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Introduction

The purpose of this paper is to classify the simple modules over the Hecke–
Clifford superalgebra by use of an extended theory of cellular algebras. The orig-
inal theory of cellular algebras is developed by Graham and Lehrer [GL96] as an
axiomatization of various algebras arising as endomorphism algebra on natural rep-
resentation of classical groups and quantum groups: the symmetric group algebra,
the Brauer algebra, the partition algebra, the Iwahori–Hecke algebra, the Birman–
Murakami–Wenzl algebra and so on so forth. First recall the notion of cellular
algebra with more general one introduced by Du and Rui [DR98]. The definition
below is based on that given by König and Xi [KX98], which is equivalent but
slightly ring-theoretic than the original one. Let (Λ,≤) be a partially ordered set.
In this introduction we assume that the set Λ is finite for simplicity.

Definition 0.1. Let A be an algebra over a commutative ring k. A is called
a standardly based algebra on Λ if it is equipped with a particular basis over k

{aλij ∈ A |λ ∈ Λ, i ∈ I(λ), j ∈ J(λ)}
parametrized by families of finite sets I(λ) and J(λ) for each λ which satisfies the
following properties.

(1) For each λ ∈ Λ, the k-submodule A<λ ⊂ A spanned by

{aµij ∈ A |µ < λ, i ∈ I(µ), j ∈ J(µ)}
is a 2-sided ideal of A.

(2) For each λ ∈ Λ, there exist a left A-module Mλ = k{mλ
i | i ∈ I(λ)} and

a right A-module Nλ = k{nλ
j | j ∈ J(λ)}, which also have parametrized

bases, such that

Mλ ⊗k Nλ → A/A<λ,

mλ
i ⊗ nλ

j 7→ aλij

is a homomorphism between (A,A)-bimodules.

A is also called a cellular algebra if I(λ) = J(λ) for all λ and the map aλij 7→ aλji
defines an anti-involution on the algebra A.

We here do not pay much attention to anti-involutions, so standardly based
algebras are fundamental for us. Intuitively the cell k{aλij | i ∈ I(λ), j ∈ J(λ)}
for each λ ∈ Λ is made to imitate the structure of matrix algebra, so that the
modules Mλ and Nλ respectively correspond to column and row vector spaces. As
a semisimple algebra decompose into a direct sum of matrix algebras, a cellular
algebra has a filtration whose successive quotients are such cells.

One of the most striking result of the theory is the classification of simple
modules performed as follows. First we can show that there is a canonical A-
bilinear form

(, ) : Nλ ×Mλ → k
between Mλ and Nλ for each λ. Now suppose k is a field and let

Lλ := Mλ

/
{x ∈Mλ | (y, x) = 0 for all y ∈ Nλ}
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for each λ. Graham and Lehrer [GL96, Theorem 3.4] prove that an A-module Lλ is
either zero or simple, and the set {Lλ |λ ∈ Λ, Lλ ̸= 0} consists of pairwise distinct
all simple A-modules. This is an analogue of the fact that each matrix component
of a semisimple algebra produces its simple module.

However, this strategy does not work well in representation theory of superalge-
bras; there are no known non-trivial cellular superalgebras in the original definition.
This is essentially because there is another kind of simple superalgebras in addition
to matrix algebras, namely matrix algebras over the Clifford superalgebra. The key
idea is that we allow a generalized cellular algebra to have such a new kind of cells.

The construction above of simple modules, though the developers of the theory
might have not noticed, implicitly use the notion of Morita context which connect
the two algebras A/A<λ and k.

Definition 0.2. A Morita context between the algebras A and B is a pair of
an (A,B)-bimodule M and a (B,A)-bimodule N equipped with bimodule homo-
morphisms η : M ⊗B N → A and ρ : N ⊗A M → B which satisfy the associativity
laws

η(x⊗ y) · x′ = x · ρ(y ⊗ x′), ρ(y ⊗ x) · y′ = y · η(x⊗ y′)

for each x, x′ ∈M and y, y′ ∈ N .

This is a weaker version of the Morita equivalence [Mor58] and studied in
detail by Nicholson and Watters [NW88]. Morita’s original theorem says that if
both η and ρ are surjective then we have a category equivalence between the module
categories of these algebras, and every category equivalence is obtained in this form.
For such data, we can prove the following statement

Theorem 0.3. Let I ⊂ A, J ⊂ B be the images of η and ρ respectively. Let
Irr(A) be the set of isomorphism class of simple A-modules, and let IrrI(A) be its
subset consisting of simple modules V such that IV = V . We similarly define
IrrJ (B). For a B-module W , let DW be the image of the A-homomorphism

M ⊗B W → HomB(N,W )

m⊗ w 7→ (n 7→ ρ(n⊗m)w).

Then W 7→ DW induces a one-to-one correspondence IrrI(A)
1:1←→ IrrJ(B).

We will prove it in Theorem 3.15 in a more general setting: we also treat a
Morita context between two abelian categories instead of that between two algebras
A and B, so that it is redefined as that between their module categories A-Mod
and B-Mod . We do this process for two reasons. First since our purpose is a
classification of simple objects in the module category, it is more essential to deal
directly with the module category A-Mod rather than the algebra A itself. Second
we expect that our strategy works in more general settings outside representation
theory of algebras.

Anyway, note that for a standardly based algebra, for each λ ∈ Λ the embedding
Mλ ⊗ Nλ ↪→ A/A<λ and the bilinear form Nλ ⊗A Mλ → k make pair (Mλ, Nλ)
into a Morita context between the algebras A/A<λ and k, and Lλ above is just Dk
where k is viewed as a trivial k-module. The classification of simple modules of a
cellular algebra is a consequence of this theorem.

For a general Morita context we do not need that one algebra is a base ring k.
Hence by replacing k with a more general one, such as the Clifford superalgebra,
we can define generalized cellular algebras in order to obtain a similar method of
classification which we can apply to more various things. In this paper we introduce
the notion of standardly filtered algebra over a family of algebras {Bλ}λ∈Λ; see
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Definition 4.1. A standardly filtered algebra A also consists of a Morita context
(Mλ, Nλ) for each λ ∈ Λ, between quotient algebras A/A<λ of A and Bλ/B

′
λ

of Bλ. Let B′′
λ/B

′
λ ⊂ Bλ/B

′
λ the image of the Morita context map Nλ ⊗A Mλ →

Bλ/B
′
λ, and write Irr

B′′
λ

B′
λ
(Bλ) := IrrB

′′
λ/B′

λ(Bλ/B
′
λ). These data induce the following

classification which generalizes [GL96, Theorem 3.4].

Theorem 0.4. The Morita contexts induce a one-to-one correspondence

Irr(A)
1:1←→

⊔
λ∈Λ

Irr
B′′

λ

B′
λ
(Bλ).

In the classical case, each Bλ is taken to be a base field k so that Irr
B′′

λ

B′
λ
(Bλ)

is either {k} or ∅. Thus in this case Irr(A) is in bijection with some subset of Λ.
If so, we simply say that A is a standardly filtered algebra over k on the set Λ,
similarly as before. In any case the classification of simple modules of A can be
reduced to those of Bλ’s via this correspondence. In this paper we also introduce
the notion of generalized standardly based algebra and that of generalized cellular
algebra over the family {Bλ}, not over the single base ring k. It seems better to
list several examples rather than to introduce its detailed definition. In many cases
a standardly filtered algebra is produced from a category as follows.

Lemma 0.5. Let A be a k-linear (super)category. For each λ ∈ Λ, let us take
an object Xλ ∈ A and a subalgebra Bλ ⊂ EndA(Xλ). Let Aλ ⊂ A be a 2-sided ideal
of A generated by Xλ; that is,

Aλ(X,Y ) := HomA(Xλ, Y ) ◦HomA(X,Xλ) ⊂ HomA(X,Y ).

Now suppose that

HomA(Xµ, Xλ) =
∑

ν≤λ,µ

Aν(Xµ, Xλ)

for each pair of λ, µ ∈ Λ and

EndA(Xλ) = Bλ +
∑
µ<λ

Aµ(Xλ, Xλ)

for each λ ∈ Λ. Then for every ω ∈ Λ, EndA(Xω) is a standardly filtered algebra
over {Bλ}. Here the Morita contexts for A above is given by

A/A<λ := EndA/A<λ(Xω), Mλ := HomA/A<λ(Xλ, Xω),

Bλ/B
′
λ := EndA/A<λ(Xλ), Nλ := HomA/A<λ(Xω, Xλ)

where A<λ :=
∑

µ<λAµ. The homomorphisms equipped on this Morita context is
just the composition of morphisms.

Example 0.6. The Iwahori–Hecke algebra Hn(q) of type An−1 for q ∈ k is
standardly filtered over k on the set of compositions of n. If moreover q is an
invertible element, it is also standardly based and the index set can be restricted
to partitions of n. For the proof we take the module category of Hn as A and for
a composition λ we pick up the corresponding parabolic module as Xλ. Then the
Morita contexts above is given by the Specht modules. See Part II in this paper.
In particular, for q = 1 the symmetric group algebra kSn is also standardly based.

Example 0.7. The Hecke–Clifford superalgebra Hc
n(a; q), which is our main

target, is also standardly filtered on the same sets over the Clifford superalgebras
with different quadratic form for each composition. The key point is that there
is a right action of this Clifford superalgebra on the super-analogue of the Specht
module. It is also standardly based in a generalized sense if 2aq ∈ k× and the
q-characteristic of k is greater than n/2. The strategy of the proof is same as that
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for the Iwahori–Hecke algebra. See Part III. For the special case q = 1, we obtain
that the Sergeev superalgebra Wn(a) = Cn(a)⋊Sn is also standardly filtered over
the Clifford superalgebras.

Example 0.8. The Temperley–Lieb algebra TLn(t) is standardly based over k
on the set of natural numbers {0, 1, . . . , n}. We can simply take the Temperley–Lieb
category as A, and for k ≤ n the “k-points” object as Xk.

Example 0.9. The partition algebra Pn(t) is standardly based over {kSk}0≤k≤n,
the symmetric group algebras. Note the natural inclusion kSn ⊂ Pn(t). We take
Deligne’s “representation category Rep(St) of the symmetric group St for t ∈ k”
(see [Del07]) as A and similarly “k-points” object [1]⊗k as Xk. In addition, by
using that kSk is standardly based over k on the set of partitions of k, we obtain
that Pn(t) is also standardly based over k on the set of all partitions of k ≤ n.
It gives a simple alternative proof of [Xi99]. We can prove similar results for the
Brauer algebra and the walled Brauer algebra using the Deligne’s category for “the
orthogonal group Ot” and “the general linear group GLt” respectively.

As we listed in the examples above, the Iwahori–Hecke algebra Hn = Hn(q)
is one of the most important example of a cellular algebra whose cellular basis is
given by Kazhdan and Lusztig’s canonical basis [KL79] or Murphy’s basis [Mur92,
Mur95]. It first comes from a study of flag varieties over the finite fields, and also
appears as an endomorphism algebra of a certain representation of the quantum
general linear group via an analogue of the Schur–Weyl duality, then considered
as a q-analogue of the symmetric group algebra. Now suppose k is a field and
q ∈ k be a non-zero element. When q is not a root of unity, its representations are
very similar to those of the symmetric group in characteristic zero, and a concrete
construction of the simple modules called Young’s seminormal form is given by
Hoefsmit [Hoe74]. For modular representations q = e

√
1, its simple modules are

studied by Dipper and James [DJ86, DJ87] in a cellular way. In addition to
cellular representation theory there is a beautiful approach on the classification
of simple modules made by Lascoux, Leclerc, Thibon [LLT96], Ariki [Ari96],
Grojnowski [Gro], Brundan [Bru98], Kleshchev [Kle95] and others, called the
categorification. Based on their works it is proven that the union set

⊔
n∈N Irr(Hn)

of simple modules of Hn for all n ∈ N has a structure of Kashiwara crystal [Kas02]

over the affine quantum enveloping algebra Uv(ŝle) of type A
(1)
e−1, and is isomorphic

to the crystal basis B(Λ0) of the irreducible representation V (Λ0) whose highest
weight is the fundamental weight Λ0. One can obtain each simple module by
applying Kashiwara operators f̃i on the trivial module of H0 = k. However this
construction is too abstract and hard to compute in practical use. Compared with
this Lie theory, the cellular theory has advantages that we can construct simple
modules in a concrete way, and that we can apply it even when k is a more general
commutative ring: we only requires that q ∈ k is invertible.

Theorem 0.10. Suppose q ∈ k is invertible. Then there is a one-to-one corre-
spondence

Irr(Hn)
1:1←→

⊔
λ : partition

Irrkfλ(k).

Here fλ := [λ1 − λ2]![λ2 − λ3]! · · · [λr]! ∈ k for each partition λ = (λ1, λ2, . . . , λr)
where [k]! denotes the q-factorial.

Our main target in this paper is the Hecke–Clifford superalgebra Hc
n = Hc

n(a; q)
for a, q ∈ k, which is a super version of the Iwahori–Hecke algebra. It is intro-
duced by Olshanski [Ols92] as a partner of the quantum Queer superalgebra via
the Schur–Weyl duality and is considered as a q-analogue of the wreath product
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Wn = Cn ⋊Sn of the Clifford superalgebra, which is called the Sergeev superalge-
bra. It is known that the spin representation theory of the symmetric group Sn is
controlled by Wn; see [BK02] or [Kle05]. Young’s seminormal form of Hc

n for char-
acteristic zero case is independently founded by Hill, Kujawa and Sussan [HKS11]

and Wan [Wan10], and the categorification method for q = e
√
1 is developed by

Brundan and Kleshchev [BK01] for odd e and by Tsuchioka [Tsu10] for even e

using the affine quantum enveloping algebra of type A
(2)
e−1 and of type D

(2)
e/2 respec-

tively. Hence this paper fills the missing one: the cellular representation theory of
Hc

n. In our cellular method the classification can be done in a very weak assumption
same as the case of the Iwahori–Hecke algebra above. This is our main theorem.

Theorem 0.11. Suppose q ∈ k is invertible. Then there is a one-to-one corre-
spondence

Irr(Hc
n)

1:1←→
⊔

λ : partition

Irr∆λ+Θλ

Θλ
(Γλ).

Here Γλ is the Clifford superalgebra defined on the quadratic form with respect to the
scalars aJλ1K, aJλ2K, . . . , aJλrK where JkK denotes the q2-integer, and ∆λ,Θλ ⊂ Γλ

are its 2-sided ideals defined in Chapter 11.

By the way, this paper also contains a quite different topic which we use as a tool
to classify simple modules in a cellular method: the representation theory in non-
integral rank. This field is pioneered by Deligne [Del07] who invented the represen-
tation category of the “symmetric group St” for t which is not necessarily a natural
number. This category can be considered as a realization of a stable structure of the
ordinary representation category ofSn for large n behaves polynomially in n. There
are several variations of this category: ones for linear algebraic groups GLt, Ot and
Spt we used above are also obtained by Deligne [Del07], and for finite general
linear group GLt(Fq) for the wreath product Gt ⋊St by Knop [Kno06, Kno07],

and the symmetric tensor product of the category Symt(C) = (C⊠ · · ·⊠C)St by the
author [Mor12] as a generalization of the module category of wreath product. The
examples above are made from the structures of tensor category of ordinary repre-
sentation categories. We here introduce another kind of its variations: the module
category over the Iwahori–Hecke algebra Ht and the Hecke–Clifford superalgebra
Hc

t . Since its module categories are not tensor categories, we construct them by a
slightly different method. The module category of Hc

t for t /∈ N is used to complete
the proof of the main theorem above.

This paper consists of three parts. The purpose of Part I is to extend the
theory of cellular algebras so that we can apply it to our target, the Hecke–Clifford
superalgebra. We start by reviewing the enriched category theory in Chapter 1
in order to treat representation category of superalgebra. Next in Chapter 2 and
3 we define Morita contexts between two categories, and develop the theory of
classification of simple objects. We then in Chapter 4 introduce the notion of
standardly filtered algebra by use of Morita contexts.

Part II treats the representation theory of the Iwahori–Hecke algebra. In Chap-
ter 5 using results in Part I we reconstruct the cellular representation theory from a
generalized viewpoint to make it suitable for our purpose. The rest ones Chapter 6,
7 and 8 are prepared for introducing the representation category of the Iwahori–
Hecke algebra in non-integral rank. We see that this category also has a cellular
structure.

Part III deals with the representation theory of the Hecke–Clifford superalge-
bra, which is our main part. It starts with Chapter 9 which develops its cellular
representation theory parallel to the previous part. Then Chapter 10 interrupts
and introduce the representation category of the Hecke–Clifford superalgebra in
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non-integral rank. Finally in Chapter 11 we continue the study of the cellular rep-
resentation theory and using representations in non-integral rank we completes the
classification of its simple modules.
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ized Courses], vol. 9, Société Mathématique de France, Paris, 2002, Edited by Charles
Cochet.

[Kel82] Gregory Maxwell Kelly, Basic concepts of enriched category theory, London Mathemat-
ical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge, 1982.

x



BIBLIOGRAPHY xi

[KL79] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke al-
gebras, Invent. Math. 53 (1979), no. 2, 165–184.

[Kle95] Alexander Kleshchev, Branching rules for modular representations of symmetric groups.
II, J. Reine Angew. Math. 459 (1995), 163–212.

[Kle05] , Linear and projective representations of symmetric groups, Cambridge Tracts
in Mathematics, vol. 163, Cambridge University Press, Cambridge, 2005.

[Kno06] Friedrich Knop, A construction of semisimple tensor categories, C. R. Math. Acad. Sci.

Paris 343 (2006), no. 1, 15–18.
[Kno07] , Tensor envelopes of regular categories, Adv. Math. 214 (2007), no. 2, 571–617.
[Knu70] Donald E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J.

Math. 34 (1970), 709–727.

[KS06] Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332,
Springer-Verlag, Berlin, 2006.

[KX98] Steffen König and Changchang Xi, On the structure of cellular algebras, Algebras and

modules, II (Geiranger, 1996), CMS Conf. Proc., vol. 24, Amer. Math. Soc., Providence,
RI, 1998, pp. 365–386. MR 1648638 (2000a:16011)

[KX99] , Cellular algebras: inflations and Morita equivalences, J. London Math. Soc.
(2) 60 (1999), no. 3, 700–722.
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Part I

Cellular Algebras Arising from
Morita Contexts



CHAPTER 1

Basics on enriched categories

Throughout in this paper, we fix a commutative ring k. Tensor products over
k are simply denoted by ⊗. We denote by k× the set of invertible elements in k.
We here recall the basic notions of enriched categories in a special case. For details
we refer the reader to the textbook [Kel82].

1. Enriched categories

Let us denote byM the symmetric tensor category of k-modules, by S that of
k-supermodules and by G that of graded k-modules. So they consist of k-modules
V =

⊕
i∈I Vi graded by the abelian group I = {1}, Z/2Z and Z respectively, and

k-homomorphisms which respect these gradings. When we take an element x ∈ V ,
we always assume that x is a homogeneous element. For such x, we denote by
|x| ∈ I the degree of x. The symmetries on them are defined as

V ⊗W →W ⊗ V

x⊗ y 7→ (−1)|x||y|y ⊗ x

using the Koszul sign (−1)|x||y|. If you want to use the näıve symmetry in the graded
case, you should concentrate on evenly graded spaces for convention (actually we
can take an arbitrary abelian group I with a homomorphism I → {±1}).

Now let V be one of M, S or G. In each case, a V-category is called a k-
linear category, a k-linear supercategory or a k-linear graded category. Shortly, a
V-category C consists of a hom object HomC(X,Y ) ∈ V for each pair of objects
X,Y ∈ C instead of a hom set. By taking the degree-zero part HomC0(X,Y ) :=
HomC(X,Y )0 we obtain the underlying category C0. When we write f : X → Y
we mean that f is a homogeneous element of HomC(X,Y ). For V-categories C
and D, the tensor product V-category C ⊠ D and the opposite V-category Cop are
defined through the symmetry on V. Their morphisms are in the form f ⊠ g and
fop respectively and the compositions are given by

(f1 ⊠ g1) ◦ (f2 ⊠ g2) := (−1)|g1||f2|(f1 ◦ f2)⊠ (g1 ◦ g2),

fop
1 ◦ f

op
2 := (−1)|f1||f2|(f2 ◦ f1)op.

Similarly a V-functor F : C → D is a collection of a degree preserving homo-
morphism HomC(X,Y )→ HomD(FX,FY ) for each pair of X,Y ∈ C. By taking its
degree-zero part we obtain its underlying usual functor F0 : C0 → D0. A V-natural
transformation F → G is defined as a usual natural transformation between the
underlying functors F0 → G0 which satisfies an additional condition.

We denote by Hom(C,D)0 the usual category consisting of V-functors and V-
natural transformations between them. The set (or the class) of natural transfor-
mations between V-functors F,G : C → D is denoted by HomC,D(F,G)0 for short.
We can also complete this category to a V-category Hom(C,D) (except that it may
not be locally small) by letting its hom object HomC,D(F,G) as a equalizer of the

2
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parallel morphisms∏
X∈C

HomC(FX,GX) ⇒
∏

Y,Z∈C

HomV
(
HomC(Y, Z),HomD(FY,GZ)

)
.

We represent its homogeneous element as h : F → G. The reader should pay
attention to that its naturality means

(hY ) ◦ (Ff) = (−1)|h||f |(Gf) ◦ (hX)

for every f : X → Y . Note that a V-algebra A (a monoid object in V) is nothing
but a V-category C with a single object ∗ ∈ C such that A ≃ EndC(∗). Then
the category of left A-modules, which we denote by A-Mod , is equivalent to the
functor category Hom(C,V). The tensor product V-algebra A⊗B and the opposite
V-algebra Aop are special cases of the operations for V-categories above. We also
denote byMod -A ≃ Aop-Mod the category of right A-modules.

2. Alternative definitions

Now for a while consider the super case V = S. S has the parity change functor
Π: S → S which exchanges the grading

(ΠV )0 := V1, (ΠV )1 := V0

for supermodule V = V0 ⊕ V1. In a general S-category C, for an object Y ∈ C its
parity change ΠY ∈ C, if exists, is defined as a representation of the S-functor

HomC(X,ΠY ) ≃ ΠHomC(X,Y ).

If every object in C has its parity change, Π can be defined as an S-functor Π: C → C
and we also have an S-natural isomorphism

ΠHomC(X,Y ) ≃ HomC(ΠX,Y ).

We say that such C is Π-closed. Instead of to treat the theory of enriched categories
directly, we can view a Π-closed S-category as a usual category with additional
informations as follows.

Lemma 1.1. Giving a Π-closed S-category C is equivalent to giving an M-
category C0 with anM-functor Π: C0 → C0 and an isomorphism ξ : Π2 ≃ IdC0 such
that ξΠ = Πξ as S-natural isomorphisms Π3 → Π.

Proof. Clearly a Π-closed S-category induces such a datum. Conversely let
C0 be an M-category equipped with Π: C0 → C0 and ξ : Π2 ≃ IdC0 . For each
X,Y ∈ C0, let HomC(X,Y ) be a supermodule defined by

HomC(X,Y )0 := HomC0(X,Y ), HomC(X,Y )1 := HomC0(X,ΠY ).

Then we can define the composition HomC(Y, Z)⊗HomC(X,Y )→ HomC(X,Z) by

HomC0(Y, Z)⊗HomC0(X,Y )→ HomC0(X,Z),

HomC0(Y,ΠZ)⊗HomC0(X,Y )→ HomC0(X,ΠZ),

HomC0(Y, Z)⊗HomC0(X,ΠY ) ≃ HomC0(ΠY,ΠZ)⊗HomC0(X,ΠY )

→ HomC0(X,ΠZ),

HomC0(Y,ΠZ)⊗HomC0(X,ΠY ) ≃ HomC0(ΠY,Π
2Z)⊗HomC0(X,ΠY )

≃ HomC0(ΠY, Z)⊗HomC0(X,ΠY )

→ HomC0(X,Z).

The condition ξΠ = Πξ is needed for that composition of three odd morphisms is
associative. □
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Lemma 1.2. Let C and D be Π-closed S-categories. Then giving an S-functor
F : C → D is equivalent to giving an M-functor F0 : C0 → D0 between their under-
lying M-categories equipped with an isomorphism α : F0Π ≃ ΠF0 which makes the
diagram below commutes:

F0Π
2 αΠ //

F0ξ $$H
HH

HH
HH

HH
ΠF0Π

Πα // Π2F0

ξF0zzvv
vv
vv
vv
v

F0.

Proof. The one direction is clear. So let F0 : C0 → D0 be an M-functor
equipped with an isomorphism α : F0Π ≃ ΠF0. On objects simply let FX := F0X.
Then we can define the degree preserving map F : HomC(X,Y )→ HomC(FX,FY )
by

HomC0(X,Y )→ HomC0(FX,FY ),

HomC0(X,ΠY )→ HomC0(FX,FΠY ) ≃ HomC0(FX,ΠFY ).

The commutativity of the diagram above is used to ensure that F preserves com-
position of two odd morphisms. □

Lemma 1.3. Let F and G be S-functors C → D between Π-closed S-categories.
Then a natural transformation h : F0 → G0 is S-natural if and only if the square

F0Π
hΠ //

α

��

G0Π

α

��
ΠF0

Πh
// ΠG0

commutes.

Proof. The S-naturality just says that the two parallel maps, which are in-
duced by h, HomC(X,Y ) ⇒ HomC(FX,GY ) coincide. By the usual naturality it
is satisfied for the even parts. The condition above is equivalent to that it is also
holds for the odd parts. □

Next consider the graded case V = G. Analogously we have the k-th degree
shift functor Σk defined by (ΣkV )i := Vi+k for V ∈ G. We say that a G-category is
Σ-closed if each Y ∈ C has its degree shift ΣkY defined by

Σk HomC(X,Y ) ≃ HomC(X,ΣkY ).

Σ-closed G-category can be also characterized as follows. The proofs are similar as
before so we omit them.

Lemma 1.4. Giving a Σ-closed G-category C is equivalent to giving a M-
category C0 with aM-functor Σ: C0 → C0 which is an equivalence.

Lemma 1.5. Let C and D be Σ-closed G-categories. Then giving a G-functor
F : C → D is equivalent to giving a M-functor F0 : C0 → D0 equipped with an
isomorphism α : F0Σ ≃ ΣF0.

Lemma 1.6. Let F and G be G-functors C → D between Σ-closed G-categories.
Then a natural transformation f : F0 → G0 is G-natural if and only if the square

F0Σ
fΣ //

α

��

G0Σ

α

��
ΣF0

Σf
// ΣG0
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commutes.

3. Limits in enriched category

Let C be a V-category. We say a usual functor I → C0 from a small category
I to the underlying category of C a diagram in C. So a diagram consists of Yi ∈ C
for each i ∈ I and a degree-zero morphism Yi → Yj for each arrow i → j in I.
For a diagram {Yi}i∈I , its (conical) V-limit is an object lim←−i

Yi ∈ C with a family

of degree-zero morphisms lim←−i
Yi → Yi for each i which satisfies the V-natural

isomorphism
HomC(X, lim←−

i

Yi) ≃ lim←−
i

HomC(X,Yi).

Note that the usual limit only implies

HomC0(X, lim←−
i

Yi) ≃ lim←−
i

HomC0(X,Yi).

Since taking the degree-zero part V 7→ V0 is continuous, the V-limit of an diagram
is also its usual limit. The converse does not hold in general but there are no
differences between them in a suitable condition.

Lemma 1.7. Suppose C is an M-category (resp. a Π-closed S-category, a Σ-
closed G-category). Then for any diagram its limit in C0 is automatically its V-limit
in C.

Proof. It is trivial for the V =M case. When V = S, we have

HomC(X, lim←−
i

Yi) ≃ HomC0(X, lim←−
i

Yi)⊕HomC0(ΠX, lim←−
i

Yi)

≃ lim←−
i

HomC0(X,Yi)⊕ lim←−
i

HomC0(ΠX,Yi)

≃ lim←−
i

HomC(X,Yi).

The similar proof works for V = G since a limit commutes with direct sums in a
Grothendieck category G. □

The dual notion (conical) V-colimit of a diagram is introduced similarly. Next
we introduce the notion of abelian V-category.

Definition 1.8. We say that a S-category (resp. a G-category) C is abelian if
it is Π-closed (resp. Σ-closed) and its underlying category C0 is abelian.

As usual, an M-closed category C is called abelian when C0 is abelian. By
the lemma above, in an abelian V-category we can use several categorical notions
such as zero object, direct sum, kernel, cokernel, monomorphism, epimorphism and
exactness defined as via enriched Hom functors without any modifications. We are
also allowed to operate homological computations as follows.

Lemma 1.9. Let C be an abelian V-category. Then P ∈ C is projective in C0 if
and only if the functor HomC(P, •) : C → V is exact.

Proof. The “if” part follows from that taking the degree-zero part V →
M;V 7→ V0 is exact. The “only if” part can be proven similarly as the lemma
above. □

We here study limits and colimits in a functor category. Let {Fi : C → D} be
a diagram in Hom(C,D). If the V-limit lim←−i

FiX exists for each X ∈ C, then the

V-limit lim←−i
Fi also exists and is defined as

(lim←−
i

Fi)X := lim←−
i

FiX.
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Dually V-colimits of this diagram is also computed value-wise. We remark that the
composition of V-functors

Hom(D, E)⊠Hom(C,D)→ Hom(C, E),
F ⊠G 7→ FG

is also defined as a V-functor. By definition, the right multiplication

•G : Hom(D, E)→ Hom(C, E)
is both V-continuous (i.e. preserves V-limits) and V-cocontinuous (i.e. does V-
colimits). In contrast, the left multiplication

F• : Hom(C,D)→ Hom(C, E)
preserves certain V-limits or V-colimits for all C if and only if F does.

Suppose that V-categories C and D are both abelian, and C has enough projec-
tives. Then for each F : C → D, its i-th left derived V-functor LiF : C → D makes
sense as usual. Li can be viewed as a V-endofunctor on Hom(C,D), which is also
abelian, and from a short exact sequence 0→ F → G→ H → 0 of V-functors they
yield a long exact sequence

· · · → L2H → L1F → L1G→ L1H → L0F → L0G→ L0H → 0.

Dually, when C has enough injectives we define the i-th right derivation Ri.
We are most interested in the zeroth derivation L0. By definition there is a

canonical V-natural transformation L0F → F . L0F : C → D is right exact and of
course L0F ≃ F when F is already right exact. For another right exact V-functor
G : C → D, the map

HomC,D(G,L0F )→ HomC,D(G,F )

is an isomorphism since its inverse map is given by

HomC,D(G,F )→ HomC,D(L0G,L0F ) ≃ HomC,D(G,L0F ).

Thus L0F is considered as the most applicative right exact approximation of F .

4. Adjunctions

An adjunction from C to D is a pair of adjoint V-functors F : C → D and
F∨ : D → C where F is left adjoint to F∨. That is, it is called so if there is a
V-natural isomorphism

HomD(FX, Y ) ≃ HomC(X,F∨Y ).

Then F is V-cocontinuous and F∨ is V-continuous. It is also characterized by
degree-zero natural transformations δ : IdC → F∨F and ϵ : FF∨ → IdD which
satisfy the zig-zag identities

idF = (F
Fδ−−→ FF∨F

ϵF−−→ F ), idF∨ = (F∨ δF∨

−−−→ F∨FF∨ F∨ϵ−−→ F∨).

δ and ϵ are called the unit and the counit of the adjunction respectively. For a V-
functor F : C → D, the rest datum (F∨, δ, ε) which makes an adjunction is uniquely
determined up to unique isomorphism if it exists. In order to keep notations simple
we say that “F is an adjunction from C to D” when F : C → D has a fixed right
adjoint V-functor F∨. We denote by Adj (C,D) the full subcategory of Hom(C,D)
consisting of adjunctions.

For an adjunction F : C → D, the left multiplication F• is left adjoint to F∨•
while the right multiplication •F is right adjoint to •F∨. Thus for two parallel
adjunction F,G : C → D, we have a canonical isomorphism

HomC,D(F,G) ≃ HomD,C(G
∨, F∨).
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We here list few examples of adjunction category.

Example 1.10. Let A and B be V-algebras. For an (A,B)-bimodule M , the
V-functors between their module categories

F : B-Mod → A-Mod , F∨ : A-Mod → B-Mod ,

W 7→M ⊗B W, V 7→ HomA(M,V )

form an adjunction from B-Mod to A-Mod . Conversely let F : B-Mod → A-Mod
be an arbitrary adjunction. When we put M := FB the multiplication on B from
right makes M a right B-module. We have

F∨V ≃ HomB(B,F∨V ) ≃ HomA(FB, V ) = HomA(M,V )

so every adjunction between module categories can be obtained in this way. In
addition, Adj (B-Mod , A-Mod) is equivalent to A-Mod -B, the category of (A,B)-
bimodules. In particular it is abelian and the embedding to Hom(B-Mod , A-Mod)
is right exact, but not left exact in general.

Example 1.11. Suppose k is a field, and for A and B above let A-Modf ,
B-Modf be the categories of their finite dimensional left modules. Suppose that
N is a (B,A)-bimodule which satisfies these finiteness conditions:

(1) if a right A-module V is finite dimensional then so is HomAop(V,N),
(2) if a left B-module W is finite dimensional then so is HomB(W,N),
(3) N is locally finite dimensional, that is, it is the union of its finite dimen-

sional (B,A)-submodules.

We denote by V ∨ := HomV(V, k) the dual space of a finite dimensional vector space.
Then the functors

F : B-Modf → A-Modf , F∨ : A-Modf → B-Modf ,

W 7→ HomB(W,N)∨, V 7→ HomAop(V ∨, N)

form an adjunction via the natural isomorphism

HomA(HomB(W,N)∨, V ) ≃ HomAop(V ∨,HomB(W,N))

≃ HomB(W,HomAop(V ∨, N)).

In this case N is recovered from F by the formula N ≃ lim−→B↠B′(FB′)∨ where

B′ runs over all finite dimensional quotient algebras of B. Every adjunctions are
obtained in this way and Adj (B-Modf , A-Modf ) is equivalent to the opposite of
the category of such (B,A)-bimodules. This category does not necessarily have
kernels.

Example 1.12. For a small V-category A, we call a V-functor A → V “a
left A-module”, and denote by A-Mod := Hom(A,V). Similarly, for another V-
category B, a right B-module (resp. an (A,B)-bimodule) is just a V-functor Bop → V
(resp. Bop ⊠A → V). Since a Z-linear category is a “ring with several objects” as
Mitchell [Mit72] noticed, this terminology is a generalization for usual algebras.

When M is an (A,B)-bimodule and N is an (A, C)-bimodule, we can form an
(B, C)-bimodule HomA(M,N) defined as

Cop ⊠ B → V,
Z ⊠ Y 7→ HomA,V(M(Y, •), N(Z, •)).

On the other hand, if P is an (B, C)-bimodule, there is an (A, C)-bimodule denoted
by M ⊗B P , which sends Z ⊠X ∈ Cop ⊠A to the coequalizer of the parallel maps⊕

Y ′,Y ′′∈B

M(Y ′, X)⊗HomB(Y
′′, Y ′)⊗ P (Z, Y ′′) ⇒

⊕
Y ∈B

M(Y,X)⊗ P (Z, Y ).
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Similarly as above, an adjunction F : B-Mod → A-Mod is represented by some
(A,B)-bimodule M using ⊗ and Hom. The identity functor on A-Mod corresponds
to the (A,A)-bimodule HomA(•, •).

5. The category of adjunctions

First of all, we make sure a well-known fact that adjunctions are closed un-
der colimits, especially cokernels. Let {Fi} be a diagram in Adj (C,D). For each
arrow i → j between indices, the V-natural transformation Fi → Fj induces the
corresponding F∨

j → F∨
i . Thus they form the diagram {F∨

i } in Hom(D, C) whose
arrows are reversed.

Proposition 1.13. Let {Fi} be as above, and suppose that the V-colimit F :=
lim−→i

Fi and the V-limit F∨ := lim←−i
F∨
i are both exist. Then F is left adjoint to

F∨. Moreover the canonical morphisms Fi → F and F∨ → F∨
i are mapped to each

other by the isomorphism

HomC,D(Fi, F ) ≃ HomD,C(F
∨, F∨

i ).

We here give two proofs for this easy but important result.

First proof. First we prove the lemma by studying the functors value-wise.
The statements are obvious by the V-natural isomorphism

HomD(FX, Y ) ≃ lim←−
i

HomD(FiX,Y ) ≃ lim←−
i

HomC(X,F∨
i Y ) ≃ HomC(X,F∨Y ).

□

Second proof. The second is a “2-categorical” proof. For each arrow i→ j,
we have a commutative diagram

IdC //

��

F∨
j Fj

//

��

F∨
j F

��
F∨
i Fi

// F∨
i Fj

// F∨
i F

so it induces the unit IdC → lim←−i
F∨
i F ≃ F∨F . The counit FF∨ → IdD is defined

analogously. To prove that F → FF∨F → F is equal to idF , it suffices to show
that its pullback Fi → F → FF∨F → F is equal to Fi → F for each i. It follows
from the commutativity of the diagram below:

F

��

Fi
oo //

��

id

((
FiF

∨
i Fi

//

��

Fi

��
FF∨F 55FiF

∨Foo // FiF
∨
i F // F.

Similarly F∨ → F∨FF∨ → F∨ is also equal to the identity so F and F∨ are adjoint
to each other. The diagram above also shows us that Fi → F also coincides with
the composite Fi → FiF

∨F → FiF
∨
i F → F which is induced by F∨ → F∨

i . □

Remark 1.14. Although we are now studying the 2-category of V-categories,
the second proof also works for an arbitrary 2-category such that the right multi-
plication of a 1-cell is both V-continuous and V-cocontinuous.

We will soon use the next corollary.
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Corollary 1.15. Suppose that both C and D are abelian. A sequence of ad-
junctions F → G → H → 0 is exact in Hom(C,D) if and only if so is the corre-
sponding sequence 0 → H∨ → G∨ → F∨ in Hom(D, C). In particular, F → G is
epic if and only if the corresponding G∨ → F∨ is monic.

As we have seen in the examples, the V-category Adj (C,D) may have lim-
its which differ from those taken in Hom(C,D). We here give a simple sufficient
condition for Adj (C,D) to be abelian.

Lemma 1.16. Let C and D be abelian V-categories, and suppose that C has
enough projectives and D has enough injectives. Let F,G : C → D be parallel ad-
junctions with a degree-zero natural transformation F → G. Let K := Ker(F → G)
and C := Coker(G∨ → F∨). Then L0K is left adjoint to R0C, so it is an adjunc-
tion. Moreover, L0K is the kernel of F → G in Adj (C,D).

Proof. Let X ∈ C, Y ∈ D and take a projective resolution P ′ → P →
X → 0 and an injective resolution 0 → Y → Q → Q′ respectively. By definition
HomD((L0K)X,Y ) is the kernel of the map

HomD(KP,Q)→ HomD(KP ′, Q)⊕HomD(KP,Q′).

Since P is projective and Q is injective, each term can be represented as

HomD(KP,Q) ≃ Coker(HomD(GP,Q)→ HomD(FP,Q))

≃ Coker(HomC(P,G
∨Q)→ HomC(P, F

∨Q))

≃ HomC(P,CQ).

Hence we have a natural isomorphism HomD((L0K)X,Y ) ≃ HomC(X, (R0C)Y )
since its right-hand side also has a similar representation. For any H ∈ Adj (C,D)
there is a natural isomorphism

HomC,D(H,L0K) ≃ HomC,D(H,K) ≃ Ker(HomC,D(H,F )→ HomC,D(H,G)).

Thus L0K is the kernel of F → G taken in Adj (C,D). □
Proposition 1.17. Let C and D be as above. Then Adj (C,D) is abelian and

the embedding Adj (C,D) ↪→ Hom(C,D) is right exact.

Proof. Clearly it is closed under Π or Σ. By Proposition 1.13 and Lemma 1.16
it also has finite direct sums, kernels and cokernels. In Adj (C,D) the image of
the morphism F → G is isomorphic to its coimage, since they give same value
Image(FP → GP ) on enough projectives P ∈ C. The cokernel of a morphism in
Adj (C,D) is equal to that taken in Hom(C,D) so the embedding is right exact. □



CHAPTER 2

Ideal functors in abelian categories

From now on, we omit all prefixes “V-” in order to avoid redundant descriptions,
so “a category” means a V-category, “a functor” a V-functor, etc.

We here study some kind of endofunctors which we call ideal functors. These
are analogues of 2-sided ideals in a ring. Later it is used to divide the category into
two parts by a Morita context.

1. Ideal functors

Let C be an abelian category (i.e. an abelian V-category) and consider the
category End(C) := Hom(C, C) which is also abelian and has the specific object IdC ,
the identity functor.

Definition 2.1. A subfunctor I ⊂ IdC is called an ideal functor on C if its
cokernel TI := Coker(I ↪→ IdC) is an adjunction. The cokernel of the corresponding
morphism T∨

I ↪→ IdC (monic by Corollary 1.15) is denoted by I◦.

Example 2.2. Consider the case that C is a module category A-Mod . Then the
set of quotient adjunctions of IdA-Mod is in bijection with the set of quotient (A,A)-
bimodules of A, that is, A/I for a 2-sided ideal I ⊂ A. Thus the corresponding
ideal functor maps an A-module V to the kernel of the map

V ↠ TIV := A/I ⊗A V ≃ V/IV,

namely IV . This is why we call such kind of functor an “ideal functor”. In this
case the right adjoint T∨

I can be represented as

T∨
I V := HomA(A/I, V ) ≃ {v ∈ V | Iv = 0}.

