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1 Introduction

1.1 Background
1.1.1 Flow stability

A flow stability analysis is one of the most important subjects in fluid dynamics because flow
instability often appears in practical flows. For example, if an object has a symmetry shape, a
symmetric and steady flow around the object is apparently a candidate solution of its governing
equations. However, in practical flows, the flow is usually asymmetry and unsteady, and often
includes vortex formations. This is because the symmetric solution is unstable. More specifi-
cally, if the symmetric flow is perturbed, then the perturbations grow in time, the flow is broken,
and the symmetric flow state transits to other flow states. The stability analysis of flow is the
analysis in terms of such transitions, and it has been investigated from #800s.

The flow stability is important for engineering purposes. For example, vortices generated by
cylinder-shaped structures, which is called Karman vortices, make noise. Therefore, reduction
of the loud noise caused by the cylinder-shaped structures is important for developments of
automobiles, trains, buildings, and so on. To reduce the noise, stabilifex) ef contriving
the shapes on such flows have been investigdtédn the other hand, vortices also have good
effects, namely, momentum and scalar transports. Th&setecan be useful for a mixing of
combustion air and fuels. By the use of vortex breakdowns which induces small vortices into
a flowfield of a combustor, the mixing of the fuels are enhanced. Therefore, improvements
of the combustion féiciency by the generations and breakdowns of vortices have been heavily
investigated. However, it has been found that in the case of compressible flows, a mixing layer
is stabilized by the compressibility! Thus, the study of the compressibilitffects on the
stability of vorical flows is important for the development of the method to enhance the mixing

in compressible flows.
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The compressibility #ects on the growth rate of a mixing layer have been investigated by
many researchefs® Their results showed that if the convective Mach number is greater than
about 0.3, the compressibilityffects appear and the growth rate of a mixing layer rapidly de-
creases, and if the convective Mach number is greater than about 0.6, the flow becomes three-
dimensional. Interestingly, a conventional linear stability analysis of a compressible mixing
layer shows good agreement with experimental results which show the decrease of the growth
rate by increasing of the Mach number. The linear stability analysis conducted by Sandham
and Reynold8 revealed that the baroclinic and dilatation&eets, which are caused by the
compressibility, stabilize a mixing layer and deform the shape of vortices.

As mentioned above, it was demonstrated that the linear stability analysis is important and
helpful for investigating the nature of flowfields. However, to derive tractable problems, the
conventional linear stability analyses usually assume that a flowfield is a parallel flow, although
most practical flows are not parallel. To elucidate the practical flow accurately, it is necessary
to employ the stability analysis without such an assumption. In this study, we will conduct the

linear stability analysis which does not employ the assumption about a geometry of flowfields.

1.1.2 Global linear stability analysis

The linear stability analysis with no assumption about the flow geometry is called the global
linear stability analysis. The global linear stability analysis is contrasted with the conventional
local linear stability analysis.

The local linear stability analysis assumes that the variation of perturbations is written by the

following form:

q(x y, t) = aly)exp@t — X (1.1)
where(x, y), t, andAt — ax denote spatial coordinates, time, and a phase function, respectively.
This means that the conventional local linear stability analysis assumes a parallel flow expressed

by a function of only one spatial variabye

On the other hand, the global linear stability analysis assumes the following form:

q(x y, 1) = a(x, y)exp(t) (1.2)
This means that the global linear stability analysis permits the form of the perturbation (mode

shape)q to be expressed by two (or three in the case of three-dimensional analysis) spatial
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variables. Thus, the global linear stability analysis can produce more accurate results than the
conventional local linear stability analysis.

In the global linear stability analysis, the terigf, y) anda of Eq. 1.2 are found. Both terms
can be a complex number. The real and imaginary partg»fy) represent the mode shape.
The real part oft, denotedr hereinafter, represents a growth rate, and the imaginary part of
denotedw hereinafter, represents an angular frequency.

Because the global linear stability analysis can deal with any flow geometry, this method can
be used for a variety of practical flows such as flows appeared in the engineering. Moreover,
this method is also helpful for developing flow control techniques, which is closely related to
the flow stability!*? It is believed that the global linear stability analysis can be used to find the
location for controlling global instabilities of flowfields, and to develop reduced-order models

(ROMs) for flow-control systemi!

1.1.3 Numerical methods for global linear stability analysis

There are two numerical methods for calculating the mode sbigpe), the growth rater, and
the angular frequenay.

The one is the residual algorith#.*3 This method performs the temporal integration of
the governing equations of fluids, and then extracts the mode shape, the growth rate, and the
angular frequency from the temporal variation of the perturbations by some methods such as
a least-squares method. This method is relatively easy to perform because it uses the routine
of conventional CFD (Computational Fluid Dynamics) and its computational cost is cheap.
However, this method can calculate only one mode, namely the most unstable or least stable
mode.

The other is the method that solves an eigenvalue problem. This method firstly derives the
following eigenvalue problem Eq. 1.3 by substituting the perturbation Eq. 1.2 to its governing

equations, and then solves it.
AQ =19 (1.3)

Unlike the residual algorithm, this method can calculate multiple modes although its computa-

tional cost is relatively expensive. In this study, we will use this method.
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The numerical methods for solving the eigenvalue problem Eq. 1.3 of the global linear sta-
bility analysis can be classified into two categories, namely the matrix-forming m¥théd
and the matrix-free methdtf-2% The former method constructs the mat/iof Eq. 1.3, which
is a huge matrix and represents a discretization of operators of linearized governing equations.
On the other hand, the latter method does not construct any matrix, and therefore the memory
requirement of this method is significantly smaller than that of the matrix-forming method.

A time-stepping method is one of the matrix-free method which was introduced by Eriksson
and Rizzil?® They developed this method to analyze the stability of numerical schemes for
solving the compressible Euler equations. Then, GHKidd extended this method to incom-
pressible viscous flows and employed it to analyze the linear stability of the two-dimensional
cavity and circular cylinder wake flows. Therefore, this method is also called Chiba’s method.
Takeuchi et a?l successfully applied the time-stepping method to the three-dimensional in-
compressible flow analysis of a round jet. Tezuka and SifZukiso successfully analyzed the
three-dimensional incompressible flows around a spheroid by time-stepping method.

The major feature of the time-stepping method is that this method is based on a conventional
CFD. A spectral transformation, which is necessary to solve an eigenvalue problem with an
iterative method and (explained in Chapter 2), is performed by using a routine for a temporal
integration of a CFD code. Therefore, the code of global linear stability analysis with the
time-stepping method can be developed by adding a small modification to a conventional CFD
code. Because of this simplicity of coding and the low memory requirement, the time-stepping
method is highly practical for science and engineering purposes.

In the recent ten years, the number of studies on the global linear stability analysis has been
increasing® 2" with the rapid development of computers. However, the number of studies on
compressible flows is still limited. Especially, the analysis of flowfields including shock waves
is not found except for the work of Crouch etll1”) Therefore, a standard method of the
global linear stability analysis for compressible flows has not been established yet. The global
linear stability analysis of unsteady compressible flows is important because they appear in
many practical problems, such as compressible turbulent flows, the aeroacoustics, and wake

flows behind a supersonic vehicle.

10



1 Introduction
1.2 Objectives

Based on the above discussions, the objectives of this study are as follows:
e To develop a method of the global linear stability analysis for compressible flows
¢ To elucidate compressibilityfiects on the global linear stability of a cavity vortex

In terms of the first objective, we will develop a numerical method of the global linear stability
analysis which has the high-order spatial accuracy and the low memory requirement. This aims
at constructing the method for the turbulent and aeroacoustics analyses which are believed to be
desired for future works. The second objective is related to the stabilifiagt®f compress-
ibility on shear layers which was mentioned above. If the compressibiligcs on a cavity
vortex is well understood, it is also helpful for the understanding of the stability of shear layer
flows because the stability of the cavity flows is closely related to it, which will be described in
Chapter 5.

In addition, through this thesis, we would like to show that the global linear stability analysis

Is helpful for understanding transition and unsteady phenomena.

1.3 Outline of this thesis

The outline of this thesis is as follows. First, in Chapter 2, theoretical consideration and numer-
ical methods of the global linear stability analysis are explained. Then, numerical methods for
fluid simulations are presented in Chapter 3. The global linear stability analysis is achieved by
combining the methods of Chapters 2 and 3. In Chapter 4, we discuss about desired properties
of a numerical method for future global linear stability analyses, and propose the method which
satisfies the properties. The proposed method will be used in Chapter 5. In Chapter 5, the
global linear stability of a compressible cavity vortex is conducted. Compressilfiiggte on

the global linear stability of a cavity vortex is investigated in detail. Finally, in Chapter 6, the

results of this thesis are summarized.

11



2 Global Linear Stability Analysis

2.1 Formulation of linear stability analysis

A governing equation of fluids, such as compressible Navier-Stokes and Euler equations, can

be written in the following form:

dg
5= 1@ (2.1)

Because the global linear stability analysis is a numerical analysis, the governing equation

Eq. 2.1 is discretized. Thus,is a vector of fluid variables, such as

[01, . - - -, Oan1, Glan ] (2.2)

o]
|

[o1, Uz, V1, P1, - - -, N5 UNs VNS ION]T (2.3)

for the case of two-dimensional compressible flow. The choice of fluid variables has an arbi-
trariness. The subscripis2,..., N of Eq. 2.3 denote the index of a computational grid &hd
is the total number of the grid points. The subscriftg, ..., 4N of Eg. 2.2 correspond to a

global numberingf is a vector-valued function as following:

f=[f(0n,-..,09nN), 2001, .-, Aan)s - - s Fanca(Qas - - -5 Qan)s fan(Qas - - - CI4N)]T (2.4)

When small perturbationg are superimposed to the basic stqt¢he perturbations satisfy

the following equation:

do .
e Aq (2.5)
whereA is a Jacobian matrix defined by,
A= (ﬁ) (2.6)
dq a=q

12



2 Global Linear Stability Analysis

and, can be written in a matrix form,

ofy ofy
o0 Ol
A=+ 0 (2.7)
dfan 0fan
o O

When the temporal variation of the Jacobian matkixs assumed to be small enough, the

following decomposition can be applied to the perturbatigns
q(x.y.t) = a(x y)exp(t) (2.8)
Finally, the eigenvalue problem is obtained by substituting Eq. 2.8 to Eq. 2.5,
Ag =4 (2.9)

where,1 = o +iw andq = Q, +ig, are the eigenvalue and eigenvector of the makijx
respectively. The eigenvectqrdescribes the mode shape. The real paahd imaginary parb
of an eigenvalue describes the growth (or damping) rate and the angular frequency, respectively.

Consequently, the linear stability of the corresponding eigenvéatodecided as follows:

o >0 unstable
o =0 neutrally stable (2.10)

o <0 stable

Therefore, when the largest growth ratés positive, the basic statgis unstable.

The dimensions of the Jacobian matAxis proportional to the number of grid points used
in the numerical simulation (CFD), and is typical(10%) - O(1C°) for the two-dimensional
case andO(10°) - O(1(®) for the three-dimensional case. Therefore, it ifficlilt to solve
the eigenvalue problem Eq. 2.9 with direct methods because of high computational memory
requirements. Moreover, to form the Jacobian ma&iincluding boundary conditions is not
easy. In the global linear stability analysis used in this study, theBeulies are avoided
by using approaches of a JFNK (Jacobian-Free Newton-Krylov) métfloth the following
sections, the approaches which have been successfully applied by many resé&rcheits

be explained.

13



2 Global Linear Stability Analysis
2.2 Arnoldi method

The Arnoldi metho#®! is an iterative method to solve a large-scale eigenvalue problem. The
Arnoldi method assumes that the eigenvectors corresponding M thegest eigenvalues of an

matrix A can be approximated by the basis of the following Krylov subsgace

Ko=|b Ab Ab-.. AM (2.11)

b : arbitrary vector

When the orthonormal vectors &f, are denoted, and a orthogonal matri¥, is defined by

the sequence df,, the approximate eigenvectapsan be written as follows:

p=nl 1+l + - +2Zuly = VmzZ (2.12)
z2=[n,2,...,2y]" (2.13)

Here, z is a codficient vector. By substituting the approximate eigenvector Eq. 2.12 to the

eigenvalue problem Eq. 2.9, a low-dimensional eigenvalue problem is derived.
Vu AVyz= 1z (where Vy'Vy =1) (2.14)
The matrixVy," AV, are calculated by the following algorithm:

Choose an arbitrary vectay,

$1= (0 a) g (2.15)
fork=1to M
k
O = Ady — Z hixd; (2.16)
=1
hik = ;- Al (2.17)
hik = (ke - Ohen) ™2 (2.18)
Sie1 = Ora/Pirk (2.19)
end

where hjy is an element of the matriXy " AV, and forms a upper Hessenberg matdixThe

dimension of this matridd, which equals tdM, is small enough to solve by direct methods.

