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Preface 

 

This thesis is the summary of my research through master and doctoral courses. 

Fortunately, my research topic, fluorescence fingerprint (FF) imaging, had so much 

potential to study into and to develop that it kept me busy for a full five years. Although 

it is not possible to record the full length of work, I hope I have been able to put down the 

most important points in this thesis. 

The theme of bread has fascinated me for a long time. I like eating it and making it, 

and it makes my excited to study it. However, experimenting on different ingredients and 

manufacturing methods to make bread was not my idea of research. I wanted to do 

something more fundamental and something that was connected to other research areas. 

This difficult desire was fully met with my research topic, which was connected to bread 

but also was a topic that could apply studies in other research areas such as optical 

engineering, image analysis and remote sensing.  

The goal of this study was simple, to create an image that shows the distributions of 

constituents in the food sample. In order to achieve this goal, methods of sample 

preparation, data acquisition, and analysis methods were improved and developed. 

Although most of the work was done by myself (while receiving advice from many 

people), I learnt from the three years in doctoral course that there was a limit to what I 

can do by myself, or what our laboratory team could do by ourselves. I learnt that 

working with people of different areas of expertise can achieve results that are much 

better than what was imagined for. As a researcher, I would like to keep this in mind, 

and develop good relationships with a broad range of experts.  



 

ii 

 

要旨 

 

 食品中の成分は、その分布の仕方によって食品の食感、見た目、安定性など

様々な品質に大きな影響を及ぼす。したがって、食品中の成分分布を可視化す

る技術は食品研究において不可欠であり、その適用範囲は「おいしさ」の性質

を探求する基礎的研究から食品製造工程などの応用的場面にまでおよぶ。 

 しかし、従来の成分可視化技術は試料を染色したり、凍結乾燥させたりする

などの前処理を必要とするものが多く、これらの前処理による試料の変質が避

けられない。また、成分毎に染色剤を用いる必要があるため、複数成分の可視

化に適さない。そこで本研究では、蛍光指紋計測および分光イメージングとい

う二つの技術に着目し、染色等の前処理を必要としない可視化手法を開発し

た。 

 蛍光指紋は励起蛍光マトリクス（Excitation-Emission Matrix: EEM）ともよば

れ、試料に照射する励起光の波長を連続的に変化させながら測定した複数の蛍

光スペクトルを三次元的に重ね合わせたデータである。一方、分光イメージン

グでは吸光スペクトルなどの光学的情報に加えて、X・Y方向の位置情報を同

時に取得することによって、試料中の成分分布を可視化する。本研究では、蛍

光指紋による成分情報と分光イメージングの位置情報を合わせた、「蛍光イメ

ージング手法」を新たに開発し、この手法を用いて食品中の複数の成分の分布

を可視化した。 

 本論文では、まず２章において、開発した可視化装置の構造や制御方法を説

明している。本研究で用いた可視化装置は、研究を進めるにあたって組み立

て、改良を重ねたものであり、本研究の大きな成果ということができる。 

本研究では以下に示すように大きく三段階に分けて、可視化手法を開発し

た。 

 

1. グルテン・澱粉・純水を混合したモデル試料におけるグルテン分布可視化

（二成分の可視化）[1]：３章 

可視化手法の開発を第一目的に、試薬として販売されているグルテン、及

び澱粉を用い、それぞれの割合を変えながら試料を作製し、成分の可視化

を試みた。また、試料を薄片化せず、塊のまま可視化できるかどうかを調

べた。 

蛍光指紋からグルテン・澱粉割合を推定するために、蛍光指紋とグルテン

割合を PLS (Partial least squares) 回帰分析で結びつけるモデルを作成した。

この PLSモデルを元に、推定に有用な波長条件を新たに選定し、各試料の

蛍光画像を取得した。選定された波長条件で取得したデータを基に改めて

PLSモデルを構築し、各画素のグルテン割合を推定した。そして、推定し

たグルテン割合に応じた色を各画素に当てはめることによって、グルテ

ン・澱粉分布の画像を作成した。 

この画像では、平均的な成分割合を反映することができたが、澱粉粒やグ
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ルテン等、細かい構造を可視化するには、薄片化が必要であることがわか

った。 

 

2. パン生地モデルにおけるグルテン・澱粉・気泡の可視化と定量化（二成分

の可視化）[2, 3, 4, 5]：４章 

実際の食品への応用を考え、定性的な可視化手法を目指した。試料には小

麦粉に水を混ぜたパン生地モデルを用い、グルテン・澱粉・気泡分布の可

視化を試みた。 

パン生地モデルは、ミキシング不足・最適ミキシング・ミキシング過剰の

３段階で捏ねた生地を用意し、クライオトームを用いて薄片を作成した。

この試料を 63波長条件（励起波長・蛍光波長の組み合わせ）で撮像し、各

画素の蛍光指紋を調べた。別に計測した、純粋なグルテンおよび澱粉の蛍

光指紋に対し、各画素のコサイン類似度を求め、例えばグルテンとの類似

度が高ければグルテンを多く含む、というように各画素のグルテン・澱粉

量を推定した。そして、グルテン量は赤の色軸、澱粉量は緑の色軸に合わ

せて各画素の色を決め、グルテン・澱粉分布を可視化した。さらに、本手

法の妥当性を検証するため、蛍光指紋での可視化結果と染色画像を比較し

た。 

次に、ミキシングの３つの段階におけるグルテン・澱粉・気泡の分布を可

視化し、ミキシングに伴う変化を定量化した。その結果、ミキシング不足

から最適ミキシング段階にかけては、グルテンと澱粉の分布が均一にな

り、最適ミキシングからミキシング過剰にかけては気泡量が増えることが

確認された。 

 

3. パイ生地モデルにおけるグルテン・澱粉・バターの可視化（三成分以上の

可視化）：５章 

試料には小麦粉・水・バターからなるパイ生地を用い、グルテン・澱粉・

バターの三成分の可視化を試みた。これらの三成分を可視化することがで

きれば、タンパク質・多糖類・油脂という食品や生体の構造を作る高分子

の可視化ができることになり、応用範囲は広いと思われる。 

試料には折パイ生地および練りパイ生地を用いた。試料を厚さ 10 mに切

片化し、スライドガラスの上に乗せて蛍光画像を取得した。蛍光画像は、

励起波長 270-330 nm、蛍光波長 350-420 nmの範囲を 10 nm間隔で網羅し、

全部で 53波長条件で画像を取得した。 

各画素の解析にはリモートセンシングの分野で多く用いられている、拘束

条件付のスペクトル分解手法を用いた。スペクトルおよび含有率が非負

値、一画素の成分和は 1、スライドガラスの含有率は 1または 0という拘

束条件のもと、各画素の蛍光指紋をグルテン・澱粉・バター・種皮成分

（ポリフェノール類）・スライドガラスの五つの蛍光指紋に分解した。それ

ぞれの成分の含有率を色に変換することにより、可視化画像を得た。 

 

蛍光指紋イメージングは、近赤外イメージングなど他の非破壊イメージング
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手法と比べても、空間解像度が比較的高く、装置の価格も低い。データ計測時

間が長いという欠点があるものの、装置や解析方法を確立させれば、多くの分

野で用いられることが期待される。 
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1.  Introduction 

1. 1 Objective of this study 

One of the most important missions of the modern food scientist is to study the 

causal relationship between the input and output of food production, i.e., how different 

manufacture processes affect the quality of the end product. An important link between 

manufacturing processes and the end product is the food microstructure. Different 

processes create different microstructures, and the microstructure affects the texture, 

appearance, taste perception, stability, and many other qualitative characters of food. 

Therefore, observing this microstructure and understanding its effect on the quality of 

the end product is very important in food science and technology. 

There are multiple requirements for a good observation technique: least sample 

preparation, good contrast between constituents of interest, and short measurement 

times are just a few of them [1]. No existing technique fully meets these requirements, 

and new techniques need to be developed. The objective of this study is to develop a 

novel imaging technique by combining the fluorescence fingerprint (FF) and 

hyperspectral imaging to visualize multiple constituents in food without any staining. 

  



Chapter 1 

2 

 

1. 2 Structure of this thesis 

The thesis is structured as shown in Figure 1-1:  

 

Figure 1-1  Structure of thesis 

 

The introduction will explain basic studies regarding the topics of fluorescence and 

imaging. The second chapter shows the setup of the imaging system which was used 

throughout the research. The imaging system could be cited as the most important 

achievement of this research, since it can be applied to many other samples in the future. 

The main chapters explain the applications of FF imaging in three steps, going from 

model samples to real foods, and increasing the number of components visualized. 

These chapters are based on five original papers. The last chapter summarizes the 

conclusions and draws future visions.   

hardware and software of the FF imaging system
calibration of the imaging system

sample: bread dough model (visualization of gluten, starch and bubbles)
analysis method: cosine similarity

Chapter 1 : Introduction

Chapter 2 : Development of the imaging system

Chapter 3 : model sample, 2 components

Chapter 4 : real food sample, 2 components

Chapter 5 : real food sample, over 3 components

Chapter 6 : Conclusions

sample: mixture of gluten and starch reagents
analysis method: partial least squares (PLS) regression

sample: pie pastry dough (visualization of gluten, starch, butter and other components)
analysis method: spectral unmixing

overall conclusions and future visions

background of study
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1. 3 Fluorescence 

Fluorescence is the light (luminescence) emitted by molecules when they are 

excited by photons [2]. Energy levels of an organic molecule are determined by the 

electronic, vibrational and spin state of the molecule, and take discrete values called 

quanta. The most stable form of the molecule is the ground level, S0, when the energy 

level is at its lowest value. When the molecule absorbs a discrete quantum of energy 

from an outside source, the energy of the molecule rises to a higher level. The energy 

absorbed equals the difference between the two molecular energy states. As the 

molecule returns to its ground electronic state, the absorbed energy is released in some 

way. If this absorbed energy is emitted as light, it is called fluorescence.  

In this study, “fluorescence” refers to observable light in the near UV to VIS 

(approximately 200-700 nm). Therefore, for a molecule to emit fluorescence, two 

conditions need to be met:  

1. The molecule absorbs UV to VIS light.  

2. The absorbed light is released as light emission. 

1. 3. 1 Absorbance 

In order for light to be absorbed by a molecule, the photon of the light needs to 

have the proper energy to reach a discrete excited state of the molecule. The energy of 

light absorbed (mole basis) is given by the Planck frequency relation:  

 

 
𝐸 = 𝑁ℎν =

𝑁ℎ𝑐

𝜆
 … (1)  

 

E is the energy associated with frequency ν and wavelength λ, c is the velocity of light, 

and N is Avogadro’s number. Absorption only occurs if E equals the difference in energy 

between the ground electronic state and an excited state of the absorber.  

In this study, we are focusing on light in the near UV to VIS region, i.e. 

approximately 200-700 nm. According to the Planck frequency relation, this 

corresponds to an energy value of 170-598 kJ/mol (𝑁 = 6.022 × 1023, ℎ = 6.626 ×

10−34, 𝑐 = 2.998 × 108).  

This energy difference of approximately 200-600 kJ/mol is only achieved in 

molecules with  molecular orbitals. The  orbital exists in molecules with double or 

triple bonds. Molecules with only  orbitals, consisting only of singular bonds, have a 

much higher energy gap between the ground and excited states. These molecules only 

absorb light in the far UV.  
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Furthermore, molecules with multiple double bonds connected alternately with 

singular bonds are called conjugated molecules, and require smaller energy for electron 

transition. As shown in Table 1-1, the more conjugated a molecule is, the smaller energy 

it needs for electron transition to occur [3]. 

 

Table 1-1 Absorbance wavelengths of conjugated polyenes 

 

 

Conjugated systems also show 𝜋 to 𝜋* transition (𝜋* is the excited state) when 

they are cyclized (turned into rings), but some of these molecules show characteristics 

that cannot be explained by the conjugated systems alone. One of these molecules is 

benzene (C6H6).  

Benzene has three single bonds and three double bonds. However, the actual bond 

lengths between the carbon atoms are all the same. This is explained by the 

delocalization of electrons in the ring. The delocalization of electrons makes the 

benzene molecule a very stable one. This is why benzene absorbs at a shorter 

wavelength (255 nm) than hexatriene, a linear conjugated hydrocarbon with the same 

number of carbon atoms and double bonds. Cyclized conjugated molecules that show 

the typical characteristics of benzene are called aromatic compounds.  

Molecules formed from fused benzenes such as naphthalene (two benzenes 

combined) and anthracene (three benzenes combined) show absorbance at longer 

wavelengths than benzene [4]. Furthermore, the combination of functional groups such 

as –OH and –NO2 to benzene also shifts the absorbance to longer wavelengths.  

Aromatic amino acids such as phenylalanine, tyrosine, histidine, and tryptophan 

have a benzene ring in their molecular structures and show near UV to VIS absorbance. 

Table 1-2 shows some typical aromatic compounds and their absorbing wavelengths [5]. 

 

n molecule structure wavelength [nm]

1 ethylene CH2=CH2 165
2 butadiene CH2=CH-CH=CH2 217
3 hexatriene CH2=CH-CH=CH-CH=CH2 268
4 octatetraene CH2=CH-CH=CH-CH=CH-CH=CH2 304
5 decapentaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2 334
6 dodecahexaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 364
7 tetradecaheptaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 390
8 hexadecaoctaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 410
10 eicosadecaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 450
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Table 1-2  Typical aromatic compounds and absorbing wavelengths 

 

 

As a conclusion, an important condition for a molecule to absorb light in the near 

UV to VIS is to contain conjugated double bonds or aromatic structures. Details 

concerning atomic and molecular orbitals are shown in Appendix I.  

1. 3. 2 Fluorescence 

The absorption of light causes the molecule to transfer to an “excited” state. This is 

a very unstable state, so the energy is released again and the molecule goes back to its 

most stable state. This release of energy is called deexcitation. There are many 

deexcitation processes, and for a molecule to show fluorescence, the release of energy 

as light needs to dominate over the other deexcitation processes. Below are the main 

deexcitation processes: 

1. Fluorescence (includes phosphorescence) 

2. Radiationless transition (molecule loses energy as heat) 

3. Excitation energy is transformed to another molecule 

4. Excited electron leaves the molecule that absorbed the photon 

All these processes progress at a certain rate, expressed with a constant k. If a 

particular process has a large rate constant (the reaction proceeds quickly), the majority 

of energy will be released through that process. Therefore, for fluorescence to be 

observed strongly, the rate constant k for fluorescence needs to be relatively large 

compared to the other reactions.  

Two common reasons for the weakening of fluorescence is high temperature and 

the existence of substances referred to as “quenchers”. At high temperature, 

radiationless transitions are more likely to happen due to the increase in vibrational 

energy. The rate constant k for fluorescence becomes small compared to the rate 

constant for radiationless transition, leading to weaker fluorescence. 

Quenchers are substances that are easily excited. The presence of these substances 

activates energy transfer between molecules, and the energies of the excited molecules 

are transformed to the quencher. This decreases the energy released as fluorescence and 

lowers fluorescence intensity.  

molecule structure wavelength [nm]

benzene C6H6 255

naphthalene (two benzenes fuzed) C10H8 286

anthracene (three benzenes fuzed)C14H10 375

phenole benzene + OH 290
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Details on the deexcitation processes, their rate constants and the effect on 

fluorescence intensity are explained in Appendix II.  

1. 3. 3 Fluorophors and applications of fluorescence 

Intrinsic fluorophors 

Fluorophors are chemical and physical substances that show fluorescence. Natural 

or intrinsic fluorophors exist in the sample itself, while extrinsic fluorophors are added 

to the sample to enable analysis or imaging by fluorescence.  

Typical intrinsic fluorophors observed in foods are aromatic amino acids, enzyme 

cofactors such as nicotinamide adenine dinucleotide (NADH) and vitamins, flavins, and 

chlorophyll. Tryptophan is the dominant source of emission in proteins [6]. Tryptophan 

is typically excited at 295 nm and emits fluorescence at 353 nm (in water, neutral pH) 

but the emission is highly sensitive to the local environment. This sensitivity allows it to 

be used as a reporter group for protein conformational changes. Tyrosine has a higher 

quantum yield than tryptophan but is often quenched when it exists with tryptophan. 

Fluorescence of phenylalanine can only be observed when the protein lacks both 

tryptophan and tyrosine.  

NADH is universally present in living cells and has an excitation and emission 

maxima at 340 and 460 nm [6]. NADH has been observed on the surface of meat, 

assumedly emitted by bacteria [7]. Figure 1-2 shows the fluorescence spectra of the 

three aromatic amino acids and NADH, measured in three-dimensional mode (data 

acquired by spectrophotometer in laboratory). 
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Figure 1-2  Fluorescence spectra of Tryptophan, Tyrosine, Phenylalanine, and NADH. 

The spectra were measured in the laboratory with F7000 (Hitachi high technologies). 

[7] 

Tryptophan: 5 mol/l, photomultiplier 550V 

Tyrosine: 5 mol/l, 580V 

Phenylalanine: 3 mol/l, 700V 

NADH: 4 mol/l, 580V 

Slit: 5 nm, scanning speed: 60000 nm/min 

 

Vitamin A (retinol), B2 (riboflavin), B6 (pyridoxine) and E (tocopherols) all show 

fluorescence [8]. Retinol is known to be excited around 325 nm and its emission 

maxima to range from 475 to 510 nm. Riboflavin has a high quantum yield around 0.25 

and a fluorescence maxima around 515 nm in neutral aqueous solutions. Tocopherols 

dissolved in ethanol fluoresce at 340 nm (excitation 295 nm). Figure 1-3 shows the 

fluorescence spectra of these molecules [9]. 
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Figure 1-3  Fluorescence spectra of Retinol, Riboflavin, Pyridoxine, and Tocopherol. 

The spectra were measure with LS50B (PerkinElmer).[9] 

 

Chlorophyll is a complex of porphyrin and metal ions and exists in all 

photosynthetic organisms. There many types of chlorophyll, and the two mail types are 

chlorophyll a and b. The porphyrin ring is highly conjugated and provides many 

delocalized π electrons that allow light absorption in the VIS range. Chlorophyll 

absorbs in both the red and blue wavelengths but its fluorescence is mainly in the red 

region [2].  

Extrinsic fluorophors 

Extrinsic fluorophors or probes are used when the molecules of interest are 

non-fluorescent. Many types of fluorophors have been developed, not just for 

identifying certain molecules but for measuring temperature [10], pH [11], 

concentrations of substances such as Cl- [12], Na+ [13] and Ca2+, and enzymatic 

cleavage [14]. There probes make use of a characteristic of fluorescence that the 

emission wavelength and intensity are affected by many factors such as the 
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configuration of protein and vibration of molecules  

The green fluorescent protein (GFP) is a notable probe. Since the GFP 

chromophore forms without enzymatic synthesis, it is possible to express the gene for 

GFP into cells [15]. When GFP is fused to proteins, the protein becomes fluorescent 

without any change to its normal functions. Practically every major organelle of the cell 

has been successfully visualized with GFP. 

Most fluorescence probes are organic molecules, but quantum dots are 

nano-crystals of semiconducting inorganic materials containing 130-150 atoms [16]. 

The light characteristics of quantum dots can be tuned by changing the radius of the 

quantum dot (the smaller the radius the longer the wavelength). 

Most probes are synthesized for a certain purpose but there is also a new approach 

called diversity oriented fluorescence library approach [17] that first creates a library of 

over 10,000 intrinsically fluorescent small molecules without any specific target. For 

each new application, the whole library is scanned and the best fluorescent molecule is 

chosen. 

Almost all applications of fluorescence are based on the use of extrinsic 

fluorophors. Some recent applications of fluorescence are explained in Appendix III.  

                                                                                                                                      

1. 3. 4 The Fluorescence Fingerprint 

In conventional fluorescence spectroscopy, light of one specific wavelength is 

irradiated on the sample and the emission spectrum is measured. The wavelength of the 

emission peak is used for qualitative analysis (determination of the constituents which 

compose the sample) and the height of the peak for quantitative analysis (determination 

of the amount of the constituent). Instead of one emission spectrum from one excitation 

wavelength, multiple emission spectra can be acquired by irradiating the sample with a 

set of consecutive excitation wavelengths. The fluorescence fingerprint (FF), also 

known as the excitation-emission matrix (EEM), is a set of these fluorescence spectra, 

aligned in order of the excitation wavelength so as to create a three-dimensional 

diagram [18] (Figure 1-4). The pattern of this diagram, rather like a fingerprint, is 

unique for each constituent. 
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Figure 1-4  Multiple emission spectra constructing the fluorescence fingerprint [18] 

 

Unlike the conventional fluorescence spectrum which focuses mainly on the 

spectrum peak, the FF makes use of the whole pattern, taking in consideration the 

fluorescence intensity of wavelengths other than the peak point. This means that FF can 

discriminate between samples which have a similar dominating component but have 

differences in minor components, for example, fruits of the same variety cultivated in a 

different region [19]. 

The advantages of FF measurement can be brought out by the combination with 

multivariate analysis methods. Fluorescence spectra tend to be broad, have bad 

resolution and overlap when there are multiple sources of fluorescence. Furthermore, 

the peaks may also contain physical and structural information of the sample, not only 

the chemical information, making it even more difficult to identify the specific 

fluorescent substance connected to the peak [20]. This problem can be resolved by 

analyzing the entire FF pattern with multivariate analysis methods. Some multivariate 

analysis methods are capable of decomposing the data into information about the 

sample on one hand and information about the fluorescence spectra on the other. 

Information about the fluorescence spectra may allow the specific fluorescence 

substance to be defined.  

Many qualitative and quantitative studies using the FF and multivariate analysis 

methods have been reported for various  target foods. Some cases are reviewed below. 

Guimet et al. [21] combined FF measurement with unfold principal component 

analysis (U-PCA) and parallel factor analysis (PARAFAC) to discriminate between 
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virgin olive oil and pure olive oil. Both analyses showed that it was not the dominating 

fluorophor, chlorophyll that discriminated between the two types of oils, but vitamin E 

whose fluorescence was found in a different wavelength. This showed that the simple 

measurement of the dominating fluorophor was not enough to achieve the desired result. 

Sikorska et al. [22] analyzed the amount of riboflavin and aromatic amino acids 

in beer by applying partial least squares (PLS) regression to the FF data. Compared to 

the conventional methods based on chromatographic techniques to measure the amount 

of these amino acids, the measurement and analysis of FF data proved to be rapid and 

less expensive, requiring no pre-treatment. 

Yin et al. [23] investigated the variety, brewery and vintage of wines using 

principal component analysis (PCA) with FF spectroscopy. In the score plot of the first 

two principal components, wines with the same properties grouped together. Although 

the study was preliminary and needed a larger set of samples for the method to be 

confirmed, if showed the potential of FF spectroscopy to measure wine quickly, easily 

and non-destructively.  

Discrimination of agricultural products based on their geographic origin has been 

achieved by combining FF measurement and discrimination analysis [19, 24] and 

applied to mangoes and taros (Colocasia esculenta). The discrimination accuracy was 

equivalent to that of inorganic elements composition, which requires complicated 

sample treatment.    
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1. 4 Non-destructive imaging methods 

Many non-destructive imaging methods have been developed through the 20-21st 

century. The imaging methods differ in their applications, cost, acquisition times, spatial 

resolution etc. Characterizing these imaging methods would, in turn, enable us to 

understand the standing position of fluorescence fingerprint imaging. 

Figure 1-5 shows the spatial resolution × acquisition time × cost matrix for 

typical non-destructive imaging methods. The spatial resolution for imaging methods 

that use light as the imaging medium are limited by the diffraction resolution of light. 

i.e., the shorter the wavelength, the higher the resolution. However, near-infrared 

imaging has a lower resolution than the diffraction limit, owing to the limitations of 

sample thickness. Although each imaging method will be explained in the following 

sections, a notable point is that FF imaging can achieve relatively high spatial resolution 

with affordable machinery. This point will be explained again at the end of this chapter.  

 

Figure 1-5   Spatial resolutions, acquisition times, and price for typical 

non-destructive imaging methods. ¥=Japanese yen. References: [25, 26, 27, 28, 29] 
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1. 4. 1 Light microscopy 

Light microscopy is the basic form of optical microscopy with the simplest form 

consisting of an objective lens and an eyepiece [30]. By adding a light source and 

condenser underneath the sample (on the opposite side of the objective lens), the 

simplest form of bright field microscopy can be achieved. In order to achieve contrast 

between different constituents and features, the sample is stained.  

Non-destructive observation without any staining is possible using methods such 

as phase contrast and polarization.  Phase contrast is a method to visualize 

semi-transparent, unstained samples [31]. When light passes through these samples, the 

light phase is retarded, typically by a ¼ of a wavelength. On the contrary, background 

light is shifted positively by ¼ of a wavelength by an annular aperture and a matching 

phase ring [32]. As a result, light passing through the sample and background light 

cancel out, and the sample can be observed as a dark figure.  

Polarization light microscopy can be used to observe crystalline structures. A 

typical application in food, is to observe the disappearance of the birefringence of starch, 

due to gelatinization [33]. In polarization light microscopy, light that oscillates in one 

orientation (polarized light) is radiated onto the sample. Some crystals have a property 

of double refraction, i.e., the radiated light is split into an ordinary and extra-ordinary 

ray at the refractive index interface [34]. These ordinary and extra-ordinary rays are 

mutually perpendicular and when they pass through another polarizer before the 

observation tube, they are combined with constructive and destructive interference [35]. 

As a result, some orientations shine brighter than others.  

Phase contrast and polarization microscopy systems are relatively easy to mount on 

a normal light microscope. Since the FF imaging system, explained in chapter 2 is based 

on a light microscope, mounting these systems to acquire further information from the 

sample could be a realistic development in the future. 

1. 4. 2 Hyperspectral imaging 

Hyperspectral imaging, a technique that integrates conventional spectroscopy 

with imaging methods, is currently used in diverse fields such as astronomy, agriculture 

and medicine as well as food technology [36]. Its main idea is to acquire the 

spectroscopic information for each spatial position of the sample, which can be 

analyzed to give the contemplated information (Figure 1-6).  
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Figure 1-6  Hyperspectral imaging. Both spatial and spectral information are 

acquired concurrently. Spectral data gives information on the chemical and physical 

properties of the constituent measured. Therefore, by measuring these two 

information together, we can acquire the distribution image of constituents and 

properties.  

 

Hyperspectral imaging methods can be divided into several groups. One way to 

categorize different hyperspectral imaging methods would be to divide them based on 

the method to acquire data: area scanning, point scanning, or line scanning [37]. Area 

scanning is also called staring imaging or focal plane scanning, and images of a fixed 

field of view is acquired in one wavelength after another. Point scanning involves 

measuring the spectrum of a single point, moving the sample and measuring the 

spectrum at the next point. Line scanning is also called pushbroom, where spectral 

measurements from a line of sample are acquired with an array detector while the 

sample is moved in a perpendicular direction.  

Another way of distinguishing groups would be to divide them based on the 

spectroscopic data. This can be expressed in several modes: reflectance, fluorescence or 

transmission. Most studies using hyperspectral imaging in food have used the 

reflectance mode, usually measured in the Vis-NIR or NIR range, and some in the IR 

region. Raman scattering has also been used, although it is not as wide spread as NIR. 
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These imaging methods are discussed below. 

Near-infrared imaging 

The NIR region of the electromagnetic spectrum is roughly in the range of 

780-2526 nm, according to the American Society of Testing and Materials (ASTM) [38]. 

The absorption bands occurring in this region correspond to the overtones and 

combinations of vibrations of –CH, -NH, -OH and –SH functional groups. The 

fundamental vibrations of these functional groups occur in the mid IR region.  

The change in vibrational state that is explained with a harmonic oscillation model 

(two masses connected with a spring) follows the selection rule of Δ𝑣 = ±1 where v is 

the vibrational quantum number. The absorption of NIR light corresponds to transitions 

of Δ𝑣 > 1, which is basically forbidden in a harmonic vibration model. Absorption of 

overtones (Δ𝑣 > 1) can only be explained in an anharmonic oscilliation model where 

the Morse potential energy gives more realistic values. Even though overtones are not 

rigorously excluded in anharmonic oscillation models, they are still forbidden 

transitions, and therefore, absorption of NIR is much weaker than the fundamental 

absorption in the mid IR region.  

NIR spectroscopy also measures combination bands, which are results of 

vibrational interactions [38]. Two NIR absorption bands of a molecule with the same 

frequency are known to not simply sum up, but split into two peaks of higher and lower 

frequencies. This type of configuration interaction is called Fermi resonance.  

These two types of bands, i.e., overtones and combination bands, are broad, 

overlapping and 10-100 times weaker than the fundamental absorptions. Therefore, in 

order to make use of this data, chemometrical data processing is needed. This also 

applies to imaging with NIR, the spectroscopic data always needs to be analyzed before 

meaningful images can be acquired. 

NIR imaging has been applied to many foods, with several objectives. One of these 

objectives is to visualize the distributions of constituents of interest, for example, fat 

distribution in fish [39, 40, 41, 42] and beef [43] and sugar distribution in fruit [44]. 

These methods involve creating a calibration curve that links NIR spectra with the 

quantity of constituent. Since measurement is performed on the whole sample (fish or 

chunks of meat), the measurement is macroscopic with one pixel of the camera 

corresponding to around 0.4 mm/pixel [40].  

Another popular objective is the detection of unwanted substances such as foreign 

materials in batches of fruit [45, 46] and carcasses on poultry [47]. In this case, 
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discrimination functions are created from pixels whose category (ex. foreign materials 

or fruit) is known, and the remaining pixels are classified by the discrimination function. 

The spatial resolution is normally lower than that of constituent visualization, since 

large areas need to be scanned for practical use.  

The use of NIR imaging is also much studied for chemical imaging in 

pharmaceutical analysis [48, 49]. Medicine tablets need to have a certain amount of 

active substances which need to be homogeneously distributed throughout the whole 

tablet or package of powder. This requires higher spatial resolution compared to the two 

former applications, and resolutions such as 200 μm × 200 μm/pixel are used [49].  

These applications use a relatively low spatial resolution compared to the 

diffraction limit (resolution limit due to the wavelength of light) because there is more 

emphasis in measuring many samples in a short time. However, NIR is not suited to 

observe samples in high resolution for the following reasons [25]: since NIR spectra are 

combinations and overtones of the fundamental vibrational spectra, the sample needs to 

be thick for measureable signals to be acquired (over 100 m for spectra in the range of 

1200-2450 nm and over 500 mm that of 950-1720 nm). On the other hand, to achieve 

maximum spatial resolution, the numerical aperture (NA) value of the objective lens 

needs to be small. Since focal depth is inversely proportional to the square of NA value, 

a small NA value means that the whole thickness of the sample will be in focus. For this 

reason, the standard objective of the NIR imaging system is a refractive lens with 1 × 

magnification, in which case the resolution would be in the order of 10-100 m.  

