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1. ABBREVIATIONS 

 

AAA  Abdominal aortic aneurysm 

CCL  CC-chemokine ligand 

COX  Cyclooxygenase 

CT  Computed tomography 

ECM  Extracellular matrix 

EPA  Eicosapentaenoic acid 

EVAR  Endovascular aneurysm repair 

FACS  Fluorescence-activated cell sorting 

FBS  Fetal bovine serum 

IL  Interleukin 

IP  Intraperitoneal 

LPS  Lipopolysaccharide 

MMP  Matrix metalloproteinase 

NFκB  Nuclear factor κB 

OPG  Osteoprotegrin 

PBS  Phosphate buffered solution 

PCR  Polymerase chain reaction 

PG  Prostaglandin 

PUFA  Polyunsaturated fatty acid 

RANKL  Receptor activator of nuclear factor κB ligand 

TIMP  Tissue inhibitors of metalloproteinase 

TNF  Tumor necrosis factor 
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2. ABSTRACT 

 

 Abdominal aortic aneurysm (AAA) is a prevalent vascular disease that can 

rupture with a high rate of mortality. Inflammation and active remodeling of the aortic 

wall have been suggested to be critical in its pathogenesis. Omega-3 polyunsaturated 

fatty acids such as eicosapentaenoic acid (EPA) are known to reduce cardiovascular 

events, but its role in AAA management remains unclear. Here, I show that EPA 

attenuates murine CaCl2-induced AAA development. AAA tissues from mice fed an 

EPA-diet appeared less inflamed and less calcified, and had relative preservation of 

aortic elastic lamina compared to those from mice in the Control diet group. AAA 

diameters were also significantly smaller in the mice fed an EPA-supplemented diet. 

Mechanistically, Mmp9 mRNA levels and activity in the AAAs were reduced after EPA 

treatment. Consistent with this finding, RAW264.7 macrophages treated with EPA 

showed attenuated Mmp9 levels after TNF-α simulation. Another effect exhibited by 

EPA was the suppression of AAA calcification, which was consistent with the reduction 

in levels of the vascular calcification factor Rankl (Tnfsf11) in the mice treated with EPA. 

Up-regulation of Rankl and Mmp9 levels was found to be temporally related in the early 

phases of AAA formation, and recombinant RANKL protein was shown to induce 
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Mmp9 expression in cultured peritoneal macrophages. These results demonstrate a 

novel role of EPA in attenuating AAA formation via the suppression of 

macrophage-derived MMP-9 as well as possibly via the suppression of aneurysmal 

Rankl expression levels, and raise the possibility of using EPA for AAA prevention in 

the clinical setting. 
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3. INTRODUCTION 

 

 Abdominal aortic aneurysm (AAA) is a disease involving the gradual and 

irreversible dilatation of the abdominal aorta [1]. While aneurysms can technically 

affect any part of the abdominal aorta, the term AAA is generally reserved for 

aneurysms of the infra-renal aorta, which is by far the most common site of aneurysm 

formation. Abdominal aortic aneurysms are common particularly in men older than 65 

years of age and has a reported prevalence of 4-9% in men and 1% in women [2,3]. The 

most important risk factors for developing the disease are advanced age, smoking, and 

male gender [3,4]. Natural disease progression of untreated AAAs result in a high risk 

of aneurysm rupture that has an associated mortality rate as high as 65% to 85% [3]. 

Therefore, current consensus on the clinical management of AAAs focuses on the early 

diagnosis, monitoring, and if required, treatment of AAAs prior to rupture. However, 

while AAAs can be easily detected with an imaging modality such as abdominal 

ultrasound, diagnosis of this disease in its early stages prior to rupture remains difficult 

because most patients do not present for clinical assessment as AAAs often remain 

asymptomatic or are only associated with non-specific symptoms such as lower back 

pain. Patients are commonly diagnosed with AAAs incidentally during routine medical 
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checkups or as part of AAA screening programs, particularly in those identified as being 

at high risk of the disease. 

 The most commonly accepted clinical definition of an AAA is when the 

maximum infra-renal abdominal aortic diameter exceeds 3.0 cm, although definitions 

that use a maximum abdominal aortic diameter of more than 1.5 times that of the 

expected normal diameter has also been proposed [4]. While current guidelines in the 

clinical management of AAA remain region-specific across the world and each differs in 

certain aspects, the major consensus that these guidelines share is to tailor management 

based on the size of AAAs. In particular, most guidelines stipulate that patients with a 

maximum infra-renal aortic diameter of 5.5 cm or greater should be referred to a 

vascular surgeon for consideration of treatment, as evidence has firmly established that 

AAAs larger than this have an exponential increase in the annual rate of rupture of 10% 

to 22% that is much greater than the typical rates of complication of elective AAA 

repairs [4,5]. Treatment options remain limited, however, with open surgical repair or 

minimally invasive endovascular aneurysm repair (EVAR) being the only definitive and 

curative treatment options for AAAs to date. Open surgical repair, as the name suggests, 

involves a laparotomy, excising the aneurysmal tissue, and replacing with an aortic graft. 

In contrast, EVAR was developed as a minimally invasive procedure that involves 
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inserting a stent-graft via the femoral arteries into the aneurysmal lumen first, followed 

by deployment of the stent-graft within the AAA so that the graft excludes the 

aneurysmal sac from the circulation. This leads to a reduction in pressure on the 

aneurysmal sac, which over time eventually undergoes thrombosis and decreases in size 

[6]. The choice of treatment is typically dependent on several factors, such as clinical 

characteristics of the patient (for example, whether or not the patient could cope with a 

prolonged surgical repair, presence of comorbidities that would preclude the patient 

from surgery, etc.), the anatomical characteristics of the AAA itself, and patient 

preference. However, as AAAs are mostly a disease of the elderly, patients often have 

numerous comorbidities (for example, concomitant cardiovascular or renal disease) that 

reduce their suitability for surgical repair, leaving them with even fewer treatment 

options in reality. 

 In light of the current limitations in surgical treatment, emphasis of current 

basic and clinical research has focused on trying to uncover pharmacological therapies 

that may be useful in the prevention or slowing of AAA development, thereby delaying 

or circumventing completely the need for surgical intervention. A number of 

pharmacological agents have been shown to suppress AAA formation in experimental 

animal models including statins, angiotensin-converting enzyme (ACE) inhibitors, 
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antibiotics, beta blockers, and anti-inflammatory agents. Given their potential in 

limiting AAA progression, many of these agents have been investigated in various 

human clinical trials [4,7,8]. However, results of most of the completed trials have been 

disappointing in that the studied medical treatments had either no or only marginal 

benefits in retarding aneurysm expansion [7,9-12]. While the administration of some of 

these agents are nevertheless recommended in the optimal medical management of 

patients with diagnosed AAAs, there remains an urgent need for a new and more 

effective pharmacological therapy to be discovered for the prevention or slowing of 

AAA development. 

 Over the last two decades, our understanding of the pathological mechanisms 

underlying AAA development has improved dramatically. This is in part due to the 

advent of animal models of AAA that has allowed researchers to investigate the 

mechanisms of aneurysmal formation ever more closely and without having to use 

human tissues, which is often a rare resource. There are currently three major animal 

models of AAAs commonly used in this research field. The first is the induction of 

murine AAA formation by the direct perivascular application of calcium chloride 

(CaCl2) to the infra-renal aorta in mice. This was a modification of a technique 

originally reported by Gertz et al 25 years ago that was used to induce aneurysm 
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formation in rabbit common carotid arteries, which has since been adapted for use in 

murine abdominal aortas [13,14]. By eliciting an inflammatory reaction in abdominal 

aortas with CaCl2, the authors were able to obtain a doubling in the diameter of the 

infra-renal abdominal aorta over a 3 week period after the AAA surgery. The second 

animal model involves the continuous infusion of angiotensin II via subcutaneous 

osmotic pumps into ApoE
-/-

 or LDL receptor
-/-

 mice over a 3 to 4 week period [15]. By 

virtue of their genetic deficiencies of ApoE or LDL receptor, these mice have deranged 

lipid profiles and were surprisingly found to produce AAAs with a high incidence upon 

additional angiotensin II infusion. However, these AAAs are typically located in the 

supra-renal abdominal aorta, a position that is markedly different from the most 

common infra-renal site of human AAA disease. The third model is also a 

chemically-induced AAA model that involves the direct infusion of elastase into the 

infra-renal aorta. Elastase is infused via a micro-catheter inserted into the infra-renal 

aorta at the level of the iliac bifurcation while the infra-renal aorta is temporarily ligated 

at a level just below the renal arteries [16]. Elastase infused into the aorta disrupts and 

destroys aortic elastic fibers, thereby leading to structural vascular wall weakness, 

inflammation, and gradual AAA formation [16,17]. While each of these models differ in 

methodology and their individual mechanistic pathways may not all be the same, some 
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central features, such as medial aortic wall degeneration and inflammatory response, are 

shared across all three models. Despite some differences, these models have 

nevertheless been utilized widely, with many of their findings translated to and 

confirmed in human diseases as well. 

 Pathohistologically, the hallmark features of AAAs are the fragmentation of 

elastin, which forms the elastic fibers that give arteries their elastic properties, and loss 

of collagen, which provides tensile strength and maintain arterial structural integrity [3]. 

Loss of these connective tissue components within the abdominal aortic wall lead to 

reduced vascular wall strength and eventual arterial dilatation, resulting in the formation 

of an AAA. These fibers can be degraded by proteases, the most notable of which are 

the matrix metalloproteinases (MMPs). MMPs are a family of zinc-dependent 

endopeptidases that under normal conditions possess a variety of physiological 

functions ranging from tissue remodeling to organ development [18]. MMPs are 

secreted first in an enzymatically inactive “proform” state that becomes proteolytically 

active once it is cleaved by other MMPs or serine proteinases [18,19]. In addition, and 

more importantly, the proteolytic activities of MMPs in tissues are also regulated by 

their physiological inhibitors, tissue inhibitors of metalloproteinases (TIMPs) [18]. The 
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balance between tissue levels of MMPs and TIMPs thus maintains the degree of 

proteolysis within physiologically acceptable ranges. 

