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“ That’s where quantum computing comes in. We actually think quantum
machine learning may provide the most creative problem-solving process un-
der the known laws of physics.”

H. Neven

“ I think of my lifetime in physics as divided into three periods.

In the first period, I was in the grip of the idea that everything is particles.

I call my second period everything is fields.

Now I am in the grip of a new vision, that everything is information. ”

John A. Wheeler
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Abstract
This thesis provides theoretical studies on a probabilistic information processing incor-
porated quantum fluctuations through statistical mechanical approaches.

Quantum fluctuations cause transitions between states, which play same role as
thermal fluctuations. Such an idea has been used in optimization problems for searching
a ground state of a cost function. The algorithm is called quantum annealing (QA) in
a manner analogous to simulated annealing. Simulated annealing is the conventional
algorithm for finding the ground state by using the thermal fluctuations. QA has
been applied to various optimization problems by solving the Schrödinger equation or
carrying out Quantum Monte Carlo simulations on classical computers. However, what
we call a quantum annealer with current superconducting devices has been launched by
D-wave systems. For this situation, the algorithms by using the quantum fluctuations
have received a lot of attention in recent years.

With the developments in the research fields of the algorithms by making use of the
quantum fluctuations, it is also interesting for us to consider the possible application of
the quantum fluctuations to probabilistic information processing. Main problem of the
probabilistic information processing in the context of this thesis is to recover the original
information from damaged information, e.g., image restoration, error correcting codes,
and CDMA multiuser demodulation. Such problems can be denoted as the infinite-
range spin glass model, adopting the framework of Bayesian statistics. Then, we can
apply statistical mechanical approaches to it in order to figure out the average-case
performance of those systems.

We examine the average-case performance of the probabilistic information process-
ing in which quantum fluctuations is utilized to recover the original information in the
context of the Bayesian inference. The quantum fluctuations are built into the system
as transverse fields put in the infinite-range Ising spin glass model. We evaluate the
performance measurement by using statistical mechanics which mean mean-field the-
ory. Accordingly, we find the following properties on the quantum fluctuations in the
probabilistic information processing:

1. The quantum fluctuations controlled by the transverse field is available for the
decoding process in place of the thermal fluctuations. This statement mean that
the quantum fluctuations can complement the effects of the thermal fluctuations.

2. The quantum fluctuations cannot improve the optimal performance of the con-
ventional algorithm although it roughly approaches to the conventional optimal
one.

3. In the low temperature region, the improvable region exists due to the quan-
tum fluctuations. Thus, the transverse field actually improves the average-case
performance for some choices of non- optimal parameters although the optimal
performance with the transverse field cannot be improved.

Figuring out the relationships between the thermal fluctuations and the quantum
fluctuations in terms of probabilistic information processing, the quantum annealer
may have anew potentiality that it can perform Bayes inference by only controlling the
quantum fluctuations.
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Chapter 1

Introduction

Our works provide a theoretical studies on a probabilistic information processing in-
corporating quantum effects, which hold the potential to discover a new possibilities
of quantum fluctuations in information processing and may contribute to a new stand-
points in quantum devices.

1.1 Quantum annealing

Basic ideas that quantum effects utilize for computation have been proposed since
1950’s. Feynmen thought that the quantized energy levels and quantized spins may be
widely used in various fields beyond original field (Feynman’s talk, entitled “There’s
Plenty of Room at the Bottom”). From this time, in some sense, the quantum theory
make a connection with information bit by bit. Concepts of quantum computer have
been occurred since Benioff present quantum computing which can be done without
consumption of energy through a computation (Benioff 1980). Then, what the quantum
computing can do is hot subject for many physicists, mathematicians, and information
engineer. Shor proposed an algorithms for integer factorization, which runs in poly-
nomial time and then can break RSA which is one of the first practicable public-key
cryptosystems (Shor 1994). NMR quantum computing is one of successful technology
for implementing quantum computation. Vandersypen et al. reported the implemen-
tation of Shor’s algorithm in NMR quantum computer and then solved the integer
factorization of fifteen (Vendersypen et al. 2001). However, the subsequent growth of
quantum computer has been unfavorable because of difficulty of the implementation
of many qubits. After that, the quantum computing has been developed as futural
technologies step by step.

Quantum annealing (QA) is an algorithm for finding a ground state in a complicated
energy landscape by using a quantum fluctuations which induces tunneling between
states. It has been proposed in an analogous to simulated annealing (SA) (Geman
and Geman 1984) and has been said to bring an optimal solution in combinatorial
optimization problems through adiabatic Schrödinger evolution (Finnila et al. 1994;
Kadowaki and Nishimori 1998; Farhi et al. 2001). The detailed formulation will be
described in the next chapter. It is most interesting developments that QA come with
quantum devices by using superconducting quantum bits (qubits) more than hundreds.
In other words, The hardware to realize a physical implementation for QA (Quantum

1



1.1. QUANTUM ANNEALING

annealer, i.e., a realistic adiabatic quantum processor) has been launched.

Nevertheless, QA has the long history since it was proposed. In order to solve com-
binatorial optimization problems by using QA, we need to solve Schrödinger equation
in which the Hamiltonian is described as 2N × 2N matrix, where N corresponds to
the system size. Farhi et al investigated Max-cut problem, one of the combinatorial
optimization problem, in N = 20 by using QA through solving Schrödinger equation
numerically. The results suggest that QA works well and then it may be able to out-
perform ordinary computers (Farhi et al. 2001). Hogg also solved random 3-SAT for
N ≤ 24 by using such an adiabatic evolution (Hogg 2004). We, however, cannot ap-
proach the large size system for computing capacity. Then, the quantum Monte Carlo
(QMC) simulation for demonstrating QA instead of the solver of the Schödinger equa-
tion is effective tool. The QMC make it possible to perform the QA in the large size spin
system by transforming the quantum system to corresponding classical system by using
Suzuki-Trotter (S-T) decomposition. The algorithm is usually called the path-integral
Monte Carlo (PIMC). 1 Elaborating it a little more, we perform standard Monte Carlo
algorithm in the classical system mapped on the d + 1-dimensions which corresponds
to d-dimensional quantum system. In such an algorithm, the strength of the transverse
field reduces from some high initial value to zero finally through appropriate schedule.
Below, we call the algorithm the quantum Monte Carlo annealing (QMCA) in order to
distinguish from true quantum computing which means it with Schrödinger dynamics.
Kadowaki performed QMCA in TSP for N = 51 and then compare the performance
of QA and SA. Numerical results in the investigation showed that QA has a better
performance than SA in the probability to find the minimum-length of the closed tour
and the average of the tour length at the same Monte Carlo step (Kadowaki 1998). In
two-dimensional Edward-Anderson (E-A) model which is the general formulated spin
glass model, the residual energy decreases faster than it of SA (Santoro et al. 2002)
and then such a behavior is also confirmed in TSP for N = 1002 (Martonak et al.
2002). In random 3-SAT for α = N/M ∼ 4.24 which is more difficult case than the
above instances, where M means the number of the constraints of the problem, the
residual energy between the final state and optimal state which is known is worse than
it of SA (Battaglia et al. 2005). Suzuki and Okada show that the residual energy in
QA decreases in proportion to 1/τ2 in terms of adiabatic theorem and then checked
it in the tight-binding model and the two-dimensional E-A model in the case of small
size by solving Schrödinger equation (Suzuki and Okada 2007). Young et al. approach
Max-cut problem in which the complexity shows exponential behavior in classical com-
puter for N ≤ 128 in terms of QMCA and then show that it has polynomial median
complexity (Young et al. 2008). The problem in lager size (N ≤ 256) however shows
that the first-order transition occurs and then QMCA does not work well (Young et al.
2010). The other approach is the Density matrix renormalization group (DMRG), in
which we rule out a small eigenvalue of the density matrix. Although this technique
can be applied to one-dimensional quantum system, the large system can be treated
trough it (White 1992; Verstraete et al. 2006; Schuch et al. 2008).

The mathematical formulations of the combinatorial optimization problems and
the quantum annealing will be given in the next chapter. We below introduce to

1There are various algorithms in QMC which simulate a quantum system, e.g., Green’s function
Monte Carlo. In the context of QA, PIMC described here is usually used.
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CHAPTER 1. INTRODUCTION

Figure 1.1: rf-SQUID Flux qubit.

the developments of the device technologies briefly and then will focus on the quantum
annealer which can demonstrate the quantum annealing as realistic quantum processor.

Since the concepts of quantum computing was contrived, the manufactured quantum
computers such as quantum communication systems (Scarani et al. 2009), quantum
random number generators (Jennewein et al. 2000) and quantum simulators (Bloch et
al. 2012) have been proposed in various ways, the devices however with realistic size
scale off from practical use. The Quantum annealer which may find out solutions of a
optimization problem in particular is a few device which is applied to large-scale prob-
lems. In order to demonstrate the QA physically, we need to consider how the quantum
bits (qubits) which induce tunneling effect are built. One possible possible implementa-
tion of an artificial Ising spin system involves superconducting flux qubits (e.g., Lupascu
et al. 2007; Berns et al. 2008). The Josephson device which contain Josephson junc-
tion (JJ) allows us to measure macroscopic quantum tunneling (Josephson 1962). For
example, the simple circuit (Rf-SQUID: Radio Frequency Superconducting Quantum
Interference Device) which is base of the quantum annealer is drawn in Fig. 1.1, where
loop is subjected to an external flux bias ΦX

q and JJ of critical current Ic is introduced to
a superconducting loop of inductance L. In this case, we observe the persistent current
Ipq proportional to phase drop: Ipq ∝ Φq − ΦX

a . Regarding this circuit as a single spin
system, the Hamiltonian can be denoted asH ∼ −1

2(ϵqσ̂
z+∆qσ̂

x). We can catch a state
of such the artificial spin by observing the current Ipq . To control the strength of tun-
neling energy term ∆q strictly, Harris et al. proposed compound-compound Josephson
junction (CCJJ) rf-SQUID and investigated the quantum mechanical properties (Harris
et al. 2010). Johnson et al. proposed a programmable artificial spin system manu-
factured as an integrated circuit by extending CCSJ rf-SQUID, and then report on an
experiment that demonstrates a signature of quantum annealing in a coupled set of
eight artificial Ising spins (Johnson et al. 2011). As a result, the annealing to find the
low-energy configuration can be realized and then the field of the quantum computer
makes advance. The type coupler between manufactured spins has been designed well
after these studies, and the QA with one hundred qubits has been realized. 2 The

2D-wave Systems, Inc. which is a quantum computing company based on British Columbia is
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1.2. STATISTICAL PHYSICS OF PROBABILISTIC INFORMATION
PROCESSING

applications for various combinatorial optimization problems are beginning with devel-
opments of number qubits (e.g., Perdomo-Ortiz et al. 2012; Boixio et al. 2013). For
example, Naven et al. use the quantum annealing hardware in machine learning and
then successfully build a classifier for the detection of cars in digital images (Neven et
al. 2009). In 2014, the performance of quantum annealing on random Ising problems
implemented using the D-Wave Two which is quantum annealer with 512 qubit will be
reported (Wang et al. 2014). Whether the quantum speed up can be achieved or not
comparing it with a classical computer is not clarified at the present stage. The future
developments of the quantum annealer is expected.

1.2 Statistical physics of probabilistic information pro-
cessing

The introduction of the QA which is an algorithm for finding the ground state of
the complicated energy landscape by using the quantum fluctuations was given in the
previous section. We expect that such a character of the quantum fluctuation can be
effective tool for probabilistic information processing.

Although the combinatorial optimization problems is the one of information pro-
cessing in a sense, there are many problems of an information processing around the
world. For example, in the case of image restorations, we should restore the degraded
image which has many pixels, as clean as possible. However, it is usually difficult to
restore an original image because we do not know the kind of the noise. Even if we
have the information of a noise, we may not restore the original one perfectly due to
the stochastic fluctuations of the noise. Such a problem remain in the other fields. The
error correcting codes is also important issue in the situation that someone transmit
some information through a noisy channel. Neural networks which is consisted of many
neurons is one of famous example of the information processing. Code-division multiple
access (CDMA) which is modern telecommunication system has been also researched
as the information processing problem. Although the above instances are apparently-
unrelated, the restore (decode, retrieve, or demodulate) processes can be formulated in
a similar way trough Bayes inference. The Bayes inference give an probabilistic distri-
bution of the estimated sequence as posterior distribution through prior information.
Thus, by describing a noise as the probability distribution and setting how an original
information generate a priori, Bayes inference provide an formulation to recover the
original information. Such a formulation of the information processing is called the
probabilistic information processing, which is closely related to the spin glass model,
amazingly (Nishimori 2001; Mézard and Montanari 2008). The spin glass is the glassy
system described as spin models which have random interactions among each spin. It
is because the information bit, in a lot of cases, is regarded as binary bits and there is
correlation among many bits when they are sent through channel that the formulation
in a recovery process from noisy message can be Ising spin model with disorder inter-

contributing to a series of developments of quantum devices. D-wave One which is quantum computer
with 128-qubit processor and is the world’s first commercially available quantum computer system was
announced on May , 2011. D-wave system revealed 512-qubit quantum computer in 2013 and the
collaboration among Google, NASA and USRA by using it was announced in 2013 (D-wave Systems,
Inc.).
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CHAPTER 1. INTRODUCTION

actions. In the statistical mechanical point of view, the spin configuration follows the
Boltzman distribution which positively corresponds to the posterior distribution in the
probabilistic distribution.

The simplest spin glass model is the Sherrington-Kirkpatrick (SK) model which
is the infinite range model with Gaussian distributed interactions (Sherrington and
Kirkpatrick 1975), which is regarded as the Edwards-Anderson model in the limit of
the spatial dimension (Edwards and Anderson 1975). The mean field theory of this
model give exact solutions phase transition between glassy phase and ferromagnetic
phase. Because this model can be expanded to various fields beyond the physics,
various problems of information processing have been analyzed through the statistical
mechanical approaches. Hopfield analyzed the neural network described as spin glass
model and then reveal memory storage conceptually (Hopfield 1982). After that, the
field of neural network through statistical physics has been developed. The restoration
performance of the image restoration which has Markov random field prior was analyzed
through mean field theory by Nishimori and Wong based on previous studies (Nishimori
and Wong 1999; Geman and Geman 1984). The error correcting codes and the CDMA
are also related to spin glass models, and then they were analyzed by spin glass theory
(Sourlas 1989; Tanaka 2001).

For these previous studies, in order to optimal performance in the recovery process
of the probabilistic information processing, the maximizer of the posterior marginal
(MPM) estimate is effective. In this algorithm, we need to control the temperature
corresponding to estimated noise power. This is natural consequence. If the tem-
perature is equal to true noise power, the estimation will be successful. Because the
temperature is controlled in this process, such an estimated algorithm is also finite
temperature decoding. Such an optimal temperature is called Nishimori temperature in
which the performance behavior can be peaked. The MPM estimate is also regarded as
consideration of minimum of free energy which is different from the energy, cost func-
tion, in the finite temperature case. Therefore, we derive the macroscopic parameter
which make minimum of the free energy in the MPM estimate.

Then, we find that it is similar to searching process in the complicated energy land-
scape by using SA. In both cases, we seek the appropriate state by controlling the
temperature, thermal fluctuation which induces jump between energy hills. Hence, the
MPM estimate in the probabilistic information processing is similar to SA in terms of
the algorithm for finding a state by using thermal fluctuations. The mathematical for-
mulation of the probabilistic information processing and statistical mechanical analysis
including the concrete problems will be given in the next chapter.

1.3 Our concepts

How does the quantum fluctuations affects the probabilistic information processing?
This is key concept of this thesis. As we mentioned above, the QA has been proposed
inspired by the SA. In this algorithm, the quantum fluctuations are used for finding a
ground state instead of thermal fluctuations. On the other hands, the MPM estimate,
finite temperature decoding, is supposed to be effective in the probabilistic information
processing in which the temperature control is important to realize the appropriate
state. Because of this context, we can consider the decoding process including the

5



1.3. OUR CONCEPTS

Figure 1.2: Concepts of this thesis.

quantum fluctuation and compare the performance with it by using the conventional
MPM estimate. With the help of state transition due to the quantum fluctuation,
the state may close in the appropriate state which represents the original information.
Then, our investigation will unveil the transformation rule between the thermal fluctu-
ations and the quantum fluctuations. With such achievements, the quantum annealer
will have anew possibility of the probabilistic estimation.

The concrete goals including the mathematical discussion will be given in the las
part of the next chapter.
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Chapter 2

Previous studies on quantum
annealing and statistical physics
of information processing

In this chapter, we review the previous studies on the quantum annealing and the
probabilistic information processing including the mathematical formulation. The spin
glass theory and the necessary techniques for reading this thesis are also remarked. In
the last part, the concrete goals of this thesis is given.

2.1 Background of applications for quantum fluctuation

The optimization problem is usually to find a minimum or maximum of a function which
is called the cost function or the energy. The energy landscape represents a complexity
of the problem and often has many solutions. Then, it is sometimes difficult to find
an optimal solution through an algorithm. One can separated the problems into some
classes which is the measure of difficulty. When N , the system size of the problem,
increase, the kind of the problems that the complexity of the calculations increase expo-
nentially and goes over the limit of the computational power are called Nondeterministic
Polynomial-time solvable hard or complete (NP-hard or NP-complete). Roughly speak-
ing, the NP is the subclass that we can check either “yes” or “no” according with a
given solution of the problem. In the Polynomial-time solvable (P), one can find an
algorithm to solve a problem within a time of the polynomial time order, and then
it can be seen as easy problem in NP. In NP-complete, the problems of NP-hard are
contained in NP. The rough sketch of each class if P ̸= NP is given in Fig. 2.1. In the
combinatorial optimization problem which is the special case, the variable take discrete
values and then it closely related to Ising spin models or spin glass models.

2.1.1 Combinatorial optimization problems

The combinatorial optimization problem is formulated in terms of spin models and
peculiarly is related to the problem for searching the ground state. In this subsection,
we give a brief introduction for the combinatorial optimization problems providing some
instances.

7
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Figure 2.1: Class of NP problems in the case that P ̸= NP .

Random K-satisfiability problem

Let us consider a set of N logical variables (Boolean variables) (x1, ..., xN ), each of

which takes “true” or “false”. First, we randomly choose K literals z
(l)
i corresponding

to xi or its negations x̄i with equal probability 1
2 . A clause Cl is the logical OR of these

K variables. Next, we repeat this process to M independently and ask for them to be
true at the same time. Thus, we take the logical AND of these M clauses

F =
M∧
l=1

Cl =
M∧
l=1

(
K∨
i=1

z
(l)
i

)
, (2.1)

where ∧ and ∨ represent AND and OR operations, respectively. If an assignment of
xi satisfying all clauses, F is “ true”, and then the logical assignment is satisfiable. If
there is no such assignment, F is said to be unsatisfiable. For example, we consider the
case that N = 5, M = 4 and K = 2 representing as following clauses:

C1 = x1 ∨ x3, C2 = x̄2 ∨ x3, C3 = x̄3 ∨ x̄4, C4 = x1 ∨ x̄5, (2.2)

and F = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5. One of the condition to satisfy F is x1 =“true”,
x2 =“true or false”, x3 =“true”, x4 =“false” and x5 =“true or false”.

Here, we consider K-SAT in terms of Ising system. We represent anew the logical
variables as Ising spins σ which take 1 or −1 corresponding to “true” or “false”. The
Hamiltonian of the above instance can be described as

H =
1

4
{(1− σ1)(1− σ3) + (1 + σ2)(1− σ3) + (1 + σ3)(1 + σ4) + (1− σ1)(1 + σ5)} ,(2.3)

which corresponds to the cost function of the problem. If F is satisfied, H = 0, and
otherwise H > 0. We can extend the above instance to general K-SAT case as follows,

H =

M∑
l=1

(1− ζi1,lσ
(l)
i1 )(1− ζi1,lσ

(l)
i2 ), (2.4)
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where ζ
(l)
ik is random variables which takes +1 or −1 according to the condition in Cl.

On the basis of above discussion, the generalized Hamiltonian of random K-SAT
can be obtained as follows:

HK−SAT =
1

2K

M∑
l=1

K∏
k=1

(
1− ζi1,lσ

(l)
i1

)
. (2.5)

The random K-SAT problem corresponds to investigating the ground state of the ran-
dom Ising model. Because of this, the random K-SAT has been studied in terms of the
statistical mechanics as M, N → ∞ with α = M/N fixed. (Monasson and Zecchina
1997; Monasson et al. 2000).

Traveling salesman problem

The Traveling salesman problem (TSP) is also typical example of a optimization prob-
lem. Let us consider N cities randomly and the situation that a salesman has to make
a tour to cover every city and then finally returns to the starting point. The problem
of the TSP is to find the shortest or lowest-cost route to visit given cities and paths
among cities. Such a problem has been investigated by using various techniques be-
cause it happens in various situations, e.g., path definition of an aircraft. First, we
give a set {dij ; i, j = 1, ..., N}, where dij indicates the distance between ith city and
jth city or is regarded as a cost for going from the former to later. A tour matrix can
be represented as N ×N matrix T = {Tij} with elements either 1 or 0. If a salesman
visit jth city immediately after visiting ith city, Tij = 1 and Tji = 0. Note that the
TSP give the constraint that the cities have to be visited only once. Therefore, the row
and column of the matrix T has one and only one element, which mean the following
conditions are satisfied,

N∑
i=1

Tij = 1,

N∑
j=1

Tij = 1. (2.6)

Because T is not symmetry, we define the symmetric matrix U as follows,

U = T + T T , (2.7)

where T T is the transpose of T . The matrix U must be a symmetric matrix having
only two distinct entries equal to 1 with every row and every column. Using the matrix
U , we can define the cost function as follows,

H =
1

2

∑
<i,j>

dijUij , (2.8)

where < i, j > means “all links” which correspond to all paths between a city and
another city. Introducing the expression of the Ising spin σi = 2Uij − 1, we refine the
above cost function in terms of Ising spin model as follows:

HTSP =
1

2

∑
<i,j>

dij
1 + σij

2
. (2.9)
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Although we here give two instances, random K-SAT and TSP, above, the problem
for searching the ground state of spin glass model is also famous example of the com-
binatorial optimization problems. Then, we can see that a strategy of such a problem
closely relate to statistical mechanics.

2.1.2 Simulated annealing

As we see above, the combinatorial problems can be described as Ising spin models. The
combinatorial problems are general NP-complete or NP-hard problems. The difficulty
of these problems comes from complicated energy landscape of the system, and then
there are many local minima. The simulated annealing (SA) is the general method to
solve these problems by using the “thermal fluctuation” in terms of statistical mechan-
ics, which allows a system to escape the local minimum of the problem Hamiltonian
(cost function) under an appropriate annealing schedule.

Once a problem HamiltonianH(σ) is given, the probability of the spin configuration
can be described as the Maxwell Boltzman distribution:

P (σ) =
exp(−β(t)H(σ))

Z
. (2.10)

The key idea of SA is “annealing” with changing the temperature T (t) = 1/β(t) which
depends on time t. If the system is at high temperature, a state frequently moves in the
configuration space because the strength to drive other stats is intensive. On the other
hand, a state stay in the neighborhood of a minimum at low temperature. For these
reasons, decreasing the temperature sufficiently slowly, we will obtain the equivalent a
ground state in the low temperature limit. The important problem in SA is how to
schedule the annealing process. If the process is not slow, the state does not remain
in equivalent state and then SA fail in deriving the ground state. It is known that the
algorithm works well if the temperature decreases according to the following schedule
(Geman-Geman 1984):

T (t) ∝ N

log(t+ 2)
(2.11)

Here, N corresponds to system size. The Huse-Fisher showed that the residual energy
which means the difference of energies between ground state and present state depends
on annealing time τ as follows:

Eres ≃
1

(log τ)ζ
, ζ ≤ 2. (2.12)

The simulated annealing thus gives good solution, if we can choose the appropriate
schedule and annealing time.

10



CHAPTER 2. PREVIOUS STUDIES ON QUANTUM ANNEALING AND
STATISTICAL PHYSICS OF INFORMATION PROCESSING

Figure 2.2: Simulated annealing (SA) and quantum annealing (QA) in an optimization
problem.

2.2 Basic formulation for quantum annealing

The Quantum Annealing (QA) is an algorithm for solving optimization problems with
the aid of quantum adiabatic evolution (Finnila et al. 1994; Kadowaki 1998). 1 While
SA is the algorithm by using thermal fluctuation, the quantum fluctuation is used in
QA.

Let us consider the H0(σ), which corresponds to a problem (potential) Hamiltonian
in an optimization problem. The optimization problem, as we state above, is to find
the minimum of this function and to find the set of Ising spins. In QA, we redefine the
problem as Hilbert space as follows,

σi → σ̂z
i (2.13)

σ̂z
i =

(
1 0
0 −1

)
, (2.14)

where σz
i is the z component of the Pauli matrix, and then the diagonal components,

(1 or −1), of the matrix correspond to the value of Ising spin. In other words, denoting
the eigenstate of σz

i as |+⟩ = (1 0)T and |−⟩ = (0 1)T , we have

σ̂z
i |+⟩ = |+⟩ , σ̂z

i |−⟩ = − |−⟩ . (2.15)

For this simple transformation, we regard the problem Hamiltonian as H(σ̂z)0(≡ Ĥ0)
and write a state as |σ1, ...., σN ⟩ which mean spin configuration.

Now we introduce the “kinetic energy” term Ĥkin which drive a state to an other
state in a problem Hamiltonian as follows:

Ĥ(t) = f(t)Ĥkin + g(t)Ĥ0, (2.16)

1For this reason, QA is also called the quantum adiabatic algorithm (Farhi 2001).
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2.2. BASIC FORMULATION FOR QUANTUM ANNEALING

Figure 2.3: Adiabatic evolution of the stats. Here, ∆ is the energy gap between the 1st
excited state and a ground state.

where Ĥ depends on time, and f(t) and g(t) represent a wight for Ĥkin and Ĥ0 re-
spectively. In standard formulation of QA, the state vector |Ψ(t)⟩ follows the real-time
Schrödinger equation:

i
d

dt
|Ψ(t)⟩ = Ĥ(t) |Ψ(t)⟩ . (2.17)

The adiabatic theorem of the quantum mechanics, which support QA, tell us that:

a physical system will remain in its instantaneous eigenstate if a given dy-
namical parameter is slow enough and if there is a gap between the eigen-
state and the rest of the Hamiltonian (Born and Fock 1928.).

Thus, if an initial state is ground state |Ψ(0)⟩g and then the state evolve slowly enough
following the Schrödinger equation, the state remain in a ground state |Ψ(t)⟩g. Fol-
lowing this behavior of the quantum quantum system, we can get the ground state
of the problem Hamiltonian Ĥ0(t) under the condition that f(0)/g(0) → ∞ and
f(∞)/g(∞) → 0. This means that the initial state is set on the trivial ground state of
the kinetic Hamiltonian Ĥkin and then a state goes to a ground state of Ĥ0 remaining
the ground state. In QA, the kinetic Hamiltonian need to have two properties at least:

1. The ground state is trivially known to set the initial state.

2. A jump between stats occurs.

In the standard formulation of QA, we simply adopt the transverse field as kinetic
term, 2 which can be written as

Ĥkin = −
∑
i

σ̂x
i , σ̂x

i =

(
0 1
1 0

)
, (2.18)

2If the system has spin glass state, it is known that QA with the transverse field may be not
effective in an optimization problem. In recent years, to avoid the issue, the formulation introducing
the anti-ferromagnetic term has been proposed (Seki et al. 2012).
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where σx
i is the x component of the Pauli matrix. We know immediately the relations,

σ̂x
i |+⟩ = |−⟩ and σ̂x

i |−⟩ = |+⟩. Thus, the kinetic term Ĥkin can transform the up
state to down state and vice versa. And then we can see the ground state of the above
matrix as follows:

|Ψ⟩king =
∑
k1=±

∑
k2=±

· · ·
∑

kN=±
|k1⟩ ⊗ |k2⟩ ⊗ · · · ⊗ |kN ⟩ . (2.19)

Here, we reconsider the Hamiltonian (2.16) incorporated the transverse field as the
kinetic term. For simplicity, we adopt the function form of f(t) and g(t) as

f(t) = 1− t

τ
, g(t) =

t

τ
, (2.20)

where τ is called the annealing time. Because the total Hamiltonian is Ĥkin at initial
time, t = 0, and finally it will be Ĥ0 at t = τ , the ground state of the problem
Hamiltonian, |Ψ(τ)⟩0g, can be derived started from the ground state of the kinetic

Hamiltonian, |Ψ(0)⟩king , following the adiabatic evolution.
Although QA is supported by the adiabatic evolution, if the evolution is not slow,

the state may be excited from a ground state to an excited state. In such a case, QA fail
to catch the ground state at the final state. The probability of non-adiabatic excitation
can be evaluated analytically as follows:

Pna = e−2πγ (2.21)

γ =
∆2

d
dt(E0(t)−E1(t))

, (2.22)

where ∆ is the minimum energy gap between the ground state and the 1st excited
state. The above theorem is called Landau-Zener theorem (Landau and Lifshitz 1965).
Whether QA works or not hinge on whether such a non-adiabatic excitation occurs or
not in the course of the dynamics. Although classical computer may not demonstrate
QA in large systems to a need for solving the Schrödinger equation, the quantum Monte
Carlo simulation has been implemented. Below we mention the quantum Monte Carlo
simulation to figure out the treatment of QA in the classical computer.