Example 2.3. When C = A-Mod is a module category of a category A, an
ideal functor on C is also corresponds to a 2-sided ideal I ⊂ A. Here a 2-sided ideal
in a category is a collection of spaces of morphisms

I(V,W ) ⊂ HomA(V,W )

for each pair of V,W ∈ A, which is closed under compositions with all morphisms
in A. From such an ideal we can form a quotient category A/I, whose hom sets
are defined by pairwise quotient.

Example 2.4. The socle Soc(X) of an object X ∈ C is the sum of all simple
subobjects of X. Dually, its top Top(X) is defined as X/Rad(X) where the radical
Rad(X) is the intersection of all its maximal subobjects of X. If these objects exist
for every X ∈ C, then Soc, Top and Rad can be defined as endofunctors on C.

Suppose that for all object X ∈ C, Top(X) and Soc(X) are both semisimple.
Then the functor Top is left adjoint to Soc, thus Rad = Ker(IdC ↠ Top) is an ideal
functor.

Example 2.5. If I is an ideal functor on C, (I◦)op is an ideal functor on Cop.

On a general abelian category, a typical example of ideal functor is the image
of an adjunction.

10
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Proposition 2.6. Let F : C → C be an adjunction with a degree-zero natural
transformation F → IdC. Then I := Image(F → IdC) is an ideal functor. I◦ is
also the image of the corresponding natural transformation IdC → F∨.

Proof. By Proposition 1.13, the cokernel TI = Coker(F → IdC) has the right
adjoint functor T∨

I := Ker(IdC → F∨) so it is an adjunction. Thus by definition
I is an ideal functor. Since 0 → T∨

I → IdC → F∨ is exact by Corollary 1.15, F∨

contains I◦ = Coker(T∨
I ↪→ IdC) as a subfunctor. □

Remark 2.7. Suppose C has enough projectives and injectives. Then for an
ideal functor I on C, L0I is an adjunction and L0I ↠ I is epic by Proposition 1.17.
Thus in this case every ideal functor is obtained as the image of an adjunction.
When C = A-Mod , L0I for a 2-sided ideal I ⊂ A is just the tensor functor I ⊗A •
where I is viewed as an (A,A)-bimodule.

On the other hand, let A be a polynomial algebra k[x1, x2, . . . ] in infinitely

many variables over a field k and consider the case C = A-Modf , the category of
its finite dimensional modules. Then I : V 7→

∑
i xiV is clearly an ideal functor on

A-Modf but there are no adjunctions which cover I.

We here list basic properties of ideal functors. For simplicity if there is a
canonical isomorphism F → G between objects which is clear from the context, we
write F = G for short.

Lemma 2.8. Let I ⊂ IdC be an ideal functor. Then

(1) the morphisms TI = TI · IdC → T 2
I and TI = IdC · TI → T 2

I coincide,
(2) T∨

I TI = TI = T 2
I ,

(3) ITI = 0 = I◦TI .

Proof. (1) follows from that the epimorphism IdC ↠ TI equalize these two
morphisms. Since IdC ↠ TI factors through IdC → T∨

I TI ↪→ TI , the monomorphism
T∨
I TI ↪→ TI is also epic. So it must be an isomorphism since the functor category

is abelian. Similarly T∨
I = TIT

∨
I holds and we obtain

TI = T∨
I TI = TIT

∨
I TI = T 2

I

so (2) holds. (3) is just a rephrasing of (2). □
In general an ideal functor is neither left exact nor right exact. Still, we can

prove the following useful properties.

Proposition 2.9. An ideal functor preserves all images.

Proof. Let I ⊂ IdC be an ideal functor. A functor is called mono (resp.
epi) if it preserves all monomorphisms (resp. epimorphisms). Since IdC is clearly
a mono functor, so is its subfunctor I. I is also epi because IdC is epi and the
cokernel TI is right exact; apply the nine lemma. Thus I preserves all epi-mono
factorizations. □

Recall that for a possibly infinite family of subobjects {Xi ⊂ X}, their sum, if
exists, is the minimum subobject

∑
i Xi ⊂ X which contains all Xi.

Lemma 2.10. Let X ∈ C be an object and Y,Z ⊂ X its subobjects. Then
IZ ⊂ Y if and only if Z ⊂ Ker(X ↠ X/Y ↠ I◦(X/Y )) (in other words, X/Z is a
quotient of I◦(X/Y )).

Proof. Suppose IZ ⊂ Y , or equivalently, the composite IZ ↪→ Z → X/Y is
zero. Then Z → X/Y factors through Z ↠ TIZ. Hence Z → X/Y ↠ I◦(X/Y )
factors through I◦TIZ = 0 so it must be zero. Taking the opposite category we can
dually prove the other implication. □
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Proposition 2.11. An ideal functor commutes with summation.

Proof. Let I ⊂ IdC be an ideal functor. Take an object X ∈ C and a family
of subobjects {Xi ⊂ X} whose sum

∑
i Xi exists. Note that Xi ↪→

∑
i Xi induces

IXi ↪→ I
∑

i Xi. Thus if
∑

i IXi exists, it is contained in I
∑

i Xi.
Conversely, let Y ⊂ X be a subobject which contains every IXi. Let

Y ′ := Ker(X ↠ X/Y ↠ I◦(X/Y )).

Then Xi ⊂ Y ′ for all i by the “only if ” part of Lemma 2.10, so
∑

i Xi ⊂ Y ′. On
the other hand, its “if” part says that IY ′ ⊂ Y . Thus I

∑
i Xi ⊂ IY ′ ⊂ Y , so∑

i IXi exists and actually ∑
i

IXi = I
∑
i

Xi.

□

2. Subcategories defined by ideal functors

In this section we fix an ideal functor I on C. Using an ideal functor, we define
two full subcategory of C in the following manner.

Lemma 2.12. For an object X ∈ C, the following conditions are equivalent.

(1) IX = 0 (⇐⇒ X = TIX),
(2) I◦X = 0 (⇐⇒ T∨

I X = X).

Proof. Similar to the proof of TI = T 2
I in Lemma 2.8. □

Definition 2.13. An object X ∈ C is called I-annihilated if it satisfies the con-
ditions above. We denote by CI the full subcategory of C consisting of I-annihilated
objects.

The other subcategory is defined analogously.

Definition 2.14. An object X ∈ C is called

(1) I-accessible if IX = X (⇐⇒ TIX = 0),
(2) I-torsion-free if X = I◦X (⇐⇒ T∨

I X = 0).

We denote by CI the full subcategory of C consisting of I-accessible I-torsion-free
objects.

By definition it is clear that these subcategories are closed under the parity
change Π or the degree shift Σ.

Example 2.15. Let A be a ring and I ⊂ A a 2-sided ideal. Then an A-module
V is I-annihilated if and only if it can be defined over the quotient ring A/I. Thus
there is a canonical category equivalence (A-Mod)I ≃ (A/I)-Mod .

Example 2.16. Suppose that every object in C is of finite length. Then the
assumption in Example 2.4 is satisfied. For an ideal functor I = Rad, we have that
CRad = {0} (Nakayama’s lemma) and CRad consists of all semisimple objects in C.

Clearly the intersection of CI and CI is {0}. In addition, there are no non-zero
morphisms between objects in these categories.

Lemma 2.17. Let X,Y, Z ∈ C and suppose that X is I-accessible, Y is I-
torsion-free and Z is I-annihilated. Then HomC(X,Z) = 0 and HomC(Z, Y ) = 0.

Proof. Follows from

HomC(X,Z) = HomC(X,T∨
I Z) ≃ HomC(TIX,Z) = 0,

HomC(Z, Y ) = HomC(TIZ, Y ) ≃ HomC(Z, T
∨
I Y ) = 0.

□
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The important property is that simple objects in C are divided into these sub-
categories. The proof of the lemma below is obvious.

Lemma 2.18. When X ∈ C is simple, these three conditions are all equivalent.

(1) X is I-accessible,
(2) X is I-torsion-free,
(3) X is not I-annihilated. □
Notation 2.19. We denote by Irr C the isomorphism class of simple objects in

C. For an ideal functor I on C, we also denote by Irr CI and Irr CI the subsets of
Irr C whose members are simple objects contained in respective subcategories.

By the lemma, we have a decomposition Irr C = Irr CI ⊔ Irr CI . Note that the
definitions of Irr CI and Irr CI need both the category C and the ideal functor I, not
only the subcategories themselves.

Proposition 2.20.

(1) I-accessible objects are closed under quotients, extensions and direct sums,
(2) I-torsion-free objects are closed under subobjects, extensions and direct

products,
(3) I-annihilated objects are closed under subobjects, quotients, direct products

and direct sums.

In particular, CI is an exact subcategory of C in Quillen’s sense, and CI is an abelian
subcategory.

Proof. Follow from that TI is cocontinuous and that T∨
I is continuous. □

Obviously Irr CI is equal to the isomorphism class of simple objects in an abelian
category CI , so this notation makes no confusions. Let us denote by the embedding
CI ↪→ C of abelian category by ΦI . Namely, for X ∈ CI , we explicitly write ΦIX ∈ C
when we need to emphasis the categories in which these objects belong.

Lemma 2.21. ΦI has both the left adjoint functor Φ∧
I and the right adjoint

functor Φ∨
I such that ΦIΦ

∧
I = TI , ΦIΦ

∨
I = T∨

I and Φ∧
I ΦI = Φ∨

I ΦI = IdCI
.

Proof. Since TIX and T∨
I X for any X ∈ C are I-annihilated, the functors

Φ∧
I and Φ∨

I can be defined as the restriction of TI and T∨
I respectively. For any

Y ∈ CI , we have naturally

HomC(X,ΦIY ) = HomC(X,T∨
I ΦIY ) ≃ HomC(TIX,ΦIY ) = HomCI

(Φ∧
I X,Y ),

HomC(ΦIY,X) = HomC(TIΦIY,X) ≃ HomC(ΦIY, T
∨
I X) = HomCI

(Y,Φ∨
I X).

Thus these two functors are respective adjoints of the embedding. □

Corollary 2.22. For an ideal functor J on another abelian category D, the
functor

Hom(CI ,DJ)→ Hom(C,D),
F 7→ ΦJFΦ∧

I

is fully faithful. Its image is equivalent to the full subcategory

{G : C → D |G = TJGTI} ⊂ Hom(C,D)
and the inverse is induced by

Hom(C,D)→ Hom(CI ,DJ ),

G 7→ Φ∧
JGΦI .

In particular, F is an adjunction if and only if so is ΦJFΦ∧
I . □



3. IDEAL OPERATIONS 14

Remark 2.23. CI is characterized up to equivalence by these data: let E be an
abelian category with an adjoint Φ: E → C which also has a left adjoint functor Φ∧,
and suppose that the counit Φ∧Φ→ IdE is an isomorphism and the unit IdC → ΦΦ∧

is epic. Then E is canonically equivalent to CI where I := Ker(IdC ↠ ΦΦ∧).

3. Ideal operations

In this section we consider operations against ideal functors: summation, prod-
uct and quotient. These are analogues of those against usual 2-sided ideals in rings.
Firstly we introduce summation of ideal functors.

Proposition 2.24. Let {Ii} be a family of ideal functors on C, and suppose
that their sum

∑
i Ii ⊂ IdC and the intersection

∩
i T

∨
Ii
⊂ IdC exist. Then

∑
i Ii is

again an ideal functor.

Proof. The cokernel of
∑

i Ii ↪→ IdC is the pushout of adjunctions IdC ↠ TIi

under IdC , which is left adjoint to the pullback
∩

i T
∨
Ii

by Proposition 1.13. □
Remark 2.25. In contrast, the intersection of ideal functors is not an ideal

functor. This is because even in the module category of a ring, the equation (I ∩
J)V = IV ∩ JV does not hold in general.

In particular, a finite sum always exists. We can represent finite sum in another
way as follows.

Proposition 2.26. Let I and J be ideal functors on C. Then TITJ = TI+J .

Proof. We have a commutative diagram

0 // I //

����

IdC //

����

TI

����

// 0

0 // ITJ
// TJ

// TITJ
// 0

where the rows are exact since the right multiplication of TJ is exact, and I → ITJ

is epic since I preserves images. These properties imply that the right square is
cocartesian. In other words, TITJ is the pushout of TI and TJ under IdC . □

Secondly we consider the product of two ideal functors defined by composition.

Lemma 2.27. For ideal functors I and J on C, we have TIJ = JTIJ .

Here we let TIJ := Coker(IJ ↪→ IdC) though we have not yet prove that IJ is
an ideal functor.

Proof. Let us consider the diagram

0 // IJ // J //� _

��

TIJ //
� _

���
�
� 0

0 // IJ // IdC // TIJ
// 0

whose rows are exact. The commutative square induces TIJ → TIJ which is monic
by the four lemma. On the other hand, we have another commutative diagram

J // //� _

��

JTIJ� _

��
IdC // // TIJ .

where J → JTIJ is epic and JTIJ → TIJ is monic. Thus we have two epi-mono
factorization of the diagonal morphism so that its images must be equal. □
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Lemma 2.28. For I and J as above, we have I◦J = JI◦.

Proof. Follows in a similar way from that both are the image of J ↪→ IdC ↠
I◦. □

Proposition 2.29. Let I and J be ideal functors on C. Then IJ is also an
ideal functor such that (IJ)◦ = J◦I◦.

Proof. Let TIJ := Coker(IJ ↪→ IdC) and T∨
IJ := Ker(IdC ↠ J◦I◦). It suffices

to prove that these functors actually form an adjunction. By the lemma above,
we have IJTIJ = ITIJ = 0. So JTIJ is I-annihilated and this implies JI◦TIJ =
I◦JTIJ = 0. Thus I◦TIJ is J-annihilated so J◦I◦TIJ = 0. Equivalently, we
have T∨

IJTIJ = TIJ . We can prove TIJT
∨
IJ = T∨

IJ in a similar way. Using these
isomorphisms, we can define the unit IdC ↠ TIJ = T∨

IJTIJ and the counit TIJT
∨
IJ =

T∨
IJ ↪→ IdC . Now it is obvious that these morphisms satisfy the zig-zag identities.

□
Lastly we study about quotient of ideal functors.

Definition 2.30. Let I and J be two ideal functors on C such that J ⊂ I ⊂ IdC .
Since CJ is closed under subobjects, X ∈ CJ implies IX ∈ CJ . We denote this
restricted functor of I by IJ : CJ → CJ .

Recall that we denote by ΦJ : CJ → C the embedding of abelian category, and
the endofunctor category can be also exactly embedded as

End(CJ )→ End(C),
F 7→ ΦJFΦ∧

J .

Lemma 2.31. Let I and J be as above. Then

ΦJIJΦ
∧
J = ITJ = Ker(TJ ↠ TI) ≃ I/J.

Proof. By definition, ΦJIJ = IΦJ so ΦJIJΦ
∧
J = ITJ . Since TITJ = TI+J =

TI , it is equal to

ITJ = Ker(TJ ↠ TITJ ) = Ker(TJ ↠ TI).

The last isomorphism is obvious. □
Proposition 2.32. For I and J as above, IJ is an ideal functor on CJ . More-

over every ideal functors on CJ is obtained in this way, and ideal functors on CJ
are in one-to-one correspondence with those on C which contain J .

Proof. Via the above embedding, Coker(IJ ↪→ IdCJ ) is mapped to an adjunc-
tion Coker(ITJ ↪→ TJ) = TI . Thus IJ is an ideal functor and I is recovered from
IJ in this way.

Conversely, suppose that K is an ideal functor on CJ . Then TK̃ := ΦJTKΦ∧
J

is a quotient adjunction of TJ so K̃ := Ker(IdC ↠ TJ ↠ TK̃) is an ideal functor
which contains J . Moreover we have

K̃ΦJ = Ker(ΦJ ↠ TK̃ΦJ) = Ker(ΦJ ↠ ΦJTK) = ΦJK,

which means that K̃J ≃ K. Thus these operations gives a one-to-one correspon-
dence up to unique isomorphism. □

Now the next statements are clear.

Proposition 2.33. Let I, J ⊂ IdC be ideal functors. Then

(1) CI+J = CI ∩ CJ ,
(2) CIJ = CI ∩ CJ ,
(3) if J ⊂ I then (CJ )IJ = CI and (CJ)IJ = CI ∩ CJ . □
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4. Compatibility with extension

In this section we fix an abelian category C and an ideal functor I ⊂ IdC . For
each pair of X,Y ∈ C, let us denote ExtiC(X,Y )0 := ExtiC0

(X,Y ) the Ext group
taken in C0. It is defined as the set of equivalence classes of exact sequences

0→ Y → Ei → · · · → E1 → A→ 0.

We also define the graded Ext group ExtiC(X,Y ) as

ExtiC(X,Y ) := ExtiC(X,Y )0 ⊕ ExtiC(X,ΠY )0

for the super case V = S and

ExtiC(X,Y ) :=
⊕
k

ExtiC(X,ΣkY )0

for the graded case V = G.
Every exact sequences in CI are still exact in C, so we have a canonical map

ExtiCI
(X,Y )→ ExtiC(ΦIX,ΦIY ).

However this map is rarely an isomorphism because when we take an exact sequence
in C whose both ends are in CI , the rest terms do not need to belong in CI . In this
section we give some characterizations of that ΦI preserves Ext functors. These
results are a reformulation of those in [APT92].

In a module category case, the condition for Ext1 is well-known: it is equivalent
to that the ideal is idempotent. We can easily generalize this fact as follows.

Proposition 2.34. The followings are equivalent.

(1) Ext1CI
(X,Y ) ≃ Ext1C(X,Y ) for every X,Y ∈ CI ,

(2) CI is closed under extensions,
(3) I2 = I.

Proof. (1) ⇔ (2) is immediate by definition. Now let 0→ X → Y → Z → 0
be a short exact sequence in C and suppose X,Z ∈ CI . Then clearly I2Y = 0 so
(3) implies (2). Conversely assume that (3) fails so that I2 ⊊ I. Then there exists
X ∈ C such that I2X ⊊ IX. By TII = ITI2 the sequence

0→ TIIX → TI2X → TIX → 0

is exact. Both the left and the right term is in CI but the middle is not since
I2X ⊊ IX implies ITI2X = TIIX ̸= 0. Hence (2) does not hold, so we have (2) ⇔
(3). □

Lemma 2.35. Suppose that C has enough projectives.

(1) If P ∈ C is projective, then so is Φ∧
I P ∈ CI .

(2) CI also has enough projectives.
(3) Each projective object in CI is a direct summand of Φ∧

I P for some projec-
tive object P ∈ C.

Proof. (1) follows from that its right adjoint ΦI is exact. For any X ∈ CI ,
there is a projective object P ∈ C and an epimorphism P ↠ ΦIX which induces
Φ∧

I P ↠ X so (2) and (3) follow from (1). □

In the rest of this section, we require that C has enough projectives and in-
jectives in order to use its homological properties. Then we have that ExtiC(X, •)
and ExtiC(•, Y ) are the i-th left derived functors of HomC(X, •) and HomC(•, Y )
respectively.

Lemma 2.36. Let 2 ≤ k ≤ ∞. For X ∈ C, the followings are equivalent.

(1) ExtiCI
(Φ∧

I X,Y ) ≃ ExtiC(X,ΦIY ) for any Y ∈ CI and 0 ≤ i < k,
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(2) ExtiC(X,ΦIQ) = 0 for any injective Q ∈ CI and 1 ≤ i < k,
(3) (LiΦ

∧
I )X = 0 for any 1 ≤ i < k,

(4) (L0I)X ≃ IX and (LiI)X = 0 for any 1 ≤ i < k − 1.

Proof. Let Pk → · · · → P1 → P0 → X → 0 be a projective resolution of X.
First (1) ⇒ (2) is trivial. Assume (2) then it implies

0→ HomCI
(Φ∧

I X,Q)→ HomCI
(Φ∧

I P0, Q)→ · · · → HomCI
(Φ∧

I Pk, Q)

is exact for any injective Q ∈ CI . Since CI has enough injectives by the dual of
Lemma 2.35, the sequence

Φ∧
I Pk → · · · → Φ∧

I P1 → Φ∧
I P0 → Φ∧

I X → 0

must be exact so (3) holds. Conversely, if (3) is satisfied, the sequence above is a
projective resolution of Φ∧

I X. Thus

ExtiCI
(Φ∧

I X,Y ) ≃ Hi(HomCI
(Φ∧

I Pi, Y ))

≃ Hi(HomC(Pi,ΦIY ))

≃ ExtiC(X,ΦIY )

so (1) holds. Finally we have ΦI(LiΦ
∧
I ) = LiTI since ΦI is exact. Hence (3) and

(4) are equivalent by that the sequence

0→ L1TI → L0I → IdC → TI → 0

is exact and that LiTI ≃ Li−1I. □

One can easily check that if everyX ∈ C satisfies the above conditions for k = 2,
then it is also true for k = ∞. In this situation, we can rewrite the conditions as
follows.

Corollary 2.37. The followings are equivalent.

(1) ExtiCI
(Φ∧

I X,Y ) ≃ ExtiC(X,ΦIY ) for any X ∈ C, Y ∈ CI and i ≥ 0,
(2) ΦI sends injectives to injectives,
(3) Φ∧

I is exact,
(4) I is an adjunction. □

However this condition is too strong for our purpose because we only need
objects of the form ΦIX ∈ C for X ∈ CI . Now we state a criteria of Ext preserving
property for ideal functors.

Proposition 2.38. Let 2 ≤ k ≤ ∞. Then the followings are equivalent.

(1) ExtiCI
(X,Y ) ≃ ExtiC(ΦIX,ΦIY ) for any X,Y ∈ CI and 0 ≤ i < k,

(2) ExtiC(ΦIP,ΦIQ) = 0 for any projective P ∈ CI , injective Q ∈ CI and
1 ≤ i < k,

(3) (LiΦ
∧
I )ΦI = 0 for any 1 ≤ i < k,

(4) (LiΦ
∧
I )ΦIP = 0 for any projective P ∈ CI and 1 ≤ i < k.

(5) (LiI)ΦI = 0 for any 0 ≤ i < k − 1,
(6) (LiI)ΦIP = 0 for any projective P ∈ CI and 0 ≤ i < k − 1.

When k ≥ 3, it is also equivalent to that:

(7) (L0I)
2 ≃ L0I, and (LiI)IP = 0 for any projective P ∈ C and 1 ≤ i <

k − 2.

Since the conditions (1) and (2) are self-dual, we can replace the rest conditions by
their dual statements.
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Proof. (1)⇔ (3)⇔ (5) and (2)⇔ (4)⇔ (6) follow from the previous lemma.
(3) ⇒ (4) is obvious. Now suppose (4). Let X ∈ C and take an exact sequence
0→ K → P → X → 0 with P projective. By applying (LiΦ

∧
I )ΦI it yields the long

exact sequence

· · · → (L1Φ
∧
I )ΦIK → (L1Φ

∧
I )ΦIP → (L1Φ

∧
I )ΦIX → K → P → X → 0.

Then the assumption implies (L1Φ
∧
I )ΦIX = 0. Moreover we have (LiΦ

∧
I )ΦIX ≃

(Li−1Φ
∧
I )ΦIK for each 2 ≤ i < k so by induction all of them must be zero. Hence

(4) implies (3).
Now suppose k ≥ 3 and we prove that (6) is also equivalent to (7). First by

Lemma 2.35, (6) can be replaced by

(6’) (LiI)TIP = 0 for any projective P ∈ C and 0 ≤ i < k − 1.

Applying LiI’s to the exact sequence 0→ IP → P → TIP → 0, we obtain that it
is equivalent to that (L0I)IP ≃ IP and (LiI)IP = 0 for 1 ≤ i < k − 2. Moreover,
the first condition is equivalent to that (L0I)

2 ≃ L0I since a right exact functor is
determined by the values on projectives which generate whole C. □

Hence it also yields a well-known statement as a special case: for an algebra
A and its 2-sided ideal I ⊂ A, Ext2A/I = Ext2A if and only if the multiplication
I ⊗A I → I is an isomorphism.

Example 2.39. Suppose I2 = I and I sends projectives to projectives. Then
for k =∞ the condition (7) above is easily verified.

5. Ideal filters

In this section we consider a family of ideal functors indexed by a partially
ordered set (Λ,≤). Such situation occurs mainly in the study of cellular algebras
or quasi-hereditary algebras. In this section we fix an abelian category C which is
closed under sums and intersections of subobjects with cardinality #Λ.

Definition 2.40. An ideal filter on C indexed by (Λ,≤) is a family of ideal
functors {I≤λ}λ∈Λ which satisfies these three conditions:

I≤λ ⊂ I≤µ if λ ≤ µ, IdC =
∑
λ

I≤λ, I≤λI≤µ ⊂
∑

ν≤λ,µ

I≤ν .

From now on {I≤λ} denotes an ideal filter on C indexed by (Λ,≤).

Notation 2.41. For each λ ∈ Λ, we define

I<λ :=
∑
µ<λ

I≤µ.

When an ideal filter on C is fixed, we write C≤λ := CI≤λ

and C<λ := CI<λ for short.
We also denote C[λ] := C≤λ ∩ C<λ and Irr C[λ] := {V ∈ Irr C |V ∈ C[λ]}.

The purpose of introducing an ideal filter is to divide the category into a small
subcategories as follows.

Lemma 2.42. If λ ̸= µ we have C[λ]∩C[µ] = {0}, so that Irr C[λ]∩ Irr C[µ] = ∅.

Proof. Suppose that X ∈ C[λ] ∩ C[µ]. If λ < µ, we have

X = I≤λX ⊂ I<µX = 0.

Otherwise λ ̸≤ µ. Then

X = I≤λI≤µX ⊂
∑

ν≤λ,µ

I≤νX ⊂ I<λX = 0.

In either case, we have that X = 0. □
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A partially ordered set (Λ,≤) is said to be well-founded if its every non-empty
subset has a minimal element. Under the axiom of choice, this property is equivalent
to the conditions below:

(1) there are no infinite descending chains λ1 > λ2 > · · · ,
(2) there is a well-ordering extension of ≤.

Proposition 2.43. Suppose that Λ is well-founded. Then

Irr C =
⊔
λ∈Λ

Irr C[λ].

Proof. Suppose that X ∈ C is simple. Since we have 0 ̸= X =
∑

λ I
≤λX, the

set {λ ∈ Λ | I≤λX ̸= 0} is non-empty. By the assumption it has a minimal element
λ ∈ Λ, so that X ∈ C[λ]. □

In practice we can choose a partially ordered set from various choices to obtain
a same result. First observe that we can remove redundant indices from Λ.

Lemma 2.44. Suppose that there is a subset Λ0 ⊂ Λ such that IdC =
∑

λ∈Λ0
I≤λ.

Let Λ′ := {µ ∈ Λ | ∃λ ∈ Λ0 s.t. µ ≤ λ} be the order ideal generated by Λ0. Then

(1) {I≤λ}λ∈Λ′ is also an ideal filter indexed by (Λ′,≤),
(2) I<λ = I≤λ unless λ ∈ Λ′, so that C[λ] = {0}.

Proof. (1) is obvious. Suppose λ /∈ Λ′. Then

I≤λ ⊂
∑
µ∈Λ′

I≤µI≤λ ⊂
∑
µ∈Λ′

∑
ν≤λ,µ

I≤ν ⊂ I<λ

so (2) holds. □

Next we consider how these subcategories will be affected when we strengthen
the order on Λ.

Lemma 2.45. Let ⊴ be an extension of ≤, that is, another partial ordering on
Λ such that λ ≤ µ implies λ⊴ µ. For each λ ∈ Λ, define

I⊴λ :=
∑
µ⊴λ

I≤µ.

Then

(1) {I⊴λ} is also an ideal filter indexed by (Λ,⊴),
(2) C≤λ ∩ C<λ = C⊴λ ∩ C◁λ,
(3) there is a surjective morphism I≤λ/I<λ ↠ I⊴λ/I◁λ.

Proof. Let us check the conditions in the definition for {I⊴λ}. The first two
clearly hold. Since ideal functors commute with summation, we also have the third
one

I⊴λI⊴µ =
∑

ν⊴λ, π⊴µ

I≤νI≤π ⊂
∑

ν⊴λ, π⊴µ

∑
ρ≤ν,π

I≤ρ ⊂
∑

ν⊴λ, π⊴µ

∑
ρ⊴ν,π

I⊴ρ =
∑

ρ⊴λ,µ

I⊴ρ.

Thus {I⊴λ} is an ideal filter.
In order to prove (2), first note that

I◁λ =
∑
µ◁λ

I⊴µ =
∑
µ◁λ

∑
ν⊴µ

I≤µ =
∑
ν◁λ

I≤ν .

Suppose that X ∈ C≤λ ∩ C<λ. Since I≤λ ⊂ I⊴λ, clearly X ∈ C⊴λ. Moreover,

I◁λX = I◁λI≤λX =
∑
µ◁λ

I≤µI≤λX ⊂
∑
µ◁λ

∑
ν≤λ,µ

I≤νX ⊂ I<λX = 0
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so X ∈ C◁λ. Conversely, suppose that X ∈ C⊴λ ∩ C◁λ. Then I<λ ⊂ I◁λ immedi-
ately implies that X ∈ C<λ. We also have

X = I⊴λX = I≤λX + I◁λX = I≤λX,

that is, X is I≤λ-accessible. We can prove that X is I≤λ-torsion-free in a similar
manner so X ∈ C≤λ. Thus C≤λ ∩ C<λ = C⊴λ ∩ C◁λ.

Finally (3) follows from I≤λ ⊂ I⊴λ, I<λ ⊂ I◁λ and I⊴λ = I≤λ + I◁λ. □
Hence the notation C[λ] := C≤λ ∩ C<λ does not depend on taking extension of

ordering. Unfortunately, the functor I≤λ/I<λ does change by extension of ordering.
The condition for stability of this functor is described as follows.

Definition 2.46. For each λ, let

I ̸≥λ :=
∑
µ̸≥λ

I≤µ.

An ideal filter {I≤λ} is said to be rigid if it satisfies I≤λ ∩ I ̸≥λ = I<λ for every λ.

Note that the condition I≤λ ∩ I ̸≥λ ⊃ I<λ is always satisfied. Clearly if ≤ is a
total order then every ideal filter is rigid.

Proposition 2.47. Suppose {I≤λ} is rigid. Then for any extension ⊴ of ≤,
(1) {I⊴λ} is also rigid,
(2) the canonical morphism I≤λ/I<λ ↠ I⊴λ/I◁λ is an isomorphism.

Proof. Note that I◁λ ⊂ I ̸⊵λ ⊂ I ̸≥λ. These inclusions imply

I⊴λ ∩ I ̸⊵λ = (I≤λ + I◁λ) ∩ I ̸⊵λ = (I≤λ ∩ I ̸⊵λ) + I◁λ ⊂ (I≤λ ∩ I ̸≥λ) + I◁λ.

By the assumption, the right hand side is equal to I<λ + I◁λ = I◁λ, so {I⊴λ} is
rigid. Moreover

I≤λ ∩ I◁λ ⊂ I≤λ ∩ I ̸≥λ = I<λ

so I≤λ ∩ I◁λ = I<λ. Thus the morphism I≤λ/I<λ ↠ I⊴λ/I◁λ is an isomorphism
since its kernel is (I≤λ ∩ I◁λ)/I<λ = 0. □

When an ideal filter is rigid we have an additional result on simple objects.

Proposition 2.48. Suppose {I≤λ} is rigid and Λ is well-founded. Then in the
Grothendieck group of finite length objects in C, we have the equation

[X] =
∑
λ∈Λ

[I≤λX/I<λX].

Proof. By the proposition above, by taking its extension we may assume that
≤ is a well-ordering. Suppose X ∈ C is of finite length. Let us denote by l(Y ) the
length of Y ∈ C. Since X =

∑
λ I

≤λX, the set {λ ∈ Λ | l(I≤λX) ≥ k} is not empty
for each 0 ≤ k ≤ l(X). Let λk be its minimum element. Then we have

I<λkX =

{
0 if k = 0,

I≤λk−1X if λk ̸= λk−1.

Hence by taking the composition series

0 ⊂ I≤λ0X ⊂ I≤λ1X ⊂ · · · ⊂ I≤λl(X)X = X

we have

[X] = [I≤λ0X] +
∑

1≤k≤l(X)

[I≤λkX/I≤λk−1X] =
∑
λ∈Λ0

[I≤λX/I<λX]

where Λ0 = {λ0, λ1, . . . , λl(X)} (overlapping elements are excluded). It is also clear

that I<λX = I≤λX when λ /∈ Λ0, so the statement holds. □



CHAPTER 3

Morita context between abelian categories

The classical Morita theory [Mor58] treats a category equivalence between re-
spective module categories of two rings A and B. It is performed as a tensor functor
P ⊗B • : B-Mod → A-Mod and a hom functor HomA(P, •) : A-Mod → B-Mod
by use of a progenerator P , which is an (A,B)-bimodule such that finitely gen-
erated and projective as both left and right modules. To make this correspon-
dence symmetric, we can take a (B,A)-bimodule P ′ := HomA(P,A) and rewrite
HomA(P, •) ≃ P ′ ⊗A •. A Morita context between rings is a weaker notion of
Morita equivalence consists of such pair (P, P ′), which still provides an equivalence
between certain full subcategories of the module categories. We here introduce a
more generalized notion, a Morita context between two abelian categories.

1. Morita context and its trace ideals

Definition 3.1. Let C and D be abelian categories. A Morita context between
C andD is a pair of adjunctions F : D → C andG : C → D equipped with two degree-
zero natural transformations η : FG → IdC and ρ : GF → IdD such that Fρ = ηF
as morphisms FGF ⇒ F and ρG = Gη as GFG ⇒ G. These equations are called
the associativity laws.

When C = A-Mod and D = B-Mod are respectively the module categories of
algebras A and B, the above definition of Morita context between C and D coincides
with Definition 0.2 of that between A and B we introduced in the introduction.

Remark 3.2. Iglesias and Torrecillas [IT95, IT98] has defined a more general
notion called wide (right) Morita context. They only required that F and G are
right exact.

For a while we fix a Morita context (F,G) between C and D as above.

Notation 3.3. We denote by

η̄ : G→ F∨, ρ̄ : F → G∨,

η∨ : IdC → G∨F∨, ρ∨ : IdD → F∨G∨

the morphisms induced by adjunctions. Let D and D′ be the images of η̄ : G→ F∨

and ρ̄ : F → G∨ respectively.

The functors D : C → D and D′ : D → C are called Morita context functors.
Similarly as ideal functors, a Morita context functor is not left nor right exact.
However it has a following property again.

Lemma 3.4. Morita context functors preserve all images.

Proof. D is both mono and epi since it is a subobject of a left exact functor
F∨ as well as a quotient of a right exact functor G. □

Let I ⊂ IdC and J ⊂ IdD be the images of η : FG→ IdC and ρ : GF → IdD re-
spectively. These are ideal functors on the respective categories by Proposition 2.6,
which we call trace ideals. First we study how these functors act on the subcate-
gories defined by these ideal functors I and J .

21
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Lemma 3.5. Suppose X ∈ C and consider three morphisms ηX : FGX → X,
η̄X : GX → F∨X and η∨X : X → G∨F∨X.

(1) X is I-accessible if and only if ηX is epic.
(2) X is I-torsion-free if and only if η∨X is monic.
(3) X is I-annihilated if and only if ηX = 0 (equivalently, η̄X = 0 or η∨X =

0). In particular, it is also equivalent to that DX = Image(η̄X) = 0.

Proof. Obvious by definition. □

Lemma 3.6. Suppose X ∈ C.
(1) If X is I-accessible then GX is J-accessible.
(2) If X is I-torsion-free then F∨X is J-torsion-free.
(3) If X is I-annihilated then both GX and F∨X are J-annihilated.

In particular, so is DX in each cases.

Proof. Since ρGX : GFGX → GX is equal to GηX and G is right exact,
if ηX is epic then so is ρGX. This means that if X is I-accessible then GX is
J-accessible by the lemma above. (2) and (3) can be proven in a similar manner.
The last statement follows from that these properties are inherited to subobjects
or quotients. □

Lemma 3.7. Coker(DX ↪→ F∨X) is J-annihilated for any X ∈ C.

Proof. Let C := Coker(D ↪→ F∨) = Coker(G → F∨) and consider the com-
mutative diagram

GFG //

��

GFF∨ //

ρF∨

��zztt
tt
tt
tt
tt

GFC //

ρC

��

0

G
η̄ // F∨ // C // 0.

Its rows are exact since GF is right exact. Since ρF∨ : GFF∨ → F∨ factors through
G by the associativity on FGF , the induced morphism ρC : GFC → C is zero. In
other words, JC = 0. □

Proposition 3.8. If X ∈ C is I-accessible, DX is the unique largest J-
accessible subobject of F∨X.

Proof. Let Y ⊂ F∨X be J-accessible. Then by Proposition 2.20, Y ′ :=
DX + Y and Y ′/DX are also J-accessible. On the other hand, by the lemma
above Y ′/DX ⊂ F∨X/DX must be J-annihilated too. Hence we conclude that
Y ′ = DX, that is, Y ⊂ DX. □

2. Category equivalence

The first remarkable result which Morita context brings is the equivalence of
categories between respective subcategories defined by ideal functors.

Theorem 3.9. D and D′ induce a category equivalence CI ≃ DJ .

To prove this theorem, first we list several endofunctors on C into a diagram.

Lemma 3.10. Consider the following epi-mono factorizations

η : FG ↠ I ↪→ IdC , ρ̄G : FG ↠ D′G ↪→ G∨G, ρ̄D : FD ↠ D′D ↪→ G∨D.

These epimorphisms factor through

FG ↠ FD ↠ I ↠ D′G ↠ D′D.
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Dually, monomorphisms IdC ↪→ G∨F∨, D′F ↪→ G∨F∨ and D′D ↪→ G∨D factor
through

D′D ↪→ D′F∨ ↪→ I◦ ↪→ G∨D ↪→ G∨F∨.

These chains of morphisms fit into the commutative diagram

FG // // FD // //

����		
		
		
		
		
		
		
		

��

I // //� _

��

D′G // //� _

��

D′Dq Q

����
��
��
��
��
��
��
��

FF∨ //

����

IdC //

����

G∨G

��
D′D � � // D′F∨ � � // I◦ �

� // G∨D � � // G∨F∨.

Proof. First the morphisms FG ↠ FD and D′G ↠ D′D at both ends are
induced by η̄ : G ↠ D ↪→ F∨. Since the functors F and D′ are both epi, these
morphisms are epic. Now consider the diagram

FG

{{{{ww
ww
ww
ww

���� ## ##G
GG

GG
GG

G

FD

��

I � _

��

D′G� _

��
FF∨ // IdC // G∨G.

The right pentagon is commutative by the help of the associativity on GFG while
the commutativity of the left is trivial. Since I and D′G are the images of the
respective pentagons, there exist the unique morphisms FD ↠ I ↠ D′G which
make the diagram commutes. Now it is left us to check the commutativity for ρ̄D.
We have the diagram

FG // //

����

D′G

����
FD // //

;; ;;xxxxxxxxx
D′D

where the outer square trivially commutes. Since FG ↠ FD is epic and the upper
triangle commutes, the lower also does. The dual statement goes similarly and the
last commutativity has been already proven. □

Corollary 3.11. D′D is equal to the image of the composite I ↪→ IdC ↠ I◦.
In particular, if X ∈ CI then canonically X ≃ D′DX. □

Putting this corollary and Lemma 3.6 together, we obtain Theorem 3.9.

Remark 3.12. Though the categories CI and DJ are equivalent, their exact
structures may differ. For example, let A and B be the upper triangle matrix
algebras

A :=


∗ ∗ ∗
0 ∗ ∗
0 0 ∗

 , B :=

{(
∗ ∗
0 ∗

)}
over k. Let M and N be the bimodules

M :=


∗ ∗
0 ∗
0 ∗

 , N :=

{(
∗ ∗ ∗
0 0 ∗

)}
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and define η : M ⊗B N → A and ρ : N ⊗A M → B by matrix multiplication. These
data define a Morita context between A-Mod and B-Mod . ρ is surjective and the
image of η is

I :=


∗ ∗ ∗0 0 ∗
0 0 ∗

 ⊂ A,

so the Morita context functors induce a category equivalence (A-Mod)I ≃ B-Mod .
However it sends a short exact sequence

0 −→
{(
∗
0

)}
−→

{(
∗
∗

)}
−→

{(
−
∗

)}
−→ 0

in B-Mod to the sequence

0 −→


∗0
0

 −→

∗∗
∗

 −→

−−
∗

 −→ 0

in A-Mod , which is obviously not exact at the middle term.

As we have seen in this remark, the category equivalence does not preserve
extensions in general. However, it is true if one of the categories is semisimple.

Lemma 3.13. If D is semisimple, then Ext1C(X,Y ) = 0 for any X,Y ∈ CI .
Proof. Let 0→ Y → E → X → 0 be a short exact sequence in C. Since CI is

closed under extensions, E is also in CI . Now CI ≃ DJ is semisimple, so that this
sequence splits. □

On the other hand, the Ext preserving property for the other category is in-
duced from the following condition.

Lemma 3.14. Suppose that ρ : GF → IdD is surjective. Then Ext1C(X,Y ) ≃
Ext1CI

(X,Y ) for any X,Y ∈ CI .
Proof. By the assumption FGFG → FG is also surjective. This implies

I2 = I, so that we can use Proposition 2.34. □

3. Correspondence on simple objects

Next we prove the correspondence between the simple objects in the respective
subcategories.

Theorem 3.15. D and D′ induce a one-to-one correspondence Irr CI 1:1←→
IrrDJ .

Though we have proven the category equivalence CI ≃ DJ , we have to prove
this theorem independently since we do not know how to characterize the set Irr CI
from the category CI itself. Actually, using Lemma 3.6 again, this theorem is
obtained as an immediate corollary of the next theorem.

