
Assisted Design of DNA Computing Systems:
the DNA Toolbox and Beyond

ABSTRACT

In the recent years DNA computing has shown promising results with potential ap-
plications in a wide range of fields, such as medicine and smart material engineering.
DNA computing leverages the well understood biochemistry of DNA to encode calculus
and perform computation, with the goal of enabling computation in inconvenient places,
such as inside the human body. However, most ideas often stay at the stage of proof of
concept, without making it to the marketable product level.

The reason for this is not a lack of interest from designer, but lies instead in the
fact that such products have a structural complexity that is beyond the tools currently
available in the field. Even though interactions such as DNA-DNA or DNA-enzyme are
reliably predictable, they cause counter-intuitive behaviors, such as Michaelis-Menten
enzyme saturation. For this reason, even simple systems may require a long trial-and-
error design process.

The goal of this thesis was to develop means to ease the design process of such systems.
This relies mainly on three complementary approaches: module design, development
of specific computer assisted design (CAD) tools, and search of interesting patterns
evolved through artificial evolutionary algorithms. Those different aspects are each used
to simplify a particular aspect of the design process.

The first step was to create a new module that could be easily integrated to popular
DNA computing paradigms. The role of this module is to perform a delay or join (in the
traditional computer science meaning) operation. Indeed, one major design problem is
that intermediary reaction products can react with any other part of a system, not only
their intended target. While careful sequence design can avoid unwanted interactions
up to a certain point, it still leaves the problem of leaks: during a given computation
step, the wrong output may be present as a temporary product, before the correct one is
finally released. If the incorrect output is allowed to interact with downstream elements
of the system, errors will propagate. This problem is akin to concurrency problems in
computer science, and can be resolved using the delay module by ensuring that a given
computation is finished before allowing the next step to happen. More specifically, the
delay module relies on timer strands capturing the targeted sequence and being then
catalytically consumed by a DNA delay gate. Timer strands are present in excess with
respect to their target, and duplex are designed to be only consumed once all single-
stranded timers are gone, ensuring the delay. This approach was confirmed both by
simulation and experiment.

The second step was to develop an efficient simulator to help the designer prototype
systems. Indeed, while actual experimentation is necessary to check the correctness of
a system’s behavior, the cost in time and resources prevents its use as a convenient
way to design. Instead, simulation allows the user to refine the system and check for
flaws. We targeted the DNA toolbox, a set of three modules (activation, inhibition and
autocatalysis) used for bottom-up design. Its simple modules allow a straightforward
representation of systems as a graph. Moreover, those modules can be easily derived into
a mathematical model close to their actual in-vitro behavior. This means that systems
designed with this CAD software have reasonable chances of behaving in the same fashion
in an actual implementation. The software also offers to export designed systems in the
Synthetic Biology Mark-up Language format, allowing the user to use other design tools,
such as Copasi.

The third step was to take the opposite design approach: since it is hard to come up
with a structure performing a given task, it is instead possible to look at the possible
behaviors that arise from small structures. To direct this search, we used an in silico
evolutionary approach. Systems were asked to “play” a simple game of rock-paper-
scissors, with a fitness based on their success rates. By performing an analysis of the
evolution of well-performing systems, it was possible to highlight multiple substructures
with specialized roles. While most of those building blocks were specific to the problem
at hand, they showed the interest of this approach.

����

��� DNA ������� ���������� ���������� ������

�������������������������� DNA ������� ����

DNA �������������������� ������������� ����

���� � ������ �������� �� �������������������

����� ��� ����� ����������������� ������ � ���

���� ����������������� � ���������������

������ ������������������������ � �������

����� ��������������������� ����������� ���

��������� DNA����� � DNA �������������� �����

�������� ��������� � ��� �������������������

��������������� ����� ������������� �������

� ����������������

�������� ����� � DNA ������� ��������������

��������������������� ������������ 3������

��������� ��������� ���������� (CAD) ������� �

��� ���������� ������������������ ���������

����� ����� DNA ������� ����� �������������� �

�������������������

����������� ���� DNA ������� �������������

� �������������������� ������������ (������

�������)����� ��� �������������� DNA ������� �

��������������������� �������������������

������������ ���� �������������� � ���������

������������� � ������������������� ����� ��

���������� ������������������ ��� ���������

���������� ��� ���������������������������

�� ��������� ������������������������� � ���

��������� �������������������������������

���� �� ������� � ��������� ��������������� ��

����� DNA ����� ������������������ ����� ����

���������������� � ������������� ��������� �

������������� �������� � ������������ ������

���� ����� ������� ������

������ ��� ������������������������ �����

���������� ������������������������������

�� ��������� ������� �����������������������

��� ��� �� ������������������������������ ����

�� �������������� DNA ������� (activation� ��� inhibition�

��� autocatalysis� ����� 3��������)������ ���������

��� ���������������������������� ���� �����

��������� �������������������������������

������ �� CAD ��� ������������������ ��������

���� ����� ������������������� ��� ����� �����

���������� Biology Mark-up Language�����������������

�� ������������ ���� Copasi��������������

� �������� ����������������� ����� �������

�������� ����������� ���������������������

��������������� ���� ������ ���� �����������

������������� ����������������� ����������

�� ������������ ��������������������������

��� � ��������������������������� ���������

����� �� ������������������� ��������������

���

Acknowledgement

First of all I want to express all my love and affection for my familly and friends back in France.

It has been hard to stay in touch because of this PhD, so it is only fair that your turn comes

first.

I want to thank Professor Masami Hagiya, my PhD supervisor, for having believed in my

work and supporting me despite his busy schedule. I also want to thank Professor Yannick

Rondelez, my PhD co-supervisor, for giving me the opportunuity to work in his group, giving

me a (hard) push when I needed one, and being an overall awesome human being. He also had

to endure correcting literaly hundreds of pages of my French English throughout the duration

of my PhD.

I greatly appreciated the various comments from my jury members, which helped polish this

thesis to its current state.

In no particular order, this work is also dedicated to my colleagues and friends Ibuki Kawa-

mata, Fumiaki Tanaka, Adrien Padirac, Anthony Genot, and Alexandre Baccouche, who taught

me a lot about DNA computing and experimental work; to Takako Kato who kept me sane,

healthy and motivated; to Christophe Provin, Pierre Alain, Dennis “Dede” Damiron and the

rest of the LIMMS; to Olaf Witkowsky, Julien Hubert, Jose Alvarez, Paulo Silva and all my

other friends from Tokyo, for making my everyday life interesting and crazy.

I also want to sincerely thank Nicolas Bredeche, Andre Estevez-Torres and Alexis Vlandas

for fruitful discussions and collaborations.

I would like to mention all the DACCAD beta testers who took time to provide detailed

bug reports.

Among the less(er) formal acknowledgements, I want to thank Tharol Hunt and Dan Shive,

webcomic artists. We never met, nor even communicated, but your work definitely saw me

through the worst time of my thesis. Many thanks, finally, to the University of Tokyo for

lending me a computer and giving me a nice workspace. My chair for its unyielding support.

I wouldn’t have achieved a tenth of what I did without them.

v

Contents

Abstract ii

Acknowledgement v

1 Molecular computing and DNA-based systems 1

1.1 Introduction . 1

1.2 Toward molecular programming . 2

1.3 A crash course in DNA computing: abstraction and possible operations 4

1.4 Limitations and workarounds . 9

1.5 Goal and contributions of this thesis . 11

1.6 Assisting the process of molecular programming: outline 13

1.7 Glossary . 14

2 Modeling the DNA toolbox 17

2.1 General . 17

2.2 Mathematical modeling . 21

2.3 Correctness of the model . 28

2.4 Fitting parameters . 29

3 The delay gate 35

3.1 Introduction . 35

3.2 Related work . 37

3.3 Working principle . 39

3.4 Model and simulation . 41

3.5 Experimental results . 46

3.6 Applications . 47

3.6.1 Integration of the delay gate in the toolbox 47

vi

CONTENTS vii

3.6.2 Extended toolbox systems . 50

3.6.3 Other possible applications . 52

3.7 Conclusion . 54

4 DACCAD 56

4.1 Introduction . 57

4.2 Related work . 60

4.3 Methods . 62

4.3.1 Graphical interface and graph manipulation 62

4.3.2 Default parameters . 63

4.3.3 Equations generation and solving . 64

4.3.4 Local optimisation . 64

4.3.5 Dynamic graph display . 65

4.4 Results . 66

4.4.1 Simple systems . 66

4.4.2 Simple system optimization . 66

4.4.3 Animated display . 68

4.4.4 Combined systems . 68

4.4.5 Saturation-based effects . 69

4.4.6 Complex system: the mastermind game 71

4.5 Conclusion . 75

5 Using DACCAD to create complex systems 77

5.1 Creating the Mastermind game . 77

5.1.1 Encoding the secret combination . 78

5.1.2 General design . 79

5.1.3 Position evaluation . 80

5.1.4 Combining results . 82

5.1.5 Misplaced guesses . 83

5.2 Scripted generation of systems solving the 3-SAT problem 85

5.2.1 Related work . 85

5.2.2 Compilation . 86

5.2.3 Simulation results . 88

5.3 Conclusion . 88

CONTENTS viii

6 Extending the model to debug side reactions 89

6.1 Problems already taken into account in the DNA toolbox 90

6.2 Relaxing the model limitations . 92

6.3 Debugging side reactions: method . 94

6.4 Application to a simple autocatalytic reaction . 95

6.5 Related works . 98

6.6 Toward automatic model generation . 99

7 Evolutionary optimization of DNA toolbox systems 100

7.1 Introduction . 100

7.2 Related Work and Current Contributions . 102

7.2.1 Rock-paper-scissors . 102

7.2.2 Motif Mining . 103

7.3 Model . 103

7.3.1 The DNA toolbox and BioNEAT . 103

7.3.2 Individuals and encoding . 104

7.3.3 Simulations . 105

7.4 bioNEAT: NEAT for Reaction Networks . 105

7.4.1 NEAT . 105

7.4.2 bioNEAT . 106

7.4.3 Fitness Score . 107

7.5 Results . 108

7.5.1 Cheating . 109

7.5.2 Defense mechanisms . 109

7.5.3 Memory vs cheating . 111

7.5.4 The arms race . 112

7.6 Conclusion . 114

8 Conclusion 116

Bibliography 119

A Model parameters and equations 136

A.1 Coaxial-stacking slowdown . 136

A.2 Full equation set for an autocatalytic module . 137

CONTENTS ix

A.3 Proof of equation 2.10 . 139

A.4 Reactions of the delay gate . 141

A.5 Sequences for the delay gate . 142

B Tutorial DACCAD 143

B.1 Introduction . 143

B.2 Interface . 144

B.2.1 Main window . 144

B.2.2 The animate window . 146

B.3 DACCAD tutorials . 147

B.4 File formats . 155

B.4.1 Graph files . 155

B.4.2 Input files . 157

B.4.3 Optimization files . 157

B.4.4 Exported files . 157

Chapter 1

Molecular computing and

DNA-based systems

1.1 Introduction

For the past decades, the use of personal computers has become so ubiquitous that the original

meaning of the word (a person carrying on calculation) has effectively fallen out of usage. In

popular culture, the image of a computer is that of a general purpose, programmable electronical

device, with standardized inputs and outputs (monitor, mouse, keyboard, USB ports). However,

it was not so long ago that researchers were stuggling with a then new technology, trying to

find the best paradigm for their machines. Over time, many avenues, such as void tubes and

mercury canals, were explored until the current digital logic gate circuitry have been perfected.

Moreover, even though the technology became more and more standardized, implementations

were far from homogeneous. Even before the famed Moore law1 started to show signs that it

could not keep its trend without changes to the monolitic processor design, multiple alternatives

branched out (vector programming, graphics processing units, among others). Some of those

found niche applications, while many other died, in a striking analogy with the evolution of

species and the survival of the fittest.

However, virtually any modification of a given environment can be seen as a computation be-

ing carried out, to the point that in his science-fiction novel “Hitchhicker’s guide to the galaxy”,

Douglas Adams presents planet Earth as a gigantic computer [1]. Alan Turing formalized the

idea of calculation [2] and introduced the Turing machine, a model for universal computation.

This means that any calculation that can be computed can be encoded as a Turing machine

1The Moore law predicts that computational power (represented as the density of transistors) will increase
exponentially over time. The average rate was to double the clock speed of computers every two years.

1

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 2

performing operations following a particular set of rules. Alternative computation paradigms

are often referred to as unconventional computing. The main idea is to find something that

is Turing universal (i.e. has at least the same computational power as a Turing machine, see

glossary) while having interesting properties, such as new fields of application like nanorobotics

or distributed systems. While some of these alternative approaches are well-known, like cellu-

lar automata or quantum computers, some are more exotic, like ant computing [3] or swarm

intelligence [4].

1.2 Toward molecular programming

A prominent alternative approach is that of molecular programming, where chemical species are

defined to encode data, while chemical reactions represent computational operations. The result

of a given calculation can then be represented as the transient concentration of some species

[5, 6, 7], the steady state of the system [8, 9, 10, 11, 12] or even the presence of some particular

species, regardless of their actual concentration [13, 14]. To perform complex calculus, such

chemical reactions are cascaded to form what is known as Chemical Reaction Networks (CRN)

[15]. An interesting feature is that CRNs have been proved to have Turing universality [8, 16].

Moreover, multiple CRNs computing the square root of an input, for instance, have been shown

[17, 10], demonstrating the practicality of this computation approach.

While theoretical power and programatical approaches of a given paradigm have an incon-

testable interest, possibly giving new insights for algorithms (as with quantum computing [18]),

such paradigm will lack impact without a proper “real life” implementation. Molecular pro-

gramming is no exception to this rule: artificial chemistries [19], paradigms using the formalism

of chemistry to propose particular reaction sets for specific objectives, have little application if

they cannot rely on a wet lab implementation, but taking this step leads to many problems.

While proofs of concept might be achieved with specific set of reactions [20, 21], it is, in the

general case hard or even impossible to control such reactions. That is, many unexpected side

reactions can occur among species in even trace quantities, which, when cascaded with the reac-

tion network, might lead to a completely arbitrary state of the system that carries no meaning

anymore (which can be described as “tar”).

However, examples of complex reaction networks are present in any living cells: protein

expressions, gene silencing and others form tangled webs of interactions. Moreover, those net-

works bear a surprisingly close resemblance to call graphs from computer software (Figure 1.1).

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 3

Figure 1.1: Comparison between a small program static call graph and a gene regulatory net-
work. Left: Call graph mapped using Egypt [22]. Right: gene regulatory network in the mouse
embryo [23]. While the call graph seems more ordered, one should bear in mind that the dis-
played program is very simple and only displays text. The call graph of a medium-sized program
would be completely unreadable. Also, note that both graph contains loops.

This resemblance is not fortuitous, as the cell is indeed carrying out computations leading to

impressive feats such as cell growth and division as well as complex reading of its environment,

such as the identification of foreign entities by the immune system. It is then obvious that

mechanisms have been evolved through the ages to keep chaos at bay, since all we could expect

from a random mix of chemicals is the “tar” mentioned before. In particular, DeoxyriboNucleic

Acid (DNA) molecules and their close relatives RiboNucleic Acid (RNA) molecules, as a side-

effect of their role as the carrier of genetic information, have a comparatively precise chemistry.

Indeed, reactions among DNA molecules will never lead to the creation of non-DNA products,

for instance, and are predictable due to a phenomenon called Watson-Crick pairing [24] which

governs the way DNA molecules will interact with each other. Moreover, the number of possible

reactions, while large, is fairly restricted (see next Section). For this reason, DNA molecules

have been gathering a growing attention for the past twenty years as a promising material for

molecular computing. Adleman first proposed the use of DNA computing in 1994, using the

interactions between specifically crafted DNA molecules to solve the traveling salesman’s prob-

lem [13]. This is not limited to DNA-only interactions, as enzymes have evolved to have specific

interactions with DNA and RNA, even going as far as including proof-reading steps, and rep-

resent a huge spectrum of possibilities. Moreover, those possibilities are getting known better

and better, first as part of studies on biology, then as full-fledged elements of interest. Thanks

to its high controlability, DNA has proven capable of creating structures [25, 26, 27, 28, 29],

actuators [30, 31, 32, 33], walkers [34, 35, 36], sensors (called aptamers) [37], storage [38, 39]

and to carry on computation [6, 40, 10, 41, 12, 42, 43], making it a molecule of choice for a

wide range of applications. In particular, it is possible to put a DNA-based CRN in bulk in a

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 4

Polymerase/Nickase/

Exonuclease

Bu�er, dNTPs,

dsDNA dye

C

B

A

iα��β ��
β����α

��α��α

Thermocycler

Figure 1.2: Mixing DNA sequences (arrows), enzymes and buffer solution together in test tube
and observing its behavior by fluorescence in a PCR machine.

closed system and observe it (Figure 1.2). Its biological origin makes it particularly suited to

interface with living organisms, to perform either smart drug delivery [44], medical diagnostic

[45] or gene expression monitoring [46]. Additionally, combining its various capabilities also

makes DNA a valid possibility to develop nanomachines and smart materials [47, 48, 49].

Another strong point of DNA is its availability and price [50]. Many companies offer to syn-

thesize arbitrary DNA sequences, with or without modifications, and then ship them. The whole

process takes between one day and a month, depending on the amount of artificial modifications

requested, which guarantees a fast turn-over of the experiment-redesign-order sequence.

1.3 A crash course in DNA computing: abstraction and possi-

ble operations

DNA is a fairly complex molecule in its own right if we consider the number of atoms required

to create its structure (Figure 1.3, left), but behave in a way robust enough to allow us to

abstract most of this complexity away. While it is possible to model each and every single atom

in DNA [51, 52], such studies (as well as experiments) show that it is safe to scale down the

amount of details taken into account; Figure 1.3 shows multiple possible levels of abstraction.

A DNA strand is composed of a backbone of sugar and phosphates on top of which nucleotides

(A,T,G,C) are attached. The nucleotide structure is such that A (respectively C) forms a bond

with T (respectively G) almost exclusively [24]. This level of details is used to define coarse-

grained models of DNA, such as oxDNA [53, 54]. Those models try to optimize the amount

of retained details (structural or otherwise) while having a computational cost light enough to

simulate non-trivial systems. The next level of abstraction removes most structural information

of DNA strands. At this stage, it is important to note that DNA strands are oriented, with two

different ends denoted 3� and 5� (those numbers are references to the structure of the backbone

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 5

Figure 1.3: Four levels of abstraction. Left: the actual atoms making up the molecule are taken
into account, but considered as solid spheres while the covalent bonds are represented as sticks.
This DNA molecule comes from the Protein Data Bank database, reference 3bse. Center left:
the atoms are abstracted, leaving only the general shape. This particular level is mostly useful
for DNA-based structures, such as in DNA origami [26] or DNA lego [55] where the actual
number of turns can compromise the final shape. DNA curvature can also be used to produce
curved structures [56] or altered alternatively to produce actuators [30]. Center right: the shape
is also abstracted and DNA strands are then represented as arrows going from their 5� to 3�

end. This level applies Watson-Crick base-paring [24] and is mostly used to confirm the absence
of unexpected crosstalks in a given system. Right: final abstraction level. Nucleotide strings
are grouped in domains based on their role in the system and represented by a specific letter.
This is thus a logical abstraction rather than a physical one. Color is often added, like in this
example, to improve readability.

at the strand end-points), thus leading to representing strands as arrows (Figure 1.3, center

right). DNA strands can be further segmented into sequences, also named domains2. A DNA

sequence a is said to be complementary to a sequence ā if and only if each nucleotide in a can

form a bond with the corresponding nucleotide in ā when the two sequences are aligned.

When two sequences are complementary, they can bind to form the well-known double-helix

in a process called hybridization. Note that the two DNA strands will hybridize head-to-tail,

so that the complementary of ATGC is GCAT, not TACG. When two strands of DNA are

hybridized, the resulting molecule is called double-stranded DNA. Note that a DNA strand can

hybridize to itself if it contains complementary domains, forming a structure called hairpin

(Figure 1.4, b). The opposite reaction, when two hybridized sequences separate, is known as

denaturation, melting or dehybridization3. Depending on the length of the sequences (longer

sequences are more stable), their nucleotides (G-C pairs are more stable than A-T), the poten-

tial presence of a mismatch between nucleotides, the experimental conditions (the amount of

magnesium or other salts, for instance, changes stability) and other factors, the chances for a

given sequence to be double-stranded will change; the more stable, the more chances it has to be

2While those two words are mostly interchangeable, sequence refers more to the physical, actual, succession
of nucleotides while domain is a logical abstraction.

3The name changes based on the method used to accomplish the process.

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 6

double-stranded. It is possible to evaluate the temperature at which a given DNA molecule is

double-stranded only 50% of the time due to thermal agitation [57], called melting temperature.

This gives us valuable information on interactivity among DNA molecules. For instance, long

sequences (20 bases or more) are stable enough to be considered to not denature spontaneously

at room temperature, so fully double-stranded DNA of this size can be considered inert. The

kinetics of such reactions have been well studied, and many direct measurement methods exist

(see for instance Nelson and Tinoco [58]).

The last DNA-based reaction we consider is called strand displacement. In this case, two

different strands A and B are competing for a specific domain on a third DNA molecule. In

the case where A is already hybridized with the target sequence, but B has a nearby toehold

(see Figure 1.4, c), B can eventually take the place of A, based on the progressive exchange of

base-pair bonds. If A does not have a toehold itself, the reaction is irreversible. On the other

hand, if A also has access to a toehold, it will be able to initiate a strand displacement in the

other direction, meaning that the resulting molecule will have its domain shared among A and

B in an ever changing fraction. If the toeholds are small, this process can lead to a cascade of

toehold-mediated strand displacement, called toehold-exchange [59].

While thermodynamics governs the possible states during strand displacement, it is also

interesting to consider the kinetics of this reaction, especially for real life applications. The closer

to the displaced sequence [60] and the longer [61] the toehold, the faster strand-displacement

is. In general, intermediary steps (the random walk between the initial and final step) are

abstracted in the overall reaction speed, since they do not carry meaning4.

Other DNA- or RNA-based molecular reactions exist, such as DNAzymes (specific DNA

molecules performing structural modifications on other molecules, like in [35, 36]) and aptamers

(DNA structures that can recognize and attach to particular targets, such as molecules [62],

proteins [63], and so on), but are beyond the scope of the present work. Integration of such pro-

cesses could be a relevant future extension of the DNA toolbox, the DNA computing paradigm

that we use in this thesis.

Hybridization and denaturation alone, if used correctly, have proved to have the same com-

putational power as a Turing-machine, although with limitations, following schemes such as

sticker-based computation [64] (requires external operations) or DNA-tiles [9] (leads to the

growth of large structures, and thus is not scalable). The addition of the strand displacement

4They might still initiate unexpected reaction cascades if a partially freed DNA strand starts interacting with
other parts of the system even though it was not supposed to detach. This can happen, for instance, when
toeholds are shared among multiple strand displacement gates.

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 7

operation allowed Winfree and co-workers to elaborate a computation paradigm that proved to

be cascadable, as the output of one strand-displacement can initiate another [8, 59, 6]. Qian et

al. built upon this mechanism to design a multiple stack machine (a Turing machine equivalent)

[65]. Qian and Winfree also combined multiple steps of this mechanism to form a higher-level

modular structure called the seesaw gate (Figure 1.5). The seesaw gate is a particular sequence

of hybridization and strand-displacement that takes an input and release an output without

signal loss in the case its level is higher than a programmable threshold [66]. They used this

seesaw gate to implement both complex logic circuits [10] and neuron networks [41]. Soloveichik

et al. have also shown that arbitrary CRN can be implemented using this approach [40].

The second type of possible operations on DNA is based on enzymatic reactions. Enzymes

are catalysts that perform various tasks on single-stranded or double-stranded DNA. For each

possible operation, it should be noted that a very large number of enzymes found in nature, as

well as a fair amount of artificial one exist. The DNA toolbox [67], the paradigm we use in this

work, relies on three specific enzymes: the polymerase extends a double-stranded DNA strand

(called primer) in the 3� direction so that it matches the opposite strand using dNTPs (roughly

speaking, the building blocks of DNA); the nicking enzyme recognizes a specific double-stranded

sequence, and cuts (“nicks”) the backbone of one of the two strands at a specific position; the

exonuclease attaches to any single-stranded 5� end and processively degrades the strand. The

list of all the actions we consider in this manuscript, including such enzymatic mechanisms, is

summarized in Figure 1.4. Among other notable enzymes that are not used in the toolbox, we

should mention the ligase, which performs the reverse operation of the nicking enzyme, and

the restriction enzyme, which cuts the backbone of both DNA strands in an enzyme-specific

place. Apart from the DNA toolbox, other systems use enzymatic operations. Adleman used

ligase to form the solutions to the traveling salesman’s problem [13], restrictase and ligase have

been combined to implement finite-state machines [68], and the polymerase can be used both

for computation [69] or movement [70].

Finally, it is interesting to note that there has been a recent effort to produce “DNA-like”

molecules with various properties. Indeed, since the principles of DNA computing are generic,

it makes sense to improve the “wetware” implementing them. There are two complementary

approaches: creating different backbones and creating new nucleotides, grouped under the name

XNA (xeno NA). DNA-like molecules with exotic backbones can be synthetically created and

come in many flavors [71, 72, 73, 74]. Of particular interest, we can cite L-DNA [75], LNA

[74] and TNA[73]. L-DNA (left-handed DNA) has a backbone mirroring that of the naturally

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 8

Figure 1.4: Main operations possible on DNA. Double harpoons represent reversible reactions,
while simple arrows represent irreversible ones. a. hybridization (left to right) and denaturation
(right to left). c. Strand-displacement. d. polymerization of a DNA strand, showing here the
strand-displacement activity of the polymerase. e. nicking. f. hydrolysis by the exonuclease.

Figure 1.5: The three parts of a seesaw gate. Thresholding: the input is first wasted by a given
amount of threshold species. The input interacts preferentially with the threshold species due
to the longer toehold. Seesawing: the input and output compete for a DNA substrate through
toehold exchange. Signal restoration: fuel takes the place of the output on the gate, allowing
the input to displace the totality of output, even after being partially wasted by the threshold
species. Note that the fuel does not need to have the black tail represented here. A more
detailed explaination is given by Qian et al. [10].

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 9

occurring DNA molecule, so that it behaves normally with other L-DNA molecules, but cannot

hybridize with regular DNA. Similarly, the mirrored double helix prevents non-modified enzymes

to interact with this molecule. However, standard (right-handed) DNA and L-DNA molecules

can be joined together by covalent bonds, opening the door to a wide range of new structural

possibilities (see for instance its application to the creation of microarrays [76] or of arbitrary

shapes for DNA structures [29]). LNA (Locked NA) is DNA molecule with a slightly modified

backbone which makes its double-stranded conformation orders of magnitude stronger, while

having a higher mismatch discrimination [77]. The LNA modification can be (and usually is)

applied to specific nucleotides in a given DNA strand (creating what is called an LNA-DNA

chimera), allowing denaturation to still take place while increasing the stability and specificity

of the modified sequences. TNA (Threose NA), a molecule with a threose sugar instead of ribose

in its backbone, is interesting for the efforts that were done to create an artificial polymerase

capable of transcripting it into DNA and back, making TNA stand out as one of the only

modified-backbone DNA analogues with enzymatic compatibility.

Creation of new nucleotides pairs, beside AT and GC, is also noteworthy, as it extends the

alphabet that can be used to encode sequences, reducing the amount of potential crosstalk (see

next Section). The drawback, like with artificial backbones, is that enzymes are usually not

compatible with them. Besides the obvious limitation of DNA computing operations, there is

also a time and cost problem, as the creation of modified DNA sequence has then to rely on

non-enzymatic chemistry, which has a tremendously lower yield. However, recent years have

seen the apparition of both newly engineered enzymes [78] and compatible nucleotides [79, 80].

Without going to such extremities, simple nucleotides modifications, such as attaching

molecules (biotin, fluorophores, and so on) at the end of a DNA molecule, should also be men-

tioned, as they are common and add multiple functions to DNA, used for purpose as various as

monitoring, diffusion drag or interfacing with other molecular compounds.

1.4 Limitations and workarounds

Twenty years ago, Adleman predicted that DNA computing might be able to compete with

electronic-based computing [13]. However, it has become apparent that it will not be the case:

while DNA computing has the advantage of offering massively parallel operations, it suffers

from many drawbacks.

• Reaction time: DNA-based reactions, with or without enzymes, are orders of magnitude

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 10

slower than electronic-based computation. This problem is directly balanced, however,

by the massively parallel computational power of DNA and the potential applications of

DNA we mentioned. Parallelism means that virtually all combinations of a problem5 can

be solved at the same time, which was proposed to solve the SAT problem or its 3-SAT

variant [82, 14, 83], among others. Another reason why reaction time is not as limiting

as in electronic-based devices is the environment in which DNA computing can be used.

It has the ability to work in-vitro (in a test tube) or in-vivo (in a living organism, a cell,

. . .), where no silicon computer can work. In such context, speed might not be a limit:

low computational power is enough for applications such as drug delivery, symptoms

assessment or simple nanomachines composing smart materials. Ants [3] and termites

[84] showed that the combination of limited computational power distributed over a large

number is enough to create impressive achievements.

• Sequence space: the DNA addressing space is limited. Contrary to digital computers where

a pointer will be able to discriminate between its target and nearby memory addresses,

DNA sequences that are too similar will be able to interact, albeit at a much slower

rate, which might still yield unexpected results. For this reason, the sequence design

step is critical when implementing an in-vitro or in-vivo systems. This problem can

be worked around either by using indirect addressing (checking the correctness of the

sequence through strand-displacement or mechanisms such as meta-DNA [85]) or artificial

nucleotides. The delay gate we propose (Chapter 3) can also help by inactivating targeted

parts of the system, limiting such potential crosstalks.

• Lack of interface: it is very hard to interact with DNA computing systems, as the tech-

nology is still lagging in this area. For the most part, systems have to be prepared

painstakingly by a human in a wet lab and any input has to be injected manually. The

reading of outputs is either done by measuring fluorescence in real time in a repurposed

PCR (Polymerase Chain Reaction) machine (see Figure 1.2) or by a process called elec-

trophoresis, which requires to wait for the end of the monitored reaction and takes at

least an additional half a day. Moreover, while fluorescence is measured in real time, the

number of different colors that can be monitored at the same time is limited by light wave-

5There is a physical limitation due to the maximum concentration of DNA that can be fitted in a test tube.
Single-stranded DNA at a concentration higher than 130 mg ml−1 will spontaneously start to crystallize [81],
which will change the reaction possibilities. This concentration is equivalent, for 100 base-pair long single-stranded
DNA molecules in a typical 20 mul reaction volume, to 5 × 1016 molecules, which is a small number when it
comes to combinatorial problems.

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 11

length interferences to a very small number of possibilities, usually around four or five

(depending on the machine precision). This leads to a difficult debugging of experimental

systems, mostly based on trying to reverse-engineer the observed transient fluorescence

and then design additional test experiments to validate those new hypothesis (see Chapter

6).

This situation is changing, as automated mixing of DNA systems [55] as well as microfluidic

[86, 87] and electrical [88] controls are starting to appear.

• Non-linear behavior: additionally to the limitation of sequence space, the fact that DNA

computing systems behave in complex ways is a two-edged sword. On the one hand, it

guarantees the richness of possible actions. On the other hand, designing such system is a

nightmare of trial-and-errors. Enzymatic saturation, for instance, can change completely

the dynamics of a system, for the worse [89] or for the best [42].

1.5 Goal and contributions of this thesis

The ideal of designing a system from its inception to the actual nucleotide sequences and having

it immediately work in a test tube (or any potential environment) is still far off. However, there

have been a lot of efforts toward making each step as simple as possible.

In this thesis, we focus on easing the design process of DNA computing systems, with the

ultimate goal of allowing a fast development of in vitro systems. We believe that, to create

systems beyond the proof of concept, it is important to alleviate as much the design process as

possible. This thesis will thus introduce a number of tools for the design of DNA-based systems

and presents how to use them.

To reach this goal, we explored three complementary directions, common in technological

development: design robust modular building blocks, make the creation process of DNA systems

faster by creating Computer-Assisted Design (CAD) tools and use automated optimization to

help the user find novel solutions to hard problems. Robust blocks mean that they will behave

predictably, so that it will be possible to model them and create reliable simulators. At the

same time, modularity means that such blocks can be freely combined, which is an important

condition both to scale up systems and to conduct automatic system generation. Finally, the

automated optimization of parameters, either local (such as DNA species concentration in the

system) or global (the reaction network is modified as well), helps solving problems where no

simple solutions exist. Figure 1.6 shows the interaction between those aspects.

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 12

Figure 1.6: The three aspects we explore. Reliable building blocks are needed to create a model
that is high-level enough to design large scale systems. At the same time, CAD software can
create a library of robust basic patterns that can be reused across multiple systems. Systems
thus modeled can be optimized by various algorithms, depending on the required scope of
optimization (either local or global). Conversely, those optimized systems can be tinkered with,
through the graphical interface of our CAD application. Finally, optimized systems may display
interesting patterns that can be added to the block library. Such patterns can in turn direct
optimization algorithms (that is, the search will be biased toward using such patterns).

The contributions of this thesis can then be classified among those three axis:

• New building blocks:

– Hardware: the delay gate (Chapter 3), a new “hardcoded” mechanism that can be

combined with other modules, notably from the DNA toolbox.

– Software: new modular patterns based on the DNA toolbox that can be reused in a

variety of applications (Chapter 7).

• Computer-Assisted Design:

– We developed DACCAD (DNA Artificial Circuits Computer-Assisted Design, Chap-

ters 4 and 5), a graphical user interface used to create quickly DNA toolbox systems.

Those systems are simulated using our own detailed model of the mechanisms un-

derlying the modules of the DNA toolbox (Chapter 2).

– We created an interface to combine multiple paradigms. Mathematica can be used

to combine a simple model of the DNA toolbox with the delay gate (Chapter 3) or

other systems, such as DSD systems. DACCAD also exports SBML files [90, 91] that

can be read (and edited) by a large range of programs.

– We also ventured toward debbuging of DNA toolbox systems (Chapter 6).

• Optimization:

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 13

– local: improvement of a given behavior, using CMA-ES [92], a state-of-the-art opti-

mization algorithm (Chapter 4).

– global: creation of a system from scratch using bioNEAT, an Evolutionary Algorithm

designed to evolve systems from the DNA toolbox (Chapter 7).

We can note that, even though those three axis are biased toward theoretical approaches,

they are grounded in reality by being based on close collaboration with experimentalists. We

mostly build on the DNA toolbox, so that reliable experimental data were already available.

When we created the delay gate, a totally new module, such data were obviously lacking,

and we performed the relevant experiments to check feasibility. Moreover, the last level of

implementation of the systems we explore, the actual sequence design, has already been made

tremendously simpler and faster by tools such as NUPACK [93] and DINAmelt [57, 94].

