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Abstract

Perception is highly robust to the presence of sensory noise. How to be robust to the

external stimulus and to optimize neuronal performance have been intensely debated. As

single neurons are not very informative, to obtain accurate information about sensory or

motor variables some sort of population averaging must be performed. Moreover, how

population codes are used in computations depend on whether or not the noise is corre-

lated. If the noise is uncorrelated, meaning the fluctuations in the response of one neuron

around its average are not correlated with the fluctuations of other neurons, population

coding is relatively well understood. However, noise in the brain is correlated, which is

mainly a consequence of interactions between two neurons and shared presynaptic input.

We then have to take into consideration both mean firing rates and neural correlation of

neural activities.

Not only sensory noise but also rapidly changes in incoming stimuli affect sensory

coding. How to be robust and adapt rapidly to the external stimulus and to optimize

neuronal performance have been intensely debated. To provide information about how

the nervous system can implement the computation among sensory adaptation, we assume

that a possible mechanism is short-term synaptic depression, which is local computation

in each neuron, and investigate the relationship in short-term synaptic depression linking

the role of information processing. We expanded the previous theoretical framework

in this study to spiking neuron models with short-term synaptic depression and found

that synaptic depression reduces neural correlation, which could be beneficial for sensory

coding.

Electrophysiological experiments conducted in the field of neuroscience have recently

shown that the manner in which information is represented using specific spiking and

silence patterns over a group of neurons, is also understood both by the pairwise and

higher-order correlated neural activities. However, very little is known about the rela-

tionships in the higher order correlations linking the role of information processing. To

investigate the role of higher order correlations, we have studied whether higher-order

correlations, especially 3rd-order correlations among neural activities, have the informa-

tion of external inputs. We used a parsimonious network structure with common inputs

and spiking nonlinearities, which can provide not only a firing rate tuning curve but also

the relationship among the statistics gathered from neuronal response of primary visual

cortex to a random stimulus. We found that the heterogeneous structure of this network
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can dynamically control the structure of the higher-order correlations and can generate

both sparse and synchronized neural activity. The 3rd-order correlations resulting from

visual stimulation can carry stimulus-specific information these dynamics based on these

dynamics.

These theory enables us to analytically calculate how local computations in each neuron,

such as synaptic depression and spiking non-linearities, affect on neural activities. Based

on the theory, we investigate how these local computations and the structured connectivity

coordinate effects on information procession, especially sensory coding in primary visual

cortex. Our study should open up the way for theoretical studies on information processing

in structured neural network.
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Chapter 1

Introduction

Perception is highly robust to the presence of sensory noise and adapt rapidly to changes

in incoming stimuli.　 How to be robust and adapt rapidly to the external stimulus and

to optimize neuronal performance have been intensely debated. A possible mechanism

is local computation in each neuron, such as short-term synaptic plasticity and thresh-

old non-linearity, because it is local computation and does not need to sum up their

individual information. While short-term synaptic plasticity, that is activity-dependent

changes over milliseconds to minutes in synaptic transmission, could allow adaptive com-

putations in neural circuits (Zucker and Regehr 2002), threshold non-linearity produces

higher-order correlations and could induce synchronous firing and temporal train-patterns

(Amari et al., 2003). However, because of their dynamical synapses, it is difficult to eval-

uate their macroscopic effects on information processing.

Here, we propose a theoretical framework for neural network models with two types of

local computation, that is, synaptic depression and threshold non-linearity. To evaluate

clearly the functional role of these local computations, we compare the results of homo-

geneous network model and parsimonious structured network model, which is observed in

various brain regions (Ko et al., 2011), and study how the structured connectivity modu-

late neural dynamics and the estimation of information.

Neural encoding is an algorithms to predict a given stimulus or behaviour from the

pattern of neuronal responses, that is spike trains (Dayan and Abbott 2001). We can

catalog how neural respond to a wide variety of stimuli, and then construct models that

attempt to predict response to other stimuli. Neural coding thus refers to the map from

stimulus to response. Neural decoding refers to the reverse map, from response to stimulus,

and the challenge is to reconstruct a stimulus, or certain aspects of that stimulus, from

the spike sequences it evokes.
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The most important characteristic of the encoding process in the brain is that neu-

rons stochastically respond to stimuli. The same visual stimulus does not evoke the same

response of neurons. This means that the brain must confront with the uncertainty of

stimuli due to the noise inherent in the nervous system. As single neurons are not very

informative, to obtain accurate information about sensory or motor variables some sort

of population averaging must be performed. Individual neurons thus count for little; it

is population activity that matters. For example, as with control of eye (Lee et al. 1988)

and arm (Georgopoulos et al. 1986) movements, visual discrimination in the primary vi-

sual cortex (V1) is much more accurate than would be predicted from the responses of

single neurons (Paradiso 1988). If the encoding process is noisy and imperfect, the de-

coding process in the brain also has to be imperfect and perceptual misinterpretation in

difficult cognitive tasks originate in the stochastic firing of neurons (Newsome et al. 1989,

Britten et al. 1992, Salzman et al. 1992, Celebrini and Newsome 1994).

Exactly how this averaging is carried out in the brain, however, and especially

how population codes are used in computations (such as reaching for an object on

the basis of visual cues, an action that requires a transformation from population

codes in visual areas to those in motor areas), is not fully understood. Part of the

difficulty in understanding population coding is the nature of the the neuronal noise,

and especially on whether or not the noise is correlated. If the noise is uncorrelated,

meaning the fluctuations in the response of one neuron around its average are not

correlated with the fluctuations of other neurons, population coding is relatively

well understood (Averbeck, Latham and Pouget 2006). Unfortunately, noise in the

brain is correlated (Zohary et al 1994), which is mainly a consequence of interactions

between two neurons (Perkel et al. 1967, Singer 1999) and shared presynaptic input

(Shadlen and Newsome 1998, Kriener et al. 2008, Ecker et al. 2010, Renart et al. 2010).

Because of the correlated noise, we need to take a second look at the results that have

been obtained under the assumption of independent noise. This means extending the

theories to take into account correlated noise.

As discussed previously, a possible mechanism to adapt rapidly to changes in incom-

ing stimuli and percept the environment is short-term synaptic plasticity. It is clear

that we cannot understand neural coding or information processing in perception of the

environment without taking synaptic dynamics into account. Here, we investigate how

short-term synaptic plasticity affects information processing and discuss their implications

for neuronal coding and signaling. In Chapter 2 and 3, Here, using mean field analysis,

we propose a theoretical framework for neural network models with short-term synaptic
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plasticity to evaluate how short-term synaptic plasticity affects firing rates, neural cor-

relations and Fisher information. We then investigate parameter regions where synaptic

depression increases the Fisher information by systematically changing the strengths of

the homogeneous and lateral-inhibitory synaptic connection and discuss the mechanism

of belief adaptation effects in primary visual cortex.

In Chapter 2, we investigated the effects of synaptic depression on a macroscopic be-

havior of stochastic neural networks, namely the firing rate. Dynamical mean field equa-

tions were derived for such networks by taking the average of two stochastic variables:

a firing-state variable and a synaptic variable. In these equations, the average prod-

uct of these variables is decoupled as the product of their averages because synaptic

depression is activity-dependent and leads to the Independence of the two stochastic

variable. We proved the independence of these two stochastic variables assuming that

the synaptic weight Jij is of the order of 1/N with respect to the number of neurons

N . Using these equations, we derived macroscopic steady-state equations for a network

with uniform connections and for a ring attractor network with Mexican hat type con-

nectivity, which is used as a model of the primary visual cortex and prefrontal cortex

(Ben-Yishai et al. 1995, Compte et al. 2000), and investigated the stability of the steady-

state solutions. An oscillatory uniform state was observed in the network with uniform

connections owing to a Hopf instability. For the ring network, high-frequency perturba-

tions were shown not to affect system stability. Two mechanisms destabilize the inho-

mogeneous steady state, leading to two oscillatory states. A Turing instability leads to a

rotating bump state, while a Hopf instability leads to an oscillatory bump state, which was

previously unreported. Various oscillatory states take place in a network with synaptic

depression depending on the strength of the interneuron connections.

Synaptic depression affects not only firing rates of neurons, but also mean and variability

of neural correlations, which affects efficacy of population coding. Even small correlations

between neurons can have greatly affect the efficiency of a population of neurons to en-

code information. Although previous studies constructed such a theory of correlation in a

spiking neuron model including the time course of postsynaptic potential and refractory

properties by using the framework of mean-field theory (Ginzburg and Sompolinsky 1994,

Meyer and van Vreeswijk 2002), synaptic depression has not been taken into considera-

tion. In Chapter 3, we extended the previous theoretical framework to spiking neuron

models with short-term synaptic depression. On the basis of this theory, we analytically

calculated neural correlations for a ring attractor network with Mexican hat type connec-

tivity and found that synaptic depression greatly reduces neural correlation, which can
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improve population coding accuracy (Abbott and Dayan 1999).

The reduction of both firing rates and rate correlation due to synaptic depression, which

is previously discussed in Chapter 2 and 3, have the opposite effects on the accuracy of

population coding. Whether the Fisher information increases or not as a combinational ef-

fect is determined by which effects are stronger. However, it is unknown how both changes

in firing rates and neural correlations due to synaptic depression affect on the accuracy

of a population code. In the latter part of Chapter 3, by taking into consideration both

changes, we aim to analytically compute the Fisher information to evaluate the effects

of synaptic depression on an upper bound to the accuracy that any decoder can achieve

(Seung and Sompolinsky 1993, Abbott and Dayan 1999). We then investigate parame-

ter regions where synaptic depression increases the Fisher information by systematically

changing the strengths of the homogeneous and lateral-inhibitory synaptic connection and

discuss the mechanism of belief adaptation effects in primary visual cortex.

So far, we discuss only about the sensory information transmitted by firing rates and

pair-wise correlations between neurons. However, the widely observed complex features of

population activity, such as synchronization and concentration patterns of suspension, can

be captured not only by pairwise correlations but also by higher-order correlations, which

have significant effects on complicated physical processes and information processing. In

neuroscience, electrophysiological experiments have recently shown that the manner in

which information is represented by specific patterns of spiking and silence over a group

of neurons, is also understood both by the pairwise and higher-order correlated neural

activities. But, very little is known about the relationships the higher-order correlations

linking the role of information procening, that is, whether higher-order correlations be-

tween neuronal activities could allow neurons to robustly and rapidly transmit sensory or

motion information.

In Chapter 4, we investigated a parsimonious structured network with common inputs

and spiking non-linearities to investigate the effects of structured connectivities on higher-

order correlations, which are recently observed in various brain regions. Although in the

previous chapter we derive neural correlations based on the fluctuation-dissipation theory

for investigating changes in the equilibrium order parameters, due to sufficiently weak

externally applied perturbations (Ginzburg and Sompolinsky 1994), this network model

cannot reproduce there are no equilibrium order parameters and we cannot apply the

fluctuation-dissipation theory to network model (Amari et al., 2003, Macke et al., 2011).

We then constructed a parsimonious structured network with common inputs and spiking

non-linearities as a model of orientation selectivity and theoretically investigate the effects
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of structured connectivity on higher-order correlations.

This thesis is organized as follows. In Chapter 2, *1 we have explored the macroscopic

properties of two types of stochastic binary neural networks with synaptic depression: a

network with homogeneous connectivity and a ring attractor network with Mexican hat

type connectivity. Comparing the macroscopic properties, especially firing rates, between

the two types network model, we investigate the effects of structured connectivities on

the neural dynamics induced by synaptic depression. Synaptic depression affects not only

the mean responses of neurons but also the correlation of response variability in neural

populations. In Chapter 3, *2 we investigated how synaptic depression affects neural

correlations in a ring attractor network with Mexican- hat- type connectivity. In Chapter

4, we investigated a parsimonious structured network with common inputs and spiking

non-linearities. Whether or not structured connectivity are important for higher-order

correlations, which are recently observed in various brain regions. In Chapter 5, we

present a summary of this thesis and discuss future directions.

*1 Preliminary results for the present work have been published elsewhere (Igarashi et al. 2009,

Igarashi et al. 2010). Published under licence in Statistical mechanics of attractor neural network

models with synaptic depression by IOP Publishing Ltd, and Mean Field Analysis of Stochastic

Neural Network Models with Synaptic Depression by the Physical Society of Japan. Content from

this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the authors and the title of the work,

journal citation and DOI.
*2 Preliminary results for the present work also have been published elsewhere (Igarashi et al. 2012).

Published under licence in Theory of correlation in a network with synaptic depression by APS

Publishing Ltd. Content from this work may be used under the terms of the Creative Commons

Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the

authors and the title of the work, journal citation and DOI.
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Chapter 2

Theory of firing rates in stochastic

neural network models with synaptic

depression

2.1 Background

Neurophysiological experiments have shown that high-frequency inputs reduce

the efficacy of signal transmission owing to the exhaustion of neurotransmitters

(Thomson and Deuchars 1994). This phenomenon, called ”synaptic depression”,

enables dynamic gain control by reducing presynaptic inputs (Abbott et al. 1997,

Tsodyks and Markram 1997, Rothman et al. 2009). Synaptic depression not only

affects the activity of a single neuron but also the overall activity in neural networks

(Abbott and Regehr 2004). Synaptic depression can allow synapses to perform critical

computational functions in neural circuits such as adaptation to external stimuli and

short-term memory (Abbott and Regehr 2004, Tsodyks and Gilbert 2004, Kohn 2007).

However, systems with synaptic depression cannot be analyzed by the conventional

equilibrium statistical-mechanical approach owing to the asymmetry of connections.

Thus, we propose a dynamical mean field theory for a stochastic binary neural network

model with synaptic depression to explore the effects of synaptic depression on the

macroscopic behavior of stochastic neural networks. Preliminary results for the present

work have been published elsewhere (Igarashi et al. 2009, Igarashi et al. 2010).

To observe the macroscopic behavior of the network, we reduced the stochastic

neural network model with synaptic depression to microscopic dynamical mean field
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equations by taking the average of two stochastic variables, a firing-state variable

and a synaptic variable, over different realizations of stochastic spikes. Because in

the equations the averaged product of the two stochastic variables is decoupled as

the product of their averages, they must be independent. We demonstrated such

independence for a non frustrated system and derived microscopic dynamical mean

field equations for a stochastic binary neural network model with synaptic depression.

The derived equations coincide with those of an analog neural network with synaptic

depression(Abbott et al. 1997, Tsodyks and Markram 1997, Tsodyks et al. 1998). Using

these microscopic equations, we derived macroscopic steady-state equations and analyzed

their stability for two types of neural network: one with uniform connections and one with

Mexican hat type connections(York and van Rossum 2009, Kilpatrick and Bressloff 2010,

Kilpatrick and Bressloff 2010). A network with uniform connections is the simplest

type of network, for which the effect of synaptic depression has been previously

studied(Tsodyks et al. 1998). A ring neural network with Mexican hat type connections

has nonuniform connectivity and has been used as a model of the primary visual cortex

and prefrontal cortex(Ben-Yishai et al. 1995, Compte et al. 2000). Although several

researchers have reported that synaptic depression in the ring network leads to an

oscillatory state, which is called a ”rotating bump” (RB) state or a ”traveling wave”

state, little is known about the cause of the oscillation(York and van Rossum 2009,

Kilpatrick and Bressloff 2010, Kilpatrick and Bressloff 2010).

We assume that oscillatory instability is caused by synaptic depression because a neural

network with synaptic depression can be considered as an activator-inhibitor system in

which firing rate is an activator and synaptic variable is an inhibitor. As discussed by Ku-

ramoto et al., the activator-inhibitor system can induce an oscillatory instability (a Hopf

instability) (Kuramoto 2003). To test the assumption, we first discuss a network with

uniform connections. Owing to its simplicity, we can reduce the network to a model with

only two components in which an oscillatory instability (a Hopf instability) can exist. This

reduction enables us to easily understand why synaptic depression causes oscillatory insta-

bility. We first show that an oscillatory uniform (OU) state appears owing to the presence

of synaptic depression. Although it has been reported that synaptic depression leads to an

oscillatory state in a network with non uniform connections(York and van Rossum 2009,

Kilpatrick and Bressloff 2010, Kilpatrick and Bressloff 2010), an oscillatory state has not

been reported for a network with uniform connections.

Next, we show that, in a ring network with Mexican hat type connections, synaptic

depression leads to three oscillatory states: the OU state, the RB state, and an oscillatory
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bump (OB) state, which was previously unreported. To investigate the mechanisms of

steady-state destabilization that lead to these oscillatory states, we analyzed the stability

of the steady-state solutions when there are frequency perturbations. In §2.5, we show that

high-frequency perturbations do not affect the system stability and that two mechanisms

destabilize an inhomogeneous steady state, leading to the two oscillatory states, i.e., the

RB and OB states. Analytical and numerical investigation of the ring network with

synaptic depression revealed a phase diagram in which a wealth of states and multistable

regimes can be discerned.

2.2 Model

We used a recurrent neural network with N neurons. The state of the ith neuron at time

t is represented by si(t). The state takes either a resting state, si(t) = 0, or a firing-state,

si(t) = 1. Each neuron follows a probabilistic dynamic:

Prob[si(t+ 1) = 1] ≡ gβ [hi(t)], (2.1)

gβ [hi(t)] =
1

2
{1 + tanh[βhi(t)]} , (2.2)

where hi[=
∑N
j ̸=i Jij [2xj(t)sj(t) − 1]] represents the total synaptic current arriving at

neuron i, and 1/β(= T ) is the level of noise due to the stochastic synaptic activity. At

each time step, all neurons are updated in parallel. Jij is a fixed synaptic weight from

the jth neuron to the ith neuron. xj(t)(0 < xj(t) ≤ 1) denotes the efficacy of signal

transmission at the jth neuron, which dynamically changes with synaptic depression.

xj(t) is determined by the corresponding neuron state and itself at the preceding time

t− 1:

xj(t) = xj(t− 1) +
1− xj(t− 1)

τ
− Usexj(t− 1)sj(t− 1). (2.3)

In this model, the synaptic connection Jij(t)(= Jijxj(t)) dynamically changes with

the efficacy of signal transmission xj(t). The phenomenological model of synaptic de-

pression described by eq. (2.3) was proposed by several researchers(Abbott et al. 1997,

Tsodyks and Markram 1997). A schematic of this model is shown in Fig. 2.1. Informa-

tion from one neuron (presynaptic neuron) flows to another neuron (postsynaptic neuron)

across a synapse. A synapse is a small gap separating neurons and consists of a presynaptic

ending that contains neurotransmitters stored in synaptic vesicles, a postsynaptic ending

containing receptor sites for neurotransmitters, and a synaptic cleft, or space, between the

presynaptic and postsynaptic endings [Fig. 2.1(a)]. An action potential cannot cross the
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Action 
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     Ending

Fig. 2.1. Schematic of phenomenological model of synaptic depression.

synaptic cleft between neurons. Instead, the nerve impulse is carried by chemicals called

neurotransmitters [Fig. 2.1(b)]. The cell receiving the nerve impulse (the postsynaptic

neuron) has chemical-gated ion channels, called neuroreceptors, in its membrane. The

presynaptic neurons exhaust neurotransmitters when they transmit signals. The efficacy

of signal transmission at presynaptic neuron j at time t decreases by a certain fraction,

Usexj(t − 1)(0 < Use ≤ 1), after the firing of the presynaptic neuron, sj(t − 1) = 1 [Fig.

2.1(c)], and recovers with time constant τ(τ ≥ 1), as shown in eq. (2.3).