The image acquisition speed for NIR imaging is at trade off with the spatial and 

spectral resolution, but is relatively fast compared to other imaging methods. For 

example, Segtnan et al. [40] have used scanners that collect 10000 spectra per second 

(15 wavelengths per spectrum) when the field of view was 60 pixels across and 500 to 

670 pixels lengthwise.  

Infrared imaging 

Spectral imaging in the infrared is typically conducted with a Fourier transform 

infrared (FT-IR) imaging system, which uses an interferometer to acquire the IR 

spectrum. With a point scanning type, where the spectrum of each pixel is measured at a 

time, measurement could take tens of hours if the spatial resolution is to be high [25]. 

This is because as the spatial resolution is made higher, the intensity of the light 

entering the spectrometer is lowered, and therefore, a large number of scans (typically 

hundreds) need to be averaged to achieve desired S/N ratio.  
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The area scanning type of FT-IR imaging system acquires images of the sample at 

different combination of lights produced by the interferogram. These types of imaging 

systems take much less time to acquire images with high spatial resolution, in the orders 

of minutes [25]. Spatial resolution can be enhanced by using an attenuated total 

reflection (ATR) accessory, where the sample is immersed in a medium of high 

refractive index, such as germanium (n = 4.0). However, with ATR imaging, the sample 

plane needs to be completely flat, and this limits the form of sample that could be 

observed. 

Raman imaging 

The advantage of Raman imaging is that the diffraction limit is in the order of the 

VIS light range and is much higher than IR imaging, while the acquired information is 

of molecular vibration. The point scanning type of Raman imaging systems have a 

confocal design where the laser light source is focused on a small focal volume within 

the sample. The Raman- and Rayleigh-scattered light is collected by the objective lens, 

Rayleigh-light is filtered with a dichroic beamsplitter, and the spectrum of the 

Raman-light is measured with a spectrophotometer. However, similarly to the point 

scanning type IR imaging system, image acquisition times can be very long. For 

example, Qin et al. [28] has reported an imaging system that acquires images of 370 ×

50 pixels, corresponding to an area of 74 × 10 mm2, which takes approximately 3 

hours. This system was used to detect melamine concentrations in dry milk [28] and 

lycopene in tomatoes [50].  

1. 4. 3 Magnetic resonance imaging (MRI) 

Magnetic resonance imaging (MRI) is an imaging method based on nuclear 

magnetic resonance (NMR) which measures the resonance absorption of radiation by 

nuclei or unpaired electrons in a magnetic field [16] and reveals information on the 

electronic structure (chemical groups). In MRI, information such as the distributions of 

protons (or hydrogen nuclei) in a solid object are measured by applying an 

inhomogeneous magnetic field (a magnetic field that is linearly varied with a certain 

gradient) to the object.  

The biggest advantage of MRI is that it can nondestructively visualize opaque 

samples in two-dimensional and three-dimensional form. In the field of food science, 

MRI has been used to visualize the internal structure and physical state of water in fruit 

[29], fat and water in meat [51] and live pigs [52], and to investigate structures of 
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cheese [53].  

The spatial resolution of MRI depends on the magnetic field gradient, i.e., the 

intensity of the magnetic field needs to be different at each pixel [29]. By applying a 

strong magnetic field gradient, the spatial resolution can be enhanced, but the S/N ratio 

could be sacrificed. Van As et al. [29] have shown that a resolution of 39 × 39 μm 

shows clearer images than 31 × 31 μm resolution in terms of S/N ratio. In most cases 

MRI measurements are performed on macro-scale samples with one pixel 

corresponding to orders of millimeters. 

Although MRI is a promising method to visualize the internal structure and 

constituent distribution in food, the measurement system is too expensive to be applied 

to food in practice.  

1. 4. 4 X-ray computed tomography 

X-ray computed tomography (CT) is another method where images of an opaque 

sample can be acquired non-destructively. In the field of medical imaging, X-ray CT 

and MRI are two methods that are used complementarily to acquire images of the 

insides of the body.  

CT images are acquired by transmitting X-rays through the sample. X-rays are 

electromagnetic waves that have wavelengths from 1 pm to 10 nm, and consequently 

have very high energies, which allow them to transmit through samples. The transmitted 

intensity of the X ray It follows the Lambert-Beer law as in 

 

 𝐼𝑡 = 𝐼0exp (−𝜇𝑙) … (2)  

 

where I0 is the initial intensity, l is the length of the beam path and  is the linear 

attenuation coefficient which varies according to a material’s density and atomic 

composition [54].  is usually converted to CT numbers using the linear attenuation 

coefficient of water, w. 

 

 CT number =
1000(𝜇 − 𝜇𝑤)

𝜇𝑤
 … (3)  

 

CT numbers of air, fat and bone are -1006, -90, and +1005, respectively [54].  

In food science, CT has been used to measure aerated foods to visualize the distribution 

of bubbles [55, 56], assess the fat in beef [57] and visualize the distribution of salt and 

fat in salmon [40]. With an X-ray micro-CT system, spatial resolutions up to 5 m can 
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be obtained. One scan takes less than a second, and many studies take multiple scans to 

obtain three-dimensional images of the sample.   

1. 5 Microstructure of bread and pastry 

1. 5. 1 Bread and observation of its microstructure 

Bread is the staple food in Europe, most countries in the North and South 

American continent and the Middle East / North Africa but is eaten all over the world 

and could be said as the world’s most important food. It is said to be first invented in 

Egypt where the yeast existing on the surface of the wheat grain caused the bread to 

leaven, creating the original form of the aerated bread today.  

One of the important factors determining the palatability of bread is the texture 

[58]. The various advertising copies of bread, claiming that the bread is “soft and 

smooth” or “crispy”, are examples of the consciousness of consumers toward the texture 

of bread. The texture of the final product is affected by multiple processes in bread 

making, but it can be said that the first step, the mixing process is a key step in the 

production of dough [59]. As flour, water and other ingredients are mixed, the dough 

goes through many stages of mixing. The optimal mixing state may slightly differ 

depending on the type of texture required for the end product, but generally, three things 

are known to be accomplished: a homogenous mass of flour and water is formed, a 

three-dimensional protein network with the capacity to hold gas is developed, and air 

cells are incorporated into the dough [60]. The protein which forms the 

three-dimensional network, gluten, dominates the rheological behavior of dough during 

extensive deformation [61] and along with the starch which acts as a filler, determines 

the texture of the bread. The bubbles incorporated in the dough through the mixing 

process also affect the end product because these small bubbles act as the nuclei of 

bigger bubbles created through the fermentation and baking process and no further 

occlusion of gas occurs after the mixing process [62].   

While mixing is the key process in creating bread, it is one of the most difficult 

processes since the point of optimal mixing is hard to determine. The total amount of 

energy required to fully develop the dough to the optimal point depends on many factors 

and therefore it has been the job of experienced artisans to determine the optimal mixing 

speed and time for each batch of dough. Consequently, many studies have tried to 

capture this state of “optimal mixing” objectively with the application of many new 

technologies. The most straightforward approach is to examine the structure of dough 

and distribution of gluten and starch in it with a microscope. Many microscopic imaging 
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techniques have been developed for this purpose. 

The optical microscopic approach and the electron microscopic approach are the 

main method used to visualize the structure of dough, with a few studies using X-ray 

tomography [58] and magnetic resonance microscopy [63]. The optical microscopic 

approach includes bright field [64, 65, 66], confocal scanning laser [67, 68, 69, 70, 71] 

and epifluorescence light [72] microscopies. While optical microscopy can visualize 

specific chemical compounds in the complex mixture and is therefore suitable for foods 

which are complicated multi-component materials [73], it always involves pretreatment 

with staining. The problem with staining is that the results could greatly vary by the 

selection of stains and staining conditions such as the concentration, solvent and 

staining time. The researcher’s technique to stain the sample evenly or prevent color 

degradation may also affect the result. The risk of sample alteration is hard to eliminate.  

Much research has been done with the electron microscopic approach such as 

scanning electron microscopy (SEM) [74, 75] and transmission electron microscopy 

(TEM) [76]. SEM is heavily used in the visualization of dough development for its high 

magnifications and clear images [77] but the risk of sample alteration is difficult to 

eliminate since the sample needs to be either dried or frozen below -80 ºC and covered 

in a 5-20-nm-thick metal layer [78]. Environmental scanning electron microscopy 

(ESEM) is a variable-pressure SEM, allowing the sample to be observed without 

dehydration or surface coating [79, 80, 81] but differences between chemical 

compounds cannot be visualized.  

1. 5. 2 Pastry dough and laminated products 

In the western food culture, baked products can be categorized into several groups, 

namely, bread and fermented goods, sponges and cakes, biscuits and cookies, and pastry 

[82].  Pastry doughs are made of wheat flour mixed with a large ratio of fat, and can be 

further categorized into short pastry and laminated doughs.     

Laminate doughs are made by folding a piece of dough to encase a block of fat 

(usually butter), creating hundreds of layers of pastry [83]. The pockets of air trapped 

between the layers expands when the pastry is baked, and along with the steam from the 

dough and butter, forces the layers to separate and rise. In the initial step of making the 

laminated dough, flour, water and salt are mixed together, and gluten is formed. 

Conversely, short pastry is made by mixing flour, fat and water together. The fat inhibits 

the formation of a gluten matrix, and this results in a “short” texture.  

There are few studies visualizing the structure of pastry and only a few studies on 

the structure of cookies [1, 84] . Therefore, visualizing the structure of these doughs 
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would have a great impact on cereal science. 

1. 6 Summary 

Fluorescence has been used in many areas of science as a tool for imaging. 

However, most of its applications use extrinsic fluorophors, fluorescent substances that 

are added to the sample so that constituents or features of interest show up with high 

contrast. Studies on the structure and constituent distribution of bread and other wheat 

flour-based products follow this trend, and most of the past research have stained the 

dough with fluorescence stains.  

However, wheat contains proteins which are constructed from amino-acids, and 

some amino-acids that have a benzene ring in their structure, namely, aromatic 

amino-acids, show strong intrinsic fluorescence. Many other substances existing in food 

show fluorescence, such as vitamins and chlorophyll.  

Measuring these intrinsic fluorophors with multiple combinations of excitation and 

emission wavelengths, gives their fluorescence fingerprints (FFs). By combining the FF 

with hyperspectral imaging techniques, this study aims to visualize multiple constituents 

in food without preprocesses such as staining.
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2.  Development of a fluorescence fingerprint imaging system 

The FF imaging system that has been used in this study has been developed along 

with the research. In this chapter, the current system which has been improved 

considerably from the former system made three years ago, is explained.  

2. 1 Basic structure of the FF imaging system 

Figure 2-1 shows the overall structure of the FF imaging system. The FF imaging 

system mainly consists of a light source, CCD camera, two sets of band-pass filters and 

an objective lens.  

The light from the xenon light sources passes through a bandpass filter and light of 

a particular wavelength is shone onto the sample. The sample is excited and emits 

fluorescence. The fluorescence emitted from the sample contains light in many 

wavelengths but only light of a particular wavelength passes through the second band-

pass filter and reaches the CCD camera. By changing the band-pass filter at the excitation 

and emission sides, fluorescence images in many combinations of excitation and emission 

wavelengths can be acquired.  

 

 

Figure 2-1  Structure of FF imaging system 
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As explained in chapter 3, the filter wheels can be replaced by other light filters such 

as a liquid crystal tunable filter (LCTF). Furthermore, the optical devices can be adjusted 

according to the size order of the sample, i.e., macroscopic or microscopic. The imaging 

system used in this study was made to measure the microscopic structure of food, which 

is in the order of 10 to 100 m.  

2. 2 System development 

The original FF imaging system was built on top of a rotating slicer (Figure 2-2) [1]. 

The illuminator hung from a big frame which was set upon two I-shaped blocks. This 

configuration caused a problem when samples in the micro-scale were observed, at 

magnifications above × 10. The field of view wavered continuously because the frame 

picked up vibrations from the surrounding environment. The following steps were taken 

to create an imaging system that enabled FF imaging at high magnification. 

 

 

Figure 2-2  The original FF imaging system 
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First, the base was made by covering the original base of the slicer with a wooden 

frame and mounting an anti-vibration table (HMX-0605, Nippon Boushin Industry co., 

ltd., Shizuoka, Japan) on top of the wooden frame. The I-shaped blocks and steel frame 

were removed (Figure 2-3). 

 

 

Figure 2-3  Base of the imaging system 

 

The anti-vibration table removes two types of vibration [2]. The first type of 

vibration reaches the top of the anti-vibration table directly, such as vibration of motors 

set on the table or vibration of air caused by noise. This type of vibration causes the table-

top to resonate, causing stronger vibration. In order to avoid resonation, the natural 

frequency of the table-top needs to be different from other possible vibrations. Therefore, 

the table-top is made from a rigid substance which has a high natural frequency. 

The second type reaches the table-top indirectly, such as vibration of the floor. This 

type of vibration has a similar frequency as the natural frequency of the table-top and 

needs to be absorbed before reaching the table-top. This is achieved by an absorber such 

as an air or oil dumper. The anti-vibration table used in this study (HMX-0605) (Figure 

2-4) has an air suspension that absorbs vibration from below. 
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Figure 2-4  Anti-vibration table, top and side view 

 

The microscopic system that was originally hung by a large iron plate was fixed to 

the table-top with an illuminator holder and a shaft and shaft holder made from stainless 

steel. The shaft and shaft holder was designed to hold the whole weight of the imaging 

system (Figure 2-5). 
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Figure 2-5  Illuminator, shaft and shaft holder 

 

Figure 2-6 shows the composition of the microscopic imaging system. The main 

microscope system is based on a fluorescence microscope. The illuminator (BX-RFA, 

Olympus Optical co., ltd, Tokyo, Japan) is normally used in an epi-illumination system, 

but epi-illumination was not used in this FF imaging system because it was non-compliant 

with UV light.  

The samples were mounted on a XYZ stage composed of a Z-axis motorized stage 

(MMU-60V, Chuo Precision Industrial co., ltd, Tokyo, Japan) and a manual X-Y axis 

stage (Sigma Koki co., ltd, Tokyo, Japan). The Z-axis stage was essential to adjust the 

sample height to match the focal plane which changed slightly for each emission 
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wavelength.  

 

Figure 2-6  Microscopic imaging system 
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The tube lens (U-TLUIR, Olympus Optical), TV adaptor (U-TV1x-2, Olympus 

Optical) and C-mount adaptor (U-CMAD3, Olympus Optical) were set above the 

illuminator with a custom-built adaptor (K120607-A00-01, Asahi Spectra, Tokyo, Japan) 

set in between. This adaptor was made to fit the filter wheel holding the band-pass filters 

that determine the emission wavelength. The filter wheel was fit from the left side of the 

illuminator (opposite side of the illuminator holder) and set so that one filter fitted into 

the optical path of the microscope (Figure 2-7). 

 

 

Figure 2-7  Filter wheel 

 

This system is an infinity-corrected optical system, where there is a parallel optical 

path between the objective and tube lenses. Fitting the emission band-pass filters into the 

parallel optical path minimizes the effect on focus and aberration corrections. 

 Two xenon lamps (MAX 302, 303, Asahi Spectra) were used for the excitation light. 

MAX 302 and 303 were equipped with a UV and VIS mirror module, which restricted 

the light going out of the xenon lamp to a range of 250-385 nm and 300-600 nm, 
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respectively. By coupling band-pass filters with these modules, the cutoff range of band-

pass filters would only need to cover the wavelength range of the modules. Band-pass 

filters are designed to cut off light except for a specific wavelength band, and an ideal 

band-pass filter would have 100% transmittance at the designed wavelength and 0% 

transmittance at other wavelengths. However, in reality, it is only possible to cut of light 

within a certain range of wavelengths, and the larger the range becomes, the higher the 

transmittance of light at unwanted wavelengths or the lower the transmittance at the 

designed wavelength. Therefore, by limiting the range of cutoff wavelengths, it is possible 

to ensure a high ratio of transmittance between wanted and unwanted wavelengths. 

The lamps have a built-in filter wheel which holds 8 filters each. Light from the 

xenon light source passes through the filter held in the filter wheel, is guided through a 

light fiber and is shone onto the sample with a rod lens. The optical system of the rod lens 

mixes the light coming out from individual fibers and creates a uniform band of light.  

Figure 2-8 shows the overall view of the FF imaging system, except for the xenon 

lamp house which is set outside the dark room. An important point is that the spatial 

relationship between the objective lens and beam of excitation light is constant even if 

the height of the sample changes. The distance between the sample and objective lens is 

adjusted with the Z-axis stage below the sample, so if the sample surface is in focus, the 

excitation light intensity should be constant.  

 

Figure 2-8  Overall view of the new imaging system 
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2. 3 Software 

2. 3. 1 Control of FF imaging system by LabVIEW  

Acquisition of fluorescence images in multiple wavelength conditions is a 

cumbersome task if done manually. Long measurement times due to manual operation 

would have detrimental effects on the sample, since the sample would be exposed to UV 

light or moderate temperatures during that time. Therefore, the system was made to be 

automatically controlled from a personal computer (PC) by using LabVIEW (Laboratory 

Virtual Instrumentation Engineering Workbench, National Instruments, USA). 

A set of FF imaging data consists of fluorescence images in all the wavelength 

conditions that make up the FF. For each fluorescence image, the parameters shown in 

Table 2-1 needed to be set before acquisition.  

 

Table 2-1  Image acquisition parameters 

 

Figure 2-9 shows the flow chart for FF data acquisition. All the parameters are read 

from a csv file and outputted to the corresponding instruments through serial ports. The 

acquired fluorescence image is saved with a file name that contains the main parameters.  

Parameters Corresponding machinery

Excitation wavelength xenon lamphouse

Emission wavelength filter wheel controller

Exposure time CCD camera

Binning CCD camera

Gain CCD camera

Offset CCD camera

Light intensity xenon lamphouse

Z-position Z-axis controller
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Figure 2-9  Flow chart of image acquisition 

2. 3. 2 Analysis of data by MATLAB 

The set of fluorescence images were analyzed using MATLAB (MATrix LABoratory, 

MathWorks, USA), a numerical analysis software. Since details on the method of analysis 

are explained in each chapter, this section will describe the overall flow of analysis.  

In the first step, the fluorescence images saved in tif (tagged image file) format are 

read into the MATLAB space as two-dimensional matrices (number of pixels in height 

× number of pixels in width). 

Next, the fluorescence images are stacked three dimensionally, so that the whole 
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dataset is a three-dimensional matrix of (height) × (width) × (number of images). The 

number of images equals all the combinations of excitation and emission wavelengths. 

Therefore, the two-dimensionality of the FF (excitation × emission wavelength) is lost 

at this point. The images are carefully aligned to each other, so that every fluorescence 

image represents the exact same area of the sample. 

This three-dimensional data is degraded into two-dimensional data by unfolding the 

(height) × (width)  data of an image to a single-dimensional vector of 

(number of pixels) × 1  (Figure 2-10). The whole data becomes a two-dimensional 

matrix of (number of pixels)× (wavelength conditions). In this matrix, each pixel can 

be treated as samples, and the wavelength conditions as measurement variables. From 

this point, analysis methods such as cosine similarity, principal component analysis 

(PCA), partial least squares (PLS) are applied to the data. 

 

Figure 2-10  Degradation of imaging data 
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2. 4 Properties and calibration of hardware 

2. 4. 1 Theory 

The FF imaging system is constructed from several optical hardware, which has 

specific properties that are dependent on the wavelength of light. The ideal light source 

would give out light of uniform intensity throughout the whole spectrum and the ideal 

camera would have the same photographic sensitivity for any wavelength of light. 

However, in reality this is impossible, and the light intensity or sensitivity is dependent 

on the wavelength of light. Similarly, the ideal band-pass filter would have 100% 

transmission at a specific wavelength and 0% transmission at other wavelengths, but in 

reality, there is transmission of light at wavelengths other than the intended wavelength. 

The light intensity of the light source is dependent on the excitation wavelength 𝜆ex 

and is denoted 𝐼s(𝜆ex). The transmittance function of the excitation band-pass filter 

whose designed wavelength is 𝜆EX is denoted 𝑇B𝜆EX(𝜆ex). Similarly, the transmittance 

function of the emission band-pass filter whose designed wavelength is 𝜆EM is denoted 

𝑇B𝜆EM(𝜆em). The photographic sensitivity of the camera is denoted 𝑆C(𝜆em). Finally, the 

fluorescence efficiency of the sample, is denoted 𝐹𝐹(𝜆ex, 𝜆em). Naturally, the aim of 

measurement would be to acquire 𝐹𝐹(𝜆ex, 𝜆em), in other words, the FF.  

The excitation light that is shone onto the sample through a band-pass filter whose 

designed wavelength is 𝜆EX , I𝜆EX(𝜆ex) , is the product between the light intensity 

function of the light source and the transmittance function of the excitation band-pass 

filter: 

 

 𝐼𝜆EX(𝜆ex) = 𝐼s(𝜆ex) × 𝑇B𝜆EX(𝜆ex) … (1)  

 

The sample absorbs this light and gives out fluorescence according to its fluorescence 

characteristics. The fluorescence that the sample gives out, 𝐹(𝜆em) is 

 

 𝐹(𝜆em) = ∑ 𝐹𝐹(𝜆ex, 𝜆em) × 𝐼𝜆EX(𝜆ex)

𝜆ex

 … (2)  

 

This passes through the emission filter whose designed wavelength is 𝜆EM  and is 

received by the camera. The intensity of the signal that the CCD camera receives, 

𝐼Cin(𝜆em) is: 

 

 𝐼Cin(𝜆em) = 𝑆c(𝜆em) × 𝑇B𝜆EM(𝜆em) × 𝐹(𝜆em) … (3)  
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The CCD camera has no system to differentiate between different wavelengths, and 

the actual “intensity” value of each pixel, Isum, is the sum of all the signals that the camera 

receives: 

 

 𝐼sum = ∑ 𝐼Cin(𝜆em)

𝜆em

 … (4)  

 

From the equations above,  

 

 

𝐼sum = ∑ 𝑆c(𝜆em) × 𝑇B𝜆EM(𝜆em)

𝜆em

× [∑ 𝐹𝐹(𝜆ex, 𝜆em) × 𝐼s(𝜆ex) × 𝑇B𝜆EX(𝜆ex)

𝜆ex

] 

… (5)  

 

An ideal band-pass filter would have the characteristics below: 

 

 𝑇B𝜆EX(𝜆ex) = {
𝑇B𝜆EX (𝜆ex = 𝜆EX)

0 (𝜆ex ≠ 𝜆EX)
 … (6)  

 

 

 𝑇B𝜆EM(𝜆em) = {
𝐵T𝜆EM  (𝜆em = 𝜆EM)

0 (𝜆em ≠ 𝜆EM)
 … (7)  

 

Therefore, the equation (5) would be: 

 

 
𝐼sum = 𝑆c(𝜆EM) × 𝑇B𝜆EM × 𝐹𝐹(𝜆EX, 𝜆EM) × 𝐼s(𝜆EX)

× 𝑇B𝜆EX 
… (8)  

 

To compare the actual imaging system with an ideal system, we simulate the measurement 

of a white reflection standard. A white reflection standard is an optically white plate which 

has the characteristics below: 

 

 𝐹𝐹white = {
1 (𝜆em = 𝜆ex)
0 (𝜆em ≠ 𝜆ex)

 … (9)  
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When a white reflection standard is measured with an ideal imaging system, 

 

 

Isum

= {
𝑆c(𝜆EM) × 𝑇BλEM × 𝐼s(𝜆EX) × 𝑇B𝜆EX  (𝜆EM = 𝜆EX)

0 (𝜆EM ≠ 𝜆EX)
 

… (10)  

 

This means that in an ideal imaging system, a white reflection standard would show no 

signal if the excitation and emission filters are different. In actual band-pass filters, 

equation (10) does not strictly apply, but it is important to check that there is no apparent 

signal when measuring a white reflection standard with excitation and emission filters of 

different wavelengths.  

 

If the band-pass filter can be treated as an ideal band-pass filter, the FF of the sample, 

𝐹𝐹(𝜆ex, 𝜆em) is calculated as: 

 

 𝐹𝐹(𝜆ex, 𝜆em) =
𝐼𝜆ex,𝜆em

𝑆c(𝜆em) × 𝑇B𝜆em × 𝐼s(𝜆ex) × 𝑇B𝜆ex
 … (11)  

 

𝑇B𝜆ex and 𝑇B𝜆em are the transmittances of the excitation and emission band-pass filters 

at their designed wavelengths, 𝐼𝜆ex,𝜆em  is the light intensity measured by the CCD 

camera when using these band-pass filters. The first and last two terms can be coupled as 

the excitation and emission machine functions, denoted as 𝐹EM(𝜆em) and 𝐹EX(𝜆ex), 

respectively. This gives,  

 

 𝐹𝐹(𝜆ex, 𝜆em) =
𝐼𝜆ex,𝜆em

𝐹EM(𝜆em) × 𝐹EX(𝜆ex)
 … (12)  

 

Therefore, in order to obtain the FF, functions 𝐹EM and 𝐹EX need to be known. The light 

intensity of excitation light, 𝐹EX(𝜆ex) , can be measured with a power meter. Once 

𝐹EX(𝜆ex)  is obtained, 𝐹EM(𝜆em)  can be obtained by measuring a white reflection 

standard where equation (9) applies. Hence, when 𝜆ex = 𝜆em 

 

 

𝐹𝐹white(𝜆ex, 𝜆em) =
𝐼𝜆ex,𝜆em

𝐹EM(𝜆em) × 𝐹EX(𝜆ex)
= 1 

𝐹EM(𝜆) =
𝐼λ

𝐹EX(𝜆)
 

… (13)  
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2. 4. 2 Band-pass filter 

To check that the band-pass filters satisfy equation (10), the FF of a white reflection 

standard was measured. Light from xenon light sources (MAX 302, MAX303, Asahi 

Spectra) transmitted the band-pass filters (HQBP filter and M.C. filter, Asahi Spectra) 

and was shone onto the white reflection standard. The emitted light passed through a 

liquid crystal tunable filter (LCTF) (VariSpec, Cambridge Research & Instrumentation, 

Inc., Hopkinton, USA), and a CCD camera (ORCA-ER-1394, Hamamatsu Photonics, 

Shizuoka, Japan) was used to measure the intensity of transmitted light.  

Figure 2-11A shows the measured FF of the white reflection standard. According to 

equation (10), the white reflection standard should show no emission since all the 

wavelength conditions satisfy 𝜆ex ≠ 𝜆em. However, relatively strong light is observed in 

the longer wavelengths with excitation filters of 260-370 nm. This shows that these filters 

transmit light in the longer wavelengths.  

 

Figure 2-11 Measured FF of white reflection standard without (A) and with the short-

pass filter. Without the short pass filter, excitation light in the longer wavelengths pass 

through.  

 

In order to cut the transmitted light, a short-pass filter was set between the band-pass 

filters and the xenon light source. Figure 2-11B shows the FF of the white reflection 

standard measured with the low-pass filter. The light that had transmitted the light at 

longer wavelengths has been cut.  

Furthermore, when measuring the white reflection standard with emission 

wavelengths lower than 400 nm, relatively strong light was observed with the 

combination of 290 nm and 390 nm for excitation and emission band-pass filters, 

respectively. This transmitted light could also be measured with a spectrometer. Therefore, 

another short-pass filter which cut light over 350 nm was set between the xenon light 
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source and short-pass filter described above.  

2. 4. 3 Excitation machine functions 

The xenon lamp shows different intensities at different wavelengths, and each band-

pass filter shows different transmittance. Therefore, the light intensity of each excitation 

wavelength is different. This needed correcting if the FFs acquired by the imaging system 

were to be compared to fluorescence patterns of specific fluorophors in literature.  

Uniformization of light intensity at each excitation wavelength was achieved by 

using a continuously variable ND filter fixed in front of the light source. The ND filter 

enabled adjustment of the output light intensity in respect to the original light intensity of 

the light source and was controlled through a parameter named “LI” (light intensity) 

which could be set between 5% and 100% at increments of 1%. 

As noted above, the light intensity of the excitation light is affected by several factors, 

such as the light intensity of the light source, the transmission rate of the band-pass filter, 

and any other filters that may be used such as low-pass and high-pass filters. However, 

each factor does not need to be separated, as long as the intensity of the light irradiated 

on the sample is uniform. Therefore, the light intensity of each excitation wavelength was 

measured with a power meter (NOVA2, Ophir Photonics Ltd., Jerusalem, Israel) using 

the same setup as that used for imaging.  

The relationship between actual light intensity and the value of LI was measured 

beforehand and was known to be linear between 20 and 90% (Figure 2-12). Therefore, 

after measuring the light intensity at 100% LI, the LI at each wavelength was calculated 

so that the actual light intensity would be equal to that of the weakest wavelength. Finally, 

the light intensity at each excitation wavelength with the LI set to the calculated value 

was measured, and the LI was adjusted so that the readings of the power meter were 

uniform. Table 2-2 shows the final LI values for each wavelength. 
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Figure 2-12 Relation between LI and measured power for wavelengths 260, 290, and 320 

nm. The range between 20% and 90% shows linear correlation. The LI is adjusted by the 

angle of the ND filter.  

 

Table 2-2 LI of each wavelength 

 

2. 4. 4 Emission machine functions 

Similar to the excitation intensity, the emission filters and camera have different 

transmission ratios and sensitivity towards light in different wavelengths. This was 

corrected by adjusting the exposure time for each emission wavelength. As in the 

correction for excitation light, there is no need to separate the effects of the camera and 

emission filters. Together, they will be referred to as the emission sensitivity. 

Since it was possible to obtain uniform intensities of light at every wavelength as 

explained above, this uniform light and a reflection standard was used to correct for the 

emission light sensitivity. Assuming that the reflection standard shows uniform 

reflectance at all wavelengths, images of the refection standard was acquired using the 
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same wavelengths for excitation and emission. Since the excitation light intensities were 

uniform, the difference in the intensity of the acquired image showed the difference in 

emission sensitivity. Therefore, the exposure time of the least sensitive emission 

wavelength was set to the maximum of 10 s, and those of the other wavelengths were 

adjusted depending on the intensity of the reflection standard image. 

 

Table 2-3  Exposure times (in milliseconds) for each emission wavelength 

 

2. 4. 5 Autofocus 

In the FF imaging system, the emission wavelength is controlled by band-pass filters 

that are fitted between the objective lens and the CCD camera. Each band-pass filter has 

a different refractive index, which results in different focus lengths for each emission 

wavelength. Therefore, the position of the z-axis stage for each emission wavelength was 

determined prior to FF measurement. 

The point of focus was determined by an autofocus program made using LabVIEW. 

There are two methods of autofocusing: active focusing, which utilizes some kind of 

energy, such as laser beam, to measure the distance to the object, and passive focusing 

which analyses images captured at different planes to obtain the optimum point [3]. This 

study used passive focusing. 