In order to demonstrate the QA by using the classical computer instead of the
quantum computer, we consider the transformation from the Hamiltonian with the
transverse field described in Hibert space to the corresponding classical Hamiltonian.
It is well known that Suzuki-Trotter (S-T) decomposition allows us to perform such a
transformation (Suzuki 1976):

Hd(σ̂) → Hd+1(σ), (2.23)

where Hd represents the d-dimensional Hamiltonian. The rigorous mathematical for-
mulation is devoted in Appendix B. The extra dimension is called the Trotter axis or
the imaginary time. We consider the case that f(t) ≡ Γ and g(t) ≡ Λ in an equilibrium
state below. After such a treatment, the Hamiltonian can be formulated as follows:

Heff(σ(t)) =
βΛ

P

P∑
t=1

H0(σ(t))−
1

2
log

(
coth

βΓ

P

) N∑
i=1

P∑
t=1

σi(t)σi(t+ 1), (P → ∞)

(2.24)
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Figure 2.4: System after S-T decomposition in the case that d = 1, which is expanded
the two dimensional space. Black and gray circles at each grate indicate spins which
take 1 or −1. Horizontal axis corresponds to the real space while vertical axis is called
Trotter axis or the imaginary time which corresponds to temperature space. Interaction

strength J between two spins along Trotter axis is P
2β log

(
coth βΓ

P

)
.

where the effective Hamiltonian is the one incorporating the inverse temperature and
the the Bolzman factor can be described as PB ∝ exp(−Heff) forHeff = βH. The num-
ber of P is called Trotter number and t is the index along Trotter axis and σi(t) mean
the t-th extra dimensional variable on i-the space. We can see that the Hamiltonian
with the transverse field corresponds to the classical Hamiltonian with the ferromag-

netic interaction (J = P
2β log

(
coth βΓ

P

)
) along the Trotter axis (Fig. 2.4). In this

formulation, we notice that the temperature exist. In QA through S-T decomposition,
taking the value β/P (≡ ∆τ) to be sufficiently small and Γ/Λ to be sufficiently large, we
perform the Monte Carlo simulation and obtain an equilibrium sate. Next, we decrease
Γ/Λ to zero sufficiently slowly with equilibrium state. If the temperature is sufficiently
low the final state at Γ/Λ = 0 can be a ground state of H0. The above approach is
strictly difference from QA by solving the Schrödinger equation with developing the
quantum dynamics. The QA through the quantum Monte Carlo simulation, however,
is known to work well and then the system approaches to the ground state of the prob-
lem Hamiltonian H0 in the condition that the inverse temperature is sufficiently large
(Morita and Nishimori 2008).

2.3 Formulation for information processing based on Bayes
inference

Below, we give an introduction to the information processing based on Bayes inference
and the statistical mechanical techniques for deriving the macroscopic properties of the
system.
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Figure 2.5: Basic picture of information processing through Bayes inference.

We first note that the original information is x0 ≡ {x0i} , (x0i = ±1, i = 1, ..., N),
which x0 sometimes corresponds to “pixels” or “message”according to a problem. Such
a binary variable is called Ising spins in terms of the statistical mechanics. 3 As set
up common to many problems of information processing, the original information is
damaged through noisy channel as follows,

y = x0 + ϵ, (2.25)

where y ≡ {yi} , (i = 1, ..., N) represents the received information and ϵ represents a
channel noise. It is relevant we focus on here how the original information recover from
damaged information y. Then, we consider the estimated sequence x ≡ {xi} , (xi =
±1, i = 1, ..., N) which is generally difference from x0. It goes without saying that
the condition that x = x0 means best restoration. 4 The probabilistic distribution
of a channel noise is described as P (y|x) which is conditional probability for y un-
der the condition that x occurred. If the channel noise is, for example, memoryless
Gaussian channel with x mean and σ2 variance in which each bit is affected by noise
independently, the probability distribution is

P (y|x) =

N∏
i=1

P (yi|xi) (2.26)

P (yi|xi) =
1√
2πσ

exp

(
− 1

2σ2
(yi − xi)

2

)
. (2.27)

The above probability is called the likelihood function of x. As a matter of course,
because the form of P (y|x) is unknown, we should assume the some kind of type of it.
We also consider the prior distribution P (x), which means how an original information

3Here, we assume the Ising type (xi = ±1) for applying the statistical mechanics later. It can
reduces to {0, 1} code by using simple operation (Nishimori 2001).

4Equation (2.25) should be denoted as y = f(x0) + ϵ because the original information is sent
by processing it in the standard information processing problem as we see below. However, we here
consider the situation that the original information is sent without change for easy formulation.
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is generated. This is powerful assumption about an original information to use the
Bayes formula as described below. By using the basic formula of the joint probability,

P (x,y) = P (x|y)P (y) = P (y|x)P (x) (2.28)

and then we obtain immediately the following formula:

P (x|y) = P (y|x)P (x)

P (y)
=

P (y|x)P (x)∑
x P (y|x)P (x)

. (2.29)

The formula is called Bayes formula and P (x|y) is called the posterior distribution,
which mean the probability distribution of x under the condition that y occurred. In
Bayes inference, we can find that the causation is switched and then evaluate an original
information through P (x|y), assuming the likelihood function and the prior. Here, we
introduce two basic strategy by using the Bayes formula below to extract the estimated
bit sequence x̃.

First, the maximum a posteriori probability (MAP) estimate which is conventional
method of the Bayes inference is

x̃MAP = arg max
x

P (x|y). (2.30)

Second, the maximizer of the posterior marginals (MPM) estimate is defined by

x̃MPM
i = arg max

xi

P (xi|y) (2.31)

= sgn

[∑
xi±1

xiP (xi|y)

]
(2.32)

P (xi|y) =
∑
x̸=xi

P (x|y), (2.33)

where we focus on a single bit xi, and then comparing P (xi = 1|y) and P (xi = −1|y)
we adopt xi = 1 or −1 which enlarge P (xi|y). The transformation from Eq. (2.31)
to (2.32) can be possible for the condition that xi = ±1. 5 The MPM estimate
has important mean in terms of statistical mechanics. Seeing the posterior P (x|y) as
Boltzman distribution, it may be denotes as follows,

P (x|y) = exp(−βH(x))

Z
, (2.34)

where Z is the partition function and β(≡ 1/T ) means the inverse temperature. 6

And then, H(x) corresponds to the Hamiltonian of the system in the context of the
statistical mechanics. Here, the Hamiltonian H(x) in this case corresponds to Ising
spin system. From this view point, Eq. (2.31) may be rewritten as follows:

x̃MPM
i = sgn

(∑
x xiP (x|y)∑
x P (x|y)

)
= sgn

(∑
x xie

−βH(x)∑
x e−βH(x)

)
= sgn⟨xi⟩β, (2.35)

5We will often use the expression “Tr” instead of “
∑

x” in the following arguments.
6We below use the unit system that Boltzman factor is one, i.e., kB = 1.
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where ⟨·⟩β represents the local magnetization, which means the thermal average of xi.
For this reason, the MPM estimate is sometimes called Finite temperature decoding. We
can also see that the MAP estimate is the specific case of the MPM estimate for Eqs.
(2.30) and (2.35). The MAP estimate corresponds to the problem for finding the ground
state of a Hamiltonian H(x), and then it is consideration for the low temperature limit
(β = 1/T → ∞). On the other hand, in the finite temperature case (β << 1), the
solution of MPM estimate is better than it of MAP estimate because the posterior
distribution is formed with a narrow or wide width and then the mean is supposed to
give a different value from the mode in the posterior distribution (Fig. 2.6). 7 Below,
x̃ indicate

{
x̃MPM
i

}
unless otherwise noted.

Figure 2.6: The schematic diagram of the posterior distribution on the configuration
space in the cases of the low temperature limit (β → ∞) (left panel) and finite tem-
perature (β << ∞) (right panel).

Another perspective can be given below. We can see that the thermal average,
ensemble average, corresponds to consideration of the minimum of the free energy,
F = − 1

β logZ instead of energy which mean cost function. In the case that β → ∞,
the free energy goes to the energy. Because the the system including the temperature
goes to the minimum of the free energy, the MPM estimate can be performed by
calculating the order parameter minimizing the free energy. The schematic picture of
such the interpretation is given in Fig. 2.7.

The above discussion is the procedure to influence the original information from
received information which is damaged through noisy channel. We here consider the
decoding performance of the estimated sequence x̃, comparing with the original infor-
mation. In this context, we should assume that the original information and “true”
channel is known, which mean that P (x0) and P (y|x0) are given. Under such a as-
sumption, the Hamming distance between the original sequence and estimated sequence
is defined as

DH = ||x0 − x̃||2 , (2.36)

where smaller DH gives better the performance. Focusing on the condition that each
bit takes 1 or −1, the other decoding measure can be represented as follows with the

7In these figures, the horizontal line x obviously represents not one dimension but high dimension,
N -dimension.

17



2.3. FORMULATION FOR INFORMATION PROCESSING BASED ON BAYES
INFERENCE

Figure 2.7: Free energy of the system.

normalized factor N ,

M =
1

N
xT
0 x̃ =

1

N

N∑
i=1

x0ix̃
MPM
i , (2.37)

which is called the overlap between the original bit sequence and the estimated bit
sequence. Note that the condition that M = 1 gives the perfect restoration (decoding
or demodulation). Because the x0 is generated from P (x0) and the channel noise fluc-
tuate stochastically according to P (y|x0), the overlap incorporating the MPM estimate
should be rewritten as follows:

M =
1

N

∑
x0

P (x0)

∫
P (y|x0)x

T
0 x̃ (2.38)

=
1

N

∑
x0

P (x0)

∫
P (y|x0)

∑
i

x0isgn⟨xi⟩β (2.39)

=
1

N
[xT

0 x̃], (2.40)

where the bracket [·] in above equation denote the averages over x0 and y. Note that
the overlap depends on β through x̃ and some parameters through P (x|y), P (y|x0)
and P (x0). Because we often fix the parameter in P (y|x0) and P (x0), we describe M
as the function depending on the inverse temperature β which can be seen to be the
control parameter of noise.

To wrap up, the procedure to derive the estimated bit sequence x̃ and to evaluate
the decoding performance M can be stated as follows:
Procedure to derive the estimated bit sequence

1. We consider how the original information is emerged, and then set the prior,
P (x).
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2. We assume some kind of channel noise, e.g., Gaussian or Binary symmetric chan-
nel. Thus, we set the likelihood function of x, P (y|x).

3. We calculate the posterior P (x|y) following the Bayes formula. Then, the MPM
estimate gives the estimated bit as x̃MPM

i .

Procedure to evaluate average-case performance

1. In order to evaluate the average-case performance, we must preliminarily know
the original information and true channel parameters. Consequently, we assume
the probability distribution of “true” channel type P (y|x0) and of an original
information P (x0) as some types. 8

2. We calculate the overlap M between the original and estimated sequence. Note
that here the overlap should be averaged over original data and true channel
because they are represented as probabilistic form.

In this thesis, we particularly focus on the procedure to evaluate decoding perfor-
mance and then will have the explicit expression for the overlap. In order to achieve
this, we will discuss the very large system, i.e., the condition that N → ∞. For this
treatment, we can use the statistical mechanics which is powerful tool in an analysis of
physical systems.

2.4 Statistical mechanical analysis for basic mean-field mod-
els

As already discussed in previously, the information processing closely relate to “Ising
spin systems” through Bayes formula. For such a treatments, the statistical mechanical
approach can be powerful and effective tool to understand the macroscopic property
of the information processing models, i.e., average-case performance. Considering the
N Ising spin system with Hamiltonian H(σ), the probability of the spin configuration
follows as Maxwell Boltzman distribution;

P (σ) =
exp(−βH(σ))

Z
(2.41)

Z = Tr
σ
exp(−βH(σ)), (2.42)

where Z in terms of the statistical mechanics is called the partition function which
corresponds to the normalization term and β ≡ 1/T corresponds to inverse temperature.
Free energy in the system can be written by 9

F = −β−1 logZ. (2.43)

8We here these probability distributions, P (y|x0) and P (x0), are assumed to be same type of P (y|x)
and P (x) because we consider only the difference of parameters, e.g., variance in channel or smoothness.
That is, if P (y|x) is Gaussian channel with σ2 variance, P (y|x0) is Gaussian channel with σ2

0( ̸= σ2).
9Here, we use the term free energy as Helmholtz type. Although the other types of free energies, of

course, exist, e.g., Gibbs type, we omit those introduction in this paper.
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Because the system evolves with decreasing free energy, an investigation of the form of
free energy leads to understanding an equilibrium state of the system. The Hamilto-
nian form can be changed depending on systems and has complicated form generally.
By calculating free energy through the sense of statistical mechanical analysis, we can
obtain the macroscopic parameters (order parameters) as the saddle point conditions
of the free energy (Yeomans 1992; Stanley 1987). In this section, we give the sta-
tistical mechanical analysis in thermodynamic limit N → ∞ for two basic models,
Hushimi-Temperly (H-T) model and Sherington-Kirkpatrick (S-K) model. The both
are described as infinite range (mean-field) model in which all spins in the network are
interacting with all others.

2.4.1 Hushimi-Temperly model

First, we consider the simplest model called Hushimi-Tempely (H-T) model which can
be described by

H = − J

2N

∑
i ̸=j

σiσj − h

N∑
i=1

σi, (2.44)

where σi takes 1 or −1 and J
N represents the strength of connection between spins.

Each site has a own energy −hσi. And
∑

i ̸=j means that the spins connect the all

other spins, which is called the infinite range model or mean field model. 10 The
partition function of this system can be written as

Z = Tr
σ
exp

 Jβ

2N

(∑
i

σi

)2

− βJ

2
+ βh

∑
i

σi

 . (2.45)

Introducing the following transformation to the partition function,

eax
2
=

(
Na

π

)∫ ∞

−∞
dm exp

(
−Nam2 + 2

√
Namx

)
, (2.46)

which is called Hubbard-Stratonovich transformation, we can perform Trσ in Eq. (2.45)
because the square of

∑
i σi is disappear and then it transform to simple integral. Thus,

the partition function can be rewritten as the following form:

Z = Tr
σ

∫
dm exp

(
−NβJm2

2
− βJ

2
+NβJm

∑
i

σi + βh
∑
i

σi

)
(2.47)

=

∫
dme−

NβJm2

2
−βJ

2 Tr
σ
exp

{
(βJm+ βh)

∑
i

σi

}
(2.48)

=

∫
dme−

NβJm2

2
−βJ

2

[
Tr
σ
exp {(βJm+ βh)σi}

]N
(2.49)

=

∫
dm exp

(
−NβJm2

2
− βJ

2
+N log 2 coshβ(Jm+ h)

)
. (2.50)

10The mean field theory give the exact solution in the infinite range model. For this reason, the
infinite range model is also called the infinite range model (Nishimori 2001).
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The physical meaning of m corresponds to the magnetization because of the relation
that m = 1

N

∑N
i=1 σi. Considering the thermodynamic limit N → ∞, −βJ

2 goes to zero
and then the free energy per spin f ≡ F

N is

−βf = −βJm2

2
+ log 2 coshβ(Jm+ h). (2.51)

Here, we use the saddle point approximation (see AppendixA), so that m satisfies the
saddle point condition as follows:

∂

∂m

(
−βJm2

2
+ log 2 coshβ(Jm+ h)

)
= 0. (2.52)

By calculating the above derivation, we derive the self consistent equation of m as
follows:

m = tanhβ(Jm+ h). (2.53)

By solving the above equation with respect to m numerically, we can understand the
macroscopic property of the system. Before we see these solutions, we sketch the
relations among y = 2x, y = x/2 and y = tanhx in Fig. 2.8(a) conceptually. While
there are two solutions in the case that y = x/2, one solution in the case that y = 2x
occurs. Therefore, while m has unique solution that m = 0 for 1

β ≡ T > 1, there are
two solutions m > 0 except for m = 0 which is a trivial solution in other case that
T < 1. Figure 2.8(b) denotes the dependence of m on Twhich is the numerical solutions
of Eq. (2.53). We see that m decreases from 1 (or −1) to 0 gradually and m becomes
0 at T = 1. In other words, there is the phase transition from the ferromagnetic phase
to paramagnetic phase. Here, the boundary point between phases is called the critical
temperature.
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Figure 2.8: (a): Schematic solutions of state equation. (b): Temperature T dependence
of magnetization m.
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2.4.2 Sherrington-Kirkpatrick model

Next we present the analysis of the Sherrington-Kirkpatrick (S-K) model which is the
simple mean-field spin glass model (Edwards and Anderson 1975; Sherrington and
Kirkpatrick 1975; Mezard et al. 1987). While the H-T model where the interactions
between spins are uniform, we consider the random interactions between spins in the
spin glass model. The basic technique for analyzing the mean-field spin glass models is
given in this section.

In spin glass models, the interaction between the spins usually generate from a
probabilistic distribution P (J). In this context, we need to consider the average of
free energy with respect to random interaction Jij . Thus, we consider the following
partition function:

[F ] = −β−1[logZ] = −β−1

∫
dJP (J) logZ = −β−1

∫
dJP (J) log Tr

σ
e−βH(σ), (2.54)

where the bracket [·] =
∫
dJP (J)(·) means the average over the distribution of J ,

which is called the configurational average or the data average. 11 Because the time
scale of thermal fluctuation is rapid comparing that of J , we trace over σ first, and
after the operation we calculate the average over J . It is not easy to calculate the
above equation (2.54) for the complicated dependence of the logZ on J . Then, we use
the following formula, viz., Replica trick, to calculate it:

[logZ] = lim
n→0

[Zn]− 1

n
. (2.55)

Here, the logarithm of Z transform to the polynomial form considering n “replicas” of
the system and then the problem becomes much easier. Although the mathematical
proof still is not exists, it is known that the formula gives correct solutions empirically.
This technique is called the Replica trick or Replica method. Below, by using this
strategy, we evaluate the free energy averaged over J .

In S-K model, We consider the following Hamiltonian,

H = −
∑
i<j

Jijσiσj (2.56)

P (Jij) =

√
N

2πJ2
exp

{
− N

2J2

(
Jij −

J0
N

)2
}
. (2.57)

Note that the interaction here is Gaussian distribution and then fluctuate stochastically.
The sum on the right hand side of the Hamiltonian runs over all distinct pairs of spins,

NC2 = N(N − 1)/2. Following the replica method (2.55), we calculate the following
integration,

[Zn] =

∫ ∏
i<j

dJijP (Jij)Z
n (2.58)

=

∫ ∏
i<j

dJijP (Jij)Tr
σµ

exp

β
n∑

µ=1

∑
i<j

Jijσ
µ
i σ

µ
j

 , (2.59)

11We may not understand why [·] is also called the “data” average at this point. In the context of
the probabilistic information processing, J usually corresponds to a received information and then we
call it so (see the later sections).
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where µ is the replica index. In order to understand the macroscopic behavior, intro-
ducing the following two order parameters,

mµ =
1

N

N∑
i=1

σµ
i (2.60)

qµν =
1

N

N∑
i=1

σµ
i σ

ν
i , (2.61)

and then the configuration average of Zn can be represented as

[Zn] =

∫ n∏
µ=1

dmµδ

(∑
i

σµ
i −Nmµ

)∫ ∏
µ<ν

dqµνδ

(∑
i

σµ
i σ

ν
i −Nqµν

)

× Tr
σµ

∫ ∏
i<j

dJijP (Jij) exp

β

n∑
µ=1

∑
i<j

Jijσ
µ
i σ

µ
j

 . (2.62)

Performing the integral over Jij by using Gaussian integral

∫
dxe−αx2

=

√
π

α
, (2.63)

the part concerning Jij is12

exp

J2β2

2N

∑
i<j

 n∑
µ=1

σµ
i σ

µ
j

2

+
J0β

N

n∑
µ=1

∑
i<j

σµ
i σ

µ
j

 (2.64)

≃ exp

J2β2N

2

(
n

2
+
∑
µ<ν

q2µν

)
+

βJ0N

2

n∑
µ=1

m2
µ

 , (2.65)

where we use the relation, (
∑

iXi)
2 =

∑
iX

2
i +2

∑
i<j XiXj and consider the condition

that n is sufficiently small. We define the exponent proportional to N as

en(mµ, qµν) ≡
βJ0
2

n∑
µ=1

m2
µ +

β2J2

2

(
n

2
+
∑
µ<ν

q2µν

)
, (2.66)

and then Eq. (2.62) can be described as the following:

[Zn] = Tr
σµ

∫ n∏
µ=1

dmµδ

(∑
i

σµ
i −Nmµ

)∏
µ<ν

dqµνδ

(∑
i

σµ
i σ

ν
i −Nqµν

)
eNen(mµ,qµν).

(2.67)

12This part can be denoted as [exp(−β
∑

µ H(σµ))].
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Representing the delta function as the Fourier integral, we have:

Tr
σµ

n∏
µ=1

δ

(∑
i

σµ
i −Nmµ

)∏
µ<ν

δ

(∑
i

σµ
i σ

ν
i −Nqµν

)
(2.68)

= Tr
σµ

∫ ∏
µ

dim̂µ

2π
exp


n∑

µ=1

m̂µ(
∑
i

σµ
i −Nmµ)

∏
µ<ν

diq̂µν
2π

exp

{
n∑

µ<ν

q̂µν

(∑
i

σµ
i σ

ν
i −Nqµν

)}
(2.69)

=

∫ ∏
µ

dim̂µ

2π

∫ ∏
µ<ν

diq̂µν
2π

exp

[
log Tr

σµ
exp

{∑
µ

m̂µ

∑
i

σµ
i +

∑
µ<ν

q̂µν
∑
i

σµ
i σ

ν
i

}

−N
n∑

µ=1

m̂µmµ −N
n∑

µ<ν

q̂µνqµν

 . (2.70)

Carrying out the trace over σµ independently in the above equation as follows

Tr
σµ

exp

{∑
µ

m̂µ

∑
i

σµ
i +

∑
µ<ν

q̂µν
∑
i

σµ
i σ

ν
j

}
(2.71)

= Tr
σµ

N∏
i=1

exp

{∑
µ

m̂µσ
µ
i + q̂µνσ

µ
i σ

ν
i

}
(2.72)

=

(
Tr
σ
exp

{∑
µ

m̂µσ
µ + q̂µνσ

µσν

})N

, (2.73)

Eq.(2.70) is

[Zn] =

∫ ∏
µ

mµ

∫ ∏
µ<ν

dqµν
∏
µ

dm̂µ

∫ ∏
µ<ν

dq̂µν

exp {N(en(mµ, qµν) + sn(mµ, qµν , m̂µ, q̂µν)} (2.74)

sn(mµ, qµν , m̂µ, q̂µν) = log Tr
σ
exp


n∑

µ=1

m̂µσ
µ +

∑
µ<ν

q̂µνσ
µσν

−
∑
µ

m̂µmµ −
∑
µ<ν

q̂µνqµν .

(2.75)

Considering the limit n → 0 taken with N kept very large but finite, we find the
following expression:

[Zn] ≃ exp

{
Nn

(
en(mµ, qµν)

n
+

sn(mµ, qµν , m̂µ, q̂µν)

n

)}
(2.76)

≃ 1 +Nn

(
en(mµ, qµν)

n
+

sn(mµ, qµν , m̂µ, q̂µν)

n

)
. (2.77)

By using the formula (2.43), we find the free energy per spin is represented as follows:

−β[f ] = lim
n→0

[Zn]− 1

nN
(2.78)

= lim
n→0

(
en(mµ, qµν)

n
+

sn(mµ, qµν , m̂µ, q̂µν)

n

)
. (2.79)
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We assume the following relations to calculate the trace over σ for deriving a explicit
form of free energy,

m = mµ, m̂ = m̂µ (2.80)

q = qµν , q̂ = q̂µν , (2.81)

which is called Replica Symmetry(RS) solutions. The RS means that the dependence
of order parameters on the replica indices should not affect the physics of the system.
Although we of course should also consider the asymmetry of the replicas, we adopt
RS condition below. For these conditions, (2.80) and (2.81), we have:

sRS
n =

nq̂(q − 1)

2
− nm̂m+ n

∫
Dw log 2 cosh(m̂+ w

√
q̂) (2.82)

eRS
n =

nβJ0m
2

2
+

nβJ2

4
(1− q2). (2.83)

where
∫
Dw(·) = 1√

2π

∫
dwe−w2/2 and we use the formula of the Gauss integral. Thus,

the integral is inspired the relation between the replica indices, whose source is the
randomness of the interaction between spins. The integral in the right hand side of the
above equation emerges from the following calculation

exp

(
q̂
∑
µ<ν

σµσν

)
=

∫
Dw exp


√q̂

n∑
µ=1

σµ

w − nq̂

2

 , (2.84)

The final form of the free energy of the S-K model is

−β[f ] =
βJ0m

2

2
+

βJ2

4
(1− q2) +

q̂(q − 1)

2
− m̂m+

∫
Dw log 2 cosh(m̂+ w

√
q).(2.85)

The order parameters satisfies the following closed relations for the saddle point con-
dition of the free energy (2.85):

m̂ = βJ0m (2.86)

q̂ = β2J2q (2.87)

m =

∫
Dw tanh(w

√
q̂ + m̂) (2.88)

q =

∫
Dw tanh2(w

√
q̂ + m̂). (2.89)

In the H-T model which is the mean-field model has constant interaction, we saw the
ferromagnetic phase (m > 0) at low temperature region and the paramagnetic phase
(m = 0) at high temperature region. On the other hand, in S-K model which is mean-
field spin glass model, we can see three phases according to the value of the order
parameters as listed in the table 2.1. Here, spin glass phase (m = 0, q > 0) emerge,
which does not emerge in H-T model. Spin glass phase is the specific behavior of the
mean-field spin glass models. The detailed discussion of their phases is given in Sec.
2.6 where we discuss an error correcting code model which can be modeled as general
spin glass model with many body interactions. We here omit the discussion of replica
symmetry breaking (RSB) and the condition that RSB occurs. It is well-known that
the free energy of S-K model under the RS condition induce the problem of negative
entropy at low temperature, and then the RSB condition should be considered (Mézard
et al. 1987; Binder and Young 1986; Fischer and Hertz 1991).
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Table 2.1: Phases in S-K model.
Ferromagnetic Paramagnetic Spin glass

m > 0, q > 0 m = 0, q = 0 m = 0, q > 0

2.4.3 Notes of Replica method

The replica method is powerful tool to understand the spin glass system, and then it has
been thought of correct results although a mathematical validity is disputable. While
it is widely-accepted for many researchers, controversial points remain in fact. In this
section, we roughly comment on the back ground and problems of the replica method.
Because the mathematical and rigorous arguments of these problems are complicated
and have not much to do with our studies explicitly, we will leave a brief introduction
to them.

We first give the different representation of replica method from Eq. (2.55). Using
the well known approximation

nx ≃ log(1 + nx) (2.90)

for nx << 1, we obtain the following relation:

n[logZ] ≃ log(1 + n[logZ]) (2.91)

for n → 0. By using this, we can obtain the following representations:

[logZ] ≃ lim
n→0

1

n
log

{
1 + n

(
[Zn]− 1

n

)}
(2.92)

= lim
n→0

1

n
log[Zn]. (2.93)

and

−β[f ] =
1

N
lim
n→0

1

n
log[Zn]. (2.94)

As we mentioned in Sec. 2.4.2, for this trick, we have the logarithm of an averaged
quantity instead of the mean of logarithm. The computation is then much easier.

Analytic continuation

The replica method logically requests the following procedure:

1. Assuming n to be integer, we calculate [Z]n.

2. Assuming n to be real number, we take the limit of n, n → 0.

The above treatments may be unnatural. If n is integer, we can evaluate [Zn] by re-
garding as the n-th replicated discrete system and then can define the order parameters
in each replicated system. If n is real number, however, there are a discrepancy when
we evaluate configuration average of the free energy analytically.
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Thermodynamic limit

The problem here is the order of the limit operation. Rewriting Z as ZN , which means
that the partition function before N → ∞ depends on the system size N explicitly, the
replica method leads to

lim
N→∞

1

N
[logZN ] = lim

N→∞

1

N
lim
n→0

1

n
log[Zn

N ] (2.95)

= lim
n→0

1

n
lim

N→∞

1

N
log[Zn

N ]. (2.96)

The above procedures where we counter-change the limitation of n and N may be
inadequacy mathematically.

The above arguments have been serious problems in the replica method. It is diffi-
cult to justify the replica method generally in conclusion. Although there are negative
perceptions in the replica method for these problems (Talagrand 2003), it has actually
given correct and valid answer empirically as we still mentioned. The detailed reviews
of them were given in the report by Tanaka (Tanaka 2007). In the field of physics,
it often happen that the empirical argument has been performed primarily before the
rigorous mathematical discussion. We expect that the mathematical treatments of the
replica method would be done.

2.5 Image restoration

The purpose of the image restoration is to restore the original image as clean as possible.
The original studies of image restoration through stochastic approaches owe to the
papers by Geman and Geman (1984) and Derin et al. (1984). Average-case performance
behavior for the mean-field model introduced here has been investigated by Nishimori
and wong (1999). The recent topics in such the image restoration model are for example
hyper parameter estimation (Tanaka and Inoue 2000) and the cluster variation method
which improve the naive mean-field approximation (Tanaka and Morita 1995). In this
section, we will see that the model can be described as Ising spin model with Markov
random field (MRF) and then the statistical mechanical approach can be effective
strategy in the analysis of the model for extracting the macroscopic properties and
evaluating average-case restoration performance.

2.5.1 Model

We consider the white and black image which mean that each pixel takes binary value.
The original image (pixels) ξ = {ξi} , (ξi = ±1, i = 1, ..., N) is damaged as follows

τ = ξ + ϵ, (2.97)

where τ is the degraded image and ϵ is some noise. In this context, the black and white
correspond to 1 and −1, respectively. First, in order to consider the prior of the image,
we introduce the smoothness into the image as a natural assumption. The smoothness
means that neighboring pixels is likely to take a same value. That is, if a pixel take
black (ξi = 1) the marginal pixels is likely to be black (ξj∼i = 1) (see Fig. 2.9(b)),
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(a)

(b)

Figure 2.9: (a):Conceptual diagrams for the image restoration. The black and white
squares correspond to binary pixels, respectively, i.e., +1 and −1. In these cases, we
consider the case that N = 9 (3× 3) and Gaussian noise. (b):Schematic concept of the
smoothness β. Increasing β, neighboring pixels become same states.

where j ∼ i means the neighboring j-th pixels around i-th pixel. In order to express
such a condition, we consider the following prior distribution,

P (σ) =
exp(β

∑
<i,j> σiσj)

Z(β)
, (2.98)

where < i, j > means the neighboring pixels, β corresponds to the strength of the
smoothness and Z(β) is the partition function, normalization factor. We can imme-
diately see that the above expression corresponds to the system with ferro-magnetic
interaction, H = −

∑
σiσj . As we saw in the H-T model, the configuration changes

according with temperature and then the all spins are “up” or “down” in the low tem-
perature limit. Thus, in the case of image restoration, β = 1

T controls the smoothness.

