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Chapter 1 

 

Introduction 

 

1. Background 

Prediction of forest dynamics has been one of the primary focuses of forest science 

since the inception of the discipline (Messier et al. 2003). Numerous models for predicting 

forest dynamics have been developed in the manner that meets social needs. Yield table, which 

has been developed from the 1700s, is likely the most traditional type of models that have been 

used to make growth and yield predictions of plantations (Weiskittel et al. 2011). Yield table has 

been widely applied to homogeneous areas, such as monospecific, even-aged, and reasonably 

young (<150 years) stands; however, it is unable to produce accurate predictions of the 

dynamics of structurally heterogeneous stands (Groot et al. 2004). In parallel with the recent 

increase in the public concern over uneven-aged forestry, spatially explicit, individual based 

models have received growing attention. This type of models allow for a wide range of 

conditions within single stands and thus offer the most viable approach for modelling 

uneven-aged stands (Coates et al. 2003, Groot et al. 2004, Weiskittel et al. 2011). 

 Many spatially explicit, individual-based models have been developed to investigate 

the effects of uneven-aged forestry on stand structures and yields (e.g. Rüger et al. 2007; Valle 

et al. 2007; Thorpe et al. 2010; Yasuda et al. 2013), but some common challenges remain to be 

solved. For example, Royo and Carson (2006) pointed out that the models typically lack to take 

into account the presence of understory vegetation, an important factor that affects tree 

recruitment. Also, despite many researches have documented interspecific difference in trees’ 

competitive ability (Uriarte et al. 2010; Kunstler et al. 2012), individual-based models have 

almost invariably combined multiple species into groups in their parameter estimation process. 

Moreover, the models that explicitly incorporate tree mortality caused by logging practices are 

still scarce (Thorpe et al. 2010). Incorporating these factors into individual-based models will 

likely improve their prediction accuracy and range of application. 

In this study, I overcome the above challenges by using neighborhood analyses based 

on hierarchical Bayesian modeling. Neighborhood analysis enables us to estimate the degree of 

interactions among plants (e.g. competition among trees, competition between trees and 

understory vegetation, and understory vegetation-mediated facilitation of tree recruitment by 

adult trees) by expressing them as functions of plant biomass (e.g. stem size, vegetation density), 

species identities, and the spatial configuration of individuals (Canham et al. 2004; Uriarte et al. 

2004). As for Bayesian modeling, there is a growing body of evidence showing that this 

statistical approach could be a powerful means for quantifying fine-scale interactions among 

plant species in forests (Condit et al. 2006; Comita et al. 2010; Kunstler et al. 2012). Also, 

Bayesian approach provides a flexible modeling framework in which individual-based factors 

(e.g. effects of local logging intensity and species identity on tree demography) can be 
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efficiently analyzed. By integrating the estimated Bayesian models and associate parameters, I 

developed a spatially explicit, individual-based model. 

 

2. Study objectives 

The objective of this study was to develop a spatially explicit, individual-based model 

and to explore forest dynamics under a variety of uneven-aged harvesting scenarios. Through its 

development, I conducted Bayesian modeling of trees’ recruitment, growth, and mortality. In 

modeling tree recruitment, I explicitly analyzed the effects of understory vegetation on 

recruitment. As for tree growth, interspecific difference in competitive ability was quantified 

without combining multiple species. In modeling tree mortality, I investigated the influence of 

logging on residual tree’s mortality in a spatially explicit manner. 

My study was conducted in a mixed conifer–broadleaf forest in Hokkaido, northern 

Japan. The forest consists of multiple tree species with a range of sizes and has a heterogeneous 

configuration of individual trees. Forest floors are often covered by dwarf bamboos, which are 

perennial semi-woody plants that strongly inhibit tree regeneration (Abe et al. 2002; Noguchi 

and Yoshida 2004). As for silvicultural practices, single-tree selection has been widely 

conducted throughout Hokkaido for more than a century (Yoshida et al. 2006). Thus, forest in 

Hokkaido represents a good model system of which the basic and applied ecological 

background corresponds to my study objective. Several models have been previously developed 

for predicting the dynamics of mixed conifer–broadleaf mixed forests in Hokkaido (e.g. 

Ishibashi 1989a, 1989b; Yamamoto 1991; Yasuda et al. 2013). These studies have provided 

many pioneering outcomes; however, there is clearly a room left for further development, 

including the challenges stated above. My results offer novel methodologies for modeling forest 

dynamics using individual-based approach and provide new insights into single-tree selection 

management in Hokkaido. 