14



2 Global Linear Stability Analysis

The approximate eigenvectpris calculated by using the eigenvectors and eigenvalues of the
matrix H = V" AV,

M
P = Z (‘ﬁj)k§k (2.21)
k=1

where, 4; is an eigenvalue of the matrid (as explained abovel; is also an approximate
eigenvalue of the matrid). They; andyp; are the eigenvectors of the matikikand the matrix
A, respectively(tﬁj)k denotes thé-th element off;.

The description of this section follows the thesis of CHia?!

2.3 Spectral transformation

As expected from the similarity of the power method and the Krylov subspace (Eq. 2.11) of the
Arnoldi method, the Arnoldi method can obtain the eigenvalues which have a large absolute
value, and corresponding eigenvectors. On the other hand, the modes which we need to analyze
here have a large real part, which means a low stability, and do not always have a large absolute
value. Therefore, the global linear stability analysis needs the spectral transformation in order
to make the absolute value of the desired stability modes large. In this study, two methods for

the spectral transformation are introduced.

2.3.1 Time-stepping method (Chiba’s Method)

The time-stepping method was proposed by Eriksson andRizzs a method for analyzing

the stability of numerical methods for the compressible Euler equations. Later,'&htha
successfully applied the time-stepping method to the physical stability analysis of incompress-
ible flows. Therefore, time-stepping method is also called Chiba’s method. After the Chiba’s
researches, the time-stepping method has been used for many studies.

The time-stepping method uses following relation:
q'(t + At) = exp(AADJ (1) (2.22)

This equation can be obtained by integrating the Eq. 2.5 in time. Here, we introduce the trans-

15



2 Global Linear Stability Analysis

formed matrixB:
B = exp(AAt) (2.23)

whereAt is an adjustable parameter. When the eigenvalues and eigenvectors of the ndatrices

andB are denoted by the subscrigisandB, the following relations are established:
Ag = eXp(/lAAt) (224)
O = Oa (2.25)

The Eq. 2.24 can be written in the following form:

_ log|ag| +iArg (4g) +i2nm

A
A At

n=0, £1, +2, --- (2.26)

where Arg (1g) denotes the principal value of argument4, defined to lie in the interval
(-n, m]. Note that this spectral transformation method does not take account of multiple eigen-

values.

The relation between the stability and the transformed eigenvalise

|[Ag| > 1 unstable
|[1gl =1 neutrally stable (2.27)

|[A4g] <1 stable

Therefore, the absolute values of the eigenvalues of unstable modes become large in the trans-
formed matrixB. An example of the spectral transformation performed by the time-stepping

method is shown in Fig. 2.1.
Calculation of B¢,

The Arnoldi method which incorporates the time-stepping method is a matrix-free method,
namely, this method does not need to calculate and store the matraoedB. Only the matrix-

vector producB¢, for Egs. 2.16 and 2.17 is needed. The advantage of the matrix-free method
is the decrease in the required memory to store the matrix. Here, the method for calculations of
B¢, is explained.

If we substitute?, to q'(t) of Eqg. 2.22,B¢, can be calculated as,

BZ, = q(t + At) (2.28)

16



2 Global Linear Stability Analysis

2— — — — — — - - — — - — - - - — - — — -
[ [ [ [ | |
[ [ [ [
15 — -+ — — - — —t+ — — | — [ ] A =
[ [ [ [ exp(AAt)
[ [ [ [
S Bl il R I

Imaginary part
o

Figure 2.1:Example of the spectral transformation performed by the time-stepping method.
is setto 1.

whered (t + At) is calculated by integrating the linearized governing equation Eq. 2.5 in time,
with the initial conditionq'(t) = ¢,.
Alternatively, the following equation can be also used,

_ q“%t)‘a (2.29)

Blk

where q(t + At) is calculated by integrating the governing equation Eq. 2.1 with the initial
conditionq(t) = q + &£,. Here,¢ is a small positive constant for adjusting the magnitude of the
¢ which works as a perturbation. Because dfier At) includes the fect of nonlinear terms of
the full governing equations, the approximation by Eq. 2.29 is not accurate when the amplitude
of the perturbation is large.

The time-integration for performing this method can be conducted by a conventional time-

integration method of CFD, which is explained in Chapter 3.

2.3.2 Shift-invert method

The shift-invert method is often used with Arnoldi method for an eigenvalue problem, not lim-

ited to the global linear stability analysis. This method is often called the shift-invert Arnoldi
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2 Global Linear Stability Analysis

2 — — — — - B — ==
| | | | | |
| | | |
15 — —F — —F——+— —F — - A -
‘ ‘ ‘ ‘ 1/(A-o)
| | | |
e . et e S e e e
| | | | | | |
o5 L L g L
c | | | | | |
o
- | | | | \\ | |
EO‘ | £ | | | |
£ | N | | | |
(@]
g | | | | | | |
e e e
| | | | | | |
| | | | | | |
. el el el el M s i e
| | | | | | |
| | | | | | |
15, | | | | | |
| | | | | | |
2! | | | | | |
-2 15 1 05 0.5 1 15 2

Figure 2.2:Example of the spectral transformation performed by the shift-invert methex.

setto O.

method. The shift-invert method uses a following matrix:

B=(A-

Shie (2.30)

where,sis a shift parameter and is a complex number. The eigenvalues and eigenvectors of the

matrix A and the transformed matr& are connected by the following equations:

A

:/1A—S
QB:qA

! (2.31)

(2.32)

Therefore, whenl, is near thes, the absolute ofig takes a large value. An example of the

spectral transformation performed by the shift-invert method is shown in Fig. 2.2.

Calculation of B¢,

B¢ can be calculated by the following procedures. When a vaci®defined as

Bdy=Yy

the following equation is derived.

(A-sl)y =4

18
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2 Global Linear Stability Analysis

This is a system of linear equations with the large ma&ix In order to obtain the vector

y, iterative methods such as Bi-CGSTEB and GMRE$* method or direct methods for a
sparse matrix can be used fifis a sparse matrix). In this study, a direct method, the PARDISO
solver!®? is used.

In order to solve Eq. 2.34 by direct methods, or iterative methods with some preconditioning
technique, the elements of matr denoteds; ; are required. Therefore, this method is not a
matrix-free method unlike the time-stepping method, namely, this method is a matrix-forming
method. The elements; can be approximated as follow&!

a = (@ 8’:) @ (2.35)
gj=&10j + & (2.36)

wheree; is a vector which has all zeros and the value 1 in jttle location. e; ande; are the

small positive parameters and sekto= 10* ande, = 107 in Chapter 4.

2.4 Flowchart of global linear stability analysis

In Fig. 2.3, the flowchart of the global linear stability analysis is shown. The calculatiBg,of

has highest computational time cost in this flowchart, because we must perform time integra-

tions or solve the large system of linear equations in the each loop of the Arnoldi iterations.
This method needs to conduct numerical fluid simulations (CFD) in order to obtain the basic

stateq and the ternB¢, as explained above. In the next chapter, the numerical methods of CFD

are explained in detail.
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2 Global Linear Stability Analysis

Calculate basic state g1 by CFD

’

Initial values:

Set an arbitrary initial vector q1
and ¢1 = (g1 - q1) qy
Setk=1.

k=M?

yes
no
Arnoldiiterations: Egs. (2.16) - (2.19)
Perform spectral transformation and calculate B¢} .

(see Section 2.3)
k=k+ 1

!

Calculate eigenvalues and eigenvectors of the matrix H: Eq. (2.20)

'

Calculate eigenvectors of the matrix A: Eqg. (2.21)

:

Calculate eigenvalues of the matrix A: Eq. (2.26) or Eq.(2.31)

Figure 2.3:Flowchart of global linear stability analysis.
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3 Numerical Methods for Fluid
Dynamics

3.1 Gorverning equations

3.1.1 Compressible Navier-Stokes equations

Compressible Navier-Stokes equations in Cartesian coordinate (%)

In Chapters 4 and 5, the two-dimensional full Navier-Stokes equations are solved in order to ob-
tain basic stateq of the compressible viscous flows. These equations in Cartesian coordinates

(x,y) are as follows:
0Q OE dF OE, OFy

=47 _ 3.1
ot Tox "oy ox oy (31
P
_ |pu
Q= o (3.2)
e
ou ] oV
2
— (PP o AV (3.3)
pUv PVE+p
(e+ p)u] (e+ p)Vv
0 0
| Txx _ | Tyx
Ev=| ol Fu=| (3.4)
Bx | By
= Tyl + TyyV + o
Bx = Txx Txy KaX
oT
By = TyxU + TyyV + Ka—y
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3 Numerical Methods for Fluid Dynamics

where,Q is the conservative variableg, andF are the inviscid terms, and, andF, are the
viscous termsu andv are the velocity inx- andy-directions, respectively is the densityg is
the total energy per unit volume,is the pressurel is the temperature, ands the time.

Pressure is calculated as follows:

1
p=(r - D)fe- 3o+ V) 35
wherey is the ratio of specific heats and set to 1.4.
The equation of state of the perfect gas is as follows:
p=pRT (3.6)
whereR s the gas constant.
7j; is the viscous stress tensor and can be calculated as follows:
r = [Txx Txy
2
~ s+ (g~ 3) 7w
2 (u_ov)  (ou oV
3’“ ox oy K ox oy
_ (3.7)

u, N2 [0y
H\ ox oy 3 ady 0X
wherey is the dynamic viscosity is the bulk viscosity (set to 0§, is the Kronecker delta, and

. . ) 1
Sis the strain rate tensor defined By E(Vu +(Vu)T).

k is the thermal conductivity,
K= R p (3.8)

wherePr denotes the Prandtl number and is set to 0.72 in this study.

Nondimensionalization

Nondimensionalization of the equations is based on reference quabkities., Po, Teos Moo

and a characteristic physical lendth

X y u ; \Y t
X* - 7> L= T U* - 7y \/k =75 f =
L y L Us U, L/Us
. p . p LT .M
= = D T = = = —
P Poo P PU2 T 07



3 Numerical Methods for Fluid Dynamics

where superscript asterisk * denotes nondimensional variables.

By using above nondimensional vaiables, the equation 3.1 is written as the following form:

i E* F* 1 [0E;, OF;
8Q+(9 +8 = —|—+ = (3.9)
ot oxr oy Re|lox  ay
whereReis the Reynolds number and defined as follows:
wUoL
Re= 2 (3.10)

Moo
The components of the vecto@®, E*, F*, E;, andF; are same as those of Eq. 3.1 which are
replaced by nondimensional variables.

The nondimensionalized equation of the state of the perfect gas is as follows:

p' = p'RT* (3.11)
where,
1
R = VP (3.12)
Ma is the Mach number, which is defined by the reference velagityand the speed of sound
Coo:
Ma = % (3.13)

A temperature dependability of the viscous ffméent u* can be calculated by the Suther-

land’s formula:

(T
" =Cj 3.14
H 1T*+C; ( )
. 1458x10° . 1104
ST

In this study, all the simulations are performed by using the nondimensional variables. There-

fore, hereinafter in this paper, we omit the superscript asterisk * for brevity.

Compressible Navier-Stokes equations in curvilinear coordinates & n)

The Eqg. 3.9 can be transformed from Cartesian coordin@ags to curvilinear coordinates

(&,n) where,

E=¢&(xY)

n=n(xYy)
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3 Numerical Methods for Fluid Dynamics

By applying the chain rule, the Eq 3.9 takes the following form:

aQ OE 8F 1 [0E, OF,
3.15
ot o o Re[ o an] (3.19)
where,
Jo,
~ Q 1ljpu
_Q_1 3.16
Q=73 |ov (519
e
oU ] oV
~ &y &y 1|puU + &«p ~  Tx Tly 1(puV +np
E=2E+2F=2 F=2E+ XFp=2 3.17
-7 J|pvU +&p|’ -7 J|pVV +1yp (3.17)
(e+ p)U | (e+ pV
0 1 0
= é:x fy 1 é:xTxx+§Tx = 77X ny 1 NxTxx T NyTx
E,==E,+ =F, == yoy F,.= =E,+ =F, == ey 3.18
VTV YT 3| Ea+ &ty St IhvT g NxTyx + MyTyy (3.18)
ExBx + EyPy | NxBx + nyBy

The subscriptx andy denote the partial derivatives with respecixtandy, respectively. The

metricséy, &y, nx, 1y, and the metric Jacobiahare calculated by following relations:

Ex = ‘Jyn’ fy = _qu

Mx ==Y, 1y =JI% (3.19)
_q/ 1% X

J=1 3.20

/ Ye Yy ( )

where, subscripté andn denote the partial derivatives with respect tandn, respectively. For

the calculation of the derivativeg, x,, Y, andy,, the second-order centralfiirence method

Is used when the SLAU scheme is used for the calculation of inviscid terms, and the compact
difference scheme is used when the compatermdince scheme is also used for the inviscid

terms. The calculation of the inviscid terms is explained in Section 3.2.

