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1 Introduction

1.1 Background

1.1.1 Flow stability

A flow stability analysis is one of the most important subjects in fluid dynamics because flow

instability often appears in practical flows. For example, if an object has a symmetry shape, a

symmetric and steady flow around the object is apparently a candidate solution of its governing

equations. However, in practical flows, the flow is usually asymmetry and unsteady, and often

includes vortex formations. This is because the symmetric solution is unstable. More specifi-

cally, if the symmetric flow is perturbed, then the perturbations grow in time, the flow is broken,

and the symmetric flow state transits to other flow states. The stability analysis of flow is the

analysis in terms of such transitions, and it has been investigated from 1800s.[1]

The flow stability is important for engineering purposes. For example, vortices generated by

cylinder-shaped structures, which is called Kármán vortices, make noise. Therefore, reduction

of the loud noise caused by the cylinder-shaped structures is important for developments of

automobiles, trains, buildings, and so on. To reduce the noise, stabilizing effect of contriving

the shapes on such flows have been investigated.[2] On the other hand, vortices also have good

effects, namely, momentum and scalar transports. These effects can be useful for a mixing of

combustion air and fuels. By the use of vortex breakdowns which induces small vortices into

a flowfield of a combustor, the mixing of the fuels are enhanced. Therefore, improvements

of the combustion efficiency by the generations and breakdowns of vortices have been heavily

investigated. However, it has been found that in the case of compressible flows, a mixing layer

is stabilized by the compressibility.[3–9] Thus, the study of the compressibility effects on the

stability of vorical flows is important for the development of the method to enhance the mixing

in compressible flows.
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1 Introduction

The compressibility effects on the growth rate of a mixing layer have been investigated by

many researchers.[3–9] Their results showed that if the convective Mach number is greater than

about 0.3, the compressibility effects appear and the growth rate of a mixing layer rapidly de-

creases, and if the convective Mach number is greater than about 0.6, the flow becomes three-

dimensional. Interestingly, a conventional linear stability analysis of a compressible mixing

layer shows good agreement with experimental results which show the decrease of the growth

rate by increasing of the Mach number. The linear stability analysis conducted by Sandham

and Reynolds[8] revealed that the baroclinic and dilatational effects, which are caused by the

compressibility, stabilize a mixing layer and deform the shape of vortices.

As mentioned above, it was demonstrated that the linear stability analysis is important and

helpful for investigating the nature of flowfields. However, to derive tractable problems, the

conventional linear stability analyses usually assume that a flowfield is a parallel flow, although

most practical flows are not parallel. To elucidate the practical flow accurately, it is necessary

to employ the stability analysis without such an assumption. In this study, we will conduct the

linear stability analysis which does not employ the assumption about a geometry of flowfields.

1.1.2 Global linear stability analysis

The linear stability analysis with no assumption about the flow geometry is called the global

linear stability analysis. The global linear stability analysis is contrasted with the conventional

local linear stability analysis.

The local linear stability analysis assumes that the variation of perturbations is written by the

following form:

q′(x, y, t) = q̂(y)exp(λt − αx) (1.1)

where(x, y), t, andλt − αx denote spatial coordinates, time, and a phase function, respectively.

This means that the conventional local linear stability analysis assumes a parallel flow expressed

by a function of only one spatial variabley.

On the other hand, the global linear stability analysis assumes the following form:

q′(x, y, t) = q̂(x, y)exp(λt) (1.2)

This means that the global linear stability analysis permits the form of the perturbation (mode

shape)q̂ to be expressed by two (or three in the case of three-dimensional analysis) spatial

8



1 Introduction

variables. Thus, the global linear stability analysis can produce more accurate results than the

conventional local linear stability analysis.

In the global linear stability analysis, the termsq̂(x, y) andλ of Eq. 1.2 are found. Both terms

can be a complex number. The real and imaginary parts ofq̂(x, y) represent the mode shape.

The real part ofλ, denotedσ hereinafter, represents a growth rate, and the imaginary part ofλ,

denotedω hereinafter, represents an angular frequency.

Because the global linear stability analysis can deal with any flow geometry, this method can

be used for a variety of practical flows such as flows appeared in the engineering. Moreover,

this method is also helpful for developing flow control techniques, which is closely related to

the flow stability.[10] It is believed that the global linear stability analysis can be used to find the

location for controlling global instabilities of flowfields, and to develop reduced-order models

(ROMs) for flow-control systems.[11]

1.1.3 Numerical methods for global linear stability analysis

There are two numerical methods for calculating the mode shapeq̂(x, y), the growth rateσ, and

the angular frequencyω.

The one is the residual algorithm.[12,13] This method performs the temporal integration of

the governing equations of fluids, and then extracts the mode shape, the growth rate, and the

angular frequency from the temporal variation of the perturbations by some methods such as

a least-squares method. This method is relatively easy to perform because it uses the routine

of conventional CFD (Computational Fluid Dynamics) and its computational cost is cheap.

However, this method can calculate only one mode, namely the most unstable or least stable

mode.

The other is the method that solves an eigenvalue problem. This method firstly derives the

following eigenvalue problem Eq. 1.3 by substituting the perturbation Eq. 1.2 to its governing

equations, and then solves it.

Aq̂ = λq̂ (1.3)

Unlike the residual algorithm, this method can calculate multiple modes although its computa-

tional cost is relatively expensive. In this study, we will use this method.
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1 Introduction

The numerical methods for solving the eigenvalue problem Eq. 1.3 of the global linear sta-

bility analysis can be classified into two categories, namely the matrix-forming method[14–17]

and the matrix-free method.[18–25] The former method constructs the matrixA of Eq. 1.3, which

is a huge matrix and represents a discretization of operators of linearized governing equations.

On the other hand, the latter method does not construct any matrix, and therefore the memory

requirement of this method is significantly smaller than that of the matrix-forming method.

A time-stepping method is one of the matrix-free method which was introduced by Eriksson

and Rizzi.[20] They developed this method to analyze the stability of numerical schemes for

solving the compressible Euler equations. Then, Chiba[18,19] extended this method to incom-

pressible viscous flows and employed it to analyze the linear stability of the two-dimensional

cavity and circular cylinder wake flows. Therefore, this method is also called Chiba’s method.

Takeuchi et al.[21] successfully applied the time-stepping method to the three-dimensional in-

compressible flow analysis of a round jet. Tezuka and Suzuki[22] also successfully analyzed the

three-dimensional incompressible flows around a spheroid by time-stepping method.

The major feature of the time-stepping method is that this method is based on a conventional

CFD. A spectral transformation, which is necessary to solve an eigenvalue problem with an

iterative method and (explained in Chapter 2), is performed by using a routine for a temporal

integration of a CFD code. Therefore, the code of global linear stability analysis with the

time-stepping method can be developed by adding a small modification to a conventional CFD

code. Because of this simplicity of coding and the low memory requirement, the time-stepping

method is highly practical for science and engineering purposes.

In the recent ten years, the number of studies on the global linear stability analysis has been

increasing[26,27] with the rapid development of computers. However, the number of studies on

compressible flows is still limited. Especially, the analysis of flowfields including shock waves

is not found except for the work of Crouch et al.[16,17] Therefore, a standard method of the

global linear stability analysis for compressible flows has not been established yet. The global

linear stability analysis of unsteady compressible flows is important because they appear in

many practical problems, such as compressible turbulent flows, the aeroacoustics, and wake

flows behind a supersonic vehicle.

10



1 Introduction

1.2 Objectives

Based on the above discussions, the objectives of this study are as follows:

• To develop a method of the global linear stability analysis for compressible flows

• To elucidate compressibility effects on the global linear stability of a cavity vortex

In terms of the first objective, we will develop a numerical method of the global linear stability

analysis which has the high-order spatial accuracy and the low memory requirement. This aims

at constructing the method for the turbulent and aeroacoustics analyses which are believed to be

desired for future works. The second objective is related to the stabilizing effect of compress-

ibility on shear layers which was mentioned above. If the compressibility effects on a cavity

vortex is well understood, it is also helpful for the understanding of the stability of shear layer

flows because the stability of the cavity flows is closely related to it, which will be described in

Chapter 5.

In addition, through this thesis, we would like to show that the global linear stability analysis

is helpful for understanding transition and unsteady phenomena.

1.3 Outline of this thesis

The outline of this thesis is as follows. First, in Chapter 2, theoretical consideration and numer-

ical methods of the global linear stability analysis are explained. Then, numerical methods for

fluid simulations are presented in Chapter 3. The global linear stability analysis is achieved by

combining the methods of Chapters 2 and 3. In Chapter 4, we discuss about desired properties

of a numerical method for future global linear stability analyses, and propose the method which

satisfies the properties. The proposed method will be used in Chapter 5. In Chapter 5, the

global linear stability of a compressible cavity vortex is conducted. Compressibility effects on

the global linear stability of a cavity vortex is investigated in detail. Finally, in Chapter 6, the

results of this thesis are summarized.
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2 Global Linear Stability Analysis

2.1 Formulation of linear stability analysis

A governing equation of fluids, such as compressible Navier-Stokes and Euler equations, can

be written in the following form:

dq
dt
= f (q) (2.1)

Because the global linear stability analysis is a numerical analysis, the governing equation

Eq. 2.1 is discretized. Thus,q is a vector of fluid variables, such as

q =
[
q1,q2, . . . ,q4N−1,q4N

]T (2.2)

=
[
ρ1,u1, v1, p1, . . . , ρN,uN, vN, pN

]T (2.3)

for the case of two-dimensional compressible flow. The choice of fluid variables has an arbi-

trariness. The subscripts1,2, . . . ,N of Eq. 2.3 denote the index of a computational grid andN

is the total number of the grid points. The subscripts1,2, . . . , 4N of Eq. 2.2 correspond to a

global numbering.f is a vector-valued function as following:

f =
[
f1(q1, . . . ,q4N), f2(q1, . . . , q4N), . . . , f4N−1(q1, . . . ,q4N), f4N(q1, . . . ,q4N)

]T (2.4)

When small perturbationsq′ are superimposed to the basic stateq̄, the perturbations satisfy

the following equation:

dq′

dt
= Aq′ (2.5)

whereA is a Jacobian matrix defined by,

A ≡
(
∂ f
∂q

)
q=q̄

(2.6)
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2 Global Linear Stability Analysis

and, can be written in a matrix form,

A =


∂ f1
∂q1

· · · ∂ f1
∂q4N

...
. . .

...
∂ f4N

∂q1
· · · ∂ f4N

∂q4N


(2.7)

When the temporal variation of the Jacobian matrixA is assumed to be small enough, the

following decomposition can be applied to the perturbationsq′,

q′(x, y, t) = q̂(x, y)exp(λt) (2.8)

Finally, the eigenvalue problem is obtained by substituting Eq. 2.8 to Eq. 2.5,

Aq̂ = λq̂ (2.9)

where,λ = σ + iω and q̂ = q̂r + i q̂i are the eigenvalue and eigenvector of the matrixA,

respectively. The eigenvectorq̂ describes the mode shape. The real partσ and imaginary partω

of an eigenvalue describes the growth (or damping) rate and the angular frequency, respectively.

Consequently, the linear stability of the corresponding eigenvectorq̂ is decided as follows:

σ > 0 unstable

σ = 0 neutrally stable (2.10)

σ < 0 stable

Therefore, when the largest growth rateσ is positive, the basic statēq is unstable.

The dimensions of the Jacobian matrixA is proportional to the number of grid points used

in the numerical simulation (CFD), and is typicallyO(104) - O(105) for the two-dimensional

case andO(106) - O(108) for the three-dimensional case. Therefore, it is difficult to solve

the eigenvalue problem Eq. 2.9 with direct methods because of high computational memory

requirements. Moreover, to form the Jacobian matrixA including boundary conditions is not

easy. In the global linear stability analysis used in this study, these difficulties are avoided

by using approaches of a JFNK (Jacobian-Free Newton-Krylov) method.[28] In the following

sections, the approaches which have been successfully applied by many researchers[18–25] will

be explained.
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2 Global Linear Stability Analysis

2.2 Arnoldi method

The Arnoldi method[29] is an iterative method to solve a large-scale eigenvalue problem. The

Arnoldi method assumes that the eigenvectors corresponding to theM largest eigenvalues of an

matrix A can be approximated by the basis of the following Krylov subspaceKn.

Kn =
[
b Ab A2b · · · AM−1b

]
(2.11)

b : arbitrary vector

When the orthonormal vectors ofKn are denotedζk and a orthogonal matrixVM is defined by

the sequence ofζk, the approximate eigenvectorsφ can be written as follows:

φ = z1ζ1 + z2ζ2 + · · · + zMζM = VM z (2.12)

z= [z1, z2, . . . , zM]T (2.13)

Here, z is a coefficient vector. By substituting the approximate eigenvector Eq. 2.12 to the

eigenvalue problem Eq. 2.9, a low-dimensional eigenvalue problem is derived.

VM
T AVM z= λz (where VM

TVM = I ) (2.14)

The matrixVM
T AVM are calculated by the following algorithm:

Choose an arbitrary vectorq1

ζ1 = (q1 · q1)
−1/2q1 (2.15)

for k = 1 to M

qk+1 = Aζk −
k∑

j=1

hj,kζ j (2.16)

hj,k = ζ j · Aζk (2.17)

hk+1,k = (qk+1 · qk+1)
1/2 (2.18)

ζk+1 = qk+1/hk+1,k (2.19)

end

where,hj,k is an element of the matrixVM
T AVM, and forms a upper Hessenberg matrixH. The

dimension of this matrixH, which equals toM, is small enough to solve by direct methods.

