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Preface

This thesis is the summary of my research through master and doctoral courses.
Fortunately, my research topic, fluorescence fingerprint (FF) imaging, had so much
potential to study into and to develop that it kept me busy for a full five years. Although
it is not possible to record the full length of work, I hope | have been able to put down the
most important points in this thesis.

The theme of bread has fascinated me for a long time. I like eating it and making it,
and it makes my excited to study it. However, experimenting on different ingredients and
manufacturing methods to make bread was not my idea of research. | wanted to do
something more fundamental and something that was connected to other research areas.
This difficult desire was fully met with my research topic, which was connected to bread
but also was a topic that could apply studies in other research areas such as optical
engineering, image analysis and remote sensing.

The goal of this study was simple, to create an image that shows the distributions of
constituents in the food sample. In order to achieve this goal, methods of sample
preparation, data acquisition, and analysis methods were improved and developed.
Although most of the work was done by myself (while receiving advice from many
people), I learnt from the three years in doctoral course that there was a limit to what I
can do by myself, or what our laboratory team could do by ourselves. I learnt that
working with people of different areas of expertise can achieve results that are much
better than what was imagined for. As a researcher, I would like to keep this in mind,

and develop good relationships with a broad range of experts.
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Chapter 1

1. Introduction

1. 1 Objective of this study

One of the most important missions of the modern food scientist is to study the
causal relationship between the input and output of food production, i.e., how different
manufacture processes affect the quality of the end product. An important link between
manufacturing processes and the end product is the food microstructure. Different
processes create different microstructures, and the microstructure affects the texture,
appearance, taste perception, stability, and many other qualitative characters of food.
Therefore, observing this microstructure and understanding its effect on the quality of
the end product is very important in food science and technology.

There are multiple requirements for a good observation technique: least sample
preparation, good contrast between constituents of interest, and short measurement
times are just a few of them [1]. No existing technique fully meets these requirements,
and new techniques need to be developed. The objective of this study is to develop a
novel imaging technique by combining the fluorescence fingerprint (FF) and
hyperspectral imaging to visualize multiple constituents in food without any staining.
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1. 2 Structure of this thesis

The thesis is structured as shown in Figure 1-1:

Chapter 1 : Introduction
background of study

Chapter 2 : Development of the imaging system

hardware and software of the FF imaging system
calibration of the imaging system

Chapter 3 : model sample, 2 components
sample: mixture of gluten and starch reagents
analysis method: partial least squares (PLS) regression

Chapter 4 : real food sample, 2 components

sample: bread dough model (visualization of gluten, starch and bubbles)
analysis method: cosine similarity

Chapter 5 : real food sample, over 3 components

sample: pie pastry dough (visualization of gluten, starch, butter and other components)
analysis method: spectral unmixing

Chapter 6 : Conclusions
overall conclusions and future visions

Figure 1-1  Structure of thesis

The introduction will explain basic studies regarding the topics of fluorescence and
imaging. The second chapter shows the setup of the imaging system which was used
throughout the research. The imaging system could be cited as the most important
achievement of this research, since it can be applied to many other samples in the future.
The main chapters explain the applications of FF imaging in three steps, going from
model samples to real foods, and increasing the number of components visualized.
These chapters are based on five original papers. The last chapter summarizes the
conclusions and draws future visions.
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1. 3 Fluorescence

Fluorescence is the light (luminescence) emitted by molecules when they are
excited by photons [2]. Energy levels of an organic molecule are determined by the
electronic, vibrational and spin state of the molecule, and take discrete values called
quanta. The most stable form of the molecule is the ground level, So, when the energy
level is at its lowest value. When the molecule absorbs a discrete quantum of energy
from an outside source, the energy of the molecule rises to a higher level. The energy
absorbed equals the difference between the two molecular energy states. As the
molecule returns to its ground electronic state, the absorbed energy is released in some
way. If this absorbed energy is emitted as light, it is called fluorescence.

In this study, “fluorescence” refers to observable light in the near UV to VIS
(approximately 200-700 nm). Therefore, for a molecule to emit fluorescence, two
conditions need to be met:

1. The molecule absorbs UV to VIS light.

2. The absorbed light is released as light emission.

1. 3.1 Absorbance

In order for light to be absorbed by a molecule, the photon of the light needs to
have the proper energy to reach a discrete excited state of the molecule. The energy of
light absorbed (mole basis) is given by the Planck frequency relation:

N
E=Nhyv=— (D

E is the energy associated with frequency v and wavelength A, c is the velocity of light,
and N is Avogadro’s number. Absorption only occurs if E equals the difference in energy
between the ground electronic state and an excited state of the absorber.

In this study, we are focusing on light in the near UV to VIS region, i.e.
approximately 200-700 nm. According to the Planck frequency relation, this
corresponds to an energy value of 170-598 kJ/mol (N = 6.022 x 10?3, h = 6.626 X
10734, ¢ = 2.998 x 108).

This energy difference of approximately 200-600 kJ/mol is only achieved in
molecules with 7 molecular orbitals. The 7 orbital exists in molecules with double or
triple bonds. Molecules with only o orbitals, consisting only of singular bonds, have a
much higher energy gap between the ground and excited states. These molecules only
absorb light in the far UV.
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Furthermore, molecules with multiple double bonds connected alternately with
singular bonds are called conjugated molecules, and require smaller energy for electron
transition. As shown in Table 1-1, the more conjugated a molecule is, the smaller energy
it needs for electron transition to occur [3].

Table 1-1 Absorbance wavelengths of conjugated polyenes

n molecule structure wavelength [nm]
1 ethylene CH2=CH2 165
2 butadiene CH2=CH-CH=CH2 217
3 hexatriene CH2=CH-CH=CH-CH=CH2 268
4 octatetraene CH2=CH-CH=CH-CH=CH-CH=CH2 304
5 decapentaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2 334
6 dodecahexaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 364
7 tetradecaheptaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 390
8 hexadecaoctaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 410
10 eicosadecaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 450

Conjugated systems also show m to m* transition (r* is the excited state) when
they are cyclized (turned into rings), but some of these molecules show characteristics
that cannot be explained by the conjugated systems alone. One of these molecules is
benzene (C4Hyg).

Benzene has three single bonds and three double bonds. However, the actual bond
lengths between the carbon atoms are all the same. This is explained by the
delocalization of electrons in the ring. The delocalization of electrons makes the
benzene molecule a very stable one. This is why benzene absorbs at a shorter
wavelength (255 nm) than hexatriene, a linear conjugated hydrocarbon with the same
number of carbon atoms and double bonds. Cyclized conjugated molecules that show
the typical characteristics of benzene are called aromatic compounds.

Molecules formed from fused benzenes such as naphthalene (two benzenes
combined) and anthracene (three benzenes combined) show absorbance at longer
wavelengths than benzene [4]. Furthermore, the combination of functional groups such
as —OH and —NO- to benzene also shifts the absorbance to longer wavelengths.

Aromatic amino acids such as phenylalanine, tyrosine, histidine, and tryptophan
have a benzene ring in their molecular structures and show near UV to VIS absorbance.
Table 1-2 shows some typical aromatic compounds and their absorbing wavelengths [5].
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Table 1-2  Typical aromatic compounds and absorbing wavelengths

molecule structure wavelength [nm]
benzene CgHg 255
naphthalene (two benzenes fuzed) CoH,q 286
anthracene (three benzenes fuzed)C4H;, 375
phenole benzene + OH 290

As a conclusion, an important condition for a molecule to absorb light in the near
UV to VIS is to contain conjugated double bonds or aromatic structures. Details
concerning atomic and molecular orbitals are shown in Appendix I.

1. 3. 2 Fluorescence

The absorption of light causes the molecule to transfer to an “excited” state. This is
a very unstable state, so the energy is released again and the molecule goes back to its
most stable state. This release of energy is called deexcitation. There are many
deexcitation processes, and for a molecule to show fluorescence, the release of energy
as light needs to dominate over the other deexcitation processes. Below are the main
deexcitation processes:

1. Fluorescence (includes phosphorescence)

2. Radiationless transition (molecule loses energy as heat)

3. Excitation energy is transformed to another molecule

4. Excited electron leaves the molecule that absorbed the photon

All these processes progress at a certain rate, expressed with a constant k. If a
particular process has a large rate constant (the reaction proceeds quickly), the majority
of energy will be released through that process. Therefore, for fluorescence to be
observed strongly, the rate constant k for fluorescence needs to be relatively large
compared to the other reactions.

Two common reasons for the weakening of fluorescence is high temperature and
the existence of substances referred to as “quenchers”. At high temperature,
radiationless transitions are more likely to happen due to the increase in vibrational
energy. The rate constant k for fluorescence becomes small compared to the rate
constant for radiationless transition, leading to weaker fluorescence.

Quenchers are substances that are easily excited. The presence of these substances
activates energy transfer between molecules, and the energies of the excited molecules
are transformed to the quencher. This decreases the energy released as fluorescence and
lowers fluorescence intensity.
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Details on the deexcitation processes, their rate constants and the effect on
fluorescence intensity are explained in Appendix I1.

1. 3. 3 Fluorophors and applications of fluorescence

Intrinsic fluorophors

Fluorophors are chemical and physical substances that show fluorescence. Natural
or intrinsic fluorophors exist in the sample itself, while extrinsic fluorophors are added
to the sample to enable analysis or imaging by fluorescence.

Typical intrinsic fluorophors observed in foods are aromatic amino acids, enzyme
cofactors such as nicotinamide adenine dinucleotide (NADH) and vitamins, flavins, and
chlorophyll. Tryptophan is the dominant source of emission in proteins [6]. Tryptophan
is typically excited at 295 nm and emits fluorescence at 353 nm (in water, neutral pH)
but the emission is highly sensitive to the local environment. This sensitivity allows it to
be used as a reporter group for protein conformational changes. Tyrosine has a higher
quantum vyield than tryptophan but is often quenched when it exists with tryptophan.
Fluorescence of phenylalanine can only be observed when the protein lacks both
tryptophan and tyrosine.

NADH is universally present in living cells and has an excitation and emission
maxima at 340 and 460 nm [6]. NADH has been observed on the surface of meat,
assumedly emitted by bacteria [7]. Figure 1-2 shows the fluorescence spectra of the
three aromatic amino acids and NADH, measured in three-dimensional mode (data
acquired by spectrophotometer in laboratory).
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Figure 1-2  Fluorescence spectra of Tryptophan, Tyrosine, Phenylalanine, and NADH.
The spectra were measured in the laboratory with F7000 (Hitachi high technologies).
[7]

Tryptophan: 5 mol/I, photomultiplier 550V

Tyrosine: 5 mol/I, 580V

Phenylalanine: 3 mol/I, 700V

NADH: 4 mol/l, 580V

Slit: 5 nm, scanning speed: 60000 nm/min

Vitamin A (retinol), Bz (riboflavin), Bs (pyridoxine) and E (tocopherols) all show
fluorescence [8]. Retinol is known to be excited around 325 nm and its emission
maxima to range from 475 to 510 nm. Riboflavin has a high quantum yield around 0.25
and a fluorescence maxima around 515 nm in neutral aqueous solutions. Tocopherols
dissolved in ethanol fluoresce at 340 nm (excitation 295 nm). Figure 1-3 shows the
fluorescence spectra of these molecules [9].
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Riboflavin
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Figure 1-3  Fluorescence spectra of Retinol, Riboflavin, Pyridoxine, and Tocopherol.

The spectra were measure with LS50B (PerkinElmer).[9]

Chlorophyll is a complex of porphyrin and metal ions and exists in all
photosynthetic organisms. There many types of chlorophyll, and the two mail types are
chlorophyll a and b. The porphyrin ring is highly conjugated and provides many
delocalized m electrons that allow light absorption in the VIS range. Chlorophyll
absorbs in both the red and blue wavelengths but its fluorescence is mainly in the red
region [2].

Extrinsic fluorophors

Extrinsic fluorophors or probes are used when the molecules of interest are
non-fluorescent. Many types of fluorophors have been developed, not just for
identifying certain molecules but for measuring temperature [10], pH [11],
concentrations of substances such as CI- [12], Na+ [13] and Ca2+, and enzymatic
cleavage [14]. There probes make use of a characteristic of fluorescence that the
emission wavelength and intensity are affected by many factors such as the
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configuration of protein and vibration of molecules

The green fluorescent protein (GFP) is a notable probe. Since the GFP
chromophore forms without enzymatic synthesis, it is possible to express the gene for
GFP into cells [15]. When GFP is fused to proteins, the protein becomes fluorescent
without any change to its normal functions. Practically every major organelle of the cell
has been successfully visualized with GFP.

Most fluorescence probes are organic molecules, but quantum dots are
nano-crystals of semiconducting inorganic materials containing 130-150 atoms [16].
The light characteristics of quantum dots can be tuned by changing the radius of the
quantum dot (the smaller the radius the longer the wavelength).

Most probes are synthesized for a certain purpose but there is also a new approach
called diversity oriented fluorescence library approach [17] that first creates a library of
over 10,000 intrinsically fluorescent small molecules without any specific target. For
each new application, the whole library is scanned and the best fluorescent molecule is
chosen.

Almost all applications of fluorescence are based on the use of extrinsic
fluorophors. Some recent applications of fluorescence are explained in Appendix IlI.

1. 3. 4 The Fluorescence Fingerprint

In conventional fluorescence spectroscopy, light of one specific wavelength is
irradiated on the sample and the emission spectrum is measured. The wavelength of the
emission peak is used for qualitative analysis (determination of the constituents which
compose the sample) and the height of the peak for quantitative analysis (determination
of the amount of the constituent). Instead of one emission spectrum from one excitation
wavelength, multiple emission spectra can be acquired by irradiating the sample with a
set of consecutive excitation wavelengths. The fluorescence fingerprint (FF), also
known as the excitation-emission matrix (EEM), is a set of these fluorescence spectra,
aligned in order of the excitation wavelength so as to create a three-dimensional
diagram [18] (Figure 1-4). The pattern of this diagram, rather like a fingerprint, is
unique for each constituent.
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Figure 1-4  Multiple emission spectra constructing the fluorescence fingerprint [18]

Unlike the conventional fluorescence spectrum which focuses mainly on the
spectrum peak, the FF makes use of the whole pattern, taking in consideration the
fluorescence intensity of wavelengths other than the peak point. This means that FF can
discriminate between samples which have a similar dominating component but have
differences in minor components, for example, fruits of the same variety cultivated in a
different region [19].

The advantages of FF measurement can be brought out by the combination with
multivariate analysis methods. Fluorescence spectra tend to be broad, have bad
resolution and overlap when there are multiple sources of fluorescence. Furthermore,
the peaks may also contain physical and structural information of the sample, not only
the chemical information, making it even more difficult to identify the specific
fluorescent substance connected to the peak [20]. This problem can be resolved by
analyzing the entire FF pattern with multivariate analysis methods. Some multivariate
analysis methods are capable of decomposing the data into information about the
sample on one hand and information about the fluorescence spectra on the other.
Information about the fluorescence spectra may allow the specific fluorescence
substance to be defined.

Many qualitative and quantitative studies using the FF and multivariate analysis
methods have been reported for various target foods. Some cases are reviewed below.

Guimet et al. [21] combined FF measurement with unfold principal component
analysis (U-PCA) and parallel factor analysis (PARAFAC) to discriminate between
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virgin olive oil and pure olive oil. Both analyses showed that it was not the dominating
fluorophor, chlorophyll that discriminated between the two types of oils, but vitamin E
whose fluorescence was found in a different wavelength. This showed that the simple
measurement of the dominating fluorophor was not enough to achieve the desired result.

Sikorska et al. [22] analyzed the amount of riboflavin and aromatic amino acids
in beer by applying partial least squares (PLS) regression to the FF data. Compared to
the conventional methods based on chromatographic techniques to measure the amount
of these amino acids, the measurement and analysis of FF data proved to be rapid and
less expensive, requiring no pre-treatment.

Yin et al. [23] investigated the variety, brewery and vintage of wines using
principal component analysis (PCA) with FF spectroscopy. In the score plot of the first
two principal components, wines with the same properties grouped together. Although
the study was preliminary and needed a larger set of samples for the method to be
confirmed, if showed the potential of FF spectroscopy to measure wine quickly, easily
and non-destructively.

Discrimination of agricultural products based on their geographic origin has been
achieved by combining FF measurement and discrimination analysis [19, 24] and
applied to mangoes and taros (Colocasia esculenta). The discrimination accuracy was
equivalent to that of inorganic elements composition, which requires complicated
sample treatment.

11
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1. 4 Non-destructive imaging methods

Many non-destructive imaging methods have been developed through the 20-21st
century. The imaging methods differ in their applications, cost, acquisition times, spatial
resolution etc. Characterizing these imaging methods would, in turn, enable us to
understand the standing position of fluorescence fingerprint imaging.

Figure 1-5 shows the spatial resolution X acquisition time X cost matrix for
typical non-destructive imaging methods. The spatial resolution for imaging methods
that use light as the imaging medium are limited by the diffraction resolution of light.
i.e., the shorter the wavelength, the higher the resolution. However, near-infrared
imaging has a lower resolution than the diffraction limit, owing to the limitations of
sample thickness. Although each imaging method will be explained in the following
sections, a notable point is that FF imaging can achieve relatively high spatial resolution
with affordable machinery. This point will be explained again at the end of this chapter.
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Figure 1-5 Spatial resolutions, acquisition times, and price for typical

non-destructive imaging methods. ¥=Japanese yen. References: [25, 26, 27, 28, 29]
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1. 4.1 Light microscopy

Light microscopy is the basic form of optical microscopy with the simplest form
consisting of an objective lens and an eyepiece [30]. By adding a light source and
condenser underneath the sample (on the opposite side of the objective lens), the
simplest form of bright field microscopy can be achieved. In order to achieve contrast
between different constituents and features, the sample is stained.

Non-destructive observation without any staining is possible using methods such
as phase contrast and polarization. Phase contrast is a method to visualize
semi-transparent, unstained samples [31]. When light passes through these samples, the
light phase is retarded, typically by a ¥ of a wavelength. On the contrary, background
light is shifted positively by % of a wavelength by an annular aperture and a matching
phase ring [32]. As a result, light passing through the sample and background light
cancel out, and the sample can be observed as a dark figure.

Polarization light microscopy can be used to observe crystalline structures. A
typical application in food, is to observe the disappearance of the birefringence of starch,
due to gelatinization [33]. In polarization light microscopy, light that oscillates in one
orientation (polarized light) is radiated onto the sample. Some crystals have a property
of double refraction, i.e., the radiated light is split into an ordinary and extra-ordinary
ray at the refractive index interface [34]. These ordinary and extra-ordinary rays are
mutually perpendicular and when they pass through another polarizer before the
observation tube, they are combined with constructive and destructive interference [35].
As a result, some orientations shine brighter than others.

Phase contrast and polarization microscopy systems are relatively easy to mount on
a normal light microscope. Since the FF imaging system, explained in chapter 2 is based
on a light microscope, mounting these systems to acquire further information from the
sample could be a realistic development in the future.

1. 4. 2 Hyperspectral imaging

Hyperspectral imaging, a technique that integrates conventional spectroscopy
with imaging methods, is currently used in diverse fields such as astronomy, agriculture
and medicine as well as food technology [36]. Its main idea is to acquire the
spectroscopic information for each spatial position of the sample, which can be
analyzed to give the contemplated information (Figure 1-6).
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Spectral information for each pixel
—> constituent information
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Spatial informatio

T

Distribution image of constituents

Figure 1-6 Hyperspectral imaging. Both spatial and spectral information are
acquired concurrently. Spectral data gives information on the chemical and physical
properties of the constituent measured. Therefore, by measuring these two
information together, we can acquire the distribution image of constituents and

properties.

Hyperspectral imaging methods can be divided into several groups. One way to
categorize different hyperspectral imaging methods would be to divide them based on
the method to acquire data: area scanning, point scanning, or line scanning [37]. Area
scanning is also called staring imaging or focal plane scanning, and images of a fixed
field of view is acquired in one wavelength after another. Point scanning involves
measuring the spectrum of a single point, moving the sample and measuring the
spectrum at the next point. Line scanning is also called pushbroom, where spectral
measurements from a line of sample are acquired with an array detector while the
sample is moved in a perpendicular direction.

Another way of distinguishing groups would be to divide them based on the
spectroscopic data. This can be expressed in several modes: reflectance, fluorescence or
transmission. Most studies using hyperspectral imaging in food have used the
reflectance mode, usually measured in the Vis-NIR or NIR range, and some in the IR
region. Raman scattering has also been used, although it is not as wide spread as NIR.

14



Chapter 1

These imaging methods are discussed below.

Near-infrared imaging

The NIR region of the electromagnetic spectrum is roughly in the range of
780-2526 nm, according to the American Society of Testing and Materials (ASTM) [38].
The absorption bands occurring in this region correspond to the overtones and
combinations of vibrations of —CH, -NH, -OH and —-SH functional groups. The
fundamental vibrations of these functional groups occur in the mid IR region.

The change in vibrational state that is explained with a harmonic oscillation model
(two masses connected with a spring) follows the selection rule of Av = +1 where v is
the vibrational quantum number. The absorption of NIR light corresponds to transitions
of Av > 1, which is basically forbidden in a harmonic vibration model. Absorption of
overtones (Av > 1) can only be explained in an anharmonic oscilliation model where
the Morse potential energy gives more realistic values. Even though overtones are not
rigorously excluded in anharmonic oscillation models, they are still forbidden
transitions, and therefore, absorption of NIR is much weaker than the fundamental
absorption in the mid IR region.

NIR spectroscopy also measures combination bands, which are results of
vibrational interactions [38]. Two NIR absorption bands of a molecule with the same
frequency are known to not simply sum up, but split into two peaks of higher and lower
frequencies. This type of configuration interaction is called Fermi resonance.

These two types of bands, i.e., overtones and combination bands, are broad,
overlapping and 10-100 times weaker than the fundamental absorptions. Therefore, in
order to make use of this data, chemometrical data processing is needed. This also
applies to imaging with NIR, the spectroscopic data always needs to be analyzed before
meaningful images can be acquired.

NIR imaging has been applied to many foods, with several objectives. One of these
objectives is to visualize the distributions of constituents of interest, for example, fat
distribution in fish [39, 40, 41, 42] and beef [43] and sugar distribution in fruit [44].
These methods involve creating a calibration curve that links NIR spectra with the
quantity of constituent. Since measurement is performed on the whole sample (fish or
chunks of meat), the measurement is macroscopic with one pixel of the camera
corresponding to around 0.4 mm/pixel [40].

Another popular objective is the detection of unwanted substances such as foreign
materials in batches of fruit [45, 46] and carcasses on poultry [47]. In this case,
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discrimination functions are created from pixels whose category (ex. foreign materials
or fruit) is known, and the remaining pixels are classified by the discrimination function.
The spatial resolution is normally lower than that of constituent visualization, since
large areas need to be scanned for practical use.

The use of NIR imaging is also much studied for chemical imaging in
pharmaceutical analysis [48, 49]. Medicine tablets need to have a certain amount of
active substances which need to be homogeneously distributed throughout the whole
tablet or package of powder. This requires higher spatial resolution compared to the two
former applications, and resolutions such as 200 um x 200 um/pixel are used [49].

These applications use a relatively low spatial resolution compared to the
diffraction limit (resolution limit due to the wavelength of light) because there is more
emphasis in measuring many samples in a short time. However, NIR is not suited to
observe samples in high resolution for the following reasons [25]: since NIR spectra are
combinations and overtones of the fundamental vibrational spectra, the sample needs to
be thick for measureable signals to be acquired (over 100 um for spectra in the range of
1200-2450 nm and over 500 mm that of 950-1720 nm). On the other hand, to achieve
maximum spatial resolution, the numerical aperture (NA) value of the objective lens
needs to be small. Since focal depth is inversely proportional to the square of NA value,
a small NA value means that the whole thickness of the sample will be in focus. For this
reason, the standard objective of the NIR imaging system is a refractive lens with 1 x
magnification, in which case the resolution would be in the order of 10-100 pm.

The image acquisition speed for NIR imaging is at trade off with the spatial and
spectral resolution, but is relatively fast compared to other imaging methods. For
example, Segtnan et al. [40] have used scanners that collect 10000 spectra per second
(15 wavelengths per spectrum) when the field of view was 60 pixels across and 500 to
670 pixels lengthwise.

Infrared imaging

Spectral imaging in the infrared is typically conducted with a Fourier transform
infrared (FT-IR) imaging system, which uses an interferometer to acquire the IR
spectrum. With a point scanning type, where the spectrum of each pixel is measured at a
time, measurement could take tens of hours if the spatial resolution is to be high [25].
This is because as the spatial resolution is made higher, the intensity of the light
entering the spectrometer is lowered, and therefore, a large number of scans (typically
hundreds) need to be averaged to achieve desired S/N ratio.
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The area scanning type of FT-IR imaging system acquires images of the sample at
different combination of lights produced by the interferogram. These types of imaging
systems take much less time to acquire images with high spatial resolution, in the orders
of minutes [25]. Spatial resolution can be enhanced by using an attenuated total
reflection (ATR) accessory, where the sample is immersed in a medium of high
refractive index, such as germanium (n = 4.0). However, with ATR imaging, the sample
plane needs to be completely flat, and this limits the form of sample that could be
observed.

Raman imaging

The advantage of Raman imaging is that the diffraction limit is in the order of the
VIS light range and is much higher than IR imaging, while the acquired information is
of molecular vibration. The point scanning type of Raman imaging systems have a
confocal design where the laser light source is focused on a small focal volume within
the sample. The Raman- and Rayleigh-scattered light is collected by the objective lens,
Rayleigh-light is filtered with a dichroic beamsplitter, and the spectrum of the
Raman-light is measured with a spectrophotometer. However, similarly to the point
scanning type IR imaging system, image acquisition times can be very long. For
example, Qin et al. [28] has reported an imaging system that acquires images of 370 x
50 pixels, corresponding to an area of 74 x 10 mm?, which takes approximately 3
hours. This system was used to detect melamine concentrations in dry milk [28] and
lycopene in tomatoes [50].

1. 4. 3 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) is an imaging method based on nuclear
magnetic resonance (NMR) which measures the resonance absorption of radiation by
nuclei or unpaired electrons in a magnetic field [16] and reveals information on the
electronic structure (chemical groups). In MRI, information such as the distributions of
protons (or hydrogen nuclei) in a solid object are measured by applying an
inhomogeneous magnetic field (a magnetic field that is linearly varied with a certain
gradient) to the object.