 

3. Structure of dissertation 

This thesis consists of 7 chapters. The first chapter is this Introduction. In chapters 2 to 

5, by using Bayesina modeling approach, I estimated the forest’s demographic parameters; that 

is, (chapters 2 and 3) recruitment rate, (4) growth rate, and (5) mortality. The titles of these 

chapters are as follows: 

 Chapter 2 (Understory vegetation submodel): Modeling the effects of individual-tree size, 

distance, and species on understory vegetation based on neighborhood analysis 

 Chapter 3 (Recruitment submodel): Mid-sized conifers indirectly facilitate tree recruitment via 

the suppression of understory vegetation in a mixed conifer–broadleaf forest 

 Chapter 4 (Growth submodel): Bayesian modeling of neighborhood competition in 

uneven-aged mixed-species stands 

 Chapter 5 (Mortality submodel): Individual-level analysis of damage to residual trees after 

single-tree selection harvesting in northern Japanese mixedwood stands 
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In chapter 6, we developed a spatially explicit, individual-based model by integrating 

these statistical models and explored forest dynamics under a variety of single-tree selection 

harvesting scenarios. The title of chapter 6 is as follows: 

 Chapter 6 (Forest dynamics modeling): Irreversible transition of stand structures: anticipating 

harvesting-induced shifts by means of an empirically based forest dynamics model 

Each chapter from 2 to 6 is written in a self-contained manner (i.e. each of them has its 

own Introduction, Materials and methods, Results, Discussion, and Conclusions) and thus is 

independently understandable. For the description for study site, however, I only stated at the 

Materials and methods section of chapter 2, because chapters 2 to 6 were conducted in the same 

study site. In chapter 7, I discussed the major findings and limitations of this dissertation as a 

whole. 

Chapter 2 was published in Canadian Journal of Forest Research (S. Tatsumi and T. 

Owari, “Modeling the effects of individual-tree size, distance, and species on understory 

vegetation based on neighborhood analysis,” volume 43(11), pages 1006–1014, 2013), chapter 4 

was published in Formath (S. Tatsumi, T. Owari, A. Ohkawa, Y. Nakagawa, “Bayesian modeling 

of neighborhood competition in uneven-aged mixed-species stands,” volume 12, pages 191–209, 

2013), and chapter 5 is in press at Journal of Forest Research (S. Tatsumi, T. Owari, H. 

Kasahara, Y. Nakagawa, “Individual-level analysis of damage to residual trees after single-tree 

selection harvesting in northern Japanese mixedwood stands”). 

  



第二章（chapter 2, pp. 5–21）の内容は、学術誌 Canadian Journal of Forest Research (S. Tatsumi 

and T. Owari, “Modeling the effects of individual-tree size, distance, and species on understory 

vegetation based on neighborhood analysis,” volume 43(11), pages 1006–1014, 2013) に掲載

済みであり、インターネット公表に対する承諾が得られていない。 



第三章（chapter 3, pp. 22–33）の内容は学術誌 Journal of Ecologyに投稿予定のため、イン

ターネットに公表できない。 
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Chapter 4. Growth submodel 

 

Bayesian modeling of neighborhood competition in uneven-aged 

mixed-species stands 

 

 

Keywords 

Bayesian inference, distance-dependent analysis, interspecific variability, neighborhood 

competition index, tree growth 

 

1. Introduction 

 Competitive interactions among individual trees are the primary factor that shapes 

stand structure (Curtis, 1970). In even-aged forestry, these interactions have been commonly 

described by stand-level indices such as stand density or stocking (Weiskittel et al., 2011). On 

another front, recent changes in management goals have led to a growing interest in 

uneven-aged mixed-species management. Such management encompasses a nearly infinite 

variation of species, sizes, and spatial configurations of residual trees (Papaik & Canham, 2006). 

Because of such structural heterogeneity, prediction of the competition in mixed-species forest 

calls for neighborhood analysis (Canham et al., 2006), in which the demography of component 

tree species is regulated by fine-scale spatial interactions (Canham & Uriarte, 2006). 

 Recent studies of neighborhood analysis have unexceptionally adopted maximum 

likelihood method for parameter estimation (Canham et al., 2004, 2006; Uriarte et al., 2004a, 

2004b; Canham & Uriarte, 2006; Papaik & Canham, 2006; Coates et al., 2009). However, since 

mixed-species forest commonly consists of a few dozens to a few hundred of species (Vanclay, 

1991), it is often prohibitively difficult to collect a sufficient amount of data to estimate the 

maximum likelihood (Coates et al., 2009). As a consequence, most previous studies have 

confined their target to major species that haSasample size larger than a prospectively defined 

threshold (Uriarte et al., 2004a, 2004b; Canham et al., 2006; Papaik & Canham, 2006). Yet, this 

methodological limitation hampers to reveal the competitive effects of minor species. 

 One approach for overcoming the problem of minor species is Bayesian inference with 

Markov chain Monte Carlo (MCMC) method. By using Bayesian inference, the interspecific 

variability can be represented as a random effect. Such representation has already been 

occasionally used within the framework of generalized linear mixed models (GLMM; e.g. 