 The first reports that described the presence of MMPs such as MMP-1, MMP-2, 

MMP-3, and MMP-9 in human AAA samples emerged in the 1990s, when it became 

clear that these enzymes were clearly associated with AAA development [20-23]. At 

around the same time, it was also demonstrated that a variety of immune cells 

accumulate in AAAs [24]. Together, these results began to paint a picture where AAA 

formation in fact involves the orchestrated interactions between inflammatory immune 

cells and proteolytic factors, thereby resulting in aortic connective tissue destruction and 

eventual rupture. Numerous studies since then have revealed that inflammatory cells 

and processes play a key role in the development of AAAs. Beginning with the 

demonstration by Newman et al that MMP-9 co-localized to macrophages, the 

professional phagocytic cells of the innate immune system, within human AAA samples 

[22], Pyo et al and Longo et al went on to show that development of AAAs is 

ameliorated in mice genetically deficient in MMP-2 or MMP-9 in their respective 

landmark reports [16,25]. This and other subsequent studies provided the first and direct 

causal evidence of the critical role of macrophage-derived MMP-9 and vascular smooth 

muscle cell (VSMC)-derived MMP-2 in the pathogenesis of AAA [3,25,26]. 
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 Macrophages are major phagocytic cells that play critical and central roles in 

the innate immune system. Their importance in many aspects of disease biology, 

ranging from tumor angiogenesis [27] through to obesity and metabolic syndrome [28], 

has been revealed over the last two decades. As a result, our understanding of these cells 

and their numerous subtypes has also increased in an exponential fashion. The 

developmental cascade of macrophages has been well defined. Tissue-resident 

macrophages that contribute to the maintenance of tissue homeostasis are known to be 

derived from circulating monocytes [29,30]. These monocytes originate from defined 

myeloid progenitor cells in the bone marrow, and after undergoing a series of 

lineage-committed steps of cellular differentiation, are subsequently released into the 

circulation as monocytes. From there, these monocytes enter peripheral tissues to 

maintain constant numbers of tissue-resident macrophages. Monocytes express the 

myeloid cell surface markers CD11b and Ly-6C [29]. In particular, monocytes are 

known to express Ly-6C in high levels (Ly-6C
hi

), but upon entering tissues to become 

tissue-resident macrophages their Ly-6C expression markedly decreases to a low level 

(Ly-6C
low

) [29]. In addition, they also begin to express the macrophage marker F4/80 

during the process of monocyte-macrophage differentiation in tissue, thereby making 

these cell surface markers useful for distinguishing monocytes from macrophages. 
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 Besides replenishing tissue-resident macrophages during homeostasis, 

monocytes can also be actively recruited during the tissue inflammatory response. In 

response to chemoattractant cytokines such as CC-chemokine ligand 2 (CCL2) 

produced by the inflamed tissue, Ly-6C
hi

 monocytes in the circulation are actively 

recruited to and enter the tissue to clear pathogens and necrotic tissue as well as 

orchestrate wound healing by becoming macrophages. In recent years it has become 

evident that these inflammatory responses are not mediated by a single, homogeneous 

pool of macrophages, but rather by distinct macrophage subtypes that perform particular 

roles in a specific, temporally and spatially regulated manner. There are two, broad 

subtypes: classically activated, inflammatory “M1” macrophages and alternatively 

activated, wound-healing “M2” macrophages. This classification is by no means 

exhaustive, and numerous studies have shown that other minor macrophage subtypes 

with distinctively different functions exist as well [31]. Nevertheless, the M1/M2 

paradigm is a useful platform for understanding macrophage function in tissue 

inflammation and its resolution. Monocytes recruited in the initial stages of 

inflammation become inflammatory M1 macrophages which, as their name suggests, 

produce major pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, 

interleukin 6 (IL6), and CCL2, and possess enhanced microbicidal as well as phagocytic 
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activities so that they may carry out their role in host defences and mediate the events 

that occur during the acute phase of tissue inflammation [31]. As this acute phase 

subsides, the proportion of wound-healing M2 macrophages increases relative to M1 

macrophages [32]. These M2 macrophages are characterized by the up-regulation of 

markers such as arginase 1 (ARG1) and mannose receptor C type 1 (MRC1, also known 

commonly as CD206), and they play an important role in the orchestration of the 

resolution of tissue inflammation as well as tissue fibrosis that occurs due to an effort by 

the body to heal the wound left over after the inflammatory reaction. 

 Besides macrophages, various other reports have also provided evidence of the 

involvement of many other immune cells in the development of AAAs by using the 

aforementioned animal models of the disease. These immune cells include T cells 

[33,34], neutrophils [35], and mast cells [36]. In particular, Shimizu et al [37] 

demonstrated that a specific subset of CD4
+
 T cells, otherwise known as T helper (Th) 

cells, are particularly important for AAA formation. Th cells can differentiate into two 

major subtypes of effector cells known as Th1 or Th2 cells. Th1 cells produce Th1 

cytokines such as interferon (IFN)-γ that promote cellular inflammatory responses, 

whereas Th2 cells produce Th2 cytokines such as IL4 that are important for driving 

specific immunological processes including allergic responses and asthma [34]. The 
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results of the report from Shimizu et al [37] suggest that a Th2 environment may 

promote the formation of AAAs. This is an interesting factor to consider from the 

experimental point of view, given that different strains of mice have been reported to 

harbor different Th phenotypes. For example, the most commonly used mouse strain 

C57BL/6 is known to be skewed towards a predominantly Th1 phenotype, whereas 

BALB/c mice are reported to be skewed towards a Th2 phenotype. Indeed, AAAs 

spontaneously formed when Shimizu et al [37] transplanted aortic segments from Th1 

polarized mice into BALB/c mice, thereby demonstrating the importance of Th2 

signaling pathways in the pathogenesis of AAAs. This suggests that the choice of mouse 

strain when performing studies in experimental murine AAAs can also be a major factor 

in affecting the outcome of the study. 

 Calcification is commonly found in various diseases such as chronic kidney 

disease, atherosclerosis, and diabetes mellitus [38]. Indeed, AAAs are also often 

observed to be associated with calcification [1], although the significance of 

calcification in relation to AAA formation has not been reported. Our understanding of 

the mechanisms underlying vascular calcification in general has markedly improved 

over recent years. It is now well established that certain members of the TNF family of 

cytokines are intimately associated with the pathogenesis of vascular calcification. 
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Receptor activator of nuclear factor kappa-B ligand (RANKL), otherwise also known as 

TNFSF11, encodes a protein that is involved in the maintenance of bone homeostasis 

and metabolism. RANKL functions in the differentiation and activation of osteoclasts 

(bone-resorbing cells), as well as T cell and B cell maturation, and is typically only 

expressed weakly throughout the vascular system under physiological conditions [39]. 

However, its expression can be greatly up-regulated in calcified or atherosclerotic 

vascular lesions especially when in the presence of calcium or cytokines such as IL6 or 

IL17 [39]. RANKL binds to its receptor, the receptor activator of nuclear factor kappa-B 

(RANK), which is normally found on monocyte/macrophage lineage cells; however, 

RANK expression can also be up-regulated in endothelial cells and vascular smooth 

muscle cells (VSMC) in a similar manner to RANKL [39]. In the setting of vascular 

calcification, RANKL has been reported to activate RANK on VSMCs to lead to the 

nuclear translocation of nuclear factor κB (NFκB), the well-known master regulator of 

cellular responses to infection and inflammation, via an alternative activation pathway 

involving BMP4 and cause calcification to occur [38]. Meanwhile, osteoprotegin (OPG) 

is an endogenous decoy receptor that inhibits all functions of RANKL. Unlike RANKL 

and RANK, OPG is constitutively expressed throughout the cardiovascular system. The 

importance of the balance between levels of RANKL and OPG in vascular calcification 
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is exemplified by studies that showed the development of severe vascular calcification 

in mice with a genetic deficiency in OPG, where RANKL levels increased with 

unopposed function in the vascular system. In addition to the RANKL-OPG axis, recent 

studies have also revealed that Runx2, a master osteogenic transcription factor, 

up-regulates the expression of RANKL in VSMC by directly binding to its promoter 

region and thereby lead to vascular calcification [40]. Indeed, this is further supported 

by in vivo studies that showed that mice with a smooth muscle cell (SMC)-specific 

genetic deficiency in Runx2 had markedly suppressed vascular calcification associated 

with atherosclerosis [41]. These studies provide strong evidence for the involvement of 

RANKL, OPG, and Runx2 in vascular calcification, although their involvement in 

AAAs has not been reported yet. 

 Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are a class of essential 

fatty acids required for normal biological activity and function in living organisms. 

These fatty acids are named “polyunsaturated” due to the presence of two or more 

double bonds in their carbon chain chemical structure. Moreover, the designation “ω-3” 

denotes the fact that the first double bond is found at the third carbon atom from the 

omega end of the carbon chain, distinguishing these fatty acids from ω-6 and ω-9 

PUFAs. These fatty acids can typically be either plant-derived (α-linolenic acid) or 
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marine fish-derived [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] 

[42]. From numerous clinical, epidemiological, and animal studies, ω-3 PUFAs have 

been demonstrated to possess anti-inflammatory [43,44], anti-fibrotic [45], and 

cardioprotective properties [46,47], and they are already being used widely as 

pharmacological agents and nutritional supplements in humans. They have been 

suggested to have various mechanisms of action, including the ability to reduce the 

production of inflammatory eicosanoids by competing with arachidonic acid [42], 

exertion of anti-inflammatory effects via ligand-receptor interactions with the G 

protein-coupled receptor 120 [44], and activation of the active resolution of 

inflammation by ω-3 PUFA metabolites such as resolvin E1 and protectin D1 [48]. 