The biggest advantage of MRI is that it can nondestructively visualize opaque
samples in two-dimensional and three-dimensional form. In the field of food science,
MRI has been used to visualize the internal structure and physical state of water in fruit
[29], fat and water in meat [51] and live pigs [52], and to investigate structures of
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cheese [53].

The spatial resolution of MRI depends on the magnetic field gradient, i.e., the
intensity of the magnetic field needs to be different at each pixel [29]. By applying a
strong magnetic field gradient, the spatial resolution can be enhanced, but the S/N ratio
could be sacrificed. Van As et al. [29] have shown that a resolution of 39 X 39 um
shows clearer images than 31 x 31 um resolution in terms of S/N ratio. In most cases
MRI measurements are performed on macro-scale samples with one pixel
corresponding to orders of millimeters.

Although MRI is a promising method to visualize the internal structure and
constituent distribution in food, the measurement system is too expensive to be applied
to food in practice.

1. 4.4 X-ray computed tomography

X-ray computed tomography (CT) is another method where images of an opaque
sample can be acquired non-destructively. In the field of medical imaging, X-ray CT
and MRI are two methods that are used complementarily to acquire images of the
insides of the body.

CT images are acquired by transmitting X-rays through the sample. X-rays are
electromagnetic waves that have wavelengths from 1 pm to 10 nm, and consequently
have very high energies, which allow them to transmit through samples. The transmitted
intensity of the X ray I; follows the Lambert-Beer law as in

I, = lyexp(—ul) ...(2)

where lo is the initial intensity, | is the length of the beam path and u is the linear
attenuation coefficient which varies according to a material’s density and atomic
composition [54]. x is usually converted to CT numbers using the linear attenuation
coefficient of water, zaw.

1000(u —
CT number = e = ) ...(3)

Hw

CT numbers of air, fat and bone are -1006, -90, and +1005, respectively [54].

In food science, CT has been used to measure aerated foods to visualize the distribution
of bubbles [55, 56], assess the fat in beef [57] and visualize the distribution of salt and
fat in salmon [40]. With an X-ray micro-CT system, spatial resolutions up to 5 um can
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be obtained. One scan takes less than a second, and many studies take multiple scans to
obtain three-dimensional images of the sample.

1. 5 Microstructure of bread and pastry

1. 5.1 Bread and observation of its microstructure

Bread is the staple food in Europe, most countries in the North and South
American continent and the Middle East / North Africa but is eaten all over the world
and could be said as the world’s most important food. It is said to be first invented in
Egypt where the yeast existing on the surface of the wheat grain caused the bread to
leaven, creating the original form of the aerated bread today.

One of the important factors determining the palatability of bread is the texture
[58]. The various advertising copies of bread, claiming that the bread is “soft and
smooth” or “crispy”, are examples of the consciousness of consumers toward the texture
of bread. The texture of the final product is affected by multiple processes in bread
making, but it can be said that the first step, the mixing process is a key step in the
production of dough [59]. As flour, water and other ingredients are mixed, the dough
goes through many stages of mixing. The optimal mixing state may slightly differ
depending on the type of texture required for the end product, but generally, three things
are known to be accomplished: a homogenous mass of flour and water is formed, a
three-dimensional protein network with the capacity to hold gas is developed, and air
cells are incorporated into the dough [60]. The protein which forms the
three-dimensional network, gluten, dominates the rheological behavior of dough during
extensive deformation [61] and along with the starch which acts as a filler, determines
the texture of the bread. The bubbles incorporated in the dough through the mixing
process also affect the end product because these small bubbles act as the nuclei of
bigger bubbles created through the fermentation and baking process and no further
occlusion of gas occurs after the mixing process [62].

While mixing is the key process in creating bread, it is one of the most difficult
processes since the point of optimal mixing is hard to determine. The total amount of
energy required to fully develop the dough to the optimal point depends on many factors
and therefore it has been the job of experienced artisans to determine the optimal mixing
speed and time for each batch of dough. Consequently, many studies have tried to
capture this state of “optimal mixing” objectively with the application of many new
technologies. The most straightforward approach is to examine the structure of dough
and distribution of gluten and starch in it with a microscope. Many microscopic imaging
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techniques have been developed for this purpose.

The optical microscopic approach and the electron microscopic approach are the
main method used to visualize the structure of dough, with a few studies using X-ray
tomography [58] and magnetic resonance microscopy [63]. The optical microscopic
approach includes bright field [64, 65, 66], confocal scanning laser [67, 68, 69, 70, 71]
and epifluorescence light [72] microscopies. While optical microscopy can visualize
specific chemical compounds in the complex mixture and is therefore suitable for foods
which are complicated multi-component materials [73], it always involves pretreatment
with staining. The problem with staining is that the results could greatly vary by the
selection of stains and staining conditions such as the concentration, solvent and
staining time. The researcher’s technique to stain the sample evenly or prevent color
degradation may also affect the result. The risk of sample alteration is hard to eliminate.

Much research has been done with the electron microscopic approach such as
scanning electron microscopy (SEM) [74, 75] and transmission electron microscopy
(TEM) [76]. SEM is heavily used in the visualization of dough development for its high
magnifications and clear images [77] but the risk of sample alteration is difficult to
eliminate since the sample needs to be either dried or frozen below -80 °C and covered
in a 5-20-nm-thick metal layer [78]. Environmental scanning electron microscopy
(ESEM) is a variable-pressure SEM, allowing the sample to be observed without
dehydration or surface coating [79, 80, 81] but differences between chemical
compounds cannot be visualized.

1. 5. 2 Pastry dough and laminated products

In the western food culture, baked products can be categorized into several groups,
namely, bread and fermented goods, sponges and cakes, biscuits and cookies, and pastry
[82]. Pastry doughs are made of wheat flour mixed with a large ratio of fat, and can be
further categorized into short pastry and laminated doughs.

Laminate doughs are made by folding a piece of dough to encase a block of fat
(usually butter), creating hundreds of layers of pastry [83]. The pockets of air trapped
between the layers expands when the pastry is baked, and along with the steam from the
dough and butter, forces the layers to separate and rise. In the initial step of making the
laminated dough, flour, water and salt are mixed together, and gluten is formed.
Conversely, short pastry is made by mixing flour, fat and water together. The fat inhibits
the formation of a gluten matrix, and this results in a “short” texture.

There are few studies visualizing the structure of pastry and only a few studies on
the structure of cookies [1, 84] . Therefore, visualizing the structure of these doughs
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would have a great impact on cereal science.

1.6 Summary

Fluorescence has been used in many areas of science as a tool for imaging.
However, most of its applications use extrinsic fluorophors, fluorescent substances that
are added to the sample so that constituents or features of interest show up with high
contrast. Studies on the structure and constituent distribution of bread and other wheat
flour-based products follow this trend, and most of the past research have stained the
dough with fluorescence stains.

However, wheat contains proteins which are constructed from amino-acids, and
some amino-acids that have a benzene ring in their structure, namely, aromatic
amino-acids, show strong intrinsic fluorescence. Many other substances existing in food
show fluorescence, such as vitamins and chlorophyll.

Measuring these intrinsic fluorophors with multiple combinations of excitation and
emission wavelengths, gives their fluorescence fingerprints (FFs). By combining the FF
with hyperspectral imaging techniques, this study aims to visualize multiple constituents
in food without preprocesses such as staining.
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Chapter 2

2. Development of a fluorescence fingerprint imaging system

The FF imaging system that has been used in this study has been developed along
with the research. In this chapter, the current system which has been improved
considerably from the former system made three years ago, is explained.

2. 1 Basic structure of the FF imaging system

Figure 2-1 shows the overall structure of the FF imaging system. The FF imaging
system mainly consists of a light source, CCD camera, two sets of band-pass filters and
an objective lens.

The light from the xenon light sources passes through a bandpass filter and light of
a particular wavelength is shone onto the sample. The sample is excited and emits
fluorescence. The fluorescence emitted from the sample contains light in many
wavelengths but only light of a particular wavelength passes through the second band-
pass filter and reaches the CCD camera. By changing the band-pass filter at the excitation
and emission sides, fluorescence images in many combinations of excitation and emission
wavelengths can be acquired.

CCD camera

Xenon light source |
filter wheels

anti-vibration table I

Figure 2-1 Structure of FF imaging system
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As explained in chapter 3, the filter wheels can be replaced by other light filters such
as a liquid crystal tunable filter (LCTF). Furthermore, the optical devices can be adjusted
according to the size order of the sample, i.e., macroscopic or microscopic. The imaging
system used in this study was made to measure the microscopic structure of food, which
is in the order of 10 to 100 pum.

2. 2 System development

The original FF imaging system was built on top of a rotating slicer (Figure 2-2) [1].
The illuminator hung from a big frame which was set upon two I-shaped blocks. This
configuration caused a problem when samples in the micro-scale were observed, at
magnifications above x 10. The field of view wavered continuously because the frame
picked up vibrations from the surrounding environment. The following steps were taken
to create an imaging system that enabled FF imaging at high magnification.

’ Il

3

TOSHI
ACH

Figure 2-2  The original FF imaging system
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First, the base was made by covering the original base of the slicer with a wooden
frame and mounting an anti-vibration table (HMX-0605, Nippon Boushin Industry co.,
Itd., Shizuoka, Japan) on top of the wooden frame. The I-shaped blocks and steel frame
were removed (Figure 2-3).

anti-vibration table

wooden base
original base

Figure 2-3  Base of the imaging system

The anti-vibration table removes two types of vibration [2]. The first type of
vibration reaches the top of the anti-vibration table directly, such as vibration of motors
set on the table or vibration of air caused by noise. This type of vibration causes the table-
top to resonate, causing stronger vibration. In order to avoid resonation, the natural
frequency of the table-top needs to be different from other possible vibrations. Therefore,
the table-top is made from a rigid substance which has a high natural frequency.

The second type reaches the table-top indirectly, such as vibration of the floor. This
type of vibration has a similar frequency as the natural frequency of the table-top and
needs to be absorbed before reaching the table-top. This is achieved by an absorber such
as an air or oil dumper. The anti-vibration table used in this study (HMX-0605) (Figure
2-4) has an air suspension that absorbs vibration from below.
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Figure 2-4  Anti-vibration table, top and side view

620 —

top view

The microscopic system that was originally hung by a large iron plate was fixed to
the table-top with an illuminator holder and a shaft and shaft holder made from stainless
steel. The shaft and shaft holder was designed to hold the whole weight of the imaging

system (Figure 2-5).
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top view

Figure 2-5 Illuminator, shaft and shaft holder

Figure 2-6 shows the composition of the microscopic imaging system. The main
microscope system is based on a fluorescence microscope. The illuminator (BX-RFA,
Olympus Optical co., Itd, Tokyo, Japan) is normally used in an epi-illumination system,
but epi-illumination was not used in this FF imaging system because it was non-compliant
with UV light.

The samples were mounted on a XYZ stage composed of a Z-axis motorized stage
(MMU-60V, Chuo Precision Industrial co., Itd, Tokyo, Japan) and a manual X-Y axis
stage (Sigma Koki co., Itd, Tokyo, Japan). The Z-axis stage was essential to adjust the
sample height to match the focal plane which changed slightly for each emission
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wavelength.

top view
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Figure 2-6  Microscopic imaging system
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The tube lens (U-TLUIR, Olympus Optical), TV adaptor (U-TV1x-2, Olympus
Optical) and C-mount adaptor (U-CMAD3, Olympus Optical) were set above the
illuminator with a custom-built adaptor (K120607-A00-01, Asahi Spectra, Tokyo, Japan)
set in between. This adaptor was made to fit the filter wheel holding the band-pass filters
that determine the emission wavelength. The filter wheel was fit from the left side of the
illuminator (opposite side of the illuminator holder) and set so that one filter fitted into
the optical path of the microscope (Figure 2-7).

adaptor
K120607-A00-01

Figure 2-7  Filter wheel

This system is an infinity-corrected optical system, where there is a parallel optical
path between the objective and tube lenses. Fitting the emission band-pass filters into the
parallel optical path minimizes the effect on focus and aberration corrections.

Two xenon lamps (MAX 302, 303, Asahi Spectra) were used for the excitation light.
MAX 302 and 303 were equipped with a UV and VIS mirror module, which restricted
the light going out of the xenon lamp to a range of 250-385 nm and 300-600 nm,
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respectively. By coupling band-pass filters with these modules, the cutoff range of band-
pass filters would only need to cover the wavelength range of the modules. Band-pass
filters are designed to cut off light except for a specific wavelength band, and an ideal
band-pass filter would have 100% transmittance at the designed wavelength and 0%
transmittance at other wavelengths. However, in reality, it is only possible to cut of light
within a certain range of wavelengths, and the larger the range becomes, the higher the
transmittance of light at unwanted wavelengths or the lower the transmittance at the
designed wavelength. Therefore, by limiting the range of cutoff wavelengths, it is possible
to ensure a high ratio of transmittance between wanted and unwanted wavelengths.

The lamps have a built-in filter wheel which holds 8 filters each. Light from the
xenon light source passes through the filter held in the filter wheel, is guided through a
light fiber and is shone onto the sample with a rod lens. The optical system of the rod lens
mixes the light coming out from individual fibers and creates a uniform band of light.

Figure 2-8 shows the overall view of the FF imaging system, except for the xenon
lamp house which is set outside the dark room. An important point is that the spatial
relationship between the objective lens and beam of excitation light is constant even if
the height of the sample changes. The distance between the sample and objective lens is
adjusted with the Z-axis stage below the sample, so if the sample surface is in focus, the
excitation light intensity should be constant.

CCD camera

- to light source

filter wheel

rod lens

XYZ stages

Figure 2-8  Overall view of the new imaging system
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2. 3 Software

2. 3.1 Control of FF imaging system by LabVIEW

Acquisition of fluorescence images in multiple wavelength conditions is a
cumbersome task if done manually. Long measurement times due to manual operation
would have detrimental effects on the sample, since the sample would be exposed to UV
light or moderate temperatures during that time. Therefore, the system was made to be
automatically controlled from a personal computer (PC) by using LabVIEW (Laboratory
Virtual Instrumentation Engineering Workbench, National Instruments, USA).

A set of FF imaging data consists of fluorescence images in all the wavelength
conditions that make up the FF. For each fluorescence image, the parameters shown in
Table 2-1 needed to be set before acquisition.

Table 2-1 Image acquisition parameters

Parameters Corresponding machinery
Excitation wavelength xenon lamphouse
Emission wavelength filter wheel controller
Exposure time CCD camera

Binning CCD camera

Gain CCD camera

Offset CCD camera

Light intensity xenon lamphouse
Z-position Z-axis controller

Figure 2-9 shows the flow chart for FF data acquisition. All the parameters are read
from a csv file and outputted to the corresponding instruments through serial ports. The
acquired fluorescence image is saved with a file name that contains the main parameters.
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csv file

’ acquisition parameters ‘
V2

emission wavelength | ——| xenon lamp
OK

—— excitation wavelength %] filter wheel controller \

——— z-position HW’ z-axis controller‘

l

lightintensity

ighton —— [xenonlamp |

(shutter open)

gain, offset, binning, — | cCD camera controller |
exposure time

shutter open H] CCD camera controller \

image acquisition

shutter close %] CCD camera controller \

ightort < [renontamp |

(shutter close)

< image |] CCD camera controller

save image
file name (terr|1poral)

save data

PC folder

Figure 2-9  Flow chart of image acquisition

2. 3. 2 Analysis of data by MATLAB

The set of fluorescence images were analyzed using MATLAB (MATrix LABoratory,
MathWorks, USA), a numerical analysis software. Since details on the method of analysis
are explained in each chapter, this section will describe the overall flow of analysis.

In the first step, the fluorescence images saved in tif (tagged image file) format are
read into the MATLAB space as two-dimensional matrices (number of pixels in height
X number of pixels in width).

Next, the fluorescence images are stacked three dimensionally, so that the whole
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dataset is a three-dimensional matrix of (height) x (width) X (number of images). The
number of images equals all the combinations of excitation and emission wavelengths.
Therefore, the two-dimensionality of the FF (excitation X emission wavelength) is lost
at this point. The images are carefully aligned to each other, so that every fluorescence
image represents the exact same area of the sample.

This three-dimensional data is degraded into two-dimensional data by unfolding the
(height) x (width) data of an image to a single-dimensional vector of
(number of pixels) X 1 (Figure 2-10). The whole data becomes a two-dimensional
matrix of (number of pixels)x (wavelength conditions). In this matrix, each pixel can
be treated as samples, and the wavelength conditions as measurement variables. From
this point, analysis methods such as cosine similarity, principal component analysis
(PCA), partial least squares (PLS) are applied to the data.

number of images
= excitation x emission wavelengths

number of images

SRR R I
5y o S0 G e o o s [ \
B |i“ il

Oneimage ;L

ST GO 5

T AL S N T T

number of pixels
LN

\

!!!!!!!!!!!!!!! LLL

unfolding

3
14

AT

Figure 2-10  Degradation of imaging data
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2. 4 Properties and calibration of hardware

2.4.1 Theory

The FF imaging system is constructed from several optical hardware, which has
specific properties that are dependent on the wavelength of light. The ideal light source
would give out light of uniform intensity throughout the whole spectrum and the ideal
camera would have the same photographic sensitivity for any wavelength of light.
However, in reality this is impossible, and the light intensity or sensitivity is dependent
on the wavelength of light. Similarly, the ideal band-pass filter would have 100%
transmission at a specific wavelength and 0% transmission at other wavelengths, but in
reality, there is transmission of light at wavelengths other than the intended wavelength.

The light intensity of the light source is dependent on the excitation wavelength A,
and is denoted I5(Aey). The transmittance function of the excitation band-pass filter
whose designed wavelength is AEX is denoted Tgjex(Aex). Similarly, the transmittance
function of the emission band-pass filter whose designed wavelength is AEM is denoted
Tgaem (Aem)- The photographic sensitivity of the camera is denoted S¢ (Ao, ). Finally, the
fluorescence efficiency of the sample, is denoted FF(Aex, Aem)- Naturally, the aim of
measurement would be to acquire FF(Aex, Aem), in Other words, the FF.

The excitation light that is shone onto the sample through a band-pass filter whose
designed wavelength is AEX, I px(Aex), IS the product between the light intensity
function of the light source and the transmittance function of the excitation band-pass
filter:

Ligx (Aex) = Is(Aex) X Tpapx (Aex) - (1)

The sample absorbs this light and gives out fluorescence according to its fluorescence
characteristics. The fluorescence that the sample gives out, F(Ae¢p) IS

F(Ay) = Z FF(Aexs Aem) X Lipx(ex) Q)
AEX

This passes through the emission filter whose designed wavelength is AEM and is
received by the camera. The intensity of the signal that the CCD camera receives,

ICin (Aem) is:

ICin(Aem) = Sc(/lem) X TBAEM (Aem) X F(Aem) (3)
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The CCD camera has no system to differentiate between different wavelengths, and
the actual “intensity” value of each pixel, lsum, IS the sum of all the signals that the camera
receives:

Isym = z Icin(Aem) )

Adem

From the equations above,

lsym = Z Se (Aem) X Tgaem (Aem)

Aem
.. (5
X Z FF(Aex: Aem) X Is (Aex) X TBAEX (Aex)
Aex
An ideal band-pass filter would have the characteristics below:
T (Aex = AEX)

Tgaex (A ={‘”EX ex .. (6
B/lEX( ex) 0 (Aex + AEX) ( )

_ (Braem (Aem = AEM)
TBAEM (Aem) - { 0 (Aem + AEM) (7)

Therefore, the equation (5) would be:

Isum = Sc(AEM) X Tgem X FF(AEX, AEM) X I{(AEX) ®)

X Tgagx

To compare the actual imaging system with an ideal system, we simulate the measurement
of a white reflection standard. A white reflection standard is an optically white plate which
has the characteristics below:

_ 1 (Aem = Aex)
Fthite - {0 (Aem =+ Aex) (9)
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When a white reflection standard is measured with an ideal imaging system,

Isum
B {SC (AEM) X Tgapm X Is(AEX) X Tgzex (AEM = AEX) ... (10)
B 0 (AEM # AEX)

This means that in an ideal imaging system, a white reflection standard would show no
signal if the excitation and emission filters are different. In actual band-pass filters,
equation (10) does not strictly apply, but it is important to check that there is no apparent
signal when measuring a white reflection standard with excitation and emission filters of
different wavelengths.

If the band-pass filter can be treated as an ideal band-pass filter, the FF of the sample,
FF (Aex, Adem) is calculated as:

I/lex,lem

FF Aoy, Aem) =
e em Sc(Aem) X TB/lem X Is(/lex) X TBAex

..(11)

Tgiex aNd Tgiem are the transmittances of the excitation and emission band-pass filters
at their designed wavelengths, Ijexaem IS the light intensity measured by the CCD
camera when using these band-pass filters. The first and last two terms can be coupled as
the excitation and emission machine functions, denoted as Fgm(Aem) and Fex(Aex).
respectively. This gives,

leex,/lem
Fem(Aem) X Fex(Aex)

FF(ey, Aem) = .. (12)

Therefore, in order to obtain the FF, functions Fgy and Fgx need to be known. The light
intensity of excitation light, Fgx(dex), Can be measured with a power meter. Once
Fgx(Aeyx) is obtained, Fgy(Aem) Can be obtained by measuring a white reflection
standard where equation (9) applies. Hence, when Ao = Aem

IAex,Aem —
Fem(Qem) X Fex(Aex)

Fthite (Aex: Aem) = 1

L ... (13)

fon ) = @
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2. 4. 2 Band-pass filter

To check that the band-pass filters satisfy equation (10), the FF of a white reflection
standard was measured. Light from xenon light sources (MAX 302, MAX303, Asahi
Spectra) transmitted the band-pass filters (HQBP filter and M.C. filter, Asahi Spectra)
and was shone onto the white reflection standard. The emitted light passed through a
liquid crystal tunable filter (LCTF) (VariSpec, Cambridge Research & Instrumentation,
Inc., Hopkinton, USA), and a CCD camera (ORCA-ER-1394, Hamamatsu Photonics,
Shizuoka, Japan) was used to measure the intensity of transmitted light.

Figure 2-11A shows the measured FF of the white reflection standard. According to
equation (10), the white reflection standard should show no emission since all the
wavelength conditions satisfy A., # Aem,. However, relatively strong light is observed in
the longer wavelengths with excitation filters of 260-370 nm. This shows that these filters
transmit light in the longer wavelengths.
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Figure 2-11 Measured FF of white reflection standard without (A) and with the short-

pass filter. Without the short pass filter, excitation light in the longer wavelengths pass
through.

In order to cut the transmitted light, a short-pass filter was set between the band-pass
filters and the xenon light source. Figure 2-11B shows the FF of the white reflection
standard measured with the low-pass filter. The light that had transmitted the light at
longer wavelengths has been cut.

Furthermore, when measuring the white reflection standard with emission
wavelengths lower than 400 nm, relatively strong light was observed with the
combination of 290 nm and 390 nm for excitation and emission band-pass filters,
respectively. This transmitted light could also be measured with a spectrometer. Therefore,
another short-pass filter which cut light over 350 nm was set between the xenon light

45



Chapter 2

source and short-pass filter described above.

2. 4. 3 Excitation machine functions

The xenon lamp shows different intensities at different wavelengths, and each band-
pass filter shows different transmittance. Therefore, the light intensity of each excitation
wavelength is different. This needed correcting if the FFs acquired by the imaging system
were to be compared to fluorescence patterns of specific fluorophors in literature.

Uniformization of light intensity at each excitation wavelength was achieved by
using a continuously variable ND filter fixed in front of the light source. The ND filter
enabled adjustment of the output light intensity in respect to the original light intensity of
the light source and was controlled through a parameter named “LI” (light intensity)
which could be set between 5% and 100% at increments of 1%.

As noted above, the light intensity of the excitation light is affected by several factors,
such as the light intensity of the light source, the transmission rate of the band-pass filter,
and any other filters that may be used such as low-pass and high-pass filters. However,
each factor does not need to be separated, as long as the intensity of the light irradiated
on the sample is uniform. Therefore, the light intensity of each excitation wavelength was
measured with a power meter (NOVAZ2, Ophir Photonics Ltd., Jerusalem, Israel) using
the same setup as that used for imaging.

The relationship between actual light intensity and the value of LI was measured
beforehand and was known to be linear between 20 and 90% (Figure 2-12). Therefore,
after measuring the light intensity at 100% LI, the LI at each wavelength was calculated
so that the actual light intensity would be equal to that of the weakest wavelength. Finally,
the light intensity at each excitation wavelength with the LI set to the calculated value
was measured, and the LI was adjusted so that the readings of the power meter were
uniform. Table 2-2 shows the final LI values for each wavelength.
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Figure 2-12 Relation between LI and measured power for wavelengths 260, 290, and 320

nm. The range between 20% and 90% shows linear correlation. The LI is adjusted by the
angle of the ND filter.

Table 2-2 LI of each wavelength

Wavelength [nm] LI [%]

270 100
280 93
290 97
300 70
310 62
320 57
330 64

2. 4. 4 Emission machine functions

Similar to the excitation intensity, the emission filters and camera have different
transmission ratios and sensitivity towards light in different wavelengths. This was
corrected by adjusting the exposure time for each emission wavelength. As in the
correction for excitation light, there is no need to separate the effects of the camera and

emission filters. Together, they will be referred to as the emission sensitivity.

Since it was possible to obtain uniform intensities of light at every wavelength as
explained above, this uniform light and a reflection standard was used to correct for the
emission light sensitivity. Assuming that the reflection standard shows uniform
reflectance at all wavelengths, images of the refection standard was acquired using the
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same wavelengths for excitation and emission. Since the excitation light intensities were
uniform, the difference in the intensity of the acquired image showed the difference in
emission sensitivity. Therefore, the exposure time of the least sensitive emission
wavelength was set to the maximum of 10 s, and those of the other wavelengths were
adjusted depending on the intensity of the reflection standard image.

Table 2-3  Exposure times (in milliseconds) for each emission wavelength

Wavelength [nm] Exposure time [ms]

350 10000
360 4385
370 2666
380 2389
390 1645
400 1578
410 1304
420 955

2. 4.5 Autofocus

In the FF imaging system, the emission wavelength is controlled by band-pass filters
that are fitted between the objective lens and the CCD camera. Each band-pass filter has
a different refractive index, which results in different focus lengths for each emission
wavelength. Therefore, the position of the z-axis stage for each emission wavelength was
determined prior to FF measurement.