Akasaka and Takamura, 2010; Suzuki, 2011), but not in complex models including 

neighborhood competition models. Bayesian inference may largely relax the limitation in 

sample size and avoid excluding the minor species from analysis. 

 In this chapter, I develop a Bayesian model for neighborhood competition in 

uneven-aged mixed-species stands. My specific objectives are to address the following 

questions: (1) When the interspecific variability is expressed as a random effect in neighborhood 

analysis, would the parameters be successfully estimated by Bayesian inference? (2) If so, 
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would such approach be superior to the previous approaches in terms of statistical performance? 

(3) Is there a significant difference in competitive effects among species, including minor ones? 

 

 

2. Materials and methods 

See Materials and methods in Chapter 2 for a description on study site. 

2.1. Data 

 I used inventory data collected from 16 permanent plots that are located across the 

study site. In the permanent plots, all trees ≥ 5.0 cm diameters at breast height (DBH) have been 

measured at 4–6 year intervals. Spatial positions (x-y coordinates) of living trees and dead trees 

(snags, logs, and stumps) were mapped in 2008–2011. I only used the recently measured DBH 

data for the analysis. To avoid edge effects, I excluded target trees (“target trees” are the trees of 

which their DBH growth are used as a response variable; described below in detail) that were 

within 10 m of the edge of the plot. In total, there were 1744 measurements for DBH of target 

trees (872 measurements for DBH growth) and 30987 measurements for DBH of neighboring 

trees (“neighboring trees” are trees that exert competitive effect on target trees; note that each 

neighboring tree corresponds to multiple target trees; Table 4.1). A total of 39 species and 

species groups were observed for neighboring trees (including other species). Only those 

individuals located within 10 m of a target tree were considered potential neighbors. I selected 

this range based on results of preliminary analyses and to ensure sufficient number of target 

trees in the dataset with complete mapped neighbors. 

 

2.2. Statistical modeling 

 In the analysis, the DBH growth of A. sachalinensis (the most dominant species in the 

study site; n = 872) was used as the response variable. The DBH growth was defined as the 

difference in DBH between two measurements. I analyzed the DBH growth of target tree as a 

function of its initial DBH and competitive effect of neighboring trees, using the differential 

form of the Gomperz growth function: 

 [1]   𝑂𝑏𝑠𝐺𝑟𝑜𝑤𝑡ℎ ~ 𝑁𝑜𝑟𝑚(𝑇𝑟𝑢𝑒𝐺𝑟𝑜𝑤𝑡ℎ, 𝜎1
2) 

            ln(𝑇𝑟𝑢𝑒𝐺𝑟𝑜𝑤𝑡ℎ)~ 𝑁𝑜𝑟𝑚(ln(𝑀𝑒𝑎𝑛𝐺𝑟𝑜𝑤𝑡ℎ) , 𝜎2
2) 

       𝑀𝑒𝑎𝑛𝐺𝑟𝑜𝑤𝑡ℎ =  exp(𝛼1 + 𝛼2 ∙ 𝑇𝑟𝑔𝐷𝐵𝐻 + ln(𝑇𝑟𝑔𝐷𝐵𝐻) + 𝑁𝐶𝐼 + ln(𝑌𝑟𝑠) + 𝑅𝑝𝑙𝑜𝑡) 

where 𝑂𝑏𝑠𝐺𝑟𝑜𝑤𝑡ℎ is the observed DBH growth of a target tree (cm), 𝑇𝑟𝑢𝑒𝐺𝑟𝑜𝑤𝑡ℎ is the 

DBH growth of a target tree without measurement error, 𝑀𝑒𝑎𝑛𝐺𝑟𝑜𝑤𝑡ℎ is the expected DBH 

growth of a target tree without process error, 𝑇𝑟𝑔𝐷𝐵𝐻 is the initial DBH of a target tree (cm), 

𝑁𝐶𝐼 is Neighborhood Competition Index (Eq. 2), 𝑌𝑟𝑠 is the number of years between two 

measurements, 𝑅𝑝𝑙𝑜𝑡 is a random effect for permanent plots, and 𝛼1 and 𝛼2 are parameters. I 

assumed that 𝑂𝑏𝑠𝐺𝑟𝑜𝑤𝑡ℎ is distributed normally with mean 𝑇𝑟𝑢𝑒𝐺𝑟𝑜𝑤𝑡ℎ and variance 𝜎1
2 
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because there were some negative DBH growths in the dataset, indicating that there was certain 

amount of measurement error. I have set 𝑇𝑟𝑢𝑒𝐺𝑟𝑜𝑤𝑡ℎ to be distributed log-normally with 

mean 𝑀𝑒𝑎𝑛𝐺𝑟𝑜𝑤𝑡ℎ  and variance 𝜎2
2  to represent process error. ln(𝑌𝑟𝑠)  is an offset 

variable. 

