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Abstract

In history, fight against infectious diseases has never ended since the dawn of human be-

ing, and infectious diseases acted as the leading cause of death. To overcome the diseases,

pharmaceutical approaches have been invented. However, even at the present moment

emerging infectious diseases such as HIV/AIDS, Middle East respiratory syndrome coron-

avirus (MERS-CoV), Severe Acute Respiratory Syndrome (SARS), influenza continuously

cause epidemics across the world. Accordingly, we confront with the needs to evaluate

the efficacy and effectiveness of pharmaceutical or non-pharmaceutical interventions (e.g.

school closure during influenza epidemic) in quantitative and qualitative manners. Despite

the importance of modeling approaches to infectious disease control, the methodology has

not been straightforward. The most popular and classical model that describes an in-

fectious disease epidemic was developed by Kermac and McKendrick (hereafter I call the

model as SIR (Susceptible-Infectious-Recovered) model), and the SIR model has been

extended to practical problems in many ways. Apart from these progresses, a lot of quan-

titative questions have remained in public health. To answer the questions, this thesis has

focused on the data generating process of epidemics in order to fit models to limited data

that is empirically observed. Moreover, the infectious disease modelling framework has

been further extended to other health related problems that are known to be contagious.

The main contributions of this thesis are summarized as follows; (1) I constructed

a transmission model of influenza during the early phase of an epidemic, investigating

the required length of time to reliably estimate case fatality ratio (CFR) of influenza.

The study suggested that 2-3 month would be required to reliably compare the estimated

CFR with the pre-specified CFR value such as those defined by US Pandemic Severity

Index. (2) I proposed a modeling method to estimate the vaccine efficacy against measles,

jointly quantifying parameters governing the temporal dynamics of measles (e.g. R0).

The study suggested that population aged from 5-19 year should be (re-) vaccinated to

prevent further epidemic in Japan. (3) I discussed the use of chance-adjusted agreement

coefficients to measure the assortativity of both contact and transmission of an infectious

disease. I have demonstrated that the proportion of contacts that are reserved for within

group mixing, p in the preferential mixing assumption has excellently corresponded to the

Newman’s assortativity coefficient (or the so-called Cohen’s kappa). Subsequently, I have

explicitly distinguished the transmission assortativity from contact assortativity, because

the former captures not only the contact heterogeneity but also many other intrinsic and
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extrinsic factors characterizing the frequency of within- and between- group transmission.

(4) I have emphasized that an appropriate model would be essential to answer public

health question including vaccination problems. Examining the validity of incorporation

of vaccine effect against clinical disease in epidemic models, I have shown that an explicit

formulation would also help to clarify underlying assumptions that tend to be hidden

in common model structures. (5) I investigated epidemiological model that describes an

obesity epidemic which is known to spread via social contact and can also be acquired in

a non-contagious manner. I compared the effectiveness of different types of intervention

programs against obesity, identifying associated data gaps in empirical observation.

Through these five original studies, I have shown that appropriate model building

approaches that explicitly account for data generating process would be essential not only

for modeling researchers but also for public health practitioners. The needs for sound

model building approaches have been emphasized.
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Chapter 1

Introduction

1.1 Preface

The fight against infectious disease, which only until recently represented the leading

cause of death globally, has been ongoing since the dawn of human civilization. The

plague pandemic which occurred in 14th century Europe was responsible for the deaths

of an estimated 30% of the population at the time. In response, human society has

developed a number of pharmaceutical approaches to cope with infectious disease. For

instance, in 1798, Edward Jenner developed the first vaccine for smallpox, and in 1929,

Alexander Fleming discovered penicillin―the first antibiotic. In recent years, however,

new emerging infectious diseases such as HIV/AIDS, Middle East respiratory syndrome

coronavirus (MERS-CoV), Severe Acute Respiratory Syndrome (SARS) and new strains

of influenza, for which the majority of the worldwide population has no resistance, are

precipitating both local epidemics and global pandemics. Given the delays inherent in

developing new vaccines or antibiotics against these new health threats, and the lack of

access for those living in poverty once they are developed, it is therefore critical to evaluate

the efficacy and effectiveness of both pharmaceutical and non-pharmaceutical approaches

(i.e. school closures during influenza epidemics) in both a quantitative and qualitative

manner.

Despite the importance of such an approach, this type of evaluation is rarely straight-

forward. Additionally, infectious disease modeling must account for the ”dependency of

the risks”.

Figure 1.1 illustrates the difference between the infectious disease and other non-

communicable diseases such as cancer, asthma and diabetes. In the case of a non-

communicable disease, the risk of morbidity should be the same for both of these two

individuals with four contacts each. However, in the case of an infectious disease, the risk

of infection is dependent on the status of one’s contacts. The susceptible individual on

the right is surrounded by three infected contacts while the one on the left has only one

infected contact. The individual on the right is therefore more vulnerable to infection.

As the risk of infection is dependent on the risk of others, it is necessary to construct
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Figure 1.1. The risk of infection of individuals with same number of contacts and the
different status of contactees.

mathematical and statistical models to reflect this dependency. Furthermore, these mod-

els should account for the biological characteristics of the infectious disease in question,

such as its mode of reproduction, and the social contacts patterns. The classical model

to describe an infectious disease epidemic, which is still the most popular among epidemi-

ologists and hereafter referred to as the SIR (susceptible-infectious-recovered) model [68],

was developed by Kermack and McKendrick in the 1920s and 1930s. Although its original

version was described using partial differential equations, this model is shown below in

terms of ordinary differential equations for illustration:

dS(t)
dt = −λS(t),

dI(t)
dt = λS(t)− γI(t),

dR(t)
dt = γI(t),

λ = βI,

(1.1)

where S(t), I(t) and R(t) are the sizes of the susceptible, infectious and recovered pop-

ulations at time t. The susceptible individuals are infected at the rate of λ(t) = βI(t),

also known as the ”force of infection”, and move from the susceptible to the infectious

population, I(t). As shown, the force of infection is proportional to I(t), which implies

that individuals come into contact with one other at the same rate (i.e. a homogeneous

mixing assumption). Infected individuals recover at a constant rate, γ , and move to the

recovered population, R(t). Although this ODE model cannot be solved analytically, it

can be solved numerically.

Figure 1.2 shows an example of the solution. The dashed line corresponds to the tem-

poral distribution of the infected population. Although this model is relatively simple and

based on a number of unrealistic assumptions, such as homogeneous mixing and a single
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Figure 1.2. The example of numerical solution of SIR model. The parameter settings
are as follows; β = 1.4247, γ = 0.14286. The initial settings are as follows;
(S(0), I(0), R(0)) = (0.999999, 0.000001, 0.0).

host type (i.e. susceptibility and infectivity are both the same in the host population),

it can capture the typical features of epidemic curves which are frequently observed in

nature; the infected population increases exponentially in the early phase of the epidemic

in an almost fully susceptible population and then begin to decrease due to the depletion

of the susceptible population. While this model is not only able to represent the progress

of the epidemic, it is also useful in a public health context. For instance, it could be

used to calculate the target vaccination coverage needed to prevent a similar outbreak. In

equations 1.1, the total population, N(t) = S(t) + I(t) + R(t), is constant over time, so

that N(t) = N . If almost all of the population is susceptible to the disease, or S(0) = N ,

and a substantial number of cases enter this population, so that I(0) > 0, R(t) = 0, then

we can linearize the system (1.1) and describe the dynamics of the infected population as

follows:

dI(t)

dt
= (βN − γ)I(t). (1.2)

Therefore, in the early phase of the epidemic, the infected population increases exponen-

tially,

I(t) = e(βN−γ)tI(0), (1.3)

βN − γ is the growth rate in the early phase, and the condition in which the epidemic

occurs is expressed as βN − γ > 0. This can be rewritten as:

βN

γ
> 0. (1.4)
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The left hand side of this equation corresponds to the basic reproduction number, R0,

which can be interpreted as the average number of secondary cases generated by a given

primary case over the course of its infectious period in a fully susceptible population.

In other words, if R0 > 1, then an epidemic can occur. Now, if p is the vaccination

coverage before the epidemic, then the initial susceptible population decreases to N(1−p).
The effective reproduction number, which is the reproduction number in cases where the

population is not fully susceptible, is R∗ = βN(1−p)
γ . As the condition that the epidemic

occurs is R∗ > 1, the target vaccination coverage is defined as p > 1− 1
R0

.

After Kermack and McKendrick proposed the SIR model, little further progress in

infectious disease modeling was made until the 1970s. From the 1970s to the present day,

thanks to the progress in mathematical demography [60, 61, 85, 132], the SIR model has

been extended in several ways. Further innovations include Hethcote’s [56] consideration of

the impact of births and deaths in the population, and the age structured model proposed

by Diekmann [26].

One reason why infectious disease modeling has attracted the attention of so many

researchers is the nonlinearity of the model (i.e. dependency of the risks), which makes

the analysis complex and produces unintuitive results. Despite the progress made by these

studies, there remain many unanswered quantitative questions in public health. Although

the topics are broad and methods vary widely according to the disease studied, I have

focused on two issues: (a) the evaluation of the interventions, such as vaccination, pro-

phylaxis, and countermeasures to prevent the spread of pathogens, and (b) the estimation

of parameters to determine disease dynamics, such as the basic reproduction number, the

next generation matrix and the case fatality ratio (CFR). In practice, both of these is-

sues are of relevance to public health policy-making. For instance, while the evaluation of

the vaccine efficacy is of use in determining the target vaccination coverage (Chapter 3),

the case fatality ratio (CFR) can be used to decide which interventions are appropriate

during an influenza pandemic (Chapter 2). To address these issues, I have focused on

the data generating process which explains the limited data normally available in public

health practice. The data generating process can roughly be divided into two parts: the

transmission process and the observation process. The transmission process is the process

by which the pathogen is transferred from infected cases to susceptible individuals. To de-

scribe this process, we must consider the route of infection. In the case of a direct infection

(by physical contact), the pattern of contacts (the frequency and nature of both infected

and susceptible individuals), is of significant importance. During the 2009 influenza pan-

demic in Japan, assortativity of contacts between different age groups meant that the

majority of patients in the early phase were children and that only later did the outbreak

gradually shift to adults. Assortativity is defined as a preference for an individual node

in a network to connect with others that have similar characteristics.

Mossong et.al. conducted the serveillance about the age dependent frequency of contact

[90]. From this, we can infer that contacts between individuals of the same age group are
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more frequent than between individuals from different age groups. Additionally, viral

reproduction in vivo, and the relationship between the viral load and infectivity are also

important factors [63,115].

The observation process is also important, given that we cannot directly observe infec-

tions as they occur. In practice, it is impossible to report all infected cases because of the

delay between the infection and appearance of symptoms. Furthermore, some cases may

remain asymptomatic during the entire course of infection. Subsequently, only a fraction

of the symptomatic cases attend hospital. If the cases that attended hospitals were diag-

nosed using a polymerase chain reaction (PCR) test and surely reported, the cases were

counted in the data. As we cannot count all the cases, these disease processes should be

considered when we fit models to observed data.

1.2 Structure of the Thesis

As mentioned above, I have aimed to address a number of public health issues by focusing

on the data generating process. Furthermore, I have applied an infectious disease modeling

framework to other health-related topics.

In Chapters 2 and 3, I attempt to address these public health issues using limited

passive data. In Chapter 2, I propose a method for jointly estimating the CFR and

the exponential growth rate in the early phase of an influenza epidemic. In the early

phase of the epidemic, when the available data is limited, we can only determine the

number of confirmed cases and deaths at most. I go on to construct realistic epidemic and

observational models, and then assess the minimum number of days required to compare

the estimated CFR with the pre-specified CFR value, as defined by the US Pandemic

Severity Index. In Chapter 3, I propose a modeling approach to estimate vaccine efficacy

against measles by jointly quantifying parameters governing the temporal dynamics of a

measles outbreak such as R0. This method is based solely on epidemiological surveillance

data with partial information on vaccination history. Furthermore, this is possible using

only readily available data, and is not as costly as conducting a specialized field study,

which would be required, for example, to observe household transmission.

In Chapters 4 and 5, I show the importance of model building for describing the data

generating process. In Chapter 4, I focus on several factors influencing the transmission

process; assortativity in particular. I discuss the use of chance-adjusted agreement coef-

ficients to measure the assortativity of contacts and transmission of infectious diseases. I

go on to demonstrate that p, as expressed in the preferential mixing formulation, closely

corresponds with Newman’s assortativity coefficient (or Cohen’s kappa). Subsequently, I

explicitly distinguish transmission assortativity from contact assortativity, given that the

former captures not only the heterogeneity of contacts but also many other intrinsic and

extrinsic factors characterizing the frequency of within- and between-group transmission.

In Chapter 5, I emphasize that it is essential to adapt model formulation for each specific
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scientific or public health question. As shown, an explicit formulation would also aid in

clarifying the underlying assumptions that tend to be hidden in commonly encountered

model structures.

Finally, I apply the infectious disease model to other communicable diseases. Re-

cent work has revealed that not only infectious diseases, but also health behaviors and

conditions such as smoking and obesity, which have previously been categorized as non-

communicable diseases, can also be described as contagious. In Chapter 6, I investi-

gate epidemiological models to describe the obesity epidemic, which can be considered as

spreading via social contacts and also acquired non-communicably. I then undertake a

comparative assessment of the effectiveness of different types of intervention programs to

reduce the risk of obesity.

Lastly, I conclude the thesis in Chapter 7.
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Chapter 2

The Time Required to Estimate
the Case Fatality Ratio of
Influenza

2.1 Introduction

When a new infectious disease emerges, the case fatality ratio (CFR) informs how lethal the

infection or the disease is, measuring the virulence of the novel infection as the conditional

probability of death given infection or disease [81, 98]. To understand the severity of

infection, assess the impact of clinical and public health interventions, and anticipate the

likely number of deaths in the population given the total number of infected individuals,

quantifying the CFR during the early stage of an epidemic is of utmost importance.

Among various uses of the CFR, the present study focuses on influenza, and in par-

ticular, the epidemiological determination of the severity in relation to epidemiological

indices, such as the Pandemic Severity Index (PSI) in the United States [25]. As a process

of public health policy-making, this index is used as a scientific criterion in the decision-

making processes about implementation of public health countermeasures, and thus, the

CFR is regarded as key information for policy making [78]. For instance, if the estimated

CFR exceeds a pre-specified reference value of 2.0%, which is sometimes quoted as the

estimate of the CFR for the H1N1-1918 pandemic [96], the PSI suggests that the govern-

ment should recommend and implement all the non-pharmaceutical interventions listed,

including voluntary isolation of clinically ill individuals at home, quarantine of household

contacts and social distancing [25].

However, while the CFR is theoretically calculated as a proportion of deaths to infected

individuals, the actual calculation practice involves several technical problems owing to

a few epidemiological features. First, one cannot directly count all infected individuals

during the course of an epidemic due to unobservable nature of infection, and commonly

available datasets may be only confirmed cases through surveillance efforts. Moreover,

the mild nature of influenza involves multiple steps of bias including ignorance of asymp-

tomatic and subclinical infections, case ascertainment bias, imperfectness of a diagnostic



8 Chapter 2 The Time Required to Estimate the Case Fatality Ratio of Influenza

testing method, and reporting bias. In fact, approximately 10% of confirmed infections

with influenza (H1N1-2009) in households were shown to be fully asymptomatic [23,114].

