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1 Introduction.

In this thesis, we give a construction of a topological invariant of rational
homology 3-spheres via vector fields, which we denote by z. The construction of
7 is a generalization of both that of zXKT due to G. Kuperberg and D. Thurston
([14]) * and that of z¥Wdue to T. Watanabe ([32]). These two invariants zXKT
and z¥W are related to the Chern-Simons perturbation theory. More precisely
we show that the construction of zXXT is a special case of that of Z when vector
fields are given by a framing on a given rational homology 3-sphere, and the
construction of 2FW is a special case of that of Z when vector fields are gradient
vector fields of Morse functions on a given rational homology 3-sphere. As a
corollary, we have zF'WV = ZKKT,

In this introduction, we first review two invariants zXXT and 2"W. We next
explain an outline of the construction of z. We also give several remarks on the
results of the thesis.

1 Background.

1.1 The Chern-Simons perturbation theory.
1.1.1 Witten’s proposal and the Kontsevich invariant.

Around 1984, V. Jones defined an invariant of knots, which is now called the
Jones polynomial, using the study of operator algebras in [12]. After that, quan-
tum invariants associated with representations of Lie algebras were discovered
for many representations of Lie algebras in late 1980s. The Jones polynomial
is understood as the quantum sl invariant. In 1989, E. Witten proposed that
the partition function of the Chern-Simons field theory gives a topological in-
variant of links in 3-manifolds in [33]. Quantum invariants including the Jones
polynomial are understood as the Witten invariant for links in S%.

Around 1991, M. Kontsevich proposed a topological invariant of knots taking
values in A(S'). Here A(S!) is the quotient space of the vector space gener-
ated by oriented Jacobi diagrams on S! divided by some relations. For each
irreducible representation V' of a simple Lie algebra g, there is a linear map
from A(S?) to C called a weight system. Then the quantum (g, V) invariant is
recoverd from the Kontsevich invariant via the weight system. In this sense, the
Kontsevich invariant is universal for quantum invariants.

1.1.2 Finite type invariants of knots.

Around 1989, V. A Vassiliev ([28]) defined the notion of finite type invariants
of knots. Birman and Lin gave a combinatorial definition of the notion of finite
type invariants in [3] and then they established a relation between the Jones
polynomial and finite type invariants. Quantum invariants give examples of
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finite type invariants. Finite type invariants are characterized by the behavior
under crossing changes. It is known that the Kontsevich invariant is universal for
finite type invariants. R. Bott and C. Taubes constructed finite type invariants
of knots via the configuration space integral in [4].

1.1.3 Quantum invariants of 3-manifolds.

The study of quantum invariants of 3-manifolds started from Witten’s work.
There are several ways of constructing mathematical invariants based on Wit-
ten’s proposal. For example, an appropriate weighted sum of quantum invari-
ants of a framed link corresponding to a given 3-manifold via Dehn surgery is
a quantum invariant of such a 3-manifold. N. Reshetikhin and V. G. Turaev
constructed the quantum SU(2) invariant in this way in [26]. Many quantum
invariants were discovered. T. Ohtsuki and T.T.Q. Le constructed the pertur-
bative G invariant by an arithmetic expansion of the quantum G invariant.

1.1.4 Finite type invariants of integral homology 3-sphere.

T. Ohtsuki ([25]) defined the notion of finite type invariants of integral homology
3-spheres using integral surgeries instead of crossing changes in the definition of
finite type invariants of knots. Garoufalidis-Levine also defined the notion of fi-
nite type invariants using Torelli surgeries and show that this definition coincides
with Ohtsuki’s definition for integral homology 3-spheres in [10]. S. Garoufalidis
and Ohtsuki gave a relation between Jacobi diagrams and the theory of finite
type invariants. Habiro gave a reformulation of this relation using claspers in
[11].

T. T. Q. Le and J. Murakami and Ohtsuki ([15]) constructed a topological
invariant of 3-manifolds from the Kontsevich invariant, which is called the LMO
invariant. The LMO invariant takes values in A(()). The space A(D) is the
quotient space of the vector space generated by oriented Jacobi diagrams divided
by some relations. The degree of a Jacobi diagram is the half of the number of
its vertexes. The space A, (() is a vector subspace of A(()) spanned by Jacobi
diagrams of degree n. The LMO invariant is universal for both finite type
invariants of integral homology 3-spheres and perturbative quantum invariants.

The notion of finite type invariants was extended to 3-manifolds by
T. D. Cochran and P. Melvin ([6]).

1.1.5 The Chern-Simons perturbation theory.

S. Axelrod and I. M. Singer ([1]) and Kontsevich ([13]) proposed topological
invariants of 3-manifolds via the perturbative expansion of the Chern-Simons
path integral. Their invariants are written by the configuration space integral.
Axelrod and Singer, and Kontsevich gave a propagator to construct of their
invariants. A propagator is a differential 2-form on the two point configura-
tion space of a given 3-manifold. A propagator plays an important role in the
configuration space integral.



Axelrod and Singer’s propagator and Kontsevich’s propagator are slightly
different. Axelrod and Singer use Green functions and Riemannian metrics.
Kontsevich assume only that a propagator is a closed form.

1.2 The Kontsevich-Kuperberg-Thurston invariant

G. Kuperberg and D. Thurston gave a topological invariant zXXT of rational

homology 3-spheres taking values in A(0) in [14] based on Kontsevich’s work.
Kuperberg and Thurston proved that 2XKT is universal for finite type invariants
of homology 3-spheres. The invariant zXKT which is the degree one part of
KT gives an alternative description of the Casson-Walker invariant. zXKT is
the sum of the principal term defined by using a framing and the correction
term to the framings. The principal term of zXXT is given by the configuration
space integral. So this invariant is suitable for the study of surgery formulas.
In fact Kuperberg and Thurston in [14] proved that zXXT are of finite type by
using surgery formulas. Furthermore, C. Lescop studied other type of surgery
of rational homology 3-spheres, and then she gave several surgery formulas for
ZKET i [17], [18].

1.2.1 Related work on the Kontsevich-Kuperberg-Thurston invari-
ant.

e A framing is a triple of linearly independent non-vanishing vector fields.
Then we can regard the principal term of 25T as an invariant of a triple of
linearly independent non-vanishing vector fields. Lescop gave an invariant
of a non-vanishing vector field on a rational homology 3-sphere in [21].
Lescop’s invariant is an extension of 2KXXT for integral homology 3-spheres.
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e Lescop constructed an invariant corresponding to z for 3-manifolds

with first Betti number one in [19].

e K. Sakai studied the space of (higher dimensional) long knots using the
configuration space integral in [27]. He constructed a map from some
graph complex to the de Rham complex of the space of long knots and
then he obtained a cohomology class which is an extension of the Haefliger
invariant.

e [. Volic studied the space of pure braids in R™ via the configuration space
integral in [29]. In particular, he obtained finite type invariants of braids
in the case of n = 3.

e T. Moriyama constructed an invariant of an embedded 3-manifold in a
6-manifold satisfying some properties in [22]. His construction was in-
spired by the configuration space integral used in the construction of 2KKT,
Moriyama’s invariant recovers the Haefliger invariant and Milnor’s triple
linking number of algebraically split 3-component links in R? and the
Casson-Walker invariant. He gave a direct proof of a vanishing property
of the Rokhlin invariant as an application ([23]).



e T. Watanabe studied families of higher dimensional homology spheres by
using the configuration space integral in [30], [31]. Then he gave non-
trivial homotopy classes of the diffeomorphism group of a sphere.

1.3 Fukaya’s invariant.

In the 1990s, K. Fukaya constructed an invariant of a pair of two local systems
on a 3-manifold via Morse functions in [7]. A broken graph is a graph given by
cutting some edges. For a local system on a 3-manifold, we compute the number
by counting flow graphs of several labeled broken graphs. Here a flow graph is a
map from the given broken graph to the given 3-manifold such that the image of
each edge is a trajectory of the Morse function corresponding to the label of such
an edge. Each flow graph has a weight given by using holonomy of the given
local system. Fukaya’s invariant is defined as the difference of such numbers
corresponding to given two local systems. He proposed that this difference is
independent of the choice of Morse functions (so this is an invariant of the pair
of two local systems on a 3-manifold).

M. Futaki pointed out that Fukaya’s invariant sometimes depends on the
choice of Morse functions in [9]. Then Fukaya’s invariant is not a topological
invariant of a local system on a 3-manifold.

Fukaya’s construction is similar to the construction of the degree one part
of the Chern-Simons perturbation theory in many points. Fukaya conjectured
that there are relationships between Fukaya’s invariant and the Chern-Simons
Perturbation theory by Axelrod and Singer.

1.3.1 Related work on flow graphs.

M. Betz and R. L. Cohen ([2]) constructed cohomology operations to recover
the cup products and the Poincaré duality and the Steenrod squares using flow
graphs. Fukaya also recover the cup product and the Massey product.

1.4 Watanabe’s invariant.

As stated above, the number of flow graphs in Fukaya’s construction depends on
the choice of both local systems and 3-manifolds. Fukaya considered a "relative
invariant” of two local systems.

Watanabe constructed an invariant of a rational homology 3-sphere (with
trivial local system). The principal term of Watanabe’s invariant is defined
by counting the moduli spaces of flow graphs as Fukaya’s construction. In the
case of trivial local system, the problem pointed out by Futaki does not occur.
But a difference of the numbers corresponding to two local systems are trivial.
Watanabe constructed the correction term to Morse functions, which is called
the anomaly term. Then he defined a topological invariant of rational homology
3-spheres to be the sum of the principal term and the anomaly term. Watanabe
also constructed an invariant zEW taking values in A, (f)) by using flow graphs
of higher loop graphs in [32].



Watanabe conjectured that his invariants related to the Chern-Simons per-
turbation theory by Kontsevich.

2 The main result.

In this thesis, we give a construction of a topological invariant of rational ho-
mology 3-spheres via vector fields, which we denote by Z (Theorem 2). The
construction of 7 is a generalization of both that of zXXT and that of 2FW. 7 is
the sum of the principal term and the anomaly term.

We show that the construction of zKXT is a special case of that of Z when
vector fields are given by a framing on a given rational homology 3-sphere (The-
orem 8), and the construction of 2F'W is a special case of that of Z when vector
fields are gradient vector fields of Morse functions on a given rational homology
3-sphere (Theorem 9). As a corollary, we have zXKT = :¥W for any rational
homology 3-sphere (Corollary 10).

We determine the constant p,, which appeared in the construction of the
anomaly term of Z (Theorem 6). The constant p, is equivalent to the constant
used in [32]. This constant was not determined.

2.1 Construction of z.

Let Y be a rational homology 3-sphere with a base point co € Y. Let N(co;Y)
be a regular neighborhood (that is diffeomorphic to an open ball) of co in Y and
let N(00;S?) be a regular neighborhood of co in $3 = R3U {oo}. We fix an ori-
entation preserving diffeomorphism ¢ : (N(00;Y), 00) 5 (N(o0; S3),00).We
identify N(oo0;Y) with N(00;8%) under ¢>. Take a € S? C R3. We often
regard a € R? as the section of a trivial R? bundle. The map ¢, : R? — R is
defined by q,(z) = (r,a) where {,) is the standard inner product on R3.