 To analyze the competitive effect of neighboring trees, I used NCI, an index in which 

the competitive effect of neighboring trees is predicted as a function of its DBH, distance from 

the target tree, and its species (Canham et al., 2004). The total competitive effect of neighbors is 

the sum of individual neighbors (𝑖 = 1, 2, … , 𝑛) found within 10 m of a target tree (Canham et 

al., 2004): 

[2] 𝑁𝐶𝐼 = ∑ 𝛽𝑠𝑖
𝑛
𝑖=1 ∙ exp (𝛾1 ∙ ln(𝑛𝑔𝑏𝐷𝐵𝐻𝑖) + 𝛾2 ∙ 𝐷𝑖𝑠𝑡𝑖) 

where 𝑛𝑔𝑏𝐷𝐵𝐻 is the DBH of a neighboring tree (cm), 𝐷𝑖𝑠𝑡 is the distance from the target 

tree to a neighboring tree (m), and 𝛽𝑠, 𝛾1, and 𝛾2 are parameters. 

 

 

 

Table 4.1. Species and sample size of neighboring trees. 

 

* P. sargentii and P. maximowiczii. ** U. laciniata and U. davidiana 

Species n Species n

Abies sachalinensis 13933 Fraxinus lanuginosa 298

Taxus cuspidata 2007 Picea glehnii 295

Tilia japonica 1448 Acer japonicum 281

Sorbus commixta

  var. rufoferruginea
1393 Betula maximowicziana 243

Acer mono var. mayrii Koidz 1111 Styrax obassia 226

Ostrya japonica 940 Acer ukurunduense 121

Eleutherococcus sciadophylloides 859 Phellodendron amurense 84

Picea jezoensis 774 Cercidiphyllum japonicum 60

Prunus ssiori 745 Hydrangea paniculata 60

Magnolia obovata 741
Fraxinus mandshurica

  var. japonica
27

Aria alnifolia 731 Morus australis 25

Tilia maximowicziana 730
Juglans mandshurica

  var. sachalinensis
12

Acer palmatum var. amoenum 654 Euonymus oxyphyllus 10

Kalopanax pictus 628 Syringa reticulata 9

Acer mono Maxim 482 Salix bakko 8

Prunus spp.* 474 Maackia amurensis 6

Swida controversa 441 Carpinus cordata 5

Ulmus spp.** 379 Picrasma quassioides 5

Quercus crispula 366 Other species (Unidentified) 21

Magnolia kobus var. borealis 355 Total 30987
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 Here, the net competitive effect of an individual neighbor is multiplied by the 

species-specific parameter 𝛽𝑠, which is estimated for each species 𝑠. Previous studies assumed 

that there is no interspecific similarity in competitive effect, and thus estimated 𝛽𝑠 

independently from one species to another (i.e. 𝛽𝑠 was expressed as a fixed effect; Canham et 

al.; 2004, Canham & Uriarte, 2006; Papaik & Canham, 2006; Coates et al., 2009; Uriarte et al., 

2009). I define a model based on this assumption ‘model 1’. A new approach based on using 

random effect, on the other hand, assumes that all species exert basically similar competitive 

effect with only slight differences. I define a model based on this assumption ‘model 2’. Finally, 

as a control test, ‘model 3’ assumes that there is no interspecific difference in competitive effect. 

 Based on the above assumptions, the prior distributions for 𝛽𝑠 were as follows: 

Model 1  

[3a] 𝛽𝑠 ~ 𝑁𝑜𝑟𝑚(0, 10
2), ∀𝑠 

Model 2 

[3b] 𝛽𝑠 ~ 𝑁𝑜𝑟𝑚(𝜇, 𝜎3
2), ∀𝑠 

 𝜇 ~ 𝑁𝑜𝑟𝑚(0, 102) 

 𝜎3 ~ 𝑈𝑛𝑖𝑓(0, 10
4) 

Model 3 

[3c] 𝛽𝑠  =  1, ∀𝑠 

Priors for 𝛽𝑠 in model 1 and 𝜇 in model 2 were noninformative normal distributions, while 

those of 𝛽𝑠 in model 2 were normal distributions with mean 𝜇 and variance 𝜎3
2. 𝛽𝑠  in 

model 3 were 1. The variance parameter 𝜎3 is referred to as a hyperparameter of which prior 

distributions (i.e. hyperprior distributions) were noninformative uniform distributions. 

