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1 Introduction

The notion of a stability condition on a triangulated category D was introduced
by Bridgeland in [Bri07] motivated by Douglas’s work on Π-stability for D-
branes in string theory ([Dou02]). Bridgeland also showed that the space of
stability conditions Stab(D) has the structure of a complex manifold and there
is a local isomorphism map

π : Stab(D) −→ HomZ(K(D),C)

where K(D) is the K-group of D. The most important examples of triangulated
categories are derived categories of coherent sheaves on varieties or those of
modules over algebras. Since the space of stability conditions Stab(D) provides
a geometrical way to study the original category D, to study the spaces of
stability conditions on derived categories is important problem.

There is an important class of triangulated categories, called Calabi-Yau N
(CYN ) triangulated categories ([Kel08]). A triangulated category D over a field
k is CYN if there is a natural isomorphism

HomD(E,F )
∼−→ HomD(F,E[N ])∗, for E,F ∈ D

where [N ] is the N -th shift and ∗ means the dual k-vector space. Important
examples of CYN categories are given by the derived category Dfd(ΓNQ) of finite
dimensional dg modules over the Ginzburg CYN dg algebra ΓNQ associated
with a quiver Q ([Gin, Kel11]).

In this thesis, we study the spaces of stability conditions on Dfd(ΓNQ) in
two type cases; one is N = 2 and Q is a connected quiver without loops, and
the other is N ≥ 3 and Q is the An-quiver.

In Part I, we consider the case N = 2 and Q is a connected quiver without
loops. If Q is not of ADE type, the dg algebra Γ2Q is quasi-isomorphic to the
graded algebra Π(Q), called preprojective algebra of Q, and hence the derived
category of finite dimensional dg modules over Γ2Q is triangulated equivalent
to the bounded derived category of finite dimensional nilpotent modules over
Π(Q). Therefore, we study the space of stability conditions on a CY2 cate-
gory DQ given as the bounded derived category of the preprojective algebra.
In geometric setting, the spaces of stability conditions for some CY2 triangu-
lated categories were studied in [Bri08, Bri09b, IUU10, Oka06]. When D is the
bounded derived category of coherent sheaves of a K3 surface ([Bri08]) or a cer-
tain subtriangulated category of coherent sheaves of a resolution of a Kleinian
singularity ([Bri09b]), it was shown that the distinguished connected compo-
nent of Stab(D) is a covering space of some open subset of HomZ(K(D),C)
related to root systems and how the group of deck transformations acts on it.
Further, the connectedness and simply connectedness problems of Stab(D) for
some particular D were solved in [IUU10, Oka06, ST01].

Following the works in [Bri08, Bri09b, Tho06], we describe the distinguished
connected component Stab◦(DQ) ⊂ Stab(DQ) in terms of root systems of Kac-
Moody Lie algebras associated with Q, and show that the space Stab◦(DQ)
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becomes the covering space of some open subset Xreg ⊂ HomZ(K(DQ),C).
Further, we give the relationship between the group of deck transformations
and the autoequivalence group of DQ. Our results generalize the results for
ADE or affine ADE quivers in [Bri09b, Tho06] to all quivers without loops.

In Part II, we consider the case N ≥ 3 and Q is the An-quiver. In [ST01,
Tho06], a certain CYN triangulated category DN

n appears in mirror symmetry
for the derived Fukaya category of Lagrangian submanifolds consisting of van-
ishing cycles of the Milnor fiber of the An-singularity. The category DN

n also
described as the derived category of finite dimensional dg modules of the CYN

Ginzburg dg algebra of the An-quiver. The main subject of Part II is the space
of stability conditions on the category DN

n .
Recently, Brideland and Smith proved that the moduli space of meromorphic

quadratic differentials with simple zeros can be identified to the space of stabil-
ity conditions on a CY3 triangulated category defined as the derived category
of finite dimensional dg modules over the Ginzburg dg algebra associated with a
ideal triangulation of a marked bordered surface. The idea of constructing sta-
bility conditions from quadratic differentials comes from the work of physicists
Gaiotto-Moore-Neitzke in [GMN]. In [BS], Bridgeland-Smith established many
mathematical foundations for the space of quadratic differentials and gave the
mathematical understanding of the work in [GMN].

In Part II, we study the space of stability conditions on DN
n by using some

generalizations of Bridgeland-Smith’s theory. By generalizing the assumption
simple zeros to zeros of order (N − 2) and triangulations to N -angulations, we
can treat not only CY3 categories but CYN categories, only in the easiest case
that the surface is a disk with some marked points on the boundary. As a
result, we can show that the distinguished connected component Stab◦(DN

n ) ⊂
Stab(DN

n ) is isomorphic to the universal covering of the space of polynomials
pn(z) = zn+1 + u1z

n−1 + · · · + un (u1, . . . , un ∈ C) with simple zeros. Further,
the central charges of Stab◦(DN

n ) are described by the periods of quadratic
differentials of the form pn(z)

N−2dz⊗2 on the Riemann sphere P1.

1.1 Summary of results in Part I

Let Q be a connected finite quiver without loops (1-cycles) and let {1, . . . , n}
be the vertices of Q. Further, assume that the underlying graph of Q is not
of ADE type. For the quiver Q, we can define a C-algebra A := Π(Q) called
preprojective algebra of Q. A has a natural grading A = ⊕i≥0Ai, and a right
A-module M is called nilpotent if there is some positive integer k such that
MAl = 0 for all l ≥ k. Let AQ be an abelian category of finite dimensional
nilpotent right A-modules and DQ := Db(AQ) be a bounded derived category
of AQ. It is known that the triangulated category DQ is a CY2 category. (If
Q is ADE-type, there is a certain CY2 triangulated category, for which all
corresponding results holds. See [Bri09b] for more details.)

The abelian category AQ is finite length with finitely many simple modules
{S1, . . . , Sn} corresponding to n-vertices of Q, so every object of AQ has the
Jordan-Holder filtration by these simple modules. The K-group of DQ is given
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by

K(DQ) ∼=
n⊕

i=1

Z[Si]

and K(DQ) has a natural bilinear form χ : K(DQ) × K(DQ) → Z, called the
Euler form, defined by

χ(E,F ) :=
∑
i∈Z

(−1)i dimC HomDQ
(E,F [i])

for E,F ∈ DQ. The CY-2 property of DQ implies that the Euler form χ is
symmetric.

For Q, we introduce n× n matrix AQ, called the generalized Cartan matrix
(GCM for short), by (AQ)ij := 2δij − (qij + qji) where qij is a number of arrows
from i to j in Q. The root lattice LQ associated with AQ is defined by

LQ :=

n⊕
i=1

Zαi

where αi’s are n-free generators called simple roots of LQ. We also define a sym-
metric bilinear form ( , ) : LQ × LQ → Z by (αi, αj) := (AQ)ij . This symmetric
bilinear form define reflections r1, . . . , rn : LQ → LQ with respect to simple roots
α1, . . . , αn and denote byW the group generated by these reflections, called the
Weyl group.

The Euler form χ is computed by χ(Si, Sj) = (AQ)ij , therefore we have an
isomorphism

(K(DQ), χ) ∼= (LQ, ( , )), [Si] 7→ αi

between two Z-lattices with symmetric bilinear forms.
Let ∆re

+ ⊂ LQ (∆im
+ ⊂ LQ) be the set of positive real (imaginary) roots. The

imaginary cone I ⊂ LQ⊗ZR is a closure of convex hull of ∆im
+ ∪{0} ⊂ LQ⊗ZR

in natural topology as a finite dimensional vector space. Let V := HomZ(LQ,C)
and introduce the subset X ⊂ V by

X := V \
∪

λ∈I\{0}

Hλ

where Hλ := {Z ∈ V |Z(λ) = 0 }. Further, define the regular subset Xreg ⊂ V ,
on which the Weyl group W acts freely, by

Xreg := X\
∪

α∈∆re
+

Hα.

Now, consider the space of stability conditions on DQ. A stability condition
on DQ ([Bri07]) consists of a full abelian subcategory A ⊂ DQ, called the heart
of bounded t-structure, with a group homomorphism

Z : K(DQ) −→ C
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called a central charge which satisfies the condition

Z(E) ∈ { reiπϕ ∈ C | r ∈ R>0, ϕ ∈ (0, 1] }

for every non-zero object E ∈ A. Write by Stab(DQ) the set of stability con-
ditions on DQ with the additional condition, called the support property (see
Definition 2.10).

For the space Stab(DQ), there is a distinguished connected component Stab◦(DQ) ⊂
Stab(DQ) which contains stability conditions with the heart AQ. By the main
result in [Bri07], Stab◦(DQ) is a complex manifold of complex dimension n and
there is a local isomorphism map

π : Stab◦(DQ) −→ HomDQ
(K(DQ),C).

defined by taking central charges from stability conditions. Note that under the
identification K(DQ) ∼= LQ, we have HomDQ(K(DQ),C) ∼= V .

In [ST01], P. Seidel and R.P. Thomas defined autoequivalences ΦSi ∈ Aut(DQ),
called spherical twists, for spherical objects S1, . . . , Sn, and showed that they
satisfy braid relations. Write by Br(DQ) ⊂ Aut(DQ) the subgroup generated
by these spherical twists. The action of Br(DQ) on Stab(DQ) preserves the
distinguished connected component Stab◦(DQ).

The next theorem is the main result of this paper. This generalizes the
results by T. Bridgeland and R.P. Thomas ([Bri09b, Tho06]) from finite or
affine type root systems to indefinite type root systems.

Theorem 1.1 There is a covering map

π : Stab◦(DQ) −→ Xreg/W

and the subgroup Z[2] × Br(DQ) ⊂ Aut(DQ) acts as the group of deck trans-
formations (Z[2] ⊂ Aut(DQ) is the subgroup generated by the shift functor
[2] ∈ Aut(DQ)).

By the van der Lek’s result ([vdL83]), the fundamental group of Xreg/W is
given by

π1(Xreg/W ) ∼= Z[γ]×GW

where GW = ⟨σ1, . . . , σn⟩ is the Artin group with generators σ1, . . . , σn ([BS72])
associated with the Weyl group W = ⟨r1, . . . , rn⟩. The factor Z[γ] is generated
by a loop γ around the orthogonal hyperplanes of the imaginary cone I\{0}.
Theorem 1.1 implies that there is a surjective group homomorphism

ρ̃ : Z[γ]×GW → Z[2]× Br(DQ).

We can show that ρ̃ sends the generators σi to the spherical twists ΦSi and γ
to the shift functor [2].

For a quiver Q, we get an underlying graph Q by forgetting orientations of
arrows in Q. The automorphism group Aut(Q) of the graph Q acts on AQ by
permutating simple modules S1, . . . , Sn ∈ AQ corresponding to vertices.
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Let Aut◦(DQ) ⊂ Aut(DQ) be the subgroup of autoequivalences which pre-
serve the distinguished connected component Stab◦(DQ). Further, write by
Aut◦∗(DQ) = Aut◦(DQ)/Nil

◦(DQ) the quotient of Aut◦(DQ) by the autoequive-
lences Nil◦(DQ) which acts trivially on Stab◦(DQ). Then, the similar result to
Corollary 1.4 in [Bri09b] also holds.

Corollary 1.2 The group Aut◦∗(DQ) is given by

Aut◦∗(DQ) ∼= Z[1]× (Br(DQ)oAut(Q))

where Aut(Q) acts on Br(DQ) by permutating the generators ΦS1 , . . . ,ΦSn .

Similar to the case for K3 surfaces in [Bri08] and Kleinian singularities in
[Bri09b] (which correspond to finite or affine type quivers), we expect the fol-
lowing properties for the space Stab(DQ).

Conjecture 1.3 (1) The space Stab(DQ) is connected. Hence Stab◦(DQ) =
Stab(DQ).

(2) The space Stab◦(DQ) is simply connected. In other words, the sujective
group homomorphism

ρ : GW −→ Br(DQ)

is injective. (Hence isomorphism.)

Conjecture 1.3 (1) was solved for Â1-quiver in [Oka06], and for An-quivers
and Ân-quivers in [IUU10]. Conjecture 1.3 (2) was solved for An-quivers in
[ST01], for ADE-quivers in [BT11], and for Ân-quivers in [IUU10].

Further, the K(π, 1) conjecture for Artin groups (see [Par]) together with
above two conjectures implies that the space Stab(DQ) is contractible.

Note that if both Conjecture 1.3 (1) and Conjecture 1.3 (2) hold, then the
autoequivalence group of DQ is given by

Aut(DQ) ∼= Z[1]× (Br(DQ)oAut(Q)).

Next, we consider relationship to stability conditions on derived categories
of path algebras. Let Q be an acyclic quiver and CQ be a path algebra of Q. Let
mod-CQ be an abelian category of finite dimensional CQ modules and Db(CQ)
be a derived category of mod-CQ. K-group of Db(CQ) is given by

K(Db(CQ)) ∼=
n⊕

i=1

Z[Si]

where Si’s are simple modules of CQ. By identifying K(Db(CQ)) with the
root lattice LQ, we have V ∼= HomZ(K(Db(CQ)),C) as in the previous sec-
tion. Futher, there is a distinguished connected component Stab◦(Db(CQ)) ⊂
Stab(Db(CQ)) which contains all stability conditons on mod-CQ.

The following result was showed in [Shi] for all m-Kronecker quivers (a m-
Kronecker quiver consists of two vertices and m pararell arrows). Since these
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quivers are good examples for all type quivers, finite (m = 1), affine (m = 2)
and indefinite (m ≥ 3), we naively expect the following property for general
acyclic quivers.

Conjecture 1.4 Let Q be an acyclic quiver. The restriction of a local isomor-
phism map

π : Stab◦(Db(CQ)) → V

on the regular subset Xreg ⊂ V is a covering map. Further, Xreg is the maximal
subset of V having this covering property.

We expect that this conjecture contributes to the study of the spaces of stability
conditions on derived categories of path algebras.

1.2 Summary of results in Part II

LetMn be the space of polynomials pn(z) = zn+1+u1z
n−1+· · ·un (u1, . . . , un ∈

C) with simple zeros. Note that the fundamental group ofMn is the Artin group
Bn+1. The action of C∗ on Mn is given by (u1, . . . , un) 7→ (ku1, . . . , k

nun) for
k ∈ C∗.

We consider z to be a complex variable and pn(z) to be a meromorphic
function on the Riemann sphere P1 = C ∪ {∞}. For pn(z) ∈Mn, we define the
quadratic differential on P1 by ϕ(z) := pn(z)

N−2dz⊗2 and denote by Q(N,n)
the space of such differentials. Note that the space Q(N,n) is isomorphic toMn

as a complex manifold.
We introduce the homology group H±(ϕ) associated with the differential

ϕ(z) ∈ Q(N,n) by the following. If N is even, the homology group is defined
by the relative homology group H+(ϕ) = H1(C,Zero(ϕ);Z) where Zero(ϕ) ⊂ C
is the set of zeros of ϕ. If N is odd, the homology group is defined by H−(ϕ) :=
H1(S\π−1(∞);Z) where π : S → P1 is the hyperelliptic curve S = {y2 = pn(z)}.
These holomogy groups form a local system on Q(N,n).

For ϕ(z) = pn(z)
N−2dz⊗2 ∈ Q(N,n), consider the meromorphic 1-form by

ψ(z) = pn(z)
N−2

2 dz⊗2, which is the square root of ϕ(z). Note that the 1-form
ψ(z) is holomorphic on P1\{∞} if N is even or S\π−1(∞) if N is odd. Hence,
we have the well-defined linear map Zϕ : H±(ϕ) −→ C, called the period of ϕ(z),
by the integration of ψ(z) via the cycle γ ∈ H±(ϕ):

Zϕ(γ) :=

∫
γ

ψ.

Let Γ be a free abelian group of rank n. An isomorphism of abelian groups
θ : Γ

∼−→ H±(ϕ) is called a Γ-framing of ϕ ∈ Q(N,n). Denote by Q(N,n)Γ

the set of framed differentials. For a framed differential (ϕ, θ) ∈ Q(N,n)Γ,
the composition of θ : Γ → H±(ϕ) and Zϕ : H±(ϕ) → C gives a linear map
Zϕ ◦ θ : Γ → C. We define the period map

WN : Q(N,n)Γ → HomZ(Γ,C)
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by (ϕ, θ) 7→ Zϕ ◦ θ.
Fix a framed differential ∗ = (ϕ0, θ0) ∈ Q(N,n)Γ and let Q(N,n)Γ∗ ⊂

Q(N,n)Γ be the connected component containing (ϕ0, θ0). Depending on the
parity of N , there are two type integral representations ρ+ : Bn+1 → GL(n,Z)
and ρ− : Bn+1 → GL(n,Z), which give monodromy representations of π1(Q(N,n), ∗) ∼=
Bn+1 on H±(ϕ0). Let W+ and W− be the groups generated by the image of
ρ+ and ρ− respectively. Then, we have a W±-torsor Q(N,n)Γ∗ → Q(N,n) by
forgetting framings (ϕ, θ) 7→ ϕ. Hence, the universal covering of Q(N,n)Γ∗ is iso-

morphic to the universal covering M̃n of Mn, and we have Q(N,n)Γ∗
∼= M̃n/P±

where P± = Ker ρ±. Further, we can lift the period map to

WN : M̃n → HomZ(Γ,C).

Finally, we also mention that the action of C∗ on Mn lifts to the action of

C ∼= C̃∗ on M̃n.
For a quiver Q, we can define a dg algebra ΓNQ, called the CYN Ginzburg

dg algebra, introduced by Ginzburg in [Gin]. Let Dfd(ΓNQ) be the derived
category of dg modules over ΓNQ with finite total dimension. It was proved by
Keller in [Kel11] that the category Dfd(ΓNQ) is a CYN triangulated category.

Let Q =
−→
An be the An-quiver and set DN

n := Dfd(ΓN
−→
An). An object S ∈ DN

n is
called N -spherical if

HomDN
n
(S, S[i]) =

{
k if i = 0, N

0 otherwise.

There is some full subcategory HΓ, called the standard heart of DN
n , and there

are n spherical objects S1, . . . , Sn ∈ HΓ which generates HΓ by extensions.
In [ST01], Seidel and Thomas defined an autoequivalence ΦS ∈ Aut(DN

n ),
called a spherical twist, for a spherical object S ∈ DN

n . They also proved that
the subgroup Sph(DN

n ) ⊂ Aut(DN
n ) generated by ΦS1 , . . . ,ΦSn is isomorphic to

the braid group Bn+1.
A stability condition σ = (Z,H) on a triangulated category D consists of a

heart H ⊂ D of a bounded t-structure, and a linear map Z : K(H) → C called
the central charge, which satisfy some axioms. In [Bri07], Bridgeland showed
that there is a suitable topology on the set of stability conditions Stab(D), and
the projection map

Z : Stab(D) −→ HomZ(K(D),C)

defined by (Z,H) 7→ Z is a local isomorphism. As a result, we can say that the
space Stab(D) has the structure of a complex manifold. On Stab(D), there are

two group actions, one is the action of C =∼= C̃∗ and the other is the action of
Aut(D).