We adopt the Gaussian noise

P (τ |σ) = 1

(
√
2πaeτ )N

exp

{
−

N∑
i=1

(τi − τe0σi)
2

2a2eτ

}
, (2.99)

under the assumption of independent noise at each pixels. Here, a2eτ is the variance
and τe0 represents the strength of the signal. Because we are interested in the P (τ |σ)
as a function of σ, we extract the σ term from the above expression and then we can
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describe the likelihood as

P (τ |σ) =
exp(h

∑N
i=1 τiσi)

Z(h)
, (2.100)

where h ≡ τe0
a2τ

and Z(h) corresponds to the redefined partition function. Although

there many noise type besides the Gaussian type, we use the Gaussian type below as
the simple case.

For these formulation, the posterior distribution can be represented as

P (σ|τ ) =
P (τ |σ)

TrσP (τ |σ)
(2.101)

=
exp(−Heff)

Z
(2.102)

Z = Tr
σ
exp(−Heff) (2.103)

Heff = −β
∑
<i,j>

σiσj − h
N∑
i=1

τiσi, (2.104)

where Z(= Z(β)Z(h)) is the partition function defined as Trσe
−Heff and Heff is the

effective Hamiltonian of the model. We can see that the Hamiltonian corresponds to
the ferro-magnetic model with random field. The estimated pixel can be expressed as

σ̃i = sgn⟨σi⟩β,h, (2.105)

following the MPM estimate(2.35).

We provide the procedure to evaluate the restoration performance below. We as-
sume that the original image is generated from the following probability:

P (ξ) =
exp

(
βs
∑

<i,j> ξiξj

)
Z(βs)

, (2.106)

where βs is the “true” smoothness parameter. Although the original image obviously
is not generated from such a probability, we replace β to βs in Eq. (2.98) to investigate
the restoration property by using theoretical analysis. Indeed, when we evaluate the
restoration performance, we fix the true parameter βs, and then we investigate how the
performance behave controlling β. The “true” noise follows

P (τ |ξ) = 1

(
√
2πaτ )N

exp

{
−

N∑
i=1

(τi − τ0ξi)
2

2a2τ

}
, (2.107)

where aτ is the“ true” variance and the τ0 is “true” the signal. The overlap between
the original and estimated image with averaging over the original image can be defined
as

M(β, h) = Tr
ξ

∫
dτP (ξ)P (τ |ξ)ξisgn⟨σi⟩β,h. (2.108)
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Definitely, the overlap is maximized in the condition that β = βs, h/β = τ
βsa2τ

, i.e., 13

M(β, h) ≤ M(βs,
βτ

βsaτ2
). (2.109)

2.5.2 Analysis and result
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Figure 2.10: Restoration performance for τ0 = 1.0, aτ = 1.0 and Ts = 0.9 with , h =
Tsτ0/Ta

2
τ . Dashed line indicate the line for the Nisimori condition that T = Ts.

In this section, we present the analysis for deriving the explicit expression of or-
der parameters and the overlap in the thermodynamic limit N → ∞ of the image
restoration model. And then, we give a numerical solutions of these equations and
discuss the Nishimori condition which maximize the overlap. Our interesting is to have
an information that the overlap depends on the parameters near the optimal point.
The mean-field model is useful to attack this problem as we saw the above sections.
Therefore, let us consider the mean-field version of the above model as follows:∑

<i,j>

→ 1

2N

∑
i̸=j

. (2.110)

Under this formulation which should be applied to the prior P (σ) and P (ξ), we can
analyze the model by using the method similar to it stated in Sec. 2.4.

The free energy in the system is given in the following,

−β[F ] = Tr
ξ

∫
dτP (ξ)P (τ |ξ) logZ, (2.111)

13We can easily understand this as follows. In this case, we have H = −
∑

<i,j> σiσj − h/β
∑

i τiσi

as Hamiltonian, and then comparing the coefficient of the second term in the right hand side with τ0
βsa2

τ
,

we can obtain the relation.
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where [·] mean Trξ
∫
dτP (ξ)P (τ |ξ)(·) which is “data” average. The partition function

can be represented as

Z = Tr
σ
exp(−Heff) (2.112)

= Tr
σ
exp

h
∑
i

τi +
β

2N

N∑
j=1

(σj)
2 − β

2

 , (2.113)

where we use the condition that
∑

i̸=j σiσj = (
∑

j σj)
2−
∑

i σ
2
i . By using the Hubbard-

Stratonovich transformation,

exp

 β

N
(
∑
j

σj)
2

 =

(
Nβ

2π

) 1
2
∫

exp

−Nβ

2
m2 + βm

∑
j

σj

 , (2.114)

we obtain the following relation

Z =

(
Nβ

2π

) 1
2
∫

dm exp

(
−Nβ

2
m2 +N log Tr

σ
eL
)

(2.115)

L = βmσ + hτσ, (2.116)

where σ and τ stands for the one pixel because we can calculate the trace over σ
independently on each σi, i,e., Trσ

∏
i exp(σi) = (Trσ exp(σ))

N . And we omit the
trivial constant in the above equation. After the easy calculation of Trσe

L, we derive
the following expression:

logZ = −Nβ

2
m2 +N log 2 cosh(βm+ hτ). (2.117)

Following Eq. (2.111), we consider the data average of the above quantity. By per-
forming easy calculation, we derive the data average term as follows from Eqs. (2.106)
and (2.107) through the saddle point condition in N → ∞:

[·] →
∏
i

∫
Du

Trξe
βsm0ξ

2 coshβsm0
,

(
Du =

1√
2π

e−
u2

2 , u =
τ − τ0ξ

aτ

)
. (2.118)

Here, m0 is the order parameter magnetization and it satisfied the saddle point condi-
tion of the following free energy of the original image:

f0 = −Nβs
2

m2
0 +N log 2 coshβsm0, (2.119)

which can be derived naturally from βf0 = logZ0, , Z0 = Trξe
βs

∑
i ̸=j ξiξj/N . The final

form of the free energy per spin of the system is expressed as

−β[f ] = −β[F ]

N
= −−βm2

2
+ Tr

ξ

∫
Dueβsm0ξ tanh(βm+ aτhu+ τ0ξ). (2.120)

From the saddle point condition, the order parameters determine the macroscopic prop-
erties are obtained as follows:

m0 = tanhβsm0 (2.121)

m =
Trσ

∫
Dueβsm0ξ tanh(βm+ aτhu+ τ0ξ).

2 coshβsm0
. (2.122)
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Next, we consider the overlap defined by (2.108), which means the average-case perfor-
mance measure. Because the overlap can be represented as [ξisgn⟨σi⟩β,h], we can easily
derive the following expression: 14

M =
Trσ

∫
Dueβsm0ξξsgn(βm+ aτhu+ τ0ξ).

2 coshβsm0
. (2.123)

Calculating the above equations, we can understand the restoration property of the
image restoration. In the last part of this section, we give the numerical result. Figure
2.10 is the dependence of the overlap M on the temperature (smoothness parameter)
T for Ts = 1

βs
= 0.9, τ0 = τ = 1.0 and h is kept to the optimum value Tsτ0

Ta2τ
. We can

see that M is peaked at T = Ts, which is called Nishimori temperature. Because the
MAP estimate corresponds to the consideration for T → 0, we also explicitly see that
the MPM estimate is better than the MAP estimate.

2.6 Error Correcting Codes

(a)

(b)

Figure 2.11: (a): Conceptual diagram for Sourlas code. (b):Encode and sending process
in the case that N = 3 and p = 2.

The error correcting code is the system that the receiver can decode an original
information by introducing redundancy. And then, the additional information help
us to decode the original bit sequence although the original bit sequence is damaged
trough noisy channel.

In this section, we give the mathematical formulation for Error correcting codes and
then discuss particular reference to Sourlas Code which can be described as mean-field
model (Sourlas 1989). It is well known that Sourlas code achieve the zero-error trans-
mission asymptotically in a certain limit, which mean that it saturates Shannon bound.

14In this section, we derive the overlap in the intuitive manner. The mathematical derivation is given
in Appendix in the quantum case explained later.
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In the context of physics, the model is known as the random energy model (REM) in
which the energy distribution of all spin configurations can be seen as independence
(Derrida 1981). The Sourlas code can be extended to finite-connectivity and analyzed
TAP-like decoding algorithm (Vicente et al. 1999; Thouless et al. 1977; Kabashima
and Saad 2001). Although the statistical mechanical approaches of course bring us
effective knowledge in the error correcting code e.g. Low density parity-check code
(LDPC) or convolutional code (Kabashima et al. 2000; Montanari and Sourlas 2000),
we treat here Sourlas code because it is basic and expandable solvable model.

2.6.1 Model

Sourlas code is the special case of the error correcting code. Introducing the following
assumption, we apply the statistical mechanical approach to the analysis of the model
because it corresponds to the infinite-range (mean field) p-body Ising model. In the
Sourlas code, the original sequence (message) ξ = {ξi} ; (i = 1, ..., ξN ) is coded as the
p-product spins,

J0
i1...ip = ξi1 · · · ξip, (2.124)

which is “encode” process.

Here, in Sourlas code, we assume that the all possible combinations of p spins
are chosen from N spins, that is we consider NCp encoded messages. For example,
considering N = 3 and p = 2, the original bit sequence is denoted as ξ = (ξ1, ξ2, ξ3)
and the coded information can be 3C2 = 3 possible sequence, J0 = (ξ1ξ2, ξ2ξ3, ξ1ξ3)
(see Fig.2.11 (b)). The message sending process therefore can be represented as

J = J0 + ϵ, (2.125)

where ϵ corresponds to channel noise.

The coded bit sequences J0 is transmitted trough a noisy channel, and then the
received bit sequences J come to be damaged. In order to decode the original bit
sequence from the corrupted received sequence, we set the type of noisy channel (see
Fig.2.11 (a)). Using the notation as an estimated bit sequence σ instead of ξ, we
assume the following Gaussian channel as the specific case,

P (J |σ) ∝ exp

−
DNp

J2
e

∑
i1<···<ip

(
Ji1...ip −

Je0
DNp

σi1 · · ·σip
)2
 (2.126)

= exp

−
DNp

J2
e

∑
i1<···<ip

(
J2
i1...ip +

J2
e0

DNp

)
+

2Je0
J2
e

∑
i1<···<ip

Ji1...ipσi1 · · ·σip


(2.127)

∝ exp(β
∑

i1<···<ip

Ji1...ipσi1 · · ·σip) (2.128)

where the equation runs over all possible combination of p spins out of N spins, and
DNp(= Np−1/p!) is appropriately scaled factor to derive the finite order parameters
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below in the limit of N → ∞. 15 The number of the terms (
∑

i1<···<ip) is NCp. Thus,

we assume the received information fluctuate around Je0
DNp

σi1 · · ·σip with variance J2
e

DNp

according to Gaussian distribution, and then β = 1/T ≡ 2Je0
J2
e
. Note that we also set

the prior P (σ) to use the Bayes formula (2.29) as follows

P (σ) =
N∏
i=1

P (σi) (2.129)

=
1

2N
, (2.130)

which mean that the original information is assumed to be generated from the uniform
distribution P (σ) independently. Accordingly, we can obtain the posterior distribution
of σ as follows,

P (σ|J) =
exp(β

∑
Ji1...ipσi1 · · ·σip)

Z
(2.131)

Z = Tr
σ
exp(β

∑
Ji1...ipσi1 · · ·σip). (2.132)

Inspired the statistical mechanics, because the above distribution can be regarded as
Boltzman distribution, the Hamiltonian of the Sourlas code is

H = −
∑

i1<···<ip

Ji1...ipσi1 · · ·σip, (2.133)

and β = 1
T is the inverse temperature. And then, the normalized factor Z can be

regarded as the partition function in the context of the statistical mechanics. We also
have known the above Hamiltonian as p-body interaction Ising model. In the MPM
estimate, the estimated bit can be denoted as

σ̃i = sgn⟨σi⟩β (2.134)

⟨σi⟩β =
Trσσie

−βH

Trσe−βH
. (2.135)

Here, in order to evaluate the decoding performance, we define the overlap between the
original message and the estimated message as follows:

M(β) = Trξ

∫
dJP (J |ξ)P (ξ)ξiσ̂i (2.136)

= [ξisgn⟨σi⟩β]. (2.137)

Here, [·] ≡ Trξ
∫
dJP (J |ξ)P (ξ)(·) means the average over the distribution of an orig-

inal bit sequence (data average). From the above representation, we need to set the
distribution of the original sequence P (ξ) and the channel P (J |Ξ), although we usually
do not know the true original message and the type of the channel in the nature of the

15Using Stirling formula, NCp ∼ Np/p! for N >> p. Because the exponent term should be O(N),
DNp corresponds to Np−1/p!.
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things. We set the following assumptions about the “true” original bit sequence and
the “true” channel:

P (ξ) =
N∏
i=1

P (ξi) (2.138)

=
1

2N
(2.139)

P (J |ξ) ∝ exp

−
DNp

J2

∑
i1<···<ip

(
Ji1...ip −

J0
DNp

ξi1 · · · ξip
)2
 . (2.140)

Here, the original bit is uniform as Eq. (2.130) and the channel is assumed to be
Gaussian type with J2/DNp variance and J0ξi1 · · · ξip/DNp mean. Because J2/DNp is
the “true” variance and J0 is the “true” signal level, the overlap may be maximum at
β = 2J0

J2 where the inverse temperature corresponds to true effective noise level. That
is, the following inequality is satisfied:

M(β) ≤
(
2J0
J2

)
. (2.141)

When we focus on Eqs. (2.133) with (2.140), the Sourlas code can be seen as spin glass
model with p-body interaction.

2.6.2 Analysis and results
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Figure 2.12: Phase diagram for p = 3 under Replica symmetry (RS). The ferromagnetic
phase (Ferro), the paramagnetic phase (Para) and the spin glass phase (Spin Glass),
are defined by Tab. 1.1. The dotted line stands for Nishimori Line (NL) which satisfy
the condition that T/J = J/2J0.

In this section, we derive the explicit form of the order parameters to understand
the macroscopic behavior and investigate the average-case decoding performance in
Sourlas code, considering the thermodynamic limit N → ∞.
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Following the replica calculations, we consider the configuration average of nth
power of the partition function:

[Zn] = Tr
ξ

∫ ∏
i1<···<ip

dJi1...ipP (ξ)P (J |ξ)Zn (2.142)

= Tr
ξ

1

2N

∫ ∏
ii<···<ip

dJi1...ip

(
Np−1

πJ2p!

) 1
2

exp

−Np−1

J2p!

∑
i1<···<ip

(
Ji1...ip −

J0p!

Np−1
ξi1 · · · ξip

)2
Zn, (2.143)

where Zn = Tr{σµ} exp(−β
∑

µH(σµ)). The Gage transformation,

Ji1...ip → Ji1...ipξ1i · · · ξip, σi → ξiσi, (2.144)

is performed to remove ξ from the integrand. Note that under this transformation the
Hamiltonian is transformed as

H → −
∑

i1<···<ip

Ji1...ipξ1i · · · ξipσi1ξi1 · · ·σipξip = H, (2.145)

which mean that the Hamiltonian is invariant for ξi = ±1. Thus, the problem is
equivalent to the system of ξi = 1,∀i, the ferromagnetic gage. By introducing the
following order parameters

mµ =
1

N

N∑
i=1

σµ
i (2.146)

qµν =
N∑
i=1

σµ
i σ

ν
i , (2.147)

and using the Fourier-transformation representation of the delta function, Eq. (2.143)
under the replica symmetry condition can be denoted as

[Zn] =

∫ ∏
µ<ν

dqµνdq̂µν

∫ ∏
µ

dmµdm̂µ exp(−Nβf) (2.148)

−β[f ] = −mm̂+ βJ0m
p − 1

4
β2J2qp +

1

2
qq̂ +

1

4
β2J2

+

∫
Dw log 2 cosh(

√
q̂w + m̂). (2.149)

Here, the [f ] is the free energy per spin in this system under the replica symmetry
condition. Although the detailed calculations are omitted here, the similar techniques
given in the case of SK model stated in Sec. 2.4.2 can be performed for obtaining
the free energy. For the saddle point condition, the order parameters are obtained as
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follows:

m =

∫
Dw tanhΦ (2.150)

q =

∫
Dw tanh2Φ (2.151)

m̂ = βJ0pm
p−1 (2.152)

q̂ =
1

2
pβ2J2qp−1 (2.153)

Φ =
√

q̂w + m̂. (2.154)

We can see that these equations correspond to the equations of state for conventional
SK model when p = 2. The decoding performance measure, the overlap M , can be
expressed as follows:

M =

∫
Dwsgn(Φ). (2.155)

The expression can be derived from meaning of the overlap, M = [sgn⟨σi⟩β] under the
ferromagnetic gage as we saw the case of the image restoration.
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Figure 2.13: Decoding performance for J = J0 = 1.0 and p = 3. Dashed line represents
Nishimori condition, T/J = J/2J0 = 0.5.

We here give some numerical results for Sourlas code by solving Eqs. (2.150)-
(2.155). In the Sourlas code corresponding to p-body spin glass model, the phase
transition occurs. Figure 2.12 is the phase diagram for p = 3, in which the spin glass
phase and the paramagnetic phase occurs, where the signal strength J0/J is weak. In
such phases, it is impossible to decode the message because M = 0, i.e., ⟨σi⟩β = 0.
And note that the phase diagram is given under the replica symmetry condition, and
then the region for spin glass phase is actually not correct. It is known that the replica
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symmetry breaking (RSB) occurs in Sourlas code (Nishimori 1999). 16 In this study,
however, because we are interested in the region in which it is possible to decode the
message, the ferromagnetic phase, we do not focus on the paramagnetic phase and spin
glass phase and also RSB. In line with this, we investigate the decoding performance in
the ferromagnetic phase. Figure 2.13 is the dependence of M on T/J for J0 = J = 1.0
containing the Nishimori condition, T/J = J/2J0 = 0.5. We can see that the overlap
is peaked at Nishimori condition. In this case the Nishimori condition is also called
Nishimori temperature.

In the last part of this subsection, we mention the case that p → ∞. In this
condition, the model corresponds to the REM and then the error-free decoding can be
achieved because M = 1 in the ferromagnetic phase. We clarify this condition in a
little more detail. The transmission rate is defined by

R ≡ N (number of bits in the original message)

NB (number of bits in the encoded message)
(2.156)

and the capacity of the Gaussian channel is

C =
1

2
log2

(
1 +

J2
0

J2

)
, (2.157)

which is derived from channel coding theorem. In the REM, the transmission rate and
the capacity can be obtained by

R =
N

NCp
≃ p!

Np−1
(2.158)

and

C =
J2
0p!

J2DNp log 2
, (2.159)

respectively, substituting J0 → J0/DNp and J2 → J2/2DNp for Eq. (2.140) in the
limit N >> 1 with p fixed. It is known that the error-free decoding is possible in the
condition of satisfying the following inequality

R < C. (2.160)

Thus, in the Sourlas code in the limit p → ∞, the ferromagnetic phase in which the
perfect decoding can be achieved is obtained by the following condition:√

log 2 <
J0
J
. (2.161)

The above condition corresponds to the boundary between the spin glass phase and
ferromagnetic phase. Considering the spin glass phase simply, we cannot obtain the
above condition under the RS condition because the free energy in the spin glass phase
is

[f ]SG = −T

√
2q̂

π
→ −∞, (2.162)

16In the RSB condition, the boundary between the paramagnetic phase and the spin glass phase in
given at T = 0.651J which is actually different from Fig. 2.12.
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for the condition that q = 1 and q̂ = ∞ in the limit p → ∞ for Eqs. (2.151) and (2.153)
and then it not meant to be physics. In the REM, the RS solution does not give the
exact solution (Derrida 1981; Gross and Mézard 1984). Under the RSB, the solutions
is consistent with Eq. (2.161) in the boundary between the spin glass phase and the
ferromagnetic phase.

2.7 CDMA multiuser demodulation

(a)

(b)

Figure 2.14: (a) Schematic picture of CDMA multiuser demodulation. (b) Basic con-
cept of spreading code.

The topic in this section is the Code-Division Multiple Access (CDMA) multiuser
demodulation which is an important modern wireless communication system, and then
we present the statistical mechanics for it. The basic idea of CDMA is to demodu-
late the digital signal of users which is transmitted through channel that is shared by
multiple users, assigning a spreading code sequence for each user (Simon et al. 1994;
Viterbi 1995). The statistical mechanical approaches in the CDMA multiuser detectors
has been proposed by Tanaka (Tanaka 2001), and then the average-case demodulation
performance was clarified analytically. Because the model is closely related to Hopfield
model which is typical neural network model described by mean-field spin glass model,
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Tanaka and Okada discuss the demodulation dynamics in terms of statistical neuro-
dynamics (Tanaka and Okada 2005). The formulation of CDMA multiuser detectors
is also related to the compressed sensing (CS) which is the formulation to recover the
original information from sparse received information. It is then expected that a deeper
understanding of the behavior of CDMA model pay dividends for the various field e.g.,
functional magnetic resonance imaging (f-MRI) and photography.

2.7.1 Model

N -user send the signals ξ = {ξi} , (ξi = ±1, i = 1, ..., N) through the basic synchronous
CDMA channel, and then the received signal y =

{
yk
}
, (k = 1, ...,K) at the base

station is

y = Hξ + ϵ (2.163)

where H =
{
ηki
}
, (ηki = ±1, i = 1, ..., N, k = 1, ...,K) is the spreading code sequence

for user i and K corresponds to the number of chip of the spreading code sequence per
symbol intervals. The channel noise ϵ is assumed to be Gaussian noise (see Fig. 2.14
(a)). The problem is to demodulate the original information (sending bit sequence)
from received signal y. Let us here discuss the meaning of the spreading code H. If
one does not contrive any ways to demodulate the signals of users, the digital signals
become mixed (interfere) with each signal, and then one cannot demodulate the orig-
inal information at base station. We therefore divide the signal interval into K chip
intervals, where the interval is called pitch. This treatment is called the modulation
and the coding is the spreading code. Assigning such a spreading code H =

{
ηki
}
to

each users preliminarily, a base station catch the signal containing a noise at the chip
interval k,

yk =
1√
N

N∑
i=1

ηki ξi + ϵk, (2.164)

which corresponds to k-th component of Eq. (2.163), and then can retrieve the original
signal ξ from y.

Before we state Bayesian estimation for this problem, let us consider the conven-
tional demodulator and discuss the close relationship with other models, a neural net-
work and a compressed sensing. Let us here consider the product of the received signal
and the spreading code as follows:

hi ≡
1√
N

K∑
k=1

ηki y
k =

K

N
ξi +

1

N

K∑
k=1

∑
j ̸=i

ηki η
k
j ξj +

1√
N

K∑
k=1

ηki ϵ
k. (2.165)

The first term on the right hand side corresponds to the signal term and the second
represents interference among users, multiple interference. The third is the channel
noise. If user is much fewer than the number of chip, the first term, signal term, can be
dominant. In other words, in the case that the chip ratio α ≡ K

N is much larger than
1, we then demodulate the signal by taking the sign of the quantity hi as follows:

ξ̃CD
i = sgn(hi). (2.166)
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This conventional demodulation (CD) is called matched filter method or single demod-
ulator, and thus the quantity hi corresponding to random field has a rich information
for demodulation. The performance of the demodulation however is not good because
the interference and channel noise is practically not negligible, .

We then introduce the Bayesian demodulator to improve the conventional demod-
ulator. Let us denote the estimated variables by σ = {σi} , (i = 1, ..., N), and then the
demodulation of MAP and MPM can be represented as

ξ̃MAP
i = arg max

σ
P (σ|y) (2.167)

ξ̃MPM
i = arg max

σi

Tr
σ|σi

P (σ|y), (2.168)

where P (σ|y) is the posterior distribution. Under the following prior,

P (σ) =
1

2N
, P (H) =

1

2NK
, (2.169)

and the conventional distribution P (y|σ),

P (y|σ) =

(√
β

2π

)K

exp

(
−β

2
||y − Hσ√

N
||2
)
, (2.170)

the posterior distribution can be represented as

P (σ|y) =
exp(−βH(σ))

Z
(2.171)

Z = Tr
σ
exp(−βH(σ)) (2.172)

H(σ) =
1

2

∑
i,j

Jijσiσj −
N∑
i=1

h0iσi, (2.173)

Jij =
1

N

K∑
k=1

ηki η
k
j (2.174)

h0i =
1√
N

K∑
k=1

ηki y
k. (2.175)

Here, β = 1/T = 1/σ2 corresponds to the inverse temperature, estimated noise power
and then the Hamiltonian H(σ) can be seen as the spin glass model with random
field. Considering the relation between Eqs. (2.165) and (2.173), we can see that h0i in
Eq. (2.173) corresponds to hi in Eq. (2.165). Thus, it is the benefit of the Bayesian
demodulation to potentially consider the interactions between spins. Let us consider
the field corresponding to Eq. (2.165) in terms of the Bayesian demodulation as follows:

hi =
∑
j ̸=i

Jijσj − h0i (2.176)

= −K

N
ξi +

1

N

K∑
k=1

∑
j ̸=i

ηki η
k
j (σj − ξj) +

1√
N

K∑
k=1

ηki ϵ
k. (2.177)

41



2.7. CDMA MULTIUSER DEMODULATION

We can see immediately that the second term contains σj−ξj and thus the interference
among users would be disappear in the case that the demodulation works well.

The MPM estimate (2.168) can be rewritten as

σ̃i = sgn⟨σi⟩β. (2.178)

Focusing on the interaction between spins Jij , we can see that it corresponds to it
of anti-Hopfield model which is one of typical neural network model represented as
mean-field model (Nokura 1998; Seung et al. 1992). Hopfield model is a famous neural
network model which can be described as mean-field spin glass model, which implicates
one of the property of a memory (Hopfield 1982). It is surprisingly fact that wireless
communication can be formulated as similar model of neural network.

We here consider the average-case performance of the Bayesian demodulation, and
then assume that the distribution of the original information follows,

P (ξ) =
1

2N
. (2.179)

And the “true” channel noise is assumed to be described as

P (y|ξ) =

(
1√
2πσ2

0

)K

exp

(
− 1

2σ2
0

||y − Hξ√
N

||2
)
, (2.180)

where 1/σ2
0 = β0 = 1/T0 is the “true” noise power. The measure of the demodulation

performance can be represented as

M(β) =
∑
H

Tr
ξ

∫
dyP (H)P (ξ)P (y|η)

N∑
i=1

ξisgn⟨σi⟩β (2.181)

= [ξisgn⟨σi⟩β], (2.182)

the above quantity corresponds to the overlap between original and estimated signal
averaged over the distribution of the spreading code, original signal and channel noise.
Because of Eqs. (2.180) and (2.170), the following relation holds:

M(β) ≤ M

(
1

σ2
0

)
. (2.183)

Thus, Nishimori temperature, is β = 1/T = 1/σ2
0 = β0 = 1/T0, which maximize the

overlap.

2.7.2 Analysis and results

In this section, we derive the state equations and the explicit expression of the overlap
by using the replica method in thermodynamic limit N,K → ∞ with their ratio α = K

N
fixed, and then give some results for CDMA multiuser demodulation.

We start with a explicit description of [Zn] following the replica method:

[Zn] =
1

2N
1

2NK

∑
H

Tr
ξ

∫ K∏
k=1

dykP (yk|y)Tr
σµ

exp(−β

n∑
µ=1

H(σµ)), (2.184)
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where µ indicates the replica index. Introducing the following order parameters, 17

Rµ =
1

N

N∑
i=1

ξiσ
µ
i (2.185)

qµν =
1

N

N∑
i=1

σµ
i σ

ν
i , (2.186)

Eq. (2.184) can be represented as

[Zn] =

∫ ∏
µ<ν

dqµνdq̂µν
∏
µ

dRµdR̂µ eN(q1+g2+g3) (2.187)

eNg1 =

∫ ∏
k

duk0dû
k
0

2π

∫ ∏
k

dukµdû
k
µ

2π

√
β0
2π

∫
dyk eg0 (2.188)

g0 = iûk0u
k
0 + i

∑
µ

ûkµu
k
µ − β0

2
(yk − uk0)

2 − β

2

∑
µ

{
(ukµ)

2 − 2ykukµ

}
−1

2

∑
µ

(ûkµ)
2 − 1

2
(ûk0)

2 −
∑
µ<ν

ûkµû
k
νqµν − ûµ0

∑
µ

ûkµRµ (2.189)

eNg2 =
1

2N
Tr
ξ
exp

{∑
µ<ν

q̂µν
∑
i

σµ
i σ

ν
i +

∑
µ

R̂µ

∑
i

σµ
i ηi

}
(2.190)

eNg3 = exp

{
−N

∑
µ<ν

qµν q̂µν −N
∑
µ

R̂µRµ

}
, (2.191)

where we use the following notations,

uk0 =
1√
N

N∑
i=1

ηki ξi, ukµ =
1√
N

∑
i=1

ηµi σ
µ
i . (2.192)

The free energy under the RS condition, Rµ = R, qµν = q, is given in the limit n → 0 is

−β[f ] =
α

2

{
− log (1− β(q − χ)) +

β(1 + β0)

β0
+

2R− q − (β−1
0 )

1 + β−1 − q

}
− q̂

2
+

qq̂

2
−RR̂+

∫
Dw log 2 cosh(

√
q̂w + R̂). (2.193)

17Here, the order parameter Rµ corresponds to the overlap between original and current replicated
spin and then it is slightly different from mµ, magnetization in the previous sections.
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Extremization of the free energy yields the state equations for the order parameters as

R =

∫
Dw tanhΦ (2.194)

q =

∫
Dw tanh2Φ (2.195)

R̂ =
αβ

1 + β(1− q)
(2.196)

q̂ =
αβ2(1 + q − 2R+ β−1

0 )

{1 + β(1− q)}2
(2.197)

Φ =
√
q̂w + R̂. (2.198)

The overlap is determined from the state equations as follows:

M =

∫
Dw sgn(Φ). (2.199)
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Figure 2.15: Dependence of the overlap M on the chip ratio α for T0 = 1.0, and
T0 = 0.05, and then we set T0 = T in both cases.

