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Chapter 1

Introduction

1.1 A vortex and its identity

Our world is filled with vortices such as galaxies, typhoons, ocean vortices,

and so on. Also, in a plasma, we observe a wide variety of vortices such as a

circulating, helical, spiral, or shearing mode of magnetic and flow fields. A vortex

is a strange being in that it seems to be a “phenomenon” as well as a “matter”. It

is primarily a pattern, or a mode, of the motion of something, and therefore, it is a

kind of phenomena rather than a matter. However, once it makes its appearance,

it often keeps its identity for a long time, and thereby, we sometimes regard the

vortex as a matter. In fact, we often gives a name to a vortex (for example, a

typhoon is given a name like Katrina).

If a vortex is a matter holding its identity, how can we capture its essen-

tial identity? The most common way to capture the identity of some object is

decomposing it into its elements, as the atomic theory does so. However, we can

not apply this method to a vortex because if it is decomposed, it loses its identity.

For example, the identity of a galaxy does not exist in stars, which constitute the

galaxy. We have to find an identity of a vortex in its motion and dynamics rather

than in its elements or static structure. To deal with this problem from the view-

point of physics, above all, it is important to consider how we “measure” a vortex

and what is “invariant” in a vortex dynamics.
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The curl operator [1] is an operator by which we can “measure” vorticity.

Thence, a Beltrami vortex, an eigenfunction of the curl operator, may be the

simplest and most important vortex, by which we can represent and understand

the essential characteristics of vortex phenomena. For example, in the single-fluid

magnetohydrodynamics (MHD), the energy of the system tends to condensate into

a single Beltrami magnetic field and, as a result, there emerges a self-organized,

force-free equilibrium the well-known Taylor relaxed state satisfying ∇× B =

λB[2–4]. In the two-fluid MHD (or Hall MHD), a pair of Beltrami fields[5, 6] (called

double-Beltrami fields) is also available to describe a wilder class of equilibria or

phenomena, such as coronal structures[7–10], circular polarized Alfvén wave[11,

12], and so on.

Although the interest of physics is lying in motions of things or changes

occurring in the world, we often put a focus on “invariants” in motions or changes

in order to investigate them. Paradoxically, the identity of the motion is lying in

invariants during the motion (constant of motion). A non-canonical hamiltonian

mechanics[13] gives us a good framework to consider the identity of vortex in

terms of its invariants. In this framework, a Casimir element, which conserves as

a constant of motion, gives a structure to the phase space where the motion of the

vortex is described. In other word, the vortex is structured and characterized by

Casimir elements.

This introduction is organized as follows: First, in Sec.1.2, we will review

a non-canonical Hamiltonian mechanics and prepare the notion of Casimir. Then,

in Sec.1.3, we will see how a Beltrami vortex, eigenfunction of the curl operator, is

characterized by regular Casimir elements, such as the helicity. Next, in Sec.1.4,
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it will be noted that not all equilibrium points, representing long-run vortices,

are characterized by Casimir elements. We will introduce the notion of singular

Casimir element in order to extend the scope of analysis using Casimir elements.

Last, in Sec.1.5, we will review the tearing mode[14], a typical magnetic vortex

observed in many situations. Although the tearing mode can not be characterized

only by regular Casimir elements, it can be by invoking a singular Casimir ele-

ment[15]. Therefore, it is a good example by which we can consider the question

how can we characterize the vortex by Casimir elements? Sec.1.6 is devoted to

describing purposes and the outline of the present thesis.

1.2 Non-canonical Hamiltonian mechanics

1.2.1 Hamiltonian equation

We start from a canonical, finite-dimensional Hamiltonian mechanics. The

evolution equation is given by

d

dt
z = J∂zH(z), J =

(
0 I
−I 0

)
, (1.1)

where z is a state vector belonging to a phase space X ∈ R2m, and H(z) is a

Hamiltonian (a real function on the phase space X). Obviously, KerJ = 0. The

poisson bracket, defined by J as {F,G} = (∂ziF )Jij(∂zjG), satisfies the antisym-

metry condition

{F,G} + {G,F} = 0, (1.2)

and the Jacobi identity

{F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0. (1.3)

To consider the non-canonical, infinite-dimensional Hamiltonian mechanics,

by which we describe plasma dynamics, we have to generalize the above system in

3



two directions. First, we generalize the symplectic matrix J to a Poisson operator

J(z) that is a function of the state vector z (or u in the infinite-dimensional case as

described below) while its Poisson operator still satisfies the antisymmetric condi-

tion (1.2) and the Jacobi identity(1.3). The non-canonical Hamiltonian mechanics

allows J(z) to have non-trivial kernel elements, that is, KerJ(z) 6= 0. Second, we

expand the phase space to be an infinite-dimensional function space.

Based on what we mentioned above, we consider an evolution equation

∂tu = J(u)∂uH(u), (1.4)

where u is a state vector (a member of some Hilbert space X; we denote by 〈a, b〉

the inner product of X), H(u) is a Hamiltonian (a real functional on X), and ∂u

is the gradient in X (the functional derivative). The gradient ∂u is often denoted

by δ/δu, leaving the exact definition somewhat obscure, but, here, we invoke a

rigorously extended definition based on the Clarke gradient [16, 17]. J(u) denotes

a Poisson operator, a linear antisymmetric operator in X that generally depends

on u. The corresponding Poisson bracket is given by

{F,G} = 〈∂uF, J(u)∂uG〉. (1.5)

The Poisson operator J(u) must be defined so that its Poisson bracket satisfies

the antisymmetry condition (1.2) and Jacobi identity (1.3). By using the Poisson

bracket, we can describe a time evolution of some functional F(u) as

d

dt
F (u) = 〈∂uF (u), du/dt〉 = 〈∂uF (u), J(u)∂uH(u)〉 = {F,H} . (1.6)

Obviously, the Hamiltonian H(u) is the constant of motion of the system (1.4).
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1.2.2 Equilibrium, energy-Casimir functional, and Casimir leaf

In the introduction, we asked the question of what characterizes a vortex

as a “matter”. In the Hamiltonian framework, a long-existing vortex may be rep-

resented as an equilibrium point u0 of the evolution equation (1.4). Therefore, we

consider here what it is that characterizes the equilibrium points in the Hamilto-

nian framework.

The equilibrium point is a point that satisfies the following equilibrium

equation

∂tu0 = J(u0)∂uH(u0) = 0. (1.7)

In the case of canonical Hamiltonian mechanics, its Poisson operator does not have

non-trivial kernel element (KerJ(u0) = 0), therefore, equilibria emerge only from

extremums of the Hamiltonian ∂uH(u0) = 0. In other words, all equilibrium points

are characterized only by the structure of Hamiltonian. On the other hand, in the

non-canonical case, there also exist equilibria that emerge from the nullspace of

the Poisson operator (KerJ(u0) 6= 0). Even if H(u0) 6= 0, the total J(u0)∂uH(u0)

can become zero. We may characterize this kind of equilibria by Casimir elements,

constants of motion stemming from the Kernel of Poisson operator.

First of all, let us see the definition of Casimir element C(u) (a functional

X → R). It is defined as a nontrivial solution to

J(u)∂uC(u) = 0. (1.8)

Casimir elements conserve for any Hamiltonian H′, which can be easily verified by

the following calculation:

d

dt
C(u) = 〈∂uC(u), J(u)∂uH

′(u)〉 = −〈J(u)∂uC(u), ∂uH
′(u)〉 = 0, (1.9)
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where the second equation follows from the antisymmetry of the Poisson operator

and the last equation Eq.(1.8). Namely, Casimir elements are constants of motion

that depend only on the structure of Poisson operator and are independent from

the detail structure of Hamiltonian.

Using a Casimir element C(u), we can transform the Hamiltonian H(u) to

an energy-Casimir functional

Hµ(u) := H(u) − µC(u), (1.10)

and rewrite the evolution equation (1.4) as

∂tu = J(u)∂u {H(u) − µC(u)} = J(u)∂uHµ(u), (1.11)

without changing the dynamics (since J(u)∂uC(u) = 0). In this expression, we can

find a richer set of equilibrium points uµ given by

∂uHµ(uµ) = 0. (1.12)

The parameter µ, which may be regarded as an eigenvalue, is determined by match-

ing C(u) of the solution with some given value c.

In the geometric view, the solution uµ obtained as described above is an

equilibrium point on a Casimir leaf C(u) = c. As we have already mentioned, a

Casimir elements C(u) is a constant of motion, and therefore, the motion ∂tu is

restricted onto a level set of the Casimir element C(u) = const. To be more precise,

the gradient of a Casimir element belongs to the kernel of the Poisson operator,

i.e. ∂uC(u) ∈ CokerJ(u), which can be easily confirmed as

0 = 〈J(u)∂uC(u), v〉 = −〈∂uC(u), J(u)v〉 for all v ∈ X. (1.13)
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∂tu

C(u) = c0

C(u) = c1

C(u) = c2

∂uC(u)

LeafLeafLeaf
Figure 1.1: Foliation of the phase space.

As a result, the phase space X is foliated by Casimir leaves. Fig.1.1 depicts the

Casimir foliation of the phase space X.

In this subsection, we have introduced the notion of a Casimir and have

seen how it characterizes equilibrium points of (1.4). However, we have to note

that not all equilibrium points are characterized by some Casimir. We will deal

with this issue in more detail in Sec.1.4.

1.2.3 Simplest example of Non-canonical Hamiltonian mechanics

We end this section by giving the simplest example of a non-canonical

Hamiltonian mechanics with a Hamiltonian

H(z1, z2, z3) =
1

2
(z2

1 + z2
2 + z2

3), (1.14)

and a Poisson operator

J =

 0 1 0
−1 0 0
0 0 0

 . (1.15)
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z1 



0
0
1



 = ∂uC ∈ KerJ (u)

Leaf: C(z) = z3 = constz2z3
Figure 1.2: The simplest example of a Casimir foliation.

The state variable is z = t(z1, z2, z3). Obviously, t(0, 0, 1) is an element of KerJ .

By ‘integrating’ it with respect to the state variable, we obtain a Casimir element

C(z) = z3, by which we can construct an energy-Casimir functional

Hµ :=
1

2
(z2

1 + z2
2 + z2

3) − µz3. (1.16)

From the extremum of Hµ, we obtain a non-trivial equilibrium point z0 = t(0, 0, µ).

Fig.1.2 shows the foliation given by the level sets of the Casimir C(z).

1.3 Beltrami vortex

In this section, we will review a Beltrami vortex, an eigenfunction of the

curl operator[1]. First, we will introduce the non-canonical Hamiltonian formism

of the magnetohydrodynamics (MHD), which gives a single-fluid description of the
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plasma. Then, we will see that a Beltrami vortex is obtained as an equilibrium

point characterized by the helicity, one of the Casimir elements of MHD.

1.3.1 Magnetohydrodynamics

Here, we consider the Hamiltonian formalism of an ideal MHD plasma,

which is described by the following equations:

∂tn = −∇ · (V n), (1.17)

∂tV = V × (∇× V ) + n−1(∇× B) × B −∇(h+ V 2/2), (1.18)

∂tB = ∇× (V × B), (1.19)

where n is the density, V is the fluid velocity, B is the magnetic field, and h is the

molar enthalpy. The variables are normalized in the standard Alfvén units.

Let us define the state vector u = t(n,V ,B), a Hamiltonian functional

H(u) =

∫
Ω

{
n(
V 2

2
+ ε(n)) +

B2

2

}
dx, ∂uH(u) =

 h+ V 2/2
nV
B

 , (1.20)

and a Poisson operator

J(u) =

 0 −∇· 0
−∇ n−1(∇× V )× n−1(∇× ◦) × B
0 ∇× (◦ × n−1B) 0

 , (1.21)

with which the MHD equations are concisely rewritten in the Hamiltonian form

(1.4). ε(n) in (1.20) is the thermal energy density, which is related to the molar

enthalpy by h(n) = ∂(nε(n))/∂n.

The Poisson operator (1.21) has three representative Casimir elements:

C1(u) =

∫
Ω

A · Bdx, ∂uC1(u) =

 0
0
A

 , (1.22)
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C2(u) =

∫
Ω

V · Bdx, ∂uC2(u) =

 0
B
V

 , (1.23)

C3(u) =

∫
Ω

ndx, ∂uC3(u) =

 1
0
0

 , (1.24)

which, respectively, represent the magnetic helicity, the cross helicity, and the total

particle number.

Note 1. In the presence of magnetic surfaces, we can find ‘local Casimir elements’

that represents the conservation of surface quantities. Hameiri [18] found the com-

plete set of flux-surface Casimir elements of the MHD plasma with nested magnetic

surfaces. Kawazura and Hameiri [19] found that of the Hall MHD plasma. The

three Casimir elements (1.22)-(1.24) are invariants that do not require magnetic

surfaces and are, therefore, the most robust.

1.3.2 Helicity and Beltrami vortex

Let us consider an equilibrium point characterized by the above three

Casimir elements (1.22)-(1.24), i.e. the solution of

∂u

(
H(u) −

3∑
i=1

µiCi(u)

)
= 0, (1.25)

which reads as

V 2/2 + h− µ3 = 0, (1.26)

nV − µ2B = 0, (1.27)

∇× B − µ1B − µ2∇× V = 0, (1.28)

in deriving (1.28), we have applied the curl operator. For the sake of simplicity,

let us consider a subclass of solutions with n = 1. Combining (1.27) and (1.28),

10



we obtain

(1 − µ2
2)∇× B − µ1B = 0. (1.29)

For µ2 6= ±1, by denoting µ := µ1/(1 − µ2
2), we can rewrite the above equation as

(curl − µ)B = 0, (1.30)

which is nothing but the eigenvalue problem of the curl operator[1]. We call (1.30)

as the Beltrami equation (or the single-Beltrami equation when we distinguish it

from the double-Beltrami equation). Solving this equation, we obtain the Beltrami

vortex, which is characterized by the magnetic helicity C1 and the cross helicity

C2 through the eigenvalue µ = µ1/(1 − µ2
2).

Note 2. For µ2 = ±1, an interesting situation occurs[11]. In this case, B can

be arbitrary and V = ±B (because µ1 = 0). By applying the Galilean boost,

we can transform this class of stationary solutions to Alfvén waves. Namely, the

Alfvén wave turns out to be the Galilean-boosted Beltrami vortex at the singularity

(µ2 = ±1) of the equilibrium equation (1.29).

In Chap.2, we will consider a two-fluid MHD system [19, 20]. In a two-fluid

MHD plasma, the canonical helicity conserves as a Casimir element instead of the

cross helicity (1.23), and, as a counterpart of the single-Beltrami equation (1.30),

we have the double-Beltrami equation

(curl − µ1)(curl − µ2)B = 0, (1.31)

where µ1 and µ2 are parameters associated with the magnetic and canonical helici-

ties. A general solution of (1.31) is given by a linear superposition of two Beltrami

vortices.
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Note 3. In the case of the two-fluid MHD as well, we can obtain the Alfvén wave

as the Galilean-boosted Beltrami vortex. An integrable structure in the nonlinear

modulation of the Alfvén wave was found in [11] and analyzed in [12].

1.4 Singular Casimir

1.4.1 Singularity and Singular Casimir

In the above sections, we have seen how Casimir elements characterize the

equilibrium points of the non-canonical Hamiltonian dynamics. However, as we

have already noted, generally there are not enough Casimir elements to characterize

all equilibrium points[13]. Namely, an equilibrium point, satisfying (1.7), is not

always characterized as an extremum of some energy-Casimir functional.

One reason of this discrepancy lies in the difficulty of constructing a Casimir

element by solving (1.8). We may solve (1.8) by two steps. First, we find the ker-

nel of J(u), i.e., find v(u) such that J(u)v(u) = 0. Then, we ‘integrate’ v(u) with

respect to u to find a functional C(u) such that v(u) = ∂uC(u). However, this

may not always possible. In Subsec.1.2.3, we gave the simplest example of non-

canonical Hamilton mechanics. There, we ‘integrated’ the kernel element t(0, 0, 1)

by solving the three-dimensional partial differential equation ∂zC(z) = t(0, 0, 1).

In the case of an infinite-dimensional system, this ‘integration’, or the total pro-

cess of obtaining a Casimir element, means solving an infinite-dimensional partial

differential equation.

If there is a ‘singularity’ where the rank of KerJ(u) changes, the problem

becomes more interesting. In this case, we may obtain singular Casimir elements

from the singularity. Let us see the finite-dimensional example of singularity and

singular Casimir, given in [17]. We consider a one-dimensional system X = R with
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a Poisson operator J = ix (x ∈ R). x = 0 is a singularity where RankJ(x) drops to

0 from 1, and this point is a singular point of the differential equation J(x)∂xC(x) =

0. If there were no singularity, J(x)∂xC(x) = 0 would have only a trivial solution

C(x) = const. However, in the presence of singularity, by ‘integrating’ the kernel

element δ(x) ∈ KerJ(x) (δ(x) is the delta function), we can obtain a non-trivial

solution C(x) = Y (x), where Y (x) is the Heaviside step function.

The important points are that, if the Poisson operator J(u) has singulari-

ties, we have to involve singular solutions such as δ(x), and that we will need to

generalize the notion of functional derivative for singular Casimir elements, as we

did when we obtained the singular Casimir C(x) = Y (x) from δ(x). In [17], the

above-mentioned problem of the nonequivalence of the sets of equilibrium points

and energy-Casimir extremal points is addressed in the context of the Euler equa-

tion, and singular Casimir elements stemming from the singularity are unearthed

using a generalization of the functional derivative (the gradient ∂u of an infinite-

dimensional system). With singular Casimir elements, we can characterize the

wilder class of equilibrium points. In [15, 21], the tearing mode (see Sec.1.5) is

characterized by a linear, singular Casimir (called helical-flux) stemming from the

resonance singularity of the Poisson operator.

Fig.1.3 shows a 2-dimensional cartoon of Casimir foliations of regular(left)

and singular(right) Casimir elements (this cartoon is drawn by reference to Fig.1.

in [17]). Outside of the singularity, RankJ(u) is constant, but, at the singularity,

RankJ(u) changes, resulting in a singular Casimir leaf.
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singularity
Figure 1.3: Two-dimensional cartoon of Casimir foliations of regular and singular Casimir
elements.

1.4.2 Plateau singularity in Vortex equation

Here, let us review the plateau singularity of the two-dimensional vorticity

equation[17]:

∂tω = [ω, φ], (1.32)

where φ is the stream function, ω := −∆φ is the z-component of the vorticity, and

[a, b] := −∇a×∇b · ∇z (1.33)

is the standard Poison bracket. Let the vorticity ω be a state variable. Then, the

above vorticity equation can be put into the non-canonical Hamiltonian form

∂tω = J(ω)∂ωH(ω), (1.34)

with a Hamiltonian functional

H(ω) =
1

2

∫
Ω

φωdx , (1.35)

and a Poisson operator

J(ω)ϕ = [ω, ϕ]. (1.36)
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Remark 1.4.1. Although here we have naively defined the vorticity equation, it

should actually be defined more carefully by using the theories of functional anal-

ysis and weak solution, see [17].

First of all, let us consider the regular Casimir elements of the Poisson

operator J(ω). In order for ϕ to be a member of KerJ(ω), it must satisfy the

condition

∇ω ×∇ϕ · ∇z = 0, (1.37)

which implies that two vectors ∇ω and ∇ϕ must align almost every where in the

region Ω. By invoking a certain scalar ζ : R2 → R and certain Lipschitz continuous

functions f, g : R → R, the above condition may be represented as

ω(x) = f(ζ(x)), ϕ(x) = g(ζ(x)). (1.38)

Let us consider the simplest case of f = identity, that is,

ϕ(x) = g(ω(x)), (1.39)

which can be ‘integrated’ as

CG(ω) =

∫
Ω

G(ω(x))dx, (1.40)

where G : R → R is the indefinite integral of g, that is, dG/dζ = g.

Next, let us consider the case that ω has a ‘plateau’ Ω0 ⊆ Ω where ω(x) =

ω0 (constant). In such a plateau region, the Poisson operator J(ω) trivializes as

J(ω) = [ω0, ◦] = 0 . Therefore, within Ω0, ϕ(x) can take an arbitrary value. Note

that the representation (1.39) restricts ϕ(x) to g(ω0) in Ω0 and omits this type of

solution. To remove this degeneracy, we allow the function g(ζ) to have a jump at
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ω(x)

x

x

ω0

g(ζ) ϕ(x) = g(ω(x))

ζ

Figure 1.4: The vorticity ω(x) with a plateau, the simplest example of g(ζ), and the
resultant ϕ(x).

ζ = ω0. Formally, we write

g(ζ) = gL(ζ) + αY (ζ − ω0), (1.41)

where gL is a Lipschitz continuous function, Y (ζ − ω0) is the ‘filled’ step function,

and α is a constant representing the width of the jump. The term “filled” means

that the step function Y (ζ−ω0) is multi-valued at ζ = ω0 and can take an arbitrary

value in the range of [0, α]. Fig.1.4 shows the vorticity ω with a plateau, the

simplest example of g(ζ) = Y (ζ − ω0), and the resultant ϕ(x) = g(ω(x)) =

Y (ω(x)). In the plateau region Ω0, ϕ can take an arbitrary form. This arbitrary

property is represented by the filled (multi-valued) step function.