2.3 Mean field theory

We propose a dynamical mean field theory for a stochastic binary neural network model

with synaptic depression assuming that synaptic weight Jij is of the order of 1/N with

respect to the number of neurons, N .
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2.3.1 Microscopic mean field theory

We derived microscopic dynamical mean field equations by first taking the noise average

of the firing-state variable at time t:

⟨si(t+ 1)⟩ = gβ [⟨hi(t)⟩], (2.4)

⟨hi(t)⟩ =
N∑
j ̸=i

Jij [2⟨xj(t)sj(t)⟩ − 1]. (2.5)

Similarly, we consider the noise average of eq. (2.3) for the synaptic variable:

⟨xj(t+ 1)⟩ = ⟨xj(t)⟩+
1− ⟨xj(t)⟩

τ
− Use⟨xj(t)sj(t)⟩. (2.6)

It is evident that xi(t + τ) and si(t) are correlated when τ > 0. However, equal time

correlations between si(t) and xi(t) are of the order of 1/N ; that is, xi(t) and si(t)

become independent when N → ∞, as we will show below.

Here, we define δxi(t) = xi(t) − ⟨xi(t)⟩ and δsi(t) = si(t) − ⟨si(t)⟩. Substituting eq.

(2.1) for ⟨δxi(t)δsi(t)⟩, we obtain

⟨δxi(t)δsi(t)⟩ = ⟨δxi(t)gβ [hi(t− 1)]⟩. (2.7)

Taylor expansion gives

gβ [hi(t− 1)] = gβ [⟨hi(t− 1)⟩] + g′β [⟨hi(t− 1)⟩] δ [hi(t− 1)] + . . . . (2.8)

Neglecting the higher-order terms yields

⟨δxi(t)δsi(t)⟩ = g′β [⟨hi(t− 1)⟩] ⟨δhi(t− 1)δxi(t)⟩ (2.9)

= g′β [⟨hi(t− 1)⟩]
N∑
j ̸=i

Jij⟨δ [xj(t− 1)sj(t− 1)] δxi(t)⟩. (2.10)

We evaluate the order of the right-hand side of eq. (2.10):

⟨δ [xj(t− 1)sj(t− 1)] δxi(t)⟩ = ⟨xj(t− 1)⟩⟨δsj(t− 1)δxi(t)⟩

+ ⟨sj(t− 1)⟩⟨δxj(t− 1)δxi(t)⟩+ ⟨δxj(t− 1)δsj(t− 1)δxi(t)⟩. (2.11)

⟨δ(xj(t−1)sj(t−1))δxi(t)⟩ is of the order of 1/N because the time-delayed cross-correlation

is of the order of 1/N(Ginzburg and Sompolinsky 1994). Since we have assumed Jij ∼
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O(1/N), we obtain

N∑
j ̸=i

Jij⟨δ [xj(t− 1)sj(t− 1)] δxi(t)⟩ ∼ O(1/N), (2.12)

and the equal-time correlations between si(t) and xi(t), ⟨δxi(t)δsi(t)⟩, disappear in the

limit of large networks, N → ∞:⟨
xi(t)si(t)

⟩
= ⟨xi(t)⟩⟨si(t)⟩. (2.13)

Taking advantage of the independence of xi(t) and si(t), we obtained the dynamical

mean field equations for mi(t) and Xi(t):

mi(t+ 1) = gβ


N∑
j ̸=i

Jij [2mj(t)Xj(t)− 1]

 , (2.14)

Xi(t+ 1) = Xi(t) +
1−Xi(t)

τ
− UseXi(t)mi(t), (2.15)

where mi(t) ≡ ⟨si(t)⟩ and Xi(t) ≡ ⟨xi(t)⟩. These equations for the stochastic

neural network model coincide with those for an analog neural network with synap-

tic depression(Tsodyks et al. 1998). The steady-state equation for noise average

Xj = Xj(∞) is

Xj =
1

1 + γmj
, γ = τUse, (2.16)

which is a finite-temperature version obtained in the T = 0 case(Matsumoto et al. 2007).

Finally, we obtain the microscopic steady-state equation for mi[= mi(∞)] for a network

with synaptic depression:

mi = gβ

 N∑
j ̸=i

Jij

(
2mj

1 + γmj
− 1

) . (2.17)

According to eq. (2.17), the steady state depends on γ(= τUse)(Tsodyks et al. 1998).

2.3.2 Stability analysis

To examine the stability of the steady state obtained with eq. (2.17), we consider

small deviations around a fixed point(Tsodyks et al. 1998, York and van Rossum 2009,

Hansel and Sompolinsky 1998):

mi(t) = mi + δmi(t), Xi(t) = Xi + δXi(t), (2.18)
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where Xi =
1

1+γmi
. We linearize eqs. (2.14) and (2.15) about the steady-state solution.

Neglecting the higher-order terms, we obtain

δmi(t+ 1) =
∑
j ̸=i

[
∂gβ (hi)

∂mj
δmj(t) +

∂gβ (hi)

∂Xj
δXj(t)

]
, (2.19)

hi =
∑
j ̸=i

Jij (2mjXj − 1) . (2.20)

Similarly,

δXi(t+ 1) = −UseXiδmi(t) +

(
1− 1

τ
− Usemi

)
δXi(t). (2.21)

Next we calculate the partial differential coefficients
∂gβ(hi)
∂mj

and
∂gβ(hi)
∂Xj

of eq. (2.19) in

more detail.

∂gβ(hi)

∂mj
=
∂gβ(hi)

∂hi

∂hi
∂mj

(2.22)

= βJijXj

{
1− [tanhβ(hi)]

2
}

(2.23)

Substituting the steady-state equation. (2.17) into eq. (2.23), we obtain

∂gβ(hi)

∂mj
= 4βJijXj

(
mi −m2

i

)
. (2.24)

Similarly, we have

∂gβ(hi)

∂Xj
= 4βJijmj

(
mi −m2

i

)
. (2.25)

Substituting eqs. (2.24) and (2.25) into eq. (2.19) yields

δmi(t+ 1) =
∑
j ̸=i

4βJij
(
mi −m2

i

)
[Xjδmj(t) +mjδXj(t)] . (2.26)

From the relations for the coefficients of eqs. (2.21) and (2.26), we obtain the Jacobian

matrix for the system (York and van Rossum 2009). The Jacobian matrix K has a size

of 2N × 2N with the following matrix:

Kij ≡

(
Kij
mm Kij

mX

Kij
Xm Kij

XX

)
,

(
δmi(t+ 1)

δXi(t+ 1)

)
= Kij

(
δmj(t)

δXj(t)

)
, (2.27)

Kij
mm = 4βJij(mi −m2

i )Xj , Kij
mX = 4βJij(mi −m2

i )mj , (2.28)

Kij
Xm = −δijUseXj , Kij

XX = δij

(
1− 1

τ

)
− Usemj , (2.29)

where 1 ≤ i, j ≤ N , and δij is the Kronecker delta. If the Jacobian matrix has eigenvalues

of 1 or less, the steady-state solution is stable.
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2.4 Network with uniform connections

In a network with uniform connections,

Jij = J0/N. (2.30)

2.4.1 Macroscopic steady-state equations

We derived macroscopic steady-state equations for a network with homogeneous connec-

tivity by using the microscopic mean field equations (2.14) and (2.15). Given the symmetry

of the synaptic weights in eq. (2.30), we can set the noise average of each neuron, mi, to

mi = m̂0, where m̂0 = 1
N

∑N
i=1mi. Substituting this condition into eq. (2.17), we obtain

a macroscopic steady-state equation:

m̂0 = gβ

[
J0

(
2m̂0

1 + γm̂0
− 1

)]
(2.31)

=
1

2

[
1 + tanhβJ0

(
2m̂0

1 + γm̂0
− 1

)]
. (2.32)

Equation. (2.32) gives the homogeneous steady-state solution.

2.4.2 Stability analysis

To examine the stability of the homogeneous steady-state solution obtained using eq.

(2.32), namely, mi = m̂0 and Xi = X̂0, we consider small deviations around a fixed point

(Tsodyks et al. 1998, York and van Rossum 2009, Hansel and Sompolinsky 1998):

mi(t) = m̂0 + δmi(t), Xi(t) = X̂0 + δXi(t). (2.33)

Substituting eqs. (2.30) and (2.33) into eqs. (2.19) and (2.26), we obtain

δmi(t+ 1) = 4βJ0
(
m̂0 − m̂2

0

) 1

N

N∑
j ̸=i

[
X̂0δmj(t) + m̂0δXj(t)

]
. (2.34)

δXi(t+ 1) = −UseX̂0δmi(t) +

(
1− 1

τ
− Usem̂0

)
δXi(t). (2.35)

Since Jij consists of the 0th Fourier component of J0, discrete Fourier transform analysis

can be used to diagonalize Jacobian matrix K [eq. (2.27)]. We therefore compute the
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Fourier series for eqs. (2.34) and (2.35). The Fourier coefficients of δmi(t) and δXi(t) are

given by

δm̂k(t) =
1

N

N∑
i=1

δmi(t)e
−2πi(ik)

N , δX̂k(t) =
1

N

N∑
i=1

δXi(t)e
−2πi(ik)

N , (2.36)

where i is the standard imaginary unit with the property i2 = −1. We then write δmi(t)

and δXi(t) in Fourier series form:

δmi(t) =

N
2 −1∑

k=−N
2

δm̂k(t)e
2πi(ik)

N , δXi(t) =

N
2 −1∑

k=−N
2

δX̂k(t)e
2πi(ik)

N . (2.37)

Substituting eq. (2.37) for eqs. (2.34) and (2.35), we obtain

N
2 −1∑

k=−N
2

δm̂k(t+1)e
2πi(ik)

N = 4βJ0 (m̂0 − q̂0)

N
2 −1∑
l=−N

2

[
X̂0δm̂l(t) + m̂0δX̂l(t)

] 1

N

N∑
j ̸=i

e
2πi(jl)

N ,

(2.38)

= 4βJ0 (m̂0 − q̂0)
[
X̂0δm̂0(t) + m̂0δX̂0(t)

]
, (2.39)

N
2 −1∑

k=−N
2

δX̂k(t+ 1)e
2πi(ik)

N =

(
1− 1

τ

) N
2 −1∑
l=−N

2

δX̂l(t)e
2πi(il)

N

− Use

N
2 −1∑

l,l′=−N
2

[
δm̂l(t)X̂l′(t) + m̂l(t)δX̂l′(t)

]
e

2πi[(l+l′)i]
N , (2.40)

where q̂k = 1
N

∑N
i=1(mi)

2e
−2πi(ik)

N . We use the following equation in the limit of N → ∞
to integrate the right side of eq. (2.38) with respect to j:

1

N

N∑
j ̸=i

e
2πi(jl)

N =

{
1 (l = 0)

0 (l ̸= 0)
(2.41)

Since Fourier components are orthonormal, we can equate the coefficients of the Fourier

components on the left and right sides. From the relations for the coefficients of eqs. (2.39)

and (2.40), we obtain the Jacobian matrix for the system in Fourier space, Hkk:
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k = 0 (
δm0(t+ 1)

δX0(t+ 1)

)
= H00

(
δm̂0(t)

δX̂0(t)

)
(2.42)

=

(
4βJ0 (m̂0 − q̂0) X̂0 4βJ0 (m̂0 − q̂0) m̂0

−UseX̂0 1− 1
τ − Usem̂0

)(
δm̂0(t)

δX̂0(t)

)
,(2.43)

| k |≥ 1 (
δm̂k(t+ 1)

δX̂k(t+ 1)

)
= Hkk

(
δm̂k(t)

δX̂k(t)

)
(2.44)

=

(
0 0

−UseX̂0 1− 1
τ − Usem̂0

)(
δm̂k(t)

δX̂k(t)

)
. (2.45)

This form makes it easy to analyze the stability of a steady state since, for any k, the

time evolution of each equation pair [δm̂k(t) and δX̂k(t)] decouples from all other equation

pairs. Eigenvalue λk of Hkk determines whether a steady-state solution is stable or not.

The solution is stable if it is 1 or less. The values for the eigenvalues, λk (̸= 0), are given

by λk = 0 and
(
1− 1

τ − Usem̂0

)
. Since 1 ≤ τ , 0 ≤ Use ≤ 1, 0 ≤ m̂0 ≤ 1, | λk |≤ 1, and

m̂k, X̂k → 0 as t→ ∞. We consider the stability to homogeneous perturbations δm̂0 and

δX̂0, and obtain eigenvalue λ0 of H00:

λ±0 =
1

2

[
4βJ0 (m̂0 − q̂0) +

(
1− 1

τ
− Usem̂0

)]

± 1

2

{[
4βJ0 (m̂0 − q̂0) +

(
1− 1

τ
− Usem̂0

)]2
− 16βJ0 (m̂0 − q̂0)

(
1− 1

τ

)} 1
2

. (2.46)

We find that two types of linear instability of the stationary uniform state are possible

(Roxin, Brunel and Hansel 2005). For | λ±0 |> 1 and Im(λ±0 ) = 0, homogeneous perturba-

tions δm̂0 and δX̂0 cause firing-rate instability. If | λ±0 | is more than 1 and Im(λ±0 ) ̸= 0,

homogeneous perturbations δm̂0 and δX̂0 yield a Hopf instability. This results in growing

oscillations and instability. A small-amplitude limit-cycle periodic solution exists near the

steady-state solution.

2.4.3 Results

To evaluate the effect of synaptic depression on a network with uniform connections, we

investigated the steady-state solutions and their stability in the network. We obtained
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the steady-state solutions to eq. (2.32) by solving

M = m̂0, (2.47)

M =
1

2

(
1 + tanhβJ0

(
2m̂0

1 + γm̂0
− 1

))
. (2.48)

Graphical solutions to eqs. (2.47) and (2.48) are shown in Fig. 2.2(a) for T = 0.3 (dot-

dashed line) and T = 0.8 (dashed line) when γ = τUse = 0.35. Regardless of βJ0, the

line for eq. (2.47) passes through the point ( 1
2−γ , 0.5) as shown in Fig. 2.2(a). When the

level of noise was low (T = 0.3), eq. (2.32) had three fixed points. Since two of them were

attracting and the other was repelling, we found that the network with uniform connec-

tions had a bistable region at low and high m̂0 values in the case of low noise. We defined

a ferromagnetic (F) state as bistability in m̂0(Hamaguchi et al. 2008). When the level of

noise was high (T = 0.8), the network with uniform connections had a monostable state

for the m̂0 values. This state is called a ”paramagnetic” (P) state(Hamaguchi et al. 2008).

When γ > 1, 1
2−γ > 1 and the network had only a P state.

The steady-state solutions obtained using eq. (2.32) and the results of stability analysis

for τ = 2 with a fixed degree of synaptic depression (γ = 0.35) are shown in Fig. 2.2(b).

For γ = 0.35 and τ = 2, the equilibrium point given by eq. (2.32) was stable. The

solid lines in Fig. 2.2(b) denote stable solutions, and the dashed line denotes an unstable

solution. A saddle node bifurcation occurred at Tc = 0.36 since | λ±0 |> 1 and Im(λ±0 ) = 0

(firing-rate instability). Hence, the F state was stable for a low noise level (T < Tc), while

the P state was stable for a high noise level (T > Tc). Using eq. (2.46), we found that

all solutions with m̂0 ≤ 0.5 were stable. This means that synaptic depression stabilizes a

low-firing-rate state in a network with uniform connections.

Hopf instability of homogeneous solution

We investigate the effect of the time constant τ on the stability of steady-state solutions.

We set γ to 0.35 and τ to 2 and 100. The steady-state solutions obtained using eq.

(2.32) and stability analysis are shown in Fig. 2.3(a) for τ = 2 and in Fig. 2.3(b) for

τ = 100. The simulation results are represented by the squares. The number of neurons

was 103, and the initial conditions for the firing-state variables and synaptic variables

were si(0) = 1 and xi(0) = 1 for all i and si(0) = 0 and xi(0) = 1 for all i. Since

γ = 0.35 in both cases, the steady-state solutions are the same. We found that, near

the transition point between the P and F states, a fixed point (m̂0 > 0.5) was stable

for τ = 2 [Fig. 2.3(a)] but unstable for τ = 100 [Fig. 2.3(b)]. Since | λ±0 |> 1 and

Im(λ±0 ) ̸= 0 at m̂0 = 0.865 and T = 0.353, as shown in Figs. 2.4(b) and 2.4(c), a Hopf
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denote unstable solutions. (c) Phase diagram for stability of m̂0 > 0.5 state.

bifurcation occurred, and there was an OU state near T = 0.353. Figure. 2.5 shows

m̂0(t)[=
∑N
i m̂i(t)] and X̂0(t)[=

∑N
i X̂i(t)] for the OU state, respectively given by eqs.

(2.14) and (2.15) (N = 103). When T was more than 0.353, the OU state was unstable

and the macroscopic property of the network changed to the P state. These results are

consistent with the simulation. The phase diagram of the stability for m̂0 > 0.5 shown

in Fig. 2.3(c) reveals that the state tended to be unstable when the time constant of

the synaptic variable increased. The unstable region expanded until τ ≈ 50, and then it

converged to an approximately constant region. These results show that the stability of

the solution strongly depends on the time constant τ . Finally, we discuss the oscillatory

instability in the neural network with uniform connections in the presence of synaptic

depression. A neural network with synaptic depression can be considered as an activator-
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rate m̂0 state: solid line denotes stable solutions and the dashed lines denote

unstable solutions. (b) Absolute value of λ±
0 . (c) Image part of λ±

0 .

inhibitor system in which firing rate m is an activator and synaptic variable X is an

inhibitor. This is because inhibitor X is activated by m and inhibits activator production

since the total synaptic input h decreases asX increases. In the activator-inhibitor system,

an oscillatory instability (a Hopf instability) can exist(Kuramoto 2003). We found that

the oscillatory uniform state remained for a sufficiently long time constant in a neural

network with uniform connections in the presence of synaptic depression.

2.5 Ring attractor network with Mexican hat type connectivity

For a network with uniform connections, we found that the homogeneous steady state

is unstable and that the oscillatory uniform state remains for a sufficiently long time

constant.
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Fig. 2.5. (a) Firing rate m̂0(t) and (b) average of synaptic efficacy X̂0(t) corresponding

to OU state.

Let us now turn to a ring attractor neural network with Mexican hat type connec-

tivity. In this network, N neurons are located on a one-dimensional ring parameterized

with θ ∈ [0, 2π). Neuron i is labeled using angle θi(=
πi
N − π

2 ). This does not imply

the presence of such ring structures in neuroanatomy, merely that the neurons tuned to

a periodic variable are functionally fully connected. This ring network model is thus

not a one-dimensional lattice model and is often used as an appropriately approximated

network model of the primary visual cortex or prefrontal cortex (Ben-Yishai et al. 1995,

Compte et al. 2000, York and van Rossum 2009, Kilpatrick and Bressloff 2010). Follow-

ing these previous studies, we used the conventional ring neural network model. The

synaptic weight is

Jij =
J0
N

+
J1
N

cos 2(θi − θj), (2.49)

where J0 is a uniform interaction and J1 is a lateral-inhibitory interaction (Ben-Yishai et al. 1995,

Hamaguchi 2006, Hamaguchi et al. 2008).The model with J1 = 0 reduces to a network

with uniform connections. For J0 = 0, the network is a balanced network with Mexican hat

type connectivity, such as that studied by York and Rossum (York and van Rossum 2009).
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2.5.1 Macroscopic steady-state equation

Using the microscopic mean field equations (2.14) and (2.15), we obtain macroscopic

steady-state equations for the ring network with synaptic depression. Substituting eq.