1.6 Assisting the process of molecular programming: outline

After presenting in Chapter 2 the DNA toolbox, on which we focused our efforts, we will describe

in Chapter 3 a potential new building block, the delay gate. When considering building block

design, it is much easier to have a limited set of simple and combinable operations rather than

many complex ones. This increases the capacity of the designer to rationally design a system

from the bottom up and allow the creation of specialized compilers. In electronics, this leads

to the creation of the current RISC (Reduced Instruction Set Computing) processors. In DNA

computing, this leads to the development of many simple sets of operations, like DNA Strand-

Displacement [61], genelets [95] and the DNA toolbox [67]. However, “limited” does not have

to mean “minimalist”, as cascading too many basic blocks has a time cost (see for instance

Qian and Winfree [10]), as well as undesirable side effects such as the load effect [95]. The

delay gate is a module that could benefit greatly from a “hardcoded” implementation, with a

dedicated mechanism. Moreover, the delay gate has the advantage of being compatible with

all the mentioned sets, but is more easily integrated in an enzymatic system such as the DNA

toolbox.

We then move on to Computer-Assisted Design. Some DNA computation paradigms have

already benefited from the CAD approach, such as VisualDSD, a program developed by Mi-

crosoft Research which simulates DNA Strand-Displacement systems [96]. However, the DNA

toolbox, while being particularly well suited for computer-assisted design due to its modularity,

still lacks such tools. For this reason, we introduced DACCAD, a CAD application for the DNA

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 14

toolbox. Chapter 4 will present the software in details, as well as a state of the art in CAD tools

for molecular programming. Chapter 5 will give an introduction on how to use DACCAD. In

Chapter 6, we will see how our model of the DNA toolbox can be used and extended to debug

systems.

Then, the next logical step is to automate the process of trial-and-error at the system design

level, using an evolutionary strategy to create complex systems. In Chapter 7, we describe

BioNEAT, one such strategy, and give a particular example where we developed DNA systems

able to “play” the rock-paper-scissors game. Chapter 8 will present the general conclusion to

this work, as well as some future avenues of research.

1.7 Glossary

Regroups some important terms in one convenient place.

• Coaxial-stacking: In the situation where two separate but adjacent strands are hybridized

to a common third strand (such as the conformation after the action of nickase), coaxial-

stacking represents the (often) stabilizing effect of the two stands on each other. It can be

seen as both strands interlocking into the usual double-helix, making the whole structure

more stable than expected.

• Denaturation: In the case of DNA, the action for a double-stranded sequence to detach.

If no sequence remains double-stranded in a given DNA molecule, the two strands are free

to move apart.

• Displacement: The action of replacing a strand of a double-stranded DNA molecule

by another. This can be done by branch migration in the case of DNA-based strand-

displacement, or by the action of the polymerase enzyme if it has strand displacement

activity.

• DNA toolbox: A set of three modules (activation, autocatalysis, inhibition) introduced

by Montagne et al. to mimic gene regulatory networks.

• DNA computing: The general programming principle of using DNA molecules (and pos-

sibly enzymes) to encode computation.

• dNTP: A single unit of DNA. Used by the polymerase to build new DNA chains.

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 15

• Double-stranded: Two strands attached together to form the famous double-helix struc-

ture.

• Evolutionary Algorithm (EA): an optimization strategy based on the concept of evolution.

A large number of possible solutions, named individuals is generated. Solutions are then

ranked based on how good they are. Good solutions are then allowed to “reproduce” while

bad solutions die out, generating the next set of solutions.

• Exonuclease: An enzyme that “eats” single-stranded DNA into inactive pieces. It is

possible to modify the DNA backbone to prevent its action.

• Hairpin: Loop structure where a DNA strand is hybridized to itself, which gives it a

hairpin shape, hence the name.

• Hybridization: The act, for two single-stranded complementary sequences, to attach to-

gether.

• Hydrolysis: The act of destroying DNA into monomers (singletons). See exonuclease.

• Individual: In an Evolutionary Algorithm, a potential solution to the problem at hand.

The name “individual” comes from the analogy between the algorithm and the evolution

of species.

• Inhibitor: In the DNA toolbox, a medium-sized DNA strand that will attach to a target

template, inactivating it.

• In-silico: Simulated experiment.

• In-vitro: Experiment conducted in a test tube.

• In-vivo: Experiment conducted in a living environment (cell, bacteria, embryo, tissues).

• Mismatch: An incompatible nucleotide match in two sequences that would be otherwise

complementary. Note that a single mismatch does not, in general, prevent the hybridiza-

tion as long as the matched section is long enough.

• Molecular programming: Using chemical reactions as a paradigm for computation. Chem-

ical species act as the intermediary or final results of a given program.

• Nicking enzyme: An enzyme that recognizes a specific double-stranded DNA sequence,

attach to it, and cut one of the backbones at an enzyme-dependent position.

CHAPTER 1. MOLECULAR COMPUTING AND DNA-BASED SYSTEMS 16

• Nucleotide: In DNA, one of A (Adenine), T (Thymine), G (Guanine) and C (Cytosine),

or possibly an artificial equivalent.

• Polymerase: An enzyme able to attach to the end 3� end of a hybridized strand and extend

it by matching the opposite strand.

• Primer: A short strand used to initiate the action of the polymerase.

• (DNA) strand: A backbone holding nucleotides. Two hybridized strands are required to

form the DNA double-helix.

• Template: A long DNA strand defining the sequence that directs the replication by a

polymerase enzyme. In the DNA toolbox, templates are protected DNA strands with two

domains that encode the reaction system.

• Toehold: A short single-stranded DNA domain that allows a target DNA molecule to

dock, possibly to initiate a strand-displacement.

• Turing machine: An abstract machine defined to be a model of what a computation is.

• Turing universal: The property of a computation paradigm to be able to perform any

calculation an abstract Turing machine could do. Proving this property is usually done

by exhibiting how to program a Turing machine, or any other Turing universal mechanism,

in said paradigm.

Chapter 2

Modeling the DNA toolbox, a

lightweight implementation for DNA

computing systems

This Chapter presents the DNA (Dynamic Networks Assembly) toolbox, central to the work

presented in this thesis. The first section gives a general view of its working, which should be

enough to understand the remaining of this thesis. Next comes a complete description of the

model we are using in the subsequent Chapters. This model is a formalization and extension of

that of Padirac et al. [11]. This Chapter also presents a comparison between experiment and

model as well as some interesting results based on the analytical resolution of the equations of

an autocatalytic module at equilibrium.

Our model and the comparison with experimental results have been submitted as part of

reference [97].

2.1 General

The DNA (Dynamic Networks Assembly) toolbox was introduced by Montagne et al. to help

rationally design DNA-based molecular programs, and demonstrated its effectiveness through

multiple systems such as the Oligator [67]. It has the advantage of using very simple modules

(activation and inhibition) which can be combined to form, in theory, arbitrarily complex sys-

tems. Moreover, the DNA toolbox is only based on DNA interactions as well as three specific

enzymes, removing the need for intermediaries, such as RNA and protein expression. In the

toolbox, two kind of DNA strands have to be distinguished: short DNA strands are used as

17

CHAPTER 2. MODELING THE DNA TOOLBOX 18

signal, and longer strands are used as templates to generate new signal strands (Figure 2.2).

Activation is done by a short strand being extended by a DNA polymerase enzyme along a

compatible template (see Figure 1.4, d.), after which both the signal and output strand are

cleaved apart by nickase (see Figure 1.4, e.). It should be noted that the same nicking enzyme

is used for all templates in the standard version of the DNA toolbox, which increases the mod-

ularity of the system at the price of reducing the sequence design space. This reduction comes

from the mandatory introduction of the nicking recognition site, which makes up more than a

third of the total DNA sequence of signal strands in the current implementation of the DNA

toolbox. Allowing multiple nicking enzymes would ease this problem, as well as allowing finer

control on reaction rates, but experimental settings would be much more complex due to the

necessity to find buffers fitting all enzymes. Specifically, different enzymes usually work best

in different conditions, so the more enzymes, the harder it gets to find conditions appropriate

to all of them. Additionally, Padirac et al. argue that the sequence design space is still large

enough for most reasonable applications [43]1.

After being cut by the nickase, both signal and output are too short to form stable duplexes

at the working temperature and are eventually denatured, releasing the strands. Their stability

is however higher when they are both attached to the template, forming a nicked full duplex,

due to a phenomenon known as coaxial stacking [98]. This phenomenon is due to the two

nucleotides at the nicking site locking each other in the common double-helix shape.

Autocatalysis is a specific case of activation in which both domains of the template are the

same, leading to a logistic increase of the signal strands, that is an exponential growth with

a saturation factor (see, for instance, Murray [99]) due, here, to the concentration of template

and enzymes.

Inhibition is done by slightly longer strands that are complementary to most of a targeted

template, but do not trigger polymerisation, thus inactivating the template. Inhibitor-template

duplexes (that is, molecules made up of an inhibitor and its target template attached together,

see Figure 2.2, inhibition, right), albeit stronger than signal-template duplexes, are not stable

either, which guarantees that inhibited templates are eventually freed. Moreover, inhibitors

are leaving a short toehold both on the input and output domains (respectively the green and

orange domains in Figure 2.2, inhibition) of the template. This allows input or output signal

to remove the inhibition at a slow rate through strand displacement (see previous Chapter).

1This brings to mind the famous computer-related (mis)quote “640Ko of memory ought to be enough for
everybody”. One can hope that, similarly, ways around the current limitations will be found before they start
being a problem.

CHAPTER 2. MODELING THE DNA TOOLBOX 19

Electronics DNA toolbox

Memory, variables Registers/RAM Signal strands

Software Assembly code Templates

Hardware Mother board Enzymes

Power Electricity dNTP (DNA monomers)

Table 2.1: Equivalence electornics/DNA toolbox.

Both signal and inhibition strands are degraded over time by the action of an exonuclease

enzyme to keep the system out of equilibrium. Templates are chemically protected against

such degradation and as such are stable over time. For this reason, it is easy to make an

analogy between computers and the DNA toolbox (Table 2.1): enzymes are the hardware

doing operations following the software (templates) updating the value of variables (signal and

inhibition strands). To complete the analogy, the reaction buffer, which contains the energy

and elements necessary for the enzymes to act, would be the electrical supply, either a battery

(closed systems) or a power outlet (open reactors).

In Padirac et al.’s implementation [11], on which the default parameters of this thesis are

based, signal strands are 11-mers (11 nucleotide-long polymers), while inhibition is done by 15-

mers. Inhibitors strands are made of three parts: the first seven nucleotides are complementary

to the end of the input strand, the next six are complementary to the beginning of the output

strand and the last two are mismatched with the target template to prevent elongation by the

polymerase. Note that it could be possible to make the inhibitors occupy the target template

in different locations, as long as the nicking recognition and cutting sites are not produced

at the same time. This inhibition strategy also makes it hard to have inhibition of templates

generating inhibitors, since the output of such templates, being inhibitors themselves, will have

a long toehold to displace their inhibitor. Using specific (longer) inhibitors to hide the output

domain completely was not deemed a good solution, since those “super” inhibitors, in turn,

will require even longer strands, and so on. Additionally, the longer sequence makes those

“super” inhibitor too stable, releasing the template too slowly. Instead, it is possible to use an

intermediate activation of inhibitor (A generates B which generates the inhibitor) and inhibit

the first step (A generates B).

Any system using this paradigm can be easily represented as a graph: signal and inhibition

strands are the nodes while templates are represented by an arrow going from their signal to

CHAPTER 2. MODELING THE DNA TOOLBOX 20

Figure 2.1: Similarity between gene regulation and the DNA toolbox. The DNA toolbox keeps
the same structure while only relying on DNA to encode both the structure of the network
through templates and the signaling.

Module Behavior Graph

Figure 2.2: Modules of the DNA toolbox: activation, inhibition and the special case of auto-
catalysis. Behavior shows the impact of injecting some green signal strands in the activation
modules. In the case of the inhibition module, we suppose that the inhibited template is at
a steady-state, continuously generating orange strands. Inhibitor strands are then injected,
reducing the output of orange strands. The system goes back to the steady-state when all in-
hibitors have been consumed by the exonuclease. Graph shows the graphical representation of
those modules in the rest of the thesis. Signal and inhibitor strands are represented by vertices
and templates by arrows. Inhibition is represented by a bar-headed arrow.

CHAPTER 2. MODELING THE DNA TOOLBOX 21

Figure 2.3: Example of graph representation of the DNA toolbox: an oscillator dubbed the
Oligator [67] and Padirac et al.’s bistable system [11].

Figure 2.4: Impact of indirect activation of a given sequence.

their output. A second kind of arrow (“bar-headed” arrow) is also used to represent which

template is inhibited by a given inhibition sequence. Simple examples of such representation

are shown in Figure 2.3. Conversely, any such graph can be directly converted to a DNA toolbox

implementation.

However, despite the simplicity of the DNA toolbox paradigm, many effects are very hard to

take into account for a human designer. For instance, replacing a direct activation (A promotes

B) by an indirect one (A promotes C which promotes B) will result in more than just some

latency in the activation: there will also be a latency in all responses of the sequence B, including

its overall degradation rate (Figure 2.4). Additionally, enzymes may get saturated, which would

change the reaction rates of other parts of the system in ways difficult to apprehend for the

human mind [89, 42]. Those problems can be avoided by modifying parameters in the system,

or making some additional changes in the structure, operations that can be easily carried out

with CADtoolbox (see Chapter 4) or evolved (see Chapter 7). Finally, it should be noted that

the DNA toolbox has been formally detailed both from the theoretical [100] and experimental

point of view [101].

2.2 Mathematical modeling

Our model is an extension of the one previously developed by Padirac et al. [11, 43]. Padirac

et al. introduced a fairly descriptive and complete model of specific DNA toolbox systems, the

CHAPTER 2. MODELING THE DNA TOOLBOX 22

bistable circuit and the toggle-switch circuit.

Our contribution is twofold. First, we formalized the kinetic description of DNA toolbox

systems. That is, we associated with each module (activation, autocatalysis and inhibition) a

set of equations that describes its behavior. This mathematical description allows us to derive

the differential equations of arbitrary combinations of modules. Our second contribution is the

addition of new details and parameters, such as coaxial-stacking. Those parameters allow us

to get a more predictive model without adding much complexity. This also includes a way to

express the coupling between the elements in a system, based on enzymatic saturation. This

saturation is computed by summation over all possible enzymatic substrates in the system, us-

ing the formula proposed by Rondelez [89]. This enzymatic expression is at the same time more

realistic than first order kinetics, while remaining easy to estimate. An alternative possibility

would be to consider the actual concentration of enzymes and simulate explicitly the interme-

diate interactions with the different substrates. For instance, one could consider updating the

concentration of free polymerase based on how fast it attaches to duplexed DNA as well as how

fast it is freed. However, those reaction speeds are hard to estimate, making such model hard

to use.

Instead, we try to keep our model of the DNA toolbox simple, yet descriptive enough.

For this purpose, we consider reactions at the domain level (highest level of abstraction on

Figure 1.3). Such level abstracts actual DNA sequences and instead considers only meaningful

interactions, from the designer point of view. In particular, in the DNA toolbox, signal and

inhibition strands are composed of only one domain, so we consider they are either completely

free or completely attached to their target. Similarly, templates are composed of two domains,

since they have both an activation and an output site. This approach has proved itself over

time in DSD (DNA Strand Displacement) systems [96, 102, 41], and can be extended to the

DNA toolbox if we consider that enzyme activity is carried out as a single step. Particularly,

this means that no intermediate product of an enzymatic reaction, such as a partially extended

DNA strand, can interact with the system. This also means that the evolution of the state of a

module over time can be derived only from the current concentrations of the relevant sequences

and its current state (Figure 2.5).

With those restrictions, the set of possible reactions taking place is large, but straightfor-

ward: both signal and output sequences can attach to or detach from the template and an

inhibition sequence can displace them if there is a toehold available (i. e. if they are not both

attached to the template), the polymerase enzyme will extend the signal strand, displacing

CHAPTER 2. MODELING THE DNA TOOLBOX 23

Figure 2.5: An activation module from Figure 2.2 as a black box, with its three external
component: the signal, inhibition and output strands. Based only on the current concentrations
of those three elements and the module current state, it is possible to compute the module’s
impact on said elements, as well as the derivative of its state.

Figure 2.6: All the possible reactions between a template and its various inputs. The respec-
tive concentrations of the different configurations of template represent the state of a module
temp, noted tempalone (template alone), tempin (signal strand attached), tempout (output strand
attached), tempboth (both signal and output strands attached), tempext (template completely
double-stranded) and tempinhib (inhibited template). Left: working of an activation template
without inhibition. Right: reactions related to inhibition. λin and λout represent the fact that
signal and output strands, respectively, invade an inhibited template at a slower rate since they
have a very short toehold.

the output if it was still attached and so on. The set of possible reactions for a non-inhibited

template as well as inhibition-related reactions are shown in Figure 2.6. Other DNA strands in

the system are supposed to perfectly avoid interactions. Considering that they have at least a

few shared nucleotides, this supposition might be false in large systems, leading to additional

inhibitions or first-order leaks (signal strands producing output on the wrong template). Those

are considered in Chapter 6, where we try to “debug” experimental systems.

The derivative of the concentration of a signal strand s can then be deduced from its inter-

actions with all relevant templates present in a given system as follows:

d[s]

dt
(t) =

�

temp∈I
φin
temp(t) +

�

temp∈O
φout
temp(t)− exos(t) · [s](t) (2.1)

where I is the set of all modules accepting s as activator, O the set of all modules generating

CHAPTER 2. MODELING THE DNA TOOLBOX 24

s, φin
temp(t) the flow of s as input of a template temp, φ

out
temp(t) its contribution as the output of

a template temp and exos(t) the activity of the exonuclease enzyme respectively to s at time

t, which is a constant depending only on s if enzymatic saturation is not taken into account.

Furthermore, based on the measures of Montagne et al. [67], we assume that exos mostly

depends on the length of s, which means it can only take two values: one for the signal strands

and one for the inhibition strands. Except for this strand-specific variation, enzymatic activity

is considered first order in the basic model, meaning in particular that exos does not change

over time. Also note that a given module can be both in I and O in the case of autocatalysis.

φin
temp(t) and φout

temp(t) can be directly derived from the current state of the module temp:

φin
temp(t) = kduplexKs([tempin](t) + stacktemp[tempboth](t))

+kduplex[inhibtemp](t)[tempin](t)

−kduplex[s](t)([tempalone](t) + [tempout](t) + λin[tempinhib])

(2.2)

All bracketed terms are concentrations. kduplex is the kinetic constant of association, that is, the

constant representing how fast two complementary DNA strands will form a double helix. It is

considered sequence independent, and its default value is based on Zhang’s measures [61]. Ks is

the ratio of the kinetic constant of the reverse reaction over kduplex and can easily be obtained

by experiment or nearest-neighbour model. stacktemp is the dimensionless factor representing

the increase in stability due to coaxial stacking between the input and output when they are

both attached to the template. λin, as well as λout in the following equations, represent the

dimensionless slowdown due to a signal strand invading an inhibited template. The two different

values are based on the size of the toehold left by the inhibitor on the relevant side of the

template. The first term represents the signal strands restored by detaching from a template.

The second term represents those restored by being displaced by an invading inhibitor. The last

term comes from the reaction opposite to that of the first term and represents signal strands

captured by templates.

φout
temp(t) = kduplexKs ([tempout](t) + stacktemp[tempboth](t))

+kduplex[inhibtemp](t)[tempout](t)

−kduplex[s](t) ([tempalone](t) + [tempin](t) + λout[tempinhib](t))

+poldispl(t)[tempboth](t)

(2.3)

The first three terms mirrors those of the previous equation. The additional term represents

output strands released by the displacement activity of the polymerase enzyme when it extends

CHAPTER 2. MODELING THE DNA TOOLBOX 25

a nicked duplex. poldispl represents the polymerase activity when displacing a substrate. When

this substrate is long enough (for instance an inhibitor), this activity is slowed down by an

additional factor, specific to the length of the substrate. If not, the increased affinity for the

polymerase is considered to be offset by the slowdown, so that poldispl � pol. Note that the

polymerase activity pol only appears in the equations relative to the internal update of templates

(see below).

The derivatives for inhibition strands are similar, but the input term is replaced by an

inhibition term:

d[i]

dt
(t) = φinhib(t) +

�

temp∈O
φout
temp(t)− exoi(t)[i](t) (2.4)

Note that there is only one flux for the inhibition term since a given inhibition strand targets

a specific module temp:

φinhib(t) = αkduplexKi[tempinhib](t)

−kduplex[i](t) ([tempalone](t) + [tempin](t) + [tempout](t))

+kduplex[tempinhib](t) (λin[sin](t) + λout[sout](t))

(2.5)

Where α represents the fact that an inhibition strand is less stable on its target than on the

template that created it due to sequence mismatch (see figure 2.2).

Finally, the equations for the update of a module temp are as follows:

d[tempalone]

dt
(t) = kduplex (Kin[tempin](t) +Kout[tempout](t) + αKinhib[tempinhib](t))

−kduplex[tempalone](t) ([sin](t) + [sout](t) + [sinhib](t))

d[tempin]

dt
(t) = kduplex[sin](t) ([tempalone](t) + τ [tempinhib](t)) + kduplexKout[tempboth]

−kduplex[tempin](t) (Kin + [sout](t) + [sinhib](t))− pol(t)[tempin](t)

d[tempout]

dt
(t) = kduplex[sout](t) ([tempalone](t) + τ [tempinhib](t)) + kduplexKin[tempboth]

−kduplex[tempout](t) (Kout + [sin](t) + [sinhib](t))

d[tempboth]

dt
(t) = kduplex ([sin](t)[tempout](t) + [sout](t)[tempin](t)) + nick(t)[tempext](t)

−kduplex[tempboth](t) (Kin +Kout)− poldispl(t)[tempboth](t)

CHAPTER 2. MODELING THE DNA TOOLBOX 26

d[tempext]

dt
(t) = pol(t)[tempin](t) + poldispl(t)[tempboth](t)− nick(t)[tempext](t)

d[tempinhib]

dt
(t) = kduplex[sinhib](t) ([tempalone](t) + [tempin](t) + [tempout](t))

−kduplex[tempinhib](t) (αKinhib + τ [sin](t) + τ [sout](t))

While this basic model does not take into account enzyme saturation, preferring first order

activity, this assumption is not realistic for complex systems. Specifically, all modules are

sharing the same three enzymes, which is expected to have an impact on their activity. The usual

way to model such burden is to use a Michaelis-Menten term to quantify the enzymatic activity.

Such a term is further modified to take into account that multiple modules are competing for

those resources [89]. The exonuclease term becomes:

exos(t) =
Vm

Ks
m

�
1 +

�
s�∈seq

[s�](t)
Ks�

m

� (2.6)

where Vm is the maximum theoretical rate and Ks
m the Michaelis constant for the sequence

s. Note that in our model Vm is independent of s and Ks
m can only take one of two values,

depending on whether s is an inhibition sequence or not. This is based on the experimental

observation the value of Ks
m of the exonuclease depends primarily on the length of the substrate

s.

The polymerase activity is separated in two terms: pol for templates with input alone and

poldispl in the case where both input and output are present. We suppose that the polymerase

does not interact noticeably with other states of the template.

pol(t) =
Vm,pol

Km,pol

�
1 +

�
temp

[tempin](t)

Km,pol
+
[tempboth](t)

Km,displ

�

poldispl(t) =
Vm,displ

Km,displ

�
1 +

�
temp

[tempin](t)

Km,pol
+
[tempboth](t)

Km,displ

�

(2.7)

Note that Vm,displ depends on the length of the output. Based on the experimental results

from Padirac et al. [11, 43], we further consider that pol and poldispl are equal for signal

sequences. This means that the displacement slowdown for short outputs compensates the

higher affinity of the polymerase for double-stranded substrates.

The nickase term is the simplest. We consider that only fully double-stranded templates

CHAPTER 2. MODELING THE DNA TOOLBOX 27

can capture this enzyme, yielding:

nick(t) =
Vm,nick

Km,nick

�
1 +

�
temp

[tempext](t)

Km,nick

� (2.8)

We can also note that Padirac [43] showed that this restrinction to tempext is fairly nicking

enzyme dependent, and might be hard to guarantee in the general case.

The complete set of equations describing a simple autocatalyst in given in Appendix A.2,

highlighting the actual complexity of writing such systems by hand.

It is also possible to toggle some additional effects to this model, making it more simple

or detailed, if necessary: removing enzymatic coupling, in which case saturation terms from

substrates other than s are neglected; taking free templates into account in the saturation term

of the exonuclease (even though they are not degraded, they can still bind to the exonuclease

enzyme and act as competitive inhibitors); forbid signal and output strands to invade inhibited

templates; allowing the polymerase to generate output at a very slow rate from templates

without primer (phenomenon called zeroth order leak [103]).

Default parameters for simulation were obtained from the literature as follow. Association

constants and strand-displacement speeds are based on Zhang et al.’s values [61]. Strands

dissociation constants and Michaelis-Menten parameters for the enzymes are taken from Padirac

et al.’s measurements [11]. The value of enzyme activities are also taken from Padirac et al.’s

experiments, except for the nickase activity, for which the fitted value was taken instead. This

choice comes from the high discrepancy between measured and fitted values in those cases,

which might indicate a fit strongly dependent on the model. This is due to strong measured

variations between batches of enzymes, so fitting those parameters should be the first priority

for the user. Note that the user can also play with the enzymatic activity in vitro by using

different dilutions, depending on the batch. The value for coaxial stacking was trickier, as there

is not only a strong sequence dependence [98], but this dependence is not even limited to the

nearest-neighbours [104]. To get realistic values, we considered the opening/stacking energy

described by Frank-Kamenetskii’s group [105], with salt and temperature (42◦C) corrections

[106] to match the experimental values of the DNA toolbox, giving a range of values between

0.04 (25 times slowdown for a nicking site GC) to 1 (no slowdown for a nicking site TA). The

values corresponding to all 16 first-neighbor possibilities are listed in Appendix A.1.

CHAPTER 2. MODELING THE DNA TOOLBOX 28

2.3 Correctness of the model

This model can be described as a brute force model: additional details and reactions are included

when they become relevant, that is, when the model and experiments are not in good agreement

anymore. Since this model was developed to help the implementation of in vitro systems, it

is necessary to pit it against the reality of experiments. Verifications were thus performed by

comparison with the data from Padirac et al. [11]. However, comparison is not completely

straightforward, as the data are based on observed fluorescence, which can be either obtained

by EvaGreen, a molecule that emits light based on the concentration of double-stranded DNA,

or by FRET [107], neither of which reflecting directly specific concentrations.

EvaGreen is an intercalating dye, that is, a molecule that insert itself in the double helix of

double-stranded DNA and then emits light. The fluorescent light emitted can then be measured

to estimate the total amount of double-stranded DNA in the system. However, it is subject

to background noise, single-stranded DNA fluorescence and saturation (once all molecules are

interacting with DNA, no more increase in DNA concentration can be monitored). In the

following, we are making the hypothesis that the concentration of EvaGreen is much larger than

the concentration of double-strands in the solution, avoiding any saturation effect. Then, the

fluorescence of EvaGreen is linear with the concentration of double-stranded template. FRET

(Fluorescence Resonance Energy Transfer), on the other hand, is used in the DNA toolbox by

adding a fluorescent molecule at the 3� end of a template. Padirac et al. showed that when

the nucleotides closest to the fluorescent molecule are bonded, there is a noticeable shift in

fluorescence [108]. Thus, it is possible to monitor the state of particular template species in real

time. More formally, we can introduce the fluorescence measures:

ϕeva(t) ∝
�

temp

[tempboth](t) + [tempext](t) +
1

2
([tempin](t) + [tempout](t) + [tempinhib](t))

ϕfret(t) ∝ [tempin](t) + [tempboth](t) + [tempext](t) (2.9)

The factor 1
2 in ϕeva(t) comes from the contribution of DNA molecules is based on the

number of double-stranded nucleotides, which is half for tempin and tempout, and roughly half

for tempinhib. This measure can be used as additional data when monitoring a system.

In ϕfret(t), the expression is only dependent on the templates where a fluorescent molecule

is attached. To be correct, this expression should also take [tempinhib](t) into consideration,

with a factor corresponding to the nucleotide offset of the inhibitor attached to the template

CHAPTER 2. MODELING THE DNA TOOLBOX 29

[108]. However, in all experiments we compare our model to, FRET molecules were attached

to templates without inhibitors, so we ignore it for simplicity’s sake.

Figure 2.7 shows a comparison between the experimental results of Padirac et al. [11] and the

simulated behavior of the bistable circuit (see Figure 2.3). We used coaxial-stacking slowdown

values based on the DNA sequences given in their work. Additionally, based on Padirac et al.’s

discussion of possible differences in activity of the polymerase and the experimental values of

Qian et al. [109], templates relative to one species (β in their article) were given a concentration

bonus, due to their expected higher affinity with the polymerase. Simulation results for different

bonus are shown alongside Padirac et al.’s experimental results (Figure 2.8). While there was

good agreement from a qualitative point of view, the stability diagram was slightly shifted

(Figure 2.8). Particularly, without template correction, the system is still bistable but the

attraction basin of the dominating β state is too small to appear on the Figure. This difference

may be due to the inaccuracy of the coaxial-stacking slowdown or of the Michaelis-Menten

constants. This is a realistic assumption, since some of the latter come from fitted values based

on Padirac et al.’s model [11], and as such might not be correct in our model. In both cases, we

are using the most realistic values available. For general application, experimental parameters

should be measured for a specific experimental setting before this model is used to predict

behaviors (such as those in Chapters 4 and 7). We can finally conclude that our prediction is

close enough to reality to be used as a guide to design systems, assuming that parameters are

carefully fitted to one’s experimental setting.

2.4 Fitting parameters

The simplest, and probably best, way to fit parameters to make the model as predictive as

possible is to conduct a set of basic calibration experiments. Among the experiments described

by Montagne et al. [67], the model is particularly adapted to turnover experiment. In a turnover

experiment, an autocatalytic module is put in a reaction environment with a low concentration

of dNTPs. When all dNTPs are consumed, the polymerase will not be able to sustain the

creation of the autocatalytic species, so the system will quickly go to a ground state (no signal

species in the solution). Knowing the concentration of dNTP in the solution, it is possible to

approximate the first order activity of the polymerase from the time it took to consume all of

them. Note that this is only possible if the polymerase is limiting (high template concentration).

If not, its first order activity can be obtained from additional experiments. Finally, the ground

CHAPTER 2. MODELING THE DNA TOOLBOX 30

-0.6

-0.4

-0.2

 0

0.2

0.4

0.6

0.8

 1

 0 20 40 60 80 100 120 140

Time (min)

alpha = 2.8nM beta = 4nM

alpha
beta

-1

-0.8

-0.6

-0.4

-0.2

 0

0.2

0.4

0.6

0.8

 1

 0 20 40 60 80 100 120 140

Time (min)

alpha = 5.7nM beta = 4nM

alpha
beta

Figure 2.7: Comparison with the experiments conducted by Padirac et al. (Figure reproduced
from [11] with the consent of the authors). In their system, two signal species, α and β are
competing against each other, so that only one can be present at the steady-state. The values
used for the simulations are the same as their fitted values [11], and the output was normalized
in a similar way. The slight difference might come from different global enzymatic activities or
phenomenon not taken into account by the model, such as first order leaks or some sequence-
dependent variations in enzymatic affinity.

CHAPTER 2. MODELING THE DNA TOOLBOX 31

Figure 2.8: Bistability domains of Padirac et al.’s experiment [11] (top left) and of simulations
with various template concentration bonuses: 15% (bottom left), 20% (top right) and 25%
(bottom right). α and β are the same as in the previous Figure. The color of a cell, blue for α and
red for β, represents which species wins over the other with those specific initial concentrations.
Without bonus, α always win over the considered range, which could be explained by incorrect
coaxial stack slowdown and/or polymerase affinity.

CHAPTER 2. MODELING THE DNA TOOLBOX 32

state is also important to check the exonuclease activity and get the baseline fluorescence.

This baseline has to be substracted before the data can be analyzed in any quantitative way.

Additionally, in the case of a single autocatalyst temp amplifying a sequence s, it is possible

to solve the equations at equilibrium (that is, when all derivatives are equal to zero, at the

transient steady-state), in two cases:

In the case of coaxial-stacking slowdown = 1 (no slowdown, possible by choosing carefully

the sequence at the nicking site):

[temp]total = Ks ·
exos,eq
poleq

+ exos,eq

�
1

poleq
+

1

nickeq

�
[s]eq (2.10)

with [temp]total the total concentration of template and eq indicating values at equilibrium.

Note that this formula doesn’t take into account zeroth order leaks, as the additional term

would have a contribution below what can be observed with a PCR machine.

In the case of coaxial-stacking slowdown = 0 (DNA duplexes are as stable with or without

the nick, unrealistic but can be approximated by using G-C nicking sites2 and having a high

concentration of polymerase compared to that of nickase):

[temp]total = exos,eq

�
1

poleq
+

1

nickeq

�
[s]eq (2.11)

We can note that both equations are very similar, but no simple formula can be obtained in the

general case. The only possibility is to rely on numerical resolution to solve the system, using

DACCAD for instance. All other parameters being fixed, the effect of coaxial-stacking on the

steady-state concentration of the autocatalytic species is shown in Figure 2.9.

Another problem arises from the actual estimation of the species concentration. As men-

tioned before, it is not possible to measure [s]eq directly. However, it is possible to reach the

following result (independent of coaxial-stacking):

[s]eq =
nickeq
exoeq

[tempext]eq

=
poleq
exoeq

([tempin]eq + [tempboth]eq)
(2.12)

With tempext the fully double-stranded template, tempboth the double-stranded nicked tem-

plate and tempin the template with input signal (see Figure 2.6). A proof of those results

2A G-C nicking site means that the DNA strand before the nick (in the 5� to 3� direction) ends with a G, and
the DNA strand after the nick starts with a C. This specific configuration gives the highest stability to nicked
molecules.

CHAPTER 2. MODELING THE DNA TOOLBOX 33

Figure 2.9: Impact of the coaxial-stacking slowdown on the steady-state concentration of an
autocatalytic species. The simulation was done for all values presented in Appendix A.1, as
well as the hypothetical 0 value (double strand as strong with or without nick). Note that for
some configurations the slowdown can be higher than 1, meaning that the resulting molecule
is less stable than if there was no stacking. Simulation performed with the default values for
enzymatic parameters, 10 nM of template and a dissociation constant of 74 nM.

is given in Appendix A.3. Moreover, those results have also been verified using Mathemat-

ica [110], a program for numerical and formal analysis. By using the Equation 2.9, it follows

that ϕfret,eq ∝ exos,eq
�

1

poleq
+

1

nickeq

�
[s]eq. Note that at the steady state, for enzyme ac-

tivities similar to that of Padirac et al., most of the template is shared between the tempboth

and tempext states. We can then approximate that ϕeva,eq ∝ [tempboth]eq + [tempext]eq. A

comparison of both values for ϕeva,eq are shown in Figure 2.10. This approximation yields

ϕeva,eq ∝ 2exos,eq
�

1

poleq
+

1

nickeq

�
[s]eq ∝ ϕfret,eq. Using equation 2.10 (no slowdown):

[temp]total = Ks ·
exos,eq
poleq

+ cst · ϕfluo,eq (2.13)

where ϕfluo,eq is the value of any of the two fluorescence that can be measured. Hence, by

doing a ramp of concentration for the template, it is possible to fit parameters of the system.