We setD = DN
n . There is a distinguished connected component Stab◦(DN

n ) ⊂
Stab(DN

n ) which contains stability conditions with the standard heart HΓ, and
the action of the group Sph(DN

n ) preserves the connected component Stab◦(DN
n ).
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Since Sph(DN
n ) ∼= Bn+1, the space Stab

◦(DN
n ) has the action of the braid group

Bn+1.
The main result in Part II is the following.

Theorem 1.5 (Theorem 10.15) There is a Bn+1-equivariant and C-equivariant
isomorphism of complex manifolds K̃ such that the diagram

M̃n

K̃ //

WN %%JJJJJJJJJJ Stab◦(DN
n )

Zwwooooooooooo

HomZ(Γ,C)

commutes.

For N = 2, the result was proved by Thomas in [Tho06]. For N = 3 and
n = 2, the result was proved by Sutherland. The result for N = 3 and arbitrary
n follows as the special case of the result of Bridgeland-Smith in [BS], which
contains almost all classes of CY3 categories associated with ideal triangulations
of marked bordered surfaces.

Many arguments of this paper are parallel to those of [BS] but we need to
generalize CY3 to CYN , quivers to (N−2)-colored quivers, simple zeros to zeros
of order (N − 2) and triangulations to N -angulations.

The main difference between this paper and [BS] is can be seen in Section 6.
Since the category equivalence of Keller-Yang type ([KY11]) for N ≥ 4 is not
established yet, we need another approach. Fortunately, by using the result of
King-Qiu [KQ] concering the hearts of Dfd(ΓQ) for an acyclic quiver togather
with the geometric realization of (N − 2)-cluster category of type An by Baur-
Marsh in [BM08], we can obtain all necessary results to apply the method in
[BS] without using the Keller-Yang type category equivalence.

In [IUU10], Ishii-Ueda-Uehara proved that the space Stab(D2
n) is connected,

so Stab◦(D2
n) = Stab(D2

n). Together with the result of Thomas in [Tho06], we

have Stab(D2
n)

∼= M̃n and, in particular we can say that Stab(D2
n) is contractible.

For general N ≥ 2, Qiu proved that Stab◦(DN
n ) is simply connected (see Corol-

lary 5.5 in [Qiu]). More strongly, our Theorem 1.1 implies the following (see
Conjecture 5.7 in [Qiu]).

Corollary 1.6 (Corollary 10.16) The distinguished connected component Stab◦(DN
n )

is contractible.

The remaining problem is that the connectedness of the space Stab(DN
n ). As in

the case N = 2, we naively expect that the space Stab(DN
n ) is connected, and

as a result Stab(DN
n ) is contractible.
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Notations

We fix the positive integersN ≥ 3 and n ≥ 1, and set the positive integer dN,n :=
(N − 2)(n + 1) + 2. We work over the algebraically closed field k. We use the
grading of homology for dg algebras and dg modules. All triangulated categories
are considered to be k-linear, and assume that the K-groups of triangulated
categories are free of finite rank.
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2 Background

In this section, we prepare basic definitions we shall use through this paper:
bonded t-structure, tilting, stability condition, and spherical twist.

2.1 Bounded t-structure

Let D be a triangulated category.

Definition 2.1 ([BBD82]) A t-structure on D is a full subcategory F ⊂ D
satisfying the following conditions:

(a) F [1] ⊂ F ,

(b) define F⊥ := {G ∈ D|HomD(F,G) = 0 for all F ∈ F }, then for every
object E ∈ D, there is an exact triangle F → E → G → F [1] in D with
F ∈ F and G ∈ F⊥.

In addition, a t-structure F ⊂ D is said to be bounded if F satisfies the condition:

D =
∪

i,j∈Z

F⊥[i] ∩ F [j].

For a t-structure P ∈ D, we define its heart H by

H := P⊥[1] ∩ P.

It was proved in [BBD82] that the heart H becomes an abelian category.
The heart of a bounded t-structure is characterized the following properties.

Lemma 2.2 ([Bri07], Lemma 3.2) A full additive subcategory H ⊂ D be-
comes the heart of some bounded t-structure F ⊂ D if H satisfies the following
conditions (1) and (2).

(1) For any integers k1 > k2 and any objects H1,H2 ∈ H, HomD(H1(k1),H2(k2)) =
0.

(2) For any non-zero object E ∈ D, there is a sequence of integers

k1 > k2 > · · · > kn

and exact triangles

0 = E0
// E1

~~||
||

||
||

// E2

~~||
||

||
||

// . . . // Em−1
// Em

}}zz
zz

zz
zz

H1

``B
B

B
B

H2

``B
B

B
B

Hm

ccF
F

F
F

= E

with Hi ∈ H[ki] for i = 1, . . . , n.
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Lemma 2.2 defines the k-th homology of E with respect to the heart H by

Hk(E) :=

{
Hi if k = ki

0 otherwise.

Remark 2.3 By Lemma 2.2, for the heart H ⊂ D of a bounded t-structure,
there is a canonical isomorphism of K-groups

K(H) ∼= K(D).

In the following, we only treat bounded t-structures and their hearts. The
word heart always refers to the heart of a bounded t-structure.

Let H1 and H2 be the hearts of bounded t-structures P1 and P2. We write
by

H1 ≤ H2

if they satisfy the condition P2 ⊂ P1.

2.2 Tilting

Definition 2.4 Let A be an abelian category. A pair of full subcategories (F , T )
of A is called torsion pair if they satisfy the following conditions (1) and (2).

(1) For any T ∈ T and F ∈ F , Hom(T, F ) = 0.

(2) For any E ∈ A, there is a short exact sequence

0 → T → E → F → 0

with T ∈ T and F ∈ F .

T is called a torsion part and F is called a torsion-free part.

Proposition 2.5 ([HRS96]) Let H be a heart of D, and (F , T ) be a torsion
pair of H. Then, the full subcategories

H♯ := {E ∈ D |H1(E) ∈ F , H0(E) ∈ T , Hi(E) = 0 for i ̸= 0, 1 }
H♭ := {E ∈ D |H0(E) ∈ F , H−1(E) ∈ T , Hi(E) = 0 for i ̸= −1, 0 }.

are the hearts of bounded t-structures.

The heart H♯ is called the forward tilt of H with respect to the torsion pair
(F , T ), and H♭ the backward tilt of H.

For an abelian category A, denote by SimA the set of simple objects in A.

Definition 2.6 An abelian category A is called finite if the set SimA is a finite
set and they generate A by means of extensions.

14



Note that if an abelian categoryA is finite with simple objects SimA = {S1, . . . , Sn},
then we have

K(A) ∼=
n⊕

i=1

Z[Si]

where [Si]’s are K-group classes of the set of simple objects.
Let H be a finite heart. For a simple object S ∈ H, Let ⟨S⟩ ⊂ H be the

smallest full subcategory containing S and closed under the extensions.
We introduce subcategories ⟨S⟩⊥ and ⊥ ⟨S⟩ by

⟨S⟩⊥ := {E ∈ H | Hom(S,E) = 0 }
⊥ ⟨S⟩ := {E ∈ H | Hom(E,S) = 0 }.

Then, they define torsion pairs (⟨S⟩ ,⊥ ⟨S⟩) and (⟨S⟩⊥ , ⟨S⟩). The subcategory
⟨S⟩ is the torsion-free part in the former and the torsion part in the latter.

Definition 2.7 Write by H♯
S the forward tilt with respect to (⟨S⟩ ,⊥ ⟨S⟩), and

by H♭
S the backward tilt with respect to (⟨S⟩⊥ , ⟨S⟩). We call H♯

S the forward
simple tilt by S, and H♭

S the backward simple tilt by S.

Note that by simple tilts, we have S[1] ∈ H♯
S and S[−1] ∈ H♭

S .
We say an object M ∈ H is rigid if Ext1(M,M) = 0.

Proposition 2.8 ([KQ], Proposition 5.2) Let D be a triangulated category
and H ⊂ D be a finite heart. For any rigid simple object S ∈ H, the set of
simple objects in the simple tilted heart H♯

S or H♭
S is

SimH♯
S = {S[1]} ∪ {ψ♯

S(X) |X ∈ SimH, X ̸= S }
SimH♭

S = {S[−1]} ∪ {ψ♭
S(X) |X ∈ SimH, X ̸= S }

where

ψ♯
S(X) = Cone(X → S[1]⊗Hom1(X,S)∗)[−1]

ψ♭
S(X) = Cone(S[−1]⊗Hom1(S,X) → X).

Thus, H♯
S and H♭

S are also finite.

2.3 The spaces of stability conditions

In this section, we introduce the notion of a stability condition on a triangulated
category following Bridgeland in [Bri07], and collect some basic results for the
space of stability conditions from [Bri07, Bri08, BS].

Definition 2.9 Let D be a triangulated category and K(D) be its K-group.
A stability condition σ = (Z,P) on D consists of a group homomorphism
Z : K(D) → C called central charge and a family of full additive subcategories
P(ϕ) ⊂ D for ϕ ∈ R satisfying the following axioms:
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(a) if 0 ̸= E ∈ P(ϕ), then Z(E) = m(E) exp(iπϕ) for some m(E) ∈ R>0,

(b) for all ϕ ∈ R, P(ϕ+ 1) = P(ϕ)[1],

(c) if ϕ1 > ϕ2 and Ai ∈ P(ϕi) (i = 1, 2), then HomD(A1, A2) = 0,

(d) for 0 ̸= E ∈ D, there is a finite sequence of real numbers

ϕ1 > ϕ2 > · · · > ϕm

and a collection of exact triangles

0 = E0
// E1

~~}}
}}

}}
}}

// E2

~~}}
}}

}}
}}

// . . . // Em−1
// Em

}}{{
{{

{{
{{

A1

``A
A

A
A

A2

``A
A

A
A

Am

ccF
F

F
F

= E

with Ai ∈ P(ϕi) for all i.

For a nonzero object E ∈ D, we define

ϕ+σ (E) := ϕ1, ϕ−σ (E) := ϕm

where ϕ1 and ϕn are real numbers determined by the axiom (d).
The mass of a nonzero object E ∈ D is defined by

mσ(E) :=
m∑
i=1

|Z(Ai)|

where Ai’s are extension factors determined by the axiom (d).
It follows from the definition that the subcategories P(ϕ) ⊂ D are abelian

categories (see Lemma 5.2. in [Bri07]). The nonzero objects of P(ϕ) are called
semistable of phase ϕ in σ, and simple objects in P(ϕ) are called stable of phase
ϕ in σ.

For a stability condition σ = (Z,P), we introduce the set of semistable
classes Css(σ) ⊂ K(D) by

Css(σ) := {α ∈ K(D) | there exists a semistable object E ∈ D in σ such that [E] = α }.

Similarly the set of stable classes Cs(σ) can be defined.
We always assume our stability conditions satisfy the additional assumption

called the support property in [KS].

Definition 2.10 Let ∥ · ∥ be some norm on K(D) ⊗ R. A stability condition
σ = (Z,P) has a support property if there is a some constant C > 0 such that

C · |Z(α)| > ∥α∥

for all α ∈ Css(σ).
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Remark 2.11 For a ray R = R>0α ⊂ K(D)⊗R (where α ∈ K(D)\{0}), define
a function f by

f(R) :=
|Z(α)|
∥α∥

.

(This doesn’t depend on the choice of α, only depend on the ray.)
Let R>0Css(σ) := {R>0α |α ∈ Css(σ) } be the set of rays generated by

semistable classes of σ. Then, the support property of σ = (Z,P) is equiva-
lent to that there is no sequence of rays Ri ⊂ R>0Css(σ) (i = 1, 2, . . . ) such
that

lim
i→∞

f(Ri) = 0.

Let Stab(D) be the set of all stability conditions on D with the support
property. It is shown in [Bri07] that there is a natural topology on Stab(D)
defined by the metric:

d(σ1, σ2) := sup
0̸=E∈D

{
|ϕ−σ2

(E)− ϕ−σ1
(E)| , |ϕ+σ2

(E)− ϕ+σ1
(E)| ,

∣∣∣∣log mσ2(E)

mσ1(E)

∣∣∣∣} ∈ [0,∞]

for σ1, σ2 ∈ Stab(D).
Bridgeland showed the following crucial theorem.

Theorem 2.12 ([Bri07], Theorem 1.2) The space Stab(D) has the struc-
ture of a complex manifold and the projection map of central charges

π : Stab(D) −→ HomZ(K(D),C)

defined by (Z,P) 7→ Z is a local isomorphism onto an open subset of HomZ(K(D),C).

The next lemma implies local injectivity of the above projection map π.

Lemma 2.13 ([Bri07], Lemma 6.4) Let σ = (Z,P) and σ′ = (Z,P ′) be sta-
bility conditions on D with the same central charge Z. Then, d(σ, σ′) < 1 implies
σ = σ′.

The following lemma shall be used in the proof of Proposition 5.4 and Propo-
sition 5.6.

Lemma 2.14 Fix a class α ∈ K(D) and let U ⊂ Stab(D) be an open subset.
If every stability condition σ ∈ U satisfies α ∈ Css(σ), then a stability condition
on the boundary σ′ ∈ ∂U also satisfies α ∈ Css(σ′).

Proof. This follows from the result for walls and chambers in [Bri08, Section
9] or [BS, Section 7.6].

�
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2.4 Central charges on finite abelian categories

In this section, we consider central charges on an abelian category, and give the
another description of a stability condition, which consists of a pair of a heart
and a central charge on it with the Harder-Narasimhan property. Further, we
compute central charges on a finite abelian category.

Definition 2.15 Let A be an abelian category and let K(A) be its K-group. A
central charge on A is a group homomorphism Z : K(A) → C such that for any
nonzero object 0 ̸= E ∈ A, the complex number Z(E) lies in semi-closed upper
half-plane H = { reiπϕ ∈ C | r ∈ R>0, ϕ ∈ (0, 1] }.

The real number

ϕ(E) :=
1

π
argZ(E) ∈ (0, 1]

for 0 ̸= E ∈ A is called the phase of E.
A nonzero object 0 ̸= E ∈ A is said to be Z-(semi)stable if for any nonzero

proper subobject 0 ̸= A ( E satisfies ϕ(A) < (≤)ϕ(E).
For a central charge Z : K(A) → C, the set of semistable classes can be

defined similar to the previous section.
A Harder-Narasimhan filtration of an object 0 ̸= E ∈ A is a finite chain of

subobjects
0 = E0 ⊂ E1 ⊂ · · · ⊂ Em

such that all extension factors Fi = Ei/Ei−1 (i = 1, . . . ,m) are semistable with

ϕ(F1) > · · · > ϕ(Fm).

The central charge Z is said to have the Harder-Narasimhan property (HN-
property) if every nonzero object of A has a Harder-Narasimhan filtration.

We write Stab(A) to be the set of central charges on A with the HN-property
and the support property.

In this paper, we shall treat central charges only on finite abelian categories.
Let A be a finite abelian category with SimA = {S1, . . . , Sn}. Recall from

Section 2.2 that
K(A) ∼= ⊕n

i=1 Z[Si].

Any point (z1, . . . , zn) ∈ Hn defines a central charge Z : K(A) → C by
Z(Si) := zi. Conversely, for a given central charge Z : K(A) → C, the complex
number Z(Si) lies in H for all i. Hence Z determines a point (z1, . . . , zn) ∈ Hn

by zi := Z(Si). As a result, the set of central charges on A is isomorphic to the
space Hn.

Lemma 2.16 Let Z : K(A) → C be a central charge on a finite abelian category
A. Then Z has the HN-property.

Proof. This follows from Proposition 2.4. in [Bri07]. �
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By this lemma, we have the isomorphism (Lemma 5.2 in [Bri09a])

Stab(A) ∼= Hn.

Now, we consider the relationship between stability conditions on a trian-
gulated category and stability conditions on an abelian category derived from a
t-structure on a triangulated category.

In [Bri07], Bridgeland gave the following alternative description of a stability
condition on D in terms of a bounded t-structure and a stability condition on a
heart.

Proposition 2.17 ([Bri07], Proposition 5.3) Let D be a triangulated cat-
egory. To give a stability condition on D is equivalent to giving a bounded
structure on D and a central charge with the HN-property on its heart.

By the above proposition, we have a natural inclusion

Stab(H) ⊂ Stab(D)

where H is a heart of a triangulated category D.

2.5 Simple tilt and gluing

A heart H ⊂ D is called rigid if every simple object S in H is rigid (Ext1(S, S) =
0).

Let H ⊂ D be a finite rigid heart with simple objects {S1, . . . , Sn}. Recall
from the previous section that there is a natural inclusion

Stab(H) ⊂ Stab(D).

From a heart H, we can construct the another hearts H♯
Si
(or H♭

Si
) by simple

tilt as in Section 2.2. The relationship between Stab(H) and Stab(H♯
Si
)(or

Stab(H♭
Si
)) in Stab(D) is given by the following lemma.

Lemma 2.18 ([BS], Lemma 7.9) Let σ = (Z,P) ∈ Stab(D) lies on a unique
codimension one boundary of the region Stab(H) so that ImZ(Si) = 0 for a
unique simple object Si. Then, there is a neighborhood σ ∈ U ⊂ Stab(D) such
that one of the following holds

(1) Z(Si) ∈ R<0 and U ⊂ Stab(H) ∪ Stab(H♯
Si
),

(2) Z(Si) ∈ R>0 and U ⊂ Stab(H) ∪ Stab(H♭
Si
).

2.6 Group actions and spherical twists

For the space Stab(D), we introduce two commuting group actions.
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First, consider the action of Aut(D) on Stab(D). Let Φ ∈ Aut(D) be an
autoequivalence of D and (Z,P) ∈ Stab(D) be a stability condition on D. Then,
the element Φ · (Z,P) = (Z ′,P ′) is defined by

Z ′(E) := Z(Φ−1(E)), P ′(ϕ) := Φ(P(ϕ)),

where E ∈ D and ϕ ∈ R.
Second, define the C-action on Stab(D). For t ∈ C and (Z,P) ∈ Stab(D),

the element t · (Z,P) = (Z ′,P ′) is defined by

Z ′(E) := e−iπt · Z(E), P ′(ϕ) := P(ϕ+Re (t))

where E ∈ D and ϕ ∈ R. Clearly, this action is free.
Note that by the definition, these two actions are isometries with respect to

the distance d on the space Stab(D).

Definition 2.19 A triangulated category D is called Calabi-Yau N (CYN ) cat-
egory if for any objects E,F ∈ D there is a natural isomorphism

νE,F : HomD(E,F )
∼−→ HomD(F,E[N ])∗

where E[N ] is N th shift of an object E and ∗ means the dual vector space. In
other words, the N -th shift functor [N ] is a Serre functor.