The point of focus was determined by an autofocus program made using LabVIEW.
There are two methods of autofocusing: active focusing, which utilizes some kind of
energy, such as laser beam, to measure the distance to the object, and passive focusing
which analyses images captured at different planes to obtain the optimum point [3]. This
study used passive focusing.

Microscope autofocusing systems determine the in-focus position by searching for
the maximum of an autofocus function over a range of z-axis positions. An autofocus
function provides a quantitative measure of focal sharpness for a given image. By
applying the autofocus function to images acquired at different z-axis positions, and
comparing them, the in-focus position can be obtained as shown in Figure 2-13.
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Images acquired at
different z-axis positions

uollounjsniojoiny

Figure 2-13 Scheme of autofocusing. Images are acquired at different z-axis
positions and focal sharpness is calculated by applying an autofocus function to the
image.

Many autofocus functions are known, such as those based on Fourier convolution,
differentiation, and depths of peaks and valleys [4]. In this study we convoluted the image
and the following kernel, C:

0 -1 0
c=(-1 o 1 .. (19
0 1 0

for edge detection, and calculated the standard deviation of the edge detected image. A
large standard deviation means that the detected edges are sharp (high intensity), which
indicates that the sample is in focus.

This autofocus function needs to be applied to images in many z-axis positions. In
order to speed up the process, we used the method of steepest descent [5] and golden section
search [6] to find the maximum point of the autofocus function.

Two initial points, x; and x, were set at 100 increments apart. The method of
steepest descent determines the direction of the third point by comparing f(x;) and f(x,)
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when f(x) is the autofocus function. If f(x,) > f(x;), x5 is in the direction of x;
(Figure 2-14A) and if f(x;) < f(x;), x5 is in the direction of x, (Figure 2-14B). This
was performed until x passed through the maximum point, i.e., when f(x,.,) < f(x,) if
Xp41 > Xp > Xpoq1 OF Xp41 <X, < X,-1 (Figure 2-14C). At this point, x,,_, was set
as x; and x,,; as x,, and the golden section method was applied.

(A) (B) (C)

f(Xn) f(Xn+1)
) i)

(%)

fixa)) flxoa) |

X3 X X2 X1 X2 X3 Xp-1 X Xn+1

Figure 2-14  Method of steepest descent

With the golden section method, the positions of x; and x, were determined as
=x; + d =x; + ! d (15)
X3 = X1 T ) X4 = Xq T

145
2

where 17 = (golden ratio) and d is the distance between x; and x,. For the next

step, if f(x3) < f(xy), x; = x5 and if f(x3) > f(x4), x, = x, (Figure 2-15). This is
repeated until is d became smaller than a certain number (d < 5 increments on the z —
axis in this study).

X1 X3 X4 X

Figure 2-15  Golden section method
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With these methods, it was possible to arrive at the optimum z-position with
approximately 10 images. Figure 2-16 shows the focus positions for emission filters from
370 nm to 650 nm. Values vary greatly between wavelengths.
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Figure 2-16  The focus position for emission filters from 370 nm to 650 nm. Values of
three measurements are averaged. For each measurement, the z-position of emission
filter 400 nm is set at 0.

2. 5 The imaging system used in chapters three to five

The imaging system has been developed through the whole study, and the final form
explained in this chapter was used to measure the pie pastry explained in chapter 5. The
systems used in chapter 3 and 4 lack some of the features that are included in the final
system. Table 2-4 shows the features of the imaging system used to acquire the data
explained in chapters 3 to 5.
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Table 2-4 Features of the imaging system used in chapters 3to 5

Chapter 3 Chapter 4 Chapter 5
anti—vibration table X X @)
X-Y stage X X O
light source MAX302,303 MAX302 MAX302
dispersion of excitation WL bandpass filter bandpass filter bandpass filter
low—pass filter @) X @)
excitation WL 260-600 260-320 270-320
calibration of excitation WL X X @)
objective lens X9 X9 x10
dispersion of emission WL LCTF bandpass filter bandpass filter
emission WL 400-700 370-450 350-430
calibration of emission WL X X @)
automation O X @)
Z—axis adjustment O X @)

Apart from the features described in the former sections, a significant improvement
of the imaging system can be seen in the lower limit of the emission wavelength.
Tryptophan, an important fluorophor in food, emits strong fluorescence at 350 nm.
However, the objective lens used in chapters 3 and 4 transmitted UV light poorly and was
only usable at wavelengths above 370 nm. Furthermore, the LCTF used in chapter 3 did
not transmit light at wavelengths below 400 nm. Using UV-compliant optical apparatus
allowed clear visualization of proteins which contain aromatic amino acids such as
Tryptophan.

The magnification of the objective lens is also significant. An important feature in
wheat flour doughs is the starch granule. Wheat starch is a mixture of two types of
granules, large and small, and their sizes are 15-40 um and 2-10 um, respectively. Using
an objective lens with a magnification of x 10 enables the observation of single granules
of the larger type. Since individual starch granules could not be observed under a
magnification of x 5, this was a large improvement.

2. 6 Conclusions

The goal of the FF imaging system is to acquire sharp and clear fluorescence images
at multiple excitation and emission wavelengths, quickly and accurately. Observation in
the near UV is important for organic materials, but not many devices are UV-compliant
and there is scope for development. The intensity of the xenon light sources used in this
study is low in the UV wavelengths, and so is the transmittance of the band-pass filters.
If these devices could be developed, the exposure times of the camera could be shortened,
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leading to shorter data acquisition time.

In this study, the observation target was the microstructure of dough, and therefore,
the optical systems were chosen to enable microscopic observation. Greater precision of
the measurement system was required as the magnification of observation increased, and
although it was possible to attach objective lenses with higher magnification, this did not
yield good results. If observation at higher magnification is needed in the future, further
improvement of the system may be needed.
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Chapter 3

3. Development of a quantitative visualization technique for
gluten and starch in model dough

3.1 Abstract

The distribution of constituents in food affects its end qualities such as texture,
and there is a growing demand to develop a method for studying this distribution
easily, accurately and nondestructively. The objective of this study was to
develop an imaging method that visualizes the precise quantity of constituents,
using FF. In this study, the target for visualization was the distribution of gluten
and starch in dough samples. Dough samples were prepared with different ratios
of gluten, starch, and water, and fluorescence images were acquired at multiple
combinations of excitation and emission wavelengths. This data can be
interpreted as the FFs of all the pixels in the image, and the FF data of each pixel
reflects the constituents of the corresponding point in the sample. A partial
least-squares regression (PLSR) model was built using the average FFs of the
samples and the corresponding gluten ratios as the explanatory and objective
variables, respectively. The importance of each wavelength in the PLSR model
was assessed using the selectivity ratio, and optimum wavelengths for accurate
prediction of gluten ratio were selected. Finally, the gluten ratio of each pixel
was predicted with the PLSR model using the selected wavelengths, and each
pixel was colored according to the predicted gluten ratio. The imaging method
developed enables the distribution of constituents to be visualized with colors
corresponding to their actual quantities or ratios.

3.2 Introduction

This chapter explains the first stage of FF imaging, to visualize the distribution of
two constituents, gluten and starch, in a model system made by mixing the two
substances in known guantities. The sample used here is a model of wheat flour dough,
since wheat flour dough will be used in chapters 4 and 5.

The work in this chapter is challenging in several ways:

1. Since we aimed to visualize constituents in the sample with as little sample
preparation as possible, we did not freeze or slice the sample into thin sections,
and observed the sample by just inserting it in a cell with a quartz glass
window.

55



Chapter 3

2. We aimed to create a quantitative image, which means that the color of each
pixel corresponds to a certain ratio of gluten / starch.

3. In order to select the optimum set of excitation and emission wavelengths, we
applied methods developed in the field of chemometrics, so that the accuracy
of the image would not decrease, but would increase through the elimination of
unnecessary data.

The second point was inspired by previous studies in NIR imaging such as the
visualization of sugar in fruit [1] and oil and water in fish [2], and meant that a
calibration model would have to be made to link the spectral data to the quantity of each
constituent.

As a conclusion, the first point did not work out, i.e., we found out the making thin
sections were essential for this method of imaging. However, this negative discovery is
very important when we think of the physical model of FF imaging. This will be
discussed in detail at the end of this chapter.

3.3 Materials and methods

3. 3.1 Sample preparation

Pure wheat gluten (Wako Pure Chemical Industries Ltd., Osaka, Japan) and pure
wheat starch (Wako Pure Chemical Industries Ltd.) were mixed at gluten ratios ranging
from 0 to 100%, in 20% increments. For each mixture of gluten and starch, distilled
water was added at three levels to create a dough-like texture, ranging from relatively
soft dough to hard dough. The ratios of gluten and starch, and the water levels for each
sample are shown in Table 3-1. The samples were set in a cell with a quartz glass
window and the samples were pressed against the glass to obtain a flat surface. The cell
was sealed so that the sample would not dry during measurement.

Table 3-1  Ratios of gluten and starch, and water levels

gluten starch water level (% d.b.)

(% d.b.) (% db.) low medium high
0 100 50 55 60
20 80 50 60 70
40 60 60 70 80
60 40 70 80 90
80 20 80 90 100
100 0 80 90 100
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The ratios of gluten and starch were set in the range of 0 to 100% in order to
visualize features such as starch granules and gluten strands on the surface of the dough.
A starch granule on the surface was expected to show similar FFs to that of the starch
100% sample, and conversely, a gluten strand should show similar FFs to that of the
gluten 100% sample. The water content was set at three levels because the distribution
of water in micro-scale was unknown, for example it was unknown whether a starch
granule at the surface of dough would contain 50, 55 or 60% of water.

Three sets of samples were made, corresponding to the three experiments shown
in Figure 3-1. Details regarding each experiment are discussed later.
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Figure 3-1 Flowchart of wavelength selection and visualization. (A) The FFs of 36

samples are measured using a fluorescence spectrophotometer, and 16 excitation
wavelengths are selected by cluster analysis. The selected excitation wavelengths are

used in the FF imaging system. (B) Fluorescence images of 12 samples are acquired

with the FF imaging system and the optimum wavelength conditions for predicting the
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gluten ratio are selected using selectivity ratio. These wavelength conditions are used
acquire the image data. (C) Fluorescence images of 12 samples are acquired for
visualization, using the optimum wavelength conditions. A calibration model between
the FF data and gluten ratio is calculated using PLSR. The calibration model is applied to
each pixel of the images, thereby predicting the gluten ratio of each pixel.

3. 3. 2 FF imaging system

The FF imaging system was constructed as explained in Chapter 2 with the
features shown in Table 2-4. A liquid crystal tunable filter (LCTF) (VariSpec,
Cambridge Research & Instrumentation, Inc., Hopkinton, USA) was used in place of
the emission band-pass filters because the filter wheel held only eight band-pass filters
and more emission wavelengths were needed in this experiment.

3. 3. 3 Selection of excitation wavelengths

The imaging procedure was conducted according to the flowchart in Figure 3-1.
First, preliminary measurement was conducted to determine the optimal wavelength
conditions, i.e., combinations of excitation and emission wavelengths, for estimating the
gluten ratio of the sample. This was carried out in two steps: first, selecting a limited
number of excitation wavelengths with data from a fluorescence spectrometer (Figure
3-1A), and second, selecting the final wavelength conditions with data from the FF
imaging system (Figure 3-1B).

A critical constraint condition of the FF imaging system was that the two light
sources could only hold eight band-pass filters each, meaning the maximum number of
wavelengths that could be used for the excitation light was 16. Therefore, as the first
experiment, the selection of these 16 excitation wavelengths was carried out with FF
data acquired with a fluorescence spectrophotometer (F-7000, Hitachi
High-Technologies Corporation, Tokyo, Japan).

For this first experiment (Figure 3-1A), 36 samples were prepared: two samples
for all combinations of gluten (six levels) and water (three levels) ratio. The samples
were set in the fluorescence spectrophotometer and the FF of each sample was
measured using the attached software (FL Solutions 2.1, Hitachi High-Technologies).
The excitation and emission wavelengths measured were both in the range of 200-700
nm at 10 nm intervals. The slit width was set at 10 nm for both excitation and emission
lights. The scanning speed was 30000 nm/min, the response time was 0.002 s, and the
power voltage of the photomultiplier was 400 V.

The FFs measured included the first-, second- and third-order scattered lights,
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which occurred at wavelengths where the emission wavelength was equal to, twice, and
three times the excitation wavelength, respectively [3]. Since these signals were
stronger in intensity than the fluorescence, they were removed and replaced with
first-order interpolation [4, 5]. Next, the wavelength conditions that could not be
achieved with the FF imaging system were removed, leaving FF data with excitation
and emission wavelengths in the ranges of 260-630 nm and 400-700 nm, respectively.
Finally, the wavelength conditions where the emission wavelengths were shorter than or
within 50 nm of the excitation wavelengths were removed because they corresponded to
the non-fluorescent and scattered lights in the FF imaging system, respectively.

Data analysis was carried out using MATLAB R2011b (The MathWorks, Inc.,
Massachusetts, USA) and PLS_Toolbox 6 (Eigenvector research, Inc., Washington,
USA). The acquired fluorescence data was a three-way data, with modes “excitation
wavelength”, “emission wavelength” and “sample”. This was unfolded [6] into a
two-way data with mode ‘“‘excitation wavelength” and a combined mode “emission
wavelength % sample”. Cluster analysis using Ward’s method was applied to this FF
data to group the excitation wavelengths into 16 clusters. The shortest wavelengths in
each cluster were selected as the excitation wavelengths in the FF imaging system.
Since the emission wavelengths are always longer than the excitation wavelengths,
selecting the shortest excitation wavelength in the cluster would maximize the number
of wavelength conditions used in the FF imaging system.

3. 3. 4 Selection of wavelength conditions for imaging

In the second experiment, the final wavelength conditions were selected using an
actual FF imaging system (Figure 3-1B). Dough samples were made at the same 6 levels
of gluten ratio, and 2 levels of water were set for each gluten ratio, resulting in 12
samples. The dough samples were set in the sample cell for measurement.

The excitation wavelengths used for imaging were the 16 wavelengths selected
from the fluorescence spectrometer data. The emission wavelengths used were in the
range of 400-700 nm in 10 nm increments, and set to be 60 nm longer than the
excitation wavelengths or more. This resulted in 360 wavelength conditions.

Fluorescence images of the samples were acquired with the FF imaging system
with an exposure time of 0.625 s and binning of 8 x 8 [7]. A binning of 8 x 8 means that
the signals of 64 pixels would be integrated for one virtual pixel. This resulted in a
dataset of 360 grayscale images, corresponding to the 360 wavelength conditions, each
with a size of 168 x 128 pixels. These were saved as tagged image file format (tiff)
images.
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A partial least squares regression (PLSR) model [8] was constructed from these
data as shown in Figure 3-2. The fluorescence images were divided into four areas with
half-lengths and half-widths of the original images and the light intensities of all the
pixels in each area were averaged. In this way, four sets of FF data could be acquired for
each sample, with each data reflecting the gluten ratio of the sample as a whole. The
PLSR model was constructed using the actual gluten ratio of the sample as the objective
variable (Y) and the FF data as the explanatory variable (X). The FF data were
mean-centered [9] prior to the calculation of the PLSR model, and the number of latent
variables was determined by a cross-validation method [10]. Two PLSR models were
constructed: one using all the data as calibration data, and the other using half of the
data (two FF data from each sample) as calibration data and the other half as validation
data. Data for calibration and validation were divided randomly.

l:l EI 108 wavelength
conditions
.0 s
©
{
3
=)
oo
"water ratio . . 5 s
uorescence images verage FF of pixels
12 samples & & P

of sample in 1/4 area of image

\ )
T

12 samples x 4 areas

=48 data
Gluten ratio PLSR FF data

Figure 3-2 Flowchart of PLSR model construction. Fluorescence images of 12
samples with different gluten ratios and water contents are acquired. Each image is
split into four equal areas and the average FFs of all the pixels in each area are
calculated, resulting in 48 FF data. A PLSR model is constructed using the actual gluten
ratio of each sample as the objective variable Y and the FF data as the explanatory

variable X.

To select the wavelength conditions most relevant in predicting the gluten ratio of
the sample, the concept of selectivity ratio was used. Selectivity ratio provides a simple
numerical assessment of the importance of each variable in the PLSR model [11, 12],

61



Chapter 3

I.e., the higher the selectivity ratio, the more useful the variables are for prediction. The
selectivity ratio of variable i (SR;) is defined as the ratio of explained variance (Vexpl, i)
to residual variance (Vres,i) for variable i as shown in (1).

SRi = Vexpl,i/vres,i (1)

The explained variance is the y-relevant variation in the x-variables, calculated
from the target projected scores and loadings. Conversely, the residual variance is the
variation that non-relevant to y [12]. Wavelength conditions were selected by order of
selectivity ratio, and the coefficient of determination, R?, was calculated while the
number of wavelength conditions was increased from 10% to 100% of the original
number of wavelength conditions in 10% increments. The optimum number of
wavelength conditions was determined as the data giving the highest R? for both
calibration and validation.

3. 3.5 Visualization of gluten ratio

For the third experiment (Figure 3-1C), a new set of fluorescence images were
acquired using the wavelength conditions selected as shown above to visualize the
spatial distribution of gluten in the dough.

Dough samples were made with gluten ratios of 0, 20, 40, and 60%, and 3 levels
of water were set for each gluten ratio, resulting in 12 samples. The dough samples were
set in a sample cell.

Exposure time and binning were set at 10 s and 2 x 2, respectively. A smaller
binning was selected to enhance the resolution of the image, and exposure time was
lengthened to make up for the reduction in the amount of light focused on each pixel.
The fluorescence images of the 12 samples were acquired under these conditions. The
size of the images was 672 x 512 pixels.

A PLSR model that predicts the gluten ratio from FF data was constructed from
the newly acquired data following the method shown in Figure 3-2. Each fluorescence
image was divided into 9 areas (3 x 3) instead of 4, resulting in 108 sets of data. All the
data were used as the calibration set.

Next, the gluten ratio of each pixel in the image was predicted by applying the FF
of the pixel to the PLSR model calculated above. The predicted gluten ratio was
converted to a color through a color axis ranging from blue (0%) to green (30%) to red
(60%), and the pixel was colored accordingly. In these pseudo-color images, the color of
each pixel shows the gluten ratio at that spot. Pseudo-color images of the dough samples
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with total gluten ratios of 0%, 20%, 40%, and 60% were created.
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3. 4 Results and discussion

3. 4.1 Selection of excitation wavelengths

The time required for acquiring fluorescence images is proportional to the number
of wavelength conditions. Therefore, measuring the sample under wavelength
conditions other than the optimal wavelengths would unnecessarily lengthen
measurement time. The sample is exposed to light in the UV-VIS range during
measurement, but longer measurement times could possibly denature the sample.
Therefore, selecting the minimum yet sufficient number of wavelength conditions for
predicting the gluten ratio is a very important step in imaging operation.

The selection of wavelengths should be performed using data acquired under
similar conditions as the final data for imaging. Although it would be easy to use the
data acquired with the fluorescence spectrometer to select the optimum wavelength
conditions for the FF imaging system, measurement conditions such as wavelength
resolution and sensitivity of the detectors were considered too different to expect
compatibility between the two data sets. Measurement conditions affect the
signal-to-noise (S/N) ratio of the data. The difference becomes significant at shorter
wavelengths where the intensity of the excitation light and the sensitivity of the CCD
camera in the FF imaging system decrease. Since many steps are needed to transform
the results acquired from one system to another [13], the data from the fluorescence
spectrometer was only used to select the 16 excitation wavelengths for the FF imaging
system and the rest of the wavelength selection was performed with data from the FF
imaging system.

Figure 3-3 shows the cluster analysis results for the first experiment using the
fluorescence spectrometer. The excitation wavelengths are clustered according to the
squared distance between them. The higher limit of the x-axis is selected to create 16
clusters. The shortest wavelength in each cluster was chosen for the excitation
wavelengths in the FF imaging system. These wavelengths were 260, 270, 290, 300,
310, 350, 370, 390, 410, 430, 450, 470, 510, 550, 570, and 600 nm. The main
fluorophor in gluten is tryptophan [14], which has a fluorescence peak at excitation and
emission wavelengths of approximately 280 nm and 350 nm, respectively [15].
Although the wavelength range of the FF data used in analysis did not include this
fluorescence peak, the data are thought to have been affected by it since the
wavelengths selected are narrowly spaced around 280 nm.
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Figure 3-3  Results of the cluster analysis. The excitation wavelengths shown on the
left are clustered according to squared distance. The resulting clusters are shown on
the right.

3. 4. 2 Selection of wavelength conditions for imaging

Fluorescence images to determine the wavelength conditions were acquired with
the FF imaging system using the 16 excitation wavelengths shown above and emission
wavelengths in the range of 400-700 nm (experiment 2). To minimize measurement
time, binning was set at its maximum, 8 x 8. The final data acquisition for visualized
imaging (experiment 3) was planned to be performed with 2 x 2 binning (4 pixels
integrated for one virtual pixel), meaning that the number of pixels integrated for one
virtual pixel would be 1/16 of that in this acquisition. Therefore, the exposure time for
this preliminary data acquisition was also set to be 1/16 of that for the final data
acquisition. Since the exposure time of the final data acquisition was planned to be 10 s,
the exposure time for this preliminary data acquisition was set to be 0.625 s, or 10 s
divided by 16.

A PLSR model was constructed to predict the gluten ratio of each sample. Figure
3-4A shows the gluten ratio of each sample predicted by the PLSR model plotted against
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actual gluten ratio. The coefficient of determination, R?, was 0.918. It can be seen that
the predicted gluten ratio value increases constantly from 0 to 60%, but does not change
much from 60 to 100%. It seems that the increase in gluten ratio from 60 to 80% could
not be modeled from the FF data using PLS which is a linear model. This may be due to
the quenching of fluorescence, which occurs when the concentration of fluorophors
becomes too high [16]. It could be that the fluorescence signal of tryptophan increases
linearly with gluten ratio when the ratio is low, but not when the ratio exceeds 60%.

To obtain a more accurate prediction model, the data of the samples with gluten
ratios of 80% or over were excluded, leaving a dataset with 16 samples, i.e., four levels
of gluten ratio with four sets of FF data each. As can be seen from Figure 3-4B, the
PLSR model calculated from this data proved to be much more accurate, with R? being
0.985. On the other hand, the PLSR model calculated from the samples with gluten
ratios of 60, 80, and 100% was unstable and inaccurate (Figure 3-4C), with R? being
0.775. In this model, the predicted gluten ratio for samples with actual ratios of 60%
and 80% were in the same range. This is thought to be because the original fluorescence
fingerprints of these samples do not differ much or change in a nonlinear way which
cannot be modeled with PLSR Regarding these results, data from the samples with
gluten ratios in the range of 0 to 60% were used for further analysis. Therefore, it is
important to note that the prediction model calculated from this data can only be applied
to gluten ratios in the same range.
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Figure 3-4  Score plots of PLSR models, calculated from different sets of data. The
bold line shows the calibration curve calculated from the PLSR model. The dotted line
shows the ideal line (predicted value = actual value). (A) PLSR model calculated from all
samples. (B) PLSR model calculated from the samples with gluten ratios up to 60%. (C)
PLSR model calculated from samples with gluten ratios from 60 to 100%.

Next, the optimum wavelength conditions for predicting the gluten ratio from the
FF data were selected on the basis of selectivity ratio. Figure 3-5A shows the selectivity
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ratio of the 360 wavelength conditions under which FF imaging was performed. It is
interesting to note that the wavelengths shorter than 450 nm show a relatively small
selectivity ratio. The reason for this is thought to be the low S/N ratio of these
wavelength conditions, owing to the low transmission of the LCTF at wavelengths
shorter than 450 nm. By using selectivity ratio to select the wavelength conditions, not
only the intrinsic fluorescence of the sample but also the conditions of the measuring
instruments can be considered.

Figure 3-5B shows R? when the wavelength conditions are selected by order of
selectivity ratio. Irrespective of the number of wavelength conditions, R? is large when
all the samples are used for calibration. However, when all the samples are used for
calibration, there is also the danger of overfitting, when the model optimizes itself for
the given data but cannot be used for other data [17]. This is likely to happen when the
number of variables (in this experiment, 36 to 360) exceeds that of samples (in this
experiment, 16). Therefore, we focused on the results where half the data was used as
calibration data and the other half as validation data. Excluding the case in which all the
wavelength conditions are used (no wavelength reduction), R? was largest when the
number of wavelength conditions was 30% of the original number, which means 108
wavelength conditions. Since the number of wavelength conditions that could be used
for imaging was limited, these 108 wavelength conditions were used to acquire the final
imaging data. The selected wavelength conditions are shown in Figure 3-5C.
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Figure 3-5  (A) Selectivity ratios of all wavelength conditions. The lighter the color,
the larger the selectivity ratio. (B) Change in R? with number of wavelength conditions.
The number of wavelength conditions where R? is high for both calibration and
validation was used. (C) Selected wavelength conditions used for FF imaging. The white
and black areas show the wavelength conditions which were used and not used for

visualization, respectively.
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3. 4. 3 Pseudo-color image of gluten distribution and ratio

The 108 wavelength conditions were used to acquire the final FF data for
visualization imaging (experiment 3). Reflecting the results from experiment 2, only
samples with gluten ratios from 0% to 60% were measured and a PLSR model that
predicts the gluten ratio from FF data was constructed. Figure 3-6 shows the predicted
gluten ratio calculated from the FF data, plotted against the actual gluten ratio of the
sample. The R? of this PLSR model was 0.964. All data were used as the calibration
data. This prediction model was used to predict the gluten ratio of each pixel.
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Figure 3-6  Calibration curve between actual gluten ratio and predicted gluten ratio.
The actual gluten ratio is derived from the gluten ratio of the whole sample and the
predicted gluten ratio is calculated from the PLSR model.