The other case (coaxial-stacking slowdown infinite) gives us the multiplicative constant cst and

might help giving a quantitative meaning to experimental data.

Note that multiple experiments should be done to average the unavoidable noise. In this

case, the redundancy between EvaGreen and the FRET fluorescence gives us an edge, as each

run virtual counts as two data sets. One can then fit the relation between the total template

concentration and the fluorescence by a linear regression (Figure 2.11), where the baseline is

the term −Ks ·
exos,eq
poleq

. Since the exonuclease and polymerase apparent activities at equilibrium

should be independent3 of s, it is possible to get a fit of the dissociation constant Ks for all

3Using parameters from Padirac et al., the model predicts a variation of up to 2.5% of the term exos,eq/poleq

CHAPTER 2. MODELING THE DNA TOOLBOX 34

Figure 2.10: Comparison between the theoretical and approximate value of EvaGreen fluores-
cence. Values where obtained from simulation on an autocatalyst with dissociation constant
Ks = 35 nM and default enzymatic activity. Left: theoretical value of EvaGreen fluorescence.
Right: approximate value. The plots are separated to allow the comparison between the two
curves. Over the considered range, the two curves are indistinguishable.

Figure 2.11: Linear regression fit of the average fluorescence of 5 simulated measures for an
autocatalyst with a dissociation constant Ks = 35 nM. Each simulation was done with 10%
noise on the fluorescence signal, representing the inaccuracy of the PCR machine used for
monitoring.

signal sequences. On the other hand, if Ks is already known (from nearest-neighbors estimation

[111] or otherwise), it is possible to get a first order activity value for the polymerase by

measuring the plateau length before all dNTPs are consumed [11] with a high concentration

of template (polymerase saturated). Then, it is immediate to get a first order activity value

for the exonuclease from the equation exos,eq = baseline ·
poleq
Ks

. As a proof of concept, we

try averaging over five independent (simulated) measures (Figure 2.11). We suppose that the

enzymatic activity is known, giving us Ks,measured = 1.78 × poleq/exos,eq � 32 nM, which is

close to the actual value of 35 nM. The difference might also be due to the approximation

poleq/exos,eq � constant.

over a range of concentration of template going from 5nM to 100nM, which should be negligible compared to
other measure errors.

Chapter 3

The delay gate

DNA computing has the potential to create powerful devices, but, in the context of well-mixed

systems, sequentiality of operations is hard to achieve. To enforce such sequentiality, we propose

a generic delay gate that can be interfaced with virtually any DNA system. Since it is system-

independent, our delay gate can be used as an off-the-shelf library to accelerate the design

of increasingly complex systems. Since DNA computing systems, like the DNA toolbox, are

Turing-complete, this operation should be possible to implement as a combination of already

existing elements. However, such implementation might be relatively heavy in a given paradigm.

When designing basic operations, it is important to keep in mind the problem of genericity

(whether a building block can be use in a multitude of situation) versus applicability (whether

a building block as an impact on the size or speed of a given system). The delay operation

having a broad range of potential application, it makes sense to add it as a separate block.

Additionally, we checked the feasibility of our design by testing various in-vitro implementa-

tions. We also present a theoretical proof of concept of its applicability by using it to complement

the DNA toolbox to design new systems. This integration uses a simple Mathematica [110] file

describing such extended toolbox systems that can be automatically generated by DACCAD

(see next Chapter). The research presented in this chapter has been accepted by the journal

Natural Computing (see reference ([112]).

3.1 Introduction

As we mentioned, DNA computing has been used in the recent years to create increasingly

complex systems with the ability to perform various tasks, either in vitro or in vivo [10, 11,

113]. However, the current trend may reach a peak as it gets harder and harder to design

35

CHAPTER 3. THE DELAY GATE 36

more sophisticated devices. In particular, like in a computer, it is important to guarantee the

sequentiality of critical operations. The most common illustration of this problem, in computer

science, is to imagine two agents and a shared counter. The first agent tries to decrease the

counter, while the second wants to increase it. If nothing is done to enforce the sequentiality of

those operations (one agent act, then the other), the system may end up in an impossible state:

if both agents read the current amount at the same time, then change locally the value before

storing it again, both agents will think they acted. However, the state of the counter will only

reflect one operation, namely the last which took place. To prevent this, the counter has to be

inaccessible to any agent other than the one which is currently trying to modify it.

In test tube DNA computing systems, this problem is omnipresent, as DNA strands used to

perform operations are moving freely in the solution. This means they can interact with virtually

any other strand at any given time, while doing so could represent an incorrect operation. For

instance, we can think of a system where two reactions are in competition, such as the two

autocatalytic modules in Padirac et al.’s bistable circuit [11]. Even if one is supposed to win

over the other, products from the former will still be in the solution as long as the steady state

is not reached. Those products may then interact with other modules of the system before the

competition is over and produce unexpected behaviors. Leaks coming from such intermediate

state of the system or from early product of a given reaction may mislead a comparator, or

force a dynamical system such as an oscillator toward a flat steady state. This is also often

seen during the initialization of some complex systems where mutual inhibition is not yet fully

“operational”. The way to solve this sequentiality problem is to use delay or join (arbitrarily

long delay) operations. The main difference between those two operations is that join enforces

sequentiality in the sense of Lamport’s logical clock [114], while delay only guarantees it in

the sense of a wall clock. While the former is stronger from the logical point of view, the

latter is enough for a variety of applications where typical reaction times are known. Note

that, since there are many factors affecting the reaction rates, such as enzyme saturation or

salt concentration in the buffer, an exact timing can hardly be set. This does not limit the

usefulness of the gate, as it is enough to ensure the sequentiality, possibly by overshooting the

optimal delay.

Since delays are necessary to design non-trivial systems, many workarounds are present in

the literature. They are, however, designed with a specific application in mind, which makes

them difficult to apply to other systems. Still, the obvious advantage of such approach is that

the design of the delay can be specifically optimized for the problem at hand. Nevertheless, we

CHAPTER 3. THE DELAY GATE 37

believe that DNA system design could benefit from general all-purpose modules in the same

way as off-the-shelf software components work for software development. This belief primed us

to develop the delay gate introduced here.

Our gate enforces delays by capturing and sequestering the target sequence (also called

output) with a timer strand. Timer strands, as the name implies, represent how long the

output will be delayed. Those strands are catalytically degraded over time by our delay gate.

Once they have all disappeared, the output signal is completely restored by the gate. Moreover,

the gate is designed to have a stronger affinity for single-stranded timer, which means that the

output is only released after the delay is over, and that the release speed is not a function of

the amount of delay. By playing with the ratio of concentration of output over that of the

gate, we can also fix how fast the output will be released, allowing the gate to be adapted to

multiple purposes. Note that the target sequence has to be known at the time of design. This

does not, however, diminish the usefulness of the gate unless we are working with a system

generating random sequences 1. There are mainly two ways to delay the result of an operation

with multiple possible outputs: either sequester a sequence required by the targeted operation,

such as its fuel strand, or capture all possible outputs by using as many timer strands. All those

timers can then be synchronized by using the same delay gate, which guarantees the same delay

regardless of the output.

We present both simulations and experimental results of an actual implementation of the

delay gate. We then demonstrate how the gate can be used in collaboration with other systems,

such as Montagne et al.’s DNA toolbox [67], as well as detailing some original uses that can be

made of it.

3.2 Related work

One way to implement delays was proposed by Qian and Winfree [10, 41] (see Chapter 1). In

their seesaw gate, they employ a threshold module to prevent early comers from rushing ahead,

thus eliminating leaks. The idea of this module is to capture and waste a fixed quantity of

input before it had any chance to interact with the rest of the seesaw gate’s components. If

the threshold is passed, the signal is restored through the use of fuel that regenerates the input

until all the output has been released, which allows the seesaw gate to be cascadable. However,

in this design the output is released over a long amount of time, which means that long reaction

cascades are very time consuming. Additionally, the threshold module is wasted when used,

1Such systems might be dangerous, anyway, as they tend to generate parasites [115]

CHAPTER 3. THE DELAY GATE 38

with no mechanism to reliably regenerate it. This means that a given seesaw gate cannot be

used twice. In particular, loops are not possible with this design, so that complex computations

require a huge quantity of gates.

Another approach was presented by Condon et al. [7, 116]. In their case, more than leaks,

the problem comes from ensuring that operations are executed in the right order. This problem

is well-known in parallel computer programming, where more than one program can access to

and modify a shared resource, such as memory. In their implementation of a gray code counter,

the state of the counter can be seen as the memory and the various gates necessary to increase

it as the concurrent programs. More specifically, the problem was that more than one step was

necessary to perform a valid operation on the counter, while other gates could interact with

it before all steps were done. They thus borrowed the notion of mutex, a single object used

to make complex operations atomic (that is, happening in an uninterruptable manner): only

the gate “holding” the mutex could perform operations on the current state. The mutex itself

was implemented as a DNA strand necessary to open the toehold of the gates, so that only the

gate to which it was attached was active. The immediate drawback of this approach is that the

mutex strand has to be unique, i.e. a single occurrence of this particular molecule should be

present in the system. Even in the case where this condition is achieved, it would cause very

low reaction rates, since the mutex has to be compatible with every (non-wasted) gate, while

only a limited amount of them are valid to perform the next computation step.

Montagne et al.’s oscillator is based on an autocatalitic module with a negative feedback

(Figure 2.3, left). They found that having a direct negative feedback only created damped

oscillations, with the concentrations of all species in the solution reaching a stable steady state

and that a delay was thus necessary [117]. They solved this problem by implementing a longer

reaction path for the negative feedback (A gives B gives inhibitor, instead of A gives inhibitor),

introducing an implicit delay. See Section 3.6 for additional details. The delay gate, although

heavier to use than the simple transduction scheme they use, is more generic.

From a functional point of view, the delay gate is related to the whiplash PCR [69]: a primer

is extended by polymerase until a stopping point, before being freed by strand displacement. In

the whiplash PCR successive releases and extensions are used to perform computation through

the modification of the “whip” part (the gate in our case) of the design. We however use it to

release and waste the extended primer (our timer strand) without any modification being made

to the gate: we simply use the whiplash mechanism to ensure the catalytic nature of the gate.

CHAPTER 3. THE DELAY GATE 39

3.3 Working principle

The main principle is to use a specific kind of DNA strands, called timer strands, to capture

the output to delay. Timer strands are in excess of the output and form stable hybridization

duplexes with them, so that the effective concentration of free output in the solution is close to

zero. Timer strands are then catalytically degraded by the delay gate. Single-stranded timer

strands are consumed first, introducing the delay. Then the timer strands with output are

consumed, freeing the latter.

The gate works in four steps, as shown in Figure 3.1, left. (1) Either a single-stranded timer

strand, or a duplex output-timer attaches to the gate. By using n nucleotides at the 5� end

of the output to cover the toehold of the timer-gate duplex, we enforce that single-stranded

timer will be consumed first, as the size of the toehold changes the duplex attachment kinetic

parameter[61]. (2) DNA polymerase with strand displacement activity (such as Klenow large

fragment or Bst large fragment) extends the timer until the stopper, which can be anything

that would not be recognized by the enzyme. (3) The displaced end of the gate comes back,

releasing the head of the timer to which the fuel attaches itself. (4) The fuel strand is extended

by the polymerase, wasting the timer and releasing the gate; if the timer was duplexed, the

output is released by this operation as well.

The use of fuel may be inconvenient in some cases, such as when the delay gate should be

reused multiple times in a closed system. For this reason, we also designed a fuel-free version of

the gate (Figure 3.1, right). In this version, the extended sequence of the timer is partially self-

complementary, allowing it to be its own primer for the last step. It should be noted that this

version of the gate can also form an additional hairpin at the position covered by the extended

timer. However, at least half of the sequence of this hairpin is covered most of the time, either

by the 5� end of the gate (as in steps (1), (3) and (4)) or by the timer strand (steps (2) and

(3)). Moreover, even in the eventuality of the formation of this hairpin, it doesn’t prevent the

attachment of the timer strand, whose extension will then force it open.

The main challenge of the delay gate is to ensure that the output is released at the right

time. This is guaranteed by three different mechanisms. First, since the output covers part of

the timer toehold, hybridization of the duplex with the gate is less stable than that of the single-

stranded timer. Thus, the hybridization of single-stranded timer with the gate is kinetically

favored. Second, it also means that if a duplex is hybridized to the gate, there is still a small

toehold for a single-stranded timer to displace the duplex (Figure 3.2). Finally, as a fail-safe,

CHAPTER 3. THE DELAY GATE 40

Figure 3.1: Schematic working of the delay gate. Parentheses represent the fact that the output
is optional in the configuration, as the working of the gate is the same. Timer without output
are consumed first. Left: fuel-driven version; right: fuel-less version. Arrows represent single
DNA strands, from their 5� end to their 3� end. The black dots on the gate represent polymerase
stoppers, for instance missing dNTPs or a polyethylene glycol spacer. n represents the length
in bases of the sequence that is common both to the output and the gate. A modification on
the 3� end of the gate prevents it from being extended by using the timer as a template.

CHAPTER 3. THE DELAY GATE 41

Figure 3.2: Toehold (orange) for the displacement of an output-timer duplex by a single-stranded
timer. Note that if enough bases of the output strand are free, the single-stranded timer can
capture it instead of invading.

the output can be captured by another single-stranded timer if still present in the solution

(i.e. the release was too early). This last point is similar to the threshold gate of Qian and

Winfree[10, 41], where the threshold mechanism sequesters part of the input. In the delay gate,

however, the totality of the input signal will be eventually released.

Some applications may require to disable and re-enable the gate when necessary. This can

be done by using a strand opening the hairpin of the gate, leaving only a short toehold for

its complementary to free the gate (Figure 3.3). Note that opening the hairpin may actually

requires the gate to be in step (2), which means it is currently consuming timer. This does

not limit the effectiveness of this technique since, if there is no timer, disabling the gate has

no purpose. One possible issue with the presented disabling mechanism is that the disabling

strand might attach to the 3�-end of an extended timer strand in step (3), causing the later one

to be extended again by polymerase (Figure 3.4). There are, however, multiple workarounds to

this problem. The simplest one would be to add some mismatch in the sequence of the disabling

strand, making it unlikely for the polymerase to extend the timer strand. If the disabling strand

is not generated dynamically during the computation, another possibility is to design it with a

stopper similar to that of the delay gate, preventing any extension. Finally, the complementary

sequence of the disabling strand can be moved past the stopper of the delay gate, with a toehold

present in the gate’s loop instead that on the whiplash area, removing any interaction with the

timer strand.

3.4 Model and simulation

We take into account all the reactions presented in the previous section (see Figure 3.1). All

those reactions are considered atomic, that is, indivisible. For instance, the polymerase does

not stop until it reaches the end of a strand or a stopper, complementary strands cannot be

only partially attached to each other, and in the case of competition, we only consider the states

where one or the other possible strands is completely attached, leaving the other completely free.

CHAPTER 3. THE DELAY GATE 42

Figure 3.3: Activation and deactivation of the delay gate. Note that the gate is shown in the
configuration of the first step of Figure 1, but that the opening of the hairpin can only occur in
step (2).

Figure 3.4: Incorrect interaction between a disabling strand and a timer strand. This comes
from the fact that the 3� end of the extended timer strand and the whiplash section of the delay
gate have the same DNA sequence. Note that the disabling strand still has a toehold to accept
an activation strand.

CHAPTER 3. THE DELAY GATE 43

We also do not take into account possible crosstalks other than that of the fuel with the freed end

of the delay gate (see step (2) in Figure 3.1) as they can be avoided by careful sequence design.

Polymerase saturation is also considered negligible and we model its activity using first order

kinetics [118, 42]. For a full integration with the model of the DNA toolbox presented in the

previous Chapter, additional experiment determining the actual Michaelis-Menten parameters

of the gate would be necessary, but the saturation-free model should be enough for a variety of

application.

We then extract from the full set of reactions (see Appendix A.4) the system of differential

equations, assuming mass action kinetics. We consider two sets of kinetic parameters for the

numerical solving of this system. The first one, dubbed generic, was defined to be qualitative,

and only reflects the magnitude of differences between reaction rates (with possible values being

very slow, slow, average, fast and very fast). This was used to check that, in the general case,

whatever final implementation is used, the basic functioning of the gate is coherent, that is,

it is similar to the behavior depicted in Figure 3.7, with no variation of quality in function of

the concentration of timer. The second set of parameters was chosen to reflect an integration

with the DNA toolbox [67, 11, 43, 119] and is supposed to be more realistic. In particular, we

reused the kinetic parameters for strands association, dissociation, and for polymerase activity

(reduced ten times to reflect the effect of strand displacement on polymerase activity). Strand

displacement kinetics were taken from Zhang and Winfree [61].

The simulation results are shown in Figure 3.5. For all simulation settings (both fuel-driven

and fuel-less versions with generic parameters and fuel-driven version with realistic parameters)

the gate delays the output for an amount of time linear in the initial concentration of timer

before releasing it quickly. As expected, simulated results are similar for all settings, with

slightly slacking curves in the case of the “realistic” parameters.

We also simulated the respective effects of a huge excess of fuel, or a lack of it, showing its

impact on the system. As shown in Figure 3.6, a lack of fuel completely stops the reaction,

rendering the gate useless, but an excess of it slows down the reaction as the 5� end of the gate

spends more time captured by fuel in step (2) (Figure 3.1). This prompted the development

of the fuel-less version, which has the additional advantage of reducing the number of single-

stranded species in the solution, reducing the risks of crosstalk with other modules.

Another thing to consider is the release speed of the output once the timer has been con-

sumed: optimally, the concentration of free output should go from zero to its maximum in a

very short amount of time in comparison with the characteristic time scales of the elements of

CHAPTER 3. THE DELAY GATE 44

Figure 3.5: Simulation of the delay gate, fuel-powered design (left) and fuel-less design (right)
with generic parameters. Simulation of the fuel-driven version with realistic parameters is shown
at the bottom. Timer ×n represents a timer concentration n times that of output. Output and
gate concentrations were set to 10 nM. Fuel concentration, when applicable, was set to 120 nM.

Figure 3.6: Impact of fuel on the behavior of the delay gate. Timer ×n represents a timer
concentration n times that of output. Simulations for fuel concentration of 4.5 times that of
output (left) and 50 times that of output (right). Output and gate concentrations were set to
10 nM.

CHAPTER 3. THE DELAY GATE 45

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Q
u
a
lit

y

Gate concentration over output concentration

Figure 3.7: Left: idealized behavior of the gate, showing two characteristic times: the delay
t1 and the release time t2. The quality of the gate

t1
t2−t1

depends only of the amount of gate
and polymerase present in the solution. Right: quality of the system simulated with generic
parameters in function of the concentration of gate, obtained at a timer concentration of 2×
the output concentration. The optimal quality is obtained for the gate at 0.15× the output
concentration.

the system that the gate is delaying. We also want the gate to be efficient, that is, we want a

given concentration of timer strand to delay the output as much as possible. We thus introduce

the notion of quality of the gate, defined as t1
t2−t1

where t1 is the time at which there is 10%

release and t2 the time where the release is 90% complete (Figure 3.7, left). By this definition,

the quality is mostly related to the concentration of gate and polymerase in the solution. The

concentration of fuel should also be taken into consideration in the fuel-driven version of the

gate, but its impact on the kinetics is hard to precisely tune, so in the following we will consider

that it is kept at a constant concentration, for instance by using the autocatalytic module of

the DNA toolbox [67]. Moreover, the range of possible fuel concentration is limited, since this

concentration has to be high enough to power all the gate strands in the solution, while being

low enough to prevent it from slowing down the delay system. As the amount of polymerase

present in solution is likely to be dictated by the other systems the gate is interacting with,

we are left with the concentration of gate as a modifiable parameter. A high concentration

of gate means a faster release of the output, but also a shorter delay (that is t1) for a given

concentration of timer, so for a specific release time t1, more timer and more dNTPs (the fuel

for polymerization) will have to be consumed, which leads to a tradeoff, as shown in Figure 3.7,

right. In particular, when coupled with consumption intensive systems, such as the bistable

system of Padirac et al. [11], it may be advantageous to sacrifice quality for the sake of saving

energy (dNTPs, fuel, . . .).

CHAPTER 3. THE DELAY GATE 46

3.5 Experimental results

While the main purpose of this work was to propose a theoretical generic mechanism to im-

plement delay, we wanted to check the validity of our design. This led us to make an actual

in-vitro implementation of the gate, with various parameters, such as buffer conditions, nature

of the stopper and so on. In particular, some effort was put into finding the optimal length of

toehold that should be captured by the output strand.

In all those experiments, the release of the output was monitored by fluorescence. Output

strands had a FAM fluorophore attached to their 3� end, while timer strands had a quencher

at their 5� end, so that only free output would contribute to the fluorescent signal. We made

two different implementation of the stopper. Like in whiplash PCR [69], the first one uses a

missing dNTP: when the polymerase has to use a dNTP that is not present in the solution,

it falls off. The stopper is made of four consecutive occurrences of the complementary of the

missing dNTP to guarantee that the polymerase will not ’jump’ it. The second option that we

considered to make the gate compatible with other systems was to insert a polymerase-blocking

modification, similar to scorpion probes [120]. We chose to use a Sp18 spacer, a hexaethylene

glycol chain. Since it is not made of nucleotides, the polymerase will not be able to process it

and is expected to stop and fall off the gate.

Since the output-timer and timer-gate duplexes are both stable at the working temperature,

the competition to hybridize to the n shared bases of the timer strand is a random walk going

through all the possible configurations. For this reason, we can approximate that the last n
2

bases of the delay gate (see Figure 3.2) are free on average. Using the kinetic parameters from

Zhang and Winfree [61], we can see that we need such toehold to be at least 3 bases long

for a single-stranded timer to have a reasonable chance to displace the duplexed timer from

the gate. Moreover this duplex may have already been partially or totally elongated by the

polymerase (i.e. the complex output-timer-gate may be at the third step or further). In this

case, the only chance to displace it is through the strand displacing activity of polymerase.

This means that the single-stranded timer needs to be able to attach stably enough to act as

a primer in a reasonable amount of time (that is, before the whiplash had a chance to occur,

releasing the output). In a preliminary experiment (see Figure 3.8, left), we found out that

there is noticeable leakages if n is inferior to 8. For values superior to 8, the behavior of the

delay gate shows little change, except when n becomes big enough to reduce the stability of

the output-timer duplex when attaching to the gate. In this case, the release of the output is

CHAPTER 3. THE DELAY GATE 47

more difficult, as the output-timer-gate complex is less often in a configuration that would be

elongated by the polymerase. The different experimental behaviors for various values of n, in

the case of the missing dNTP implementation, are shown in Figure 3.8, left. In this experiment,

the relative concentrations of species were output 1, timer 2, gate 1 and fuel 12, with actual

concentrations of: output 10 nM, timer 20 nM, gate 10 nM and fuel 120 nM. We can observe

that there is little variation in the behavior of the gate for n between 8 and 12, while n = 14

shows a noticeable slowdown.

The second thing we had to check was that the release rate of the output was not dependent

of the amount of timer initially present in the solution. This is an important factor to determine

if gates are left intact after being used, which is crucial for the reusability of this system over

time. The experimental result for the missing dNTP implementation can be seen on Figures

3.8, right and 3.9, top left. While the initial amount of timer strands doesn’t seem to affect

the release rate, we can see that it reduces the total increase of fluorescence, which could be

explained by an incomplete release of the output. One possible explanation is that the stopper

is not perfect, and gates are slowly degraded, until the reaction grinds to a halt. Similar results

are obtained with the spacer implementation, but the release rate is much slower (Figure 3.9,

top right). This may be because the whiplash is harder without a toehold directly next to the

invaded domain [60]. However there are ways around this problem, such as using LNA [74]

to promote the invasion. It is also possible to use artificial nucleotides to stop the polymerase

while keeping a proxy for strand-displacement. Finally, we implemented the fuel-less version,

as shown in Figure 3.9, bottom. As expected from the model, the release is slower than in the

fuel-driven version.

3.6 Applications

As it is, the delay gate is generic and flexible enough to be used in multiple contexts. We

present here some of those possible applications, with an emphasis on its integration with the

DNA toolbox. This can additionally serve as an example on how to use the delay gate in

cooperation with other systems.

3.6.1 Integration of the delay gate in the toolbox

The integration of the delay gate with a given framework takes place in three steps.

The first step is to check the compatibility with the molecular environment. Both the delay

CHAPTER 3. THE DELAY GATE 48

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Fl
uo

re
sc

en
ce

 (a
.u

.)

Time (min)

Output 8
Output 10
Output 12
Output 14

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90 100

Fl
uo

re
sc

en
ce

 (a
u)

Time (min)

Timer x1
Timer x2
Timer x3
Timer x4
Timer x5

Figure 3.8: Left: comparison of different toehold. Output n corresponds to an output with
a cover length of n. Right: experimental results for different concentrations of timer strands,
n = 8. Timer ×n represents a timer concentration n times that of output. In both experiments,
we used Klenow Large Fragment polymerase, diluted 50 times for a final concentration of 100
units/mL. Buffer conditions: NEBuffer 2 (commercial buffer recommended for this polymerase)
with dNTP (missing dATP) 100µM. Left experiment was done on Rotor-Gene Q (QIAGEN),
right experiment on MiniOpticon (BIORAD).

-500

 0

500

1000

1500

2000

2500

3000

3500

4000

 0 200 400 600 800 1000 1200

fl
u
o
re

sc
e
n
ce

(a
.u

.)

time (min)

timer x1
timer x2
timer x3

-500

 0

500

1000

1500

2000

2500

3000

 0 200 400 600 800 1000 1200

fl
u
o
re

sc
e
n
ce

(a
.u

.)

time (min)

timer x1
timer x2
timer x3

Figure 3.9: Experimental results for different concentrations of timer strands, n = 12. We
used Bst polymerase large fragment diluted 250 times (final concentration 32 units/mL) to
integrate the delay gate in the DNA toolbox (see section 6). Top: fuel-driven versions of
the gate. Bottom: fuel-less version. Stoppers are top left and bottom: missing dNTP, top
right: Sp18 spacer. Buffer conditions: thermopol buffer (commercial buffer recommended for
this polymerase) with DTT 4mM, BSA 10µg/mL and dNTP (missing dATP in the relevant
cases) 100µM. Top left and bottom experiments done on IQ5, top right experiment done on
MiniOpticon. Note that the time scale of the gate with Sp18 spacer is different. Sequences are
given in Appendix A.5

CHAPTER 3. THE DELAY GATE 49

gate and the toolbox use polymerase, and have similar working temperatures. The remaining

potential problems come from the other two enzymes: the nickase and the exonuclease. Those

problems are easily avoided by respectively avoiding use of the recognition sequence of the

nickase and by protecting the 5� end of the delay gate against the activity of the exonuclease

(see Montagne et al. [67] for more details).

The second step is to decide how the delay gate will be used. Since the DNA toolbox

was explicitly made to design dynamic systems, it makes sense to plan to reuse the delay gate

multiple times. This means that we have either to use the fuel-free version, or to generate the

fuel. The later can be assured by a simple autocatalytic module, so ultimately the choice of

using one or the other would be case specific, depending on other factors such as how much

dNTPs are available and polymerase saturation. For the sake of simplicity, we chose to use

fuel-less gates in the rest of this section. Timer generation is done through dedicated templates.

We however do not allow sequences from the toolbox to disable/enable the delay gate as of now,

as this mechanism uses complementary sequences (see Figure 3.3) and would cause crosstalks

between the templates generating the opening and closing strands. The possibility of using a

mechanism external to the toolbox for the purpose of disabling and re-enabling the gate is left

for future investigation.

The last step is to decide which sequence will be captured by the timer strands. There

are two possible targets: signaling sequences or templates. The former seemed limited in its

scope as it does not really change the structure of the “program”. Moreover, both activators

and inhibitors dynamically hybridize and denature with their complementary sequence at the

working temperature. The templates, however, are long enough to form stable duplexes, on top

of having the role of defining the topology of the reaction network. As such they are perfect

targets for the timer strands. However, since the sequences of templates contain the recognition

site of the nicking enzyme, and are, by definition, complementary to many strands present in

the solution, some caution has to be taken to prevent crosstalk, as shown in Figure 3.10. An

interesting side effect is that removing templates for a given amount of time means that we can

modify dynamically the topology of the network: a connection can be removed by generating

the appropriate timer, and added when said timer runs out. Let us note that this is not specific

to delay gates integrated with the toolbox. It could be possible to control “externally” a specific

toolbox system by releasing or capturing some of its templates.

CHAPTER 3. THE DELAY GATE 50

Figure 3.10: Design of a timer strand capturing a template α to β and of the template generating
it from γ. A mismatch is introduced in the recognition site of the nickase, and prevent the use of
the timer generator as a template α to β. Modified sequences are denoted by an asterisk. Some
sequences may be too weak to form a stable duplex with those mismatches. In this case, an
anchor sequence may be introduced, as shown in the weak binding design. On the other hand,
some sequence may be too stable, and activators may wrongly attach to the timer generating
template, in which case additional mismatch are introduced at the position of the activators’
3� end. Alternatively, α or β sequences may be designed shorter. There may be more than
one toehold sequence, interacting with different delay gates, if multiple templates have to be
captured but their release should not be synchronized.

3.6.2 Extended toolbox systems

As a proof of concept we modified some DNA toolbox systems and made new ones.

Montagne et al. showed that the occurrence of oscillation requires the introduction of a delay

in the reaction network. In their work, this delay is introduced through successive transduction

operations (Figure 2.3, left). This oscillator can be easily fitted with a delay gate instead (Figure

3.11, left), which makes it a good first candidate. Using the realistic set of parameters from

Section 3.4 along with those from Montagne et al., we could simulate the behavior of such system

(Figure 3.11, right). The first thing we can notice about those results is that the oscillations are

better defined than those of the Oligator (Montagne et al.’s oscillator [67]): the concentration

of the reporter sequence goes to zero much faster and the oscillation frequency and amplitude

are higher. This can be explained by the fact that the delay induced by the gate is much more

efficient than using intermediate transduction. Additionally, it becomes possible to program

the generated delay by using signal strands opening (respectively closing) the delay gate, thus

inactivating (respectively reactivating) the third step of the gate (Figure 3.1). This would allow

some other mechanisms (based on DNA Strand Displacement for instance) to interface with and

control the oscillations. Those characteristics make the delay gate-based oscillator a promising

first candidate for a wet implementation of a delay gate system.

CHAPTER 3. THE DELAY GATE 51

Concentration (nM)

100 200 300 400 500 600 700

5

10

15

20

100 200 300 400 500 600 700

5

10

15

20

100 200 300 400 500 600 700

5

10

15

20

Time (min)

Figure 3.11: Top left: the modified Oligator with the delay gate depicted by a box. Strand α
activates the creation of timer for the delay gate, represented by the activation arrow going to
the box. This timer will capture the template used for the autocatalysis. Top right: simulated
concentration over time of this system. From a given behavior (blue), one can change indepen-
dently the concentration of timer generator to change mostly the amplitude (green) or change
the concentration of gate to change mostly the frequency (red). Bottom: the single-strands
encoding this system (enzymes not shown).

CHAPTER 3. THE DELAY GATE 52

To find inspiration for a new kind of system to implement with the delay gate, we turn

toward concurrent systems algorithms, since they specifically require join operations. We chose

to implement a simplified version of the producer/consumer problem in which multiple producers

(respectively consumers) are trying to increment (respectively decrement) a common stock. The

state of the stock should always be kept valid (no out of bound or negative values, no jumps),

which has been proven to be equivalent to allowing only one actor to modify it at a time

[114, 121]. In our version, we have only one producer and one consumer, both implemented

using the standard Oligator. They also have an additional delay gate each to be set to sleep

while the queue is updating. The queue itself is implemented using Padirac et al.’s bistable

circuit, which means it can contain at most only one element. The complete network of the

system is shown in Figure 3.12, left. It works as follow: first, the bistable circuit is initialized

in the state meaning “empty”. In this state, it continuously produces the timer strand for

the consumer Oligator. After one oscillation, the producer Oligator switches the state of the

bistable circuit. While it is switching, both “empty” and “full” states are competing, which

cannot be considered as a valid state. However, this also means that timer strands for both

the producer and consumer are generated, preventing them to access the queue. Once the

bistable system reached its new stable state, the situation is reverted: the producer is now set

to wait while the consumer can make one oscillation. Therefore we obtain alternating single

cycles of the two Oligators. This system can also be extended by cascading multiple bistables

modules and make a n-bits counter (see next Chapter), which would also require the addition

of a mechanism for both the “add one” and “remove one” operations. Those operations are

feasible using the toggle switch also presented by Padirac et al. [11]. The simulated time trace

of this producer/consumer system can be seen in Figure 3.12 on the right. As depicted, the

oscillators are never accessing the queue (oscillating) when they are forbidden to, that is when

the bistable hasn’t reached a stable state or when trying to remove (respectively add) something

from an empty (respectively full) queue.

3.6.3 Other possible applications

There are multiple possible usages for delays. First, we can see in Figure 3.12 that the system

has to go through an initialization phase where the states of the oscillators and bistable are

meaningless. This comes from the fact that, at the beginning, we cannot create a valid state

since we have to start all the subparts of our system, which requires to add sequences that are

forbidden to be present in non-negligible concentrations at the same time. Specifically, in our

CHAPTER 3. THE DELAY GATE 53

Concentration (nM)
A

200 400 600 800 1000 1200 1400

5

10

15

20

25

B

200 400 600 800 1000 1200 1400

5

10

15

C

200 400 600 800 1000 1200 1400

5

10

15

Time (min)

Figure 3.12: Producer/consumer problem. Both Oligators are designed to have different periods
to avoid fake synchronization. Left: the network implementing the system; the producer is blue,
the consumer green and a status of the stock is red. Right: the simulated time traces of the A
(producer), B (full state) and C (consumer) sequences, following the same color scheme.

producer/consumer, the consumer needs a first oscillation to start, even though this oscillation is

actually meaningless. Luckily, the simulation was able to revert to a valid state, but this may be

harder in real life. This problem can be generalized to many complex systems where all mutually

exclusive subparts have to be initialized at the beginning. The solution would be to delay some

strands until the state of the system is valid. In the case of the producer/consumer problem,

for instance, the starting sequences for both oscillators could be delayed until the bistable had

reached a stable state. Let us note that the delay gate used for initialization doesn’t have to be

from the extended DNA toolbox, that is, it could use different timer, toehold, fuel sequences

and possibly a different stopping mechanism, and is not subject to the same compatibility

requirements presented in the previous Section. In the producer/consumer example, however,

we can use the gates that are already present in the design, and delay the autocatalytic templates

of both oscillator by adding the appropriate timer strands.

Another use of the delay gate would be to synchronize systems. If two strands are set to

wait with timers using the same gate (meaning that they have the same toehold), both outputs

will be released at the same time, regardless of which was set to wait first or the relative

concentration of timer of each.

