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1 Introduction.

In this thesis, we give a construction of a topological invariant of rational
homology 3-spheres via vector fields, which we denote by z̃. The construction of
z̃ is a generalization of both that of zKKT due to G. Kuperberg and D. Thurston
([14]) 1 and that of zFWdue to T. Watanabe ([32]). These two invariants zKKT

and zFW are related to the Chern-Simons perturbation theory. More precisely
we show that the construction of zKKT is a special case of that of z̃ when vector
fields are given by a framing on a given rational homology 3-sphere, and the
construction of zFW is a special case of that of z̃ when vector fields are gradient
vector fields of Morse functions on a given rational homology 3-sphere. As a
corollary, we have zFW = zKKT.

In this introduction, we first review two invariants zKKT and zFW. We next
explain an outline of the construction of z̃. We also give several remarks on the
results of the thesis.

1 Background.

1.1 The Chern-Simons perturbation theory.

1.1.1 Witten’s proposal and the Kontsevich invariant.

Around 1984, V. Jones defined an invariant of knots, which is now called the
Jones polynomial, using the study of operator algebras in [12]. After that, quan-
tum invariants associated with representations of Lie algebras were discovered
for many representations of Lie algebras in late 1980s．The Jones polynomial
is understood as the quantum sl2 invariant. In 1989, E. Witten proposed that
the partition function of the Chern-Simons field theory gives a topological in-
variant of links in 3-manifolds in [33]. Quantum invariants including the Jones
polynomial are understood as the Witten invariant for links in S3.

Around 1991, M. Kontsevich proposed a topological invariant of knots taking
values in A(S1). Here A(S1) is the quotient space of the vector space gener-
ated by oriented Jacobi diagrams on S1 divided by some relations. For each
irreducible representation V of a simple Lie algebra g, there is a linear map
from A(S1) to C called a weight system. Then the quantum (g, V ) invariant is
recoverd from the Kontsevich invariant via the weight system. In this sense, the
Kontsevich invariant is universal for quantum invariants.

1.1.2 Finite type invariants of knots.

Around 1989, V. A Vassiliev ([28]) defined the notion of finite type invariants
of knots. Birman and Lin gave a combinatorial definition of the notion of finite
type invariants in [3] and then they established a relation between the Jones
polynomial and finite type invariants. Quantum invariants give examples of

1The notation zKKT and zFW differ from the original notations.
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finite type invariants. Finite type invariants are characterized by the behavior
under crossing changes. It is known that the Kontsevich invariant is universal for
finite type invariants. R. Bott and C. Taubes constructed finite type invariants
of knots via the configuration space integral in [4].

1.1.3 Quantum invariants of 3-manifolds.

The study of quantum invariants of 3-manifolds started from Witten’s work.
There are several ways of constructing mathematical invariants based on Wit-
ten’s proposal. For example, an appropriate weighted sum of quantum invari-
ants of a framed link corresponding to a given 3-manifold via Dehn surgery is
a quantum invariant of such a 3-manifold. N. Reshetikhin and V. G. Turaev
constructed the quantum SU(2) invariant in this way in [26]. Many quantum
invariants were discovered. T. Ohtsuki and T.T.Q. Le constructed the pertur-
bative G invariant by an arithmetic expansion of the quantum G invariant.

1.1.4 Finite type invariants of integral homology 3-sphere.

T. Ohtsuki ([25]) defined the notion of finite type invariants of integral homology
3-spheres using integral surgeries instead of crossing changes in the definition of
finite type invariants of knots. Garoufalidis-Levine also defined the notion of fi-
nite type invariants using Torelli surgeries and show that this definition coincides
with Ohtsuki’s definition for integral homology 3-spheres in [10]. S. Garoufalidis
and Ohtsuki gave a relation between Jacobi diagrams and the theory of finite
type invariants. Habiro gave a reformulation of this relation using claspers in
[11].

T. T. Q. Le and J. Murakami and Ohtsuki ([15]) constructed a topological
invariant of 3-manifolds from the Kontsevich invariant, which is called the LMO
invariant. The LMO invariant takes values in A(∅). The space A(∅) is the
quotient space of the vector space generated by oriented Jacobi diagrams divided
by some relations. The degree of a Jacobi diagram is the half of the number of
its vertexes. The space An(∅) is a vector subspace of A(∅) spanned by Jacobi
diagrams of degree n. The LMO invariant is universal for both finite type
invariants of integral homology 3-spheres and perturbative quantum invariants.