For E,F ∈ D, we write Homi
D(E,F ) := HomD(E,F [i]).

In the following, we assume that a triangulated category D is algebraic in
the sense of Keller (see Section 3.6 in [Kel06]).

We define some autoequivalences of D which play important role in this
paper, called spherical twists, introduced by Seidel and Thomas in [ST01].

An object S ∈ D is called N -spherical if

Homi
D(S, S) =

{
k if i = 0, N

0 otherwise.

Proposition 2.20 ([ST01], Proposition 2.10) For a spherical object S ∈
D, there is an autoequivalence ΦS ∈ Aut(D) such that there is an exact tri-
angle

Hom•
D(S,E)⊗ S −→ E −→ ΦS(E)

for any object E ∈ D. The inverse functor Φ−1
S ∈ Aut(D) is given by

Φ−1
S (E) −→ E −→ S ⊗Hom•

D(E,S)
∗.

The Euler form χ : K(D)×K(D) → Z is defined by

χ(E,F ) :=
∑
i∈Z

(−1)i dimk Homi
D(E,F ).

By the definition, the Euler form χ on a CYN triangulated category D is
symmetric if N is even, and skew-symmetric if N is odd.
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Part I

Stability condition for
preprojective algebras

3 Root systems of symmetric Kac-Moody Lie
algebras

3.1 Root lattices

In this section, we recall basic notions and results for a root system associated to
a generalized Cartan matrix and describe the Weyl group action on it. Further,
the set of real roots and imaginary roots are given. We refer to Kac’s book and
paper [Kac90, Kac78] for more details.

A matrix A = (aij)
n
i,j=1 is called a generalized Cartan matrix (GCM for

short) if

(C1) aii = 2 for i = 1, . . . , n,

(C2) aij ∈ Z≤0 for i ̸= j,

(C3) aij = 0 ⇒ aji = 0.

In this paper, we treat only symmetric GCMs, so the above condition (C3)
always holds.

A matrix A is decomposable if A is a block diagonal form

A =

(
A1 0
0 A2

)
up to reordering of indices and indecomposable if otherwise.

We associate with A a graph S(A), called Dynkin diagram, as follows. Ver-
tices of the graph S(A) are given by indices {1, . . . , n}, and distinct two vertices
i ̸= j are connected by |aij | edges. It is clear that A is indecomposable if and
only if a graph S(A) is connected.

For a real column vector u = (u1, u2, . . . )
T , the notation u > 0 means

ui > 0 for all ui and u ≥ 0 means ui ≥ 0 for all ui. The next result gives the
classification of indecomposable GCMs.

Theorem 3.1 ([Kac90], Theorem 4.3) Let A be a indecomposable GCM. Then
one and only one of the following three possibilities holds:

(Fin) detA ̸= 0; there exists u > 0 such that Au > 0;Au ≥ 0 ⇒ u > 0 or u = 0,

(Aff) rankA = n− 1; there exists u > 0 such that Au = 0;Au = 0 ⇒ u = 0,

(Ind) there exists u > 0 such that Au < 0;u ≥ 0 ⇒ u = 0.
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Referring to cases (Fin), (Aff), or (Ind), we shall say that A is of finite, affine,
or indefinite type, respectively.

Remark 3.2 An indecomposable symmetric GCM A is finite type if and only
if the Dynkin diagram S(A) is of ADE type, and affine type if and only if S(A)
is of ÂD̂Ê type.

The root lattice associated to A is a free abelian group L := ⊕n
i=1Zαi gen-

erated by n free generators Π := {α1, . . . , αn} called simple roots. Since A
is symmetric, we can define symmetric bilinear form ( , ) : L × L → Z by
(αi, αj) := aij .

Define simple reflections ri : L→ L (i = 1, . . . , n) by

ri(λ) := λ− (λ, αi)αi, for λ ∈ L.

The group generated by these simple reflections W := ⟨r1, . . . , rn⟩ is called the
Weyl group and satisfies the following relations (see Ch. 3 in [Kac90]):

r2i = 1

and for i ̸= j,

rirj = rjri if aij = 0

rirjri = rjrirj if aij = −1.

Note that the symmetric bilinear form ( , ) is invariant under the W -action;
(w(α), w(β)) = (α, β) for any α, β ∈ L and w ∈W .

For α =
∑

i kiαi, the support of α is defined to be the full subgraph
supp(α) ⊂ S(A) with vertices { i | ki ̸= 0 } ⊂ { 1, . . . , n }.

Let L+ :=
∑n

i=1 Z≥0αi and L− := −(L+) =
∑n

i=1 Z≤0αi. We define the
set of (positive or negative) real roots and imaginary roots by using above the
W -action on L.

Definition 3.3 (1) The set of real roots ∆re is defined to be W -orbits of sim-
ple roots Π;

∆re :=W (Π) = {w(αi) |w ∈W, i = 1, . . . , n}.

The set of positive real roots ∆re
+ (negative real roots ∆re

−) is given by

∆re
+ := ∆re ∩ L+ (∆re

− := ∆re ∩ L− ).

(2) Define the fundamental set of positive imaginary roots K by

K := {α ∈ L+\{0} | supp(α) is connected in S(A), (α, αi) ≤ 0 for i = 1, . . . , n }.

The set of positive imaginary roots ∆im
+ is defined to be W -orbits of K;

∆im
+ :=W (K) = {w(α) |w ∈W,α ∈ K}.

The set of negative imaginary roots is given by ∆im
− := −∆im

+ and the set
of all imaginary roots is given by ∆im := ∆im

+ ∪∆im
− .
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Remark 3.4 (1) For an indecomposable GCM A, by Theorem 3.1 the fun-
damental set K is non-empty if and only if A is affine or indefinite type.
Hence the set of imaginary roots ∆im is also non-empty if and only if A
is affine or indefinite type.

(2) Since K is closed under the multiplication of positive integers Z≥1 and the
W -action commutes with this multiplication, ∆im

+ is also closed under the
multiplication of Z≥1.

Let J ⊂ {1, . . . , n} be a subset of indices of A and consider the submatrix
AJ := (aij)i,j∈J , which is not necessarily indecomposable. Then we can define
a root sublattice LJ := ⊕j∈JZαj ⊂ L and a Weyl subgroup WJ :=< rj | j ∈
J >⊂W associated to AJ .

Lemma 3.5 Let J ⊂ {1, . . . , n} be a subset of indices and ∆J ⊂ ∆ be the set
of roots associated to AJ . Then the following inclusion holds:

∆J ⊂ LJ ∩∆.

Proof. It immediately follows from the definition of roots. �
Note that the other inclusion also holds, but we don’t use in this paper.

3.2 Imaginary cones and the regular subsets Xreg

Let A be a GCM and L = ⊕n
i=1Zαi be a root lattice associated to A. Through

this paper, we fix the following notations:

V ∗
R := L⊗Z R = ⊕n

i=1Rαi

V ∗ := L⊗Z C = ⊕n
i=1Cαi = V ∗

R ⊕ iV ∗
R

VR := HomZ(L,R) = ⊕n
i=1RZi

V := HomZ(L,C) = ⊕n
i=1CZi = VR ⊕ iVR

where {Z1, . . . , Zn } is the dual basis of {α1, . . . , αn } with canonical pairings⟨
Zi, αj

⟩
= δij for i, j = 1, . . . , n. We fix real forms of complex vector spaces V

and V ∗ as in above notations. The space of C-linear maps V will be identified
with the space of central charges in section 4.2.

The action of the Weyl group W on L is naturally extended to the action
on V ∗ (or V ∗

R ) and the contragradient action of W on V (or VR) is given by
⟨w(Z), λ⟩ :=

⟨
Z,w−1(λ)

⟩
for Z ∈ V and λ ∈ V ∗.

We fix the norms for these vector spaces by the following:

for λ =
∑
i

λiαi ∈ V ∗ ( orV ∗
R ), ∥λ∥ :=

√∑
i

|λi|2

for Z =
∑
i

ziZ
i ∈ V ( orVR ), ∥Z∥ :=

√∑
i

|zi|2.
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These norms give the natural topology as finite dimensional vector spaces.
Next we introduce the notion of an imaginary cone which plays central role

in this paper.

Definition 3.6 An imaginary cone I is defined by the closure of the convex
hull of the set ∆im

+ ∪ {0} in V ∗
R and an imaginary cone without zero is written

by I0 := I\{0} (we also call I0 an imaginary cone).

Note that by Remark 3.4, the imaginary cone I0 associated to an indecom-
posable GCM A is non-empty if and only if A is affine or indefinite type.

Lemma 3.7 Assume that the imaginary cone I0 is non-empty. Then, I is a
convex cone supported on

∑n
i=1 R≥0αi.

Proof. The convexity of I is clear by the definition of I. Since ∆im
+ ∪ {0} is

closed under the multiplication of Z≥0 (see Remark 3.4), I is closed under the
multiplication of R≥0. Futher ∆

im
+ ∪{0} is supported on

∑n
i=1 Z≥0αi, therefore

I is supported on
∑n

i=1 R≥0αi. �
The next result from [Kac78] plays important role in the proof of main

theorem in section 6.

Proposition 3.8 The set of rays of imaginary roots {R>0α |α ∈ ∆im
+ } is dense

in the imaginary cone I0.

For the compatibility of the notations in later sections, we write the canonical
pairing of Z ∈ V and λ ∈ V ∗ by Z(λ) := ⟨Z, λ⟩.

The open subset Xreg defined as the following corresponds to the space of
central charges treated in this paper.

Definition 3.9 Let λ ∈ V ∗ and Hλ := {Z ∈ V |Z(λ) = 0 } denotes a complex
orthogonal hyperplane with respect to λ. A subset X ⊂ V is defined by

X := V \
∪
λ∈I0

Hλ

and a regular subset Xreg ⊂ X ⊂ V is defined by

Xreg := X\
∪

α∈∆re
+

Hα.

Since the W -action on V ∗ preserves real roots ∆re and the imaginary cone I0,
the W -action on the subsets X and Xreg is well-defined.

The following lemma is used to prove that Xreg is an open subset of V .

Lemma 3.10 ([Kac90], Lemma 5.8) In V ∗\{0}, the limit rays for the set of
rays {R>0α |α ∈ ∆re

+ } lie in I0.
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Define an imaginary convex disk by

D := I ∩ { k1α1 + · · ·+ knαn ∈ V ∗
R | k1 + · · ·+ kn = 1 }.

Lemma 3.7 implies that D is a compact convex subset of V ∗
R .

Note that X can be written by

X := V \
∪
λ∈D

Hλ

by using D.

Lemma 3.11 The subsets X ⊂ V and Xreg ⊂ V are open in V .

Proof. The result that
∪

λ∈DHλ is a closed subset of V follows from the
compactness of D.

Let Z ∈ Xreg and B be a small open ball centered at Z. By Lemma 3.10, ac-
cumulated points of hyperplanes {Hα}α∈∆re

+
are contained in

∪
λ∈DHλ. Hence

if we take B to be sufficiently small, then B does not intersect any hyperplanes
{Hα}α∈∆re

+
, and this implies that Xreg is open. �

Lemma 3.12 Assume that I0 ⊂ V ∗ is non-empty. Let Z ∈ X and consider the
linear map Z : V ∗ → C. Then the image of the imaginary cone Z(I0) ⊂ C takes
the following form:

Z(I0) = { reiπϕ | r > 0 and ϕ1 ≤ ϕ ≤ ϕ2 }

where ϕ1, ϕ2 ∈ R (determined up to modulo 2Z) with 0 ≤ ϕ2 − ϕ1 < 1.

Proof. Let D be an imaginary convex disk defined above. Since Z : V ∗ → C is
R-linear and D is compact convex, the image Z(D) ⊂ C is also compact convex
and Z(I0) = R>0Z(D). The assumption Z ∈ X means 0 /∈ Z(I0). Thus Z(D)
is a compact convex subset of C\{0}.

First, assume that Z(D) ∩ R>0 = ϕ and consider the principal argument
Arg z ∈ (0, 2π) for z ∈ C\R>0. Then, by the compactness of Z(D), we can
define the maximum and the minimum argument of Z(D) by

ϕ1 := min { (1/π)Arg z ∈ (0, 2) | z ∈ Z(D)}
ϕ2 := max { (1/π)Arg z ∈ (0, 2) | z ∈ Z(D)} .

Clearly 0 ≤ ϕ2 − ϕ1, and ϕ2 − ϕ1 < 1 easily follows from the convexity of Z(D)
and 0 /∈ Z(D).

If the other case that Z(D)∩R>0 ̸= ϕ, the convexity of Z(D) and 0 /∈ Z(D)
imply that Z(D) ∩R<0 = ϕ. Therefore we can do the similar argument for the
principal argument Arg z ∈ (−π, π) for z ∈ C\R<0. �

By using Lemma 3.12, for Z ∈ X we introduce the phase of the imaginary
cone ϕI(Z), up to modulo 2Z, by

ϕI(Z) :=
ϕ2 + ϕ1

2
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where ϕ1 and ϕ2 are phases determined in Lemma 3.12.
In the case I0 is non-empty, define a normalized regular subset XN

reg by

XN
reg := {Z ∈ Xreg |ϕI(Z) = 1/2 }.

Normalizing ϕI(Z) to 1/2 by the action of S1 := {z ∈ C | |z| = 1} on Xreg,
we have

Xreg
∼= S1 ×XN

reg.

Note that theW -action on XN
reg is also well-defined becase the S1-action and

the W -action commute.

3.3 The Weyl group action on Xreg

In order to describe the regular subset Xreg in terms of the W and C∗ actions
on V , we recall some basic properties of Tits cones.

Throughout this section, we assume that a GCM A is indecomposable.
Consider the restriction of X ⊂ V to the real subspace VR ⊂ V ; XR :=

X ∩ VR. If A is finite type, then I = ϕ, therefore X = V and XR = VR. If A is
affine or indefinite type, then XR decomposes to two connected components

X+
R = {ZR ∈ XR |ZR(λ) > 0 for all λ ∈ I0}

X−
R = {ZR ∈ XR |ZR(λ) < 0 for all λ ∈ I0}.

To describe these sets in terms of the W -action on VR, we introduce a notion of
the Tits cone as follows.

Definition 3.13 ([Kac90], Section 3.12) Define a subset of VR, called Weyl
chamber, by CR := {ZR ∈ VR |ZR(αi) > 0 for i = 1, . . . , n} ∼= Rn

>0 and let
CR = {ZR ∈ VR |ZR(αi) ≥ 0 for i = 1, . . . , n} ∼= Rn

≥0 be a closure of CR in VR.
The Tits cone TR is defined by

TR :=
∪

w∈W

w(CR).

Lemma 3.14 ([Kac90], Section 5.8) The following equality holds:

TR =

{
XR if A is finite type

X+
R ∪ {0} if A is affine or indefinite type.

From this result and the properties of X+
R together, it turns out that the

Tits cone is a convex cone.
Let us introduce the regular subset of TR by

TR,reg := TR\
∪

α∈∆re
+

Hα.
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It is easy to see that TR,reg is given by

TR,reg =
∪

w∈W

w(CR).

It is known that the closure of the Weyl chamber CR is a fundamental domain
of the action of the Weyl group W on TR, and W acts freely on TR,reg.

The next lemma shall be used in the proof of Proposition 3.16.

Lemma 3.15 Assume that a GCM A is finite type. Then for any Z ∈ TR,reg,
there is an unique element w ∈ W such that w · Z satisfies (w · Z)(αi) < 0 for
all i = 1, . . . , n.

Proof. In the situation that A is finite type,

TR,reg = VR\
∪

α∈∆re
+

Hα.

Therefore the chamber −CR = {ZR ∈ VR |ZR(αi) < 0 for i = 1, . . . , n} is
contained in TR,reg, so the result follows. �

In the rest of this section, we assume that I0 is non-empty, namely a GCM
A is affine or indefinite type. Let H := { z ∈ C | Im z > 0 } be an upper half
plane and introduce the semi-closed upper half plane by H := H ∪ R<0. H is
also written by

H = { reiπϕ ∈ C | r > 0, ϕ ∈ (0, 1] }.

Define a normalized complexified Weyl chamber by CN := {Z ∈ XN
reg | Z(αi) ∈

H for i = 1, . . . , n }. The following proposition is main result of this section.

Proposition 3.16 For any Z ∈ XN
reg, there is an element w ∈ W such that

w · Z lies in CN ⊂ XN
reg.

Proof. Let Z ∈ Xreg. Using the decomposition V = VR ⊕ iVR, we write
Z = ZR + iZI where ZR, ZI ∈ VR. Since ϕI(Z) = 1/2, the image Z(I0) is
contained in H and this implies that ZI(λ) > 0 for all λ ∈ I0. Hence we have
ZI ∈ X+

R = TR\{0}.
By Lemma 3.14, there is some w′ ∈W such that w′ · ZI ∈ CR ∼= Rn

≥0.

Hence Z ′ := w′ · Z = w′ · ZR + iw′ · ZI lies in Hn ∼= Rn + iRn
≥0 where

H = H ∪ R.
Depending on Z ′ ∈ Hn

, we define a subset of indices J ⊂ {1, . . . , n} by

J := { j |Z ′(αj) ∈ R }.

As in Section 2.1 we consider the submatrix AJ and the associated subgraph
S(AJ) ⊂ S(A). Then J is divided as J = J1∪· · · Jl corresponding to a decompo-
sition of the subgraph S(AJ) into the connected components S(AJ1), . . . , S(AJl

),
therefore the submatrices AJ1 , . . . , AJl

are all indecomposable.
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We can say that all indecomposable GCMs AJ1
, . . . , AJl

are finite type by
the following reason. If AJm (m = 1, . . . , l) is affine or indefinite type, the image
of the corresponding imaginary subcone IJm

0 ⊂ I0 by Z ′ is also contained in H.
But by the definition of J , the image of all elements in LJ ⊗ R by Z ′ lies in
R, hence the image of IJm

0 ⊂ LJ ⊗ R is also contained in R and this gives the
contradiction.

Consider the restriction of the linear map Z ′ : L → C to the root sublattice
LJm ⊂ L corresponding to AJm :

Z ′|LJm
: LJm

−→ C.

Since Jm ⊂ J , for any αj (j ∈ Jm) we have Z ′(αj) ∈ R, therefore we can

regard Z ′|LJm
as an element of the regular subset of the Tits subcone T Jm

R,reg
corresponding to AJm . Then we can take an element wJm ∈ WJm to satisfy
(wJm · Z ′)(αj) ∈ R<0 for all j ∈ Jm as mentioned in Lemma 3.15.