Finally, the gate can be used to “hide” parts of the system that are present in the solution.

This allows a system to dynamically modify itself, a behavior that is reminiscent of other

CHAPTER 3. THE DELAY GATE 54

learning strategies implemented with DNA systems [122]. In particular, this could solve the

problem of the addressable space of sequences: in the previous Chapter, we mentioned that to

prevent crosstalks, sequences have to be different enough, which limits the diversity of possible

individual sequences. In turn, this restriction affects the maximum system size, as at some point

it is not possible to add any new species without having crosstalks. However, if only subsets

of the system were running at a given time, this size limitation would be lifted, as all subsets

could use the same set of sequences safely. This is identical to context swapping in “regular”

computers: a given memory address will represent different things based on which process is

currently running. Note that this mechanism only limits crosstalk among the sequences that

are directly delayed by the delay gate, the rest of the system still being subject to this problem.

However the advantage is that potential crosstalks are limited to a much smaller part, which

should make designing and checking much easier. For instance, in the producer/consumer

problem, it is possible to use similar sequences for both oscillators, the design difference with

the system in Figure 3.12 being that whole parts of the system (all templates in the colored

circles, plus the templates representing the interactions with the bistable circuit) have to be

delayed. Timer strands relative to a specific oscillator have to be synchronized to a common

delay gate to prevent different parts of said oscillator from being released asynchronously. The

next point is that, if the sequences of the oscillators are similar, their respective timer strands

are going to be similar as well. This problem is solved by introducing enough mismatches in the

respective timer strands to make them only stable with their cognate targets. This means that

one delay gate will not wrongly be delaying the other part of the system. It is even possible

to do so in the case of completely identical sequences, by adding an “addressing” area at the

3� end of the templates (similar, for instance, to Soloveichik et al. [6]). In this last case, there

will effectively be two “copies” of the same oscillator, locked in different phases. The addressing

space has the additional advantage of increasing the stability of the timer-template stability,

which might be low due to the large amount of required mismatches. Another possibility to

increase this stability is to use modified nucleotides with higher melting temperatures in the

template, such as LNA [74].

3.7 Conclusion

In this Chapter, we presented the design and realization of the delay gate, a specific module

dedicated to implement a delay/join operation, while being both autonomous and reusable. It

CHAPTER 3. THE DELAY GATE 55

relies on a modified version of the whiplash PCR to ensure reusability and toehold mediation

kinetics to ensure the correctness of the release time. It comes in two flavors: a fuel-powered

version and a fuel-free version. While the fuel-powered version is less convenient to use, it has

the advantage of better characteristic release times. The delay gate was also designed to be

controllable either by changing the concentration of timer strand (useful for systems capable of

generating arbitrary concentration of sequences) or by disabling its own whiplash mechanism

(which is more targeted toward entropy driven systems which can only generate fixed amounts

of strands, for instance by releasing them by toehold exchange). This allows the delay gate

to be compatible with multiple DNA computing systems, such as DNA Strand Displacement

and the DNA toolbox, or even to work as an interface for such systems, allowing to create

hybrid systems. Finally, the delay gate can mitigate crosstalks by preventing direct interactions

between parts of the system. While this mitigation is system-dependent, it still helps by offering

additional design options.

We checked the feasibility of such module by doing an actual in vitro implementation, along

with some parameter optimizations. We then showed how we could add the delay gate to an

existing framework, using the DNA toolbox as an example.

What is left is to find a good implementation of the delay gate, correcting the output release

problem. We suspect that this problem is due to the stochastic nature of the stopper we use.

Correcting this design is thus mostly a (time-consuming) matter of finding the appropriate

molecular modification for the job. Once the gate works with little to no signal loss, it is

important to create the systems we presented in vitro. Finally, we can note that the delay gate

helps us with combining small systems that we already know, such as Montagne et al.’s Oligator

[67] or Padirac et al.’s bistable circuit [11], but we are still far off from being able to combine

DNA toolbox modules in arbitrary ways. In the next Chapter, we will present a software tool

to automatically generate systems from their graph, allowing a much finer control.

Chapter 4

DACCAD: a Computer-Assisted

Design approach for the DNA

toolbox

In the previous Chapter, we advocated the use of new building blocks to help design DNA

computing systems. The delay gate we introduced can be used either with the DNA toolbox,

or other paradigms. However, there is a limitation to this strategy: even if, eventually, it gets

simpler to combine advanced modules, there is no point if we loose more time designing those

modules. Like in the assembly codes used by processors, it is much more important to have a

reasonable set of instructions that can be combined easilly. “Easilly” is key, as it means that

we can delegate this operation to the computer, thus writing a compiler from a human friendly,

high-level representation, to a descriptive, efficient, low-level one. This latter representation can

then be used, for instance, for precise simulation or to design the actual DNA sequences needed

for an in vitro implementation.

Additionally, the number of parameters included in these simulations can be large, especially

in the case of complex systems. For this reason, we included the possibility to use CMA-ES, a

state of the art optimisation algorithm that will automatically evolve parameters chosen by the

user to try to match a specified behaviour.

Finally, since all possible functionality cannot be captured by a single software, DACCAD

includes the possibility to export a system in the Synthetic Biology Markup Language, a widely

used language for describing biological reaction systems.

We described the low-level model we use for the DNA toolbox in Chapter 2. The graphical

56

CHAPTER 4. DACCAD 57

representation of DNA toolbox systems is much nicer to manipulate for a human designer.

We created DACCAD (DNA Artificial Circuits Computer Assisted Design) a graphical user

interface that allows us to do so. The results presented in this Chapter have been submitted as

reference [97].

4.1 Introduction

Computer Assisted Design (CAD) has helped many fields reach their full potential by scaling

up designs, making error-prone or repetitive tasks automated and allowing easy simulation and

verification of systems. As such, CAD has proved to be a necessary tool to develop any advanced

technology, examples of which include areas as varied as integrated circuits, aeronautics or

programming. The case of DNA computing, a field that uses the interactions between various

DNA molecules and enzymes to perform meaningful operations, is no exception: while DNA

computing systems have shown great promises [10, 41, 67, 11], advances are still considerably

limited by the trial and error process, and many such systems are often left at the proof-of-

concept stage. Computer assistance could remove this limitation and help designers take the

next step toward actual applications by helping them implement complex CRNs (Chemical

Reaction Networks).

CRN are assembly of cross-interacting chemical reactions where each molecular compound

can affect the formation and degradation rate of the others. CRN, when kept out of equilibrium,

can display a variety of nonlinear behaviours, including oscillations and multistability. They are

very powerful systems in terms of information processing, as shown by the variety of complex

cellular processes that are controlled by CRN in vivo (see, for instance, Wagner and Fell [123]).

The recent demonstration that CRN possess Turing universality [10, 6, 8, 16, 9] also advocates

their use in a variety of control tasks at the molecular level. However, CRN tend to resist rational

design. A link between the properties of the network and its dynamic functions can be obtained

from mathematical tools such as dynamical systems theory, including linear stability analysis

[99], Lyapunov stability analysis [124], or CRN theory [125], but such analytical approaches are

generally restricted to idealized systems described by very simple mathematical models; actual

implementations are generally much more intricate in terms of chemical kinetics.

As we noted in the first Chapter, great efforts have been invested in the exploration of

reaction networks relying on in vitro DNA chemistry and biochemistry. These systems are

based on the predictability of DNA-DNA interactions using simple Watson-Crick base-pairing

CHAPTER 4. DACCAD 58

rules, as well as on the rich repertoire of possible enzymatic transformations. Using DNA-based

molecular programming, it is possible to build simple computing systems based on boolean logic

[6, 126, 127] but also neural networks [41] and CRN [8]. Enzymatic systems are of particular

interest because they can be maintained out-of-equilibrium for an extended period of time (for

instance by having large amount of dNTPs or NTPs in the solution acting as a generic fuel)

and thus are suited to explore emergent behaviours. We focus on the DNA (Dynamic Networks

Assembly) toolbox, a recent framework to assemble out-of-equilibrium networks of arbitrary

topology, whose dynamics are powered by three enzymes (polymerase, exonuclease and nicking

enzyme). This toolbox has been used to build oscillators [67], bistable systems [11], a push-

push memory circuit [11], or even molecular ecosystems reproducing predator-prey cycles in bulk

[119], spatially [128, 43] or in droplets [129]. Spatial implementation of those systems display

waves [128, 43], showing they can be used as a base for two-dimensional reaction-diffusion

systems. Most of these systems were simple enough to be designed and tuned by hand, but

doing so was still an arduous process of trial and error that cannot be extended to larger systems.

Indeed, in well-mixed systems, any molecular element can potentially interact with many others

at any given time, and keeping track of all of these interactions and their kinetic consequences

quickly becomes impossible for a human. It gets worse when counter-intuitive effects, such as

competition and saturation [12, 103, 89], have to be taken into account.

However, a quite unique feature of DNA as a molecular material is, that it is possible to derive

simple rules and kinetic parameters describing its behaviour in the general case [8, 61, 130],

complexity emerging from the non-linearity of those mechanisms. Similarly, the biochemistry of

DNA can be described by simple models, such as the Michaelis-Menten equation or competitive

inhibition. Therefore DNA-based CRN can be both implemented in test tubes and be described

by quantitative or semi-quantitative ODE models based on standard kinetics. Compared with

previous experimental studies on CRNs, the availability of these exact mathematical models

is the true benefit of DNA systems. It puts the molecular programming approach in stark

contrast with “classic” nonlinear reaction networks, such as those observed in chemistry (like

the Belousov-Zhabotinsky reaction [20]) and in biology (gene regulation networks [131, 132],

signalling cascades in metabolic networks [133], etc. . .). In these last two cases, indeed, while

it is generally possible to infer a global pattern of interaction among the molecular members of

the reaction network, it is much more difficult to obtain precise mathematical forms describing

these interactions, let alone accurate numerical parameters.

A DNA-based system thus provides the chemical tools to implement any computation or

CHAPTER 4. DACCAD 59

dynamic behaviour at the molecular scale. This implies the construction of complex systems

whose behaviour quickly becomes intractable for the human brain. Such systems require non-

linearity, be it through signal amplification, digitalisation or the generation of autonomous

dynamics such as oscillations. The biochemistry of DNA systems provides such mechanisms,

but assembling them in a constructive manner is still a difficult and sometimes counter-intuitive

process. Moreover, realistic prediction of the actual evolution of concentrations over time re-

quires a number of side reactions, such as leaks, crosstalks or competitive interactions, to be

taken into account. In this case, the design of a system targeting a given function requires

many trial and error before the correct architecture can be found. To speed up this process, we

have created DACCAD, a Computer-Assisted Design software that supports the construction

of systems for the DNA toolbox. DACCAD is ultimately aimed to design actual in vitro imple-

mentations, which is made possible by building on the experimental knowledge available on the

DNA toolbox [67, 11, 43, 100, 101] (see Chapter 2). Because of the existence of these detailed

mechanistic models, it is still possible to numerically simulate such systems with reasonable

accuracy, justifying computer assisted design. For those reasons, we expect that this approach

will be the only way to push the complexity of experimentally accessible systems further. In

DACCAD, the services offered by the machine are fourfold:

• It provides a straightforward graphical interface allowing to create the network and assess

its dynamic behaviour.

• It eliminates routine and error prone tasks such as ODE writing and solving.

• It helps in simple optimisation tasks such as adjusting the parameter to tune the be-

haviour of the network toward a quantitative target, once a qualitative agreement has

been obtained.

• It can display an animated version of the network, giving a better understanding of the

evolution of the system over time.

Moreover, DACCAD was written entirely in Java to make it as easy to deploy as possible.

This software allows the user to set the reaction parameters, such as enzymatic activities, to be

as close as possible to real life experiment. It also comes with preset parameters from Padirac

et al.’s work so that only a general knowledge of CRN is necessary to start designing complex

systems. DACCAD thus makes it quick to test designs based on the user’s intuition. If the

resulting behaviour is not the one expected, DACCAD also incorporate tools to both detect

CHAPTER 4. DACCAD 60

where the problem might be or optimize such behaviour toward a target. Users can also refer

to the supplementary materials of Montagne et al. [67] to fit the parameters (enzyme activities,

strands dissociation constants) to their own experimental settings. Designed systems can then

be built in vitro, using Baccouche et al.’s protocol [101]. Finally, DACCAD can convert any

such designed system to SBML to ensure compatibility with other simulation tools that the

user would like to use. It is also possible to export the core model to Mathematica (options like

enzymatic decoupling or leaks are unavailable, but it is then possible to add delay gates to the

system).

We illustrate its effectiveness by designing various systems, from Montagne et al.’s Oligator

[67] or Padirac et al.’s bistable system [11] to new and complex networks, including a two-

bits counter or a frequency divider, as well as an example of very large system encoding the

game mastermind. This is one of the advantages of the DNA toolbox: in a generic biochemical

simulation program such as COPASI [134], the user would need to add all those species and

reactions by hand, setting the kinetic rates of each reaction based on enzymatic saturation.

DACCAD generates all those elements by implicitly referring to a precise biochemical context,

allowing the user to design systems much faster. Generating a template takes one click in

DACCAD, while it generates for COPASI 5 new species, 11 reactions and requires to update

carefully the Michaelis-Menten equation of each enzyme. It gets even worse for COPASI if the

template is inhibited, as an additional species and 6 new reactions have to be added to the

mathematical model. Figure 4.1 shows the size difference between the representation of the

same reaction network in DACCAD and COPASI. In this Chapter, we highlight a variety of

behaviours, such as enzymatic saturation and load effect, which would be hard to handle or

even predict with a simpler model. We also show that those mechanisms, while generally seen

as detrimental, can be used in a positive way, as functional part of a design.

4.2 Related work

The basic operations that can be executed by DNA, such as two complementary strands attach-

ing to form a double helix, toehold-mediated strand displacement and enzymatic transforma-

tions, are well-known. However, there are multiple paradigms that use those mechanisms in very

different ways. One such paradigms, DNA Strand Displacement (DSD), already benefits from

its own software for computer-assisted design, VisualDSD [96], demonstrating the effectiveness

of the CAD approach. Recently, Kwiatkowska et al. were able to prove the incorrectness of

CHAPTER 4. DACCAD 61

Figure 4.1: Comparison between the representation of a simple DNA toolbox autocatalitic
module in DACCAD, and the same chemical system in COPASI. The latter graph was created
through the interface of COPASI from the SBML file exported by DACCAD.

a basic DSD system by coupling VisualDSD with a verification software and then propose a

corrected version [102]. Visual DSD is also useful to highlight counter intuitive phenomena such

as the winner-take-all effect [12, 118, 42].

DSD is also the foundation of Qian and Winfree’s seesaw gate [10, 41], which they used

to build complex logical circuits. However, the translation is hard to do by hand, and so is

the design of the actual hundred of DNA sequences making up the system. This is why they

designed a compiler1 which takes as input a description of a logical circuit and outputs the

DNA sequences that would implement it. The compiler can also export the system in the

Mathematica and Synthetic Biology Markup Language (SBML) [90, 91] format for simulation

of the system at the molecular level, and Visual DSD format for simulation at the toehold level.

The reason for designing automatically DNA sequences in DNA systems is that unwanted

interactions at the molecular level are very common. While simulation might show no problem

with abstract sequences, actual implementation, if done without care to the potential crosstalks,

can lead to unexpected secondary structures. In particular, since sequences are made up of only

four nucleotides, it is hard to prevent partial complementarity. NUPACK [93] and DINAMelt

[57, 94] are on-line tools designed to check how specific sequences will interact together and out-

put the most stable configurations. They also compute many characteristics of such structures,

such as melting temperature. NUPACK focuses more on the secondary structures of systems

with multiple kind of DNA strands, while DINAMelt provides various data on the interaction

1http://www.dna.caltech.edu/SeesawCompiler/

CHAPTER 4. DACCAD 62

of two sequences.

For broader applications, COPASI [134] is a very complete tool for analysis and simulation

of biological systems. It has the advantage of being able to perform mass action, stochastic

and hybrid simulations of any system described in SBML and is also able to handle parameter

fitting and optimisation, which makes it very powerful. However, it has the inconvenience of

requiring the user to provide the SBML file describing the system, or alternatively input each

and every single molecules, interactions and reaction rates by hand through the graphical user

interface, which is a long process (by human standards) for realistic systems. For this reason,

like the seesaw gate compiler, we gave the option to export systems designed with DACCAD

in the SBML format so that the user can perform additional operations with COPASI, or any

other software supporting this format.

Furthermore, DNA possibilities are not limited only to computation. Since DNA molecules

can be considered flexible when long enough, but locally rigid, they can be used to build complex

structures, for instance by using a long scaffold strand held in place by short “staple” strands

[135], or by using directly specific short strands [29, 55]. Such approaches have to rely heavily

on CAD software, such as caDNAno [136] and CanDo [56], as the number of different sequences

necessary to create complex structures is very large.

Also note that those different pieces of software work at different levels, ranging from abstract

species in COPASI to DNA strands in VisualDSD or DACCAD to actual DNA sequences in

NUPACK or DINAMelt, depending on the application.

4.3 Methods

4.3.1 Graphical interface and graph manipulation

The main graphical interface of DACCAD is separated into two areas (Figure 4.2): a display

panel showing the graphical representation of the system being designed and a data panel

showing context-dependent information.

As mentioned before, DNA toolbox systems can be represented as a graph, with a minor

modification to allow inhibitors to target templates. The Graph class from the JUNG library

[137] was extended to store this information, as well as additional sequences and template-

relative parameters, such as stability and concentration. The display is done by the JUNG

library, with a modified renderer that is able to draw inhibition arrows as well as changing the

colour of selected nodes. A second renderer was created for the graph animation, to support

CHAPTER 4. DACCAD 63

Figure 4.2: 1. Display panel. 2. Data panel. 3. Parameters area. Sets sequence and template-
relative parameters.4. Graph of the system. Selected nodes are displayed in blue. 5. File menu.
6. Sequences menu. 7. Options. Sets general and enzymatic parameters. 8. Plot. Simulates
and display the behaviour of the system.

size and colour changes. The plotting of time traces is done by the JFreeChart library [138].

Most graph operations (adding/removing a species, duplicating group of nodes and so on) have

a simple equivalent in terms of impact on the DNA system. The join operation is the only one

which is not completely straightforward. It is done by a simple flooding algorithm exploring

all the currently selected nodes to detect autocatalytic cycles. The species resulting from this

operation will have an autocatalytic template if and only if there was at least one autocatalytic

cycle (that is, a cycle in the directed graph of all selected species). All inhibiting strands

targeting a template (a directed edge in the graph) taking part in such cycle are fused, since

they are all inhibiting the same autocatalytic cycle. The fused inhibitor species is created and

set to target the autocatalytic template of the new signal strand. All templates inbound toward

the selected strands are redirected to the new species. Similarly, all outbound templates are set

to initiate from it.

4.3.2 Default parameters

Association constants and strand-displacement speeds are based on Zhang et al.’s values [61].

Strands dissociation constants and Michaelis-Menten parameters for the enzymes are taken

from Padirac et al.’s measurements [11]. The value of enzyme activities are also taken from

Padirac et al.’s experiment, except for the nickase activity, for which the fitted value was taken

CHAPTER 4. DACCAD 64

instead. In simple cases, saturation doesn’t modify much the behaviour of the system, which

is why saturation can be disabled. By default saturation is enabled, both to be closer to the

actual in-vitro behavior and to help design systems specifically using this phenomenon, like in

a winner-take-all system [12, 118, 42].

Realistic values for coaxial-stacking were hard to define, as there is not only a strong sequence

dependence [98], but this dependence is not even limited to the nearest-neighbours [104]. To get

our values, we considered the opening/stacking energy described by Frank-Kamenetskii’s group

[105]. We then applied salt and temperature (42◦C) corrections [106] to match the experimental

values of the DNA toolbox. This yields a range of values between 0.04 (25 times slowdown for

a nicking site GC) to 1 (no slowdown for a nicking site TA). The various possibilities are listed

in Appendix 4 and are provided as a pop-up in DACCAD. The default value corresponds to

a five times slowdown, but can be changed to match the actual sequences used in a particular

experimental setting. Note that there are many different and sometimes contradictory measures

of coaxial stacking, so DACCAD can only provide a best effort approach.

4.3.3 Equations generation and solving

In Chapter 2, we have explained how to reduce a given graph to a system of differential equations.

This system is actually never explicitly generated by the simulator. Instead, rewriting rules are

applied to deduce all the flux affecting a given part of the system on the fly, generating the

value of the derivatives of the various parts of the DNA system. Those derivatives are passed on

demand to the Gragg-Bulirsch-Stoer integrator [139] from the Apache Commons Mathematics

Library, generating the time trace. This algorithm was chosen for its high precision and step

adaptability, useful to solve systems such as the bistable switch [11] where two excluding parts

of a system get very close in concentration and requires careful integration to get the correct

dynamics.

The system of differential equations is only actually generated for export as a Mathematica

or SBML file. A generic file template containing the basic rules of the DNA toolbox chemistry

is completed through similar rewriting rules to the one used for the simulator.

4.3.4 Local optimisation

While trial and error is a simple way to optimise in-silico a system’s behaviour, such as an

oscillator’s amplitude or frequency, it might be inconvenient due to the sheer number of param-

eters existing in the model (duplex stability of every species, initial concentrations, template

CHAPTER 4. DACCAD 65

concentrations, Michaelis constants of enzymes). For this purpose, we added the possibility to

use CMA-ES, a state-of-the-art optimisation algorithm [92], to perform parameter optimisa-

tion. The structure is kept as defined by the user to make optimisation possible in a reasonable

amount of time. Structure optimization can also be attempted, but requires adapted algo-

rithms [140, 141]. The user can define which parameters can be optimised, which is useful to

accommodate existing constraints or reduce computation time.

The desired behaviour is defined by placing dots on the time plot of concentrations or by

loading a previously saved target profile. CMA-ES will then try to minimise the least square

distance between the target and the actual concentration curves. If no match can get below

the user-defined termination threshold, the algorithm stops after a given number of iterations

(default is 100) and set the parameters to the best fit. Note that this fit may actually be worse

than the original behaviour from the human perspective —such as a flat concentration curve

equal to the average concentration of the targeted oscillator— or better, but not good enough.

In those cases, it is possible to undo the changes or ask for another round of optimisation.

4.3.5 Dynamic graph display

Linking structure and behaviour of a toolbox system can be challenging, especially with large

systems. For this reason, we implemented a module displaying a dynamic representation of

the network. This module provides an animated version of the graph, in which the radiuses

of the nodes are updated to be proportional to the logarithm of the concentration of their

corresponding species at a particular time. We chose to use a logarithmic representation to be

able to see variations of concentrations at multiple orders of magnitude. The edges are also

updated, using a gradient of colour to represent the concentration of corresponding templates

being occupied by a signal strand (i.e. a completely inhibited connection would appear in grey).

Furthermore, to make the graph easier to read, it is drawn using a standard spring-electrical

graph drawing algorithm [142] (each node is given a repulsive force for all other nodes and an

attractive force which applies specifically to the nodes with which it is connected). This has

proven to be satisfying in terms of display results and computing time.

In the last version of DACCAD, enzymatic saturation is also displayed, giving the user a

better understanding of the under the hood mechanisms going on at a given time.

CHAPTER 4. DACCAD 66

4.4 Results

In this Section, we present various systems that were simulated using DACCAD, going from

the most simple to advanced networks. We also present the effects of enzyme saturation and

show that they can be both deleterious or instrumental, depending on the context. The actual

designing process is presented in the next Chapter.

4.4.1 Simple systems

As a proof of concept, we implemented Montagne et al.’s Oligator [67] and Padirac et al.’s

bistable circuit [11]. The time series were compared to those of their original article. An

additional reason to do so is that those systems represent two basic behaviours, respectively

oscillations and memory, making them appropriate building blocks for advanced systems. Mul-

tiple time plots, showing the impact of different parameters on those systems are shown in figure

4.3. This also gives a chance to quickly explore the impact of multiple parameters on such sys-

tems. In particular, coaxial stacking (and thus indirectly the actual nucleotide sequences) has

a strong impact on autocatalysts. For the Oligator, the system gets more stable oscillations

if the autocatalyst has little to no coaxial slowdown. In the case of the bistable circuit, it is

possible to find a stability diagram based on the initial concentrations of A and B similar to the

one found by Padirac et al. [11]. This diagram is strongly influenced by the coaxial stacking

values of the various templates. Based on the actual sequence used by Padirac et al. and their

corresponding stacking energy as defined by [106], it was possible to explain the unusually high

stability observed in one of the autocatalysts, showing that not only the overall stability, but

also the nucleotides at the nick have to be taken into account when designing DNA sequences.

Polymerase affinity for particular sequences [109] might also change the relative strength of

one side or the other, but can be approximated by a slight increase of the relevant template

concentrations.

4.4.2 Simple system optimization

The Oligator only oscillates on a restricted area of the complete parameter space [67]. To

find a working set with specific properties in terms of amplitude and frequency, we used the

optimization tool of DACCAD, leading to the results shown in Figure 4.4. In this particular

case, a very good match was found, but specific behaviours may be impossible. In case of

troubles with the evolution, it is recommended to reduce the number of evolved parameters

CHAPTER 4. DACCAD 67

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

A
B

IAA

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

A
B

IAA

 0

 5

10

15

20

25

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

A
B

 0

 2

 4

 6

 8

10

12

14

16

18

20

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

A
B

Figure 4.3: Top: the Oligator [67], simulated with first-order enzymatic activity (left) and
with enzymatic saturation and competitive coupling(right). With the chosen parameters, the
amplitude and frequency of oscillation is modified, but the behaviour is otherwise unchanged.
Bottom: simulation of Padirac’s bistable circuit. Only the time plot of the autocatalytic species
is shown. The initial concentration of A is higher than that of B, forcing the system into the A
state. If the concentration of autocatalytic templates is too high (right), the system saturates
the enzymes and loses its bistable properties. Performing some optimisations on the enzymes
parameters gives us some insight on this phenomenon: it turns out that with Padirac et al.’s
parameters [11], the nicking enzyme saturates first, causing this loss of bistability.

CHAPTER 4. DACCAD 68

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

A
B

IAA

 0

 5

10

15

20

25

30

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

A
B

IAA

Figure 4.4: Optimisation of an oscillator. At first, the system only displays damped oscillations.
The user can describe the desired behaviour through the interface (left, the dots represent the
user-defined behaviour). CMA-ES then performs some rounds of optimisation until a result
close enough is achieved (right). Note that the concentration scale is different between the two
figures.

and go through multiple intermediary behaviours so that the system evolves progressively in

the good direction. As an example, when trying to optimize the frequency divider (Figure 4.7),

the optimizer was not explicitly allowed to modify the behaviour of the oscillator. However,

by increasing the concentration of the template connecting the oscillator to the rest of the

circuit and using the load effect, the optimizer found a “good” match: the additional templates

sequesters an intermediary species of the oscillator, making it actually twice slower. Good

parameters were found by excluding this parameter from the optimization as well.

4.4.3 Animated display

Padirac’s switch oscillator uses three autocatalitic modules inhibiting each other in a circular

pattern. Interestingly, the oscillations occur in the reverse order of inhibition (Figure 4.5), a

fact that might be counter-intuitive. It can be hard to find this property by only reading the

time plot, if one is not looking for it. On the other hand, the activation order is obvious when

watching the graph animation.

4.4.4 Combined systems

Using the two previous building blocks, we can build advanced systems that would require

hundreds of lines if the ordinary differential equations were written by the user. By cascading

two bistable systems, we can get a two bit counter (Figure 4.6). If instead we chose to combine

an extended Oligator and a bistable, we can get a frequency divider (Figure 4.7). The systems

presented here are perfect examples of the problems that might arise when combining two

circuits. While the modularity of the DNA toolbox makes it simple to use multiple systems in

parallel, like in the two bits counter, many factors have to be taken into account when cascading

CHAPTER 4. DACCAD 69

Figure 4.5: Graph animation, relative to the time trace. The simulated system is a three-switch
oscillator [43] without enzymatic saturation.

systems. The most important is the load effect: when adding a template taking a given strand

as input, the sequestering of this strand will change the behaviour of the system it is part of. In

the frequency divider, for instance, the template connecting the oscillator to the bistable system

will change the oscillator’s frequency or even prevent anything more than damped oscillations.

This phenomenon is strongly dependent on the strand used as input: any perturbation to the

autocatalyst will prevent true oscillations, but the intermediate species are more robust. The

optimal course of action is then to create a link to a new species that will in turn bear the full

load of the connection to the other part of the system.

4.4.5 Saturation-based effects

Kim et al. [12] presented a biochemical phenomenon named winner-take-all that arises when

there is competition for a common resource in which the species that reproduces the fastest

using this resource will eliminate all competitors. This phenomenon was leveraged by Genot et

al. to perform efficient computation [118]. In the DNA toolbox, enzymes are perfect example

of such shared resources [42]. Since the standard experimental parameters are set to avoid

saturation (and thus competition) as much as possible, the activity of one enzyme has to be

CHAPTER 4. DACCAD 70

Figure 4.6: A two bit counter made of two push-push memory circuits [11], with the actual
circuit of the system shown on the left and the time plot of the relevant species shown on the
right. Switches come from an input of species 9 (clock), making this a non-autonomous system.
The system goes through the cycle species 8 (most significant bit, msb) low/ species 4 (least
significant bit, lsb) low; species 8 low/ species 4 high; species 8 high/ species 4 low; species 8
high/ species 4 high. Note that the spike of species 9 when switching the least relevant bit is
different when going from 0 (species 3 high) to 1 (species 4 high) than when going from 1 to 0.
This is due to the load effect: when species 3 is high, more templates that can capture species
9 are inhibited, so the free concentration of species 9 is higher.

 0

 5

10

15

20

25

30

35

 0 500 1000 1500 2000 2500 3000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

s3
s5
s6

Figure 4.7: A frequency divider. The original oscillator (s1 to I4, a version of Montagne et al.’s
Oligator [67] with a two species delay) is connected to a push-push memory (s5 to I11). The two
species delay has the double effect of making the oscillator more robust to the connection load
and slowing the oscillations to give enough time to the bistable circuit to switch. To produce
spike-like activation of the switch, an additional species (I12) is used to form an incoherent
feedforward loop. Species s13 and s14 are used to initially inhibit the switch, giving enough
time to the bistable switch to reach a valid state. Both state species from the bistable can then
be used as oscillators of half the original frequency, in opposition of phase.

CHAPTER 4. DACCAD 71

 0

20

40

60

80

100

120

 0 100 200 300 400 500 600 700 800 900 1000
C

o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

s1
s2

 0

100

200

300

400

500

600

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

s1
s2

Figure 4.8: Winner-takes-all effect. Time trace of two simple autocatalysts, with (center) and
without (right) saturation. Interaction is only done through competition for the polymerase
enzyme, other enzymes are set to work in first order regime. In this case, the autocatalyst s1
has more template than s2, resulting in the complete disappearance of the latter.

reduced by an order of magnitude. This can be achieved in an actual experiment by reducing

the actual quantity of enzyme introduced in the system. Each of the three enzymes creates

different behaviours when they are set to be the bottleneck of the reaction system, leading to

interesting dynamics. For instance, very low exonuclease means that a dominating species will

receive most of the degradation, thus protecting other species that would not survive otherwise.

Conversely, very low polymerase enables the winner-takes-all effect described by Kim et al., as

shown in Figure 4.8. Saturation can also be harnessed to generate various behaviours, such as

oscillations (Figure 4.9) in a system that would be stable otherwise.

4.4.6 Complex system: the mastermind game

Finally, as a proof of concept of modular design, we implemented a large system where repeating

motifs were connected together. For this purpose, we chose to implement a version of Master-

mind, a classic board game in which one player decides of a secret combination that the other

player tries to guess. A combination is a sequence of symbols (usually colours) in which order

is important. After each guess from the second player, the first player announce how many

symbols are correctly placed (correct guess) and how many symbols among the remaining do

appear in the combination, but at a different position (misplaced guess). A formal description

of those rules is given in the next Chapter. While, in the original game, there are multiple

possibilities for each position, we simplify it to use only two different symbols (A and B). For

this reason, we also don’t give the amount of misplaced guesses, as it would make the game too

easy.

We designed a simple version of this game using DACCAD. In our version, we use four

bistable motifs to store the secret code decided by one player. The opponent may inject one

of two possible species per position. If the correct species was selected, a downstream species

CHAPTER 4. DACCAD 72

-10

 0

10

20

30

40

50

60

70

80

 0 500 1000 1500 2000 2500 3000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

s1
s2

 0

 2

 4

 6

 8

10

12

14

 0 500 1000 1500 2000 2500 3000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

s1
s2

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

s1
s2

Figure 4.9: Saturation-based oscillations. In those systems, saturation works at the polymerase
level. When one autocatalytic module starts saturating most of the polymerase, its concen-
tration will increase, but, at the same time, so does the concentration of its inhibitor. On the
other hand, the inhibitor of the “loosing” autocatalytic module will be produced slower and
slower, while being degraded by the exonuclease. Once the current winner is inhibited enough,
the tendency are inverted and its concentration starts decreasing while the other autocatalytic
module starts sequestering the polymerase. Without saturation, the system reach a steady-
state after damped oscillations (top right). Note that the green oscillator has been translated
upward to prevent the overlap of both curves. On the other hand, when both short Oligator
are competing for resources, an oscillatory regime appears. Oscillations can be symmetrical if
templates concentrations are identical (bottom left), or asymmetric if there is a small difference
in concentrations (bottom right).

CHAPTER 4. DACCAD 73

is activated that we call “reporter” species. If all “reporter” species are present, then the

concentration of the “lock” species falls to zero, indicating victory. The whole system is shown

in Figure 4.10. To determine the number of correct guesses, the concentration of the reporter

species may be measured through fluorescence in a real implementation. By using the same

fluorophore for all of them, the only relevant information is the level of fluorescence which is

equivalent to the number of correct guesses. It is also possible to use the drop of the “lock”

species as a hint, although this modification is not linear with the number of correct results,

which might be confusing.

The design of this system was done step by step, starting from a single bistable circuit (blue

subsystem in Figure 4.10). This circuit was then complemented to prevent the expression of the

reporter species (yellow in Figure 4.10). Then the two possible inputs were added. DACCAD

was not only useful to adjust the various template concentrations until the behaviour was

correct, it also showed that inputs strands were not surviving long enough to have an impact on

the system. This prompted the development of the specialised input module (green in Figure

4.10). The indirect activation generates a large amount of intermediary species (see Figure 2.4),

which in turn has enough strength to allow the creation of reporter species (yellow in Figure

4.10). Finally, a direct activation is also added to compensate the delay induced through the

indirect activation.

Once the complete reporter circuit was considered correct, it was duplicated and the two

resulting circuits were connected, forwarding information about the correctness of the guess.