The notion of finite type invariants was extended to 3-manifolds by
T. D. Cochran and P. Melvin ([6]).

1.1.5 The Chern-Simons perturbation theory.

S. Axelrod and I. M. Singer ([1]) and Kontsevich ([13]) proposed topological
invariants of 3-manifolds via the perturbative expansion of the Chern-Simons
path integral. Their invariants are written by the configuration space integral.
Axelrod and Singer, and Kontsevich gave a propagator to construct of their
invariants. A propagator is a differential 2-form on the two point configura-
tion space of a given 3-manifold. A propagator plays an important role in the
configuration space integral.
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Axelrod and Singer’s propagator and Kontsevich’s propagator are slightly
different. Axelrod and Singer use Green functions and Riemannian metrics.
Kontsevich assume only that a propagator is a closed form.

1.2 The Kontsevich-Kuperberg-Thurston invariant

G. Kuperberg and D. Thurston gave a topological invariant zKKT of rational
homology 3-spheres taking values in A(∅) in [14] based on Kontsevich’s work.
Kuperberg and Thurston proved that zKKT is universal for finite type invariants
of homology 3-spheres. The invariant zKKT

1 which is the degree one part of
zKKT gives an alternative description of the Casson-Walker invariant. zKKT is
the sum of the principal term defined by using a framing and the correction
term to the framings. The principal term of zKKT is given by the configuration
space integral. So this invariant is suitable for the study of surgery formulas.
In fact Kuperberg and Thurston in [14] proved that zKKT are of finite type by
using surgery formulas. Furthermore, C. Lescop studied other type of surgery
of rational homology 3-spheres, and then she gave several surgery formulas for
zKKT in [17], [18].

1.2.1 Related work on the Kontsevich-Kuperberg-Thurston invari-
ant.

• A framing is a triple of linearly independent non-vanishing vector fields.
Then we can regard the principal term of zKKT as an invariant of a triple of
linearly independent non-vanishing vector fields. Lescop gave an invariant
of a non-vanishing vector field on a rational homology 3-sphere in [21].
Lescop’s invariant is an extension of zKKT

1 for integral homology 3-spheres.

• Lescop constructed an invariant corresponding to zKKT
1 for 3-manifolds

with first Betti number one in [19].

• K. Sakai studied the space of (higher dimensional) long knots using the
configuration space integral in [27]. He constructed a map from some
graph complex to the de Rham complex of the space of long knots and
then he obtained a cohomology class which is an extension of the Haefliger
invariant.

• I. Volic studied the space of pure braids in Rn via the configuration space
integral in [29]. In particular, he obtained finite type invariants of braids
in the case of n = 3.

• T. Moriyama constructed an invariant of an embedded 3-manifold in a
6-manifold satisfying some properties in [22]. His construction was in-
spired by the configuration space integral used in the construction of zKKT

1 .
Moriyama’s invariant recovers the Haefliger invariant and Milnor’s triple
linking number of algebraically split 3-component links in R3 and the
Casson-Walker invariant. He gave a direct proof of a vanishing property
of the Rokhlin invariant as an application ([23]).
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• T. Watanabe studied families of higher dimensional homology spheres by
using the configuration space integral in [30], [31]. Then he gave non-
trivial homotopy classes of the diffeomorphism group of a sphere.

1.3 Fukaya’s invariant.

In the 1990s, K. Fukaya constructed an invariant of a pair of two local systems
on a 3-manifold via Morse functions in [7]. A broken graph is a graph given by
cutting some edges. For a local system on a 3-manifold, we compute the number
by counting flow graphs of several labeled broken graphs. Here a flow graph is a
map from the given broken graph to the given 3-manifold such that the image of
each edge is a trajectory of the Morse function corresponding to the label of such
an edge. Each flow graph has a weight given by using holonomy of the given
local system. Fukaya’s invariant is defined as the difference of such numbers
corresponding to given two local systems. He proposed that this difference is
independent of the choice of Morse functions (so this is an invariant of the pair
of two local systems on a 3-manifold).