Definition 1 (admissible vector field). A vector field v € T'T(Y \ o0) is an
admissible vector field (with respect to a) if the following conditions hold.

hd ’YlN(oo;Y)\oo = —grad qcz|N(oo;S3)\oo7
e v is transverse to the zero section in T'(Y \ 00).

Take ai,--- ,as, € S are enough “generic” points. Let ; be an admissible
vector field with respect to a;. We construct the principal term z,(Y;¥) €
A, (0) by using the configuration space integral and the correction term (called
anomaly term) z2"°maly(¥) to remove the ambiguity in the choice of 4. Then
we prove the following main theorem.

Theorem 2 (Theorem 4.14.).
Z.(Y) = 2,(Y; ) — 22momaly(3) € A, (0)

does not depend on the choice of 4. Thus Z,(Y) is a topological invariant of Y.



2.1.1 The principal term.

The 6-manifold with corner C3(Y') is a compactification of (Y \ 00)? \ A similar
to the Fulton-MacPherson compactification ([8]). Here A is the diagonal. We
define an 3-submanifold ¢(y;) of dC2(Y) using ~; for ¢ = 1,---,3n. We use
the same symbol ¢(v;) for its homology class. Since Y is a rational homology
3-sphere, there is a closed 2-form w(v;) € Q%(Ca(Y)) satisfying the following
conditions:

o w(vi)lac,(v) represents the Poincaré dual of c(v;). 2
e The support of w(7;)|ac,(v) is concentrated in near c(v;).

We call w(v;) a propagator with respect to ;.
Let w(v;) be a propagator with respect to ~y; for each i € {1,---,3n}. To
simplify notation, we write 4 instead of (y1,- -+ ,Y3n). Set

&, = {edge oriented, connected labeled Jacobi diagram of degree n},

A, (@) = {oriented Jacobi diagram of degree n}g/IHX, AS,

where {oriented Jacobi diagram of degree n}g is the real vector space generated
by the set {oriented Jacobi diagram of degree n}. Here a Jacobi diagram of
degree n is a trivalent graph with 2n vertexes without simple loop. There is a
natural map &, — A, (0). We denote [I'] the image of I' under this natural map.
For each T' € &, and each i € {1,---,3n}, there is a map P;(T") : (Y \00)?"\A —
Co(Y). Here A = {(z1,- -+ ,@9,) € Y?" | #{x1,- -+ , 220} < 2n}.

Definition 3.
Z(Y379) = / Pi(r)*w('Yi)> [T] € A (0).
p%;:n ( (Y\00)2"\A/i\
When 7 is enough generic, Z,(Y;¥) depends only on the choice of 4.

2.1.2 The anomaly term.

Let Y be an oriented closed 3-manifold (possibly not rational homology sphere)

and let ¥ = (y1,- -+ ,¥3n) be a generic family of vector fields on Y transverse to
the zero section in TY . Let X be a connected oriented 4-manifold with 0X =Y
and x(X) = 0.

Take a unit vector filed x on X such that nx|sx coincides with the outward
unit vector field of TY = T(0X) C TX|y. Let T'X be the normal bundle of
nx in TX. We remark that T X|y =TY.

Let 8; € I'T? X be a vector field of TV X transverse to the zero section in 7% X
satisfying 5;|y = ;. By using ; we have a 4-cycle ¢(8;) of (C2(Y),0C5(Y)).

2There is a smooth manifold structure on 9C2(Y).



For a real vector space V', we define
Son(V) = {{1,---,2n} < V}/dilations and translations.

For an R? vector bundle E on M, we denote by ggn(E) the fiber bundle over
M where the fiber over x € M is VSQH(EJ). For each I" € &, and each ¢ €
{1,---,3n}, there is a map ¢;(T’) : S2,(T"X) — ST X.

Definition 4.

1(X9) = Y 4() @u(D) " eo(Bi)[T] € An(0).
r 4

We prove the following Lemma by a cobordism argument similar to Watan-
abe’s argument in [32].

Lemma 5. There exists p, € An(0) such that
1(9) = I(X;9) — pnSignX
does not depend on the choice of X, ;.

We determine the constant p,, by computing a framed cobordism group.
The constant p, is equivalent to the constant u, introduced by Watanabe in
[32]. pn were not given explicitly in [32].

Theorem 6 (Lemma 7.10.). p, = 26,. Here 6, € A,(0)) is the constant due

to C. Lescop ([14]). Lescop gave an explicit formula of 6.

In this setting, we describe the definition of Z2m°maly(¥). Let Y be a rational
homology 3-sphere and let v1, - - - , 3, be admissible vector fields with respect to
ai,- - ,as, respectively. Take a framing 7¢s of S° satisfying 7gs |58\ N7 (00;58) =
mgs. Here 7gs is the standard framing of R® and N’(co;.9%) is a neighborhood of
oo smaller than N(o0o;S8%), i.e., 0o € N’(00; S?) C N(00;.9%). By the definition
of admissible vector fields, v; = 7i|y\ N (co;v) U T&s0i| N7(00;53) 1 a vector filed on
Y. We denote by ¥/ = (71, ,V4n)-

Definition 7. )
Brom (9) = 1(7) — Lo (75)n
Here og3(7g3) € Z is the signature defect of 7gs.

We remark that the above definition is well-defined i.e. z2n°™maly(7) is inde-
pendent of the choice of 7gs.

2.2 Proof of zXKT = 7 = ;FW,

We describe the outline of the proof of the following two Theorems.

Theorem 8 (Theorem 7.1.). zKKT(Y) = Z,(Y) for any rational homology 3-
sphere Y, for any n € N.



Theorem 9 (Theorem 7.2.). zEW(Y) = z,(Y) for any rational homology 3-
sphere Y, for any n € N.

Corollary 10 (Corollary 7.3.). zEW(Y) = 2KXT(Y)) for any rational homology
3-sphere Y, for any n € N.

2.2.1 Proof of KXT = 7,

Let 7 : T(Y \ 0c0) — R? be a framing of Y \ oo satisfying 7|y (cc:v)\co = Tk
where 73 is the standard framing of R? C S% and R? is the trivial vector bundle
over an appropriate base space. zKKT(Y) is defined as sum of the principal
term zXKT(Y;7) € A, (0) and the correction term —8,0y\o(7) € Ay (D). Here
0n € An(D) is the constant independent of both Y and 7. oy\oo(7) is defined by
Uy\oo(’r) = 0oy (T|Y\N(oo;Y) U TS3|N’(OO;S3)) — 0g3(7g3). The admissible vector
fields 7%d = (7*a1, - - - , 7 asy) satisfy 7%a;(x) # 7*a;(x) for any x € Y \ 0o and
for any i # j. By the definition of zXXT(Y'; 7), we have XKT(Y; 1) = Z(Y; 7*a).

Then it is sufficient to show that }oy\(7)6, = Z(7*d@). We prove this
equality by using a cobordism argument.

2.2.2 Proof of zFWV =3,

Letfi,-+, fan : Y\ 00 = R be generic Morse functions on Y \ oo such that the
restriction of Morse function f; to N(o0;Y) \ 0o coincides with the orthogonal
projection q,, : R® — R. 2FW(Y) is defined as sum of the principal term
WY f) € A, (0) and the anomaly term —zmemaly () ¢ A, (0).

By the assumption of fi,-- -, fsn, gradf = (gradfy,--- ,gradfs,) is a fam-
ily of admissible vector fields. By the definition of anomaly terms, we have
Zanomaly (f) — ganomaly(gradf)'

It is sufficient to show that zFWV(Y; f) = g(Y;gradf). Watanabe’s original
definition of zEW (Y f ) is by counting flow graphs of broken graphs. We use an
alternative description of the definition of zEW (Y f) in terms of intersections of

manifolds. For each f;, M(+£f;) is a weighted sum of 4-dimensional submanifolds
of Y2. Then,

AV ) =) 40 T M(ES)).
reg,
We make a 4-cycle of (C3(Y),0C2(Y)) by modifying M(%f;) and compare
such 4-cycles with propagators used in the construction of z,. The equality
ZFW(Y; f) = Z(Y; grad f) is followed by this comparison with the intersection
theory and the Poincaré duality.

3 Remarks.

(1) Theorem 8 and Theorem 9 imply that z gives a geometric description
of a universal finite type invariant. In particular, z; and 2F'WV(Y) give a
description of the Casson-Walker invariant using vector fields. Lescop gave



a combinatorial description of the principal term of z via Heegaard
diagram in [20]. Lescop did not describe the anomaly term in such a
combinatorial way. One of the difficulties is that framings are less flexible
than vector fields. It is expected that a combinatorial description of the
Casson-Walker invariant is obtained via our description of the anomaly
term of z7.
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(2) Our construction of z is expected to be useful for explicit computations.
It is possible to regard a framing used in the construction of zXKT as
non-vanishing vector fields. In this thesis, we give an extension of this
construction for (possibly vanishing) vector fields. Since to take vector
fields is easier than to take a framing, our construction is expected to be
useful for explicit computations. Surgery formula is a tool to investigate
an invariant. To find surgery formulas of zKKT, we have to deal with
surgery of a manifold equipped with a framing. Sometimes a framing
does not admit a local replacement according to surgery on the manifold,
but it is always possible to replace a vector field locally. We can consider
another type surgery that changes only vector fields.

(3) The anomaly term Z*m°maly (7) is equivalent to the anomaly term z2memaly ( f)
of zFW. But we reformulate the construction. Some cobordisms are used
in both our construction and Watanabe’s construction of the anomaly
term. But the conditions of such cobordisms are different. This difference
plays an important role in the proof of Theorem 9 and Theorem 6.

(4) Fukaya conjectured that Fukaya’s invariant related to the Chern-Simons
perturbation theory by Axelrod and Singer. Fukaya remaked in [7] that
his conjecture may be regarded as the higher genus analogue of the co-
incidence of the Reidemeister torsion and the analytic torsion established
by J. Cheeger [5] and W. Miiller [24]. On the other hand Watanabe con-
jectured that his invariant is related to invariants from the Chern-Simons
perturbation theory by Kontsevich. Corollary 10 gives an answer to this
conjecture.

4 Organization of the thesis.

The organization of this thesis is as follows. In Section 2 we prepare some
notations. In Section 3 we review notions and facts about configuration spaces
and graphs discussed by Lescop [16] and Watanabe [32]. In Section 4 we define
the invariants z, using vector fields and prove the independence of the choice
of vector fields. In Section 5 we review the construction of zXKT according
to [16] by Lescop. In Section 6 we review Watanabe’s construction of z¥W in
[32] with a little modification. In Section 7 we prove that the construction of
Z is a generalization of both that of zXKT and that of 2FW. In Section 8 we
prove some lemmas, which are used in Section 6,7 for a compactification of the



moduli space of flow graphs used in Sections 6 and 7. In Appendix we give an

alternative and more direct proof of z; = 2

KKT
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2 Notation and some remarks.

