
博士論文

Congruences of Hilbert modular forms

over real quadratic fields

and the special values of L-functions

（実 2次体上のHilbert保型形式の合同式とL関数の特殊値）

氏名 平野　雄一



CONGRUENCES OF HILBERT MODULAR FORMS OVER REAL

QUADRATIC FIELDS AND THE SPECIAL VALUES OF L-FUNCTIONS

YUICHI HIRANO

Abstract. The purpose of this article is to carry out the first step towards a generalization
of the method of Greenberg–Vatsal in order to provide evidence for the Iwasawa main
conjecture for Hilbert modular forms in the residually reducible case. In the case of a
real quadratic field, we show how a congruence between a Hilbert cusp form and a Hilbert
Eisenstein series of the same parallel weight 2 give rise to congruences between the algebraic
parts of the critical values of the associated L-functions.

0. Introduction

0.1. Introduction. The motivation of this work is to investigate the Iwasawa main conjec-
ture for a Hilbert modular form whose associated Galois representation is residually reducible.
By the ingenious method of Ribet and Wiles, residually reducible representations provide
a powerful means of the proof of the Iwasawa main conjecture for GL1 over a totally real
number field. However, the advanced recent work of Skinner and Urban [Ski–Ur] for the
Iwasawa main conjecture for GL2 over Q has not treated this case. For this reason, we are
interested in providing evidence for the Iwasawa main conjecture in the residually reducible
case following the work of Greenberg and Vatsal [Gre–Vat].

The purpose of this paper is to show how congruences between the Fourier coefficients of
Hilbert Hecke eigenforms give rise to congruences between the special values of the associated
L-functions. The study of this topic for elliptic modular forms was initiated by Mazur [M]
using the arithmetic of modular curves in order to investigate a weak analogue of the Birch
and Swinnerton–Dyer conjecture. Mazur’s congruence formula was generalized by Stevens
([Ste1], [Ste2]). Using this tool, Vatsal [Vat] has proved congruences between special values of
the L-functions of an elliptic cusp form and those of the L-functions of an elliptic Eisenstein
series of the same weight 2. Based on this congruences, Greenberg and Vatsal [Gre–Vat] have
studied the Iwasawa invariant of elliptic curves in towers of cyclotomic fields. In particular,
they proved the Iwasawa main conjecture for certain elliptic curves. Their work is motivated
by Kato’s result [Kato] on the Iwasawa main conjecture for elliptic modular forms.

In this paper, we present a way to obtain congruences of the special values of the L-
functions from congruences between a Hilbert cusp form and a Hilbert Eisenstein series of
the same parallel weight 2 under some conditions. This is a generalization of the works
explained above by Mazur [M], Stevens [Ste2], and Vatsal [Vat].

Let F be a totally real number field with narrow class number 1 and degree n = [F : Q]
and △F the discriminant of F . Let n be an integral ideal of F such that (n, 6△F ) = 1. Let
p ≥ n + 2 be a prime number such that (p, 6n△F ) = 1. Let O be the ring of integers of a
finite extension K over Qp and ϖ ∈ O a uniformizer. We fix an algebraic closure Qp of Qp

and an embedding Qp ↪→ C.
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Theorem 0.1 (=Theorem 3.1). Let φ and ψ be totally even (resp. totally odd) O-valued
narrow ray class characters of conductor mφ and mψ such that mφmψ = n and ϵ = −1 (resp.
ϵ = 1) the character on the Weyl group WG. Put χ = φψ, which is a totally even character.
Assume that φ ̸= 1 and the algebraic Iwasawa µ-invariants of the splitting fields of φ and ψ
are equal to 0. Let f ∈ S2(n,O) be a normalized Hecke eigenform for every Hecke operator
T (m) and U(m) with character χ. We assume the following four conditions, where Y (n)
denotes the Shimura variety defined by (1.2):

(a) Hn+1
c (Y (n),O) is torsion-free;

(b) Hn(∂
(
Y (n)BS

)
,O) is torsion-free;

(c) the Hilbert Eisenstein series E = E2(φ,ψ) ∈ M2(n,O) with character χ satisfies f ≡
E (mod ϖ) (for the definition, see just before Theorem 3.1);

(d) C(q,E) ̸≡ N(q)(modϖ) for some prime ideal q dividing n, where C(q,E) is the U(q)-
eigenvalue of E.

Then there exist a complex number Ωϵf ∈ C× and a p-adic unit u ∈ O× such that, for

every primitive narrow ray class character η : Cl+F (mη) → Q×
of conductor mη such that

n|mη and η = ϵ on WG ≃ A×
F,∞/A

×
F,∞,+, the both values τ(η−1)D(1, f, η)/(2π

√
−1)nΩϵf and

τ(η−1)D(1,E, η)/(2π
√
−1)n belong to O(η) and the following congruence holds:

τ(η−1)
D(1, f, η)

(2π
√
−1)nΩϵf

≡ uτ(η−1)
D(1,E, η)

(2π
√
−1)n

(mod ϖ).

Here τ(η−1) is the Gauss sum attached to η−1, D(1, ∗, η) is given by the Dirichlet series in
the sense of Shimura (for the definition, see (1.12)), O(η) is the ring of integers of K(η),
and K(η) is the field generated by elements of im(η) over K.

Remark 0.2. The assumption that the algebraic Iwasawa µ-invariants of the splitting fields
of φ and ψ are equal to 0 is satisfied if the splitting fields of φ and ψ are abelian extensions
over Q by the Ferrero–Washington theorem.

This result can be regarded as an analogue of Vatsal’s result [Vat] in the case F = Q
and weight k = 2. However, our methods to prove the main theorem have some limita-
tions, such as the need for the torsion-freeness of the compact support cohomology and the
boundary cohomology. In the case F is a real quadratic field with narrow class number 1,
the assumption (a) is equivalent to the p-torsion-freeness of the maximal abelian quotient
of the fundamental group of the Shimura variety Y (n). This has been studied by M. Kuga
in [Kuga]. By using his method and the theorem of Serre (congruence subgroup property),
we will prove the p-torsion-freeness under some assumptions (Proposition 2.26). Moreover,
if n is a prime ideal, then the assumption (b) is satisfied under some assumptions (Proposi-
tion 2.27). We will also give an example of a congruence between a Hilbert cusp form and
a Hilbert Eisenstein series of the same parallel weight 2 satisfying the all assumptions of
Theorem 0.1 (Example 2.28).

The organization of this paper is as follows.
In §1, we summarize results on the Hilbert modular varieties and Hilbert modular forms in

the analytic and algebraic settings. Moreover, we state basic properties of Hilbert Eisenstein
series, which are of great utility in the following sections.

In §2, we give an analogue of Stevens’s results [Ste2]. We will construct a desired n-cocycle
πh associated to a Hilbert modular form h of a general multiple weight k ≥ 2t (Definition
2.4), which is based on the method of Yoshida ([Yo], [Yo2]). This provides the following
three results:
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(i) Mellin transform for a more general Hilbert modular form (§2.7, §2.8);
(ii) Integrality of the cohomology class of a Hilbert Eisenstein series (Corollary 2.24);
(iii) Construction of an example of a congruence between a Hilbert cusp form and a Hilbert

Eisenstein series (Example 2.28).

The result (i) can be regarded as an analogue of results of Stevens ([Ste1], [Ste2]). He
expected that his methods would be generalized to Hilbert modular forms [Ste1].

This cocycle allows us to determine the structure of the congruence module attached to
a Hilbert Eisenstein series (Theorem 2.22), based on Berger [Be] and Emerton [Eme] by
using cohomological congruence. This method and result can be regarded as cohomological
treatment of the arguments of Ribet [Ri] and Wiles [Wil]. As an application, we prove (ii)
and (iii) under some assumptions.

In §3, we generalize Vatsal’s results [Vat]. For a normalized Hecke eigenform f and a
Hilbert Eisenstein series E of the same parallel weight 2 related by congruences of the Hecke
eigenvalues C(q, f) ≡ C(q,E)(mod ϖ) for all prime ideal q, we derive congruences between
the special values of the associated L-functions (Theorem 0.1=Theorem 3.1). One of the
key ingredients in our proof is to describe the special values of the L-functions attached to
Hilbert modular forms using the evaluation maps (Proposition 2.19 and Proposition 2.20).
This description allows us to prove congruences between the special values by using the
cohomological congruence obtained by §4.

In §4, we present a way to show how congruences between the Fourier coefficients of
Hilbert Hecke eigenforms give rise to congruences between the cocycles (Theorem 4.1) by
using integral p-adic Hodge theory for open varieties with constant coefficients. Theorem
4.1 is crucial to prove congruences of integral cohomology classes between [πf]/Ωf and [πE]
modulo ϖ and the main theorem (Theorem 0.1=Theorem 3.1). It may be regarded as an
analogue of multiplicity one theorem for modulo p parabolic cohomology in the case where
the residual Galois representations ρ̄f (= ρf mod ϖ) associated to a Hilbert cusp form f is
reducible. In the case ρ̄f is irreducible, under some assumptions, a multiplicity one theorem
is known to be true by [Dim2] for a general totally real number field.
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0.2. Notation. In this paper, p and l always denote distinct prime numbers. We denote by
N the set of natural numbers (that is, positive integers), denote by Z (resp. Zp) the ring of
rational integers (resp. p-adic integers), and also denote by Q (resp. Qp) the rational number

field (resp. the p-adic number field). Let Ẑ =
∏
l<∞ Zl, where l runs over all rational primes.

We fix algebraic closures Q of Q and Qp of Qp, and fix embeddings

Q
ιp−→ Qp → C,

where C denotes the complex number field.
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We assume that every ring is commutative with identity. For a ring R and n ∈ N, we use
the following notation:

Mn(R) = {(n× n)-matrices with entries in R};
GLn(R) = {M ∈ Mn(R) |M is an invertible matrix};
SLn(R) = {M ∈ GLn(R) | det(M) = 1}.

Moreover, if R is a subring of R, we put

GLn(R)+ = {M ∈ GLn(R) | det(M) > 0}.

Let F be a totally real number field of degree n = [F : Q], oF the ring of integers of F ,
and AF the adéle of F . We abbreviate AQ to A. We have the usual decomposition AF =
AF,f ×AF,∞ into finite and infinite adéle parts and denote adélic variables by x = (x0, x∞).
For any x ∈ AF and any place v of F , xv denotes the v-component of x. For any element
x ∈ AF , any subset X of AF , and any ideal n of oF , we write xn and Xn for the projection
of x and X to

∏
q|n Fq, where Fq denotes the q-adic completion of F . Let N = NrF/Q be the

norm map of F/Q, dF ⊂ oF the different of F , and △F = N(dF ) the discriminant of F . A
narrow ray class character modulo an integral ideal b of F is a homomorphism

χ : Cl+F (b) → C×.

Let r ∈ (Z/2Z)n be the sign of χ:

χ((α)) = sgn(α)r for α ≡ 1 (modb).

The character χ is called as totally even (resp. totally odd) if the sing r = (0, · · · , 0) (resp.
r = (1, · · · , 1)).

For an algebraic group H/Q, we shall abbreviate H(R) to H∞ and denote by H∞,+ the
connected component of H∞ with the identity. We define the reductive algebraic group
G/Q to be ResF/QGL2/F , where ResF/Q denotes the Weil restriction of scalars. We shall

denote by B/Q = B+
/Q (resp. B−

/Q) the standard Borel subgroup of upper (resp. lower)

triangular matrices and U/Q = U+
/Q (resp. U−

/Q) its unipotent radical of G/Q. Let JF

be the set of all real embeddings of F into R. We have G∞ = GL2(R)JF = GL2(R)n,
G∞,+ = GL2(R)JF+ = GL2(R)n+, and G(A) = GL2(AF ).

0.3. Acknowledgment. I would like to express my gratitude to Professor Takeshi Tsuji for
providing helpful comments and suggestions and pointing out mathematical mistakes during
the course of my study. In particular, the work in §4 would have been impossible without
his insight and guidance.

1. Hilbert modular variety and Hilbert modular form

1.1. Analytic Hilbert modular forms. We recall the definitions of classical Hilbert mod-
ular forms. For more detail, refer to [Shi], [Hida88], [Hida91], [Hida94], [Ge–Go].

Let H = {z ∈ C | Im(z) > 0} be the upper half plane. Then GL2(R)+ acts on H by

αz =
az + b

cz + d
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for α =

(
a b
c d

)
∈ GL2(R)+ and z ∈ H. We consider the left action of GL2(R)JF+ on HJF

defined by

αz =

(
aσzσ + bσ
cσzσ + dσ

)
σ∈JF

for z = (zσ)σ∈JF ∈ HJF and α =

((
aσ bσ
cσ dσ

))
σ∈JF

∈ GL2(R)JF+ . We define an action of the

element

(
−1 0
0 1

)
on H by z 7→ −z̄. Then the action of GL2(R)JF+ extends to that of G∞ on

HJF . Let i = (
√
−1, · · · ,

√
−1) ∈ HJF . Let K∞ = StabG(R)(i) and K∞,+ = StabG(R)+(i) be

the stabilizers of i. For each subset J ⊂ JF and α ∈ G∞, we put

Jα = {σ ∈ JF | σ ∈ J if det(ασ) > 0, σ ∈ JF − J if det(ασ) < 0} .
For each subset J ⊂ JF , we define an automorphic factor jJ (α, z) ∈ CJF as follows: for

α =

((
aσ bσ
cσ dσ

))
σ∈JF

∈ GL2(R)JF and z ∈ HJF ,

jJ (α, z) =
(
cσz

J
σ + dσ

)
σ
,

where

zJσ =

{
zσ if σ ∈ J,
zσ if σ ∈ JF − J.

(1.1)

It satisfies the cocycle condition: for each α, β ∈ G∞,

jJ (αβ, z) = jJβ (α, βz)jJ (β, z).

For an ideal n of oF , we define open compact subgroups of G(Af ) to be

K1(n) =

{(
a b
c d

)
∈ G(Ẑ)

∣∣∣∣c ∈ n, d− 1 ∈ n

}
.

The adélic Hilbert modular variety of level K1(n) is defined as

Y (n) = G(Q)\G(A)/K1(n)K∞,+(1.2)

= G(Q)+\G(A)+/K1(n)K∞,+,

where G(A)+ = G(Af )G∞,+ and G(Q)+ = G(Q) ∩G∞,+. We recall that Y (n) is a disjoint
union of finitely many arithmetic quotients Yi as follows. Let T = ResF/Q(Gm). The
determinant map det : G→ T induces

det : G(Q)\G(A)/K1(n)K∞,+ → T (Q)\T (A)/det(K1(n)K∞,+).

Moreover, we have

T (Q)\T (A)/det(K1(n)K∞,+) ≃ F×\A×
F /ô

×
FA

×
F,∞,+,

where A×
F,∞,+ = R×JF

+ . It is isomorphic to the narrow ideal class group Cl+F of F via

x 7→ [x] =
∏

p p
ordp (xp ), where p runs over through the set of all prime ideals of oF . Let

h+F = ♯Cl+F be the narrow class number of F and t1, · · · , th+F ∈ A×
F such that ti,∞ = 1 and

the corresponding fractional ideals [t1], · · · , [th+F ] form a complete set of representatives for

Cl+F . Throughout the paper, we assume that

for each i, both dF and [ti] are prime to p.(1.3)
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Let D ∈ A×
F be such that [D] = dF and D∞ = 1. We put

xi =

(
D−1t−1

i 0
0 1

)
.

By the strong approximation theorem, we have

G(A) =
h+F⨿
i=1

G(Q)xiG∞,+K1(n).

It implies the canonical decomposition

Y (n) ≃
h+F⨿
i=1

Yi,(1.4)

where

Yi = Γi(K1(n))\HJF ,
Γi(K1(n)) = G(Q)+ ∩ xiK1(n)x

−1
i G(R)+.

We will be mostly interested in the following special congruence subgroups of G(Q):

Γ0,i(n) = Γ0(dF [ti], n)(1.5)

=

{(
a b
c d

)
∈ GL2(F )

∣∣∣∣a, d ∈ oF , b ∈ d−1
F [ti]

−1, c ∈ ndF [ti], ad− bc ∈ o×F,+

}
;

Γ1,i(n) = Γi(K1(n)) = Γ1(dF [ti], n) =

{(
a b
c d

)
∈ Γ0,i(n)

∣∣∣∣d ≡ 1 mod n

}
;

Γ1
1,i(n) = Γ1

1(dF [ti], n) = Γ1,i(n) ∩ SL2(F ),

where o×F,+ ⊂ o×F denotes the subgroup of totally positive units. Then we have

Y 1
i = Γ1

1,i(n)\HJF

and the o×F,+/o
×2
F,n-covering map

τi : Y
1
i → Yi,

where o×F,n ⊂ o×F denotes the subgroup consisting of elements congruent to 1 modulo n. We
put

Y 1(n) =

h+F⨿
i=1

Y 1
i .(1.6)

We define the subset of weights X(T ) ⊂ Z[JF ]× 1
2Z[JF ] by

X(T ) = {κ = (k − 2t,m) | k − 2t+ 2m ∈ Z · t},
where t =

∑
σ∈JF σ.

We fix a subset J ⊂ JF and κ = (k − 2t,m) ∈ X(T ) such that k − 2t + 2m = 0 as [Shi].
For any α ∈ G(A) and C-valued function f on G(A), we define the function f|κ,Jα on G(A)
by

(f|κ,Jα)(x) = det(α∞)k−t+mj
Jα∞ (α∞, i)

−kf(xα−1).

Here we used the convention that, for z ∈ (F ⊗ R)×+ and ν ∈ Q[JF ], z
ν =

∏
σ z

νσ
σ and, for

z ∈ HJF and ν ∈ Z[JF ], zν =
∏
σ z

νσ
σ . We abbreviate f|κ,JF to f|κ.
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First we recall the adélic definition of the Hilbert modular forms, following [Shi] and
[Hida88]. The space

Sκ,J(K1(n),C)
of Hilbert cusp forms of weight κ with respect to level K1(n) and type J is the C-vector
space of functions f : G(A) → C satisfying the following four conditions (a),(b),(c), and (d):
(a) f|κ,Ju = f for all u ∈ K1(n)K∞,+;
(b) f(γx) = f(x) for γ ∈ G(Q);
For each z ∈ HJF , we can choose u∞ ∈ G∞,+ such that z = u∞i. We define a function by

fxj : H
JF → C : z 7→ det(u∞)−k+t−mjJ (u∞, i)

kf(xju∞). Then it is well-defined, that is, it is
independent of the choice of u∞ ∈ G∞,+ by (a).
(c) fxj is holomorphic at zσ for σ ∈ J and anti-holomorphic at zσ for σ ∈ JF − J ;

(d)
∫
U(Q)\U(A) f(ux)du = 0 for all x ∈ G(A) for each additive Haar measure du on U(Q)\U(A).

Also, the space

Mκ,JF (K1(n),C)
of holomorphic Hilbert modular forms of weight κ with respect to level K1(n) and type JF
is the C-vector space of functions f : G(A) → C satisfying the condition (a), (b), and (c) as
above in the case J = JF .

We remark that this adélic definition of [Shi] is related to that of [Hida88], which is
explicitly given by the proof of [Hida88, Proposition 4.1].

We fix a narrow ray class character χ : Cl+F (m) → C× whose conductor m dividing n of infi-
nite type −k+2t−2m = 0. We define the spaceMκ,JF (K1(n), χ,C) (resp. Sκ,J(K1(n), χ,C))
to be the subspace of Mκ,JF (K1(n),C) (resp. Sκ,J(K1(n),C)) satisfying f(xb) = χ−1(b)f(x)

for any b ∈ A×
F . We note that

Mκ,JF (K1(n),C) ≃
⊕
χ

Mκ,JF (K1(n), χ,C), Sκ,J(K1(n),C) ≃
⊕
χ

Sκ,J(K1(n), χ,C),

where χ runs over all narrow ray class characters whose conductor m dividing n of infinite
type 0.

Next we recall the definition of the Hilbert modular forms over the Hilbert upper half
plane HJF . The space

Sκ,J(Γ1,i(n),C)
of Hilbert cusp forms of weight κ with respect to level Γ1,i(n) and type J is the C-vector
space of functions f : HJF → C which is holomorphic at zσ for σ ∈ J and anti-holomorphic
at zσ for σ ∈ JF − J satisfying f |κ,Jγ = f for all γ ∈ Γ1,i(n) and vanishing at all cusps,

where (f |κ,Jγ)(z) = det(γ)k−t+mjJ (γ, z)
−kf(γz).

The space

Mκ,JF (Γ1,i(n),C)
of holomorphic Hilbert modular forms of weight κ with respect to level Γ1,i(n) and type JF
is the C-vector space of holomorphic functions f : HJF → C satisfying f |κ,JF γ = f for all

γ ∈ Γ1,i(n).
Then the map f 7→ (fxi)i induces

Mκ,JF (K1(n),C) ≃
h+F⊕
i=1

Mκ,JF (Γ1,i(n),C), Sκ,J(K1(n),C) ≃
h+F⊕
i=1

Sκ,J(Γ1,i(n),C)

(cf. [Hida91, p.323] and [Hida88, (2.6a)]).
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We define the Hecke operator acting on Mκ,JF (K1(n),C) and Sκ,J(K1(n),C) as follows.

We define the semigroups R̂(n) and Rij(n) as

R̂(n) = G(Af ) ∩
{(

a b
c d

)
∈M2(ôF )

∣∣∣∣c ∈ nôF , dv ∈ O×
v whenever pv|n

}
,

Rij(n) = G(Q) ∩ xjR̂(n)x−1
i .

Then the Hecke character χ defines a character on R̂(n) and Rij(n) by

χ

((
a b
c d

))
= χ(dn).

For y ∈ R̂(n) and the double coset decomposition

(K1(n)K∞,+) y (K1(n)K∞,+) =
⨿
i

(K1(n)K∞,+) yi,

we define

f|[(K1(n)K∞,+) y (K1(n)K∞,+)](x) =
∑
i

f(xy−1
i ).(1.7)

In particular, the Hecke operator acting on Mκ,JF (K1(n), χ,C) and Sκ,J(K1(n), χ,C) is
given by

f|[(K1(n)K∞,+) y (K1(n)K∞,+)](x) =
∑
i

χ(yi)
−1f(xyιi),

where yι = det(y)y−1.
The definition of the Hecke operator acting on the Hilbert modular forms over the Hilbert

upper half plane and the relation between this Hecke operator and adélic one is explicitly
given by [Shi, §2].

1.2. Dirichlet series associated to a Hilbert modular form. The aim of this subsection
is to describe the definition and properties of Dirichlet series attached to Hilbert modular
forms, following [Shi].

Let h = (hi)i ∈Mκ,JF (K1(n),C). Assume that

κ = ((k − 2)t,m) satisfies (k − 2)t+ 2m = 0 for 2 ≤ k ∈ Z.

Then h has the Fourier expansion of the form

h

((
y x
0 1

))
=c∞([y]dF ,h)N([y]dF )

−k/2yk/2∞(1.8)

+
∑

0≪ξ∈F
c(ξ[y]dF ,h)N(ξ)k/2yk/2∞ eF (

√
−1ξy∞)eF (ξx)

given by [Shi, (2.18)] and [Hida88, Proposition 4.1] for any x ∈ AF and y ∈ A×
F with 0 ≪ y∞.

Here m 7→ c(m,h) is a function on fractional ideals of F vanishing outside integral ideals
and eF is the additive character of F\AF characterized by eF (x∞) = exp(2π

√
−1x∞) for

x∞ ∈ AF,∞ (for the definition, see, for example, [Ge–Go, Appendix C.2]). Here we used the
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convention that y
k/2
∞ =

∏
σ y

kσ/2
∞,σ . In particular, for z = x∞ +

√
−1y∞ ∈ HJF , we have

hi(z) = y−k/2∞ h

(
xi

(
y∞ x∞
0 1

))
= y−k/2∞ h

((
t−1
i D−1 0

0 1

)(
y∞ x∞
0 1

))
(1.9)

= c∞([ti]
−1,h)N([ti])

k/2 +
∑

0≪ξ∈[ti]

c(ξ[ti]
−1,h)N(ξ)k/2eF (ξz).