To partly address the issue of under-ascertainment, a technical advancement in synthesiz-

ing epidemiological evidences enabled us to estimate the symptomatic case fatality ratio

(sCFR), the proportion of deaths to all symptomatic cases [116], although the denomi-

nator data are frequently based on non-specific disease information such as influenza-like

illness. As an alternative, a real-time serological study could potentially offer the denom-

inator based on all infected individuals [139], but the seroepidemiological survey is costly

and the diagnostic performance of serological testing in relation to the estimation of the

CFR has yet to be fully clarified. While specific CFRs using confirmed cases and symp-

tomatic cases as the denominator have been expressed as cCFR and sCFR, respectively,

among studies of H1N1-2009 [98], the present study consistently uses the simplest notation

”CFR”, intending it to represent the risk of death among all infected individuals (and so

may be abbreviated as iCFR when necessary).

Second, the real-time estimation of the CFR has to take into account the time delay

from illness onset to death, and thus, requires us to employ an appropriate statistical

method to address censoring. This point must be addressed, because all the cases are not

fully exposed to the risk of death at a point in time during the course of an epidemic,

and a simple ratio of the cumulative numbers of deaths to cases can yield biased (mostly,

underestimated) CFR [45, 46, 65, 107]. Third, it is critical to always keep in mind that

the risk of death is heterogeneous. In particular, the higher risk of influenza death than

healthy adults is seen among those with underlying health conditions [101], including

chronic obstructive pulmonary disease, asthma, pregnancy, chronic kidney failure, diabetes

and so on. Perhaps reflecting this feature, the CFR clearly differs by age with the highest

estimate among elderly and infants and the lowest among school-age children and young

adults [30, 140]. Fourth, during an early stage of a pandemic, the number of deaths still

remains very small, and so the estimation of CFR suffers from broad uncertainty. Given

that the CFR of influenza is likely to be small, and suffers from wide uncertainty, it

is fruitful to clarify the minimum number of cases that are required to determine if the

estimated CFR in real-time is significantly below a pre-specified cut-off value such as 2.0%.

While directly addressing clinically mild features and case ascertainment bias calls for

synthesizing epidemiological evidences, for example by employing hierarchical modeling

approach [116], it is also important to clarify what can be done with readily available epi-

demiological information, such as confirmed cases and confirmed deaths. In the present

study, we aim to propose a method to estimate the CFR based on the limited epidemi-

ological data during the early stage of an epidemic. Through this investigation, we also

aim to clarify the minimum number of days that are required to explicitly compare the

estimated CFR to pre-determined cut-off values of the CFR.
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2.2 Materials and Methods

2.2.1 Assumptions

For clarity, here we describe the underlying epidemiological assumptions and settings.

First, we focus on the early stage of a pandemic and ignore the depletion of susceptible

individuals during this particular time period in which the number of newly infected

individuals i(t) increases exponentially. That is, we focus on the log-linear phase alone

for simplicity. Second, in realistic settings, i(t) cannot be directly counted as a function

of time, and it is possible to observe only the confirmed cases, c(t). Third, during the

early epidemic phase, a constant factor, k which scales the ratio of confirmed cases to

all infected individuals is assumed to remain a constant. In other words, we assume

that the frequency of confirmed diagnosis among infected individuals does not vary over

time. Fourth, we assume that the time delay from infection to death is independently

and identically distributed and denote the probability density function as f(s) of length

s days since infection. Moreover, among the confirmed cases, we assume that all death

counts are recorded over time through surveillance system. Except for being reflected

in the generation time distribution and the reproduction number, the event of death is

assumed to be independent of the process of renewal. Finally, we consider a public health

setting in which the time of emergence (or the time to initiate exponential growth), t0

is known (even approximately) as was the case in a specific epidemic study in which the

starting time point of an epidemic was estimated [83]. In the next sub-section, we describe

the estimation procedure of only a homogeneous population. However, the estimation

problem of a population with heterogeneous risks of infection and death is discussed in

Results section.

2.2.2 Model Structure

We first describe the model structure deterministically. Throughout the manuscript, we

ignore demographic stochasticity in infection process (see Discussion). Let i(t) be the

incidence of infection at calendar time t. Also, let t0 be the time at which an epidemic

starts with a single index case. Then i(t) increase exponentially as follows:

i(t) = exp {r(t− t0)} , (2.1)

where r is the exponential growth rate of incidence. Let p be the CFR among all infected

individuals. Assuming that the conditional probability density function of the time from

infection to death, f(s) is known, the number of deaths, d(t) is modeled as

d(t) = p

∫ ∞

0
i(t− s)f(s)ds, (2.2)

which can be rewritten as
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d(t) = p exp {r(t− t0)}
∫ ∞

0
exp(−rs)f(s)ds

= p exp {r(t− t0)}M(−r), (2.3)

where M(−r) represents the moment-generating function of the time from infection to

death given the exponential growth rate r. One may integrate both sides and use the

cumulative number of deaths by day t, D(t) for the estimation of CFR. The estimator of

the CFR is then given by

p̂ =
D(t)

[exp(r(t− t0))− exp(−rt0)] M(−r)
r

. (2.4)

Other than parameters for f(s), which we will assume as known, the estimator (2.4)

indicates that, to estimate the CFR, an unknown parameter r has to be estimated from

an additional series of data other than the death process, e.g. from the confirmed case

series. The exponential growth rate r quantifies the denominator of the above mentioned

estimator. To estimate r, we analyze the incidence of confirmed cases, c(t). Let l denote

the proportion of confirmed cases to the total of infected individuals, the data generating

process of c(t) is described by

c(t) = l

∫ t

0
i(t− s)h(s)ds

= lQ(−r)i(t)

= ki(t), (2.5)

where h(s) is the density function of the time from infection to confirmatory diagnosis

and Q(−r) represents the moment-generating function given the exponential growth rate

r. We refer to the parameter k as the confirmed coefficient (i.e. k = lQ(−r)) which acts

as a constant factor to translate i(t) into c(t).

Let us consider an adjusted calendar time based on known t0 (i.e., t+ t0), we simplify

all the following equations by eliminating t0 (and hereafter we consistently use t as the

adjusted time in which t0 is equated to be zero). In addition to this adjustment, we

discretize both the series of confirmed cases and deaths, because the observed dataset is

given with discrete-time (i.e. daily data), that is,

ct =

∫ t

t−1
c(x)dx

=
k

r
[exp(rt)− exp {r(t− 1)}] , (2.6)

and
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dt =

∫ t

t−1
d(x)dx

= p [exp(rt)− exp {r(t− 1)}]M(−r)
r

, (2.7)

The proposed estimation method based on these linear approximations would work even

when the exponential growth rate varies with time (e.g., varies as a step function) as was

considered when evaluating the effectiveness of public health interventions such as school

closure [Nishiura2010g, Wu2010a]. The number of parameters would have to increase to

capture the time variation (e.g., from a single r alone to r0 and r1 for two consecutive

epidemic phases), and thus the required sample size for estimation would also increase.

However, all we have to do to cope with the time dependence is to update (2.1) and (2.2)

using multiple growth rates and, thus, revise (2.6), accordingly.

2.2.3 Maximum Likelihood Estimation

Assuming that the observed number of confirmed cases on day t results from Poisson

sampling process with mean ct = k[exp(rt)−exp r(t− 1)]/r where r and k are parameters,

the likelihood function is given as follows:

L1(r, k;mt) =

T∏
t=1

(
k
r

)mt
[exp(rt)− exp r(t− 1)]mt exp

[
−k

r [exp(rt)− exp r(t− 1)]
]

mt!
,

(2.8)

where mt is the observed daily number of confirmed cases on day t and T represents the

latest time of observation.

Let πt be a random variable which yields an estimator of the CFR on day t since the

start of an epidemic and is the realized value in the particular epidemic. Assuming that

the realized CFR is the result of binomial sampling process of death with sample size

[exp(rT )− 1]M(−r)/r, the likelihood to estimate the CFR based on the total number of

deaths up to the latest time of observation T is

L2(πT ;D(T ), r) =

(
(exp(rT )− 1)M(−r)

r

D(T )

)
π
D(T )
T (1− πT )

(exp(rT )−1)
M(−r)

r
−D(T ). (2.9)

Because of an assumption of conditional independence between the renewal process and

death, the total likelihood L is given by

L = L1L2. (2.10)

Minimizing the negative logarithm of the total likelihood L, we jointly estimate three

parameters, πT , r and k. The 95% confidence intervals are derived from the profile likeli-

hood.
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2.2.4 Simulations

Whereas the above mentioned estimation procedure enables us to estimate the CFR based

only on the confirmed cases and deaths, the estimation rests on limited epidemiological

information as compared to other methods involving additional symptomatic case data or

serological dataset. Thus, it is important to examine if we can overcome uncertainty and

realistically employ the proposed method during an early phase of a pandemic. Specifically,

we explore the time required to confidently suggest the range of the CFR and compare the

CFR against a pre-specified cut-off value during the early stage. We assess the reliability

and validity by means of random simulations.

As a plausible parameter range, we examine three different exponential growth rates,

r, of 0.05, 0.15 and 0.25 per day. These are chosen as plausible, because, assuming that

the mean generation time of influenza is 3 days and exponentially distributed, the basic

reproduction number ranges from 1.15 to 1.75. If the generation time is a constant 3

days, the reproduction number ranges from 1.16 to 2.11. These are in line with published

estimates of the reproduction number for H1N1-2009 [10]. In fact, the growth rate of

influenza A (H1N1-2009) is estimated as 0.08 [103] and 0.10 per day [43] in Japan and

Mexico, respectively. The reference values of CFR, p, are set at 0.1%, 0.5% and 2.0% that

are in line with the PSI in the United States. The CFR of Spanish influenza is sometimes

thought to be approximately 2.0% [96, 123] and those of Asian and Hong Kong influenza

pandemics are thought to be up to 0.5% [76]. The CFR of seasonal influenza is thought to

be below 0.1% [123]. Although the CFR of the H1N1-2009 pandemic among all infected

individuals is estimated to be smaller than 0.1% [120], we do not examine smaller estimates

of the CFR, because 0.1% may be most reasonably defined as the lowest cut-off value in

practical setting to distinguish a mild influenza strain from severe ones, and it is likely to

be infeasible to robustly estimate a CFR below 0.1% during the early epidemic phase due

to sampling errors. Since the empirically estimated proportion of confirmed cases among

all infected individuals is 5% [140], we fix k at 0.05 assuming that the time delay from

infection to confirmed diagnosis is sufficiently short. Ignoring small delay from infection

to illness onset (as it doesn’t influence the above mentioned estimation framework), the

conditional probability density function of the time from infection to death of influenza

A (H1N1-2009), f(s) is assumed to be gamma distribution with the mean and standard

deviation being 9.5 and 4.7 days, respectively [100]. As for simulation-based assessment,

we first perform Monte Carlo simulations for 1000 times for each specified combination of

parameter values, calculating the coverage probability of including the assigned CFR value

within the 95% confidence intervals. Second, we assess the time at which the estimated

CFR is confidently said as smaller than the pre-specified CFR value. Again, the model is

randomly simulated for 1000 times per each parameters setting, calculating the number

of simulation runs in which the upper 95% confidence interval is below the reference CFR

value.
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2.2.5 Heterogeneous Population

The proposed method can be extended to a heterogeneous population with differential risks

of infection and death, perhaps by age- and risk-groups. We present the extended model

analytically and demonstrate that the above mentioned approach is directly applicable to

a multi-host population, and thus, the age-stratified epidemiological data.

2.3 Results

2.3.1 Reliability
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Figure 2.1. A single simulation run and the joint estimation results of the case fatality
ratio and the exponential growth rate. The assigned CFR value is 0.5%,
and the exponential growth rate, r is set at 0.15 per day. (A & B) Inci-
dence of confirmed cases and deaths as a function of epidemic days. The
epidemic day 0 is the date on which an index case is infected. The numbers
of confirmed cases and deaths increase exponentially. (C & D) The maxi-
mum likelihood estimates of (C) the exponential growth rate r and (D) the
case fatality ratio with the 95% confidence intervals. The 95% confidence
intervals were computed by employing the profile likelihood. Unfilled circles
are the maximum likelihood estimates accompanied by the whiskers extend-
ing to lower and upper 95% confidence intervals. The dotted horizontal line
shows the assigned parameter value.

Figure 2.1 illustrates a single simulation run and the resulting maximum likelihood

estimates with the 95% confidence intervals with the assigned parameters, the CFR of
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0.5% and r=0.15 per day. As one can imagine, the confidence intervals for each parameter

is gradually narrowed down as the epidemic progresses due to reduced sampling errors.

During the very early stage of the pandemic (e.g. for the first 40 days given the assumed

parameters), it is not feasible to expect the narrow confidence interval for the CFR, and

thus, one may fail to assess the reliability using only the very limited early epidemiological

data.

T (epidemic day to estimate the CFR; days)

CFR r 30 40 50 60 70 80 90 100

0.10％ 0.05 1.50％ 1.80％ 7.80％ 19.10％ 34.20％ 49.10％ 66.00％ 82.60％
0.15 13.20％ 52.40％ 93.80％ 94.60％ 95.00％ 94.90％ 95.00％ *
0.25 62.10％ 94.40％ 95.30％ * * * * *

0.50％ 0.05 4.40％ 8.00％ 25.10％ 57.30％ 82.60％ 91.90％ 94.80％ 95.70％
0.15 55.30％ 93.60％ 95.20％ 95.00％ 95.90％ 93.80％ 94.20％ *
0.25 94.40％ 95.40％ 95.30％ * * * * *

2.00％ 0.05 15.20％ 26.90％ 51.80％ 86.40％ 94.40％ 95.20％ 95.10％ 96.20％
0.15 90.90％ 95.30％ 96.00％ 96.40％ 96.20％ 95.90％ 95.00％ *
0.25 95.50％ 95.80％ 95.00％ * * * * *

Table 2.1. Coverage probability of the case fatality ratio (CFR) for each set of parameter
values. CFR: case fatality ratio (assigned value). All the values were calcu-
lated as the proportion of successful simulation runs with the 95% confidence
intervals that include the assigned CFR value among the total of 1000 simu-
lation runs. The parameter r is the exponential growth rate of infection (per
day). T is the date on which the estimation is performed. Those exceeding
the coverage probability of 90% are highlighted in grey, while the cells with
∗ mark represent combinations of parameter values which generate too large
numbers of cases and for which we refrained from estimation.

Table 2.1 shows the coverage probability of the CFR for each set of parameters. When

estimating the CFR based on early epidemic data, the exponential growth rate appears

to play a critical role in determining reliability. To attain the coverage probability greater

than 90% with r=0.05, 0.15 and 0.25 per day, respectively, the latest times of observation,

T , should be at least 80, 40 and 30 days with the reference CFR value of 0.5%. This

indicates that the smaller the transmission potential is, the longer time it would take to

obtain a reproducible estimate of the CFR. Of course, the coverage probability converges to

95% with longer observation times. Given a larger CFR, the coverage probability converges

earlier due to smaller sampling errors. However, the coverage probability appears to be

more sensitive to variation in r than that in the CFR value.