14



2 Global Linear Stability Analysis

The approximate eigenvectorφ is calculated by using the eigenvectors and eigenvalues of the

matrix H = VM
T AVM,

Hψ j = λ jψ j ( j = 1,2, . . . ,M) (2.20)

φ j =

M∑
k=1

(
ψ j

)
k
ζk (2.21)

where,λ j is an eigenvalue of the matrixH (as explained above,λ j is also an approximate

eigenvalue of the matrixA). Theψ j andφ j are the eigenvectors of the matrixH and the matrix

A, respectively.
(
ψ j

)
k

denotes thek-th element ofψ j.

The description of this section follows the thesis of Chiba.[18,19]

2.3 Spectral transformation

As expected from the similarity of the power method and the Krylov subspace (Eq. 2.11) of the

Arnoldi method, the Arnoldi method can obtain the eigenvalues which have a large absolute

value, and corresponding eigenvectors. On the other hand, the modes which we need to analyze

here have a large real part, which means a low stability, and do not always have a large absolute

value. Therefore, the global linear stability analysis needs the spectral transformation in order

to make the absolute value of the desired stability modes large. In this study, two methods for

the spectral transformation are introduced.

2.3.1 Time-stepping method (Chiba’s Method)

The time-stepping method was proposed by Eriksson and Rizzi[20] as a method for analyzing

the stability of numerical methods for the compressible Euler equations. Later, Chiba[18,19]

successfully applied the time-stepping method to the physical stability analysis of incompress-

ible flows. Therefore, time-stepping method is also called Chiba’s method. After the Chiba’s

researches, the time-stepping method has been used for many studies.

The time-stepping method uses following relation:

q′(t + ∆t) = exp(A∆t)q′(t) (2.22)

This equation can be obtained by integrating the Eq. 2.5 in time. Here, we introduce the trans-
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2 Global Linear Stability Analysis

formed matrixB:

B = exp(A∆t) (2.23)

where∆t is an adjustable parameter. When the eigenvalues and eigenvectors of the matricesA

andB are denoted by the subscriptsA andB, the following relations are established:

λB = exp(λA∆t) (2.24)

q̂B = q̂A (2.25)

The Eq. 2.24 can be written in the following form:

λA =
log |λB| + iArg (λB) + i2nπ

∆t
, n = 0, ± 1, ± 2, · · · (2.26)

whereArg (λB) denotes the principal value of argument ofλB, defined to lie in the interval

(−π, π]. Note that this spectral transformation method does not take account of multiple eigen-

values.

The relation between the stability and the transformed eigenvalueλB is,

|λB| > 1 unstable

|λB| = 1 neutrally stable (2.27)

|λB| < 1 stable

Therefore, the absolute values of the eigenvalues of unstable modes become large in the trans-

formed matrixB. An example of the spectral transformation performed by the time-stepping

method is shown in Fig. 2.1.

Calculation of Bζk

The Arnoldi method which incorporates the time-stepping method is a matrix-free method,

namely, this method does not need to calculate and store the matricesA andB. Only the matrix-

vector productBζk for Eqs. 2.16 and 2.17 is needed. The advantage of the matrix-free method

is the decrease in the required memory to store the matrix. Here, the method for calculations of

Bζk is explained.

If we substituteζk to q′(t) of Eq. 2.22,Bζk can be calculated as,

Bζk = q′(t + ∆t) (2.28)
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Figure 2.1:Example of the spectral transformation performed by the time-stepping method.∆t
is set to 1.

whereq′(t + ∆t) is calculated by integrating the linearized governing equation Eq. 2.5 in time,

with the initial conditionq′(t) = ζk.

Alternatively, the following equation can be also used,

Bζk =
q(t + ∆t) − q̄

ε
(2.29)

where q(t + ∆t) is calculated by integrating the governing equation Eq. 2.1 with the initial

conditionq(t) = q̄+ εζk. Here,ε is a small positive constant for adjusting the magnitude of the

ζk which works as a perturbation. Because theq(t+∆t) includes the effect of nonlinear terms of

the full governing equations, the approximation by Eq. 2.29 is not accurate when the amplitude

of the perturbation is large.

The time-integration for performing this method can be conducted by a conventional time-

integration method of CFD, which is explained in Chapter 3.

2.3.2 Shift-invert method

The shift-invert method is often used with Arnoldi method for an eigenvalue problem, not lim-

ited to the global linear stability analysis. This method is often called the shift-invert Arnoldi
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Figure 2.2:Example of the spectral transformation performed by the shift-invert method.s is
set to 0.

method. The shift-invert method uses a following matrix:

B = (A − sI )−1 (2.30)

where,s is a shift parameter and is a complex number. The eigenvalues and eigenvectors of the

matrix A and the transformed matrixB are connected by the following equations:

λB =
1

λA − s
(2.31)

q̂B = q̂A (2.32)

Therefore, whenλA is near thes, the absolute ofλB takes a large value. An example of the

spectral transformation performed by the shift-invert method is shown in Fig. 2.2.

Calculation of Bζk

Bζk can be calculated by the following procedures. When a vectory is defined as

Bζk = y (2.33)

the following equation is derived.

(A − sI )y = ζk (2.34)
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2 Global Linear Stability Analysis

This is a system of linear equations with the large matrixA. In order to obtain the vector

y, iterative methods such as Bi-CGSTAB[30] and GMRES[31] method or direct methods for a

sparse matrix can be used (ifA is a sparse matrix). In this study, a direct method, the PARDISO

solver,[32] is used.

In order to solve Eq. 2.34 by direct methods, or iterative methods with some preconditioning

technique, the elements of matrixA denotedai, j are required. Therefore, this method is not a

matrix-free method unlike the time-stepping method, namely, this method is a matrix-forming

method. The elementsai, j can be approximated as follows:[28]

ai, j =
fi
(
q̄+ ε jej

)
− fi (q̄)

ε j
(2.35)

ε j = ε1qj + ε2 (2.36)

whereej is a vector which has all zeros and the value 1 in thej-th location.ε1 andε2 are the

small positive parameters and set toε1 = 10−4 andε2 = 10−6 in Chapter 4.

2.4 Flowchart of global linear stability analysis

In Fig. 2.3, the flowchart of the global linear stability analysis is shown. The calculation ofBζk

has highest computational time cost in this flowchart, because we must perform time integra-

tions or solve the large system of linear equations in the each loop of the Arnoldi iterations.

This method needs to conduct numerical fluid simulations (CFD) in order to obtain the basic

stateq̄ and the termBζk as explained above. In the next chapter, the numerical methods of CFD

are explained in detail.
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2 Global Linear Stability Analysis

Calculate basic state      by CFD 

Initial values:

Set an arbitrary initial vector     

and                                  .

Set k = 1.  

k = M?

Arnoldiiterations: Eqs. (2.16) – (2.19)

Perform spectral transformation and calculate        .

k = k + 1.

no

yes

Calculate eigenvalues and eigenvectors of the matrix H: Eq. (2.20)

Calculate eigenvectors of the matrix A: Eq. (2.21)

Calculate eigenvalues of the matrix A: Eq. (2.26) or Eq.(2.31)

(see Section 2.3)

Figure 2.3:Flowchart of global linear stability analysis.
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3 Numerical Methods for Fluid
Dynamics

3.1 Gorverning equations

3.1.1 Compressible Navier-Stokes equations

Compressible Navier-Stokes equations in Cartesian coordinate (x, y)

In Chapters 4 and 5, the two-dimensional full Navier-Stokes equations are solved in order to ob-

tain basic states̄q of the compressible viscous flows. These equations in Cartesian coordinates

(x, y) are as follows:
∂Q
∂t
+
∂E
∂x
+
∂F
∂y
=
∂Ev

∂x
+
∂Fv

∂y
(3.1)

Q =


ρ
ρu
ρv
e

 (3.2)

E =


ρu

ρu2 + p
ρuv

(e+ p)u

 , F =


ρv
ρvu
ρv2 + p
(e+ p)v

 (3.3)

Ev =


0
τxx

τxy

βx

 , Fv =


0
τyx

τyy

βy

 (3.4)

βx = τxxu+ τxyv+ κ
∂T
∂x

βy = τyxu+ τyyv+ κ
∂T
∂y
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3 Numerical Methods for Fluid Dynamics

where,Q is the conservative variables,E andF are the inviscid terms, andEv andFv are the

viscous terms.u andv are the velocity inx- andy-directions, respectively.ρ is the density,e is

the total energy per unit volume,p is the pressure,T is the temperature, andt is the time.

Pressurep is calculated as follows:

p = (γ − 1)

[
e− 1

2
ρ(u2 + v2)

]
(3.5)

whereγ is the ratio of specific heats and set to 1.4.

The equation of state of the perfect gas is as follows:

p = ρRT (3.6)

whereR is the gas constant.

τi j is the viscous stress tensor and can be calculated as follows:

τ =

[
τxx τxy

τyx τyy

]
= µ2S+

(
β − 2

3
µ

)
(∇ · u)δ

=


2
3
µ

(
2
∂u
∂x
− ∂v
∂y

)
µ

(
∂u
∂x
+
∂v
∂y

)
µ

(
∂u
∂x
+
∂v
∂y

)
2
3
µ

(
2
∂v
∂y
− ∂u
∂x

)


(3.7)

whereµ is the dynamic viscosity,β is the bulk viscosity (set to 0),δ is the Kronecker delta, and

S is the strain rate tensor defined byS=
1
2

(
∇u + (∇u)T

)
.

κ is the thermal conductivity,

κ =
γR
γ − 1

µ

Pr
(3.8)

wherePr denotes the Prandtl number and is set to 0.72 in this study.

Nondimensionalization

Nondimensionalization of the equations is based on reference quantitiesU∞, ρ∞, p∞, T∞, µ∞

and a characteristic physical lengthL.

x∗ =
x
L
, y∗ =

y
L
, u∗ =

u
U∞
, v∗ =

v
U∞
, t∗ =

t
L/U∞

ρ∗ =
ρ

ρ∞
, p∗ =

p
ρ∞U2

∞
, T∗ =

T
T∞
, µ∗ =

µ

µ∞
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where superscript asterisk * denotes nondimensional variables.

By using above nondimensional vaiables, the equation 3.1 is written as the following form:

∂Q∗

∂t∗
+
∂E∗

∂x∗
+
∂F∗

∂y∗
=

1
Re

[
∂E∗v
∂x∗
+
∂F∗v
∂y∗

]
(3.9)

whereReis the Reynolds number and defined as follows:

Re=
ρ∞U∞L
µ∞

(3.10)

The components of the vectorsQ∗, E∗, F∗, E∗v, andF∗v are same as those of Eq. 3.1 which are

replaced by nondimensional variables.

The nondimensionalized equation of the state of the perfect gas is as follows:

p∗ = ρ∗R∗T∗ (3.11)

where,

R∗ =
1
γMa2

(3.12)

Ma is the Mach number, which is defined by the reference velocityU∞ and the speed of sound

c∞:

Ma =
U∞
c∞

(3.13)

A temperature dependability of the viscous coefficient µ∗ can be calculated by the Suther-

land’s formula:

µ∗ = C∗1
(T∗)

3
2

T∗ +C∗2
(3.14)

C∗1 =
1.458× 10−6

µ∞

√
T∞, C∗2 =

110.4
T∞

In this study, all the simulations are performed by using the nondimensional variables. There-

fore, hereinafter in this paper, we omit the superscript asterisk * for brevity.

Compressible Navier-Stokes equations in curvilinear coordinates (ξ, η)

The Eq. 3.9 can be transformed from Cartesian coordinates(x, y) to curvilinear coordinates

(ξ, η) where,

ξ = ξ(x, y)

η = η(x, y)
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By applying the chain rule, the Eq 3.9 takes the following form:

∂Q̂
∂t
+
∂Ê
∂ξ
+
∂F̂
∂η
=

1
Re

[
∂Êv

∂ξ
+
∂F̂v

∂η

]
(3.15)

where,

Q̂ =
Q
J
=

1
J


ρ
ρu
ρv
e

 (3.16)

Ê =
ξx
J

E +
ξy

J
F =

1
J


ρU

ρuU + ξxp
ρvU + ξyp
(e+ p)U

 , F̂ =
ηx

J
E +
ηy

J
F =

1
J


ρV

ρuV+ ηxp
ρvV+ ηyp
(e+ p)V

 (3.17)

Êv =
ξx
J

Ev +
ξy

J
Fv =

1
J


0

ξxτxx + ξyτxy

ξxτyx + ξyτyy

ξxβx + ξyβy

 , F̂v =
ηx

J
Ev +

ηy

J
Fv =

1
J


0

ηxτxx + ηyτxy

ηxτyx + ηyτyy

ηxβx + ηyβy

 (3.18)

The subscriptsx andy denote the partial derivatives with respect tox andy, respectively. The

metricsξx, ξy, ηx, ηy, and the metric JacobianJ are calculated by following relations:

ξx = Jyη, ξy = −Jxη

ηx = −Jyξ, ηy = Jxξ (3.19)

J = 1/

∣∣∣∣∣∣xξ xη
yξ yη

∣∣∣∣∣∣ (3.20)

where, subscriptsξ andη denote the partial derivatives with respect toξ andη, respectively. For

the calculation of the derivativesxξ, xη, yξ, andyη, the second-order central difference method

is used when the SLAU scheme is used for the calculation of inviscid terms, and the compact

difference scheme is used when the compact difference scheme is also used for the inviscid

terms. The calculation of the inviscid terms is explained in Section 3.2.

3.1.2 Linearized compressible Navier-Stokes equations

In Chapters 4 and 5, the linearized compressible Navier-Stokes equations are solved in order to

develop the perturbationsq′ superimposed on the basic statesq̄ in time.

