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Abstract 

 

Static and dynamic spin transport in lateral spin valves 

 

Hiroshi Idzuchi, Doctor of Philosophy 

The University of Tokyo, 2014 

 

Supervisor:  Prof. Y. Otani 

 

Generation, control and detection of spin current are key ingredients in spintronics. 

Pure spin current, a flow of spin angular momentum without net charge flow, bridges the 

conventional charge based transport phenomena and the physics in magnetism such as a 

spin-transfer torque, s-d interaction etc. and thus is the key concept in spintronics. The 

thesis is devoted to a series of experiment aiming at the understanding of static and dynamic 

properties of the spin current by means of a non-local spin injection technique in lateral 

spin valves (LSVs).  

The non-local spin injection technique in lateral spin valves is an effective method 

to generate the pure spin current in non-magnetic (NM) material. The non-local spin 

injection was first demonstrated in 1985 using micro-scale devices which consist of a 50-

µm-thick Al bar with ferromagnetic junctions [M. Johnson and R. H. Silsbee, Phys. Rev. 

Lett. 55, 1790 (1985)]. This experiment yielded a tiny spin accumulation signal of a few 

tens of pico-volts. The experiment was revisited in 2001 using nano-scaled LSVs [F. 

Jedema, A. T. Filip, and B. J. van Wees, Nature 410, 345 (2001)]. This brought about an 
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enhanced signal of about one micro-volt at room temperature, which spurred intensive 

research efforts in non-local LSVs for spintronic device applications. Further enhancement 

of the spin accumulation is beneficial for the understandings of transport properties of the 

pure spin current which is flowing along the slope of the spin accumulation.  

In this thesis, the non-local spin injection properties were studied with metallic 

LSVs. The enhancement of the spin accumulation was realized in LSVs with 

ferromagnet/MgO/Ag junctions. With annealed Ni80Fe20 (Permalloy, Py)/MgO/Ag 

junctions, the hundred-fold spin accumulation signal V = 225 V was realized. The results 

were analyzed using spin diffusion model and the underlying physics was understood as a 

(spin) resistance (conductance) mismatch. In addition to it, the structure of LSV was 

systematically optimized. The dual injection scheme was demonstrated and the effect of 

spin absorption was examined. Dual injector lateral spin valves (DLSVs) with Py/MgO/Ag 

junctions enabled 3-fold enhancement whereas a little (~1.2 times) enhancement in Py/Ag 

junctions due to spin absorption. LSVs with Co50Fe50/MgO/Ag junctions showed the 20% 

improvement of injection/detection efficiency compared with Py/MgO/Ag junctions. 

Spin relaxation mechanism in NM wire was experimentally examined by 

characterizing spin transport properties of Ag and Mg in LSVs. For Ag, the temperature 

variations of the spin relaxation time sf and the momentum relaxation time e were 

analyzed to discuss the intrinsic spin relaxation properties in non-magnet (NM). Spin-flip 

probability   e /sf, the characteristic value of the Elliott-Yafet spin relaxation 

mechanism, of Ag nanowire was agreed with the value of bulk Ag obtained by conduction 

electron spin resonance. Phonon contribution of the spin relaxation was universally 

expressed with the material independent curve scaled by the spin-orbit interaction for 

monovalent metal. The surface spin scattering, which hampered quantitative analysis in 

previous reports, is well suppressed in Ag nanowire by an MgO capping layer. Non-local 
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spin injection into Mg nanowire revealed that the spin diffusion length was comparable to 

the other NM such as Cu, Ag and Al despite the fact that the light metal Mg shows small 

spin-orbit interaction. This is because the complex electronic structure of Mg promotes 

spin relaxation (spin-hot-spot), which explains the relatively short spin diffusion length of 

approximately 200 nm at room temperature. 

Collective spin precession in LSVs, so-called Hanle effect, were studied. In ballistic 

spin transport, spins can coherently rotate at a Larmor frequency proportional to the applied 

perpendicular magnetic field. This allows us to control the direction of the spins in the 

channel and to manipulate the output signal of LSVs by adjusting an effective external 

parameter such as the Rashba field tunable via a gate voltage. This scheme realizes an 

active spin device such as the spin-transistor [S. Datta and B. Das, Appl. Phys. Lett. 56, 

665 (1990)]. In contrast, in a diffusive pure spin current in NMs, the precession causes 

dephasing, and drastically decreases the spin accumulation. Therefore the understandings 

of dynamic transport properties of spin current is indispensable. 

The dynamic transport properties of the pure spin current in metallic LSVs with 

various devices were systematically studied. The effect of the spin absorption on the Hanle 

signal was clearly observed. We have successfully formulated the Hanle effect for the 

LSVs with anisotropic spin absorption for the transverse and longitudinal components of 

the spin polarization in the spin current relative to the detector magnetization-direction, 

which enables to characterize intrinsic spin transport properties even with the spin 

absorption effect. The velocity of diffusive spin currents and the transit-time distribution 

was successfully characterized by applying Fourier transform to the experimental Hanle 

signals, resulting in excellent agreement with the empirical model in the case of 

Py/MgO/Ag junctions. In contrast, we found that the transit-time distribution in LSVs with 

Py/Ag junctions strongly deviated from that expected in the empirical model and that the 
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spins diffuse much faster than in LSVs with Py/MgO/Ag junctions, reflecting the spatial 

distribution of chemical potential affected by the type of junctions.  

Moreover, we demonstrate the LSVs with dual injectors enable to detect a highly 

coherent spin precession over a distance of 10 m with keeping spin accumulation vector 

in plane. We show the phase coherency in precession is improved with an increase of the 

channel length. The coherency in the spin precession shows a universal behavior as a 

function of the normalized separation between the injector and the detector in material-

independent fashion for metals and semiconductors including graphene. 

The thesis presents a systematic study on the spin dependent transport in the 

metallic devices. The thesis consists of three complimentary studies, the efficient non-local 

spin injection (the effect of the junction and the device structure), the spin relaxation 

mechanism (intrinsic properties: phonon contribution and the effect of the electronic 

structure), and the collective spin precession (the characterization of the spin transport 

properties and the modulation), which are deeply related each other. The in-depth 

understandings of lateral spin transport could be base on the future physics of spintronics 

and new technological applications based on pure spin current. 
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Chapter 1 

Introduction 

1.1 Spintronics 

Spintronics has explored spin-related phenomena such as giant magneto-resistance, 

tunneling magneto-resistance and spin transfer torque, which are caused by an interaction 

between spins of itinerant s(p) electrons and localized d electrons [1]. Recently, spin 

current is becoming increasingly important not only in traditional magnetic metals but also 

in the wide variety of materials [2, 3]. Spin Hall effect, which gives direct response of the 

spin dependent scatterings, was electrically detected by injecting spin currents into metals, 

semiconductors and even oxides [4-7]. Moreover, spin current was utilized to manipulate 

the static and dynamic properties of magnetization in nanostructures and microstructure 

via spin-transfer-torque [8-14].  

  

1.2 Motivation 

Pure spin current, a flow of spins without charge current, is different from the 

conventional spin-polarized current as schematically shown in Fig. 1.1 [3]. The pure spin 

current bridges the conventional charge based transport phenomena and the physics in 

magnetism such as a spin-transfer torque, s-d interaction etc. and thus is the key concept in 

spintronics. One of excellent techniques to generate the pure spin current is non-local spin 

injection, as shown in Fig. 1.2(b). When the spin-polarized current in ferromagnet (FM) is 

injected into non-magnet (NM), spins are accumulated in the vicinity of the FM/NM 

interface. The accumulated spins diffuse in the NM, and thus the spin accumulation is 

formed in the place where no charge current is present. 
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Non-local spin injection was first demonstrated in 1985 using micro-scale devices 

which consist of a 50-µm-thick Al bar with ferromagnetic junctions [15]. This experiment 

yielded a tiny spin accumulation signal of a few tens of pico-volts. The experiment was 

revisited in 2001 using nano-scaled lateral spin valves (LSVs) [16]. This brought about an 

enhanced signal of about one micro-volt at room temperature, which spurred intensive 

research efforts in non-local LSVs for spintronic device applications. 

In order to boost spintronic research and device applications, the solid 

understanding of transport properties of spin current is required. In particular, the efficient 

Figure 1.1: Schematics of three types of flow of electrons. Charge current: In the conventional NM, 
the electrons with up or down spin flow in one direction. The net flow of spin angular momentum is
zero. Spin-polarized current: In the FM, since the density of states at the Fermi surface for the spins
is different, the current density is different. As a result, both flows of charge and spin are observed.
Pure spin current: when spins are injected into the NM, the non-equilibrium spin state, spin 
accumulation is induced. Pure spin current is flowing along the slope of the spin accumulation and 
defined as the currents in opposite direction with the same density for up and down spin. The net flow
of spin angular momentum is nonzero. The term “spin current” is used as the same meaning of the 
pure spin current. The term “spin polarized current” has same meaning with the sum of the (pure) spin
current and the charge current. 
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generation of the spin current is indispensable not only for the device application but also 

to characterize the static and dynamic transport properties of spin current. Previous report 

suggested that the spin injection was not efficiently performed in the sense that the spin 

polarization of the injected current in non-magnetic (NM) material is much smaller than 

the one in injector FM, the so-called spin-resistance mismatch issue [17-19]. The efficient 

spin injection was so far theoretically studied [18, 19] and the junction properties are 

expected to be important. In this study the spin injection is performed in various junctions 

and the (spin) resistance mismatch issues is detailed using the spin diffusion equation. 

Transport properties of pure spin current are strongly dependent on NM materials 

[20]. So far, the spin relaxation mechanism in NM was studied by means of conduction 

electron spin resonance etc.[20] and the sample dimensions were limited to bulk. Spin 

relaxation in NM nanowire, of which understanding is required by the emergent 

 
Figure 1.2: (a) Lateral spin  valve structure (b) schematic of non-local  spin injection 
technique Spin accumulation  is induced by injecting spin-polarized current  from FM into NM
(N, N : spin-dependent density of states, E : energy. : Fermi energy). Spin accumulation and spin 
current, a flow along the slope of the spin accumulation, are diffusive and thus they appear even in the
place where the charge current is not applied. 
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development in the spintronic devices, can be studied with LSV by characterizing transport 

properties of spin current. Since the spin-orbit interaction plays an important role, we 

studied the spin transport and relaxation mechanisms of Mg as a light metal as well as Ag 

as a “standard” NM metal. Since the LSV consists of nano-scaled hybrid FM/NM structure, 

the performance (quality) of the device strongly depends on the fabrication process and 

experimental conditions. The intrinsic and extrinsic properties of the spin transport and 

relaxation in the NM nanowire are separated by analyzing the temperature dependent spin 

relaxation process, which results in the characteristic values of the spin-flip probability in 

consistent with other techniques such as CESR. 

In the last part, the thesis is devoted to the collective precession of the pure spin 

current in lateral spin valves, so-called Hanle effect [15, 21]. In ballistic spin transport, 

spins can coherently rotate at a Larmor frequency proportional to the applied perpendicular 

magnetic field. This allows us to control the direction of the spins in the channel and to 

manipulate the output signal of LSVs by adjusting an effective external parameter such as 

the Rashba field tunable via a gate voltage. This scheme realizes an active spin device such 

as the spin-transistor [22]. In contrast, in a diffusive pure spin current in NMs, the 

precession causes dephasing, and decreases drastically the spin accumulation. Therefore 

the understandings of dynamic transport properties of spin current is indispensable. 

In the thesis, we demonstrate the LSVs with dual injectors enable to detect a highly 

coherent spin precession over a long-distance. The phase coherency in precession is 

detailed and the material-independent properties of diffusive spin current is extracted. 

Moreover, the spin absorption effect, detailed as the spin-resistance mismatch in the first 

part (chapter 4) is found to affect dynamic transport properties of spin current. We have 

successfully formulated the Hanle effect for the LSVs with anisotropic spin absorption for 

the transverse and longitudinal components of the spin polarization in the spin current 
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relative to the detector magnetization-direction, which enables to characterize intrinsic spin 

transport properties even with the spin absorption effect. 

 

1.3 Outline 

The thesis consist of six chapters. Chapter 1 describes the general introduction and 

the motivation of the thesis. Chapter 2 summarizes the theory of spin transport from the 

fundamental aspect to the practical formula. Chapter 3 briefly explains the principle and 

the procedure of the fabrication as well as the measurement techniques.  

Chapter 4 describes the enhancement of the spin accumulation with MgO inserted 

FM/NM junctions. Hundred-fold spin accumulation was realized. Spin injection 

characteristic was performed and analyzed using the spin diffusion model and is discussed 

with (spin) resistance mismatch issue. The extended structure of LSV was also studied and 

shown to enable to enhance the spin accumulation by a factor of four with a proper 

magnetic configuration.  

Chapter 5 focuses on the mechanism of spin relaxation. Temperature variation of 

the spin transport properties of Ag or Mg-based LSV was detailed. The phonon 

contribution was determined and found to be well described by the Elliott-Yafet 

mechanism. Scaled plot (Monod-Benue plot) was revisited. The spin relaxation in Mg was 

found to be affected not only by spin-orbit interaction and but also by the electronic 

structure. 

 Chapter 6 describes Hanle effect in LSV. Long 10 m collective spin precession 

was realized for Ag nanowires. The detailed study revealed that characteristics of collective 

spin precession can be summarized in material independent fashion in the scaled plot with 

normalized spin transport length. The impact of spin absorption effect was examined. The 
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dynamic spin transport properties was described in considering anisotropic spin absorption 

mechanism for longitudinal and transvers spins. 
  



 

7 

 

References for chapter 1 

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, 
M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001). 
[2] I. Žutić, J. Fabian, and S. D. Sarma, Reviews of modern physics 76, 323 (2004). 
[3] C. Chappert, A. Fert, and F. N. Van Dau, Nature materials 6, 813 (2007). 
[4] S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006). 
[5] X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. 
D. Flexner, C. J. Palmstrøm, and P. A. Crowell, Nature Physics 3, 197 (2007). 
[6] M. Morota, Y. Niimi, K. Ohnishi, D. H. Wei, T. Tanaka, H. Kontani, T. Kimura, 
and Y. Otani, Physical Review B 83, 174405 (2011). 
[7] K. Fujiwara, Y. Fukuma, J. Matsuno, H. Idzuchi, Y. Niimi, Y. Otani, and H. 
Takagi, Nature Communications 4, 2893 (2013). 
[8] T. Kimura, Y. Otani, and J. Hamrle, Physical Review Letters 96, 037201 (2006). 
[9] T. Yang, T. Kimura, and Y. Otani, Nature Physics 4, 851 (2008). 
[10] J. Z. Sun et al., Applied Physics Letters 95, 083506 (2009). 
[11] D. Ilgaz et al., Physical Review Letters 105, 076601 (2010). 
[12] L. Liu, C. F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Science 
336, 555 (2012). 
[13] Y. Kajiwara et al., Nature 464, 262 (2010). 
[14] L. Liu, T. Moriyama, D. C. Ralph, and R. A. Buhrman, Physical Review Letters 
106 (2011). 
[15] M. Johnson and R. H. Silsbee, Physical Review Letters 55, 1790 (1985). 
[16] F. Jedema, M. Nijboer, A. T. Filip, and B. J. van Wees, Physical Review B 67, 
085319 (2003). 
[17] A. T. Filip, B. H. Hoving, F. J. Jedema, B. J. van Wees, B. Dutta, and S. Borghs, 
Physical Review B 62, 9996 (2000). 
[18] E. I. Rashba, Physical Review B 62, R16267 (2000). 
[19] A. Fert and H. Jaffrès, Physical Review B 64, 184420 (2001). 
[20] J. Bass and W. P. Pratt, Journal of Physics: Condensed Matter 19, 183201 (2007). 
[21] F. Jedema, H. Heersche, A. T. Filip, J. Baselmans, and B. J. van Wees, Nature 
416, 713 (2002). 
[22] S. Datta and B. Das, Applied Physics Letters 56, 665 (1990). 
 
  



 

8 

 

 

Chapter 2 

Theory of spin transport 

  

2.1 Spin diffusion model 

2.1.1 Two current model and spin-polarized current 

In order to describe the transport phenomena in ferromagnet(FM), Mott proposed 

two current model [1]. It assumes two conduction channels in which electrons with spin in 

parallel () and antiparallel () to the magnetization. In FM, the density of state of majority 

spin on Fermi surface is larger than that of minority spin. Therefore, electrical 

conductivities for each spin, , hold the relation  > Hence the current density of 

each channel is different and the total current is called as spin-polarized current (Fig. 1.1). 

The equivalent circuit with a current application to FM is shown in Fig. 2.1 and thus 

 

F

F

/

/ ,

I V R

I V R





 



 

 

 
 (2.1)  

where the spin polarization of FM PF is defined as PF and I (I) are 

the current with spin  The current in each channel is 

 
Figure 2.1: Two current model. 
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2.1.2 Current and electro chemical potential 

The current density j in the channel  is written with the drift term and the diffusion 

term which is characterized by non-equilibrium electron density n

 

 ,eD n      j E  (2.3) 

where  , D and E are the conductivity, the diffusion constant of each spin channel , 

and the electric field, respectively. According to Einstein relation = e2ND and 

nN one obtains 

 

 F

[ ]
( )

[ ]

n
e

e N

e
e

 







 


  


   

   

j

 (2.4) 

where e and are the electrical potential and the shift in the chemical potential of carriers 

from its equilibrium value. Therefore, current density is expressed by the electro chemical 

potential  = ee+  

 .
e


 
   j  (2.5) 

2.1.3 Spin diffusion equation 

The continuity equations for charge and spin in the steady states are 
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( ) 0

( ) .
n n

e e
 
 
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 

 

   

     

j j

j j
 (2.6) 

Note that js  j - j is spin current density. By combining it with eqns.(2.3)-(2.5) and the 

detail balanced formula N= N where ' is the scattering time of an electron 

from spin state  to ’, one obtains [2-6] 

 
2

2 2
sf

( ) 0

( ) ( ),

   

    
   


   

  

   
 (2.7) 

with 

 sf sf ,D   (2.8) 

where sf and D are the spin diffusion length and the diffusion constant. To derive eqn.(2.7),  

1 1 1 1 1 1
sf ( ) / 2, ( )( )D N D N D N N       

             is used. 

2.1.4 Spin accumulation and spin absorption 

As described in chapter 1, the current application between FM and non-magnet 

(NM) induces the different electro chemical potentials near the interface depending on the 

spin channel. This difference of spin-dependent electro chemical potential is called as spin 

accumulation  = ( – ). According to eqn.(2.7),  obeys 

 

 2 2
sf .     (2.9) 

 decreases with distance, and its characteristic length is called as spin diffusion length. 

The typical spin diffusion lengths are about several nanometers to several micrometers for 

non-magnetic(NM) materials and several nanometers to tens of nanometers for 
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ferromagnetic(FM) materials [7]. From eqn.(2.5), the relation between spin accumulation 

and spin current is [8] 

 N .
2sj e

     (2.10) 

Note = in NM. 

It is convenient to use the spin-resistance RN(F) ≡ sf/A where A is the cross-

sectional area of the spin current [4, 9] and  is the resistivity, to characterize the diffusion 

properties of spin accumulation (In this thesis we use this notation instead of the spin-

resistance RF = sf /A /(1-PF
2) where PF is the spin polarization for FM). The subscripts of 

N and F represent NM and FM, respectively. We consider the one dimensional spin 

diffusion model where spin current is injected at x = 0 and decays at infinity. In this case, 

the solution of eqn.(2.9) is sfexp( | | / )x    and according to eqn.(2.10)  

 s s
N

/ 2
/ .

e
I j A

R


   (2.11) 

For FM, eqn.(2.11) holds with the corrected factor of (1-PF
2), i.e., IS=/(2eRF/(1-PF

2)). It 

means that the spin-resistance is the measure of how much current is flowing by a spin 

accumulation. Spin-resistance also characterize spin absorption, effect which will be 

described in the next section. 