We simply denote by

a∞(0, hi) = c∞([ti]
−1,h)N([ti])

k/2 and a∞(ξ, hi) = c(ξ[ti]
−1,h)N(ξ)k/2

for any 0 ≪ ξ ∈ [ti]. For h = (hi)i ∈Mκ,JF (K1(n),C), we denote by

C∞,i(0,h) = N([ti])
−k/2a∞(0, hi),(1.10)

C(m,h) = N(m)k/2c(m,h)(1.11)

for all non-zero integral ideals m of F .
Let η be a character of the narrow ray class group Cl+F (mη). The Dirichlet series in the

sense of Shimura [Shi, (2.25)] is defined by∑
m

C(m,h)η(m)N(m)−s,(1.12)

where m runs over all integral ideals of F . It converges absolutely for sufficiently large
Re(s) ≫ 0 and extends to a meromorphic function on the complex plane (see, for exam-
ple, §2.7 in this paper). For each h ∈ Mκ,JF (K1(n),C), let D(s,h, η) denote this analytic
continuation. If η is the trivial character, we simply write D(s,h).

1.3. Hilbert Eisenstein series. We recall the definition and properties of the Hilbert
Eisenstein series. For more detail, refer to [Shi, §3].

We fix integral ideals a, b of F . Let φ (resp. ψ) be a character of Cl+F (a) (resp. Cl+F (b))
with sign q (resp. r) ∈ (Z/2Z)n. We may regard φ (resp. ψ) as a function of all integral
ideals of F by defining φ(m) = 0 (resp. ψ(m) = 0) if m is not prime to a (resp. b). Then a
function sgn(x)rψ(xh−1) of x ∈ h depends only on x modulo ah for a fractional ideal h of F .
If ψ is primitive, that is, the conductor mψ is exactly b, then, by [Shi, (3.11)], we have∑

b∈[ti]h−1/b[ti]h−1

sgn(b)rψ(b[ti]
−1h)eF (tb) = sgn(t)rψ−1(tb[ti]dFh

−1)τ(ψ)(1.13)

for a fractional ideal h of F and t ∈ b−1d−1
F [ti]

−1h, where τ(ψ) is the Gauss sum attached to
ψ defined by

τ(ψ) =
∑

x∈b−1d−1
F /d−1

F

sgn(x)rψ(xbdF )eF (x).

The following proposition is obtained by [Shi, Proposition 3.4] and [Da–Da–Po, Proposi-
tion 2.1].

Proposition 1.1. Let k ≥ 2 be an integer such that (k, · · · , k) ≡ q+r (mod 2). Assume that
both φ and ψ are primitive. Then there exists an Eisenstein series Ek(φ,ψ) = (Ek(φ,ψ)i)i ∈
Mκ,JF (K1(ab), φψ,C) satisfying the following properties.

(1) D(s,Ek(φ,ψ)) = L(s, φ)L(s− k + 1, ψ).
(2) C(m,Ek(φ,ψ)) =

∑
c|m φ

(
m
c

)
ψ(c)N(c)k−1 for each integral ideal m of F .
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(3)

C∞,i(0, Ek(φ,ψ)) =


2−nφ−1([ti])L(1− k, φ−1ψ) if a = 1,

0 otherwise.

Proposition 1.2. Assume that [F : Q] > 1, h+F = 1, and dF [t1] = oF . Under the same nota-
tion and assumptions of Proposition 1.1, the constant term ax/y(0, Ek(φ,ψ)1) of Ek(φ,ψ) =

Ek(φ,ψ)1 at the cusp x/y ∈ P1(F ) is given by the followings: fix α =

(
x β
y δ

)
∈ SL2(oF )

such that α(∞) = x/y. If y /∈ mψ and ψ ̸= 1, then ax/y(0, Ek(φ,ψ)1) = 0. If y ∈ mψ or
ψ = 1, then

ax/y(0, Ek(φ,ψ)1) =
N([t1])

k/2

2n
τ(φψ−1)

τ(ψ−1)

(
N(mψ)

N(mφψ−1)

)k
sgn(−y)qφ(−ym−1

ψ )sgn(−x)rψ−1(−x)

×

 ∏
q|mφmψ ,q∤mφψ−1

(1− φψ−1(q)N(q)−k)

L(1− k, φ−1ψ).

Proof. We follow the arguments in the proof of [Da–Da–Po, Proposition 2.1] and [Fre, Chap-
ter III, Theorem 4.9]. We simply write a = mφ and b = mψ. In order to prove it, we recall
the construction of the Eisenstein series Ek(φ,ψ) from [Shi, §3] and [Da–Da–Po, Proposition
2.1]. Let

U = {u ∈ o×F | N(u)k = 1, u ≡ 1 mod ab}

be a subgroup of o×F with finite index. For z ∈ Hn and s ∈ C with Re(2s+ k) > 2, we define

Ek(φ,ψ)1(z, s) =N([t1])
1−k/2[o×F : U ]−1Γ(k)nN(b)−1τ(ψ)

∑
h∈ClF

∑
a∈h/ah

∑
t∈b−1d−1

F [t1]−1h/d−1
F [t1]−1h

(1.14)

× sgn(a)qφ(ah−1)sgn(−t)rψ(−tbdF [t1]h−1)N(h)k−1

× Ek,U (z, s; a, t; ah, d
−1
F [t1]

−1h),

where ClF is the ideal class group of F and

Ek,U (z, s; a, t; ah, d
−1
F [t1]

−1h)

= △1/2
F N(d−1

F [t1]
−1h)(−1)kn(2π

√
−1)−kn

∑
(a′,b′)U

(a′z + b′)−k|a′z + b′|−2s.

Here the sum runs over representatives (a′, b′) ̸= (0, 0) modulo U which acts by the diagonal
multiplication, such that a′ − a ∈ ah and b′ − t ∈ d−1

F [t1]
−1h. This series converges for

Re(2s + k) > 2 and can be continued to a holomorphic function in the whole plane if
n = [F : Q] > 1 ([Shi, p.656]). Then Ek(φ,ψ)1(z) = lims→0Ek(φ,ψ)1(z, s) is holomorphic
in z if n = [F : Q] > 1 ([Shi, p.656]).



CONGRUENCES OF HILBERT MODULAR FORMS 11

We put C = △1/2
F Γ(k)n[o×F : U ]−1N(dF )

−1(−2π
√
−1)−kn. For z ∈ Hn,

Ek,U (z, s; a, t; ah, d
−1
F [t1]

−1h)|α

= Ek,U (αz, s; a, t; ah, d
−1
F [t1]

−1h)(yz + δ)−k

= △1/2
F (−2π

√
−1)−kn

∑
(a′,b′)U

(a′αz + b′)−k(yz + δ)−k|a′αz + b′|−2s

= △1/2
F (−2π

√
−1)−kn

∑
(a′,b′)U

((a′x+ b′y)z + (a′β + b′δ))−k|a′αz + b′|−2s

Then this series contributes to the constant term of Ek(φ,ψ)1|α only when a′x+ b′y = 0.
(1) First suppose that y /∈ b. Since dF [t1] = oF and b′y = −a′x ∈ (y)b−1h∩ h, we see that

b′ ∈ h and and hence sgn(−b′)rψ−1(−b′bdF [t1]h−1) = 0 if b ̸= 1. Thus, the constant term
ax/y(0, Ek(φ,ψ)1) = 0 if b ̸= 1.

In the case b = 1, since dF [t1] = oF , the constant term of Ek(φ,ψ)1|α is equal to

C ·N([t1])
−k/2

∑
h∈ClF

∑
a∈h/ah

sgn(a)qφ(ah−1)N(h)k
∑

(a′,b′)U,(a′,b′) ̸=(0,0)
a′−a∈ah,b′∈h,a′x+b′y=0

(a′β + b′δ)−k−2s

(1.15)

at s = 0. Suppose that x ̸= 0. Using a′x+ b′y = 0 and xδ− βy = 1, we have a′ + b′y/x ∈ ah
and a′β + b′y = b′/x. Thus the constant term of Ek(φ,ψ)1|α is equal to

C ·N([t1])
−k/2

∑
h∈ClF

∑
b′U

b′∈h,b′ ̸=0

sgn

(
−b

′y

x

)q
φ

(
−b

′y

x
h−1

)
N(h)kN

(
b′

x

)−k−2s

(1.16)

at s = 0. Since the map (x−1h, b′) 7→ (b′/x)(x−1h)−1 ⊂ oF from the set {(x−1h, b′) |
(h, b′) in (1.16)} to the set of non-zero integral ideals of F is a surjective [o×F : U ]-to-1 map,
the value (1.16) is equal to

C ·N([t1])
−k/2sgn(−y)qφ(−y)[o×F : U ]L(k, φ).

Therefore, using the functional equation for the Hecke L-functions (see, for example, [Mi,
Theorem 3.3.1]), the constant term ax/y(0, Ek(φ,ψ)1) is equal to

ax/y(0, Ek(φ,ψ)1) =
N([t1])

k/2

2n
τ(φ)N(mφ)

−ksgn(−y)qφ(−y)L(1− k, φ−1)

as desired.
Next suppose that x = 0. Then βy = 1 and (a′, b′) in (1.15) satisfies b′ = 0 and a′β = −a′/y

and hence the constant term of Ek(φ,ψ)1|α is equal to

C ·N([t1])
−k/2

∑
h∈ClF

∑
a′U

a′∈h,a′ ̸=0

sgn
(
a′
)q
φ
(
a′h−1

)
N(h)kN

(
−a

′

y

)−k−2s

(1.17)

at s = 0. Therefore, in the same way as above, our assertion follows from the map
(y−1h, a′) 7→ (a′/y)(y−1h)−1 ⊂ oF from the set {(y−1h, a′) | (h, a′) in (1.17)} to the set
of non-zero integral ideals of F is a surjective [o×F : U ]-to-1 map and the functional equation
for the Hecke L-functions:

ax/y(0, Ek(φ,ψ)1) =
N([t1])

k/2

2n
τ(φ)N(mφ)

−ksgn(−y)qφ(−y)L(1− k, φ−1).
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(2) Next suppose that y ∈ b. The constant term of Ek(φ,ψ)1|α is equal to

C ·N([t1])
−k/2N(b)−1τ(ψ)

∑
h∈ClF

N(h)k
∑

(a′,b′)U,(a′,b′ )̸=(0,0)
a′∈h,b′∈b−1h,a′x+b′y=0

(1.18)

× sgn(a′)qφ(a′h−1)sgn(−b′)rψ−1(−b′bh−1)(a′β + b′δ)−k−2s

at s = 0. We note that the map (a′, b′) 7→ a′β + b′δ from the set {(a′, b′) in (1.18)} to
b−1h − {0} is bijective. Indeed, for (a′β + b′δ) ∈ b−1h, we have (a′β + b′δ)x = b′ and
−(a′β + b′δ)y = a′ since a′x + b′y = 0 and xδ − βy = 1. Thus the constant term of
Ek(φ,ψ)1|α is equal to

C ·N([t1])
−k/2N(b)−1τ(ψ)

∑
h∈ClF

∑
dU

d ̸=0,d∈b−1h

(1.19)

× sgn(−dy)qφ(−dyh−1)sgn(−dx)rψ−1(−dxbh−1)N(h)kN(d)−k−2s

at s = 0. Since the map (h, d) 7→ dbh−1 ⊂ oF from the set {(h, d) in (1.19)} to the set of
non-zero integral ideals of F is a surjective [o×F : U ]-to-1 map, the constant term (1.19) is
equal to

C ·N([t1])
−k/2N(b)−1sgn(−y)qφ(−y)sgn(−x)rψ−1(−x)

× φ(b−1)N(b)k[o×F : U ]L(k, φψ−1)
∏

q|mφmψ ,q∤mφψ−1

(1− φψ−1(q)N(q)−k).

Therefore, using the functional equation for the Hecke L-functions, we obtain that the con-
stant term ax/y(0, Ek(φ,ψ)1) is equal to

ax/y(0, Ek(φ,ψ)1) =
N([t1])

k/2

2n
τ(φψ−1)

τ(ψ−1)

(
N(mψ)

N(mφψ−1)

)k
sgn(−y)qφ(−ym−1

ψ )sgn(−x)rψ−1(−x)

×

 ∏
q|mφmψ ,q∤mφψ−1

(1− φψ−1(q)N(q)−k)

L(1− k, φ−1ψ).

as desired. □
1.4. Geometric Hilbert modular variety. We recall the algebraic Hilbert modular va-
rieties and its toroidal compactifications. For more detail, refer to [Dim2], [Dim–Ti], and
[Ti–Xi].

A Hilbert-Blumenthal abelian variety (HBAV for short) over a scheme S with respect to
oF is a pair (A, ι) consisting of an abelian scheme π : A→ S together with an embedding of
algebras ι : oF ↪→ End(A/S) such that π∗(Ω

1
A/S) ≃ d−1

F ⊗ OS , that is, Lie(A) is locally free

(oF ⊗ OS)-module of rank 1. We remark that if A/S is a HBAV, then its dual A∨
/S has a

natural structure of HBAV. We fix an ideal n of oF and put △ = NF/Q(ndF ). Let µn be the

closed subscheme of Gm⊗Z d
−1
F defined by µn(R) = {x ∈ Gm(R)⊗Z d

−1
F | nx = 0}. Let c be a

fractional ideal of F and c+ = c∩(F⊗R)×+ the cone of totally positive elements in c. If A/S is
a HBAV, the functor from the category of S-schemes to the category of sets X 7→ A(X)⊗oF c
is represented by an HBAV, denoted by A ⊗oF c. A c-polarization on a HBAV A/S is an

oF -linear isomorphism λ : A⊗oF c
≃−→ A∨ such that, under the isomorphism HomoF (A,A

∨) ≃
HomoF (A,A⊗oF c) given by f 7→ λ◦f , the symmetric elements of HomoF (A,A

∨) correspond
precisely to c ⊂ HomoF (A,A ⊗oF c), and the symmetric polarizations correspond precisely
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to c+. A µn-level structure on a HBAV A/S is an oF -linear closed immersion α : µn ↪→ A of
group schemes over S.

We consider the contravariant functor F1,c from the category of Z[1/△]-schemes to the
category of sets:

F1,c : S 7→ {(A, ι, λ, α)}/≃,(1.20)

where (A, ι) is a HBAV over S endowed with a c-polarizations λ and a µn-level structure α
and {∗}/≃ indicates the set of isomorphism classes of ∗.

Throughout the paper, we assume that

(n, 6△F ) = 1.(1.21)

Then Γ1(c, n) as in (1.5) is torsion-free ([Dim–Ti, Lemma 1.4]) and the functor F1,c is rep-
resentable by a quasi-projective, smooth, geometrically connected Z[1/△]-scheme M1,c =
M(Γ1

1(c, n)) of relative dimension n = [F : Q] ([Dim–Ti, Theorem 4.1]).
Let o×F,+ ⊂ o×F be the subgroup of totally positive units and o×F,n ⊂ o×F the subgroup

consisting of elements congruent to 1 modulo n. The finite group o×F,+/o
×2
F,n acts on M1,c by

[ε] · (A, ι, λ, α) = (A, ι, ι(ε) ◦ λ, α) for [ε] ∈ o×F,+/o
×2
F,n. We denoted by Mc = M(Γ1(c, n)) the

quotient of M1
c by o×F,+/o

×2
F,n. It is a coarse moduli scheme of the contravariant functor Fc

from the category of Z[1/△]-schemes to the category of sets:

Fc : S 7→ {(A, ι, [λ], α)}/≃,(1.22)

where (A, ι) is a HBAV over S endowed with an o×F,+-orbit of c-polarizations [λ] and a µn-level

structure α ([Dim–Ti, Corollary 4.2]). Also, Mc is a quasi-projective, smooth, geometrically
connected Z[1/△]-scheme of relative dimension n = [F : Q]. We put

M1 =

h+F⨿
i=1

M1,[ti], M =

h+F⨿
i=1

M[ti],

where {[ti]}
h+F
i=1 is a set of representatives of Cl+F as (1.3).

Toroidai compactifications M tor
1,c and M tor

c of M1,c and Mc are smooth and proper over

Z[1/△] and the boundaries M tor
1,c −M1

c and M tor
c −Mc are relative simple normal crossing

divisors of M tor
1,c and M tor

c , respectively ([Dim, Theorem 7.2]). We put

M tor
1 =

h+F⨿
i=1

M tor
1,[ti]

, M tor =

h+F⨿
i=1

M tor
[ti]
.

Let π : A →M1,c be the universal HBAV. There exists a semi-abelian scheme π : G →M tor
1,c

extending π : A → M1,c such that a neighbourhood of the boundary corresponding to a
cusp is the Tate semi-abelian scheme ([Dim–Ti, Theorem 6.4]). We have a vector bundle
ωc = π∗ΩG/Mtor

1,c
, which is a locally free OMtor

1,c
⊗ oF -module of rank 1.

Let F̃ be the Galois closure of F in Q and oF ′ the ring of integers of the number field

F ′ = F̃ (εt/2; ε ∈ o×F,+). For a Z[1/△]-scheme S, we denote by SoF ′ = S ×Z[1/△] oF ′ [1/△]

its base change to Spec(oF ′ [1/△]). The finite group o×F,+/o
×2
F,n acts on ωc over M tor

1,c,oF ′ via

[ε] · s = ε−1/2[ε]∗s, where s denotes a local section of ωc. Then ωc descends to a locally free
OMtor

c,oF ′
⊗ oF -module of rank 1.
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We remark that if B is an oF ′ [1/△F ]-algebra, then we can decompose

B ⊗ oF =
⊕
σ∈JF

B

by the map b⊗a 7→ (baσ)σ∈JF . In particular, ω decomposes into a direct sum of line bundles

ωc =
⊕
σ∈JF

ωc,σ.

1.5. Geometric Hilbert modular form and log de Rham cohomology. We use the
terminology of logarithmic structures in Kato [Kato2]. Let Y be a regular scheme and D a
reduced divisor with normal crossings on Y. Then the subsheaf L of monoids on Yét defind
by

L(U)={g ∈ OY(U) | g is invertible outside D ×Y U}(1.23)

for each étale Y-scheme U is a fine log structure ([Kato, (2.5)]).
Let D = M tor

1,[ti]
− M1,[ti] be the boundary. Then we define a log scheme (M tor

1,[ti]
, L)

to be the scheme M tor
1,[ti]

endowed with the log structure L={g ∈ OMtor
1,[ti]

| g is invertible

outside D}. By [Dim–Ti, Theorem6.4], there is a toroidal compactification Ator of the semi-
abelian scheme G on M1,[ti] such that Ator is smooth and proper over Z[1/△], π : Ator →
M tor

1,[ti]
extending π : A → M1,[ti] is semi-stable, and Ator − A is a relative normal crossing

divisor above D. We define a log scheme (Ator, L′) to be the scheme Ator endowed with
the log structure L′={g ∈ OAtor | g is invertible outside π−1(D)}. Then the morphisms of
log schemes (Ator, L′) → (M tor

1,[ti]
, L) and (M tor

1,[ti]
, L) → (Spec(Z[1/△]), triv) are log smooth

([Kato2, Theorem 3.5]) and hence both ΩjAtor/Mtor
1,[ti]

(log(D)) = ΩjAtor/Mtor
1,[ti]

(log(L′/L)) and

Ωj
Mtor

1,[ti]

(log(D)) = Ωj
Mtor

1,[ti]

(log(L)) are locally free of finite type ([Kato2, Theorem 3.10]).

We fix an algebra R0 = oF ′ [1/△]. For any Z[1/△]-algebra R and Z[1/△]-scheme Y,
we denote by YR its base change to Spec(R). Moreover, for any Z[1/△]-algebra R and
Z[1/△]-log scheme (Y, L), we denote by (Y, L)R its base change to (Spec(R), triv) with

the trivial log structure. Let ΩjAtor
R /Mtor

1,[ti],R

(log(D)) (resp. Ωj
Mtor

1,[ti],R
/R

(log(D))) denote the

differential module defined by the log smooth morphism (Ator, L′)R → (M tor
1,[ti]

, L)R (resp.

(M tor
1,[ti]

, L)R → (Spec(Z[1/△]), triv)R).

We define the de Rham cohomology sheaf on M tor
1,[ti],R

as

H1
[ti]

= R1π∗Ω
•
Ator
R /Mtor

1,[ti],R
(log(D)).

Then, under the assumption (1.3), we have an exact sequence

0 → ω[ti] → H1
[ti]

→ ω−1
[ti]

⊗ d−1
F [ti] → 0(1.24)

([Dim2, §1.9]). This sequence (1.24) defines the Hodge filtration

H1 = F 0(H1) ⊃ F 1(H1) = ω[ti] ⊃ F 2(H1) = 0.

We have the canonical integrable connection

∇ : H1
[ti]

→ H1
[ti]

⊗O
Mtor

1,[ti],R

Ω1
Mtor

1,[ti],R
/R(log(D)).
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Then ω[ti], H
1
[ti]

, and ∇ descend toM tor
[ti],R

([Dim2, §1.9]) and hence we use the same notation.

We define a complex of sheaves Ω•(H1
[ti]

) as follows:

Ω•(H1
[ti]

) := H1
[ti]

⊗O
Mtor

1,[ti],R

Ω•
Mtor

1,[ti],R
/R(log(D)).

We define
Hm(M tor

1,[ti],R
,H1

[ti]
,∇) = Hm(M tor

1,[ti],R
,Ω•(H1

[ti]
))

by the hyper cohomology of this complex. The Kodaira–Spencer map

θ : ω[ti] ↪→ H1
[ti]

∇−→ H1
[ti]

⊗O
Mtor

1,[ti],R

Ω1
Mtor

1,[ti],R
/R(log(D)) → ω−1

[ti]
⊗O

Mtor
1,[ti],R

Ω1
Mtor

1,[ti],R
/R(log(D)),

which is OMtor
1,[ti],R

-linear, induces an isomorphism

Ω1
Mtor

1,[ti],R
/R(log(D)) ≃ ω2

[ti]
≃
⊕
σ∈JF

ω⊗2
[ti],σ

.(1.25)

For a weight κ = (k − 2t,m) ∈ X(T ), we put

ωκ[ti] =
⊗
σ∈JF

(
ωkσ−2
[ti],σ

⊗ (∧H1
[ti],σ

)mσ
)
.

The coherent sheaves on M1,[ti] above descend to M[ti] and then we shall use the same
convention as above on M[ti].

Definition 1.3. ([Dim2, §1.5] and [Ti–Xi, §1.5]). Let R be an oF ′ [1/△]-algebra and κ =
(k − 2t,m) ∈ X(T ). We define the space of Hilbert modular forms of weight κ and level
Γ1
1(dF [ti], n) and Γ1(dF [ti], n) with coefficients in R to be

Mκ(Γ
1
1(dF [ti], n), R) = H0(M1,[ti],R, ω

κ
[ti]

⊗ ω2t
[ti]

),

Mκ(Γ1(dF [ti], n), R) = H0(M[ti],R, ω
κ
[ti]

⊗ ω2t
[ti]

),

respectively. If F ̸= Q, then, by the Koecher’s principle, we have Mκ(Γ1(dF [ti], n), R) =
H0(M tor

[ti],R
, ωκ[ti] ⊗ ω2t

[ti]
). We define the subspace of Hilbert cusp forms as

Sκ(Γ
1
1(dF [ti], n), R) = H0(M tor

1,[ti],R
, ωκ[ti] ⊗ ω2t

[ti]
(−D)),

Sκ(Γ1(dF [ti], n), R) = H0(M tor
[ti],R

, ωκ[ti] ⊗ ω2t
[ti]

(−D)),

respectively. We denote by

Mκ(M1, R) =

h+F⊕
i=1

Mκ(Γ
1
1(dF [ti], n), R), Mκ(M,R) =

h+F⊕
i=1

Mκ(Γ1(dF [ti], n), R),

Sκ(M1, R) =

h+F⊕
i=1

Sκ(Γ
1
1(dF [ti], n), R), Sκ(M,R) =

h+F⊕
i=1

Sκ(Γ1(dF [ti], n), R).

1.6. Hecke operator on geometric modular variety and geometric modular form.
First we define the Hecke correspondence T (a) (if a is prime to n) and U(a) (if a is not prime

to n) on the M1 =
∏h+F
i=1M1,[ti] and M

tor
1 =

∏h+F
i=1M

tor
1,[ti]

.

Let a be an integral ideal of F and fix a pair (i, j) such that [ti]a = [tj ] in Cl+F . We consider
the functor F1,a,i,j from the category of Z[1/△]-schemes to the category of sets:

F1,a,i,j : S 7→ {(A, ι, λ, α, C, β)}/≃,(1.26)
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where (A, ι, λ, α)/S is a [ti]-polarized HBAV over S with µn-level structure, C ⊂ A[a] is an
oF -stable closed subscheme, which is disjoint from α(µn) and étale locally isomorphic to the

constant group scheme oF /a over oF , and β is an o×,2F,n -orbit of isomorphisms ([ti]a, ([ti]a)+) ≃
([tj ], [tj ]+), where c+ = c∩ (F ⊗R)×+ is the totally positive cone for a fractional ideal c of F .

