
ARTICLE

Received 29 May 2015 | Accepted 26 Aug 2015 | Published 7 Oct 2015

Energetics of proton release on the first oxidation
step in the water-oxidizing enzyme
Keisuke Saito1,2,3, A. William Rutherford4 & Hiroshi Ishikita1,2

In photosystem II (PSII), the Mn4CaO5 cluster catalyses the water splitting reaction. The

crystal structure of PSII shows the presence of a hydrogen-bonded water molecule directly

linked to O4. Here we show the detailed properties of the H-bonds associated with the

Mn4CaO5 cluster using a quantum mechanical/molecular mechanical approach. When O4 is

taken as a m-hydroxo bridge acting as a hydrogen-bond donor to water539 (W539), the S0

redox state best describes the unusually short O4–OW539 distance (2.5 Å) seen in the crystal

structure. We find that in S1, O4 easily releases the proton into a chain of eight strongly

hydrogen-bonded water molecules. The corresponding hydrogen-bond network is absent for

O5 in S1. The present study suggests that the O4-water chain could facilitate the initial

deprotonation event in PSII. This unexpected insight is likely to be of real relevance to

mechanistic models for water oxidation.
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T
he core of the photosystem II (PSII) reaction center is
composed of D1/D2, a heterodimer of protein subunits
that contains the cofactors involved in photochemical

charge separation, quinone reduction and water oxidation. In
PSII, the Mn4CaO5 cluster catalyses the water splitting reaction:
2H2O-O2þ 4Hþ þ 4e– (reviewed in refs 1,2). The release
of protons has been observed in response to changes in the
oxidation state (the Sn state, where the subscript represents the
number of oxidation steps accumulated) of the oxygen-evolving
complex and occurs with a typical stoichiometry of 1:0:1:2 for
the S0-S1-S2-S3-S0 transitions, respectively (for example,
refs 3,4). Although the relevant pathway for proton transfer (PT)
in each S-state transition is not yet clear, PT may proceed via
different pathways in the PSII protein, depending on the S-state
transition5–7. Candidates for the relevant PT pathways have been
reviewed recently7–12 and site-directed mutagenesis studies are
testing the various possibilities13.

The majority view in the current literature is that the best
resolved X-ray crystal structure (1.9 Å) of the Mn4CaO5 cluster14

represents an over-reduced form due to its reduction by the X-ray
beam (for example, ref. 1 but see also for example, ref. 15 for an
alternative explanation). This was suggested to explain the
elongation of Mn–Mn and Mn–O distances compared with those
obtained from extended X-ray absorption fine structure (EXAFS;
for example, refs 16–21). Detailed oxidation states of the 1.9-Å
crystal structure are discussed in recent theoretical studies (see ref.
22 and references therein). Electron spin echo envelope modulation
(ESSEM) and electron-nuclear double resonance (ENDOR) studies
have suggested that all of the m-oxo bridges of the Mn4CaO5 cluster
are deprotonated in the S2 state, and that the water molecules, W1
and W2, bound to Mn4 are H2O or OH– (refs 23,24). Because
proton release is not observed in the S1–S2 transition, the ESEEM
and ENDOR data thus imply that the m-oxo bridges of the
Mn4CaO5 cluster are already deprotonated in S1 (refs 16,19–21,25).
The 1.9-Å structure revealed that two water molecules, W1 and
W2, were ligands to the Mn4 atom of the Mn4CaO5 cluster, and
two waters, W3 and W4, were ligands to the Ca atom14. W3 has
been proposed as a candidate deprotonation site because it is one of
the closest water molecules to the redox active TyrZ14 and because
the W3–Sr bond in the Mn4SrO5 cluster was specifically longer
compared to that in the Mn4CaO5 cluster26. All of these bound
water molecules are candidates not only as potential substrates for
water oxidation (for example, refs 14,27–32) but also as ionizable
groups that could undergo deprotonation during the enzyme cycle
in which positive charge equivalents are accumulated21.