(2.49) into the microscopic steady-state equation (2.17), we obtain a microscopic equation:

mi = gβ(hi), ri =
mi

1 + γmi
, (2.50)

hi = J0r0 + J1

[
(r1 + r−1)

2
cos(2θi) +

(r1 − r−1)

2i
sin(2θi)

]
, (2.51)

where

r0 =
1

N

N∑
i=1

2ri − 1, r1 =
1

N

N∑
i=1

(2ri − 1)e−2iθi , r−1 =
1

N

N∑
i=1

(2ri − 1)e2iθi . (2.52)

The renormalized output of the ith neuron due to the synaptic depression is ri = mi/(1+

γmi). We can obtain the following self-consistent equations for the macroscopic steady

state in the limit N → ∞,

r(θ) =
gβ
[
J0r0 + J1

(
r1e

−2iθ + r−1e
2iθ
)]

1 + γgβ [J0r0 + J1 (r1e−2iθ + r−1e2iθ)]
, (2.53)

r0 =
1

π

∫ π
2

−π
2

dθ2r(θ)− 1, r1 =
1

π

∫ π
2

−π
2

dθ2r(θ)e−2iθ, r−1 =
1

π

∫ π
2

−π
2

dθ2r(θ)e2iθ.(2.54)

The order parameters given by eq. (2.53) are used to calculate the 0th order Fourier

component ofm(θ) [m̂0 = 1
π

∫ π
2

−π
2
dθm(θ)], namely the firing rate, and the 1st order Fourier

component of m(θ) [m̂1 = 1
π

∫ π
2

−π
2
dθm(θ)e−2iθ]. The 1st order Fourier component, m̂1,

indicates the degree of activity localization.

There are two types of solution to eq. (2.53). One is a homogeneous solution with

m̂1 = 0, and the second one is a bump solution with m̂1 ̸= 0, which is inhomogeneous.

2.5.2 Stability analysis

We investigated the stability of the steady-state solution given by eq. (2.53) for the

ring network as done for a network with uniform connections (Tsodyks et al. 1998,

York and van Rossum 2009, Hansel and Sompolinsky 1998). To examine the stability

of the steady-state solution, mi and Xi, obtained using eq. (2.53), we considered small
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deviations around the steady state:

mi(t) = mi + δmi(t), Xi(t) = Xi + δXi(t). (2.55)

Since Jij consists of the 0th Fourier component J0 and the 1st Fourier component J1 in

the ring network, discrete Fourier transform analysis can be used to diagonalize Jacobian

matrix K (eq. (2.27)) for the ring network as well as for a network with uniform connec-

tions. We hence write δmi(t) and δXi(t) in Fourier series form in a way similar to that

used in §2.4.2. Substituting eqs. (2.37) and (2.49) and θi =
πi
N − π

2 into eqs. (2.21) and

(2.26), we obtain

N
2 −1∑

k=−N
2

δm̂k(t+ 1)e2ikθi =
1

N

N∑
j ̸=i

[4βJ0 + 4βJ1 cos 2(θi − θj)]

×
N
2 −1∑

k′,l,l′=−N
2

(m̂k′ − q̂k′)
[
X̂l′δm̂l(t) + m̂l′δX̂l(t)

]
e2i[k

′θi+(l+l′)θj], (2.56)

=

N
2 −1∑

k′=−N
2

(m̂k′ − q̂k′)

[
4βJ0e

2ik′θi

N
2 −1∑
l=−N

2

m̂l(t)X̂−l(t)

+ 2βJ1e
2i(k′+1)θi

N
2 −1∑
l=−N

2

m̂l(t)X̂−(l−1)(t) + 2βJ1e
−2i(k′−1)θi

N
2 −1∑
l=−N

2

m̂l(t)X̂−(l+1)(t)

]
,

(2.57)

N
2 −1∑

k=−N
2

δX̂k(t+ 1)e2ikθi =

(
1− 1

τ

) N
2 −1∑
l=−N

2

δX̂l(t)e
2ilθi

− Use

N
2 −1∑

l,l′=−N
2

[
δm̂l(t)X̂l′(t) + m̂l(t)δX̂l′(t)

]
e2i(l+l

′)θi , (2.58)

where we use the following equation in the limit of N → ∞ to integrate the right side of

eq. (2.56) with respect to θj ,

1

N

N∑
j ̸=i

e2i(lθj) =

{
1 (l = 0)

0 (l ̸= 0)
(2.59)

Since Fourier components are orthonormal, we can equate the coefficients of the Fourier

components on the left and right sides. From the relations for the coefficients in eqs. (2.57)
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and (2.58), we can obtain the Jacobian matrix for the system in Fourier space, H. The

matrix has a size of 2N × 2N with matrix elements

Hkl ≡

(
Hkl
m̂m̂ Hkl

m̂X̂

Hkl
X̂m̂

Hkl
X̂X̂

)
,

(
δm̂k(t+ 1)

δX̂k(t+ 1)

)
= Hkl

(
δm̂l(t)

δX̂l(t)

)
, (2.60)

Hkl
m̂m̂ = 4βJ0(m̂k − q̂k)X̂−l

+ 2βJ1(m̂k−1 − q̂k−1)X̂−(l−1) + 2βJ1(m̂k+1 − q̂k+1)X̂−(l+1), (2.61)

Hkl
m̂X̂

= 4βJ0(m̂k − q̂k)m̂−l

+ 2βJ1(m̂k−1 − q̂k−1)m̂−(l−1) + 2βJ1(m̂k+1 − q̂k+1)m̂−(l+1), (2.62)

Hkl
X̂m̂

= −UseX̂k−l, (2.63)

Hkl
X̂X̂

= δkl

(
1− 1

τ

)
− Usem̂k−l, (2.64)

where −N
2 ≤ k, l ≤ N

2 − 1, and δkl is the Kronecker delta. If the Jacobian matrix has

eigenvalues of 1 or less, the steady-state solution is stable.

First, we consider the stability of the homogeneous steady state [m̂k = 0

and X̂k = 0 (k ̸= 0)], which can be analytically considered as shown below

(York and van Rossum 2009). If the network has a homogeneous steady-state solu-

tion, X̂k = 0 and m̂k = 0 (k ̸= 0), we have

Hkl =

(
0 0

0 0

)
(k ̸= l). (2.65)

This equation shows that the time evolution of each equation pair [δm̂k(t) and δX̂k(t)]

decouples from all other equation pairs. The Jacobian matrix for the ring network is

therefore as easy to analyze as that for a network with uniform connections. The Jacobian

matrix thus reduces to the following matrices:

k = 0

H00 =

(
4βJ0 (m̂0 − q̂0) X̂0 4βJ0 (m̂0 − q̂0) m̂0

−UseX̂0 1− 1
τ − Usem̂0

)
(2.66)



2.5 Ring attractor network with Mexican hat type connectivity 23

k = ±1

H11 =

(
2βJ1 (m̂0 − q̂0) X̂0 2βJ1 (m̂0 − q̂0) m̂0

−UseX̂0 1− 1
τ − Usem̂0

)
(2.67)

H−1−1 = H11 (2.68)

| k |> 1

Hkk =

(
0 0

−UseX̂0 1− 1
τ − Usem̂0

)
. (2.69)

Since the eigenvalue λk of Hkk(| k |> 1) is less than 1, δm̂k, δX̂k → 0 as t → ∞. We

consider the stability under perturbations δm̂0, δX̂0, δm̂1, and δX̂1. The stability under

perturbations δm̂−1 and δX̂−1 is identical to that under perturbations δm̂1 and δX̂1. The

eigenvalue of H00 is given by eq. (2.46). Next, we obtain eigenvalue λ±1 of H11:

λ±1 =
1

2

[
2βJ1 (m̂0 − q̂0) +

(
1− 1

τ
− Usem̂0

)]

± 1

2

{[
2βJ1 (m̂0 − q̂0) +

(
1− 1

τ
− Usem̂0

)]2
− 8βJ1 (m̂0 − q̂0)

(
1− 1

τ

)} 1
2

. (2.70)

The stability of the homogeneous steady-state solution is determined by eqs. (2.46) and

(2.70). There are four types of linear instability of the homogeneous state: (1) firing-rate

instability (| λ±0 |> 1, Im(λ±0 ) = 0, | λ±1 |< 1), (2) Hopf instability (| λ±0 |> 1, Im(λ±0 ) ̸= 0,

| λ±1 |< 1), (3) Turing instability (| λ±0 |< 1, | λ±1 |> 1, Im(λ±1 ) = 0), and (4) Turing-Hopf

instability (| λ±0 |< 1, | λ±1 |> 1, Im(λ±1 ) ̸= 0)(Roxin, Brunel and Hansel 2005). If there is

a Turing-Hopf instability, a spatially homogeneous steady-state solution is unstable and

spatial periodic patterns evolve.

In contrast to the homogeneous steady-state solutions, it is difficult to analyze the

stability of inhomogeneous steady-state solutions since the time evolution of each equation

pair [m̂k(t) and X̂k(t)] is coupled with other equation pairs. We hence have to take into

account stability under frequency perturbations δm̂k and δX̂k (−N/2 ≤ k, l ≤ N/2 − 1)

since the highest Fourier component is m̂±N/2, X̂±N/2 in a network with N neurons

according to the sampling theorem. Here we study how frequency perturbations δm̂k

and δX̂k (−N/2 ≤ k, l ≤ N/2− 1) affect the stability of the inhomogeneous steady-state

solutions by considering the eigenvector of the Jacobian matrix [eq. (2.60)].
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2.5.3 Results

Oscillatory states

In the section 2.4, using a simple network with uniform connections, we have shown

that oscillatory instability is caused by synaptic depression because a neural network with

synaptic depression can be considered as an activator-inhibitor system in which firing rate

is an activator and synaptic variable is an inhibitor. Then what’s the role of structured

connections between neurons? We assume that the structured connectivity modulate

neural dynamics and change the oscillation mode.

To test the hypothesis, we studied a parsimonious structured neural network, that

is, a neural network with Mexican-hat type connections, and our investigation of the

stability of the steady-state solution given by eq. (2.53) for the ring network revealed

six states in the network. Three are homogeneous and were also found in a network

with uniform connections: a ferromagnetic (F) state, a paramagnetic (P) state, and an

oscillatory uniform (OU) state. The OU state appears in a way similar to that described

in §2.4.3 (Fig. 2.4). The other three states are inhomogeneous: a bump (B) state,

a rotating bump (RB) state (York and van Rossum 2009, Kilpatrick and Bressloff 2010),

and an oscillatory bump (OB) state, as shown in Fig. 2.6. The B state can be obtained

using a self-consistent equation, eq. (2.53), while the other two cannot because they are

dynamic states resulting from the destabilization of steady states. We thus obtained them

by using the dynamical mean field equations (2.14) and (2.15) with N = 104. The firing

rate mi, the average of the synaptic variable Xi, and the synaptic weight between the ith

neuron with the preferred orientation θi = 0 and the other neurons are shown in Fig. 2.6

for the three inhomogeneous states.

First, we discuss the behavior of the three inhomogeneous states in a ring network

with synaptic depression. The B state is formed by a subset of the neurons firing in a

self-reinforcing manner, causing localized activity [Fig. 2.6(a)], similar to the B state

in the network without synaptic depression (Ben-Yishai et al. 1995, Hamaguchi 2006,

York and van Rossum 2009). In the B state, the firing rates are high, while the aver-

ages of the synaptic variables are low [Figs. 2.6(a) and 2.6(b)]. Synaptic depression thus

reduces the excitatory localized interaction and reduces the presynaptic inputs of the ac-

tivated neuron, as shown in Fig. 2.6(c). In the RB state, a localized bump of activity

propagates around the ring network, leaving a replenishing synaptic resource in its wake,

as shown in Figs. 2.6(d) and 2.6(e) (York and van Rossum 2009). In this example, the

profile is moving to the right. As a result, the synaptic weights dynamically changed in
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Fig. 2.6. Profiles for three inhomogeneous states (B, RB, OB). (a), (d), (g) Firing rate

mi. (b), (e), (h) Average of synaptic variable Xi. (c), (f), (i) Synaptic weight

Jij(t) = JijXj(t) between ith neuron with preferred orientation θi = 0 and

other neurons.

the RB state [Fig. 2.6(f)]. In the OB state, which is first reported here, the bump state

activity moved up and down around the neurons with firing rates that were high, as shown

in Figs. 2.6(g) and 2.6(h). Unlike in the RB state, the magnitude of notion is very small

in the OB state [Figs. 2.6(g)-2.6(i)]. The occurrence of the two oscillatory states from the

B state implies that there are two mechanisms destabilizing the B state.

Next, we provide evidence that the simulation results coincide with the dynamic solution

obtained using eqs. (2.14) and (2.15) for the B state (βJ0 = 0, βJ1 = 10) and the RB state

(βJ0 = 0, βJ1 = 6.5). Figures. 2.7(a) and 2.7(b) show raster plots of neuron activity ob-

tained by numerical simulation with N = 104. The solid lines represent the dynamic solu-
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tion obtained using eqs. (2.14) and (2.15). In the B state, the localized position fluctuated

and moved around the ring network since the B state is stable anywhere in the ring [Fig.

2.7(a)](Hamaguchi 2006). In the RB state, the bumps propagated stably, i.e., there was a

traveling wave [Fig. 2.7(b)] (York and van Rossum 2009, Kilpatrick and Bressloff 2010).
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Fig. 2.7. Raster plots of neuron activity for numerical simulation (N = 104). Solid lines

denote the temporal behaviors of bump position ϕ. (a) B state. (b) RB state.

In short, we found six states of activity in the ring network with synaptic depression:

paramagnetic, ferromagnetic, bump, oscillatory uniform, rotating bump, and oscillatory

bump states.

Hopf and Turing instabilities of inhomogeneous solution

We considered the stability of the inhomogeneous steady-state solution (the B state)

in order to identify the destabilization mechanisms leading to the two inhomogeneous

oscillatory states, the RB and OB states. To analyze the stability of a network with

N = 103, we computed the eigenvalues of the Jacobian matrix H [eq. (2.60), 2000×2000]

for frequency perturbations δm̂k and δX̂k (−5 × 102 ≤ k ≤ 5 × 102 − 1). Note that the

highest Fourier components are m̂±5×102 and X̂±5×102 in a network with N = 103, as

determined by the sampling theorem.

To begin our analysis, we consider a network with a fixed degree of synaptic depression

(γ = 1.5) and a time constant (τ = 3), in which the RB state occurs near the transition

point between the P and B states. Figure . 2.8(a) shows how the amplitude of localized
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activity, m̂1, depends on βJ1 for βJ0 = 0. The solid and dashed lines respectively represent

stable and unstable solutions to eq. (2.53). Figure. 2.8(b) shows the distribution of

eigenvalues for Jacobian matrix H. There are two mechanisms of destabilization that

lead to the RB state. First, as βJ0 crosses 4.5 from below, the P state becomes unstable

and a Turing-Hopf instability leads to the RB state because | λ±0 |< 1, | λ±1 |> 1, and

Im(λ±1 ) ̸= 0.

Next, we show that as βJ1 crosses 8 from above, the B state becomes unstable and a

Turing instability leads to the RB state. Figure. 2.8(b) shows that there are eigenvalues

continuously distributed between λ = 0.15 and 0.65 that do not contribute to destabi-

lization and that there are a few eigenvalues greater than 1 that do contribute. Figures.

2.8(c) and 2.8(d) show the eigenvector of the largest eigenvalue for βJ0 = 0 and βJ1 = 6.5,

which is indicated by the × mark in Fig. 2.8(b). We see from Figs. 2.8(c) and 2.8(d)

that their eigenvectors mainly consist of δm̂1, δX̂1, δm̂−1, and δX̂−1 and not δm̂0 or δX̂0.

In addition, they do not have an imaginary part. We hence found that the B state was

unstable and that the RB state appeared owing to a Turing instability.

Next, we consider a ring network with γ = 2.5 and τ = 3, in which the B state is

unstable and the OB state occurs at the transition point (βJ0 = 2.47) between the B and

P states. As βJ0 crosses 2.47 from below, the OB state becomes unstable and the P state

appears. Figure. 2.9(a) shows how the amplitude of localized activity m̂1 depends on βJ0

for βJ1 = 20. Figure. 2.9(b) shows the distribution of eigenvalues for Jacobian matrix H.

Only a few eigenvalues are greater than 1, as in Fig. 2.8(b). Figures. 2.9(c) and 2.9(d)

show the eigenvector of the largest eigenvalue for βJ0 = 2.47 and βJ1 = 20 indicated by

the × mark in Fig. 2.9(b), which indicates that the eigenvectors mainly consisted of δm̂0

and δX̂0. Furthermore, they had an imaginary part. The B state was thus unstable, and

a Hopf bifurcation led to the OB state for βJ0 = 2.47.

These results clearly show that there were two mechanisms destabilizing the B state,

i.e., a Turing instability and a Hopf instability, which led to the RB and OB states,

respectively. Moreover, we found that there were few eigenvalues that were larger than

1, which affect the stability of the system, as shown in Figs. 2.8 and 2.9, and that their

eigenvectors consisted of only low-frequency Fourier components.

Phase diagram

We investigated how neuron interactions affect the macroscopic states of networks by

changing the strength of the uniform connections (J0) and the lateral-inhibitory connec-

tions (J1). Figure. 2.10 shows the phase diagrams in the (βJ0, βJ1) plane with a fixed
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Fig. 2.8. (a) Stable (solid lines) and unstable (dashed line) solutions to amplitude of lo-

calized activity m̂1. (b) Distribution of eigenvalues for Jacobian matrix H(2.60)

with size of 2000 × 2000. (c), (d) Eigenvector with largest eigenvalue, 1.1, for

βJ0 = 0 and βJ1 = 6.5, as shown by × mark in (b).

degree of synaptic depression (γ = {0, 0.4, 1.5, 2.5}). To analyze the stability of the steady-

state solutions in a network withN = 103, we computed the eigenvalues of Jacobian matrix

H for only low-frequency perturbations, namely, δm̂k and δX̂k (−5×10 ≤ k ≤ 5×10−1),

since high-frequency perturbations do not affect the stability of the system when there is

a weak lateral-inhibition (J1) (see Appendix). The instability of an oscillatory state was

numerically investigated using eqs. (2.14) and (2.15) with N = 103.

To begin with, we describe the behavior of a network with nondepressed synapses

(γ = 0). Figure. 2.10(a) shows the phase diagram for γ = 0(Hamaguchi 2006). The

relative strengths of βJ0 and βJ1 determine the network state. The F or B states become

stable once βJ0 and βJ1 exceed certain thresholds. Between these two states, there are

bistable regions where both F and B states are locally stable (F+B). If both βJ0 and βJ1

are small, a stable P state exists.

In the presence of weak synaptic depression (γ = 0.4, τ = 3) [Fig. 2.10(b)], the P region



2.5 Ring attractor network with Mexican hat type connectivity 29

Fig. 2.9. (a) Stable (solid lines) and unstable (dashed lines) solutions to amplitude of lo-

calized activity m̂1. (b) Distribution of eigenvalues for Jacobian matrix H(2.60)

with size of 2000× 2000. (c), (d) Eigenvector with largest eigenvalue, 1.04, for

βJ0 = 2.47 and βJ1 = 20, as shown by × mark in (b).

expanded and the bistable regions shrank since the synaptic depression effectively reduced

the lateral-inhibitory connection (J1). Bistable regions, where both P and B states were

locally stable (P+B), developed. As the degree of synaptic depression increased (γ = 1.5,

τ = 3), the RB state became stable near the transition point between the P and B states,

as shown in Fig. 2.10(c). Since γ > 1, the F state was unstable.

In the presence of strong synaptic depression (γ = 2.5, τ = 3) [Fig. 2.10(d)], the RB

region expanded and the P+B region shrank. Bistable regions, where both the P and RB

states are locally stable (P+RB), developed. The B state was unstable, and an OB region

developed at the transition between the B+P and P states [Fig. 2.6(g)-2.6(i)]. Otherwise,

the OB state was unstable, and the P state was stable.