However, despite advances in our understanding of effects of ω-3 PUFAs, the precise 

molecular mechanisms as to how they exhibit beneficial effects in each pathological 

process still remain to be elucidated. 

 The role of ω-3 PUFAs in the management of AAAs has not been established. 

Given the pleotropic properties of ω-3 PUFAs, I hypothesized that ω-3 PUFA might also 

suppress the formation of AAAs by attenuating tissue remodeling processes. By using 

CaCl2 to induce the development of AAAs in mice, I show that EPA can attenuate the 

formation of AAAs in the CaCl2-induced AAA model by suppressing tissue remodeling 
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processes. In addition, I also show that EPA suppressed vascular calcification in the 

AAA by attenuating the up-regulation of Rankl elicited by CaCl2. 
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4. MATERIALS AND METHODS 

 

Mice 

 Male 7 to 9 week-old BALB/cA mice were purchased from CLEA Japan 

(Tokyo) and kept in a temperature and humidity controlled room with a 12-hour light 

and 12-hour dark cycle. Mice were allowed unrestricted access to either a Control diet 

(fish meal-free F1 chow, 362 kcal/100 g with 4.4% energy as fat; Funabashi Farm, 

Chiba) or an EPA-supplemented diet (Control diet supplemented with 10% wt/wt EPA), 

and preparation of the diets has been described elsewhere [49]. Briefly, ultrapure EPA 

(>98.0% EPA) capsules were opened and the liquid EPA emptied into the fish meal-free 

F1 chow in a Ziploc
®

 freezer bag. The amount of EPA and F1 chow added was 

calculated to produce an EPA-supplemented diet with a final concentration of 10% 

wt/wt of EPA. The freezer bag was closed and the contents inside well mixed by hand 

for five to ten minutes. The contents were then served in glass feeders to reduce the rate 

of oxidation of EPA. Control diet was also served in the same type of glass feeder. All 

experimental diets were freshly made once every two to three days. Ultrapure EPA was 

generously provided by Mochida Pharmaceuticals Co., Ltd. (Tokyo). 
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 The CaCl2-induced AAA model was performed as previously described [19,25]. 

Briefly, 4 days after the experimental diets were commenced, periaortic application of 

500 mmol/L CaCl2 (Sigma-Aldrich) for 15 minutes was performed in mice 

anaesthetized with intraperitoneal (IP) pentobarbital injection to induce AAA formation. 

For mice that received sham surgery, NaCl instead of CaCl2 was applied periaortically 

for the same period of time. Mice continued their experimental diets until sacrifice for 

analysis. At the 6-week time point, infra-renal aortas were photographed under 

microscopy prior to harvesting and the external aortic diameter was determined by a 

blinded observer according to a previously described method [14]. All experiments were 

approved by the University of Tokyo Ethics Committee for Animal Experiments and 

strictly adhered to the guidelines for animal experiments of the University of Tokyo. 

 

Histological analysis 

 Mice were first anaesthetized with IP pentobarbital injection and then perfused 

with 10 mL ice cold PBS per mouse via cardiac puncture. Following this, mice were 

perfusion-fixed with 20% Tissue-Tek UFIX (Sakura Finetek Japan), again via cardiac 

puncture. The infra-renal aortas were then harvested, further fixed in 20% Tissue-Tek 
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UFIX, dehydrated, embedded in paraffin, and sectioned. Histological analysis was 

performed by Elastica van Gieson staining according to standard procedures. 

 

In vivo micro-CT imaging 

 Six weeks after induction of AAA formation by CaCl2, mice were 

anaesthetized with IP pentobarbital injections and IV contrast (ExiTron nano 6000, 

Miltenyi Biotec) was administered via the tail vein. While anaesthetized, the mice were 

subjected to micro-CT imaging with the LaTheta LCT-200 CT scanner (Hitachi Aloka 

Medical, Ltd.). After the procedure, mice were sacrificed to harvest infra-renal aortas 

for further analysis. Quantification of aortic calcification was performed by taking 30 

slices of the same anatomical section of infra-renal aorta in each animal and calculating 

the volume of calcification using the scanner’s standard image analysis software. 

 

Quantitative real-time PCR analysis 

 Mice were first anaesthetized with IP pentobarbital injection and then perfused 

with 10 mL ice cold PBS per mouse via cardiac puncture. Infra-renal aortas from 

control- or EPA-diet-fed mice were harvested and placed immediately into RNAlater 

(Ambion) to preserve tissue RNA integrity. Total RNA was purified from aortic tissues 
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using the RNeasy Fibrous Tissue Mini kit (Qiagen), and using the RNeasy Plus Micro 

Kit (Qiagen) for cells sorted by flow cytometry, according to the manufacturer’s 

instructions. For the purification of RNA from cultured cells, RLT buffer with β-ME 

(Qiagen) was added to the cells directly, harvested, and subjected to homogenization 

with the QIAShredder (Qiagen). Subsequent RNA purification was performed using the 

RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions. RNA 

concentrations were measured using the NanoDrop 1000 spectrophotometer (Thermo 

Scientific). Complementary DNA was synthesized using 200 ng to 1000 ng of RNA in 

10 μl per sample with the SuperScript III First-Strand Synthesis System (Invitrogen). 

Quantitative real-time PCR analyses were conducted using the QuantiTECT SYBR 

Green PCR kit (Qiagen) with the LightCycler system (Roche). 18s rRNA served as the 

internal control in all experiments. Primer sequences of the analyzed genes are listed in 

Table 1, and were designed using the Roche Universal Probe Library Assay Design 

Center (based on Primer3). 
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Table 1. Primer sequences of the genes analyzed by quantitative real-time PCR. 

Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 

Ccl2 CAT CCA CGT GTT GGC TCA GAT CAT CTT GCT GGT GAA TGA GT 

Col1a1 CAT GTT CAG CTT TGT GGA CCT GCA GCT GAC TTC AGG GAT GT 

Col3a1 TCC CCT GGA ATC TGT GAA TC TGA GTC GAA TTG GGG AGA AT 

Fn1 CGG AGA GAG TGC CCC TAC TA CGA TAT TGG TGA ATC GCA GA 

Mmp2 TAA CCT GGA TGC CGT CGT TTC AGG TAA TAA GCA CCC TTG AA 

Mmp9 ACG ACA TAG ACG GCA TCC A GCT GTG GTT CAG TTG TGG TG 

Opg GTT TCC CGA GGA CCA CAA T CCA TTC AAT GAT GTC CAG GAG 

Rankl TGA AGA CAC ACT ACC TGA CTC CTG CCA CAA TGT GTT GCA GTT CC 

Runx2 TCC ACA AGG ACA GAG TCA GAT TAC TGG CTC AGA TAG GAG GGG TA 

Timp1 GCA AAG AGC TTT CTC AAA GAC C AGG GAT AGA TAA ACA GGG AAA CAC T 

Timp2 CGT TTT GCA ATG CAG ACG TA GGA ATC CAC CTC CTT CTC G 
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Zymography 

 Zymography is a simple technique that can be used to detect the functional 

activity of MMPs present in tissue or cellular samples. For the assessment of MMP 

activity in AAAs, mice were first anaesthetized with IP pentobarbital injection and then 

perfused with 10 mL ice cold PBS per mouse via cardiac puncture. Infra-renal aortas 

from mice in the Control diet or EPA diet groups were harvested and placed 

immediately into liquid nitrogen. The frozen samples were homogenized in 2X lysis 

buffer (containing 50 mmol/L Tris/HCl [pH7.5], 150 mmol/L NaCl, 1.0% IGEPAL 

CA-630, 2 mmol/L EDTA) combined in a 1:1 ratio with 25X cOmplete EDTA-free 

protease inhibitor cocktail (Roche Diagnostics). Protein concentration of each aortic 

extract was determined with the DC Protein Assay (Bio-Rad). Zymography was 

performed as previously described [50]. Briefly, 20 μg of total protein was equally 

loaded onto each well of a Novex 10% Zymogram (gelatin) gel (Invitrogen) and 

separated under non-reducing conditions at 125 V constant until the indicator dye 

reached the bottom of the gel. The gels were then removed from the cassette, renatured 

in renaturing buffer (2.5% vol/vol Triton
®
X-100 solution), developed with Novex 

Zymogram Developing Buffer (Invitrogen), and stained with SimplyBlue SafeStain 

(Life Technologies) for analysis. The gels were scanned using a standard digital scanner 
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at 300 dpi and the intensity of bands corresponding to MMPs were analyzed using 

Image J (U. S. National Institutes of Health) image analysis software. 

 

Flow cytometric analysis and cell sorting 

 For flow cytometric analysis of AAAs, mice were first anaesthetized with IP 

pentobarbital injection and then perfused with 10 mL ice cold PBS per mouse via 

cardiac puncture. Infra-renal aortas from control- or EPA-diet-fed mice were harvested 

and placed immediately into PBS on ice. Three fresh, isolated infra-renal aortas from 

the same experimental group were pooled into one sample for flow cytometric analysis. 

Pooled samples were finely cut and placed in Hank’s balanced salt solution (with Ca
2+

 

and Mg
2+

) containing 400 U/mL collagenase type II (Worthington Labs), 0.75 U/mL 

elastase (Worthington Labs), and 60 U/mL DNase I (Sigma-Aldrich) at 37°C for one 

hour with shaking to dissociate the aortic tissue into single cells. Cell pellets were 

washed twice with ice cold FACS buffer (PBS containing 5% fetal bovine serum [FBS]) 

and suspended in 100 μL FACS buffer per 1 x 10
5
 cells followed by flow cytometric 

analysis according to standard procedures. 