Then we have a projection

π1 : F1,a,i,j → F1,[ti] : (A, ι, λ, α, C, β) 7−→ (A, ι, λ, α).

Also we have a projection

π2 : F1,a,i,j → F1,[ti] : (A, ι, λ, α, C, β) 7−→ (A/C, ι′, λ′, α′),

where ι′ is the embbeging oF ↪→ End(A/C) naturally induced by ι and the projection
A → A/C, α is the composition of α : µn ↪→ A and the projection A → A/C, and λ′ is the
[tj ]-polarization of A/C explicitly given by [Ki–La, §1.9].

The functor F1,a,i,j is representable by M1,a,i,j explicitly constructed by [Ki–La, §1.9]. We

put M1,a =
∏h+F
i=1M1,a,i,j . Then the two projections

M1,a

π1 //

π2
// M1

induce algebraic correspondences T (a) and U(a) onM1. We now define the Hecke correspon-
dence T (a) and U(a) on M tor

1 as the closure of T (a) and U(a) in M tor
1 ×M tor

1 , repsectively.
According to [Dim2, §2.4] and [Ki–La, §1.11], we get π1,∗π

∗
2ω

κ → π1,∗π
∗
1ω

κ → ωκ and an
action of T (a) and U(a) on the space of geometric modular formsMκ(M1, R) and Sκ(M1, R).
Moreover, we get an action of T (m) and U(m) on Mκ(M,R) and Sκ(M,R) by using the
projection ∑

[ε]∈o×F,+/o
×,2
F,n

[ε] :Mκ(M1, R) →Mκ(M,R).(1.27)

According to [Dim2, §2.4] and [Ki–La, §1.11.8], this Hecke action over C coincides with the
usual Hecke operator as (1.7).

2. Integrality of n-cocycles

2.1. Group cohomology. To state our theorem, we need to recall some properties about
group cohomology. Let Γ be a congruence subgroup of G(Q) = GL2(F ) and Γ = Γ/(Γ∩F×).

Definition 2.1. (The standard R[Γ]-free resolution of R). Let R be a commutative ring

and M a left R[Γ]-module. We define Fq = R[Γ]⊗(q+1) and regard it as an R[Γ]-module

via the multiplication of R[Γ] on the first factor. Then Fq is a free R[Γ]-module with a

basis {[γ1, · · · , γq] = 1 ⊗ γ1 ⊗ · · · ⊗ γq | γi ∈ Γ}. We define the R[Γ]-linear boundary map
∂q : Fq → Fq−1 by ∂1[γ] = γ − 1 and

∂q[γ1, · · · , γq] = γ1[γ2, · · · , γq] +
q−1∑
j=1

(−1)j [γ1, · · · , γjγj+1, · · · , γq] + (−1)q[γ1, · · · , γq−1]

for q > 1. It is well known that (F∗, ∂∗) is a R[Γ]-free resolution of R.
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Let Cq = Cq(Γ,M) be the space of functions on Γ
q
with values in M for q ≥ 1 and M for

q = 0. Note that HomR[Γ](Fq,M) ∼= Cq. Then the differential map dq : Cq → Cq+1 induced

by ∂∗ on F∗ is given by d0u(γ) = (γ − 1)u for u ∈M if q = 0, and if q > 0,

dqu(γ1, · · · , γq+1) = γ1u(γ2, · · · , γq+1)

+

q∑
j=1

(−1)ju(γ1, · · · , γjγj+1, · · · , γq) + (−1)i+1u(γ1, · · · , γq).

The associated q-th cohomology group of Γ with coefficients in M is given by

Hq(Γ,M) = Zq(Γ,M)/Bq(Γ,M),

where

Zq(Γ,M) = ker(dq : Cq → Cq+1) and Bq(Γ,M) = im(dq−1 : Cq−1 → Cq).

2.2. Construction of n-cocycle. In this subsection, we will construct an n-cocycle asso-
ciated to a Hilbert modular form, which is a generalization of the Eichler–Shimura cocycles.
This work explicitly gives the isomorphism between de Rham cohomology group and group
cohomology (cf. [Be Ph.D., Proposition 2.5]). In order to do it, we strictly follow the argu-
ments in the method of Yoshida in [Yo]. We put JF = {σ1, · · · , σn}. For each subset J ⊂ JF ,
we put

dzJ =

n∧
i=1

dzJσi ,(2.1)

where zJσ is defined by (1.1).
Hereafter, we assume that ki ≥ 2 and k − 2t + 2m ∈ 2Z · t for κ = (k − 2t,m) ∈ X(T )

and k =
∑n

i=1 kiσi ∈ Z[JF ]. For any Z-algebra A, a non-negative integer ℓ ∈ Z≥0, and(
u
v

)
∈ A2, we put [

u
v

]ℓ
= t(uℓ, uℓ−1v, · · · , uvℓ−1, vℓ).

We consider the column vector space Lℓ(A) ≃ Aℓ+1 ≃ Symℓ(A2). For any Z-algebra A, we
define the ℓ-th symmetric tensor representation ρℓ of GL2(A) on Lℓ(A) ≃ Symℓ(A2) by

ρℓ(g)

[
u
v

]ℓ
=

[
g

(
u
v

)]ℓ
.

Let Lk−2(A) = ⊗n
i=1Lki−2(A) on which GL2(A) acts via the representation ρ = ρk1−2⊗· · ·⊗

ρkn−2.

Recall that F̃ is the Galois closure of F in Q and F ′ = F̃ (εt/2 : ε ∈ o×F,+). Put mκ =

k − t +m. For an oF ′-algebra A containing the values of umκ for all u ∈ oF ′ ∩ (F ′)×, we
define the A[(M2(oF ′) ∩ GL2(F

′))JF ]-module Lκ(A) as follows: let Lκ(A) be the A-module
Lk−2(A) with a left action by

g • P = det(g)−mκ+tρ(g)P

for g ∈ (M2(oF ′) ∩ GL2(F
′))JF and P ∈ Lk−2(A). In particular, G(Af ) naturally acts on

Lκ(A ⊗oF ′ AF ′). For ôF ′ = oF ′ ⊗Z Ẑ and each i with 1 ≤ i ≤ h+F , we consider the i-part
Lκ,i(A) of Lκ(A) defined by

Lκ,i(A) = Lκ(A⊗oF ′ F
′) ∩ xi • Lκ(A⊗oF ′ ôF ′).
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Then the semigroup Rii(n) as §1.1 acts on Lκ,i(A).
From now on, in this subsection, we fix i with 1 ≤ i ≤ h+F and abbreviate Γ1,i(n) to Γ and

Lκ,i(A) to Lκ(A).
We define a Lκ(C)-valued holomorphic n-form ω(h) on Hn attached to a holomorphic

function h on Hn by

ω(h) = h(z)

[
z1
1

]k1−2

⊗ · · · ⊗
[
zn
1

]kn−2

dzJF .(2.2)

If h ∈Mκ(Γ,C), then, by definition of the slash operator, for g ∈ GL2(R)n+, we have

(h|g)(z) = det(g)mκj(g, z)−kh(gz).

We remark that [
gizi
1

]ki−2

= j(gi, zi)
−ki+2ρki−2(gi)

[
zi
1

]ki−2

.

Then we get

g∗ω(h) = h(gz)

[
g1z1
1

]k1−2

⊗ · · · ⊗
[
gnzn
1

]kn−2

dg1z1 ∧ · · · ∧ dgnzn

= det(g)−mκ+tρ(g)(h|g)(z)
[
z1
1

]k1−2

⊗ · · · ⊗
[
zn
1

]kn−2

dzJF .

Under the condition k − 2t + 2m ∈ 2Z · t, the center Γ ∩ F× of Γ acts trivially on Lκ(C).
Then we obtain the pull-back formula

γ∗ω(h) = γ • ω(h)(2.3)

for any γ ∈ Γ = Γ/(Γ ∩ F×) and a lift γ ∈ Γ of γ.
Fix a base point w = (w1, · · · , wn) ∈ HJF . We define a Lκ(C)-valued holomorphic function

as

F (z) =

∫ z1

ω1

· · ·
∫ zn

ωn

ω(h).(2.4)

Moreover, we put γ ∗ F (z) = γ • F (γ−1z) for each γ ∈ Γ. We remark that

∂

∂z1
· · · ∂

∂zn
(γ ∗ F − F )(z) = 0.

Lemma 2.2. ([Yo, Chapter V, Lemma 5.1]). Let D ⊂ Cn be an open domain and con-
tractible. Let f be a holomorphic function on D.

(1) Assume that

∂

∂z1
· · · ∂

∂zn
f(z) = 0.

Then there exist holomorphic functions gi(z) on D such that gi(z) is independent of zi
and f is decomposed into

f(z) =
n∑
i=1

gi(z).



CONGRUENCES OF HILBERT MODULAR FORMS 19

(2) Moreover, assume that n ≥ 2 and f(z) =
∑n

i=1 gi(z) is a decomposition as (1). If f(z)
is independent of z1, then there exist holomorphic functions hi(z) on D such that hi(z)
is independent of z1 and zi and f is decomposed into

f(z) =
n∑
i=2

hi(z).

Remark 2.3. This decomposition is not unique in general.

Then, by applying Lemma 2.2 (1) to (−1)(γ ∗ F − F ), we obtain a decomposition

(−1)(γ ∗ F − F )(z) =
n∑
i=1

g
(1)
i (γ)(z),(2.5)

where, for each i, g
(1)
i (γ)(z) is a holomorphic function on Hn and independent of zi. We can

explicitly describe g
(1)
n (γ)(z) as follows. We have

(γ ∗ F (z)− F )(z)(2.6)

=

∫ z1

γω1

· · ·
∫ zn−1

γωn−1

(∫ zn

ωn

+

∫ ωn

γωn

)
ω(h)−

∫ z1

ω1

· · ·
∫ zn

ωn

ω(h)

=

∫ z1

γω1

· · ·
∫ zn−1

γωn−1

∫ ωn

γωn

ω(h) +

(∫ z1

γω1

· · ·
∫ zn−1

γωn−1

−
∫ z1

ω1

· · ·
∫ zn−1

ωn−1

)∫ zn

ωn

ω(h).

By applying Lemma 2.2 (1) to the second term of (2.6), we can choose −g(1)n (γ)(z) as the
first term of (2.6):

g(1)n (γ)(z) =

∫ z1

γω1

· · ·
∫ zn−1

γωn−1

∫ γωn

ωn

ω(h).(2.7)

By regarding (2.5) as a 1-cochain in C1(Γ, Lκ(C)), we obtain

dg(1)n (γ1, γ2)(z) = −
n−1∑
i=1

dg
(1)
i (γ1, γ2)(z)

for γ1, γ2 ∈ Γ, where d is the boundary map in group cohomology. The left hand side is

independent of zn and each dg
(1)
i (γ1, γ2)(z) with 1 ≤ i ≤ n − 1 is independent of zi. Thus,

by Lemma 2.2 (2), we can decompose

(−1)2dg(1)n (γ1, γ2)(z) =
n−1∑
i=1

g
(2)
i (γ1, γ2)(z),(2.8)
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where, for each i, g
(2)
i (γ1, γ2)(z) is a holomorphic function and independent of zi. Similar to

(2.6), we explicitly give g
(2)
n−1(γ1, γ2)(z) as follows. A direct calculation shows

dg(1)n (γ1, γ2)(z) = γ1 ∗ g(1)n (γ2)(z)− g(1)n (γ1γ2)(z) + g(1)n (γ1)(z)(2.9)

=

∫ z1

γ1γ2ω1

· · ·
∫ zn−1

γ1γ2ωn−1

∫ γ1γ2ωn

γ1ωn

ω(h)

−
∫ z1

γ1γ2ω1

· · ·
∫ zn−1

γ1γ2ωn−1

∫ γ1γ2ωn

ωn

ω(h) +

∫ z1

γ1ω1

· · ·
∫ zn−1

γ1ωn−1

∫ γ1ωn

ωn

ω(h)

=

∫ z1

γ1γ2ω1

· · ·
∫ zn−1

γ1γ2ωn−1

∫ ωn

γ1ωn

ω(h) +

∫ z1

γ1ω1

· · ·
∫ zn−1

γ1ωn−1

∫ γ1ωn

ωn

ω(h)

=

∫ z1

γ1γ2ω1

· · ·
∫ zn−2

γ1γ2ωn−2

∫ γ1ωn−1

γ1γ2ωn−1

∫ ωn

γ1ωn

ω(h)

+

(∫ z1

γ1γ2ω1

· · ·
∫ zn−2

γ1γ2ωn−2

−
∫ z1

γ1ω1

· · ·
∫ zn−2

γ1ωn−2

)
×

(∫ zn−1

γ1ωn−1

∫ ωn

γ1ωn

)
ω(h).

Similar to (2.7), by using Lemma 2.2 (1), we can choose as

g
(2)
n−1(γ1, γ2)(z) =

∫ z1

γ1γ2ω1

· · ·
∫ zn−2

γ1γ2ωn−2

∫ γ1γ2ωn−1

γ1ωn−1

∫ γ1ωn

ωn

ω(h).(2.10)

By repeating this arguments, for 1 ≤ m ≤ n− 1 and γ1, · · · γm ∈ Γ, we get

(−1)mdg
(m−1)
n−m+2(γ1, · · · , γm)(z) =

n−m+1∑
i=1

g
(m)
i (γ1, · · · , γm)(z),(2.11)

with

g
(m)
n−m+1(γ1, · · · , γm)(z)

=

∫ z1

γ1···γmω1

· · ·
∫ zn−m

γ1···γmωn−m

∫ γ1···γmωn−m+1

γ1···γm−1ωn−m+1

· · ·
∫ γ1γ2ωn−1

γ1ωn−1

∫ γ1ωn

ωn

ω(h).

Thus, we obtain a n-cocycle dg
(n−1)
2 (γ1, · · · , γn)(z) because it is a constant function. We

have

dg
(n−1)
2 (γ1, · · · , γn)(z) =

∫ γ1···γnω1

γ1···γn−1ω1

· · ·
∫ γ1γ2ωn−1

γ1ωn−1

∫ γ1ωn

ωn

ω(h).

Therefore we obtain (1) of the following theorem.

Proposition-Definition 2.4. Let h ∈ Mκ(Γ,C) and w = (w1, · · · , wn) ∈ Hn a base point.
Assume that k − 2t+ 2m ∈ 2Z · t and kσ ≥ 2 for each σ ∈ JF .

(1) For γi ∈ Γ and a lift γi ∈ Γ of γi with 1 ≤ i ≤ n, a map

πh,ω : Γ
n −→ Lκ(C)

defined by

πh,ω(γ1, · · · , γn) =
∫ γ1···γnω1

γ1···γn−1ω1

· · ·
∫ γ1γ2ωn−1

γ1ωn−1

∫ γ1ωn

ωn

ω(h)

is an n-cocycle.
(2) The cohomology class [πh] = [πh,ω] ∈ Hn(Γ, Lκ(C)) does not depend on the choice of the

base point ω = (ωi)i ∈ HJF .
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Proof. The assertion (2) is proved by [Yo, Theorem 5.2]. □
Remark 2.5. If n = [F : Q] = 1 and h is a cusp form, then πh,ω is the as usual Eichler–Shimura
cocycle.

2.3. Hecke operators on group cohomology. In this subsection, we will prove that the
map from the space of modular forms to the group cohomology

Mκ,JF (Γ,C) → Hn(Γ, Lκ(C)) : h 7→ [πh]

is compatible with the action of Hecke operators.
In this subsection, we fix i with 1 ≤ i ≤ h+F and abbreviate Γ1,i(n) to Γ and Lκ,i(A) to

Lκ(A). We recall the definitions of the Hecke operators on the space of modular forms and the
group cohomology. Assume that, for α ∈ G(Q), we have the decomposition ΓαΓ =

⨿
i∈I Γαi

as a finite disjoint union. For each h ∈Mκ(Γ,C), we define the Hecke operator

h|[ΓαΓ] =
∑
i∈I

h|καi.

For each cusp s ∈ P1(F ), we write Γs for the stabilizer of s in Γ. Let C(Γ) be a set of
representatives for Γ-equivalence classes of cusps, which is a finite set. Then we note that
for each cusp s, we can find γ ∈ Γ and s0 ∈ C(Γ) such that γs = s0. The q-th parabolic
cohomology group Hq

par(Γ,M) of Γ with coefficients in a Γ-moduleM is defined by the exact
sequence

0 → Hq
par(Γ,M) → Hq(Γ,M) →

⊕
s∈C(Γ)

Hq(Γs,M).(2.12)

Fix a cusp s ∈ C(Γ). We decompose

ΓαΓ =
⨿
i∈Is

Γβsi Γs and Γβsi Γs =
⨿
j∈Jsi

Γβsi δ
s
i,j with δ

s
i,j ∈ Γs

as a finite disjoint union. By [Hida93, Lemma 3.3], we have a decomposition

Γβsi (s)β
s
i Γs =

⨿
j∈Jsi

Γβsi (s)β
s
i δ
s
i,j .

First we define the Hecke operator [ΓαΓ] on Hq(Γ,M) as follows (cf. [Hida93, p.288, 289]

or [Yo2, §1]). For each γ ∈ Γ, fix a lift γ ∈ Γ of γ. For each i, j, let αi,j = βsi δ
s
i,j , γ

(i,j) ∈ Γ,

and γ(i, j) = (γ(i), γ(j)′) ∈ Z× Z such that

αi,jγ = γ(i,j)αγ(i,j).

For each cocycle u, we define

(u|ΓαΓ])(γ1, · · · , γq) =
∑

i∈Is,j∈Jsi

(βsi δ
s
i,j)

−1u

(
γ
(i,j)
1 , · · · , γγq−1◦···◦γ1(i,j)

q

)
.

Since ∂(u|ΓαΓ]) = ∂(u)|ΓαΓ], it is well-defined.
Next we define an action of the Hecke algebra on the boundary cohomology (cf. [Hida93,

p.288, 289]). For c = (ct)t∈C(Γ) ∈
⊕

t∈C(Γ)H
i(Γt,M), we define

(c|[ΓαΓ])s =
∑
i∈Is

cβsi (s)|[Γβsi (s)β
s
i Γs].

As in the proof of [Hida86, Proposition 4.2], its definition is independent of the choice of βsi
and, via this action, the boundary cohomology

⊕
t∈C(Γ)H

i(Γt,M) becomes a Hecke module.
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Proposition 2.6. The sequence (2.12) is an exact sequence of Hecke modules.

Proof. For each cocycle u, it suffices to check that

res(u|[ΓαΓ])s = (res(u)|[ΓαΓ])s

for each cusp s ∈ C(Γ). Suppose that γk ∈ Γs for all k. Then γ
(i,j)
1 βsγ1(i)δ

s
γ1(i),γ1(j)′

=

βsi δ
s
i,jγ1 ∈ Γβsi Γs and hence βsγ1(i) = βsi , γ1(i) = i, and γ

(i,j)
1 = βsi δ

s
i,jγ1δ

s
i,γ1(j)′

−1βsi
−1 ∈ Γβsi (s).

Moreover, we have γ
γ1(i,j)
2 βsγ2(i)δ

s
γ2(i),γ2◦γ1(j)′ = βsi δ

s
i,γ1(j)′

γ2 ∈ Γβsi Γs and hence βsγ2(i) = βsi ,

γ2(i) = i, and γ
γ1(i,j)
2 ∈ Γβsi (s). Repeating this arguments, we get

res(u|[ΓαΓ])s(γ1, · · · , γq) =
∑
i,j

(βsi δ
s
j )

−1res(u)

(
γ
(i,j)
1 , · · · , γγq−1◦···◦γ1(i,j)

q

)
=
∑
i

res(u)βsi (s)[Γβsi (s)β
s
i Γs]

= (res(u)|[ΓαΓ])s(γ1, · · · , γn)
as desired. □

The following proposition is the main result in this subsection.

Proposition 2.7. Assume that α ∈ G(Q). We fix ΓαΓ =
⨿
i∈I Γαi. For each αj and γ ∈ Γ

with a lift γ ∈ Γ of γ, let γ(j) ∈ Γ and γ(j) ∈ Z such that

αjγ = γ(j)αγ(j).

Let h ∈ Mκ(Γ,C) and ω = (ω1, · · · , ωn) ∈ Hn a base point. Then, for γ1, · · · , γn ∈ Γ, we
have

πh|[ΓαΓ],ω(γ1, · · · , γn) =
∑
i∈I

α−1
i • πh,ω

(
γ
(i)
1 , · · · , γ(γn−1◦···◦γ1(i))

n

)
.

In particular,

πh|[ΓαΓ],ω = πh,ω|[ΓαΓ].

Proof. By using the pull-back formula, we have

ω(h|[ΓαΓ]) =
∑
i∈I

ω(h|καi)

=
∑
i∈I

α−1
i • α∗

iω(h).

Then we have

Fh|[ΓαΓ](z) =

∫ z1

ω1

· · ·
∫ zn

ωn

ω(h|[ΓαΓ])

=
∑
i∈I

α−1
i •

∫ αiz1

αiω1

· · ·
∫ αizn

αiωn

ω(h).

For γ ∈ Γ, similar to (2.7), we shall explicitly give a decomposition

(−1)(γ ∗ Fh|[ΓαΓ] − Fh|[ΓαΓ])(z) =

n∑
j=1

g
(1)
j,α(γ)(z),
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where, for each j, g
(1)
j,α(γ)(z) is independent of zj . We put

Fi(z) =

∫ z1

αiω1

· · ·
∫ zn

αiωn

ω(h).

Then we have

(γ ∗ Fh|[ΓαΓ] − Fh|[ΓαΓ])(z) =
∑
i∈I

{
γα−1

i • Fi(αiγ−1z)− α−1
i • Fi(αiz)

}
.

For the moment we admit the following decomposition:

∑
i∈I

{
γα−1

i • F (αiγ−1z)− α−1
i • F (αiz)

}
=

n∑
j=1

g
(1),∗
j,α (γ)(z),(2.13)

where the holomorphic function F (z) is defined by (2.4) and, for each j, g
(1),∗
j,α (γ)(z) is

independent of zj . We remark that there is the canonical decomposition

Fh|[ΓαΓ](z) =
∑
i∈I

α−1
i • F (αiz) +

∑
i∈I

n∑
j=1

α−1
i • F (1)

j,α (z),

where, for each j, F
(1)
j,α (z) is independent of zj . Thus, by combining these, we can choose

g
(1)
n,α(γ)(z) as

g(1)n,α(γ)(z) = g(1),∗n,α (γ)(z) +
∑
i∈I

{
γα−1

i • F (1)
n,α(αiγ

−1z)− α−1
i • F (1)

n,α(αiz)
}
+ x(γ)(2.14)

for some 1-cocycle x(γ) ∈ Lκ(C). We shall explicitly give g
(1),∗
n,α (γ)(z) as follows. By regarding

(2.14) as an equation of Γ, we obtain

dg(1)n,α(γ1, γ2)(z) = dg(1),∗n,α (γ1, γ2)(z)

up to 1-coboundary, where d is the boundary map in group cohomology. By substituting i
by γ(i) in the first term, we get∑
i∈I

{
γα−1

i • F (αiγ−1z)− α−1
i • F (αiz)

}
=
∑
i∈I

{
γα−1

γ(i) • F (αγ(i)γ
−1z)− α−1

i • F (αiz)
}

=
∑
i∈I

{
α−1
i γ(i) • F (γ(i)−1

αiz)− α−1
i • F (αiz)

}
=
∑
i∈I

α−1
i •

{
γ(i) ∗ F (αiz)− F (αiz)

}
.

Thus we obtain

g(1),∗n,α (γ)(z) =
∑
i∈I

α−1
i • g(1)n

(
γ(i)
)
(αiz),

where g
(1)
n is given by (2.7).
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Moreover, by substituting i by γ(i) in the first term, we get

dg(1),∗n,α (γ1, γ2)(z)

=
∑
i∈I

γ1α
−1
i • g(1)n (γ

(i)
2 )(αiγ

−1
1 z)−

∑
i∈I

α−1
i •

{
g(1)n ((γ1γ2)(i))(αiz)− g(1)n (γ

(i)
1 )(αiz)

}
=
∑
i∈I

γ1α
−1
γ1(i)

• g(1)n (γ
γ1(i)
2 )(αγ1(i)γ

−1
1 z)

−
∑
i∈I

α−1
i •

{
g(1)n ((γ1γ2)(i))(αiz)− g(1)n (γ

(i)
1 )(αiz)

}
=
∑
i∈I

α−1
i γ

(i)
1 • g(1)n (γ

γ1(i)
2 )(γ

(i)
1

−1
αiz)

−
∑
i∈I

α−1
i •

{
g(1)n (γ

(i)
1 γ

(γ1(i))
2 )(αiz)− g(1)n (γ

(i)
1 )(αiz)

}
=
∑
i∈I

α−1
i •

{
γ
(i)
1 ∗ g(1)n (γ

γ1(i)
2 )(αiz)− g(1)n (γ

(i)
1 γ

(γ1(i))
2 )(αiz) + g(1)n (γ

(i)
1 )(αiz)

}
.