2.3.2 Validity

The validity of comparing the CFR against pre-specified cut-off values is summarized in

Table 2.2. The overall qualitative patterns are similar to those of the coverage probability

in Table 2.1. The minimum number of days that is required to declare that the CFR is

below cut-off values is very sensitive to the exponential growth rate of cases. In other
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words, smaller transmission potential requires us to wait for longer time to compare the

estimated CFR against the cut-off values. In addition, the validity is also sensitive to the

estimated CFR relative to the cut-off value. When the relative ratio of the CFR to the cut-

off value gets smaller, the difficulty in differentiating the CFR is magnified. Given identical

transmission potential and an identical assigned value of CFR, there was approximately a

20-day lag in the minimum numbers of days for differentiation between the relative case

fatality ratios of 50% and 80%. With the smallest growth rate of r=0.05 per day, the

estimation framework failed to yield any successful differentiation of CFR, even observing

the epidemic for T=100 days. Of course, the estimated CFR also influences the feasibility,

but the successful differentiation appears to be most sensitive to the exponential growth

rate.

T (epidemic day to estimate the CFR; days)

relative CFR CFR r 30 40 50 60 70 80 90 100

80％ 0.10％ 0.05 0.00％ 0.10％ 0.30％ 0.10％ 0.00％ 0.00％ 0.00％ 0.00％
0.15 0.00％ 0.00％ 1.50％ 10.50％ 31.30％ 86.10％ 100.00％ *
0.25 0.00％ 11.10％ 67.50％ * * * * *

0.50％ 0.05 0.40％ 1.00％ 1.70％ 0.30％ 0.70％ 1.90％ 5.90％ 8.20％
0.15 0.00％ 3.20％ 11.50％ 23.30％ 64.80％ 99.30％ 100.00％ *
0.25 6.60％ 26.30％ 98.10％ * * * * *

2.00％ 0.05 2.50％ 6.20％ 6.60％ 5.00％ 6.90％ 6.50％ 7.20％ 8.80％
0.15 2.10％ 7.10％ 13.20％ 34.80％ 80.40％ 99.90％ 100.00％ *
0.25 10.00％ 41.90％ 99.60％ * * * * *

50％ 0.10％ 0.05 0.00％ 0.10％ 0.10％ 0.00％ 0.00％ 0.00％ 0.00％ 0.10％
0.15 0.00％ 0.00％ 3.30％ 54.00％ 99.20％ 100.00％ 100.00％ *
0.25 0.00％ 49.10％ 100.00％ * * * * *

0.50％ 0.05 0.20％ 0.60％ 0.60％ 0.60％ 0.20％ 3.40％ 15.50％ 27.80％
0.15 0.00％ 7.80％ 45.30％ 95.80％ 99.90％ 100.00％ 100.00％ *
0.25 17.70％ 95.60％ 100.00％ * * * * *

2.00％ 0.05 2.70％ 5.10％ 5.00％ 8.10％ 21.10％ 28.70％ 38.10％ 48.70％
0.15 3.70％ 33.00％ 74.00％ 99.80％ 100.00％ 100.00％ 100.00％ *
0.25 44.80％ 99.90％ 100.00％ * * * * *

30％ 0.10％ 0.05 0.00％ 0.00％ 0.20％ 0.00％ 0.00％ 0.00％ 0.00％ 0.00％
0.15 0.00％ 0.00％ 2.70％ 91.10％ 100.00％ 100.00％ 100.00％ *
0.25 0.00％ 86.70％ 100.00％ * * * * *

0.50％ 0.05 0.30％ 0.40％ 0.40％ 0.30％ 0.40％ 5.50％ 24.50％ 49.50％
0.15 0.00％ 8.30％ 84.70％ 100.00％ 100.00％ 100.00％ 100.00％ *
0.25 29.60％ 100.00％ 100.00％ * * * * *

2.00％ 0.05 1.40％ 3.30％ 4.20％ 10.40％ 33.90％ 55.00％ 72.80％ 86.40％
0.15 4.30％ 64.90％ 98.70％ 99.90％ 100.00％ 100.00％ 100.00％ *
0.25 86.10％ 100.00％ 100.00％ * * * * *

Table 2.2. Proportion of simulation runs in which the upper 95% confidential interval
of CFR (p) falls below specified cut-off values. CFR: case fatality ratio (as-
signed value). relative CFR: the ratio of assigned CFR value relative to the
cut-off value. The proportion of successful simulation runs with the upper
95% confidence interval below the pre-specified cut-off value is shown. The
parameter r is the exponential growth rate of infection (per day). T is the
date on which the comparison is performed. Those exceeding the proportion
of 90% are highlighted in dark grey, while the cells with ∗ mark represent
combinations of parameter values which generate too large numbers of cases
and for which we refrained from estimation.
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2.3.3 Heterogeneous Population

The proposed method is not directly applicable to realistic setting in which we observe

substantial heterogeneities in the risks of infection and death. Accordingly, here we show

the modeling approach to heterogeneous populations analytically. Specifically, we consider

age-dependent dynamics: while the risk of infection may be higher among children than

among elderly in the case of influenza, the conditional risk of death given infection is likely

to be higher among elderly than school age children, perhaps reflecting higher proportion

of elderly with the underlying co-morbidities.

Let is(t) be the incidence of infection among sub-group s at calendar time t. Also,

let Rqs be the average number of secondary cases in sub-group q generated by a single

primary case in sub-group s, which would act as a single entry of the age-dependent next-

generation matrix [28]. Assuming that the density function of the generation time, g(τ) of

length τ days is shared among sub-groups, the multivariate renewal process is described

by

is(t) =
∑
q

Rsq

∫ ∞

0
iq(t− s)g(s)ds. (2.11)

Let ps be the group-specific CFR (e.g. age-specific CFR) among all infected individuals

of sub-group s. As was shown with application to the homogeneous population, we employ

the confirmed coefficient ks, reflecting both the proportion of confirmed cases to all infected

individuals of sub-group s and the time delay from infection to confirmatory diagnosis.

Then the confirmed cases among sub-group s, cs(t) is

cs(t) = ksis(t). (2.12)

Since the observed dataset is discrete time series, i.e. daily data, we integrate the

confirmed cases as follows:

cs,t =

∫ t

t−1
cs(x)dx. (2.13)

Assuming that the conditional probability density function of the time from infection

to death, f(s) is known and is shared among sub-groups, the number of new deaths of

sug-group s at time t, ds(t) is described as

ds(t) = ps

∫ ∞

0
is(t− s)f(s)ds, (2.14)

which is rewritten as

ds(t) = ps

∫ ∞

0

∑
q

∫ ∞

0
iq(t− τ − s)g(τ)dτf(s)ds. (2.15)
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As was integrated in the homogeneous case, one may focus on the cumulative number

of deaths, Ds(T ) by the latest time of observation T . The estimator of the group-specific

CFR is given by

p̂s =
Ds(T )∫ T

0

∫∞
0

∑
q Rsq

∫∞
0 iq(t− τ − s)g(τ)dτf(s)dsdt

. (2.16)

The likelihood function to estimate the next generation matrix may partially account

for stochastic dependence structure of the transmission dynamics, and thus, conditions

for every future expectation on the past history of the epidemic. Let Z(t) represent the

history of age-specific confirmed cases from time 0 up to time t − 1. Given the series

up to t − 1, and assuming that the incidence of confirmed cases on day t is sufficiently

characterized by Poisson distribution, the conditional likelihood is written as

L1(Rij , k;Z(t)) =
∏
s

n∏
i=1

exp
(
−
∑

q Rsq

∫∞
0 cq(t− s)g(s)ds

)(∑
q Rsq

∫∞
0 cq(t− sg(s)ds)

)mt,s

mt,s!
,

(2.17)

where mt,s represents the observed number of confirmed cases in sub-group s on day t.

This likelihood function is useful to describe the underlying epidemic dynamics of the

heterogeneous population. Let πt,s be a random variable which yields an estimator of

the CFR of sub-group s at day t since the start of an epidemic. The other likelihood to

estimate πt,s is assumed to be given by binomial sampling process as follows:

L2,s(πs,T ;Ds(T ), Rij , k) =

(∫ T
0

∫∞
0

∑
q Rsq

∫∞
0 iq(t− τ − s)g(τ)dτf(s)dsdt

Ds(T )

)
×πDs(T )

s,T (1− πs,T )
∫ T
0

∫∞
0

∑
q Rsq

∫∞
0 iq(t−τ−s)g(τ)dτf(s)dsdt−Ds(T ). (2.18)

Therefore, the total likelihood is calculated as the following product:

L = L1

∏
s

L2,s. (2.19)

Although the estimation framework can thus be very similar to that for the homoge-

neous population, it should be noted that the validity and reliability of estimation proce-

dure for the heterogeneous population are likely to be influenced by way of parameterizing

the next-generation matrix. For example, if the quantification of the matrix requires us to

estimate only a small number of parameters (e.g. one parameter for each age-group), we

expect that the validity and reliability are not too much different from those we examined

for the homogeneous population. However, when more parameters should be estimated

to describe more detailed underlying heterogeneous transmission dynamics, the proposed

method has to face greater uncertainty.
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2.4 Discussion

We proposed an estimation method to jointly infer the CFR and the exponential growth

rate using only the confirmed case and death data. By means of Monte Carlo simulations,

we assessed the minimum length of days required to compare the estimated CFR with

the pre-specified CFR value such as those in the US Pandemic Severity Index. To do

so, it appeared that the validity and reliability were very sensitive to the exponential

growth rate, and thus, to the transmission potential of a novel pandemic strain. To be

confident that the method included the CFR estimate within the 95% confidence interval,

it appears that we have to wait at least for a month, and perhaps in general for about

a few months given that the growth rate is equal to or smaller than 0.15 per day. The

successful differentiation of CFR from cut-off values also takes about a few months. More

importantly, the differentiation may not be feasible, if the growth rate is 0.05 per day or

smaller. The growth rate was thus shown to play the most critical role in determining

the feasibility of the proposed method than the CFR value to be estimated. This finding

is attributable to the fact that the number of deaths is the result of binominal sampling

of cases. In general, as the sample size (or the number of binomial trials) increased,

the standard error of binomial probability decreased, and the number of binomial trials

in the proposed model substantially increased as the exponential growth rate increased.

The validity and reliability were more sensitive to the growth rate than the binomial

probability: the influence of variation in binomial probability on its confidence interval was

small for the assumed range of CFR values, which can be understood from the approximate

standard error of the binomial probability derived from the normal approximation to

binomial.

Already, there have been multiple epidemiological methods to estimate the CFR using

different datasets. Presanis et al. [116] proposed a Bayesian evidence synthesis approach

using various different types of data that describe a pyramid structure, explaining that

confirmed cases represent the tip of an iceberg of infected individuals and emphasizing a

need to observe milder fraction of cases such as those attended medical service. The useful

datasets for that method included medically attended symptomatic cases and those re-

quired hospitalization and those admitted to intensive care unit. Comparing our proposed

method with the evidence synthesis approach, the proposed method has two important

advantages: (i) the proposed method can comply with a need to offer the CFR estimate

in real-time and (ii) we use the time series data of the confirmed cases and deaths which

are readily available and accessible. The two different methods may thus be combined and

used in practical setting: while the proposed method is used for the real-time assessment

using widely available data, the sCFR estimate employing the evidence synthesis approach

may be subsequently offered based on datasets of well-defined cohort populations. On the

other hand, Wu et al. [140] used real-time sero-prevalence data during the course of an

epidemic. This approach enables us to estimate the background denominator of incidence
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of infections directly. In fact, a seroepidemiological study may be the only method to

explicitly and directly quantify the underlying transmission dynamics. However, seroepi-

demiological surveys are costly and explicit interpretations of seroconversion and changes

in antibody titers have yet to be offered. As a method to supplement the explicit esti-

mation approaches, we believe that the proposed method based on readily available data

would be a useful real-time assessment tool.

There are a few important future tasks for improvement. First, we used no prior infor-

mation of parameters in the present study, but some information may be retrieved from

earlier data, other datasets or from literature including historical epidemic records (e.g.

the exponential growth rate of the same epidemic before conducting the estimation). In

fact, it is frequently the case that the transmission potential or the growth rate of cases is

estimated earlier than the CFR in practical setting, and one may know a plausible value of

r in advance of CFR estimation. If the prior knowledge could compensate unknown infor-

mation of the proposed method, it will help to greatly reduce the associated uncertainty

of the CFR, thereby improving the validity of estimation. Second, we did not take into

account demographic stochasticity in the present study, but the stochasticity may not be

negligible during the early epidemic phase [102,119]. The uncertainty that we quantified in

the present study is likely to have been underestimated, although the qualitative findings

are expected not to be different from those when we explicitly account for stochasticity

using appropriate models (e.g. [12, 102]), especially for highly transmissible virus. Third,

the proposed method as well as two earlier estimation studies based on evidence synthesis

and serological study relied on the observed number of deaths as the numerator of the

CFR. If there are many undiagnosed deaths, the direct estimation of the CFR is not fea-

sible, and so, the virulence may also have to be assessed by indirect measurement such as

that using excess mortality [15,75]. Of course, constant k over time is also an unsupported

assumption for epidemics with time-varying ascertainment efforts.

For a heterogeneous population we have shown that the proposed estimation framework

for the homogeneous population can be easily extended to the heterogeneous setting.

However, we have also discussed that the limited degrees of freedom might increase the

relevant uncertainty. That is, when we consider n different sub-groups, we have to deal

with the next generation matrix with n2 entries in addition to n unknown parameters

for the group-specific CFR, ps. Thus, the minimum length of days, T that is required to

estimate the CFR would increase, and T would depend on the way we parameterize the

next generation matrix. Thus, we failed to offer simulation results with general conclusions

with respect to the validity and reliability for the heterogeneous population. Given that

the transmission of H1N1-2009 has been highly dependent on age [43, 102, 119, 141], one

will have to balance the detailed descriptions of dynamics involving many sub-populations

with the uncertainty surrounding the joint estimation of the CFR and the transmission

potential.
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If policy-making and public health response have to be made based on the real-time

estimate of the CFR, the proposed method can be employed using only the readily available

epidemiological datasets. However, as long as the estimation of the CFR relies on the

proposed method, it should be noted that it may take longer than a few months to derive

the CFR with sound uncertainty bounds, and thus, the very early response may not be

able to base the policy decision on the CFR. Moreover, when the transmission potential

is small, the number of infected individuals (or cases) may better be estimated directly

from serological data (or medical attendance), because the proposed method is prone to

uncertainties arising from low frequency of infection. While such limitation exists, we

believe that the proposed method can be coupled with or supplement existing estimation

frameworks which have to use additional epidemiological and serological data, especially

for diseases with high transmission potential.
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Chapter 3

Real-time Investigation of Measles
Epidemics

3.1 Introduction

Although the World Health Organization (WHO) and its member states across the world

have aimed to eliminate measles, the elimination has been so far fully successful only in

the North American region. As the transmission potential of measles is extremely high

with the estimated basic reproduction number of the order of 6-45 [31,91,129,133], i.e. the

average number of secondary cases generated by a single primary case in a fully suscep-

tible population being 6-45, it is necessary to maintain very high vaccination coverage to

eliminate the infection by means of mass vaccination. In industrialized countries, all chil-

dren are subject to routine immunization mostly by the age of 18 months using either MR

(measles and rubella) or MMR (measles, mumps and rubella) vaccine. Moreover, to boost

the vaccine-induced immunity, children aged from 4-5 years receive the second dose, and

depending on each individual country’s policy, additional revaccinations are scheduled.