Microscope autofocusing systems determine the in-focus position by searching for 

the maximum of an autofocus function over a range of z-axis positions. An autofocus 

function provides a quantitative measure of focal sharpness for a given image. By 

applying the autofocus function to images acquired at different z-axis positions, and 

comparing them, the in-focus position can be obtained as shown in Figure 2-13. 

Wavelength [nm] Exposure time [ms]

350 10000

360 4385

370 2666

380 2389

390 1645

400 1578

410 1304

420 955
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Figure 2-13   Scheme of autofocusing. Images are acquired at different z-axis 

positions and focal sharpness is calculated by applying an autofocus function to the 

image. 

Many autofocus functions are known, such as those based on Fourier convolution, 

differentiation, and depths of peaks and valleys [4]. In this study we convoluted the image 

and the following kernel, C: 

 

 C = (
0 −1 0

−1 0 1 
0 1 0

) … (14)  

 

for edge detection, and calculated the standard deviation of the edge detected image. A 

large standard deviation means that the detected edges are sharp (high intensity), which 

indicates that the sample is in focus. 

This autofocus function needs to be applied to images in many z-axis positions. In 

order to speed up the process, we used the method of steepest descent [5] and golden section 

search [6] to find the maximum point of the autofocus function.  

Two initial points, 𝑥1 and x2 were set at 100 increments apart. The method of 

steepest descent determines the direction of the third point by comparing f(𝑥1) and f(𝑥2) 
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when f(𝑥) is the autofocus function. If f(𝑥1) > 𝑓(𝑥2) , 𝑥3  is in the direction of 𝑥1 

(Figure 2-14A) and if f(𝑥1) < 𝑓(𝑥2) , 𝑥3 is in the direction of 𝑥2 (Figure 2-14B). This 

was performed until x passed through the maximum point, i.e., when f(xn+1) < 𝑓(xn) if 

xn+1 > xn > xn−1 or xn+1 < xn < xn−1 (Figure 2-14C).  At this point, 𝑥𝑛−1 was set 

as 𝑥1 and 𝑥𝑛+1 as 𝑥2, and the golden section method was applied. 

 

 

Figure 2-14  Method of steepest descent 

 

With the golden section method, the positions of 𝑥3 and 𝑥4 were determined as 

 

 𝑥3 = 𝑥1 +
𝜏 − 1

𝜏
𝑑,  𝑥4 = 𝑥1 +

1

𝜏
𝑑 … (15)  

 

where 𝜏 =
1+√5

2
 (golden ratio) and d is the distance between 𝑥1 and 𝑥2. For the next 

step, if f(𝑥3) < 𝑓(𝑥4), 𝑥1 = 𝑥3 and if f(x3) > 𝑓(x4), 𝑥2 = 𝑥4 (Figure 2-15). This is 

repeated until is d became smaller than a certain number (𝑑 < 5 increments on the z −

axis in this study).  

 

 

Figure 2-15  Golden section method 
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With these methods, it was possible to arrive at the optimum z-position with 

approximately 10 images. Figure 2-16 shows the focus positions for emission filters from 

370 nm to 650 nm. Values vary greatly between wavelengths.  

 

 

Figure 2-16  The focus position for emission filters from 370 nm to 650 nm. Values of 

three measurements are averaged. For each measurement, the z-position of emission 

filter 400 nm is set at 0. 

2. 5 The imaging system used in chapters three to five 

The imaging system has been developed through the whole study, and the final form 

explained in this chapter was used to measure the pie pastry explained in chapter 5. The 

systems used in chapter 3 and 4 lack some of the features that are included in the final 

system. Table 2-4 shows the features of the imaging system used to acquire the data 

explained in chapters 3 to 5. 
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Table 2-4 Features of the imaging system used in chapters 3 to 5 

 

 

Apart from the features described in the former sections, a significant improvement 

of the imaging system can be seen in the lower limit of the emission wavelength. 

Tryptophan, an important fluorophor in food, emits strong fluorescence at 350 nm. 

However, the objective lens used in chapters 3 and 4 transmitted UV light poorly and was 

only usable at wavelengths above 370 nm. Furthermore, the LCTF used in chapter 3 did 

not transmit light at wavelengths below 400 nm. Using UV-compliant optical apparatus 

allowed clear visualization of proteins which contain aromatic amino acids such as 

Tryptophan.  

The magnification of the objective lens is also significant. An important feature in 

wheat flour doughs is the starch granule. Wheat starch is a mixture of two types of 

granules, large and small, and their sizes are 15-40 m and 2-10 m, respectively. Using 

an objective lens with a magnification of × 10 enables the observation of single granules 

of the larger type. Since individual starch granules could not be observed under a 

magnification of × 5, this was a large improvement.  

2. 6 Conclusions 

The goal of the FF imaging system is to acquire sharp and clear fluorescence images 

at multiple excitation and emission wavelengths, quickly and accurately. Observation in 

the near UV is important for organic materials, but not many devices are UV-compliant 

and there is scope for development. The intensity of the xenon light sources used in this 

study is low in the UV wavelengths, and so is the transmittance of the band-pass filters. 

If these devices could be developed, the exposure times of the camera could be shortened, 

Chapter 3 Chapter 4 Chapter 5

anti-vibration table × × ○
X-Y stage × × ○
light source MAX302,303 MAX302 MAX302
dispersion of excitation WL bandpass filter bandpass filter bandpass filter
low-pass filter ○ × ○
excitation WL 260-600 260-320 270-320
calibration of excitation WL × × ○
objective lens x5 x5 x10
dispersion of emission WL LCTF bandpass filter bandpass filter
emission WL 400-700 370-450 350-430
calibration of emission WL × × ○
automation ○ × ○
Z-axis adjustment ○ × ○
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leading to shorter data acquisition time.  

In this study, the observation target was the microstructure of dough, and therefore, 

the optical systems were chosen to enable microscopic observation. Greater precision of 

the measurement system was required as the magnification of observation increased, and 

although it was possible to attach objective lenses with higher magnification, this did not 

yield good results. If observation at higher magnification is needed in the future, further 

improvement of the system may be needed.   
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3.  Development of a quantitative visualization technique for 

gluten and starch in model dough 

3. 1 Abstract 

The distribution of constituents in food affects its end qualities such as texture, 

and there is a growing demand to develop a method for studying this distribution 

easily, accurately and nondestructively. The objective of this study was to 

develop an imaging method that visualizes the precise quantity of constituents, 

using FF. In this study, the target for visualization was the distribution of gluten 

and starch in dough samples. Dough samples were prepared with different ratios 

of gluten, starch, and water, and fluorescence images were acquired at multiple 

combinations of excitation and emission wavelengths. This data can be 

interpreted as the FFs of all the pixels in the image, and the FF data of each pixel 

reflects the constituents of the corresponding point in the sample. A partial 

least-squares regression (PLSR) model was built using the average FFs of the 

samples and the corresponding gluten ratios as the explanatory and objective 

variables, respectively. The importance of each wavelength in the PLSR model 

was assessed using the selectivity ratio, and optimum wavelengths for accurate 

prediction of gluten ratio were selected. Finally, the gluten ratio of each pixel 

was predicted with the PLSR model using the selected wavelengths, and each 

pixel was colored according to the predicted gluten ratio. The imaging method 

developed enables the distribution of constituents to be visualized with colors 

corresponding to their actual quantities or ratios. 

3. 2 Introduction 

This chapter explains the first stage of FF imaging, to visualize the distribution of 

two constituents, gluten and starch, in a model system made by mixing the two 

substances in known quantities. The sample used here is a model of wheat flour dough, 

since wheat flour dough will be used in chapters 4 and 5.  

The work in this chapter is challenging in several ways: 

1. Since we aimed to visualize constituents in the sample with as little sample 

preparation as possible, we did not freeze or slice the sample into thin sections, 

and observed the sample by just inserting it in a cell with a quartz glass 

window. 
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2. We aimed to create a quantitative image, which means that the color of each 

pixel corresponds to a certain ratio of gluten / starch. 

3. In order to select the optimum set of excitation and emission wavelengths, we 

applied methods developed in the field of chemometrics, so that the accuracy 

of the image would not decrease, but would increase through the elimination of 

unnecessary data. 

The second point was inspired by previous studies in NIR imaging such as the 

visualization of sugar in fruit [1] and oil and water in fish [2], and meant that a 

calibration model would have to be made to link the spectral data to the quantity of each 

constituent.  

As a conclusion, the first point did not work out, i.e., we found out the making thin 

sections were essential for this method of imaging. However, this negative discovery is 

very important when we think of the physical model of FF imaging. This will be 

discussed in detail at the end of this chapter. 

3. 3 Materials and methods 

3. 3. 1 Sample preparation 

Pure wheat gluten (Wako Pure Chemical Industries Ltd., Osaka, Japan) and pure 

wheat starch (Wako Pure Chemical Industries Ltd.) were mixed at gluten ratios ranging 

from 0 to 100%, in 20% increments. For each mixture of gluten and starch, distilled 

water was added at three levels to create a dough-like texture, ranging from relatively 

soft dough to hard dough. The ratios of gluten and starch, and the water levels for each 

sample are shown in Table 3-1. The samples were set in a cell with a quartz glass 

window and the samples were pressed against the glass to obtain a flat surface. The cell 

was sealed so that the sample would not dry during measurement. 

 

Table 3-1  Ratios of gluten and starch, and water levels 
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The ratios of gluten and starch were set in the range of 0 to 100% in order to 

visualize features such as starch granules and gluten strands on the surface of the dough. 

A starch granule on the surface was expected to show similar FFs to that of the starch 

100% sample, and conversely, a gluten strand should show similar FFs to that of the 

gluten 100% sample. The water content was set at three levels because the distribution 

of water in micro-scale was unknown, for example it was unknown whether a starch 

granule at the surface of dough would contain 50, 55 or 60% of water.  

Three sets of samples were made, corresponding to the three experiments shown 

in Figure 3-1. Details regarding each experiment are discussed later. 
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Figure 3-1  Flowchart of wavelength selection and visualization. (A) The FFs of 36 

samples are measured using a fluorescence spectrophotometer, and 16 excitation 

wavelengths are selected by cluster analysis. The selected excitation wavelengths are 

used in the FF imaging system. (B) Fluorescence images of 12 samples are acquired 

with the FF imaging system and the optimum wavelength conditions for predicting the 
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gluten ratio are selected using selectivity ratio. These wavelength conditions are used 

acquire the image data. (C) Fluorescence images of 12 samples are acquired for 

visualization, using the optimum wavelength conditions. A calibration model between 

the FF data and gluten ratio is calculated using PLSR. The calibration model is applied to 

each pixel of the images, thereby predicting the gluten ratio of each pixel. 

3. 3. 2 FF imaging system 

The FF imaging system was constructed as explained in Chapter 2 with the 

features shown in Table 2-4. A liquid crystal tunable filter (LCTF) (VariSpec, 

Cambridge Research & Instrumentation, Inc., Hopkinton, USA) was used in place of 

the emission band-pass filters because the filter wheel held only eight band-pass filters 

and more emission wavelengths were needed in this experiment. 

3. 3. 3 Selection of excitation wavelengths 

The imaging procedure was conducted according to the flowchart in Figure 3-1. 

First, preliminary measurement was conducted to determine the optimal wavelength 

conditions, i.e., combinations of excitation and emission wavelengths, for estimating the 

gluten ratio of the sample. This was carried out in two steps: first, selecting a limited 

number of excitation wavelengths with data from a fluorescence spectrometer (Figure 

3-1A), and second, selecting the final wavelength conditions with data from the FF 

imaging system (Figure 3-1B).  

A critical constraint condition of the FF imaging system was that the two light 

sources could only hold eight band-pass filters each, meaning the maximum number of 

wavelengths that could be used for the excitation light was 16. Therefore, as the first 

experiment, the selection of these 16 excitation wavelengths was carried out with FF 

data acquired with a fluorescence spectrophotometer (F-7000, Hitachi 

High-Technologies Corporation, Tokyo, Japan).  

For this first experiment (Figure 3-1A), 36 samples were prepared: two samples 

for all combinations of gluten (six levels) and water (three levels) ratio. The samples 

were set in the fluorescence spectrophotometer and the FF of each sample was 

measured using the attached software (FL Solutions 2.1, Hitachi High-Technologies). 

The excitation and emission wavelengths measured were both in the range of 200-700 

nm at 10 nm intervals. The slit width was set at 10 nm for both excitation and emission 

lights. The scanning speed was 30000 nm/min, the response time was 0.002 s, and the 

power voltage of the photomultiplier was 400 V.  

The FFs measured included the first-, second- and third-order scattered lights, 
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which occurred at wavelengths where the emission wavelength was equal to, twice, and 

three times the excitation wavelength, respectively [3]. Since these signals were 

stronger in intensity than the fluorescence, they were removed and replaced with 

first-order interpolation [4, 5]. Next, the wavelength conditions that could not be 

achieved with the FF imaging system were removed, leaving FF data with excitation 

and emission wavelengths in the ranges of 260-630 nm and 400-700 nm, respectively. 

Finally, the wavelength conditions where the emission wavelengths were shorter than or 

within 50 nm of the excitation wavelengths were removed because they corresponded to 

the non-fluorescent and scattered lights in the FF imaging system, respectively.  

Data analysis was carried out using MATLAB R2011b (The MathWorks, Inc., 

Massachusetts, USA) and PLS_Toolbox 6 (Eigenvector research, Inc., Washington, 

USA). The acquired fluorescence data was a three-way data, with modes “excitation 

wavelength”, “emission wavelength” and “sample”. This was unfolded [6] into a 

two-way data with mode “excitation wavelength” and a combined mode “emission 

wavelength × sample”. Cluster analysis using Ward’s method was applied to this FF 

data to group the excitation wavelengths into 16 clusters. The shortest wavelengths in 

each cluster were selected as the excitation wavelengths in the FF imaging system. 

Since the emission wavelengths are always longer than the excitation wavelengths, 

selecting the shortest excitation wavelength in the cluster would maximize the number 

of wavelength conditions used in the FF imaging system. 

3. 3. 4 Selection of wavelength conditions for imaging 

In the second experiment, the final wavelength conditions were selected using an 

actual FF imaging system (Figure 3-1B). Dough samples were made at the same 6 levels 

of gluten ratio, and 2 levels of water were set for each gluten ratio, resulting in 12 

samples. The dough samples were set in the sample cell for measurement. 

The excitation wavelengths used for imaging were the 16 wavelengths selected 

from the fluorescence spectrometer data. The emission wavelengths used were in the 

range of 400-700 nm in 10 nm increments, and set to be 60 nm longer than the 

excitation wavelengths or more. This resulted in 360 wavelength conditions. 

Fluorescence images of the samples were acquired with the FF imaging system 

with an exposure time of 0.625 s and binning of 8 × 8 [7]. A binning of 8 × 8 means that 

the signals of 64 pixels would be integrated for one virtual pixel. This resulted in a 

dataset of 360 grayscale images, corresponding to the 360 wavelength conditions, each 

with a size of 168 × 128 pixels. These were saved as tagged image file format (tiff) 

images. 
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A partial least squares regression (PLSR) model [8] was constructed from these 

data as shown in Figure 3-2. The fluorescence images were divided into four areas with 

half-lengths and half-widths of the original images and the light intensities of all the 

pixels in each area were averaged. In this way, four sets of FF data could be acquired for 

each sample, with each data reflecting the gluten ratio of the sample as a whole. The 

PLSR model was constructed using the actual gluten ratio of the sample as the objective 

variable (Y) and the FF data as the explanatory variable (X). The FF data were 

mean-centered [9] prior to the calculation of the PLSR model, and the number of latent 

variables was determined by a cross-validation method [10]. Two PLSR models were 

constructed: one using all the data as calibration data, and the other using half of the 

data (two FF data from each sample) as calibration data and the other half as validation 

data. Data for calibration and validation were divided randomly.  

 

Figure 3-2  Flowchart of PLSR model construction. Fluorescence images of 12 

samples with different gluten ratios and water contents are acquired. Each image is 

split into four equal areas and the average FFs of all the pixels in each area are 

calculated, resulting in 48 FF data. A PLSR model is constructed using the actual gluten 

ratio of each sample as the objective variable Y and the FF data as the explanatory 

variable X. 

 

To select the wavelength conditions most relevant in predicting the gluten ratio of 

the sample, the concept of selectivity ratio was used. Selectivity ratio provides a simple 

numerical assessment of the importance of each variable in the PLSR model [11, 12], 



Chapter 3 

 

62 

 

i.e., the higher the selectivity ratio, the more useful the variables are for prediction. The 

selectivity ratio of variable i (SRi) is defined as the ratio of explained variance (Vexpl, i) 

to residual variance (Vres, i) for variable i as shown in (1).  

 

 SR𝑖 = Vexpl,𝑖/Vres,𝑖 … (1)  

 

The explained variance is the y-relevant variation in the x-variables, calculated 

from the target projected scores and loadings. Conversely, the residual variance is the 

variation that non-relevant to y [12]. Wavelength conditions were selected by order of 

selectivity ratio, and the coefficient of determination, R2, was calculated while the 

number of wavelength conditions was increased from 10% to 100% of the original 

number of wavelength conditions in 10% increments. The optimum number of 

wavelength conditions was determined as the data giving the highest R2 for both 

calibration and validation. 

3. 3. 5 Visualization of gluten ratio 

For the third experiment (Figure 3-1C), a new set of fluorescence images were 

acquired using the wavelength conditions selected as shown above to visualize the 

spatial distribution of gluten in the dough. 

Dough samples were made with gluten ratios of 0, 20, 40, and 60%, and 3 levels 

of water were set for each gluten ratio, resulting in 12 samples. The dough samples were 

set in a sample cell.  

Exposure time and binning were set at 10 s and 2 × 2, respectively. A smaller 

binning was selected to enhance the resolution of the image, and exposure time was 

lengthened to make up for the reduction in the amount of light focused on each pixel. 

The fluorescence images of the 12 samples were acquired under these conditions. The 

size of the images was 672 × 512 pixels. 

A PLSR model that predicts the gluten ratio from FF data was constructed from 

the newly acquired data following the method shown in Figure 3-2. Each fluorescence 

image was divided into 9 areas (3 × 3) instead of 4, resulting in 108 sets of data. All the 

data were used as the calibration set. 

Next, the gluten ratio of each pixel in the image was predicted by applying the FF 

of the pixel to the PLSR model calculated above. The predicted gluten ratio was 

converted to a color through a color axis ranging from blue (0%) to green (30%) to red 

(60%), and the pixel was colored accordingly. In these pseudo-color images, the color of 

each pixel shows the gluten ratio at that spot. Pseudo-color images of the dough samples 
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with total gluten ratios of 0%, 20%, 40%, and 60% were created.   



Chapter 3 

 

64 

 

3. 4 Results and discussion 

3. 4. 1 Selection of excitation wavelengths 

The time required for acquiring fluorescence images is proportional to the number 

of wavelength conditions. Therefore, measuring the sample under wavelength 

conditions other than the optimal wavelengths would unnecessarily lengthen 

measurement time. The sample is exposed to light in the UV-VIS range during 

measurement, but longer measurement times could possibly denature the sample. 

Therefore, selecting the minimum yet sufficient number of wavelength conditions for 

predicting the gluten ratio is a very important step in imaging operation. 

The selection of wavelengths should be performed using data acquired under 

similar conditions as the final data for imaging. Although it would be easy to use the 

data acquired with the fluorescence spectrometer to select the optimum wavelength 

conditions for the FF imaging system, measurement conditions such as wavelength 

resolution and sensitivity of the detectors were considered too different to expect 

compatibility between the two data sets. Measurement conditions affect the 

signal-to-noise (S/N) ratio of the data. The difference becomes significant at shorter 

wavelengths where the intensity of the excitation light and the sensitivity of the CCD 

camera in the FF imaging system decrease. Since many steps are needed to transform 

the results acquired from one system to another [13], the data from the fluorescence 

spectrometer was only used to select the 16 excitation wavelengths for the FF imaging 

system and the rest of the wavelength selection was performed with data from the FF 

imaging system. 

Figure 3-3 shows the cluster analysis results for the first experiment using the 

fluorescence spectrometer. The excitation wavelengths are clustered according to the 

squared distance between them. The higher limit of the x-axis is selected to create 16 

clusters. The shortest wavelength in each cluster was chosen for the excitation 

wavelengths in the FF imaging system. These wavelengths were 260, 270, 290, 300, 

310, 350, 370, 390, 410, 430, 450, 470, 510, 550, 570, and 600 nm. The main 

fluorophor in gluten is tryptophan [14], which has a fluorescence peak at excitation and 

emission wavelengths of approximately 280 nm and 350 nm, respectively [15]. 

Although the wavelength range of the FF data used in analysis did not include this 

fluorescence peak, the data are thought to have been affected by it since the 

wavelengths selected are narrowly spaced around 280 nm.  
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Figure 3-3  Results of the cluster analysis. The excitation wavelengths shown on the 

left are clustered according to squared distance. The resulting clusters are shown on 

the right. 

 

3. 4. 2 Selection of wavelength conditions for imaging 

Fluorescence images to determine the wavelength conditions were acquired with 

the FF imaging system using the 16 excitation wavelengths shown above and emission 

wavelengths in the range of 400-700 nm (experiment 2). To minimize measurement 

time, binning was set at its maximum, 8 × 8. The final data acquisition for visualized 

imaging (experiment 3) was planned to be performed with 2 × 2 binning (4 pixels 

integrated for one virtual pixel), meaning that the number of pixels integrated for one 

virtual pixel would be 1/16 of that in this acquisition. Therefore, the exposure time for 

this preliminary data acquisition was also set to be 1/16 of that for the final data 

acquisition. Since the exposure time of the final data acquisition was planned to be 10 s, 

the exposure time for this preliminary data acquisition was set to be 0.625 s, or 10 s 

divided by 16.  

A PLSR model was constructed to predict the gluten ratio of each sample. Figure 

3-4A shows the gluten ratio of each sample predicted by the PLSR model plotted against 
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actual gluten ratio. The coefficient of determination, R2, was 0.918. It can be seen that 

the predicted gluten ratio value increases constantly from 0 to 60%, but does not change 

much from 60 to 100%. It seems that the increase in gluten ratio from 60 to 80% could 

not be modeled from the FF data using PLS which is a linear model. This may be due to 

the quenching of fluorescence, which occurs when the concentration of fluorophors 

becomes too high [16]. It could be that the fluorescence signal of tryptophan increases 

linearly with gluten ratio when the ratio is low, but not when the ratio exceeds 60%. 

To obtain a more accurate prediction model, the data of the samples with gluten 

ratios of 80% or over were excluded, leaving a dataset with 16 samples, i.e., four levels 

of gluten ratio with four sets of FF data each. As can be seen from Figure 3-4B, the 

PLSR model calculated from this data proved to be much more accurate, with R2 being 

0.985. On the other hand, the PLSR model calculated from the samples with gluten 

ratios of 60, 80, and 100% was unstable and inaccurate (Figure 3-4C), with R2 being 

0.775. In this model, the predicted gluten ratio for samples with actual ratios of 60% 

and 80% were in the same range. This is thought to be because the original fluorescence 

fingerprints of these samples do not differ much or change in a nonlinear way which 

cannot be modeled with PLSR Regarding these results, data from the samples with 

gluten ratios in the range of 0 to 60% were used for further analysis. Therefore, it is 

important to note that the prediction model calculated from this data can only be applied 

to gluten ratios in the same range.  
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Figure 3-4  Score plots of PLSR models, calculated from different sets of data. The 

bold line shows the calibration curve calculated from the PLSR model. The dotted line 

shows the ideal line (predicted value = actual value). (A) PLSR model calculated from all 

samples. (B) PLSR model calculated from the samples with gluten ratios up to 60%. (C) 

PLSR model calculated from samples with gluten ratios from 60 to 100%. 

 

Next, the optimum wavelength conditions for predicting the gluten ratio from the 

FF data were selected on the basis of selectivity ratio. Figure 3-5A shows the selectivity 
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ratio of the 360 wavelength conditions under which FF imaging was performed. It is 

interesting to note that the wavelengths shorter than 450 nm show a relatively small 

selectivity ratio. The reason for this is thought to be the low S/N ratio of these 

wavelength conditions, owing to the low transmission of the LCTF at wavelengths 

shorter than 450 nm. By using selectivity ratio to select the wavelength conditions, not 

only the intrinsic fluorescence of the sample but also the conditions of the measuring 

instruments can be considered. 

Figure 3-5B shows R2 when the wavelength conditions are selected by order of 

selectivity ratio. Irrespective of the number of wavelength conditions, R2 is large when 

all the samples are used for calibration. However, when all the samples are used for 

calibration, there is also the danger of overfitting, when the model optimizes itself for 

the given data but cannot be used for other data [17]. This is likely to happen when the 

number of variables (in this experiment, 36 to 360) exceeds that of samples (in this 

experiment, 16). Therefore, we focused on the results where half the data was used as 

calibration data and the other half as validation data. Excluding the case in which all the 

wavelength conditions are used (no wavelength reduction), R2 was largest when the 

number of wavelength conditions was 30% of the original number, which means 108 

wavelength conditions. Since the number of wavelength conditions that could be used 

for imaging was limited, these 108 wavelength conditions were used to acquire the final 

imaging data. The selected wavelength conditions are shown in Figure 3-5C.  
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Figure 3-5  (A) Selectivity ratios of all wavelength conditions. The lighter the color, 

the larger the selectivity ratio. (B) Change in R2 with number of wavelength conditions. 

The number of wavelength conditions where R2 is high for both calibration and 

validation was used. (C) Selected wavelength conditions used for FF imaging. The white 

and black areas show the wavelength conditions which were used and not used for 

visualization, respectively. 
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3. 4. 3 Pseudo-color image of gluten distribution and ratio 

The 108 wavelength conditions were used to acquire the final FF data for 

visualization imaging (experiment 3). Reflecting the results from experiment 2, only 

samples with gluten ratios from 0% to 60% were measured and a PLSR model that 

predicts the gluten ratio from FF data was constructed. Figure 3-6 shows the predicted 

gluten ratio calculated from the FF data, plotted against the actual gluten ratio of the 

sample. The R2 of this PLSR model was 0.964. All data were used as the calibration 

data. This prediction model was used to predict the gluten ratio of each pixel.  

 

 

Figure 3-6  Calibration curve between actual gluten ratio and predicted gluten ratio. 

The actual gluten ratio is derived from the gluten ratio of the whole sample and the 

predicted gluten ratio is calculated from the PLSR model. 

 

Figure 3-7 shows pseudo-color images of the samples with gluten ratios of 0% for 

(A) and (B), 20% for (C) and (D), 40% for (E) and (F), and 60% for (G) and (H). Since 

60% is the upper limit of the prediction model, pixels whose predicted gluten ratio was 

higher than 60% were colored the same. 
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Figure 3-7  Pseudo-color images of the samples colored according to the gluten ratio 

of each pixel. (A) and (B) , (C) and (D), (E) and (F), (G) and (H) are samples with gluten 

ratios of 0 %, 20 %, 40 %, and 60% respectively. The samples in the left row contain 

lower water contents than their counterparts in the right row. 
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One noticeable feature of the samples with gluten ratios of 20% and 40% is small 

spots with a high gluten ratio. These are presumed to be remnants of freeze-dried gluten 

powder that were not hydrolyzed thoroughly. These spots cannot be seen in the samples 

with a gluten ratio of 0%, supporting our presumption. 

For the samples that are mixtures of gluten and starch, it was expected that the 

pseudo-color images would show starch granules and gluten strands on the surface of 

the samples such as the features seen in other studies [18, 19, 20, 21]. It was expected 

that areas where starch granules existed at the top surface of the sample would show a 

predicted gluten ratio close to 0 % and that these areas would decrease as the gluten 

ratio of the whole sample increased. However, specific features such as starch granules 

could not be seen in the results, even though the spatial resolution of the camera was 

high enough for their visualization. This is thought to be due to the excitation light 

penetrating into the sample, which in this case is about 2 mm thick, at a depth larger 

than the thickness of a single starch granule, and the corresponding emission light 

resulting from all the constituents which the excitation light reaches. Therefore, the 

fluorescence signal that can be detected by the CCD camera was the summated signal of 

many overlapping constituents, thereby canceling out fluorescence signals from 

micro-scale features at the top-most surface of the sample (Figure 3-8). With the current 

FF imaging system and the micro- to millimeter-scale of the sample, some kind of 

slicing process with a cryostat may be needed to observe specific features. 

 

Figure 3-8  Schematic diagram of the physical model of FF imaging. The white ovals 

and red background are starch granules and gluten, respectively. The excitation light 

penetrates into the sample, and the emissions of all the overlapping constituents are 

detected. Although there is gluten and starch on the surface for A and B, respectively, 

the summated signal observed is almost equal. Theoretical explanations of 

fluorescence and transmittance in turbid media are found in Oelkrug [22]. 

Penetration of light

A B
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3. 4. 4 Water content 

One point that should be considered in preparing the dough samples is the water 

content of gluten and starch in the dough. Gluten and starch absorb different amounts of 

water [23] but the way water is distributed between these different constituents in dough 

remains unknown. This is a problem when predicting the ratio of constituents present in 

a pixel because the FF can be affected by water content. Pure water shows no 

fluorescence, but mixing water with a fluorescent substance such as gluten would lower 

the fluorescence intensity by “diluting” it. 

The above problem can be solved if the gluten ratio could be predicted 

irrespective of water content, by selecting a suitable method of preprocessing the FF 

data or by selecting wavelength conditions that are unaffected by water content. This 

was made possible by preparing 2 or 3 samples with different water contents for each 

gluten ratio and by constructing a prediction model so that gluten ratio could be 

predicted accurately despite fluctuations in water content. Water content was adjusted so 

that the samples would show a dough-like texture; it ranged from 50% (d.b.) to 100% 

(d.b.) for the samples with gluten ratios of 0% and 100%, respectively. 

For the four pairs of pseudo-color images shown in Figure 3-7, the samples on the 

right have higher water contents than the corresponding samples on the left. However, 

this has little influence on the predicted gluten ratio. By combining FF data with PLSR, 

it was possible to create a model that could predict gluten ratio without being affected 

by the water content. 

3. 5 Conclusions 

In this chapter, an imaging method using the FF was developed to visualize the 

distribution of gluten in dough, quantitatively. To predict gluten ratio in each pixel, a 

calibration model relating the FF to gluten ratio was created from the average FF of 

samples of which the total gluten ratio was known. The calibration model was 

developed so that gluten ratio could be predicted regardless of water content and the 

optimum wavelength conditions for this purpose were selected on the basis of 

selectivity ratio.  

In this study, the dough samples were measured without creating thin sections or 

drying. This is a great advantage in visualizing delicate samples such as dough where 

the structure could easily change through preprocessing. However, it was shown that 

with thick samples, the fluorescent data contains information from all the constituents 

that the excitation light reaches, making it difficult to discern individual constituents. It 
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may be said that preprocesses should be selected depending on the objective of 

visualization and the scale of the sample. With this done, the proposed method would 

enable the distribution of constituents to be visualized using colors corresponding to 

their actual quantities or ratios.  