 For flow cytometric analysis of peripheral blood, mice were first anaesthetized 

with IP pentobarbital injection and laparotomy was performed. Approximately 300 μL 
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of peripheral blood was obtained via the inferior vena cava using a 30-G insulin syringe 

that contained 10 μL of 1 U/mL heparin/PBS mixture (heparin from Ajinomoto 

Pharmaceuticals). The blood was then added to a 1.5 mL Eppendorf tube containing 1 

mL of 1 U/mL heparin/PBS mixture and placed at room temperature while the 

procedure was repeated for all other samples. The samples were then centrifuged at 

2000 rpm for 2 minutes at room temperature. The supernatant was discarded and 1 mL 

of 1.2% wt/vol dextran/PBS mixture (dextran sulphate sodium salt from Amersham) 

was added and the mixture placed at room temperature for 45 minutes. The supernatant 

was then transferred to a new 5 mL polystyrene Falcon round-bottom tube (BD Falcon) 

and centrifuged at 2000 rpm for 2 minutes at 4°C. The supernatant was discarded and 1 

mL hemolytic buffer (to remove erythrocytes; composed of 100 mM NH4Cl and 17 mM 

Tris-HCl, pH 8.0, in distilled H2O) was added to the cell pellet and left on ice for 3 

minutes. Approximately 3 mL FACS buffer was then added to the mixture and 

centrifuged at 2000 rpm for 5 minutes at 4°C. After discarding the supernatant, 3 mL of 

FACS buffer was again added to the cell pellet and centrifuged at 2000 rpm for 2 

minutes at 4°C. The supernatant was discarded and the cell pellet suspended in 

approximately 300 μL FACS buffer followed by flow cytometric analysis according to 

standard procedures. 
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 For both protocols, after suspension of the cell pellet in FACS buffer, 10 μL of 

the cell suspension was removed for cell counting using the Countess
®
 Automated Cell 

Counter (Invitrogen) prior to performing Fc blocking. One microliter Fc block 

(BioLegend) per 100 μL of cell suspension was added and incubated on ice for at least 

15 minutes. The primary antibodies were then added at 1 μL per 100 μL cell suspension 

and incubated on ice for 30 minutes. The cell suspension and antibody mixture was then 

washed twice with ice-cold FACS buffer and filtered into a 5 mL polystyrene Falcon 

round-bottom tube with cell-strainer cap (BD Falcon). The final cell pellet was 

suspended in 1 mL FACS buffer and analyzed using the FACSAria II (BD). The 

antibodies used for the analyses were anti-CD11b (clone M1/70) from eBioscience; 

anti-F4/80 (BM8), anti-Ly-6C (HK1.4), and anti-Ly-6G (1A8) from BioLegend, as well 

as the corresponding isotype controls for each antibody. 

 

Giemsa staining of flow cytometry sorted cells 

Cells sorted by flow cytometry were placed onto microscope slides by centrifuging the 

cells at 1000 rpm for 3 minutes in the Cytospin 4 (Thermo Scientific). The cells were 

then fixed with ice cold 100% methanol and air-dried. Giemsa staining was then 

performed with Giemsa’s azur eosine methylene blue stain (Merck) that had been 10X 
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diluted in 1X pH6.4 PBS solution. Thirty minutes after staining, the cells were observed 

under the microscope. 

 

Peritoneal macrophages 

 Peritoneal macrophages were obtained as previously reported [51] with some 

modifications. Male BALB/cA mice aged 8-10 weeks were IP injected with 2.5 mL of 

3% thioglycollate medium (BD Difco). Four days later, the elicited peritoneal 

macrophages were harvested by first sacrificing the mice and thoroughly sterilizing 

their abdominal surface with 70% alcohol. A skin incision over the abdomen was made, 

being careful not to puncture the underlying peritoneal lining, and 6 mL of ice cold PBS 

was injected into the abdominal cavity and aspirated. This procedure was repeated twice 

to obtain approximately 10 mL of PBS containing peritoneal cells. After the cells were 

centrifuged at 1000 rpm at 4ºC, the supernatant was aspirated and the cell pellet was 

resuspended in culture medium. Cells were plated at 3 x 10
5
 cells / cm

2
 in 6-well plates 

so as to give a final cell confluency of 70 to 80%. Two to three hours after plating, the 

medium was changed and plated cells were ready to use for experimentation. 
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Cell culture 

 Murine RAW264.7 macrophages were obtained from American Type Culture 

Collection and cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) 

supplemented with 10% FBS (Hyclone). Thioglycollate-elicited peritoneal macrophages 

were cultured in DMEM/F12 medium supplemented with 10% FBS (Hyclone). All cells 

were cultured at 37ºC with 5% CO2. 

 For the in vitro treatment of RAW264.7 macrophages with EPA, RAW264.7 

macrophages were plated at 4 x 10
4
 cells / cm

2
 in 12-well plates and used immediately 

after plating. Stock solutions of 150 mmol/L EPA (Cayman Chemical) were prepared 

and stored according to the manufacturer’s instructions until use. Culture medium 

containing EPA was prepared according to previously described methods for fatty acid 

preparation, with some minor modifications [52]. Briefly, aliquots of the stock solution 

of EPA were complexed with fatty-acid-free, low-endotoxin bovine serum albumin 

(BSA; 10% wt/vol solution in H2O, Sigma-Aldrich) to give a 7.5 mmol/L working 

solution, which was incubated at 37°C for 30 minutes. After incubation, the working 

solution was added to warmed DMEM (supplemented with 10% FBS) to give a final 

concentration of 10, 25, or 50 μmol/L. The vehicle solution was prepared similarly 

using a mixture of ethanol/water instead of EPA, and this was used as the vehicle 
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control. After 48 hours of treatment with vehicle- or EPA-containing medium, 20 ng/mL 

of recombinant mouse TNF-α protein (R&D Systems) was added and cells were 

harvested for analysis. 

 For stimulation of peritoneal macrophages with mouse recombinant RANKL 

protein (Miltenyi Biotec), the required amount of RANKL was dissolved in warmed 

medium according to the manufacturer’s instructions, mixed well, and then added to the 

cells that had their old medium aspirated. For vehicle control, the same volume of 

sterile distilled water was used instead. 

 

Statistical analysis 

 All data are shown as means alone or means ± SEM. Differences between two 

groups were analyzed using Student’s t-test, while differences between three or more 

groups were analyzed using one-way ANOVA followed by Tukey’s post-hoc test. P 

values of less than 0.05 were considered to be statistically significant. Differences are 

not statistically significant unless otherwise indicated. All statistical analyses were 

performed using GraphPad Prism 5 software. 
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5. RESULTS 

 

5.1. Effects of EPA on aneurysmal tissue remodeling 

Baseline mice characteristics were mostly not significantly different amongst the 

experimental groups 

 In order to investigate the effects of EPA on murine CaCl2-induced AAAs, I 

designed the study with three experimental groups: (1) Sham group that received 

periaortic NaCl application (instead of CaCl2) and were fed the control diet, (2) Control 

diet group that received periaortic CaCl2 application and were fed the control diet, and 

(3) EPA diet group that received periaortic CaCl2 application and were fed the 

EPA-supplemented diet. The preparation of the diets has been described in detail in the 

Materials and Methods section. The experimental protocol is outlined in Figure 1. 

 Prior to performing study analyses, I first had to (1) confirm the baseline 

characteristics of mice after they have received control or EPA-supplemented diets and 

(2) confirm the surgical procedure for inducing AAA formation in mice with periaortic 

CaCl2 application. 

 As EPA is a fatty acid, there was a possibility that the EPA-supplemented diet 

could cause differences in the body weight of the mice between the Control diet and 
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EPA diet groups after AAA surgery, which may affect the interpretation of results. In 

addition, whether there were any differences in the amount of chow consumed between 

the two groups also needed to be confirmed. To this end, I assessed these baseline 

characteristics in the mice by recording their body weights on a weekly basis for 6 

weeks as well as the amount of chow consumed daily. Interestingly, the results showed 

that mice fed with an EPA diet had gradual increases in body weight over 6 weeks 

despite having received AAA surgery, whereas the Sham and Control diet groups had an 

acute decrease in body weight at 1 week after AAA surgery but then recovered from 

Week 2 onwards to a level that was not significantly different to the EPA diet group 

(Figure 2A). 

 Consistent with the body weight data, there was also no significant difference 

in the mean daily amount of chow consumed between the two experimental groups 

(Figure 2B). 
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Figure 1. Study protocol. Mice in the Sham, Control diet, and EPA diet groups began 

receiving the indicated study diets 4 days prior to AAA surgery. Sham group received 

sham surgery with NaCl periaortic application, and served as a baseline group for future 

comparisons and analyses. Control diet and EPA diet groups received CaCl2 periaortic 

application to induce AAA formation. The respective study diets were continued for the 

duration of the study. Mice were kept for a maximum of 6 weeks after surgery until 

sacrifice for analysis. 
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Figure 2. Baseline effects of EPA on mice in the CaCl2-induced AAA model.       

A. Body weights of mice in the Sham, Control diet, and EPA diet groups were recorded 

weekly after AAA surgery (NaCl or CaCl2 application) was performed, as indicated by 

the red arrow. Sham and Control diet groups received control-diet while EPA diet group 

received an EPA-supplemented diet. *P < 0.05, EPA diet group versus the Control diet 

group. B. Mean daily amounts of chow consumed by mice at baseline (prior to AAA 

surgery) in the Control diet and EPA diet groups. No significant differences were 

detected. 

A 

B 
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EPA treatment attenuates CaCl2-induced AAA formation and elastic lamina 

destruction 

 Next, I investigated the effects of EPA on AAA formation. Marked dilatation 

and calcification of the aorta in the Control diet group was clearly visible 

macroscopically 6-weeks after CaCl2 was applied to the infra-renal abdominal aorta; in 

contrast, the aortas of the mice on the EPA-supplemented diet were dilated significantly 

less than those of mice in the Control diet group (Figure 3A). The aortic diameters in 

the Control diet group were shown to have increased to approximately 1.6 times that of 

the aortic diameter of Sham group mice, therefore meeting the definition for aneurysm 

formation (≥1.5 time increase in aortic diameter [34]). In contrast, the diameter of aortas 

in the EPA group was only increased by approximately 1.3 times, and furthermore this 

increase was not statistically significant. This therefore indicates that EPA treatment 

attenuated the formation of CaCl2-induced AAA (Figure 3B). 