 

2.1.5 Generation of spin accumulation 

In order to clarify the feature of the generation of the spin accumulation, eqn.(2.7) 

is solved in the geometry of the single FN/NM junction shown in Fig. 2.2(a). Here, no 

contact resistance and no spin-flip at the interface are assumed. Also, one dimensional 

model is used (assuming that the spin diffusion length of FM is much shorter than the 
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widths of FM and NM and the spin diffusion length of NM is much shorter than the width 

and the thickness of NM). The electro chemical potentials are expressed as 
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 



  (2.12) 

where (x) is the step function, indices F and N are ferromagnet and non-magnet, 

respectively, a1,b1,V1 is the constant determined by the boundary condition. a1 and b1  

correspond the generated spin accumulation in NM and FM, respectively and V1 is the 

potential difference between the FM and the NM. Spin current is Is  Ajs and according to 

eqn.(2.5) 

Figure 2.2: (a) Schematics of spin injection at FM/NM junction. (b) Spatial distribution of the electro
chemical potential in FM (c) and in NM. The curve is derived with the material parameters shown in
sec. 4.4. 
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where ex and ez is the unit vector in x and z direction. From eqn.(2.13), one finds that the 

effective spin polarization Peff decreases from “bare” FM spin polarization PF due to the 

back-flow 2(b1/IRF)exp(-z/F). 

 In order to obtain the electro chemical potentials for NM and FM, the coefficients 

a1, b1 and V1 are derived with eqn.(2.12) with using the conditions of the continuity of the 

electro chemical potential and its first order differential (that is, there is no interface 

resistance and the loss of spin) as 
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 (2.14) 

Figures 2.2(b) and (c) show the spatial distribution of the electro chemical potential. 

 Another important consequence of the consideration of junction is spin absorption 

effect. Suppose the NM wire sustaining the spin accumulation. Subsequent spin relaxation 

takes place in an additional material in Ohmic contact with the NM [9]. This is so-called 
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spin absorption (or spin sink effect). The spin accumulation and spin current is flowed in 

to the material with small spin-resistance. The spin-resistance is also the measure of how 

much spin current is absorbed into the attached material. Spin absorption into FM material 

provides an attractive means to manipulate the magnetization in magnetic nanostructures 

[10-13].  

2.1.6 Detection of spin accumulation 

Spin accumulation in NM is detected by spin-dependent electro-chemical potential. 

In the case of Ohmic junction, the electro chemical potential of FM and NM is continuous, 

and thus the spin accumulation appears in FM attached to the NM sustaining spin 

accumulation. Spin relaxation takes place in FM in the length-scale of the spin diffusion 

length as shown in Fig. 2.3(a). The relaxation depends on the relative direction of the spin 

polarization of injected spin and the magnetization of detection FM electrode because the 

density of states near the Fermi surface depends on the spin. Therefore the potential after 

the relaxation depends on the spin as shown in Fig. 2.3(a). When the magnetization of 

injector FM and detector FM is antiparallel, the detection voltage is different. Spin 

 
Figure 2.3: (a) Spatial distribution of electro chemical potential in FM detector (I = 1 mA). (c) 
Configuration of non-local spin valve measurement and spin valve signal. Magnetic field is applied in
parallel to the FM wires. Two distinct output voltages VP and VAP are observed for parallel and 
antiparallel magnetization states between injector and detector FMs when the switching field of FM
wires are different. 
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polarization of FM in most materials are less than 100 %, the detection voltage is smaller 

than the spin accumulation in NM. Another case of resistive junction for the detection of 

spin accumulation is described in sec. 2.1.8. 

2.1.7 Lateral spin valve 

The generation and detection of spin accumulation is possible by using lateral spin 

valve (LSV) which consists of at least two FM wires bridged by NM wires. The two FM 

wires have different switching fields. Therefore, by sweeping the external magnetic field, 

the magnetization states changes from parallel  Antiparallel  Parallel  Antiparallel 

 Parallel, and two distinct output voltages are observed as shown in Fig. 2.3(c). Detection 

voltage V is proportional to the injected current I [2], and V/I is called as non-local 

resistance. Especially, the difference of the voltages V ≡ (VP-VAP) and its normalized value 

RS ≡ V/I are called as spin accumulation signal (voltage) and spin signal, respectively 

and used as performance index of the LSV. 

 

2.1.8 Formula for Spin signal (Takahashi-Maekawa formula) 

Spin signal RS can be obtained by using spin diffusion equation. In similar to sec. 

2.1.5, spatial distribution of the electro chemical potential is derived by eqn.(2.7). By taking 

account of the contact resistance, the boundary conditions are 

 

 I F N Boundary( ) | ,jeI G       (2.15) 

where GIj

is the conductivity of the j-th interface (junction) for spin channel . One 

obtains spin signal as [2] 
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

  (2.16) 

where PFj is the spin polarization of the j-th FM, RFj is the spin-resistance of j-th FM. 

I I1 /j jR G I I I( )j j jG G G   is the interface resistance (conductance) of j-th junction, 

I I I I I( ) / ( )j j j j jP G G G G      is the interfacial spin polarization and L is the separation 

between the injector and the detector. This formula includes the effect of “spin-resistance 

mismatch” (will be detailed in the section 2.1.9). When RI >> RF and RN, 

 N I1 I2S
N/

.
LR R P P e     (2.16b) 

The principle of the detection of spin accumulation for resistive junction (including 

magnetic tunneling junction) is as follows. The spin current is absorbed into the junction 

according to eqn.(2.15). 1  GIj

is different but | |I is same for the spin channels. 

Therefore the decrease of the electro chemical potentials at the junction, 

F N Boundary| ( ) | |    are different for the channels and the spin accumulation is detected via 

resistive junctions with a finite junction spin-polarization. 

 

                                                 
1 For the resistive junction, the absorbed spin current is usually much smaller than one for Ohmic 
junction. 
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2.1.9 Spin-resistance mismatch, the effect of the interface on the generation 

and the detection of spin accumulation 

In this section, we discuss the effect of the junction on the generation and the 

detection of the spin accumulation. As discussed in sec. 2.1.4, spin injection accompanies 

back-flow of spin current, which effectively reduces spin injection efficiency IS/I from the 

ideal value of PF. The back-flow is induced because the spin-resistance of FM material 

(e.g. Py, Co) is much smaller than that of NM material (e.g. Ag, Cu) [7], in which condition 

the spin absorption from NM to FM takes place. From the spin diffusion equation, one 

obtains spin current near the injector 

 

F F
2

F N
S

F
2

F N

2
1

.
2

1
1

P R
P R

j j
R

P R







 (2.17) 

Figure 2.4(a) shows the spin injection efficiency IS/I at the injector (x = 0, z = 0) as a 

function of the ratio of spin-resistance for FM to that for NM. The spin diffusion length of 

FM is one-three orders of magnitude smaller [7]. In the typical case of RF/RN ~ 0.1, it is 

clear that only a little part of spin is injected into NM. 

 
Figure 2.4: (a) Spin injection efficiency as a function of the ratio of spin-resistances for FM and NM. 
(b) The effect of spin absorption on the spatial distribution of the spin accumulation in NM. RF/RN=0.1 
and I = 1 mA. 
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 Moreover, the spin-resistance mismatch affects the detection property of spin 

accumulation as shown in Fig. 2.4(b): the spin accumulation of NM is decreased by the 

spin absorption effect at the detector. 

 Historically, the obstacle of the spin injection from FM into NM semiconductor is 

reported as the difference of conductivity mismatch N << F [14]. As for the spin injection 

into NM metal, the conductivity matches N > F, and the detection itself was reported in 

1985 [15] although the efficient spin injection was hampered. Therefore the issue should 

be called as probably “spin-resistance” mismatch. After the conductivity mismatch was 

reported [14], the use of the tunnel junction [16] and the spin-polarized layer with the 

appropriate junction resistance [17] were theoretically proposed. The injection efficiency 

will improve by the effect of the interface under the condition that the junction resistance 

is comparable or higher than the spin-resistance of NM, which is attributed to the change 

of the spatial distribution of the spin current. In the previous study for the effect of the 

junction in spin injection efficiency, people mainly focused on the spin injection into NM 

semiconductor. The enhancement of the spin injection/detection efficiency was expected 

even for the lateral spin valve consisting of NM metal and the efficient spin injection is 

reported by using high resistance tunnel burrier [18]. However, the injection efficiency at 

the finite bias (hot electron states) [19] was strongly reduced and the bias current was 

limited due to the joule heating. Therefore the spin accumulation in the previous studies 

was up to ~ 1 V [19-21]. On the other hand, according to the theoretical considerations 

mentioned above, the required interface resistance is 2-3 orders of magnitude smaller than 

the conventional high resistance magnetic tunnel junctions. Hence the enhancement of the 

spin accumulation is expected in the appropriate FM/NM junctions. 
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2.1.10 Spin valve signal in lateral spin valve with dual injector 

LSV has various extended structure such as multi-terminal terminal geometry [22], 

which, enables to enhance spin accumulation compared with the single injector lateral spin 

valve (SLSV) which consists of two FM wires bridged by a NM wire. 

In order to enhance spin accumulation, there are three factors we need to consider. 

One is the spin relaxation volume. Since the spin accumulation is diffusive, the smaller 

relaxation volume is better to enhance spin accumulation. Second is the number of the 

injectors. The larger number of the injector increases the source of spin currents if we 

control the directions of the magnetizations and current to obtain the constructive effect. 

Last is the spin absorption effect which could decrease the spin accumulation just by adding 

the FM electrode, which competes the enhancement of spin accumulation by an increase 

of the source of spin current.  

Dual injector LSV (DLSV) with spin-polarized interface layer enables to enhance 

spin accumulation. As shown in Fig. 2.5, a DLSV consists of three FM wires bridged by a 

NM wire. By cutting the edge of a NM wire at the injector, the unnecessary spin relaxation 

volume is removed. The measurement geometry is shown in Fig. 2.5. Spin absorption effect 

will examine as follows.  

The procedure to obtain the expression for spin accumulation in DLSV is same with 

SLSV. The electro chemical potential  of the N wire in DLSV is N N N( )x    , 

where  N N N/eI A x   for 0x  , N 0   for 0x  ,       for up (down) spin, 

 

 
Figure 2.5: Schematic of dual injector LSV. 
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12 N N N/ / /
N 1 2 3

x d x x La e a e a e          , a1, a2 and a3 are the coefficient determining the 

electro chemical potential shifts due to the spin injection/absorption from FM1, FM2 and 

FM3, respectively, d12 and L are the center-center separation between FM1-FM2 and FM2-

FM3, respectively. The spin diffusion eqn.(2.7) with the boundary conditions for DLSV 

yields [23] 
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 3 I3 I3 F3 F3 3( ) ,eV P r P r a       (2.19) 

where V3 is the detection voltage at the detector FM3, FM1 FM3
13cos  e e  and 

FM2 FM3
23cos  e e  with the unit vector FMje  in the direction of the magnetization, 

2
F F F N[2 / (1 )] /j j jr P R R   and 2

I I I N[2 / (1 )] /j j jr P R R   are the normalized spin-resistance 

of FM and the normalized interface resistance, respectively. The detected spin signal V3/I 

is calculated as 
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It turns out that the spin accumulation is maximized when the magnetization configuration 

of the injectors F1-F2 is antiparallel. The overall change of the spin valve signal RS in the 

in-plane magnetic field dependence of V3/I is expressed as 
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Assuming that all the electrodes and their interface are identical, eqn.(2.21) is 

expressed as 
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  (2.22) 

When d12 >>N, eqn.(2.22) reduces to the previous expression of RS for the 

conventional SLSV (2.16), 
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The enhancement factor of DLSV compared to SLSV is defined as 
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 increases monotonically as rI + rF increases and shows a maximum max  1+ exp(-

2d12/N) + 2exp(-d12/N) for rI + rF >> 1.  

When the interface resistance RI is larger enough to prevent the spin absorption 

effect into FM from N (RI >> RN), RS is expressed as 

 N/2
S max I N .LR P R e      (2.25) 

The spin signal is enhanced by a factor of max compared to SLSV where the 1+ exp(-

2d12/N) and 2exp(-d12/N) in max are from spin injections from FM2 and FM1, 

respectively. The first term of 1 represents the direct diffusive spin flow to FM3 from FM2, 

and the next term of exp(-2d12/N) represents the flow to FM3 from FM2 via the reflection 

at the edge of the N wire near FM1. The last term of 2exp(-d12/N) is related to spins 

injected from FM1. 

Fig. 2.6 shows simulated enhancement factor for various spin-resistance mismatch 

factor r*  rI+rF as a function of normalized separation d12/. The experimental 

verification of the enhancement of spin accumulation and the effect of spin absorption in 

DLSV is described in sec. 4.5 and refs. [23, 24]. 

 
Figure 2.6: The enhancement factor of various spin-resistance mismatch factor r*  rI+rF from with 
spin absorption regime (r*=0.1) to without spin absorption regime (r*=100) as a function of normalized 
separation d12/. 
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2.2 Hanle effect 

2.2.1 Introduction 

When the magnetic field is applied perpendicular to the spin orientation, Larmor 

spin precession is induced. The collective spin precession of spin current, so-called Hanle 

effect is one of the most effective methods to characterize dynamic properties of the pure 

spin current (Fig. 2.7) [25, 26]. This section outlines Hanle effect in LSV and shows the 

explicit expression to deduce spin transport parameters. 

2.2.2 Transit time distribution 

Hanle effect is so far expressed by two styles. One is the use of transit-time 

distribution [26] (sec. 2.2.2) and another is the Bloch-Torrey equation (sec 2.2.3) [27]. The 

equivalence will be shown in sec. 2.2.3. 

The collective spin precession can be characterized by the distribution of the transit-

time P(t) which determines the angle of precession when the Larmor frequency is given. 

 
Figure 2.7: Precession of accumulated spins in NM in a lateral spin valve in the presence of 
perpendicular magnetic field B where the spin accumulation (spin density) S rotates during the travel 
of distance L between the injector FM1 and the detector FM2. The projection of S (Sy) along the 
magnetization of FM2 is detected by FM2 as output voltage V. 
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P(t) is the probability of the spin reached at the detector position x = L after the spin is 

injected at the time t = 0, and expressed as 

 
2

N sfN

1
( ) exp .

44

L t
P t

D tD t 
 

   
 

  (2.26) 

where DN and sf are the diffusion constant of NM and the spin relaxation time, respectively. 

P(t) in the typical parameters is shown in Fig. 2.8(a). With an increase of the time t, spin 

relaxation pronounces and hence the P(t) drastically decreases. 

The non-local resistance of a response of the spin precession, Hanle effect, is 

expressed as 

 

 L0
/ ( )cos( ),V I dtP t t


    (2.27) 

where L = eB is the Larmor frequency, e B2 /    is the gyromagnetic ratio, B is the 

Bohr magneton, and   is the Planck constant. Figure 2.8(b) shows the eqn.(2.26) for 

different L and the typical signal of Hanle effect. The decoherence of spin precession 

characterizes the shape of Hanle signal.  

Figure 2.8: (a) The transit-time distribution of spin current for LSV with Py/MgO/Ag junctions. (b)
The transit-time distribution of spin current for LSV with Py/MgO/Ag junctions. Red, blue and green
lines show P(t)cos(Lt) with the magnetic field in which 0dtP(t)cos(Lt) shows maximum (B=0), 
zero (B=B/2) and minimum (B=B) and correspond to 0, /2 and  rotation, respectively. (c) Hanle 
signal for LSV with dual injector Py/MgO/Ag junctions with L = 6 m. Red, Blue and Green dots are 
proportional to the colored area in (b). 
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The proportionality factor of eqn.(2.26) is given as follows. Right hand of 

eqn.(2.26) is 

sf sf
L L

sf sf sf sfL

1 | | | |
Re exp 1 exp ( 0),

2 21

x x
i t

i t

  
   

    
             

 (2.28) 

where =(DNsf)1/2 is used.2 By comparing with eqn.(2.16b), one obtains [26] 

 

 2
I L2 0

F N

1
/ ( )cos( ).

( )
V I P dtP t t

e N A





    (2.29) 

This is thus equivalent to the complex representation of [28] 

  I1 I2 N N

1
Re / exp( / ) .

2

V
P P R L

I         (2.30) 

where N

L sf1 i



 




.  (2.31) 

2.2.3 Bloch-Torrey equation 

By using Bloch-Torrey equations, one can explicitly link the Hanle effect with the 

“equation of motion” for non-equilibrium magnetization mN [29, 30]. Bloch-Torrey 

equation is 

 

   2N N
N N N

sf

( ) ( ),e D
t





     


m m

m r B m r   (2.32) 

where each term of eqn.(2.32) on the right-hand side is spin precession, spin relaxation and 

spin diffusion, respectively.  

                                                 
2 The author acknowledges the suggestion of Dr. Takahashi. See table of integrals series and product 
by Gradshteyn & Ryzhik 3.325 pp. 307 
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 At first, the simplest case, the Hanle effect without spin absorption is considered. 

Bloch-Torrey equation under the spin injection in the stationary state is expressed as [27, 

28] 

 

2
L N

sf

2 e m
L N

sf N

0 ,

0 ( ).
2

x
y x

y
x y

m
m D m

m I
m D m x

e A




 


     

     



  (2.33) 

where Im is the injection spin current, x is the NM wire direction and y is the spin 

polarization of the injection spin current. The magnetization is therefore expressed with 

complex representation as 

 ( ) ( ) ( ),y xm x m x im x    (2.34) 

where 

 e m

N N

1
exp( | | / ),

2

I
m x

e D A  
   
   (2.35) 

with N

L sf

.
1 i



 




  (2.31) 

It is convenient to introduce a complex spin accumulation N B F( ) ( ) / [2 ( )]x m x N    , 

the real part of which relates spin accumulation 

 

 sfm
N

F N N N

exp( | | / ) ,
( ) 2

I
x

eN A



 

 
  

 
  

 
   (2.36) 

which gives left hand side of eqn.(2.28) with Im = PII, NRe[ ( )] /V x e   and gives the 

formula for Hanle signal with resistive junctions as eqn.(2.29). Thus the styles of the 

transit-time distribution and the Bloch-Torrey equation are consistent. 
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2.2.4 Hanle effect with spin absorption 

In order to describe the Hanle effect with spin absorption, we start from Bloch-

Torrey equation in the form of 

 

  2N N
N N N

sf

e s1 e s1 e s2 e s2

N N N N

( ) ( )

( ) ( ) ( ) ( ),
2 2 2 2

e

x y x y

x y x y

D
t

I I I I
x x x L x L

e A e A e A e A




      


     



     

m m
m r B m r

e e e e
   

 

  (2.37) 

where the last four terms represent the effect of spin injection/detection. The general 

solution of eqn.(2.37) is given by eqns.(2.33) and (2.35). The boundary conditions for 

transverse and longitudinal spins are 

 

, N F
J I -th junction

, , N F
S,J J J -th junction,

( ) ( )
Re | ,

( ) ( )
2 Im | ,

x k
k k k

y y y k
k k k kk

x z
I G

e e

x z
I I I G

e e

 
   

  


  
     


        

 

 
  (2.38) 

where IJk
x, and IJk

y, are the current with the spin polarization  (=,) in x (y) direction, 

IS,Jk
y is the transverse spin current, F, (z)k is the complex spin accumulation of k-th FM 

and G,k is the real part of the spin mixing conductance of k-th junction. Eqn.(2.38) reduces 

to eqn.(2.15) when the transverse spin component (all the imaginary part) is zero. 

 After the long algebra, one arrives at 
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  (2.39) 

with the matrix 
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  (2.40) 

where N/     and 

 I F
2 2

I N F N N I

2 2 1
,      ,       ( 1,2) .

1 1
k k

k k
k k k k

R R
r r k

P R p R R A G
 

 
      

||   (2.41) 

The boundary conditions also lead to the non-local voltage V due to the spin 

accumulation detected by F2, 

 F2 F2 I2 I2
N 22 2

F2 N I2 N

,
1 1

y
s

P R P R
V R I

P R P R

 
     

  (2.42) 

where the minus sign indicates the absorption of spin current by F2. Using the solution of 

the matrix eqn.(2.39), one obtains the non-local resistance 

 F1 F1 I1 I1 F2 F2 I2 I2 12
N 2 2 2 2

F1 N I1 N F2 N I2 N

2 ,
ˆ1 1 1 1 det( )

V P R P R P R P R C
R

I P R P R P R P R X

  
          

  (2.43) 

where   ˆdet( )X is the determinant of the matrix X̂ in eqn.(2.39) and C12 is the (1, 2) 

component of the cofactors of X̂ , 
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  (2.44) 
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When junctions 1 and 2 are tunnel junctions I N F( , )k kR R R , eqn.(2.43) reduces to 

eqn.(2.30) 

  I1 I2 N N

1
Re / exp( / ) .

2

V
P P R L

I      
    (2.45) 

In the absence of perpendicular magnetic field, eqn.(2.43) reduces to the previous result of 

eqn.(2.16). 

