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CONGRUENCES OF HILBERT MODULAR FORMS OVER REAL
QUADRATIC FIELDS AND THE SPECIAL VALUES OF L-FUNCTIONS

YUICHI HIRANO

ABSTRACT. The purpose of this article is to carry out the first step towards a generalization
of the method of Greenberg—Vatsal in order to provide evidence for the Iwasawa main
conjecture for Hilbert modular forms in the residually reducible case. In the case of a
real quadratic field, we show how a congruence between a Hilbert cusp form and a Hilbert
Eisenstein series of the same parallel weight 2 give rise to congruences between the algebraic
parts of the critical values of the associated L-functions.

0. INTRODUCTION

0.1. Introduction. The motivation of this work is to investigate the Iwasawa main conjec-
ture for a Hilbert modular form whose associated Galois representation is residually reducible.
By the ingenious method of Ribet and Wiles, residually reducible representations provide
a powerful means of the proof of the Iwasawa main conjecture for GL; over a totally real
number field. However, the advanced recent work of Skinner and Urban [Ski-Ur] for the
Iwasawa main conjecture for GLy over Q has not treated this case. For this reason, we are
interested in providing evidence for the Iwasawa main conjecture in the residually reducible
case following the work of Greenberg and Vatsal [Gre—Vat].

The purpose of this paper is to show how congruences between the Fourier coefficients of
Hilbert Hecke eigenforms give rise to congruences between the special values of the associated
L-functions. The study of this topic for elliptic modular forms was initiated by Mazur [M]
using the arithmetic of modular curves in order to investigate a weak analogue of the Birch
and Swinnerton—-Dyer conjecture. Mazur’s congruence formula was generalized by Stevens
([Stel], [Ste2]). Using this tool, Vatsal [Vat] has proved congruences between special values of
the L-functions of an elliptic cusp form and those of the L-functions of an elliptic Eisenstein
series of the same weight 2. Based on this congruences, Greenberg and Vatsal [Gre—Vat| have
studied the Iwasawa invariant of elliptic curves in towers of cyclotomic fields. In particular,
they proved the Iwasawa main conjecture for certain elliptic curves. Their work is motivated
by Kato’s result [Kato] on the Iwasawa main conjecture for elliptic modular forms.

In this paper, we present a way to obtain congruences of the special values of the L-
functions from congruences between a Hilbert cusp form and a Hilbert Eisenstein series of
the same parallel weight 2 under some conditions. This is a generalization of the works
explained above by Mazur [M], Stevens [Ste2], and Vatsal [Vat].

Let F' be a totally real number field with narrow class number 1 and degree n = [F' : Q)
and Ap the discriminant of F'. Let n be an integral ideal of F' such that (n,6/Ar) = 1. Let
p > n + 2 be a prime number such that (p,6nAp) = 1. Let O be the ring of integers of a
finite extension K over Q, and w € O a uniformizer. We fix an algebraic closure @p of Qp

and an embedding @p — C.
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Theorem 0.1 (=Theorem 3.1). Let ¢ and 1) be totally even (resp. totally odd) O-valued

narrow ray class characters of conductor my, and my, such that mymy, =n and € = —1 (resp.

€ = 1) the character on the Weyl group W¢. Put x = @i, which is a totally even character.

Assume that p # 1 and the algebraic Twasawa p-invariants of the splitting fields of ¢ and 1)

are equal to 0. Let f € Sa(n,O) be a normalized Hecke eigenform for every Hecke operator

T(m) and U(m) with character x. We assume the following four conditions, where Y (n)

denotes the Shimura variety defined by (1.2):

(a) HYY(Y (n), Q) is torsion-free;

(b) H™(0 (Y (n)P%),0) is torsion-free;

(c) the Hilbert Eisenstein series E = FEay(p,1) € Ma(n,O) with character x satisfies f =
E (mod w) (for the definition, see just before Theorem 3.1);

(d) C(q,E) # N(q)(modw) for some prime ideal q dividing n, where C(q, E) is the U(q)-
eigenvalue of E.

Then there exist a complex number Q} € C* and a p-adic unit w € O* such that, for

every primitive narrow ray class character n : Cl}(mn) — @X of conductor m,, such that
nfmy, and n =€ on Wg ~ Ap /AL ., the both values T(n~HYD(1, f, n)/(2mV/~1)"Q% and
(YD1, E,n)/(21v/—1)" belong to O(n) and the following congruence holds:
—1y_ DA, fin) 1, D(1, E, )
1 2 J _ 1 s 5
— = —_— d w).
) o Py = ) o e (mod
Here 7(n~1) is the Gauss sum attached to n=*, D(1,%,7m) is given by the Dirichlet series in
the sense of Shimura (for the definition, see (1.12)), O(n) is the ring of integers of K(n),
and K(n) is the field generated by elements of im(n) over K.

Remark 0.2. The assumption that the algebraic Iwasawa p-invariants of the splitting fields
of ¢ and 1 are equal to 0 is satisfied if the splitting fields of ¢ and v are abelian extensions
over Q by the Ferrero-Washington theorem.

This result can be regarded as an analogue of Vatsal’s result [Vat] in the case F' = Q
and weight £k = 2. However, our methods to prove the main theorem have some limita-
tions, such as the need for the torsion-freeness of the compact support cohomology and the
boundary cohomology. In the case F' is a real quadratic field with narrow class number 1,
the assumption (a) is equivalent to the p-torsion-freeness of the maximal abelian quotient
of the fundamental group of the Shimura variety Y (n). This has been studied by M. Kuga
in [Kuga]. By using his method and the theorem of Serre (congruence subgroup property),
we will prove the p-torsion-freeness under some assumptions (Proposition 2.26). Moreover,
if n is a prime ideal, then the assumption (b) is satisfied under some assumptions (Proposi-
tion 2.27). We will also give an example of a congruence between a Hilbert cusp form and
a Hilbert Eisenstein series of the same parallel weight 2 satisfying the all assumptions of
Theorem 0.1 (Example 2.28).

The organization of this paper is as follows.

In §1, we summarize results on the Hilbert modular varieties and Hilbert modular forms in
the analytic and algebraic settings. Moreover, we state basic properties of Hilbert Eisenstein
series, which are of great utility in the following sections.

In §2, we give an analogue of Stevens’s results [Ste2]. We will construct a desired n-cocycle
mh associated to a Hilbert modular form h of a general multiple weight & > 2t (Definition
2.4), which is based on the method of Yoshida ([Yo], [Yo2]). This provides the following
three results:
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(i) Mellin transform for a more general Hilbert modular form (§2.7, §2.8);
(ii) Integrality of the cohomology class of a Hilbert Eisenstein series (Corollary 2.24);
(iii) Construction of an example of a congruence between a Hilbert cusp form and a Hilbert
Eisenstein series (Example 2.28).

The result (i) can be regarded as an analogue of results of Stevens ([Stel], [Ste2]). He
expected that his methods would be generalized to Hilbert modular forms [Stel].

This cocycle allows us to determine the structure of the congruence module attached to
a Hilbert Eisenstein series (Theorem 2.22), based on Berger [Be| and Emerton [Eme] by
using cohomological congruence. This method and result can be regarded as cohomological
treatment of the arguments of Ribet [Ri] and Wiles [Wil]. As an application, we prove (ii)
and (iii) under some assumptions.

In §3, we generalize Vatsal’s results [Vat]. For a normalized Hecke eigenform f and a
Hilbert Eisenstein series E of the same parallel weight 2 related by congruences of the Hecke
eigenvalues C(q,f) = C(q, E)(mod w) for all prime ideal g, we derive congruences between
the special values of the associated L-functions (Theorem 0.1=Theorem 3.1). One of the
key ingredients in our proof is to describe the special values of the L-functions attached to
Hilbert modular forms using the evaluation maps (Proposition 2.19 and Proposition 2.20).
This description allows us to prove congruences between the special values by using the
cohomological congruence obtained by §4.

In §4, we present a way to show how congruences between the Fourier coefficients of
Hilbert Hecke eigenforms give rise to congruences between the cocycles (Theorem 4.1) by
using integral p-adic Hodge theory for open varieties with constant coefficients. Theorem
4.1 is crucial to prove congruences of integral cohomology classes between [r¢]/Q¢ and [7g]
modulo w and the main theorem (Theorem 0.1=Theorem 3.1). It may be regarded as an
analogue of multiplicity one theorem for modulo p parabolic cohomology in the case where
the residual Galois representations pf (= pr mod w) associated to a Hilbert cusp form f is
reducible. In the case pr is irreducible, under some assumptions, a multiplicity one theorem
is known to be true by [Dim2] for a general totally real number field.
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0.2. Notation. In this paper, p and [ always denote distinct prime numbers. We denote by
N the set of natural numbers (that is, positive integers), denote by Z (resp. Z,) the ring of
rational integers (resp. p-adic integers), and also denote by Q (resp. Q) the rational number

field (resp. the p-adic number field). Let 7= ;<0 Zi, where [ runs over all rational primes.
We fix algebraic closures Q of Q and @p of Qp, and fix embeddings

Q%Q,—C,

where C denotes the complex number field.
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We assume that every ring is commutative with identity. For a ring R and n € N, we use
the following notation:

M,,(R) = {(n x n)-matrices with entries in R};
GL,(R) = {M € M, (R) | M is an invertible matrix};
SL,(R) = {M € GL,(R) | det(M) = 1}.

Moreover, if R is a subring of R, we put
GL,(R)+ = {M € GL,,(R) | det(M) > 0}.

Let F' be a totally real number field of degree n = [F': Q], o the ring of integers of F,
and Ap the adéle of F'. We abbreviate Ag to A. We have the usual decomposition Ap =
Apt x Ap into finite and infinite adéle parts and denote adélic variables by x = (29, Zoo).
For any x € Ap and any place v of F, x, denotes the v-component of . For any element
x € Ap, any subset X of Ap, and any ideal n of op, we write x, and X, for the projection
of z and X to quu Fy, where Fy denotes the g-adic completion of F. Let N = Nrp/q be the
norm map of F//Q, 0p C op the different of F', and Ap = N(0p) the discriminant of F. A
narrow ray class character modulo an integral ideal b of F'is a homomorphism

x : ClE(b) — C*.
Let r € (Z/2Z)" be the sign of x:
X((a)) =sgn(a)” for « =1 (modb).

The character x is called as totally even (resp. totally odd) if the sing » = (0,--- ,0) (resp.
r=(1,---,1)).

For an algebraic group H/q, we shall abbreviate H (R) to Hy and denote by H 4 the
connected component of Hy, with the identity. We define the reductive algebraic group
G g to be Resp/9GLg,p, where Resp/g denotes the Weil restriction of scalars. We shall

denote by B,g = B/+Q (resp. B;Q) the standard Borel subgroup of upper (resp. lower)
triangular matrices and U,g = U/J(r@ (resp. UfQ) its unipotent radical of G,q. Let Jp

be the set of all real embeddings of F into R. We have G5, = GL2(R)’F = GLo(R)",
Goot = GLo(R)7F = GLo(R), and G(A) = GLa(AF).

0.3. Acknowledgment. I would like to express my gratitude to Professor Takeshi Tsuji for
providing helpful comments and suggestions and pointing out mathematical mistakes during
the course of my study. In particular, the work in §4 would have been impossible without
his insight and guidance.

1. HILBERT MODULAR VARIETY AND HILBERT MODULAR FORM

1.1. Analytic Hilbert modular forms. We recall the definitions of classical Hilbert mod-
ular forms. For more detail, refer to [Shi|, [Hida88], [Hida91], [Hida94], [Ge-Go].
Let $ = {z € C | Im(z) > 0} be the upper half plane. Then GL2(R); acts on $ by

az+b
cz+d
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for a = ch b> € GLy(R)+ and z € $. We consider the left action of GLQ(R)iF on §7F

d
defined by
o — <agzo + bC,)
Co2o +do ) ge g,

for z = (25)oesp € H7F and a = ((ag b

Co dgy

)) € GLy (R)f. We define an action of the
oeJp

element <_01 (1)> on $ by z — —Zz. Then the action of GLg(R)iF extends to that of G, on

977 Let i=(vV=1,--- ,v/=1) € H7F. Let K = Stabg)(i) and Ko 4 = Stabgr), (1) be
the stabilizers of i. For each subset J C Jp and a € G4, we put

J*={oceJp|oeJ ifdet(a,) >0, 0 € Jp —J ifdet(a,) <0}.

For each subset J C Jr, we define an automorphic factor j,(a, z) € C’F as follows: for

a= <<% b”)) € GLo(R)’F and z € 77,
oeJp

Co dgy

jJ(a7Z) = (ngg + da)ay

where

J _ ze if o€ J,
(L1.1) ‘o _{ Z, ifoeJp—J

It satisfies the cocycle condition: for each «, 8 € Guo,
jJ(O[B) Z) = jJﬂ(av ﬁz)jJ(IB7 Z)'

For an ideal n of o, we define open compact subgroups of G(Ay) to be

Ki(n) = {(‘CL Z) € G(7)

The adélic Hilbert modular variety of level Kj(n) is defined as
(1.2) Y(n) = GQ\G(A)/K1(n) Koo 1
= G(Q)+\G(A)+/K1(n) Koo 1,

where G(A)y = G(Af)Goo 4 and G(Q)4 = G(Q) N G +. We recall that Y (n) is a disjoint
union of finitely many arithmetic quotients Y; as follows. Let T" = Resp/g(Gm). The
determinant map det : G — T induces

det : GQ\G(A)/ K1 () Koo — T(Q\T(A)/det(K (n) Koo, ).

Moreover, we have

cen,d—len}.

T(Q\T'(A)/det(K1(n) Koo 1) ~ F*\AL/ORAL o 1,

X
where AF, ot

z = [z] = ]], p% (@) where p runs over through the set of all prime ideals of op. Let
h; = ttCl;,C be the narrow class number of F' and t1,--- ,th; € A} such that ¢, = 1 and

= RJXrJF . It is isomorphic to the narrow ideal class group Cl; of F' via

the corresponding fractional ideals [¢1],-- -, [th;] form a complete set of representatives for

Cl;. Throughout the paper, we assume that

(1.3) for each 7, both dp and [t;] are prime to p.
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Let D € A} be such that [D] = 0p and Dy = 1. We put

. D7t 0
T 0 1)

By the strong approximation theorem, we have

n
G(A) = [[G(Q)ziGoo + K1 (n).
=1

It implies the canonical decomposition

h+
(1.4) Y(n) ~ ]V,
i=1

where
Y; = Di(Ki(n)\97",
[i(Ki(n) = GQ)4 N K1 (n)z; 'G(R) 4.
We will be mostly interested in the following special congruence subgroups of G(Q):

(1.5) Foji(n) = Fo(DF[ti],l’l)

={<i Z) € GLy(F)
a b

1) = T () = T @rledo) = { (&) € Tosto
'i;(n) = Ti(p[t], n) = T1i(n) N SLa(F),

a,d €op,b € DEl[ti]_l,C € Mplt;],ad — be € o§7+};

dzlmodn};

where 07 e 07 denotes the subgroup of totally positive units. Then we have
Y =Ti,(m)\n’"
and the oy, / 02 -covering map
Y =Y,

where o5 C oy denotes the subgroup consisting of elements congruent to 1 modulo n. We
put

hh
(1.6) Yim) =]V
=1

We define the subset of weights X(T) C Z[Jp] x 3Z[Jp] by
X(T)={r=(k—2t,m) | k=2t +2m € Z - t},
where t =3 ; 0.

We fix a subset J C Jp and k = (k — 2t,m) € X(T') such that k — 2t + 2m = 0 as [Shil.
For any a € G(A) and C-valued function f on G(A), we define the function f|, ;& on G(A)
by

(flx,, @) (2) = det(ase) ™™ oy (0, 1) E(za ™).
Here we used the convention that, for z € (F ® R)} and v € Q[JF], ¥ =[], 2 and, for
z € §7F and v € Z[JF|, 2* =[], 4. We abbreviate f|,; s, to f|,.
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First we recall the adélic definition of the Hilbert modular forms, following [Shi] and

[Hida88]. The space
SH,J(KI (ﬂ), (C)

of Hilbert cusp forms of weight £ with respect to level Kj(n) and type J is the C-vector
space of functions f: G(A) — C satisfying the following four conditions (a),(b),(c), and (d):
(a) fl, ,u="fforall ue Ki(n)Ky +;
(b) f(7) = (z) for 7 € G(Q);
For each z € $7F, we can choose us € Goo,+ such that z = usi. We define a function by
fu; H7F — C: 2 det(uoo) FH™5 (U0, 1)*f(2juno ). Then it is well-defined, that is, it is
independent of the choice of us € G + by (a).
(c) fz; is holomorphic at z, for o € J and anti-holomorphic at z, for o € Jp — J;
(d) fU(@)\U(A) f(uz)du = 0 for all z € G(A) for each additive Haar measure du on U(Q)\U(A).

Also, the space
My 7 (K1(n),C)
of holomorphic Hilbert modular forms of weight x with respect to level K;(n) and type Jp
is the C-vector space of functions f: G(A) — C satisfying the condition (a), (b), and (c) as
above in the case J = Jp.

We remark that this adélic definition of [Shi] is related to that of [Hida88], which is
explicitly given by the proof of [Hida88, Proposition 4.1].

We fix a narrow ray class character x : C1f(m) — C* whose conductor m dividing n of infi-
nite type —k+2t—2m = 0. We define the space M, s, (K1(n), x,C) (resp. Sy j(Ki(n),x,C))
to be the subspace of M, j,.(Ki(n),C) (resp. S, s(Ki(n),C)) satisfying f(zb) = x 1 (b)f(x)
for any b € Aj. We note that

M,y (K1(n EBMN gr(K1(n), X, C), Sk (Ki(n @Sﬁj Ki(n), x,C),

where y runs over all narrow ray class characters whose conductor m dividing n of infinite
type 0.
Next we recall the definition of the Hilbert modular forms over the Hilbert upper half
plane $77. The space
Sk,7(T'1:(n),C)
of Hilbert cusp forms of weight « with respect to level I'y ;(n) and type J is the C-vector
space of functions f : $7/7 — C which is holomorphic at z, for o € J and anti-holomorphic
at z, for 0 € Jp — J satistying f|. ,v = f for all ¥ € I'1;(n) and vanishing at all cusps,
where (fly,,7)(2) = det(y)" 7], (v, 2)* f(72).
The space
My, 7 (T'1i(n), C)
of holomorphic Hilbert modular forms of weight x with respect to level I'y ;(n) and type Jp
is the C-vector space of holomorphic functions f : $/7 — C satisfying f]| Kogp Y = f for all
v €T(n).
Then the map f— ( fxi)- induces

MFLJF Kl @MRJF Flz C) SH,J Kl @SHJ Flz )

(cf. [Hida91, p.323] and [Hlda88, (2.6a)]).
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We define the Hecke operator acting on M, . (Ki(n),C) and Sy j(Ki(n),C) as follows.

~

We define the semigroups R(n) and R;j(n) as

R(n) = G(Ap) N { <Z Z) € My(5p)
Rij(n) = G(Q) Na; R(n)z; .

i

c €nop, dy, € O whenever pv|n} ,

Then the Hecke character y defines a character on R(n) and R;j(n) by

For y € ﬁ(n) and the double coset decomposition
(K1(n) Koo, +) y (Ki(n) Koo, 4) = H (K1 (n) Koo +) Yis

we define

(L.7) (K1 () Koo, 1) y (K1 () Koo, +)](7) = Zf(l‘y{l)-

In particular, the Hecke operator acting on M, ;. (Ki(n),x,C) and S, j(Ki(n),x,C) is
given by

fI[(K1(0) Koo 1) y (K1 (n) Koo 4)](2) = Zx(yz’)_lf(fcyé)a

where y* = det(y)y~!.