In recent experimental (for example, ref. 33) and theoretical
studies (for example, refs 34,35) it has been proposed that the
proton released on the S0–S1 transition involves hydroxyl form of
O5, an oxygen atom that occupies one of the corners of the cubane,
linking the Ca, Mn3 and Mn1 and connecting the cubane to Mn4.
Recently however, in the radiation-damage-free PSII crystal
structure obtained using the X-ray free electron laser, which is
assumed to be in the S1 state, Suga et al.36 proposed that O5 is a
hydroxide ion in S1. This was based on the observation of
significantly long distances between O5 and the adjacent Mn ions36.
This would be conflict with the already deprotonated m-oxo bridges
in S1 suggested from the ESEEM and ENDOR data19–21. Recent
report comparing published quantum mechanical/molecular
mechanical (QM/MM) data and EXAFS data37 with the free
electron laser structure36 suggested that the crystals used for this
study could contain significant amount of the reduced S0 state38.
Notably, the activation energy is specifically low in the S0–S1

transition, and can be rationalized as a rate-limiting electron
transfer followed by a deprotonation step21.

The 1.9-Å structure shows the presence of a chain of strongly
H-bonded eight-water molecules (O4-water chain) directly linked

to O4 (linking Mn4 and Mn3 in the Mn3CaO4-cubane), whereas
O5 has no direct-H-bond partner14. As far as we are aware, none
of the QM/MM studies have considered the O4-water chain
explicitly. In the 1.9-Å structure, the water molecule W539 (B-
factor: monomer A¼ 23.9, monomer B¼ 25.2) is situated near
the O4 atom of the Mn4CaO5 cluster14. Remarkably, the H-bond
between O4 and W539 (O4–OW539) is unusually short (B2.5 Å)
in comparison with typical O–O distances of B2.8 Å for standard
(asymmetric) H-bonds in H2O (refs 39,40), even if we consider
the uncertainty of B0.16 Å in the measured distances within the
1.9-Å structure14. Notably, ‘single-well H-bonds’ are very short
and typically have O–O distances of 2.4–2.5 Å (refs 41,42). This
results in an essentially barrier-less potential between the H-bond
donor and acceptor moieties. The appearance of single-well
H-bonds in protein environments is often associated with PT
events43–45.

Here we look for short H-bonds in the environment of the
Mn4CaO5 complex and investigate their significance in energy
terms by adopting a large-scale QM/MM approach based on the
crystal structure analysed at 1.9 Å resolution14.

Results
A short H-bond between O4 and W539. The O4–OW539 bond is
unusually short in the original 1.9-Å structure (2.50 Å, Fig. 1)14.
When an H-bond is assumed for the O4–OW539 bond, two
H-bond patterns are possible. Case 1: the H atom is from O4, an
OH– moiety, so that the bond can be written O4–HyOW539.
Case 2: the H atom is from the water, W539, so that O4 is O2–

and the bond can be written as O4yH–OW539 (Supplementary
Fig. 1). Using these two cases, we investigated whether formation
of the short H-bond between O4 and W539 is energetically
possible in the S–1 to S1 states of the high oxidation state model.
In the low oxidation state model these Mn valence states
correspond to the S1–S3 states15 and this option was also
investigated (Table 1), however in the present study, if not
otherwise specified, the S-states given refer to the high oxidation
state model. For discussions of the Mn oxidation state of the low
oxidation state model46, see Supplementary Discussion.

Case 1. O4 is an H-bond donor (O4¼OH� ) to W539 (‘‘pre-
PT’’ H-bond pattern). In S0 ((Mn1, Mn2, Mn3, Mn4)¼ (III, IV,
III, III)), QM/MM calculations reproduced a short H-bond
distance of B2.5 Å (2.55 Å, Table 1) for O4–OW539 only when O4
was OH– and donated an H-bond to W539 (‘pre-PT’ pattern in
Fig. 2; Table 1). In S1, the energy profile of the O4–OW539 bond
(Fig. 3a) resembles an energetically unstable single-well H-bond
(Supplementary Fig. 2). These results indicate that matching of
the pKa values of the donor (that is, O4, Supplementary Fig. 1)
and acceptor (that is, W539) moieties occurs in S1. Due to
the presence of the single-well H-bond (for example, ref. 47),
the ‘pre-PT’ H-bond pattern (Fig. 2) was energetically unstable
in S1 (discussed later). Note that a single-well H-bond
has its energy minimum only at the O–O distance of B2.5 Å
(for example, not 2.6 or 2.7 Å (ref. 43)).