The linearized compressible Navier-Stokes equations can be derived by substitutingq = q̄+q′

into Eq. 3.1, canceling the terms ofq̄, and neglecting second or higher order terms ofq′,

∂Q′

∂t
+
∂E′

∂x
+
∂F′

∂y
=
∂E′v
∂x
+
∂F′v
∂y

(3.21)
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Q′ =


ρ′

ρ̄u′ + ρ′ū
ρ̄v′ + ρ′v̄

ρ′(CvT̄ + 0.5(ū2 + v̄2)) + ρ̄(CvT′ + ūu′ + v̄v′)

 (3.22)

E′ =


ρ̄u′ + ρ′ū

ρ′ū2 + 2ρ̄ūu′ + p′

ρ̄ūv′ + ρ̄u′v̄+ ρ′ūv̄
(ρ̄u′ + ρ′ū)(CpT̄ + 0.5(ū2 + v̄2)) + ρ̄ū(CpT′ + ūu′ + v̄v′)

 ,

F′ =


ρ̄v′ + ρ′v̄

ρ̄ūv′ + ρ̄u′v̄+ ρ′ūv̄
ρ′v̄2 + 2ρ̄v̄v′ + p′

(ρ̄v′ + ρ′v̄)(CpT̄ + 0.5(ū2 + v̄2)) + ρ̄v̄(CpT′ + ūu′ + v̄v′)

 (3.23)

E′v =


0
τ′xx

τ′xy

u′τ̄xx + v′τ̄xy+ ūτ′xx + v̄τ′xy+ κ̄
∂T′

∂x + κ
′ ∂T̄
∂x

 ,

F′v =


0
τ′xy

τ′yy

u′τ̄xy+ v′τ̄yy+ ūτ′xy+ v̄τ′yy+ κ̄
∂T′

∂y + κ
′ ∂T̄
∂y

 (3.24)

where,

p′ = ρ′RT̄ + ρ̄RT′ (3.25)

τ′xy = τ
′
yx = µ̄

(
∂u′

∂y
+
∂v′

∂x

)
+ µ′

(
∂ū
∂y
+
∂v̄
∂x

)
,

τ′xx =
2
3
µ̄

(
2
∂u′

∂x
− ∂v

′

∂y

)
+

2
3
µ′

(
2
∂ū
∂x
− ∂v̄
∂y

)
, (3.26)

τ′yy =
2
3
µ̄

(
2
∂v′

∂y
− ∂u

′

∂x

)
+

2
3
µ′

(
2
∂v̄
∂y
− ∂ū
∂x

)

κ̄ =
Cpµ̄

Pr
, κ′ =

Cpµ
′

Pr
(3.27)

and,Cp andCv are the specific heat at constant pressure and constant volume, respectively.

Cp =
γR
γ − 1

, Cv =
R
γ − 1

(3.28)

The nondimensionalization and the coordinate transformation can be made by the same man-

ner as Section 3.1.1.
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3.2 Discretization of the governing equations

3.2.1 Discretization of inviscid terms

Compact difference scheme

In Chapters 4 and 5, the six-order compact difference scheme[33] is used for the evaluation of

spatial derivatives for convective terms, viscous terms, metrics and the JacobianJ, in order to

solve the Eqs. 3.1 and 3.21. For any scalar quantityϕ, the spatial derivative
∂ϕ

∂ξ
is obtained in

the transformed plane by the following tridiagonal system:

1
3

(
∂ϕ

∂ξ

)
i−1

+

(
∂ϕ

∂ξ

)
i

+
1
3

(
∂ϕ

∂ξ

)
i+1

=
1
9
ϕi+2 − ϕi−2

4∆ξ
+

14
9
ϕi+1 − ϕi−1

2∆ξ
(3.29)

At the boundary pointsi = 1 and i = 2, following formulas[34] which retain the tridiagonal

form are used, (
∂ϕ

∂ξ

)
1

+ 3

(
∂ϕ

∂ξ

)
2

=
1
∆ξ

(
−17

6
ϕ1 +

3
2
ϕ2 +

3
2
ϕ3 −

1
6
ϕ4

)
(3.30)

1
4

(
∂ϕ

∂ξ

)
1

+

(
∂ϕ

∂ξ

)
2

+
1
4

(
∂ϕ

∂ξ

)
3

=
1
∆ξ

(
−3

4
ϕ1

)
(3.31)

These are the fourth-order formulas. The formulas at the boundary pointsi = imaxandi = imax−1

are similar.

In addition to the compact difference scheme, the filtering procedure described below is per-

formed because the compact difference scheme is susceptible to numerical instabilities.

Filtering scheme

The eighth-order low-pass spatial filtering scheme[34] is applied with the compact difference

scheme. In this scheme, the following tridiagonal system is solved:

α f ϕ̂i−1 + ϕ̂i + α f ϕ̂i+1 =

4∑
n=0

an

2
(ϕi+n + ϕi−n) (3.32)

whereϕ is the solution vector and̂ϕ is the filtered value. Theα f is an adjustable parameter

which satiesfies the inequality−0.5 < α f ≤ 0.5. The large value ofα f corresponds to a less

dissipative filter. Visbal and Gaitonde[35] suggested the values ofα f between 0.3 and 0.5. The

coefficients of this equation are shown in Table 3.1. Moreover, at near boundary pointi = 2 and

i = 3, a following formula is used:

α f ϕ̂i−1 + ϕ̂i + α f ϕ̂i+1 =

7∑
n=1

an,iϕn (3.33)
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These coefficientsan are shown in Table 3.2. The coefficients of near boundary pointsi ≤ 4

corresponds to the sixth-order scheme. The coefficients at the pointsi ≥ imax− 3 are similar.
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LAD (Localized Artificial Diffusivity) method

If a flowfield includes shock waves, a LAD method[36,37] with the compact difference scheme is

useful for a shock-capturing. When the compact difference scheme described above is applied to

the flowfiled including discontinuities, spurious oscillations occur. The LAD method suppresses

such an oscillation by adding local artificial viscosities to the coefficients[38] in Eq. 3.1.

µ = µ f + µa, β = β f + βa, κ = κ f + κa (3.34)

where the subscriptsf anda denote fluid and artificial coefficients. These coefficientsµa, βa and

κa serve the subgrid-scale transport, shock wave capturing, and the contact surface capturing,

respectively.

In this study, the artificial viscosities designed by Kawai and Lele[37] are used. For a two-

dimensional simulation, these can be written as follows:

µa = Cµρ

∣∣∣∣∣∣∣
2∑

l=1

∂4Fµ
∂ξ4l
∆2

l,µ

∣∣∣∣∣∣∣ (3.35)

βa = Cβρ fsw

∣∣∣∣∣∣∣
2∑

l=1

∂4Fβ
∂ξ4l
∆2

l,β

∣∣∣∣∣∣∣ (3.36)

κa = Cκ
ρc
T

∣∣∣∣∣∣∣
2∑

l=1

∂4Fκ
∂ξ4l
∆l,κ

∣∣∣∣∣∣∣ (3.37)

whereCµ, Cβ, andCκ are dimensionless adjustable constants.Fµ, Fβ, andFκ are functions for

detecting unresolved subgrid-scale eddies, shock waves, and contact surfaces.fsw is a switch-

ing function which removes unnecessary artificial viscosities in smooth regions (which do not

include discontinuities). Theξl denotesξ andη for l = 1 and2. The∆l,(µ,β,κ) is the grid spacing

in the physical space.

The overbar denotes an approximate truncated-Gaussian filter.[39]

ϕ̄i =
3565
10368

ϕi +
3091
12960

(ϕi−1 + ϕi+1) +
1997
25920

(ϕi−2 + ϕi+2)

+
149

12960
(ϕi−3 + ϕi+3) +

107
103680

(ϕi−4 + ϕi+4) (3.38)

This filter is applied along each grid line (namely,ξ andη directions). At near boundary

points,ϕi is mirrored across the boundary.[36]
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The detector functionsFµ, Fβ, andFκ can be chosen as follows:

Fµ = S (3.39)

Fβ = ∇ · u (3.40)

Fκ = CvT =
1
γ − 1

p
ρ

(3.41)

whereS is the strain rate of Eq. 3.7.

The switching functionfsw is as follows:

fsw = H(−∇ · u) × (∇ · u)2

(∇ · u)2 + |∇ × u|2 + ε (3.42)

This is the combination of the Ducros-type shock sensor[40] (∇ · u)2

(∇ · u)2 + |∇ × u|2 + ε and the de-

tector function for negative dilatation. Here,H is the Heaviside function andε = 10−32 is a

small positive constant.

In order to scale the artificial viscosity properly,∆l,(µ,β,κ) is defined as follows[37] :

∆l,µ = |∆xl |, ∆l,β =

∣∣∣∣∣∆xl ·
∇ρ
|∇ρ|

∣∣∣∣∣ , ∆l,κ =

∣∣∣∣∣∆xl ·
∇T
|∇T |

∣∣∣∣∣ (3.43)

where∆xl =

(
xj+1 − xj−1

2
,
y j+1 − y j−1

2

)
, and j is an index of theξl direction.

In this study,Cµ is set to 0, because we ignore the effects of subgrid-scale eddies. Therefore,

the equations in terms ofµa are not used. The coefficientsCβ andCκ is set to 1.75 and 0.01,

respectively.

SLAU scheme with MUSCL interpolation

In Chapter 4, SLAU (Simple Low-dissipation AUSM) scheme[41,42] is used for the calculation of

inviscid terms. SLAU scheme is a type of the AUSM (Advection Upstream Splitting Method)[43]

scheme.

The inviscid flux of the AUSM scheme can be written in the following form:

F1/2 =
ṁ+ |ṁ|

2
Φ+ +

ṁ− |ṁ|
2
Φ− + p1/2N (3.44)

where,

Φ =


1
u
v
h

 , N =


0
xn

yn

0

 (3.45)
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h =
e+ p
ρ

(3.46)

(xn, yn) is a unit vector normal to a cell interface.ṁ andp1/2 are a mass flux and a pressure on

a cell interface, respectively. Superscripts+ and− denote the left and right values of the cell

interface.

In the SLAU scheme, the pressure termp1/2 in Eq. 3.44 is evaluated as follows:

p1/2 =
p+ + p−

2
+
β+ − β−

2
(p+ − p−) + (1− χ)(β+ + β− − 1)

p+ + p−

2
(3.47)

where,

β± =

{
1
4(2∓ M±)(M± ± 1)2, |M±| < 1
1
2(1+ sign(±M±)), otherwise

(3.48)

M± =
V±n
c̄

(3.49)

V±n = u±xn + v±yn + w±zn (3.50)

χ = (1− M̂)2 (3.51)

M̂ = min

1.0, 1c̄
√

V+n
2 + V−n

2

2

 (3.52)

c̄ =
1
2

(c+ + c−) (3.53)

c is the speed of sound which can be calculated by the following equation:

c =

√
γp
ρ

(3.54)

The mass fluẋm is evaluated as follows:

ṁ=
1
2

{
ρ+(V+n + |V̄n|+) + ρ−(V−n − |V̄n|−) −

χ

c̄
(p− − p+)

}
(3.55)

where,

|V̄n|± = (1− g)|V̄n| + g|Vn|± (3.56)

g = −max
(
min(M+,0),−1

) ·min
(
max(M−,0),1

)
(3.57)

|V̄n| =
ρ+|Vn|+ + ρ−|Vn|−
ρ+ + ρ−

(3.58)

The MUSCL interpolation[44,45] is used for the evaluations of quantities on the left and right

side of the cell interface, denoted superscripts+ and− in above equations. Limiter functions
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such as the van Albada limiter[46] is not used because the flowfield to be analyzed does not

include any discontinuities. The third-order MUSCL interpolation is as follows:

(q+)i+ 1
2
=

2qi+1 + 5qi − qi−1

6
(3.59)

(q−)i+ 1
2
=

2qi + 5qi+1 − qi+2

6
(3.60)

After the inviscid fluxF1/2 is obtained by the above equations, the inviscid terms are finally

calculated by the following equation:

∂F
∂ξ
=

F1/2 − F−1/2

∆ξ
(3.61)

3.2.2 Discretization of viscous terms

In this study, the viscous terms are calculated by twice difference operations. First, we calculate

first derivativesϕx andϕy by the chain rule:

ϕx = ξxϕξ + ηxϕη,

ϕy = ξyϕξ + ηyϕη (3.62)

ϕ denotes a scalar quantity. All the derivatives of the right hand side of Eq. 3.62 are evaluated by

the second-order central difference method when the SLAU scheme is used for the calculation

of inviscid terms, and by the compact difference scheme when the compact difference scheme

is used for the inviscid terms.

Secondly, second derivatives are evaluated in the same manner by using the first derivatives

obtained in the first step.

3.2.3 Time integration

Third-order TVD Runge-Kutta scheme

In this study, all time integrations are performed by the third-order TVD Runge-Kutta scheme.[47]

For brevity, we write a governing equation in the following form:

∂Q
∂t
= R(Q)

32



3 Numerical Methods for Fluid Dynamics

R(Q) denotes the right hand side of the equation which is functions of variablesQ. Here, the

third-order TVD Runge-Kutta scheme is given by the following steps:

Q(1) = Qn + ∆tR(Qn)

Q(2) =
3
4

Qn +
1
4

Q(1) +
1
4
∆tR(Q(1)) (3.63)

Qn+1 =
1
3

Qn +
2
3

Q(2) +
2
3
∆tR(Q(2))

This is the calculation for the time developing ofQ from the time-stepn to n+ 1.
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4 High-Resolution and Matrix-Free
Method for Global Linear Stability
Analysis

4.1 Introduction

In this chapter, we propose a numerical method for the global linear stability analysis which has

high-order spatial accuracy and needs low memory requirements.