Theorem 3.16. Let X ∈ Irr CI . Then DX is the simple socle of F∨X as well
as the simple top of GX.

Proof. By the assumption X /∈ CI , we have DX ̸= 0. Take any non-zero
subobject Y ↪→ F∨X. Then the corresponding morphism FY → X is also non-
zero, so it must be epic since X is simple. Now consider the commutative diagram

GFY //
)) ))

����

GFF∨X //

��

ρF∨X

%%LL
LLL

LLL
LL

GX

η̄X

��
JY � � // JF∨X � � // F∨X.
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Since G is right exact GFY → GX is also epic. So we have

JY = Image(GFY → F∨X) = Image(GX → F∨X) = DX.

This implies that DX is contained in an arbitrary non-zero subobject Y ↪→ F∨X,
so it must be a simple socle of F∨X. Dually it is also a simple top of GX. □

Putting it together with Lemma 3.6 and Lemma 3.7 we obtain the next corol-
lary.

Corollary 3.17. Let X ∈ Irr C and Y ∈ IrrDJ . Then

[GX : Y ] = [F∨X : Y ] =

{
1 Y ≃ DX,

0 otherwise.

□

Here [M : S] is the multiplicity of a simple object S in the composition factors
of M . If M is not of finite length this symbol does not make sense in general, but
the formula above can be always read in an appropriate manner.

When we replace X above to its injective hull or its projective cover, we obtain
similar statements.

Proposition 3.18. Let X ∈ Irr CI and suppose that it has a projective cover
P ↠ X. Then GP ↠ GX ↠ DX is the top of GP .

Proof. Take Y ∈ IrrD and let C := Coker(D′Y ↪→ G∨Y ). By the projective-
ness of P , the sequence

0→ HomC(P,D
′Y )→ HomC(P,G

∨Y )→ HomC(P,C)→ 0

is exact. By Lemma 3.7, C is I-annihilated. Hence it has no subquotients isomor-
phic to X, so HomC(P,C) = 0 by a property of projective cover. Thus

HomD(GP, Y ) ≃ HomC(P,G
∨Y ) ≃ HomC(P,D

′Y ).

Now D′Y is simple or zero, so there is a non-zero morphism GP ↠ Y if and only
if D′Y ≃ X, or equivalently, Y ≃ DX. Moreover

HomD(GP,DX) ≃ HomC(P,X) ≃ EndC(X) ≃ EndD(DX).

Thus GP ↠ DX is the unique its simple quotient. □

Remark that Ker(GP ↠ DP ) is J-annihilated by the dual of Lemma 3.7 but
Ker(DP ↠ DX) is not in general, so may contains a composition factor in CJ .

4. Morita context among multiple categories

We here generalize the notion of Morita context, from that between two cate-
gories to that among more than two categories. Let us take an index set Λ which
is not necessarily finite. We assume that every category appears in this section is
closed under sums and intersections with cardinality #Λ.

Definition 3.19. Let {Cλ}λ∈Λ be a family of abelian categories indexed by
a set Λ. A Morita context among {Cλ} is a family of adjunctions Fλµ : Cµ →
Cλ indexed by a pair of λ, µ ∈ Λ, equipped with a family of degree-zero natural
transformations ηλµν : FλµFµν → Fλν indexed by a triple of λ, µ, ν ∈ Λ which
satisfies the following conditions.
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(1) (The associativity law) For each λ, µ, ν, π ∈ Λ, the square

FλµFµνFνπ

ηλµνFνπ //

Fλµηµνπ

��

FλνFνπ

ηλνπ

��
FλµFµπ ηλµπ

// Fλπ

commutes.
(2) (The unit law) For each λ, there is a fixed isomorphism Fλλ ≃ IdCλ

such
that ηλλµ and ηλµµ are respectively equal to

FλλFλµ ≃ IdCλ
Fλµ ≃ Fλµ, FλµFµµ ≃ FλµIdCµ ≃ Fλµ.

One can easily verify that when #Λ = 2 this definition is equivalent to the
previous one.

Remark 3.20. Let A be a 2-category which consists of abelian categories as
0-cells, adjunctions as 1-cells and natural transformation as 2-cells. Consider Λ as
a codiscrete category, that is, we regard that there exists unique morphism µ→ λ
for each λ, µ ∈ Λ. Then a Morita context is just a lax functor F : Λ → A (where
Cλ = F(λ), Fλµ = F(µ → λ)) such that the unit IdF(λ) → F(λ → λ) is an
isomorphism for every λ ∈ Λ.

Example 3.21. Let A be a category, and take an object Xλ ∈ A for each λ.
Let Aλ := EndA(Xλ) be its endomorphism algebra. Then for each pair of λ, µ,
HomA(Xµ, Xλ) is a (Aλ, Aµ)-bimodule so it induces an adjunction Aµ-Mod →
Aλ-Mod . Moreover the composition of morphisms

HomA(Xµ, Xλ)⊗HomA(Xν , Xµ)→ HomA(Xν , Xλ)

gives a natural transformations between these adjunctions which is associative and
unital. Hence these define a Morita context among the categories {Aλ-Mod}.
Conversely all Morita contexts among module categories are obtained in this way.

Example 3.22. More generally, take a small full subcategory Aλ ⊂ A for each
λ. Then a collection of a (Aλ,Aµ)-module

Aop
µ ⊠Aλ → V
X ⊠ Y 7→ HomA(X,Y )

also defines a Morita context among {Aλ-Mod}.

Suppose that {Fλµ}λ,µ∈Λ is a Morita context among categories {Cλ}λ∈Λ. For
each triple of α, λ, µ ∈ Λ, let Iαλµ be a subfunctor of Fλµ defined by

Iαλµ := Image(ηλαµ : FλαFαµ → Fλµ).

In particular, Iαλλ ⊂ Fλλ ≃ IdCλ
is an ideal functor on Cλ. The unit law implies

that Iλλµ = Iµλµ = Fλµ. By the associativity law there are natural transformations

IαλµFµν → Iαλν and FλµI
β
µν → Iβλν

induced by ηλµν . Since Fλµ is right exact, they induce

(Fλµ/I
α
λµ)(Fµν/I

β
µν)→ Fλν/(I

α
λν + Iβλν).

Now take a subset Λ′ ⊂ Λ. Then clearly the restriction {Fλµ}λ,µ∈Λ′ gives a
Morita context among the subcollection {Cλ}λ∈Λ′ . In contrast, we can also take a
“quotient” of this Morita context with respect to Λ′ as follows.
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Proposition 3.23. For each λ, µ ∈ Λ, let

I ′λµ :=
∑
α∈Λ′

Iαλµ

and C′λ := (Cλ)I′
λλ
. Then there exists a Morita context {F ′

λµ} among the abelian

categories {C′λ} defined by

F ′
λµ := Φ∧

I′
λλ
(Fλµ/I

′
λµ)ΦI′

µµ
.

Proof. Since Fλµ is cocontinuous, by taking colimits of natural transformation
above we obtain

(Fλµ/I
′
λµ)(Fµν/I

′
µν)→ Fλν/I

′
λν .

Moreover, by the unit law we have TI′
λλ
(Fλµ/I

′
λµ)TI′

µµ
= Fλµ/I

′
λµ. Thus there are

a natural transformation

η′λµν : F
′
λµF

′
µν = Φ∧

I′
λλ
(Fλµ/I

′
λµ)(Fµν/I

′
µν)ΦI′

νν
→ Φ∧

I′
λλ
(Fλµ/I

′
λν)ΦI′

νν
= F ′

λν

and an isomorphism

F ′
λλ ≃ Φ∧

I′
λλ
TI′

λλ
ΦI′

λλ
= IdCλ

which form a Morita context. □

Note that C′α = {0} for every α ∈ Λ′, so the quotient Morita context above
should be considered as parameterized by the complement set Λ \Λ′. When Λ′ has
a decomposition Λ′ = Λ′

1 ⊔Λ′
2, taking the quotient by Λ′ is equal to first taking by

Λ′
1, then by Λ′

2.

5. Morita context with a partial order

As a special case of quotient, let us consider the case that Λ′ in the previous
section consists of a single element α. For each λ ∈ Λ \ {α}, the pair (Fλα, Fαλ)
is a Morita context between two categories Cλ and Cα. Hence we have a category
equivalence

(Cλ)I
α
λλ ≃ (Cα)I

λ
αα

and a one-to-one correspondence

Irr(Cλ)I
α
λλ

1:1←→ Irr(Cα)I
λ
αα .

In practice we should choose α such that the structure of Cα is very simple so that
we can describe a part of Cλ, which may be hard to study, by terms of Cα. Now on
the collection of the rest part C′λ = (Cλ)Iα

λλ
we have a new Morita context, so we can

recursively continue this process for C′λ by choosing another β ∈ Λ to decompose
Cλ into small parts. In order to perform this strategy at one time, we introduce a
partial order on the set Λ as we do before in the previous chapter. Intuitively it
indicates the order of α, β, . . . we pick up from Λ.

Definition 3.24. Let {Fλµ} be a Morita context among the categories {Cλ}.
A partial order ≤ on the set Λ is said to be compatible with {Fλµ} if it satisfies

Fλµ =
∑

ν≤λ,µ

Iνλµ, where Iνλµ := Image(FλνFνµ → Fλµ)

for each pair of λ, µ ∈ Λ.

When λ and µ are comparable then the condition above is trivially satisfied.
Hence every total order on Λ is compatible.
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Lemma 3.25. If Λ is well-founded, then the condition above is equivalent to
that

Fλµ =
∑
ν<λ

Iνλµ

is satisfied for each pair of λ, µ ∈ Λ such that λ ̸≤ µ.

Proof. Clearly the first condition implies the second. Suppose the second
one. We prove the first condition for a fixed µ by transfinite induction on λ. So
assume that for every ν < λ we have Fνµ =

∑
π≤ν,µ I

π
νµ. If λ ≤ µ then the

condition is trivially satisfied so assume λ ̸≤ µ. Then by the assumption we have
Fλµ =

∑
ν<λ I

ν
λµ. Each Iνλµ is contained in∑

π≤ν,µ

Image(FλνFνπFπµ → Fλµ) ⊂
∑

π≤λ,µ

Iπλµ

since Fλµ is cocontinuous. Thus the condition is also satisfied for λ. □
Now assume that a partial order ≤ is compatible with {Fλµ}. Let us denote

I≤λ
αβ :=

∑
µ≤λ

Iλαβ and I<λ
αβ :=

∑
µ<λ

Iλαβ .

Proposition 3.26. For each ω ∈ Λ the family {I≤λ
ωω }λ∈Λ is an ideal filter on

Cω.

Proof. For simplicity let us write Iλ := Iλωω and I≤λ := I≤λ
ωω . The first two

conditions in Definition 2.40 are obvious. So we prove I≤λI≤µ ⊂
∑

ρ≤λ,µ I
≤ρ for

each λ, µ ∈ Λ. Let us take ν ≤ λ and π ≤ µ. Since Fων is cocontinuous, we have

IνIπ ⊂ Image(FωνFνπFπω → IdCω ) ⊂
∑

ρ≤ν,π

Iρ.

Hence by taking sum we obtain the inclusion as desired. □
Using this ideal filter the category Cω is divided into Cω[λ] = (Cω)≤λ ∩ (Cω)<λ.

For each λ, by taking the quotient with respect to the subset Λ′ = {µ ∈ Λ |µ < λ}
we have a Morita context between (Cω)<λ and (Cλ)<λ whose trace ideal in (Cω)<λ

is just (I≤λ
ωω )I<λ

ωω
. The corresponding trace ideal in (Cλ)<λ is (Iωλλ + I<λ

λλ )I<λ
λλ

. Thus

by letting
Cλ⟨ω⟩ := (Cλ)I

ω
λλ ∩ (Cλ)<λ

and Irr Cλ⟨ω⟩ := {V ∈ Irr C |V ∈ Cλ⟨ω⟩} we obtain the following theorem.

Theorem 3.27. For each λ ≤ ω, there is a Morita context between (Cω)<λ

and (Cλ)<λ which induces a category equivalence Cω[λ] ≃ Cλ⟨ω⟩ and a one-to-one

correspondence Irr Cω[λ]
1:1←→ Irr Cλ⟨ω⟩. If λ ̸≤ ω, then Cω[λ] = 0. □

Corollary 3.28. If Λ is well-founded, we have

Irr Cω =
⊔
λ≤ω

Irr Cω[λ]
1:1←→

⊔
λ≤ω

Irr Cλ⟨ω⟩.

□



CHAPTER 4

Generalized cellular algebras

Now we concentrate on representation theory of algebras. Here continuously
the term “an algebra” means a V-algebra. With the help of the category equiva-
lence Adj (B-Mod , A-Mod) ≃ A-Mod -B, we can interpret all the notions we have
introduced in the previous chapters into the language of modules. For example,
ideal functors on the category are replaced by 2-sided ideals in an algebra. So an
ideal filter is just a collection of 2-sided ideals which satisfies the similar conditions.

In this chapter we fix a partially ordered set (Λ,≤) and an indexed family
{Bλ}λ∈Λ of algebras. We introduce a generalized notion of standardly based algebra
and that of cellular algebra over the family {Bλ}, not over the single base algebra k.
We also study its Morita invariance motivated by the work of König and Xi [KX99].

1. Standard filter

We start from a very general setting. In the last of previous chapter we decom-
pose a category into small parts in order to study them one by one. A standardly
filtered algebra is defined so that we can perform similar strategy for its module
category.

Definition 4.1. Let A be an algebra. A prestandard filter of A over {Bλ} is
a datum consisting of:

• an ideal filter {A≤λ}λ∈Λ on A,
• for each λ ∈ Λ, a 2-sided ideal B′

λ ⊂ Bλ,
• for each λ ∈ Λ, a Morita context (Mλ, Nλ) between A/A<λ and Bλ/B

′
λ

whose trace ideal in A is A≤λ/A<λ.

Moreover if it satisfies A≤µMλ = 0 and NλA
≤µ = 0 for each pair of λ, µ such that

λ ̸≤ µ, we call it a standard filter. An algebra equipped with a standard filter is
called a standardly filtered algebra.

Now Lemma 0.5 in the introduction is just a reformulation of Theorem 3.27.
By Lemma 3.25, if Λ is well-founded the first assumption of the lemma can be
weakened to

HomA(Xµ, Xλ) = A<λ(Xµ, Xλ).

Note that in the settings of the lemma, for ω1, . . . , ωn ∈ Λ, the algebra

EndA

(⊕
i

Xωi

)
=

⊕
i,j

HomA(Xωi , Xωj )

is also standardly filtered. It can be proven by adding a new index ∞ which is
greater than any element of Λ so that X∞ =

⊕
i Xωi , then remove it since it is

needless by that A≤∞ = A<∞.
If each Bλ is just the base ring k, we simply say it is a standard filter over

k instead of over the family {k}. Actually the condition for being a standardly
filtered algebra can be weakened as follows.

29
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Lemma 4.2. Suppose that (M,N) is a Morita context between algebras A and
B, and let us write its equipped maps as η : M ⊗B N → A and ρ : N ⊗A M → B.
Let

B′ := {b ∈ B | η(mb⊗ n) = 0 for all m ∈M,n ∈ N},
M ′ := {m ∈M | η(m⊗ n) = 0 for all n ∈ N},
N ′ := {n ∈ N | η(m⊗ n) = 0 for all m ∈M}.

Then (M/M ′, N/N ′) is a Morita context between algebras A and B/B′ with the
same trace ideal in A.

Proof. First by definition η : M/M ′⊗BN/N ′ → A is well-defined. In addition
we have MB′ ⊂M ′ and B′N ⊂ N ′ so that M/M ′ and N/N ′ can be considered as
modules over B/B′. Moreover ρ(M ′⊗A N), ρ(M ⊗A N ′) ⊂ B′ by the associativity,
so that ρ : N/N ′ ⊗A M/M ′ → B/B′ is also well-defined. Now it is clear that these
data form a Morita context between A and B/B′. □

Note that B′ above is the common annihilator of M/M ′ and N/N ′, so that
these are faithful modules over B/B′.

Proposition 4.3. If an algebra A has a prestandard filter, it also has a stan-
dard filter.

Proof. Take a prestandard filter of A as above. For each λ, let A̸≥λ :=∑
µ̸≥λ A

≤µ. Then

η(A̸≥λMλ ⊗Bλ
Nλ) = A̸≥λA≤λ +A<λ = A<λ,

η(Mλ ⊗Bλ
NλA̸

≥λ) = A≤λA̸≥λ +A<λ = A<λ.

Hence taking M ′
λ ⊂ Mλ and N ′

λ ⊂ Nλ as in the lemma above, we have inclusions
A̸≥λMλ ⊂ M ′

λ and NλA̸
≥λ ⊂ N ′

λ. Thus by replacing (Mλ, Nλ) with the quotients
(Mλ/M

′
λ, Nλ/N

′
λ) we obtain a standard filter. □

The notion of standardly filtered algebra is a Morita invariant and inherited by
Peirce decomposition.

Proposition 4.4. Let A be a standardly filtered algebra over {Bλ}.
(1) For any idempotent e ∈ A, the algebra eAe is also standardly filtered.
(2) If an algebra A′ is Morita equivalent to A (i.e. A-Mod ≃ A′-Mod), A′ is

also standardly filtered.

Proof. (1) follows from that the pair (eMλ, Nλe) forms a Morita context
between eAe/eA<λe and Bλ/B

′
λ. (2) is a consequence of that the definition of

standard filter on an algebra can be translated into the language of its module
category. □

For an algebra A and a 2-sided ideal I ⊂ A, let us write

Irr(A) := Irr(A-Mod) and IrrI(A) := Irr(A-ModI) = Irr(A) \ Irr(A/I)

for short. More generally, for J ⊂ I ⊂ A let

IrrIJ (A) := IrrI/J (A/J) = Irr(A/J) \ Irr(A/I).

Then Proposition 2.43 and Theorem 3.15 immediately bring us the following clas-
sification of simple A-modules. This is a generalization of [GL96, Theorem 3.4].
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Theorem 4.5. Suppose that Λ is well-founded. Let A be a standardly fil-
tered algebra over {Bλ} and take its prestandard filter as above. For each λ, let
B′′

λ/B
′
λ ⊂ Bλ/B

′
λ be the trace ideal of the Morita context. Then there is a one-to-

one correspondence

Irr(A) =
⊔
λ∈Λ

IrrA
≤λ

A<λ(A)
1:1←→

⊔
λ∈Λ

Irr
B′′

λ

B′
λ
(Bλ)

induced by Morita contexts. □

In the classical case, each Bλ is taken to be a base field so that # Irr(Bλ) = 1.
Thus in this case Irr(A) is in bijection with some subset of Λ.

Let us write [M : S] the multiplicity of a simple module S in the composition
factors of M . The analogue of the decomposition matrix of cellular algebra can be
defined as follows. It also satisfies the unitriangular property.

Lemma 4.6. Take a standard filter of A as above. Let λ, µ ∈ Λ and take

S ∈ IrrA
≤µ

A<µ(A), T ∈ Irr(Bλ). Then unless λ ≤ µ

[Mλ ⊗Bλ
T : S] = [HomBλ

(Nλ, T ) : S] = 0.

Moreover, if λ = µ,

[Mλ ⊗Bλ
T : S] = [HomBλ

(Nλ, T ) : S] =

{
1 if T ≃ DS,

0 otherwise.

Here D is the Morita context functor which induces IrrA
≤λ

A<λ(A)
1:1←→ Irr

B′′
λ

B′
λ
(Bλ).

Proof. The first equation follows from that Mλ ⊗Bλ
T and HomBλ

(Nλ, T )
are A ̸≥λ-annihilated. The second follows from Corollary 3.17 if T ∈ Irr(B/B′

λ);
otherwise Mλ ⊗Bλ

T = HomBλ
(Nλ, T ) = 0 so the formula also holds trivially. □

2. Well-based standard filter

Graham and Lehrer [GL96, Theorem 3.7] also proved that for a cellular algebra
we can compute its Cartan matrix by its decomposition matrix. A general stan-
dardly filtered algebra does not have this property, so we strengthen its conditions
to prove an analogue of the theorem.

Definition 4.7. Let (M,N) be a Morita context between algebras A and B.
We say that (M,N) is well-based over B if M and N are both finitely generated
and projective over B and the map M ⊗B N → A is injective.

Definition 4.8. A prestandard filter of A is said to be well-based if

(1) the ideal filter {A≤λ} is rigid,
(2) the Morita context (Mλ, Nλ) is well-based over Bλ/B

′
λ for every λ ∈ Λ.

An algebra equipped with a well-based standard filter is called a weakly standardly
based algebra.

We can prove a statement similar to Proposition 4.3 for weakly standardly
based algebras. The proof is clear from the lemmas below.

Lemma 4.9. Let B be an algebra. Let M be a finitely generated projective right
B-module and N be a left B-module. Then x ∈ M satisfies 0 = x ⊗ y ∈ M ⊗B N
for all y ∈ N if and only if x ∈M ·AnnB(N). Here AnnB(N) := {b ∈ B | bN = 0}
denotes the (left) annihilator of N .



2. WELL-BASED STANDARD FILTER 32

Proof. The “if” part is obvious so we prove the “only if” part. We may
assume that there is an m ×m idempotent matrix e = (eij) such that M = eBm.
Since M ⊂ Bm is an direct summand, we can regard M ⊗B N ⊂ Bm⊗B N = Nm.
Suppose x = t(x1, . . . , xm) ∈M satisfies x⊗N = 0. This means that 0 = x⊗ n =
t(x1n, . . . , xmn) ∈ Nm for all n ∈ N , that is, x1, . . . , xm ∈ AnnB(N). Thus

x = ex = t(e11, . . . , em1)x1 + · · ·+ t(e1m, . . . , emm)xm ∈M ·AnnB(N).

□

Lemma 4.10. Let A, B, M and N as in Lemma 4.2. If (M,N) is well-based
over B, then so is (M/M ′, N/N ′) over B/B′.

Proof. By the lemma above, we have M ′ = M · AnnB(N) ⊂ MB′. We
already has the other inclusion so M ′ = MB′, hence M/M ′ ≃ M ⊗B (B/B′) is
finitely generated and projective over B/B′. The same holds for N/N ′. It is clear
that η : M/M ′ ⊗B N/N ′ → A is also injective. □

Proposition 4.11. If an algebra A has a well-based prestandard filter, it also
has a well-based standard filter. □

We also prove the statements similar to Proposition 4.4.

Proposition 4.12. Let A be a weakly standardly based algebra over {Bλ}.
(1) For any idempotent e ∈ A, the algebra eAe is also weakly standardly based.
(2) If an algebra A′ is Morita equivalent to A, A′ is also weakly standardly

based.

Proof. (1) follows from that eMλ and Nλe are also finitely generated and
projective, and that eMλ⊗Bλ

Nλe ≃ e(Mλ⊗Bλ
Nλ)e. (2) follows from the following

categorical characterization of being finitely generated and projective: a right (resp.
left) B-module M is finitely generated projective if and only if the functor M ⊗B •
(resp. HomB(M, •)) also have its left (resp. right) adjoint functor. □

Now [GL96, Theorem 3.7] can be generalized as follows.

Theorem 4.13. Suppose that k is a field, Λ is well-founded and each Bλ is
finite dimensional and semisimple. Let A be a weakly standardly based algebra over
{Bλ} and take its well-based prestandard filter. Let S1, S2 ∈ Irr(A) and suppose
that they have projective covers Pi ↠ Si. Then

[P2 : S1] = dimk EndA(S2)
∑
λ

∑
T∈Irr(Bλ)

[Mλ ⊗Bλ
T : S1][HomBλ

(Nλ, T ) : S2]

dimk EndBλ
(T )

.

Note that we can take µ ∈ Λ such that S2 ∈ IrrA
≤µ

A<µ(A) then by the Morita
context we have an isomorphism EndA(S2) ≃ EndBµ(DS2), so that its dimension
is also easy to compute.

Proof. Since the ideal filter is rigid, we have [P2 : S1] =
∑

λ[A
≤λP2/A

<λP2 :
S1] by Proposition 2.48. Then for each λ, we have

[A≤λP2/A
<λP2 : S1] = dimk HomA(P1, A

≤λP2/A
<λP2)/dimk EndA(S1)

and by using A≤λ/A<λ ≃Mλ ⊗Bλ
Nλ and that P2 is flat,

HomA(P1, A
≤λP2/A

<λP2) ≃ HomA(P1,Mλ ⊗Bλ
Nλ ⊗A P2)

≃ HomBλ
(M∨

λ ⊗A P1, Nλ ⊗A P2)
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where M∨
λ := Homop

Bλ
(Mλ, Bλ). Since Bλ is semisimple,

dimk HomBλ
(M∨

λ ⊗A P1, Nλ ⊗A P2)

=
∑

T∈Irr(Bλ)

[M∨
λ ⊗A P1 : T ][Nλ ⊗A P2 : T ] dimk EndBλ

(T ).

Moreover we have

HomBλ
(M∨

λ ⊗A P1, T ) ≃ HomA(P1,Mλ ⊗Bλ
T )

which implies

[M∨
λ ⊗A P1 : T ] dimk EndBλ

(T ) = [Mλ ⊗Bλ
T : S1] dimk EndA(S1).

Similarly we have

[Nλ ⊗A P2 : T ] dimk EndBλ
(T ) = [HomBλ

(Nλ, T ) : S2] dimk EndA(S2).

Putting them all together, we obtain the equation. □

Quasi-hereditary algebra is an important class of algebra introduced by Cline,
Parshall and Scott [CPS88]. The condition for a non-generalized standardly based
algebra to be quasi-hereditary is given by Graham and Lehrer [GL96], and Du
and Rui [DR98]. We can prove an analogous partial result for our generalized
standardly based algebra.

Lemma 4.14. Let (M,N) be a well-based Morita context between A and B, and
suppose that the algebra B is semisimple. If ρ : N ⊗A M → B is surjective, then
the trace ideal I := η(M ⊗B N) ⊂ A is generated by an idempotent, and finitely
generated and projective as both a left and a right A-module.

Proof. By the Artin–Wedderburn theorem and the Morita equivalence, we
may assume that B is a product of finitely many division algebras:

B = D1 ×D2 × · · · ×Dl

(here we mean that every non-zero homogeneous element x ∈ Di is invertible). Let
us write 1i = (0, . . . , 1, . . . , 0) ∈ B the identity element of each Di. Since ρ is
surjective, for each i we can find mi ∈ M and ni ∈ N such that ρ(ni ⊗mi)1i ̸= 0.
By multiplying elements in Di we may assume that ρ(ni⊗mi) = 1i, 1ini = ni and
mi1i = mi. Thus ρ(ni ⊗mj) = 0 for i ̸= j. Let e :=

∑
i η(mi ⊗ ni) ∈ A. Then by

the associativity e is an idempotent. Moreover the maps

M → Ae, Ae→M,

m 7→
∑
i

η(m⊗ ni), a 7→
∑
i

ami

are inverses of each other. Hence M ≃ Ae is a finitely generated and projective left
A-module. Similarly N ≃ eA as right A-modules so that I ≃ M ⊗B N is finitely
generated and projective from both sides. By these isomorphisms we also have
I = AeA. □

Hence in this case we have ExtiA/I ≃ ExtiA for any i by Proposition 2.38. We

also have Ext1A(V,W ) = 0 for V,W ∈ IrrI(A) by Lemma 3.13.
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3. Standard basis

We here give the definition of class of algebras which is more closely related to
the original one of cellular algebra.

Definition 4.15. A (generalized) standard basis of an algebra A is a direct
sum decomposition

A =
⊕
λ∈Λ

Aλ

as a k-module (not as a left or right A-module) such that for each λ

A≤λ :=
⊕
µ≤λ

Aµ and A<λ :=
⊕
µ<λ

Aµ

are both 2-sided ideals of A, equipped with for each λ an isomorphism of (A,A)-
bimodules

Mλ ⊗Bλ
Nλ ≃ A≤λ/A<λ

for a pair of an (A,Bλ)-bimodule Mλ and a (Bλ, A)-bimodule Nλ which are both
finitely generated and free over Bλ. An algebra equipped with a standard basis is
called a (generalized) standardly based algebra.

When every Bλ is the base algebra k, this definition coincides with the original
we given at the beginning.

Proposition 4.16. A standardly based algebra is a weakly standardly based
algebra.

Proof. Since A≤λA≤µ ⊂ A≤λ ∩ A≤µ =
⊕

ν≤λ,µ A
ν , the collection {A≤λ}λ∈Λ

is an ideal filter on A. As proved in [GL96, Proposition 2.4], we can construct a
suitable (Bλ, Bλ)-homomorphism ρ : Mλ ⊗A Nλ → Bλ for each λ which completes
a Morita context between A/A<λ and Bλ. □

The converse is also holds when the following assumptions are satisfied.

Proposition 4.17. Suppose that Λ is well-founded and every Bλ is projective
over k. Then a weakly standardly based algebra is a standardly based algebra if Mλ

and Nλ are free over Bλ for every λ.

Proof. Let A be a weakly standardly based algebra. Since its ideal filter
{A≤λ} is rigid, by taking a well-ordering extension, we obtain a well-ordered fil-
tration of A whose successive quotients are A≤λ/A<λ. Each of them is isomorphic
to Mλ ⊗Bλ

Nλ which is projective over k, so we can lift Mλ ⊗Bλ
Nλ ↪→ A/A<λ to

some k-linear map ιλ : Mλ ⊗Bλ
Nλ ↪→ A. Then as a k-module A decompose into a

direct sum of k-modules Aλ := ιλ(Mλ ⊗Bλ
Nλ) as desired. □

It is a natural question to ask whether the freeness condition of the definition of
standardly based algebra can be weakened to the projectiveness. So suppose that we
are given an (A,B)-bimodule M and a (B,A)-bimodule N which are both finitely
generated and projective over B, equipped with an injective (A,A)-homomorphism
η : M ⊗B N ↪→ A. By replacing them with their quotients, we may assume that B′,
M ′ and N ′ taken as in lemma 4.2 are all zero. The existence of ρ : N ⊗B M → A
fails in this general situation: consider the following counterexample that

A = k, B =

{(
∗ ∗
0 ∗

)}
, M =

{(
∗ ∗

)}
, N =

{(
∗
∗

)}
with natural isomorphism η : M ⊗B N ≃ A. We state a sufficient condition for its
existence as follows. This is a generalization of [GL96, Proposition 2.4].
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Lemma 4.18. Let A, B, M and N as above. Let TrBop(M),TrB(N) ⊂ B be
the trace ideals of M and N in B, that is,

TrBop(M) := Image(M∨ ⊗A M → B), TrB(N) := Image(N ⊗A N∨ → B)

where M∨ := HomBop(M,B) and N∨ := HomB(N,B). If M is TrB(N)-accessible
and N is TrBop(M)-accessible, then there exists a unique (B,B)-homomorphism
ρ : N ⊗A M → B which makes (M,N) into a Morita context between A and B.

Proof. The uniqueness of ρ is clear from that B′ = 0, so we prove its existence.
First consider the sequence

M ⊗B N ⊗A M ⊗B N
η⊗A(M⊗BN) //
(M⊗BN)⊗Aη

// M ⊗B N
� � η // A.

Since the two parallel homomorphisms above are equalized by η which is injective,
these are equal. This implies that the diagram below is commutative:

N ⊗A M ⊗B N ⊗A N∨ N⊗Aη⊗AN∨
//

����

N ⊗A N∨ // B� _

��
N ⊗A M // EndA(M)op.

Here the map at the bottom is given by n ⊗ m 7→ (m′ 7→ η(m′ ⊗ n)m). By the
assumption thatM is TrB(N)-accessible, the left vertical arrow is surjective. On the
other hand, since M is faithful over B, the right vertical arrow is injective. Hence
the diagram induces a (B,B)-homomorphism ρ : N ⊗A M → B which satisfies
η(m′ ⊗ n)m = m′ρ(n⊗m) for all m,m′ ∈M and n ∈ N . Dually we can prove the
existence of another ρ′ : N ⊗A M → B such that nη(m⊗n′) = ρ′(n⊗m)n′, but we
have ρ = ρ′ by the uniqueness. □

When M and N are free over B the accessibility condition is trivially satisfied,
so that this proof is essentially the same as the original one by Graham and Lehrer.
Note that this condition is not necessary: consider the example above with replacing
A with k⊕ kϵ, ϵ2 = 0 so that ϵM = 0, Nϵ = 0 and η : M ⊗B N ≃ Aϵ, which clearly
has ρ = 0. One necessary condition is that η(M ⊗B N)M ⊂ M TrB(N) and
Nη(M ⊗B N) ⊂ TrBop(M)N , but the author does not know it is sufficient for the
existence of ρ or not.

4. Involution on algebras

For an algebra A, we call an algebra homomorphism A → Aop whose square
is equal to the identity an anti-involution on A. That is, it is a degree-zero map
•∗ : A→ A satisfying

1∗ = 1, (ab)∗ = (−1)|a||b|b∗a∗ and a∗∗ = a

(beware the Koszul sign). If A has an anti-involution, for each left A-module M
there is a corresponding right A-module M∗ whose underlying set is equal to M
and action is defined by x∗ · a∗ := (−1)|a||x|(ax)∗, where we write x∗ ∈ M∗ the
element corresponds to x ∈M . Similarly for a right A-module N we denote by N∗

the corresponding left A-module, so that M∗∗ ≃M .

Definition 4.19. Let A and B be algebras with anti-involution. A Morita
context (M,N) between A and B is said to be involutive if there is an isomorphism
M ≃ N∗ of (A,B)-bimodules (so M∗ ≃ N) which satisfies

η(x⊗ y)∗ = (−1)|x||y|η(y∗ ⊗ x∗), ρ(y ⊗ x)∗ = (−1)|x||y|ρ(x∗ ⊗ y∗)

for every x ∈M , y ∈ N .
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Now we assume that each Bλ has a fixed anti-involution.

Definition 4.20. A standardly filter on an algebra A with anti-involution is
said to be involutive if for each λ, A≤λ and B′

λ are closed under anti-involution and
the Morita context (Mλ, Nλ) between A/A<λ and Bλ/B

′
λ is involutive. An algebra

equipped with an involutive well-based standard filter is called a weakly cellular
algebra.

Note that in the settings of Lemma 0.5, whenA has an anti-involutionA → Aop

which fixes all Xλ and Bλ, it produces an involutive standard filter. The statements
below are clear from the definition.

Lemma 4.21. Let A, B, M and N as in Lemma 4.2. If A and B have their
anti-involutions and (M,N) is involutive, then (B′)∗ = B′ and (M/M ′, N/N ′) is
also involutive. □

Proposition 4.22. If an algebra A with anti-involution has a involutive (well-
based) prestandard filter, it also has an involutive (well-based) standard filter. □

To deal its Morita invariant property we should be careful with the compatibil-
ity between Morita equivalence and anti-involution. See the hypotheses (∗) and (†)
in [KX99]. We here say that algebras A and A′ with anti-involution are involutively
Morita equivalent if the category equivalence makes the diagram

A-Mod
∗ //

∼
��

Mod -A

∼
��

A′-Mod ∗
//Mod -A′

commutes up to natural isomorphism. Note that if A′ is equivalent to A we can
find an idempotent m×m matrix e = (eij) over A such that A′ ≃ e ·Matm(A) · e.
The condition above is equivalent to that we can also take e so that e∗ij = eji.

The proofs of the statements below are obvious by Proposition 4.12.

Proposition 4.23. Let A be a weakly cellular algebra over {Bλ}.
(1) For any idempotent e ∈ A such that e∗ = e, the algebra eAe with the same

anti-involution is also weakly cellular.
(2) If an algebra A′ with anti-involution is involutively Morita equivalent to

A, A′ is also weakly standardly filtered. □
In [KX99] it is also proved that even if we are not given a such anti-involution

on A′ we can construct it from that on A. Thus their result is stronger than above.
Finally we give the definition of cellular algebra in terms of basis. Note the

next lemma which follows by the uniqueness of ρ.

Lemma 4.24. Suppose that M , N and η in Lemma 4.18 satisfies M ≃ N∗ and
η(x ⊗ y)∗ = (−1)|x||y|η(y∗ ⊗ x∗). Then the induced map ρ : N ⊗A M → B also
satisfies ρ(y⊗x)∗ = (−1)|x||y|ρ(x∗⊗ y∗) so that the Morita context (M,N) between
A and B is involutive.

Definition 4.25. A standardly based algebra A over {Bλ} with anti-involution
is called a (generalized) cellular algebra if each component Aλ is closed under anti-
involution and the isomorphism Mλ ⊗Bλ

Nλ ≃ A≤λ/A<λ satisfies the involutive
property similar as above.

Again, this definition is same as the original one when every Bλ is just the base
ring k. Then the next statement is obvious from the lemma above.

Proposition 4.26. A cellular algebra is a weakly cellular algebra. □
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We prove the converse in suitable conditions.

Proposition 4.27. Suppose that the assumptions in Proposition 4.17 are sat-
isfied, in addition to that 2 ∈ k is invertible. Then a weakly cellular algebra is a
cellular algebra if Mλ and Nλ are free over Bλ for every λ.

Proof. The problem is that ιλ we chose in the proof of Proposition 4.17 does
not preserve anti-involution. So we retake a new map ι′λ : Mλ⊗Bλ

Nλ ↪→ A defined
by

ι′λ(x⊗ y) :=
ιλ(x⊗ y) + (−1)|x||y|ιλ(y∗ ⊗ x∗)∗

2
.

Then ι′λ is also a lift of Mλ ⊗Bλ
Nλ ↪→ A/A<λ which satisfies ι′λ(x ⊗ y)∗ =

(−1)|x||y|ι′λ(y∗ ⊗ x∗). Thus by putting Aλ := ι′λ(Mλ ⊗Bλ
Nλ) we obtain a desired

direct sum decomposition. □



Part II

Representation Theory of the
Iwahori–Hecke Algebra



CHAPTER 5

Cellular structure on the Iwahori–Hecke algebra

In this chapter we review the definition and the representation theory of the
Iwahori–Hecke algebra. We give a new proof for that the Iwahori–Hecke algebra and
the associated q-Schur algebra are cellular with respect to Murphy’s basis [Mur92,
Mur95] in a more simple and sophisticated way than his original one or given
in [Mat99]. We need this reconstruction in order to make this proof to be fit in
non-integral rank case we discuss later. In addition we give a generalized theorem
that classify its simple modules on a very few assumptions.

1. The symmetric groups

We here introduce standard notions on Young tableaux used in representation
theory of the symmetric group and the Iwahori–Hecke algebra, and we briefly recall
some of their basic facts. We refer the standard textbooks [Hum90], [Ful97] and
[Mat99] for details.

We write N = {0, 1, 2, . . . } the set of natural numbers. We denote by Sn

the symmetric group of rank n ∈ N acting on the set {1, 2, . . . , n} from left. For
1 ≤ i ≤ n− 1, let si be the basic transposition (i, i+1). As a Coxeter group, Sn is
generated by the elements s1, s2, . . . , si−1. With respect to this generator set, the
length of w ∈ Sn is equal to its inversion number

ℓ(w) = #{(i, j) | 1 ≤ i < j ≤ n and w(j) < w(i)}.

A composition of n ∈ N is an infinite sequence λ = (λ1, λ2, . . . ) of natural
numbers whose sum, written as |λ| :=

∑
i λi, is equal to n. Alternatively we often

represent a composition λ as a finite tuple λ = (λ1, λ2, . . . , λr) if it satisfies λi = 0
for all r > i. For such λ, the corresponding parabolic subgroup (also called the
Young subgroup)

Sλ := Sλ1 ×Sλ2 × · · · ×Sλr ⊂ Sn

is defined. It is known that the quotient set Sn/Sλ has the minimal length coset
representatives

Dλ := {w ∈ Sn | ℓ(wsi) > ℓ(w) for every si ∈ Sλ}.

With respect to this set, every w ∈ Sn is uniquely decomposed as w = uv to a pair
of u ∈ Dλ and v ∈ Sλ which satisfies ℓ(w) = ℓ(u) + ℓ(v). For another composition
µ, the sets

D−1
µ = {w ∈ Sn | ℓ(siw) > ℓ(w) for every si ∈ Sµ}

and Dλ ∩D−1
µ are the minimal length representatives of the left cosets Sµ\Sn and

the double cosets Sµ\Sn/Sλ respectively.

The Poincaré polynomial of a subset S ⊂ Sn is defined by PS(q) :=
∑

w∈S qℓ(w) ∈
Z[q]. If S has a decomposition S = S1 ·S2 which preserves lengths, it follows by defi-
nition that PS(q) = PS1(q)PS2(q). We have a q-factorial as the Poincaré polynomial
of whole Sn,

PSn(q) = [n]! := [1][2] · · · [n],

39
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where [k] is a q-integer [k] = 1 + q + · · · + qk−1, which follows inductively from
the decomposition Sn =

⊔
1≤k≤n sksk+1 . . . snSn−1. Then for a composition λ =

(λ1, λ2, . . . , λr) of n, we obtain

PSλ
(q) = PSλ1

(q)PSλ2
(q) · · ·PSλr

(q) = [λ1]![λ2]! · · · [λr]!

and

PDλ
(q) =

PSn(q)

PSλ
(q)

=
[n]!

[λ1]![λ2]! · · · [λr]!
.

We write this polynomial as[
n

λ

]
=

[
n

λ1, λ2, . . . , λr

]
:= PDλ

(q)

and call it the q-multinomial coefficient. In particular, when λ = (n − k, k) is of
length 2, the Poincaré polynomial of D(n−k,k) is given by a q-binomial coefficient[

n

k

]
:=

[
n

n− k, k

]
=

[n][n− 1] · · · [n− k + 1]

[k]!
.