In this thesis, all manifolds are smooth and oriented. Homology and cohomology
are with rational coefficients. Let ¢ be a Q-linear sum of finitely many maps from
compact k-dimensional manifolds with corners to a topological space X. We consider
c as a k-chain of X via appropriate (not unique) triangulations of each k-manifold.
Let Y be a submanifold of a manifold X. Let ¢ = . a,;(f; : £; = X) be a chain of
X, where f; : ¥; — X are smooth maps from compact manifolds with corners and
a; are rational numbers. If f; is transverse to Y for each ¢, then we say that c is

transverse to Y.

When B is a submanifold of a manifold A, We denote by A(B) the manifold
given by real blowing up of A along B. Namely A(B) = (A \ B) U Svg where vp is
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the normal bundle of B C A and Svg is the sphere bundle of vg (see [16] for more
details of real blow up). Note that if a submanifold C' C A is transverse to B, then
C(ANB) is a proper embedded submanifold of A(B).

Let us denote by A C A" the fat diagonal of the n-times direct product of a
manifold A: A = {(z1,...,z,) € A" | H{z1,..., 2z} < n}.

Let us denote by R¥ the trivial vector bundle over an appropriate base space with
rank k € N. For a real vector space X, we denote by SX or S(X) the unit sphere
of X and for a real vector bundle £ — B over a manifold B, we denote by SE or
S(FE) the unit sphere bundle of E.

2.1 Notations about 3-manifolds and Morse functions.

Let f:Y — R be a Morse function on a 3-dimensional manifold Y with a metric
satisfying the Morse-Smale condition. Let gradf be the gradient vector field of f
with respect to the metric of Y. Let us denote by Crit(f) the set of all critical points
of f. Let {®%}icr : Y — Y be the 1-parameter group of diffeomorphisms associated
to —grad f. We denote by

Ap,={z €Y | lim ®%(z) = p} and
t—00
_ : t(r) —
Dy={zeY| tkljﬂoo ®%(z) = p}

the ascending manifold and descending manifold at p € Crit(f) respectively.

2.2 Conventions on orientations.

Boundaries are oriented by the outward normal first convention. Products are ori-
ented by the order of the factors. Let y € B be a regular point of a smooth map
f: A — B between smooth manifolds A and B. Let us orient f~!(y) by the follow-
ing rules: T,,f'(y) & f*T,B = T, A, for any = € f~(y) where f*: T,B — T,A is
a linear map satisfying f, o f* = idr,5. We denote by —X the orientation reversed
manifold of an oriented manifold X.

Suppose that Y, f and grad f are given as above. Let us orient ascending manifolds
and descending manifolds by imposing the condition: T),A, @& T,,D, = T,Y for any
p € Crit(f). Let p,q € Crit(f) be the critical points of index 2 and 1 respectively.
By the Morse-Smale condition, D, N A, is a 1-manifold. Let us orient D, N A, by
the following rule:

Ty (DpNAy) & Ty Dy = TyD,,

where ¢’ € D, N A, is a point near q.

3 Configuration space and Jacobi diagrams.

In this section, we introduce some notations about configuration spaces and Jacobi
diagrams. Most of this section follows [18].
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Figure 1: The orientation of D, N A,.

3.1 The configuration space Cy,(Y).

Let Y be a rational homology 3-sphere with a basepoint oco. Let N(oo;Y) be a
regular neighborhood (that is diffeomorphic to an open ball) of co in Y and let
N(o0; S?) be a regular neighborhood of oo in S? = R*U {oc} . We fix a diffeomor-
phism ¢ : (N(c0;Y),00) = (N(o0; S?), 00) between N(oo;Y) and N (o0; 5%). We
identify N(co;Y) with N(oo;S?) under ¢*.

Let Con(Y) = (Y \o0)? \ A = {{1,...,2n} < Y \ oo} and let Cy,(Y) the
compactification of Con(Y) given by Lescop [18, §3]. (This compactification is similar
to Fulton-MacPherson compactification [9]). Roughly speaking, C5,(Y") is obtained
from Y?" by real blowing up along all diagonals and {(x1, . .., Z2,) | 3i such that z; =
oo}. See §3 in [18] for the complete definition. Note that Cy(Y') is given by real
blowing up Y? along (00,00), co x (Y \ 00), (Y \ 00) x oo and A in turn. Let
us denote by ¢ : C5(Y) — (Y \ 00)? the composition of the blow down maps.
Then 8CQ(Y) = Ot ¥ (Y \ OO) U (Y \ OO) x ST, .Y U SVA(Y\oo) U q_l(oo2). We
identify Sva(y\oo) With STY|y\OO by the canonical isomorphism Svay = STY . The
involution Y2 — Y2 (x,9) — (y,z) induces an involution of C5(Y). We denote by
t: Cy(Y) — C3(Y) this involution.

Let p1 : (0CH(Y) D)STwY x (Y \ 00) = STY & ST..S% = S? and ps :
(OC2(Y) D)(Y \ 00) x STY — STY = ST,.5% = S? be the projections. We
denote by tg2 : S? — S? the involution induced by x(—1) : R* — R3.

Let p. : C2(S?) — S? be the extension of the map intCy(S5?) = (R*xR?)\A — S,
(z,y) — (y — x)/|ly — z||. Since it is possible to identify ¢~!(N(oc0;Y)?) C dC(Y)
with ¢~ 1(N(00; 8%)%) C 0C,(S?) by ¢, we get a map 0C5(Y) D ¢ ((N(oo;Y) \
00)?) 24 52, Since py, tg2 0 py and p. are compatible on boundary, these maps define
the map

py : 0C3(Y) \ Svam\n(eiy) = 5%

(Here we note that 0C5(Y") \ Sva@\N(co;v)) = SToeY X (Y \oo)U (Y \ 00) X ST Y U
¢ (N(0;Y)?).)

'We sometimes denote {oc} briefly by co.
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3.2 More on the boundary 0C5,(Y).

For B C {1,...,2n}, we set
F(oo; B) = ¢ '({(z1,...,29,) | i = 00 iff i € B, if i, j & B then z; # z,}),
and for B C {1,...,2n}(4B > 2), we set
F(B)=q '({(z1,...,22,) € (Y\oo)* | y,x; = yiffi € B, ifi,j & B then z; # z;}).

Under these notations, 0Ca,(Y') = g F(00; B) U U5, FI(B). We remark that
0C5,(Y) has smooth structure (See [18, § 3]).

Let X be a 3-dimensional real vector space. Let V' be a finite set. we define
Sv(X) to be the set of injective maps from V to X up to translations and dilations.
Set k ={1,...,k}. We denote Sp(X) by Si(X). Note that S5(X) = S(X). For an
R3 vector bundle E — M, we denote by Sy (E) — M the fiber bundle where the
fiber over # € M is Sy (E,). Under these notations, F(2n) = Son(T(Y \ 00)).

We remark that F/(B) has a fiber bundle structure where the typical fiber is
Sp(R3).

Lescop gave a compactification Sy (X), Sy (E) of Sy (X), Sy (E) respectively in
18]. Let f(B)(X) = Sp(X) x Sgyup(X), for B C V with B # V and §B > 2. Let
f(B)(E) — M be the fiber bundle where the fiber over x € M is f(B)(FE,). Under
this notation,

aSv(X) = | £(B)(X),08v(E) = | ] f(B

§B>2 tB>2

(See Proposition 2.8 in [18]). We remark that f(B)(F) has a fiber bundle structure
where the typical fiber is Sp(R?).

3.3 Jacobi diagrams.

A Jacobi diagram of degree n is defined to be a trivalent graph with 2n vertexes and
3n edges without simple loops. For a Jacobi diagram I, we denote by H(T'), E(T)
and V/(T') the set of half edges, the set of edges and the set of vertexes respectively.
An orientation of a vertex of I is a cyclic order of the three half-edges that meet at
the vertex. A Jacobi diagram is oriented if all its vertexes are oriented. Let

A, (0) = {degree n oriented Jacobi diagrams}r/AS, THX,

where {degree n oriented Jacobi diagrams}g is the real vector space generated by
the set {degree n oriented Jacobi diagrams}. Here the relations AS and THX are
locally represented by the following pictures. Let

g = {F ( 30E790V7OI‘IE)}

Here T is a connected Jacobi diagram of degree n, op : E(T) = {1,2,...,3n} and
oy : V(T) =2 {1,2,...,2n} are labels of edges and vertexes respectlvely, and orig is
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Here the orientation of each vertex is given by counterclockwise order of the half edges.

a collection of orientations of each edge. These data and an orientation of I' induce
two orientations of H(T'). The first one is the edge-orientation induced by g and
orig. The second one is the vertex-orientation induced by ¢y and orientation of
. We choose the orientation of I' so that the edge-orientation coincides with the
vertex-orientation. Let us denote by [['] € A, (0) the oriented Jacobi diagram given

by I' in such a way.

Remark 3.1. The notation Ay, 3, used by Watanabe [34] coincides with the nota-
tion A, () used by Lescop [18] as R-vector spaces.

4 Construction of an invariant of rational
homology 3-spheres via vector fields.

Let n be a natural number. In this section, we construct an invariant z,, using vector
fields. The idea of construction of z, is based on the principal term of Kontsevich-
Kuperberg-Thurston invariant ([16], [18]) and the construction of the anomaly part
of Watanabe’s invariant ([34]).

Let Y be a rational homology 3-sphere with a basepoint co. Let N(oo;Y) be
a regular neighborhood (that is diffeomorphic to an open ball) of oo in Y and let
N(o0; S3) be a regular neighborhood of co in S? = R?® Uoco. We fix a diffeomor-
phism ™ : (N(00;Y), 00) = (N(o0; $?), 00) between N(oo:Y) and N(oo; 5%). We
identify N(oo;Y) with N(co;S?) under ¢*.

In Subsection 4.1, we will define the notion of admissible vector fields on T'(Y"\ 00).
In Subsections 4.2, 4.4, we will define z,(Y; ) and z22°™aly(¥) using a family of ad-
missible vector fields 7. Thus we obtain a topological invariant z,(Y) = Z,(Y;7) —
zanomaly (%) of YV in Subsection 4.5. We will prove well-definedness of 2, in Subsec-
tion 4.6.

4.1 Admissible vector fields on T(Y \ c0).

For a € S? C R?, the map ¢, : R* — R is defined by gq,(z) = (z,a) where (,) is the
standard inner product on R?. Write +a = {a, —a}.

Definition 4.1. A vector field v € I'T(Y \ 00) is an admissible vector field (with
respect to a) if the following conditions hold.

g ’)/|N(oo;Y)\oo = —gl"ad Qa|N(oo;53)\oo7
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e 7 is transverse to the zero section in T'(Y \ oo).