First, two methods for the spectral transformation, the time-stepping method and the shift-

invert method, are compared, and we show that the time-stepping method has the low memory

requirement and is promising for future global linear stability analyses. Then, we propose the

numerical method for the global linear stability analysis using the time-stepping method as the

method for the spectral transformation and the compact difference scheme as the method for

fluid simulations. Several results of this method are shown as validation results and examples

of the global linear stability analysis. Moreover, influences of outflow boundary conditions on

the global linear stability analysis are investigated. Finally, the applicability of the proposed

method to flowfields including shock waves is examined.

Through this chapter, a two-dimensional flow past a circular cylinder is analyzed, because

this flow has been investigated by many researchers[16,18,19,48]and therefore has many available

data. Details are described in the next section.

4.2 Two-dimensional flow past a circular cylinder

Figure 4.1 shows two-dimensional viscous flows past a circular cylinder. When the Reynolds

number is small enough, this flowfield is a steady state and a twin-vortex is formed behind the

cylinder. When the Reynolds number exceeds a certain number (the critical Reynolds number
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Recr), this flowfield is an unsteady state and the twin-vortex separates from the cylinder surface

(the Kármán vortex-street). Here, the Reynolds number of this flow is defined as follows:

Re=
ρ∞u∞D
µ∞

(4.1)

where subscript∞ denotes freestream variables andD is a diameter of the circular cylinder.

The instability of this flow has been studied for several decades.[16,18,19,48] The previous

studies revealed that the critical Reynolds number is between 45.5 and 49. Moreover, few

incompressible[18,19] and compressible[16] global linear stability analyses were conducted and

found the unstable mode which induces the Kármán vortex-street. In the following sections,

we analyze this flow as the test problem for numerical methods of the global linear stability

analysis.

4.3 Comparison of numerical methods for spectral
transformation

In this section, two methods of the spectral transformation, the time-stepping method and the

shift-invert method explained in Section 2.3, are compared. The characteristics of these methods

are discussed.

4.3.1 Problem description and Numerical method

Flow condition and computational grid

A flow to be analyzed is the flow around the circular cylinder described above. The Mach

number of the freestream isMa = 0.05, and five cases of the Reynolds number between 45 and

55 are analyzed. A computational grid used in this calculation is shown in Fig. 4.2. The grid is

a structured grid which consists of radial lines and concentric circles. In the step of calculating

steady flows, the flow of only the half domain (y ≥ 0) is solved with the symmetric condition

as it is described later, whereas the entire domain is used for the global linear stability analysis.

The number of grid points is121× 151 (azimuthal× radial directions) for the half domain

(y ≥ 0) and241× 151for the entire domain. The minimum grid spacing is∆min = 0.005D.
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(a) Steady solution atRe = 45. Symmetric twin-vortex behind the
cylinder is described by velocityu distribution and streamlines.

(b) Periodic solution atRe = 120. Kármán vortex-street behind the
cylinder is described by vorticity distribution.

Figure 4.1:Steady and periodic solutions of the flow field behind a circular cylinder.
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Figure 4.2:Computational grid.

Simulation of full compressible Navier-Stokes equations

The inviscid terms of the full compressible Navier-Stokes equations are calculated by the SLAU

scheme with the third-order MUSCL interpolation, and the viscous terms are calculated by the

second-order central difference method. The time-integration is performed by the third-order

TVD Runge-Kutta scheme.

For the wall boundary (the cylinder surface), the no-slip condition and the adiabatic wall

condition are used.

u = 0 (4.2)

v = 0 (4.3)
∂p
∂n
= 0 (4.4)

∂T
∂n

= 0 (4.5)

wheren denotes a vector normal to the boundaries. The partial difference
∂

∂n
is evaluated by

the first-order one-sided finite difference.

For the far-field boundary conditions (r = 50D, x > 0), the pressure on the boundary is

assumed to be the freestream value and the other variables are extrapolated by linear approxi-
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mations.

pib = p∞ (4.6)

ρib = 2ρib−1 − ρib−2 (4.7)

(ρu)ib = 2(ρu)ib−1 − (ρu)ib−2 (4.8)

(ρv)ib = 2(ρv)ib−1 − (ρv)ib−2 (4.9)

where subscriptsib denotes the index of grid points on the outflow boundary.

On the symmetry plane (y = 0), the symmetry boundary conditions are used. By applying this

condition, steady states can be obtained at the Reynolds number being higher than the critical

value. This is because the sinuous mode is less stable than the varicose mode and the sinuous

mode induces the Kármán vortex-street.[49]

Settings of time-stepping method and shift-invert method

In the process of the time-stepping method, the termBζ of the Arnoldi iterations is calculated

by Eq. 2.29, which needs to solve the full compressible Navier-Stokes equation Eq. 3.1. The

small constantε in Eq. 2.29 is set to 0.01. By the preliminary calculations, we have confirmed

that the constantε between 0.001 and 0.1 do not affects the results. The parameter∆t is set to

1.0 and the number of iterations for Arnoldi iterationsM is 250.

In the process of the shift-invert method, the shift parameters is set to 0 because the transition

of flows from the steady to the unsteady state occurs when a real part of an eigenvalue becomes

positive. The number of iterations for the Arnoldi methodM is set to 500. The difference

of M of the time-stepping method and the shift-invert method is caused by the difference of

convergence properties of these method.

The detailed explanation of the time-stepping method and the shift-invert methods are shown

in Section 2.3.

4.3.2 Results and Discussions

Comparison of most unstable mode

Figure 4.3 shows the eigenvectors of the most unstable mode (in other words, the least stable

mode) atRe= 45. As it will be described later, the Kármán vortex-street occurs when this mode
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(a) Result of time-stepping method (b) Result of shift-invert method

Figure 4.3:Eigenvectors of most unstable mode atRe = 45. Momentum inx-directionρu is
illustrated.

method

Figure 4.4:Change of the eigenvalues of the most unstable mode by Reynolds number.
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Table 4.1:Critical Reynolds and Strouhal numbers obtained by previous studies.

Recr S tcr Analysis method

Nishioka (1978)[48] 46 0.12 Experiment

Chiba (1997)[18,19] 45.5 0.119 Numerical simulation (Incompressible)

Crouch (2007)[16] 47 0.116 Numerical simulation (Compressible,Ma = 0.2)

Present work 47, 49 0.117 Numerical simulation (Compressible,Ma = 0.05)

becomes unstable. The alternating distributions appeared in the wake of the circular cylinder.

This distribution is in good agreement with the results of Crouch et al.[16] The change of the

eigenvalue of the most unstable mode by the Reynolds number is shown in Fig. 4.4. (The result

obtained by using the time-stepping method with the compact difference scheme shown in this

figure will be referenced in the next section.) The results obtained by using the time-stepping

method and the shift-invert method indicate that both the real part (the growth rate) and the

imaginary part (the angular frequency) increase as the Reynolds number increases. The critical

Reynolds numberRecr can be estimated to 47 and 49 from the results of the time-stepping

method and the shift-invert method, respectively. In both cases, the imaginary parts are similar

values and the critical Strouhal numberS t =
ω

2π
is estimated to 0.117. It is inferred that the

small difference of the critical Reynolds number, as well as the real part of eigenvalues, is

caused by the numerical stability of the time integration which only used in the time-stepping

method. The estimated critical Reynolds and Strouhal numbers of our results coincide with the

previous numerical and experimental studies,[16,18,19,48]as detailed in Table 4.1.

Consequently, we confirmed that both methods of the spectral transformation can reproduce

the results of previous studies which are well validated, and the results of the time-stepping

method and the shift-invert method are qualitatively same although the real parts of eigenvalues

are a little different.

Aliasing problem of time-stepping method

The time-stepping method cannot determine the imaginary part of eigenvalues uniquely, be-

cause Eq. 2.24 has a multiple-value function, as following:

λA =
log |λB| + iArg (λB) + i2nπ

∆t
, n = 0, ± 1, ± 2, · · · (4.10)
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Figure 4.5:Aliasing phenomena due to Eq. 4.10.n is set to 0.

whereArg (λB) denotes the principal value of argument ofλB, defined to lie in the interval

(−π, π]. Figure 4.5 shows the eigenvalue distributions obtained by the time-stepping method

with the parameter∆t = 1.0 and0.5. An integern in Eq. 4.10 is set to 0, which means thatω

satisfies− π
∆t
< ω ≤ π

∆t
. Figure 4.5 clearly indicates that the aliasing problem occurs and there

is a Nyquist frequencyωN =
π

∆t
. In the case of∆t = 1.0, the eigenvalues in the region of|ω| > π

jump to the region of|ω| < π, and the similar phenomenon also occurs with|ωN| = 2π in the

case of∆t = 0.5.

Therefore, the original frequency should be confirmed by comparing with the results of the

additional global linear stability analysis with different∆t, the direct numerical simulation, or

other available data, etc.

On the computational cost and coding

The spectral transformation needs the highest computational cost of all the routines for the

global linear stability analysis. Table 4.2 shows the computational time and memory require-

ments for performing the global linear stability analysis by using the time-stepping method and

the shift-invert method. Here, the CPU used for this analysis is the Intel Core i7 3930K (6
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Table 4.2:Computational time (CPU time) and memory requirements for performing the global
linear stability analysis. Flow conditions areMa = 0.2 andRe= 45.

Dimension of
Jacobian matrix CPU time (sec) Memory (MBytes)

Time-stepping 4.8× 104 4.9× 102 5.4× 102

method 1.4× 105 3.3× 103 1.5× 103

(M = 300,∆t = 0.5) 3.2× 105 1.6× 104 3.2× 103

Shift-invert 4.8× 104 2.0× 102 6.8× 102

method 1.4× 105 8.5× 102 2.1× 103

(M = 300, s= 0) 3.2× 105 2.5× 103 4.9× 103

cores, 3.2 GHz) and the codes are parallelized with OpenMP. For the shift-invert method which

forms a matrix, the matrix is stored by the compressed sparse row (CSR) format which saves

the computational memory by storing only non-zero elements of a sparse matrix.

Table 4.2 indicates that the time-stepping method needs much computational time because it

conducts the numerical simulations of time developing of fluids. The computational time cost

of the time-stepping method strongly depends on flow conditions. For example, a simulation of

low Mach number flows needs high computational time costs due to the discrepancy of small

time-step size for the numerical simulation which is restricted by the CFL condition and the

time scale of the physical phenomena. Other cases whose time marching takes a high cost, such

as high Reynolds number wall-bounded flows, are also computationally expensive. On the other

hand, the routines of shift-invert method itself are not affected by flow conditions.

However, because the shift-invert method forms the Jacobian matrixA and perform direct

inversions of it, the memory requirement for the shift-invert method is much larger than that

of the time-stepping method. The memory requirements for the shift-invert method is pro-

portional to the square of the dimension of the Jacobian matrixA. Therefore, the memory

requirement rapidly increases when the analysis has third-dimension and/or the number of grid

points increases. This problem can be critical when the available memory of the computer is not

sufficient. By contrast, the memory requirement for the time-stepping method is considerably

less than that of the shift-invert method because it is proportional to the dimension of Jacobian
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matrix A. This is because the time-stepping method does not form the Jacobian matrixA, in

other words, this method is matrix-free.

Moreover, the coding of the routines for performing the time-stepping method is easy. This

method uses the time integration routine of CFD as the spectral transformation and does not

need to form any matrix explicitly, as explained in Section 2.3.1. Therefore, the code of the

global linear stability analysis with the time-stepping method is mainly based on conventional

CFD codes. Only the routines of the Arnoldi method and a conventional solver for eigenvalue

problems of a small dense matrix (such as LAPACK) need to be added. On the other hand, the

shift-invert method need to store a huge and sparse (or sometimes dense) matrix and invert it,

and therefore its coding is a little more difficult than that of the time-stepping method.

In this study, we use the time-stepping method as the spectral transformation, because the

memory requirements might be a crucial problem if many grid points are used for fluid simula-

tions.

4.4 Proposed method for global linear stability analysis

In this section, we propose and validate the numerical method for the global linear stability

analysis using the time-stepping method as the method for the spectral transformation and the

compact difference scheme as the method for spatial discretization of the governing equation.

Then, validations of the proposed method are conducted and influences of an outflow boundary

condition on the global linear stability analysis are investigated. The method proposed here is

used in Chapter 5.

4.4.1 Introduction of proposed method

The proposed method is the method that uses the time-stepping method and the compact differ-

ence scheme as methods for the spectral transformation and the numerical simulation of fluids,

respectively. The termBζ in the Arnoldi iterations is calculated by Eq. 2.28, which needs to

solve a linearized governing equation (Eq. 3.21, in this study).

The advantage of the use of Eq. 2.28, rather than Eq. 2.29, for evaluating the termBζ is

that it can exclude the arbitrary parameterε which affects the accuracy of the approximation of

the derivative in Eq. 2.29. Although the calculation of Eq. 2.28 needs to solve the linearized
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governing equation Eq. 3.21 in addition to the full governing equation Eq. 3.1, this calculation

is easy because the compact difference scheme can solve both equations in the same manner. In

addition, other fluid simulations such as the magnetohydrodynamics (MHD)[50] and supersonic

flows[36,37] also can be solved in the same manner. Moreover, the compact difference scheme

can achieve the high-order spatial accuracy. Therefore, this method is often used for the simu-

lations of vortical flows,[51,52] turbulent flows,[53–55] and the aeroacoustics,[56,57] which need to

resolve small spatial structures and perturbations of fluids. Because the number of computa-

tional grid points for high-order spatial accuracy schemes is less than for lower-order spatial

accurate schemes, the dimension of the matrixA also becomes small when the compact differ-

ence scheme is used, and therefore the saving of computational memory is achieved. Besides,

the proposed method does not need much computational memory and its coding is easy because

the time-stepping method is used as the spectral transformation.