2. Combinatorics on tableaux

The Young diagram of a composition λ is defined by

Y (λ) := {(i, j) | 1 ≤ i, 1 ≤ j ≤ λi}.

We represent it by boxes placed in the fourth quadrant arranged as matrix indices
(the English notation):

(3, 2) = , (2, 4, 1) = , (2, 0, 3) = .

A tableau of shape λ is a function T : Y (λ)→ {1, 2, . . . }. The weight of a tableau T
is a composition µ = (µ1, µ2, . . . ) whose i-th component is µi := #T−1(i). T is said
to be row-semistandard if it satisfies T(i, j) ≤ T(i, j + 1) for each pair of adjacent
boxes (i, j), (i, j+1) ∈ Y (λ), that is, entries in each row of T are weakly increasing.
We denote by Tabλ;µ the set of row-semistandard tableaux of shape λ and weight
µ. For example,

Tab(2,3);(3,1,0,1) =

{
1 1
1 2 4

, 1 2
1 1 4

, 1 4
1 1 2

, 2 4
1 1 1

}
.

A row-semistandard tableau is also called a row-standard tableau if its weight is
(1n) = (1, 1, . . . , 1). We denote by Tabλ := Tabλ;(1n) the set of row-standard
tableaux of shape λ.

The set Dλ is in bijection with the set Tabλ by the following correspondence:
for a row-standard tableau T, we obtain a permutation d(T) ∈ Dλ by reading its
entries from left to right for each rows from top to bottom. For example,

T =
1 2 4 5
3 7 8
6

corresponds to d(T) =

(
1 2 3 4 5 6 7 8
1 2 4 5 3 7 8 6

)
= s3s4s6s7.

Actually any tableau of weight (1n) provides a permutation in this manner, and
the increasing condition on the rows just say that this permutation is in Dλ. We
denote by ϖλ the longest element in Dλ. Its corresponding tableau is obtained
by putting numbers on Y (λ) from bottom to top, conversely as before. For each
T ∈ Tabλ, let us write ℓ(T) := ℓ(d(T)) for short which we also call the length of T.
ℓ(T) can be also expressed as the inversion number

ℓ(T) =
{(

(i, j), (k, l)
) ∣∣ i < k and T (k, l) < T (i, j)

}
.



2. COMBINATORICS ON TABLEAUX 41

Next let us take another composition µ and consider the action Sµ ↷ Sn/Sλ.
For S ∈ Tabλ;µ, we denote by TabS the set {T ∈ Tabλ |T|µ = S} where T|µ is
a row-semistandard tableau of weight µ obtained from T by replacing its entries
1, 2, . . . , µ1 by 1, µ1 + 1, . . . , µ1 + µ2 by 2, and so forth. For example, for

S =
1 1 2 3
1 4 4
3

,

we have

TabS =

{
1 2 4 5
3 7 8
6

,
1 3 4 5
2 7 8
6

,
2 3 4 5
1 7 8
6

,
1 2 4 6
3 7 8
5

,
1 3 4 6
2 7 8
5

,
2 3 4 6
1 7 8
5

}
.

Then via the one-to-one correspondence Tabλ
1:1←→ Sn/Sλ, each subset TabS ⊂

Tabλ clearly corresponds to each orbit of the action above. Hence the set Tabλ;µ is
in bijection with the set Dλ ∩D−1

µ . Namely, for each S ∈ Tabλ;µ, there is a unique

tableau S↓ ∈ TabS which has the minimal length, so that d(S↓) ∈ Dλ∩D−1
µ . We can

construct S↓ from S in the following manner: first we mark subscripts 1, 2, . . . , µk

to all k’s in S for each number k along with the above reading order. Then S↓ is
obtained by replacing the entries of S by 1, 2, . . . , n with respect to the total order

11 < 12 < · · · < 1µ1 < 21 < 22 < · · · < 2µ2 < · · · .

For example, the row-semistandard tableau S above is marked as

11122131
134142
32

and gives the corresponding row-standard tableau S↓ = T in the previous example;
so d(S↓) = d(T) = s3s4s6s7. Other elements in TabS can be constructed from S↓
as follows: let #ij(S) be the number of j’s in the i-th row of S, and S[j] be the
composition of µj defined by S[j]i := #ij(S). We define DS ⊂ Sn by

DS := DS[1] ×DS[2] × · · · ×DS[r] ⊂ Sµ ⊂ Sn.

Then we have a one-to-one correspondence DS → TabS; w 7→ wS↓ which preserves
lengths, that is, ℓ(wS↓) = ℓ(w) + ℓ(S↓). Let ϖS ∈ DS be its longest element
ϖS := (ϖS[1], ϖS[2], . . . , ϖS[r]). The tableau S↑ := ϖSS↓ ∈ TabS which has maximal
length is obtained by replacing the entries of S from bottom to top, contrary to S↓.

The matrix (#ij(S))i,j≥1 uniquely determines a row-semistandard tableau S,
and its shape λ and its weight µ are recovered from this matrix as

λi =
∑
j

#ij(S) and µj =
∑
i

#ij(S).

So for each S, there exists a unique tableau S∗ of shape µ and of weight λ, which
satisfies #ij(S

∗) = #ji(S). We call it the dual tableau of S. For example, for S
above, its dual is

S∗ =

1 1 2
1
1 3
2 2

.

It easily follows that d((S∗)↓) = d(S↓)
−1. So taking dual Tabλ;µ → Tabµ;λ; S 7→ S∗

corresponds to the inversion Dλ ∩D−1
µ → Dµ ∩D−1

λ ; w 7→ w−1 via the bijection d.
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3. The Iwahori–Hecke algebra

Hereafter we fix a parameter q ∈ k. For each n ∈ N, the Iwahori–Hecke algebra
Hn = Hn(q) of rank n (or of type An−1) is an algebra generated by elements
T1, T2, . . . , Tn−1 with defining relations

TiTj = TjTi if |i− j| ≥ 2, TiTi+1Ti = Ti+1TiTi+1, (Ti − q)(Ti + 1) = 0.

Here for n = 0 or 1, it is defined as H0 = H1 = k. For each w ∈ Sn, we take a
reduced expression w = si1si2 · · · sir and define an element Tw := Ti1Ti2 · · ·Tir of
Hn. Then it is known that it does not depend on choice of expression, and that
Hn is a free k-module with basis {Tw |w ∈ Sn}. Thus Hn can be considered as
a q-deformation of kSn, the group ring of the symmetric group. The element Tw

is invertible if and only if q ∈ k×; in such a case, we have T−1
i = q−1(Ti − q + 1)

and T−1
w = T−1

ir
· · ·T−1

i2
T−1
i1

. By definition, if u, v ∈ Sn satisfy ℓ(uv) = ℓ(u) + ℓ(v)
then Tuv = TuTv. The algebra Hn has an anti-involution defined by (Tw)

∗ := Tw−1 .
Thus the category of left Hn-modules is equivalent to that of right modules.

For a composition λ = (λ1, λ2, . . . , λr) of n, let Hλ be a subalgebra of Hn

spanned by {Tw |w ∈ Sλ}. Then Hn is free as a right Hλ-module with basis
{Tw |w ∈ Dλ} by the decomposition Sn = DλSλ. As an abstract algebra, we have
an isomorphism

Hλ ≃ Hλ1 ⊗Hλ2 ⊗ · · · ⊗Hλr .

It is called a parabolic subalgebra of Hn.
In representation theory of the symmetric groups and the Iwahori–Hecke alge-

bra, it is important to treat modules over these algebras for all ranks at once. So
it is better to consider the direct sum of all their module categories. Convolution
product of modules is defined as a binary operation on this category.

Definition 5.1. Let λ = (λ1, λ2, . . . , λr) be a composition of n. For each
i = 1, 2, . . . , r, let Vi be an Hλi

-module. We define the Hn-module

V1 ∗ V2 ∗ · · · ∗ Vr := Hn ⊗Hλ
(V1 ⊠ V2 ⊠ · · ·⊠ Vr)

where ⊠ denotes the outer tensor product of modules. It is called the convolution
product of V1, V2, . . . , Vr.

Obviously this product is associative up to natural isomorphism. By the basis
theorem, we have a direct sum decomposition

V1 ∗ V2 ∗ · · · ∗ Vr =
⊕

w∈Dλ

Tw(V1 ⊠ V2 ⊠ · · ·⊠ Vr)

as a k-module. The convolution product ∗ defines a structure of tensor category on
the direct sum of the module categories

⊕
n(Hn-Mod). This tensor category also

admits a braiding

σ(V,W ) : V ∗W →W ∗ V
x⊠ y 7→ Tϖ(n,m)

(y ⊠ x)

in a weak sense; it satisfies the hexagon axioms of braiding but is not invertible
unless q ∈ k×. Here ϖ(n,m) is the longest element in D(n,m) defined by

ϖ(n,m)(i) :=

{
i+m if 1 ≤ i ≤ n,

i− n if n+ 1 ≤ i ≤ m+ n.

The hexagon axioms follow from the decompositions

ϖ(n+p,m) = (ϖ(n,m), 1p) · (1n, ϖ(p,m)), ϖ(p,m+n) = (1m, ϖ(p,n)) · (ϖ(p,m), 1n)

which preserve lengths. Here we denote by 1n the unit element of Sn.
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4. Parabolic modules and the q-Schur algebra

Let λ be a composition. We define an element mλ ∈ Hλ by

mλ :=
∑

w∈Sλ

Tw.

Note that Ti(1+Ti) = (1+Ti)Ti = q(1+Ti). Hence mλ satisfies Twmλ = mλTw =
qℓ(w)mλ for all w ∈ Sλ since it can be also written as

mλ =
∑

w∈Sλ,
ℓ(siw)>ℓ(w)

(1 + Ti)Tw =
∑

w∈Sλ,
ℓ(wsi)>ℓ(w)

Tw(1 + Ti)

for each si ∈ Sλ. In particular, kmλ is a 2-sided ideal of Hλ.
Let Mλ := Hnmλ be a left ideal of Hn generated by mλ, which we call a

parabolic module. In particular, the trivial module 1n := M(n) is a free k-module of

rank one spanned by mn := m(n), on which every Tw acts by a scalar qℓ(w). Since
the action Hn ↶ Hλ is free, Mλ is isomorphic to Hn ⊗Hλ

kmλ as an Hn-module;
so it has a basis {Twmλ |w ∈ Dλ} over k. Or equivalently, by using convolution
product, we can also represent it as Mλ ≃ 1λ1 ∗1λ2 ∗· · ·∗1λr . Elements of Mλ ⊂ Hn

are characterized as

Mλ = {x ∈ Hn |xTw = qℓ(w)x for all w ∈ Sλ}
because for x =

∑
w∈Sn

xwTw (xw ∈ k), xTi = qx is equivalent to that xw = xwsi

for all w ∈ Sn. For each w ∈ Dλ, we take the corresponding row-standard tableau
T such that w = d(T) and write mT := Twmλ. The action of Hn on it is described
as follows: suppose each number i is contained in the r(i)-th row of T. Then

Ti ·mT =


qmT if r(i) = r(i+ 1),

msiT if r(i) < r(i+ 1),

qmT + (q − 1)msiT if r(i) > r(i+ 1).

We similarly define right ideals M∗
λ := mλHn and 1

∗
n := M∗

(n). Then we have

M∗
λ = {x ∈ Hn |Twx = qℓ(w)x for all w ∈ Sλ}.

Now take two compositions λ, µ of n. Since Mµ is a cyclic module generated

by mµ with the relations Twmµ = qℓ(w)mµ for every w ∈ Sµ, by taking the image
of the generator mµ we have an isomorphism

HomHn(Mµ,Mλ) ≃ {x ∈Mλ |Twx = qℓ(w)x for all w ∈ Sµ} = Mλ ∩M∗
µ.

Let us write Mλ;µ := Mλ ∩M∗
µ. The collection of these k-modules has a natural

product

◦µ : Mµ;ν ⊗Mλ;µ →Mλ;ν ,

xmµ ⊗mµy 7→ xmµy.

According to the isomorphism above, this product corresponds to the opposite of
the composition of homomorphisms. Note thatMλ;µ naturally acts on the parabolic
module Mµ from right, so that the composition is given by the reversed product.
On the other hand, Mλ;µ is also isomorphic to HomHop

n
(M∗

λ ,M
∗
µ), the set of homo-

morphisms between right modules. In this view, the product is just same as the
composition of such homomorphisms. Anyway, the algebra with this product

Sr,n :=
⊕
λ,µ

Mλ;µ ≃ EndHn

(⊕
λ

Mλ

)op

≃ EndHop
n

(⊕
λ

M∗
λ

)
is called the q-Schur algebra which is introduced by Dipper and James [DJ89].
Here λ = (λ1, . . . , λr) and µ = (µ1, . . . , µr) runs over all compositions of n whose
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components are zero except for the first r ones. Note that the Iwahori–Hecke
algebra itself can be obtained similarly:

Hn = M(1n);(1n) ≃ EndHn(M(1n))
op ≃ EndHop

n
(M∗

(1n)).

Since we can write

Mλ;µ = {x ∈ Hn |TvxTw = qℓ(v)+ℓ(w)x for all v ∈ Sµ, w ∈ Sλ},
it has a basis {

∑
v∈SµwSλ

Tv |w ∈ Dλ ∩ D−1
µ } which corresponds to the double

cosets Sµ\Sn/Sλ. Similarly as before, for w ∈ Dλ ∩D−1
µ we take the correspond-

ing row-semistandard tableau S ∈ Tabλ;µ such that w = d(S↓) and write mS :=∑
v∈SµwSλ

Tv. As an element of Mλ, we can decompose it as mS =
∑

T∈TabS
mT.

The anti-involution on Hn induces a map

•∗ : Mλ;µ →Mµ;λ

which induces that on Sr,n. By definition we have (mS)
∗ = mS∗ .

5. Decomposing a tableau

In this section we observe that for each S ∈ Tabλ;µ, mS ∈Mλ;µ has a canonical
decomposition

mS = mµ ◦ν mPw,ν ◦wν mλ

into three tableaux. We first explain each of these terms.
Let µ and ν be compositions of n. We say that ν is a refinement of µ when there

is an increasing sequence of indices 1 ≤ a1 ≤ a2 ≤ · · · such that µi =
∑

ai≤j<ai+1
νj .

Clearly it is equivalent to that Sν ⊂ Sµ. Hence mµ is contained in both Mµ;ν and
Mν;µ. As elements of these sets, mµ is respectively represented by tableaux S and
its dual S∗ defined by S∗(j, k) := i for ai ≤ j < ai+1, such as

S = 1 2 2 3
4 4 4 5 5

and S∗ =

1
1 1
1
2 2 2
2 2

for µ = (4, 5) and ν = (1, 2, 1, 3, 2). For T ∈ Tabλ;ν of weight ν, let T|µ ∈ Tabλ;µ
be a row-standard tableau of weight µ obtained by replacing each entry j in T such
that ai ≤ j < ai+1 with i, similarly as before. Since (1n) is a refinement of every
composition, this notation coincides with the previous one.

Lemma 5.2. Let ν be a refinement of µ, and take a1 ≤ a2 · · · as above.

(1) For S ∈ Tabλ;µ, we have

mµ ◦µ mS =
∑

T∈Tabλ;ν ,T|µ=S

mT ∈Mλ;ν

where mµ is regarded as an element of Mµ;ν .
(2) For T ∈ Tabλ;ν , we have

mµ ◦ν mT =

(∏
i

qℓi
∏
k

[
#ki(T|µ)

#kai(T),#k,ai+1(T) . . . ,#k,ai+1−1(T)

])
mT|µ .

Here ℓi := #
{(

(k, l), (k′, l′)
) ∣∣ k < k′, ai ≤ T(k′, l′) < T(k, l) < ai+1

}
is

the inversion number of T for entries j such that ai ≤ j < ai+1.

Proof. (1). By definition, as an element of Mλ, mµ ◦µ mS is just mS =∑
R∈TabS

mR. Hence the formula is clear from that (R|ν)|µ = R|µ.
(2). Let us write S := T|µ. It suffices to prove for the universal case k = Z[q]

where q is an indeterminate. First we compute an ordinal product mµ · mT in
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Mλ. We can take w ∈ Sµ such that T↓ = w · S↓, then ℓ(w) =
∑

i ℓi. Since
mT =

∑
v∈DT

mv·T↓ and DT ⊂ Sµ,

mµ ·mT = qℓ(w)PDT
(q)mµ ·mS↓ = qℓ(w)PDT

(q)
(∏

k,i

[#ki(S)]!
)
mS.

On the other hand, we have mµ · mT = (
∏

j [νj ]!)mµ ◦ν mT. Since Mλ is a free

module over an integral domain Z[q], we can cancel this coefficient. Thus the
formula follows from

PDT
(q)

∏
k,i[#ki(S)]!∏
j [νj ]!

=

∏
k,i[#ki(S)]!∏
k,j [#kj(T)]!

=
∏
k

[
#ki(S)

#kai(T), . . . ,#k,ai+1−1(T)

]
.

□

Next we introduce the middle term of the decomposition.

Definition 5.3. Let ν = (ν1, ν2, . . . , νr) be a composition of n and w ∈ Sr.
Let us write wν := (νw(1), νw(2), . . . , νw(r)). We define Pw,ν ∈ Tabwν;ν by

Pw,ν(i, j) := w(i)

and call it the permutation tableau with respect to w.

The composition with a permutation tableau is complicated in general, so we
prove a multiplication formula only for a special case.

Lemma 5.4. Let ν and w as above. Suppose T ∈ Tabλ;wν satisfies that for each
pair of boxes (i, j), (k, l) ∈ Y (λ), i ≤ k and T(k, l) < T(i, j) implies w(T(k, l)) <
w(T(i, j)). Then we have mPw,ν ◦wν mT = mwT.

Proof. The tableau wT is also row-standard by the assumption. By the def-
inition of permutation tableau, there is a permutation v ∈ Sn such that mPw,ν =
Tvmwν . The formula follows from that every R ∈ TabT satisfies vR ∈ TabwT and
ℓ(vR) = ℓ(v) + ℓ(R). □

Proposition 5.5. For each S ∈ Tabλ;µ, there exists a unique pair (ν, w) of a
composition ν = (ν1, ν2, . . . , νr) with ν1, ν2, . . . , νr > 0 and a permutation w ∈ Sr

such that wν and ν are respectively refinements of λ and µ, and

mS = mµ ◦ν mPw,ν ◦wν mλ.

Proof. For such S, it suffices to put

ν := (#11(S),#21(S), . . . ,#12(S),#22(S), . . . ,#13(S),#23(S), . . . ),

wν := (#11(S),#12(S), . . . ,#21(S),#22(S), . . . ,#31(S),#32(S), . . . )

with removing zero entries #ij(S) = 0, and take the corresponding permutation w.
Then by the two lemmas above we have a desired decomposition. For example,

2 2 3 3 3
1 1 1 1
1 3 3

=

1 1 1 1
1
2 2
3 3 3
3 3

◦(4,1,2,3,2)

3 3
4 4 4
1 1 1 1
2
5 5

◦(2,3,4,1,2)
1 1 2 2 2
3 3 3 3
4 5 5

where we represent an element mT by the tableau T itself for short. The uniqueness
is obvious from this construction. □
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6. Good tableaux

We introduce a partial order ≤ on the set of compositions of n ∈ N called the
dominance order. Here for two compositions λ and µ, they are defined to be λ ≤ µ
if and only if

λ1 + λ2 + · · ·+ λk ≤ µ1 + µ2 + · · ·+ µk

is satisfied for each k ∈ N. It is not a total order; for example, the compositions
(3, 3) and (4, 1, 1) are incomparable. According to the reversed dominance order,
we make a filtration on the module category as we did in the previous part. For
each composition λ, the set {µ |µ > λ} is finite. Hence the set of all compositions
with the reversed dominance order is a well-founded partially ordered set.

Notation 5.6. Let X,Y ∈ Hn-Mod . For a composition λ, let

Hλ(X,Y ) := HomHn(Mλ, Y ) ◦HomHn(X,Mλ)

be the set of homomorphisms which factor through Mλ. In other words, Hλ is a
2-sided ideal of Hn-Mod generated by Mλ. By using the dominance order we define

H≥λ(X,Y ) :=
∑
µ≥λ

Hµ(X,Y ), H>λ(X,Y ) :=
∑
µ>λ

Hµ(X,Y )

and
Hom

(λ)
Hn

(X,Y ) := HomHn(X,Y )
/
H>λ(X,Y ).

The last one is a hom set in the quotient category (Hn-Mod)/H>λ.
When X and Y above are parabolic modules, we write corresponding submod-

ules or quotient modules of Mλ;µ as Mν
λ;µ, M

≥ν
λ;µ, M

>ν
λ;µ and M

(ν)
λ;µ respectively. In

particular,

M
(ν)
λ;µ ≃ Hom

(ν)
Hn

(Mµ,Mλ)

is the k-module equipped with the reversed composition as product. As its special

case we let Sλ;µ := M
(λ)
λ;µ. Then Sλ;λ is a quotient algebra of Mλ;λ and Sλ;µ is a

right module over this algebra. When µ = (1n) we simply write Sλ := Sλ;(1n). Sλ

is also a left module over Hn ≃M(1n);(1n) and called the Specht module. We denote
equalities in the quotient set Sλ;µ by the symbol ≡.

Note that if a composition λ = (λ1, λ2, . . . ) has λi = 0 such that λi+1 ̸= 0,

letting λ̃ := (λ1, . . . , λi−1, λi+1, . . . ) we have λ < λ̃ and Mλ ≃ Mλ̃. Hence for

such λ, Mλ is zero in the quotient category (Hn-Mod)/H>λ; in particular we have
Sλ;µ = 0 for all µ. We can remove such needless compositions from the index set.
Then the rest is now a finite set.

For a while we fix n ∈ N and λ, µ denote compositions of n. In order to study
this quotient category, we introduce a combinatorial notion on tableaux as follows.

Definition 5.7. Let T ∈ Tabλ;µ be a row-semistandard tableau. We say that
a box (i, j) ∈ Y (λ) in the Young diagram is good if it satisfies T(i, j) ≥ i, and T is
said to be good if all boxes in Y (λ) are good.

Lemma 5.8. Sλ;µ is spanned by {mT |T ∈ Tabλ;µ which is good}.

Proof. Suppose that T is not good. For such T, let us define a tableau T1 of
shape λ by

T1(i, j) := min{i,T(i, j)}.
Next let T2 be a tableau obtained by moving up all ungood boxes i of T to its
i-th row, so that T2 is good. For example, when

T =
1 1 1 1 2 3
2 2 3 3
1 2 3
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which has ungood 1 and 2 in the third row, we let

T1 =
1 1 1 1 1 1
2 2 2 2
1 2 3

and T2 =
1 1 1 1 1 2 3
2 2 2 3 3
3

.

Let ν be the weight of T1, which is equal to the shape of T2. For each k we have

ν1 + ν2 + · · ·+ νk = λ1 + λ2 + · · ·+ λk +#{(i, j) ∈ Y (λ) | i > k, T (i, j) ≤ k}.

Since T is not good, we have ν > λ so that mT2 ◦ν mT1 ≡ 0 in Sλ;µ.
On the other hand, observe that the i-th row of T2 is obtained by reading

entries of T at boxes (k, l) such that T1(k, l) = i from bottom to top. So taking

w := d(T↑
2) ∈ Dν we have T↑ = wT↑

1 and ℓ(T↑) = ℓ(w) + ℓ(T↑
1). This induces the

following decomposition in Mλ;µ:

mT2 ◦ν mT1 = mT +
∑

S∈Tabλ;µ, ℓ(S↑)<ℓ(T↑)

cSmS (cS ∈ k).

Hence in Sλ;µ we can replace ungood mT by a linear combination of elements mS

which has smaller lengths. Consequently it inductively follows that any tableau
can be written as a linear combination of good ones. □

Lemma 5.9. (1) Tabλ;λ has only one good tableau.
(2) There are no good tableau in Tabλ;µ unless λ ≥ µ.

Proof. If T ∈ Tabλ;µ is good, then for each k, all i’s in T less than or equal to
k are placed in its k-th row or upper. The number of such numbers (= µ1+· · ·+µk)
must be equal to or less than that of such boxes (= λ1+ · · ·+λk) so we have λ ≥ µ.
Moreover if λ = µ, all i’s in T must be in its i-th row. □

By these two lemmas, the statements below are obvious.

Corollary 5.10. (1) Sλ;λ is spanned by mλ. Hence it is isomorphic to
a quotient ring of k.

(2) Sλ;µ = 0 unless λ ≥ µ. □

Hence it satisfies the assumptions in Lemma 0.5, so it produces several stan-
dardly filtered algebras.

Theorem 5.11. The Iwahori–Hecke algebra Hn = M(1n;1n) and the q-Schur
algebra Sr,n =

⊕
λ,µ Mλ;µ are standardly filtered algebras over k on the set of

compositions. Here for each composition ν, their ideal filter and attached Morita
contexts is given by

H≥ν
n := M≥ν

(1n;1n) with (Sν , S
∗
ν )

and

S ≥ν
r,n :=

⊕
λ,µ

M≥ν
λ;µ with

(⊕
λ

Sν;λ,
⊕
λ

S∗
ν;λ

)
where S∗

ν;λ := M
(ν)
λ;ν and S∗

ν := S∗
ν;(1n). These standard filters are involutive. □

It seems to be an interesting problem to determine the k-module structure of

Sλ;µ (or more general M
(ν)
λ;µ) in detail. For the case that q is invertible we can

completely determine its structure by taking its free basis as we will study in later
sections. In the other case the situation is more complicated so that these modules
even need not to be free. The author conjectures that Sλ;λ is isomorphic to k or

k/qh(λ)k for some h(λ) ∈ N determined by the shape of λ, but a general one is still
unable to describe.
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7. Local transformations in Specht modules

In this section we prove useful formulas for computation on Specht modules.

Lemma 5.12. Suppose we have an equation
∑

T cTmT ≡ 0 in Sλ;µ for some
cT ∈ k. Take an arbitrary sequence a1 ≤ a2 ≤ · · · ≤ ak. For each T ∈ Tabλ;µ let
T+ be the tableau obtained by adding a new row a1a2 ···ak at the top of T. Then we
have an equation

∑
T cTmT+ ≡ 0 in S(k,λ);µ+ , where (k, λ) := (k, λ1, λ2, . . . ) and

µ+
j = µj +#{i | ai = j}.

Proof. First note that the convolution functor with trivial module

1k ∗ • : (Hn-Mod)/H>λ → (Hk+n-Mod)/H>(k,λ)

is still well-defined, because for any V → W which factors through some Mν for
ν > λ, corresponding 1k ∗ V → 1k ∗W factors through M(k,ν) with (k, ν) > (k, λ).

For each T, let us define T# ∈ Tab(k,λ);(k,µ) by

T#(i, j) =

{
1 if i = 1,

T(i− 1, j) + 1 otherwise,

so that mT# = 1k ∗ mT. On the other hand, let R ∈ Tab(k,µ);µ+ be the tableau
defined by

R(i, j) =

{
aj if i = 1,

i− 1 otherwise.

Then we have mT+ = mR ◦(k,µ) mT# by the decomposition of mR according to
Proposition 5.5 and the formulas in Lemma 5.2 and Lemma 5.4. Hence∑

T

cTmT+ = mR ◦(k,µ)
∑
T

cTmT# = mR ◦(k,µ)
(
1k ∗

∑
T

cTmT

)
≡ 0.

□
By the same argument, we can also add a new row to the bottom of tableaux.

For the bottom row of a tableau we have another kind of formula.

Lemma 5.13. Let
∑

T cTmT ≡ 0 ∈ Sλ;µ as above. Take a number a which is
greater than or equal to any entries of T (so µi = 0 for i > a). For each T ∈ Tabλ;µ,
let T+ be the tableau obtained by joining a bar a a ··· a of length l at the right of

the bottom row of T. Then we also have
∑

T cT
[
#ra(T)+l

l

]
mT+ ≡ 0 in Sλ+;µ+ where

λ+ := (λ1, . . . , λr−1, λr + l) and µ+ := (µ1, . . . , µa−1, µa + l).

Proof. For a composition ν = (ν1, . . . , νr), we write (ν, l) := (ν1, . . . , νr, l).
We define T# ∈ Tab(λ,l);µ+ for each T ∈ Tabλ;µ by

T#(i, j) :=

{
T(i, j) if i ≤ r,

a if i = r + 1

and R ∈ Tabλ+;(λ,l) by

R(i, j) :=

{
i if i < r or (i = r, j ≤ λr),

r + 1 if i = r, j > λr,

so that
[
#ra(T)+l

l

]
mT+ = mT# ◦(λ,l) mR similarly to the previous proof. By the

similar argument we can prove
∑

T cTmT# ≡ 0, and more strongly, this element
can be written as a linear combination of elements which factor through M(ν,l) for

ν > λ. This implies (ν, l) ̸≤ λ+; thus by Corollary 5.10, in Sλ+;µ+ we have∑
T

cT

[
#ra(T) + l

l

]
mT+ =

∑
T

cTmT# ◦ν mR ≡ 0.
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□

The formula below will be needed for a later computation.

Lemma 5.14. Let k, l, n ∈ N such that k ≤ l ≤ n and let λ := (n − k, k) and
µ := (n− l, l). For each i, let Ti ∈ Tabλ;µ be the tableau determined by #21(Ti) = i,
that is, it is in the form

Ti = ︸ ︷︷ ︸
i

1 1 ··· 1 2 2 ··· 2
1 ··· 1 2 ··· 2

.

Then we have mTi ≡ (−1)iq(
i
2)
[
k
i

]
mT0 in Sλ;µ.

Proof. We prove it by an induction on k. The case i = 0 is trivial so assume
that 0 < i ≤ k. For i < k, using the assumption of induction, the formula is implied
by the lemma above. On the other hand, by Lemma 5.2 (1) we have

0 ≡ 1 1 1 ··· 1 2 ··· 2 ◦(n) 1 1 1 ··· ··· ··· ··· 1
1 1 ··· ··· ··· 1

=
∑

0≤i≤k

mTi ,

so that the statement also holds for i = k by the formula∑
0≤i≤k

(−1)iq(
i
2)
[
k

i

]
= 0 implied by

∏
0≤i<k

(1 + qkt) =
∑

0≤i≤k

q(
i
2)
[
k

i

]
ti.

□

Multiplying an element to the both-hand sides of this formula for i = k = l, we
obtain the following corollary by Lemma 5.2 (1).

Corollary 5.15. Let λ = (n−k, k) as above. For arbitrary entries a1 ≤ · · · ≤
ak, we have

1 1 ··· 1 a1 ···ak
1 ··· 1

≡ (−1)kq(
k
2) 1 1 ··· ··· ··· ··· 1
a1 ···ak

.

□

8. Semistandard tableaux

Hereafter in this chapter we assume q ∈ k×. Then the braiding σ of the
convolution ∗ is now invertible so we have Mλ ≃ Mwλ for any λ = (λ1, λ2, . . . , λr)
and w ∈ Sr. Recall that a composition λ is called a partition if it is a descending
sequence: λ1 ≥ λ2 ≥ . . . . So in this case, unless λ is a partition, we can take some
w such that λ < wλ, so that Mλ is zero in the quotient category (Hn-Mod)/H>λ

again.
A row-semistandard tableau T ∈ Tabλ;µ is called a semistandard tableau if its

shape λ is a partition and for all vertically adjacent boxes (i, j), (i+1, j) ∈ Y (λ) it
satisfies T (i, j) < T (i+1, j); or equivalently, all its columns are strictly increasing.
We denote by STabλ;µ the set of all semistandard tableaux of shape λ of weight µ.
Note that the strictly increasing condition clearly implies that every semistandard
tableau is good. Now we can improve a lemma in the previous section.

Lemma 5.16. Sλ;µ is spanned by {mT |T ∈ STabλ;µ}.

Proof. The statement is clear if λ is not a partition, so we may assume so.
Suppose T is not semistandard and take its box (k, l) ∈ Y (λ) such that T(k, l) ≥
T(k + 1, l). Let ν be a composition

ν := (λ1, . . . , λk−1, l − 1, λk + 1, λk+1 − l, λk+2, λk+3, . . . ).
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We define tableaux T1 ∈ Tabλ;ν and T2 ∈ Tabν;µ by

T1(i, j) =

{
i if i < k or (i = k, j < l) or (i = k + 1, j ≤ l),

i+ 1 otherwise,

T2(i, j) =


T(i, j) if i ≤ k or (i = k + 1, j ≤ l),

T(k, j − 1) if i = k + 1, j > l,

T(k + 1, j + l) if i = k + 2,

T(i− 1, j) if i > k + 2.

For example, when

T =
1 1 1 2 2 3 4
1 2 2 2 3
2 5

and (k, l) = (1, 4), the corresponding tableaux are

T1 =
1 1 1 2 2 2 2
2 2 2 2 3
4 4

and T2 =

1 1 1
1 2 2 2 2 2 3 4
3
2 5

.

So intuitively T2 is obtained by picking up entries of T in the polygonal chain

• • • •
• • • •

which turns at (k, l) and (k + 1, l) as a new row. Then by the same argument in
the proof of Lemma 5.8, mT2 ◦ν mT1 ∈Mλ;µ has the leading term mT. Now let ν+

be another composition

ν+ := (λ1, . . . , λk−1, λk + 1, l − 1, λk+1 − l, λk+2, . . . , λr)

which is obtained by swapping middle two entries of ν. By the assumption q ∈ k×,
we have Mν ≃ Mν+ . Hence mT2 ◦ν mT1 also factors through Mν+ . On the other
hand, we have clearly ν+ ̸≤ λ. Hence by Corollary 5.10 (2), mT2 ◦ν mT1 ≡ 0 in
Sλ;µ. By induction on length as before we obtain the statement. □

Theorem 5.17. Recall the assumption q ∈ k×. Then Mλ;µ has a basis⊔
ν : partition

{mS ◦ν mT∗ | S ∈ STabν;µ,T ∈ STabν;λ}.

Proof. First we prove that the set above spans the hom space. Take an
appropriate total order on the set of all compositions {ν1, ν2, . . . , νp = λ, . . . } which
is stronger than the reversed dominance order, so that i ≤ j whenever νi ≥ νj .

We take a filtration on Mλ;µ by letting M≤k
λ;µ :=

∑
i≤k M

νi

λ;µ for each k so that

Mλ;µ = M≤p
λ;µ. Then, on each composition factor, by inclusion M>νk

λ;µ ⊂ M≤k−1
λ;µ

there is a natural surjective map

◦νk
: Sνk;µ ⊗ S∗

νk;λ
↠ M≥νk

λ;µ

/
M>νk

λ;µ ↠ M≤k
λ;µ

/
M≤k−1

λ;µ

here recall that Sν;µ = M
(ν)
ν;µ and we define S∗

ν;λ := M
(ν)
λ;ν . Hence by Lemma 5.16,

the right-hand side is spanned by {mS ◦νk
mT∗} above.

Now remember the Robinson–Schensted–Knuth correspondence [Knu70]

Tabλ;µ
1:1←→

⊔
ν : partition

STabν;λ × STabν;µ.

Hence the rank of the free k-module Mλ;µ is equal to the number of elements in the
generating set above. Consequently this set is also linearly independent, so that it
forms a basis. □
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Corollary 5.18. (1) Sλ;µ has a basis {mT |T ∈ STabλ;µ}. In particu-
lar,

Sλ;λ ≃
{k if λ is a partition,

0 otherwise.

(2) The product

◦ν : Sν;µ ⊗ S∗
ν;λ →M

(ν)
λ;µ

is injective.
(3) Hn and Sr,n are cellular algebras. □

Now for the q-Schur algebra Sr,n =
⊕

λ,µ Mλ;µ its simple modules are easily
classified. For each parition ν, if ν is at most of length r, then the trace ideal
of the Morita context (

⊕
λ Sν;λ,

⊕
λ S

∗
ν;λ) in Sν;ν ≃ k is clearly k. Otherwise the

Morita context is zero since λ, µ ̸≤ ν for all such λ, µ. Hence we obtain a following
classification.

Theorem 5.19. When q ∈ k×, there is a one-to-one correspondence

Irr(Sr,n)
1:1←→ {ν = (ν1, . . . , νr); partition} × Irr(k)

induced by the Morita context functors. Here for a pair of ν and V ∈ Irr(k), the
corresponding simple module is given by

Image

(⊕
λ

Sν;λ ⊗ V → Homk

(⊕
λ

S∗
ν;λ, V

))
.

9. Identification of the ideals

Recall the assumption q ∈ k×. We then proceed to the classification of simple
modules of the Iwahori–Hecke algebra Hn ≃ M(1n);(1n). For each partition λ, let
Jλ = S∗

λ · Sλ be the trace ideal of the Morita context (Sλ, S
∗
λ) in Sλ;λ ≃ k; here

note that the product ◦(1n) is just the ordinal multiplication. Since S∗
λ is generated

by mλ, we have Jλ = mλ · Sλ. In order to classify simple modules, we have to
determine it.

Lemma 5.20. Let λ = (λ1, λ2, . . . , λr) be a partition. For such λ, let

fλ := [λ1 − λ2]![λ2 − λ3]! . . . [λr]!.

Then we have inclusions kfr
λ ⊂ Jλ ⊂ kfλ. In particular, IrrJλ(k) = Irrkfλ(k).

Proof. First we prove Jλ ⊂ kfλ. So it suffices to prove that for an arbitrary
T ∈ Tabλ we have mλ · mT ∈ kfλmλ as an element of Sλ;λ. Note that taking a
refinement µ := (λ1, 1

n−λ1) of λ we can decompose mλ ∈M∗
λ as mλ ◦µ mµ. So let

S := T|µ. Explicitly, S is a row-semistandard tableau of shape λ of weight µ defined
by

S(i, j) :=

{
1 if 1 ≤ T(i, j) ≤ λ1,

T(i, j)− λ1 + 1 otherwise.

Let ν := S[1] be the composition of λ1 where νi is the number of entries 1, 2, . . . , λ1

in the i-th row of T. Then by Lemma 5.2 (2) we obtain that

mµ ·mT = qℓ[ν1]![ν2]! · · · [νr]!mS

for some ℓ ∈ N. In particular, the coefficient can be divided by [ν1]!. Let λ \ ν be
the composition of n− λ1 defined by (λ \ ν)i := λi − νi. Since mS factors through
M(λ1,λ\ν) as before, if ν1 < λ1 − λ2 then λ ̸≥ (λ1, λ \ ν), which implies mS ≡ 0
in Sλ;µ. Thus the statement trivially holds in this case. Otherwise [ν1]! can be
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divided by [λ1 − λ2]!. By induction, for λ′ = (λ2, . . . , λr) we may assume that
mλ′ · Sλ′ ⊂ kfλ′mλ′ . Note that Sλ;µ = 1λ1 ∗ Sλ′ . Therefore

mλ ·mT ∈ [λ1 − λ2]!mλ ◦µ Sλ;µ ⊂ [λ1 − λ2]!(1λ1 ∗ kfλ′mλ′) = kfλmλ.

Next we prove the other inclusion kfr
λ ⊂ Jλ. Let R ∈ Tabλ;λ be the row-

semistandard tableau determined by #ij(R) = λi+j−1 − λi+j . For example, when
λ = (6, 4, 1),

R =
1 1 2 2 2 3
1 1 1 2
1

.

Then by taking its underlying row-standard tableau R↓ ∈ Tabλ, by Lemma 5.2 (2)
again we obtain

mλ ·mR↓ = [λ1 − λ2]![λ2 − λ3]!
2 · · · [λr]!

rmR.

On the other hand, by using Corollary 5.15 repeatedly, we also obtain that mR ∈
k×mλ in Sλ;λ. For example,

1 1 2 2 2 3
1 1 1 2
1

≡ −
1 1 2 2 2 3
1 1 1 1
2

≡ −q6
1 1 1 1 1 1
2 2 2 3
2

≡ q6
1 1 1 1 1 1
2 2 2 2
3

.

This implies Jλmλ ⊃ kmλ ·mR↓ ⊃ kfr
λmλ as desired. □

This completes the classification we noted in the introduction.

Theorem 5.21. When q ∈ k×, there is a one-to-one correspondence

Irr(Hn)
1:1←→

⊔
λ : partition

Irrkfλ(k)

induced by the Morita context functors. For a partition λ and V ∈ Irrkfλ(k), the
corresponding simple module is

Image(Sλ ⊗ V → Homk(S
∗
λ, V )).

□
Finally let us consider the case that k is a field. Let e ∈ N ∪ {∞} be the

q-characteristic of k, namely e := min{k | [k] = 0} (the case e = ∞ is usually
written as e = 0, but we use this definition for simplicity). A partition λ is called
e-restricted if λi − λi+1 < e holds for every i. Then clearly we have that λ is
e-restricted if and only if fλ = 0. Thus as a corollary of the theorem we obtain the
well-known classification.

Corollary 5.22. If k is a field whose q-characteristic is e (we still assume
that q ∈ k×), there is a one-to-one correspondence

Irr(Hn)
1:1←→ {e-restricted partition}.

The right-hand side set is actually the crystal B(Λ0) of type A
(1)
e−1 under the

description of Misra and Miwa [MM90].



CHAPTER 6

Stable structure of the module category

In this chapter we focus on the behavior of the module category of the Iwahori–
Hecke algebra Hd for large d ≫ 0. Several things will be stable in the large rank
which are easier to study than the unstable ones, especially in the super case we
will treat in the next part.

1. Induction and restriction

Recall that the category
⊕

n(Hn-Mod) has the convolution product ∗. We
define the induction functor as taking convolution with trivial representation. It
plays a central role in what follows.