Understanding the vaccine efficacy at an individual level is essential to assess the

vaccination program. Although the vaccine efficacy against measles is believed to be high

(e.g. > 95%) [135], in practice even vaccinated individuals may be susceptible if the

vaccination failure occurred or if their immunity was lost [113]. If the evaluation can be

made based on readily available epidemiological dataset in real-time, disease control policy

making will be able to reflect the results of such analysis. For instance, if we can detect

the signature of a potential major epidemic in near future [38] or if we can identify specific

sub-population which is less protected than others [32], the epidemiological modeling study

could inform real-time policy making, e.g. identifying an essential part of the population

to be (re-)vaccinated.

To estimate the vaccine efficacy, three distinct study approaches have been taken.

First, laboratory measurement (e.g. seroconversion) has been used as a surrogate marker

of successful immunization, allowing us to judge the vaccine-induced immunity in a biolog-

ically well-defined manner. However, such measurement requires laboratory test samples
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as well as testing capacity, and perhaps more importantly, makes it difficult to directly

attribute the result to actual vaccine-induced protection (e.g. actual causal impact of

vaccination against infection) at an individual level. Other two approaches thus tackle the

issue of assessment using epidemiological data. Since the epidemiological data of directly

transmitted infectious diseases involve the technical problem of dependent risk of infection

between individuals (i.e. the so-called ”dependent happening”), the empirically observed

datasets are greatly influenced by the indirect effect of vaccination [54]. Therefore, as the

second method, the conditional risks of infection (i.e. conditional on an exposure to an

infected individual) in vaccinated and unvaccinated individuals are compared to estimate

the conditional direct effect of vaccination while reasonably eliminating the influence of

indirect effect. For instance, household secondary attack proportion (SAP) is convention-

ally used to estimate the efficacy using the conditional risk of infection given a primary

case in households. However, collection of household transmission data requires substan-

tial observational effort and moreover, such study needs to ensure uniform susceptibility

among household contacts. As the third method, the population data may be analyzed

by employing a mathematical model that can be believed to have captured the underlying

transmission dynamics. In particular, the final size of an epidemic (i.e. the fraction of the

total infected individuals in a population throughout the course of an epidemic) has been

used to estimate the efficacy in a highly vaccinated population [91, 125, 128]. However,

there has been little attempt to estimate the vaccine efficacy jointly with the epidemic

dynamics in real-time (e.g. during the course of an epidemic).

The present study aims to propose an epidemiological method which we can employ to

estimate the vaccine efficacy of measles while conducting real-time assessment of the epi-

demic based on readily available epidemiological surveillance dataset. While not requiring

us to conduct field investigations to specifically assess the vaccine efficacy, we show that

the assessment could be partly achieved by analyzing the counts of cases with vaccination

history over time.

3.2 Materials and Methods

3.2.1 Epidemiological Data

The present study investigates empirical data from Aichi prefecture, around the middle

of Japan in which children aged from 12-24 months had received a single-dose MMR

vaccination from 1988 to 1993. MMR vaccine was replaced by MR vaccine in 1993 due to

the reporting of the substantial number of bacterial meningitis cases that were attributed

to MMR vaccination, lowering the overall vaccination coverage for a while. In 2006, the

country initiated two-dose vaccination program in which first and second doses are given

at the age of 12-24 months and before entering primary school (i.e. before the age of 6

years), respectively. Despite nationwide vaccination campaigns, the vaccination coverage

remained insufficient to prevent the epidemic, and only in recent years, the vaccination
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coverage of first dose clearly exceeded 95.0% which is the minimum coverage to eliminate

a disease with the basic reproduction number of 20. Due to the presence of the various

pockets of susceptible individuals, sporadic minor outbreaks have been seen continuously

across Japan. To monitor the outbreaks and strengthen the measles control, the Ministry

of Health, Labour and Welfare of Japan has enhanced the measles surveillance which

enforced compulsory reporting of all measles case since 2008. Our study rests on the pilot

data of the enhanced surveillance in Aichi prefecture in 2007 and 2008.

During the surveillance, the confirmed measles case was defined as follows: (i) the cases

who reveal all three specific signs and symptoms (i.e. rash, fever and catarrh including

coughing, nasal discharge and congestion of conjunctiva) with (ii) laboratory diagnosis

based either on (a) isolation of the virus, (b) isolation of the virus RNA, or (c) serological

diagnosis (i.e. seroconversion of IgM antibody using paired sera). Isolation of confirmed

case and contact tracing of all known contacts have been made upon confirmatory diagnosis

of each case.

The population size of Aichi prefecture in 2007 was approximately 7.3 million [122].

The enhanced surveillance data included the information regarding the date of illness onset

(date of fever and date of rash), age and vaccination history. Hereafter, we consistently

use only the date of fever to describe the temporal patterns. In 2007 and 2008, the totals

of 212 and 198 confirmed measles cases were reported, respectively. Counting from 1st

January in each year, the epidemic in these years revealed a single peak around Days

150 and 100, respectively. A part of the confirmed cases did not remember their own

vaccination history in the past against measles. In 2007, there were 57 vaccinated and

87 unvaccinated cases that clearly remembered the vaccination history, while 68 cases did

not remember vaccination history. In 2008, there were 50 vaccinated and 86 unvaccinated

cases with 62 cases without known vaccination history.

3.2.2 Mathematical Model 1: Homogeneous Population

To develop a real-time estimation framework, we first consider a model to describe the

transmission dynamics of measles in a homogeneously mixing population. Let p and α

be the vaccination coverage and vaccine efficacy, respectively. Usually, the vaccination

coverage is known, and in the case of Aichi prefecture, the baseline coverage of first dose

has been estimated at 94.8% [29], while as sensitivity analysis we estimate the vaccine

efficacy by varying the coverage from 90.0 to 99.5%. Let k and l represent the vaccination

history of an exposed individual and the primary case, respectively, for which 1 stands

for vaccinated and 0 otherwise. We consider the renewal process of measles in which the

incidence (the number of new cases) of those with vaccination history k on calendar day

t, jk,t is described as

jk,t =
∑
l

∞∑
t=0

Akl,t,τ jl,t−τ , (3.1)
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where Akl,t,τ describes the rate of causing secondary transmissions per single primary case

whose vaccine status is l among susceptible contacts of those with vaccination history k

on day t at infection-age τ (i.e. the time since infection in each primary case). Let Ut

represent the vaccine-unrelated frequency of secondary transmissions per single primary

case on day t, which is influenced by all factors other than vaccination including intrinsic

and extrinsic ones. We assume that the vaccine efficacy reduces susceptibility of vaccinated

individuals by (1− α) as was adopted in an earlier study [125] and assume that Akl,t,τ is

separable into the functions of t and α as follows:

A0y,t,τ = (1− p)Utgτ ,
Akl,t,τ = p(1− α)Utgτ ,

(3.2)

where gτ is the probability mass function of the generation time, i.e. the time from infection

in a primary case to infection in the secondary case caused by the primary case, and Akl,t,τ

is thus assumed to be scaled by p, α and Ut. Based on a published statistical study [72],

gτ is assumed to be the discrete function that is derived from the continuous, lognormal

distribution with the mean and the standard deviation of 12.0 and 3.5 days, respectively.

The instantaneous reproduction number, i.e. the average number of secondary cases per

single primary case at calendar time t, is calculated as

Rt = [(1− p) + p(1− α)]Ut, (3.3)

which is useful to objectively interpret the epidemic curve in real-time, because if the Rt

exceeds 1, it clearly indicates increase in infections on day t. The renewal process in (1)

is rewritten as

j0,t =
(1− p)Rt

(1− p) + p(1− α)

∞∑
t=0

gτ (j0,t−τ + j1,t−τ ), (3.4)

for unvaccinated cases and

j1,t =
p(1− α)Rt

(1− p) + p(1− α)

∞∑
t=0

gτ (j0,t−τ + j1,t−τ ), (3.5)

for vaccinated cases.

Due to enhanced surveillance, and because measles rarely involves secondary trans-

missions arising from asymptomatic or subclinical cases, the number of infected cases is

assumed to have been fully captured as a function of time. For mathematical convenience,

we assume that the incubation period is a constant so that the epidemic curve can be the-

oretically shifted leftward for a constant day for the purpose of statistical analysis using

the above mentioned model. In empirical observation, a part of cases did not remember

vaccination history. Assuming that the past vaccination history is independent of possess-

ing a memory of vaccination history, the probability of knowing vaccination status, q, is

assumed to be governed by a binomial sampling process of the cumulative number of cases
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with known vaccination history among the cumulative total of cases. Let h0,t, h1,t and

h9,t denote the observed numbers of unvaccinated cases, vaccinated cases and cases who

did not remember vaccination status on day t, respectively. We assume that the observed

incidence with vaccination history h0,t and h1,t are the results of Poisson sampling with

expected values qE(j0,t;Zt−1) and qE(j1,t;Zt−1), respectively, where E(jx,t;Zt−1) denotes

the conditional expected value of the incidence of cases with vaccination history x on day

t given the history of observed data (i.e. h0,t, h1,t and h9,t) from time 0 up to (t − 1),

denoted by Zt−1.The likelihood function to estimate the reproduction number for each

date, R, and other parameters q and α is written as follows:

L(R, q, α;Z) =

(∑
s(h0,s + h1,s + h9,s)∑

s h9,s

)
(1− q)

∑
s h9,sq

∑
s(h0,s+h1,s)

×
∏

s
(qE(j0,s;Zs−1))

h0,s (qE(j1,s;Zs−1))
h1,s exp{−q[E(j0,s;Zs−1)+E(j1,s;Zs−1)]}

h0,s!h1,s!
. (3.6)

The maximum likelihood estimates of R, q, and α are found by minimizing the negative

logarithm of (3.6). The 95% confidence intervals are computed based on profile likelihood.

3.2.3 Mathematical Model 2: Heterogeneous Population

Although the above-mentioned model is kept simple, the empirical data suggest that the

frequency of cases greatly differs by age (Figure 3.1). Differential frequency of cases by age

may be attributable to (i) the differential population structure, (ii) the different contact

patterns, (iii) the differential protection conferred by vaccination and so on. Thus we

extend the above-mentioned model to age-dependent data so that the epidemiological dy-

namics are better captured. We take an approximate approach and divide the population

into three discrete age-groups. Since the second-dose vaccination is scheduled by the age

of 6 years with the available social contact data discretized at age 0-4 years, and because

the adult infections may be separated from those in children to clarify the contribution

of schools to the epidemic, the age groups are classified as 0-4 years, 5-19 years and 20

years and above, respectively. The relative population sizes of the age group i, ni are

4.9%, 15.1% and 80.1% in 2007 and 4.8%, 14.8% and 80.4% in 2008, respectively. Let

the age-specific incidence of vaccination status k and age group a as jka,t on day t, the

dynamics are described by the multivariate renewal process:

j0a,t = (1− pa)Utna
∑
b

βab

∞∑
τ=0

gτ (j0b,t−τ + j1b,t−τ ). (3.7)

for unvaccinated cases and

j1a,t = pa(1− αa)Utna
∑
b

βab

∞∑
τ=0

gτ (j0b,t−τ + j1b,t−τ ), (3.8)
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for vaccinated cases. Here βij is the normalized contact matrix with the eigenvalue 1,

describing the age-dependent contact frequency which we retrieve from the published

result of social contact survey in the UK [90] and we assume that the age-dependent

frequency with an adjustment of age-dependent population size in Japan is similar to

that in the UK (Table 3.1). Ut represents the average number of secondary transmissions

per single primary case at calendar time t, which is influenced by all factors other than

vaccination including intrinsic and extrinsic ones. The age-dependent vaccination coverage

pa is assumed as known, i.e. 97.0, 93.4 and 99.0% for those aged 0-4 years, 5-19 years and

20 years and above, respectively. The average of those coverage estimates is greater than

that for the base-line in the homogeneous setting, because the coverage for adults 99.0% is

not realistically tractable due to past natural exposures and booster effect [92]. Namely,

among adults we assume that the above mentioned coverage denotes the fraction immune

or seropositive based on serological survey [1].

Year 2007

Age 0-4 5-19 20 and above

0-4 0.139 0.113 0.440
5-19 0.037 0.633 0.532

20 and above 0.027 0.100 0.829

Year 2007

0-4 0.145 0.118 0.460
5-19 0.038 0.600 0.561

20 and above 0.027 0.103 0.828

Table 3.1. The matrix describing the within and between age-group frequency of social
contact. The age-groups in the first column represent those of contactee (i.e.
those who are exposed to cases), while the age-groups in second and seventh
rows represent those of contactor (i.e. the primary cases). The contact is
expressed by per unit time (i.e. per day in case of this table), although each
element is adjusted due to normalization.

Let h0a,t , h1a,t and h9a,t be the observed incidence of unvaccinated cases, vaccinated

cases and the cases did not remember their own vaccination history in age group a on day

t. As discussed in the homogeneous case, we assume that the vaccination status of the

cases is independent of remembering their own vaccination history, and we also assume

that the probability of having the memory, q is independent of age. To estimate U , q and

αa, we maximize the following likelihood:

L(U, q, α;Z) =

(∑
a

∑
s(h0,s + h1,s + h9,s)∑

s h9a,s

)
(1− q)

∑
a

∑
s h9a,sq

∑
s(h0a,s+h1a,s)

×
∏

a

∏
s
(qE(j0a,s;Zs−1))

h0a,s (qE(j1a,s;Zs−1))
h1a,s exp{−q[E(j0a,s;Zs−1)+E(j1a,s;Zs−1)]}

h0a,s!h1a,s!
,(3.9)

where Z represents the history of epidemic data across all age-groups.
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3.3 Results

Figure 3.1 shows the temporal and age-specific distributions of measles cases stratified by

vaccination history. The epidemic curves in 2007 and 2008 recorded the highest incidence

in weeks 22 and 15, respectively. Since there have been very few cases nearby new-year

and year-end days in both years, and due to epidemic in discrete geographic locations,

we analyzed each epidemic year separately from the other, while we focused on the data

which combined both years when we estimate the vaccine efficacy (because the vaccine

efficacy is not expected to vary greatly by a single year). The mean (and the standard

error, SD) and median age of cases (and inter-quartile range) were 18.9 (13.9) and 17.0

(10.0-26.0) years in 2007, respectively. Similarly, the mean and median were 14.2 (12.5)

and 13.0 (2.0-24.0) years in 2008, respectively. In both years, the cases were aggregated

among children and very few elderly cases were observed. The cases in 2008 appeared to

be significantly younger than that in 2007 (p=0.0003, t-test). The proportion of cases who

remember as vaccinated was 26.9% (95% confidence interval (CI): 20.9, 32.9) and 25.3%

(95% CI: 19.2, 31.3), respectively, in 2007 and 2008, which did not significantly differ by

year (p=0.76, x2 test). The proportion of cases who remembered either as vaccinated or

unvaccinated was 67.9% (95% CI: 61.6, 74.2) and 68.7% (95% CI: 62.2, 75.1) in 2007 and

2008, respectively, which was again not significantly different by year (p=0.99, x2 test).

