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Abstract

Humans and animals can adapt their behaviors or responses to a ever-changing en-
vironment. The brain’s learning ability plays a principal role on the adaptation and
underlies important brain functions such as motor control, memory retention and re-
trieval, future prediction, decisionmaking, language acquisition and so on. The brain
preserves various kind of information in different time scales in the forms of neural
activities, strength of plastic synapses and distribution of neurotransmitters. It has
been believed that the cerebral learning is mainly realized by the plastic synapses.
However, the other types of information can have measurable effect to the learning.

In this dissertation, we theoretically investigate how various traces of information
affect to the cerebral learning. Although many of theoretical studies assume the sta-
bility of a learning system except adaptive parameters between trials in learning, we
consider the effect of past trials by introducing information trace. We focus on three
major research topics in learning. First, we analyze a neural network model which
can solve the structural and temporal credit assignment problems of reward. We clar-
ify how the eligibility trace, in which is a kind of information trace, resolves these
problems. Second, a heavy-tailed reward trace dependency of choice which is ob-
served in matching behavior of monkey is accounted via Bayesian decision making
models. A possible computational principle behind the reward trace dependency is
proposed. Third, we analyze a neural network model which can learn the transition
probabilities of states in environment and can predict future state. We discuss how
the eligibility trace makes the learning robust to abrupt change of environment.
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Chapter 1

Introduction

The brain can be regarded as a biological computational system which has side-
effects. The computation with side-effects produces varied output even if identical
input is given [Hughes, 1989], and hence investigation of the underlying computa-
tion becomes difficult. One cause of the side-effects is existence of internal states
in a computational system. The brain’s internal states are represented by membrane
potential of neuron, connection weight of plastic synapse, density distribution of
neurotransmitter and other types of transient biophysical matters. The mass of such
internal states has been supposed to ingenerate diverse brain functions such as per-
ception, motor control, memory retention and retrieval, future prediction, decision
making, language acquisition and so on. To elucidate the underlying computation of
the brain, it is important to understand how those internal states evolve.

This dissertation focuses on cerebral learning which is a typical example of inter-
nal state change in the brain. There are mainly two forms of behavioral learning:
classical conditioning and operant conditioning. The classical conditioning is that
neutral stimulus (conditioned stimulus; CS) become predictive signal for stimulus
eliciting innate response (unconditioned stimulus; US) after US are presented fol-
lowing CS repeatedly [Pavlov, 1927]. There are a lot of evidences that the associ-
ation between US and CS is constructed inside the brain [Mazur, 2002]. The oper-
ant conditioning is phenomenon that the association between a stimulus and a re-
sponse is strengthened when a subject receives a reinforcer after the response to
the stimulus [Skinner, 1938]. It seems that the classical conditioning is reflexive
learning and the operant conditioning is the learning of spontaneous behavior. Be-
cause a schedule of reinforcement significantly affects the operant conditioning, var-
ious reinforcement schedules have been proposed. The foraging schedules which
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Chapter 1. Introduction

resemble animal’s foraging environment have been actively studied from 1960s
[Chung & Herrnstein, 1967, Glimcher, 2004]. The schedule extends the determinis-
tic reward (reinforcement) delivery in conventional operant conditioning procedure;
the amount of reward and an interval between rewards is determined stochastically.
In task with foraging schedule (foraging task), the behavior of humans and animals
is proposed to obey the matching law (matching behavior) [Herrnstein, 1961]. The
matching behavior is important for understanding decision making behaviors and
cerebral learning because the matching behavior deviates from economic behavior,
i.e., maximization of future total reward. It is necessary to consider not only the
macroscopic phenomenon such as behavior but also the microscopic components
of the brain architecture to understand the cerebral learning. The neuron is a kind
of electrical unit that emits a electrical pulse, called spike, when its membrane po-
tential exceeds a certain threshold. Neurons release neurotransmitters from axon
terminal after a spike and they are received by another neuron. This biochemical
connection is known as synapse and the strength of the connection (synaptic weight)
is increased when connected neurons fired simultaneously [Hebb, 1949]. In recent
studies, it is proposed that precise temporal order of spikes are important for strength-
ening and weakening of synaptic weight [Levy & Steward, 1983, Dan & Poo, 2004].
The synaptic plasticity has been believed to play a principle role in cerebral learn-
ing. However, there are other kind of components which preserve information
brain and preserved information has various lifetimes from milliseconds to months
[Abraham, 2003]. In a learning task, the trace of information on a time scale of sev-
eral trials should have significant effects to learning.

An intelligent computer which resembles or rather exceeds the brain capabili-
ties has been steadily expected to be developed from midst of a significant evo-
lution of computer science. In the earliest stage, McCulloch and Pitts pro-
posed an artificial neuron model which resembles neural integration and firing
[McCulloch & Pitts, 1943]. This model is extended to acquire unknown map-
ping between input and its binary category by adjusting its synaptic weights,
known as perceptron [Rosenblatt, 1958]. Although single layer perceptrons only
have a capability to approximate the linearly separable boolean-valued func-
tions, it was proved that multilayer perceptrons can approximate arbitrary contin-
uous function to any desired accuracy [Irie & Miyake, 1988, Hornik et al., 1989,
Cybenko, 1989, Funahashi, 1989, Hornik, 1993]. Various artificial neural network
models have been devised for engineering application such as pattern recogni-
tion and regression [Bishop, 1995, Bishop, 2006], and for elucidating underlying
processes of the brain [Tsodyks et al., 1998, Brunel & Hakim, 1999, Wang, 2002,
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Chapter 1. Introduction

Seung, 2003, Fusi et al., 2007]. Reinforcement learning, which can be one of a rig-
orous mathematical formulation of the operant conditioning, had been diligently
studied in 1980s [Sutton, 1984, Tesauro, 1995, Kaelbling et al., 1996, Barto, 1998,
Sutton & Barto, 1998]. In reinforcement learning, an agent in some uncertain en-
vironment is expected to acquire appropriate behavior which maximizes future to-
tal reward by trial and error. The environment is formulated by states of the envi-
ronment, transition probabilities between states for an action, and a mapping from
states/actions and reward. An agent is expected to learn these components either
implicitly or explicitly. An agent falls into exploration-exploitation dilemma due
to two exclusive objectives: exploration of the environment for learning and ex-
ploitation of learned knowledge for reward maximization [Gittins & Jones, 1974,
Daw et al., 2006]. Besides, temporal and structural credit assignment problems oc-
cur if a reward depends on past states and actions, and an agent is consisted on several
components respectively, i.e., the contribution of each state, each action and each
agents for reward should be determined for learning [Minsky, 1961, Sutton, 1984].
Same issues should be considered also in the cerebral learning.

1.1 Main Contributions

The works presented in this dissertation have been already published in international
journals or presented at conferences. In this dissertation, we reviewed them from the
perspective of cerebral learning with trial-wise information trace in macroscopic and
microscopic scales. Our main contributions are as follows:

• Structural and temporal credit assignment problems on learning in neu-
ral networks. We analyzed macroscopic learning dynamics of microscopic
neural network model with eligibility trace by statistical mechanics approach.
The network consists of several linear perceptrons and a feedback signal de-
lays. Thus, there are structural and temporal credit assignment problems. We
elucidated the joint effect of the structural-temporal uncertainties to learning
and quantitative effects of the eligibility trace to the learning (Chapter 2).

Original contents are found in [Saito et al., 2010, Saito et al., 2011].

• Bayesian account for the matching law and the heavy-tailed reward trace
dependency. We investigated macroscopic Bayesian deterministic decision
making models to elucidate the computational principle underlying the under-
matching and the heavy-tailed reward trace dependency. Our models show
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matching behavior although they have incorrect but conceivable postulate for
reward delivery. The undermatching and the heavy-tailed reward trace depen-
dency are observed whenwe introduced an belief about environment volatility.
We proposed that the reward trace may be an effective implementation of the
belief (Chapter 3).

Original contents are found in [Saito et al., 2014].

• Future predicting neural network model. We proposed a microscopic neu-
ral network model which can learn the state transition probabilities and can
predict future states. Our learning algorithm is based onHebb rule and activity-
dependent weight decay. The neural activities and behaviors of our model
resembles those of monkeys’ in a randomdot motion stimulus discrimination
task. We investigated the effect of the eligibility trace to the learning of tran-
sition probabilities and adaptation for abrupt change of environment (Chapter
4).

1.2 Summary of the remaining chapters

This dissertation is structured as follows. Effects of the eligibility trace to neural
network learning under structural and temporal credit assignment problems are de-
scribed in Chapter 2. In Chapter 3, we show that a belief of environment volatility
is essential for matching behavior by analyzing Bayesian decision making models.
A possible interpretation of reward trace dependency of monkey’s choice is given.
Chapter 4 presents the effect of input trace to learning of neural network for future
state prediction. Finally, we conclude this dissertation in Chapter 5.
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Chapter 2

Neural Network Model under
Structural-Temporal Uncertainties of
Reward

Reward may not be well-informative for an adaptive agent such as neural networks.
Generally, there is a latency of reward delivery (temporal uncertainty) and a reward
would not tell how each modifiable parameter of an agent should be updated (struc-
tural uncertainty). For learning, an agent is necessary to resolve the structural and
temporal credit assignment problems caused by these uncertainties. We investigate
effects of eligibility trace to structural-temporal uncertainties by analyzing a neural
network model which can solve the credit assignment problems by the mechanism
of eligibility trace and the node perturbation learning.

2.1 Introduction

Adaptive systems, including the brain, may be received a little information to ac-
complish a learning. In reinforcement learning, a system modulates its parame-
ters according to a scalar instruction signal delivered from environment. Learn-
ing will be a relatively easy task if a system knows how an evaluation mech-
anism of the environment depends on its behavior in advance. Hence, a sys-
tem has to estimate the evaluation mechanism, objective function in other words
[Kaelbling et al., 1996, Sutton & Barto, 1998]. There are two types of credit as-
signment problems [Minsky, 1961, Sutton, 1988] in this estimation. A system
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needs to determine which past behaviors or activities are significant for the eval-
uation when the objective function depends on the time sequence of system’s be-
havior. In other words, the system should solve the temporal credit assignment
problem [Sutton, 1984, Houk, 2005]. The structural credit assignment problem
[Chapman & Kaelbling, 1991, Legenstein et al., 2009] arises if a system has many
modifiable parameters; the system needs to know how each parameter depends on
the evaluation. The brain also should solve these credit assignment problems.

The delay of an instruction signal, e.g., reward, is a simple instance of temporal
credit assignment problems. In the field of neuroscience, this is classically known
as “distal reward problem”; how a brain distinguishes the relation between a reward
and the neuronal activities that triggered the reward [Hull, 1943]. In the field of re-
inforcement learning, temporal difference learning [Sutton, 1988] and the eligibility
trace [Klopf, 1972, Singh & Sutton, 1996] are proposed to cope with such a tempo-
ral uncertainty of evaluation. The eligibility trace accumulates the recent states or
actions (events) of a system and quantifies how eligible they are for a given reward,
i.e., more credit is given to more recent events and events that have occurred many
times. The distal reward problem is proposed to be solved by a network of spiking
neurons with the eligibility trace [Izhikevich, 2007].

Structural credit assignment problems, also known as generalization problem
[Lin, 1992], are related to gradient estimation of the objective function. Hence, sev-
eral levels of structural credit assignment problems arise depending on the groups
of related parameters such as across synaptic weights, multi-agent outputs, tem-
poral parameters, and so on. There are two approaches to estimate the gradi-
ent: model-based and model-free. In the former approach, a model is trained and
used for the estimation. The estimation is reliable if the model suits to the ob-
jective function. In contrast, the latter approach does not require specific model.
Model-free methods are applicable if the explicit form of the objective function
is not known in advance such as the case of reinforcement learning. Therefore,
it is expected to be a plausible mechanism of flexible learning systems, such
as the brain [Dembo & Kailath, 1990, Xie & Seung, 2004, Fiete & Seung, 2006,
Legenstein et al., 2009]. A simple model-free method is to estimate the gradient
by the deviation of the objective function value caused by introducing perturba-
tion into parameters. There are two variants of these stochastic gradient following
methods for neural networks. One is the node perturbation [Widrow & Lehr, 1990,
Flower & Jabri, 1993, Werfel et al., 2005, Katahira et al., 2010, Hara et al., 2011]
which induces a perturbation into an output of a network, and the other is weight
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perturbation [Jabri & Flower, 1992] which perturbs synaptic weights independently.
In the weight perturbation scheme, the performance degrades and the learning
speed is slower than that of node perturbation when the network size increases
[Werfel et al., 2005]. The node perturbation is proposed to be an underlying mech-
anism of song learning in songbird [Fiete et al., 2007]. Thus, the brain may employ
the node perturbation as a solution for structural credit assignment problems in neural
network level.