We have shown that for a sufficiently strong degree of synaptic depression, the B state

is unstable and the oscillatory states (RB and OB) appear near the transition between the

B and P states. A sufficiently strong lateral-inhibition (J1) leads to a Turing instability
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Fig. 2.10. Phase diagrams in interaction of (βJ0, βJ1) plane for γ = {0, 0.4, 1.5, 2.5}. For
(b) to (d), τ = 3. P: the monostability in m̂0, and m̂1 = 0. F: bistability

in m̂0, and m̂1 = 0. B: m̂1 ̸= 0. RB: m̂1 ̸= 0. The OB state occurs on the

transition line between the P+B state and the P state with γ = 2.5 and τ = 3

in (d).

and the RB state appears. A sufficiently strong uniform connection (J0) leads to a Hopf

instability, leading to the OB state.
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2.5.4 Discussion

In the ring attractor network with synaptic depression, there are homogeneous steady

states (F, P) and an inhomogeneous steady state (B). We have shown that, depending

on the strength of the interneuron connections, instability in these states leads to three

oscillatory states: oscillatory uniform (OU), rotating bump (RB), and oscillatory bump

(OB) states.

Using two neural networks with uniform connections and with parsimonious structured

connections, we shown that oscillatory instability is caused by synaptic depression because

a neural network with synaptic depression can be considered as an activator-inhibitor sys-

tem in which firing rate is an activator and synaptic variable is an inhibitor and that the

role of structured connections between neurons is to modulate the neural dynamics and

oscillation mode. We then summarize how the interactions between neurons affect the sta-

bilities of the steady-state solutions by changing the strengths of the uniform connections

(J0) and the lateral-inhibitory connections (J1). Figure. 2.11 shows a schematic view of

the stability analysis for a ring network with synaptic depression. First, for sufficiently

weak uniform connections and a sufficiently long time constant (τ), the homogeneous

steady-state solution, which has a high firing rate, was unstable near the transition point

between the P and F states. An OU state then developed owing to a Hopf bifurcation, as

explained in §2.5.3 [Fig. 2.11(a)→(i)]. Note that the OU state developed in the presence of

lateral-inhibitory connections (J1) as well as in their absence. Next, as the strength of the

uniform connections increased, the inhomogeneous steady-state solution became unstable

near the transition point between the B and P states (Fig. 2.9). The OB state then devel-

oped because of a Hopf instability, as explained in §2.5.3 [Fig. 2.11(b)→(iii)]. In the OB

state, bump state activity moved up and down around the most activated neuron [Figs.

2.6(g)-2.6(i)]. Finally, the homogeneous state (P) and inhomogeneous state (B) became

unstable near the transition point between them [Fig. 2.8(a)], and the RB state devel-

oped, as explained in §2.5.3 [Figs. 2.6(d)-2.6(f)]. As the strength of the lateral-inhibitory

connections (J1) increased, the homogeneous steady-state solution became unstable, and

an RB state developed because of a Turing-Hopf instability [Fig. 2.11(a)→(ii)]. As the

strength of the lateral-inhibitory connections (J1) decreased, the inhomogeneous steady-

state solution became unstable and an RB state developed owing to a Turing instability

[Fig. 2.11(b)→(ii)].

These results show that medium-strength uniform connections cause a Hopf instability

near the transition point and up-and-down movement of the firing rates and the average
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synaptic variables, and that medium-strength lateral connections cause a Turing instabil-

ity near the transition point and propagation of a localized bump of activity around the

ring network. To summarize, various oscillatory states appear depending on the strength

of the interneuron connections in a ring network with synaptic depression.

Large-scale neuronal networks can exhibit a number of spatially structured activity

states in vivo, which may be observed experimentally using multi electrode arrays

or voltage-sensitive dye imaging (Kenet et al. 2003, Buzsaki 2006, Xu et al. 2007,

Benucci et al. 2007, Han et al. 2008). Here we compare experimental evidence obtained

by these methods with the various states we found in the ring network with synaptic

depression. We showed that a bump state (B), which is an inhomogeneous steady state,

occurs in the network, similar to the B state in the network without synaptic depression

(Ben-Yishai et al. 1995, Hamaguchi 2006, York and van Rossum 2009). The B state

has been observed during working-memory tasks (Compte et al. 2000) in the prefrontal

cortex and in the context of the tuning of neuronal responses in the primary visual

cortex to the orientation of a visual stimulus (Ben-Yishai et al. 1995). Next, we discuss

two oscillatory states, the OB state and the OU state. If the two oscillatory states can

appear in the primary visual cortex or prefrontal cortex, an oscillatory synchronous

firing can be observed experimentally. However such activity has seldom been reported,

which is consistent with our results that these states only appear in a rather narrow

parametric region. Finally, we consider the functional aspects of the RB state, which

appeared in a relatively broad region. Some researchers have reported that a traveling

wave in the absence of an input has been found in the primary visual cortex in a cat

(Kenet et al. 2003). Interestingly, a small visual stimulus can evoke the traveling wave

(Kenet et al. 2003, Xu et al. 2007, Benucci et al. 2007, Han et al. 2008). Han et al.

found that repeated visual stimulation causes a significant increase in the percentage

of spontaneous waves that are similar to the cortical response evoked in a rat by a

training stimulus (Han et al. 2008). Such dynamics provide a potential mechanism

for learning effects such as short-term visual memory(Philips 1974) and visual priming

(Tulving and Schacter 1990). Our results indicate that recurrent, depressing, synaptic

connectivity can naturally lead to the emergence of such dynamic patterns. Further

investigation is needed to search for determining the relationship between an external

visual stimulus and the speed and pattern of propagating waves in a network with

synaptic depression.

According to our results, we predict the following new experimental phenomena. In a

ring network with Mexican hat type connections, which has been used as a model of the
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prefrontal cortex, a stable B state exists. The B state corresponds to selective persistent

activity in the absence of inputs, underlying spatial working memory(Compte et al. 2000).

In a ring network with synaptic depression, we show that while a B state appeared in the

case of τ = 3 [Fig. 2.10(b)], the B state became unstable and an RB state appeared with

τ = 10 and a fixed Use. It was reported that the Ca2+ chelator EGTA prevents rapid

recovery from depression and increases the time constant τ(Zucker and Regehr 2002).

On the basis of these findings, we predict the following experimental phenomena. Let us

consider a situation that a monkey performs spatial working memory tasks. If the Ca2+

chelator EGTA is introduced into the prefrontal cortex when a persistent activity occurs,

the B state becomes unstable.

Fig. 2.11. Schematic view of stability analysis for ring network with synaptic depression.

2.6 Summary

We have explored the macroscopic properties of two types of stochastic binary neural

networks with synaptic depression: a network with homogeneous connectivity and a ring

attractor network with Mexican hat type connectivity. Although a stochastic binary neu-

ral network model with synaptic depression cannot be analyzed owing to the asymmetry

of connections by the conventional equilibrium statistical-mechanical approach, we derive

the microscopic dynamical mean field equations for the network model. Because in the

equations the averaged product of the two stochastic variables is decoupled as the product

of their averages, they must be independent. We proved the independence and derived the

microscopic equations in this paper, assuming that the synaptic weight Jij is of the order

of 1/N with respect to the number of neurons N . Using the microscopic mean field equa-
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tions, we derived macroscopic steady-state equations for these networks and investigated

the stability of the steady-state solutions obtained. The results coincided with those of

a simulation. We conclude that the presence of synaptic depression leads to oscillatory

instability and that various oscillatory states appear depending on the strength of the

interneuron connections. Synaptic depression thus causes the diversity of dynamic states

in large networks of spiking neurons.

We focused only on non frustrated systems, in which Jij ∼ O(1/N). A extension of this

study will be to extend the microscopic dynamical mean field theory to frustrated systems

such as the Sherrington and Kirkpatrick model(Sherrington and Kirkpatrick 1975).
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Chapter 3

Theory of correlations in stochastic

neural network models with synaptic

depression

3.1 Background

A marked feature of synaptic transmission between neocortical neurons is the pro-

nounced frequency dependence of synaptic responses on presynaptic spike trains

(Thomson and Deuchars 1994). High-frequency input reduces the efficacy of sig-

nal transmission due to the depletion of neurotransmitters. Short-term synap-

tic depression, which has been described in detail by using a phenomenological

model (Abbott et al. 1997, Tsodyks et al. 1998), occurs over milliseconds to minu-

topdses in various regions such as the primary visual cortex and the hippocampus

(Zucker and Regehr 2002, Varela et al., 1997, Dobrunz and Stevens 1999). Because of its

rapid effects, short-term synaptic depression enables synapses to perform critical com-

putational functions in neural circuits such as belief adaptation to external stimuli and

short-term memory (Abbott and Regehr 2004, Tsodyks and Gilbert 2004, Kohn 2007).

To evaluate how synaptic depression affects the amount of information on stimuli

that can be extracted from noisy neural activities, we need to investigate the effects

of synaptic depression not only on the firing rates but also on neural correlations.

Even small correlations between neurons can greatly change the amount of informa-

tion conveyed by the activities of the neural population and consequently affect the

accuracy of sensory discriminations (Zohary et al 1994, Abbott and Dayan 1999,
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Sompolinsky et al. 2001, Series et al. 2004, Averbeck, Latham and Pouget 2006,

Gutnisky and Dragoi 2008, Cohen and Maunsell 2009, Cortes et al. 2010). Similar

to the derivation of the linear-response function for an Ising system with transition

rates (Glauber 1963, Suzuki and Kubo 1968), some researchers have gone beyond

mean-field theory and developed such a theory of correlation in a spiking neuron

model including a time course for postsynaptic potential and refractory properties

(Ginzburg and Sompolinsky 1994, Meyer and van Vreeswijk 2002, Toyoizumi et al. 2008,

Oizumi et al. 2010). However, short-term synaptic depression, which rapidly changes

the interaction between neurons, has not been taken into account and the effect of

the interaction change on neural correlation remains unknown. Here, we expanded

the previous theoretical framework to spiking neuron models with short-term synaptic

depression.

We investigated the effects of synaptic depression on the macroscopic behavior of

stochastic neural networks in previous studies, viz., the firing rates (Igarashi et al. 2009,

Igarashi et al. 2010). Dynamical mean field equations were derived for these networks

by taking the average of two stochastic variables: a firing-state variable and a synaptic

variable. Because synaptic depression is activity-dependent and leads to the independence

of the two stochastic variables, the average product of these variables is decoupled as the

product of their averages and we can then calculate the firing rates. We used the inde-

pendence in this study to calculate the neural correlations and constructed a theoretical

framework for analytically calculating correlations of neural activities in a neural network

with synaptic depression.

We studied how short-term synaptic depression affects neural correlations for a

ring attractor network with Mexican-hat-type connectivity using this theory as an

example, which is known as a neural network model of the primary visual cortex

(Ben-Yishai et al. 1995, Series et al. 2004, Hamaguchi 2006, Cortes et al. 2010). We

analytically calculated the neural correlations and investigated not only the effects of

synaptic depression at the single cell level (Goldman et al. 2002) but also what influence

changes in single neurons have on network activity as a whole. We found that synaptic

depression substantially reduces neural correlations. We also demonstrated that this

reduction in neural correlations due to synaptic depression can improve the accuracy of

population coding, even though the signal strength, viz., the mean firing rates, is reduced

by synaptic depression.
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3.2 Model

We used a discrete time version of a spike response model with threshold noise

(Gerstner and Hemmen 1992, Oizumi et al. 2010). The network consists of N neurons,

which take either a resting-state, S = 0, or a firing-state, S = 1. The state of every

neuron Si is stochastically updated in parallel. The probability that Si takes the 0 or 1

state depends on the membrane potential, ui:

P [Si(t) = 1] ≡ g[ui(t)],

P [Si(t) = 0] = 1− P [Si(t) = 1], (3.1)

where g is the ”escape function” (Gerstner and Kistler 2002), which monotonically in-

creases and is a differentiable function that takes values between 0 and 1. The membrane

potential, ui , is determined by the past spike histories of N neurons, as

ui(t) =
∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)(2xj(t− τ)Sj(t− τ)− 1)

+ hi + ur, (3.2)

where ϵij(τ) describes the time course of a postsynaptic potential evoked by the firing

of presynaptic neurons, hi is an input potential, and ur is a resting potential. We have

not taken into account the effect of refractoriness to simplify the network model and

investigate the effect of synaptic plasticity on the correlation between neural activities.

The synaptic connection, Jij(t)(= Jijxj(t)), in this model dynamically changes with the

efficacy of signal transmission at the jth neuron, xj(t). xj(t) dynamically changes with

synaptic depression and is determined by both itself and the corresponding neuron state

at the preceding time, t− 1:

xi(t+ 1) = xi(t) +
1− xi(t)

τD
− Uxi(t)Si(t). (3.3)

The phenomenological model of synaptic depression described by Eq. (3.3) has previously

been proposed by several researchers (Abbott et al. 1997, Tsodyks et al. 1998). The jth

neuron, which is called a presynaptic neuron, exhausts neurotransmitters when it trans-

mits signals. The efficacy of signal transmission at presynaptic neuron j at time t decreases

by a certain fraction, Uxj(t− 1)(0 < U ≤ 1), after the presynaptic neuron, Sj(t− 1) = 1,

is fired and it recovers with time constant τD(τD ≥ 1), as shown in Eq. (3.3).
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3.3 Theory of correlations

3.3.1 Instantaneous firing rate and synaptic efficacy

First, we consider the noise average of neuronal states and synaptic variables, which are

denoted by ⟨Si(t)⟩ for the former and ⟨xi(t)⟩ for the latter. We call these values the

instantaneous firing rate and synaptic efficacy at time t. We derive dynamical mean field

equations in this section for a network with synaptic depression by taking the average

of two stochastic variables: a firing-state variable, S(t), and a synaptic variable, x(t).

The average product of the variables in these equations is decoupled as the product of

their averages because the stochastic variables are independent in the limit of N → ∞
(Igarashi et al. 2010). We derived the instantaneous firing rate and synaptic efficacy at a

steady state by using these equations.

The noise average of a function, ⟨f⟩, is defined as

⟨f(St,St−1, . . . ,S0)⟩ ≡
∑
St

∑
St−1

· · ·
∑
S0

f(St,St−1, . . . ,S0)

× P (St,St−1, . . . ,S0), (3.4)

where St represents the spike pattern of N neurons at time t and
∑

St represents the

summation over all possible configurations St. P (St,St−1, . . . ,S0) is the probability of

finding a system in a state, {St,St−1, . . . ,S0}. P (St,St−1, . . . ,S0) is described by the

following master equation:

P (St,St−1, . . . ,S0) =W (St|St−1,St−2, . . . ,S0)

× P (St−1,St−2, . . . ,S0), (3.5)

where W (St|St−1,St−2, . . . ,S0) is the transition probability, which is determined by the

update rule [Eq.3.1]

W (St|St−1,St−2, . . . ,S0)

=
N∏
i=1

1 + [2Si(t)− 1]{2g[ui(t)]− 1}
2

. (3.6)

To simplify the equation, {St−1,St−2, . . . ,S0} are denoted by Y t−1.
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By using Eq.(3.5), the instantaneous firing rate at time t, ⟨Si(t)⟩, can be computed as

⟨Si(t)⟩ =
∑
Y t−1

P (Y t−1)
∑
St

Si(t)W (St|Y t−1), (3.7)

= ⟨g[ui(t)]⟩, (3.8)

where
∑
Y t−1 represents the summation over all possible configurations of the past spike

histories, Y t−1.

We derived microscopic dynamical mean field equations by first taking the noise average

of the firing-state variable at time t [Eq.(3.8)]. Taylor expansion provides us with

⟨Si(t)⟩ =
⟨
g[⟨ui(t)⟩] + g′[⟨ui(t)⟩]δui(t) +

1

2
g′′[⟨ui(t)⟩](δui(t))2 + . . .

⟩
,

= g[⟨ui(t)⟩] +
⟨1
2
g′′[⟨ui(t)⟩](δui(t))2

⟩
+ . . . , (3.9)

where we define δui(t) = ui(t)−⟨ui(t)⟩, g′(u) = dg(u)/dt, and g′′(u) = d2g(u)/dt2. When

each neuron is connected to a number of neurons of order N and connections Jij are all

of order 1/N , ⟨δui(t))2⟩ are of order 1/N (See Appendix B). The second order and the

higher-order terms of Eq. (3.9) in such a situation are no more than order 1/N . Hence,

considering the limit of N → ∞, one obtains leading order

⟨Si(t)⟩ = g


∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)(2⟨xj(t− τ)Sj(t− τ)⟩ − 1) + hi + ur

 . (3.10)

We take advantage of the independence of xj(t) and Sj(t) in the limit of large networks,

N → ∞ (Igarashi et al. 2010), and thereby obtain the dynamical mean field equations

for ⟨Si(t)⟩:

⟨Si(t)⟩ = g

{ ∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)(2⟨xj(t− τ)⟩⟨Sj(t− τ)⟩ − 1) + hi + ur

}
. (3.11)

Similarly, we consider the noise average of Eq. (3.3) for the synaptic variable:

⟨xi(t+ 1)⟩ = ⟨xi(t)⟩+
1− ⟨xi(t)⟩

τD
− U⟨xi(t)⟩⟨Si(t)⟩. (3.12)

Eqs. (3.11) and (3.12) for the stochastic neural network model coincide with equa-

tions for an analog neural network with synaptic depression (Tsodyks et al. 1998,

York and van Rossum 2009, Kilpatrick and Bressloff 2010). We then obtain the micro-
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scopic steady-state equation for ⟨Si⟩ and ⟨xi⟩.

⟨Si⟩ = g

{ ∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)(2⟨xj⟩⟨Sj⟩ − 1) + hi + ur

}
, (3.13)

⟨xi⟩ = ⟨xi⟩+
1− ⟨xi⟩
τD

− U⟨xi⟩⟨Si⟩, (3.14)

where ⟨Si⟩ = limt→∞⟨Si(t)⟩ and ⟨xi⟩ = limt→∞⟨xi(t)⟩. The steady-state equation for

noise average ⟨xi⟩ is

⟨xi⟩ =
1

1 + γ⟨Si⟩
, γ = τDU. (3.15)

Finally, we obtain the microscopic steady-state equation for ⟨Si⟩ in a network with synap-

tic depression

⟨Si⟩ = g

{ ∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)

(
2

⟨Sj⟩
1 + γ⟨Sj⟩

− 1

)
+ hi + ur

}
. (3.16)

According to Eq. (3.16), the steady state depends on γ (= τDU), which ranges from

0 to U because of 0 < U ≤ 1 and τD ≥ 1 (Tsodyks et al. 1998, Igarashi et al. 2010).

Therefore, we can easily figure out the effect of synaptic depression by varying γ. If we

solve the self-consistent equation (3.16), we can obtain instantaneous firing rates ⟨Si⟩ and
synaptic efficacies at equilibrium ⟨xi⟩.
We derive auto-correlation functions and cross-correlation functions in this section and

the one that follows it to calculate correlations between neural activities at equilibrium.

As a synaptic variable, x, dynamically changes in this network model, we need to discuss

not only correlations between the activities of cortical neurons but also those between

neural activities and synaptic variables. We then have to derive and solve 15 types of

equations to calculate neural correlations at equilibrium. We define neural correlation in

this section and the next and briefly explain how the equations are derived. We present

the technical details on the calculations in Appendix B.1.