Figures 3.2 and 3.3 show the estimated instantaneous reproduction numbers using the

homogeneous model in 2007 and 2008, respectively, along with the visual comparisons

between the observed and predicted epidemic curves with known vaccination history. The

estimated reproduction numbers in early and late epidemic phases were very high, reflect-

ing mathematical property of the renewal process, i.e., in these time periods, the effective

reproduction number tends to be very large due to small number of primary cases, and

thus, we omitted in Figures. While the majority of the maximum likelihood estimates of

Rt fell below unity, the upper 95% confidence interval continuously exceeded 1, reflecting

small number of cases (i.e. sampling error) and high transmission potential of measles

with limited vaccination coverage. Analyzing both years were analyzed jointly, the maxi-

mum likelihood estimates of the vaccine efficacy, α, was estimated at 96.7% (95% CI: 95.8,

97.4). The proportion of cases with known vaccination history, q, was estimated at 68.3%

(95% CI: 65.1, 71.4). Even when we estimated a separately by 2007 and 2008, they were

not significantly different: α in 2007 and 2008 were 96.5% (95% CI: 95.2, 97.5) and 96.8%

(95% CI: 95.5, 97.8), respectively.

When we employed the age-heterogeneous model, the vaccine efficacy was separately

estimated for each age-group. The maximum likelihood estimates of the vaccine efficacy

α1 and α2 and α3 for those aged 0-4 years, 5-19 years and 20 years and above were 97.9%

(95% CI: 95.8, 99.0) and 93.4% (95% CI: 89.0, 96.1) and 99.6% (95% CI: 99.2, 99.8),

respectively. The proportion of cases with known vaccination history, q, was estimated to

be 68.1% (95% CI: 65.2, 70.9).
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Figure 3.1. The time and age-specific distributions of the measles outbreak in Aichi pre-
fecture, Japan, from 2007-08. A & B. The temporal distribution of measles
cases. The week 1 corresponds to the week that includes 1st January. C
& D. The age distribution of measles cases. In all panels, the vaccinated
and unvaccinated correspond to the cases who clearly remembered as pre-
viously vaccinated and unvaccinated, respectively. Unknown represents the
cases who did not remember vaccination history at the time of diagnosis of
measles.

Since we cannot assess the exact vaccination coverage, the sensitivity analysis was con-

ducted (Figure 3.4). The vaccine efficacy increased as the vaccination coverage increased.

Within the assumed range of vaccination coverage (90.0%-99.5%), the maximum likeli-

hood estimate of the vaccine efficacy ranged 93.3%-99.7%. The estimated vaccine efficacy

increased as the vaccine coverage increased. The reason for positive relationship in Figure

3.4 is intuitively understood from equations (3.4) and (3.5). That is, if we take the ratio

of the incidence of unvaccinated to vaccinated, we get

j0,t
j1,t

=
1− p

p

1

1− α
. (3.10)

The left-hand side of equation 3.10 corresponds to the observed data which is a constant

on a single day (given empirical data). If we increase the vaccination coverage p, then

(1 − p)/p decreases and this necessitates 1/(1 − α) to increase in equation (10) or forces

the vaccine efficacy α to increase.
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Figure 3.2. The estimated instantaneous reproduction numbers and visual comparisons
between the observed and predicted temporal distributions by known vacci-
nation history in 2007. A. The maximum likelihood estimates (circles) and
the upper 95% confidence interval (steps) of the instantaneous reproduction
number. The horizontal axis is expressed as the calendar date in which 1st
January is set to be 0. The horizontal grey line shows the level at which
Rt = 1. For mathematical reasons Rt is unrealistically high during the very
early and late epidemic phases, and thus, the estimates are omitted from
this panel. B, C and D. Comparisons between observed and predicted tem-
poral distributions of cases. B and C compare cases who were known to be
vaccinated and unvaccinated, respectively. D shows the cases who did not
remember vaccination history at the time of diagnosis of measles. The week
1 corresponds the week that includes 1st January.

3.4 Discussion

The present study proposed a simple method to estimate the vaccine efficacy against

measles, jointly quantifying the parameters governing the temporal dynamics of measles.

The method uses only the epidemiological surveillance data with partial information of

vaccination history, which can rest on readily available dataset and is not as costly as

conducting specialized field study such as that observing household transmissions. To

capture the realistic aspect of measles transmission, the extended model accounted for

age-dependent heterogeneity. Although not significant, the vaccine efficacy among those

aged 5-19 was shown to be clearly smaller than that in children aged below 5 years, which

may perhaps reflect the waning immunity among school children [47]. The straightforward

policy implication is that one may target school children aged 5-19 for (re-)vaccination to

eliminate the pockets of susceptible individuals.

As the proposed method can rest on the readily available data (i.e. routinely col-

lected surveillance data), we believe that the model has a potential to be integrated with
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Figure 3.3. The estimated instantaneous reproduction numbers and visual comparisons
between the observed and predicted temporal distributions by known vacci-
nation in 2008. A. The maximum likelihood estimates (circles) and the upper
95% confidence interval (steps) of the instantaneous reproduction number.
The horizontal axis is expressed as the calendar date in which 1st January
is set to be 0. The horizontal grey line shows the level at which Rt = 1.
For mathematical reasons Rt is unrealistically high during the very early
and late epidemic phases, and thus, the estimates are omitted from this
panel. B, C and D. Comparisons between observed and predicted tempo-
ral distributions of cases. B and C compare cases who were known to be
vaccinated and unvaccinated, respectively. D shows the cases who did not
remember vaccination history at the time of diagnosis of measles. The week
1 corresponds the week that includes 1st January.

the routine surveillance practice of measles across the world. While various mathemat-

ical approaches have been proposed to model the measles epidemic, the present study

offered advancement in two different aspects. First, although many studies analyzed the

temporal dynamics using mathematical models, the objectives of those studies have been

different from the efficacy estimation, and they frequently focused on the estimation of

time-dependent notification characteristics [42] or clarification of the kinetics of measles

transmission using mathematical model [8]. The present study has shown that the vaccine

efficacy is very conveniently estimated, assuming that the depletion of susceptible indi-

viduals is negligible. Second, whereas a few other studies estimated the vaccine efficacy,

including that based on final size [91,129] and an explicit modeling of temporal epidemic

dynamics [130], the present study is the first to have jointly conducted the vaccine effi-

cacy estimation and the real-time assessment of an epidemic, by estimating the effective

reproduction number Rt along with the vaccine efficacy parameter. In other words, our

proposed approach not only helps assess vaccine efficacy but permits us to interpret the

temporal dynamics in an objective manner.
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Figure 3.4. Sensitivity of vaccine efficacy to the vaccination coverage. Solid line repre-
sents the maximum likelihood estimate, while dashed lines are the upper and
lower 95% confidence intervals of vaccine efficacy. The 95% confidence inter-
vals were derived from profile likelihood. Although we show the results from
homogeneous model, the qualitative patterns of age-heterogeneous model
are not different.

However, three reservations should be noted as technical limitations. First, we success-

fully estimated the vaccine efficacy as well as Rt, but we did so assuming that the depletion

of susceptible individuals is negligible. We believe that this assumption is reasonable be-

cause the number of cases in Aichi remained very small as compared to the population

size of unvaccinated individuals who can be theoretically considered as fully susceptible,

and also because the epidemic data in question were seen in a population which was large

enough. However, the model cannot capture detailed heterogeneous transmission such as

local depletion of susceptible individuals (e.g. due to formation of a cluster) and thus, may

not be directly applicable to outbreaks in a small population. Second, we did not account

for detailed revaccination schedules in Japan due to impossibility of precisely tracking the

fraction of unvaccinated susceptible individuals as a function of age. The number of doses

may have a profound impact on vaccine efficacy, but unfortunately we did not have access

to the dose data for each confirmed case. Third, the proposed model assumes a closed

population, i.e., without emigration and immigration. However, obviously the observed

data must have involved imported cases. From modeling perspectives, the host migration

has little impact on the estimate of vaccine efficacy, while it would influence the estimates

of Rt. Given the individual case record for the entire country in the future, one can analyze

the dynamics, explicitly accounting for the geographic spread of measles across Japan.
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Despite such limitations, we believe that the real-time assessment of epidemic dynam-

ics with (age-specific) estimates of vaccine efficacy based on readily available surveillance

dataset would be the huge advantage for epidemiological monitoring of measles in any vac-

cination population. As was seen in age-dependent vaccine efficacy, the proposed method

could inform useful vaccination policy to objectively curb the measles epidemic in real-

time. At the very least, we believe that the proposed approach can supplement the existing

evaluation methods of vaccine efficacy.
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Chapter 4

Chance-adjusted Agreement
Statistic for the Assortative
Transmission

4.1 Introduction

Assortativity is defined as a preference for a network’s node to attach to others that have

similar characteristics or in some way different characteristics [95]. Adding the assorta-

tivity to a mathematical model often helps us to closely capture and approximate the

dynamics in real world, which has been in particular demonstrated in the transmission

dynamics of infectious diseases [64, 103]. Provided that an infectious disease (e.g. pan-

demic influenza A (H1N1-2009)) is frequently transmitted within a group of individuals

that share similar characteristics (e.g. school children), the counter measures of the epi-

demic should ideally focus on those specific groups or their neighbors to effectively curb

the epidemic (e.g. school closure) [73,104].

The assortativity is not only applicable to individual-based datasets, but can also

be incorporated into approximate modeling framework when we employ a population-

based dynamic model, i.e. even when we use a model with discrete type space, the

assortativity can be analytically devised into the model in order to approximately capture

the realistic transmission dynamics [64, 111]. For instance, an epidemic model with the

so-called “preferential mixing” assumption can be written by a set of ordinary differential

equations [70], and the assortativity is eventually quantified as one of model parameters

based on an epidemic data [43]. Of course, not only by fitting the mathematical model to

the epidemiological data, but also by conducting a field survey of socially defined contact

in a population, one can compute and quantify the assortative mixing of the heterogeneous

transmission model [24,90,131].

Despite these theoretically useful characteristics, there have been only a few statistical

measures to quantify the assortativeness. The most straightforward measure of assorta-

tiveness may be the correlation between the degrees of linked pairs of nodes [95], but

the correlation coefficient only captures the extent of linear association, rather than the
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propensity of assortative mixing. Farrington et al. [40] therefore proposed the use of

mean-squared deviation from assortativeness as an index of absolute disassortativeness.

However, the proposed measure has remained as applicable to assessing assortativeness in

a population with continuous type space. Although discrete type space (e.g. mixing within

and between age-groups rather than individual network with continuous age) is more rele-

vant to analyzing widely available empirical data in practical setting (e.g. epidemiological

surveillance data classified by discrete age groups), the measure of assortativity for the

discrete data has yet to be discussed more than the original description by Newman [94].

In this study, we aim to discuss the applicability of two known chance-adjusted agree-

ment statistics, kappa and AC1 to measure the assortativeness of infectious disease trans-

mission. In particular, we aim to show that AC1 statistic can address known paradoxes

of kappa, and thus, perhaps allows us to assess the assortativeness of transmission more

appropriately than kappa. We first review the existing measures of assortativity in the

next section, which is subsequently followed by a description of our motivations and com-

putation of AC1.

4.2 Materials and Methods

4.2.1 Existing Measures of Assortativeness

In the following, we denote the contact rate between host groups i and j by cij . Let the

sum of all the elements of the contact matrix {cij} be C, we denote the normalized contact

rate by eij . The sums over a single row and single column of the normalized contact matrix

are respectively denoted by ai and bj , namely,

ai =
∑
j

eij , (4.1)

bj =
∑
i

eij . (4.2)

The assortativity coefficient, r, proposed by Newman [95], is written as:

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi
, (4.3)

where the trace of matrix {eij} gives the observed fraction of within-group contacts, while

the product of marginal sums is interpreted as the fraction of within-group contacts that

occur by chance. The assortativity coefficient r typically takes the value from 0 to 1 with

r = 1 indicating perfect assortative mixing, while r = 0 means random mixing. The

measure is based on cross-classification of existing contacts. As the probability of within-

group contact is calculated as the product of marginal sums of all columns and rows, it

should be noted that the probability of assortative mixing is evaluated as if all observed

contacts may result in within-group contact by chance.
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Prior to the coefficient r, there was an earlier measure in epidemiology, proposed by

Gupta et al. [51]. The earlier measure intended to quantify the impact of mixing patterns

of sexual contacts on the spread of HIV epidemic. The Q statistic, a measure of the degree

of within-group mixing, was proposed as:

Q =
1

m− 1

∑
i

eii − aibi
ai

, (4.4)

where m is the number of node types. The measure captures assortativeness, varying

between −1/(m − 1) (minimally disassortative) and 1 (maximally assortative). Q is re-

garded as an ad hoc measure of assortativeness, because the quantity is interpreted as the

proportion of contacts that occur along the main diagonal of the contact matrix. However,

Q was later shown to be vulnerable to grouping of hosts used to define the diagonal of

the contact matrix and to be sensitive to different sub-population sizes between different

types of host [51]. Accordingly, we focus on the assortative coefficient r in the following

discussion.

An interesting property of r in (4.3) is that the measure is consistent with the classical

preferential mixing formulation in an approximate modeling approach. Let p be the pro-

portion of contact that is spent for within-group mixing among the total contacts. The

contact rate cij is then modeled as a simple mixture of an assortative mixing component

and a proportionate mixing component:

cij ∝

{
(1− p)ni, if i ̸= j,

p+ (1− p)ni, if i = j,
(4.5)

where ni is the relative population size of host i. In order to calculate assortativity

coefficient, we normalize cij as

eij ∝

{
(1−p)ni

m , if i ̸= j,
p+(1−p)ni

m , if i = j,
(4.6)

in which it is certain that eij sums up to 1. It is not difficult to find that the parameter p

exactly corresponds to r, because we have

ai ∝
p+

∑
j(1− p)ni

m
=
p+ (1− p)mni

m
, (4.7)

where m is again the number of host types, and

bj ∝
p+

∑
i(1− p)ni
m

=
1

m
, (4.8)

leading the assortativity coefficient p to be identical to r. This indicates that the interpre-

tation of the assortativity coefficient in relation to its underlying contact mechanism can

be as simple as that shown in the mixture model (4.5) in which only the proportionate

mixing component is expected to explain between-group contact frequency. To be strict,

the mixture model (4.5) is unlikely to hold in practice, and thus, rather than using the

Kronecker delta-type assumption in (4.5) the use of distribution to describe the influence

of preferential mixing has been proposed elsewhere [46].
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4.2.2 Vulnerability of Kappa to Assortative Transmission

When mathematical models are applied to describing infectious disease epidemics, two

different types of matrix should be explicitly distinguished. One is the contact matrix

{cij} describing the contact rates per unit time within and between groups of host. As

described in model (4.5), the mixture type assumption may be employed to parameterize

{cij} in the simplest manner. For clarity, hereafter we refer to the assortativeness of {cij}
as “contact assortativity”.

On the other hand, there is a different matrix K = {kij}, which is more relevant to

the transmission dynamics, gives the average number of secondary cases in host i gener-

ated by a single primary case of host j throughout its entire course of infectiousness in a

fully susceptible population. The matrix is referred to as the next-generation matrix [28],

mapping the distribution of secondary cases based on that of primary cases, describing the

heterogeneous patterns of transmission in a single generation of transmission event. Each

element kij is dimensionless. Other than the contact frequency, the frequency of infectious

disease transmission is regulated by susceptibility of exposed individuals, infectiousness

of primary cases and other factors (including biological and non-biological ones), and the

next-generation matrix captures these features as well as the contact heterogeneity. Using

the above-mentioned mixture type of contact, let αi and βj represent age-specific suscepti-

bility and infectiousness of hosts of type i and j respectively, {kij} may be parameterized

as

kij ∝

{
αiβj(1− p)ni, if i ̸= j,

αiβjp+ αiβj(1− p)ni, if i = j,
(4.9)

as was used in practical applications elsewhere [43, 73, 104]. Hereafter, we refer to the

assortativeness of {kij} as “transmission assortativity”.