 The priors for fixed-effect parameters 𝛼1 , 𝛼2 , 𝛾1 , and 𝛾2  were noninformative 

normal distributions [𝑁𝑜𝑟𝑚(0, 102)]; those for random-effect parameter 𝑅𝑝𝑙𝑜𝑡 were normal 

distributions with variance 𝜎4
2 [𝑁𝑜𝑟𝑚(0, 𝜎4

2)]; those for variance parameters 1/𝜎1
2 and 

1/𝜎2
2 were noninformative gamma distributions [𝐺𝑎𝑚𝑚𝑎(1, 10−3)]; and those for variance 

parameters 𝜎4 were noninformative uniform distributions [𝑈𝑛𝑖𝑓(0, 104)]. 

 

2.3. Parameter estimation and model selection 

 I conducted sampling from the marginal posterior distributions by the MCMC method 

by means of WinBUGS 1.4.3 (Lunn et al., 2000) via the R2WinBUGS package (Sturtz et al., 

2005) in R 2.15.0 (R Development Core Team, 2012). For each model (model 1–3), I obtained 

the posterior samples by three independent MCMC samplings, in each of which 4000 values 

were sampled with a five-step interval after 1000 burn-in MCMC steps. The convergence of 
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MCMC calculations was confirmed by evaluating Gelman and Rubin’s 𝑅̂ (Gelman et al., 

2004) for all parameters. For model selection, I used the Deviance Information Criterion (DIC; 

Spiegelhalter et al., 2002), a generalization of the Beyesian Information Criterion (BIC). 

 Since 𝛽𝑠  in model 1 did not converge in our preliminary analysis (𝑅̂ > 1.1), I 

combined the species with small sample sizes into other species only when analyzing model 1. I 

gradually increased the threshold of the sample size from 100 at intervals of 100 (i.e. 100, 200, 

300, …). 

 

 

3. Results 

3.1. Model selection and goodness of fit 

 All the model parameters adequately converged (𝑅̂ < 1.1; 𝛽𝑠 in model 1 converged 

when the threshold of sample size was 700; I hereinafter refer to the species that has a sample 

size smaller than 700 as minor species). Model 2, the model in which interspecific variability 

was represented as a random effect, was selected as the best model (Table 4.2). Neither model 1 

nor model 3 was assessed to have substantial support (∆DIC > 10.0; Spiegelhalter et al., 2002; 

McCarthy, 2007). The best model (model 2) and its associated parameter estimates (Table 4.3) 

provided an acceptable fit to the data (𝑅2 = 0.48; Fig. 4.1). 

 

3.2. Effects of neighboring tree characteristics on NCI 

 NCI in the best model increased with increasing DBH of neighbors and with 

decreasing distance between target tree and neighbors (Fig. 4.2). For instance, a neighbor with 

40 cm DBH and 80 cm DBH had 14.5 times and 35.3 times a larger competitive effect than a 

neighbor with 5 cm DBH, respectively. Likewise, a neighbor located 5 m and 10 m away from a 

target tree had 0.16 times and 0.02 times a larger competitive effect than a neighbor 0.1 m away, 

respectively. As for interspecific variability (𝛽𝑠), if the 95% credible interval of 𝛽𝑠 of a focal 

species did not overlap the mean value of 𝜇, that specie was considered to have significant 

difference with other species. A smaller 𝛽𝑠 value represents a larger competitive effect the 

focal species exerts. There was a distinct evidence for interspecific variability, although the 

number of species that showed significant differences was small; only A. sachalinensis, Ostrya 

japonica, and Magnolia obovata (Table 4.3, Fig. 4.3). A. sachalinensis exerted the largest 

competitive effect (mean 𝛽𝑠 = −0.0066); whereas Ostrya japonica exerted the smallest (mean 

𝛽𝑠 = −0.0010). None of the minor species showed significant difference. 

 

 

4. Discussion 

4.1. Parameter estimation by Bayesian inference and goodness of fit 

 My results showed that parameters within complex neighborhood models with random 

effects can be successfully estimated by Bayesian inference. Besides, predictive accuracy of the 

fitted model (𝑅2 = 0.48) was the highest among the studies that used maximum likelihood 
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method; the mean 𝑅2 values in previous studies were 0.09 (Uriarte et al., 2004a), 0.26 (Uriarte 

et al., 2004b), 0.22 (Canham et al., 2004), 0.33 (Papaik & Canham, 2006). 

 

Table 4.2. DIC and ΔDIC of alternate models. ΔDIC is defined as the difference from the lowest 

DIC. 

 

 

 

Table 4.3. The means and quantiles (2.5% and 97.5%) of posterior distributions of fixed-effect 

parameters and variances. 

 

 

 

Figure 4.1. Relationship between observed growth and predicted growth (n=872). The growth 

is defined as the difference in DBH between two measurements with 4–6 year interval. 