In [17], the Clarke gradient[16] is invoked to ‘integrate’ the singular kernel

element (1.41). The Clarke gradient is a generalized gradient for Lipschitz contin-
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x x x

x x x

ω(x) ω(x) ω(x)

ω0

ϕ(x) = g(ω(x))ϕ(x) = g(ω(x))ϕ(x) = g(ω(x))

Figure 1.5: Singular ϕ(ω(x)) that emerges when the plateau of ω shrinks and disappears.

uous functions (or functionals). Specifically, for F : R → R, the Clarke gradient of

F at x (we denote it by ∂̃xF (x) is defined to be the convex full of the set of limit

points of the form

lim
j→∞

∂xF (x+ δj) with lim
j→∞

δj = 0. (1.42)

Evidently, if F (x) is continuously differentiable in the neighborhood of x, ∂̃xF (x)

is equivalent to the classical gradient. On the other hand, if F (x) kinks at x (the

left and right derivatives differ from each other), ∂̃xF (x) becomes multi-valued.

Using the Clarke gradient, we define G(ζ) such that

∂̃ζG(ζ) = g(ζ) = gL(ζ) + αY (ζ − ω0). (1.43)

Then, we obtain a singular Casimir element

CG(ω) =

∫
Ω

G(ω(x))dx, (1.44)

which gives a multi-valued gradient ∂̃ωCG = g(ω(x)) ∈ KerJ(ω).
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As we have seen, when ω has a plateau, the degree of freedom of the kernel

element ϕ = g(ω) increases infinitely. This means that ω with plateaus is a singu-

larity where the rank of KerJ(ω) changes. At a singularity, there is an increased

number of directions to which the motion ∂tω can not proceed. This increase is

represented by the multi-valued gradient defined by using the Clarke gradient.

Remark 1.4.2. Although g(ζ) defined above is not a continuous function, the re-

sultant, composed function g(ω(x)) : R2 → R is continuous on the plateau region.

We have to carefully distinguish these g(ζ) and g(ω(x). The interesting situation

occurs when the plateau of ω shrinks and disappears. In this case, the resultant

ϕ(ω(x)) takes the form of step function, as shown in 1.5. Such a singular ϕ(x)) is

still a “hyperfunction solution” of (1.37), see [17] (Remark 3.3) and Appendix A.

1.5 Tearing mode

In the previous section, we have seen the existence of equilibrium points

that are characterized by singular Casimir elements, and can not only by regular

Casimir elements. A physically important example of such structures is the tearing

mode[15], a typical vortex structure of magnetic field that emerges in the presence

of magnetic shear.

Here, we first review the conventional studies of the tearing mode: (1) what

the tearing mode is and (2) how plasma flow affects the tearing mode. We should

note that our motivation is different from the conventional one. While conventional

studies focus their interest on “the tearing mode itself” and therefore consider

specific plasma configulations, we are interested in “how we can characterize a

vortex by Casimir invariants”, and the tearing mode is just a good example of a
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xyz
Figure 1.6: Schematic drawing of a sheared magnetic field.

general vortex observed in a plasma. With this motivation, in Subsec.1.5.3, we will

see (3) how the tearing mode theory is located in the non-canonical hamiltonian

theory.

1.5.1 Tearing mode and Magnetic reconnection

The term “tearing mode”[14] refers to a spontaneous reconnection pro-

cess[22] that occurs in the presence of a sheared magnetic field. Fig.1.6 and Fig.1.7

show a schematic drawing of a sheared magnetic field and its projection onto x−y

plane, respectively. As a result of the reconnection, the tearing mode changes

the topology of magnetic field as shown in Fig.1.8. It can be seen that the mag-

netic field, which was just sheared before the reconnection, is rotating in magnetic

islands (regions surrounded by the separatrix) after the reconnection.

The magnetic reconnection often takes place in order for magnetic field to

release its excess energy stored on its global structure[15, 23]. Let us consider the

plasma in an equilibrium state. When some external force is applied to the plasma,

the equilibrium state gradually changes to a new equilibrium state while plasma pa-
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xy
Figure 1.7: Projection of a sheared magnetic field onto x− y plane.xy

Figure 1.8: Topology of the tearing mode (reconnected magnetic field).

rameters slowly adjust. When this new state becomes unstable compared to some

other stable states, the plasma may self-organize itself to a new stable equilib-

rium state, through forming current sheets, reconnecting the magnetic field lines,

and changing the magnetic topology. Such self-organizing phenomena through

the magnetic reconnection can be observed in many places like solar flares, the

magnetosphere, or fusion plasmas[23].

Let us see the basic theory of the tearing mode[14, 22, 24]. The tearing

mode is usually analyzed by using the resistive, incompressible MHD:

∂tΩ = ∇× (V × Ω) + ∇× {(∇× B) × B} , (1.45)
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∂tB = ∇× (V × B) −∇× (η∇× B), (1.46)

where Ω := ∇ × V is the vorticity of the fluid and η is the magnetic resistivity.

Eq.(1.45) is obtained from the curl of (1.18) and Eq.(1.46) is obtained by adding

the resistive term ∇ × (η∇ × B) to Eq.(1.19). Let us consider the tearing mode

without equilibrium flow (V 0 = 0). We assume that the ambient magnetic field

has the form

B0 = ∇ψ0(x) ×∇z +Bz∇z, (1.47)

and perturbations of magnetic and flow fields can be written in the following form:

Ṽ = ∇φ̃(x, y, t) ×∇z, B̃ = ∇ψ̃(x, y, t) ×∇z, (1.48)

where φ̃ and ψ̃ is the stream and magnetic flux functions. Such a class of per-

turbation fields is appropriate in a plasma embedded in a strong uniform external

magnetic field, viz. the plasma in a fusion device like the tokamak. Substituting

V = Ṽ and B = B0 + B̃ into Eq.(1.45) and the curl−1 of (1.46), we obtain

∂tψ̃ = B0 · ∇φ̃+ η∆ψ̃, (1.49)

∂tω̃z = B0 · ∇j̃z + B̃ · ∇jz0, (1.50)

where ω̃z := −∆φ̃, j̃z := −∆ψ̃, and jz0 := −∆ψ0 are the z-component of the

vorticity of flow perturbation, the current of magnetic field perturbation, and the

current of the ambient magnetic field, respectively.

Since the magnetic resistivity η and the growth rate of the tearing mode are

small (to be precise, we focus on a slowly growing mode), inertia and resistivity

terms in Eqs.(1.49) and (1.50) can be neglected in most parts of the region (called

the ideal region or the outer region). These terms, however, become important
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in a narrow layer (called the resistive region of the inner region) around the reso-

nance line x = xr, where B0(xr) · ∇ = B0(xr) · k = 0 (k is the wave number of

perturbations). Thus, when one solves Eqs.(1.49) and (1.50), one starts by finding

solutions separately in the ideal region, where equations are simplified, and in the

resistive region, where the geometry is simplified. Then, one fabricate the entire

solution by assembling solutions obtained in each region.

The magnetic perturbation solution ψ̃, obtained in the outer region, is con-

tinuous in the entire region but its derivative ψ̃′ (= ∂xψ̃) exhibits a jump charac-

terized by the quantity ∆′

∆′ := lim
ε↓0

[
ψ̃′(xr + ε) − ψ̃′(xr − ε)

]
/ψ̃(xr). (1.51)

This quantity ∆′ is used when one evaluate the growth rate of the tearing mode by

matching both inner and outer solutions asymptotically. Thus, ∆′ is an important

index for the tearing instability and gives the necessary condition for the tearing

mode to grow and self-organize itself. In fact, it can be shown that the tearing

mode is unstable if and only if ∆′ > 0, in the incompressible MHD plasma without

equilibrium flow[14].

When the tearing mode grows and its island width exceeds the resistive

layer width, the tearing mode enters the nonlinear regime, where the growth of

the mode is drastically slowed, i.e. the exponential growth is replaced by a slower

algebraic growth[25]. Finally, the mode converges to the saturated state. The

time evolution of the island width (we denote it by w) is given by the following

equation[26]:

dw

dt
= αη(∆′(w) − βw). (1.52)
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where α and β are positive constants. ∆′(w) is the finite-island-width generaliza-

tion of the linear quantity ∆′ = ∆′(0), which is determined by the outer region

solutions. It can be seen, from (1.52), that if and only if ∆′ > 0 the island emerges,

as we have already seen. Moreover, the width of the saturated island is determined

by ∆′(w), which is, therefore, important not only for the growth rate but also for

the final saturated state.

The Hahm-Kulsrud-Taylor mode, developed by Hahm and Kulsrud[27] fol-

lowing a suggestion by J.B. Taylor, follows through the onset of the tearing insta-

bility to the formation of magnetic islands and to the final asymptotic approach

to the saturated state with islands. They considered a simple plasma in a slab

geometry, i.e. the plasma contained between two infinitely conducting wall at

x = ±a, associated with a linearly varying magnetic field By = B0x/a in the y-

direction and a uniform ambient magnetic field Bz = B0 in the z-direction. They

analytically examined the response of the plasma to the boundary deformation

x = ±(a − δ cos ky). They found two exact MHD equilibrium solutions: the first

one with a singular current sheet on the resonance surface and no islands, and the

second one with magnetic islands and no current sheet. After the deformation, the

plasma first approaches the current layer solution, until the layer is thin enough

that reconnection occurs by the resistiviy η∇ × B̃. Then, the plasma changes

direction toward the second solution with islands and no singular current.

In terms of the Alfvén wave theory, the tearing mode is regarded as the mode

for which the “zero-frequency resonance” occurs[24]. An important point for us is

that the tearing mode is virtually obtained by solving the equilibrium equation in

the outer region. In fact, a sequence of equilibrium solutions, which may contin-
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uously connecting the two solutions of the Hahm-Kulsrud-Taylor model[27], have

recently been found[28]. Moreover, the singular Casimir characterizing the linear

tearing mode as an equilibrium have been found in [15], which will be discussed in

more detail later. Before that, in the next subsection, let us see the flow effect on

the tearing mode.

1.5.2 Flow effect on Tearing instability

Although we have seen the tearing mode without flow in the previous sub-

section, a plasma is generally accompanied by a flow. Since, in the absence of

resistivity the magnetic fields is frozen into the flow, the tearing mode is greatly

influenced by the flow. Therefore, there is a rich literature of flow effects on the

tearing mode. There is a wide variety of viewpoint: (1) Linear theory (stability and

growth rate) or Nonlinear theory (saturation and island width), (2) Flow strength;

small, sub-Alfvénic, or super-Alfvénic flow, (3) Flow type; toroidal, poloidal, par-

allel, or antiparallel flow, (4) Geometry; slab, cylindrical, or toroidal, (5) Method;

analytical, numerical, or experimental, and so on. Here, let us review how the flow

affects the tearing mode.

Chen and Morrison[29] analytically investigated the linear stability of the

tearing mode in a slab geometry and found that the value of the tearing instability

criterion ∆′, obtained from the outer region solution, is drastically changed by

the flow shear at the resonance surface. From the inner region analysis, it was

found that, when the flow shear is smaller than the magnetic field shear, the

growth rate of the tearing mode varies intricately depending on the details of the

profiles of the magnetic and flow fields. On the other hand, in the case of super-

Alfvénic flow shear, the flow freezes the magnetic field and the tearing mode is
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completely stabilized. Ofman et al.[30] numerically analyzed the sub-Alfvénic flow

effect on the nonlinear saturation of the tearing mode. It was found that the shear

flow slows down the nonlinear saturation development and reduces the saturated

magnetic island width. Li and Ma[31] focused on not only the flow amplitude but

also the flow thickness (shear parameter) and numerically found that the shear

flow has both stabilizing and destabilizing effects depending on the flow thickness.

Chandra[32] focused on the small, toroidal flow effect (in tokamaks, the observed

flows are primarily toroidal) and numerically analyzed its effect. It was concluded

that the flow itself has the stabilizing effect but, on the other hand, the flow shear

has the destabilizing effect.

Because the magnetic field is frozen into the electron flow rather than the

ion flow, the Hall effect, which distinguishes the electron flow from the ion flow,

is also important for the tearing mode. The Hall effect is known to enhance the

growth rate of the tearing mode[33, 34]. The viscosity also influences the tearing

instability[35]. It is observed that the flow that has destabilizing effect in the

low-viscosity regime can have the stabilizing effect in the high-viscosity regime[36].

Sen and Chandra[37] focused on the curvature effect. They analytically estimated

the small, toroidal flow effects both in a toroidal geometry and in a cylindrical

geometry and compared them. It was found that the destabilizing effect of the

flow in the toroidal geometry is less than that of cylindrical case, and it was

concluded that the curvature of geometry acts in the stabilizing direction. While

analytical and numerical methods often predict the destabilizing effect of the small,

poloidal, shear flow, experimental results suggest that flow shear at the resonance

surface makes the tearing stability index ∆′ more negative and has the stabilizing

effect[38].
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When the flow shear is larger than the magnetic field shear, the tearing

mode is completely stabilized and disappears, and then, instead, the Kelvin-

Helmholtz instability appears[29, 35]. Hu and Liu[39] suggested that the Kelvin-

Helmholtz instability may twist the magnetic field lines and lead to the formation

of the magnetic islands, which is called the vortex-induces magnetic reconnection.

The numerical results of the incompressible plasma model[40, 41] suggested that

super-Alfvénic shear flows always brings the Kelvin-Helmholtz instability. When

the plasma compressibility is included, the Kelvin-Helmholtz instability may be-

come either stable or unstable depending on the amplitude of the super-Alfvénic

shear flow[42].

These literatures show that the small, sub-Alfvénic flow effects are very

complicated and depending on the specific details of magnetic and flow configura-

tions, flow amplitude, flow thicknesses, geometry, and so on. It should be noted

that our interest is not in a specific behavior of the tearing mode depending on a

specific situation, but in a little more universal property of the tearing mode. One

important thing for us is that, in the presence of the super-Alfvénic shear flow,

the tearing instability disappears and, instead, the Kelvin-Helmholtz instability

appears as a dominant instability mode.

1.5.3 Singular Casimir and Linear tearing mode

As we have seen, the tearing mode itself is obtained actually as a equilibrium

point of the ideal MHD. Although the detailed information about the growth rate

needs the resistive layer analysis, we can use the quantity ∆′, which is obtained

from the outer region solution (ideal solution), as the criterion of the tearing mode

instability, especially in the no-flow case. These things raise a question: Can we
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characterize the tearing mode and analyze its stability by some Casimir elements?

Certainly a general tearing mode shows a complicated behavior and might not

be the object of the ideal, hamiltonian theory. However, the tearing mode of

Beltrami fields can be analyzed in the framework of the non-canonical hamiltonian

framework. The reason of this is as follows: For a perturbed Beltrami equilibrium

u = uµ + ũ, where uµ is a Beltrami equilibrium and ũ is a perturbation, we can

linearize Eq.(1.11) as

∂tũ = J(uµ) ˜∂uHµ(u) + J̃(u)∂uHµ(uµ) = J(uµ) ˜∂uHµ(u), (1.53)

the second equality follows from (1.12). It can be seen in the above linearized

equation that the perturbation energy ˜∂uHµ(u) is tidily defined in terms of the

energy-Casimir functional, which greatly simplifies the linear analysis.

Recently, Yoshida and Dewar[15] have formulated the bifurcation theory of

the Beltrami field in the non-canonical Hamiltonian framework, with the magnetic

flux as the fixed parameter and the magnetic helicity as the control parameter. In

this framework, a Beltrami field may be viewed as the minimum-energy state on

a certain level set of the helicity. As the helicity value increases, the energy norm

on the corresponding level set surface is distorted, thereby, equilibrium points may

bifurcate to produce helical relaxed states in addition to symmetric relaxed states.

They revealed the relation between the helical relaxed state and the tearing mode.

The linear tearing mode, which resembles the helical relaxed state, is shown to

be a perturbed, singular equilibrium state characterized by a new-found Casimir

element (named helical-flux) pertinent to a ‘resonant singularity’ of the linearized

poisson operator J(uµ). This helical-flux Casimir gives an additional foliation

on the phase space and its leaves separates the bifurcated helical and symmetric
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equilibria on the same helicity leaf.

Thereby, the linear tearing mode can be viewed as an equilibrium point

on the intersection of helicity and helical-flux leaves, which may exist between a

helical equilibrium (a saturated tearing mode with an island) and a symmetric

equilibrium (a sheared magnetic field without islands). Although, in this ideal

(no-resistive) model, the tearing mode is forbidden to grow, it might do so in

the presence of dissipation violating the conservation of helical-flux Casimir. The

standard criterion ∆′ for linear tearing instability of Beltrami equilibria is shown

to be directly related to the energy-Casimir (magnetic helicity) functional and the

spectrum of the curl operator.

Remark 1.5.1. Note that, although we are obtaining the equilibrium equation as

an Euler-Lagrange equation by minimizing the Hamiltonian, this Euler-Lagrange

equation is different from the Newcomb equation, which is often used in a plasma

analysis. The Newcomb equation is an Euler-Lagrange equation involving only

the radial coordinate, which is obtained by minimizing the energy integral of the

ideal MHD with respect to the “Lagrangian displacement vector field”[43]. We are

considering the MHD in terms of the “Euler variables”.

1.6 Purposes and Outline

As mentioned in the opening section, we are interested in the question:

How can we capture the identity of the vortex as a matter? In the framework of

the non-canonical Hamiltonian mechanics, we can rephrase this somewhat abstract

question as: What Casimir element characterizes the vortex? To concretely deal

with this question, we put the problem in the context of the tearing mode, a typical
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magnetic vortex emerging in the presence of any magnetic shear.

As we have seen, if there is no ambient flow, the tearing mode can be

characterized by the helical-flux Casimir and its stability criterion ∆′ is directly

related to the magnetic helicity Casimir and the smallest eigenvalue of the curl

operator. On the other hand, in the presence of an ambient flow, it is still unclear

whether or not the tearing mode can be characterized by some Casimir elements,

because the ambient flow shear has a significant influence on the tearing mode.

Hence, the first purpose of the present thesis is to see if the tearing mode

with flow can be characterized by some Casimir elements. More concretely, we

will first see if there is a Casimir element by which the tearing mode can be

characterized as an equilibrium point. If such a Casimir element exists and the

tearing mode as an equilibrium is obtained, then, we will examine what Casimir

element determines its stability. We should describe a plasma associated with flow

by the two-fluid MHD (or Hall MHD) rather than the one-fluid MHD, because the

latter can not distinguish between ion and electron flows and, moreover, overlooks

the scale hierarchy created by the flow through singular perturbation of the Hall

term[44]. Therefore, before we deal with the problem of the tearing mode with

flow, we have to prepare the bifurcation theory of double-Beltrami fields in the

two-fluid MHD(cf. in [15], the tearing mode theory is based on the bifurcation

theory of single-Beltrami fields in the MHD).

It should be noted that our result of the stability analysis may be difficult to

be compared with those of the traditional studies. It is because, although the tradi-

tional researches examine how the tearing stability responses to the change in some

few parameters while fixing other parameters, the parameters of double-Beltrami
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fields, our ambient fields, are organically linked to each other, and therefore, we

can not change only particular parameters artificially. However, this is not the

problem because our primary interest is not in the detailed property of the tearing

instability depending on a specific situation (magnetic and flow configuration, flow

amplitude and thickness, geometry, and so on) but in a little more universal prop-

erty of the tearing mode. For us, the boundary between sub- and super-Alfvénic

flow shear may be important, because when the flow shear becomes super-Alfvénic,

the tearing instability disappears and, instead, the Kelvin-Helmholtz instability

appears as a dominant instability mode, as we have seen in Subsec.1.5.2.

The second purpose of the present thesis is developing the nonlinear theory

of the tearing mode without flow. The linear tearing-mode eigenfunction, obtained

in [15], provides a somewhat strange structure of the island, that is, the magnetic

surface “kinks” at the resonance surface. This may be because the linear theory

neglects the second-order J̃ × B̃ force despite the existence of singular current J̃

described by the delta function, which violates the smallness of the corresponding

force and may bring the strange kinks of the magnetic surface.

As we will show in Sec.4.3, the resonance singularity (B0 · k = 0), which

causes the tearing mode, is related to the extremal of the magnetic flux function

∇ψ = 0. On the other hand, in [17, 21], the singular Casimir is unearthed from the

“plateau” singularity stemming from the plateau of the stream function ∇φ = 0.

The plateau becomes the “extremal line” when its width shrinks to zero. There-

fore, it is natural to expect that, by extending the notion of plateau singularity

to extremal singularity, we can obtain a proper Casimir that characterizes the

nonlinear tearing mode.
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This paper is organized as follows: In Chap.2, we will start by preparing

the bifurcation theory of double-Beltrami fields and then, by using it, we will deal

with the problem of the tearing mode with flow. In Sec. 2.1, we will formulate a

bifurcation theory of double-Beltrami fields in the framework of a non-canonical

Hamiltonian mechanics, and will show a existence theorem of bifurcation. In Sec.