The definition of the Hecke operator acting on the Hilbert modular forms over the Hilbert
upper half plane and the relation between this Hecke operator and adélic one is explicitly
given by [Shi, §2].

1.2. Dirichlet series associated to a Hilbert modular form. The aim of this subsection
is to describe the definition and properties of Dirichlet series attached to Hilbert modular
forms, following [Shil.

Let h = (h;); € My s, (K1(n),C). Assume that

k= ((k —2)t,m) satisfies (k —2)t +2m =0 for 2 < k € Z.

Then h has the Fourier expansion of the form

) n((§ 7)) menbormn o) A
+ Y clElyor, )N Py Per(vV=1¢ys)er (Sa)

0EeF

given by [Shi, (2.18)] and [Hida88, Proposition 4.1] for any € Ap and y € Ay with 0 < yoo.
Here m — ¢(m,h) is a function on fractional ideals of F' vanishing outside integral ideals
and ep is the additive character of F\Af characterized by ep(7s) = exp(2my/—12s) for
Too € Ao (for the definition, see, for example, [Ge-Go, Appendix C.2]). Here we used the
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convention that y’éo” = HU yig{f In particular, for 2 = oo + V—1yso € ﬁJF, we have

(19)  hi(2) =y "k <@‘i <y8° xfo>> = *h <<ti_10D_1 (1)> <y80 xi)o))

= coo([til TN (D2 + Y elélt] T h)N(E) Per (E2).

0<EE(ts]
We simply denote by
oo (0, 1) = coo([ti] T )N ([8:))*/? and aco (€, hi) = e(&[t:] ™", h) N (&)
for any 0 < & € [t;]. For h = (h;); € M, 5, (K1(n),C), we denote by
(1.10) Coo.i(0,h) = N([t:])) *2a00 (0, hy),

(1.11) C(m,h) = N(m)*2¢(m, h)

for all non-zero integral ideals m of F'.
Let n be a character of the narrow ray class group Cl}(mn). The Dirichlet series in the
sense of Shimura [Shi, (2.25)] is defined by

(1.12) ZC(m, h)n(m)N(m)™%,

where m runs over all integral ideals of F. It converges absolutely for sufficiently large
Re(s) > 0 and extends to a meromorphic function on the complex plane (see, for exam-
ple, §2.7 in this paper). For each h € M, ;.(K;(n),C), let D(s,h,n) denote this analytic
continuation. If 7 is the trivial character, we simply write D(s,h).

1.3. Hilbert Eisenstein series. We recall the definition and properties of the Hilbert
Eisenstein series. For more detail, refer to [Shi, §3].

We fix integral ideals a,b of F. Let ¢ (resp. 1) be a character of Cl}(a) (resp. Cl}(b))
with sign ¢ (resp. r) € (Z/2Z)". We may regard ¢ (resp. 1) as a function of all integral
ideals of F' by defining ¢(m) = 0 (resp. ©(m) = 0) if m is not prime to a (resp. b). Then a
function sgn(x) ) (xh~1) of x € h depends only on x modulo ah for a fractional ideal b of F.
If ¢ is primitive, that is, the conductor my, is exactly b, then, by [Shi, (3.11)], we have

(1.13) > sgn(b)" ¢ (b[t:] " h)er (tb) = sgn(t) " (tb[t:]orh )T (1)
be(t;]h—1/b[t;i]h— 1L
for a fractional ideal h of F and ¢ € b= [t;]~'h, where 7(¥) is the Gauss sum attached to
1 defined by
W)= Y sen(@) Y(ebdp)er(z).
zeb=1o,! /oyt

The following proposition is obtained by [Shi, Proposition 3.4] and [Da-Da—-Po, Proposi-
tion 2.1].

Proposition 1.1. Let k > 2 be an integer such that (k,--- , k) = ¢+r (mod2). Assume that
both ¢ and v are primitive. Then there exists an Fisenstein series Ex(p, ) = (Ex(e,1)i)i €
M, . (K1(ab), o, C) satisfying the following properties.

(1) D(Sa Ek((pu ¢)> = L(87 QO)L(S —k+ 17¢)

(2) C(m, Ex(p,%)) =D cjm ® (2) ()N (c)*~! for each integral ideal m of F.

C
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27" ([t L(L — ko™ l) if a=1,

Coo,i(ov Ek((pa ¢)) =
0 otherwise.

Proposition 1.2. Assume that [F : Q] > 1, h, =1, and 0p[t1] = op. Under the same nota-
tion and assumptions of Proposition 1.1, the constant term ay,,(0, Ex(p,%)1) of Ex(p,v) =
Ey(p,1)1 at the cusp x/y € PY(F) is given by the followings: fir o = <:; g) € SLa(or)
such that a(oo) = x/y. If y ¢ my and ¢ # 1, then a0, Ex(p,v)1) = 0. Ify € my or
=1, then

12 1o
a0, By, ) = MU 700 ) ( N(m,)

k
T (el ) senloaotom (v (2)

X 11 (1= Q)N (@) ™") | L(1 — k, o™ "0).

qamemy,qfm, -1

Proof. We follow the arguments in the proof of [Da-Da—Po, Proposition 2.1] and [Fre, Chap-
ter III, Theorem 4.9]. We simply write a = my, and b = my,. In order to prove it, we recall
the construction of the Eisenstein series Eg (¢, 1) from [Shi, §3] and [Da-Da—-Po, Proposition
2.1]. Let

U={u€co}|Nu*=1u=1modab}
be a subgroup of oy with finite index. For z € §™ and s € C with Re(2s + k) > 2, we define

(1.14)
Ei(p, ¥)1(2,8) =N([ta]) [0} : U 'T(R)"N(6) ' r(y) Y . >
beClr a€b/ab teb—1o, [t1]-1h /05 [t1]~1h
x sgn(a)p(abh™")sgn(—t) P (—tbdp[t]h )N (h)F
X Ek,U(Zu S5 a, ta abv a;‘l [tl]_lh)7

where Clp is the ideal class group of F' and

Ek’,U(Z7 s;a,t; ah70;1[t1}_1h)

= AN ]I (D) Rey =) T N (@ ) Fld s b
(a’ WU

Here the sum runs over representatives (a’, ") # (0,0) modulo U which acts by the diagonal
multiplication, such that ¢’ —a € ah and V' — ¢t € D}l[tﬂ_lf). This series converges for
Re(2s + k) > 2 and can be continued to a holomorphic function in the whole plane if
n = [F:Q] > 1 ([Shi, p.656]). Then Ex(p,v)1(z) = lims_o Ex(¢,1)1(z,s) is holomorphic
inzif n=[F:Q]>1 ([Shi, p.656]).
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We put C' = A1/2F(k‘)”[01§ :U)"'N(dp) Y (=2ny/—=1)"*". For z € H",
Eru(z,s;a,t;ah, 05 ] 71 )|a
= Epulaz,s;a, t;ah, 05 1] 'h) (yz +6) 7"
= A}T/Q(—%r\/—il)_k" Z (d'az + V) F(yz 4+ 0)Fld az + |72

(a/ VU
= A2 (20D N (x4 by)z o+ (a8 + 18)) Fldlaz + b
(a/ W)U

Then this series contributes to the constant term of Ex(p,%)1|a only when o’z + b'y = 0.
(1) First suppose that y ¢ b. Since 0p[t1] = o and b'y = —a’z € (y)b~'hNh, we see that
V' € b and and hence sgn(—b')" 1 (=b'bop[t1]h~!) = 0 if b # 1. Thus, the constant term
a$/y(07 Ex(p,9)1) =01if b # 1.
In the case b =1, since 0p[t1] = op, the constant term of Ej(p,1)1|a is equal to

(1.15)
C - N tl —k/2 Z Z Sgn I)N(b)k Z (a'ﬂ—}—b'é)_k_%

heClp aeh/ah (a/,b/)U,(a;/,b/)#(0,0)
a’'—a€ah,b’ €h,a’ z+b'y=0

at s = 0. Suppose that = # 0. Using o’z + b’y = 0 and 26 — Sy = 1, we have o’ + b'y/x € ab
and o/ 4+ b'y = V' /x. Thus the constant term of Ex(p,)1]a is equal to

(116)  C-N(u)™ 3 Y sen (‘?)qw (‘blxyh‘1> N(h)EN (i) o

heClp VU
b’ eh b’ £0

at s = 0. Since the map (z7'h,0') — (b'/x)(z7'h)"! C op from the set {(z7'h,0) |
(h,b') in (1.16)} to the set of non-zero integral ideals of I is a surjective [0 : U]-to-1 map,
the value (1.16) is equal to

C - N([t1]) ™ sgn(—y)%p(=y)[of : UIL(k, ¢).
Therefore, using the functional equation for the Hecke L-functions (see, for example, [Mi,
Theorem 3.3.1]), the constant term a,, (0, Ex(¢,)1) is equal to

N ([t:])*"?

o T(@)N (my) Fsgn(—y)%e(—y) L(1 — k.07

aw/y(()’ Ek(@a ¢)1) =

as desired.
Next suppose that z = 0. Then 8y = 1 and (@, ') in (1.15) satisfies b’ = 0and o’ = —d'/y
and hence the constant term of Ej(¢,v)1]a is equal to

I\ —k—2s
(1.17) C-N(t])™* > D sen(d) ¢ (ab™) (&’W(—“)

heClrp  ad'U y
a’eh,a’#0
at s = 0. Therefore, in the same way as above, our assertion follows from the map

(y~'h,d") = (d'/y)(y~th)~t C op from the set {(y~'h,a’) | (h,a’) in (1.17)} to the set
of non-zero integral ideals of F' is a surjective [0 : U]-to-1 map and the functional equation
for the Hecke L-functions:

N ([ta])*/?
ax/y(oa Ek<907 w)l) - &

o (PN (me) “Fsgn(—y) p(—y) L1 = k7).
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(2) Next suppose that y € b. The constant term of Ek(cp, ¥)1]a is equal to

(1.18) C - N([t1]) 2N (b ¥) Y N( >
bECIF (alvb/)Ur(alvb/);é(Oro)
a'eh,b'cb=1h,a’z4+b'y=0

x sgn(a’)p(a'h ™ )sgn(—=0')"H (=b'bh ) ('8 + b'6) TR
at s = 0. We note that the map (da’,b') — d/f + b6 from the set {(a’,V’) in (1.18)} to
b=1h — {0} is bijective. Indeed, for (a'8 + V'§) € b~'h, we have (/8 + b'd)x = b and
—(@B+Vd)y = d since d'z + by = 0 and 2§ — By = 1. Thus the constant term of
Ex(p,v)1|a is equal to

(1.19) C-N([ta]) 2N () r(y) Y Z

heClp
d+0, deb g

x sgn(—dy)%p(—dyb~")sgn(—dx)"p " (—dabh ™" )N ()N (d) 2

at s = 0. Since the map (h,d) — dbh~! C op from the set {(h,d) in (1.19)} to the set of
non-zero integral ideals of F' is a surjective [0} : U]-to-1 map, the constant term (1.19) is
equal to

C - N([ta]) 2N (b) 'sgn(—y) Yo (—y)sgn(—z) ™" (—z)
<o YN o7 - ULk, o0~ [T (A —wv  (a)N(@) 7).
qlmemy qim ,,—1

Therefore, using the functional equation for the Hecke L-functions, we obtain that the con-
stant term a/, (0, Ex(¢,)1) is equal to

N([t)*? 7(py™") < N(my)

Az /y(0, Ei(p,¥)1) = 2n T \N(mgy-1

k
)> sgn(—y)?p(—ymy " )sgn(—z) ¢~ (—x)

X I[I  Q-e @N@™) | LO - ke ').
q‘mwmqufmpd,*l

as desired. O

1.4. Geometric Hilbert modular variety. We recall the algebraic Hilbert modular va-
rieties and its toroidal compactifications. For more detail, refer to [Dim2]|, [Dim-Ti|, and
[Ti-Xi].

A Hilbert-Blumenthal abelian variety (HBAV for short) over a scheme S with respect to
o is a pair (A, ) consisting of an abelian scheme 7 : A — S together with an embedding of
algebras ¢ : o — End(4/g) such that W*(Qz/s) ~ 9! ® Og, that is, Lie(A) is locally free
(or ® Og)-module of rank 1. We remark that if A,g is a HBAV, then its dual AY g has a
natural structure of HBAV. We fix an ideal n of o and put A = NF/Q(nDF). Let py be the
closed subscheme of G,,, ®7, 0}1 defined by pn(R) = {z € G, (R) ®ZUE1 | nz = 0}. Let ¢ be a
fractional ideal of F' and ¢; = ¢N(F®R)Y the cone of totally positive elements in ¢. If A g is
a HBAV, the functor from the category of S-schemes to the category of sets X — A(X)®,, ¢
is represented by an HBAV, denoted by A ®,, ¢. A c-polarization on a HBAV A g is an

op-linear isomorphism A : A®,, ¢ =5 AV such that, under the isomorphism Hom, A(AAY) ~
Hom,,.(A, A®,, ¢) given by f — Ao f, the symmetric elements of Hom, (A, A") correspond
precisely to ¢ C Hom,, (A, A ®,, ¢), and the symmetric polarizations correspond precisely
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to ci. A pp-level structure on a HBAV A g is an op-linear closed immersion « : py < A of
group schemes over S.

We consider the contravariant functor Fj . from the category of Z[1/A]-schemes to the
category of sets:

(120) ]:LC 1S {(A’La)‘, Oé)}/:,

where (A,¢) is a HBAV over S endowed with a c-polarizations A and a py-level structure «
and {*} . indicates the set of isomorphism classes of .
Throughout the paper, we assume that

(1.21) (n,6Ap) = 1.

Then I'1(¢,n) as in (1.5) is torsion-free ([Dim-Ti, Lemma 1.4]) and the functor F; . is rep-
resentable by a quasi-projective, smooth, geometrically connected Z[1/A]-scheme M, =
M (T4 (c,n)) of relative dimension n = [F : Q] ([Dim-Ti, Theorem 4.1]).

Let o, C op be the subgroup of totally positive units and oz ~C of the subgroup
consisting of elements congruent to 1 modulo n. The finite group 0?7 4/ olx,fl acts on M . by
[e] - (A, e, N ) = (A, 1, 1(e) o A\, ) for [g] € 0§’+/0§i. We denoted by M, = M(T'1(¢,n)) the
quotient of M} by 0;,7 L/ ofﬂi. It is a coarse moduli scheme of the contravariant functor F
from the category of Z[1/A]-schemes to the category of sets:

(1.22) Fo: S {(A LN, )},

where (A, ) is a HBAV over S endowed with an oy, , -orbit of c-polarizations [A] and a pi,-level
structure o ([Dim—Ti, Corollary 4.2]). Also, M, is a quasi-projective, smooth, geometrically
connected Z[1/A]-scheme of relative dimension n = [F' : Q]. We put

hif hf
M, = HMI,[ti]v M = HM[ti],
=1 =1

where {[tl]}zfl is a set of representatives of Clf. as (1.3).

Toroidai compactifications Mltocr and M{°" of M. and M, are smooth and proper over
Z[1/A] and the boundaries M{%" — M and M°" — M, are relative simple normal crossing
divisors of M} and M{°", respectively ([Dim, Theorem 7.2]). We put

I h
tor __ tor tor __ tor
Myt =TTy, Mt = T Mg
i=1 i=1
Let m : A — M; . be the universal HBAV. There exists a semi-abelian scheme 7 : G — M f?f
extending m : A — M such that a neighbourhood of the boundary corresponding to a
cusp is the Tate semi-abelian scheme ([Dim-Ti, Theorem 6.4]). We have a vector bundle

w, = ﬁ*Qg/M{?cr, which is a locally free OM{?cr ® op-module of rank 1.

Let f be the Galois closure of F' in Q and oz the ring of integers of the number field
F' = F(e'/%e € 0y ). For a Z[1/A]-scheme S, we denote by So,, = S xz1/a] 0p[1/4)]

. . 2 .
its base change to Spec(op/[1/A]). The finite group 0;4_/0;’“ acts on w, over Mlt?cfoF/ via

€] - s = e~ 1/2[¢]*s, where s denotes a local section of w,. Then w, descends to a locally free
Ojpptor - ® 0p-module of rank 1.
€0y
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We remark that if B is an op[1/Ap|-algebra, then we can decompose

B®op = @B

celJp

by the map b®a — (ba?)scj,. In particular, w decomposes into a direct sum of line bundles

= D o

ceJp

1.5. Geometric Hilbert modular form and log de Rham cohomology. We use the
terminology of logarithmic structures in Kato [Kato2]. Let ) be a regular scheme and D a
reduced divisor with normal crossings on ). Then the subsheaf L of monoids on Y defind
by

(1.23) LU)={g € Oy(U) | g is invertible outside D xy U}

for each étale Y-scheme U is a fine log structure ([Kato, (2.5)]).
Let D = M9 [ y — M, ;) be the boundary. Then we define a log scheme (Mto[g],L)

to be the scheme Mlto[;] endowed with the log structure L={g € OMtor | g is invertible

outside D}. By [Dim-Ti, Theorem6.4], there is a toroidal compactlﬁcatlon AT of the semi-
abelian scheme G on Ml,[ti] such that A" is smooth and proper over Z[1/A], 7 : A" —
M to[r] extending m : A — M ) is semi-stable, and A" — A is a relative normal crossing
divisor above D. We define a log scheme (A'*", L’) to be the scheme A"™" endowed with
the log structure L'={g € O 4ir | g is invertible outside 7—!(D)}. Then the morphisms of
log schemes (A*", L") — (M{% ,,L) and (M, ,,L) — (Spec(Z[1/A]),triv) are log smooth

Lt L[]
([Kato2, Theorem 3.5]) and hence both € (log(D)) = Qi\tor/Mtor (log(L'/L)) and

Ator/Mtor
Q?Wm[r (log(D)) = ngo[r (log(L)) are locally free of finite type ([Kato2, Theorem 3.10)).
We fix an algebra Ry = op/[1/A]. For any Z[1/A]-algebra R and Z[1/A]-scheme ),
we denote by Vg its base change to Spec(R). Moreover, for any Z[1/Al-algebra R and
Z[1/A)-log scheme (Y, L), we denote by (V,L)g its base change to (Spec(R), triv) with
the trivial log structure. Let QAtor/Mtor (log(D)) (resp. /R(log(D))) denote the
t;,R

differential module defined by the log smooth morphism (Amr L’ )R — (Mlto[lg P L)r (resp.

(M1 L) = (Spec(Z[L/Al), triv) ).

We define the de Rham cohomology sheaf on Mlto[lt”l] R as

Mtor

1 _ pl= e
Hyy= I W*QAgr/Mltf[rtiLR(log(D))-
Then, under the assumption (1.3), we have an exact sequence
([Dim2, §1.9]). This sequence (1.24) defines the Hodge filtration
H' = FO(H") > FY(H'") = w,) D F*(H') = 0.
We have the canonical integrable connection
Vi Hpyg = Hip, @0, O} yror /r(log(D)).

tor
1R My m
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Then wy,), ’H[lti], and V descend to Mﬁ‘z}rR ([Dim2, §1.9]) and hence we use the same notation.
We define a complex of sheaves 2° (’H[l _}) as follows:

QO(H[lti]) H[t]®o ater QMtor /r(log(D)).