M. Futaki pointed out that Fukaya’s invariant sometimes depends on the
choice of Morse functions in [9]. Then Fukaya’s invariant is not a topological
invariant of a local system on a 3-manifold.

Fukaya’s construction is similar to the construction of the degree one part
of the Chern-Simons perturbation theory in many points. Fukaya conjectured
that there are relationships between Fukaya’s invariant and the Chern-Simons
Perturbation theory by Axelrod and Singer.

1.3.1 Related work on flow graphs.

M. Betz and R. L. Cohen ([2]) constructed cohomology operations to recover
the cup products and the Poincaré duality and the Steenrod squares using flow
graphs. Fukaya also recover the cup product and the Massey product.

1.4 Watanabe’s invariant.

As stated above, the number of flow graphs in Fukaya’s construction depends on
the choice of both local systems and 3-manifolds. Fukaya considered a ”relative
invariant” of two local systems.

Watanabe constructed an invariant of a rational homology 3-sphere (with
trivial local system). The principal term of Watanabe’s invariant is defined
by counting the moduli spaces of flow graphs as Fukaya’s construction. In the
case of trivial local system, the problem pointed out by Futaki does not occur.
But a difference of the numbers corresponding to two local systems are trivial.
Watanabe constructed the correction term to Morse functions, which is called
the anomaly term. Then he defined a topological invariant of rational homology
3-spheres to be the sum of the principal term and the anomaly term. Watanabe
also constructed an invariant zFWn taking values in An(∅) by using flow graphs
of higher loop graphs in [32].
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Watanabe conjectured that his invariants related to the Chern-Simons per-
turbation theory by Kontsevich.

2 The main result.

In this thesis, we give a construction of a topological invariant of rational ho-
mology 3-spheres via vector fields, which we denote by z̃ (Theorem 2). The
construction of z̃ is a generalization of both that of zKKT and that of zFW. z̃ is
the sum of the principal term and the anomaly term.

We show that the construction of zKKT is a special case of that of z̃ when
vector fields are given by a framing on a given rational homology 3-sphere (The-
orem 8), and the construction of zFW is a special case of that of z̃ when vector
fields are gradient vector fields of Morse functions on a given rational homology
3-sphere （Theorem 9). As a corollary, we have zKKT = zFW for any rational
homology 3-sphere (Corollary 10).

We determine the constant µn which appeared in the construction of the
anomaly term of z̃ (Theorem 6). The constant µn is equivalent to the constant
used in [32]. This constant was not determined.

2.1 Construction of z̃.

Let Y be a rational homology 3-sphere with a base point ∞ ∈ Y . Let N(∞;Y )
be a regular neighborhood (that is diffeomorphic to an open ball) of ∞ in Y and
let N(∞;S3) be a regular neighborhood of ∞ in S3 = R3 ∪{∞}. We fix an ori-

entation preserving diffeomorphism φ∞ : (N(∞;Y ),∞)
∼=→ (N(∞;S3),∞).We

identify N(∞;Y ) with N(∞;S3) under φ∞. Take a ∈ S2 ⊂ R3. We often
regard a ∈ R3 as the section of a trivial R3 bundle. The map qa : R3 → R is
defined by qa(x) = ⟨x, a⟩ where ⟨, ⟩ is the standard inner product on R3.

Definition 1 (admissible vector field). A vector field γ ∈ ΓT (Y \ ∞) is an
admissible vector field (with respect to a) if the following conditions hold.

• γ|N(∞;Y )\∞ = −grad qa|N(∞;S3)\∞,

• γ is transverse to the zero section in T (Y \∞).

Take a1, · · · , a3n ∈ S2 are enough “generic” points. Let γi be an admissible
vector field with respect to ai. We construct the principal term z̃n(Y ; γ⃗) ∈
An(∅) by using the configuration space integral and the correction term (called
anomaly term) z̃anomaly(γ⃗) to remove the ambiguity in the choice of γ⃗. Then
we prove the following main theorem.

Theorem 2 (Theorem 4.14.).

z̃n(Y ) = z̃n(Y ; γ⃗)− z̃anomaly
n (γ⃗) ∈ An(∅)

does not depend on the choice of γ⃗. Thus z̃n(Y ) is a topological invariant of Y .
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2.1.1 The principal term.