Auto-correlation functions are defined as

Asi (t, t+ τ) ≡ ⟨δSi(t)δSi(t+ τ)⟩,

Asxi (t, t+ τ) ≡ ⟨δSi(t)δxi(t+ τ)⟩,

Axsi (t, t+ τ) ≡ ⟨δxi(t)δSi(t+ τ)⟩,

Axi (t, t+ τ) ≡ ⟨δxi(t)δxi(t+ τ)⟩. (3.17)
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We also define cross-correlation functions as

Csij(t, t+ τ) ≡ ⟨δSi(t)δSj(t+ τ)⟩,

Csxij (t, t+ τ) ≡ ⟨δSi(t)δxj(t+ τ)⟩,

Cxsij (t, t+ τ) ≡ ⟨δxi(t)δSj(t+ τ)⟩,

Cxij(t, t+ τ) ≡ ⟨δxi(t)δxj(t+ τ)⟩, (3.18)

where i ̸= j. We denote the auto-correlation functions and cross-correlation functions at

equilibrium as

Asi (τ) ≡ lim
t→∞

⟨δSi(t)δSi(t+ τ)⟩,

Asxi (τ) ≡ lim
t→∞

⟨δSi(t)δxi(t+ τ)⟩,

Axsi (τ) ≡ lim
t→∞

⟨δxi(t)δSi(t+ τ)⟩,

Axi (τ) ≡ lim
t→∞

⟨δxi(t)δxi(t+ τ)⟩, (3.19)

Csij(τ) ≡ lim
t→∞

⟨δSi(t)δSj(t+ τ)⟩,

Csxij (τ) ≡ lim
t→∞

⟨δSi(t)δxj(t+ τ)⟩,

Cxsij (τ) ≡ lim
t→∞

⟨δxi(t)δSj(t+ τ)⟩,

Cxij(τ) ≡ lim
t→∞

⟨δxi(t)δxj(t+ τ)⟩. (3.20)

We use instantaneous firing rate ⟨Si⟩ and synaptic efficacy ⟨xi⟩ in a steady state to cal-

culate the equilibrium values of auto-correlation functions and cross-correlation functions

in this and the following section.

We derive the equal-time auto-correlation functions, Asi (0), A
sx
i (0), Axsi (0), Axi (0), and

the equal-time cross-correlation functions, Csij(0), C
sx
ij (0), C

xs
ij (0), C

x
ij(0) in this section.

First, we calculate Asi (0) at equilibrium. Since the neural network consists of binary

neurons, Si = 0, 1, we can derive S2
i = Si. Using this equation yields

Asi (0) = ⟨Si⟩(1− ⟨Si⟩). (3.21)

The equal-time cross-correlation functions between Si(t) and Sj(t)(j ̸= i), i.e., Csij(0),

can be written as

Csij(t, t) = ⟨Si(t)Sj(t)⟩ − ⟨Si(t)⟩⟨Sj(t)⟩, (3.22)

=
∑
Y t−1

{
P(Y t−1)

∑
St

Si(t)Sj(t)W(St|Y t−1)

− ⟨Si(t)⟩⟨Sj(t)⟩
}
, (3.23)

= ⟨g[ui(t)]g[uj(t)]⟩ − ⟨g[ui(t)]⟩⟨g[uj(t)]⟩. (3.24)
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By expanding g[ui(t)] around the noise average of ûi and taking limit t → ∞, we obtain

(see Appendix B.1 for details)

Csij(0) =
∞∑
τ,τ ′

∑
k ̸=i

∑
l ̸=j,k

J̃ik(τ)J̃jl(τ
′)Zkl(τ − τ ′)

+

∞∑
τ,τ ′

∑
k ̸=i

J̃ik(τ)J̃jk(τ
′)Zk(τ − τ ′), (3.25)

where we denote J̃ik(τ) = 2g′(⟨ui⟩)Jikϵik(τ) and

Zkl(t, t+ τ) ≡ ⟨δ(xk(t)Sk(t))δ(xl(t+ τ)Sl(t+ τ))⟩,

Zkl(τ) ≡ lim
t→∞

Zkl(t, t+ τ), (3.26)

Zk(t, t+ τ) ≡ ⟨δ(xk(t)Sk(t))δ(xk(t+ τ)Sk(t+ τ))⟩.

Zk(τ) ≡ lim
t→∞

Zk(t, t+ τ). (3.27)

We evaluate Zkl(τ) and Zk(τ) at equilibrium and derive (see Appendix B.1 for details)

Zkl(τ) = Cskl(τ)⟨xk⟩⟨xl⟩+ Csxkl (τ)⟨xk⟩⟨Sl⟩

+Cxskl (τ)⟨Sk⟩⟨xl⟩+ Cxkl(τ)⟨Sk⟩⟨Sl⟩. (3.28)

For k = l, we obtain

Zk(τ) = Ask(τ)⟨xk⟩⟨xk⟩+Asxk (τ)⟨xk⟩⟨Sk⟩

+Axsk (τ)⟨Sk⟩⟨xk⟩+Axk(τ)⟨Sk⟩⟨Sk⟩. (3.29)

Equations such as (3.25), (3.28), and (3.29) for the equal-time cross-correlations, Csij(0),

include correlation functions between neural activities and synaptic variables, such as Csxij ,

Cxsij , C
x
ij , A

sx
i , Axsi , and Axi . We thus need the equations for these correlation functions

between neural activities and synaptic variables to solve these equations.

Next, let us consider equal-time correlation functions, Csxij (0), C
xs
ij (0), C

x
ij(0), A

sx
i (0),

Axsi (0), and Axi (0). Similar to the approach we took in calculating Csij(0), we obtain (see

Appendix B.1 for details)

Csxij (0) =
∞∑
τ=1

∑
k ̸=i,j

J̃ik(τ)
{(

1− 1

τd

)
[Cxkj(τ − 1)⟨Sk⟩+Csxkj (τ − 1)⟨xk⟩]−UZkj(τ − 1)

}
+

∞∑
τ=1

J̃ij(τ)
{(

1− 1

τd

)
[Axj (τ − 1)⟨Sj⟩+Asxj (τ − 1)⟨xj⟩]− UZj(τ − 1)

}
, (3.30)
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Cxij(0) =

(
1− 1

τd

)2

Cxij(0) + U2Zij(0)− U

(
1− 1

τd

)
× [Cxij(0)(⟨Si⟩+ ⟨Sj⟩) + Csxij (0)⟨xi⟩+ Cxsij (0)⟨xj⟩]. (3.31)

Since Cxsij (t, t) = Csxji (t, t) , we can also obtain Csxji (0) from Eq. (3.30). If we set j = i in

Eq. (3.30), we derive the equations for equal-time auto-correlations Asxi (0),

Asxi (0) =
∞∑
τ=1

∑
k ̸=i

J̃ik(τ)

[(
1− 1

τd

)

× (⟨xk⟩Csxki (τ − 1) + ⟨Sk⟩Cxki(τ − 1))− UZki(τ − 1)

]
. (3.32)

Since Axsi (0) = Asxi (0), we simultaneously obtain Axsi (0). Similarly, we set i = j in

Eq.(3.31) to obtain equal-time auto correlation, Axi (0), as

Axi (0) =

(
1− 1

τd

)2

Axi (0) + U2Zi(0)

− U

(
1− 1

τd

)
2[Axi (0)⟨Si⟩+Asxi (0)⟨xi⟩]. (3.33)

Because Axi (0) and A
sx
i (0) are 1 and 1/N orders, respectively, we ignore Asxi (0) and derive

Axi (0) =
U2Asi (0)⟨xi⟩2

1− (1− 1/τd)2 − U2⟨Si⟩2 +−2U(1− 1/τd)⟨Si⟩
. (3.34)

These equations for equal-time cross-correlations Csij(0) and Csxij (0) and equal-time

auto-correlations Asxi (0) include time-delayed cross-correlations, such as Csij(τ), C
sx
ij (τ),

Cxsij (τ), and Cxij(τ), and time-delayed auto-correlations such as Asi (τ), A
sx
i (τ), Axsi (τ),

and Axi (τ). We thus need the equations for these time-delayed correlation functions to

solve these equations.

3.3.2 Time-delayed correlation functions

We derive the equations for the time-delayed correlation functions in this section Let us

consider time-delayed cross-correlation functions between neural activities, Csij(t, t + τ).
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The time-delayed cross-correlation functions can be written as

Csij(t, t+ τ) = ⟨Si(t)Sj(t+ τ)⟩ − ⟨Si(t)⟩⟨Sj(t+ τ)⟩,

=
∑

Y t+τ−1

P (Y t+τ−1)Si(t)
∑
St+τ

{
Sj(t+ τ)

×W (St+τ |Y t+τ−1)− ⟨Si(t)⟩⟨Sj(t+ τ)⟩
}
,

= ⟨Si(t)g(uj(t+ τ))⟩ − ⟨Si(t)⟩⟨Sj(t+ τ)⟩,

= ⟨δSi(t)g(uj(t+ τ))⟩. (3.35)

By expanding g(uj(t+ τ)) around the noise average of uj and taking in limit t→ ∞, we

derive the time-delayed cross-correlation functions as

Csij(τ) =
∞∑
τ ′=1

∑
k ̸=j,i

J̃jk(τ
′)[Csxik (τ − τ ′)⟨Sk⟩+ Csik(τ − τ ′)⟨xk⟩]

+

∞∑
τ ′=1

J̃ji(τ
′)[Asxi (τ − τ ′)⟨Si⟩+Asi (τ − τ ′)⟨xi⟩]. (3.36)

If we set j = i in Eq. (3.36), we obtain time-delayed auto-correlation functions between

neural states, Asi (τ), at equilibrium:,

Asi (τ) =

∞∑
τ ′=1

∑
k ̸=i

J̃ik(τ
′)[Csxik (τ − τ ′)⟨Sk⟩+ Csik(τ − τ ′)⟨xk⟩]. (3.37)

Next, we consider time-delayed cross-correlation functions between Si and xj , i.e.,

Csxij (τ). Substituting Eq. (3.3) into Eq. (3.18) and taking limit t→ ∞ gives

Csxij (τ) = lim
t→∞

⟨
δSi(t)

((
1− 1

τd

)
δxj(t+ τ − 1)

− Uδ(xj(t+ τ − 1)Sj(t+ τ − 1))

)⟩
,

=

(
1− 1

τd
− U⟨Sj⟩

)
Csxij (τ − 1)− U⟨xj⟩Csij(τ − 1). (3.38)

If we set j = i in Eq. (3.38), we derive the time-delayed auto-correlation functions

between Si and xi, A
sx
i (τ), as

Asxi (τ) =

(
1− 1

τd
− U⟨Si⟩

)
Asxi (τ − 1)− U⟨xi⟩Asi (τ − 1). (3.39)

Taking into account the order of Asxi (τ) and Asi (τ), we can simplify Eq. (3.39). Asxi (0)

and Asxi (τ)(1 ≤ τ) are each on the order of 1/N and 1, while Asi (0) and A
s
i (τ)(1 ≤ τ) are

on the order of 1 and 1/N , respectively. Ignoring Asxi (0) and Asi (τ)(1 ≤ τ), we obtain
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1, τ = 1

Asxi (1) = −U⟨xi⟩Asi (0), (3.40)

2, τ > 1

Asxi (τ) =

(
1− 1

τd
− U⟨Si⟩

)
Asxi (τ − 1). (3.41)

Similar to the approach we took in the previous section, time-delayed cross-correlation

functions between xi and Sj , C
xs
ij (t, t+τ) can be written as Cxsij (t, t+τ) = ⟨δxi(t)g(uj(t+

τ))⟩. By expanding g(uj(t+τ)) around the noise average of uj and taking in limit t→ ∞,

we obtain

Cxsij (τ)

=
∞∑
τ ′=1

∑
k ̸=j,i

J̃jk(τ
′)[Cxik(τ − τ ′)⟨Sk⟩+ Cxsik (τ − τ ′)⟨xk⟩]

+
∞∑
τ ′=1

J̃ji(τ
′)[Axi (τ − τ ′)⟨Si⟩+Axsi (τ − τ ′)⟨xi⟩]. (3.42)

If we set j = i in Eq. (3.42), we obtain time-delayed auto-correlation functions between

xi and Si, A
xs
i (τ), as

Axsi (τ) =
∞∑
τ ′=1

∑
k ̸=i

J̃ik(τ
′)[Cxik(τ − τ ′)⟨Sk⟩+ Cxsik (τ − τ ′)⟨xk⟩]. (3.43)

Finally, we derive time-delayed cross-correlation functions between xi and xj , i.e.,

Cxij(τ). Substituting Eq. (3.3) into Eq. (3.18) and taking limit t→ ∞ gives

Cxij(τ) = lim
t→∞

⟨
δxi(t)

((
1− 1

τd

)
δxj(t+ τ − 1)

− Uδ(xj(t+ τ − 1)Sj(t+ τ − 1))

)⟩
,

=

(
1− 1

τd
− U⟨Sj⟩

)
Cxij(τ − 1)− U⟨xj⟩Cxsij (τ − 1). (3.44)

If we set j = i in Eq. (3.44), we obtain time-delayed auto-correlation functions between

synaptic variables at equilibrium:,

Axi (τ) =

(
1− 1

τd
− U⟨Si⟩

)
Axi (τ − 1), (3.45)
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where we ignore Axsi (τ − 1), because Axi (τ) and Axsi (τ − 1) are on the order of 1 and

1/N , respectively. By solving Eqs. (3.21), (3.25), (3.30), (3.32), (3.31), (3.34), (3.37),

(3.36), (3.38), (3.40), (3.41), (3.42), (3.43), (3.44), and (3.45), we eventually obtain the

equilibrium value for correlations between the activities of cortical neurons and those

between neural activities and synaptic variables.

3.3.3 Correlations of mean firing rate

We calculated the correlations of spikes, ⟨δSiδSj⟩, in the previous section. Here, we

compute the correlation functions of the mean firing rate within time window T , Qij =

⟨δriδrj⟩, where δri ≡ ri − ⟨ri⟩, and we call the value, ri, the mean firing rate. We calcu-

late the rate correlations to evaluate the effect of synaptic depression on the correlations

between neural activities within the long term, T . Firing rate ri and synaptic efficacy qi

within T is defined as

ri =
1

T

T∑
τ=1

Si(τ), qi =
1

T

T∑
τ=1

xi(τ). (3.46)

Mean firing rate fi and mean synaptic efficacy Xi at equilibrium are the same as instan-

taneous firing rate ⟨Si⟩ and instantaneous synaptic efficacy ⟨xi⟩, respectively:

fi ≡ ⟨ri⟩ =
1

T

T∑
τ=1

⟨Si(τ)⟩

= ⟨Si⟩,

Xi ≡ ⟨qi⟩ =
1

T

T∑
τ=1

⟨xi(τ)⟩

= ⟨xi⟩. (3.47)
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The correlation for the mean firing rate can be calculated as in (Macke et al. 2009,

Oizumi et al. 2010).

Qij = ⟨δriδrj⟩,

= ⟨(ri − fi)(rj − fj),

=

⟨(
1

T

T∑
τ=1

Si(τ)− fi

)(
1

T

T∑
τ ′=1

Sj(τ
′)− fj

)⟩
,

=
1

T 2

T∑
τ=1

T∑
τ ′=1

⟨Si(τ)Sj(τ ′)⟩ − fifj ,

=
1

T 2

T∑
τ=1

T∑
τ ′=1

[⟨δSi(τ)δSj(τ ′)⟩+ ⟨Si(τ)⟩⟨Sj(τ ′)⟩]

− fifj ,

=
1

T 2

T∑
τ=1

T∑
τ ′=1

Csij(τ
′ − τ). (3.48)

Using mean firing rate correlations Qij , which can be computed though Eq. (3.48), we

can evaluate the effect of synaptic depression on neural correlations over the long-term.

3.3.4 Fisher information

Let us consider the problem of how accurately stimulus θ, which is a single variable, can be

estimated from the mean firing rates of neuronal population r = {r1, r2, . . . , rN}. Through
the Cramer-Rao bound, the average squared decoding error for an unbiased estimation of

stimulus θ̂ is greater than or equal to 1/I(θ),

⟨(θ − θ̂)2⟩ ≥ 1

I(θ)
, (3.49)

when I(θ) is Fisher information. Fisher information is given by

I(θ) =

∫
drP [r|θ]

(
−∂

2 lnP [r|θ]
∂θ2

)
, (3.50)

where P [r|θ] is the conditional probability distribution, which is the probability that

neural response r will be evoked by the presentation of a multivariate Gaussian probability

distribution with covariance matrix Q(θ),

P [r|θ] = 1√
(2π)N detQ(θ)

× exp

[
−1

2
[r− f(θ)]TQ−1(θ)[r− f(θ)],

]
, (3.51)
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where f is the mean value of r. Note that the (i, j)th element of covariance matrix Qij rep-

resents mean firing rate correlation ⟨δriδrj⟩. Under this assumption, Fisher information

can be written as in (Kay 1993):

I(θ) = Imean(θ) + Icov(θ), (3.52)

Imean(θ) = f ′(θ)TQ−1(θ)f ′(θ), (3.53)

Icov(θ) = Tr[Q′(θ)Q−1(θ)Q−1(θ)]/2, (3.54)

where Tr stands for the trace operation, f ′(θ) = df(θ)/dθ, and Q′(θ) = dQ/dθ. Because

mean firing rates r and mean firing rate correlations Qij can be analytically calculated in

the spike response model as discussed earlier in Section 3.3.3, Fisher information can also

be analytically calculated from Eq. (3.52).

3.4 Ring attractor network with Mexican hat type connectivity

3.4.1 Model

Let us now consider a ring attractor neural network with Mexican hat type connectivity

(Ben-Yishai et al. 1995, Hamaguchi 2006). We do not this to imply the presence of such

ring structures in neuroanatomy, but merely to illustrate that neurons tuned to a periodic

variable are functionally fully connected. This ring network model is thus not a one-

dimensional lattice model but has often been used as an appropriately approximated

network model of the primary visual cortex (Ben-Yishai et al. 1995). Following these

previous studies, we used the conventional ring neural network model and investigated

what effect synaptic depression had on neural correlations.

In this network, N = 1000 neurons are divided into aK = 10 subpopulation. The choice

of the number of subpopulations does not qualitatively affect the results. The number of

neurons in each population is G = 100. All neurons in each population have the same

preferred orientation and neuron i in the kth population is labeled using angle θk. We

assume that the preferred orientations of K = 10 subpopulations are evenly distributed

from −π/2 to π/2, and divide 2π in K = 10, i.e., θk = −π/2 + kπ/K. The strength of

connections Jkl between a neuron in the kth population and a neuron in the lth population

is calculated as

Jkl = J0/N + J1 cos 2(θk − θl)/N, (3.55)

where J0 is a uniform interaction and J1 is a lateral-inhibitory interaction. The model
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with J1 = 0 is reduced to a network with uniform connections. We set uniform inter-

action J0 = 0.5 and lateral-inhibitory interaction J1 = 3 to stabilize the steady states

(York and van Rossum 2009, Igarashi et al. 2010). Neurons in simulations are evolved

at maximum 103 time steps with initial state Si(0) = 0 and xi(0) = 1 ∀i, until they

reach a stable equilibrium point. Instantaneous firing rates and correlation functions are

estimated from simulations over 5 · 106 time steps in equilibrium.

3.4.2 Correlation functions

To investigate the effect of synaptic depression on neural correlations, we adjust the

external inputs to neurons, hi, and maintain the firing rate, ⟨Si(t)⟩, regardless of the

strength of synaptic depression, γ (See Appendix B.2). We set hi as follows.

hi = h0i +
∞∑
τ

N∑
j ̸=i

Jijϵij(τ)
2γ⟨S0

i ⟩2

1 + γ⟨S0
i ⟩
, (3.56)

where we define h0i and ⟨S0
i ⟩ as the respective input and instantaneous firing rate in the

absence of synaptic depression, i.e., γ = 0. We set h0i = f0 cos(2(θi − ϕ)), f0 = 0.05, and

the orientation of stimuli ϕ = 0. Using self-consistent Eq. (3.16), we can derive ⟨S0
i ⟩. We

then adjust external inputs hi and obtained constant firing rates regardless of synaptic

depression, as can be seen in Figs. 3.1(a) and (b). In addition, each neuron follows a

probabilistic dynamic depending on the firing probability, g[ui(t)] =
1
2{1 + tanh[βui(t)]},

where 1/β(= T ) is the level of noise due to stochastic synaptic activity and we set β = 1

(Oizumi et al. 2010, Hamaguchi 2006). The response kernels of the discrete spike model

are given by ϵij(τ) = [1− exp(−1/τs)] exp(−τ/τs), where τs = 2.
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Fig. 3.1. (a) Inputs, (b) instantaneous firing rates ⟨S⟩, and (c) synaptic efficacy ⟨x⟩ ob-

tained from simulations (open circles, triangles, and asterisks) compared with

theory (solid lines) in absence and presence of synaptic depression, γ = 0, 0.1,

and 1, respectively, with τD = 5. Parameters of connections are J0 = 0.5 and

J1 = 3.
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Fig. 3.2. Equal-time auto-correlation functions As
i (0) obtained from simulations (open

circles, triangles, and asterisks) compared with theory (solid, chain, and dotted

lines) in absence and presence of synaptic depression, γ = 0, 0.1, and 1, respec-

tively, with τD = 5. Because of firing rates in presence of synaptic depression

as well as those in its absence (Fig. 3.1(b)), As
i (0) agree completely with each

other.