Then this whole system was duplicated once more and connected through an inhibition of the

lock species (red in Figure 4.10). Template concentrations were then adjusted so that the

behaviour of the system, that is the level of the lock species and reporters reflected roughly

linearly the amount of correct guesses. Particular attention was given to the case with only two

correct guesses, which can result in two possible configurations: either both guesses are on the

same “side” (that is on two directly connected bistable circuits) or on the opposite sides. In the

first attempts at creating the system, there was a strong asymmetry between those two cases,

due to the fact that the first case would saturate the template going from the connection species

(like s42 in Figure 4.10) to the final inhibitor, so that inhibition was stronger when distributed.

This was solved by adjusting concentrations so that the production of both connection species

would always stay in the linear response zone of the templates connecting them to the final

inhibitor. A complete description of this process is given in the next Chapter. A sample game

is shown in Figure 4.11.

CHAPTER 4. DACCAD 74

Figure 4.10: Implementation of the mastermind game. State bistables are shown in blue,
possible inputs in green, reporter species in yellow and lock species in red.

-5

 0

 5

10

15

20

25

30

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

output (s55)
I56

AAAB
AAAA
BAAA
BABA

Figure 4.11: Mastermind game. The state of a given position can be either A or B. Each
attempt improves the guess until the correct answer, BABA, is found on the fourth trial.

CHAPTER 4. DACCAD 75

4.5 Conclusion

In this Chapter, we presented a mathematical model for the simulation of systems designed

with the DNA toolbox. We also introduced DACCAD, a software created to help design such

systems. DACCAD allows its user to quickly create new DNA toolbox systems by using its

intuitive graphical interface. Such systems can then be refined at will by setting a large range

of parameters to fit the user’s experimental conditions. Once the design is complete, it is

possible to move on to the actual DNA sequence design, using tools such as NUPACK [93] or

DINAMelt [57, 94] (see Baccouche et al. [101]). While the value of some parameters, such as

the release slowdown due to coaxial stacking, can be hard to predict, the actual value can be

measured through some basic experiments and then updated in DACCAD, allowing to quickly

correct a design. Such parameters can also be slightly modified from their actual experimental

value to encompass more specific or sequence-dependent effects such as the different affinity of

the polymerase for different sequences [109]. Finding a way to fit such experimental parameters

directly from fluorescence data could be an important future application. Additional operations

can be performed through external software as DACCAD models can be exported in the widely

used SBML format. In particular, it is possible to quickly generate the DNA toolbox part of a

system and then move on to another software to add operations that are more trackable from

the human designer’s point of view. In that sense, DACCAD can be seen as a compiler that

takes a graph format and turns it into SBML, allowing the algorithmic generation of DNA

toolbox systems (for example, systems trying to solve instances of the 3-SAT problem [143]).

Moreover, this generation is facilitated by its simple graph description file format. DACCAD

can also be used to generate Mathematica files, using the core model of the DNA toolbox. Such

files have a built-in compatibility with the delay presented in the previous Chapter, so that

delays can be easilly introduced in the system.

We then showed how the software can be used to design systems of increasing complexity.

In particular, by judiciously setting the parameters, one can also observe different behaviours,

such as saturation-based oscillation or the winner-takes-all effect. Local optimisation can also be

performed by using the state-of-the-art algorithm CMA-ES. Moreover, the mathematical model

can be easily reused with other design techniques, such as evolutionary algorithms, which may

help optimising systems following multiple possible objectives [144], or find new design patterns

to create complex systems [140, 141]. It would also be interesting to investigate two-dimensional

reaction-diffusion implementations of the DNA toolbox [128, 43], which would prove beneficial

CHAPTER 4. DACCAD 76

to develop smart materials or create particular spatio-temporal patterns. To do so, DACCAD

could be extended to add diffusion terms to the current equations, and then export them to be

solved by off-the-shelf reaction-diffusion simulation software, such as ReaDY 2.

It is our hope that this software will speed-up the creation of novel networks, as well as

spread the usage and concepts of DNA computing and molecular programming to a broader

audience. The mathematical model of the DNA toolbox presented here might also give new

theoretical insights on its power, such as whether it would be possible to approximate arbitrary

CRN. The executable file and all examples from this article can be found online3. The code can

be obtained by contacting the author.

2code.google.com/p/reaction-diffusion
3hagi.is.s.u-tokyo.ac.jp/˜nathanael/cadtoolbox.html

Chapter 5

Using DACCAD to create complex

systems

In this Chapter, we will explore two different approaches to create complex systems with DAC-

CAD (DNA Artificial Circuits Computer Assisted Design). The first part will focus on creating

a system “by hand”, using all the tools existing in DACCAD. We will use the Mastermind game

from the previous Chapter as an example. This choice is justified by the fact that this system

required to use almost all of the options available in DACCAD, showcasing the possibilities of

our program.

The second part will focus on the scripted generation of systems. This last approach relies on

known patterns, such as oscillators or bistables. Those patterns can then be quickly assembled,

following some generation rules, and as such this process can be considered a compilation from

one model to the DNA toolbox. The rational for this approach is that such compiler would

help designers with very little biological background create impressive applications. Hopefully,

with the help of experiment automation [55], DNA computing systems will have a much broader

audience in a near future.

5.1 Creating the Mastermind game

The rules of this game were briefly introduced in the previous Chapter. As a reminder, this

game is played by two players with an asymmetrical role. The first player makes up a secret

combination. Formally, this combination is a string of symbols s1s2 . . . sn, with the set of

possible symbols Σ finite and known by both players. The second player must then try to guess

it in the least amount of tries possible. For each guess g1g2 . . . gn, the first player gives a hint,

77

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 78

in the form of the number of correct positions and misplaced symbols in the guess. A position

m is considered correct if and only if gm = sm. Among the remaining (incorrect) positions,

the number of misplaced symbols is the number of symbols that could be correct if they were

presented in a different order. Formally, it is equal to

max
σ∈O

Card({g�i|g�i = s�σ(i)})

with O the set of all permutations over the set of incorrect positions, g� (respectively s�) the

maximum substrings of g (respectively s) striped of all correct positions, and Card the cardi-

nality of a given set. For instance, if the combination was red-green-blue-black (symbols being

colors), a guess of red-red-red-red would give one correct position, zero misplaced symbol and

a guess of black-blue-green-red would yield zero correct, four misplaced.

The following will describe step-by-step the creation of a DNA toolbox system implementing

those rules, including the multiple design choices that were made along the way.

5.1.1 Encoding the secret combination

The first step to design this system is to define the encoding of the secret combination. Indeed,

this game requires a way to store information, as the system will check multiple time against

the player’s attempts.

There are two theoretical approaches to store data: passive and active. The passive approach

stores data in a stable media which can be read at a later time. In the DNA toolbox, only the

templates are stable over time, so encoding would be done through the initial concentration of

a given set of templates. It could be also possible to use components “outside the (tool)box”,

such as the DNA tweezers [31], Seeman et al.’s DNA actuator [32], or even our delay gate (see

Chapter 3) used in its join configuration.

The active approach relies instead on producing continuously some species corresponding to

the saved value. This is the case of Padirac et al.’s bistable circuit [11], for instance. Addition-

ally, the pattern they used is not limited to bistability and can be easily extended to n-stability

(a 3-stable system is shown in Figure 5.1). It has the main drawback of requiring a constant

creation of signal, which adds to the burden of the various enzymes.

However, the active approach has two majors advantages over the passive one. First, the

bistable circuit was well studied by Padirac et al. [11, 43], which makes it a safer bet for an actual

in vitro implementation with other DNA toolbox components. Second, it is possible to switch

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 79

Figure 5.1: The structure of a 3-stable circuit. Each autocatalytic species represent a possible
state. The stability is guaranteed by the inhibition of the other autocatalytic modules. We can
note that increasing the number of stable states requires a quadratic increase of the number of
templates.

the state of a bistable circuit on the fly, meaning that we could reset the game during a single

experiment. Conversely, the proposed passive systems are either outside the DNA toolbox and

may have some compatibility problems (DNA tweezers, actuator), have only partial software

support (delay gate) or cannot be updated dynamically (templates alone). Note, however, that

Genot et al. showed that it could be possible to update template concentrations by using DNA

Strand Displacement systems as a complement [42]. Additionally, the delay gate is supported

by the saturation-free model and may be a valid design option for a smaller system.

However, a n-stable system requires n autocatalytic templates, plus n × (n − 1) inhibition

templates, for a total of n2. It is much more efficient, in theory, to use multiple bistable circuits

to represent symbols, as we can store n states using �log2(n)� circuits. Moreover, this does not

take the enzymatic burden into account. A n-stable circuit produces n species (1 autocatalyst

and n − 1 inhibitors), while the group of bistable circuits produce 2 × �log2(n)� species. This

means that, overall, binary encoding is the best. We then encode each position of the sequence

by a group of bistable (enough to encode all possible symbols).

5.1.2 General design

Based on the previous observation, we then chose to create a Mastermind game with only two

symbols and four positions. Since binary encoding is optimal, any version of the game with

more symbols would be a direct extension of this design with multiple bistable circuits combined

to represent one position. The choice of four positions is arbitrary and can be easily modified.

We decided to use a divide and conquer approach for the logical evaluation of a guess

from the player. Each position in the guess will be attributed a dedicated subsystem that will

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 80

Figure 5.2: Drafted design of the decision system using the divide and conquer approach.

evaluate its truth value. Results are then grouped two by two until they percolate to the top.

Molecular computing is very efficient for this approach, since the analogue signal created by the

concentration of chemical species can represent directly the number of correct guesses. However,

this signal has to be linear to be easily interpreted, which makes the combining part non-trivial.

The general design is shown in Figure 5.2. Because of the symmetry of the Mastermind game,

we only have to design the three different parts (evaluation, combination and result) shown in

the Figure.

5.1.3 Position evaluation

We choose to produce a species (dubbed reporter, see previous Chapter) when the guess is

correct and nothing when the guess is incorrect. There are two ways to do so: either use the

guess species as an activator for the reporter, with an inhibition if the guess is wrong (see Figure

5.3), or use the bistable to continuously prevent the creation of reporter and inhibit this activity

with the guess (double negation, our actual design). The main problem with the first option is

the leaky nature of the inhibition process. Even when the wrong species is introduced in the

system, some reporter is produced. This leak will then be amplified by the successive layers of

signal combination, giving potential false positives.

We use the opposite approach. An autocatalytic template is added to the reporter, with an

indirect inhibition from the bistable circuit (Figure 5.4). The intermediate species is shared by

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 81

-2

 0

 2

 4

 6

 8

10

12

14

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

wrong guess
correct guess

reporter

Figure 5.3: Alternative design for the position evaluation (left) and its response to both possible
inputs (right). We can see that a low concentration of signal is still created with the wrong
input (leak).

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

wrong guess
correct guess

reporter

Figure 5.4: Indirect evaluator design. The reporter species can only be produced with the
correct guess. Note the delay introduced by taking an indirect path.

each states of the bistable circuit to save sequence space1. We now prevented the leaks, but we

have instead a sensibility problem. As described in the previous Chapter, we finally used the

load effect to sustain the presence of the guess species long enough to get an effect.

We then need to optimize this part of the system to avoid enzymatic saturation later on.

Indeed, it is obvious2 that making copies of such a large system will have major non-linear

effects on the enzymes.

Templates concentrations were optimized using CMA-ES [92] until reaching a satisfying re-

sponse to input. To do so, the reporter circuit was simulated for about 2000 minutes. To get

1Remember that each time we add a node, we will have to design a sequence with the corresponding specifi-
cations.

2in retrospect, at least. . .

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 82

a saturation similar to that of the final system, dummy autocatalytic and activation templates

were also included in the system. The reason to choose this technique instead of simply opti-

mizing on the complete system is twofold. First, all evaluators will be identical in the end, so

we only need to evolve one. Second, autocatalytic modules and empty templates are fast to

simulate, so evaluations by the optimization algorithm are faster.

At 500 and 1500 minutes inputs were added; first the input corresponding to the state of

the bistable circuit, then the one corresponding to the other possible state. The long delay

was used to ensure that the steady-state is reached at the time of input. The optimization

target was then set to have a large response when the correct input is added and no answer

otherwise. Once the optimization was done, template concentrations were adjusted so that the

system would be symmetrical. We also rounded those concentrations to the nearest integer, to

take into account the maximum precision of the experimental material.

5.1.4 Combining results

At this stage, we have again a design choice to make. On the one hand, we can choose to encode

the amount of correct answers digitally, for instance by reusing the two-bits counter presented

in the previous Chapter. However, it is much easier to simply connect each reporter species

together to get an analogue representation of the number of correct guesses. The more correct

positions, the larger the generated concentration. This design also requires much less parameter

tuning than additional toggle-switches [11].

Combining signals is not as straightforward as could be hoped. Connecting all the reporter

to the same species leads to a non-linear response due to the exonuclease. The more this species

is produced, the more effort will be needed to increase its total concentration further. The effect

is not so obvious for this simple implementation of Mastermind (Figure 5.5), but it mostly means

that the design cannot be scaled up. We chose instead to use the layered design presented in

the previous Chapter to ensure this scalability. This design is not without flaw, as the balance

between different groups becomes non-linear instead, but it was possible to use CMA-ES to

automatically solve this problem. Additionally, inhibiting an autocatalyst tend to have more

impact than simply producing a final species, as can be seen by comparing the concentration

of I56 and s55 in Figure 4.11.

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 83

-5

 0

 5

10

15

20

25

30

35

40

 0 100 200 300 400 500 600 700 800 900 1000
C

o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

successive inputs
output

Figure 5.5: Non-linear response to a growing number of correct guesses. The higher the output
concentration, the more impact the exonuclease will have on it.

5.1.5 Misplaced guesses

Technically, to implement the full rules of the Mastermind game, we need to add one additional

subsystem. As we mentioned in the description of the game, Mastermind also includes a number

of misplaced guesses in the hint to the player. This is done by computing how many symbols

could be in a correct position if an optimal permutation was applied. This computation excludes

the guesses that are already corrects, but such guesses can be easily removed upstream of this

system by the position evaluation modules. We note s� = s�1s
�
2 . . . s

�
k the maximum substring of

unmatched positions and g� = g�1g
�
2 . . . g

�
k the guesses corresponding to those positions.

Implementation of permutation is not straightforward, as we would get hit by the combi-

natorial complexity of such system. It might still be manageable for two or three symbols and

a few positions, but this design would not scale up. Instead, we can note that we do not care

about the actual optimal permutation, as this information is obviously not given to the player.

We can instead count how many of each symbols are remaining unmatched, and compare this

value to the number of times this specific symbol appears in the incorrect guesses. Formally,

we get

misplaced =
�

a∈Σ
min

�
Card({i|a = s�i}), Card({i|a = g�i})

�

We saw how to sum results in the previous section. What is left is to be able to compute

a minimum over two values, that is, to be able to perform a comparison. Comparing the

concentration of a species a to a species b can be done efficiently in the DNA toolbox by using an

inhibited activation template connecting one of the compared species (without loss of generality

a) to a reporter. The inhibition is done by other species, here b, and is calibrated so that there

is a (noticeable) increase of the reporter if and only if the concentration of a is higher than the

concentration of b (comparator in Figure 5.6). Then, it is possible to combine the comparator

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 84

Figure 5.6: Amount of misplaced guesses for a given symbol. The effect of this system is to
find the minimum between the number of guesses of symbol a and the number of unmatched
symbol a. If the guess is higher, it will pass the comparator check and trigger the threshold,
allowing the number of unmatched symbol to activate the reporter. Note that the two inputs
(number of guesses for symbol a and number of occurrences of a in the unmatched positions) are
simplifications, and represent two specific circuits based on combining specific guesses and status
before connecting the results to this network. Note also that the two comparators cannot have
exactly the same (mirrored) template concentrations, since in the equality case, one comparator
has to be accepting and the other blocking to get the correct result.

to a reporter by using a threshold. This threshold design has been exploited in the position

evaluation mechanism: we use an autocatalyst constantly generating an inhibitor (Figure 5.4).

This autocatalyst can in turn be inhibited, but if the inhibition is not strong enough to stop

its autocatalysis (which represents the threshold), no signal will be observed. Conversely, if the

autocatalyst is temporarily stopped, the output signal will be mostly independent of the input.

There is still an input dependence around the threshold value, but it is possible to have a clear

cut due to the roughly digital nature of our input. The schematic idea of this circuit for a given

symbol is shown in Figure 5.6.

We can then note that this system is fairly large and will saturate the enzymes in the

full system. Moreover, as we noted in the previous Chapter, giving the number of misplaced

guesses is unnecessary in the simple case we are implementing, which is why this system was

not included in the design. It displays however interesting patterns that can be created with

the DNA toolbox. Additionally, such patterns can be reused in a multitude of systems, and

far from constraining the designer, they help him not “reinventing the wheel” every single

time. In Chapter 7, we will see how new patterns can be automatically discovered by using an

evolutionary algorithm.

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 85

5.2 Scripted generation of systems solving the 3-SAT problem

In this section we will discuss how patterns, such as the ones we talked about so far, can be used

for the scripted creation of systems. This opens the door to the creation of high-level language

compilers [145] which could build efficiently the systems described by combining such patterns.

As a proof of concept, we apply this approach to 3-SAT, a classical computer problem [146].

As a quick reminder, in the 3-SAT problem, we are working with boolean formulas such as

this one:

(x ∨ y ∨ z) ∧ (¬x ∨ y ∨ t)

x, y, z, t and so on are called literals which can take either the true or false value. ∨ represents

the logical “or”, ∧ the logical “and”. The problem is to find if a given formula can be satisfied,

that is, if there is a particular set of values for the various literal that makes the overall formula

true. This problem is one of the most famous representatives of the NP class, for which there

is, in the general case, no better algorithm than trying all possibilities. This property makes

the 3-SAT problem a nice benchmark for a given computation paradigm, especially for those

based on parallelism. It is then no surprise that DNA computing was also applied to solve this

problem [82, 14, 83].

This work appeared as part of Reference [143].

5.2.1 Related work

For molecular programmers, being able to describe systems in a high-level language, as close as

possible to natural language, and have it automatically turned into an actual detailed experi-

mental setting is a huge improvement toward larger systems. Similarly to what happened with

the advent of the C programming language [147] in computer science, a new class of molecular

programming could emerge from this approach.

Many steps have been made in this direction. Luca Cardelli proposed a theoretical DNA

strand algebra [148] that could be used as a low-level assembly code for DNA computing.

Building on this, methods were created to compile DNA Strand Displacement (DSD) systems

[149, 150], which eventually gave the birth to VisualDSD [96]. This piece of software provides

a very comprehensive user interface and multiple tools for the design of DSD systems. Qian

and Winfree also developed their own program which could compile, by successive intermediary

steps, boolean logical circuits into DNA sequences that could then be mixed in a test tube. The

resulting systems are impressive [10, 41] and illustrate well the benefits of this approach.

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 86

Figure 5.7: The two patterns (literals and clauses) used by the compiler. When the formula
is parsed, we keep track of all the literals used. Each literal is represented as a set of two
species. The clauses themselves are then encoded with an indirect 3-stable using connections
to the relevant shared literal value. Here, the clause encodes x ∨ y ∨ z. Note that a state in a
given clause is also inhibited by the literal species corresponding to the opposite truth value.
For instance, the species representing the literal ¬x will inhibit all xc states in the clauses of
the system.

5.2.2 Compilation

Like in any compiler, the first step is to define a translation of the high-level language to a lower-

level one. If no optimization of the code is expected, this can be seen as a simple rewriting

process. The higher-level language is defined by a grammar and each elements are attributed

an equivalent at the lower-level. Note that this task can be made much easier if the grammar

has some nice properties, such as being unambiguous. Here, the high-level language is simply

that of the 3-SAT formulas, which is very rigid and as such can be parsed without problem.

Once the code is parsed, we can write its lower-level equivalent. The compiler uses predefined

basic patterns and combine them to form the final system. We already described some of such

patterns, like the threshold (Figure 5.6), the comparator or Padirac et al.’s bistable circuit [11].

For the problem at hand, we represent each literal by two specific species, one for the value

true and one for the value false. Each clause is represented by an indirect 3-stable (Figure

5.7): the stable state represents which literal give the value true to this clause. This design

is justified by the fact that only one true literal is enough to make the whole clause true. We

use an indirect autocatalysis to be able to share the value of the literals. At parsing time, we

remove duplicated clauses as they do not change the satisfiability of the formula, but make the

DNA toolbox system larger.

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 87

The system is then implemented in the graph file format of DACCAD (see Annexe B.4)

which can also simulate the result. We say the steady-state of our system is coherent if and

only if no literal is set to be both true and false (i.e. both species present).

Theorem 5.2.1. An instance of 3-SAT is satisfiable if and only if its steady-state in the DNA

toolbox equivalent is coherent.

Proof. ⇒: If the 3-SAT formula is satisfiable, then by definition there is a set of values for the

literals that verify this formula. Let us consider the corresponding state. By construction of

the indirect 3-stable circuits, this (or a degenerated version3 of this) is a stable state, so this

system has at least one valid stable state. Suppose that the system is in an incoherent state.

Without loss of generality, let x be the literal that is in an incoherent state. Then x is used

to verify some clauses, while ¬x is used for others. By construction, the concentrations of the

x and ¬x species are low, so the state can only be steady if any modification to the clause

3-stable circuits would lead to an other incoherent state. However, we have shown that there

is at least one coherent steady-state, so there exists a sequence of thermodynamically favorable

modifications in the system that leads to this other state. So the incoherent state is not stable.

⇐: Trivial by construction: the truth value of each literal verify the formula.

Note that this proof only works for idealized systems. As we showed in the previous Chapter,

enzymatic saturation can change the stability of systems. For a very large formula, the number

of species might prevent a correct computation if the concentrations are not carefully adjusted.

In the following examples saturation was disabled to bypass this issue, but for an actual in

vitro implementation adjustments are required. This might be mitigated by simplification of

very large systems: it has been shown that the probability for a random 3-SAT formula to be

satisfiable is linked to the ratio of the number of literals over the number of clauses, with a very

clear phase transition[151].

We can note that we get an implementation of a 3-SAT problem in linear size (in term of

sequences and templates). However, the systems we are implementing are frustrated : many

autocatalytic states are inhibiting each others, leading to particular relaxing dynamics taking

an exponential amount of time to reach the steady-state [152].

The last step, the actual DNA sequence design, has not been realized yet, but could be

completed by interfacing with NUPACK[93], for instance.

3if the value of one of the literal does not mater to verify the formula, the concentrations of both its species
will go to zero

CHAPTER 5. USING DACCAD TO CREATE COMPLEX SYSTEMS 88

 0

 2

 4

 6

 8

10

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

x
y
z

!x
!y
!z

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900 1000

C
o
n
ce

n
tr

a
ti

o
n

(n
M

)

Time (min)

x
!x
y

!y
z

!z

Figure 5.8: Top: Simulation of a simple 3-SAT problem. In this specific case, the system settles
on both y and z true, with the value of x undecided. Bottom: Simulation of a large problem.
In this case, no agreement was possible. Conflicting literals are depicted on the right.

5.2.3 Simulation results

The system created were fairly large, but were correctly simulated, hinting that bigger systems

yet can be designed with DACCAD. Figure 5.8 shows the results for (x∨ y ∨ z)∧ (x∨ y ∨¬z)∧

(¬x ∨ ¬y ∨ z) and a very large non satisfiable formula (7 literals and 16 clauses).

5.3 Conclusion

In this Chapter, we saw two complementary ways to design systems through DACCAD. The

first part showed how DACCAD’s user interface can be used to create systems with complex

behaviors. It also explained how to solve saturation problems using CMA-ES [92], which is a

built-in tool of the program.

The second part showed how to use the graph representation of DNA toolbox systems to

compile instances of the 3-SAT problem into a chemical equivalent. This approach can be

extended to many problems, provided a library of basic patterns can be set to serve as assembly

language. We will see in Chapter 7 how some new patterns could be found and how to deal

algorithmically with complex problems.

Finally, we should note that the two approaches presented in this Chapter are in no way

mutually exclusives. It is in fact quite possible to use a script to compile some large system

before doing minor modifications with the graphical interface.

Chapter 6

Extending the model to debug side

reactions

In the previous Chapters, we mostly assumed that the reactions described by our model were

perfect: no polymerase error when generating a new strand, no unexpected hybridization and so

on. We only reconsidered this assumption in Chapter 3 when the experimental reality flagrantly

violated this view, leading us to enrich the delay gate model with imperfect stoppers. Similarly,

strange experimental results with DNA toolbox systems are likely due to side reactions not

taken into account by the model of Chapter 2, and require a concrete investigation.

In computer science, many tools, such as debuggers, are always available, allowing the step-

by-step execution of programs, detailed data analysis and more. This close inspection allows us

to determine exactly what the problem is. While more often than not this process is extremely

time consuming, as the origin of the bug might be unknown, it is still a convenient method.

In DNA computing, however, we do not even have the luxury of this detailed inspection. Due

to the lack of interface with the system, we end up with an experimental black box and are

reduced to play with its inputs (the DNA molecules we use, the buffer and so on) hoping to

get some insights from the (noisy) output we observe. Moreover, some of those outputs may

be completely incorrect due to a human mistake, making it even harder to find where the

real problem can be. This lack of data may be mitigated by the recent possibilities to test a

large amount of different inputs with only one experimental setting [129]; microfluidic mixing

devices [86] can be used to get a better control of what is inside the black box; automation

of experimental preparations [55] can remove the human factor. Finally, it is also possible to

do many replicates of the same experiment and stop the evolution of their respective systems

by dropping abruptly the temperature below the activity range of the enzymes. Additional

89

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 90

analysis, such as species concentration titration, are then be performed on those samples to get

a sense of the precise evolution of the system with time [153, 67].

Once enough data have been collected on a specific “buggy” system, hypotheses are made

and then tested, as is the classical approach of scientific research. For instance, if a DNA

sequence is suspected to have unwanted secondary structures, a confirmation experiment would

use the same system structure, but using a different DNA sequence. In this Chapter, we show

how we can extend the DNA toolbox model to take into account such hypotheses and simulate

quickly the impact they have on a given system. While such simulation is not enough to

conclude whether or not a supposed problem is indeed responsible for the observed behavior,

this approach gives us a way to orient the search and plan meaningful experiments. In particular,

if the simulation fails to reproduce the observation, it means that the hypothesis is wrong or

incomplete.

In the first section, we describe some basic problems that may arise when using the DNA

toolbox. While those problems have been mostly removed from the standard implementation of

the DNA toolbox, any change to the framework (such as using a different polymerase) requires

to give them careful consideration. Then, we try to estimate what assumption we made in

the model (see Chapter 2) might be hard to satisfy, and what problem would then arise. In

the third section, we present the methods we use to detect potential errors in faulty systems.

Finally, we apply this method to explain some unexpected experimental results.

6.1 Problems already taken into account in the DNA toolbox

Montagne et al. [67] and, later, Padirac et al. [43] took steps to prevent unwanted reactions

between elements of the DNA toolbox. Namely, DNA strands used as template are chemically

modified to ensure the following properties:

• Modification of the template 5� end to prevent degradation by the exonuclease. However,

this modification does not prevent the enzyme from attaching to the template, forcing

us to take the concentration of free template into account to compute the exonuclease

saturation (see Chapters 2 and 4).

• Modification of the template 3� end to prevent extension by the polymerase.

• In the nicking enzyme recognition site of the output, a DNA nucleotide has been replaced

by an RNA one (U, uracil). This modification does not affect the action of the polymerase,

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 91

but prevents the nicking enzyme from attaching. This lowers the saturation effect of

templates on the nicking enzyme.

Signal sequences cannot be modified, as they are generated on the spot by the polymerase.

However, their sequences should be designed to avoid the following problems:

• Multiple G (guanine) in a row. While we only consider Watson-Crick base-pairing [24]

in our model, DNA can congregate in much more complex ways. In particular, DNA

with four Gs in a row can fold into a structure called G-quadruplex. In the context of

the DNA toolbox, this structure will prevent the DNA strand from interacting with its

complementary and thus should be avoided.

• Multiple C (cytosine) in a row. Since signal and templates are complementary, multiple

C in one means multiple G in the other. See the previous item.

• Multiple nicking recognition sites. Having more than one would allow the nickase to cut

the sequence in the wrong position, creating unwanted products. Note that this extraneous

site may overlap between two sequences (Figure 6.1, b.).

• Complementary of the nicking recognition site. This will cut the template, effectively

changing the system. Depending on where the template is cut, it may becomes a sort of

signal protected against degradation. The resulting behavior can be hard to predict.

• Self-hybridization. A signal species should be prevented to be able to interact with itself

(or any other species). There are multiple possibilities, depending on which part of the

sequence gets hybridized (Figure 6.1, c. and d.). This will at least change the rate at

which the species attaches to templates and at worst allow the creation of new species or

pseudo-templates.

• Similarity (first order leak). If the sequence of two signal species share too many nu-

cleotides, especially at the 3� end, those species may be able to activate each other’s

templates. This will create unexpected connections in the system, changing its behavior.

They also optimized both buffer and reaction conditions. Buffers have specific salt concen-

trations and pH, as well as an addition of multiple molecules for enzymatic stability such as

trehalose, DTT (Dithiothreitol) and BSA (Bovine Serum Albumin). dNTP concentrations were

adjusted to allow long term operations in a closed environment while keeping phenomenons such

as zeroth order leak as low as possible. Reaction conditions (enzymes, working temperature)

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 92

Figure 6.1: Possible problems with interactions. a. Three areas of a signal strand. The effects
of a copying mistake from the polymerase are different depending on the area. Overall, any
modification will decrease the affinity of the sequence for its template. An error in the nicking
recognition site (nick) will disable the nickase activity. An error at the 3� end (pol) will possibly
prevent the extension by polymerase on its template. b. Effect of having the sequence recognized
by the nickase shared on a template. An erroneous cut will happen, producing incorrect species.
c. Possible self-hybridization. Some will protect the strand against degradation (∗) or nicking
(�). d. Possible hybridization of two signal strands. Some conformation may be protected
against degradation (∗) or nicking (�).

were also taken into consideration. The DNA toolbox was thus optimized to run systems for as

long and as stably as possible in a closed reactor. A complete description of those experimental

conditions and design guidelines can be found in Baccouche et al ’s Method [101].

However, despite all those precautions, we still observe the emergence of what is informally

called “the divergence”. In EXPAR [154], a system similar to the DNA toolbox, it was noted

that such behavior is due to the appearance of autocatalytic parasites which hijack the enzymatic

machinery [155].

6.2 Relaxing the model limitations

Since this divergence is not due to the DNA sequences (or at least not in a way we know of),

we have to examine in more details the hypothesis we made in Chapter 2. Namely, we cannot

assume that the actions of enzymes are perfect or without intermediary steps anymore. This

gives us a pretty comprehensive list of what can (and probably do) go wrong in an in vitro

implementation. We can then enrich the model with part or all of those additional reactions

representing enzymatic errors.

• Polymerase: Bst Large Fragment, the polymerase used in the standard implementation

of the DNA toolbox, lacks any proofreading ability [156]. This means that it will make

mistakes when copying a template, using spuriously the wrong nucleotide in some places.

Those mistakes will have different effects based on where they are located (Figure 6.1,

a.). The polymerase can also extend a DNA strand past the end of the template, adding

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 93

a few more nucleotides. In most cases, those additional nucleotide will only prevent the

new signal strand from being compatible with its target templates. There are however a

few chances that the new strand will be able to attach its 3� end to itself or other signal

strands, causing the problems noted in the previous section (Figure 6.1, c.).

• Nickase: this enzyme might cut at the wrong position, creating shorter or longer DNA

strands than expected. They should, however, behave almost normally: a longer strand

will still attach on a template at the correct position, a shorter one will only be less stable.

Nickase might also attach to the wrong structure (like a template duplexed with an input

signal strand, noted tempin in Chapter 2), making it too stable, preventing extension by

the polymerase and saturating the nickase. Finally, the nickase may be too slow to cut

an extended strand. In this case, the two-domain strand might be able to denature from

the template and act as a sort of new template. This is mitigated by the reverse reaction,

where it attaches back correctly to a compatible template1 and is cut afterward.

• Exonuclease: of the three enzymes, this is the one that has the least chances from creating

a parasitic species. Even if a DNA strand is only partially degraded, it will not be able

to react in any new (or meaningful) way. The exonuclease may also accidentally destroys

templates, but this will only impact the global reaction speeds of the system. Overall,

this enzyme will instead digest new species that were created by accident and delay the

apparition of such parasites, acting as an error-correction mechanism.

All those mechanisms are fairly unlikely. The main reason why divergence still happen is

likely due to the sheer number of molecules reacting together, combined with the emergence

of an aggressive autocatalytic behavior and/or mechanisms preventing the degradation of the

parasite by the exonuclease. Indeed, the standard model predict that, under normal conditions,

even legitimate autocatalytic templates will not be able to sustain the production of signal if

their concentration is too low. Even taking into account exonuclease saturation, problematic

DNA species are created one at a time, which is orders of magnitude below the theoretical

requirement.

1Considering the number of molecules in the solution, it is unlikely that this will be the exact same template
it separated from.

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 94

6.3 Debugging side reactions: method

Our strategy to debug time traces of experiments relies on taking into account various possible

faulty operations using a stochastic algorithm, and check the simulated behaviors match reality.

Then, we can check what reaction paths generated the incorrect trace. The debugging takes

place in the following four steps.

First, check that all DNA sequences used in the system verify the DNA toolbox guidelines

[43, 101]. This step should only be a routine check if the sequence design was done following

the specifications of Padirac et al. [43]. It might also be useful to check the troubleshooting

Section of Baccouche et al. [101]. Any problem at this stage should be corrected as much as

possible, as it will make the analyze of other potential problems harder.

Second, based on the observation, we choose to add some reactions that are most likely to

cause the faulty result. For instance, a progressive signal reduction may be a sign that the

exonuclease is degrading templates; the divergence is a sign of strong parasitic species created

by polymerase errors. Allowing into the model all side reactions from the previous Section is a

costly possibility, but should be avoided due to the combinatorial state explosion: each of this

side reactions will introduce new classes of incorrect DNA species, pushing against the limits of

what can be simulated.

We can then move on to simulating the system using the Gillespie algorithm [157]. This

is a stochastic algorithm, as opposed to the predictive one we have been using so far. Indeed,

to avoid the combinatorial explosion of species, we try to simulate a limited number of DNA

strands. At each simulation step, we select among all available reactions which one will happen

next. This selection is weighted by the kinetics of those reactions: a fast reaction will have

more chances to occur than a slower one. The state of the system as well as the list of possible

reactions are updated: a new species can allow additional reaction paths, while a destroyed

species may close some. Since kinetics for side reactions are not available, we use “reasonable”

values, as described in Chapter 3.

Finally, we compare the simulated behavior to the real one. We can quickly iterate among

various conditions until a promising match is found. All that is left is to look at the generated

reaction paths and analyze their behaviors, do statistics, and so on. Sets of experiments are

then designed to check those hypothesis.

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 95

6.4 Application to a simple autocatalytic reaction

We focus in this Section on analyzing the strange behavior of an autocatalytic module in an

environment without exonuclease. As mentioned before, the exonuclease has a correcting role

in DNA toolbox systems. As such, we can expect parasitic DNA species to be much more likely

to appear when the concentration of this enzyme is low or null.