1,[t;],R 1,1 R
We define

H™(Mi$. 5 Hips V) = H™ (M1 7y ()
by the hyper cohomology of this complex. The Kodaira—Spencer map

0wy, = Hip 5 H[t]®01\/1to[r] QMtor /R(log(D)) wy, }®0Mto[r] Q}W{?ﬁi]ﬂ/R(log(D))’
which is O M R—hnear, induces an 1somorphlsm
(1.25) QM{% R/R(log( ~ Wi g? w[t Lo

=

For a weight k = (k — 2t,m) € X(T'), we put

o= @ (Wl e ().

celJp

The coherent sheaves on M ;,) above descend to M) and then we shall use the same
convention as above on M.

Definition 1.3. ([Dim2, §1.5] and [Ti-Xi, §1.5]). Let R be an op/[1/A]-algebra and k =
(k —2t,m) € X(T). We define the space of Hilbert modular forms of weight x and level
'l (0p[t:],n) and T'1(dp[t;], n) with coefficients in R to be

M (T} (p[t],n), R) = HO(M, 1 5, wfy @ i),
MH(Fl(oF[t’L]v ﬁ), R) - HO<M[ti},R7 @ﬁz] ® g[zttz])a

respectively. If F 75 Q, then, by the Koecher’s principle, we have M, (I'i1(dr[ti],n),R) =
HO(M[t TR Wi © w[t ]) We define the subspace of Hilbert cusp forms as

Sx(T1(F[ti],n), R) = HY (M) g wit,) © wily(=D)),
Se(T1(0p[ti],n), R) = HO (M} g, oy, © o) (—D)),
respectively. We denote by

M, (M, R @M (T1(@F[ti],n), R), MH(M,R):éMK(Fl(DF[ti],n),R),
hi

(M, R @s T1(p[t]n),R),  Se(M,R) =D S.(T1(orti],n), R).
=1

1.6. Hecke operator on geometric modular variety and geometric modular form.
First we define the Hecke correspondence T'(a) (if a is prime to n) and U(a) (if a is not prime
+
to n) on the M; = H?jl M ;) and M{°" = HZ Fl Mto[rl]
Let a be an integral ideal of F and fix a pair (4, j) such that [t;]a = [t;] in C1}.. We consider
the functor Fi 4, ; from the category of Z[1/A]-schemes to the category of sets:

(126) -Fl,a,i,j 1S {(A,L,)\,Oé,c, 6)}/27
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where (4,¢, A\, @)/g is a [t;]-polarized HBAV over S with py-level structure, C' C Ala] is an
op-stable closed subscheme, which is disjoint from «(u,) and étale locally isomorphic to the
constant group scheme or/a over o, and 3 is an o;’f -orbit of isomorphisms ([¢;]a, ([t;]a)+) ~

([tj], [t;]+), where ¢y = ¢N (F®@R)J is the totally positive cone for a fractional ideal ¢ of F'.
Then we have a projection

T Fraig = Frn) ¢ (Au A a,C 8) — (A1, A ).
Also we have a projection
2! -Fl,a,i,j — ]:L[ti} : (Aa Ly )‘a a, Ca B) — (A/Ca L,a )‘,’ 0/)7

where ¢/ is the embbeging o < End(A/C) naturally induced by ¢ and the projection
A — A/C, « is the composition of « : iy, < A and the projection A — A/C, and X is the
[tj]-polarization of A/C explicitly given by [Ki-La, §1.9].

The functor ]:1 .a,i,j is representable by M 4 ; explicitly constructed by [Ki-La, §1.9]. We

put My 4= Hl 1 M,q,5. Then the two projections

1
e
My q My

™2

induce algebraic correspondences T'(a) and U(a) on M;. We now define the Hecke correspon-
dence T'(a) and U(a) on M{°" as the closure of T'(a) and U(a) in M x M}, repsectively.

According to [Dim2, §2.4] and [Ki-La, §1.11], we get my ,msw" — 71 mjw" — w* and an
action of T'(a) and U (a) on the space of geometric modular forms M, (M1, R) and S, (M, R).
Moreover, we get an action of T'(m) and U(m) on M, (M, R) and S.(M, R) by using the
projection

(1.27) > [e]: Mu(My, R) — My (M, R).
e)eof  Jops

According to [Dim2, §2.4] and [Ki-La, §1.11.8], this Hecke action over C coincides with the
usual Hecke operator as (1.7).

2. INTEGRALITY OF n-COCYCLES

2.1. Group cohomology. To state our theorem, we need to recall some properties about
group cohomology. Let I' be a congruence subgroup of G(Q) = GLg(F) and I' =T /(TN EF™).

Definition 2.1. (The standard R[['|-free resolution of R). Let R be a commutative ring
and M a left R[T]-module. We define F, = R[[]®@t1) and regard it as an R[T}-module
via the multiplication of R[T'| on the first factor. Then F is a free R[[']-module with a
basis {[71, - , 7] = 1 @71 ® - ®7,; | % € I'}. We define the R[[']-linear boundary map
8q: Fq — Fq_l by 81[7] =% —1and

811[%7"' 7%} :%[%7 7%] + (_1)].[%"" s VY41, 77!1] + (_1)q[ﬁ7"' 7’7(]—1]
J

=)
[y

Il
N

for ¢ > 1. Tt is well known that (Fy,d,) is a R[[]-free resolution of R.
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Let C7 = C9(T, M) be the space of functions on T'? with values in M for ¢ > 1 and M for

g = 0. Note that HomRm(Fq, M) =2 C9. Then the differential map d9: C9 — C9*! induced
by 0, on F, is given by d’u(¥) = (§ — 1)u for u € M if ¢ = 0, and if ¢ > 0,

AT, Ygrn) = w2, - 5 Vgr1)
q
+ Z<_1)]u(ﬁv RO £ 107 B PR 77(1) + (_1>Z+1u(ﬁ7 o 77(])
7j=1

The associated g-th cohomology group of I' with coefficients in M is given by
HYT,M)=Z4T,M)/BYT, M),
where
ZYT, M) = ker(d?: C1 — C7t1) and BYT,M) =im(d?': c7! = C9).

2.2. Construction of n-cocycle. In this subsection, we will construct an n-cocycle asso-
ciated to a Hilbert modular form, which is a generalization of the Eichler—Shimura cocycles.
This work explicitly gives the isomorphism between de Rham cohomology group and group
cohomology (cf. [Be Ph.D., Proposition 2.5]). In order to do it, we strictly follow the argu-
ments in the method of Yoshida in [Yo]. We put Jg = {o1,--- ,0,}. For each subset J C Jp,
we put

(2.1) dz, = /\ dzji,
i=1

where z/ is defined by (1.1).
Hereafter, we assume that k; > 2 and k — 2t + 2m € 2Z -t for k = (k — 2t,m) € X(T)
and k = > ' | kjo; € Z[Jp|. For any Z-algebra A, a non-negative integer ¢ € Zxg, and

<g> € A2, we put

We consider the column vector space Ly(A) ~ A“! ~ Sym‘(A?). For any Z-algebra A, we
define the /-th symmetric tensor representation py of GLa(A) on Ly(A) ~ Sym*(A?) by

ol b

Let Ly_2(A) = ®" {Li,—2(A) on which GL2(A) acts via the representation p = py,_2®---®
Pky—2-
Recall that F is the Galois closure of F in @ and F' = F(e¥/? : ¢ € op,). Put m, =

k —t+ m. For an op-algebra A containing the values of v~ for all u € o N (F')*, we
define the A[(Ma(0z) N GL2(F'))’F]-module L,(A) as follows: let L,(A) be the A-module
Li_2(A) with a left action by

ge P =det(g)"™ " p(g)P
for g € (Ma(opr) N GLo(F'))’F and P € Ly_5(A). In particular, G(Ay) naturally acts on

Li(A ®,,, Apr). For 0pr = 0 ®z Z and each i with 1 < i < hJ},C, we consider the i-part
L, i(A) of L,(A) defined by

Lﬁ,i(A) = LH(A ®0F1 F/) Nx;e LH(A ®0F1 EF’)-
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Then the semigroup R;;(n) as §1.1 acts on L, ;(A).

From now on, in this subsection, we fix ¢ with 1 <4 < h;,: and abbreviate I'y ;(n) to I' and
L, i(A) to L,(A).

We define a L, (C)-valued holomorphic n-form w(h) on ™ attached to a holomorphic
function h on $™ by

o k1 —2 PRI
(2.2) w(h):h(z){l] ®®[ﬂ dz, .
If h € M.(T',C), then, by definition of the slash operator, for g € GL2(R)}, we have
(hlg)(2) = det(g)™j(g,2) "R (g2).
We remark that

g-z'- le—Q P k‘i—2
[ I8 = 5(gi» 21) " 2 pr,—2(9:) [11] :

Then we get

- k1—2 kn—2
g*w(h) = h(gz) 91121] ®- - ® [gnlzn] dgiz1 N - Ndgnzn

~aetg) i) [3] e [7] T i,

Under the condition k — 2t + 2m € 27Z - t, the center I' N F'* of I' acts trivially on L, (C).
Then we obtain the pull-back formula

(2.3) Y'w(h) =y ew(h)
foranyy € T =T/(I'N F*) and a lift v € T of 7.
Fix a base point w = (w1, --- ,w,) € $7F. We define a L, (C)-valued holomorphic function
as
z1 Zn
(2.4) F(z) = / - / w(h).
w1 Wn
Moreover, we put 7 * F|(z) =y e F(y~12) for each ¥ € T. We remark that
0 0
2 L F+F - F)(z) =0.
FI G )(2)

Lemma 2.2. ([Yo, Chapter V, Lemma 5.1]). Let D C C" be an open domain and con-
tractible. Let f be a holomorphic function on D.
(1) Assume that
0 0
()
0z Oz,
Then there exist holomorphic functions g;(z) on D such that g;(z) is independent of z;
and f is decomposed into

=0.

F(z) =3 ail2).
i=1
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(2) Moreover, assume that n > 2 and f(z) = >, gi(2) is a decomposition as (1). If f(z)
is independent of z1, then there exist holomorphic functions hi(z) on D such that h;(z)
is independent of z1 and z; and [ is decomposed into

n
=2_lul2)
i=2
Remark 2.3. This decomposition is not unique in general.

Then, by applying Lemma 2.2 (1) to (—1)(3 * ' — F'), we obtain a decomposition
(2.5) (=D * F = F)( Zgz

where, for each 1, g( )('y)(z) is a holomorphic function on $” and independent of z;. We can

explicitly describe gn (’y)(z) as follows. We have

(2.6) (7 * F(z

/w A (! Yot [ et
o [ et ([ [ [ [ [t

By applying Lemma 2.2 (1) to the second term of (2.6), we can choose —g,(ll)(ﬁ)(z) as the
first term of (2.6):

(2.7) gD ) () = / . / / :w"cu(h).

By regarding (2.5) as a 1-cochain in C'(T', L.(C)), we obtain

w1

dg'M) (71, 72) (= ngl (71,72)(2)

for 77,7 € T, where d is the boundary map in group cohomology. The left hand side is
independent of z, and each dgo)(ﬂ, F2)(z) with 1 <+i < n — 1 is independent of z;. Thus,

(2
by Lemma 2.2 (2), we can decompose

(2.8) (—1)%dg" (71, 7a)( 292 (71, 72)(
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where, for each 1, 91(2) (71,72)(2) is a holomorphic function and independent of z;. Similar to

()

n—1

(2.9) dg'M (71, 72) (2) = 71 * 95 () (2) — 98 () (2) + 9 (1) (2)
21 Zn—1 Y1Y2Wn
SN A
Y1Y2w1 Y172Wn—1 Y Y1Wn
21 Zn—1 Y1Y2Wn 21 Zn—1 Y1wWn
_/ / / w(h)+/ / / w(h)
Y172W1 Y1Y2Wn—1 Y Wn Y1w1 V1Wn—1 v Wn
Z1 Zn—1 Wn Z1 Zn—1 Y1Wn
:/ / / w(h)+/ / / w(h)
Y1772W1 Y172Wn—1 Y Y1Wn Y1iw1 V1Wn—1 v Wn
ALY S S
Y1772W1 Y1V2Wn—2 Y Y1Y2Wn—1 Y Y1Wn
Zn Zn—2 Zn—1 Wn
L e )
Y1Y2wW1 Y1Y2Wn—2 Yiwi Y1iWn—2 V1Wn—1 v Y1Wn

Similar to (2.7), by using Lemma 2.2 ( , we can choose as

910 @) — _ Y1Y2Wn—1 Y1wWn b
(2.10) In_1(71,72)(2) w(h).
Y1Y2wW1 Y1V2Wn—2 Y Y1Wn—1 Wn

By repeating this arguments, for 1 <m <n —1 and 71, - -, € I, we get

(2.6), we explicitly give g, (71,72)(2) as follows. A direct calculation shows

n—m-+1
(2.11) (=1)™dg"™ (- ) ( Z g™ @ T (2),

with
(m) ___ _
gn—m-‘,—l(’yl? e 7’}/m)(25)
zZ1 Zn—m Y1 YmWn—m-+1 Y1Y2Wn—1 Y1Wn
o N
Y1 YmWi Y1 YmWn—m+Y V1" Ym—1Wn—m+1 Y1Wn—1 Wn

(

Thus, we obtain a n-cocycle dg2n_1)(ﬁ, ) (2) because it is a constant function. We

have
(7’1 1) L Y1 YnWi Y1Y2Wn—1 Y1Wn
g ) = [ Y B O
Y1 Yn—1W1 YiWwn—1 Wn,

Therefore we obtain (1) of the following theorem.

Proposition-Definition 2.4. Let h € M (I',C) and w = (wy, - -
Assume that k — 2t +2m € 2Z -t and k, > 2 for each o € Jp .
(1) For7; €T and a lift v; € T of % with 1 <i <n, a map

Thw- F —)L (C)

Y1 YnWi Y1Y2Wn—1 Y1iWn
Wh,w(’)’l"" 7771) :/ / / (JJ(h)
Y1 Yn—1W1 Y1Wn—1 Wn

18 an n-cocycle.
(2) The cohomology class [mh] = [mh) € H™(T', L (C)) does not depend on the choice of the
base point w = (w;); € H7F.

,Wy) € H™ a base point.

defined by
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Proof. The assertion (2) is proved by [Yo, Theorem 5.2]. O

Remark2.5. If n = [F : Q] = 1 and h is a cusp form, then 7, , is the as usual Eichler-Shimura
cocycle.

2.3. Hecke operators on group cohomology. In this subsection, we will prove that the
map from the space of modular forms to the group cohomology

MH7JF(F7(C) — Hn(f, L,@((C)) ch— [ﬂ'h]

is compatible with the action of Hecke operators.

In this subsection, we fix ¢ with 1 < ¢ < h; and abbreviate I'; ;(n) to I and L, ;(A) to
L (A). We recall the definitions of the Hecke operators on the space of modular forms and the
group cohomology. Assume that, for « € G(Q), we have the decomposition I'al’ = [[;.; 'y
as a finite disjoint union. For each h € M (T, C), we define the Hecke operator

h|[Cal] = hlwoi.
el

For each cusp s € P1(F), we write ['s for the stabilizer of s in . Let C(I') be a set of
representatives for I'-equivalence classes of cusps, which is a finite set. Then we note that
for each cusp s, we can find v € T and sy € C(I") such that vs = sg. The ¢-th parabolic
cohomology group Hay (T, M) of T with coefficients in a T-module M is defined by the exact
sequence

(2.12) 0 — HY

par

(T, M) — HYT,M) - P HIT., M).

seC(I)
Fix a cusp s € C(I'). We decompose

Tol' = [ T8 and TBT, = [] 18767, with &7 € T,
iels jeJ;
as a finite disjoint union. By [Hida93, Lemma 3.3|, we have a decomposition
F,Bf(s)ﬁfr‘s = H Fﬁf(s 562]
JET?

First we define the Hecke operator [['al'l on H4(T, M) as follows (cf. [Hida93, p.288, 289)
or [Yo2, §1]). For each 7 € T, fix a lift v € I" of 7. For each i, j, let a; ; = B;0; ;. A@3) e T,
and v(i,7) = (v(2),7(j)") € Z x Z such that

ai iy =7 ay ).
For each cocycle u, we define

(U|FQF])(ﬁ17 o 7711) = Z ( ;95;9])— <7§Z7J)7 o 773(110“.0%(%”) .

iels jes

Since O(u|T'al]) = d(u)|T'al’, it is well-defined.
Next we define an action of the Hecke algebra on the boundary cohomology (cf. [Hida93,
p.288, 289]). For ¢ = (¢t)iec(r) € Dyecry H' (I't, M), we define

C‘ FO&F Z C/g (s Fﬁ ]
i€ls

As in the proof of [Hida86, Proposition 4.2], its definition is independent of the choice of 3}
and, via this action, the boundary cohomology @tec(r) H(T;, M) becomes a Hecke module.
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Proposition 2.6. The sequence (2.12) is an exact sequence of Hecke modules.

Proof. For each cocycle u, it suffices to check that

res(u|[l'al)s = (res(u)|[l'all)s

for each cusp s € C(I'). Suppose that 7, € I's for all k. Then ’>’£ i) 71(1)55 ()'yl(j)’

707 ;m € BT and hegce B%(i) = (37, 71(i) =4, and 'yg - ORI G BT e Lgs(s)-
Moreover, we hav(g Zgl(Z’J) ()0 () oy (G = Di0i 5y 2 € DB;Ts and hence 55, ) = 57,
irj

Y2(i) =i, and v, " € I'gs(5). Repeating this arguments, we get

res(u|[Lal)s (Y1, -+ . 7,) = Z( 2-555)_1res(u) <7§i’j), e ,73‘110"'071("’]')>
4,3
= Zres ) ps(s)[L'ps () Bi ']
= (reS( T al])s (V15 )
as desired. 0

The following proposition is the main result in this subsection.

Proposition 2.7. Assume that a € G(Q). We fiz al’ = [[;c;Ta;. For each aj and5y € T
with a lift v € T of 7, let y0) € T and v(j) € Z such that

ajy =71Pa,g).
Let h € M(T',C) and w = (w1, ,wn) € H" a base point. Then, for ¥;,--- , 7, € L', we
have

7rh|[FaF],w(71’ T 77n) = Za;l ® Thw <7§z)7 T 7’)/7(1’% reom (e ))) .

i€l

In particular,
Th|[Fal]w = The|[Lal].
Proof. By using the pull-back formula, we have
w(h|[Lal) =) " w(h|.)

i€l

= Z a;l o o;w(h)

i€l

Furan(@) = [+ / " w(h|[TaT])

1

~Y o /

icl W1 QiWn

Then we have
;21 Qi zZn

For 7 € T, similar to (2.7), we shall explicitly give a decomposition

(=1)(7 * Fpjrar) — Frjran)( Zg]a
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(1)

where, for each j, g;,

¥)(z) is independent of z;. We put
(7)(2) j

21 Zn
;w1 QWn
Then we have

(¥ * Fyjirar] — Fajrar))( Z {ra; ' e Fi(ay'2) — a; ' @ Fy(aiz)} .
el

For the moment we admit the following decomposition:

(2.13) S {ra;te Flamy™t2) —a;te Flaiz)} = > g (3)(2),
j=1

i€l

where the holomorphic function F'(z) is defined by (2.4) and, for each j, g](lo)[*(*y)(z) is
independent of z;. We remark that there is the canonical decomposition

Fh|[FaP ZO( Ckz +ZZC¥;1 .F}(7B<z)7

1€l el j=1

O

where, for each j, F o

gen(7)(z) as

(214) gl M(:) = gk @) =)+ Y {rvart e Bl (an™2) — ot e F(iz)} + 2(7)
el

(2) is independent of z;. Thus, by combining these, we can choose

for some 1-cocycle z(7) € L. (C). We shall explicitly give 97(1172{*(7)(2) as follows. By regarding

(2.14) as an equation of T', we obtain
dgiih (71, 72)(2) = dglo " (77, 72) (2)

up to l-coboundary, where d is the boundary map in group cohomology. By substituting ¢
by ~(7) in the first term, we get

Z {’yozi_l ° F(a,-’yflz) a; e F(oz } Z {'ya 0 F( ﬁ/(i)'yflz) — ozz-_l ° F(aiz)}

el i€l

= Z {a;lv(") . F(fy(i)_laiz) —a;le F(aiz)}

el

—Za { ) % Foyz) — F(aiz)}.

el

Thus we obtain

where gg) is given by (2.7).
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Moreover, by substituting i by () in the first term, we get
dgihy (71, 7) ()

= e e 6 a2 - E ot e Ll O O)eie) - o 0P o) |

el i€l

= mazly 093 e, @ '2)
el

~3 ot { (7)) az) — g“(%))(z)}

el

i -1
=Yoo e g3 N of) o)
el

~Yarte {gg“(vi%é““’”)(aiz) - g;“(vi“)(aiz)}

icl

=D q { At W)(aiz)—gw(%“vé““’))(aiz)+g£3><v£“><aiz>}'

el
Thus, similar to above, we obtain

2
g2 A=) =Y it e g® (1 A D) (ai2),
i€l
where 97(12—)1 is given by (2.10).
Repeating this computations proves the theorem. O

2.4. Constant term of n-cocycle. In this subsection, for E € M, (I',C), we describe the
image of the n-cocycle [rg] under the restriction map in group cohomology. It is important
for us to determine the structure of congruence modules attached to an Eisenstein series £
and prove the integrality the cocycle [rg] in §2.10.