2.2.5 Magnetization process 

In the perpendicular magnetic field, FM changes its direction of magnetization. 

This magnetization process affect Hanle signal because the perpendicular magnetic field 

in Hanle measurement affect the direction of the magnetizations of injector and detector. 

In this section we shortly describe the magnetization process and its effect on Hanle signal. 

The magnetization process of FM is determined by the crystal anisotropy and the 

shape anisotropy [31]. In order to study Hanle effect, FM wire of LSV is designed to make 

the magnetization state of FM uniform magnetization. In such a case, the magnetization 

under the external magnetic field is described by the Stoner-Wohlfarth model [32, 33]. The 

direction of the magnetization is determined to minimize the total energy E, which consists 

of the demagnetizing energy ED and the energy associated with the applied field EH. In the 

case of the ellipsoid, 

 D H ,E E E    (2.46) 

 2 2 2 2
D 0 1 1 2 2 3 3

1
( ),

2
E I N N N         (2.47) 

 H 0 cos ,E HI     (2.48) 
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where I0 is the intensity of the magnetization, 2 2 2
1 2 3, ,      are the direction of the cosines 

of I0 with respect to the principal axes. N1, N2, N3 are the demagnetization coefficients along 

these axes. We assume that the magnetization lie in the plane defined by the direction of 

the field and of the polar axis of the ellipsoid.3 In this plane let  be the angle between the 

polar axis and the positive direction of H ,  the angle between I0 and H, and the  the 

angle between the polar axis and I0, so that 

 .      (2.49) 

The eqn.(2.47) reduces to 

 2 2 2
D 0

1
( cos sin ),

2 a bE I N N     (2.50) 

where Nb = 2 – Na/2. Then the variable part of the total energy is expressed as 

 
1

cos 2( ) cos constant,
4

E h         (2.51) 

where h = I0H/(Nb-Na) . Now the magnetization process in LSV is considered. The magnetic 

field in perpendicular to the easy axis of the FM (=/2) and thus 

 
1

sin 2 cos constant.
4

E h       (2.52) 

 
1

cos2 sin 0.
2

E
h 




   


  (2.53) 

                                                 
3 This assumption is validated in sec.5 of [32]. For Hanle measurement, we do not need the proof of 
the general case. The applied field is fixed to the perpendicular to the cuboid nanowire. Thus the 
magnetization is in the plane defined by the field and the easy axis of the magnet. 
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As a consequence, typical magnetization process can be simulated by using the 

saturation field of Py of 1 T and the demagnetization coefficient of 0.7 for FM nanowire 

as shown in Fig. 2.9. 

The effect of the magnetization process on the spin accumulation can be described 

by considering the vector spin polarization PeFMi to y and z-axis and its projection as shown 

in Fig. 2.10 [23]. 

    Hanle FM1 FM2 Hanle FM1 FM2
S L S, , 0, , ,y y z z

V
R R

I
 e e e e e e e e      (2.54) 

with  Hanle FM1 FM2 2
S L I N N

1
( , , ) Re / exp( / ) ,

2
R a a P R L         (2.55) 

where aFMi is the projection of the unit vector of the magnetization of FMi eFMi on y- or z-

axis. Each term shows the contribution of the injected spin with the polarization of y-axis 

with spin precession and the injected spin with the polarization of z-axis without spin 

precession.  

 

 
Figure. 2.9: The direction of magnetization I0 as a function of the field applied B=0H. Data are 
calculated for Py. 
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2.2.6 Hanle effect in three terminal geometry 

In the metallic system, the spin relaxation time is smaller and the diffusion constant 

is higher compared to semiconductors. It requires higher magnetic field and hence the 

effect of the magnetization process is not negligible [23, 26, 33, 34]. In such a case, Hanle 

effect in multi-terminal structure is of benefit because the background signal due to the 

magnetization process is suppressed and the spin-precession signal is pronounced (sec. 6.3 

and Fig. 6.6 (b)). In general, the Hanle effect in the multiterminal geometry can be obtained 

by the scheme described by the sec. 2.2.4 with the magnetization process in sec. 2.2.5. 

Assuming that RI >> RN, the non-local resistance Hanle
SR  is calculated by using Bloch-

Torrey equation [23] 

 Hanle 2
S I 2 3N N

1 3 12 2 3 12

1
Re[ / exp( / ){cos cos

2
2cos cos exp( / ) cos cos exp( 2 / )}],

y y

y y y y

R R P L

d d

 

 

   

     

  

   
 (2.56) 

where cosyj = ey  eFMj. When the precession angle during the transport between FM1 and 

FM2 is negligiblly small, i.e., d12 << L, it is given by 

 
Figure 2.10: Spin precession and magnetization under perpendicular magnetic field Bz. The 
magnetization of FMs is tilted up toward the z axis and then the polarization P has nonzero z component 
Pz. The tilted spins injected into NM precess in the x-y plane. 
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 (2.57) 

In the antiparallel configuration between FM1 and FM2 with cosy1 = -cosy2, 

we obtain the simple expression, 

  Hanle 2max
S I 2 3N Ncos cos Re / exp( / ) .

2 y yR R P L 
          (2.58) 

2.3 Spin relaxation mechanism 

2.3.1 Introduction 

Spin relaxation mechanism in solid has been intensively studied for a long time not 

only for the fundamental interest but also for the spintronics applications. So far, three 

types of the spin relaxation mechanism has been found to be relevant for the conduction 

electrons: the Elliott-Yafet [35, 36], D’yakonov-Perel’ [37, 38] and Bir-Aronov-Pikus [39]. 

2.3.2 Elliott-Yafet mechanism 

In the Elliott-Yafet mechanism, the spin-orbit interaction (SOI) plays a key role. 

Firstly, we consider the simple case where Bloch states of different spins |+> and |-> (“up”- 

and “down”-) are subjected to the momentum scatterings such as phonon scattering, NM 

impurity scattering and grain boundary scattering. The spin relaxation time sf is inversely 

proportional to the scattering matrix as 1/sf  |<+|࣢|‐൐|2,	where	࣢	is	the	Hamiltonian.	

Therefore, the spin-independent scatterings alone do not induce spin relaxation. However, 

in real crystal, the SOI mixed the spin-“up” state and spin-“down” state. The SOI is usually 

much smaller than the typical band width E. Therefore, with taking the perturbative 
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approach, original “up” state becomes the admixture of the original “up” state and the little 

“down” state of the order of SOI/E where SOI is the spin-orbit splitting [35, 36]. That is, 

the “new” spin up-state |>  |+> + (SOI/E)|-> has non-zero transition probability to |> 

and the spin relaxation time is proportional to the momentum relaxation time e and 

inversely proportional to the square of the SOI in the first order. 

2.3.3 D’yakonov-Perel’ and Bir-Aronov-Pikus mechanism 

D’yakonov-Perel’ mechanism: in crystal that lacks of the inversion symmetry 

(such as the zinc-blend semiconductror) the SOI lifts the spin-degeneracy, that is, 

spin-up and spin-down electrons have different energies even when in the same 

momentum state. This is equivalent to having a momentum-dependent internal 

magnetic field B(k) which can induce spin flips through the interaction term B(k).S. 

The spin relaxation rate 1/sf is proportional to the momentum relaxation time e. 

Bir-Aronov-Pikus: spin relaxation mechanism is based on the electron-hole 

exchange interaction. This interaction depends on the spins of interacting electrons 

and act as an effective magnetic field. This is relevant only in the semiconductors with 

a significant overlap between electron and hole wave functions [40]. 

2.3.4 Effect of the electronic structure (spin hot spot) 

Spin relaxation mechanism in metal is established as the Elliott-Yafet 

mechanism [40, 41]. As is described in sec 2.3.2, spin relaxation time is proportional 

to the charge relaxation time and thus the temperature dependence of the spin 
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relaxation time was tested. Monod and Beuneu [42] catalogued the spin relaxation 

time for various materials (Cu, Ag, Au, Al, Mg, Be, Cs, K, Na, Rb and Pd) and found 

that the normalized spin relaxation time is at least three orders of the magnitude 

different for s-state metals and the others. Fabian and Das Sarma theoretically found 

out that the electronic structure stongly affects the strength of spin relaxation [43]. In 

particular, the polyvalent metals (Al, Pd, Mg, and Be) contains the region where the 

spin relaxation is abnormally fast. Such a region (“spin hot spot”) is near the Brillouin 

zone boundaries, special symmetry points, or lines of accidental degeneracy. 

Although such an area is small compared to the whole area, it affects the total spin 

relaxation time because the spin relaxation time is very short in the area. 
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Chapter 3 

 

Device fabrication and measurement technique 

 

3.1 Device fabrication 

The modern device-fabrication technique opens the way to study spin transport 

phenomena in the nanometer scale, which is shorter than that of the characteristic length. 

In this section, the principle and the procedure of fabrication of lateral spin valve (LSV) 

devices are shortly summarized. 

3.1.1 Steps of the fabrication procedure 

Samples were fabricated in the following steps, as shown in Fig. 3.1. Firstly, 3-5 

inches Si-substrates with SiO2 layer was cut into pieces. Next, Ti/Au electrodes were 

fabricated by using photo-lithography. Then, the metallic lateral spin valves were 

fabricated by e-beam lithography. After the evaporation and subsequent lift-off, annealing 

process (heat treatment) was performed. 

  
Figure 3.1: Steps of sample fabrication. 
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3.1.2 Photo-lithography 

Photo-lithography enables to fabricate a micro-meter scale resist-mask. The 

electrodes and a positioning mark for e-beam lithography were patterned by photo-

lithography. In this study, mask-less photo-lithography, D-light-DL1000RS Mask-less UV 

Lithography System where digital mirror devices control the position of laser, was used. 

The recipe is shown below 

(1) A Si substrate (with SiO2 layer) was cut into appropriate size, e.g. square 20 

mm on a side. 

(2) Cleaning of the substrate. After an ultrasonic cleaning with a high power in 

acetone for 10 minutes, it was dried with an air gun. Subsequently, the substrate 

was cleaned by an ultrasonic cleaning with a high power in IPA (isopropyl 

alcohol) and it was dried with an air gun. Ultraviolet cleaning was performed 

for 10 min to remove remaining organics on the surface. After all, it was 

inspected with eyes that dust does not remain. 

(3) Primer was coated. Primer (1,1,1,3,3,3,-Hexamethyldisilazane, C6H10NSi2, 

HDMS) was spin-coated at 500 rpm-5 sec, 5000 rpm-40 sec. 

(4) Soft bake by an oven for 5 min. 

(5) Resist was coated. Resist (AZ1500) was spin coated at 500 rpm-5 sec, 5000 

rpm-40 sec as a second layer. 

(6) Soft bake by oven at 80 C for 5 min. 

(7) Laser beam exposure (the typical energy is 90 mJ/mm2). 

(8) Development. Shaking the sample in a developer for 60 sec. Subsequently, the 

sample was rinsed by flowing pure water with shaken by hand for 

approximately 30 sec and was dried by air gun. 
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3.1.3 Electron beam lithography 

E-beam lithography enables to fabricate a nanometer scale resist-mask. Since 

minimum dimensions of the patterns were restricted by the wavelength of the source of the 

light, it enables to fabricate fine structures compared with photo-lithography. In this study, 

it was used to fabricate LSV (non-magnet (NM)/ferromagnet (FM) hybrid structure). 

In order to fabricate LSV without air exposure (in-situ), three-dimensional resists 

patterns were used, i.e., double or triple resist layers were formed on substrates and 

fabricate three-dimensional structure because the resists have different sensitivities to the 

e-beam as shown in Fig. 3.2. The thickness of the resistss were determined by a SEM 

observation of the structures after the evaporation. The first and second layers were 500-

nm-thick methyl-methacrylate (MMA) EL9 and 50-nm-thick polymethyl methacrylate 

(PMMA) 950A4, respectively. The recipe is shown below 

(1) A Si substrate with Ti/Au electrodes was cleaned. After an ultrasonic cleaning 

with a low power in acetone for 10 minutes, it was dried with an air gun. 

Subsequently, the substrate was cleaned by an ultrasonic cleaning with a low 

power in IPA for 10 minutes, and it was dried with an air gun. Ultraviolet 

cleaning was performed for 5 minutes to remove remaining organics on the 

surface. After all, it was inspected with eyes that dust does not remain. 

(2) MMA-EL9 resist was spin coated at slope-5 sec, 500 rpm-10 sec, 1500 rpm-90 

sec and slope-10 sec. 

(3) Soft bake. The sample was baked by oven at 180 C for 30 min or heated on a 

hot plate at 180 C for 90 sec. 

(4) PMMA-950A4 resist was spin coated in 500 rpm-5 sec, 5000 rpm-40 sec and 

slope-5 sec. 

(5) Soft bake by oven at 180 C for 30 min or on a hot plate at 180 C for 90 sec.  
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(6) Electron beam exposure. (typical dose time is 0.70 micro sec in 2.5 nm2 in the 

beam condition of the acceleration voltage of 100 kV and the beam current of 

100 pA) 

(7) Development. The sample is soaked in a developer for 30 sec. Subsequently, 

the sample was rinsed by IPA with shaken by hand for 60 sec and was dried by 

air gun. The developer was made by mixing MIBK (methyl isobutyl ketone) 

with IPA (volume ratio is 1:3). 

3.1.4 Deposition 

 Electrodes were e-beam evaporated after fabricating resist masks. 

Figure 3.2: Schematics of three-dimensional resist for shadow evaporation. Upper and lower cases 
show cubic diagram and cross-section diagram ultrasonic the projection on the plane shown in the 
upper case), respectively. (a) Exposure area of e-beam. (b) Resist structure after development. (c) 
Shadow evaporation of NiFe/MgO. The substrate was tilt from normal. (d) Evaporation of Ag at the 
angle normal to the substrate. (e) Device structure after removing the resists (lift-off). 
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3.1.4.1 Au electrode and positioning mark for e-beam lithography 

 5-nm-thick Ti and (20-400)-nm-thick Au were evaporated. Note: if the total 

thickness is larger than the thickness of LSV, electrical disconnections were often observed 

after the heat treatment. 

3.1.4.2 Deposition for LSV 

(1) FM was evaporated at the angle of 45 degree from normal to the substrate. 

Evaporation rate was 0.4-0.5 Å/s and the thickness was 20 nm (28 nm should 

be displayed in thickness monitor which is placed normal). 

(2) MgO was evaporated at the same angle. LSVs with different MgO thickness 

were fabricated by using a moving shutter in the chamber. 

(3) Sample was transferred to another chamber for depositing NM. In order to 

prevent contaminations of the NM from FM, the chamber was separated from 

that for FM. Liquid nitrogen was flowed in the cooling pipe to cool the 

substrate. After 30 min, non-magnetic layer was evaporated at the angle normal 

to the substrate. Typical thickness is 50 nm. 

(4) In order to protect the sample from oxidization, MgO layer was evaporated at 

the angle normal to the substrate. Typical thickness is 5 nm. 

 

3.1.5 Lift-off 

 After the deposition, unnecessary resists and layers were removed by soaking the 

sample in a remover. This process is called as lift-off. 
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(1) Au electrodes and positioning marks were soaked in acetone over 10 minutes. 

Subsequently, ultrasonic (power: low) was performed until the unnecessary part 

is removed (approximately for 30 sec). 

(2) Lateral spin valves were soaked in acetone over 10 minutes. Subsequently, 

some of the samples were shaken (typically for 8 hours). After that the samples 

were rinsed by IPA and dried with an air gun. Note: Especially for Ag and Mg 

nanowires, ultrasonic cleaning damaged necessary part and thus it was not used. 

For Mg, even a shaker was not used to prevent the damage. 

 

3.1.6 Heat treatment 

After the lift-off, heat treatment was performed in the atmosphere of 

N2(97.1%)+H2(2.9%) at 400 C in 40 min.  

 

3.2 Measurement techniques 

3.2.1 Wire bonding 

Samples were wire bonded by the bonder model 7476D (West bond Inc). Typical 

parameters for 200-nm-thick Au electrodes at room temperature4 were as follows. For Al 

bonding wire, Power(P) and Time(T) were of 250 and 30 ms, and 30 and 30 ms for first 

and second bond, respectively. For Au bonding wire, P and T were of 300 and 100 ms, and 

200 and 100 ms for first and second bond, respectively. 

                                                 
4 If the sample was heated (at typically 80C) bonding becomes easy but damages LSVs.  
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3.2.2 Hanle measurement 

Hanle measurement was performed by the vector magnet system (Suzuki shokan 

Ltd.) Two rotation axes are assembled in the system. Firstly, by using the sample rotation 

system, the sample plane (substrate) was aligned to be parallel to the rotation axis of the 

magnet5. Subsequently, by using the magnet rotation system, the non-local spin valve 

measurement at the 0 degree of magnet and the Hanle measurement at around 90 degree of 

magnet were performed. Figure 3.3 shows the magnet angle dependence of the Hanle 

signal. If the angle was deviated from the correct perpendicular direction, the magnetization 

of LSVs are switched probably due to the in-plane component of the magnetic field. 

Therefore, before the Hanle measurement was started the calibration was performed. 

                                                 
5 After the angle of LSV was calibrated by the eyes at room temperature, the sample rotation system 
cannot be used at low temperature.  

 
Figure 3.3: Hanle signal for different magnetic field direction. After the initialization (antiparallel state 
of injector-detector magnetization), the non-local resistance was measured. 
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3.2.3 Electrical measurement 

Electrical measurement was performed by using conventional current-bias lock-in 

technique (LI5640: NF corporation) or by a dc current source and nano-voltmeter (2182A: 

Keithley). Lock-in technique enables to detect tiny signal at a low frequency (79 Hz in this 

study). Therefore, it was used to detect the small signal such as Mg based LSVs. The DC 

measurement is not as good S/N as lock-in technique but enables to make duration time 

short. Thus, it is beneficial to apply high current. The electrode configurations of non-local 

resistance and the interface resistance are shown in the sec. 5.2.2 and sec. 5.3.2. 
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Chapter 4 

Enhanced spin accumulation in lateral spin valves 

 

4.1 Introduction 

Pure spin current is a flow of spin angular momentum with no accompanying 

charge current. Non-local spin injection in lateral spin valves (LSVs) has proven to be 

an effective method to generate the pure spin current IS flowing along the slope of the 

spin accumulation, which decays exponentially with a factor of exp(-d/sf) where d is 

the distance from the interface and sf is the spin diffusion length in the non-magnetic 

(NM) wire [1, 2]. Subsequent spin relaxation takes place in an additional ferromagnet 

(FM) in Ohmic contact with the NM wire sustaining the spin accumulation. This is so-

called spin absorption and provides an attractive means to manipulate the magnetization 

in magnetic nanostructures [3-6]. Therefore, it is more beneficial to develop a more 

efficient way to generate a large spin accumulation for advancement of spintronic 

devices using lateral geometry. However the amplitude of the voltage change VS 

between anitiparallel and parallel alignments of the magnetization of the two 

ferromagnetic (FM) wires detected at the second FM wire in LSVs typically of the order 

of 1 V. The non-local measurement involves no charge-current flows but spin 

accumulation in the vicinity of the detector. The spin accumulation is the difference in 

the electro chemical potential between majority and minority spins, that is, VS is the 

measurable physical quantity and also determines the magnitude of pure spin current 

absorbed into the detector FM. Therefore, efficient spin injection into the non-magnet 

(NM) from the FM, being proportional to the spin signal RS = VS/I, and high applied 
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current I are indispensable in realizing further enhancement of the spin accumulation 

[7-14]. 

In the first part of the Chapter 4, we report on the effect of the interface on the 

spin accumulation in metallic LSVs with Ni80Fe20 (Permalloy, Py)/MgO/Ag junctions. 