Collect such elements wJ1 , wJ2 , . . . , wJl
for all m = 1, . . . , l and define w :=

wJ1 ·wJ2 · · ·wJl
·w′ (it isn’t depend on the order of wJ1 , wJ2 , . . . , wJl

since these
elements commute). Then w is the desired element. �

Corollary 3.17 Define C ⊂ Xreg by

C := {Z ∈ Xreg |Z(αi) ∈ H for i = 1, . . . , n } (∼= Hn ).

Then, for any Z ∈ Xreg, there are elements w ∈ W and k ∈ C∗ (both w and k
are not necessarily unique) such that w · k · Z lies in C.

Proof. Since Xreg
∼= S1 ×XN

reg, for Z ∈ Xreg we can take w ∈ W and k ∈ C∗

such that Z ′ := w · k · Z lies in CN ⊂ Hn and clearly we can rotate Z ′ ∈ Hn

to hold l · Z ′ ∈ Hn by some l ∈ C∗. Non-uniqueness of them comes from the
choice of ϕI(k ·Z) and there are many possibilities of w ∈W depending on this
choice. �

Proposition 3.18 The W -action on Xreg is free and properly discontinuous.
Further, the fundamental domain of this action is given by

S1 × CN ⊂ S1 ×XN
reg

∼= Xreg.

Proof. First we prove the freeness of the W -action on Xreg. By Corollary 3.17,
we only need to show it for Z ∈ Xreg with Z(αi) ∈ H for all i = 1, . . . , n. Such
an element Z satisfies that ZI ∈ CR ⊂ TR,reg where Z = ZR + iZI . Note that
since the W -action on TR,reg is free by Lemma 3.14, if w · ZI = ZI for w ∈ W
then w = 1. Hence if w · Z = Z for w ∈W then w = 1.

Similarly by Corollary 3.17, the properly discontinuity of the W -action is
also reduced to the following statement: for any Z ∈ Xreg with Z(αi) ∈ H
for all i = 1, . . . , n, there is an open neighborhood Z ∈ U ⊂ Xreg such that
U ∩ w(U) = ϕ for all 1 ̸= w ∈ W . This is easily shown from the identification
Hn ∼= Rn + CR (CR ∼= Rn

>0) and CR ∩ w(CR) = ϕ for 1 ̸= w ∈ W by Lemma
3.14.

The last statement immediately follows from Proposition 3.16. �
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3.4 Walls and chambers in XN
reg

Here, we introduce the walls in XN
reg. This structure shall be used in Section

4.3 to study the action of a braid group on the space of stability conditions.
Let CN be a closure of CN in XN

reg. For i = 1, . . . , n, introduce the walls

Wi,± ⊂ CN by

Wi,+ := {Z ∈ XN
reg |Z(αi) ∈ R>0, Z(αj) ∈ H for j ̸= i }

Wi,− := {Z ∈ XN
reg |Z(αi) ∈ R<0, Z(αj) ∈ H for j ̸= i }

Note that Wi,− ⊂ CN , but Wi,+ ∩ CN = ϕ. However ri(Wi,±) = Wi,∓ and
hence Wi,+ ⊂ ri(C

N ).
By using the W -action on XN

reg, the set of all walls is defined by

{w(Wi,±) |w ∈W, i = 1, . . . , n }.

They correspond to the walls of second kind in terms of [KS].

Lemma 3.19 For any Z ∈ Wi,±, there is a neighborhood Z ∈ U ⊂ XN
reg such

that
U ⊂ CN ∪ ri(CN ).

Proof. Since ri(C
N ∪ ri(CN )) = CN ∪ ri(CN ) and ri(Wi,±) = Wi,∓, we only

need to consider the case that Z ∈Wi,−.
Let Z ∈Wi,−. Take an open disk Di ⊂ C centered at Z(αi) ∈ R<0 satisfying

0 ̸∈ Di and divide it into two pieces

Di,+ := { z ∈ Di | z ∈ H }, Di,− := { z ∈ Di | z ∈ −H }.

Define a neighborhood of Z by U := XN
reg ∩D1 × · · · ×Dn where Dj (j ̸= i) is

an open disk centered at Z(αj) ∈ H taken sufficiently small to satisfy Dj ⊂ H.
Then, it is easy to check that divided pieces U± := XN

reg∩D1×· · ·×Di,±×· · ·×Dn

satisfy U+ ⊂ CN and U− ⊂ ri(C
N ). Hence U = U+ ∪U− is the desired one. �

3.5 The fundamental group of Xreg

In this section, we give a fundamental group of Xreg by using the result of the
van der Lek [vdL83]. This is described in terms of an Artin group associated to
a Coxter system of the Weyl group W derived from A ([BS72]).

Definition 3.20 ([BS72]) An Artin group GW associated to the Weyl group
W (derived from A) is defined to be the group generated by n generators σ1, . . . , σn
with the following relations: for i ̸= j,

σiσj = σjσi if aij = 0

σiσjσi = σjσiσj if aij = −1.
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Recall the decomposition Xreg
∼= S1 ×XN

reg in Section 3.2. The Weyl group
W acts trivially on the first factor S1, hence

Xreg/W ∼= S1 ×
(
XN

reg/W
)
.

Take a point ∗ in the interior of the fundamental domain S1 × CN of the W -
action (see Proposition 10.11) and [∗] be the base point of Xreg/W .

Theorem 3.21 ([vdL83], see also [Par]) Assume that a GCM A is affine or
indefinite type. Then, the fundamental group of Xreg/W is given by

π1(Xreg/W, [∗]) ∼= Z[γ]×GW .

The generator γ of the first factor Z[γ] is given by the S1-orbit of [∗]. The
generator σi of the second factor GW is given by the path connecting to ∗ and
ri(∗) passing the wall Wi,± in XN

reg just once, which is a loop in XN
reg/W .

Proof. Since
Xreg/W ∼= S1 ×

(
XN

reg/W
)
,

and π(S1) ∼= Z, we prove that

π1(X
N
reg/W ) ∼= GW .

Define a regular subset of the complexified Tits cone by

Treg := {Z ∈ Xreg | ImZ ∈ TR}.

The van der Lek’s result in [vdL83] implies that π1(Treg/W ) ∼= GW . Therefore
we show that XN

reg is homotopic to Treg.

For Z ∈ Xreg, ImZ ∈ TR\{0} = X+
R is equivalent to Z(I0) ⊂ H (see Section

2.3), hence we can write

Treg = {Z ∈ Xreg |Z(I0) ⊂ H } .

Construct a deformation retract ht : Treg → Treg by ht(Z) := Z · eiπt(1/2−ϕI(Z))

where 0 ≤ t ≤ 1. Then, it is easy to check h1(Treg) = XN
reg and h1 = id on

XN
reg ⊂ Treg, and as a result it gives a homotopy equivalence Treg ∼ XN

reg. �

4 Derived categories of preprojective algebras

4.1 Preprojective algebras of quivers

Let Q be a finite quiver without loops. We denote by Q0 its set of vertices
and Q1 its set of arrows. A opposite quiver Qop is obtained by reversing the
orientation of arrows of Q. For an arrow a : i→ j ∈ Q1, we denote the opposite
arrow by a∗ : j → i ∈ Qop.
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A double quiver Q is defined by adding all opposite arrows to Q, so Q1 =
Q1 ∪Qop

1 . For a quiver Q, define an adjacent matrix (qij) of Q by

qij := |{ arrows from i to j }|.

We associate with Q to a GCM AQ by

(AQ)ij := 2δij − (qij + qji).

For a connected quiver Q, we say that Q is finite, affine or indefinite type if
the corresponding GCM AQ is finite, affine or indefinite type respectively (see
Section 2.1).

Note that if we forget the directions of arrows in Q, then the underlying
graph of Q coincides to the graph S(AQ) defined in section 3.1.

Let us denote by CQ a path algebra of Q over k. We put a gradation on kQ
by using the length of paths.

Definition 4.1 The preprojective algebra Π(Q) associated to Q is defined by

Π(Q) := CQ/(ρ)

where (ρ) is an ideal of CQ generated by the element

ρ :=
∑
a∈Q1

(aa∗ − a∗a).

Since ρ is a homogeneous element in CQ, the preprojective algebra Π(Q) is also
a graded algebra by the length of paths.

Let AQ := mod-Π(Q) be an abelian category of finite dimensional nilpotent
right Π(Q)-modules.

Proposition 4.2 ([Kel08], Section 4) Let Db(AQ) be a bounded derived cat-
egory of AQ. If Q is not a finite type quiver, then Db(AQ) is a CY-2 triangulated
category.

For simplicity, we write DQ := Db(AQ).
Consider the set of simple modules SimAQ := {S1, . . . , Sn } corresponding

to the vertices Q0 = {1, . . . , n}. Then, the K-group K(AQ) is given by

K(AQ) ∼= ⊕n
i=1 Z [Si].

We also note that since DQ is bounded, we have K(DQ) ∼= K(AQ).
For the K-group classes of simple modules [Si], [Sj ] ∈ K(DQ), the Euler

form is computed by χ(Si, Sj) = aij where aij ’s are entries of the GCM AQ.
Hence we can identify (K(DQ), χ) with the root lattice (LQ, ( , )) associated

to AQ by the map [Si] 7→ αi as a Z-lattice with a symmetric bilinear form.
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4.2 Seidel-Thomas braid groups

By the CYN property of DQ, simple modules SimAQ = {S1, . . . , Sn} of AQ are
2-spherical in DQ. Hence they define spherical twists ΦS1 , . . . ,ΦSn ∈ Aut(DQ).
The Seidel-Thomas braid group Br(DQ) is defined to be the subgroup of Aut(DQ)
generated by these spherical twists:

Br(DQ) := ⟨Φ1, . . . ,Φn⟩ .

Proposition 4.3 ([ST01], Theorem 1.2) For the group Br(DQ), the follow-
ing relations hold :

ΦSiΦSj = ΦSjΦSi if χ(Si, Sj) = 0

ΦSiΦSjΦSi = ΦSjΦSiΦSj if χ(Si, Sj) = −1.

Corollary 4.4 There is a surjective group homomorphism

ρ : GW → Br(DQ)

defined by σi 7→ ΦSi .

Note that at the K-group level, a spherical twist ΦS induces a reflection
[ΦS ] : K(DQ) → K(DQ) given by

[ΦS ]([E]) = [E]− χ(S,E)[S]

and inverse is to be [Φ−1
S ] = [ΦS ]. In particular, under the identification of

(K(DQ), χ) ∼= (LQ, ( , )), Br(DQ) is reduced to the Weyl group W by the pro-
jection map ΦSi

7→ ri.
Recall from Section 3.5 that the fundamental group of Xreg/W is isomorphic

to Z[γ]×GW . We can extend the above group homomorphism ρ to the following
group homomorphism

ρ̃ : Z[γ]×GW −→ Z[2]× Br(DQ)

which sends the [γ] to the twice shift functor [2] ∈ Aut(DQ).

4.3 Group actions on Stab◦(DQ)

Consider the space of stability conditions Stab(DQ). For this space, there is a
unique distinguished connected component Stab◦(DQ) ⊂ Stab(DQ) which con-
tains Stab(AQ) consisting of stability conditions with the heartAQ. We consider
some group actions on Stab◦(DQ) and prove the lifted version of Proposition
3.16 and Corollary 3.17 via the restriction of the projection map

π : Stab◦(DQ) −→ V

to the regular subset Xreg ⊂ V . (Though, we see just π(Stab◦(DQ)) = Xreg

later in Proposition 5.6.)
At theK-group level, we can easily see the following remark about semistable

classes.
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Remark 4.5 By the action of an autoequivalence Φ ∈ Aut(D), the set of
semistable classes Css(σ) for σ ∈ Stab(D) changes to

Css(Φ · σ) = [Φ](Css(σ)).

On the other hand, the C-action on Stab(D) doesn’t change semistable classes
Css(σ).

In the rest of this section, we study the action of the Seidel-Thomas braid
group Br(DQ) on Stab◦(DQ). Recall the identification K(DQ) ∼= LQ and con-
sider the projection map

π : Stab◦(DQ) −→ V

where V = HomZ(LQ,C) as in Section 3.2.
Then, the connected subset Hn ∼= Stab(AQ) ⊂ Stab◦(DQ) is isomorphically

mapped onto the subset

Hn ∼= {Z ∈ Xreg | Z(αi) ∈ H for i = 1, . . . , n } ⊂ V.

Corresponding to the normalized regular subset XN
reg ⊂ V , we introduce the

space of normalized stability conditions Stab(DQ)
N by

Stab(DQ)
N := {σ ∈ Stab◦(DQ) |π(σ) ∈ XN

reg },

and normalized stability conditions on AQ by

Stab(AQ)
N := {σ ∈ Stab(AQ) |π(σ) ∈ XN

reg }.

Note that by the projection

π : Stab(DQ)
N → XN

reg,

Stab(AQ)
N is mapped isomorphically onto the chamber CN ⊂ XN

reg.

Define the walls W̃i,± ⊂ Stab(AQ)N ( i = 1, ,̇n ) which are lifts of walls

Wi,± ⊂ CN ( i = 1, ,̇n ) on Stab(AQ)
N by

W̃i,+ := {σ = (Z,P) ∈ Stab(AQ)N |Z(Si) ∈ R>0, Z(Sj) ∈ H for j ̸= i }

W̃i,− := {σ = (Z,P) ∈ Stab(AQ)N |Z(Si) ∈ R<0, Z(Sj) ∈ H for j ̸= i }

Note that as in Section 3.4, W̃i,− ⊂ Stab(AQ)
N but W̃i,+ ∩ Stab(AQ)

N = ϕ.

However, Φ−1
Si

(W̃i,−) = W̃i,+ and W̃i,+ ⊂ Φ−1
Si

(Stab(AQ)
N ).

Under these notations, the lifted version of Lemma 3.19 also holds.

Lemma 4.6 Let σ ∈ W̃i,± ⊂ Stab(AQ)N . Then, there is a neighborhood σ ∈
U ⊂ Stab(DQ)

N such that one of the following holds

(1) U ⊂ Stab(AQ)
N ∪ Φ−1

Si
(Stab(AQ)

N ) if σ ∈ W̃i,+,
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(2) U ⊂ Stab(AQ)
N ∪ ΦSi (Stab(AQ)

N ) if σ ∈ W̃i,−.

Proof. Note that in a CY2 category DQ, simple tilted categories (AQ)
♯
Si

and

(AQ)
♭
Si

correspond to Φ−1
Si

(AQ) and ΦSi(AQ). Hence it follows from Lemma
2.18. �

Lemma 4.7 The image of the projection map π : Stab◦(DQ) → V contains
Xreg.

Proof. Recall that by Corollary 3.17, the orbit of Hn ⊂ V under the action of
C∗ and W coincides to Xreg. Since the action of C and Br(DQ) reduced to the
action of C∗ and W on the base space V , the orbit of Stab(AQ) ⊂ Stab◦(DQ)
under the action of C and Br(DQ) mapped to the subset Xreg ⊂ V . �

Let Stab◦(DQ)
N be the connected component of Stab(DQ)

N which contains
Stab(AQ)

N . Now, we lift Proposition 3.16 and Corollary 3.17 via the restricted
projection map π : π−1(Xreg) → Xreg.

Proposition 4.8 For any σ ∈ Stab◦(DQ)
N , there is an autoequivalence Φ ∈

Br(DQ) such that Φ · σ lies in Stab(AQ)
N .

Proof. Let σ = (Z,P) ∈ Stab◦(DQ)
N and take a path γ : [0, 1] → Stab◦(DQ)

N

such that γ(0) ∈ Stab(AQ)
N and γ(1) = σ. Since π(σ) ∈ XN

reg lies in some

chamber w(CN ) (w ∈W ) and by Lemma 3.19, we can deform γ to satisfy that
for t ∈ (0, 1) the path π(γ) ⊂ XN

reg passes the walls {w(Wi,±) |w ∈ W, i =
1, . . . , n } only at t1, . . . , tm ∈ (0, 1) with 0 < t1 < · · · < tm < 1. (Perhaps,
the start point π(γ(0)) and end point π(γ(1)) may lie on the walls or higher
codimension walls.)

Since γ( [0, t1) ) ⊂ Stab(AQ)
N and π(γ(t1)) ∈ Wi,± for some i, the stability

γ(t1) ∈ Stab◦(DQ)
N lies in W̃i,±. If γ(t1) ∈ W̃i1,+, define Φ1 := ΦSi1

, and if

γ(t1) ∈ W̃i,−, define Φ1 := Φ−1
Si1

. Then, by Lemma 4.6, (Φ1 · γ)( (t1, t2) ) ⊂

Stab(AQ)
N and π(Φ1 · γ(t2)) ∈ Wi2,±. Hence Φ1 · γ(t2) ∈ W̃i2,±, and we can

define similarly Φ2 := ΦSi2
Φ1 or Φ2 := Φ−1

Si2
Φ1.

Repeating this process, we get an autoequivalence Φm ∈ Br(DQ) such that
(Φm · γ)( (tm, 1] ) ⊂ Stab(AQ)

N . �
Let π−1(Xreg)

◦ be the connected component of π−1(Xreg) which contains
Stab(AQ). (In Section 5.2, we show that π−1(Xreg) is connected and coincides
to Stab◦(DQ).)

Corollary 4.9 For σ ∈ π−1(Xreg)
◦ ⊂ Stab◦(DQ), there are elements Φ ∈

Br(DQ) and k ∈ C such that Φ · k · σ ∈ Stab(AQ)
N .

Proof. Let σ ∈ π−1(Xreg)
◦ and take a path γ : [0, 1] → π−1(Xreg)

◦ such that
γ(0) ∈ Stab(AQ) and γ(1) = σ. By the C-action on π−1(Xreg)

◦, we can nor-
malize γ to the path γ′ = k · γ which lies in Stab◦(DQ)

N where k : [0, 1] → C
and γ′(t) = k(t) · γ(t). Then, the result follows from Proposition 4.8. �
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5 Proof of main theorem in part I

5.1 Indivisible roots and semistable classes

Following in [Kin94], we introduce a King’s stability condition for the space of
nilpotent Π(Q)-modules with a fixed K-group class α ∈ K(AQ). This stability
condition is identified with the Bridgeland’s stability condition in Lemma 5.3.
As in previous sections, we identify K(AQ) with the corresponding root lattice
LQ.

Let α ∈ LQ and write the set of nilpotent modules (representations) of
Π(Q) with the class α by Rep(Π(Q), α)nil. A King’s stability condition on AQ

is defined to be a R-linear map λ : LQ → R satisfying λ(α) = 0. A module M ∈
Rep(Π(Q), α)nil is said to be λ-(semi)stable if any proper nonzero submodule
0 ̸= N (M satisfies λ(N) > (≥)0.

We write the subset consisting of λ-stable nilpotent modules with the class
α by

Rep(Π(Q), α)λ,nil ⊂ Rep(Π(Q), α)nil.

Following [CBVdB04], we introduce a notion of generic stability conditions.

Definition 5.1 A King’s stability condition λ : LQ → R is said to be generic
with respect to α if λ(β) ̸= 0 for all 0 < β < α.