2.2, we will give a concrete example of bifurcation in a slab geometry. In Sec. 3.1,

we will analyze a linear dynamics in the vicinity of a double-Beltrami field, an equi-

librium point of the energy-Casimir (magnetic and canonical helicities) functional.

The tearing modes will be formulated as equilibrium points of the energy-Casimir

(helical-flux) functional. In Sec.3.2, the stability of the tearing mode will be ana-

lyzed. In Chap.4, we develop the notion of extremal singularity and the nonlinear

tearing mode theory. In Sec.4.1, we will review the linear tearing mode theory

of the ideal MHD[15]. Then, in Sec.4.2, we will formulate, by using stream and

magnetic flux functions, the Hamiltonian formalism of the incompressible MHD

with two independent variables and three dimensional vector fields. With this

formulation, in Sec.4.3, we will rewrite the linear tearing mode theory and reveal

the relation between the resonance singularity and the linear, extremal singularity.

Lastly, in Sec.4.4, we will develop a singular Casimir of the extremal singularity

and apply it to the nonlinear tearing mode theory.
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Chapter 2

Bifurcation theory of Double-Beltrami fields

In this chapter, we develop the bifurcation theory of double-Beltrami fields.

The magnetic helicity and the canonical helicity play the role of control parameters

and the magnetic fluxes and canonical fluxes are set as the fixed parameters.

2.1 Bifurcation theory

2.1.1 An incompressible, two-fluid MHD

An incompressible, two-fluid MHD[45] is given by

∂tP = V × (∇× P ) − δi∇
(
pi + V 2/2

)
, (2.1)

∂tA = V e × (∇× A) , (2.2)

where P := δiV + A is the ion canonical momentum, V is the ion flow field, A is

the vector potential of the magnetic field B, V e := V − δi∇× B is the electron

flow field, pi is the ion pressure, and δi is the ratio of the ion-skin length to the

scale length. They are normalized in the standard Alfvén units. We denote the ion

canonical vorticity by Ω := ∇×P . We assume that Ω ∈ R3 is a smooth bounded

domain, and the vector fields V , V e, Ω and B are confined in Ω, i.e. we impose

boundary conditions (denoting by n the unit normal vector onto the boundary

∂Ω)

n · V = 0, n · V e = 0, n · Ω = 0, n · B = 0, (2.3)

32



which are equivalent to

n · V = 0, n · B = 0, n · ∇ × V = 0, n · ∇ × B = 0. (2.4)

2.1.2 Flux condition: decomposition of harmonic fields

We can make a multiply connected domain Ω into a simply connected do-

main Ω0 by inserting cuts Σl across each handle of Ω: Ω0 := Ω \ (∪νl=1Σl), where ν

is termed the genus of Ω. The fluxes of B and Ω, given by

Φl(B) :=

∫
Σl

B · dσ, Φl(Ω) :=

∫
Σl

Ω · dσ, (2.5)

can be shown to be constants of motion, where dσ is the surface element on Σl.

To separate these fixed degrees of freedom, we introduce a self-adjoint curl op-

erator S, a non-self-adjoint curl operator T, and basic function spaces, by draw-

ing on [1] (which is summarized also in [15]). We denote by L2(Ω) the Hilbert

space of Lebesgue-measurable, square-integrable real vector functions of Ω, which

is endowed with the standard inner product 〈a, b〉 :=
∫

Ω
a · b dx and the norm

‖a‖ := 〈a,a〉1/2. We will use the same notation of L2-norm and inner product

regardless of the dimensions of independent and dependent variables. We define

L2
σ(Ω) := {u ∈ L2(Ω); ∇ · u = 0,n · u = 0 }, (2.6)

L2
Σ(Ω) := {u ∈ L2(Ω); ∇ · u = 0, n · u = 0, Φl(u) = 0 (∀l) }, (2.7)

L2
H(Ω) := {u ∈ L2(Ω); ∇× u = 0, ∇ · u = 0, n · u = 0 }, (2.8)

H1
ΣΣ(Ω) := {u ∈ L2

Σ(Ω) ∩H1(Ω); ∇× u ∈ L2
Σ(Ω) }, (2.9)

H1
Σσ(Ω) := {u ∈ L2

Σ(Ω) ∩H1(Ω); ∇× u ∈ L2
σ(Ω) }. (2.10)

The space L2
σ(Ω) is the totality of magnetic fields B and canonical vortices

Ω that satisfy the boundary conditions (2.3). The dimension of L2
H(Ω), the space
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of harmonic fields (or cohomologies), is equal to the genus ν of Ω. H1
ΣΣ(Ω) is

densely included in L2
Σ(Ω). The self-adjoint curl operator (which we denote by S)

is such that Su = ∇× u for every u in the operator domain

D(S) = H1
ΣΣ(Ω). (2.11)

The inverse map S−1 : L2
Σ(Ω) → H1

ΣΣ(Ω) is a compact operator. We denote by

σp(Ω) the point spectrum (the set of eigenvalues) of S. Evidently, 0 6∈ σp(S).

By the compactness of S−1, σp(S) is a discrete set on <. The eigenvalues of S

are unbounded in both positive and negative directions. The eigenfunctions of S

constitute a complete orthogonal basis of the Hilbert space L2
Σ(Ω). When Ω is a

multiply-connected smoothly bounded domain, L2
H(Ω) has a finite dimension. For

each BH ∈ L2
H(Ω), there is a vector potential AH ∈ L2

Σ(Ω), i.e BH = ∇ × AH .

Extending the range of curl to include all such BH , and its domain to include the

corresponding AH , we extend S to an operator T (which we call the non-self-adjoint

curl operator) such that Tu = ∇× u for every u in the operator domain

D(T) = H1
Σσ(Ω). (2.12)

By the orthogonal Hodge-Kodaira decomposition

L2
σ(Ω) = L2

Σ(Ω) ⊕ L2
H(Ω), (2.13)

we can decompose the total B,Ω ∈ L2
σ(Ω) into the fixed harmonic fields BH ,ΩH ∈

L2
H(Ω) (which carry the given fluxes Φ1, . . . ,Φν) and residual components BΣ,ΩΣ:

B = BΣ + BH , [BΣ := PΣB ∈ L2
Σ(Ω), BH ∈ L2

H(Ω)], (2.14)

Ω = ΩΣ + ΩH , [ΩΣ := PΣΩ ∈ L2
Σ(Ω), ΩH ∈ L2

H(Ω)], (2.15)
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where PΣ denotes the orthogonal projector from L2(Ω) onto L2
Σ(Ω).

The current field J := ∇ × B satisfying the boundary condition (2.4)

belongs to the functional space L2
σ(Ω). Therefore, we can decompose the total J

into the harmonic field JH ∈ L2
H(Ω), which is not fixed differently from BH and

ΩH , and the residual component JΣ

J = JΣ + JH = ∇× BΣ + ∇× BH , [JΣ ∈ L2
Σ(Ω), JH ∈ L2

H(Ω)], (2.16)

where BΣ := S−1JΣ ∈ H1
ΣΣ(Ω) and BH := T−1JH ∈ H1

Σσ(Ω). In terms of BΣ and

BH , the magnetic field B (or BΣ) can be decomposed as

B = BΣ+BH = BΣ+BH+BH , [BΣ ∈ H1
ΣΣ(Ω), BH ∈ H1

Σσ(Ω), BH ∈ L2
H(Ω)].

(2.17)

Note that BΣ and BH are not orthogonal each other in general, that is, 〈BΣ,BH〉 6=

0.

2.1.3 Hamiltonian formalism

Subtracting the static components AH := T−1BH and PH := T−1ΩH , we

define dynamical components of the variables A′ := A − AH and P ′ := P − PH .

Replacing the variables from P and A to P ′ and A′, and then operating a projector

Pσ from L2(Ω) to L2
σ(Ω) on (2.1), we obtain an incompressible, two-fluid MHD

∂tP
′
σ = PσV × (∇× P ′

σ + ΩH) , (2.18)

∂tA
′ = V e × (∇× A′ + BH) , (2.19)

where P ′
σ := PσP

′ and the gauge of A′ is such that n×A′ = 0. (2.18) and (2.19)

are concisely written in the Hamiltonian form

∂tu = J(u)∂uH(u), (2.20)

35



with a state vector u = t(P ′
σ,A

′), a Poisson operator

J(u) := δi

(
−Pσ(∇× P ′

σ + ΩH)× 0
0 (∇× A′ + BH)×

)
, (2.21)

and a Hamiltonian functional

H(u) :=
1

2

∫
Ω

{∣∣∣∣δiV H + P ′
σ − PσA

′

δi

∣∣∣∣2 +
1

2
|∇ × A′|2

}
dx, (2.22)

where V H := (PH−AH)/δi and ∂u denotes the functional derivative based on the

Clarke gradient [16, 17].

The operator J(u) has two independent Casimir elements:

C1(u) :=
1

2
〈A′,∇× A′〉 + 〈A′,BH〉, (2.23)

C2(u) :=
1

2
〈P ′

σ,∇× P ′
σ〉 + 〈P ′

σ,ΩH〉, (2.24)

which, respectively, represent the magnetic helicity and the ion canonical helicity.

The equation of motion (2.20) is invariant against the transformation H(u) 7→

Hν(u) := H(u) − ΣνjCj(u) (each νj is a constant number playing a role as ‘La-

grange multiplier’); we have an equivalent representation of the equation of motion

∂tu = J(u)∂uHν(u). (2.25)

The transformed Hamiltonian Hν(u) is called an energy-Casimir functional. The

‘Beltrami equilibrium’ is an equilibrium point of the energy-Casimir functional,

i.e. the solution of

∂u

(
H(u) −

2∑
j=1

νjCj(u)

)
= 0, (2.26)

which reads

∇× B − V /δi − ν1B = 0, (2.27)
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V /δi − ν2∇× P = 0. (2.28)

From (2.27) and (2.28), we obtain

∇× B = ν1B + ν2∇× P , (2.29)

V = δi (∇× B − ν1B) , (2.30)

the last of which determines V (and P ) as the function of B. Inserting (2.30) into

(2.29) yields

∇×∇× B −
(
ν1 +

1

δ2
i ν2

)
∇× B +

1

δ2
i

(
1 +

ν1

ν2

)
B = 0, (2.31)

which may be rewritten as

(curl − µ1)(curl − µ2)B = 0, (2.32)

where µ1 and µ2 are constants (we call them Beltrami parameters) related to the

Lagrange multipliers ν1 and ν2 as

µ1 + µ2 = ν1 +
1

δ2
i ν2

, µ1µ2 =
1

δ2
i

(
1 +

ν1

ν2

)
. (2.33)

We call (2.31) and (2.32) the double-Beltrami equation[5, 6], the solution of which

is given by a combination of two Beltrami vortices[1]. Lagrange multipliers ν1 and

ν2 can be given as explicit functions of Beltrami parameters µ1 and µ2 as follows:

δiν1 =
δi (µ1 + µ2) ±

√
δ2
i (µ1 − µ2)

2 + 4

2
, δiν2 =

2

δi (µ1 + µ2) ∓
√
δ2
i (µ1 − µ2)

2 + 4
.

(2.34)

We write down here useful relations connecting them:

ν1 + ν2 = δ2
i µ1µ2ν2, (2.35)

δ2
i (ν1 − µ1)(ν1 − µ2) =

(
1

δiν2

− δiµ1

)(
1

δiν2

− δiµ2

)
= 1. (2.36)
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2.1.4 Inhomogeneous double Beltrami equation

While the double-Beltrami equation (2.32) together with the homogeneous

boundary condition (2.4) are seemingly homogeneous equations, there is a hidden

inhomogeneity stemming from the fixed harmonic field ΩH and BH (PH and AH)

when Ω is multiply connected.

The equilibrium equation (2.29) implies that the harmonic component JH

of the current field is determined by BH and ΩH as JH := ν1BH+ν2ΩH . Inserting

(2.17) into (2.32) and transposing the fixed fields BH and BH to right-hand side,

we obtain the inhomogeneous, double-Beltrami equation

(curl − µ1)(curl − µ2)B
Σ = (µ1 + µ2)∇× BH − µ1µ2(B

H + BH). (2.37)

When BH ,BH , µ1 and µ2 are given, we solve (2.37) for BΣ to obtain double-

Beltrami field Bµ1,µ2 = BΣ+BH+BH and P µ1,µ2 . As we have already noted, BH

and BH are uniquely determined by the fluxes. We must also give the parameters

µ1 and µ2 by some physical condition; here, we determine them by matching the

magnetic and canonical helicities of Bµ1,µ2 and P µ1,µ2 to prescribed values c1 of

C1 and c2 of C2. But the relation between the Beltrami parameters µ1 and µ2 and

the helicity-values c1 and c1 is somewhat involved and may not be unique; this

is the root of the bifurcation problem. In the next subsection, we will see how

bifurcations occur in the helicity-matching process.

2.1.5 Helicity matching

The helicity-matching problem may have solutions under the following four

different situations.
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(A) If the inhomogeneous equation (2.37) determines a unique BΣ for given BH

and BH and some set of µ1 and µ2, then (2.23) and (2.24) evaluates the

magnetic helicity and canonical momentum helicity respectively as functions

of µ1 and µ2, which we denote by C1A(µ1, µ2) and C2A(µ1, µ2). For a given

values c1 of the helicity C1 and c2 of the canonical momentum helicity C2,

we must choose an appropriate µ1 and µ2 to satisfy c1 = C1A(µ1, µ2) and

c2 = C2A(µ1, µ2).

The homogeneous part of (2.37) may have a nontrivial solution for some special

(µ1, µ2).

(B) If one of µ1 or µ2, here let it be µ1, equals to an eigenvalue λi of the self-adjoint

curl operator S and the inhomogeneous equation (2.37) still has a particular

solution (let us denote it by G), then the general solution of (2.37) is given

by

BΣ = αiωi + G, (2.38)

where αi is an arbitrary real number and ωi is the eigenfunction correspond-

ing to λi, i.e. (curl − λi)ωi = 0. Substituting this BΣ, we evaluate the

helicities (2.23) and (2.24) as functions of αi and µ2 (here, µ1 is fixed at an

eigenvalue λi), which we denote by C1B(αi, µ2;λi) and C1B(αi, µ2;λi). The

helicity matching c1 = C1B(αi, µ2;λi) and c2 = C2B(αi, µ2;λi) selects an ap-

propriate amplitude αi and µ2.

(C) If µ1 equals to an eigenvalue λi and µ2 equals to another eigenvalue λj(6= λi)

of S, and the inhomogeneous equation (2.37) still has a particular solution

39



G, then the general solution of (2.37) is given by

BΣ = αiωi + αjωj + G, (2.39)

where αi (αj) is an arbitrary real number and ωi (ωj) is the eigenfunction cor-

responding to λi (λj). Substituting this BΣ, we evaluate the helicities (2.23)

and (2.24) as functions of αi and αj (here, µ1 and µ2 are fixed at eigenvalues

λi and λj), which we denote by C1C(αi, αj;λi, λj) and C2C(αi, αj;λi, λj). The

helicity matching c1 = C1C(αi, αj;λi, λj) and c2 = C2C(αi, αj;λi, λj) selects

appropriate amplitudes αi and αj.

(D) In the case that µ1 and µ2 both equal to an same eigenvalues λ := λi = λj

of S, the eigenfunctions ωi and ωj degenerate into the same function ω. If

there exists a ‘generalized eigenfunction’ ω′ such that (curl− λ)2ω′ = 0, and

the inhomogeneous equation (2.37) still has a particular solution G, then the

general solution of (2.37) may be given by

BΣ = αω + α′ω′ + G, (2.40)

where α and α′ are arbitrary real numbers. Substituting this BΣ, we evalu-

atethe helicities (2.23) and (2.24) as functions of α and α′ (here, µ1 and µ2 are

fixed at an eigenvalue λ), which we denote by C1D(α, α′;λ) and C2D(α, α′;λ).

In this case, the helicity matching c1 = C1D(α, α′;λ) and c2 = C2D(α, α′;λ)

selects appropriate amplitudes α and α′.

In the case (B), (C), and (D), if there are multiple eigenfunctions belonging to the

same eigenvalue λ, we may consider a linear combination Σsαsωs, or if there exists

twofold degeneracy, we may take ω and α to be complex, and write <(αω); see

Section 2.2.
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We note that the branches (B)-(D) can appear only if at least one of µ1

and µ2 is an eigenvalue of the self-adjoint curl operator, and moreover, if the

inhomogeneous equation (2.37) has a particular solution G. As is to be shown,

the latter condition does not always apply, i.e. at some eigenvalues the equation

(2.37) may be solvable only for some special BH and BH like BH = BH = 0.

We have developed complicated decompositions of the double-Beltrami mag-

netic field. For the convenience of forthcoming discussions, we summarize the

notions.

• Bµ1,µ2 is a finite-flux double-Beltrami magnetic field, such that

(curl − µ1)(curl − µ2)Bµ1,µ2 = 0. (2.41)

• Bµ1,µ2 = BΣ + BH + BH (BΣ ∈ H1
ΣΣ(Ω),BH ∈ H1

Σσ(Ω),BH ∈ L2
H(Ω)) so

that

(curl − µ1)(curl − µ2)B
Σ = (µ1 + µ2)∇× BH − µ1µ2(B

H + BH). (2.42)

• On the branches (B), (C) and (D), BΣ is obtained, like (2.38), (2.39) and

(2.40), by superposition of homogeneous solutions ω and a particular solution

G such that

(curl − µ1)(curl − µ2)G = (µ1 + µ2)∇× BH − µ1µ2(B
H + BH). (2.43)

In the next subsection, we will study the condition for a particular solution G to

exist.
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2.1.6 Bifurcation of Beltrami equilibrium

We have already briefly introduced the self-adjoint curl operator S and the

non-self-adjoint curl operator T needed to elucidate the mathematical structure

around the bifurcation point. We start by reviewing the property of the operator

T proven in [1]:

Proposition 1. For every µ 6∈ σp(S), the inhomogeneous equation

(T − µ)BΣ = b ∈ L2
σ(Ω) (2.44)

has a unique solution BΣ = (T − µ)−1b ∈ L2
Σ(Ω).

Using this proposition, we can readily obtain the following theorem:

Theorem 1. Let µ1, µ2 6∈ σp(S). The inhomogeneous equation

(T − µ1)(S − µ2)B
Σ = (µ1 + µ2)∇× BH − µ1µ2(B

H + BH) (2.45)

has a unique solution

BΣ = (S−µ2)
−1(T−µ1)

−1
{
(µ1 + µ2)∇× BH − µ1µ2(B

H + BH)
}

(∈ H1
ΣΣ(Ω)),

(2.46)

implying that (2.37) has a unique solution.

In the case that at least one of µ1 or µ2 belongs to σp(S), we have nontrivial

solution ω of the homogeneous part of the double-Beltrami equation (2.37). We

are ready to study the existence of a particular solution G of (2.37) for given BH

and BH . As mentioned above, a nontrivial particular solution G becomes the

trunk from which the branches (B), (C) and (D) solutions bifurcate. We have the

following two theorems.
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Theorem 2. Let µ1 = λi ∈ σp(S) and Sωi = λiωi, and µ2 6∈ σp(S). Iff

〈BH − µ2A
H ,ωi〉 = 0, (2.47)

the inhomogeneous double Beltrami equation

(T − λi)(S − µ2)G = (λi + µ2)∇× BH − λiµ2(B
H + BH) (2.48)

has a solution G ∈ H1
ΣΣ(Ω).

Proof. Let Vi be the eigenspace corresponding to λi. We define L2
Σ⊥(Ω) := L2

Σ(Ω)/Vi

and H1
ΣΣ⊥(Ω) := H1

ΣΣ(Ω)/Vi. The restriction of S on H1
ΣΣ⊥(Ω) will be denoted by

S⊥. Obviously

Coker(S⊥ − λi) = Vi. (2.49)

If the orthogonality condition (2.47) holds, BH − µ2A
H ∈ L2

Σ⊥(Ω). Let us write

(S − µ2)G = W + (λi + µ2)B
H − λiµ2A

H (∈ L2
Σ(Ω)). (2.50)

Inserting this into (2.48) yields

(T − λi)W = λ2
i

(
BH − µ2A

H
)

(∈ L2
Σ⊥(Ω)), (2.51)

which can be solved by

W = (S⊥ − λi)
−1λ2

i

(
BH − µ2A

H
)

(∈ H1
ΣΣ⊥(Ω)). (2.52)

Thus, the solution of (2.45) is given by

G = (S − µ2)
−1
{
(S⊥ − λi)

−1µ2
1

(
BH − µ2A

H
)

+ (λi + µ2)B
H − λiµ2A

H
}
.