Figure 3-7 shows pseudo-color images of the samples with gluten ratios of 0% for
(A) and (B), 20% for (C) and (D), 40% for (E) and (F), and 60% for (G) and (H). Since
60% is the upper limit of the prediction model, pixels whose predicted gluten ratio was
higher than 60% were colored the same.
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Figure 3-7  Pseudo-color images of the samples colored according to the gluten ratio
of each pixel. (A) and (B) , (C) and (D), (E) and (F), (G) and (H) are samples with gluten
ratios of 0 %, 20 %, 40 %, and 60% respectively. The samples in the left row contain

lower water contents than their counterparts in the right row.
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One noticeable feature of the samples with gluten ratios of 20% and 40% is small
spots with a high gluten ratio. These are presumed to be remnants of freeze-dried gluten
powder that were not hydrolyzed thoroughly. These spots cannot be seen in the samples
with a gluten ratio of 0%, supporting our presumption.

For the samples that are mixtures of gluten and starch, it was expected that the
pseudo-color images would show starch granules and gluten strands on the surface of
the samples such as the features seen in other studies [18, 19, 20, 21]. It was expected
that areas where starch granules existed at the top surface of the sample would show a
predicted gluten ratio close to 0 % and that these areas would decrease as the gluten
ratio of the whole sample increased. However, specific features such as starch granules
could not be seen in the results, even though the spatial resolution of the camera was
high enough for their visualization. This is thought to be due to the excitation light
penetrating into the sample, which in this case is about 2 mm thick, at a depth larger
than the thickness of a single starch granule, and the corresponding emission light
resulting from all the constituents which the excitation light reaches. Therefore, the
fluorescence signal that can be detected by the CCD camera was the summated signal of
many overlapping constituents, thereby canceling out fluorescence signals from
micro-scale features at the top-most surface of the sample (Figure 3-8). With the current
FF imaging system and the micro- to millimeter-scale of the sample, some kind of
slicing process with a cryostat may be needed to observe specific features.

A B

Penetration of light

Figure 3-8  Schematic diagram of the physical model of FF imaging. The white ovals
and red background are starch granules and gluten, respectively. The excitation light
penetrates into the sample, and the emissions of all the overlapping constituents are
detected. Although there is gluten and starch on the surface for A and B, respectively,
the summated signal observed is almost equal. Theoretical explanations of

fluorescence and transmittance in turbid media are found in Oelkrug [22].
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3. 4.4 Water content

One point that should be considered in preparing the dough samples is the water
content of gluten and starch in the dough. Gluten and starch absorb different amounts of
water [23] but the way water is distributed between these different constituents in dough
remains unknown. This is a problem when predicting the ratio of constituents present in
a pixel because the FF can be affected by water content. Pure water shows no
fluorescence, but mixing water with a fluorescent substance such as gluten would lower
the fluorescence intensity by “diluting” it.

The above problem can be solved if the gluten ratio could be predicted
irrespective of water content, by selecting a suitable method of preprocessing the FF
data or by selecting wavelength conditions that are unaffected by water content. This
was made possible by preparing 2 or 3 samples with different water contents for each
gluten ratio and by constructing a prediction model so that gluten ratio could be
predicted accurately despite fluctuations in water content. Water content was adjusted so
that the samples would show a dough-like texture; it ranged from 50% (d.b.) to 100%
(d.b.) for the samples with gluten ratios of 0% and 100%, respectively.

For the four pairs of pseudo-color images shown in Figure 3-7, the samples on the
right have higher water contents than the corresponding samples on the left. However,
this has little influence on the predicted gluten ratio. By combining FF data with PLSR,
it was possible to create a model that could predict gluten ratio without being affected
by the water content.

3.5 Conclusions

In this chapter, an imaging method using the FF was developed to visualize the
distribution of gluten in dough, quantitatively. To predict gluten ratio in each pixel, a
calibration model relating the FF to gluten ratio was created from the average FF of
samples of which the total gluten ratio was known. The calibration model was
developed so that gluten ratio could be predicted regardless of water content and the
optimum wavelength conditions for this purpose were selected on the basis of
selectivity ratio.

In this study, the dough samples were measured without creating thin sections or
drying. This is a great advantage in visualizing delicate samples such as dough where
the structure could easily change through preprocessing. However, it was shown that
with thick samples, the fluorescent data contains information from all the constituents
that the excitation light reaches, making it difficult to discern individual constituents. It
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may be said that preprocesses should be selected depending on the objective of
visualization and the scale of the sample. With this done, the proposed method would
enable the distribution of constituents to be visualized using colors corresponding to
their actual quantities or ratios.

Furthermore, the method could be developed further for the application on real
samples such as wheat flour-based dough or more complex foods. This would need the
construction of a more flexible model that could incorporate unknown substances.
Studies in the area of chemometrics are expected to be applied here.
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4. Visualization and quantification of gluten, starch and air
bubble distributions in wheat flour dough

4.1 Abstract

FF imaging was used to visualize the distributions of gluten, starch and air
bubbles and their changes through mixing. Wheat flour dough was mixed up to
three stages, i.e., under-mixing, optimum-mixing, and over-mixing, and thin
sections of the dough were prepared with a cryotome. Fluorescence images of
the sections were acquired in 63 combinations of excitation and emission
wavelengths, thereby constructing the FFs of the constituents at each pixel.
Similarity values between the FF of each pixel in the dough and those of gluten
and starch were calculated. A pseudo-color image of gluten and starch
distribution was created in two ways. For the first method, each pixel was
colored by fitting a continuous color scale to the cosine similarity value to gluten
and starch. After acquisition of FF data, the dough sample was then
fluorescently stained for gluten and starch. The stained image showed patterns
similar to the pseudo-color FF image, validating the effectiveness of the FF
imaging method. In the second method, the pixels were arranged in order of
cosine similarity to gluten and pixels with higher values of cosine similarity
were categorized as “gluten” and the rest as “non-gluten”. The number of pixels
categorized as “gluten” was based on the overall ratio of gluten in the dough.
The same process was performed with the FF of starch, and all pixels were
divided into “starch” and “non-starch”. Colors were assigned to each division,
and the distributions of gluten and starch were visualized.

Furthermore, quantitative parameters concerning gluten and starch distributions
and bubble area were extracted from the dough images at each mixing stage,
showing the homogenization of gluten and starch and the incorporation of
bubbles with mixing. This imaging method is suggested to have an advantage
over conventional imaging methods since there is no need to preprocess the
sample, and any constituent in the sample can be visualized as long as there is
information about the FF of the pure target constituent.

4. 2 Introduction

In this chapter, FF imaging is applied to a real food sample, wheat flour dough,
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and the gluten and starch distributions are visualized. In real foods, it is difficult to
create an accurate calibration model to quantify each constituent. There are two reasons
for this: (1) it is difficult to make samples that vary largely in quantity of each
constituent, and (2) other constituents that affect the model may exist. Therefore, a less
accurate but more practical method was selected to analyze the FFs of each pixel, cosine
similarity. In order to prove the validity of the imaging method, the results were
compared to that of the conventional method, i.e., using fluorescence stains to color the
different constituents and observing the result with optical microscopy.

As explained in chapter 1, the structure of bread dough as it changes through the
mixing process is one of the most intensively studied targets of optical microscopy.
However, the two most popular methods, light microscopy and electron microscopy,
require the sample to go through harsh preparations such as fluorescence staining,
drying, and covering with metal coating. This takes time and requires skill to be
performed accurately. Therefore, if visualization of these constituents could be achieved
without staining, it would be of great impact in cereal science.

4. 3 Structure of this chapter

This chapter explains the methods and results of two experiments. As shown in
Figure 4-1, the flows of the two experiments are roughly the same. In the first
experiment, the data was expressed as color images by two methods. In the second
experiment, the distributions of gluten, starch and bubbles in dough at different mixing
stages were quantified after imaging.

The bread dough samples and imaging methods used in both experiments differ
slightly in terms of mixing times and similarity calculation methods, respectively.
Therefore, the sample number (samples 1 and 2 for experiment 1 and 2, respectively)
will be stated in the text.
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Figure 4-1 Structure of this chapter

4. 4 Materials and methods

4.4.1 Sample preparation

Chapter 4

For both experiments, two types of samples were prepared: model bread dough of
which the distribution of gluten and starch were studied and pure gluten and starch
which were extracted from the dough to serve as the reference. Although the standard
bread dough contains auxiliary material such as salt, yeast and fat, they were omitted in

this model dough for simplification.

To prepare the gluten and starch references in experiment 1, 1400 g of tap water
was mixed into 2000 g of flour (Camellia, Nisshin Flour Milling Inc., Tokyo, Japan) and
was mixed with a mixer (DTM-30, SK mixer Co., Ltd., Fujimino, Japan) for 2 min at
110 rpm and 6 min at 225 rpm to produce dough. After a 30 min rest in water, the dough
was carefully kneaded in water to separate gluten from starch granules and other soluble
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substances. When the starch granules were washed away, the remaining gluten
aggregated into a highly elastic mass which was then cut into pieces approximately 2
cm square and of 1 cm thickness, frozen and kept at -80 °C. The aqueous mixture
containing starch and other soluble substances was separated into the liquid and
sediment parts by centrifugation. The sediment divided into two layers, the upper layer,
commonly referred to as the tailing starch, which was a mixture of starch, insoluble
proteins and lipids, and the lower layer, referred to as the primary starch, which was
composed of pure starch. The primary starch was carefully separated, freeze-dried and
kept at -20 °C. These samples of pure gluten and starch were used as reference data
when analyzing the FF of bread dough. Photographs of the fractionation process of
dough are shown in Figure 4-2.
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(B)

(€) )

(E)

Figure 4-2  Fractionation process.

(A) Optimally mixed dough. (B) The dough being washed in water. The starch is washed
away with the water while the gluten remains as an elastic mass. (C) The agglomerated
gluten. (D) The plastic bottles set into the rotor. (E) The starch-water mixture after
centrifugation, divided into starch and water containing soluble substances. (F) The
freeze-dried starch.
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Another three batches of dough were prepared in experiment 1 to produce dough
in the under-, optimum- and over-mixing stages. The mixing rate and time for each
stage are shown in Table 4-1. The mixing times were determined by an experienced
baker who watched the actual mixing process. The ingredients and preparation methods
followed those for the dough made for the gluten and starch references. The dough was
cut into small pieces, frozen and kept at -80 °C.

Table4-1 Mixing times for dough at each mixing stage. The mixing speeds for low (L),
inter-meditate (IM), mediate (M) and high (H) are 110, 225, 280 and 420 rpm,

respectively.

mixing stage mixing time [min]
under-mixing L3
optimum-mixing L3, IM10, M6, H1
over-mixing L3, IM10, M6, H10

To prepare the gluten and starch references in experiment 2, dough was made by
mixing 680 g of tap water into 1000 g of flour and kneading the mixture with a 10 L
mixer (SK-10, SK mixer Co., Ltd., Fujimino, Japan) for 1 min at low speed, 3 min at
middle speed, and 1 min at high speed. After a 30 min rest in water, the dough was
carefully kneaded in water to separate gluten from starch granules and other soluble
substances. When the starch granules were washed away, the remaining gluten
aggregated into a highly elastic mass which was then cut into pieces approximately 2
cm square and of 1 cm thickness, frozen and kept at -80°C. The aqueous mixture
containing starch and other soluble substances was poured into 500 mL tubes and set
into a rotor (R10A3, Hitachi Koki Co., Ltd., Tokyo, Japan) and separated into the liquid
and sediment parts by centrifugation. The mixture was centrifuged for 20 min at 7000
rpm with a centrifugal separator (Himac CR21GllIl, Hitachi Koki Co., Ltd., Tokyo,
Japan) set at 5°C. The sediment divided into the upper tailing starch and the lower
primary starch. The primary starch was carefully separated, freeze-dried with a
lyophilizer (Eyela FDU-830, Tokyo Rikakikai Co., Ltd., Tokyo, Japan) and kept at
-20°C.

To make model bread dough for experiment 2, 2040 g of tap water was mixed
into 3000 g of flour (Camellia, Nisshin Flour Milling Inc., Tokyo, Japan) and was mixed
in a 20 L mixer (HPi-20M, Kanto Kongoki Industrial Co., Ltd., Tokyo, Japan). The
dough was mixed for 1 min at low speed (136 rpm) to create dough in the under-mixing
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stage, another 1 min at low speed, 4 min at middle speed (248 rpm) and 2 min 30 s at
high speed (310 rpm) to create dough in the optimum-mixing stage, and another 7 min
at high speed to create dough in the over-mixing stage (Table 4-2). The mixing times
were determined by an experienced baker who watched the actual mixing process. All
the samples were made from one batch of dough and approximately 100 g of dough was
sampled at each stage. The dough sample was cut into small pieces about 2 cm square
and of 1 cm thickness and was frozen at -80°C.

Table 4-2 Mixing times for dough at each mixing stage. The mixing speeds for low (L),
mediate (M) and high (H) are 136, 248, and 310 rpm, respectively.

mixing stage mixing time [min]

under-mixing L1

optimum-mixing L2, M4, H2.5
over-mixing L2, M4, H9.5

The frozen dough and gluten in both experiments were broken into small pieces
with a hammer and quickly embedded in a freeze embedding agent (Tissue-Tek O.C.T.
compound, Sakura Finetek Japan, Tokyo, Japan) before the sample melted. The sample
was frozen at -80 °C until the O.C.T. compound was completely fixed, transferred to a
cryomicrotome (Leica CM1850, Leica Microsystems Japan, Tokyo, Japan) cooled to a
temperature of -20 °C and sliced to make thin sections approximately 5 mm square and
of 20 um thickness. The thin sections were mounted on a glass slide (Matsunami Micro
Slide Glass, Matsunami Glass Ind., Ltd., Osaka, Japan) and left to dry completely at
room temperature.

The freeze dried starch was mixed with 70% and 80% distilled water for
experiments 1 and 2, respectively, to prepare an easily handled paste, and was
embedded in O.C.T. compound. The sample was frozen, sliced using a cryomicrotome
and dried, following the method for gluten and dough. However, the thin sections of
starch were sliced to be of 15 um thicknesses, which enabled the clear observation of
individual starch granules.

4. 4.2 Measurement of gluten to starch ratio in dough

Three batches of dough were made from 50.00 g of flour (Camellia) and 32.50 g of
distilled water. The dough was soaked in distilled water for 2 h to strengthen the
connection of gluten. After soaking, the dough was carefully kneaded in water to
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separate gluten from starch granules. The retrieved gluten was removed of excess water
on the surface and then weighed. The water with the precipitated starch granules were
poured into eight centrifuge tubes (50 mL) for each batch of dough and centrifuged for
10 min at 7000 rpm. The water was drained for 30 min and the precipitated starch was
weighed. Both gluten and starch were weighed in a wet state.

4. 4. 3 Image acquisition

The samples were set under the FF imaging system and the spatial FF data was
acquired. Image acquisition was performed at room temperature. Gluten, starch and
dough samples in the three mixing stages were acquired for experiment 1. In experiment
2, three sets of spatial FF data were acquired for dough in each mixing stage, using
samples from a different piece of frozen dough each time in order to evaluate the
differences in gluten and starch distribution between different parts of the same batch.
Two sets of spatial FF data were acquired for both gluten and starch.

The excitation and emission wavelengths used ranged from 260 nm to 320 nm
and from 370 nm to 450 nm respectively, at 10 nm intervals. These 7 excitation
wavelengths and 9 emission wavelengths were combined to make 63 wavelength
conditions.

The exposure time of the camera was set at 1.0, 5.0 or 10 s, depending on the
fluorescence intensity of the sample under the specific light condition. The exposure
times for each wavelength condition are shown in Table 4-3. The exposure times were
fixed throughout all samples.

Table 4-3  Exposure times [s] for each wavelength condition

Excitation Wavelength (nm)

260 270 280 290 300 310 320

Exposure times [s]
370 10.0 10.0 10.0 10.0 10.0 10.0 10.0
380 1.0 10.0 1.0 1.0 5.0 5.0 5.0
390 1.0 10.0 1.0 1.0 5.0 5.0 1.0
Emission 400 1.0 10.0 5.0 1.0 5.0 1.0 1.0
Wavelength 410 5.0 10.0 5.0 5.0 1.0 1.0 1.0
(nm) 420 5.0 5.0 5.0 5.0 1.0 1.0 1.0
430 5.0 5.0 5.0 1.0 1.0 1.0 1.0
440 5.0 5.0 5.0 1.0 1.0 1.0 1.0
450 5.0 5.0 1.0 1.0 1.0 1.0 1.0
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The set of fluorescence images was taken using 2 x 2 binning. Binning is the
combination of multiple (in this case, four) CCD image sensor pixels to improve
signal-to-noise-ratio and enhance sensitivity to lower light levels. Figure 4-3 shows an
image diagram of 2 x 2 binning. As a result of binning, the size of the images was
reduced from 1112 x 1344 pixels to 556 x 672 pixels. The data was stored as a 12-bit
image, in which fluorescence intensity was expressed in 4096 levels.

1

HI.L-T__

The light intensities of 4 pixels in the original image (left) are summed to make 1 pixel

Figure 4-3  Image diagram of 2 x 2 binning

in the binning image (right). The spatial resolution is sacrificed while a brighter image
with better S/N ratio is obtained.

The fluorescence images contained dark noise, which is the accumulation of the
heat-generated electrons in the sensor. Since the dark noise is highly repeatable as long
as the temperature and exposure time do not vary, it is possible to eliminate the noise by
subtracting the ‘dark image’ from the raw data [1, 2]. The dark image was acquired by
closing the camera shutter and covering the lens with aluminum foil so that no light
enters through the lens. The exposure time was set at 1.0, 5.0 and 10 s to match the
exposure time for FF measurement and four images were averaged for each exposure
time.

4. 4.4 Analysis of FF data and image processing

The data processing can be summarized into three steps: position alignment of the
FF images, masking the bubble areas, and assignment of a color to each pixel according
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to the similarity between the FF of each pixel and that of gluten or starch. The analysis
and image processing were carried out using versatile numerical analysis software
(MATLAB, The MathWorks, Inc., Massachusetts, USA) and image processing software
(ImagePro, Media Cybernetics, Inc., Maryland, USA).

The 63 fluorescence images acquired using the FF imaging system needed to be
spatially aligned so that the corresponding pixels in each image all matched a single
point in the sample. Fine adjustments were needed, as the measuring device tended to
move when the filters were changed, resulting in images where a pixel in one image did
not necessarily match the corresponding one in another.

In experiment 1, this process was performed by selecting the same three points on
each fluorescence image and using the image registration tools in MATLAB to align the
images on the basis of the selected points. To reduce computational load, a region of
256 x 336 pixels was selected for further analysis.

In experiment 2, position alignment was done following the method proposed by
Gonzalez, Woodset al. [3]. As in Figure 4-4, the normalized cross-correlation between
the base image (the image acquired in wavelengths 260 and 370 nm for excitation and
emission) and the input images (all the other images acquired in different wavelength
conditions) was calculated while shifting the "template”, a part of the input image (41 x
41 pixels), in x- and y-directions. The point where the normalized cross-correlation
showed the maximum value would be the position where the two images “most
matched”. The normalized cross-correlation is calculated by equation (1).

y(w,v)
= Zry[b(y) = buyltGc —wy —v) — ] (D
(s [bG) = Ba’ Tyl —wy —v) =82}

v(u, v) is the normalized cross-correlation which is a function of the position of
the template on the base image. b is the base image, t is the template and b,,,, is the
mean of b in the region under the template.
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(A) (B)

Figure 4-4 Image diagram of position alignment process

(A) base image and (B) input image and template (broken line). (C) The template is
superimposed on the base image and shifted in x- and y-directions while calculating
the normalized cross correlation value between the base image and the template. (D)
The position where the template best matches the base image (broken line) is where
the normalized cross-correlation shows the maximum value and the position of the

input image (dotted line) is determined accordingly.

After using this method to roughly align each image, an image registration function
in MATLAB was used to tune the position so that the image alignment would be
accurate to one tenth of a pixel. The fringe parts that were out of view in some of the
fluorescence images were deleted, leaving a rectangular area of 478 x 636 pixels for
image analysis.

The samples contained small air bubbles, which appeared as holes when the
samples were sliced. These areas showed a weak fluorescence response and the data
contained noise that was thought to lead to a decrease in the precision of analysis if
included in the data. Therefore, a masking process based on linear discrimination
analysis was performed prior to FF data analysis to leave out the pixels in the bubble
area from the calculations. The same method was used in experiments 1 and 2. Since the
bubble areas show weaker fluorescence than the sample areas, the absolute value or the
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Euclidean norm of the FF vector was used as the variable for discrimination. The
absolute value of the FF vector is defined by equation (2).

abs = |X|

.2
= G+ G T+ () ?

Avreas that were clearly inside the bubble areas or inside the sample areas were selected
from the original fluorescence image to create the training set. The training set is a set
of data of known class from which the discriminant function is calculated. Care was
taken to select pixels that were clearly inside the bubble areas or inside the sample areas,
leaving out the borders to be classified using the discriminant function. Every pixel of
the image, including the pixels used to make up the training set, was classified using the
discriminant function into the “bubble area” or “sample area”. A diagram of this
masking process is shown in Figure 4-5.

Bubble area Sample area

|

Training set

|

Calculation of

Discriminant function
|

Application to
original image

f= T

Maék iim:age (white = bubble area)

Figure 4-5 Bubble masking process. The red and green squares are the areas which
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clearly represent bubbles and dough areas, respectively. These pixels were used to
create the training set from which the discriminant function was calculated.

The acquired set of fluorescence images was a four-dimensional data, with two
axes assigned to the fluorescence spectrum (excitation and emission wavelength) and
the other two assigned to the special plane (the x-and y-position). As shown in Figure
4-6, this data matrix of dimension 7 <9 X256 X336 was “unfolded” by combining the
two spectral modes and the two spatial modes so that a matrix of dimension 63
wavelengths X 86016 pixels was obtained.

Four dimensional
fluorescence fingerprint data

(B) 1 \L K

(A) 21
= =
.g c
g i 3
> ...% )
X-position Emission WL
lunfolding i unfolding
1 K 2K LK
1_X_ZX_.# _YX |- - I “ ]

Emission X Excitation

Xlength X Y length

Figure 4-6  Unfolding process of fluorescence fingerprint data. The spatial data (A),
initially expressed as a X XY matrix, is unfolded into a 1XXY vector. Similarly, the
spectral data (B) is unfolded into a 1 XKL vector when the number of emission and
excitation wavelengths is K and L, respectively.
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The objective of the data analysis was to extract information on the proportion of
gluten or starch at each point of the dough sample, because monitoring the areas
showing a high proportion of gluten or starch would result in the visualization of the
distributions of these components. The hypothesis was that the degree of similarity
between the FF pattern of a particular area and the FF of pure gluten would correlate
with the actual proportion of gluten in the area. An FF pattern similar to that of pure
gluten would suggest a high proportion of gluten and likewise of starch.

In experiment 1, a simple index explaining the similarity of two multidimensional
vectors, i.e., the value of cosine similarity, was introduced to measure the similarity
between the FF of each pixel in the dough sample and the FF of pure gluten or starch.
The cosine similarity of two vectors is defined by equation (3).

similarity = cos 8 = X- Y/(|X| * |Y])
X-Y=x1%y; X%y, + -+ Xy %y ... (3)
X =[xy, %5 0, X, Y = [V1, Y2, ees Vil

The variables xi1, X2,...Xn and yi, y2,...yn are the fluorescence intensities of the sample
and the target constituent, respectively, under consecutive wavelength conditions (n =
3). The target constituent in this case is gluten or starch. The cosine similarity takes
values between -1 (exactly opposite) and 1 (exactly the same), with O indicating
independence. A large value of cosine similarity between the FF vector of a pixel and
the FF of pure gluten would indicate the high ratio of gluten in the area corresponding
to the pixel and likewise of starch.

The value of cosine similarity was calculated between the FF vector of each pixel
in the dough sample and the average FF of gluten and starch. The average FF of gluten
and starch, defined by the average fluorescence intensity of all the pixels in each sample
excluding pixels in the bubble area were used for the calculations, since the gluten and
starch were not completely homogeneous.

After the cosine similarity between the FF of each pixel of the sample images and
that of pure gluten or starch was calculated, the cosine values were converted into color
indices through a color scale, and a pseudo color image was constructed. The calculated
values of cosine similarity to gluten and starch were converted to shades of red and
green, respectively, through a color axis. The color axis for the value of cosine similarity
to gluten consisted of colors with consecutive values in the red channel of the RGB
color coordinate system, with the green and blue values set to 0. The color axis for the
cosine similarity to starch had consecutive values in the green channel, with red and
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blue values set to 0. The maximum and minimum values of cosine similarity
corresponding to the range of the color axes were set so as to optimize the contrast
between the pixels of the dough image.

A color was assigned to every pixel in the dough, gluten and starch images
according to the calculated value of cosine similarity and the corresponding color axis.
The images in shades of red and green representing the values of cosine similarity to
gluten and starch, respectively, were composited to obtain a pseudo color image. Finally,
the pixels classified to be in the bubble area were masked in black.

In experiment 2, the spectral angular mapper (SAM) algorithm which uses the
"angle" value between two vectors as an index of similarity was applied to the FF data.
The angle between two vectors is defined by the arccosine value of the cosine similarity,
and takes values between 0 (exactly the same) and -r (exactly the opposite). The angle
value was used in this study instead of the cosine similarity value used in chapter 4,
because the angle value was more sensitive than the cosine value in ranges where the
sample vector was similar to the reference vector, i.e. when the angle was close to 0
degrees.

The angular values were converted into color indices through a color scale, and a
pseudo color image was constructed. The angular value to gluten was converted into
shades of red while the angular value to starch was converted into shades of green. In
this way, a color was assigned to every pixel in the dough, gluten and starch images
according to the calculated angular value and the corresponding color axis. The images
showing the angular values to gluten and starch were composited to obtain a pseudo
color image. Finally, the pixels classified to be in the bubble area were masked in black.

4.4.5 Creating the stained image

To validate the pseudo color image obtained by FF imaging, the exact same area
of the same dough sample was stained with fluorescence dyes for gluten and starch
immediately after spatial FF data acquisition. This procedure was performed in
experiment 1 only. A mixture of rhodamine B and fluorescein isothiocyanate (FITC)
(0.1% and 1.0% wilv, respectively) in dimethylformamide was used for the noncovalent
labeling of gluten and starch, respectively. The staining process was carried out in a
dark room to prevent color degradation, and the staining time was 40 min. The stained
dough sample was washed with distilled water and sealed with glycerol (Kishida
Chemical Co., Ltd., Osaka, Japan) prior to the observation. The staining methods and
conditions conformed to those used in previous studies using these two fluorescence
stains to visualize gluten and starch [4, 5, 6, 7, 8, 9].
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The stained dough was observed using fluorescence microscopy (BZ-8100,
KEYENCE Japan) at excitation/emission wavelengths 470 nm/535 nm for FITC and
540 nm/605 nm for rhodamine B. The images were loaded into analysis software, the
contrast was enhanced and the two images were composited to obtain a stained image.