We found that the firing correlations obtained under these conditions by using our

theory coincided with the results from simulations, as seen in Figs. 3.2 and 3.3. Figure 3.2

shows equal-time auto-correlation functions Asi (τ) of a neuron with preferred orientations

from −π/2 to 2π/5. Equal-time auto-correlation functions Asi (0) in absence of synaptic

depression coincide with those in presence of synaptic depression (as indicated in Fig. 3.2)

because the auto-correlation functions of neural activity depend on instantaneous firing

rates (Eq. (3.21)) and the instantaneous firing rates for in the case of γ = 0 are the same

as those for γ = 0.1 and 1 (Fig. 3.1(b)). Let us then consider the results for time-delayed

auto correlations Asi (τ) where τ > 1. Figure 3.3(a) plots the auto-correlation functions

of a neuron with preferred orientation 0 rad. We found that the strength of synaptic

depression, γ, increases and sequences of spikes are less correlated. The simulation results

are in agreement with both those from the theoretical solution and a previous study

(Goldman et al. 2002).

Next, let us consider what effects synaptic depression has on neural cross-correlations

between neurons. Figure 3.3(b) plots the cross-correlation functions between a neuron

with preferred orientation 0 rad and a neuron with preferred orientation π/10 rad where
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Fig. 3.3. Auto-correlation and cross-correlation functions from simulations (open circles,

triangles, and asterisks) compared with theory (solid, chain, and dotted lines)

in absence and presence of synaptic depression, γ = 0, 0.1, and 1, respectively,

with τD = 5. (a) Auto-correlation functions of neuron with preferred orientation

0 rad, As
i (τ), where τ > 1. (b) Cross-correlation functions between neuron i

with preferred orientation 0 rad and neuron j with preferred orientation π/10

rad, Cs
ij(τ), where Jij > 0. (c) Cross-correlation functions between neuron i

with preferred orientation 0 rad and neuron j with preferred orientation π/2

rad, Cs
ij(τ), where Jij < 0.

Jik > 0. For Jik > 0, Csij(τ) > 0 because the synaptic strength between the neurons

is positive regardless of synaptic depression. We found that synaptic depression reduces

Csij(τ). Next, we will discuss how depressing synapses affect Csij(τ) where Jik < 0. Figure

3.3(c) plots the cross-correlation functions between a neuron with preferred orientation 0

rad and a neuron with preferred orientation π/2 rad where synaptic connection Jik < 0.

Since the synaptic strength between the neurons is negative, Csij(τ) < 0 regardless of

synaptic depression. We found that synaptic depression increases cross-correlation Csij(τ).

Using correlation theory to solve self-consistent equations in a network with synaptic

depression enables us to understand how synaptic depression quantitatively affects neural

correlation. As shown in Fig. 3.3, neural activities gradually decorrelate depending on

the strength of synaptic depression, γ, and the reductions in neural correlations are quite

large for weak depression, γ = 0.1. We thus found that synaptic depression non-linearly

decorrelates neural activities in the entire network with synaptic depression．
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3.4.3 Rate correlation

We explained that depressing synapses reduces spiking correlations As(τ) and Cs(τ) at

almost all τ in the previous section. We calculated rate correlation ri using Eq. (3.48)

to evaluate what effect synaptic depression had on the neural correlation between neural

activities within a long time frame. When we calculated the firing rate correlation between

a neuron with preferred orientation 0 rad and a neuron with preferred orientation π/10,

we found that synaptic depression reduces rate correlations ri by 98% for γ = 1.
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Fig. 3.4. (a) Grayscale plots of covariance matrix Q in absence of synaptic depression

(γ = 0), (b) in presence of weak synaptic depression (γ = 0.1 and τD = 5), and

(c) strong synaptic depression (γ = 1 and τD = 5).

Next, let us consider the effect of depressing synapses on all the pair-wise correlations

of neural activities. The correlation theory in a network with synaptic depression enables
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us to investigate entire rate correlation Q, as shown in Fig. 3.4.
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Fig. 3.5. Effects of synaptic depression on average of absolute value of rate correlations.

Here, to visualize the Q of neurons, let us introduce a K × K matrix, Q, where

K = 10 is the number of subpopulations in the neurons. Because the correlations between

two neurons are only determined by the difference in their preferred orientations, the

correlations between a neuron in the k th population of excitatory neurons and a neuron

in the l th are the same. Thus, matrix Q can be written as K × K block matrix Q. The

elements of Q, and Qkl, stand for the mean firing rate correlations between a neuron in

the k th population of neurons and one in the lth:

Qkl = Qij , (3.57)

where ∀ i is in the kth population and ∀ j is in the lth; Q does not contain any diag-

onal elements of Q. Although matrix Q, which is an N × N matrix, it is difficult to

numerically calculate the entire matrix because of the substantial amount of time that

would be required to do this. Note that our theoretical framework enables us to ana-

lytically calculate all pair-wise neural correlations. Figure 3.4 shows that the absolute

values of all the pair-wise neural correlations greatly decrease depending on the strength

of synaptic depression, γ. Thus, neural activities decorrelate due to depressing synapses

in an entire network. Finally, we investigate how neural activities decorrelate by changing

the strength of synaptic depression. Figure 3.5 indicates that the greater the strength of

synaptic depression γ, the fewer the rate correlations.
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3.4.4 Fisher information

To understand what effect synaptic depression has on Fisher information I, which depends

on firing rates and rate correlations, let us consider the first term of Fisher information,

Imean = f ′(θ)TQ−1f ′(θ), because Imean is foremost in our model (the second term of Fisher

information, Icov, is only about 0.7% of the Fisher information I). Imean depends on the

derivatives of mean firing rates f ′ and the inverse of covariance matrix Q−1. Because

synaptic depression changes both f ′ and Q−1, we have to take both changes into account

to consider how synaptic depression affects the amount of information.

We adjusted inputs hi in Section 3.4.2 and 3.4.3, and maintained mean firing rates f (as

shown in Fig. 3.6) to consider what effect synaptic depression had on neural correlations.

This section consider the effects of synaptic depression on both firing rates and neural

correlations; we set external inputs hi = h0i , where h
0
i = e0 cos(2(θi − ϕ)), e0 = 0.2, and

orientation stimuli ϕ = 0. The response kernels of the discrete spike model are given

by ϵij(τ) = [1 − exp(−1/τs)] exp(−τ/τs), where τs = 2. Synaptic depression generally

reduces mean firing rates f and their slopes (f ′ = df/dθ), as shown in Figs. 3.6(a) and

(b) (Abbott et al. 1997, Igarashi et al. 2010). These changes to the firing rates reduce

Imean = f ′(θ)TQ−1f ′(θ).



56 Chapter 3 Theory of correlations in stochastic neural network models with synaptic depression

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0.6

0.7

0.8

0.9

1

Preferred orientation

Preferred orientation

X

Preferred orientation

(c)

f 
’

(b)

−1 0 1
0

0.2

0.4

0.6

0.8

1

f

(a)

Fig. 3.6. (a) Mean firing rates, f , (b) derivatives of mean firing rates, f ′, and (c) mean

synaptic efficacies, X, of V1 neurons with J0 = 0.5 and J1 = 3. Solid lines plot

f , f ′, and X in absence of synaptic depression (γ = 0 and τD = 1). Chain and

dashed lines plot f , f ′, and X in presence of weak synaptic depression (γ = 0.1

and τD = 5) and strong synaptic depression (γ = 1 and τD = 5), respectively.
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Fig. 3.7. Covariance matrix Q and those of inverse of covariance matrix Q−1. Note that

off-diagonal elements of covariance matrix Q are written as Q. (a)-(d): Plots

of covariance matrix Q ((a), (b), and (c)) and inverse of covariance matrix Q−1

((d), (e), and (f)) of V1 neurons in the absence (γ = 0) and presence of weak

(γ = 0.1 and τD = 5) and strong (γ = 1 and τD = 5) synaptic depression,

respectively. Synaptic strengths are J0 = 0.5 and J1 = 3. Diagonal elements

are set to 0 to enable visualization.
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Now, we shall consider how Q−1 affects Fisher information. Figures 3.7 (a)-(f) show the

off-diagonal elements of covariance matrix Q and those of the inverse of covariance matrix

Q−1. When locally positive correlations are induced by recurrent excitations (Figs. 3.7

(a)-(c)), the off-diagonal elements of Q−1 near the diagonal elements are negative (Figs.

3.7 (d)-(f)). As demonstrated by Eq. (3.53), we can understand that these locally negative

off-diagonal elements decrease Fisher information if the tuning curves, f , are fixed. Locally

positive correlations thus decrease Fisher information (Sompolinsky et al. 2001). Next,

let us investigate how synaptic depression affects Q−1. As discussed in Section 3.4.3,

synaptic depression reduces rate correlations Q (Figs. 3.7 (a)-(c)). Neural decorrelation

also leads to an increase in locally negative off-diagonal elements, as indicated in Figs. 3.7

(d)-(f), which increases the amount of information.

As a result, the effects of the derivatives of the tuning curves f ′ on Fisher information are

the opposite of the effects of neural correlations. Whether Fisher information increases or

not as a combinational effect is determined by which effects are stronger. We calculated the

Fisher information to evaluate the effects of synaptic depression on information processing

and found that, when we set the parameters for connections, J0 = 0.5 and J1 = 3, synaptic

depression increased the amount of information depending on the strength of synaptic

depression shown in Fig. 3.8. However, synaptic depression does not always increase

Fisher information, because it depends on the synaptic strengths, J0 and J1. We also

found that synaptic depression reduced Fisher information for the weak lateral-inhibitory

interaction J1 = 1 shown in Fig. 3.9. Thus, synaptic connections established the effect of

synaptic depression.

3.5 Discussion

We constructed a theory of correlation in spiking neuron models with synaptic depres-

sion by expanding a previous theoretical framework (Ginzburg and Sompolinsky 1994,

Meyer and van Vreeswijk 2002, Toyoizumi et al. 2008, Oizumi et al. 2010). This theory

enables us to analytically calculate what effect synaptic depression, which rapidly changes

neural interactions, had on neural correlations. Our study should opens up the way for

theoretical studies on the effects of interaction changes on the linear response function in

large stochastic networks.

We investigated how synaptic depression affects neural correlations in a ring attrac-

tor network with Mexican-hat-type connectivity by using our theoretical framework.

We found that synaptic depression reduces neural cross-correlations in the ring



3.5 Discussion 59

6.5

7

7.5 x 10
4

F
is

h
er

 i
n

fo
rm

at
io

n
 

Fig. 3.8. Effects of synaptic depression on Fisher information. Fisher information in-

creases depending on strength depression γ, when parameters of connections

are J0 = 0.5 and J1 = 3
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Fig. 3.9. Effects of synaptic depression on Fisher information. When we set uniform

interaction, J0 = 0.5, and weak lateral-inhibitory interaction, J1 = 1, synaptic

depression (γ = 1 and τD = 5) decreases Fisher information by 2.8%.

network model as well as neural auto-correlations by using our theoretical frame-

work (Goldman et al. 2002). The decorrelations of neural activities can improve the

efficiency of a population of neurons encoding information (Abbott and Dayan 1999,

Averbeck, Latham and Pouget 2006, Gutnisky and Dragoi 2008, Cohen and Maunsell 2009).

To evaluate how synaptic depression affects information processing, we analytically
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calculated Fisher information, which quantifies the maximum amount of information on

stimuli that can be extracted from noisy neural activities. We found that although synap-

tic depression generally reduces signal strength, viz., the mean firing rates, it can im-

prove the efficiency of population coding. Some researchers have reported that short-term

synaptic depression is a possible mechanism for the effects of belief adaptation to a stim-

ulus with a fixed orientation in the primary visual cortex, because this brief adaptation

leads to the depression of feed forward synapses and intracortical synapses (Kohn 2007,

Chelaru et al. 2008). In fact, recent neurophysiological experiments have shown that,

after belief adaptation, both firing rates and neural correlations decrease and Fisher in-

formation increases in the macaque primary visual cortex (Gutnisky and Dragoi 2008).

These post-adaptation changes coincide with the effects of synaptic depression. Further

investigations are needed to calculate Fisher information in the network of the primary

visual cortex with synaptic depression (Chelaru et al. 2008) to enable the mechanism for

decorrelation after brief adaptation to be studied.

Recent findings by Montani et al., and Ohiorhenuan and Victor have pointed out the

relevance of higher order correlations that are larger than two in the cerebral cortex

(Montani et al. 2009, Ohiorhenuan and Victor 2011). Macke et al. have theoretically

proved that common inputs explain high-order correlations in a simple model of neural

population activity (Macke et al., 2011), in which there were no recurrent connections

and neural correlations were only determined by common inputs. In contrast, we did not

consider common noisy inputs in our model for simplicity, which produced large high-order

correlations, and focused on neural correlations which were produced only by recurrent

synaptic connections. We therefore could analytically calculate the neural correlations and

theoretically prove that the pair-wise correlations are scaled as ∼ O(1/N) and that high-

order correlations are less than the order of 1/N in a network with synaptic depression,

where N is the number of neurons. On the other hand, we cannot directly argue how

synaptic depression affects the large higher-order correlations produced by common inputs

in the framework of the mean-field theory. Further study will be to include common noisy

inputs in the network and investigate by simulations what effect synaptic depression has

on higher-correlations, which are produced by common inputs.

We have only investigated the role of synaptic depression in spike train decorre-

lation in this study, but other short-term processes such as spike rate adaptation

(Liu and Wang 2001), synaptic facilitation (Lisman 1997, Tsodyks et al. 1998), and

postsynaptic receptor dynamics could enable more general filtering of spike trains

(Maass and Zador 1999). Mongillo et al. reported that working memory is sustained
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by both synaptic depression and synaptic facilitation in the recurrent connections of

neocortical networks (Mongillo et al. 2008). However, neural correlations, which affect

the efficiency of a population of neurons to encode information, have not been taken into

consideration in the network. Expanding our theoretical framework to spiking neural

network models with both synaptic depression and facilitation and investigating how

these synaptic plasticities affect Fisher information is an interesting issue that we intend

to pursue.
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Chapter 4

Higher-order correlation in a

feed-forward network with

inhomogeneous connectivity

4.1 Background

The widely observed complex features of population activity, such as the synchronization

and concentration patterns of suspension, can be captured by not only the pairwise

correlations but also by the higher-order correlations, which have a significant effect on

the complicated physical processes and information processing (Heimel and Coolen 2001,

Teramae and Tanaka, Saintillan and Shelley 2008). Electrophysiological experiments

conducted in the field of neuroscience have recently shown that the manner in which

information is represented using specific spiking and silence patterns over a group

of neurons, is also understood both by the pairwise and higher-order correlated neu-

ral activities (Schneidman et al., 2006, Shlens et al., 2006, Ohiorhenuan et al., 2010,

Ohiorhenuan and Victor 2011, Ganmor et al., 2011, Yu et al, 2011). However, very little

is known about the relationships in the higher order correlations linking the role of

information processing.

It is widely acknowledged that the detailed nature of a neural population code is deter-

mined by the dependencies among cells (Rieke et al, 1997, Riehle et al, 1997, Parisi 1998,

Averbeck, Latham and Pouget 2006). Then, some researchers have characterized the

functional specificity of the local connections in the primary visual cortex to better un-

derstand the complex relationship between the structure of a neural network and neural
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population code (V1)(Alonso and Martinez 1998, Yoshimura et al, 2005, Ko et al., 2011).

It would appear that these structured neural connectivities in V1 affect not only the firing

rates and pairwise neural correlation but also the higher-order correlations structure in

neuronal firing.

Previous studies have shown that both the pairwise correlated input, which is com-

monly generated from common inputs, and non-linear spiking thresholds are needed to

produce higher-order correlations (Amari et al., 2003, Macke et al., 2011). However, very

little is theoretically known about the relationships in a network of physical or structural

(synaptic) connections linking the higher order correlations as the number of connections

among a given number of neurons exponentially grows, because they used homogeneous

neural networks. Therefore, the effect of inhomogeneous connections in cortical networks

on the higher-order neural correlations remains an open challenge and is thus the topic of

this paper.

We expanded the previous theoretical framework in this paper to a feed-forward net-

work with inhomogeneous connectivity. We then used our structured network model

and investigated how structural connection changes the neural activities, especially the

structure of higher-order correlations structure among the neural population. We first

focused on a comparisong of our theoretical results with the electro-physiological exper-

iment reported by Ohiorhenuan et al., who have recently reported on the structured

higher-order correlations between neurons in V1 that receive random visual stimulus

(Ohiorhenuan et al., 2010, Ohiorhenuan and Victor 2011), and show that our theoretical

results are consistent with the experimental observations (Ohiorhenuan and Victor 2011).

It is assumed that visual stimulation clearly reorganizes the activity of structured V1

circuits by preferentially activating V1 neurons. We investigated the effect of external

inputs on the higher order correlations of neural activity by changing the stimulus to

the V1 network, and then made a theoretical prediction for the V1 network model. We

show that external stimuli change the structure of the higher-order correlations among

neurons and generate both sparse and synchronized neural activity due to the structures of

synaptic connections. These dynamics enable 3rd-order correlations resulting from visual

stimulation to carry stimulus-specific information.

4.2 Model

Let us consider a two-layer feed-forward network as shown in Fig. 4.1. We define sj =

{0, 1} and xi = {0, 1} as the output of a Layer 1 and Layer 2 neuron, respectively. The
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Fig. 4.1. Network architecture. The connections between the two layers, Jij , consist of

inhomogeneous feed-forward connections. The orientation of the bar indicates

the preferred orientation and the gray scale of value in a circle shows the firing

rate of a neuron.

state of the Layer 2 neuron xi depends on the neural input ui from the Layer 1 neurons:

xi = Θ(ui), (4.1)

ui =
N∑
j

Jijsj + η + zi − h, (4.2)

where h is a threshold and Θ is a step function, which is nonlinear transformation.

The non-linear spiking threshold generates higher-order correlations among neural firing

x1, . . . , xN . (Amari et al., 2003). η and zi are fluctuations in inputs, and we assume that

the two noise terms, zi and η, are described by an identical Gaussian distributions with a

mean of 0 and variances of λ and 1−λ, respectively, i.e., η ∼ N (0, λ) and zi ∼ N (0, 1−λ).
We normalized the scale of the fluctuations such that zi+η is subject to the normal Gaus-

sian distribution N (0, 1) (Amari et al., 2003). Let us explain the more detail of η. η is

caused by common inputs (Amari et al., 2003, Macke et al., 2011) and, due to η, there

are pairwise correlations between neural inputs. The pairwise correlated inputs and the

non-linear spiking threshold induce statistical interactions at all orders of this model.

The common fluctuating input also induces phase synchronization and previous theoret-

ical studies have investigated the effects of only a weak common noise (λ → 0) on phase

synchronization (Teramae and Tanaka).