Example 4.2. We give two important examples of admissible vector fields with
respect to a.

(1) Let 7ps : TR® = R® be the standard framing of TR®. We regard a € R3 as a
constant section of the trivial bundle R3. For a framing 7: T(Y \ c0) = R? such
that 7| N (so;y)\co = TR3|N(00:5%)\00s the pull-back vector field 7*a is an admissible
vector field with respect to —a.

(2) For a Morse function f : Y \ oo — R such that f|n(ev)\co = GalN(co:S)\0o »
gradf is an admissible vector field with respect to a.

The following lemma plays an important role in the next subsection. For an
admissible vector field 7, let

closure

Gy = {%ESTJ :vEY\(ooU’y‘l(O))} C ST(Y \ c0).

Here we choose the orientation of ¢, such that the restriction of the projection
STY — 'Y to ¢, is orientation preserving.

Lemma 4.3.
co(y) =, Ut
is a submanifold of ST(Y \ co) without boundary.

To prove this lemma, we first remark the following lemma. Let n,k > 0 be
integers. Let s: (R"** 0) — (R",0) be a C* map which is transverse to the origin
0eR™

Lemma 4.4. There is a diffeomorphism ¢ : (R"** 0) — (R"** 0) such that s o ¢
coincides with pgn as germs at 0 € R™*. Here pgn : R*™* = R™ x R*¥ — R" is the
orthogonal projection.

Proof. This is a consequence of the implicit function theorem. ]

Proof of Lemma 4.3. Tt is sufficient to check this claim near y~1(0). Let z € v~1(0).

We fix a trivialization ¢ : T(Y \ 00)|y, — Up x R on a neighborhood Uy of z in Y,
By the above Lemma 4.4, there is a neighborhood U C Uj of x and local coordinates
¢ : R? 5 U(which is independent of 1) such that (¢! xid)oroyop : R? — R3xR3
is represented by (¢! x id) ot o yo ¢(z) = (z,z). We fix these local trivialization
and coordinates and we write 7 instead of (o= x id) op oy o0 .

We first show that dc, N STU = —(d¢_, N STU) as oriented manifolds. Let
D, =¢,NSTU and D_ = ¢_, N STU. Under the above local coordinates, D, =
{(tz, 2/ ]2l)) | = € $%,¢ € [0,00)} C (S x [0,00)/(S? x {0})) X §? = RS x &2
and D_ = {(tz,—z/||z|) | = € S*,t € [0,00)}. Both the projection 7 : D, — R?
and the projection m : D_ — R?® are orientation preserving (or reversing). Let
g : R¥x S? — R® x S? be the bundle map defined by (x,v) — (x,—v). Since
both the orientation of dD. and that of dD_ are induced by that of the base
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space R3, the map ¢ : 0D = 9D_ is orientation preserving. On the other hand,
glioyxs2 = {0} x S* — {0} x S? is orientation reversing. Hence, the identity map
id : {0} x S% — {0} x S?is an orientation reversing map from D, to dD_. Therefore
gy = 0D = —0D_ = —3e .

We next prove that co(y) N STU is a submanifold of STU = R3 x S?. Let
p2 : R? x S — 52 be the projection. For each v € S?, we have (pa|ey(y)) " (v) =
Rv x {v} C R® x S%. The set [J,.g2 Rv x {v} is a submanifold of R* x S2. In fact,
for any vy € S? and for any sufficiently small neighborhood B,, C S? of vy we can
take a diffeomorphism

Oy, 1 (R® x By, | Rvx {v}) 5 (R® x By, Rwg x Byy)

'UEB’UO

as follows?. Here wg € S? C R? is a point orthogonal to vg in R® and Ruwy is
the 1-dimensional vector subspace of R?® spanned by wg. For each v € B,,, let
m(v,wy) € S? be the middle point of the geodesic segment from v to wy. Let
p(v,wg) € SO(3) be the rotation with axis directed by m(v,wp) and with angle 7.
So p(v,wy) exchanges v and wy. Then we can define ®,, : R* x B,, — R? x B, by
D, (z,v) = (p(v,wp)(x),v) for each (z,v) € R* x B,,.

Therefore ¢o(y) N (R? x 5?) = [J,cq2 Rv x {v} is a submanifold of R* x §2. O

4.2 The principal term z(Y; 7).

In this subsection, we define the principal term z(Y’; ) of the invariant z(Y). We
define

c(v) = py (£a) Uco(y) C 9C(Y).
By the definition of v and Lemma 4.3, ¢(7) is a closed 3-manifold. Therefore [¢(7)] €
Hy(8C (Y ); R).
Let Wo be an anti-symmetric closed 2-form on S? such that wge Tepresents the
Poincaré dual of [£a] and the support of wg, is concentrated in a small neighborhood
of ta. Let wy(7y) be a closed 2-form on 9C5(Y') satisfying the following conditions.

2wps(7y) represents the Poincaré dual of [¢(7)],

The support of wy(7y) is concentrated in a small neighborhood of ¢(y),

t*wa(y) = —wa(y) and

R S
wa(’Y)|8C72(Y)\SVA<Y\N(00;Y)) = 3PyWg2.

Since Y is a rational homology 3-sphere, the restriction H*(Ca(Y); R) — H?(0C5(Y); R)
is an isomorphism. Thus there is a closed 2-form w(vy) on Cy(Y") satisfying the fol-
lowing conditions.

o w(v)|ac,(v) = wal7y) and
 rw(y) = —w(v).

2The author is indebted to Professor Christine Lescop for this construction.
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Definition 4.5 (propagator). We call w() a propagator with respect to ~.

Take ay,...,as, € S? (we may take, for example, a; = ... = as,). Let 7 be
an admissible vector field with respect to a; and let w(~;) be a propagator with
respect to 7; for each i € {1,...,3n}. To simplify notation, we write 4 instead of
(s o5 Yom): _ _

For each T' = (T, ¢g, pv,orig) € &, and for each ;' (i) € E(T), let s(i),t(i) €
{1,...,2n} denote the labels of the initial vertex and the terminal vertex of Lpl_;l(i)
respectively. The embedding {1,2} = {s(i),t(i)} — {1,...,2n} induces the pro-
jection ey, 4y Con(Y) = C5(Y). Furthermore it is possible to extend Ty (v) 1O
C2,(Y) by the definition of Co,(Y). We denote by Pi(T) : Ca,(Y) — C2(Y) such
the extended map (see [18] §2.3 for more details).

Definition 4.6.

R = </C2n(y)/\a(r)*w(%)> [T] € Au(0).

reén i

Remark 4.7. By the above definition, the value z,(Y;¥) often depends on the
choices of w(7;) even if we fix 4. We will prove in Subsection 4.6 that Z,(Y;7),
however, depends only on the choice of 4 for generic 7.

4.3 Alternative description of z,(Y; 7).

In this subsection, we give an alternative description of Z,(Y’; ) using cohomologies
of simplicial complexes with coefficients in R. This description will be needed in
Section 7. The admissible vector field ~; with respect to a; and the 3-cycle ¢(v;) C
0C5(Y') are as above. Let T, (yy be the simplicial decomposition of Cy(Y") given by
pulling back a simplicial decomposition of Cy(Y")/t. So the simplicial decomposition
T, (v) is compatible with the action of «. By replacing such a simplicial decomposi-
tion if necessary, we may assume that each simplex of T, (y) is transverse to c(7;).
Let wj(v;) € S?(0C2(Y)) be the 2-cocycle defined by wj(v;)(c) = 34(o Nc(ys)) for
each 2-chain o in T, (v)|acy(v). Thus wj(7;) is anti-symmetric under the involution
t. Let w?(7;) be an extension of wj(v;) to Co(Y') = |Tey(vy| satisfying the following
conditions.

o W*(Yi)locar) = wj(7i) and

o rw(7i) = —w (7).
We call it a simplicial propagator. Take an appropriate simplicial decomposition of
C5,(Y). Then we have the 2-cocycle P;(T')*w*(vy;) € S?(Cy,(Y)). By the construc-
tion, A; P(I")*w*(7;) is a cocycle in (Cy,(Y'), 0C2,(Y)). If necessary we replace the
simplicial decompositions with a smaller one, we have the following lemma via the
intersection theory.
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Lemma 4.8 (Alternative description of Z,(Y;7)). If (N, P:(T") *support(w®(7:)))
NICo,(Y) =10 for any T,

FESn )

Here [Co,(Y),0C5,(Y)] denotes the fundamental homology class and (,) denotes the
Kronecker product.

~anomaly (

4.4 The anomaly term z? ¥)-

In this subsection, we define the anomaly term z2"mal(Y'; 7)) of the invariant Z,(Y").
The idea of the construction of this anomaly term is based on the construction
of the anomaly term of Watanabe’s invariant [34]. Let Y, oo, ay,...,a3, € S?
1y ---,73n (admissible vector fields with respect to ag,...,as, respectively) and
w(71),-..,w(y3s) be the same as above. Let X be a connected oriented 4-manifold
with X =Y and y(X) = 0. For example, we can take X = (T*CP?)\ B* when
Y = 83, For a framing 7/ of TY or R@ TY, we denote by oy (7') € Z the signature
defect of 7. Let 7gs be a framing® of T'S® satisfying the following two conditions:

® 0g3(7s3) = 2,

e TS3|S3\N’(oo;S3) = TR3|S3\N’(oo;S3)'

Here N'(o0; S?) is a neighborhood of co smaller than N (oo; S?), i.e., oo € N'(00; S3) C
N(oo; S3).

Remark 4.9. There is no special meaning in the number 72”7 in the condition
053(7s3) = 2. The anomaly term z2°™al¥(7) is independent of the choice of 7gs even
if 0gs(7gs) # 2. We remark that there is no framing 7 on S® such that ogs(7) = 0.

Let ny be the outward unit vector field of TY = T(0X) C TX|y in TX. Since
x(X) = 0, it is possible to extend 7y to a unit vector field of TX. We denote by
nx € I'T'X such an extended vector field. Let T".X be the normal bundle of 7x. We
remark that T X|y = TY'.

The vector field 7%;a; of TY|N(s;y) s the pull-back of a; € S* C R® along
TS3|N(oo;Y) 4. Since ’yi|y\N(oo;y) € FT(Y \ N(OO; Y)) and Tgsai|N(oo;Y) S FTY|N(OO;y)
are compatible, these vector fields define the vector field v, € I'TY. Let §; € I'T*X
be a vector field of TV X transverse to the zero section in TVX satisfying 5|y = ..
By a similar argument of Lemma 4.3,

closure
Bz) —p(=)
co(Bi) = { , € S(TvX), | z € X\ B~1(0) C ST'X
1B)[I" [[6()]]
is a submanifold of STYX satisfying dcg(f8;) C STY. Hence co(f;) is a cycle of
(STYX,0ST"X). Here we choose the orientation of ¢y(8;) such that the restriction
of the projection ST'X — X to ¢y(;) is orientation preserving.