Furthermore, the method could be developed further for the application on real 

samples such as wheat flour-based dough or more complex foods. This would need the 

construction of a more flexible model that could incorporate unknown substances. 

Studies in the area of chemometrics are expected to be applied here. 
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4.  Visualization and quantification of gluten, starch and air 

bubble distributions in wheat flour dough 

4. 1 Abstract 

FF imaging was used to visualize the distributions of gluten, starch and air 

bubbles and their changes through mixing. Wheat flour dough was mixed up to 

three stages, i.e., under-mixing, optimum-mixing, and over-mixing, and thin 

sections of the dough were prepared with a cryotome. Fluorescence images of 

the sections were acquired in 63 combinations of excitation and emission 

wavelengths, thereby constructing the FFs of the constituents at each pixel. 

Similarity values between the FF of each pixel in the dough and those of gluten 

and starch were calculated. A pseudo-color image of gluten and starch 

distribution was created in two ways. For the first method, each pixel was 

colored by fitting a continuous color scale to the cosine similarity value to gluten 

and starch. After acquisition of FF data, the dough sample was then 

fluorescently stained for gluten and starch. The stained image showed patterns 

similar to the pseudo-color FF image, validating the effectiveness of the FF 

imaging method. In the second method, the pixels were arranged in order of 

cosine similarity to gluten and pixels with higher values of cosine similarity 

were categorized as “gluten” and the rest as “non-gluten”. The number of pixels 

categorized as “gluten” was based on the overall ratio of gluten in the dough. 

The same process was performed with the FF of starch, and all pixels were 

divided into “starch” and “non-starch”. Colors were assigned to each division, 

and the distributions of gluten and starch were visualized. 

Furthermore, quantitative parameters concerning gluten and starch distributions 

and bubble area were extracted from the dough images at each mixing stage, 

showing the homogenization of gluten and starch and the incorporation of 

bubbles with mixing. This imaging method is suggested to have an advantage 

over conventional imaging methods since there is no need to preprocess the 

sample, and any constituent in the sample can be visualized as long as there is 

information about the FF of the pure target constituent. 

4. 2 Introduction 

In this chapter, FF imaging is applied to a real food sample, wheat flour dough, 
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and the gluten and starch distributions are visualized. In real foods, it is difficult to 

create an accurate calibration model to quantify each constituent. There are two reasons 

for this: (1) it is difficult to make samples that vary largely in quantity of each 

constituent, and (2) other constituents that affect the model may exist. Therefore, a less 

accurate but more practical method was selected to analyze the FFs of each pixel, cosine 

similarity. In order to prove the validity of the imaging method, the results were 

compared to that of the conventional method, i.e., using fluorescence stains to color the 

different constituents and observing the result with optical microscopy.  

As explained in chapter 1, the structure of bread dough as it changes through the 

mixing process is one of the most intensively studied targets of optical microscopy. 

However, the two most popular methods, light microscopy and electron microscopy, 

require the sample to go through harsh preparations such as fluorescence staining, 

drying, and covering with metal coating. This takes time and requires skill to be 

performed accurately. Therefore, if visualization of these constituents could be achieved 

without staining, it would be of great impact in cereal science. 

4. 3 Structure of this chapter 

This chapter explains the methods and results of two experiments. As shown in 

Figure 4-1, the flows of the two experiments are roughly the same. In the first 

experiment, the data was expressed as color images by two methods. In the second 

experiment, the distributions of gluten, starch and bubbles in dough at different mixing 

stages were quantified after imaging.  

The bread dough samples and imaging methods used in both experiments differ 

slightly in terms of mixing times and similarity calculation methods, respectively. 

Therefore, the sample number (samples 1 and 2 for experiment 1 and 2, respectively) 

will be stated in the text.  
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Figure 4-1  Structure of this chapter 

4. 4 Materials and methods 

4. 4. 1 Sample preparation 

For both experiments, two types of samples were prepared: model bread dough of 

which the distribution of gluten and starch were studied and pure gluten and starch 

which were extracted from the dough to serve as the reference. Although the standard 

bread dough contains auxiliary material such as salt, yeast and fat, they were omitted in 

this model dough for simplification.  

To prepare the gluten and starch references in experiment 1, 1400 g of tap water 

was mixed into 2000 g of flour (Camellia, Nisshin Flour Milling Inc., Tokyo, Japan) and 

was mixed with a mixer (DTM-30, SK mixer Co., Ltd., Fujimino, Japan) for 2 min at 

110 rpm and 6 min at 225 rpm to produce dough. After a 30 min rest in water, the dough 

was carefully kneaded in water to separate gluten from starch granules and other soluble 
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substances. When the starch granules were washed away, the remaining gluten 

aggregated into a highly elastic mass which was then cut into pieces approximately 2 

cm square and of 1 cm thickness, frozen and kept at -80 ºC. The aqueous mixture 

containing starch and other soluble substances was separated into the liquid and 

sediment parts by centrifugation. The sediment divided into two layers, the upper layer, 

commonly referred to as the tailing starch, which was a mixture of starch, insoluble 

proteins and lipids, and the lower layer, referred to as the primary starch, which was 

composed of pure starch. The primary starch was carefully separated, freeze-dried and 

kept at -20 ºC. These samples of pure gluten and starch were used as reference data 

when analyzing the FF of bread dough. Photographs of the fractionation process of 

dough are shown in Figure 4-2. 
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Figure 4-2  Fractionation process.  

(A) Optimally mixed dough. (B) The dough being washed in water. The starch is washed 

away with the water while the gluten remains as an elastic mass. (C) The agglomerated 

gluten. (D) The plastic bottles set into the rotor. (E) The starch-water mixture after 

centrifugation, divided into starch and water containing soluble substances. (F) The 

freeze-dried starch. 

(A) (B)

(C) (D)

(E) (F)
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Another three batches of dough were prepared in experiment 1 to produce dough 

in the under-, optimum- and over-mixing stages. The mixing rate and time for each 

stage are shown in Table 4-1. The mixing times were determined by an experienced 

baker who watched the actual mixing process. The ingredients and preparation methods 

followed those for the dough made for the gluten and starch references. The dough was 

cut into small pieces, frozen and kept at -80 ºC. 

 

Table 4-1  Mixing times for dough at each mixing stage. The mixing speeds for low (L), 

inter-meditate (IM), mediate (M) and high (H) are 110, 225, 280 and 420 rpm, 

respectively.  

 

 

To prepare the gluten and starch references in experiment 2, dough was made by 

mixing 680 g of tap water into 1000 g of flour and kneading the mixture with a 10 L 

mixer (SK-10, SK mixer Co., Ltd., Fujimino, Japan) for 1 min at low speed, 3 min at 

middle speed, and 1 min at high speed. After a 30 min rest in water, the dough was 

carefully kneaded in water to separate gluten from starch granules and other soluble 

substances. When the starch granules were washed away, the remaining gluten 

aggregated into a highly elastic mass which was then cut into pieces approximately 2 

cm square and of 1 cm thickness, frozen and kept at -80ºC. The aqueous mixture 

containing starch and other soluble substances was poured into 500 mL tubes and set 

into a rotor (R10A3, Hitachi Koki Co., Ltd., Tokyo, Japan) and separated into the liquid 

and sediment parts by centrifugation. The mixture was centrifuged for 20 min at 7000 

rpm with a centrifugal separator (Himac CR21GIII, Hitachi Koki Co., Ltd., Tokyo, 

Japan) set at 5ºC. The sediment divided into the upper tailing starch and the lower 

primary starch. The primary starch was carefully separated, freeze-dried with a 

lyophilizer (Eyela FDU-830, Tokyo Rikakikai Co., Ltd., Tokyo, Japan) and kept at 

-20ºC.  

To make model bread dough for experiment 2, 2040 g of tap water was mixed 

into 3000 g of flour (Camellia, Nisshin Flour Milling Inc., Tokyo, Japan) and was mixed 

in a 20 L mixer (HPi-20M, Kanto Kongoki Industrial Co., Ltd., Tokyo, Japan). The 

dough was mixed for 1 min at low speed (136 rpm) to create dough in the under-mixing 

mixing stage mixing time [min]

under-mixing L3

optimum-mixing L3, IM10, M6, H1

over-mixing L3, IM10, M6, H10
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stage, another 1 min at low speed, 4 min at middle speed (248 rpm) and 2 min 30 s at 

high speed (310 rpm) to create dough in the optimum-mixing stage, and another 7 min 

at high speed to create dough in the over-mixing stage (Table 4-2). The mixing times 

were determined by an experienced baker who watched the actual mixing process. All 

the samples were made from one batch of dough and approximately 100 g of dough was 

sampled at each stage. The dough sample was cut into small pieces about 2 cm square 

and of 1 cm thickness and was frozen at -80ºC.  

 

Table 4-2  Mixing times for dough at each mixing stage. The mixing speeds for low (L), 

mediate (M) and high (H) are 136, 248, and 310 rpm, respectively. 

 

 

The frozen dough and gluten in both experiments were broken into small pieces 

with a hammer and quickly embedded in a freeze embedding agent (Tissue-Tek O.C.T. 

compound, Sakura Finetek Japan, Tokyo, Japan) before the sample melted. The sample 

was frozen at -80 ºC until the O.C.T. compound was completely fixed, transferred to a 

cryomicrotome (Leica CM1850, Leica Microsystems Japan, Tokyo, Japan) cooled to a 

temperature of -20 ºC and sliced to make thin sections approximately 5 mm square and 

of 20 m thickness. The thin sections were mounted on a glass slide (Matsunami Micro 

Slide Glass, Matsunami Glass Ind., Ltd., Osaka, Japan) and left to dry completely at 

room temperature.  

The freeze dried starch was mixed with 70% and 80% distilled water for 

experiments 1 and 2, respectively, to prepare an easily handled paste, and was 

embedded in O.C.T. compound. The sample was frozen, sliced using a cryomicrotome 

and dried, following the method for gluten and dough. However, the thin sections of 

starch were sliced to be of 15 m thicknesses, which enabled the clear observation of 

individual starch granules. 

4. 4. 2 Measurement of gluten to starch ratio in dough 

Three batches of dough were made from 50.00 g of flour (Camellia) and 32.50 g of 

distilled water. The dough was soaked in distilled water for 2 h to strengthen the 

connection of gluten. After soaking, the dough was carefully kneaded in water to 

mixing stage mixing time [min]

under-mixing L1

optimum-mixing L2, M4, H2.5

over-mixing L2, M4, H9.5



Chapter 4 

 

85 

 

separate gluten from starch granules. The retrieved gluten was removed of excess water 

on the surface and then weighed. The water with the precipitated starch granules were 

poured into eight centrifuge tubes (50 mL) for each batch of dough and centrifuged for 

10 min at 7000 rpm. The water was drained for 30 min and the precipitated starch was 

weighed. Both gluten and starch were weighed in a wet state. 

4. 4. 3 Image acquisition 

The samples were set under the FF imaging system and the spatial FF data was 

acquired. Image acquisition was performed at room temperature. Gluten, starch and 

dough samples in the three mixing stages were acquired for experiment 1. In experiment 

2, three sets of spatial FF data were acquired for dough in each mixing stage, using 

samples from a different piece of frozen dough each time in order to evaluate the 

differences in gluten and starch distribution between different parts of the same batch. 

Two sets of spatial FF data were acquired for both gluten and starch.  

The excitation and emission wavelengths used ranged from 260 nm to 320 nm 

and from 370 nm to 450 nm respectively, at 10 nm intervals. These 7 excitation 

wavelengths and 9 emission wavelengths were combined to make 63 wavelength 

conditions.  

The exposure time of the camera was set at 1.0, 5.0 or 10 s, depending on the 

fluorescence intensity of the sample under the specific light condition. The exposure 

times for each wavelength condition are shown in Table 4-3. The exposure times were 

fixed throughout all samples. 

Table 4-3  Exposure times [s] for each wavelength condition 

 

Excitation Wavelength (nm)

260 270 280 290 300 310 320

Exposure times [s]

Emission
Wavelength 

(nm)

370 10.0 10.0 10.0 10.0 10.0 10.0 10.0

380 1.0 10.0 1.0 1.0 5.0 5.0 5.0

390 1.0 10.0 1.0 1.0 5.0 5.0 1.0

400 1.0 10.0 5.0 1.0 5.0 1.0 1.0

410 5.0 10.0 5.0 5.0 1.0 1.0 1.0

420 5.0 5.0 5.0 5.0 1.0 1.0 1.0

430 5.0 5.0 5.0 1.0 1.0 1.0 1.0

440 5.0 5.0 5.0 1.0 1.0 1.0 1.0

450 5.0 5.0 1.0 1.0 1.0 1.0 1.0
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The set of fluorescence images was taken using 2 × 2 binning. Binning is the 

combination of multiple (in this case, four) CCD image sensor pixels to improve 

signal-to-noise-ratio and enhance sensitivity to lower light levels. Figure 4-3 shows an 

image diagram of 2 × 2 binning. As a result of binning, the size of the images was 

reduced from 1112 × 1344 pixels to 556 × 672 pixels. The data was stored as a 12-bit 

image, in which fluorescence intensity was expressed in 4096 levels. 

 

 

Figure 4-3  Image diagram of 2 x 2 binning  

The light intensities of 4 pixels in the original image (left) are summed to make 1 pixel 

in the binning image (right). The spatial resolution is sacrificed while a brighter image 

with better S/N ratio is obtained.  

 

The fluorescence images contained dark noise, which is the accumulation of the 

heat-generated electrons in the sensor. Since the dark noise is highly repeatable as long 

as the temperature and exposure time do not vary, it is possible to eliminate the noise by 

subtracting the ‘dark image’ from the raw data [1, 2]. The dark image was acquired by 

closing the camera shutter and covering the lens with aluminum foil so that no light 

enters through the lens. The exposure time was set at 1.0, 5.0 and 10 s to match the 

exposure time for FF measurement and four images were averaged for each exposure 

time. 

4. 4. 4 Analysis of FF data and image processing 

The data processing can be summarized into three steps: position alignment of the 

FF images, masking the bubble areas, and assignment of a color to each pixel according 
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to the similarity between the FF of each pixel and that of gluten or starch. The analysis 

and image processing were carried out using versatile numerical analysis software 

(MATLAB, The MathWorks, Inc., Massachusetts, USA) and image processing software 

(ImagePro, Media Cybernetics, Inc., Maryland, USA). 

The 63 fluorescence images acquired using the FF imaging system needed to be 

spatially aligned so that the corresponding pixels in each image all matched a single 

point in the sample. Fine adjustments were needed, as the measuring device tended to 

move when the filters were changed, resulting in images where a pixel in one image did 

not necessarily match the corresponding one in another.  

In experiment 1, this process was performed by selecting the same three points on 

each fluorescence image and using the image registration tools in MATLAB to align the 

images on the basis of the selected points. To reduce computational load, a region of 

256 × 336 pixels was selected for further analysis. 

In experiment 2, position alignment was done following the method proposed by 

Gonzalez, Woodset al. [3]. As in Figure 4-4, the normalized cross-correlation between 

the base image (the image acquired in wavelengths 260 and 370 nm for excitation and 

emission) and the input images (all the other images acquired in different wavelength 

conditions) was calculated while shifting the "template", a part of the input image (41 × 

41 pixels), in x- and y-directions. The point where the normalized cross-correlation 

showed the maximum value would be the position where the two images “most 

matched”. The normalized cross-correlation is calculated by equation (1). 

 

 γ(𝑢, 𝑣)

=
∑ [𝑏(𝑥, 𝑦) − 𝑏𝑢,𝑣

̅̅ ̅̅ ̅][𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅]𝑥,𝑦

{∑ [𝑏(𝑥, 𝑦) − 𝑏𝑢,𝑣
̅̅ ̅̅ ̅]

2
∑ [𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅]2

𝑥,𝑦𝑥,𝑦 }
0.5 … (1)  

 

(u, v) is the normalized cross-correlation which is a function of the position of 

the template on the base image. b is the base image, t is the template and 𝑏𝑢,𝑣
̅̅ ̅̅ ̅ is the 

mean of b in the region under the template. 
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Figure 4-4 Image diagram of position alignment process 

(A) base image and (B) input image and template (broken line). (C) The template is 

superimposed on the base image and shifted in x- and y-directions while calculating 

the normalized cross correlation value between the base image and the template. (D) 

The position where the template best matches the base image (broken line) is where 

the normalized cross-correlation shows the maximum value and the position of the 

input image (dotted line) is determined accordingly. 

 

After using this method to roughly align each image, an image registration function 

in MATLAB was used to tune the position so that the image alignment would be 

accurate to one tenth of a pixel. The fringe parts that were out of view in some of the 

fluorescence images were deleted, leaving a rectangular area of 478 × 636 pixels for 

image analysis. 

The samples contained small air bubbles, which appeared as holes when the 

samples were sliced. These areas showed a weak fluorescence response and the data 

contained noise that was thought to lead to a decrease in the precision of analysis if 

included in the data. Therefore, a masking process based on linear discrimination 

analysis was performed prior to FF data analysis to leave out the pixels in the bubble 

area from the calculations. The same method was used in experiments 1 and 2. Since the 

bubble areas show weaker fluorescence than the sample areas, the absolute value or the 

(A) (B)

(C) (D)
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Euclidean norm of the FF vector was used as the variable for discrimination. The 

absolute value of the FF vector is defined by equation (2). 

 

 abs = |𝑋|

= √(𝑥1)2 + (𝑥2)2 + ⋯ + (𝑥𝑛)2 
… (2)  

 

Areas that were clearly inside the bubble areas or inside the sample areas were selected 

from the original fluorescence image to create the training set. The training set is a set 

of data of known class from which the discriminant function is calculated. Care was 

taken to select pixels that were clearly inside the bubble areas or inside the sample areas, 

leaving out the borders to be classified using the discriminant function. Every pixel of 

the image, including the pixels used to make up the training set, was classified using the 

discriminant function into the “bubble area” or “sample area”. A diagram of this 

masking process is shown in Figure 4-5.  

 

 

Figure 4-5  Bubble masking process. The red and green squares are the areas which 

Training set

Calculation of 
Discriminant function

Bubble area Sample area

Application to 
original image

Mask image (white = bubble area)
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clearly represent bubbles and dough areas, respectively. These pixels were used to 

create the training set from which the discriminant function was calculated. 

 

The acquired set of fluorescence images was a four-dimensional data, with two 

axes assigned to the fluorescence spectrum (excitation and emission wavelength) and 

the other two assigned to the special plane (the x-and y-position). As shown in Figure 

4-6, this data matrix of dimension 7×9×256×336 was “unfolded” by combining the 

two spectral modes and the two spatial modes so that a matrix of dimension 63 

wavelengths×86016 pixels was obtained.  

 

 

Figure 4-6  Unfolding process of fluorescence fingerprint data. The spatial data (A), 

initially expressed as a X×Y matrix, is unfolded into a 1×XY vector. Similarly, the 

spectral data (B) is unfolded into a 1×KL vector when the number of emission and 

excitation wavelengths is K and L, respectively. 
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The objective of the data analysis was to extract information on the proportion of 

gluten or starch at each point of the dough sample, because monitoring the areas 

showing a high proportion of gluten or starch would result in the visualization of the 

distributions of these components. The hypothesis was that the degree of similarity 

between the FF pattern of a particular area and the FF of pure gluten would correlate 

with the actual proportion of gluten in the area. An FF pattern similar to that of pure 

gluten would suggest a high proportion of gluten and likewise of starch. 

In experiment 1, a simple index explaining the similarity of two multidimensional 

vectors, i.e., the value of cosine similarity, was introduced to measure the similarity 

between the FF of each pixel in the dough sample and the FF of pure gluten or starch. 

The cosine similarity of two vectors is defined by equation (3). 

 

 similarity = cos 𝜃 = X ∙ Y (|X| ∗ |Y|)⁄  

X ∙ Y = 𝑥1 ∗ 𝑦1 + 𝑥2 ∗ 𝑦2 + ⋯ + 𝑥𝑛 ∗ 𝑦𝑛 

X = [𝑥1, 𝑥2, … , 𝑥𝑛], Y = [𝑦1, 𝑦2, … , 𝑦𝑛] 

… (3)  

 

The variables x1, x2,…xn and y1, y2,…yn are the fluorescence intensities of the sample 

and the target constituent, respectively, under consecutive wavelength conditions (𝑛 =

3). The target constituent in this case is gluten or starch. The cosine similarity takes 

values between -1 (exactly opposite) and 1 (exactly the same), with 0 indicating 

independence. A large value of cosine similarity between the FF vector of a pixel and 

the FF of pure gluten would indicate the high ratio of gluten in the area corresponding 

to the pixel and likewise of starch. 

The value of cosine similarity was calculated between the FF vector of each pixel 

in the dough sample and the average FF of gluten and starch. The average FF of gluten 

and starch, defined by the average fluorescence intensity of all the pixels in each sample 

excluding pixels in the bubble area were used for the calculations, since the gluten and 

starch were not completely homogeneous.  

After the cosine similarity between the FF of each pixel of the sample images and 

that of pure gluten or starch was calculated, the cosine values were converted into color 

indices through a color scale, and a pseudo color image was constructed. The calculated 

values of cosine similarity to gluten and starch were converted to shades of red and 

green, respectively, through a color axis. The color axis for the value of cosine similarity 

to gluten consisted of colors with consecutive values in the red channel of the RGB 

color coordinate system, with the green and blue values set to 0. The color axis for the 

cosine similarity to starch had consecutive values in the green channel, with red and 
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blue values set to 0. The maximum and minimum values of cosine similarity 

corresponding to the range of the color axes were set so as to optimize the contrast 

between the pixels of the dough image.  

A color was assigned to every pixel in the dough, gluten and starch images 

according to the calculated value of cosine similarity and the corresponding color axis. 

The images in shades of red and green representing the values of cosine similarity to 

gluten and starch, respectively, were composited to obtain a pseudo color image. Finally, 

the pixels classified to be in the bubble area were masked in black. 

In experiment 2, the spectral angular mapper (SAM) algorithm which uses the 

"angle" value between two vectors as an index of similarity was applied to the FF data. 

The angle between two vectors is defined by the arccosine value of the cosine similarity, 

and takes values between 0 (exactly the same) and - (exactly the opposite). The angle 

value was used in this study instead of the cosine similarity value used in chapter 4, 

because the angle value was more sensitive than the cosine value in ranges where the 

sample vector was similar to the reference vector, i.e. when the angle was close to 0 

degrees.  

The angular values were converted into color indices through a color scale, and a 

pseudo color image was constructed. The angular value to gluten was converted into 

shades of red while the angular value to starch was converted into shades of green. In 

this way, a color was assigned to every pixel in the dough, gluten and starch images 

according to the calculated angular value and the corresponding color axis. The images 

showing the angular values to gluten and starch were composited to obtain a pseudo 

color image. Finally, the pixels classified to be in the bubble area were masked in black. 

4. 4. 5 Creating the stained image 

To validate the pseudo color image obtained by FF imaging, the exact same area 

of the same dough sample was stained with fluorescence dyes for gluten and starch 

immediately after spatial FF data acquisition. This procedure was performed in 

experiment 1 only. A mixture of rhodamine B and fluorescein isothiocyanate (FITC) 

(0.1% and 1.0% w/v, respectively) in dimethylformamide was used for the noncovalent 

labeling of gluten and starch, respectively. The staining process was carried out in a 

dark room to prevent color degradation, and the staining time was 40 min. The stained 

dough sample was washed with distilled water and sealed with glycerol (Kishida 

Chemical Co., Ltd., Osaka, Japan) prior to the observation. The staining methods and 

conditions conformed to those used in previous studies using these two fluorescence 

stains to visualize gluten and starch [4, 5, 6, 7, 8, 9].  
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The stained dough was observed using fluorescence microscopy (BZ-8100, 

KEYENCE Japan) at excitation/emission wavelengths 470 nm/535 nm for FITC and 

540 nm/605 nm for rhodamine B. The images were loaded into analysis software, the 

contrast was enhanced and the two images were composited to obtain a stained image. 

 

4. 4. 6 Quantification of the distributions of gluten and starch 

Quantification calculations were performed in experiment 2 only. In order to 

evaluate and quantify the distribution of gluten and starch and its differences between 

each mixing stage, a parameter concerning the evenness of the distribution was 

extracted. This parameter was calculated with the following algorithm. First, each image 

was divided into squares whose length and width was k pixels (k = 1, 2,…) and the ratio 

between the sum of angular value to gluten and starch was calculated for each square. 

The ratio for the m th square was calculated with equation (4). 

 

 ratio𝑚 =
∑ 𝜃m𝑖glu

𝑘2

𝑖=1

∑ 𝜃𝑚𝑖str
𝑘2

𝑖=1

 … (4)  

 

𝜃𝑚𝑖_glu and 𝜃𝑚𝑖_gluare the angular values between the FF of the i th pixel (i = 1, 2,…, 

k2) inside the m th square and the FF of starch and gluten, respectively. Secondly, the 

standard deviation of ratiom (m = 1, 2,…) was calculated. As shown in Figure 4-7, in an 

image where the distribution of gluten and starch is uneven (A), the ratio between 

gluten and starch varies within each square, i.e., the standard deviation of ratiom shows a 

large value. Conversely, if the distribution of gluten and starch is fairly even (B), the 

standard deviation of ratiom becomes smaller. As the size of each square becomes larger 

(k takes a larger value), the standard deviation should become smaller. 
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Figure 4-7  Diagram explaining the evenness of gluten and starch distributions 

 

4. 4. 7 Quantification of the distribution of bubbles 

The properties of the bubble areas were evaluated by the total bubble area, the 

distribution of the area of each individual bubble and the eccentricity of the shape of 

each bubble. 

To look into the properties of individual bubbles, a function in MATLAB was used 

to perform “connected-component labeling”, a process of labeling connected 

components in an image. Two pixels were defined to be “connected” if their edges 

(A) (B)

(C) (D)
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touched, meaning they were connected along the horizontal or vertical direction, but not 

if they were connected along the diagonal direction (Figure 4-8). By examining the 

number of connected components detected and several parameters of these connected 

components, the difference between the three mixing stages was shown. 

 

 

Figure 4-8  Image diagram of a connected-component 

The red ellipses are the connected components. 

 

Furthermore, the geometric properties of the bubbles were considered by 

calculating the ratio of the major axis length to its minor axis length. This value was 

calculated by defining an ellipse with the same second-moments as the region. Ellipses 

whose ratio of major axis length to minor axis length range from 10:1 to 10:9 are shown 

in Figure 4-9. 

 

 

Figure 4-9  Ellipses with different ratios of major axis and minor axis 
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4. 5 Results and discussion 

4. 5. 1 Ratio of gluten to starch in dough 

The average ratios of gluten to starch were 20.52% and 79.48%, respectively. The 

reproducibility between the three batches of dough was good, the standard deviation 

being 0.35%. These values agree with the literature values [10]. 

The water contents of the retrieved gluten and starch were 64.8% and 50.7%, 

respectively. The standard deviations were 0.64% and 1.0% for gluten (three samples) 

and starch (five samples), respectively. Since gluten and starch absorb different amounts 

of water [11], the ratio of gluten to starch would be different between wet and dry states. 

In this study, the visualized dough sample existed in a wet state. Therefore, the retrieved 

gluten and starch were measured without force-drying the samples. 

4. 5. 2 Pseudo color images 

Sections 4.5.2 to 4.5.6 show the results for experiment 1. Figure 4-10 shows the 

pseudo color images of gluten, under-mixed dough and starch, colored according to the 

cosine similarity. Naturally, the pixels in the gluten sample showed a high similarity to 

the average FF of gluten and a low similarity to that of starch, and the pixels in the 

starch sample showed a high similarity to the average FF of starch and a low similarity 

to that of gluten. Regarding the dough sample, areas that showed high gluten and starch 

contents were highly complementary. 
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Figure 4-10  Pseudo color images of gluten, dough and starch.  

Images of gluten, dough and starch are colored according to the value of cosine 

similarity between the FF of each pixel and the average FFs of gluten (A) and starch (B). 

The color axis follows the colors of the fluorescent images taken at wavelengths of 605 

[nm] and 535 [nm] for gluten and starch, respectively. The bright red areas in the 

dough image (A) and the bright green areas in the dough image (B) suggest the 

existence of gluten and starch, respectively.  

 

4. 5. 3 Comparison with the stained image 

Figure 4-11 shows a pseudo color FF image and a stained image of the same 

dough sample. The pseudo color FF images based on the cosine similarity to those of 
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gluten (A) and starch (B) showed similar patterns to the fluorescence images stained 

with a rhodamine B (C) and FITC (D), respectively. The composite image in pseudo 

color (E) showed clear correspondence with the composite stained image (F), thereby 

validating the applicability of the FF imaging method.  

 

 

Figure 4-11  Pseudo color image (E) and stained image (F) of dough at under-mixing 

stage 

(A) and (B) are the images colored according to the value of cosine similarity between 

the FF of each pixel and those of gluten and starch, respectively. (A) and (B) were 

composited, and the air hole areas were masked to produce (E). (C) and (D) are images 

taken after staining the sample with a liquid mixture of rhodamine B and FITC, which 

color gluten and starch, respectively. (C) was taken at 605 [nm] and shows the areas 

stained with rhodamine B, while (D) was taken at 535 [nm] and show the areas stained 

with FITC. (C) and (D) were composited to produce (F). Similar patterns can be seen in 

(E) and (F), validating the applicability of the FF imaging method. 

 

Further studies were carried out to compare the pseudo color image obtained from 

the spatial FF data and the stained image. For the stained image, rhodamine B and FITC 

were used to visualize the distributions of gluten and starch, respectively. However, 

some areas stained with FITC overlapped with the areas stained with rhodamine B. On 
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Image Composition
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the other hand, in the FF pseudo color image, the areas with a high value of cosine 

similarity to gluten and starch seemed highly complementary.  

To confirm this observation, the luminance of pixels in the dough stained with 

FITC was plotted against the luminance of the same pixels stained with rhodamine B. 

Similarly, the cosine similarity values to starch were plotted against the similarity values 

to gluten. (A) and (B) in Figure 4-12 show the difference in the distribution pattern 

between the stained image and the FF pseudo color image in a scatter plot of 500 

randomly selected pixels. The pixels in the stained image are evenly distributed in the 

coordinate plane, whereas the pixels in the FF pseudo color image show a tendency to 

be plotted along a down-ward sloping curve. This trend was more clearly observed 

when the values of fluorescence intensity and cosine similarity were standardized and 

shown in a new coordination system where the point of origin was set to the mean value 

(Figure 4-13). The top-right quadrant was numbered as the first quadrant, the top-left as 

the second, and so on in anti-clockwise order. Pixels falling in the second or fourth 

quadrant would mean that the fluorescence or cosine similarity values were high for 

gluten and low for starch or vice-versa. In short, if there were many pixels falling in the 

second or fourth quadrants, it would mean that the distributions of gluten and starch 

were complementary. As can be seen from Figure 4-13, the pixels in the stained image 

are evenly distributed in the coordinate plane, whereas the pixels in the FF pseudo color 

image are mainly distributed in the second or fourth quadrant. The same analysis was 

performed using all the pixels in the stained and cosine similarity images. The numbers 

of pixels falling in the first to fourth quadrant are shown in Figure 4-14. The data show 

that in the FF pseudo color image, a pixel showing a high value of similarity to gluten 

tends to show a low value of similarity to starch, and vice versa. However, in the stained 

image, there are many pixels with high luminance for both FITC and rhodamine B, 

supporting the observation that the areas stained with FITC overlap with the areas 

stained with rhodamine B.  