According to the spin-resistance mismatch model, the effect of the junction is expected 

to strongly affect the injection efficiency of spin current. The spin injection properties 

of various Py/MgO/Ag junctions was investigated and the low areal resistance around 

0.2 m2 of the interface MgO layer could effectively overcome the spin-resistance 

mismatch between Py and Ag and leads to significant enhancement of the spin 

accumulation. 

In the second part of the Chapter 4, we report on the optimized device structure 

for non-local spin injection using lateral geometry. Non-local spin injection was first 

demonstrated in 1985 using micro-scale devices which consist of a 50-µm-thick Al bar 

with FM junctions [15]. This experiment yielded a tiny spin accumulation signal of a 

few tens of pico-volts. The experiment was revisited in 2001 using nano-scaled LSVs 

[16]. This brought about an enhanced signal of about one micro-volt at room 

temperature (RT), which spurred intensive research efforts in non-local LSVs for 

spintronic device applications. When the I is applied across a FM/NM junction at the 

injector in LSVs, IS is injected from the FM to the NM and then diffuses toward the 

detector [2, 17, 18]. For the micro-scale NM, the injected spins diffuse in any direction 

and a little part of them can reach to the detector. In contrast, the spin diffusion is 

restricted along the NM wire in nano-scale LSVs because the cross sectional area is 

much smaller dimension than the spin diffusion length N. This reduces unwanted spin 

relaxation in the NM and thus the detected spin accumulation signal is dramatically 

improved [19]. In the light of this history, removing the spin relaxation volume is an 

effective scheme to enhance the spin accumulation generated in NM. Recently, Jaffrès 

et al. also theoretically pointed out that spin accumulation is enhanced by confined 
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geometries and mutiterinal structure [20]. In the section 4.5, we study the specially 

designed LSVs to enhance spin accumulation. 

 

4.2 The effect of MgO insertion in Py and Ag based LSVs 

4.2.1. Digest of device fabrication  

In this study, we used Py as FM, Ag as NM and MgO as an insertion layer. Py 

has small crystal magnetic anisotropy which makes it easy to control switching field by 

the shape of electrodes. Also, it shows strong oxidative resistance, which makes the 

fabrication procedure simple. Ag is good spin conductor because spin diffusion length 

is long [12], and interfacial spin polarization in Ag/FM interface is high [21]. MgO is 

chosen because FM/MgO/FM magnetic tunnel junction shows high spin polarization 

[22, 23].  

LSVs with clean Py/MgO/Ag junction were fabricated in-situ as detailed in the 

chapter 3. In order to keep clean interface, all Py, MgO and Ag layers were evaporated 

without air exposure. The SEM image after the heat treatment was shown in Fig. 4.1. 

The widths and thicknesses of wires were wAg = 160 nm, tAg = 50 nm, wPy = 140 nm, 

and tPy = 20 nm for Ag and Py, respectively. As shown in Fig. 4.1, the sample consists 

of three parts: a Ag layer, Py/MgO bilayer and Py/MgO/Ag trilayer. The center of the 

sample consists of two Py/MgO wires bridged by a NM Ag wire. The remaining wires 

and pads mainly consist of Py/MgO/Ag trilayer. The gap between Py/MgO/Ag trilayer 

and the Ag wire in the center was approximately 100 nm. Since the spin diffusion length 

of Py was 5 nm [24], 100 nm separation was enough to separate spin transport of LSV 

from the remaining parts.  
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4.3 Experimental result (before annealing) 

4.3.1 Thickness dependence of interfacial resistance 

Figure 4.2 shows the thickness dependence of interface resistance of 

Py/MgO/Ag junctions. In order to normalize the interface resistance by the dimensions, 

areal resistance RIA ≡ RIwAgwPy was used where RI is the junction resistance of 

 

Figure 4.1: Scanning electron microscope image (SEM) of fabricated lateral spin valve. 

 

Figure 4.2: MgO thickness dependence of RIA. Inset shows cross-sectional TEM image for 
Py/MgO(0.5 nm)/Ag junctions.  
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Py/MgO/Ag or the interface resistance of Py/Ag. The interface resistance exponentially 

increases as the MgO thickness increases. Although this is similar properties of 

magnetic tunnel junctions [22, 23], the value of the junction resistance is small and the 

I-V characteristics shows linear behavior for the sample in this study. The inset of Fig. 

4.2 shows the cross-sectional transmission electron micrograph of the junction. It 

reveals that amorphous MgO is uniform and there is no pin-hole. The small junction 

resistance is attributed to the oxygen vacancies of the junction [25]. 

 

4.3.2. Spin valve measurement 

Figure 4.3 shows the result of spin valve measurement for LSV with L = 300 

nm. The spin valve signal was observed in which magnetizations shows parallel and 

antiparallel configuration with the reasonable switching field. One of the 140-nm-wide 

FM wires attached to the micro-meter pads. The magnetic domain wall nucleation in 

the pad and subsequent change of the domain structure reduces the switching field (see 

Fig. 5.1). It enables to use the FM wires with the same width for LSVs, which makes 

the analysis simple. 

 
Figure 4.3: Non-local spin valve signal for lateral spin valve with Py/Ag junctions and Py/MgO(0.5 
nm)/Ag junctions at T = 10 K.  
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4.3.3. Interface resistance dependence of spin accumulation 

Figure 4.4 shows the interface resistance dependence of RS for LSVs with L = 

300 nm, 500 nm, and 1000 nm for RT and 10 K. Each case shows the increase of the 

spin accumulation with an increase of the interface resistance and RS shows a 

maximum at the specific RI. According to the model in chapter 2 (see eqn.(2.16)), RS 

increase with an increase of interface resistance and is expected to saturate. The 

observed peak structure is interpreted as the decrease of the spin polarization in the high 

interface resistance regime. The spin cannot transmit and relaxes in the high resistance 

(thick) MgO layer, which is attributed to the poor crystalline quality and electrically 

leaky properties of pristine Py/MgO/Ag junctions. 

4.4 Experimental result (after annealing) 

4.4.1. Change of interfacial resistance after annealing 

 Figure 4.5 shows the thickness dependence of interface resistance of 

Py/MgO/Ag junctions at RT both for annealed samples and pristine ones. The junction 

resistance exponentially increases with an increase in the thickness of MgO. This 

 

Figure 4.4: (a) RIA dependence of spin signal RS with separation L = 300 nm, 500 nm, and 1000 
nm at RT (b) at T = 10 K. 
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tendency is consistent with reported magnetic tunnel junction [22, 23] but the junction 

resistance in this study was much smaller. The character X-ray analysis revealed that 

the amount of oxygen is decreased by 6 % after annealing. Therefore, the decrease of 

the junction resistance is attributed to the oxygen vacancies [25]. 

4.4.2. Spin valve measurement  

Figure 4.6(a) shows non-local resistance V/I as a function of the magnetic field 

for a LSV with injector-detector L of 300 nm. The two distinct non-local resistance 

corresponds to the parallel and antiparallel magnetization configuration of Py wires. 

Spin signal RS is strongly enhanced after the annealing and observed as high as 48.0 

m and 112 m at RT and 10 K, respectively. 

 

4.4.3. Interfacial resistance dependence of spin signal 

Figure 4.6(b) shows RI dependence of RS. RS increases with an increase in RI 

and saturated near RI = 0.1 m2, of which behavior agrees with spin-resistance 

mismatch model as described in chapter 2, both at RT and 10 K. This is displayed as 

 

Figure 4.5: Thickness dependence of RIA at RT for annealed and as-deposited samples. 
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the qualitatively agreed curves in Fig. 4.6(b), which is calculated with Takahashi-

Maekawa formula 
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where RN = ρNλN/tNwN and RF = ρFλF/wFwN are the spin-resistance, with resistivity ρ, 

spin diffusion length λ, thickness t, and width w. The subscripts F and N represent Py 

and Ag, respectively. Ag, PPy, PPy/MgO/Ag are obtained by spin diffusion characteristics 

(L dependence of RS) as in sec. 4.4.4.  

4.4.4. Separation dependence  

Figure 4.7 shows L dependence of RS for RT and T = 10 K. RS decreases with 

an increase of L due to the spin flip in Ag. Data were analyzed by using one-dimensional 

spin diffusion model and fitted to eqn.(4.1), with adjusting parameters of Ag, PPy, 

PPy/MgO/Ag. Py was set to 5 nm from [24]. We obtained Ag = 300 nm, 1100 nm, pF = 

0.30, 0.35, and PI = 0.42, 0.44 at RT and T = 10 K, respectively. Obtained Ag was 

relatively long and increased by the annealing by a factor of approximately 2 at T = 10 

 

Figure 4.6:(a) Spin signal at RT and T = 10 K. (b) RIA dependence of Spin signal RS for LSV with 
L = 300 nm. Blue and red dots show the signals for RT and 10 K, respectively. Lines are calculated
by using eqn.(4.1). 
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K and did not change at RT [26, 27]. It is attributed to the decrease of scatterings at 

grain boundaries because the resistivity of Ag is decreased after annealing. PPy also 

increases after annealing, which is attributed to the improvement of the crystalline 

properties. PI is higher than reported values [8, 10, 26, 28], which explains the obtained 

high RS because RS is proportional to the square of PI when RI >> RN. 

4.4.5. The effect of interface on the spin injection/detection 

The effect of spin injection/detection was analyzed by using one dimensional 

spin diffusion model described in chapter 2. Spin-resistance of Ag and Py are obtained 

as 0.9  and 0.07  respectively, which means higher spin-resistance of Ag prevents 

efficient spin injection from Py. In the low interface regime with thin MgO layer, RI is 

not enough high to overcome spin-resistance mismatch. In the high interface regime, 

where RI is higher than 4.5  (RIA is higher than 0.1  m2), the spin accumulation was 

experimentally saturated. Theoretically, the spin polarization of near the interface (spin 

injection efficiency) was obtained as 

 

Figure 4.7: Separation dependence of RS for three different RIA. Blue and red dots show the data for 
RT and T = 10 K, respectively. Lines are calculated from eqn.(4.1). 
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The spin injection efficiency as a function of the normalized interface resistance of NM 

material is shown in Fig. 4.8(a). It reveals that the efficient spin injection is achieved in 

the condition of RI ~ 5RN, and the experimental result is well described by the spin-

resistance mismatch model. Figure 4.8(b) shows the spatial distribution of the electro 

chemical potential near the injector. In contrast to the pronounced back-flow of spin 

current for low junction resistance, the Py/MgO/Ag junctions for RI ~ 5RN completely 

suppresses the back-flow and enable to efficiently generate spin current in NM. Figure 

4.8(c) shows the spin absorption effect due to the detector electrode. Spin absorption 

effect was decreased by inserting interface layer in which junction resistance is 

comparable to the spin-resistance of NM material. Therefore, the decrease of the spin 

accumulation due to the spin absorption is suppressed and enables to detect spin 

accumulation without loss. This means the efficient detection of the spin accumulation. 

4.4.6. Bias current dependence  

Now, the maximum spin accumulation was examined with changing bias 

current. Figure 4.9 shows the bias current dependence of VS ＝ IRS for various 

Figure 4.8: (a) RI dependence of spin injection efficiency. (b) Spatial distribution of the electro 
chemical potential in FM and interface layer for RI = 4.5RN (c) Spatial distribution of the electro 
chemical potential in NM for LSVs with and without detector for L = 300 nm, RI = 4.5RN and I = 1 
mA.  
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junctions at T = 10 K. VS monotonically increases with an increase of I. VS takes a 

maximum 225 V when I = 3.5 mA before the device becomes broken at I = 4.0 mA.  

 

4.5 Structural issue 

4.5.1 Enhancement of spin accumulation in dual injector LSV with 

Py/MgO/Ag junctions 

A conventional LSV consists of a pair of injector and detector FM wires which 

are bridged by a NM wire. The spins are injected by applying a bias voltage across the 

FM/NM interface and accumulate in its vicinity. Their density decays exponentially 

with a factor of exp(-d/sf) where d is the distance from the injector and sf is the spin 

diffusion length. Unlike the above LSV, our structure shown in Fig. 4.10(a) consists of 

three Py wires bridged by a Ag wire. I is applied between FM1 and FM2 for the spin 

injection into the Ag wire, and the spin accumulation is detected in voltage V by using 

FM3. To avoid the spin absorption by FM wires, we use the Py/MgO/Ag junction in 

the present study [26, 29]. For comparison between conventional and our schemes, we 

depict the spatial variation of spin accumulation Ag in the Ag wire calculated by using 

the same material parameters in Figs. 4.10(b)-(d). In a conventional scheme of Fig. 

 
Figure 4.9: Bias current dependence of spin accumulation signal VS = IRS at T = 10 K for four
different interface resistance. 
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4.10(b), the spin injection generates the spin current IS towards both directions along 

the Ag wire, the magnitude of which is proportional to the spatial gradient of Ag. On 

the other hand, our scheme shown in Figs. 4.10(c) and (d), confines the spin current 

solely to the detector since the unnecessary side edge, i.e., relaxation volume, on the 

left of FM1 is removed. Figure 4.10(c) shows Ag from each injector with parallel 

magnetization configuration and the magnitude of each spin current from FM1 and FM2 

can be twice as much as the conventional IS due to the confinement effect. As the 

direction of spin current across the FM1/MgO/Ag and FM2/MgO/Ag interfaces is 

opposite each other, the currents flowing across the interfaces thus cancel out for the 

parallel magnetic configuration of dual injectors, whereas for the antiparallel 

configuration, the spin currents induced by FM1 and FM2 are constructive as depicted 

in Fig. 4.10(d). As a result, this scheme can enhance the total spin current by up to a 

factor of four compared to the conventional one.  

Figure 4.10: (a) Schematic diagram of lateral spin valve with dual injectors in non-local 
measurement configuration. (b) Schematic diagram of LSV with single injector and the spatial 
variation of spin accumulation  for Ag. Arrows in Ag and FM, respectively represent the non-
equilibrium magnetization of Ag and the magnetization of FM. The spin current IS = I - I flows 
in both directions along the Ag wire. The magnitude of IS is proportional to the spatial gradient of 
. (c),(d) Schematic diagram of LSV with dual injectors with parallel or antiparallel configuration
and the spatial variation of spin accumulation  for Ag. The red and blue lines show Ag induced 
by spin injectors of FM1 and FM2, respectively. In parallel configuration, the flow direction of spin 
current from FM2 IS2 is opposite to that of FM1 IS1. In antiparallel configuration, the flow direction
of IS1 is the same as that of IS2. 
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LSV with Py/MgO/Ag junctions were used in this study. The Py wires were 140 

nm in width and 20 nm in thickness. The Ag wire was 120 nm in width and 100 nm in 

thickness. Center-to-center separation between FM1 and FM2 d12 was 350 nm. The 

non-local spin valve signal in LSVs is shown in Figs. 4.11(a)-(b). For the conventional 

single injector LSV (SLSV), the high and low signals correspond, respectively to the 

parallel and antiparallel configurations of the injector and detector FMs, of which 

overall change RS amounts to 31.5 mΩ at 10 K in Fig. 4.11(a). Figure 4.11(b) shows 

the spin signal for the dual injector LSV (DLSV). All FMs exhibit distinct switching 

fields at around 10 mT, 40 mT and 50 mT, corresponding to the switching fields of 

FM1, FM2 and FM3, respectively. The hysteresis loop shows three-level signals 

associated with the following magnetic configurations; in the negative sweep (green 

line), the magnetization of FM1 flips at -10 mT and the injectors’ magnetization 

configuration becomes antiparallel. Accordingly FM3 detects the change in the electro 

chemical potential and the resulting change in Ag is shown in Fig. 4.11(c). Further 

decrease in field down to -40 mT flips the magnetization of FM2 and returns the 

injectors’ magnetic configuration to parallel. Since the antiparallel configuration 

maximizes the spin accumulation in DLSV, it can be evaluated from the overall change 

RS between the minor loop shown in a red curve and the positive sweep shown in a 

blue line in Fig. 4.11(b). The center-to-center injector and detector L dependence of 

RS in Fig. 4.11(c) shows that RS of DLSV is almost 3 times larger than that of SLSV 

and decreases exponentially with increasing L due to spin relaxation in the Ag wire [30, 

31]. 

The analytical expression of RS for DLSV, for the case where the interface 

resistance is enough higher than the spin-resistance of the NM wire RN, is approximated 

by using a solution of one-dimensional spin diffusion equation (see Chapter 2 for 

details) 

 N/2
S I N ,LR P R e      (4.3) 
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where 12 N 12 N1 exp( 2 / ) 2exp( / )d d       , PI is interfacial polarization, N is the 

spin diffusion length of the NM and d12 is the separation between FM1 and FM2. The 

RS for DLSV is remarkably enhanced by a factor of  compared to that of SLSV, 

corresponding to the reduced eqn.(4.3) of RS for SLSV [32] with d12 >>  (see sec. 

2.1.10). The first and second terms in represent the spin current injected from FM2 

and the third term does the spin current injected from FM1. The obtained experimental 

 

Figure 4.11: (a) Spin valve signal as a function of y-directional magnetic field for SLSV at 10 K. 
The arrows indicate the magnetization configuration of two Py wires. The triangles indicate the 
sweep direction of the magnetic field. (b) Spin valve signal as a function of magnetic field for DLSV
at 10 K. The arrows indicate the magnetization configuration of three Py wires. The triangles
indicate the sweep direction of the magnetic field. The red line shows the minor hysteresis loop. (c) 
Spin signal RS as a function of injector-detector separation at T = 10 K. The solid lines are the 
fitting curves using eqn.(4.3). 
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results in Fig. 4.11(c) were fitted to eqn.(4.3) with adjusting parameters PI and N, 

yielding PI = 0.36, N = 1500 nm and  = 3.2, which are consistent with our previous 

data for Py/MgO/Ag junctions [29]. The longer N is attributed to the suppression of 

the electron scattering in thicker Ag nanowire, which is consistent with the decrease of 

the resistivity. The quantitative discussion based on the spin relaxation mechanism will 

be provided in sec. 5.3.4 (50-nm-thick-Ag) and in sec. 6.2.3 (100-nm-thick-Ag). 

4.5.2 Effect of spin absorption in dual injector LSV 

In the previous section, we have studied dual injector LSV with FM/MgO/Ag 

junctions, which prevents spin absorption effect. For the solid understandings of the 

multi-terminal spin injection scheme, this section will discuss the impact of the spin 

absorption effect in dual injector LSV with Py/Ag junctions. 

  The non-local spin injection measurements were performed on the LSVs by 

using conventional current-bias lock-in technique with applied current of 0.15 mA and 

frequency of 79 Hz. The scanning electron microscopy images of fabricated LSVs were 

shown in Figs.4.12 (b) and (c). The field dependence of the spin valve signal for DLSV 

with Ohmic Py/Ag junction (Ohmic-DLSV) with L = 500 nm is shown in Fig. 4.12 (d). 

In the full hysteresis loop, the six leaps of non-local resistance are clearly observed 

corresponding to the magnetization reversals of three FM wires. The magnetic 

configurations are indicated by arrows in Fig. 4.12 (d). Since the current direction is 

opposite each other for the Py1/Ag junction and the Py2/Ag junction, spin accumulation 

in the Ag wire is maximized when the magnetization configuration of Py1 and Py2 is 

antiparallel. The spin valve signal RS is defined as the overall change of the non-local 

resistance, which is observed to be 11.5 m The contribution of each injector Py1 and 

Py2 to RS is estimated to be RF1 = 1.8 mand RF2 = 9.7 mrespectively, as 

depicted in Fig. 4.12 (d). The low value of RF1/RF2 = 0.19 suggests that Py1 is not 

efficiently working to enhance the spin accumulation at the detector. On the other hand, 
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RS of DLSV with Py/MgO/Ag junctions (Py/MgO-DLSV) with L = 500 nm is as large 

as 233 m as shown in Fig. 4.12 (e). The contribution of the each injector to the signal 

is estimated to be RF1 = 104 m RF2 = 129 m and RF1/RF2 = 0.806, implying 

that the both Py1 and Py2 injectors work equivalently in Py/MgO-DLSVs. 