(2.53)
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Next, we show that 〈BH − µ2A
H ,ωj〉 6= 0 is in contradiction with the

solvability of (2.48). It suffices to assume that Vj is one dimensional. Projecting

both sides of (2.51) onto Vj, we obtain

〈(T−λi)W ,ωi〉 = 〈(T−λi)W⊥,ωi〉 = 〈TW⊥,ωi〉 = λ2
i 〈BH−µ2A

H ,ωj〉, (2.54)

where W⊥ is the projection of W onto L2
Σ⊥. For this relation to hold, there

must be an element w ∈ L2
Σ⊥(Ω) such that Tw = cωj (c 6= 0). Substituting

cωj = (c/λj)Tωj, we obtain T[w − (c/λj)ωj] = 0. Since Ker(T) = {0}, we deduce

w = (c/λj)ωj, which contradicts the assumption w ∈ L2
Σ⊥(Ω). Therefore, if

〈BH − µ2A
H ,ωj〉 6= 0, (2.48) cannot have a solution.

Note that the particular solution G obtained here does not necessarily sat-

isfy 〈G,ωi〉 = 0 because, although W + λi
(
BH − µ2A

H
)
∈ L2

Σ⊥, 〈BH ,ωi〉 may

have finite value. If, instead of (2.50), we use

(S − µ2)G = W + (λi + µ2)B
H − λiµ2A

H − µ2〈BH ,ωi〉ωi ∈ H1
Σσ/Vi, (2.55)

the, we can obtain a particular solution G such that G ∈ H1
ΣΣ(Ω) and 〈G,ωi〉 = 0.

Theorem 3. Let λi, λj ∈ σp(S), Sωi = λiωi and Sωj = λjωj. Iff

〈BH − λjA
H ,ωi〉 = 〈BH − λiA

H ,ωj〉 = 0, (2.56)

the inhomogeneous double Beltrami equation

(T − λi)(S − λj)G = (λi + λj)∇× BH − λiλj(B
H + BH) (2.57)

has a solution.

44



Proof. Let Vk be the eigenspace corresponding to λk (k = i, j). The restriction of

S on H1
ΣΣ(Ω)/Vk will be denoted by S⊥k (k = i, j). Obiously

Coker(S⊥k − λk) = Vk (k = i, j). (2.58)

If the orthogonality conditions (2.56) hold, BH − λjA
H ∈ L2

Σ(Ω)/Vi and BH −

λiA
H ∈ L2

Σ(Ω)/Vj. Let us write

(S − λj)G = W + (λi + λj)B
H − λiλjA

H . (2.59)

Inserting this into (2.57) yields

(T − λi)W = λ2
i

(
BH − λjA

H
)

(∈ L2
Σ(Ω)/Vi). (2.60)

We can solve (2.60) by W = (S⊥i−λi)−1λ2
i (B

H−λjAH), with which the right-hand

side of (2.59) is shown to belong to L2
Σ(Ω)/Vj as follows:

〈(S⊥i − λi)
−1 λ2

i

(
BH − λjA

H
)

+ (λi + λj)B
H − λiλjA

H ,ωj〉

= 〈(S⊥i − λi)
−1 λ2

i

(
BH − λjA

H
)

+ λiB
H ,ωj〉

=
λ2
i

λj − λi
〈(S⊥i − λi)

−1 (BH − λjA
H
)
, (S⊥i − λi) ωj〉 + λi〈BH ,ωj〉

=
λ2
i

λj − λi
〈BH − λjA

H ,ωj〉 + λi〈BH ,ωj〉

= −λ2
i 〈AH ,ωj〉 + λ2

i 〈AH ,ωj〉

= 0, (2.61)

where the first and fourth equalities follow from 〈BH − λiA
H ,ωj〉. Thereby, we

can solve (2.59) by

G = (S⊥j − λj)
−1
{
(S⊥i − λi)

−1λ2
i (B

H − λjA
H) + (λi + λj)B

H − λiλjA
H
}
.

(2.62)
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Applying the same method of theorem 3, we can show that 〈BH−λjAH ,ωi〉 6=

0 is in contradiction with the solvability of (2.57). Because of the symmetry be-

tween λi and λj in the equation (2.57), 〈BH−λiAH ,ωj〉 6= 0 is also in contradiction

with the solvability of (2.57).

Although BH and AH belong to L2
Σ(Ω), they are not elements of H1

ΣΣ.

Hence, for example, 〈AH ,ωi〉 = λ−1
i 〈AH , Sωi〉 is not equal to λ−1

i 〈∇ × AH ,ωi〉 =

λ−1
i 〈BH ,ωi〉 = 0. Therefore, the orthogonality conditions (2.47) and (2.56) are

not trivial conditions. As is shown in the subsection 2.5 of [15], they pertain to

the symmetry of Ω. In the next section, we will consider a concrete example of

slab geometry.

2.2 Helical Bifurcation in Slab geometry

In this section, we concretely examine the bifurcation of the double-Beltrami

equilibrium in a Slab geometry. Let the domain be Ω = { (x, y, z); 0 < x < 1, 0 ≤

y < Ly, 0 ≤ z < Lz }, where y = 0 and Ly, as well as z = 0 and Lz are periodic

boundaries. At x = 0 and 1, we impose the boundary condition (2.4).

2.2.1 Eigenfunction

In this domain Ω, every eigenfunctions of S is given by the slab-geometry

version of the CK function[46, 47]:

ωi = ∇× (Ψi∇z + ∇Ψi ×∇z/λi) (2.63)

where Ψi is determined by

−∆Ψi = λ2
iΨi in Ω. (2.64)
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Taking into account the boundary conditions, we put

Ψi = ψl(x)<ei(kyy+kzz+χ) (2.65)

where χ is a real number determining the phase angle,

ky = m
2π

Ly
, kz = n

2π

Ly
(m,n = 0, 1, 2, . . .) (2.66)

and

ψl(x) = sin(kxx+ θ) (kx := lπ; l = 1, 2, . . .). (2.67)

Without loss of generality, we assume kx > 0. We can easily verify that ∇×ωi =

λiωi.

Then, we have

ωi = <ei(kyy+kzz+φ)

 ikxkz cos(kxx+ θ)/λi + iky sin(kxx+ θ)
−kykz sin(kxx+ θ)/λi − kx cos(kxx+ θ)(

k2
x + k2

y

)
sin(kxx+ θ)/λi


=

 −{(kxkz/λi) cos(kxx+ θ) + ky sin(kxx+ θ)} sin(kyy + kzz + χ)
−{(kykz/λi) sin(kxx+ θ) + kx cos(kxx+ θ)} cos(kyy + kzz + χ){

(k2
x/λi) + (k2

y/λi)
}

sin(kxx+ θ) cos(kyy + kzz + χ)

 ,(2.68)

the eigenvalue of which is

λi = ±
√
k2
x + k2

y + k2
z = ±π

√
l2 + (2m/Ly)2 + (2n/Lz)2. (2.69)

The boundary condition n · ωi = 0 and the zero-flux conditions Φy(ωi) =

Φz(ωi) = 0 read, respectively

(kxkz/λi) cos(kxx+ θ) + ky sin(kxx+ θ) = 0 (on x = 0, 1), (2.70)

Φy(ωi) = δn0Lz cos(kyy + χ) {sin θ − sin(kx + θ)} , (2.71)

Φz(ωi) = δm0Ly
kx
λi

cos(kzz + χ) {cos θ − cos(kx + θ)} , (2.72)
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where δst denotes Kronecker’s delta, by which the eigenvalue λi of (2.64) is dis-

cretized.

In order to provide a full description of the spectrum, we here regard j

as a multi-index {m,n, l}. Iff m = n = 0, the boundary condition (2.70) trivial,

whereas the zefo-flux conditions (2.71) and (2.72) are then nontrivial and are used

to determine l. Otherwise, the boundary condition (2.70) determines l. Thus,

if m = n = 0, kx = 2l′π, i = {0, 0, 2l′}, otherwise, kx = lπ, i = {m,n, l}.

(2.73)

If we remove the zero-flux condition (2.71) and (2.72) on the m = n = 0

CK eigenfunction, we obtain a finite-flux Beltrami field Bµ, such that ∇× Bµ =

µBµ for every real µ (the non-self-adjoint curl operator T has a continuous point

spectrum [1]):

Bµ = Bµ

 0
− cos (µx+ θ)
sin (µx+ θ)

 , (2.74)

where Bµ is a positive real number denoting its amplitude.The poloidal flux Φy(Bµ)

and the toroidal flux Φz(Bµ) are calculated as

Φy(Bµ) = Bµ
Lz
µ

{sin θ − sin(µ+ θ)} , Φz(Bµ) = Bµ
Ly
µ

{cos θ − cos(µ+ θ)} .

(2.75)

2.2.2 Trunk solution

Here, we consider the trunk solution Gµ1,µ2 +BH +BH , which is in charge

of the fluxes of the total solution. In the slab geometory, the magnetic and vortical

harmonic fields with fluxes Φmy,Φmz,Φcy and Φcz are given by

BH =
Φmy

Lz
∇y +

Φmz

Ly
∇z, ΩH =

Φcy

Lz
∇y +

Φcz

Ly
∇z. (2.76)
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The vector potentials of them are

AH = −Φmy

Lz

(
x− 1

2

)
∇z +

Φmz

Ly

(
x− 1

2

)
∇y, (2.77)

PH = −Φcy

Lz

(
x− 1

2

)
∇z +

Φcz

Ly

(
x− 1

2

)
∇y, (2.78)

which are unique in H1
Σσ(Ω).

The trunk solution Gµ1,µ2 + BH + BH of the double-Beltrami equilibrium

is given by superposition of two finite-flux Beltrami fields as

Gµ1,µ2 + BH + BH = Bµ1 + Bµ2 . (2.79)

We have to determine the amplitudes Bµ1 , Bµ2 and the phases θ1, θ2 by given values

of fluxes Φmy,Φmz,Φcy and Φcz, through the following equations:

Φy (Bµ1 + Bµ2) = Φy(BH) = Φmy, (2.80)

Φz (Bµ1 + Bµ2) = Φz(BH) = Φmz, (2.81)

Φy (µ1Bµ1 + µ2Bµ2) = Φy(∇× BH) = ν1Φmy + ν2Φcy, (2.82)

Φz (µ1Bµ1 + µ2Bµ2) = Φz(∇× BH) = ν1Φmz + ν2Φcz, (2.83)

the second equalities of (2.82) and (2.83) follow from (??). Here, let us introduce

new abbreviations to increase readability of the following calculations:

φmy :=
Φmy

Lz
, φmz :=

Φmz

Ly
, φcy :=

Φcy

Lz
, φcz :=

Φcz

Ly
, (2.84)

Q1y := (ν1 − µ1)φmy + ν2φcy, Q1z := (ν1 − µ1)φmz + ν2φcz, (2.85)

Q2y := (ν1 − µ2)φmy + ν2φcy, Q2z := (ν1 − µ2)φmz + ν2φcz. (2.86)
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For µ1 and µ2 such that µ1 6= µ2, µ1 6= λ0,0,2l′ and µ2 6= λ0,0,2l′ , we can solve

(2.80) - (2.83) and obtain

Bµ1 cos(θ1+
µ1

2
) = − 1

2 sinµ1/2

µ1

µ1 − µ2

Q2y, Bµ1 sin(θ1+
µ1

2
) =

1

2 sinµ1/2

µ1

µ1 − µ2

Q2z,

(2.87)

Bµ2 cos(θ2+
µ2

2
) = − 1

2 sinµ2/2

µ2

µ2 − µ1

Q1y, Bµ2 sin(θ2+
µ2

2
) =

1

2 sinµ2/2

µ2

µ2 − µ1

Q1z.

(2.88)

Then, we finally obtain

Bµ1 =
1

µ1 − µ2

µ1/2

sin(µ1/2)

 0
Q2y cosµ1(x− 1

2
) +Q2z sinµ1(x− 1

2
)

−Q2y sinµ1(x− 1
2
) +Q2z cosµ1(x− 1

2
)

 , (2.89)

Bµ2 =
1

µ2 − µ1

µ2/2

sin(µ2/2)

 0
Q1y cosµ2(x− 1

2
) +Q1z sinµ2(x− 1

2
)

−Q1y sinµ2(x− 1
2
) +Q1z cosµ2(x− 1

2
)

 . (2.90)

The reason why we can not solve (2.80)-(2.83) at µ1 = λ0,0,2l′ or µ2 = λ0,0,2l′

may be viewed as a consequence of the violation of the orthogonality conditions

(2.47) and (2.56) at these eigenvalues. By easy calculation, we observe

〈(x− 1

2
)∇y,ωi〉 = δm0δn0LyLz cosχ sin θ, (2.91)

〈(x− 1

2
)∇z,ωi〉 = ∓δm0δn0LyLz cosχ cos θ. (2.92)

At least one of them has a finite value for i = {0, 0, 2l′}, which violates the orthog-

onality conditions (2.47) and (2.56).

In the case of µ1 = µ2, two finite-flux Beltrami fields Bµ1 and Bµ2 degen-

erate into the same field, therefore, we can not solve (2.80) - (2.83) because of the

shortage of fields in charge of fluxes Φmy,Φmz,Φcy and Φcz . In this instance, we

have to introduce the “generalized” eigenfunction such that (curl − µ)2ω = 0.
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2.2.3 Helical bifurcation

Here, we consider the bifurcated branches (B) and (C) obtained by su-

perposing eigenfunctions ωm,n,l with a non-zero m or n on the trunk solution

Bµ1 + Bµ2 .

In what follows, we consider µ1 and µ2 such that µ1, µ2 6= λ0,0,2l′ . Using

(2.91) and (2.92), we can easily confirm that eigenfunctions ωm,n,l with a non-zero

m or n satisfy the orthogonality conditions (2.47) and (2.56), therefore, on the line

µ1 = λi 6= λ0,0,2l′ ( as well as µ2 = λj 6= λ0,0,2l′), there exist both the trunk solution

Bµ1 + Bµ2 and the homogeneous solution ωi (ωj), which are linearly independent

each other. Thus, we can construct a continuous family of bifurcated states by

superposing ωi or ωj on the trunk solution with complex amplitudes αi and αj.

In the case (B), i.e. µ1 = λi 6= λ0,0,2l′ and µ1 6= λj, we obtain

(B) Bλi,µ2,αi = αiωi + Bµ1 + Bµ2 , (2.93)

and in the case (C), i.e. µ1 = λi 6= λ0,0,2l′ and µ2 = λj 6= λ0,0,2l′ , we obtain

(C) Bλi,λj ,αi,αj = αiωi + αjωj + Bµ1 + Bµ2 . (2.94)

The amplitudes |αi| and |αj| are determined, as we have noted in the subsection

2.1.5, by using the magnetic helicity value c1 and the canonical helicity value c2 as

bifurcation parameters, where the phase of αi and αj still are arbitrary.

The bifurcated branch-(B) solution (2.93) and branch-(C) solution (2.94),

composed of the symmetric function (Bµ1 +Bµ2) and the helical CK functions (ωi

and ωi), are fully three dimensional. And yet, we can always define a “helical flux

function” ϕB of (2.93) by which we can integrate the magnetic filed lines of the

branch-(B) solution. Moreover, when the Fourier coefficient vectors (wavenumber
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vectors) of ωi and ωj are parallel to each other, we can also define a helical

flux function ϕC of the branch-(C) solution (2.94). Let ky and kz be the Fourier

coefficients of ωi. We denote

k̄y := ky/
√
k2
y + k2

z , k̄z := kz/
√
k2
y + k2

z , (2.95)

and define

η := k̄yy + k̄zz, ζ := −k̄zy + k̄yz, (2.96)

from which we obtain the normalized wavenumber vector ∇η and its normal vector

∇ζ. Putting

ϕi :=
{
k̄y sin(kxx+ θ) + (kxk̄z/λj) cos(kxx+ θ)

}
ei(kyy+kzz+χ), (2.97)

we may rewrite ωi as

ωi = < [∇ϕi ×∇ζ + λiϕi∇ζ] . (2.98)

When the Fourier coefficients vector of ωj is parallel to that of ωi, using the same

normal vector ∇ζ, we can also rewrite ωj as

ωj = < [∇ϕj ×∇ζ + λjϕj∇ζ] . (2.99)

The ambient, finite-flux Beltrami fields Bµ1 and Bµ2 can be also cast into a similar

form. Putting

ϕµs = (Bµs/µs) cos
{
µsx+ θ − tan−1(k̄y/k̄z)

}
(s = 1, 2), (2.100)

we may write

Bµs = ∇ϕµs ×∇ζ + µsϕµs∇ζ (s = 1, 2). (2.101)
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Combining ϕi, ϕj, ϕµ1 and ϕµ2 , we obtain the helical flux functions ϕB := αiϕi +

ϕµ1 + ϕµ2 and ϕC := αiϕi + αjϕj + ϕµ1 + ϕµ2 , by which we may write

Bλi,µ2,αi = < [∇ϕB ×∇ζ + (αiλiϕi + µ1ϕµ1 + µ2ϕµ2)∇ζ] , (2.102)

Bλi,λj ,αi,αj = < [∇ϕC ×∇ζ + (αiλiϕi + αjλjϕj + µ1ϕµ1 + µ2ϕµ2)∇ζ] . (2.103)

Hence, the level sets of the helical flux functions ϕB and ϕC give the magnetic

surfaces of Bλi,µ2,αi and Bλi,λj ,αi,αj , respectively.

2.2.4 Helicity leaves

Now we can concretely calculate values of the magnetic helicity (2.23) and

the canonical helicity (2.24) as functions of µ1, µ2, αi and αj by using (2.76), (2.89),

(2.90), (2.93), and (2.94). In the subsection 2.1.5, we introduced helicity-value

functions CsA(µ1, µ2), CsB(αi, µ2;λi) and CsC(αi, αj;λi, λj) (s = 1, 2). For sake of

simplicity, we denote collectively these functions by Cs(αi, αj, µ1, µ2). Then, we

obtain

C1(αi, αj, µ1, µ2)

=
α2
i

2λi
‖ωi‖2 +

α2
j

2λj
‖ωj‖2

+
LyLz

8

{
1

sin2(µ1/2)

µ1

(µ1 − µ2)2

(
Q2

2y +Q2
2z

)
+

1

sin2(µ2/2)

µ2

(µ2 − µ1)2

(
Q2

1y +Q2
1z

)
−2

1

sin(µ1/2) sin(µ2/2)
sin

(
µ1 − µ2

2

)
µ1 + µ2

(µ1 − µ2)3
(Q1yQ2y +Q1zQ2z)

− 1

sin2(µ1/2)

sinµ1

µ1 − µ2

(φmyQ2y + φmzQ2z)

− 1

sin2(µ2/2)

sinµ2

µ2 − µ1

(φmyQ1y + φmzQ1z)

}
,

(2.104)
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C2(αi, αj, µ1, µ2)

=
α2
i (λi − ν1)

2

2λiν2
2

‖ωi‖2 +
α2
j (λj − ν1)

2

2λjν2
2

‖ωj‖2

+
LyLz

8

{
1

sin2(µ1/2)

µ1(ν1 − µ1)
2

ν2
2(µ1 − µ2)2

(
Q2

2y +Q2
2z

)
+

1

sin2(µ2/2)

µ2(ν1 − µ2)
2

ν2
2(µ2 − µ1)2

(
Q2

1y +Q2
1z

)
−2

1

sin(µ1/2) sin(µ2/2)
sin

(
µ1 − µ2

2

)
µ1 + µ2

δ2
i ν

2
2(µ1 − µ2)3

(Q1yQ2y +Q1zQ2z)

−2
1

sin2(µ1/2)

(
1 +

ν1 − µ1

2ν2

)
sinµ1

µ1 − µ2

(φcyQ2y + φczQ2z)

−2
1

sin2(µ2/2)

(
1 +

ν1 − µ2

2ν2

)
sinµ2

µ2 − µ1

(φcyQ1y + φczQ1z)

}
. (2.105)

The terms pertinent to ωi and ωj appears only in the bifurcation cases (B) and

(C).

We obtain double-Beltrami equilibria with given helicity values c1 and c2

from µ1 and µ2 satisfying the helicity matching conditions C1(αi, αj, µ1, µ2) = c1

and C2(αi, αj, µ1, µ2) = c2. Fig.2.1 shows the contour plots of C1(αi, αj, µ1, µ2) and

C2(αi, αj, µ1, µ2) projected onto the µ1-µ2 plane. We can regard these contour plots

as the projection of helicity leaves onto the µ1-µ2 plane. It can be seen that the

helicity values diverge on lines µ1 = λ0,0,2 = 2π and µ2 = −λ0,0,2 = −2π, and the

helicity leaves split. This divergence implies the non-existence of equilibrium at

µ1 = λ0,0,2 or µ2 = −λ0,0,2 because of the violation of the orthogonality condition

(2.47) at these eigenvalues.

Let us focus on a line µ1+µ2 = 0, where we can collectively denote Beltrami

parameters by µ := µ1 = −µ2. (Lyapunov stability of double-Beltrami fields with

such parameters is studied in [48]. We will develop this study in Appendix B.)