 In order to assess the condition of the elastic fibers in the aortic wall, I 

performed histological staining using the Elastic van Gieson (EVG) stain. EVG staining 

is a well-established method for the visualization of arterial wall elastic lamina, and is 

one of the most commonly used stains in the assessment of AAA histology. Histological 

examination of EVG-stained AAAs demonstrated that the extensive matrix and elastic 
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lamina destruction seen in Control diet group AAAs was greatly suppressed in aortas 

from the EPA diet group (Figure 4). Higher magnification views showed that elastic 

lamina strand breaks, a hall-mark feature of AAAs, are clearly seen in AAAs of the 

Control diet group but were relatively absent in the EPA diet group. Taken together, 

these results support the notion that EPA attenuates aortic dilatation via the suppression 

of elastic lamina degradation, leading to the attenuation of vascular wall tissue 

remodeling. 
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Figure 3. EPA attenuated aortic dilatation after CaCl2-induced AAA surgery.     

A. Macroscopic appearances of in situ infra-renal aortas (demarcated by the black 

broken lines) at 6-weeks after AAA surgery, showing a much less dilated infra-renal 

aorta in mice that received an EPA-supplemented diet compared to the Control diet 

Sham Control diet EPA diet 

+AAA 

A 

B 
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group. Mice in the Sham group received sham AAA surgery (periaortic application of 

NaCl) and served as a baseline for calculations of fold-change in aortic diameter for the 

other two groups. Representative images of at least three independent experiments are 

shown. B. Quantitative analysis of the maximal external aortic diameters of aortas at 

6-weeks after AAA surgery. *P < 0.05, NS, non-significant. 
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Figure 4. Administration of EPA preserves vascular wall structure in AAAs. 

Histological analysis by Elastica van Gieson staining, showing preserved aortic wall 

structure and less elastic lamina strand breaks in the aorta of mice from the EPA diet 

group compared to the Control diet group. Scale bars: 200 μm (upper panels) and 50 μm 

(lower panels). Representative images of at least three independent experiments are 

shown. 
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EPA attenuated the CaCl2-induced up-regulation of MMPs but did not affect the 

expression levels of TIMPs or other extracellular matrix components 

 Given this phenotype, I subsequently began to elucidate the molecular 

mechanism underlying how EPA suppressed AAA formation. I first focused on 

examining the mRNA expression of a set of genes related to tissue remodeling such as 

MMPs and TIMPs. Among the genes analyzed by real-time PCR, the expression levels 

of Mmp2 and Mmp9 were significantly increased in the aortas of mice in the Control 

diet group at 1- and 3-weeks after CaCl2 application, consistent with previous reports 

[19,21,25]. In contrast, mice in the EPA diet group had significantly lower levels of 

Mmp2 and Mmp9 expression (Table 2). This suggests that because of the lower 

expression levels of the MMPs critical to AAA formation, Mmp2 and Mmp9, the tissue 

milieu in AAAs of mice in the EPA diet group may have been less proteolytic compared 

to that of the Control diet group, thereby leading to less tissue destruction. 

 However, considering that the balance between proteolysis and anti-proteolysis 

is determined by the levels of MMPs versus TIMPs, the levels of TIMPs also needed to 

be evaluated so as to conclude that EPA does indeed reduce the proteolytic environment 

of AAAs via the suppression of MMP up-regulation. To this end, the expression levels 

of the major TIMPs, Timp1 and Timp2, was also assessed by real-time PCR. The results 
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showed that while the levels of TIMPs were also upregulated by the CaCl2 treatment, 

EPA did not affect their expressions (Table 2). 

 Major changes in the components of the aortic wall extracellular matrix (ECM) 

occur as a result of the significant tissue remodeling that is invariably associated with 

AAA development. Therefore, I investigated whether or not EPA also had some effects 

on these ECM components. Since collagen I, III, and fibronectin are known to be major 

constituents of the aortic wall ECM [3,53], the expression levels of these factors in 

CaCl2-induced AAAs at 1- and 3-weeks after surgery were assessed by real-time PCR. 

The results showed that while the expression of all three ECM components did indeed 

increase during AAA development compared to the Sham group, there was no 

significant difference between the Control diet and EPA diet groups (Table 2). These 

results indicate that in terms of tissue remodeling, the effects of EPA in attenuating AAA 

formation is most likely exerted through its suppression of MMP up-regulation rather 

than modulation of ECM components, resulting in a less proteolytic AAA tissue 

environment and less vascular wall degradation. 
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Table 2. Gene expression profile in 1-week AAAs analyzed by  

quantitative real-time PCR. 

 

Gene 

1-week 3-weeks 

Sham 

(n=5) 

Control diet 

(n=11) 

EPA diet 

(n=10) 

Sham 

(n=6) 

Control diet 

(n=11) 

EPA diet 

(n=13) 

Ccl2 1.0±0.51 8.6±1.06 17.8±3.69 
#
* 1.2±0.14 4.2±0.32 

#
 5.8±0.72 

#
 

Col1a1 1.0±0.10 1.5±0.07 
#
 1.3±0.11 0.7±0.09 2.0±0.14 

#
 1.8±0.10 

#
 

Col3a1 1.0±0.11 2.0±0.11 
#
 1.7±0.15 

#
 0.8±0.08 2.1±0.15 

#
 2.2±0.10 

#
 

Fn1 1.0±0.06 8.4±0.96 
#
 10.1±0.98 

#
 1.0±0.13 2.1±0.27 

#
 2.9±0.70 

Mmp2 1.0±0.11 1.8±0.07 
#
 1.3±0.10 * 1.6±0.18 4.2±0.27 

#
 3.5±0.17 

#
* 

Mmp9 1.0±0.30 36.3±8.84 
#
 10.6±2.11 

#
* 2.3±0.55 10.0±1.31 

#
 4.6±0.47 * 

Timp1 1.0±0.14 9.1±0.98 
#
 8.5±0.98 

#
 0.8±0.12 4.2±0.38 

#
 3.4±0.44 

#
 

Timp2 1.0±0.04 0.9±0.04 0.9±0.03 1.2±0.10 1.6±0.07 
#
 1.8±0.07 

#
 

Opg 1.0±0.05 1.0±0.12 1.5±0.11 
#
* 1.2±0.16 1.6±0.14 2.2±0.33 

#
 

Rankl 1.0±0.41 29.2±4.38 
#
 14.1±2.64 * 2.5±0.55 14.2±1.12 

#
 7.6±0.96 

#
* 

Runx2 1.0±0.07 4.3±0.29 
#
 3.9±0.41 

#
 1.0±0.18 5.8±0.43 

#
 4.5±0.43 

#
 

 

Messenger RNA levels of major MMPs associated with AAA formation, ECM 

components, and vascular calcification factors in infra-renal aortas at 1- and 3-weeks 

after AAA surgery were analyzed using real-time PCR. All expression levels were first 

normalized to 18s rRNA levels (house-keeping gene) and then presented as fold change 

over the Sham group value at 1-week. Results are mean ± SEM. 
#
P < 0.05 vs. Sham 

group of the same time-point; *P < 0.05 vs. Control diet group of the same time-point 

(further indicated in bold-type), one-way ANOVA with Tukey’s post-hoc test. 

. 
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 In order to confirm the decrease in MMP levels in AAAs by another method, I 

performed zymography using 1-week AAA samples. Gelatin zymography is a 

well-established technique to detect the functional activity of MMPs present in tissues 

or cells [50]. To detect the activities of MMP-2 and MMP-9, the two MMPs that 

appeared to be affected by EPA based on the real-time PCR results (Table 2), a gelatin 

gel was chosen because gelatin is a substrate that can be degraded by these two MMPs. 

Consistent with the results of real-time PCR, zymography showed that the functional 

activities of pro-MMP-2, cleaved MMP-2, and MMP-9 were indeed all markedly 

decreased in the EPA diet group compared to the Control diet group, suggesting that the 

reduced mRNA levels of Mmp2 and Mmp9 translated to a significant difference in their 

functional activities at the protein level in the AAA tissues as well (Figure 5A, B). 
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Figure 5. Reduced functional activities of MMP-2 and MMP-9 in AAAs after EPA 

treatment. A. Representative gelatin zymography gel showing reduced activities of the 

proform of MMP-2 (pro-MMP2), cleaved form of MMP-2 (cleaved-MMP2), and 

MMP-9 in 1-week AAA samples after EPA-feeding compared to the AAAs of the 

Control diet group. Each lane represents a separate AAA sample within the same 

treatment group. Equal amount of protein (20 μg) was loaded per AAA sample. kDa, 

kilodalton. B. Quantitative analysis of zymographic MMP activities. Data are mean ± 

SEM of three independent experiments. *P < 0.05 versus Control diet group. 

 

 

A 
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EPA suppresses Mmp9 expression in AAA macrophages 

 Previous reports have demonstrated that Mmp9-deficient mice are resistant to 

experimental AAA formation [16,25]. Given that EPA seemed to impart a greater effect 

on Mmp9 expression than on Mmp2, I decided to analyze specifically how EPA 

suppresses MMP-9 activity in AAAs. Macrophages have been reported to be the major 

producer of MMP-9 in AAA tissues [22,25,54]. Therefore, there were at least two 

possible mechanisms by which EPA could have suppressed MMP-9 levels in the AAA: 

(1) reducing the number of macrophages recruited to the AAAs, and (2) suppressing the 

ability of macrophages to produce MMP-9.  