In this chapter, we investigate effects of the eligibility trace to learning under
structural-temporal credit assignment problems by analyzing adaptive linear neural
network models. Learning task is formulated as a student network imitates an output
of a teacher network by a delayed scalar feedback signal (reward). Student neu-
ral network model employs the node perturbation learning and the eligibility trace
to cope with the uncertain reward. First, we study effects of temporal uncertainty
alone, i.e., the network consists of a linear perceptron (section 2.2). Quantitative
effects of the eligibility trace are shown by studying derived macroscopic behaviors
of our model. Then, we study joint effects of structural-temporal uncertainties by
extending our model to multi-perceptrons (section 2.3). It is shown that both the
structural and the temporal uncertainties influence the convergence of learning and
change the optimal time constant of the eligibility trace non-linearly.

2.2 Model without Structural Uncertainty

In this section, we analyze a linear perceptron with the eligibility trace to elucidate
the quantitative effects of temporal uncertainty of reward to learning.

2.2.1 Model

Both of student and teacher neural networks consist of N input units and one output
unit (Fig. 2.1). The i-th input unit is connected to the output unit with a synaptic
weight Ji and Bi for the student and teacher networks respectively. Each teacher
synaptic weight Bi is drawn from a standard Gaussian distribution, then normalized
as ∥B∥ =

√
N . The activity of i-th input unit of both networks, xi(m), obeys

a Gaussian distribution of mean 0 and variance 1/N where m (m ∈ {0, 1, . . . })
represents a time step. The activities of output units are determined by weighted
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Figure 2.1: Schematic of our neural network models. The left is the student network
and the right is the teacher.

sums of the inputs. The student output y and the teacher output z are

y(m) = J(m) · x(m), (2.1)
z(m) = B · x(m), (2.2)

where a bold symbol represents a N -dimensional vector and the binary operator (·)
is the inner product. The objective function is defined by a squared error between
the outputs:

E(m) =
1

2
(y(m)− z(m))2. (2.3)

The student is expected to minimize this error. Thus, the synaptic weights of the
student should be updated to descend the gradient of Eq.(2.3):

δ

δJ
E(m) = (y(m)− z(m))x(m). (2.4)

However, we assume that the student network cannot calculate the gradient directly.
Instead, it employs the node perturbation learning to update its synaptic weights
[Widrow & Lehr, 1990]. Node perturbation introduces a perturbation into the net-
work output and a perturbed objective function value is obtained:

ENP (m) =
1

2
(y(m) + ξ(m)− z(m))2. (2.5)

The perturbation ξ(m) is sampled from a Gaussian distribution of mean 0 and vari-
ance σ2. Then the student can obtain an approximate gradient by the deviation from
the value without the perturbation. Thus, an instruction signal (reward) is defined
as:

d(m) = −(ENP (m)− E(m))

= −1

2

[
ξ2(m) + 2ξ(m)(y(m)− z(m))

]
. (2.6)
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Let us confirm that the student can obtain the gradient by using the reward in the
standard form of the node perturbation learning rule. The standard form is

J(m+ 1) = J(m) + ∆J std(m), (2.7)
∆J std(m) = ηd(m)ξ(m)x(m)

= −1

2
ηξ3(m)x(m)− ηξ2(m)(y(m)− z(m))x(m), (2.8)

where η is a learning coefficient. The ensemble average of ∆J std(m) becomes:

⟨∆J std(m)⟩ ∝ ⟨(y(m)− z(m))x(m)⟩, (2.9)

where ⟨·⟩ describes an ensemble average. Thus,∆J std(m) can averagely reconstruct
the true differential (Eq. (2.4)).

Here, we extend the standard node perturbation learning rule of Eq.(2.7) to deal with
unknown delay of reward. The student requires past ξ and x to extract a gradient as
well as Eq. (2.8) from a delayed reward. The eligibility trace can be used to preserve
each of past states with temporal credit assignment. The eligibility trace e is defined
as:

e(m) =
∞∑
k=0

ε(k)ξ(m− k)x(m− k), (2.10)

where ε(t) = exp(−t/τ) is a kernel and τ is a time constant. The kernel represents
the credit assigned to the past states and also the retention period of the past states; a
large τ gives more credit to far past states and preserves the past states longer. Thus,
our learning rule is defined with the eligibility trace:

J(m+ 1) = J(m) + ηd̃(m)e(m), (2.11)
d̃(m) = d(m−md), (2.12)

where η > 0 is a learning coefficient andmd represents the delay of the reward. We
assume that η is sufficiently small for later analysis.

2.2.2 Analysis

Statistical mechanics approach has been used to derive the macroscopic dynam-
ics of learning from microscopic learning rule [Watkin et al., 1993, Saad, 1999,
Kinzel et al., 2001, Biehl et al., 2009, Katahira et al., 2010, Hara et al., 2011]. By
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Figure 2.2: Schematic of the macroscopic variables using three dimensional vectors
of student and teacher synaptic weights.

seeing in a macroscopic perspective, a convergence condition, learning speed and
performance, and also effects of the (microscopic) eligibility trace can be discussed.

First, we define several macroscopic variables that describe the gross state of the
system. The relative length of J againstB is represented by a macroscopic variable
l:

l(m) ≡ ∥J(m)∥
∥B∥

=
∥J(m)∥√

N
. (2.13)

The probability distribution of Ji is unknown but we assume Ji ∼ O(1) since Ji
approaches to Bi ∼ O(1). From this assumption, we obtain ∥J∥ ∼ O(

√
N) and

hence l ∼ O(1). A macroscopic variable R represents the overlap of J andB,

R(m) ≡ J(m) ·B
∥J(m)∥∥B∥

=
1

l(m)N
J(m) ·B. (2.14)

SinceR depends on l, we remove this dependency by defining the macroscopic vari-
able r as follows.

r(m) ≡ l(m)R(m) =
1

N
J(m) ·B. (2.15)

Obviously, r ∼ O(1).

We derive time evolution equations of the macroscopic variables in the thermody-
namic limit ofN →∞. By squaring both sides of the Eq.(2.11), we obtain a micro-
scopic update rule for the macroscopic variable l:

Nl2(m+ 1) = Nl2(m) + 2ηd̃(m)J(m) · e(m) + η2d̃2(m)∥e(m)∥2.
(2.16)
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In Eq.(2.16), the change of l2 at one update is onlyO(1/N). Therefore, we consider
a continuous time t = m/N to observe the change of O(1). The change from t to
t+ dt for a small dt corresponds to the change fromm tom+Ndt. We iteratively
substitute the Eq. (2.16), and we obtain

l2(m+Ndt)− l2(m) =
1

N

Ndt−1∑
k=0

{
2 η d̃(m+ k)J(m+ k) · e(m+ k)

+ η2d̃2(m+ k)∥e(m+ k)∥2

}
.

(2.17)

Within the short period dt that spans theO(N) update, the weight change ofO(1/N)

can be neglected, and the self-averaging property holds. Hence, the summation of
the above equation can be replaced by ensemble average. Thus, the evolution of l2

obeys an ordinary differential equation:
dl2

dt
≃ 2η⟨d̃J · e⟩+ η2⟨d̃2∥e∥2⟩. (2.18)

Similarly, Eq.(2.11) multiplied byB is

Nr(m+ 1) = Nr(m) + ηd̃(m)B · e(m). (2.19)

Therefore,
dr

dt
= ηB · ⟨d̃e⟩. (2.20)

The ensemble averages becomes (see appendix A for details of derivation),

B · ⟨d̃e⟩ = σ2ϵ(md)(1− r(t)), (2.21)

⟨d̃J · e⟩ =
1

4
ησ6 [D1S + 2F ]− σ2ε(md)(l

2(t)− r(t)), (2.22)

⟨d̃2∥e∥2⟩ =
3

4
σ6E1 + σ4D1(l

2(t)− 2r(t) + 1), (2.23)

where the constants are

S ≡
∞∑
p=1

ε(p), I ≡
∞∑
p=0

ε2(p), F ≡ ε(md)

md−1∑
p=0

ε(p),

Dk ≡ 2ε2(md) + kI, Ek ≡ 4ε2(md) + kI.

By using Eqs. (2.21), (2.22) and (2.23), the differential equations of Eqs. (2.18) and
(2.20) become

dl2

dt
= −H1l

2(t) + 2(H1 − ησ2ε(md))r(t) + (2ησ2ε(md)−H1) + η2G1

(2.24)
dr

dt
= ησ2ϵ(md)(1− r(t)), (2.25)
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where the constants are

Hk ≡ 2ησ2ε(md)− η2σ4Dk,

Gk ≡
1

2
σ6k [DkS + 2F ] +

1

4
σ6(k + 2)Ek.

These differential equations are solvable:

l2(t) =

(
l2(0)− 2r(0) + 1− η2

H1

G1

)
exp(−H1t) + 2r(t)− 1 +

η2

H1

G1,

(2.26)
r(t) = 1− (1− r(0)) exp(−η σ2ε(md)t). (2.27)

Equations (2.26) and (2.27) are closed-formmacroscopic equations. These equations
describe the macroscopic behavior of the system irrelevant to the microscopic value
of Ji, xi and so on.

By definition, r always converge to 1 for t → ∞. However, convergence of l2

depends on the sign of H1. Therefore, the convergence condition of the system is

H1 > 0. (2.28)

The first and second terms ofH1 are considered as a signal that is extracted from the
reward and a noise respectively.

An ensemble average of the squared error over x is the generalization error:

ϵg(t) =
1

2
⟨(y(t)− z(t))2⟩x =

1

2
(l2(t)− 2r(t) + 1)

=
1

2
(l2(0)− 2r(0) + 1− η2

H1

G1) exp(−H1t) +
η2

2H1

G1. (2.29)

If the convergence condition is satisfied, the generalization error decays exponen-
tially. After the convergence, a residual error remains due to the perturbation and
the credit assignment inefficiency. The residual error is

ϵr ≡ lim
t→∞

ϵg(t), (2.30)

for H1 > 0.

Thus, the student network can learn teacher’s output by our learning rule even if the
reward delays.
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(a) Dynamics of macroscopic variables where
md = 10.

(b) Learning curves (time course of generaliza-
tion error) in different reward delays.

Figure 2.3: Simulation results in convergent case. Symbols are simulated values and
lines show the theoretical values. We set N = 1000, τ = 4, σ = 0.1 and η = 0.2.

(a) Dynamics of macroscopic variables.
(b) Learning curve (time course of generaliza-
tion error).

Figure 2.4: Simulation results in divergent case. Symbols are simulated values and
lines show the theoretical values. We set N = 1000, τ = 9.7, σ = 0.7, η = 0.5 and
md = 4.
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2.2.3 Simulation Results

Behavior of Macroscopic Variables

We confirm the correctness of our analysis by comparing the theoretical results with
simulated ones. In the convergent case, the macroscopic variables and the general-
ization error are well-predicted by the theory (Fig. 2.3). The relative length l decays
at the beginning and then increases as it depends on r. A delay of the reward slows
down the learning and increases the residual error. The simulated values are well-
matched to the theoretical values even asN is finite in the simulation. Similarly, the
theoretical lines match to the simulated lines also in divergent case (Fig. 2.4).

Phase Diagram and Optimal Time Constant

Figure 2.5 shows a phase diagram for learnability in the essential parameters of tem-
poral credit assignment, md and τ . The two phases, one convergent and the other
divergent, are divided by the sign of H1. Lower and upper bounds for τ seem to
exist againstmd in terms of the convergence. The lower bound can increase because
the network has to preserve the past states corresponding to a md-delayed reward
for learning. On the other hand, if the time constant τ is too large, the signal of re-
ward related states weakens due to the noise, i.e., reward irrelevant states. Because
the signal also weakens whenmd increases, the upper bound can decrease. In some
point, the bounds cross each other hence there is a region where the system is un-
stable for any τ . This result matches the intuition that an adaptive system cannot
correctly learn if there is a large delay in a feedback signal.

In addition, we explore the parameters where “learning speed” is fastest and the resid-
ual error is minimum against md. We define the learning speed as the decay speed
of the generalization error, H1 (Eq. (2.29)). The symbols in Fig. 2.5 represent the
numerically calculated optimal time constants that maximize the learning speed and
minimize the residual error. Each trajectory of the optimal time constants in Fig. 2.5
seems to be fitted with a smooth monotonic function of md. Therefore, if the delay
of a reward is fixed or does not largely vary, it would be easy to optimize the time
constant of the eligibility trace. However, it seems to be impossible to accomplish
both a learning speedmaximization and a residual error minimization simultaneously
because the trajectories do not intersect each other except the endpoints. Figure 2.6
shows the values of maximum H1 and minimum ϵr with optimized time constant

14
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Figure 2.5: Phase diagram of learnability: the convergent regime (grayed region) and
the divergent regime (empty region). The square and cross symbols describe optimal
time constants τ of eligibility trace that maximizes learning speed and minimizes
residual error respectively. We set η = 0.7 and σ = 0.1.
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(a) Maximum value ofH1 againstmd.
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(b) Minimum value of ϵr againstmd.