The 6-manifold with corner C2(Y ) is a compactification of (Y \∞)2 \∆ similar
to the Fulton-MacPherson compactification ([8]). Here ∆ is the diagonal. We
define an 3-submanifold c(γi) of ∂C2(Y ) using γi for i = 1, · · · , 3n. We use
the same symbol c(γi) for its homology class. Since Y is a rational homology
3-sphere, there is a closed 2-form ω(γi) ∈ Ω2(C2(Y )) satisfying the following
conditions:

• ω(γi)|∂C2(Y ) represents the Poincaré dual of c(γi).
2

• The support of ω(γi)|∂C2(Y ) is concentrated in near c(γi).

We call ω(γi) a propagator with respect to γi.
Let ω(γi) be a propagator with respect to γi for each i ∈ {1, · · · , 3n}. To

simplify notation, we write γ⃗ instead of (γ1, · · · , γ3n). Set

En = {edge oriented, connected labeled Jacobi diagram of degree n},

An(∅) = {oriented Jacobi diagram of degree n}R/IHX,AS,

where {oriented Jacobi diagram of degree n}R is the real vector space generated
by the set {oriented Jacobi diagram of degree n}. Here a Jacobi diagram of
degree n is a trivalent graph with 2n vertexes without simple loop. There is a
natural map En → An(∅). We denote [Γ] the image of Γ under this natural map.
For each Γ ∈ En and each i ∈ {1, · · · , 3n}, there is a map Pi(Γ) : (Y \∞)2n\∆ →
C2(Y ). Here ∆ = {(x1, · · · , x2n) ∈ Y 2n | ♯{x1, · · · , x2n} < 2n}.

Definition 3.

z̃n(Y ; γ⃗) =
∑
Γ∈En

(∫
(Y \∞)2n\∆

∧
i

Pi(Γ)
∗ω(γi)

)
[Γ] ∈ An(∅).

When γ⃗ is enough generic, z̃n(Y ; γ⃗) depends only on the choice of γ⃗.

2.1.2 The anomaly term.

Let Y be an oriented closed 3-manifold (possibly not rational homology sphere)
and let γ⃗ = (γ1, · · · , γ3n) be a generic family of vector fields on Y transverse to
the zero section in TY . Let X be a connected oriented 4-manifold with ∂X = Y
and χ(X) = 0.

Take a unit vector filed ηX on X such that ηX |∂X coincides with the outward
unit vector field of TY = T (∂X) ⊂ TX|Y . Let T vX be the normal bundle of
ηX in TX. We remark that T vX|Y = TY .

Let βi ∈ ΓT vX be a vector field of T vX transverse to the zero section in T vX
satisfying βi|Y = γi. By using βi we have a 4-cycle c(βi) of (C2(Y ), ∂C2(Y )).

2There is a smooth manifold structure on ∂C2(Y ).
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For a real vector space V , we define

S̆2n(V ) = {{1, · · · , 2n} ↪→ V }/dilations and translations.

For an R3 vector bundle E on M , we denote by S̆2n(E) the fiber bundle over
M where the fiber over x ∈ M is S̆2n(Ex). For each Γ ∈ En and each i ∈
{1, · · · , 3n}, there is a map ϕi(Γ) : S̆2n(T

vX) → ST vX.

Definition 4.

I(X; γ⃗) =
∑
Γ

♯(
∩
i

Φi(Γ)
−1c0(βi))[Γ] ∈ An(∅).

We prove the following Lemma by a cobordism argument similar to Watan-
abe’s argument in [32].

Lemma 5. There exists µn ∈ An(∅) such that

Ĩ(γ⃗) = I(X; γ⃗)− µnSignX

does not depend on the choice of X, βi.

We determine the constant µn by computing a framed cobordism group.
The constant µn is equivalent to the constant µn introduced by Watanabe in
[32]. µn were not given explicitly in [32].

Theorem 6 (Lemma 7.10.). µn = 3
4δn. Here δn ∈ An(∅) is the constant due

to C. Lescop ([14]). Lescop gave an explicit formula of δn.