By solving Eqs. (2.194) - (2.199), we plot here the dependence of the overlap,
average-case performance measure, on the temperature which means controlled param-
eter in Fig. 2.15 in the case that T0 = 1.0 and T0 = 0.05. In both cases, we can see that
the perfect demodulation can be achieved in the limit, α → ∞. We can understand
that naturally, because α is the chip ratio. While we can see that the performance
drastically increase at about T = 0.5 in the case that T = 1.0, the performance in the
that T = 0.05 gradually increases. In the last part of this section, we show the overlap
as a function of the demodulation temperature. The overlap is seen to be a maximum
at T = T0, Nishimori temperature, and then MPM estimate better than MAP estimate.
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Figure 2.16: Demodulation performance for α = 2.0 and T0 = 1.0. Dashed line repre-
sents Nishimori condition, T = T0 = σ2

0.

In the last part of this section, we here summarize the notations used in the three
models in Tab. 2.2. The notations were and will be used in this thesis consistently.
We can see that each problem of information processing can be formulated with similar
way through Bayes inference and the statistical physics.

Table 2.2: Notations of three models in this thesis.

Original Degraded Prior Estimated Nishimori
information process process condition

Image Restoration ξ τ = ξ + ϵ MRF τ → σ T = T0, h = Tsτ0
Ta2τ

Sourlas Code ξ J = J0 + ϵ uniform J → σ T = J2/2J0
CDMA ξ y = Hξ + ϵ uniform y → σ T = σ2

0

2.8 Open questions and our goals

The transverse field which means quantum fluctuation may be expected to solve the
optimization problems whose classes is in NP-hard or NP-complete. Simulated anneal-
ing (SA) has is the conventional algorithm for an optimization problems to search the
global minimum by using the thermal fluctuation. In the case that the energy land
scape is complicated, however, the thermal fluctuation may not jump the many hills of
the energy and so the state may not reach the global minimum. On the other hand,
the algorithm with the quantum fluctuation, the quantum annealing (QA), may pass
through those due to the tunneling effect.

In this way, there has been conflict between the thermal and quantum fluctuations in
terms of optimization problems. To investigate this problem is interesting and hot topic
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even allowing for the increased technology in the quantum computer of implementing
quantum annealing, i.e., Quantum Annealer.

Figure 2.17: Left: Probability distribution with the conventional MAP estimate (the
CMAP estimate) corresponding to the simulated annealing (SA) and MAP estimate
incorporating the transverse field (the QMAP estimate) corresponding to the quantum
annealing (QA). Right: Probability distributions with the conventional MPM esti-
mate (the CMPM estimate) and MPM estimate incorporating the transverse field (the
QMPM estimate). Gray line represents the probability distribution in the classical case
and black line represents it in the quantum case. In this case, because the strength
of the thermal and transverse field is finite, the distribution is broad form instead of
delta-like function as the left figure.

From a slightly different viewpoints, we can notice that the retrieval process such
an image restoration, error correcting code, CDMA multiuser detection has similar
scheme with an optimization problems. When we interpret these issues in terms of
the probabilistic distribution in the track of Fig. 2.6, the solutions of both QA and
SA correspond to the ones of MAP estimate. In the left of Fig. 2.17, we draw the
schematic posterior probabilistic distribution of a problem in the limit Γ → 0 and
β → ∞. As previously mentioned, the QA and SA give the solutions corresponding
to the mode of the distribution if the schedules of QA and SA are set appropriately.
If these algorithms work well, although both solutions give same optimal solution, we
here daringly distinguish these solutions in terms of the notations as the conventional
MAP estimate (the CMAP estimate) corresponding to SA and the MAP estimate
incorporating the transverse field (the QMAP estimate) corresponding to QA.

On the other hand the MPM estimate is the algorithm by controlling the temper-
ature, which corresponds to data average. Then, we saw that there is a temperature
called Nishimori temperature which give an optimal average-case performance. It is
therefore important roll to control the temperature in the information processing based
on Bayesian framework (see the right of Fig. 2.6).

The above discussion bring us a question: How does the quantum fluctuations affect
the decoding process of the information processing in terms of MPM estimate?
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The quantum fluctuations provide the tunneling effect between states, and then
the state runs on the complicated energy landscape. In other words, the quantum
fluctuations has a property for searching a state. If we catch the optimal configuration
in the systems by controlling the thermal fluctuation, we may say the same for the
quantum fluctuation. In order to treat this topic, we re-formulate the Hamiltonians of
the information processing models simply as follows:

Ĥ = H0(σ̂
z)− Γ

N∑
i=1

σ̂x
i . (2.200)

Here, H0(σ̂
z) corresponds to the problem Hamiltonian (the conventional model) which

is transformed to the system illustrated by Pauli matrices. The second term on the
right hand side in the above equation is the transverse field which mean the quantum
fluctuation and induces the tunneling effect. The key point of our problems is to propose
the MPM estimate incorporating the quantum fluctuation (the QMPM estimate ) and
clear whether it can search the appropriate ensemble as is the case with conventional
MPM estimate (the CMPM estimate). Discussing the problem from the aspect of
probability distribution, we can describe our concepts as the right of Fig. 2.17. In this
figure, because the posterior distribution is changed by introducing the transverse field,
the solutions between the QMPM estimate and the CMPM estimate are supposed to
have a gap. Here, we consider the picture of the free energy of such a discussion. The
dashed line in Fig. 2.18 corresponds to the classical free energy. If the quantum effects
affect the system, the form of the free energy may be changed like solid line in Fig.
2.18. Because of this, the configuration which make minimum of the free energy which
depends on T and Γ is different from classical one.

Figure 2.18: Free energy of the system incorporating the quantum fluctuation (solid
line). Dashed line corresponds to the original free energy.

Which do the CMPM estimate and the QMPM estimate give the better solution
which mean the solution close to the original information x0? As a matter of course,
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Figure 2.19: Our concrete interests in this thesis.

the answer is non-trivial. Note that the original information x0 is not changed with
and without the transverse field in our formulation because the problem Hamiltonian is
same one in the classical case with only rewriting the Ising spin as the z-th component
of Pauli matrices.

By deriving the overlap which is the average-case performance measure in the sys-
tem, we can consider the performance of the QMPM estimate. Thus, in our standpoint,
we discuss the overlap in the space consisted by the thermal fluctuation T (= 1/β) and
the quantum fluctuation Γ (see Fig. 2.19).

These topics bring out the influence of the quantum fluctuation on information
processing, and also may give a benefit to improve the performance of the quantum
annealing, because such the problem presentation may be intimately related to various
problems that SA vs QA. For these reasons, it is worthy to investigate the information
processing with the quantum fluctuation.

To wrap up, the main purposes of this paper are listed as follows:

1. Can an algorithm with the quantum fluctuation retrieve an original information?
In other words, does the QMPM estimate works well?

2. Which does the performance through the QMPM estimate and CMPM estimate
give better solution, if the answer of the above question is “yes”?

3. Does the behavior of solutions through the QMPM estimate change according
with the problems?

To address these problems, we focus on three models, the image restoration model,
the error correcting code model and the CDMA multiuser demodulation model which
are described as spin models as previously mentioned, and analyze the average-case
performance incorporating the quantum fluctuation of these models by using statistical
mechanical approach and Monte Carlo simulation.
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Chapter 3

Image restoration with
transverse field

In this chapter, we investigate how the quantum fluctuation affects the performance of
the image restoration formulated by mean-field Ising model. Although the restoration
process in the image restoration incorporating the transverse field has been studied (In-
oue 2001), we here present the expanded results. The results suggest that the restored
performance incorporating the transverse field can achieve almost same performance of
the conventional restoration, the MPM estimate. We also clarify that the improvable
region for the transverse field exists in low temperature region.

3.1 Introduction

Recently, the statistical mechanics has been useful tool in an information processing
scene, where the information is the data of the message, picture, neural signals and
so on. The statistical mechanics give us the macroscopic property of the model in the
thermodynamical limit. The information processing can be modeled as the spin model
or spin glass model through Bayesian formulation, and then it can be formulated the
network model which has many spins corresponding to bits, pixels or neurons. There
are many models of the information processing as we stated in Chap. 2. One of
the typical and simple problem in information processing is the image restoration.
In such a problem, the nodes corresponds to pixels and then it can be formulated
the Markov random field (MRF) which corresponds to the ferromagnetic term as the
prior information (Geeman and Geeman 1984; Nishimori and Wong 1999). Hence, the
Hamiltonian of the image restoration can be seen as the ferromagnetic Ising model with
the random field. Conventionally, the restoration performance in the image restoration
has been investigated via MPM estimate, finite temperature restoration, in terms of
the statistical mechanics. As a result, the restoration can be optimized at Nishimori
temperature and then the performance in the other parameter region is less than it at
Nishimori temperature. Expanding the Ising model to the multi-state model, Tanaka
investigated the performance of the gray scale image by using the technique of the
statistical mechanics. The dynamics in such a model also analyzed. In these contexts,
the temperature which is the control parameter is the important parameter when we
restore an image.
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On the other hands, the quantum fluctuation can be effective searching a state in the
complicated energy landscape. The quantum annealing (QA) is the one of the example
in such a context. The transverse field we use here is used in the standard QA and
then the quantum device which is demonstrate QA has been launched (see Sec. ??).
Inoue proposed the formulation of the image restoration with the transverse field and
analyze the restoration performance by using the strategy of the statistical mechanics.
However, the formulation incorporated the transverse field may give slightly different
results of the the image restoration model via the transverse field our use here. What
does this mean? Inoue introduce the transverse field to the “effective” Hamiltonian
which contain the inverse temperature intrinsically and not original Hamiltonian. The
transverse field however should be introduced as independent parameter of the tem-
perature, and then we can discuss the restoration performance in the competitive field
with the temperature and the transverse field. We then need to reformulate the model
proposed by Inoue and investigate the restoration incorporated the transverse field our
mean. By investigating the restoration performance for further details, we clarify the
improvable region via the transverse field.

This chapter is organized as follows. In the next section, we formulate the image
restoration through the Bayesian formulation and introduce the transverse field where
we contemplate the difference point proposed in the previous work. In Sec. 3.3, we
give the analysis for the model and show the results of the mean-field model in Sec.
3.4. The final section is denoted to summary and discussions

3.2 Formulation

The purpose of an image restoration is to restore an original image from a degraded
image. We denote the degraded image as τ = {τi} , (τi = ±1, i = 1, ..., N), where N
indicates the number of pixels. The Ising system corresponds to black-and-white image
which has binary pixels. We consider the noise as Gaussian distribution:

P (τ |σ) ∝ exp

{
− 1

2a2eτ

N∑
i=1

(τi − τ0σi)
2

}
(3.1)

∝ exp

(
−h

N∑
i=1

τiσi

)
, (3.2)

where σ = {σi} , (σi = ±1, i = 1, ..., N) is the estimated image, a2eτ is variance and τe0
corresponds to signal strength. In the above calculation, we extract the term according
to σi since σ and τ are Ising type, and then we define τ0

a2eτ
as h which corresponds to

hyper parameter. In order to use the Bayes formula, we introduce the local smoothness
as prior

P (σ) ∝ exp(β
∑
<i,j>

σiσj) (3.3)
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where β = 1/T determine the strength of the smoothness and the sum < i, j > runs
over neighboring pixels. Using Bayes formula, the posterior is

P (σ|τ ) =
P (τ |σ)

Z
(3.4)

∝ exp(−Heff) (3.5)

Heff = −β
∑
<i,j>

σiσj − h

N∑
i

τiσi. (3.6)

Equation (3.6) corresponds to the effective Hamiltonian of the image restoration as-
suming the smoothness, and then Z = Tre−Heff . Regarding the smoothness parameter
as inverse temperature, we obtain the following representations:

Z =
∑
σ

exp(−βH(σ)) (3.7)

H0(σ) = −
∑
<i,j>

σiσj − Th
∑
i

N∑
i=1

τiσi, (3.8)

from which we can easily understand that the image restoration model corresponds to
the model with uniform interactions between two spins and with the random field.

We introduce the probability of an original image ξ and noise type for evaluating
the restoration performance:

P (ξ) ∝ exp

βs
∑
<i,j>

ξiξj

 (3.9)

P (τ |ξ) ∝ exp

{
− 1

2a2τ

N∑
i=1

(τi − τ0ξi)
2

}
(3.10)

= exp

{
− 1

2a2τ

N∑
i=1

(τ2i + τ20 ) +
τ0
a2τ

N∑
i=1

τiξi

}
. (3.11)

As we mentioned in Sec. 2.5, βs corresponds to the “true” smoothness, 1/a2τ is the
“true” variance and τ0 corresponds to the “true” signal strength.

In the classical system, the optimal performance is achieved at Nishimori tempera-
ture, T = 1/β = τ0

a2τ
. In order to extend the above formulation to the quantum one with

the quantum fluctuation, the transverse field, we reconsider the following Hamiltonian:1

Ĥeff = Ĥeff0 + Ĥeff1 (3.12)

Ĥeff0 = −β
∑
<i,j>

σ̂z
i σ̂

z
j − h

∑
i

τiσ̂
z
i (3.13)

Ĥeff1 = −γ
N∑
i=1

σ̂x
i , (3.14)

1We note that the Hamiltonian is effective Hamiltonian in which the spin configuration follows
Boltzman distribution P ∝ exp(−Heff).
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where the Pauli matrices are defined by

σ̂z
i =

(
1 0
0 −1

)
, σ̂x

i =

(
0 1
1 0

)
. (3.15)

The Ĥeff1 is the effective transverse field which induce the tunneling effect between
states, and then γ is the “effective” strength of the transverse field. We should careful
about the treatment of γ which should be contained the temperature part. Thus, we
have the following relation in the context of our paper,

γ = βΓ, (3.16)

where Γ is the traditional strength of transverse field, which leads to Ĥ = Ĥ0−Γ
∑

i σ̂
x
i .

In order to understand this, we rewrite Eqs. (3.12)-(3.12) as follows:

Ĥ = Ĥ0 + Ĥ1 (3.17)

Ĥ0 = −
∑
<i,j>

σ̂z
i σ̂

z
j − Th

∑
i

τiσ̂
z
i (3.18)

Ĥ1 = −Γ
N∑
i=1

σ̂x
i . (3.19)

Inoue actually has been formulated the model by means of the effective transverse field
γ, and then the results are slightly different from the case by using Γ, as we will show
below.

In this system incorporating the transverse field, the overlap corresponding to Eq.
(2.108) can be represented as

M(β, h,Γ) = Tr
ξ

∫
dτP (ξ)P (τ |ξ)ξsgn⟨σ̂z

i ⟩β,h,Γ, (3.20)

= [sgn⟨σ̂z
i ⟩β,h,Γ] (3.21)

where the local magnetization ⟨σ̂z
i ⟩β,h,Γ of the system is

⟨σ̂z
i ⟩β,h,Γ ≡ Trσσ̂

z
i e

−Ĥeff

Trσe−Ĥeff

. (3.22)

Under these formulation, we investigate the restoration performance incorporating the
transverse field. Note that [·] means the data average, i.e., [·] = Trξ

∫
dτP (ξ)P (τ |ξ)(·).

We here reconfirm the MPM estimate incorporating the quantum fluctuation and
call it the quantum MPM (QMPM) estimate. The quantum fluctuation is introduced
the restoration process as controlled parameter with temperature, and then we investi-
gate the performance by calculating the overlap (3.21) in terms of statistical mechanical
approach (see Fig.3.1).

3.3 Analysis for mean-field model

Before we start the analysis, we reformulate the system to the infinite rage (mean-field)
model as it is for the classical case:∑

<i,j>

→ 1

2

∑
i ̸=j

. (3.23)
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Figure 3.1: Conceptual picture in image restoration via quantum fluctuation. Introduc-
ing the transverse field which mean the quantum fluctuation, we consider the QMPM
estimate and the CMPM estimate.

In this treatment, a spin (pixel) is connected with all other spins. Although the above
condition is slightly different from the real cases, the effective results may be give
through a statistical mechanical approach. For deriving the state equations and the
explicit expression of the overlap, we need to analyze the quantum system which is
described as Pauli matrices. We therefore use the Suzuki-Trotter (S-T) decomposition,

exp(Û + K̂) = lim
P→∞

(
eÛ/P eK̂/P

)P
, (3.24)

where Û and K̂ are some matrices and P is called the Trotter number. To apply this
formula to the system, we can derive the corresponding classical system on the space
with extra dimension (Trotter axis), because we can operate the trace (see Appendix
B). For S-T decomposition, the effective partition function in the image restoration can
be obtained as follows,

Z = lim
P→∞

(
1

2
sinh

2γ

P

)NP
2

Tr
σ
exp(−Heff) (3.25)

Heff = − β

2NP

∑
i̸=j

σi(t)σj(t)−
h

P

P∑
t=1

N∑
i=1

τiσi(t).−
1

2
log

(
coth

βΓ

P

) N∑
i=1

P∑
t=1

σi(t)σi(t+ 1),

(3.26)

where t stands for the Trotter axis, and then the third term in the right hand side of
(3.26) represents the interaction on the Trotter axis. Note that γ = βΓ. Introducing
the order parameter,

m0 =
1

N

N∑
i=1

ξi (3.27)

m(t) =
1

N

N∑
i=1

σi(t), (3.28)
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we can derive the following expression of the free energy after performing easy calcula-
tions as follows

−β[f ] = −βm2

2
+ Tr

ξ

∫
Du

eβsm0ξ

2 coshβsm0
log 2 cosh

√
Φ2 + β2Γ2 (3.29)

Φ = βm+ haτu+ hτ0ξ, (3.30)

where m0 and m corresponds to magnetization of the original image and the estimated
image, respectively. Here, to derive the above expression, we use the static approxima-
tion (SA),

m(t) = m. (3.31)

The SA suggests that the order parameter is invariant along Trotter axis. The saddle
point condition give the state equations as follows (Inoue 2001):

m0 = tanhβsm0 (3.32)

m = Tr
ξ

∫
Du

eβsm0ξ

2 coshβsm0

Φ tanhΦ

Ξ
(3.33)

Ξ =
√

Φ2 + β2Γ2, (3.34)

where γ = βΓ. The detailed calculations for deriving the state equations are given in
Appendix C1. The overlap defined by Eq. (3.21) can be expressed as follows as the
function of β, h and Γ, 2

M(β, h,Γ) = Tr
ξ

∫
Du

eβsm0ξ

2 coshβsm0
sgn(Φ). (3.35)

This equation can be understand in analogy with classical case (2.123). The mathe-
matical derivation for the overlap is given in Appendix D.

3.4 Results

In this section, we give some numerical results by calculating Eqs. (3.32)-(3.35). Al-
though the image restoration previously investigated as we noted earlier, we investigate
the restoration by using not γ but Γ = βγ because of consideration for fundamental
meaning of the transverse field. And then, we show the result which slightly different
from the previous work and clarify the improvable region due to the transverse field.

3.4.1 Peaked behavior of restoration performance

First of all, we investigate the restoration performance by calculating the overlap M
numerically. Figure 3.2(a) shows the dependence the overlap M on the smoothness
parameter (temperature) T in the case that h is kept to the optimum value Tsτ0

Ta2τ
. In

2We use here the trivial relation,

sgn

(
ΦtanhΦ

Ξ

)
= sgn(Φ), for Ξ > 0
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Figure 3.2: Dependence of the overlap M on the smoothness (temperature) T (a) and
on the transverse field Γ (b) for Ts = 0.9 in the case that h = Tsτ0

Ta2τ
= 0.9. In (a), each

line indicates the cases that Γ = 0.0, Γ = 0.3 and Γ = 1.0. In (b), each line indicates
the cases that T = 0.1, T = 0.5 and T = 1.0.

the case that Γ = 0.0, which corresponds to the classical case, the overlap is peaked
at T = Ts = 0.9 as we saw in Sec. 2.5. If we introduce the transverse field, we see
that the overlap has peak at some temperature which is different value in the classical
case. The overlap in the case that Γ = 0.3 is actually peaked at T = 0.9, and then
the peaked value approaches to the classical case, i.e., Mtop ∼ 0.7529. On the other
hand, however, there is no peaked behavior in the case that Γ = 1.0. Consequently,
although the peaked behavior disappear increasing the strength of the transverse field,
the optimal restoration performance can achieve it in the classical case by controlling
Γ appropriately. That result is one of the important results in this work. We give the
peaked behavior on the (Γ − T ) phase in Fig. 3.3, where the gradation indicate the
amount of the overlap and the dashed line represents the peaked overlap Mtop. We
can see that a point which gives peaked overlap decrease monotonically from T = 0.9
without the transverse field to T = 0.05 with the finite transverse field (Γ = 0.673).
Note that we cannot gain the numerical solutions of Eqs. (3.32)-(3.35) in the low
temperature limit for the numerical accuracy. Focusing on the amount of the overlap,
we see that Mtop ≃ 0.7529 at (Γ = 0, T = 0.9) and Mtop ≃ 0.7529 at (Γ = 0.673, T =
0.05), and thus the peaked overlap incorporating the transverse field can achieve it via
thermal fluctuation, conventional estimation.

Let us consider the comparison with the previous work proposed by Inoue, in which
the transverse is defined by γ instead of Γ we use here. Figure 3.4(a) shows the de-
pendence the overlap M on T in the cases that γ = 0.0, γ = 0.3 and γ = 1.0. The
case that γ = 0.0 corresponds to the classical case which give same result as the solid
line in Fig. 3.2(a). In the cases that γ = 0.3 and γ = 1.0, although the overlap is
peaked at some temperature in both cases, it goes to same value in the low temper-
ature limit T = 0, i.e., M ∼ 0.7501. Thus, the overlap presents invariably peaked
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Figure 3.3: Amounts of the overlap (gradation) and peaked overlap Mtop (dashed line).

behavior even if γ increase extremely. Therefore, the behavior of the restoration per-
formance by using γ-expression slightly different from that by using Γ-expression as the
transverse field. We can easily understand the reason for difference as follows. While
γ cannot be seen as independent parameter of β = 1/T because γ is incorporated in
the “effective” Hamiltonian, Γ can be seen as independent parameter of β. For this
reason, the overlap incorporated γ goes to same value in the low temperature limit,
i.e., M(β, h, γ) → M(∞, h,∞), (β → ∞). The peaked behavior on (γ − T ) phase is
shown in Fig.3.4(b). The figure shows that the dashed line corresponding to it in Fig.
3.3 represents asymptotic behavior which mean that Mtop exists in the condition that
γ → ∞ and T = 1/β → 0. The behavior different from it represented in Fig, 3.3.

3.4.2 Improvable behavior of restoration performance

Next, we focus on the improvable region where that the restoration performance via the
transverse field is better than it in the conventional estimate. In order to understand
the region mathematically, we introduce the following quantity,

∆M(β, h,Γ) ≡ M(β, h,Γ)−M(β, h, 0). (3.36)

If ∆M(β, h,Γ) is lager than 0, the parameter set {β, h,Γ} are in the improvable region.
On the other hand, if ∆M(β, h,Γ) < 0 give the Worsen region. Figure 3.5(a) is the
dependence ∆M(β, h,Γ) on Γ for Ts = 1.0 h = Tsτ0

Ta2τ
. The region where ∆M > 0

correspond to the improvable region, while ∆M < 0 correspond to the worsen region.
Thus, we can see that the improvable region exists in low temperature region. Figure
3.5(a) shows the improvable region, the worsen region and the peaked overlap Mtop

which corresponds to the dashed line in Fig. 3.3. We can see that the region by means
of the transverse field, the quantum fluctuation, exists on a widespread basis.
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Figure 3.4: Previous results of M vs T for Ts = 1.0, h = Tsτ0
Ta2τ

= 0.9. In this case, we

use the transverse field as γ = βΓ.

3.5 Summary and discussion

In this chapter, we investigated the image restoration performance via transverse field
by using the statistical mechanical approach. Remaining the classical formulation, by
adding the transverse field to the Hamiltonian, we considered the MPM estimate incor-
porating the quantum fluctuation (the QMPM estimate). The total Hamiltonian for-
mulated here as the quantum Ising spin model with random field. While the transverse
field is introduced to “effective” Hamiltonian in the previous study, it is introduced to
“pure” Hamiltonian in this work, which means that the transverse field defined by the
previous work corresponds to be proportional to the inverse temperature, i.e., γ = βΓ.
As a result, the behavior given in previous study is slightly different from our results.
We then conclude our work as follows:

1. The transverse field allows us to restore an image instead of the thermal fluctu-
ation. The restoration incorporating the transverse field can the original infor-
mation as with the conventional strategy. In other words, the QMPM estimate
works well. And then, the peaked overlap exists in some parameter region.

2. The restoration performance may appropriately same as it via classical algorithm.

3. Comparing with previous work in which the transverse field is used as one incor-
porating the inverse temperature, the peaked behavior is slightly different from
our results.

4. In the lower temperature region where the temperature is lower than Nishimori
temperature, the improvable region due to the transverse field exists. Thus,
although the optimal performance with the transverse field can not be better than
classical one, the transverse field can induce an improvement of the restoration
performance in a certain region.
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0.9. (b) Improvable region (∆M > 0) and worsen region (∆M < 0), and the boundary
between them corresponds to ∆M = 0. Dashed line is Mtop which indicates the same
as the dashed line in Fig. 3.3.

The above results are given by the numerical solutions for the self-consistent equa-
tions under the static approximations. We may need to the validity of the approxi-
mation. Actually, there is a case broken the approximation in the quantum spin glass
model (e.g., Obuchi et al. 2007). The problem is the future work. In the context of
the image restoration, we can expand the model to the gray scale model. Because the
multi state model however give the week effect of the transverse field, it is not easy to
perform the expansion. If we can discuss an image restoration which has many tone
generally, the information processing via the transverse field will be a rich argument.
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Chapter 4

Error correcting codes with
transverse field

In this chapter, we discuss the decoding performance of error-correcting codes based
on a model in which quantum fluctuations are introduced by means of a transverse
field. The essential issue in this chapter is whether the quantum fluctuation improves
the decoding quality compared with the conventional estimation based on thermal
fluctuation, which is the MPM estimate and also is called finite-temperature decoding.
The results are illustrated by numerically solving saddle-point equations and performing
a Monte Carlo simulation. We also evaluated the upper bound of the overlap between
the original sequence and the decoded sequence derived from the equations of state for
the order parameters, which is a measure of the decoding performance. 1

4.1 Introduction

As we mentioned in Chap. 2, the error-correcting code is closely related to the mean-
field spin glass model, and then we calculate the decoding performance of such the
model by using the statistical mechanical approach. In particular, Sourlas has rep-
resented error-correcting codes in terms of a mean-field spin glass model that can be
considered as a generalization of the Mattis model (Sourlas 1989). Rujan suggested
that decoding procedure of the model can be modified so it operates not in the ground
state but in a state at a finite temperature (Rujan 1993). The decoding of other error-
correcting codes, e.g., low-density parity check code and convolutional code, has also
been investigated by means of statistical-mechanical analysis (Kabashima and Saad
1999; Montanari and Srourlas 2000). The detailed illustration is given in Sec. 1.4.

In the field of the solid state physics, the quantum spin glass models have been in-
vestigated since the 1980’s in order to clarify the microscopic properties of spin glasses.
A well-known problem is how the transverse field, which induces the tunneling effect

1Preliminary results for the present work also have been published elsewhere:
Otsubo, Y., Inoue, J., Nagata, K., Okada, M. (2012). Physical Review E, 86, 051138-1 - 051138-10.

Published under licence in Effect of quantum fluctuation in error-correcting codes by APS. Publishing
Ltd. Content from this work may be used under the terms of the Creative Commons Attribution 3.0
licence. Any further distribution of this work must maintain attribution to the authors and the title
of the work, journal citation and DOI.
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between states, affects the quantum phase transition (Chalrabarti et al. 1996). The
properties of the Sherrington-Kirkpatrick model with a transverse field have been in-
vestigated by using the mean-field approximation and the replica method, and it has
been found that there is a phase transition from the spin glass phase to the param-
agnetic phase depending on the strength of the transverse field (Ishii and Yamamoto
1985; Thirumalai et al. 1989). The replica method has also been used to investigate
the random energy model (Goldscmidit 1990). Moreover the the replica symmetry
breaking solution when quantum effects are taken into account consideration has been
researched (Goldscmidit and Lai 1990; Kim and Kim and Kim 2002).

Although there have been numerous studies on information processing using classi-
cal spin glasses as a model and on the properties of quantum spin glasses themselves, the
effect of introducing a transverse field, i.e., quantum fluctuation, into an information
processing model has not been thoroughly investigated. We expected that quantum
fluctuations would induce some changes in decoding quality compared with classical
decoding, as inspired by the annealing method. The quantum annealing is an algo-
rithm for finding the global minimum of an objective function for a process analogous
to simulated annealing by using quantum fluctuation, and that is known to be useful
method in the optimization problems (e.g., Farhi et al. 2001). Inoue has investigated
the topic of image restoration by using quantum fluctuations, but that problem cor-
responds not to a spin glass model, which has random interactions among spins, but
to a random field model (Inoue 2001, see Chap. 3). Though the spin glass with the
transverse field has been investigated in terms of error correcting (Inoue 2005, 2009),
the analytical representation of the decoding measure is not correct and then then our
interesting in this thesis is still open.