3.1.2 Linearized compressible Navier-Stokes equations

In Chapters 4 and 5, the linearized compressible Navier-Stokes equations are solved in order to
develop the perturbatiorgg superimposed on the basic statgs time.
The linearized compressible Navier-Stokes equations can be derived by substjtatipgg’
into Eq. 3.1, canceling the terms qfand neglecting second or higher order termg'of
83? * %Ii - 80? B aaliv - aaizv

(3.21)
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3 Numerical Methods for Fluid Dynamics

’

o
;L pu + p’'u
Q= oV + oV (3.22)

'(CT + 0.5 + W) + p(C, T + UU + W)

pu + p’'u
£ - o'W + 2pul + p’

pUV + pUu'v+ p’uv ’
(pu +p'U)(CpT + 0.5(12 + V) + pU(C, T/ + UU + W)

oV +p'V
;L puv + pu'v+ p’'uv
ko= PP+ 20W + (3:23)
[(oV' + p'V)(CpT + 0.5(U? + V2)) + pU(CpT” + UL + W)
0
;o Ty
EV - T;(y >
[ U' Ty + V' Tyy + UThy + VT g+ Kﬁ +K'5 aT
[ 0
F, = i (3.24)
. Ty
U Tyy + V' Tyy + UT), yt+ VT vt Ka—y + K’ ‘Z;
where,
p = p'RT + pRT (3.25)
D AN )
v T T T B Gy T ok ay ax
2_(.0u oV
o= —ul2— - 2
Txx 3" ( OX ay) ( ax ) (3.26)
v g_ 28\/ ou 8v ou
w = 3 %ey T ax 2oy ax
__ Cpu , Cy
K = W, K = PI" (327)

and,C, andC, are the specific heat at constant pressure and constant volume, respectively.

YR R

Cp= v:m

The nondimensionalization and the coordinate transformation can be made by the same man-

ner as Section 3.1.1.
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3 Numerical Methods for Fluid Dynamics

3.2 Discretization of the governing equations

3.2.1 Discretization of inviscid terms

Compact difference scheme

In Chapters 4 and 5, the six-order compadtedence schenidl is used for the evaluation of
spatial derivatives for convective terms, viscous terms, metrics and the Jadolaorder to
solve the Egs. 3.1 and 3.21. For any scalar quamtitye spatial derivativegg is obtained in
the transformed plane by the following tridiagonal system:

5] (3]3S e e
At the boundary points = 1 andi = 2, following formula$®* which retain the tridiagonal

form are used,

¢ op\ 1 [ 17 3 3 1
(0—5)1 + 3(8_§)2 = A_§ (—E(bl + §¢2 + §¢3 - 6¢4) (3.30)
1(d¢ ¢ (o) _ 1(3
4 (6_§)1 " (%)z "3 (6_§)3 Y ( 4¢1) (3.31)

These are the fourth-order formulas. The formulas at the boundary peintgyxandi = imax—1
are similar.
In addition to the compact fierence scheme, the filtering procedure described below is per-

formed because the compacfidrence scheme is susceptible to numerical instabilities.
Filtering scheme

The eighth-order low-pass spatial filtering sché&fhés applied with the compact flerence

scheme. In this scheme, the following tridiagonal system is solved:
4

@iy + i+ ardisg = Z %(¢i+n + ¢in) (3.32)

n=0
whereg¢ is the solution vector and is the filtered value. The; is an adjustable parameter

which satiesfies the inequality0.5 < a¢ < 0.5. The large value ofs corresponds to a less
dissipative filter. Visbal and Gaitond® suggested the values of between 0.3 and 0.5. The
codficients of this equation are shown in Table 3.1. Moreover, at near boundary pok@nd

i = 3, a following formula is used:

7
a’f&i—l + é’i + af@iﬂ = Z nidn (3.33)
n=1
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These cofficientsa, are shown in Table 3.2. The dieients of near boundary poinis< 4

corresponds to the sixth-order scheme. Thdttments at the points> iax— 3 are similar.
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3 Numerical Methods for Fluid Dynamics

LAD (Localized Artificial Diffusivity) method

If a flowfield includes shock waves, a LAD meth&ef”l with the compact dference scheme is
useful for a shock-capturing. When the compaffedence scheme described above is applied to
the flowfiled including discontinuities, spurious oscillations occur. The LAD method suppresses

such an oscillation by adding local artificial viscosities to thefitcoient$*® in Eq. 3.1.

M= pt+ ta, B=Pt+Ba, K=Ki+Ka (3.34)

where the subscriptsanda denote fluid and artificial cdgcients. These cdicientsu,, 8, and
ka Serve the subgrid-scale transport, shock wave capturing, and the contact surface capturing,
respectively.

In this study, the artificial viscosities designed by Kawai and B8lare used. For a two-

dimensional simulation, these can be written as follows:

OF,
ﬂa:cﬂ>§:£¥“A@ (3.35)
=1 |
2
F;
Ba=Capfow| ) | i ff A2, (3.36)
=1 |
2
pC [ 0*F
Kka=C/= Are (3.37)
a T ; og!

whereC,, C;z, andC, are dimensionless adjustable constaffis. ¥, and¥, are functions for
detecting unresolved subgrid-scale eddies, shock waves, and contact suffaces. switch-

ing function which removes unnecessary artificial viscosities in smooth regions (which do not
include discontinuities). Thg denotes andn for | = 1 and2. TheA, 4, is the grid spacing

in the physical space.

The overbar denotes an approximate truncated-Gaussiarrfilter.

— 3565 3091 |
% = 10368” " 1206 (G2 % dia) + 2592 (‘b' + din2)

149 107

12960(¢' + fia) + mo(¢i—4 + Pisa) (3.38)

This filter is applied along each grid line (hamedyandn directions). At near boundary

points,¢; is mirrored across the boundd#§.
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3 Numerical Methods for Fluid Dynamics

The detector function$,, 5, and¥, can be chosen as follows:

F.=S (3.39)
y—1p

whereS is the strain rate of Eq. 3.7.

The switching functiorfs, is as follows:

(V-u)?
(V-ul+|VxuP+e

fsw = H(-V - u) x (3.42)

and the de-

- - H H V : 2
This is the combination of the Ducros-type shock se[f‘@o(rv : u)2(+ |VU)>< T

tector function for negative dilatation. Her#, is the Heaviside function ane = 1032 is a
small positive constant.

In order to scale the artificial viscosity propery,, s, is defined as follow3" :

\ 4

VT (3.43)

TR
A= AN, Ag = |AX - ——=|, A=A
e = 1AX], A ‘ X ol |, X
Xj+1 = Xj-1 Yj+1 — Yj1
2 2
In this studyC, is set to 0, because we ignore tifteets of subgrid-scale eddies. Therefore,

whereAx, =

), andj is an index of the& direction.

the equations in terms @f, are not used. The ciwientsC; andC, is setto 1.75 and 0.01,

respectively.

SLAU scheme with MUSCL interpolation

In Chapter 4, SLAU (Simple Low-dissipation AUSM) schdf®é?is used for the calculation of
inviscid terms. SLAU scheme is a type of the AUSM (Advection Upstream Splitting Mefflod)

scheme.

The inviscid flux of the AUSM scheme can be written in the following form:

Fuzznrymhr+rn;mmvr+mpN (3.44)
where,
1 0
o= N=|% (3.45)
Vv yn
h 0
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h==—F (3.46)

(X, Yn) is a unit vector normal to a cell interfacer and p,, are a mass flux and a pressure on
a cell interface, respectively. Superscripteind— denote the left and right values of the cell
interface.

In the SLAU scheme, the pressure tepan, in Eq. 3.44 is evaluated as follows:

v D + _ - . _ . ~ ME
pio= PP Pl oy e - 0P @an)
where,
19— M= + 2 +
. z2F MH)(M* £ 1), [M¥| <1
B = { 4 . N . (348)
3(1 + sign(xM*)), otherwise
M* = -1 3.49
. (3.49)
Vi = U X, + VY, + WHZ, (3.50)
x = (1-M)? (3.51)
- 1 |V +V;2
M = min 1'0’5_ > (3.52)
_ 1 _
c= §(C+ +C) (3.53)
cis the speed of sound which can be calculated by the following equation:
c= [XP (3.54)
P
The mass fluxnis evaluated as follows:
: 1 +\/F 7+ -\/- 7Yy _ X +
=2 {o" (Ve +IVal") + 5 (Vs = Vel ) = (P - p) (3:55)
where,
Val* = (L= Q)IVal + gIVal* (3.56)
g = —max(min(M*, 0), -1) - min(maxM~, 0), 1) (3.57)
pr+p”

The MUSCL interpolatioli**®! is used for the evaluations of quantities on the left and right

side of the cell interface, denoted superscriptand— in above equations. Limiter functions
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such as the van Albada limit## is not used because the flowfield to be analyzed does not

include any discontinuities. The third-order MUSCL interpolation is as follows:

20,1 + 50 — O-1

@) = 5 (3.59)
_ 20 + 501 — Oix
@) = = q61 Az (3.60)

After the inviscid fluxFy/, is obtained by the above equations, the inviscid terms are finally

calculated by the following equation:

0F _ F1/2 - F_1/2
5 " x: (3.61)
3.2.2 Discretization of viscous terms

In this study, the viscous terms are calculated by twigedtnce operations. First, we calculate

first derivativesp, andgy by the chain rule:

Px
by

Exe + Nxys
Eyps + nydy (3.62)

¢ denotes a scalar quantity. All the derivatives of the right hand side of Eq. 3.62 are evaluated by
the second-order centralffirence method when the SLAU scheme is used for the calculation
of inviscid terms, and by the compacti@rence scheme when the compaciedence scheme
Is used for the inviscid terms.
Secondly, second derivatives are evaluated in the same manner by using the first derivatives

obtained in the first step.

3.2.3 Time integration
Third-order TVD Runge-Kutta scheme

In this study, all time integrations are performed by the third-order TVD Runge-Kutta sé¢fféme.

For brevity, we write a governing equation in the following form:

9Q

i R(Q)
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R(Q) denotes the right hand side of the equation which is functions of varigblésere, the
third-order TVD Runge-Kutta scheme is given by the following steps:

QW = Q"+ AtR(Q”)
Q@ = ZQ Q(1)+ iAtR(Q(l)) (3.63)
Q" = Q'+ 207+ ZARQ?)

This is the calculation for the time developing@ffrom the time-stem to n + 1.
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4 High-Resolution and Matrix-Free
Method for Global Linear Stability
Analysis

4.1 Introduction

In this chapter, we propose a numerical method for the global linear stability analysis which has
high-order spatial accuracy and needs low memory requirements.

First, two methods for the spectral transformation, the time-stepping method and the shift-
invert method, are compared, and we show that the time-stepping method has the low memory
requirement and is promising for future global linear stability analyses. Then, we propose the
numerical method for the global linear stability analysis using the time-stepping method as the
method for the spectral transformation and the compéat#rénce scheme as the method for
fluid simulations. Several results of this method are shown as validation results and examples
of the global linear stability analysis. Moreover, influences of outflow boundary conditions on
the global linear stability analysis are investigated. Finally, the applicability of the proposed
method to flowfields including shock waves is examined.

Through this chapter, a two-dimensional flow past a circular cylinder is analyzed, because
this flow has been investigated by many researéfiéfs'® 48land therefore has many available

data. Details are described in the next section.

4.2 Two-dimensional flow past a circular cylinder

Figure 4.1 shows two-dimensional viscous flows past a circular cylinder. When the Reynolds
number is small enough, this flowfield is a steady state and a twin-vortex is formed behind the

cylinder. When the Reynolds number exceeds a certain number (the critical Reynolds number
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4 High-Resolution and Matrix-Free Method for Global Linear Stability Analysis
Re,), this flowfield is an unsteady state and the twin-vortex separates from the cylinder surface
(the Karman vortex-street). Here, the Reynolds number of this flow is defined as follows:

_ PolsD
Hoo

Re

(4.1)

where subscripto denotes freestream variables dhds a diameter of the circular cylinder.

The instability of this flow has been studied for several dec&8é%1°4¢l The previous
studies revealed that the critical Reynolds number is between 45.5 and 49. Moreover, few
incompressiblé® ¥l and compressibl! global linear stability analyses were conducted and
found the unstable mode which induces the Karman vortex-street. In the following sections,
we analyze this flow as the test problem for numerical methods of the global linear stability

analysis.