Case 2. W539 is an H bond donor to O4 (O4¼O2� ) (‘‘post-PT’’
H-bond pattern). In the over-reduced state, S–1, QM/MM
calculations also reproduced the short H-bond distance of B2.5 Å
for O4–OW539 (Table 1) but only when O4 was O2– and when it
accepted an H-bond from W539 (‘post-PT’ pattern in Fig. 2).

PT from OH– at O4 along the O4-water chain. In the QM/MM
calculations, OH– at O4 was stable as an H-bond donor to W539
in S0 and lower S states (Fig. 3). However, in the S1 state, OH– at
O4 was energetically unstable due to formation of the single-well
H-bond, leading to the release of a proton from OH– at O4 and
the formation of O2– at O4. Remarkably, the released proton was
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stabilized at W1047 in the form of H3Oþ , which is 13.5 Å away
from O4 (Fig. 1). Overall, the pre-PT pattern (Fig. 2) in the initial
state completely transformed into the post-PT pattern (Fig. 2) as
a result of PT.

The short O4–OW539 in the pre-PT conformation lengthened
to B2.58 Å in the post-PT pattern in S0 or S1 (Table 1) from
2.50 Å in the 1.9-Å structure. This longer H-bond in S0 or S1 is
consistent with O4–OW539 distances of 2.59 Å in both PSII
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Figure 1 | H-bond networks near the Mn4CaO5 cluster. (a) Overview. The O4-water chain is the H-bond network directly linked to the Mn4CaO5 cluster

(O4–OW539¼ 2.50 Å). The O5 path is not directly H-bonded to the Mn4CaO5 cluster (O5–OW2¼ 3.08 Å). (b) The water chain linked to O4 of the

Mn4CaO5 cluster in the 1.9-Å structure14. Water molecules (red), Cl�2 (green) and Mn4CaO5 (purple, orange, and red for Mn, Ca, and O atoms,

respectively) are depicted as balls. H-bonds or ionic interactions are represented by dotted lines. (c) H-bond distances in the water chain (Å).

Table 1 | H-bond geometries (in Ångstroms) of the O4 site.

pre-PT (O4¼OH� ) post-PT (O4¼O2� )

High (low)* S1 (S3) S0 (S2) S� 1 (S1) S1 (S3) S0 (S2) S� 1 (S1)

Mn1–4 X-ray III, IV, IV, III III, IV, III, III III, III, IV, II III, IV, IV, III III, IV, III, III III, III, IV, II
O4–539 2.50 2.45 2.55 2.64 2.58 2.57 2.49
539–538 2.77 2.55 2.59 2.61 2.78 2.72 2.76
538–393 2.71 2.60 2.64 2.66 2.70 2.68 2.65
393–397 2.73 2.62 2.64 2.67 2.75 2.72 2.71
397–477 2.69 2.83 2.83 2.87 2.68 2.66 2.64
477–545w 2.87 2.72 2.71 2.71 2.71 2.70 2.69
545–1047 2.50 2.61 2.61 2.60 2.66 2.66 2.66
1047–399 2.52 2.71 2.70 2.68 2.53 2.54 2.56
RMSD: Mn4Ca 0.11 0.20 0.18 0.16 0.24 0.16
RMSD: Mn4CaO5 0.27 0.31 0.30 0.30 0.30 0.30

RMSD, root-mean-square deviation.
*High oxidation state model in normal script (low oxidation state model in italics and parenthesis15).
wThe large deviation of the W477–W545 length from the 1.9-Å structure14 originates from the poorer density specifically for W477 in the crystal (Supplementary Fig. 8). In the O4-water chain, W477 is
the only water molecule that does not donate an H-bond to a backbone C¼O but accepts an H-bond from the backbone NH of CP43-G353 (Fig. 1) and this seems to be associated with the greater
disorder.
O5¼O2� ; O4¼OH– in pre-PT and O2� in post-PT. RMSD of the optimized heavy atoms with respect to those of the 1.9-Å structure. Short H-bond distances (o B2.5 Å) are in bold.
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monomers in the recent radiation-damage-free PSII crystal
structure obtained using the X-ray free electron laser
(Supplementary Table 1)36. These results seem to correspond to
a situation in which the free electron laser structure36 has the S0

or S1 state in which the O4 is deprotonated, while in the earlier
conventional X-ray diffraction structure (1.9-Å structure)14 the
Mn4CaO4 is in a more reduced state and exhibiting a single-well
H-bond between O4 and OW539.