Although each of these methods, namely the compact difference scheme and the time-stepping

method, has been used for the global linear stability analysis by some researchers,[13,58] the

combination of these methods has not been used and validated. As mentioned above, the com-

bination of these method has good properties: the high-order spatial accuracy, the applicability

to various fluid phenomena, the low memory requirement, and the simplicity of the coding.

Therefore, this method is promising for the future studies such as analyses of three-dimensional

flows, the aeroacoustics, turbulent flows, and the magnetohydrodynamics (MHD), which need

to solve small spatial structures and/or various governing equations. In the following sections,

the validation of this method is conducted.

4.4.2 Problem description and Numerical method for validation
analysis

Flow condition and computational grid

The flowfield to be analyzed is two-dimensional flows past a circular cylinder again, and the

freestream Mach numberMa is 0.2. Three cases of the Reynolds numberRebetween 45 and 50

are analyzed. The computational grid used in this calculation is similar to that of Fig. 4.2. The

number of grid points is121× 181(azimuthal× radial directions) for the half domain (y ≥ 0)

and241× 181for the entire domain. The minimum grid spacing is∆min = 0.005D.

44



4 High-Resolution and Matrix-Free Method for Global Linear Stability Analysis

Simulation of full compressible Navier-Stokes equation for obtaining basic state q̄

The sixth-order compact difference scheme is used for the calculations of inviscid and viscous

terms of the full compressible Navier-Stokes equation Eq. 3.1. The eighth-order tridiagonal

filter is used in order to suppress spurious oscillations. The coefficientα f is set to 0.495. Time

integration is made by the third-order TVD Runge-Kutta scheme.

The wall boundary conditions are same as Eqs. 4.2 - 4.5 except for the evaluation of
∂

∂n
. Here,

the partial difference
∂

∂n
is evaluated by the second-order one-sided finite difference method.

The compact difference scheme is sensitive to outflow boundary conditions, because the

acoustic waves and vortical structures propagate with less dissipation and reflect at the bound-

ary (it will be discussed later). Therefore, in order to suppress such spurious effects, the outflow

boundary is placed at far distances ofr = 150D, in addition, simple non-reflecting boundary

conditions proposed by Rudy and Strikwerda[59,60] are adopted. The non-reflecting outlet is

achieved by the following equations:

∂p
∂t
− ρc∂V

∂t
+ αrs(p− p∞) = 0 (4.11)

whereαrs is a constant and set to 1.5.V denotes a velocity in the normal direction to the

boundary.

The discretization of Eq. 4.11 is as follows:[59]

pn+1
ib =

pn
ib + αrs∆tnp∞ + ρn

ibcn
ib(Vn+1

ib − Vn
ib)

1+ αrs∆tn
(4.12)

where superscriptn denotes the time step, and∆tn denotes the time step size. Other variables

are extrapolated as follows:

uib = uib−1, vib = vib−1, Tib = Tib−1 (4.13)

On the symmetry planey = 0, the symmetry boundary conditions are used in order to obtain

steady states at the Reynolds number higher than a critical value.

Simulation of Linearized compressible Navier-Stokes equations for time-stepping
method

As mentioned above, the linearized compressible Navier-Stokes equation Eq. 3.21 can be solved

in the same manner with the full compressible Navier-Stokes equation Eq. 3.1. Therefore, the
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sixth-order compact difference scheme, the eighth-order tridiagonal filter withα f = 0.495,

and the third-order TVD Runge-Kutta scheme are used for the simulation of the linearized

compressible Navier-Stokes equation.

Initial conditions are set toq′(t0) = ζ. This means that a vectorζ in Arnoldi iterations is used

as an initial perturbation.

Boundary conditions are obtained by substitutingq = q̄+ q′ into the boundary conditions for

the full compressible Navier-Stokes equation.

u′ = 0 (4.14)

v′ = 0 (4.15)
∂p′

∂n
= 0 (4.16)

∂T′

∂n
= 0 (4.17)

Similarly, outflow boundary conditions are,

p′n+1
ib =

p′nib + ρ̄ibc̄ib(V′n+1
ib − V′nib)

1+ αrs∆t
(4.18)

and,

u′ib = u′ib−1, v′ib = v′ib−1, T′ib = T′ib−1 (4.19)

4.4.3 Validation results

The eigenvalues of the most unstable mode produced by the proposed method is also shown

in Fig. 4.4 along with the results of Section 4.3. Similarly to the cases of Section 4.3, the

real part (growth rate) and the imaginary part (frequency) increase as the Reynolds number

increases, although the imaginary parts are a little different because of the difference of the

Mach number. The critical Reynolds and Stouhal numbers are estimated toRecr = 47 and

S tcr =
0.724

2π
= 0.115, respectively. Figure 4.6 shows the eigenvalue distributions for the case

of Re = 50. This eigenvalue distribution is similar with a result of an incompressible flow

analysis conducted by Tezuka and Suzuki.[58] More specifically, except for the most unstable

mode, the growth rate decreases as the frequency increases because high frequency modes have

small spatial structures and therefore they are susceptible to the viscosity.[58] At Re= 50, only

the most unstable mode has a positive real part, and the real and imaginary parts of this mode
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areσ = 1.09×10−2 andS t= 0.116. The eigenvectors of this mode are shown in Fig. 4.7. These

results are in good agreement with previous studies[16,18,19,58]and the results of Section 4.3.

Figure 4.8 shows the comparison of two flowdields. The one is an unsteady flowfiled (the

Kármán vortex-street) obtained by a direct numerical simulation, and the other is made by a

superimposition of the steady flowfield (this is the basic stateq̄) and the eigenvectors (Fig. 4.7)

of the most unstable mode. These flowfields are quite similar, especially in the wake region

near the circular cylinder. The reason of the difference of the wake flows far from the cylinder

is that a perturbation is influenced by nonlinear effects when it grows enough.

Then, the temporal evolution of the perturbations are calculated by the direct numerical sim-

ulation in order to validate the eigenvalue. As the initial condition, the superimposition of the

steady flowfield and the eigenvectors of the most unstable mode are used. Figure 4.9 shows

the time history of the velocity iny-direction of the perturbation, atx/D = 10, y/D = 0. The

figure indicates that the perturbation is oscillatory and its amplitude grows in time. The growth

rate and the Strouhal number

(
=
ω

2π

)
of the oscillation are estimated toσ = 1.07× 10−2 and

S t= 0.116, when we assume that the perturbation follows the functionv(t) = exp(σt)cos(ωt).

The estimated growth rate and the Strouhal number agree very well with the eigenvalue obtained

by the global linear stability analysis.

In conclusion, it is confirmed that the proposed method can analyze the global linear stability

of two-dimensional compressible viscous flows.
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Figure 4.6:Eigenvalue distribution atRe= 50, Ma = 0.2.
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ēq
+

q̂

(c
)

D
is

tr
ib

ut
io

n
of

pr
es

su
re

of
di

re
ct

nu
m

er
ic

al
si

m
ul

at
io

n
(d

)D
is

tr
ib

ut
io

n
of

pr
es

su
re

of
su

pe
rp

os
iti

on
of

ei
ge

nv
ec

to
ra

nd
st

ea
dy

st
at

eq̄
+

q̂

F
ig

ur
e

4.
8:

C
om

pa
ris

on
of

re
su

lts
of

di
re

ct
nu

m
er

ic
al

si
m

ul
at

io
n

an
d

su
pe

rp
os

iti
on

of
ei

ge
nv

ec
to

r
an

d
st

ea
dy

st
at

e
q̄
+

q̂.

50



4 High-Resolution and Matrix-Free Method for Global Linear Stability Analysis

-150

-100

-50

0

50

100

150

0 50 100 150 200 250 300 350 400 450

Am
pl

itu
de

Time, t

Velocity, v
exp(0.0107t)

Figure 4.9:Temporal variation of the perturbation superimposed on the steady state atRe= 50,
Ma = 0.2. The velocityv at x/D = 10, y/D = 0 is plotted. Growth rate and
Strouhal number are estimated toσ = 1.07× 10−2 andS t= 0.116.

4.4.4 Effects of outflow boundary

When a numerical simulation of an external-flow is conducted, the computational domain has

inflow and outflow boundaries. To obtain a realistic solution by the numerical simulation (CFD),

a proper treatment of the outflow boundary is important because the outflow boundary contam-

inates the solution with the non-physical reflection of acoustic waves, fluid structures such as a

vortex, and a numerical noise. It can be inferred that the global linear stability analysis is also

affected by the outflow boundary. Therefore, the detailed analysis of this effect is desired.[26]

Here, we compare the results of global linear stability analysis with two different outflow

boundary conditions. The one, case-1, is same as the above simulations, namely the non-

reflecting boundary conditions proposed by Rudy and Strikwerda,[59,60] , namely (identical to

Eqs. 4.12, 4.13, 4.18, and 4.19.),

pn+1
ib =

pn
ib + αrs∆tnp∞ + ρn

ibcn
ib(Vn+1

ib − Vn
ib)

1+ αrs∆tn

and,

uib = uib−1, vib = vib−1, Tib = Tib−1
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for perturbations,

p′n+1
ib =

p′nib + ρ̄ibc̄ib(V′n+1
ib − V′nib)

1+ αrs∆t

and,

u′ib = u′ib−1, v′ib = v′ib−1, T′ib = T′ib−1

The boundary is placed atr = 150D.

The other, case-2, is as follows:

ρib = 2ρib−1 − ρib−2 (4.20)

(ρu)ib = 2(ρu)ib−1 − (ρu)ib−2 (4.21)

(ρv)ib = 2(ρv)ib−1 − (ρv)ib−2 (4.22)

pib = p∞ (4.23)

This outflow boundary condition assumes that the pressure recovers to the freestream value at

the boundary and the other variables can be simply extrapolated from inside of the computa-

tional domain. Corresponding boundary conditions for perturbations are as follows:

ρ′ib = 2ρ′ib−1 − ρ′ib−2 (4.24)

(ρu)′ib = 2(ρu)′ib−1 − (ρu)′ib−2 (4.25)

(ρv)′ib = 2(ρv)′ib−1 − (ρv)′ib−2 (4.26)

p′ib = 0 (4.27)

In addition, the boundary is placed atr = 50D in case-2.

Figure. 4.10 shows the eigenvalue distribution of the two cases. The figure clearly indicates

that the eigenvalues obtained by the global linear stability analysis are affected by the outflow

boundary. The eigenvalues of the two cases are not in correspondence except for the most

unstable mode. The eigenvalues of the most unstable mode areλ = −9.20× 10−3+ 7.22× 10−1i

for the case-1 andλ = −4.77× 10−3 + 7.19× 10−1i for the case-2. The eigenvectors of the

most unstable mode are shown in Fig. 4.11. In case-2, the eigenvectors are contaminated with

non-physical reflection waves although the structure of shear flow instability appears. The non-

physical reflection is generated at the boundary which the wake flow is going out across. In

contrast, any reflection waves are not observed in case-1.
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Figure 4.10:Comparison of eigenvalue distributions between case-1 and 2.

As a result, it is concluded that results of the global linear stability analysis are affected by the

outflow boundary. However, such unfavorable effects of the outflow boundary can be avoided.

The nor-reflecting boundary condition[59,60] and to locate the boundaries far from a body are

effective for reducing the influence of non-physical phenomenon on the global linear stability

analysis. Therefore, it is important to carefully set the outflow boundary condition and confirm

the influence of the outflow boundary on the results.

4.5 Applicability to flowfield including shock waves

4.5.1 Introduction

Shock waves appear in supersonic and transonic flows around a body. The shock wave is a rapid

change of pressure, density, temperature, and so on. Therefore, when a perturbation cuts across

the shock wave, the perturbation also experiences a rapid change, and the change might be

nonlinear. Thus, the applicability of the global linear stability analysis to flowfields including

shock waves is not obvious. However, the global linear stability analysis of supersonic and

transonic flows can be helpful and desired because unsteady phenomena often occur in such
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(a) Eigenvector of density for case-1 (b) Eigenvector of velocity inx-direction for
case-1

(c) Eigenvector of density for case-2 (d) Eigenvector of velocity inx-direction for
case-2

Figure 4.11:Comparison of eigenvectors of the most unstable mode between case-1 and 2.
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flows, for example, a shock wave/boundary layer interaction, a buffet phenomenon over an

airfoil, a supersonic flow around a bluff body, and so on.

Crouch et al.[16,17] have conducted the global linear stability analysis of a transonic flow

around the NACA0012 airfoil and investigated the shock-induced transonic-buffet. As a result,

they have shown that the condition which introduces unsteadiness, predicted by the global linear

stability analysis, coincides with experimental results. However, except for the works of Crouch

et al., no previous studies have analyzed flowfields including shock waves by using the global

linear stability analysis. Therefore, the applicability of the global linear stability analysis to

flowfields including shock waves should be carefully validated.

We can assume that unsteady flows including shock waves can be classified into two cases.

The one is the case that the flow is unsteady but the shock wave causes nor affects the unsteadi-

ness, and the other is the case that the flow is unsteady and the shock wave causes or affects the

unsteadiness. Apparently, it is more difficult for the global linear stability analysis to deal with

the latter case than the former case, although Crouch et al. have successfully performed it.

In this section, we consider the former case and investigate applicability of our proposed

method to flowfields including shock waves. Here, the wake of a circular cylinder is analyzed

again although the freestream is supersonic.

4.5.2 Problem description and Numerical method

Flow condition and computational grid

The Mach number of the freestream isMa = 1.3. A computational grid used for this simulation

is similar to that of Fig. 4.2. The number of grid points is211× 601 (azimuthal× radial

directions) for the half domain (y ≥ 0) and421× 601for the entire domain. The minimum grid

spacing is∆min = 0.00049D.