4.3 Comparison of numerical methods for spectral
transformation

In this section, two methods of the spectral transformation, the time-stepping method and the
shift-invert method explained in Section 2.3, are compared. The characteristics of these methods

are discussed.

4.3.1 Problem description and Numerical method

Flow condition and computational grid

A flow to be analyzed is the flow around the circular cylinder described above. The Mach
number of the freestream Ma = 0.05, and five cases of the Reynolds number between 45 and
55 are analyzed. A computational grid used in this calculation is shown in Fig. 4.2. The grid is
a structured grid which consists of radial lines and concentric circles. In the step of calculating
steady flows, the flow of only the half domaip £ 0) is solved with the symmetric condition

as it is described later, whereas the entire domain is used for the global linear stability analysis.
The number of grid points 1421 x 151 (azimuthalx radial directions) for the half domain

(y = 0) and241x 151 for the entire domain. The minimum grid spacing\ig, = 0.005D.
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4 High-Resolution and Matrix-Free Method for Global Linear Stability Analysis

(a) Steady solution aRe = 45. Symmetric twin-vortex behind the
cylinder is described by velocity distribution and streamlines.

(b) Periodic solution aRe = 120, K&arman vortex-street behind the
cylinder is described by vorticity distribution.

Figure 4.1:Steady and periodic solutions of the flow field behind a circular cylinder.
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Figure 4.2:Computational grid.

Simulation of full compressible Navier-Stokes equations

The inviscid terms of the full compressible Navier-Stokes equations are calculated by the SLAU
scheme with the third-order MUSCL interpolation, and the viscous terms are calculated by the
second-order central fiéerence method. The time-integration is performed by the third-order
TVD Runge-Kutta scheme.

For the wall boundary (the cylinder surface), the no-slip condition and the adiabatic wall

condition are used.

u=2~20 (4.2)
v =0 (4.3)
op

o - 0 (4.4)
oT

wheren denotes a vector normal to the boundaries. The parﬁmrdhce% is evaluated by
the first-order one-sided finiteféierence.
For the far-field boundary conditions & 50D, x > 0), the pressure on the boundary is

assumed to be the freestream value and the other variables are extrapolated by linear approxi-
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mations.
Pb = P (46)
Pib = 20ib-1— Pib-2 (4.7)
(Wi = 2(pW)ip-1 — (PU)ib—2 (4.8)
V)b = 2(V)ib-1 — (OV)ib-2 (4.9)

where subscript# denotes the index of grid points on the outflow boundary.

On the symmetry plang (= 0), the symmetry boundary conditions are used. By applying this
condition, steady states can be obtained at the Reynolds number being higher than the critical
value. This is because the sinuous mode is less stable than the varicose mode and the sinuous

mode induces the Ka&rman vortex-strédt.

Settings of time-stepping method and shift-invert method

In the process of the time-stepping method, the tBgrof the Arnoldi iterations is calculated
by Eq. 2.29, which needs to solve the full compressible Navier-Stokes equation Eq. 3.1. The
small constant in Eq. 2.29 is set to 0.01. By the preliminary calculations, we have confirmed
that the constant between 0.001 and 0.1 do ndiects the results. The parametdris set to
1.0 and the number of iterations for Arnoldi iteratiodsis 250.

In the process of the shift-invert method, the shift param&ieset to 0 because the transition
of flows from the steady to the unsteady state occurs when a real part of an eigenvalue becomes
positive. The number of iterations for the Arnoldi methbdis set to 500. The dierence
of M of the time-stepping method and the shift-invert method is caused by fitegetice of
convergence properties of these method.

The detailed explanation of the time-stepping method and the shift-invert methods are shown

in Section 2.3.

4.3.2 Results and Discussions

Comparison of most unstable mode

Figure 4.3 shows the eigenvectors of the most unstable mode (in other words, the least stable

mode) aRe= 45. As it will be described later, the Karman vortex-street occurs when this mode
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Table 4.1:.Critical Reynolds and Strouhal numbers obtained by previous studies.

Re. St, Analysis method

Nishioka (1978¥81 46 0.12  Experiment

Chiba (1997819 455  0.119 Numerical simulation (Incompressible)
Crouch (20079 47 0.116  Numerical simulation (Compressitiéa = 0.2)
Present work 47,49 0.117 Numerical simulation (Compressitig = 0.05)

becomes unstable. The alternating distributions appeared in the wake of the circular cylinder.
This distribution is in good agreement with the results of Crouch BflalThe change of the
eigenvalue of the most unstable mode by the Reynolds number is shown in Fig. 4.4. (The result
obtained by using the time-stepping method with the compdiErdnce scheme shown in this
figure will be referenced in the next section.) The results obtained by using the time-stepping
method and the shift-invert method indicate that both the real part (the growth rate) and the
imaginary part (the angular frequency) increase as the Reynolds number increases. The critical
Reynolds numbeRe, can be estimated to 47 and 49 from the results of the time-stepping
method and the shift-invert method, respectively. In both cases, the imaginary parts are similar
values and the critical Strouhal numiet = % is estimated to 0.117. It is inferred that the
small diference of the critical Reynolds number, as well as the real part of eigenvalues, is
caused by the numerical stability of the time integration which only used in the time-stepping
method. The estimated critical Reynolds and Strouhal numbers of our results coincide with the
previous numerical and experimental studi&d81%.48las detailed in Table 4.1.

Consequently, we confirmed that both methods of the spectral transformation can reproduce
the results of previous studies which are well validated, and the results of the time-stepping
method and the shift-invert method are qualitatively same although the real parts of eigenvalues

are a little dfferent.
Aliasing problem of time-stepping method

The time-stepping method cannot determine the imaginary part of eigenvalues uniquely, be-

cause Eg. 2.24 has a multiple-value function, as following:

_ log|ag| +iArg (4g) + i2nm

A
A At

n=0, £1, +2, --- (4.10)
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Im(2)

-0.8 -0.7 -06 -05 -04 -03 -0.2 -0.1 0
Re())

Figure 4.5:Aliasing phenomena due to Eqg. 4.10is set to 0.

where Arg (1g) denotes the principal value of argument. Ay, defined to lie in the interval
(-n, nr]. Figure 4.5 shows the eigenvalue distributions obtained by the time-stepping method
with the parameteAt = 1.0 and0.5. An integernin Eg. 4.10 is set to 0, which means that
. T T
- < —.
satisfies- AL <w< Al
is a Nyquist frequencyy = ﬁ In the case oAt = 1.0, the eigenvalues in the region|aff > n

Figure 4.5 clearly indicates that the aliasing problem occurs and there

jump to the region ofw| < n, and the similar phenomenon also occurs witk| = 2r in the
case ofAt = 0.5.

Therefore, the original frequency should be confirmed by comparing with the results of the
additional global linear stability analysis withffirentAt, the direct numerical simulation, or

other available data, etc.

On the computational cost and coding

The spectral transformation needs the highest computational cost of all the routines for the
global linear stability analysis. Table 4.2 shows the computational time and memory require-
ments for performing the global linear stability analysis by using the time-stepping method and

the shift-invert method. Here, the CPU used for this analysis is the Intel Core i7 3930K (6
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Table 4.2:Computational time (CPU time) and memory requirements for performing the global
linear stability analysis. Flow conditions alkéa = 0.2 andRe= 45.

Dimension of
Jacobian matrix CPU time (sec) Memory (MBytes)

Time-stepping 48x 10 49x 10 54x 10
method 1.4 x 10 3.3x10° 15x 10°
(M =300At=05)  32x10° 1.6x 10" 32x 10°
Shift-invert 48x 10 2.0x 10 6.8 x 107
method 14x10° 8.5x 10? 21x10°
(M =300s=0) 32x10° 25x10C° 49x 10°

cores, 3.2 GHz) and the codes are parallelized with OpenMP. For the shift-invert method which
forms a matrix, the matrix is stored by the compressed sparse row (CSR) format which saves
the computational memory by storing only non-zero elements of a sparse matrix.

Table 4.2 indicates that the time-stepping method needs much computational time because it
conducts the numerical simulations of time developing of fluids. The computational time cost
of the time-stepping method strongly depends on flow conditions. For example, a simulation of
low Mach number flows needs high computational time costs due to the discrepancy of small
time-step size for the numerical simulation which is restricted by the CFL condition and the
time scale of the physical phenomena. Other cases whose time marching takes a high cost, such
as high Reynolds number wall-bounded flows, are also computationally expensive. On the other
hand, the routines of shift-invert method itself are né¢eted by flow conditions.

However, because the shift-invert method forms the Jacobian matard perform direct
inversions of it, the memory requirement for the shift-invert method is much larger than that
of the time-stepping method. The memory requirements for the shift-invert method is pro-
portional to the square of the dimension of the Jacobian matrixTherefore, the memory
requirement rapidly increases when the analysis has third-dimensigor #melnumber of grid
points increases. This problem can be critical when the available memory of the computer is not
suficient. By contrast, the memory requirement for the time-stepping method is considerably

less than that of the shift-invert method because it is proportional to the dimension of Jacobian
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matrix A. This is because the time-stepping method does not form the Jacobian Aaimix
other words, this method is matrix-free.

Moreover, the coding of the routines for performing the time-stepping method is easy. This
method uses the time integration routine of CFD as the spectral transformation and does not
need to form any matrix explicitly, as explained in Section 2.3.1. Therefore, the code of the
global linear stability analysis with the time-stepping method is mainly based on conventional
CFD codes. Only the routines of the Arnoldi method and a conventional solver for eigenvalue
problems of a small dense matrix (such as LAPACK) need to be added. On the other hand, the
shift-invert method need to store a huge and sparse (or sometimes dense) matrix and invert it,
and therefore its coding is a little mordiitult than that of the time-stepping method.

In this study, we use the time-stepping method as the spectral transformation, because the
memory requirements might be a crucial problem if many grid points are used for fluid simula-

tions.

4.4 Proposed method for global linear stability analysis

In this section, we propose and validate the numerical method for the global linear stability
analysis using the time-stepping method as the method for the spectral transformation and the
compact diference scheme as the method for spatial discretization of the governing equation.
Then, validations of the proposed method are conducted and influences of an outflow boundary
condition on the global linear stability analysis are investigated. The method proposed here is

used in Chapter 5.

4.4.1 Introduction of proposed method

The proposed method is the method that uses the time-stepping method and the cafigpact di
ence scheme as methods for the spectral transformation and the numerical simulation of fluids,
respectively. The ternB¢ in the Arnoldi iterations is calculated by Eq. 2.28, which needs to
solve a linearized governing equation (Eq. 3.21, in this study).

The advantage of the use of Eq. 2.28, rather than Eq. 2.29, for evaluating th&{eisn
that it can exclude the arbitrary parametavhich afects the accuracy of the approximation of

the derivative in Eq. 2.29. Although the calculation of Eqg. 2.28 needs to solve the linearized
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governing equation Eq. 3.21 in addition to the full governing equation Eq. 3.1, this calculation

Is easy because the compadtelience scheme can solve both equations in the same manner. In
addition, other fluid simulations such as the magnetohydrodynamics (FHand supersonic
flows¢:37 also can be solved in the same manner. Moreover, the compgEearedice scheme

can achieve the high-order spatial accuracy. Therefore, this method is often used for the simu-
lations of vortical flowd?'5? turbulent flowd?3-5%1 and the aeroacousti€,>" which need to

resolve small spatial structures and perturbations of fluids. Because the number of computa-
tional grid points for high-order spatial accuracy schemes is less than for lower-order spatial
accurate schemes, the dimension of the mairadso becomes small when the compadieatt

ence scheme is used, and therefore the saving of computational memory is achieved. Besides,
the proposed method does not need much computational memory and its coding is easy because
the time-stepping method is used as the spectral transformation.

Although each of these methods, namely the comp#erénce scheme and the time-stepping
method, has been used for the global linear stability analysis by some reseérctiethe
combination of these methods has not been used and validated. As mentioned above, the com-
bination of these method has good properties: the high-order spatial accuracy, the applicability
to various fluid phenomena, the low memory requirement, and the simplicity of the coding.
Therefore, this method is promising for the future studies such as analyses of three-dimensional
flows, the aeroacoustics, turbulent flows, and the magnetohydrodynamics (MHD), which need
to solve small spatial structures gadvarious governing equations. In the following sections,

the validation of this method is conducted.