4. 4. 6 Quantification of the distributions of gluten and starch

Quantification calculations were performed in experiment 2 only. In order to
evaluate and quantify the distribution of gluten and starch and its differences between
each mixing stage, a parameter concerning the evenness of the distribution was
extracted. This parameter was calculated with the following algorithm. First, each image
was divided into squares whose length and width was k pixels (k =1, 2,...) and the ratio
between the sum of angular value to gluten and starch was calculated for each square.
The ratio for the m th square was calculated with equation (4).

kZ
2i=1 Qmiglu

kZ
2[:1 Hmistr

.4

ratio,,, =

Omi giu and 6p,; g are the angular values between the FF of the i th pixel (i =1, 2,...,
k?) inside the m th square and the FF of starch and gluten, respectively. Secondly, the
standard deviation of ratiom (m = 1, 2,...) was calculated. As shown in Figure 4-7, in an
image where the distribution of gluten and starch is uneven (A), the ratio between
gluten and starch varies within each square, i.e., the standard deviation of ratiom shows a
large value. Conversely, if the distribution of gluten and starch is fairly even (B), the
standard deviation of ratiom becomes smaller. As the size of each square becomes larger
(k takes a larger value), the standard deviation should become smaller.
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Figure 4-7 Diagram explaining the evenness of gluten and starch distributions

4. 4.7 Quantification of the distribution of bubbles

The properties of the bubble areas were evaluated by the total bubble area, the
distribution of the area of each individual bubble and the eccentricity of the shape of
each bubble.

To look into the properties of individual bubbles, a function in MATLAB was used
to perform “connected-component labeling”, a process of labeling connected
components in an image. Two pixels were defined to be “connected” if their edges
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touched, meaning they were connected along the horizontal or vertical direction, but not
if they were connected along the diagonal direction (Figure 4-8). By examining the
number of connected components detected and several parameters of these connected
components, the difference between the three mixing stages was shown.

T

I

Figure 4-8 Image diagram of a connected-component

The red ellipses are the connected components.

Furthermore, the geometric properties of the bubbles were considered by
calculating the ratio of the major axis length to its minor axis length. This value was
calculated by defining an ellipse with the same second-moments as the region. Ellipses
whose ratio of major axis length to minor axis length range from 10:1 to 10:9 are shown
in Figure 4-9.

Figure 4-9 Ellipses with different ratios of major axis and minor axis
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4. 5 Results and discussion

4. 5.1 Ratio of gluten to starch in dough

The average ratios of gluten to starch were 20.52% and 79.48%, respectively. The
reproducibility between the three batches of dough was good, the standard deviation
being 0.35%. These values agree with the literature values [10].

The water contents of the retrieved gluten and starch were 64.8% and 50.7%,
respectively. The standard deviations were 0.64% and 1.0% for gluten (three samples)
and starch (five samples), respectively. Since gluten and starch absorb different amounts
of water [11], the ratio of gluten to starch would be different between wet and dry states.
In this study, the visualized dough sample existed in a wet state. Therefore, the retrieved
gluten and starch were measured without force-drying the samples.

4. 5. 2 Pseudo color images

Sections 4.5.2 to 4.5.6 show the results for experiment 1. Figure 4-10 shows the
pseudo color images of gluten, under-mixed dough and starch, colored according to the
cosine similarity. Naturally, the pixels in the gluten sample showed a high similarity to
the average FF of gluten and a low similarity to that of starch, and the pixels in the
starch sample showed a high similarity to the average FF of starch and a low similarity
to that of gluten. Regarding the dough sample, areas that showed high gluten and starch
contents were highly complementary.
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(A)

Gluten Dough Starch

0.90 0.92 0.94 0.96 0.98 1.00

Degree of Cosine Similarity to Gluten

(B)

Gluten Dough Starch

0.94 0.95 0.96 0.97 0.98

Degree of Cosine Similarity to Starch

Figure 4-10  Pseudo color images of gluten, dough and starch.

Images of gluten, dough and starch are colored according to the value of cosine
similarity between the FF of each pixel and the average FFs of gluten (A) and starch (B).
The color axis follows the colors of the fluorescent images taken at wavelengths of 605
[nm] and 535 [nm] for gluten and starch, respectively. The bright red areas in the
dough image (A) and the bright green areas in the dough image (B) suggest the

existence of gluten and starch, respectively.

4. 5.3 Comparison with the stained image

Figure 4-11 shows a pseudo color FF image and a stained image of the same
dough sample. The pseudo color FF images based on the cosine similarity to those of
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gluten (A) and starch (B) showed similar patterns to the fluorescence images stained
with a rhodamine B (C) and FITC (D), respectively. The composite image in pseudo
color (E) showed clear correspondence with the composite stained image (F), thereby
validating the applicability of the FF imaging method.

(A) (B) (C) (D)

| Image Composition | Image Composition

(E) _ (F)

Figure 4-11  Pseudo color image (E) and stained image (F) of dough at under-mixing
stage

(A) and (B) are the images colored according to the value of cosine similarity between
the FF of each pixel and those of gluten and starch, respectively. (A) and (B) were
composited, and the air hole areas were masked to produce (E). (C) and (D) are images
taken after staining the sample with a liquid mixture of rhodamine B and FITC, which
color gluten and starch, respectively. (C) was taken at 605 [nm] and shows the areas
stained with rhodamine B, while (D) was taken at 535 [nm] and show the areas stained
with FITC. (C) and (D) were composited to produce (F). Similar patterns can be seen in

(E) and (F), validating the applicability of the FF imaging method.

Further studies were carried out to compare the pseudo color image obtained from
the spatial FF data and the stained image. For the stained image, rhodamine B and FITC
were used to visualize the distributions of gluten and starch, respectively. However,
some areas stained with FITC overlapped with the areas stained with rhodamine B. On

98



Chapter 4

the other hand, in the FF pseudo color image, the areas with a high value of cosine
similarity to gluten and starch seemed highly complementary.

To confirm this observation, the luminance of pixels in the dough stained with
FITC was plotted against the luminance of the same pixels stained with rhodamine B.
Similarly, the cosine similarity values to starch were plotted against the similarity values
to gluten. (A) and (B) in Figure 4-12 show the difference in the distribution pattern
between the stained image and the FF pseudo color image in a scatter plot of 500
randomly selected pixels. The pixels in the stained image are evenly distributed in the
coordinate plane, whereas the pixels in the FF pseudo color image show a tendency to
be plotted along a down-ward sloping curve. This trend was more clearly observed
when the values of fluorescence intensity and cosine similarity were standardized and
shown in a new coordination system where the point of origin was set to the mean value
(Figure 4-13). The top-right quadrant was numbered as the first quadrant, the top-left as
the second, and so on in anti-clockwise order. Pixels falling in the second or fourth
quadrant would mean that the fluorescence or cosine similarity values were high for
gluten and low for starch or vice-versa. In short, if there were many pixels falling in the
second or fourth quadrants, it would mean that the distributions of gluten and starch
were complementary. As can be seen from Figure 4-13, the pixels in the stained image
are evenly distributed in the coordinate plane, whereas the pixels in the FF pseudo color
image are mainly distributed in the second or fourth quadrant. The same analysis was
performed using all the pixels in the stained and cosine similarity images. The numbers
of pixels falling in the first to fourth quadrant are shown in Figure 4-14. The data show
that in the FF pseudo color image, a pixel showing a high value of similarity to gluten
tends to show a low value of similarity to starch, and vice versa. However, in the stained
image, there are many pixels with high luminance for both FITC and rhodamine B,
supporting the observation that the areas stained with FITC overlap with the areas
stained with rhodamine B.
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Figure 4-12  Analysis of the degree of complementation between gluten and starch
in under-mixed dough
(A) Fluorescence intensities of 500 randomly picked pixels at emission wavelengths of
535 [nm] for FITC and 605 [nm] for rhodamine B plotted against each other. (B) Value
of cosine similarity to starch plotted against the value of cosine similarity to gluten for

500 randomly picked pixels.
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(A)

Fluorescence Intensity at 535 nm (FITC)
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-2 -1 0 1 2

Fluorescence Intensity at 605 nm (rhodamine B)
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Figure 4-13  Graphs shown in Figure 4-12 with standardized x- and y-axes
The coordinate space was divided into the first to fourth “quadrant” by the mean

value.
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Figure 4-14  Number of pixels falling in each quadrant
The pixels in the stained image are evenly plotted while the pixels in the FF image are
grouped in the second and fourth quadrant.

FITC itself has a strong reactive potential with the amino group, and rhodamine B
can stain starch in the absence of proteins [9]. It seems that the optimal balance of
concentration between rhodamine B and FITC, in which the two stains color gluten and
starch selectively is difficult to achieve. It is natural to assume that gluten and starch are
distributed separately in the actual dough, so this suggests that the FF pseudo color
image more closely represents the actual condition.

4. 5. 4 Pseudo color images of dough in three mixing stages

Figure 4-15 shows the pseudo color FF images of dough in the under-mixing
stage (A), optimum-mixing stage (B) and over-mixing stage (C). The agglomerated
gluten which could be observed in the under-mixing stage broke up slightly in the
optimum-mixing stage. However, the difference was more distinct between the
optimum- and over-mixing stages as the agglomerated gluten broke up completely and
formed a homogeneous structure with starch. The dough images in each mixing stage
were in agreement with the findings of other researchers [7, 12, 13, 14, 15]. The
significant change in the structure of gluten between the optimum- and over-mixing
stages also corresponded to observations by Amend and Belitz [12].
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(A)

(B)

(C)

Figure 4-15  Pseudo color images of dough in under-mixing (A), optimum-mixing (B)
and over-mixing (C) stages

For each image, two images colored according to the value of cosine similarity between
the FF of each pixel and that of gluten or starch were composited. Bright red and green
areas are the pixels showing high values of similarity to gluten and starch, respectively,

and the black areas are air holes.
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As shown in (A) to (F) in Figure 4-16, the values of cosine similarity to gluten
and starch changed between the optimum-mixing stage and the over-mixing stage and
became much lower in the over-mixing stage. The cosine similarity range assigned to
the color axes was altered to optimize the contrast in each image, because using the
same range for all three images would result in flattened out images, where fine
distributions would be indistinguishable. Therefore, the actual cosine similarity values
of the red and green pixels in the over-mixed dough are well under those of the same
colored pixels in the optimally mixed dough.
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Figure 4-16  Histograms of values of cosine similarity
(A) Cosine similarity between under-mixed dough and gluten. (B) Under-mixed dough
and starch. (C) Optimally-mixed dough and gluten. (D) Optimally-mixed dough and
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starch. (E) Over-mixed dough and gluten. (F) Over-mixed dough and starch. The
distributions are shown with center values ranging from 0.75 to 1.00 at 0.01 intervals.

The adjustment of cosine similarity range assigned to the color axes is convenient
to understand the distribution of constituents qualitatively, but introduces subjectivity
into the imaging method because there is no strict rule regarding how to match values of
cosine similarity to a color. Therefore, another method of assigning colors to each pixel
was formulated, and will be explained in the next section.

4.5.5 Visualization of distributions of gluten and starch with
consideration of gluten to starch ratio

The value of cosine similarity between the FF of a pixel in the dough sample and
the FF of gluten (or starch) can be interpreted as the possibility of gluten (or starch)
actually existing in the area. This means that the larger the value of cosine similarity, the
higher the possibility of existence.

Figure 4-17 shows the cosine similarity image of dough in the under-mixing stage,
and the histogram of cosine similarity values. Considering the ratio of gluten to starch
obtained from the fractionation experiment (20.52% to 79.48%), 20.52% of pixels with
a higher value of cosine similarity to gluten were labeled as “gluten” and the rest,
“non-gluten”. Similarly, 79.48% of pixels with a higher value of cosine similarity to
starch were labeled as “starch” and the rest, “non-starch”. The “gluten” and “non-gluten”
pixels were colored in red and dark red, respectively. The “starch” and ‘“non-starch”

pixels were colored in light and dark green, respectively.
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Figure 4-17  Cosine similarity images of dough in the under-mixing stage, and
histograms of cosine similarity values. The red and green images show cosine similarity
values to gluten and starch, respectively. By considering the gluten to starch ratio of
the dough, pixels were divided into “gluten” or “non-gluten”, and “starch” and

“non-starch”.

For each pixel, there are four possible combinations, as can be seen in Figure 4-18:
“non-gluten” and “non-starch”, “non-gluten” and “starch”, “gluten” and “non-starch”,
and “gluten” and “starch”. The colors chosen for each combination are shown in Figure
4-18. These were determined by assigning channels R and G of the RGB color
coordinate system to gluten and starch, respectively, and setting “gluten” or “starch” to
255, and “non-gluten* or “non-starch” to 64 (0.25*255). The value of 0 was saved for
bubble areas. Channel B was set to 0.
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N
gluten starch gluten Starch Gluten starch Gluten Starch

Figure 4-18  Combinations of “gluten” or “non-gluten”, and “starch” or “non-starch”,
and the resulting colors. Each pixel was assigned a category based on the cosine

similarity to gluten and starch, and colored accordingly.

Figure 4-19 shows images of the dough in the under-, optimum-, and over-mixing
stages. The orange areas show a high similarity to gluten and a low similarity to starch,
suggesting the existence of gluten. The green areas show an opposite tendency,
suggesting that starch exists at that point. The yellow areas show a high similarity to
both gluten and starch, probably showing that both constituents exist in nearly equal
amounts. The dark green areas that show low similarities to both gluten and starch also
suggest a mixture of gluten and starch. These areas may also be other constituents that
show a relatively strong but different fluorescence pattern from gluten and starch such
as particles of the aleurone layer [16].
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Figure 4-19 Images dough in the (a) under-, (b) optimum-, and (c) over-mixing

stages.

Since the resolution of the images is limited, and features that are smaller than a
pixel cannot be visualized, thin strands of gluten, which surround starch granules [12]
cannot be observed in the images. However, the magnification and resolution of the
images can be altered by changing the magnification of the objective lens and binning
parameters of the CCD camera, and more detailed images may be acquired in future
studies.

4. 5. 6 Quantification of changes in dough through mixing

The gluten particles (orange) that can be seen in the under-mixing and
optimum-mixing stages almost disappear in the over-mixing stage. On the contrary, the
yellow areas increase significantly. These observations were confirmed by calculating
the number of pixels falling in each category for each mixing stage.

Figure 4-20 shows the number of pixels in each category throughout the three
mixing stages. There is a significant change in the number of pixels falling in each
category from the optimum-mixing stage to the over-mixing stage: the orange and green
pixels decrease, while the yellow and dark-green pixels increase in number. Bubble area
also increases.
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Figure 4-20 Number of pixels in each category throughout the three mixing stages.
A significant change in the distribution pattern can be observed between the optimum-

and over-mixing stages.

The decrease in the numbers of orange and green pixels and the increase in the
numbers of yellow and dark-green pixels suggest that the gluten breaks up into small
pieces in the over-mixing stage and mixes with starch granules so that in most of the
pixels there is a mixture of gluten and starch. The breaking up of gluten with excessive
mixing has been observed by SEM [12].

The threshold values of cosine similarity that divide gluten from non-gluten and
starch from non-starch changed markedly from the optimum-mixing stage to the
over-mixing stage. The threshold values for gluten are 0.9915 and 0.9894 for the under-
and optimum-mixing stages, respectively, but these values decrease to 0.8697 in the
over-mixing stage. Similarly, the threshold values for starch are 0.9301 and 0.9261 for
the first two mixing stages, respectively, but are 0.8016 in the over-mixing stage. This
suggests that, in the over-mixing stage, gluten and starch themselves are altered from
the gluten and starch fractionated from the optimally mixed dough.

4.5. 7 Pseudo color images of dough in experiment 2

Figure 4-21 shows the pseudo color images of dough in the three mixing stages,
under, optimum and over, colored according to the angular value between the FF of
each pixel and the average FFs of gluten and starch, respectively. The areas in red and
green are the areas with a high proportion of gluten and starch, respectively.
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(A)

200Lm

Figure 4-21 Pseudo color images of dough in three mixing stages. (A) Under-mixing
stage, (B) Optimum-mixing stage and (C) Over-mixing stage. Red, green and black areas
correspond to gluten, starch and bubbles, respectively.
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It can be seen that the gluten and starch distribution is heterogeneous in the
under-mixing stage, but becomes more homogeneous or more “even” in the optimum-
and over-mixing stages. This evenness of gluten and starch does not seem to change
much from the optimum-mixing stage to the over-mixing stage.

The over-mixing stage is distinctive in that the area of bubbles (the areas shown
in black) is much larger than the other stages. Many large bubbles can be observed,
some with a diameter of over 200 um. The dough in the under-mixing stage contains
few of these big, circular bubbles and the black areas which exist mainly on the border
between the starch the gluten are small and of an irregular shape.

These observations needed to be confirmed by extracting quantitative parameters
from the pseudo color images.

4. 5. 8 Quantitative analysis on the distributions of gluten and starch

Figure 4-22 shows a graph explaining the evenness of gluten and starch in the
under-, optimum- and over-mixing stages. As the length of the square becomes longer,
the standard deviation of the ratio between gluten and starch existence in the square
becomes smaller but the standard deviation value is always higher in the under-mixed
dough, i.e., the distribution is more uneven. There is no significant difference between
the standard deviation value for the dough in the optimum and over-mixing stages,
showing that the evenness of the distribution of gluten and starch does not change after
the optimum-mixing stage.
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Figure 4-22 Evenness of gluten and starch distributions in the three mixing stages
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The standard deviation is calculated from three samples in each mixing stage, which is
the reason why the value for the under-mixing stage remains quite high even when the
length of the square becomes longer.

4. 5.9 Quantitative analysis of the size and morphology of bubbles

Total bubble area is the number of pixels classified as “bubble area”. Figure 4-23
shows the ratio of total bubble area to the total image area. The values for each sample
shown in the bar graph and the average value for each mixing stage are shown with an
asterisk.

A noticeable aspect in the under-mixing stage is that the second sample shows a
much higher ratio value than the other two samples. The average bubble ratio value of
the other two samples was calculated and shown in the graph with a “+” sign. If this
sample were to be excluded, it could be said that the area of bubbles increases
significantly from the under-mixing stage to the optimum-mixing stage. This supports
previous studies showing that one of the main functions of mixing is the incorporation
of air nuclei [17]. On the other hand, this sample may indicate that the condition of the
dough in the under-mixing stage varies greatly from place to place and that more mixing
is needed to produce dough in which the bubbles are distributed evenly.

The total bubble area in the over-mixed dough was significantly higher than the
other two mixing stages, conforming the observation from the pseudo color image.
From this data, two possibilities can be derived: 1) that new air is being incorporated
into the dough, and 2) that small bubbles below the resolution of the FF images are
being integrated to form bigger bubbles, resulting in a seeming increase in bubble area.
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Figure 4-23 Total bubble area ratio of dough in the three mixing stages

Furthermore, in order to verify the results shown in =5 —! ZBRITNR2H1Y
¥ A, , the specific volume of dough in the three mixing stages was measured. The
specific volume v[cm?®/g] is calculated by dividing the volume V [cm?®] by the weight
m [g]. If more bubbles are incorporated in the dough, the volume would increase while
the weight would remain the same, i.e., the specific volume would increase.

The volume of the sample was calculated by measuring the buoyancy of each
sample when the sample was completely submerged in water. The dough sample was
suspended to a spring scale with a fine thread and the weight measured (m, [g]). Next,
the dough sample was completely submerged in water and the weight measured
(m4 [g]). The buoyancy of the sample, F, [N] is calculated from the difference
between m, and m,

Fp = (my —my)g . (%)
where g [N- m?/kg?] is the gravitational constant. The buoyancy of a sample is equal to

the gravitational force on water with the same volume as the sample. The gravitational
force, F, [N] is expressed as

F;[N] = 1[g/em?] x V[em?] x g[N/g] ... (6)

where V [cm?] is the volume of the dough sample. From equations (3) and (4), V [cm?]
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can be calculated as
V[lecm3] = (mg — my) X 1[g/cm3] .. (7

Assuming that the dough does not absorb water during measurement, the volume of the
sample can be measured in this way.

Figure 4-24 shows the specific volume of dough in the three mixing stages. Four
samples were measured for each mixing stage. It can be seen that the specific volume
increases significantly as the dough is mixed, verifying the results shown from the FF
pseudocolor images. The results also show that new air is actually incorporated into the
dough as the dough is mixed, turning down the possibility that the increase in bubble
area is only the result of the integration of small air bubbles below the resolution of the
FF images.
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Figure 4-24 Specific volume of dough in the three mixing stages

Furthermore, this data supports the assumption that the bubble area ratio
calculated from a two-dimensional image can sufficiently predict the bubble volume
ratio in three-dimensional space. In a study on pore volume in concrete, Neithalath et al.
[18] compared the pore area ratio calculated from the cross section of a concrete sample
with the pore volume ratio of the same sample and found that the two ratios correlated
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significantly. Although the samples measured for the image and the specific volume are
different parts of the same batch of dough, this result indicates that complicated
measurement in three-dimensional space may be substituted with a more straight-
forward measurement in two-dimensional space.

Figure 4-25 shows the accumulative bubble area plotted against the area of
independent bubbles for the three mixing stages. The accumulative bubble area is
calculated by adding up the area of the bubbles falling into each area category. The
graph shows that the dough in the under-mixing stage contains many small bubbles
which account for a large proportion of the total bubble area. As the mixing proceeds,
these small bubbles seem to be integrated to form larger bubbles. When the dough is
mixed past the optimum-mixing stage, the number of small bubbles increases once more.
The over-mixed dough also contains a large number of big bubbles which add up to the
high ratio of bubble area shown in Figure 4-23.
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Figure 4-25 Histogram of the bubble area in the three mixing stages

The vertical axis shows the product of individual bubble area and number of bubbles

showing the degree of contribution to the total bubble area.
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The eccentricity of the bubbles in the dough of the three mixing stages is shown
by the ratio of the major axis to the minor axis. Because the total number of bubbles
differs among the three mixing stages, the actual number of bubbles within each
eccentricity range is divided by the total number and is shown as a percentage. The
fraction of bubbles whose ratio of major axis to minor axis is in the range of 10:5 to
10:3 is especially large in the under-mixing stage, followed by the over-mixing stage.
Conversely, the proportion of bubbles whose major to minor axis ratio is from 10:10 to
10:7 is highest in the optimum-mixing stage. This shows that the shapes of the bubbles
in the optimum-mixing stage are close to a circle, or when viewed three-dimensionally,
a sphere while the bubbles in the under- and over-mixing stages are elongated or of
irregular shapes.
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Figure 4-26 Eccentricity of bubbles and their ratio to the total number

4.5.10 Discussion

The FF imaging method overcomes several problems with conventional
microscopic methods, especially preprocesses such as staining in light microscopy and
drying or freezing in electron microscopy. The main problem with these preprocesses is
that it always involves the risk of chemical or physical sample alteration. For example,
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in this study, thin dough sections were stained after spatial FF data acquisition. In this
process, the thin sections were vulnerable to soaking and rinsing with liquids and
needed careful handling to keep the samples from separating from the slide glass. The
FF imaging method eliminates these risks, allowing the samples to be measured under a
condition close to the original state.

Another problem of preprocessing is that the prepared sample is markedly
affected by the preparation conditions and the researcher’s technique. The staining
conditions include parameters such as staining time and stain concentration, which need
optimization, and sample handling techniques that should stain the sample evenly or
prevent color degradation are not easy to develop. The same could be said about
preprocesses required for electron microscopy. The FF imaging method is much easier
to perform, with few simple processes that could affect the final result. FF measurement
and analysis could easily be automated, and sample preparation can also be simplified,
as discussed in the next paragraph. Therefore, the same reliable result could be acquired
by anyone performing the experiment.

Two problems which are harder to tackle are (1) the validity of using gluten and
starch extracted from the dough sample as references for visualization and (2) validation
methods of the visualized result. The question of whether extracted gluten and starch
can be used as references for the actual gluten and starch in dough is difficult, since it
has been reported that the reconstitution of fractionated flour results in a deterioration of
functional properties [19]. The structure of gluten definitely changes through the
extracting process, physically, by the kneading of the dough, and chemically, through
the contact with water and air. The extracted starch goes through many processes such
as freeze drying, absorption of water, freezing, thawing and drying, and there is no
proving that these processes change the fluorescence response. However, the only
alternatives for the reference samples are commercially available samples of pure starch
and gluten, which face the same problems. Furthermore, using the starch and gluten
extracted from different flours may have a negative effect on the supervised analysis.
Therefore, the only apparent solution is to carry out the extraction procedure so that the
sample alteration is limited to a minimum. A study on fractionation methods by
Macritchie [10] show that the temperature during the extraction process is an important
factor determining the quality of the extracted gluten and starch. Paying attention to
these conditions could enhance the accuracy of the visualization method.

Another major problem is proving the validity of the imaging method. In this
study, the same sample was stained with fluorescence dyes and the result compared with
the FF pseudo color result. However, since the image acquired by the FF imaging
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method proved to be closer to the actual condition than the stained method, the stained
image cannot be completely relied on as the ultimate reference. Rather, the stained
image and the FF pseudo color image seem to support each other. This problem of the
reliability of the imaging method will remain as long as the actual constituent
distribution of the sample is not known.

With the present technology, visualizing the constituent distributions in dough in
order to check its condition during mixing is not realistic. Destructive methods which
need sampling can only check the condition of that particular piece of dough, and the
time it takes for preprocessing cannot be shortened. FF imaging requires a certain
amount of time to measure and analyze the sample, but with a stronger light, limited
number of wavelengths and high speed calculation system, the imaging speed could be
greatly improved.

There have been many reports on the change in dough structure with mixing, but
most studies have limited the descriptions to qualitative explanations of the structure
image and a few have gone on to extracting quantitative parameters from the acquired
images. A few studies [7, 20] have focused on the area fraction of the protein matrix
(PMV), assuming that it correlated with the volume fraction. However, the evaluations
of the PMV value are not constant, with some studies concluding that it is not
necessarily a measure of dough quality.

Most studies agree that gluten and starch are heterogeneously distributed at the
beginning of the mixing stage and that the two constituents become homogenized as the
mixing progresses [14]. A few studies claim that the homogenization proceeds even
after the dough is optimally mixed [8], a phenomenon that was not observed in our
study.