In this setting, we describe the definition of z̃anomaly
n (γ⃗). Let Y be a rational

homology 3-sphere and let γ1, · · · , γ3n be admissible vector fields with respect to
a1, · · · , a3n respectively. Take a framing τS3 of S3 satisfying τS3 |S3\N ′(∞;S3) =
τR3 . Here τR3 is the standard framing of R3 and N ′(∞;S3) is a neighborhood of
∞ smaller than N(∞;S3), i.e., ∞ ∈ N ′(∞;S3) ⊂ N(∞;S3). By the definition
of admissible vector fields, γ′

i = γi|Y \N(∞;Y ) ∪ τ∗S3ai|N ′(∞;S3) is a vector filed on
Y . We denote by γ⃗′

i = (γ′
1, · · · , γ′

3n).

Definition 7.

z̃anomaly
n (γ⃗) = Ĩ(γ⃗′)− 1

3
σS3(τS3)µn.

Here σS3(τS3) ∈ Z is the signature defect of τS3 .

We remark that the above definition is well-defined i.e. z̃anomaly
n (γ⃗) is inde-

pendent of the choice of τS3 .

2.2 Proof of zKKT = z̃ = zFW.

We describe the outline of the proof of the following two Theorems.

Theorem 8 (Theorem 7.1.). zKKT
n (Y ) = z̃n(Y ) for any rational homology 3-

sphere Y , for any n ∈ N.
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Theorem 9 (Theorem 7.2.). zFWn (Y ) = z̃n(Y ) for any rational homology 3-
sphere Y , for any n ∈ N.

Corollary 10 (Corollary 7.3.). zFWn (Y ) = zKKT
n (Y ) for any rational homology

3-sphere Y , for any n ∈ N.

2.2.1 Proof of zKKT = z̃.

Let τ : T (Y \ ∞) → R3 be a framing of Y \ ∞ satisfying τ |N(∞;Y )\∞ = τR3

where τR3 is the standard framing of R3 ⊂ S3 and R3 is the trivial vector bundle
over an appropriate base space. zKKT(Y ) is defined as sum of the principal
term zKKT(Y ; τ) ∈ An(∅) and the correction term −δnσY \∞(τ) ∈ An(∅). Here
δn ∈ An(∅) is the constant independent of both Y and τ . σY \∞(τ) is defined by
σY \∞(τ) = σY (τ |Y \N(∞;Y ) ∪ τS3 |N ′(∞;S3)) − σS3(τS3). The admissible vector
fields τ∗a⃗ = (τ∗a1, · · · , τ∗a3n) satisfy τ∗ai(x) ̸= τ∗aj(x) for any x ∈ Y \∞ and
for any i ̸= j. By the definition of zKKT(Y ; τ), we have zKKT(Y ; τ) = z̃(Y ; τ∗a⃗).

Then it is sufficient to show that 1
4σY \∞(τ)δn = z̃(τ∗a⃗). We prove this

equality by using a cobordism argument.

2.2.2 Proof of zFW = z̃.

Letf1, · · · , f3n : Y \∞ → R be generic Morse functions on Y \∞ such that the
restriction of Morse function fi to N(∞;Y ) \ ∞ coincides with the orthogonal
projection qai : R3 → R. zFW(Y ) is defined as sum of the principal term

zFW(Y ; f⃗) ∈ An(∅) and the anomaly term −zanomaly(f⃗) ∈ An(∅).
By the assumption of f1, · · · , f3n, gradf⃗ = (gradf1, · · · , gradf3n) is a fam-

ily of admissible vector fields. By the definition of anomaly terms, we have
zanomaly(f⃗) = z̃anomaly(gradf⃗).

It is sufficient to show that zFW(Y ; f⃗) = z̃(Y ; gradf⃗). Watanabe’s original

definition of zFWn (Y ; f⃗) is by counting flow graphs of broken graphs. We use an

alternative description of the definition of zFWn (Y ; f⃗) in terms of intersections of
manifolds. For each fi, M(±fi) is a weighted sum of 4-dimensional submanifolds
of Y 2. Then,

zFWn (Y ; f⃗) =
∑
Γ∈En

♯
∩

Pi(Γ)
−1(M(±fi)).