4.4.2 Problem description and Numerical method for validation
analysis

Flow condition and computational grid

The flowfield to be analyzed is two-dimensional flows past a circular cylinder again, and the
freestream Mach numbéfais 0.2. Three cases of the Reynolds nunfRebetween 45 and 50

are analyzed. The computational grid used in this calculation is similar to that of Fig. 4.2. The
number of grid points i421x 181 (azimuthalx radial directions) for the half domairy & 0)
and241x 181for the entire domain. The minimum grid spacing\isi, = 0.005D.
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Simulation of full compressible Navier-Stokes equation for obtaining basic state q

The sixth-order compact fierence scheme is used for the calculations of inviscid and viscous
terms of the full compressible Navier-Stokes equation Eq. 3.1. The eighth-order tridiagonal
filter is used in order to suppress spurious oscillations. Théic@mnta; is set to 0.495. Time
integration is made by the third-order TVD Runge-Kutta scheme.

The wall boundary conditions are same as Eqs. 4.2 - 4.5 except for the evalua?rgrl—tére,

the partial diference;—n Is evaluated by the second-order one-sided finifiedince method.

The compact dierence scheme is sensitive to outflow boundary conditions, because the
acoustic waves and vortical structures propagate with less dissipation and reflect at the bound-
ary (it will be discussed later). Therefore, in order to suppress such spuffeatsethe outflow
boundary is placed at far distancesrof 150D, in addition, simple non-reflecting boundary
conditions proposed by Rudy and Strikwer8&° are adopted. The non-reflecting outlet is

achieved by the following equations:

op oV B
Sr P Tars(P-Pw) =0 (4.11)

wherea;s is a constant and set to 1.5/ denotes a velocity in the normal direction to the
boundary.
The discretization of Eq. 4.11 is as follow$

o = Y + @rsAtaPe + P CR (VIR — V1) 4.12)
b 1+ oAty '

where superscript denotes the time step, ard, denotes the time step size. Other variables

are extrapolated as follows:
Up = Ub-1, Vib =Vib-1, Tib = Tip-1 (4.13)

On the symmetry plang = 0, the symmetry boundary conditions are used in order to obtain

steady states at the Reynolds number higher than a critical value.

Simulation of Linearized compressible Navier-Stokes equations for time-stepping
method

As mentioned above, the linearized compressible Navier-Stokes equation Eq. 3.21 can be solved

in the same manner with the full compressible Navier-Stokes equation Eq. 3.1. Therefore, the
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sixth-order compact ffierence scheme, the eighth-order tridiagonal filter with= 0.495
and the third-order TVD Runge-Kutta scheme are used for the simulation of the linearized
compressible Navier-Stokes equation.
Initial conditions are set tq'(tp) = ¢. This means that a vectgrn Arnoldi iterations is used
as an initial perturbation.
Boundary conditions are obtained by substituting q+ ¢ into the boundary conditions for

the full compressible Navier-Stokes equation.

u=0 (4.14)
V=0 (4.15)
op’
=0 4.16
n (4.16)
o1’
=0 4.17
an (4.17)
Similarly, outflow boundary conditions are,
/n - = N+l n
et Pib +oinCin(Vi ™ — Vi
n+l_ 4.1
Pio 1+ arsAt (4.18)
and,
Up =Up_1> Vip =Vip-1» Tio = Tip-1 (4.19)

4.4.3 Validation results

The eigenvalues of the most unstable mode produced by the proposed method is also shown
in Fig. 4.4 along with the results of Section 4.3. Similarly to the cases of Section 4.3, the
real part (growth rate) and the imaginary part (frequency) increase as the Reynolds number
increases, although the imaginary parts are a littteeBnt because of theftkrence of the

Mach number. The critical Reynolds and Stouhal numbers are estimafRé, te- 47 and

St = %‘ = 0.115 respectively. Figure 4.6 shows the eigenvalue distributions for the case

of Re = 50. This eigenvalue distribution is similar with a result of an incompressible flow
analysis conducted by Tezuka and SuztikiMore specifically, except for the most unstable

mode, the growth rate decreases as the frequency increases because high frequency modes have
small spatial structures and therefore they are susceptible to the videdsityRe= 50, only

the most unstable mode has a positive real part, and the real and imaginary parts of this mode
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arec = 1.09x 102 andSt= 0.116. The eigenvectors of this mode are shown in Fig. 4.7. These
results are in good agreement with previous stiitfié%'° %8land the results of Section 4.3.

Figure 4.8 shows the comparison of two flowdields. The one is an unsteady flowfiled (the
Karman vortex-street) obtained by a direct numerical simulation, and the other is made by a
superimposition of the steady flowfield (this is the basic sgatEnd the eigenvectors (Fig. 4.7)
of the most unstable mode. These flowfields are quite similar, especially in the wake region
near the circular cylinder. The reason of th&elence of the wake flows far from the cylinder
Is that a perturbation is influenced by nonlinefieets when it grows enough.

Then, the temporal evolution of the perturbations are calculated by the direct numerical sim-
ulation in order to validate the eigenvalue. As the initial condition, the superimposition of the
steady flowfield and the eigenvectors of the most unstable mode are used. Figure 4.9 shows
the time history of the velocity ig-direction of the perturbation, a/D = 10, y/D = 0. The
figure indicates that the perturbation is oscillatory and its amplitude grows in time. The growth
rate and the Strouhal numb| % of the oscillation are estimated to = 1.07 x 10~ and
St= 0.116 when we assume that the perturbation follows the funof{on= exp(t)coswt).

The estimated growth rate and the Strouhal number agree very well with the eigenvalue obtained
by the global linear stability analysis.

In conclusion, it is confirmed that the proposed method can analyze the global linear stability

of two-dimensional compressible viscous flows.
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Figure 4.6:Eigenvalue distribution @&e= 50, Ma = 0.2.
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Figure 4.9 Temporal variation of the perturbation superimposed on the steady sRee-ci0,
Ma = 0.2. The velocityv at x/D = 10, y/D = 0 is plotted. Growth rate and
Strouhal number are estimatedsto= 1.07 x 102 andSt= 0.116.

4.4.4 Effects of outflow boundary

When a numerical simulation of an external-flow is conducted, the computational domain has
inflow and outflow boundaries. To obtain a realistic solution by the numerical simulation (CFD),

a proper treatment of the outflow boundary is important because the outflow boundary contam-
inates the solution with the non-physical reflection of acoustic waves, fluid structures such as a
vortex, and a numerical noise. It can be inferred that the global linear stability analysis is also
affected by the outflow boundary. Therefore, the detailed analysis offtkist és desiredt®!

Here, we compare the results of global linear stability analysis with tWferdnt outflow
boundary conditions. The one, case-1, is same as the above simulations, namely the non-
reflecting boundary conditions proposed by Rudy and Strikw&?d4,, namely (identical to
Egs. 4.12,4.13, 4.18, and 4.19.),

et _ Pt aisMlaP + PGV — V)
b 1 + arsAty

and,

Up = Up-1, Vib =Vib-1, Tib = Tip-1
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for perturbations,

ol = P+ pisCin (V' = Vi
b 1+ oAt

and,
o _ ’r ’
Up = Up 1, Vip =Vip1 Tip=Tip g

The boundary is placed at= 150D.

The other, case-2, is as follows:

Pib = 2pib-1~ Pib-2 (4.20)
(eWip = 2(pU)ib-1 — (PWib-2 (4.21)
V)b = 2(@V)ib-1 — (OV)ib_2 (4.22)

Pb = Peo (4.23)

This outflow boundary condition assumes that the pressure recovers to the freestream value at
the boundary and the other variables can be simply extrapolated from inside of the computa-

tional domain. Corresponding boundary conditions for perturbations are as follows:

Po = s Pl (4.24)
(W = 20U~ (W2 (4.25)
P = 20Vip1— (Vs (4.26)

p, = O (4.27)

In addition, the boundary is placedrat 50D in case-2.

Figure. 4.10 shows the eigenvalue distribution of the two cases. The figure clearly indicates
that the eigenvalues obtained by the global linear stability analysidi@eed by the outflow
boundary. The eigenvalues of the two cases are not in correspondence except for the most
unstable mode. The eigenvalues of the most unstable mode=are.20x 1073 + 7.22x 1071
for the case-1 and = —4.77 x 103 + 7.19 x 107%i for the case-2. The eigenvectors of the
most unstable mode are shown in Fig. 4.11. In case-2, the eigenvectors are contaminated with
non-physical reflection waves although the structure of shear flow instability appears. The non-
physical reflection is generated at the boundary which the wake flow is going out across. In

contrast, any reflection waves are not observed in case-1.
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Figure 4.10Comparison of eigenvalue distributions between case-1 and 2.

As aresult, it is concluded that results of the global linear stability analysisfected by the
outflow boundary. However, such unfavorabtieets of the outflow boundary can be avoided.
The nor-reflecting boundary conditi&h®’! and to locate the boundaries far from a body are
effective for reducing the influence of non-physical phenomenon on the global linear stability
analysis. Therefore, it is important to carefully set the outflow boundary condition and confirm

the influence of the outflow boundary on the results.

4.5 Applicability to flowfield including shock waves
4.5.1 Introduction

Shock waves appear in supersonic and transonic flows around a body. The shock wave is a rapid
change of pressure, density, temperature, and so on. Therefore, when a perturbation cuts across
the shock wave, the perturbation also experiences a rapid change, and the change might be
nonlinear. Thus, the applicability of the global linear stability analysis to flowfields including
shock waves is not obvious. However, the global linear stability analysis of supersonic and

transonic flows can be helpful and desired because unsteady phenomena often occur in such
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Figure 4.11Comparison of eigenvectors of the most unstable mode between case-1 and 2.
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flows, for example, a shock walmundary layer interaction, a fiat phenomenon over an
airfoil, a supersonic flow around a iffibody, and so on.

Crouch et alt®17 have conducted the global linear stability analysis of a transonic flow
around the NACA0012 airfoil and investigated the shock-induced transofiietbAs a result,
they have shown that the condition which introduces unsteadiness, predicted by the global linear
stability analysis, coincides with experimental results. However, except for the works of Crouch
et al., no previous studies have analyzed flowfields including shock waves by using the global
linear stability analysis. Therefore, the applicability of the global linear stability analysis to
flowfields including shock waves should be carefully validated.

We can assume that unsteady flows including shock waves can be classified into two cases.
The one is the case that the flow is unsteady but the shock wave causé@gcisrthe unsteadi-
ness, and the other is the case that the flow is unsteady and the shock wave cafiisets dtha
unsteadiness. Apparently, it is moréfdiult for the global linear stability analysis to deal with
the latter case than the former case, although Crouch et al. have successfully performed it.

In this section, we consider the former case and investigate applicability of our proposed
method to flowfields including shock waves. Here, the wake of a circular cylinder is analyzed

again although the freestream is supersonic.

4.5.2 Problem description and Numerical method

Flow condition and computational grid

The Mach number of the freestreamM& = 1.3. A computational grid used for this simulation
is similar to that of Fig. 4.2. The number of grid points2&1 x 601 (azimuthalx radial
directions) for the half domairy(> 0) and421x 601 for the entire domain. The minimum grid
spacing isAmin = 0.0004D.

Simulation of full compressible Navier-Stokes equation for obtaining basic state q

Same methods used in the above Section 4.4, namely the comffactrtte scheme, the tridi-
agonal filter, and the TVD Runge-Kutta scheme, are employed. TH&atert of the tridiago-
nal filter a5 is set to 0.495. In addition to the compacfteience scheme, the LAD method is

used in order to capture shock discontinuities.
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" o, 0
The wall boundary conditions are also same as Egs. 4.2 - 4.5 and the pﬁfdaeérmea—n is
evaluated by the second-order one-sided finifiecknce method.
Flow variables are simply extrapolated by linear approximations for the outflow boundary

because the flow is supersonic,

Pib = 2pib-1 = Pib-2 (4.28)
Up = 2Uip-1— Up-2 (4.29)
Vb = 2Vip-1— Vip-2 (4.30)
Tb = 2Tip1—Tip2 (4.31)

The symmetry boundary conditions are used at the symmetry plar®ewhen we calculate

the steady state for obtaining the basic state

Simulation of Linearized compressible Navier-Stokes equations for time-stepping
method
The methods for solving the linearized compressible Naview-Stokes equations are also same as
the above Section 4.4.
Initial conditions arey (tp) = ¢ and wall boundary conditions are Egs. 4.14 - 4.17.

The outflow boundary conditions are as follows:

Pib = 2Pip-1~ Pib-2 (4.32)
Up = 22Uy~ Upo (4.33)
Vip = 2Vip_g — Vip2 (4.34)
To = 2T~ T (4.35)

4 5.3 Results and Discussions

Results of direct numerical simulations

Figure 4.12 shows a steady flowfieldRe= 250Q A bow shock and trailing shock waves occur
in front of and behind the circular cylinder, respectively. In addition, there is a steady free shear
flow behind a twin-vortex attached to the cylinder. Figure 4.13 shows the unsteady flowfield

atRe = 500Q It can be confirmed that the free shear flow becomes unstable and generates a
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vortex-street. The spatial wavelength of the vortex is estimateghig, ~ 1.0D. The frequency

distribution shown in Fig. 4.14 indicates that there is the peak frequersy-efl.0.