Thus, similar to above, we obtain

g
(2),∗
n−1,α(γ1, γ2)(z) =

∑
i∈I

α−1
i • g(2)n−1(γ

(i)
1 , γ

(γ1(i))
2 )(αiz),

where g
(2)
n−1 is given by (2.10).

Repeating this computations proves the theorem. □

2.4. Constant term of n-cocycle. In this subsection, for E ∈ Mκ(Γ,C), we describe the
image of the n-cocycle [πE ] under the restriction map in group cohomology. It is important
for us to determine the structure of congruence modules attached to an Eisenstein series E
and prove the integrality the cocycle [πE ] in §2.10.

We fix i with 1 ≤ i ≤ n. For z, z′ ∈ H, let {z, z′} denote the oriented geodesic path joining

z to z′. We define a new n-cocycle π
(i)
E,ω as

π
(i)
E,ω(γ1, · · · , γn) =γ1 · · · γn−i •

∫
I1

· · ·
∫
Ii−1

∫ γn−i+1ωi

ωi

∫
Ii+1

· · ·
∫
In

ω(E)

+ b
(i)
1 (γ1, · · · , γn)− b

(i)
2 (γ1, · · · , γn),

where Ẽ(z) = E(z)− a∞(0, E),

b
(i)
1 (γ1, · · · , γn) = γ1 · · · γn−iγn−i+1 •

∫
I′1

· · ·
∫
I′i−1

∫ i∞

ωi

∫
I′i+1

· · ·
∫
I′n

ω(Ẽ)

− γ1 · · · γn−iγn−i+1 •
∫
I′1

· · ·
∫
I′i−1

∫ ωi

0

∫
I′i+1

· · ·
∫
I′n

ω(a∞(0, E))

b
(i)
2 (γ1, · · · , γn) = γ1 · · · γn−i •

∫
I1

· · ·
∫
Ii−1

∫ i∞

ωi

∫
Ii+1

· · ·
∫
In

ω(Ẽ)

− γ1 · · · γn−i •
∫
I1

· · ·
∫
Ii−1

∫ ωi

0

∫
Ii+1

· · ·
∫
In

ω(a∞(0, E)),
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Ij = (γ1 · · · γn−i)−1{γ1 · · · γn−jωj , γ1 · · · γn−j+1ωj},
I ′j = γ−1

n−i+1Ij .

We remark that b
(i)
1 (γ1, · · · , γn) and b(i)2 (γ1, · · · , γn) converge absolutely by the same way as

in the proof of Proposition 2.12.

Proposition 2.8. For E ∈Mκ(Γ,C), a cocycle π
(i)
E,ω satisfies the following properties.

(1) the value π
(i)
E,ω(γ1, · · · , γn) is independent on ωi.

(2) π
(i)
E,ω is cohomologous to πE,ω.

Proof. (1) follows from a direct calculation.
To prove (2), we put

v(i)(γ1, · · · , γn−1)

= γ1 · · · γn−i •
∫ γn−i+1···γn−1ω1

γn−i+1···γn−2ω1

· · ·
∫ γn−i+1ωi−1

ωi−1

∫ i∞

ωi

×
∫ ωi+1

γ−1
n−iωi+1

· · ·
∫ (γ3···γn−i)−1ωn−1

(γ2···γn−i)−1ωn−1

∫ (γ2···γn−i)−1ωn−1

(γ1···γn−i)−1ωn

ω(Ẽ)

− γ1 · · · γn−i •
∫ γn−i+1···γn−1ω1

γn−i+1···γn−2ω1

· · ·
∫ γn−i+1ωi−1

ωi−1

∫ ωi

0

×
∫ ωi+1

γ−1
n−iωi+1

· · ·
∫ (γ3···γn−i)−1ωn−1

(γ2···γn−i)−1ωn−1

∫ (γ2···γn−i)−1ωn

(γ1···γn−i)−1ωn

ω(a∞(0, E)).

We claim that

dv(i)(γ1, · · · , γn) = (−1)n−i
{
π
(i)
E,ω(γ1, · · · , γn)− πE,ω(γ1, · · · , γn)

}
.(2.15)

The proof will now proceed in two steps.
Step1:

γ1 • v(i)(γ2, · · · , γn) +
∑

1≤j≤n−i
(−1)jv(i)(γ1, · · · , γjγj+1, · · · , γn)

= (−1)n−ib
(i)
1 (γ1 · · · γn).

Proof. For each 1 ≤ k ≤ n− i, we prove (∗)k by induction on k:

(∗)k γ1 • v(i)(γ2, · · · , γn) +
∑

1≤j≤k
(−1)kv(i)(γ1, · · · , γjγj+1, · · · , γn)

= (−1)k
{
γ1 · · · γn−i+1 •

∫ γn−i+2···γnω1

γn−i+2···γn−1ω1

· · ·
∫ i∞

ωi

· · ·

×
∫ (γk+3···γn−i+1)

−1ωn−k

(γk+2···γn−i+1)−1ωn−k

∫ (γk+1···γn−i+1)
−1ωn−k+1

(γk···γn−i+1)−1ωn−k+1

· · ·
∫ (γ2···γn−i+1)

−1ωn

(γ1···γn−i+1)−1ωn

ω(Ẽ)

− γ1 · · · γn−i+1 •
∫ γn−i+2···γnω1

γn−i+2···γn−1ω1

· · ·
∫ ωi

0
· · ·

×
∫ (γk+3···γn−i+1)

−1ωn−k

(γk+2···γn−i+1)−1ωn−k

∫ (γk+1···γn−i+1)
−1ωn−k+1

(γk···γn−i+1)−1ωn−k+1

· · ·
∫ (γ2···γn−i+1)

−1ωn

(γ1···γn−i+1)−1ωn

ω(a∞(0, E))

}
.
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The statement is true when k = 1. Indeed, we have

γ1 • v(i)(γ2, · · · , γn)− v(i)(γ1γ2, · · · , γn)

= γ1 · · · γn−i+1 •
∫

· · ·
∫ i∞

ωi

· · ·
∫ (γ4···γn−i+1)

−1ωn−1

(γ3···γn−i+1)−1ωn−1

∫ (γ3···γn−i+1)
−1ωn

(γ2···γn−i+1)−1ωn

ω(Ẽ)

− γ1 · · · γn−i+1 •
∫

· · ·
∫ i∞

ωi

· · ·
∫ (γ4···γn−i+1)

−1ωn−1

(γ3···γn−i+1)−1ωn−1

∫ (γ3···γn−i+1)
−1ωn

(γ1γ2···γn−i+1)−1ωn

ω(Ẽ)

− γ1 · · · γn−i+1 •
∫

· · ·
∫ ωi

0
· · ·
∫ (γ4···γn−i+1)

−1ωn−1

(γ3···γn−i+1)−1ωn−1

∫ (γ3···γn−i+1)
−1ωn

(γ2···γn−i+1)−1ωn

ω(a∞(0, E))

+ γ1 · · · γn−i+1 •
∫

· · ·
∫ ωi

0
· · ·
∫ (γ4···γn−i+1)

−1ωn−1

(γ3···γn−i+1)−1ωn−1

∫ (γ3···γn−i+1)
−1ωn

(γ1γ2···γn−i+1)−1ωn

ω(a∞(0, E))

= (−1)

{
γ1 · · · γn−i+1 •

∫
· · ·
∫ ωi

0
· · ·
∫ (γ4···γn−i+1)

−1ωn−1

(γ3···γn−i+1)−1ωn−1

∫ (γ2···γn−i+1)
−1ωn

(γ1···γn−i+1)−1ωn

ω(Ẽ)

+ γ1 · · · γn−i+1 •
∫

· · ·
∫ ωi

0
· · ·
∫ (γ4···γn−i+1)

−1ωn−1

(γ3···γn−i+1)−1ωn−1

∫ (γ2···γn−i+1)
−1ωn

(γ1γ2···γn−i+1)−1ωn

ω(a∞(0, E))

}
.

Suppose that (∗)k. By adding (−1)k+1v(i)(γ1, · · · , γk+1γk+2, · · · , γn) to (∗)k, we have

γ1 • v(i)(γ2, · · · , γn) +
∑

1≤j≤k+1

(−1)jv(i)(γ1, · · · , γjγj+1, · · · , γn)

= (−1)k+1

{
γ1 · · · γn−i+1 •

∫ γn−i+2···γnω1

γn−i+2···γn−1ω1

· · ·
∫ i∞

ωi

· · ·

×

(∫ (γk+2···γn−i+1)
−1ωn−k

(γk+3···γn−i+1)−1ωn−k

+

∫ (γk+3···γn−i+1)
−1ωn−k

(γk+1···γn−i+1)−1ωn−k

)
· · ·
∫ (γ2···γn−i+1)

−1ωn

(γ1···γn−i+1)−1ωn

ω(Ẽ)

− γ1 · · · γn−i+1 •
∫ γn−i+2···γnω1

γn−i+2···γn−1ω1

· · ·
∫ ωi

0
· · ·

×

(∫ (γk+2···γn−i+1)
−1ωn−k

(γk+3···γn−i+1)−1ωn−k

+

∫ (γk+3···γn−i+1)
−1ωn−k

(γk+1···γn−i+1)−1ωn−k

)
· · ·
∫ (γ2···γn−i+1)

−1ωn

(γ1···γn−i+1)−1ωn

ω(a∞(0, E))

}
= (−1)k+1

{
γ1 · · · γn−i+1 •

∫ γn−i+2···γnω1

γn−i+2···γn−1ω1

· · ·
∫ i∞

ωi

· · ·

×
∫ (γk+2···γn−i+1)

−1ωn−k

(γk+1···γn−i+1)−1ωn−k

· · ·
∫ (γ2···γn−i+1)

−1ωn

(γ1···γn−i+1)−1ωn

ω(Ẽ)

− γ1 · · · γn−i+1 •
∫ γn−i+2···γnω1

γn−i+2···γn−1ω1

· · ·
∫ ωi

0
· · ·

×
∫ (γk+2···γn−i+1)

−1ωn−k

(γk+1···γn−i+1)−1ωn−k

· · ·
∫ (γ2···γn−i+1)

−1ωn

(γ1···γn−i+1)−1ωn

ω(a∞(0, E))

}
as desired. □
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Step2:

∑
n−i+1≤n−j≤n−1

(−1)n−jv(i)(γ1, · · · , γn−jγn−j+1, · · · , γn) + (−1)nv(i)(γ1, · · · , γn−1)

= (−1)n−i+1b
(i)
2 (γ1 · · · γn).

Proof. We prove (∗)′k by induction on n− i+ 1 ≤ n− k ≤ n− 1:

(∗)′k∑
n−k≤n−j≤n−1

(−1)n−jv(i)(γ1, · · · , γn−jγn−j+1, · · · , γn) + (−1)nv(i)(γ1, · · · , γn−1)

= (−1)n−k
{
γ1 · · · γn−i •

∫
· · ·
∫ γn−i+1···γn−k+1ωk

γn−i+1···γn−kωk

∫ γn−i+1···γn−k−1ωk+1

γn−i+1···γn−k−2ωk+1

· · ·
∫ i∞

ωi

· · ·ω(Ẽ)

− γ1 · · · γn−i •
∫

· · ·
∫ γn−i+1···γn−k+1ωk

γn−i+1···γn−kωk

∫ γn−i+1···γn−k−1ωk+1

γn−i+1···γn−k−2ωk+1

· · ·
∫ ωi

0
· · ·ω(a∞(0, E))

}
.

First suppose k = 1. We have

(−1)n−1v(i)(γ1, · · · , γn−1γn) + (−1)nv(i)(γ1, · · · , γn−1)

= (−1)n−1

{
γ1 · · · γn−i •

∫ γn−i+1···γn−1γnω1

γn−i+1···γn−2ω1

∫ γn−i+1···γn−2ω2

γn−i+1···γn−3ω2

· · ·
∫ i∞

ωi

· · ·ω(Ẽ)

− γ1 · · · γn−i •
∫ γn−i+1···γn−1ω1

γn−i+1···γn−2ω1

∫ γn−i+1···γn−2ω2

γn−i+1···γn−3ω2

· · ·
∫ i∞

ωi

· · ·ω(Ẽ)

− γ1 · · · γn−i •
∫ γn−i+1···γn−1γnω1

γn−i+1···γn−2ω1

∫ γn−i+1···γn−2ω2

γn−i+1···γn−3ω2

· · ·
∫ ωi

0
· · ·ω(a∞(0, E))

+ γ1 · · · γn−i •
∫ γn−i+1···γn−1ω1

γn−i+1···γn−2ω2

∫ γn−i+1···γn−2ω2

γn−i+1···γn−3ω2

· · ·
∫ ωi

0
· · ·ω(a∞(0, E))

}
= (−1)n−1

{
γ1 · · · γn−i •

∫ γn−i+1···γnω1

γn−i+1···γn−1ω1

∫ γn−i+1···γn−2ω2

γn−i+1···γn−3ω2

· · ·
∫ i∞

ωi

· · ·ω(Ẽ)

− γ1 · · · γn−i •
∫ γn−i+1···γnω1

γn−i+1···γn−1ω1

∫ γn−i+1···γn−2ω2

γn−i+1···γn−3ω2

· · ·
∫ ωi

0
· · ·ω(a∞(0, E))

}

as desired.
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Next suppose that (∗)′k. By adding (−1)n−k−1v(i)(γ1, · · · , γn−k−1γn−k, · · · , γn) to (∗)′k,
we get ∑

n−k−1≤n−j≤n−1

(−1)n−jv(i)(γ1, · · · , γn−jγn−j+1, · · · , γn) + (−1)nv(i)(γ1, · · · , γn−1)

= (−1)n−k−1

{
γ1 · · · γn−i •

∫ γn−i+1···γnω1

γn−i+1···γn−1ω1

· · ·

×

(∫ γn−i+1···γn−k−2ωk+1

γn−i+1···γn−k−1ωk+1

+

∫ γn−i+1···γn−k−1γn−kωk+1

γn−i+1···γn−k−2ωk+1

)
· · ·
∫ i∞

ωi

· · ·ω(Ẽ)

− γ1 · · · γn−i •
∫ γn−i+1···γnω1

γn−i+1···γn−1ω1

· · ·

×

(∫ γn−i+1···γn−k−2ωk+1

γn−i+1···γn−k−1ωk+1

+

∫ γn−i+1···γn−k−1γn−kωk+1

γn−i+1···γn−k−2ωk+1

)
· · ·
∫ ωi

0
· · ·ω(a∞(0, E))

}
= (−1)n−k−1

{
γ1 · · · γn−i •

∫ γn−i+1···γnω1

γn−i+1···γn−1ω1

· · ·
∫ γn−i+1···γn−k−1γn−kωk+1

γn−i+1···γn−k−1ωk+1

· · ·
∫ i∞

ωi

· · ·ω(Ẽ)

− γ1 · · · γn−i •
∫ γn−i+1···γnω1

γn−i+1···γn−1ω1

· · ·
∫ γn−i+1···γn−k−1γn−kωk+1

γn−i+1···γn−k−1ωk+1

· · ·
∫ ωi

0
· · ·ω(a∞(0, E))

}
as desired. □

Therefore, by Step1 and Step2, we obtain

dv(i)(γ1, · · · , γn) = (−1)n−i{π(i)E,ω(γ1, · · · , γn)− πE,ω(γ1, · · · , γn)}.

□

Now we describe the image of [πE ] under the restriction map.

Proposition 2.9. Fix i with 1 ≤ i ≤ h+F and let Γ = Γ1,i(n). Let Φp be the composite field

of ιp(F
σ(
√
−1)) in Qp for all σ ∈ JF and O the ring of integers of a finite extension K over

Φp containing the values of umκ for all u ∈ o×F ′,+ as §2.2. Here ιp : Q → Qp is the fixed

embedding. Assume that E ∈ Mκ(Γ,O) with κ = (k − 2t,m) ∈ X(T ) and kσ − 1 < p for all
σ ∈ JF . Then we have the following properties:

(1)

res([πE ]) ∈
⊕

s∈C(Γ)

H̃n(Γs, Lκ,i(O)),

where H̃n(Γs, Lκ,i(O)) = im
(
Hn(Γs, Lκ,i(O)) → Hn(Γs, Lκ,i(K))

)
is the torsion-free

part of Hn(Γs, Lκ,i(O)).
(2) Suppose that E vanishes at a cusp s ∈ C(Γ). Then

res([πE ]) = 0 in H̃n(Γs, Lκ,i(O)).

Proof. We treat the case s = ∞ (the case s ̸= ∞ is similar). By the previous proposition,

π
(n)
E,ω(γ1, · · · , γn) = πE,ω(γ1, · · · , γn) + dv(n)(γ1, · · · , γn)

is independent on ωn. With the help of Proposition 2.12, the first term of b
(n)
1 (γ1, · · · , γn)

and b
(n)
2 (γ1, · · · , γn) converge to 0 when ωn tends to

√
−1∞. For any γ1 ∈ Γ∞ and a lift
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γ1 ∈ Γ∞ of γ1, when ωn tends to
√
−1∞, so does γ1ωn. Thus we obtain

lim
ωn→

√
−1∞

π
(n)

E,(
√
−1,··· ,

√
−1,ωn)

(γ1, · · · , γn)

= lim
ωn→

√
−1∞

∫
I1

∫
In−1

(∫ γ1ωn

ωn

−
∫ γ1ωn

γ10
+

∫ ωn

0

)
ω(a∞(0, E))

=

∫
I1

· · ·
∫
In−1

∫ γ10

0
ω(a∞(0, E))

as desired. □

Proposition 2.10. Assume that h+F = 1 and both φ and ψ are totally even or totally odd
primitive characters. Let E = E2(φ,ψ)1 as Proposition 1.1. Under the same notation and
assumptions of Proposition 2.9 with h+F = 1, [πE] is rational, that is,

[πE] ∈ Hn(Y (n),K).

Proof. We use the same notation of Proposition 2.9 and §2.10. Let pE denote the maximal
ideal of H2(n,O)⊗K generated by T (m)−C(m,E), S(m)−χ−1(m), U(m)−C(m,E) for all in-
tegral ideals m of F . By Proposition 2.9, res([πE]) is rational. Moreover, as mentioned in Re-
mark 2.23, we will see that [πE] = [πE]

ϵ
E . Let [ω] ∈ Hn(Y (n),K)pE [ϵE ] mapping to res([πE]).

Then we have [πE] − [ω] ∈ Hn
par(Y (n),C)pE [ϵE ]. The partial Eichler–Shimura–Harder iso-

morphism (2.27) and the q-expansion principle over C imply that Hn
par(Y (n),C)pE [ϵE ] = 0

and hence [πE] is rational. □

2.5. Borel–Serre compactification. In this subsection, we recall the Borel–Serre com-
pactification. For more detail, refer to [Bo–Se], [Bo–Ji], [Ha], [Hida93], [Gha].

We fix i with 1 ≤ i ≤ h+F and abbreviate Γ1,i(n) to Γ1,i and Γ1,i\HJF to Yi.

The Borel–Serre compactification (HJF )BS of HJF is a locally compact manifold on which
GL2(F ) acts. We describe the boundary of (HJF )BS at the cusp ∞ as follows. Let X =
{(y, x) ∈ (F ⊗ R)×+ × (F ⊗ R) | y1 · · · yn = 1}. We have

HJF
≃−→ R×

+ ×X : (xσi +
√
−1yσi)i 7→

(
n∏
i=1

yσi ,
(
N(yσi)

− 1
n yσi , xi

)
i

)
,

which is compatible with the action of Γ1,i,∞. Here Γ1,i,∞ acts trivially on the first factor of
the right hand side. Then the boundary of (HJF )BS at the cusp ∞ is given by (R×

+∪{∞})×X
(see, for example, [Ha, §2.1] and [Hida93, p.273]).

The Borel–Serre compactification Y BS
i = Γ1,i\(HJF )BS of Yi is a compact manifold with

boundary Di
s = (R×

+ ∪ {∞}) × Γ1,i,s\α(X) at each cusp s = α(∞) for α ∈ SL2(F ), where

α(X) = {α(x+
√
−1y) | (y, x) ∈ X} (see, for example, [Ha, §2.1] and [Hida93, p.273]).

Let O be the ring of integers of a finite extension over Qp. We assume that Γ1,i is
p-torsion-free. Then the cohomology of Y BS

i has the following property:

Hm(Y BS
i ,M) ≃ Hm(Yi,M) ≃ Hm(Γ1,i,M)

for any O[Γ1,i]-module M , where M is the sheaf associated to M . Moreover,

Hm(∂(Y BS
i ),M) ≃

⊕
s∈C(Γ1,i)

Hm(Γ1,i,s,M)

for any such module M .
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2.6. Fundamental domain. In this subsection, we will construct a relative homology class
which is related to the special values of L-function attached to Hilbert modular forms.

We fix i with 1 ≤ i ≤ h+F and abbreviate Γ1,i(n)\HJF to Yi. Let E be a subgroup of o×F,+
with finite index.

First, we remark that a fundamental domain of RJF+ /E is given by

ΩE =

n−1∏
j=1

{εrjj | rj ∈ [0, 1)} × R+ ↪→ X × R+ ≃ HJF :

(εr11 , · · · , ε
rn−1

n−1 ,−log(rn)) 7→ (((εr(i))i, 0),−log(rn)) 7→
√
−1yεr,

where εr = (εr(i))i with ε
r(i) = (

∏n−1
j=1 ε

rj
j )σi and y = −log(rn). We put

ΩE =
n−1∏
j=1

{εrjj | rj ∈ [0, 1]} × (R≥0 ∪ {∞}).

For a closed unit interval I = [0, 1], we define a singular n-cube ℓi associated to ΩE as a
C∞-map

ℓi : I
n → ΩE → (HJF )BS

given by

(r1, · · · , rn) 7→ (εr11 , · · · , ε
rn−1

n−1 ,−log(rn)) 7→
√
−1yεr.

Let cE,i = proj ◦ ℓi be the composition of ℓi and the canonical projection (HJF )BS → Y BS
i .

Let

Di
0,∞ = Di

∞ ⊔Di
0

be a subspace of the boundary ∂(Y BS
i ) of Y BS

i . Then we have the partial n-cycle [cE,i]:

Definition 2.11.

[cE,i] ∈ Hn(Y
BS
i , Di

0,∞;Z),

[cE ] = ([cE,i])i ∈
h+F⊕
i=1

Hn(Y
BS
i , Di

0,∞;Z).

2.7. Twisted Mellin transform. The aim of this subsection is to give a Mellin transform
of a Hilbert modular form. In order to do it, we must need the following analytic properties.
We use the same notation as §1.2 and §2.6.

Proposition 2.12. Let h ∈Mκ(Γ1,i(n),C).
(1) Under the same notation as §1.2 and §2.6, the integral∫

image of cE,i

y(s−1)nw(h̃) =

∫
[0,1]n−1

∫
√
−1R+

y(s−1)nw(h̃)

converges absolutely for Re(s) ≫ 0 and extends to a meromorphic function on the
complex plane which is holomorphic at s = 1. Here w(h) is defined by (2.2) and

h̃(z) = h(z)− a∞(0, h).
(2) Moreover, if h vanishes at the cusps 0 and ∞, then the integral above converges absolutely

for all s ∈ C.
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Proof. (1) For Re(s) ≫ 0, we have∫
[0,1]n−1

∫
√
−1R+

y(s−1)nw(h̃) =

∫
[0,1]n−1

(∫ √
−1∞

√
−1

+

∫ √
−1

0

)
y(s−1)nw(h̃).(2.16)

Now we calculate the second term. We put σ =

((
0 1
−1 0

))
∈ G∞,+. Then by the pull-back

formula, we have

∫
[0,1]n−1

∫ √
−1

0
y(s−1)nw(h̃)

(2.17)

= −
∫
[−1,0]n−1

∫ √
−1∞

√
−1

y(1−s)nσ • w(h̃|σ)

−
∫
[−1,0]n−1

∫ √
−1∞

√
−1

y(1−s)nσ • w(a∞(0, h|σ))−
∫
[0,1]n−1

∫ √
−1

0
y(s−1)nw(a∞(0, h)).