Chapter 4 

 

100 

 

 

Figure 4-12  Analysis of the degree of complementation between gluten and starch 

in under-mixed dough  

(A) Fluorescence intensities of 500 randomly picked pixels at emission wavelengths of 

535 [nm] for FITC and 605 [nm] for rhodamine B plotted against each other. (B) Value 

of cosine similarity to starch plotted against the value of cosine similarity to gluten for 

500 randomly picked pixels. 
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Figure 4-13  Graphs shown in Figure 4-12 with standardized x- and y-axes  

The coordinate space was divided into the first to fourth “quadrant” by the mean 

value. 
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Figure 4-14  Number of pixels falling in each quadrant 

The pixels in the stained image are evenly plotted while the pixels in the FF image are 

grouped in the second and fourth quadrant.   

 

FITC itself has a strong reactive potential with the amino group, and rhodamine B 

can stain starch in the absence of proteins [9]. It seems that the optimal balance of 

concentration between rhodamine B and FITC, in which the two stains color gluten and 

starch selectively is difficult to achieve. It is natural to assume that gluten and starch are 

distributed separately in the actual dough, so this suggests that the FF pseudo color 

image more closely represents the actual condition. 

4. 5. 4 Pseudo color images of dough in three mixing stages 

Figure 4-15 shows the pseudo color FF images of dough in the under-mixing 

stage (A), optimum-mixing stage (B) and over-mixing stage (C). The agglomerated 

gluten which could be observed in the under-mixing stage broke up slightly in the 

optimum-mixing stage. However, the difference was more distinct between the 

optimum- and over-mixing stages as the agglomerated gluten broke up completely and 

formed a homogeneous structure with starch. The dough images in each mixing stage 

were in agreement with the findings of other researchers [7, 12, 13, 14, 15]. The 

significant change in the structure of gluten between the optimum- and over-mixing 

stages also corresponded to observations by Amend and Belitz [12].  
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Figure 4-15  Pseudo color images of dough in under-mixing (A), optimum-mixing (B) 

and over-mixing (C) stages 

For each image, two images colored according to the value of cosine similarity between 

the FF of each pixel and that of gluten or starch were composited. Bright red and green 

areas are the pixels showing high values of similarity to gluten and starch, respectively, 

and the black areas are air holes. 
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As shown in (A) to (F) in Figure 4-16, the values of cosine similarity to gluten 

and starch changed between the optimum-mixing stage and the over-mixing stage and 

became much lower in the over-mixing stage. The cosine similarity range assigned to 

the color axes was altered to optimize the contrast in each image, because using the 

same range for all three images would result in flattened out images, where fine 

distributions would be indistinguishable. Therefore, the actual cosine similarity values 

of the red and green pixels in the over-mixed dough are well under those of the same 

colored pixels in the optimally mixed dough.  

 

 

Figure 4-16  Histograms of values of cosine similarity  

(A) Cosine similarity between under-mixed dough and gluten. (B) Under-mixed dough 

and starch. (C) Optimally-mixed dough and gluten. (D) Optimally-mixed dough and 
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starch. (E) Over-mixed dough and gluten. (F) Over-mixed dough and starch. The 

distributions are shown with center values ranging from 0.75 to 1.00 at 0.01 intervals. 

 

The adjustment of cosine similarity range assigned to the color axes is convenient 

to understand the distribution of constituents qualitatively, but introduces subjectivity 

into the imaging method because there is no strict rule regarding how to match values of 

cosine similarity to a color. Therefore, another method of assigning colors to each pixel 

was formulated, and will be explained in the next section.  

 

4. 5. 5 Visualization of distributions of gluten and starch with 

consideration of gluten to starch ratio 

The value of cosine similarity between the FF of a pixel in the dough sample and 

the FF of gluten (or starch) can be interpreted as the possibility of gluten (or starch) 

actually existing in the area. This means that the larger the value of cosine similarity, the 

higher the possibility of existence.  

Figure 4-17 shows the cosine similarity image of dough in the under-mixing stage, 

and the histogram of cosine similarity values. Considering the ratio of gluten to starch 

obtained from the fractionation experiment (20.52% to 79.48%), 20.52% of pixels with 

a higher value of cosine similarity to gluten were labeled as “gluten” and the rest, 

“non-gluten”. Similarly, 79.48% of pixels with a higher value of cosine similarity to 

starch were labeled as “starch” and the rest, “non-starch”. The “gluten” and “non-gluten” 

pixels were colored in red and dark red, respectively. The “starch” and “non-starch” 

pixels were colored in light and dark green, respectively.  
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Figure 4-17  Cosine similarity images of dough in the under-mixing stage, and 

histograms of cosine similarity values. The red and green images show cosine similarity 

values to gluten and starch, respectively. By considering the gluten to starch ratio of 

the dough, pixels were divided into “gluten” or “non-gluten”, and “starch” and 

“non-starch”. 

 

For each pixel, there are four possible combinations, as can be seen in Figure 4-18: 

“non-gluten” and “non-starch”, “non-gluten” and “starch”, “gluten” and “non-starch”, 

and “gluten” and “starch”. The colors chosen for each combination are shown in Figure 

4-18. These were determined by assigning channels R and G of the RGB color 

coordinate system to gluten and starch, respectively, and setting “gluten” or “starch” to 

255, and “non-gluten“ or “non-starch” to 64 (0.25*255). The value of 0 was saved for 

bubble areas. Channel B was set to 0.  
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Figure 4-18  Combinations of “gluten” or “non-gluten”, and “starch” or “non-starch”, 

and the resulting colors. Each pixel was assigned a category based on the cosine 

similarity to gluten and starch, and colored accordingly. 

 

Figure 4-19 shows images of the dough in the under-, optimum-, and over-mixing 

stages. The orange areas show a high similarity to gluten and a low similarity to starch, 

suggesting the existence of gluten. The green areas show an opposite tendency, 

suggesting that starch exists at that point. The yellow areas show a high similarity to 

both gluten and starch, probably showing that both constituents exist in nearly equal 

amounts. The dark green areas that show low similarities to both gluten and starch also 

suggest a mixture of gluten and starch. These areas may also be other constituents that 

show a relatively strong but different fluorescence pattern from gluten and starch such 

as particles of the aleurone layer [16].  
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Figure 4-19  Images dough in the (a) under-, (b) optimum-, and (c) over-mixing 

stages. 

 

Since the resolution of the images is limited, and features that are smaller than a 

pixel cannot be visualized, thin strands of gluten, which surround starch granules [12] 

cannot be observed in the images. However, the magnification and resolution of the 

images can be altered by changing the magnification of the objective lens and binning 

parameters of the CCD camera, and more detailed images may be acquired in future 

studies. 

4. 5. 6 Quantification of changes in dough through mixing 

The gluten particles (orange) that can be seen in the under-mixing and 

optimum-mixing stages almost disappear in the over-mixing stage. On the contrary, the 

yellow areas increase significantly. These observations were confirmed by calculating 

the number of pixels falling in each category for each mixing stage. 

Figure 4-20 shows the number of pixels in each category throughout the three 

mixing stages. There is a significant change in the number of pixels falling in each 

category from the optimum-mixing stage to the over-mixing stage: the orange and green 

pixels decrease, while the yellow and dark-green pixels increase in number. Bubble area 

also increases.  
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Figure 4-20  Number of pixels in each category throughout the three mixing stages. 

A significant change in the distribution pattern can be observed between the optimum- 

and over-mixing stages. 

 

The decrease in the numbers of orange and green pixels and the increase in the 

numbers of yellow and dark-green pixels suggest that the gluten breaks up into small 

pieces in the over-mixing stage and mixes with starch granules so that in most of the 

pixels there is a mixture of gluten and starch. The breaking up of gluten with excessive 

mixing has been observed by SEM [12].  

The threshold values of cosine similarity that divide gluten from non-gluten and 

starch from non-starch changed markedly from the optimum-mixing stage to the 

over-mixing stage. The threshold values for gluten are 0.9915 and 0.9894 for the under- 

and optimum-mixing stages, respectively, but these values decrease to 0.8697 in the 

over-mixing stage. Similarly, the threshold values for starch are 0.9301 and 0.9261 for 

the first two mixing stages, respectively, but are 0.8016 in the over-mixing stage. This 

suggests that, in the over-mixing stage, gluten and starch themselves are altered from 

the gluten and starch fractionated from the optimally mixed dough.  

4. 5. 7 Pseudo color images of dough in experiment 2 

Figure 4-21 shows the pseudo color images of dough in the three mixing stages, 

under, optimum and over, colored according to the angular value between the FF of 

each pixel and the average FFs of gluten and starch, respectively. The areas in red and 

green are the areas with a high proportion of gluten and starch, respectively. 
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Figure 4-21  Pseudo color images of dough in three mixing stages. (A) Under-mixing 

stage, (B) Optimum-mixing stage and (C) Over-mixing stage. Red, green and black areas 

correspond to gluten, starch and bubbles, respectively. 
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It can be seen that the gluten and starch distribution is heterogeneous in the 

under-mixing stage, but becomes more homogeneous or more “even” in the optimum- 

and over-mixing stages. This evenness of gluten and starch does not seem to change 

much from the optimum-mixing stage to the over-mixing stage. 

The over-mixing stage is distinctive in that the area of bubbles (the areas shown 

in black) is much larger than the other stages. Many large bubbles can be observed, 

some with a diameter of over 200 m. The dough in the under-mixing stage contains 

few of these big, circular bubbles and the black areas which exist mainly on the border 

between the starch the gluten are small and of an irregular shape. 

These observations needed to be confirmed by extracting quantitative parameters 

from the pseudo color images. 

 

4. 5. 8 Quantitative analysis on the distributions of gluten and starch 

Figure 4-22 shows a graph explaining the evenness of gluten and starch in the 

under-, optimum- and over-mixing stages. As the length of the square becomes longer, 

the standard deviation of the ratio between gluten and starch existence in the square 

becomes smaller but the standard deviation value is always higher in the under-mixed 

dough, i.e., the distribution is more uneven. There is no significant difference between 

the standard deviation value for the dough in the optimum and over-mixing stages, 

showing that the evenness of the distribution of gluten and starch does not change after 

the optimum-mixing stage. 

 

 

Figure 4-22  Evenness of gluten and starch distributions in the three mixing stages 
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The standard deviation is calculated from three samples in each mixing stage, which is 

the reason why the value for the under-mixing stage remains quite high even when the 

length of the square becomes longer. 

 

4. 5. 9 Quantitative analysis of the size and morphology of bubbles 

Total bubble area is the number of pixels classified as “bubble area”. Figure 4-23 

shows the ratio of total bubble area to the total image area. The values for each sample 

shown in the bar graph and the average value for each mixing stage are shown with an 

asterisk.  

A noticeable aspect in the under-mixing stage is that the second sample shows a 

much higher ratio value than the other two samples. The average bubble ratio value of 

the other two samples was calculated and shown in the graph with a “+” sign. If this 

sample were to be excluded, it could be said that the area of bubbles increases 

significantly from the under-mixing stage to the optimum-mixing stage. This supports 

previous studies showing that one of the main functions of mixing is the incorporation 

of air nuclei [17]. On the other hand, this sample may indicate that the condition of the 

dough in the under-mixing stage varies greatly from place to place and that more mixing 

is needed to produce dough in which the bubbles are distributed evenly.  

The total bubble area in the over-mixed dough was significantly higher than the 

other two mixing stages, conforming the observation from the pseudo color image. 

From this data, two possibilities can be derived: 1) that new air is being incorporated 

into the dough, and 2) that small bubbles below the resolution of the FF images are 

being integrated to form bigger bubbles, resulting in a seeming increase in bubble area. 
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Figure 4-23  Total bubble area ratio of dough in the three mixing stages 

 

Furthermore, in order to verify the results shown in エラー! 参照元が見つかり

ません。, the specific volume of dough in the three mixing stages was measured. The 

specific volume 𝑣[cm3 g⁄ ] is calculated by dividing the volume V [cm3] by the weight 

m [g]. If more bubbles are incorporated in the dough, the volume would increase while 

the weight would remain the same, i.e., the specific volume would increase.  

The volume of the sample was calculated by measuring the buoyancy of each 

sample when the sample was completely submerged in water. The dough sample was 

suspended to a spring scale with a fine thread and the weight measured (𝑚0 [g]). Next, 

the dough sample was completely submerged in water and the weight measured 

(𝑚1 [g]). The buoyancy of the sample, 𝐹𝑏  [N] is calculated from the difference 

between 𝑚0 and 𝑚1 

 

 𝐹𝑏 = (𝑚0 − 𝑚1)𝐠 … (5)  

 

where g [N·m2/kg2] is the gravitational constant. The buoyancy of a sample is equal to 

the gravitational force on water with the same volume as the sample. The gravitational 

force, 𝐹𝑔 [N] is expressed as 

 

 𝐹𝑔[N] = 1[g/cm3] × 𝑉[cm3] × 𝐠[N/g] … (6)  

 

where V [cm3] is the volume of the dough sample. From equations (3) and (4), V [cm3] 

0

0.05

0.10

0.15

0.20

0.25

under-mixed
dough

optimum-mixed
dough

over-mixed
dough

To
ta

l B
u

b
b

le
 A

re
a

 R
a

ti
o

 

 

data1

data2

data3

data4

data5

data7

data8

 

 

data1

data2

data3

data4

data5

data7

data8

average value

average value
(excluding sample 2)



Chapter 4 

 

114 

 

can be calculated as 

 

 𝑉[cm3] = (𝑚0 − 𝑚1) × 1[g/cm3] … (7)  

 

Assuming that the dough does not absorb water during measurement, the volume of the 

sample can be measured in this way. 

Figure 4-24 shows the specific volume of dough in the three mixing stages. Four 

samples were measured for each mixing stage. It can be seen that the specific volume 

increases significantly as the dough is mixed, verifying the results shown from the FF 

pseudocolor images. The results also show that new air is actually incorporated into the 

dough as the dough is mixed, turning down the possibility that the increase in bubble 

area is only the result of the integration of small air bubbles below the resolution of the 

FF images. 

 

 

Figure 4-24  Specific volume of dough in the three mixing stages 

 

Furthermore, this data supports the assumption that the bubble area ratio 

calculated from a two-dimensional image can sufficiently predict the bubble volume 

ratio in three-dimensional space. In a study on pore volume in concrete, Neithalath et al. 

[18] compared the pore area ratio calculated from the cross section of a concrete sample 

with the pore volume ratio of the same sample and found that the two ratios correlated 
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significantly. Although the samples measured for the image and the specific volume are 

different parts of the same batch of dough, this result indicates that complicated 

measurement in three-dimensional space may be substituted with a more straight- 

forward measurement in two-dimensional space. 

Figure 4-25 shows the accumulative bubble area plotted against the area of 

independent bubbles for the three mixing stages. The accumulative bubble area is 

calculated by adding up the area of the bubbles falling into each area category. The 

graph shows that the dough in the under-mixing stage contains many small bubbles 

which account for a large proportion of the total bubble area. As the mixing proceeds, 

these small bubbles seem to be integrated to form larger bubbles. When the dough is 

mixed past the optimum-mixing stage, the number of small bubbles increases once more. 

The over-mixed dough also contains a large number of big bubbles which add up to the 

high ratio of bubble area shown in Figure 4-23. 
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Figure 4-25  Histogram of the bubble area in the three mixing stages 

The vertical axis shows the product of individual bubble area and number of bubbles 

showing the degree of contribution to the total bubble area. 
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The eccentricity of the bubbles in the dough of the three mixing stages is shown 

by the ratio of the major axis to the minor axis. Because the total number of bubbles 

differs among the three mixing stages, the actual number of bubbles within each 

eccentricity range is divided by the total number and is shown as a percentage. The 

fraction of bubbles whose ratio of major axis to minor axis is in the range of 10:5 to 

10:3 is especially large in the under-mixing stage, followed by the over-mixing stage. 

Conversely, the proportion of bubbles whose major to minor axis ratio is from 10:10 to 

10:7 is highest in the optimum-mixing stage. This shows that the shapes of the bubbles 

in the optimum-mixing stage are close to a circle, or when viewed three-dimensionally, 

a sphere while the bubbles in the under- and over-mixing stages are elongated or of 

irregular shapes. 

 

 

Figure 4-26  Eccentricity of bubbles and their ratio to the total number 

4. 5. 10 Discussion 

The FF imaging method overcomes several problems with conventional 

microscopic methods, especially preprocesses such as staining in light microscopy and 

drying or freezing in electron microscopy. The main problem with these preprocesses is 

that it always involves the risk of chemical or physical sample alteration. For example, 
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in this study, thin dough sections were stained after spatial FF data acquisition. In this 

process, the thin sections were vulnerable to soaking and rinsing with liquids and 

needed careful handling to keep the samples from separating from the slide glass. The 

FF imaging method eliminates these risks, allowing the samples to be measured under a 

condition close to the original state.  

Another problem of preprocessing is that the prepared sample is markedly 

affected by the preparation conditions and the researcher’s technique. The staining 

conditions include parameters such as staining time and stain concentration, which need 

optimization, and sample handling techniques that should stain the sample evenly or 

prevent color degradation are not easy to develop. The same could be said about 

preprocesses required for electron microscopy. The FF imaging method is much easier 

to perform, with few simple processes that could affect the final result. FF measurement 

and analysis could easily be automated, and sample preparation can also be simplified, 

as discussed in the next paragraph. Therefore, the same reliable result could be acquired 

by anyone performing the experiment. 

Two problems which are harder to tackle are (1) the validity of using gluten and 

starch extracted from the dough sample as references for visualization and (2) validation 

methods of the visualized result. The question of whether extracted gluten and starch 

can be used as references for the actual gluten and starch in dough is difficult, since it 

has been reported that the reconstitution of fractionated flour results in a deterioration of 

functional properties [19]. The structure of gluten definitely changes through the 

extracting process, physically, by the kneading of the dough, and chemically, through 

the contact with water and air. The extracted starch goes through many processes such 

as freeze drying, absorption of water, freezing, thawing and drying, and there is no 

proving that these processes change the fluorescence response. However, the only 

alternatives for the reference samples are commercially available samples of pure starch 

and gluten, which face the same problems. Furthermore, using the starch and gluten 

extracted from different flours may have a negative effect on the supervised analysis. 

Therefore, the only apparent solution is to carry out the extraction procedure so that the 

sample alteration is limited to a minimum. A study on fractionation methods by 

Macritchie [10] show that the temperature during the extraction process is an important 

factor determining the quality of the extracted gluten and starch. Paying attention to 

these conditions could enhance the accuracy of the visualization method.  

Another major problem is proving the validity of the imaging method. In this 

study, the same sample was stained with fluorescence dyes and the result compared with 

the FF pseudo color result. However, since the image acquired by the FF imaging 
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method proved to be closer to the actual condition than the stained method, the stained 

image cannot be completely relied on as the ultimate reference. Rather, the stained 

image and the FF pseudo color image seem to support each other. This problem of the 

reliability of the imaging method will remain as long as the actual constituent 

distribution of the sample is not known.  

With the present technology, visualizing the constituent distributions in dough in 

order to check its condition during mixing is not realistic. Destructive methods which 

need sampling can only check the condition of that particular piece of dough, and the 

time it takes for preprocessing cannot be shortened. FF imaging requires a certain 

amount of time to measure and analyze the sample, but with a stronger light, limited 

number of wavelengths and high speed calculation system, the imaging speed could be 

greatly improved.  

There have been many reports on the change in dough structure with mixing, but 

most studies have limited the descriptions to qualitative explanations of the structure 

image and a few have gone on to extracting quantitative parameters from the acquired 

images. A few studies [7, 20] have focused on the area fraction of the protein matrix 

(PMV), assuming that it correlated with the volume fraction. However, the evaluations 

of the PMV value are not constant, with some studies concluding that it is not 

necessarily a measure of dough quality. 

Most studies agree that gluten and starch are heterogeneously distributed at the 

beginning of the mixing stage and that the two constituents become homogenized as the 

mixing progresses [14]. A few studies claim that the homogenization proceeds even 

after the dough is optimally mixed [8], a phenomenon that was not observed in our 

study. 

As for the area of bubbles in the dough, Tlapale-Valdivia et al. [21] have also 

reported the emergence of big holes in the overdeveloped dough, but studies that have 

actually calculated the total ratio of bubble in the dough are few. These large bubbles 

may be an important factor that weakens the dough when it is over-mixed, since there 

have been reports that excessive dough aeration has a negative impact on rheological 

parameters such as the strain hardening index and failure stress [22].  

This study has shown that two different phenomena progress when dough is 

mixed, the distributions of gluten and starch become more “even” as the dough 

approaches the optimally mixed condition and excessive air is incorporated as the 

dough goes beyond it. Therefore, optimally mixed dough could be defined as a 

condition where the gluten and starch are homogeneously distributed, while there is no 

excessive air incorporated in the dough. 
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Extracting quantitative parameters from the FF pseudo color images is very 

straightforward since the data is already expressed in digital form. The images can be 

processed directly with analysis software and many parameters can be extracted with 

the image processing toolbox implemented in the software. Therefore, caution needs to 

be taken against using parameters which may not explain the actual changes through the 

mixing process but just fit the few samples analyzed in the study. To be sure that the 

parameters extracted in this study really represent the changes in the mixing process, 

another batch of dough may be needed to be analyzed and checked to see if the same 

tendency can be observed.  

By measuring several samples in different mixing stages, a border which defines 

the optimal mixing state may be obtained. This could lead to a completely automated 

dough mixing system where the mixing process is controlled with the FF imaging 

system. The distributions of gluten, starch and bubbles would be monitored, the image 

acquired, and quantitative parameters extracted continuously until the extracted 

parameters show a certain value which indicates that the dough has reached an 

optimum. 

4. 6 Conclusions 

In this study, the cosine similarities between the FF of each pixel in the dough and 

the FF of gluten (or starch) were used as a measure of the gluten (or starch) existing in 

that area. The values of cosine similarity were converted into color with two methods: 

the first method involved assigning continuous color scales of red and green to the 

cosine similarity values to gluten and starch, respectively, and the second method 

assigned one out of four colors to each pixel depending on their cosine similarity values. 

In the second method, the colors were assigned so that the total ratio of gluten and 

starch in the image was equal to that of the sample. The pseudo color image created 

with the first method was compared to the stained image, and similar patterns were 

confirmed. Images of dough in the three mixing stages, under-, optimum- and 

over-mixing stage, showed notable changes with both imaging methods.  

By quantification methods, this chapter showed that the change in gluten and 

starch distribution in wheat flour dough that occurs with mixing can be visualized and 

quantified with FF imaging and morphological analysis. The changes observed were as 

follows: (1) the distribution of gluten and starch became more even from the under- to 

the optimum-mixing stage, (2) the total bubble area became larger from the optimum- to 

the over-mixing stage (this was supported by the increase in specific volume), (3) the 
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mean area of the bubbles became larger in the over-mixing stage, and (4) the shapes of 

the bubbles were circular in the optimum-mixing stage but were more elongated in the 

under- and over-mixing stages. Although more samples need to be analyzed to confirm 

that these changes generally occur in the mixing process, the methodology of 

visualization and quantification has been established and is readily applicable to other 

samples. 
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5 Visualization of gluten, starch, and butter in pie pastry 

5. 1 Abstract 

In this study, the distributions of gluten, starch and butter in pie pastry were 

visualized by combining FF imaging with spectral unmixing methods. Two types 

of pie pastry were made: puff pastry, in which wheat flour dough and butter are 

alternately layered, and short pastry, in which flour and butter are mixed together 

with water. Samples of 10 m thickness were made, and fluorescence images were 

acquired with excitation and emission wavelengths in the range of 270-320 nm 

and 350-420 nm, respectively, at 10 nm increments. The FFs of each pixel were 

unmixed into the FFs and abundances of five constituents, gluten, starch, butter, 

slide glass, and ferulic acid, using two spectral unmixing methods: non-negative 

matrix factorization (NMF) and constrained least squares method. NMF was only 

applicable to puff pastry and was unable to visualize starch and butter in the short 

pastry which were mixed together. Least squares method was coupled with 

constraints of non-negativity, full additivity (the sum of the constituents in one 

pixels is unity) and quantum restraint on the abundances of the slide glass 

(abundances take values of one or zero). With this method, distributions of the 

constituents in both puff and short pastry were visualized. 

5. 2 Introduction and objective 

Chapters 3 and 4 have shown that we have succeeded in visualizing two constituents 

in model dough and wheat flour dough, gluten and starch. This could be generalized to 

state that we have visualized proteins and polysaccarides. Proteins and polysaccarides 

make up the structure of food, along with one other constituent, fat. Therefore, if we could 

visualize fat, proteins and polysaccarides all together by using the FF, the range of 

application would be largely widened. This is the reason we chose “fat” as the third 

constituent to visualize.  

The role of fat in bread dough and its structure has been discussed by many. Fat is 

known to form membranes around the starch granules and protein in dough [1], and Li, 

Dobraszczyket al. [2] have visualized the fat with the combination of fluorescence stains 

and  confocal scanning lazar microscopy (CSLM). The sizes of fat crystals are reported 

to be between 2 to 60 m [3, 4] but other studies have reported that fat globules cannot 

be observed in the bread dough with scanning electron microscopy (SEM) [5, 6]. From 
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these previous studies, we speculated that it would be difficult, if not impossible, to 

visualize the fat incorporated in bread dough.  

Therefore, we chose pie pastry as observation targets. Pie pastry is also made from 

wheat, water and butter, but the fat is incorporated in relatively large sizes to provide the 

typical crunchy texture. There exist many types of pie pastry, which differ in structure 

and texture, depending on manufacturing methods. In this work, we focused on two 

typical types of pie pastry, puff pastry and short pastry. Puff pastry is made by layering 

wheat flour dough and butter, so that when the butter melts in the baking process, the 

remaining dough forms thin crisp layers. On the other hand, short pastry is named after 

its “short” texture, which means that the food forms small crumbles in the mouth when 

bitten into. This is because the butter is mixed into the wheat flour, inhibiting the 

development of gluten.  

Although these structures can be estimated from the manufacturing method, there 

are few studies which have actually visualized them. Therefore, the visualization of these 

structures would clearly show the strong link between food structure and their known 

textures.  

From a larger view point, the development of a method to visualize the three main 

components of food would have large applications in other areas of science such as 

biology and medicine.  

 

5. 3 Materials and methods 

5. 3. 1 Preparation of pie pastry samples 

Two types pie pastry were made: puff pastry and short pastry. Both were made so 

that the overall ratio of gluten, starch and butter was equal. Table 5-1 shows the 

composition of ingredients for the two pastry dough.  

 

Table 5-1  Composition of puff pastry and short pastry dough 

 

puff pastry short pastry

strong flour 70 70
weak flour 30 30
salt 1 1
shortning 7 -
water 53 40
butter 97 85
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For the puff pastry, the first five ingredients were mixed in a dough mixer for 1 min 

at low speed and 6 min at medium speed. The temperature at the end of mixing was 23 to 

24 ℃. The mixture was rolled to a thickness of 3-4 cm and stored at 5 ℃ for 15-20 h. 

After resting, the dough was wrapped around the butter and rolled to 5 mm thickness with 

a sheeter. The sheet of dough was folded in three, turned around 90 degrees and folded in 

four. After a 30 min rest at -7 to -8 °C, the dough was folded in three, turned around 90 

degrees and folded in three again (total 108 layers). After resting again at -7 °C to -8 °C 

for 30 min, the dough was rolled to 2.5 mm.  

For the short pastry, refrigerated butter was cut into pieces approximately 1 cm3 in 

size and mixed with the two types of flour and salt in a mixer (Kenwood, United 

Kingdom) with a beating attachment until the butter particles were 2 to 3 mm in size. 

Water was added and the mixture was kneaded lightly into dough.  

Both pastry dough were cut into pieces approximately 1 cm3, embedded in 

compound (3% CMC embedding medium, iTec Science, Ibaraki, Japan) and frozen 

immediately in the cooling bath of a cold trap (Eyela UT-2000, Tokyo Rikakikai Co. Ltd, 

Tokyo, Japan) with hexane as the cooling medium.  

When the samples were completely frozen, the samples were sliced to 10 m using 

a cryotome (CM-1900, Leica) with a Surgipath DH80HS blade (Leica). The thin slices 

were mounted on a slide glass (S-8215 and S-9901, Matsunami Glass Ind., Ltd., Osaka, 

Japan) and kept at -20 °C until observation (Figure 5-1). 

 

 

Figure 5-1  Photograph of a thin slice of puff pastry on a slide glass 

5. 3. 2 Fractionation of gluten and starch 

Gluten and starch were fractionated, based on the method by Macritchie [7]. 

Fractionation was performed with 50 g strong flour, 50 g weak flour and 65 g of pure 

water. The flours used were of the same batches as those used for the pie pastry. The flour 

and water were cooled to 4 °C before mixing. 

The flour and water were mixed with a pin mixer (National MFG., Nebraska, USA) 

(Figure 5-2) at 20 °C for 60 s. The temperature of the dough at the end of mixing was 
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18.1°C. The dough was soaked in pure water for 60 min to strength gluten connectivity 

and then kneaded in the water separate insoluble protein fraction (gluten) with starch 

granules and other soluble substances. A sum of 2800 mL of water was used in this 

process. The bowl was cooled while washing off starch granules since it has been reported 

that gluten yield is higher when the temperature is kept low [7].  

 

Figure 5-2  (A) Pin mixer and (B) dough at the end of mixing 

 

The water and washed out starch were poured into 500 mL centrifuge tubes and 

gluten was put into another centrifuge tube with pure water. These tubes were centrifuged 

for 20 min at 7000 rpm and at 5 °C (centrifuge: Hitachi HIMAC CR21G3) (Figure 5-3A). 

The agglomerated gluten was kept at 4 °C until sectioning. The precipitated starch was 

separated into the top yellow layer (tailing starch) and the bottom white layer (primary 

starch). Both starches were freeze-dried at -80 °C with an Eyela FDU-830 freeze-dryer 

(Tokyo Rikakikai) (Figure 5-3B).  

The obtained gluten was cut into small pieces, embedded in compound, frozen and 

sliced into 10 mm slices in a similar way to pie dough. Dried starch was dispersed in 

compound, frozen and sliced in the same way.  

The weight and water content of the obtained gluten and two types of starch were 

measured to calculate the ratio of gluten to starch in the dough. Water content was 

measured by the drying the samples at 130 °C for 3 h (oven dry method). 