3There is such a framing. For example, the Lie framing Tg;(oy of S3 = SU(2) satisfies 0 g3 (7gy(2)) = 2. See
R. Kirby and P. Melvin [14] for more details. We can get 743 by modifying Tgy;(2)-
4We sometimes regard a framing as a bundle map to the trivial bundle over a point.
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We note that co(f;) satisfies co(8;) N Svaw\N(eoiv)) = Co(7i). Let W(v;) be a
closed 2-form on STVX satisfying the following conditions.

e 2W(~;) represents the Poincaré dual of [co(S5;), Dco(B:)],

e The support of W (~;) is concentrated in a small neighborhood of ¢y(/3;),
o W(v)lsror\N(cosv)) = WB(%‘)|SVA(Y\N(O°;Y)> and
o W(vi)lstn(eoy) = 5Toswge-

For i € {1,2,...,3n}, let ¢)(T) : Son(T"X) — So(T*X) be the map induced by
{1,2} =2 {s(i),t(4)} — {1,...,2n}. It is possible to extend ¢?(T') to Sy, (T?X). We
denote by ¢;(T") : S5,(T"X) — S(TVX) such the extended map. By an argument
similar to Proposition 4.17 in [34], the following lemma holds.

Lemma 4.10. There exists pi, € An(D) such that

— 1, Sign X + Z / /\gbz )] € A, (0)

Teén S2n (T X)

does not depend on the choice of X, B;, and W (~;).

Proof of Lemma 4.10. Let X be a closed 4-manifold with SignX = 0 and x(X) = 0.
When X is not connected, we assume that the Euler number of each component of
X is zero. Let nx be a unit vector field of TX and let T7%.X be the normal bundle of
nx in TX. Let (1,..., s, be a family of sections of T"X that are transverse to the
zero section in TYX. Let W; be a closed 2-form that represents the Poincaré dual of
co(Bi) in ST'X, for i = 1,...,3n. By a cobordism argument, it is sufficient to show
that 3 peg szn(TU 7 @( ) i[[]=0.

We first prove that there exist an oriented compact 5-manifold Z and unit vector
fields n},n% € I'TZ such that:

0«07 = XUX,

e 11}, n% are linearly independent at any point in Z, i.e., (n},n%) is a 2-framing
of TZ,

e 1}|az is the outward unit vector field of X = 97, and

° 77%|az =nx Unx.

Since SignX = 0, there exists a connected compact oriented 5-manifold Z; such
that 0Zy = X. Let gz, € I'TZy|x be the outward unit vector field of X = 0Z,.
By attaching 2-handles along the knots generating H;(Zy; Z/2) if necessary, we may
assume that Hy(Zy;Z/2) & HYZy;0Z0;7Z/2) = 0. Thus the primary obstruction
0z, to extend the 2-framing (1z,,nx) of TZo|x into Zy is in H?(Zy, 0Zo; 74(Vs2)) =
H5(Zy,0Z0;7.)2). Let Z = Zo#Zy. Then the obstruction to extend the 2-framing
(nz, Uz, nx Unx) of TZ|xux into Z is 0z, + o0z, = 0 € H>(Z,0Z;7/2). So we can
take 1}, n% satisfying the above conditions.
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Let T'Z be the normal bundle of (n},n%) in TZ. Then T'Z is a rank 3
sub-bundle of T'Z satisfying T"Z|x = T'X. Let 5; € TT"Z be a vector field

transverse to the zero section in TVZ satisfying T"Z|x = f;. Then cg(gi) =
= — closure
{”g’fgg” H_ﬁ/BZ(III € S(TvZ), |z € Z\ B0 )} C ST"VZ is a submanifold of ST"Z

satisfying 860(@) = co(ﬁz) Let W(ﬁz) be a closed 2-form on ST"Z that represents

the Poincaré dual of [co(5;), co(53;)] and satisfying W (B;)|srex = Wi. By Stokes’
theorem, we have

0 - Z/ (/\@ Z>H
=2é;é Asywir+ Y | Ao W@

211 T X) Z FES C)Szn T Z

S R CLL D DD D S T E

211 T X) i Fegn 2<ﬂB<2TL B) TvZ

-2y f sy

Teg, Y S2n(TVX
The last equality is given by Lemma 4.20. O

Let 7y be a framing of T'(Y \ 0o0) satisfying 7y |n(e:v)\co = TR3|N(OO;53)\OO. Then
Tyd = (Tyaq, ..., Ty-asy) is a family of admissible vector fields. Let 74, = Ty |y\ N (o0v)U

* a;

T35 |N(oo;8%). SO Ty is a framing of TY. Take W (ryas)|sty = 2(4)*wis.
Lemma 4.11. f52 (TvX) N; ¢i(L)*W (5-a;) is independent of the choice of ay, . .., as,.

Proof. Let a} be an alternative choice of a; for any i. Let &4, be a closed 2-form on
52x[0, 1] satisfying ks |s2x oy = Wi and Wis|g2x (13 = web. Let STY x[0,1] C STX
be the collar of STY such that STY x {0} = ST*X. We take W (7y-a;)|srvx[0,1] =
(19 )* @y, Thus W(ryas)|sry<q1y = W(r3aj}). Since Lemma 4.20 (1), we have

oi(C)Y* W (rya;) / o;(T (1va;)
/SQn TOX /\ Y Son(TvX /\ Y
= / /\ ¢i(I) W (rya:)

Son(TY)x[0,1]

1 / A
S $i(D) (7 x id) @l
25" J (Y% [0,1] /\ Y 5

i

The map Son(TY) x [0,1] D (s7v x [0,1)* WX (52 x [0,1])™" fac-
tors through 52n< %) x [0,1]. Hence we have ((ry x id)*™ o [T, ¢:(D))*(\; @) €
Im (2°7(S,,(R?) x [0,1]) — Qﬁn(SQn(TY) [0,1])). Since dim S5,(R3?) x [0,1] =

6n—3 < 6n = dim A\; ¢;(I')"(7} xid)* @z, we have [o vy 00 A @il (T{,)*wg2 =
0. []
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Because of the above two lemmas, —,Sign X+ .. [ San (T¥X) N\; ¢i(T)*W (1sa:) [T]

is independent of the choice of a 4-manifold X bounded by S and a family a4, .. ., as,.
We define

= —pgpSignX + Z / /\@ W (rgsa:)[I'] € An(0).

re&, San (T*X)

Definition 4.12.

Zjﬁn‘)maly( ¥) = —pnSignX + Z / /\¢z Y)[I] — cn € An(0).

reg,  Sen(T” X)

Remark 4.13. We will show that un = 5 in Lemma 7.10 and Lemma 7.11. We
can show that p; = 72[0] € Q[f] = A1(0) by explicit computation (cf. the proof of
Proposition A.1).

4.5 Definition of the invariant.

Theorem 4.14.
Z(Y) = Z,(Y;9) — 22025 () € An(0)

does not depend on the choice of . Thus z,(Y') is a topological invariant of Y.
Definition 4.15.

Za(Y) = Za(Y3 ) — Z7mV () € An(0).

4.6 Well-definedness of z,(Y) (proof of Theorem 4.14).

In this section we give the proof of well-definedness of z,(Y), i.e., Theorem 4.14.
The proof of well-definedness of z, is almost parallel to that of ZEET by Lescop [18].

Fix i € {1,...,3n}. For any j € {1,...,3n}, let a}, v}, Bj, (7}) and W(~;) be
alternative choices of a;, 7v;, B, w(y;) and W('yj) respectwely Here a; = a;,v; = v;,
w(v}) = wlyy), B; = B; and W(w)) = W(wj) for j # i. By the same argument as
that of Proposition 2.15 in [18], we have the following lemma.

Lemma 4.16. There exist a one-form ns2 € QY(S?) such that dng: = wg,;z — wg’g,
and a one-form n € QY (Co(Y)) such that

o dn =w(y;) —w(v),
o 77|BCQ(Y)\SVA(Y\N(OO;Y)) = p;’nSQ'
Similarly, the following lemma holds.

Lemma 4.17. There exists a one-form nx € QY(STX) such that
o dnx = W(vj) = W(v),

> T’X|ST(Y\N(OO,Y)) = T]|SVA(y\N(oo;y))7
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® 77)(|‘Sq—w)*)(lN(f)(:,Y) = T§3T’SQ'

Proof. Set n% = n|srar\n(eoy)) U Tasns2. By the construction of co(8;), co(BL), we
have [W(v)] = [W(+})] € H*(ST*X) (cf. Lemma A.2). Thus there is a one-form
nk € QY(STX) such that dnk = W(v) — W(v}). Since H(STY) = 0, there is a
function ux € Q°(STY) such that dux = nk|sry — n%. Let h : ST*X — R be a
C* function such that h = 1 near STY (= 0ST"X) and h = 0 far from STY. We
can take nx = nt — d(hux) using collar of STY in ST*X. N

Set

w.
j=i.

~ _Jwlyp)(=wly) 745
7
Set

. nx j=1i.

s {ij)(: W) §#,

By Stokes’ theorem,

/c*zn(Y)/j\Pj( e /(12n ¥) )
= oo NPT,
- > [Anwrs

FCcaCy, (Y):face

Lemma 4.18 (Lescop [18, Lemma 2.17]). For any non-empty subset B of 2n =

{1,...,2n}, for any T € &,,
/ N\ Pi(T) @ =0.

Lemma 4.19 (Lescop [18, Lemmas 2.18, 2.19, 2.20, and 2.21]). For any B C
{1,...,2n} with B > 2 and B # {1,...2n}

= (o)

The following lemma is proved as Lemma 2.18, 2.19, 2.20, and 2.21 in [18] (See
also the proof of Proposition 2.10 in [18]).

Lemma 4.20. For any B C {1,...,2n} with 2 < §B < 2n,
1) Zresn ff(B)(TvX) /\j ¢j(F)*WJ’ L] =0,

2) Y ree. ff(B)(TUZ) A @(F)*W(@)[F] = 0 (See the proof of Lemma 4.10 for the
notation Z, W(E]))
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By Lemma 4.18 and Lemma 4.19,
(Y5 9) = Za(Y59)

- S (L Anmrea) -5 ([, Areree)m
= 2 ([, A0

Since F(2n) = S(T(Y \ 00)), the restriction of P;(T') to F'(2n) coincides with MT)
ggn(T(Y \ OO)) = SVA(Y\oo) C 8CQ(Y) Therefore

> [ B

=§AMWA¢
= 3 oy N +Z/ NS

T'e&n Y\N 095 Y Te&x SZn OO Y \OO
-3 o /\¢°

The last equality comes from the following lemma.

Lemma 4.21. Zregn ngH(T(N(OO;Y)\OO)) /\j ¢?(F)*&j[f‘] = 0.