Fig.2.2 shows the magnetic helicity value C2 on the line µ1+µ2 = 0, as a function of
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μ1μ20-π-2π-3π 0 π 2π 3π μ1μ20-π-2π-3π 0 π 2π 3π
Figure 2.1: Contour plots of the magnetic helicity value C1(0, 0, µ1, µ2) (left) and the
canonical helicity value C1(0, 0, µ1, µ2) (right) projected onto µ1-µ2 plane (0 < µ1 <
3π,−3π < µ2 < 0). Ion-skin length and flux parameters are as follows: δi = 1/5π,
φmz =

√
δi, φmy = φcy = φcz = 0. Geometry parameters are as follows: Ly = Lz = 2. In

this geometry, λ0,0,2 = 2π.

µ. At µ =
√

2π = λ1,0,1, where the orthogonality condition (2.56) holds, the helical

branch-(C) bifurcates. At µ = 2π = λ0,0,2, where the orthogonality condition (2.56)

breaks, the helicity value diverges. It can be seen that for a small magnetic helicity

value , there only exists branch-(A) solution (symmetric double-Beltrami field), on

the other hand, for a large value, branch-(C) solution (helical double-Beltrami

field) bifurcates. In Fig.2.3, we plot the contours of a helical-flux function ϕC of

the branch-(C) solution bifurcated from µ1 = −µ2 =
√

2π.

2.3 Summary and Discussion

We have formulated the bifurcation theory of double-Beltrami fields with

the magnetic and canonical fluxes as the fixed parameters and the magnetic and

canonical helicities as control parameters. This bifurcation theory can be viewed
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Figure 2.2: Magnetic helicity value C1(0, 0, µ,−µ) on the line µ1 + µ2 = 0.

as the problem of the existence and uniqueness of solutions of the inhomogeneous

double-Beltrami equation (2.37). It is the fixed magnetic and canonical fluxes that

give the inhomogeneous part to (2.37). The particular solution of (2.37) becomes

the trunk of the bifurcation. As the values of the magnetic and canonical helicities

change, Beltrami parameters µ1 and µ2 in (2.37) also change. When µ1 or µ2 is

equal to the eigenfunction of the self-adjoint curl operator S, the homogeneous

part of (2.37) has non-trivial solutions (eigenfunctions of S) and the uniqueness

of solutions of (2.37) breaks, in other words, bifurcation occurs. Namely, in our

bifurcation theory, bifurcation solutions are represented by superposition of ho-

mogeneous and particular solutions. It should be noted that the simultaneous ex-

istence of homogeneous and particular solutions is non-trivial and, therefore, the

existence of bifurcation solutions is also non-trivial. On this issue, we have proved

the sufficient and necessary condition of bifurcation (Theorem 2 and Theorem 3),

by which we can know what eigenvalues of S brings the bifurcation.
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Figure 2.3: Contours of a helical-flux function ϕC on a cross-section of the slab domain.

We have presented a concrete example of bifurcation in a slab geometry. In

Fig.2.1, it can be seen that the magnetic and canonical helicity leaves projected

onto µ1-µ2 plane are ripped apart due to the fixed fluxes. On the rips in leaves, the

helicity values diverge, which means the non-existence of the particular solution on

these rips. This can be viewed as a consequence of the violation of the orthogonality

condition given in Theorem 2 or Theorem 3. In this geometry, the symmetric

doubl-Beltrami field gives the trunk solution, which is helically deformed (shown

in Fig.2.3) by superposition of homogeneous solutions emerging from bifurcation

points.
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Chapter 3

Linear tearing mode theory of Double-Beltrami fields

3.1 Linear analysis of Tearing mode

In this section, we analyze the relation between the helical bifurcation and

the tearing mode. As in the case of single-Beltrami field[15], also in the case of

double-Beltrami field, the tearing mode is viewed as a perturbed, singular equilib-

rium state characterized by the singular Casimir element (helical-flux) stemming

from the resonant singularity of the linearized poisson operator. However, there is

a difference between the cases of single-Beltrami and double-Beltrami fields. In the

single-Beltrami case, the tearing mode was similar to the branch-(B) helical relaxed

state given by superposition of a Beltrami eigenfunction ωi on the trunk symmetric

Beltrami field. On the other hand, in the double-Beltrami case, the tearing mode

is similar to the branch-(C) solution given by two Beltrami eigenfunctions ωi and

ωj rather than the branch-(B) solution. We need two eigenfunctions to obtain the

tearing mode with an appropriate flow Ṽ ∈ H1(Ω).

3.1.1 Linearized equation around the Beltrami equilibrium

Here, we consider perturbations ũ = t(P̃ σ, Ã) around the double-Beltrami

field uµ1,µ2 . We assume that perturbations do not change the canonical and mag-

netic fluxes, that is, ∇ × Ã,∇ × P̃ σ ∈ L2
Σ(Ω). The Hamiltonian form of the

linearized equation is is given by

∂tũ = Jµ1,µ2∂ũUµ1,µ2(ũ) (3.1)
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where Jµ1,µ2 is the Poisson operator (2.21) evaluated at the equilibrium point uµ1,µ2 ,

that is,

Jµ1,µ2 := J(uµ1,µ2) = δi

(
−PσΩµ1,µ2× 0

0 Bµ1,µ2×

)
, (3.2)

and Uµ1,µ2 is the linearized energy-Casimir functional defined as

Uµ1,µ2(P̃ σ, Ã) := Hν(uµ1,µ2 + ũ) − Hν(uµ1,µ2)

=
1

2

∫
Ω

{∣∣∣∣∣P̃ σ − PσÃ

δi

∣∣∣∣∣
2

+
∣∣∣∇× Ã

∣∣∣2
−ν1Ã · (∇× Ã) − ν2P̃ σ · (∇× P̃ σ)

}
dx.

(3.3)

Let us decompose the member of KerJµ1,µ2 into the following independent

classes (
ω
0

)
,

(
0
j

)
, (3.4)

where ω and j are such that

PσΩµ1,µ2 × ω = 0, Bµ1,µ2 × j = 0. (3.5)

Integrating them, we obtain the following independent Casimir elements

Cω(ũ) :=

∫
Ω

ω · P̃ σdx, Cj(ũ) :=

∫
Ω

j · Ãdx. (3.6)

3.1.2 Resonance singularity and helical-flux Casimir elements

In what follows, we consider the slab geometry introduced in the beginning

of Sec.2.2, in which we can write

Ωµ1,µ2 =

 0
Ωy(x)
Ωz(x)

 , Bµ1,µ2 =

 0
By(x)
Bz(x)

 . (3.7)
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Here, we consider ‘singular’ Casimir elements stemming from the resonance

singularity of the poisson operator Jµ1,µ2 . Let us consider

ω = ∂xθ̂(x)

 0

−k̂z
k̂y

<ei(k̂yy+k̂zz+χ̂), j = ∂xθ(x)

 0
−kz
ky

<ei(kyy+kzz+χ). (3.8)

Notice that the prime ′ here does not mean any derivative but it just distinguishes

the variable of ω from b. Putting them into (3.5) yields

(k̂yΩy(x) + k̂zΩz(x))∂xθ̂(x) = 0, (kyBy(x) + kzBz(x))∂xθ(x) = 0, (3.9)

which have singular solutions

∂xθ̂(x) = δ(x− x̂r), ∂xθ(x) = δ(x− xr) (3.10)

if there exist x̂r and xr satisfying the resonance condition

k̂yΩy(x̂r) + k̂zΩz(x̂r) = 0, kyΩy(xr) + kzΩz(xr) = 0. (3.11)

Putting (3.8) with (3.10) into (3.6), we obtain Singular Casimir elements

Cω =

∫
Ω

δ(x− x̂r)<ei(k̂yy+k̂zz+χ̂)

 0

−k̂z
k̂y

 · P̃ σdx, (3.12)

Cj =

∫
Ω

δ(x− xr)<ei(kyy+kzz+χ)

 0
−kz
ky

 · Ãdx. (3.13)

The second Casimir Cj is nothing but the helical-flux Casimir, which has

been found in [15], and the first one Cω is the counterpart of ion canonical mo-

mentum P̃ σ to the electron canonical momentum Ã. We may rewrite them in the

following form:

Cω =

∫
Ω

δ(x−x̂r)∇x×∇ sin(k̂yy+k̂zz+χ̂)·P̃ σdx =

∫
Γ̂r

∇x×∇ sin(k̂yy+k̂zz+χ̂)·P̃ σdx,

(3.14)
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Cj =

∫
Ω

δ(x−xr)∇x×∇ sin(kyy+kzz+χ)·Ãdx =

∫
Γr

∇x×∇ sin(kyy+kzz+χ)·Ãdx,

(3.15)

where Γ̂r and Γr are the resonant surfaces of x = x̂r and x = xr. The resonant

Fourier component of P̃ σ and Ã, i.e. the parts proportional to <ei(k̂yy+k̂zz+χ̂) and

<ei(kyy+kzz+χ), make these integral non-zero and hence are forbidden to change.

3.1.3 Linear Tearing mode

By invoking the helical-flux Casimir Cj, we can obtain ‘tearing mode’ as a

singular equilibrium state. Let us consider an energy-Casimir functional

Fµ1,µ2,β := Uµ1,µ2(ũ) − βCj(ũ), (3.16)

where β is a Lagrange multiplier. Because Cj is the surface integral on the resonant

surface Γr (x = xr), it is convenient to represent the linearized energy-Casimir

functional Uµ1,µ2 as follows:

Uµ1,µ2(ũ) =
1

2

∫
Ω\Γr

{∣∣∣∣∣P̃ σ − PσÃ

δi

∣∣∣∣∣
2

+
(
∇× B̃ − ν1B̃

)
· Ã

−ν2∇× P̃ σ · P̃ σ

}
dx +

1

2

∫
Γr

[[∇x× B̃ · Ã]]xrdydz (3.17)

where [[f ]]xr is the jump across x = xr:

[[f ]]xr := lim
ε↓0

{f(xr + ε) − f(xr − ε)} (3.18)

We can find equilibrium points by

∂ũFµ1,µ2,β := ∂ũ [Uµ1,µ2(ũ) − βCj(ũ)] = 0, (3.19)

the Euler-Lagrange equation of which is

P̃ σ − PσÃ

δ2
i

= ∇× B̃ − ν1B̃ (in Ω\Γr), (3.20)
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P̃ σ − PσÃ

δ2
i

= ν2∇× P̃ (in Ω\Γr), (3.21)

[[∇x× B̃]]xr = β∇x×∇ sin(kyy + kzz + χ). (3.22)

Combining (3.20) and (3.21), we obtain the “double Beltrami equation”

∇×∇× B̃ −
(
ν1 +

1

δ2
i ν2

)
∇× B̃ +

1

δ2
i

(
1 +

ν1

ν2

)
B̃ = 0, (3.23)

which may be rewritten as

(curl − µ1)(curl − µ2)B̃ = 0. (3.24)

The ion-flow field Ṽ = (P̃ σ − PσÃ)/δi is determined by B̃ through (3.20) as

Ṽ = δi

(
∇× B̃ − ν1B̃

)
. (3.25)

We separate the domain at x = xr and solve (3.24) in each sub-domain

with assuming a form

B̃ = α1ω̃1 + α2ω̃2, (3.26)

where

ω̃i = ∇Ψ̃i ×∇ζ + µiΨ̃i∇ζ, Ψ̃i := ψ̃i(x)<ei(kyy+kzz+χ) (i = 1, 2). (3.27)

The solution is given by

ψ̃i =

{
sin k̃ix/ sin k̃ixr (0 < x < xr),

sin k̃i(1 − x)/ sin k̃i(1 − xr) (xr < x < 1),
(3.28)

where

k̃i :=
√
µ2
i − k2

y − k2
z . (3.29)

We have the following expression

ω̃i = <

 i
√
k2
y + k2

zΨ̃i

−k̄yΨ̃′
i − µik̄zΨ̃i

−k̄zΨ̃′
i + µik̄yΨ̃i

 . (3.30)
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where f ′ := df/dx. The vector potential of ω̃i is given by

Ãi = <Ψ̃i

 iµi/
√
k2
y + k2

z

−k̄z
k̄y

 , (3.31)

which belongs to H1(Ω) and satisfies n × Ãi = 0, therefore, the condition we

have imposed on Ãi is satisfied. Note that Ãi 6∈ H1
ΣΣ(Ω), therefore, it satisfies

∇× Ãi = ω̃i but not Ãi = ω̃i/µi.

We also have to check the condition imposed on Ṽ = (P̃ σ −PσÃ)/δi, that

is, Ṽ ∈ H1(Ω). Inserting (3.26) into (3.25), we can calculate the jump of Ṽ at

x = xr as

[[Ṽ ]]xr = δi {α1(µ1 − ν1)[[ω̃1]]xr + α2(µ2 − ν1)[[ω̃2]]xr}

= −δi
{
α1(µ1 − ν1)[[ψ̃

′
1]]xr + α2(µ2 − ν1)[[ψ̃

′
2]]xr)

}
∇ sin(kyy + kzz + χ),

(3.32)

which must become zero. Otherwise, the derivative of Ṽ would produce the delta

function, which is not an element of L2(Ω). To satisfy this condition, we have to

set the amplitudes α1 and α2 as

α1 = −α(µ2 − ν1)[[ψ̃
′
2]]xr , α2 = α(µ1 − ν1)[[ψ̃

′
1]]xr , (3.33)

where α is an arbitrary constant, and with which certainly [[Ṽ ]]xr = 0.

Remark 3.1.1. In the above, we did not use the canonical singular Casimir element

Cω because there is, in Uµ1,µ2(ũ), no term that would balance with Cω. Although

|∇ × Ã|2, the highest derivative term of Ã in (3.3), produces the term [[∇x× B̃ ·

Ã]]xr which can balance with the magnetic helical-flux Casimir Cj, P̃ σ×(∇×P̃ σ),

the highest derivative term of P̃ σ in (3.3) , does not produce such a term.
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3.1.4 Criterion of tearing instability

Here we will estimate the energy (3.17) of the singular solution (tearing

mode) obtained in the previous subsection.

Preliminarily, we calculate the following. From (3.30) and (3.31), we obtain

ω̃i × Ãj · ∇x = −<Ψ̃′
i · <Ψ̃j = −ψ̃′

iψ̃j cos2(kyy + kzz + χ), (3.34)

the jump of which can be calculated as

[[ω̃i × Ãj · ∇x]]xr = −[[ψ̃′
i]]xr cos2(kyy + kzz + χ), (3.35)

where we have used ψ̃j(xr) = 1. Integrating it on the resonance surface Γr, we

obtain ∫
Γr

[[ω̃i × Ãj · ∇x]]xrdydz = −LyLz
2

[[ψ̃′
i]]xr . (3.36)

Using this result, we can easily calculate the energy (3.17) of the tearing mode as

Uµ1,µ2 =

∫
Γr

[[B̃ × Ã · ∇x]]xrdydz

=

∫
Γr

[[(α1ω̃1 + α2ω̃2) × (α1Ã1 + α2Ã2) · ∇x]]xrdydz

= −LyLz
2

{
α2

1[[ψ̃
′
1]]xr + α1α2[[ψ̃

′
1]]xr + α1α2[[ψ̃

′
2]]xr + α2

2[[ψ̃
′
2]]xr

}
.(3.37)

In terms of ∆′ := [[ψ̃′/ψ̃]]xr , the criterion of the tearing instability, the energy

(3.37) can be rewritten as

Uµ1,µ2 = −LyLz
2

ψ̃(xr)
2∆′, (3.38)
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which can be easily verified by estimating ∆′ as follows:

∆′ = [[
ψ̃′

ψ̃
]]xr = [[

ψ̃ψ̃′

ψ̃2
]]xr

=
1

ψ̃(xr)2
[[(α1ψ̃1 + α2ψ̃2)(α1ψ̃

′
1 + α2ψ̃

′
2)]]xr

=
1

ψ̃(xr)2
[[
{
α2

1ψ̃1ψ̃
′
1 + α1α2

(
ψ̃2ψ̃

′
1 + ψ̃1ψ̃

′
2

)
+ α2

2ψ̃1ψ̃
′
2

}
]]xr

=
1

ψ̃(xr)2

{
α2

1[[ψ̃
′
1]]xr + α1α2[[ψ̃

′
1]]xr + α1α2[[ψ̃

′
2]]xr + α2

2[[ψ̃
′
2]]xr

}
,(3.39)

where the last equality follows from ψ̃1(xr) = ψ̃2(xr) = 1. Therefore, in the case of

double-Beltrami fields, it is the energy-Casimir functional (magnetic and canonical

helicities) that is directly related to the criterion of the tearing instability.

Let us examine the sign of (3.37) in more detail. Inserting (3.33), we obtain

Uµ1,µ2 = −α2LyLz
2

[[ψ̃′
1]]xr [[ψ̃

′
2]]xr

[
(µ2 − ν1)

2[[ψ̃′
2]]xr

−(µ1 − ν1)(µ2 − ν1)[[ψ̃
′
1]]xr − (µ1 − ν1)(µ2 − ν1)[[ψ̃

′
2]]xr + (µ1 − ν1)

2[[ψ̃′
1]]xr

]
= −α2LyLz

2
[[ψ̃′

1]]xr [[ψ̃
′
2]]xr

[
(µ2 − ν1)(µ2 − µ1)[[ψ̃

′
2]]xr + (µ1 − ν1)(µ1 − µ2)[[ψ̃

′
1]]xr

]
= −α2LyLz

2
(µ1 − µ2)[[ψ̃

′
1]]xr [[ψ̃

′
2]]xr

[
(µ1 − ν1)[[ψ̃

′
1]]xr − (µ2 − ν1)[[ψ̃

′
2]]xr

]
. (3.40)

Introducing X1 := δi(µ1 − ν1)[[ψ̃
′
1]]xr and X2 := δi(µ2 − ν1)[[ψ̃

′
2]]xr , we can rewrite

this as

Uµ1,µ2 = −α
2

δi

LyLz
2

(µ1 − µ2)X1X2 (X1 −X2) , (3.41)

where we have used the relation δ2
i (µ1 − ν1)(µ2 − ν1) = 1.

Without loss of generality, we can assume µ1 > µ2, therefore, the necessary

and sufficient condition for the negative energy turns out to be

X1 < 0 < X2 or 0 < X2 < X1 or X2 < X1 < 0, (3.42)
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and thence, the necessary and sufficient condition for the positive energy is

X2 < 0 < X1 or 0 < X1 < X2 or X1 < X2 < 0. (3.43)

3.2 Instability of double-Beltrami fields with sub/super-Alfvénic shear
flow

Here, we examine how the value of Uµ1,µ2 changes depending on Beltrami

parameters µ1 and µ2. We focus on the parameter region of µ1+µ2 ∼ 0, µ1 ∼ O(1),

and µ2 ∼ O(1), where a flow is nearly Alfvénic, as shown later.

3.2.1 Double-Beltrami field with Beltrami parameters µ1 + µ2 = 0

First of all, we investigate the case of µ1 +µ2 = 0, that is, Beltrami param-

eters have the same amplitude but opposite signs. Let µ := µ1 = −µ2, then we

find

[[ψ̃′
1]]xr = [[ψ̃′

2]]xr = −k̃

(
cos k̃(1 − xr)

sin k̃(1 − xr)
+

cos k̃xr

sin k̃xr

)
= − k̃ sin k̃

sin k̃(1 − xr) sin k̃xr
,

(3.44)

where k̃ :=
√
µ2 − k2

y − k2
z . We denote (3.44) by [[ψ′]]xr , with which (3.40) is

simplified as

Uµ1,µ2 = −α2LyLz
2

(µ1 − µ2)
2[[ψ′]]3xr . (3.45)

Thereby, if [[ψ′]]xr > 0 the corresponding tearing mode has a negative energy,

which implies the instability, on the other hand, if [[ψ′]]xr < 0 the corresponding

tearing mode has a positive energy. Because 0 < xr < 1, obviously 0 < k̃xr < k̃

and 0 < k̃(1−xr) < k̃. Therefore k̃ = π is the smallest value that makes [[ψ′]]xr = 0

and we observe that [[ψ′]]xr < 0 for k̃ < π and [[ψ′]]xr > 0 for π < k̃ < π+ ε, where

ε is an appropriately small positive number.
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Finally, we obtain the sufficient condition for the tearing mode (ky =

m(2π/Ly) and kz = n(2π/Lz)) to have a positive energy as follows:

k̃ < π ⇔ µ2 < π2 + k2
y + k2

z = π2 +

(
m

2π

Ly

)2

+

(
n

2π

Lz

)2

. (3.46)

Obviously, as the value of the Beltrami parameter µ is increased, the lowest tearing

mode, (m,n) = (1, 0) for Ly > Lz or (m,n) = (0, 1) for Ly < Lz, gains the negative

energy first.