Figure 2.6: The value ofH1 and a residual error ϵr with the optimized time constant
of the eligibility trace againstmd. We set η = 0.7 and σ = 0.1.
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Figure 2.7: Schematic of neural network models. Left is the student and the right
one is the teacher network.

againstmd. Maximum learning speed is a monotonically decreasing function ofmd

because the amplitude of the signal, ε(md), decreases (Fig. 2.6(a)). On the other
hand, the minimum residual error is a monotonically increasing function ofmd (Fig.
2.6(b)).

2.3 Model with Structural Uncertainty

In this section, we show joint effects of structural and temporal uncertainties by in-
creasing the number of linear perceptrons. In this model, the node perturbation works
not only for calculating a gradient stochastically but also for solving the structural
credit assignment problem.

2.3.1 Model

We suppose that student and teacher networks are composed ofK linear perceptrons
that share N input units (Fig. 2.7; one perceptron is referred to as an “agent” here-
after). The input xj(m) (j = 1, 2, . . . , N) is generated same as previous section:
xj(m) ∼ N (0, 1/N). Student and teacher outputs of i-th (i = 1, 2, . . . , K) agent
are denoted by yi and zi respectively:

yi(m) = J i(m) · x(m), (2.31)
zi(m) = Bi · x(m), (2.32)

where J i andBi are the student and teacher synaptic weight vectors of the i-th agent
respectively. As well as the previous section, Bij ∼ N (0, 1) and ∥Bi∥ =

√
N .
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Node perturbation introduces a perturbation ξi ∼ N (0, σ2) into the output of i-th
agent respectively. The objective function values are:

E(m) =
1

2
∥y(m)− z(m)∥2, (2.33)

ENP (m) =
1

2
∥y(m) + ξ(m)− z(m)∥2. (2.34)

The reward d is defined by the deviation of Eqs. (2.33) and (2.34)

d(m) = − [ENP (m)− E(m)]

= −1

2

{
∥ξ(m)∥2 + 2ξ(m) · [y(m)− z(m)]

}
. (2.35)

To follow the gradient of the objective function, each agent must know its output
deviation from the objective value, yi(m)−zi(m). However, the reward also contains
errors from other agent as shown in Eq.(2.35). Each agent thus needs to estimate the
own deviation from the reward. The node perturbation naturally solves this problem
by assigning a random credit to respective agent.

As well as previous section, we confirm whether the node perturbation learning rule
without delayed reward can extract the respective gradient even in this multi-agent
model. By taking the ensemble average of ∆J std

i (m) ≡ ηd(m)ξi(m)x(m),

⟨∆J std
i (m)⟩ = η⟨d(m)ξi(m)x(m)⟩

∝ ⟨[yi(m)− zi(m)]x(m)⟩, (2.36)

where η is a learning coefficient and ⟨·⟩ represents the ensemble average. The quan-
tity is proportional to the gradient of the objective function.

The agent requires past ξi and x to extract the gradient when the reward is delayed.
Accordingly, the learning rule is defined with the eligibility trace ei as follows.

J i(m+ 1) = J i(m) + ηd(m−md)ei(m), (2.37)

ei(m) =
∞∑
k=0

ε(k)ξi(m− k)x(m− k), (2.38)

ε(t) = exp
(
− t

τ

)
,

where md represents a delay and τ is a time constant of the eligibility trace. For
τ → 0, our model becomes equivalent to those of previous study [Hara et al., 2011].
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2.3.2 Analysis

To elucidate how the structural and temporal uncertainties influence learning, we
analyzed the model under the thermodynamic limit N → ∞. Same as previous
section, we assume that the learning coefficient η is sufficiently small.

First, we define macroscopic variables that quantify the macroscopic properties of
the system: li is the relative length of J i to Bi, and Ri is the overlap of the J i and
Bi.

li(m) =
∥J i(m)∥
∥Bi∥

, (2.39)

Ri(m) =
J i(m) ·Bi

∥J i(m)∥∥Bi∥
, (2.40)

ri(m) = li(m)Ri(m) =
1

N
J i(m) ·Bi. (2.41)

The differential equations of the macroscopic variables are derived by the statistical
mechanics approach (see previous section for more detail).

dri
dt

= ηBi · ⟨d(t)ei(t)⟩, (2.42)

dl2i
dt

= 2η⟨d(t)J i(t) · ei(t)⟩+ η2⟨d2(t)∥ei(t)∥2⟩. (2.43)

The solution of the ensemble averages of Eqs.(2.42) and (2.43) are a little complex to
derive due to the effects of the eligibility trace but they can be solved (see appendix
A for more detail). Thus, we obtain the closed-form macroscopic equations

dri
dt

= ησ2ε(md)(1− ri(t)), (2.44)

dl2i
dt

= −H1l
2
i (t) + 2(H1 − ησ2ε(md))ri(t) + (2ησ2ε(md)−H1) + η2GK

+η2σ4I
K∑
k ̸=i

[l2k(t)− 2rk(t) + 1], (2.45)
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where the constants are

Hk ≡ 2ησ2ε(md)− η2σ4Dk, S ≡
∞∑
p=1

ε(p), I ≡
∞∑
p=0

ε2(p),

Dk ≡ 2ε2(md) + kI, Ek ≡ 4ε2(md) + kI, F ≡ ε(md)

md−1∑
p=0

ε(p),

Gk ≡
1

2
σ6k [DkS + 2F ] +

1

4
σ6(k + 2)Ek.

The Eqs. (2.44) and (2.45) can be written as

Ẋ = −AX + c, (2.46)

where

X =
(
l21, l

2
2, . . . l

2
K , r1, r2, . . . , rK

)T
, ci =

{
const. (1 ≤ i ≤ K)

0 (K + 1 ≤ i ≤ 2K)
,

A =

(
A1 A2

O A3

)
,

(A1)ij =

{
H1 (i = j)

−η2σ4I (i ̸= j)
, (A3)ij =

{
ησ2ε(md) (i = j)

0 (i ̸= j)
,

(A2)ij = −2(A1 − A3),

where 1 ≤ i, j ≤ K.

The eigenvalues of A are HK , H0 ((K − 1)-fold), ησ2ε(md) (K-fold). Therefore,

A = UΛU−1, (2.47)

where

Λ = diag(HK , H0, . . . , H0, ησ
2ε(md), . . . , ησ

2ε(md)),

U =

(
P 2P−1

O P

)
,

P =


1 −1 . . . −1
... . . .
... . . .
1 1

 ,
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Figure 2.8: Convergent region (gray colors) shrinks as K increases. We set η =
1.1, σ = 0.2.

The solution of differential equation (2.46) is

X(t) = −U exp(−tΛ)U−1
(
A−1c−X(0)

)
+ A−1c. (2.48)

From (2.48), the dynamics of ri becomes:

ri(t) = 1− (1− ri(0)) exp(−ησ2ε(md)t), (2.49)

Thus, ri always converges to 1 for t→∞. On the other hand, the convergence of l2i
is determined by the sign ofHK = 2ησ2ε(md)−η2σ4(2ε2(md)+KI). The first term
ofHK is considered as a signal term that is extracted by using the correlation between
the perturbation and the reward, and the second term seems to represent a noise that
contains the effects of both structural (K) and temporal (md, τ ) uncertainties of the
reward.

The exact time course of generalization error is expressed by the macroscopic vari-
ables. Let ϵg be the generalization error:

d

dt
ϵg =

1

2

K∑
i

(
dl2i
dt
− 2

dri
dt

)

=
1

2

K∑
i


−H1l

2
i (t) + 2H1ri(t)−H1 + η2GK

+ η2σ4I

K∑
k ̸=i

[l2k(t)− 2rk(t) + 1]

 , (2.50)

20



Chapter 2. Neural Network Model under Structural-Temporal Uncertainties of
Reward

Figure 2.9: Learning speed HK against delay md and number of agents K with (a)
fixed time constant of eligibility trace, τ = 0.8, and (b) τ that maximizes HK . We
set σ = 0.2, η = 0.4.

2.3.3 Results

Figure 2.8 shows that the convergent region shrinks according to the increase ofK.
We confirmed that this qualitative result is independent of the learning coefficient
and the variance of the perturbation. Interestingly, τ , which is introduced to deal
with temporal uncertainty of the reward, is affected by the change ofK, which only
varies the structural uncertainty. This implies that structural uncertainty interact with
temporal uncertainty.

Figure 2.9 shows the change of the learning speedHK for delaymd where τ is fixed
and where τ is optimized to maximize HK . When τ is fixed, HK simply decreases
same amount for any md as K increases (Fig. 2.9(a)). Thus, in this case, the struc-
tural uncertainty is independent of the temporal uncertainty. However, when τ is
optimized, the gradient of HK are different (Fig. 2.9(b)). Thus, the structural and
temporal uncertainties interact each other via the eligibility trace. Figure 2.10 shows
the contour of the optimal τ for md and K. In the figure, optimal τ decreases with
the increase of K. These results again suggest that the structural and the temporal
uncertainties interact with each other, and thus they cannot be simply separated. It
seems that the signal of gradient for an agent contained in the reward weakens asK
increases because the signals of other agents are noise for one agent.
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Figure 2.10: Optimal time constant of eligibility trace τ that maximizes learning
speed HK for delaymd and number of agentsK.

2.4 Discussion

We theoretically investigated the quantitative effects of structural-temporal uncer-
tainties to neural networkmodels which have the eligibility trace and adapted by node
perturbation algorithm. We derived the learning dynamics in closed form macro-
scopic equations and confirmed the derived results by numerical simulations. We
discovered that the learnability depends on three factors: an amplitude of signal
and temporal and structural noises. Besides, we discovered interactions between
the structural and temporal uncertainties. This result is consistent with that the tem-
poral credit assignment problem can be converted to the structural one in the Markov
decision process [Agogino & Tumer, 2004]. Our analysis relies on the linearity of
output unit while conventional neural networks employ the non-linear one. How-
ever, in the case of the sigmoidal function, which is often adopted in neuroscience
and engineering fields, it can be thought that the learning takes place in linear regime
at least during the initial phase of training [Baldi & Hornik, 1995]. Thus, we expect
that this qualitative property holds in any types of learning algorithms facing the
structural and temporal uncertainties. Thus, we elucidated the quantitative effect of
trace to structural-temporal uncertainties.

The node perturbation is proposed to be a neural mechanism of songbird’s learning
[Fiete et al., 2007]. A juvenile songbird learns how to sing by imitating the tutor’s
song. There are three regions involved in producing a song in a songbird’s brain:
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HVC, RA, and LMAN. The song varies with the change in synaptic weights from
HVC neurons to RA neurons. Therefore, the synaptic weights are modulated to pro-
duce a song that is similar to the tutor’s one through learning. LMANneurons perturb
the RA neural activities to induce song variability [Hessler & Doupe, 1999]. As a re-
sult of the perturbation, a feedback will be obtained. The reward seems to reach the
HVC-RA synapses with a 50-75ms delay [Fee et al., 2004, Troyer & Doupe, 2000].
Hence, a credit assignment mechanism, like the eligibility trace, is required. As
our investigation of the optimal trajectories of time constants, the time constant of a
credit assignment mechanism in a songbird brain may be optimized.

Retroaxonal signals [Hamburger, 1992] are reverse transmission on an axon, from a
presynaptic terminal to the soma of the presynaptic cell, contrary to the classical form
of action potentials. It is proposed that the retroaxonal signals are released according
to changes in synaptic strength and then they stabilize the recent synaptic changes
[Harris, 2008, Salihoglu et al., 2009]. The signals may have similar mechanisms to
the node perturbation: transient changes in a presynaptic weight of a neuron are
stabilized only if new spiking pattern of the neuron strengthen post synaptic weights;
Another notable feature of the retroaxonal signaling is that it is very slow process
compared with action potentials. Thus, the signals seem to realize a trace of past
neural activities. Therefore, we expect that our learning model captures fundamental
feature that would be observed in learning based on the retroaxonal signals.
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Chapter 3

Computational Model for Matching
Law in Volatile Environment

The decision making behaviors of humans and animals adapt and then satisfy an
“matching law” in foraging tasks. In recent studies, it has been shown that a choice
of monkey depends on reward trace double-exponentially in a foraging task. We an-
alyze several deterministic Bayesian decisionmakingmodels to elucidate underlying
computational principle of matching behavior and the reward trace dependency.