In the 1.9-Å structure, W1047 has unusually short H-bonds,
OW1047–OW545 (2.50 Å) and OW1047–OW399 (2.52 Å)14.
Intriguingly, the short O–O distances were reproduced only
when we assumed the post-PT H-bond pattern of the O4-water
chain (2.46–2.54 Å, Table 1 and Supplementary Table 2). In
general, typical H2OyH3Oþ (that is, the Zundel cation) has an
unusually short O–O distance of B2.4 Å (refs 39,40). Therefore,
the short H-bond distances of W1047 in the 1.9-Å structure
imply that W1047 is capable of forming H3Oþ . Remarkably, the
X-ray free electron laser structure36 also has unusually short
H-bonds at the corresponding positions (Supplementary Table 1),
a further indication that the X-ray free electron laser structure

represents the post-PT state. The presence of these single-well
H-bonds indicates that local movement of a proton within
the O4–OW539 bond of B2.5 Å results in a sequential downhill
PT from O4 to W1047 over a distance of 13.5 Å (Fig. 2 and
Supplementary Fig. 3).

A working model. The results indicate that PT occurs through
the O4-water chain and thence towards the lumenal bulk
surface via PsbU (Supplementary Discussion). This PT reaction is
specifically associated with the S0–S1 transition. This is supported
by the following arguments.

The O4-water chain is the H-bond network in the 1.9-Å
structure14 that is directly linked with the O atoms of the
Mn4CaO5 cluster (via the O4–OW539 bond). The energy
barrier for PT along the O4–OW539 bond is clearly the lowest
among all the possible Mn4CaO5 deprotonation sites in the 1.9-Å
structure14. This should contribute to a smaller activation energy
for deprotonation, a property consistent with the known
characteristics of the S0–S1 transition, which includes its rate
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Figure 2 | H-bond pattern change of the entire water chain induced by a release of a proton from O4. (a,b) The two H-bond patterns (pre- and post-PT)

possess the same net charge and the same number of H atoms. Altered and unaltered H-bonds are indicated by red and blue lines and balls, respectively.

(c) QM/MM optimized geometries in the pre-PT, (d) post-PT and (e) both conformations. Initial donor-to-acceptor orientations are indicated by black

arrows, whereas altered donor-to-acceptor orientations in the post-PT conformation are indicated by magenta arrows.
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being insensitive to H2O/D2O exchange and its activation energy
being low compared that of the S2–S3 transition21,48,49. In the
energy profiles of the H-bonds studied here, a proton became
energetically more stable as it moved away from Mn4CaO5,
indicating that a downhill PT reaction occurs specifically on
the S0–S1 transition (Fig. 4). The driving force for the PT towards
the protein surface in S1 is attributed to the increased positive
charge on Mn4CaO5 on the S0–S1 transition and this conclusion
was supported by the observation that lower S-states resulted in
the uphill PT reaction (Fig. 4 and Supplementary Fig. 4).

The remarkable linear, eight-water molecular chain acting as
Grotthuss-like proton conduit, which is reported here, might be
expected to work with very fast kinetics. However, proton release
on this step occurs relatively slowly (tens of microseconds21).
This is easily understandable since the electron transfer step
occurs before Hþ release and is thus rate-limiting21.

Energetics of proton release from O5. In the present work we
also analysed the energy profiles of the PT along the O5 path
that proceeds from O5 to D1-Asp61 via the water molecules, W2,
W446 and W442 (Fig. 5). W2 is the only possible proton
acceptor from OH– at O5 when the original geometry of the
1.9-Å (ref. 14) or X-ray free electron laser36 structure is
maintained (see below and Supplementary Discussion). When
OH– at W2 becomes H2O by accepting the proton from
OH– at O5 (Fig. 6b and Supplementary Fig. 5b), W2 cannot
release a proton easily to its H-bond acceptor W446 (Fig. 6b,c and
Supplementary Fig. 5b,c, see Supplementary Discussion for
details), thus causing a significant energy barrier for further PT
(Fig. 6). Note that the PT from O5 to W2 is more unlikely when
W2¼H2O (Supplementary Fig. 6) due to the even less
appropriate H-bond angle for O5yW2 (Fig. 7).