Figure 4.13 shows RS as a function of L for the DLSVs. RS decreases 

reasonably with increasing L due to the spin relaxation in the Ag nanowire. Clear 

enhancement of RS is observed for Py/MgO-DLSVs, while RS of Ohmic-DLSVs is 

slightly enhanced compared to that of Ohmic-SLSVs. To gain the insight of the 

difference of RS for the junctions, we perform the fitting of RS, based on the one 

Figure 4.12: (a) Schematic diagram of the measurement configuration of non-local spin injection. 
(b) Scanning microscope image of conventional single injector lateral spin valve (SLSV). (c) That
of dual injector lateral spin valve (DLSV). (d) Non-local spin signal as a function of magnetic field 
for LSV with Py(20nm)/Ag(50nm) Ohmic junctions at 10 K. Arrows display corresponding
magnetic states of Py1, Py2 and Py3, from left to right. RF1 and RF2 show the change of non-
local resistance due to the magnetization reversals of Py1 and Py2, respectively. (e) Non-local spin 
signal as a function of magnetic field for LSV with Py(20nm)/MgO(6.4nm)/Ag(50nm) junctions.



 

62 

 

dimensional spin-diffusion equation [32, 33]. One obtains equations of RS for DLSVs 

and SLSVs, respectively, as below 

  N/
S_DLSV N F3 F3 I3 I 3( ) LR R P r P r e      
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where 2
F F F N[2 / (1 )] /j j jr P R R   and 2

Ij I I N[2 / (1 )] /j jr P R R   are the normalized 

spin-resistance of FM and the normalized interface resistance, respectively, FjP  and IjP  

are the spin polarization of jth FM and interface, respectively, N N N N/R A   and 

F F F J/R A   are the spin-resistance of NM and FM, respectively, RIj is the jth junction 

resistance, ρ is the resistivity, and AJ is the junction resistance.  

 

Figure 4.13: Spin valve signal RS  RF1 + RF2 as a function of injector-detector separation L at 
10 K for DLSVs and SLSVs with Py/MgO/Ag junctions and Py/Ag junctions. Closed squares, 
closed circles, open squares and open circles show DLSVs with Py/MgO/Ag junctions, SLSVs with 
Py/MgO/Ag junctions, DLSVs with Py/Ag junctions and SLSVs with Py/Ag junctions, 
respectively. Blue solid lines are the fitting curves using eqn.(4.5) for SLSVs with Py/MgO/Ag 
junctions and Py/Ag junctions. Red solid lines show the curves for DLSVs with Py/MgO/Ag 
junctions and Py/Ag junctions.  
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For the Py/MgO/Ag junctions, the interfacial resistance-area product RIjAJ = 0.1 

(m)2 is much larger than RAgAN  8.0×10-3 (m)2 where AN is the cross-sectional 

area of non-magnet, implying that the spin absorption from Ag to Py is mostly 

suppressed. The experimental data are well fitted by the one dimensional model with 

the fitting parameters of PI = 0.37 and Ag = 930 nm, as can be seen in Fig. 4.13. The 

widths of the Py1, Py2, Py3 and Ag wires were 140 nm, 100 nm, 100 nm and 100 nm, 

respectively. The separation d12 between Py1 and Py2 was 350 nm. The resistivity of 

Ag was 0.86×10-6 cm. The enhancement factor of the spin accumulation in DLSVs 

compared to that in SLSVs is estimated to be   RS_DLSV / RS_SLSV = 2.4. The 

analytical expression of  in the interfacial spin polarization dominate regime, i.e., RI 

>> RN is obtained as 

 = 1 + 2exp(-d12/N) + exp(-2d12/N) = ( RF1/RF2){1+exp(-2d12/)},  (4.6) 

from eqns.(4.4) and (4.5), where d12 is the separation between FM1 and FM2. For the 

Py/Ag junctions, the interface parameters of IjP  and IjR  are neglected. The 

experimental data are well fitted by adjusting parameters PPy and Ag with setting the 

value of Py = 5 nm reported by Dubois et al. [24]. We obtain PPy = 0.37 and Ag = 970 

nm, leading to  1.2. The analytical model supports the little enhancement of RS in 

Ohmic-DLSV. 

In order to discuss the origin of the different  in DLSVs, the spin absorption 

process could be examined in more details following the model that led to eqns.(4.4)-

(4.5). First, we consider the spin current injected from Py1/Ag junction. The 

contribution to RS, namely, RF1 is characterized as a function of an interface 

parameter x2  rF2+rI2 which determines the magnitude of spin absorption into Py2. 

From eqn.(4.4) one can obtain RF1  x2/( x2 + ), where  and  are x2-independent 

coefficients derived from eqn.(4.4). As a result, RF1 increases with x2 because of the 

suppression of the spin absorption effect. RF1 of Ohmic-DLSV is quantitatively 
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evaluated to be 2.1 m from eqn.(4.4) with the fitting parameters mentioned above, 

which is in good agreement with the experimental value shown in Fig. 4.12(d). Second, 

we analyze the spin current injected from a Py2/Ag junction in the same manner. From 

eqn.(4.4) one can obtain RF2  (x1 + )/( x1 + ) where  and  are x1-independent 

coefficients derived from eqn.(4.4) and x1  rF1+rI1 determines the spin absorption into 

Py1. RF2 of Ohmic-DLSV is 8.6 m which is much larger than that of RF1, implying 

that the spin accumulation is less influenced by the spin absorption effect of Py1 

compared to that of Py2. This is due to the difference of the travelling path of the 

injected spin current: spins injected from Py2 diffuse toward Py1 and Py3 and some 

spins can pass through the Ag wire on the Py1/Ag interface to reach the detector 

whereas all the spins injected from Py1 must pass through the Ag wire on the Py2/Ag 

interface to reach the detector. 

 

4.5.3 Enhancement of spin accumulation in dual injector LSV with 

Co50Fe50/MgO/Ag junctions 

The interface MgO layer is critical to enhance the spin accumulation in DLSV 

as well as SLSV. The FM layer of Py is so far used in our studies [29, 33-35], however, 

higher spin polarization is expected for CoFe and CoFeB [22, 36-38]. Therefore, we 

fabricated LSVs with Co50Fe50/MgO/Ag(50nm) and measured Hale effect signal for the 

SLSV, as shown in Fig. 4.14(a). The analytical expression of RS is expressed as [29] 

 2
S I N

sf

Re exp
L

R P R 




 
  

    
  

  (4.7) 

with sf

L sf1 i



 




 

where L = gBBZ/ħ is Larmor frequency with g the g-factor, B Bohr magneton and 

sf is spin relaxation time, respectively. PI = 0.52 and Ag =780 nm are obtained by 
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fitting eqn.(4.7) to the experimental data of L = 4.5 m as shown in Fig. 4.14 (a). 

Diffusion constant of Ag were 0.056 m2/s. The obtained PI of CoFe is higher than that 

of Py. Figure 4.14 (b) shows the spin valve signal for DLSV with CoFe/MgO/Ag. Large 

RS of 220 m and 480 m is observed at 300 K and 10 K, respectively, whereas for 

SLSV, RS was 135 m and 230 m. We shall note that a relation is not trivial between 

the enhancement of detected spin accumulation and that of efficiency for the generation 

of the pure spin current IS/IC. However, the one-dimensional spin diffusion model 

reveals the same enhancement factor  between them for LSVs with FM/MgO/Ag. The 

is enhanced up to 4 in the small d12/N limit, suggesting that the obtained IS/IC = PI/2 

= 0.58 (PI = 0.36 and  for Py/MgO/Ag(100nm)), IS/IC = PI/2 = 0.44 (PI = 0.37 

and  for Py/MgO/Ag(50nm)) and 0.55 (PI = 0.52 and  for 

 

Figure 4.14: (a) Hanle effect of SLSV with CoFe(14nm)/MgO(7.0nm)/Ag(50nm) junctions. Black 
and red show Hanle signal when the measurements start from parallel and antiparallel magnetic 
configurations of injector and detector, respectively. (b) Non-local spin signal as a function of 
magnetic field for DLSV with CoFe/MgO/Ag junctions with L = 300 nm. 
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CoFe/MgO/Ag(50nm)) can be further improved by optimizing N and d12. This could 

be useful for developing variety of spintronic devices using pure spin current and spin 

accumulation. 

 

4.6 Conclusion for chapter 4 

Sections 4.2-4.4 describes the enhancement of the spin accumulation in LSVs 

with Py/Ag junctions and Py/MgO/Ag junctions. The effect of the junction is 

systematically studied with different MgO thickness for Py/MgO/Ag junctions. The 

spin signal increases with an increase of the MgO thickness, in which behavior is 

understood by a spin-resistance mismatch. The result of the annealed sample is 

analyzed in detail with the spin diffusion model, which gives the spin diffusion length 

of Ag, the spin polarization of the interface, and the spin polarization of Py. It reveals 

that the origin of the enhancement of the spin accumulation as follows. (1) The injector 

Py/MgO/Ag junction prevents back-flow of spin current, which enables efficient spin 

injection. (2) The detector Py/MgO/Ag junction prevents the decrease of the spin 

accumulation due to the spin absorption, which enables “efficient” detection of the spin 

accumulation. Since the desired interface resistance is around the spin-resistance of Ag, 

the Py/MgO/Ag junctions enables to apply higher current than one for the conventional 

high resistance magnetic tunnel junctions. It results in the hundred-fold spin 

accumulation signal V = 225 V for LSVs. 

In sec 4.5, we have investigated the enhancement of spin accumulation in dual-

injection lateral spin valves (DLSVs). The spin accumulation is enhanced by a factor 

for the dual spin injection scheme compared with the conventional single spin 

injection scheme.  reaches 3.2 for the Py/MgO/Ag(100nm) junctions. Spin 

accumulation shows a maximum when the injectors takes antiparallel magnetic 

configurations. Although the number of injection electrodes is increased in a lateral 
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geometry, the spin absorption effect for Ohmic Py/Ag junctions prevents the 

enhancement of the spin accumulation in the Ag nanowire.  is 2.4 and 1.2 for the 

Py/MgO/Ag(50nm) junctions and Py/Ag(50nm) junctions, respectively. Analysis based 

on one-dimensional spin diffusion model revealed that the spin absorption effect in the 

middle Py/Ag junction strongly suppress the enhancement of the spin accumulation in 

Ohmic-DLSVs. We found reaches up to 4 in the present device structure with small 

d12/N and without spin absorption. Large spin vale signals of 233 m and 480 m are 

observed for DLSVs with Py/MgO/Ag and Co50Fe50/MgO/Ag, respectively. The 

junction polarization of Co50Fe50/MgO/Ag is as high as 0.52. The efficient generation 

of the pure spin current IS/IC = 0.58 is realized. 
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Chapter 5 

 

Spin relaxation mechanism in non-magnetic nanowires 

5.1 Introduction 

The spin relaxation mechanism in non-magnetic (NM) metals has originally 

been discussed by Elliott and Yafet [1, 2]. According to their theory, the spin-orbit 

interaction (SOI) in NM lifts the spin degeneracy of Bloch electrons, and results in two 

different energy states for up or down spin. The spin relaxation, i.e., the transition 

between the opposite spin states, can therefore be caused by the spin independent 

momentum scatterings due to impurities, grain boundaries, surfaces and phonons [1-3]. 

The earlier experimental works on the spin relaxation mechanism were mainly 

performed by conduction electron spin resonance (CESR) measurements and the results 

were e.g., analyzed by Monod and Benue in the material independent manner [4, 5]. 

Fabian and Das Sarma revisited the CESR analyses and showed a quantitative 

relationship between the spin-flip scattering and the phonon mediated change in 

resistivity including the effect of Fermi surface topology [6, 7]. Since the emergent 

development in the spintronic devices requires understanding the spin relaxation 

mechanism in nanowires, the mechanism has been intensively studied by means of non-

local spin injection techniques using LSVs as a unique probe [8-12]. However, since 

the spin transport properties of LSV depends on the qualities of the sample, it is desired 

to separate the intrinsic and extrinsic properties. In this section we studied it by 

analyzing temperature dependence of the spin relaxation properties. Sec. 5.3 provides 

detail analysis of spin relaxation mechanism in Ag nanowire. Surface spin relaxation is 

recently reported in the NM nanowires, which hampered a quantitative analysis of the 
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spin relaxation mechanism [10-12]. The surface spin scattering is now suppressed by 

MgO protection layer and then the spin-flip probability  for phonon or impurity 

scattering is determined accurately on the basis of Elliott-Yafet (E-Y) mechanism. The 

temperature dependence of the spin-lattice relaxation for the phonon scattering is well 

fitted to the Bloch-Grüneisen formula [13, 14], showing good consistency with that 

obtained from CESR measurements in the bulk. 

In the latter section, we study the effect of the topology on the spin relaxation 

properties with the spin injection into light metal Mg, having a weak SOI, and thus 

being a promising candidate for materials with longer spin diffusion length. To our 

knowledge, there is no report on the spin injection into Mg from the ferromagnetic 

metal whereas the spin diffusion length of Al is reported in the order of micrometer at 

low temperatures [9].  

5.2 Spin injection into Mg 

5.2.1 Fabrication of Mg-based LSV 

LSV devices were fabricated by means of shadow evaporation combined with 

e-beam lithography using a suspended resist mask, consisting of a bilayer resist 500-

nm-thick Methyl methacrylate (MMA) and 50-nm-thick Poly methyl methacrylate 

(PMMA) formed on Si/SiO2 substrates. Firstly a Py layer was e-beam deposited at an 

angle of 45 degrees from substrate normal. Then, the substrate was transferred under 

vacuum to the different chamber with a base pressure 6×10-8 Pa, and a Mg layer was e-

beam deposited normal to the substrate cooled by liquid nitrogen. Finally, a 5-nm-thick 

MgO capping layer was deposited to protect the surface. After a lift-off procedure, the 

structure was examined by means of scanning electron microscopy (SEM), as shown in 

Fig. 5.1. Three classes of devices, LSV1, 2, and 3, with different Py and Mg wire widths 

wPy and wMg were prepared. For LSV1, a Py wire with wPy of 80 nm was bridged by a 

Mg wire with wMg of 110 nm. For LSV2 and 3, wpy were different, 80 nm for LSV2 and 
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130 nm for LSV3 while wMg was set at 170 nm. The thicknesses of all the Py and Mg 

layers were 20 nm and 100 nm, respectively. The center-to-center separation L between 

the Py injector and detector was varied from 250 nm to 1000 nm to determine the spin 

diffusion length λMg of Mg. After examination of SEM, all the devices were covered 

with a 10-nm-thick sputter deposited SiO2 layer to prevent oxidation of the side edges 

of Mg wires. 

5.2.2 Non-local and local spin valve measurement  

The spin injection from Py into Mg is carried out by non-local technique, where 

the current is applied between terminals 4 and 5 and the voltage is detected by using 

terminals 2 and 3, as shown in Fig. 5.1(b). The non-local spin valve measurements are 

performed by using conventional current-bias lock-in technique with amplitude of 0.20 

mA with a frequency of 79 Hz. The magnetic field is applied parallel to the Py wires. 

The field dependence of the non-local resistance for the LSV with L = 300 nm is shown 

in Fig. 5.2(a), representing a clear spin valve behavior. The switching field of each Py 

wire is controlled by the domain-wall nucleation, i.e., the injector has a large domain 

wall reservoir at the edge, producing lower switching field than the detector. Spin valve 

signal ΔRS = (VP - VAP)/I, is defined as the overall signal change between parallel and 

Figure 5.1: Scanning electron microscope (SEM) images of fabricated lateral spin valve devices 
with measurement circuit of non-local resistance. 
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antiparallel configurations of the two Py wires. ΔRS is 1.1 and 3.6 mΩ at room 

temperature (RT) and 10 K, respectively. The interface resistance of the Py/Mg junction 

was measured where the current is applied between terminals 4 and 5 and the voltage 

is detected by using terminals 6 and 2, as shown in Fig. 5.1(b). The interface resistance 

is below the resolution ability of 1 fΩm2 in our measurement system, and thus we 

assume that the Py/Mg junctions are transparent, i.e., zero interface resistance. The 

amplitude of ΔRS is relatively high in the metallic LSVs with the transparent Ohmic 

contact such as Py/Cu, Co/Cu and Co/Al junctions [10, 15-17] implying the high spin 

injection efficiency of the Py/Mg junction. Figure 5.2(b) shows the field dependence of 

the non-local and local spin valve signals for LSV3 with L = 400 nm. For the local 

measurements, the current is applied between terminals 3 and 4 and then the voltage is 

detected by using terminals 1 and 6. As can be seen in Fig. 5.2(b), ΔRS = 1.2 mΩ for 

the local spin valve measurement is 2.4 times larger than that of 0.5 mΩ for the non-

local spin valve measurement, which is in reasonable agreement with the factor of 2 

expected in [8]. 

Figure 5.2: (a) Field dependence of non-local spin valve signal at 10 K and at RT for LSV3 with L
= 300 nm. (b) Field dependence of non-local and local spin valve signals at RT for LSV with L =
400 nm. 
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5.2.3 Spin diffusion characteristic in Mg nanowire  

Figure 5.3 shows non-local spin valve signal at 10 K for the Py/Mg devices with 

a variable L = 400, 600, and 800 nm. The ΔRS decreases with increasing L due to a spin-

flip scattering in the Mg nanowire. A clear spin signal ΔRS of 1.2 mΩ is observed for 

the device even with the long L = 800 nm. For the LSVs with Ohmic junctions, ΔRS 

can be given as a solution of one-dimensional spin dependent diffusion equation 

considering additional spin relaxation in the Py detector whose spin-resistance is much 

lower than that of NM Mg [18].  
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  (5.1) 

where PF is the spin polarization for Py. RN = ρNλN/tNwN and RF = ρFλF/wFwN are the 

spin-resistances for Mg and Py, respectively, with resistivity ρ, spin diffusion length λ, 

thickness t, and width w. The subscripts F and N represent Py and Mg, respectively.  

 

Figure 5.3: Field dependence of non-local spin valve signal at 10 K for LSV with L = 400, 600, and 
800 nm. 
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Figure 5.4 shows the ΔRS as a function of L at RT and 10 K and for various 

LSVs. ΔRS decreases with increasing L due to a spin-flip scattering during the diffusive 

spin transport in the Mg nanowire. The experimental results are fitted to eqn.(5.1) by 

adjusting parameters PF and λN. The spin diffusion length λF of Py is fixed to the value 

of 5 nm from the literature [19]. The resistivitiy of Py is 4.7×10-5 Ωcm at RT and 

3.5×10-5 Ωcm at 10 K, respectively. The resistivities of Mg are 1.0×10-5 Ωcm for wMg 

= 170 nm at RT, 1.5×10-5 Ωcm for wMg = 110 nm at RT, and 4.0×10-6 Ωcm for wMg = 

170 nm at 10 K, respectively.  

From the fitting, the values of λN and PF are found to be 720 nm and 0.43 at 10 

K, and 230 nm and 0.33 at RT for LSV3, respectively. The value of PF is relatively high 

in the LSV, indicating a good quality of the Py/Mg interface. The spin diffusion length 

of Mg shows a similar value reported for Ag, Cu and Al [9]. Among these NM materials 

so far used in the LSVs, Mg is a lightest element, implying a smallest SOI. However, 

the obtained spin diffusion length of Mg is below micron. The width dependent of the 

deduced fit parameters are PF = 0.30  0.07 and λN = 175  45 nm for LSV1, PF = 0.27 

 0.03 and λN = 210  30 nm for LSV2, and PF = 0.33  0.03 and λN = 230  30 nm for 

Figure 5.4: (a) L dependence of ΔRS at RT and 10 K. The lines are fitting curves to the data set for 
LSV3 using eqn.(5.1). (b) L dependence of RS at RT for LSV1, LSV2 and LSV3. 



 

76 

 

LSV3. The shorter λN for the narrower Mg wire could be due to impurity and defect 

scatterings. 

5.2.4 Spin relaxation mechanism in Mg 

To discuss the origin of the comparable spin diffusion length in spite of small 

SOI for Mg, we focus on the spin-flip mechanism in the NM metal. Monod reported 

that the spin relaxation in metals is divided into two groups: one is the monovalent 

alkali and noble metals, and the other is the polyvalent metals such as Al and Mg [5]. 