 Flow cytometry was used to test these two hypotheses. Since the number of 

macrophages recruited to the AAA could be affected by the number of available 

circulating monocytes as well as the level of chemoattractant cytokine, i.e. CCL2, 

expressed by the AAA to recruit monocytes, I proceeded to investigate the number of 

circulating monocytes, the number of macrophages in the AAAs, and the expression 

level of Ccl2 in the AAAs of the Control diet and EPA diet groups. However, before 

performing these analyses, the gating strategy for isolating macrophages needed to be 

confirmed from a technical perspective. The cell surface markers of circulating 

monocytes are well established and can be easily identified by gating for Ly-6G
-
 cells 
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(to exclude granulocytes such as neutrophils) that are CD11b
+
 and Ly-6C

hi
 in the 

peripheral blood (Figure 6) [29,55]. Meanwhile in the AAA tissue, by first gating for 

Ly-6G
-
 cells from the dissociated AAA cells, macrophages could subsequently be 

identified as Ly-6C
low

CD11b
+
F4/80

+
 cells (Figure 7A, B) [32]. These macrophages were 

isolated by fluorescence-activated cell sorting (FACS), and their cellular appearance 

was shown to be consistent with that of typical macrophages (Figure 7C). 
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Figure 6. Gating strategy for the flow cytometric analysis of peripheral circulating 

monocytes. Representative flow cytometric plots of peripheral blood analysis are 

shown. Living cells isolated from the peripheral blood of mice at 1-week after AAA 

surgery were first gated on Ly-6G (granulocyte marker), and Ly-6G
-
 cells were further 

analyzed for expression of the myeloid markers Ly-6C and CD11b. Ly-6C
hi

CD11b
+
 

cells were taken to be monocytes according to previous reports [29,55]. 
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Figure 7. Gating strategy for the flow cytometric analysis of AAA macrophages. 

Representative flow cytometric plots of AAA analysis are shown. Similar to the gating 

strategy for the peripheral blood analysis, living cells isolated from AAA tissues 1-week 

after the AAA surgery were first gated on Ly-6G, and Ly-6G
-
 cells were further analyzed 

for expression of Ly-6C and CD11b (A); Ly-6C
low

CD11b
+
 cells were shown to be 

positive for F4/80, a macrophage marker (B), and together Ly-6C
low

CD11b
+
F4/80

+
 cells 

were taken to be aneurysmal macrophages and used in all subsequent analyses.       

C. Giemsa staining of sorted Ly-6C
low

CD11b
+
F4/80

+
 cells from the aorta shows cells 

with the characteristic macrophage appearance. Scale bar, 10 μm. 

 

 

 

A 
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 Using these gating strategies to test my first hypothesis, I proceeded to assess 

the number of monocytes in peripheral blood and the number of macrophages in AAAs 

at 1-week after the surgery in the Control diet and EPA diet groups. Surprisingly, while 

the difference in the number of circulating Ly-6C
hi

CD11b
+
 monocytes was not 

statistically significant, mice treated with EPA tended to have higher numbers of 

circulating monocytes (Figure 8). In addition, when I examined the tissue mRNA 

expression levels of Ccl2 in the AAAs at the same time-point of 1-week after AAA 

surgery, aortas of mice in the EPA diet group had significantly higher Ccl2 expression 

than the aortas of mice in the Control diet group (Table 2). These two results together 

should have suggested more potent recruitment of circulating monocytes to AAAs by 

CCL2 in the EPA diet group, leading to the presence of more macrophages in the AAA 

and which would be completely contrary to the initial hypothesis. However, upon 

examining the actual number of macrophages in the AAA amongst the Control diet and 

EPA diet groups, there was interestingly no statistically significant difference in the 

number of aneurysmal Ly-6C
low

CD11b
+
F4/80

+
 macrophages between the Control diet 

and EPA diet groups (Figure 9). This indicates that despite the higher potential for 

monocyte recruitment to AAAs in the EPA diet group, EPA suppressed the actual 

recruitment and/or infiltration of monocytes. 
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 To test the second hypothesis, I sorted the AAA macrophages from both groups 

at 1-week after AAA surgery and examined their Mmp9 mRNA expression by real-time 

PCR. The results showed that there was significantly less Mmp9 expressed by 

macrophages sorted from the AAAs of mice in the EPA diet group (Figure 10), 

suggesting that EPA directly affected macrophage function, such as MMP production, 

within the AAA tissue while AAA macrophage numbers were unaffected. The 

combination of no difference in macrophage numbers and an absolute decrease in 

macrophage-derived MMP-9 levels in the AAAs of the EPA diet group resulted in a net 

fall in total MMP-9 levels and activity, thereby helping to explain the reduced MMP-9 

activity and gene expression in whole AAA samples as well as the attenuation of AAA 

formation. 

  



52 
 

 

 

 

 

 

Figure 8. EPA tends to increase circulating monocyte numbers at 1-week after AAA 

surgery. Representative flow cytometric plots of circulating monocytes in peripheral 

blood of mice in the Control diet and EPA diet groups at 1-week after the AAA surgery, 

gated by the myeloid cell markers Ly-6C and CD11b. After the blood was sampled via 

cardiac puncture, the mice were sacrificed and aortas were harvested for subsequent 

flow cytometric and mRNA expression analyses. While the difference in the number of 

CD11b
+
Ly-6C

hi
 circulating monocytes was not statistically significant between the two 

groups (P = 0.1213 by unpaired Student’s t-test), EPA tended to increase the number of 

monocytes. 
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Figure 9. AAA macrophage numbers are not significantly different between the 

Control diet and EPA diet groups. Representative flow cytometric plots of AAA 

macrophages from mice in the Control diet and EPA diet groups at 1-week after the 

AAA surgery, gated by the myeloid cell markers Ly-6C and CD11b. Three AAAs from 

each group were pooled into one sample in each experiment. Quantifying the mean 

number of Ly-6C
low

CD11b
+
F4/80

+
 aneurysmal macrophages per AAA sample showed 

that there was no statistically significant difference between the two groups. Data are 

mean ± SEM of six independent experiments. 
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Figure 10. mRNA levels of Mmp9 in sorted AAA macrophages. Macrophages from 

AAAs in the Control diet and EPA diet groups at 1-week after AAA surgery were sorted 

and their Mmp9 expression levels were analyzed by real-time PCR. Expression levels 

were first normalized to 18s rRNA levels and then expressed as the relative expression 

to the level of Control diet group. Three AAAs from each group were pooled into one 

sample in each experiment. Data are mean ± SEM of five independent experiments. *P 

< 0.05 compared to the Control diet group. 
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Macrophage expression of Mmp9 is directly suppressed by EPA 

 Given the in vivo results, the next question was whether EPA would have the 

same effect in vitro and suppress Mmp9 expression in cultured macrophages. To address 

this possibility, I used the well-established RAW264.7 macrophage cell line and treated 

these cells with EPA in vitro with or without TNF-α stimulation to induce Mmp9 

expression. 

 Firstly, the results showed that TNF-α effectively induced Mmp9 expression in 

RAW264.7 macrophages, as can be seen by the more than two-fold increase in Mmp9 

expression in the vehicle control group after TNF-α stimulation (Figure 11). When 

RAW264.7 macrophages were treated with increasing concentrations of EPA, there was 

a dose-dependent reduction in the expression of Mmp9 at both baseline and after TNF-α 

stimulation, although the effects at baseline were small and non-significant (Figure 11). 

This lends strong support to the direct effects of EPA on macrophage Mmp9 expression. 

Taken together with the previous in vivo results, it appears that EPA directly affects 

macrophages to reduce their Mmp9 expression in both in vivo and in vitro conditions. 
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Figure 11. EPA dose-dependently suppresses macrophage Mmp9 expression in vitro. 

RAW264.7 macrophages were cultured with either vehicle (10% BSA) or EPA (10, 25, 

or 50 μmol/L) for 48 hours. The cells were then stimulated with TNF-α (20 ng/mL) for a 

further 6 hours and harvested for analysis by real-time PCR. Expression levels were 

normalized to 18s rRNA levels. n=3 per condition. Results are mean ± SEM. *P < 0.05 

compared to the vehicle control after TNF-α stimulation. 
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5.2. Effects of EPA on vascular calcification in the aneurysm 

Aortic calcification was suppressed by EPA 

 In a separate, interesting finding, I found that the aortic walls of CaCl2-induced 

AAAs in BALB/cA mice from the Control diet group had clear, macroscopically visible 

calcification (Figure 3A). This calcification was not as evident when another strain of 

mouse (C57BL/6j) was used (data not shown), suggesting the existence of 

strain-specific differences in vascular calcification in response to CaCl2 treatment that 

have not yet been reported. In BALB/cA mice, I found that an EPA-supplemented diet 

markedly attenuated this vascular calcification compared to AAAs in the Control diet 

group, which was visible macroscopically (Figure 3A). To investigate this further, I 

imaged mice in the Sham, Control diet and EPA diet groups at 6-weeks after AAA 

surgery with micro-computed tomography (CT) and confirmed that the volume of 

calcification along the area of the aorta to which CaCl2 had been applied was 

significantly reduced in the EPA diet group compared to the Control diet group (Figure 

12). 

 Given the reduction in vascular calcification by the EPA-supplemented diet, I 

next examined the expression levels of factors known to be implicated in this process. 