As for the area of bubbles in the dough, Tlapale-Valdivia et al. [21] have also
reported the emergence of big holes in the overdeveloped dough, but studies that have
actually calculated the total ratio of bubble in the dough are few. These large bubbles
may be an important factor that weakens the dough when it is over-mixed, since there
have been reports that excessive dough aeration has a negative impact on rheological
parameters such as the strain hardening index and failure stress [22].

This study has shown that two different phenomena progress when dough is
mixed, the distributions of gluten and starch become more “even” as the dough
approaches the optimally mixed condition and excessive air is incorporated as the
dough goes beyond it. Therefore, optimally mixed dough could be defined as a
condition where the gluten and starch are homogeneously distributed, while there is no
excessive air incorporated in the dough.

119



Chapter 4

Extracting quantitative parameters from the FF pseudo color images is very
straightforward since the data is already expressed in digital form. The images can be
processed directly with analysis software and many parameters can be extracted with
the image processing toolbox implemented in the software. Therefore, caution needs to
be taken against using parameters which may not explain the actual changes through the
mixing process but just fit the few samples analyzed in the study. To be sure that the
parameters extracted in this study really represent the changes in the mixing process,
another batch of dough may be needed to be analyzed and checked to see if the same
tendency can be observed.

By measuring several samples in different mixing stages, a border which defines
the optimal mixing state may be obtained. This could lead to a completely automated
dough mixing system where the mixing process is controlled with the FF imaging
system. The distributions of gluten, starch and bubbles would be monitored, the image
acquired, and quantitative parameters extracted continuously until the extracted
parameters show a certain value which indicates that the dough has reached an
optimum.

4.6 Conclusions

In this study, the cosine similarities between the FF of each pixel in the dough and
the FF of gluten (or starch) were used as a measure of the gluten (or starch) existing in
that area. The values of cosine similarity were converted into color with two methods:
the first method involved assigning continuous color scales of red and green to the
cosine similarity values to gluten and starch, respectively, and the second method
assigned one out of four colors to each pixel depending on their cosine similarity values.
In the second method, the colors were assigned so that the total ratio of gluten and
starch in the image was equal to that of the sample. The pseudo color image created
with the first method was compared to the stained image, and similar patterns were
confirmed. Images of dough in the three mixing stages, under-, optimum- and
over-mixing stage, showed notable changes with both imaging methods.

By quantification methods, this chapter showed that the change in gluten and
starch distribution in wheat flour dough that occurs with mixing can be visualized and
quantified with FF imaging and morphological analysis. The changes observed were as
follows: (1) the distribution of gluten and starch became more even from the under- to
the optimum-mixing stage, (2) the total bubble area became larger from the optimum- to
the over-mixing stage (this was supported by the increase in specific volume), (3) the
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mean area of the bubbles became larger in the over-mixing stage, and (4) the shapes of
the bubbles were circular in the optimum-mixing stage but were more elongated in the
under- and over-mixing stages. Although more samples need to be analyzed to confirm
that these changes generally occur in the mixing process, the methodology of
visualization and quantification has been established and is readily applicable to other
samples.
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5 Visualization of gluten, starch, and butter in pie pastry

5.1 Abstract

In this study, the distributions of gluten, starch and butter in pie pastry were
visualized by combining FF imaging with spectral unmixing methods. Two types
of pie pastry were made: puff pastry, in which wheat flour dough and butter are
alternately layered, and short pastry, in which flour and butter are mixed together
with water. Samples of 10 um thickness were made, and fluorescence images were
acquired with excitation and emission wavelengths in the range of 270-320 nm
and 350-420 nm, respectively, at 10 nm increments. The FFs of each pixel were
unmixed into the FFs and abundances of five constituents, gluten, starch, butter,
slide glass, and ferulic acid, using two spectral unmixing methods: non-negative
matrix factorization (NMF) and constrained least squares method. NMF was only
applicable to puff pastry and was unable to visualize starch and butter in the short
pastry which were mixed together. Least squares method was coupled with
constraints of non-negativity, full additivity (the sum of the constituents in one
pixels is unity) and quantum restraint on the abundances of the slide glass
(abundances take values of one or zero). With this method, distributions of the
constituents in both puff and short pastry were visualized.

5.2 Introduction and objective

Chapters 3 and 4 have shown that we have succeeded in visualizing two constituents
in model dough and wheat flour dough, gluten and starch. This could be generalized to
state that we have visualized proteins and polysaccarides. Proteins and polysaccarides
make up the structure of food, along with one other constituent, fat. Therefore, if we could
visualize fat, proteins and polysaccarides all together by using the FF, the range of
application would be largely widened. This is the reason we chose “fat” as the third
constituent to visualize.

The role of fat in bread dough and its structure has been discussed by many. Fat is
known to form membranes around the starch granules and protein in dough [1], and Li,
Dobraszczyket al. [2] have visualized the fat with the combination of fluorescence stains
and confocal scanning lazar microscopy (CSLM). The sizes of fat crystals are reported
to be between 2 to 60 um [3, 4] but other studies have reported that fat globules cannot
be observed in the bread dough with scanning electron microscopy (SEM) [5, 6]. From
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these previous studies, we speculated that it would be difficult, if not impossible, to
visualize the fat incorporated in bread dough.

Therefore, we chose pie pastry as observation targets. Pie pastry is also made from
wheat, water and butter, but the fat is incorporated in relatively large sizes to provide the
typical crunchy texture. There exist many types of pie pastry, which differ in structure
and texture, depending on manufacturing methods. In this work, we focused on two
typical types of pie pastry, puff pastry and short pastry. Puff pastry is made by layering
wheat flour dough and butter, so that when the butter melts in the baking process, the
remaining dough forms thin crisp layers. On the other hand, short pastry is named after
its “short” texture, which means that the food forms small crumbles in the mouth when
bitten into. This is because the butter is mixed into the wheat flour, inhibiting the
development of gluten.

Although these structures can be estimated from the manufacturing method, there
are few studies which have actually visualized them. Therefore, the visualization of these
structures would clearly show the strong link between food structure and their known
textures.

From a larger view point, the development of a method to visualize the three main
components of food would have large applications in other areas of science such as
biology and medicine.

5.3 Materials and methods

5. 3. 1 Preparation of pie pastry samples

Two types pie pastry were made: puff pastry and short pastry. Both were made so
that the overall ratio of gluten, starch and butter was equal. Table 5-1 shows the
composition of ingredients for the two pastry dough.

Table 5-1  Composition of puff pastry and short pastry dough

puff pastry short pastry
strong flour 70 70
weak flour 30 30
salt 1 1
shortning 7 -
water 53 40
butter 97 85
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For the puff pastry, the first five ingredients were mixed in a dough mixer for 1 min
at low speed and 6 min at medium speed. The temperature at the end of mixing was 23 to
24 °C. The mixture was rolled to a thickness of 3-4 cm and stored at 5 °C for 15-20 h.
After resting, the dough was wrapped around the butter and rolled to 5 mm thickness with
a sheeter. The sheet of dough was folded in three, turned around 90 degrees and folded in
four. After a 30 min rest at -7 to -8 °C, the dough was folded in three, turned around 90
degrees and folded in three again (total 108 layers). After resting again at -7 °C to-8 °C
for 30 min, the dough was rolled to 2.5 mm.

For the short pastry, refrigerated butter was cut into pieces approximately 1 cm? in
size and mixed with the two types of flour and salt in a mixer (Kenwood, United
Kingdom) with a beating attachment until the butter particles were 2 to 3 mm in size.
Water was added and the mixture was kneaded lightly into dough.

Both pastry dough were cut into pieces approximately 1 cm?® embedded in
compound (3% CMC embedding medium, iTec Science, Ibaraki, Japan) and frozen
immediately in the cooling bath of a cold trap (Eyela UT-2000, Tokyo Rikakikai Co. Ltd,
Tokyo, Japan) with hexane as the cooling medium.

When the samples were completely frozen, the samples were sliced to 10 um using
a cryotome (CM-1900, Leica) with a Surgipath DH80HS blade (Leica). The thin slices
were mounted on a slide glass (S-8215 and S-9901, Matsunami Glass Ind., Ltd., Osaka,
Japan) and kept at -20 °C until observation (Figure 5-1).

Figure 5-1 Photograph of a thin slice of puff pastry on a slide glass

5. 3. 2 Fractionation of gluten and starch

Gluten and starch were fractionated, based on the method by Macritchie [7].
Fractionation was performed with 50 g strong flour, 50 g weak flour and 65 g of pure
water. The flours used were of the same batches as those used for the pie pastry. The flour
and water were cooled to 4 °C before mixing.

The flour and water were mixed with a pin mixer (National MFG., Nebraska, USA)
(Figure 5-2) at 20 °C for 60 s. The temperature of the dough at the end of mixing was
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18.1°C. The dough was soaked in pure water for 60 min to strength gluten connectivity
and then kneaded in the water separate insoluble protein fraction (gluten) with starch
granules and other soluble substances. A sum of 2800 mL of water was used in this
process. The bowl was cooled while washing off starch granules since it has been reported
that gluten yield is higher when the temperature is kept low [7].

(A) (B)
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Figure 5-2  (A) Pin mixer and (B) dough at the end of mixing

The water and washed out starch were poured into 500 mL centrifuge tubes and
gluten was put into another centrifuge tube with pure water. These tubes were centrifuged
for 20 min at 7000 rpmand at5 °C (centrifuge: Hitachi HIMAC CR21G3) (Figure 5-3A).
The agglomerated gluten was kept at 4 °C until sectioning. The precipitated starch was
separated into the top yellow layer (tailing starch) and the bottom white layer (primary
starch). Both starches were freeze-dried at -80 °C with an Eyela FDU-830 freeze-dryer
(Tokyo Rikakikai) (Figure 5-3B).

The obtained gluten was cut into small pieces, embedded in compound, frozen and
sliced into 10 mm slices in a similar way to pie dough. Dried starch was dispersed in
compound, frozen and sliced in the same way.

The weight and water content of the obtained gluten and two types of starch were
measured to calculate the ratio of gluten to starch in the dough. Water content was
measured by the drying the samples at 130 °C for 3 h (oven dry method).
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Figure 5-3  (A) Centrifugation of gluten and starch (B) Freeze dryer

Fractionation of starch was also performed, based on the method by Whistler and
Wolfrom [8]. Flour (50 g strong flour and 50 g weak flour) were mixed with 75 mL of
pure water and aged at room temperature for 2 h. The loose dough was set over a nylon
bolting sieve with mesh openings of 75 um. While pouring water over the dough, the
dough was kneaded gently to wash the starch granules through the mesh. The remaining
mixture of gluten and starch was discarded, and the starch was passed through the mesh
another two times. This starch slurry was poured into four 50 mL plastic tubes and
centrifuged at 2300 g for 15 min at room temperature (centrifuge: Himac CR 22G, rotor:
R10A2). After centrifugation, the upper fraction containing tailing starch was scraped off
and the remaining starch was suspended in pure water. This process of centrifugation,
scraping off the top layer and suspension was repeated three times to obtain pure starch.
Thin samples of starch samples were created as previously explained.

5. 3. 3 Selection of wavelength conditions for imaging

Since there is a limit in the number of band-pass filters that can be used in the FF
imaging system (eight wavelengths for both excitation and emission light), wavelength
conditions that are effective in discriminating butter, gluten and starch need to be selected.
This was done by measuring the three constituents with a spectrophotometer (F7000,
Hitachi high technologies) and applying principal component analysis (PCA) to the data.

Six samples of gluten, three samples of butter and five samples of starch were
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measured in the spectrophotometer using a solid sample cell. The measured wavelengths
were 250 to 700 nm for both excitation and emission wavelengths, with intervals of 10
nm. The slit width was 10 nm for both the excitation and emission wavelengths, scanning
speed was 60000 nm/min and photomultiplier voltage was 350 V.

Since the imaging system showed low sensitivity for excitation wavelengths below
270 nm and emission wavelengths below 350 nm, fluorescence data of excitation
wavelengths 250- 260 nm and emission wavelengths 250-340 nm were excluded from the
analysis. Furthermore, data from the fluorescence spectrophotometer showed secondary
fluorescence over emission wavelengths 500 nm and over. These wavelengths were
excluded from the data. Principal component analysis was conducted with fluorescence
data in the range 270-500 nm and 350-500 nm for excitation and emission wavelengths,
respectively.

5. 3. 4 Acquisition of fluorescence images

Fluorescence images of two types of pie pastry, gluten and starch were acquired with
the FF imaging system, using the excitation and emission wavelengths selected with PCA.
The fluorescence images were acquired in decreasing order of wavelengths, i.e., 330 nm
to 270 nm for the excitation wavelengths and 420 nm to 350 nm for the emission
wavelengths. This was to minimize the denaturation of the sample due to exposure to UV
light.

The light intensity of the excitation, exposure times and z-position for each
wavelength condition was determined by the method explained in chapter 2.

5. 3.5 Alignment of fluorescence images

One deficiency of the FF imaging system was that the fluorescence images tended
to move between different wavelengths of emission light. This was because the emission
filters were not aligned horizontally to the optical path with great accuracy, and as a result,
bent the light path slightly. The emission filters were set in a filter holder with threads,
and these threads were used to attach the filter holders to the filter wheel (Figure 5-4).
Consequently, the slight tilt of the filter changed with the rotation of the filter holder. This
resulted in a set of filters tilted in different directions, thus the fluorescence images moved
when the emission filters were changed.
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thread

thread

thread

Figure5-4  Photograph of the filter holder and wheel. The band-pass filter is set inside
the holder (4), and fixed from above by a fastener (3), as shown in picture 1. The fastener
(3) is fixed by turning it through a thread. The filter composition (1) is turned upside
down (2) and is set in the filter wheel (5) with the threads. Since the band-pass filter is
held in place by threads, it is tilted slightly relative to the horizontal direction.

Since eliminating the slight tilt of the filters would require more accurately made
hardware, the misalignment of the fluorescence images was corrected digitally after
image acquisition. Image registration was performed by calculating the correlation of two
images as a function of the relative displacement of the input image to the base image [9].
However, this resulted in inaccurate registration for some images because different
constituents fluoresce under different wavelength conditions (Figure 5-5). Therefore,
fluorescence images of a microscope scale (NOB1, MeCan Imaging, Inc., Japan) was
acquired in advance, under all the emission wavelengths used. The scale shows similar
images under different emission wavelengths, therefore, alignment of the scale images
was easily performed. Since misalignment occurred only between different emission
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wavelengths, and fluorescence images with the same emission wavelengths were
basically aligned to each other, images with the same emission wavelengths could be
roughly aligned using the same displacement for the microscopic scale.

(A) (B)

Figure 5-5 Fluorescence images of the same short pastry in wavelengths
Ex270/Em350 and Ex330/Em420 for (A) and (B), respectively.

After a rough alignment, the images were adjusted with an accuracy of a tenth of a
pixel, using the image registration tools in MATLAB.

5. 3. 6 Extraction of reference FF data

In order to visualize the gluten, starch and butter in pie pastry, reference FFs of these
three constituents were extracted from the fluorescence images of fractionated gluten and
starch, and puff pastry. The fluorescence image of fractionated gluten showed many air
holes. Therefore, these air hole areas were left out and the FFs of the remaining area were
averaged to acquire the reference FF of gluten (Figure 5-6).

(A) (8)

Figure 5-6  (A) Fluorescence image of fractionated gluten and (B) the areas used for

obtaining the reference gluten FF.

The starch granules in the thin samples were dispersed in compound. Since
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compound showed no fluorescence, starch granules were detectable against the
background (Figure 5-7). Therefore, a few circular areas corresponding to the starch
granules were manually selected, and the FFs of the selected pixels were averaged to
acquire the reference FF of starch.

Figure 5-7 Fluorescence image of starch granules dispersed in compound. Areas

surrounded by dotted lines are examples of clearly observable starch granules.

Butter areas were manually selected from the puff pastry images, which showed
alternating layers of dough and butter (Figure 5-8). All the FFs of the selected areas were
averaged to acquire the reference FF of butter.

(A) (B)

Figure 5-8  (A) Fluorescence image of puff pastry and (B) the areas used for obtaining

the reference butter FF.

5. 3. 7 Visualization of gluten, starch, and butter by similarity angle

The similarity angles of FFs of each pixel in the puff pastry image and the reference
FFs of gluten, starch and butter were calculated as explained in chapters 5 [9, 10] and
similarity images were created. Similarities to gluten, starch and butter were shown in red,
green and blue, respectively.
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5. 3. 8 Visualization of gluten, starch, and butter by PCA

PCA was applied to all the FFs in the pie pastry image. PC scores for PC 1, 2 and 3
were converted into color by the same method used for cosine similarity [10] (Figure 5-9).
The correlation coefficients of PC 1, 2 and 3 were used to interpret the meaning of the
PCs.
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Figure 5-9  Flowchart of imaging by PCA. The FFs of each pixel in the pie pastry image
are analyzed by PCA and each pixel is colored based on the PC scores. The correlation

coefficients take the form of FFs and can be used to interpret each PC.

5. 3.9 Visualization of gluten, starch, butter and aleurone fragments
by spectral unmixing

Spectral unmixing is a collective term for methods to decompose observed spectra
into a collection of constituent spectra, or endmembers, and a set of corresponding
fractions, or abundances, that indicate the proportion of each endmember present in the
pixel [11]. In this research, the endmembers would be the spectra of gluten, starch and
butter. By unmixing the FFs of each pixel in the pie pastry images, the content of the three
constituents at each pixel can be calculated, and a distribution map for each constituent
can be obtained.

Many spectral unmixing techniques based on the linear mixing model have been
developed in recent decades [12, 13, 14], and two methods were used in this study,
constrained least squares method and non-negative matrix factorization [15, 16, 17, 18].
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Constrained least squares method

This method requires the endmembers to be known and assumes that the spectra of
all the pixels in the sample can be expressed as a mixture of these endmembers. If
appropriate endmembers can be acquired, least squares inversion is performed with dual
physical constraints, full additivity (the sum of constituent abundances in one pixel equals
1) and non-negativity (all abundances are equal to or larger than 0). This corresponds to
solving the following problem:

1
argmin= |ly — Da|3
S

m . (1)
subject to a > O,Z a; <1
i=1

when y € R" is the observed spectra, and D € R*M and o € RY are the endmember
and abundance matrices, respectively. The lower index of the norm indicates that this is
an Euclidean norm. This can be formulated as

1
argmin <§> a'D"Da — y"Da
o

subject to Ga < h

e

where G = [;;] TeR™M 1 eRM) and h=[0T 1]T(0 € RM). This is solved by

optimization methods for quadratic programming, such as active-set [19] and interior-
point [20] methods.

Since abundances can be calculated unambiguously from the endmembers, choosing
them is the most important step. In this research, we experimented with different
endmembers for gluten, starch and butter, and compared the results.

® Gluten 1: the average FF from the fractionated gluten sample was used.

® Gluten 2: the endmember spectrum was extracted by Vertex Component
Analysis (VCA) [21]. VCA extracts candidates for endmembers by projecting
the data onto subspaces and choosing the vertices of the data group. The
subspaces are determined by dimensionality reduction algorithms such as PCA,
singular value decomposition (SVD) and maximum-noise fraction (MNF).
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® Starch 1: the average FF from the fractionated starch was used.
® Starch 2: a small area corresponding to a starch granule in the pie pastry image
was selected manually, and the FFs of the pixels in this area were averaged.

® Butter: the average FF from the butter layer area in the puff pastry was used.

Non-negative matrix factorization (NMF)

NMF assumes that the endmembers are unknown and that there are no pure pixels
(pixels that contain only one constituent and whose spectrum could therefore be used as
an endmember) in the sample image. NMF uses endmember spectra determined by
methods such as VCA as initial values. The initial endmember values and the
corresponding abundances are updated by alternate optimization, while satisfying the
non-negativity and full additivity constraints.

The endmember data used for the constrained least squares method were used as the
initializing values for NMF. Alternate optimization of the endmember and abundance
matrices was performed, and the abundance map was obtained [22].

5.4 Results and discussions

5. 4.1 Selection of slide glass type

As a pre-experiment, slide glasses were measured for their intrinsic fluorescence.
Three types of slide glasses, S-2111 (non-coat), S-8215 (APS-coat), and S-9902 (MAS-
GP-coat) were measured, both with the imaging system and spectrophotometer (F7000).
Figure 5-10 shows the fluorescence images of pie pastry on the three slide glasses and the
FFs (measured by the spectrophotometer) of the slide glasses, background and gluten
samples. The color scale is shown in log-scale, so that a difference in one indicates a 10
times difference in fluorescence intensity. S-8215 and S-9902 are slide glasses that are
coated for enhanced adhesiveness. Compared to the non-coated slide glass, the
fluorescence emitted from the glass seems to be suppressed. Although the fluorescence
from the non-coated slide glass is weaker than gluten in order of approximately three, it
is still strong enough to influence the fluorescent image. Slide glasses, S-8215 and S-9901
were used for further imaging experiments.
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(A) S-2111 (non-coat) (B )S-8215 (APS-coat) (C) S-9901 (MAS-GP-coat)
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Figure 5-10  (A), (B) and (C) show the fluorescence images at Ex280 and Em350nm of
pie pastry on slide glasses S-2111, S-8215 and S-9901, respectively (top row), and FFs of
the slide glass measured in reflectance mode of the spectrophotometer. (D) and (E) show
FFs of the background and gluten, respectively. The color scale is shown in log scale. Note
that the scale for the Background is from 0 to 0.2.

5. 4. 2 Fractionation results

The first fractionation experiment based on the method by Macritchie [7] yielded
23.27 g of gluten, 48.01 g of primary starch and 20.31 g of tailing starch. The water
content of these samples were 65.00% (n=4), 1.74% (n=2), and 1.71% (n = 2),
respectively. The water content of the original flours were also measured, resulting in
12.45% and 12.44% for the weak and strong flours, respectively. Therefore the yield of
fractionated substances was 85.85% and the ratio of gluten to starch was 10.68% to
89.32%. The yield loss is assumed to be small pieces of gluten and starch granules that
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were washed away with the water, and water soluble proteins and sugars.

Figure 5-11 shows light microscopic images and FFs of starch obtained by the
method of Macritchie [7] (A) and Whistler and Wolfrom [8] (B). The white arrows in (A)
indicate small lumps of gluten that were mixed with the starch granules. Starch obtained
by the second method few of these lumps.

The fluorescence from gluten (Ex280, Em330) and ferulic acid (Ex350, Em400) [23]
was observed strongly in starch (A), but much weaker in starch (B). This indicated that
starch (B) was more deprived of proteins and cell wall structures than starch (A).
Therefore, starch (A) was used for further studies.
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Figure 5-11  Light microscopic images (right) and FFs (left) of starch obtained by the
first (A) and second (B) method.

5. 4. 3 Wavelengths for imaging
Figure 5-12 shows the results of the PCA of butter, gluten and starch samples. The
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score plot (A) shows that both principal component (PC) one and two are effective in
separating the fluorescence of the three components. Coefficients are the weights that
map the original fluorescence data to each score. A large absolute value indicates a large
contribution of the variable to the scores, meaning that it is effective in separating the
three constituents. Therefore, wavelength conditions were selected in order of their PC
one and two coefficients until the number of excitation or emission wavelengths reached
the maximum of eight. As a result the excitation and emission wavelengths shown in
Table 5-2 were selected to use for imaging.
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Figure 5-12  Results for the PCA of butter, gluten and starch samples. (A) Scatter plot
for PC scores one and two. (B) and (C) Absolute values of PC one and two coefficients,

respectively.
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Table 5-2  Excitation and emission wavelengths selected for imaging

No Excitation [nm]  Emission [nm]
1 270 350
2 280 360
3 290 370
4 300 380
5 310 390
6 320 400
7 330 410
8 420

5. 4. 4 FFs of reference data

Figure shows the reference data of gluten, starch and butter. Gluten shows the typical
fluorescence pattern of aromatic amino acids, mainly tryptophan, which has a peak at
typically Ex 280 and Em 350 nm. Figure 5-14 shows the fluorescence image at Ex 280
and Em 350 nm. The thin thread-like features are the well-developed gluten strands.
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Figure 5-13  Reference FFs of gluten (A), starch (B) and butter (C). Note that the color
scales for starch and butter are different from that of gluten
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Figure 5-14  Fluorescence image of puff pastry at Ex 280, Em 350 nm. White thread-

like structures are gluten strands.

Starch and butter show very low fluorescence intensity, and do not have a
characteristic pattern. Butter is known to contain fluorophors such as carotenoids, and the
fluorescence from these constituents can be measured with a fluorescence
spectrophotometer if the sample is thick enough (approximately 2 mm thickness).
However, the fluorescence becomes very weak when the sample is thinly sliced and is
hardly detectable with the FF imaging system.

Amylose and amylopectin in starch are not fluorescent, since all their molecular
bonds are o bonds. However, starch granules are detectable (as shown in Figure 5-7)
against the background of compound. There are two possible reasons for this detectability,
the first is that starch granules are known to have a thin protein membrane on their surface
[24] and this shows weak fluorescence. The second possibility is that we are observing
reflected or diffused light (excitation wavelength equal to emission wavelength) which
has passed through the band-pass filters. As explained in chapter 2, actual filters do not
completely shut out light outside the band-pass wavelengths. As a result, a small portion
of the light transmitted through the excitation band-pass filter may directly pass thorough
the emission band-pass filter after being reflected by the starch granule.
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5. 4.5 Visualization of distribution by similarity angle

Figure shows the similarity angle image to gluten, starch and butter. The distribution
image of gluten shows decent results, the pixels in the butter layer are dark and there are
bright areas in the dough layer. However, the distribution image of butter and starch are
almost identical. The pixels in the butter layer show a large similarity to starch.
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Figure 5-15  Similarity angle images to gluten (A), starch (B) and butter (C). A similarity

angle takes a maximum of 0.

This is thought to be because there is a large difference in fluorescence between the
fractionated starch which is used as the reference and the starch granules in the pie pastry.
The fractionated starch which is used as the reference has almost no fluorescence, since
it is almost completely derived of protein fragments. On the other hand, starch in the pie
dough is covered with soluble proteins and thin layers of gluten and shows moderately
strong fluorescence.