Results of global linear stability analysis

Figure 4.15 shows the eigenvalue distributiorRat= 500Q The distribution shows that the
growth rate decreases as the frequency increases except for several distinguishing modes whose
growth rates are relatively high. This distribution is similar to that of subsonic flows around a
circular cylinder discussed above.

The eigenvector of the mode-a (illustrated in Fig. 4.15) is shown in Fig. 4.16. We can confirm
that the instability of free shear flows (namely, alternating distributions) appears. The Strouhal
number of this mode iSt= 0.95 and the spatial wavelength ig,asia = 0.95 estimated from
this figure. Because the modes whose frequencies are cl&@e=d.0 are relatively unstable
(shown in Fig. 4.15), itis inferred that these modes appear and make the dominant structure of
Fig. 4.13. These results indicate that the proposed method can capture the global linear stability
of free shear flows even if the flowfield includes shock waves in the computational domain.

However, the results also indicate that all the oscillatory modes are stakie] and there
are several distinguishing modes (for example, mode-b) whose growth rates are larger than
mode-a. Therefore, it is inferred that the transition from steady to unsteady flows is triggered
by other physics such as the non-modal linear instability. Further investigations are necessary
to clarify the cause of this discrepancy.

As expected, spurious modes which might be caused by numerical instability due to the shock
wave appear as a result of the global linear stability analysis. Figure 4.17 shows the eigenvector
of the one of the spurious mode which is labeled mode-c in Fig. 4.15. Itis inferred that this mode
indicates the instability caused by a misalignment of the shock wave and the computational grid
lines. To reduce theffect of numerical instability due to shock waves, it is important to stably

capture the shock waves by numerical schemes.

4.5.4 Conclusion of this section

In this section, we investigated the applicability of the proposed method for the global linear
stability analysis of a flowfield including shock waves. We confirmed that the proposed method

is able to analyze the global linear stability of the free shear flow behind a circular cylinder
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(a) Velocity inx-direction

(c) Streamlines

Figure 4.12Steady flowfield aRe= 2500
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(a) Temperature

(d) Velocity iny-direction. Close-up view of shear flow instability.

Figure 4.13Unsteady flowfield aRe= 5000
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Figure 4.15Eigenvalue distribution &e= 500Q Three characteristic eigenmodes are labeled
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Figure 4.16Eigenvectors of mode-a. Only the real part is shown.
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x/D

Figure 4.17Spurious mode. Density eigenvector of mode-c.

whose flowfield includes shock waves. The frequency and the spatial wavelength of the eigen-
mode are similar to those of the vortex-street of unsteady flo&eat 5000 However, the
spurious mode due to the shock wave also appeared as a result of the global linear stability
analysis. Therefore, when a flowfield to be analyzed includes a shock wave, the shock wave
needs to be stably solved and we must carefully check whether the obtained results are caused

by numerical or physical instability.

4.6 Summary of this chapter

In this chapter, we proposed and validated a numerical method of the global linear stability
analysis for compressible viscous flows.

First, the time-stepping method and the shift-invert method were compared. The results
showed that both method produce qualitatively same results and the results coincide with the
results of previous studies. In terms of a computational time cost, the cost of the time-stepping
method can be higher than that of the shift-invert method because the time-marching of flow
simulations is computationally expensive. However, the shift-invert method needs much com-

putational memory because it forms and inverts a matrix, whereas the time-stepping method
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does not need much memory because it does not form any matrix. If the the number of grid
points is large, which leads large dimensions of the Jacobian nAgtilie memory requirements

of the shift-invert method may exceed the available memory. In addition, the time-stepping
method has the advantage of simplicity of its coding.

Then, we proposed and validated a method for the global linear stability analysis which has
the high-order spatial accuracy, memory saving properties, the applicability to various equa-
tions, and the simplicity of the coding. The method uses the time-stepping method as the spec-
tral transformation and the compacttdrence scheme as the discretization method for fluid
simulations. As a validation of the method, the analysis of the two-dimensional flows past a
circular cylinder was conducted. It was confirmed that the method can produce the accurate
eigenvalue and eigenvector. In addition, the influence of the outflow boundary on the global lin-
ear stability analysis was investigated. The result shows that results of the global linear stability
analysis are féected by the outflow boundary and the influence can be avoided by setting the
appropriate boundary condition.

Finally, the applicability of the proposed method to a flowfield including shock waves was
investigated. As a result, we confirmed that the proposed method is able to analyze the global
linear stability of the free shear flow behind a circular cylinder whose flowfield includes shock
waves. However, it is necessary to confirm thEee of numerical instability on the result
because spurious modes caused by shock waves also appear in the result.

The method proposed and validated in this chapter is used in the next chapter.
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5 Global Linear Stability Analysis of
Compressible Cavity Vortex

5.1 Introduction

In this chapter, to elucidate théfects of compressibility on the stability of vortical flows, the
instability of a compressible cavity vortex is analyzed by the global linear stability analysis.

A cavity flow is one of the most basic vortical flows and many studies have been conducted
for several decades. The studies on the cavity flows are roughly classified into two categories.
The one is the study on the cavity tof&5% The cavity tone is a noise caused by a shear flow
which separated from the cavity front edge and impinges on the cavity rear edge. The inves-
tigations of this flow are very important because the cavity tone appears in many engineering
applications although its flow physics is complex. The latter is study on the Lid-Driven Caivty
(LDC).I62-851 The LDC has a square domain which is composed of three stationary walls and
one moving wall. The LDC is often used as a test problem for validation of numerical schemes
for a fluid simulation because the its geometry and boundary conditions are very simple. Es-
pecially, results of numerical simulations conducted by Ghia &tlak famous and often used
as data for a comparison. The flowfield of LDC becomes unsteady from the steady state when
the Reynolds number exceeds a certain value (called the critical Reynolds negbein this
study, we conduct the global linear stability analysis of the LDC flow because this flowfield has
unsteady phenomenon of a vortex and it is easy to conduct numerical simulations because of its
simple geometry and boundary conditions.

The velocity profiles on the walls of the cavity to be analyzed in this study are as follows:

at a moving wall

16Umax(X/L)*(1 = x/L)? (5.1)

c
Il

Vv = 0 (5.2)
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at stationary walls

u=20 (5.3)
v=0 (5.4)

whereu andyv are the velocity irk- andy-directions, and. is the length of one side of the square
cavity. The LDC defined by this velocity profile is called the regularized cavity flow.

The regularized cavity flow was investigated by SK&[?! He analyzed this flow by simulat-
ing a temporal development numerically. He reported that the first critical Reynolds number ex-
ists between 10000 and 10500, and the flowfiled becomes a time-periodic flow. He also reported
that when Reynolds number exceeds about 15000, the flowfield breaks the time-periodicity.
Here, the Reynolds numbBeis defined by the maximum velocity of the moving wal,xand
the length of one side of the square cauity

Chibd!® % conducted the global linear stability analysis of this flowfield. He showed the

following results,

e The critical Reynolds number Re, = 10150and the critical Strouhal number (nondi-

mensional frequency) St, = 0.332

e Eigenmodes of this flowfiled can be classified into two modes, the one relates to instability

of an inviscid vortex and the other relates to instability of shear flows.

e The most unstable mode is an unique mode because it relates to the both of above two

instability.
¢ Instability of shear flows becomes unstable as the Reynolds number increases.

These results are explained in detail in Section 5.3.2. Note that the above-mentioned studies
considered incompressible viscous flows.

As indicated by Chib&2 % the instability of shear flows is closely related to the unsteadi-
ness of the cavity flow. Compressibilityfects on a free shear flow (or a mixing layer) were
investigated by many research&r§! Especially, Sandham and Reyndfisevealed that the
compressibility stabilizes a mixing layer, in other words, it suppresses the growth of the mixing

layer.
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In this chapter, to elucidate thé&ect of compressibility on the stability of vortical flows, we
consider the global linear stability of the regularized cavity flow including compressibility. How

the compressibility #ects on shear flows relates to the stability of a cavity vortex is investigated.

5.2 Problem description and Numerical methods

In this study, the simulations of the full compressible Navier-Stokes equation Eq. 3.1 are con-
ducted in order to obtain a basic stafand analyze temporal development of a flowfield. The
time-stepping method is used as a spectral transformation method, and the linearized com-
pressible Navier-Stokes equation Eq. 3.21 is solved to olBgjnof Eq. 2.28. The problem

description and the methods for these simulations are explained below.

5.2.1 Simulation of full compressible Navier-Stokes equation for
obtaining basic state q

The sixth-order compact flierence scheme is used for the calculations of inviscid and viscous
terms of the full compressible Navier-Stokes equation. The eighth-order tridiagonal filter is used
in order to suppress spurious oscillations. Thefleccientas is set to 0.45. Time integration is
performed by the third-order TVD Runge-Kutta scheme.

Initial velocity fields are set to be stationary. Namely,

Uu=0 (55)
Vo = 0 (56)

where the subscript 0 denotes the initial condition. The initial density, temperature, and pressure
are set to the values satisfying the setup Reynolds number. Here, the Reynolds number are
defined as follows:

pOUmaxL
Ho

Re=

(5.7)

The velocity profiles on the walls follow the Egs. 5.1-5.4. The wall temperature is assumed

to be constant al = Ty. The pressure on the walls is calculated as follows:

op
o =0 (5.8)
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wheren indicates a vector normal to the cavity wall. The partiéfedience% is evaluated by
the second-order one-sided finitéfdrence method.
For the discussions below, we define the tinae follows:
t*
" L/Umax

t (5.9)

wheret* is time with units and = 0 corresponds to the initial condition.

5.2.2 Simulation of Linearized compressible Navier-Stokes equations
for time-stepping method

The sixth-order compact fierence scheme, the eighth-order tridiagonal filter with= 0.45,
and the third-order TVD Runge-Kutta scheme are used for the simulation of linearized com-
pressible Navier-Stokes equations.

The initial conditions are set tq/(t) = {. The boundary conditions are obtained by substi-
tuting q = g+ g’ into the boundary conditions for the full compressible Navier-Stokes equation.

Therefore, for all the wall boundaries,

u =0 (5.10)
v =0 (5.11)
op

an 0 (5.12)
T =0 (5.13)

5.2.3 Effect of parameters on global linear stability analysis

In this section, #ects of computational grids and the number of iteratibhef Arnoldi itera-
tions on the results of global linear stability analysis are investigated. The integrationtime

of Eqg. 2.23 is set to 0.1 for all the global liner stability analysis in this chapter.

grid refinement study

In order to check the grid dependency of the present analysis, the results from global linear
stability analysis with two computational grids havingterent grid resolution are compared.
Figure 5.1 shows a baseline grid as an example. The computational grids are non-uniform

spaced Cartesian grids. Grid points for the baseline grid@te< 161, and the minimum grid
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x/L

Figure 5.1:Computational grid.

spacing isAmin = 0.0029_. Grid points for the fine grid ard41x 241, and the minimum grid
spacing isAmin = 0.001L.

Figure 5.2 shows eigenvectors of an oscillatory mode (this mode, called mode-I in this study,
is explained in Section 5.3.2 in detail) obtained by the global linear stability analysis on these
computational grids. Flow conditions and the parameters of the Arnoldi methddate0.3,

Re= 1000Q t = 1500andM = 800 By this comparison, we can confirm that mode shapes of
the mode-1 obtained on theftBrent computational grids show good agreement. Corresponding
eigenvalues are = —-6.49x 102 andw = 2.07 for the baseline grid, anat = —2.23 x 1072

andw = 2.07 for the fine grid, namely, the angular frequencies are same although the growth
rates are a little dierent. Therefore, it can be concluded that the baseline grid has enough
resolution for analyzing the qualitative properties (such as mode shapes and its frequency) of
the eigenmodes, although the grid can not obtain a correct value of a growth rate because a grid
resolution has a relatively largéect on it. In this chapter, we use the baseline grid because of

high computational cost of the fine grid.
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y/L

0 0.2 0.4 0.6 0.8 1

(a) Baseline grid (b) Fine grid

Figure 5.2:Comparison of vorticity eigenvectors of the mode-I obtained wiffedent compu-
tational grids. Only the real part is shown.