Definition 6.1. Let k, n ∈ N. For an Hn-module V , we denote by IndkV the
Hk+n-module

IndkV := 1k ∗ V.
This defines a functor Indk : Hn-Mod → Hk+n-Mod between module categories.

It is clear from the direct sum decomposition that the functor Indk is exact.
We prove that this functor has both left and right adjoint.

Definition 6.2. Let k, n ∈ N. For an Hk+n-module W , we define Hn-modules

ReskW := HomH(k,n)
(1k ⊠Hn,W |(k,n))

≃ {x ∈W |Tix = qx for 1 ≤ i ≤ k},
Res′kW := (Hn ⊠ 1

∗
k)⊗H(n,k)

W |(n,k)
≃W/∼, where Tix ∼ qx for n+ 1 ≤ i ≤ n+ k

where we denote by W |λ the restricted Hλ-module. Resk and Res′k are functors
Hk+n-Mod → Hn-Mod , and we call them the subrestriction and the quorestriction
functors.

Note that the definition of Resk uses the composition (k, n) while that of Res′k
does the reversed one (n, k). In other words, to define the action of Hn on the
module, Resk takes the last n indices {k + 1, k + 2, . . . , k + n} while Res′k does
the first n ones {1, 2, . . . , n} of them. Hence the two restriction functors naturally
commute.

Proposition 6.3. Resk (resp. Res′k) is the right (resp. left) adjoint functor of
Indk.

The adjointness for Resk is obvious from the Frobenius reciprocity. To prove
that for Res′k, we first prove the next lemma.

Lemma 6.4. There is an isomorphism of (H(k,n),Hk+n)-bimodules

HomHop
(k,n)

(Hk+n,H(k,n)) ≃ σHk+n.

53
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Here the left-hand side above is the set of homomorphisms between right H(k,n)-
modules. σ denotes the canonical isomorphism σ : H(k,n) ≃ H(n,k) and σHk+n is
the (H(k,n),Hk+n)-bimodule whose underlying set is just Hk+n but the left H(k,n)-
action is twisted by σ.

Proof. Since {Tw |w ∈ D(k,n)} is a basis of the free rightH(k,n)-moduleHk+n,
its dual basis, which we denote by {δw |w ∈ D(k,n)}, is a basis of the free left H(k,n)-
module Homop

H(k,n)
(Hk+n,H(k,n)). Explicitly, the function δw is defined by

δw : Hk+n → H(k,n)

Tuv 7→
{
Tv if u = w,

0 otherwise

for a pair of u ∈ D(k,n) and v ∈ S(k,n). If w, siw ∈ D(k,n) and ℓ(siw) > ℓ(w), we
have

δsiw · Ti = δw + (q − 1)δsiw

by definition. So Homop
H(k,n)

(Hk+n, H(k,n)) is generated by δϖ(k,n)
as a right Hk+n-

module. Since the rank of this k-module is (k+ n)!, which coincides with the rank
of the algebra, the action of Hk+n on δϖ(k,n)

is free. Thus there is an isomorphism
of right Hk+n-modules

σHk+n → Homop
H(k,n)

(Hk+n,H(k,n)),

σx 7→ δϖ(k,n)
· x,

where we denote by σx ∈ σHk+n the element corresponds to x ∈ Hk+n. Moreover
this isomorphism also respects left H(k,n)-action. Actually let us take any generator
si ∈ S(k,n) and let j := ϖ(k,n)(i) so that σ(Ti) = Tj . Then we have

sjϖ(k,n) = ϖ(k,n)si /∈ D(k,n) and ℓ(sjϖ(k,n)) > ℓ(ϖ(k,n)).

Hence for each u ∈ D(k,n),

δϖ(k,n)
(TjTu) =

{
Ti if u = ϖ(k,n),

0 otherwise.

In other words, δϖ(k,n)
· Tj = Tiδϖ(k,n)

. Thus it satisfies Tvδϖ(k,n)
= δϖ(k,n)

· σ(Tv)
for each v ∈ S(k,n). □

Proof of Proposition 6.3. As a consequence of the lemma, we have an-
other definition of Indk:

IndkV = (1k ⊠ V )⊗H(k,n)
Hk+n

≃ HomH(k,n)
(Homop

H(k,n)
(Hk+n,H(k,n)),1k ⊠ V )

≃ HomH(k,n)
(σHk+n,1k ⊠ V )

≃ HomH(n,k)
(Hk+n, V ⊠ 1k).

Here in the second line we take the double dual of Hk+n with respect to the free
right action of H(k,n). Now the adjointness is clear. □

Notation 6.5. As a convention, for integers k, n ∈ Z which do not satisfy
k, n ≥ 0, we also define Hn-Mod as the zero category and Indk, Resk and Res′k as
the zero functor.
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2. Diagrammatic natural transformations

In this subsection we define important natural transformations between func-
tors Indk, Resk and Res′k. Before we introduce them, let us explain string diagrams,
which are useful for calculation in theory of 2-categories.

In a diagram we represent a functor by a colored string. The right (resp. left)
region separated by a string stands for the domain (resp. codomain) category of the
corresponding functor. A composite of these functors is represented by a sequence
of strings arranged horizontally. In particular, the identity functor is represented
by the “no strings” diagram. A natural transformation between such functors are
represented by a figure connecting these sequences from top to bottom. Note that
an object X ∈ C can be considered as a functor X : {∗} → C, where {∗} denotes
the category with single object, so we also represent it by a string.

In this paper, we represent the functor Indk by a down arrow ↓, and both
Resk, Res

′
k by up arrows ↑ which are labeled by k. For example, f : Ind3Res6 →

Res4Res1Ind2 is represented by a figure like

f

�� LL

KK OO ��

3 6

4 1 2

.

Note that the diagram above can not distinguish Resk from Res′k, but we only use
diagrams when it is clear from the context.

The adjointness between Indk and Resk yields natural transformations

δk : Id→ ReskIndk, ϵk : IndkResk → Id

called the unit and the counit respectively. We represent these morphisms by the
cap and the cup diagrams:

δk = ��
BB

k

, ϵk =
EE

��

k

.

We also have the the unit δ′k : Id → IndkRes
′
k counit ϵ′k : Res

′
kIndk → Id induced

by the other adjunction. We represent them by the same diagrams as above but
arrows are reversed:

δ′k = ��
\\

k

, ϵ′k =
YY

��

k

.

Now let k, l ∈ N. We define three Hk+l-homomorphisms

µ(k,l) : M(k,l) → 1k+l, ∆(k,l) : 1k+l →M(k,l) σ(k,l) : M(l,k) →M(k,l),

m(k,l) 7→ mk+l, mk+l 7→
∑

w∈D(k,l)

Twm(k,l), m(l,k) 7→ Tϖ(k,l)
m(k,l)

which correspond to the tableaux

1 1 ··· 1 1 1 2 2 ··· 2 , 1 1 ··· 1 1 1
1 1 ··· 1

, 2 2 ··· 2 2 2
1 1 ··· 1

respectively. These homomorphisms induce natural transformations between func-
tors Hn-Mod → Hk+l+n-Mod ,

µ(k,l) : IndkIndl → Indk+l, ∆(k,l) : Indk+l → IndkIndl, σ(k,l) : IndlIndk → IndkIndl
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which we denote by the same symbols. Again, if k and l do not satisfy k, l ≥ 0, then
these morphisms are defined to be zero. We represent these natural transformations
by the string diagrams

µ(k,l) =
��

�� ��

k+l

k l
, ∆(k,l) =

��

�� ��

k+l

k l

, σ(k,l) =

66
66

66
66

66

�� �
��
����

��
��
���

l k

k l

,

that is, junction, branch, and crossing of strings respectively. Finally, an obvious
isomorphism Ind0 ≃ Id and its inverse are represented by broken strings:

��

�?

0

and ��
�?

0
.

An equation which hold between compositions of these morphisms can be ex-
pressed as a local transformation of string diagrams. In particular, we are allowed
to move diagrams through regular homotopy by the naturality of homomorphisms.
In addition, diagrams can pass through under or over another string since σ satisfies
the axioms of braiding. We here list other equations which we use later.

Proposition 6.6. The following equations hold. Here in the diagrams labels
which can be deduced from others are omitted from strings.

(1) The associativity and the coassociativity laws:

��

��
�� =

��

��
��
,

���� ��

=

���� ��

.

(2) The unit and the counit laws:

��

��

��
�?

=

��

= ��

��

��
�?

,
��

��

��
�?

=

��

=
��

��

��
�?
.

(3) The graded bialgebra relation:

��

�� ��

�� ��

=
∑
i

99
99

99
99

�� �
����

��
���

�� ��

�� ��

�� ��

i

where i ranges over all integers and determines all labels on other strings.
The summand is zero for all but finite i.

(4) The bubble elimination:

��

��

� � ��k l =

[
k + l

k

]
�� .

Here
[
k+l
k

]
is the q-binomial coefficient.

Remark 6.7. The equations (1), (2) and (3) say that
⊕

n 1n has a struc-
ture of bialgebra in the braided tensor category

⊕
n(Hn-Mod). It also admits the

antipode of Hopf algebra by (4) defined by a scalar multiplication of (−1)nq(
n
2)

on each 1n. When q = 1, this algebra is nothing but the divided power algebra
k[x, x2/2, x3/6, . . . ].

To prove the proposition, we first state a lemma.
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Lemma 6.8. Let d,m, n ∈ N such that m,n ≤ d. For each i ∈ N such that
m+ n− d ≤ i ≤ m,n, we define gi ∈ Sd by

gi := (1d−m−n+i, ϖ(m−i,n−i), 1i) ∈ S(d−m−n+i,m+n−2i,i).

Then there is a decomposition

D(d−n,n) =
⊔
i

(D(d−m−n+i,n−i) ×D(m−i,i))gi

which preserves lengths.

Proof. The set Tab(d−n,n);(d−m,m) consisting of tableaux such as

S = 1 1 1 1 1 2 2
1 2 2 2

which is determined by #22(S), the number of 2’s in the second row. Let Si be the
tableau which has i = #22(Si). Then the other matrix entries are given by

#11(Si) = d−m− n+ i, #12(Si) = m− i, #21(Si) = n− i.

Thus we have a decomposition

Tab(d−n,n) =
⊔
i

TabSi =
⊔
i

(D(d−m−n+i,n−i) ×D(m−i,i)) · Si↓

where i ranges over the natural numbers such that these numbers are non-negative.
The corresponding element d(Si↓) ∈ D(d−n,n)∩D−1

(d−m,m) is the permutation which

swaps the numbers {d−m−n+ i+1, . . . , d−m} for {d−m+1, . . . , d− i}, which is
just gi. By translating the decomposition above from the set of tableaux into that
of permutations, we obtain the statement. □

Now we back to the proof of the proposition.

Proof of Proposition 6.6. Every morphisms represented by diagrams above
are induced by some homomorphisms Mµ → Mλ so it suffices to prove equations
between such homomorphisms. It is enough to check that these homomorphisms
send the generator mµ ∈Mµ to a same element.

First clearly the both-hand sides of the left equation of (1) sends m(k,l,m) to
mk+l+m. The right one follows by taking its dual. (2) is also obvious.

Next the left-hand side of (3) is the homomorphism

m(d−m,m)
µ7→ md

∆7→
∑

w∈D(d−n,n)

Twm(d−n,n).

By the decomposition of D(d−n,n) in the Lemma 6.8, it can be decomposed as∑
w∈D(d−n,n)

Twm(d−n,n) =
∑
i

∑
u∈D(d−m−n+i,n−i),

v∈D(m−i,i)

T(u,v)Tgim(d−n,n).

On the other hand, the summand in the right-hand side is the homomorphism

m(d−m,m)
∆7→

∑
u,v

T(u,v)m(d−m−n+i,n−i,m−i,i)

σ7→
∑
u,v

T(u,v)Tgim(d−m−n+i,m−i,n−i,i)

µ7→
∑
u,v

T(u,v)Tgim(d−n,n).

Thus the both-hand sides are equal.
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The left-hand side of (4) is

mk+l 7→
∑

w∈D(k,l)

Twm(k,l) 7→
∑

w∈D(k,l)

qℓ(w)mk+l.

So the equation is a consequence of PD(k,l)
(q) =

[
k+l
k

]
. □

3. Homomorphisms between induced modules

We here study the set of homomorphisms between two induced modules Indd−mV
and Indd−nW in terms of string diagrams. The key observation is that this set sta-
bilizes for sufficiently large rank d. In order to explain this, first we consider a
parabolic restriction of an induced module.

Lemma 6.9. Let d,m, n ∈ N such that m,n ≤ d. For each W ∈ Hn-Mod there
is an isomorphism

(Indd−nW )|(d−m,m) ≃
⊕
i

Ind
(1)
d−m−n+iInd

(2)
m−i(W |(n−i,i))

of H(d−m,m)-modules. Here Ind
(1)
k and Ind

(2)
k are the functors

Ind
(1)
k : H(p,q)-Mod → H(k+p,q)-Mod , Ind

(2)
k : H(p,q)-Mod → H(p,k+q)-Mod

defined by Indk on each components.

Proof. The decomposition of D(d−n,n) in the Lemma 6.8 gives the direct sum
decomposition

(Indd−nW )|(d−m,m) =
⊕
i

⊕
u∈D(d−m−n+i,n−i),

v∈D(m−i,i)

T(u,v)Tgi(1d−n ⊠W )

of left H(d−m,m)-module. Let λ be the composition (d−m− n+ i, n− i,m− i, i).
Since Tgi swaps the middle two terms of the action, we have an isomorphism

Tgi(1d−n ⊠W ) ≃ 1d−m−n+i ⊠W (1) ⊠ 1m−i ⊠W (2)

of Hλ-modules. Here we used Sweedler’s notation; we wrote the isomorphism above
as if W |(n−i,i) can be expressed as an outer tensor product W (1) ⊠W (2). Though
it does not hold in general, we can define an Hλ-action on the underlying set W
according to this notation. Then we have⊕

u,v

T(u,v)Tgi(1d−n ⊠W ) ≃ H(d−m,m) ⊗Hλ
(1d−m−n+i ⊠W (1) ⊠ 1m−i ⊠W (2))

≃ Indd−m−n+iW
(1) ⊠ Indm−iW

(2)

≃ Ind
(1)
d−m−n+iInd

(2)
m−i(W |(n−i,i)).

The statement follows by taking the direct sum of them. □

We are now ready to prove the following.

Proposition 6.10. Let d,m, n ∈ N such that m,n ≤ d. For each V ∈ Hm-Mod
and W ∈ Hn-Mod, we have an isomorphism of k-modules

HomHd
(Indd−mV, Indd−nW ) ≃

⊕
m+n−d≤i

HomHi(Res
′
m−iV,Resn−iW )
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natural in V and W . Here for each Hi-homomorphism f : Res′m−iV → Resn−iW ,
the corresponding Hd-homomorphism is defined as the composite

Indd−mV
∆δ′V−−−→ Indd−m−n+iIndn−iIndm−iRes

′
m−iV

Indσf−−−−→ Indd−m−n+iIndm−iIndn−iResn−iW

µϵW−−−→ Indd−nW

which can be illustrated as follows:

�� fII

�� dd

��

d−m

d−n

d−m−n+i

m−i

n−i

V

W

.

Note that the summand in the right-hand side is zero unless 0 ≤ i ≤ m,n. In
particular, as we varies the rank d ∈ N larger, this set is stable for d ≥ m+ n. By
the adjointness and the Yoneda lemma, this lemma is equivalent to either of the
following statement.

Corollary 6.11. Let d,m, n ∈ N be as above.

(1) For each W ∈ Hn-Mod, there is a natural isomorphism of Hm-modules

Resd−mIndd−nW ≃
⊕

m+n−d≤i

Indm−iResn−iW.

(2) For each V ∈ Hm-Mod, there is a natural isomorphism of Hn-modules

Res′d−nIndd−mV ≃
⊕

m+n−d≤i

Indn−iRes
′
m−iV.

We prove (1) of this corollary.

Proof. First we prove it for the case m = 0. It is easy to check that an
element x ∈ Indd−nW , written as

x =
∑

w∈D(d−n,n)

Tw(md−n ⊠ xw)

by elements xw ∈W , is in ResdIndd−nW if and only if these elements satisfy

xw = x1 ∈ ResnW

for every w. Hence we have an isomorphism

ResnW ≃ ResdIndd−nW

x 7→
∑

w∈D(d−n,n)

Tw(md−n ⊠ x)

of H0 ≃ k-modules.
Now let m be arbitrary. Under the isomorphism H(0,n) ≃ Hn, we can rewrite

Resd−mIndd−nW as Res
(1)
d−m((Indd−nW )|(d−m,m)), where the functor Res

(1)
k is de-

fined similarly as Ind
(1)
k . So recall the direct sum decomposition in Lemma 6.9. By

the case of m = 0 above, we have

Res
(1)
d−mInd

(1)
d−m−n+iInd

(2)
m−i(W |(n−i,i)) ≃ Ind

(2)
m−iRes

(1)
n−i(W |(n−i,i))

≃ Indm−iResn−iW.
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Taking the direct sum for all i, we obtain the desired isomorphism. The inverse of
this isomorphism is given by

Indm−iResn−iW → Resd−mIndd−nW,

mm−i ⊠ x→
∑

u∈D(d−m−n+i,n−i)

T(u,1)Tgi(md−n ⊠ x),

by the definitions of the isomorphisms, which is represented by the diagram

��LL
MM

��

��

��

m−i n−i

d−m d−n

.

This induces the function defined as in Proposition 6.10. □

4. Tableaux and strings

Let λ = (λ1, λ2, . . . , λr) be a composition. We denote by λ′ = (λ2, . . . , λr) one
obtained from λ by removing its first component. Conversely, for such λ′ we write
λ = (λ1, λ

′) for short.
Recall that a parabolic module Mλ can be expressed as an induced module:

Mλ ≃ Indλ1Mλ′ . Hence we have two tools to describe the set of homomorphisms
between two parabolic modules; the first one is the tableaux basis introduced in
Subsection 3 and the second is string diagrams according to Proposition 6.10. In
this subsection we explain the connection between these two.

For two composition λ and π, we write π ⊂ λ when πi ≤ λi holds for every
i, that is, there is an inclusion of Young diagrams Y (π) ⊂ Y (λ). Then the next
statement inductively follows from Corollary 6.11.

Lemma 6.12. For a composition λ and k ∈ N, we have an isomorphism

ReskMλ ≃ Res′kMλ ≃
⊕

π⊂λ, |π|=|λ|−k

Mπ.

Hence for two compositions λ and µ of d ∈ N, we have an isomorphism

HomHd
(Mµ,Mλ) ≃

⊕
i

HomHi(Res
′
d−µ1−iMµ′ ,Resd−λ1−iMλ′)

≃
⊕

π⊂λ′, ρ⊂µ′, |π|=|ρ|

HomH|π|(Mρ,Mπ)

by Proposition 6.10. Let us explain this isomorphism more precisely. We will see
that for each tableau S ∈ Tabλ;µ which gives the basis element mS in the left-hand
side, there is a tableau ‵S′ ∈ Tabπ;ρ which produces the corresponding element m‵S′

in the right-hand side. Here, for a tableau S of shape λ, S′ denotes the tableau
obtained by cutting off the first row of S so that its shape is λ′. Dually ‵S is defined
by ‵S := ((S∗)′)∗, that is, it is obtained from S by removing all 1’s and decreasing
other entries. ‵S′ := ‵(S′) = (‵S)′ is defined as the result of these two commuting
operations.

First for two composition α ⊂ λ, let Rλ;α be the row-semistandard tableau of
shape λ defined by

Rλ;α(i, j) =

{
1 if j ≤ αi,

i+ 1 otherwise.
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The weight of Rλ;α is given by (|α|, λ \ α), where λ \ α is the composition defined
by (λ \ α)i := λi − αi. For example, for λ = (4, 3, 5, 2) and α = (1, 3, 0, 1), we have

Rλ;α =

1 2 2 2
1 1 1
4 4 4 4 4
1 5

.

Then the element mRλ;α
satisfies

mRλ;α
=

∑
w∈Dα

TwmRλ;α↓ =
∑

w∈D(α1,|α′|)

TwTg(mλ1 ⊠mRλ′;α′ )

where g ∈ S|λ| is the permutation

g = (1α1 , ϖ(λ1−α1,|α′|), 1|λ′|−|α′|) ∈ S(α1,λ1−α1+|α′|,|λ′|−|α′|).

Using string diagrams, this equation can be represented as

Rλ;α

λ

|α| λ\α

=
Rλ′;α′

|α|

α1

λ1

λ1−α1

|α′|
λ′\α′

λ′

by regarding mRλ;α
as a homomorphism M(|α|,λ\α) → Mλ. Here we represent

the homomorphism mS by a boxed S and the module Mλ by a string with the
label λ for short. By comparing it to the form of the homomorphism obtained in
Proposition 6.10, it inductively follows that this homomorphism, via adjunction,
corresponds to the embedding Mλ\α ↪→ Res|α|Mλ which sends the generator mλ\α
to the element mRλ;α

. This fact can be also directly verified by that the module
Mλ =

⊕
T∈Tabλ

kmT is decomposed into summands by subrestriction according

to the position of numbers 1, 2, . . . , |α| on each row-standard tableau T. Dually,
the homomorphism Mλ → M(|α|,λ\α) corresponds to the projection Res′|α|Mλ ↠
M(|α|,λ\α) is given by the dual element mR∗

λ;α
.

Now for a general S ∈ Tabλ;µ, let α = S[1]. Then we have a decomposition

S

λ

µ

=
Rλ;α

‵S

λ

µ1

λ\α

µ′

.

Using the equation above and the decomposition of (‵S)∗ again, we obtain

S

λ

µ

=

Rλ′;α′

‵S
µ1

α1

λ1

µ′

λ′\α′

λ′

=

Rλ′;α′

R∗
µ′;β′

‵S′

µ1

α1

λ1

µ′

λ′

λ′\α′

µ′\β′

where β = S∗[1]. Summarizing the above, we have proved that according to the
isomorphism in Proposition 6.10, mS : Mµ →Mλ corresponds to the composite

Res′λ1−α1
Mµ′ ↠ Mµ′\β′

m‵S′−−−→Mλ′\α′ ↪→ Res|α′|Mλ′

as we noted above. Of course we need not to stop here; we can continue the
decomposition of three smaller tableaux in the right-hand side so on and forth. At
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last of this process we obtain a “fish-scale diagram” like below:

mS =
??

??
??

?
??

??
??

?
??

??
??

?

��
���
��

��
���
��

�������

.

In particular, every homomorphism between parabolic modules can be constructed
from three parts of diagram: µ, ∆ and σ. The composition of these homomorphisms
can be computed using local transformations listed in Proposition 6.6.



CHAPTER 7

Fakemodules over the Iwahori–Hecke algebra

In this chapter, we introduce a category Ht-Mod which interpolates usual
module categories Hn-Mod in some sense. The index t, which is not necessarily
a natural number, is considered as a rank of the “fake Hecke algebra Ht”, an
imaginary object which does not really exist. We call an object and a morphism in
Ht-Mod an Ht-fakemodule and an Ht-fakemorphism respectively, which are made
to control hidden behaviors of their underlying usual module and homomorphism.

1. Binomial sequences

First we explain what actually the index t is.

Definition 7.1. A q-binomial sequence in k is a function t : N → k, whose
values are written as k 7→

[
t
k

]
, which satisfies[

t

0

]
= 1 and

[
t

k

][
t

l

]
=

∑
0≤i≤k,l

q(k−i)(l−i)

[
l

i

][
k + l − i

l

][
t

k + l − i

]
.

We denote by Bq(k) the set of all q-binomial sequences in k.

This definition is an abstraction of properties of usual q-binomial coefficients
as we can see in the following examples.

Lemma 7.2. For each n ∈ N, the function k 7→
[
n
k

]
is a q-binomial sequence.

This map N→ Bq(k) is injective.

Proof. When l > n the multiplicative relation is trivial. Otherwise we can
check it by the formula [

n

k

]
=

∑
0≤i≤k,l

q(k−i)(l−i)

[
l

i

][
n− l

k − i

]
,

which follows inductively from[
n

k

]
=

[n]

[k]

[
n− 1

k − 1

]
=

qk[n− k] + [k]

[k]

[
n− 1

k − 1

]
= qk

[
n− 1

k

]
+

[
n− 1

k − 1

]
,

and [
n− l

k − i

][
n

l

]
=

[n]!

[k − i]![l]![n− k − l + i]!
=

[
k + l − i

l

][
n

k + l − i

]
.

We have n = max
{
k
∣∣ [n

k

]
̸= 0

}
so n is recovered from the sequence

{[
n
k

]}
k∈N. □

Lemma 7.3. Suppose that q and the q-integers [k] for all k ≥ 1 are invertible.
Then for any element x ∈ k,[

t

k

]
:= q−(

k
2)x(x− [1]) · · · (x− [k − 1])

[k]!

is a q-binomial sequence. Conversely every q-binomial sequence is determined by
x =

[
t
1

]
in this way. Hence the set Bq(k) is in bijection with k.

Proof. Similar as above. □
63
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Notation 7.4. Let t be a q-binomial sequence. By convention, for k < 0 we
put

[
t
k

]
= 0. We also write [t] :=

[
t
1

]
and qt := 1 + (q − 1)[t] for short. These

notations are of course compatible with the usual ones for a q-binomial n ∈ N.

We give other strange examples without proofs.

Example 7.5. Suppose that 1− qk is invertible for all k ≥ 1. Then there is a
q-binomial sequence ∞ defined by[

∞
k

]
:=

1

(1− q)(1− q2) · · · (1− qk)
.

Under a suitable topology, it is actually the limit value limn→∞
[
n
k

]
according to

the Taylor expansion at q = 0.

Example 7.6. When q = 0, the multiplicative relation reduces to[
t

k

][
t

l

]
=

[
t

max{k, l}

]
.

Hence a 0-binomial sequence is nothing but a descending sequence of idempotents.
In particular, if k has no non-trivial idempotents, we have B0(k) = N ∪ {∞}.

Example 7.7. By the generalized Lucas’ theorem, we have a congruence equa-
tion (

n+ ek

k

)
≡

(
n

k

)
(mod e)

holds for every e, n, k ∈ N. So for each e-adic number n ∈ Ze, a 1-binomial sequence(
n

k

)
:=

(
n mod ek

k

)
∈ Z/eZ

is defined. Here to denote a 1-binomial sequence we prefer the symbol
(
t
k

)
to

[
t
k

]
.

The map Ze → B1(Z/eZ) is also injective.

In order to study a global property of q-binomial sequences, we introduce a
binary operation on the set Bq(k) by imitating formulas hold for usual q-binomial
coefficients.

Proposition 7.8. Let t be a q-binomial sequence in k.
(1) For n ∈ N, let[

t+ n

k

]
=

∑
0≤i≤k,n

q(k−i)(n−i)

[
n

i

][
t

k − i

]
.

Then t+ n is a q-binomial sequence.
(2) More generally, for another q-binomial sequence u, let[

t+ u

k

]
=

∑
0≤i≤k

q(
i
2)(q − 1)i[i]!

∑
0≤j≤k−i

[
k − j

i

][
i+ j

i

][
t

k − j

][
u

i+ j

]
.

Then t+ u is also a q-binomial sequence.
(3) Bq(k) forms a commutative monoid with respect to this addition. Its unit

element is
[
0
k

]
= δk0.

In particular we have [t+ u] = [t] + [u] + (q − 1)[t][u]. It implies

qtqu = (1 + (q − 1)[t])(1 + (q − 1)[u]) = 1 + (q − 1)[t+ u] = qt+u
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as desired. To see that (1) is a special case of (2), first we get[
t+ 1

k

]
=

[
t

k

]
+

[
t

k − 1

]
+ (q − 1)[k]

[
t

k

]
= qk

[
t

k

]
+

[
t

k − 1

]
by letting u = 1. Then t+ n is obtained as t+ 1 + 1 + · · ·+ 1 inductively. We will
prove the rest statements in the next subsection.

The shift operation t 7→ t+1 is fundamental in study. Unfortunately, this map
is not invertible in general as follows.

Lemma 7.9. 1 ∈ Bq(k) has the inverse element −1 if and only if q ∈ k×. If
so, the map Z→ Bq(k) is also injective.

Proof. Follows from that −1 must and can be defined by
[−1

k

]
= (−1)kq−(

k
2).
□

However, an element t− 1 is unique if it exists.

Lemma 7.10. The map Bq(k)→ Bq(k); t 7→ t+ 1 is injective.

Proof. Suppose that two q-binomial sequences t and u satisfy t+ 1 = u+ 1.
Then by definition

qk
([

t

k

]
−

[
u

k

])
+

([
t

k − 1

]
−
[

u

k − 1

])
= 0.

Hence there are elements 0 = ϵ0, ϵ1, ϵ2, . . . ∈ k which satisfy qϵi = ϵi−1 for all
i ≥ 1, and using these elements we can write

[
t
k

]
−

[
u
k

]
= (−1)kϵ(k+1

2 ). Note that

ϵiϵj = qjϵi+jϵj = 0. We prove that all these elements must be zero.
By the multiplicative laws of t and u respectively, we have

0 =

(
[t] + q[2]

[
t

2

]
− [t]2

)
−
(
[u] + q[2]

[
u

2

]
− [u]2

)
= −ϵ1 + q[2]ϵ3 + 2[t]ϵ1

= ϵ2 + 2[t]ϵ1

so ϵ2 = −2[t]ϵ1. It implies that ϵ1 = −2[t]ϵ0 = 0 (and ϵ2 = 0) so [t] = [u]. Then for
k ≥ 2, similarly

0 =

(
[k]

[
t

k

]
+ qk[k + 1]

[
t

k + 1

]
− [t]

[
t

k

])
−
(
[k]

[
u

k

]
+ qk[k + 1]

[
u

k + 1

]
− [u]

[
u

k

])
= (−1)k[k]ϵ(k+1

2 ) + (−1)k+1qk[k + 1]ϵ(k+2
2 ) − (−1)k[t]ϵ(k+1

2 )

= −(−1)kϵ(k+1
2 )+1 − (−1)k[t]ϵ(k+1

2 )

so ϵ(k+1
2 )+1 = −[t]ϵ(k+1

2 ). By the same argument we have ϵi = 0 for all i ≤
(
k+1
2

)
+1.

Since we can take an arbitrary large k, the statement follows. □
We will use q-binomial sequences to specify the “rank” of the Iwahori–Hecke

algebra Ht. However, in the following construction of its fakemodule category, we
will need to use values

[
t−m
k

]
for all m ∈ N. Hence we have to use q-binomial

sequences only which have following property:

Definition 7.11. A q-binomial sequence t in k is said to be total if t−m exists
for all m ∈ N. We denote by B+

q (k) the set of total q-binomial sequences; so

B+
q (k) :=

∩
m∈N

(Bq(k) +m).
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The subset B+
q (k) is an ideal of Bq(k) with respect to the addition. As we

noted above, if q ∈ k× then B+
q (k) = Bq(k) ⊃ Z.

Example 7.12. The q-binomial sequence ∞ defined in Example 7.5 satisfies
∞ =∞+ t for any t ∈ Bq(k); so in particular it is total. It is easy to see that when
q = 0 there are no total q-binomial sequences other than ∞.

2. Universal binomial ring

Although Proposition 7.8 can be proved directly in principle, the proof will be
too complicated. Instead of doing this, we introduce the universal ring k{T} which
parametrizes all q-binomial sequences in k and makes the proof easier.

Definition 7.13. We denote by k{T} a commutative algebra generated by

elements
[
T
k

]
for all k ∈ N with relations similar as those for q-binomial sequences:[

T

0

]
= 1 and

[
T

k

][
T

l

]
=

∑
0≤i≤k,l

q(k−i)(l−i)

[
l

i

][
k + l − i

l

][
T

k + l − i

]
.

We call it the q-binomial ring over k.

By definition, giving a q-binomial in k is equivalent to giving an algebra ho-
momorphism k{T} → k. In the language of algebraic geometry, the affine scheme
Spec(k{T}) represents a functor which sends a commutative algebra A to the set
Bq(A). When the assumptions in Lemma 7.3 hold, this functor is simply to take
the underlying set of A. Hence we have:

Corollary 7.14. When q and [k] for all k ≥ 1 are invertible, k{T} is iso-
morphic to k

[
[T ]

]
, the polynomial ring over k in indeterminate [T ]. Under this

isomorphism, [
T

k

]
= q−(

k
2) [T ]([T ]− [1]) · · · ([T ]− [k − 1])

[k]!
.

The reader should not confuse it with kJT K, the ring of formal power series!
Using this universal ring, we can rewrite Proposition 7.8 as follows:

Proposition 7.15. k{T} is a cocommutative bialgebra over k with the coprod-
uct [

T

k

]
7→

∑
0≤i≤k

q(
i
2)(q − 1)i[i]!

∑
0≤j≤k−i

[
k − j

i

][
i+ j

i

]([
T

k − j

]
⊗
[

T

i+ j

])
and the counit [

T

k

]
7→ δk0.

In other words, Spec(k{T}) is an affine commutative monoid scheme.

The cocommutativity and the counit law are obvious so the problems are the
well-definedness and the coassociativity of the coproduct. Before we prove them,
we remark a small observation. Let Z[q] be a polynomial ring over integers. Then
there is a canonical ring homomorphism Z[q]→ k which sends its indeterminate to
q ∈ k, and induces an isomorphism of algebras

k{T} ≃ k⊗Z[q] Z[q]{T}.

Thus it is enough to prove this proposition for k = Z[q]. Since Z[q] is an integral
domain, it can be embedded in its field of fractions Q(q), the rational function field.
In this case, we can concretely construct the algebra Z[q]{T} as follows.
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Lemma 7.16. Q(q){T} is isomorphic to the polynomial ring Q(q)
[
[T ]

]
. More-

over, the Z[q]-algebra homomorphism Z[q]{T} → Q(q){T} induced by Z[q] ↪→ Q(q)

is injective. As a Z[q]-module, Z[q]{T} is free with basis {
[
T
k

]
}k∈N.

Proof. Clearly q ∈ Q(q) satisfies the assumption in Corollary 7.14 so the first

statement follows. In this polynomial ring, each
[
T
k

]
has degree k with respect to

the indeterminate [T ]. Since Z[q]{T} is spanned by the set {
[
T
k

]
}k∈N and its image

in Q(q)
[
[T ]

]
is linearly independent, so it is in Z[q]{T}. This also implies that the

Z[q]-linear map Z[q]{T} → Q(q){T} is injective. □

Corollary 7.17. k{T} is also a free k-module with basis {
[
T
k

]
}k∈N.

Now define a coproduct on Q(q){T} ≃ Q(q)
[
[T ]

]
by

[T ] 7→ [T ]⊗ 1 + 1⊗ [T ] + (q − 1)[T ]⊗ [T ].

Then by a direct computation it is clear that this coproduct is coassociative.

Lemma 7.18. This coproduct on Q(q){T} ≃ Q(q)
[
[T ]

]
coincides with one given

in Proposition 7.15. Hence this proposition holds for k = Q(q).

Proof. Since we are working in the polynomial ring Q(q)
[
[T ]

]
⊗Q(q)Q(q)

[
[T ]

]
,

it suffices to prove that two coproducts coincide when they are composed with the
substituting map

[T ]⊗ 1 7→ [m], 1⊗ [T ] 7→ [n]

for all m,n ∈ N. The second one sends [T ] to [m+n] by definition, so
[
T
k

]
is mapped

to
[
m+n
k

]
. On the other hand, we can prove the formula

qkl =
∑

0≤i≤k,l

q(
i
2)(q − 1)i[i]!

[
k

i

][
l

i

]
which holds for each k, l ∈ N by induction. Hence[

m+ n

k

]
=

∑
j

q(k−j)(n−j)

[
n

j

][
m

k − j

]

=
∑
i,j

q(
i
2)(q − 1)i[i]!

[
k − j

i

][
n− j

i

][
n

j

][
m

k − j

]

=
∑
i,j

q(
i
2)(q − 1)i[i]!

[
k − j

i

][
i+ j

i

][
m

k − j

][
n

i+ j

]
which is precisely the first one. □

Now the proposition is obvious from this lemma.

Lemma 7.19. Proposition 7.15 holds for k = Z[q]. Consequently it also holds
for arbitrary ring k with q ∈ k.

Proof. Since Z[q]{T} is free, its tensor product spaces can be naturally em-
bedded in those of Q(q){T}. By definition values of the coproduct on Z[q]{T} live
in these spaces. Hence the well-definedness and the associativity on Z[q]{T} are
induced from those on Q(q){T}. □

In addition to this proof, the q-binomial ring helps us to prove several formulas
for q-binomial sequences; in many cases, these equations can be stated over Z[q].
Then by a similar argument it suffices to prove them for natural numbers instead of
for general ones. For example, we can easily show the next statement when t ∈ N.
Thus it is also true for an arbitrary t ∈ Bq(k).
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Lemma 7.20. Let t be a q-binomial sequence and k, l ∈ N. Then[
t

k

][
t+ l

l

]
=

[
k + l

k

][
t+ l

k + l

]
.

At last of this subsection, we also define the universal ring k{T}+ for total
q-binomial sequences. Again B+

q (k) is in bijection with the set of algebra ho-

momorphisms k{T}+ → k. Note that the map t 7→ t + 1 induces a k-algebra
homomorphism k{T + 1} → k{T}; here k{T + 1} is the q-binomial ring in a new
“indeterminate” T + 1. Explicitly, the map is[

T + 1

k

]
7→ qk

[
T

k

]
+

[
T

k − 1

]
.

Definition 7.21. A total q-binomial ring k{T}+ is defined as a direct limit

k{T}+ := lim−→(· · · → k{T + 1} → k{T} → k{T − 1} → · · · ).

By this definition, there is a canonical algebra homomorphism k{T} → k{T}+
which corresponds to the embedding B+

q (A) ↪→ Bq(A). Its basic properties can be
described as follows.

Proposition 7.22. (1) k{T} → k{T}+ is injective if and only if q is not
a zero divisor.

(2) k{T} → k{T}+ is an isomorphism if and only if q ∈ k×.

Proof. It suffices to prove that so is k{T + 1} → k{T} in each case. It
follows from that this map can be represented by an upper triangular matrix whose
diagonal is (1, q, q2, . . . ), with respect to the bases {

[
T
k

]
}k∈N and {

[
T+1
k

]
}k∈N. □

In particular, Z[q]{T}+ is also embedded in the polynomial ring Q(q)
[
[T ]

]
as the union of all Z[q]{T + m}. Unfortunately, the structure of k{T}+ is more
complicated than that of k{T} when q /∈ k×; it is not even free in general.

3. The category of induced fakemodules

We here introduce the most basic objects in the category Ht-Mod written
as Indt−mV , which we call an induced fakemodule. This fakemodule imitates the
usual induced module Indd−mV . In this subsection we define the full subcategory
Ht-Mod0, which consists of fakemodules in this form, in terms of generators and
relations.

Definition 7.23. Let t be a total q-binomial sequence in k. We define a
categoryHt-Mod0 as follows. An object in the categoryHt-Mod0 is anHm-module
V for some m ∈ N, represented by the symbol Indt−mV . Morphisms between these
objects are generated by

Indt−mf : Indt−mV → Indt−mW,

defined for each Hm-homomorphism f : V →W , and

µ(t−m−k,k)V : Indt−m−kIndkV → Indt−mV,

∆(t−m−k,k)V : Indt−mV → Indt−m−kIndkV

defined for each Hm-module V and k ∈ N, with relations listed below. The first
two of them are:

(a) Indt−m is a k-linear functor Hm-Mod → Ht-Mod . That is,

Indt−midV = idIndt−mV , Indt−m(f ◦ g) = Indt−mf ◦ Indt−mg

and
Indt−m(af + bg) = a · Indt−mf + b · Indt−mg
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for suitable Hm-homomorphisms f, g and scalars a, b ∈ k.
(b) µ(t−m−k,k) and ∆(t−m−k,k) are natural transformations between functors

Hm-Mod → Ht-Mod , respectively Indt−m−kIndk ⇌ Indt−m. That is, the
square below and its dual commute for any Hm-homomorphism f : V →
W :

Indt−m−kIndkV
µ(t−m−k,k)V //

Indt−m−kIndkf

��

Indt−mV

Indt−mf

��
Indt−m−kIndkWµ(t−m−k,k)W

// Indt−mW.

The rest relations are represented by diagrams as we do before. To represent the
functor Ind and the natural transformations µ and ∆, we use same diagrams as
Ind, µ and ∆. Here arrows which represent Ind always appear in leftmost of each
diagram.

(1) The associativity and the coassociativity laws:

��

��
�� =

��

��
��
,

���� ��

=

���� ��

.

(2) The unit and the counit laws:

��

��

��
�?

=

��

,
��

��

��
�?
=

��

.

(3) The graded bialgebra relation:

��

�� ��

�� ��

=
∑
i

99
99

99
99

�� �
����

��
���

�� ��

�� ��

�� ��

i

(4) The bubble elimination:

��

��

�� ��t−m−k k =

[
t−m

k

]
�� .

As we mentioned above, an object and a morphism in Ht-Mod is called an
Ht-fakemodule and an Ht-fakemorphism respectively. We denote by HomHt

the
set of fakemorphisms between fakemodules instead of HomHt-Mod0

for simplicity.

Remark 7.24. The relation (2) above is needless since we can deduce it from
(1) and (4) using the unit law on the ordinal Ind0:

��

��
�?=

��

��
�?

0

=

��

��
�?

=

��

0

=

��

.

We still list this relation here for convenience of later proofs.