The former group shows a universal curve in the ph 2
sf SOI1 / { ( / ) }E    vs T/TD plot, 

where ph
sf  the spin relaxation time from phonon, SOI the spin-orbit splitting, E the 

energy distance between the band state in question and the state in the nearest band, and 

TD the Debye temperature. The latter group has much shorter ph
sf  than for the 

monovalent metals because a complicated Fermi surface enhances a spin-flip scattering 

[6]. The total spin relaxation time 2
sf N N/ ,D   is deduced from λN determined by the 

injector-detector separation dependence of ΔRS. DN is the diffusion constant, which is 

determined by Einstein relation ρN
-1 = e2DNN(F), where N(F) = 1.88×1022 

states/eV/cm3 is the density of state on the Fermi energy in Mg [20]. sf of 14 ps, 13 ps 

and 16 ps are obtained for the Mg nanowire in LSV1, LSV2 and LSV3, respectively. 

For a quantitative discussion of the spin relaxation in Mg, we revisit the 

expression for the total sf 

 ph imp
sf sf sf

1 1 1
,

  
    (5.2) 

where imp
sf is the spin relaxation time from impurities. According to the E-Y 

mechanism, each spin-flip process is proportional to each momentum relaxation time 

for the phonon and impurity scatterings [12], 

 ph imp
ph ph imp impph imp

sf

1
,

e e

 
   

  
      (5.3) 
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where ph
e  and imp

e are momentum relaxation times, and ph  and imp  are the spin-

flip probabilities for phonon and impurity scatterings, respectively. ph and imp are the 

phonon and impurity contributions, respectively. sf(RT) = ph imp 1
sf sf(1 / 1/ )    = 16 ps 

and sf(T = 10 K) = imp 1
sf(1 / )  = 62 ps in LSV3, results in ph

sf 22 ps.   Therefore, one 

obtains ph = ph ph
e sf/  = 0.0068 ps / 22 ps = 3.110-4,imp = imp imp

e sf/  = 0.0103 ps / 62 

ps = 1.710-4. These values are smaller than noble metals Ag and Cu and comparable 

to those of Al [8, 21]. However, since the diffusion constant of Mg as well as Al is an 

order of the magnitude smaller than those of Ag and Cu, all the resulting spin diffusion 

lengths are comparable. We note here that this unexpected short spin diffusion length 

for the light element Mg is not attributed to the quality of Mg nanowire because the 

residual resistivity ratio (RRR) of our Mg nanowire is 2.5, which is in the same order 

of magnitude reported for Cu and Al nanowires (RRR = 2.1 - 3.4) [8, 10, 15]. 

For the comparison of the materials with the almost same strength of the SOI, 

we compare the obtained sf with that of Na e.g., the normalizing factor (SOIE)2 is 

1.32×10-5 and 2.73×10-5 for Mg and Na, respectively [5]. sf of the Mg nanowire is 14 

ps at RT which is close to TD = 290 K, and sf of Na is 22 ns at TD = 150 K [22]. 

Moreover, the spin-flip probability for Mg is two order of the magnitude larger than 

those of Na (ph ~ 0.067 ps / 22 ns = 3.0×10-6
, where the momentum relaxation time is 

obtained with Drude model [23]). Such a significant reduction of ph
sf  and ph for Mg 

could not explain by the simple E-Y mechanism. This may be due to the existence of 

spin-hot-spots pointed out by Fabian and Sarma [6]. Polyvalent metals such as Al and 

Mg have a complex Fermi surfaces and the area with enhanced spin relaxation property 

near the Brillouin zone boundaries, accidental degeneracy points.  
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5.3 Spin relaxation mechanism in Ag 

5.3.1 Experimental methods 

LSVs with Ni80Fe20 (Permalloy, Py) / Ag junctions were fabricated in-situ by 

multi-angle deposition technique. First, suspended resist mask patterns consisting of a 

bilayer resist, 500 nm-thick methyl methacrylate and 50 nm-thick Poly methyl 

methacrylate, were formed on a Si/SiO2 substrate by means of e-beam lithography. 

Then shadow evaporation was performed by using the suspended resist mask to get a 

clean interface: a Py layer was first e-beam deposited at an angle of 45 degrees from 

substrate normal, followed by deposition of an Ag layer normal to the substrate cooled 

by liquid nitrogen. Finally, a MgO capping layer was deposited to avoid surface 

contamination of the devices. The scanning electron microscopy image of the LSV with 

a non-local measurement configuration is shown in Figs. 5.5(a) and (c), and the cross-

sectional transmission electron micrograph of the Ag nanowire and the corresponding 

energy dispersive X-ray mapping of Ag, Mg and O are shown in Fig. 5.5(b). The 

coverage factor of the entire surface of the wire for the MgO protection layer is 

estimated to be about 85%. The LSV consists of the Ag nanowire and two Py wires 

which are electrodes for spin injection and detection. The center to center separation L 

between the injector and the detector was varied from 300 nm to 1500 nm to determine 

sf. To study the influence of capping layer on the spin-flip mechanism for Ag 

nanowires, three classes of LSVs are fabricated: without MgO capping layer with 

annealing (LSV1), with MgO capping layer with annealing (LSV2), and, with MgO 

capping layer in pristine (LSV3). LSV1 and LSV2 are annealed at 400 °C for 40 min 

in an N2 (97%) and H2 (3%) atmosphere to improve crystallographic quality of the Ag 

nanowire (Chapter 4). The thickness of MgO capping layer is 3 nm. The thickness of 

Py wires are 20 nm for all LSVs. The width of Py is 120 nm, 120 nm, and 150 nm for 
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LSV1, LSV2 and LSV3 respectively. The width of Ag are 150 nm, 150 nm, 200 nm, 

and the thickness is 50 nm, 50nm and 100 nm for LSV1, LSV2 and LSV3 respectively.6 

5.3.2 Spin diffusion characteristics in Ag nanowire  

The non-local spin injection measurements were performed on the LSVs with 

clean Py/Ag junctions. As shown in Fig. 5.5(c), the current is applied between terminals 

5 and 4 and the voltage is detected by using terminals 2 and 3. Conventional current-

bias lock-in technique with applied current of 0.30 mA and frequency of 79 Hz was 

used. The magnetic field was applied parallel to the Py wires. The field dependence of 

the spin signal for LSV with MgO capping is shown in Fig. 5.6(a). Clear spin valve 

signals RS were observed to be 2.45 m at 300 K and 8.92 m at 5 K for LSV1. 

Figures 5.6(b) and (d) display a reasonable decrease in RS with an increase of L, 

                                                 
6 For the pristine LSV with 50-nm-thick Ag, the spin signal RS was not enough high to observe 
the whole range of temperature and separation L.  

Figure 5.5: (a) Schematic diagram of the measurement circuit and a scanning electron microscope 
(SEM) image of LSV fabricated in this study. (b) Cross-sectional transmission electron micrograph 
of Ag nanowire and corresponding energy dispersive X-ray mapping for Ag, Mg and O. (c) SEM 
image of fabricated LSV with Py/Ag junctions. Region of Py electrode is marked by the dotted line.
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attributable to the spin relaxation in the Ag nanowire. Here we assume a transparent 

interface for the Py/Ag junction of our devices, i.e. clean interfaces confirmed by TEM 

analyses and very low interface resistance of the Py/Ag junction below the resolution 

ability of 1×10-3 m2 of our measurement system. Therefore, we assume the Py/Ag 

junction is transparent, i.e., zero interface resistance. In this case, the analytical 

expression of ΔRS can be obtained as below by solving the one-dimensional spin 

diffusion equation for the LSV geometry [24]. 

Figure 5.6: (a) Non-local spin valve signal as a function of magnetic field for LSV1 with MgO 
capping with L = 300 nm at T = 300 K and 5 K. (b) Spin signal as a function of L at T = 300 K and 
5 K. The solid lines are the fitting curves using eqn.(5.1). (c) Temperature variation of spin valve 
signal for LSV3 with L = 450 nm. Inset shows field dependence of spin valve signal at T = 5 K. (d) 
Injector-detector separation dependence of ΔRS at T = 5 K. Line is fitted curve using eqn.(5.1).  
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        (5.1) 

where P is the spin polarization of FM, RAg = ρAgλAg/tAgwAg and RPy = ρPyλPy/wPywPy are 

the spin-resistances for Ag and Py, respectively, where ρ is the resistivity, t is the 

thickness, and w is the width. The experimental data were fitted by adjusting parameters 

PF and Ag with setting the value of Py = 5 nm reported by Dubois et al. [19]. The 

resistivity of Py was 4.70×10-5 cm and 3.46×10-5 cm at 300 K and 5 K, respectively.  

We then obtained PF = 0.3430.025 and 0.4850.015 and Ag = 31628 nm and 85198 

nm, at 300 K and 5 K, respectively, for LSV1 as shown in Fig. 5.6(a). PF = 0.4210.010 

and Ag = 61841 nm at 5 K for LSV3 as shown in Fig. 5.6(c). 

5.3.3 Temperature variation of spin transport properties 

Figure 5.7(a) shows the temperature dependence of Ag for LSV1 and LSV2. 

For LSV without capping, Ag shows maximum at low temperature, which is previously 

reported for both Cu and Ag nanowires in LSVs due to the surface spin scattering [10-

12]. However, monotonic decrease in Ag with temperature is observed for LSV with 

capping. The MgO capping layer could effectively suppress the surface spin-flip event. 

The spin relaxation time 2
sf Ag AgD   was calculated by using the diffusion constant 

DAg deduced from the Einstein’s relation   12
Ag F Ag( )D e N  


 , with the density of 

states N(F) = 1.55 × 1022 states/eV/cm3 [20]. The temperature dependence of sf in 

Fig. 5.7(b) shows that sf stays almost constant at 16.2 ps below 30 K for LSV with 

capping, indicating that the phonon contribution is frozen out. The temperature increase 

above 30 K promotes phonon mediated scattering, resulting in a gradual decrease in sf. 

According to the E-Y mechanism, the total spin relaxation time is given by 

 
ph imp

ph imp ph imp
sf sf sf e e

1 1 1
,

 
    

                   (5.4) 
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where ph
sf  and imp

sf  are spin relaxation times, ph
e  and imp

e  are momentum 

relaxation times, and ph and imp are probabilities of spin-flip scatterings. The notations 

“ph” and “imp” mean phonon, and impurity (including grain boundaries and T-

Figure 5.7: (a) Temperature dependence of spin diffusion length of Ag nanowires for LSV1 (with 
capping MgO, annealed) and LSV2 (without capping MgO, annealed). Solid lines show fitted 
curves based on the Elliott-Yafet mechanism with imp and ph determined from LSV with MgO 
capping. (b) Temperature dependence of spin relaxation time of Ag nanowire for LSV1 and LSV2. 
Solid lines show fitted curves obtained by the same manner as (a). Fitted curves do not contain the
contribution of T-dependent surface scattering. (c) Temperature dependence of resistivity of Ag
nanowire for LSV1 and LSV2. Solid lines show fitted curves for the Bloch-Grüneisen theory. (d) 
Temperature variation of spin diffusion length and resistivity of Ag for LSV3. Line for resistivity 
is fitted curve using eqn.(5.5). Line for spin diffusion length is deduced from spin-flip probabilities
and resistivities due to phonon and impurity scatterings. imp

N is determined by the residual 
resistivity i.e., ρN = 1.22×10-6 Ωcm at T = 5 K. (e) Temperature variation of spin-flip probability 
and momentum relaxation probability of Ag for LSV3 (with capping MgO, pristine). Lines are 
fitted curves using eqn.(5.5). Impurity contribution is determined by averaging sf for the data at the 
temperature below 40 K, and imp

sf 12.6 ps   is obtained. Fitting of ph -1
sf  results in D = 184 K, 

and A = 110 ns-1. 
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independent surface) mediated scatterings or probabilities, respectively. For LSV with 

capping, we derive the ph and imp by assuming the T-dependent surface spin-relaxation 

is suppressed to be enough small. This assumption will be examined as follows by 

comparing ph and imp from this analysis with those from bulk sample of which surface 

spin relaxation is negligible. 

5.3.4 Universal behavior of spin relaxation in non-magnet 

To compare ph
sf  with ph

e  the temperature dependence of ph
sf1   and ph is 

analyzed on the basis of E-Y mechanism combined with Bloch-Grüneisen (B-G) theory 

describing the phonon mediated change in resistivity ph in the entire temperature range. 

With using Drude model, one obtains 

     
D

ph 2
sf ph ph e

5 / 5

ph D
D 0

1 / / (5.5a)

,   (5.5b)
1 1

T

z z

ne m

T z dz
Kf T K

e e
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 
 

 

  
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where me is the electron mass, n is the free electron density (= 5.86×1022 cm-3 for Ag) 

[25], K is a constant for a given metal and D is Debye temperature. Experimentally 

obtained phonon contribution to the resistivity ph is fitted to eqn.(5.5b) with K and D 

as fitting parameters. Then we obtain K and D as 5.15 × 10-6 Ωcm and 184 K, 4.70 × 

10-6 Ωcm and 175 K, and 4.23 × 10-6 Ωcm and 184 K for LSV1 (with capping), LSV2 

(without capping), and LSV3 (pristine), respectively. These are in good agreement with 

reported values [26]. Also, K is expressed by the analytical expression and 
D

ph
B ,K    

with B = 4.255 [27]. Our data results in B ~ 4.2, which is in reasonable agreement. 

As discussed previously, since the T-dependent surface scattering is assumed to be 

neglected on the analysis of LSV with the MgO capping layer, the constant value of sf 

at the low temperatures is considered as imp
sf . Hence, the temperature variation of ph

sf  

can be deduced from eqn.(5.4). Then, by comparing  with sf, we obtain ph and imp 

for the Ag nanowires in substantial agreement with reported values for the bulk: ph and 
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imp are, 2.61 × 10-3 and 4.03 × 10-3 for LSV1 and 1.6 × 10-3 and 3.9 × 10-3 for LSV3; 

ph = 2.86 × 10-3 and imp = 2.50 × 10-3 for the bulk from CESR study [28, 29]. The 

temperature dependence of ph
sf1   is in good agreement with B-G curve based on 

CESR study [28], as shown in Fig. 5.8(a), which reflects intrinsic feature of Ag. 

Material dependence of ph-1
sf  is discussed by Monod and Benue [5], and more recently 

Fabian and Das Sarma pointed out the relation between ph
sf  and 

D

ph
  [7]. For 

monovalent metals, the material dependence of ph -1
sf  is ruled by 

D

ph -1 ph 2
sf SOI( / ) ,E     

where SOIis the spin-orbit splitting and E is the separation to the nearest band with 

the same transformation properties [2]. Therefore, by using Drude model,  is expressed 

as ph ph 2
e sf SOI/ ( / ) / ,E n       and it follows that Ag/Cu ~ 0.7 [2, 5, 25]. In this 

way both LSV and CESR results are found consistent with the B-G theory in the entire 

temperature range and now the assumption is validated that T-dependent surface spin-

relaxation is negligible on LSV with MgO capping. 

 
Figure 5.8: (a) Temperature dependence of spin relaxation rate via phonon scattering. Open circles, 
open rectangle, closed circles, and closed rectangles show experimental data for the Ag nanowires 
in the non-local spin injection measurement of LSV1 (with capping MgO, annealed), LSV2
(without capping MgO, annealed), LSV3 (with capping MgO, pristine), and Ag foil in the 
conduction electron spin resonance (CESR) experiment (from [28]), respectively. The solid line 
shows the theoretical curve of the B-G model. (b) Revised Monod-Beuneu plot, ph

sfC   vs T/D, 
with experimental data for spin injection and CESR measurements (from [5, 7]) for noble and 
monovalent metals, where D is the Debye Temperature and C is the material constant (E/SOI)2/

De   (see the text for the definition).  
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To clarify the suppression of surface spin-relaxation, LSV with the capping 

layer is compared to LSV without capping. For LSV without capping, we observe peak 

structure at low temperature. Hence, we formulate the spin relaxation as 

ph imp surf
sf sf sf sf1 / 1 / 1 / 1 /       where surf

sf  denotes T-dependent surface spin-

relaxation time. Then, the temperature dependence of 
N sfD   and 

   1 11 ph imp
sf sf sf  

     is calculated by using  in combination with obtained value of 

ph and imp based on LSV with capping layer. As shown in Figs. 5.7 (a) and (b), the 

calculated values on LSV with capping layer well reproduce the temperature 

dependence whereas those without capping layer shows the clear deviation from 

experimental data especially below T = 40 K. It means that the surface scattering is 

pronounced on LSV without capping layer. We shall note here that quantitative model 

of T-dependent surface scattering is proposed in [12]. However, it cannot be directly 

applied on the highly conducting sample including the sample in the present study7. 

Thus, to clarify the surface spin-relaxation quantitatively, further study is required. The 

possible origin of the reduction of surface spin relaxation is as follows. Surface spin-

flip is dominated by SOI [30, 31]. Thus, the surface spin-flip probability, surf, is of the 

order of the magnitude, (Z)4, where 2 /e c    andZ is an atomic number [30, 31]. 

In the present study, the MgO capping layer decreases effective Z at the surface, may 

resulting in suppression of the spin-flip scattering. 

As in eqn.(5.5b), reduced resistivity /K = f(T/D) is material independent. 

Eqn.(5.5a) shows that the spin-lattice relaxation is also material independent after 

proper scaling by considering the SOI. Based on E-Y mechanism, Monod and Benue 

estimated a magnitude of the effect of the SOI interaction as SOI/E where SOI is the 

spin-orbit splitting and E is the separation to the nearest band with the same 

transformation properties [2]. Then they found the reduced temperature dependence of 

                                                 
7 Eqn. 5 in [12] cannot be used for highly conductive samples with e > (4a)-1/2, where a = (vF/d)2/3, 
vF, d and  are Fermi velocity, thickness and geometrical factor, respectively. 
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ph
sf1  /(SOI /E)2 in CESR data shows material independent B-G curve for noble and 

monovalent alkali metals. In eqn.(5.5), by substituting representative value of (SOI 

/E)2into , spin flip rate is expressed as  ph
sf DC Bf T   where C is the material 

constant  
D

2

eSOIE    , e B /g    is the gyromagnetic ratio, g is the g-factor 

and B is the Bohr magneton and B is constant ne2me/e. Revised Monod-Beuneu 

scaling [7] of ph
sfC   vs DT   is shown in Fig .5.8(b) for CESR data of noble and 

monovalent alkali metals together with the non-local spin injection data for the Ag 

nanowire. The experimental data in the present study fall well on to the universal curve 

which reflects intrinsic feature of the Ag nanowire. 

5.4 Conclusion for chapter 5 

In the first part, we have examined the spin diffusion characteristics in LSVs 

consisting of Py spin injector and detector electrodes bridged by Mg nanowire. Clear 

spin signals are observed for all the devices in the present study. Non-local and local 

spin valve signals show the same switching characteristics and the amplitude of the 

local spin valve signal is 2.4 times larger than that of the non-local spin valve signal, 

which assure that one-dimensional spin diffusion model is applicable to explain the 

observed spin valve behaviors in the Py/Mg devices. The amplitude of the spin signal 

is relatively large among LSVs with transparent Ohmic junctions. The spin diffusion 

length of Mg is found to be 720 nm at T = 10 K and 230 nm at RT from the measurement 

of the spin valve signal as a function of the separation L. The obtained spin diffusion 

lengths for Mg are not much longer than those for Al, Cu and Ag, although the obtained 

spin-flip probabilities for Mg is ph = 3.1  10-4,imp = 1.7  10-4, are little smaller than 

those of Ag and Cu but comparable with those of Al. These are considered due to the 

small diffusion constant for Al and Mg. The spin-flip probabilities for Mg via phonon 

scatterings are two order of the magnitude larger than one for Na where the strengths 

of the SOI for these materials are comparable, which is consistent with the theoretical 
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prediction by Fabian and Das Sarma: possibly because of the enhanced spin relaxation 

near the special points for polyvalent metals in momentum space called as spin–hot-

spots. 