Effect of the number of iterations M

Here, we checkfects of the number of iteratioM of Arnoldi iterations on the present global
linear stability analysis. Figure. 5.3 shows the convergence properties of the growth rate and the
angular frequency of the mode-I against e The changes in the growth rate and frequency
are not very large, when thd is greater than 500. Figure. 5.4 shows the eigenvectors of density
at differentM. The mode shape & = 500andM = 800are very similar. On the other hand,
compared to other two cases, the mode shap¢ at300is a little distorted. Consequently, it

is confirmed thatM = 500is enough for convergence. In this chaptdr= 800is used for all

the analyses.
5.3 Results and Discussions

5.3.1 Temporal variation of compressible cavity flow

Figure 5.5 shows the time history of the velocity and density at a reference pglnt=
0.5,y/L = 0.75) for the case ofMa = 0.6, Re = 11000 The density is still decreasing at
t = 3000while the velocity fields converged enoughtat 150Q In this flowfield, the kinetic
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Figure 5.3:Convergence property of eigenvalue of the mode-| against the number of iterations
M.

energy that the fluid received from the moving wall is transformed to thermal energy via viscous
dissipation, and then the thermal energy is absorbed by the wall. Because of the long time scale
of this process, the flowfield does not reach its steady state even 300Q By this process,

the dfective Reynolds number of this flowfield is decreased with time (the density decreases
with time in Fig. 5.5).

Temporal variations of the eigenvalues of the mode-I are shown in Fig. 5.6. The flowfields
betweernt = 1500and3000were used as basic states for this analysis. As time goes on and the
dissipation process progresses (which results in the decrease €kitteve Reynolds number),
the real part of the eigenvalue decreases, namely the flowfield becomes more stable. On the
other hand, the change of the imaginary part of the eigenvalue is small. fitdeedce between
the values at = 1000and3000is about 26. The mode shape of the corresponding eigenvector
att = 1000andt = 3000are almost same (not shown here, they are similar distribution to
Figs 5.14(f) and 5.15(f) shown later). Therefore, itis concluded that the qualitative properties of
the mode-1 do not change in time betweaen 1000and300Q while the growth rate decreases.

The objective of this study is to elucidate th&eet of compressibility on the global stability

70



5 Global Linear Stability Analysis of Compressible Cavity Vortex

rho_r

3.5E-04

2.5E-04

1.5E-04

0.8 5.0E-05

-5.0E-05

-1.5E-04

-2.5E-04

-3.5E-04
0.6

>

0.4
0.2
0

0 0.2 0.4 0.6 0.8

X

(a) M =300

rho_r

3.1E-04
2.3E-04
1.5E-04
7.4E-05
-5.3E-06
-8.4E-05
-1.6E-04
-2.4E-04
-3.2E-04
-4.0E-04

rho_r
3.5E-04
2.6E-04
1.6E-04
6.9E-05
-2.5E-05
-1.2E-04
-2.1E-04
-3.1E-04
-4.0E-04

(c) M = 800

Figure 5.4:Density eigenvectors & = 300 500, and 800. Only the real part is shown.
71



5 Global Linear Stability Analysis of Compressible Cavity Vortex

0.2 1.05
0.15 -1
=Rt ]
c L
o \\_‘
-03 o u
8 0.1F = ~. T T P| 4095 &
= ~ 2
< i Nl %)
s I e 1 5
> 0.05 ,_ \\'\ _, 09 AO
‘o . ~.
9 : TS
() | \'\\ ]
> ol ‘\-\' —0.85
| ~. ]
\,\'\7
N IR RN SR ST SN S
0'050 500 1000 1500 2000 2500 300%.8
Time, t

Figure 5.5Time history of density and velocity inx-directionu at Re= 1100Q Ma = 0.6.
Sampling pointisx/L = 0.5, y/L = 0.75.

of vortical flows by observations of eigenmodes at various Mach numbers. Therefore, it is
preferred that thefiective Reynolds number of the flow do not change from the initial condition.
In this study, the flowfield at the time= 150Q when the velocity fields converge enough, is

used as the basic stage

5.3.2 Flowfields at low mach number

In this section, we confirm that the results of incompressible flow analysis conducted b{*&Xiba
can be reproduced by our compressible flow analysis at a low Mach number condition, and re-

view the results of Chiba’s analysis by comparing with our results.

Steady and periodic flows

Figure 5.7 shows the flowfield &la = 0.05 andRe = 600Q The flowfield is steady, and a

main vortex at the central region and sub vortices at corners are generated by the moving wall.
Previous studié® 1% 6 Thave showed that the critical Reynolds numBey; of this flow exists
between 10000 and 10500. Our results also showed that the flowfield becomes a periodic flow

from a steady flow when Reynolds number is larger than about 10000.
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Figure 5.6 Temporal variation of the eigenvalue of the mode-Rat= 1100Q Ma = 0.6.

The frequency distribution of the velocity mdirection of the unsteady flow &e= 10750
is shown in Fig. 5.8. This result clearly indicates that the flow is oscillatory and has a single
frequencySt = fL/umax = 0.33. In this study, we conduct detailed analysis of this unstable

mode which induces this oscillation.

Results of global linear stability analysis

The eigenvalue distribution &e = 100000btained by the global linear stability analysis is
shown in Fig. 5.9. The Strouhal number, which is calculate® by w/(2r), of the least stable
oscillatory mode is 0.33. This Strouhal number coincides with that of the oscillatory flow at
Re= 10750shown in Fig. 5.8. Therefore, it is inferred that the oscillation of the flow is induced
by this mode which is unstable when the Reynolds number is high enough. For convenience of
explanations, we call this oscillatory mode (whose Strouhal number is about 0.33) the mode-I.

In addition, a following relation between relatively low stable modes in Fig. 5.9 can be found.
wm =mx0.7 (m=0,1,2,--+) (5.14)

Chiba!® % also found this relation and he showed that eigenmodes of the regularized cavity

flow can be classified into the following modes,
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(a) Streamlines (b) Distribution of the velocityu atx/L = 0.5

Figure 5.7:Steady flow aRe= 600Q Ma = 0.05,t = 150Q
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Figure 5.8:Frequency distribution of flowfield @&e = 1075Q Ma = 0.05. Time history of
velocityu atx/L = 0.5, y/L = 0.75is used.
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Figure 5.9:Eigenvalue distribution &e= 1000Q Ma = 0.05,t = 1500

e Modes of inviscid Couette flows (C mode): This mode appears at the core region of the
main vortex, where the velocity profile shows linear variation, in other words, the region

of a constant vorticity.

e Modes of shear flows (S mode): This mode appears at the region of shear flows around the
vortex core of the main vortex, where the velocity profile shows a curve with a significant

change caused by the walls.

Moreover, he revealed that the relation of Eq. 5.14 can be explained as the C mode, as follows.
In the case of an inviscid vortex whose vorticity is constant in the entire region of the flow, its

eigenvectors and corresponding angular frequencies are described as fSIf63,

¢mj = CoeXp [(wmt + MY)] Im(mil) (5.15)

Wm = MQ (m=0,1,2,--+) (5.16)
wherer andé form the cylindrical coordinates (6). ¢m | is an eigenvector of a stream function,
mis a wavenumber in the circumferential directigns the number of nodal circles,, is the

m-th order Bessel functiomn,; is the j-th solution ofJ,(X) = 0, Q is the vorticity,wn is the an-

gular frequency, an@; is an arbitrary constant. The C mode has periodicity in circumferential
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direction and the relation of its wavenumber and angular frequency is described by Eg. 5.16.

In fact, the Strouhal number of the mode-I coincides with thatmaf(¥) = (3, 0.7), namely

ws 3x07
St= 22 =
n o1

estimated t&2 ~ 0.7 by examining the velocity profile of Fig. 5.7(b) .

~ 0.33. Moreover, the vorticity of the core region of the main vortex is

Characteristics of the mode-I

If an imaginary part of a eigenvalue has non zero value, the eigenmode periodically changes
in time. This periodic change of the real part of the eigenvector is calculated by the following

equation:

a(x Y. 1) = Coexplt) [ (x. y)cos(wt) — G(x, y)sin(wt)] (5.17)

whereCy is an arbitrary constant. In order to observe the time variation of the mode-I, the
eigenvector of the vorticity @Re = 6000and 10000 are calculated by Eq. 5.17, and shown in
Figs. 5.10 and 5.11. The ciheientCoexp(rt) is set to 1, namely the growth (or damping) of
the oscillation is ignored here for convenience.

In the case oRe= 600Q there is a periodical structure in the circumferential direction at the
core region of the main vortex. This structure is caused by the C mode, and it is confirmed that
the circumferential wavenumberns= 3. In addition, the distribution of alternating vorticities
caused by the S mode appears at the region of shear flows around the core region of the main
vortex. These structures at the region of shear floR@& 6000and 10000 are almost same.
Therefore, these modes are believed to be the identical mode, namely the mode-I. However, in
the case oRe= 1000Q the structure of the C mode becomes weaker and the structure of the S
mode becomes dominant. Consequently, the mode-I is the mode which is related to both of the
instabilities of the core region of the main vortex (C mode) and the shear flow around the core
region (S mode). In addition, the mode-I becomes unstable and induces the periodic oscillation
of St= 0.33to the flow due to the destabilization of the region of the shear flow as the Reynolds
number increases.

The time sequential figures of the mode-I in Figs. 5.10 and 5.11 indicate that the structures
of the C and S modes rotate in the same direction as the rotational direction of the main vortex.
The angular frequency of the C mode toward the center of the main vortex is estimated to 0.7,

and it is same as the vorticity of the main vortex. The angular frequency of the S mode is
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estimated to 0.26 which is slower than that of the C mode. These results also agree very well

with the results of the incompressible flow analysis conducted by GHiba.

5.3.3 Changes of mode-I by Mach number

Figure 5.12 shows the change of the eigenvalue of the mode-I by the Mach and Reynolds num-
bers. In the case of all the Mach numbers, the stability of the mode-I decreases as the Reynolds
number increases. On the other hand, the mode-I is stabilized as the Mach number increases.
Especially, in the case dla = 0.6, the mode-I is highly stabilized, and the critical Reynolds
number that is the Reynolds number at which the growth rate becomes positive, is high. Eigen-
vectors of the vorticity for various Reynolds numbers,Ma& = 0.3 and 0.6, are shown in

Fig. 5.13. In the both cases bfa = 0.3 and 0.6, structures of regions of shear flows (S mode)
become more unstable as the Reynolds number increases, as well as thedase @05 dis-

cussed in Section 5.3.2. Figures. 5.14 and 5.15 show eigenvectors of the pressure and density
for various Mach and Reynolds numbers. The change of pressure eigenvectors by the Reynolds
number is similar to the change of the vorticity eigenvector. However, the magnitude of the
pressure perturbation of this mode hardly changes by the Mach niinbbeontrast, the den-

sity eigenvectors change by the Mach number. As the Mach number increases, the structures
of the region of the shear flow (S mode) become dominant and its magnitudes become signif-
icantly large while this mode becomes stabilized. Therefore, it is inferred that the stabilizing
effect of the increasing Mach number is caused by the density perturbation. In the next section,

we investigate how the density perturbation stabilizes the mode-I.

5.3.4 Stabilizing effect of compressibility

In this section, the dynamics of vortices is considered, in order to clarify the stabilifet) ef
the density perturbation. In two-dimensional compressible viscous flows, the spanwise vorticity
w, is governed by the following vorticity equation:

Dw, (8u 6V) l(@p@p 6p6p) 1(82wz 82wz)
= —w;, + +

bt~ “\ax " ay) " p2\axay " dyax) T Relaxe T oy

vorticity—dilatation baroclinic torque viscous difusion

(5.18)

"The eigenvectors are normalized to unit length. Namgf§, § = 1. In addition, the number of elements of all
the vectors in this section is same. Therefore, we can compare the magnitudes of the eigenvedtersrf di
figures.
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Figure 5.10Temporal change of vorticity eigenvectorRé = 600Q Ma = 0.05. Eigenvaluel
isoc = -4.73x 102, w = 211 Only the real part is shown.
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Figure 5.11Temporal change of vorticity eigenvectorR¢ = 1000Q Ma = 0.05. Eigenvalue
liso = -4.86x 1073, w = 2.08. Only the real part is shown.
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Figure 5.12Changes in eigenvalues of the mode-I by Reynolds and Mach numbers.

where,
ou ov
= — — — 5.19
Wy oy~ ox ( )
D(,UZ awz awz awz
= 2
Dt ~ ot ox oy (5.20)

The first term on the right hand side of Eq. 5.18 is a vorticity-dilatation term which represents
an dtect of dilatation and contraction of a vortex. If a vortex is contracted, its vorticity becomes
large, and if the vortex is dilated, its vorticity becomes small. The second term is a baroclinic
torque which represents th&ect of misaligned gradients of the pressure and density. If there
are misaligned gradients of the pressure and density, the unequal acceleration occurs and it
results in a generation of the vorticity. These terms are caused by the density change. Therefore
they indicate &ects of the compressibility. The third term represents a dissipatieat®f the
viscosity.