In this work, we focus on Sourlas code, an error-correcting code that can be de-
scribed in terms of a mean-field spin glass model. We investigate the decoding per-
formance of Sourlas code on the basis of a model in which a quantum fluctuation is
introduced by means of the transverse field.

This chapter is organized as follows. In Sec. 4.2, we present a Bayes formulation of
the Sourlas code. In Sec. 4.3, we analyze the model. In Sec. 4.4, we present analytical
and simulation results and evaluate the upper bound of the overlap, which is a measure
of the decoding performance of Sourlas code. Section 4.5 is a summary and discussion
of the results.

4.2 Formulation

First, we describe the error-correcting code model and the maximum a posteriori prob-
ability (MAP) and the maximizer of the posterior marginals (MPM) estimates. Next,
we extend the model to one with a quantum transverse field, i.e., with quantum fluc-
tuations.

The idea of error-correcting codes is to add redundancy to messages so that receivers
can recover the original message from noisy output. Suppose that the original message
is represented by a configuration of Ising spins ξ = {ξ1, · · · , ξN} , (ξi = ±1, i = 1, .., N)
that has been generated according to a probability distribution function P (ξ). We
can formulate the Sourlas code as a mean-field model with p-body spin interactions
(Sourlas 1989). We assume that the sender transmits all possible combinations NCp of
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the products of p-components in an N -dimensional vector ξ with components ξi1 · · · ξip,
through a Gaussian channel with mean J0p!ξi1 · · · ξip/Np−1 and variance J2p!/2Np−1.
That is, the output probability is given by

P (Ji1...ip|ξi1 · · · ξip) =
(
Np−1

J2πp!

) 1
2

exp

{
−Np−1

J2p!

(
Ji1...ip −

J0p!ξi1 · · · ξip
Np−1

)2
}
, (4.1)

where J and J0 are independent of N and p, and J0/J means the signal-to-noise ratio.
The expression P (Ji1···ip|ξi1 · · · ξip) means the conditional probability of the signal Ji1···ip
given encoded message ξi1 · · · ξip. Furthermore, we assume that each bit ξi in the
original message ξ is generated independently (the so-called memory-less channel), i.e.,

P (J |ξ) =
N∏
i=1

P (Ji1···ip|ξi1 · · · ξip) (4.2)

and the prior is uniform i.e., P (ξ) = 2−N . We can express the posterior probability
P (σ|J) in terms of Eqs. (4.1) and (4.2) by using the Bayes formula

P (σ|J) =
P (J |σ)P (σ)

TrσP (J |σ)P (σ)
(4.3)

∝ exp(β
∑

i1<...<ip

Ji1···ipσi1 · · ·σip), (4.4)

where β(≡ 1/T ) is the controlled parameter in the signal retrieval algorithm. The
optimal retrieval can be achieved if a β corresponding to the noise level is chosen as
2J0/J

2 in the Gaussian channel (4.1).

We shall write the dynamical variables used for decoding as σ = {σ1, · · · , σN} ,
(σi = ±1, i = 1, ..., N). Equation (4.4) represents the probability distribution of the
inferred spin configuration σ given the output J . We can regard the right hand side
of Eq. (4.4) as being a Gibbs-Boltzmann distribution, and hence, we shall call β the
inverse temperature.

We might choose the spin configuration that maximizes Eq. (4.4) as the decoded
sequence. This is the MAP estimate corresponding to finding the ground state of the
following Hamiltonian:

H = −
∑

i1<...<ip

Ji1···ipσi1 · · ·σip. (4.5)

The sum in this Hamiltonian runs over all possible combinations of p spins out of N
spins. Therefore, we can see that the problem of the error-correcting code model is
closely related to a ground-state search in the mean-field models of spin glasses, e.g.,
the SK model (p = 2) and random energy model (p → ∞) (Derrida 1981).

In the MPM estimate framework, we focus on a single bit σi and consider the
posterior marginal probability:

P (σi|J) =
Trσ(̸=σi) exp(β

∑
i1<...<ip

Ji1···ipσi1 · · ·σip)
Trσ exp(β

∑
i1<...<ip Ji1···ipσi1 · · ·σip)

. (4.6)
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Let us compare P (σi = +1|J) and P (σi = −1|J). The inferred spin in terms of the
MPM estimate is given by

ξ̂i = sgn (P (σi = +1|J)− P (σi = −1|J))

= sgn

(
Tr
σi

σiP (σi|J)
)

= sgn

(
Trσσie

−βH

Trσe−βH

)
≡ sgn⟨σi⟩β, (4.7)

where we have defined the brackets ⟨·⟩β as

⟨·⟩β =
Trσ (·) e−βH

Trσe−βH
. (4.8)

Equation (4.7) means calculating the local magnetization at a finite temperature T (≡
1/β). Hence, the MPM estimate is also called finite-temperature decoding. In this work,
we call this decoding algorithm the conventional MPM (CMPM) estimate.

Now, let us introduce the overlap M , defined as

M classic(β) = Tr
ξ

∫ ∏
i1<...<ip

dJi1...ipP (J |ξ)P (ξ)ξisgn⟨σi⟩β (4.9)

≡ [ξisgn⟨σi⟩β], (4.10)

which is the quality of the retrieved signal. Henceforth, we use the bracket [·] for
data-average over the distribution P (J |ξ)P (ξ) as in (4.9). The larger overlap is, the
better the decoding performance will be. It is known that the MPM estimate is better
than the MAP estimate, i.e., ground-state decoding, if we choose the temperature
appropriately. This temperature is well known as the Nishimori temperature, which is
β = 2J0/J

2 ≡ βp for Eqs. (4.1) and (4.4).
We can extend the above formulation to the quantum case by adding a quantum

transverse field term leading to the tunnel effect,

Ĥ1 ≡ −Γ
∑
i

σ̂x
i (4.11)

to the Hamiltonian (4.5) as a quantum fluctuation. The expression σ̂x
i means the x

component of the Pauli matrix, and Γ controls the quantum fluctuation strength. We
still give detailed explanation for the transverse field in Chapter 3. Thus, a quantum
Hamiltonian can be obtained by adding a transverse field (4.11) to the classical Hamil-
tonian (4.5):

Ĥ = Ĥ0 + Ĥ1 (4.12)

Ĥ0 = −
∑

i1<...<ip

Ji1...ipσ̂
z
i1 · · · σ̂z

ip (4.13)

where σ̂z
i is the z component of the Pauli matrix. In the case of Γ = 0, the system

corresponds to a classical system without any quantum effects. In order to understand
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Figure 4.1: Conceptual picture in error correcting code via quantum fluctuation.

the effect of this quantum fluctuation (Eq. (4.11)), let us consider the case of a single-
spin system. Denoting the eigen states of σ̂z as |+⟩ = (1, 0)t and |−⟩ = (0, 1)t, the x
component of the Pauli matrix becomes σ̂x = |+⟩ ⟨−| + |−⟩ ⟨+|. Thus, we find that
σ̂x |±⟩ = |∓⟩; that is, the up-state described by |+⟩ transits to the down-state described
by |−⟩ by means of the tunnel effect.

The overlap in the case of a quantum system (4.12) is defined as

M(β,Γ) = Tr
ξ

∫ ∏
i1<...<ip

dJi1...ipP (J |ξ)P (ξ)ξisgn⟨σ̂z
i ⟩β,Γ (4.14)

= [ξisgn⟨σ̂z
i ⟩β,Γ]. (4.15)

The inferred spin in terms of the MPM estimate including a quantum fluctuation cor-

responding to eq. (4.7) is written as a density matrix: 2 ρ̂ ≡ e−βĤ(σ|J)/Tre−βĤ(σ|J)

(Inoue et al. 2009):

ξ̂i = sgn (Tr(σ̂z
i ρ̂)) (4.16)

We confirm here our purpose of this chapter. While the conventional decoding process is
MPM estimate in which temperature is controlled, our proposition is how the quantum
fluctuation affects the decoding performance. In other words, we propose the MPM
estimate incorporating the transverse field, the quantum MPM (QMPM) estimate.

4.3 Analysis

In order to explicitly calculate the decoding performance of the error-correcting code
model with quantum fluctuations, we use the standard replica method to express the
overlap equation (Eq. (4.14)) from the saddle point equations that determine the
equilibrium state.

First, we apply a Suzuki-Trotter (S-T) decomposition (Suzuki, 1976, see Appendix
B)

exp(K̂ + Û) = lim
P→∞

(
eK̂/P eÛ/P

)P
(4.17)

2We will actually calculate this quantity in “classical system” by using Suzuki-Trotter formula as
we explain in next section.
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to the partition function Z = Tr exp(−βĤ) with Û = −
∑

Ji1···ipσ̂
z
i1 · · · σ̂z

ip, K̂ =
−Γ
∑

i σ̂
x
i in order to cast the problem as an equivalent classical spin system. Accord-

ingly, Z and the effective Hamiltonian Heff are given by

Z = lim
P→∞

(
1

2
sinh

2βΓ

P

)NP
2

Trσ exp (−Heff) (4.18)

Heff = − β

P

P∑
t=1

∑
i1<...<ip

Ji1...ipσi1(t) · · ·σip(t)

− 1

2
log

(
coth

βΓ

P

) N∑
i=1

P∑
t=1

σi(t)σi(t+ 1), (4.19)

where P is called the Trotter number and t is the Trotter index. We can see that
the dimensionality of the corresponding classical system after application of the S-T
formula increases by 1. Using the well-known replica method,

[log Z] = lim
n→0

[Zn]− 1

n
, (4.20)

we calculate the free energy density [logZ] in terms of [Zn], where

[Zn] = Tr
ξ

∫ ∏
i1<...<ip

dJP (ξ)P (J |ξ)Zn. (4.21)

The subsequent application of a gauge transformation Ji1...ip → Ji1...ipξi1 · · · ξip and
σi → σiξi in [Zn] removes ξ from the integrand of the Sourlas code model. Thus, the
problem turns to be equivalent to the case of ξi = 1(∀i), i.e., the ferromagnetic gauge.
Hence, in thermodynamic limit N → ∞, introducing the following order parameters,

mµ(t) =
1

N

∑
i

σµ
i (t) (4.22)

Qµν(t, t
′) =

1

N

∑
i

σµ
i (t)σ

ν
i (t

′) (4.23)

Qµµ(t, t
′) =

1

N

∑
i

σµ
i (t)σ

µ
i (t

′), (4.24)

we can obtain the free energy per spin (bit) and the saddle-point equations of it with
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respect to the order parameters: 3

−β[f ] =
β2J2

4
(χp − qp) +

1

2
qq̂ − χχ̂−mm̂+ βJ0m

p +∫
Dz log

∫
Dz2 cosh

√
Φ2 + Γ2 (4.25)

m =

∫
Dw

∫
Dz

ΦsinhΞ

ΩΞ
(4.26)

q =

∫
Dw

(∫
Dz

ΦsinhΞ

ΩΞ

)2

(4.27)

χ =

∫
Dw

Ω

∫
Dz

(
β2Γ2 sinhΞ

Ξ3
+

Φ2 coshΞ

Ξ2

)
(4.28)

Ξ =
√

Φ2 + β2Γ2 (4.29)

ϕ =
Φ

β
= pJ0m

p−1 + wJ

√
pqp−1

2
+ zJ

√
p (χp−1 − qp−1)

2
(4.30)

Ω =

∫
Dz coshΞ. (4.31)

Here,
∫
Du(·) =

∫∞
−∞ du(·)e−

u2

2 /
√
2π. Note that the above equations of state for the

order parameters (4.26)–(4.31) are obtained under replica symmetry (RS) and the static
approximation (SA):

mµ(t) = m, Qµν(t, t
′) = q, Qµµ(t, t

′) = χ. (4.32)

The detailed illustration for deriving these equations are given in Appendix C2 and the
previous work (Obuchi et al. 2007). Although Obuchi et al. derived these equations,
the work was not investigated in terms of error correcting but physical interesting, and
then the overlap which is decoding measure has not been interesting.

The final goal in this section is to derive the expression of the overlap M . The
overlap in the quantum case can be obtained in the similar way as is done in the
classical system (see Sec. 2.6). The physical meanings of m and q are the magnetization
and the spin glass order parameter respectively, and each parameters can be denoted
as m = [⟨σi⟩β,Γ], q = [⟨σi⟩2β,Γ]. By comparing these expressions and Eqs. (4.26) and

(C69), we see that
∫
DzΦsinhΞ

ΩΞ is closely related to ⟨σi⟩β,Γ. We can confirm this by
adding h

∑
i σ

µ
i (t)σ

ν
i (t

′) to [Zn]. The detailed calculations are given in Appendix D.
The final form of the overlap M(β,Γ) is 4

M(β,Γ) =

∫
Dwsgn

(∫
Dz

ΦsinhΞ

ΩΞ

)
. (4.33)

In the case of a classical system, i.e., Γ = 0, the overlap M classic can be derived from

3We here omit the explicit expression for the conjugate parameters, m̂, q̂ and χ̂ by substituting the
saddle point conditions of them into the expressions of m, q and χ.

4Inoue et al. derive the overlap in the case that T = 0, pure quantum case (Inoue et al. 2009).
However, the analytical results may not be correct because the saddle point approximation for T = 0
should be treated rigorously (Inoue, private communication).
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Eq. (4.33) for
∫
DzΦsinhΞ

ΩΞ = tanhβ

(
wJ
√

pqp−1

2 + pJ0m
p−1

)
as

M classic(β) =

∫
Dwsgn

(
wJ

√
pqp−1

2
+ pJ0m

p−1

)
. (4.34)

This form is the same one derived from the previous work (Nishimori, 1999, see Eq.
(2.155)).

4.4 Results

Below, we numerically solve Eqs. (4.26)–(4.31) and (4.33) and discuss the performance
of decoding based on a model with quantum fluctuations. We also show the results of
a quantum Monte Carlo simulation and calculate an upper bound of the overlap.

4.4.1 Stability of error correction

Figure 4.2: (a): Dependence of order parameters m, q, and χ on the level of quantum
fluctuation Γ/J for p = 3, T/J = 0.1, and J0/J = 1.0. (b)-(d): Phase diagram for each
parameter with p = 3.
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As a preliminary step to calculating the decoding performance, we shall determine
whether or not decoding is possible by solving Eqs. (4.26)–(4.31). As we increase
the strength of the transverse field Γ/J , i.e., the quantum fluctuation, we observe a
first-order transition at a finite Γ/J for p = 3, T/J = 0.1, and J0/J = 1.0 (see Fig.
4.2(a)). In the ferromagnetic phase (Ferro: m > 0, q > 0, χ > 0), the overlap M has
a finite value, which mean that error correction is possible. On the other hand, the
paramagnetic phase (Para: m = 0, q = 0, χ > 0) is a random guess phase for which
error correction is impossible.

The phase diagrams of the model are shown in Fig. 2(b)-(d). As the signal-to-
noise (SN) ratio, J0/J increase, the ferromagnetic phase becomes larger. We can see
that the ferromagnetic phase exists in low-temperature region T ∼ 0. Moreover, the
ferromagnetic phase disappears, and then non-retrieval spin glass phase (Spin Glass:
m = 0, q > 0, χ > 0) appears in its place as the SN ratio J0/J decrease. Note that the
phase boundary in the low temperature limit (T → 0) has not been determined.

4.4.2 Peaked behavior of decoding performance

We here present the peaked performance of the decoding performance by seeing the
overlap. Then we have two approaches. One is the analytical investigation by solving
Eqs. (4.26)–(4.33), and the other is the quantum Monte Carlo simulation. The latter is
the simulation for the quantum system by using the classical computer (not quantum
computer).

Analytical results

Figure 4.3: (a): Dependence of the overlap M on temperature T/J for p = 3 and
J0/J = 1.0, where Γ/J is fixed to 0.0, 0.3, and 0.8. The solid line corresponds to the
line in Fig. 2.13 (b): Dependence of M on level of quantum fluctuation Γ/J for p = 3
and J0/J = 1.0, where T/J is fixed to 0.1, 0.5, and 0.8. In these cases, the Nishimori
temperature corresponds to 0.5.

First, we numerically solved Eqs. (4.26)–(4.33) and plotted the dependence of
the overlap M on T/J for p = 3 and J0/J = 1.0. Figure 4.3(a) shows that the
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Figure 4.4: Dependence of overlap M on level of quantum fluctuation Γ/J for p = 2
(a) and p = 4 (b) for J0/J = 1.0.

optimal amplitude of temperature T/J at Γ/J = 0.0 is 0.5, which corresponds to the
Nishimori temperature in the case of J0/J = 1.0. The overlap for Γ/J = 0.3 is at a
maximum for a finite T/J smaller than 0.5. The maximum value of M is approximately
0.983, which is roughly equal to the case of Γ = 0.0. Thus, the MPM estimate with a
quantum fluctuation (the QMPM estimate) seems to achieve the same optimal decoding
performance as the conventional MPM (CMPM) estimate. Next, let us consider a large
quantum fluctuation, Γ/J = 0.8. In this case, the overlap M monotonically decreases
as the temperature T/J increases. In the low temperature region, however, we find that
the overlap due to the quantum fluctuation is larger than in the classical case. This
means that the quantum fluctuations do make the decoding performance better than a
classical estimate based on the thermal fluctuation when the temperature is lower than
the Nishimori temperature.

Figure 4.3(b) shows the dependence of the overlap M on Γ/J . At low temperature,
T/J = 0.1, there is a quantum fluctuation that maximizes the overlap at the finite
amplitude of Γ/J . The maximum overlap is approximately 0.983, which is equal to the
value in the classical case. We see that the overlap in the case of T/J = 0.5, which
corresponds to the Nishimori temperature, reaches a maximum at Γ = 0.0. The overlap
has a lower value in the case of T/J = 0.8.

Figure 4.4 shows the overlap for p = 2 and p = 4. These overlaps are qualitatively
similar to those in Fig. 4.3. We also find that the overlap is large if the number of spin
interactions p is large. In the case of the random energy model, p → ∞, we can use
Eqs. (4.26)–(4.31) to prove that M → 1 for χ ∼ q ∼ 1,m ∼ 1 (Obuchi et al. 2007)

Figure 4.5 shows the phase diagram for the overlap in T/J-Γ/J space. The grada-
tion indicates the amount of the overlap, and the solid line represents the maximum
overlap 0.983. These results imply that the decoding performance can be made approx-
imately optimal by using quantum fluctuations. Figure 4.6 which is the detail result
for optimal overlap, Mtop, dependence of the transverse field Γ on the solid line in Fig.
4.5 in detail however shows that Mtop decreases according with Γ.
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Figure 4.5: Phase diagram for p = 3 and J0/J = 1.0. The gradation represents the
amount of the overlap. The solid line represents the maximal value of the overlap, i.e.,
Mtop ≃ 0.983.

Quantum Monte Carlo results

A d-dimensional quantum system can be transformed into a (d+1)-dimensional classical
system by using the Trotter decomposition, as mentioned in Sec. 4.3. The local field
at site x and the Trotter axis k can be written as

hx(k) = − β

2M

∑
i̸=x

Jixσi(k)−
B

2
(σx(k − 1) + σx(k + 1)). (4.35)

In the Metropolis algorithm, the spin system is updated by the transition probability,
Prob (σx(k) = −σx(k)) = exp(−∆Heff) with ∆Heff = 2hx(k)σx(k) (Metropolis et al.
1953). Accordingly, we can calculate the expectation ⟨σi⟩ and the overlap M under the
ferromagnetic gauge. Figures 4.7(a) and (b) plot the overlap M as a function of T/J
in the cases of the classical system and Γ/J = 0.1 for p = 2, N = 500, and P = 20. We
find that the overlap decreases in an overall sense. Figure 4.7(b) is a magnified view
of Fig. 4.7(a), and the solid horizontal line is the maximum overlap obtained from the
analysis. Here, we can see that each overlap is non-monotonic and is a maximum at a
finite temperature T/J . The decoding performance in the classical case is optimal at
T/J ∼ 0.5, which corresponds to the Nishimori temperature. On the other hand, the
optimal temperature shifts to the low-temperature region in the case of Γ/J = 0.1, but
the maximum overlap, about 0.944, does not change. Figures 4.7(c) and (d) show the
overlap M as a function of quantum fluctuation Γ/J . The overlap reaches a maximum
(0.944) at finite Γ/J . These findings are qualitatively similar to the analytical results
presented in the previous subsection.
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Figure 4.6: The dependence ofMtop on Γ/J for J0/J = 1.0. Here we set the temperature
T/J on the optimal value corresponding to a value of Γ.

4.4.3 Improvable behavior of decoding performance

We particularly investigate the decoding performance in low temperature region, where
the overlap is larger than classical case, as we see the above subsection. Then, we
introduce the following quantity

∆M(β,Γ) ≡ M(β,Γ)−M(β, 0), (4.36)

which means the difference between the overlap with the transverse field and it in the
classical case. The region where ∆M > 0 presents the improvable region, and the other
indicates the Worsen region. Figure 4.8(a) shows the dependence of ∆M on Γ/J in
the case that T/J = 0.1 and 0.5. We can see that the parameter can be separated
into the improvable region (∆M > 0) and the worsen region (∆M < 0), depending
on T/J and Γ/J . We then clarify the improvable region and the worsen region on the
Γ/J − T/J plane (Fig. 4.8(b)). The transverse field can present advancement of the
decoding performance in the the temperature lower than Nishimori temperature.

4.4.4 Upper bound of the overlap

As we saw the above section, the optimal overlap incorporating the transverse field,
Mtop slightly decrease by increasing Γ. In this section, we derive the inequality of the
overlap and then clarify the upper bound of it. By theoretically estimating the upper
bound of the overlap, we can show that the decoding performance in the presence of
quantum fluctuations reaches the optimal performance for the classical system, Γ = 0.
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Figure 4.7: (a): Dependence of overlap M on temperature T/J for p = 2 and J0/J =
1.0. (b): Magnified view of (a). (c): Dependence of overlap M on quantum fluctuation
Γ/J for p = 2 and J0/J = 1.0. (d): Magnified view of (c). In (b) and (d), the
horizontal line is the maximum value, 0.944, obtained by solving Eqs. (4.26)–(4.33)
(see Fig. 4.4(a)). The error bars in each figure were calculated by averaging over ten
independent runs.

To show this, we rewrite the overlap in the classical case defined by (4.9) as follows:
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Figure 4.8: (a): ∆M vs Γ for J0/J = 1.0 in the case that T/J = 0.1 and T/J = 0.5.
(b): The improvable region (∆M > 0) and the worsen region ∆M < 0) and the
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Mtop corresponding to the solid line in Fig, 4.5.
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Eq. (4.1) and M classic
max means the upper bound in the classical case. For the quantum

system, the overlap (4.14) can be rewritten as follows:
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Thus, the optimal decoding performance in the presence of quantum fluctuations is
the same as in the case of thermal fluctuation. Here, we can see that the maximum
overlap of the classical system corresponds to the overlap at the Nishimori temperature
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The inequality shows that the optimal decoding performance incorporating the trans-
verse field can not exceed the optimal one in the classical case and then it is maximized
at the case of no transverse field.

4.4.5 Shannon bound
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Figure 4.9: Phase diagram in the REM with the transverse field for Γ = 0.75 (Obuchi
et al. 2007). In the Ferro phase, the error-free decoding can be achieved.

In this, subsection, we mention the Shannon bound in the limit p → ∞. In the
classical system, the Sourlas code, equivalent to the REM, is capable to the error-free
decoding in the ferromagnetic phase (see Sec. 2.6). Considering 0 ≤ m, q, χ ≤ 1, the
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conjugate variables m̂, q̂ and χ must be 0 or ∞ in the limit p → ∞ for Eqs. (C71),
(C72) and (C73). We should have the consistent relations among each parameters.
Considering the condition that (m̂, q̂, χ̂) = (∞,∞,∞), we obtain the variables as fol-
lows: (m, q, χ̂) = (1, 1, 1) for Eqs. (4.26)–(4.31). It would appear naturally that the
ferromagnetic phase satisfy the conditions. The overlap then goes to one, and then the
error-free decoding can be achieved, which mean that the QMPM estimate also allows
us to decode perfectly in the limit p → ∞.

Next, we consider the condition that the perfect decoding occurs. The phase tran-
sitions of the quantum REM with the ferromagnetic phase was investigated in the
previous work (Obuchi et al. 2007; Inoue 2009). Let us consider the phase in which
m = 0, m̂ = 0. If q̂ = 0, there are two situations that χ̂ is 0 or ∞. In the case that
(m̂, q̂, χ̂) = (0, 0,∞), we obtain the variables (m, q, χ) = (0, 0, 1). On the other hand, in
the case that (m̂, q̂, χ̂) = (0, 0, 0), we obtain (m, q, χ) = (0, 0, tanhβΓ/βΓ). The former
corresponds to the classical paramagnetic phase(CPara) in which the quantum effect
is not advantage for χ = 1 and the latter is the quantum paramagnetic phase (QPara).
Next, we consider the condition that q̂ = ∞ under the condition that χ̂ = 0 and m̂ = 0.
In this case, we obtain the variables as follows: (m, q, χ) = (0, 1, 1) because of finite q
and the condition that q ≤ χ. The phase corresponds to the spin glass phase.

We summarize these phases:

Ferro : (m, q, χ) = (1, 1, 1), (4.40)

Spinglass : (m, q, χ) = (0, 1, 1), (4.41)

CPara : (m, q, χ) = (0, 0, 1), (4.42)

Qpara : (m, q, χ) = (0, 0,
tanhβΓ

βΓ
). (4.43)

Although we can consider the other variations, these other solutions which give the
consistency between the order parameters and the conjugate variables of it are nothing.
Focusing on the Spin glass phase, the Ferro phase and CPara phase, the quantum effect
dose not affect the system because χ = 1 and then the cases correspond to the classical
case. From the above consideration, the RS condition also may be broken in the
quantum REM along with the classical REM. Obuchi et al. investigated the 1RSB
solutions along with the classical case in the spin glass phase and then depicted the
phase diagrams (see Fig. 4.9).

Our interest is the Shannon bound in the context of the error correcting. As we
addressed the conditions of each phase above, the boundary between the Spin glass
phase and the Ferro phase does not change, and then the condition which give R < C
is same as the classical case. Therefore, we can see that the error-free decoding can be
achieved in the following condition for R < C:√

log 2 <
J0
J
, (4.44)

which is the same as the classical condition, Eq. (2.161).

4.5 Summary and discussion

In this chapter, we focused on decoding of Sourlas code with the transverse field and
analyze the overlap which is the average-case decoding measure by using the statistical
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mechanics. The Hamiltonian of the Sourlas code model corresponds to the p-body
interaction spin glass model with the transverse field. From the analysis by using the
replica method which is the standard technique of the mean-field mean-field spin glass
model in the thermo dynamic limit, we obtain the following conclusions:

1. There is a phase transition from a ferromagnetic phase in which error-correcting
can be achieved to a paramagnetic phase which corresponds to a random guess
phase, by solving the saddle point equations numerically. A spin glass phase
also occurs as the SN ratio decreases. Thus, we must appropriately control the
strength of the quantum and thermal fluctuations in order to retrieve the original
message.

2. Although the QMPM estimate seems to have roughly same optimal performance
as the CMPM estimate, the performance through the QMPM slightly decreases
increasing the strength of the transverse field. In other words, the QMPM esti-
mate may be inferior to the CMPM estimate decoding.

3. A quantum Monte Carlo simulation with a finite number of spins was also carried
out, and the results roughly support the analysis.

4. In the low temperature region, the improvable region due to the transverse field
exists. Thus, although the optimal performance with the transverse field can not
be better than classical one, the transverse field can induce improvement of the
average-case decoding performance in a certain parameter region.

5. The upper bound of the overlap were evaluated by deriving the inequality of
the overlap. The maximum overlap, which is a function of the thermal and
quantum fluctuations, corresponds to that of the classical case. This means that
the decoding performance with quantum fluctuations cannot exceed the classical
case, but it may be possible to approach the optimal performance at the Nishimori
temperature for the CMPM estimate.

6. Considering the limit p → ∞, equivalent the quantum REM, the present case
capable to the error-free decoding under the condition which corresponds to the
classical one.

Several approximations are used in our analysis, including the replica Symmetric ap-
proximation (RS) and the Static Approximation (SA). In order to clarify the properties
of error correcting code described as spin glass model rigorously, we will need to care-
fully check the validity of these approximations. The validity of the RS under SA could
be checked by calculating the Almeida-Thouless (AT) line. The AT line has been an-
alytically calculated for the SK model. However, the analysis was done under the SA
only (Kim and Kim 2002). Ray et al. also attempted to draw the AT line by using
Monte Carlo simulations, and they found that it might be possible to conclude that
there is no replica symmetry breaking due to the quantum tunneling effects even in
the low temperature regime (Ray et al. 1989). On the other hand, the validity of the
SA has been shown in the case of random energy model (p → ∞) by using a large-p
expansion. However, the SA may be invalid for the case of a finite p (Obuchi et al.
2007). Hence, the limitation of the RS and SA is still an open question in the research
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field of spin glasses. Moreover, although we focused on the region of finite thermal and
quantum fluctuation in this paper, the decoding performance of a pure quantum system
that has no thermal fluctuation remains an open question. An analytical treatment of
this question will require one to derive the equations of state for the order parameters
and the overlap in the low temperature limit.
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Chapter 5

CDMA multiuser demodulation
with transverse field

We examine the average-case performance of a code-division multiple-access (CDMA)
multiuser demodulator in which quantum fluctuations are utilized to demodulate the
original message within the context of Bayesian inference. The quantum fluctuations
are built into the system as a transverse field in the infinite-range Ising spin glass model.
We evaluate the performance measurements by using statistical mechanics. We confirm
that the CDMA multiuser modulator using quantum fluctuations achieve roughly same
performance as the conventional CDMA multiuser modulator through thermal fluctua-
tions on average. We also find that the relationship between the quality of the original
information retrieval and the amplitude of the transverse field is somehow a ‘univer-
sal feature’ in typical probabilistic information processing, viz., in image restoration,
error-correcting codes, and CDMA multiuser demodulation.