Proof. Since Sy (T(N(00; Y)\00)) = (N (00; Y)\00) x Son (R?) and Wj| ST(N(003¥)\oo) =
Tgsws2 (Or TgsMs2), the form A qbg(F)*cT)j|§2n(T(N(OO;Y)\OO)) is in the image of the map
(7s3)*" o [1; @}(T"). The map (753)°" o [1; #Y (D)5, (rew N(so:Y)\o0)) : Son(T (N(UOO; Y)\
00)) = (ST(N(o0;Y)\00))3" — (52)3” factors through Sy, (R?). Since dim Ss, (R?) =

6n—4 < 6n—1= dim A, ¢}(T')*@;, we have 3 p ¢ szn T o) A ¢9(T)*@,[I] =
0. O

On the other hand, by Stokes’ theorem,

Eanomaly ( 7) . ganomaly ( ,—Yv)
= 3 [ NOOT S [ A
Tes, So2n (T?Y) ree, 952, (T?X)

= FZL;/SMTY)/J\¢J
= Z/S /\% +Z/ /\¢j(r) iz

ree, T(Y\N(c0;Y)) reg, ¥ S2n(T?Y|N(oiv))
- >/ /\@
ree,,  San(T(Y\N(o0;Y))
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The equality () is given by Lemma 4.20(1) and the last equality comes from the
following lemma.

Lemma 4.22. ) . . szn.(T”YIN(OQ,»n) /\j ¢;(T) W (+))[I'] = 0.

The proof of this lemma is parallel to the proof of Lemma 4.21.

Since T/Vj|5,,A A wj|5,,A(Y\N<wY) for any 7, we have
L7 - 507 = 3 / A
Pz, J 8an(T(Y\N(00;Y))

/ /\ @ _ %anomaly ( '7) zanomaly ( ;);/) ‘
fez. J S2n(T(X\N(o0;Y)))

Now we finish the proof of Theorem 4.14.

5 Review of the Kontsevich-Kuperberg-
Thurston invariant zt1,

In this section, we review the construction of zXK7T for rational homology 3-spheres.
This section is based on [18].

Let 7y : T(Y \0o) = R3 be a framing satisfying Ty | N(oo:¥ )\oco = TR3- TY |\ N(oo;v) U
Ts3|N(oo;53) 18 a framing of TY by the assumption of 7v. We define

T\oo(Ty) = 0y (Ty |V \N(oo;v) U T3 | N(oos$3)) — 0s3(Ts3)

= 0y (Ty | ¥\ N(oo;) U Ts3| N(00;53)) — 2

and call it the signature defect of 7y of a framing of Y\ co. For example opgs(7gs) = 0.

The canonical isomorphism Svay\e) = ST(Y \ 0o) and the framing 7y induce
the map pa(7y) : Svap\e) — S? By the assumption of 7y, maps pa(7y) and
py : 0C5(Y) \ Sv — S? are compatible. So we get the map p(1y) = py Upa(7y) :
0C,(Y) = 52, Let wg2 € Q%(S?) be an anti-symmetric 2-form satisfying [q, wg2 = 1.
Let w(1y) be an anti-symmetric closed 2-from on C(Y") satisfying w(7y)|ac,v) =
plry)"ws € Q2(OCH(Y)).

Proposition 5.1 (Lescop [18, Theorem 1.9 and Proposition 2.11]). There exists a
constant 6,, € A,(0) such that

Iy\oo(TY)
Z /Czn ( i () W(TY)> ] - T(Sn € A (0)

reén
does not depend on the choice of Ty .

Definition 5.2 (Kuperberg and Thurston [16], Lescop [18]).

KET(, 1) Z/C ( ><ry>>m,

reén
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AKT(Y) = (Y 7y) - =5 ¢ (g

We remark that d,, is given by the explicit formula in Proposition 2.10 in [18].

Remark 5.3. The universal finite type invariant ZXKT described in [18] equals to

the degree n part of exp(}_, WZEKT) See before Lemma 2.12 in [18] for

more details.

Remark 5.4. We will show that 9, = %un in Lemma 7.10.

6 Review of Watanabe’s Morse homotopy
invariant z FW

In this section we give a modified construction of Watanabe’s Morse homotopy
invariant z2n 5, [34] for rational homology 3-spheres. We will remark the differ-
ences between our modified construction and Watanabe’s original construction after
the definition of 23} (Y). The invariant 23)% (V) is a sum of the principal term

2 3n(Y f) and the anomaly term zng)ﬁaly(f) of fwhere f: (f1, fa,---, fan) i a
famﬂy of Morse functions on Y\ oco.
Fix a point a € S2.

Definition 6.1. A Morse function f:Y \ co — R is an admissible Morse function
with respect to a if it satisfies the following conditions.

. f|N(oo;Y)\oo = Qa|N(oo;SB)\oo and
e f has no critical point of index 0 or 3.

Let Crit(f) = {p1,---,Pk,q1,---,qc} be the set of critical points of f where
ind(p;) = 2,ind(g;) = 1. Let

0 — Co(Y \ oo0; f) 2 C(Y \ o0 f) = 0

be the Morse complex of f with rational coefficients. Let g : C1(Y \ oo; f) —
Co(Y'\oo; f), g([ai]) = >_; gijlp;] be the inverse map of the boundary map 0 : Co(Y"\
00; f) = Ci(Y '\ oo; ), dlpi] = >_,; 0ijlaj]- (g is called a combinatorial propagator in
[34].)

We now construct M( f) which is the weighted sum of (non-compact) 4-manifolds
in Y2\ A. Let M_(f) = pr(¢1(A)) where ¢ : ¥ x Y x (0,00) =+ Y x Y is
the map defined by (z,y,t) = (y,®%(z)) and pr : ¥ x Y x (0,00) = ¥ x Y
is the projection. We choose the orientation of M_,(f) such that the inclusion
Y x (0,e) = M_(f),(z,t) — (z, @'}(1)) preserves orientations. We define

M(f) = Mo (f) =D gi5(Ag X Dy;) \ A

Y]
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We remark that the orientation of M(f) does not depend on the choice of orienta-
tions of Ay, D, .

Let aq,...,as, € S* C R? be points such that any distinct three points of them
are linearly independent in R?. Let f; : Y\oco — R be a sufficiently generic admissible
Morse function with respect to a; for each i = 1,...,3n. We write f: (fis---, fan)
to simplify notation. We replace a metric of ¥ such that the Morse-Smale condition
holds for each f; if necessary.

Set M(xfi) = M(fi) + M(=F).
Definition 6.2. For a generic f

A=Y o <ﬂP [y a (M (ifi))> T € Ad(0).

FESn

We next define the anomaly part. Set grad f = (grad fi,...,grad fs,).
Definition 6.3.

—

Znan Y (f) = Z2ome (grad f).

Definition 6.4 (Watanabe [34]).

ZET%?’I(Y) = Z2n 3n(Y f) ;EOanaly(f)'

Remark 6.5. A difference between our modified construction of an 5, and Watan-
abe’s original construction in [34] is the conditions for Morse functions. Our Morse
function is on Y \ oo and explicitly written on N(oco;Y) \ co. On the other hand,
Watanabe uses any Morse functions on Y. We note that Y\ co C Y5 where Y5>
is the connected sum of ¥ and S® at oo € Y and 0 € S3. Then it is possible to
extend f: Y \ oo — R to Y#S® 2 Y in a standard way. Then we can show that

AR
},':53

Figure 2: The extension of f to Y#S?

the difference between the value ZQF,%”(Y) described in this section and the value of

Watanabe’s original invariant of Y is a constant which is independent of Y.

We must prove that f (ﬂ BT )|(Y\oo)2n\ AM (ifz))> is well-defined for generic

f , because Morse functions used in the above definition differ from Morse functions
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used in the original definition in [34] near N(oo;Y) \ 0o (See Remark 6.5 for more
details).

Lemma 6.6. Pl(I‘)|(_1}\oo)2n\A(M(ifi)) i was ,Pgn(I‘)|(_Y1\OO)Q,I\A(M(ifi)) transver-

sally intersect at finitely many points, for generic fi,..., fan and aq, ..., as,, for
any ' € &,.

Proof. Let x = (z1,...,%a,) € ) Pi(F)|(_Yl\oo)2n\A(M(j:fi)) C (Y \ 00)*™\ A.
The case of z € (Y \ N(oo;Y))?".
Thanks to §2.4 of [34], the transversality at x is given by generic f .
The case of 2 & (Y \ N(o0;Y))?".
We show that for generic ay,...,as,, there are no such x. (Then, in particular,

Bi(D)| A vom A(M(£S)) is a 0-dimensional compact manifold). Let B = {i €
i (Y\oo)?™\A
{1,...,2n} | z; € Y \ N(oo;Y)}. Let

Ep={ie{l,....3n) = E(I) | {s(5),t(i)} C B},

E%={ic{l,....3n} = E) | {s(i),t(@)} N B # 0} \ Es.

Let I'/B be the labeled graph obtained from I' by collapsing B to a point by and
removing all edges in Ep. Here the labels of edges and vertexes of I'/B are taken
from {1,...,3n}\ Eg, {0,1,...,2n}\ B respectively gthe label of by is 0). Note that
8(V(I'/B) — {bo}) = 2n — 4B and {E(I'/B) > 3n — %5,

Let 7 : Y \ oo = Y/(Y \ N(co;Y)) = R? be the map obtained by collapsing
Y\ N(o0;Y) to the point 0 € R3. Let 7/ : R — R be the map obtained by collapsing
Im(f; : Y\ N(oo;Y) - R) to 0 € R. Then wio f; =gy, 0om: Y \ oo — R. Let
z' : V(I'/B)—{bo} = R? be the restriction of mox : V(I') < R3 to V(I'/B)—{bo} C
V(D). Let ' € (S?)P(T/B) be the points obtained from a = (ay, ..., as,) removing
all a;, 1 € Eg. We define the map

©: (R?»)V(F/B)—{bo} \A = (52)E(F/B)

as

Ys(i) — Y@
ot = (=0

llys(i) — yt(i)l|>ieE(F/B) ‘

Here if i € E% then either s(i) or ¢(i) is 0. Then 2’ € p~!(da’). By the following
lemma, there is no x’ for a generic a’. Therefore there is no = for a generic a.

Lemma 6.7. For a generic ' we have ¢~'(a’) = ().

Proof. For any y € ¢~ !(a’) and for any ¢t € (0,00), we have ty € ¢~!(a’). Thus if
@~ (a") # 0, we have dim ¢~'(a’) > 1. On the other hand, dim((R3)VI/B)~{bo}) =
6n — 34B < 24E(I'/B) = dim((S?)P(/B)). Hence we have dim p~'(a’) < 0 for a
generic a’. This is a contradiction. [

O
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7 Proof of Theorem 8 and Theorem 9.

In this section we show that the construction of Z is a generalization of that of z
and that of z¥V. (Theorem 8 (Theorem 7.1) and Theorem 9 (Theorem 7.2)). As a
corollary, we have zKKT = 2I'W,

KKT

Theorem 7.1 (Theorem 8 in the introduction). zXET(Y) = Z,(Y) for any rational
homology 3-sphere Y, for any n € N.