(A) (B)
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Figure 5-3  (A) Centrifugation of gluten and starch (B) Freeze dryer 

 

Fractionation of starch was also performed, based on the method by Whistler and 

Wolfrom [8]. Flour (50 g strong flour and 50 g weak flour) were mixed with 75 mL of 

pure water and aged at room temperature for 2 h. The loose dough was set over a nylon 

bolting sieve with mesh openings of 75 m. While pouring water over the dough, the 

dough was kneaded gently to wash the starch granules through the mesh. The remaining 

mixture of gluten and starch was discarded, and the starch was passed through the mesh 

another two times. This starch slurry was poured into four 50 mL plastic tubes and 

centrifuged at 2300 g for 15 min at room temperature (centrifuge: Himac CR 22G, rotor: 

R10A2). After centrifugation, the upper fraction containing tailing starch was scraped off 

and the remaining starch was suspended in pure water. This process of centrifugation, 

scraping off the top layer and suspension was repeated three times to obtain pure starch. 

Thin samples of starch samples were created as previously explained. 

5. 3. 3 Selection of wavelength conditions for imaging 

Since there is a limit in the number of band-pass filters that can be used in the FF 

imaging system (eight wavelengths for both excitation and emission light), wavelength 

conditions that are effective in discriminating butter, gluten and starch need to be selected. 

This was done by measuring the three constituents with a spectrophotometer (F7000, 

Hitachi high technologies) and applying principal component analysis (PCA) to the data. 

Six samples of gluten, three samples of butter and five samples of starch were 

(A) (B)
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measured in the spectrophotometer using a solid sample cell. The measured wavelengths 

were 250 to 700 nm for both excitation and emission wavelengths, with intervals of 10 

nm. The slit width was 10 nm for both the excitation and emission wavelengths, scanning 

speed was 60000 nm/min and photomultiplier voltage was 350 V.  

Since the imaging system showed low sensitivity for excitation wavelengths below 

270 nm and emission wavelengths below 350 nm, fluorescence data of excitation 

wavelengths 250- 260 nm and emission wavelengths 250-340 nm were excluded from the 

analysis. Furthermore, data from the fluorescence spectrophotometer showed secondary 

fluorescence over emission wavelengths 500 nm and over. These wavelengths were 

excluded from the data. Principal component analysis was conducted with fluorescence 

data in the range 270-500 nm and 350-500 nm for excitation and emission wavelengths, 

respectively.  

5. 3. 4 Acquisition of fluorescence images 

Fluorescence images of two types of pie pastry, gluten and starch were acquired with 

the FF imaging system, using the excitation and emission wavelengths selected with PCA. 

The fluorescence images were acquired in decreasing order of wavelengths, i.e., 330 nm 

to 270 nm for the excitation wavelengths and 420 nm to 350 nm for the emission 

wavelengths. This was to minimize the denaturation of the sample due to exposure to UV 

light.  

The light intensity of the excitation, exposure times and z-position for each 

wavelength condition was determined by the method explained in chapter 2.  

5. 3. 5 Alignment of fluorescence images 

One deficiency of the FF imaging system was that the fluorescence images tended 

to move between different wavelengths of emission light. This was because the emission 

filters were not aligned horizontally to the optical path with great accuracy, and as a result, 

bent the light path slightly. The emission filters were set in a filter holder with threads, 

and these threads were used to attach the filter holders to the filter wheel (Figure 5-4). 

Consequently, the slight tilt of the filter changed with the rotation of the filter holder. This 

resulted in a set of filters tilted in different directions, thus the fluorescence images moved 

when the emission filters were changed. 
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Figure 5-4  Photograph of the filter holder and wheel. The band-pass filter is set inside 

the holder (4), and fixed from above by a fastener (3), as shown in picture 1. The fastener 

(3) is fixed by turning it through a thread. The filter composition (1) is turned upside 

down (2) and is set in the filter wheel (5) with the threads. Since the band-pass filter is 

held in place by threads, it is tilted slightly relative to the horizontal direction.  

 

Since eliminating the slight tilt of the filters would require more accurately made 

hardware, the misalignment of the fluorescence images was corrected digitally after 

image acquisition. Image registration was performed by calculating the correlation of two 

images as a function of the relative displacement of the input image to the base image [9]. 

However, this resulted in inaccurate registration for some images because different 

constituents fluoresce under different wavelength conditions (Figure 5-5). Therefore, 

fluorescence images of a microscope scale (NOB1, MeCan Imaging, Inc., Japan) was 

acquired in advance, under all the emission wavelengths used. The scale shows similar 

images under different emission wavelengths, therefore, alignment of the scale images 

was easily performed.  Since misalignment occurred only between different emission 
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wavelengths, and fluorescence images with the same emission wavelengths were 

basically aligned to each other, images with the same emission wavelengths could be 

roughly aligned using the same displacement for the microscopic scale.  

 

 

Figure 5-5   Fluorescence images of the same short pastry in wavelengths 

Ex270/Em350 and Ex330/Em420 for (A) and (B), respectively.  

 

After a rough alignment, the images were adjusted with an accuracy of a tenth of a 

pixel, using the image registration tools in MATLAB. 

5. 3. 6 Extraction of reference FF data 

In order to visualize the gluten, starch and butter in pie pastry, reference FFs of these 

three constituents were extracted from the fluorescence images of fractionated gluten and 

starch, and puff pastry. The fluorescence image of fractionated gluten showed many air 

holes. Therefore, these air hole areas were left out and the FFs of the remaining area were 

averaged to acquire the reference FF of gluten (Figure 5-6).  

 

Figure 5-6  (A) Fluorescence image of fractionated gluten and (B) the areas used for 

obtaining the reference gluten FF.  

 

The starch granules in the thin samples were dispersed in compound. Since 
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compound showed no fluorescence, starch granules were detectable against the 

background (Figure 5-7). Therefore, a few circular areas corresponding to the starch 

granules were manually selected, and the FFs of the selected pixels were averaged to 

acquire the reference FF of starch.  

 

 

Figure 5-7  Fluorescence image of starch granules dispersed in compound. Areas 

surrounded by dotted lines are examples of clearly observable starch granules.  

 

Butter areas were manually selected from the puff pastry images, which showed 

alternating layers of dough and butter (Figure 5-8). All the FFs of the selected areas were 

averaged to acquire the reference FF of butter.   

 
Figure 5-8  (A) Fluorescence image of puff pastry and (B) the areas used for obtaining 

the reference butter FF.  

5. 3. 7 Visualization of gluten, starch, and butter by similarity angle 

The similarity angles of FFs of each pixel in the puff pastry image and the reference 

FFs of gluten, starch and butter were calculated as explained in chapters 5 [9, 10] and 

similarity images were created. Similarities to gluten, starch and butter were shown in red, 

green and blue, respectively.   
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5. 3. 8 Visualization of gluten, starch, and butter by PCA  

PCA was applied to all the FFs in the pie pastry image. PC scores for PC 1, 2 and 3 

were converted into color by the same method used for cosine similarity [10] (Figure 5-9). 

The correlation coefficients of PC 1, 2 and 3 were used to interpret the meaning of the 

PCs. 

 

Figure 5-9  Flowchart of imaging by PCA. The FFs of each pixel in the pie pastry image 

are analyzed by PCA and each pixel is colored based on the PC scores. The correlation 

coefficients take the form of FFs and can be used to interpret each PC. 

 

5. 3. 9 Visualization of gluten, starch, butter and aleurone fragments 

by spectral unmixing  

Spectral unmixing is a collective term for methods to decompose observed spectra 

into a collection of constituent spectra, or endmembers, and a set of corresponding 

fractions, or abundances, that indicate the proportion of each endmember present in the 

pixel [11]. In this research, the endmembers would be the spectra of gluten, starch and 

butter. By unmixing the FFs of each pixel in the pie pastry images, the content of the three 

constituents at each pixel can be calculated, and a distribution map for each constituent 

can be obtained.  

Many spectral unmixing techniques based on the linear mixing model have been 

developed in recent decades [12, 13, 14], and two methods were used in this study, 

constrained least squares method and non-negative matrix factorization [15, 16, 17, 18].  
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Constrained least squares method  

This method requires the endmembers to be known and assumes that the spectra of 

all the pixels in the sample can be expressed as a mixture of these endmembers. If 

appropriate endmembers can be acquired, least squares inversion is performed with dual 

physical constraints, full additivity (the sum of constituent abundances in one pixel equals 

1) and non-negativity (all abundances are equal to or larger than 0). This corresponds to 

solving the following problem: 

 

 

argmin
𝛂

1

2
‖𝐲 − 𝐃𝛂‖2

2 

subject to 𝛂 ≥ 0,∑𝛼𝑖 ≤ 1

𝑚

𝑖=1

 

... (1)  

 

when 𝐲 ∈ ℝL is the observed spectra, and 𝐃 ∈ ℝL×M and 𝛂 ∈ ℝL are the endmember 

and abundance matrices, respectively. The lower index of the norm indicates that this is 

an Euclidean norm. This can be formulated as 

 

 
argmin

𝛂
(
1

2
)𝛂T𝐃T𝐃𝛂 − 𝐲T𝐃𝛂 

subject to 𝐆𝛂 ≤ 𝐡 

... (2)  

 

where G = [
−𝐈
𝟏T
] (𝐈 ∈ ℝM×M, 𝟏 ∈ ℝM) and h = [𝟎T 1]T(𝟎 ∈ ℝM). This is solved by 

optimization methods for quadratic programming, such as active-set [19] and interior-

point [20] methods. 

Since abundances can be calculated unambiguously from the endmembers, choosing 

them is the most important step. In this research, we experimented with different 

endmembers for gluten, starch and butter, and compared the results. 

 

 Gluten 1: the average FF from the fractionated gluten sample was used.  

 Gluten 2: the endmember spectrum was extracted by Vertex Component 

Analysis (VCA) [21]. VCA extracts candidates for endmembers by projecting 

the data onto subspaces and choosing the vertices of the data group. The 

subspaces are determined by dimensionality reduction algorithms such as PCA, 

singular value decomposition (SVD) and maximum-noise fraction (MNF).  
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 Starch 1: the average FF from the fractionated starch was used.  

 Starch 2: a small area corresponding to a starch granule in the pie pastry image 

was selected manually, and the FFs of the pixels in this area were averaged.   

 

 Butter: the average FF from the butter layer area in the puff pastry was used. 

Non-negative matrix factorization (NMF) 

NMF assumes that the endmembers are unknown and that there are no pure pixels 

(pixels that contain only one constituent and whose spectrum could therefore be used as 

an endmember) in the sample image. NMF uses endmember spectra determined by 

methods such as VCA as initial values. The initial endmember values and the 

corresponding abundances are updated by alternate optimization, while satisfying the 

non-negativity and full additivity constraints.  

The endmember data used for the constrained least squares method were used as the 

initializing values for NMF. Alternate optimization of the endmember and abundance 

matrices was performed, and the abundance map was obtained [22]. 

5. 4 Results and discussions 

5. 4. 1 Selection of slide glass type 

As a pre-experiment, slide glasses were measured for their intrinsic fluorescence. 

Three types of slide glasses, S-2111 (non-coat), S-8215 (APS-coat), and S-9902 (MAS-

GP-coat) were measured, both with the imaging system and spectrophotometer (F7000). 

Figure 5-10 shows the fluorescence images of pie pastry on the three slide glasses and the 

FFs (measured by the spectrophotometer) of the slide glasses, background and gluten 

samples. The color scale is shown in log-scale, so that a difference in one indicates a 10 

times difference in fluorescence intensity. S-8215 and S-9902 are slide glasses that are 

coated for enhanced adhesiveness. Compared to the non-coated slide glass, the 

fluorescence emitted from the glass seems to be suppressed. Although the fluorescence 

from the non-coated slide glass is weaker than gluten in order of approximately three, it 

is still strong enough to influence the fluorescent image. Slide glasses, S-8215 and S-9901 

were used for further imaging experiments.  
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Figure 5-10  (A), (B) and (C) show the fluorescence images at Ex280 and Em350nm of 

pie pastry on slide glasses S-2111, S-8215 and S-9901, respectively (top row), and FFs of 

the slide glass measured in reflectance mode of the spectrophotometer. (D) and (E) show 

FFs of the background and gluten, respectively. The color scale is shown in log scale. Note 

that the scale for the Background is from 0 to 0.2.  

 

5. 4. 2 Fractionation results 

The first fractionation experiment based on the method by Macritchie [7] yielded 

23.27 g of gluten, 48.01 g of primary starch and 20.31 g of tailing starch. The water 

content of these samples were 65.00% (n=4), 1.74% (n=2), and 1.71% (n = 2), 

respectively. The water content of the original flours were also measured, resulting in 

12.45% and 12.44% for the weak and strong flours, respectively. Therefore the yield of 

fractionated substances was 85.85% and the ratio of gluten to starch was 10.68% to 

89.32%. The yield loss is assumed to be small pieces of gluten and starch granules that 

(A) S-2111 (non-coat) (B )S-8215 (APS-coat) (C) S-9901 (MAS-GP-coat)
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were washed away with the water, and water soluble proteins and sugars. 

Figure 5-11 shows light microscopic images and FFs of starch obtained by the 

method of Macritchie [7] (A) and Whistler and Wolfrom [8] (B). The white arrows in (A) 

indicate small lumps of gluten that were mixed with the starch granules. Starch obtained 

by the second method few of these lumps.  

The fluorescence from gluten (Ex280, Em330) and ferulic acid (Ex350, Em400) [23] 

was observed strongly in starch (A), but much weaker in starch (B). This indicated that 

starch (B) was more deprived of proteins and cell wall structures than starch (A). 

Therefore, starch (A) was used for further studies. 

 

 

Figure 5-11  Light microscopic images (right) and FFs (left) of starch obtained by the 

first (A) and second (B) method. 

 

5. 4. 3 Wavelengths for imaging 

Figure 5-12 shows the results of the PCA of butter, gluten and starch samples. The 

 

 

200 300 400 500 600 700
200

250

300

350

400

450

500

550

600

650

700

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 

 

200 300 400 500 600 700
200

250

300

350

400

450

500

550

600

650

700

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Excitation wavelength

Em
is

si
o

n
 w

av
el

en
gt

h

Excitation wavelength

Em
is

si
o

n
 w

av
el

en
gt

h

(A)

(B)



Chapter 5 

 

139 

 

score plot (A) shows that both principal component (PC) one and two are effective in 

separating the fluorescence of the three components. Coefficients are the weights that 

map the original fluorescence data to each score. A large absolute value indicates a large 

contribution of the variable to the scores, meaning that it is effective in separating the 

three constituents. Therefore, wavelength conditions were selected in order of their PC 

one and two coefficients until the number of excitation or emission wavelengths reached 

the maximum of eight. As a result the excitation and emission wavelengths shown in 

Table 5-2 were selected to use for imaging.  

 

Figure 5-12  Results for the PCA of butter, gluten and starch samples. (A) Scatter plot 

for PC scores one and two. (B) and (C) Absolute values of PC one and two coefficients, 

respectively.  
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Table 5-2  Excitation and emission wavelengths selected for imaging 

 

5. 4. 4 FFs of reference data 

Figure shows the reference data of gluten, starch and butter. Gluten shows the typical 

fluorescence pattern of aromatic amino acids, mainly tryptophan, which has a peak at 

typically Ex 280 and Em 350 nm. Figure 5-14 shows the fluorescence image at Ex 280 

and Em 350 nm. The thin thread-like features are the well-developed gluten strands.  

 

 

Figure 5-13  Reference FFs of gluten (A), starch (B) and butter (C). Note that the color 

scales for starch and butter are different from that of gluten 

 

No. Excitation [nm] Emission [nm]

1 270 350
2 280 360
3 290 370
4 300 380
5 310 390
6 320 400
7 330 410
8 420
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Figure 5-14  Fluorescence image of puff pastry at Ex 280, Em 350 nm. White thread-

like structures are gluten strands. 

 

Starch and butter show very low fluorescence intensity, and do not have a 

characteristic pattern. Butter is known to contain fluorophors such as carotenoids, and the 

fluorescence from these constituents can be measured with a fluorescence 

spectrophotometer if the sample is thick enough (approximately 2 mm thickness). 

However, the fluorescence becomes very weak when the sample is thinly sliced and is 

hardly detectable with the FF imaging system.  

Amylose and amylopectin in starch are not fluorescent, since all their molecular 

bonds are σ bonds. However, starch granules are detectable (as shown in Figure 5-7) 

against the background of compound. There are two possible reasons for this detectability, 

the first is that starch granules are known to have a thin protein membrane on their surface 

[24] and this shows weak fluorescence. The second possibility is that we are observing 

reflected or diffused light (excitation wavelength equal to emission wavelength) which 

has passed through the band-pass filters. As explained in chapter 2, actual filters do not 

completely shut out light outside the band-pass wavelengths. As a result, a small portion 

of the light transmitted through the excitation band-pass filter may directly pass thorough 

the emission band-pass filter after being reflected by the starch granule. 

100μm
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5. 4. 5 Visualization of distribution by similarity angle 

Figure shows the similarity angle image to gluten, starch and butter. The distribution 

image of gluten shows decent results, the pixels in the butter layer are dark and there are 

bright areas in the dough layer. However, the distribution image of butter and starch are 

almost identical. The pixels in the butter layer show a large similarity to starch.  

 
Figure 5-15  Similarity angle images to gluten (A), starch (B) and butter (C). A similarity 

angle takes a maximum of 0.   

 

This is thought to be because there is a large difference in fluorescence between the 

fractionated starch which is used as the reference and the starch granules in the pie pastry. 

The fractionated starch which is used as the reference has almost no fluorescence, since 

it is almost completely derived of protein fragments. On the other hand, starch in the pie 

dough is covered with soluble proteins and thin layers of gluten and shows moderately 

strong fluorescence.  

To explore the difference in fluorescence, several areas that corresponded to starch 

and butter in the pie pastry image were selected manually, and their cosine similarities to 

reference starch and butter were plotted (Figure 5-16). Since the reference butter FF is 

extracted from the pie pastry image itself, the butter pixels show a very high similarity 

value to reference butter. On the contrary, the starch pixels show low similarity to 

reference starch, and the butter pixels show similarity values in the same range.  

 

 

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

(A) (B) (C)



Chapter 5 

 

143 

 

 

Figure 5-16  Plot of similarity angles of starch and butter to reference butter and 

reference starch. Pixels in the butter area have similarity angles near 0 degrees to 

reference butter. However, pixels in the starch area (in the puff pastry image) have 

similarity angles around 0.2 degrees to reference starch. Pixels in the butter area have 

similar angular values to reference starch. 

 

This showed that the results of similarity angles relied mainly on the choice of 

reference data, and that similarity angles would not be an appropriate method to visualize 

constituents such as starch and butter which show only weak fluorescence and do not 

have a characteristic FF pattern. 

5. 4. 6 Visualization of distribution by PCA 

The largest difference between similarity angles and PCA is that the latter only uses 

the data from the puff pastry image. Therefore, the results are unaffected by the selection 

of reference data. However, the reference data can be used to interpret the results of PCA. 

Figure 5-17 shows the distribution images created from the scores of PC 1, 2, and 3, 

and the corresponding coefficients.  
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Figure 5-17  Distribution images of PC 1, 2 and 3 and the corresponding coefficients. 

The coefficient of PC 1 and 2 can be related to the FFs of gluten and ferulic acid, 

respectively. The distribution image of PC 3 show granular features, and is assumed to 

show starch granules. 

 

The coefficient of PC 1 shows a similar pattern to the reference FF of gluten, and the 

strip-like features of the distribution image are very like that of gluten. Therefore, we 

concluded that PC 1 showed the distribution of gluten. 

The coefficient of PC 2 shows high values in the longer wavelength conditions, and 

the distribution image shows strip like features. The fluorescence is presumed to be ferulic 

(4-hydroxy-3-cinnamic) acid [23] which is known to be contained in the aleurone cell 

walls, and fluoresces at Ex 350nm and Em 430nm. Although the fluorescence peak 

wavelengths are not included in our measurement, the high coefficient values in the 

longer wavelengths are assumed to show the tail of the fluorescent peak. Therefore, we 

concluded that PC 2 shows the distribution of ferulic acid. 

The coefficients for PC 3 show a peak at Ex 300-310 and Em 350. However, there 

is no particular constituent that fluoresce in this region. On the other hand, granule-like 

features can be observed from the distribution image. Although interpretation of this PC 

is difficult, we judged from the distribution image that it had some element that 

distinguished starch from butter [25]. 
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5. 4. 7 Visualization of distribution by spectral unmixing methods 

NMF of puff pastry image 

NMF was performed with two sets of initial endmember spectra as shown in Table 

5-3. The number of endmembers used in the analysis is an important factor that 

determines the accuracy of the analysis. Although the three constituents of interest were 

gluten, starch and butter, it was necessary to add the fluorescence pattern of ferulic acid 

and the slide glass, in order to obtain decent results. The slide glass area corresponded to 

areas where there were air holes in the sample. When the samples were sliced, small holes 

were observed in the thin slice, where the slide glass could be seen though. Since the slide 

glasses were not completely fluorescence free and showed weak fluorescence, their FFs 

were included as one endmember. 

 

Table 5-3  Initial endmember spectra for NMF 

 

 

With endmember set 1, the reference FF of starch was obtained from the fractionated 

starch sample. Reference gluten was also obtained from the fractionated gluten sample. 

All the other references were extracted from the puff pastry image, manually for the butter 

and slide glass and automatically for the ferulic acid.  

Figure 5-18 shows the distribution image for the four constituents, gluten, starch, 

butter and ferulic acid. Gluten and ferulic acid are visualized relatively well, probably due 

to their distinct FF patterns. The distribution image of starch shows granule-like features 

similar to starch, but also shows abundances in the pie layer, which is unlikely. The 

abundance values, ranging from 0 to 1, were very low for the starch image, with most of 

the pixels showing abundances lower than 0.5. The distribution image of butter shows 

thin, line-like abundances in the dough image, which is also unlikely.  

Constituent set 1 set 2

gluten fractionated gluten sample fractionated gluten sample
starch fractionated starch sample starch granule from puff pastry image
butter butter layer from puff pasty image butter layer from puff pasty image

ferulic acid
extracted by VCA from puff pastry
image

extracted by VCA from puff pastry
image

slide glass extracted from puff pastry image extracted from puff pastry image
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Figure 5-18  Abundance images of gluten (A), starch (B), butter (C) and ferulic acid (D). 

The grayscale for starch shows abundances ranging from 0.0 to 0.5 and those for the 

others shows abundances ranging from 0.0 to 1.0.  

 

These problems were thought to be due to the dissimilarity between the reference FF 

of starch, extracted from the fractionated starch, and the starch in the puff pastry. Starch 

granules in the puff pastry show weak but clear fluorescence of tryptophan, suggesting 

that they are covered in some kind of protein fraction in the wheat. Since most of the 

protein is washed off in the fractionated starch, their FFs are different from the starch 

observed in the puff pastry. 

Therefore, with endmember set 2, two small areas in the puff pastry image 

corresponding to starch granules were selected manually to create the reference FF of 

starch. The selected areas were clearly distinguishable as starch granules due to low 

intensity in the fluorescence image and circular morphology (Figure 5-19) 
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Figure 5-19  Two starch granules from where the endmember FFs were selected 

 

By using this FF as one of the initial endmembers, a larger area was distinguished as 

starch granules the abundance became higher. Most of the line-like features in the butter 

image were eliminated (Figure 5-20). 

 

 

Figure 5-20  Abundance images of gluten (A), starch (B), butter (C) and ferulic acid (D) 

calculated with the starch FF extracted from the puff pastry image as an initial 

100μm
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endmember. The grayscale shows abundances ranging from 0.0 to 1.0. 

 

Figure 5-21 shows the RGB image of the abundance image of gluten, starch and 

butter shown in R, G and B channels, respectively, and the stained image of the same 

sample. In the stained sample, fat and protein are colored orange and blue, respectively. 

The network of well-developed gluten and the starch granules trapped inside the network 

can be seen clearly. 

 

Figure 5-21 (A) RGB image of gluten (red), starch (green) and butter (blue) and (B) stained 

image of the same sample. The band of butter, air bubbles in the pastry, and matrix of 

gluten can be observed clearly. 

 

Extracting the reference FF of starch manually from the puff pastry itself may seem 

subjective, since it relies on the analyzer to perceive the features of the starch granule. 

However, as can be seen from the figure, the starch granule used for the reference was 

very clearly observable, compared to most other granules. Only a few pixels were selected 

from this starch granule to create the reference FF, which in turn enabled the visualization 

of all the other starch granules.  

Methods of extracting endmember spectra have been discussed in many papers [26, 

27]. Manual and automatic endmember extraction both have their strength and 

weaknesses. In the case of starch FF extraction, automatic methods would not work well, 

since the fluorescence intensity of starch is very weak and the FF does not have a typical 

pattern. However, there may have been more objective methods for manual extraction, 

which would be more suitable in the future. 

(A) (B)

100μm
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Visualization by the constrained least squares method 

Although NMF performed very well for the puff pastry, it could not distinguish the 

constituents in short pastry, where the butter is mixed into the wheat dough instead of 

existing in layers. The similarity of the FFs of starch and butter (both show weak 

fluorescence and no characteristic peak) meant that alternative calculations in NMF 

resulted in FFs that were different from the original FFs. 

Therefore, the reference FFs were kept constant, and the abundance images were 

calculated by constrained least squares method. Figure shows the abundance images of 

gluten, starch, butter, ferulic acid, and slide glass in short pastry. 

Since the image obtained from this method were quite different from realistic 

assumptions, the method was improved in two ways: the endmember FF of gluten was 

extracted from the short pastry image by VCA, in the same method as that for ferulic acid, 

and a constraint was applied on the abundances of “slide” to be either 0 (the slide is 

covered with the short pastry) or 1 (there is no sample on the slide). 

The endmember FF that was extracted from the fractionated gluten showed the same 

characteristics as the gluten in the short pastry image. However, the fluorescence intensity 

was much higher in the fractionated gluten, since the density of aromatic amino acids 

such as tryptophan was much higher. Using this reference FF as an endmember resulted 

in an abundance image where the distribution of gluten was roughly correct but the 

absolute quantities were far from realistic values. Since there is a constraint on the sum 

of abundance fractions in one pixel, quantities of one constituent affects the quantities of 

others, and therefore, all the other abundance matrices were distorted. We tried to solve 

this problem by extracting the endmember FF from the puff pastry image itself. 

The quantum restraint on the abundances of slide were introduced in the calculation 

by altering the cost function in equation (1) to 

 

 
1

2
‖𝐲 − 𝐃𝛂‖2

2 +
1

2
λ(αslide − U(αslide −

1

2
))

2

 ... (3)  

 

where 𝑈(𝑥) is a step function that is expressed as 

 

 𝑈(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 ... (4)  

 

The second term is added only to the slide data. This optimization becomes the following 

minimization: 
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argmin
𝛂

{
 
 

 
 (

1

2
)𝛂T(𝐃T𝐃 + λ𝐂)𝛂 − 𝐲T𝐃𝛂 + (

1

2
)𝐲T𝐲 

                  αi ≤ 1/2

(
1

2
)𝛂T(𝐃T𝐃 + λ𝐂)𝛂 − (𝐲T𝐃 + λ𝐛T)𝛂 + (

1

2
) (𝐲T𝐲 + λ) 

                  αi > 1/2

 

subject to 𝐆𝛂 ≤ 𝐡 

... (5)  

 

where 𝐛 ∈ ℝM has unit for 𝑏𝑠𝑙𝑖𝑑𝑒  and zero values for other components and 𝐂 = 𝐛𝐛T. 

Both these functions are quadratic programming problems. In order to overcome the case 

statement, problem (1) (without quantum regularization) was optimized first, followed by 

either of the problems in (5) depending on the 𝛼𝑖 value first obtained by optimization of 

(1).  

Figure 5-22 shows the abundance images of ferulic acid, butter, starch, gluten and 

“slide” in short pastry. Abundances for “slide” are shown in black (abundance = 0.0) and 

white (abundance = 1.0), and abundances for the other constituents are shown in 

continuous values between 0.0 and 1.0. Figure 5-23 shows the abundance images of the 

same constituents in puff pastry. The image shows a band of butter sandwiched between 

two layers of wheat dough.  

The two sets of images show distinct differences between the structures of short 

pastry and puff pastry. Apart from the obvious difference in the distribution of butter 

(mixed into the wheat dough or existing in layers), there is a large difference in the 

morphology of gluten. The gluten in the short pastry is observed in small and large clumps, 

whereas those in the puff pastry have formed a net-like structure, spread in the direction 

of dough extension (parallel to the layers of dough and butter). The net-like structure of 

gluten in the puff pastry is presumed to be due to the mixing of dough (6 minutes at 

medium speed) in the absence of fat. On the other hand, the flour for the short pastry is 

mixed directly to fat, which is known to inhibit the formation of gluten [28]. The small 

clumps of gluten in the short pastry are presumably aggregations of the protein fraction 

existing in the flour particles.  

The size distribution of the “slide” areas are also very different. Short pastry shows 

many large voids compared to the small airspaces seen in the puff pastry. Puff pastry is 

rolled many times during its manufacture, and this would eliminate large voids. 

Consequently, short pastry is mixed only roughly, which leaves or even incorporates air 

in the dough.   
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Figure 5-22  Abundance images of ferulic acid (A), butter (B), starch (C), gluten (D), 

and slide (E) in short pastry. The grayscale corresponds to an abundance of 1.0 (white) 

to 0.0 (black). 
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Figure 5-23  Abundance images of ferulic acid (A), butter (B), starch (C), gluten (D), 

and slide (E) in puff pastry. 

 

In order to validate the analysis results, the short pastry was stained in the same way 

as the puff pastry. Figure 5-24 shows the composite image of butter, starch and gluten 

abundances shown in RGB and the corresponding stained image. 
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Figure 5-24  (A) Composite image of the abundance images of butter (red), starch 

(green) and gluten (blue), and (B) stained image of the same sample. Protein is stained 

blue and fat is stained orange. 

 

Although the stained color of protein in the stained image is a little faint, large 

aggregates of gluten can be observed in both images. The positions of starch granules and 

fat in the analyzed image are largely correspondent with those of the stained image. 

Although the FFs of butter and starch were difficult to distinguish by visual judgment, it 

was possible to obtain their abundances accurately. 

Compared to the stained image, the FF image seems to show a large quantity of 

butter. Therefore, the total quantity of gluten, starch and butter calculated from the 

abundance image was compared to the value calculated from the ratio of ingredients used 

for the pastry.  

In the short pastry, 97 g of butter was mixed to 153 g of wheat flour dough. Around 

20% of the wheat flour dough is gluten, and the rest, starch [29]. This means that the 

weight ratio of gluten, starch and flour is 12%:50%:38%. Since fluorescence intensity 

would be proportional to the volume of these constituents, the specific gravity of 1.1, 1.5 

and 0.91 for gluten, starch and butter, respectively, was used to convert the ratio to volume 

ratio. This gave 12.7%:28.8%:48.5% for gluten, starch, and butter ratio.  