We make a 4-cycle of (C2(Y ), ∂C2(Y )) by modifying M(±fi) and compare
such 4-cycles with propagators used in the construction of z̃n. The equality
zFW(Y ; f⃗) = z̃(Y ; gradf⃗) is followed by this comparison with the intersection
theory and the Poincaré duality.

3 Remarks.

(1) Theorem 8 and Theorem 9 imply that z̃ gives a geometric description
of a universal finite type invariant. In particular, z̃1 and zFW1 (Y ) give a
description of the Casson-Walker invariant using vector fields. Lescop gave

8



a combinatorial description of the principal term of zKKT
1 via Heegaard

diagram in [20]. Lescop did not describe the anomaly term in such a
combinatorial way. One of the difficulties is that framings are less flexible
than vector fields. It is expected that a combinatorial description of the
Casson-Walker invariant is obtained via our description of the anomaly
term of z̃1.

(2) Our construction of z̃ is expected to be useful for explicit computations.
It is possible to regard a framing used in the construction of zKKT as
non-vanishing vector fields. In this thesis, we give an extension of this
construction for (possibly vanishing) vector fields. Since to take vector
fields is easier than to take a framing, our construction is expected to be
useful for explicit computations. Surgery formula is a tool to investigate
an invariant. To find surgery formulas of zKKT, we have to deal with
surgery of a manifold equipped with a framing. Sometimes a framing
does not admit a local replacement according to surgery on the manifold,
but it is always possible to replace a vector field locally. We can consider
another type surgery that changes only vector fields.

(3) The anomaly term z̃anomaly(γ⃗) is equivalent to the anomaly term zanomaly(f⃗)
of zFW. But we reformulate the construction. Some cobordisms are used
in both our construction and Watanabe’s construction of the anomaly
term. But the conditions of such cobordisms are different. This difference
plays an important role in the proof of Theorem 9 and Theorem 6.

(4) Fukaya conjectured that Fukaya’s invariant related to the Chern-Simons
perturbation theory by Axelrod and Singer. Fukaya remaked in [7] that
his conjecture may be regarded as the higher genus analogue of the co-
incidence of the Reidemeister torsion and the analytic torsion established
by J. Cheeger [5] and W. Müller [24]. On the other hand Watanabe con-
jectured that his invariant is related to invariants from the Chern-Simons
perturbation theory by Kontsevich. Corollary 10 gives an answer to this
conjecture.

4 Organization of the thesis.

The organization of this thesis is as follows. In Section 2 we prepare some
notations. In Section 3 we review notions and facts about configuration spaces
and graphs discussed by Lescop [16] and Watanabe [32]. In Section 4 we define
the invariants z̃n using vector fields and prove the independence of the choice
of vector fields. In Section 5 we review the construction of zKKT according
to [16] by Lescop. In Section 6 we review Watanabe’s construction of zFW in
[32] with a little modification. In Section 7 we prove that the construction of
z̃ is a generalization of both that of zKKT and that of zFW. In Section 8 we
prove some lemmas, which are used in Section 6,7 for a compactification of the
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moduli space of flow graphs used in Sections 6 and 7. In Appendix we give an
alternative and more direct proof of z̃1 = zKKT

1 .
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[29] I. Volić, On the cohomology of spaces of links and braids via configura-
tion space integrals, Sarajevo J. Math. 6(19) (2010), no. 2, 241–263. MR
2757618 (2012f:57035)

[30] T. Watanabe, On Kontsevich’s characteristic classes for higher dimensional
sphere bundles. I. The simplest class, Math. Z. 262 (2009), no. 3, 683–712.
MR 2506314 (2010c:55013)

[31] , On Kontsevich’s characteristic classes for higher-dimensional
sphere bundles. II. Higher classes, J. Topol. 2 (2009), no. 3, 624–660. MR
2546588 (2010k:55026)

[32] , Higher order generalization of Fukaya’s Morse homotopy invariant
of 3-manifolds I. Invariants of homology 3-spheres, ArXiv e-prints (2012).

[33] E. Witten, Quantum field theory and the Jones polynomial, Braid group,
knot theory and statistical mechanics, Adv. Ser. Math. Phys., vol. 9, World
Sci. Publ., Teaneck, NJ, 1989, pp. 239–329. MR 1062429

12




























