3.1 Introduction

Does the brain play dice? This is a controversial question about the underly-
ing processes of the brain in making a choice from several alternatives: Does
the brain decide deterministically with some internal decision variables? Or does
it calculate the probability of choosing individual alternatives and cast a ‘biased
die’ [Sugrue et al., 2005]? The former strategy is suggested according to our ev-
eryday experience. However, it is possible to think that choices emerge prob-
abilistically by observing a sequence of decisions in a repetitive task. Herrn-
stein conducted a foraging experiment where a pigeon was placed into a box
that was equipped with two keys and when a key was pressed it was rewarded
with concurrent variable-interval schedules. He found a relationship between
rewards and choices known as the “matching law” [Herrnstein, 1961]. The
law states that the fraction of the number of times one alternative is chosen
against the total number of choices matches the fraction of the cumulative re-
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ward obtained from the alternative against the total reward. Behaviors satisfy-
ing the law have been observed in a variety of task paradigms and across species
[Anderson et al., 2002, Gallistel, 1994, de Villiers & Herrnstein, 1976]. Sev-
eral learning models have been proposed to account for matching behav-
ior [Loewenstein & Seung, 2006, Soltani & Wang, 2006, Simen & Cohen, 2009,
Sakai & Fukai, 2008a, Corrado et al., 2005, Lau & Glimcher, 2005]. These models
have a commonality in that a model learns the probabilities of choosing each alter-
native directly, and then a choice is made stochastically. However, it is yet unknown
whether matching behaviors can be accounted for by a deterministic model.

Here, we propose deterministic Bayesian decision making models for a two-
alternative choice task. Our models stand on the incorrect but conceivable postu-
late that animals have a belief that the choice made in one trial does not affect a
reward in subsequent trials. The models estimate the unknown reward probabilities
for each alternative and deterministically choose the alternative that has the high-
est reward probability according to the winner-take-all principle. We first study a
model with belief that the environment does not change. Note that this is an exten-
sion of the fixed belief model (FBM) [Yu & Cohen, 2009] for the two-alternative
choice task. We demonstrate that this model satisfies the matching law in a steady
state in static foraging tasks, in which reward baiting probabilities are fixed, but
not in dynamic foraging tasks, in which the reward baiting probabilities change
abruptly. Then, we devise two models that forget past experience and exhibit match-
ing behaviors even in dynamic tasks. Moreover, these models can explain under-
matching, which is a phenomenon observed across different species [Baum, 1974,
Baum, 1979, Anderson et al., 2002, Gallistel, 1994, de Villiers & Herrnstein, 1976,
Sugrue et al., 2004, Lau & Glimcher, 2005]. We test these models by comparing
their behaviors with those of monkeys’. Besides, we discuss the computational prin-
ciple behind the matching behavior and reward trace dependency.

3.2 Foraging Task

The foraging task is a decision making task that simulates a foraging environment
where an animal chooses one out of several foraging alternatives. There are two
alternatives in this study although our results do not depend on this. We em-
ploy discrete trial-to-trial tasks that have often been used in recent experiments
[Corrado et al., 2005, Lau & Glimcher, 2005, Sugrue et al., 2004]. Each alternative
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has binary baiting state fi (i ∈ {1, 2} is the index of an alternative), where fi = 1 if
a reward is baited and fi = 0 otherwise. If fi = 0, a reward is baited (fi = 1) at the
beginning of each trial by baiting probability λt

i, where t represents the number of the
trial. If the baiting probabilities are fixed across trials, the task is called a static forag-
ing task, otherwise it is called a dynamic foraging task [Sugrue et al., 2004]. Suppose
that rti indicates whether a subject receives a reward (rti = 1) or not (rti = 0), and cti
indicates whether the subject chooses alternative i (cti = 1) or not (cti = 0) in trial
t. When the subject chooses a baited alternative, i.e. fi = 1 and cti = 1, the baited
reward is consumed (fi ← 0). This reward schedule is known as a “concurrent
variable-interval schedule”[Baum & Rachlin, 1969].

Whichever alternative the subject chooses in the foraging task, the choice can affect
the reward probabilities of both alternatives in the future. Therefore, the optimal
strategy is not to exclusively choose the foraging alternative that has the highest
baiting probability. A behavioral strategy obeying the matching law is known to be
nearly optimal for this task [Baum, 1981]. Formally, the law states that

R̄t
i∑

j R̄
t
j

=
C̄t

i∑
j C̄

t
j

, (3.1)

where R̄t
i and C̄t

i correspond to the total reward obtained from alternative i and the
number of choices of alternative i until trial t. It is known that human and animal
behaviors in these kinds of tasks are well described by the generalized matching law
[Baum, 1974]

log(R̄t
1/R̄

t
2) = s log(C̄t

1/C̄
t
2) + log k, (3.2)

where s is sensitivity and k is bias. Eq. (3.2) is equivalent to Eq. (3.1) if both s and
k are unities.

Here is the configurations of simulation. The reward schedule is analogous to the
experiment by Corrado et al. (2005). We randomly set the baiting probabilities that
satisfied λ1 + λ2 = 0.3 and their ratios were 1:8, 1:6, 1:3, 1:2, 1:1, 2:1, 3:1, 6:1, and
8:1 in a static setting. There are 10, 000 trials in the simulations. The baiting schedule
in the dynamic setting is divided into blocks, in which the baiting probabilities were
fixed, and their sum and ratios were the same as those in the static setting. The
block length is uniformly sampled from [50, 300] and there were 300 blocks in the
simulations. Change-over-delay (COD), in which is the cost to switch from one
alternative to another, is not included differently from Corrado et al. (2005).
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3.3 Simple Bernoulli Estimators

First, we study a simple normative Bayesian decisionmakingmodel to clarify the un-
derlying feasible computation for matching behaviors. Suppose that a subject makes
a decision simply depending on its estimates of the reward probabilities for the al-
ternatives. The estimate can be formally described as

P t+1
i = p(rt+1

i = 1|Rt, Ct), (3.3)

where Rt is a list of reward vectors rt = (rt1, r
t
2) from trials 1 to t and Ct is a list of

choice vectors ct = (ct1, c
t
2) from trials 1 to t. The model employs a winner-take-all

(WTA) strategy, i.e., it chooses the alternative that has the highest P t
i . The model

requires an assumption about a reward assignment mechanism to estimateP t+1
i . One

simple and conceivable assumption is that a choice is rewarded according to hidden
reward probability µt

i that is irrelevant to the past reward and choice trace,

p(rti = 1) = µt
i. (3.4)

This assumption is incorrect for our tasks but we have assumed that the model em-
ploys it and predicts µt

i by Bayesian inference. Hence, P
t+1
i is given by the predictive

distribution over µt
i:

P t+1
i =

∫ 1

0

dµµ p(µt+1
i = µ|Rt, Ct). (3.5)

Note that p(µt+1
i = µ|Rt, Ct) can include a model’s belief about the change of µt

i in
between trials. Our first model assumes that µt

i is time invariant,

p(µt+1
i = µ|Rt, Ct) = p(µt

i = µ|Rt, Ct). (3.6)

The posterior distribution for an alternative is not updated if the alternative is not
chosen. If it is chosen, the posterior distribution is updated

p(µt
i = µ|Rt, Ct) ∝ p(rti |µt

i = µ)p(µt−1
i = µ|Rt−1, Ct−1)

= µrti (1− µ)1−rtip(µt−1
i = µ|Rt−1, Ct−1). (3.7)

We employ the Beta prior, p(µ0
i = µ) = Beta(µ|a, b), which is a conjugate for the

likelihood. Note that we set the hyper-parameters, a = b = 1, to make the prior non-
informative in all simulations. Therefore, the posterior becomes a Beta distribution:

p(µi = µ|R̄t
i, C̄

t
i ) = Beta(µ|R̄t

i + a, C̄t
i − R̄t

i + b). (3.8)
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From Eqs. (3.5) and (3.8), we obtain

P t+1
i =

R̄t
i + a

C̄t
i + a+ b

. (3.9)

This model is a natural extension of FBM [Yu & Cohen, 2009] to the two-alternative
choice task (for this reason, we will refer to our model as FBM). An alternative is re-
peatedly chosen while its predictive distribution is higher than those of the other due
to the WTA strategy. Because the empirical probability of reward for an alternative
converges to its baiting probability in repeated choices, P t

i gradually approaches to
λi and the variance of P t

i decreases. As a result, FBM tends to choose exclusively
the high payoff alternative after a large number of observations. Hence, the matching
law (Eq. (3.1)) is satisfied in t → ∞ because such a exclusive choice unboundedly
increases both R̄t

i and C̄t
i of the high payoff alternative.

3.3.1 Results

We simulate FBM in static and dynamic foraging tasks. The time course for the
predictive distributions is shown in Figure 3.1A. As can be expected, both predic-
tive distributions approach the respective baiting probabilities and FBM behavior
converges to exclusive choice of the high payoff alternative in static foraging tasks.
However, the steady-state choice behavior of animals in static concurrent VI sched-
ules has not been thought to be exclusive [Baum, 1982, Davison & McCarthy, 1988,
Baum et al., 1999]. It might be that there are not enough trials for choice behavior to
actually reach a steady state. Figures 3.1B and C plot the log ratios of rewards and
choices in both tasks. The marginal histograms indicate the FBM’s strong prefer-
ence for the alternative that has the highest baiting probability, because most pairs of
log ratios lie near the endpoints of the matching line. It is shown that bias is nearly
zero and sensitivity is nearly one in the static foraging tasks (Fig. 3.1B) by least-
square fitting the generalized matching law (Eq. (3.2)) to the data. Therefore, the
model exhibits matching behavior in the static foraging tasks. However, the model
no longer exhibits matching behavior in dynamic foraging tasks, a result that is in-
consistent with the behavior of monkeys [Corrado et al., 2005] (Fig. 3.1C). This can
be because the model adheres to past experience and cannot adapt rapidly to changes
in the environment.
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Figure 3.1: Simulation results for FBM. (A) Time course of predictive distributions
for alternatives #1 (red solid line) and #2 (blue solid line) in static foraging task.
Dashed lines indicate baiting probabilities of alternatives #1 (dark red) and #2 (dark
blue). Upper and lower dots respectively represent choices for alternatives #1 and #2
in that trial and colored dots (red or blue) represent that the model received a reward
at that trials. (B) Reward log ratios as a function of count log ratios in static and
(C) dynamic foraging tasks. Blue symbols represent pairs of log ratios calculated in
block where baiting probabilities are fixed and distributions of dots are represented
by marginal histograms. Red line indicates best-fitted line to points and inner text
shows its slope, i.e., sensitivity parameter of generalized matching law. Dashed line
is identity line.
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3.4 Extended Bernoulli Estimators

One possible way of improving the model to enable it to rapidly adapt to changes in
the environment is to introduce a forgetting mechanism for past rewards and choice
trace. We therefore assume a simple extended model, which utilizes only the L

most recent rewards and choices for the estimates. Hence, the predictive distribution
becomes

P t+1
i =

(
∑L−1

l=0 rt−l
i ) + a

(
∑L−1

l=0 ct−l
i ) + a+ b

. (3.10)

We refer to this model as windowed FBM (WFBM).

Another possibility may be derived from the idea that humans and animals may in-
nately believe their environment is volatile. Here, we propose a model that estimates
time-varying reward probabilities. Although there are several ways to model a belief
of a volatile environment, we assume our model believes that µt

i remains unchanged
with probability α, or else (with probability 1−α) changes completely. This idea is
derived from the dynamic belief model (DBM), proposed by Yu & Cohen as a model
of sequential effect [Yu & Cohen, 2009]. Our model is a natural extension of DBM
to a two-alternative choice task. Thus, we refer to our model as DBM. The transition
of µt

i is modeled as a mixture of the posterior and prior distributions

p(µt+1
i = µ|Rt, Ct) = αp(µt

i = µ|Rt, Ct) + (1− α)Beta(µ|a, b), (3.11)

where 0 ≤ α ≤ 1 represents the model’s expectations of the stability of the environ-
ment. However, the posterior distribution is no longer a Beta distribution:

p(µt
i = µ|Rt, Ct)

= p(µt
i = µ|rti , cti = 1, Rt−1, Ct−1)c

t
ip(µt

i = µ|Rt−1, Ct−1)1−cti

=

[(
p(rti = 1|µt

i = µ)

p(rti = 1|Rt−1, Ct−1)

)rti
(

p(rti = 0|µt
i = µ)

p(rti = 0|Rt−1, Ct−1)

)1−rti
]cti

p(µt
i = µ|Rt−1, Ct−1)

=

[(
µ

P t
i

)rti
(

1− µ

1− P t
i

)1−rti
]cti

p(µt
i = µ|Rt−1, Ct−1), (3.12)

where Eq. (3.3) is used. Then, predictive distribution P t
i is calculated with Eqs.

(3.5), (3.11), and (3.12). Note that thesemodels are equivalent to FBMwhenL→∞
and α = 1.
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3.4.1 Results

Matching Behavior

Figure 3.2 has the time courses for the predictive distributions of WFBM and DBM,
and the posterior distributions of DBM in the dynamic foraging task. Neither model
is stuck on one alternative and can follow the changes in schedules as expected.
There is a clear difference in the predictive distribution trajectories. BecauseWFBM
exploits recent samples, its predictive distribution for the unchosen alternative can
approach the true baiting probability. DBM’s predictive distribution for the uncho-
sen alternative, on the other hand, is only retracted to the mean of the prior, i.e.,
0.5. Both models demonstrate matching behaviors even in the dynamic foraging
task (Fig. 3.3). More precisely, the behaviors slightly deviate from the match-
ing law toward an unbiased choice. This phenomenon is known as undermatching
[Baum, 1979]. Because the models’ parameters L and α control the effect of past
experience, the degree of undermatching is controlled by the parameters. The sen-
sitivities that were fitted in the experiments were in a range of about 0.44 to 0.91

[Lau & Glimcher, 2005, Corrado et al., 2005, Hinson & Staddon, 1983]. Hence, we
basically focus on parameter regions 10 ≤ L and 0.9 ≤ α.