Here, we consider distributions of the spanwise vortiaifythe vorticity-dilatation terng

and the baroclinic torqu&;, caused by perturbationg superimposed on the basic stafe
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(a) Ma = 0.3, Re= 600Q Eigenvaluel is (b) Ma = 0.3, Re= 10500 Eigenvaluel is
o =-500x1072, w=209 o =6.03%x10"5, w =207

(c) Ma = 0.6, Re= 600Q Eigenvaluet is (d) Ma = 0.6, Re= 12000 Eigenvaluel is
o =-521x1072 w=205 o =430x1073 w =204

Figure 5.13Changes in vorticity eigenvectors of the mode-I by Reynolds and Mach numbers.
Only the real part is shown.
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(@ Ma = 0.05 Re = 6000 (b) Ma = 0.05, Re = 10500
Eigenvaluel iso = —4.73x1072, Eigenvaluel is o = 441 x 1073,
w=211 w = 2.08

-1.2E-03 -2.0E-03

(c) Ma = 0.3, Re= 600Q Eigen- (d) Ma = 0.3, Re = 10500
value 1 is o = -5.00 x 1072, Eigenvaluel is o = 6.03x 107,
w =208 w =207
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(e) Ma = 0.6, Re= 600Q Eigen- (f) Ma = 0.6, Re= 12000 Eigen-
value 1 is ¢ = -521x 1072, valuelis o = 430x 103, w =
w =205 2.04

Figure 5.14Changes in pressure eigenvectors of the mode-I by Reynolds and Mach numbers.
Only the real part is shown.

82



5 Global Linear Stability Analysis of Compressible Cavity Vortex

(8 Ma = 005 Re = 600Q (b) Ma = 0.05, Re = 10500
Eigenvaluel iso = —4.73x1072, Eigenvaluel is o = 4.41x 1073,
w=211 w = 2.08

T ™

-2.0E-03 -3.0E-04 3.0E-04

(c) Ma = 0.3, Re= 600Q Eigen- (d) Ma = 03, Re = 10500
value 1 is o = -5.00 x 1072, Eigenvaluel is o = 6.03x 107,
w =208 w =207

HE T ™
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(e) Ma = 0.6, Re= 600Q Eigen- (f) Ma = 0.6, Re= 12000 Eigen-
value 1 is ¢ = -521x 1072, valuelis o = 430x 103, w =
w = 2.05 2.04

Figure 5.15Changes in density eigenvectors of the mode-I by Reynolds and Mach numbers.
Only the real part is shown.
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These terms generated by the perturbations are indicated by the following equations:

ou oV
- A 5.21
@z ay  ox (5:21)
_{ou oV ou oV
S = -, Y A 5.22
vd @ (ax * ay) “’Z(ax+ a) (5.22)

1 (aﬁap' opop’ 00 op _ 09’5_3 (5.23)

b = 2 \dxdy oy ox  oxdy Oy ox
where, the overbar and prime denote variables of the basic state and perturbations, respectively.
These termsv, S/, andS|; caused by the linear instability of the mode-I are calculated by
substituting the eigenvect@rinto g'. Distributions of thew,, S/ ,, andSj, at close to the critical
Reynolds number, are shown in Figs. 5.16 and 5.1 Mar= 0.05and 0.6, respectively.

At both Mach numbers of 0.05 and 0.6, thieet of dilatation (indicated by the vorticity-
dilatation termS ) is found in the region of shear flows, and its distribution is similar to the
spanwise vorticityw, (the alternating distribution). In addition, the vorticity-dilation term has
the opposite signs to the spanwise vorticity in many regions. This means that he vorticity-
dilatation term attenuates vorticity perturbations. It has been known that this stabiliteicy e
of the vorticity-dilatation term also appears in a compressible mixing [&yer.

At Ma = 0.05, the magnitude of the baroclinic torq&g, is much smaller than that of the
vorticity-dilatation term, and therefore negligible. In contrastM#a = 0.6, the baroclinic
torque has the comparable magnitude to the vorticity-dilatation term. The baroclinic torque
distributes to the region of shear flows and has large values especially near reattachment points
of the base flovg. The distribution of this term does not form the alternating distribution unlike
the spanwise vorticity and the vorticity-dilatation term. It is inferred that the spanwise vortices
are deformed to elongated shapes by this baroclinic torque distribution.

The mode-I can be considered as an incompressible instability mode because it appears in
low Mach number flows, and therefore it is inferred that the alternating distribution of vortices,
which sustains the vortices themselves like the Karman vortex-street, is important to destabilize
the mode-I. Therefore, the above deformatiflieet on the spanwise vorticies of the baroclinic
torque results in the stabilization of the mode-I, because it breaks such alternating distributions
of vorticies. Moreover, the fierence between the low Mach number flawig = 0.05) and
the higher Mach number flonMa = 0.6) is the magnitude of the baroclinic torque. Thus, it

is concluded that the stabilization of the mode-I with the increasing Mach number is caused by
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the baroclinic torque which deforms the spanwise vortices.

5.4 Summary

In this chapter, in order to elucidatéfects of compressibility on the global stability of the
cavity vortex, the global linear stability analyses of the compressible regularized cavity flow for
various Mach and Reynolds numbers were conducted.

The result of the global linear stability analysis at the low Mach number condition shows
good agreement with the results of incompressible flow analysis conducted by®Hifbét.is

summarized as follows:

e The flowfield becomes an oscillatory flow when the Reynolds number exceeds a certain
value (abouRe= 10000Q.

e The oscillation is caused by a linear instability mode (called mode-I in this study).

¢ Linear instability of the regularized cavity flow can be classified into two modes, namely
the C and S modes. The C mode relates to instability of a inviscid vortex and exists in the
core region of the main vortex. The S mode relates to instability of shear flows and exists

in outer regions of the core region of the main vortex.
¢ The mode-I has the instability nature of both of the C and S mode.

¢ Instability of the S mode becomes unstable and dominant as the Reynolds number in-

creases.

Then, we analyzed thefect of the compressibility on instability of the mode-I. We compared
the eigenvectors of the mode-I for various Mach numbers. In addition, we investigated the
distributions of two terms of the vorticity transport equation, namely, the baroclinic torque and

the vorticity-dilatation term which describe compressibilifieets.

¢ Density perturbations in the region of shear flows become significant as the Mach number

increases, whereas the velocity and pressure perturbations do not change significantly.

¢ In the region of shear flows, the vorticity-dilatation term attenuates spanwise vortices,
namely,this term has stabilizindgfect. This result is similar to results of previous study

on a compressible mixing lay#t.
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Figure 5.16Distributions ofw;, Si,, andS/;. Ma = 0.05, Re= 10500
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e The magnitude of the baroclinic torque becomes large as the Mach number increases,

while that of the vorticity-dilatation term does not greatly change.

¢ In the region of shear flows, the baroclinic torque deforms spanwise vortices to elongated
shapes.

¢ In conclusion, the stabilizingfiect of the compressibility on the cavity vortex is caused

by the increase of the deformatiofiects of the baroclinic torque.

Finally, it should be emphasized that the above results are achieved by the global linear stability

analysis which is able to analyze the global stability of non-parallel, compressible, and viscous
flows.
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The results of this thesis are summarized as follows:

High-resolution and matrix-free method of the global linear stability analysis for

compressible viscous flows

In Chapter 4, we discussed about the desired properties of the numerical method for the future
global linear stability analysis, and proposed the method that satisfies the properties.

First, we discussed about two spectral transformation methods, namely, the time-stepping
method and the shift-invert method. In terms of computational time cost, the time-stepping
method can be more computationally expensive than the shift-invert method, because the time-
stepping method needs to solve the time development of fluids. By contrast, the time-stepping
method needs considerably less computational memory than the shift-invert method, because
the time-stepping method does not form any matrix explicitly, namely, this method is matrix-
free. The memory requirement of the shift-invert method is proportional to the square of di-
mensions of the Jacobian matix since this method forms the matmxexplicitly. Therefore,
the memory requirement of the shift-invert method readily exceeds the available memory of the
computer when the number of computational grid points for fluid simulations is large, which
leads a large dimension of the Jacobian mag&ixEspecially in the case of three-dimensional
flow analysis, it might be crucial. In addition, to write the code of the time-stepping method is
easy because the routine of conventional CFD codes is used. Therefore, we concluded that the
time-stepping method is promising for future studies that analyze three-dimensional flows.

Next, we proposed and validated the numerical method of the global linear stability analysis
for compressible viscous flows that has the high-order spatial accuracy and uses a matrix-free
method. We consider that the high-order spatial accuracy and the low memory requirement

are necessary properties of the method for future global linear stability analyses because future
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studies are believed to treat small spatial structures and perturbations such as the aeroacous-
tics and turbulent flows. The proposed method uses the time-stepping method as the spectral
transformation method and the compadtatience scheme as the method for fluid simulations.
Therefore, the proposed method has good properties of the comfifactce scheme and the
time-stepping method, namely, the high-order spatial accuracy and the low memory require-
ment, as well as the applicability to various equations and the simplicity of the coding.

Then, for the validation of the proposed method, two-dimensional compressible viscous flows
past a circular cylinder was analyzed by this method. The results showed good agreement
with previous studies. The superimposition of the most unstable mode and the steady state
depicted the flowfield that includes the Karman vortex-street. In additi®egte of an outflow
boundary was investigated. It was found that the global linear stability analysiecea by
an outflow boundary and the influence can be avoided by proper boundary conditions such as a
non-reflecting boundary condition and to locate the boundaries far from a body.

Finally, we investigated the applicability of the proposed method for flowfields including
shock waves. The applicability of the global linear stability analysis for the flowfields including
shock waves has not been investigated before. This study analyzed a global linear stability of
a supersonic flowfield around a circular cylinder. We confirmed that the proposed method can
analyze the global linear stability of wake flows behind the cylinder. Consequently, it was found
that the proposed method is able to analyze global linear stability of supersonic flows including
shock waves. However, the global linear stability analysis of flowfields including shock waves

needs to be paid attention to a numerical instability due to shock waves.

Compressibility effects on the global linear stability of a vortex

In Chapter 5, to elucidate compressibilitffexts on the global linear stability of a vortex, the
compressible cavity vortex was investigated by the method of global linear stability analysis
proposed in Chapter 4.

First, it was confirmed that the results of the global linear stability analysis of incompressible
cavity flows are reproduced by our analysis of the compressible cavity flow. The instability
of the cavity vortex is classified into two modes, namely, C and S modes which relate to an

inviscid vortex located in the core region of the main vortex and a shear flow located in the

90



6 Conclusions

outer region of the inviscid vortex, respectively. The cavity flow becomes an oscillatory flow
when the Reynolds number exceeds a certain value. This oscillatory flow is caused by a linear
instability mode called the mode-I in this study. The mode-I is related to both of the C and
S modes, and the S mode, namely, the instability of shear flows rapidly grows and becomes
unstable as the Reynolds number increases.

Then, we revealed the stabilizinffects of the compressibility on the cavity vortex by com-
parisons of the eigenmodes at various Mach number conditions. The global linear stability
analysis showed that the mode-I becomes stable as the Mach number increases. The eigenvec-
tor results indicated the density perturbation becomes significant as the Mach number increases,
whereas the velocity (vorticity) and pressure perturbations do not so greatly change. In addi-
tion, the further investigations on the compressibilifieet was conducted by analyzing the
distributions of the vorticity-dilatation and the baroclinic torque terms of the vorticity trans-
port equation. These terms indicate the compressibitiigce on the generation of spanwise
vortices. It was found that the vorticity-dilatation term attenuates spanwise vortices in the re-
gion of shear flows. In other words, the dilatation has a stabilizifece It has been known
that this stabilizing fect of the vorticity-dilatation term also appears in a compressible mixing
layer. However, the magnitude of the vorticity-dilatation do not so greatly change by the Mach
number. We revealed that in contrast to the vorticity-dilatation term, the magnitude of baro-
clinic torque becomes large as the Mach number increases, and the baroclinic torque deforms
spanwise vortices generated in the region of shear flows to elongated shapes. Therefore, it is
concluded that the stabilizingtect of the compressibility on the cavity vortex is caused by the

increase of the deformatiorfects of the baroclinic torque.

Concluding remarks

In conclusion, this thesis developed the promising method of the global linear stability anal-
ysis for compressible viscous flows, and revealed the stabiliziiggteof compressibility on

vortical flows by using the developed method. The results of this thesis show that the global
linear stability analysis is a helpful analytical method for understanding transition and unsteady

phenomena.
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