Here, the distinction of two different types of assortativity, i.e. contact and transmis-

sion, is made, because the transmission is not only characterized by contact but also by

all other intrinsic and extrinsic factors including αi and βj in model (4.9). For example,

when children are far more susceptible to influenza than adults (which is believed as the

case based on empirical evidence [43]), the transmission assortativity would be the re-

sult of contact assortativity (with high frequency of child-to-child contacts) weighted by

high relative susceptibility among children due to model (4.9). In such an instance, the

transmission assortativity requires a particular attention in appropriately quantifying the

propensity of within-group contacts that are made by chance.

Here we consider the chance adjusted agreement measure. Although not explicitly

mentioned by Newman [95], the assortativity coefficient (4.3) is mathematically identi-

cal to the so-called Cohen’s kappa statistic [20] which is known as the most commonly

used chance-adjusted agreement measure for multiple ratings. In the case of infectious

disease transmission, there are only two raters, i.e. contactor and contactee, with discrete

grouping of choices such as age-groups. In other words, as long as the matrix captures
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the transmission between a pair of individuals (i.e. one susceptible and one infectious

host) over a single generation, the agreement statistic can be restricted to the case of

two raters. Although Cohen’s kappa is more robust measure than simple calculation of

observed agreement, it is also known that there are situations in which the kappa yields

unexpected results. The phenomenon is referred to as the paradoxes of kappa [19,41], and

this is directly relevant to considering the transmission assortativity.

The paradoxes can be illustrated by considering the next-generation matrix adapted

from Lam et al. [73] which employed the mixture type assumption for contact and also de-

scribed the transmission dynamics of pandemic influenza (H1N1-2009) within and between

populations of children and adults using model (4.9) (Table 1). We consider three different

matrices, A, B and C. As for the baseline matrix A, we follow the parameterization of

model (4.9), assuming that nc = 0.32, αc = 2.06, αa = βc = βa = 1, and p = 0.50 [73]

where subscripts c and a stand for children and adults, respectively. The basic reproduc-

tion number, the average number of secondary cases generated by a single primary case in

a fully susceptible population, is calculated as the dominant eigenvalue of K, and in this

example set at 1.5. Within-group transmission, which is measured by the observed agree-

ment, is seen in 76.7% of all secondary transmissions, while the chance-adjusted measure,

kappa is calculated as 0.517. In Matrix B, the frequency of child-to-child transmission

Table 4.1. The age-dependent next generation matrix and the corresponding agreement.

Ab Bb Cb

child adult child adult child adult
child 1.34 0.32 1.61 0.32 1.34 0.02
adult 0.33 0.83 0.33 0.56 0.64 0.83

obsa 0.767 0.767 0.767
kappa 0.517 0.459 0.540
AC1 0.548 0.590 0.548

aobs, observed agreement.
bExamples of the next-generation matrix. In matrix A, the parameters were fixed at nc = 0.32,

αc = 2.06, αa = βc = βa = 1, and θ = 0.50 [73]. The basic reproduction number is given by the dominant
eigenvalue and calculated as 1.5. Matrices B and C have identical observed agreement values with A, but
matrix B increased the frequency of child-to-child transmission by 1.2 times as that in A and matrix C
increased the frequency of adult-to-child transmission by 1.9 times as that in A.

is magnified by 1.2 times as compared to matrix A, and the increment of the secondary

transmissions among children is reduced from adult-to-adult transmission (so that the

total of within-group secondary transmissions is kept as identical to matrix A). Other

two elements, between-group transmission frequencies are unaltered from matrix A. Of

course, the observed agreement of matrix B remains the same as matrix A, because the

sum of diagonal elements is unaltered. However, kappa is calculated as 0.459. Namely,

by magnifying the within-group transmission in a specific single host type (i.e. children),

the chance-adjusted agreement statistic was reduced without any sensible reason. This is

referred to as the kappa’s paradox I.
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In Matrix C, the frequency of adult-to-child transmission is magnified by 1.9 times to

that of matrixA. The sum of anti-diagonal elements is kept identical to matricesA and B,

and the diagonal elements are unaltered from matrix A. Again, the observed agreement

of matrix C is calculated as 76.7%, identical to those from matrices A and B. However,

kappa is calculated as 0.540. By introducing the bias in between-group transmission, the

kappa statistic was elevated. This increase in kappa owing to the bias in non-diagonal

elements is referred to as the kappa’s paradox II.

These paradoxes may be unlikely to matter a lot for contact assortativity, while the

introduction of host-specific characteristics such as αi and βj in model (4.9) to describing

the transmission assortativity can easily lead to observing the paradoxes (see below). In

other words, the assortativity coefficient (4.3) (which is mathematically identical to kappa

statistic) could be vulnerable as a measure of transmission assortativity, especially when

the assortativity of transmission introduces the sources of paradoxes I and II to the contact

matrix.

4.3 Results

4.3.1 Comparison between Kappa and AC1

As a paradox-resistant measure of agreement, Gwet has proposed the so-called AC1 statis-

tic in which AC stands for “agreement coefficient” [53]. Let γ be the coefficient of trans-

mission assortativity given by the AC1, and is written as:

γ =

∑
i eii − pe
1− pe

, (4.10)

where pe is the chance agreement probability. The right-hand side of (4.10 is conceptually

the same as Cohen’s kappa in which pe was calculated as a summation of the product of

two marginal sums. In the case of AC1 statistic, it is calculated as

pe =
1

m− 1

m∑
k=1

πk(1− πk), (4.11)

where πk is the average of marginal sum over row k and column k, i.e.,

πk =

∑
j kkj +

∑
i kik

2
∑

i

∑
j kij

. (4.12)

The chance agreement for AC1 is calculated as shown in (4.11), because AC1 considers

the chance agreement as the product of (i) the probability that two raters agree given that

the subject being rated was assigned a nondeterministic score (i.e. the probability of simple

chance agreement is 1/m) and (ii) the propensity that a rater will assign a nondeterministic

score, which is estimated by the ratio:
∑m

k=1 πk(1− πk)/(1− 1/m).

Kappa statistic regards the chance agreement probability as if all observed ratings

may yield an agreement by chance. However, Gwet pointed out that this may lead to
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unpredictable results with agreement data that actually have a rather small propensity

for chance agreement [52]. This may be in many instances the case for the transmission of

infectious diseases. The AC1 statistic considers the chance agreement as proportional to

the portion of ratings and conditional on the random rating. By appropriately accounting

for the propensity of chance agreement, AC1 successfully reduces the chance agreement to

the right magnitude. Further details, theoretical properties and examples related to the

AC1 statistic are given elsewhere [52,53].

Table 1 shows the estimates of AC1 corresponding to each of the matrices A, B and A.

Using the baseline matrix A, AC1 is estimated at 0.548. When the within-child transmis-

sion is increased (matrix B), AC1 is calculated as 0.590. When the bias of between-group

transmission is introduced (matrixC), AC1 remains to be 0.548. The variation of AC1 was

within 10%, and perhaps more importantly, AC1 was not underestimated even when the

matrix which induces paradox I is analyzed. As there is no perfect chance-adjusted agree-

ment, AC1 is also not the perfect measure (i.e. not entirely free from conceptual error),

but this statistic is regarded as far less vulnerable to known paradoxes of kappa statistic

and can be strictly interpreted as the conditional probability that two randomly selected

raters agree given that there is no agreement by chance [83]. As long as the measure of

assortativity employs the chance-adjusted agreement coefficient, the biggest concern of the

transmission assortativity is the possibility to appropriately account for chance agreement,

which indicates that AC1 suits to measure the transmission assortativity.

As a numerical comparison between kappa and AC1, Figure 4.1 shows the sensitivities

of these measures to the product of relative susceptibility and infectiousness in the formu-

lation (4.9). As α and β among children are elevated, observed and actual within-group

transmission would increase among the total of secondary transmissions. kappa is greatly

influenced by paradoxes, especially paradox I due to a representation of child-to-child

transmission. kappa even decreases with the increase in the product of α and β among

children. Nevertheless, the increasing feature of within-group transmission is captured by

AC1 in Figure 4.1, avoiding underestimation of chance-adjusted agreement due to paradox

I. Similarly, Figure 4.2 examines the sensitivity of chance adjusted agreement coefficients

to the proportion of children in the population. As the fraction of child population size

increases, the chance agreement increases, and thus, kappa and AC1 decrease. However,

as the child-to-child transmission increases with an increase in the fraction of children, the

kappa experiences greater decline than AC1 does due to paradox I.

AC1 statistic is regarded as more valid measure than kappa to evaluate the transmis-

sion assortativity, and its usefulness in practice may extend to the contact assortativity,

especially in the case we observe clusters of contact only among specific types of host (e.g.

clustering only among school-age children). However, kappa (or the classical assortativity

coefficient) may be preferred for measuring the contact assortativity, because kappa has

been known to mechanistically correspond to p, i.e. the proportion of contacts that are

spent for within-group mixing, in the simplest form of preferential mixing assumptions
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Figure 4.1. Comparison between kappa and AC1 statistics by the product of relative sus-
ceptibility and relative infectiousness among children. The chance-adjusted
agreements of secondary transmissions, derived from the next-generation
matrix, are shown as a function of the product of relative susceptibility and
relative infectiousness among children (αc and βc). The solid line shows the
AC1, whereas the Cohen’s kappa is drawn in dashed line. Other parameters
for the next-generation matrix were fixed at nc = 0.32, αa = 1, βa = 1
and p = 0.5 among which p refers to the proportion of contacts that are
spent for within-group mixing [73]. It should be noted that the elements of
the next-generation matrix are the frequencies of between- and within-group
contacts weighted by relative susceptibility and relative infectiousness (and
thus, the kappa value is different from 0.50) and here we examine the impact
of kappa’s paradox I (i.e. domination of child-to-child transmission) on the
resulting chance-adjusted agreement coefficients.

(4.5). It is thus important to explore the relationship between p and computation of AC1

in the simplest model (4.5) of the contact assortativity.

In the case of m different types of host, AC1 is written as

γ =

∑
i eii −

1
m−1

∑m
k=1 πk(1− πk)

1− 1
m−1

∑m
k=1 πk(1− πk)

, (4.13)

where ∑
i

eii ∝ mp+ (1− p), (4.14)

and

πk(1− πk) ∝ [p+m(1− p)nk + 1]

(
1− p+m(1− p)nk + 1

2

)
. (4.15)

Although we cannot come up with further insightful analytical findings, one can notice

that there are several special cases. If there is only a single type of host (m = 1) consti-

tuting a population, both γ and p are not practically relevant measures, but they agree
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Figure 4.2. Comparison between kappa and AC1 statistics by the proportion of children
in a population. The chance-adjusted agreement of secondary transmissions,
derived from the next-generation matrix, are shown as a function of the
fraction of children in the population (nc). The solid line shows the AC1,
whereas the Cohen’s kappa is drawn in dashed line. Other parameters for
the next-generation matrix were fixed at αc = 1, αa = 1, βc = 2.06, βa = 1
and p = 0.5 among which p refers to the proportion of contacts that are
spent for within-group mixing [73]. It should be noted that the elements
of the next-generation matrix are the frequencies of between- and within-
group contacts weighted by relative susceptibility and relative infectiousness
(and thus, the kappa value is different from 0.50) and here we examine the
sensitivity of chance-adjusted agreement coefficients to differing proportion
of the population.

to be 1. If all the contacts are spent for within-group mixing (p = 1), the corresponding

AC1 statistic γ would also be 1.

When each subpopulation is equally distributed so that ni = 1/m for any i, this would

greatly simplify the chance agreement (4.15). The trace of the contact matrix is given

by (4.14), and the chance agreement would be zero. Since the sum of all the elements of

contact matrix is m, the AC1 is calculated as

γ =

∑
i eii
m

= p+
1− p

m
. (4.16)

Two important messages from equation (4.16) are that (i) it indicates that γ is greater

than p as long as the population is equally distributed. This may be regarded as consistent

with the numerical results in Figures 4.1 and 4.2. (ii) When there are so many different

types of host (so that m → ∞), the difference between γ and p would be diminished and

the two are approximated.
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4.4 Discussion

The present study discussed the use of chance-adjusted agreement coefficients to measure

the assortativity of contact and transmission of infectious diseases. We have demonstrated

that p in the preferential mixing in infectious disease modeling has excellently corresponded

to the Newman’s assortativity coefficient (or Cohen’s kappa). Subsequently, we have ex-

plicitly distinguished the transmission assortativity from contact assortativity, because

the former captures not only the contact heterogeneity but also many other intrinsic and

extrinsic factors characterizing the frequency of within- and between-group transmission.

The distinction between the contact and the transmission was made, because kappa statis-

tic is vulnerable to the paradoxes which are likely to be the case to assess the transmission

assortativity. In such an instance, AC1 statistic, a relatively new chance-adjusted agree-

ment coefficient, computed in similar way to kappa and not very computationally intensive

measure, was shown to be paradox resistant. However, AC1 was shown to be less inter-

pretable than kappa, and does not easily correspond to the mechanistically interpretable

mixture model to describe the preferential mixing.

There is no doubt that each of the currently available agreement coefficients involves

a variety of technical problems, and none has been regarded as perfect measure. In fact,

it is well known that Cohen’s kappa does not adjust for both chance agreement and

misclassification errors. Although AC1 was shown to be paradox resistant, the statistic

is not entirely free from the paradoxes, and moreover, our application has shown that it

does not lead to useful mixing assumption in parameterizing the kinetics (i.e. mechanistic

features) of transmission due to a difficulty in eliminating the relative population size in the

chance agreement (4.15). In the future, it is likely that multiple measures will be required

to assess different aspects of the assortative network. In the context of assortativity,

the strength may be measured by chance adjusted agreement or correlation, and the

propensity of contact (e.g. the distance between two different types of host) should also

be measured by absolute disassortativeness [40]. The direction of the contact would also

be an important issue in appropriately capturing the transmission dynamics on an explicit

network [86]. The relevance of these topological aspects to mathematical formulation of

the approximate heterogeneous transmission dynamics has yet to be explored [39,67].

As quantified in social contact surveys [24, 90, 131], the actual heterogeneous mixing

has been shown not to be well captured by classical model such as classical preferential

mixing in model (4.5). As seen in an effort to capture the age-dependent heterogeneity

using a contact surface [13], the model to be applied to empirically observed data needs

to capture more realistic features than the mechanistic mixture model (4.9) does. As seen

in an attempt by Glasser et al. [48], more mathematical formulations would be required

to express the assortative mixing as a measurable quantity so that we can implement

the statistical estimation. However, it is also true that one of the simplest models to be

employed and fitted to the early outbreak data with a discrete group structure would be the
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one-parameter preferential mixing model [43]. For this reason, we believe that this study

has satisfied an essential need to emphasize the importance of measuring transmission

assortativity using paradox-resistant change-adjusted agreement measure.
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Chapter 5

The Impact of Model Building on
the Transmission Dynamics

5.1 Introduction

There are two intriguing characteristics in quantitatively modeling infectious disease data.

First, the risk of infection to an individual is dependent on the risks of other individuals

in the same population unit. Second, the infection event is seldom directly observable.