To explore the difference in fluorescence, several areas that corresponded to starch
and butter in the pie pastry image were selected manually, and their cosine similarities to
reference starch and butter were plotted (Figure 5-16). Since the reference butter FF is
extracted from the pie pastry image itself, the butter pixels show a very high similarity
value to reference butter. On the contrary, the starch pixels show low similarity to
reference starch, and the butter pixels show similarity values in the same range.
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Figure 5-16  Plot of similarity angles of starch and butter to reference butter and
reference starch. Pixels in the butter area have similarity angles near 0 degrees to
reference butter. However, pixels in the starch area (in the puff pastry image) have
similarity angles around 0.2 degrees to reference starch. Pixels in the butter area have

similar angular values to reference starch.

This showed that the results of similarity angles relied mainly on the choice of
reference data, and that similarity angles would not be an appropriate method to visualize
constituents such as starch and butter which show only weak fluorescence and do not
have a characteristic FF pattern.

5. 4.6 Visualization of distribution by PCA

The largest difference between similarity angles and PCA is that the latter only uses
the data from the puff pastry image. Therefore, the results are unaffected by the selection
of reference data. However, the reference data can be used to interpret the results of PCA.

Figure 5-17 shows the distribution images created from the scores of PC 1, 2, and 3,
and the corresponding coefficients.
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Figure 5-17  Distribution images of PC 1, 2 and 3 and the corresponding coefficients.
The coefficient of PC 1 and 2 can be related to the FFs of gluten and ferulic acid,
respectively. The distribution image of PC 3 show granular features, and is assumed to

show starch granules.

The coefficient of PC 1 shows a similar pattern to the reference FF of gluten, and the
strip-like features of the distribution image are very like that of gluten. Therefore, we
concluded that PC 1 showed the distribution of gluten.

The coefficient of PC 2 shows high values in the longer wavelength conditions, and
the distribution image shows strip like features. The fluorescence is presumed to be ferulic
(4-hydroxy-3-cinnamic) acid [23] which is known to be contained in the aleurone cell
walls, and fluoresces at Ex 350nm and Em 430nm. Although the fluorescence peak
wavelengths are not included in our measurement, the high coefficient values in the
longer wavelengths are assumed to show the tail of the fluorescent peak. Therefore, we
concluded that PC 2 shows the distribution of ferulic acid.

The coefficients for PC 3 show a peak at Ex 300-310 and Em 350. However, there
is no particular constituent that fluoresce in this region. On the other hand, granule-like
features can be observed from the distribution image. Although interpretation of this PC
is difficult, we judged from the distribution image that it had some element that
distinguished starch from butter [25].
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5. 4.7 Visualization of distribution by spectral unmixing methods

NMPF of puff pastry image

NMF was performed with two sets of initial endmember spectra as shown in Table
5-3. The number of endmembers used in the analysis is an important factor that
determines the accuracy of the analysis. Although the three constituents of interest were
gluten, starch and butter, it was necessary to add the fluorescence pattern of ferulic acid
and the slide glass, in order to obtain decent results. The slide glass area corresponded to
areas where there were air holes in the sample. When the samples were sliced, small holes
were observed in the thin slice, where the slide glass could be seen though. Since the slide
glasses were not completely fluorescence free and showed weak fluorescence, their FFs
were included as one endmember.

Table 5-3  Initial endmember spectra for NMF

Constituent set 1 set 2

gluten fractionated gluten sample fractionated gluten sample

starch fractionated starch sample starch granule from puff pastry image

butter butter layer from puff pasty image butter layer from puff pasty image

ferulic acid fextracted by VCA from puff pastry .extracted by VCA from puff pastry
image image

slide glass extracted from puff pastry image extracted from puff pastry image

With endmember set 1, the reference FF of starch was obtained from the fractionated
starch sample. Reference gluten was also obtained from the fractionated gluten sample.
All the other references were extracted from the puff pastry image, manually for the butter
and slide glass and automatically for the ferulic acid.

Figure 5-18 shows the distribution image for the four constituents, gluten, starch,
butter and ferulic acid. Gluten and ferulic acid are visualized relatively well, probably due
to their distinct FF patterns. The distribution image of starch shows granule-like features
similar to starch, but also shows abundances in the pie layer, which is unlikely. The
abundance values, ranging from 0 to 1, were very low for the starch image, with most of
the pixels showing abundances lower than 0.5. The distribution image of butter shows
thin, line-like abundances in the dough image, which is also unlikely.
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Figure 5-18  Abundance images of gluten (A), starch (B), butter (C) and ferulic acid (D).
The grayscale for starch shows abundances ranging from 0.0 to 0.5 and those for the

others shows abundances ranging from 0.0 to 1.0.

These problems were thought to be due to the dissimilarity between the reference FF
of starch, extracted from the fractionated starch, and the starch in the puff pastry. Starch
granules in the puff pastry show weak but clear fluorescence of tryptophan, suggesting
that they are covered in some kind of protein fraction in the wheat. Since most of the
protein is washed off in the fractionated starch, their FFs are different from the starch
observed in the puff pastry.

Therefore, with endmember set 2, two small areas in the puff pastry image
corresponding to starch granules were selected manually to create the reference FF of
starch. The selected areas were clearly distinguishable as starch granules due to low
intensity in the fluorescence image and circular morphology (Figure 5-19)
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Figure 5-19  Two starch granules from where the endmember FFs were selected

By using this FF as one of the initial endmembers, a larger area was distinguished as
starch granules the abundance became higher. Most of the line-like features in the butter
image were eliminated (Figure 5-20).

= =N

Figure 5-20 Abundance images of gluten (A), starch (B), butter (C) and ferulic acid (D)

calculated with the starch FF extracted from the puff pastry image as an initial
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endmember. The grayscale shows abundances ranging from 0.0 to 1.0.

Figure 5-21 shows the RGB image of the abundance image of gluten, starch and
butter shown in R, G and B channels, respectively, and the stained image of the same
sample. In the stained sample, fat and protein are colored orange and blue, respectively.
The network of well-developed gluten and the starch granules trapped inside the network
can be seen clearly.

(A)

Figure 5-21 (A) RGB image of gluten (red), starch (green) and butter (blue) and (B) stained
image of the same sample. The band of butter, air bubbles in the pastry, and matrix of

gluten can be observed clearly.

Extracting the reference FF of starch manually from the puff pastry itself may seem
subjective, since it relies on the analyzer to perceive the features of the starch granule.
However, as can be seen from the figure, the starch granule used for the reference was
very clearly observable, compared to most other granules. Only a few pixels were selected
from this starch granule to create the reference FF, which in turn enabled the visualization
of all the other starch granules.

Methods of extracting endmember spectra have been discussed in many papers [26,
27]. Manual and automatic endmember extraction both have their strength and
weaknesses. In the case of starch FF extraction, automatic methods would not work well,
since the fluorescence intensity of starch is very weak and the FF does not have a typical
pattern. However, there may have been more objective methods for manual extraction,
which would be more suitable in the future.
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Visualization by the constrained least squares method

Although NMF performed very well for the puff pastry, it could not distinguish the
constituents in short pastry, where the butter is mixed into the wheat dough instead of
existing in layers. The similarity of the FFs of starch and butter (both show weak
fluorescence and no characteristic peak) meant that alternative calculations in NMF
resulted in FFs that were different from the original FFs.

Therefore, the reference FFs were kept constant, and the abundance images were
calculated by constrained least squares method. Figure shows the abundance images of
gluten, starch, butter, ferulic acid, and slide glass in short pastry.

Since the image obtained from this method were quite different from realistic
assumptions, the method was improved in two ways: the endmember FF of gluten was
extracted from the short pastry image by VCA, in the same method as that for ferulic acid,
and a constraint was applied on the abundances of “slide” to be either O (the slide is
covered with the short pastry) or 1 (there is no sample on the slide).

The endmember FF that was extracted from the fractionated gluten showed the same
characteristics as the gluten in the short pastry image. However, the fluorescence intensity
was much higher in the fractionated gluten, since the density of aromatic amino acids
such as tryptophan was much higher. Using this reference FF as an endmember resulted
in an abundance image where the distribution of gluten was roughly correct but the
absolute quantities were far from realistic values. Since there is a constraint on the sum
of abundance fractions in one pixel, quantities of one constituent affects the quantities of
others, and therefore, all the other abundance matrices were distorted. We tried to solve
this problem by extracting the endmember FF from the puff pastry image itself.

The quantum restraint on the abundances of slide were introduced in the calculation
by altering the cost function in equation (1) to

2
1 1 1
> ly — Dall7 + E}\<aslide -U (aslide - —>> )
where U(x) is a step function that is expressed as

0, x<0

U(x):{L x>0 - 4)

The second term is added only to the slide data. This optimization becomes the following
minimization:
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1 1
( (E) a’(D™D + ACQ)a — y"Da + (E) yly
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subjectto Ga < h

where b € RM has unit for bg;4. and zero values for other components and C = bbT.
Both these functions are quadratic programming problems. In order to overcome the case
statement, problem (1) (without quantum regularization) was optimized first, followed by
either of the problems in (5) depending on the «; value first obtained by optimization of
D).

Figure 5-22 shows the abundance images of ferulic acid, butter, starch, gluten and
“slide” in short pastry. Abundances for “slide” are shown in black (abundance = 0.0) and
white (abundance = 1.0), and abundances for the other constituents are shown in
continuous values between 0.0 and 1.0. Figure 5-23 shows the abundance images of the
same constituents in puff pastry. The image shows a band of butter sandwiched between
two layers of wheat dough.

The two sets of images show distinct differences between the structures of short
pastry and puff pastry. Apart from the obvious difference in the distribution of butter
(mixed into the wheat dough or existing in layers), there is a large difference in the
morphology of gluten. The gluten in the short pastry is observed in small and large clumps,
whereas those in the puff pastry have formed a net-like structure, spread in the direction
of dough extension (parallel to the layers of dough and butter). The net-like structure of
gluten in the puff pastry is presumed to be due to the mixing of dough (6 minutes at
medium speed) in the absence of fat. On the other hand, the flour for the short pastry is
mixed directly to fat, which is known to inhibit the formation of gluten [28]. The small
clumps of gluten in the short pastry are presumably aggregations of the protein fraction
existing in the flour particles.

The size distribution of the “slide” areas are also very different. Short pastry shows
many large voids compared to the small airspaces seen in the puff pastry. Puff pastry is
rolled many times during its manufacture, and this would eliminate large voids.
Consequently, short pastry is mixed only roughly, which leaves or even incorporates air
in the dough.
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aauepunge

0.0
Figure 5-22  Abundance images of ferulic acid (A), butter (B), starch (C), gluten (D),

and slide (E) in short pastry. The grayscale corresponds to an abundance of 1.0 (white)
to 0.0 (black).
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aouepunge

0.0

Figure 5-23  Abundance images of ferulic acid (A), butter (B), starch (C), gluten (D),
and slide (E) in puff pastry.

In order to validate the analysis results, the short pastry was stained in the same way
as the puff pastry. Figure 5-24 shows the composite image of butter, starch and gluten
abundances shown in RGB and the corresponding stained image.
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(A) (B)

Figure 5-24  (A) Composite image of the abundance images of butter (red), starch
(green) and gluten (blue), and (B) stained image of the same sample. Protein is stained

blue and fat is stained orange.

Although the stained color of protein in the stained image is a little faint, large
aggregates of gluten can be observed in both images. The positions of starch granules and
fat in the analyzed image are largely correspondent with those of the stained image.
Although the FFs of butter and starch were difficult to distinguish by visual judgment, it
was possible to obtain their abundances accurately.

Compared to the stained image, the FF image seems to show a large quantity of
butter. Therefore, the total quantity of gluten, starch and butter calculated from the
abundance image was compared to the value calculated from the ratio of ingredients used
for the pastry.

In the short pastry, 97 g of butter was mixed to 153 g of wheat flour dough. Around
20% of the wheat flour dough is gluten, and the rest, starch [29]. This means that the
weight ratio of gluten, starch and flour is 12%:50%:38%. Since fluorescence intensity
would be proportional to the volume of these constituents, the specific gravity of 1.1, 1.5
and 0.91 for gluten, starch and butter, respectively, was used to convert the ratio to volume
ratio. This gave 12.7%:28.8%:48.5% for gluten, starch, and butter ratio.

On the other hand, the ratio calculated from the abundance matrix was
16.6%:37.6%:45.8% for gluten, starch and butter, respectively. This is very close to the
ratio calculated from the ingredients of pie pasty, and seems to support the accuracy of
the imaging method.
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5.5 Conclusions

In this study, FF imaging was used to visualize three constituents, gluten, starch and
butter. In chapters 3 to 5, discriminations were made between gluten, which shows strong
fluorescence, and starch, which shows little fluorescence. The third constituent, butter,
made measuring and analysis very difficult because both starch and butter showed low
fluorescence intensities.

This was overcome by applying spectral unmixing methods that decompose the FFs
of each pixel into the product sum of FFs of pure constituents and their abundances. It
was indicated that the results were better when the initial FFs of each pure constituent
were derived from the pie sample rather than fractionated samples. With certain
constraints such as non-negativity, unit summation (sum of abundances for one pixel
equals one), and quantum restraints (abundances take values of 0 or 1), it was possible to
discriminate between butter and starch, even when these two constituents were mixed
together in a short pastry dough.

The results of this study are very significant because it indicates that a broad range
of constituents have a possibility of being visualized with FF imaging, even constituents
that show low levels of fluorescence. Imaging with autofluorescence is seemingly
restricted compared to NIR or IR imaging because only samples that are fluorescent can
be visualized. However, this study showed that many constituents that are categorized to
be measured by vibrational information (measured by NIR and IR) such as starch and fat
can actually be measured by fluorescence.

The results also indicate a possibility of simplifying the experimental scheme
because there would be no need to acquire and measure “reference” samples such as
fractionated starch and gluten every time a new experiment is performed. By
accumulating FF data of pure constituents and creating a database, it would be possible
to compare FFs of pure constituents and the “reference” FFs extracted from the sample,
it would be possible to verify that the right constituents are being visualized (Figure 5-25).
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Figure 5-25 Scheme of FF data base. The “reference” used to analyze the image is
extracted from the sample image itself, and the FF patterns are compared to the data

base to confirm the actual constituent.

Finally, this study showed that FF imaging could be improved greatly by introducing
analysis methods used mainly in the field of electronics and informatics. Since agro-
engineering and food engineering has been based mainly on applications, there is much
to learn from other areas of research.
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6. Conclusions and future perspectives

6.1 The development of FF imaging through this thesis

As is discussed in chapters 3 to 6, the FF imaging method has been developed
through this thesis in two main aspects, imaging acquisition method and analysis method.
The development in the image acquisition method has been mainly explained in chapter
2, and this section will summarize the development in the analysis method.

Table 6-1 summarizes the analysis methods used in this thesis.

Table 6-1 Summary of the analysis methods used in chapter 3to 6

Data required to

Analysi thod
nalysts metno construct model

Advantages and Disadvantages

Chapter 3 PLS FFs of samples with O accurate prediction possible
different constituent X difficult to acquire data required
ratios for model construction

Chapter 4 cosine similarity O straightforward and intuitive

X qualitative

FFs of reference ;
Chapter 5 similarity angle X only .relatlve values can be
acquired
Chapter 6 NMF, FFs of reference O analysis can be performed with
constrained (optional) data of sample only
least squares O abundances can be obtained as

absolute values
X only applicable to linear models

The ideal analysis method would not need any initial information such as the FFs
of references, and would calculate the amount of each constituent accurately and
quantitatively. PLS regression used in chapter 3 accurately connects the FFs of each pixel
to the ratio of gluten to starch, but samples with a large range of gluten to starch ratio are
needed to construct an accurate PLS model, and this is difficult with real samples.

Cosine similarity and the similarity angle used in chapters 4 and 5 are much easier
to apply than PLS, and has been used in areas of remote sensing by the name of spectral
angle mapping (SAM). The accuracy of this method relies on the selection of “reference”
data. Cosine similarity works well in situations where the constituents to be visualized
have completely different FFs such as gluten and starch. However, it cannot discriminate
between constituents whose FFs are similar, as shown in chapter 6. In addition, the values
of similarity are not directly connected to the actual quantities of the constituents, and
results are largely qualitative.
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Spectral unmixing methods such as NMF and constrained least squares used in
chapter 6 stand between the former two methods, enabling quantitative analysis without
having to prepare multiple samples. With constrained least squares, it was possible to
discriminate between starch and butter, which both showed weak fluorescence.
Furthermore, the reference FFs of each constituent were shown to be extracted from the
sample itself, meaning that other samples such as fractionated starch and gluten were
unnecessary. Concerning applicability and accuracy, these spectral unmixing methods are
best suited as the analysis method for FF imaging.

6.2 Advantages and drawbacks of FF imaging

This thesis has shown the theories and applications of fluorescence fingerprint (FF)
imaging, an imaging method which can be categorized as a type of hyperspectral imaging.
However, FF imaging has distinct advantages which should be highlighted in this chapter:

1. The achievable spatial resolution is higher than most hyperspectral imaging
methods. This is illustrated by figure 1-21 in chapter 1. Compared to near-
infrared (NIR), fluorescence shows high sensitivity, and therefore, the thickness
of sample can be reduced greatly (10 um for fluorescence compared to over 100
um for NIR). This enables the acquisition of clear images at high resolution.
Furthermore, scattered light, which lowers the spatial resolution in imaging
methods measuring the absorption of light, is cut out in fluorescence images.
Therefore it is possible to visualize granular structures such as starch at the same
high spatial resolution as other non-granular structures.

2. Sample preparation does not have to be as precise as other hyperspectral
imaging methods, when comparing samples visualized in the same
magnification. Methods such as infrared (IR) imaging with an attenuated total
reflection (ATR) accessory can achieve high spatial resolution, but the samples
need to be completely flat. This requires preprocessing steps such as sample
immobilization. Chapter 3 showed that FF imaging requires the sample to be
made into thin slices if microscopic features are to be visualized. However, if
the desired thickness is realized, small irregularities on the surface (such as those
due to granular structures) affect the image relatively weakly.
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(A)

Figure 6-1 Fluorescence (A) and reflectance (B) images of the same puff pastry.

This is shown in Figure 6-1 where the same sample is observed in fluorescence
mode (emission wavelength = excitation wavelength) and reflectance mode
(emission wavelength = excitation wavelength). The fluorescence image shows
thin strands of gluten surrounding the black starch granules in the top half, and
a dark area in the bottom half where there is a layer of butter. The image shows
a flat sample where light intensities are proportional to the amount of fluorescent
molecules. In the reflectance image, small specks of light can be seen, which do
not correspond to the starch granules. This is because the surface of the starch
granule facing the excitation light gets illuminated strongly, compared to the
other areas, and this light is directly reflected into the camera. When observing
with fluorescence, the light is initially absorbed and then, emitted. This indirect
emission seems to lower the effect of surface irregularities.

3. Constituents that are known to be “non-fluorescent” (such as starch) can be
observed due to traces of fluorescent constituents that exist together (such as
protein membranes on the surface of starch granules). This is a significant
characteristic of fluorescence “fingerprint” imaging, not fluorescence imaging
with a single wavelength. It is especially true when FF imaging is applied to
complex samples such as foods. “Starch” and “fat” in the chemical sense are not
fluorescent since these molecules are made up of single bonds. However, in food
systems, these constituents exist as complex assemblies, sometimes containing
fluorophors such as aromatic amino acids and vitamins. FF measurement is
basically a “non-targeted” method, where the wavelengths used for
measurement are not linked to a specific target. Therefore, it is possible to
capture “non-fluorescent” constituents by other constituents that fluoresce in
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other wavelengths.

Measuring equipment is less expensive than most imaging methods. Since the
FFs in this study are measured in the near-UV to VIS region, light sources,
cameras and band-pass filters are much less expensive than other wavelength
regions. Furthermore, FF imaging uses simple optical systems, compared to
laser induced imaging methods etc. which makes it very affordable (see also
figure 1-21).

Above are the advantages of FF imaging, compared to other imaging methods. On
the other hand, there are also some disadvantages, which are listed below. The first two
disadvantages are fundamental but the third can be overcome by improvement of the
imaging system.

1.

The sample needs to be made into thin slices for micro-scale features to be
observed, which means that the imaging method is not completely non-
destructive. This is due to the characteristics of near-UV to VIS light, which
penetrates into the sample to a certain deepness which is larger than the scale of
the features that we are aiming to visualize, such as starch granules. This
phenomenon is shown in chapter 3, where we tried to visualize the distribution
of gluten and starch with a sample that was not sliced.

This does not apply to macroscopic samples, such as pork and beef slices, where
the sample is measured directly with a macroscopic FF imaging system. In this
case, the penetration of light into the sample is negligible.

Observation of microstructures in bulk samples may be possible if a focusing
device such as those used in confocal scanning laser microscopes (CSLM) are
used. The coupling of CSLM and FF imaging may be an exciting technology in
the future.

Only constituents that are fluorescent can be visualized. This seems to contradict
with the third advantage of FF imaging, but both views are true. In this study
we aimed at visualizing the basic constituents that make the structure of food,
proteins, starch, and fat. Two of these constituents, starch and fat, are non-
fluorescent, and although it was possible to visualize these constituents with the
help of spectral unmixing techniques, many trials and errors were needed to get
a decent result. This is a major disadvantage compared to imaging methods such
as NIR, IR, and Raman imaging, which basically measure the vibrational energy
of molecules and can therefore measure covalent bonds between C, H, and O.
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3. Data acquisition time is long, in the order of minutes. Although this could be a
major drawback when using FF imaging for practical purposes, image
acquisition time can be reduced largely by improvement of the controlling
system (which is presently programmed by LabVIEW) and the sensitivity of the
camera, especially in near UV regions.

Data acquisition times can be reduced by selecting or designing optimum band-
pass filters, so that constituents of interest can be distinguished using a minimum
number of filters.

If the third drawback could be improved to achieve measurement times in the order
of a few seconds, the high spatial resolution, low demand towards sample preparation and
high sensitivity towards certain constituents (fluorophors) should make FF imaging a very
attractive imaging method.

6.3 Future perspectives

FF imaging has proved to be an attractive method to observe samples in micro-scale.
However, in food science, the time and money applicable for everyday measurement is
scarce, meaning that methods such as FF imaging would only be used for fundamental
research purposes. Although fundamental research is important in food science, and there
are many foods whose structure and constituent distribution is yet to be studied, it would
be greatly beneficial if FF imaging could be used in other fields, such as biology and
medicine, where observation of the sample (ex. cells) is a routine procedure. In these
fields, incorporating some kind of stain into the sample before observation is a common
practice, and it should be a great impact if the same samples could be observed non-
destructively.

For practical use, FF imaging needs to be developed in two ways: in terms of the
image acquisition system, and data analysis methods.

The current imaging system is a prototype and has been constructed by collecting
the parts from multiple manufacturers. One problem that we faced when selecting the
parts was that few devices had satisfactory performance in the near UV (250-400 nm).
The near UV region is very important in FF imaging because many fluorophors including
aromatic amino acids fluoresce in this wavelength band. However, the development of
devices with satisfactory performance in these wavelengths has not been so active due to
the lack of demand. As a result, most devices used in the current imaging system have
low sensitivity or transmission coefficients in the near UV region. To ensure equal
measuring conditions for all the images, the conditions for all the other wavelengths are
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currently adjusted to be equal to the weakest and least sensitive wavelength, which is a
large waste. We are working with several manufacturers who could develop light sources,
cameras and optical devices which show high performance in the near UV region. With
high performance in these regions, the exposure times would become shorter (enabling
shortening of total measurement time) and the images clearer.

There is also a large scope for improvement of analysis methods. In chapter 6, we
incorporated some given information into the analysis model, i.e., that the abundance
values of “slide glass” only took values of 1 or 0. This information improved the analysis
greatly. Similarly, the incorporation of theoretical knowledge into the model may improve
or stabilize it. For example, we are currently using analysis methods such as PLS and
least squares regression that are based the assumption of linearity between fluorescence
intensity and constituent abundance. However, fluorescence is known to show non-linear
characteristics such as concentration quenching, and this is shown in chapter 3, where
gluten ratios over 80% could not be modeled accurately with PLS. In this case, non-linear
models may be considered.
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Appendix
I. Absorbance

The energy of light

In order for light to be absorbed by a molecule, the photon of the light needs to have
the proper energy to reach a discrete excited state of the molecule. The energy of light
absorbed (mole basis) is given by the Planck frequency relation:

Nh
F = Nhy = ()

E is the energy associated with frequency v and wavelength A, c is the velocity of light,
and N is Avogadro’s number. Absorption only occurs if E equals the difference in energy
between the ground electronic state and an excited state of the absorber.

In this study, we are focusing on light in the near UV to VIS region, i.e.
approximately 200-700 nm. According to the Planck frequency relation, this corresponds
to an energy value of 170-598 kJ/mol (N = 6.022 x 1023, h = 6.626 X 1073%,¢ =
2.998 x 108). However, the energy differences between electronic states of most
molecules are larger than this value. For example, the smallest energy difference in
ethylene (CH, = CH,) is between them and m* orbitals, and equals 725 kJ/mol [1]
which corresponds to a wavelength of 165 nm (Figure 1-1). In ethylene, there exists an
orbital with lower energy than the m orbital, the ¢ orbital, and an orbital with higher
energy than the m* orbital, the o* orbital. Therefore, electronic transitions between these
orbitals would require more energy than 725 kJ/mol.

o—*

T[*

1725 kJ/mol
T %
Y

o

Figure -1  Energy levels of ethylene
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In this section, molecular orbitals and their energies, and the mechanisms that work
to lower the energy difference between electronic states are explained. This may help to
generalize the division between molecules that absorb light in the near UV to VIS and
those who do not.

Atomic orbitals

In atoms and molecules, electrons are found only in certain regions of space, and
this space is referred to as its orbital [1]. Atomic and molecular orbitals are described by
the wave equations (Schrodinger equations), and the solutions to the wave equations are
called wave functions (written as ¥). Schrodinger equations have the form:

AY = Ey .. (2)

where H is the Hamiltonian operator concerning the kinetic and potential energy of a
particle and E is the energy value [2]. The wave function ¥ has characteristics which are
similar to waves and can take both positive and negative values. Since |¥|? is known to
show the probability distribution of the particle in question, solving the Schrodinger
equations allows us to understand the orbitals of molecules, or where the probability to
find the electrons is at its highest. However, an exact solution can only be obtained for
atoms that have one electron, the hydrogen atom [3]. For atoms and molecules with more
electrons, the wave functions are obtained by approximations which are based on several
hypotheses.