To consider the relation between the energy of the tearing mode and the

smallest eigenvalue of the curl operator S, let us consider Ly and Lz such that

π2 +(2π/Ly)
2 < (2π)2 and Lz < Ly. In this geometry, the smallest eigenvalue of S

is λ1 =
√
π2 + (2π/Ly)2. Then the condition for the positive energy of the lowest

tearing mode (m = 1, n = 0) is written as

µ2 < π2 +

(
2π

Ly

)2

= λ2
1. (3.47)

Moreover, as soon as µ exceeds λ1, the energy of the lowest tearing mode becomes

negative. Therefore, it turns out that the smallest eigenvalue λ1 gives the marginal

value between positive and negative energy of the lowest tearing mode.

3.2.2 Double-Beltrami field with Beltrami parameters µ1 + µ2 ∼ 0

Here, following the previous subsection, we investigate the case of µ1 +µ2 ∼

0. We assume that the resonance surface is at xr = 1/2, by which [[ψ̃′
i]]xr (i = 1, 2)

is simplified as

[[ψ̃′
i]]xr = −k̃i

(
cos k̃i(1 − xr)

sin k̃i(1 − xr)
+

cos k̃ixr

sin k̃ixr

)
= − 2k̃i

tan(k̃i/2)
. (3.48)
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Substituting (3.48) into (3.40), we obtain

Uµ1,µ2 = α2LyLz
2

(µ1 − µ2)
2k̃1

tan(k̃1/2)

2k̃2

tan(k̃2/2){
(µ1 − ν0)

2k̃1

tan(k̃1/2)
− (µ2 − ν0)

2k̃2

tan(k̃2/2)

}
, (3.49)

which is a function of µ1 and µ2, fixing the mode number (m,n).

Fig.3.1 shows the contour of Uµ1,µ2(µ1, µ2) of the lowest tearing mode (m,n) =

(1, 0) on the region π < µ1 < 2π and −2π < µ2 < −π. On gray-colored regions

and white-colored regions, the tearing mode has a negative and positive energy,

respectively. It can be seen that there are three borders separating the negative

and positive energy regions: two straight lines µ1 = λ1 and µ2 = −λ1 and a curved

line.

First, let us consider the straight lines related to the smallest eigenvalue

λ1. In the previous study[15], it have been shown that the tearing mode without

flow gains a negative energy when the absolute value of the Beltrami parameter

|µ| exceeds the smallest eigenvalue λ1. Therefore, it is natural to expect that the

tearing mode would have a negative energy in the regions (1), (2), and (8) where

both of |µ1| and |µ2| are larger than λ1. On the other hand, it is also natural

to expect that the tearing mode would have a positive energy in the regions (4),

(5), and (6) where both of |µ1| and |µ2| are smaller than λ1. Actually, however,

we observe a positive energy in the region (2) and a negative energy in the region

(6). Fig.3.2 shows ψ̃1, ψ̃2, and ψ̃ = α1ψ̃1 + α2ψ̃2 of the tearing mode obtained

in the region (2). It can be seen that, although each of ψ̃1 and ψ̃2 has the larger

wavenumber than π (the criterion of the negative energy mode, see (3.46)), that of

the total ψ̃ is smaller than λ1. On the other hand, Fig.3.3 shows ψ̃1, ψ̃2, and ψ̃ of
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μ1μ2 λ1=√２ππ-π ２π-λ1-２π (1)(2)(3)(4)(5)(6)(7) (8)
Figure 3.1: Contour of Uµ1,µ2(µ1, µ2) of the tearing mode (m,n) = (1, 0) in the region
π < µ1 < 2π and −2π < µ2 < −π. On gray-colored regions, the tearing mode has
a negative energy. On white-colored regions, the tearing mode has a positive energy.
λ1 =

√
2π is the smallest eigenvalue of the curl operator. The parameters are set as

below: δi = 5π, φmz =
√
δi, and φmy = φcy = φcz = 0.
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the tearing mode obtained in the region (6).Opposite to the case of (2), it can be

seen that, although each of ψ̃1 and ψ̃2 has the smaller wavenumber than π, that

of the total ψ̃ is larger than λ1. These results show that the tearing stability of

the double-Beltrami fields Bµ1,µ2 = Bµ1 + Bµ2 can not be reduced to the sum of

those of Bµ1 and Bµ2 .

Figure 3.2: ψ̃1, ψ̃2, and ψ̃ = α1ψ̃1 +α2ψ̃2 of the tearing mode obtained in the region (1).

Next, let us consider the curved line, which is possibly related to the flow

amplitude and shear. The left of Fig.3.4 shows the contour plot of the energy of

the tearing mode (m,n) = (1, 0). The middle of Fig.3.4 shows the contour plot

of the difference between the square amplitude of the magnetic field B and the

flow field V , that is, B2−V 2. In the white-colored region, the flow is sub-Alfvénic

(V 2 < B2). On the other hand, in the gray-colored region, the flow is super-

Alfvénic (V 2 > B2). The right of Fig.3.4 shows the ratio of the flow shear to the

magnetic shear at the resonance surface xr = 1/2, that is, Vy(1/2)/By(1/2). In

the white-colored region, the flow has sub-Alfvénic shear (|Vy(1/2)| < |By(1/2)|).
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Figure 3.3: ψ̃1, ψ̃2, and ψ̃ = α1ψ̃1 +α2ψ̃2 of the tearing mode obtained in the region (6).

On the other hand, in the gray-colored region, the flow has super-Alfvénic shear

(|Vy(1/2| > |By(1/2)|). For all of contour plots shown in Fig.3.4, the ion-skin length

parameter is set as δi = 1/5π. Fig.3.5 is the δi = 1/31π version of Fig.3.4, namely,

it shows the situation more close to the ideal MHD. As the situation approaches

the ideal MHD (δi → 0), all of the curved line of the tearing mode energy contour,

the boundary between sub- and super-Alfvénic flow, and the boundary between

sub- and super-Alfvénic flow shear approach the line µ1 + µ2 = 0. Therefore, in

the region of µ1 + µ2 < 0, the dominant instability mode changes from the tearing

instability to the Kelvin-Helmholtz instability, which may causes the complexity

of the contour of mode energy.

In Fig.3.6 and Fig.3.7, we plot the contours of the magnetic flux function

and the stream function of an unstable tearing mode with zero canonical helicity,

respectively. It can be seen that the flow is just shearing but not rotating. Fig.3.8

and Fig.3.9 are the finite canonical helicity version. In this occasion, the flow is not
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Uµ1,µ2 B
2
− V

2 V ′

y
(1/2)/B′

y
(1/2)

Figure 3.4: (Left) the energy Uµ1,µ2 of the tearing mode (m,n) = (1, 0): in the gray
colored region the tearing mode has negative energy Uµ1,µ2 < 0 and in the white colored
region positive energy Uµ1,µ2 > 0. (Middle) the difference between the square amplitudes
of the magnetic field B and the flow field B: in the gray colored region the flow is super-
Alfvénic V 2 > B2 and in the white colored region sub-Alfvénic V 2 < B2. (Right) the
ratio of the flow shear V ′

y(1/2) to the magnetic shear B′
y(1/2) on the resonance surface:

in the gray colored region the flow shear is super-Alfvénic |V ′
y(1/2)| > |B′

y(1/2)| and in
the white colored region sub-Alfvenic |V ′

y(1/2)| < |B′
y(1/2)|. The parameter setting is

the same as that of Fig.2.1. The ion-skin length δi = 1/5π.

Uµ1,µ2 B
2
− V

2 V ′

y
(1/2)/B′

y
(1/2)

Figure 3.5: δi = 1/31π version of Fig.3.4.
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only shearing but also rotating. Fig.3.10 and Fig.3.11 give the magnified views of

Fig.3.8 and Fig.3.9, respectively. Although the magnetic flux function has strange

“kinks”, the stream function is smooth.

Figure 3.6: Contour plot of the magnetic
flux function of the tearing mode that is ob-
tained in the region (8) and has zero canon-
ical helicity.

Figure 3.7: Contour plot of the strean func-
tion of the tearing mode that is obtained in
the region (8) and has zero canonical helic-
ity.

Figure 3.8: Contour plot of the magnetic
flux function of the tearing mode that is ob-
tained in the region (8) and has finite canon-
ical helicity.

Figure 3.9: Contour plot of the strean func-
tion of the tearing mode that is obtained in
the region (8) and has finite canonical helic-
ity.

3.3 Summary and Discussion

Tearing mode of double-Beltrami fields have been shown to be characterized

only by the helical-flux Casimir, as with the case of single-Beltrami fields[15], even

in the presence of flow. However, there is a difference between previous and present
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Figure 3.10: Magnified view of Fig.3.8. Figure 3.11: Magnified view of Fig.3.9.

tearing modes. In the previous theory, the tearing mode is represented by a singular

eigenfunction of the curl operator S. On the other hand, in the present theory, the

tearing mode is given by superposition of ‘two’ singular eigenfunctions of the curl

operator S. As a result, the tearing instability criterion ∆′ changes drastically, as

shown in (3.40). We have shown that ∆′ is directly related to the energy-Casimir

functional Uµ1,µ2 , obtained by combining the hamiltonian, the magnetic helicity,

and the canonical helicity, through the equation Uµ1,µ2 = −(LyLz/2)ψ(xr)
2∆′. We

observe that when the tearing mode ũ† has the negative energy Uµ1,µ2(ũ
†) < 0,

its ∆′ has the positive value ∆′(ũ†) > 0, which implies the instability of the

negative-energy mode in the presence of the finite resistivity η[29]. Thereby, in

what follows, we regard the energy Uµ1,µ2 of the tearing mode as the criterion of

tearing instability. The possible scenario is that the symmetric equilibrium relaxes

to the helical equilibrium that has the lower energy Uµ1,µ2 than the symmetric one,

through the tearing modes of ∆′ > 0.

Using the above obtained criterion Uµ1,µ2 , we have investigated the tearing

instability of double-Beltrami fields in the parameter region such that µ1 +µ2 ∼ 0,

µ1 ∼ O(1), and µ2 ∼ O(1). First, we have analyzed the simple case of µ1 + µ2 = 0

where the Beltrami parameters µ1 and µ2 of two Beltrami vortices, constituting a
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double-Beltrami field, have the same amplitude µ = µ1 = −µ2 but opposite signs.

In this case, it has been shown that the tearing mode has the positive energy for

µ < λ1, where λ1 is the smallest eigenvalue of the curl operator, and gains the

negative energy as soon as µ exceeds λ1. This result is consistent with the theory

of tearing instability without flow[15]. It is the smallest eigenvalue of the curl

operator that determines the tearing instability.

However, in the region out of the line µ1 +µ2 = 0, the energy of the tearing

mode Uµ1,µ2 behaves complicatedly as shown in Fig.3.1. There are three lines

separating positive and negative regions: the straight lines µ1 = λ1 and µ2 = −λ1

and the curved line. We have observed the negative energy tearing mode in the

region (6) where both Beltrami vortices would have positive energies if there were

no flow. On the other hand, we have observed the positive energy tearing mode in

the region (2) where both Beltrami vortices would have negative energies if there

were no flow.

One possibility is that we are observing not only the tearing instability but

also the Kelvin-Helmholtz instability (the vortex-induced reconnection[39]). As

plasma approaches the ideal MHD plasma (δi → 0), all of the curved line, the

border between sub- and super-Alfvénic flow, and the border between sub- and

super-Alfvénic shear on the resonance surface get close to the same line µ1 + µ2 =

0, as shown in Fig.3.5. Moreover, it is known that the double-Beltrami fields

generally does not satisfy the sufficient condition for the Kelvin-Helmholtz stability

in the region µ1 + µ2 < 0[49], where a double-Beltrami flow field is given by a

combination of a sub-Alvénic vortex V µ1 with a larger structure (π < µ1 < |µ2|)

and a super-Alfvénic vortex V µ2 with a smaller structure (|µ2| > µ1). Since in the
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super-Alfvénic shear flow regime the tearing instability is replaced by the Kelvin-

Helmholtz instability[40, 41], it is natural to suppose that the reconnected mode

observed in the region µ1 +µ2 < 0 is not the tearing mode but the vortex-induced

reconnection[39] due to the Kelvin-Helmholtz instability. Therefore, it would be

considered that Uµ1,µ2 = −(LyLz/2)ψ(xr)
2∆′ ceases to be the criterion of the

tearing instability in the region µ1 + µ2 < 0.

On the other hand, in the region µ1 + µ2 > 0, the tearing instability is

still dominant. The negative-energy modes obtained from the regions (1) and (3)

are intuitive results because, in those regions, the sub-Alfvénic Beltrami field has

the Beltrami parameter µ1 larger than λ1 and it can be tearing-unstable. The

positive-energy mode obtained from the region (4) is also intuitive because, in

this region, both of Beltrami fields are tearing-stable in the absence of flow. The

positive-energy mode obtained from the region (2) is an interesting result. In

this region, the sub-Alfvenic Beltrami field may be unstable, although the super-

Alfvénic Beltrami field is stable due to the super-Alfvénic shear flow[29]. Therefore,

this positive energy possibly means the stabilizing effect due to the interaction

between two Beltrami vortices.

On a final note, in Appendix B, it is shown that, in particular case, a

double-Beltrami field is Lyapunov-stable on the line such that µ1 + µ2 = 0 and

µ < λ1. This marginal value µ = λ1 is identical to that of tearing instability.
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Chapter 4

Singular Casimir and Nonlinear tearing mode

The linear tearing-mode eigenfunction of the ideal MHD plasma was ob-

tained in [15] and that of the Hall MHD was obtained in the previous section.

Both of them, however, provide a somewhat strange structure of the island, that

is, the magnetic surface “kinks” at the resonance surface, as shown in Fig.3.10.

The reason of this may be because the linear theory neglects the second-order

J̃ × B̃ force. As we have seen, the linear tearing mode has the singular current J̃

described by the delta function, which violates the smallness of the corresponding

force. Therefore, the neglect of the second-order term brings the strange kinks of

the magnetic surface.

As we have already mentioned in the introduction, the resonance singularity

B·∇ = 0 may have relation to the extremal singularity stemming from the extremal

of the magnetic flux function ∇ψ = 0. Therefore, it is natural to expect that, by

extending the notion of plateau singularity to extremal singularity, we can obtain

a proper Casimir that characterizes the nonlinear tearing mode.

Here, we develop the notion of extremal singularity, based on the context

of the nonlinear tearing mode in the ideal MHD.
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4.1 Linear tearing mode and Resonance singularity

For comparison, here we concisely review the tearing mode theory of the

ideal MHD developed in [15]. The linearized system around the single, constant

density (n = 1), no-flow (V = 0) Beltrami equilibrium uµ = (1, 0,Bµ), where

∇× Bµ = µBµ, is given by

∂tũ = JµHµũ, (4.1)

where ũ = (ñ, Ṽ , B̃) is the state vector, Jµ is the Poisson operator evaluated at

the fixed equilibrium point uµ

Jµ :==

 0 −∇· 0
−∇ 0 (∇× ◦) × Bµ

0 ∇× (◦ × Bµ) 0

 , (4.2)

where ◦ implies insertion of the function to the right of the operator, and Hµ is

the linearized Hamiltonian

Hµ :=

 $ 0 0
0 1 0
0 0 1 − µS−1

 . (4.3)

$ is a positive coefficient by which $ñ = h̃ evaluates the enthalpy perturbation,

and S−1 is the inverse-curl operator which yields Ã = S−1B̃.

In order for (0, b) to be the member of Ker(Jµ), b must satisfy the condition

Bµ × (∇× b) = 0. (4.4)

In the slab geometry, we may write Bµ = (0, By(x), Bz(x)). To find a singular

Casimir element, let us put

b = <

 0
ikyϑ(x)
ikzϑ(x)

 ei(kyy+kzz), ∇× b = <

 0
−ikz∂xϑ(x)
iky∂xϑ(x)

 ei(kyy+kzz), (4.5)
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with which (4.4) reduces to

(kyBy + kzBz) ∂xϑ(x) = 0. (4.6)

If there is a resonance surface x = xr satisfying the resonance condition

Bµ · k = By(xr)ky +Bz(xr)kz = 0, (4.7)

(4.6) is solved by

ϑ(x) = c0 + c1Y (x− x†), (4.8)

where Y (·) is the Heaviside step function, c0, c1 are complex constants.

Integrating the resulting b, we obtain a helical-flux Casimir:

Cj(ũ) = Cj(B̃) := 〈B̃, b〉 =

∫
Ω

B̃ · bdx. (4.9)

The energy-Casimir functional (without flow perturbation Ṽ ) is given by

Fµ,β(B̃) :=
1

2
〈Hµũ, ũ〉

∣∣∣ ˜V =0
− βCj(ũ) =

1

2
〈(S − µ)S−1B̃ − 2βb, B̃〉. (4.10)

The tearing mode eigenfunction obtained from the Euler-Lagrange equation

∇× Ã − µÃ = βPΣb, (4.11)

where PΣ denotes the orthogonal projector from L2(Ω) onto L2
Σ(Ω).

4.2 Incompressible MHD with stream and flux functions

In this section, to reveal the relation between the resonance singularity and

the extremal singularity and to find the singular Casimir element characterizing

the nonlinear tearing mode, we will formulate the Hamiltonian formalism of the

ideal MHD with the magnetic flux function.
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Incompressible MHD can be written as

∂tV = Pσ [− (∇× V ) × V + (∇× B) × B] , (4.12)

∂tB = ∇× (V × B), (4.13)

where Pσ denotes the orthogonal projector from L2(Ω) onto L2
Σ(ω).

We consider this equation in the slab geometry we introduced in Sec.2.2, and

assume that all fields depend on only x and η := k̄yy+ k̄zz and have no dependence

on ζ = k̄yz − k̄zy. The dependent variables can be cast into the Clebsch-like form

V (x, η) = ∇φ(x, η) ×∇ζ + Vζ(x, η)∇ζ, (4.14)

B(x, η) = ∇ψ(x, η) ×∇ζ +Bζ(x, η)∇ζ, (4.15)

where φ and ψ are stream and flux functions, Vζ and Bζ are ζ-component of V

and B. With this representation, we can rewrite the system of equations in the

following form:

∂tω = [ω, φ] + [ψ, j], (4.16)

∂tVζ = [Vζ , φ] + [ψ,Bζ ], (4.17)

∂tψ = [ψ, φ], (4.18)

∂tBζ = [Bζ , φ] + [ψ, Vζ ], (4.19)

where ω := −∆φ and j := −∆ψ are the ζ-components of the vorticity and the

current, and [a, b] := −∇a×∇b · ∇ζ is the standard Poisson bracket.

With a new state vector u = t(ω, Vζ , ψ, Bζ), the system of equations (4.16)-

(4.19) is cast into the hamiltonian form (1.4) with a hamiltonian functional

H(ω, Vζ , ψ,Bζ) :=
1

2

∫
Ω

(
φω + V 2

ζ + jψ +B2
ζ

)
dx, ∂uH = (φ, Vζ , j, Bζ) , (4.20)
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and a Poisson operator

J(u) :=


[ω, ◦] [Vζ , ◦] [ψ, ◦] [Bζ , ◦]
[Vζ , ◦] 0 0 [ψ, ◦]
[ψ, ◦] 0 0 0
[Bζ , ◦] [ψ, ◦] 0 0

 , (4.21)

where ◦ implies insertion of the function to the right of the operator. Finally, the

hamiltonian form of (4.16)-(4.19) is given by

∂t


ω
Vζ
ψ
Bζ

 =


[ω, ◦] [Vζ , ◦] [ψ, ◦] [Bζ , ◦]
[Vζ , ◦] 0 0 [ψ, ◦]
[ψ, ◦] 0 0 0
[Bζ , ◦] [ψ, ◦] 0 0




φ
Vζ
j
Bζ

 . (4.22)

The Poisson operator (4.21) has at least three Casimir elements. First of

all, the cross helicity and magnetic helicity are inherited from the original MHD:

C1 =
1

2

∫
Ω

A · Bdx =

∫
Ω

ψBζdx, ∂uC1 = (0, 0, Bζ , ψ) . (4.23)

C2 =

∫
Ω

V · Bdx =

∫
Ω

(ωψ + VζBζ) dx, ∂uC2 = (ψ,Bζ , ω, Vζ) . (4.24)

The existence of the magnetic flux function (magnetic surface) gives the present

system an additional Casimir element, which is the so-called flux-function Casimir:

CF =

∫
Ω

F (ψ)dx, ∂uCF = (0, 0, f(ψ), 0) , (4.25)

where F : R → R is a real function and f is its derivative.

Let us invoke the magnetic helicity C1 in an energy-Casimir functional:

Hµ := H − µC1. (4.26)

The Euler-Lagrange equations are

j = µBζ , Bζ = µψ, (4.27)
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which yields the Helmholtz equation

−∆ψ = µ2ψ. (4.28)

This Helmholtz equation corresponds to the single-Beltrami equation (1.30).