Model Description DIC ΔDIC

1 Interspecific variability as fixed effect 4621.9 21.7

2 Interspecific variability as radom effect 4600.2 0

3 No interspecific variability 4689.0 88.8

Parameter Mean 2.5% 97.5%

α 1 -3.94 -4.16 -3.71

α 2  (×10
-2

) -2.01 -2.34 -1.67

γ 1 1.29 1.04 1.49

γ 2  (×10
-1

) 3.73 4.63 3.00

σ 1  (×10
-1

) 2.36 2.00 2.77

σ 2  (×10
-1

) 5.12 4.71 5.53

σ 3  (×10
-3

) 2.93 1.01 7.36

σ 4  (×10
-1

) 2.69 1.70 4.19
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Figure 4.2. The effect of a neighboring tree DBH (left) and distance between a neighbor and a 

target tree (right) on the relative competitive effectiveness of that neighboring tree [expressed as 

exp (γ1∙ln[ngbDBHi]) and exsp (γ2∙Disti), respectively; parameter estimates can be found in 

Table 4.4]. 

 

 

 

 

 

Figure 4.3. Posterior distributions of parameters μ (above) and β_s (below). The vertical dashed 

line represents the mean value of μ. The solid bold and dotted curves in below correspond to the 

posterior distributions of which 95% credible interval do and do not include the mean μ value. 
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4.2. Factors that contributed to the high predictive accuracy 

 There are three possible factors which supported the high accuracy: (1) Because we 

did not exclude minor species with small sample sizes in our best model (model 2); (2) because 

previous studies have made an erroneous assumption in which the interspecific variability of 

competitive effect is independent of one another; (3) because previous studies failed to allow for 

uncertainty such as plot effects (𝑅𝑝𝑙𝑜𝑡). 

4.2.1. Factor 1: Efficient use of minor species data 

 Previous studies excluded minor species from analysis, which is inevitable in analyses 

based on maximum likelihood method. Also in my analysis of model 1 (the model in which 

each species had independent 𝛽𝑠 ), species with small sample size were to be combined 

necessarily in order to converge the parameters. However, such exclusion or grouping 

commonly reduces the information that original data hold. In the best model (model 2), on the 

other hand, I efficiently included the minor species’ data to the analysis. I assume that such 

effective utilization of data information made the resultant models more accurate. 

4.2.2. Factor 2: Representing interspecific variability as a random effect 

 The above assumption of efficient data utilization is further supported by the results of 

model selection (Table 4.2). In model selection, DIC were smaller in ascending order from 

model 2, model 1, to model 3. This result suggests that although there is a clear evidence for 

interspecific variability, the species-specific effects are not independent to each other, but rather 

have somewhat of similarity. 

 This evidence is also indicated from the estimated 𝛽𝑠 value, in which its variation 

was smaller than previously reported. In previous studies, 𝛽𝑠  varied among species 

dramatically: For example, the effect of some species had dozens of times larger the competitive 

effect of other species, whereas some species had completely none effect (i.e. 𝛽𝑠 = 0; Uriarte et 

al., 2004a, Uriarte et al., 2004b, Canham et al., 2006, Papaik & Canham, 2006). In this study, 

on the other hand, the largest 𝛽𝑠 was only 6.6 times larger than the smallest 𝛽𝑠 (-0.0066 for A. 

sachalinensis and -0.0010 for O. japonica). Besides, only three species had statistically 

significant difference with other species (Fig. 4.3), and none of them were minor species. These 

results indicate that previous studies based on maximum likelihood method have overestimated 

the differences, due to the erroneous assumption that the species-specific effects are 

independent. 

4.2.3. Factor3: Allowance of uncertainties 

 The problems of overestimation in previous studies may be also attributed to the 

failure of allowing uncertainties in resources and how individual use resources. Clark et al. 

(2003) suggests that these failures result in biased estimates and inaccurate confidence intervals. 

They also indicate that some results suggested by traditional methods can be an artifact to the 

assumption that all individuals respond identically. Since tree growth and competition are a 

noisy process that reflects both the history of individual trees and environmental variation 
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(Clark et al., 2003; Uriarte et al., 2004b), it is important to properly model the resource levels 

that cannot be precisely known. 

 

 

5. Conclusions 

 My result indicated that Bayesian inference enables to estimate the parameters of 

neighborhood competition models in which the interspecific variability is expressed as a 

random effect. Based on a model selection using DIC, the model that represented interspecific 

variability as a random effect was superior to other models that represented it as a fixed effect or 

that had no interspecific variability. This result suggests that although there was a clear evidence 

for interspecific variability, all species including minor ones exert measurably similar 

competitive effects. 

 There is a potential for further model development. I assumed that the competitive 

impact a target tree suffers is independent of its size and of the difference in size between 

neighbors. A model based on such assumption is called “two-sided competition models” 

(Weiskittel et al., 2001). However, previous studies adopted “one-sided completion models”, in 

which only larger neighbors exert competitive effect (Weiskittel et al., 2001), or included an 

additional parameter that allows the competitive effect of neighbors to decline as target tree size 

increases (Canham et al.,  2006; Uriarte et al., 2004a, 2004b; Papaik & Canham, 2006; Coates 

et al., 2009)). While the two-sided competition model afforded us computational simplicity, 

future research could examine alternative models which may contribute to higher accuracy. 