The simplest atomic orbital is that of a single nucleus, which is spherically
symmetric in space and is called the s orbital. Hydrogen and helium have a 1s orbital. The
third electron in lithium cannot occupy the 1s orbital due to the Pauli principle which
states that only two electrons can occupy one orbital. Therefore, lithium has another
orbital, the 2s orbital. The third and fourth electrons in beryllium also occupy the 2s
orbital. The boron atom has another type of orbital, the p orbital. There are three types of
p orbitals, conventionally called p,, p, and p, orbitals. These orbitals are shaped like
a dumbbells with one lobe taking a positive wave function, and the other taking a negative
wave function. The fifth electron in boron occupies one of the p orbitals. The following
atoms, carbon, nitrogen, oxygen, etc. follow the same rules and occupy the p orbitals.
Figure 1-2 shows the shapes of the atomic orbitals.
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z
s orbital p, orbital p, orbital p, orbital

Figurel-2  Atomic orbitals. The blue and red lobes defer positive and negative orbitals.

Molecular orbitals

When atoms are combined to form molecules, these atomic orbitals are also
combined to make molecular orbitals. There are mainly three types of orbitals, ¢, z and n.
The o orbitals are symmetrical to the axis and are the most stable. The 7 orbitals are
orbitals that are non-symmetrical to the axis. Nonbonding electrons in atoms such as
nitrogen and oxygen occur in n orbitals. Due to the characteristics of the wave functions,
the number of orbitals combined always equals the number of orbitals which are newly
made. Therefore, when two atomic orbitals are combined and make the ¢ orbital, another
orbital, the o* orbital is made. The same goes for = and z* orbitals. Orbitals with an
asterisk (*) have higher energies than the ones that do not.

The o orbitals are the most stable orbitals, meaning that they are lowest in energy.
Conversely, o* orbitals are very high in energy. Therefore the energy gap between the o
and o* orbitals is very large. Compared to the o orbitals, 7 orbitals are less stable and have
higher energies, meaning that the energy gap between z and z* orbitals are smaller than
the o and o* orbitals. The relatively small energy gap means that in some molecules the
excitation of an electron from the = orbital to the z* orbital can be obtained by the
absorption of light in the near UV to VIS wavelengths. Therefore the z orbital is the key
to light absorption and fluorescence.

As an example, in chlorophylls and carotenoids, the energy of the 7= orbital is 160-
300 kJ/mol higher than the zorbital, so the absorption of visible light can lead to the
excitation of zelectrons. Transitions from oto o# orbitals require much more energy
since the o orbital is very stable. Transitions from n to o orbitals are possible but are
less probable to happen, which means that the molar absorptivity (absorbance of a
substance at a concentration of 1 mol/l) is very low [4, 5].

In order to know how m orbitals are made, we need to know the shapes and
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characteristics of molecular orbitals. Molecular orbitals are also explained by the
Schrodinger functions, but again it is impossible to solve the Schrodinger equations for
molecules having many nuclei and electrons, and approximations are needed. There are
two main methods of approximating molecular orbitals, the Valance Bond Method (VB
method) and the Molecular Orbital Method (MO method). The VB method focuses on
how the atomic orbitals of the dissociated atoms combine to give individual chemical
bonds when a molecule is formed [6]. On the other hand, the MO method assumes orbitals
that cover the whole molecule. The MO method is more precise but the VB method is
easier to understand. Therefore, we first focus on the VB method.

Valance bond theory and hybridized orbitals

Simple bonds between s and p atomic orbitals are shown in Figure 1-3. Bonds
between s and s orbitals and py and py orbitals are symmetrical to the axis and become o
orbitals. Bonds between px and px orbitals are asymmetrical to the axis and are therefore
n orbitals. In the nitrogen molecule (N.), there is one ¢ orbital between the two py
orbitals and two 7 orbitals between the two px and p; orbitals.

oy /

@
sands p,and p, p,andp,

Figure I-3  Bonds between s, py and p; orbitals

When three or more atoms are bonded together, it becomes more difficult to predict
the shapes of the molecular orbits. Here we introduce the idea of hybridization.

Hybridization is the combining of atomic orbitals to make new orbitals that can
explain the characteristics of existing molecules. For example, methane is known to be a
tetrahedron molecule with the center carbon connected to four hydrogen atoms. Carbon
has two electrons in the 2s orbital and two electrons in the 2p orbitals. If the carbon-
hydrogen bonds are made between these orbitals and the 1s orbital of hydrogen, methane
would not take the shape of a tetrahedron.

To understand the characteristics of methane, we combine the 2s, 2pyx, 2py, and 2p;
orbitals as shown in equation (3) to make a sp® hybridized orbital.
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1
t1=§(s+px+py+pz)

1
iy =§(S_px+py+pz)
. 03)
1
t3 ZE(S_px_py‘i'pz)

1
t4=§(s_px_py_pz)

Since all these orbitals are equivalent, the new hybridized orbitals locate themselves
equally in space, i.e., the hybridized orbitals form a tetrahedron shape (Figure 1-4). The
molecular orbitals between these hybridized orbitals and the s orbital of hydrogen is
symmetrical to the axis and are therefore o orbitals. Ammonia (NH,) and water (H,0)
also form a sp® hybridized orbital. In water, one of the sp® orbitals is occupied with two
electrons from the oxygen atom.
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Figure I-4  sp? hybridized orbitals are made by combing 4 orbitals

Ethylene (CH, = CH,) is known have a planar configuration. This is explained by
the sp? hybridized orbital, which is a combination of the 2s, 2px and 2py orbitals. The three
orbitals are combined as shown in equation (4) to form 3 new orbitals.

p. + (%) D, (4
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When these three equivalent orbitals space themselves as far away from each other as
possible, they form an equilateral triangle (Figure I-5). This is the reason for the triangular

planer formation.

4
y
X/
z
s orbital p, orbital p, orbital p, orbital
g
\ 4
X3
€ €
\'\; o T — ) .4414,'
sp? hybridized orbital

Figure I-5  sp? hybridized orbitals are made from 3 orbitals

The important thing here is that the 2p; orbital is not included in the hybridized
orbital and sticks out of the x-y plane. When two carbon atoms are bonded to each other
as in ethylene, one bond is made between sp? orbitals. This is an ¢ orbital. However,
another bond forms between the two 2p; orbitals. This orbital is asymmetrical to the axis
and is therefore a = orbital (Figure 1-6). The o and m orbitals are shown together as a
double bond. We can see from here that double bonds have an = orbital.
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7 orbital

Figure -6  r orbitals are formed in sp2 orbitals

Acetylene (CH = CH) takes a linear formation. This is explained by the sp
hybridized orbital. This orbital is a combination of the 2s and 2py orbitals.

1

pi=(3) s +pn) 5
1 e

p.=(3) G —po

These two orbitals space themselves 180° apart. The two leftover orbitals, 2px and
2p; form m orbitals with the neighboring carbon atom (Figure 1-7).
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Figure -7  sp orbitals and the two 7 orbitals

Molecular orbital theory

The molecular orbital theory assumes that the molecular orbital formed between
several atoms spread across the whole molecule [7]. The molecular orbitals are
approximated by adding or subtracting the original atomic orbitals. Adding the atomic
orbitals creates a molecular orbitals that spreads across the two atoms, i.e., a bonding
orbital. Subtracting the atomic orbitals creates an anti-bonding orbital. Figure 1-8 shows
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the bonding and anti-bonding molecules created between s orbitals.

o%

Figure -8  oand o* orbitals are made from s orbitals

Figure 1-9 shows the bonding and anti-bonding molecules created between py orbitals.

Figure I-9 oand o* orbitals are made from p, orbitals

Figure 1-10 shows the bonding and anti-bonding molecules created between s orbitals.
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T*

Figure1-10 7 and 7* orbitals made from px orbitals

Bonding orbitals have lower energy than the original atomic orbitals and therefore
are more stable. Conversely, anti-bonding orbitals have higher energy than the original
orbitals and are unstable. Anti-bonding orbitals are marked with a “*” (¢* and ©*).

Electrons that originally occupied the atomic orbitals fall into the molecular orbitals,
occupying the orbitals that are lowest in energy first. Only two electrons can occupy one
orbital, due to the Pauli principle. The electron-occupied orbital with the highest energy
is called HOMO (highest occupied molecular orbital) and the electron-unoccupied orbital
with the lowest energy is called LUMO (lowest unoccupied molecular orbital). These two
orbitals are very important because the smallest energy gap between orbitals is between
the HOMO and the LUMO, and excited electrons are most likely to move between these
two orbitals.

By combining the hybridization orbital method and the MO theory, it is possible to
consider energy levels of molecular orbitals in complex molecules. Figure 1-11 shows the
energy levels of molecular orbitals in ethylene molecule. As can be seen from the
molecular energy levels the HOMO and LUMO are the @ and =* orbitals, respectively.
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FigureI-11  Energy levels of molecular orbitals of ethylene
The m and m* orbitals also exist in bonds between other atoms. Table I-1 shows
some functions groups and examples of molecules containing the function group. These

function groups that absorb light are called chromophores [1, 5, 8]. The existence of
chromophores alters the absorption wavelength and intensity of the molecule [9].

Tablel-1  Chromophores and absorbing wavelengths

Chromophore Molecule Wavelength [nm]
C=C Ethylene 165
C=C Acethylene 180
C=0 Acetone 180
N=0 Nitromethane 200
COOH Acetic acid 204
CONH2 Acetamide 208

Conjugation of double bonds

We have seen that double and triple bonds are one condition for absorbance to occur.
However, one double bond is still insufficient for absorbance of light in the near UV to
VIS to occur. For example, the energy gap between the m and =* orbitals in ethylene
equals 725 kJ/mol [1] which corresponds to a wavelength of 165 nm. In order to absorb
light in the range of 200-700 nm, the energy gap between HOMO and LUMO needs to
be smaller.
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This happens when double bonds are conjugated, i.e., multiple double bonds are
connected by single bonds. While ethylene absorbs at 165 nm, 1, 3-butadiene (CH, =
CH — CH = CH, ) absorbs at 217 nm. While this has been proved experimentally,
understanding the logic behind this phenomenon requires solving the Schrodinger
equations [10].

We use the example of 1, 3-butadiene (CH, = CH — CH = CH,). We focus onthe w
orbital in the molecule and represent the wave function of the m orbital with . The
energy of i is expressed as

p =L pHvds . ©)

[y2dr

The wave function iy can be approximated as the sum of the p, atomic orbitals of the
four carbons: @4, @,, @3, @, as

Y =c191 + 02 + 303 +Cu04 (7
By substituting equation (7) in (6) and setting the partial differential for c1 to cs to zero

0E _0E O0E OE _

e .. (8
dc; dc, Odcg  Odcy ®)
This is the equivalent of calculating the following determinant:
H11 - 5511 H14 - E514
: : =0 ... (9
H41 - ES41 H44 - ES44
Each term is defined as follows:
Smm = f §012nd‘[ =1
Smn = f (Pm(pndT =0
Hpp = f‘pmHm(pde =« (10)

Hppn = f (pmH<pmdr
= B (2 orbitals are side by side)

0 (2 orbitals are far away)
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Therefore, the determinant becomes

a—E B 0 0
B a—E B 0 | _ 0
0 g a—E B |
0 0 B a—E
If we define X = “T_E, the determinant becomes,
X 1 0 0
1 X 1 0f_,
0 1 X 1|
0 0 1 X
It is possible to calculate X from this determinant,
X 1 0 O
1 X 1 0|_y )5 )1( (1) _ |X 1
0 1 X 1 0 1 X 1 X
0 0 1 X

Appendix

.1

..(12)

... (13)

If we define the n X n determinant shown above as D,, D, can be calculated from

D,_, and D,,_, as

Dy = XDp—1 — Dy

Actually, this is one of the characteristics of trigopnometric functions [11]:

sinmw =2-cosw*sin(m— 1w — sin(m —2) w
If we set D, as sinmw and X as 2 cosw,
D,=0-sinmw=0

i
=—mn (i=12.m-1
W =17 (i m—1)

When n = 2,
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X 1
= =X2-1
1 X .. (17

D,=0- X=+1

D,

Since we set X as 2 cos w,
+_1 SWw=—1,— (18)
— —
COsw =17 w=om,37

Therefore,

in
m=n+1—>X=2cosn (i=1,2,..n) ... (19)

+1

Since we defined X = a‘%E E = a — XB. Therefore, the energy levels of a conjugated
molecule with n carbon atoms can be represented graphically as in Figure 1-12. In a
conjugated molecule with n carbon atoms, there are n electrons occupying the m orbital.
Since two electrons occupy one orbital, the HOMO and LUMO are the two orbitals just
below and above a. The larger the number of carbon atoms, the smaller the energy gap
between HOMO and LUMO. Therefore, the more conjugated a molecule is, the smaller
energy it needs for electron transition to occur. Table I-2 shows the absorbance
wavelengths of conjugated polyenes [12].
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a+2B
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n=3§8

a-2B

Figure I-12  Energy levels of a conjugated molecule with 6 and 8 molecules

Tablel-2  Absorbance wavelengths of conjugated polyenes

n molecule structure wavelength [nm]
1 ethylene CH2=CH2 165
2 butadiene CH2=CH-CH=CH2 217
3 hexatriene CH2=CH-CH=CH-CH=CH2 268
4 octatetraene CH2=CH-CH=CH-CH=CH-CH=CH2 304
5 decapentaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2 334
6 dodecahexaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 364
7 tetradecaheptaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 390
8 hexadecaoctaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 410
10 eicosadecaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 450

Aromatic molecules

Conjugated systems also show m to m* transition when they are cyclized (turned
into rings), but some of these molecules show characteristics that cannot be explained by
the conjugated systems alone. One of these molecules is benzene (C4Hy).

Benzene has three single bonds and three double bonds. However, the actual bond
lengths between the carbon atoms are all the same. This is explained by the delocalization
of electrons in the ring. As shown in Figure 1-13, the 2p; orbitals of all the carbon atoms
are equivalent, and therefore, m orbitals can be made between every combination of
carbon atoms.
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Figure-13  Delocalized electrons form orbitals between all combinations of r orbitals

The delocalization of electrons makes the benzene molecule a very stable one. This is
why benzene absorbs at a shorter wavelength (255 nm) than hexatriene, a linear
conjugated hydrocarbon with the same number of carbon atoms and double bonds.
Cyclized conjugated molecules that show the typical characteristics of benzene are called
aromatic compounds.

Molecules formed from fused benzenes such as naphthalene (two benzenes
combined) and anthracene (three benzenes combined) show absorbance at longer
wavelengths than benzene [13]. Furthermore, the combination of functional groups such
as —OH and —NO- to benzene also shifts the absorbance to longer wavelengths.

Aromatic amino acids such as phenylalanine, tyrosine, histidine, and tryptophan also
show near UV to VIS absorbance. Table I-3 shows some typical aromatic compounds and
their absorbing wavelengths [14].

Table -3  Typical aromatic compounds and absorbing wavelengths

molecule structure wavelength [nm]
benzene CgHg 255
naphthalene (two benzenes fuzed) CoH,q 286
anthracene (three benzenes fuzed)C4H;, 375
phenole benzene + OH 290

As we have seen, the condition for absorption to occur in the near UV to VIS is that
the molecule contains conjugated double bonds, or aromatic structures.
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I1. Fluorescence

Deexcitation, rate constants and lifetimes

We have looked at one condition for fluorescence to occur, the absorption of light.
Now we look at the other condition, the absorbed light needs to be released again as
fluorescence.

The absorption of light causes the molecule to transfer to an “excited” state. This is
a very unstable state, so the energy is released again and the molecule goes back to its
most stable state. This release of energy is called deexcitation. There are many
deexcitation processes, and for a molecule to show fluorescence, the release of energy as
light needs to dominate over the other deexcitation processes. Below are the main
deexcitation processes:

1. Fluorescence (includes phosphorescence)

2. Radiationless transition (molecule loses energy as heat)

3. Excitation energy is transformed to another molecule

4. Excited electron leaves the molecule that absorbed the photon

The rate of each process is explained with a constant number, k. Generally, in a
chemical reaction

nA+mB—->C+D ... (20)
k is expressed as
dc
— npm .. (21
- = k(DA"B 21)

where t is the time elapsed from the moment the illumination ceases [15]. The larger the
value of k, the faster the reaction. In the case of deexcitation, if we denote S ., asthe

excited state and k;, k,,... as the rate constants for each deexcitation process,

AS .+
_ gftﬂ ) — (kl + k2 + "')S(n,n*)

S(Tl’,ﬂ,’*) (t) = S(‘lt,n*) (O)e—(k1+k2+... )t

.. (22)

Here we introduce the lifetime, 7, which is the time required for the number of
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molecules in a given state to decrease to 1/e = 37% of the initial state (deexcitation is
known to occur exponentially). Then

when t =T,
St () 1 ... (23)

S(n’,ﬂ:*) (0) B e
From equation (22),

a— (ki +ka+-)T — o1
(ky+kp+ )T =1
_ 1
NEEEDD

.. (29)

T

This shows that if one particular process has a large rate constant (the reaction proceeds
quickly), the overall lifetime of the excited state becomes short.

Furthermore, we can calculate the quantum yield, ¢;, which is the number of
molecules using i th deexcitation reaction divided by the total number of excited
molecules. @; is expressed as

ki T
— .. (25)

¢-: =
' 2k T

This means that for fluorescence to be observed strongly (quantum yield is large), the
range constant k for fluorescence needs to be relatively large compared to the other
reactions.

Electronic, vibrational and rotational energy

In the section of absorbance, we mainly discussed the electronic energy state of
molecules, which is determined by the molecular orbitals occupied by the electrons.
However there are other energy levels which need to be concerned in order to understand
the spectrum of fluorescence emission. While the levels of electronic energy correspond
to light in the UV to VIS wavelengths, vibrational energy levels are much smaller and
correspond to infrared (IR) wavelengths. Rotational energy levels are even smaller and
correspond to microwave wavelengths. The existence of these different levels of energy
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is the reason absorbance spectra become broad.

Molecule vibration can be approximated as the motion of a spring. The bond
between two atoms acts as the spring, and the oscillation of atoms depends on the energy
level. There are many ways in which atoms can vibrate, such as stretching, bending,
rocking, wagging and twisting. The number of vibrational modes depends on the
molecule [2]. Figure 1I-1 shows the energy of vibrational levels and conformation of the
corresponding molecules.

A

Energy
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@@

»
»

Distance between two atoms

Figure ll-1  Energy of vibrational levels

Furthermore, molecules show rotational movements. Rotational energy is explained
by the moment of inertia of the molecule, which is defined as the mass of each atom
multiplied by the square of its distance from the rotational axis.

An important point regarding vibrational and rotational energies is that the
energy absorbed is quickly dissipated as heat. This is explained by the oscillation
frequency of nuclei, which is about 10 Hz, meaning that one wave of oscillation
takes about 103 s. This is the order of time in which excess vibrational energy can
be dissipated as heat by interactions with other nuclei. Therefore, transitions within
the same electronic state are usually complete in the order of 102 s. This occurs
much faster than the emission of light such as fluorescence. Therefore, when a
molecule absorbs light to be excited to an energy level that is higher in electronic,
vibrational, and rotational energies, the excess vibrational and rotational energies are
dissipated quickly before fluorescence and other deexcitation processes occur.
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Vibrational and rotational levels of ground and excited state differ in energy of
approximately 15 kJ/mol and 1 kJ/mol, respectively. In the green to yellow wavelengths,
this is equal to 40 nm and 3 nm difference, respectively. Since these energies are quickly
dissipated as heat before fluorescence can be emitted, the energy of fluorescence light is
lower than the light originally absorbed. This results in a wavelength shift between the
excitation and emission light. This difference is expressed as the Stokes shift which is
defined as follows:

1
Stokes shift [cm™] = 107 (_ _ )
Aex Aem

... (26)
where A, [nm] and 4., [nm] are the wavelengths of the excitation and emission
peaks, respectively.

Competing deexcitation pathways

There are many pathways in which deexcitation can occur. First we look at the
process of fluorescence. With fluorescence, the excited molecule drops back to the ground
state by releasing light. We set the rate constant as k;:

k
S(n’,ﬂ'*) —1> S(TL’,TL’) + hv (27)

The fluorescence lifetime is typically 108 s [16].
Next we consider radiationless transitions, where the electronic energy is dissipated
as heat (rate constant = k).

k
S(ﬂ,ﬂ*) = S(T[,T[) + heat ... (28)

This dissipated energy is often passed on to other parts of the same molecule and causes
the excitation of vibrational modes for other atoms. Radiationless transitions can occur
within an electronic state as we have seen for vibrational and rotational energies, and also
between electronic states.

Energy transfer between molecules can happen (rate constant = k3):
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k3
S(n;n*) + SZ(TL',TL’) - S(TL’,T[) + SZ(TL’,TL’*) ves (29)
as well as photochemical reactions (rate constant = k,):
k
S(rme) = Dy + e’ ... (30)

Using the rate constants k; to k,, the quantum yield of fluorescence is expressed as:

kit ky,t kst ky,

@ ... (31

This shows that the quantum yield of fluorescence depends largely on the rate
constants of other processes. For example, at high temperature, radiationless
transitions are more likely to happen, i.e., the rate constant k., is large. This results
in a smaller @ which means weaker fluorescence.

In another case, a substance that is easily excited may be mixed with the
measured sample, in which case, energy transfer between molecules may be
activated and k; may become larger. This also results in a smaller @. The

introduced substance would be referred to as a “quencher”.

As we have seen, the condition for fluorescence emission to occur is that the
rate constants for other deexcitation processes to be relatively smaller than the rate
constant of fluorescence. Causes for large rate constants for other deexcitation
processes are high temperature, existence of other substances, etc.
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I11. Applications of fluorescence

Time-resolved spectroscopy

Since many competing deexcitation paths exist, the lifetime of the same fluorophors
can differ depending on the environment, ex. the amount of interactions with substrates
and other macromolecules. If two fluorophors show the same fluorescence spectra and
intensities, they cannot be differentiated by steady-state data. However, if their lifetimes
are different, they can be resolved by time-resolved fluorescence.

There are two ways of measuring time-resolved fluorescence: time-domain and
frequency-domain methods. With the time-domain method, the sample is excited with a
pulse of light whose endurance is much shorter than the decay time t, and the time-
dependent intensity of the fluorescence is measured. The frequency-domain method uses
excitation light whose intensity is varied at a high frequency, typically near 100 MHz.
This causes the emission to respond at the same frequency but be delayed due to
fluorescence lifetime. This delay is measured as a phase shift (¢) which can be used to
calculate the decay time.

One application of time-resolved fluorescence is to use fluorescent probes with a
long decay time and to measure the emission within a time-gate after excitation (Figure
[11-1). With this method, unwanted auto-fluorescence of the sample (such as those from
amino-acids) that have a relatively short decay time can be eliminated [17].

e excitation
— background emission
— probe emission

intensity

measuring|window

\__

time

Figurelll-1  Time-gate measurement [17]

Time-resolved fluorescence has also been used for imaging, where the image
contrast is based on the lifetime of each pixel. This method is called fluorescence lifetime
imaging microscopy (FLIM) and is used in cell biology [18]. In this study, images are
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acquired in multiple wavelengths as well as multiple lifetimes. The trend to develop
techniques used for one-point measurement to imaging seems to be universal.

Fluorescence anisotropy

Anisotropy shows the extent of polarity of the emitted light when the sample is
excited with polarized light [19]. With the measurement of fluorescence anisotropy, we
excite the sample with polarized excitation light and measure how much the emission
light has been “depolarized”.

Molecules have transition moments that lie along specific directions in the molecule.
When molecules are excited by polarized light, only the molecules with their transition
moments oriented along the excitation light can be excited. During the fluorescent
lifetime, rotational diffusion changes the orientation of these molecules causing emission
light to be depolarized. Since the rate of rotational diffusion depends upon the viscous
drag by the solvent, measuring fluorescence anisotropy gives us an idea of the viscosity
or “mobility” of the sample. For example, fluorescence anisotropy measurements have
been used to quantify protein denaturation, since denatured protein has more mobility
than their counterparts.

Resonance energy transfer (RET)

RET occurs when two fluorescence molecules are close enough for the emission
light of one molecule (donor) is transferred to the other molecule (acceptor) by long-range
dipole-dipole interactions, causing the acceptor to be excited [19]. The acceptor then
emits fluorescence that has a much longer wavelength than the original light.

RET is most commonly used to measure the distances between two sites on a
macromolecule. If two sites of a molecule is covalently labeled with a fluorophor
(intrinsic or extrinsic), measuring the efficiency of RET would show how close these two
sites are. Molecules showing RET can also be used as probes for measuring solvent
properties such as pH. If the protein probe can be designed to fold and unfold according
to its environment such as pH, measuring the efficiency of RET would show the
configuration of the protein and as a result, the properties of the solvent.

Forster distance is the distance at which RET occurs at 50% efficiency, and is
typically 20 to 60 A. The rate of energy transfer k,(r) is
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kr(r) = i(&f . (32)

Tp\ 7T

where R, is the Forster distance, r is the distance between the donor and acceptor and
Tp IS the decay time of the donor. When = R,, , the rate of transfer is equal to the decay

rate, Ti , meaning that energy transfer efficiency is 50%.
D

Multi-photon excitation microscopy

Although many molecules are excited by light in the near UV, exposing the sample
to strong UV light may have a negative effect on the sample. This can be overcome by
multi-photon excitation (MPE). MPE occurs when two or more electrons interact
simultaneously with a fluorophor, and the fluorophor absorbs energy equal to the sum of
the multiple electrons. Therefore the wavelength of the excitation light used is much
longer than that used for one photon excitation.

For multiple photons to be absorbed simultaneously, illumination intensities must
be high. The intensity of MPE is in the order of second power of the excitation light (I?).
In this respect, MPE is referred to as non-linear fluorescence. This non-linearity is
favorable in imaging since it enables the excitation of a specific point. When an excitation
light is focused on a point in space, the planes in front or behind the focal point are also
illuminated. However, the probability of MPE to happen (or the intensity of MPE) is
lowered in order of second power, so essentially, only the molecules at the focal plane are
excited (Figure 111-2).
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Figure lll-2  Pinpoint excitation by MPE [20]
MPE is almost always coupled with extrinsic fluorophors which are inducted in the

sample in advance. Using MPE to observe intrinsic fluorophors would be an interesting
study.
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