Simulation of full compressible Navier-Stokes equation for obtaining basic state q̄

Same methods used in the above Section 4.4, namely the compact difference scheme, the tridi-

agonal filter, and the TVD Runge-Kutta scheme, are employed. The coefficient of the tridiago-

nal filterα f is set to 0.495. In addition to the compact difference scheme, the LAD method is

used in order to capture shock discontinuities.
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The wall boundary conditions are also same as Eqs. 4.2 - 4.5 and the partial difference
∂

∂n
is

evaluated by the second-order one-sided finite difference method.

Flow variables are simply extrapolated by linear approximations for the outflow boundary

because the flow is supersonic,

ρib = 2ρib−1 − ρib−2 (4.28)

uib = 2uib−1 − uib−2 (4.29)

vib = 2vib−1 − vib−2 (4.30)

Tib = 2Tib−1 − Tib−2 (4.31)

The symmetry boundary conditions are used at the symmetry planey = 0 when we calculate

the steady state for obtaining the basic stateq̄.

Simulation of Linearized compressible Navier-Stokes equations for time-stepping
method

The methods for solving the linearized compressible Naview-Stokes equations are also same as

the above Section 4.4.

Initial conditions areq′(t0) = ζ and wall boundary conditions are Eqs. 4.14 - 4.17.

The outflow boundary conditions are as follows:

ρ′ib = 2ρ′ib−1 − ρ′ib−2 (4.32)

u′ib = 2u′ib−1 − u′ib−2 (4.33)

v′ib = 2v′ib−1 − v′ib−2 (4.34)

T′ib = 2T′ib−1 − T′ib−2 (4.35)

4.5.3 Results and Discussions

Results of direct numerical simulations

Figure 4.12 shows a steady flowfield atRe= 2500. A bow shock and trailing shock waves occur

in front of and behind the circular cylinder, respectively. In addition, there is a steady free shear

flow behind a twin-vortex attached to the cylinder. Figure 4.13 shows the unsteady flowfield

at Re= 5000. It can be confirmed that the free shear flow becomes unstable and generates a
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vortex-street. The spatial wavelength of the vortex is estimated toλspatial ≃ 1.0D. The frequency

distribution shown in Fig. 4.14 indicates that there is the peak frequency ofS t= 1.0.

Results of global linear stability analysis

Figure 4.15 shows the eigenvalue distribution atRe = 5000. The distribution shows that the

growth rate decreases as the frequency increases except for several distinguishing modes whose

growth rates are relatively high. This distribution is similar to that of subsonic flows around a

circular cylinder discussed above.

The eigenvector of the mode-a (illustrated in Fig. 4.15) is shown in Fig. 4.16. We can confirm

that the instability of free shear flows (namely, alternating distributions) appears. The Strouhal

number of this mode isS t = 0.95 and the spatial wavelength isλspatial = 0.95 estimated from

this figure. Because the modes whose frequencies are close toS t= 1.0 are relatively unstable

(shown in Fig. 4.15), it is inferred that these modes appear and make the dominant structure of

Fig. 4.13. These results indicate that the proposed method can capture the global linear stability

of free shear flows even if the flowfield includes shock waves in the computational domain.

However, the results also indicate that all the oscillatory modes are stable (σ < 0) and there

are several distinguishing modes (for example, mode-b) whose growth rates are larger than

mode-a. Therefore, it is inferred that the transition from steady to unsteady flows is triggered

by other physics such as the non-modal linear instability. Further investigations are necessary

to clarify the cause of this discrepancy.

As expected, spurious modes which might be caused by numerical instability due to the shock

wave appear as a result of the global linear stability analysis. Figure 4.17 shows the eigenvector

of the one of the spurious mode which is labeled mode-c in Fig. 4.15. It is inferred that this mode

indicates the instability caused by a misalignment of the shock wave and the computational grid

lines. To reduce the effect of numerical instability due to shock waves, it is important to stably

capture the shock waves by numerical schemes.

4.5.4 Conclusion of this section

In this section, we investigated the applicability of the proposed method for the global linear

stability analysis of a flowfield including shock waves. We confirmed that the proposed method

is able to analyze the global linear stability of the free shear flow behind a circular cylinder
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(a) Velocity inx-direction

(b) Pressure

(c) Streamlines

Figure 4.12:Steady flowfield atRe= 2500.
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(a) Temperature

(b) Temperature. Close-up view of shear flow instability.

(c) Velocity in x-direction. Close-up view of shear flow instability.

(d) Velocity iny-direction. Close-up view of shear flow instability.

Figure 4.13:Unsteady flowfield atRe= 5000.
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(a) Temperature

(b) Velocity in x-direction

(c) Velocity iny-direction

Figure 4.16:Eigenvectors of mode-a. Only the real part is shown.
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Figure 4.17:Spurious mode. Density eigenvector of mode-c.

whose flowfield includes shock waves. The frequency and the spatial wavelength of the eigen-

mode are similar to those of the vortex-street of unsteady flows atRe= 5000. However, the

spurious mode due to the shock wave also appeared as a result of the global linear stability

analysis. Therefore, when a flowfield to be analyzed includes a shock wave, the shock wave

needs to be stably solved and we must carefully check whether the obtained results are caused

by numerical or physical instability.

4.6 Summary of this chapter

In this chapter, we proposed and validated a numerical method of the global linear stability

analysis for compressible viscous flows.

First, the time-stepping method and the shift-invert method were compared. The results

showed that both method produce qualitatively same results and the results coincide with the

results of previous studies. In terms of a computational time cost, the cost of the time-stepping

method can be higher than that of the shift-invert method because the time-marching of flow

simulations is computationally expensive. However, the shift-invert method needs much com-

putational memory because it forms and inverts a matrix, whereas the time-stepping method
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does not need much memory because it does not form any matrix. If the the number of grid

points is large, which leads large dimensions of the Jacobian matrixA, the memory requirements

of the shift-invert method may exceed the available memory. In addition, the time-stepping

method has the advantage of simplicity of its coding.

Then, we proposed and validated a method for the global linear stability analysis which has

the high-order spatial accuracy, memory saving properties, the applicability to various equa-

tions, and the simplicity of the coding. The method uses the time-stepping method as the spec-

tral transformation and the compact difference scheme as the discretization method for fluid

simulations. As a validation of the method, the analysis of the two-dimensional flows past a

circular cylinder was conducted. It was confirmed that the method can produce the accurate

eigenvalue and eigenvector. In addition, the influence of the outflow boundary on the global lin-

ear stability analysis was investigated. The result shows that results of the global linear stability

analysis are affected by the outflow boundary and the influence can be avoided by setting the

appropriate boundary condition.

Finally, the applicability of the proposed method to a flowfield including shock waves was

investigated. As a result, we confirmed that the proposed method is able to analyze the global

linear stability of the free shear flow behind a circular cylinder whose flowfield includes shock

waves. However, it is necessary to confirm the effect of numerical instability on the result

because spurious modes caused by shock waves also appear in the result.

The method proposed and validated in this chapter is used in the next chapter.
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5.1 Introduction

In this chapter, to elucidate the effects of compressibility on the stability of vortical flows, the

instability of a compressible cavity vortex is analyzed by the global linear stability analysis.

A cavity flow is one of the most basic vortical flows and many studies have been conducted

for several decades. The studies on the cavity flows are roughly classified into two categories.

The one is the study on the cavity tone.[13,61] The cavity tone is a noise caused by a shear flow

which separated from the cavity front edge and impinges on the cavity rear edge. The inves-

tigations of this flow are very important because the cavity tone appears in many engineering

applications although its flow physics is complex. The latter is study on the Lid-Driven Caivty

(LDC).[62–65] The LDC has a square domain which is composed of three stationary walls and

one moving wall. The LDC is often used as a test problem for validation of numerical schemes

for a fluid simulation because the its geometry and boundary conditions are very simple. Es-

pecially, results of numerical simulations conducted by Ghia et al.[62] is famous and often used

as data for a comparison. The flowfield of LDC becomes unsteady from the steady state when

the Reynolds number exceeds a certain value (called the critical Reynolds numberRecr). In this

study, we conduct the global linear stability analysis of the LDC flow because this flowfield has

unsteady phenomenon of a vortex and it is easy to conduct numerical simulations because of its

simple geometry and boundary conditions.

The velocity profiles on the walls of the cavity to be analyzed in this study are as follows:

at a moving wall

u = 16umax(x/L)2(1− x/L)2 (5.1)

v = 0 (5.2)
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at stationary walls

u = 0 (5.3)

v = 0 (5.4)

whereu andv are the velocity inx- andy-directions, andL is the length of one side of the square

cavity. The LDC defined by this velocity profile is called the regularized cavity flow.

The regularized cavity flow was investigated by Shen.[66,67] He analyzed this flow by simulat-

ing a temporal development numerically. He reported that the first critical Reynolds number ex-

ists between 10000 and 10500, and the flowfiled becomes a time-periodic flow. He also reported

that when Reynolds number exceeds about 15000, the flowfield breaks the time-periodicity.

Here, the Reynolds numberReis defined by the maximum velocity of the moving wallumax and

the length of one side of the square cavityL.

Chiba[18,19] conducted the global linear stability analysis of this flowfield. He showed the

following results,

• The critical Reynolds number isRecr = 10150and the critical Strouhal number (nondi-

mensional frequency) isS tcr = 0.332.

• Eigenmodes of this flowfiled can be classified into two modes, the one relates to instability

of an inviscid vortex and the other relates to instability of shear flows.

• The most unstable mode is an unique mode because it relates to the both of above two

instability.

• Instability of shear flows becomes unstable as the Reynolds number increases.

These results are explained in detail in Section 5.3.2. Note that the above-mentioned studies

considered incompressible viscous flows.

As indicated by Chiba,[18,19] the instability of shear flows is closely related to the unsteadi-

ness of the cavity flow. Compressibility effects on a free shear flow (or a mixing layer) were

investigated by many researchers.[3–9] Especially, Sandham and Reynolds[8] revealed that the

compressibility stabilizes a mixing layer, in other words, it suppresses the growth of the mixing

layer.
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In this chapter, to elucidate the effect of compressibility on the stability of vortical flows, we

consider the global linear stability of the regularized cavity flow including compressibility. How

the compressibility effects on shear flows relates to the stability of a cavity vortex is investigated.

5.2 Problem description and Numerical methods

In this study, the simulations of the full compressible Navier-Stokes equation Eq. 3.1 are con-

ducted in order to obtain a basic stateq̄ and analyze temporal development of a flowfield. The

time-stepping method is used as a spectral transformation method, and the linearized com-

pressible Navier-Stokes equation Eq. 3.21 is solved to obtainBζk of Eq. 2.28. The problem

description and the methods for these simulations are explained below.

5.2.1 Simulation of full compressible Navier-Stokes equation for
obtaining basic state q̄

The sixth-order compact difference scheme is used for the calculations of inviscid and viscous

terms of the full compressible Navier-Stokes equation. The eighth-order tridiagonal filter is used

in order to suppress spurious oscillations. The coefficientα f is set to 0.45. Time integration is

performed by the third-order TVD Runge-Kutta scheme.

Initial velocity fields are set to be stationary. Namely,

u0 = 0 (5.5)

v0 = 0 (5.6)

where the subscript 0 denotes the initial condition. The initial density, temperature, and pressure

are set to the values satisfying the setup Reynolds number. Here, the Reynolds number are

defined as follows:

Re=
ρ0umaxL
µ0

(5.7)

The velocity profiles on the walls follow the Eqs. 5.1-5.4. The wall temperature is assumed

to be constant atT = T0. The pressure on the walls is calculated as follows:

∂p
∂n
= 0 (5.8)
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wheren indicates a vector normal to the cavity wall. The partial difference
∂

∂n
is evaluated by

the second-order one-sided finite difference method.

For the discussions below, we define the timet as follows:

t =
t∗

L/umax
(5.9)

wheret∗ is time with units andt = 0 corresponds to the initial condition.

5.2.2 Simulation of Linearized compressible Navier-Stokes equations
for time-stepping method

The sixth-order compact difference scheme, the eighth-order tridiagonal filter withα f = 0.45,

and the third-order TVD Runge-Kutta scheme are used for the simulation of linearized com-

pressible Navier-Stokes equations.

The initial conditions are set toq′(t0) = ζ. The boundary conditions are obtained by substi-

tuting q = q̄+ q′ into the boundary conditions for the full compressible Navier-Stokes equation.

Therefore, for all the wall boundaries,

u′ = 0 (5.10)

v′ = 0 (5.11)
∂p′

∂n
= 0 (5.12)

T′ = 0 (5.13)

5.2.3 Effect of parameters on global linear stability analysis

In this section, effects of computational grids and the number of iterationsM of Arnoldi itera-

tions on the results of global linear stability analysis are investigated. The integration time∆t

of Eq. 2.23 is set to 0.1 for all the global liner stability analysis in this chapter.

grid refinement study

In order to check the grid dependency of the present analysis, the results from global linear

stability analysis with two computational grids having different grid resolution are compared.

Figure 5.1 shows a baseline grid as an example. The computational grids are non-uniform

spaced Cartesian grids. Grid points for the baseline grid are161× 161, and the minimum grid
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Figure 5.1:Computational grid.

spacing is∆min = 0.0025L. Grid points for the fine grid are241× 241, and the minimum grid

spacing is∆min = 0.001L.