  



第五章（chapter 5, pp. 43–62）の内容は、学術誌 Journal of Forest Research (S. Tatsumi, T. Owari, 

H. Kasahara, Y. Nakagawa, “Individual-level analysis of damage to residual trees after 

single-tree selection harvesting in northern Japanese mixedwood stands”) に掲載済みであり、

インターネット公表に対する承諾が得られていない。 



第六章（chapter 6, pp. 63–75）の内容は学術誌 Ecological Applicationsに投稿予定のため、

インターネットに公表できない。 
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Chapter 7 

 

Conclusions 

1. Summary of results 

In this study, I developed a spatially explicit, individual-based model and explored 

forest dynamics under a variety of single-tree selection harvesting scenarios in Hokkaido. 

Through its development, I conducted Bayesian modeling of Sasa and trees’ recruitment, 

growth, and mortality. The key findings in each chapter were as follows: 

Chapter 2: Understory vegetation submodel 

I used a spatial neighborhood approach based on Bayesian modeling to quantify the 

competitive effect of individual trees on the density and height of Sasa. We analyzed how the 

effect of neighboring trees varies with stem size, distance to Sasa, and tree species. The effect of 

neighbors peaked when the tree reached a medium size (33.0 to 45.0 cm in DBH) and decreased 

for larger trees. The effect of neighbors decreased with increasing distance to Sasa. The slope of 

the decrease was gentler for larger trees. Conifers exerted an average of 7.2 times the effect of 

broadleaved trees. Species with higher shade tolerance exerted larger effects. Species with late 

leaf-flush and early defoliation tended to exert smaller effects. 

Chapter 3: Recruitment submodel 

We used the modeling approach similar to chapter 2 to quantify the interactions among 

three biotic components: adult trees, Sasa, and tree recruitment. The direct negative effect of 

adult trees on tree recruitment peaked when the adult tree reached a DBH of 73.2 cm and 

decreased thereafter. Adult conifers had 8.7 times the larger competitive effect of adult 

broad-leaved trees. Sasa had direct negative effect on tree recruitment. Tree species with larger 

capacity to sprout was less affected by dwarf bamboos. Overall, the indirect positive effect of 

adult trees on recruitment mediated by dwarf bamboo overwhelmed the direct negative effect, 

thereby the net effect to be positive. Adult conifers had remarkably larger facilitative effect than 

adult broad-leaved trees. Mid-sized trees had larger facilitative effect. Thus, it was indicated that 

to maintain the density of mid-sized conifers is the key for ensuring continuous tree recruitment 

in Hokkaido. 

Chapter 4: Growth submodel 

I used a spatial neighborhood approach based on Bayesian modeling to explore the 

interspecific difference among trees’ competitive ability. I analyzed how the effect of 

neighboring trees on target tree’s diameter growth varies with stem size, distance between the 

trees, and species identity. The competitive effect of neighbors increased with its DBH and 

decreased with increasing distance to target trees. Among three alternate models, a model that 

represented the interspecific variability as a random effect was selected the best model (based 

on model selection using the deviance information criterion), followed by a model that 
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represented it as a fixed effect. The estimated interspecific variability was smaller than 

previously reported; only three species out of 39 species were considered to have significant 

difference with other species. Results showed that although there is a clear evidence for 

interspecific variability, the species-specific effects are not independent to each other, but rather 

have somewhat of similarity. 

Chapter 5: Mortality submodel 

I used hierarchical Bayesian model to quantify individual-level effects (tree size, tree 

species, and the distance from residual trees to felled trees and skid trails) on residual tree 

mortality. Among the 4,961 trees that we studied, 373 (7.5%) were damaged, and 148 of these 

trees (3.0%) died during logging. The risk of damage to residual trees increased with increasing 

size of the felled trees and with increasing proximity to felled trees and skid trails. Smaller 

residual trees had the greatest risk of damage. Species differed in their susceptibility to damage; 

Abies sachalinensis and Picea jezoensis were the most susceptible species in our sample plots. 

The damaged trees had higher risks of postharvest mortality than the undamaged trees. 