Among these two, the dependence has been addressed during the process of model build-

ing, e.g., a heterogeneous contact structure has been explicitly considered in various types

of models [67] and sometimes by examining the conditional risk of infection at a confined

setting (e.g. household). On the other hand, it has been common to address the unob-

servable nature of infection event by employing a convolution equation, i.e. the so-called

”backcalculation method”, to infer the time of infection based on the dataset of illness

onset [13, 49, 106, 109]. However, the deconvolution procedure has been frequently dealt

with as a statistical technique that is independent of the transmission model [97], and

the process of model building tended to be separated from the unobservable character of

infection event.

Ignoring the unobservable nature during model formulation would complicate the model

fitting to empirical data. In many instances, a temporal distribution of infected individu-

als (i.e. an epidemic curve) is analyzed, and most frequently, the best available dataset is

the daily counts of cases. The data are usually collected based on observable information

only, e.g. counts of cases according to the date of diagnosis of clinically apparent illness.

Only in the better case, epidemiologists are granted an access to the daily frequency of

illness onset. Nevertheless, the data generating process of the empirical information is

rather different from assumed transition mechanism within the so-called SIR (susceptible-

infectious-removed) model. The SIR model is considered as inconsistent with the data,

because the transition from S to I state is determined by the event of infection (which

is unobservable) and the other transition from I to R state is determined by the loss of

infectiousness (which is even more difficult to observe) [2]. In light of a need to construct

a model that better adheres to the observable information, a previous study proposed a
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novel modeling approach that classifies infected individuals into asymptomatic and symp-

tomatic ones while still adopting a common multistate model structure [62]. In the case of

the unobservable SEIR (susceptible-exposed-infectious-removed) model, the model handles

unobservable information within the multistate structure, classifying infected individuals

into pre-infectious (exposed) and infectious individuals [2,62] that are not directly distin-

guishable from each other in empirical observation.

Although a previous study recognized the importance of asymptomatic transmission in

considering the feasibility of non-pharmaceutical public health interventions (e.g. con-

tact tracing and case isolation) [44], the impact of correctly and precisely capturing the

natural course of ”illness” on the effectiveness of interventions (e.g. vaccination) has yet

to be discussed. In the past, the contribution of asymptomatic individuals to the trans-

mission dynamics tended to be modeled by employing the widely adopted SEIR model

while splitting infectious individuals (I-class) into symptomatic and asymptomatic cases

(e.g. [79]). The underlying assumptions and any potential drawbacks for employing the

SEIR model on this matter have not been clarified, and thus, we would like to examine if

an epidemic threshold (which yields the critical vaccination coverage) is greatly influenced

by the abovementioned difference in model building approaches.

Employing a mathematical modeling approach, the present study aims to assess the impact

of model building strategy on the transmission dynamics of an infectious disease under

vaccination practice. In particular, we investigate differential values of epidemic threshold

between models that rest on observable and unobservable information.

5.2 Materials and Methods

5.2.1 Two Models

We consider two different types of mathematical models, one based on observable variables

including symptom onset and recovery from clinical illness (hereafter referred to as the

”observable model”) and the other based on unobservable information including infection

event and infectiousness (the ”unobservable model”). Whereas the unobservable model in

the following is a variant of the SEIR model [79], the observable model considers the transi-

tion of infected individuals based on illness onset and the disappearance of symptoms that

are directly visible in the field data [2] (Figure 5.1A and 5.1B). The word ”observable” is

intended to reflect the presence of observable symptoms (i.e. not including those observed

or detected by employing laboratory testing during the asymptomatic period). Thus, the

observable model might also be referred to the ”symptom-based” model. Similarly, the

unobservable model may be referred to as the ”contagiousness-dependent” model. Here

we briefly describe the time-dependent growth of an epidemic based on the observable

model, the compartments of which are drawn in Figure 5.1A. Let JS(t, τ) and JS(t, σ) be
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the numbers of asymptomatic and symptomatic cases at calendar time t, infection-age τ

since infection and disease-age σ since illness onset. The growth of cases is described by:(
∂
∂t +

∂
∂τ

)
JA(t, τ) = − (η(τ) + γA(τ)) JA(t, τ),(

∂
∂t +

∂
∂σ

)
JS(t, τ) = −γS(σ)JS(t, σ),

(5.1)

where η(τ) is the rate at which asymptomatic cases develop symptoms, and γA(τ) and

γS(σ) are the rates at which asymptomatic and symptomatic cases are fully recovered.

We consider an initial growth phase of an epidemic at which the depletion of susceptible

individuals S0 is negligible. Let λ(t) be the force of infection, or the rate at which suscep-

tible individuals are infected. Two boundary conditions, i.e., the new infection and new

illness onset, are written as

JA(t, 0) = λ(t)S0,

JS(t, 0) =
∫∞
0 η(τ)JA(t, τ)dτ,

(5.2)

where λ(t) is, by adopting a mass action principle, parameterized as:

λ(t) =

∫ ∞

0
βA(τ)JA(t, τ)dτ +

∫ ∞

0
βS(σ)JS(t, σ)dσ, (5.3)

where βA(τ) and βS(σ) are the infection-age and disease-age dependent rates of secondary

transmission, respectively. It should be noted that the recovered individuals in Figure

5.1A are assumed as no longer infectious. An advantage of this modeling approach is

that a reasonable computation of epidemiological measurements (e.g. the reproduction

number, the generation time and the serial interval) can be achieved, adhering to observed

available information [62]. Moreover, transitions from the asymptomatic state to the

symptomatic or recovered state are in line with the actual clinical course of infection,

i.e., only a part of asymptomatic individuals develop symptoms and the rest of infected

individuals recover from infection without symptoms. The basic reproduction number of

this model is computed as follows [62]:

R0 = R1 + αR2, (5.4)

where R1, R2 and α are the average number of secondary cases generated by a single

asymptomatic case (only during the asymptomatic period), the average number of sec-

ondary cases generated by a single symptomatic case throughout the course of the symp-

tomatic period, and the conditional probability of developing symptom given infection,

respectively. The probability of symptomatic illness, α is multiplied to R2 only, because

all infected individuals experience asymptomatic class while only the fraction α of infected

individuals result in symptomatic infection. The model (1) is a stage-structured model in

which the reproduction number is calculated from the integral kernel of the specific class

of host in its renewal equation [69]. R1, R2 and α are defined as
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R1 = S0
∫∞
0 βA(τ) exp

(
−
∫ τ
0 (η(a) + γA(a))da

)
dτ,

R2 = S0
∫∞
0 βS(σ) exp

(
−
∫ σ
0 γS(a)da

)
dσ,

α =
∫∞
0 η(x) exp

(
−
∫ x
0 (η(s) + γA(s))ds

)
dx,

(5.5)

which we will use in later discussion.

The other type of a model, i.e., the unobservable model, can be said to be the infection-

age structured SEIR model that further classifies infectious individuals into symptomatic

and asymptomatic cases [79] (Figure 5.1B). Let E(t, τ), IA(t, τ, σ) and IS(t, τ, σ) be the

numbers of pre-infectious individuals, asymptomatic infectious individuals and symp-

tomatic infectious individuals, respectively, at calendar time t, infection-age τ and disease-

age σ. The dynamics is described by(
∂
∂t +

∂
∂τ

)
E(t, τ) = −ϵ(τ)E(t, τ),(

∂
∂t +

∂
∂τ

)
IS(t, τ) = −kϵ(τ)E(t, τ)− κS(τ)IS(t, τ),(

∂
∂t +

∂
∂τ

)
IA(t, τ) = (1− k)ϵ(τ)E(t, τ)− κA(τ)IA(t, τ),

(5.6)

where ϵ(τ), κA(τ) and κS(τ) represent the rate of acquiring infectiousness, and the recovery

rates among asymptomatic and symptomatic infectious individuals, respectively. k is

the weight (0 ≤ k ≤ 1) of the rate at which exposed individuals acquire infectiousness

that determines the probability of developing symptom. A boundary condition for new

infections is

E(t, 0) = λ(t)S0, (5.7)

where the force of infection is

λ(t) =

∫ ∞

0
β(y) (mIA(t, y) + IS(t, y)) dy, (5.8)

where β(τ) represents the rate of secondary transmission at infection-age τ , and m repre-

sents the relative infectiousness of asymptomatic cases as compared to symptomatic cases.

The basic reproduction number, R0, for this unobservable model is given by

R0 = kR3 + (1− k)R4, (5.9)

where R3 and R4 are the average numbers of secondary cases generated by a single asymp-

tomatic case and a single symptomatic case throughout the course of infectiousness, respec-

tively. In equation (5.9), k and (1− k) are multiplied to R3 and R4, respectively, because

the probabilities of an infected individual to experience symptomatic and asymptomatic

infections are given by k and (1− k), respectively. Again, the reproduction numbers, R3

and R4, are calculated from the integral kernel of the renewal process, i.e., we define
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R3 = S0
∫∞
0 β(τ)

∫ τ
0 ϵ(x) exp

(
−
∫ x
0 ϵ(y)dy −

∫ τ
x κS(y)dy

)
dxdτ,

R4 = mS0
∫∞
0 β(τ)

∫ τ
0 ϵ(x) exp

(
−
∫ x
0 ϵ(y)dy −

∫ τ
x κA(y)dy

)
dxdτ.

(5.10)

Using these two models under a homogeneously mixing assumption, we investigate

the importance of appropriately capturing the observable natural course of infection in

epidemiological models.

Figure 5.1. Compartments of observable and unobservable models. A. The compartment
of an observable model. The model describes the transitions depending on
illness onset and recovery from clinical symptoms. Once infected, all infected
individuals experience asymptomatic period, JA, some of which fully recover
from infection without symptoms, and the remaining develop symptoms,
JS . B. The compartment of an unobservable model. The model describes
the transitions depending on acquirement or disappearance of infectious-
ness. Upon infection, infected individuals experience the latent period (i.e.
Exposed compartment (E)) after which each acquires infectiousness and is
classified as either symptomatic (IS) or asymptomatic (IA) one. C. The com-
partment of the special case of the observable model. The model describes
the transitions based on symptoms, but partially accounts for infectiousness
too. To let it be similar to model B, we decomposed asymptomatic individu-
als, JA of the observable model (panel A) into pre-symptomatic individuals,
HS and fully asymptomatic individuals with or without infectivity. U rep-
resents recovered individuals.

5.2.2 Analytical and Numerical Analyses

To explicitly account for the observable clinical course of infection, underlying assumptions

of using a parameter k in the unobservable model as the probability of symptomatic
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infection remain unclear (Figure 5.1B and system (5.6); because the transition from E to

I state does not have anything to do with illness onset). Moreover, it is fruitful to identify

different model assumptions between two models and their practical relevance to infectious

disease control. Thus, here we take two different approaches to identify the structural

differences and different assumptions between two models. First, we impose additional

assumptions to the observable model, thereby permitting it to resemble the SEIR-like

unobservable model. A simplistic analytical computation is performed to mathematically

determine the difference between the two models. Second, we numerically compute the

basic reproduction numbers based on the two models. It is clear, even intuitively, that the

presence of pre-symptomatic transmission is a major difference between the observable

model and the unobservable SEIR type model. Thus, we examine the sensitivity of the

basic reproduction number to the proportion of pre-symptomatic secondary transmissions

among the total of asymptomatic transmissions.

Subsequently, we investigate the differential impact of vaccination on the reproduction

number (or, on the epidemic threshold) of the two models. In a published study, the

next-generation matrix was employed to incorporate various different biological actions of

vaccination into the transmission dynamics under vaccination [7]. However, the derivation

of the next-generation matrix in the published study remained heuristic, and moreover,

the computation rested only on the unobservable SEIR-like model. Thus, here we derive

the next-generation matrix based on the linearized system of both (5.1) and (5.6), mea-

suring the impact of differential model formulation on the reproduction number. When

analytically computing the matrix, various different effects of vaccination are considered,

including not only the reductions in susceptibility and infectiousness but also the reduction

in the risk of symptomatic illness [55].

5.2.3 Parameter Values

For numerical illustration, we examine the plausible parameter space for four different

viral infectious diseases. Table 5.1 shows the parameter values that are adopted to nu-

merically calculate the threshold quantities and other associated variables of observable

and unobservable models [6, 7, 11, 33, 43, 44, 62, 74, 77, 79, 80, 93, 99, 121, 126]. Smallpox

is considered for the exposition of the similarity between two different models, because

it involves very few asymptomatic transmissions [33, 87, 105]. HIV/AIDS is the opposite

example of smallpox with respect to the proportion of asymptomatic transmissions among

the total of secondary transmissions. Namely, the secondary transmission mostly occurs

before the onset of AIDS [62]. Influenza and varicella are considered as examples that

lie between smallpox and HIV/AIDS. In particular, influenza is considered, because (i)

the unobservable model with asymptomatic and symptomatic infectious individuals was

initially employed with an application to influenza [79] and (ii) a variety of vaccine ef-

fects have been quantified based on challenge and community-based studies [7], which

offers a suitable condition to explore the impact of model formulation on the transmission
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Description Notation Parameter values References/
Smallpox Influenza HIV Varicella Assumptions

The average number of secondary
cases produced by an asymp-
tomatic case

R1 0.69 0.60 3.67 3.24 [33] & calculated

The average number of secondary
cases produced by a symptomatic
infection

R2 6.18 1.20 0.00 3.24 [33] & calculated

The average number of secondary
cases produced by a fully asymp-
tomatic case

Ra 1.37 0.96 6.12 6.47 [33] & calculated

Probability of developing symp-
toms in the unobservable model

α (or k) 1.00 0.75 0.80 1.00 [79] & assumed

Basic reproduction number of the
observable model

R0 6.87 1.50 3.67 6.47 [6, 33,43,77,99]

Proportion of asymptomatic
transmissions among all sec-
ondary transmissions

θ 0.10 0.40 1.00 0.50 [11,44,62,80]

Proportion of pre-symptomatic
transmissions among all asymp-
tomatic infection

g 1.00 0.60 0.67 1.00 [74] & calculated

Vaccine efficacy of reducing infec-
tiousness

V EI 0.80 0.15 0.60 0.80 [6, 7, 11,80,93,121,126]

Vaccine efficacy of reducing sus-
ceptibility

V ES 0.95 0.41 0.40 0.50 [6, 7, 11,80,93,121,126]

Vaccine efficacy of preventing
progression to symptomatic ill-
ness

V EP 0.87 0.67 0.60 0.50 [6, 7, 11,80,93,121,126] & assumed

Table 5.1. Parameter values for observable and unobservable models of directly trans-
mitted infectious diseases.
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dynamics in the presence of vaccination. It should be noted that successful vaccine of

HIV has yet to be offered [108] and the corresponding vaccine effect parameters were only

hypothetically assumed.