We fix i with 1 < i < n. For 2,2’ € 9, let {2, 2’} denote the oriented geodesic path joining

z to /. We define a new n-cocycle Wg)w as

(Z) - - Yn—i4+1Ws
1 i—1 Jw; iy n

where E(z) = E(2) — as(0, E),

bgi)(ﬁa"‘ V) =1 Yn—iYn— 2+1°/ / / / /W
i 1 Ju I
w;
— 7 'Ynz’YnH—l‘/ / // /WGOOOE
/ L Jo o, I
b (A AT =y ey
2 (’Yla a’)/n) it Yn—i ® w
I Ii 1 Jw; 1¢+1 In
Wi
Y ) A
I Ii1J0 JIip In
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L= () T mmgwy 11 gt
-1
I =il
We remark that bgi) (71, ,7n) and b (QITREE

5 ,n) converge absolutely by the same way as
in the proof of Proposition 2.12.

Proposition 2.8. For E € M. (I',C), a cocycle Wg?w satisfies the following properties.
(1) the value W%?w(’yl, <+ Yn) 18 independent on w;.
(2) Wg?w is cohomologous to TE,.
Proof. (1) follows from a direct calculation.
To prove (2), we put

ER IR sy

Yn—it1"Yn—1W1 Yn—it1Wi—1 100
I N
Yn—it1"""Yn—2W1 w ws

i—1

Wit1 (3 Yn—i) twn—1 2 vn—i) twn—1
y / / / w(E)
vk ( (

n—iWit1 Y2 Yn—i) T twn—1 Y1 Yn—i) " lwn

Yn—it+1"Yn—1W1 Vn—it1Wi—1 [Wi
—— L
Yn—it+1"Yn—2W1 wi—1 0

1

Wit1 (73""}%—2’)_ Wn—1 (’YQ"'Vn—i)_lwn
></ / / w(ax(0, E)).
'YTTiiwi-‘—l ( (

Y2 Yn—i) twn—1 T Yn—i) " twn

We claim that

(215) dU(Z)(%? e a%) = (_1)n—i {ﬂ-g?w(%a e 7%) - WE,w(ﬁ7 o 777)} .
The proof will now proceed in two steps.
Stepl:

VI.U(i)(%a'” 7%)—’_ Z (_I)JU(Z)(%a 7%7"‘ 77771)
1<j<n—i

= (1" (1),
Proof. For each 1 < k < n — i, we prove (x); by induction on k:

Gk ez + > (DR )
1<5<k

L Yn—it2° " YnWi 100
~ w

n—i+2""Yn—1W1 i

(Vo3 Vn—it1) Twn—k  (VE+1Vn—it1)  TWn_kt1 (v2r Yn—it1) twn
« / / . / ()
(v ( (

k42 Yn—it1) 1Wn_k Vi Yn—it1)  tWn_kt1 Y Yn—it1) twn

Yn—i+2" " YnWi W
R [
Yn—it2 " Yn—1W1 0

(Ve43Pn—it1)  Wn—k LVt Vn—it1) ' Wn—kt1 (Y2 n—it1) " twn
></ / / w(aoo((),E))}.
(v ( (

k2 Tn—it1) twn—k Y (Ve Vn—it1) T wWn—ky1 Y Yn—it1) " twn
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The statement is true when k£ = 1. Indeed, we have

e (73, ) 772, )
1

n
(varn—it1) twno1 (3 m—ip) ten
=7 Tn— H—l./ / / / W(E)
w; (13 Ym—it1) twon—1 J (2 Yn—it1) lwn
1 1

ioco (V4 Yn—it1) " Twn—1 POV Yn—it1) 'wn -
( (

V3 Yn—it1)  twWn—1 Y1Y2 Yn—it1)  twn
1 1

w; (Y4 Yn—it1) twn—1 (V3 Yn—it1) ‘wWn
- / (a0 (0, B))
( 1 J(

Y3 Yn—it1)  twn Y2 Yn—it1)  lwn
1

w; (o Yn—it1) twn—1 (V3 Tn—it1) twn
/ / (a0 (0, B))
-1 J(

'73 Yn— 7,+1) 'Yl’Y2“"Yn7i+l)_l"Jn
Wi (74 Yn— z+l 1Wn—l (’YQ""Ynfi+l)7lwn —
( 1) T Yn— z+1./ / / / w(E)
(73 Yn— z+1 1wn 1 (’Yl""}’nfi+l)_1wn

(- n—it1) Twn-1 (2 Yn—it1)  wn
+7 Yn—it1 ® / / / / w(aoo(O,E))},
(73 Yn— 1+1) lwn_1 (’71'72""7n—i+1)71wn

Suppose that (). By adding (~ 1)o@ (5T, - Firt7im3. - ) to ()s, we have

— 71 Yn—i+l ®

&

— 71 Yn—i+1 ®

Y Yn—it1 @

\\\
c\c\

T (2, )+ Y (WG, A )
1<j<k+1

k1 Yn—i4+2 " YnWi 100
Yn—i4+2 " In—1W1 wj

(Vot2Fn—it1) ‘wn_k (Y43 Yn—it1) twn_k (v2r Yn—it1) ton
X / +/ / w(E)
(V3" Vn—ig1) rwn_k (V1 Vn—ig1) rwn_k (1 Yn—it1) " twn

Yn—i4+2""InWi1 w;
p— ")/1 P 7n—z+1 . / .. / RS
Yn—it2" Yn—1W1 0

(V2 Yn—it1) twn_k (Yet3 " Fn—it1) ‘wn_k (Y2 Yn—it1) twn
X / +/ / w(as(0, E))
(k43" Yn—it1)  twp_k (Vk41Yn—it1)  twp_k (V1 Yn—it1) twn

b1 Vn—it2Ynwi 100
:(_1) ’Yl’)/n—z—f—l‘/ /
Tn—it2 Yn—1W1 wi

1

(Vg2 Yn—it1)” " Wn—k (v Yn—it1) twn
y ) "
( (

Vo1 Yn—itl) T Wn_k V1 Yn—it1)  twn

Yn—i4+2 " YnW1 Wi
R [
Yn—it+2""Yn—1W1 0

(Yot2Fn—it1) ‘wn_k (Y2 Yn—it1) twn
<[ - Slex(0.E)}
( (

Vo1 Vn—itl) T Wn_k V1 Yn—it1)  twn

as desired. O
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Step2:

oo )AL e e ) + (CD)™ O EL )
n—i+1<n—j;j<n-—1

= (—1)" ) (37 - 7).

Proof. We prove (%), by inductiononn —i+1<n—k<n-—1:

(*)/k

Yoo YOO A e e) + (CD)" (L )
n—k<n—ji<n—1

. Yn—itlVn—k+1Wk [ Yn—itl " Vn—k—1Wk+1 100 -

n—

_(_1) ’Yl“")’n—z“/“'/ / / w(E)
Yn—i+1""Vn—kWk Y Wi

n—it+l""Yn—k—2Wk+1

Tn—it+1"" " Vn—k+1%k Tn—i+l"Vn—k—1Wk+1 Wi
e [ f / o [T a0 B .
Tn—it1l - Tn—kWh v 0

n—i4+1"""Vn—k—2Wk+1

First suppose k£ = 1. We have

(*1)71_1@(2‘) (Wa T 7’77171771) + (*1)71”(2‘) (Wa T 7’77171)

1 Yn—i+1"Vn—1YnWl  [Yn—itl""Yn—2W2 100 .
e | / [T
Tn—it+1"Yn—2W1 Y Wi

n—i+1"""Yn—3W2

Yn—itl " Vn—1W1 [Yn—itl " Yn—2W2 100 .
R / [T
TYn—it+1Yn—2w1 J w.

n—i+1"""Yn—3W2 7

Tn—i+1""Yn—1YnW1 Yn—it1""Vn—2W2 w;
_71...%1_1../ / / o w(an (0, E))
gl gl 0

n—i+1"""Yn—2W1 n—i+1""Yn—3W2

Tn—i+1""Yn—1W1 Yn—i+1""Yn—2W2 wi
Yn—i+1"Yn—2wW2 v 0

n—i+1""Yn—3W2

1 Yn—it1YnwWi Vn—i41Yn—2wW2 100 -
Yn—i+1 Yn—1wW1 Y7, w

n—i+1"""Yn—3W2 i

Yn—it1 " YnWi Yn—it1 " Yn—2wW2 w;
_fyl...fyn_i./ / / < w(ax (0, F))
Yn—it1Yn—1wW1 7 0

n—i+1""Yn—3W2

as desired.
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!/

Next suppose that (x)',. By adding (—1)”_k_1v(i)(ﬂ, e m—k—10n—ks " > n) to (%),
we get

> ()" DAL, Tt ) + (D@L )
n—k—1<n—j<n-—1

Tn—i+1"YnW1
_ (—1)n_k_1{'71 ""Yn—i./
i

n—i+1""Yn—1W1
Tn—i+1""Vn—k—2Wk+1 Tn—it+1" " Vn—k—1Tn—kWk+1 100 -~
Tn—i+1""Vn—k—1Wk+1 Yn—it+l""Vn—k—2Wk+1 Wi

Yn—i+1""YnWi
v

n—i+1""Yn—1W1

Vn—it1 Vn—k—2Wk+1 Vn—it1 Vn—k—1Yn—kWk+1 w;
</ +f [T (a0, )
Yn—itl Vn—k—1Wk+1 Yn—it1"Vn—k—2Wk41 0

o1 Yn—it1"YnWi Yn—i+1" " Vn—k—1Vn—kWk+1 100 -
_ n—Kk—
Tn—i+1""Yn—1W1 Tn—i+1"""Tn—k—1Wk+1 w.

i

Yn—it+1"""YnWi Yn—it+1" " Tn—k—1Tn—kWk+1 Wy
—’Yl.-."yn_z./ -../\ ..-/ ...w(am(o, E))
Vn—it1Yn—1wW1 Vn—it1"Vn—k—1Wk+t1 0

as desired. O
Therefore, by Stepl and Step2, we obtain

DA, ) = (1" g, (- ) = T+ ) -

Now we describe the image of [rg| under the restriction map.

Proposition 2.9. Fiz ¢ with 1 <1 < h;ﬂ and let I' =T'1 ;(n). Let ®, be the composite field
of t,,(F7(v/—1)) in @p for all o € Jp and O the ring of integers of a finite extension K over
®,, containing the values of u™< for all u € 0;,7+ as §2.2. Here 1, : Q — @p s the fized
embedding. Assume that E € M.(T',O) with k = (k — 2t,m) € X(T) and ks — 1 < p for all
o € Jrp. Then we have the following properties:
(1) o
res([rg)) € @ H"(Ts, Lei(0)),
seC(T)
where H™(T, Li(0)) = im (H"(T, L.i(0)) = H"(T, Li(K))) is the torsion-free
part of H"(Ts, Ly ;(O)).
(2) Suppose that E vanishes at a cusp s € C(I'). Then
res([7g]) = 0 in H™(Ty, Ly ;(O)).
Proof. We treat the case s = oo (the case s # oo is similar). By the previous proposition,
Trgl;(ﬁv T 7’7771) = ﬂ-E,w(W7 e 7%) + dv(n)(ﬁ7 e 7%)

is independent on w,. With the help of Proposition 2.12, the first term of bgn) 7L, V)

and bgn)(ﬂ, -+, %n) converge to 0 when w, tends to v/—loc. For any 77 € I's, and a lift
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v1 € ' of 77, when w,, tends to v/—1o0, so does yiw,. Thus we obtain

lim ( )

s/ —Too g (V=T J—il,wn)(ﬁl’ T 7ﬁn)

B Uy e A B
:/h”'/zn_l/om“(““(o’E))

as desired. (]

Proposition 2.10. Assume that h; =1 and both ¢ and v are totally even or totally odd
primitive characters. Let E = Es(p,1)1 as Proposition 1.1. Under the same notation and
assumptions of Proposition 2.9 with h;@ =1, [rg] is rational, that is,

[rg] € H"(Y (n), K).

Proof. We use the same notation of Proposition 2.9 and §2.10. Let pg denote the maximal
ideal of Hy(n, O)® K generated by T'(m)—C(m, E), S(m)—x~(m), U(m)—C(m, E) for all in-
tegral ideals m of F'. By Proposition 2.9, res([mg]) is rational. Moreover, as mentioned in Re-
mark 2.23, we will see that [7g] = [1g]B. Let [w] € H™(Y (n), K)pg[€,] mapping to res([7g]).
Then we have [rg| — [w] € Hgar(Y( ); C)ppleg]. The partial Eichler-Shimura-Harder iso-
morphism (2.27) and the g-expansion principle over C imply that Hp, (Y (n), C)ygleg] = 0
and hence [rg] is rational. O

2.5. Borel-Serre compactification. In this subsection, we recall the Borel-Serre com-
pactification. For more detail, refer to [Bo—Se|, [Bo-Ji], [Hal, [Hida93], [Gha].

We fix t with 1 <3 < h; and abbreviate I'1 ;(n) to I'; ; and I‘Li\f_)JF to Y;.

The Borel-Serre compactification ($77)BS of $77 is a locally compact manifold on which
GLy(F) acts. We describe the boundary of ($77)BS at the cusp oo as follows. Let X =
{(y,2) e (FOR)YI x (F®R) | y1---yn = 1}. We have

~ _ 1
f’jJF — ]R_T_ x X : (fl)'g + vV — yo' 3 (H Yo < ya inaxi) ) ;
(2

which is compatible with the action of I'1 ; oo. Here I'1 ; oo acts trivially on the first factor of
the right hand side. Then the boundary of (§/7)55 at the cusp oo is given by (R} U{co}) x X
(see, for example, [Ha, §2.1] and [Hida93, p.273]).

The Borel-Serre compactification Y;5 = T'; ;)\ ($77)BS of Y; is a compact manifold with
boundary D% = (R U {oo}) x T';s\a(X) at each cusp s = a(oo) for o € SLo(F), where
a(X) ={a(z +vV-1y) | (y,z) € X} (see, for example, [Ha, §2.1] and [Hida93, p.273]).

Let O be the ring of integers of a finite extension over @,. We assume that I'y; is
p-torsion-free. Then the cohomology of YiBS has the following property:

™Y, M) ~ H™(Y;, M) ~ H™(T1,;, M)

for any O[I'1 ;]-module M, where M is the sheaf associated to M. Moreover,
H™O(), M)~ @ H"(T1is M)
SEC(FLZ')

for any such module M.
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2.6. Fundamental domain. In this subsection, we will construct a relative homology class
which is related to the special values of L-function attached to Hilbert modular forms.

We fix i with 1 <i < h}. and abbreviate I't ;(n)\$/F to Y;. Let E be a subgroup of 0p
with finite index.

First, we remark that a fundamental domain of Rf /E is given by

n—1
Qp=[[{7 Ir; €0,)} xRy < X xRy ~ H77
7=1

(7' ety —log(rn)) = ("), 0), ~log(rn)) = v=Tye",
where " = (¢7)); with ") = (H;:ll z—:;j)"i and y = —log(r,). We put

n—1
O = [J{Y |75 € [0,1]} x (Rso U{0}).
j=1

For a closed unit interval I = [0, 1], we define a singular n-cube ¢; associated to Qf as a

C*°-map
G I" — Qp — (H77)BS
given by
(7’1, e 7TTL) = (5§17 e 75;?__117 —IOg(Tn)) =V _1y€r.
Let cg; = proj o ¢; be the composition of ¢; and the canonical projection (ﬁJF)BS — YZ-BS.
Let
D}y o, = D%, U Dj

be a subspace of the boundary d(Y;2%) of ;5. Then we have the partial n-cycle [cx]:

Definition 2.11.
ce,) € Ho(Y;?S, Dj o1 Z),
hi;
lc] = ([cea))i € D Ha(YS, Df o0; 7).
i=1

2.7. Twisted Mellin transform. The aim of this subsection is to give a Mellin transform
of a Hilbert modular form. In order to do it, we must need the following analytic properties.
We use the same notation as §1.2 and §2.6.

Proposition 2.12. Let h € M, (I'; ;(n),C).
(1) Under the same notation as §1.2 and §2.6, the integral

/ Y Dmy(R) = / / y =DM (h)
image of cy, [0,1]~1 J/=1R4

converges absolutely for Re(s) > 0 and extends to a meromorphic function on the
complex plane which is holomorphic at s = 1. Here w(h) is defined by (2.2) and
h(z) = h(z) — ax(0, h).

(2) Moreover, if h vanishes at the cusps 0 and 0o, then the integral above converges absolutely

for all s € C.
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Proof. (1) For Re(s) > 0, we have

~ V—Too V-1 -
(2.16) / / y=Yny(h) —/ / —i—/ y=Dny(h).
0,1]n-1 J/=IR, 0,1]n-1 \ /=1 0

1

Now we calculate the second term. We put ¢ = <<_01 0

>> € G, +- Then by the pull-back

formula, we have
(2.17)

/ / (s— l)n )
[0 1]n 1
IVESTES g
— / / y1=)" o w(h|o)
[-1,0]n—1

Foo

The second (resp thlrd) term of (2.17) converges for Re (s) > k (resp. Re(s) > 1). For each
non-negative integers m, m’, since

> —1 ! : 1
(1—s)n+md _ d / (s—1)n+m dy =
/1 4 Y (1—=s)n+m+1 o Oy Y (s—1)n+m +1’

the second and third terms of (2.17) are holomorphic at s = 1. In order to prove that the
first term of (2.16) and (2.17) converge absolutely and entire at s = 1, it is enough to show
that

(2.18) / / y(s_l)"ﬁ(\/ —1ye")y™drdy
[a,b]"—1 J1

is absolutely convergent and entire at s = 1 for any a,b € R with a < b.
Our proof of this claim is based on [Ga, §1.7 and §1.9]. Recall that the absolutely conver-

gent function E(z) has the Fourier expansion of the form:
h(z)= D ase(& h)er(82).
0k E€E(t;)

There is a positive constant M > 0 such that N(§) > M for each 0 < £ € [t;]. Then there
is € > 0 such that N(§) > M + ¢ for any such £. Thus, by the argument in [Ga, p.29], we

have an estimate
M O\
S las(E e (—w (2 - (32 ) Tr(&yw) .

h(vV=Tye")| <
0<<Ee[ti]

exp (nM%y)

Since E(z) is absolutely convergent, so is the latter series. Thus, there are positive constants
C,C" > 0 such that
'ﬁ(\/—lye’") < Cexp (—C'y)

for y > 1 and each r € [a,b]"~!. Therefore, the integral (2.18) is dominated by

/ / exp(—C’y)yRe(s)”_"+mdrdy
[a,b]n—1 J1
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and hence is absolutely convergent and entire function of s € C.
The assertion (2) follows from the argument in the proof of (1) and the vanishing of the
second and third terms in (2.17). O

We assume that h}; = 1 and fix a Hilbert cusp form f and a Hilbert Eisenstein series
Es(p, 1) as Proposition 1.1 satisfying the following conditions:

(2.19) fe S.(Ki(n),x,C) and
Es(p,¢) = Ea(p, )1 € M (Ki(n), x,C) vanishes at the cusp oo.