Especially, when the rank t is an usual integral rank d ∈ N, we obtain a
category Hd-Mod0 which is similar to but slightly different from original Hd-Mod .
For example, if m > d then a module Indd−mV is zero by definition while the
corresponding fakemodule Indd−mV is not. Note that in the definition we use
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values of q-binomial coefficients
[
d−m
k

]
for negative integers. So to define Hd-Mod0

we must have that the q-binomial sequence d is total, or equivalently, q ∈ k×.
Proposition 7.25. Suppose that q ∈ k×. Then for each d ∈ N, there is a full

and surjective functor P : Hd-Mod0 → Hd-Mod such that P ◦ Indd−m = Indd−m,
P (µ(d−m−k,k)V ) = µ(d−m−k,k)V and P (∆(d−m−k,k)V ) = ∆(d−m−k,k)V .

Proof. This functor is well-defined since these relations are satisfied inHd-Mod
by Proposition 6.6. For each Hd-module V , there is an Hd-fakemodule Ind0V
which is mapped to it by P , so P is surjective. Moreover, any Hd-homomorphism
f : Indd−mV → Indd−nW comes from

Indd−mV
∆(0,d−m)V−−−−−−−→ Ind0Indd−mV

Ind0f−−−−→ Ind0Indd−nW
µ(0,d−m)W−−−−−−−→ Indd−nW.

Thus P is also full. □
We call this P : Hd-Mod0 → Hd-Mod a realization functor, which makes a

fakemodule into an usual module.

Remark 7.26. µ(0,d−m) and ∆(0,d−m) we used above induce natural transfor-
mations Ind0 ◦ P ⇋ Id between endofunctors on Hd-Mod0. Each Indd−mV ∈
Ht-Mod0 is a direct summand of Ind0Indd−mV via these morphisms if m ≤ d, and
otherwise Ind0Indd−mV = 0.

The next is our first main theorem; we can completely describe the set of
morphisms in Ht-Mod0 as follows.

Theorem 7.27 (Basis theorem). For V ∈ Hm-Mod and W ∈ Hn-Mod,

HomHt
(Indt−mV, Indt−nW ) ≃

⊕
i

HomHi(Res
′
m−iV,Resn−iW ).

This isomorphism is defined similarly as in Proposition 6.10 using Ind, ∆ and µ.

Note that the right-hand side does not depend on t, but composition of these
fakemorphisms are different for each t. We will prove this theorem in the next
subsection. From this result immediately we obtain the statement below.

Corollary 7.28. The functor Indt−m : Hm-Mod → Ht-Mod0 has both the

right adjoint PRest−m and the left adjoint PRes′t−m defined by

PRest−mIndt−nW :=
⊕
i

Indm−iResn−iW,

PRes′t−nIndt−mV :=
⊕
i

Indn−iRes
′
m−iV.

For the origins of the names of these adjoint functors, see Chapter 8. Comparing
the theorem with Proposition 6.10, we also obtain the next corollary.

Corollary 7.29. Suppose q ∈ k× and let d ∈ N.
(1) For V ∈ Hm-Mod and W ∈ Hn-Mod, the kernel of the map

HomHd
(Indd−mV, Indd−nW ) ↠ HomHd

(Indd−mV, Indd−nW )

induced by the realization functor P : Hd-Mod0 → Hd-Mod is⊕
i<m+n−d

HomHi(Res
′
m−iV,Resn−iW ).

In particular, this realization map is an isomorphism when m+ n ≤ d.
(2) The kernel of the realization functor P : Hd-Mod0 → Hd-Mod is gener-

ated by objects Indd−mV for all V ∈ Hm-Mod such that m > d. That is,
every morphism between fakemodules which is annihilated by P is a sum
of morphisms which factor through some Indd−mV .
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4. Proof of the basis theorem

Instead of to prove the basis theorem of Ht-Mod0 directly, we first prove a
similar theorem for another category which covers it. Let Ct be a category defined
similarly as Ht-Mod0 but without the bubble elimination relation (4) in Defini-
tion 7.23 (note that this definition actually does not depend on t at all). Then the
basis theorem of Ct can be stated as follows.

Lemma 7.30. The set of morphisms in Ct is given by

HomCt(Indt−mV, Indt−nW ) ≃
⊕

m,n≤l

HomHl
(Indl−mV, Indl−nW ).

Here for f : Indl−mV → Indl−nW , the corresponding morphism is

Indt−mV
∆V−−→ Indt−lIndl−mV

Indf−−−→ Indt−lIndl−nW
µW−−→ Indt−nW,

represented as

�� f

$$

zz

t−m

t−n

t−l

l−m

l−n

V

W

.

Proof. Trivially we can rewrite the identities and the generators of Ct in this
form. Moreover, by the defining relations, the composition of such morphisms can
be also transformed into such form:

��

f

g

&&

xx

&&

xx

=
∑
i

��

f

g

))

ss

��



��

i .

Hence the set of morphisms in C is spanned by this form.
On the other hand, according to the right-hand side diagram above, we can

define the product on the collection of k-modules
⊕

l HomHl
(Indl−mV, Indl−nW ).

The identity law of this product is clear and the reader can also verify its associa-
tivity. Thus this product defines a category, which coincides with Ct since it is the
largest category which satisfies the defining relations. □

We can obtain the category Ht-Mod0 by taking quotient of Ct with respect
to the relation (4). Let It be the kernel of the full and surjective functor Ct →
Ht-Mod0, that is, the 2-sided ideal in Ct generated by the difference of the both-
hand sides of this relation. By studying this kernel, we can prove the target basis
theorem.

Lemma 7.31. It is spanned by morphisms of the form

�� �� h

''

ww

t−m

t−n

t−l

l−m

l−n

l−d
d−m

d−n

−
[
t− d

l − d

]
�� h

$$

zz

t−m

t−n

t−d

d−m

d−n
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for all d, l,m, n ∈ N, V ∈ Hm-Mod, W ∈ Hn-Mod and h : Indd−mV → Indd−nW .

Proof. It is clear that the morphism above will be annihilated in Ht-Mod0,
and that a generator of It itself can be written in such form. Hence it suffices to
prove that the collection of spaces spanned by these morphisms forms a 2-sided
ideal in Ct, that is, it is closed under taking composition with generators. The
only its non-trivial part is the case to compose µ on the top (and dually, ∆ on the
bottom). Actually we can compute

��
��

||

h

''

ww

t−m

t−l

t−p p−m

−
[
t− d

l − d

]
��

||

h

$$

zz

t−m

t−d

t−p p−m

=
∑
i,j

q(i−j)(i−l)

[
j − d

i− l

]
��

�� h��

,,

qq

��

t−p

t−i

j−p
i−p

−
∑
j

[
t− d

l − d

]
��

h
��

((

ss

��

t−p

t−j

j−p

in Ct using local transformations listed in Definition 7.23 and Proposition 6.6. By
the equation ∑

i

q(i−j)(i−l)

[
j − d

i− l

][
t− j

i− j

]
=

[
t− d

l − d

]
,

this morphism is decomposed as a linear combination of above ones. □

Lemma 7.32. It is spanned by morphisms of the form

�� �� fKK

��
ll

��

t−m

t−n

t−l

l−m

l−n
d−m

d−n

−
[
t− d

l − d

]
�� fII

�� dd

��

t−m

t−n

t−d

d−m

d−n

for all d, l,m, n ∈ N, V ∈ Hm-Mod, W ∈ Hn-Mod and f : Res′d−nV → Resd−mW .

Proof. Recall the direct sum decomposition of Hom-space in Proposition 6.10:

HomHd
(Indd−mV, Indd−nW ) ≃

⊕
m+n−d≤i

HomHi(Res
′
m−iV,Resn−iW ).

According to this isomorphism, replace h : Indd−mV → Indd−nW in Lemma 7.31
with the homomorphism corresponds to f : Res′m−iV → Resn−iW . The result is

[
l −m− n+ i

l − d

]
�� �� fKK

��
mm

��

t−m

t−n

t−l

l−m

l−n
n−i

m−i

−
[
t− d

l − d

]
�� �� fKK

��
mm

��

t−m

t−n

t−l

d−m

d−n
n−i

m−i

.
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Hence It is also spanned by these morphisms. In particular, by letting i = m+n−d
we obtain the morphism above. For a general i, since by Lemma 7.20 we have[

t−m− n+ i

l −m− n+ i

][
l −m− n+ i

l − d

]
=

[
t− d

l − d

][
t−m− n+ i

d−m− n+ i

]
,

it can be transformed into a linear combination of these morphisms. □

We are now ready to finish the proof.

Proof of Theorem 7.27. By Lemma 7.30 and Proposition 6.10, we have

HomCt(Indt−mV, Indt−nW ) ≃
⊕
l

HomHl
(Indl−mV, Indl−nW )

≃
⊕
l

⊕
m+n−l≤i

HomHk
(Res′m−iV,Resn−iW ).

Let us write H(i, l) the summand in the right-hand side above. By Lemma 7.32,
the kernel of the map

HomCt(Indt−mV, Indt−nW )→ HomHt
(Indt−mV, Indt−nW )

is the direct sum of images of the maps

HomHi(Res
′
m−iV,Resn−iW )→ H(i, l)⊕H(i,m+ n− i),

f 7→ (f,−
[
t−m−n+i
l−m−n+i

]
f)

for all i ∈ N and l > 0. Hence we have an isomorphism

HomHt
(Indt−mV, Indt−nW ) ≃

⊕
i

H(i,m+ n− i)

≃
⊕
i

HomHi(Res
′
m−iV,Resn−iW ).

□

5. Parabolic fakemodules

Recall that induction is taking convolution product with the trivial module. By
the definition of the category, we can define convolution product of a fakemodule
and a usual module as follows.

Definition 7.33. Let t be a total q-binomial sequence and n ∈ N. We define
the convolution product ∗ : Ht-Mod0 ×Hn-Mod → Ht+n-Mod0 as follows. First
on objects we put

(Indt−mV ) ∗W := Indt−m(V ∗W )

for each V ∈ Hm-Mod and W ∈ Hn-Mod . By the associativity of convolution, we
can also define

(Indt−mf) ∗ g := Indt−m(f ∗ g),
(µ(t−k−m,k)V ) ∗W := µ(t−k−m,k)(V ∗W ),

(∆(t−k−m,k)V ) ∗W := ∆(t−k−m,k)(V ∗W )

on morphisms. It is easy to check that these morphisms satisfy the defining rela-
tions.

We denote by 1t the trivial fakemodule Indt10. Then an induced fakemodule
can be also written as Indt−mV ≃ 1t−m ∗ V using convolution. This product is
also associative, so it provides a structure of right

⊕
n(Hn-Mod)-module for the

category
⊕

m(Ht+m-Mod0).
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Recall again that a parabolic module Mλ is a special case of an induced module.
We here introduce parabolic fakemodules into our category Ht-Mod0 by imitating
this construction.

Definition 7.34. Let t be a total q-binomial sequence. A fakecomposition
λ = (λ1, λ

′) of t is a pair of a total q-binomial sequence λ1 and a composition λ′

such that |λ| := λ1 + |λ′| = t. For such λ, we write λ = (λ1, λ2, λ3, . . . ) where
λi := λ′

i−1 for i ≥ 2. Let Mλ ∈ Ht-Mod0 be a fakemodule defined by

Mλ := Indλ1
Mλ′ ≃ 1λ1

∗ 1λ2 ∗ 1λ3 ∗ · · · ∗ 1λl
.

Let λ and µ be two fakecompositions of t. Similarly as before, we let Mλ;µ :=
HomHt

(Mµ,Mλ)
op, that is, we equip these k-modules with the reversed composi-

tion

◦µ : Mµ;ν ⊗Mλ;µ →Mλ;ν .

Let λ|d and µ|d be corresponding fakecompositions of d ∈ N obtained by replacing
their first components. By Theorem 7.27 the set of Hd-homomorphisms Mµ|d →
Mλ|d stabilizes for sufficiently large d into the set of Ht-fakemorphisms Mµ →Mλ.
So as a basis of Mλ;µ we can take the set Tabλ|d;µ|d for d ≫ 0 which converges to
a finite set. Intuitively we think of Young diagrams whose first rows are very long:

.

Let Tabλ;µ be the set consisting of such tableaux. Formally we define

Tabλ;µ := lim−→
d

Tabλ|d;µ|d

where the map Tabλ|d;µ|d ↪→ Tabλ|d+1;µ|d+1 is inserting 1 on the first row of
the tableau from left. For example, when λ = (t − 2, 2) and µ = (t − 3, 2, 1),
Tab(t−2,2);(t−3,2,1) consisting of the tableaux

1 1 ··· 1 1 1 2
2 3

, 1 1 ··· 1 1 1 3
2 2

, 1 1 ··· 1 1 2 2
1 3

,

1 1 ··· 1 1 2 3
1 2

, 1 1 ··· 1 2 2 3
1 1

regardless of t. Note that for such a tableau S, a usual tableau ‵S′ is well-defined;
this does not depend on how long the first row of S is. We denote by the symbol
mS ∈ Mλ;µ the fakemorphism Mµ → Mλ corresponding to S. It is defined by the
usual homomorphism m‵S′ according to the basis theorem similarly as we did in
Section 4. The number #ij(S) is also well-defined for (i, j) ̸= (1, 1), and we define
#11(S) as a q-binomial sequence

#11(S) := t−
∑

(i,j) ̸=(1,1)

#ij(S).

When q ∈ k×, for a fakecomposition λ of d ∈ N the realization functor P sends
the fakemodule Mλ to Mλ if λ is a composition (that is, λ1 ≥ 0) and otherwise 0.
For two compositions λ and µ, the realization of morphisms is given by

P : Mλ;µ ↠ Mλ;µ

mS 7→
{
mS if S ∈ Tabλ;µ,

0 otherwise.

More precisely, to realize the Hd-fakemorphism mS to an Hd-homomorphism mS,
we should cut off superfluous 1’s in the first row of S. When there are not enough
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such 1’s, i.e. #11(S) < 0, it produces a zero homomorphism. If t = 4 in the example
above, the realization map

P : M (2,2);(1,2,1) →M(2,2);(1,2,1)

is given by

1 1 ··· 1 1 1 2
2 3

7→ 1 2
2 3

, 1 1 ··· 1 1 1 3
2 2

7→ 1 3
2 2

,

1 1 ··· 1 1 2 2
1 3

7→ 2 2
1 3

, 1 1 ··· 1 1 2 3
1 2

7→ 2 3
1 2

,

1 1 ··· 1 2 2 3
1 1

7→ 0.

We can also compute their product by regarding t as a large number. For example,

1 1 ··· 1 3
1 2

◦(t−2,1,1)
1 1 ··· 1 1 2
2

= (1 + Tt−3 + · · ·+ T1T2 · · ·Tt−3)Tt−1Tt−2 · (1 + Tt−1)m(t−1,1)

= (1 + Tt−3 + · · ·+ T1T2 · · ·Tt−3) · q(1 + Tt−2)Tt−1m(t−1,1)

= q[t− 2]Tt−1m(t−1,1) + q(1 + Tt−3 + · · ·+ T1T2 · · ·Tt−3)Tt−2Tt−1m(t−1,1)

= q[t− 2] 1 1 ··· 1 1 3
2

+ q 1 1 ··· 1 2 3
1

.

The correctness of this calculation is guaranteed by the following logic: the com-
posite can be computed in a free module over Z[q]{T} embedded in Q(q)

[
[T ]

]
, and

the equation holds when [T ] is replaced with [d] for all d≫ 0; hence by nature the
both-hand sides are equal with polynomial coefficients.

We define the dominance order on the set of fakecompositions so that λ ≤ µ
if and only if λ|d ≤ µ|d for all d ≫ 0, then the reversed dominance order is still
well-founded. According to this dominance order we introduce a quotient module

M
(ν)
λ;µ of Mλ;µ and Sλ;µ := M

(λ)
λ;µ similarly as before. By the utterly same proofs as

before, we obtain an analogous theorems on these modules.

Theorem 7.35.

(1) Sλ;λ is spanned by mλ.
(2) Sλ;µ = 0 unless λ ≥ µ. □

We also say that a fakecomposition λ is a fakepartition if λ′ is a partition, and
the set of semistandard tableaux

STabλ;µ := lim−→
d

STabλ|d;µ|d.

Theorem 7.36. Assume q ∈ k×. Then

(1) Mλ;µ has a basis⊔
ν : fakepartition

{mS ◦ν mT∗ | S ∈ STabν;µ,T ∈ STabν;λ}.

(2) Sλ;µ has a basis {mT |T ∈ STabλ;µ} so

Sλ;λ =

{k if λ is a fakepartition,

0 otherwise.

(3) The product

◦ν : Sν;µ ⊗ S∗
ν;λ →M

(ν)
λ;µ

is injective. □
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Now let us define S r,t :=
⊕

λ,µ Mλ;µ with anti-involution •∗ : Mλ;µ → Mµ;λ.
Note that the index set is now an infinite set so that it does not have 1. It should
be regarded as just a category rather than a non-unital ring, so by a S r,t-module
we mean a graded space V =

⊕
λ Vλ such that each 1 ∈ Mλ;λ acts on V as a

projection to Vλ. When q ∈ k×, the q-Schur algebra Sr,d for d ∈ N is obtained
from S r,d as a quotient. By the theorems above, S r,t is standardly filtered on

the set of fakecompositions of t, and when q ∈ k× it is also cellular over the set of
fakepartitions of t in some sense. It provides the following classification.

Theorem 7.37. If q ∈ k×, we have a one-to-one correspondence

Irr(S r,t)
1:1←→ {ν = (ν1, . . . , νr); fakepartition} × Irr(k).

6. Completion of category

The category Ht-Mod0 we defined is sometimes inconvenient to study since
it does not allow us to apply various categorical operations. At the last of this
section we show that the category Ht-Mod0 can be naturally embedded to a larger
category Ht-Mod which is closed under taking direct sums, direct summands and
direct limits (i.e. filtered colimits). The category Ht-Mod is constructed from
Ht-Mod0 using the process of several completions of category, namely pseudo-
abelian envelope (see [Del07, 1]) and indization (see [KS06, 6]). Let us recall the
general notions of them.

Definition 7.38. A category C is called idempotent complete (or Karoubian) if
every idempotent e : X → X in C splits, that is, there exists Y ∈ C and morphisms
p : X → Y , i : Y → X such that ip = e and pi = idY .

The idempotent completion (or Karoubification) of C, denoted by Ckar, is the
category consisting of all pairs of X ∈ C and an idempotent e : X → X, written as
eX, as objects. Its morphisms are defined by

HomCkar(eX, fY ) := f ·HomC(X,Y ) · e.

Definition 7.39. A Z-linear category C is called additive if it is closed under
finite direct sum. The additive envelope Cadd of C consists of formal finite direct
sums

⊕
i Xi of objects in C, with morphisms

HomCadd(
⊕
i

Xi,
⊕
j

Yj) :=
⊕
i,j

HomC(Xi, Yj).

Definition 7.40. A Z-linear category C is called pseudo-abelian if it is additive
and idempotent complete. The pseudo-abelian envelope of C is defined by Cpsab :=
(Cadd)kar.

Then it is easy to prove that Cpsab is a pseudo-abelian category contains C as
a full subcategory, which is the smallest in the following sense: if D is another
pseudo-abelian category, we have a category equivalence

Hom(Cpsab,D) ≃ Hom(C,D)

induced by the canonical functor C → Cpsab. Here we used the symbol Hom to
denote the category of Z-linear functors. In other words, every Z-linear category
can be naturally extended to a pseudo-abelian category without loss of informations.

Recall that a module of an algebra A is called finitely presented if it is isomor-
phic to the cokernel of some A-homomorphism Am → An with m,n ∈ N. Let us
denote by A-mod the full subcategory of A-Mod consisting of finitely presented
modules. Note that Hn is finitely presented over k, so an Hn-module V is finitely
presented if and only if it is finitely presented as a k-module.
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Lemma 7.41. Let V be a finitely presented Hn-module. Then IndkV and Res′kV
are also finitely presented.

Proof. Since these functors are right exact, it suffices to show that IndkHn

and Res′kHn are finitely presented. It follows from the definitions of these modules.
□

Remark 7.42. When k is not a coherent ring, Resk need not to have this
property. For example, let k be a commutative F2-algebra generated by y, x1, x2, . . .
with relations xiy = 0 for all i, and let q = 1. Consider the kS2-module V = k2
with action defined by the matrix

s1 7→
(
1 y
0 1

)
.

Then its fixed point set Res2V = V S2 is k ⊕ Ker y, which is not even finitely
generated.

So a fakemodule Indt−mV should be also regarded as “finitely presented” in
some sense. Note that finitely presented modules are closed under taking direct
sums and direct summands. With these facts in mind, we define the category
Ht-mod , which is again a full subcategory of Ht-Mod , consisting of finitely pre-
sented Ht-fakemodules.

Definition 7.43. For a total q-binomial sequence t, let Ht-mod0 be the full
subcategory of Ht-Mod0 consisting of objects Indt−mV such that V is finitely
presented. Then we put

Ht-mod := (Ht-mod0)
psab.

To obtain a general fakemodule from these finitely presented ones, we use the
process of indization. Recall that a functor F : C → D is called finitary if C admits
direct limits and F preserves all direct limits. The next fact indicates what we
should do. Though it is well-known (according to Breaz [Bre13] this result is due
to Lenzing [Len69]), we here note a sketch of the proof for convenience of the
reader.

Lemma 7.44. Let A be an algebra and V be an A-module. Then

(1) V is isomorphic to a direct limit of finitely presented modules,
(2) V is finitely presented if and only if the functor HomA(V, •) is finitary.

Proof. First we can find a free resolution A⊕Λ f→ A⊕Π → V → 0 whose ranks
are not necessarily finite. Then

V ≃ lim−→
(Λ0,Π0)

Coker(A⊕Λ0
f→ A⊕Π0)

where Λ0 ⊂ Λ, Π0 ⊂ Π runs over all pairs of finite subsets which satisfy f(A⊕Λ0) ⊂
A⊕Π0 . Hence we can assume that V ≃ lim−→i

Vi, which is a direct limit of finitely

presented modules. If HomA(V, •) is finitary, then EndA(V ) ≃ lim−→i
HomA(V, Vi)

so idV factors through some Vi. Thus V is isomorphic to a direct summand of Vi,
which is also finitely presented. The “only if” part follows from that direct limits
commute with finite limits and that the functor HomA(A, •) is clearly finitary. □

We call such an isomorphism V ≃ lim−→i
Vi a presentation of V . By using this

fact, we can extend the notion of finitely presented modules to a general category
as follows.
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Definition 7.45. Let C be a category which admits direct limits. An object
X ∈ C is called finitely presented if the functor HomC(X, •) is finitary. We denote
by Cfp the subcategory of C consisting of finitely presented objects. C is called
locally finitely presented if every its object is isomorphic to a direct limit of finitely
presented ones.

Note that if there are presentations of objects X ≃ lim−→i
Xi and Y ≃ lim−→j

Yj ,

we can represent the set of morphisms X → Y by using them as

HomC(X,Y ) ≃ lim←−
i

(Xi, Y ) ≃ lim←−
i

lim−→
j

(Xi, Yj).

According to this isomorphism, we can define the category of so-called ind-objects.

Definition 7.46. Let C be a category. An ind-object in C is a formal direct
limit lim−→i

Xi of objects in C. The indization Cind of C is a category consisting of

ind-objects. The set of morphisms between ind-objects is defined by

HomCind(lim−→
i

Xi, lim−→
j

Yj) := lim←−
i

lim−→
j

HomC(Xi, Yj).

Again C is contained in Cind as a full subcategory. Cind admits arbitrary direct
limits, so in particular it is idempotent complete; here the image of an idempotent
e : X → X is obtained as the direct limit

eX ≃ lim−→(· · · → X
e→ X → · · · ).

When C is an additive category, Cind also admits arbitrary direct sums.
Every object in C is finitely presented in Cind by definition, so Cind is locally

finitely presented. Conversely, a finitely presented object in Cind is isomorphic to
a direct summand of some object in C by the same argument as above. Hence we
have a category equivalence

(Cind)fp ≃ Ckar.
When D is another category which admits direct limits, a functor F : C → D can

be extended to a finitary functor F : Cind → D defined by F (lim−→i
Xi) := lim−→i

FXi.

The category of functors C → D is equivalent to that of finitary functors Cind → D
via this correspondence.

Using these definitions, we can simply rewrite Lemma 7.44 as follows:

Corollary 7.47. For an algebra A, we have

A-mod = (A-Mod)fp and A-Mod ≃ (A-mod)ind.

With this fact in mind, the category Ht-Mod is defined as the category of
ind-objects.

Definition 7.48. For a total q-binomial sequence t, let

Ht-Mod := (Ht-mod)ind.

We still use the notation HomHt
to denote the set of morphisms in Ht-Mod .

Ht-Mod is a locally finitely presented additive category. Since Ht-mod is
idempotent complete, we have (Ht-Mod)fp ≃ Ht-mod as desired.

Example 7.49. Consider a fakemodule defined as a direct limit of parabolic
ones

Ωt := lim−→
k

M (t−k,1k)
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where each fakemorphism M (t−k+1,1k−1) →M (t−k,1k) is given by a tableau

Sk :=

1 1 1 ··· 1 1
1
2
3
···
k

.

For each fakecomposition λ, there is a natural fakemorphism Mλ → M (λ1,1|λ
′|) →

Ωt; so it is considered as the union of all parabolic fakemodules. One has

HomHt
(1t,Ωt) ≃ lim−→

k

HomHt
(1t,M(t−k,1k)) ≃ k.

In particular, Ωt is not zero.

7. Extension of functors

It is still left to us to study the relationship between the categories Ht-Mod0

and Ht-Mod . The key is the next lemma.

Lemma 7.50. The functors Indk, Resk and Res′k are finitary.

Proof. Indk and Res′k have their right adjoint functors so are obviously fini-
tary. Let W be an Hk+n-module and take its presentation W ≃ lim−→j

Wj . Then for

each finitely presented Hn-module V ,

HomHn(V,ReskW ) ≃ HomHk+n
(IndkV,W )

≃ lim−→
j

HomHk+n
(IndkV,Wj)

≃ lim−→
j

HomHn
(V,ReskWj)

≃ HomHn(V, lim−→
j

ReskWj)

because IndkV is also finitely presented. This also holds for arbitrary V ∈ Hm-Mod
since it is a direct limit of finitely presented modules. Consequently, we have an
isomorphism ReskW ≃ lim−→j

ReskWj by the Yoneda lemma. □

We define the embedding functor Ht-Mod0 → Ht-Mod as follows. Recall that
an object in Ht-Mod0 is the induced fakemodule Indt−mV of an Hm-module V .
Then we can choose its presentation V ≃ lim−→i

Vi. In order to make the functor

Indt−m into finitary, we have to map Indt−mV ∈ Ht-Mod0 to the direct limit
lim−→i

Indt−mVi ∈ Ht-Mod of finitely presented fakemodules. The morphism gener-

ators Indt−mf , µ(t−m−k,k)V and µ(t−m−k,k)V are also naturally mapped to mor-
phisms in Ht-Mod by direct limit.

Proposition 7.51. The functor Ht-Mod0 → Ht-Mod is well-defined and fully
faithful.

Proof. Since the images of the generators clearly satisfy the defining relations,
the functorW 7→ lim−→j

Indt−nWj is defined once a presentationW ≃ lim−→j
Wj is fixed

for eachW ∈ Hn-Mod . To prove that this does not depend on choice of presentation
of W , it suffices to show that so is the functor X 7→ HomHt

(X, lim−→j
Indt−nWj) up
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to isomorphism. If V ∈ Hm-mod0, by Theorem 7.27 actually we have

HomHt
(Indt−mV, lim−→

j

Indt−nWj) ≃ lim−→
j

HomHt
(Indt−mV, Indt−nWj)

≃ lim−→
j

⊕
k

HomHk
(Res′m−kV,Resn−kWj)

≃
⊕
k

HomHk
(Res′m−kV, lim−→

j

Resn−kWj)

≃
⊕
k

HomHk
(Res′m−kV,Resn−kW )

which does not depend on presentation. Here we used that Res′m−kV is finitely
presented and that Resn−k is finitary. So the independence holds for X ∈ Ht-mod .
Since an object in Ht-Mod is a direct limit of finitely presented fakemodules, it
also holds for arbitrary X ∈ Ht-Mod . Thus the functor is well-defined. Moreover,
for another V ∈ Hm-Mod , by taking presentation V ≃ lim−→i

Vi we also have

HomHt
(lim−→

i

Indt−mVi, lim−→
j

Indt−nWj) ≃ lim←−
i

⊕
k

HomHk
(Res′m−kVi,Resn−kWj)

≃
⊕
k

HomHk
(lim−→

i

Res′m−kVi,Resn−kWj)

≃
⊕
k

HomHk
(Res′m−kV,Resn−kW )

because the direct sum is finite and Res′m−k is also finitary. It is isomorphic to
HomHt

(Indt−mV, Indt−nW ) computed in Ht-Mod0 so this functor is fully faithful.
□

Consequently, we can think Ht-Mod0 as a full subcategory of Ht-Mod . Under
this embedding, the induction functor can be extended to

Indt−m : Hm-Mod → Ht-Mod0 → Ht-Mod .

This functor coincides with the one induced from Indt−m : Hm-mod0 → Ht-mod
by indization; so in particular it is finitary. To define a functor from Ht-Mod , we
can use the next lemma.

Lemma 7.52. Let C be a pseudo-abelian category which admits direct limits,
and let F be an additive functor Ht-Mod0 → C. Suppose that for each m ∈ N the
functor F ◦ Indt−m : Hm-Mod → C is finitary, and

F (µ(t−m−k,k)V ) = lim−→
i

F (µ(t−m−k,k)Vi), F (∆(t−m−k,k)V ) = lim−→
i

F (∆(t−m−k,k)Vi)

hold for each Hm-module V ≃ lim−→i
Vi and k ∈ N. Then F can be uniquely extended

to a finitary additive functor Ht-Mod → C up to isomorphism.

Proof. By the property of pseudo-abelian envelope and that of indization, the
restriction Ht-mod0 → C of F can be extended to Ht-Mod → C. By definition this
functor is finitary and additive. Moreover it coincides with F on Ht-Mod0 up to
isomorphism by the assumptions. The uniqueness is obvious. □

By this lemma we can extend the functors we have defined listed in below:

(1) For d ∈ N, we have the realization functor P : Hd-Mod → Hd-Mod which
makes a usual module from a fakemodule. This is also full and surjective
by the same argument as before. Note that the fakemodule Ωt defined
in Example 7.49 is not zero but will be disappear by realization in every
usual module category.
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(2) The convolution product can be also defined as ∗ : Ht-Mod ×Hn-Mod →
Ht+n-Mod since V 7→ V ∗W is finitary.

(3) The extended functor PRest−m : Ht-Mod → Hm-Mod (resp. PRes′t−m) is
still the right (resp. left) adjoint of Indt−m : Hm-Mod → Ht-Mod . Here
the proof for PRest−m uses that Indt−mV is finitely presented when so is

V , and that for PRes′t−m is obvious.



CHAPTER 8

Operations on fakemodules

Though it is not important for the main purpose of this paper, the aim of this
chapter is to define various operations acting on fakemodules. We also auxiliary
introduce several variations of the fakemodule category Ht-Mod .

1. Fakemodules over the parabolic subalgebra

First we define the analogue of the subrestriction functor Resk : Hk+n-Mod →
Hn-Mod , and we prove that PRest−m, the right adjoint functor of Indt−m, factors
through this functor. Before we define it directly, it is convenient to introduce the
category of fakemodules over the parabolic subalgebra “H(t,u) ⊂ Ht+u” in a similar
way as before.

Definition 8.1. Let t, u be total q-binomial sequences. We define a category

H(t,u)-Mod0 which consists of induced fakemodules in the form Ind
(1)
t−mInd

(2)
u−nV

for every V ∈ H(m,n)-Mod as objects. Its morphisms are generated by

Ind
(1)
t−mInd

(2)
u−nf : Ind

(1)
t−mInd

(2)
u−nV → Ind

(1)
t−mInd

(2)
u−nW,

corresponds to each H(m,n)-homomorphism f : V →W , and

µ
(1)
(t−m−k,k)µ

(2)
(u−n−l,l)V : Ind

(1)
t−m−kInd

(2)
u−n−lInd

(1)
k Ind

(2)
l V → Ind

(1)
t−mInd

(2)
u−nV,

∆
(1)
(t−m−k,k)∆

(2)
(u−n−l,l)V : Ind

(1)
t−mInd

(2)
u−nV → Ind

(1)
t−m−kInd

(2)
u−n−lInd

(1)
k Ind

(2)
l V

for each V and k, l ∈ N, with relations similar to Ht-Mod0. We complete it into a
locally finitely presented additive category H(t,u)-Mod similarly as before.

Analogously to Theorem 7.27 one can also prove the basis theorem for this
category by a similar method. We left the details of the proof to the reader.

Theorem 8.2. For V ∈ H(m,n)-Mod and W ∈ H(p,q)-Mod, we have

HomH(t,u)
(Ind

(1)
t−mInd

(2)
u−nV, Ind

(1)
t−pInd

(2)
u−qW )

≃
⊕
i,j

HomH(i,j)
(Res

′(1)
m−iRes

′(2)
n−jV,Res

(1)
p−iRes

(2)
q−jW ).

The most useful tool is the parabolic restriction functor X 7→ X|(t,u) defined
as follows.

Definition 8.3. First we define a functor |(t,u) : Ht+u-Mod0 → H(t,u)-Mod .
We put

(Indt+u−mV )|(t,u) :=
⊕
i

Ind
(1)
t−m+iInd

(2)
u−i(V |(m−i,i))

on objects. For f : V →W , we straightforwardly define

(Indt+u−mf)|(t,u) :=
∑
i

Ind
(1)
t−m+iInd

(2)
u−i(f |(m−i,i)).

82
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To define the map on other generators, we use that

(Indt+u−k−mIndkV )|(t,u) =
⊕
j

Ind
(1)
t−k−m+jInd

(2)
u−j((IndkV )|(m−j,j))

≃
⊕
i,j

Ind
(1)
t−k−m+jInd

(2)
u−jInd

(1)
k+i−jInd

(2)
j−i(V |(m−i,i)).

Under this isomorphism, we define the fakemorphism (∆(t+u−m−k,k)V )|(t,u) as

(∆(t+u−m−k,k)V )|(t,u) :=
∑
i,j

∆
(1)
(t−k−m+j,k+i−j)∆

(2)
(u−j,j−i)(V |(m−i,i)).

In contrast, the fakemorphism (µ(t+u−m−k,k)V )|(t,u) is defined by

(µ(t+u−m−k,k)V )|(t,u) :=
∑
i,j

q(k+i−j)(u−j)µ
(1)
(t−k−m+j,k+i−j)µ

(2)
(u−j,j−i)(V |(m−i,i))

with an additional factor q(k+i−j)(u−j) which comes from the exchange of 1u−j and
1k+i−j . Then we extend it to a finitary functor |(t,u) : Ht+u-Mod → H(t,u)-Mod .

We left it to the reader to check the relations. For example, the bubble elimi-
nation relation can be verified by the formula[

t+ u−m

k

]
=

∑
j

q(k+i−j)(u−j)

[
u− i

j − i

][
t−m+ i

k + i− j

]
.

Recall the definition of Resk. We define the subrestriction functor acting on
fakemodules by imitating this definition, using an analogue of the functor

Hom
(1)
Hk

(V,W ) := HomH(k,n)
(V ⊠Hn,W ) ∈ Hn-Mod

for V ∈ Hk-Mod and W ∈ H(k,n)-Mod . Clearly we have the outer tensor product

⊠ : Ht-Mod ×Hu-Mod → H(t,u)-Mod ,

(Indt−mV, Indu−nW ) 7→ Ind
(1)
t−mInd

(2)
u−n(V ⊠W ).

The functor Hom
(1)
Ht

is defined as the right adjoint of this outer tensor product.

Lemma 8.4. For each X ∈ Ht-mod, the functor X⊠• : Hu-Mod → H(t,u)-Mod

has the right adjoint functor Hom
(1)
Ht

(X, •) : H(t,u)-Mod → Hu-Mod.

Proof. It suffices to prove the case X = Indt−mV where V ∈ Hm-mod . For

Y = Ind
(1)
t−pInd

(2)
u−qW where W ∈ H(p,q)-Mod , we put

Hom
(1)
Ht

(X,Y ) := Indu−q

(⊕
i

Hom
(1)
Hi

(Res′m−iV,Res
(1)
p−iW )

)
then by the respective basis theorems Theorem 7.27 and Theorem 8.2, the natural
isomorphism

HomH(t,u)
(X ⊠ •, Y ) ≃ HomHu

(•,Hom
(1)
Ht

(X,Y ))

holds as desired. Here we used that the functor X ⊠ • is finitary. Since X ⊠ • also
preserves the finitely presented property, for a general Y ≃ lim−→j

Yj ∈ H(t,u)-Mod

we can extend it by

Hom
(1)
Ht

(X,Y ) := lim−→
j

Hom
(1)
Ht

(X,Yj).

□
Definition 8.5. We put RestY := Hom

(1)
Ht

(1t, Y |(t,u)) for Y ∈ Ht+u-Mod .

Thus Rest is a functor Ht+u-Mod → Hu-Mod .
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By definition, we have

RestIndt+u−nW ≃
⊕
i

Indu−iResn−iW

which implies

P (Rest−mIndt−nW ) ≃
⊕
i

Indm−iResn−iW = PRest−mIndt−nW

where P : Hm-Mod → Hm-Mod is the realization functor. Since both functors
are finitary we have PRest−m ≃ P ◦ Rest−m. Note that the definition of Rest−m

requires that the q-binomial m is total, so that q ∈ k×, while PRest−m can be
defined for an arbitrary q.

2. Right fakemodules and tensor product

Next we define the analogue of the quorestriction functor Res′k : Hk+n-Mod →
Hn-Mod . Let us denote byMod -A the category of right A-modules for an algebra
A. We first introduce the category of right fakemodules Mod -Ht whose objects
imitate the following modules.

Definition 8.6. For a right Hn-module V , we define a right Hk+n-module
IndτkV by

IndτkV := V ∗ 1∗
k = (V ⊠ 1

∗
k)⊗H(n,k)

Hn.

Beware that the order of convolution product is exchanged, compared with the
definition of Indk. The functor Indτk :Mod -Hn →Mod -Hk+n has the right adjoint

ResτkW := Homop
H(n,k)

(Hn ⊠ 1
∗
k,W |(n,k))

and the left adjoint

Res′τk W := W |(k,n) ⊗H(k,n)
(1k ⊠Hn)

similar to Indk.

Definition 8.7. For a total q-binomial sequence t, we define a categoryMod0-Ht

which contains objects in the form Indτt−mV for each V ∈ Mod -Hm, with mor-
phisms generated by

Indτt−mf : Indτt−mV → Indτt−mW

for each f : V →W and

µτ
(t−m−k,k) : Ind

τ
t−m−kInd

τ
kV → Indτt−mV,

∆τ
(t−m−k,k) : Ind

τ
t−mV → Indτt−m−kInd

τ
kV.

We make its completion Mod -Ht similarly as before. We use the symbol Homop
Ht

to denote the set of fakemorphisms between right fakemodules.

Now let τ be another anti-involution on the algebra Hn defined by τ(Ti) :=
Tn−i. For a left Hn-module V , let V τ be the right Hn-module obtained by twisting
the action on V via τ . Then we have a category equivalence •τ : Hn-Mod →
Mod -Hn. Clearly

(V ∗W )τ ≃W τ ∗ V τ and (1n)
τ ≃ 1

∗
n,

hence we have (IndkV )τ ≃ IndτkV
τ . It immediately induces a category equivalence

•τ : Ht-Mod →Mod -Ht defined by (Indt−mV )τ ≃ Indτt−mV τ . So actually we have
not defined anything new. By this equivalence, the basis theorem of this category
is given as follows.
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Theorem 8.8. For each V ∈Mod-Hm and W ∈Mod-Hn,

Homop
Ht

(Indτt−mV, Indτt−nW ) ≃
⊕
i

Homop
Hi

(Res′τm−iV,Res
τ
n−iW ).

Recall that for a leftA-module V and a k-module Z, the set of k-homomorphisms
Homk(A,Z) has a canonical structure of right A-module.

Lemma 8.9. For V ∈ Hm-Mod and Z ∈ k-Mod, we have a natural isomor-
phism

Homk(IndkV, Z) ≃ Indτk Homk(V,Z).

Proof. By Lemma 6.4,

Homk(IndkV, Z) ≃ Homop
H(k,m)

(Hk+m,Homk(1k ⊠ V, Z))

≃ Homk(1k ⊠ V, Z)⊗H(k,m)
Homop

H(k,m)
(Hk+m,H(k,m))

≃ (1k ⊠Homk(V,Z))⊗H(k,m)

σHk+m

≃ (Homk(V, Z)⊠ 1k)⊗H(m,k)
Hk+m

≃ Indτk Homk(V, Z).

□

With this fact in mind, we introduce the dual of a fakemodule defined as below.

Definition 8.10. We define

Homk(Indt−mV, Z) := Indτt−m Homk(V,Z)

for V ∈ Hm-Mod and Z ∈ k-Mod . On morphisms, we put

Homk(Indt−mf, g) := Indτt−m Homk(f, g)

and

Homk(µ(t−m−k,k)V, Z) := µτ
(t−m−k,k) Homk(V, Z),

Homk(∆(t−m−k,k)V, Z) := ∆τ
(t−m−k,k) Homk(V, Z).

according to the isomorphism

Homk(Indt−m−kIndkV, Z) ≃ Indτt−m−kInd
τ
k Homk(V,Z).

This correspondence defines a functor Homk : (Ht-Mod0)
op×k-Mod →Mod0-Ht.