For a PT, formation of a proton conducting wire (that is,
proton donor and acceptor pairs), which is itself an activated
process, must occur first50. The activation-less ‘pre-organized’
proton conducting wire possesses well-arranged water groups
along the O4-water chain (Fig. 2e) and appears to be achieved by
the ‘pre-organized protein dipole51’ of PSII. A corresponding
feature is absent (for example, a partial H-bond network) in the
O5 path (Fig. 5), suggesting that a sequential downhill PT from
O5 is unlikely. It seems clear that deprotonation of a putative

OH– at O5 is less likely than OH– at O4. The activation barrier of
the O5 path appears to remain high in S1 (Fig. 6); it might be
possible however that this path becomes active in proton
conduction in higher S states.

Alternative O5 deprotonation models. Although some studies
have suggested or assumed that O5 (¼OH–) deprotonation
occurs on the S0–S1 transition33–35, it should also be noted that
O5 has no direct-H-bond partner in the original geometry of the
1.9-Å structure14 (Fig. 7) and in the free electron laser structure36.
Recent QM/MM studies by Pal et al.34 also demonstrated
that OH– at O5 has no direct-H-bond partner in their S0

model; this implies that the ‘energy barrier’ for PT with O5 must
be high. Indeed, Pal et al. demonstrated that O5 deprotonation
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only occurred when using ‘a small model of the oxidized S0
0 state’

(that is, not ‘the QM/MM S0 model’, see supplementary Fig. 7b in
ref. 34), in line with our conclusions.

Siegbahn put forward a model in which O5 (¼OH–)
deprotonation occurred on the S0–S1 transition by assuming an
additional water molecule near O5 in density functional theory
(DFT) calculations35, a water molecule that is not visible not only
in the original 1.9-Å structure14 but also in the recent radiation-
damage-free PSII crystal structure36. This extra water molecule
was positioned so that it could accept an H-bond from O5 (ref.
35). An appropriately oriented proton acceptor for O5 would
significantly decrease the energy barrier for release of a proton
from O5. In this case however, the actual 1.9-Å structure shows
that the water molecule cannot be located at the corresponding
position due to the presence of a conserved hydrophobic amino
acid side-chain, D1-Val185 (CgVal185�Owater¼B2.1 Å in
Supplementary Fig. 7). This feature is also present in the free
electron laser structure, which is assumed to be in the S1 state36.
In the O5 deprotonation model, D1-Val185 was not included in
the calculation and hence was absent from the model35.
Furthermore, the O5 deprotonation model also included a
significant structural modification in the vicinity of the H-bond
accepting water: the side-chain of D1-His332 was twisted
(by B90�) along the Mn1-NeHis332 axis35 compared with its
position in the 1.9-Å structure. These two structural differences
compared with the reference crystal structure thus allowed the
water to be located close to O5 without the steric repulsion that

would have occurred in the unmodified 1.9-Å structure
(Supplementary Fig. 7). It could be argued ad hoc that a
conformational change may occur resulting in the situation
modelled. However the most recent unreduced structure of the
enzyme shows no sign of such changes36, so arguments for such a
conformational change are not compelling. Without specific
justification for the B90� twist of the Mn-ligated D1-His332
side-chain and the relocation of the conserved hydrophobic
D1-Val185 side-chain away from the O5 moiety, it seems unjustified
to place a water molecule at the position required for it to accept an
H-bond from O5 for modelling the S0 and S1 transition.

The O5 deprotonation model also showed significantly large
deviations of the atomic coordinates from those of the original
1.9-Å structure35 not only for D1-His332 (root-mean-square
deviation¼ 1.28 Å) but also for CP43-Arg357 (1.19 Å) and
D1-Glu189 (0.51 Å, Supplementary Table 3). Furthermore, the
H-bond partner of O4, that is, W539, and the entire O4-water
chain were also absent in the earlier model35. These changes and
omissions are expected to affect the resulting energy of the system
in that model.

Overall then based on the current data, it seems clear that the
deprotonation of a OH– at O5, as suggested earlier34,35, is
less likely than deprotonation of OH– at O4, as suggested in the
present work.