Hereafter we write h = f or Eo(p,1). We express the special values of Dirichlet series
D(1,h,n) as a Mellin transform for a more general modular form h (cf. [Oda, §16], [Hida94,
§7, §8], and [Ochi, §3]).

Let n : Clfi(m,) — Q" be a primitive character whose conductor m,, is prime to dp[t1],
and n|m,,. Let (m,!/op)* (vesp. (m, 105" [t1]7 /05" [t1] 7)) be the subset of m, ! /op (resp.
m,’ Y. [t1] 7 /ot [t])™!) consisting of elements whose annihilator is m,.

1

Hereafter we fix a non-canonical isomorphism of op-modules m,; L) Rttt
1y x

12

m,;l/OF ~ op/m, and a non-canonical bijection induced from it (m;lbgl [th] ot [t]~
(m;,'/op)* =~ (0 /my)*. Hence we may canonically identify (m;lbl_;l (]~ ot t] )" /oF
with a subgroup of Cl;(mn) under the canonical extension

(2.20) 1= (op/my)*/og . — Clj(my) — Clj; — 1.

Let 1 denote the function on (m,;lbgl (L)~ ot t] ™) /oF 4 defined by m (b) = n(bbdp[t1]).
We note that 1 (£b) = n(£)n1(b) for any b € (m;lbf_yl [ta] /05! [tl]_l)x/alﬁ+ and 0 < § € [t1]
prime to m,.

Recall that the Gauss sum 7(n) of 7 is defined by

T(n) = > n(b)er(b),

be(my opt ot

where b runs over a set of representatives of (m, ntophx.

Let E=op, . ={e€op, |e=1 (mod my)}.

Hereafter we fix a set S (resp. T) of representatives of (m;lbgl [t~ opt [tl]*l)x/ofz+ in
m;logl [t1]7! (vesp. 0, /E in oy ) satisfying the condition that

(2.21) each cusp b € S is I'g 1 (n)-equivalent to the cusp oo.

Here we note that the existence of such set follows from the assumption njm,. Indeed, fix
a generator m (resp. c¢) of m, (resp. dp[ti]) and a set S’ of representatives of (op/m,)*
satisfying that each x € S’ is prime to me. Then {x/mc | x € S’} is a set of representatives
for (m;lb;ﬁl[tl]*l/bl?l[tl]*l)x/oﬁJr. The assumption n|m, implies that mec € ndp[t;] and

hence there is < v *> € I'} 1 (n) as desired.
me  * 7
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Let b denote the image of b € m IDF [t1]7! in (m 10F (L]~ Rtk 1)* /o . under the
canonical map. Then

(2.22) N[ %23 " (0) " ha(z + bu)
beS ueT
=N([EDT? Y as(&h1) D> ) mb) ep(Ebu)er(£2)
0kée(tq] beS ueT
= N[t P D ace(& h)n(Elta] T er(82).
0<<€€[t1]

Here the last equality follows from [Shi, (3.11)] (or (1.13) in this paper).
By taking Qr = [[,cr u‘lﬁo; , we have
,+

ND ™2 m®)™ [ (e oz,

bes
= N2 @)Y / (2 + byt Vdz,
besS u€T
— N @Y / (= + by Dz,
bes ucT Q
:/ N(ED 2 Y S () 1h1 (2 + bu)y iz,
Dx beS ueT

Here we note that each integral is well-defined by using Proposition 2.12 (2), our assumption
(2.19), and the condition (2.21). By using the Fourier expansion of (2.22), for Re(s) > 0,
we have

s—k/2 \—1 P (s=1)t 2
) g;mw) /ﬁ(mww + )yt Vs,
— YN S (€ hn(Elt] Y / ep(€2)yVidz,

0<kée(t1] Qa;#

- oo (€ Pn(EION(ED ™ e A geors
=7(n )O<<§Z€w NEH] e /Qo;+ F(§2)(8y) j/:\ldf o
— (n L aw(fahl)n(f[tl]in([tl])ik/Q en(E (s—1)t A T,
=) Y e /ﬁ(m)i ples)en " ez,

5°F,+
= 7(n™")L(s, b, ) (2m) "V =1"T(s)".

Here we note that each integral is well-defined by using Proposition 2.12 (1), and we may
regard hy(z+b) as a function on v/—1(F ®R)% /E since hi(uz+b) = hi(z+b) for any u € E.
Furthermore, the integrals in the first term of this equation are independent of the choice of a
lift b of b. Indeed, fﬁ(F@R)i/E hi(z + bu)y(s_l)tdzJF = fﬁ(F@R)i/E hi(z + b)y(s_l)tdzJF

for any u € oj . by substituting z by zu~t and hi(z +b) = hi(z + b+ a) for any a €

0;1 [t1]7! since (é ?) € Fil(u). Hence the integral depends only on the image b of b in
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(m;lbgl[tl]_l/Dgl [tl]_l)x/ofﬂﬁr and we will denote it by
/ hi(z + B)y(sfl)tdzJF.

V-1(FeR)}/E
Thus we obtain the following Mellin transform.
Proposition 2.13. Assume that h}, = 1. Let k = (0,0), h = hy € Mp,0)(K1(n), x, C)

satisfying (2.19). Let n : Clf(m,) — Q" be a primitive character whose conductor m, is
prime to dp[t1], and njm,. Then

S () / B +B)ds,,
beS V=I(FRR)Y [0 o o
= 7(n~")L(1,h,n)(—2mv/=1) 7"

Remark 2.14. As mentioned above, the assumption n|m,, and the conditions (2.19) and (2.21)
imply that each integral is well-defined.

Remark 2.15. If h is a Hilbert cusp form, then the Mellin transform as Proposition 2.13 is
satisfied without the assumption n|m,,.

We consider a Mellin transform in the anti-holomorphic case. Let W = Koo /Koo + =

{wy | J C Jp} be the Weyl group, where wy € K such that wj, = ((1) (1)> if o € J and

Wie = <_01 (1]> if o € Jp — J. Recall that the Weyl group acts on the space of Hilbert

modular forms via h — h|[Kw ;K] for each subset J C Jp.

Proposition 2.16. Under the same notation and assumptions of Proposition 2.13,
> m@®)! / hyi(z +b)dz,
bes \/jl(F®R)i/°1>;,m,+
= 7(n ) L(L, By n)eo () (—2m/=1) ",

where dz, is defined by (2.1) and vj € Apo such that ;o =1 ifo € J and 15, = —1 if
cedJp—J.

Proof. Since hj. = 1, we can take a € o} such that o(a) > 0 if 0 € J and o(a) < 0 if
o € Jp — J. By putting v = <8 (1)>, the action of [KowjKs] on Y (n) =Y is given by
z. Then, by the definition, we have

hi(2)dz, = hi(y 7 2) (1)~ Ddz,

z»—)v‘l

and

(') = Y €] )N (Eer(éy'2)

0kEe(t]
= > clplt) T )N ler (V=T e (o).
pelta] k=7

Here {u} = {0 € Jp|u” > 0}, Y&y = Yoo if 0 € J, Y5y = Yoo o if 0 € Jp — J, the first
equality follows from (1.9), and the last equality follows from the substitution y = a~'¢.
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By the similar way as in the proof of Proposition 2.13, we obtain

N([L) S m @) / haa(z + Byt Vidz,

bes VEUFOR)Y /0% 4
= 7(7) L(s, 7, 0)so (17) (2m) 75 (V=1)"T(s)".
U

Remark 2.17. If h is a Hilbert cusp form, then the Mellin transform as Proposition 2.16 is
satisfied without the assumption njm,,.

2.8. Relation between cocycle and Dirichlet series. In this subsection, we give a co-
homological treatment of Dirichlet series (1.12).

We consider the adélic Hilbert modular varieties Y(n) = Y; as (1.4). Let CL be the
subset of C'(I'; 1(n)) consisting of s equivalent to the cusp oo over I'g;(n). As the previous
subsection, we assume that h; = 1 and fix a primitive character 1 whose conductor is m,
and a lift b € S of b € (m;lbgl (]~ opt [tl]_l)x/o?,’Jr. We consider the following subset H,
of H7r:

Hy=b+V-1(FOR)X ={b+v—-1y|yc (FoR) }.

We define an action of ofﬂmn . on Hy by

€ x (ZU)UEJF = (gasz - (EJ - 1)b)UEJF'
Since (e — 1)b € 0 [t1] 7! for any € € olxmm17 +» we see that € x (z5)o is I'] ; (n)-equivalent to
£(24)o- Then we have Hb/ofwmv7 4+ — Y(n) and it induces

HY(Y (), 4) > HXN(Hy o}, A)

for A= 0O, K, or C. Since the cusp b is I'g 1 (n)-equivalent to the cusp oo, it factors through
the relative singular cohomology:

(2.23) H"(Y (0)®%, D, (n); A) = H™(Y (1), Dyoo (n); A) = HY'(Hy /0%, 4 A).
Here D! is the boundary of the Borel-Serre compactification YlBS of Y7 at each cusp s as
§2.5, D¢, = lsecr Diy Do, (0) = D¢, Dy . = D} LIDL,, and Dy oo (n) = D .
Then we define the evaluation map
(2.24) evp1a: HMY(0)BS Do (n); 4) — A
by the composition of (2.23) and the trace map Hé‘(Hb/oﬁmn7+, A) — A, where

H™(Y (n)B8, D¢ (n); A) = H"(Y (n)®S, De_ (n); A)/ A-torsion.

In order to relate our cohomology class [m,| and the special values of the L-functions, we
recall the relative de Rham theory, which is proved by Borel [Bo, Theorem 5.2] for general
locally symmetric spaces.

Let Q°*(Y7,C) denote the complex of C-valued C*°-differential I'y ; (n)-invariant forms in
H7F. Moreover, let Q2,(Y1, Dax); C) denote the complex of forms in Q°(Y7, C) which, together
with their exterior differentials, are fast decreasing at each cusp s € CL. By the argument
in the proof of [Bo, Theorem 5.2] on the stalks at the boundary, we have

Hip (V1,98 (Y1, Dé 3 €)) = H"(Y,°, Dg 5 ©).

Let’s fix h = hy € Mgy (K1(n), x,C) satisfying the assumptions of Proposition 2.9 and
(2.19). Then, under the same notation of Proposition 2.9, by Proposition 2.10, [m,] =
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[mh,] € H"(Y (n), K), that is, [my] is rational. Moreover, by Proposition 2.9 (2), it is zero in
the partial boundary cohomology H" (D¢, (n),C). Let [mp]rel denote the relative cohomology
class in H™(Y (n)BS, D¢ (n); C) mapping to [my].

Proposition 2.18. Assume that hj. = 1. Let h = hy € Mo,0)(K1(n), x,C) be a Hecke
eigenform for all T(m) and U(m) satisfying the assumptions of Proposition 2.9, (2.19), and
C(q,h) # N(q)(mod w) for at least one prime ideal q of op dividing n. Then, under the
same notation of Proposition 2.9, [Tp)rel s rational:

[Wh]rel € Hn(y(n)BS’ DCOO (l‘l); K)

Proof. We use the same notation of the proof of (3.5). Let mj, be the maximal ideal of
Hs(n, O)" generated by w and U(q)—C/(q, h) for all ideals q of o dividing n, which acts on the
relative singular cohomology H™(Y (n)BS, De_(n); K). Let [c]ra € H™(Y (n)BS, Do (n); Ky
mapping to [mn] € H" (Y (n), K)q . Then [c]re1—[mh]rel is in the image of H" Y(Dc_ (n), Cm -
As we will mention just after (3.5), we have H" (D¢, (n), C)m;, = 0 under the assumptions
that hj. = 1 and C(q,h) # N(q)(mod @) for at least one prime ideal q of o dividing n.
Thus [7h]rel = [c]rel is rational. O

We note that, if [mpye € H™(Y (n)B5, Do (n); A), then, as mentioned just before Propo-
sition 2.13, the value evy1 a([mhlre1) depends only on b and hence we will denote it by
eV 1 4([Thlrel). Then, by combining these observations and Proposition 2.13, we obtain
the following description.

Proposition 2.19. Assume that hj; = 1, K = (0,0), and h = hy € M) (K1(n), x,C)

satisfying (2.19) and [mplwe € H™(Y (0)55, Do (n); A). Letn : Clj(m,) — Q" be a primitive
character whose conductor my, is prime to dp[t1], and njm,. Then

Z ni(l_))_leVB,LA([Wh]rel)

beS
=7(7 )L, ) (=2mV=1)7" € A(n).
We also treat in the anti-holomorphic case under the assumption h;ﬂ = 1. Since h;ﬂ =1, the
g ?) for some £ € o} such
that €2 > 0if 0 € J and &7 < 0 if 0 € Jp — J. By this description, we see that [Kow Ko
preserves the component D¢ (n) and hence [Koow Ko acts on H™(Y (n)BS, Dy, o (n); A).
We note that the group cohomology class [7p, |rel|[Kcow. s K o] corresponds to the de Rham

cohomology class hy j(z)dz, via the de Rham theorem. By using Proposition 2.16, the
similar calculation shows the following proposition in the anti-holomorphic case.

action of [KoowjKoo] on Y (n) is given by z — v~ !z, where v = <

Proposition 2.20. Under the same notation and assumptions of Proposition 2.19, we have

Z m (B)ilevé,l,A ([mhlvel|[Koow s Kc))
besS

= T(n_l)L(lv h, n)noo(LJ)(_27r\/jl)_n € A(n)’

where vy € Apoo such that 1jo =1 ifoccJ and 1jo =—1ifoc € Jp—J.
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2.9. Duality theorem between Hecke algebra and Hilbert modular form. Hereafter,
we simply write
Ms(n,C) = Mg,0),7, (K1(n), C), S2(n,C) = S0,0),7, (K1(n),C)
and
M3(T1,i(n),C) = Mg,0),7-(T'1,i(n),C), S2(T'1i(n),C) = S(0,0),7r (['1,i(n), C).

Recall that h = (h;); € Ma(n,C) has the Fourier expansion of the form (1.9). For a subring
A of C, we put

Ms(T1i(n), A) = My(I'14(n), C) N Af[ep(§2) : £ =0 or 0 < & € F],

SQ(FLi(n), A) = SQ(FLZ‘(H),(C) N A[[ep(fz) : f =0or 0k f € F]],

and

h [y
(2.25) My(n, A) = @D My(T'1(n), A), Sa(n, A) = €P Sa(T'1,4(n), A
=1 i=1

Let @, be the field as Proposition 2.9. We fix a finite extension K of ®,. Let O be the
ring of integers of K, w a uniformizer, and  the residue field. We shall write A = K or O
and use the same notation as §1.2.

We define the Hecke operators T'(wg) for a prime ideal q of op and a uniformizer wq of
op, and S(cwg) for a prime ideal g of op such that q{n by the following double coset:

<0 © 0

T(wt) = Ky (n) <woq 1) Ky (n) and S(wf) = K (n) (zf)q we> K1 (n).
q

We put T'(q°) = T'(wg) and S(q°) = S(owg) for a prime ideal q prime to n, and U(q°) = T'(wy)

q
for a prime ideal q dividing n. Then we define
m) = l_IT(qe(q and S(m H S(q
qtn afn
q¢@ of F prime to n and

(m) =[JU(a@)

qln

for any integral ideal m = J.,

for any integral ideal m =[] ) of F dividing n.

n
Let Ha(n, A) (resp. Ha(n, zqéll)) be the commutative Hecke A-subalgebra of Endc(M2(n, C))
(resp. Endc(S2(n,C))) generated by T'(m), S(m) for all ideals m of o prime to n, and U(m)
for all ideals m of op dividing n as (1.7).
Then, by [Shi, (2.23)], there is a relation between the Hecke operators and the Fourier

expansion of the following form: for V( N =T(m' ) or U(m'), we have
(2.26) C(m, f]V(m Z N(c)C(c*mm/, f1S(c)).

m+m/Cc

According to [Hida88, Theorem 4.11] and [Hida91, Theorem 2.2 (ii)], the space S2(n, A)
(resp. Ma(n, A)) is stable under Ha(n, A) (resp. Ha(n, A)).

Theorem 2.21 (Duality theorem). Assume that p > 3 is prime to the discriminant Np of
F. Let K be any finite extension of ®, and O its ring of integers . Then, for A=K or O,

(,):Ha(n,A) x Ma(n, A) — A: (t,f) — C(op, fit)

18 a perfect pairing.
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Proof. We follow the arguments in the proof of [Hida88, Theorem 5.1] and [Hida91, Theorem
2.2 (iii)].

First we assume that A = K. According to the proof of [Hida91, Theorem 2.2 (iii)],
Ms(n, K) is of finite dimension over K. Thus, it is enough to prove the non-degeneracy of
the pairing. Suppose (¢, f) = 0 for all ¢. By the relation (2.26), we have

C(m,f) = Clor, fIV(m)) = (V(m),f) =0

for V(m) = T'(m) or U(m) and all integral ideals m of F. Thus, fis a constant function and
hence f = 0 because the weight of f is positive. Conversely, if (t,f) = 0 for all f, then for
V(m) = T(m) or U(m) and all integral ideals m of F', we have

C(m, flt) = C(op, ftV(m)) = Clop, £V (m)t) = (¢, f]V (m)) = 0.

Thus, f|t = 0 and hence h = 0 as an operator. This proves the assertion for A = K.
Next suppose that A = O. It suffices to prove that

Ms(n, Q) ~ Homp (Ha(n, 0),0).

If ¢ : Ha(n,O) — O is an O-linear map, then we can extend to a K-linear map ¢ : Ha(n, K) —
K. Thus, by the duality theorem for a field K, we get f € My(n, K) such that (¢,f) = ¢(h)
for all t € Hy(n,O). Then for V(m) = T'(m) or U(m) and every ideal m of op, we have

C(m,f) = Clor, fIV(m)) = (V(m),f) = ¢(V(m)) € O.