In the second part, we have investigated the spin relaxation mechanism in NM 

nanowire by characterizing spin transport properties of Mg in LSVs. The spin-flip 

probability caused by phonon and impurity scatterings is precisely determined because 

a surface spin scattering of the Ag wire is well suppressed by an MgO capping layer. 

This may be due to a decrease of effective Z at the surface. The spin relaxation 

mechanism can be explained in the framework of the conventional Elliott-Yafet model. 

The temperature dependence of the spin relaxation times due to phonon scattering for 

the Ag nanowire is well fitted to the B-G formula. The fitting curve is in good agreement 

with the reported spin relaxation times of Ag foils used in the CESR measurement, 

which reflects intrinsic feature of Ag. From phimp, ph
N  and imp

N , we can deduce 

the temperature variation of sf and DN, and thus, λN can be also deduced from 

N N sfD   in the entire temperature range as in Figs. 5.7 (a) and (d). The experiment 

data in the present study fall on to the universal curve for monovalent metals in the 

revised Monod-Beuneu scaling. These allow us to determine the spin relaxation time 

for phonon scattering in the monovalent metals at any temperatures and to understand 

the spin-flip mechanism in the NM nanowires. 
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Chapter 6 

 

Dynamic spin transport properties of spin current 

6.1 Introduction 

The velocity of spin current has been analyzed by a response of spin precession 

and dephasing since the pioneering work of Johnson and Silsbee in 1985 [1] and this 

so-called Hanle effect analysis has been used for extracting the spin relaxation time, the 

velocity and the transit-time distribution between the injector and the detector [2-7]. 

However, recent experimental progress in creating spin currents revealed new 

experimental results which could not be explained by the previous theoretical 

framework. For example, the Hanle analyses of dynamic spin transport properties of 

graphene, recently performed by assuming an empirical transit-time distribution, 

yielded strikingly different spin relaxation times depending on the type of contacts 

although intrinsic spin transport properties of non-magnet (NM) should be an 

independent parameter of the contact type [6]. In the case of silicon, the experimental 

Hanle signals could not be fully described by the empirical model based on a drift-

dominated transit-time distribution in spin-transport of semiconductor [8, 9]. For GaAs, 

solid analysis of spin relaxation in a two-dimensional electron gas is hampered by 

complexities of charge and spin transports [10, 11]. Therefore, it is essential to provide 

a framework for understanding the dynamic spin transport properties in non-magnetic 

(NM) materials. 

In the first part of the chapter 6, we establish the formalism of the Hanle effect 

to characterize intrinsic spin transport properties in NM materials. The experimental 

studies are based on metallic lateral spin valves (LSVs), which have comparative 

advantage in designing the measurement scheme owing to clear physics of charge and 

spin transport and spin relaxation mechanism [12, 13], good controllability of 
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dimensions where one-dimensional transport model is applicable, and comparability of 

junction property from low resistive transparent junctions to high resistive tunnel 

junctions [2, 5, 7, 12-19]. As a consequence, we have succeeded in identifying the 

impact of spin absorption effect on the deduced spin relaxation time and obtaining 

intrinsic spin relaxation time which is comparable with other experimental probes such 

as conduction electron resonance. 

In the second part of the Chapter 6, we study the coherence of spin precession 

in the Hanle effect. With the aid of the techniques to generate large spin accumulation 

discussed in the Chapter 4, we observe long-distance spin precession and characterize 

the transport and relaxation mechanisms. In ballistic spin transport, spins can coherently 

rotate at a frequency proportional to the applied magnetic field. This allows us to control 

the direction of the spins in the channel and to manipulate the output signal of LSVs by 

adjusting an effective external parameter such as the Rashba field tunable via a gate 

voltage [20]. This scheme realizes an active spin device such as the spin-transistor [21]. 

However, in a diffusive pure spin current in NMs, the precession causes dephasing, and 

decreases drastically the spin accumulation [3, 4, 22-27]. In this section we show the 

LSVs with dual injectors enable us to detect a genuine in-plane precession signal from 

the Hanle effect with no spurious signals, demonstrating the phase coherency in 

precession is improved with an increase of the channel length. The coherency in the 

spin precession shows a universal behavior as a function of the normalized separation 

between the injector and the detector in material-independent fashion for metals and 

semiconductors including graphene. 
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6.2 The effect of spin absorption on Hanle effect 

6.2.1 The effect of spin absorption on Hanle signal 

In order to establish a model of dynamic spin-transport, the response of spin 

precession in magnetic fields, namely, the Hanle effect was measured in various LSVs 

with Ni80Fe20(Permalloy, Py)/Ag Ohmic and with Py/MgO/Ag junctions. Samples (Fig. 

6.1) were prepared on a Si/SiO2 substrate with a suspended resist-mask by using shadow 

evaporation technique [19] and fabricated LSVs consist of two ferromagnetic (FM) Py 

wires (140-nm-wide and 20-nm-thick) bridged by a NM Ag wire (100-140 nm-wide 

and 100-nm-thick). When the current is applied to the Py/(MgO/)Ag injector junction, 

the diffusive spin current is generated in the NM wire. With the perpendicular magnetic 

field Bz applied, the spins begin to precess, which changes the output signals of the 

devices [1, 2], and the transit time for the spin t is deduced from a change of the angle 

in the orientation at the detector. Figure 6.1 shows Hanle signal for LSVs with both the 

Py/Ag and Py/MgO/Ag junctions, with the injector-detector separation L varied from 

3.00 m to 6.00 m. The RS corresponds to the difference in non-local resistances 

 
Figure 6.1: Scanning electron microscope (SEM) images of fabricated lateral spin valve devices.
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between the parallel and antiparallel magnetic configurations of the injector and the 

detector at BZ = 0. The value of RS decreases with increasing L because the spin 

accumulation decreases due to the spin relaxation in Ag [13]. Also, the values of RS 

for the Py/Ag junctions are reasonably smaller than those for Py/MgO/Ag junctions due 

to the spin-resistance mismatch [14, 19]: in the case of the Ohmic Py/Ag junction, the 

spin current in the Ag wire is absorbed into Py, which is expected from very low 

 
Figure 6.2: Hanle signal in LSVs with Py/Ag junctions and Py/MgO/Ag junctions with various
separations L. Black and red circles show non-local resistance V/I of parallel and antiparallel 
magnetic configurations of the injector and detector electrodes, respectively at T = 10 K. Curves are 
obtained by the formula of Hanle effect (eqns.(2.43) and (2.54)) with adjusting parameters shown 
in Table I. Arrows ( /2

zB  and /2
zB  ) show the first cross-points of the Hanle signal for the parallel 

and antiparallel configurations corresponding to the collective /2 rotation of diffusive spins. 
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interface resistance RI for Py/Ag. In Fig. 6.2, the first cross-point /2
z
B  of the Hanle 

signal for the parallel and antiparallel magnetic configuration of the injector and 

detector Py wires corresponds to the transit time when the collective /2 rotation of 

diffusive spins is completed. The /2
z
B  decreases with increasing L because of the 

increased transit time in the Ag wire. Figure 6.2 also shows that the magnitude of /2
z
B  

alters depending on the type of junctions: for LSV with L = 6.00 m, the Py/Ag 

junctions give 
/2

z
B  ~  148 mT whereas the Py/MgO/Ag junctions give  92 mT. 

These values correspond to /2
L
 ~2.60  1010 s-1 and 1.62  1010 s-1, respectively, 

indicating that faster spin diffusion for the Py/Ag junctions compared with the 

Py/MgO/Ag junctions. This tendency was consistently observed in the LSVs both with 

L = 4.50 m and 3.00 m, the latter of which has the most pronounced difference in 

/2
z
B  between the LSVs with Py/Ag and Py/MgO/Ag junctions. 

6.2.2 The analysis of transit-time distribution 

In order to understand more explicitly the effect of the spin absorption on the 

dynamic property of spin transport, the transit-time distribution was examined. Hanle 

signal is described by integrating the transit-time distribution with Larmor precession 

as 

 
L0 0

( , ) ( ) cos( )yV dt S x L t dtP t t
 

           (6.1) 

where Sy(x=L,t) is the net spin density along the y direction parallel to the easy axis of 

the ferromagnet (FM) at the detector, t is the transit time and P(t) is the transit-time 

distribution of the net spin density given by its modulus S(L,t) Sx
2(L,t)Sy

2(L,t)]1/2 

[2, 7]. This means that spins injected at x=0 arrive at the detector position with a 

probability of P(t) and the detection voltage is proportional to the integrated y-

component spin density S(x=L,t)cos(Lt) with respect to all the possible transit time. 

Since the spin current is diffusive, there is a finite time to travel across NM Ag wire. 

After the spin begins to reach the detector, the P(t) increases until the spin-flip nature 
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appears, i.e., the transit time becomes comparable to the spin relaxation time. As a 

result, the transit-time distribution exhibits a typical peak structure as shown in Fig. 

6.3(a), and is usually described by an empirical distribution 

 2
em N sf

N

1
( ) exp /4 ( / ) ,

4
( )P t L D t t

D t



       (6.2) 

where DN is the diffusion constant for spin and sf is the spin relaxation time [2]. 

Considering the fact that the Hanle signal is given by eqn.(6.1), P(t) can be directly 

derived by applying Fourier transform to the experimental Hanle signal [8]. Figures 

6.2(a) and 6.2(b) show the derived P(t) by performing Fourier transform for the 6 m 

spin transport in LSVs. In the case of LSVs with the Py/MgO/Ag junctions, 

experimental data agree excellently with the curve obtained from an empirical model 

(eqn.(6.2)) with the spin relaxation time in table I and the diffusion constant derived 

with Einstein relation, which validates this scheme. On the other hand, in the case of 

LSVs with the Py/Ag junctions, P(t) from Fourier transform is shifted to the left-hand 

Figure 6.3: (a),(b) Derived transit time distribution of pure spin current P(t) (red circle) by 
performing Fourier transform on Hanle signal shown in Fig. 6.2(e) and (f). Dashed curves are 
derived by the empirical model, i.e., diffusion distribution with spin-flip expressed by eqn. (6.2), 
with the values of DN and sf listed in Table I. Solid curve shows the distribution including the effect
of spin absorption. All P(t) is normalized by P(tmax) where tmax gives the maximum of P(t). (c) 
Velocity and full width at half maximum (FWHM) for spin absorption model normalized by those 
for empirical model. Lines are guides to the eyes. 
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side with respect to the one expected from the empirical equation (6.2), suggesting the 

faster spin diffusion. The experimental P(t) is remarkably different from the empirical 

equation (6.2); this makes us desire to construct the model of transit-time distribution 

to go beyond the empirical one which does not consider the spin absorption. 

In order to gain the insight of the effect of spin absorption on the dynamic 

properties of spin currents in NM, we formulate the Hanle effect for LSVs with low 

resistive Ohmic junctions to tunnel junctions. For this, following two issues have to be 

fully taken into account: firstly, the spin absorption by both injector and detector FMs, 

affects a spatial distribution of electro chemical potential [28]. In addition to it, a recent 

experiment of Ghosh et al. showed that spin relaxation processes in FMs were different 

between longitudinal and transverse spin currents [29]. Their results suggest that the 

spin relaxation is expected to be more pronounced when the diffusive spins are oriented 

perpendicular to the magnetization of the detector via precession. The longitudinal 

component of spin current ||
S iI  through i-th junction (i 1, 2) is described as 

||
I I F I F ||/ ( /2 )[ ( )]Si i i i i i iI P G e G e x     , where IiP  is the interfacial-current spin-

polarization, GIi is the interface conductance, F F F( + ) / 2i i i
    , ( )

Fi
   is the spin-

dependent electro chemical potential of Fi, Fi  is the spin accumulation of FMi at the 

interface, || F( ) ( )/ ( )yx S x N   is the longitudinal component of spin accumulation 

in the Ag wire, N(F) is the density of state at Fermi energy, and xi is the contact position 

(x1 = 0, x2 L). ||
SiI  is inversely proportional to the spin-resistance of i-th FM RFi, as 

schematically shown in Fig. 6.4(a). In the presence of transverse spin accumulation

( ) ( )/ (0),xx S x N   the transverse spin current SiI   is given by 

,
( / ) ( )Si ii

I G e x
 , where ,i

G  is the real part of spin mixing conductance at the 

i-th interface [30] as schematically shown in Fig. 6.4(b). The spatial distribution of 

  and ||  are illustrated in Figs. 6.4(c) and 6.4(d) with considering different 
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mechanism of spin absorption for longitudinal and transverse spin accumulation, based 

on the model of Stiles and Zangwill [31]. The spin accumulations, ( )x and ( )x  

in the Ag nanowire are given by the complex representation ||( , ) = ( )x t x 

( )i x  

L L

|| ||
1 1 2 2

em em0 0
F N F N

( ) ( , ) ( , )
2 ( ) 2 ( )

i t i tS S S SI iI I iI
x dtP x t e dtP x L t e

eN A eN A
 

 

   
      (6.3) 

and the spin current density in the complex representation is N( /2 ) ( ),( )Sj e xx       

where N  is the electrical conductivity of the Ag wire. Using the boundary conditions 

that the spin and charge currents are continuous at the interfaces of junctions 1 and 2, 

we obtain the spin accumulation voltage 2V V detected by Py and the non-local 

resistance V/I of Hanle signal in LSV (eqn.(2.43)). When the junctions are the tunnel 

type, the Hanle signal reduces to the conventional expression in LSVs eqn.(2.30) in the 

limit of small spin absorption. 

 
Figure 6.4: (a) Absorbed longitudinal spin current IS|| is proportional to longitudinal spin 
accumulation || and inversely proportional to the spin-resistance of FM RF. (b) Absorbed 
transverse spin current IS is proportional to transverse spin accumulation  and the real part of 
spin mixing conductance G. (c), (d) Schematic of || and  in the vicinity of the detector 
junction. In FM,  is decaying with precessing along the magnetization direction, which results
in damping with oscillation [31]. The red and blue curves are calculated by the spin diffusion 
equation with using the eqn.(48) in [31]. 



 

98 

 

6.2.3 Evaluation of the spin relaxation time 

The experimental results are well reproduced by the present theoretical 

calculations using reasonable parameters listed in Table I, as can be seen in Fig. 6.3. 

The obtained spin polarizations PF and PI agree well with our previous results [19] and 

values reported in ref. [32]. The resistivity of Py was 1.75×10-5 cm. The junction 

resistance of Py/MgO/Ag was 20 , which is enough higher compared with spin-

resistance RAg = NN/AN = 1 . The interfacial resistance of Ohmic Py/Ag junctions 

and the spin diffusion length of Py are taken as RIAJ = 5  10-4 m)2 [32] and Py = 

5 nm [33], respectively from the literature. DN = 612  19 cm2/s is derived from Einstein 

relation N e2DNN(F) where N(F) = 1.55 states/eV/cm3 [34]. While the shape of 

Hanle signal is drastically modified by the junctions as in Fig. 6.2, the spin relaxation 

times for Py/Ag and Py/MgO/Ag junctions are well agreed as 40.8 ± 6.2 ps and 40.3 ± 

7.3 ps. The spin relaxation mechanism is characterized by the spin-flip probability   

e/sf with respect to the momentum relaxation time e. For Ag,  = 0.10 ps / 40 ps = 2.5 

 10-3 in this study is consistent with that (2.50  10-3) deduced form conduction 

electron spin resonance [35], in which spin relaxation mechanism was established as 

Elliott-Yafet mechanism. The agreement of a between the measurements is also 

 

Table I: Adjusting parameters for Hanle signals which are shown in Fig. 6.2. 

Junction L (m) PF PI(Py/MgO/Ag) PI(Py/Ag) sf (ps) G (m-2-1) 

Py/Ag 3.00 0.57  0.04 N/A 0.80  0.03 40.3  5.3 (3.5  0.9)  1014

Py/MgO/Ag 3.00 N/A 0.28  0.02 N/A 38.0  3.9 N/A 

Py/Ag 4.50 0.51  0.14 N/A 0.80  0.10 39.3  5.1 (2.0  0.9)  1014

Py/MgO/Ag 4.50 N/A 0.33  0.05 N/A 38.0  6.4 N/A 

Py/Ag 6.00 0.55  0.12 N/A 0.76  0.06 42.9  7.9 (3.6  8.4)  1014

Py/MgO/Ag 6.00 N/A 0.26  0.07 N/A 45.0  10.2 N/A 



 

99 

 

reported for Al and Cu [1, 12]. Therefore, the spin relaxation time obtained in this study 

reflects intrinsic properties of Ag, in which characterization was enabled by the well-

designed device structure, e.g., the spin transport channel is much longer than the 

junction size and surface spin scattering is suppressed by capping layer [13]. In addition 

to it, the Fourier transform of the theoretical Hanle signal agrees with the experimental 

P(t) not only for LSVs with Py/MgO/Ag junctions but also for Py/Ag junctions, which 

complimentary supports the validity of our model. These results show that eqn.(6.1) 

cannot be used with the most widely used P(t) = Pem(t) to analyze Hanle signal in LSVs 

of which RI is lower than RN due to the spin absorption effect. They may provide 

spurious spin relaxation times with mimicking signals or in some cases with different 

shapes of Hanle signals. In other words, the same spin relaxation time results in the 

different Hanle signal with and without spin absorption, the former of which exhibits a 

broader signal as shown in Fig. 6.2. This tendency is consistent with the reported Hanle 

signals in graphene based LSVs with various type of junctions, where the spin 

relaxation time is deduced as 448-495 ps and 84 ps for tunnel junction and transparent 

junction, respectively [6]. The reanalysis of data using our model provides 448-495 ps 

and 440 ps for tunnel junctions and transparent junctions, respectively as shown in 

 

Figure 6.5: Simulated Hanle curve of a graphene based lateral spin valves with transparent junctions. 
Dots (experimental data) are from ref. [6] and blue lines are calculated from eqn.(2.43). 
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Fig.6.5 and Table II, which allows us to separate the intrinsic and extrinsic spin flip 

mechanisms in graphene.  

6.2.4 Full width at half maximum 

Spin absorption effect drastically alters the transit-time distribution. The 

velocity v is estimated as v  L/ttrans where ttrans   0
 dt{tP(t)} /  0

 dt P(t). Figures 

6.3(a) and 6.3(b) show its speed as fast as 9.2  104 m/s for the Py/Ag junctions and 6.6 

 104 m/s for the Py/MgO/Ag junctions, which means the diffusion velocity depends 

on not only diffusion constant but also a spatial gradient in the accumulated spins. The 

velocity for the Py/Ag junctions is accelerated toward the detector because the spatial 

distribution of the electro chemical potential is strongly modified by the spin absorption 

while the diffusion coefficient remains constant in consistent with theoretical report 

[36]. Figure 6.3(c) shows v and the full width at half maximum (FWHM) of P(t) for the 

Py/Ag junctions normalized by those for the Py/MgO/Ag junctions. For the Py/Ag 

junction not only v is higher but also the FWHM is smaller than those for Py/MgO/Ag 

junctions, which has the more pronounced difference for short L. FWHM is the essential 

parameter to characterize the coherent spin precession with respect to the applied field 

because broad distribution of the dwell time gives rise to phase decoherence of the 

precessing spins [7]. The narrower FWHM for the Ohmic junction may pave the way 

for efficient control of spins in NM material for active spintronic devices. 

Table II: Adjusting parameters for Hanle signals for graphene based LSV with Co/Graphene
junction in ref [6]. 

L (m) PF PI(Co/Graphene) sf (ps) DN (cm2/s) G (m-2-1) 

3.00 0.40 0.0088 440 163 1.6  1010 
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6.2.5 Spin mixing conductance 

Our model also enables to derive spin mixing conductance G which is one of 

the principal physical quantities characterizing recent novel spintronic effects such as 

spin pumping and insulating spin Seebeck effect [37, 38]. In the present study 

experimental G is shown in Table I, whereas theoretical G is roughly given by 

Sharvin mixing conductance G Sh
  = e2kF

2/4h, where kF is the Fermi wave number of 

NM [39, 40]. It provides the value of G Py/Ag
   G

Sh
  = 3.7  1014 (m2)-1 (kF = 1.20  

1010 m-1 is from [41]), which is consistent with our experimental values. The larger 

theoretical value may be due to a reflection of the spin current at the interface [39]. 

