◦C for 3 mins, after cleaning the backside.

5. Spin ZEP 520A (2nd layer). Start at 500 rpm for 3 secs, ramp for 7 secs

and keep at 4000 rpm for 40 secs. Total thickness is typically 800 nm.

6. Bake on a hotplate at 180 ◦C for 3 mins, after cleaning the backside.

7. Expose with ebeam at 75 kV, with 60 pA for 2.4 µsecs, using 0.3 mm

chips with a 60,000 dot resolution. Use OLA 1 and M 6 of our ELS7700.

Choose the same alignment marks as for the gate step whenever possible.4

8. Develop in Xylene at 20 ◦C for 30 secs, then rinse in IPA 30 secs.

9. Deposit Ti/Co = 10/250 nm at 0.7/1 Å/sec using ebeam.5

10. Dip in NMP at 90 ◦C for ∼ 15 mins.6 Lift off with a pipette, and Acetone

spray. Clean in Acetone and in IPA.

4To make this almost always possible, these marks are used exclusively for these two steps.
In other steps other pairs of marks are used.

5The cobalt deposition takes more than half an hour, and if the thermal contact is bad
the top plate of the evaporator heats up. This damages the resist and can make the liftoff
problematic. Evaporation at higher rates can result in bad liftoff as well.

6Dipping in NMP for too long can damage cobalt and possibly Calixarene.
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1μm

(a) (b)

Figure A.1: Images of a completed MM-QD device. (a) Optical image of the core
region. The Co MM is placed just above the QD, on top of a Calixarene layer
(the dark square region) and is contacted with a Ti/Au electrode (yellow). The
small patterns just on the right side of the core region are the alignment markers,
from which to identify the overlay misalignment before and after Co deposition.
(b) Scanning electron micrograph of the core region. The surrounding region is
dark and opaque due to insulating Calixarene. No side walls are found, implying a
successful lift-off process.
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Appendix B

Simplified Wall-Wall Control

Procedure

Tuning multiple QDs into a relevant regime can be a tedious job, especially

when the right direction to take is in a complete darkness. Here we provide a

very simple, yet somewhat helpful diagnostics of the relative tunnel couplings

for a double QD in the sequential tunneling regime. A similar discussion based

on the rate-equation model can be found in ref. [115].

When the source-drain bias is applied such that the chemical potential of

the right reservoir is energetically higher than that of the left, electron (e) and

hole (h) transport cycles near the (NL, NR)-(NL + 1, NR−1) charge boundaries

are (see §2.3.1)

e : (NL, NR)
ΓC−→ (NL + 1, NR − 1)

ΓL−→ (NL, NR − 1)
ΓR−→ (NL, NR)

h : (NL, NR)
ΓC−→ (NL + 1, NR − 1)

ΓR−→ (NL + 1, NR)
ΓL−→ (NL, NR).

Here Γα (α = L,R,C) denote the tunneling rates of the left, right and center

barriers, respectively. Average charge configurations in these bias triangles can
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be modeled as

e :
[
ΓC
−1(NL, NR) + ΓL

−1(NL + 1, NR − 1) + ΓR
−1(NL, NR − 1)

]
/Γtot

−1

= (NL, NR) +

(
ΓL
−1

Γtot
−1 ,−

ΓL
−1 + ΓR

−1

Γtot
−1

)
(B.1)

h :
[
ΓC
−1(NL, NR) + ΓR

−1(NL + 1, NR − 1) + ΓL
−1(NL + 1, NR)

]
/Γtot

−1

= (NL, NR) +

(
ΓL
−1 + ΓR

−1

Γtot
−1 ,− ΓR

−1

Γtot
−1

)
, (B.2)

where Γtot
−1 = ΓL

−1 + ΓR
−1 + ΓC

−1. Let us denote by ∆IL(R) the change of

the sensor current, by a single charge in each QD. Then the change of the

sensor current on the zero level detuning line (i.e. the bottom line of the bias

triangles) is given by

e : ∆Ie =
ΓL
−1

Γtot
−1 ∆IL −

ΓL
−1 + ΓR

−1

Γtot
−1 ∆IR (B.3)

h : ∆Ih =
ΓL
−1 + ΓR

−1

Γtot
−1 ∆IL −

ΓR
−1

Γtot
−1 ∆IR. (B.4)

In most cases, in the regime of interest ΓC � ΓL,ΓR, so that Γtot
−1 ' ΓL

−1 +

ΓR
−1. Then the above expressions are further simplified to

∆Ie '
ΓL
−1

ΓL
−1 + ΓR

−1 ∆IL −∆IR (B.5)

∆Ih ' ∆IL −
ΓR
−1

ΓL
−1 + ΓR

−1 ∆IR. (B.6)

It is important to note that visibility of the zero detuning lines for electron

and hole transport cycles can be different. Depending on the sensitivity ratio

αS = ∆IL/∆IR, and the tunneling rate ratio αΓ = ΓL/ΓR, the change can be

vanishingly small. Figure B.1 illustrates the stability diagrams in some limiting

cases.

From Eqs. (B.3) and (B.4), the visibility ratio αV = ∆Ie/∆Ih can be ex-

pressed as

αV =
αS − αΓ − 1

αSαΓ + αS − αΓ

, (B.7)

126



B. Simplified Wall-Wall Control Procedure

(a) symmetrized

VR

VL

(b) thick left barrier

VR

VL

(c) thick center barrier

VR

VL

(d) thick right barrier

VR

VL
+
-

Figure B.1: Charge sensing signal maps for a quick tuning diagnosis. Diagrams are
schematically shown in various limiting cases of relative barrier thicknesses: ΓL ∼
ΓR � ΓC ((a)), ΓL � ΓR . ΓC ((b)), ΓL ∼ ΓR � ΓC ((c)) and ΓR � ΓL . ΓC ((d)).
The suffix numbers indicate the relative charge sensing signals when αS = 2. When
the transport is spin blocked, the diagram should look like (c).
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from which αΓ can be written as

αΓ =
−αSαV + αS − 1

αSαV − αV + 1
. (B.8)

Since αS and αV can be independently measured from a stability diagram, αΓ

can be estimated from this expression.
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