Run-length Distribution

It is known that the probability of switching alternatives is nearly constant against
the number of consecutive choices for one alternative (run length) in the concurrent
VI schedule [Heyman & Luce, 1979]. Hence, run lengths are distributed exponen-
tially but, in a dynamic foraging task, the distribution seems to be a mixture of expo-
nentials [Corrado et al., 2005]. The distribution of WFBM does not monotonically
decrease and there is a peak where the run length is nearly equal to L. Therefore,
the distribution is neither an exponential nor a mixture of exponentials. This nature
is consistent on different values of L. However, DBM demonstrates an exponential
like distribution. We fit single and double exponential functions,

ϕ1(l) = ν0 exp(−ν0(l − 1)), (3.13)
ϕ2(l) = γν1 exp(−ν1(l − 1)) + (1− γ)ν2 exp(−ν2(l − 1)),

(3.14)

to the distribution, where l ≥ 1 is the run length, ν0 and ν1 < ν2 are the rate pa-
rameters and γ is the combining rate. The distribution is well-fitted by the double
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Figure 3.2: Simulation results for WFBM and DBM in dynamic foraging task.
Simulation parameters were set to L = 60 and α = 0.99. (A) Time course of
predictive distributions of WFBM and (B) DBM. Details in figure are described in
caption of Fig. 3.1A. (C) Time course of posterior distributions of DBM for reward
probabilities of alternative #1 (top) and #2 (bottom). Brown dashed lines are baiting
probabilities for respective alternatives.
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Figure 3.3: Analytical results for matching behavior of WFBM and DBM in
dynamic foraging tasks. (A and B) Reward log ratios as a function of count log
ratios. Details in figure are described in caption of Figs. 3.1B and C. Simulation
parameters were set to L = 40 and α = 0.99. (C and D) Sensitivity as a function of
parameters of WFBM and DBM.
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Figure 3.4: Run-length distributions of windowed FBM and DBM in dynamic
foraging task. Simulation parameters were set to L = 60 and α = 0.99. (A and
B) Bars represent densities of run length for alternative #1. Single (green line) and
double-exponential (red line) functions fitted to run-length distributions of DBM.
Double-exponential function is fitted better than single one (likelihood ratio test, p≪
0.001). (C) Log probability density of run-length distribution of DBM (black line)
and linear-nonlinear Poisson models (red and green lines) that are fitted to monkeys’
experimental data in Corrado et al. [Corrado et al., 2005]. (D) Fitted parameters
of double-exponential function with different values of α. Left ordinate indicates
value of rate parameters ν1 (green line) and ν2 (blue line), and right indicates value
of combining rate γ (red line).
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exponential function (Fig. 3.4B; likelihood ratio test, p ≪ 0.001; r2 for the double
and single exponential functions are 0.99 for the former and 0.96 for the latter). The
run-length distribution in monkey experiments has few frequencies of a very short
run length; however our models have the largest frequency at the run length of 1
(Fig. 3.4A and B). This difference can be due to the absence of change-over-delay
(COD) in our schedule. If our model had and exploited prior knowledge about COD
as well as the proposed model for the previous experiment [Corrado et al., 2005],
the frequency at a run length of 1 could disappear. We simulate linear-nonlinear-
Poisson (LNP) models that are fitted to the monkeys’ experimental data in Corrado
et al. [Corrado et al., 2005] and compare run-length distributions (Fig. 3.4C). Note
that COD is not considered for the LNP models that is different from Corrado et al.’s
approach [Corrado et al., 2005]. Because the absence of COD could affect the occur-
rence of short run lengths, log probability densities are compared to count differences
at long run lengths. The calculated mean squared differences of DBM against LNP
models for two monkeys correspond to ∼ 0.67 and 0.16. The double-exponential
function is better than the single one in different α and the fitted parameters are
slightly affected by α (Fig. 3.4D).

Reward Trace Dependency

The dependence of choices on reward trace has been studied in several
monkey experiments. An exponential shaped dependency was first re-
ported [Sugrue et al., 2004] and then heavier-tailed dependencies were reported
[Lau & Glimcher, 2005, Corrado et al., 2005]. We test our models by calculating
the dependence of choices on reward trace. Suppose that dependency is expressed
with a linear filter kernel κ(i) as in previous studies. The kernel is calculated by
minimizing the following Wiener-Hopf equation,

1

2

∑
t

[
(ct1 − ct2)−

K∑
i=1

κ(i)(rt−i
1 − rt−i

2 )

]2

. (3.15)

Then, we fit the exponential filter and double-exponential filter that were introduced
by Corrado et al. [Corrado et al., 2005] to the normalized kernel:

ϵ1(i) =
exp(−i/τ0)∑K
k=1 exp(−k/τ0)

,

ϵ2(i) = ρ
exp(−i/τ1)∑K
k=1 exp(−k/τ1)

+ (1− ρ)
exp(−i/τ2)∑K
k=1 exp(−k/τ2)

,

(3.16)
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Figure 3.5: Results of Wiener-Hopf analysis for WFBM and DBM in dynamic
foraging task. (A) Symbols represent normalized Wiener-Hopf kernel and red line
represents best fitted double-exponential filter. Double-exponential filters are better
fitted to data than single-exponential filter (likelihood ratio test, p ≪ 0.001). In-
sets show time constants for each exponential component and their combining rate.
Simulation parameters were set to L = 60 and α = 0.99. (B) Fitted parameters of
double-exponential filter ρ, τ1, and τ2 to simulation data of WFBM (left column) and
DBM (right column). Abscissas represent parameters of WFBM or DBM.
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where τ0 and τ1 ≤ τ2 are time constants and 0 < ρ < 1 is the combining rate. Note
that ϵ2 is identical to ϵ1 when τ1 = τ2. The double-exponential filter is rather more
well-fitted than the single one forWFBMandDBM (likelihood ratio test, p≪ 0.001;
adjusted r2 for double and single exponential filters are 0.99 and 0.98 for WFBM,
and 0.94 and 0.85 for DBM). The kernel for WFBM has a negative value around L

but it disappears if L is much longer than K. The kernel for DBM drops sharply
and decays slowly. The sharp drop probably arose from the exponential decay of
reward trace, which is embedded in the posterior distributions (Eq. (3.11)). Because
a decision is made due to the difference in two predictive distributions and both dis-
tributions decay at the same rate, the effect of one predictive distribution would have
persisted slightly longer and hence the kernel included a longer exponential com-
ponent. This characteristic is qualitatively consistent with the experimental results
[Corrado et al., 2005]. The fitting parameters for the two monkeys in Corrado et
al. [Corrado et al., 2005] were ρ = 0.4, τ1 = 2.2, and τ2 = 17.0 (monkey F), and
ρ = 0.25, τ1 = 0.9, and τ2 = 12.6 (monkey G). Although there were no suitable
WFBM and DBM parameters that exactly matched their fitting parameters to those
of the monkeys, similar values were obtained for smaller L and larger α (Fig. 3.5B).

Harvesting performance

Figure 3.6A compares the harvesting performance of the models, which is normal-
ized by the performance of a near-optimal probabilistic decision making model. The
near-optimal model knows the details of the schedules, i.e., both the baiting proba-
bilities and the change points. It distributes its choices according to the choice prob-
abilities that on average maximize the total reward [Sakai & Fukai, 2008a]. Due to
such given knowledge, none of the other models can exceed the performance of the
near-optimal model. We carry out paired t-tests between the models, in which the
means of total reward for an identical schedule are paired. The FBM and WFBM
(L = 60) are more inferior than the random choice model that chooses by tossing an
unbiased coin. The DBM (α = 0.99) outperforms FBM, WFBM, and LNP models
(p ≪ 0.001) but the differences from the LNP models are very small. Harvesting
performance is less when a model memorizes a more distant past (Fig. 3.6B).

3.5 Discussion

We demonstrated that deterministic Bayesian decision making models can account
for the matching law. We confirmed that a simple Bernoulli estimator with a deter-

38



Chapter 3. Computational Model for Matching Law in Volatile Environment

*** ********* ***

Figure 3.6: Normalized harvesting performance of each model. (A) Average
normalized total rewards earned by each model divided by average total rewards
of near-optimal model. Near-optimal model uses strategy that maximizes average
total rewards proposed by Sakai and Fukai [Sakai & Fukai, 2008a] with previous
knowledge on details of schedule. Error bars indicate standard deviations around
mean. Simulation parameters were set to L = 60 and α = 0.99. (B) Harvesting
performance of WFBM and DBM as a function of their parameters.
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ministic decision policy demonstrated matching behavior in a static foraging task.
We also studied an extended model that includes a belief about a changing envi-
ronment. The belief effectively works to wipe out the past experience of the model
and hence the model can capture three characteristics of behaviors observed in the
experiments. First, our model accounts for undermatching, which is a well-known
phenomenon in which choices deviate slightly from the matching law [Baum, 1974,
Baum, 1979, Sugrue et al., 2004]. Several studies have addressed possible causes
of undermatching, i.e., limitations in the learning rule [Soltani & Wang, 2006],
mistuning of parameters [Loewenstein, 2008], and diffusion of synaptic weights
[Katahira et al., 2012]. We suggest a cause from a computational perspective, i.e.,
undermatching is the consequence of a belief in environmental volatility. Second, the
run-length distribution of our model is better fitted by a double-exponential function
than a single exponential function. This is also consistent with the previous study
[Corrado et al., 2005] although our task did not include changeover delay, which
can strongly affect the frequency of shorter run lengths. Third, our model exhibits
double-exponential shaped reward trace dependency. This is consistent with re-
cent monkey experiments [Corrado et al., 2005, Lau & Glimcher, 2005]. We pro-
pose that a reward trace may be an implementation of computation for a volatile
environment.

The previous models implicitly or explicitly use the strategy of probabilistic
choice selection and they learn the choice probability of respective alterna-
tives that satisfy the matching law [Corrado et al., 2005, Lau & Glimcher, 2005,
Loewenstein & Seung, 2006, Soltani & Wang, 2006, Simen & Cohen, 2009,
Sakai & Fukai, 2008a, Katahira et al., 2012]. Such probabilistic models
use a scaling parameter that maps internal decision variables to appropri-
ate choice probabilities and the parameter generally requires fine-tuning
[Soltani & Wang, 2006, Fusi et al., 2007]. In contrast, as our models act de-
terministically according to decision variables, no tuning is required for a parameter
at the decision stage.

We argued that matching behavior can be explained by a deterministic choice strat-
egy at the computational level. Loewenstein and Seung (2006) proposed biologically
inspired synaptic learning rules for neural networks at the neural implementation
level. They proved that neural networks developed by covariance-based learning
with the assumption of a low learning rate demonstrated matching behaviors. How-
ever, this assumption causes the choice to be affected by relatively distant past re-
wards and the kernel for reward trace dependency consequently flattens. A more mi-
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croscopic spiking neural network model, in which demonstrates double-exponential
dependency in foraging tasks, has been proposed [Soltani & Wang, 2006]. How-
ever, there is a huge gap between the computational principles of our determinis-
tic macroscopic models and their stochastic microscopic model. This gap can be
filled by using a method of reducing spiking neuron models to the diffusion equa-
tion [Roxin & Ledberg, 2008]. There have been some other neural network models
that can show heavy-tailed dependency of choices on past experience. A reservoir
network [Jaeger et al., 2007], which can reproduce neural activity in the monkey pre-
frontal cortex, preserves the memory trace of a reward with one or two time constants
[Bernacchia et al., 2011]. The composite learning system of faster and slower com-
ponents is flexible to abrupt changes in the environment [Fusi et al., 2007]. These
models could be a possible neural implementation for our model. Furthermore, our
models are an extension of that by Yu & Cohen who argued that decision variables
of their model can be approximated by a linear exponential filter, and that there are
neural implementations for that operation [Yu & Cohen, 2009].

Because matching behavior often deviates from optimal behavior in the sense of total
reward maximization [Vaughan Jr, 1981], it is not likely to be a consequence of opti-
mization. However, our model acts optimally in terms of Bayesian decision making
with an incorrect assumption about the environment, indicating that matching behav-
ior is a bounded optimal behavior. This idea is consistent with the theory of Sakai
and Fukai (2008) who found any learning method neglecting the effect of a choice on
future rewards displays matching behavior if choice probabilities are differentiable
with respect to parameters [Sakai & Fukai, 2008b]. Note that the choice probabili-
ties of our model are not differentiable. Hence, we confirmed that their theory could
be correct in such extreme cases.
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Chapter 4

Neural Network Model for Future
State Prediction

Recent behavioral, imaging, and computational studies suggest that humans and an-
imals determine their actions based on the prediction about what will occur, or how
states in an environment change, after the actions. However, it is still remain un-
clear how our brains learn to predict the state changes from one state to another. We
propose and analyze an algorithm to estimate the probabilities of the state transitions
based on a Hebbian learning algorithm. In addition, we confirm how eligibility trace
affects our algorithm.