Suppose that the constant term of f does not belong to O, that is, ax (0, f;) ¢ O for some .
Let r € Z be the positive integer such that @w"ax (0, f;) € O*. Then the g-expansion of w" f;
is equal to @w" as (0, f;) modulo w. By [An—Go], the kernel of g-expansion map on the space of
Hilbert modular forms of all parallel weight is generated by H,_1—1, where H,,_; is the Hasse
invariant of level 1 and parallel weight p—1. Then we have @” f; —w"ax (0, fi) = a(Hp—1—1)
for some a € k. Since the weight of H,_1 is p—1 > 2, this contradictions. Thus f € Ms(n, O)
as desired. g

2.10. Congruence modules and Integrality of cocycles. In this subsection, we will
determine the structure of a congruence module associated to an Eisenstein series. As
applications, we will prove the integrality of Eisenstein cocycles based on [Be, §4] and [Eme]
and construct an example of a congruence between a Hilbert cusp form and an Eisenstein
series based on [Ri] and [Wil].

We use the same notation as §1.2, §2.4, and §2.9. We simply write I'1; = I'1 ;(n), ¥; =
T1,\9/F. For ? = ¢ or par and X =Y (n), V;, or (Y;®%) as (1.4) and §2.5, we write

H{'(X,0) = im (H{"(X,0) = H'(X, K))
for the torsion-free part of Hy"(X, O), where, for A = O or K, H]*(X, A) is the compact sup-

port cohomology of X with coefficients in A and Hp; (X, A) = im (H"(X, A) — H™(X, A))
is the parabolic cohomology of X with coefficients in A. For [7] € H"(X, K), let

§([x]) = {a € Olalr] € H"(X, 0)}

be the denominator ideal in the sense of Berger ([Be, §4.1]). We fix an Eisenstein series
E = E3(p,%) as Proposition 1.1 such that primitive narrow ray class characters ¢ and 1
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satisfy m,m,; = n and
(Eis condition) ¢ and v are O-valued totally even (resp. totally odd) such that
¢ # 1 and the algebraic Iwasawa p-invariants of

the splitting fields of ¢ and v are equal to 0 (see Remark 0.2).

Then, by Proposition 1.1 (3), the Eisenstein series E satisfies (2.19). We put the character
€z = —1 (resp. €5 = 1) on the Weyl group W if both ¢ and 1) are totally even (resp. totally
odd). Put x = ¢¢. We denote by I an ideal of Ha(n, Q) generated by T'(m)—C(m, E), S(m)—
x 1(m),U(m) — C(m,E) for all integral ideals m of F. Let Z be the image of I under the
canonical surjection Hy(n, Q) — Ha(n, O). The module Ha(n, O)/Z is the congruence module
associated to the Eisenstein series E in the sense of Hida. By [Hida88, p.329-333], the spaces
of classical modular forms S3(I'1;, O) and Ma(I'1 ;,O) can be embedded into the space of
geometric modular forms Mg )(M, O). For this reason, if f € Ma(I'1;, O), then the constant
term of f at each cusp point belongs to O by the g-expansion principle. Thus, by Theorem
2.21 (Duality theorem), for each ¢ with 1 < < h}, and each cusp s € C(I'1;), we can take
A; s € Ha(n, O) corresponding a map

Ms(n,0) = O : £ as(0, f3),

where a4(0, f;) is the constant term of f; at s. Let (4o, s9) be a pair such that v,(as, (0, Ej,)) <
vp(as(0, E;)) for each (7, s) under the p-adic valuation v,. We put

C = CLSO (0, Ezo)

In order to state the main theorem of this subsection, we recall the Eichler—Shimura—
Harder isomorphism. The theorem [Hida93, Theorem 1.1] says that the C-vector space
Hp. (Y (n),C)/HZsp (Y (n),C) is spanned by the cohomology classes of the invariant forms
wyr = Npesr Yo 2z A dy, with 8" = n/2 if n = [F : Q] is even. Moreover, by [Hida88, §7],
both H?, (Y (n),C) and HZ, (Y (n),C) are Wg-modules. Since hf. = 1, as mentioned just

after Proposition 2.19, for each subset J C Jp, the Weyl action of ((15)se, (—15)oesp—J) €
Weg on Y(n) =Y is given by

((xU + \/jlyd)aeh(l'o + \/jlyo)GGJF—J)
= (50(370 + \/jlyU)JEJa (=87 (—zs + \/jlya)aeJF—J)

for some £ € oy In the case n = [F : Q] is even, if a character e on W satisfying
#H{o € Jp | e(—15) = —1} # n/2, then H), (Y (n),C)le] = H, (Y (n),C)[e], where V]e] =

par cusp

{veV |w-v=ew)v for we Wg} is the e-isotypic part of this action for any Wg-module
V. In particular, we obtain

(2.27) Hypor (Y (n), C)le] = Heyep(Yi(n), €)[eg] = Sa(n, C)

as Hecke modules (cf. [Hida94, §2,83]). Thus we will use that the Hecke algbra Ha(n, Q) is

isomorphic to the O-subalgebra of Endp <ffgar(Y(n), O)[GE]) Moreover, we can decompose
H"(Y (n),C)leg] =~ Hp (Y (n), C)leg] & Hiss (Y (n), C)leg]

and the Hodge-Tate weight of Hg, (Y (n), C) is n by Proposition 4.6. Here Hg, (Y (n), C) is the
Eisenstein cohomology (for the definition, see Step2 and Step3 in the proof of Proposition
4.6). Then we have Hy(n, @) — Endo (ﬁn(Y(n),O)[eE]). Let Ha(n, O)[e,] (resp. I[eg])
denote the image of Hy(n, O) (resp. each ideal I of Hy(n,O)) under this map.
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Theorem 2.22. Let F//Q be a totally real number field with h} =1 and p > 3 a prime
number such that p is prime to n and Ap. We assume the following two conditions:

(a) both H™(9 (Y (n)B%),0) and H?™ (Y (n),O) are torsion-free;
(b) C(q, E) # N(q)(modw) for some prime ideal q dividing n, where C(q, E) is the U(q)-
etgenvalue of E.

Then there is an isomorphism of O-modules
Ha(n, O)e ]/ (T+ > OA1)[e,] ~ Ha(n, 0)/I ~0O/C.
s€C(T'1,1)
Proof. By the definition, we have the canonical surjection
(2.28) Ho(n, O)eg/I+ Y OAL)eg] — Haln, 0)/T.
seC(T1,1)

Let G = E/C and [rg]® = [ng,]E € H"(Y(n),C)leg]. Here [rg,]E stands for the
projection to the e -part of [rg,]. We have [rg] € H"(Y (n), K) by Proposition 2.10. Let
dc = d([rg]E). Next, we construct a surjection

(2.29) Hg(ﬂ,@)/z —» O/(SG
By the calculation of the constant term of an n-cocycle (Proposition 2.9), we have
res([rg]) = res[ng,] € H"(0(Y®),0)~ @ H"T11(n),,0).
seC(T1,1)

The torsion-free assumption implies H?t(Y (n),©) = H™(Y(n),0). Moreover, by the
definition, the image of res([rg]) under the connecting homomorphism H™((Y (n)B%), K) —
H (Y (n), K) is equal to 0. Thus, there is [c] = [¢1] in H"(Y (n), O)[eg] such that

ves([c]) = res([ma])-

Thus we get

[c] = [ma]® € Hpp (Y (n), K)[eg]:
We fix d € dg. We put [eg] = d([c] — [7rg]|®) € ﬁlgar(Y(n),(’))[eE]. Then we may assume
[eo] # 0. Indeed, if [eg] = 0, then [c] = [rg|® and hence dg = 1. Let [eg],- -, [ey] be an
O-basis of ﬁgar(Y(n), O)leg]. For each t € Ha(n, O), we write

t(leo]) = D Ailt)[ed]
=0

with A\;(t) € O. Thus we define a surjection
Ho(n,0) - O/dg : t — Ao(t).

This O-homomorphism factors through the congruence module Ha(n,O)/Z. Indeed, for
t € T and its lift ¢ € I, we have

t(leo]) = d - t([c] — [ra]®) = d - t[c] = 0 (mod d),

because the map G — [rg] is compatible with the Hecke operators (Proposition 2.7). Thus
we get,
HQ(H,O)/I —» O/(sg.

Next we construct
(2.30) O/ég - O/C.
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Let 7, be a non-trivial primitive narrow ray class character corresponding to a character of
Gal(F (¢p)/F) of finite order with n, = e on Wg ~ Af /A% .. We put n =y~ =t
Note that njm,. We fix d € dg and then d[rg] = d/C - [rg] € H™(Y (n),0). Moreover,

dnglre € H"(Y (n)BS, Dc (n); K) by Proposition 2.18. We claim that d[rg],e is integral:
(231) d[ﬂ'G]rel € f_jn(y(n)BS’DCw (ﬂ),O)

For the moment we admit the claim. Since n|m,, by using Proposition 2.19 and Proposition
2.20,

(2.32) > m(d) evy10(dralE)
besS
= & r) Y DB
= Ay L L) g
4 )eing, m)

el ' CL(0, ;") - L(0, 0 Y) € O(n).
C on Al (@bl nplmgy) O V) O ) € O

Here the first equality follows from Proposition 2.19 and Proposition 2.20, the second equality
follows from Proposition 1.1 (1), and the last equality follows from the functional equation
for Hecke L-functions (see, for example, [Mi, Theorem 3.3.1]) using that np = ! is
totally odd and [Mi, (3.3.11)]. Since both n,%~! and n,p~! are totally odd, the left hand
side is non-zero by using the functional equation for Hecke L-functions (see, for example,
[Da-Da—-Po, Lemma 1.1]). We remark that the second and third terms in (2.32) are prime to
p. Moreover, by (Eis condition) with the help of the Iwasawa main conjecture for totally real
number fields proved by Wiles [Wil], the p-adic valuation of L(0,n, L) and L(0,npp~ ") are
smaller than that of w for all but finitely many narrow ray class character n, with 7, = €,
on Wg. Therefore we obtain that C' | d as required.

Thus it remains to prove the claim (2.31). We use the same notation as the proof of
(3.5). Let mg be the maximal ideal of Hy(n,O)" generated by w and U(q) — C(q,E) for
all ideals ¢ of op dividing n, which acts on the torsion-free part of the relative singular
cohomology H™(Y (n)BS, D¢ (n); ©). By Proposition 2.9 and (2.19), d[rg] is zero in the
torsion-free part of the partial boundary cohomology H™ (D¢ (n), O)wy,.  Moreover, the
torsion-free assumption implies H™(Dc¢._(n), Oy, = H"(Dee(n), Oy~ I we fix [w]’ €
H"(Y (n), )y, mapping to dlrg] € H™(Y (n), O)my,» then [w]" is zero in H™"(D¢_(n), O -
Let [w]', € H™(Y(n)BS Do (n); O)ny, mapping to [w]" € H"(Y(n),O)y and let [we
denote the image of [w].; in H™(Y (n)BS, D¢ (n); O)my,- Then [w]rel —d[mG]rel is in the image
of H" " Y(D¢, (n), K ) - As we will mention just after (3.5), we have H" (D¢, (n), Oy, =
0 under the assumptions that h}. = 1 and C(q,E) £ N(q)(mod w) for at least one prime
ideal q of of dividing n. Thus d[rg]rel = [w]rel is integral as desired.

Furthermore, by the definition, A; s = as(0, E1) in Ha(n, ©)/I and hence we have

(2.33) O/C — Ha(n,0)[eg]/ T+ D OAL)eg).
s€C(I'1,1)

Then (2.28), (2.29), (2.30), and (2.33) prove the theorem. O
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Remark 2.23. Since Y, o1 (D) "tevy 1 c(d[ra]:E) # 0 by the proof of (2.30) in Theorem 2.22,
we see that [rg]i5 # 0 in H™(Y (n),C). Thus, by Proposition 4.6, we can verify that

[mE|® = [TE].

By the proof of Theorem 2.22, we obtain dg = (C) and the following corollary, which we
will use in §3 and §4.5.

Corollary 2.24. Under the same assumptions of Theorem 2.22,
[re] € H'(Y (n),0),

that is, [wg| is an integral cocycle. Moreover, the modulo t cohomology class of [wg| is
non-zero: ~
[mg] # 0 in H*(Y (n), k),
where _
H"(Y(n),rk) = H"(Y (n),k)/(image of O-torsion of H"(Y (n), 0)).

2.11. Real quadratic field case. We give an example of a congruence between a Hilbert
cusp form and a Hilbert Eisenstein series.

We use the same notation as the proof of Theorem 2.22 and simply write I'j = I'; 1(n)
and I't = Ph(n). Hereafter, in this subsection, we assume that I is a real quadratic field

with h; = 1. First we show the following lemma.

Lemma 2.25. Assume the following four conditions (1), (2), (3), and (4):

(1) H3(Y (n),0) is torsion-free;

(2) H%(0 (Y (n)B5),0) is torsion-free;

(3) C(q, E) # N(q)(modw) for some prime ideal q dividing n, where C(q, E) is the U(q)-
etgenvalue of E;

(4) the ideal (C) #0,0.

Then there exist a finite extension K' of K with the ring of integer O — O’ and a uniformizer

@’ such that (@) N O = (w) and a Hecke eigenform f € So(n,O") for all T(m) and U(m)

with character x such that f= E (modw’), that is,

C(m,f) = C(m, E)(modw’)
for any integral ideal m of F.

Proof. By the proof of Theorem 2.22, if (C') # 0,0, then [eg] # 0 € f[gar(Y(n),(’))[eE] is
cohomologous to —[rg] modulo @ and the Hecke eigenvalues of [eg] are the same as those
of —[mg] modulo w for all t € Ha(n,O). The Deligne-Serre lifting lemma ([Del-Se, Lemma
6.11]) in the case R = O, M = f[gar(Y(n),O)[eE], and T = Ha(n,O) says that there exist
a finite extension K’ of K with the ring of integer O — O’ and a uniformizer @’ such that
(@) N O = (w) and a non-zero eigenvector [x] € HZ, (Y (n),0)[e,] ® O for all ¢t € T with

par
eigenvalues \(V(m)) satisfying
A(V(m)) =C(m,E) (mod =),
where V(m) = T'(m) or U(m). Then, by the partial Eichler-Shimura-Harder isomorphism
(2.27), we may regard [7] € S2(n,C) and hence we get a Hecke eigenform f for all 7'(m) and
U(m) such that [r] = [m¢]. By using the relation between Hecke eigenvalues and Fourier

coefficients, we may assume that f € Sa(n, 0’) with character x. Therefore we obtain the
congruence between a Hecke eigenform and our Eisenstein series

f=E (mod=’).
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t

In order to construct an example of the congruence between a Hilbert cusp form and a
Hilbert Eisenstein series, we shall prove (1) and (2) of Lemma 2.25 in certain case and give
a Hilbert Eisenstein series satisfying (3) and (4) of Lemma 2.25 based on a numerical table
in [Oka].

The first question we have to ask is torsion-freeness of (1). By the Poincaré-Lefschetz
duality theorem, we obtain

H3(Y (n),0) ~ Hy (Y (n),0).

Proposition 2.26. Assume that n is prime to 6Ap. If p is prime to 6n and ﬁ(0§+/0§i),
then the assumption (1) of Lemma 2.25 is satisfied.

Proof. Since n is prime to 2, we have IT% = I'l and hence 'y /T] =~ °1§+/°1§%1' Thus, by

the Poincaré-Lefschetz duality theorem, it suffices to show that F}’ab is p-torsion-free if p is
prime to 6n. This torsion-free problem will be solved by the method of Kuga [Kuga] and the
theorem of Serre [Se] as follows. Since a 'T'ta = T'1 (0, 1) N SLa(0f) for some o € GLy(F),
we may assume 't = T'y(op,n) N SLa(op). Thus the theorem [Se, Theorem 3] shows that

F%’ab is torsion group. By the congruence subgroup property [Se, Corollary 3 of Theorem 2],

there is an integral ideal m of F' such that the principal congruence subgroup I'(m) satisfies
['(m) C [I'}:Ti] c Tl In particular, we have
Th ~ (T1/T(m))™.

We estimate the order of right hand side as follows. Let H = T'{ /T'(m). We decompose
SLa(of)/T'(m) = [, SLa(or/q;*) and H =[], Hy,. We define Hy, by the following cartesian
diagram:

Hy, = SLy(0r/q;")
o=
ﬁqi(ﬁ- SLQ(UF% )
Here we note that, since SLy is connected semi-simple, for each positive integer r and prime
ideal q of oF, the canonical map SL(oF,) — SLa(op/q") is surjective.
Then our assertion follows from the following claim: We fix a positive integer r = r; and

a prime ideal ¢ = q; of op. Let [ be the prime number such that (I) = qNZ.
Claim (a) Hl?b = 1 in the case Hq = SLa(op,) and (q,6) = 1.

7rab : . T a b _ 1 = r
(b) H{" is an l-group in the case Hy = {(C d> = (0 1> mod q }

The assertion (a) is obtained by ([Fe-Si, Proposition 4.8]).
The assertion (b) follows from the arguments in [Fe-Si] as follows. For each non-negative

integer m, let ['(q™) = ker (SLg(opq) — SLg(op/qm)>. The direct calculation with the help
of the proof of [Fe-Si, Lemma 4.4] shows that ﬁq is generated by all elementary unipotents
in fAIq. Then the image of .FAIq/(fIq ﬂf(q)) in SLy(oF, /q) is generated by <(1) D and hence it

is an l-group. Moreover, by using the proof of [Fe-Si, Propositon 4.8], we have ELo(q*™) C
[Hq : Hy] C Hy. Here EL(op,) is the subgroup of SLa(or,) generated by all elementary

unipotents and ELy(q*™) = EL;(oF,) NT(q*™). As mentioned in the proof of [Fe-Si, Lemma
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4.5], ELy(q*™) is a subgroup of I'(q%™) with index a power of I. Since I'(q)/I'(g%™) is an
l-group, so is Hy/ ['(g*™). In particular, Hgb is an I-group as desired. O

The second point to be discussed is (2). Let €9 be the fundamental unit of F' and €4 be
a generator of oy . :

(234) ey = { €0 if N(éo) = ]_,

g2 if N(eo) = —1.

Proposition 2.27. If p{ N(e4x — 1) and n is a prime ideal q of op prime to 6Ap, then the
assumption (2) of Lemma 2.25 is satisfied.

Proof. We simply write I' = I'; ; and may assume I' = I'y (o, n) by taking conjugation. We
recall the arguments in [Gha, §3]. Using the description of the boundary cohomology as
§2.5, it suffices to show that H?(T's, 0) = H?*(a Ta N By, O) is torsion-free for each cusp
s € C(T), where s € P}(F) and « € SLa(0f) such that a(co) = s, By is the standard Borel
subgroup of upper triangular matrices, and the bar ~ means image in GLa(F) /(GL2(F)NE™).
Moreover, as mentioned in [Gha, p. 260], H?(a~T'a N By, O) is torsion-free if and only
if H'(a='TaN By, K/O) is divisible. A main tool for our proof is the Hochschild-Serre
spectral sequence

EY = H(a""TaN B /o TaN Use, H (o TN Upe, K/O)) = H'V (o~ Ta N Boo, K/O),

where Uy, is the unipotent radical of Bs,. As a similar calculation in [Gha, §3.4.2], our
assertion follows from the following (2.35), (2.36), and the exact sequence (2.37). Indeed,
it degenerates at F5 and hence it is enough to prove that each E;Jrj with 1 +j7 = 1 is
divisible. Using (2.36) and (2.37), we have E21’0 = Homy(Z, K/O) = K/O. Moreover, for
eache €op,, b€ gi7¢ and f € Eg’l, we have f(eb) = f(b) under the isomorphisms (2.35)
and (2.36). Then N(e; —1)f =0 and hence f =0 if pf N(e; — 1) as desired.