As shown in Fig. 4.1, each cell has a preferred feature, e.g., orientation, preferred spatial

frequency (scale), and receptive field location. We then assume that the synaptic weight
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between the two layers, Jij , has translational symmetry and is determined on the basis of

the difference between the preferred features, i.e.,

Jij = J(ϕi − ϕj) =
K∑
k=0

Jk
N

cos 2k(ϕi − ϕj), (4.3)

where ϕi represents a preferred feature of neuron i. A model with K = 0 re-

duces to a network with uniform connections, as demonstrated in a previously

studied model (Amari et al., 2003, Macke et al., 2011). Furthermore, in the case

of K = 1, the network model represents a two-layer feed-forward network of V1

neurons that modeled the supra-granular layers 2/3 (Layer 2) and granular layer

4 (Layer 1) (Hubel and Wiesel 1962, Ben-Yishai et al. 1995, Hamaguchi et al. 2005,

Hamaguchi 2006, Priebe and Ferster 2008) (Fig. 4.1), where the neurons are param-

eterized by an angle ϕ, ranging from −π/2 to +π/2, that denotes their preferred

orientations, and J1 is a lateral-inhibitory connection. In a network with the inhomoge-

neous connectivity, columnar localized activity is produced when a grating stimulus is

presented.

4.3 Theory of higher-order correlations

We constructed a theory of higher-order correlations in a structured network with common

inputs and spiking non-linearities. We observed the activity of the Layer 1 neural field, s,

through macroscopic variables (order parameters).

The order parameters are defined as r0 = 1
N

∑
i si, which represents the population

firing rate,

rck =
1

N

∑
i

cos(2kϕi)si, (4.4)

rsk =
1

N

∑
i

sin(2kϕi)si (4.5)

, (4.6)

where 1 ≤ k ≤ K; rc1 and rs1 denote the coefficients of the first Fourier mode of the

spatial firing pattern, representing the eccentricity of the localized activity about ϕ = 0

and π/2, respectively. The input to Layer 2 neuron i from the Layer 1 neurons, ui, can
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be represented by the following order parameters,

ui = γi + η + zi, (4.7)

γi = J0r0 +
K∑
k=1

Jk(r
c
k cos(2kϕi) + rsk sin(2kϕi))− h. (4.8)

Our feed-forward network model reproduces both inhomogeneous neural inputs and ho-

mogeneous properties of neural noise, which have been observed in neurophysiological ex-

periments (Yu and Ferster 2010, Anderson et al. 2000). The point of pivotal importance

in our model is that the localized neural input, γi, resulting from the inhomogeneous con-

nectivity (K ≥ 1), modulates the spiking nonlinearity to each Layer 2 neuron and gives

rise to inhomogeneous neural correlations, even though the noise properties are uniform.

Depending on the common noise, η, not only the microscopic behavior but also

the macroscopic state stochastically perturb in the network model, and thus, a

probability distribution of order parameters can be constructed (Amari et al., 2003,

Hamaguchi et al. 2005). Although most theoretical studies derive neural correla-

tions based on the fluctuation-dissipation theory for investigating changes in the

equilibrium order parameters, there are no equilibrium order parameters due to

sufficiently weak externally applied perturbations (Ginzburg and Sompolinsky 1994),

and thus, we cannot use the fluctuation-dissipation theory in the network model

(Amari et al., 2003, Macke et al., 2011). Some researchers, therefore, calculate

neural correlations from the probability distribution of the order parameters

(Amari et al., 2003, Hamaguchi et al. 2005, Macke et al., 2011).

Here, we expanded the previous theoretical framework to higher-order correlations in

a structured network model (Amari 2001, Macke et al., 2011). Let us consider the firing

activities of arbitrarily chosen M neurons from Layer 2. Due to the homogeneous noise

input, we can write the probability distribution of a binary M -dimensional vector x =

{x1, x2, . . . , xM}, P (x), as

P (x) =

∫ ∞

−∞
dηp(η)L(x1|η)L(x2|η)× · · · × L(xM |η), (4.9)

p(η) =
1√
2πλ

exp

(
− η2

2λ

)
, (4.10)

L(xi|η) = (P (ui < 0|η))(1−xi)(P (ui > 0|η))xi . (4.11)

Because the input ui has a Gaussian distribution, it can be calculated as

P (ui > 0|η) = erfc

(
− γi + η√

1− λ

)
. (4.12)
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Here, we define

erfc(x) =
1√
2π

∫ ∞

x

exp(−u2)du. (4.13)

To derive higher-order correlations among neural activities, we expand the probability

distribution, P (x), as

logP (x) =
∑
i

θixi +
∑
i<j

θijxixj +
∑
i<j<k

θijkxixjxk +

· · ·+ θ1...Mx1x2 . . . xM −Ψ, (4.14)

where Ψ is a normalizing factor and θ = (θi, θij , θijk, . . . , θ1...M ) are parameters to specify

P (x), which represents the interactions of M neurons. For example, when we set M = 3,

we can derive these correlation parameters θ from P (x) as follows,

θi = log
P (1, 0, 0)

P (0, 0, 0)
, (4.15)

θij = log
P (1, 1, 0)P (0, 0, 0)

P (1, 0, 0)P (0, 1, 0)
(4.16)

θijk = log
P (1, 0, 0)P (0, 1, 0)P (0, 0, 1)P (1, 1, 1)

P (0, 0, 0)P (0, 1, 1)P (1, 0, 1)P (1, 1, 0)
. (4.17)

In the case of θijk > 0, the probability of synchronous firing between the 3 neurons is

presented at a significant level. Thus, these correlation parameters θ can be derived from

a full joint distribution P (x), which can be analytically calculated in our model.

As previously described, we focused on comparing our theoretical results with those

from the electrophysiological experiment in V1, where most neurons respond best to elon-

gated light bars and are directionally selective (Hubel and Wiesel 1962). We considered a

two-layer feed-forward network consisting of V1 neurons as a model of the orientation se-

lectivity (Hubel and Wiesel 1962, Hamaguchi et al. 2005, Priebe and Ferster 2008) (Fig.

4.1, K = 1). We presumed that each laminar V1 network consists of G types of subpop-

ulations, where the number of neurons in each subpopulation is NG (N = G ×NG) and

all neurons in each subpopulation have the same preferred orientation, such that

ϕi = −π/2 + giπ/G, (4.18)

where gi represents the number of neuron i’s subpopulation and we set gi = ⌊i/NG⌋. We

analytically calculated the neural correlations in the V1 network model and investigated

the effect of lateral inhibition on the 3rd-order correlations between V1 neurons in supra-

granular layer 2/3. We then set M = 3 and derived these correlation parameters θ from

P (x) as denoted above.
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4.4 Stimulus-specific decomposition of the mutual information

(SSI)

To evaluate the effects of higher order correlations on information processing, we calculate

Stimulus-specific decomposition of the mutual information (SSI) which is delivered by

higher-order correlations, especially 3rd order correlations, between neural population

activities in V1 network model.

The basic quantity of information theory is information entropy, a measure of the uncer-

tainty or randomness of a variable, such as neural firing state. Entropy can be intuitively,

thought of a generation of variance. More concretely and correctly, entropy is the amount

of information required, on average, to render the value of a variable and is measured in

bits. The entropy H(Ψ) of a grating stimulus ensemble Ψ is given by:

H(Ψ) = −
∑
ψ∈Ψ

p(ψ) log2 p(ψ), (4.19)

where ψ represents the orientation of a grating stimulus.

Mutual information, Imut, is a measure of the informativeness of one variable about

another, e.g., of a neural response X about a stimulus Ψ. It is the total entropy minus

the conditional entropy:

Imut(X,Ψ) = H(X)−H(X|Ψ) = H(Ψ)−H(Ψ|X) (4.20)

=
∑
ψ∈Ψ

p(ψ)
∑
x∈X

p(x|ψ) log p(x|ψ)
x

(4.21)

Uppercase characters Ψ and X represent the stimulus and response ensembles, while

lowercase characters (ψ,x) repsent a single value within the ensemble.

Since mutual information can be used to quantify the information which is represents by

an whole response ensemble about an entire stimulus ensemble, we can not know about

the precision with which specific stimuli within the ensemble are encoded from it. To

address this, specific information and stimulus-specific information have been proposed

(DeWeese and Meister 1999, Butts 2003).

Specific information is a mutual information decomposition that quantifies the decrease

in uncertainty about the stimulus due to the observation of a given response:

ISI(x) =
∑
ψ∈Ψ

p(ψ|x) log p(ψ|x)− p(ψ) log p(ψ) (4.22)
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The specific information has a unique and advantageous property in that it is additive

(DeWeese and Meister 1999).

The stimulus specific information (SSI), which is calculated in this article, is a stimulus-

specific development of the specific information (Butts 2003). The SSI is the average

specific information associated with a given stimulus:

ISSI(ψ) =
∑
x∈X

p(x|ψ)ISI(x) (4.23)

=
∑
x∈X

p(x|ψ)

∑
ψ∈Ψ

p(ψ|x) log p(ψ|x)− p(ψ) log p(ψ)

 (4.24)

The SSI could be considered less stimulus-specific than the specific surprise, which is

Mutual Information decomposition, since it relates to an observer’s knowledge of the full

stimulus ensemble (Butts 2003).

Calculating SSI both in the presence of higher-order correlations among neural activities

and in the absence of 3rd-order correlations, we investigate the effects of higher-order

correlations on sensory processing.

4.5 Results: Response to a random stimulus

Psychophysical experiments have shown that when primates see random stimuli, negative

triplet correlations between the neural activities in V1. This indicates that the proba-

bility of synchronous firing between the three neurons is present at a significant level,

creating sparser codes by increasing the periods of total quiescence, and thus, concen-

trating information into briefer periods of common activity (Ohiorhenuan et al., 2010,

Ohiorhenuan and Victor 2011).

Previous theoretical studies have focused on the mechanism of the negative 3rd order

correlations (Macke et al., 2011). They show that threshold nonlinearity reproduces these

observed 3rd-order correlations between neural activities features for random visual stimuli

when using a homogeneous network model (Macke et al., 2011). However, the effects

of inhomogeneous connectivities, which were observed in V1 (Anderson et al. 2000), on

the 3rd-order neural correlations remain unknown. We investigated how the structured

connections affect the 3rd-order correlations by using a structured network model for this

research.

We simulated the V1 neuron response to a random stimulus (r0 = 0.5, rs1 = rc1 = 0)

and compared the 3rd-order correlations in the homogeneous network (J1 = 0) with those

in the network with a lateral-inhibitory connectivity (J1 = 3) (Fig. 4.2). We used a
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two-layer feed-forward network in the simulation, where each layer was constructed of

N = 200 neurons (NG = 10, G = 20), and set a variance of η, λ = 0.5, a threshold,

h = 0.25, and a uniform interaction, J0 = −0.25.

We found that the firing correlations obtained in the simulations under these conditions

coincided with our theoretical results (Figs. 4.2 and 4.3), which provides a powerful way

for interpreting the role of neuronal parameters, such as the inhomogeneous connection.

We also found that although a lateral-inhibitory connection increases the 3rd-order neu-

ral correlation, a common input model could lead to a negative triple interaction for all

combinations when there is random visual stimulus, thus creating sparser codes by increas-

ing the periods of total quiescence. These results are consistent with the experimental

observations, as well as with those in a previous study using a homogeneous network

(Macke et al., 2011).

In addition to the negative 3rd-order correlations among neural activities, the electro-

physiological experiments in V1 have shown that while the firing rates are negatively corre-

lated with the 3rd-order correlations, the 2nd-order correlations have a strong correlation

with the 3rd-order correlations (Ohiorhenuan et al., 2010, Ohiorhenuan and Victor 2011).

Since they present the visual stimulus of a binary checkerboard stimulus, pseudorandom

in space and time, these correlative relationships between statistics are attributed to the

structured network or neural dynamics characteristics, such as the threshold nonlinearity.

We calculated the relationship for the firing rates, 2nd-order correlations, and 3rd-order

correlations among neurons using the V1 network model. We found that while the 3rd-

order correlations are higher when the total firing rates among the three neurons are high,

the 3rd-order correlations are lower when the pairwise correlation is high, as shown in Figs.

4.2 (e) and (f). This indicates that the inhomogeneous connectivity has an insignificant

effect on the correlative relationships for the firing rates, 2nd-order correlations, and

3rd-order correlations among neurons, which are induced by threshold nonlinearity, for

random stimuli. These theoretical results in a structured V1 network model, which are

similar to the experimental observations (c. f. (Ohiorhenuan and Victor 2011), Fig. 4)

and the previous theoretical results in a homogeneous network model (Macke et al., 2011),

promote that spiking nonlinearity is necessary for the high-order correlation, which are

observed in V1 (Amari et al., 2003, Macke et al., 2011).
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Fig. 4.2. Responses to a random stimulus (rc1 = −0.01, rs1 = −0.04) in the V1 network

with MH-type connections (J1 = 3). (a) Firing rates. (b) Pair-wise correlation,

θij , in the V1 network. (c), (d) θijk in the V1 network obtained from theory

compared with theoretical simulations. Here, we set ϕk = 0. (e) θijk is strongly

correlated with the total firing rate. (f) Here, we set ϕk = 0. θijk is negatively

correlated with θij .
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4.6 Results: Prediction of responses to a grating stimulus

Although higher correlations among neurons are uniform in a homogeneous feed-forward

network regardless of the external stimulus (Amari et al., 2003, Macke et al., 2011), it is

believed that visual stimulation clearly reorganizes the structured V1 circuit activity by

preferentially activating the V1 neurons. We investigated the effect of a grating stimulus

(direction ψ = 0) on the neural activity pattern and made a theoretical prediction for

the V1 network model (lateral-inhibitory interaction J1 = 3). Fig. 4.3(a) shows the

network neurons activity response plotted as a function of their preferred stimulus angle in

response to light bars (direction ψ = 0). The preferred orientation of the maximum neural

response is consistent with the stimulus direction ψ = 0, meaning this network model can

achieve orientation selectivity. The pairwise correlation structure, θij , has a multimodal

distribution and is neither Gaussian nor table-shaped due to the inhomogeneous input of

the V1 neuron, u, as shown in Fig. 4.3(b) (Hamaguchi et al. 2005). As u has a unimodal

distribution, u crosses the threshold at two points (ϕ = ±π/4) for a grating stimulus, and

there are four local minimum values for the pairwise correlation, as shown in Fig. 4.3(b).

We then calculated the 3rd-order correlated activities driven by the light bars (direction

ψ = 0). We found that the 3rd-order correlations structure among the V1 neurons had a

multimodal distribution in response to a grating stimulus ψ = 0, rc1 = 0.27, as shown in

Fig. 4.3(c).

Of particular interest are the two types of triplet neural activity patterns with a pre-

ferred orientation (ϕi = ϕj = ϕk = 0 and ϕi = ϕj = π/2, ϕk = 0); the former groups have

the same preferred orientation as the stimulus while the latter have an orthogonal pre-

ferred orientation. Unlike the responses to the random stimulus, the 3rd-order correlations

among the neurons that have the same preferred orientation (ϕi = ϕj = ϕk = 0) are posi-

tive when the coefficients of the first Fourier mode of the spatial firing pattern rc1 > 0.15,

as shown in Fig. 4.3(d). In contrast, the 3rd-order correlated correlations among the neu-

rons with preferred orientations ϕi = ϕj = π/2, ϕk = 0 are negative and decrease when

rc1 increases. This indicates that the neurons with an orthogonal preferred orientation dis-

played fewer triplet events than predicted from their pairwise interactions, while there was

more synchrony than expected from the pairwise interactions alone among the neurons

with a preferred orientation along the direction of the light bars. Thus, our theoretical

results indicate that by changing the structure of higher-order correlations among neurons

and generating both sparse and synchronized neural activity, the 3rd-order correlations
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resulting from visual stimulation can carry stimulus-specific information.

Using our theory, we predicted the relationships among various statistics, including 3rd-

order correlations, 2nd-order correlations, and firing rates, in the case of a grating stimulus.

Similar to the case of a random stimulus, the number of triplet events is strongly correlated

with the firing rate, as shown in Fig. 4.3(e). In contrast to such a relationship, Fig. 4.3(f)

shows that the 3rd-order correlations are not correlated with the strength of the pairwise

interactions due to their multimodal distribution (Figs. 4.3(b), (c)). Our theory thus

predicts that a grating stimulation reorganizes the structured neural correlations and the

activity of V1 circuits.
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Fig. 4.3. Responses to a grating stimulus (direction ψ = 0, rc1 = 0.27, rs1 = 0) in the V1

network model (J0 = −0.2, J1 = 3). (a) Firing rates. (b) Pair-wise correlation,

θij . (c) The distribution of the 3rd-order correlation, θijk, is a multimodal

distribution. Here, we set ϕk = ψ = 0. (d) The coefficients of the first Fourier

mode of the input pattern (rc1) increase θijk (ϕi = ϕj = ϕk = ψ = 0, solid

line) and decrease θijk (ϕi = ϕj = π
2
, ϕk = 0, dotted line). (e) θijk is strongly

correlated with the total firing rate. (f) Here, we set ϕk = 0. If θijk > 0, the

relationship between θij and θijk is uncorrelated, but if θijk < 0, then θijk is

negatively correlated with θij .
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4.7 Results: Information theory for higher order correlations

In the previous section, we show that structured neural connections modulate spiking non-

linearity and induce generating both sparse and synchronized neural activity depending on

external inputs. As a result, the 3rd-order correlations resulting from visual stimulation

can carry stimulus-specific information.

To validate this, we investigate the precision with which specific stimuli within the

highly correlated neural ensemble are encoded, using stimulus-specific decomposition of

the mutual information (SSI). Similar to the previous section, we focus on the triplet

neural activity patterns with a preferred orientation (ϕi = ϕj = ϕk = 0). Changing

the stimulus orientation ψ from −π/2 to π/2 − π/G, we analytically calculate the joint

probability distribution, P (x), and derive correlation parameters θ from P (x).

In this section, we calculate two types of SSI in each stimulus orientation ψ. First, we

directly calculate SSI from the above joint probability distribution, P (x), which include

3rd order correlations among neural activities, as shown in black line of Fig4.4. Second,

we set θ3 = 0 and do inverse transformation from the adjusted correlation parameters to

joint probability distribution, P ′(x). Then, we calculate the SSI as indicated in gray line

of Fig4.4.

From the results, we found that ISSI(ψ) in the case of θ3 ̸= 0 is larger than θ3 = 0.