The relations of generators on the map above are trivial. Unfortunately, we
can not extend the domain of this functor to (Ht-Mod)op because we should have
Homk(lim−→j

Yj , Z) ≃ lim←−j
Homk(Yj , Z) butMod -Ht does not admit limits. However

we can naturally consider the trinity

Homop
Ht

(X,Homk(Y,Z))

of X ∈Mod -Ht, Y ∈ Ht-Mod and Z ∈ k-Mod , so that

Homop
Ht

(lim−→
i

Xi,Homk(lim−→
j

Yj , Z)) ≃ lim←−
i

lim←−
j

Homop
Ht

(Xi,Homk(Yj , Z)).

Briefly Homk(Y, Z) is a presheaf on the categoryMod -Ht.

Lemma 8.11. For each pair of X ∈ Mod-Ht and Y ∈ Ht-Mod, the functor
Homop

Ht
(X,Homk(Y, •)) is representable by a k-module which we denote by X⊗Ht

Y .
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Proof. For V ∈Mod -Hm and W ∈ Hn-Mod , we put

Indτt−mV ⊗Ht
Indt−nW :=

⊕
i

Res′τm−iV ⊗Hi Res
′
n−iW.

Then by Theorem 8.8, we have actually

Homop
Ht

(Indτt−mV,Homk(Indt−nW,Z)) = Homop
Ht

(Indτt−mV, Indτt−n Homk(W,Z))

≃
⊕
i

Homop
Hi

(Res′τm−iV,Res
τ
n−i Homk(W,Z))

and for each i

Homop
Hi

(Res′τm−iV,Res
τ
n−i Homk(W,Z)) ≃ Homop

Hm
(Indτn−iRes

′τ
m−iV,Homk(W,Z))

≃ Homop
Hm

(Indτn−iRes
′τ
m−iV ⊗Hm W,Z)

≃ Homop
Hm

(Res′τm−iV ⊗Hi Res
′τ
n−iW,Z)

so the natural isomorphism holds. For general X ∈ Mod -Ht and Y ∈ Ht-Mod , it
suffices to put

(lim−→
i

Xi)⊗Ht
(lim−→

j

Yj) ≃ lim−→
i

lim−→
j

(Xi ⊗Ht
Yj).

□

Hence we can define tensor product as a functor ⊗Ht
:Mod -Ht ×Ht-Mod →

k-Mod . By introducing the dual functor on another direction, we can also prove a
natural isomorphism

Homk(X ⊗Ht
Y, Z) ≃ HomHt

(Y,Homk(X,Z)).

In a similar method we define ⊗(2)
Ht

:Mod -Ht ×H(u,t)-Mod → Hu-Mod which

is an analogue of

V ⊗(2)
Hm

W := (Hn ⊠ V )⊗H(n,m)
W

for V ∈Mod -Hm and W ∈ H(n,m)-Mod , so that

Indt−mV ⊗(2)
Ht

Ind
(1)
u−nInd

(2)
t−pW = Indu−n

(⊕
i

Res′τm−iV ⊗
(2)
Hi

Res
′(2)
p−iW

)
.

By introducing the enriched dual Homk : (Mod0-Ht)
op×Hu-Mod0 → H(u,t)-Mod0

defined by

Homk(Ind
τ
t−mV, Indu−nW ) := Ind

(1)
u−nInd

(2)
t−m Homk(V,W ),

it can be defined by a natural isomorphism

HomHu
(X ⊗(2)

Ht
Y, Z) ≃ HomH(u,t)

(Y,Homk(X,Z)).

Finally let Res′t : Ht+u-Mod → Hu-Mod be the functor

Res′tX := 1
∗
t ⊗

(2)
Ht

X|(u,t).

Then we have

Res′tIndt+u−mV ≃
⊕
i

Indu−iRes
′
m−iV

which implies

P (Res′t−nIndt−mV ) ≃
⊕
i

Indn−iRes
′
m−iV ≃ PRes′t−nIndt−mV

when q ∈ k×. Thus P ◦ Res′t−n ≃ PRes′t−m also holds in this case.
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3. The Kronecker product over the symmetric group

In the rest of this chapter, we consider the case q = 1. Since Hn is now isomor-
phic to the symmetric group algebra kSn, it is better to denote by kSt-Mod the
category of fakemodules rather than Ht-Mod . Note that the category kSn-Mod
has another structure of symmetric tensor category, namely the Kronecker tensor
product V ⊗W on which the action of w ∈ Sn is defined by w · (x⊗ y) := wx⊗wy.
This tensor category is closed, that is, it has internal homs [V,W ] whose under-
lying set is Homk(V,W ), where for f : V → W , (w · f)(x) := wf(w−1x). These
constructions implicitly use the structure of Hopf algebra on the group algebra kSn

induced by the diagonal embedding Sn → S(n,n) and the inversion Sn → Sop
n . We

introduce a similar structure into our category kSt-Mod .
First we remark the next observation. Let us denote by δ∗ : kS(n,n)-Mod →

kSn-Mod the pullback functor of modules through δ : Sn → S(n,n).

Lemma 8.12. Let d, n ∈ N such that d ≥ n. For X ∈ kS(d,n)-Mod, we have

δ∗(Ind
(2)
d−nX) ≃ X(1) ∗ δ∗(X(2) ⊠X(3))

under Sweedler’s notation X|(d−n,n,n) ≃ X(1)⊠X(2)⊠X(3). That is, it is obtained

by inducing the kS(d−n,n)-module X(1) ⊠ δ∗(X(2) ⊠X(3)) whose underlying set is
just X.

Proof. Since w ∈ D(d−n,n) acts on X by an isomorphism, we have

Ind
(2)
d−nX =

⊕
w∈D(d−n,n)

X(1) ⊠X(2) ⊠ w(1d−n ⊠X(3))

=
⊕

w∈D(d−n,n)

δ(w) · (X(1) ⊠X(2) ⊠ 1d−n ⊠X(3)).

Then clearly δ∗(X(1)⊠X(2)⊠1d−n⊠X(3)) ≃ X(1)⊠ δ∗(X(2)⊠X(3)) as kS(d−n,n)-
modules, so the statement holds. □

Similarly, for Y ∈ kS(n,d)-Mod such that Y |(n,d−n,n) ≃ Y (1) ⊠ Y (2) ⊠ Y (3),

δ∗(Ind
(1)
d−nY ) ≃ Y (2) ∗ δ∗(Y (1) ⊠ Y (3)).

Hence more generally, for V ∈ kS(m,n)-Mod by Lemma 6.9 we have

δ∗(Ind
(1)
d−mInd

(2)
d−nV ) ≃

⊕
i

Indd−m−n+iV
(1) ∗ δ∗(Indn−iV

(2) ⊠ V ′′)

≃
⊕
i

Indd−m−n+i(V
(1) ∗ V (3) ∗ δ∗(V (2) ⊠ V (4)))

where V ≃ V ′ ⊠ V ′′, V ′|(m−i,i) ≃ V (1) ⊠ V (2) and V ′′|(n−i,i) ≃ V (3) ⊠ V (4) for each
i. We analogously introduce the diagonal pullback of kS(t,t)-fakemodules.

Definition 8.13. For V ∈ kS(m,n)-Mod , we let

δ∗(Ind
(1)
t−mInd

(2)
t−nV ) :=

⊕
i

Indt−m−n+i(V
(1) ∗ V (3) ∗ δ∗(V (2) ⊠ V (4)))

under Sweedler’s notation we used above. This correspondence defines a functor
δ∗ : kS(t,t)-Mod → kSt-Mod . Here the map on morphisms are defined through
the parabolic restriction similarly as in Definition 8.3.

By use of this diagonal pullback, we define the Kronecker tensor product on
kSt-Mod as follows.
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Definition 8.14. For X,Y ∈ kSt-Mod , let

X ⊗ Y := δ∗(X ⊠ Y ).

Thus ⊗ is a functor kSt-Mod × kSt-Mod → kSt-Mod .

In particular, for V ∈ kSm-Mod and W ∈ kSn-Mod , we have

Indt−mV ⊗ Indt−nW =
⊕
i

Indt−m−n+i(V
(1) ∗W (1) ∗ (V (2) ⊗W (2)))

where we write V |(m−i,i) ≃ V (1)⊠V (2) and W |(n−i,i) ≃W (1)⊠W (2) for each i. We
left it to reader to verify that the tensor product ⊗ endowed with the unit object
1t actually satisfies the axioms of symmetric tensor category.

We similarly define internal homs on kSt-Mod . For later convenience we use
the anti-involution τ on Sn defined by si 7→ sn−i instead of the usual inversion.
Since both gives modules isomorphic to each other, this choice do not matter.

Definition 8.15. For X ∈ kSt-mod and Y ∈ kSt-Mod , we let

[X,Y ] := δ∗ Homk(X
τ , Y ).

Then [, ] is a functor (kSt-mod)op × kSt-Mod → kSt-Mod .

By the same reason as before, the left argument X is restricted to finitely
presented fakemodules, so strictly speaking it is not a true internal hom. For an
arbitrary X ∈ kSt-Mod , [X,Y ] can be defined as a presheaf on kSt-Mod . The
property of internal hom (in a weaker sense) is now verified as follows.

Lemma 8.16. For X and Y above, we have a natural isomorphism

PRest[X,Y ] = HomkSt
(1t, [X,Y ]) ≃ HomkSt

(X,Y ).

Proof. For V as in Definition 8.13, we have

PRestδ
∗(Ind

(1)
t−mInd

(2)
t−nV ) ≃

⊕
i

Resm−iV
(1) ⊠ Resn−iV

(3) ⊠ Resiδ
∗(V (2) ⊠ V (4)).

Explicitly, the summand is the subspace of V consisting of elements which satisfy

(w1, w2, w3, w4) · x = (1m−i, 1i, 1n−i, w4w
−1
2 ) · x

for every (w1, w2, w3, w4) ∈ S(m−i,i,n−i,i). In particular, when V above is in the
form Homk(V

τ ,W ) for V ∈ Hm-Mod andW ∈ Hn-Mod , the summand is naturally
isomorphic to HomkSi(Res

′
m−iV,Resn−iW ). Hence by Theorem 7.27,

PRest[Indt−mV, Indt−nW ] ≃ PRestδ
∗(Ind(1)t−mInd

(2)
t−n Homk(V

τ ,W )
)

≃
⊕
i

HomkSi(Res
′
m−iV,Resn−iW )

≃ HomkSt
(Indt−mV, Indt−nW ).

Therefore by taking direct limits the statement holds. □

Proposition 8.17. For X ∈ kSt-mod, the functor X ⊗• is left adjoint to the
functor [X, •].

Proof. We here note the sketch of the proof. For Y ∈ kSt-mod and Z ∈
kSt-Mod , as objects in the category kS(t,t,t)-Mod which we define similarly as
before, a natural isomorphism

Homk(X
τ ⊗ Y τ , Z) ≃ Homk(Y

τ ,Homk(X
τ , Z))

holds. Then we can apply the diagonal pullback twice, so that

[X⊗Y, Z] ≃ δ∗ Homk(δ
∗(X⊗Y )τ , Z) ≃ δ∗ Homk(Y

τ , δ∗ Homk(X
τ , Z)) ≃ [Y, [X,Z]].
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Then by the previous lemma, applying PRest we obtain

HomkSt
(X ⊗ Y,Z) ≃ HomkSt

(Y, [X,Z])

as desired. It also holds for an arbitrary Y ∈ kSt-Mod . □
We finish this chapter by describing the relation between the motivating Deligne’s

category [Del07] and our kSt-Mod . Here we write Rep(St) the Deligne’s category
for rank

(
t
1

)
∈ k.

Proposition 8.18. Deligne’s category Rep(St) is a tensor full subcategory of
kSt-Mod.

Proof. We define a tensor functorRep(St)→ kSt-Mod which is fully faithful
as follows. For objects, we put for each m ∈ N

Rep(St)→ kSt-Mod

[m] 7→M (t−m,1m).

Recall that in the Deligne’s category morphisms are represented by a recollement,
that is, an equivalence relation on the union set U ⊔ V with its quotient set C =
(U ⊔ V )/∼ such that U → C and V → C are both injective. We define a map on
morphisms by putting for each recollement C between the sets {1, 2, . . . ,m} and
{1′, 2′, . . . , n′},

HomSt
([n], [m])→M (t−m,1m);(t−n,1n)

(C) 7→ mS(C)

where the row-semistandard tableau S(C) is determined by

#i+1,j+1(S(C)) :=

{
1 i ∼ j′ in C,

0 otherwise

for i = 1, 2 . . . ,m and j = 1, 2, . . . , n. We left it to the reader that this map preserves
composition and tensor product of morphisms. Clearly the map C 7→ S(C) is
bijective, so that this functor is fully faithful. □

We remark that for d ∈ N Deligne’s category Rep(Sd) only depends on the
scalar value d ∈ k while our kSd-Mod gives different categories for each d. So
kSd-Mod is considered to be capturing more precise structures in the modular
case.
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CHAPTER 9

Cellular structure on the Hecke–Clifford
superalgebra, I

We are now ready to introduce the main topic of this paper, the Hecke–Clifford
superalgebra. In this chapter we introduce analogues of the Murphy basis, the q-
Schur algebra and the Specht modules for this superalgebra and develop the cellular
representation theory parallel to the Iwahori–Hecke algebra.

1. The Clifford superalgebra

First we define the most basic superalgebra, the Clifford superalgebra.

Definition 9.1. Let n ∈ N and take a1, . . . , an ∈ k. The Clifford superalgebra
(or the Clifford–Grassman superalgebra) Cn(a1, . . . , an) is generated by the odd
elements c1, . . . , cn with relations

c2i = ai, cicj = −cjci for i ̸= j.

We have a canonical isomorphism Cn(a1, . . . , an) ≃ C1(a1)⊗· · ·⊗C1(an) (note
that by the help of Koszul sign ci and cj for i ̸= j (anti-)commutes). Clearly
C1(a) = k⊕ kc1 so {cp1

1 cp2

2 · · · cpn
n | pk ∈ {0, 1}} is a basis of Cn(a1, . . . , an).

Remark 9.2. More generally, for each free k-module V equipped with a qua-
dratic form Q : V → k, we have the corresponding Clifford superalgebra CQ gener-
ated by V with the relation v2 = Q(v). When k is a field whose characteristic is
different from 2, we can always take an orthogonal basis with respect to Q, so that
CQ is isomorphic to the above form.

The classification of simple modules of Cn(a1, . . . , an) is well-known for special
cases (see [Kle05, 12]). We here state a more general result.

Proposition 9.3. Suppose k is a field. Then Cn(a1, . . . , an) has a unique max-
imal 2-sided ideal. In particular, it has a unique simple module up to isomorphism
and parity change Π.

Proof. First we prove the case that k is algebraically closed. By replacing ci
with ci/

√
ai for ai ̸= 0 and permuting the generators, we may assume that it is in

the form Cn(1, . . . , 1, 0, . . . , 0). If the characteristic of k is 2, C2(1, 1) is isomorphic
to C2(1, 0) since c1 + c2 (anti-)commutes with c1 and its square is zero. Otherwise
C2(1, 1) is isomorphic to the matrix algebra Mat1|1(k) := Endk(k ⊕ Πk) via the
isomorphism using the Pauli matrices below:

1 7→
(
1 0
0 1

)
, c2 7→

(
0 −

√
−1√

−1 0

)
,

c1 7→
(
0 1
1 0

)
, c1c2 7→

(√
−1 0
0 −

√
−1

)
.

Thus in both cases, Cn(a1, . . . , an) is isomorphic to Matp|p(k)⊗Cq(1)⊗Cr(0, . . . , 0)
for some p, r ∈ N and q ∈ {0, 1}. Then central idempotent elements c1, . . . , cr ∈
Cr(0, . . . , 0) are contained in its Jacobson radical, and the quotient superalgebra

91
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Matp|p(k) ⊗ Cq(1) with respect to these elements is Morita equivalent to Cq(1),
which is clearly simple (note that (1±c1)C1(1) is not considered as an ideal because
it is not homogeneous).

Now let k be an arbitrary field. Take a proper 2-sided ideal I ⊊ Cn. Let k̄
be an algebraic closure of k. Then I ⊗ k̄ ⊊ Cn ⊗ k̄ is also a proper 2-sided ideal
so contained in the Jacobson radical of Cn ⊗ k̄ by the previous case. Since the
Jacobson radical is nilpotent, so is I. Hence I is contained in the Jacobson radical
of Cn. □

2. The Hecke–Clifford superalgebra

Henceforth we fix elements a, q ∈ k. Let us write Cn = Cn(a) := Cn(a, . . . , a)
for short.

Definition 9.4. The Hecke-Clifford superalgebra Hc
n = Hc

n(a; q) is generated
by Cn(a) and Hn(q) with relations

Ticj = cjTi for j ̸= i, i+1, Tici = ci+1Ti, (Ti−q+1)ci+1 = ci(Ti−q+1).

Note that if q ∈ k×, the second relation implies the third.

Here in order to make it compatible with the notions in the previous part we
slightly modified the original definition by Olshanski [Ols92]. When q = 1, Hc

n is
isomorphic to the wreath product of the Clifford superalgebra

Wn(a) := C1(a) ≀Sn = Cn(a)⋊Sn

which is called the Sergeev superalgebra. In this case there is a natural anti-
homomorphism ∗ : Wn(a)

op → Wn(−a) between superalgebras defined by s∗i := si
and c∗i := ci (note that due to the Koszul sign we have (copi )2 = −(c2i )op = −a),
but unfortunately this involution does not have its q-analogue. On the other hand,
Hc

n has another kind of involution τ : Hc
n(a)

op → Hc
n(−a) defined by τ(Ti) := Tn−i,

τ(ci) := cn−i+1.
The next basis theorem is well-known, but we make its proof by ourself since

we modified the definition.

Proposition 9.5. The multiplication maps Cn⊗Hn → Hc
n and Hn⊗Cn → Hc

n

are isomorphisms of supermodules.

Proof. We prove the first isomorphism. By the defining relations this map is
surjective. In order to show that it is also injective, we construct an action of Hc

n

on Cn ⊗Hn by

Ti(x⊗ y) := si(x)⊗ Tiy + (q − 1)ti(x)⊗ y

ci(x⊗ y) := cix⊗ y

for x ∈ Cn and y ∈ Hn. Here si is the automorphism of superalgebra Cn which
exchanges ci and ci+1, and ti is the k-linear map Cn → Cn defined by

ti(1) := 0, ti(ci+1) := −ci + ci+1,

ti(ci) := 0, ti(cici+1) := a+ cici+1

and ti(zcj) = ti(z)cj for j ̸= i, i + 1. It is a routine work to verify that the action
is well-defined. This action satisfies xy · (1⊗ 1) = x⊗ y for x ∈ Cn and y ∈ Hn so
it defines the inverse map Hc

n → Cn ⊗Hn.
Now we have Hc

n ≃ Cn ⊗Hn so that Hc
n is a free supermodule over k of rank

2nn! with a basis {cp1

1 · · · cpn
n Tw}. By the commutation relation {Twc

p1

1 · · · cpn
n } also

forms a basis of Hc
n. This implies the second isomorphism. □

In particular, Cn and Hn can be identified with subsuperalgebras of Hc
n. For

each left Hn-module V , Cn ⊗ V ≃ Hc
n ⊗Hn V is naturally a left Hc

n-module.
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Remark 9.6. By the commutation relation, for n ≥ 2, In :=
∑

1≤i<j≤n(ci −
cj)H

c
n is a 2-sided ideal of Hc

n whose quotient superalgebra is

Hc
n/In ≃ C1 ⊗Hn ⊗ (k/2ak).

Now suppose that 2a = 0. Since (ci − cj)
2 = 2a = 0 and (ci − cj)(ci − ck) =

−(cj − ck)(ci − cj) for mutual different i, j and k, the ideal In is nilpotent. Thus
it is contained in the Jacobson ideal of Hc

n, so that

Irr(Hc
n) = Irr(Hc

n/In) ≃ Irr(C1 ⊗Hn) = {V,ΠV |V ∈ Irr(Hn), aV = 0}
⊔ {V ⊕ c1V |V ∈ Irr(Hn), aV = V }.

Hence the classification of simple module of Hc
n is reduced to that of Hn.

The next computation is a key of our theory. Recall that mn =
∑

w∈Sn
Tw ∈

Hn.

Lemma 9.7. Let γL
n := c1 + qc2 + · · · + qn−1cn and γR

n := qn−1c1 + qn−2c2 +
· · ·+ cn. Then for 1 ≤ i1 < i2 < · · · < ir ≤ n,

mnci1ci2 · · · cirmn =


(a(q−1)

[2]

)s
[n]!mn if r = 2s,(a(q−1)

[2]

)s
[n− 1]! γL

nmn if r = 2s+ 1

(note that [2], [4], [6], . . . can be divided by [2]). Moreover we have γL
nmn = mnγ

R
n .

Proof. Since Hc
n is free over k, it suffices to prove for the field of rational

functions k = Q(a, q) in variables a and q, which contains the universal ring Z[a, q].
If ij−1 < ij − 1 holds for some j, we have

mn · · · cij · · ·mn = q−1mn · · · cij · · ·Tij−1mn

= q−1mnTij−1 · · · cij−1 · · ·mn

= mn · · · cij−1 · · ·mn.

Hence we may assume ij = j. Then for r = 0 or 1, we have m2
n = [n]!mn and

mnc1mn = (c1 + c2T1 + · · ·+ cnTn−1 · · ·T2T1)m
′
n−1mn = [n− 1]! γL

nmn

where m′
n−1 = m(1,n−1). Moreover we have

qmnc1c2c3 · · ·mn = mnc1c2c3 · · ·T1mn

= mnc1T1c1c3 · · ·mn

= mn(T1c2 + (q − 1)(c1 − c2))c1c3 · · ·mn

= a(q − 1)mnc3 · · ·mn −mnc1c2c3 · · ·mn

so that

mnc1c2c3 · · ·mn =
a(q − 1)

[2]
mnc3 · · ·mn.

Hence inductively we obtain the equation. Similarly as above we have

mncnmn = mnmn−1(cn + Tn−1cn−1 + · · ·+ Tn−1 · · ·T2T1c1) = [n− 1]!mnγ
R
n

which implies γL
nmn = mnγ

R
n . □
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3. Parabolic supermodules

Analogously to the Iwahori–Hecke algebra, for each composition λ we introduce
the parabolic subalgebra

Hc
λ =

⊕
w∈Sλ

CnTw =
⊕

w∈Sλ

TwCn ≃ Hc
λ1
⊗Hc

λ2
⊗ · · · ⊗Hc

λr
.

Then Hc
n is again a free right Hc

λ-module with a basis {Tw |w ∈ Dλ}. For mλ =∑
w∈Sλ

Tw, Cnmλ is a left (but not right) ideal of Hc
λ and the parabolic module

M c
λ := Hc

nmλ ≃ Hc
n⊗Hc

λ
Cnmλ is defined as its induced module. Then by the basis

theorem Hc
n ≃ Cn ⊗Hn we have M c

λ ≃ Cn ⊗Mλ, and

M c
λ = {x ∈ Hc

n |xTw = qℓ(w)x for all w ∈ Sλ}.

In particular we define the trivial module 1c
n := M c

(n) ≃ Cn. Similarly right modules

M c∗
λ := mλH

c
n ≃M∗

λ ⊗ Cn and 1
c∗
n := M c∗

(n) are defined. Then we have

HomHc
n
(M c

µ,M
c
λ) ≃M c

λ ∩M c∗
µ

equipped with the reversed product

◦µ : (M c
µ ∩M c∗

ν )⊗ (M c
λ ∩M c∗

µ )→M c
λ ∩M c∗

ν ,

xmµ ⊗mµy 7→ xmµy.

With Lemma 9.7 in mind, for each composition λ we define elements

γL
λ;1 := c[1,2,...,λ1], γR

λ;1 := c[λ1,...,2,1],

γL
λ;2 := c[λ1+1,λ1+2,...,λ1+λ2], γR

λ;2 := c[λ1+λ2,...,λ1+2,λ1+1],

. . . . . .

where c[i1,i2,...,ir] := ci1 + qci2 + · · ·+ qr−1cir . Then we have γL
λ;imλ = mλγ

R
λ;i. So

let us define the endomorphism γλ;i acts on M c
λ and M c∗

λ as

xmλ · γλ;i := xmλγ
R
λ;i = xγL

λ;imλ, γλ;i ·mλy := γL
λ;imλy = mλγ

R
λ;iy.

Note that these endomorphisms anti-commute and we have

(γL
λ;i)

2 = (γR
λ;i)

2 = aJλiK
where JkK is a q2-integer 1 + q2 + · · · + q2(k−1). We can abstractly define a super-
algebra consisting of these actions as follows.

Definition 9.8. Let λ be a composition. Let Γλ be a superalgebra generated
by odd elements γλ;1, γλ;2, . . . with relations

(γλ;i)
2 = aJλiK, γλ;iγλ;j = −γλ;jγλ;i for i ̸= j, γλ;i = 0 if λi = 0.

Hence it is just isomorphic to the Clifford superalgebra Cr(aJλi1K, . . . , aJλirK)
where {i1, . . . , ir} are indices such that λi ̸= 0. By the action above M c

λ (resp.
M c∗

λ ) is now an (Hc
n,Γλ)-bimodule (resp. a (Γλ,H

c
n)-bimodule). Since the set

{(γL
λ;i1)

p1(γL
λ;i2)

p2 · · · (γL
λ;ir )

pr | pk ∈ {0, 1}}

is linearly independent in Cn, the map Γλ → Γλmλ ⊂M c
λ ∩M c∗

λ is an inclusion of
superalgebra.
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4. Circled tableaux

In order to denote elements of the parabolic module M c
λ graphically we intro-

duce the notion of circled tableau [Sag87]. Here a circled tableau of shape λ is
a map Y (λ) → {1, 2, . . . , } ⊔ { 1⃝, 2⃝, . . . }. From a circled tableau T we obtain its
underlying ordinal tableau T× by removing circles from numbers. The weight of
a circled tableau is defined as that of underlying tableau. We say that a circled
tableau is row-standard if its underlying tableau is row-standard. Let Tabcλ be the
set of row-standard circled tableau of shape λ. For T ∈ Tabcλ we define the corre-
sponding element mT := Twci1 · · · cirmλ where i1, . . . , ir are indices of positions of
circled entries in T according to the top-to-bottom reading order and w = d(T×).
For example,

for T =
1⃝ 2 4 5⃝
3 7⃝ 8
6⃝

, mT = T3T4T6T7c1c4c6c8m(4,3,1).

For such T, we define its length as ℓ(T) := ℓ(d(T×)). If we focus only on leading
terms with respect to this length, we have

Twci1 · · · cir = cw(i1) · · · cw(ir)Tw + (lower terms)

so by M c
λ ≃ Cn ⊗Mλ the set {mT |T ∈ Tabcλ} forms a basis of M c

λ. The action of
Ti is described as

Ti ·mT =

{
msiT if r(i) < r(i+ 1),

qmT + (q − 1)msiT if r(i) > r(i+ 1)

where r(i) is the index of the row which contains i or i⃝ similarly as before, and
siT is the circled tableau whose underlying tableau is (siT)

× = si(T
×) and which

has circles at the same boxes as T. If r(i) = r(i+ 1), putting j = i+ 1 it acts by

Ti · i j = q i j , Ti · i j⃝ = i⃝ j + (q − 1) i j⃝ ,

Ti · i⃝ j = q i j⃝ , Ti · i⃝ j⃝ = a(q − 1) i j − i⃝ j⃝
In contrast the action of ci is hard to describe due to the commutation relation of
Cn and Hn, but on leading terms we have

ci · i = ± i⃝ + · · · , ci · i⃝ = ±a i + · · ·

as desired. Here the signs above are taken to be + if it has even number of circles
before this box with respect to the reading order, and otherwise −. The right action
of Γλ is easy: for example,

1⃝ 2 4 5⃝
3 7⃝ 8
6⃝

· γ(4,3,1);2 =
1⃝ 2 4 5⃝
3⃝ 7⃝ 8
6⃝

− aq
1⃝ 2 4 5⃝
3 7 8
6⃝

− q2
1⃝ 2 4 5⃝
3 7⃝ 8⃝
6⃝

.

Beware the signs due to the exchange of ci and cj .

Remark 9.9. Usually the shifted form

1⃝ 2 4 5⃝
3 7⃝ 8

6⃝
is used in literatures for circled tableaux. We continue to use the non-shifted form
since it seems to be troublesome to change the notations from the previous part.

Furthermore we introduce the set of row-semistandard circled tableau Tabcλ;µ
to denote elements of M c

λ∩M c∗
µ . We call a circled tableau of shape λ and of weight

µ is row-semistandard if its underlying tableau is row-semistandard and it does not
contain parts of the form i⃝ i or i⃝ i⃝. In other words, circled numbers must be
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placed at the rightmost of a bar i i ··· i in a row. It is also equivalent to say that
each row is weakly increasing with respect to the order

1 < 1⃝ < 2 < 2⃝ < 3 < 3⃝ < · · ·

and a circled number can not be adjacent to itself. For such S ∈ Tabcλ;µ, we define
an element mS ∈ M c

λ ∩M c∗
µ as follows: first we make a formal linear combination

of tableaux from S by distributing

i i ··· i⃝ 7→ i⃝ i ··· i + q i i⃝ ··· i · · ·+ qr−1 i i ··· i⃝
for each circled bar of length r, then by replacing each term qlR with the sum of
qlmT ∈M c

λ for all T such that T× ∈ TabS× and its positions of circles are same as
that of R. For example, for

S =
1 1⃝ 2 3⃝
1 5 5⃝
4⃝

we have

mS =
1⃝ 2 4 5⃝
3 7⃝ 8
6⃝

+ q
1 2⃝ 4 5⃝
3 7⃝ 8
6⃝

+ q
1⃝ 2 4 5⃝
3 7 8⃝
6⃝

+ q2
1 2⃝ 4 5⃝
3 7 8⃝
6⃝

+
1⃝ 3 4 5⃝
2 7⃝ 8
6⃝

+ q
1 3⃝ 4 5⃝
2 7⃝ 8
6⃝

+ q
1⃝ 3 4 5⃝
2 7 8⃝
6⃝

+ q2
1 3⃝ 4 5⃝
2 7 8⃝
6⃝

+
2⃝ 3 4 5⃝
1 7⃝ 8
6⃝

+ q
2 3⃝ 4 5⃝
1 7⃝ 8
6⃝

+ q
2⃝ 3 4 5⃝
1 7 8⃝
6⃝

+ q2
2 3⃝ 4 5⃝
1 7 8⃝
6⃝

.

Proposition 9.10. The set {mS | S ∈ Tabcλ;µ} is linearly independent in M c
λ ∩

M c∗
µ . Moreover if [2] ∈ k is not a zero-divisor, it is also a basis of M c

λ ∩M c∗
µ .

Proof. For each S ∈ Tabcλ;µ, take T ∈ Tabcλ so that T× = (S×)↓ and T has
a circle at each box whose position is the leftmost of circled bars i i ··· i⃝ in S.
Then the coefficient of mS at the basis element mT is 1. Since this map S 7→ T is
injective, the set {mS |S ∈ Tabcλ;µ} is linearly independent in M c

λ.
On the other hand, let us take x ∈M c

λ and write x =
∑

T∈Tabc
λ
cTmT. Suppose

that x ∈ M c∗
µ and let si ∈ Sµ. Then by the above description of the action of Ti,

for T ∈ Tabcλ such that r(i) ̸= r(i + 1), Tix = qx implies cT = csiT. On the other
hand, suppose r(i) = r(i+ 1). Let T1, T2, T3 and T4 be circled tableaux obtained
by replacing i and j = i+ 1 in T by i j , i⃝ j , i⃝ j and i⃝ j⃝ respectively. Then
by (1+Ti)x = [2]x, we have [2](cT2−qcT3) = [2]cT4 = 0. Using the assumption that
[2] is not a zero-divisor, we obtain cT2 = qcT3 and cT4 = 0. Hence x can be written
as a linear combination of mS. It is also clear that this condition is sufficient for
that x ∈M c∗

µ . □

Unfortunately, if the assumption is not satisfied then this statement may fail.
For example, when q = 1 and 2 = 0 in k, the element c1c2m2 is incidentally
contained in 1

c
2 ∩ 1c∗

2 . The set M c
λ ∩M c∗

µ is not suitable for our use, so instead we
use a well-behaved set

M c
λ;µ := k{mS | S ∈ Tabcλ;µ} ⊂M c

λ ∩M c∗
µ .

This free k-module is preserved by an extension of scalars. Since the universal ring
k = Z[a, q] satisfies the assumption, it is closed under product

◦µ : M c
µ;ν ⊗M c

λ;µ →M c
λ;ν .

By definition we can represent γL
λ;imλ = mλγ

R
λ;i ∈ M c

λ ∩M c∗
λ by a circled tableau,

so Γλmλ is contained in M c
λ;λ. Hence Γµ also acts on Mλ;µ from left (resp. Mµ;ν



5. GOOD CIRCLED TABLEAUX 97

from right) and the product ◦µ above is Γµ-bilinear, so that we can define it as

◦µ : M c
µ;ν ⊗Γµ M c

λ;µ →M c
λ;ν .

Let S c
r,n :=

⊕
λ,µ M

c
λ;µ where λ = (λ1, . . . , λr) and µ = (µ1, . . . , µr) run over

compositions of at most r components as before. We call it the queer q-Schur
superalgebra. When q = 1 and 2 ̸= 0, it is equal to the Schur superalgebra of
type Q introduced in [BK02].

We finish this section with a remark on involution. For S ∈ Tabcλ;µ, we can
similarly define an element m∗

S ∈ M c
µ ∩M c∗

λ in the dual manner by multiplying
elements on mλ from right. When q = 1, it is actually the dual element of mS ∈
W (−a) mapped via the anti-involution ∗ : Wn(−a)op → Wn(a). For such S we
define its dual tableau S∗ ∈ Tabcµ;λ so that (S×)∗ = (S∗)× and S has j⃝ in its i-th
row if and only if S∗ has i⃝ in its j-th row. Then by the commutation relation on
Lemma 9.7 m∗

S has the leading term mS∗ but they are not equal unless q = 1. The
map mS 7→ mS∗ does not either preserve the reversed product in general.

5. Good circled tableaux

Analogously to the non-super case, we introduce a filtration into our subcat-
egory of Hc

n-Mod . According to this filtration we decompose the set of simple
modules of Hc

n into small parts.

Definition 9.11. For each compositions λ, µ, and ν, let

M c ν
λ;µ := M c

ν;µ ◦ν M c
λ;ν ⊂M c

λ;µ.

Then we define

M c≥ν
λ;µ :=

∑
π≥ν

M c π
λ;µ, M c>ν

λ;µ :=
∑
π>ν

M c π
λ;µ

and finally

M
c(ν)
λ;µ := M c

λ;µ

/
M c≥ν

λ;µ .

In particular we let Sc
λ;µ := M

c(λ)
λ;µ and Sc

λ := Sc
λ;(1n).

We say that a circled tableau T ∈ Tabcλ;µ is good if its underlying tableau T×

is good.

Lemma 9.12. Sc
λ;µ is spanned by {mT |T ∈ Tabcλ;µ which is good}.

Proof. Similarly to the proof of Lemma 5.8, we prove it inductively by re-
placing each mT for ungood T ∈ Tabcλ;µ with tableaux which have smaller lengths.
However in this case we can not perform this method at a time, so we do for each
number one by one. Suppose that T has ungood i or i⃝, which we choose so that
i is minimum. In particular, i’s in its i-th row are at the leftmost of T if exist. If it
has circled i⃝ in its i-th row, multiplying γλ;i from right we can represent mT by
tableaux without this circle; for example,

1 1 1 1 2⃝ 3
2 2 3 3⃝
1⃝ 2⃝ 3

· γλ;1 = −
1 1 1 1⃝ 2⃝ 3
2 2 3 3⃝
1⃝ 2⃝ 3

− aq4
1 1 1 1 2 3
2 2 3 3⃝
1⃝ 2⃝ 3

− q5
1 1 1 1 2⃝ 3⃝
2 2 3 3⃝
1⃝ 2⃝ 3

.

Hence we may assume that i in the i-th row of T is not circled. We define tableaux
T1,T2 from T by moving up ungood i and i⃝ as we did in the proof of Lemma 5.8,
and if such i⃝ is circled we remove this circle from T2 and put on the same box at
T1. For example, for

T =
1 1 1 1 2⃝ 3
2 2 3 3⃝
1⃝ 2⃝ 3
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we have

T1 =
1 1 1 1 1 1
2 2 2 2
1⃝ 3 3

and T2 =
1 1 1 1 1 2⃝ 3
2 2 3 3⃝
2⃝ 3

.

By taking leading terms, we also have a decomposition 0 ≡ mT2 ◦ν mT1 = ±mT +
(lower terms). □

This leads us the following parallel results.

Corollary 9.13. (1) Sc
λ;λ is spanned by mλ over Γλ.

(2) Sc
λ;µ = 0 unless λ ≥ µ. □

Theorem 9.14. Hc
n and S c

r,n are standardly filtered algebras over {Γλ} on
compositions λ. □

Note that we have a natural map

M
c(ν)
λ;µ → Hom

(ν)
Hc

n
(M c

µ,M
c
λ)

where the right-hand side is the set of homomorphisms in the quotient category
näıvely defined by using the whole category Hc

n-Mod , but in general this map is
not surjective nor injective when the assumption in Proposition 9.10 is not satisfied.
Although we can also define a standard filter using the right-hand side, this filter
is ill-behaved with extension of scalars. In contrast, we have

Sc
λ;µ ≃ Sc

λ;µ(Z[a, q])⊗Z[a,q] k
as desired since M c

λ;µ has a free basis. So Sc
λ;µ is certainly the right definition.

In these modules we have the local transformation lemma by a similar proof as
before.

Lemma 9.15. Suppose we have an equation
∑

T cTmT ≡ 0 in Sc
λ;µ for some

cT ∈ k. For each T ∈ Tabλ;µ let T+ be the tableau obtained by adding a new
common row at the top (resp. the bottom) of T. Then we have

∑
T cTmT+ ≡ 0. □

6. Shifted semistandard circled tableaux

In this section, we consider the case k = Q(a, q). Recall that a composition λ
is called a strict partition if it is strictly decreasing: λ1 > λ2 > · · · > λr > 0 =
λr+1 = λr+2 = · · · .

Definition 9.16. A row-semistandard circled tableau T ∈ STabcλ;µ is called
shifted semistandard if its shape λ is a strict partition and it does not contain any
of the patterns

i
i

, i⃝
i

and j
i

, j
i⃝ , j⃝

i
, j⃝

i⃝ for i < j

(in particular, its underlying tableau T× is semistandard). In other words, its
entries are also weakly increasing along with each diagonal line so that a non-circled
number does not continue. We denote by STabcλ;µ the set of shifted semistandard
circled tableaux of shape λ of weight µ.

A similar notion of generalized shifted tableau is introduced in [Sag87]. The
only difference is that he use the order

1⃝ < 1 < 2⃝ < 2 < 3⃝ < 3 < · · ·
instead of ours. The set of shifted semistandard circled tableaux is clearly is in
bijection with that of his generalized shifted tableaux by the following circle moving:

i i
i i i⃝

i i⃝
7→

i⃝ i
i⃝ i i

i i
,

i i⃝
i i i⃝

i i⃝
7→

i⃝ i
i⃝ i i

i⃝ i
.
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Lemma 9.17. Let m, k ∈ N such that m ≥ k. Let λ := (m, k) and µ := (k,m).
Then in Sc

λ;µ we have

1 1 ··· 1⃝ 2 ··· 2
2 2 ··· 2

≡ 1 1 ··· 1 2 ··· 2
2 2 ··· 2⃝ .

Proof. By Lemma 5.14 and the assumption q ∈ k×, we have

γµ;2 · 1 1 ··· 1 2 ··· 2
2 2 ··· 2

= (−1)kq−(
k
2)γµ;2 · 2 2 ··· ··· ··· ··· 2

1 1 ··· 1

= (−1)kq−(
k
2) 2 2 ··· ··· ··· ··· 2⃝

1 1 ··· 1

= (−1)kq−(
k
2) 2 2 ··· ··· ··· ··· 2

1 1 ··· 1
· γλ;1

= 1 1 ··· 1 2 ··· 2
2 2 ··· 2

· γλ;1.

If m = k, we have

γλ;2 · 1 1 ··· 1
2 2 ··· 2

= 1 1 ··· 1
2 2 ··· 2⃝ , 1 1 ··· 1

2 2 ··· 2
· γλ;1 = 1 1 ··· 1⃝

2 2 ··· 2
.

Otherwise both-hand sides can be computed by Lemma 9.7 as

γµ;2 · 1 1 ··· 1 2 ··· 2
2 2 ··· 2

= 1 1 ··· 1 2 ··· 2
2 2 ··· 2⃝ + qk 1 1 ··· 1 2 ··· 2⃝

2 2 ··· 2

and
1 1 ··· 1 2 ··· 2
2 2 ··· 2

· γλ;1 = 1 1 ··· 1⃝ 2 ··· 2
2 2 ··· 2

+ qk 1 1 ··· 1 2 ··· 2⃝
2 2 ··· 2

so these equations also imply the statement. □

Lemma 9.18. Sc
λ;λ = 0 unless λ is a strict partition.

Proof. If λ is not a partition it holds by the same reason as the non-super
case. Otherwise if λ is not a strict partition, it contains λi = λi+1 > 0. So it suffices
to prove for λ = (k, k). By the lemma above we have

(γλ;1 − γλ;2) · 1 1 ··· 1
2 2 ··· 2

= 1 1 ··· 1⃝
2 2 ··· 2

− 1 1 ··· 1
2 2 ··· 2⃝ ≡ 0.