It remains to prove (2.35), (2.36), and (2.37). Fix s = x/y € PY(F) with x,y € of
and (z,y) = 1 and a = z g € SLa(op) such that a(oco) = s. We may assume that

if (y,q) = 1, then (d,q) = q. Indeed, since (xq,y) = 1, there is <§ 6) € SLe(op) with

0
(0,q) = 1. We prove the following claims:

(2.35) a TanNUs ~ gt if (y,q) = q%
(2.36) a™ TaNTe = 0p 5
(2.37) 1= a1TanNUsx = a TanN By = a lTanNTy — 1,

where T, is the standard torus. For (g Z) € a 'T'a N By, the direct calculation shows

a b\ 4 (x B\ [a b 0 =B\ _ [adx —bxy — Bdy —afx + bz? + Bdx
“No a)* ~ y 6)\0 d)\—y =z ) \ady—by?>—6dy —aBy+bxy+ddr)"
1 b 1 . 1 b\ 4
0 1> € a ‘T'aNUs. The condition « (0 1) a e
I' is equivalent to bz? € op, by? € q, and bry € q. Since (z,y) = 1, we have b € op. If
(y,q) = q°, then b € q'=¢ as desired.

First we prove (2.35). Suppose that (



CONGRUENCES OF HILBERT MODULAR FORMS 45

a O
0 d

I is equivalent to ad € oy |, (a — d)dy € q, and —aBy + déz = 1(mod q).

Next we prove (2.36). Suppose that ( > € a 'T'aNTs. The condition a <g O) a"le

d

Suppose (y,q) = 1. Since xd — fy = 1, we have a = 1(mod q) and hence <g 2) =

(1 0 ) Moreover, for each € € 0§+, <1 0

—1 .
0 a-ld 0 6) € a 'TaNTy as desired.

0 d 0 1

—1
By the same argument, if (y,q) = q, then d = 1(mod q) and hence <a O) = (ad O>
(1) € a 'T'aN Ty as desired.

£
and, for each € € o, (0

0 1
a TaN Uy for each ¢ € 05, which is equivalent to br? € op, by? € q, and bxy € q by the

Finally we prove (2.37). For any (g Z) € a 'TanNBy, it suffices to show that <1 Eb) e

proof of (2.35). The condition « <8 Z) a~! € T implies that bxy € op, bz? € op, and
by? € q. Then it suffices to check that bxy € q. Since (z,y) = 1, we have b € op. Since

by? € q, if (y,q) = 1, then b € q as desired. O

Example 2.28. We give an example satisfying the assumptions of Lemma 2.25 in the case
F = Q(v/2) with op = Z[\/ﬁ], h; =1, Ap=8,e=1++2, and e, = 3+ 2v/2. According
to [Oka, §4, p.1137], for the non-trivial character y : Gal(F(v/5)/F) — Q" whose infinite
type is the identity and conductor is a prime ideal n = (5) of op, we have
28

(2.38) L(—1,x) = 5

A pair of characters ¢ = x~* and the trivial character ¢ = 1 satisfies (Eis condition).
We see that p = 7 with (p,6Ar) = 1 and the Eisenstein series Eq(p, 1) with respect to
level T'1 1((5)) satisfy the assumptions (1), (2), (3), and (4) of Lemma 2.25. Indeed, (1)
(resp. (2)) follows from Proposition 2.26 (resp. Proposition 2.27) since (7,2 - f(op/5)*) =1
(resp. (7,24 2v/2) = 1). Moreover, (3) (resp. (4)) can be confirmed by C((5), E2(p,1)) =0
(resp. (2.38) and Proposition 1.2). Thus we can lift the Eisenstein series Eo(¢, 1) to a Hecke
eigenform modulo 7.

1

3. CONGRUENCES FOR L-FUNCTIONS

The purpose of this section is to prove the main theorem (Theorem 0.1=Theorem 3.1) of
this paper. In this section we use the same notation as §2.10.

3.1. Canonical periods. Let f € Sa(n, O) be a normalized Hecke eigenform for all T'(m)
and U(m) with character x. Let e denote e,. We would like to define the canonical period
Q% in the sense of Vatsal [Vat]. We denote by pg the prime ideal of Hecke algebra Ha(n, O)
over O generated by T'(q) — C(q,f) and S(q) — x~*(q) for all ideals q of o outside n and
U(q)—C(q, f) for q dividing n. We identify the Weyl group Wg = Koo/ Koo + with {£1}7F via
the determinant map. By [Hida88, §2, §7], the Weyl group W acts on the space of Hilbert
cusp forms and HJ, (Y (n),0). Moreover, this action commutes with the Hecke operators
T(m), U(m), and S(m) for all ideals m of op.
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The partial Eichler—Shimura—Harder isomorphism (2.27) and the g-expansion principle
over C imply that e-part of the eigenspace of the Weyl action is free of rank 1:

H] (Y (n),C)[pg €] ~ C,

par

Hp (Y (n),0)[prye] = O,

par

where Hgar( (n), O) is the torsion-free part of Hy, (Y (n), O) as §2.10. We choose a generator

[6¢]€ of H™ (Y (n),O)[ps, e]. We write [rg]¢ for the projection of [rg to the e-part. Since

par

[0¢], [me] € HJ, (Y (n), C)[pg, €], there exists a complex number Q¢ € C* such that
(3.1) [7]© = Q5[]

The complex number f is called the canonical period in the sense of Vatsal.

3.2. Congruences of special values. For modular forms f,g € My(n,O), we define the
congruence of modular forms f = g(modw) by C(m,f) = C(m,g)(modw) for any integral
ideal m of F.

Theorem 3.1. Let p > [F : Q] + 2 be a prime number such that p is prime to n and 6\ p.
Assume that hJFr = 1. Let v and v be narrow ray class characters satisfying (Eis condition)
as §2.10 and € = €, the character on the Weyl group Wq defined just after (Eis condition).
Put x = pp. Let f € Sy(n,O) a normalized Hecke eigenform for all T(m) and U(m) with
character x. We assume the following three conditions:

(a) both H™(9 (Y (n)B%),0) and H?(Y (n), O) are torsion-free;

(b) the Hilbert Eisenstein series E = Ey(p,1) € Ma(n,O) with character x satisfies f =

E(modw);
(¢c) C(q,E) # N(q)(modw) for some prime ideal q dividing n, where C(q, E) is the U(q)-

etgenvalue of E.
Then there exist a complex number QJE € C* and a p-adic unit uw € O such that, for
every primitive narrow ray class character n : C1+( m,) — @X of conductor m, such that
njm, and n =€ on Wg ~ AX /AFOO+, the both values 7(n~')D(1, f, )/(ZW\/TI)"Q} and
T(n YD1, E,n)/(2m/—1)" belong to O(n) and the following congruence holds:

D(1, f,n) D(1, E,n)

rnH— 2V = gy (pt
(n )(%\E)ng; ) Ty

Here 7(n~1Y) is the Gauss sum attached to n=', D(1,%,m) is given by the Dirichlet series
in the sense of Shimura (1.12), O(n) is the ring of integers of K(n), and K(n) is the field
generated by elements of im(n) over K.

(mod w).

Remark 3.2. In the case [F' : Q] = 2, if n is a prime ideal q of oF prime to 6/, then the
condition (a) is satisfied under the assumptions of Proposition 2.26 and Proposition 2.27.

Proof. We may take [t;] such that dp[t;] = op. We abbreviate Y (n) =Y to Y and I'y 1(n)
to I'. The assumptions f = E(mod w) and Theorem 4.1 imply the following congruence of
cocycles : for some p-adic unit u € 0%,

[66)° = ufre] in HypoW (Y, 5)[d].

par

Here we note that [7g|® = [7g] # 0 in Y, k) by Remark 2.23 and Corollary 2.24.

par(
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Let Co = {c € C(I') | ¢ is I'g,1(n)-equivalent to the cusp oo} and

Dc, = [] DI Y™
SGCoo

For A = O or k, we define the partial parabolic cohomology Hy, (Y, D¢, ; A) by
H.(Y, Do ; A) = im (H"(YPS, Do ; A) — H™(Y, A)).

par

_Foran O-module M, Miorsion stands for the torsion part of M. For A = O or k, we define
H™(YBS, De_; A), H'. (Y, D¢, ; A), and H™(D¢,_, A) as follows:

par

H™(Y®S, D A) = H™(YS, De_; A)/ (image of H™(YBS, De_; O)iorsion)

HW (Y, Do A) = H (Y, Doy, s A)/ (image of HJ (Y, De; O)torsion) 5

par par

H™(Dc..,A) = H™(Dc.., A)/ (image of H™(Dc.., O)torsion) -
By the definition, we have
(66 = ulme]® in Hy,, (Y, Dow; £)[d]-

par

We must show the following congruence of cocycles:
(3.2) [0t = ulrel in H' (Y5, Doy w).

Let Ha(n, ©)" = (U(m)) be the sub-algebra of the Hecke algebra Ha(n, O) generated by
U(m) for all ideals m of of dividing n and m{ a maximal ideal of Hy(n, O)" generated by w
and U(q) — C(q,f) for all ideals q of op dividing n. Since each Hecke correspondence U(q)
preserves the component D¢, Hy(n, ©) acts on H* (D¢, A) and H"(YBS, D¢_; A) for
A=0,k,orC.

Since h; = 1, for any prime ideal q of o dividing n, we fix a totally positive generator gy
of q. By Stepl in the proof of Theorem 4.6, for each cusp ¢t € C(I'), we know that a basis
of H"=Y(Dy, C) is given by wy.

Claim: the U(q)-eigenvalue of w; is equal to N(q) for each ¢t € Cw.

Proof. We wrtie t = (o0) for some v € I'g 1 (n). The canonical map v : Do, — D¢, induces
v : H"" Y (D¢ ,C) — H" Y(D¢,,,C). By the definition of ~, we have y*w; € H" }(Dy, C).
In order to prove Claim, we first compute the U(q)-eigenvalue of ws,. We decompose as
§2.3:

T <(1) goq) D= J[ 185°Ta, T87To = [ 826 with 632 € T, and
i€l jeJ=

Lo (00) B Too = H L' go0 (00) Bi 075
jer

Remark that, by the definition of the Hecke action on the boundary cohomology (see [Hida93,
(3.1c)] or §2.3 in this paper),

53) (6l (5 ) T1) = 3 wrollTar T

1 1el®

with 37°(c0) equivariant to the cusp oo over I': 57°(c0) = 57°67°(c0) ~r oco.
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We use the following decomposition:
99 0O _ gq b
(3.4) F(O 1>r_ 11 (0 1>r,
bEor/q

where b runs over a set of representative of o /q.

In order to check it, note that, for any 8 = <CCL Z) el <90q ?) I, we have ¢ = 0(mod n),

d = 1(mod n), and det(8) = gqu for some u € oy, . Since q divides n, we have (c,d) =1

and hence there is y; = <_dc :) € I' with det(y;) = 1 such that

()= )Y
()

_ (9 V
~\0 1)
This proves (3.4) as desired.
For our calculation, we explicitly decompose

Lo (00) B Too = H 550 (00) B; 075

jeJ

Remark that v587°0 = <1 bi) for some v5 € I and 6 € I's. Since ;°0(c0) ~r oo, we

0 gq
have 7/756:°0(00) = oo for some 4/ € I' and hence 7'7557° belongs to the standard Borel
subgroup BXL of upper triangular matrices. Moreover,

T goo (00) 37 Too = (775) ™ TooV 76576 oo

and
-1 gqu *
9a(Y7567°0) " = ( o d>
X ith e = nce (a0 -
for some uquq € 0 | with ug = 1(modn). Since 0 ul)€ I, we have §J° = N(q).
’ d

Thus, by the same way as above, if we write ’yj’yjﬁfoéfj(oo) = oo for some ’y} v; € I', then

10 N(q) .

J=1

= > (B7675)" (47) woe
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Here we note that we is invariant under the element of BI,NGoo +. Thus we get (v*w;)|U(q) =
N(q)v*wy and hence

(V) (V@)U (a)) = N(a)wr.
For the proof of Claim, we finally show that

1 0 . 10
I'~T-T ' T I'="T" I.
! <0 9q> 7 (0 9q>

Since I' is a normal subgroup of I'g ;(n), we have yI' = I'y and hence it is enough to show

that
1 0\ 1 0
r I'="_" I
7 <O gq) 7 <0 gq>

This follows from the same arguments as in the proof of (3.4) because if we write § =

(CCL Z) =7 (goq ?) 7=, then we have ¢ = 0(mod n), d = 1(mod n), det(8) = g4, and q

divides n. O
Moreover, a direct calculation shows that

By o)=Y El(y o)

b

= N(gg)™' D (& Er)er <€;)€F<§z>

b 0<E€E(t] Ya
z
== Z aoo(§7 El)eF (5) .
0<k€egy-[t1] Ja

Then the eigenvalue of this series is equal to C([gq], E) = C(q, E). Then, by our assumption
that C(q, E) # N(q)(modw) for some prime ideal ¢ dividing n, we have

(3.5) H" Y (Do, Oy = 0
since H* Y(D¢._, Oy, = H"il(DCOO,C)m/f =0.
We consider the following diagram:
(3.6)
(image of Hn(yBS’ D¢ O)torsion)m2(—> Hn(YBS, Dc_; l{)m/f — ﬁ"(YBS’ Dc_; "i)m’f
i** i*

(image of Hp, (Y, D O)torsion)m/fc—> H" (Y,Dc._ i K)pm, —= H™ (Y,Dc_; n)m/f.

par £ par

Thus, by (3.5), %% is surjective. Since (image of H"‘l(DCw,O)torSion)m, C ker(s¥%),
- f
the snake lemma for (3.6) implies that H"*]L(DCOO,;@)m/f — ker(%).
Claim: ker(3) = 0.
Proof. Tt is enough to show that Hn1 (Dc., /<c)m/f = 0. By our assumption that the boundary

cohomology of YBS is torsion-free, the exact sequence 0 — O 20 5 k=0 implies
modw : H* (D¢, O, — H" (D¢, K)m; and hence we get

mod @ : H" "' (De,, O)y — H" N (De, )iy
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Then our claim follows from this and (3.5). O

Therefore we obtain the congruence of cocycles (3.2).
Using the functoriality of the trace map for O — x and the vanishing of the image of
H™(YBS, Dc__: O)torsion under the evaluation map evp1,0 as (2.24), evy 1 o induces

evp1x: H'(YP Do i k) — k.

Then our assertion follows from this, (3.2), Proposition 2.19, and Proposition 2.20. O

4. ON TORSION COHOMOLOGY IN THE HILBERT MODULAR CASE

4.1. Comparison theorem for torsion cohomology. In this subsection, we will briefly
review the fully faithful functor from the category of finitely generated filtered (p-module
to the category of O-representations of Gg, = Gal(@p/ Qp) of finite length, and state the
comparison theorem between the parabolic étale cohomology and the parabolic log-crystalline
cohomology, which we will use in the following subsections.

Let O be the ring of integers of a finite extension K over Q,, w a uniformizer, and « the
residue field. For a non-negative integer r € Z, we denote by MF(, . the category of the
following triples (M, {Fil'M};, {©'};) :

(1) M is a finitely generated O-module;

(2) {Fil’M};cz is a decreasing filtration on M by sub-O-modules such that Fil’A/ = M and
Fil" 1M = 0;

(3) ¢': Fil'M — M is an O-linear homomorphism;

(4) ¢ lpairiar=pe'

(5) > i—o @' (Fi'M) = M.

A morphisms in MF(, ;, is a homomorphism of filtered O-modules compatible with ¢*.
We say that a morphism 7 : M — M’ in MFg, , is strict if n(Fil'M) = Fil'M’ nn(M) for
each ¢ € Z. It is known that any morphism in MFp, ., is strict and hence MFp, ;. is an
abelian category ([Fo—La, Proposition 1.8]).

The kernel and cokernel of  in MF, ,,, are explicitly given as follows. For an object
(M, {Fil'M};,{¢'};) € MF, . and the sub-O-module N = ker(n) C M, we define a filtra-
tion Fil’ N and an O-linear homomorphism g0§\7 by Fil' N = NNFil'M and cp§V = ¢'| N, respec-
tively. For N’ = coker(n), we define a filtration Fil’N’ and an O-linear homomorphism ¢,
by Fil' N = Fil' M’ /n(Fil’M) < N’ and the morphism induced by ¢, and ¢, respectively.
In particular, for a morphism 7 : M — M’ in MFp, (., we have im(n) = coim(n) € MF, .,
and Fil' im(n) ~ (Fil'M + ker()) /ker(n).

Let MF}, . be the full subcategory of MF(, ;. consisting of objects M satisfying wM = 0.
We denote by Repp(Gq,) the category of representations of Gg, on O-modules of finite
length. For 0 < r < p — 2, there exists a fully faithful functor

Teis: MF{p ¢, — Repp(Gg,)-

given by Fontaine-Laffaille ([Fo-La], [Br-Me], [Wach]). We denote by Repp .,is(Gq,) the es-
sential image of MF(, ., by Ttris. We say that the Hodge-Tate weight of T € Repg ,is(Go,)
is the s € Z for which Gr* M # 0, where M € MF{,,, is the corresponding module such
that Tais(M) ~ T.

The comparison theorem for log-smooth varieties with constant coefficients (proved by
Faltings ([Fa, Theorem 5.3]) and improved by Breuil-Tsuji ([Br, Theorem 3.2.4.6]=[Tsu,
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Theorem 5.1] and [Br, Theorem 3.2.4.7])) shows that, for (X", X') = (M{°", M) or (M*™*, M)
and n < p — 2, there are canonical Gg,-equivariant O-linear isomorphisms

(41) Hth(X@p, O) = Tcris (Hlyég-cris(X%(;r) ®Zp O) ?

Hgt (X@p, Fp) ®Fp [Aa Tcris (H{(L)g-cris (X]f“or) ®IF,, H) '

P

Here the filtration on H gg_criS(Xﬁr) @,k is given by the Hodge to de Rham spectral sequence
(4.2) By = Hj(XtC;r’ g(]ﬁgr/ﬂ“p (log(D))) = Hi-&-j(thr’ Sfﬁgr/ﬂ“p (log(D))),

where D = X% — X. This spectral sequence degenerates at E; by [Ill, Corollary 4.13].

The comparison theorem for cohomology with compact support (proved by Faltings ([Fa,
Theorem 5.3])) says that, for (X%, X) = (M{°", M;) or (M**, M) and n < p — 2, there are
canonical Gg,-equivariant O-linear isomorphisms

(4.3) HE (X5, 0) 2 Teris ( Hipgeorins(XE) 92, 0)

H(?t,c(X@paFP) QF, K = Toeris (chl)g-cris,!(XIthr) QF, K‘) :

Here the filtration on Hﬂ‘)g_criSJ(Xﬂf-‘;r) ®r, £ is given by the Hodge to de Rham spectral
sequence

(44) By = H(XE, Qo (l0g(D)) (D)) = HH (XE, Do, (08(D)) (= D)),

This spectral sequence is degenerate at E; by [Fa, p.59, Theorem 4.1].
For 7 = ¢ or !, we simply write

HchL)g—cris,?(Xtor)O - Hl%g—cris,?(X%;r) ®Zp 0,
HIT(L)g—cris,?(Xtor)fi = lecl)g—cris,?(X]fT(;r) ®]Fp K.
For A = O or k, we define the parabolic étale cohomology HZ (X@p,A) and parabolic

ét,par
log-crystalline cohomology H (X'") 4 in MF( , by

log-cris,par

HY?

i pue( X, A) = im (HE (Xg , 4) > HE(Xg,, A))

lec];g—cris,par(Xtor>A =1im (Hl?)g—cris,!(Xtor)A - HIT(L)g—cris(Xtor)A) .