4.1 Introduction

Humans and animals can predict future states of environment based on acquired
knowledge through experiences. Assuming that state is weather for instance, we pre-
dict that rainy days continue in rainy season and sunny days continue in dry season.
Various predictive signals have been found in experiments [Duhamel et al., 1992,
Schultz et al., 1997, Eskandar & Assad, 1999], and a recent study suggested that
transition probabilities, which are essential to estimate future state, are encoded in
the brain [Gläscher et al., 2010].

Many cerebral learning models which utilize the transition probabilities have been
proposed [Rao, 2004, Beck & Pouget, 2007, Wacongne et al., 2012]. A previous
model [Rao, 2004] can predict a future state and its neural activities are similar to
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those in lateral intraparietal (LIP) area, however, this model assumes that the transi-
tion probabilities are already learned. There is another model which can predict a fu-
ture state [Wacongne et al., 2012], but, in this model, the state transitions are learned
in an unsupervised manner, contrasting to a supervised manner assumed in recent
studies of reinforcement learning [Gläscher et al., 2010, Daw et al., 2005]. Besides,
a delay line architecture is necessary for estimating a future state. The architecture
has not yet being reported in predicting a future state. Hence, it is still unclear how
the transition probabilities are learned in our brains.

We propose a synaptic learning rule for a feed-forward neural network so that the
network learns the transition probabilities and predicts future states. Our learning
rule is based on Hebbian learning algorithm [Hebb, 1949] and an presynaptic ac-
tivity dependent weight decay [Kempter et al., 1999, Abbott & Nelson, 2000]. Nu-
merical simulations and analytical calculations show that our model can learn the
transition probabilities and predict future states. To compare our model and exper-
imentally reported results, we simulate a random dots motion discrimination task.
The predicted dot motion and neural activities of our model resemble those ex-
perimentally reported [Rao, 2004, Britten et al., 1992, Shadlen & Newsome, 2001,
Roitman & Shadlen, 2002, Gold & Shadlen, 2003, Law & Gold, 2008]. In addition,
we introduce the eligibility trace, in which is a widely assumed neural mechanism to
keep memory [Klopf, 1972, Izhikevich, 2007], to our model. We show effects of the
eligibility trace to the learning performance and an abrupt change of environment.

4.2 Markovian Environment

In our model, a state of environment, z, stochastically changes from trial to trial
following transition probabilities, T . This state transition can be written as,

p(zt+1
i = 1|ztj = 1) = Tij, (4.1)

where zti represents whether the state is i ∈ {1, . . . , N} at trial t (zti = 1) or not
(zti = 0), andN is number of states. Note that T is defined as a left stochastic matrix
in which every sum of column vector is 1. Without a loss of generality, we assume
that any states are reachable in finite transition from any other states, i.e., the Markov
chain is irreducible.

There are several important statistics regarding the states and the transition probabil-
ities for later analysis. The stationary distribution π of the Markov chain is defined
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State
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Figure 4.1: Schematic of environment and our neural network model.

as,

πi ≡ ⟨zi⟩ = p(zi = 1) =
N∑
j=1

p(zτi = 1|zτ−1
j = 1)p(zj = 1) =

N∑
j=1

Tijπj, (4.2)

where ⟨f(x)⟩ represents an average,
∫
dx p(x)f(x), and τ is a pseudo variable for

representing temporal difference. Hence, the stationary distribution is the eigenvec-
tor of T with eigenvalue 1. Second moments of the state variable are,

⟨zizj⟩ = δijπi, (4.3)

⟨zτi zτ−l
j ⟩ =

N∑
k=1

Tik⟨zτkz
τ−(l−1)
j ⟩ = (T l)ijπj, (4.4)

where δ is the Kronecker’s delta.

4.3 Fully observable model

There are “evidence” and “prediction” layers in our network (Fig.4.1). Our network
observes the state and the observed state determines neural activities in the evidence
layer, x = z. Neural activities in the prediction layer, x̂, are determined by the
weighted sum of the activities in the evidence layer, x̂t = W txt, whereW ∈ RN×N

is a matrix of synaptic weights. The constrained task to our model is to predict future
state from current state by learning the transition probabilities. In other words, our
model learns a model of the environment and, based on internal simulations of the
model, generates a prediction of what will happen in the near (or far) future.

Following a previous MRI study [Gläscher et al., 2010], a learning rule is defined to
minimize the average prediction error,

⟨Et⟩ = 1

2
⟨∥xt −W t−1xt−1∥2⟩. (4.5)
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This average prediction error can be minimized by the following learning rule,

W t
ij = (1− ηxt−1

j )W t−1
ij + ηxt

ix
t−1
j , (4.6)

where 0 < η < 1 is a learning rate. This update rule consists of activity dependent
weight decay [Kempter et al., 1999, Abbott & Nelson, 2000] and Hebbian learning
[Hebb, 1949].

4.3.1 Analysis

The average dynamics of our neural network model can be derived as well as
[Werfel et al., 2005]. For simplicity, we assume that the correlation between W

and x is negligible. The sufficient condition of satisfying this assumption is that
the learning rate is infinitesimally small. We also suppose that xt is defined also in
t < 0. The average dynamics ofW t is as follows.

⟨W t
ij⟩ = βj⟨W t−1

ij ⟩+ η⟨zτi zτ−1
j ⟩ = βt

jW
0
ij + ηTijπj

1− βt
j

1− βj

= βt
j

(
W 0

ij − Tij
)
+ Tij, (4.7)

where βj = 1− ηπj . Because 0 < βj < 1 by definition, limt→∞⟨W t
ij⟩ = Tij . Thus,

the transition probabilities are encoded in the connection weights by our learning
rule. The average dynamics of second moment of the weight variable is as follows.

⟨W t
kiW

t
kj⟩

= αij⟨W t−1
ki W t−1

kj ⟩+ ηCkij⟨W t−1
ki ⟩+ ηCkji⟨W t−1

kj ⟩+ δijη
2⟨zτkzτ−1

i ⟩
= αij⟨W t−1

ki W t−1
kj ⟩+ βt−1

i ηCkij(W
0
ki − Tki) + βt−1

j ηCkji(W
0
kj − Tkj)

+ηCkijTki + ηCkjiTkj + δijη
2⟨zτkzτ−1

i ⟩

= αt
ijW

0
kiW

0
kj +

βt
i − αt

ij

βi − αij

ηCkij(W
0
ki − Tki) +

βt
j − αt

ij

βj − αij

ηCkji(W
0
kj − Tkj)

+
1− αt

ij

1− αij

[ηCkijTki + ηCkjiTkj + δijη
2⟨zτkzτ−1

i ⟩]

= αt
ij[W

0
kiW

0
kj − C ′

kij − C ′
kji − C ′′

kij] + βt
iC

′
kij + βt

jC
′
kji + C ′′

kij, (4.8)
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where the constants are

αij = 1− η(πi + πj) + δijη
2πi,

Ckij = (1− δijη)Tkjπj,

C ′
kij =

ηCkij(W
0
ki − Tki)

βi − αij

,

C ′′
kij =

ηCkijTki + ηCkjiTkj + δijη
2Tki⟨zi⟩

1− αij

.

The second moment also converges because of 0 < αij < 1. The average prediction
error is

⟨Et⟩ =
1

2

∑
j

[
πj − 2

∑
i

⟨W t−1
ji ⟩Tjiπi +

∑
i

⟨(W t−1
ji )2⟩πi

]

=
1

2

∑
i

αt−1
ii πi

∑
j

[W 0
jiW

0
ji − 2C ′

jii − C ′′
jii]

+
∑
i

βt−1
i πi

∑
j

[
C ′

jii − (W 0
ji − Tji)Tji

]
+ Er, (4.9)

where Er ≡ limt→∞⟨Et⟩ is the residual error,

Er =
1

2
+

1

2

∑
i

πi

∑
k

C ′′
kii −

∑
i,j

T 2
ijπj. (4.10)

Thus, the learning curve (Eq.(4.9)) has two kinds of decaying components which cor-
respond to the convergence of first and the second moments of connection weights.

4.3.2 Simulation Results

Learning of Transition Probabilities

At first, we confirm the analytical results based on numerical simulations. In a sim-
ulation, an initial state of environment has been sampled from the stationary dis-
tribution and initial weights are W 0

ij = 0 (same in other simulations unless oth-
erwise specified). When the mean squared error between W and T is defined as
tr[(W − T )(W − T )T ]/N2, this error decreases exponentially (Fig. 4.2A). The
transition probabilities are thus successfully encoded into the weights (Fig. 4.2B).
Although the transition probabilities is completely learned, the prediction error fluc-
tuates around an asymptotic value (Figure 4.2C). This fluctuation and residual error
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Figure 4.2: Simulation results when the state of environment is fully observable. We
set the number of statesN = 7 and the learning rate η is fixed to 0.1 in A and B, and
varied in C. A: Mean squared error between the transition probability matrix and the
weights matrix. B: Values of the transition probability matrix which all transitions
are deterministic (left) and the weights matrix after 800 trials of learning (right). La-
bels indicate the state index. C: Solid and dashed lines show prediction errors and
theoretically derived learning curves respectively. Color difference represents dif-
ference of learning rates (see the inset). A randomly generated transition probability
matrix is used.
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is unavoidable due to the stochasticity of the state transitions, however we could
confirm that our algorithm can learn the environment.

Random Dot Discrimination Task

Our algorithm can estimate the probabilities of observing states, however it is still
uncertain whether our algorithm is similar to an actual state prediction algorithm
used by monkeys, humans, or other kinds of animals. To discuss the similarity,
we conduct a numerical simulation which mimics a random dot discrimination task
[Shadlen & Newsome, 2001]. If the neural activities are similar between our model
and actual data and if estimated state can explain behavioral aspects of the animals,
we can expect that our algorithm is a similar one to an actual state prediction algo-
rithm used by the animals.

In the random dot discrimination task, subjects need to answer which direction the
dots move after watching continually displayed dots. Some fraction of dots move
toward the same direction, but the other dots move randomly. The more dots move
coherently, the easier to decide the direction. After deciding the direction of the
movement of the dots, subjects make a saccade towards the decided direction. Fol-
lowing previous studies, we assume two states, i.e., subjects need to make a decision
whether dots move right or left.

Random dot stimulus has been simulated as follows. We suppose that a trial corre-
sponds to observation of a motion direction of a dot. Let coherence be 0 < c < 1, the
probability of observing the coherent direction is c+ (1− c)/2 = (1 + c)/2. With-
out loss of generality, the coherent direction corresponds to state #1. Because there
is no dependence between successive motion direction observations, the transition
probability matrix is

T =

(
(1 + c)/2 (1 + c)/2
(1− c)/2 (1− c)/2

)
. (4.11)

Suppose that subject’s expectation to motion directions is neutral at the beginning of
stimulus presentation hence we setW 0

ij = 0.5.

At first, we perform 30 number of simulations and investigate neural activities of our
model. When the random dots move rightward, an activity of the prediction unit in-
creases if the unit is responsible for predicting the rightward direction and decreases
otherwise (figure 4.3A). In addition, the larger the coherence, the larger (smaller) the
activity. Activities of neurons in monkey’s LIP (lateral intraparietal) show evidence
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Figure 4.3: Simulation results of random dot stimulus motion discrimination task.
We set the learning rate η = 0.02 and the number of motion directions is two
(N = 2). A, The average estimated probabilities for coherent (solid) and incoherent
(dashed) motion directions are plotted as a function of trial. Motion coherence is
varied (see the inset). B, Probability of correct choice at 300-th trial is plotted as a
function of stimulus coherence (symbols). Solid lines are psychometric functions re-
ported in past monkey experiments: (green) [Shadlen & Newsome, 2001] and (red
and blue) [Roitman & Shadlen, 2002]. C, Probability of correct choice increased
over time and the slope is graded on coherence. D and E show the threshold θ and
the shape s, respectively, of a cumulative Weibull function fitted to simulation data.
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accumulation, e.g., when monkeys continue to look at the random dots that tend to
move rightward, the activities of the neurons continue to increase (decrease) if the
receptive field of the neurons are located to the rightward (leftward) to the fixation
point [Roitman & Shadlen, 2002]. In addition, the speed of the increase (decrease)
depends on a coherence of the random dots. Neural units in our model therefore
show similar activities to neurons in monkey’s LIP area.