Remark 4.2.1. In Eq. (4.22), it seems at first glance that the elements of Poisson

operator J12 and J14 do not work, that is, they produce only zero result [Vζ , Vζ ] = 0

and [Bζ , Bζ ] = 0. However, these elements are necessary for the Poisson operator

(4.21) to satisfy the Jacobi identity (1.3) and to possess the magnetic and cross

helicities as Casimir elements. For example, we could consider another type of

antisymmetric operator

J′(u) =


[ω, ◦] 0 [ψ, ◦] 0

0 − [φ, ◦] 0 [ψ, ◦]
[ψ, ◦] 0 0 0

0 [ψ, ◦] 0 − [φ, ◦]

 . (4.29)

However, the poisson bracket defined by this operator J′(u) does not satisfy the Ja-

cobi identity. Moreover, the magnetic and cross helicities are not Casimir elements

of J′(u).

Remark 4.2.2. The cross and magnetic helicities are calculated as follows:

C1 =
1

2

∫
Ω

A · Bdx =

∫
∂Ω

ψn · ∇Ψdx +

∫
Ω

(ψBz) dx, (4.30)

C2 =

∫
Ω

V · Bdx =

∫
∂Ω

ψn · ∇φdx +

∫
Ω

(ωψ + VzBz) dx, (4.31)

where Ψ := ∆−1Bz. Therefore, we have to take ψ ∈ H1
0 (Ω).

4.3 Linear tearing mode theory and Extremal singularity

In this section, first, we rewrite the linear tearing mode theory [15] in terms

of the magnetic flux function by using the formulation obtained in the previous
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section, and then, we reveal the relation between the resonance singularity (Bµ ·

∇ = 0) and the plateau singularity (∇ψµ = 0).

4.3.1 Linear tearing mode and Extremal singularity

The linearized system around the Beltrami equilibrium uµ = (0, 0, ψµ, µψµ)

satisfying (4.27) is given by

∂tũ = JµHµũ, (4.32)

where ũ = t(ω̃, Ṽζ , ψ̃, B̃ζ) is the state vector, Jµ is the Poisson operator evaluated

at the fixed equilibrium point uµ

Jµ := J(uµ) =


0 0 [ψµ, ◦] [µψµ, ◦]
0 0 0 [ψµ, ◦]

[ψµ, ◦] 0 0 0
[µψµ, ◦] [ψµ, ◦] 0 0

 , (4.33)

and Hµ is the linearized Hamiltonian

Hµ =


−∆−1 0 0 0

0 1 0 0
0 0 −∆ −µ
0 0 −µ 1

 . (4.34)

In order for (0, 0, f, 0) to be the member of Ker(Jµ), f must satisfy the

condition

[ψµ, f ] = ∇ψµ ×∇f · ∇ζ = 0 (4.35)

To find a singular Casimir element, let us put

f = <
(
i
√
k2
y + k2

ze
i(kyy+kzz)ϑ(x)

)
, (4.36)

with which (4.35) reduces to

i(k2
y + k2

z)ϑ(x)ei(kyy+kzz)∂xψµ = 0. (4.37)
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When there is a extremal point x = xr satisfying

∂xψµ(xr) = 0, (4.38)

(4.37) is solved by

ϑ(x) = c1δ(x− xr), (4.39)

where δ(·) is the delta function and c1 is a complex constant.

Integrating the resulting f , we obtain a singular magnetic flux Casimir

Cf (ψ̃) :=

∫
Ω

<
(
ic1

√
k2
y + k2

ze
i(kyy+kzz)δ(x− xr)

)
ψ̃dx. (4.40)

Invoking this singular Casimir element, we construct the energy-Casimir functional

(without flow perturbation)

Fµ,β(ψ̃, B̃ζ) :=
1

2
(ũ, Hµũ)

∣∣∣ ˜V =0
− βCF

=

∫
Ω

{
1

2
j̃ψ̃ +

1

2
B̃ζ

2 − µψ̃B̃ζ

−β <
(
ic1

√
k2
y + k2

ze
i(kyy+kzz)δ(x− xr)

)
ψ̃
}
dx (4.41)

The equilibrium points are determined by the Euler-Lagrange equation

j̃ − µB̃ζ = β<
(
ic1

√
k2
y + k2

ze
i(kyy+kzz)

)
δ(x− xr), B̃ζ − µψ̃ = 0, (4.42)

which are combined to

−∆ψ̃ = µ2ψ̃ + β<
(
ic1

√
k2
y + k2

ze
i(kyy+kzz)

)
δ(x− xr). (4.43)

It is the last term of the right-hand side of (4.43), we call it as the delta func-

tion term, that allows ∂xψ̃ to jump across the extremal line x = xr and produces

the singular current on the line.
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4.3.2 Relation between Resonance and Extremal singularities

Here, we see the relation between the extremal singularity and the resonance

singularity. By using the magnetic fluc function ψµ, the Beltrami field can be

rewritten as

Bµ = ∇ψµ(x) ×∇ζ + µψµ(x)∇ζ. (4.44)

Let us substitute (4.44) into (4.7),

k · Bµ =
√
k2
y + k2

z∇η · (∇ψµ ×∇ζ + µψµ∇ζ)

= −
√
k2
y + k2

z∇x · ∇ψµ

= −
√
k2
y + k2

z∂xψµ(x), (4.45)

which shows that the extremal condition (4.38) is nothing but the resonance con-

dition (4.7), that is,

k · Bµ(x) = 0 ⇔ ∂xψµ(x) = 0. (4.46)

Moreover, the equations (4.42) correspond to the linear tearing mode equation

(4.11). To confirm this relation, let us take the curl of (4.11), and we obtain

∇× B̃ − µB̃ = β∇× b. (4.47)

Substituting B̃ = ∇ψ̃ ×∇ζ + B̃ζ∇ζ into the above equation, we obtain(
j̃ − µB̃ζ

)
∇ζ + ∇

(
B̃ζ − µψ̃

)
×∇ζ = β<

(
ic1

√
k2
y + k2

ze
i(kyy+kzz)

)
δ(x− xr)∇ζ,

(4.48)

which is equivalent to Eqs.(4.42).

Therefore, at least in the linear theory, the tearing mode is related to the

extremal singularity of the Poisson operator. In the next section, we will study

the relation between the nonlinear tearing mode and the extremal singularity.
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4.4 Nonlinear tearing mode theory

Here, we will develop the nonlinear tearing mode theory generalizing the

linear theory mentioned above.

4.4.1 Nonlinear tearing mode equation and Delta function term

We start by ascertaining what kind of Casimir element we need. For con-

venience, let us rewrite Eq.(4.43) in a simpler form by adjusting the coefficient of

the delta function term,

−∆ψ̃ = µ2ψ̃ + β<ei(kyy+kzz)δ(x− xr). (4.49)

In the linear theory, the delta function term <ei(kyy+kzz)δ(x − xr), obtained from

the singular Casimir element, gives a boundary condition on the resonance surface,

by which we can obtain a tearing mode solution. However, on this occasion, the

coefficient of the delta function term <ei(kyy+kzz) is artificially given, which causes

the singular current inside the island and results in the strange kinks of magnetic

field lines on the resonance surface.

Therefore, we expect ψ to determine the coefficient of the delta function by

itself as below,

−∆ψ = µ2ψ − βf(ψ, ∂xψ)δ(x− xr), (4.50)

where f(ψ, ∂xψ) is some appropriate function of ψ and ∂xψ (in general, it also

may be a function of even higher derivatives of ψ). Moreover, we expect ψ to

determine not only the coefficient but also the position where the delta function

has its value. Eventually, we anticipate that the nonlinear tearing mode may be

given by the following type of equation:

−∆ψ = µ2ψ − βf(ψ, ∂xψ)δ(ψ(x) − ψ0), (4.51)
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Figure 4.1: A cartoon of an anticipated nonlinear tearing mode.

where δ(ψ(x)−ψ0) is a delta function that has its value at points where ψ(x) = ψ0.

What we want is a Casimir element such that its gradient gives the nonlinear

delta function term f(ψ, ∂xψ)δ(ψ(x) − ψ0). In general, such a term may not be

a member of the kernel of Jψ(ψ) := J13(u) = [ψ, ◦]. However, at the extremal

of ψ where ∇ψ = 0, Jψ(ψ) is trivialized, i.e. Jψ(ψ) = −∇ψ × ∇ ◦ ·∇ζ = 0.

Therefore, if the coefficient f(ψ, ∂xψ) is finite only at extremal, we can regard

∇ψ × ∇f(ψ, ∂xψ)δ(ψ(x) − ψ0) = 0. Fig.4.1 shows a cartoon of an anticipated

nonlinear tearing mode. The red line indicates the position of extremal, where

∇ψ ×∇f(ψ, ∂xψ)δ(ψ(x) − ψ0) = 0 because of ∇ψ = 0. On the blue line ∇ψ 6= 0,

here , we expect f(ψ, ∂xψ) = 0 so that ∇ψ ×∇f(ψ, ∂xψ)δ(ψ(x) − ψ0) = 0. Note

that the connecting points of red and blue lines is the difficult problem. Although

Fig.4.1 shows the T-shape connection, it may be actually the Y-shape connection.

Fig.4.1 is just a cartoon.
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4.4.2 Singular Casimir element producing Delta function term

Let us start by considering the following type of Casimir element[17], which

has been introduced in Subsec.1.4.2,

CG(ψ) :=

∫
Ω

G(ψ(x))dx, (4.52)

where G : R → R is a Lipschitz continuous function. Then its gradient is given

by ∂̃ψCG = g(ψ(x)), where g := ∂̃ξG/ is the Clarke gradient[16] of G(ξ). When

G has a “kink”, a point where left-hand and right-hand derivative differ from

each other, the resultant g(ψ(x)) may no longer be a member of the domain of

Jψ(ψ) = [ψ, ◦]. However, it is still a “hyperfunction solution” of [ψ, ϕ] = 0, since

∇g(ψ) is “parallel” to ∇ψ.

Next, to generalize the above Casimir element, let us allow G to have a

“step”, that is, we consider the following functional

CY (ψ) :=

∫
Ω

Y (ψ(x) − ψ0)dx, (4.53)

where Y (ψ − ψ0) is the step function. Its gradient is formally given by the “delta

function”

∂ψCY (ψ) = ρ(ψ(x) − ψ0) :=
δ(x − ψ−1(ψ0))

n · ∇ψ
, (4.54)

where δ(x−ψ−1(ψ0)) is defined as the two-dimensional delta function that has its

value on the contour ψ(x) = ψ0, and n is the normal to the contour line ψ(x) = ψ0.

We also regard this delta function ρ(ψ(x) − ψ0) as a formal solution of [ψ, ϕ] = 0

in some hyperfunctional sense. Therefore, CY (ψ) can be regarded as a Casimir

element. It is, however, not the Casimir element we want because its gradient

ρ(ψ(x)− ψ0) has its value on the whole contour line ψ = ψ0. We expect the delta

function to have its value only on the extremal of ψ.
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If the extremal line is “folded”, the derivative there becomes multi-valued.

To use this multi-valuedness, we introduce the following functionals

Cfl(ψ) :=

∫
Ω

f(∇ψl · ∇ψl)Y (ψl(x) − ψ0)dx, (4.55)

Cfr(ψ) :=

∫
Ω

f(∇ψr · ∇ψr)Y (ψr(x) − ψ0)dx, (4.56)

where f : R → R is a smooth function. ψl and ψr are basically identical with ψ

but their derivatives at x0 = ψ−1(ψ0) (especially at the folded line) are differently

defined. Let us see how to define their derivatives by using the one-dimensional

example. First, we consider the case that ψ is ‘folded’ at x0, as shown in Fig.4.2.

We evaluate the derivative of ψl at x0 by extending it from the left, as shown

in Fig.4.3. In this one-dimensional example, this definition is equivalent to the

left-hand derivative of ψ

dψl
dx

(x0) := lim
ε→0

dψ

dx
(x0 − ε). (4.57)

In the same way, we evaluate the derivative of ψr by extending it from the right,

which is, in the one-dimensional case, equivalent to the right-hand derivative

dψr
dx

(x0) := lim
ε→0

dψ

dx
(x0 + ε). (4.58)

Next, we consider the case that ψ is smooth at x0 = ψ−1(ψ0), as shown in Fig.4.4.

In this case, as Fig.4.5 shows, the extended ψl and ψr are equivalent to ψ, and

therefore, dψl/dx = dψr/dx = dψ/dx.

Eventually, the singular Casimir we want is constructed by taking difference

between Cfl and Cfr, that is,

Cfs(ψ) := Cfr(ψ) − Cfl(ψ). (4.59)
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Figure 4.2: Magnetic flux function ψ with a
folded extremal at x0.

ψ(x)
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x0

ψ0

ψr(x) ψl(x)

Figure 4.3: Left magnetic flux function ψl
and Right magnetic flux function ψr.

To obtain the gradient of Cfs, first we calculate the variation of Cfl as follows:

Cfl(ψ + δψ) − Cfl(ψ)

=

∫
Ω

[
f(∇(ψl + δψ) · ∇(ψl + δψ))Y (ψl + δψ − ψ0)

−f(∇ψl · ∇ψl)Y (ψl(x) − ψ0)
]
dx

=

∫
Ω

[
f(∇ψl · ∇ψl)

{
Y (ψl + δψ − ψ0) − Y (ψl(x) − ψ0)

}
+2f ′(∇ψl · ∇ψl)∇δψ · ∇ψlY (ψl(x) − ψ0) + O((δψ)2)

]
dx

=

∫
Ω

[
f(∇ψl · ∇ψl)ρ(ψl(x) − ψ0)δψ

−∇ ·
{
2f ′(∇ψl · ∇ψl)∇ψlY (ψl(x) − ψ0)

}
δψ + O((δψ)2)

]
dx

=

∫
Ω

[
f(∇ψl · ∇ψl)ρ(ψl(x) − ψ0)δψ − 2f ′(∇ψl · ∇ψl)∇Y (ψl(x) − ψ0) · ∇ψlδψ

−∇ ·
{
2f ′(∇ψl · ∇ψl)∇ψl

}
Y (ψl(x) − ψ0)δψ + O((δψ)2)

]
dx

=

∫
Ω

[{
f(∇ψl · ∇ψl) − 2f ′(∇ψl · ∇ψl)∇ψl · ∇ψl

}
ρ(ψl(x) − ψ0)δψ

−∇ ·
{
2f ′(∇ψl · ∇ψl)∇ψl

}
Y (ψl(x) − ψ0)δψ + O((δψ)2)

]
dx

=

∫
Ω

{
f(∇ψl · ∇ψl) − 2f ′(∇ψl · ∇ψl)∇ψl · ∇ψl

}
ρ(ψl(x) − ψ0)δψdx

−
∫

Ωψ0

∇ ·
{
2f ′(∇ψ · ∇ψ)∇ψ

}
δψdx + O((δψ)2). (4.60)90
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Figure 4.4: Magnetic flux function ψ being
smooth at x0.
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Figure 4.5: Left magnetic flux function ψl
equals to Right magnetic flux function ψr.

Ωψ0 is the region where ψ(x) > ψ0 and therefore the derivatives of ψl and ψr

are equivalent to that of ψ (remember that we distinguish ψl and ψr only by the

difference bewteen their derivatives at x0 = ψ−1(ψ0)). The third equality follows

from the formal calculation

Y (ψl + δψ − ψ0) − Y (ψl(x) − ψ0) = ρ(ψl(x) − ψ0)δψ + O((δψ)2), (4.61)

and the Stokes’ theorem (note that δψ = 0 on the boundary). In the fifth equality,

we formally calculated ∇Y (ψl(x)− ψ0) = ρ(ψl(x)− ψ0)∇ψl. In the same way, we

calculate the variation of Cfr(ψ) as

Cfr(ψ + δψ) − Cfr(ψ)

=

∫
Ω

{
f(∇ψr · ∇ψr) − 2f ′(∇ψr · ∇ψr)∇ψr · ∇ψr

}
ρ(ψl(x) − ψ0)δψdx

−
∫

Ωψ0

∇ ·
{
2f ′(∇ψ · ∇ψ)∇ψ

}
δψdx + O((δψ)2). (4.62)

91



Subtracting (4.60) from (4.62), we obtain the variation of Cfs

Cfs(ψ + δψ) − Cfs(ψ)

=
〈{
f(∇ψr · ∇ψr) − 2f ′(∇ψr · ∇ψr)∇ψr · ∇ψr

}
ρ(ψr(x) − ψ0), δψ

〉
−
〈{
f(∇ψl · ∇ψl) − 2f ′(∇ψl · ∇ψl)∇ψl · ∇ψl

}
ρ(ψl(x) − ψ0), δψ

〉
+O((δψ)2), (4.63)

and therefore, the gradient of Cfs is given by

∂ψCfs = −
[[{

f(∇ψ · ∇ψ) − 2f ′(∇ψ · ∇ψ)∇ψ · ∇ψ
}
ρ(ψ(x) − ψ0)

]]
= −

[[
f(∇ψ · ∇ψ) − 2f ′(∇ψ · ∇ψ)∇ψ · ∇ψ

n · ∇ψ

]]
δ(x − ψ−1(ψ0)),

(4.64)

where [[g(ψ)]] := g(ψl) − g(ψr) and the second equality follows from (4.54). Ob-

viously, the coefficient of this delta function term has finite value on the folded

extremal line, where current sheet emerges (red lines in Fig.4.1), and becomes zero

on the smooth line, corresponding to the edge of the island (blue line in Fig.4.1).

4.4.3 Singular Casimir element and Nonlinear tearing mode

Adding (4.59) to (4.26), we obtain a new energy-Casimir functional

Fµ,β,f (u) := H(u) − µC1(u) − βCfs(u). (4.65)

We can find equilibrium points by

∂uFµ,β,f (u) = ∂u
[
H(u) − µC1(u) − βCfs(u)

]
= 0. (4.66)

Note that j = −∆ψ may include a delta function component. For convenience, we

rewrite the term related to jψ as∫
Ω

jψdx =

∫
Ω

∇ψ · ∇ψdx =

∫
Ω\Γψ0

jψdx −
∫

Γψ0

[[n · ∇ψ]]ψdS, (4.67)
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where Γψ0 is the line along which ψ(x) = ψ0. Then, we obtain the Euler-Lagrange

equations in the following form: the Helmholtz equation

−∆ψ = µ2ψ (in Ω\Γψ0), (4.68)

and a Neumann type boundary condition

[[n · ∇ψ]] = β

[[
f(∇ψ · ∇ψ) − 2f ′(∇ψ · ∇ψ)∇ψ · ∇ψ

n · ∇ψ

]]
(on Γψ0). (4.69)

This nonstandard boundary condition on Γψ0 allows ψ to have folding lines, on

which the singular current may emerge. Note that the boundary Γψ0 is determined

by ψ itself, which brings an additional Dirichlet type boundary condition

ψ = ψ0 (on Γψ0). (4.70)

Note that the coexistence of boundary conditions (4.69) and (4.70) basically overde-

termines the solution ψ. We solve this nonstandard boundary condition problem

in two steps: first, we solve the Helmholtz equation (4.68) with the Dirichlet type

boundary condition (4.70), then, we check whether or not it satisfies the Neumann

type boundary condition (4.69).

In what follows, to examine what kind of solution there are, let us investigate

specific cases of f(ζ) = 1 and f(ζ) = ζ.

For f(ζ) = 1, the boundary condition (4.69) becomes

[[n · ∇ψ]] = β
[[ 1

n · ∇ψ

]]
, (4.71)

which may be written as

{(n · ∇ψl)(n · ∇ψr) + β} (n · ∇ψl − n · ∇ψr) = 0. (4.72)
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This condition demands that ψ is continuous on the contour line of ψ = ψ0 or that

the value of (n ·∇ψl)(n ·∇ψr) is constant along the line ψ = ψ0. Such a condition

excludes the nonlinear tearing mode, like that shown in Fig.4.1, from the solution,

because along the current sheet (red line in Fig.4.1) (n ·∇ψl)(n ·∇ψr) may not be

constant. However, we can obtain a symmetric current sheet solution with current

sheet on x = constant and without islands. For such a solution, (n ·∇ψl)(n ·∇ψr)

is constant along the current sheet because of its symmetry.

From the above example of f(ζ) = 1, it is guessed that the solutions of

this overdetermined system is considerably restricted and, in general, it does not

have the nonlinear tearing mode solution. However, in the case of f(ζ) = ζ, the

situation is totally different. In this case, the boundary condition (4.69) becomes

[[n · ∇ψ]] = −β
[[∇ψ · ∇ψ

n · ∇ψ

]]
= −β[[n · ∇ψ]]. (4.73)

This condition holds only if β = −1 and, conversely, β = −1 trivializes this condi-

tion. Namely, in the case of f(ζ) = ζ, the Neumann type boundary condition (4.69)

virtually disappears, and we can obtain the solution by solving the Helmholtz equa-

tion (4.68) under the Dirichlet type boundary condition (4.70). Fig.4.6 shows the

cartoon of the symmetric nonlinear tearing mode solution which may be obtained

by solving the above system (only the upper half region is described).

4.5 Summary and Discussion

We have formulated, by using stream and magnetic flux functions, the

Hamiltonian formalism of the incompressible MHD with two independent vari-

ables and three dimensional vector fields. Then, we have rewrite the linear tearing

mode theory[15] by using the above formalism. As a result, it has turned out to be
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ψ = ψ0 ψ = ψ0∂nψ = 0

Figure 4.6: Cartoon of the symmetric nonlinear tearing mode on the upper half region.

that the resonance singularity Bµ · k = 0 is nothing but the extremal singularity

∇ψµ = 0.