Looking at the experimental results on a ramp of concentration of polymerase (kindly pro-

vided by Dr. Anton Zadorin and reproduced with his permission, Figure 6.3), we can see a

first plateau, then a shallow increase of fluorescence followed by an exponential growth until

(presumably) all dNTPs in the solution are consumed.

Based on the standard model, the first plateau corresponds to the saturation of the au-

tocatalytic template. Once the concentration of signal strand in the solution is high enough,

the template can be considered to be continually double-stranded: as soon as a signal strand

detaches, another takes its place. Most of the fluorescence from EvaGreen comes from double-

stranded DNA, so even though more signal strands keep being produced, no significant increase

in fluorescence should happen anymore. The best explanation for the next brutal increase is

then to assume the apparition of another autocatalytic reaction. Our objective will thus to look

for reaction paths allowing autocatalysis.

Sequence check The first step was thus to analyze the autocatalytic sequence. We found

that the DNA sequence of the autocatalytic signal allowed two signal strands to hybridize,

forming a dimer. Moreover, this structure was blocking the nicking site of one of the two

strands. While, in many cases, this would be removed by strand displacement due to the

template (that is, the template attaches completely to one strand, freeing the other), there is

a chance that the signal strand, elongated by the polymerase, would detach before nicking was

available (Figure 6.2). Those chances are even increased by the smaller length of the template-

signal duplex, equivalent to that of an inhibitor, making the denaturation a fast reaction. We

are then left with a two-domain “signal” strand. This strand can be elongated even more, as

long as its last nicking site is disabled while it is attached to a template.

Additional reactions Since data with different sequences for this experimental setting

are not available, we chose to model this potential deactivation. We add two possible reactions:

two simple signal strands can hybridize to give a signal strand with disabled nicking activity,

and the reverse reaction, a duplexed signal denatures, releasing the two original strands. Those

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 96

Figure 6.2: Accidental generation of two-domain signal strand. Since the nicking recognition
site is not attached to the template, the signal strand is not cut before being released. Not that
in most cases, the second signal strand will be removed by strand-displacement, making this
outcome unlikely.

reactions can adapt to signal strands of any size, as long as there is an available nicking site.

We add in the model the possibility for new templates to be generated by zeroth order leak

from the polymerase: even without primer, the polymerase can attach to the single-stranded

two-domain signal strand and generate a new template from it. Note that this process will

completely double-strand the signal strand, allowing the nickase to finally cut it. Those new

template strands are not modified at the 3� end, meaning they can react with polydomain signal

strands to get elongated. In doing so, they may end up double-stranding some nicking site on

the polydomain signal strand, leading to cutting it into smaller, less stable pieces. The elongated

template is then freed and able to interact with the rest of the system.

Stochastic simulation We can then simulate the system. Polymerase error is not taken

into account, considering that blocking the nicking site occurs most of the time due to the

unfortunate tendency of the signal strands at hand to hybridize to each other at this position.

A typical simulation result is shown in Figure 6.4. Note that we are not simulating the dNTP

concentrations, which is why the curve is not capped. While we do observe a plateau followed by

another fluorescence increase, there is no exponential growth. This primes the suspicion that

polymerase copy errors might definitely play a role in triggering this additional exponential

growth.

Estimation of the system’s real behavior For the reason given in the previous para-

graph, we need to add to our model the possibility for the polymerase to make a mistake when

copying the nicking site, generating a strand with a faulty nicking site. Other copy errors do not

seem relevant to the problem at hand, and can probably be ignored. Eventually, a generated

template with a mismatch in (one of) its output domain(s)2 will generate new signal strands

which can still interact with normal templates while being unable to be cut by the nickase. A

quick search of reaction paths shows that this can lead to an exponential increase of templates

(Figure 6.5). Note that in any case, the ever increasing length of DNA templates will worsen

2There might be more than one if the template was generated from a long signal strand, or was elongated
afterward.

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 97

Figure 6.3: Data provided by Dr. Anton Zadorin. Autocatalytic template with no exonuclease.
Ramp of polymerase concentration.

 0

100

200

300

400

500

600

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
e
r

o
f

m
o
le

cu
le

s
(a

.u
.)

Time (a.u.)

double-stranded template
free simple signal

two-domain signal
fluorescence

Figure 6.4: Stochastic simulation of the system with the possibility to disable nickase recognition
site. Values for reaction rates are similar to those in the simulation of Chapter 3 (slow, average,
fast). After reaching a plateau, the system starts creating more templates, which leads to a new
increase of fluorescence.

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 98

Figure 6.5: Example of autocatalytic path due to a template with a faulty nicking recogni-
tion site on its output. Reactions are actually multi-steps, similar to those of the standard
DNA toolbox. The triangle (�) mark represents faulty nicking sites. 0th indicates a zeroth
order polymerase activity [103]. Note that this cascade produces another species with such
autocatalytic path (the template with both deactivated nicking site).

the saturation of nickase, making faulty dissociation (dissociation of a two-domain signal strand

before it is cut) more frequent.

6.5 Related works

High-level models cannot capture everything and unexpected experimental behaviors can be

explained by leaky reactions missing in our standard model. By using instead a bottom-up

approach like in oxDNA [53], it is possible to maintain specific properties of DNA (for instance,

coaxial stacking of DNA nucleotides) that may have a huge, albeit indirect, impact on DNA

reactions and would accidentally be abstracted by a top-down model. This approach was

used, for instance, to optimize the behavior of a strand-displacement based walker [158]. The

drawback is of course that modeling more details increases the computation time and/or limits

the size of systems that can be modeled. Enzymes add a lot of complexity themselves, as each

require many additional operations to be taken into account.

Additionally, the way we chose to simulate additional operations in this Chapter is close to

the system from Kawamata et al. [159]. Like in their work, we are limited by the exponential

growth of the number of species. The way they chose to bypass this problem is to select which

species, or class of species, will be most relevant, and limit the computation to those. They

successfully applied this latter method to model gene silencing by RNAi [160].

CHAPTER 6. EXTENDING THE MODEL TO DEBUG SIDE REACTIONS 99

6.6 Toward automatic model generation

By adding new reactions, corresponding to a local disabling of the nicking recognition site, we

were able to give insights about the divergence mechanism in a particular wet-lab implemen-

tation of an autocatalytic module. However, the simulation shows that this assumption is not

enough to explain the observed parasitic behavior in its entirety. In particular, we suppose that

it is necessary to add polymerase copying error to the system to capture this parasitic process.

However, instead of going back and try to add new potential reactions by hand until a better

fit is found, it could be possible to automate this process. For instance, in some cases, it is

possible to infer which reaction are happening from the data. Chattopadhyay et al. defined

a mathematical method to estimate a reaction network from the variations of species concen-

trations over time [161]. This methods has the drawback of requiring that a steady-state is

reached, and that the species are known and monitored, but is still applicable in a large variety

of cases. Alternatively, it is possible to generate sets of reactions without any assumption on

which species are interacting, or even on the number of species present, by using a genetic

algorithm. A similar approach was successfully implemented by Schmidt and Lipson to au-

tomatically find laws describing experimental data [162]. Just using basic knowledge about

equation generation from reaction sets, such as those we used throughout this thesis, it would

be possible to find efficiently what might have gone wrong. This kind of approach is also sim-

ilar to a process called counter-example guided abstraction refinement in software verification,

where an abstract model is progressively refined based on inconsistencies [163].

The loop would then be completed by doing additional experiments, trying to verify those

hypothesis. If those experiments are also automatically designed and combined with robotic

assistance, we might get a full automation of science[164], applied to DNA computing.

Chapter 7

Evolutionary optimization of DNA

toolbox systems

Up to now, we presented tools that allow designers to quickly test and improve explicit systems.

However, more often than not, it is hard to come up with a solution to realistic problems. One

workaround is thus to let the computer evolve such systems from scratch. In this Chapter,

we describe an algorithm which generates automatically DNA toolbox systems verifying some

specified characteristics (in our case, producing particular dynamics or behaviors). Those char-

acteristics are encoded as a score (or fitness) that will be attributed to individual instances

generated to solve the problem. We also show that those characteristics can be virtually as gen-

eral as the user wants, with the caveat that the fitness gets harder to define. We also show that

we can learn design tricks from the search process itself, not only from the results, and reuse

the patterns that are found in other contexts (see for instance Chapter 5 whose comparator and

threshold mechanisms were first observed through evolution).

The work presented in this Chapter was presented at the 13th ECAL conference [141]. Note

that an improved version of BioNEAT, ERNe has been submitted by Dinh et al. [140].

7.1 Introduction

The game of rock-paper-scissors, while being simple, can actually lead to interesting dynamics

when it is played multiple times in a row. In particular, each player will try to “read” their

opponents in the hope of getting the upper hand. However, if psychological factors are not

taken into account, that is, if players are purely logical, game theory predicts that after a while,

the optimal strategy becomes to play randomly with no bias among the three possible moves

100

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 101

[165]. Variations of the basic rules exist, but are expected to display the same kind of behaviors

(from the point of view of game theory) as the classic three moves.

Interestingly, this game can be a good description of many mechanisms ranging from re-

productive strategies of some species of lizards [166] or bacteria [167] to oscillations in a gene

regulatory circuit [168]. In all cases, there are three possible moves, each strong against an-

other and weak against the remaining one. This usually leads to dynamical behaviors where

the different players are constantly invading each other, forming complex spiral structures in

two dimensional systems[167, 169]. Even real life examples, such as the lizard example, display

oscillations in population size, with a turnover of approximately six years, based on the field

data of [166]. Those dynamics may degenerate into a uniform population depending on the

initial conditions, or such parameters as the mobility of the players. On the other hand, they

may also occur even in a well-mixed system, where there is no spatial compartmentalization to

protect diversity, if a given move gets stronger when it is less frequent [170] or if the system

never stalls, like in the repressilator [168].

However, all those examples either suppose or require that a given individual will always

“play” the same move. Indeed, the lizard will always have the same size and coloration, bacteria

the same genotype and genes in the repressilator are not expected to arbitrarily change which

target genes they inhibit. From a strategic point of view, more possibilities open when each

agent can decide, at each time, which move he wants to put forward. In such a case, some

form of knowledge of the opponent becomes necessary in order to infer his probable next move

and play accordingly. This knowledge is obtained from two sources: cheating and analysis of

the opponent previous moves. “Cheating” here designates the fact of obtaining clues about an

opponent from its behavior just prior to the game, not in the negative sense of making a game

uninteresting by bypassing the rules. Note that cheating in this sense is both an integral part of

most human plays and of biological strategies, and in any way is an essential ingredient of any

physically instantiated game. In fact, instantaneous moves and decisions are not possible in a

physical world, which means that information is always leaked somehow. This fact was used by

the Ishikawa laboratory in Japan to program a robot hand [171] reacting fast enough to hand

gestures to be able to always win against a human1.

While both cheating and strategic analysis requires significant abilities and are generally

associated with intelligent players (or at least, players with intents), we wanted to demonstrate in

this work that purely molecular systems are also capable of intricate strategies, whose complexity

1Video online at http://www.k2.t.u-tokyo.ac.jp/fusion/Janken/index-e.html

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 102

can be comparable to that of real players. Moreover, those strategies are simple enough to hope

for an actual in vitro implementation, demonstrating that the Turing universality of DNA

computing systems [16, 6, 148] is not only theoretical.

The individuals we evolved were defined as entities from the DNA toolbox [67], relying

largely on the straightforward graph representation of those systems.

Individuals were evolved through an adapted version of NeuroEvolution of Augmenting

Topologies (NEAT) [172], dubbed bioNEAT, using a fitness function based on how well they

fared in a population-wide tournament. To our surprise, the apparition of a basic memory was

not hard, but was almost immediately discarded, as it was not able to compete against cheating.

Due to the necessity of having both players in the same well-mixed environment, it was much

more efficient for an individual to actually develop a way to monitor the actions of its opponent

while hiding its own move. When pushed to the extreme, this strategy produced interesting dy-

namics where individuals went through multiple moves before the end of the countdown, trying

to settle into a winning position, eventually leading to some fashion of oscillatory systems. The

mechanisms used for those purpose were interesting in themselves, including concentration com-

parators or system with multiple levels of activation, giving, through motif mining, insight into

the possibilities of the DNA-toolbox. This showed that indeed, the behavior of purely molecular

systems, corresponding to a realistic, directly implementable chemistry, can be interpreted in

terms of complex strategic planning.

7.2 Related Work and Current Contributions

Our work builds on multiple sources since it mixes design by genetic algorithm with molecular

programming. Game theory was also an important source of inspiration, and was useful to

check that our evolved individuals are playing in a way that differs from hypothetical “perfect”

players.

7.2.1 Rock-paper-scissors

There are also many previous works related to the game of rock-paper-scissors. However, to the

best of our knowledge, they either use individuals which are only capable of playing one move,

or link existing dynamics to an instance of the game. The evolution game theory study in [165]

is the closest to our work, but lacks the added dimension that comes with dealing with cheating

or leak of information [173]. While DNA-based systems can hardly be described as having any

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 103

form of intelligence, it is easy to rationalize their behavior as cheating, a very real possibilities

among human players that is not taken into account in [165].

7.2.2 Motif Mining

The idea of using DNA computing to play games has been previously introduced [174]. Finding

systems able to play a game is in itself a challenge that leads to developing new structures,

and potentially solve issues related to real life problems. However, the use of evolutionary algo-

rithms [175] stands as a promising candidate to search for interesting reaction circuits. From the

structural point of view, the analysis of the fittest individuals of specific runs revealed common

functional motifs, which may help build new systems. This is the fundamental approach of

synthetic biology, in which biological modules are recombined to perform engineered operations

[176]. In particular, it was interesting to note that, although actual patterns may vary from

individuals to individuals, it was possible to classify them into rough generic categories. This

could be used to create minimal libraries of structures for dynamic systems, that is, off-the-

shelves building blocks like those defined in [177]. Such libraries would in turn allow the fast

and reliable development of complex DNA-based systems. While, in our case, the structures

evolved by the algorithm are possibly not generic enough to be useful in any given context, they

still have potential applications for the design of a variety of such systems.

7.3 Model

7.3.1 The DNA toolbox and BioNEAT

One interest of the toolbox in the scope of genetic algorithms is that any modification of

the “genome” of an individual (that is, the sequences and templates it is made of, not to

be confused with the hypothetical genome their actual DNA strings are encoding) still yields a

valid individual (albeit a possibly uninteresting one), and that a wide range of possible behaviors

are very few modifications apart. For instance, bioNEAT (see next Section) can jump in two

steps from the Oligator [67] to Padirac et al.’s bistable system [11], as shown in Figure 7.1. This

helps the algorithm navigating the search space more efficiently, as well as preventing, to some

degree, the trap of local optima.

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 104

Figure 7.1: Graphical representation of systems from the DNA toolbox. Nodes represent se-
quences while arrows represent templates. The Oligator (left) can be mutated into a bistable
in two steps. First, an autocatalysis connection B to B with an inhibition from A is added.
Then, the activation from A to B is removed. Note that those two operations may happen in
any order.

Figure 7.2: Simple cheating individual displaying both direct and indirect monitoring. Nodes
in the dashed box are references to the opponent’s sequence (up) or to the clock (right). By
default, this individual will play rock (R). If its opponent plays rock or paper (P), it will update
to play the winning move. Note that this individual does not use the clock.

7.3.2 Individuals and encoding

The individuals we consider are chemical reaction networks playing rock-paper-scissors. Each

possible move (rock, paper or scissors) is mapped to a specific chemical species (DNA sequences,

more specifically signal sequences from the DNA toolbox). Those species are fixed in advance,

so that they are always present. Individuals also have references linking to potential opponents’

corresponding sequences. The main goal of this interface is to allow individuals to react to the

opponent’s moves and adapt their strategy over time. Finally, all individuals have a reference

to a common clock species, giving them a sense of time. An example of individual is shown in

Figure 7.2.

Individuals are pitted against each other in matches made of ten rounds. The beginning of

a round is marked by a spike from the clock sequence. At the end of a round, roughly 20 times

the clock’s half-life later, an individual’s move is decided by which of its move sequences has

the highest concentration. If the two highest or all such concentration are not different by at

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 105

least a given threshold, the move is considered invalid, granting the victory to the opponent.

Individuals can potentially memorize their opponent’s strategy, since there is no reset between

rounds.

7.3.3 Simulations

The simulation itself was kept simple, with a model similar to that of Padirac et al. [11].

In particular, this model is slightly different from the one described in Chapter 2 in that it

does not take into account enzyme saturation. This prevents some advanced strategies (since

saturating enzymes may be in itself a way to kill one’s opponent, thus winning by default) and

allows individuals to virtually grow without limitations, continuously increasing their size. Since

enzymatic saturation creates hidden couplings between the nodes [89], removing it was taken as

a step to insure the readability of the results. Thanks to this, the behavior of the network - and

hence the individual’s strategy - is directly encoded by the networks of cross regulations between

the nodes, and not by various type of competitive inhibitions acting at a global level. Using

this simplified model is also a compromise between computational requirements and precision,

but, based on Padirac et al.’s experimental results, any observed behavior should be obtainable

in real in-vitro experiments.

7.4 bioNEAT: NEAT for Reaction Networks

The evolution of individuals was done by using a modified version of NeuroEvolution of Aug-

menting Topologies (NEAT) [172], adapted to perform with simulated individual networks built

using the DNA toolbox paradigm instead of artificial neural networks. The evolution itself was

performed through multiple runs and tweaking of the fitness function.

7.4.1 NEAT

NEAT is a state-of-the-art evolutionary algorithm designed to evolve both the topology and

the parameters of neural networks, while keeping them as simple as possible. This is done by

starting from very simple individuals, and progressively complexifying them in a competitive

process. This is performed through the addition of new nodes and connections, while at the

same time modifying the weight of existing ones.

The major strength of NEAT is that it keeps track of when specific connections or node where

added in the ancestry line. This allows to perform meaningful cross-over: identical elements

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 106

present in two individuals, are automatically recognized and matched during the creation of a

new individual from two parents. Additionally, mismatching elements from the fittest individual

are also passed along.

NEAT also performs speciation to protect innovation that could require more than one

step to find a new, better solution to the problem at hand. Specifically, the size of a species

depends on the average fitness of its individuals, preventing one type of solution to completely

invade the population. Moreover, speciation is easily performed, since the history of evolution

of individuals is saved, giving a straightforward distance between individuals based on the genes

they possess.

7.4.2 bioNEAT

Due to the initial ressemblance between reaction network and artificial neural network, NEAT

stands as a relevant option for optimizating DNA toobox-based systems. In particular, systems

from the DNA toolbox have a straightforward edge/node graph representation similar to neu-

ral networks: DNA sequences can be directly mapped to nodes, and connections with positive

weights are equivalent to activation links. However, the DNA toolbox cannot be directly im-

plemented using the original NEAT for two reasons. Firstly, additional parameters regarding

sequences stability and initial concentration must be added. Secondly, negative links targetting

nodes must be replaced by inhibitory links targetting arcs. To address these issues, we introduce

bioNEAT, a NEAT-derivative that is able to optimize reaction networks.

A first feature of bioNEAT is to allow the algorithm to not only modify the “weight” of

connections (that is, the concentration of DNA template, in our representation), but also the

relevant biological parameters (such as the thermodynamical stability of DNA sequences and

their initial concentrations). The thermodynamical parameters of the move sequences was fixed

to prevent individuals to use extremely stable sequences to saturate the monitoring of their

opponents. In the particular case of the experiments described hereafter, we also prevented

activations toward the opponent or the clock.

The second feature of bioNEAT addresses the asymmetry between activation and inhibition

process that is inherent to the DNA toolbox, and which cannot be modelled as classic neural

network links with positive and negative weights. While the sign of a neural weight simply

encodes the type of the connection and target a node, a DNA toolbox’ inhibitor targets an edge

(and impact only one of the output from the source node) rather than a node. Moreover, an

inhibitor cannot be instantiated without the template it inhibits. As a consequence, bioNEAT

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 107

 0

 5

10

15

20

25

30

35

 0 100 200 300 400 500 600 700 800
 0

 5

10

15

20

25

30

35

 0 100 200 300 400 500 600 700 800

Figure 7.3: Two fighting individuals. References to the opponent’s nodes are shown in the
dashed box. Top: the actual network of those individuals. Bottom: the corresponding behavior
over time. The color code for sequences concentration is red for the clock, green for rock, blue for
paper and purple for scissors. The individual on the right has a better comparison mechanism
than the individual on the left, as shown by the fact that it has the correct move before the
match starts. However, the individual on the left uses the clock to fake switching his move from
scissors to rock, which coerce its opponent to update its move to paper. Just before the round
is validated, the individual on the left changes its move again to scissors, winning each hands.

protects the addition of an inhibitory connection (and removal of a particular template) during

evolution. Then, bioNEAT produces reaction network with inhibitory connections from node

to link.

7.4.3 Fitness Score

Scoring of an individual uses a lexicographic fitness function taking place in two steps. First,

the individual has to beat the three most basic possible players, playing respectively only rock,

paper or scissors. This ensures that our individuals are able to play all moves, and to play them

discerningly. Individuals unable to pass this test are awarded a very small fitness, based on the

number of rounds they have won, directing the evolution toward basic strategies. On the other

hand, individuals which were able to pass the test are awarded the right to enter the second

phase.

The second phase is a simple tournament among all remaining individuals: each of them

has to fight each of the others. The fitness is then based on the number of correct moves made

in total. A sample match is shown in Figure 7.3. Because of this, the evolutionary pressure

forces the individuals into an arms race, to be able to defeat as many opponents as possible.

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 108

General parameters
Population size 100
Number of generations 200
Speciation parameters
Targeted number of species 10
NEAT compatibility parameters c1 = c2 = 1; c3 = 0
Initial speciation threshold 0.6
Minimal threshold 0.1
Threshold update � 0.03
Mutation parameters
P(Mutation only) 0.25
P(Parameter mutation) 0.9
Otherwise P(Add node) 0.2
Otherwise P(Add activation) 0.2
Else add inhibition
P(Connection disabling) 0.1
P(Gene mutation (for each node)) 0.8
Crossover parameters
P(Interspecies crossover) 0.01
P(Re-enabling gene) 0.25

Table 7.1: Parameters used to evolve individuals

7.5 Results

Results were obtained by evolving individuals in 10 separate runs, always starting from a uniform

population of individuals with autocatalysis on the rock sequence (thus playing always rock).

A typical run involved 200 generations of a population of 100 individuals. bioNEAT speciation

control loop is adjusted to keep the number of species as close to 10 as possible. Other relevant

parameters are shown in Table 7.1. Over the course of the experiment, various kind of strategies

emerged before getting outdated or integrated into more complex control systems. However, in

our runs, a stable group of species typically appeared after 50 to 100 generations and quickly took

over the population until the end of the run. They represent individuals which had developed

part or all of the mechanisms explained later in this Section, and the apparent stability was only

due to a constant arms race, where individuals kept adding more and more modules, while those

who couldn’t keep up where discarded. However, since our fitness can only compare individuals

among a given generation, its evolution over time does not reflect the global improvement

of individuals. This prompted us to perform a post-mortem analysis of our individuals by

making the best of each generations of a given run fight each other, highlighting a progressive

improvement of our individuals, as shown in Figure 7.4. In particular, the logarithmic shape

of the curve goes well with the idea that the efforts required to overcome one’s opponents are

greater and greater as the simplest strategies get commonly countered.

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 109

 0

200

400

600

800

1000

1200

1400

1600

1800

2000

 0 50 100 150 200

Fi
tn

e
ss

Generations

average

 0

 2

 4

 6

 8

10

12

14

16

18

20

 0 50 100 150 200

N
u
m

b
e
r

o
f

te
m

p
la

te
s

Generation

Average number of templates

Figure 7.4: Top: average a posteriori fitness of the best individuals, as well as minimum,
maximum, first and third quartiles. While noisy, the curve still shows an increasing trend
similar to that of a logarithm. Bottom: the average number of templates in individuals over
generations in a typical run. The trend is similar to that of the fitness, showing that bloating
stays within acceptable limits.

7.5.1 Cheating

The easiest, and thus first strategy evolved is actual cheating. Since they have references to

what each other will play, and continuous access to current concentrations, the individuals

monitor the action of their opponent and try to play accordingly. A minimal example is shown

on Figure 7.2. Cheating can be of two kinds: either using a direct connection (“if my opponent

plays rock, I will play paper”), or an inhibition (“if my opponent plays rock, I will not play

scissors”). Cheating leads in some cases to the apparition of oscillatory behaviors, as both

individuals are both trying to play the winning move.

7.5.2 Defense mechanisms

Once cheating appears, it quickly spreads among the whole population, either by cross-over,

elimination of individuals which could not adapt, of by parallel discovery of the mechanism.

From there on, the only way to improve is to develop mechanisms against the other cheater’s

spying while at the same time improving the monitoring of its current move. Many defenses

where expressed among the evolved individuals, but can mainly be separated into five cate-

gories: noise generators, stealth, feint, concentration comparators and fold change detectors.

Representatives of all those categories are shown in Figure 7.5.

Noise generators are the easiest form of defense. Since it is fair to assume that the opponent

will monitor at least two move sequences to decide its own next move, a simple yet efficient way

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 110

Figure 7.5: Basic mechanisms observed in individuals. (a.) Noise generation with two acti-
vation level. When the additional path is inhibited, the main sequence will still have a high
concentration, but not high enough to be this turn’s move. (b.) A given move’s concentration
is kept low for some time by being inhibited by the clock sequence C. (c.) A very simple feint:
while pretending to play rock (the sequence R) has a non-zero concentration), the individual is
actually playing scissors (S), which would win against the expected reaction of the opponent.
This mechanism is often decorated with various other systems to balance the concentrations
of one sequence relatively to the other. (d.) Simple comparison mechanism. The reaction
path from the opponent’s move will only be activated if the concentration of paper (P) is high
enough, compared to the concentration of rock (R). (e.) A fold change detector, allowing the
monitoring of the increase in the concentration of the rock (R) sequence of the opponent. Often,
the detection will happen after a first amplification of the monitored signal.

to keep it off track is to continuously generate all sequences. This is a valid action, since only

the highest sequence decides which move is played. Having a weak autocatalytic connection

is enough, as long as there is a way for the other sequences to become lower (remember that

an individual has to be able to play all moves to have a good fitness). Often, such sequence

will have an additional catalytic loop using an additional sequence. This loop is only activated

when this sequences is supposed to be played. This simple mechanism allows the individual

to have multiple activation levels (by opposition to just “on” and “off”), with a better control

on the final concentration of the target sequence rather than using activation mechanisms from

different possibly not trustworthy part of the system.

Stealth is the complementary of noise generation. Instead of hiding one’s true move among

decoys, it is kept at a concentration as near to zero as possible until the last moment. This

technique relies on monitoring the clock sequence, since timing is extremely important. The

clock sequence is used to generate a large amount of timer, which in turn inhibits a specific

move. If the inhibition is stable enough, the target sequence will be kept low until the timer

has been degraded. If the delay is not long enough, the opponent will still have time to read

and adapt. On the other hand, if the delay is too long, the move will not be valid. Part of the

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 111

system dedicated to this mechanism seems to be very stable over generations, since it is based

on a delicate balancing of parameters where any change can prove deadly.

Feint resembles closely the previous two strategies, but uses a different structure. In this

case, the individual spoofs a specific move (say “rock”), but this very move also activates the

generation of the real move (for instance “scissors”), often through a long activation path to

generate delay. It relies on the fact that the opponent will try to adapt to the perceived move,

and won’t be able to react in time to the change. The system may be reset by the clock, or by

a change in the opponent’s perceived move.

As the direct monitoring of sequences became less and less reliable, structures to compare

absolute concentrations as well as detect sudden modifications became more and more common.

Concentration comparison is done through the inhibition of a reaction path if its activation is

not strong enough compared to the reference. Since this inhibition originates from the moni-

toring of another sequence, the first pathway is activated only if the first sequence has a higher

concentration. Of course, by tuning the strength of pathways and inhibition, it is possible to

have more specific control over the targeted ratio between the two sequences. For instance, it

would be possible to slightly modify the system to inhibit the reaction path only if the compared

sequence has a concentration multiple times higher than the reference sequence. This defense

mechanism is used to counter noise generators and feints.

The last technique commonly spread among individuals is a way to detect concentration

increase. While concentration comparison is able to detect that a stealthy move is being played,

it is only able to do so once the move became dominant (which, if the other player is timing

right, should be too late). However, by using a monitoring coupled with incoherent feedforward,

individuals are capable of detecting rapid variations in concentration, which would be a sign

that their opponent is about to switch their move. Some individuals also pretended to switch

their move to throw such defense technique off guard, but this was quickly countered by a mix

of both direct comparison and incoherent feedforward.

7.5.3 Memory vs cheating

Quite early on, individuals with a basic memory, such as the bistable from Figure 7.1, appear

in the population. However, those individuals were too “naive” in the sense that they had no

defense against cheaters. Moreover, cheating requires about the same amount of mutations to

appear, or even less if partial (that is, the individual can read some moves, but not all). For

this reason, it seems that it is much more advantageous for individuals to focus only on attack

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 112

and defense. This prevented the reapparition of memory in later generation, leading to purely

reactive individuals.

7.5.4 The arms race

Looking at individuals over time shows the apparitions of the different cheating and defense

mechanisms over time, with a noticeable complexification of the best individuals. Figure 7.6

shows such individuals at different times of a specific run, highlighting the apparition of various

mechanisms.

The logical conclusion of this evolution strategy is that individuals with high fitness in a

given generation have very little, or even no structures that are not related to cheating and

defeating. Even when they exist, such structures are mutated during the next few generations

to serve some attack or defense purpose. We performed an a posteriori evaluation of the fitness

to check whether this increase in individuals size was indeed justified or only bloating. By

performing this evaluation, we get a sense of the improvement of individuals over time that

cannot be deduced from the lexicographic fitness used for evolution, since the later one only

compares individuals from a given generation. The fitness itself is computed by making the

best individual of all generations fight each other and score points in the same fashion than in

the second part of the lexicographic fitness.

The trend of the a posteriori fitness also implies that there is no cyclic effect. While the

lexicographic fitness guarantees that all individuals have the capacity of playing any move given

the right conditions, there could be more advanced strategy displaying such cyclic dynamics.

For instance, individuals using stealth are beaten by individuals using incoherent feedforwards,

which could have been, in turn, beaten by another strategy that is weak against stealth. Since

the fitness increase is monotonic (if we ignore the noise), we can conclude that the arms race is

open-ended, with complexification of individuals the only possible way to improve.

We could also note that the arms race pushes individuals to perform well within their own

ecosystem, but not always optimally. For instance, the individual from generation 122 in Figure

7.6 only defends against stealthy changes in the concentration of “paper”, leaving it open to the

exact same strategy, if performed on another move. However, it is easy for a human designer

to take inspiration from those modules to create an “optimal” player.

We also performed a negative control where cheating was explicitly forbidden. Instead,

agents had two input signals: one for “victory” and the other for “defeat”. Obviously, no specific

structure was encoded in the initial individuals, so they had to learn through multiple generation

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 113

Generation 10: partial cheating.

Generation 14: complete cheater.

Generation 109: stealth. The clock sequence (here designated A) hides a move (b).

Generation 122: fold change detector. The sequence c both activates and inhibits the creation of a. However,
the activation path is longer than the inhibition path, meaning that a (rock) is only activated by this module if
the concentration of c (scissors) is decreasing. Since c is directly linked to the opponent’s b (paper), this

individual is protected against stealthy play of b.

Figure 7.6: Individuals generated during a run. The color of activation nodes indicates their
stability, going from red (very unstable) to blue (very stable). Green nodes are inhibitors. The
notation for the moves rock, paper and scissors is respectively a, b and c. References to the
opponent’s sequences are designated by a leading C. A represents the clock.

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 114

Figure 7.7: A non-cheating individual. R, P and S stands respectively for Rock, Paper and
Scissors. Cg correspond to loosing a hand. The strategy of this individual is as follow: play
Paper, if the hand is lost or there is a draw, play scissors for a while (note the almost bistable
structure). When the priority of both Scissors and Paper are identical, the default is Rock.

the meaning of those signals. As was originally expected, we can observe the emergence of

storing structures. Such structures allow the individuals to remember what were the previous

moves and decide what to do next. However, as was noted before, such structures are also harder

to evolve, making the progression much slower. Figure 7.7 shows a typical well-performing

individual evolved this way.

7.6 Conclusion

In this work, we demonstrated how an evolutionary strategy could be used to create complex

systems. For this, we introduced bioNEAT, a modified version of NEAT designed to evolve

chemical reaction networks from the DNA toolbox. We chose to focus on finding a good strat-

egy to play the well-studied game of Rock–Paper–Scissors. Our first hope was to observe the

emergence of memory to allow non-trivial strategies However, the very rules, derived from ex-

perimental settings, we set for the game prevented this memory mechanism from being efficient.

Instead, increasingly complex cheating seemed to be the best answer. Nonetheless, this is not

the only thing we learned from this exercise. While having DNA systems compete against each

other and evolve new (cheating) strategies can be a goal in itself, the systems evolved along the

way gave us also more insight about DNA computing systems. In particular, it was possible

to observe the emergence of particular structures with interesting dynamics, which may prove

useful to a human trying to develop DNA systems, like with the libraries of [177]. It could be

also interesting to make individuals compete against a human designed “optimal” cheater and

CHAPTER 7. EVOLUTIONARY OPTIMIZATION OF DNA TOOLBOX SYSTEMS 115

see if they can evolve even more advanced strategies to counter it. Furthermore, since the DNA

toolbox mimic the behavior of gene regulatory circuits [67], an open question would be whether

those mechanisms appear in real life or if they are only valid in the toolbox. Also, it would be

interesting to extend the current systems to take into account reaction-diffusion and be able to

play more complex games. There is little doubt that such systems will have their own share of

remarkable mechanisms.

Chapter 8

Conclusion

DNA computing has been a very active and exciting field for the past few years. The size of

DNA computing systems is increasing at an exponential pace similar to the Moore law [50]. Now

that impressive achievements have been obtained with various paradigms [10, 41, 67, 11], we

have to push the boundaries of what is possible to realize in vitro. Automation of experiments,

well understood building blocks and fast design capabilities are all parts of what can bring DNA

computing to the next stage.

We focused on the design and prototyping aspect, providing both new building blocks and

computer assistance. The DNA toolbox proved to be the perfect base framework: it is capable to

display many different dynamical behaviors while having easy to model and combine modules.

Additionally, the DNA toolbox represents a way to simulate biochemically gene regulatory

networks. While those processes are extremely complex and hard to manipulate, the DNA

toolbox offers a sandbox to test biological hypothesis.

Our model of the DNA toolbox, which is a formalization and extension of the one appearing

in the work of Padirac [43], was used as a base for design automation of DNA computing systems.

We presented two different design approaches. DACCAD allows user to create the systems

quickly, either through its graphical interface or by compiling into a graph representation. On

the other hand, we used an evolutionary approach, called BioNEAT, where the user only defines

a specific objective and the algorithm then optimize both the structure (templates used in the

system) and the chemical and biological parameters to approach this goal as close as possible.