Second, we compared the predicted states in our model with results of psychophys-
ical experiments by 2000 number of simulations. We employed a winner-take-all
policy as a decision making strategy for our network, i.e., our model decides that
random dots move rightward (leftward) when the neural activity is higher in the neu-
ral unit responsible for predicting the rightward (leftward) movement than in the
other unit. Our model makes a decision following a sigmoid function of coherence
(Fig. 4.3B), this function corresponding to widely-reported psychometric functions
in this task [Shadlen & Newsome, 2001, Roitman & Shadlen, 2002]. In addition, by
fitting a Weibull function [Quick Jr., 1974] to simulation data (Fig. 4.3C), we inves-
tigate how the duration of the observation affects the decision. TheWeibull function
is defined as

p = 1− 1

2
exp(−(c/θ)s), (4.12)

where p is a probability of correct choice, c is a coherence (%), θ is the threshold
that a subject makes 82% correct choice and s is the slope of the psychometric func-
tion. When the duration of the observation increases, the threshold decreases log-
linearly and the shape is invariant (Fig. 4.3D,E). Not only psychometric function
but also these parameter dependencies coincide to those of experimentally reported
[Gold & Shadlen, 2003, Law & Gold, 2008].

4.4 Partially observable models

In the previous section, we discuss under the assumption that our neural network
model can observe and represent complete information of environment. However,
in general, only partial information is available due to sensory limitations of organs,
inherent neuronal variabilities [Stein et al., 2005], and so on. We investigate several
partially observable models to show how our learning rule works in more realistic
situations in this section.
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Here, we consider two separate processes for the partial observation. First is the
observation process, A, which modifies input to the network,

x = A[z]. (4.13)

Second is the representation process, R, which determines how the input is repre-
sented by neural activities, x̄. Because the neural activities can be affected by past
neural activities,

x̄τ = R[xτ ; x̄τ−1]. (4.14)

Thus, the learning rule is extended by using x̄,

W t+1
ij = (1− ηx̄t

j)W
t
ij + ηxt+1

i x̄t
j. (4.15)

This learning rule is identical to Eq.(4.6) if the two processes are both identity trans-
formation. Note that this learning rule is not guaranteed to minimize the average
prediction error (Eq.(4.5)).

4.4.1 Analysis

As well as the previous section, we can derive the network dynamics by the extended
learning rule (Eq.(4.15)). The convergence conditions are

∀i, j|ᾱij| < 1, ∀i|β̄i| < 1, (4.16)

where ᾱij ≡ ⟨(1−ηx̄i)(1−ηx̄j)⟩ and β̄i ≡ 1−η⟨x̄i⟩. The first and second moments
of connection weights are

⟨W t
ij⟩ = β̄t

j

(
W 0

ij −W ∗
ij

)
+W ∗

ij, (4.17)
⟨W t

kiW
t
kj⟩ = ᾱt

ij[W
0
kiW

0
kj − C ′

kij − C ′
kji − C ′′

kij] + β̄t
iC

′
kij + β̄t

jC
′
kji + C ′′

kij,

(4.18)

where the constants are

W ∗
ij =

⟨xτ
i x̄

τ−1
j ⟩
⟨x̄j⟩

,

ᾱij = 1− η(⟨x̄i⟩+ ⟨x̄j⟩) + η2⟨x̄ix̄j⟩,
Ckij = ⟨xτ

kx̄
τ−1
j ⟩ − η⟨xτ

kx̄
τ−1
i x̄τ−1

j ⟩,

C ′
kij =

ηCkij(W
0
ki −W ∗

ki)

β̄i − ᾱij

,

C ′′
kij =

ηCkijW
∗
ki + ηCkjiW

∗
kj + η2⟨(xτ

k)
2x̄τ−1

i x̄τ−1
j ⟩

1− ᾱij

.
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Figure 4.4: Learning results of model with the eligibility trace. We set the number
of states N = 7 and the learning rate η = 0.1. The transition probability matrix
is identical to Fig. 4.2B. A: Mean squared error between the transition probability
matrix and the weights matrix where the time constant of eligibility trace γ = 0.3
(solid line) and γ = 0 (dashed line; same as Fig. 4.2A). B: Value of the weights
matrixW after 800 trials of learning. We set γ = 0.3.

Hence, the average prediction error is

⟨Et⟩ =
1

2

∑
i,j

ᾱt−1
ij ⟨xixj⟩

∑
k

[W 0
kiW

0
kj − 2C ′

kij − C ′′
kij]

+
∑
i

β̄t−1
i

∑
j

[
⟨xixj⟩

∑
k

C ′
kij − (W 0

ji −W ∗
ji)⟨xτ

jx
τ−1
i ⟩

]
+ Er

(4.19)

where Er ≡ limt→∞⟨Et⟩ is the residual error,

Er =
1

2

∑
i

⟨x2
i ⟩+

1

2

∑
i,j

⟨xixj⟩
∑
k

C ′′
kij −

∑
i,j

W ∗
ij⟨xτ

i x
τ−1
j ⟩. (4.20)

4.4.2 The effect of the eligibility trace

Recent studies suggested that “eligibility trace” [Klopf, 1972], a memory trace of
inputs, is assumed to be available in a variety of brain regions [Pan et al., 2005,
Izhikevich, 2007]. Here, we investigate the effect of the eligibility trace on our al-
gorithm.
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Figure 4.5: Effect of eligibility trace for residual error. Mean (A) and variance (B) of
residual errors with respect to the time constant of eligibility trace γ and the number
of states N . Symbol represent the minimum value against respective N . Lower
panels are cutaway views of A and B where N = 4 (green lines), respectively. We
set the learning rate η = 0.1.

The eligibility trace is defined as low-pass filtered input, thus the activities of evi-
dence units are

x̄t = γx̄t−1 + (1− γ)xt−l, (4.21)

where 0 < γ ≤ 1/2 is a time constant of eligibility trace. In this model, the important
statistics become

β̄i = 1− ηπi, (4.22)
ᾱii = 1− 2ηπi + η2⟨x̄2

i ⟩, (4.23)

W ∗
ij = (1− γ)

∞∑
k=0

γk(T k+1)ij. (4.24)

It is not necessary to consider ᾱij (i ̸= j) and the convergence condition is satisfied
by definition. The connection weights matrix,W , at steady state is a convolution of
transition probabilities in different steps.
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Figure 4.6: Learning speed and residual error as functions of the decay constant and
the learning rate. We set the number of states N = 2.

Since several steps of transitions are memorized in the eligibility trace, this network
model can also predict future states in several steps further. However, due to the
change of the auto-covariance matrix, the weights no longer encode the transition
probabilities completely (Fig. 4.4A, B). Although the learning slows down (Fig.
4.4A), the mean and variance of residual error can be decreased by eligibility trace
(Fig. 4.5). The optimal time constant which minimizes the mean of residual error
lies linearly against the number of statesN (Fig. 4.5A). The eligibility trace plays as
a low-pass filter, and a nature of a low-pass filter may exploit the cyclicity of state
transitions and hence the error may decrease. Also due to a nature of a low-pass
filter, the variance of residual error consistently decreases against increase of the time
constant (Fig. 4.5B). However, the eligibility trace can degrade the learning speed, in
which is defined bymaxi 1−ᾱii. We simulated our network to show how the learning
speed and the residual error change by the decay constant of eligibility trace and the
learning rate (Fig. 4.6). We found that the learning speed are not greatly reduced by
introduction of the eligibility trace when the learning rate is small. This is consistent
that the effect of eligibility trace to the learning speed is O(η2) (Eq.(4.23)). Hence,
the eligibility trace can improve the learning performance without loss of learning
speed in slow learning.

Additionally, we investigate effects of the eligibility trace when the environment
abruptly changes. Based on the memory of state transitions in the eligibility trace,
we can suppose that the eligibility trace enables to easily detect the change of the
environment. We generate 8000 pairs of random transition probabilities. For each
of pairs, 100 number of simulations are performed to calculate mean and variance of
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Figure 4.7: Effect of eligibility trace for prediction error where a transition prob-
abilities changes at trial 600. Average time course of mean (A) and variance (B)
of prediction errors against the time constant γ. A shows a magnified view around
change point and the inset shows the overall time course. Color difference repre-
sents the difference of time constant (see the inset of B). We set the number of states
N = 4 and the learning rate η = 0.1.

prediction errors. These statistics are again averaged over all pairs. As a result, it is
shown that the eligibility trace can detect the rapid change of the environment, and
the prediction error caused by the change of environment decreases (figure 4.7A,B).
Thus, the eligibility trace can decrease the residual error and its variance, and can
make our learning algorithm robust to the change of the environment.

4.4.3 Noisy linear transform

Here, we discuss the behavior of our neural network model when the observation
process A is a noisy linear transform

xt = Azt + ϵt, (4.25)

where A ∈ RN×N , ϵ ∼ N (0, σ2I) and I ∈ RN×N is the identity matrix. Thus, we
obtain

β̄i = 1− η
∑
j

Aijπj, (4.26)

ᾱij = 2 +Nσ2 −
∑
k

⟨zk⟩(1 + ηAik)(1 + ηAjk), (4.27)

W ∗ = AT R, (4.28)
R = ⟨Z⟩AT ⟨X⟩−1, (4.29)
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Figure 4.8: Each column shows simulation results with different linear transforma-
tion matrix A. The upper figures show the Aij and lower figures show prediction
errors (solid line) and theoretically derived learning curves (dashed line) in different
noise levels: σ2 = 0 (black lines) and σ2 = 0.01 (red lines). We set the number of
states N = 7, the learning rate η = 0.1 and an identical transition probabilities is
used in all simulations.

where ⟨Z⟩ = diag(⟨z1⟩, . . . , ⟨zN⟩) and ⟨X⟩ = diag(⟨x1⟩, . . . , ⟨xN⟩). Thus, the con-
vergence depends on the linear transformation and the noise level. Note that W ∗x

is expected to be an estimate of next input given present input x. Because AT z is
an expected next input given present state z, R seems to be an recovery transform
of z given x. Hence, the condition ⟨z⟩ ≡ R⟨x⟩ is expected to be satisfied for the
network to correctly estimate the hidden state without bias. The recovery condition
reduces to ∀j ∈ S

(∑N
i=1Aij = 1

)
.

Figure 4.8 shows simulation results in different linear transformations and noise
levels with an identical transition probabilities. Figure 4.8A clarify that the noise
solely degrades the predictive performance of network and slows down the learn-
ing. These are consistent in other cases (Fig. 4.8B,C). A sensory neuron often re-
spond to similar stimulus to its preferred stimulus [Maunsell & Van Essen, 1983,
Hubel & Wiesel, 1962]. Two linear transforms imitating this characteristic has been
used where one violates the recovery condition (Fig. 4.8B) and the other is normal-
ized to satisfy the condition (Fig. 4.8C). The violation of the recovery condition can
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cause a dip in learning curve and the residual error can increase in comparison with
the case of identity transform (Fig. 4.8A). On the other hand, the dip vanishes and
the residual error can drastically decrease if the recovery condition is satisfied (Fig.
4.8C).

4.5 Discussion

We proposed an algorithm for estimating the environment, or state transition proba-
bilities, based on aHebbian synaptic rule [Hebb, 1949] and activity dependent weight
decay [Kempter et al., 1999, Abbott & Nelson, 2000]. By analytical and numerical
calculations, our algorithm was confirmed to be successful to estimate the environ-
ment and predict future states. It is proposed that humans estimate the environment to
minimize state prediction error [Gläscher et al., 2010], however, neural implemen-
tation of the estimation remained unclear. Our model is a candidate of the neural
implementation to estimate the environment and predict future states.

In a simulated random dot discrimination task, neural units in our model show similar
activities to those in monkey’s LIP area. A previous study proposed a neural network
model whose neural activities are similar to those in monkey’s LIP area [Rao, 2004],
however the previous model assumed that the transition probabilities has been al-
ready learned. In contrast, our model can learn the probabilities. Although previous
studies assumed that the neural activities in monkey’s LIP area can be fit well by log-
probability of states, our model does not have such an assumption. Furthermore, pre-
dicted states by our model shows a similar psychometric function to those reported in
many psychophysical experiments [Britten et al., 1992, Shadlen & Newsome, 2001,
Roitman & Shadlen, 2002, Gold & Shadlen, 2003, Law & Gold, 2008].

As a memory trace, we used a eligibility trace which is assumed to be biologically
plausible especially in context of reinforcement learning [Pan et al., 2005]. Although
a previous study assumed that a memory trace is indispensable for estimating the en-
vironment [Wacongne et al., 2012], ourmodel suggests that the trace is not necessary
for the estimation. A memory trace plays, however, other roles in the estimation;
decreasing the residual error and generating a robustness to a rapid change of the
environment.

The transition probabilities learned with the eligibility trace implicated that sequence
of future states is predicted. This characteristic can degrade a pinpoint prediction but
it is more computationally efficient for sequence prediction than traversing possible
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state paths. Therefore, our model can underlie a process which requires rapid se-
quence prediction such as spoken language comprehension and motor control.
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Chapter 5

Conclusion

The brain is a mysterious information processing machine. A discriminating feature
of the brain is its flexibility which enables us to acquire new knowledge, abilities
and skills by modifying its internal states. It is important to elucidate the cerebral
learning for improving our life and advancing some scientific fields such as medical
care, engineering and so on. The brain is a complex system because it consists of
considerable biological matters. Therefore, it is quite difficult to understand our
macroscopic behaviors by only investigating microscopic dynamics of the system.
It is necessary to investigate the system in different scales and connect them.