On the other hand, the ratio calculated from the abundance matrix was 

16.6%:37.6%:45.8% for gluten, starch and butter, respectively. This is very close to the 

ratio calculated from the ingredients of pie pasty, and seems to support the accuracy of 

the imaging method. 

  

(A) (B)
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5. 5 Conclusions 

In this study, FF imaging was used to visualize three constituents, gluten, starch and 

butter. In chapters 3 to 5, discriminations were made between gluten, which shows strong 

fluorescence, and starch, which shows little fluorescence. The third constituent, butter, 

made measuring and analysis very difficult because both starch and butter showed low 

fluorescence intensities.  

This was overcome by applying spectral unmixing methods that decompose the FFs 

of each pixel into the product sum of FFs of pure constituents and their abundances. It 

was indicated that the results were better when the initial FFs of each pure constituent 

were derived from the pie sample rather than fractionated samples. With certain 

constraints such as non-negativity, unit summation (sum of abundances for one pixel 

equals one), and quantum restraints (abundances take values of 0 or 1), it was possible to 

discriminate between butter and starch, even when these two constituents were mixed 

together in a short pastry dough.  

The results of this study are very significant because it indicates that a broad range 

of constituents have a possibility of being visualized with FF imaging, even constituents 

that show low levels of fluorescence. Imaging with autofluorescence is seemingly 

restricted compared to NIR or IR imaging because only samples that are fluorescent can 

be visualized. However, this study showed that many constituents that are categorized to 

be measured by vibrational information (measured by NIR and IR) such as starch and fat 

can actually be measured by fluorescence.  

The results also indicate a possibility of simplifying the experimental scheme 

because there would be no need to acquire and measure “reference” samples such as 

fractionated starch and gluten every time a new experiment is performed. By 

accumulating FF data of pure constituents and creating a database, it would be possible 

to compare FFs of pure constituents and the “reference” FFs extracted from the sample, 

it would be possible to verify that the right constituents are being visualized (Figure 5-25).  
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Figure 5-25  Scheme of FF data base. The “reference” used to analyze the image is 

extracted from the sample image itself, and the FF patterns are compared to the data 

base to confirm the actual constituent. 

 

Finally, this study showed that FF imaging could be improved greatly by introducing 

analysis methods used mainly in the field of electronics and informatics. Since agro-

engineering and food engineering has been based mainly on applications, there is much 

to learn from other areas of research. 
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6. Conclusions and future perspectives 

6. 1 The development of FF imaging through this thesis 

As is discussed in chapters 3 to 6, the FF imaging method has been developed 

through this thesis in two main aspects, imaging acquisition method and analysis method. 

The development in the image acquisition method has been mainly explained in chapter 

2, and this section will summarize the development in the analysis method.  

Table 6-1 summarizes the analysis methods used in this thesis.  

 

Table 6-1  Summary of the analysis methods used in chapter 3 to 6 

 

 

The ideal analysis method would not need any initial information such as the FFs 

of references, and would calculate the amount of each constituent accurately and 

quantitatively. PLS regression used in chapter 3 accurately connects the FFs of each pixel 

to the ratio of gluten to starch, but samples with a large range of gluten to starch ratio are 

needed to construct an accurate PLS model, and this is difficult with real samples.  

Cosine similarity and the similarity angle used in chapters 4 and 5 are much easier 

to apply than PLS, and has been used in areas of remote sensing by the name of spectral 

angle mapping (SAM). The accuracy of this method relies on the selection of “reference” 

data. Cosine similarity works well in situations where the constituents to be visualized 

have completely different FFs such as gluten and starch. However, it cannot discriminate 

between constituents whose FFs are similar, as shown in chapter 6. In addition, the values 

of similarity are not directly connected to the actual quantities of the constituents, and 

results are largely qualitative. 

Analysis method
Data required to
construct model

Advantages and Disadvantages

Chapter 3 PLS FFs of samples with
different constituent
ratios

○
×

accurate prediction possible
difficult to acquire data required
for model construction

Chapter 4 cosine similarity

Chapter 5 similarity angle

Chapter 6 NMF,
constrained
least squares

FFs of reference
(optional)

○

○

×

analysis can be performed with
data of sample only
abundances can be obtained as
absolute values
only applicable to linear models

FFs of reference

straightforward and intuitive
qualitative
only relative values can be
acquired

○
×
×
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Spectral unmixing methods such as NMF and constrained least squares used in 

chapter 6 stand between the former two methods, enabling quantitative analysis without 

having to prepare multiple samples. With constrained least squares, it was possible to 

discriminate between starch and butter, which both showed weak fluorescence. 

Furthermore, the reference FFs of each constituent were shown to be extracted from the 

sample itself, meaning that other samples such as fractionated starch and gluten were 

unnecessary. Concerning applicability and accuracy, these spectral unmixing methods are 

best suited as the analysis method for FF imaging. 

6. 2 Advantages and drawbacks of FF imaging 

This thesis has shown the theories and applications of fluorescence fingerprint (FF) 

imaging, an imaging method which can be categorized as a type of hyperspectral imaging. 

However, FF imaging has distinct advantages which should be highlighted in this chapter: 

 

1. The achievable spatial resolution is higher than most hyperspectral imaging 

methods. This is illustrated by figure 1-21 in chapter 1. Compared to near-

infrared (NIR), fluorescence shows high sensitivity, and therefore, the thickness 

of sample can be reduced greatly (10 m for fluorescence compared to over 100 

m for NIR). This enables the acquisition of clear images at high resolution. 

Furthermore, scattered light, which lowers the spatial resolution in imaging 

methods measuring the absorption of light, is cut out in fluorescence images. 

Therefore it is possible to visualize granular structures such as starch at the same 

high spatial resolution as other non-granular structures. 

2. Sample preparation does not have to be as precise as other hyperspectral 

imaging methods, when comparing samples visualized in the same 

magnification. Methods such as infrared (IR) imaging with an attenuated total 

reflection (ATR) accessory can achieve high spatial resolution, but the samples 

need to be completely flat. This requires preprocessing steps such as sample 

immobilization. Chapter 3 showed that FF imaging requires the sample to be 

made into thin slices if microscopic features are to be visualized. However, if 

the desired thickness is realized, small irregularities on the surface (such as those 

due to granular structures) affect the image relatively weakly.  
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Figure 6-1 Fluorescence (A) and reflectance (B) images of the same puff pastry. 

  

This is shown in Figure 6-1 where the same sample is observed in fluorescence 

mode (emission wavelength ≠ excitation wavelength) and reflectance mode 

(emission wavelength = excitation wavelength). The fluorescence image shows 

thin strands of gluten surrounding the black starch granules in the top half, and 

a dark area in the bottom half where there is a layer of butter. The image shows 

a flat sample where light intensities are proportional to the amount of fluorescent 

molecules. In the reflectance image, small specks of light can be seen, which do 

not correspond to the starch granules. This is because the surface of the starch 

granule facing the excitation light gets illuminated strongly, compared to the 

other areas, and this light is directly reflected into the camera. When observing 

with fluorescence, the light is initially absorbed and then, emitted. This indirect 

emission seems to lower the effect of surface irregularities.  

3. Constituents that are known to be “non-fluorescent” (such as starch) can be 

observed due to traces of fluorescent constituents that exist together (such as 

protein membranes on the surface of starch granules). This is a significant 

characteristic of fluorescence “fingerprint” imaging, not fluorescence imaging 

with a single wavelength. It is especially true when FF imaging is applied to 

complex samples such as foods. “Starch” and “fat” in the chemical sense are not 

fluorescent since these molecules are made up of single bonds. However, in food 

systems, these constituents exist as complex assemblies, sometimes containing 

fluorophors such as aromatic amino acids and vitamins. FF measurement is 

basically a “non-targeted” method, where the wavelengths used for 

measurement are not linked to a specific target. Therefore, it is possible to 

capture “non-fluorescent” constituents by other constituents that fluoresce in 

(A) (B)

50 m 50 m
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other wavelengths. 

4. Measuring equipment is less expensive than most imaging methods. Since the 

FFs in this study are measured in the near-UV to VIS region, light sources, 

cameras and band-pass filters are much less expensive than other wavelength 

regions. Furthermore, FF imaging uses simple optical systems, compared to 

laser induced imaging methods etc. which makes it very affordable (see also 

figure 1-21). 

Above are the advantages of FF imaging, compared to other imaging methods. On 

the other hand, there are also some disadvantages, which are listed below. The first two 

disadvantages are fundamental but the third can be overcome by improvement of the 

imaging system.  

1. The sample needs to be made into thin slices for micro-scale features to be 

observed, which means that the imaging method is not completely non-

destructive. This is due to the characteristics of near-UV to VIS light, which 

penetrates into the sample to a certain deepness which is larger than the scale of 

the features that we are aiming to visualize, such as starch granules. This 

phenomenon is shown in chapter 3, where we tried to visualize the distribution 

of gluten and starch with a sample that was not sliced.  

This does not apply to macroscopic samples, such as pork and beef slices, where 

the sample is measured directly with a macroscopic FF imaging system. In this 

case, the penetration of light into the sample is negligible.  

Observation of microstructures in bulk samples may be possible if a focusing 

device such as those used in confocal scanning laser microscopes (CSLM) are 

used. The coupling of CSLM and FF imaging may be an exciting technology in 

the future. 

2. Only constituents that are fluorescent can be visualized. This seems to contradict 

with the third advantage of FF imaging, but both views are true. In this study 

we aimed at visualizing the basic constituents that make the structure of food, 

proteins, starch, and fat. Two of these constituents, starch and fat, are non-

fluorescent, and although it was possible to visualize these constituents with the 

help of spectral unmixing techniques, many trials and errors were needed to get 

a decent result. This is a major disadvantage compared to imaging methods such 

as NIR, IR, and Raman imaging, which basically measure the vibrational energy 

of molecules and can therefore measure covalent bonds between C, H, and O.  
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3. Data acquisition time is long, in the order of minutes. Although this could be a 

major drawback when using FF imaging for practical purposes, image 

acquisition time can be reduced largely by improvement of the controlling 

system (which is presently programmed by LabVIEW) and the sensitivity of the 

camera, especially in near UV regions.  

Data acquisition times can be reduced by selecting or designing optimum band-

pass filters, so that constituents of interest can be distinguished using a minimum 

number of filters.  

If the third drawback could be improved to achieve measurement times in the order 

of a few seconds, the high spatial resolution, low demand towards sample preparation and 

high sensitivity towards certain constituents (fluorophors) should make FF imaging a very 

attractive imaging method.  

6. 3 Future perspectives 

FF imaging has proved to be an attractive method to observe samples in micro-scale. 

However, in food science, the time and money applicable for everyday measurement is 

scarce, meaning that methods such as FF imaging would only be used for fundamental 

research purposes. Although fundamental research is important in food science, and there 

are many foods whose structure and constituent distribution is yet to be studied, it would 

be greatly beneficial if FF imaging could be used in other fields, such as biology and 

medicine, where observation of the sample (ex. cells) is a routine procedure. In these 

fields, incorporating some kind of stain into the sample before observation is a common 

practice, and it should be a great impact if the same samples could be observed non-

destructively. 

For practical use, FF imaging needs to be developed in two ways: in terms of the 

image acquisition system, and data analysis methods.  

The current imaging system is a prototype and has been constructed by collecting 

the parts from multiple manufacturers. One problem that we faced when selecting the 

parts was that few devices had satisfactory performance in the near UV (250-400 nm). 

The near UV region is very important in FF imaging because many fluorophors including 

aromatic amino acids fluoresce in this wavelength band. However, the development of 

devices with satisfactory performance in these wavelengths has not been so active due to 

the lack of demand. As a result, most devices used in the current imaging system have 

low sensitivity or transmission coefficients in the near UV region. To ensure equal 

measuring conditions for all the images, the conditions for all the other wavelengths are 
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currently adjusted to be equal to the weakest and least sensitive wavelength, which is a 

large waste. We are working with several manufacturers who could develop light sources, 

cameras and optical devices which show high performance in the near UV region. With 

high performance in these regions, the exposure times would become shorter (enabling 

shortening of total measurement time) and the images clearer.  

There is also a large scope for improvement of analysis methods. In chapter 6, we 

incorporated some given information into the analysis model, i.e., that the abundance 

values of “slide glass” only took values of 1 or 0. This information improved the analysis 

greatly. Similarly, the incorporation of theoretical knowledge into the model may improve 

or stabilize it. For example, we are currently using analysis methods such as PLS and 

least squares regression that are based the assumption of linearity between fluorescence 

intensity and constituent abundance. However, fluorescence is known to show non-linear 

characteristics such as concentration quenching, and this is shown in chapter 3, where 

gluten ratios over 80% could not be modeled accurately with PLS. In this case, non-linear 

models may be considered.  
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Appendix 

I. Absorbance 

The energy of light 

In order for light to be absorbed by a molecule, the photon of the light needs to have 

the proper energy to reach a discrete excited state of the molecule. The energy of light 

absorbed (mole basis) is given by the Planck frequency relation:  

 

 
𝐸 = 𝑁ℎν =

𝑁ℎ𝑐

𝜆
 … (1)  

 

E is the energy associated with frequency ν and wavelength λ, c is the velocity of light, 

and N is Avogadro’s number. Absorption only occurs if E equals the difference in energy 

between the ground electronic state and an excited state of the absorber.  

In this study, we are focusing on light in the near UV to VIS region, i.e. 

approximately 200-700 nm. According to the Planck frequency relation, this corresponds 

to an energy value of 170-598 kJ/mol ( 𝑁 = 6.022 × 1023 , ℎ = 6.626 × 10−34, 𝑐 =

2.998 × 108 ). However, the energy differences between electronic states of most 

molecules are larger than this value. For example, the smallest energy difference in 

ethylene (CH2 = CH2) is between the 𝜋 and 𝜋* orbitals, and equals 725 kJ/mol [1] 

which corresponds to a wavelength of 165 nm (Figure I-1). In ethylene, there exists an 

orbital with lower energy than the 𝜋 orbital, the 𝜎 orbital, and an orbital with higher 

energy than the 𝜋* orbital, the 𝜎* orbital. Therefore, electronic transitions between these 

orbitals would require more energy than 725 kJ/mol.  

 

Figure I-1  Energy levels of ethylene 

π

σ

π*

σ*

725 kJ/mol
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In this section, molecular orbitals and their energies, and the mechanisms that work 

to lower the energy difference between electronic states are explained. This may help to 

generalize the division between molecules that absorb light in the near UV to VIS and 

those who do not. 

Atomic orbitals 

In atoms and molecules, electrons are found only in certain regions of space, and 

this space is referred to as its orbital [1]. Atomic and molecular orbitals are described by 

the wave equations (Schrodinger equations), and the solutions to the wave equations are 

called wave functions (written as ).Schrodinger equations have the form: 

 

 𝐻̂𝛹 = 𝐸𝛹 … (2)  

 

where 𝐻̂ is the Hamiltonian operator concerning the kinetic and potential energy of a 

particle and E is the energy value [2]. The wave function has characteristics which are 

similar to waves and can take both positive and negative values. Since |𝛹|2 is known to 

show the probability distribution of the particle in question, solving the Schrodinger 

equations allows us to understand the orbitals of molecules, or where the probability to 

find the electrons is at its highest. However, an exact solution can only be obtained for 

atoms that have one electron, the hydrogen atom [3]. For atoms and molecules with more 

electrons, the wave functions are obtained by approximations which are based on several 

hypotheses.  

The simplest atomic orbital is that of a single nucleus, which is spherically 

symmetric in space and is called the s orbital. Hydrogen and helium have a 1s orbital. The 

third electron in lithium cannot occupy the 1s orbital due to the Pauli principle which 

states that only two electrons can occupy one orbital. Therefore, lithium has another 

orbital, the 2s orbital. The third and fourth electrons in beryllium also occupy the 2s 

orbital. The boron atom has another type of orbital, the p orbital. There are three types of 

p orbitals, conventionally called 𝑝𝑥, 𝑝𝑦 and 𝑝𝑧 orbitals. These orbitals are shaped like 

a dumbbells with one lobe taking a positive wave function, and the other taking a negative 

wave function. The fifth electron in boron occupies one of the p orbitals. The following 

atoms, carbon, nitrogen, oxygen, etc. follow the same rules and occupy the p orbitals. 

Figure I-2 shows the shapes of the atomic orbitals. 
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Figure I-2  Atomic orbitals. The blue and red lobes defer positive and negative orbitals. 

Molecular orbitals 

When atoms are combined to form molecules, these atomic orbitals are also 

combined to make molecular orbitals. There are mainly three types of orbitals, σ, π and n. 

The σ orbitals are symmetrical to the axis and are the most stable. The π orbitals are 

orbitals that are non-symmetrical to the axis. Nonbonding electrons in atoms such as 

nitrogen and oxygen occur in n orbitals. Due to the characteristics of the wave functions, 

the number of orbitals combined always equals the number of orbitals which are newly 

made. Therefore, when two atomic orbitals are combined and make the σ orbital, another 

orbital, the σ* orbital is made. The same goes for π and π* orbitals. Orbitals with an 

asterisk (*) have higher energies than the ones that do not.  

The σ orbitals are the most stable orbitals, meaning that they are lowest in energy. 

Conversely, σ* orbitals are very high in energy. Therefore the energy gap between the σ 

and σ* orbitals is very large. Compared to the σ orbitals, π orbitals are less stable and have 

higher energies, meaning that the energy gap between π and π* orbitals are smaller than 

the σ and σ* orbitals. The relatively small energy gap means that in some molecules the 

excitation of an electron from the π orbital to the π* orbital can be obtained by the 

absorption of light in the near UV to VIS wavelengths. Therefore the π orbital is the key 

to light absorption and fluorescence. 

As an example, in chlorophylls and carotenoids, the energy of theorbital is 160-

300 kJ/mol higher than theorbital, so the absorption of visible light can lead to the 

excitation ofelectrons. Transitions from to orbitals require much more energy 

since the 𝜎 orbital is very stable. Transitions from n toorbitals are possible but are 

less probable to happen, which means that the molar absorptivity (absorbance of a 

substance at a concentration of 1 mol/l) is very low [4, 5]. 

In order to know how 𝜋  orbitals are made, we need to know the shapes and 
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characteristics of molecular orbitals. Molecular orbitals are also explained by the 

Schrodinger functions, but again it is impossible to solve the Schrodinger equations for 

molecules having many nuclei and electrons, and approximations are needed. There are 

two main methods of approximating molecular orbitals, the Valance Bond Method (VB 

method) and the Molecular Orbital Method (MO method). The VB method focuses on 

how the atomic orbitals of the dissociated atoms combine to give individual chemical 

bonds when a molecule is formed [6]. On the other hand, the MO method assumes orbitals 

that cover the whole molecule. The MO method is more precise but the VB method is 

easier to understand. Therefore, we first focus on the VB method. 

Valance bond theory and hybridized orbitals 

Simple bonds between s and p atomic orbitals are shown in Figure I-3. Bonds 

between s and s orbitals and py and py orbitals are symmetrical to the axis and become 𝜎 

orbitals. Bonds between px and px orbitals are asymmetrical to the axis and are therefore 

𝜋 orbitals. In the nitrogen molecule (N2), there is one 𝜎 orbital between the two py 

orbitals and two 𝜋 orbitals between the two px and pz orbitals.  

 

 

Figure I-3  Bonds between s, py and pz orbitals 

 

When three or more atoms are bonded together, it becomes more difficult to predict 

the shapes of the molecular orbits. Here we introduce the idea of hybridization.  

Hybridization is the combining of atomic orbitals to make new orbitals that can 

explain the characteristics of existing molecules. For example, methane is known to be a 

tetrahedron molecule with the center carbon connected to four hydrogen atoms. Carbon 

has two electrons in the 2s orbital and two electrons in the 2p orbitals. If the carbon-

hydrogen bonds are made between these orbitals and the 1s orbital of hydrogen, methane 

would not take the shape of a tetrahedron.  

To understand the characteristics of methane, we combine the 2s, 2px, 2py, and 2pz 

orbitals as shown in equation (3) to make a sp3 hybridized orbital.  
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𝑡1 =

1

2
(𝑠 + 𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧) 

𝑡2 =
1

2
(𝑠 − 𝑝𝑥 + 𝑝𝑦 + 𝑝𝑧) 

𝑡3 =
1

2
(𝑠 − 𝑝𝑥 − 𝑝𝑦 + 𝑝𝑧) 

𝑡4 =
1

2
(𝑠 − 𝑝𝑥 − 𝑝𝑦 − 𝑝𝑧) 

… (3)  

 

Since all these orbitals are equivalent, the new hybridized orbitals locate themselves 

equally in space, i.e., the hybridized orbitals form a tetrahedron shape (Figure I-4). The 

molecular orbitals between these hybridized orbitals and the s orbital of hydrogen is 

symmetrical to the axis and are therefore 𝜎 orbitals. Ammonia (NH4) and water (H2O) 

also form a sp3 hybridized orbital. In water, one of the sp3 orbitals is occupied with two 

electrons from the oxygen atom. 
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Figure I-4  sp3 hybridized orbitals are made by combing 4 orbitals  

 

Ethylene (CH2 = CH2) is known have a planar configuration. This is explained by 

the sp2 hybridized orbital, which is a combination of the 2s, 2px and 2py orbitals. The three 

orbitals are combined as shown in equation (4) to form 3 new orbitals. 

 

 

𝑇1 = (
1

3
)

1
2

𝑠 + (
2

3
)

1
2

𝑝𝑥 

𝑇2 = (
1

3
)

1
2

𝑠 − (
1

6
)

1
2

𝑝𝑥 + (
1

2
)

1
2

𝑝𝑦  

𝑇3 = (
1

3
)

1
2

𝑠 − (
1

6
)

1
2

𝑝𝑥 − (
1

2
)

1
2

𝑝𝑦  

… (4)  
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When these three equivalent orbitals space themselves as far away from each other as 

possible, they form an equilateral triangle (Figure I-5). This is the reason for the triangular 

planer formation.  

 

 

Figure I-5  sp2 hybridized orbitals are made from 3 orbitals  

 

The important thing here is that the 2pz orbital is not included in the hybridized 

orbital and sticks out of the x-y plane. When two carbon atoms are bonded to each other 

as in ethylene, one bond is made between sp2 orbitals. This is an 𝜎 orbital. However, 

another bond forms between the two 2pz orbitals. This orbital is asymmetrical to the axis 

and is therefore a 𝜋 orbital (Figure I-6). The 𝜎 and 𝜋 orbitals are shown together as a 

double bond. We can see from here that double bonds have an 𝜋 orbital.  
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Figure I-6  orbitals are formed in sp2 orbitals 

 

Acetylene ( CH ≡ CH ) takes a linear formation. This is explained by the sp 

hybridized orbital. This orbital is a combination of the 2s and 2py orbitals. 

 

 

𝐷1 = (
1

2
)

1
2

(𝑠 + 𝑝𝑥) 

𝐷2 = (
1

2
)

1
2

(𝑠 − 𝑝𝑥) 

… (5)  

 

These two orbitals space themselves 180° apart. The two leftover orbitals, 2px and 

2pz form 𝜋 orbitals with the neighboring carbon atom (Figure I-7).  
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Figure I-7  sp orbitals and the two  orbitals  

Molecular orbital theory 

The molecular orbital theory assumes that the molecular orbital formed between 

several atoms spread across the whole molecule [7]. The molecular orbitals are 

approximated by adding or subtracting the original atomic orbitals. Adding the atomic 

orbitals creates a molecular orbitals that spreads across the two atoms, i.e., a bonding 

orbital. Subtracting the atomic orbitals creates an anti-bonding orbital. Figure I-8 shows 
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the bonding and anti-bonding molecules created between s orbitals.  

 

Figure I-8   and * orbitals are made from s orbitals  

 

Figure I-9 shows the bonding and anti-bonding molecules created between py orbitals.  

 

 

Figure I-9  and * orbitals are made from py orbitals  

 

Figure I-10 shows the bonding and anti-bonding molecules created between s orbitals. 
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Figure I-10   and * orbitals made from px orbitals  

 

Bonding orbitals have lower energy than the original atomic orbitals and therefore 

are more stable. Conversely, anti-bonding orbitals have higher energy than the original 

orbitals and are unstable. Anti-bonding orbitals are marked with a “*” (𝜎* and 𝜋*). 

Electrons that originally occupied the atomic orbitals fall into the molecular orbitals, 

occupying the orbitals that are lowest in energy first. Only two electrons can occupy one 

orbital, due to the Pauli principle. The electron-occupied orbital with the highest energy 

is called HOMO (highest occupied molecular orbital) and the electron-unoccupied orbital 

with the lowest energy is called LUMO (lowest unoccupied molecular orbital). These two 

orbitals are very important because the smallest energy gap between orbitals is between 

the HOMO and the LUMO, and excited electrons are most likely to move between these 

two orbitals.  

By combining the hybridization orbital method and the MO theory, it is possible to 

consider energy levels of molecular orbitals in complex molecules. Figure I-11 shows the 

energy levels of molecular orbitals in ethylene molecule. As can be seen from the 

molecular energy levels the HOMO and LUMO are the 𝜋 and 𝜋* orbitals, respectively.  
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Figure I-11  Energy levels of molecular orbitals of ethylene 

 

The 𝜋 and 𝜋* orbitals also exist in bonds between other atoms. Table I-1 shows 

some functions groups and examples of molecules containing the function group. These 

function groups that absorb light are called chromophores [1, 5, 8]. The existence of 

chromophores alters the absorption wavelength and intensity of the molecule [9]. 

  

Table I-1  Chromophores and absorbing wavelengths 

 

Conjugation of double bonds 

We have seen that double and triple bonds are one condition for absorbance to occur. 

However, one double bond is still insufficient for absorbance of light in the near UV to 

VIS to occur. For example, the energy gap between the 𝜋 and 𝜋* orbitals in ethylene 

equals 725 kJ/mol [1] which corresponds to a wavelength of 165 nm. In order to absorb 

light in the range of 200-700 nm, the energy gap between HOMO and LUMO needs to 

be smaller. 

px py pz

S sp2

pz

Electrons from H

CH2 CH2

π

σ

π*

σ*

=HOMO

=LUMO

Chromophore Molecule Wavelength [nm]

C=C Ethylene 165
C≡C Acethylene 180
C=O Acetone 180
N=O Nitromethane 200
COOH Acetic acid 204
CONH2 Acetamide 208
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This happens when double bonds are conjugated, i.e., multiple double bonds are 

connected by single bonds. While ethylene absorbs at 165 nm, 1, 3-butadiene (CH2 =

CH − CH = CH2 ) absorbs at 217 nm. While this has been proved experimentally, 

understanding the logic behind this phenomenon requires solving the Schrodinger 

equations [10].  

We use the example of 1, 3-butadiene (CH2 = CH − CH = CH2). We focus on the 𝜋 

orbital in the molecule and represent the wave function of the 𝜋 orbital with 𝜓. The 

energy of 𝜓 is expressed as 

 

 
𝐸 =

∫ 𝜓𝐻𝜓𝑑𝜏

∫ 𝜓2𝑑𝜏
 … (6)  

 

The wave function 𝜓 can be approximated as the sum of the pz atomic orbitals of the 

four carbons: 𝜑1, 𝜑2, 𝜑3, 𝜑4 as 

 

 𝜓 = 𝑐1𝜑1 + 𝑐2𝜑2 + 𝑐3𝜑3 + 𝑐4𝜑4 … (7)  

 

By substituting equation (7) in (6) and setting the partial differential for c1 to c4 to zero 

 

 ∂E

∂c1
=

𝜕𝐸

𝜕𝑐2
=

𝜕𝐸

𝜕𝑐3
=

𝜕𝐸

𝜕𝑐4
= 0 … (8)  

 

This is the equivalent of calculating the following determinant:  

 

 

[
𝐻11 − 𝐸𝑆11 ⋯ 𝐻14 − 𝐸𝑆14

⋮ ⋱ ⋮
𝐻41 − 𝐸𝑆41 ⋯ 𝐻44 − 𝐸𝑆44

] = 0 … (9)  

 

Each term is defined as follows: 

 

 𝑆𝑚𝑚 = ∫ 𝜑𝑚
2 𝑑𝜏 = 1 

𝑆𝑚𝑛 = ∫ φ𝑚𝜑𝑛𝑑𝜏 = 0 

𝐻𝑚𝑚 = ∫ 𝜑𝑚𝐻𝑚𝜑𝑚𝑑𝜏 = 𝛼 

𝐻𝑚𝑛 = ∫ 𝜑𝑚𝐻𝜑𝑚𝑑𝜏  

          = 𝛽  (2 orbitals are side by side) 

               0  (2 orbitals are far away) 

… (10)  
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Therefore, the determinant becomes 

 

 

|

𝛼 − 𝐸 𝛽 0 0
𝛽 𝛼 − 𝐸 𝛽 0
0 𝛽 𝛼 − 𝐸 𝛽
0 0 𝛽 𝛼 − 𝐸

| = 0 … (11)  

 

If we define 𝑋 =
𝛼−𝐸

𝛽
, the determinant becomes, 

 

 

|

𝑋 1 0 0
1 𝑋 1 0
0 1 𝑋 1
0 0 1 𝑋

| = 0 … (12)  

 

It is possible to calculate X from this determinant, 

 

 

|

𝑋 1 0 0
1 𝑋 1 0
0 1 𝑋 1
0 0 1 𝑋

| = X |
𝑋 1 0
0 𝑋 1
0 1 𝑋

| − |
𝑋 1
1 𝑋

| … (13)  

 

If we define the n × n determinant shown above as 𝐷𝑛, 𝐷𝑛 can be calculated from 

𝐷𝑛−1 and 𝐷𝑛−2 as 

 

 𝐷𝑛 = 𝑋𝐷𝑛−1 − 𝐷𝑛−2 … (14)  

 

Actually, this is one of the characteristics of trigonometric functions [11]: 

 

 sin 𝑚𝜔 = 2 ∙ cos 𝜔 ∙ sin(𝑚 − 1)𝜔 − sin(𝑚 − 2) 𝜔 … (15)  

 

If we set Dn as sin 𝑚𝜔 and X as 2 cos 𝜔, 

 

 𝐷𝑛 = 0 → sin 𝑚𝜔 = 0 

𝜔 =
𝑖

𝑚
𝜋  (𝑖 = 1, 2, … 𝑚 − 1) 

… (16)  

 

When n = 2, 
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𝐷2 = |

𝑋 1
1 𝑋

| = 𝑋2 − 1 

𝐷2 = 0 →  𝑋 = ±1 

… (17)  

 

Since we set X as 2 cos 𝜔,  

 

 
cos 𝜔 = ±

1

2
→ ω =

1

3
𝜋,

2

3
𝜋 … (18)  

 

Therefore, 

  

 
𝑚 = 𝑛 + 1 → 𝑋 = 2 cos

𝑖𝜋

𝑛 + 1
 (𝑖 = 1, 2, … 𝑛) … (19)  

 

Since we defined 𝑋 =
𝛼−𝐸

𝛽
, 𝐸 = 𝛼 − 𝑋𝛽. Therefore, the energy levels of a conjugated 

molecule with n carbon atoms can be represented graphically as in Figure I-12. In a 

conjugated molecule with n carbon atoms, there are n electrons occupying the 𝜋 orbital. 