This results indicate that the 3rd-order correlations resulting from visual stimulation carry

stimulus-specific information when neurons have the same preferred orientation as external

grating stimulus, i.e., ϕi = ϕj = ϕk = ψ = 0. Figs 4.5 show the effects of common noise

on SSI. We found that although common noise decrease SSI due to the neural correlations

(Averbeck, Latham and Pouget 2006), comparatively-high is the SSI of triplet neurons

which have the same preferred orientation as external grating stimulus, due to 3rd-order

neural correlations.
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Fig. 4.4. ISSI(ψ) of three neurons (ϕi = ϕj = ϕk = ψ = 0) to a grating stimulus (stim-

ulus orientation −π/2 ≤ ψ ≤ π/2 − π/G) in the V1 network with MH-type

connections (J1 = 3, λ = 0.5). We compare ISSI(ψ) in the case of θ3 = 0 and
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Fig. 4.5. ISSI(ψ) of three neurons (ϕi = ϕj = ϕk = 0) to a grating stimulus (stimulus ori-

entation −π/2 ≤ ψ ≤ π/2−π/G) in the V1 network with MH-type connections

(J1 = 3). Although common noise (λ represents the variance of common noise)

decreases ISSI , ISSI(ψ = 0) relatively higher due to 3rd-order correlations.
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4.8 Summary

We constructed a parsimonious structured network with common inputs and spiking non-

linearities as a model of orientation selectivity and propose decisive experiments with

grating stimulus in primary visual cortex to test the effect of inhomogeneous connectivity

on higher-order correlations. Unlike a homogeneous network model (Macke et al., 2011),

inhomogeneous connections provide not only the tuning curve of firing rates but also the

relationships among the statistics observed in the neurophysiological experiments in V1

(Ohiorhenuan and Victor 2011). It is noteworthy that the functional specificity of the

network can dynamically control the structure of higher-order correlations and can gen-

erate both sparse and synchronized neural activity. We expect our study to pave the way

for theoretical studies on the effects of structured interactions on higher-order correlated

neural activity and information processing in the brain, but also promote a theory of how

a finite common noise and higher-order correlations induce the phase synchronization of

a general class of limit cycle oscillators.
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Chapter 5

Conclusion

Perception is highly robust to the presence of sensory noise and adapt rapidly to changes

in incoming stimuli (Dragoi et al. 2002, Simoncelli 2003). How to be robust and adapt

rapidly to the external stimulus and to optimize neuronal performance have been intensely

debated. Actually, 400-ms brief adaptation to a grating of fixed orientation improves the

accuracy of a population code to optimize neuronal performance during natural viewing

in macaque primary visual cortex (Gutnisky and Dragoi 2008). This result partly coin-

cides with psychophysical data showing that orientation discrimination performance is

improved after iso-orientation adaptation (Clifford et al. 2001). How to adapt rapidly to

the external stimulus and optimize neuronal performance has been intensely debated. A

possible mechanism is short-term synaptic plasticity, which occurs over milliseconds to

minutes (Zucker and Regehr 2002) and allows synapses to perform critical computational

functions in neural circuits. An advantage of the synaptic computation is to rapidly com-

pute information processing because this is local computation and does not need to sum

up their individual information. However, because of their dynamical synapses, it is dif-

ficult to evaluate their macroscopic effects on information processing. In the first-half of

paper, we construct the theoretical framework for investigating the role of synaptic plas-

ticity in adjusting information processing to external stimulus. To evaluate the effect of

synaptic depression on the estimation of information conveyed by the firing rates of neural

populations, we analytically calculated the Fisher information, using the tuning curves

and neural correlations in neural network models with synaptic depression obtained in

the Chapter 2 and 3.

In Chapter 2, we have explored the macroscopic properties of two types of stochastic bi-

nary neural networks with synaptic depression: a network with homogeneous connectivity

and a ring attractor network with Mexican hat type connectivity. Although a stochas-
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tic binary neural network model with synaptic depression cannot be analyzed owing to

the asymmetry of connections by the conventional equilibrium statistical-mechanical ap-

proach, we derive the microscopic dynamical mean field equations for the network model.

Because in the equations the averaged product of the two stochastic variables is decoupled

as the product of their averages, they must be independent. We proved the independence

and derived the microscopic equations in this paper, assuming that the synaptic weight

Jij is of the order of 1/N with respect to the number of neurons N . Using the microscopic

mean field equations, we derived macroscopic steady-state equations for these networks

and investigated the stability of the steady-state solutions obtained. The results coincided

with those of a simulation. We conclude that the presence of synaptic depression leads to

oscillatory instability and that various oscillatory states appear depending on the strength

of the interneuron connections. Synaptic depression thus causes the diversity of dynamic

states in large networks of spiking neurons.

In Chapter 3, we extended a previous theoretical framework to a theory of correlation

in spiking neuron models with synaptic depression. This theory enables us to analytically

calculate the effect of synaptic depression on neural correlations. Some previous studies,

in which neural correlations were computed in rate neural network model, relied on numer-

ical methods because of the difficulty of analytically computing correlations, that take a

substantial amount of time to calculate (Series et al. 2004, Cortes et al. 2010). Our theo-

retical framework greatly reduced this time cost and enables us to extensively investigate

the various parameters of the neural network model with short-term synaptic depression.

As previously indicated, using the tuning curves and neural correlations in neural net-

work models with synaptic depression obtained in the Chapter 2 and 3, we analytically

calculated the Fisher information to elucidate how synaptic depression affects the coding

efficiency in the latter part of Chapter 3. We found the parameter regions where, al-

though synaptic depression reduces coding accuracy on the single neuron level, synaptic

depression increases the efficacy of information processing on the population level by a re-

duction of the neural correlations. This theoretical framework has broad utility and can be

applied to other synaptic plasticity, such as spike rate adaptation (Liu and Wang 2001),

synaptic facilitation (Lisman 1997, Tsodyks et al. 1998) and postsynaptic receptor dy-

namics cold allow more general filtering of spike trains (Maass and Zador 1999), because

our theoretical framework draws on the activity-dependent quality of synaptic plasticity.

Our approach thus provides a powerful way of studying how synaptic plasticity affects

neural correlation and accuracy of population code in a realistic network model of spiking

neurons.
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In the Chapter 2 and 3, we discuss only about the sensory information transmitted by

firing rates and pair-wise correlations between neurons. However, the widely observed

complex features of population activity, such as synchronization and concentration pat-

terns of suspension, can be captured not only by pairwise correlations but also by higher-

order correlations, which have significant effects on complicated physical processes and

information processing. In neuroscience, electrophysiological experiments have recently

shown that the manner in which information is represented by specific patterns of spik-

ing and silence over a group of neurons, is also understood both by the pairwise and

higher-order correlated neural activities. But, very little is known about the relationships

the higher-order correlations linking the role of information procening, that is, whether

higher-order correlations between neuronal activities could allow neurons to robustly and

rapidly transmit sensory or motion information.

In Chapter 4, we investigated a parsimonious structured network with common inputs

and spiking non-linearities to investigate the effects of structured connectivities on higher-

order correlations, which are recently observed in various brain regions. Although in the

previous chapter we derive neural correlations based on the fluctuation-dissipation theory

for investigating changes in the equilibrium order parameters, due to sufficiently weak

externally applied perturbations (Ginzburg and Sompolinsky 1994), this network model

cannot reproduce there are no equilibrium order parameters and we cannot apply the

fluctuation-dissipation theory to network model (Amari et al., 2003, Macke et al., 2011).

We then constructed a parsimonious structured network with common inputs and spiking

non-linearities as a model of orientation selectivity and theoretically investigate the effects

of structured connectivity on higher-order correlations. Unlike a homogeneous network, a

network with heterogeneous connections can provide not only a tuning curve of firing rates

but also a relationship among the statistics gathered from neurophysiological experiments

in the primary visual cortex. We found that the heterogeneous structure of the network

can dynamically control the structure of higher-order correlations and can generate both

sparse and synchronized neural activity. Due to these dynamics, the 3rd-order correlations

resulting from visual stimulation can carry stimulus-specific information. The theoretical

frameworks developed in this thesis will provide a powerful tool to elucidate the role of

structured connectivities in neural information processing in the brain.

The recent development of experimental techniques enable us to simultaneously record

the activity of large numbers of neurons. These electro-physiological data are a mine

of treasure which will give great insight about principle of information processing in the

brain, such as higher-order correlations. Unfortunately, however, we think most treasures
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are still buried. To discover them and fully understand information processing them, not

only analyzing the electrophysiological data but also constructing a network model by

using experimental data as constraints are needed. By analyzing both actual data and

network model with the theoretical frameworks in this thesis, we aim to reveal mysterious

mechanisms of information processing in the brain.
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Appendix A

Dimensionality reduction for stability

analysis

In §2.5.3, we showed that a few eigenvalues consisting of low-frequency perturbations af-

fected the stability of the system. This means that only low-frequency perturbations affect

the stability of the system. In this Appendix, we compare the eigenvalues of the Jacobian

matrix in Fourier space [eq. (2.60)] for high- and low-frequency perturbations with those

for low-frequency perturbations, as indicated in Figs. A.1 and A.2. Figure. A.1(b) shows

the distributions of eigenvalues for the Jacobian matrix [eq. 2.60] for perturbations δm̂k

and δX̂k (−5× 102 ≤ k ≤ 5× 102 − 1) in a ring network with γ = 1.5 and τ = 3, similar

to in Fig. 2.8(b). Figures. A.1(d) and A.1(e) show the distributions for low-frequency

perturbations, namely, δm̂k and δX̂k (−5 × 10 ≤ k ≤ 5 × 10 − 1), and δm̂k and δX̂k

(−5 ≤ k ≤ 5 − 1), respectively. Figure. A.2 shows a comparison for a ring network with

γ = 2.5 and τ = 3.

Although we did not approximate the distributions in Fig. A.1(b) by the distributions

shown in Fig. A.1(d), we found that the maximum eigenvalue of the Jacobian matrix

for perturbations δm̂k and δX̂k (−5 × 10 ≤ k ≤ 5 × 10 − 1) coincided with that of the

Jacobian matrix for perturbations δm̂k and δX̂k (−5× 102 ≤ k ≤ 5× 102 − 1). However,

the results of stability analysis for perturbations δm̂k and δX̂k (−5 ≤ k ≤ 5 − 1) and

those for perturbations δm̂k and δX̂k (−5 × 102 ≤ k ≤ 5 × 102 − 1) differed in the

maximum eigenvalue of the Jacobian matrix because the lateral-inhibitory interaction

(J1) was relatively strong [Figs. A.1(b) and A.1(f)]. In contrast to the stability analysis

for δm̂k and δX̂k (−5×10 ≤ k ≤ 5×10−1), we obtained different results for the stability

analysis. We obtained the same results of stability analysis for γ = 2.5 and τ = 3, as

shown in Fig. A.2.
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These results show that high-frequency perturbations mk and Xk did not affect the sta-

bility of inhomogeneous steady-state solutions because J1 was relatively weak. Therefore,

when there is a weak lateral-inhibition, we can reduce the dimensions for the stability

analysis since we do not need to take into account high-frequency perturbations. This re-

duction of dimensionality enables rapid analysis of the stability of steady-state solutions

for a ring network with synaptic depression.
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Fig. A.1. Solid and dashed lines in (a), (c), and (e) respectively represent stable and

unstable solutions to the amplitude of localized activity, m̂1. (b), (d), (f) Dis-

tribution of eigenvalues for Jacobian matrix H [eq. 2.60] for perturbations δm̂k

and δX̂k (−K ≤ k ≤ K − 1). (b) K = 5 × 102. The size of the Jacobian

matrix H is 2000 × 2000. (d) K = 5 × 10. The size of the Jacobian matrix H

is 200× 200. (f) K = 5. The size of the Jacobian matrix H is 20× 20.
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Fig. A.2. Solid and dashed lines in (a), (c) and (e) respectively represent stable and unsta-

ble solutions to the amplitude of localized activity m̂1. (b), (d), (f) Distribution

of eigenvalues for the Jacobian matrix H [eq. 2.60] for perturbations δm̂k and

δX̂k (−K ≤ k ≤ K − 1). (b) K = 5× 102. The size of the Jacobian matrix H

is 2000×2000. (d) K = 5×10. The size of the Jacobian matrix H is 200×200.

(f) K = 5. The size of the Jacobian matrix H is 20× 20.
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Appendix B

The order of input correlations

We prove that ⟨(δui)2⟩ is the order of 1/N in this appendix. Using Eqs. (3.25), (3.28),

and (3.29), we can write ⟨(δui)2⟩ as

⟨(δui)2⟩ =

⟨ ∞∑
τ,τ ′

∑
j ̸=i

∑
k ̸=i

2Jijϵij(τ)2Jikϵik(τ
′)

× δ(xj(t− τ)Sj(t− τ))δ(xk(t− τ ′)Sk(t− τ ′))

⟩
,

=

∞∑
τ,τ ′

∑
j ̸=i

∑
k ̸=i,j

2Jijϵij(τ)2Jikϵik(τ
′)Zjk(t− τ, t− τ ′)

+
∞∑
τ,τ ′

∑
j ̸=i

4J2
ijϵij(τ)ϵij(τ

′)Zj(t− τ, t− τ ′). (B.1)

First, we consider the order of the first term in Eq. (B.1). When each neuron is con-

nected to a number of neurons of order N and connections Jij are all of order 1/N ,∑∞
τ,τ ′
∑
j ̸=i
∑
k ̸=i,j 2Jijϵij(τ)2Jikϵik(τ

′) are of order 1 and the order of the first term in Eq.

(B.1) is determined by Zjk(t−τ, t−τ ′). Using Eq. (3.29), we found Zjk(t−τ, t−τ ′)(j ̸= k)

is the same order of 1/N as Csjk. Thus, the order of the first term in Eq. (B.1) is

1/N . Next, we discuss the order or the second term in Eq. (B.1). Similarly, because

J2
ijϵij(τ)ϵij(τ

′) are of order 1/N and the order of Zj(t − τ, t − τ ′) is no more than the

order of O(1), the second term in Eq. (B.1) is also on the order of 1/N . Hence, the order

of ⟨(δui)2⟩ is 1/N .
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B.1 Equal-time correlation functions

Here, we describe the details on calculating equal-time correlation functions. A important

point in the calculations is that we ignore high-order correlations, which are no more than

the order of 1/N , to derive a set of closed equations for correlation functions.

First, we derive the equal-time cross-correlation functions between Si(t) and Sj(t)(j ̸= i)

at equilibrium, Csij(0), [Eq. (3.25)]. By expanding g[ui(t)] around the noise average of

⟨ui⟩ [Eq. (3.24)], we obtain

Csij(0) = g′(⟨ui⟩)g′(⟨uj⟩)⟨δuiδuj⟩, (B.2)

where ⟨δuiδuj⟩ is

⟨δuiδuj⟩ =
∞∑
τ,τ ′

∑
k ̸=i

∑
l ̸=j,k

2Jikϵik(τ)2Jjlϵjl(τ
′)Zkl(τ − τ ′)

+
∞∑
τ,τ ′

∑
k ̸=i

2Jikϵik(τ)2Jjkϵjk(τ
′)Zk(τ − τ ′), (B.3)

because

δui(t) =

∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)2δ(xj(t− τ)Sj(t− τ)). (B.4)

Substituting Eq. (B.3) into Eq. (B.2) gives [Eq. (3.25)].

We then evaluate Zkl(τ) and Zk(τ) as discussed above. Zkl(t, t+ τ) can be written as

Zkl(t, t+ τ) = ⟨δ(xk(t)Sk(t))δ(xl(t+ τ)Sl(t+ τ))⟩,

= ⟨xk(t)Sk(t)xl(t+ τ)Sl(t+ τ)⟩

− ⟨xk(t)Sk(t)⟩⟨xl(t+ τ)Sl(t+ τ)⟩,

=
⟨
[δxk(t) + ⟨xk(t)⟩][δSk(t) + ⟨Sk(t)⟩]

× [δxl(t+ τ) + ⟨xl(t+ τ)⟩]

× [δSl(t+ τ) + ⟨Sl(t+ τ)⟩]
⟩

− ⟨[δxk(t) + ⟨xk(t)⟩][δSk(t) + ⟨Sk(t)⟩]⟩

= Cskl(t, t+ τ)⟨xk(t)⟩⟨xl(t+ τ)⟩

+ Csxkl (t, t+ τ)⟨xk(t)⟩⟨Sl(t+ τ)⟩

+ Cxskl (t, t+ τ)⟨Sk(t)⟩⟨xl(t+ τ)⟩

+ Cxkl(t, t+ τ)⟨Sk(t)⟩⟨Sl(t+ τ)⟩. (B.5)
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We ignore three-point cross-correlations and four-point cross-correlations. Taking limit

t→ ∞ yields Eq. (3.28). For k = l in Eq. (3.28), we obtain Eq. (3.29).

Next, let us consider equal-time cross-correlation functions between Si and xj , C
sx
ij (0).

Similar to the approach we took in the previous section, we expanded g[ui(t)] around ⟨ui⟩
and substituted it into Eq. (3.3) to obtain

Csxij (t, t) =
⟨
g′(⟨ui(t)⟩)δui(t){(

1− 1

τd

)
δxj(t− 1)− Uδ[xj(t− 1)Sj(t− 1)]

}⟩
,

=
∞∑
τ=1

∑
k ̸=i,j

J̃ik(τ)

{(
1− 1

τd

)

× ⟨δ(xk(t− τ)Sk(t− τ))δxj(t− 1)⟩ − UZkj(t− τ, t− 1)

}
, (B.6)

where we denote J̃ik(τ) = 2g′(⟨ui⟩)Jikϵik(τ) and use Eq. (3.27). Taking limit t → ∞
gives

Csxij (0) = lim
t→∞

∞∑
τ=1

∑
k ̸=i,j

J̃ik(τ)

{(
1− 1

τd

)

× ⟨δ(xk(t− τ)Sk(t− τ))δxj(t− 1)⟩ − UZkj(τ − 1)

}
, (B.7)

To derive a set of closed equations for correlation functions, which is described by Eqs.

(3.19) and (3.20), we evaluate limt→∞⟨δ(xk(t− τ)Sk(t− τ))δxj(t− 1)⟩ as

lim
t→∞

⟨δ(xk(t− τ)Sk(t− τ))δxi(t− 1)⟩

= lim
t→∞

⟨xk(t− τ)Sk(t− τ)δxi(t− 1)⟩

= lim
t→∞

⟨
(δ(xk(t− τ)) + ⟨xk(t− τ)⟩)(δ(Sk(t− τ))

+ ⟨Sk(t− τ)⟩)δxi(t− 1)
⟩

= ⟨xk⟩Csxki (τ − 1) + ⟨Sk⟩Cxki(τ − 1). (B.8)

Substituting Eq. (B.8) into Eq. (B.7) gives Eq. (3.30). Since Cxsij (t, t) = Csxji (t, t), we can

also obtain Csxji (0) from Eq. (3.30).

Finally, we derive equal-time cross-correlation functions between xi and xj , C
x
ij(0).
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Substituting Eq.(3.3) into Eq.(3.18) and taking limit t→ ∞ gives

Cxij(0)

= lim
t→∞

{(
1− 1

τd

)
δxi(t− 1)− Uδ[xi(t− 1)Si(t− 1)]

}
{(

1− 1

τd

)
δxj(t− 1)− Uδ[xj(t− 1)Sj(t− 1)]

}
= lim
t→∞

{(
1− 1

τd

)2

Cxij(t− 1, t− 1) + U2Zij(t− 1, t− 1)

− U

(
1− 1

τd

)[
⟨δ(xi(t− 1)Si(t− 1))δxj(t− 1)⟩

+ ⟨δ(xj(t− 1)Sj(t− 1))δxi(t− 1)⟩
]}
. (B.9)

Substituting Eq. (B.8) into Eq. (B.9), we obtain Eq. (3.31).

B.2 Adjustment of external inputs

We first explain why we have to maintain the firing rate, ⟨Si⟩, in order to study how

synaptic depression affects neural correlations in this appendix. While the change in

instantaneous firing rates affects neural correlations (Eq. (3.21)), input hi only has an

indirect effect on neural correlations via the instantaneous firing rates. We thus adjust the

strength of input and maintain the firing rate to study what effects synaptic depression

has on neural correlations.

We then derive the external inputs to neurons, hi. To begin with, we simply emulate

noisy orientation selective inputs to the neurons (Fig. 3.1(a)). We respectively define h0i

and ⟨S0
i ⟩ as the input and instantaneous firing rate in the absence of synaptic depression,

i.e., γ = 0. To keep ⟨Si⟩ in the presence of synaptic depression γ the same as ⟨S0
i ⟩ by

changing hi, we derive the following equation from the self-consistent equation (3.16).

g

{ ∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)

(
2

⟨S0
j ⟩

1 + γ⟨S0
j ⟩

− 1

)
+ hi + ur

}

= g

{ ∞∑
τ=1

∑
j ̸=i

Jijϵij(τ)
(
2⟨S0

j ⟩ − 1
)
+ h0i + ur

}
. (B.10)

Since the escape function, g, monotonically increases, Eq. (B.10) can be written as Eq.

(3.56) . Using Eq. (3.56), we adjust external inputs hi and the instantaneous firing rates
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for γ = 0 to the same as those for γ = 0.1 and 1 shown in Fig. 3.1. Note from Eq. (3.47)

that, instantaneous firing rate ⟨Si⟩ and instantaneous synaptic efficacy ⟨xi⟩ are the same

as mean firing rate fi and mean synaptic efficacy Xi, respectively, at equilibrium.
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