Similar behavior is reported for G Py/Cu
  of Py/Cu junctions: the experimental value of 

G Py/Cu
  was obtained as 3.91014 (m2)-1 from Giant Mageneto Resistance (GMR) 

study analyzed by circuit theory on FM/NM metal hybrid device developed by Brataas 

et al. [37, 42], which is also smaller than the theoretical value G Sh
  = 4.8  1014 (m2)1 

(kF = 1.36  1010 m-1 is from [41]). The quantitative evaluation of sf on the change of 

G is as follows. For that, we estimate alternative parameter to G as 

1/AJ{1/(2RI)+1/(2RF)} in the case of isotropic spin absorption (see eqn.(2.41)). In the 

case of LSV with Py/Ag junctions with L = 3 m, isotropic spin absorption causes 20 % 

reduction of spin relaxation time. In contrast, for the graphene with transparent junction 

(RI = 285 ) [6], since obtained G is only 4% different from the equivalent parameter 

1/(2AJRI) for isotropic spin absorption, it does not give strong impact on spin 

absorption. This is attributed to higher junction resistance compared with Ohmic 

contact in metallic system. We shall note here that G obtained in this study is different 

from the value obtained from spin pumping by a factor of 3-6 [29, 43]. For the spin 

pumping measurement, the magnetization dynamics in FM resonance is used for 

injecting spins in the NM, and therefore the spin transport properties at the interface 

may be different from the Hanle effect and GMR measurements using static spin 
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current8. The transport parameters generally depend on the frequency i.e. G=G(). 

Therefore, the Hanle measurements provide us an alternative scheme to determine G. 

 

6.3. Towards coherent spin precession 

6.3.1 Sample preparation and measurement condition 

LSVs with Py/MgO/Ag junctions are prepared on a Si/SiO2 substrate by means 

of shadow evaporation using a suspended resist mask which is patterned by e-beam 

lithography. To make the analysis simple, Py/MgO/Ag junctions are used, which 

prevents spin absorption. All the layers are e-beam deposited in an ultra-high vacuum 

condition of about 10-6 Pa. First, 20-nm-thick Py layer is obliquely deposited at a tilting 

angle of 45° from substrate normal. Second, the interface MgO layer is deposited at the 

same tilting angle of 45°. Third, 100-nm-thick Ag layer is obliquely deposited normal 

to the Si substrate. Finally, 3-nm-thick capping MgO layer is deposited to prevent 

surface contamination of the devices. After the liftoff process, the devices are annealed 

at 400 C for 40 min in an N2 (97%) + H2 (3%) atmosphere.  

The non-local measurements are carried out by a dc current source and nano-

voltmeter. The bias current in the range between 200 and 400 A is applied to the 

injector. The magnetic field is applied parallel to the Py wires for the spin valve 

measurements. For the Hanle effect measurements, the magnetic field is applied 

perpendicular to the Si substrate. The field direction is carefully controlled to rule out 

the misalignment that causes the in-plane field component that switches the 

magnetization of Py in the plane during the measurements.  

                                                 
8 In the case of spin pumping, injected spin is in resonant state. 
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6.3.2 Experimental observation of genuine spin precession signal 

The Hanle effect measurements were performed on LSVs by applying 

perpendicular magnetic fields. Figure 6.6(a) shows the modulated non-local spin signal 

for SLSV and DLSV. A parabolic background signal is observed for the SLSV, the 

origin of which is the magnetization process of FMs. When the applied magnetic field 

is increased above the demagnetizing field of the FM wires, the magnetizations for the 

injector and the detector are tilted up along the field direction, pushing the background 

signal up towards the value of parallel configuration for FMs. To describe the both 

contributions of spin precession and magnetization process, we decompose them into 

that of spin precession in x-y plane and that of the z component reflecting the 

magnetization process. The non-local spin signal V/I in the presence of BZ is thus given 

by the sum of the above two contributions; 

   Hanle FM1 FM2 FM3 Hanle FM1 FM2 FM3
S L S, , , 0, , , ,y y y z z z

V
R R

I
 e e e e e e e e e e e e        (6.4) 

with  Hanle FM1 FM2 FM3 2
S L I N N

1
( , , , ) Re / exp( / ) ,

2
R a a a P R L           (6.5) 

where  FM2 FM3 FM1 FM3
12 12 L sfN1 exp( 2 / ) 2 exp( / ), / 1 ,a a d a a d i                 

sf = λN
2/DN the spin relaxation time, DN the diffusion constant, LeBz the Larmor 

frequency, B /e g    the gyromagnetic ratio, g the g-factor, B the Bohr magneton 

and aFMi is the projection of the unit vector of the magnetization of FMi eFMi on y or z-

axis (see the eqns.(2.54) and (2.56), and chapter 2 for the detail). Note here that 

 Hanle FM1 FM2 FM3
S L, , ,y y yR  e e e e e e    represents the non-local resistance at the 

precessional frequency L, and  Hanle FM1 FM2 FM3
S 0, , ,z z zR e e e e e e    does that without 

spin precession (see chapter 2 for details). Note also that to avoid the spin absorption 

by FM wires, we use the Py/MgO/Ag junction in the present study [14, 19]. For SLSV, 

we obtain PI = 0.37 and N = 1420 nm by fitting eqn.(6.4) to the experimental data as 

shown in Fig. 6.6(a), which are consistent with those obtained alternatively from the L 
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dependence of RS in the previous section. For DLSV, the z component of the injectors 

is canceled out because of the opposite direction of the applied current to the junctions 

Figure 6.6: (a) Non-local spin signal modulated by spin precession as a function of perpendicular
field for single and dual injector LSVs with L = 6 m at 10 K. The solid lines are the fitting curves 
using eqn.(6.4). (b) Schematic diagram of magnetizations of injectors and non-equilibrium 
magnetization m in the Ag wire in the presence of high BZ. In Ag, y-components of m1 and m2 are 
constructive but z-component of them are canceled each other out both for antiparallel and parallel 
magnetization configurations of the injectors. (c) Coherent parameter of the spin precession 

π 0
S SR R  as a function of L. The solid lines are the fitting curves using eqn.(6.4) with the same 

parameters as used in (a). Data are corrected by taking account of the influence of magnetization
process. (d)-(f) Density of y-directional spin arrived at the detector as a function of dwell time for 
LSVs with different L. The black and red lines represent the distribution of the dwell time in the 
channel without and with BZ that causes  rotation after spins are injected, respectively. 
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as depicted in Fig. 6.6(b). This allows us to detect the genuine precession signal in Fig. 

6.6(a). 

6.3.3 Towards coherent spin precession  

In the diffusive pure-spin transport, the collective spin precession decoheres due 

to broadening of the dwell time distribution in the channel between the injector and the 

detector [2]. For example, the amplitude of the spin valve signal at BZ = 0 decreases 

after the rotation at zB = 0.16 T, as can be seen in Fig. 6.6(a). In order to better 

quantify the coherency in the collective spin precession, we define the figure of merit 

as the ratio 0
S SR R  , where SR  and 0

SR  are the amplitude of the spin signal 

right after the rotation and that in zero field right before the rotation begins, 

respectively. The π 0
S SR R   increases with increasing L, and the experimental trend 

is well reproduced by eqn.(6.4) as shown in Fig. 6.6(c). To understand the observed 

trend in more detail, we employ the one-dimensional diffusion model which gives the 

y-component of net spin density at the detector <Sy> 

  2
N N sf L1 4 exp / 4 / cos( )D t L D t t t    , as a function of the dwell time t in the 

presence of Bz [2]. The <Sy> versus t curves for L =  with Bz = 0 and Bz = zB  are 

shown in Fig. 6.6(d). When Bz = 0, <Sy> takes a broad peak structure followed by a long 

exponential tail. The detected spin signal in LSVs is proportional to the <Sy> integrated 

over time. The distribution of 0|
zy BS    gets narrower as the channel length becomes 

longer, of which evolution is depicted in three distribution curves under Bz = 0 of Figs. 

6.6(d)-(f). The long exponential tail observed in Fig. 6.6(d) diminishes in proportion to 

 sf1 exp /t t  . When BZ = ZB

 is applied, the integrated value of <Sy> over time 

cancel for short L ~ (Fig. 6.6(d)) whereas it does not cancel for long L >> (Figs. 

6.6(e) and (f)), indicating that the coherence of collective spin precession is well 

preserved for long spin transport. This trend is experimentally observed as an increase 

of 0
S SR R   from 0.21 to 0.53 with L as shown in Fig. 6.6(c). 
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6.3.4 Universal curve for the coherency 

To better understand the coherence in collective spin precession, sft t   is 

substituted into the distribution function at BZ = 0. We then obtain yS 

  2

N 1 exp / 2 /t L t t    , where t  is dimensionless time. This implies that the 

distribution of the dwell time, i.e., coherency, is characterized only by L/N and more 

importantly it does not depend on the kind of materials as long as their transport is 

diffusive. To check this idea the L/N dependence of π 0
S SR R  are summarized by 

using the data so far reported for metals, semiconductors and graphene in Fig. 6.7. 

Interestingly the relation between the coherence and the normalized separation shows 

a universal behavior and the experimental data are well reproduced by eqn.(6.4). We 

shall note here that the effective length L/N, not the spin relaxation time, is an 

important parameter to manipulate the spin precession coherently in the diffusive pure-

spin transport while the spin accumulation is relaxed during the diffusive transport in 

the channel. Therefore, the high spin injection efficiency of the Py/MgO/Ag junction 

and the confinement effect in the DLSV structure could offer advantages for realizing 

giant spin accumulation as well as the coherent spin precession along a 10 m-long Ag 

wire which is much longer than the spin diffusion length. In the Hanle effect 

measurement of spin-polarized electron transport in a 350 m-thick undoped single-

crystal Si wafer, coherent spin precession up to 13 is reported [44]. However, the 

diffusion constant of the spin current is lower than that in Ag and the collector current, 

which is the proportional to the amount of spins in the channel, is two orders of the 

magnitude smaller than the detected spin current in DLSV with L = 10 m, even though 

the spin-polarized current in Si is accelerated by means of electric fields. 

For spintronic devices using such a long-diffusion spin current, fast spin 

transport may be critical. The high coherence of the spin precession over π 0
S SR R  = 

0.4 is reported for Al and graphene as can be seen in Fig. 6.7, however, the diffusion 

constant of the pure spin current is 0.003 m2/s and 0.01 m2/s [22, 27], respectively, 
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which is much slower than that of Ag (0.047 m2/s). Also, the velocity of spin current in 

Ag is estimated to be sf/D  , which is as high as the drift-velocity of Si [44]. 

Therefore, the experimental results in this study could be useful in developing a new 

class of spintronic devices and the material-independent perspective for the spin 

precession will be beneficial for us to design pure-spin-current-based memory and 

transistor by using a variety of metallic and semi-conductive materials including 

graphenes. 

 

6.4 Conclusion for chapter 6 

In summary, we have studied the dynamic transport properties of spin current 

in metallic LSVs with various junctions. The effect of spin absorption on the Hanle 

signal was clearly observed in all the devices. The velocity of diffusive spin currents 

 

Figure 6.7: Coherency of spin precession in diffusive pure-spin current. Coherent parameter of the 
spin precession 0

S SR R  as a function of L/N. The solid line is a universal curve obtained from 
eqn.(6.4). a) [2, 22, 23] b) [4] c) [6, 25-27] d) [3] 
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and the transit-time distribution was successfully evaluated by applying Fourier 

transform to the experimental Hanle signals, resulting in excellent agreement with the 

empirical model in the case of the Py/MgO/Ag junctions. In contrast, we found that the 

transit-time distribution in LSVs with the Py/Ag junctions was strongly deviated from 

that expected in the empirical model and that the spins diffuse much faster than in LSVs 

with the Py/MgO/Ag junctions, reflecting the spatial distribution of electro chemical 

potential affected by the type of junctions. We have successfully formulated the Hanle 

effect for the LSVs with anisotropic spin absorption for the transverse and longitudinal 

components of the spin polarization in spin currents relative to the detector 

magnetization-direction, which enables to elucidate intrinsic spin transport and 

relaxation mechanisms in the NM. The model also provides alternative way to 

determine the spin mixing conductance.  

In the last part, we have demonstrated that the LSVs with dual injector 

Py/MgO/Ag junctions enable to detect highly coherent spin precession over a distance 

of 10 m with keeping spin accumulation vector in plane against out of plane 

magnetization process, which results in genuine signal of the in-plane precession. We 

also experimentally found that the better the phase coherency becomes the longer the 

spins travel. This tendency appears to fall on a material independent universal curve 

when the coherence is plotted against the reduced parameter of the injector-detector 

distance over spin diffusion length. This is useful for the material design of spintronics 

devices based on pure spin current. 
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Summary 

This thesis describes a series of experiment aimed at the understanding of the static 

and dynamic properties of pure spin current by using lateral spin transport with non-local 

spin injection techniques. 

 

The major results of the thesis are as follows: 

1. The hundred-fold enhancement of the spin accumulation was realized by non-

local spin injection in lateral spin valves (LSVs) with Ni80Fe20(Permalloy, Py) 

/MgO/Ag and Co50Fe50/MgO/Ag junctions. Underlying physics is understood 

as a (spin) resistance (conductance) mismatch (Chapter 2 and 4).  

2. Spin relaxation mechanism in non-magnetic Ag and Mg nanowires were 

quantitatively examined by evaluating its spin diffusion properties. Intrinsic 

properties was deduced by temperature variation of spin relaxation time and 

momentum relaxation time. The strength of spin relaxation were explained by 

the effects of the spin-orbit interaction and the electronic structure (Chapter 5). 

3. The model to characterize dynamic spin transport properties were established, 

which quantitatively explains the impact of spin absorption on the collective 

spin precession (Hanle effect) and enables to derive intrinsic spin relaxation 

time of non-magnetic nanowires (Chapter 2 and Chapter 6). 

4. Long-distance 10 m collective spin precession was observed in dual injector 

lateral spin valve (DLSV). The coherence of the spin precession, defined as the 

ratio of the spin signal after the  rotation and without rotation, was as high as 
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0.5 for 10 m spin precession. The coherence of the spin precession was 

summarized in various non-magnetic material including metals and 

semiconductors such as silicon and graphene by using the separation 

normalized by spin diffusion length (Chapter 6). 

 

The enhancement of the spin accumulation in LSVs with Py/Ag junctions and 

Py/MgO/Ag junctions. The effect of the junction for the generation of spin current was 

systematically studied. The spin signal increases with an increase of the MgO thickness 

and the interface resistance, in which behavior is understood as a spin-resistance mismatch. 

The experimental results are analyzed in detail with the spin diffusion model. The origin 

of the enhancement of the spin accumulation is found as follows. (1) The injector 

Py/MgO/Ag junction prevents back-flow of spin current, which enables efficient spin 

injection. (2) The detector Py/MgO/Ag junction prevents the decrease of the spin 

accumulation caused by spin absorption, which enables “efficient” detection of the spin 

accumulation. The experimental result shows that the junction resistance of around the 

spin-resistance of Ag is enough for efficient spin injection, which is compatible with higher 

current application than one for the conventional high resistance magnetic tunnel junctions. 

It results in the hundred-fold spin accumulation signal V = 225 V. 

 

The enhancement of spin accumulation in dual-injection DLSVs. The device 

structure for efficient generation of spin current was optimized. Dual spin injection scheme 

enhanced spin accumulation by a factor of 3.2 with Py/MgO/Ag(100-nm-thick) junctions. 

We found that the enhancement reaches up to 4 in the present device structure with small 
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injectors’ separation and without spin absorption. Spin accumulation shows a maximum 

among the several magnetic configurations when the injectors’ magnetization-

configuration is antiparallel. Large spin signals of 233 m and 480 m are observed for 

DLSVs with Py/MgO/Ag and CoFe/MgO/Ag, respectively. The spin polarization of the 

CoFe/MgO/Ag junctions is found as high as 0.52. The efficient generation of the pure spin 

current IS/IC = 0.58 is realized. Although the number of injection electrodes is increased in 

a lateral geometry, the spin absorption effect for Ohmic Py/Ag junctions prevents the 

enhancement of the spin accumulation in the Ag nanowire. Analysis based on one-

dimensional spin diffusion model revealed that the spin absorption effect in the middle 

Py/Ag junction strongly suppress the enhancement of the spin accumulation in DLSVs with 

Ohmic junctions.  

 

The spin diffusion characteristics in LSVs with Mg nanowire. Clear non-local 

and local spin valve signals are observed for a LSV with Py/Mg junctions. The amplitude 

of the local spin valve signal is 2.4 times larger than that of the non-local spin valve signal, 

which assure that one-dimensional spin diffusion model is applicable to explain the 

observed spin valve behaviors in the Py/Mg devices. The amplitude of the spin signal is 

relatively large among LSVs with transparent Ohmic junctions. The spin diffusion length 

of Mg is found to be 720 nm at T = 10 K and 230 nm at RT from the measurement of the 

spin valve signal as a function of the separation L. The obtained spin diffusion lengths for 

Mg are not much longer than those for Al, Cu and Ag whereas the obtained spin-flip 

probability, ratio of spin relaxation time and momentum relaxation time, is a little smaller 

than those of Cu and Ag. The spin-flip probability is larger compared to one in the material 
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with similar spin-orbit strength, which is consistent with the theoretical prediction by 

Fabian and Das Sarma: possibly because of the enhanced spin relaxation near the special 

points for polyvalent metals in momentum space called as spin–hot-spots. 

 

The spin relaxation mechanism in Ag nanowires. The spin-flip probability 

caused by phonon and impurity scatterings is precisely determined. The surface spin 

scattering, which hampered quantitative analysis in previous reports, is well suppressed in 

Ag nanowire by an MgO capping layer. The temperature dependence of the spin relaxation 

times due to phonon scattering for the Ag nanowire is well fitted to the Bloch-Grüneisen 

formula. The fitting curve is in good agreement with the reported spin relaxation times of 

Ag foils used in the conduction electron spin resonance measurement, which reflects 

intrinsic feature of Ag. Thus the spin relaxation mechanism of Ag nanowire is well 

explained in the framework of the conventional Elliott-Yafet model. The experiment data 

in the present study fall on to the universal curve for monovalent metals in the revised 

Monod-Beuneu scaling. These allow us to determine the spin relaxation time for phonon 

scattering in the monovalent metals at any temperatures and to understand the spin-flip 

mechanism in the non-magnetic nanowires. 

 

The dynamic transport properties of spin current in metallic LSVs with 

various junctions. The effect of spin absorption on the Hanle signal was clearly observed. 

The velocity of diffusive spin currents and the transit-time distribution was successfully 

characterized by applying Fourier transform to the experimental Hanle signals, resulting in 

excellent agreement with the empirical model in the case of Py/MgO/Ag junctions. In 
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contrast, we found that the transit-time distribution in LSVs with Py/Ag junctions was 

strongly deviated from that expected in the empirical model and that the spins diffuse much 

faster than in LSVs with Py/MgO/Ag junctions, reflecting the spatial distribution of electro 

chemical potential affected by the type of junctions. We have successfully formulated the 

Hanle effect for the LSVs with anisotropic spin absorption for the transverse and 

longitudinal components of the spin polarization in spin currents relative to the detector 

magnetization-direction, which enables to separate intrinsic spin transport parameters from 

spin absorption effect. 

 

Long-distance and highly coherent spin precession. Highly coherent spin 

precession over a distance of 10 m was demonstrated. DLSV scheme cancels out the out-

of-plane component of the spin accumulation from each injector, which suppresses the 

background of Hanle signal. We also experimentally found that the better the phase 

coherency becomes the longer the spins travel. This tendency appears to fall on a material 

independent universal curve when the coherence is plotted against the reduced parameter 

of the injector-detector distance over spin diffusion length. 

 

This thesis presents a systematic study on the spin dependent transport in the 

mesoscopic metallic devices. The thesis consists of three complimentary studies, the 

enhancement of the spin accumulation (the effect of the junction and device structure), the 

spin relaxation mechanism (intrinsic properties: phonon contribution and the effect of the 

electronic structure), and the collective spin precession (the characterization of the spin 

transport properties and the modulation of spin current), which are deeply related each 
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other. The in-depth understandings of lateral spin transport could be useful for developing 

new spintronics devices based on the pure spin current. 
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