The work in this dissertation has presented effects of information traces such as his-
tory of rewards, past neural activities, input and noise in the cerebral learning. Our
approach is to build a computational or algorithmic model for known cerebral learn-
ing problems and investigate it by analytical calculations and numerical simulations
to elucidate general effects of information trace.

In reward-modulated learning, reward delivery is distant from responses or behav-
iors which cause the reward. Besides, scalar reward signal is not informative to
determine which part of brain or component of adaptive agent has been dedicated to
the reward. Therefore, the brain or an artificial agent should solve the temporal and
structural credit assignment problems of reward, i.e., the relationships between the
reward and past responses in specific components should be determined for success-
ful learning. We analyzed a multi-agent neural network model with trace of input
and noise. We found that there is interactions between the structural and the temporal
uncertainties of reward. The trace is necessary for solving the temporal credit assign-
ment problem and also useful to reduce a degradation of learning by the structural
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uncertainty (Chapter 2).

Matching law states the tendency of decision making behavior of humans and an-
imals in tasks imitating foraging environment; fractions of choice and obtained re-
ward to an alternative are equal. Observed behavior is mostly consistent with the
law but undermatching, in which the choice behavior is slightly biased toward even
choice, is sometimes observed. Recent studies unveiled the strong choice depen-
dency to the recent reward trace and the dependency is well regressed by double
exponential or hyperbolic functions, in which have longer tail than exponential func-
tion. The computational principle underlying these phenomena is still controversial.
Therefore, we investigated the principle by comparing several Bayesian decision
making models and found that the belief about the environment volatility is an es-
sential factor of undermatching and the long tail reward trace dependency (Chapter
3).

The state transition probabilities are essential to predict future state of environment.
In recent imaging study, it has been shown that the transition probabilities are en-
coded in the brain. However, it has been still unclear how the brain learns the tran-
sition probabilities. We proposed a learning algorithm which is based on Hebb rule
and activity dependent weight decay. The neural networkmodel with our learning al-
gorithm can learn the transition probabilities and predict future state. We found that,
by the trace of input, the residual error of learning is reduced, multiple sequences of
future states are simultaneously predicted and the neural network model can rapidly
adapt to change of environment (Chapter 4).

Thus, we found that, by the trial-wise traces, a learning system can resolve the struc-
tural and temporal credit assignment problems and can rapidly adapt to the abrupt
change of environment. It seems that an information trace has effect to partially
resolve some uncertainties.
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Appendix A

Derivation of Ensemble Averages

In this section, we derive the ensemble averages for the single-perceptron model:
⟨d̃e⟩, ⟨d̃J · e⟩ and ⟨d̃2∥e∥2⟩. Those for multi-perceptrons model can be derived in
an analogous way.

Our model is difficult to analyze because the eligibility trace includes the past inputs
and perturbations, the correlations among the past changes of J(m), the eligibility
trace e(m), and the delayed instruction signal d̃(m) should be considered. However,
it can still be solvable. One reason is that the eligibility trace can be separated to the
sum of current and past information since its kernel is exponential:

e(m) = ξ(m)x(m) + ε(1)e(m− 1). (A.1)

This property makes the analysis relatively easy. We use following expansion to
calculate the ensemble averages.

J(m) = η

∞∑
p=1

d̃(m− p)e(m− p). (A.2)

In terms of minimization of an objective function, the gradient information is most
important. In our model, the information is thought to be included in d̃e. Its average
is,

⟨d̃(m)e(m)⟩

= −1

2
⟨ξ2(m−md)e(m)⟩ − ⟨ξ(m−md)(y(m−md)− z(m−md))e(m)⟩

=
1

N
σ2ε(md)(B − J(m−md)). (A.3)
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Thus, d̃e contains the difference between teacher and student weights weighted by
the credit and the variance of noise. Then,

⟨d̃(m)∥e(m)∥2⟩

= −1

2
⟨ξ2(m−md)∥e(m)∥2⟩ − ⟨ξ(m−md)(y(m−md)− z(m−md))∥e(m)∥2⟩

= −1

2

{
ε2(md)

[
⟨ξ4(m−md)⟩ − ⟨ξ2(m−md)⟩2

]
+ ⟨ξ2(m−md)⟩⟨∥e(m)∥2⟩

}
+O

(
1

N

)
= −1

2
σ4D1 +O

(
1

N

)
, (A.4)

where

Dk ≡ 2ε2(md) + kI, I ≡
∞∑
p=0

ε2(p).

From Eqs. (A.1), (A.2) and (A.4), the inner product of the student weights and the
eligibility trace is

⟨J(m) · e(m)⟩ = η
∞∑
p=1

ε(p)⟨d̃(m− p)∥e(m− p)∥2⟩.

= −1

2
ησ4D1S +O

(
1

N

)
, (A.5)

where

S ≡
∞∑
p=1

ε(p).

From, Eq. (A.5),

⟨ξ2(m−md)J(m) · e(m)⟩
= ε(md)⟨ξ2(m−md)⟩⟨J(m−md) · e(m−md)⟩

+η

md∑
p=1

ε(p)⟨ξ2(m−md)d̃(m− p)∥e(m− p)∥2⟩

= −1

2
ησ6 [D1S + 2F ] . (A.6)

where

F ≡ ε(md)

md−1∑
p=0

ε(p).
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From Eq. (A.6), we obtain the ensemble average of inner product of the student
weights J and the gradient vector d̃e:

⟨d̃(m)J(m) · e(m)⟩

= −1

2
⟨ξ2(m−md)J(m) · e(m)⟩

−⟨ξ(m−md) [y(m−md)− z(m−md)]J(m) · e(m)⟩.

=
1

4
ησ6 [D1S + 2F ]− σ2ε(md)J(m)(J(m−md)−B) +O

(
1

N

)
.

(A.7)

Our next interest is ⟨d̃2∥e∥2⟩ which is a trace of variance-covariance matrix of the
vector d̃e. This average involves infinite number of higher-order correlations which
is of O(1). However, we can drop the higher-order terms by the assumption of suf-
ficiently small η. At first, two quantities are derived:

⟨ξ4(m−md)∥e(m)∥2⟩
= ⟨ξ4(m−md)⟩

[
⟨∥e(m)∥2⟩ − ε2(md)⟨ξ2(m−md)⟩

]
+ε2(md)⟨ξ4(m−md)ξ

2(m−md)⟩
= 3σ6E1, (A.8)
⟨ξ3(m−md)[y(m−md)− z(m−md)]∥e(m)∥2⟩

=
1

N
6σ4ε2(md)⟨[J(m−md)−B] · e(m−md)⟩ ∼ O

(
1

N

)
, (A.9)

where

Ek ≡ 4ε2(md) + kI.

Thus, by Eqs. (A.8) and (A.9),

⟨d̃2(m)∥e(m)∥2⟩ =
3

4
σ6E1 +O

(
1

N

)
+
⟨
{ξ(m−md)[y(m−md)− z(m−md)]}2 ∥e(m)∥2

⟩
.

(A.10)
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The last term of the above equation is⟨
{ξ(m−md)[y(m−md)− z(m−md)]}2 ∥e(m)∥2

⟩
= σ2

⟨
{ξ(m−md)[y(m−md)− z(m−md)]}2

⟩md−1∑
p=0

ε2(p)

+ε2(md)
⟨
{ξ(m−md)[y(m−md)− z(m−md)]}2 ∥e(m−md)∥2

⟩
= σ4

[
l2(m−md)− 2r(m−md) + 1

]md−1∑
p=0

ε2(p)

+ε2(md)

 ⟨ξ
2(m−md)y

2(m−md)∥e(m−md)∥2⟩
+ ⟨ξ2(m−md)z

2(m−md)∥e(m−md)∥2⟩
− 2⟨ξ2(m−md)y(m−md)z(m−md)∥e(m−md)∥2⟩

 .

(A.11)

From

1

N
⟨∥J(m)∥2∥e(m− 1)∥2⟩

≃ 1

N

⟨[
∥J(m− 1)∥2 + 2ηd̃(m− 1)J(m− 1) · e(m− 1)

]
∥e(m− 1)∥2

⟩
=

1

N

⟨
∥J(m− 1)∥2

[
ξ2(m− 1)∥x(m− 1)∥2 + ε2(1)∥e(m− 2)∥2

+ 2ε(1)ξ(m− 1)x(m− 1) · e(m− 2)

]⟩
+O

(
1

N

)
≃ σ2l2(m− 1) +

1

N
ε2(1)⟨∥J(m− 1)∥2∥e(m− 2)∥2⟩

≃ σ2

∞∑
p=0

ε2(p)l2(m− 1− p), (A.12)

we obtain

⟨ξ2(m)y2(m)∥e(m)∥2⟩

=
N∑
k

⟨ξ2(m)J2
k (m)x2

k(m)∥e(m)∥2⟩

=
N∑
k

{
N∑
l

⟨ξ4(m)⟩⟨x2
k(m)x2

l (m)⟩J2
k (m) + σ2 1

N
ε2(1)⟨J2

k (m)∥e(m− 1)∥2⟩

}

≃ σ4

[
3l2(m) + ε2(1)

∞∑
p=0

ε2(p)l2(m− 1− p)

]
. (A.13)
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From

1

N
⟨J(m) ·B∥e(m− 1)∥2⟩

=
1

N

⟨[
J(m− 1) + ηd̃(m− 1)e(m− 1)

]
·B∥e(m− 1)∥2

⟩
=

1

N

⟨
J(m− 1) ·B

[
ξ2(m− 1)∥x(m− 1)∥2 + ε2(1)∥e(m− 2)∥2

+ 2ε(1)ξ(m− 1)x(m− 1) · e(m− 2)

]⟩
+O

(
1

N

)
≃ σ2r(m− 1) + ε2(1)

1

N
⟨J(m− 1) ·B∥e(m− 2)∥2⟩

≃ σ2

∞∑
p=0

ε2(p)r(m− 1− p),

(A.14)

we obtain

⟨ξ2(m)y(m)z(m)∥e(m)∥2⟩ =
N∑
k

⟨ξ2(m)Jk(m)Bkx
2
k(m)∥e(m)∥2⟩

=
N∑
k


N∑
l

Jk(m)Bk⟨ξ4(m)⟩⟨x2
k(m)x2

l (m)⟩

+ σ2ε2(1)
1

N
⟨Jk(m)Bk∥e(m− 1)∥2⟩


≃ σ4

[
3r(m) + ε2(1)

∞∑
p=0

ε2(p)r(m− 1− p)

]
.

(A.15)

Then,

⟨ξ2(m)z2(m)∥e(m)∥2⟩

=
N∑
k

B2
k⟨ξ2(m)x2

k(m)∥e(m)∥2⟩

=
N∑
k

B2
jk

[
N∑
l

⟨ξ4(m)⟩⟨x2
k(m)x2

l (m)⟩+ σ4ε2(1)
1

N

∞∑
p=0

ε2(p)

]

= σ4

[
3 + ε2(1)

∞∑
p=0

ε2(p)

]
. (A.16)
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Appendix A. Derivation of Ensemble Averages

Following Eqs. (A.11), (A.13), (A.15) and (A.16),⟨
{ξ(m−md)[y(m−md)− z(m−md)]}2 ∥e(m)∥2

⟩
≃ σ4

[
md∑
p=0

ε2(p) + 2ε2(md)

]
[l2(m−md)− 2r(m−md) + 1]

+σ4

∞∑
p=md+1

ε2(p)
[
l2(m− p)− 2r(m− p) + 1

]
.

(A.17)

Finally, we obtain

⟨d̃2(m)∥e(m)∥2⟩

=
3

4
σ6E1 + σ4

[
md∑
p=0

ε2(p) + 2ε2(md)

]
[l2(m−md)− 2r(m−md) + 1]

+σ4

∞∑
p=md+1

ε2(p)
[
l2(m− p)− 2r(m− p) + 1

]
. (A.18)

We have calculated the ensemble averages in discrete time domain to involve the
effect of the delay. Then we transfer the obtained ensemble averages into continuous
time domain. We carry out this operation according to following rules. Let X be a
variable,

1. X(m−md)→ X(t), because md is infinitesimally small in continuous time
domain.

2.
∑∞

p=0 ε
2(p)X(m − p) → IX(t), because X can be regarded as fixed where

the kernel has sufficiently large amplitude.

Thus,

B · ⟨d̃e⟩ = σ2ϵ(md)(1− r(t)), (A.19)

⟨d̃J · e⟩ =
1

4
ησ6 [D1S + 2F ]− σ2ε(md)(l

2(t)− r(t)), (A.20)

⟨d̃2∥e∥2⟩ =
3

4
σ6E1 + σ4D1(l

2(t)− 2r(t) + 1). (A.21)
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