5.1 Introduction

Quantum fluctuations by means of the transverse field have been intensely-investigated
within the context of combinatorial optimization problems, which induce tunneling in-
stead of thermal jumps between states (Kadowaki 1998; Farhi 2001; Santoro 2002). The
algorithm is called quantum annealing (QA) or quantum adiabatic algorithm. QA has
been applied to various optimization problems by solving the Schrödinger equation or
carrying out Quantum Monte Carlo simulations on classical computers. However, what
we call a quantum annealer with current superconducting devices has been launched
by D-wave systems based in British Columbia (Harris et al. 2007; Johnson et al. 2011;
Boixo 2013). Taking into account these scientific and technological advances, quantum
fluctuations induced by transverse fields could have the potential to provide us with
several effective tools for solving combinatorial optimization problems. It is also inter-
esting for us to consider the possible application of the quantum fluctuations to proba-
bilistic information processing with developments in the research field of algorithms by
making use of quantum fluctuations. Restoration (decoding) algorithms incorporating
transverse fields have recently been investigated in image restoration and Sourlas code,
which have both been described with infinite-range spin glass models. The average-
case performance of these systems has been analyzed with statistical mechanics in the
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thermodynamic limit (Inoue 2001; Otsubo 2012).

Infinite-range spin glass models have received a lot of attentions in recent years
in terms of information processing, due to adoption of the framework of Bayesian
statistics. For example, the Sherrington-Kirkpatrick (SK) model is closely-linked to
error-correcting codes or associative memories in neural networks. The average-case
performance of decoding or retrieving has been analytically evaluated using the so-called
replica method (Sherrington and Kirkpatrick 1975; Sourlas 1989; Hopfield 1982). The
so-called hyper-parameter in these model systems that corresponds to a noise power
in the posterior can be regarded as ‘temperature’ in the Gibbs-Boltzman distribution
within the context of statistical physics (Nishimori 2001).

A typical example is the code-division multiple-access (CDMA) system that has
been recognized as a telecommunication technology that simultaneously enables com-
munication among a huge number of users. It has also been extensively analyzed with
the replica method (Tanaka 2001). The basic idea behind the CDMA is to modulate the
(original) digital signals of multi-users. The digital signals are modulated by assigning
a distinct spreading code for each user. Then, the modulated signals are transmitted
through noisy channels. The maximizer of the posterior marginals (MPM) estimate
is utilized within the context of Bayesian inference to simultaneously demodulate the
original bit sequences of multi-users for a given set of outputs from the noisy channels.
It has been well-known that the MPM estimate enables us to construct an optimal
demodulator in the sense that the estimate minimizes the bit-error rate on average.
Optimal performance is actually achieved by controlling the temperature so that it has
the same value as the noise power in the channel. The relationship between the optimal
temperature and the corresponding noise amplitude is referred to as the Nishimori line
(Nishimori 2001). For this reason, the MPM estimate is often called finite temperature
demodulation.

Quantum-mechanical fluctuations are regarded in the literature on physics, as a
counter-part of thermal fluctuations. With this remarkable correspondence in mind, it
is naturally expected that the MPM estimate can be extended by means of quantum
fluctuations. Namely, the amplitude of quantum fluctuations might be controlled to
satisfy a similar relationship to the Nishimori line to achieve the best possible demodu-
lation. In fact, quantum MPM (QMPM) has been proposed thus far and performance
has been investigated within the context of image restoration and Sourlas code (Inoue
2001; Otsubo 2012). Obviously, one can consider the ‘mixture’ of these two distinct
fluctuations. Then, the problem that need to be clarified is to explore the best possi-
ble mixture to minimize the bit-error rate for decoding on average. More naively, we
should answer a question of the following type, viz., “Which fluctuations give us a better
average-case performance for typical problems in probabilistic information processing?”
Thus far, we have confirmed that the decoding performance of the MPM estimate in-
corporating the transverse field can roughly achieve the same performance as that of
the optimal thermal MPM estimate, at least for image restoration and Sourlas code.

We focus on CDMA multiuser demodulation under thermal and quantum fluctu-
ations as an example to analyze the average-case performance in this research and
examine the equivalence between thermal and quantum fluctuations in the literature
on the optimal MPM estimate. We then compare performance with that of image
restoration and error-correcting codes to clarify the central issue, viz., ‘universal fea-
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ture’ of the equivalence between thermal and quantum fluctuations in Bayesian MPM
estimation. We should mention that the demodulating process in the CDMA system is
quite similar to so-called compressed sensing (CS) (Rangan et al. 2012; Candes et al.
2006; Kabashima et al. 2009). CS and related techniques have been developed to solve
various types of modern problems in engineering such as functional magnetic resonance
imaging (f-MRI) and photography.

This paper is organized as follows. The next section introduces the CDMA system
and quantum-mechanical extension. We then explain how we derive equations of states
and the average-case performance measurements by using the replica method in Sec.
5.3. Section 5.4 presents our results. The last section is a summary and contains
concluding remarks.

5.2 Formulation

Let us consider a demodulation problem for a wireless communication by N -users com-
municating in fully synchronous channels. Then, the received signal at the base station
is given by:

yk =
1√
N

N∑
i=1

ηki ξi + ϵk, (5.1)

where ξi ∈ {−1, 1} , (i = 1, ..., N) is the original information and ηki ∈ {−1, 1} , (k =
1, ...,K, i = 1, ..., N) is referred to as the spreading code sequences for user i. The
channel noise, ϵk, is inevitably contained in the received signal information (see Fig.
5.1). By using the following notations:

y = (y1, · · · , yK)T , ξ = (ξ1, · · · , ξN )T , ϵ = (ϵ1, · · · , ϵK)T , (5.2)

H =


η11 η12 · · · η1N
η21 η22 · · · η2N
· · · · · · · · · · · ·
ηK1 ξK2 · · · ηKN

 , (5.3)

the received signal (5.1) can be rewritten as:

y =
1√
N

Hξ + ϵ. (5.4)

Here, the problem is to estimate the sequence, σ = (σ1, ..., σN ), which yields a satisfac-
tory candidate for the original bit sequence, ξ, from the received sequence, y. Then,
the probability distribution of received information is written as:

P (y|σ) =

(√
β

2π

)K

exp

(
−β

2

∥∥∥∥y − Hσ√
N

∥∥∥∥2
)
, (5.5)

where β = 1/T corresponds to inverse temperature in terms of statistical mechanics
assuming that channel noise is generated from an additive white Gaussian. By using
the Bayes formula:

P (A|B) =
P (B|A)P (A)∑
A P (B|A)P (A)

, (5.6)
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the posterior is described as a canonical distribution with Hamiltonian H(σ) as:

P (σ|y) =
exp (−βH(σ))

Z
, (5.7)

Z = Tr
σ
exp(−βH(σ)), (5.8)

H(σ) =
1

2N

∑
i,j

K∑
k=1

ηki η
k
j σiσj −

1√
N

N∑
i=1

K∑
k=1

ηki y
kσi (5.9)

where we use the condition in Eq. (5.5) and the priors:

P (H) =
1

2NK
(5.10)

P (σ) =
1

2N
, (5.11)

which means that both the spreading code and the original information follow uniform
distributions. The Hamiltonian (5.9) is exactly the same as the so-called ‘anti-Hopfield
model’ with a random field on each neuron σi regarding σ as a neuronal state. It
should be noted that the problem of estimating y from ξ is closely related to that of
CS. The problem actually becomes identical to CS with lp norm by assuming P (σi) ∝
exp(−β|σi|p) in the limit of β → ∞ instead of Eq. (5.11) as a prior (Kabashima et al.
2001).

We next introduce the maximizer of the posteriori marginal (MPM) estimate, i.e.,
finite temperature demodulation. We compare the two probabilities that σi takes, 1 or
−1, for a given y, viz, P (σi = ±1|y), to construct the estimate and follow the decision
of the ‘majority group’. Hence, the MPM estimate for each bit is now given by:

σ̃i = sgn [P (σi = 1|y)− P (σi = −1|y)] (5.12)

= sgn

[ ∑
σi=±1

σiP (σi|y)

]
(5.13)

= sgn⟨σi⟩β, (5.14)

where we defined the marginal:

P (σi|y) =
∑
σ ̸=σi

P (σ|y), (5.15)

where ⟨·⟩ indicates the thermal average.
The maximum a posteriori (MAP) estimate, on the other hand, corresponds to

searching the ground state of (5.9). Therefore, the MAP estimate can be recovered
from the MPM estimate in the zero temperature limit T = 0.

We introduce an overlap between original signal ξ and estimated bit sgn⟨σi⟩β to
investigate the average-case performance of the demodulation, viz.

M(y, ξ|H) =
1

N

∑
i

ξisgn⟨σi⟩β. (5.16)

The above quantity is expected to be ‘self-average’ in the limit of N → ∞. This means
that observables such as M(y, ξ|H) for a given realization of the data set, y, ξ and H,
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Figure 5.1: CDMA multiuser demodulation with quantum fluctuations.

become identical to the average of itself over the distribution of the Gaussian channel
and spreading code, viz.:

lim
N→∞

M(y, ξ|H) = M(β) ≡
∑
H

Tr
ξ

∫
dyP (H)P (ξ)P (y|ξ)ξisgn⟨σi⟩β

= [ξisgn⟨σi⟩β], (5.17)

where the brackets [·] stands for the average over the data distribution P (H)P (ξ)P (y|ξ).
Hence, M(β) is apparently a suitable measurement for the average-case performance
of the CDMA system.

We assume that true noise ϵ in Eq. (5.1) follows an additive Gaussian channel with
mean zero and σ0 variance to explicitly calculate the above M :

P (ϵ) =

(
1√
2πσ2

0

)2

exp

(
− 1

2σ2
0

∥ϵ∥2
)

(5.18)

=

(
1√
2πσ2

0

)2

exp

(
− 1

2σ2
0

∥∥∥∥y − Hξ√
N

∥∥∥∥2
)
. (5.19)

For simplicity, we also assume that the random spreading sequence and information
symbols are independent and identically-distributed random variables:

P (ξ) =

N∏
i=1

P (ξi) =
1

2N
. (5.20)

Hence, as the temperature in Eq. (5.5) corresponds to the controlling parameter of the
communication channel in the literature on the MPM estimate, optimal performance
should be achieved under the condition β = 1/T = β0 = 1/T0 = 1/σ2

0, which is nothing
but the so-called Nishimori temperature.

Although the above formulation is given for the CDMA model based on Bayesian
statistics, we will extend it to the quantum-mechanical version by simply adding the
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transverse field as:

Ĥ = Ĥ0 + Ĥ1 (5.21)

Ĥ0 =
1

2N

∑
i,j

K∑
k=1

ηki η
k
j σ̂

z
i σ̂

z
j −

1√
N

N∑
i=1

K∑
k=1

ηki y
kσ̂z

i (5.22)

Ĥ1 = −Γ
N∑
i=1

σ̂x
i , (5.23)

where σ̂x
i and σ̂z

i denote the x and y components of the Pauli matrix, and H1 is the
transverse field causing quantum tunneling. The strength of the transverse field can be
controlled with Γ.

Let us consider a single-spin system to intuitively figure out the quantum effect in
the last equation. Denoting the eigenstates of σ̂z as |+⟩ = (1, 0)t and |−⟩ = (0, 1)t,
the x component of the Pauli matrix becomes σ̂x = |+⟩ ⟨−| + |−⟩ ⟨+|. Taking into
account relation σ̂x |±⟩ = |∓⟩, we find that up-state |+⟩ transits to down-state |−⟩
and vice versa. This means that the transverse field induces the transitions between
states by means of tunneling. The Ising spins in the Hamiltonian (5.9) are quantized
as Pauli matrices in the framework (5.21). The transverse field is introduced into
the Hamiltonian as a non-commutative term. Here, we should bear in mind that
the key point of the QMPM estimate is to generate an appropriate ensemble that
‘imitates’ the actual noise of the Gaussian channel by making use of thermal and
quantum fluctuations.

The estimated bit in terms of the QMPM estimate that corresponds to (5.14) can
be written as:

σ̃i = sgn (Trs(σ̂
z
i ρ̂)) (5.24)

= sgn (⟨σ̂z
i ⟩β,Γ) , (5.25)

where ρ̂ ≡ e−βĤ/Tre−βĤ . Consequently, the overlap for the case of the quantum system
(5.21) is evaluated as:

M(β,Γ) =
∑
H

Tr
ξ

∫
dyP (H)P (ξ)P (y|ξ)ξisgn (⟨σ̂z

i ⟩β,Γ) (5.26)

= [ξisgn (⟨σ̂z
i ⟩β,Γ)]. (5.27)

Note that the overlap for QMPM depends on the strength of thermal fluctuations
controlled by the inverse temperature, β, and the amplitude of quantum fluctuations
determined by the strength of the transverse field, Γ.

5.3 Analysis

We derive saddle point equations that determine the equilibrium state by using the
standard replica method to explicitly evaluate performance through the QMPM esti-
mate.
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We consider the limit, N,K → ∞, to analyze the multiuser demodulation problem
while retaining the ratio:

α =
K

N
, (5.28)

of the order 1 object. We apply Suzuki-Trotter (ST) decomposition (Suzuki 1976):

exp(Ĥ0 + Ĥ1) = lim
P→∞

(
eĤ0/P eĤ1/P

)P
(5.29)

to the partition function, Z = Tr exp(−βĤ), with Eq. (5.21) to cast the problem as an
equivalent classical spin system to achieve our goal. As a result, the partition function,
Z, and the effective Hamiltonian, Heff , are given by:

Z = lim
P→∞

(
1

2
sinh

2βΓ

P

)NP
2

Tr
σ(t)

exp (−Heff) (5.30)

Heff =
β

2NP

P∑
t=1

∑
i,j

K∑
k=1

ηki η
k
j σi(t)σj(t)−

β√
NP

P∑
t=1

N∑
i=1

K∑
k=1

ηki y
kσi(t)

−1

2
log

βΓ

P

P∑
t=1

N∑
i=1

σi(t)σi(t+ 1), (5.31)

where P is called the Trotter number and t is the Trotter index. We can clearly see
that the dimensionality of the corresponding classical system after the ST formula is
utilized increases by 1. Using the well-known replica method:

[log Z] = lim
n→0

[Zn]− 1

n
, (5.32)

we calculate the averaged free energy density, [logZ], in terms of [Zn]. The replicated
partition function is now written as:

[Zn] =
∑
H

P (H)Tr
ξ
P (ξ)

∫ ∏
k

dykP (yk|ξ) Tr
{σµ(t)}

exp

−
∑

{σµ(t)}

Heff(σ
µ(t))

 (5.33)

=
1

2N
1

2NK

∑
H

Tr
ξ

∫ ∏
k

dyk
(
β0
2π

) 1
2

exp

(
−β0

2
(yk − 1√

N

∑
i

ηki ξi)
2

)

Tr
{σµ(t)}

exp

− β

2NP

∑
t,µ

∑
i,j

∑
k

ηki η
k
j σ

µ
i (t)σ

µ
j (t) +

β√
NP

∑
t,µ

∑
i

∑
k

ηki y
kσµ

i (t)

+B
∑
t,µ

∑
i

σµ
i (t)σ

µ
i (t+ 1)

)
, (5.34)

where B ≡ 1
2 log coth

βΓ
P , {σµ(t)} = (σ1(t), ..., σn(t)), and t = 1, ..., P . The replica
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indices are denoted by µ. Introducing the following order parameters:

Rµ(t) =
1

N

∑
i

ξiσ
µ
i (t) (5.35)

Qµν(t, t
′) =

1

N

∑
i

σµ
i (t)σ

ν
i (t

′) (5.36)

Qµµ(t, t
′) =

1

N

∑
i

σµ
i (t)σ

µ
i (t

′), (5.37)

with Qµµ(t, t) = 1, free energy density f is given by:

−βf =
α

2

{
− log(1− β(q − χ)) +

β(1 + β0)

β0
+

β(2R− q − (1 + β−1
0 ))

1− β(q − χ)
+ β(χ− 1)

}
− R̂R

−χ̂χ+
q̂q

2
+

∫
Dz log

(∫
Dw2 cosh

√
Φ2 + β2Γ2

)
(5.38)

Φ =
ϕ

β
= z
√

2χ̂− q̂ + w
√
q̂ + R̂, (5.39)

under replica symmetry (RS) and static approximation (SA), viz., Rµ(t) = R, Qµν(t, t
′) =

q, and Qµµ(t, t
′) = χ (t ̸= t′) in the limit of N → ∞. R̂, q̂ and χ̂ correspond to con-

jugate Lagrange multipliers of R, q,, and χ. The saddle-point equations are given
by:

R =

∫
Dw

∫
Dz

ΦsinhΞ

ΩΞ
(5.40)

q =

∫
Dw

(∫
Dz

ΦsinhΞ

ΩΞ

)2

(5.41)

χ =

∫
Dw

Ω

∫
Dz

(
β2Γ2 sinhΞ

Ξ3
+

Φ2 coshΞ

Ξ2

)
(5.42)

R̂ =
αβ

1 + β(χ− q)
(5.43)

q̂ =
αβ2(1 + q − 2R+ β−1

0 )

(1 + β(χ− q))2
(5.44)

2χ̂− q̂ =
αβ2(χ− q)

1 + β(χ− q)
(5.45)

Ξ =
√

Φ2 + β2Γ2 (5.46)

Ω =

∫
Dz coshΞ, (5.47)

where
∫
Du(·) =

∫∞
−∞ du(·)e−

u2

2 /
√
2π. Considering the classical case of Γ = 0, we easily

find that these equations become identical to the classical version with χ = 1. The
detailed calculations to derive the free energy density (5.38) are given in our Appendix.
By comparing these expressions and Eqs. (5.40) and (5.41), we immediately find that∫
DzΦsinhΞ

ΩΞ is closely related to ⟨σ̂i⟩β,Γ. Thus, the final form of the overlap as a
performance measurement is easily obtained as (Otsubo et al. 2012):

M(β,Γ) =

∫
Dw sgn

(∫
Dz

ΦsinhΞ

ΩΞ

)
. (5.48)

84



CHAPTER 5. CDMA MULTIUSER DEMODULATION WITH TRANSVERSE
FIELD

It should be noted that the overlap for classical MPM is recovered by setting Γ = 0 in
the above expression (5.48).

5.4 Results

We evaluate the performance of demodulation with quantum and thermal fluctuations
by numerically solving Eqs. (5.40)-(5.48) in the following.

5.4.1 Upper bound of overlap

We first derive the inequality for the overlap to clarify the upper bound. The overlap
in the classical case defined by Eq. (5.17) can be written as follows:

M(β)

= Tr
ξ

∫ ∏
k

dykCNK exp

(
−β0

2
(yk)2

)
exp

− β0
2N

∑
i,j

ηki η
k
j ξiξj +

β0√
N

∑
i

ξiηiy
k

 ξisgn

(
Trσie

−βH

Tre−βH

)

≤
∫ ∏

k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Trξ ξi exp

− β0
2N

∑
i,j

ηki η
k
j ξiξj +

β0√
N

∑
i

ξiηiy
k

∥∥∥∥∥∥
×

∥∥∥∥sgn(Trσie
−βH

Tre−βH

)∥∥∥∥
≤

∫ ∏
k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Trξ ξi exp

− β0
2N

∑
i,j

ηki η
k
j ξiξj +

β0√
N

∑
i

ξiηiy
k

∥∥∥∥∥∥
≡ M classic

max . (5.49)

We should notice that factor CNK denotes 2−N2−NK
√

β0/2π from Eqs. (5.10) and
(5.20). M classic

max means the upper bound in the classical case. However, the overlap for
the quantum case is given by:

M(β,Γ)

= Tr
ξ

∫ ∏
k

dykCNK exp

(
−β0

2
(yk)2

)
exp

− β0
2N

∑
i,j

ηki η
k
j ξiξj +

β0√
N

∑
i

ξiηiy
k

 ξisgn

(
Trσ̂z

i e
−βĤ

Tre−βĤ

)

≤
∫ ∏

k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Trξ ξi exp

− β0
2N

∑
i,j

ηki η
k
j ξiξj +

β0√
N

∑
i

ξiηiy
k

∥∥∥∥∥∥
×

∥∥∥∥∥sgn
(
Trσ̂z

i e
−βĤ

Tre−βĤ

)∥∥∥∥∥
≤

∫ ∏
k

dykCNK exp

(
−β0

2
(yk)2

)∥∥∥∥∥∥Trξ ξi exp

− β0
2N

∑
i,j

ηki η
k
j ξiξj +

β0√
N

∑
i

ξiηiy
k

∥∥∥∥∥∥
≡ M classic

max . (5.50)
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Thus, the optimal demodulating performance of the MPM estimate in the presence of
quantum fluctuations is the same as that in the thermal fluctuations. We can confirm
that overlap is maximum at the Nishimori temperature, T0 = 1/β0, as:

M classic
max = Tr

ξ

∫ ∏
k

dykCNK exp

(
−β0

2
(yk − 1√

N

∑
i

ηki ξi)
2

)
ξi

×
Trξξi exp

(
− β0

2N

∑
i,j η

k
i η

k
j ξiξj +

β0√
N

∑
i ξiηiy

k
)

∥∥∥Trξξi exp(− β0

2N

∑
i,j η

k
i η

k
j ξiξj +

β0√
N

∑
i ξiηiy

k
)∥∥∥

= Tr
ξ

∫ ∏
k

dykCNK exp

(
−β0

2
(yk − 1√

N

∑
i

ηki ξi)
2

)
ξisgn⟨ξi⟩β0

= M(β0). (5.51)

The inequality means that the optimal demodulating performance through the MPM
estimate incorporating the transverse field can not exceed the optimal one in the clas-
sical case. However, we must mention that as the Γ, T -dependence of demodulating
performance on the QMPM estimate could not be clarified with the above argument,
we next need to numerically solve the saddle point equations (5.40)-(5.48) to make the
issue clearer.

5.4.2 Behavior around peak
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Figure 5.2: (a): Dependence of overlap M on level of thermal fluctuations T for α = 2.0
and T0 = 1.0. (b): Dependence of overlap M on level of quantum fluctuations Γ for
α = 2.0 and T0 = 1.0.

Figure 5.2 plots the dependence of overlap M on T and Γ for the case of α = 2.0
and T0 = 1.0. We find that the overlap has its a single peak at T = T0 = 1.0 for the
case without transverse field Γ = 0 as is well-known (see Fig. 5.2(a)). This means that
the optimal performance in demodulation is achieved at some temperature T = T0 that
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Figure 5.3: (a): Value of overlap on Γ-T plane for T0 = 1.0 and α = 2.0. Solid line
indicates location of peak in overlap. (b): Dependence of Mtop on Γ corresponding to
solid line in panel (a).

corresponds to the true variance in the Gaussian channel described as Eq. (5.19). Also
note that the overlap appropriately exhibits a peak that is obtained by controlling the
strength of the quantum fluctuation, Γ. The height of the peak seems to be the same
as that of the CMPM estimate. These results are consistent with those in our previous
studies (Inoue 2001; Otsubo 2001; see Chap. 3 and Chap. 4).

We next investigate the overlap from the view point of the Γ-T diagram in Fig.
5.3(a). The gradation indicates the values of the overlap and the solid line represents
the peaks of the overlap, Mtop. We can observe that Mtop exists in some range of
temperature below the Nishimori temperature T = T0. We should keep in mind that
the numerical solution to the overlap in the quite low temperature region (T < 0.05)
cannot be obtained within reliable precision due to limitations in our computational
resources. We can see the dependence of Mtop on Γ that is indicated by the solid
line in Fig. 5.3(b) for α = 2.0 and T0 = 1.0. We find that the peak of overlap
Mtop decreases monotonically from 0.7824 to 0.7816. Therefore, we must conclude that
quantum fluctuations worsen optimal performance slightly for large Γ. Obviously, the
results are consistent with our argument using the inequalities (5.49)-(5.51).

5.4.3 Dependence of demodulating performance on chip ratio

The dependence of overlap on α is plotted in Figs. 5.4(a) ( T0 = 1.0, T = 1.0) and (b)
(T0 = 0.08, T = 0.08) for various Γ values. As the temperature is set to the Nishimori
temperature for both cases, the overlap has a peak at Γ = 0 as we noted in the previous
section. Since parameter α means the chip ratio, we naturally assumed that overlap
would increase as α increased. We find that the slope of increase in the overlap for the
quantum case is much gentler than that for the classical case.

When the variance of the Gaussian channel T0 is very small, first-order phase tran-
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Figure 5.4: Overlap M vs chip ratio α. (a): Results for T0 = 1.0 and T = T0. (b):
Results for T0 = 0.08 and T = T0. Bi-stable solutions coexist for Γ = 0 in region
α1 < α < α2.

sition takes place around α ≃ 0.6 for Γ = 0. In contrast, we find that for relatively
large quantum fluctuations, Γ = 0.5, the overlap continuously converges to unity. These
results imply that quantum fluctuations never improve the average-case performance
of MPM estimate for any choice of the chip ratio, α.

We confirm that two possible solutions coexist at low temperature (see the inset of
Fig. 5.4 (b)), which lead to a sort of hysteresis phenomenon. Such a bi-stable region
obtained under the RS and SA ansatz disappears as Γ increases. The spinodal lines
in (α,Γ)-space are plotted in Fig. 5.5. The distinction between the solid and dashed
lines comes from the dependence of Γ on α1 (solid) or α2(dashed). As can be shown
in Fig. 5.5 (a) T0 = T = 0.08, the region of α in which solutions coexist is maximum
at Γ = 0. However, there is also a coexistence region for solutions to T0 = 0.08 and
T = 0.05 with slightly different shapes from those of T0 = T = 0.08. The coexistence
region gradually narrows for the both cases as Γ increases, and the region eventually
disappears. Similar behavior has been found in (α, T )-space when T0 is fixed for the
classical case, i.e., Γ = 0 (Yoshida et al. 2007).

5.4.4 Improvable region for demodulating performance

The previous section explained our investigation into the average-case performance of
the demodulation by means of the QMPM estimate. We focused on the location of the
peak of the overlap. Here, we will discuss the conditions under which the performance
of the QMPM estimate is better than that of CMPM. This is a slightly different view
point from optimality in the overlap.

To quantify the degree of improvement achieved by quantum fluctuations, we in-
troduce the following quantity:

∆M(Γ,Ω) = M(Γ,Ω)−M(0,Ω), (5.52)
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Figure 5.5: (a): Spinodal line at T0 = T = 0.08. (b): Spinodal line at T0 = 0.08 and
T = 0.05. Solid line represents Γ(α1) and dotted line represents Γ(α2).

i.e., the difference between the overlaps at Ω = {T0, T, α} ∈ R with and without
the quantum fluctuations. The quality of quantum demodulation is better than that
of classical demodulation for ∆M(Γ,Ω) > 0. It should be noted that the overlap is
maximized at Γ = 0 for T = T0, viz, ∆M(Γ,Ω0) < 0 for Ω0 = {T0, T = T0, α} ∈ R and
Γ > 0. ∆M is always less than zero for the case of T > T0, as we mentioned in the
previous section. For these reasons, we define a region where ∆M > 0 an improvable
region, whereas the region specified by ∆M < 0 is referred to as a worsened region for
T < T0.

We have plotted ∆M as a function of Γ for T0 = 1.0 and T = 0.5 with various values
of α in Fig. 5.6. We find that ∆M has a peak in some range of Γ and it eventually drops
to a negative value. Demodulation achieves the best possible performance for a given
set of T and T0 at some specific value of Γ for which ∆M has a peak. We should note
that ∆M = 0 determines the border of Γ between improvable and worsened regions.
We have marked the locations in which ∆M = 0 is satisfied for α = 0.2, 0.7, 2.0, and 0.5
with respective points labeled A, B, C, and D. The Γ for ∆M = 0 is not a monotonic
function of α because we clearly find that the inequality ΓD < ΓC < ΓA < ΓB holds.
This implies the existence of a suitable α to improve demodulating performance. Also
note that the peaked value of ∆M decreases as α increases because both M(Γ,Ω) and
M(0,Ω) converge to unity.

We will next investigate the critical Γ(T ) at which the improvable and worsened re-
gions are clearly separated. The results are plotted in Figs. 5.7(a) and (b). The dashed
lines were obtained under the conditions ∆M(Γ,Ω) = 0. We find that the improvable
region is extended up to the low temperature region in Fig. 5.7(a). Interestingly, the
critical line (the Γ-α curve) that separates improvable and worsened regions has a non-
monotonic shape with a single maximum at some finite α value. This means that there
is a suitable chip ratio, α, to improve demodulation performance.
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Figure 5.6: Difference between overlaps with and without transverse field for T0 = 1.0
and T = 0.5. Closed circles labeled A, B, C, and D denote points at which ∆M = 0
holds.

5.5 Summary and discussion

We investigated the average-case performance of a Bayesian CDMA multiuser detec-
tor that was extended by means of quantum fluctuations. The following three items
summarize what we learned from this study.

1. Quantum fluctuations controlled by the transverse field could not improve the
optimal performance of CMPM. To make matters worse, the MPM estimate that
incorporated the transverse field (QMPM estimate) never exhibited the same
optimal performance as the conventional MPM estimate (CMPM estimate) even
within the strictest sense. This conclusion was supported by a mathematically
rigorous argument using inequality on the overlap.

2. There was a improvable region below the Nishimori temperature obtained by using
the transverse field. Thus, the transverse field actually improved performance for
some choices of non-optimal parameters although optimal performance with the
transverse field could not be improved.

3. Increasing the chip ratio improved performance. The overlap actually eventually
reached unity for both cases with and without the transverse field.