A root α ∈ ∆ is called indivisible if there is no β ∈ ∆ satisfying α = mβ
for |m| > 1. The following result in [CBVdB04] was made to prove Kac’s
conjecture for indivisible roots in geometric way by using the moduli space of
stable modules of preprojective algebras. Here, we use this result to understand
the relationship between semistable classes of stability conditions and indivisible
roots.

Proposition 5.2 ([CBVdB04], Proposition 1.2) Let α ∈ ∆+ be a positive
indivisible root and suppose that λ is generic with respect to α. Then, the number
of irreducible components of Rep(Π(Q), α)λ,nil is equal to a root multiplicity
dim gα.

From this result it turns out that if λ is generic with respect to a positive
indivisible root α ∈ ∆+, then the moduli space of λ-stable nilpotent modules
with the class α is non-empty.

As stated in Section 5.2 of [BT09], we can identify King’s stability conditions
with Bridgeland’s stability conditions by the following way.

Lemma 5.3 Fix α ∈ LQ,+. Let Z ∈ Stab(AQ) be a central charge on AQ and
define a R-linear map λα : LQ → R by

λα(β) := −Im
Z(β)

Z(α)
.

for β ∈ LQ. A module M ∈ AQ with a class [M ] = α is λα-(semi)stable in the
sense of King if and only if M is Z-(semi)stable in the sense of Bridgeland as
in Section 4.2.
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The next proposition is main result of this section and to be used in the next
section.

Proposition 5.4 Let σ = (Z,P) ∈ π−1(Xreg)
◦. Then, the set of indivisible

roots ∆ is contained in the set of σ-semistable classes Css(σ) :

{α ∈ ∆ |α is indivisible} ⊂ Css(σ).

Proof. First note that the set of all indivisible roots are invariant by the action
of the Weyl group W . Since σ ∈ π−1(Xreg)

◦, by Remark 4.5 and Corollary
4.9, it is sufficient to prove that any stability condition σ = (Z,P) ∈ Stab(AQ)
contains all indivisible roots as semistable classes.

Fix a positive indivisible root α ∈ ∆+ and consider an dense open subset of
Stab(AQ) consisting of stability conditions which is generic with respect to α:

{Z ∈ Stab(AQ) |λα(β) ̸= 0 for all 0 < β < α}

where λα(β) = −Im (Z(β)/Z(α)), defined in Lemma 5.3.
By Proposition 5.2, any stability condition in this subset contains α as an

stable class. Since this subset is dense in Stab(AQ), by Lemmma 2.14 we can
say that any stability condition in Stab(AQ) contains α at least as a semistable
class. �

5.2 Projection of central charges

In this section, we determine the image of central charges via the projection
map

π : Stab◦(DQ) → V

by using Proposition 5.4 proved in the last section.

Lemma 5.5 Let ∂Xreg be a boundary of Xreg and assume that Z ∈ ∂Xreg.
Then, there is at least one ray R ⊂ I0 ∪ R>0∆

re
+ such that Z(R) = 0.

Proof. It immediately follows from the definition of the open subset Xreg ⊂ V
(see Definition 3.9):

Xreg = V \
∪

λ∈I0∪∆re
+

Hλ (Hλ = {Z ∈ V |Z(λ) = 0 }).

�

Proposition 5.6 The projection map

π : Stab◦(DQ) → V

maps Stab◦(DQ) onto the subset Xreg ⊂ V .

36



Proof. One inclusion Xreg ⊂ π(Stab◦(DQ)) is Lemma 4.7. Here we prove the
other inclusion π(Stab◦(DQ)) ⊂ Xreg, which is equivalent to that π−1(Xreg)

◦ =
Stab◦(DQ).

Since Stab◦(DQ) is the connected component which contains π−1(Xreg)
◦, it

is sufficient to prove that π−1(Xreg)
◦ is open and closed.

First note that since Xreg is open, the connected component π−1(Xreg)
◦ is

also open. Hence, the closedness of π−1(Xreg)
◦ is equivalent to that it has no

boundary points.
Assume that π−1(Xreg)

◦ has the boundary point σ = (Z,P). Then, σ =
(Z,P) is projected on ∂Xreg, therefore by Lemma 5.5, there is a ray R ⊂
I0 ∪ R>0∆

re
+ such that Z(R) = 0.

For the ray R ⊂ I0 ∪R>0∆
re
+ , by Proposition 3.8, we can take a sequence of

rays Ri (i = 1, 2, . . . , ) satisfying

lim
i→∞

Ri = R

where Ri = R>0αi and each αi ∈ ∆+ is an indivisible positive root.
On the other hand, since σ lies in the closure of π−1(Xreg)

◦, by Lemma 2.14
and Proposition 5.4, σ contains all indivisible roots as semistable classes. In
particular, the above rays Ri (i = 1, 2, . . . ) are contained in R>0Css(σ).

Since Z(R) = 0, we have

lim
i→∞

f(Ri) = f(R) = 0

where f is a function defined in Remark 2.10. But this contradicts to the support
property of σ (see Remark 2.10).

�

5.3 Covering structures

Proposition 5.7 The action of Z[2] × Br(DQ) ⊂ Aut(DQ) on Stab◦(DQ) is
free and properly discontinuous.

Proof. These two properties are clearly satisfied for the action of Z[2], hence
we prove them for the action of Br(DQ).

We first prove the freeness of the action of Br(DQ). By Corollary 4.9, it is
sufficient to prove that for σ ∈ Stab(AQ) and Φ ∈ Br(DQ), if σ = Φ · σ then
Φ ∼= id. Let σ = (Z,P) and suppose (Z,P) = ([Φ]−1 · Z,Φ(P)). Since any
object in DQ is generated by finite extensions of objects {S1, . . . , Sn} and shifts
of them, the isomorphism Φ(Si) ∼= Si for all i = 1, . . . , n implies Φ ∼= id. Assume
that Si ∈ P(ϕi) ⊂ AQ, then also Φ(Si) ∈ P(ϕi) ⊂ AQ since Φ(P(ϕi)) = P(ϕi).
At the K-group level, [Φ]−1 · Z = Z implies that [Φ] = id as an element of the
Weyl group W , therefore we have [Φ(Si)] = [Si]. Both Φ(Si) and Si are objects
in AQ with the same K-group class [Si], and such an object is unique up to
isomorphism in AQ. Hence Φ(Si) ∼= Si.
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The last part to prove is that the action of Br(DQ) is properly discontinu-
ous. We prove that for any σ ∈ Stab◦(DQ), there is some open subset σ ∈ U
such that U ∩ Φ · U = ϕ for any Φ ∈ Br(DQ), which is not isomorphic to the
identity. Fix σ ∈ Stab◦(DQ). There are two cases either [Φ] = id or not. Recall
from Proposition 10.11 that the W -action on Xreg is free and properly discon-
tinuous. Hence, by using it together with the local isomorphism property of
π : Stab◦(DQ) → Xreg from Theorem 2.12, we have such an open subset σ ∈ U
for Φ ∈ Br(DQ) with [Φ] ̸= id. Further, we take U to be sufficiently small to sat-
isfy that d(σ, σ′) < 1/2 for all σ′ ∈ U . Note that by Lemma 2.13, d(σ,Φ ·σ) ≥ 1
for Φ ∈ Br(DQ) with [Φ] = id but Φ ̸∼= id, hence d(σ,Φ · σ′) > 1/2 and in
particular U ∩ Φ · U = ϕ. Therefore we have U ∩ Φ · U = ϕ for all Φ ∈ Br(DQ)
with Φ ̸∼= id. �

Write by π the composition of two maps π : Stab◦(DQ) → Xreg and Xreg →
Xreg/W . Now, we prove Theorem 1.1.

Theorem 5.8 The projection map

π : Stab◦(DQ) −→ Xreg/W

is a covering map and the subgroup Z[2]× Br(DQ) ⊂ Aut(DQ) acts as the deck
transformation group. In particular, there is a surjective group homomorphism
from the fundamental group of Xreg to the deck transformation group defined by

ρ̃ : Z[γ]×GW −→ Z[2]× Br(DQ).

Proof. The remaining part to show is that the quotient of Stab◦(DQ) by
Z[2]×Br(DQ) is coincides to Xreg/W . This statement is equivalent to that for
any σ1, σ2 ∈ Stab◦(DQ), if π(σ1) = π(σ2), then there are elements [2n] ∈ Z[2]
and Φ ∈ Br(DQ) such that σ1 = Φ · [2n] · σ2.

First note that π(σ1) = π(σ2) in Xreg/W implies there is an unique element
w ∈W such that π(σ1) = w · π(σ2) in Xreg.

By Corollary 4.9, we can assume that σ1 ∈ Stab(AQ)
N , and there are ele-

ments k ∈ C and Φ ∈ Br(DQ) such that σ′
2 := Φ · k · σ2 lies in Stab(AQ)

N . By
projecting σ′

2 on Xreg, we have

π(σ′
2) = [Φ] · e−iπk · π(σ2) = [Φ] · e−iπk · w−1 · π(σ1).

Since Stab(AQ)
N is mapped isomorphically onto the normalized fundamen-

tal domain CN ⊂ XN
reg of the W -action on XN

reg, the equality π(σ′
2) = [Φ] ·

e−iπk · w−1 · π(σ1) implies that e−iπk = 1, [Φ] · w−1 = 1 and σ′
2 = σ1. Hence,

k = 2n ∈ 2Z and Φ · [2n] · σ2 = σ1.
�

The proof of Corollary 1.2 is completely the same way for the proof of Corol-
lary 1.4 in [Bri09b].
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Part II

Stability conditions for CYN

algebras of the An-quivers

6 Quadratic differentials associated with poly-
nomials

6.1 Braid group and representation

Definition 6.1 The Artin braid group Bn+1 is the group generated by n gen-
erators σ1, σ2, . . . , σn and the relations

σiσjσi = σjσiσj if |i− j| = 1

σiσj = σiσj if |i− j| ≥ 2.

We consider two type representations of Bn+1 on a lattice associated with
an An-quiver. Such representations are known reduced Burau representations
with parameters ±1 (See Section 3 in [KT08]).

An An-quiver
−→
An is a quiver obtained by giving directions to edges of a

Dynkin diagram of type An. Let {1, . . . , n} be the set of vertices of
−→
An. We

also assume that the vertex i is adjacent to vertices i− 1 and i+ 1. Let qij the
number of arrows from i to j.

Define L to be a free abelian group of rank n generated by α1, . . . , αn:

L :=
n⊕

i=1

Zαi.

We define a symmetric bilinear form < , >+ and a skew-symmetric form < , >−
on L by

< αi, αj >+ := δij + δji − (qij + qji)

< αi, αj >− := δij − δji − (qij − qji)

where δij is the Kronecker delta.
We introduce the reflections via the bilinear form < , >± by

r±i (αj) := αj− < αi, αj >± αi for i = 1, . . . , n.

Let W± be the group generated by these reflections r±1 , . . . , r
±
n .

The two type representations ρ± : Bn+1 → GL(L,Z) are defined by

ρ±(σi) := r±i .

We put the kernel of ρ± by P±. Then, we have a exact sequence

1 −→ P± −→ Bn+1 −→W± −→ 1.

Note that the group W+ is a symmetric group of degree n+1 and the group
P+ is a pure braid group.
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6.2 Space of polynomials

Let pn(z) be a polynomial of the following form

pn(z) = zn+1 + u1z
n−1 + u2z

n−2 + · · ·+ un, u1, . . . , un ∈ C.

We denote by ∆(pn) the discriminant of pn. (If pn(z) =
∏n+1

i=1 (z − ai), then
∆(pn) =

∏
i<j(ai − aj)

2.)
Denote by Mn the space of such polynomials with simple zeros

Mn := { pn(z) |∆(pn) ̸= 0 }.

Define the free C∗-action on Mn by

(k · pn)(z) := zn+1 + ku1z
n−1 + k2u2z

n−2 + · · ·+ knun (k ∈ C∗).

We note that for this action, the equation

(k · pn)(kz) = kn+1pn(z)

holds.
Consider the description of this space by using the configuration space on

C. Let Cn+1(C) be the configuration space of (n + 1) distinct points in C and
C0

n+1(C) be the subspace consists of configurations with center of mass at the
origin

C0
n+1(C) := { (a1, . . . , an+1) ∈ Cn+1 |

n+1∑
i=1

ai = 0, ai ̸= aj for i ̸= j}.

Note that C acts on Cn+1(C) by parallel transportations and C0
n+1(C) = Cn+1(C)/

C. The degree (n + 1) symmetric group Sn+1 acts freely on C0
n+1(C) by per-

mutating n + 1 points. Consider the covering map C0
n+1(C) → Mn defined

by

(a1, . . . , an+1) 7→
n+1∏
i=1

(z − ai),

then we have C0
n+1(C)/Sn+1

∼=Mn.
Take a point (a1, . . . , an+1) ∈ C0

n+1(C) and consider the collection of non-
crossing paths γ1, . . . , γn in C such that γi joins ai and ai+1. We call it the
An-chain of paths. Let τi be a path in Cn+1(C) which corresponds to the half-
twist along γi in counterclockwise. Through the projection Cn+1(C) → Mn, τi
gives a closed path in Mn.

It is well-known that there is an isomorphism of groups π1(Mn, ∗) ∼= Bn+1

given by
[τi] 7→ σi

where the base point ∗ is a polynomial
∏n+1

i=1 (z − ai).
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6.3 Quadratic differentials associated with polynomials

Let P1 be a Riemann sphere, and we fix the coordinate z ∈ C ∪ {∞} ∼= P1. For
a polynomial pn ∈ Mn, define the meromorphic quadratic differential ϕ on P1

by
ϕ(z) := pn(z)

N−2dz⊗2.

ϕ has zeros of order (N − 2) at distinct n + 1 points on C ⊂ P1, and a unique
pole of order (dN,n + 2) at ∞ ∈ P1.

We denote by Q(N,n) the space of such quadratic differentials associated
with pn ∈Mn:

Q(N,n) := { pn(z)N−2dz⊗2 | pn ∈Mn }.

Clearly, independent of N , the space Q(N,n) is isomorphic to Mn as a complex
manifold, but later we give this space various structures depending on N .

We introduce the action of C∗ on Q(N,n). For ϕ(z) = pn(z)
N−2dz⊗2,

through the isomorphism Q(N,n) ∼=Mn, the action of C∗ is defined by

(k · ϕ)(z) := {(k · pn)(z)}N−2dz⊗2 (k ∈ C∗).

By using the equation (k · pn)(kz) = kn+1pn(z), we have the following formula.

Lemma 6.2 For ϕ ∈ Q(N,n), the equation

(k · ϕ)(kz) = kdN,nϕ(z) (k ∈ C∗)

holds.

For ϕ ∈ Q(N,n), denote by Zero(ϕ) ⊂ P1 the set of zeros of ϕ and by
Crit(ϕ) ⊂ P1 the set of critical points of ϕ. Note that Crit(ϕ) = Zero(ϕ)∪{∞}.

Consider the action z 7→ kz for k ∈ C∗ and z ∈ P1. This action maps the
critical points of ϕ to that of k · ϕ:

k (Crit(ϕ)) = Crit(k · ϕ).

6.4 Homology group

Definition 6.3 Depending on the parity of N , we introduce the homology groups
H+(ϕ) and H−(ϕ) by the following.

• If N is even, H+(ϕ) is defined by the relative homology group

H+(ϕ) := H1(C,Zero(ϕ);Z).

• If N is odd, H−(ϕ) is given as in the following. Let S be a hyperelliptic
curve defined by the equation y2 = pn(z) and π : S → P1 be an associated
branched covering map of degree 2. Then, the homology group H−(ϕ) is
defined by

H−(ϕ) := H1(S \π−1(∞);Z).
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Note that if N = 3, the homology group H−(ϕ) is the hat-homology group in
[BS] which is written by Ĥ(ϕ).

Lemma 6.4 Both H+(ϕ) and H−(ϕ) are free abelian groups of rank n.

Proof. If N is even, the result is clear. If N is odd, there are two cases, n is
even or odd. When n is even, the genus of the hyperelliptic curve S is n/2 and
the fiber π−1(∞) consists of one point, hence the result follows. When n is odd,
the genus of S is (n− 1)/2, but the fiber π−1(∞) consists of two points, hence
the result also follows in this case. �

Let ψ :=
√
ϕ = pn(z)

N−2
2 dz be a square root of ϕ. (If N is odd, ψ is

determined up to the sign.) If N even ψ is a holomorphic 1-form on P1 \ {∞},
and if N is odd ψ is a holomorphic 1-form on S \π−1(∞).

Therefore for any cycle α ∈ H±(ϕ), the integration of 1-form ψ via the cycle
α

Zϕ(α) :=

∫
α

ψ

is well-defined and gives the complex number Zϕ(α) ∈ C.
Thus, we have a group homorphism Zϕ : H±(ϕ) → C, called the period of ϕ.

6.5 Framing

Following Section 2.6 in [BS], we introduce the framings on Q(N,n). Let Γ be
a free abelian group of rank n. A Γ-framing of ϕ ∈ Q(N,n) is an isomorphism
of abelian groups

θ : Γ −→ H±(ϕ).

Denote by Q(N,n)Γ the space of pairs (ϕ, θ) consists of a quadratic differential
ϕ ∈ Q(N,n) and a Γ-framing θ. The projection

Q(N,n)Γ −→ Q(N,n) , (ϕ, θ) 7→ ϕ

defines a principal GL(n,Z)-bundle on Q(N,n).
For (ϕ, θ) ∈ Q(N,n)Γ, the composition of a framing θ and a period Zϕ gives

a group homomorphism Zϕ ◦ θ : Γ → C. Thus, we have the map

WN : Q(N,n)Γ −→ HomZ(Γ,C)

defined by WN (ϕ, θ) := Zϕ ◦ θ ∈ HomZ(Γ,C). We call WN a period map.

Proposition 6.5 The period map

WN : Q(N,n)Γ −→ HomZ(Γ,C)

is a local isomorphism of complex manifolds.

As a consequence, the period mapWN determines local coordinates onQ(N,n)Γ.
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6.6 Intersection form

In this section, we introduce the intersection forms on H±(ϕ).
First, we consider the case N is even. The exact sequence of relative homol-

ogy groups gives the isomorphism of homology groups

H+(ϕ) = H1(C,Zero(ϕ);Z) ∼= H̃0(Zero(ϕ);Z)

where H̃0(Zero(ϕ);Z) is the reduced homology group ofH0(Zero(ϕ);Z), and this
isomorphism is induced by the boundary map. There is a trivial intersection
form on H0(Zero(ϕ);Z), and it induces the intersection form on H̃0(Zero(ϕ);Z).
Through the above isomorphism of homology groups, we have the intersection
form

I+ : H+(ϕ)×H+(ϕ) −→ Z.
Note that I+ is symmetric and non-degenerate.