Deprotonation of the substrate oxygen and protonation of O4.
It has been proposed that the exchangeable m-oxo bridge is likely
to be O5 (refs 24,29,33,52; see also relevant articles19,20 published
before the detailed 1.9-Å structure14), and thus O5 is a plausible
candidate for the slow exchanging substrate water molecule Ws
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K317

a b c
Post-PT-likePre-PT-like

Figure 5 | QM/MM optimized geometries. (a) pre-PT-like, (b) post-PT-like and (c) both conformations. Initial donor-to-acceptor orientations are

indicated by black arrows, whereas altered donor-to-acceptor orientations in the post-PT conformation are indicated by magenta arrows.
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(ref. 53). This is not incompatible with the presence of protonated
O4 in S0: it is possible that the liberation of O2 on formation of S0

is associated with the release of a proton from the substrate
ending up on m-oxo bridge O4. A similar protonation of a m-oxo
bridge on liberation of O2 has been proposed in manganese
catalases54.

The O4-water chain and the low S0/S1 redox potential. The
conversion of the S0 state into the S1 state55 due to its oxidation by
TyrD� showed that the S0/S1 redox potential is lower than that of
TyrD redox potential56, the latter was estimated to be
B720–760 mV (refs 57,58). Given that all the S0 present is
converted to S1 by TyrD�, the S0/S1 redox potential can be taken to
be r700 mV assuming the estimates for TyrD redox couple are
reasonable. In contrast, the S1/S2 and S2/S3 redox potentials are
clearly higher since they oxidize TyrD56 and they have been
suggested to be B900–950 mV (ref. 58). Thus, the barrier-less
deprotonation and the subsequent downhill PT reaction occurring
on the S0–S1 transition may contribute to the uniquely low
redox potential of this redox couple, compared with those of
the other S-state transitions. As demonstrated by Warshel and
coworkers47,51, low-barrier H-bonds (including single-well
H-bonds), where the pKa difference for the donor and acceptor
moieties is nearly zero (that is, less polarized), are particularly
unstable in polar protein environments. An O4–OW539 H-bond
will become a very unstable low-barrier H-bond upon oxidation to
S1, resulting in the release of the proton via the O4-water
chain (Table 1). This is consistent with the observation that S1

does not spontaneously back-react to form S0 (ref. 59). PT may
proceed through different pathways depending on the S-state
transitions5–7. Intriguingly, it has been reported that the rate
constant for the S0–S1 transition is essentially pH-independent,
whereas that for S2–S3 transition is pH-dependent21,48,49. Ionizable
groups are more likely to be involved in a PT pathway for a
pH-dependent process than a pH-independent process; this fits
with the suggestion that the uncharged O4-water chain may be
active in the S0–S1 transition.

Changes in Mn–Mn distances by Mn oxidation/deprotonation.
On proton release from O4, the Mn ion undergoing oxidation
was Mn3 (Fig. 8). We note that the Mn undergoing oxidation is
unlikely to be Mn4 because it appears to be the most reduced site,
that is, it has the highest potential (for example, refs 29 and 60).
Our results suggest that on formation of S1, oxidation of Mn3
from the III valence to IV favours the release of the proton from
OH� at O4 (Fig. 8). From ENDOR, electron paramagnetic
resonance (EPR) and simulation of the EXAFS, it has been

proposed that a Mn–Mn distance of B2.85 Å in the S0 state is
decreased to B2.7 Å in the S1 state (2.83–2.73 Å (ref. 16), 2.85–
2.72 Å (ref. 19) or 2.85–2.75 Å (ref. 20)). In the present
calculations, Mn3–Mn4 was the only distance that was
decreased by B0.1 Å from 2.86 Å in S0 to 2.70 Å in S1 (Table 2
and Supplementary Table 4). Note that the corresponding change
was 2.90, a slightly longer distance, to 2.71 Å when O5 was
assumed to be the deprotonation site34. These results suggest that
the decreased Mn–Mn distance reported in EXAFS studies16–21

corresponds to the Mn3–Mn4 distance, which is decreased by
deprotonation of O4 in the S0–S1 transition.