Theorem 7.2 (Theorem 9 in the introduction). zEW(Y) = Z,(Y) for any rational
homology 3-sphere Y, for any n € N.

Corollary 7.3 (Corollaryl0 in the introduction). zEWV(Y) = XXT(Y) for any ra-
tional homology 3-sphere Y, for any n € N.

A cobordism argument essentially used in the proof of Theorem 2 (see Re-
mark 7.13) gives us the equalities p,, = %5” (Lemma 7.10) , ¢, = %5n (Lemma 7.11).

7.1 Proof of z,(Y) = 2XKT(Y),

We follow the notations used in Section 5. For example, Y is a rational homology

3-sphere and oo € Y is a basepoint, and so on. Let 7y : T(Y \ 00) S RPbea framing
of Y\ oo satisfying 7v|n(cc:¥)\co = TR3|N(c0;53)\co- We denote 73 = (15a,. .., Tva)
for a € S%. We take wgz = 3w, in the definition of z5¥T(Y;7y), and we take
w(Tya) = w(7y) in the definition of Z,(Y; 75@). Thus

i =Y [ ARE eI = 207 ).

reé&,
Then we only need to show that

, . 1
E?Lnomdly (T;a) = —0y\co (TY)dn

4

in this condition.
The idea of the proof of 22 (7:d@) = 10y\xo(Ty )0y is as follows. We first prove

this equality in the case of Y = S3. The well-definedness of z22°™malY (V") implies that

zanomaly (7*@) = Logs(7)0, for any framing 7 of S* \ co. The general case is reduced

to the case of Y = S? by a cobordism argument.
We introduce notation. For a compact 4-manifold X such that 0X = Y and

X(X) = 0, we denote 3™ (%: X) = Y, [y croy As 6i(T) W (R[] = Z30oms () +
UnSignX + c,. Then zanomaly () = Zanomaly(3 Xy — ) Sion X — ¢, by the definition.

Lemma 7.4. Z,(5%) = zKKT(83).
Proof. Let X be a compact 4-manifold with X = S and y(X) = 0.
Z2(5%) = Z(5%; hed) — 2P rhd X) 4 ppSignX + o
= B{5P:7r0)

= 2KKT (S5 7gs).
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Since ogs(Trs) = 0, we have z5KT(83; 7p5) = 2KKT(93),
Therefore zn(S3) = ZKKT(G3. 10s) = 2KKT(G3), =

Since zanemaly(§3) ig independent of the choice of framing on R3 = %\ oo, we
have the following corollary.

Corollary 7.5. For any framing 7 on R® = 5%\ oo such that T|y(e.s9\00 =
TR3| N(00:8%)\0os the equality Z22m2Y (7*g) = Logs ()0, holds.

Recall that the framing 7y of T'(Y "\ 00) gives the framing 7y U7gs = Ty |y\ n(oo;v) U
7'53|N(Oo;53) of TY and oy\(7y) = 0oy (7y U Tgs) — 0(7s3) = oy(7y UTgs) — 2. We
give a spin structure on Y using 7y U Tgs.

Lemma 7.6. There exists a positive integer k and a spin 4-manifold Xq such that
x(Xo) = 0 and 0Xog = Y U k(—S?) as spin manifolds. Here —S® is S® with the

opposite orientation.

Proof. Since the 3-dimensional spin cobordism group equals to zero, there exists a
spin 4-manifold X such that 0X =Y. Let k = (X ). We may assume that k& > 0,
by replacing X by X in K3 for sufficiently large integer n if necessary. Let X be the
spin 4-manifold obtained by removing k disjoint 4-balls, i.e., Xq = X \ kB*. Then
x(Xo) =0 and 80Xy =Y U E(—S3). O

Remark 7.7. Since y(Xo#T?) = x(Xo) — 2, x(Xo#K3) = x(Xo) + 22 and T%, K3
are spin, it is possible to choose k + 2n instead of k& for any n € Z.

Remark 7.8. Since the Euler number of a closed spin 4-manifold is even, the
number k(Y) =k mod 2 € Z/2 is an invariant of a spin 3-manifold Y. It is known
that k(Y) = tkH1(Y;Z/2) + 1 (See Theorem 2.6 in [14]). We also remark that
E(Y) = oy\oo(7v) + 1 mod 2.

Let Xj be a spin 4-manifold such that x(Xp) = 0 and 0X, = Y Uk(—S?) for some
k > 1. We denote by S? the i-th S3-boundary of X. Then X, = YU—-S}LI. . .LI—S3.
By the obstruction theory, it is possible to extend the framing ny & (7y U 7gs) of
TXoly to Xo where 7y is the outward unit vector field on Y C 90X, (see [14] for
more details). We choose such an extended framing 7x. We may assume that
7%'(1,0,0,0)|5(—gsy is the inward unit vector field on k(—S?) C 90Xy, C X,. If
necessary we modify Tx by using homotopy, we may assume that there exist a
framing 7; of S\ 0o such that 7| y(oe:3)\00 = TS| N(c0;89)\00 @A =7 @ (7 U Tss) =
Tx |- 3. Here —n; is the inward unit vector field on —S3 C Xo.

Let X’ be a compact oriented 4-manifold with y(X’) = 0 and X’ = S®. Then
XoU kX" is a compact 4-manifold with y(XoUkX’') =0 and 0(Xo UEkX') =Y.

Lemma 7.9. The following three equalities hold.
(1) Zpmomel¥ (r5:d; Xo UkX') = S0, Zonomaly (7@ X).

(2) ov\eo(Ty) = 320 oms (i) + 2(k — 1) — 3SignXo.
(3) %'?Lnomaly(ﬁ*/a) = iUY\oo (Ty)dn + (%&L = ,un> Sign X, + k2;15n + (k — 1)Cn
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Proof. (1) We take a 3-bundle T%(X, U kX') C T(Xo U kX’) over Xo U kX’ such
that T%(Xo U kX")|x, is the normal bundle of 7%%(1,0,0,0). We denote T"X, =
T(XoUkX")|x,, TV (kX") = T(Xo U kX')|rx. Let 8 be a section of T(X, L kX')
such that f|x, = Txa and 3 is transverse to the zero section in T%(Xy Ll kX'). In
this setting, we can take W (ra)|srox, = Txwge. Then Zinomaly(rrg: X 11 kX') =
2 ree, fSQn(T“(Xouk:X’)) Ni &i(D) W (rga)[l] =3 p stn(TvXO) Ni 9i(L) Txwse[L]
+ 21 Jop oy M\ (D) W (3 a) [T,

We show that szn(T”Xo) N; ¢i(T)*Tiwsz = 0 for any ' € &,. The map (7x)*" o
(IL #i(I)) : San(T"Xo) — (S?)*™ factors through S, (R?):

l—ldh

Son(T? Xo) — (ST“X Yo
O
?Xl (?X)?’"l
SQR(R?)) (S2>3n

Hence we have A\; ¢i(I')*Txwsz|sx, = ([17x)°" o A; 6i(1')*(ws2)™
€ Im(Q5"(S5,(R3)) — Q(S5,(T7X,))). Since dim S5, (R?) = 6n — 4 < 6n =
dim A, ¢;(I')*Txws2, we have A, ¢;(I')*Txwg2 = 0.

Therefore
Aﬁnomaly( a2 XL kX/) - / ¢ [ ]
2 Ty @; Xg i (Tya
Y FEZS Son (T kEX") /\ Y

k
— E Zanomaly [ =, Y/
- “n (Ti a; X )
1=1

(2) By the obstruction theory and the definition of the signature defect, we have
oy (v U Tgs) + 3SignXy = Zle 0g3(Ti UTgs). Since oy\oo(Ty) = oy(7v U Tgs) — 2
and ogs(7;) = ogs(7; U Tg3) — 2, the equality (2) holds.

(3)

’Z‘:znomdly ( 7% a)

%«Znomaly(T;c—i; XO L] kX/) _ ,LLnSIgH(Xo L kX’) — Cp
Eznomaly(Tik(—i; X/) . MnSIan, — Cp

... ZEnomely (s X') — pnSignX’ — cn
—unSignXo + (k — 1)c,

— Z%ﬁznomaly(ﬁ‘d’) — ppSignXo + (k — 1)c,

—
=
~

orollar . ]-
Corollary 7.5 Z ZURg(Ti)(Sn — upSignXy + (k — 1)c,

2

(UY\OO(TY) - Q(k - 1) + 3SIanO)5n — 'LLnSianO + (k — 1)Cn

—
~

N

]

We next compute fi,,c, and prove that z2remaly(

the above lemma.

T3@) = 10y\0o(7y)0n by using
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Lemma 7.10. pu, = %(Sn'
Proof. Let Xy = K3411T*\ (B* U B%). Then Xj is a spin 4-manifold satisfying

x(Xo) = 0, SignX, = 16 and 90X, = S? U —S3. By Lemma 7.9 (3), we have 0 =
zZanomaly (74.@) = (20, — py)SignXy. Since SignXy = 16 # 0, we have p, = 26,. O

Lemma 7.11. ¢, = %(5”.

Proof. Let X, = K3#10T*\ (B* LU 3B*%). Then Xj is a spin 4-manifold satisfy-
ing x(Xg) = 0, SignXy = 16 and X, = S U 3(—S3). By Lemma 7.9 (3) and

Lemma 7.10, we have 0 = gznOIHaly(Tﬁga)) = —0, + 2¢,. Then ¢, = %511- O

Proposition 7.12. 22" (75.0) = 10y (Ty)0y.
Proof. Take Xy, k,7x as in Lemma 7.9. By Lemma 7.9 (3), Lemma 7.10 and

Lemma 7.11, we have Z22°M8 (7£@) = 10y oo (Ty )0n— 5105+ (k—1)cn = 10v\00 Ty )0n.
(]

Remark 7.13. We can rewrite the above proof of Z™ (Y 73.@) = ov\ oo (7y)0n

as follows. We first remark that we can extend the definition of Z2°™a (72.3) to any

framing 7 of a closed oriented 3-manifold Y by using 7 instead of 7 U 7gs in the
construction. Let M be the set of all framed three manifolds: M = {(Y,7)}. We

define two maps I and o as

I M= Ay 0), I(Y,7)=30ma (),
On

og: M= A,(0), oY,7)=—(oy(r) — og3(7g3)).

4
Then it is sufficient to show that

Y, 7) = o(¥,7).
We now introduce a cobordism group Q¥ defined as follows.
QEY = M/ ~

where (Yp, 79) ~ (Y7, 71) if and only if there exists a oriented compact 4-manifold X
and framing 7 : TX 5 R* such that:

e 0X =Yy -Y],

e T|y, = 1o ® 70, when 7y is the outward unit vector field of Yj,

e T|_y, = —m1 & —71, when —n; is the inward unit vector field of —Y7, and

e SignX = 0.