We showed, by implementing the rules of the Rock-Paper-Scissor game, that this approach was

valid even with abstract objectives. Moreover, thanks to their common representation of the

DNA toolbox, it is possible (and even recommended, for a real-life application) to go back and

forth between the user-guided approach and the evolutionary approach. The user can give a

116

CHAPTER 8. CONCLUSION 117

little push in the right direction, when necessary, while the automated optimization can be used

to improve specific subsystems.

We also added new building blocks to the DNA toolbox, with the objective to increase the

ease to create new systems. This was done both by creating a new low level module, the delay

gate, that can integrate seamlessly with the DNA toolbox and by exhibiting building patterns

with various properties. Those last patterns were found through constant use of the paradigm,

mainly relying on DACCAD, and by automatic discovery from BioNEAT. The delay gate has

still some experimental hiccups, and additional efforts are needed before it can be formally

integrated with the DNA toolbox.

The next step is now to integrate many different paradigms together. The possibility to

use the SBML file format gives us a nice platform for combining systems and create complex

applications. In particular, there are many model of the cell available, and it would be interesting

to simulate how the DNA toolbox is behaving in those environments. Additionally, with the

recent push toward two dimensional systems, the appearance of smart materials or DNA-based

distributed computing is closer than ever.

Yet, additional tools are required of those applications. The predator-prey system [119]

shows great potential and stability, but cannot be manipulated by the current model. In par-

ticular, this system requires “signal” species to modify other species, which breaks the rules

we assumed to create the graph representation in Chapter 2. One possibility could be to relax

the “graph” conditions, and instead use more advanced structures, such as 2-categories [178].

Instead, the best approach might be to have an adaptive model coupled with an automated

experimental setting, allowing us to free ourselves from ab initio limitations.

Nonetheless, taking a step back from the technology, it is amazing to see all the possibilities

that exist in DNA computing. As soon as we could explore with ease the space of possible

behaviors, it was fairly easy to find impressive systems. It makes one wonder what will be

possible to achieve when moving away from well-mixed 0-dimensional systems to more complex

structures.

At the 18th conference on DNA computing and molecular programming (DNA 18), a panel

was dedicated to this question: what will be the “killer app” of DNA computing. In other

words, what is the application only DNA computing can do, or at least the application DNA

computing can do overwhelmingly better than any other approach. Hopefully, the availability

of better and more diverse designing possibilities will enable the emergence of such application.

To finish, I want to mention that playing is as good a way to drive people forward as another,

CHAPTER 8. CONCLUSION 118

and “serious gaming” [179] might be also a valid venue of investigation. Hopefully, having

demonstrated the possibility to play various games with the DNA toolbox (Mastermind, Rock–

Paper–Scissors and DNA wars1), along with already existing games [174] will attract an even

more diverse crowd to DNA computing.

1Presented at an impromptu session of the DNA 18 conference

Bibliography

[1] Douglas Adams. The Hitchhiker’s Guide to the Galaxy. 1979.

[2] Alan M Turing. On computable numbers, with an application to the entscheidungsprob-

lem. Proceedings of the London mathematical society, 42(2):230–265, 1936.

[3] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimization by a

colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, 26(1):29–41, 1996.

[4] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from natural to

artificial systems, volume 4. Oxford university press New York, 1999.

[5] Alan Mathison Turing. The chemical basis of morphogenesis. Bulletin of mathematical

biology, 52(1):153–197, 1990.

[6] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for

chemical kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398,

2010.

[7] Anne Condon, Alan J Hu, Ján Maňuch, and Chris Thachuk. Less haste, less waste: on

recycling and its limits in strand displacement systems. Interface focus, 2(4):512–521,

2012.

[8] Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic

acid logic circuits. science, 314(5805):1585–1588, 2006.

[9] Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, California Institute of

Technology, 1998.

[10] Lulu Qian and Erik Winfree. Scaling up digital circuit computation with dna strand

displacement cascades. Science, 332(6034):1196–1201, 2011.

119

BIBLIOGRAPHY 120

[11] A. Padirac, T. Fujii, and Rondelez Y. Bottom-up construction of in vitro switchable

memories. Proceedings of the National Academy of Sciences, 109(47):E3212–E3220, 2012.

[12] Jongmin Kim, John Hopfield, and Erik Winfree. Neural network computation by in vitro

transcriptional circuits. In Advances in neural information processing systems, pages 681–

688, 2004.

[13] Leonard M Adleman. Molecular computation of solutions to combinatorial problems.

SCIENCE-NEW YORK THEN WASHINGTON-, pages 1021–1021, 1994.

[14] Ravinderjit S Braich, Nickolas Chelyapov, Cliff Johnson, Paul WK Rothemund, and

Leonard Adleman. Solution of a 20-variable 3-sat problem on a dna computer. Science,

296(5567):499–502, 2002.

[15] Luca Cardelli. From processes to odes by chemistry. In Fifth Ifip International Conference

On Theoretical Computer Science–Tcs 2008, pages 261–281. Springer, 2008.

[16] Marcelo O Magnasco. Chemical kinetics is turing universal. Physical Review Letters,

78(6):1190–1193, 1997.

[17] Anastasia Deckard and Herbert M Sauro. Preliminary studies on the in silico evolution

of biochemical networks. ChemBioChem, 5(10):1423–1431, 2004.

[18] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring.

In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on,

pages 124–134. IEEE, 1994.

[19] Peter Dittrich, Jens Ziegler, and Wolfgang Banzhaf. Artificial chemistriesa review. Arti-

ficial life, 7(3):225–275, 2001.

[20] AN Zaikin and AM Zhabotinsky. Concentration wave propagation in two-dimensional

liquid-phase self-oscillating system. Nature, 225(5232):535–537, 1970.

[21] Nathaniel Virgo and Takashi Ikegami. Autocatalysis before enzymes: The emergence of

prebiotic chain reactions. In Advances in Artificial Life, ECAL, volume 12, pages 240–247,

2013.

[22] Andreas Gustafsson. Egypt. Gson, version 1.10 edition, 2011.

BIBLIOGRAPHY 121

[23] Qing Zhou, Hiram Chipperfield, Douglas A Melton, and Wing Hung Wong. A gene

regulatory network in mouse embryonic stem cells. Proceedings of the National Academy

of Sciences, 104(42):16438–16443, 2007.

[24] James D Watson, Francis HC Crick, et al. Molecular structure of nucleic acids. Nature,

171(4356):737–738, 1953.

[25] Paul WK Rothemund. Folding dna to create nanoscale shapes and patterns. Nature,

440(7082):297–302, 2006.

[26] Shelley FJ Wickham, Masayuki Endo, Yousuke Katsuda, Kumi Hidaka, Jonathan Bath,

Hiroshi Sugiyama, and Andrew J Turberfield. Direct observation of stepwise movement

of a synthetic molecular transporter. Nature nanotechnology, 6(3):166–169, 2011.

[27] Dage Liu, Sung Ha Park, John H Reif, and Thomas H LaBean. Dna nanotubes self-

assembled from triple-crossover tiles as templates for conductive nanowires. Proceedings

of the National Academy of Sciences of the United States of America, 101(3):717–722,

2004.

[28] Sung Ha Park, Constantin Pistol, Sang Jung Ahn, John H Reif, Alvin R Lebeck, Chris

Dwyer, and Thomas H LaBean. Finite-size, fully addressable dna tile lattices formed by

hierarchical assembly procedures. Angewandte Chemie, 118(5):749–753, 2006.

[29] Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from single-

stranded dna tiles. Nature, 485(7400):623–626, 2012.

[30] Chengde Mao, Weiqiong Sun, Zhiyong Shen, and Nadrian C Seeman. A nanomechanical

device based on the b–z transition of dna. Nature, 397(6715):144–146, 1999.

[31] Bernard Yurke, Andrew J Turberfield, Allen P Mills, Friedrich C Simmel, and Jennifer L

Neumann. A dna-fuelled molecular machine made of dna. Nature, 406(6796):605–608,

2000.

[32] Hao Yan, Xiaoping Zhang, Zhiyong Shen, and Nadrian C Seeman. A robust dna mechan-

ical device controlled by hybridization topology. Nature, 415(6867):62–65, 2002.

[33] Banani Chakraborty, Ruojie Sha, and Nadrian C Seeman. A dna-based nanomechani-

cal device with three robust states. Proceedings of the National Academy of Sciences,

105(45):17245–17249, 2008.

BIBLIOGRAPHY 122

[34] Jong-Shik Shin and Niles A Pierce. A synthetic dna walker for molecular transport.

Journal of the American Chemical Society, 126(35):10834–10835, 2004.

[35] Ye Tian, Yu He, Yi Chen, Peng Yin, and Chengde Mao. A dnazyme that walks proces-

sively and autonomously along a one-dimensional track. Angewandte Chemie International

Edition, 44(28):4355–4358, 2005.

[36] Renjun Pei, Steven K Taylor, Darko Stefanovic, Sergei Rudchenko, Tiffany E Mitchell,

and Milan N Stojanovic. Behavior of polycatalytic assemblies in a substrate-displaying

matrix. Journal of the American Chemical Society, 128(39):12693–12699, 2006.

[37] Ronald R Breaker. Dna aptamers and dna enzymes. Current opinion in chemical biology,

1(1):26–31, 1997.

[38] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeProust,

Botond Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance in-

formation storage in synthesized dna. Nature, 2013.

[39] Joris JM Gillis and Jan Van den Bussche. A formal model for databases in dna. In

Algebraic and numeric biology, pages 18–37. Springer, 2012.

[40] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David

Soloveichik, and Georg Seelig. Programmable chemical controllers made from dna. Nature

nanotechnology, 8(10):755–762, 2013.

[41] Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with dna

strand displacement cascades. Nature, 475(7356):368–372, 2011.

[42] Anthony J Genot, Teruo Fujii, and Yannick Rondelez. Scaling down dna circuits with

competitive neural networks. Journal of The Royal Society Interface, 10(85), 2013.

[43] Adrien Padirac. Tailoring spatiotemporal dynamics with DNA circuits. PhD thesis, Uni-

versité Claude Bernard Lyon I, 2012.

[44] Ebbe S Andersen, Mingdong Dong, Morten M Nielsen, Kasper Jahn, Ramesh Subramani,

Wael Mamdouh, Monika M Golas, Bjoern Sander, Holger Stark, Cristiano LP Oliveira,

et al. Self-assembly of a nanoscale dna box with a controllable lid. Nature, 459(7243):73–

76, 2009.

BIBLIOGRAPHY 123

[45] Karen Scida, Bingling Li, Andrew D Ellington, and Richard M Crooks. Dna detection

using origami paper analytical devices. Analytical Chemistry, 2013.

[46] Mark Schena, Dari Shalon, Ronald W Davis, and Patrick O Brown. Quantitative mon-

itoring of gene expression patterns with a complementary dna microarray. Science,

270(5235):467–470, 1995.

[47] Xi Chen and Andrew D Ellington. Shaping up nucleic acid computation. Current opinion

in biotechnology, 21(4):392–400, 2010.

[48] Adrien Padirac, Teruo Fujii, and Yannick Rondelez. Nucleic acids for the rational design

of reaction circuits. Current opinion in biotechnology, 2012.

[49] Yangyang Yang, Masayuki Endo, Kumi Hidaka, and Hiroshi Sugiyama. Photo-controllable

dna origami nanostructures assembling into predesigned multiorientational patterns. Jour-

nal of the American Chemical Society, 134(51):20645–20653, 2012.

[50] Robert Carlson. The changing economics of dna synthesis. Nature biotechnology,

27(12):1091, 2009.

[51] Wilma K Olson and Victor B Zhurkin. Modeling dna deformations. Current opinion in

structural biology, 10(3):286–297, 2000.

[52] Pablo D Dans, Ari Zeida, Matias R Machado, and Sergio Pantano. A coarse grained

model for atomic-detailed dna simulations with explicit electrostatics. Journal of Chemical

Theory and Computation, 6(5):1711–1725, 2010.

[53] Thomas E Ouldridge. Springer Theses: Coarse-Grained Modelling of Dna and Dna Self-

Assembly. Springer, 2012.

[54] Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis, Flavio Romano, Petr Šulc, Chris-

tian Matek, Benedict EK Snodin, Lorenzo Rovigatti, John S Schreck, Ryan M Harrison,

et al. Coarse-graining dna for simulations of dna nanotechnology. Physical Chemistry

Chemical Physics, 15(47):20395–20414, 2013.

[55] Yonggang Ke, Luvena L Ong, William M Shih, and Peng Yin. Three-dimensional struc-

tures self-assembled from dna bricks. Science, 338(6111):1177–1183, 2012.

BIBLIOGRAPHY 124

[56] Carlos Ernesto Castro, Fabian Kilchherr, Do-Nyun Kim, Enrique Lin Shiao, Tobias

Wauer, Philipp Wortmann, Mark Bathe, and Hendrik Dietz. A primer to scaffolded

dna origami. Nature methods, 8(3):221–229, 2011.

[57] Nicholas R Markham and Michael Zuker. Dinamelt web server for nucleic acid melting

prediction. Nucleic acids research, 33(suppl 2):W577–W581, 2005.

[58] Jeffrey W Nelson and Ignacio Tinoco Jr. Comparison of the kinetics of ribo-, deoxyribo-

and hybrid oligonucleotide double-strand formation by temperature-jump kinetics. Bio-

chemistry, 21(21):5289–5295, 1982.

[59] David Yu Zhang, Andrew J Turberfield, Bernard Yurke, and Erik Winfree. Engineering

entropy-driven reactions and networks catalyzed by dna. Science, 318(5853):1121–1125,

2007.

[60] Anthony J Genot, David Yu Zhang, Jonathan Bath, and Andrew J Turberfield. Remote

toehold: a mechanism for flexible control of dna hybridization kinetics. Journal of the

American Chemical Society, 133(7):2177–2182, 2011.

[61] David Yu Zhang and Erik Winfree. Control of dna strand displacement kinetics using

toehold exchange. Journal of the American Chemical Society, 131(47):17303–17314, 2009.

[62] Yingfu Li, Ronald Geyer, and Dipankar Sen. Recognition of anionic porphyrins by dna

aptamers. Biochemistry, 35(21):6911–6922, 1996.

[63] Louis C Bock, Linda C Griffin, John A Latham, Eric H Vermaas, and John J Toole.

Selection of single-stranded dna molecules that bind and inhibit human thrombin. 1992.

[64] Sam Rowels Erik Winfree Richard Burgoyne, Nickolas V Chelyapov, Myron F Good-

man, Paul WK Rothemund, and Leonard M Adleman. A sticker based model for dna

computation. DNA Based Computers Two, 44:1, 1999.

[65] Lulu Qian, David Soloveichik, and Erik Winfree. Efficient turing-universal computa-

tion with dna polymers. In DNA computing and molecular programming, pages 123–140.

Springer, 2011.

[66] Lulu Qian and Erik Winfree. A simple dna gate motif for synthesizing large-scale circuits.

Journal of the Royal Society Interface, 8(62):1281–1297, 2011.

BIBLIOGRAPHY 125

[67] K. Montagne, R. Plasson, Y. Sakai, T. Fujii, and Y. Rondelez. Programming an in vitro

dna oscillator using a molecular networking strategy. Molecular systems biology, 7(1),

2011.

[68] Yaakov Benenson, Tamar Paz-Elizur, Rivka Adar, Ehud Keinan, Zvi Livneh, and Ehud

Shapiro. Programmable and autonomous computing machine made of biomolecules. Na-

ture, 414(6862):430–434, 2001.

[69] John A Rose, Russell J Deaton, Masami Hagiya, and Akira Suyama. Pna-mediated

whiplash pcr. In DNA Computing, pages 104–116. Springer, 2002.

[70] Gijs JL Wuite, Steven B Smith, Mark Young, David Keller, and Carlos Bustamante.

Single-molecule studies of the effect of template tension on t7 dna polymerase activity.

Nature, 404(6773):103–106, 2000.

[71] Piet Herdewijn and Philippe Marliere. Toward safe genetically modified organisms through

the chemical diversification of nucleic acids. Chemistry & biodiversity, 6(6):791–808, 2009.

[72] Vitor B Pinheiro and Philipp Holliger. The xna world: progress towards replication and

evolution of synthetic genetic polymers. Current Opinion in Chemical Biology, 16(3):245–

252, 2012.

[73] Justin K Ichida, Allen Horhota, Keyong Zou, Larry W McLaughlin, and Jack W

Szostak. High fidelity tna synthesis by therminator polymerase. Nucleic acids research,

33(16):5219–5225, 2005.

[74] Sanjay K Singh, Alexei A Koshkin, Jesper Wengel, and Poul Nielsen. Lna (locked nucleic

acids): synthesis and high-affinity nucleic acid recognition. Chemical Communications,

(4):455–456, 1998.

[75] Hidehito Urata, Emiko Ogura, Keiko Shinohara, Yoshiaki Ueda, and Masao Akagi. Syn-

thesis and properties of mirror-image dna. Nucleic acids research, 20(13):3325–3332, 1992.

[76] Nicole C Hauser, Rafael Martinez, Anette Jacob, Steffen Rupp, Jörg D Hoheisel, and Ste-

fan Matysiak. Utilising the left-helical conformation of l-dna for analysing different marker

types on a single universal microarray platform. Nucleic acids research, 34(18):5101–5111,

2006.

BIBLIOGRAPHY 126

[77] Alexei A Koshkin, Poul Nielsen, Michael Meldgaard, Vivek K Rajwanshi, Sanjay K Singh,

and Jesper Wengel. Lna (locked nucleic acid): an rna mimic forming exceedingly stable

lna: Lna duplexes. Journal of the American Chemical Society, 120(50):13252–13253, 1998.

[78] Ramon Kranaster and Andreas Marx. Engineered dna polymerases in biotechnology.

ChemBioChem, 11(15):2077–2084, 2010.

[79] Ichiro Hirao, Yoko Harada, Michiko Kimoto, Tsuneo Mitsui, Tsuyoshi Fujiwara, and

Shigeyuki Yokoyama. A two-unnatural-base-pair system toward the expansion of the

genetic code. Journal of the American Chemical Society, 126(41):13298–13305, 2004.

[80] Ichiro Hirao, Michiko Kimoto, and Rie Yamashige. Natural versus artificial creation of

base pairs in dna: origin of nucleobases from the perspectives of unnatural base pair

studies. Accounts of Chemical Research, 45(12):2055–2065, 2012.

[81] Michael W Davidson, Teresa E Strzelecka, and Randolph L Rill. Multiple liquid crystal

phases of dna at high concentrations. Nature, 331:457–460, 1988.

[82] Richard J Lipton et al. Dna solution of hard computational problems. Science,

268(5210):542–545, 1995.

[83] Kensaku Sakamoto, Hidetaka Gouzu, Ken Komiya, Daisuke Kiga, Shigeyuki Yokoyama,

Takashi Yokomori, and Masami Hagiya. Molecular computation by dna hairpin formation.

Science, 288(5469):1223–1226, 2000.

[84] Justin Werfel and Radhika Nagpal. Extended stigmergy in collective construction. Intel-

ligent Systems, IEEE, 21(2):20–28, 2006.

[85] Harish Chandran, Nikhil Gopalkrishnan, Bernard Yurke, and John Reif. Meta-dna: syn-

thetic biology via dna nanostructures and hybridization reactions. Journal of The Royal

Society Interface, 9(72):1637–1653, 2012.

[86] Jean-Christophe Galas, Anne-Marie Haghiri-Gosnet, and André Estévez-Torres. A

nanoliter-scale open chemical reactor. Lab on a Chip, 13(3):415–423, 2013.

[87] Leroy Cronin. Synthetic biology manipulations in 3d printed wet-ware. In Advances in

Artificial Life, ECAL, volume 12, pages 1142–1142, 2013.

BIBLIOGRAPHY 127

[88] A. Vlandas, A. Padirac, A. Estevez-Torres, and Y. Rondelez. Switching a bistable dna

circuit electrically. In Proceedings of the International Conference on DNA Computing

and Molecular Programming, volume 19, pages 76–76, 2013.

[89] Yannick Rondelez. Competition for catalytic resources alters biological network dynamics.

Physical review letters, 108(1):018102, 2012.

[90] Michael Hucka, Andrew Finney, Herbert M Sauro, Hamid Bolouri, John C Doyle, Hiroaki

Kitano, Adam P Arkin, Benjamin J Bornstein, Dennis Bray, Athel Cornish-Bowden, et al.

The systems biology markup language (sbml): a medium for representation and exchange

of biochemical network models. Bioinformatics, 19(4):524–531, 2003.

[91] Andrew Finney and Michael Hucka. Systems biology markup language: Level 2 and

beyond. Biochemical Society Transactions, 31(6):1472–1473, 2003.

[92] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distribu-

tions in evolution strategies: The covariance matrix adaptation. In Evolutionary Com-

putation, 1996., Proceedings of IEEE International Conference on, pages 312–317. IEEE,

1996.

[93] Joseph N Zadeh, Conrad D Steenberg, Justin S Bois, Brian R Wolfe, Marshall B Pierce,

Asif R Khan, Robert M Dirks, and Niles A Pierce. Nupack: analysis and design of nucleic

acid systems. Journal of computational chemistry, 32(1):170–173, 2011.

[94] Nicholas R Markham and Michael Zuker. Unafold. In Bioinformatics, pages 3–31.

Springer, 2008.

[95] Elisa Franco, Eike Friedrichs, Jongmin Kim, Ralf Jungmann, Richard Murray, Erik Win-

free, and Friedrich C Simmel. Timing molecular motion and production with a synthetic

transcriptional clock. Proceedings of the National Academy of Sciences, 108(40):E784–

E793, 2011.

[96] Matthew R Lakin, Simon Youssef, Filippo Polo, Stephen Emmott, and Andrew Phillips.

Visual dsd: a design and analysis tool for dna strand displacement systems. Bioinformat-

ics, 27(22):3211–3213, 2011.

[97] Nathanael Aubert, Clement Moscat, Teruo Fujii, Masami Hagiya, and Yannick Rondelez.

Computer assisted design for scaling up systems based on dna reaction networks. Natural

Computing, Accepted.

BIBLIOGRAPHY 128

[98] Vadim A Vasiliskov, Dmitry V Prokopenko, and Andrei D Mirzabekov. Parallel multiplex

thermodynamic analysis of coaxial base stacking in dna duplexes by oligodeoxyribonu-

cleotide microchips. Nucleic acids research, 29(11):2303–2313, 2001.

[99] James Dickson Murray. Mathematical biology, volume 1. springer, 2002.

[100] Raphaël Plasson and Yannick Rondelez. Synthetic biochemical dynamic circuits. Multi-

scale Analysis and Nonlinear Dynamics: From Genes to the Brain, pages 113–145, 2013.

[101] A. Baccouche, K. Montagne, A. Padirac, and Y. Rondelez. Dynamic dna-toolbox reaction

circuits: a walkthrough. Methods, submitted, 2013.

[102] Matthew R Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew

Phillips. Design and analysis of dna strand displacement devices using probabilistic model

checking. Journal of the Royal Society Interface, 9(72):1470–1485, 2012.

[103] Wilson W Wong, Tony Y Tsai, and James C Liao. Single-cell zeroth-order protein degra-

dation enhances the robustness of synthetic oscillator. Molecular systems biology, 3(1),

2007.

[104] Dmitrii V Pyshnyi and Eugenia M Ivanova. The influence of nearest neighbours on the

efficiency of coaxial stacking at contiguous stacking hybridization of oligodeoxyribonu-

cleotides. Nucleosides, Nucleotides and Nucleic Acids, 23(6-7):1057–1064, 2004.

[105] Peter Yakovchuk, Ekaterina Protozanova, and Maxim D Frank-Kamenetskii. Base-

stacking and base-pairing contributions into thermal stability of the dna double helix.

Nucleic acids research, 34(2):564–574, 2006.

[106] Ekaterina Protozanova, Peter Yakovchuk, and Maxim D Frank-Kamenetskii. Stacked–

unstacked equilibrium at the nick site of dna. Journal of molecular biology, 342(3):775–

785, 2004.

[107] Lubert Stryer. Fluorescence energy transfer as a spectroscopic ruler. Annual review of

biochemistry, 47(1):819–846, 1978.

[108] Adrien Padirac, Teruo Fujii, and Yannick Rondelez. Quencher-free multiplexed monitoring

of dna reaction circuits. Nucleic acids research, 40(15):e118–e118, 2012.

BIBLIOGRAPHY 129

[109] Jifeng Qian, Tanya M Ferguson, Deepali N Shinde, Alissa J Ramı́rez-Borrero, Arend

Hintze, Christoph Adami, and Angelika Niemz. Sequence dependence of isothermal dna

amplification via expar. Nucleic acids research, 40(11):e87–e87, 2012.

[110] Inc. Wolfram Research. Mathematica. Wolfram Research, Inc., version 8.0 edition, 2010.

[111] John SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide dna nearest-

neighbor thermodynamics. Proceedings of the National Academy of Sciences, 95(4):1460–

1465, 1998.

[112] Nathanael Aubert, Yannick Rondelez, Teruo Fujii, and Masami Hagiya. Enforcing logical

delays in dna computing systems. Natural Computing, Accepted.

[113] Yaakov Benenson, Binyamin Gil, Uri Ben-Dor, Rivka Adar, and Ehud Shapiro.

An autonomous molecular computer for logical control of gene expression. Nature,

429(6990):423–429, 2004.

[114] Leslie Lamport. Concurrent reading and writing. Communications of the ACM,

20(11):806–811, 1977.

[115] Yohsuke Bansho, Norikazu Ichihashi, Yasuaki Kazuta, Tomoaki Matsuura, Hiroaki

Suzuki, and Tetsuya Yomo. Importance of parasite rna species repression for prolonged

translation-coupled rna self-replication. Chemistry & Biology, 19(4):478–487, 2012.

[116] Chris Thachuk and Anne Condon. Space and energy efficient computation with dna strand

displacement systems. In DNA Computing and Molecular Programming, pages 135–149.

Springer, 2012.

[117] Kevin Montagne, Raphael Plasson, Adrien Padirac, Teruo Fujii, and Yannick Rondelez.

A toolbox to build time-responsive in vitro dna networks. In Oral presentation, 17th

International Conference of DNA Computing and Molecular Programming, 2011.

[118] Anthony J Genot, Teruo Fujii, and Yannick Rondelez. Computing with competition in

biochemical networks. Physical review letters, 109(20):208102, 2012.

[119] Teruo Fujii and Yannick Rondelez. Predator–prey molecular ecosystems. ACS nano,

7(1):27–34, 2012.

BIBLIOGRAPHY 130

[120] David Whitcombe, Jane Theaker, Simon P Guy, Tom Brown, and Steve Little. Detec-

tion of pcr products using self-probing amplicons and fluorescence. Nature biotechnology,

17(8):804–807, 1999.

[121] Leslie Lamport. Proving the correctness of multiprocess programs. Software Engineering,

IEEE Transactions on, (2):125–143, 1977.

[122] Renjun Pei, Elizabeth Matamoros, Manhong Liu, Darko Stefanovic, and Milan N Sto-

janovic. Training a molecular automaton to play a game. Nature Nanotechnology,

5(11):773–777, 2010.

[123] Andreas Wagner and David A Fell. The small world inside large metabolic networks.

Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1478):1803–

1810, 2001.

[124] Michael S Branicky. Multiple lyapunov functions and other analysis tools for switched

and hybrid systems. Automatic Control, IEEE Transactions on, 43(4):475–482, 1998.

[125] John J Tyson, Katherine C Chen, and Bela Novak. Sniffers, buzzers, toggles and blinkers:

dynamics of regulatory and signaling pathways in the cell. Current opinion in cell biology,

15(2):221–231, 2003.

[126] Ehsan Chiniforooshan, David Doty, Lila Kari, and Shinnosuke Seki. Scalable, time-

responsive, digital, energy-efficient molecular circuits using dna strand displacement. In

DNA Computing and Molecular Programming, pages 25–36. Springer, 2011.

[127] Anthony J Genot, Jonathan Bath, and Andrew J Turberfield. Reversible logic circuits

made of dna. Journal of the American Chemical Society, 133(50):20080–20083, 2011.

[128] Adrien Padirac, Teruo Fujii, André Estévez-Torres, and Yannick Rondelez. Spatial waves

in synthetic biochemical networks. Journal of the American Chemical Society, 2013.

[129] Koshi Hasatani, Mathieu Leocmach, Anthony J Genot, André Estévez-Torres, Teruo Fujii,

and Yannick Rondelez. High-throughput and long-term observation of compartmentalized

biochemical oscillators. Chemical Communications, 2013.

[130] Jongmin Kim and Erik Winfree. Synthetic in vitro transcriptional oscillators. Molecular

systems biology, 7(1), 2011.

BIBLIOGRAPHY 131

[131] Brian C Goodwin. Oscillatory behavior in enzymatic control processes. Advances in

enzyme regulation, 3:425–437, 1965.

[132] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional

regulators. Nature, 403(6767):335–338, 2000.

[133] Albert-László Barabási and Zoltan N Oltvai. Network biology: understanding the cell’s

functional organization. Nature Reviews Genetics, 5(2):101–113, 2004.

[134] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus,

Mudita Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. Copasia complex pathway

simulator. Bioinformatics, 22(24):3067–3074, 2006.

[135] Paul WK Rothemund. Folding dna to create nanoscale shapes and patterns. Nature,

440(7082):297–302, 2006.

[136] Shawn M Douglas, Adam H Marblestone, Surat Teerapittayanon, Alejandro Vazquez,

George M Church, and William M Shih. Rapid prototyping of 3d dna-origami shapes

with cadnano. Nucleic acids research, 37(15):5001–5006, 2009.

[137] Joshua OMadadhain, Danyel Fisher, Padhraic Smyth, Scott White, and Yan-Biao Boey.

Analysis and visualization of network data using jung. Journal of Statistical Software,

10(2):1–35, 2005.

[138] David Gilbert. The jfreechart class library. Developer Guide. Object Refinery, 2002.

[139] E Hairer, SP Nørsett, and G Wanner. Solving ordinary differential equations i. nonstiff

problems, 1987.

[140] Q. H. Dinh, N. Aubert, N. Noman, T. Fujii, Y. Rondelez, and H. Iba. An effective method

for evolving reaction network in synthetic biochemical systems. IEEE Transactions on

Evolutionary Computation, submitted, 2013.

[141] Nathanaël Aubert, Quang Huy Dinh, Masami Hagiya, Hitoshi Iba, Teruo Fujii, Nicolas

Bredeche, and Yannick Rondelez. Evolution of cheating dna-based agents playing the

game of rock-paper-scissors. In Advances in Artificial Life, ECAL, volume 12, pages

1143–1150, 2013.

[142] Yifan Hu. Efficient, high-quality force-directed graph drawing. Mathematica Journal,

10(1):37–71, 2005.

BIBLIOGRAPHY 132

[143] M. Hagiya, I. Kawamata, and N. Aubert. Towards persistent molecular computers for

molecular robots. In DNA Computing and Molecular Programming 19th International

Conference, DNA19, extended abstract, 2013.

[144] Aryeh Warmflash, Paul Francois, and Eric D Siggia. Pareto evolution of gene networks:

an algorithm to optimize multiple fitness objectives. Physical Biology, 9(5):056001, 2012.

[145] Steven Muchnick. Advanced compiler design and implementation. Morgan Kaufmann,

1997.

[146] Charles E Leiserson, Ronald L Rivest, Clifford Stein, and Thomas H Cormen. Introduction

to algorithms. The MIT press, 2001.

[147] Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint. The C programming language,

volume 2. prentice-Hall Englewood Cliffs, 1988.

[148] Luca Cardelli. Strand algebras for dna computing. Natural Computing, 10(1):407–428,

2011.

[149] Andrew Phillips and Luca Cardelli. A programming language for composable dna circuits.

Journal of the Royal Society Interface, 6(Suppl 4):S419–S436, 2009.

[150] Matthew R Lakin, Simon Youssef, Luca Cardelli, and Andrew Phillips. Abstractions for

dna circuit design. Journal of The Royal Society Interface, 9(68):470–486, 2012.

[151] Peter Cheeseman, Bob Kanefsky, and William M Taylor. Where the really hard problems

are. In IJCAI, volume 91, pages 331–337, 1991.

[152] Akinori Awazu and Kunihiko Kaneko. Ubiquitous glassy relaxation in catalytic reaction

networks. Physical Review E, 80(4):041931, 2009.

[153] Jeremy M Berg, John L Tymoczko, and Lubert Stryer. Biochemistry, 2002.

[154] Jeffrey Van Ness, Lori K Van Ness, and David J Galas. Isothermal reactions for the ampli-

fication of oligonucleotides. Proceedings of the National Academy of Sciences, 100(8):4504–

4509, 2003.

[155] Eric Tan, Barbara Erwin, Shale Dames, Tanya Ferguson, Megan Buechel, Bruce Irvine,

Karl Voelkerding, and Angelika Niemz. Specific versus nonspecific isothermal dna am-

plification through thermophilic polymerase and nicking enzyme activities. Biochemistry,

47(38):9987–9999, 2008.

BIBLIOGRAPHY 133

[156] H. Kong, J. Aliotta, and J.J. New England Biolabs Pelletier. Bst dna polymerase, large

fragment.

[157] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal

of physical chemistry, 81(25):2340–2361, 1977.

[158] Thomas E Ouldridge, Rollo L Hoare, Ard A Louis, Jonathan PK Doye, Jonathan Bath,

and Andrew J Turberfield. Optimizing dna nanotechnology through coarse-grained mod-

eling: A two-footed dna walker. ACS nano, 7(3):2479–2490, 2013.

[159] Ibuki Kawamata, Fumiaki Tanaka, and Masami Hagiya. Abstraction of dna graph struc-

tures for efficient enumeration and simulation. In International Conference on Parallel

and Distributed Processing Techniques and Applications, pages 800–806, 2011.

[160] Ibuki Kawamata, Nathanael Aubert, Masahiro Hamano, and Masami Hagiya. Abstrac-

tion of graph-based models of bio-molecular reaction systems for efficient simulation. In

Computational Methods in Systems Biology, pages 187–206. Springer, 2012.

[161] Ishanu Chattopadhyay, Anna Kuchina, Gürol M Süel, and Hod Lipson. Inverse gillespie

for inferring stochastic reaction mechanisms from intermittent samples. Proceedings of

the National Academy of Sciences, 110(32):12990–12995, 2013.

[162] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental

data. science, 324(5923):81–85, 2009.

[163] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In Computer aided verification, pages

154–169. Springer, 2000.

[164] Ross D King, Jem Rowland, Stephen G Oliver, Michael Young, Wayne Aubrey, Emma

Byrne, Maria Liakata, Magdalena Markham, Pinar Pir, Larisa N Soldatova, et al. The

automation of science. Science, 324(5923):85–89, 2009.

[165] J. M. Smith. Evolution and the Theory of Games. Springer US, 1993.

[166] Barry Sinervo and Curt M Lively. The rock-paper-scissors game and the evolution of

alternative male strategies. Nature, 380(6571):240–243, 1996.

BIBLIOGRAPHY 134

[167] Benjamin Kerr, Margaret A Riley, Marcus W Feldman, and Brendan JM Bohannan.

Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature,

418(6894):171–174, 2002.

[168] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional

regulators. Nature, 403(6767):335–338, 2000.

[169] Tobias Reichenbach, Mauro Mobilia, and Erwin Frey. Mobility promotes and jeopardizes

biodiversity in rock–paper–scissors games. Nature, 448(7157):1046–1049, 2007.

[170] Marcus Frean and Edward R Abraham. Rock–scissors–paper and the survival of the

weakest. Proceedings of the Royal Society of London. Series B: Biological Sciences,

268(1474):1323–1327, 2001.

[171] Akio Namiki, Yoshiro Imai, Masatoshi Ishikawa, and Makoto Kaneko. Development of a

high-speed multifingered hand system and its application to catching. In Intelligent Robots

and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference

on, volume 3, pages 2666–2671. IEEE, 2003.

[172] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augment-

ing topologies. Evolutionary computation, 10(2):99–127, 2002.

[173] Richard Cook, Geoffrey Bird, Gabriele Lünser, Steffen Huck, and Cecilia Heyes. Auto-

matic imitation in a strategic context: players of rock–paper–scissors imitate opponents’

gestures. Proceedings of the Royal Society B: Biological Sciences, 279(1729):780–786, 2012.

[174] Joanne Macdonald, Darko Stefanovic, and Milan N Stojanovic. Dna computers for work

and play. Scientific American, 299(5):84–91, 2008.

[175] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. SpringerVer-

lag, 2003.

[176] Priscilla EM Purnick and Ron Weiss. The second wave of synthetic biology: from modules

to systems. Nature Reviews Molecular Cell Biology, 10(6):410–422, 2009.

[177] Guillermo Rodrigo, Javier Carrera, and Alfonso Jaramillo. Computational design of syn-

thetic regulatory networks from a genetic library to characterize the designability of dy-

namical behaviors. Nucleic acids research, 39(20):e138–e138, 2011.

BIBLIOGRAPHY 135

[178] G Max Kelly and Ross Street. Review of the elements of 2-categories. In Category seminar,

pages 75–103. Springer, 1974.

[179] Bryan Bergeron. Developing serious games (game development series). 2006.

[180] Salvatore Bommarito, Nicolas Peyret, and John SantaLucia Jr. Thermodynamic param-

eters for dna sequences with dangling ends. Nucleic Acids Research, 28(9):1929–1934,

2000.

Appendix A

Model parameters and equations

A.1 Coaxial-stacking slowdown

The slowdown due to coaxial stacking is computed following a simple two-state model: when

the bases at the nick are stacked, the DNA complex is considered stable and, as such, does not

denature; when the bases are not stacked, the release happens without at the normal speed

(actually, faster, because there is no dangle stabilization). The reactions going from one state

to the other are considered at equilibrium, which allows us to use the equilibrium constants

as the slowdown ratio. Coaxial-stacking stability values were taken from Frank-Kamenetskii’s

group measures [106]. We used their formula on temperature and salt dependence [105] to

correct those values for the conditions of Padirac et al. [11] (temperature 42◦, salt equivalent

of 120 mM of Na+). Since we only care about the relative increase in stability compared to a

single-stranded input or output present on the template, we have to reduce those values to take

into account the stability increase of dangles [180] (values were corrected for the temperature,

and averaged in the same way that Frank-Kamenetskii’s group [106] to be able to compare).

We then get:

136

APPENDIX A. MODEL PARAMETERS AND EQUATIONS 137

Sequence at the nick (5� to 3�) Coaxial-stacking stability increase (kcal/mol) Final stability increase Equivalent slowdown factor

TA - 0.46 0.09 1.2

CA = TG - 0.85 -0.30 0.62

CG - 1.21 -1.06 0.19

AG = CT - 1.36 -1.14 0.16

AA = TT - 1.41 -1.14 0.16

AT -1.64 -1.33 0.12

GA = TC - 1.73 -1.15 0.16

GG = CC - 1.74 -1.34 0.12

GT = AC - 2.11 -2.00 0.04

GC -2.47 -2.03 0.04

Average - 1.51 - 1.15 0.16

However, those values do not take into account the base pairs neighbouring the nicking site,

although a strong dependence has been observed by Pyshnyi and Ivanova [104].

A.2 Full equation set for an autocatalytic module

In the case of a simple autocatalytic module s → s, we get the following equations:

d[s]

dt
(t) = kduplex · Ks · ([tempin](t) + [tempout](t) + 2 stack · [tempboth](t))

− kduplex · [s](t) · (2 [tempalone](t) + [tempin](t) + [tempout](t))

+ pol(t) · [tempboth](t) − exos(t) · [s](t)

d[tempalone]

dt
(t) = kduplex · ([tempin](t) + [tempout](t))

− 2 kduplex · [s](t) · [tempalone](t)

APPENDIX A. MODEL PARAMETERS AND EQUATIONS 138

d[tempin]

dt
(t) = kduplex · ([s](t) · [tempalone](t) + stack · Ks · [tempboth](t))

− kduplex · [tempin](t) · ([s](t) +Ks) − pol · [tempin](t)

d[tempout]

dt
(t) = kduplex · ([s](t) · [tempalone](t) + stack · Ks · [tempboth](t))

− kduplex · [tempout](t) · ([s](t) +Ks)

d[tempboth]

dt
(t) = kduplex · [s](t) · ([tempin](t) + [tempout](t))

− 2 stack · kduplex · Ks · [tempboth](t)

+nick · [tempext](t) − pol · [tempboth](t)

d[tempext]

dt
(t) = pol · ([tempin](t) + [tempout](t))

−nick · [tempext](t)

exos(t) =
Vm,exo

Km,short ·
�
1 + [s](t)

Km,short
+ [tempalone](t)

Km,temp

�

pol(t) =
Vm,pol

Km,pol ·
�
1 + [tempin](t)

Km,pol
+ [tempboth]

Km,displ

�

nick =
Vm,nick

Km,nick + [tempext](t)

APPENDIX A. MODEL PARAMETERS AND EQUATIONS 139

A.3 Proof of equation 2.10

We place ourselves in the case of an autocatalytic module at equilibrium. Then it follows that

all derivatives are equal to zero. The complete equation of the system are given above. Note

that in the following, we will write the concentration of species at equilibrium without the eq

notation to improve readability.

First, by reorganizing the terms in the derivative of s, we get:

d[s]

dt
=
d[tempalone]

dt
− d[tempboth]

dt
+ nick · [tempext] − exo · [s] = 0

It then immediately follows that

exo · [s] = nick · [tempext] (A.1)

Moreover, we have

d[tempext]

dt
= pol · ([tempin] + [tempout])− nick · [tempext] = 0

This yields the result that is used with Equation A.1 to determine the fluorescence of Eva-

Green in Chapter 2:

pol · ([tempin] + [tempout]) = nick · [tempext] (A.2)

This also gives us an expression of the sum of three fifth of the internal states of temp as a

function of [s]. We use combinations of the equations to determine the remaining two, first as

an expression of [tempin]:

d[tempin]

dt
− d[tempout]

dt
= kdup · (Ks + [s]) · ([tempout]− [tempin]) − pol · [tempin] = 0

⇒ [tempout] = (1 + dfracpolkdup · (Ks + [s])) · [tempin] (A.3)

Then, we have, from the derivative of [tempalone]:

2 kduplex · [s](t) · [tempalone](t) = kduplex · ([tempin](t) + [tempout](t))

APPENDIX A. MODEL PARAMETERS AND EQUATIONS 140

Using Equation A.3, we get:

[tempalone] =
Ks

2[s]
· (2 + dfracpolkdup · (Ks + [s])) · [tempin] (A.4)

From the derivative of [tempin], we get the following equality:

kduplex · [s] · [tempalone] = (kduplex · [s] + kduplex · Ks + pol) · [tempin]−kduplex ·Ks · coax ·[tempboth]

From here on, we will make the assumption that coax = 1. By using a rewriting trick

(kduplex · Ks · [tempin] − kduplex · Ks · [tempin] = 0), we get:

kduplex · [s] · [tempalone] = (kduplex · [s] + 2kduplex · Ks + pol) · [tempin]

−kduplex · Ks · ([tempin] + [tempboth])

= (kduplex · [s] + 2kduplex · Ks + pol) · [tempin]

−kduplex · Ks · exo
pol

· [s]

[tempalone] =

�
1 + 2

Ks

[s]
+

pol

kduplex[s]

�
· [tempin] − Ks · exo

pol
(A.5)

We then recognize an expression combining [tempalone] and [tempout], namely:

2[tempalone] + [tempout] =

�
1 + 2

Ks

[s]
+

pol ·Ks

kduplex(Ks + [s])[s]
+

pol

kduplex(Ks + [s])

�
· [tempin]

=

�
1 + 2

Ks

[s]
+

pol

kduplex[s]

�
· [tempin]

Injecting this result in Equation A.5, we finally have:

[tempalone] + [tempout] = Ks · exo
pol

(A.6)

This yields the final result:

[temp]total = [tempalone] + [tempout] + [tempin] + [tempboth] + [tempext]

= Ks · exo
pol

+ exo ·
�
1

pol
+

1

nick

�
· [s]

APPENDIX A. MODEL PARAMETERS AND EQUATIONS 141

A.4 Reactions of the delay gate

In the following, we note O for output, T for timer, Text for extended timer, G for gate and F

for fuel. When it is necessary to distinguish between the two possible conformations of the gate,

we precise whether its 5� end is single-stranded (Gup) or double-stranded (Gdown). Polymerase

activity is represented by irreversible reactions (simple arrows).
Step 1:

(O.T) +G
fast�
slow

(O.T).G (A.7)

T +G
very fast
�

very slow
T.G (A.8)

T + (O.T).G
fast�

very slow
(O.T) + T.G (A.9)

Step 2:

T.G
fast→ Text.Gup (A.10)

(O.T).G
fast→ (O.Text).Gup (A.11)

Text.Gup + F
fast�
fast

Text.Gup.F (A.12)

(O.Text).Gup + F
fast�
fast

(O.Text).Gup.F (A.13)

Step 3:

Text.Gup
fast�
fast

Text.Gdown (A.14)

(O.Text).Gup
fast�
fast

(O.Text).Gdown (A.15)

Text.Gdown + F
fast�
fast

(Text.F).Gdown (A.16)

(O.Text).Gdown + F
fast�
fast

(O.Text.F).Gdown

(A.17)

Step 4:

(Text.F).Gdown
fast→ W +G (A.18)

(O.Text.F).Gdown
fast→ O +W +G (A.19)

Leak/capture reactions:

O + T
very fast
�

very slow
O.T (A.20)

O + T.G
very fast
�

very slow
(O.T).G (A.21)

O + Text.Gup

very fast
�

very slow
(O.Text).Gup (A.22)

O+Text.Gup.F
very fast
�

very slow
(O.Text).Gup.F (A.23)

O + Text.Gdown

very fast
�

very slow
(O.Text).Gdown (A.24)

O + (Text.F).Gdown

very fast
�

very slow
(O.Text.F).Gdown

(A.25)

Reaction 3 represents the toehold mediated strand displacement of a duplexed timer strand

attached to the gate by a single-stranded timer strand. Reactions 4 and 5 are polymerase

extension of the timer strand. Similarly reactions 12 and 13 are polymerase extension of the

fuel strand. Reaction 13 releases the output. Differential equations are directly derived from

those reactions assuming mass action kinetics [99].

APPENDIX A. MODEL PARAMETERS AND EQUATIONS 142

A.5 Sequences for the delay gate

Strand name Strand sequence

Output 6 GCTTTCGTTCGCTTGCCGTCCGTGTC

Output 8 CTGCTTTCGTTCGCTTGCCGTCCGTGTC

Output 10 TTCTGCTTTCGTTCGCTTGCCGTCCGTGTC

Output 12 GGTTCTGCTTTCGTTCGCTTGCCGTCCGTGTC

Output 14 CTGGTTCTGCTTTCGTTCGCTTGCCGTCCGTGTC

Fuel-driven Gate, missing dNTP TTGCGTGTCAAAATGGCTTCCCATTTTGA

CACGCAACTCGGTCTGGTTCTGCTTTCTTT

Fuel-driven Gate, Sp-18 spacer TTGCGTGTCAAATGGCTTCCCATTT-spacer-

GACACGCAACTCGGTCTGGTTCTGCTTTCTTT

Fuel-less Gate, missing dNTP GCGGCTTGTGCCGCTTGTCAAAATGGCTTCCCA

TTTTGACAAGCGGCACAAGCCGCTTGTCGGTCTGCTTT

Timer GACACGGACGGCAAGCGAACGAAAGCAGAACCAGACCGAG

Fuel GACACGCAA

Table A.1: Sequences of the different strands in the system, given from 5� to 3�. The numbers in
the name of the output sequences represent the length n of the part of the output overlapping
with the gate toehold. Bold text in the gate sequence represents the blocker sequence and its
complementary.

Appendix B

Tutorial DACCAD

B.1 Introduction

DACCAD (DNA Artificial Circuits Computer Assisted Design) is a Computer Assisted Design

software for Montagne et al.’s experimental framework for the building of dissipative reaction

networks, dubbed the DNA (Dynamic Networks Assembly) toolbox [67]. Its goal is to help both

first comers and experienced users to create quickly DNA toolbox systems, either as a proof of

concept or for an actual in-vitro implementation. The last section gives some details on how to

match the model parameters to your experimental setting.

The DNA toolbox is a set of modules aimed to simplify the design of dynamic DNA comput-

ing systems. The basic idea is to keep the system out of equilibrium by continuously generating

and degrading short DNA strands. Those strands play a similar role to signaling compounds

in biological regulation networks, or to variables in a computer program. They interact with

specific longer strands (“templates”) which are kept stable over time and can be seen as the

“program” of the system.

Specifically, the toolbox is composed of three modules: activation, autocatalysis (which

can be considered as a special case of activation) and inhibition. Generation is assured by

polymerization and nicking, degradation by the action of exonuclease. DACCAD leverages the

simple graph representation of DNA toolbox systems to allow the user to easily create and

manipulate those systems while automating the ODE generation.

Enzymatic activities and affinities can be set in the options. The default settings are from

Padirac et al. [11]. See the supplementary material of [67] to experimentaly find values appro-

priate to your own experimental settings.

143

APPENDIX B. TUTORIAL DACCAD 144

B.2 Interface

B.2.1 Main window

This window is used to display the DNA system being designed as well as general information

relative to it.

1. Display panel. Shows the graphical representation of the system.

2. Data panel. Shows general data about the system (top) as well as information specific to

the selected node(s) (bottom).

3. Parameters area. Allows the user to modify values related to the selected node(s), such

as DNA sequence stability or DNA templates concentration.

4. Graph of the system. Nodes represent DNA signal species and arrows DNA templates.

Selected nodes are displayed in blue.

5. File menu.

6. Species menu. Groups species related operations.

7. Options. Allows the user to change parameters about the simulator, the enzymes and

optimization.

8. Plot. Simulates the system and display the result in a new window.

The display panel represents the system as a graph, following the conventions of section 3.

The drawing itself is done by the JUNG library [137]. It features the following possibilities:

APPENDIX B. TUTORIAL DACCAD 145

• Species (nodes) can be freely added and removed to the system. Activation templates are

simply added by first selecting the signal species and then the output species. Inhibitions

are added through an option at species creation, allowing the new species to be the

inhibitor of an existing module.

• Nodes can be freely moved around by drag and drop. If more than one node is selected,

then their relative positions are kept. This change is purely aesthetic and does not change

the system itself.

• Additional structures can be added to the current system either by selecting multiple

nodes and using the “duplicate” feature, or by importing a previously saved system.

In the duplication case, only templates joining selected nodes (as opposed to templates

joining a selected node to an unselected one) will be duplicated.

• Selected nodes can be fused together, with a best effort policy to maintain the coherence

of the structure. If a module use one of the selected nodes before fusion, it will be replaced

by a similar module using the fused species instead. Duplicates are then removed. The

fusion detects direct autocatalysis, in which case an autocatalytic template is added to

the new node. Inhibition species are simply removed. This mechanism is useful to quickly

combine multiple structures imported from an existing database.

• Right-clicking on a node displays a contextual menu with two options: deleting the node

and managing the species inputs, that is the external injections of the species into the

system. It provides two parameters: the time at which the injection is made, and the

added concentration in case of a spike. Other kinds of inputs can be described in a

separate file and imported. Inputs can be periodic, in which case the period can also be

set.

The data panel displays the following information:

• General data on the system: the total number of species, which can be seen as a de-

gree of complexity of the system, the number of inhibiting species, the number of direct

autocatalysts and the number of currently selected nodes.

• Contextual data, depending on the selected nodes. If one species is selected, its initial

concentration and Ks (dissociation constant) are displayed and can be adjusted. If this

species has an autocatalytic module, the concentration of template of this module can also

APPENDIX B. TUTORIAL DACCAD 146

be set. If two species are selected the concentration of template of modules using one as

signal and the other at output are displayed, with a maximum of two if both species are

activating each other. The edition area also contains an button opening a window with

additional options, such as deleting the template or setting its coaxial slowdown (default

0.2).

The option menu allows to set all relevant parameters to simulate the system, notably the

activity and Michaelis parameters of all enzymes along with the possibility to declare them

saturable and to toggle competitive coupling, the Kduplex, α and simulation time. It is also

possible to declare which species concentration should be displayed in the time plot and set

which parameters can be modified by the optimiser.

Finally the plot button commands the simulation of the system using the Gragg-Bulirsch-

Stoer integrator from the Apache Commons Mathematics Library. The resulting time trace is

then displayed using the JFreeChart library [138] in a separate window. It can also be exported

as a text file to be used with other programs, such as Matlab or Gnuplot.

The remaining actions are standard (“new”, “save”, “open”) or straightforward (“export”).

B.2.2 The animate window

1. Display of the graph. Nodes radius: concentration of the species. Nodes color: stability

as expressed by the dissociation constant, blue is stable (dissociation constant low), red

unstable (dissociation constant high). Edges thickness: total template concentration.

APPENDIX B. TUTORIAL DACCAD 147

Edges color: quantity of loaded or active template (that is, anything that is not free or

inhibited), gray means less than 10% active, then the scale goes from blue to red. Nick,

poly, exo: each mark represents which template is saturating said enzyme the most. If

a given enzyme is saturated to the point of changing the behavior of the system, those

marks can be used to find the bottleneck.

2. Saturation panel: shows the current observed activity of each enzyme. 1 means the enzyme

is available at full speed (no substrate), 0 means the enzyme is completely saturated.

3. Animate/Stop button: starts (respectively stops) the animation.

4. Time: represents which moment of the simulation is displayed.

5. Minimum and maximum time: sets which part of the simulation should be animated.

6. Speed scale: sets the animation speed.

7. Options: allows to set some appearance options, such as whether to display the enzyme

saturation marks or how to calculate the nodes radius.

B.3 DACCAD tutorials

This section gives four tutorials presenting the possibilities of DACCAD.

Note: if at any time you make a mistake or would like to go back, you can use the undo

option from the “File” menu (shortcut Ctrl+Z). It is also possible to remove nodes with right

click (secondary click on Mac OS)>remove. Another possibility is to select the nodes and press

“Del”. Templates can be removed by selecting the nodes it connects and pressing the “X”

button in the data panel.

Similarly, enzymatic parameters can be reset, using the “default” button in the “Enzymes”

tab of the options. Default parameters for sequences dissociation constants are (roughly) 74 nM

for a signal species and 0.2 nM for an inhibiting species. Templates have a default concentration

of 10 nM, with 0.2 coaxial slowdown.

Tutorial 1. A simple logical gate: the NOT operation

This tutorial will highlight:

• the creation of signal species and templates.

APPENDIX B. TUTORIAL DACCAD 148

Figure B.1: Left: inverter gate made with the DNA toolbox. Right: logical diagram. s2 is the
input and s1 the output.

• parameter setting.

• pulse inputs.

Logical circuit make great use of the NOT gate. Its working is simple: when it has an input,

no output should be produced. Conversely, in the absence of input, there should be an output.

In the DNA toolbox, an inverter (or NOT gate) is made of an autocatalyst that can be inhibited

by the action of a second signal species. The diagram of the gate and its logical equivalent are

shown in Figure B.1.

First step: create a new activation species. This can be done through the “New species”

function in the “Species” menu (shortcut Ctrl+A). In the pop-up window, choose “activation

species”. A new species named s1 should appear. Select it by clicking on it (it will become

blue) and change its initial concentration (last line of the data panel) to 1 nM.

Second step: Add the autocatalysis template. Adding a template creating a species b from

a species a is simple: select a and then click on b. In the present case, s1 should already be

selected, so it is enough to click on it again. The graph should look like the one on Figure B.2,

left. You can simulate this network by pressing “plot” (shortcup Ctrl+p), which should yield

a nice steady state after transient amplification. If the curve is completely flat, check that the

initial concentration of s1 is not zero.

Third step: add a new activation species (Figure B.2, center). It is possible to reposition

it by drag-and-drop.

Fourth step: add a new species, select inhibition. An inhibition species always targets a

specific template, so the application will open a pop-up window to ask which template should

be inhibited. Note that, due to restrictions in the DNA toolbox, only templates generating

signal species can be inhibited 1. In the present case, there should be only one choice (“1->1”),

press “ok”. Add a template from s2 to the inhibitor (Figure B.2, right). The NOT gate is now

complete.

1To work around this limitation, it is possible to use an indirect activation. That is, a signal species activates
another signal species which in turn creates the inhibitor. It is then possible to inhibit the first activation.

APPENDIX B. TUTORIAL DACCAD 149

Figure B.2: NOT gate: step by step creation of the network. The output is shown in dark blue,
inputs respectively in red and cyan.

Figure B.3: Adding pulse inputs

To test the behavior of the NOT gate, we can add a pulse input on the species s2. This

input represents an injection of s2 in the system.

To open the input manager, right click (secondary click on Mac OS) on the species s2

and select “add input” (Figure B.3, left). This should open a new window. Just click add

and close (Figure B.3, right). It is also possible to modify input parameters (such as input

time, quantity or periodicity) or to delete an input by selecting an existing input in the input

manager. Species can have any number of inputs, which are all managed through the input

manager window. Species with inputs are displayed double-circled.

We can then use the plot option (shortcut Ctrl+p) to observe the simulated behavior of

the system. We obtain indeed a signal inversion (Figure B.4). Note that it is possible to

automatically resimulate and replot a system every time a change occurs by toggling “autoplot”

on in the “Options” menu.

Finally, we can save this system in convenient place, using the “File>Save” command.

Tutorial 2. Creating a more complex gate: the AND gate

This tutorial assumes that the first tutorial was completed. It focuses on:

• multiple selection and multiple nodes reorganization.

• advanced graph manipulation: the “join” and “duplicate” operations.

• stability modifications.

APPENDIX B. TUTORIAL DACCAD 150

Figure B.4: Behavior of the NOT gate. When s2 is injected at time 100, the output signal s1
is drastically reduced, before returning to normal when s2 is hydrolysed.

• continuous inputs.

In this tutorial, we will realize an AND gate, building on the previous NOT gate. We will

then add continuous chemical inputs to the logical inputs of the circuit to observe its response

to external signal. In a wet lab, such continuous input can be realized by using microfluidic

devices [86].

First step: starting from the NOT gate, either by opening a previously saved file or after

the previous tutorial, select all nodes. To do so, you can click on an empty space and drag the

pointer across the screen to perform a multiselection, or use Shift + left click to toggle which

nodes are selected. Once all nodes are selected, use the “Species>Duplicate selected”. Drag

and drop the selected nodes so that the network looks like Figure B.5, left.

Second step: Click on an empty spot to clear the selection. Select the output of the first

gate and the input of the second gate (respectively s1 and s6 on Figure B.5, left). Use the

“Species>Join selected” operation to fusion those two nodes. Reorganize the network as in

Figure B.5, center. Set the initial concentration of all autocatalysts to 1 nM.

Third step: Simulate the system with the plot option. If there is no pulse at time 100, add

a pulse input on the circuit input (s2 here). We can see that the pulse is not strong enough to

propagate to the output of the circuit (s4). Indeed, the species gets degraded before it was able

to have enough impact. To solve this problem, it is possible to use more stable species. Select

s2 and change its dissociation constant to 4 nM. The lower the dissociation constant, the longer

it takes the species to detach from a template. After plotting again, we can see that there is

now a large impact on the output.

Fourth step: We can also use this inertia to create an AND gate. This gate should have an

output if and only if both its input are present. To do so, we will create a new activation species

(see tutorial 1) and connect it to the first inhibitor (Figure B.5, right). Set the dissociation

APPENDIX B. TUTORIAL DACCAD 151

Figure B.5: Creation of the logical circuit.

0 1

0

1

Figure B.6: Truth table of the AND gate.

constants of both species to 20 nM. Replot. You can see that there is a noticeable impact on

the system, but no output is created. Add a pulse input to the new species at time 100. Replot.

There is now a spike of output in the system after a delay. The whole set of possibilities is

shown in Figure B.6 and is the same as a logical AND gate.

Fifth step: finally, we can add an external continuous input representing an flow of chemical

species, like in an microfluidic open reactor, for instance. To do so, create a simple file in

a convenient place. Edit it with a program that will not add formatting, such as Emacs or

Windows Notepad. Each line of this file should contain a value representing the added quantity

in nM at the nth minute, where n is the line number. In our case, copy and paste zeros for

approximately 40 lines. This will leave enough time to the circuit to reach its stable state. You

can then add any value for the next couple of lines. Floating point and negative values are

accepted. If the file is longer than the simulation time, extraneous values are ignored. If the file

APPENDIX B. TUTORIAL DACCAD 152

Figure B.7: Padirac’s switch oscillator [43].

is too short, it is padded with zeros. Then return to DACCAD and choose “Species>Import

input”. Add the input to s2 and replot. Species can have any number of inputs, which are all

managed through the input manager window.

Tutorial 3. Importing modules and animation

This tutorial requires that you completed the first tutorial and saved the resulting system. This

tutorial focuses on:

• setting templates concentrations.

• importing previously saved modules.

• the animation view of DACCAD.

In this tutorial, we will use an oscillating scheme to modulate a downstream module and

give it a spiking behavior. Indeed, it is often necessary to create spikes, to switch bistable for

instance. We will then observe and understand the resulting behavior with the visualization

tool of DACCAD.

First step: This tutorial will create a large system, which is subject to enzymatic saturation.

While it would be possible to make the current system robust against saturation, it is beyond

the scope of the present tutorial. Moreover, when designing a system, it may be better to first

turn off enzymatic saturations, check the integrity of the design, then toggle the saturations

back on and optimize the parameters. To turn off the saturations, go to “Options>Enzymes”

and turn all “saturable” checkboxes off. Now enzymatic activity is assumed to be first order.

Second step: Follow the pattern show in Figure B.7, left. Start all the autocatalysts by

setting the initial concentration of s1 to 5 nM, s2 and s3 to 1 nM. Plot. You should obtain the

results shown in Figure B.7, right.

APPENDIX B. TUTORIAL DACCAD 153

Figure B.8: The spike generator.

Third step: Use “Species>Import module” to import the previous NOT gate. The import

operation allows you to add a previously saved system without overriding any parameter and

is useful to quickly assemble a large system made of basic modules. Move the added gate to a

convenient spot on the screen.

Fourth step: Connect both s2 and s3 to the input of the gate (Figure B.8, left).

Fifth step: The current system generates too much inhibitor, which destroys the output.

Select both s2 and the input of the gate (s7 here). You can do so by using Shift + left click

to add a species to the current selection. Then, set the template concentration to 1 nM. Do

the same with s3 and s7. Also set the template from s7 to the inhibitor of the NOT gate to

5 nM. You should observe the result shown in Figure B.8, right. You can also try different

combinations of the template concentrations to change the shape and intensity of the spikes.

Sixth step: Toggle the saturations back on. You will notice that the shape of the plot is not

optimal anymore, with large spikes. One way to change this is to play with the coaxial stacking

slowdown of the templates. This effect represents the capacity of two DNA strands to stabilize

each other when they are only separated by a nick. While not as stable than a full strand

of the same length, the strands still denature slower than when alone on the template. This

slowdown is sequence (and thus template) dependent, and can be access through the options of

a given template (button on the right of the template concentration in the data panel). Based

on multiple sources [98, 104], realistic values seems to be between 1.0 (no slowdown) and 0.04

(25 times slowdown).

Once you are satisfied with the plot, you can observe the dynamical evolution of the system

by pressing “Animate”. In the new window, press “Animate” to start the animation. You can

get a better visualization for this system by opening the options, setting the radius scale to

“linear” and the radius size factor to 0.3, for instance.

APPENDIX B. TUTORIAL DACCAD 154

Tutorial 4. Optimization

This tutorial is independent of the previous ones and explains how to use the optimization tool.

It is recommended to have done the first tutorial to know the basics about graph creation and

edition.

We will realize a simple system with an autocatalyst activating an output, then use the

optimization tool to change their respective levels.

First step: Create the system. Add an autocatalyst, set its initial concentration to 1 nM,

add an activation species and finally add a template from the autocatalyst to this new species.

The resulting graph is shown in Figure B.9, top.

Second step: When plotting, you can see that both steady-states are identical and that

both curves are similar. We can use CMA-ES [92] to set a different level for both species.

However, we don’t want to evolve all possible parameters, we only want to change the template

concentrations. Go to “Options>Optimization”, select “Species dissociation constants” and

uncheck the “optimize” option. Do the same with “Initial species concentrations”. Since we are

evolving two different species at the same time, it is a good idea to get a stricter (that is lower)

threshold ratio. 0.5 should be a good starting point. The threshold ratio defines how close to the

user-defined points the plot has to be on average. Sigma represents the initial standard deviation

used by CMA-ES to modify the evolved parameters. If the fitness (that is the distance to the

target) does not change much with respect to a given parameter, the algorithm will increase

this parameter’s sigma. Conversely, if the fitness changes fast, the algorithm will reduce the

parameter’s sigma.

Third step: Close the options. If you closed the plot window, plot again. Our goal is to

get 40 nM of output for 20 nM of input. To change the display range, right-click on the plot,

then go to “Properties>Plot>Range Axis>Other>Range”. Uncheck the “Auto-adjust range”

box and select a maximum of 45. Then close the properties window, check the “Add points for

optimization” box and add two point for s1 at the 20 nM level. Then use the drop box to select

s2 and add two points at the 40 nM level. The resulting screen should look like Figure B.9,

bottom left. If you added a point by mistake, you can always remove it by clicking on it. You

can also add points by loading a previously saved optimization file. The loaded points will be

added to the target of the species currently selected.

Fourth step: Press “Optimize”. After a short while, the species steady state should be

correct (Figure B.9, bottom right). You can cancel the optimization at any time by closing the

optimization window. The optimization will then stop at the end of the current generation. You

APPENDIX B. TUTORIAL DACCAD 155

Figure B.9: Optimization of parameters.

can then select either s1 alone or both s1 and s2 to check the updated templates concentrations.

B.4 File formats

This section describes the multiple file formats. While not explicitly human readable, they can

be edited by hand, or generated by another resource.

B.4.1 Graph files

Graph files should have the “.graph” extension and contains three mandatory sections and two

optional ones. It is possible to include commentaries, as the parser will ignore any line starting

with a sharp symbol (#). The sections are as follow, and should appear in this order:

• SEQ: describes the species that are present in the graph. A line in this section contains

the following data, separated by a tabulation: species ID, species initial concentration,

node x coordinate in the layout, node y coordinate, sequence stability.

• TEM: the templates of the graph. The values represent the name (purely aesthetic,

the name displayed in the data panel), input species ID, output species ID and total

concentration.

• INHIB: which species are inhibitors, and of which template. Inhibiting species ID, tem-

plate name (should be the same as in the previous section), template input species, tem-

plate output species.

APPENDIX B. TUTORIAL DACCAD 156

• INPUTS: optional, describes species inputs. Species ID, type (“pulse” or “file”), type

specific data (time and concentration for a single pulse as well as frequency for a periodic

pulse, URL for a file).

• PARAMS: optional, gives the system parameters. Parameter name, value. Each line is

optional, and can be given in any order. The parameters abbreviations are:

– absprec: absolute precision for integration.

– relprec: relative precision for integration.

– inhfact: stability ratio between an inhibitor on its template (fully double-stranded)

and on the template it inhibits (double-stranded with mismatches). The higher this

value, the less stable the inhibitor when inhibiting. This value cannot physically be

inferior to 1, but this is not prevented by DACCAD.

– diplrat: polymerase activity slowdown when displacing the output of a template.

Only used for long outputs (i. e. inhibitors).

– exokmib: exonuclease Michaelis-Menten parameter (Km) with respect to inhibiting

species.

– exokmsi: exonuclease Michaelis-Menten parameter (Km) with respect to signal species.

– exokmtm: exonuclease Michaelis-Menten parameter (Km) with respect to free tem-

plates. Even though they are not degraded, they competitive inhibitor of the exonu-

clease.

– exovm: exonuclease reaction speed. Enzymatic activity is defined as Vm
Km

with the

relevant Km.

– kduplex: hybridization speed of complementary single strands.

– nickkm: nicking enzyme Michaelis-Menten parameter (Km).

– nickvm: nicking enzyme reaction speed. Enzymatic activity is defined as Vm
Km
.

– maxtime: simulation time in minutes.

– polkm: polymerase Michaelis-Menten parameter (Km) with respect to templates

without output.

– polkmbo: polymerase Michaelis-Menten parameter (Km) with respect to templates

with both input and output.

– polvm: polymerase reaction speed. Enzymatic activity is defined as Vm
Km

with the

relevant Km.

APPENDIX B. TUTORIAL DACCAD 157

– selfsta: polymerase self-start ratio. Represents the activity slowdown when the poly-

merase extends a template without primer.

– toehold: hybridization slowdown when a template input or output displaces an in-

hibitor.

Here is a minimal working example:

SEQ

1 0.0 44.446860742124116 95.64789361292605 74.32767762106766

TEM

1->1 1 1 10.0

INHIB

B.4.2 Input files

Input files are simple text files with a value per line. The nth line represents the flux (in

nM.min−1) at the nth minute, values for the flux in between are computed using quadratic

interpolation. Note that negative values are acceptable. If the file is not long enough for a given

simulation (less lines than simulation minutes), it will be padded with zeros.

B.4.3 Optimization files

Those files are used to store optimization profiles. Each line represents an optimization point,

composed of two values separated by a tabulation character. The first value represent the

targeted time, the second the targeted concentration. Note that this file does not specify which

species is the target, leaving it as a choice for the user. If multiple species should be optimized

at the same, the various profiles have to be stored in different files.

B.4.4 Exported files

There are three types of exported files:

• raw simulation data: each line represents the concentrations of all species in the system

at a given time (one minute per line), separated by a tabulation character.

• SBML file: exports the whole system as an SBML file, which can be used with other

applications, such as Copasi.

APPENDIX B. TUTORIAL DACCAD 158

• Mathematica file: exports a slightly simplified version of the system as a Mathematica file.

Some options are not available yet in this format (inhibitor displacement and polymerase

self-start), but will be added soon.