Runx2 (a master regulator of vascular calcification), Rankl (encoded by Tnfsf11, shown 
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to be a major effector molecule mediating vascular calcification downstream of 

RUNX2), and Opg (encoded by Tnfrsf11b, a factor that binds to RANKL to block its 

actions by acting as a decoy receptor and inhibit vascular calcification) are three major 

factors known to be critically involved in vascular calcification [39-41]. A marked 

up-regulation of Runx2 and Rankl was observed in AAAs of the Control diet group at 1- 

and 3-weeks after CaCl2-induction (Table 2), suggesting the close involvement of these 

factors in the calcification seen in CaCl2-induced AAAs and consistent with previous 

reports of their roles in vascular calcification. Interestingly, an EPA-supplemented diet 

significantly attenuated Rankl up-regulation while it significantly increased the 

expression of its inhibitor Opg at 1-week after AAA surgery. Meanwhile, there were no 

differences in the expression of Runx2 between the Control diet and EPA diet groups, 

indicating that EPA may be suppressing Rankl expression somewhere downstream of 

RUNX2-mediated pathway in addition to other pathways. Taken together, these results 

suggest that the combination of (1) the reduction in levels of calcification-promoting 

Rankl and (2) increased levels of the calcification-inhibiting Opg may explain why 

vascular calcification was suppressed in the AAAs of mice fed an EPA-supplemented 

diet. 
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Figure 12. CaCl2-induced AAAs form clear vascular calcification, and this is 

ameliorated by EPA. Aortic calcification was assessed by micro-CT imaging of in situ 

aortas 6-weeks after perivascular CaCl2 application. Both sagittal and transverse slices 

show reduced overall calcification in the AAAs from the EPA diet group compared to 

the Control diet group, and this was consistent with the results of quantitative analysis 

of the total calcification volume in each aorta. Red arrowheads indicate the infra-renal 

aorta. Representative images of two independent experiments are shown. *P < 0.05 

compared to Control diet group. 
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 Given the fact that EPA concurrently reduced both vascular calcification and 

tissue remodeling in the AAA, the next interesting question was whether these two 

processes were in fact related to each other. I hypothesized that the factors involved in 

vascular calcification - in particular, Rankl - may contribute to both vascular 

calcification as well as tissue remodeling processes by inducing MMP production in 

macrophages. To test this idea, I tested whether RANKL protein could induce Mmp9 

expression in cultured macrophages. Using previously reported protocols involving 

RANKL stimulation of macrophages and other similar cells [56], I treated peritoneal 

macrophages with RANKL to test the response in cultured macrophages. Peritoneal 

macrophages clearly showed a time-dependent up-regulation of Mmp9 in response to 

RANKL, with expression levels of Mmp9 being approximately 3-fold that of the 

respective control at 3 days after stimulation (Figure 13). 

 The in vitro results indicate that RANKL has the potential to induce Mmp9 

up-regulation in macrophages. This suggests that it may be possible for RANKL to act 

as an activator in vivo to stimulate AAA macrophages to produce MMP-9, and therefore 

partially contribute to tissue remodeling and aortic dilatation. To assess this possibility, I 

investigated whether Mmp9 expression was associated with Rankl expression in the 

AAAs to support their causal relationship. Since Mmp9 expression seems to be highest 
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at 1-week of the time-points analyzed (Table 2), I assessed the expressions of Mmp9 and 

Rankl in the AAAs of wild-type mice within 1 week after AAA surgery (at 1, 3, and 5 

days). The results show that Rankl expression increased rapidly within a day of AAA 

surgery, with the increasing trend maintained at 3 and 5 days (Figure 14). Most 

importantly, Mmp9 expression was similarly up-regulated during the time period 

analyzed, albeit with a slower starting increase. This supports the notion that with 

increasing Rankl expression in the aorta soon after AAA surgery, the RANKL protein 

becomes more available and abundant to act as an activator of macrophages in AAAs to 

contribute to Mmp9 expression up-regulation and subsequent tissue-remodeling. 
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Figure 13. RANKL (TNFSF11) up-regulated Mmp9 expression in peritoneal 

macrophages. Thioglycollate-elicited peritoneal macrophages from wild-type 

BALB/cA mice were stimulated with recombinant mouse RANKL protein (50 ng/mL) 

and time-course analysis of Mmp9 expression over 72 hours was performed. All gene 

expression levels were normalized to 18s rRNA levels. n=3 per group at each time-point. 

Data are mean ± SEM and representative of 3 independent experiments. *P < 0.05. 
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Figure 14. Levels of Mmp9 and Rankl both increase during the early phases of 

AAA formation. The mRNA levels of Mmp9 and Rankl in the early phase of AAA 

formation (1 to 5 days after perivascular CaCl2 application) in wild-type BALB/cA mice 

were analyzed using real-time PCR. Gene expression levels were first normalized to 18s 

rRNA levels and then presented as relative expression to the Sham group. The results 

showed a positive correlation between increasing Rankl and Mmp9 mRNA levels. Data 

are mean of 3 independent experiments. *P < 0.05 compared to Sham group for Mmp9,

✝P < 0.05 compared to Sham group for Rankl. 
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 The mechanism by which EPA attenuates Rankl up-regulation can be two-fold: 

(1) reduce total Rankl gene expression in AAAs so that induction of AAA macrophage 

Mmp9 expression is decreased, and (2) directly inhibiting the action of RANKL on 

macrophages. The first mechanism has been shown to be true since the results showed 

that Rankl expression at 1-week after AAA surgery was markedly less in the AAAs of 

the EPA diet group than the Control diet group (Table 2). To test whether the second 

mechanism was also true, I treated peritoneal macrophages in vitro with EPA and 

recombinant mouse RANKL protein and analyzed the expression of Mmp9 after 72 

hours of stimulation. This experiment showed that while EPA had a slight tendency to 

reduce RANKL-induced Mmp9 up-regulation in peritoneal macrophages, this effect was 

not statistically significant (Figure 15). Taken together, these results suggest that EPA 

would inhibit vascular calcification and macrophage-derived MMP-9 by reducing the 

total amount of RANKL available in AAAs rather than by directly affecting macrophage 

response to RANKL. 
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Figure 15. EPA does not significantly affect RANKL-induced up-regulation of 

Mmp9. Thioglycollate-elicited peritoneal macrophages from wild-type BALB/cA mice 

were treated with EPA and stimulated with RANKL (50 ng/mL) for 72 hours, after 

which Mmp9 expression was analyzed. Gene expression levels were first normalized to 

18s rRNA levels and then presented as relative expression to baseline vehicle sample. 

n=3 per group for each condition. Data are mean ± SEM and representative of three 

independent experiments. 
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6. DISCUSSION 

 

 Abdominal aortic aneurysm is a prevalent disease particularly amongst elderly 

males and tobacco smokers that has few available pharmacological treatments [3]. In 

this study, I demonstrated that the ω-3 PUFA, EPA, can attenuate AAA formation in a 

murine CaCl2-induced AAA model by suppressing AAA macrophage Mmp9 expression. 

Furthermore, EPA-diet was also found to suppress vascular calcification in the model, 

most likely via its effects in suppressing Rankl up-regulation. The fact that RANKL can 

directly up-regulate macrophage expression of Mmp9 suggests an additional pathway by 

which AAA Mmp9 expression can be further reduced, and hints at a previously 

unappreciated link between vascular calcification and AAA formation (Figure 16).  

 In use clinically for over twenty years now, EPA alone or in combination with 

other ω-3 fatty acids has been shown to have pleiotropic benefits across a variety of 

diseases, such as the primary and secondary prevention of major coronary events 

[46,57], reduction of heart failure incidence [58], lowering blood pressure [59], 

improving outcomes of surgical and intensive care patients [60], and preserving renal 

function in patients with IgA nephropathy [61]. Further adding to these reports, our 

findings suggest that EPA may also be useful in slowing or preventing AAA formation. 
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Figure 16. Schema of the mechanisms by which EPA suppresses AAA formation. 

This study demonstrated that EPA (1) directly suppresses AAA macrophage Mmp9 

expression, and (2) inhibits vascular calcification in the AAA by down-regulating Rankl 

expression. In addition, since RANKL was shown to induce Mmp9 up-regulation in 

macrophages, reduced AAA levels of Rankl may also contribute to reduced macrophage 

Mmp9 levels. 
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 Our results suggest that inhibition of Mmp2 and Mmp9 expression is one of the 

potential mechanisms by which EPA modulates tissue remodeling processes during 

AAA formation. The expressions of Timp1 and Timp2, both of which are tissue 

inhibitors of a wide range of MMPs including MMP-9 and MMP-2 [62,63], were not 

affected by EPA. Given that reduced levels of both Timp1 and Timp2 in AAAs have 

been shown to be associated with aneurysm formation as well [62,63], it is likely that 

administration of EPA shifted the AAA microenvironment from a pro-proteolytic to an 

anti-proteolytic milieu by altering the balance between MMP-9, MMP-2, and TIMP 

levels. The end result is reduced proteolysis with preserved anti-proteolytic activity, 

leading to decreased vascular wall damage and elastin degradation. 

 While I did not examine other immune cells such as T cells, neutrophils, or 

mast cells in this study, it is clear from numerous past reports that macrophages are the 

major cell types that produce MMP-9. In addition, in many of the reports that described 

the importance of other immune cells in AAA development, it is interesting to also note 

that concurrent decreases in macrophage numbers were also found in these studies. This 

further supports the concept that macrophages are one of the major final effector cells in 

AAA formation, where they are modulated by the cytokines produced by other immune 

cells that contribute to macrophage recruitment and the up-regulation of their MMP 
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expression. In this study, I found that there were no statistically significant differences 

in the number of aneurysmal macrophages between the Control diet and EPA diet 

groups. More surprisingly, the number of circulating monocytes was higher with EPA 

treatment than without, suggesting a paradoxically heightened inflammatory response in 

the mice that received EPA. Although these results were somewhat unexpected, it is 

interesting that Arnardottir et al [64] and Blok et al [65] also reported similar findings 

where mice treated with fish oils rich in ω-3 PUFAs had increased circulating 

monocytes and serum CCL2 and TNF-α compared to control mice when these animals 

were IP injected with lipopolysaccharide (LPS) to induce inflammation. In addition, in a 

report by Itoh et al [49], white adipose tissue from genetically obese ob/ob mice fed an 

EPA-supplemented diet also exhibited a paradoxically increased adipose tissue 

macrophage content despite overall improved metabolic parameters. Itoh et al attributed 

this increase in macrophage accumulation to the difference in fat intake between the 

EPA-treated and control groups, where EPA-treated mice received roughly twice the 

amount of fat compared to control mice. Given the similarities in the feeding protocol 

between my study and the study by Itoh et al, it is likely that the same mechanism may 

underlie my observations. Therefore, the results of my and other studies suggest that 

EPA as a dietary supplement can have significant immunomodulatory effects that seem 
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to lead to a specific heightened inflammatory response but which may not necessarily 

be “bad”. For example, an alternative interpretation of the increased number of 

circulating monocytes after EPA treatment may be that the mice have improved 

peripheral immune surveillance, although further studies will need to be undertaken to 

clarify this interpretation. Furthermore, the fact that aneurysmal macrophage numbers 

were not significantly different between the experimental groups despite the higher 

AAA Ccl2 expression suggests that EPA partially suppressed the effect of CCL2 on 

monocyte recruitment. Taken together, despite the increased circulating monocyte 

numbers, EPA nevertheless attenuated AAA formation by qualitatively modulating 

macrophage function (as demonstrated by the direct suppression of macrophage Mmp9 

expression both in vivo and in vitro) while not having any significant quantitative effects 

on macrophage infiltration. 