Since two electrons occupy one orbital, the HOMO and LUMO are the two orbitals just 

below and above 𝛼. The larger the number of carbon atoms, the smaller the energy gap 

between HOMO and LUMO. Therefore, the more conjugated a molecule is, the smaller 

energy it needs for electron transition to occur. Table I-2 shows the absorbance 

wavelengths of conjugated polyenes [12]. 
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Figure I-12  Energy levels of a conjugated molecule with 6 and 8 molecules 

 

Table I-2  Absorbance wavelengths of conjugated polyenes 

 

Aromatic molecules 

Conjugated systems also show 𝜋 to 𝜋* transition when they are cyclized (turned 

into rings), but some of these molecules show characteristics that cannot be explained by 

the conjugated systems alone. One of these molecules is benzene (C6H6).  

Benzene has three single bonds and three double bonds. However, the actual bond 

lengths between the carbon atoms are all the same. This is explained by the delocalization 

of electrons in the ring. As shown in Figure I-13, the 2pz orbitals of all the carbon atoms 

are equivalent, and therefore, 𝜋 orbitals can be made between every combination of 

carbon atoms. 

α

α

LUMO

HOMO

LUMO

HOMO

α+2β

α-2β

α+2β

α-2β

ψ1

ψ8

ψ1

ψ6

n = 8

n = 6

n molecule structure wavelength [nm]

1 ethylene CH2=CH2 165
2 butadiene CH2=CH-CH=CH2 217
3 hexatriene CH2=CH-CH=CH-CH=CH2 268
4 octatetraene CH2=CH-CH=CH-CH=CH-CH=CH2 304
5 decapentaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH2 334
6 dodecahexaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 364
7 tetradecaheptaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 390
8 hexadecaoctaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 410
10 eicosadecaene CH2=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH-CH=CH2 450



Appendix 

181 

 

 

 

Figure I-13  Delocalized electrons form orbitals between all combinations of  orbitals 

  

The delocalization of electrons makes the benzene molecule a very stable one. This is 

why benzene absorbs at a shorter wavelength (255 nm) than hexatriene, a linear 

conjugated hydrocarbon with the same number of carbon atoms and double bonds. 

Cyclized conjugated molecules that show the typical characteristics of benzene are called 

aromatic compounds.  

Molecules formed from fused benzenes such as naphthalene (two benzenes 

combined) and anthracene (three benzenes combined) show absorbance at longer 

wavelengths than benzene [13]. Furthermore, the combination of functional groups such 

as –OH and –NO2 to benzene also shifts the absorbance to longer wavelengths.  

Aromatic amino acids such as phenylalanine, tyrosine, histidine, and tryptophan also 

show near UV to VIS absorbance. Table I-3 shows some typical aromatic compounds and 

their absorbing wavelengths [14]. 

 

Table I-3  Typical aromatic compounds and absorbing wavelengths 

 

 

As we have seen, the condition for absorption to occur in the near UV to VIS is that 

the molecule contains conjugated double bonds, or aromatic structures. 

  

molecule structure wavelength [nm]

benzene C6H6 255

naphthalene (two benzenes fuzed) C10H8 286

anthracene (three benzenes fuzed)C14H10 375

phenole benzene + OH 290
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II. Fluorescence 

Deexcitation, rate constants and lifetimes 

We have looked at one condition for fluorescence to occur, the absorption of light. 

Now we look at the other condition, the absorbed light needs to be released again as 

fluorescence.  

The absorption of light causes the molecule to transfer to an “excited” state. This is 

a very unstable state, so the energy is released again and the molecule goes back to its 

most stable state. This release of energy is called deexcitation. There are many 

deexcitation processes, and for a molecule to show fluorescence, the release of energy as 

light needs to dominate over the other deexcitation processes. Below are the main 

deexcitation processes: 

1. Fluorescence (includes phosphorescence) 

2. Radiationless transition (molecule loses energy as heat) 

3. Excitation energy is transformed to another molecule 

4. Excited electron leaves the molecule that absorbed the photon 

The rate of each process is explained with a constant number, k. Generally, in a 

chemical reaction 

 

 𝑛𝐴 + 𝑚𝐵 → 𝐶 + 𝐷 … (20)  

 

k is expressed as 

 

 𝑑𝐶

𝑑𝑡
= 𝑘(𝑡)𝐴𝑛𝐵𝑚 … (21)  

 

where t is the time elapsed from the moment the illumination ceases [15]. The larger the 

value of k, the faster the reaction. In the case of deexcitation, if we denote 𝑆(𝜋,𝜋∗) as the 

excited state and 𝑘1, 𝑘2,… as the rate constants for each deexcitation process, 

 

 
−

𝑑𝑆(𝜋,𝜋∗)

𝑑𝑡
= (𝑘1 + 𝑘2 + ⋯ )𝑆(𝜋,𝜋∗) 

𝑆(𝜋,𝜋∗)(𝑡) = 𝑆(𝜋,𝜋∗)(0)𝑒−(𝑘1+𝑘2+⋯ )𝑡 

… (22)  

 

Here we introduce the lifetime, 𝜏, which is the time required for the number of 
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molecules in a given state to decrease to 1/e = 37% of the initial state (deexcitation is 

known to occur exponentially). Then  

 

 

when 𝑡 = 𝜏, 

𝑆(𝜋,𝜋∗)(𝑡)

𝑆(𝜋,𝜋∗)(0)
=

1

𝑒
 

… (23)  

 

From equation (22), 

 

 e−(𝑘1+𝑘2+⋯ )𝜏 = 𝑒−1 

(𝑘1 + 𝑘2 + ⋯ )𝜏 = 1 

𝜏 =
1

(𝑘1 + 𝑘2 + ⋯ )
 

… (24)  

 

This shows that if one particular process has a large rate constant (the reaction proceeds 

quickly), the overall lifetime of the excited state becomes short.  

Furthermore, we can calculate the quantum yield, 𝜙𝑖 , which is the number of 

molecules using i th deexcitation reaction divided by the total number of excited 

molecules. 𝛷𝑖 is expressed as 

 

 𝛷𝑖 =
𝑘𝑖

∑ 𝑘𝑗𝑗
=

𝜏

𝜏𝑖
 … (25)  

 

This means that for fluorescence to be observed strongly (quantum yield is large), the 

range constant k for fluorescence needs to be relatively large compared to the other 

reactions. 

Electronic, vibrational and rotational energy 

In the section of absorbance, we mainly discussed the electronic energy state of 

molecules, which is determined by the molecular orbitals occupied by the electrons. 

However there are other energy levels which need to be concerned in order to understand 

the spectrum of fluorescence emission. While the levels of electronic energy correspond 

to light in the UV to VIS wavelengths, vibrational energy levels are much smaller and 

correspond to infrared (IR) wavelengths. Rotational energy levels are even smaller and 

correspond to microwave wavelengths. The existence of these different levels of energy 
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is the reason absorbance spectra become broad. 

Molecule vibration can be approximated as the motion of a spring. The bond 

between two atoms acts as the spring, and the oscillation of atoms depends on the energy 

level. There are many ways in which atoms can vibrate, such as stretching, bending, 

rocking, wagging and twisting. The number of vibrational modes depends on the 

molecule [2]. Figure II-1 shows the energy of vibrational levels and conformation of the 

corresponding molecules.  

 

Figure II-1  Energy of vibrational levels 

 

Furthermore, molecules show rotational movements. Rotational energy is explained 

by the moment of inertia of the molecule, which is defined as the mass of each atom 

multiplied by the square of its distance from the rotational axis.  

An important point regarding vibrational and rotational energies is that the 

energy absorbed is quickly dissipated as heat. This is explained by the oscillation 

frequency of nuclei, which is about 1013 Hz, meaning that one wave of oscillation 

takes about 10-13 s. This is the order of time in which excess vibrational energy can 

be dissipated as heat by interactions with other nuclei. Therefore, transitions within 

the same electronic state are usually complete in the order of 10-12 s. This occurs 

much faster than the emission of light such as fluorescence. Therefore, when a 

molecule absorbs light to be excited to an energy level that is higher in electronic, 

vibrational, and rotational energies, the excess vibrational and rotational energies are 

dissipated quickly before fluorescence and other deexcitation processes occur.  

Distance between two atoms

En
er
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Vibrational and rotational levels of ground and excited state differ in energy of 

approximately 15 kJ/mol and 1 kJ/mol, respectively. In the green to yellow wavelengths, 

this is equal to 40 nm and 3 nm difference, respectively. Since these energies are quickly 

dissipated as heat before fluorescence can be emitted, the energy of fluorescence light is 

lower than the light originally absorbed. This results in a wavelength shift between the 

excitation and emission light. This difference is expressed as the Stokes shift which is 

defined as follows: 

 

 
Stokes shift [cm−1] = 107 (

1

𝜆𝑒𝑥
−

1

𝜆𝑒𝑚
) … (26)  

 

where 𝜆𝑒𝑥  [nm]  and 𝜆𝑒𝑚  [nm]  are the wavelengths of the excitation and emission 

peaks, respectively.  

Competing deexcitation pathways 

There are many pathways in which deexcitation can occur. First we look at the 

process of fluorescence. With fluorescence, the excited molecule drops back to the ground 

state by releasing light. We set the rate constant as 𝑘1: 

 

 
𝑆(𝜋,𝜋∗)

𝑘1
→ 𝑆(𝜋,𝜋) + ℎ𝜈 … (27)  

 

The fluorescence lifetime is typically 10-8 s [16].  

Next we consider radiationless transitions, where the electronic energy is dissipated 

as heat (rate constant = 𝑘2).  

 

 
𝑆(𝜋,𝜋∗)

𝑘2
→ 𝑆(𝜋,𝜋) + heat … (28)  

 

This dissipated energy is often passed on to other parts of the same molecule and causes 

the excitation of vibrational modes for other atoms. Radiationless transitions can occur 

within an electronic state as we have seen for vibrational and rotational energies, and also 

between electronic states.  

Energy transfer between molecules can happen (rate constant = 𝑘3): 
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𝑆(𝜋,𝜋∗) + 𝑆2(𝜋,𝜋)

𝑘3
→ 𝑆(𝜋,𝜋) + 𝑆2(𝜋,𝜋∗) … (29)  

 

as well as photochemical reactions (rate constant = 𝑘4): 

 

 𝑆(𝜋,𝜋∗)

𝑘4
→ 𝐷(𝜋) + 𝑒∗ … (30)  

 

Using the rate constants 𝑘1 to 𝑘4, the quantum yield of fluorescence is expressed as: 

 

 
𝛷 =

𝑘1

𝑘1 + 𝑘2 + 𝑘3 + 𝑘4
 … (31)  

 

This shows that the quantum yield of fluorescence depends largely on the rate 

constants of other processes. For example, at high temperature, radiationless 

transitions are more likely to happen, i.e., the rate constant 𝑘2 is large. This results 

in a smaller 𝛷 which means weaker fluorescence.  

In another case, a substance that is easily excited may be mixed with the 

measured sample, in which case, energy transfer between molecules may be 

activated and 𝑘3  may become larger. This also results in a smaller 𝛷 . The 

introduced substance would be referred to as a “quencher”.  

 

As we have seen, the condition for fluorescence emission to occur is that the 

rate constants for other deexcitation processes to be relatively smaller than the rate 

constant of fluorescence. Causes for large rate constants for other deexcitation 

processes are high temperature, existence of other substances, etc. 
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III. Applications of fluorescence 

Time-resolved spectroscopy 

Since many competing deexcitation paths exist, the lifetime of the same fluorophors 

can differ depending on the environment, ex. the amount of interactions with substrates 

and other macromolecules. If two fluorophors show the same fluorescence spectra and 

intensities, they cannot be differentiated by steady-state data. However, if their lifetimes 

are different, they can be resolved by time-resolved fluorescence. 

There are two ways of measuring time-resolved fluorescence: time-domain and 

frequency-domain methods. With the time-domain method, the sample is excited with a 

pulse of light whose endurance is much shorter than the decay time 𝜏, and the time-

dependent intensity of the fluorescence is measured. The frequency-domain method uses 

excitation light whose intensity is varied at a high frequency, typically near 100 MHz. 

This causes the emission to respond at the same frequency but be delayed due to 

fluorescence lifetime. This delay is measured as a phase shift (𝜙) which can be used to 

calculate the decay time.  

One application of time-resolved fluorescence is to use fluorescent probes with a 

long decay time and to measure the emission within a time-gate after excitation (Figure 

III-1). With this method, unwanted auto-fluorescence of the sample (such as those from 

amino-acids) that have a relatively short decay time can be eliminated [17]. 

 

Figure III-1  Time-gate measurement [17] 

 

Time-resolved fluorescence has also been used for imaging, where the image 

contrast is based on the lifetime of each pixel. This method is called fluorescence lifetime 

imaging microscopy (FLIM) and is used in cell biology [18]. In this study, images are 
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acquired in multiple wavelengths as well as multiple lifetimes. The trend to develop 

techniques used for one-point measurement to imaging seems to be universal.  

Fluorescence anisotropy 

Anisotropy shows the extent of polarity of the emitted light when the sample is 

excited with polarized light [19]. With the measurement of fluorescence anisotropy, we 

excite the sample with polarized excitation light and measure how much the emission 

light has been “depolarized”. 

Molecules have transition moments that lie along specific directions in the molecule. 

When molecules are excited by polarized light, only the molecules with their transition 

moments oriented along the excitation light can be excited. During the fluorescent 

lifetime, rotational diffusion changes the orientation of these molecules causing emission 

light to be depolarized. Since the rate of rotational diffusion depends upon the viscous 

drag by the solvent, measuring fluorescence anisotropy gives us an idea of the viscosity 

or “mobility” of the sample. For example, fluorescence anisotropy measurements have 

been used to quantify protein denaturation, since denatured protein has more mobility 

than their counterparts. 

Resonance energy transfer (RET) 

RET occurs when two fluorescence molecules are close enough for the emission 

light of one molecule (donor) is transferred to the other molecule (acceptor) by long-range 

dipole-dipole interactions, causing the acceptor to be excited [19]. The acceptor then 

emits fluorescence that has a much longer wavelength than the original light.  

RET is most commonly used to measure the distances between two sites on a 

macromolecule. If two sites of a molecule is covalently labeled with a fluorophor 

(intrinsic or extrinsic), measuring the efficiency of RET would show how close these two 

sites are. Molecules showing RET can also be used as probes for measuring solvent 

properties such as pH. If the protein probe can be designed to fold and unfold according 

to its environment such as pH, measuring the efficiency of RET would show the 

configuration of the protein and as a result, the properties of the solvent.  

Forster distance is the distance at which RET occurs at 50% efficiency, and is 

typically 20 to 60 Å. The rate of energy transfer 𝑘𝑇(𝑟) is  
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 𝑘𝑇(𝑟) =
1

𝜏𝐷
(

𝑅0

𝑟
)

6

 … (32)  

 

where 𝑅0 is the Forster distance, r is the distance between the donor and acceptor and 

𝜏𝐷 is the decay time of the donor. When = 𝑅0 , the rate of transfer is equal to the decay 

rate,  
1

𝜏𝐷
 , meaning that energy transfer efficiency is 50%.  

Multi-photon excitation microscopy 

Although many molecules are excited by light in the near UV, exposing the sample 

to strong UV light may have a negative effect on the sample. This can be overcome by 

multi-photon excitation (MPE). MPE occurs when two or more electrons interact 

simultaneously with a fluorophor, and the fluorophor absorbs energy equal to the sum of 

the multiple electrons. Therefore the wavelength of the excitation light used is much 

longer than that used for one photon excitation.  

For multiple photons to be absorbed simultaneously, illumination intensities must 

be high. The intensity of MPE is in the order of second power of the excitation light (𝐼2). 

In this respect, MPE is referred to as non-linear fluorescence. This non-linearity is 

favorable in imaging since it enables the excitation of a specific point. When an excitation 

light is focused on a point in space, the planes in front or behind the focal point are also 

illuminated. However, the probability of MPE to happen (or the intensity of MPE) is 

lowered in order of second power, so essentially, only the molecules at the focal plane are 

excited (Figure III-2).  
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Figure III-2  Pinpoint excitation by MPE [20] 

 

MPE is almost always coupled with extrinsic fluorophors which are inducted in the 

sample in advance. Using MPE to observe intrinsic fluorophors would be an interesting 

study.    

E x c i t a t i o n  i n t e n s i t y

Z
 p

o
s

it
io

n
f o c a l  p o i n t



Appendix 

191 

 

References 

 

1.  Maitland, J., Steven, F., Organic chemistry. 4th ed. (2010). 

2.  Peter, A., Julio, d.P., Atkins' physical chemistry. 8th ed. (2006). 

3.  井上均. 化学結合の話. http://hr-

inoue.net/zscience/topics/chemicalbond/chemicalbond.html. Last accessed: 2014.1.23  

4.  電子状態（wikipedia）. 

http://ja.wikipedia.org/wiki/%E9%9B%BB%E5%AD%90%E7%8A%B6%E6%85%8B. 

Last accessed: 2014.1.23  

5.  Reusch, W. Visible and ultraviolet spectroscopy. 

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-

Vis/spectrum.htm 

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-

Vis/uvspec.htm#uv3. Last accessed: 2014.1.23  

6.  Valence bond theory (wikipedia). 

http://en.wikipedia.org/wiki/Valence_bond_theory. Last accessed: 2014.1.23  

7.  棚瀬知明. 基礎化学４ 化学結合と分子の形２. http://www.chem.nara-

wu.ac.jp/~tanase/ClassesInfo/kisokagaku4-1.pdf. Last accessed: 2014.1.23  

8.  Tony, O., Fundamentals of uv-visible spectroscopy. 

9.  Khan, M. Ultraviolet/visible absorption spectroscopy. http://www2.mpip-

mainz.mpg.de/documents/aksp/Seminare/Basisseminars/UV-VIS.pdf. Last accessed: 

2014.1.23  

10.  御崎洋二. 有機化学特論ⅰ 平成 19年度 分子軌道. http://www.misaki-

lab.jp/pdf/lecture/tokuron_H19/2nd-MO.pdf. Last accessed: 2014.1.23  

11.  三角関数の公式の一覧（wikipedia）. 

http://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0%

E3%81%AE%E5%85%AC%E5%BC%8F%E3%81%AE%E4%B8%80%E8%A6%A7. 

Last accessed: 2014.1.23  

http://hr-inoue.net/zscience/topics/chemicalbond/chemicalbond.html
http://hr-inoue.net/zscience/topics/chemicalbond/chemicalbond.html
http://ja.wikipedia.org/wiki/%E9%9B%BB%E5%AD%90%E7%8A%B6%E6%85%8B
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/uvspec.htm#uv3
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/uvspec.htm#uv3
http://en.wikipedia.org/wiki/Valence_bond_theory
http://www.chem.nara-wu.ac.jp/~tanase/ClassesInfo/kisokagaku4-1.pdf
http://www.chem.nara-wu.ac.jp/~tanase/ClassesInfo/kisokagaku4-1.pdf
http://www2.mpip-mainz.mpg.de/documents/aksp/Seminare/Basisseminars/UV-VIS.pdf
http://www2.mpip-mainz.mpg.de/documents/aksp/Seminare/Basisseminars/UV-VIS.pdf
http://www.misaki-lab.jp/pdf/lecture/tokuron_H19/2nd-MO.pdf
http://www.misaki-lab.jp/pdf/lecture/tokuron_H19/2nd-MO.pdf
http://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0%E3%81%AE%E5%85%AC%E5%BC%8F%E3%81%AE%E4%B8%80%E8%A6%A7
http://ja.wikipedia.org/wiki/%E4%B8%89%E8%A7%92%E9%96%A2%E6%95%B0%E3%81%AE%E5%85%AC%E5%BC%8F%E3%81%AE%E4%B8%80%E8%A6%A7


Appendix 

192 

 

12.  遠藤泰樹. 基礎現代科学 第３章 光と分子. http://bunshi.c.u-

tokyo.ac.jp/~endolab/Jpn/lab/kisogendai/no6_web.pdf. Last accessed: 2014.1.23  

13.  島津製作所. Uv talk letter vol.2(2008) 紫外可視吸収と有機化合物の構造と

の関係. http://www.an.shimadzu.co.jp/uv/support/lib/uvtalk/uvtalk2/apl.htm. Last 

accessed: 2014.1.23  

14.  山本勝博. 紫外スペクトル法による天然水中の有機成分の測定. 

http://www.osaka-c.ed.jp/kak/rika1/osaka-ch/chem11-4.htm. Last accessed: 2014.1.23  

15.  Reaction rate constant (wikipedia). 

http://en.wikipedia.org/wiki/Reaction_rate_constant. Last accessed: 2014.1.23  

16.  Nobel, P.S., Physicochemical and environmental plant physiology. 4th ed. (2009): 

Academic Press. 582. 

17.  Rich, R.M., Stankowska, D.L., Maliwal, B.P., Sorensen, T.J., Laursen, B.W., 

Krishnamoorthy, R.R., Gryczynski, Z., Borejdo, J., Gryczynski, I., Fudala, R., 

Elimination of autofluorescence background from fluorescence tissue images by use of 

time-gated detection and the azadioxatriangulenium (adota) fluorophore. Analytical and 

Bioanalytical Chemistry, (2013). 405(6): p. 2065-2075. 

18.  Chorvat, D., Chorvatova, A., Multi-wavelength fluorescence lifetime 

spectroscopy: A new approach to the study of endogenous fluorescence in living cells 

and tissues. Laser Physics Letters, (2009). 6(3): p. 175-193. 

19.  Lakowicz, J.R., Principles of fluorescence spectroscopy. 3rd Edition ed. (2006), 

NewYork: Springer Science+Business Media, LLC. 

20.  Diaspro, A., Bianchini, P., Vicidomini, G., Faretta, M., Ramoino, P., Usai, C., 

Multi-photon excitation microscopy. Biomedical Engineering Online, (2006). 6: p. 5-

36. 

 

 

http://bunshi.c.u-tokyo.ac.jp/~endolab/Jpn/lab/kisogendai/no6_web.pdf
http://bunshi.c.u-tokyo.ac.jp/~endolab/Jpn/lab/kisogendai/no6_web.pdf
http://www.an.shimadzu.co.jp/uv/support/lib/uvtalk/uvtalk2/apl.htm
http://www.osaka-c.ed.jp/kak/rika1/osaka-ch/chem11-4.htm
http://en.wikipedia.org/wiki/Reaction_rate_constant


193 

 

Acknowledgements 

この博士論文には、修士課程から博士課程にかけての 5 年間の研究をまとめました。この

間、数えきれないほど多くの方々にお世話になりました。改めて振り返ってみると、自分が

いかに恵まれた立場にあったかを強く感じます。関わった方のなかでもほんの一部になり

ますが、ここで御礼を申し上げたいと思います。 

 

鍋谷浩志 教授 （東京大学大学院農学生命科学研究科 連携教授、独立行政法人 農業・産

業技術総合研究機構 食品総合研究所 食品工学研究領域 領域長） 

指導教官として、学部から修士課程、博士課程まで本当にお世話になりました。食品総合研

究所では、いつもいろいろな部屋を回ってそこの方と直接話されているのを見て、直接話を

してコミュニケーションをとることの大切さを教えられました。仕事への真面目さと飲み

会でのフランクさ、どちらも見習いたいと思っています。 

 

杉山純一 博士 （独立行政法人 農業・産業技術総合研究機構 食品総合研究所 計測情報工

学ユニット ユニット長） 

すべての研究の直接指導者として、大変お世話になりました。計測情報工学ユニットの中で、

そしてこのテーマで研究させていただけたことは本当に幸運だったと思っています。杉山

様の研究に対する熱意や柔軟な考え方、そしてある種の「勘」にはいつも驚かされています。

学生だからという遠慮は全くなく、いつも自由に発言させていただいていましたが、そのよ

うな雰囲気を作ってくださった杉山様に感謝しています。 

 

蔦瑞樹 博士 （独立行政法人 農業・産業技術総合研究機構 食品総合研究所 計測情報工学

ユニット 主任研究員） 

研究の指導者として、そして先輩として、尊敬してやまない存在です。何か迷ったときは必

ず相談させていただいていましたし、いただいたアドバイスはほとんど全部実現させてき

たと思っています。10 年かかっても今の蔦様にはかなう気はしませんが、少しずつ頑張っ

ていきたいと思っています。 

 

藤田かおり 博士 （独立行政法人 農業・産業技術総合研究機構 食品総合研究所 計測情報

工学ユニット 研究員） 

研究全般について、いつも細かいところまで見ていただき、たくさんのアドバイスをいただ

きました。外部の人との積極的な関わり、実験のときの細やかな気づかい、研究に対する粘

り強さ、どれも自分には足りないところで、藤田様を見ていて本当にすごいな、と毎回思っ

ています。女性であることは、デメリットよりもメリットの方が大きいかもしれないと思わ

せてくれた存在です。本当にありがとうございます。 
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吉村正俊 博士 （独立行政法人 農業・産業技術総合研究機構 食品総合研究所 計測情報工

学ユニット、日本学術振興会 特別研究員） 

この研究の途中から、同じ蛍光指紋イメージングに取り組まれた吉村様からは、逆に蛍光や

イメージングの基礎的部分を教えられました。今の研究は、過去の様々な研究の上に成り立

っている、ということを身をもって教わり、それが本論の第一章を書く原動力にもなりまし

た。ありがとうございました。 

 

柴田真理朗 博士 （独立行政法人 農業・産業技術総合研究機構 食品総合研究所 計測情報

工学ユニット、日本学術振興会 特別研究員） 

研究室の最も近い先輩として、多くのことを教えていただきました。時々、自分の研究にも

鋭い指摘をいただき、ハッとさせられることがありました。淡々と実験に取り組み、論文を

どんどん出していく姿勢をとても尊敬します。 

 

荒木徹也 博士 （東京大学大学院農学生命科学研究科 農学国際専攻 准教授） 

私は主に食品総合研究所で研究を進めながらも、大学で研究内容を別の視点から見ていた

だくという、大変恵まれた境遇にありました。その筆頭として荒木先生からは少し離れた立

場からアドバイスをいただくことができ、本当に有難いことだと思っています。研究の進め

方や留学などについても、親身になって相談にのってくださり、ありがとうございました。 

 

溝口勝 教授 （東京大学大学院農学生命科学研究科 農学国際専攻） 

同じ体育会系だからか感覚が似ているところが多く、いつもお話していて楽しかったです。

国際学会中に語っていらっしゃった大学院での研究や教育についてのお話や、東日本大震

災以降の研究の有り方についてのお話はとても印象的で、少なからず影響を受けました。少

し分野が異なるものの、同じ国際情報研究室の中に二つの研究室が入っていてよかったと

思っています。 

 

斎藤幸恵 博士 （東京大学大学院農学生命科学研究科 農学国際専攻 准教授） 

斎藤先生には、修士論文に続き、博士論文でも副査になっていただき、細やかなアドバイス

をいただきました。普段はあまり一緒に研究をしていない方から、新たな視点でご指摘をい

ただくことはとても刺激的で、博士論文をまとめて良かったと感じた瞬間でもありました。

ありがとうございました。 

 

相良泰行 教授 （東京大学 名誉教授、一般社団法人食感性コミュニケーションズ） 

食品総合研究所でも大学でもない、もう一か所の相談先が相良先生でした。「実用研究では

いつもその学問の基礎を参照し、基礎研究ではいつも実用的な出口を考える」という方針は
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いろいろな場面で思い出されます。同行させていただいた北海道帯広市の視察では、国産小

麦の生産・加工・消費という正に現場を見ることができ、大きな影響を受けました。今後と

もご指導いただければと思います。 

 

前田竜郎 博士 （日清フーズ株式会社） 

本研究は観察対象として小麦製品を扱っていますが、この分野の多くの知識は前田様から

教わりました。御社の研究所にて、パン生地の作り方と小麦粉の分画方法を教えていただい

たところからこの研究は始まっています。何よりも、小麦粉という一つの作物の特異性や面

白さを教えていただいたことは大きいと思っています。ありがとうございました。 

 

芦田祐子 様 （不二製油株式会社） 

芦田様には第 6 章のパイ生地のイメージング実験において、試料作製から染色・観察まで

行っていただき、大変お世話になりました。まだ研究段階である蛍光指紋イメージングでは、

失敗や装置などの問題もあり、長い期間結果が出ないこともありましたが、本当に親身にな

ってアドバイスをくださり、感謝しきれません。すばらしい切片や染色画像は自分一人の力

ではどう頑張っても得られないもので、いろいろな方と一緒に研究することの意義が実感

できた研究でした。 

 

横矢直人 博士 （東京大学大学院工学系研究科 先端学際工学専攻 助教） 

部活時代からの良き友達であると同時に、ハイパースペクトルの解析でははるかに進んで

いるリモートセンシング分野の先生でもあり、第 6 章のパイ生地のイメージング実験では

蛍光指紋データを解析してくださりました。どんどん研究成果を出す同期の存在はいつも

刺激的で、前に進む原動力となっています。 

 

Ms. Tsai Karin、中村結花子 様、Mr. Dheni Mita Mala、平野由香里 様、松山信悟 様、 

今村義則 様 

食品総合研究所にて今まで一緒に研究をしてきた学生は、皆研究に熱心で、面倒な実験も厭

わずに行う人たちで、そのような姿は私にとっても大きな支えになりました。やはり自分と

同年代の人たちがいる研究室は楽しく、ほとんどストレスもなく研究を進められたのは皆

さまのおかげだと思っています。 

 

等々力節子 博士、亀谷宏美 博士、桂洋子 様、齊藤希己江 様、森下みずほ 様、 

吉田元美 様、鈴木洋子 様 

食品総合研究所の同じ研究室で働く方々には、いろいろなところで助けていただきました。

どうしても考えがまとまらないとき、一つの課題が終わって次に取り組む元気が出ないと

き、全然関係ない話題で笑い気分を新しくしていました。研究では直接関わっていないから
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こそ、弱気な気持ちや愚痴を漏らしやすく、うまくガス抜きができていたと思います。あり

がとうございました。 

 

家族 

改めて、博士課程への進学を認めてくれ、支えてくれた両親と妹達に感謝します。この研究

の元には「食品の『おいしさ』はどのように計測できるのか」という大きなテーマがありま

す。この、「食」への興味は、人一倍食べることに熱意をかける家族の中で育ったからこそ、

生まれたものだと思っています。博士課程を修了した後も平坦な道ではないと思いますが、

自分の興味を大切に精一杯研究したいと思います。 