By the comparison theorem (4.1) and (4.3), we obtain Gg,-equivariant O-linear isomor-
phisms

Hgﬁ,par(X@pv O) > Toris (H{(l)g—cris,par(Xtor)O) )
H(?t,par(X@pv ’KJ) =~ Teris (H{ég—cris,par(xtor)n) .
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Moreover, by the definition of the Hodge filtration on lLIf(‘)g_Cri&par(Xt‘n”)m we have the fol-
lowing commutative diagram:

HO(XE", D yor ), (108(D)) (— D)) —— Fil"H[,, o (X),
FﬂnHIT(L)g—cris,par (Xtor)"@

HY (X’tior, Qanor/n (10g(D))) ~ FilnHlTég—Cris(Xtor)K/'

Here the isomorphism on the bottom of the diagram follows from the degeneration of the
Hodge to de Rham spectral sequence (4.2) and hence we get

Fﬂnle(L)g—cris,par(Xtor)H = HO(Xftﬁorv nX,EUOI/n(log(D))(_D» = SQ(“? ’%)'

4.2. Analogue of a multiplicity-one theorem. In this subsection, we prove the following
main theorem of §4 which will be proved in §4.6.

Hereafter, we assume that n = [F': Q] < p — 2 and O is the ring of integers of a finite
extension K of the composite field of ¢,(F”) and ®,. Here ¢, : Q — Q,, is the fixed embedding
and F’ (resp. ®,) is defined in §1.4 (resp. Proposition 2.9). Let @ be a uniformizer and
the residue field.

Theorem 4.1. Let p > n + 2 be a prime number such that p is prime to n and 6/\p.

Assume that hlt = 1. Let ¢ and ¢ be narrow ray class characters satisfying (Eis condition)

as §2.10 and € = €, the character on the Weyl group W defined just after (Eis condition).

Put x = pip. Let f € Sa(n,O) a normalized Hecke eigenform for all T(m) and U(m) with

character x. We assume the following three conditions:

(a) both H™(d (Y (n)P5),0) and HI'(Y (n),0) are torsion-free;

(b) the Hilbert Eisenstein series E = Es(p,1) € Ma(n,O) with character x satisfies f =
E(mod w);

(¢c) C(q,E) # N(q)(modw) for some prime ideal q dividing n, where C(q, E) is the U(q)-
eigenvalue of E.

Then there exists a p-adic unit u € O such that

[6f]6 = u[ﬂ-E] in ﬁgt,par@”@? H),
where
ﬁgt,par<M@7 ’%) = Hgt,par(M@7 K’)/ (image of Hgt,par(M@7 O)torsion)

and Miosion Stands for the torsion part of M for an O-module M.

Remark 4.2. Dimitrov [Dim2, Theorem 6.7] proved that a multiplicity-one theorem holds for
the f-parts of Hy . (Mg, ) and Hy . (Mg, O) if the residual Galois representation pr is
irreducible under some assumptions.

Hereafter we assume the condition (Eis condition) and the congruence of all Hecke eigen-
values between a Hilbert cusp form f € Sy(n, O) and a Hilbert Eisenstein series E = E(p, ) €
Ms(n, O) with character x = 1, that is, f = E (mod w).
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Let pg (resp. pg) be the prime ideal of the Hecke algebra Ha(n,O) (resp. Ha(n, O))
assosiated E (re~sp.~ f). In order to prove the main theorem, we consider three p-adic Galois

representation V, V¢, and ‘N/E defined as follows.
For 7=¢ or par, we write the torsion-free part of cohomologies as

14, (Mg, 0) = im (HE (Mg, 0) - HE (Mg, K) ),
}NIITCL)g—Cris,?(Mtor)O =im (Hﬁ)g—cris,?(Mtor)O - HIT(L)g—cris,?(Mtor)K) .

We define Hf, . (Mg, r) in Rep} 5. (Gg,) and H, oo (M™), in MF% 2 by the
followings:
E’gt,par(M@7 K) = Hg par (Mg K)/ (image of Hgi por (Mg, O)torsion> ,

quég—cris,par(Mtor)H = HIT(L)g—cris,par(Mtor)K/ (image of Hl?)g—cris,par (Mtor)oytOTSiOH) .
By the comparison theorem (4.1) and (4.3), we have
ﬁ’? (M@7 ’{) = Tcris(ﬁfég—cris,par (Mtor)ff)'

ét,par

In §4.3 and §4.4, we will consider the f-parts of H? (Mg, ©) and H (M*")o

ét,par log—cris,par
etc. defined by

V = Hj por(Mzg, )] and M = Hgy e por(M ™)l
Vi = Hg:,par(M@v O)[pf] and M = Hl:l)g—cris,par(Mtor)O[pf]y
Vf = ﬁg{:,par(M@’ O) [pf}/w and Mf = ﬁgg—cris,par(Mtor)O [pf]/w
By applying the comparison theorem (4.1) and (4.3), we get
V ~ Tcris(w)y vf = Tcris(Mf)y vf ~ Teris (Mf)
A main tool for our proof is the torsion-free Eisenstein part
Ve = Hf (Mg, O)pe] and My = Higy i (Mo [pE]-

By the comparison theorem (4.1), we have
VE =~ Tcris(ME)'
We will show that the Hodge Tate weight of Vi is n = [F': Q] by Proposition 4.6.

4.3. Rank of Fil”(ﬁ). Let us begin our analysis by computing the rank of Fil"(M).

Proposition 4.3. Let A = N(wp). Assume (p,/N\) = 1. Then Fil*(M) is free of rank 1
over k.

Proof. By the definition,
Fﬂn(ﬁﬁgfcris,par(Mtor)H)
— HO(Mtor r]\L/I}gor/H(log(

K

>

))(=D))/ (image of HO(MY", X/[gr/o (IOg(D))(_D))torsion>
)(=D)).

S

K

= HO(Mor Mtor /,c (log(

Then we have N
Fil" (M) = H" (M, Qi ior . (log(D) (= D)) pg).
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Our assertion follows from
HO (M, 0, (108( D)) (— D)) [e] == 1,

which is proved by the g-expansion principle [Dim2, Proposition 1.10] and Hecke relations
between Fourier coefficients and Hecke eigenvalues. O

4.4. Rank of Fil"(My). The second point to be discussed is Fil"(Mg).

Lemma 4.4. Assume that coker (H"

ét,c

(Mg, 0) = HQ(M@,O)) is torsion-free. Then the
canonical morphism

Vf — Vs injective.
Proof. First, we claim that

(4.5) Ve = Hi oo (M, O)lptl o — M

ét,par ét,par

(Mg, O)/w is injective.
Since H”

ét,par

(Mg, 0)/ H ét.par(Mg: O)[pg] is torsion-free, the snake lemma for

Hm @ Irn mod w ~
Hét7par(M@’ O)[pf]c—> Hét,par(M@’ O)[pf] —= Ve

l(4.5)

~ XTo ~ m d ~
Hg’{‘,7par(M@7 O)% Hg’{‘,7par(M@7 O) % Hgt’par(M@? O)/w
implies the injectivity of (4.5).
Next, we claim that
(4.6) I}&par(M@, 0)/w — ﬁg’par(M@, k) is injective.
If the map % in the diagram (4.7) is injective, our claim follows from the snake lemma for
(47) Hg:,par(M@a O)torsion H(?t,par(M@7 O) ﬁgz,par(M@7 O)
mod w imodw
Hg:c,par(M@ﬂ O)/w > ﬁgt,par(M@’ O)/w
* i(4~6)
image of Hgt,par(M@ O)torsion _— H&par(M@v ’{) If;’g:’par(M@, /{).

The injectivity of the map <) in the diagram (4.8) follows from the snake lemma and the
assumption that the cokernel of Hg (Mg, O) — Hg (Mg, O) is torsion-free. Thus the injec-
tivity of the map ¥ follows from the following commutative diagram:

(4.8) HE or (Mg, O)—— Hg (Mg, O) —— HY (Mg, 0)/Hg ., (Mg, 0)

imodw imodw

(Mg, 0)/w"~ HE (Mg, 0)/w

| |

(M@a K)C—> Hgt(M@a H)'

HY

ét,par

H}

ét,par
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O
Proposition 4.5. Fil”(ﬁf) # 0.
Proof. Since ﬁf — ﬁ, we have ﬁf — ﬁ and hence
Fil™(My) < Fil"(M).
Then our assertion follows from Proposition 4.3 and f = E # 0 (mod w). O

4.5. The Hodge—Tate weight and rank of VE Finally, we consider the torsion-free
Eisenstein part

Ve = Hj (Mg, O)[pE].

We abbreviate I'1 1 (n) to I'. The following proposition is a key to prove our theorem.

Proposition 4.6. Assume that F # Q, T = I'/(IT' N F*) is p-torsion-free, and C(q, E) #
N(q) for some prime ideal q dividing n, where C(q, E) is the U(q)-eigenvalue of E. Then
VE is free of rank 1 over O and the Hodge-Tate weight is n.

Proof. We denote by X the complex manifolds Y = Y'(n) or Y! = Y'!(n) defined in §1.1. We
shall decompose
Hn(Xv (C) = Hgar(X7 (C) ©® H]TE)LiS(Xv C)7

where Hg, (X, C) is the Eisenstein cohomology (for the definition, see Step3).

By the comparison theorem between étale cohomology, Betti cohomology, and de Rham
cohomology, it suffices to prove the following two claims:

(1) Hy(Y,C) = F'Hy; (Y, C)

(2) Hg,,(Y,C) is stable under the Hecke correspondences and

H"(Y,C)[pe] = Hg;s(Y, C)lpr] ~ C.

First, we prove (1). In the case X = Y, Freitag shows that the Hodge number of the
Eisenstein cohomology is equal to n ([Fre, Chapter III, Proposition 3.5 and Theorem 4.9)]).
In the case X =Y, we follow the arguments in the Freitag’s proof.

Stepl: To give a basis of H"~1(T';,C) and H"(T;,C) for each cusp t.

Let a € G(Q) be such that a~!(t) = co. We may assume that ¢ = oo by the pull-back by
. We shall prove that a basis of H" 1(T's,, C) (resp. H"(I'w,C)) over C is given by

d dYn—
w&_lzﬂ/\"'/\ Yn—1

Y1 Yn—1

(resp. why, =dxy A -+ ANdxy).

We remark that these forms are closed and I'-invariant.

Let D={2z€ 9" | N(y) =y1---yn = 1} be the boundary of the Borel-Serre compactifi-
cation YBS of Y at the cusp oo as §2.5. The group I's, which consists of transformations of
the form

zr—uz+b, N(u)=1
acts on D. We may identify D with R?"~! by
_D ~ RQnil L2 (.T17"‘ y Tp, ULy " " 7un—1)
with coordinates {z;}7, and {u; = log(y;)}?=}!. Since
To\H" = R x (To\D) : z = (log(N(y)), N(y)~"/"2),
Too\D — T'o\H™ is a homotopy equivalence and hence it suffices to compute H*(T's\ D, C).
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For subsets b,c C {1,---,n}, we consider a 'y -invariant harmonic differential m-form
w =Y foclx,u)dry Aduc. By the same argument of [Fre, p.145, 146], the functions f, .(z, u)
are independent of z and if fj .(z,u) # 0, then b= ¢ or {1,--- ,n}.

In the case b = ¢, H" 1 (I's,\ D, C) is isomorphic to the de Rham cohomology of a lattice
log(o, ) C R"™ . In the same way as [Fre, p.146], one shows that w™ ! is a basis as desired.

In the case b = {1,--- ,n}, H"(T'sx\D,C) is isomorphic to the de Rham cohomology of a
lattice and hence this case is similar.
Step2: To construct the Eisenstein operator

E: @ H'(T,C)— H'(T,C).
teC(I)

We may assume ¢ = co. As in [Fre, Chapter III, Remark 3.1], w2 = dzy A --- Adzy, is
cohomologous to dz; A - -+ A dz, up to scalar. We put

Woo =dz1 N -+ Ndzy.

As in the proof of [Fre, Chapter III, Proposition 3.5], in order to construct I'-invariant
forms from I'-invariant forms, the Eisenstein operator E is defined by symmetrization:

S Mo

MEeT\T

W

Here means that it can be defined by using analytic continuation of Eisenstein series.

Note that, for M = (a b
c d

Eg o(2) = limg_4o Eg o(z, s), then the Eisenstein operator E is well-defined:

Z M*weo := lim Z IN(cz + d)| 2 M*weo = E3 5(2)woo,
— s—0 — ’
MET\T MEeTo\T

) € I, M*ws = N(cz + d) 2ws. If there exists the limit

where Eg o(z,s) is an Eisenstein series of the following type:

Eyo(z,8)= Y N(cz+d)*|N(cz+d)|>.
MeT o\

Analytic continuation of the Eisenstein series follows from [Shi, Proposition 3.2] as follows.
We use the same notation H(z,s,1) as [Shi, (3.14)] for b = dp[t1], ¢ = n. Since [y \I' ~
I'oo\I', we have E{O(z,s) = H(z,s,1). Thus, by [Shi, Proposition 3.2], if n = [F : Q] >
1, then Eg o(z,s) can be continued to a meromorphic function on the whole s-plane and
holomorphic at s = 0 as desired.

Step3: To show that Eisenstein operator E is a section of the restriction map H™(T',C) —
H™(T;,C) for each cusp t.

As in the proof of [Fre, Chapter III, Proposition 3.3], it suffices to compute the constant
term of E{O(z) at the cusp ¢ is equal to 1 (resp. 0) if ¢ ~p oo (resp. t =1 00). As in the
same way ([Fre, Chapter I, §5]), the constant term can be computed by using the formula

N(lyl)rgooll_%Ezo(Z S)IM—E_I}})N(h)m EQO(Z s)| M.

For example, at the cusp ¢ = oo, we have

1 if c=0
li N d)2|N d)|™% = ’
vim Nlez+d)7IN(ez + )" {0 if ¢ 0.



CONGRUENCES OF HILBERT MODULAR FORMS 57

We define the Eisenstein cohomology Hg: (Y, C) by
HEL (Y, C) = im(E).
Therefore, since Eg () is holomorphic, the Hodge number of the Eisenstein cohomology is
n, that is, Hp, (Y,C) = F"HE, (Y, C).
Next, we prove (2). Since the U(q)-eigenvalue of each invariant form w;y as in the proof

of Theorem 2.22 is N(q) by the decomposition (3.4), the assumption C(q,E) # N(q) and
the g-expansion principle over C imply that H” (Y,C)[pg] = 0. Thus, if the Eisenstein

par

cohomology Hg, (Y, C) is stable under the Hecke correspondences, we get (2):
H"(Y,C)[pe] = Hgi (Y, C)[pe] ~ C.

We prove this stability of the Hecke correspondence. We use the same notation as §2.3.
Let ¢ = (ct)iec(r) € Drec(ry H"(I't, C) such that ¢; = 0if ¢ # 00 and coc = [woo). Let’s fix
a € GLa(F) such that T'al' = [[;c; Ty as a finite disjoint union. It suffices to show that

(4.9) E(c)|[Tal'l = E(c|[I'all).

By the definition of the Eisenstein operator E, the left hand side is equal to

(4.10) )ITal] =) " o; lim D> INGM, 2))7F Mrwe
i€l MeFoo\F
= lim > [N(G(M, ai(2)] > af M we
iel 570 MEeT\T
=Z;ig5!N(j(am>)l23 > ING(Ma, 2))| 7> (Mai) woo
el MET o \T

= > 3 INGe )P e

1€l velo\Ie;

—1; —2s
—tm Y NGO )P e
YEl s \['al’

We consider the right hand side of (4.9). For each s € P(F), we put
s ={yeTx\I'al' | y(s) = cx}.
Note that

Po\Tal' = ]

sePL(F)

For each s € P}(F), there exist a unique ¢t € C(I') and a unique M € I';\I' such that M(s) =
and hence

(4.11) IT 11 @ = Toc\Lal' is bijective.
teC(I") Mel' \I'

We put c|[Tal'] = ([wi])ec(r)- We claim that

(4.12) wy, = Z ¥ Woo-

vES
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By the definition of ¢|[I'al] as §2.3,

Z Z féf] wat(t)

ielt jeJt

ZZ Zl] wﬁt

i€l jeJt

where I!, = {i € I' | Bi(¢ ) ~r oo}. For each i € I, we may assume that B!(f) = co by
replacing (3! by !¢ with 4! € I and ~!!(t) = co. Then, in order to prove (4.12), it suffices
to show the following decomposition:

= H H Fooﬁfdf]

i€l jeJt

Proof. (D) : Tt follows from f}d; ;(00) = oo.
(C) : Using the decomposition of I'al" as §2.3, we have

Too\Lal' = ] ] Tee\I'B!67.

ielt jeJt
For each Foo’yﬁfdfj € ., with v € ', we have vf3!(t) = co and hence i € I, and v € I'sc. In
particular, Tooy320? . = I'o/320¢ . as desired. O

174, 11,7

Thus we obtain

E(c|[Tal]) Z Z (Y*woo)

teC(T) ve7%

= > > dim Y INGOM, )7 (M) wee.

tec(r)ver "0 mernr

Here the first equality follows from (4.12) and the second equality follows from the definition
of the Eisenstein operator F. Thus we get

E(c|[Tal) = E(c)|[lal
as desired. Here the equality follows from ., - M = #j;-1(y), (4.11), and (4.10). O

Under the same assumptions of main theorem 4.1, we show that modw : H, (M@, 0) —»

Hg (Mg, O)/w induces
mod w : XN/E — ﬁ

Let [c] € H (Mg, O) mapping to [7g] € ITIQJ(Mf O) and let [¢] denote the image of [¢] in
Hg (Mg, O)/w. Our assumptions that coker (H;fE (Mg, 0) = Hi (Mg, O)) is torsion-free
and f = E(mod w) imply that [7mg] is zero in coker (HetC(M O) — Hg (Mg, (’))) /@ by
(Mg, 0) — HE (Mg, (9)) /w. With the help
of the injectivity of ¢ in the diagram (4.8), we see that [c] belongs to HJ par( 5,0)/w.
Mg, 0)/w@ LN H"(M O)/w and

ét,c

Proposition 2.9. Thus [c] is zero in coker (H”

Then our claim follows from the injectivity of H HE par(
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(4.6). One see that the injectivity of # is obtained by the following diagram:
(413) Hy (M@7 O)torsion/wc—> HZ (M@, (’))/w — s f—j”

ét,par ét,par ét,par

] & l*

(Mg,0)/w

Hg (Mg, O)torsion/ o Hg (Mg, O) /@ ﬁé‘t(M*, 0)/w.

We define _
inm(modw:VEﬁV»
With the help of Corollary 2.24, we obtain the following proposition:

Proposition 4.7. Under the same assumptions of Theorem 4.1 and Proposition 4.6, L is a
free of rank 1 over k with Hodge-Tate weight n.

4.6. Proof of Theorem 4.1. We consider the following diagram :

VE
\\ mod w
L7y
(4.5)
Vi

By the comparison theorem between étale cohomology and Betti cohomology, we may regard

this diagram as Wg-equivariant. We put N = im(mod w : Mg — M). By combining

Proposition 4.3, Proposition 4.7, and Remark 2.23, we have L = L[e] and Fil"(M) = N.

Thus, by Lemma 4.4 and Proposition 4.5, there exists a subrepresentation L’ of V¢ such that
L ~ L. By the diagram as Wg-modules, L’ is stable under the action of W and L' = L'[¢].

The partial Eichler-Shimura-Harder isomorphism (2.27) over C says that Vi[e] is free of
rank 1 over k. Therefore, we obtain the main theorem 4.1.
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