The second (resp. third) term of (2.17) converges for Re(s) ≥ k (resp. Re(s) ≥ 1). For each
non-negative integers m,m′, since∫ ∞

1
y(1−s)n+mdy =

−1

(1− s)n+m+ 1
and

∫ 1

0
y(s−1)n+m′

dy =
1

(s− 1)n+m′ + 1
,

the second and third terms of (2.17) are holomorphic at s = 1. In order to prove that the
first term of (2.16) and (2.17) converge absolutely and entire at s = 1, it is enough to show
that ∫

[a,b]n−1

∫ ∞

1
y(s−1)nh̃(

√
−1yεr)ymdrdy(2.18)

is absolutely convergent and entire at s = 1 for any a, b ∈ R with a ≤ b.
Our proof of this claim is based on [Ga, §1.7 and §1.9]. Recall that the absolutely conver-

gent function h̃(z) has the Fourier expansion of the form:

h̃(z) =
∑

0≪ξ∈[ti]

a∞(ξ, h)eF (ξz).

There is a positive constant M > 0 such that N(ξ) > M for each 0 ≪ ξ ∈ [ti]. Then there
is ε > 0 such that N(ξ) > M + ε for any such ξ. Thus, by the argument in [Ga, p.29], we
have an estimate

exp
(
nM

1
n y
) ∣∣∣∣h̃(√−1yεr)

∣∣∣∣ ≤ ∑
0≪ξ∈[ti]

|a∞(ξ, h)| exp

(
−π

(
2−

(
M

M + ε

) 1
n

)
Tr(ξyεr)

)
.

Since h̃(z) is absolutely convergent, so is the latter series. Thus, there are positive constants
C,C ′ > 0 such that ∣∣∣∣h̃(√−1yεr)

∣∣∣∣ ≤ C exp
(
−C ′y

)
for y ≥ 1 and each r ∈ [a, b]n−1. Therefore, the integral (2.18) is dominated by∫

[a,b]n−1

∫ ∞

1
exp(−C ′y)yRe(s)n−n+mdrdy
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and hence is absolutely convergent and entire function of s ∈ C.
The assertion (2) follows from the argument in the proof of (1) and the vanishing of the

second and third terms in (2.17). □

We assume that h+F = 1 and fix a Hilbert cusp form f and a Hilbert Eisenstein series
E2(φ,ψ) as Proposition 1.1 satisfying the following conditions:

f ∈ Sκ(K1(n), χ,C) and(2.19)

E2(φ,ψ) = E2(φ,ψ)1 ∈Mκ(K1(n), χ,C) vanishes at the cusp ∞.

Hereafter we write h = f or E2(φ,ψ). We express the special values of Dirichlet series
D(1,h, η) as a Mellin transform for a more general modular form h (cf. [Oda, §16], [Hida94,
§7, §8], and [Ochi, §3]).

Let η : Cl+F (mη) → Q×
be a primitive character whose conductor mη is prime to dF [t1],

and n|mη. Let (m
−1
η /oF )

× (resp. (m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1)×) be the subset of m−1

η /oF (resp.

m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1) consisting of elements whose annihilator is mη.

Hereafter we fix a non-canonical isomorphism of oF -modules m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1 ≃

m−1
η /oF ≃ oF /mη and a non-canonical bijection induced from it (m−1

η d−1
F [t1]

−1/d−1
F [t1]

−1)× ≃
(m−1

η /oF )
× ≃ (oF /mη)

×. Hence we may canonically identify (m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1)×/o×F,+

with a subgroup of Cl+F (mη) under the canonical extension

1 → (oF /mη)
×/o×F,+ → Cl+F (mη) → Cl+F → 1.(2.20)

Let η1 denote the function on (m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1)×/o×F,+ defined by η1(b̄) = η(b̄bdF [t1]).

We note that η1(ξb̄) = η(ξ)η1(b̄) for any b̄ ∈ (m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1)×/o×F,+ and 0 ≪ ξ ∈ [t1]

prime to mη.
Recall that the Gauss sum τ(η) of η is defined by

τ(η) =
∑

b∈(m−1
η d−1

F /d−1
F )×

η(b)eF (b),

where b runs over a set of representatives of (m−1
η d−1

F /d−1
F )×.

Let E = o×F,mη ,+ = {e ∈ o×F,+ | e ≡ 1 (mod mη)}.
Hereafter we fix a set S (resp. T ) of representatives of (m−1

η d−1
F [t1]

−1/d−1
F [t1]

−1)×/o×F,+ in

m−1
η d−1

F [t1]
−1 (resp. o×F,+/E in o×F,+) satisfying the condition that

each cusp b ∈ S is Γ0,1(n)-equivalent to the cusp ∞.(2.21)

Here we note that the existence of such set follows from the assumption n|mη. Indeed, fix
a generator m (resp. c) of mη (resp. dF [t1]) and a set S′ of representatives of (oF /mη)

×

satisfying that each x ∈ S′ is prime to mc. Then {x/mc | x ∈ S′} is a set of representatives
for (m−1

η d−1
F [t1]

−1/d−1
F [t1]

−1)×/o×F,+. The assumption n|mη implies that mc ∈ ndF [t1] and

hence there is

(
x ∗
mc ∗

)
∈ Γ1

0,1(n) as desired.
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Let b̄ denote the image of b ∈ m−1
η d−1

F [t1]
−1 in (m−1

η d−1
F [t1]

−1/d−1
F [t1]

−1)×/o×F,+ under the
canonical map. Then

N([t1])
s−k/2

∑
b∈S

∑
u∈T

η1(b̄)
−1h1(z + bu)(2.22)

= N([t1])
s−k/2

∑
0≪ξ∈[t1]

a∞(ξ, h1)
∑
b∈S

∑
u∈T

η1(b̄)
−1eF (ξbu)eF (ξz)

= N([t1])
s−k/2τ(η−1)

∑
0≪ξ∈[t1]

a∞(ξ, h1)η(ξ[t1]
−1)eF (ξz).

Here the last equality follows from [Shi, (3.11)] (or (1.13) in this paper).
By taking ΩE =

⨿
u∈T u

−1Ωo×F,+
, we have

N([t1])
s−k/2

∑
b∈S

η1(b̄)
−1

∫
ΩE

h1(z + b)y(s−1)tdzJF

= N([t1])
s−k/2

∑
b∈S

η1(b̄)
−1
∑
u∈T

∫
u−1Ω

o×
F,+

h1(z + b)y(s−1)tdzJF

= N([t1])
s−k/2

∑
b∈S

η1(b̄)
−1
∑
u∈T

∫
Ω

o×
F,+

h1(z + bu)y(s−1)tdzJF

=

∫
Ω

o×
F,+

N([t1])
s−k/2

∑
b∈S

∑
u∈T

η1(b̄)
−1h1(z + bu)y(s−1)tdzJF .

Here we note that each integral is well-defined by using Proposition 2.12 (2), our assumption
(2.19), and the condition (2.21). By using the Fourier expansion of (2.22), for Re(s) ≫ 0,
we have

N([t1])
s−k/2

∑
b∈S

η1(b̄)
−1

∫
√
−1(F⊗R)×+/E

h1(z + b)y(s−1)tdzJF

= τ(η−1)N([t1])
s−k/2

∑
0≪ξ∈[t1]

a∞(ξ, h1)η(ξ[t1]
−1)

∫
Ω

o×
F,+

eF (ξz)y
(s−1)tdzJF

= τ(η−1)
∑

0≪ξ∈[t1]

a∞(ξ, h1)η(ξ[t1]
−1)N([t1])

−k/2

N(ξ[t1]−1)s

∫
Ω

o×
F,+

eF (ξz)(ξy)
(s−1)t

n∧
j=1

dξσjzσj

= τ(η−1)
∑
ξo×F,+

a∞(ξ, h1)η(ξ[t1]
−1)N([t1])

−k/2

N(ξ[t1]−1)s

∫
√
−1(F⊗R)×+

eF (ξz)(ξy)
(s−1)t

n∧
j=1

dξσjzσj

= τ(η−1)L(s,h, η)(2π)−sn
√
−1

n
Γ(s)n.

Here we note that each integral is well-defined by using Proposition 2.12 (1), and we may
regard h1(z+b) as a function on

√
−1(F ⊗R)×+/E since h1(uz+b) = h1(z+b) for any u ∈ E.

Furthermore, the integrals in the first term of this equation are independent of the choice of a
lift b of b̄. Indeed,

∫
√
−1(F⊗R)×+/E

h1(z + bu)y(s−1)tdzJF =
∫
√
−1(F⊗R)×+/E

h1(z + b)y(s−1)tdzJF
for any u ∈ o×F,+ by substituting z by zu−1, and h1(z + b) = h1(z + b + a) for any a ∈

d−1
F [t1]

−1 since

(
1 a
0 1

)
∈ Γ1

1,1(n). Hence the integral depends only on the image b̄ of b in
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(m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1)×/o×F,+ and we will denote it by∫

√
−1(F⊗R)×+/E

h1(z + b̄)y(s−1)tdzJF .

Thus we obtain the following Mellin transform.

Proposition 2.13. Assume that h+F = 1. Let κ = (0, 0), h = h1 ∈ M(0,0)(K1(n), χ,C)
satisfying (2.19). Let η : Cl+F (mη) → Q×

be a primitive character whose conductor mη is
prime to dF [t1], and n|mη. Then∑

b∈S
η1(b̄)

−1

∫
√
−1(F⊗R)×+/o

×
F,m,+

h1(z + b̄)dzJF

= τ(η−1)L(1,h, η)(−2π
√
−1)−n.

Remark 2.14. As mentioned above, the assumption n|mη and the conditions (2.19) and (2.21)
imply that each integral is well-defined.

Remark 2.15. If h is a Hilbert cusp form, then the Mellin transform as Proposition 2.13 is
satisfied without the assumption n|mη.

We consider a Mellin transform in the anti-holomorphic case. Let WG = K∞/K∞,+ =

{wJ | J ⊂ JF } be the Weyl group, where wJ ∈ K∞ such that wJ,σ =

(
1 0
0 1

)
if σ ∈ J and

wJ,σ =

(
−1 0
0 1

)
if σ ∈ JF − J . Recall that the Weyl group acts on the space of Hilbert

modular forms via h 7→ h|[K∞wJK∞] for each subset J ⊂ JF .

Proposition 2.16. Under the same notation and assumptions of Proposition 2.13,∑
b∈S

η1(b̄)
−1

∫
√
−1(F⊗R)×+/o

×
F,m,+

hJ,1(z + b̄)dzJ

= τ(η−1)L(1,h, η)η∞(ιJ)(−2π
√
−1)−n,

where dzJ is defined by (2.1) and ιJ ∈ AF,∞ such that ιJ,σ = 1 if σ ∈ J and ιJ,σ = −1 if
σ ∈ JF − J .

Proof. Since h+F = 1, we can take a ∈ o×F such that σ(a) > 0 if σ ∈ J and σ(a) < 0 if

σ ∈ JF − J . By putting γ =

(
a 0
0 1

)
, the action of [K∞wJK∞] on Y (n) = Y1 is given by

z 7→ γ−1z. Then, by the definition, we have

hJ,1(z)dzJ = h1(γ
−1z)(−1)♯(JF−J)dzJ

and

h1(γ
−1z) =

∑
0≪ξ∈[t1]

c(ξ[t1]
−1,h)N(ξ)eF (ξγ

−1z)

=
∑

µ∈[t1],{µ}=J

c(µ[t1]
−1,h)|N(µ)|eF (

√
−1µywJ∞ )eF (µx∞).

Here {µ} = {σ ∈ JF |µσ > 0}, ywJ∞,σ = y∞,σ if σ ∈ J , ywJ∞,σ = −y∞,σ if σ ∈ JF − J , the first

equality follows from (1.9), and the last equality follows from the substitution µ = a−1ξ.
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By the similar way as in the proof of Proposition 2.13, we obtain

N([t1])
s−1
∑
b∈S

η1(b̄)
−1

∫
√
−1(F⊗R)×+/o

×
F,m,+

hJ,1(z + b̄)y(s−1)tdzJ

= τ(η−1)L(s,h, η)η∞(ιJ)(2π)
−sn(

√
−1)nΓ(s)n.

□
Remark 2.17. If h is a Hilbert cusp form, then the Mellin transform as Proposition 2.16 is
satisfied without the assumption n|mη.

2.8. Relation between cocycle and Dirichlet series. In this subsection, we give a co-
homological treatment of Dirichlet series (1.12).

We consider the adélic Hilbert modular varieties Y (n) = Y1 as (1.4). Let C1
∞ be the

subset of C(Γ1,1(n)) consisting of s equivalent to the cusp ∞ over Γ0,1(n). As the previous
subsection, we assume that h+F = 1 and fix a primitive character η whose conductor is mη

and a lift b ∈ S of b̄ ∈ (m−1
η d−1

F [t1]
−1/d−1

F [t1]
−1)×/o×F,+. We consider the following subset Hb

of HJF :
Hb = b+

√
−1(F ⊗ R)×+ = {b+

√
−1y | y ∈ (F ⊗ R)×+}.

We define an action of o×F,mη ,+ on Hb by

ε ∗ (zσ)σ∈JF = (εσzσ − (εσ − 1)b)σ∈JF .

Since (ε − 1)b ∈ d−1
F [t1]

−1 for any ε ∈ o×F,mη ,+, we see that ε ∗ (zσ)σ is Γ1
1,1(n)-equivalent to

ε(zσ)σ. Then we have Hb/o
×
F,mη ,+

→ Y (n) and it induces

Hn
c (Y (n), A) → Hn

c (Hb/o
×
F,mη ,+

, A)

for A = O, K, or C. Since the cusp b is Γ0,1(n)-equivalent to the cusp ∞, it factors through
the relative singular cohomology:

Hn(Y (n)BS, DC∞(n);A) → Hn(Y (n)BS, Db,∞(n);A) → Hn
c (Hb/o

×
F,mη ,+

, A).(2.23)

Here D1
s is the boundary of the Borel–Serre compactification Y BS

1 of Y1 at each cusp s as
§2.5, D1

C∞
=
⨿
s∈C1

∞
D1
s , DC∞(n) = D1

C∞
, D1

b,∞ = D1
b ⊔D1

∞, and Db,∞(n) = D1
b,∞.

Then we define the evaluation map

evb,1,A : H̃n(Y (n)BS, DC∞(n);A) → A(2.24)

by the composition of (2.23) and the trace map Hn
c (Hb/o

×
F,mη ,+

, A) → A, where

H̃n(Y (n)BS, DC∞(n);A) = Hn(Y (n)BS, DC∞(n);A)/A-torsion.

In order to relate our cohomology class [π∗] and the special values of the L-functions, we
recall the relative de Rham theory, which is proved by Borel [Bo, Theorem 5.2] for general
locally symmetric spaces.

Let Ω•(Y1,C) denote the complex of C-valued C∞-differential Γ1,1(n)-invariant forms in
HJF . Moreover, let Ω•

fd(Y1, D
1
C∞

;C) denote the complex of forms in Ω•(Y1,C) which, together
with their exterior differentials, are fast decreasing at each cusp s ∈ C1

∞. By the argument
in the proof of [Bo, Theorem 5.2] on the stalks at the boundary, we have

Hn
dR(Y1,Ω

•
fd(Y1, D

1
C∞ ;C)) ≃ Hn(Y BS

1 , D1
C∞ ;C).

Let’s fix h = h1 ∈ M(0,0)(K1(n), χ,C) satisfying the assumptions of Proposition 2.9 and
(2.19). Then, under the same notation of Proposition 2.9, by Proposition 2.10, [πh] =



36 YUICHI HIRANO

[πh1 ] ∈ Hn(Y (n),K), that is, [πh] is rational. Moreover, by Proposition 2.9 (2), it is zero in
the partial boundary cohomologyHn(DC∞(n),C). Let [πh]rel denote the relative cohomology
class in Hn(Y (n)BS, DC∞(n);C) mapping to [πh].

Proposition 2.18. Assume that h+F = 1. Let h = h1 ∈ M(0,0)(K1(n), χ,C) be a Hecke
eigenform for all T (m) and U(m) satisfying the assumptions of Proposition 2.9, (2.19), and
C(q,h) ̸≡ N(q)(mod ϖ) for at least one prime ideal q of oF dividing n. Then, under the
same notation of Proposition 2.9, [πh]rel is rational:

[πh]rel ∈ Hn(Y (n)BS, DC∞(n);K).

Proof. We use the same notation of the proof of (3.5). Let m′
h be the maximal ideal of

H2(n,O)′ generated byϖ and U(q)−C(q,h) for all ideals q of oF dividing n, which acts on the
relative singular cohomologyHn(Y (n)BS, DC∞(n);K). Let [c]rel ∈ Hn(Y (n)BS, DC∞(n);K)m′

h

mapping to [πh] ∈ Hn(Y (n),K)m′
h
. Then [c]rel−[πh]rel is in the image ofHn−1(DC∞(n),C)m′

h
.

As we will mention just after (3.5), we have Hn−1(DC∞(n),C)m′
h
= 0 under the assumptions

that h+F = 1 and C(q,h) ̸≡ N(q)(mod ϖ) for at least one prime ideal q of oF dividing n.
Thus [πh]rel = [c]rel is rational. □

We note that, if [πh]rel ∈ H̃n(Y (n)BS, DC∞(n);A), then, as mentioned just before Propo-
sition 2.13, the value evb,1,A([πh]rel) depends only on b̄ and hence we will denote it by
evb̄,1,A([πh]rel). Then, by combining these observations and Proposition 2.13, we obtain
the following description.

Proposition 2.19. Assume that h+F = 1, κ = (0, 0), and h = h1 ∈ M(0,0)(K1(n), χ,C)
satisfying (2.19) and [πh]rel ∈ H̃n(Y (n)BS, DC∞(n);A). Let η : Cl+F (mη) → Q×

be a primitive
character whose conductor mη is prime to dF [t1], and n|mη. Then∑

b∈S
ηi(b̄)

−1evb̄,1,A([πh]rel)

= τ(η−1)L(1,h, η)(−2π
√
−1)−n ∈ A(η).

We also treat in the anti-holomorphic case under the assumption h+F = 1. Since h+F = 1, the

action of [K∞wJK∞] on Y (n) is given by z → γ−1z, where γ =

(
ξ 0
0 1

)
for some ξ ∈ o×F such

that ξσ > 0 if σ ∈ J and ξσ < 0 if σ ∈ JF − J . By this description, we see that [K∞wJK∞]

preserves the component DC∞(n) and hence [K∞wJK∞] acts on H̃n(Y (n)BS, Db,∞(n);A).
We note that the group cohomology class [πh1 ]rel|[K∞wJK∞] corresponds to the de Rham

cohomology class h1,J(z)dzJ via the de Rham theorem. By using Proposition 2.16, the
similar calculation shows the following proposition in the anti-holomorphic case.

Proposition 2.20. Under the same notation and assumptions of Proposition 2.19, we have∑
b∈S

η1(b̄)
−1evb̄,1,A ([πh]rel|[K∞wJK∞])

= τ(η−1)L(1,h, η)η∞(ιJ)(−2π
√
−1)−n ∈ A(η),

where ιJ ∈ AF,∞ such that ιJ,σ = 1 if σ ∈ J and ιJ,σ = −1 if σ ∈ JF − J .
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2.9. Duality theorem between Hecke algebra and Hilbert modular form. Hereafter,
we simply write

M2(n,C) =M(0,0),JF (K1(n),C), S2(n,C) = S(0,0),JF (K1(n),C)
and

M2(Γ1,i(n),C) =M(0,0),JF (Γ1,i(n),C), S2(Γ1,i(n),C) = S(0,0),JF (Γ1,i(n),C).
Recall that h = (hi)i ∈M2(n,C) has the Fourier expansion of the form (1.9). For a subring
A of C, we put

M2(Γ1,i(n), A) =M2(Γ1,i(n),C) ∩A[[eF (ξz) : ξ = 0 or 0 ≪ ξ ∈ F ]],

S2(Γ1,i(n), A) = S2(Γ1,i(n),C) ∩A[[eF (ξz) : ξ = 0 or 0 ≪ ξ ∈ F ]],

and

M2(n, A) =

h+F⊕
i=1

M2(Γ1,i(n), A), S2(n, A) =

h+F⊕
i=1

S2(Γ1,i(n), A).(2.25)

Let Φp be the field as Proposition 2.9. We fix a finite extension K of Φp. Let O be the
ring of integers of K, ϖ a uniformizer, and κ the residue field. We shall write A = K or O
and use the same notation as §1.2.

We define the Hecke operators T (ϖe
q) for a prime ideal q of oF and a uniformizer ϖq of

oFq
and S(ϖe

q) for a prime ideal q of oF such that q ∤ n by the following double coset:

T (ϖe
q) = K1(n)

(
ϖe

q 0
0 1

)
K1(n) and S(ϖ

e
q) = K1(n)

(
ϖe

q 0
0 ϖe

q

)
K1(n).

We put T (qe) = T (ϖe
q) and S(q

e) = S(ϖe
q) for a prime ideal q prime to n, and U(qe) = T (ϖe

q)
for a prime ideal q dividing n. Then we define

T (m) =
∏
q∤n

T (qe(q)) and S(m) =
∏
q∤n

S(qe(q))

for any integral ideal m =
∏

q∤n q
e(q) of F prime to n and

U(m) =
∏
q|n

U(qe(q))

for any integral ideal m =
∏

q|n q
e(q) of F dividing n.

Let H2(n, A) (resp. H2(n, A)) be the commutative Hecke A-subalgebra of EndC(M2(n,C))
(resp. EndC(S2(n,C))) generated by T (m), S(m) for all ideals m of oF prime to n, and U(m)
for all ideals m of oF dividing n as (1.7).

Then, by [Shi, (2.23)], there is a relation between the Hecke operators and the Fourier
expansion of the following form: for V (m′) = T (m′) or U(m′), we have

C(m, f|V (m′)) =
∑

m+m′⊂c

N(c)C(c−2mm′, f|S(c)).(2.26)

According to [Hida88, Theorem 4.11] and [Hida91, Theorem 2.2 (ii)], the space S2(n, A)
(resp. M2(n, A)) is stable under H2(n, A) (resp. H2(n, A)).

Theorem 2.21 (Duality theorem). Assume that p > 3 is prime to the discriminant △F of
F . Let K be any finite extension of Φp and O its ring of integers . Then, for A = K or O,

⟨ , ⟩ : H2(n, A)×M2(n, A) → A : (t, f) 7→ C(oF , f|t)
is a perfect pairing.
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Proof. We follow the arguments in the proof of [Hida88, Theorem 5.1] and [Hida91, Theorem
2.2 (iii)].

First we assume that A = K. According to the proof of [Hida91, Theorem 2.2 (iii)],
M2(n,K) is of finite dimension over K. Thus, it is enough to prove the non-degeneracy of
the pairing. Suppose ⟨t, f⟩ = 0 for all t. By the relation (2.26), we have

C(m, f) = C(oF , f|V (m)) = ⟨V (m), f⟩ = 0

for V (m) = T (m) or U(m) and all integral ideals m of F . Thus, f is a constant function and
hence f = 0 because the weight of f is positive. Conversely, if ⟨t, f⟩ = 0 for all f, then for
V (m) = T (m) or U(m) and all integral ideals m of F , we have

C(m, f|t) = C(oF , f|tV (m)) = C(oF , f|V (m)t) = ⟨t, f|V (m)⟩ = 0.

Thus, f|t = 0 and hence h = 0 as an operator. This proves the assertion for A = K.
Next suppose that A = O. It suffices to prove that

M2(n,O) ≃ HomO (H2(n,O),O) .

If ϕ : H2(n,O) → O is anO-linear map, then we can extend to aK-linear map ϕ : H2(n,K) →
K. Thus, by the duality theorem for a field K, we get f ∈ M2(n,K) such that ⟨t, f⟩ = ϕ(h)
for all t ∈ H2(n,O). Then for V (m) = T (m) or U(m) and every ideal m of oF , we have

C(m, f) = C(oF , f|V (m)) = ⟨V (m), f⟩ = ϕ(V (m)) ∈ O.