Figure 5.2 shows eigenvectors of an oscillatory mode (this mode, called mode-I in this study,

is explained in Section 5.3.2 in detail) obtained by the global linear stability analysis on these

computational grids. Flow conditions and the parameters of the Arnoldi method areMa = 0.3,

Re= 10000, t = 1500andM = 800. By this comparison, we can confirm that mode shapes of

the mode-I obtained on the different computational grids show good agreement. Corresponding

eigenvalues areσ = −6.49× 10−3 andω = 2.07 for the baseline grid, andσ = −2.23× 10−2

andω = 2.07 for the fine grid, namely, the angular frequencies are same although the growth

rates are a little different. Therefore, it can be concluded that the baseline grid has enough

resolution for analyzing the qualitative properties (such as mode shapes and its frequency) of

the eigenmodes, although the grid can not obtain a correct value of a growth rate because a grid

resolution has a relatively large effect on it. In this chapter, we use the baseline grid because of

high computational cost of the fine grid.
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(a) Baseline grid (b) Fine grid

Figure 5.2:Comparison of vorticity eigenvectors of the mode-I obtained with different compu-
tational grids. Only the real part is shown.

Effect of the number of iterations M

Here, we check effects of the number of iterationsM of Arnoldi iterations on the present global

linear stability analysis. Figure. 5.3 shows the convergence properties of the growth rate and the

angular frequency of the mode-I against theM. The changes in the growth rate and frequency

are not very large, when theM is greater than 500. Figure. 5.4 shows the eigenvectors of density

at differentM. The mode shape atM = 500andM = 800are very similar. On the other hand,

compared to other two cases, the mode shape atM = 300is a little distorted. Consequently, it

is confirmed thatM = 500is enough for convergence. In this chapter,M = 800is used for all

the analyses.

5.3 Results and Discussions

5.3.1 Temporal variation of compressible cavity flow

Figure 5.5 shows the time history of the velocity and density at a reference point (x/L =

0.5, y/L = 0.75) for the case ofMa = 0.6, Re = 11000. The density is still decreasing at

t = 3000while the velocity fields converged enough att = 1500. In this flowfield, the kinetic
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Figure 5.3:Convergence property of eigenvalue of the mode-I against the number of iterations
M.

energy that the fluid received from the moving wall is transformed to thermal energy via viscous

dissipation, and then the thermal energy is absorbed by the wall. Because of the long time scale

of this process, the flowfield does not reach its steady state even att = 3000. By this process,

the effective Reynolds number of this flowfield is decreased with time (the density decreases

with time in Fig. 5.5).

Temporal variations of the eigenvalues of the mode-I are shown in Fig. 5.6. The flowfields

betweent = 1500and3000were used as basic states for this analysis. As time goes on and the

dissipation process progresses (which results in the decrease of the effective Reynolds number),

the real part of the eigenvalue decreases, namely the flowfield becomes more stable. On the

other hand, the change of the imaginary part of the eigenvalue is small. The difference between

the values att = 1000and3000is about 1%. The mode shape of the corresponding eigenvector

at t = 1000and t = 3000are almost same (not shown here, they are similar distribution to

Figs 5.14(f) and 5.15(f) shown later). Therefore, it is concluded that the qualitative properties of

the mode-I do not change in time betweent = 1000and3000, while the growth rate decreases.

The objective of this study is to elucidate the effect of compressibility on the global stability
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(a) M = 300

(b) M = 500

(c) M = 800

Figure 5.4:Density eigenvectors atM = 300, 500, and 800. Only the real part is shown.
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Figure 5.5:Time history of densityρ and velocity inx-directionu at Re= 11000, Ma = 0.6.
Sampling point isx/L = 0.5, y/L = 0.75.

of vortical flows by observations of eigenmodes at various Mach numbers. Therefore, it is

preferred that the effective Reynolds number of the flow do not change from the initial condition.

In this study, the flowfield at the timet = 1500, when the velocity fields converge enough, is

used as the basic statēq.

5.3.2 Flowfields at low mach number

In this section, we confirm that the results of incompressible flow analysis conducted by Chiba[18,19]

can be reproduced by our compressible flow analysis at a low Mach number condition, and re-

view the results of Chiba’s analysis by comparing with our results.

Steady and periodic flows

Figure 5.7 shows the flowfield atMa = 0.05 andRe = 6000. The flowfield is steady, and a

main vortex at the central region and sub vortices at corners are generated by the moving wall.

Previous studies[18,19,67] have showed that the critical Reynolds numberRecr of this flow exists

between 10000 and 10500. Our results also showed that the flowfield becomes a periodic flow

from a steady flow when Reynolds number is larger than about 10000.
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Figure 5.6:Temporal variation of the eigenvalue of the mode-I atRe= 11000, Ma = 0.6.

The frequency distribution of the velocity inx-direction of the unsteady flow atRe= 10750

is shown in Fig. 5.8. This result clearly indicates that the flow is oscillatory and has a single

frequencyS t ≡ f L/umax = 0.33. In this study, we conduct detailed analysis of this unstable

mode which induces this oscillation.

Results of global linear stability analysis

The eigenvalue distribution atRe = 10000obtained by the global linear stability analysis is

shown in Fig. 5.9. The Strouhal number, which is calculated byS t= ω/(2π), of the least stable

oscillatory mode is 0.33. This Strouhal number coincides with that of the oscillatory flow at

Re= 10750shown in Fig. 5.8. Therefore, it is inferred that the oscillation of the flow is induced

by this mode which is unstable when the Reynolds number is high enough. For convenience of

explanations, we call this oscillatory mode (whose Strouhal number is about 0.33) the mode-I.

In addition, a following relation between relatively low stable modes in Fig. 5.9 can be found.

ωm = m× 0.7 (m= 0, 1,2, · · · ) (5.14)

Chiba[18,19] also found this relation and he showed that eigenmodes of the regularized cavity

flow can be classified into the following modes,
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Figure 5.7:Steady flow atRe= 6000, Ma = 0.05, t = 1500.
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• Modes of inviscid Couette flows (C mode): This mode appears at the core region of the

main vortex, where the velocity profile shows linear variation, in other words, the region

of a constant vorticity.

• Modes of shear flows (S mode): This mode appears at the region of shear flows around the

vortex core of the main vortex, where the velocity profile shows a curve with a significant

change caused by the walls.

Moreover, he revealed that the relation of Eq. 5.14 can be explained as the C mode, as follows.

In the case of an inviscid vortex whose vorticity is constant in the entire region of the flow, its

eigenvectors and corresponding angular frequencies are described as follows,[18,19,68]

φm, j = C0exp [i(ωmt +mθ)] Jm(αm jr) (5.15)

ωm = mΩ (m= 0, 1,2, · · · ) (5.16)

wherer andθ form the cylindrical coordinates (r, θ). φm, j is an eigenvector of a stream function,

m is a wavenumber in the circumferential direction,j is the number of nodal circles,Jm is the

m-th order Bessel function,αm j is the j-th solution ofJm(x) = 0,Ω is the vorticity,ωm is the an-

gular frequency, andC0 is an arbitrary constant. The C mode has periodicity in circumferential
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direction and the relation of its wavenumber and angular frequency is described by Eq. 5.16.

In fact, the Strouhal number of the mode-I coincides with that of (m,Ω) = (3, 0.7), namely

S t =
ω3

2π
=

3× 0.7
2π

≃ 0.33. Moreover, the vorticity of the core region of the main vortex is

estimated toΩ ≃ 0.7 by examining the velocity profile of Fig. 5.7(b) .

Characteristics of the mode-I

If an imaginary part of a eigenvalue has non zero value, the eigenmode periodically changes

in time. This periodic change of the real part of the eigenvector is calculated by the following

equation:

q̂(x, y, t) = C0exp(σt)
[
q̂r(x, y)cos(ωt) − q̂i(x, y)sin(ωt)

]
(5.17)

whereC0 is an arbitrary constant. In order to observe the time variation of the mode-I, the

eigenvector of the vorticity atRe= 6000and 10000 are calculated by Eq. 5.17, and shown in

Figs. 5.10 and 5.11. The coefficientC0exp(σt) is set to 1, namely the growth (or damping) of

the oscillation is ignored here for convenience.

In the case ofRe= 6000, there is a periodical structure in the circumferential direction at the

core region of the main vortex. This structure is caused by the C mode, and it is confirmed that

the circumferential wavenumber ism= 3. In addition, the distribution of alternating vorticities

caused by the S mode appears at the region of shear flows around the core region of the main

vortex. These structures at the region of shear flow ofRe= 6000and 10000 are almost same.

Therefore, these modes are believed to be the identical mode, namely the mode-I. However, in

the case ofRe= 10000, the structure of the C mode becomes weaker and the structure of the S

mode becomes dominant. Consequently, the mode-I is the mode which is related to both of the

instabilities of the core region of the main vortex (C mode) and the shear flow around the core

region (S mode). In addition, the mode-I becomes unstable and induces the periodic oscillation

of S t= 0.33to the flow due to the destabilization of the region of the shear flow as the Reynolds

number increases.

The time sequential figures of the mode-I in Figs. 5.10 and 5.11 indicate that the structures

of the C and S modes rotate in the same direction as the rotational direction of the main vortex.

The angular frequency of the C mode toward the center of the main vortex is estimated to 0.7,

and it is same as the vorticity of the main vortex. The angular frequency of the S mode is
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estimated to 0.26 which is slower than that of the C mode. These results also agree very well

with the results of the incompressible flow analysis conducted by Chiba.[18,19]

5.3.3 Changes of mode-I by Mach number

Figure 5.12 shows the change of the eigenvalue of the mode-I by the Mach and Reynolds num-

bers. In the case of all the Mach numbers, the stability of the mode-I decreases as the Reynolds

number increases. On the other hand, the mode-I is stabilized as the Mach number increases.

Especially, in the case ofMa = 0.6, the mode-I is highly stabilized, and the critical Reynolds

number that is the Reynolds number at which the growth rate becomes positive, is high. Eigen-

vectors of the vorticity for various Reynolds numbers, atMa = 0.3 and 0.6, are shown in

Fig. 5.13. In the both cases ofMa = 0.3 and 0.6, structures of regions of shear flows (S mode)

become more unstable as the Reynolds number increases, as well as the case ofMa = 0.05dis-

cussed in Section 5.3.2. Figures. 5.14 and 5.15 show eigenvectors of the pressure and density

for various Mach and Reynolds numbers. The change of pressure eigenvectors by the Reynolds

number is similar to the change of the vorticity eigenvector. However, the magnitude of the

pressure perturbation of this mode hardly changes by the Mach number.† In contrast, the den-

sity eigenvectors change by the Mach number. As the Mach number increases, the structures

of the region of the shear flow (S mode) become dominant and its magnitudes become signif-

icantly large while this mode becomes stabilized. Therefore, it is inferred that the stabilizing

effect of the increasing Mach number is caused by the density perturbation. In the next section,

we investigate how the density perturbation stabilizes the mode-I.

5.3.4 Stabilizing effect of compressibility

In this section, the dynamics of vortices is considered, in order to clarify the stabilizing effect of

the density perturbation. In two-dimensional compressible viscous flows, the spanwise vorticity

ωz is governed by the following vorticity equation:

Dωz

Dt
= −ωz

(
∂u
∂x
+
∂v
∂y

)
︸            ︷︷            ︸

vorticity−dilatation

+
1
ρ2

(
∂p
∂x
∂ρ

∂y
− ∂p
∂y
∂ρ

∂x

)
︸                    ︷︷                    ︸

baroclinic torque

+
1
Re

(
∂2ωz

∂x2
+
∂2ωz

∂y2

)
︸                 ︷︷                 ︸

viscous diffusion

(5.18)

†The eigenvectors are normalized to unit length. Namely,
√

q̂ · q̂ = 1. In addition, the number of elements of all
the vectors in this section is same. Therefore, we can compare the magnitudes of the eigenvectors of different
figures.
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Figure 5.10:Temporal change of vorticity eigenvector atRe= 6000,Ma = 0.05. Eigenvalueλ
isσ = −4.73× 10−2, ω = 2.11. Only the real part is shown.
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Figure 5.11:Temporal change of vorticity eigenvector atRe= 10000,Ma = 0.05. Eigenvalue
λ isσ = −4.86× 10−3, ω = 2.08. Only the real part is shown.
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Figure 5.12:Changes in eigenvalues of the mode-I by Reynolds and Mach numbers.

where,

ωz ≡
∂u
∂y
− ∂v
∂x

(5.19)

Dωz

Dt
≡ ∂ωz

∂t
+ u
∂ωz

∂x
+ v
∂ωz

∂y
(5.20)

The first term on the right hand side of Eq. 5.18 is a vorticity-dilatation term which represents

an effect of dilatation and contraction of a vortex. If a vortex is contracted, its vorticity becomes

large, and if the vortex is dilated, its vorticity becomes small. The second term is a baroclinic

torque which represents the effect of misaligned gradients of the pressure and density. If there

are misaligned gradients of the pressure and density, the unequal acceleration occurs and it

results in a generation of the vorticity. These terms are caused by the density change. Therefore

they indicate effects of the compressibility. The third term represents a dissipation effect of the

viscosity.