Although we drew the above conclusion from our limited applications of transverse
field, there still remain some issues to be resolved. We actually used several approx-
imations, replica symmetry (RS) and static approximation (SA) in our analysis. As
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Figure 5.7: Improvable regions in T -Γ (left) and Γ-α (right) planes for T0 = 1.0. Dashed
lines indicate border at which ∆M = 0 holds for α = 2.0 (a) and T = 0.5 (b).

it is naturally expected that these approximation may be broken in the low tempera-
ture region, we should draw the so-called Almeida-Thouless (AT) line (de Almeida and
Thouless 1978), and we also should discuss the validity of the SA. Although the validity
of the SA has been investigated partially in the quantum random energy model (Obuchi
et al. 2007), has not yet been investigated for Ising spin glass in a transverse field. In
general, it is very hard to carry out numerical calculation in very low temperature
within reliable numerical accuracy, the pure quantum demodulation which is defined
as the QMPM without any thermal fluctuation is also very difficult to be discussed.
Besides these perspectives, as we stated in Sec. 5.1, the compressed sensing (CS) is
now becoming a hot topic as an effective technique to understand a signal from some
observable dates in the various engineering fields. Obviously, our formulation using the
transverse field might be applicable to the CS and it should be addressed as our future
study.
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Chapter 6

Summary and concluding
remarks

In this thesis, we devoted a detailed examinations of a performance of the probabilistic
information processing by means of the transverse field which means the quantum
fluctuations from a statistical mechanical point of view by proposing the quantum
maximum posterior marginals (QMPM) estimate instead of the conventional MPM
(CMPM) estimate. We then addressed three models which are described by mean-field
Ising spin models. The average-case performance of the image restoration which can
be formulated by the Ising spin model with random field was first in focus. Next, we
investigated the average-case decoding performance of the Sourlas code which is one of
the typical error-correcting codes and can be formulated by the mean-field spin glass
model with p-body interactions in which Shannon bound can be saturated in p → ∞.
In the last part of our studies, we investigated the CDMA multiuser demodulation
which is modern wireless communication system and then can be formulated by the
mean-field spin glass model with random field.

In this chapter, the reconfirmation of our purposes and the common thread in these
investigations are given in the anterior half. Next half, we summarize the specific
discussion of each problem and give the future works to be clarified.

6.1 General properties of the QMPM estimate

We conclude the general properties of the QMPM estimate as follows:

1. QMPM estimate works well.

Our consecutive motivations in this thesis are simple as discussed in Chap. 2. The most
interesting issue is whether the quantum fluctuations can contribute the information
processing as with the thermal fluctuations or not. The answer is “yes”. In conse-
quence of investigation of the three models, the performances have peaked behavior
by controlling the strength of the transverse field. Such a result is interesting despite
of introducing the transverse field unrelated to the temperature. We also investigated
the peaked behavior on the phase consisted of the strength of the temperature and
the transverse field. As a result, increasing the strength of the transverse field, the
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6.2. SPECIFIC PROPERTIES OF THE QMPM ESTIMATE FOR EACH
PROBLEM

temperature which gives the peaked value decreases. It seems that the transverse field
can complement the effect of the temperature in the probabilistic information process-
ing. Although our numerical calculations cannot reach the low temperature limit for
our computational accuracy, the results sufficiently suggest that the pure QMPM esti-
mate which mean the algorithm for the signal estimation with the transverse field and
without the temperature can work well.

2. QMPM estimate does not provide better performance than it through
CMPM estimate in terms of optimal performance.

Followed by the above results, next interesting goes as follows. What is the amount
of the optimal performance achieved with the transverse field as compared to it by
using the CMPM estimate? In this question, we need to give an answer carefully. It
is seems to that the optimal performance can be roughly same it at Nishimori tem-
perature in all models. However, under scrutiny, it decrease with the transverse field
monotonically in the Sourlas code and CDMA system. The decreasing behavior can-
not be seen in the image restoration through our numerical results. Such a different
behavior may be attribute to numerical accuracy. Thus, the decreasing behavior of the
image restoration with the transverse field may not be caught from our computational
accuracy. The inequality derived in Chap. 4 and 5 show that the average-case decoding
performance with the transverse field generally is less than the optimal performance of
the conventional MPM estimate. Such theoretical derivation help the above numerical
results.

3. There is improvable region below Nishimori temperature.

The transverse field, the quantum fluctuation, actually can improve the average-case
performance of the CMPM estimate, although optimal performance with the transverse
field cannot be improved. In lower temperature region than Nishimori temperature, the
improvable behavior occurs by controlling the strength of the transverse field appro-
priately. This is natural result because of our first claim that the peaked performance
which achieve roughly classical optimal performance can be successfully accomplished
at low temperature region.

The above remarks give the quantum annealer which is superconducting device
for quantum annealing anew usage. The quantum annealer can be demonstrated in
the condition in the sufficiently low temperature condition (about 20 mK). Because
the quantum fluctuation enables us to construct a state near the original information
instead of the thermal fluctuation, the quantum annealer may be a processor which
implements the probabilistic information processing.

6.2 Specific properties of the QMPM estimate for each
problem

The above properties are major properties of the transverse field in the information
processing studied here. Next, the topics on properties of each model through QMPM
estimate are summarized.
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In the Sourlas code, the quantum fluctuation induces the phase transitions among
the ferromagnetic phase, the paramagnetic phase and the spin glass phase. The ferro-
magnetic phase allows us to decode an original information. Shannon bound which is
the condition of perfect decoding can be achieved in a certain limit with or without the
transverse field. The Monte Carlo simulation is also performed and it roughly give the
results which is consistent with the common properties obtained by the analysis.

In the CDMA multiuser detection, the chip ratio is an important parameter. In-
creasing the chip ratio improved performance. The overlap, demodulating measure,
actually eventually reached unity for both cases with and without the transverse field.
The cases that the true noise is small lead to a sort of hysteresis phenomenon. Such
a bistable region obtained the RS ans SA ansatz disappears as the strength of the
transverse field increases.

6.3 Future works

Our approaches are only theoretical focus on solvable models described by mean-field
spin models, then quantum channel is less than well thought out. Although our studies
might not be investigation about quantum information processing in this mean. How-
ever, our works have a potential impacts on the various field as follows.

First, we need to investigate the validity of the approximation we used in this thesis.
The replica symmetry (RS) approximation which we use in this studies may be broken in
very low temperature region. Because our interest is the average-case performance with
the transverse field, we did not discuss the problem. The replica symmetry breaking
(RSB) condition can be checked by calculating the Almeida-Thouless (AT) line (de
Almeida 1978). The AT line has been studied in quantum SK model, quantum random
energy (REM) model and quantum p-body spin glass model in the field of quantum
statistical physics. Ray et al. also attempted to draw the AT line by using Monte
Carlo simulations, and they found that it might be possible to conclude that there is
no replica symmetry breaking due to the quantum tunneling effects even in the low-
temperature region (Ray et al. 1989). On the other hand, there is no RS ansatz in
quantum REM model. For these studies, we need to treat the validity of the replica
symmetry carefully. On the other hand, we used the static approximation (SA) that the
macroscopic property is invariant with Trotter axis. This treatment is also controversial.
The SA is valid in the case of the random energy model (p → ∞) but may be invalid
for the case of a finite p (Obuchi et al. 2007). Following the previous perception, we
may have to tackle the validity of SA in the models studied here.

The formulation proposed here can be applied to the other information processing
problems, although we focused on simple models in this thesis. As an example, a gray-
scale image restoration (GSIR) process through the QMPM estimate still remain open,
which may be implemented by mapping the set of the pixels onto many-state Potts spins
of quantum version (Inoue and Carlucci 2001). The studies of the restoration process in
the classical cases have been also investigated by using the mean-field theory. Whether
the convergence speed to a solution through the QMPM estimate is faster or not than it
through the CMPM estimate is instructive issue. In terms of error correcting code, there
are many future studies. As a simple expansion, we can consider the Sourlas code model
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with the finite connectivity, which can be analyzed the method developed for diluted
spin glass in the classical case (Kabashima and Saad 1998; Wong and Sherrington 1988).
The quantum case may be also investigated by similar strategy. The Low-density parity-
check code (LDPC) which is also typical error correcting code and saturates Shannon
bound get a lot of attention with developing information technology. One of LDPC
is formulated by diluted many-body Mattis model in an external field and then the
performance of it through QMPM estimate may be analyzed. The dynamics of the
error correcting may be analyzed by expanding the Dynamical Replica Theory (DRT)
which is strong strategy to investigate the dynamics in the disorder spin models to
quantum case (Ozeki and Okada 2003). As a simple expanded case of CDMAmodel, the
compressed sensing (CS) has also a more desirable property which is a signal processing
technique from relatively few measurements. For example, an application to mobile
phone camera sensor allows us to radically reduce battery drain (Schneider 2013). The
CS has been also investigated in the field of a medical field and then it may permit
speed up a scanning process magnetic resonance imaging (MRI) and CT scanners. If
quantum fluctuations can used in these field in a certain means, our theoretical works
in this thesis would pay dividends.

We should naturally consider the pure QMPM estimate which means the decoding
algorithms with the quantum fluctuations and without the thermal fluctuations. Al-
though we can treat this considering a certain limit T → 0 in the state equations, such
a treatment is difficult for integration induced by the transverse field. If we can perform
the integration considering the saddle point condition in the limit, we can consider the
pure QMPM estimate.

The research fields of the information processing with the transverse field is sup-
posed to expand with developing the device technologies. The quantum computer,
quantum annealer, which can demonstrate the algorithm by using the transverse field,
was launched and continue remarkable development. With these developments, the
researchers in the field of machine learning are interested in such a device technology.
At the present stage, the 512-qubit quantum annealer which is called “Vesuvius” is
established by D-wave systems. Although a sufficient examination should be done,
the computer may trigger a quantum speed up (Rønnow et al. 2013). As mentioned
above, our studies and formulation suggest that the quantum annealer may perform
probabilistic information processing. We believe that our works may contribute to
some mathematical foundation including the quantum annealing, futural information
processing with the quantum device.
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Appendix

A Saddle point approximation

We give the brief description of the saddle point approximation of real function. We
consider the following integration and give an assessment of it,

I =

∫ ∞

−∞
dxe−Nf(x). (A1)

The key idea of the saddle point approximation is that the above integral goes to the
maximum of the integrand inN → ∞ because a negative exponential function decreases
rapidly. If f(x) is minimum at x0, it’s Taylor expansion around x0 is

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f”(x0)(x− x0)

2 + · · · (A2)

=

∞∑
k=0

1

k!
f (k)(x− x0)

k. (A3)

Because the integral of the odd function is zero, we consider the following integral
instead of Eq. (A1),

I =

∫ ∞

−∞
dx exp

{
−Nf(x0)−

N

2
f”(x0)(x− x0)

2 +O(N(x− x0)
3)

}
(A4)

= e−Nf(x0)

∫
dx

{
−N

2
f”(x0)(x− x0)

2 +O
(
e−N(x−x0)3

)}
(A5)

≃ e−Nf(x0)

√
2π

Nf”(x0)
. (A6)

We see that the integral (A1) is influenced on only minimum of integrand f(x) in the
thermodynamic limit N → ∞. In this paper, we use I as the partition function Z and
then we get the relation that βF = − logZ ≈ −Nf(x0) + const.

B Suzuki-Trotter formulation

We give detailed calculation of Suzuki-Trotter (S-T) decomposition for a quantum spin
glass model (Suzuki 1976). The goal in this section is to obtain the classical Hamiltonian
corresponding to the quantum system by using S-T decomposition.

Let us consider the following Hamiltonian incorporating the transverse field:

Ĥ = Ĥ0(σ̂
z
i )− Γ

∑
i

σ̂x
i ≡ Û + K̂ (B1)

As we see in main text, theH0 is the problem Hamiltonian and Γ stands for the strength
of the transverse field. The S-T formula is given as(

eÛ/P eK̂/P
)P

= exp

{
Û + K̂ +

1

2P
[K̂, Û ] +O(P−3)

}
(B2)

→ exp(Û + K̂), (P → ∞), (B3)
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B. SUZUKI-TROTTER FORMULATION

where P is the Trotter number and the product of matrices transform to sum of these.
By using this formula and inserting complete system I =

∑
σ(t) |σ(t)⟩ ⟨σ(t)|, the par-

tition function Z = Tre−βĤ can be calculated as follows:

Z = lim
P→∞

∑
{σ(1)}

⟨σ(1)| e−
βÛ
P |σ′(1)⟩ ⟨σ′(1)| e−

βK̂
P |σ(2)⟩ ⟨σ(2)| · · ·

· · · |σ(M − 1)⟩ ⟨σ(M)| e−
βÛ
P |σ′(M)⟩ ⟨σ′(M)| e−

βK̂
P |σ(1)⟩ , (B4)

where |σi(t)⟩ = |σ1(t)⟩ ⊗ · · · ⊗ |σN (t)⟩ and σ̂z
i |σi(t)⟩ = σi(t) |σi(t)⟩. Because Û corre-

sponds to the potential term Ĥ0 which depends on only σ̂z, we can derive the following
relations:

⟨σ(t)|e−
βÛ
P |σ′(t)⟩ = exp

(
− β

P
H0(σ(t))

)
. (B5)

We can see, here, the potential term transform to classical spin set σ(t) on extra
dimension (Trotter dimension). The kinetic term K̂ which corresponds to the transverse
field can be calculated as follows:

⟨σ(t)|e−
βK̂
P |σ′(t+ 1)⟩ = ⟨σ(t)|e

βΓ
P

∑
i σ̂

x
i |σ′(t+ 1)⟩ (B6)

=
∏
i

⟨σ(t)|e
βΓ
P

σ̂x
i |σ′(t+ 1)⟩ (B7)

=
∏
i

⟨σ(t)|Î cosh βΓ

P
+ σ̂x

i sinh
βΓ

P
|σ′(t+ 1)⟩ (B8)

=

{ ∏
i cosh

βΓ
P , (σi(t) = σi(t+ 1))∏

i sinh
βΓ
P , (σi(t) = −σi(t+ 1))

(B9)

=


∏

i

(
1
2 sinh

2βΓ
P

) 1
2
(coth βΓ

P )
1
2 , (σi(t) = σi(t+ 1))∏

i

(
1
2 sinh

2βΓ
P

) 1
2
(tanh βΓ

P )
1
2 , (σi(t) = −σi(t+ 1))

(B10)

=
∏
i

(
1

2
sinh

2βΓ

P

) 1
2

(coth
βΓ

P
)
σi(t)σi(t+1)

2 (B11)

=

(
1

2
sinh

2βΓ

P

)N
2 ∏

i

(coth
βΓ

P
)
σi(t)σi(t+1)

2 . (B12)

Then the kinetic term can be transformed to the classical system. In summary, we can
derive the final form of the partition function of the system with the transverse field as
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follows:

Z = lim
P→∞

(
1

2
sinh

2βΓ

P

)NP
2 ∑

{σ(t)}

{
P∏
t=1

exp

(
− β

P
H0(σ(t))

)} P∏
t=1

N∏
i=1

(coth
βΓ

P
)
σi(t)σi(t+1)

2

(B13)

= lim
P→∞

(
1

2
sinh

2βΓ

P

)NP
2

Tr
σ(t)

e−Heff(σ(t)) (B14)

Heff(σ(t)) =
β

P

P∑
t=1

H0(σ(t))−
1

2
log

(
coth

βΓ

P

) N∑
i=1

P∑
t=1

σi(t)σi(t+ 1). (B15)

With attention to the above equation, the quantum system with the transverse field
is described as the classical system on the space which has extra dimension. The
analysis introduced in this paper are performed by using the effective Hamiltonian Heff

in various Ĥ0 which is defined according to the problems, the image restoration, the
error correcting code and CDMA.

C Derivation of free energy

In this section, we give the detailed calculations for derivation of the state equations
in information processing system described as mean-field models. Note that these
equations are derived under the conditions of replica symmetry (RS) and static ap-
proximation (SA), as we denote above.

C1 Image restoration

For deriving the free energy, −β[F ] = [logZ], we calculate the following quantity,

Z = Tr
σ
exp

 β

2NP

∑
i ̸=j

σi(t)σj(t) +
h

P

P∑
t=1

N∑
i=1

τiσi(t) +B
N∑
i=1

P∑
t=1

σi(t)σi(t+ 1)

 , (C1)

where B = 1
2 log

(
coth βΓ

P

)
. Using the Hubbard-Stratonovich transformation,

exp

 β

2PN

P∑
t=1

(

N∑
j=1

σj(t))
2

 =

P∏
t=1

(
Nβ

2Pπ

) 1
2
∫

dm(t) exp

{
−Nβ

2P

P∑
t=1

m2(t) +
βm(t)

P

P∑
t=1

N∑
i=1

σi(t)

}
,

(C2)

we can obtain the following expression:

Z =

(
Nβ

2Pπ

) 1
2
∫

dm(t) exp

(
−Nβ

2P

P∑
t=1

m2(t) +N log Tr
σ
eL

)
, (C3)

L =
1

P

(
β

P∑
t=1

m(t)σ(t) + hτ

P∑
t=1

σ(t)

)
+B

P∑
t=1

σ(t)σ(t+ 1). (C4)
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Here, we use the static approximation (SA) as follows,

m(t) = m, (C5)

which mean that the order parameter does not depend on the Trotter dimension. Then,
we can take the spin trace in the limit M → ∞ as

Tr
σ
eL = Tr

σ
exp

(
βm+ hτ

P

P∑
t=1

σ(t)−B
P∑
t=1

σ(t)σ(t+ 1)

)
(C6)

= 2 cosh
√

Φ2 + γ2 (C7)

Φ = βm+ hτ, (C8)

where we use the “inverse” S-T decomposition. 1 for the above calculations, we obtain
the following expression

logZ ≃ −Nβ

2
m2 +N log 2 cosh

√
Φ2 + γ2. (C9)

Next, we should consider the average part [·] = Trξ
∫
dτP (ξ)P (τ |ξ). In our formula-

tion, the original image ξ and channel remain classic version even in the quantum case.
From the above calculation, we can obtain the averaged free energy per spin as follows:

−β[f ] = −βm2

2
+ Tr

ξ

∫
Du

eβsm0ξ

2 coshβsm0
log 2 cosh

√
Φ2 + γ2 (C10)

Φ = βm+ haτu+ hτ0ξ, (C11)

where u = (τ − τ0ξ)/aτ ,
∫
Du = 1

2
√
π

∫
due−

u2

2 . We can easily see that the free energy

goes to the classical one in γ = 0. The saddle point conditions of the free energy give
the following equations (Inoue 2001):

m0 = tanhβsm0 (C12)

m = Tr
ξ

∫
Du

eβsm0ξ

2 coshβsm0

ΦtanhΞ

Ξ
(C13)

Ξ =
√

Φ2 + γ2. (C14)

The derivation for m0 is the trivial calculation, where it is the magnetization of the
original image. Note that γ = βΓ.

C2 Sourlas codes

The replica analysis of the p-body spin glass model with the Gaussian interaction and
ferromagnetic phase has been done by Obuchi et al (Obuchi et al. 2007). We review
the analysis in this section.

In Sourlas code, we start the analysis with the following effective partition function,

Z = Tr
σ
exp

 β

P

∑
i1<...<ip

∑
t

Ji1...ipσi1(t) · · ·σip(t) +B
∑
i

∑
t

σi(t)σi(t+ 1)

 , (C15)

1The detailed calculations for this part are given in Eqs. (C54)-(C59) in the next section.

100



Appendix

which can be obtained by applying Suzuki-Trotter decomposition to the Hamiltonian
of the Sourlas code with transverse field. Following the replica treatment, we calculate
the following quantity

[Zn] = Tr
ξ

∫ ∏
i1<...<ip

dJi1...ipP(Ji1...ip|ξ1...ξp)P ({ξi})Zn (C16)

= Tr
ξ

∫ ∏
i1<...<ip

dJi1...ip

(
Np−1

πJ2p!

) 1
2

exp

−Np−1

J2p!

∑
i1<...<ip

(
Ji1...ip −

J0p!

Np−1
ξi1 · · · ξip

)2
 Zn

2N
.

(C17)

Next, under the gage transformation,

Ji1...ip → Ji1...ipξi1 · · · ξip, (C18)

σik → σikξik (k = 1, · · · p), (C19)

the Hamiltonian remain invariant as we see in the classical case. By using this trans-
formation and Trξ = 2N , the Eq. (C17) is

[Zn] =

∫ ∏
i1<...<ip

dJi1...ip

(
Np−1

πJ2p!

) 1
2

exp

−Np−1

J2p!

∑
i1<...<ip

(
Ji1...ip −

J0p!

Np−1

)2
Zn.

(C20)

For simplicity, we perform the following displacement,

k ≡ Np−1

J2πp!
, l ≡ Np−1

J2p!
, m ≡ J0p!

Np−1
(C21)

Sµ
i (t) ≡ σµ

i1(t) · · ·σ
µ
ip(t), (C22)

where µ is the replica index. 2 Under the transformation, we can rewrite Eq. (C20) as
follows:

[Zn] = k
NB
2

∫ ∏
i1<...<ip

dJi1...ipTrσ exp

−l
∑

i1<...<ip

(Ji1...ip −m)2

+
β

P

∑
i1<...<ip

∑
t

∑
µ

Ji1...ipS
µ
i (t) +B

∑
i

∑
t

∑
µ

σµ
i (t)σ

µ
i (t+ 1)

 .

(C23)

Here, NB is NCp. And then, rewriting the first and second term in the right hand side

2Note that the replacement parameter k in Eq. (C21) should note be confused with the index k in
Eq. (C19).
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of the above equation

exp

−l
∑

i1<...<ip

(Ji1...ip −m)2 +
β

M

∑
i1<...<ip

∑
t

∑
µ

Ji1...ipS
µ
i (t)

 (C24)

=
∏

i1<...<ip

exp

−l

{
J2
i1...ip −

1

2l

(
2lm+

β

P

∑
t,µ

Sµ
i (t)

)}2

+
β2

4lP 2

(∑
t,µ

Sµ
i (t)

)2

+
mβ

P

∑
t,µ

Sµ
i (t)

 , (C25)

we perform the Gaussian integral according to Ji1...ip as follows:∫ ∏
i1<...<ip

dJi1...ip exp

−l

{
J2
i1...ip −

1

2l

(
2lm+

β

P

∑
t,µ

Sµ
i (t)

)}2

+
β2

4lP 2

(∑
t,µ

Sµ
i (t)

)2

+
mβ

P

∑
t,µ

Sµ
i (t)

 (C26)

=
(π
l

)NB
2

∏
i1<...<ip

exp

 β2

4lP 2

(∑
t,µ

Sµ
i (t)

)2

+
mβ

P

∑
t,µ

Sµ
i (t)

 . (C27)

Here by using the following relation,(
kπ

l

)NB
2

=

(
Np−1

J2πp!
π
J2p!

Np−1

)NB
2

= 1, (C28)

the partition function can be represented as follows:

[Zn] = Tr
σ
exp

B∑
i,t,µ

σµ
i (t)σ

µ
i (t+ 1) +

∑
i1<...<ip

 β2

4lP 2

(∑
t,µ

Sµ
i (t)

)2

+
mβ

P

∑
t,µ

Sµ
i (t)


 .

(C29)

By using the following relations of each sum,

1

Np−1

∑
i1<...<ip

Sα
i (t) ≃ N

p!

(
1

N

∑
i

σα
i (t)

)p

(C30)

1

Np−1

∑
i1<...<ip

Sα
i (t)S

β
i (t

′) ≃ N

p!

(
1

N

∑
i

σα
i (t)σ

β
i (t

′)

)p

, (C31)

Eq. (C23) can be rewritten as follows:

[Zn] = Tr
σ
exp

B
∑
i,t,µ

σµ
i (t)σ

µ
i (t+ 1) +

β2J2N

4P 2

∑
t,t′

∑
µ,ν

(
1

N

∑
i

σµ
i (t)σ

ν
i (t

′)

)p

+
J0Nβ

P

∑
t,µ

(
1

N

∑
i

σµ
i (t)

)p}
. (C32)
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We, here, introduce the following order parameters which characterize the macroscopic
property of the system.

mµ(t) =
1

N

∑
i

σα
i (t) (C33)

Qµν(t, t
′) =

1

N

∑
i

σµ
i (t)σ

ν
i (t

′) (C34)

Qµµ(t, t
′) =

1

N

∑
i

σµ
i (t)σ

µ
i (t

′). (C35)

The physical meaning of mµ(t) and Qµν(t, t) corresponds to magnetize and spin glass
order parameter respectively. In the quantum spin glass system, Qµµ(t, t) is newly
introduced, which mean the order parameter on the Trotter (extra dimension) axis.
Representing the second term of the right hand side in the Eq. (C32) as∑

t,t′

∑
µ,ν

(
1

N

∑
i

σµ
i (t)σ

ν
i (t

′)

)p

=
∑
t,t′

{∑
µ

(
1

N

∑
i

σµ
i (t)σ

µ
i (t

′)

)p

+ 2
∑
µ<ν

(
1

N

∑
i

σµ
i (t)σ

ν
i (t

′)

)p}
(C36)

=
∑
t,t′

{∑
µ

Qµµ(t, t
′)p + 2

∑
µ<ν

Qµν(t, t
′)p

}
, (C37)

we obtain the partition function incorporating the order parameters as follows:

[Zn] = Tr
σ

∫ ∏
µ,t

dmµ(t)dm̂µ(t)
∏
µ,t,t′

dQµµ(t, t
′)dQ̂µµ(t, t

′)
∏

µ<ν,t,t′

dQµν(t, t
′)dQ̂µν(t, t

′) eΛ

exp

B
∑
i,t,µ

σµ
i (t)σ

µ
i (t+ 1) +

β2J2N

4P 2

∑
t,t′

(∑
µ

Qµµ(t, t
′)p + 2

∑
µ<ν

Qµν(t, t
′)p

)

+
J0Nβ

P

∑
t,µ

mµ(t)
p

}
(C38)

Λ =
1

P

∑
t,µ

m̂µ(t)

(∑
i

σµ
i (t)−Nmµ(t)

)
+

1

P 2

∑
t,t′,µ

Q̂µµ(t, t
′)

(∑
i

σµ
i (t)

−NQµµ(t, t
′)
)
+

1

P 2

∑
t,t′,µ<ν

Q̂µν(t, t
′)

(∑
i

σµ
i (t)σ

ν
i (t)−NQµν(t, t

′)

)
, (C39)

where eΛ term is generated from the Fourier transform of a Gaussian function and
Â is conjugate Lagrange multiplier of A. Now, we calculate the trace over σ =
(
{
σ1(t)

}
, ..., {σn(t)}) to have the explicit form of order parameters. By noting the

following relation,

Tr
σ
exp(

∑
i

· · · ) = Tr
σ

∏
i

exp(· · · ) =
{

Tr
σ1,...,σn

exp(· · · )
}N

= exp

{
N log Tr

σ1,...,σn
exp(· · · )

}
(C40)
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we can do the trace independently with respect to each i-th spins in the m-th replica.
Thus, the spacial index disappear due to this operation. When we write Trσ1,...,σn as
Trσ again, we can derive the following form:

[Zn] = Extr Fn

(
mµ(t), m̂µ(t), Qµµ(t, t

′), Q̂µµ(t, t
′), Qµν(t, t

′), Q̂µν(t, t
′)
)

(C41)

= exp(−βnNf) (C42)

−βnf =
∑
t,µ

(
J0β

P
mµ(t)

p − 1

P
m̂µ(t)mµ(t)

)
+
∑
t,t′,µ

(
β2J2

4P 2
Qµµ(t, t

′)p − 1

P 2
Q̂µµ(t, t

′)Qµµ(t, t
′)

)

+
∑

t,t′,µ<ν

(
β2J2

2P 2
Qµν(t, t

′)p − 1

P 2
Q̂µν(t, t

′)Qµν(t, t
′)

)
+ logTr

σ
eL (C43)

L =
1

P

∑
t,µ

m̂µ(t)σ
µ(t) +

1

P 2

∑
t,t′,µ

Q̂µµ(t, t
′)σµ(t)σµ(t′) +

1

P 2

∑
t,t′,µ<ν

Q̂µν(t, t
′)σµ(t)σν(t)

+B
∑
t,µ

σµ(t)σµ(t+ 1), (C44)

where Extr represents extremization with respect to each order parameters, which
corresponds to saddle point condition represented in Appendix A.

Taking the replica symmetry and the static approximation as follows,

mµ(t) = m, m̂µ(t) = m̂ (C45)

Qµµ(t, t
′) = χ, Q̂µµ(t, t

′) = χ̂ (C46)

Qµν(t, t
′) = q, Q̂µν(t, t

′) = q̂, (C47)

we can calculate eL as follows:

eL = exp

(
m̂

P

∑
t,µ

σα(t) +B
∑
t,µ

σµ(t)σµ(t+ 1)

)∫
Dw exp

(√
q̂

M

∑
t,µ

σµ(t)w

)
∏
µ

∫
Dz exp

(√
2χ̂− q̂

M

∑
t

σµ(t)z

)
(C48)

=

∫
Dz
∏
µ

∫
Dz exp

{
B
∑
t

σµ(t)σµ(t+ 1) +
m̂+

√
q̂w +

√
2χ̂− q̂z

P

∑
t

σµ(t)

}
.

(C49)

Here, the integral of the above equation is inspired by using the Hubbard-Stratonovich
transformation to perform trace over σ:

exp

 q̂

2P 2

(∑
t,µ

σµ(t)

)2
 =

∫
Dw exp

(√
q̂

P

∑
t,µ

σµ(t)w

)
(C50)

exp

2χ̂− q̂

2P 2

∑
µ

(∑
t

σµ(t)

)2
 =

∏
µ

∫
Dz exp

(√
2χ̂− q̂

P

∑
t

σµ(t)z

)
.