Mn3–Mn4 is a key distance that can allow us to evaluate the
reduction state of PSII crystal structures with respect to geometries
obtained from ENDOR, EPR or simulation of the EXAFS16–21 in
both S0 and S1. The Mn3–Mn4 distance of 2.87 Å in the free
electron laser structure36, which was reproduced (2.91 Å with OH–

at O5 in S1) in QM/MM studies by Shoji et al.61 is close to the
distance of S0 (B2.85 Å), not the distance of S1 (B2.73 Å),
obtained from ENDOR, EPR and EXAFS. This is in line with the
presence of significant amount of the reduced S0 state suggested
from recent QM/MM studies by Askerka et al.38 It seems likely
that the geometry of the free electron laser structure does not
represent a pure S1 state detected ENDOR, EPR and EXAFS16–21

and is probably in a more reduced state.
An argument for the presence of a hydroxide ion at O5 for the

free electron laser structure proposed by Suga et al.36 was the
observation of significantly lengthened distances between O5 and
the adjacent Mn ions. The presence of a hydroxide ion at O5 was
considered likely because recent QM/MM studies by Shoji et al.61

have reproduced two of the three significantly lengthened
distances between O5 and the adjacent Mn ions, Mn1–O5 (2.70
Å (ref. 36) and 2.73 Å (ref. 61)) and Mn4–O5 (2.33 Å (ref. 36) and
2.34 Å (ref. 61)), by assuming OH– at O5 in S1 (ref. 61). However,
it should also be noted that one of the three significantly
lengthened distances in the free electron laser structure, Mn3–O5,
could not be reproduced in this study61; in fact Mn3–O5 was
significantly shortened in the QM/MM geometry (2.20 Å (ref. 36)
to 1.96 Å (ref. 61)). Indeed, the 1.9 Å structure has an even longer
Mn3–O5 distance of 2.38 Å (ref. 14). Notably, a similar Mn3–O5
distance of 2.37 Å was obtained, assuming reduced Mn(II) for
Mn4 in DFT studies by Petrie et al.62.

These features of the free electron laser structure, (i) the
lengthened Mn3–Mn4 distance with respect to S0 of ENDOR,
EPR and EXAFS16–21 and (ii) the lengthened Mn3–O5 distance
with respect to the QM/MM geometry (S1 with OH– at O5
(ref. 61)), suggest that Mn4CaO5 of the free electron laser
structure is probably reduced and cannot be simply explained as
representing a single oxidation (and protonation) state.
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Figure 8 | Oxidation states of the four Mn ions and protonation states of the O atoms. The release of a proton from O4 occurs due to oxidation at O4 via

the single-well H-bond with W539 upon formation of S1.
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Discussion
Based on the findings reported here, we are able to propose a
mechanism for PT along the O4-water chain. (Note that the role of
the O4-water chain as a proton channel as proposed here does not
exclude a role as a substrate channel on other steps of the cycle.)
On the S0–S1 transition deprotonation of a m-hydroxo group at
the O4 position occurs due to oxidation of Mn3(III) to Mn3(IV)
(Fig. 8). This deprotonation results in a decrease in the Mn3–Mn4
distance from 2.86 to 2.70 Å (Table 2 and Supplementary Table 4);
a similar decrease in the Mn–Mn separation has been reported in
ENDOR, EPR or EXAFS studies16,19,20. The nature of the O4-
water chain, being composed exclusively of water molecules, is
consistent with and may explain the pH-independence of PT in the
S0–S1 transition 21,48,49. At the start of the O4-water chain, the
proton in the barrier-less O4–OW539 H-bond is likely to move
away from the positively charged S1 when it forms. Thus, the O4–
OW539 H-bond is energetically less stable in S1, resulting in the
sequential (Fig. 2) and downhill (Fig. 4) PT reaction. The presence
of the O4-water chain may explain why formation of the S1 state is
less inhibited by Cl– depletion63. It may also explain the apparently
irreversibility of S0–S1 step59 and the redox potential of S0/S1 being
uniquely low, lower than the TyrD redox potential56,58, resulting in
the conversion of S0–S1 in the dark55,56.

It has been suggested that in bacteriorhodopsin, the PT occurs
to the Schiff base along a chain of three water molecules, by
transforming from the pre-PT to post-PT patterns64. As far as we
are aware the O4-water chain is the longest PT channel of water
molecules (B8-water molecules) identified in protein crystal
structures. This unusually long and straight water chain, which
seems to function as a PT pathway in the water-oxidizing
enzyme, is worthy of study in its own right.