Next, consider the case N is odd. Let π : S → P1 be the hyperelliptic
curve introduced in Section 6.4, and ι : S \π−1(∞) → S be the inclusion. This
inclusion induces the sujective group homomorphism

ι∗ : H−(ϕ) = H1(S \π−1(∞);Z) −→ H1(S;Z).

Since there is a skew-symmetric non-degenerate intersection form on H1(S;Z),
through the inclusion ι∗, we have the intersection form

I− : H−(ϕ)×H−(ϕ) −→ Z.

ι∗ is an isomorphism if n is even, and has the rank one kernel if n is odd.
Therefore, I− is skew-symmetric and non-degenerate if n is even, and skew-
symmetric and has the rank one kernel if n is odd.

For ϕ ∈ Q(N,n), picking the order of Zero(ϕ) and consider the An-chain
of path γ1, . . . , γn. If N is even, the path γi determines the homology class
γ̂i ∈ H+(ϕ). IfN is odd, the lift of γi on the hyperelliptic curve S also determines
the homology class γ̂i ∈ H−(ϕ).

The pair of the homology groupH±(ϕ) and the intersection form I± gives the
geometric realization of the lattice L and the bilinear form < , >± introduced
in Section 6.1.

Lemma 6.6 There is an isomorphism H±(ϕ) ∼= L given by γ̂i 7→ αi.
Further, by choosing suitable orientations for γ̂1, . . . , γ̂n, this isomorphism

takes the intersection form I± to the bilinear form < , >±.

Proof. Easy computations gives the result. �

6.7 Local system

For ϕ ∈ Q(N,n), by corresponding to the homology group H±(ϕ), we have a
local system ∪

ϕ∈Q(N,n)

H±(ϕ) −→ Q(N,n).
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For a continuous path c : [0, 1] → Q(N,n) with ϕ0 = c(0), ϕ1 = c(1), the parallel
transportation along c gives the identification

GM(c) : H±(ϕ0)
∼−→ H±(ϕ1),

and determines a flat connection on this local system. We call it the Gauss-
Manin connection.

Fix a point (ϕ0, θ0) ∈ Q(N,n)Γ and denote by Q(N,n)Γ∗ the connected
component containing (ϕ0, θ0). Any point (ϕ, θ) ∈ Q(N,n)Γ is contained in
Q(N,n)Γ∗ if and only if there is a continuous path c : [0, 1] → Q(N,n) connecting
ϕ0 and ϕ such that the diagram

Γ
θ0

{{xx
xx

xx
xx

x
θ

""EE
EE

EE
EE

E

H±(ϕ0)
GM(c) // H±(ϕ)

commutes.
Note that different connected components of Q(N,n)Γ are all isomorphic

since these are related by the action of GL(n,Z).
We introduce the C-action on Q(N,n)Γ∗ , which is compatible with the C-

action on the space of stability conditions given in Section 2.6.

Definition 6.7 For a framed differential (ϕ, θ) ∈ Q(N,n)Γ∗ , the new framed
differential (ϕ′, θ′) := t · (ϕ, θ) is defined by

ϕ′ := e−(2πi /dN,n) t · ϕ, θ′ := GM(e−(2πi /dN,n) t s) ◦ θ

where GM(e−(2πi /dN,n) t s) is the Gauss-Manin connection of the path e−(2πi /dN,n) t s·
ϕ for s ∈ [0, 1] which connects ϕ and ϕ′.

6.8 Monodromy representation

By using the intersection forms I± on H±(ϕ) defined in Section 6.6, we compute
how does the cycle change along the closed path in Q(N,n), which are known
as the Picard-Lefschetz formula.

Fix a base point ∗ =
∏n+1

i=1 (z − ai) and let γ1, . . . , γn be the An-chain of

paths. Let ϕ0 :=
[∏n+1

i=1 (z − ai)
]N−2

dz⊗2 be the differential corresponding to

the base point ∗. Consider the half-twists τ1, . . . , τn as in Section 6.2 and take
the orientations of γ̂1, . . . , γ̂n ∈ H±(ϕ0) as in Lemma 6.6.

Proposition 6.8 The monodromy representation of [τi] ∈ π1(Mn, ∗) on H±(ϕ0)
is given by

GM(τi)(β) = β − I±(γ̂i, β) γ̂i.

Lemma 6.6 and Proposition 6.8 imply that the monodromy representation
of the braid group π1(Mn, ∗) ∼= Bn+1 on H±(ϕ0) gives the geometric realization
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of two type representations ρ± introduced in Section 6.1. Further recall from
Section 6.1 that the subgroup P± ⊂ Bn+1 is the kernel of ρ± and the group W±
is the image of ρ± on L ∼= H±(ϕ0).

Let M̃n be a universal covering of Mn. Note that the braid group Bn+1 acts

on M̃n as the group of deck transformations.

Corollary 6.9 The connected component Q(N,n)Γ∗ is isomorphic to the space

M̃n/P± and the projection map Q(N,n)Γ∗ → Q(N,n) gives a principal W±-
bundle.

Proof. It follows from the above remarks. �

7 Trajectories on P1

Here, in order to fix notations, we collect basic facts and definitions for trajec-
tories on P1, mainly from Section 3 in [BS]. In spite of the treatment of higher
order zeros, since our Riemann surface is only P1, many results are simplified.

7.1 Foliations

Let ϕ ∈ Q(N,n). For any neighborhood of a point in P1 \Crit(ϕ), the differential
ϕ(z) = φ(z)dz⊗2 defines the distinguished local coordinate w by

w :=

∫ √
φ(z) dz,

up to the transformation w 7→ ±w+c (c ∈ C). This coordinate also characterized
by

ϕ(w) = dw ⊗ dw.

The coordinate w determines the foliation on P1 \Crit(ϕ) by

Im (w/eiπθ) = constant.

A straight arc γ : I → P1 \Crit(ϕ) of the phase θ is an integral curve along
the foliation Im (w/eiπθ) = constant, defined on an open interval I ⊂ R. In
other words, γ is a straight arc if Im (w(t)/eiπθ) = constant where

w(t) =

∫ γ(t) √
φ(z) dz.

Note that the set of maximal straight arcs of the phase θ are just leaves of the
foliation Im (w/eiπθ) = constant.

The foliation of the phase θ = 0 is called a horizontal foliation, and a maximal
straight arc of the phase θ = 0 is called a trajectory.
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Lemma 7.1 Let ϕ ∈ Q(N,n). For k = reiπθ ∈ C∗, set ϕ′ := k · ϕ. Then, the
distinguished coordinates w and w′ corresponding to ϕ and ϕ′ have the relation

w′ = k
dN,n

2 w.

In addition, the transformation z 7→ kz on P1 maps the horizontal straight arcs
for ϕ to the straight arcs of the phase (dN,nθ)/2 for ϕ′.

Proof. Let γ : I → P1 \Crit(ϕ) be a horizontal straight arc of ϕ. Then, the
following computation gives the result:∫ kγ(t) √

φ′(z) dz =

∫ kγ(t) √
(k · φ)(z) dz

=

∫ γ(t) √
(k · φ)(kz′) d(kz′) (put z = kz′.)

= k
dN,n

2

∫ γ(t)

φ(z′) dz′ (by Lemma 6.2).

�
A trajectory γ defined on a finite open interval (a, b) is called saddle trajec-

tory. Since P1 is compact, γ is extended to a continuous path γ : [a, b] → P1

with γ(a), γ(b) ∈ Zero(ϕ).
Similarly, a saddle connection of the phase θ is defined to be a maximal

straight arc of the phase θ defined on a finite open interval.

7.2 Foliation near a critical point

Here, we see the local behavior of the horizontal foliation near a critical point.
First, we consider the behavior near a zero. Let ϕ ∈ Q(N,n) and p ∈ Zero(ϕ)

be a zero of order N − 2. Then, there is a local coordinate t of a neighborhood
p ∈ U ⊂ P1 (t = 0 corresponds to p) such that

ϕ = c2 tN−2dt⊗2, c =
1

2
N.

Hence, on U \ {p}, the distinguished local coordinate w takes the form w = tN/2.
The following figures illustrate the local behaviors of the horizontal foliations in
the case N = 3, 4, 5.

.
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Note that there are N horizontal straight arcs departing from p. This fact
is the reason why the differential ϕ determines the N -angulation.

Next, we consider the behavior near a pole. Since the order of a unique pole
of ϕ ∈ Q(N,n) at ∞ ∈ P1 is (dN,n + 2), it is sufficient to treat a pole of order
> 2. In this case, there is a neighborhood ∞ ∈ U ⊂ P1 and a collection of
dN,n distinguished tangent directions vi (i = 1, . . . , dN,n) at ∞, such that any
trajectory entering U tends to ∞ and becomes asymptotic to one of the vi. See
Section 3.3 in [BS] for more detail.

7.3 Classification of trajectories

In this section, we summarize the global structure of the horizontal foliation on
P1 by following Section 3.4 in [BS], and Section 9-11, 15 in [Str84].

Since P1 \∞ is contractible, the Theorem and Theorem in [Str84] implies
that . Hence in our setting, every trajectory of ϕ is classified to exactly one of
the following classes.

(1) A saddle trajectory approaches distinct zeros of ϕ at both ends.

(2) A separating trajectory approaches a zero of ϕ at one end and a pole
∞ ∈ P1 at the other end.

(3) A generic trajectory approaches a pole ∞ ∈ P1 at both ends.

As explained in the previous section, there are only finte horizontal straight
arcs departing from zeros of ϕ. Therefore, the number of saddle trajectories
and separating trajectories are finite. Actually, for ϕ, denote by sϕ the number
of saddle trajectories, and by tϕ the number of separating trajectories. Then,
the fact that there are N horizontal straight arcs departing from each zero of ϕ
implies the equation

2sϕ + tϕ = N(n+ 1). (7.1)

By removing these two type trajectories and Crit(ϕ) from P1, the remaining
open surface splits into a disjoint union of connected components. In our setting,
each connected component coincides to one of the following two type surfaces.

(1) A half-plane is the upper half-plane

{w ∈ C | Imw > 0 }

equipped with the differential dw⊗2. It is swept out by generic trajectories
with the both end points at ∞ ∈ P1. The boundary {Imw = 0} consists
of saddle trajectories and two separating trajectories.

(2) A horizontal strip is the strip domain

{w ∈ C | a < Imw < b }

equipped with the differential dw⊗2. it is also swept out by generic tra-
jectories with the both end points at ∞ ∈ P1. Each of two boundaries
{Imw = a} and {Imw = b} consists of saddle trajectories and two sepa-
rating trajectories.
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Note that every saddle trajectory or separating trajectory appears just two times
as a boundary element of these open surfaces.

Let k be the number of half planes and l be the number of horizontal strips
appearing in such a decomposition of P1. Since every half plane has 2 separat-
ing trajectories on the boundary, and every horizontal strip has 4 separating
trajectories on the two boundaries, we have the equation

2k + 4l = 2tϕ. (7.2)

We also note that near a pole of order m > 2, just m− 2 half planes appear.
Since ϕ has a unique pole of order (dN,n + 2) at ∞ ∈ P1, we have

k = dN,n = (N − 2)(n+ 1) + 2. (7.3)

Lemma 7.2 Let ϕ ∈ Q(N,n). For the number of saddle trajectories sϕ and the
number of horizontal strips l, the equation

sϕ + l = n

holds.

Proof. This immediately follows by combining the equations (7.1), (7.2) and
(7.3). �

Definition 7.3 A differential ϕ ∈ Q(N,n) is called saddle-free if ϕ has no
saddle trajectories (sϕ = 0).

For a saddle-free differential ϕ ∈ Q(N,n), Lemma 7.2 implies that exactly n
horizontal strips appear in the decomposition of P1 by ϕ. In this situation, any
boundary component of a half plane or a horizontal strip consists of only two
separating trajectories.

7.4 Hat-homology classes and standard saddle connections

In this section, we collect some constructions of homology classes from Section
3.2 and Section 3.6 in [BS].

Let ϕ ∈ Q(N,n). Recall from Section 6.4 that the square root of ϕ defines
a holomorphic 1-form ψ =

√
ϕ on P1 \ {∞} or S \π−1(∞) depending on the

parity of N . Write by Ŝ the surface P1 \ {∞} if N is even, or S \π−1(∞) if N
is odd.

We first note that the 1-form ψ defines the distinguished coordinate ŵ on
Ŝ \Crit(ψ) by ψ = dŵ, up to the transformation ŵ 7→ ŵ+c (c ∈ C). As a result,
ψ determines the horizontal foliation Im ŵ = constant on Ŝ \Crit(ψ). Since the
sign of dŵ is uniquely determined, this foliation has the canonical orientation,
which makes the tangent vector of a horizontal straight arc lies in R>0.

For a saddle trajectory γ : [a, b] → P1, we can define a homology class γ̂ ∈
H±(ϕ), called the hat-homology class of γ by the following.

48



If N is even, we orient γ to be compatible with the above orientation. Since
γ(a), γ(b) ∈ Zero(ϕ), the oriented curve γ defines a homology class γ̂ := [γ] ∈
H+(ϕ) = H1(C,Zero(ϕ);Z). By definition, it satisfies Zϕ(γ̂) ∈ R>0.

If N is odd, since zeros of ϕ are branched points of the double cover π : S →
P1, the inverse image π−1(γ) becomes a closed curve in S \π−1(∞). We orient
π−1(γ) to be compatible with the above orientation. Then, the oriented closed
curve π−1(γ) defines a homology class homology class γ̂ := [π−1(γ)] ∈ H−(ϕ) =
H1(S \π−1(∞);Z). As in the case N is even, it satisfies Zϕ(γ̂) ∈ R>0.

Similar construction works for a saddle connection γ : [a, b] → P1 with the
non-zero phase θ. In this case, the orientation is given to satisfy that Zϕ(γ̂) ∈
{ reiπθ | r > 0 } ⊂ H.

Let h = {a < Imw < b} be a horizontal strip given by the decomposition
of P1 by a saddle-free differential ϕ. Then, each of two boundary components
{Imw = a} and {Imw = b} contains exactly one zero of ϕ and consists of two
separating trajectories intersecting at this zero. Hence, there is a unique saddle
connection lh connecting two zeros of two boundary components. We denote by
γh := l̂h ∈ H±(ϕ) the hat-homology class associated with the saddle connection
lh.

Since ϕ is saddle-free, Lemma 7.2 implies that there are precisely n horizontal
strips in the decomposition of P1 by ϕ. Thus, we obtain n saddle connections
lh1 , . . . , lhn and n hat-homology classes γh1 , . . . , γhn . lhi is called a standard
saddle connection, and γhi is called a standard saddle class.

Lemma 7.4 ([BS], Lemma 3.2) Standard saddle classes γh1 , . . . , γhn form a
basis of H±(ϕ).

Proof. The argument of Lemma 3.2 in [BS] for N = 3 also works for general
N ≥ 3. �

7.5 Coloured quiver from saddle-free differential

Following Section 2 in [BT09], we introduce the notion of a coloured quiver. An
(N − 2)-coloured quiver Q consists of vertices {1, . . . , n} and coloured arrows

i
(c)−−→ j, where c ∈ {0, 1, . . . , N − 2}. Write by q

(c)
ij the number of arrows from i

to j of colour (c).
In addition, we assume the following conditions:

(1) No loops, q
(c)
ii = 0 for all c.

(2) Monochromaticity, if q
(c)
ij ̸= 0, then q(c

′) = 0 for c ̸= c′.

(3) Skew-symmetry, q
(c)
ij = q

(N−2−c)
ji .

Definition 7.5 For a saddle-free differential ϕ ∈ Q(N,n), define a coloured
quiver Q(ϕ) by the following. Let h1, . . . , hn be the horizontal strips in the de-
composition of P1 by ϕ, and lh1 , . . . , lhn be the corresponding standard saddle
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connections. The vertices of Q(ϕ) are standard saddle connections {lh1
, . . . , lhn

},
and the coloured arrow lhi

(c)−−→ lhj for i ̸= j is given if lhi and lhj have the same
zero p of ϕ as a boundary point and the number of separating trajectories ap-
pearing around p from lhi to lhj in counterclockwise is just c+ 1.

We can easily check that such a coloured quiver Q(ϕ) satisfies the additional
three conditions.

For a coloured quiver Q, the coloured quiver lattice LQ is defined to be a
free abelian group generated by vertices of Q. Let α1, . . . , αn be generators
corresponding to vertices of Q, then

LQ =

n⊕
i=1

Zαi.

Define a bilinear form < , > : LQ × LQ −→ Z by

< αi, αj >:= δij + (−1)Nδij −
N−2∑
c=0

(−1)cq
(c)
ij .

Lemma 7.6 The bilinear form < , > : LQ × LQ → Z is symmetric if N is
even, and skew-symmetric if N is is odd. The diagonal part is computed that
< αi, αi >= 2 if N is even, and < αi, αi >= 0 if N is odd for all i.

Proof. The first part follows from the condition skew-symmetry. The second
part follows from the condition no loops. �

Let us define a linear map

µ : LQ(ϕ)
∼−→ H±(ϕ)

by µ(αi) := γhi where αi is the basis corresponding to the vertex lhi of Q(ϕ) and
γhi is the standard saddle class of lhi . By Lemma 7.4, the map µ is isomorphism.

Lemma 7.7 The isomorphism µ : LQ(ϕ)
∼−→ H±(ϕ) takes the bilinear form <

, > on LQ(ϕ) to the intersection form I± on H±(ϕ).

Proof. We can easily see that I+(γhi , γhi) = 2 and I−(γhi , γhi) = 0. Hence
we need to prove that for i ̸= j, if lhi and lhj have the same zero p of ϕ as a
boundary point and the number of separating trajectories around p from lhi to
lhj is c+ 1, then I±(γhi , γhj ) = (−1)c+1.

First, consider the case N is even. Since the oriented foliation of ψ =
√
ϕ

around p has the opposite orientations by crossing a separating trajectory, lhi

and lhj have the same orientation relative to p if the number of separating
trajectories around p from lhi to lhj is even, and have the different orientation
relative to p if that is odd. Therefore the result follows in this case.

Next, consider the case N is odd. The oriented foliation of ψ =
√
ϕ on the

hyperelliptic curve S around p also has the opposite orientations by crossing a
separating trajectory. Therefore the lift of lhi and lhj on S is intersecting +1 if
the number of separating trajectories around p from lhi to lhj is even, and −1
if that is odd. �
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8 CYN algebras of An-quivers

8.1 Ginzburg dga

Let Q = (Q0, Q1) be a finite quiver with vertices Q0 and arrows Q1. The
Ginzburg dga ΓNQ := (kQ, d) is defined as follows. Define a graded quiver Q
with vertices Q0 and arrows:

• the original arrows Q1 (degree 0);

• an opposite arrow a∗ : j → i for an original arrow a : i → j ∈ Q1 (degree
N − 2);

• a loop ti for each vertex i ∈ Q0 (degree N − 1).