Chapter 6: Forest dynamics simulation 

I developed a spatially explicit, individual-based model by integrating the Bayesian 

models and explored forest dynamics under a variety of single-tree selection harvesting 

scenarios. I first evaluated the goodness of fit of the model. The model reconstructed the 

dynamics of target forest quite well; predicted changes in stand structures (stand BA, 

diameter-class distribution, and species composition) were comparable to observed values. Next, 

I simulated the change in stand structures and the expansion of Sasa for the next 200 years in 

two plots: control plot and pre-harvested plot (in the past 40 years, no harvesting had been 

conducted in the control plot whereas single-tree selection harvesting had been repeatedly 

conducted in the pre-harvested plot). Without harvesting, stand structures were predicted to be 

maintained at the same state in the control plot; in contrast, the tree density decreased and Sasa 

expanded in the pre-harvested plot. In both plots, dwarf bamboo expanded under the current 

harvesting regime (10-years harvesting interval, 15% removal in terms of stand BA, conifers 

accounted for 90% of the harvested tree, and no harvesting of small-sized broadleaved trees). To 

explore an alternative regime, I conducted an exhaustive simulation in which all possible 

combinations of harvesting parameters were examined. The results showed that the stand 

structure can be maintained under a harvesting regime in which harvesting interval was 30-years, 

removal was 35%, conifers accounted for 60% of the harvested tree, and small-sized 

broadleaved trees were harvested. 

 

2. Limitations and further development of the models 

By using neighborhood approach based on Bayesian modeling, I successfully 

estimated and predicted the major structural attributes (e.g. stand BA, diameter-class 

distribution, and density of Sasa) of a forest in Hokkaido. However, my models have clearly a 

potential for improvement from both basic and applied ecology point of view. Perhaps one of 
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the most important factors that I did not consider in my study is the influence of typhoons. 

Typhoon is a major type of natural disturbance in Hokkaido and has important effects on forest 

dynamics (Ishikawa and Ito 1989). I did not incorporate the influences of typhoon in the model 

because of the limitation in my data and because I have put focus on anthropogenic disturbance 

(i.e. harvesting) in this study. However, incorporating them into the current model could further 

improve its accuracy and help to explore the combined effects of natural and anthropogenic 

disturbances on forest dynamics. 

There are many management options that I did not examine in this study. For example, 

we did not explore how supplementary planting could influence forest dynamics. Also, the 

range of harvesting methods explored in this study was fairly limited, especially in terms of 

spatial arrangement and size of harvested trees (where trees were harvested in descending order 

of its DBH). Employing a more complex harvesting algorithm (e.g. Arii et al. 2008) could 

permit investigation of a broader range of harvesting scenarios, including widely applied 

methods such as shelterwood and group-selection. 

 

3. Management implications 

My results showed that mid-sized conifers strongly suppress Sasa (Chapter 2). 

Furthermore, because the direct negative effect (of adult trees on recruitment) overwhelms the 

indirect positive effect (of adult trees on recruitment mediated by Sasa), the mid-sized conifers 

was deemed the key component to suppress dwarf bamboos and to ensure continuous tree 

recruitment (Chapter 3). These results imply the existence of a positive feedback loop in which 

the decrease in adult confers density decreases conifer recruitment via the expansion of Sasa, 

which will in turn decrease the adult confers’ density (Fig. 7.1). 

 

 
 

Fig. 7.1. Feedback mechanism that could lead to an irreversible transition of stand structure in 

the study site. White boxed and grey boxed show the component of forest dynamics and 

possible causes of transition, respectively. 
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Indeed, such decrease in conifer recruitment has been observed in many 

selection-managed stands in Hokkaido (Yamamoto 1995, Nigi and Koshika 1997, Kitabatake et 

al. 2003, Tatsumi et al. 2010). This may be largely attributed to the tendency in tree marking and 

to logging damage during selection harvest. A case study on tree marking by Owari et al. (2010) 

showed that Abies sachalinensis, the most dominant conifer species in Hokkaido, was 

disproportionately selected in a tree marking process. This tendency likely stemmed from the 

fact that this species frequently defoliates after reaching a certain size (ca. 60–70 cm), and thus 

tree markers prefer to select them before they lose their timber values. As for logging damage, 

my results showed that major conifer species (Abies sachalinensis and Picea jezoensis) were the 

most susceptible species (i.e. they had highest risks to be dead by logging damage) (Chapter 5). 

Under the current single-tree selection regime in which tree marking is biased to conifers and 

harvesting is frequently conducted (10-years interval), Sasa will likely expand and consequently 

tree density will decrease in the future (Fig. 7.1). My simulation results indicated that, to obviate 

such shift in stand structure in our study site, proportion of conifers among harvested trees 

should be kept at relatively low level (60%) and harvesting interval should be set longer (30 

years) so as to reduce logging damage (Chapter 6). 

My model predicted that under the alternative harvesting regime, single-tree selection 

can be continuously conducted without causing shifts in stand structure in mixed conifer–

broadleaf forests of Hokkaido. I must note that, however, my model has many limitations and is 

based on multiple assumptions that have to be validated in the future. Nevertheless, I believe 

that further modification of the current model, together with the accumulation of data and 

knowledge in the field, would lead to the development of a single-tree selection system that is 

grounded on scientific evidence.  
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