Suppose that the constant term of f does not belong to O, that is, a∞(0, fi) /∈ O for some i.
Let r ∈ Z be the positive integer such that ϖra∞(0, fi) ∈ O×. Then the q-expansion of ϖrfi
is equal toϖra∞(0, fi) moduloϖ. By [An–Go], the kernel of q-expansion map on the space of
Hilbert modular forms of all parallel weight is generated byHp−1−1, whereHp−1 is the Hasse
invariant of level 1 and parallel weight p−1. Then we have ϖrfi−ϖra∞(0, fi) = α(Hp−1−1)
for some α ∈ κ. Since the weight of Hp−1 is p−1 > 2, this contradictions. Thus f ∈M2(n,O)
as desired. □

2.10. Congruence modules and Integrality of cocycles. In this subsection, we will
determine the structure of a congruence module associated to an Eisenstein series. As
applications, we will prove the integrality of Eisenstein cocycles based on [Be, §4] and [Eme]
and construct an example of a congruence between a Hilbert cusp form and an Eisenstein
series based on [Ri] and [Wil].

We use the same notation as §1.2, §2.4, and §2.9. We simply write Γ1,i = Γ1,i(n), Yi =

Γ1,i\HJF . For ? = ϕ or par and X = Y (n), Yi, or ∂(Y
BS
i ) as (1.4) and §2.5, we write

H̃m
? (X,O) = im (Hm

? (X,O) → Hm
? (X,K))

for the torsion-free part of Hm
? (X,O), where, for A = O or K, Hm

c (X,A) is the compact sup-
port cohomology of X with coefficients in A and Hm

par(X,A) = im (Hm
c (X,A) → Hm(X,A))

is the parabolic cohomology of X with coefficients in A. For [π] ∈ Hn(X,K), let

δ([π]) =
{
a ∈ O

∣∣a[π] ∈ H̃n(X,O)
}

be the denominator ideal in the sense of Berger ([Be, §4.1]). We fix an Eisenstein series
E = E2(φ,ψ) as Proposition 1.1 such that primitive narrow ray class characters φ and ψ
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satisfy mφmψ = n and

(Eis condition) φ and ψ are O-valued totally even (resp. totally odd) such that

φ ̸= 1 and the algebraic Iwasawa µ-invariants of

the splitting fields of φ and ψ are equal to 0 (see Remark 0.2).

Then, by Proposition 1.1 (3), the Eisenstein series E satisfies (2.19). We put the character
ϵE = −1 (resp. ϵE = 1) on the Weyl groupWG if both φ and ψ are totally even (resp. totally
odd). Put χ = φψ. We denote by I an ideal of H2(n,O) generated by T (m)−C(m,E), S(m)−
χ−1(m), U(m) − C(m,E) for all integral ideals m of F . Let I be the image of I under the
canonical surjectionH2(n,O) ↠ H2(n,O). The moduleH2(n,O)/I is the congruence module
associated to the Eisenstein series E in the sense of Hida. By [Hida88, p.329–333], the spaces
of classical modular forms S2(Γ1,i,O) and M2(Γ1,i,O) can be embedded into the space of
geometric modular formsM(0,0)(M,O). For this reason, if f ∈M2(Γ1,i,O), then the constant
term of f at each cusp point belongs to O by the q-expansion principle. Thus, by Theorem
2.21 (Duality theorem), for each i with 1 ≤ i ≤ h+F and each cusp s ∈ C(Γ1,i), we can take
Ai,s ∈ H2(n,O) corresponding a map

M2(n,O) → O : f 7→ as(0, fi),

where as(0, fi) is the constant term of fi at s. Let (i0, s0) be a pair such that vp(as0(0, Ei0)) ≤
vp(as(0, Ei)) for each (i, s) under the p-adic valuation vp. We put

C = as0(0, Ei0).

In order to state the main theorem of this subsection, we recall the Eichler–Shimura–
Harder isomorphism. The theorem [Hida93, Theorem 1.1] says that the C-vector space
Hn

par(Y (n),C)/Hn
cusp(Y (n),C) is spanned by the cohomology classes of the invariant forms

ωJ ′ =
∧
σ∈J ′ y−2

σ dxσ ∧ dyσ with ♯J ′ = n/2 if n = [F : Q] is even. Moreover, by [Hida88, §7],
both Hn

par(Y (n),C) and Hn
cusp(Y (n),C) are WG-modules. Since h+F = 1, as mentioned just

after Proposition 2.19, for each subset J ⊂ JF , the Weyl action of ((1σ)σ∈J , (−1σ)σ∈JF−J) ∈
WG on Y (n) = Y1 is given by

((xσ +
√
−1yσ)σ∈J ,(xσ +

√
−1yσ)σ∈JF−J)

7→
(
ξσ(xσ +

√
−1yσ)σ∈J , (−ξ)σ(−xσ +

√
−1yσ)σ∈JF−J

)
for some ξ ∈ o×F . In the case n = [F : Q] is even, if a character ϵ on WG satisfying
♯{σ ∈ JF | ϵ(−1σ) = −1} ̸= n/2, then Hn

par(Y (n),C)[ϵ] = Hn
cusp(Y (n),C)[ϵ], where V [ϵ] =

{v ∈ V | w · v = ϵ(w)v for w ∈ WG} is the ϵ-isotypic part of this action for any WG-module
V . In particular, we obtain

Hn
par(Y (n),C)[ϵ

E
] ≃ Hn

cusp(Y1(n),C)[ϵE ] ≃ S2(n,C)(2.27)

as Hecke modules (cf. [Hida94, §2,§3]). Thus we will use that the Hecke algbra H2(n,O) is

isomorphic to the O-subalgebra of EndO

(
H̃n

par(Y (n),O)[ϵ
E
]
)
. Moreover, we can decompose

Hn(Y (n),C)[ϵE ] ≃ Hn
par(Y (n),C)[ϵE ]⊕Hn

Eis(Y (n),C)[ϵE ]

and the Hodge-Tate weight ofHn
Eis(Y (n),C) is n by Proposition 4.6. HereHn

Eis(Y (n),C) is the
Eisenstein cohomology (for the definition, see Step2 and Step3 in the proof of Proposition

4.6). Then we have H2(n,O) → EndO

(
H̃n(Y (n),O)[ϵ

E
]
)
. Let H2(n,O)[ϵ

E
] (resp. I[ϵ

E
])

denote the image of H2(n,O) (resp. each ideal I of H2(n,O)) under this map.
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Theorem 2.22. Let F/Q be a totally real number field with h+F = 1 and p > 3 a prime
number such that p is prime to n and △F . We assume the following two conditions:

(a) both Hn(∂
(
Y (n)BS

)
,O) and Hn+1

c (Y (n),O) are torsion-free;
(b) C(q,E) ̸≡ N(q)(modϖ) for some prime ideal q dividing n, where C(q,E) is the U(q)-

eigenvalue of E.

Then there is an isomorphism of O-modules

H2(n,O)[ϵE ]/(I+
∑

s∈C(Γ1,1)

OA1,s)[ϵE ] ≃ H2(n,O)/I ≃ O/C.

Proof. By the definition, we have the canonical surjection

H2(n,O)[ϵE ]/(I+
∑

s∈C(Γ1,1)

OA1,s)[ϵE ] ↠ H2(n,O)/I.(2.28)

Let G = E/C and [πG]ϵE = [πG1 ]
ϵ
E ∈ Hn(Y (n),C)[ϵE ]. Here [πG1 ]

ϵ
E stands for the

projection to the ϵE-part of [πG1 ]. We have [πG] ∈ Hn(Y (n),K) by Proposition 2.10. Let
δG = δ([πG]ϵE ). Next, we construct a surjection

H2(n,O)/I ↠ O/δG.(2.29)

By the calculation of the constant term of an n-cocycle (Proposition 2.9), we have

res([πG]) = res[πG1 ] ∈ H̃n(∂(Y BS
1 ),O) ≃

⊕
s∈C(Γ1,1)

H̃n(Γ1,1(n)s,O).

The torsion-free assumption implies H̃n+1
c (Y (n),O) = Hn+1

c (Y (n),O). Moreover, by the
definition, the image of res([πG]) under the connecting homomorphism Hn(∂(Y (n)BS),K) →
Hn+1
c (Y (n),K) is equal to 0. Thus, there is [c] = [c1] in H̃

n(Y (n),O)[ϵ
E
] such that

res([c]) = res([πG]ϵE ).

Thus we get
[c]− [πG]ϵE ∈ Hn

par(Y (n),K)[ϵE ].

We fix d ∈ δG. We put [e0] = d([c] − [πG]ϵE ) ∈ H̃n
par(Y (n),O)[ϵE ]. Then we may assume

[e0] ̸= 0. Indeed, if [e0] = 0, then [c] = [πG]ϵE and hence δG = 1. Let [e0], · · · , [ev] be an

O-basis of H̃n
par(Y (n),O)[ϵE ]. For each t ∈ H2(n,O), we write

t([e0]) =
v∑
i=0

λi(t)[ei]

with λi(t) ∈ O. Thus we define a surjection

H2(n,O) ↠ O/δG : t 7→ λ0(t).

This O-homomorphism factors through the congruence module H2(n,O)/I. Indeed, for
t ∈ I and its lift t̃ ∈ I, we have

t([e0]) = d · t̃([c]− [πG]ϵE ) = d · t̃[c] ≡ 0 (mod d),

because the map G 7→ [πG] is compatible with the Hecke operators (Proposition 2.7). Thus
we get

H2(n,O)/I ↠ O/δG.
Next we construct

O/δG ↠ O/C.(2.30)
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Let ηp be a non-trivial primitive narrow ray class character corresponding to a character of
Gal(F (ζp∞)/F ) of finite order with ηp = ϵE on WG ≃ A×

F,∞/A
×
F,∞,+. We put η = ηpφ

−1ψ−1.

Note that n|mη. We fix d ∈ δG and then d[πG] = d/C · [πE] ∈ H̃n(Y (n),O). Moreover,
d[πG]rel ∈ Hn(Y (n)BS, DC∞(n);K) by Proposition 2.18. We claim that d[πG]rel is integral:

d[πG]rel ∈ H̃n(Y (n)BS, DC∞(n);O).(2.31)

For the moment we admit the claim. Since n|mη, by using Proposition 2.19 and Proposition
2.20, ∑

b∈S
η1(b̄)

−1evb,1,O(d[πG]ϵErel)(2.32)

=
d

C
· τ(η−1) ·

√
−1

n

(2π)n
·D(1,E, η)

=
d

C
· τ(η−1) ·

√
−1

n

2n
· L(1, ηφ)

πn
· L(0, ηψ)

=
d

C
· (−1)n

2n△1/2
F

·
τ(φψ)φψ(mηp)ηp(mψ)

τ(ψ)ψ(mηp)ηp(mφψ)
· L(0, η−1

p ψ) · L(0, ηpφ−1) ∈ O(η).

Here the first equality follows from Proposition 2.19 and Proposition 2.20, the second equality
follows from Proposition 1.1 (1), and the last equality follows from the functional equation
for Hecke L-functions (see, for example, [Mi, Theorem 3.3.1]) using that ηφ = ηpψ

−1 is
totally odd and [Mi, (3.3.11)]. Since both ηpψ

−1 and ηpφ
−1 are totally odd, the left hand

side is non-zero by using the functional equation for Hecke L-functions (see, for example,
[Da–Da–Po, Lemma 1.1]). We remark that the second and third terms in (2.32) are prime to
p. Moreover, by (Eis condition) with the help of the Iwasawa main conjecture for totally real
number fields proved by Wiles [Wil], the p-adic valuation of L(0, η−1

p ψ) and L(0, ηpφ
−1) are

smaller than that of ϖ for all but finitely many narrow ray class character ηp with ηp = ϵE
on WG. Therefore we obtain that C | d as required.

Thus it remains to prove the claim (2.31). We use the same notation as the proof of
(3.5). Let m′

E be the maximal ideal of H2(n,O)′ generated by ϖ and U(q) − C(q,E) for
all ideals q of oF dividing n, which acts on the torsion-free part of the relative singular

cohomology H̃n(Y (n)BS, DC∞(n);O). By Proposition 2.9 and (2.19), d[πG] is zero in the

torsion-free part of the partial boundary cohomology H̃n(DC∞(n),O)m′
E
. Moreover, the

torsion-free assumption implies H̃n(DC∞(n),O)m′
E

= Hn(DC∞(n),O)m′
E
. If we fix [ω]′ ∈

Hn(Y (n),O)m′
E
mapping to d[πG] ∈ H̃n(Y (n),O)m′

E
, then [ω]′ is zero in Hn(DC∞(n),O)m′

E
.

Let [ω]′rel ∈ Hn(Y (n)BS, DC∞(n);O)m′
E

mapping to [ω]′ ∈ Hn(Y (n),O)m′
E

and let [ω]rel

denote the image of [ω]′rel in H̃
n(Y (n)BS, DC∞(n);O)m′

E
. Then [ω]rel−d[πG]rel is in the image

of Hn−1(DC∞(n),K)m′
E
. As we will mention just after (3.5), we have Hn−1(DC∞(n),C)m′

E
=

0 under the assumptions that h+F = 1 and C(q,E) ̸≡ N(q)(mod ϖ) for at least one prime
ideal q of oF dividing n. Thus d[πG]rel = [ω]rel is integral as desired.

Furthermore, by the definition, A1,s = as(0, E1) in H2(n,O)/I and hence we have

O/C ↠ H2(n,O)[ϵE ]/(I+
∑

s∈C(Γ1,1)

OA1,s)[ϵE ].(2.33)

Then (2.28), (2.29), (2.30), and (2.33) prove the theorem. □
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Remark 2.23. Since
∑

b∈S η1(b̄)
−1evb,1,C(d[πG]ϵErel) ̸= 0 by the proof of (2.30) in Theorem 2.22,

we see that [πG]ϵErel ̸= 0 in Hn(Y (n),C). Thus, by Proposition 4.6, we can verify that

[πE]
ϵ
E = [πE].

By the proof of Theorem 2.22, we obtain δG = (C) and the following corollary, which we
will use in §3 and §4.5.

Corollary 2.24. Under the same assumptions of Theorem 2.22,

[πE] ∈ H̃n(Y (n),O),

that is, [πE] is an integral cocycle. Moreover, the modulo ϖ cohomology class of [πE] is
non-zero:

[πE] ̸= 0 in H̃n(Y (n), κ),

where
H̃n(Y (n), κ) = Hn(Y (n), κ)/(image of O-torsion of Hn(Y (n),O)).

2.11. Real quadratic field case. We give an example of a congruence between a Hilbert
cusp form and a Hilbert Eisenstein series.

We use the same notation as the proof of Theorem 2.22 and simply write Γ1 = Γ1,1(n)
and Γ1

1 = Γ1
1,1(n). Hereafter, in this subsection, we assume that F is a real quadratic field

with h+F = 1. First we show the following lemma.

Lemma 2.25. Assume the following four conditions (1), (2), (3), and (4):

(1) H3
c (Y (n),O) is torsion-free;

(2) H2(∂
(
Y (n)BS

)
,O) is torsion-free;

(3) C(q,E) ̸≡ N(q)(modϖ) for some prime ideal q dividing n, where C(q,E) is the U(q)-
eigenvalue of E;

(4) the ideal (C) ̸= 0,O.

Then there exist a finite extension K ′ of K with the ring of integer O ↪→ O′ and a uniformizer
ϖ′ such that (ϖ′) ∩ O = (ϖ) and a Hecke eigenform f ∈ S2(n,O′) for all T (m) and U(m)
with character χ such that f ≡ E (modϖ′), that is,

C(m, f) ≡ C(m,E)(modϖ′)

for any integral ideal m of F .

Proof. By the proof of Theorem 2.22, if (C) ̸= 0,O, then [e0] ̸= 0 ∈ H̃2
par(Y (n),O)[ϵE ] is

cohomologous to −[πE] modulo ϖ and the Hecke eigenvalues of [e0] are the same as those
of −[πE] modulo ϖ for all t ∈ H2(n,O). The Deligne–Serre lifting lemma ([Del–Se, Lemma

6.11]) in the case R = O, M = H̃2
par(Y (n),O)[ϵE ], and T = H2(n,O) says that there exist

a finite extension K ′ of K with the ring of integer O ↪→ O′ and a uniformizer ϖ′ such that

(ϖ′) ∩ O = (ϖ) and a non-zero eigenvector [π] ∈ H̃2
par(Y (n),O)[ϵE ] ⊗ O′ for all t ∈ T with

eigenvalues λ(V (m)) satisfying

λ(V (m)) ≡ C(m,E) (mod ϖ′),

where V (m) = T (m) or U(m). Then, by the partial Eichler–Shimura–Harder isomorphism
(2.27), we may regard [π] ∈ S2(n,C) and hence we get a Hecke eigenform f for all T (m) and
U(m) such that [π] = [πf]. By using the relation between Hecke eigenvalues and Fourier
coefficients, we may assume that f ∈ S2(n,O′) with character χ. Therefore we obtain the
congruence between a Hecke eigenform and our Eisenstein series

f ≡ E (modϖ′).
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□
In order to construct an example of the congruence between a Hilbert cusp form and a

Hilbert Eisenstein series, we shall prove (1) and (2) of Lemma 2.25 in certain case and give
a Hilbert Eisenstein series satisfying (3) and (4) of Lemma 2.25 based on a numerical table
in [Oka].

The first question we have to ask is torsion-freeness of (1). By the Poincaré–Lefschetz
duality theorem, we obtain

H3
c (Y (n),O) ≃ H1(Y (n),O).

Proposition 2.26. Assume that n is prime to 6△F . If p is prime to 6n and ♯(o×F,+/o
×2
F,n),

then the assumption (1) of Lemma 2.25 is satisfied.

Proof. Since n is prime to 2, we have Γ1
1 = Γ1

1 and hence Γ1/Γ
1
1 ≃ o×F,+/o

×2
F,n. Thus, by

the Poincaré–Lefschetz duality theorem, it suffices to show that Γ1,ab
1 is p-torsion-free if p is

prime to 6n. This torsion-free problem will be solved by the method of Kuga [Kuga] and the
theorem of Serre [Se] as follows. Since α−1Γ1

1α = Γ1(oF , n)∩ SL2(oF ) for some α ∈ GL2(F ),
we may assume Γ1

1 = Γ1(oF , n) ∩ SL2(oF ). Thus the theorem [Se, Theorem 3] shows that

Γ1,ab
1 is torsion group. By the congruence subgroup property [Se, Corollary 3 of Theorem 2],

there is an integral ideal m of F such that the principal congruence subgroup Γ(m) satisfies
Γ(m) ⊂ [Γ1

1 : Γ
1
1] ⊂ Γ1

1. In particular, we have

Γ1,ab
1 ≃

(
Γ1
1/Γ(m)

)ab
.

We estimate the order of right hand side as follows. Let H = Γ1
1/Γ(m). We decompose

SL2(oF )/Γ(m) =
∏
i SL2(oF /q

ri
i ) and H =

∏
iHqi . We define Ĥqi by the following cartesian

diagram:

Hqi
� � //

□

SL2(oF /q
ri
i )

Ĥqi

OOOO

� � // SL2(oFqi
).

OOOO

Here we note that, since SL2 is connected semi-simple, for each positive integer r and prime
ideal q of oF , the canonical map SL2(oFq

) ↠ SL2(oF /q
r) is surjective.

Then our assertion follows from the following claim: We fix a positive integer r = ri and
a prime ideal q = qi of oF . Let l be the prime number such that (l) = q ∩ Z.

Claim (a) Ĥab
q = 1 in the case Ĥq = SL2(oFq

) and (q, 6) = 1.

(b) Ĥab
q is an l-group in the case Ĥq =

{(
a b
c d

)
≡
(
1 ∗
0 1

)
mod qr

}
.

The assertion (a) is obtained by ([Fe–Si, Proposition 4.8]).
The assertion (b) follows from the arguments in [Fe–Si] as follows. For each non-negative

integer m, let Γ̂(qm) = ker
(
SL2(oFq

) ↠ SL2(oF /q
m)
)
. The direct calculation with the help

of the proof of [Fe–Si, Lemma 4.4] shows that Ĥq is generated by all elementary unipotents

in Ĥq. Then the image of Ĥq/(Ĥq∩ Γ̂(q)) in SL2(oFq
/q) is generated by

(
1 1
0 1

)
and hence it

is an l-group. Moreover, by using the proof of [Fe–Si, Propositon 4.8], we have EL2(q
4m) ⊂

[Ĥq : Ĥq] ⊂ Ĥq. Here EL2(oFq
) is the subgroup of SL2(oFq

) generated by all elementary

unipotents and EL2(q
4m) = EL2(oFq

)∩ Γ̂(q4m). As mentioned in the proof of [Fe–Si, Lemma
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4.5], EL2(q
4m) is a subgroup of Γ̂(q4m) with index a power of l. Since Γ̂(q)/Γ̂(q4m) is an

l-group, so is Ĥq/Γ̂(q
4m). In particular, Ĥab

q is an l-group as desired. □

The second point to be discussed is (2). Let ε0 be the fundamental unit of F and ε+ be
a generator of o×F,+:

ε+ =

{
ε0 if N(ε0) = 1,

ε20 if N(ε0) = −1.
(2.34)

Proposition 2.27. If p ∤ N(ε+ − 1) and n is a prime ideal q of oF prime to 6△F , then the
assumption (2) of Lemma 2.25 is satisfied.

Proof. We simply write Γ = Γ1,1 and may assume Γ = Γ1(oF , n) by taking conjugation. We
recall the arguments in [Gha, §3]. Using the description of the boundary cohomology as

§2.5, it suffices to show that H2(Γs,O) = H2(α−1Γα ∩B∞,O) is torsion-free for each cusp
s ∈ C(Γ), where s ∈ P1(F ) and α ∈ SL2(oF ) such that α(∞) = s, B∞ is the standard Borel
subgroup of upper triangular matrices, and the bar − means image in GL2(F )/(GL2(F )∩F×).

Moreover, as mentioned in [Gha, p. 260], H2(α−1Γα ∩B∞,O) is torsion-free if and only

if H1(α−1Γα ∩B∞,K/O) is divisible. A main tool for our proof is the Hochschild–Serre
spectral sequence

Ei,j2 = H i(α−1Γα ∩B∞/α−1Γα ∩ U∞,H
j(α−1Γα ∩ U∞,K/O)) ⇒ H i+j(α−1Γα ∩B∞,K/O),

where U∞ is the unipotent radical of B∞. As a similar calculation in [Gha, §3.4.2], our
assertion follows from the following (2.35), (2.36), and the exact sequence (2.37). Indeed,

it degenerates at E2 and hence it is enough to prove that each Ei+j2 with i + j = 1 is

divisible. Using (2.36) and (2.37), we have E1,0
2 = HomZ(Z,K/O) = K/O. Moreover, for

each ε ∈ o×F,+, b ∈ q1−e, and f ∈ E0,1
2 , we have f(εb) = f(b) under the isomorphisms (2.35)

and (2.36). Then N(ε+ − 1)f = 0 and hence f = 0 if p ∤ N(ε+ − 1) as desired.
It remains to prove (2.35), (2.36), and (2.37). Fix s = x/y ∈ P1(F ) with x, y ∈ oF

and (x, y) = 1 and α =

(
x β
y δ

)
∈ SL2(oF ) such that α(∞) = s. We may assume that

if (y, q) = 1, then (δ, q) = q. Indeed, since (xq, y) = 1, there is

(
x β
y δ

)
∈ SL2(oF ) with

(δ, q) = 1. We prove the following claims:

α−1Γα ∩ U∞ ≃ q1−e if (y, q) = qe;(2.35)

α−1Γα ∩ T∞ ≃ o×F,+;(2.36)

1 → α−1Γα ∩ U∞ → α−1Γα ∩B∞ → α−1Γα ∩ T∞ → 1,(2.37)

where T∞ is the standard torus. For

(
a b
0 d

)
∈ α−1Γα ∩B∞, the direct calculation shows

α

(
a b
0 d

)
α−1 =

(
x β
y δ

)(
a b
0 d

)(
δ −β
−y x

)
=

(
aδx− bxy − βdy −aβx+ bx2 + βdx
aδy − by2 − δdy −aβy + bxy + δdx

)
.

First we prove (2.35). Suppose that

(
1 b
0 1

)
∈ α−1Γα∩U∞. The condition α

(
1 b
0 1

)
α−1 ∈

Γ is equivalent to bx2 ∈ oF , by
2 ∈ q, and bxy ∈ q. Since (x, y) = 1, we have b ∈ oF . If

(y, q) = qe, then b ∈ q1−e as desired.
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Next we prove (2.36). Suppose that

(
a 0
0 d

)
∈ α−1Γα∩T∞. The condition α

(
a 0
0 d

)
α−1 ∈

Γ is equivalent to ad ∈ o×F,+, (a− d)δy ∈ q, and −aβy + dδx ≡ 1(mod q).