Let kQ be a graded path algebra of Q, and define a differential d : kQ→ kQ of
degree −1 by

• da = da∗ = 0 for a ∈ Q1

• dti = ei

(∑
a∈Q1

(aa∗ − a∗a)
)
ei

where ei is the idempotent at i ∈ Q0.
Note that the 0-th homology is H0(ΓNQ) ∼= kQ.
Let D(ΓNQ) be a derived category of right dg-modules over ΓNQ, and

Dfd(ΓNQ) be a full subcategory of D(ΓNQ) consists of dg modules M whose
homology is of finite total dimension:∑

i∈Z
dimk Hi(M) <∞.

Theorem 8.1 ([Kel11], Theorem 6.3) The category Dfd(ΓNQ) is a Calabi-
Yau N triangulated category.

Proposition 8.2 ([Ami09], Lemma 2.2 and Proposition 2.3) There is a
canonical bounded t-structure F ⊂ Dfd(ΓNQ) with the heart H such that the
functor H0 : Dfd(ΓNQ) → mod-H0(ΓNQ) induces an equivalence of abelian
categories H and mod-H0(ΓNQ).

We write by HΓ the heart determined by the above proposition, and call it the
standard heart.

For a quiver
−→
An, we set DN

n := Dfd(ΓN
−→
An).

8.2 Koszul duality

Here, we comment to the relationship between our categoryDN
n and the category

treated in [ST01, Tho06] which is defined as a perfect category of a graded path
algebra of some graded quiver (see Section 4c in [ST01] or Definition 3.2 in
[Tho06]). Throughout this section, we fix the straight forward orientation for a

quiver
−→
An, in which the arrows of

−→
An is given by i→ i+ 1 for i = 1, . . . , n− 1.
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Let RN
n be a graded quiver with vertices {1, . . . , n}, degree 1 arrows αi : i→

i+ 1 (i = 1, . . . , n− 1) and degree N − 1 arrows βi : i+ 1 → i (i = 1, . . . , n− 1).
Write by kRN

n a graded path algebra of RN
n over k. The graded algebra AN

n

is defined to be the quotient of kRN
n by the two-sided ideal generated by the

elements:

• αiαi+1 (i = 1, . . . , n− 2)

• βi+1βi (i = 1, . . . , n− 2)

• βiαi − αi+1βi+1 (i = 1, . . . , n− 2).

We give a trivial differential d = 0: AN
n → AN

n , and treat AN
n as a dga. Let

Pi := eiA
N
n be a projective right module corresponding to the vertex i where ei

is the idempotent at vi.
LetD(AN

n ) be a derived category of right dg-modules overAN
n , and per(AN

n ) ⊂
D(AN

n ) be a smallest full triangulated subcategory containing P1, . . . , Pn. Then,
by the Koszul duality, we have the following category equivalence.

Proposition 8.3 The exact functor Hom•(S, ?) : D(ΓN
−→
An) → D(AN

n ) induces
the category equivalence of triangulated subcategories

Hom•(S, ?) : DN
n

∼−→ per(AN
n ).

In particular, Hom•(S, Si) = Pi.

Proof. Set S := ⊕n
i=1Si. Then, the endomorphism dg-algebra End• S is iso-

morphic to AN
n :

End• S ∼= AN
n .

Therefore by the Koszul duality, the above functor is a category equivalence
(see Section 9 in [KN13]). �

8.3 Artin braid groups and spherical twists

For a quiver
−→
An with vertices {1, . . . , n}, we assume the vertex i is adjacent

to vertices i − 1 and i + 1. Let Si be the simple module corresponding to
the vertex i. Such simple modules S1, . . . , Sn of HΓ are spherical in DN

n , hence
they define spherical twists ΦS1 , . . . ,ΦSn ∈ Aut(DN

n ). The Seidel-Thomas braid
group Sph(DN

n ) is defined to be the subgroup of Aut(DN
n ) generated by these

spherical twists:
Sph(DN

n ) := ⟨Φ1, . . . ,Φn⟩ .

Theorem 8.4 ([ST01], Theorem 1.2 and Theorem 1.3) For groups Bn+1

and Sph(DN
n ), the correspondence of generators σi 7→ ΦSi is extended to the iso-

morphism of groups
Bn+1

∼= Sph(DN
n ).
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Consider the K-group

K(DN
n ) ∼=

n⊕
i=1

Z[Si]

and the Euler form χ : K(DN
n ) × K(DN

n ) → Z. Recall from Section 6.1 that
there is a free abelian group L and a bilinear form < , >± associated with a

quiver
−→
An.

Lemma 8.5 Define the map K(DN
n ) → L by [Si] 7→ αi. Then, this map is an

isomorphism of abelian groups and takes the Euler form χ to the bilinear form
< , >±.

At the K-group level, a spherical twist ΦSi induces the reflection

[ΦSi ]([E]) = [E]− χ(Si, E)[Si]

onK(DN
n ). Therefore under the above isomorphism, spherical twists ΦS1 , . . . ,ΦSn

act as reflections r±1 , . . . , r
±
n in Section 6.1 on the K-group K(DN

n ):

[ΦS1 ] = r±1 , . . . , [ΦSn ] = r±n .

9 N-angulations of polygons and exchange graphs

9.1 N-angulations of polygons

A geometric construction of (N − 2)-cluster category of type An is given in
[BM08]. By using this construction, here we introduce the oriented graph as-
sociated with decompositions of a polygon into N -gons. This graph is the geo-
metric realization of the cluster exchange graph of an (N − 2)-cluster category
for type An.

Let ΠdN,n be a dN,n-gon. An (N − 2)-diagonal of ΠdN,n is a diagonal which
divides ΠdN,n

into an ((N − 2)i + 2)-gon and an ((N − 2)(n + 1 − i) + 2)-gon
(i = 1, . . . , n). A collection of (N − 2)-diagonals is called non-crossing if they
intersect only the boundary of ΠdN,n

.
The maximal set of non-crossing (N − 2)-diagonals of ΠdN,n is called the

N -angulation. The number of (N − 2)-diagonals in the N -angulation is n, and
this divides ΠdN,n into n+ 1 pieces of N -gons.

For any (N − 2)-diagonal δ, there are just two N -gons whose common edge
is δ. By removing δ, we have a (2N − 2)-gon. We call δ a diameter of this
(2N − 2)-gon.

Let ∆ be an N -angulation and δ ∈ ∆ be an (N − 2)-diagonal. For ∆,

we define the operation to make new N -angulations µ♯
δ(∆) and µ♭

δ(∆) by the
following.

For a diagonal δ ∈ ∆, there is a unique (2N − 2)-gon which has δ as a
diameter. By rotating two boundary points of δ one step counterclockwise
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(clockwise), we have the new (N − 2)-diagonal δ♯ (δ♭). Thus, the new N -
angulations is defined by

µ♯
δ(∆) := (∆\{δ}) ∪ {δ♯} (µ♭

δ(∆) := (∆\{δ}) ∪ {δ♭} ).

The following figure illustrates the example for N = 4 and n = 3.
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Definition 9.1 Define the graph A(ΠdN,n , N) to be the oriented graph whose
vertices are all N -angulations of ΠdN,n

, and for two N -angulations ∆ and ∆′,

the arrow H δ−→ H′ is given if there is some diagonal δ ∈ ∆ such that µ♯
δ(∆) = ∆′.

Lemma 9.2 ([BT09], Proposition 7.1) The graph A(ΠdN,n
, N) is connected.

9.2 Exchange graphs and braid groups

Definition 9.3 For DN
n , we define the exchange graph EG(DN

n ) to be the ori-
ented graph whose vertices are all finite hearts of DN

n , and for two hearts H and

H′, the arrow H S−→ H′ is given if these is some rigid simple object S ∈ H such
that they relate by the simple forward tilt H♯

S = H′.
In particular, we denote by EG◦(DN

n ) ⊂ EG(DN
n ) the connected component

containing the standard heart HΓ.

Let H ∈ EG(DN
n ) be a finite heart and S ∈ H be a simple object. Since

Φ(H♯
S) = (Φ(H))♯Φ(S),

holds for any autoequivalence Φ ∈ Aut(DN
n ), autoequivalences act on EG(DN

n )
as automorphisms of the oriented graph. Denote by Aut◦(DN

n ) the subgroup
consisting of autoequivalences which preserve the connected component EG◦(DN

n ).
For H ∈ EG◦(DN

n ,H0) and rigid simple object S ∈ H, define inductively

Hm♯
S := (H(m−1)♯

S )S[m−1], Hm♭
S := (H(m−1)♭

S )S[−m+1]

for m ≥ 1, and we set Hm♯ := H−m♭ for m < 0.
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Proposition 9.4 ([KQ], Corollary 8.3) Let H ∈ EG◦(DN
n ) and consider sim-

ple objects SimH = {T1, . . . , Tn}. Then, spherical twists ΦT1 , . . . ,ΦTn generate
the Seidel-Thomas braid group Sph(DN

n ) and give the equation

H(N−1)♯
Ti

= Φ−1
Ti

(H), H(N−1)♭
Ti

= ΦTi(H).

This result implies that the action of Sph(DN
n ) is free and preserves the

connected component EG◦(DN
n ).

For N ≥ 3, we define the full subgraph of EG◦(DN
n ) by

EG◦
N (DN

n ) := {H ∈ EG◦(DN
n ) |HΓ ≤ H ≤ HΓ[N − 2] }.

In the following meaning, EG◦
N (DN

n ) is the fundamental domain of the action
of Sph(DN

n ) on EG◦(DN
n ).

Theorem 9.5 ([KQ], Theorem 8.5) The map of graphs

p0 : EG
◦
N (DN

n ) −→ EG◦(DN
n )/Sph(DN

n )

is embedding and bijection between vertices.

9.3 Correspondence between hearts and N-angulations

Combining the result for the geometric realization of (N − 2)-cluster category
of type An in [BM08] and the correspondence between cluster exchange graphs
and heart exchange graphs in [KQ], we have the following result.

Theorem 9.6 ([BM08], Theorem 5.6 and [KQ], Theorem 8.5) There is
a canonical isomorphism of oriented graphs with labeled arrows

A(ΠdN,n , N)
∼−→ EG◦(DN

n )/Sph(DN
n ).

For the heart H(∆) ∈ EG◦
N (DN

n ) which corresponds to the N -angulation ∆ ∈
A(ΠdN,n , N) (H(∆) is determined up to modulo Sph(DN

n )), there is a bijection
between (N − 2)-diagonals of ∆ and simple objects of H(∆) such that

H(µ♯
δ(∆)) ≡ H(∆)♯Sδ

mod Sph(DN
n )

where δ is a (N − 2)-diagonal in ∆ and Sδ is the corresponding simple object in
H(∆).

Proof. By Theorem 5.6 in [BM08], the graph A(ΠdN,n
, N) is isomorphic to

the cluster exchange graph of (N − 2)-cluster category for of type An, and
(N−2)-diagonals of the N -angulations correspond to the indecomposable direct
summands of (N −2)-cluster tilting objects which consists of the vertex set of a
cluster exchange graph. (For the precise definition of a cluster exchange graph,
see Definition 4.4 in [KQ]).

On the other hand, by Theorem 8.5 in [KQ], there is a canonical isomorphism
between the cluster exchange graph of type An and EG◦(DN

n )/Sph(DN
n ) such

that indecomposable direct summands of cluster tilting objects are mapped to
the simple objects of the corresponding hearts. �
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Remark 9.7 By Theorem 9.5, for an N -angulation ∆, we can uniquely take
the corresponding heart H(∆) in EG◦

N (DN
n ). In the following, we always assume

that H(∆) is taken in the fundamental domain EG◦
N (DN

n ).

Lemma 9.8 Let ∆ ∈ A(ΠdN,n
, N) be an N -angulation and H(∆) ∈ EG◦

N (DN
n )

be the corresponding heart. Take a (N − 2)-diagonal δ ∈ ∆ and consider a new

N -angulation µ♯
δ(∆). Then, there is a unique spherical twist Φ ∈ Sph(DN

n ) such
that

Φ(H(µ♯
δ(∆))) = H(∆)♯Sδ

.

Proof. Since the action of Sph(DN
n ) on EG◦(DN

n ) is free, this follows from
Theorem 9.6 and Remark 9.7. �

9.4 N-angulation from saddle-free differential

Let ϕ ∈ Q(N,n). Recall from Section 7.2 that ϕ defines dN,n distinguished
tangent directions at ∞ ∈ P1 since ϕ has a pole of order (dN,n + 2) at that
point. Consider the real oriented blow-up at ∞ ∈ P1 (that is replacement of
∞ by S1), then we have a disk Π. By adding dN,n points on the boundary of
Π, which corresponds to dN,n distinguished tangent directions, we have a d-gon
ΠdN,n .

Lemma 9.9 Let ϕ ∈ Q(N,n) be a saddle-free differential. Then, by taking one
generic trajectory from each horizontal strip in the decomposition of P1 by ϕ,
we have an N -angulation ∆ϕ of ΠdN,n

.

Proof. By Lemma 7.2, there are just n horizontal strips in the decomposition,
and clearly generic trajectories taking from different horizontal strips are non-
crossing each other. Hence, it is sufficient to prove that these generic trajectories
are (N−2)-diagonals. Assume that a generic trajectory δ divides ΠdN,n into two
disks Π1 and Π2, and Π1 contains i zeros and Π2 contains (n+1−i) zeros. Then,
Π1 has i − 1 horizontal strips and Ni separating trajectories. By the equation
(7.2), the number of half planes in Π1 is ((N − 2)i + 2), and this implies that
Π1 is ((N − 2)i+ 2)-gon. �

The following figure illustrates the example of the 4-angulation of 10-gon
by a saddle-free differential. Generic trajectories are written by solid lines and
separating trajectories are written by dotted lines.
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We write by ∆ϕ the N -angulation which is determined from a saddle-free dif-
ferential ϕ ∈ Q(N,n) by using this lemma. We also write by h(δ) the horizontal
strip which contains a generic trajectory δ.

9.5 Coloured quiver lattice and K-group

Definition 9.10 For an N -angulation ∆ ∈ A(ΠdN,n
, N), define the (N − 2)-

coloured quiver Q(∆) whose vertices are all (N − 2)-diagonals of ∆ and the

coloured arrow δi
(c)−−→ δj is given if both δi and δj lie on the same N -gon of

N -angulation and there is just c edges forming the segment of the boundary of
the N -gon in counterclockwise.

Definition 9.11 For the heart H ∈ EG◦(DN
n ), define the coloured quiver Q(H)

whose vertices are simple objects S1, . . . , Sn ∈ H and the number of coloured
arrows from Si to Sj is dimk Homc+1

DN
n
(Si, Sj).

Proposition 9.12 Let ∆ ∈ A(ΠdN,n
, N) be an N -angulation and H(∆) ∈

EG◦(DN
n ) be the corresponding heart. Then, there is a canonical isomorphism

of coloured quivers
Q(∆) = Q(H(∆)).

In particular, the correspondence of vertices is given by the correspondence be-
tween (N − 2)-diagonals and simple objects in Theorem 9.6.

Proof. By Proposition 11.1 in [BT09], the coloured quiver Q(∆) is equal to
the coloured quiver of the corresponding cluster tilting object. Theorem 8.6 in
[KQ] implies that by the correspondence of cluster tilting objects and hearts
in the proof of Theorem 9.6, the coloured quiver of the cluster tilting object is
mapped to the coloured quiver of the corresponding heart. �
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Recall Section 7.5 that for a coloured quiver Q, we define a Z-lattice LQ
and a bilinear form < , > on LQ. For a coloured quiver Q(∆) with vertices
{δ1, . . . , δn}, write by αi the basis of LQ(∆) corresponding to the vertex δi.

By using Proposition 9.12, we have the similar result of Lemma 9.10 in [BS].

Lemma 9.13 Let ∆ be an N -angulation and H(∆) be the corresponding heart.
Then, there is an isomorphism of Z-lattices

λ : LQ(∆) −→ K(DN
n )

such that for each (N − 2)-diagonal δi, the basis αi is mapped to the class of
the corresponding simple object Sδi . This isomorphism takes the bilinear form
< , > on LQ(∆) to the Euler form χ on K(DN

n ).

Proof. First note that as stated in Remark 2.3, there is a canonical isomorphism
of K-groups K(H(∆)) ∼= K(DN

n ). Since K(H(∆)) is generated by the class of
simple objects [Sδ1 ], . . . , [Sδn ], the map λ is an isomorphism.

Let Q(∆) = (q
(c)
ij ) be a coloured quiver of ∆. By Proposition 9.12, we

have q
(c)
ij = dimk Hom

c+1(Sδi , Sδj ). The Euler form with respect to the basis
[Sδ1 ], . . . , [Sδn ] is computed by

χ(Sδi , Sδj ) =
∑
l∈Z

(−1)l dimk Homl(Sδi , Sδj )

= dimk Hom
0(Sδi , Sδj ) + (−1)N dimk HomN (Sδi , Sδj )−

N−2∑
c=0

(−1)c dimk Homc+1(Sδi , Sδj )

= δij + (−1)Nδij −
N−2∑
c=0

(−1)cq
(c)
ij

=< αi, αj > .

Hence, the result follows. �
Note that for a saddle-free differential ϕ, there is a natural identification

between the coloured quiver Q(ϕ) defined in Section 7.5 and the coloured quiver
Q(∆ϕ) associated with the N -angulation ∆ϕ given by Definition 9.10. The
correspondence of vertices is given by lh(δ) 7→ δ where δ is a generic trajectory of
ϕ, h is a horizontal strip containing δ and lh(δ) is the standard saddle connection
of h(δ). In the following, we identify Q(ϕ) and Q(∆ϕ).

Corollary 9.14 Let ϕ ∈ Q(N,n) be a saddle-free differential and ∆ϕ be an
N -angulation associated with ϕ. Then, there is an isomorphism of Z-lattices

ν : K(DN
n )

∼−→ H±(ϕ)

such that for each (N−2)-diagonal δ, λ takes the class of simple object [Sδ] to the
standard saddle class γh(δ) and the Euler form χ on K(DN

n ) to the intersection
form I± on H±(ϕ).

Proof. This immediately follows from Lemma 7.7 and Lemma 9.13. �
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9.6 Coloured quiver mutation and K-group

Let ∆ be an N -angulation and µ♯
δ(∆) be a new N -angulation given by the

operation in Section 9.1 where δ is an (N−2)-diagonal of ∆. We call a coloured

quiver Q(µ♯
δ(∆)) the coloured quiver mutation of Q(∆) at the vertex δ.