(C51)
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It is the key point to use the “inverse” S-T formula for performing trace over σ. That
is, we obtain the following equations:

Tr
σ
exp

(
B
∑
t

σα(t)σα(t+ 1) +
Φ

M

∑
t

σα(t)

)
= Tr

σ
exp (Γσ̂x +Φσ̂z)

(C52)

Φ = m̂+
√

q̂w +
√
2χ̂− q̂z, (C53)

which is the equation is described by Pauli matrices. Then, we can calculate the sum
with respect to σ̂ as follows:

Tr
σ
exp

(
B
∑
t

σα(t)σα(t+ 1) +
Φ

P

∑
t

σα(t)

)
(C54)

= Tr
σ

(
1 + T̂ +

1

2!
T̂ 2 +

1

3!
T̂ 3 · · ·

)
(C55)

= Tr
σ

{
Î

(
1 +

C

2!
+

C2

4!
+ · · ·

)
+ T̂

(
1 +

C

3!
+

C2

5!
+ · · ·

)}
(C56)

= 1 +
C

2!
+

C2

4!
+ · · · (C57)

= 2 cosh
√
C (C58)

= 2 cosh
√

Φ2 + Γ2, (C59)

where T̂ = Γσ̂x + Φσ̂z and then T̂ 2 = (Φ2 + Γ2)Î ≡ CÎ. And we also use the relation,

TrT̂ = 0, coshx =
∑∞

l=0
x2l

(2l)! . Therefore, Eq. (C41) under RS and SA can be written
as follows:

Fn (m, m̂, χ, χ̂, q, q̂) = expN

{
nβJmp − nmm̂+

nβ2J2

4
χp − nχχ̂+

n(n− 1)β2J2

4
qp

−n(n− 1)

2
qq̂ + log

∫
Dw

(∫
Dz2 cosh

√
Φ2 + Γ2

)n}
. (C60)

In accordance the replica treatment,

[logZ] = lim
n→0

[Z]n − 1

n
(C61)

we can obtain the following expressions for f = − [logZ]
β , exp(Nx) ≃ 1 +Nx:

Fn (m, m̂, χ, χ̂, q, q̂) = exp {−Nβnfn (m, m̂, χ, χ̂, q, q̂)} (C62)

f (m, m̂, χ, χ̂, q, q̂) = lim
n→0

fn (m, m̂, χ, χ̂, q, q̂) . (C63)

And then, the free energy of the Sourlas model under RS and SA is

−βfRS (m, m̂, χ, χ̂, q, q̂) =
β2J2

4
(χp − qp) +

1

2
qq̂ − χχ̂−mm̂+ βJ0m

p +∫
Dz log

∫
Dz2 cosh

√
Φ2 + Γ2. (C64)
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Note that we, here, use the following relations under n → 0 for deriving the free energy:

log

∫
Dw

(∫
Dz2 cosh

√
Φ2 + Γ2

)n

= log

∫
Dw exp

{
n log

(∫
Dz2 cosh

√
Φ2 + Γ2

)}
(C65)

≃ log

∫
Dw

{
1 + n log

(∫
Dz2 cosh

√
Φ2 + Γ2

)}
(C66)

≃ n

∫
Dw log

(∫
Dz2 cosh

√
Φ2 + Γ2

)
. (C67)

The saddle point conditions that the free energy is extremized with respect to the
variables are

m =

∫
Dw

∫
Dz

ΦsinhΞ

ΩΞ
(C68)

q =

∫
Dw

(∫
Dz

ΦsinhΞ

ΩΞ

)2

(C69)

χ =

∫
Dw

Ω

∫
Dz

(
β2Γ2 sinhΞ

Ξ3
+

Φ2 coshΞ

Ξ2

)
(C70)

m̂ = βpJ0m
p−1 (C71)

q̂ =
β2J2p

2
qp−1 (C72)

χ̂ =
β2J2p

4
χp−1 (C73)

Ξ =
√

Φ2 + β2Γ2 (C74)

Φ = m̂+
√

q̂w +
√

2χ̂− q̂z (C75)

Ω ≡
∫

Dz coshΞ. (C76)

For Γ = 0, these equations reduce to the state equations for the classical case corre-
sponding that (4.26)-(4.31). In the classical case that Γ = 1, we can see that χ = 1.

C3 CDMA multiuser demodulation

We derive the explicit expression for free energy (5.38) in this appendix.

We first introduce the following transformation,

uk0 =
1√
N

N∑
i=1

ηki ξi, ukµ(t) =
1√
N

N∑
i=1

ηki σ
µ
i (t), (C77)

where k stands for the spreading code index, µ denotes the replica index, t represents
the Trotter index and i is the spatial index. Then, we write the partition function
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(5.34) in terms of the Fourier transform as:

[Zn] =
1

2N
1

2NK

∑
H

∑
{σk(s)}

Tr
ξ

Tr
{σµ(t)}

∫ ∏
k

duk0dû
k
0

2π
exp

(
iûk0(u

k
0 −

1√
N

∑
i

ηki ξi)

)

∏
k

∏
µ,t

dukµ(t)dû
k
µ(t)

2π
exp

(
iûkµ(t)(u

k
µ(t)−

1√
N

∑
i

ηki σ
µ
i (t))

)∏
k

dyk
(
β0
2π

) 1
2

exp

(
−β0

2
(yk − uk0)

2

)

× exp

(
− β

P

∑
µ,t

∑
k

(
1

2
(ukµ(t))

2 − ykukµ(t))

)
exp

(
B
∑
µ,t

∑
i

σµ
i (t)σ

µ
i (t+ 1)

)
. (C78)

Here, we carry out the sum of H in the above expression as:

Lξ ≡ 1

2NK

∑
H

∏
k

exp

(
− iûk0√

N

∑
i

ηki ξi

)∏
µ,t

∏
k

exp

(
−
iûkµ(t)√

N

∑
i

ηki σ
µ
i (t)

)
(C79)

=
∏
i,k

1

2

∑
ηki

exp

{
− iηki√

N

(
ûk0ξi +

∑
µ,t

ûkµ(t)σ
µ
i (t)

)}
(C80)

=
∏
i,k

cos

{
1√
N

(
ûk0ξi +

∑
µ,t

ûkµ(t)σ
µ
i (t)

)}
(C81)

≃
∏
i,k

exp

− 1

2N

(
ûk0ξi +

∑
µ,t

ûkµ(t)σ
µ
i (t)

)2
 (C82)

=
∏
i,k

exp

− 1

2N
(ûk0)

2 − 1

2N

∑
µ

(∑
t

ûkµ(t)σ
µ
i (t)

)2

− 1

N

∑
µ<ν

∑
t,t′

ûkµ(t)û
k
ν(t

′)σµ
i (t)σ

ν
i (t

′)− 1

N
ûk0ξi

∑
µ,t

ûkµ(t)σ
µ
i (t)

 . (C83)

By introducing the order parameters defined by (5.35)-(5.37), we have:

Lξ =

∫ ∏
µ,t

dRµ(t)δ

(
Rµ(t)−

1

N

∑
i

ξiσ
µ
i (t)

) ∏
µ,t,t′

dQµµ(t, t
′)δ

(
Qµµ(t, t

′)− 1

N

∑
i

σµ
i (t)σ

µ
i (t

′)

)

×
∏

µ<ν,t,t′

dQµν(t, t
′)δ

(
Qµν(t, t

′)− 1

N

∑
i

σµ
i (t)σ

ν
i (t

′)

)
exp

{
−1

2

∑
k

(ûk0)
2

− 1

2

∑
µ,k

∑
t,t′

ûkµ(t)û
k
µ(t

′)Qµµ(t, t
′)−

∑
µ<ν

∑
t,t′,k

ûkµ(t)û
k
ν(t

′)Qµν(t, t
′)−

∑
k

ûk0
∑
µ,t

ûkµ(t)Rµ(t)

 .

(C84)

107



C. DERIVATION OF FREE ENERGY

From the above calculations, we rewrite the partition function (C78) as:

[Zn] =

∫ (∏
µ,t

NidR̂µ(t)dRµ(t)

2π

)∏
µ,t,t′

NidQ̂µµ(t, t
′)dQµµ(t, t

′)

2π


×

 ∏
µ<ν,t,t′

NidQ̂µν(t, t
′)dQµν(t, t

′)

2π

 eN(g1+g2+g3) (C85)

eNg1 =

∫ (∏
k

duk0dû
k
0

2π

)∏
k,µ,t

dukµ(t)dû
k
µ(t)

2π

(∏
k

dyk
(
β0
2π

) 1
2

)
exp

{
−β0

2

∑
k

(yk − uk0)
2

−
∑
k

ûk0
∑
µ,t

ûkµ(t)Rµ(t)−
1

2

∑
µ,k

∑
t,t′

ûkµ(t)û
k
µ(t

′)Qµµ(t, t
′)−

∑
µ<ν

∑
t,t′,k

ûkµ(t)û
k
ν(t

′)Qµν(t, t
′)

−1

2

∑
k

(ûk0)
2 + i

∑
k

uk0û
k
0 + i

∑
k,µ,t

ukµ(t)û
k
µ(t)−

β

2P

∑
µ,t,k

((ukµ(t))
2 − 2ukµ(t)y

k)

 (C86)

eNg2 = Tr
ξ
P (ξ) Tr

{σµ(t)}
exp

 1

P

∑
µ,t

R̂µ(t)
∑
i

ξiσ
µ
i (t) +

1

P 2

∑
µ,t,t′

Q̂µµ(t, t
′)
∑
i

σµ
i (t)σ

µ
i (t

′)+

1

P 2

∑
µ<ν,t,t′

Q̂µν(t, t
′)
∑
i

σµ
i (t)σ

ν
i (t

′) +B
∑
t,µ

∑
i

σµ
i (t)σ

µ
i (t+ 1)

 (C87)

eNg3 = exp

−N

P

∑
µ,t

R̂µ(t)Rµ(t)−
N

P 2

∑
µ,t,t′

Q̂µµ(t, t
′)Qµµ(t, t

′)− N

P 2

∑
µ<ν,t,t′

Q̂µν(t, t
′)Qµν(t, t

′)

 .

(C88)

In the following, we calculate eNg1 , eNg2 and eNg3 , and then derive the free energy of
the CDMA model with the transverse field.

By integrating uk0 and ûk0 in Eq. (C86), eNg1 can be expressed as:

eNg1 =

∫ ∏
k,µ,t

dukµ(t)dû
k
µ(t)

2π

(∏
k

dyk
1

2π

√
2β0π

1 + β0

)
exp

−1

2

∑
µ,k

∑
t,t′

ûkµ(t)û
k
µ(t

′)Qµµ(t, t
′)

−
∑
µ<ν

∑
t,t′,k

ûkµ(t)û
k
ν(t

′)Qµν(t, t
′) + i

∑
k,µ,t

ukµ(t)û
k
µ(t)−

β

2P

∑
µ,t,k

((ukµ(t))
2 − 2ukµ(t)y

k)

− β0
2(1 + β0)

∑
k

(yk)2 − iβ0
1 + β0

∑
k

yk
∑
µ,t

ûkµ(t)Rµ(t) +
β0

2(1 + β0)

∑
k

(∑
µ,t

ûkµ(t)Rµ(t)

)2
 .

(C89)
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The integration over yk in the above equation can be carried out as:

∫ (∏
k

dyk

)
exp

 β

P

∑
µ,k,t

ukµ(t)y
k − β0

2(1 + β0)

∑
k

(yk)2 − iβ0
1 + β0

∑
k

yk
∑
µ,t

ûkµ(t)Rµ(t)


=

∫ ∏
k

dyk exp

(
− β0
2(1 + β0)

(yk)2 +

(
β

P

∑
µ,t

ukµ(t)−
iβ0

1 + β0

∑
µ,t

ûkµ(t)Rµ(t)

)
yk

)
(C90)

=
∏
k

√
2(1 + β0)π

β0
exp

1 + β0
2β0

(
β

P

∑
µ,t

ukµ(t)−
iβ0

1 + β0

∑
µ,t

ûkµ(t)Rµ(t)

)2
 (C91)

=
∏
k

√
2(1 + β0)π

β0
exp

β2(1 + β0)

2β0P 2

(∑
µ,t

ukµ(t)

)2

− iβ

P

(∑
µ,t

ukµ(t)

)(∑
µ,t

ûkµ(t)Rµ(t)

)

− β0
2(1 + β0)

(∑
µ,t

ûkµ(t)Rµ(t)

)2
 . (C92)

The integration over ukµ(t) can be carried out independently for each k as:

∏
k

∫ (∏
µ,t

dukµ(t)

)
exp

i
∑
µ,t

ukµ(t)û
k
µ(t)−

β

2P

∑
µ,t

(ukµ(t))
2 +

β2(1 + β0)

2β0P 2

(∑
µ,t

ukµ(t)

)2

− iβ

P

(∑
µ,t

ukµ(t)

)(∑
µ,t

ûkµ(t)Rµ(t)

)}
(C93)

=
∏
k

∫
Da

(∏
µ,t

dukµ(t)

)
exp

{
aβ

P

√
1 + β0
β0

∑
µ,t

ukµ(t) + i
∑
µ,t

ukµ(t)û
k
µ(t)−

β

2P

∑
µ,t

(ukµ(t))
2

− iβ

P

(∑
µ,t

ukµ(t)

)(∑
µ,t

ûkµ(t)Rµ(t)

)}
(C94)

=
∏
k

∫
Da
∏
µ,t

√
2Pπ

β
exp

 P

2β

aβ

P

√
1 + β0
β0

+ iûkµ(t)−
iβ

P

∑
ν,t′

ûkν(t
′)Rν(t

′)

2 (C95)

=
∏
k

∫
Da
∏
µ,t

√
2Pπ

β
exp

a2β(1 + β0)

2Pβ0
− P

2β
(ûkµ(t))

2 − β

2P

∑
ν,t′

ûkν(t
′)Rν(t

′)

2

+ia

√
1 + β0
β0

ûkµ(t) +

∑
ν,t′

ûkν(t
′)Rν(t

′)

 ûkµ(t)−
iaβ

P

√
1 + β0
β0

∑
ν,t′

ûkν(t
′)Rν(t

′)

 ,

(C96)

when we apply Hubbard-Stratonovich transformation:

exp

(
x2

2

)
=

∫
Daeax,

(
Da =

dae−a2/2

√
2π

)
, (C97)
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to term (ukµ(t))
2 in Eq. (C93).

Here, we assume replica symmetry (RS) and static approximation (SA) (Bray and
Moore 1980):

Rµ(t) = R, Qµν(t, t
′) = q, Qµµ(t, t

′) = χ (t ̸= t′) (C98)

R̂µ(t) = R̂, Q̂µν(t, t
′) = q̂, Q̂µµ(t, t

′) = χ̂. (C99)

Note that the following relation exits for Qµµ(t, t) = 1 under RS and SA:∑
k,µ

∑
t,t′

ûkµ(t)û
k
µ(t

′)Qµµ(t, t
′) → χ

∑
k,µ

∑
t,t′

ûkµ(t)û
k
µ(t

′)− (χ− 1)
∑
k,µ,t

(ûkµ(t))
2. (C100)

By using the Hubbard-Stratonovich transformation on (
∑

µ

∑
t)
2 and

∑
µ(
∑

t)
2 and

bearing in mind the order of the product of indices, k, µ, and t, we have:

eNg1 =
∏
k

∫
Da

∫
Db
∏
µ

∫
Dc
∏
t

dûkµ(t)

2π

√
2Pπ

β
exp

[
a2β(1 + β0)

2Pβ0
− P − β(χ− 1)

2β
(ûkµ(t))

2

+

{
ai

√
1 + β0
β0

(1− nβR) + b
√

2R− q − nβR2 + c
√
q − χ

}
ûkµ(t)

]
(C101)

=
∏
k

∫
Da

∫
Db exp

(
na2β(1 + β0)

2β0

)∏
µ

∫
Dc
∏
t

1

2π

√
2Pπ

β

√
2βπ

P − β(χ− 1)

× exp

 β

2P

(
ai

√
1 + β0
β0

(1− nβR) + b
√

2R− q − nβR2 + c
√
q − χ

)2
 . (C102)

Here, we introduce the following replacements to simplify the above equation:

A ≡ i

√
1 + β0
β0

(1− nβR) (C103)

B ≡
√

2R− q − nβR2 (C104)

C ≡
√
q − χ (C105)

Xab ≡ Aa+Bb. (C106)

The coefficient under the condition that P → ∞ can be transformed as:

∏
t

√
P

P − β(χ− 1)
≃

∏
t

{
1 +

β

2P
(χ− 1)

}
(C107)

≃
∏
t

exp log

{
1 +

β

2P
(χ− 1)

}
(C108)

≃ exp

(
β

2
(χ− 1)

)
. (C109)
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Then, we carry out integrations over a, b, and c as:

eNg1 =
∏
k

∫
Da

∫
Db exp

(
na2β(1 + β0)

2β0
+

nβ

2
(χ− 1)

)∏
µ

∫
Dc exp

(
β

2
(Xab + Cc)2

)

=
∏
k

exp

(
nβ

2
(χ− 1)

)(
1

1− βC2

)n
2
∫

Da

∫
Db exp

{
nβ

2

(
1 + β0
β0

a2 +
X2

ab

1− βC2

)}

≃
∏
k

exp

(
nβ

2
(χ− 1)

)(
1

1− βC2

)n
2
∫

Da

∫
Db

{
1 +

nβ

2

(
1 + β0
β0

a2 +
X2

ab

1− βC2

)}

=
∏
k

exp

(
nβ

2
(χ− 1)

)(
1

1− βC2

)n
2
{
1 +

βn

2

(
1 + β0
β0

+
A2 +B2

1− βC2

)}

=
∏
k

exp

(
nβ

2
(χ− 1)

)(
1

1− βC2

)n
2
{
1 +

βn

2

(
1 + β0
β0

+
2R− q − (1 + β−1

0 )

1− β(q − χ)

)
+O(n2)

}

≃
∏
k

exp

[
n

2

{
− log(1− β(q − χ)) +

β(1 + β0)

β0
+

β(2R− q − (1 + β−1
0 ))

1− β(q − χ)
+ β(χ− 1)

}]
.

For α ≡ K/N , we derive the final expression of g1 as:

g1
n

≃ α

2

{
− log(1− β(q − χ)) +

β(1 + β0)

β0
+

β(2R− q − (1 + β−1
0 ))

1− β(q − χ)
+ β(χ− 1)

}
.

(C110)

We next calculate eNg2 under RS and SA conditions as:

eNg2

= Tr
ξ
P (ξ) Tr

{σµ(t)}
exp

 R̂

P

∑
µ,t

∑
i

ξiσ
µ
i (t) +

χ̂

P 2

∑
µ,t,t′

∑
i

σµ
i (t)σ

µ
i (t

′)+

q̂

2P 2

∑
i

(∑
µ,t

σµ
i (t)

)2

− q̂

2P 2

∑
i

∑
µ

(∑
t

σµ
i (t)

)2

+B
∑
t,µ

∑
i

σµ
i (t)σ

µ
i (t+ 1)

 (C111)

=
1

2N
Tr
ξ

Tr
{σµ(t)}

∏
i

∫
Dw exp

(
w
√
q̂

P

∑
µ,t

σµ
i (t)

)∏
µ

∫
Dz exp

(
z
√
2χ̂− q̂

P

∑
t

σµ
i (t)

)

exp

{
R̂

P

∑
t

∑
i

ξiσ
µ
i (t) +B

∑
t

σµ
i (t)σ

µ
i (t+ 1)

}
(C112)

=
∏
i

1

2
Tr
ξi

∫
Dw exp

(
w
√
q̂

P

∑
µ,t

σµ
i (t)

)∏
µ

∫
Dz exp

(
z
√
2χ̂− q̂

P

∑
t

σµ
i (t)

)

Tr
σµ
i (t)

exp

{
R̂

P

∑
t

∑
i

ξiσ
µ
i (t) +B

∑
t

σµ
i (t)σ

µ
i (t+ 1)

}
(C113)

=
∏
i

1

2
Tr
ξi

∫
Dw

∏
µ

∫
Dz Tr

σµ
i (t)

exp

{
z
√
2χ̂− q̂ + w

√
q̂ + R̂ξi

P

∑
t

σµ
i (t) +B

∑
t

σµ
i (t)σ

µ
i (t+ 1)

}
.

(C114)
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By applying ST decomposition to the above equation, we can take a spin trace as:

eNg2 →
∏
i

1

2
Tr
ξi

∫
Dw

∏
µ

∫
DzTr exp

{
(z
√

2χ̂− q̂ + w
√

q̂ + R̂ξi)σ̂
z
i + βΓσ̂x

i

}
(C115)

=
∏
i

1

2
Tr
ξi

∫
Dw

∏
µ

∫
Dz2 cosh

√
Φ(ξi)2 + β2Γ2 (C116)

=
∏
i

1

2
Tr
ξi

∫
Dw

(∫
Dz2 cosh

√
Φ(ξi)2 + β2Γ2

)n

(C117)

≃
∏
i

∫
Dw

(∫
Dz2 cosh

√
Φ2 + β2Γ2

)n

(C118)

≃ expN log

{
1 + n

∫
Dz log

(∫
Dw2 cosh

√
Φ2 + β2Γ2

)}
(C119)

= expNn

∫
Dz log

(∫
Dw2 cosh

√
Φ2 + β2Γ2

)
, (C120)

where

Φ(ξi) = z
√

2χ̂− q̂ + w
√

q̂ + R̂ξi. (C121)

Therefore, we obtain:

g2
n

≃
∫

Dz log

(∫
Dw2 cosh

√
Φ2 + β2Γ2

)
(C122)

Φ = w
√

2χ̂− q̂ + z
√

q̂ + R̂. (C123)

We finally calculate eNg3 under RS and SA conditions as:

eNg3 ≃ exp

{
nN

(
−R̂R− χ̂χ+

q̂q

2

)}
.

Thus, we obtain the following form:

g3
n

≃ −R̂R− χ̂χ+
q̂q

2
. (C124)

From Eqs. (C110), (C122), and (C124), we obtain the free energy density as:

−βf =
g1
n

+
g2
n

+
g3
n

(C125)

=
α

2

{
− log(1− β(q − χ)) +

β(1 + β0)

β0
+

β(2R− q − (1 + β−1
0 ))

1− β(q − χ)
+ β(χ− 1)

}
− R̂R

−χ̂χ+
q̂q

2
+

∫
Dz log

(∫
Dw2 cosh

√
Φ2 + β2Γ2

)
(C126)

Φ =
ϕ

β
= w

√
2χ̂− q̂ + z

√
q̂ + R̂. (C127)

Considering the classical limits Γ = 0 and χ = 1, the classical free energy is recovered.
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D Derivation of the Overlap

In this section, we derive the explicit expression for the overlap M of information
processing models with the transverse field generally in a similar way to the classical
case (Nishimori 2001). Adding the external term h

∑
i σ

µ
i (t)σ

ν
i (t

′) to the partition
function [Zn], we obtain

[Zn]µν(t, t
′) = Tr

ξ
P (ξ)

∫
dyP (y|ξ)

exp

− β

P

∑
t,µ

H(σµ(t)) +B
∑
µ,t,i

σµ
i (t)σ

µ
i (t+ 1) + h

∑
i

σµ
i (t)σ

ν
i (t

′)

 ,

(D1)

where B = log
(
coth βΓ

P

)
/2, and σ = (σ1, ...,σn),σk = (σk

1 (t), ...σ
k
N (t)), t = 1, ..., P .

The expression µ and ν represent the replica indices and t represents the Trotter index.
Note that y which corresponds to τ in the image restoration or J in the error correcting
code respectively represents the received information sequence. As we saw the above
appendices, after introducing the following variables, 3

mµ(t) =
1

N

∑
i

σµ
i (t) (D2)

Qµν(t, t
′) =

1

N

∑
i

σµ
i (t)σ

ν
i (t

′) (D3)

Qµµ(t, t
′) =

1

N

∑
i

σµ
i (t)σ

µ
i (t

′), (D4)

we can rewrite Eq. (D1) in thermodynamic limit N → ∞ as

[Zn] ≃ exp(−βnNf) (D5)

−βnf = L0(mµ(t), m̂µ(t), Qµν(t, t
′), Q̂µν(t, t

′), Qµµ(t, t
′), Q̂µµ(t, t

′)) + logTr
σ
eL (D6)

L =
lm
P

∑
t,µ

m̂µ(t)σ
µ(t) +

lχ
P 2

∑
t,t′,µ

Q̂µµ(t, t
′)σµ(t)σµ(t

′) +
lq
P 2

∑
t,t′,µ<ν

Q̂µν(t, t
′)σµ(t)σν(t)

+B
∑
t,µ

σµ(t)σµ(t+ 1) + hσµ(t)σν(t′), (D7)

where (̂·) means the Fourier-transformed expressions and L0 is the function of order
parameters which has various form according with the problems. The coefficients,
lm, lχ, lq, are also variables which change according with the problems. The above
equations contain an additional field hσµ(t)σν(t′), which is a simple extension of the
previous researches.

We here differentiate −βnf with respect to h as follows

∂(−βnf)

∂h
=

Trσσ
µ(t)σν(t′)eL

Trσ eL
, (D8)

3In the case of CDMA multiuser detectors, we should read R instead of m. In the case of the image
restoration, the system can be described by only m because it is not spin glass model.
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where we see that σµ(t′)σν(t′) is outside the exponent eL. Our goal is to calculate Eq.
(D8) in the limit of n → 0, h → 0 and to prove the expression (3.35), (4.33) and (5.48)
in the same sense as in the previous study (Nishimori 2001).

The replica symmetry (RS) and static approximation (SA) lead to

∑
µ

∑
t,t′

σµ(t)σµ(t′) =
∑
µ

(∑
t

σµ(t)

)2

(D9)

∑
µ<ν

∑
t,t′

σµ(t)σν(t′) =
1

2


∑

µ

∑
t,t′

σµ(t)

2

−
∑
µ

(∑
t

σµ(t)

)2
 . (D10)

By using the Hubbard-Stratonovich transformation,

exp

(
x2

2

)
=

∫
dz√
2
exp

(
−z2

2
+ xz

)
=

∫
Dz exp (xz) ,

(
Dz ≡ dz√

2π

)
, (D11)

we can calculate the exponent in (D6) as follows:

eL =

∫
Dw

∏
γ ̸=µ,ν

∫
Dz exp

(
B
∑
t

σγ(t)σγ(t+ 1) +
m̂+

√
q̂w +

√
2χ̂− q̂z

P

∑
t

σγ(t)

)

×
∫

Dz exp

(
B
∑

t,γ=µ,ν

σγ(t)σγ(t+ 1) +
m̂+

√
q̂w +

√
2χ̂− q̂z

P

∑
t,γ=µ,ν

σγ(t) + hσµ(t)σν(t′)

)
,

(D12)

where Φ can be seen as it in Eqs. (3.30), (4.30) and (5.39) in each model. Using the
Trotter formula, we can take the spin trace in the limit P → ∞ as,

Tr
σ
exp

(
B
∑
t

σµ(t)σµ(t+ 1) +
Φ

P

∑
t

σµ(t)

)
= Tr

σ
exp (Γσ̂x +Φσ̂z)

= 2 cosh
√
Φ2 + Γ2

= 2 coshΞ, (D13)

where Ξ ≡
√

Φ2 + β2Γ2. Therefore, we obtain the final form of Trσe
L and Trσσ

µ(t)σν(t′)eL

in the limit h → 0, respectively. The results are given by

Tr
σ

eL =

∫
Dw

(∫
Dz coshΞ

)n

(D14)

Tr
σ
σµ(t)σν(t) eL =

∫
Dw

(∫
Dz 2 coshΞ

)n−2

×Tr
σµ

∫
Dzσµ(t) exp

(
B
∑
t

σµ(t)σµ(t+ 1) +
Φ

P

∑
t

σµ(t)

)

×Tr
σν

∫
Dzσν(t) exp

(
B
∑
t

σν(t)σν(t+ 1) +
Φ

P

∑
t

σν(t)

)
.

(D15)
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Equation (D14) corresponds to the denominator of Eq. (D8), which is equal to 1 in the
limit of n → 0.

In order to calculate the right hand side of Eq. (D15), we differentiate both sides
of the Trotter formula (D13) with respect to Φ, then, we have

Tr
σ

1

P

∑
t

σµ(t) exp

(
B
∑
t

σµ(t)σµ(t+ 1) +
Φ

P

∑
t

σµ(t)

)
=

2Φ√
Φ2 + Γ2

sinh
√
Φ2 + Γ2.

(D16)

Thus, we obtain the following equation

Tr
σ
σµ(t)σν(t) eL =

∫
Dw

(∫
Dz 2 coshΞ

)n
(∫

Dz Φ
Ξ2 sinhΞ

)2(∫
Dz 2 coshΞ

)2
→

∫
Dw

(∫
Dz Φ

Ξ sinhΞ∫
Dz coshΞ

)2

(n → 0) (D17)

for

Tr
σν

∫
Dzσν(t) exp

(
B
∑
t

σν(t)σν(t+ 1) +
Φ

P

∑
t

σν(t)

)
=

∫
Dz

Φ

Ξ
2 sinhΞ

(D18)

under the RS and SA. We can extend the above methods to the case of an external
field with the product of k spins, h

∑
i σ

µ
i (t)σ

ν
i (t

′) · · · . In such case, we get

[⟨σ⟩kβ,Γ] =
∫

Dw

(∫
Dz Φ

Ξ sinhΞ∫
Dz coshΞ

)k

. (D19)

For an arbitrary function F (x) that can be expanded around x = 0, the above equation
can be expanded to

[F (⟨σ⟩β,Γ)] =
∫

DwF

(∫
Dz Φ

Ξ sinhΞ∫
Dz coshΞ

)
. (D20)

If we take F (x) to be a function sgn(x) (e.g. tanh(ax) with a → ∞), we obtain the
overlap M in the form:

M(β,Γ) = [sgn(⟨σ⟩β,Γ)] =
∫

Dwsgn

(∫
Dz Φ

Ξ sinhΞ∫
Dz coshΞ

)
. (D21)
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