Suppose (y, q) = 1. Since xδ − βy = 1, we have a ≡ 1(mod q) and hence

(
a 0
0 d

)
=(

1 0
0 a−1d

)
. Moreover, for each ε ∈ o×F,+,

(
1 0
0 ε

)
∈ α−1Γα ∩ T∞ as desired.

By the same argument, if (y, q) = q, then d ≡ 1(mod q) and hence

(
a 0
0 d

)
=

(
ad−1 0
0 1

)
and, for each ε ∈ o×F,+,

(
ε 0
0 1

)
∈ α−1Γα ∩ T∞ as desired.

Finally we prove (2.37). For any

(
a b
0 d

)
∈ α−1Γα∩B∞, it suffices to show that

(
1 εb
0 1

)
∈

α−1Γα ∩ U∞ for each ε ∈ o×F , which is equivalent to bx2 ∈ oF , by
2 ∈ q, and bxy ∈ q by the

proof of (2.35). The condition α

(
a b
0 d

)
α−1 ∈ Γ implies that bxy ∈ oF , bx

2 ∈ oF , and

by2 ∈ q. Then it suffices to check that bxy ∈ q. Since (x, y) = 1, we have b ∈ oF . Since
by2 ∈ q, if (y, q) = 1, then b ∈ q as desired. □

Example 2.28. We give an example satisfying the assumptions of Lemma 2.25 in the case
F = Q(

√
2) with oF = Z[

√
2], h+F = 1, △F = 8, ε0 = 1 +

√
2, and ε+ = 3 + 2

√
2. According

to [Oka, §4, p.1137], for the non-trivial character χ : Gal(F (
√
5)/F ) → Q×

whose infinite
type is the identity and conductor is a prime ideal n = (5) of oF , we have

L(−1, χ) =
28

5
.(2.38)

A pair of characters φ = χ−1 and the trivial character ψ = 1 satisfies (Eis condition).
We see that p = 7 with (p, 6△F ) = 1 and the Eisenstein series E2(φ,ψ) with respect to
level Γ1,1((5)) satisfy the assumptions (1), (2), (3), and (4) of Lemma 2.25. Indeed, (1)
(resp. (2)) follows from Proposition 2.26 (resp. Proposition 2.27) since (7, 2 · ♯(oF /5)×) = 1
(resp. (7, 2+2

√
2) = 1). Moreover, (3) (resp. (4)) can be confirmed by C((5),E2(φ,ψ)) = 0

(resp. (2.38) and Proposition 1.2). Thus we can lift the Eisenstein series E2(φ,ψ) to a Hecke
eigenform modulo 7.

3. Congruences for L-functions

The purpose of this section is to prove the main theorem (Theorem 0.1=Theorem 3.1) of
this paper. In this section we use the same notation as §2.10.

3.1. Canonical periods. Let f ∈ S2(n,O) be a normalized Hecke eigenform for all T (m)
and U(m) with character χ. Let ϵ denote ϵE . We would like to define the canonical period
Ωϵf in the sense of Vatsal [Vat]. We denote by pf the prime ideal of Hecke algebra H2(n,O)
over O generated by T (q) − C(q, f) and S(q) − χ−1(q) for all ideals q of oF outside n and
U(q)−C(q, f) for q dividing n. We identify the Weyl groupWG = K∞/K∞,+ with {±1}JF via
the determinant map. By [Hida88, §2, §7], the Weyl group WG acts on the space of Hilbert
cusp forms and Hn

par(Y (n),O). Moreover, this action commutes with the Hecke operators
T (m), U(m), and S(m) for all ideals m of oF .
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The partial Eichler–Shimura–Harder isomorphism (2.27) and the q-expansion principle
over C imply that ϵ-part of the eigenspace of the Weyl action is free of rank 1:

Hn
par(Y (n),C)[pf, ϵ] ≃ C,

H̃n
par(Y (n),O)[pf, ϵ] ≃ O,

where H̃n
par(Y (n),O) is the torsion-free part ofHn

par(Y (n),O) as §2.10. We choose a generator

[δf]
ϵ of H̃n

par(Y (n),O)[pf, ϵ]. We write [πf]
ϵ for the projection of [πf] to the ϵ-part. Since

[δf]
ϵ, [πf]

ϵ ∈ Hn
par(Y (n),C)[pf, ϵ], there exists a complex number Ωϵf ∈ C× such that

[πf]
ϵ = Ωϵf [δf]

ϵ.(3.1)

The complex number Ωϵf is called the canonical period in the sense of Vatsal.

3.2. Congruences of special values. For modular forms f,g ∈ M2(n,O), we define the
congruence of modular forms f ≡ g(modϖ) by C(m, f) ≡ C(m,g)(modϖ) for any integral
ideal m of F .

Theorem 3.1. Let p ≥ [F : Q] + 2 be a prime number such that p is prime to n and 6△F .
Assume that h+F = 1. Let φ and ψ be narrow ray class characters satisfying (Eis condition)
as §2.10 and ϵ = ϵE the character on the Weyl group WG defined just after (Eis condition).
Put χ = φψ. Let f ∈ S2(n,O) a normalized Hecke eigenform for all T (m) and U(m) with
character χ. We assume the following three conditions:

(a) both Hn(∂
(
Y (n)BS

)
,O) and Hn+1

c (Y (n),O) are torsion-free;
(b) the Hilbert Eisenstein series E = E2(φ,ψ) ∈ M2(n,O) with character χ satisfies f ≡

E(modϖ);
(c) C(q,E) ̸≡ N(q)(modϖ) for some prime ideal q dividing n, where C(q,E) is the U(q)-

eigenvalue of E.

Then there exist a complex number Ωϵf ∈ C× and a p-adic unit u ∈ O× such that, for

every primitive narrow ray class character η : Cl+F (mη) → Q×
of conductor mη such that

n|mη and η = ϵ on WG ≃ A×
F,∞/A

×
F,∞,+, the both values τ(η−1)D(1, f, η)/(2π

√
−1)nΩϵf and

τ(η−1)D(1,E, η)/(2π
√
−1)n belong to O(η) and the following congruence holds:

τ(η−1)
D(1, f, η)

(2π
√
−1)nΩϵf

≡ uτ(η−1)
D(1,E, η)

(2π
√
−1)n

(mod ϖ).

Here τ(η−1) is the Gauss sum attached to η−1, D(1, ∗, η) is given by the Dirichlet series
in the sense of Shimura (1.12), O(η) is the ring of integers of K(η), and K(η) is the field
generated by elements of im(η) over K.

Remark 3.2. In the case [F : Q] = 2, if n is a prime ideal q of oF prime to 6△F , then the
condition (a) is satisfied under the assumptions of Proposition 2.26 and Proposition 2.27.

Proof. We may take [t1] such that dF [t1] = oF . We abbreviate Y (n) = Y1 to Y and Γ1,1(n)
to Γ. The assumptions f ≡ E(mod ϖ) and Theorem 4.1 imply the following congruence of
cocycles : for some p-adic unit u ∈ O×,

[δf]
ϵ = u[πE]

ϵ in H̃n
par(Y, κ)[ϵ].

Here we note that [πE]
ϵ = [πE] ̸= 0 in H̃n

par(Y, κ) by Remark 2.23 and Corollary 2.24.
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Let C∞ = {c ∈ C(Γ) | c is Γ0,1(n)-equivalent to the cusp ∞} and

DC∞ =
⨿
s∈C∞

D1
s ↪→ Y BS.

For A = O or κ, we define the partial parabolic cohomology Hn
par(Y,DC∞ ;A) by

Hn
par(Y,DC∞ ;A) = im

(
Hn(Y BS, DC∞ ;A) → Hn(Y,A)

)
.

For an O-module M , Mtorsion stands for the torsion part of M . For A = O or κ, we define

H̃n(Y BS, DC∞ ;A), H̃n
par(Y,DC∞ ;A), and H̃m(DC∞ , A) as follows:

H̃m(Y BS, DC∞ ;A) = Hm(Y BS, DC∞ ;A)/
(
image of Hm(Y BS, DC∞ ;O)torsion

)
,

H̃m
par(Y,DC∞ ;A) = Hm

par(Y,DC∞ ;A)/
(
image of Hm

par(Y,DC∞ ;O)torsion
)
,

H̃m(DC∞ , A) = Hm(DC∞ , A)/ (image of Hm(DC∞ ,O)torsion) .

By the definition, we have

[δf]
ϵ = u[πE]

ϵ in H̃n
par(Y,DC∞ ;κ)[ϵ].

We must show the following congruence of cocycles:

[δf]
ϵ
rel = u[πE]

ϵ
rel in H̃

n(Y BS, DC∞ ;κ).(3.2)

Let H2(n,O)′ = ⟨U(m)⟩ be the sub-algebra of the Hecke algebra H2(n,O) generated by
U(m) for all ideals m of oF dividing n and m′

f a maximal ideal of H2(n,O)′ generated by ϖ
and U(q) − C(q, f) for all ideals q of oF dividing n. Since each Hecke correspondence U(q)

preserves the component DC∞ , H2(n,O)′ acts on H̃n−1(DC∞ , A) and H̃
n(Y BS, DC∞ ;A) for

A = O, κ, or C.
Since h+F = 1, for any prime ideal q of oF dividing n, we fix a totally positive generator gq

of q. By Step1 in the proof of Theorem 4.6, for each cusp t ∈ C(Γ), we know that a basis
of Hn−1(Dt,C) is given by ωt.

Claim: the U(q)-eigenvalue of ωt is equal to N(q) for each t ∈ C∞.

Proof. We wrtie t = γ(∞) for some γ ∈ Γ0,1(n). The canonical map γ : DC∞ → DC∞ induces
γ∗ : Hn−1(DC∞ ,C) → Hn−1(DC∞ ,C). By the definition of γ, we have γ∗ωt ∈ Hn−1(D∞,C).
In order to prove Claim, we first compute the U(q)-eigenvalue of ω∞. We decompose as
§2.3:

Γ

(
1 0
0 gq

)
Γ =

⨿
i∈I∞

Γβ∞i Γ∞, Γβ∞i Γ∞ =
⨿
j∈J∞

i

Γβ∞i δ
∞
i,j with δ

∞
i,j ∈ Γ∞, and

Γβ∞
i (∞)β

∞
i Γ∞ =

⨿
j∈J∞

i

Γβ∞
i (∞)β

∞
i δ

∞
i,j .

Remark that, by the definition of the Hecke action on the boundary cohomology (see [Hida93,
(3.1c)] or §2.3 in this paper),(

ω∞|[Γ
(
1 0
0 gq

)
Γ]

)
∞

=
∑
i∈I∞

ωβ∞
i (∞)|[Γβ∞

i (∞)β
∞
i Γ∞](3.3)

with β∞i (∞) equivariant to the cusp ∞ over Γ: β∞i (∞) = β∞i δ
∞
j (∞) ∼Γ ∞.
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We use the following decomposition:

Γ

(
gq 0
0 1

)
Γ =

⨿
b∈oF /q

(
gq b
0 1

)
Γ,(3.4)

where b runs over a set of representative of oF /q.

In order to check it, note that, for any β =

(
a b
c d

)
∈ Γ

(
gq 0
0 1

)
Γ, we have c ≡ 0(mod n),

d ≡ 1(mod n), and det(β) = gqu for some u ∈ o×F,+. Since q divides n, we have (c, d) = 1

and hence there is γ1 =

(
d ∗
−c ∗

)
∈ Γ with det(γ1) = 1 such that

βγ1

(
u−1 0
0 1

)
=

(
a b
c d

)(
d ∗
−c ∗

)(
u−1 0
0 1

)
=

(
det(β) ∗

0 1

)(
u−1 0
0 1

)
=

(
gq b′

0 1

)
.

This proves (3.4) as desired.
For our calculation, we explicitly decompose

Γβ∞
i (∞)β

∞
i Γ∞ =

⨿
j∈J∞

i

Γβ∞
i (∞)β

∞
i δ

∞
i,j .

Remark that γδβ
∞
i δ =

(
1 bi
0 gq

)
for some γδ ∈ Γ and δ ∈ Γ∞. Since β∞i δ(∞) ∼Γ ∞, we

have γ′γδβ
∞
i δ(∞) = ∞ for some γ′ ∈ Γ and hence γ′γδβ

∞
i δ belongs to the standard Borel

subgroup B+
∞ of upper triangular matrices. Moreover,

Γβ∞
i (∞)β

∞
i Γ∞ = (γ′γδ)

−1Γ∞γ
′γδβ

∞
i δΓ∞

and

gq(γ
′γδβ

∞
i δ)

−1 =

(
gqua ∗
0 ud

)
for some uaud ∈ o×F,+ with ud ≡ 1(modn). Since

(
u−1
a 0
0 u−1

d

)
∈ Γ∞, we have ♯J∞

i = N(q).

Thus, by the same way as above, if we write γ′jγjβ
∞
i δ

∞
i,j(∞) = ∞ for some γ′j , γj ∈ Γ, then(

ω∞|[Γ
(
1 0
0 gq

)
Γ]

)
∞

=

N(q)∑
j=1

(β∞i δ
∞
i,j)

∗ωβ∞
i (∞)

=

N(q)∑
j=1

(β∞i δ
∞
i,j)

∗(γ′jγj)
∗ω∞

=

N(q)∑
j=1

(γ′jγjβ
∞
i δ

∞
i,j)

∗ω∞

= N(q)ω∞.
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Here we note that ω∞ is invariant under the element ofB+
∞∩G∞,+. Thus we get (γ

∗ωt)|U(q) =
N(q)γ∗ωt and hence

(γ−1)∗ ((γ∗ωt)|U(q)) = N(q)ωt.

For the proof of Claim, we finally show that

ΓγΓ · Γ
(
1 0
0 gq

)
Γ · Γγ−1Γ = Γ

(
1 0
0 gq

)
Γ.

Since Γ is a normal subgroup of Γ0,1(n), we have γΓ = Γγ and hence it is enough to show
that

Γγ

(
1 0
0 gq

)
γ−1Γ = Γ

(
1 0
0 gq

)
Γ.

This follows from the same arguments as in the proof of (3.4) because if we write β =(
a b
c d

)
= γ

(
gq 0
0 1

)
γ−1, then we have c ≡ 0(mod n), d ≡ 1(mod n), det(β) = gq, and q

divides n. □
Moreover, a direct calculation shows that

E1|[Γ
(
1 0
0 gq

)
Γ](z) =

∑
b

E1|
(
1 b
0 gq

)
(z)

=
∑
b

N(gq)
−1

∑
0≪ξ∈[t1]

a∞(ξ, E1)eF

(
ξ
b

gq

)
eF

(
ξ
z

gq

)

=
∑

0≪ξ∈gq ·[t1]

a∞(ξ, E1)eF

(
ξ
z

gq

)
.

Then the eigenvalue of this series is equal to C([gq],E) = C(q,E). Then, by our assumption
that C(q,E) ̸≡ N(q)(modϖ) for some prime ideal q dividing n, we have

H̃n−1(DC∞ ,O)m′
f
= 0(3.5)

since H̃n−1(DC∞ ,O)m′
f
↪→ Hn−1(DC∞ ,C)m′

f
= 0.

We consider the following diagram:

(
image of Hn(Y BS, DC∞ ;O)torsion

)
m′

f

� � //

⋆⋆
��

Hn(Y BS, DC∞ ;κ)m′
f

����

// // H̃n(Y BS, DC∞ ;κ)m′
f

⋆
����(

image of Hn
par(Y,DC∞ ;O)torsion

)
m′

f

� � // Hn
par(Y,DC∞ ;κ)m′

f
// // H̃n

par(Y,DC∞ ;κ)m′
f
.

(3.6)

Thus, by (3.5), ⋆⋆ is surjective. Since
(
image of Hn−1(DC∞ ,O)torsion

)
m′

f
⊂ ker(⋆⋆),

the snake lemma for (3.6) implies that H̃n−1(DC∞ , κ)m′
f
↠ ker(⋆).

Claim: ker(⋆) = 0.

Proof. It is enough to show that H̃n−1(DC∞ , κ)m′
f
= 0. By our assumption that the boundary

cohomology of Y BS is torsion-free, the exact sequence 0 → O ×ϖ−−→ O → κ → 0 implies
modϖ : Hn−1(DC∞ ,O)m′

f
↠ Hn−1(DC∞ , κ)m′

f
and hence we get

modϖ : H̃n−1(DC∞ ,O)m′
f
↠ H̃n−1(DC∞ , κ)m′

f
.
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Then our claim follows from this and (3.5). □

Therefore we obtain the congruence of cocycles (3.2).
Using the functoriality of the trace map for O → κ and the vanishing of the image of

Hn(Y BS, DC∞ ;O)torsion under the evaluation map evb,1,O as (2.24), evb,1,O induces

evb,1,κ : H̃n(Y BS, DC∞ ;κ) → κ.

Then our assertion follows from this, (3.2), Proposition 2.19, and Proposition 2.20. □

4. On torsion cohomology in the Hilbert modular case

4.1. Comparison theorem for torsion cohomology. In this subsection, we will briefly
review the fully faithful functor from the category of finitely generated filtered φ-module
to the category of O-representations of GQp = Gal(Qp/Qp) of finite length, and state the
comparison theorem between the parabolic étale cohomology and the parabolic log-crystalline
cohomology, which we will use in the following subsections.

Let O be the ring of integers of a finite extension K over Qp, ϖ a uniformizer, and κ the
residue field. For a non-negative integer r ∈ Z, we denote by MFrO,tor the category of the

following triples (M, {FiliM}i, {φi}i) :
(1) M is a finitely generated O-module;
(2) {FiliM}i∈Z is a decreasing filtration on M by sub-O-modules such that Fil0M =M and

Filr+1M = 0;
(3) φi : FiliM →M is an O-linear homomorphism;
(4) φi |Fili+1M= pφi+1;

(5)
∑r

i=0 φ
i(FiliM) =M .

A morphisms in MFrO,tor is a homomorphism of filtered O-modules compatible with φ•.

We say that a morphism η : M → M ′ in MFrO,tor is strict if η(Fil
iM) = FiliM ′ ∩ η(M) for

each i ∈ Z. It is known that any morphism in MFrO,tor is strict and hence MFrO,tor is an
abelian category ([Fo–La, Proposition 1.8]).

The kernel and cokernel of η in MFrO,tor are explicitly given as follows. For an object

(M, {FiliM}i, {φi}i) ∈ MFrO,tor and the sub-O-module N = ker(η) ⊂M , we define a filtra-

tion FiliN and an O-linear homomorphism φiN by FiliN = N∩FiliM and φiN = φi|N , respec-
tively. For N ′ = coker(η), we define a filtration FiliN ′ and an O-linear homomorphism φ′i

N

by FiliN ′ = FiliM ′/η(FiliM) ↪→ N ′ and the morphism induced by φiM and φ′i
M , respectively.

In particular, for a morphism η :M →M ′ in MFrO,tor, we have im(η) = coim(η) ∈ MFrO,tor
and Fili im(η) ≃

(
FiliM + ker(η)

)
/ker(η).

LetMFrκ,tor be the full subcategory ofMFrO,tor consisting of objectsM satisfyingϖM = 0.
We denote by RepO(GQp) the category of representations of GQp on O-modules of finite
length. For 0 ≤ r ≤ p− 2, there exists a fully faithful functor

Tcris : MFrO,tor → RepO(GQp).

given by Fontaine–Laffaille ([Fo–La], [Br–Me], [Wach]). We denote by ReprO,cris(GQp) the es-
sential image of MFrO,tor by Tcris. We say that the Hodge–Tate weight of T ∈ ReprO,cris(GQp)
is the s ∈ Z for which GrsM ̸= 0, where M ∈ MFrO,tor is the corresponding module such
that Tcris(M) ≃ T .

The comparison theorem for log-smooth varieties with constant coefficients (proved by
Faltings ([Fa, Theorem 5.3]) and improved by Breuil–Tsuji ([Br, Theorem 3.2.4.6]=[Tsu,
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Theorem 5.1] and [Br, Theorem 3.2.4.7])) shows that, for (Xtor, X) = (M tor
1 ,M1) or (M

tor,M)
and n ≤ p− 2, there are canonical GQp-equivariant O-linear isomorphisms

Hn
ét(XQp

,O) ≃ Tcris

(
Hn

log-cris(X
tor
Zp )⊗Zp O

)
,(4.1)

Hn
ét(XQp

,Fp)⊗Fp κ ≃ Tcris

(
Hn

log-cris(X
tor
Fp )⊗Fp κ

)
.

Here the filtration onHn
log-cris(X

tor
Fp )⊗Fpκ is given by the Hodge to de Rham spectral sequence

Ei,j1 = Hj(Xtor
Fp ,Ω

i
Xtor

Fp /Fp
(log(D))) ⇒ H i+j(Xtor

Fp ,Ω
•
Xtor

Fp /Fp
(log(D))),(4.2)

where D = Xtor −X. This spectral sequence degenerates at E1 by [Ill, Corollary 4.13].
The comparison theorem for cohomology with compact support (proved by Faltings ([Fa,

Theorem 5.3])) says that, for (Xtor, X) = (M tor
1 ,M1) or (M

tor,M) and n ≤ p− 2, there are
canonical GQp-equivariant O-linear isomorphisms

Hn
ét,c(XQp

,O) ≃ Tcris

(
Hn

log-cris,!(X
tor
Zp )⊗Zp O

)
,(4.3)

Hn
ét,c(XQp

,Fp)⊗Fp κ ≃ Tcris

(
Hn

log-cris,!(X
tor
Fp )⊗Fp κ

)
.

Here the filtration on Hn
log-cris,!(X

tor
Fp ) ⊗Fp κ is given by the Hodge to de Rham spectral

sequence

Ei,j1 = Hj(Xtor
Fp ,Ω

i
Xtor

Fp /Fp
(log(D))(−D)) ⇒ H i+j(Xtor

Fp ,Ω
•
Xtor

Fp /Fp
(log(D))(−D)).(4.4)

This spectral sequence is degenerate at E1 by [Fa, p.59, Theorem 4.1].
For ? = ϕ or !, we simply write

Hn
log-cris,?(X

tor)O = Hn
log-cris,?(X

tor
Zp )⊗Zp O,

Hn
log-cris,?(X

tor)κ = Hn
log-cris,?(X

tor
Fp )⊗Fp κ.

For A = O or κ, we define the parabolic étale cohomology Hn
ét,par(XQp

, A) and parabolic

log-crystalline cohomology Hn
log-cris,par(X

tor)A in MFrO,tor by

Hn
ét,par(XQp

, A) = im
(
Hn

ét,c(XQp
, A) → Hn

ét(XQp
, A)

)
,

Hn
log-cris,par(X

tor)A = im
(
Hn

log-cris,!(X
tor)A → Hn

log-cris(X
tor)A

)
.

By the comparison theorem (4.1) and (4.3), we obtain GQp-equivariant O-linear isomor-
phisms

Hn
ét,par(XQp

,O) ≃ Tcris
(
Hn

log-cris,par(X
tor)O

)
,

Hn
ét,par(XQp

, κ) ≃ Tcris
(
Hn

log-cris,par(X
tor)κ

)
.
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Moreover, by the definition of the Hodge filtration on Hn
log-cris,par(X

tor)κ, we have the fol-
lowing commutative diagram:

H0(Xtor
κ ,ΩnXtor

κ /κ(log(D))(−D)) // //
� _

��

FilnHn
log-cris,!(X

tor)κ

����
FilnHn

log-cris,par(X
tor)κ

� _

��
H0(Xtor

κ ,ΩnXtor
κ /κ(log(D))) ≃ // FilnHn

log-cris(X
tor)κ.

Here the isomorphism on the bottom of the diagram follows from the degeneration of the
Hodge to de Rham spectral sequence (4.2) and hence we get

FilnHn
log-cris,par(X

tor)κ ≃ H0(Xtor
κ ,ΩnXtor

κ /κ(log(D))(−D)) = S2(n, κ).

4.2. Analogue of a multiplicity-one theorem. In this subsection, we prove the following
main theorem of §4 which will be proved in §4.6.

Hereafter, we assume that n = [F : Q] ≤ p − 2 and O is the ring of integers of a finite
extension K of the composite field of ιp(F

′) and Φp. Here ιp : Q → Qp is the fixed embedding
and F ′ (resp. Φp) is defined in §1.4 (resp. Proposition 2.9). Let ϖ be a uniformizer and κ
the residue field.