Let δ1, . . . , δn be (N − 2)-diagonals of ∆ and δ′1, . . . , δ
′
n be (N − 2)-diagonals

of µ♯
δi
(∆) (δ′j = δj if j ̸= i and δ′i = δ♯i ). Consider coloured quiver lattices

LQ(∆) =
n⊕

j=1

Zαj , LQ(µ♯
δi
(∆)) =

n⊕
j=1

Zα′
j

where αi (respectively α
′
i) is the basis corresponding to δi (respectively δ

′
i).

Define a linear map Fi : LQ(∆i) → LQ(µ♯
δi
(∆)) by

Fi(αj) :=

{
−α′

i if j = i

α′
j + q̃

(0)
ij α

′
i if j ̸= i.

where q̃
(0)
ij is the number of arrows of colour (0) from δ′i to δ′j in the coloured

quiver mutation Q(µ♯
δ(∆)). Then, the following result holds.

Lemma 9.15 Let λ : LQ(∆) → K(DN
n ) and λ♯ : L(Q(µ♯

δi
(∆)) → K(DN

n ) be the

isomorphisms given by Lemma 9.13. Then, there is a unique spherical twist
Φ ∈ Sph(DN

n ) such that the following (1) and (2) hold.

(1) The diagram

LQ(∆)

λ

��

Fi // LQ(µ♯
δi
(∆))

λ♯

��
K(DN

n )
[Φ] // K(DN

n )

commutes, where [Φ] is a linear automorphism on K(DN
n ) induced by Φ.

(2) Set H := H(∆) and H′ := H(µ♯
δi
(∆)). Then, Φ(H) = (H′)♭S′

i
where

S′
i := Sδ♯i

.

Proof. Part (2) follows from Lemma 9.7. Consider the relationship between
simple objects in Φ(H) and H′

SimΦ(H) = {S1, . . . , Sn}, SimH′ = {S′
1, . . . , S

′
n}.

under the backward simple tilting. By Proposition 2.8, there are relations

Si = S′
i[−1], Sj = Cone(S′

i[−1]⊗Hom1(S′
i, S

′
j) → S′

j) for j ̸= i.

At the K-group level, we have

[Si] = −[S′
i], [Sj ] = [S′

j ] + q̃
(0)
ij [S′

i] for j ̸= i.
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Let δ1, . . . , δn and δ′1, . . . , δ
′
1 be (N − 2)-diagonals of ∆ and µ♯

δi
(∆) with the

relations δj = δ′j if j ̸= i and δ♯i = δ′i. Note that λ(αj) = [Sδj ] and λ
♯(α′

j) = [Sδ′j
].

Since Sj = Φ(Sδj ) and S
′
j = Sδ′j

, we conclude that

([Φ] ◦ λ)(αi) = λ♯(−α′
i), ([Φ] ◦ λ)(αj) = λ♯(α′

j + q̃
(0)
ij α

′
i) for j ̸= i.

�

10 Proof of main theorem in Part II

10.1 Stratification

Following Section 5.2 in [BS], we introduce the stratification on Q(N,n). Many
results of [BS] for this stratification also hold in our cases. For ϕ ∈ Q(N,n),
denote by sϕ the number of saddle trajectories. Define the subsets of Q(N,n)
by

Dp := {ϕ ∈ Q(N,n) | sϕ ≤ p }.

(Note that our notation differs from that of [BS]. Our Dp is written B2p in
[BS].) Since Lemma 7.2 implies that sϕ ≤ n, we have Dn = Q(N,n). We note
that B0 consists of all saddle-free differentials. These subsets have the following
property.

Lemma 10.1 ([BS], Lemma 5.2) The subsets Dp ⊂ Q(N,n) form an in-
creasing chain of dense open subsets

D0 ⊂ D1 ⊂ · · · ⊂ Dn = Q(N,n).

Let F0 := D0 and Fp := Dp \Dp−1 for p ≥ 1. Then we have a finite
stratification

Q(N,n) =

n∪
p=0

Fp

by locally closed subset Fp.

Proposition 10.2 ([BS], Proposition 5.5 and Proposition 5.7) Let p ≥
1 and assume that ϕ ∈ Fp. Then, there is a neighborhood ϕ ∈ U ⊂ Dp a class
0 ̸= α ∈ H±(ϕ) such that

ϕ ∈ U ∩ Fp =⇒ Zϕ(α) ∈ R.

Further, if p ≥ 2, then we can take a neighborhood ϕ ∈ U ⊂ Dp to satisfy that
U ∩Dp−1 is connected.

Following Section 5.2 in [BS], we define a generic differential. ϕ ∈ Q(N,n)
is callled generic if for any γ1, γ2 ∈ H±(ϕ),

RZϕ(γ1) = RZϕ(γ2) =⇒ Zγ1 = Zγ2.
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Lemma 10.3 If ϕ ∈ Q(N,n) is generic, then ϕ ∈ D1.

Proof. Assume that ϕ ∈ Q(N,n) is generic and ϕ ∈ Q(N,n) \D1. Since at
least ϕ has two different saddle trajectories, we write them by γ1, γ2, and by
γ̃1, γ̃2 ∈ H±(ϕ) the corresponding saddle homology classes. Note that Zγ̂1 ̸=
Zγ̂2. On the other hand, by the definition of the saddle trajectory, we have
Zϕ(γ̂1),Zϕ(γ̂2) ∈ R and this contradicts to the definition of a generic differential.
�

A differential ϕ ∈ Q(N,n) defines the length of a smooth path γ : [0, 1] →
P1 \ {∞} by

lϕ(γ) :=

∫ 1

0

|φ(γ(t))|1/2
∣∣∣∣dγ(t)dt

∣∣∣∣ dt
where ϕ(z) = φ(z)dz⊗2.

Proposition 6.8 in [BS] is easily extended in our cases.

Proposition 10.4 ([BS], Proposition 6.8) Assume that for a sequence of
framed differentials

(ϕk, θk) ∈ Q(N,n)Γ∗ , k ≥ 1,

periods Zϕk
◦ θn : Γ → C converge as k → ∞. Further, there is some constant

L > 0, which is independent of k, such that any saddle connection γ of ϕk
satisfies lϕk

(γ) ≥ L. Then, there is some subsequence of {(ϕk, θk)}k≥1 which
converges in Q(N,n)Γ∗ .

10.2 Stability conditions from saddle-free differentials

Lemma 10.5 ϕ ∈ B0 ⊂ Q(N,n) be a saddle-free differential. Consider the
corresponding heart H(∆ϕ) ∈ EG◦

N (DN
n ) and a linear map

Z := Zϕ ◦ ν : K(DN
n ) −→ C

where Zϕ : H±(ϕ) → C is a period integral of ϕ and ν : K(DN
n )

∼−→ H±(ϕ)) is an
isomorphism given by Corollary 9.14. Then, the pair (H(∆ϕ), Z) determines a
unique stability condition σ(ϕ) = (H(∆ϕ), Z) ∈ Stab◦(DN

n ).

10.3 Wall crossing

Let ϕ1 ∈ F1 be a differential which has only one saddle trajectory. Write by
∆ϕ1 the set of (N −2)-diagonals obtained by taking one generic trajectory from
each horizontal strip of ϕ1. By Lemma 7.2, (n − 1) horizontal strips appear in
the decomposition of P1 by ϕ1, so the number of (N − 2)-diagonals in ∆ϕ1 is
(n− 1).

By Proposition 10.2, if we take r > 0 sufficiently small, then for any 0 < t ≤
r, the differentials

ϕ(t) := e−iπt · ϕ1, ϕ♯(t) := e+iπt · ϕ1
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are saddle-free. Write ϕ := ϕ(r) and ϕ♯ := ϕ♯(r).
Let ∆ϕ and ∆ϕ♯ be N -angulations determined by these saddle-free differen-

tials. Write by δ a unique (N − 2)-diagonal of ∆ϕ which is not contained in
∆ϕ1 :

δ := ∆ϕ \∆ϕ1 .

Lemma 10.6 Two N -angulations ∆ϕ and ∆ϕ♯ are related by

µ♯
δ(∆ϕ) = ∆ϕ♯ .

Proof. Let γ be a unique saddle trajectory of ϕ1. By Lemma 7.1, the rotation
z 7→ e±iπr takes γ to the standard saddle connection which makes a constant
angle ±πθ (put θ := r dN,n/2) with the horizontal foliation of e±iπr ·ϕ1. There-
fore, the generic trajectories δ and δ♯ are given as in the following figure, and
the result follows. �

..× . ×. −θ. ×. ×.
θ

As a result, we have an natural isomorphism of coloured quiver lattices
LQ(µ♯

δ(∆ϕ))
∼= LQ(∆

ϕ♯ ).

Let
Fδ : LQ(∆) −→ LQ(∆

ϕ♯ )

be the linear isomorphism defined in Section 9.6.
The relationship between Fδ and the Gauss-Manin connection

GM(c) : H±(ϕ) −→ H±(ϕ
♯)

along the path c(t) = eiπt · ϕ1 (t ∈ [−r, r]) is given by the next commutative
diagram.

Lemma 10.7 Let µ : LQ(∆ϕ) → H±(ϕ) and µ♯ : LQ(∆
ϕ♯ ) → H±(ϕ

♯) be the iso-

morphisms given by Lemma 7.7. Then, the diagram

LQ(∆ϕ)

µ

��

Fδ // LQ(∆
ϕ♯ )

µ♯

��
H±(ϕ)

GM(c) // H±(ϕ
♯)

commutes.
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Proof. �
For 0 < t, r, we denote by

σ(t) := σ(ϕ(t)), σ♯(t) := σ(ϕ♯(t))

stability conditions in Stab◦(DN
n ) constructed by Lemma 10.5 for saddle-free

differentials ϕ(t) and ϕ♯(t).

Proposition 10.8 ([BS], Proposition 10.7) Let ν : K(DN
n ) → H±(ϕ) and

ν♯ : K(DN
n ) → H±(ϕ

♯) be the isomorphisms given by Corollary 9.14. Then,
there is a unique spherical twist Φ ∈ Sph(DN

n ) such that the following (1) and
(2) hold.

(1) The diagram

K(DN
n )

ν

��

[Φ] // K(DN
n )

ν♯

��
H±(ϕ)

GM(c) // H±(ϕ
♯)

commutes.

(2) The stability conditions Φ(σ(t)) and σ♯(t) become arbitrarily close at t→ 0
in Stab◦(DN

n ).

Proof. Part (1) is immediately follows from Lemma 9.15 and Lemma 10.7. For
the proof of part (2), we first note that by Lemma 9.15 (2) and Lemma 10.6,
the hearts H(∆ϕ) and H(∆ϕ♯) are related by

Φ(H(∆ϕ)) = H(∆ϕ♯)♭S
δ♯
.

By the definition of σ(t) and σ♯(t) in Lemma 10.5, σ(t) is contained in Stab(H(∆ϕ))
and σ♯(t) is contained in Stab(H(∆ϕ♯)). Further, by Part (1), the central charges
of σ(t) and σ♯(t) approach the same point in Hom(K(DN

n ),C) at t→ 0. Hence,
by Lemma 2.18, we can take some open subset

U ⊂ Stab(H(∆ϕ)) ∪ Stab(H(∆ϕ♯))

such that U is mapped isomorphically on Hom(DN
n ,C) and σ(t), σ♯(t) ∈ U .

Thus, the result follows. �

10.4 Construction of isomorphism

Definition 10.9 Let (ϕ, θ) ∈ Q(N,n)Γ be a framed saddle-free differential and
ν : K(DN

n ) → H±(ϕ) be an isomorphism in Lemma 9.14. We define the isomor-
phism κ by the composition of θ and ν−1:

κ := ν−1 ◦ θ : Γ ∼−→ K(DN
n ).
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Fix a framed saddle-free differential (ϕ0, θ0) ∈ Q(N,n)Γ and let Q(N,n)Γ∗
be the connected component which contains (ϕ0, θ0).

In the following, we identify K(DN
n ) with Γ by the isomorphism κ0 for

(ϕ0, θ0) given by Definition 10.9.

Lemma 10.10 Let (ϕ, θ) ∈ Q(N,n)Γ∗ be a framed saddle-free differential and
κ : Γ → K(DN

n ) be an isomorphism determined by Definition 10.9. Then, there
is some spherical twist Φ ∈ Sph(DN

n ) such that the diagram

Γ

κ

||xx
xx

xx
xx

x
κ0

##GG
GG

GG
GG

G

K(DN
n )

[Φ] // K(DN
n ).

commute. In addition, if there are two such spherical twists Φ1 and Φ2, then
the induced linear isomorphisms on K(DN

n ) are the same:

[Φ1] = [Φ2].

Proof. [Φ1] = [Φ2] immediately follows from

[Φ1] ◦ κ = κ0 = [Φ2] ◦ κ.

Therefore, we show that such a spherical twist exsists. Take a path c : [0, 1] →
Q(N,n)Γ∗ from (ϕ, θ) to (ϕ0, θ0). By Proposition 10.2, we can deform the path
c to be intersecting only finitely many points of F1, consisting of framed differ-
entials having only one saddle trajectory.

By applying Proposition 10.8 to each of these points, we have a spherical
twist Φ ∈ Sph(DN

n ) fitting into a diagram

K(DN
n )

ν

��

[Φ] // K(DN
n )

ν0

��
H±(ϕ)

GM(c) // H±(ϕ0)

where ν and ν0 are isomorphisms given by Corollary 9.14. Further, recall the
diagram

Γ

θ

||yy
yy

yy
yy

y
θ0

##FF
FF

FF
FF

F

H±(ϕ)
GM(c) // H±(ϕ0)

in Section 6.7. Combining the above two diagrams, we have the result. �
Let Sph0(DN

n ) ⊂ Sph(DN
n ) be the subgroup of spherical twists which act

by the identity on K(DN
n ). Note that Sph(DN

n ) ∼= Bn+1 by Theorem 8.4 and
Sph(DN

n ) act as the group W± on K(DN
n ) (see Section 8.3). Hence the group

Sph0(DN
n ) is isomorphic to the group P±.
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Lemma 10.11 The action of Sph0(DN
n ) on Stab◦(DN

n ) is free and properly
discontinuous.

Proof. Let d be the metric on Stab◦(DN
n ) (for more details, see Section 8 in

[Bri07]). For any Φ ∈ Sph0(DN
n ) and σ ∈ Stab◦(DN

n ), the stability condition
Φ(σ) and σ are not equal but have the same central charge. Hence, by Lemma
6.4 in [Bri07], we have d(σ,Φ(σ)) ≥ 1 and this implies the result. �

By completely the same argument of Proposition 11.3 in [BS], we can con-
struct the following equivariant holomorphic map.

Proposition 10.12 There is a W±-equivariant and C-equivariant holomorphic
map of complex manifolds K such that the diagram

Q(N,n)Γ∗
K //

WN &&NNNNNNNNNNN
Stab◦(DN

n )/ Sph0(DN
n )

Zuukkkkkkkkkkkkkk

HomZ(Γ,C)

commutes.

Proof. Let t ∈ C act by Z(γ) 7→ eiπt · Z(γ) for Z ∈ HomZ(Γ,C) and γ ∈ Γ.
Then, by Definition 6.7 and Lemma 7.1, the map WN is C-equivariant. On the
other hand, by the definition of C-action on Stab◦(DN

n ) given in Section 2.6, the
map Z is also C-equivariant. Since both WN and Z are local isomorphisms, if
K exists, then K is C-equivariant.

Recall from Section 10.1 that there is the stratification

D0 ⊂ D1 ⊂ · · · ⊂ Dn = Q(N,n).

We extend the stratification to Q(N,n)Γ∗ by the obvious way (and use the same
notation).

Here, we give the construction of K only on the stratum D0 which consists
of framed saddle-free differentials. By using Proposition 10.2 and Proposition
10.8, the argument of Proposition 11.3 in [BS] for the extension of K on larger
strata Dp (p ≥ 1) also works in our case.

Let (ϕ, θ) ∈ D0 be a framed saddle-free differential. By Lemma 10.5, we
have the stability condition σ(ϕ) ∈ Stab◦(DN

n ). Let Φ ∈ Sph(DN
n ) be a spherical

twist given by Lemma 10.10. Since Φ is determined up to the action of P± ⊂
Sph(DN

n ), the map K : D0 → Stab◦(DN
n )/P± given by

K((ϕ, θ)) := Φ(σ(ϕ)) ∈ Stab◦(DN
n )/P±

is well-defined.
Finally, we see that K is W±-equivariant. Note that the action of W±

preserves the stratification and commutes with the action of C. Hence if we
showW±-equivariance on D0, then we can inductively extend it to larger strata.
But, it is clear by the construction of K on D0. �
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Let (ϕ, θ) ∈ Q(N,n)Γ∗ and we set σ = K((ϕ, θ)). The stability condition σ
is determined up to the action of P± ⊂ Aut(DN

n ). For a class 0 ̸= α ∈ Γ, let
Mσ(α) be the moduli space of σ-stable objects which have class α and phase
in (0, 1] (here, we treat Mσ(α) as a set).

Proposition 10.13 ([BS], Proposition 11.7) Let ϕ be a generic differential.
Then, the moduli space Mσ(α) is empty or one point. In particular, Mσ(α) is
one point if and only if the class α corresponds to the class of a saddle connection
of ϕ (up to sign).

Proof. By Lemma 10.3, ϕ has at most one saddle trajectory. Hence, the result
follows from the argument of Proposition 11.7 in [BS]. �

Proposition 10.14 The map K in Proposition 10.12 is an isomorphism.

Proof. By using Proposition 10.4 and Proposition 10.13, we can apply the
same argument of Proposition 11.11 in [BS]. �

Theorem 10.15 There is a Bn+1-equivariant and C-equivariant isomorphism

of complex manifolds K̃ such that the diagram

M̃n

K̃ //

WN %%JJJJJJJJJJ Stab◦(DN
n )

Zwwooooooooooo

HomZ(Γ,C)

commutes.

Proof. First, recall from Corollary 6.9 that M̃n is a universal covering of the
space Q(N,n)Γ∗ and M̃n/P± ∼= Q(N,n)Γ∗ . Further, by Proposition 10.12 and

Proposition 10.14, we have M̃n/P± ∼= Stab◦(DN
n )/P± (note that Sph0(DN

n ) ∼=
P±).

Therefore, we can lift the map K to the Bn+1-equivariant covering map

K̃ : M̃n → Stab◦(DN
n ),

and Lemma 10.11 implies that K̃ is an isomorphism. �

Corollary 10.16 The distinguished connected component Stab◦(DN
n ) is con-

tractible.

Proof. Since M̃n is contractible, it immediately follows from Theorem 10.15.
�
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[BBD82] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In
Analysis and topology on singular spaces, I (Luminy, 1981), volume
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Soc., Zürich, 2006, arXiv:math/0601185.

[Kel08] B. Keller. Calabi-Yau triangulated categories. In Trends in rep-
resentation theory of algebras and related topics, EMS Ser. Congr.
Rep., pages 467–489. Eur. Math. Soc., Zürich, 2008.
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