There is a natural map 7 : M — QY. The proof of Lemma 7.9 (1) implies that
the map I factors through QU: there is a homomorphism 1° : Q&Y — A, () such
that I = I°om. The proof of Lemma 7.9 (2) implies that the map o factors through
QLY there is a homomorphism ¢ : QY — A, (0) such that ¢ = oo 7.
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Lemma 7.6 implies that QY @ Q = Q. Corollary 7.5 and the study of framings
on S3 say that 1°(S3,7) = 0¢(S3,7) for some non-trivial element (S3 7) of QY.
Then we have

IY,r)=I¢on(Y,7)=con(Y,7) = o(Y,7)

for any (Y, 7). In particular, 22" (73.d) = 10y\0o(7y)d;, for any framing 7y on a

punctured rational homology 3-sphere Y\ co.

7.2 Proof of Z,(Y) = 23,5, (Y).

Let f be an admissible Morse function with respect to a € S2. The weighted sum
M(f) + M(—f) consists of weighted pairs of two distinct points on a gradient
trajectory. There is a compactification Mg(£f) of M(f)+ M(—f) by adding pairs
of points on broken trajectories as the Morse theory. Then Mg(£f) becomes a
4-cycle in (Cy(Y),0C5(Y)) (Lemma 8.4). See Section 8 for the detail of the above
argument.

Lemma 7.14. OMg(£f) = c(gradf) for any admissible Morse function f.

Proof. Since grad f|n(o;y) = gradqy, if (z,u) € OMg(£f)N((Y \ 0o0) x STY) then
u = ta. On the other hand, OMg(+f) N ({z} x ST,Y) = {(z,a), (z, —a)} for any
x ¢ Crit(f). Since OMg(£f) is a 3-cycle, we have OMg(f) N ((Y \ o0) x STLY) =
(Y \ 00) x (£a). With a similar argument, we have 9C5(Y) \ Svapneo) = Py (Ea).
By this fact and Lemma 8.5 we conclude the proof. O

We follow the notations aq, ..., as,, fi,--., f3n as in Section 6. In the following
proposition, the notion “generic f” means that 9Cs,(Y)N (N, P(I') " *Mgs(£f;)) =0
for any I' € &,. We remark that there exists such a f (See Remark 7.16).

Proposition 7.15. For generic f, B 3n(Y f) = Zul X ; gradf)

Proof. We define the 2-cocycle wf(grad f;) € S*(|Tc,(v)|) by w®(grad f;) (o) = 34(oN
Ms(fi)) for each 2-chain o of T, (v).

By the construction, w®(grad f;) is a simplicial propagator for each i. By the
intersection theory and Lemma 4.8, we have

22n3n /\P * 5 glad fz) [an(Y),aCQH( 23n (mP 1MS f2)>

for any I' € &,. O

Remark 7.16. We can show that 9C5,(Y) N (N, Pi(T') " *Mg(£fi)) = 0 for generic

f by an argument similar to Lemma 2.7 in Watanabe [34]. For example, we take
the following ®. instead of ® in Lemma 2.7 in [34] when we prove F({1,2,4}) N
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(NS_, Py(Smooth(T"))*Mg(£f;)) = 0 for the graph I in the picture (2.2) in [34] (See
Example 2.6 in [34] and see §3.4 of [34] for the definition of the operator Smooth).

o F({1,2,4}) x ( U A, (f1) ﬂDq(f1)> X (Rsp)? x HL{Z-

fiety 1=2

=S Y3 x (TY)? x (TY)? x Y3,

Or(((21, [wr, wa, wa]), x3), u, ta, t3, by, fa, f3, fa)

Wy — W
= ((z1,u, (I)jc(; (23)), (gradxl,f% #):
[[wa — wi |

Wy — W L
: >’ (3;37 ®;i($1)7 (I)]}; ('Tl)))

(grad, f3,

[|wa — wa
Here 21 € Y \ oo, [wy, wy, w3] € 5’{172,4}T,;1Y, 23 €Y \ {z1,00}. Let

Ar = {((y1,y1,31), (32, 5202), (Y2, t2v2)), ((y3, 53v3), (Y3, t3v3)), (Y4, Y4, Ya))
| (y17y27y37 y4) = (Y \ 00)47ti7 si > 0,v; € j—zl/zy}
Then @ is transverse to Al as Lemma 2.7 in [34].

It is obvious that z;;lfgzaly(Y; f) = zamemaly(Y: orad f) by the definitions of the
anomaly parts.

8 Compactification of moduli space M(f).

In this section we give a compactification Mg(£f) of M(f) U M(—f) and then
show that Mg(£f) is a 4-cycle in (Co(Y),0C5(Y)). Let M_(f) = ¢ |y2x(0,00) (D)
where ¢ : Y2 x (—o00,00) = Y?, (2,y,t) = (y, %(x)).

Lemma 8.1 (Watanabe [34, Proposition 2.12] (cf. [5])). There is a manifold with
corners M _,(f) satisfying the following conditions.

W) T ()=lg: 1Y [Ic R }
g is a piecewise smooth map, f(g(t)) = t, dilstt) = ”ggl;ad g((t’;)ﬁ‘a
g

for any t} as sets,

(2) intﬂﬁ(f) = M_(f), and
(3) OM_(f) = >; Ap; X Dp, + Zj Aqg; X Dy;.

Note that int(M_, (f) + M _(—f)) = ¢ 1(A). We denote by M_,(f) — (Y \ c0)?
the continuous map that is the extension of the embedding M_,(f) — (Y \ o0)? to
M _,(f). For simplicity of notation, we write M_,(f) instead of M _,(f) — (Y \ 00)%.

Similarly we denote by A,, — Y the extension of B!(1) & A, — Y to B!(1) and
we write A, instead of A,, — Y (We remark that A, is diffeomorphic to B'(1) the
interior of unit disk in R!). We also define D,,, A—q]., and so on.
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Lemma 8.2. (1) M_(f)+ M_(—f) is transverse to A.
(2) Ay, x Dy, is transverse to A.

Proof. (1) grad f(which is the section of va(y\)) 18 transverse to the zero section
I Va(\oo)- Ap X Dp C Y? is transverse to A for any critical point p € Crit(f) =
Crit(—f). Thanks to Lemma 8.1 (2),(3), this finishes the proof of (1).

(2) is immediate from the Morse-Smale condition. L

By this Lemma, (M_(f) + M_(—f))(A) and (A, x Dp,)(A) are well-defined.
It is clear that (M_(f) + M_(—f))(A) =
(M_(f)+M_(—=f)\Au{(z, %) | z € Y\ (coUCrit(f))} by the construction.
Definition 8.3. MY(=f) = (M (f) + T (~f))(A) + 5y, 05y x Dy)(A) +
22i5(—9i) (Dy; x Ag)(A).

Let Mg(+f) be the extension of MZ(+f) to Co(Y).
Lemma 8.4. Mg(£f) is a 4-cycle in (Cy(Y),0C5(Y)).

Proof. Since Im(8(Ay, x Dp,) = Y?) = >, OkiAp, X Dy, + > OjiAg, X D,

Im(z 9ij0(Ag, x Dy, — Y?))

i7j

= Z gijakq:«‘l—m X D—pj S Z 9ijOikAg X Do,

irj,k i\j,k
= Z 6ij—I’k X Dy, + Z dikAq, X Dy,

i,k i,k
= N &, xD, + Y A, x Dy,

J J
Therefore OIMg(Ef) \ 0C2(Y) = 0. O

Under the identification Svary\oo) = ST(Y \ 00), we have the following descrip-
tion.

Lemma 8.5. OMg(+f)NST(Y \ o) = {(z, ”J—rgifi“}’ﬂ) | z €Y\ (coUCrit(f)}.

Proof. Note that (A, x D,,)NA = Ay, ND,,. By the definition of blow up, we have
OMs(Ef) N Svar o)

_ { (x %) } ; ZM(W> + 3 (i) Dy, N AL)

]

where 7 : STY — Y is the projection.
Since Y, ; giym (Ag, N Dpy) + 32, 1 (—=gi)7H(Dy, N A,,) = 0 as chains, we con-
clude the proof. O
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A Another proof of (V) = 28 H(Y).

In this section we give a more direct proof of Proposition 7.12 in the case of n = 1.

Remark that A;(0) = Q[f] and £&; = 96.

Proposition A.1 (Proposition 7.12 in the case of n = 1). 22" (7% 7) = 107\ (Ty) 1.

To show this proposition we first prepare some notations and a lemma. Let
m : Fx — ST"X be the tangent bundle along the fiber of 7y : ST*X — X. Let
T*X/TY be the real vector bundle over X/Y obtained by collapsing Y to a point
using the framing 7v UTgs = Ty |y\N(oo;v) U Ts3 | N(oosy). We define Fx/y, ST*X/STY
in same way as above.

Let e(Fx;1y) € H*(ST'X/STY) = H*(ST"X, STY) be the Euler class of Fy/y
and let p,(Fx;1y) € HY(ST'X/STY) = H*(ST*X,STY) be the first Pontrjagin
class of Fix/y. By a standard argument, for example the Chern-Weil theory, we have
p1(Fx;7v) = e1(Fx;7v)2

Lemma A.2. 2[W (rya)] = e(Fx;1y) € H*(ST'X/STY).

Proof. Let 8 be a section of TYX such that 8lsx = (7y U 7g3)*a as Subsection 4.4.
We define the map f: ST'X — R by

flu) = <“»ﬁ(72(u))>(T”X)W2(u)

where (,)(rvx), is the standard inner product on (7°X),(= R*). We define the
vector field V' € I'Fx by V|srx), = grad(f|srvx),) for any z € X. Thus V is
transverse to the zero section in Fx and V~1(0) = ¢o(f). Thus the Poincaré dual
of (¢o(3), 0co()) represents e(Fx; Ty ). Since the closed 2-form 2W (75-a) represents
the Poincaré dual of (co(83),0co(B)) and W (7y.a)|sry = (Ty U Tgs)*we., we conclude
the proof. ]

Proof of Proposition A.1. By the Lemma A.2, we have

1

/ W(rya)® = —/ e(Fx;y)?
S (T X) 8 Sa(TX)

1

g/ e(Fx;v)p1(Fx; Ty)
So (T X)

1

AL §/ e(Fx;v)mp (T X 7v)
So (T X)

1
;1/ pi(TX;71y)
X

1 3
= ZO’y(Ty UTgs) + Z_ISian

1 3 1
— ZO-Y\OO(TY) + ZSIan + 5

—_
*
~
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The equality (%) is given by the following two relations: R @& Fx = 7*T"X and
ReTX =TX. Then we have

Zenomaly (r23) = 96 / W(rya)’[0] — mSignX — ¢,
Sa(TvX)

96 :
= ZW]UY\OO(TY) + (72[6] — p1)SignX — (c1 — 48[6)).
Since this equality holds for any 7y and X, then we have uy = 72[0], ¢; = 48]0,
&, = 96[A]. Thus 22" (r2a@) = 20y \eo (1Y) 01 O
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