Although EPA did not reduce the accumulation of macrophages within AAA 

tissues, it suppressed macrophage Mmp9 expression. Previous studies have shown that 

genetic deletion of Mmp9 inhibits CaCl2-induced AAA and that macrophages are the 

major source of MMP-9 in AAAs [25,54]. Moreover, EPA inhibited TNF-α-induced 

expression of Mmp9 in RAW264.7 macrophages. Based on these results, it is likely that 

macrophages are one of the major cell-types that are directly affected by EPA in the 
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AAA tissue. However, the expression of Mmp2 was also modestly but significantly 

decreased by an EPA-supplemented diet. In the AAA milieu, MMP-2 is considered to be 

primarily supplied by SMCs and fibroblasts and has also been shown in animal studies 

to be essential for the development of AAA [25,66]. Therefore, it appears that the effects 

of EPA on AAA formation may not simply be limited to macrophages. Indeed, the 

finding that EPA suppressed vascular calcification and Rankl expression in AAA suggest 

that EPA may also modulate the function of SMCs. This is supported by reports 

demonstrating the central role played by SMCs in vascular calcification and the 

importance of RANKL in this process [38,39,67]. Furthermore, SMC-derived RANKL 

has also been suggested to recruit macrophages and promote their osteoclastic 

differentiation [67], illustrating an important SMC/macrophage interaction via which 

EPA may further exert its effect when it suppresses RANKL levels in AAA. Taken 

together, the reduction in SMC- and fibroblast-derived MMP-2 most likely also 

contributed to the observed property of EPA in attenuating CaCl2-induced AAA 

formation. Further investigations using whole-body and SMC-specific RANKL 

knock-out mice will help determine the exact role of vascular calcification, and RANKL 

in particular, in AAA formation. In addition, it may also be interesting to investigate the 
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use OPG as a treatment for AAAs in experimental models given its RANKL-inhibitory 

effects in future studies. 

There are several likely mechanisms by which EPA suppresses macrophage 

Mmp9 expression. Firstly, given that Mmp9 expression is partly NFκB-dependent, one 

such mechanism is through the modulation of NFκB pathways by EPA. Indeed, in a 

study using a human keratinocyte cell line, Kim et al described the ability of EPA to 

inhibit p65 phosphorylation via p38 and Akt inhibition, thereby leading to reduced 

NFκB-dependent TNF-α-induced Mmp9 expression [68]. This is supported by other 

studies that demonstrated that PPARα-dependent pathways and reduced IκB-α 

phosphorylation are also involved in the attenuation of NFκB activation [69,70]. 

Secondly, changes in the levels of biological eicosanoids such as prostaglandins (PGs) 

within the AAA as a result of EPA supplementation may also affect MMP-9 levels. 

Proinflammatory PGs such as PGE2 are derived from the arachidonic cascade, whereby 

the ω-6 PUFA arachidonic acid (AA) is metabolized by a series of enzymes that include 

cyclooxygenase (COX)-2 and prostanoid synthases to produce a range of biologically 

active PGs. It is well known that EPA can compete with AA for the enzymes that 

catalyze PG production. Indeed, this competition is considered as one of the main 

beneficial effects of ω-3 PUFAs [71]. As a result of this competition, the levels of 
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EPA-derived anti-inflammatory PG3 series of PGs increases while the AA-derived 

inflammatory PG2 series of PGs (including PGE2) decreases, thus creating an 

anti-inflammatory milieu relative to the basal state without EPA supplementation [72]. 

Numerous studies have shown that reducing PGE2 production either by genetic deletion 

or pharmacological inhibition of enzymes that catalyze its synthesis can attenuate AAA 

formation [73-75]. There is also evidence that direct stimulation of macrophages and 

other cell types with PGE2 induces MMP-9 expression [76-78]. While the direct 

measurement of the tissue concentrations of various EPA-derived metabolites in AAA 

samples was beyond the scope of this study, results from the aforementioned studies 

together suggest that EPA may possibly also attenuate AAA formation and macrophage 

MMP-9 production through modulating the tissue levels of PGs (in particular PGE2). 

This study has several limitations. First of all, the role of blood pressure in the 

effects of EPA on AAA formation was not investigated in this study. However, the 

effects of EPA on blood pressure have been investigated in numerous clinical trials. A 

meta-analysis of 31 controlled trials that involved patients who were given ω-3 fatty 

acid supplementation concluded that fish oil may have a small effect on blood pressure 

of -3.0/-1.5 mmHg (systolic/diastolic blood pressure) in hypertensive patients but not 

normotensive, healthy patients [79]. From these results, the authors suggest that the 
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blood pressure lowering effect of ω-3 fatty acids such as EPA is unlikely to be clinically 

significant. Meanwhile, clinical guidelines generally recommend optimal blood pressure 

control in the management of AAAs (especially for those with large AAAs) with agents 

such as β-blockers or ACE inhibitors because hypertension, treated or untreated, has 

been shown to be associated with later AAA development [80]. However, it is 

interesting to note that hypertension was not found to be a risk factor for the actual 

subsequent progression of AAAs in some large scale clinical trials [81], and that 

β-blockers or ACE inhibitors were also not shown to inhibit AAA progression [4,81]. 

Given these reports, the role of hypertension per se in the progression of AAA may be 

as yet unclear. Lastly, in animal models of AAAs induced by angiotensin II infusions, 

AAA formation has been shown to occur independently of the effects on blood pressure 

[17]. This suggests that other mechanisms, such as inflammatory and matrix degrading 

pathways, may be more important for the pathogenesis of AAA than changes in blood 

pressure in these settings. Thus, since ω-3 fatty acids do not appear to have a clinically 

significant effect on blood pressure and that the contribution of changes in blood 

pressure to AAA formation seems to be small, I decided to focus on tissue remodeling 

pathways in this study. 
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Another limitation of this study relates to the dose of EPA used and its effects 

on serum lipids. While the dose of EPA (10% wt/wt) used in this study is relatively high 

compared to that administered in humans, it is not markedly different from the doses 

and protocols used in other previous studies where the dose of EPA or fish oil 

administered to mice ranges from 2% to 27%, with 5% wt/wt diets the most commonly 

implemented protocol [44,49,65,82-84]. The serum concentration of EPA increases 

dramatically according to this feeding protocol, as reported extensively by Itoh et al and 

Matsumoto et al [49,83]. Using gas chromatography to measure the serum 

concentration of EPA, Itoh et al showed that the serum concentration of EPA after a 

4-week 5% EPA diet increased from 5.30 to 260.78 μg/mL in wild-type mice and from 

16.23 to 422.43 μg/mL in obese ob/ob mice [49]; these results were similar to those 

obtained by Matsumoto et al after feeding 5% EPA for 13-weeks to ApoE
-/-

 mice [83], 

and together they demonstrate that oral feeding of EPA leads to a significant and 

reproducible increase in the serum concentration of EPA. The contribution of EPA’s 

effect on serum lipids to suppression of AAA formation has also not been investigated 

in this study. Numerous studies in both humans and mice have reported that 

supplementation of EPA significantly reduces serum triglyceride levels with only minor 

reductions or no changes found in the total serum cholesterol levels [46,85,86]. Since 
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serum triglycerides and total serum cholesterol, both of which are risk factors for 

atherosclerosis, have been reported to be risk factors associated with AAAs [87], it is 

possible that the reduction in serum triglyceride after EPA supplementation may have 

affected the formation of AAAs in this study. However, given that the major findings in 

this study were seen at 1-week after AAA surgery (or 11 days after the start of 

experimental diets), effects of EPA on serum lipids may be outweighed by its effects on 

inflammatory and tissue remodeling pathways in the short term. Furthermore, since 

wild-type mice, which were used in this study, typically do not have significant 

atherosclerosis when on normal diets (that is, not an experimental high-fat diet), the 

usual effects of atherosclerosis and serum lipids on AAA formation may become even 

smaller particularly in the setting of an acute, inflammatory, and non-hyperlipidemic 

AAA model such as that used in this study. Nevertheless, reductions in serum lipids due 

to EPA may serve as an important contributing factor to suppression of AAA formation 

in the long-term, and dedicated long-term studies using hyperlipidemic AAA models 

(such as angiotensin II infusion in ApoE
-/-

 mice) may be helpful in uncovering these 

effects in the future. 

 In conclusion, by using the CaCl2-induced AAA model, I have shown that EPA 

can attenuate the formation of AAAs by directly suppressing AAA macrophage Mmp9 
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expression but not affecting absolute macrophage numbers. In addition, EPA also had a 

very clear effect in its inhibition of vascular calcification, an effect that is most likely 

mediated by the decrease in Rankl expression in AAAs of EPA-treated mice. Given the 

clinical prevalence of AAAs and the importance of vascular calcification in a variety of 

diseases, it is clear that future studies are needed to evaluate the use of EPA in AAA and 

vascular calcification prevention in humans. The fact that EPA is already in clinical use 

widely, both as a nutritional supplement in the form of unpurified fish oil preparations 

and as a pharmacological agent in the form of ultra-purified EPA, should facilitate 

further clinical studies. 
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