In the linear theory, the singular Casimir element, obtained from the ex-

tremal singularity, produces the delta function term in the Euler-Lagrange equa-

tion, which allows an equilibrium solution to have the singular current. The prob-

lem of the linear theory is that the singular current exist even in the island of the

tearing mode. To find a nonlinear, singular Casimir element that gives the singu-

lar current only on the extremal line of ψ, we have develop the notion of extremal

singularity, extending the notion of plateau singularity. First, we have considered

the Casimir element CY (ψ) the integrand of which is given by Y (ψ(x)−ψ0), where

Y is the step function (see (4.53)). The gradient of CY (ψ) is formally a member of

the Poisson operator of the system. However, the delta function included in this

gradient has its value not only on the extremal line of ψ but also on the edge of

the island.

To obtain an appropriate singular Casimir element, we have to consider the

speciality of the extremal line of ψ. Although we regard the value of ∇ψ on the
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extremal line is zero (because the extremal singularity demands [ψ, ◦] := ∇ψ×∇◦

·∇ζ = 0), if the extremal line folds, we can also consider the left- and right-side

derivatives of ψ from both sides of the extremal line ψ = ψ0. To use this speciality

on the “folded” extremal line, where the singular current emerges, we introduced

the functionals Cfl (4.55) and Cfr (4.56), which are basically same functionals, but

the gradient of them are differently defined by using the difference between left-

and right-hand derivative of ψ. We have proposed the singular Casimir element

Cfs (4.59) given by the difference of Cfl and Cfr, which detects the folding line on

the contour of ψ = ψ0. The gradient of Cfs (4.64) gives the delta function term

that has a finite amplitude only on such a folded extremal line. The function f

included in the definition of Cfs is arbitrary, which represents the fact that, on the

extremal line, the operator [ψ, ◦] is trivialized and, therefore, the gradient of Cfs

can take arbitrary form there.

Using the above singular Casimir element, we have constructed the energy-

Casimir functional H−µC1 −βCfs, where C1 is the magnetic helicity. The Euler-

Lagrange equations of this functional gives the Helmholtz equation (4.68) with

“nonstandard” boundary conditions (4.69) and (4.70). The word “nonstandard”

means (1) the boundary (resonance surface) is determined by the solution itself

and (2) both of the Neumann type and Dirichlet type boundary conditions are

imposed on the same line. In terms of (2), this system is basically overdetermined.

Therefore, although by choosing an appropriate β we can obtain the solution like

the symmetric current sheet solution without island, in general, the nonlinear

tearing mode solution may not be obtained. However, when we set f(ζ) = ζ,

the situation drastically changes. In this special case, by choosing β = −1, the

Neumann type boundary solution is removed, which allows the nonlinear tearing
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mode solution with islands.
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Chapter 5

Conclusion

At the beginning of the thesis, a question has been raised: How can we

capture the identity of the vortex? This abstract question has been put into

the context of the tearing mode theory and concretized as (1) Is there a Casimir

element that characterizes the tearing mode with an ambient flow and (2) What

kind of Casimir element characterizes the nonlinear tearing mode?

In Chap.2, in preparation for the theory of the tearing mode with flow,

the bifurcation theory of double-Beltrami fields has been developed. It is Casimir

elements and eigenvalues of the curl operator S that determines the bifurcation

structure of double Beltrami fields. Namely, the magnetic and canonical helicities

play the role of control parameters, and the magnetic and canonical fluxes work

as the fixed parameters. Besides, bifurcation may occur at eigenvalues of the curl

operator S, if the geometry has symmetry.

In Sec.2.1, the sufficient and necessary condition of bifurcation has been

proved in (Theorem 2 and Theorem 3), by which we can know what eigenvalue of

S gives a bifurcation point. In Sec.2.2, a concrete example of bifurcation has been

given, in a slab geometry. Fig.2.1 shows the magnetic and canonical helicity leaves

projected onto the Beltrami parameter plane µ1-µ2. These leaves are “ripped”

along the line where the orthogonality condition, given in Theorem 2 or Theorem 3,

breaks down. On the rips, the helicity values diverge and the double-Beltrami fields
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does not exist, as expected from Theorem 2 and Theorem 3. These rips basically

due to the fixed fluxes. Namely, the motion is restricted onto the flux leaves

and, on these flux leaves, the helicity leaves deform drastically. In this geometry,

the symmetric double-Beltrami field gives the trunk solution, which is helically

deformed by superposition of the helical solutions emerging from bifurcation points

(eigenfunctions of S), as shown in Fig.2.3.

In Chap.3, the linear theory of the tearing mode with flow has been devel-

oped on the framework of non-canonical Hamiltonian mechanics.

In Sec.3.1, it has been found that, even in the case of double-Beltrami fields

and in the presence of an ambient flow, the tearing mode can be characterized as

an equilibrium point only by the helical-flux Casimir element, which is surprisingly

the same Casimir element characterizing the tearing mode without flow[15]. How-

ever, there is, of course, a difference between previous and present tearing modes.

In the previous theory, the tearing mode is given by a singular eigenfunction of

the curl operator S. On the other hand, in the present theory, the tearing mode is

given by superposition of two singular eigenfunctions. This difference is caused by

the difference between the energy-Casimir functionals of single-Beltrami fields and

double-Beltrami fields. The energy-Casimir functional of double-Beltrami fields

includes the canonical helicity, in addition to the magnetic helicity which is in-

cluded also in the energy-Casimir functional of single-Beltrami fields. It is this

newly added Casimir element that has changed the structure of the tearing mode.

Namely, the flow effect on the tearing mode is embedded in the canonical helicity

characterizing the ambient flow fields. The standard criterion of the tearing insta-

bility ∆′ has been shown to be directly related to the linearized energy-Casimir
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functional Uµ1,µ2 (3.17) through the equation Uµ1,µ2 = −(LyLz/2)ψ(xr)
2∆′.

In Sec.3.2, it has been examined how the sign of Uµ1,µ2 changes depending on

the values of Beltrami parameters µ1 and µ2, in the parameter region such that µ1+

µ2 ∼ 0, µ1 ∼ O(1), and µ2 ∼ O(1). On the line µ1 + µ2 = 0, where both Beltrami

parameters have the same amplitude µ = µ1 = |µ2| and the situation is close to that

of single-Beltrami fileds, it has been observed that the tearing mode has positive

energy for µ < λ1, where λ1 is the smallest eigenvalue of S, and gains negative

energy as soon as µ exceeds λ1. This result is consistent with that of [15]. It is

the smallest eigenvalue of the curl operator that determines the tearing instability

on this line µ1 + µ2 = 0. In Appendix B, the Lyapunov stability in the range 0 <

µ < λ1 is also proved for some specific case. However, in the region out of the line

µ1 +µ2 = 0, the energy of the tearing mode Uµ1,µ2 behaves complicatedly as shown

in Fig.3.1. There are three lines separating positive and negative regions: the

straight lines µ1 = λ1 and µ2 = −λ1 and the curved line. This curved line may be

related to the border separating the region where the tearing instability is dominant

and the region where the Kelvin-Helmholtz instability is dominant. In fact, as

shown in Fig.3.5, in the ideal limit δi → 0 (δi is the ion-skin length), the curved

line approaches the border between sub- and super-Alfvénic shear flow regimes (in

the presence of super-Alfvénic shear flow, the tearing instability disappears and,

instead, the Kelvin-Helmholtz instability becomes dominant[40, 41]).

In Chap.4, the notion of extremal singularity has been developed and ap-

plied to the nonlinear tearing mode theory. In Sec.4.2, the Hamiltonian formalism

of the incompressible MHD, with two independent variables and three dimensional

vector fields, has been formulated in terms of the stream and magnetic flux func-
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tions φ and ψ. Then, in Sec.4.3, the relation between the resonance singularity

Bµ · k = 0 and the extremal singularity ∇ψµ = 0 has been revealed.

In Sec.4.4, first, the Casimir element CY (ψ) (4.53), the integrand of which

is given by the step function Y (ψ(x) − ψ0), has been considered. This Casimir

element is the most natural generalization of the singular Casimir stemming from

the plateau singularity, the integrand of which is given by the Lipschitz continuous

but not smooth function. However, this newly considered Casimir element is not

appropriate for the nonlinear tearing mode solution, because its gradient gives

the delta function term that has its value even on the edge of island. For the

nonlinear tearing mode, the delta function term is expected to have its value only

on the “folded” extremal line of ψ, where the singular current emerges. Then, two

functionals Cfl (4.55) and Cfr (4.56) have been introduced. They are basically

same functionals, but the gradient of them are differently defined. The singular

Casimir element Cfs (4.59) has been given by the difference of Cfl and Cfr. The

gradient of Cfs gives the delta function that has its value only on the folding

line of ψ. The Euler-Lagrange equations of the energy-Casimir functional H −

µC1 − βCfs gives the Helmholtz equation (4.68) with the nonstandard boundary

conditions: the Neumann type boundary condition (4.69) and the Dirichlet type

boundary condition (4.70). The Neumann type boundary condition changes its

form depending on the function f included in the definition of the singular Casimir

element Cfs. Because these two boundary condition are imposed on the same line,

this equation is basically overdetermined. However, with an appropriate choice of

β, this system can have solutions. For example, in the case of f(ζ) = 1, a symmetric

singular current solution without islands is obtained. The case of f(ζ) = ζ gives the

special situation. In this case, for β = −1, the Neumann type boundary condition
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is trivialized and disappears, which allows the nonlinear tearing mode solution

with islands. Namely, β = −1 is the singularity of the Euler-Lagrange equations

obtained from H−µC1 − βCfs. (cf. an Alfvén wave in the ideal MHD is obtained

as the Galilean-boosted Beltrami vortex, which stems from the singularity µ2 = ±1

of the Euler-Lagrange equation of H − µ1C1 − µ2C2[11], see Subsec.1.3.2.)

In a theory of linear wave, a structure of a wave basically dues to a boundary

condition, which is given from the outside. On the other hand, in the present

theory, the boundary condition is given by the presence of the vortex itself, and at

the same time, the boundary condition allows the vortex to exist as an equilibrium

state. In that sense, the identity of the vortex is not the extrinsic one but the

intrinsic. Therefore, it can be said that the vortex, which retains its identity for a

long time once it makes its appearance, is the nonlinear, self-referential being that

sustains its existence by being there.
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Appendix A

Singular kernel element of the plateau singularity

We consider the noncanonical symplectic operator

J(ω)φ := ∇ω ×∇φ · ∇z, (A.1)

and the singular Casimir

CG(ω) :=

∫
Ω

G(ω(x))dx, G(ξ) :=

{
0 (ξ ≤ ω0)
ξ − ω0 (ω0 < ξ)

, (A.2)

from which we obtain

∂ωCG(ω) = g(ω), g(ξ) = ∂̃ξG = Y (ξ − ω0), (A.3)

where ∂̃ξ is the Clarke gradient and Y (ξ) is the filled step function.

For a singular point ω that has a plateau (or generally plateaus) on the

region where ω(x) = ω0, we can choose a smooth g(ω) ∈ H1(Ω), therefore, the

following equation is well-defined:

J(ω)∂ωCG(ω) = ∇ω ×∇g · ∇z = 0. (A.4)

If such a plateau shrinks into a line, g(ω) becomes

g(ω(x)) =

{
0 (x ∈ Ω/Ω0)
1 (x ∈ Ω0)

, (A.5)

where Ω0 is the region where ω > ω0, therefore, it becomes discontinuous on the

line. For this g, ∇g may lose its meaning. However, we observe ∇ω = 0 on the
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same line and thereby the equation (A.4) keeps its meaning on the whole. In the

more general case that ∇ω 6= 0 on the region where ω = ω0, we have to consider

the equation (A.4) in H−1(Ω), i.e., we consider the weak form:

(∇ω ×∇g · ∇z, φ) = 0 ∀φ ∈ H1
0 (Ω). (A.6)

We define the derivative of a distribution ∇f as follows:

(∇ω ×∇f · ∇z, φ) := (f,∇φ×∇ω · ∇z). (A.7)

Let us confirm that g(ω) defined as (A.5) satisfies the equation (A.6). Putting

g(ω) into the left-hand side of (A.6), we obtain

(∇ω ×∇g · ∇z, φ) = (g,∇φ×∇ω · ∇z) =

∫
Ω

g∇φ×∇ω · ∇zdx

=

∫
Ω0

∇φ×∇ω · ∇zdx =

∫
Ω0

∇× (φ∇ω) · ∇zdx

=

∫
∂Ω0

φ∇ω · dl = 0.

where the last equality follows because, from the definition of Ω0, ω = ω0 on the

boundary ∂Ω0 and thereby ∇ω · dl = 0.

Summarizing the above discussions (and making an obvious generalization),

we can say that the equation (A.4) holds as an equation in H−1(Ω) for all ω ∈

C0,1(Ω).
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Appendix B

Stability of double-Beltrami fields with longitudinal flow

If the coercivity condition

c‖ũ‖2 ≤ Uµ1,µ2(ũ) (B.1)

holds (where c is a positive constant), the linearized energy-Casimir functional

Uµ1,µ2 plays the role of a Lyapunov function bounding the norm of ũ, i.e. the

equilibrium uµ1,µ2 is stable[50]. In the case of single-Beltrami fields[15, 50], the

Beltrami parameter µ smaller than the minimum eigenvalue of S guarantees the

coercivity of its linearized energy-Casimir functional. On the other hand, in the

case of double-Beltrami fields, the linearized energy-Casimir functional Uµ1,µ2 does

not satisfy the coercivity condition (B.1) because the highest order derivative term

in the functional is not positive definite[45, 48, 51–53]. However, for a special class

of flow proposed by Ohsaki et al.[48], we can construct a Lyapunov function, which

guarantees the Lyapunov stability, by finding out an enstrophy order invariant.

In this appendix, we will improve the Lyapunov stability theory of double-

Beltrami fields with ‘longitudinal’ flow[48].

B.1 Double Beltrami fields with longitudinal flow

In what follows, we consider perturbations depending only on x, η = k̄yy +

k̄zz and t. Then, using stream and flux functions, the perturbed fields B̃ and Ṽ
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can be written in a Clebsch-like form

B̃ = ∇ψ̃(x, η, t) ×∇ζ + B̃ζ∇ζ, (B.2)

Ṽ = ∇φ̃(x, η, t) ×∇ζ + Ṽζ∇ζ. (B.3)

We can also rewritten the magnetic and flow fields Bµ1,µ2 and V µ1,µ2 of the sym-

metric double-Beltrami equilibrium in the Clebsh-like form

Bµ1,µ2 = ∇ψµ1,µ2 ×∇ζ +Bζ,µ1,µ2∇ζ (B.4)

V µ1,µ2 = ∇φµ1,µ2 ×∇ζ + Vζ,µ1,µ2∇ζ (B.5)

Writing φ = φµ1,µ2 + φ̃, ψ = ψµ1,µ2 + ψ̃, Vζ = Vζ,µ1,µ2 + Ṽζ and Bζ = Bζ,µ1,µ2 + B̃ζ ,

(2.1) and (2.2) can be cast in a form of coupled nonlinear Liouville equations:

∂t(−∆φ) = [−∆ψ, φ] + [ψ,−∆ψ], (B.6)

∂tVz = [Vz, φ] + [ψ,Bz], (B.7)

∂tψ = [ψ, φ] − δi[ψ,Bz], (B.8)

∂tBz = [Bz, φ] + [ψ, Vz] − δi[ψ,∆ψ], (B.9)

where [f, g] := −∇f ×∇g · ∇ζ is the standard Poisson bracket. Corresponding to

(3.3),

G0 = ‖∇ψ̃‖2+‖∇ψ̃‖2+‖B̃ζ‖2+‖Ṽζ‖2−2ν1〈ψ̃, B̃ζ〉−2ν2〈ψ̃+δiṼζ , B̃ζ−δi∆φ̃〉 (B.10)

is a constant of motion of the nonlinear equations (B.6)-(B.9) and its linearized

equations.

Let us consider the case that the equilibrium flow V µ1,µ2 has only a lon-

gitudinal component, that is, φµ1,µ2 = 0. Using (2.30), (2.89) and (2.90), we can
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show that the condition φµ1,µ2 = 0 holds when we set the Beltrami parameters and

the magnetic and canonical fluxes as

µ1 + µ2 = 0, ΩH · ∇η = 0, (ΩH − BH) · ∇ζ = 0, (B.11)

where the last equation also can be viewed as

∇× V H · ∇ζ = 0. (B.12)

Here, we introduce µ and represent the Beltrami parameters as

µ := µ1 = −µ2. (B.13)

As shown in [48], in this special case, we can obtain an additional constants

of motion

G1 = ‖ψ̃ + δiṼζ‖2, (B.14)

and

G2 = ‖∇(ψ̃ + δiṼζ)‖2. (B.15)

In [48], where δi is set to be unity, it is shown that we can construct a

Lyapunov function, which guarantees the stability of the equilibrium, by combining

the constants of motion G0, G1, and G2 if the Beltrami parameter µ satisfy the

following inequality

µ2 < λ2
1 − 1, (B.16)

where λ1 is the smallest eigenvalue (in absolute value) of the curl operator S.

However, writing explicitly δi in the above inequality, we obtain

µ2 < λ2
1 −

1

δ2
i

, (B.17)

which is too strict condition, that is, the right-hand side of this inequality becomes

negative for a small δi and there is no µ satisfying it.
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B.2 Sufficient condition for Lyapunov stability

Here, by improving the estimation of inequality in [48], we will find a bet-

ter stability condition. The most important point to improve the estimation of

inequality is rewriting the constant of motion G0, using (2.35), as

G0 = ‖∇ψ̃‖2 + ‖∇φ̃‖2 + ‖B̃ζ‖2 + ‖Ṽζ‖2

+2δ2
i µ

2ν2〈ψ̃, B̃ζ〉 − 2ν2〈δiṼζ , B̃ζ〉 − 2ν2〈ψ̃ + δiṼζ ,−δi∆φ̃〉. (B.18)

Then, using

〈ψ̃, B̃ζ〉 ≤
1

α1

‖ψ̃‖2 + α1‖B̃ζ‖2 (∀α2 > 0), (B.19)

〈δiṼζ , B̃ζ〉 ≤
δ2
i

α2

‖Ṽζ‖2 + α2‖B̃ζ‖2 (∀α2 > 0), (B.20)

〈ψ̃ + δiṼζ ,−δi∆φ̃〉 ≤
1

α3

‖∇(ψ̃ + δiṼζ)‖2 + δ2
i α3‖∇φ̃‖2 (∀α3 > 0), (B.21)

we observe

G0 ≥ ‖∇ψ̃‖2 + ‖∇φ̃‖2 + ‖B̃ζ‖2 + ‖Ṽζ‖2 − δ2
i µ

2|ν2|
(

1

α1

‖ψ̃‖2 + α1‖B̃ζ‖2

)
−|ν2|

(
δ2
i

α2

‖Ṽζ‖2 + α2‖B̃ζ‖2

)
− |ν2|

(
1

α3

‖∇(ψ̃ + δiṼζ)‖2 + δ2
i α3‖∇φ̃‖2

)
.

(B.22)

In a bounded domain, we have the following Poincaré-type inequality

‖∇ψ̃‖2 ≥ λ2
1‖ψ̃‖2. (B.23)

Using (B.15) and (B.23), we can rearrange (B.22) to

G0 +
|ν2|
α3

G2 ≥
(

1 − δ2
i µ

2|ν2|
α1λ2

1

)
‖∇ψ̃‖2 +

(
1 − δ2

i |ν2|α3

)
‖∇φ̃‖2

+
(
1 − δ2

i µ
2|ν2|α1 − |ν2|α2

)
‖B̃ζ‖2 +

(
1 − δ2

i |ν2|
α2

)
‖Ṽζ‖2.

(B.24)
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If all the coefficients of the right-hand side of (B.24) are positive, the left-hand side

of (B.24) works as a Lyapunov function bounding the energy associated with the

magnetic and flow fluctuations. To make the first, second, and fourth coefficients

positive, we must choose α1, α2 and α3 as

α1 >
δ2
i µ

2|ν2|
λ2

1

, α2 > δ2
i |ν2|, 0 < α3 <

1

δ2
i |ν2|

. (B.25)

Using (B.25), we can estimate the third coefficient as

1− δ2
i µ

2|ν2|α1 − |ν2|α2 > 1− δ4
i µ

4|ν2|2

λ2
1

− δ2
i |ν2|2 =

δ2
i µ

2

λ2
1(δ

2
1µ

2 + 1)
(λ2

1 − µ2), (B.26)

where the last equality follows from (2.34). Thereby, the sufficient condition for

the Lyapunov stability can be written as

µ2 < λ2
1, (B.27)

which is improved by −1/δ2
i compared to (B.17).
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