Methods
Coordinates and atomic partial charges. The atomic coordinates of PSII were
taken from the X-ray structure of PSII monomer unit ‘A’ of the PSII complexes from
Thermosynechococcus vulcanus at a resolution of 1.9 Å (Protein Data Bank (PDB)
code, 3ARC)14. Hydrogen atoms were generated and energetically optimized with
CHARMM65, whereas the positions of all non-hydrogen atoms were fixed, and all
titratable groups were kept in their standard protonation states (that is, acidic groups
were ionized and basic groups were protonated). For the QM/MM calculations, we
added additional counter ions to neutralize the entire system. Atomic partial charges
of the amino acids were adopted from the all-atom CHARMM22 (ref. 66) parameter
set. The atomic charges of cofactors were taken from our previous studies of PSII43.

QM/MM calculations. We employed the electrostatic embedding QM/MM
scheme, in which electrostatic and steric effects created by a protein environment
were explicitly considered, and we used the Qsite67 programme code, as used in
previous studies43. We employed the unrestricted DFT method with the B3LYP
functional and LACVP** basis sets. To analyse H-bond potential-energy profiles of
the O4–OW539 bond, the QM region was defined as the Mn4CaO5 cluster
(including the ligands), water molecules shown in Fig. 1, side-chains of D1-Asp61,
D1-Asn338, D2-Asn350, and CP43-Thr335, and backbones of D1-Asp61,
D1-Asn335, D1-Ala336, D2-Asn350 and CP43-Gly338, whereas other protein
units and all cofactors were approximated by the MM force field. To analyse all of
the H-bonds along the O4-water chain (Fig. 1) in the pre-PT conformation, a
slightly smaller QM region was defined as (the Mn4CaO5 cluster (including the
ligands), water molecules shown in Fig. 1 and the side-chain of CP43-Thr335) for

efficiency (small QM). The two QM regions did not essentially alter the results and
conclusions. The resulting geometries were essentially identical regardless of the
size of the QM region (Supplementary Tables 2 and 4). The results obtained on the
basis of the large QM region were described in the main text. To analyse all of the
H-bonds along the O5 path (Fig. 1) in the pre-PT-like conformation, the QM
region was defined as (the Mn4CaO5 cluster (including the ligands), water
molecules of W1, W2, W3, W4, W539, W538, W446, and W442, side-chains of
D1-Asp61, D1-Asn181, and D2-Lys317 and a chloride ion (Cl–1)). To analyze H-
bond patterns of the O5 and W2 moiety (Fig. 7), we used the QM region same as
that in ref. 68. The geometries were refined by constrained QM/MM optimization.
Specifically, the coordinates of the heavy atoms in the surrounding MM region
were fixed at their original X-ray coordinates, while those of the H atoms in the
MM region were optimized using the OPLS2005 force field. All of the atomic
coordinates in the QM region were fully relaxed (that is, not fixed) in the QM/MM
calculation. Note that the resulting atomic coordinates of the QM region essentially
did not alter upon full relaxation of the entire atoms (including heavy atoms) in the
surrounding MM region68. The Mn4CaO5 cluster was considered to be
ferromagnetically coupled; for example, the total spin S¼ 7 in S1 and the resulting
Mn oxidation state (Mn1, Mn2, Mn3, Mn4)¼ (III, IV, IV, III) (see Supplementary
Discussion for further details). The potential-energy profiles of H-bonds were
obtained as follows: first, we prepared the QM/MM optimized geometry without
constraints and used the resulting geometry as the initial geometry. The H atom
under investigation was then moved from the H-bond donor atom (Odonor)
towards the acceptor atom (Oacceptor) by 0.05 Å, after which the geometry was
optimized by constraining the Odonor–H and H–Oacceptor distances. The energy of
the resulting geometry was calculated. This procedure was repeated until the H
atom reached the Oacceptor atom. See Supplementary Data 1 for the atomic
coordinates of the QM region (that is, Mn4CaO5). As discussed later, OH– at O5
has no direct-H-bond in the protein environment of PSII. Thus, to analyse the PT
from O5, we assumed W2 (O5yOW2¼ 3.1 Å (ref. 14)) as the plausible proton
acceptor, and analysed the energy profile by constraining the H–OW2 distance. We
also calculated the 1H NMR chemical shift for OH� at O5 (see Supplementary
Methods and Supplementary Discussion).
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