Theorem 4.1. Let p ≥ n + 2 be a prime number such that p is prime to n and 6△F .
Assume that h+F = 1. Let φ and ψ be narrow ray class characters satisfying (Eis condition)
as §2.10 and ϵ = ϵE the character on the Weyl group WG defined just after (Eis condition).
Put χ = φψ. Let f ∈ S2(n,O) a normalized Hecke eigenform for all T (m) and U(m) with
character χ. We assume the following three conditions:

(a) both Hn(∂
(
Y (n)BS

)
,O) and Hn+1

c (Y (n),O) are torsion-free;
(b) the Hilbert Eisenstein series E = E2(φ,ψ) ∈ M2(n,O) with character χ satisfies f ≡

E(mod ϖ);
(c) C(q,E) ̸≡ N(q)(modϖ) for some prime ideal q dividing n, where C(q,E) is the U(q)-

eigenvalue of E.

Then there exists a p-adic unit u ∈ O× such that

[δf]
ϵ = u[πE] in H̃n

ét,par(MQ, κ),

where

H̃n
ét,par(MQ, κ) = Hn

ét,par(MQ, κ)/
(
image of Hn

ét,par(MQ,O)torsion

)
and Mtorsion stands for the torsion part of M for an O-module M .

Remark 4.2. Dimitrov [Dim2, Theorem 6.7] proved that a multiplicity-one theorem holds for
the f-parts of Hn

ét,par(MQ, κ) and Hn
ét,par(MQ,O) if the residual Galois representation ρ̄f is

irreducible under some assumptions.

Hereafter we assume the condition (Eis condition) and the congruence of all Hecke eigen-
values between a Hilbert cusp form f ∈ S2(n,O) and a Hilbert Eisenstein series E = E(φ,ψ) ∈
M2(n,O) with character χ = φψ, that is, f ≡ E (modϖ).
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Let pE (resp. pf) be the prime ideal of the Hecke algebra H2(n,O) (resp. H2(n,O))
assosiated E (resp. f). In order to prove the main theorem, we consider three p-adic Galois

representation Ṽ , Ṽ f, and ṼE defined as follows.
For ?=ϕ or par, we write the torsion-free part of cohomologies as

H̃n
ét,?(MQ,O) = im

(
Hn

ét,?(MQ,O) → Hn
ét,?(MQ,K)

)
,

H̃n
log-cris,?(M

tor)O = im
(
Hn

log-cris,?(M
tor)O → Hn

log-cris,?(M
tor)K

)
.

We define H̃n
ét,par(MQ, κ) in Repp−2

O,cris(GQp) and H̃n
log-cris,par(M

tor)κ in MFp−2
κ,tor by the

followings:

H̃n
ét,par(MQ, κ) = Hn

ét,par(MQ, κ)/
(
image of Hn

ét,par(MQ,O)torsion

)
,

H̃n
log-cris,par(M

tor)κ = Hn
log-cris,par(M

tor)κ/
(
image of Hn

log-cris,par(M
tor)O,torsion

)
.

By the comparison theorem (4.1) and (4.3), we have

H̃n
ét,par(MQ, κ) ≃ Tcris(H̃

n
log-cris,par(M

tor)κ).

In §4.3 and §4.4, we will consider the f-parts of H̃n
ét,par(MQ,O) and H̃n

log−cris,par(M
tor)O

etc. defined by

Ṽ = H̃n
ét,par(MQ, κ)[pf] and M̃ = H̃n

log−cris,par(M
tor)κ[pf],

Ṽf = H̃n
ét,par(MQ,O)[pf] and M̃f = H̃n

log-cris,par(M
tor)O [pf],

Ṽ f = H̃n
ét,par(MQ,O)[pf]/ϖ and M̃ f = H̃n

log-cris,par(M
tor)O [pf]/ϖ.

By applying the comparison theorem (4.1) and (4.3), we get

Ṽ ≃ Tcris(M̃), Ṽf ≃ Tcris(M̃f), Ṽ f ≃ Tcris(M̃ f).

A main tool for our proof is the torsion-free Eisenstein part

ṼE = H̃n
ét(MQ,O)[pE] and M̃E = H̃n

log-cris(M
tor)O [pE].

By the comparison theorem (4.1), we have

ṼE ≃ Tcris(M̃E).

We will show that the Hodge–Tate weight of ṼE is n = [F : Q] by Proposition 4.6.

4.3. Rank of Filn(M̃). Let us begin our analysis by computing the rank of Filn(M̃).

Proposition 4.3. Let △ = N(ndF ). Assume (p,△) = 1. Then Filn(M̃) is free of rank 1
over κ.

Proof. By the definition,

Filn(H̃n
log−cris,par(M

tor)κ)

= H0(M tor
κ ,ΩnMtor

κ /κ(log(D))(−D))/
(
image of H0(M tor

O ,ΩnMtor
O /O(log(D))(−D))torsion

)
= H0(M tor

κ ,ΩnMtor
κ /κ(log(D))(−D)).

Then we have

Filn(M̃) = H0(M tor
κ ,ΩnMtor

κ /κ(log(D))(−D))[pf].
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Our assertion follows from

H0(M tor
κ ,ΩnMtor

κ /κ(log(D))(−D))[pf] ≃ κ,

which is proved by the q-expansion principle [Dim2, Proposition 1.10] and Hecke relations
between Fourier coefficients and Hecke eigenvalues. □

4.4. Rank of Filn(M̃f). The second point to be discussed is Filn(M̃f).

Lemma 4.4. Assume that coker
(
Hn

ét,c(MQ,O) → Hn
ét(MQ,O)

)
is torsion-free. Then the

canonical morphism

Ṽf → Ṽ is injective.

Proof. First, we claim that

Ṽf = H̃n
ét,par(MQ,O)[pf]/ϖ → H̃n

ét,par(MQ,O)/ϖ is injective.(4.5)

Since H̃n
ét,par(MQ,O)/H̃n

ét,par(MQ,O)[pf] is torsion-free, the snake lemma for

H̃n
ét,par(MQ,O)[pf]

� � ×ϖ //
� _

��

H̃n
ét,par(MQ,O)[pf]

� _

��

modϖ // //
Ṽf

(4.5)
��

H̃n
ét,par(MQ,O) � � ×ϖ // H̃n

ét,par(MQ,O)
modϖ // // H̃n

ét,par(MQ,O)/ϖ

implies the injectivity of (4.5).
Next, we claim that

H̃n
ét,par(MQ,O)/ϖ → H̃n

ét,par(MQ, κ) is injective.(4.6)

If the map ⋆ in the diagram (4.7) is injective, our claim follows from the snake lemma for

Hn
ét,par(MQ,O)torsion //

����

Hn
ét,par(MQ,O)

modϖ
����

// // H̃n
ét,par(MQ,O)

modϖ
����

Hn
ét,par(MQ,O)/ϖ

⋆
��

// // H̃n
ét,par(MQ,O)/ϖ

(4.6)
��

image of Hn
ét,par(MQ,O)torsion // Hn

ét,par(MQ, κ) // // H̃n
ét,par(MQ, κ).

(4.7)

The injectivity of the map ♢ in the diagram (4.8) follows from the snake lemma and the
assumption that the cokernel of Hn

ét,c(MQ,O) → Hn
ét(MQ,O) is torsion-free. Thus the injec-

tivity of the map ⋆ follows from the following commutative diagram:

Hn
ét,par(MQ,O)

modϖ
����

� � // Hn
ét(MQ,O)

modϖ
����

// // Hn
ét(MQ,O)/Hn

ét,par(MQ,O)

Hn
ét,par(MQ,O)/ϖ

⋆
��

� � ♢ // Hn
ét(MQ,O)/ϖ

� _

��
Hn

ét,par(MQ, κ)
� � // Hn

ét(MQ, κ).

(4.8)



CONGRUENCES OF HILBERT MODULAR FORMS 55

□

Proposition 4.5. Filn(M̃ f) ̸= 0.

Proof. Since Ṽf ↪→ Ṽ , we have M̃f ↪→ M̃ and hence

Filn(M̃ f) ↪→ Filn(M̃).

Then our assertion follows from Proposition 4.3 and f ≡ E ̸≡ 0 (modϖ). □

4.5. The Hodge–Tate weight and rank of ṼE. Finally, we consider the torsion-free
Eisenstein part

ṼE = H̃n
ét(MQ,O)[pE].

We abbreviate Γ1,1(n) to Γ. The following proposition is a key to prove our theorem.

Proposition 4.6. Assume that F ̸= Q, Γ = Γ/(Γ ∩ F×) is p-torsion-free, and C(q,E) ̸=
N(q) for some prime ideal q dividing n, where C(q,E) is the U(q)-eigenvalue of E. Then

ṼE is free of rank 1 over O and the Hodge-Tate weight is n.

Proof. We denote by X the complex manifolds Y = Y (n) or Y 1 = Y 1(n) defined in §1.1. We
shall decompose

Hn(X,C) = Hn
par(X,C)⊕Hn

Eis(X,C),
where Hn

Eis(X,C) is the Eisenstein cohomology (for the definition, see Step3).
By the comparison theorem between étale cohomology, Betti cohomology, and de Rham

cohomology, it suffices to prove the following two claims:
(1) Hn

Eis(Y,C) = FnHn
Eis(Y,C)

(2) Hn
Eis(Y,C) is stable under the Hecke correspondences and

Hn(Y,C)[pE] = Hn
Eis(Y,C)[pE] ≃ C.

First, we prove (1). In the case X = Y 1, Freitag shows that the Hodge number of the
Eisenstein cohomology is equal to n ([Fre, Chapter III, Proposition 3.5 and Theorem 4.9]).
In the case X = Y , we follow the arguments in the Freitag’s proof.

Step1: To give a basis of Hn−1(Γt,C) and Hn(Γt,C) for each cusp t.
Let α ∈ G(Q) be such that α−1(t) = ∞. We may assume that t = ∞ by the pull-back by

α. We shall prove that a basis of Hn−1(Γ∞,C) (resp. Hn(Γ∞,C)) over C is given by

ωn−1
∞ =

dy1
y1

∧ · · · ∧ dyn−1

yn−1
(resp. ωn∞ = dx1 ∧ · · · ∧ dxn).

We remark that these forms are closed and Γ∞-invariant.
Let D = {z ∈ Hn | N(y) = y1 · · · yn = 1} be the boundary of the Borel–Serre compactifi-

cation Y BS of Y at the cusp ∞ as §2.5. The group Γ∞ which consists of transformations of
the form

z 7→ uz + b, N(u) = 1

acts on D. We may identify D with R2n−1 by

D ≃ R2n−1 : z 7→ (x1, · · · , xn, u1, · · · , un−1)

with coordinates {xi}ni=1 and {ui = log(yi)}n−1
i=1 . Since

Γ∞\Hn ≃ R× (Γ∞\D) : z 7→ (log(N(y)), N(y)−1/nz),

Γ∞\D ↪→ Γ∞\Hn is a homotopy equivalence and hence it suffices to compute H∗(Γ∞\D,C).
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For subsets b, c ⊂ {1, · · · , n}, we consider a Γ∞-invariant harmonic differential m-form
ω =

∑
fb,c(x, u)dxb∧duc. By the same argument of [Fre, p.145, 146], the functions fb,c(x, u)

are independent of x and if fb,c(x, u) ̸= 0, then b = ϕ or {1, · · · , n}.
In the case b = ϕ, Hn−1(Γ∞\D,C) is isomorphic to the de Rham cohomology of a lattice

log(o×F,+) ⊂ Rn−1. In the same way as [Fre, p.146], one shows that ωn−1
∞ is a basis as desired.

In the case b = {1, · · · , n}, Hn(Γ∞\D,C) is isomorphic to the de Rham cohomology of a
lattice and hence this case is similar.

Step2: To construct the Eisenstein operator

E :
⊕
t∈C(Γ)

Hn(Γt,C) → Hn(Γ,C).

We may assume t = ∞. As in [Fre, Chapter III, Remark 3.1], ωn∞ = dx1 ∧ · · · ∧ dxn is
cohomologous to dz1 ∧ · · · ∧ dzn up to scalar. We put

ω∞ = dz1 ∧ · · · ∧ dzn.
As in the proof of [Fre, Chapter III, Proposition 3.5], in order to construct Γ-invariant

forms from Γ∞-invariant forms, the Eisenstein operator E is defined by symmetrization:

E(ω∞) = “
∑

M∈Γ∞\Γ

M∗ω∞”.

Here “ ” means that it can be defined by using analytic continuation of Eisenstein series.

Note that, for M =

(
a b
c d

)
∈ Γ, M∗ω∞ = N(cz + d)−2ω∞. If there exists the limit

EΓ
2,0(z) = lims→0E

Γ
2,0(z, s), then the Eisenstein operator E is well-defined:

E(ω∞) =
∑

M∈Γ∞\Γ

M∗ω∞ := lim
s→0

∑
M∈Γ∞\Γ

|N(cz + d)|−2sM∗ω∞ = EΓ
2,0(z)ω∞,

where EΓ
2,0(z, s) is an Eisenstein series of the following type:

EΓ
2,0(z, s) =

∑
M∈Γ∞\Γ

N(cz + d)−2|N(cz + d)|−2s.

Analytic continuation of the Eisenstein series follows from [Shi, Proposition 3.2] as follows.
We use the same notation H(z, s,1) as [Shi, (3.14)] for b = dF [t1], c = n. Since Γ∞\Γ ≃
Γ∞\Γ, we have EΓ

2,0(z, s) = H(z, s,1). Thus, by [Shi, Proposition 3.2], if n = [F : Q] >

1, then EΓ
2,0(z, s) can be continued to a meromorphic function on the whole s-plane and

holomorphic at s = 0 as desired.
Step3: To show that Eisenstein operator E is a section of the restriction map Hn(Γ,C) →

Hn(Γt,C) for each cusp t.
As in the proof of [Fre, Chapter III, Proposition 3.3], it suffices to compute the constant

term of EΓ
2,0(z) at the cusp t is equal to 1 (resp. 0) if t ∼Γ ∞ (resp. t ≁Γ ∞). As in the

same way ([Fre, Chapter I, §5]), the constant term can be computed by using the formula

lim
N(y)→∞

lim
s→0

EΓ
2,0(z, s)|M = lim

s→0
lim

N(y)→∞
EΓ

2,0(z, s)|M.

For example, at the cusp t = ∞, we have

lim
N(y)→∞

N(cz + d)−2|N(cz + d)|−2s =

{
1 if c = 0,

0 if c ̸= 0.
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We define the Eisenstein cohomology Hn
Eis(Y,C) by

Hn
Eis(Y,C) = im(E).

Therefore, since EΓ
2,0(z) is holomorphic, the Hodge number of the Eisenstein cohomology is

n, that is, Hn
Eis(Y,C) = FnHn

Eis(Y,C).
Next, we prove (2). Since the U(q)-eigenvalue of each invariant form ωJ ′ as in the proof

of Theorem 2.22 is N(q) by the decomposition (3.4), the assumption C(q,E) ̸= N(q) and
the q-expansion principle over C imply that Hn

par(Y,C)[pE] = 0. Thus, if the Eisenstein
cohomology Hn

Eis(Y,C) is stable under the Hecke correspondences, we get (2):

Hn(Y,C)[pE] = Hn
Eis(Y,C)[pE] ≃ C.

We prove this stability of the Hecke correspondence. We use the same notation as §2.3.
Let c = (ct)t∈C(Γ) ∈

⊕
t∈C(Γ)H

n(Γt,C) such that ct = 0 if t ̸= ∞ and c∞ = [ω∞]. Let’s fix

α ∈ GL2(F ) such that ΓαΓ =
⨿
i∈I Γαi as a finite disjoint union. It suffices to show that

E(c)|[ΓαΓ] = E(c|[ΓαΓ]).(4.9)

By the definition of the Eisenstein operator E, the left hand side is equal to

E(c)|[ΓαΓ] =
∑
i∈I

α∗
i

lim
s→0

∑
M∈Γ∞\Γ

|N(j(M, z))|−2sM∗ω∞

(4.10)

=
∑
i∈I

lim
s→0

∑
M∈Γ∞\Γ

|N(j(M,αi(z)))|−2sα∗
iM

∗ω∞

=
∑
i∈I

lim
s→0

|N(j(αi, z))|2s
∑

M∈Γ∞\Γ

|N(j(Mαi, z))|−2s(Mαi)
∗ω∞

= lim
s→0

∑
i∈I

∑
γ∈Γ∞\Γαi

|N(j(γ, z))|−2sγ∗ω∞

= lim
s→0

∑
γ∈Γ∞\ΓαΓ

|N(j(γ, z))|−2sγ∗ω∞.

We consider the right hand side of (4.9). For each s ∈ P1(F ), we put

Ss = {γ ∈ Γ∞\ΓαΓ | γ(s) = ∞}.

Note that

Γ∞\ΓαΓ =
⨿

s∈P1(F )

Ss.

For each s ∈ P1(F ), there exist a unique t ∈ C(Γ) and a uniqueM ∈ Γt\Γ such thatM(s) = t
and hence ⨿

t∈C(Γ)

⨿
M∈Γt\Γ

SM−1(t) → Γ∞\ΓαΓ is bijective.(4.11)

We put c|[ΓαΓ] = ([ω′
t])t∈C(Γ). We claim that

ω′
t =

∑
γ∈St

γ∗ω∞.(4.12)
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By the definition of c|[ΓαΓ] as §2.3,

ω′
t =

∑
i∈It

∑
j∈Jti

(βtiδ
t
i,j)

∗ωβti (t)

=
∑
i∈It∞

∑
j∈Jti

(βtiδ
t
i,j)

∗ωβti (t),

where It∞ = {i ∈ It | βti(t) ∼Γ ∞}. For each i ∈ It∞, we may assume that βti(t) = ∞ by
replacing βti by γ

t
iβ
t
i with γ

t
i ∈ Γ and γtiβ

t
i(t) = ∞. Then, in order to prove (4.12), it suffices

to show the following decomposition:

St =
⨿
i∈It∞

⨿
j∈Jti

Γ∞β
t
iδ
t
i,j .

Proof. (⊃) : It follows from βtiδ
t
i,j(∞) = ∞.

(⊂) : Using the decomposition of ΓαΓ as §2.3, we have

Γ∞\ΓαΓ =
⨿
i∈It

⨿
j∈Jti

Γ∞\Γβtiδti,j .

For each Γ∞γβ
t
iδ
t
i,j ∈ St with γ ∈ Γ, we have γβti(t) = ∞ and hence i ∈ It∞ and γ ∈ Γ∞. In

particular, Γ∞γβ
t
iδ
t
i,j = Γ∞β

t
iδ
t
i,j as desired. □

Thus we obtain

E(c|[ΓαΓ]) =
∑

t∈C(Γ)

∑
γ∈St

E(γ∗ω∞)

=
∑

t∈C(Γ)

∑
γ∈St

lim
st,γ→0

∑
M∈Γt\Γ

|N(j(γM, z))|−2st,γ (γM)∗ω∞.

Here the first equality follows from (4.12) and the second equality follows from the definition
of the Eisenstein operator E. Thus we get

E(c|[ΓαΓ]) = E(c)|[ΓαΓ]

as desired. Here the equality follows from St ·M = SM−1(t), (4.11), and (4.10). □

Under the same assumptions of main theorem 4.1, we show that modϖ : Hn
ét(MQ,O) ↠

Hn
ét(MQ,O)/ϖ induces

modϖ : ṼE → Ṽ .

Let [c] ∈ Hn
ét(MQ,O) mapping to [πE] ∈ H̃n

ét(MQ,O) and let [c] denote the image of [c] in

Hn
ét(MQ,O)/ϖ. Our assumptions that coker

(
Hn

ét,c(MQ,O) → Hn
ét(MQ,O)

)
is torsion-free

and f ≡ E(mod ϖ) imply that [πE] is zero in coker
(
Hn

ét,c(MQ,O) → Hn
ét(MQ,O)

)
/ϖ by

Proposition 2.9. Thus [c] is zero in coker
(
Hn

ét,c(MQ,O) → Hn
ét(MQ,O)

)
/ϖ. With the help

of the injectivity of ♢ in the diagram (4.8), we see that [c] belongs to Hn
ét,par(MQ,O)/ϖ.

Then our claim follows from the injectivity of H̃n
ét,par(MQ,O)/ϖ

♠−→ H̃n
ét(MQ,O)/ϖ and
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(4.6). One see that the injectivity of ♠ is obtained by the following diagram:

Hn
ét,par(MQ,O)torsion/ϖ

□

� � //
� _

��

Hn
ét,par(MQ,O)/ϖ

� _

♢
��

// // H̃n
ét,par(MQ,O)/ϖ

♠
��

Hn
ét(MQ,O)torsion/ϖ

� � // Hn
ét(MQ,O)/ϖ // // H̃n

ét(MQ,O)/ϖ.

(4.13)

We define

L = im
(
modϖ : ṼE → Ṽ

)
.

With the help of Corollary 2.24, we obtain the following proposition:

Proposition 4.7. Under the same assumptions of Theorem 4.1 and Proposition 4.6, L is a
free of rank 1 over κ with Hodge-Tate weight n.

4.6. Proof of Theorem 4.1. We consider the following diagram :

ṼE

�� ��?
??

??
??

?
modϖ

''NNNNNNNNNNNNNNN

L
� � //

Ṽ

Ṽf
* 


(4.5)

88ppppppppppppppp

By the comparison theorem between étale cohomology and Betti cohomology, we may regard

this diagram as WG-equivariant. We put N = im(mod ϖ : M̃E → M̃). By combining

Proposition 4.3, Proposition 4.7, and Remark 2.23, we have L = L[ϵ] and Filn(M̃) = N .

Thus, by Lemma 4.4 and Proposition 4.5, there exists a subrepresentation L′ of Ṽ f such that
L ≃ L′. By the diagram as WG-modules, L′ is stable under the action of WG and L′ = L′[ϵ].

The partial Eichler–Shimura–Harder isomorphism (2.27) over C says that Ṽ f[ϵ] is free of
rank 1 over κ. Therefore, we obtain the main theorem 4.1.
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CONGRUENCES OF HILBERT MODULAR FORMS 61

[Kato2] K. Kato, Logarithmic structures of Fontaine–Illusie, Algebraic analysis, geometry, and number theory,
Baltimore, MD, (1988), 191-224, Johns Hopkins Univ. Press, Baltimore, MD, (1989).

[Ki–La] M. Kisin, K. F. Lai, Overconvergent Hilbert modular forms, Amer. J. Math. 127 (2005), no. 4,
735–783.

[Kuga] M. Kuga, Group cohomology and Hecke operators. II. Hilbert modular surface case, Automorphic forms
and number theory (Sendai, 1983), 113–148, Adv. Stud. Pure Math., 7, North-Holland, Amsterdam,
1985.

[M] B. Mazur, On the arithmetic of special values of L functions, Invent. Math. 55 (1979) no. 3, 207–240.
[Mi] T. Miyake, Modular forms, Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint

of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, (2006)
[Ochi] T. Ochiai, Several variables p-adic L-functions for Hida families of Hilbert modular forms, Doc. Math.

17 (2012), 807–849.
[Oda] T. Oda, Periods of Hilbert modular surfaces, Progress in Mathematics, 19. Birkhäuser, Boston, Mass.,
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[Se] J. P. Serre, Le probléme des groupes de congruence pour SL2, Ann. of Math. (2) 92. (1970), 489–527.
[Shi] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math.

J. 45 (1978), no. 3, 637–679.
[Ski–Ur] C. Skinner, E. Urban, The Main Conjecture for GL(2), to appear in Invent Math. (2013)
[Ste1] G. Stevens, Arithmetic on modular curves, Progress in Mathematics, 20 Birkhäuser Boston, Inc.,

Boston, (1982)
[Ste2] G. Stevens, The cuspidal group and special values of L-functions, Trans. Amer. Math. Soc. 291 (1985)

no. 2, 519–550.
[Ti–Xi] Y. Tian, L. Xiao, p-adic cohomology and classicality of overconvergent Hilbert modular forms, preprint
[Tsu] T. Tsuji, On p-adic nearby cycles of log smooth families, Bull. Soc. Math. France 128 (2000), no. 4,

529–575.
[Vat] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (1999) no. 2, 397–419.
[Wach] N. Wach, Représentations cristallines de torsion, Compositio Math. 108 (1997) no. 2, 185–240.
[Wil] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990) no. 3, 493–540.
[Yo] H. Yoshida, Absolute CM-periods, Mathematical Surveys and Monographs, 106. American Mathemat-

ical Society, Providence, RI, (2003)
[Yo2] H. Yoshida, Cohomology and L-values, Kyoto J. Math. 52 (2012) no. 2, 369–432.

Graduate School of Mathematical Sciences, The University of Tokyo, 8-1 Komaba 3-chome,
Meguro-ku, Tokyo, 153-8914, Japan

E-mail address: yhirano@ms.u-tokyo.ac.jp