On the other hand, (γλ;1−γλ;2)2 = 2aJkK ∈ k×. Hence we have mλ ≡ 0 in Sc
λ;λ. □

Lemma 9.19. Sc
λ;µ is spanned by {mT |T ∈ STabcλ;µ}.

Proof. If λ is not a strict partition the statement is clear by the previous
lemma, so we may assume so. First we prove the statement for two special cases.

Case 1: λ = (m, k) and µ = (k, k,m − k). Then every good but non-shifted-
semistandard circled tableaux have an underlying tableau

1 1 ··· 1 3 ··· 3
2 2 ··· 2

and can be made from this tableau by multiplying γµ;i. By Lemma 9.17,

1 1 ··· 1⃝ 3 ··· 3
2 2 ··· 2

≡ 1 1 ··· 1 3 ··· 3
2 2 ··· 2⃝ + (lower terms).

Hence the statement holds since (γµ;1−γµ;2)
2 = 2aJkK is invertible again and every

good tableau which has smaller length is shifted semistandard.
Case 2: λ = (m, k) and µ = (k, l,m− l − l′, l′) where l < k and l′ < m− k, so

1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2 3 ··· 3

and 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2 3 ··· 3⃝

are all the good but non-shifted-semistandard circled tableaux. Similar to above,

1 1 ··· ··· ··· 1⃝ 3 ··· 4
2 ··· 2 3 ··· 3

≡ 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2⃝ 3 ··· 3

+ ql 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2 3 ··· 3⃝ + · · · .
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Then by multiplying γµ;1 and γµ;2 from left respectively, we obtain

aJkK 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2 3 ··· 3

≡ 1 1 ··· ··· ··· 1⃝ 3 ··· 4
2 ··· 2⃝ 3 ··· 3

+ ql 1 1 ··· ··· ··· 1⃝ 3 ··· 4
2 ··· 2 3 ··· 3⃝ + · · ·

and

− 1 1 ··· ··· ··· 1⃝ 3 ··· 4
2 ··· 2⃝ 3 ··· 3

≡ aJlK 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2 3 ··· 3

+ ql 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2⃝ 3 ··· 3⃝ + · · ·

so that

a(JkK + JlK) 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2 3 ··· 3

≡ ql 1 1 ··· ··· ··· 1 3 ··· 4
2 ··· 2⃝ 3 ··· 3⃝ − ql 1 1 ··· ··· ··· 1 3 ··· 4

2 ··· 2⃝ 3 ··· 3⃝ + · · ·

with a(JkK+ JlK) ∈ k×. Multiplying γλ;1 from right we can similarly decompose the
second tableau above.

Now we proceed to a general case. Let T ∈ Tabcλ;µ which is not shifted semis-
tandard. Then there is a prohibited pattern at boxes (k, l+1) and (k+1, l). Choose
(k, l) so that T has no such patterns at the bottom right boxes of (k, l) except for it.
We prove that we can replace the element mT by a linear combination of mR where
either R has no such patterns in this region or R satisfies ℓ(R↑) < ℓ(T↑). Then by
induction it can be written as a linear combination of shifted standard ones.

First consider the case T(k + 1, l) = i, i⃝ and T(k, l + 1) = j, j⃝ with i < j.
Similar to the proof of Lemma 5.16, we define

ν := (λ1, . . . , λk−1, l, l, λk − l, λk+1 − l, λk+2, λk+3, . . . )

and T1 ∈ Tabλ;ν , T2 ∈ Tabcν;µ by

T1(i, j) =

{
i if i < k or (i = k, j ≤ l) or (i = k + 1, j ≤ l),

i+ 2 otherwise,

and

T2(i, j) =


T(i, j) if i ≤ k + 1,

T(i− 2, j + l) if i = k + 2 or i = k + 3,

T(i− 2, j) if i > k + 3.

Then the leading term of mT2 ◦ν mT1 is mT. Applying the decomposition in Case 1
above to mT1 , we can replace mT2 ◦ν mT1 by a linear combination of tableaux with
smaller lengths so the induction goes forward.

Next consider the other case T(k + 1, l) = i and T(k, l + 1) = i or i⃝. Let
(k+1, l1+1) and (k, l2) be the ends of the bars i i ··· i which start from (k+1, l)
and (k, l + 1) respectively. In this case we define

ν := (λ1, . . . , λk−1, l, l1, l2 − l1, λk − l2, λk+1 − l, λk+2, λk+3, . . . )

and T1 ∈ Tabλ;ν , T2 ∈ Tabcν;µ by

T1(i, j) =


i if i < k or (i = k, j ≤ l) or (i = k + 1, j ≤ l1),

k + 2 if (i = k, l < j ≤ l2) or (i = k + 1, l1 < j ≤ l),

i+ 3 otherwise,
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and

T2(i, j) =



T(i, j) if i ≤ k + 1,

T(k + 1, j + l1) if i = k + 2, j ≤ l − l1

T(k, j + l1) if i = k + 2, j > l − l1

T(k, j + l2) if i = k + 3,

T(k + 1, j + l) if i = k + 4,

T(i− 3, j) if i > k + 4.

In addition, if T(k, l2) = i⃝ is circled, we remove the corresponding circle from T2

and move it to T1(k, l2) = i. Then the top term of mT2 ◦ν mT1 is again ±mT. For
example, when

T =
1 1 1 2 2⃝ 3⃝ 4
1 2 2 3 3⃝
2⃝ 5

and (k, l) = (1, 3), by picking up entries at

• •
• •

then moving a circle from T2 to T1 we obtain

T1 =
1 1 1 3 3⃝ 4 4
2 3 3 5 5
6 6

and T2 =

1 1 1
1
2 2 2 2
3⃝ 4
3 3⃝
2⃝ 5

.

Now according to Case 2 above, up to lower terms, we can replace T1 by a linear
combination of mS such that S× = T×

1 , S(k + 1, l) = k+2⃝ and S has circles only
at the boxes (k, 1), . . . , (k, λk) and (k + 1, 1), . . . , (k + 1, l). Then the top term of
mT2 ◦ν mS is ±mR, where R also satisfies that R× = T×, R(k + 1, l) = i⃝ and the
positions of circles of R and T only differ at these boxes. Hence R also does not have
bad patterns at the bottom right region of (k, l). This completes the induction. □

Let STabc′λ;µ be the subset of STabcλ;µ consisting of tableaux whose entries in the

rightmost of each rows are not circled. Then clearly #STabcλ;µ = 2l(λ) ·#STabc′λ;µ
where l(λ) is the number of non-zero components of λ.

Corollary 9.20. Sc
λ;µ is spanned by {mT |T ∈ STabc′λ;µ} over Γλ.

By a similar proof we can prove that Sc∗
λ;µ := M

c(λ)
µ;λ is also spanned by {mT∗ |T ∈

STabcλ;µ}. Now parallel to Theorem 5.17 we obtain the following basis theorem.

Theorem 9.21. When k = Q(a, q), M c
λ;µ has a basis⊔

ν : strict partition

{mS ◦ν mT∗ |S ∈ STabcν;µ,T ∈ STabc′ν;λ}.

Proof. The proof of that this set spans M c
λ;µ is same as that of Theorem 5.17.

For that of linear independence we use the one-to-one correspondence

Tabcλ;µ
1:1←→

⊔
ν : strict partition

STabcν;λ × STabc′ν;µ

induced by Sagan’s shifted Knuth correspondence [Sag87, Theorem 8.1]. □
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Corollary 9.22. (1) Sc
λ;µ has a basis {mT |T ∈ STabcλ;µ}. In particu-

lar,

Sc
λ;λ ≃

{
Γλ if λ is a strict partition,

0 otherwise.

(2) The product

◦ν : Sc
ν;µ ⊗Γν Sc∗

ν;λ →M
c(ν)
λ;µ

is injective.
(3) Hc

n and S c
r,n are standardly based algebras. □

Remark 9.23. The basis theorem above for Hc
n (i.e. λ = µ = (1n)) also holds

in the following more weaker conditions: k is an arbitrary commutative ring and
2aq ∈ k×, and the q2-integers JkK are also invertible for 1 ≤ k ≤ n/2. Note that we
need not to use Case 2 in the proof of Lemma 9.19. This implies that Hc

n is also
standardly based over {Γλ} in these conditions.



CHAPTER 10

Fakemodules over the Hecke–Clifford superalgebra

Here we have a break on the classification of simple modules. In this chapter
we introduce the module category of the Hecke–Clifford superalgebra Hc

t for a non-
integral rank t ∈ Bq(k) parallel as before. Its stable structure is used to determine
the structure of the ordinary module category in the next chapter.

1. Stable structures

As in the previous part, we have a convolution product of modules

V1 ∗ V2 ∗ · · · ∗ Vr := Hc
n ⊗Hc

λ
(V1 ⊠ V2 ⊠ · · ·⊠ Vr)

for Vi ∈ Hc
λi
-Mod . Since we have Hc

n =
⊕

w∈Dλ
TwH

c
λ, it has a similar decompo-

sition

V1 ∗ V2 ∗ · · · ∗ Vr =
⊕

w∈Dλ

Tw(V1 ⊠ V2 ⊠ · · ·⊠ Vr)

of supermodules. Then we introduce the induction functor

Indck : H
c
n-Mod → Hc

k+n-Mod ,

V 7→ 1
c
k ∗ V

and two restriction functors

Resck : H
c
k+n-Mod → Hc

n-Mod ,

W 7→ HomHc
(k,n)

(1c
k ⊠Hc

n,W |(k,n))

Resc′k : Hc
k+n-Mod → Hc

n-Mod ,

W 7→ (Hc
n ⊠ 1

c∗
k )⊗Hc

(n,k)
W |(n,k).

Resck and Resc′k are respectively the right and the left adjoint functors of Indck.
Similar to the previous part it is proven by the following dual lemma.

Lemma 10.1. There is an isomorphism of (Hc
(k,n),H

c
k+n)-bimodules

HomHc op
(k,n)

(Hc
k+n,H

c
(k,n)) ≃

σHc
k+n

where σ denotes Hc
(k,n) ≃ Hc

(n,k).

Proof. Similarly as before we can prove that the left-hand side is a free right
Hc

k+n-module generated by δϖ(k,n)
. For w ∈ D(k,n) we have

δϖ(k,n)
(cw(i)Tw) = δϖ(k,n)

(Twci + · · · ) =
{
ci if w = ϖ(k,n),

0 otherwise

so that δϖ(k,n)
· cw(i) = ciδϖ(k,n)

. This implies that the map above is also a homo-
morphism of left Hc

k,n-modules. □

The parabolic restriction lemma can be stated completely the same as the
non-super case.

103
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Lemma 10.2. Let d,m, n ∈ N such that m,n ≤ d. For each W ∈ Hc
n-Mod

there is an isomorphism

(Indcd−nW )|(d−m,m) ≃
⊕
i

Ind
c(1)
d−m−n+iInd

c(2)
m−i(W |(n−i,i))

of Hc
(d−m,m)-modules.

Proof. In this proof instead of Ti we use T
′
i := Ti−q+1 so that T ′

i ci+1 = ciT
′
i .

Since T ′
i ’s also satisfy the braid relations, we can define T ′

w := T ′
i1
T ′
i2
· · ·T ′

il
for

w = si1si2 · · · sil . Then we have the decomposition

Hc
n =

⊕
w∈D(d−n,n)

T ′
wH

c
(d−n,n) =

⊕
i

⊕
u∈D(d−m−n+i,n−i),

v∈D(m−i,i)

T ′
(u,v)CnT

′
giH(d−n,n)

where gi := (1d−m−n+i, ϖ(m−i,n−i), 1i). Now T ′
gi satisfies cjT

′
gi = T ′

gicj+m−i for
d−m− n+ i+ 1 ≤ j ≤ d−m and cjT

′
gi = T ′

gicj for j ≥ d− i+ 1, so that

CnT
′
giH(d−n,n) = C ′

d−nT
′
gi(Hd−n ⊗Hc

n)

where we write C ′
d−n := Cd−m−n+i ⊗ 1n−i ⊗ Cm−i ⊗ 1i. Thus we have

(Indcd−nW )|(d−m,m) =
⊕
i

⊕
u,v

T ′
(u,v)C

′
d−nT

′
gi(1d−n ⊠W ).

As Hc
(d−m−n+i,n−i,m−i,i)-modules, we have an isomorphism

1
c
d−m−n+i ⊠W (1) ⊠ 1

c
m−i ⊠W (2) ≃ C ′

d−nT
′
gi(1d−n ⊠W )

md−m−n+i ⊠ x⊠mm−i ⊠ y 7→ T ′
gi(md−n ⊠ x⊠ y)

under the Sweedler’s notation W |(n−i,i) ≃ W (1) ⊠ W (2), which implies the state-
ment. □

Proposition 10.3. Let d,m, n ∈ N such that m,n ≤ d. Let V ∈ Hc
m-Mod,

W ∈ Hc
n-Mod and suppose that the action of [2] ∈ k on W is injective. Then we

have a natural isomorphism of k-supermodules

HomHc
d
(Indcd−mV, Indcd−nW ) ≃

⊕
m+n−d≤i

HomHc
i
(Resc′m−iV,Res

c
n−iW )

⊕
⊕

m+n−d<i

ΠHomHc
i
(Resc′m−iV,Res

c
n−iW ).

Proof. It suffices to prove

Rescd−mIndcd−nW ≃
⊕

m+n−d≤i

Indcm−iRes
c
n−iW ⊕

⊕
m+n−d<i

Π Indcm−iRes
c
n−iW.

By the lemma above we can reduce it to the case m = 0:

RescdInd
c
d−nW ≃

{
RescnW ⊕ΠRescnW if d > n,

RescnW if d = n.

The case d = n is clear. For the other case d > n, using the decomposition
Hc

n =
⊕

w∈Dd−n,n
TwH

c
(d−n,n) it follows from the isomorphism

Res
c(1)
d−n(1

c
d−n ⊠W ) = (kmd−n ⊠W )⊕ (kγL

d−nmd−n ⊠W ) ≃W ⊕ΠW

which we can prove similarly to Proposition 9.10 under the assumption. □
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2. String diagrams in the super case

We introduce diagrammatic natural transformations

µ(k,l) : Ind
c
kInd

c
l → Indck+l, ∆(k,l) : Ind

c
k+l → IndckInd

c
l , σ(k,l) : Ind

c
l Indk → IndckInd

c
l

similar to before. In addition, we have another odd natural transformation

γk : Ind
c
k → Indck

induced by γk : 1k → 1k; mk 7→ γL
k mk. By convention we put γk = 0 for k ≤ 0.

We represent this natural transformation by a dot on a string:

γk = •
��

k

.

Beware that the odd naturality means that we can transform diagrams up to Koszul
sign:

γk = •

��

f :=
•
��

f
= (−1)|f |

•

��
f

.

Then the homomorphism Indcd−mV → Indcd−nW corresponds to f : Resc′m−iV →
Rescn−iW in the second summand of Proposition 10.3 is illustrated as

• fII

�� dd

��

d−m

d−n

d−m−n+i

m−i

n−i

V

W

.

We can still apply the local transformations of diagrams listed in Proposi-
tion 6.6, in addition to the followings.

Proposition 10.4. The following equations hold.

(5) The square of dot:

•
•
��

k

= JkK
��

.

(6) The distribution of dot:

•
��

k l
=
•

��

+ qk
•

��

,
•

�� ��
k l

= ql
•
�� ��

+
•

�� ��

.

(7) The bubble elimination with dot:

•

��

k l =

[
k + l − 1

k − 1

]
•

��

.

Proof. (5) just say that γ2
k = JkK. (6) follows from

mk+lγ
R
k+l = γL

k+lmk+l = (γL
(k,l);1 + qkγL

(k,l);2)mk+l

and

γL
k+lmk+l = mk+lγ

R
k+l =

∑
w∈D(k,l)

Twm(k,l)(q
lγR

(k,l);1 + γR
(k,l);2).
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Finally it suffices to prove (7) for k = Q(a, q). By Lemma 9.7,

mk+lγ
R
(k,l);1mk+l = [k][k + l − 1]!γL

k+lmk+l.

On the other hand,

mk+lγ
R
(k,l);1mk+l =

∑
w∈D(k,l)

Twm(k,l)γ
R
(k,l);1mk+l = [k]![l]!

∑
w∈D(k,l)

Twγ
L
(k,l);1mk+l

so that∑
w∈D(k,l)

Twγ
L
(k,l);1mk+l =

[k][k + l − 1]!

[k]![l]!
γL
k+lmk+l =

[
k + l − 1

k − 1

]
γL
k+lmk+l.

□

3. The category of fakemodules

Now let t be a total q-binomial sequence in k. We here similarly define the
fakemodule supercategory Hc

t -Mod of the superalgebra “Hc
t” in terms of generators

and relations. For such t, we write JtK := [
t+1
2

]
−
[
t
2

]
, the “q2-integer” of t. Of course

it coincides with the usual one for a natural number.

Definition 10.5. First we define the supercategory Hc
t -Mod0. An object

in the supercategory Hc
t -Mod0 is an Hc

m-module V for some m ∈ N, written as
Indct−mV and called a Hc

t-fakemodule. Morphisms between these fakemodules are
generated by

Indct−mf : Indct−mV → Indct−mW,

defined for each Hm-homomorphism f : V →W ,

µ(t−m−k,k)V : Indct−m−kInd
c
kV → Indct−mV,

∆(t−m−k,k)V : Indct−mV → Indct−m−kInd
c
kV

defined for each Hm-module V and k ∈ N, and

γt−mV : Indct−mV → Indct−mV

defined for each Hm-module V . The parity of Indct−mf is defined to be same as f ,
those of µ(t−m−k,k)V and ∆(t−m−k,k)V are even, and that of γt−mV is odd. The
relations between them are similar ones listed in Definition 7.23 in addition to the
followings: the naturality

(c) γt−m is an odd natural transformation. That is, the square below com-
mutes up to Koszul sign:

Indt−mV
γt−mV

//

Indt−mf

��
(−1)|f|

Indt−mV

Indt−mf

��
Indt−mW

γt−mW
// Indt−mW.

and diagrammatic transformations.

(5) The square of dot:

•
•
��

t−m

= Jt−mK
��

.
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(6) The distribution of dot:

•
��

t−m−k k
=
•

��

+ qt−m−k
•

��

,
•

�� ��
t−m−k k

= qk
•
�� ��

+
•

�� ��

.

(7) The bubble elimination with dot:

•

��

t−m−k k =

[
t−m− 1

k

]
•

��

.

Similarly as before, we can complete it to locally finitely presented supercate-
gory Hc

t -Mod . We denote by HomHc
t
the set of fakemorphisms between fakemod-

ules.

The relations listed above are satisfied in the ordinary module category by
Proposition 10.4, so that when q ∈ k× we have the realization functor P : Hc

d-Mod →
Hc

d-Mod for each d ∈ N, which is full and surjective. We can prove the basis theo-
rem for this supercategory.

Theorem 10.6 (Basis theorem). For V ∈ Hc
m-Mod and W ∈ Hc

n-Mod, if the
action of [2] ∈ k on W is injective, we have

HomHc
t
(Indct−mV, Indct−nW ) ≃

⊕
i

HomHc
i
(Resc′m−iV,Res

c
n−iW )

⊕
⊕
i

ΠHomHc
i
(Resc′m−iV,Res

c
n−iW ).

Proof. Similarly to the proof of Theorem 7.27, we first define the supercate-
gory Cct which is defined by the relations above except for the bubble eliminations
(4) and (7). Then for this supercategory we have

HomCc
t
(Indct−mV, Indct−nW ) ≃

⊕
m,n≤l

HomHc
l
(Indcl−mV, Indcl−nW )

⊕
⊕

m,n≤l

ΠHomHc
l
(Indcl−mV, Indcl−nW ).

Studying the kernel by use of Proposition 10.3 we obtain the desired isomorphism.
We left the details to the reader. □

4. Parabolic fakemodules

Now for a fakecomposition λ = (λ1, λ
′) of t, we define the parabolic fakemodule

M c
λ := Indcλ1

M c
λ′ . Similarly as before, we define the set of row-standard circled

tableaux
Tabcλ;µ := lim−→

d

Tabcλ|d;µ|d

and the fakemorphism mS : M
c
µ → M c

λ for each S ∈ Tabcλ;µ. Let M
c
λ;µ be a super-

module spanned by a linearly independent set {mS | S ∈ Tabcλ;µ}. The superalge-
bra Γλ is defined similarly as Γλ with generators γλ;1 and γλ;2, γλ;3, . . . by using

(γλ;1)
2 = aJλ1K instead of usual q2-integers, but the relation γλ;1 = 0 is omitted

even if λ1 = 0. Hence as an abstract superalgebra, we have

Γλ ≃ C1(aJλ1K)⊗ Γλ′ .

Then there is an inclusion of superalgebra Γλ ↪→M c
λ;λ, so that the reversed product

◦µ : M c
µ;ν ⊗Γµ

M c
λ;µ →M c

λ;ν
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is defined. When q ∈ k×, for d ∈ N the realization functor P sends mS ∈ M c
λ;µ to

the corresponding mS ∈ M c
λ;µ if #(S×) > 0 or #(S×) = 0 and S has no 1⃝ in its

first row, and otherwise zero. For example, when λ = µ = (1, 1), P is given by

1 ··· 1 1
2

7→ 1
2
, 1 ··· 1 1

2⃝ 7→ 1
2⃝ , 1 ··· 1 1⃝

2
7→ 1⃝

2
, 1 ··· 1 1⃝

2⃝ 7→ 1⃝
2⃝ ,

1 ··· 1 2
1

7→ 2
1
, 1 ··· 1 2

1⃝ 7→ 2
1⃝ , 1 ··· 1 2⃝

1
7→ 2⃝

1
, 1 ··· 1 2⃝

1⃝ 7→ 2⃝
1⃝ ,

1 ··· 1⃝ 2
1

7→ 0, 1 ··· 1⃝ 2
1⃝ 7→ 0, 1 ··· 1⃝ 2⃝

1
7→ 0, 1 ··· 1⃝ 2⃝

1⃝ 7→ 0.

Now we similarly define the quotient supermodules M c
λ;µ ↠ M

c(ν)
λ;µ and Sc

λ;µ :=

M
c(λ)
λ;µ . For these supermodule we obtain the following theorems.

Theorem 10.7.

(1) Sc
λ;λ is spanned by mλ over Γλ.

(2) Sc
λ;µ = 0 unless λ ≥ µ. □

We say that a fakepartition λ is strict if λ′ is strict, and the sets STabcλ;µ and

STabc′λ;µ are defined by direct limits similarly as before. Then the standardly based
structure of the category of parabolic fakemodules is obtained by the same proofs
as for the ordinal case.

Theorem 10.8. Assume k = Q(a, q). Then

(1) M c
λ;µ has a basis⊔
ν : strict fakepartition

{mS ◦ν mT∗ | S ∈ STabcν;µ,T ∈ STabc′ν;λ}.

(2) Sc
λ;µ has a basis {mT |T ∈ STabcλ;µ} so

Sc
λ;λ =

{
Γλ if λ is a strict fakepartition,

0 otherwise.

(3) The product

◦ν : Sc
ν;µ ⊗Γλ

Sc∗
ν;λ →M

c(ν)
λ;µ

is injective. □



CHAPTER 11

Cellular structure on the Hecke–Clifford
superalgebra, II

We return to our subject, the classification of simple modules of Hc
n. Through-

out in this chapter, we assume q ∈ k×.

1. Identification of the quotient superalgebras

In order to classify the simple modules, we first determine the quotient su-
peralgebra M c

λ;λ ↠ Sc
λ;λ. In this computation the superalgebras M c

λ;λ ↠ Sc
λ;λ of

fakemorphisms are used.

Lemma 11.1. Let λ = (m, k) with m > k. Then in Sc
λ;λ we have

1 1 ··· 1⃝ 2 ··· 2
1 ··· 1

≡ (−1)kq(
k
2)(γλ;1 − qm−kγλ;2)mλ.

Proof. By 5.14, we have

1 1 ··· 1 2 ··· 2
1 ··· 1

≡ (−1)kq(
k
2)mλ.

Hence the equation is implied by

γλ;2 · 1 1 ··· 1 2 ··· 2
1 ··· 1

= 1 1 ··· 1 2 ··· 2⃝
1 ··· 1

and

1 1 ··· 1 2 ··· 2
1 ··· 1

· γλ;1 = 1 1 ··· 1⃝ 2 ··· 2
1 ··· 1

+ qm−k 1 1 ··· 1 2 ··· 2⃝
1 ··· 1

.

□

Corollary 11.2. For a fakepartition λ = (t− k, k), in Sc
λ;λ we have

1 1 ··· 1⃝ 2 ··· 2
1 ··· 1

≡ (−1)kq(
k
2)(γλ;1 − qt−2kγλ;2)mλ.

Lemma 11.3. Let λ be a partition. Then

(1) if λ1 > λ2, we have Sc
λ;λ ≃ Sc

λ;λ,

(2) if λ1 = λ2, Ker(Sc
λ;λ ↠ Sc

λ;λ) is generated by (γλ;1− γλ;2)mλ as a 2-sided
ideal.

Proof. For the case (2), by the computation in Lemma 9.18 we have (γλ;1 −
γλ;2)mλ ≡ 0 in Sc

λ;λ so the kernel contains (γλ;1 − γλ;2)mλ. We prove the converse
inclusions.

Ker(M c
λ;λ ↠ M c

λ;λ) is spanned by mT for T ∈ Tabcλ;λ which satisfies either of

the condition that #11(T
×) < 0 or that #11(T

×) = 0 with 1⃝ in its first row. If
λ1 > λ2, we have λ1 − #11(T

×) > λ2 for such T so that mT ≡ 0 in Sc
λ;λ as we

did in the proof of Lemma 5.20, which implies that Ker(M c
λ;λ ↠ M c

λ;λ) is already

zero in Sc
λ;λ; in other words, Sc

λ;λ ≃ Sc
λ;λ. In the other case λ1 = λ2, we also have

mT ≡ 0 if #11(T
×) < 0. Otherwise by applying local transformation on the second

109
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row or below mT can be transformed into a linear combination of tableaux S such
that T(1, j) = S(1, j) for all j and #21(S

×) = λ2, that is, which is in the form

1 1 1 1 ··· 1⃝
1 1 1 1 or

1 1 1 1 ··· 1⃝
1 1 1 1⃝ .

By the corollary above, for the special case we have

1 1 1 1 ··· 1⃝ 2 2 2 2
1 1 1 1
3 3 3 3
4 4

≡ (−1)λ2q(
λ2
2 )(γλ;1 − γλ;2)mλ

in Sc
λ;λ, so that

1 1 1 1 ··· 1⃝ 2 2 2 2
1 1 1 1⃝
3 3 3 3
4 4

≡ (−1)λ2q(
λ2
2 )(γλ;1 − γλ;2)γλ;2mλ.

Every such S above can be made by multiplying elements to these tableaux from
left. Hence the image of Ker(M c

λ;λ ↠ M c
λ;λ) in Sc

λ;λ is generated by (γλ;1−γλ;2)mλ

as a 2-sided ideal. □

Lemma 11.4. For a fakepartition λ = (λ1, λ
′), we have Sc

λ;λ ≃ C1(aJλ1K) ⊗
Sc
λ′;λ′ .

Proof. Since these modules are preserved by extension of scalars, it suffices
to prove for the universal ring k = Z[a, q±]. Let

V :=
∑

ν>λ, ν1>λ1

M c ν
λ;λ and W :=

∑
ν>λ, ν1=λ1

M c ν
λ;λ

so that M c>ν
λ;λ = V +W . On the other hand, let

T := {T ∈ Tabcλ;λ |T×(1, j) = 1 for all j}
and

X := k{mT |T ∈ Tabcλ;λ \ T}, Y := k{mT |T ∈ T}
so that M c

λ;λ = X ⊕ Y . Since Γλmλ,W ⊂ Y we have M c
λ;λ = V + Y . Hence

Sc
λ;λ = M c

λ;λ/M
c>ν
λ;λ = (V + Y )/(V +W ) ≃ Y/((V ∩ Y ) +W ).

For a Z[a, q±]-module M , let M̃ := M ⊗Z[a,q±] Q(a, q) be its localization. By the

cellular basis theorem, we have dim Ṽ + dim W̃ = dim M̃ c
λ;λ and

dim W̃ =
∑

ν>λ, ν1=λ1

#STabcν;λ ·#STabc′ν;λ.

On the other hand, since we can view λ1 as a sufficiently large number, we have a
natural one-to-one correspondence

{strict fakepartition ν | ν > λ, ν1 = λ1}
1:1←→ {strict partition ν′ | ν′ > λ′}

and for such ν,

STabcν;λ
1:1←→ {1, 1⃝}× STabcν′;λ′ and STabc′ν;λ

1:1←→ STabc′ν′;λ′ .

Then by using the shifted Knuth correspondence for λ′, we obtain dim Ỹ = dim W̃ .
Since localization of modules is exact, from the exact sequence

0→ V ∩ Y → V ⊕ Y →M c
λ;λ → 0

we obtain

0→ Ṽ ∩ Y → Ṽ ⊕ Ỹ → M̃ c
λ;λ → 0.
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By comparison of dimensions we have Ṽ ∩ Y = 0. Since V ∩Y ⊂ Y is a torsion-free
module over the integral domain Z[a, q±], it implies V ∩ Y = 0. Hence we have

Sc
λ;λ ≃ Y/W ≃ C1(aJλ1K)⊗ Sc

λ′;λ′ .

□

Using these two lemmas we obtain the following identification of the quotient
superalgebras Sc

λ;λ and Sc
λ;λ.

Theorem 11.5. Recall the assumption q ∈ k×.
(1) For a partition λ, the 2-sided ideal Ker(Γλ ↠ Sc

λ;λ) is generated by γi−γj
for all i, j such that λi = λj.

(2) For a fakepartition λ, the 2-sided ideal Ker(Γλ ↠ Sc
λ;λ) is generated by

γi − γj for all i, j such that λi = λj and i, j ≥ 2. □

Proof. We use a mutual induction for (1) and (2) on the number of com-
ponents of λ. First let λ be a fakepartition and suppose that (1) holds for λ′.
Then

Ker(Γλ ↠ Sc
λ;λ) ≃ C1(aJλ1K)⊗Ker(Γλ′ ↠ Sc

λ′;λ′)

has a generating set above. Next let λ be a partition of n > 0 and suppose (2)
holds for λ. We have a commutative square

Γλ
// //

����

Sc
λ;λ

����
Γλ

// // Sc
λ;λ

where Γλ ≃ Γλ since λ1 > 0. Hence as a generating set of the kernel of Γλ ↠ Sc
λ;λ

we can take the union of that of Γλ ≃ Γλ ↠ Sc
λ;λ and that of Sc

λ;λ ↠ Sc
λ;λ. □

Consequently we obtain the following classification of simple modules of S c
r,n.

We remark that Sc
λ;µ is not free over k in general even if in this case q ∈ k×.

Theorem 11.6. Suppose q ∈ k×. For a partition λ, let Θλ be the 2-sided ideal
generated by γλ;i − γλ;j above. Then there is a one-to-one correspondence

Irr(S c
r,n)

1:1←→
⊔

ν=(ν1,...,νr);partition

Irr(Γλ/Θλ).

Note that for a partition λ = (k, k), we have

Γλ/Θλ ≃ Γk ⊗ (k/2aJkKk)
since aJkK = γ2

λ;1 ≡ γλ;1γλ;2 = −γλ;2γλ;1 ≡ −γ2
λ;1 = −aJkK. In addition, it is clear

that 2aJkKk+ 2aJlKk = 2aJgcd{k, l}Kk. Thus for a general partition λ, let µ be the
strict partition obtained by removing duplicate components of λ and let k1, . . . , kr
be such components, then

Sc
λ;λ ≃ Γλ/Θλ ≃ Γµ ⊗ (k/2aJgcd{k1, . . . , kn}Kk).

In particular, Sc
λ;λ = 0 if and only if 2aJgcd{k1, . . . , kn}K ∈ k×.

Remember that when k is a field the Clifford superalgebra Γλ has a unique
simple module up to parity change. For e ≥ 2, we say that a partition λ is e-strict
if λi = λj , i ̸= j implies e|λi. For convention the word ∞-strict stands for strict.
For a superalgebra A, let Irr(A)/Π be a quotient set of Irr(A) on which V ∈ Irr(A)
is identified with its parity change ΠV .
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Corollary 11.7. Suppose that k is a field and 2aq ∈ k×. Let e2 be the q2-
characteristic of k. Then there is a one-to-one correspondence

Irr(S c
r,n)/Π

1:1←→ {ν = (ν1, . . . , νr); e2-strict partition}.

The case 2a = 0 is easier.

Corollary 11.8. Suppose that k is a field and q ∈ k×, 2a = 0. Then there is
a one-to-one correspondence

Irr(S c
r,n)/Π

1:1←→ {ν = (ν1, . . . , νr); partition}.
□

2. Identification of the ideals

We keep assuming that q ∈ k×. Finally we reach to the classification of simple
modules of the Hecke–Clifford superalgebra Hc

n. Now let Jc
λ ⊂ Γλ be the pullback

of the 2-sided ideal mλ ·Sc
λ ⊂ Sc

λ;λ via the surjective map Γλ ↠ Γλ/Θλ ≃ Sc
λ;λ. We

determine this ideal as follows.
For n ∈ N, let Kn ⊂ k be the ideal generated by the elements{(a(q−1)

[2]

)s
[n]!

∣∣ 0 ≤ s ≤ n/2
}
.

Then by Lemma 9.7, we have mnCnmn = Knmn⊕Kn−1γ
L
nmn. Since it is a 2-sided

ideal of Γnmn, the following statement holds.

Lemma 11.9. There are inclusions aJnKKn−1 ⊂ Kn ⊂ Kn−1. □
Lemma 11.10. Let λ = (λ1, λ2, . . . , λr) be a partition. For each i, let ∆λ;i ⊂ Γλ

be the supermodule

∆λ;i := Kλi−λi+1 ⊕Kλi−λi+1γλ;i+1 ⊕Kλi−λi+1−1(γλ;i − qλi−λi+1γλ;i+1)

⊕Kλi−λi+1−1(γλ;i − qλi−λi+1γλ;i+1)γλ;i+1

and let ∆λ := ∆λ;r · · ·∆λ;2∆λ;1. Then ∆λ ⊂ Γλ is a 2-sided ideal.

Proof. For simplicity we write ∆ = ∆λ, ∆i = ∆λ;i and γi = γλ;i. First we
prove

∆iγi ⊂ ∆i + γi+1∆i, ∆iγi+1 ⊂ ∆i, ∆iγj = γj∆i for j ̸= i, i+ 1.

The second and the third inclusions are clear so we prove the first one. Since
Kn ⊂ Kn−1, the inclusion Kλi−λi+1γi ⊂ ∆i is also obvious. We also have

(γi − qλi−λi+1γi+1)γi − qλi−λi+1γi+1(γi − qλi−λi+1γi+1) = γ2
i − q2(λi−λi+1)γ2

i+1

= aJλi − λi+1K
so thatKλi−λi+1−1(γi−qλi−λi+1γi+1)γi ⊂ ∆i+γi+1∆i by aJnKKn−1 ⊂ Kn. Putting
them together we obtain ∆iγi ⊂ ∆i + γi+1∆i as desired. Then

∆γi = ∆r · · ·∆i−1γi · · ·∆1 ⊂ ∆r · · ·∆i−1 · · ·∆1 = ∆

for i ≥ 2, and

∆γ1 ⊂ ∆+∆r · · ·∆2γ2∆1 ⊂ ∆+∆r · · · γ3∆2∆1 ⊂ · · · ⊂ ∆

so ∆ is a right ideal. By the equation above we also have inclusions

γi∆i ⊂ ∆i, γi+1∆i ⊂ ∆i +∆iγi

which imply that ∆ is also a left ideal in a similar manner. □

Lemma 11.11. For λ = (λ1, λ2, . . . , λr) above, we have ∆r
λ + Θλ ⊂ Jc

λ ⊂
∆λ +Θλ.
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Proof. Parallel to the proof of Lemma 5.20. So first we prove Jc
λ ⊂ ∆λ +Θλ.

Take an arbitrary T ∈ Tabcλ. Let µ := (λ1, 1
n−λ1) and define S ∈ Tabcλ;µ which

has underlying tableau S× = T×|µ and for each its bar 1 1 ··· 1 it has a circle if
and only if there are odd number of circles in the corresponding boxes in T. Let
k := #11(S

×) and let p := 0 if S does not have 1⃝ in its first row, and otherwise
p := 1. Then by Lemma 9.7 we have

mµ ·mT ∈ Kk−pmS.

If k < λ1 − λ2, we have mS ≡ 0. If k = λ1 − λ2 and p = 1, mS can be transformed
into a linear combination of tableaux generated by

1 1 1 1 ··· 1⃝ 2 2 2 2
1 1 1 1
3 3 3 3
4 4

≡ (−1)λ2q−(
λ2
2 )mλ(γλ;1 − qλ1−λ2γλ;2)

or

1 1 1 1 ··· 1⃝ 2 2 2 2
1 1 1 1⃝
3 3 3 3
4 4

≡ (−1)λ2q−(
λ2
2 )mλ(γλ;1 − qλ1−λ2γλ;2)γλ;2

as we did before. Hence

Kk−pmS ⊂ (1c
λ1
∗ Sc

λ′) ·∆λ;1.

In the other cases we have Kk−p ⊂ Kλ1−λ2 so the inclusion above also holds. By
induction we may assume that mλ′ · Sc

λ′ ⊂ mλ′∆λ′ . This implies mλ ·mT ∈ mλ∆λ

in Sc
λ.
We can prove the other inclusion by using circled tableaux whose underlying

tableau is R in the proof of Lemma 5.20. By putting circles on suitable boxes of R↓
we can make arbitrary elements of

(∆λ;r · · ·∆λ;2∆λ;1)(∆λ;r · · ·∆λ;2) · · · (∆λ;r∆λ;r−1)∆λ;r ⊃ ∆r
λ.

For example, for λ = (6, 4, 1)

mλ

1 2⃝ 7 8 9 10⃝
3 4 5⃝ 9⃝
6

= [2][3]!
1 1⃝ 2 2 2 3⃝
1 1 1⃝ 2⃝
1

= −[2][3]!
1 1⃝ 2 2 2⃝ 3⃝
1 1 1 1
2

γ3(γ2 − q3γ3)

= · · · = q6mλ · γ3 · [3]! · (γ1 − q2γ2) · γ3 · [2](γ2 − q3γ3) · 1

where γ1 − q2γ2 ∈ ∆λ;1, [3]!, [2](γ2 − q3γ3) ∈ ∆λ;2 and γ3, γ3, 1 ∈ ∆λ;3. Hence we
conclude that mλ · Sc

λ;λ ⊃ mλ∆
r
λ. □

We state again the main theorem of this paper.

Theorem 11.12. When q ∈ k×, there is a one-to-one correspondence

Irr(Hc
n)

1:1←→
⊔

λ : partition

Irr∆λ+Θλ

Θλ
(Γλ).

□

Now assume that k is a field. By specializing this theorem we obtain several
classifications. First consider the case q ̸= −1. In this case simply Kn = [n]! k. Let
e (resp. e2) be a q-characteristic (resp. q2-) of k. Then we have

e2 =

{
e if e is odd,

e/2 if e is even.

Let λ be a partition. If λi > λi+1+e, we have ∆λ = 0 as before. On the other hand
if λi < λi+1 + e we have ∆λ = Γλ. So suppose λi = λi+1 + e so that Kλi−λi+1 = 0
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but Kλi−λi+1−1 = k. If e2|λi then γλi and γλ;i+1 are central nilpotent so that they
are contained in the Jacobson radical of Γλ. Otherwise

(γλ;1 − qλ1−λ2γλ;2)
2 = aJλ1K + aq2(λ1−λ2)Jλ2K = 2aJλ1K

is invertible if and only if 2a ̸= 0. When 2a = 0, Kλi−λi+1−1(γλ;1 − qλ1−λ2γλ;2)
generates a nilpotent ideal so is in the Jacobson radical also in this case.

Summarizing the above, we obtain the following results. We say that an e2-
strict partition λ is e-restricted if{

λi − λi+1 < e if e2|λi,

λi − λi+1 ≤ e otherwise.

Corollary 11.13. Suppose k is a field and 2aq[2] ̸= 0. Then there is a one-
to-one correspondence

Irr(Hc
n)/Π

1:1←→ {e-restricted e2-strict partition}.

The result is now coincides with the crystal B(Λ0) of type A
(2)
e−1 for odd e or

of type D
(2)
e/2 for even e whose descriptions are obtained by Kang [Kan03] and

Hu [Hu06] respectively.

Corollary 11.14. Suppose k is a field and q[2] ̸= 0, 2a = 0. Then there is a
one-to-one correspondence

Irr(Hc
n)/Π

1:1←→ {e-restricted partition}.

Next consider the case q = −1. First assume that 2a ̸= 0. Let p be the
(ordinary) characteristic of k. Then we have Kn = k if n < p and otherwise
Kn = 0. Hence by a similar arguments as above we obtain the following.

Corollary 11.15. Suppose k is a field of characteristic p ̸= 2 and q = −1,
a ̸= 0. Then there is a one-to-one correspondence

Irr(Hc
n)/Π

1:1←→ {p-restricted p-strict partition}.

Now finally let q = −1 and 2a = 0, so that K0 = K1 = k and Kn = 0 for
n ≥ 2. Similar to the case above for 2a = 0, we obtain the following.

Corollary 11.16. Suppose k is a field and q = −1, 2a = 0. Then there is a
one-to-one correspondence

Irr(Hc
n)/Π

1:1←→ {2-restricted partition}.

In fact, the two results for 2a = 0 are already obtained in Remark 9.6.
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