Here, we consider distributions of the spanwise vorticityω′z, the vorticity-dilatation termS′vd,

and the baroclinic torqueS′bt caused by perturbationsq′ superimposed on the basic stateq̄.
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(a) Ma = 0.3, Re= 6000. Eigenvalueλ is
σ = −5.00× 10−2, ω = 2.09

(b) Ma = 0.3, Re= 10500. Eigenvalueλ is
σ = 6.03× 10−5, ω = 2.07

(c) Ma = 0.6, Re= 6000. Eigenvalueλ is
σ = −5.21× 10−2, ω = 2.05

(d) Ma = 0.6, Re= 12000. Eigenvalueλ is
σ = 4.30× 10−3, ω = 2.04

Figure 5.13:Changes in vorticity eigenvectors of the mode-I by Reynolds and Mach numbers.
Only the real part is shown.
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(a) Ma = 0.05, Re = 6000.
Eigenvalueλ isσ = −4.73×10−2,
ω = 2.11

(b) Ma = 0.05, Re = 10500.
Eigenvalueλ is σ = 4.41× 10−3,
ω = 2.08

(c) Ma = 0.3, Re= 6000. Eigen-
value λ is σ = −5.00 × 10−2,
ω = 2.08

(d) Ma = 0.3, Re = 10500.
Eigenvalueλ is σ = 6.03× 10−5,
ω = 2.07

(e) Ma = 0.6, Re= 6000. Eigen-
value λ is σ = −5.21 × 10−2,
ω = 2.05

(f) Ma = 0.6, Re= 12000. Eigen-
valueλ is σ = 4.30× 10−3, ω =
2.04

Figure 5.14:Changes in pressure eigenvectors of the mode-I by Reynolds and Mach numbers.
Only the real part is shown.
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(a) Ma = 0.05, Re = 6000.
Eigenvalueλ isσ = −4.73×10−2,
ω = 2.11

(b) Ma = 0.05, Re = 10500.
Eigenvalueλ is σ = 4.41× 10−3,
ω = 2.08

(c) Ma = 0.3, Re= 6000. Eigen-
value λ is σ = −5.00 × 10−2,
ω = 2.08

(d) Ma = 0.3, Re = 10500.
Eigenvalueλ is σ = 6.03× 10−5,
ω = 2.07

(e) Ma = 0.6, Re= 6000. Eigen-
value λ is σ = −5.21 × 10−2,
ω = 2.05

(f) Ma = 0.6, Re= 12000. Eigen-
valueλ is σ = 4.30× 10−3, ω =
2.04

Figure 5.15:Changes in density eigenvectors of the mode-I by Reynolds and Mach numbers.
Only the real part is shown.
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These terms generated by the perturbations are indicated by the following equations:

ω′z =
∂u′

∂y
− ∂v

′

∂x
(5.21)

S′vd = −ω̄z

(
∂u′

∂x
+
∂v′

∂y

)
− ω′z

(
∂ū
∂x
+
∂v̄
∂y

)
(5.22)

S′bt =
1
ρ̄2

(
∂p̄
∂x
∂ρ′

∂y
− ∂p̄
∂y
∂ρ′

∂x
+
∂p′

∂x
∂ρ̄

∂y
− ∂p

′

∂y
∂ρ̄

∂x

)
(5.23)

where, the overbar and prime denote variables of the basic state and perturbations, respectively.

These termsω′z, S′vd, andS′bt caused by the linear instability of the mode-I are calculated by

substituting the eigenvectorq̂ into q′. Distributions of theω′z, S′vd, andS′bt at close to the critical

Reynolds number, are shown in Figs. 5.16 and 5.17 forMa = 0.05and 0.6, respectively.

At both Mach numbers of 0.05 and 0.6, the effect of dilatation (indicated by the vorticity-

dilatation termS′vd) is found in the region of shear flows, and its distribution is similar to the

spanwise vorticityω′z (the alternating distribution). In addition, the vorticity-dilation term has

the opposite signs to the spanwise vorticity in many regions. This means that he vorticity-

dilatation term attenuates vorticity perturbations. It has been known that this stabilizing effect

of the vorticity-dilatation term also appears in a compressible mixing layer.[8]

At Ma = 0.05, the magnitude of the baroclinic torqueS′bt is much smaller than that of the

vorticity-dilatation term, and therefore negligible. In contrast, atMa = 0.6, the baroclinic

torque has the comparable magnitude to the vorticity-dilatation term. The baroclinic torque

distributes to the region of shear flows and has large values especially near reattachment points

of the base flow̄q. The distribution of this term does not form the alternating distribution unlike

the spanwise vorticity and the vorticity-dilatation term. It is inferred that the spanwise vortices

are deformed to elongated shapes by this baroclinic torque distribution.

The mode-I can be considered as an incompressible instability mode because it appears in

low Mach number flows, and therefore it is inferred that the alternating distribution of vortices,

which sustains the vortices themselves like the Kármán vortex-street, is important to destabilize

the mode-I. Therefore, the above deformation effect on the spanwise vorticies of the baroclinic

torque results in the stabilization of the mode-I, because it breaks such alternating distributions

of vorticies. Moreover, the difference between the low Mach number flow (Ma = 0.05) and

the higher Mach number flow (Ma = 0.6) is the magnitude of the baroclinic torque. Thus, it

is concluded that the stabilization of the mode-I with the increasing Mach number is caused by
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the baroclinic torque which deforms the spanwise vortices.

5.4 Summary

In this chapter, in order to elucidate effects of compressibility on the global stability of the

cavity vortex, the global linear stability analyses of the compressible regularized cavity flow for

various Mach and Reynolds numbers were conducted.

The result of the global linear stability analysis at the low Mach number condition shows

good agreement with the results of incompressible flow analysis conducted by Chiba.[18,19] It is

summarized as follows:

• The flowfield becomes an oscillatory flow when the Reynolds number exceeds a certain

value (aboutRe= 10000).

• The oscillation is caused by a linear instability mode (called mode-I in this study).

• Linear instability of the regularized cavity flow can be classified into two modes, namely

the C and S modes. The C mode relates to instability of a inviscid vortex and exists in the

core region of the main vortex. The S mode relates to instability of shear flows and exists

in outer regions of the core region of the main vortex.

• The mode-I has the instability nature of both of the C and S mode.

• Instability of the S mode becomes unstable and dominant as the Reynolds number in-

creases.

Then, we analyzed the effect of the compressibility on instability of the mode-I. We compared

the eigenvectors of the mode-I for various Mach numbers. In addition, we investigated the

distributions of two terms of the vorticity transport equation, namely, the baroclinic torque and

the vorticity-dilatation term which describe compressibility effects.

• Density perturbations in the region of shear flows become significant as the Mach number

increases, whereas the velocity and pressure perturbations do not change significantly.

• In the region of shear flows, the vorticity-dilatation term attenuates spanwise vortices,

namely,this term has stabilizing effect. This result is similar to results of previous study

on a compressible mixing layer.[8]
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5 Global Linear Stability Analysis of Compressible Cavity Vortex

(a) Spanwise vorticityω′z (b) Closeup view of spanwise vorticityω′z

(c) Baroclinic torqueS′bt (d) Closeup view of baroclinic torqueS′bt

(e) Vorticity-dilatation termS′vd (f) Closeup view of vorticity-dilatation
termS′vd

Figure 5.16:Distributions ofω′z, S′bt, andS′vd. Ma = 0.05, Re= 10500.
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(a) Spanwise vorticityω′z (b) Closeup view of spanwise vorticityω′z

(c) Baroclinic torqueS′bt (d) Closeup view of baroclinic torqueS′bt

(e) Vorticity-dilatation termS′vd (f) Closeup view of vorticity-dilatation
termS′vd

Figure 5.17:Distributions ofω′z, S′bt, andS′vd. Ma = 0.6, Re= 12000.
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• The magnitude of the baroclinic torque becomes large as the Mach number increases,

while that of the vorticity-dilatation term does not greatly change.

• In the region of shear flows, the baroclinic torque deforms spanwise vortices to elongated

shapes.

• In conclusion, the stabilizing effect of the compressibility on the cavity vortex is caused

by the increase of the deformation effects of the baroclinic torque.

Finally, it should be emphasized that the above results are achieved by the global linear stability

analysis which is able to analyze the global stability of non-parallel, compressible, and viscous

flows.
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The results of this thesis are summarized as follows:

High-resolution and matrix-free method of the global linear stability analysis for
compressible viscous flows

In Chapter 4, we discussed about the desired properties of the numerical method for the future

global linear stability analysis, and proposed the method that satisfies the properties.

First, we discussed about two spectral transformation methods, namely, the time-stepping

method and the shift-invert method. In terms of computational time cost, the time-stepping

method can be more computationally expensive than the shift-invert method, because the time-

stepping method needs to solve the time development of fluids. By contrast, the time-stepping

method needs considerably less computational memory than the shift-invert method, because

the time-stepping method does not form any matrix explicitly, namely, this method is matrix-

free. The memory requirement of the shift-invert method is proportional to the square of di-

mensions of the Jacobian matrixA, since this method forms the matrixA explicitly. Therefore,

the memory requirement of the shift-invert method readily exceeds the available memory of the

computer when the number of computational grid points for fluid simulations is large, which

leads a large dimension of the Jacobian matrixA. Especially in the case of three-dimensional

flow analysis, it might be crucial. In addition, to write the code of the time-stepping method is

easy because the routine of conventional CFD codes is used. Therefore, we concluded that the

time-stepping method is promising for future studies that analyze three-dimensional flows.

Next, we proposed and validated the numerical method of the global linear stability analysis

for compressible viscous flows that has the high-order spatial accuracy and uses a matrix-free

method. We consider that the high-order spatial accuracy and the low memory requirement

are necessary properties of the method for future global linear stability analyses because future
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studies are believed to treat small spatial structures and perturbations such as the aeroacous-

tics and turbulent flows. The proposed method uses the time-stepping method as the spectral

transformation method and the compact difference scheme as the method for fluid simulations.

Therefore, the proposed method has good properties of the compact difference scheme and the

time-stepping method, namely, the high-order spatial accuracy and the low memory require-

ment, as well as the applicability to various equations and the simplicity of the coding.

Then, for the validation of the proposed method, two-dimensional compressible viscous flows

past a circular cylinder was analyzed by this method. The results showed good agreement

with previous studies. The superimposition of the most unstable mode and the steady state

depicted the flowfield that includes the Kármán vortex-street. In addition, effects of an outflow

boundary was investigated. It was found that the global linear stability analysis is affected by

an outflow boundary and the influence can be avoided by proper boundary conditions such as a

non-reflecting boundary condition and to locate the boundaries far from a body.

Finally, we investigated the applicability of the proposed method for flowfields including

shock waves. The applicability of the global linear stability analysis for the flowfields including

shock waves has not been investigated before. This study analyzed a global linear stability of

a supersonic flowfield around a circular cylinder. We confirmed that the proposed method can

analyze the global linear stability of wake flows behind the cylinder. Consequently, it was found

that the proposed method is able to analyze global linear stability of supersonic flows including

shock waves. However, the global linear stability analysis of flowfields including shock waves

needs to be paid attention to a numerical instability due to shock waves.

Compressibility effects on the global linear stability of a vortex

In Chapter 5, to elucidate compressibility effects on the global linear stability of a vortex, the

compressible cavity vortex was investigated by the method of global linear stability analysis

proposed in Chapter 4.

First, it was confirmed that the results of the global linear stability analysis of incompressible

cavity flows are reproduced by our analysis of the compressible cavity flow. The instability

of the cavity vortex is classified into two modes, namely, C and S modes which relate to an

inviscid vortex located in the core region of the main vortex and a shear flow located in the
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outer region of the inviscid vortex, respectively. The cavity flow becomes an oscillatory flow

when the Reynolds number exceeds a certain value. This oscillatory flow is caused by a linear

instability mode called the mode-I in this study. The mode-I is related to both of the C and

S modes, and the S mode, namely, the instability of shear flows rapidly grows and becomes

unstable as the Reynolds number increases.

Then, we revealed the stabilizing effects of the compressibility on the cavity vortex by com-

parisons of the eigenmodes at various Mach number conditions. The global linear stability

analysis showed that the mode-I becomes stable as the Mach number increases. The eigenvec-

tor results indicated the density perturbation becomes significant as the Mach number increases,

whereas the velocity (vorticity) and pressure perturbations do not so greatly change. In addi-

tion, the further investigations on the compressibility effect was conducted by analyzing the

distributions of the vorticity-dilatation and the baroclinic torque terms of the vorticity trans-

port equation. These terms indicate the compressibility effect on the generation of spanwise

vortices. It was found that the vorticity-dilatation term attenuates spanwise vortices in the re-

gion of shear flows. In other words, the dilatation has a stabilizing effect. It has been known

that this stabilizing effect of the vorticity-dilatation term also appears in a compressible mixing

layer. However, the magnitude of the vorticity-dilatation do not so greatly change by the Mach

number. We revealed that in contrast to the vorticity-dilatation term, the magnitude of baro-

clinic torque becomes large as the Mach number increases, and the baroclinic torque deforms

spanwise vortices generated in the region of shear flows to elongated shapes. Therefore, it is

concluded that the stabilizing effect of the compressibility on the cavity vortex is caused by the

increase of the deformation effects of the baroclinic torque.

Concluding remarks

In conclusion, this thesis developed the promising method of the global linear stability anal-

ysis for compressible viscous flows, and revealed the stabilizing effect of compressibility on

vortical flows by using the developed method. The results of this thesis show that the global

linear stability analysis is a helpful analytical method for understanding transition and unsteady

phenomena.
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ない部分が多いと感じておりますが，これらの基本的な姿勢を大切にし，今後も精進して

まいります．本当にありがとうございました．

特任助教の矢野良輔先生にはスーパーコンピュータの利用法や，興味深い論文を教えて

頂きました．

先輩であり，現宇宙航空研究開発機構 (JAXA)の金森正史さんからは，特に CFDにつ

いて基礎的なことから応用にいたるまで多くの事を学びました．金森さんから学んだ知識

なしに本研究は成し得なかったと思います．ここに感謝の意を表します．

研究で何か悩むことがあれば最初に相談するのは同期の渡邉保真君でした．渡邉君に相

談することで解決したことも多く，大変感謝しています．また，同じく同期の濵﨑勝俊君

とはよく息抜きに付き合ってもらいました．２人の仲間がいたことで５年間の研究生活を

楽しむことができたと思います．

本研究にご協力頂いた多くの先輩，鈴木研究室の皆様に深く感謝するとともに厚くお礼

申し上げます．

最後に，大学院生活を支えてくれた両親と家族に感謝の意を表したいと思います．