5.3 Results

5.3.1 Using Observable Model to Mimic Unobservable Model

To analytically describe the difference between two modeling approaches, we consider the

unobservable model as a special case of the abovementioned observable model. Figure

5.1C shows the compartments of a variant of the observable model that are intended to

mimic the SEIR structure. To do this, we divide the asymptomatic infected individuals

JA(t, τ) in Figure 5.1A into three sub-populations, i.e., (i) pre-symptomatic individuals

who are supposed to develop symptom after spending the incubation period, HS(t, τ), (ii)

asymptomatic non-infectious individuals who will not become symptomatic throughout the

course of infection, HA(t, τ), and (iii) asymptomatic infectious individuals, I(t, τ). The

fate of experiencing symptomatic infection is determined upon infection with a probability

α, similarly to that taking place when acquiring infectiousness in the SEIR model (Figure

5.1B). In the following, those who remain asymptomatic throughout the course of infection

(i.e. HA + I) is referred to as ”fully” asymptomatic, while those who eventually develop

symptoms, HS is referred to as ”pre-symptomatic” for clarity. Recovered individuals at

calendar time t is denoted by U(t). The transition rates from HS to JS , HA to I, JS

to U , and I to U are η(τ)
α , ρ(τ), γS(σ), and ζA(τ), respectively, where τ and σ again

represent the infection-age and the disease-age, respectively. For consistency between the

observable and unobservable models, the transition from HS to JS is artificially scaled by

α, because JS in the observable model welcomes only the fraction α of infected individuals

to symptomatic class, which occurs not only during the transition from HS to JS but also

when infected individuals enter to HS . The time-dependent growth of infected individuals

is described by (
∂
∂t +

∂
∂τ

)
HS(t, τ) = −η(τ)

α HS(t, τ),(
∂
∂t +

∂
∂τ

)
HA(t, τ) = −ρ(τ)HA(t, τ),(

∂
∂t +

∂
∂τ

)
JS(t, τ) = −γS(σ)JS(t, σ),(

∂
∂t +

∂
∂τ

)
I(t, τ) = ρ(τ)HA(t, τ)− ζA(τ)I(t, τ),

(5.11)

with the following boundary conditions:

HS(t, 0) = αλ(t)S0,

HA(t, 0) = (1− α)λ(t)S0,

JS(t, 0) =
1
α

∫ t
0 η(τ)HS(t, τ)dτ,

(5.12)
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where the force of infection, λ(t), is parameterized as

λ(t) = m

∫ ∞

o
βS(τ)I(t, τ)dτ +

∫ ∞

0
βH(τ)HS(t, τ)dτ +

∫ ∞

0
βS(σ)JS(t, σ)dσ, (5.13)

where m is the relative infectiousness among those who remain asymptomatic, βH and

βS are the rates of transmission caused by pre-symptomatic and symptomatic individuals,

respectively. It should be noted thatm is multiplied to only the first integral term, because

m is defined as the infectiousness of ”fully” asymptomatic individuals relative to that

among those who experience symptomatic state in the observable model (Figure 5.1B),

as was defined elsewhere [79]. This scaling was required to let the model in Figure 5.1A

mimic the model in Figure 5.1B. It is evident from Figure 5.1C that for the unobservable

model (Figure 5.1B) to agree with the observable one (Figure 5.1C), the incubation period

and the latent period must be identical. Moreover, the recovery from an infectious state

should also be identical to the recovery from symptomatic illness. Two models become

consistent from each other if the following conditions are met:

(a) α = k (i.e. assumed probabilities of symptomatic infection in two models are iden-

tical),

(b) ϵ(τ) = η(τ)/α = ρ(τ) (i.e. the incubation period is identical to the latent period; or

equivalently, βH(τ) = 0 for any τ),

(c) κS(τ) = γS(σ) and κA(τ) = ζA(σ) (i.e., the recovery rates of both models are an

identical constant).

Writing in the way we computed the observable model in (5.4), the basic reproduction

number is computed as

R0 = R
′
1 + αR

′
2, (5.14)

where

R
′
1 = (1− α)mS0

∫∞
0 βS(τ)

∫ τ
0 ρ(x) exp

(
−
∫ x
0 ρ(y)dy −

∫ τ
x ζA(y)dy

)
dxdτ

+αS0
∫∞
o βH(τ) exp

(
−
∫ τ
o

η(x)
α

)
dτ,

R
′
2 =

S0
α

∫∞
0 βS(σ)

∫ σ
0 η(y) exp

(
−
∫ y
0

η(x)
α dx−

∫ σ
y γS(z − y)dz

)
dydσ.

(5.15)

In summary, two models are rather different and can be consistent only in the case

that the model could be written by ordinary differential equations and only when the

incubation period can be equated to the latent period.
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5.3.2 Comparison of the Basic Reproduction Number

We continue to compare the special case of the observable model (Figure 5.1C) with the

unobservable SEIR type model (Figure 5.1B). As was implicated from abovementioned

conditions (a)-(c) to ensure consistency between the two models, it should be noted that

there is no concept of pre-symptomatic transmission in the unobservable model. On the

contrary, the special case (Figure 5.1C) can still account for pre-symptomatic transmission

as long as we assume that βH(τ) > 0. Let g represent the proportion of pre-symptomatic

transmissions among the total of asymptomatic transmissions, then the basic reproduction

number of the special case model (5.14) is rewritten as follows:

R0 = (1− α)Ra + α(Rpre +R
′
2). (5.16)

The average number of secondary cases generated by a single fully asymptomatic case

should be identical between (5.16) and (5.17), i.e.,

gR
′
1 = αRpre. (5.17)

Figure 5.2 examines the impact of g on the resulting estimate of the basic reproduction

number, varying only g (and the corresponding α) in the model and using fixed values

for all other parameters in equations (5.16) and (5.17) (see Table 5.1). Note that g=0

is the special case in which the observable model (Figure 5.1C) is fully consistent with

the unobservable model. As g increases, R0 for smallpox and influenza are elevated.

However, R0 for HIV and varicella are lowered as a function of g. Assuming that Rpre is

proportional to Ra, the differential sensitivity is understood by considering the weighted

average in (5.16) and (5.17). That is, we have

g =
αRpre

αRpre + (1− α)Ra
, (5.18)

or α = gRa/(1− g)Rpre + gRa, indicating that the larger g, the larger α has to be. Conse-

quently, if the number of fully asymptomatic transmissions is smaller than other transmis-

sions (in the case of influenza and smallpox), R0 is an increasing function of g. However,

when there are substantial pre-symptomatic transmissions (e.g. HIV/AIDS), the relation-

ship between R0 and g is reversed.

5.3.3 Model Building and Vaccination

In the following, a comparison of the reproduction numbers under vaccination is made

between the observable model (Figure 5.1A) and the unobservable model (Figure 5.1B).

Because a randomly mixing population is divided into vaccinated and unvaccinated ones,

we introduce the next-generation matrix. Let p, 1 − qS , 1 − qI , and 1 − qD be the vacci-

nation coverage, vaccine efficacy in reducing susceptibility, infectiousness, and efficacy of

preventing symptomatic illness, respectively. As heuristically derived elsewhere [7,55], the



5.3 Results 55

Figure 5.2. The basic reproduction number and the pre-symptomatic transmission. The
impact of varying the proportion of pre-symptomatic transmissions among
all asymptomatic transmissions (the horizontal axis; denoted by g in the
main text) on the basic reproduction number, R0. Only the value of g (and
the corresponding α) in the model is varied. All other parameters are fixed
(see Table 5.1). Shaded area represents the plausible parameter region of the
proportion of pre-symptomatic transmissions among the total asymptomatic
transmissions, g, for a specific disease.

next-generation matrix that describes secondary transmission between and among vacci-

nated and unvaccinated cases is employed. Let ψ(τ) be the so-called reproduction kernel

of the renewal process of the observable model that describes the class-age dependent rate

of secondary transmission per single infected individual [28], i.e.,

ψ(τ)

= S0

(
(1− p) (βA(τ)L1(τ) + βS(τ)L2(τ)L3(τ)) qI(1− p) (βA(τ)L1(τ) + qDβS(τ)L2(τ)L3(τ))
qSp (βA(τ)L1(τ) + βS(τ)L2(τ)L3(τ)) qSqIp (βA(τ)L1(τ) + qDβS(τ)L2(τ)L3(τ))

)
(5.19)

where the first row represents the exposure to unvaccinated susceptible individuals. It

should be noted that qD appears inside parenthesis in the second column (i.e. secondary

transmissions caused by vaccinated cases). The survival rates L1(τ), L2(τ) and L3(τ) in

(21) are written as



56 Chapter 5 The Impact of Model Building on the Transmission Dynamics

L1(τ) = exp
(
−
∫ τ
0 (η(a) + γA(a)da)

)
,

L2(τ) = exp
(
−
∫ τ
0 (γS(a)da)

)
,

L3(τ) = η(τ) exp
(
−
∫ τ
0 (η(a) + γA(a)da)

)
.

(5.20)

The next-generation matrix of the observable model under vaccination is given by the

integral of ψ(τ), i.e.,

K1 =

∫ ∞

0
ψ(τ)dτ =

(
(1− p) (R1 + αR2) qI(1− p) (R1 + αqDR2)
qSp (R1 + αR2) qSqIp (R1 + αqDR2)

)
. (5.21)

Let F (σ) and L(σ) be matrices that describe the class-age dependent rate of the ap-

pearance of new infections and the proportion of those who remain infectious, respectively,

i.e.,

F (σ) = S0

(
(1− p) [kβ(σ) + (1− k)mβ(σ)] qI(1− p) [kqDβ(σ) + (1− kqD)mβ(σ)]
qSp [kβ(σ) + (1− k)mβ(σ)] qSqIp [kqDβ(σ) + (1− kqD)mβ(σ)]

)
,

(5.22)

L(σ) =

(∫ σ

0
ϵ(x) exp

(
−
∫ x

0
ϵ(y)dy −

∫ σ

x
κS(y)dy

)
dx 0

0
∫ σ

0
ϵ(x) exp

(
−
∫ x

0
ϵ(y)dy −

∫ σ

x
κA(y)dy

)
dx

)
.

(5.23)

The next-generation matrix of the unobservable model is obtained from [28]:

K2 =

∫ ∞

0
ψ(τ)dτ,

=

∫ ∞

0
F (σ)L(σ)dσ,

= R3

(
(1− p) [k + w(1− k)] qI(1− p) [kqD + w(1− kqD)]
qSp [k + w(1− k)] qSqIp [kqD + w(1− kqD)]

)
, (5.24)

where w is the ratio of R4 to R3 and is identical tom if κA = κB. Note that qD only changes

the weight of R3 (or R4) inside the bracket of all elements. The effective reproduction

number is the dominant eigenvalue of these matrices, i.e.,

Rv,obs = (1− p) (R1 + αR2)) + qsqIp (R1 + αqDR2) ,

Rv,non = (1− p)R3 [k + w(1− k)] + qSqIpR3 [kqD + w(1− kqD)] ,
(5.25)

where Rv,obs and Rv,non correspond to the reproduction numbers of the observable and

unobservable models, respectively. It should be noted that only Rv,obs is consistent with

the data generating process of qD, while this is not the case for Rv,non, because qD in



5.4 Discussion 57

the equation of Rv,non is assumed to have had an impact on the transition rate from pre-

infectious to infectious period (in addition to the impact on the probability of symptom

development alone; Figure 5.1B).

To understand the extent of the different impact of qD on the reproduction number

between two models, Figure 5.3 compares the values of Rv,obs and Rv,non for selected four

diseases as a function of vaccine-induced reduction in symptomatic illness, qD. By varying

qD, different patterns of variation in the reproduction number are seen. For the examined

three diseases, i.e., smallpox, influenza and varicella, Rv,non was greater than Rv,obs. The

relationship was reversed for HIV, and in particular, Rv,obs of HIV was independent of

qD due to the assumed absence of secondary transmission following the onset of AIDS.

Although the difference is subtle for smallpox and varicella, the critical level of influenza is

clearly different between two models for influenza. Moreover, it should be noted that the

critical coverage is an inverse function of the reproduction number, and a slightly greater

reproduction number based on the unobservable model could incorrectly indicate us to

vaccinate as many as additional 5-10% of the population as compared to the coverage

calculated from the observable model. The difference in the critical coverage was most

apparent for HIV/AIDS.

5.4 Discussion

The present study analyzed and compared observable and unobservable modeling ap-

proaches. Two major tasks have been completed. First, by rewriting the observable model

as if it were an SEIR-type unobservable model, we aimed to clarify underlying assumptions

of the unobservable model that involves asymptomatic transmission. For the two models

to be identical, we have demonstrated that it is essential that the incubation period has to

be identical to the latent period and also that no pre-symptomatic transmission occurs in

both models. Only the observable model can directly incorporate vaccine-induced reduc-

tion in symptomatic illness (in the manner that the corresponding vaccine effect data is

generated), and the probability of symptomatic infection in the unobservable model was

shown to be multiplied to the transition rate from pre-infectious to infectious state without

phenomenological justification. Second, we numerically solved both models and examined

the sensitivity of R0 to the frequency of pre-symptomatic transmission. We identified that

the ignorance of pre-symptomatic transmission in the unobservable model can lead to an

overestimate of R0. Moreover, we have shown that the critical coverage of vaccination can

be different between two models, because the vaccine efficacy of preventing symptomatic

illness would influence the threshold in different mathematical manners.

The present study emphasizes that an appropriate model formulation would be essen-

tial to answer the corresponding scientific or public health question. As we have shown, an

explicit formulation would also help clarify underlying assumptions that tend to be hidden
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in common model structures. Considering a practical example of vaccination that influ-

ences the symptom onset, we have shown that the modeling approach to tackle this issue

requires a model building approach that can explicitly account for the natural course of

infection including asymptomatic and symptomatic states. Since the use of SEIR structure

with two or more types of I-classes with different levels of symptom or clinical severity has

also partially accounted for this matter of differential severity of symptom, and because

the unobservable modeling approach to this issue has been proposed relatively early [79],

the similar model structure has become widely adopted in a variety of settings in studying

influenza and other directly transmitted infectious diseases [3–5, 34, 37, 59, 82]. However,

we have shown that the unobservable model has to inherently adopt an assumption that

there is no pre-symptomatic transmission, and in this model, vaccine-induced reduction

in symptomatic illness has to influence the transition from pre-infectious to infectious

state [7]. To explicitly and appropriately incorporate the vaccine effect in reducing the

risk of a symptomatic disease into the model, it is fruitful to employ a model that directly

accounts for disease progression.

Although our discussion might read as if we regard the observable model as always

better than the unobservable one, this preference cannot always be true. In fact, the

observable model is not perfect, largely missing the information of infectiousness in the

model structure. However, if we handle the model fitting to the incidence of illness onset,

the observable model must be most useful, because the renewal equation of only symp-

tomatic cases can be computed and directly fitted to the data [62]. If our study objective

was not to quantitatively measure model parameters based on observable empirical data

(e.g. model fitting to real data), the unobservable model may be more useful in many

other objectives (e.g. in considering the loss of infectiousness during the isolation period).

Rather than emphasizing that we should regard the observable model as a default, we

would like to emphasize that writing this particular issue from multiple angles would be

useful for mathematical modeling studies; the present study was a single study that fo-

cused on symptom-based modeling approach in contrast to a classical one. Moreover, it

should be noted that ”theoretically” the best model in this context would be the one that

accounts for both observable and unobservable information within a single model. Such a

model can easily address the dependence structure between clinical illness and infectious-

ness [72], and indeed, the potential dependence and difference between the incubation

period and the latent period are known as critical factors in determining the effectiveness

of public health interventions including contact tracing and case isolation [14, 44, 71, 88].

As demonstrated by animal experiments for foot and mouth disease [14], an appropriate

combination of well-designed experiments (or observations) and statistical inference could

shed light on the scientific approach to (i) considering both illness and infectiousness and

(ii) identifying ideal modeling strategy in the future [110].

Four limitations should be noted and described briefly. First, we conducted only

univariate sensitivity analysis, ignoring any possible dependence between the frequency
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of pre-symptomatic transmissions among the total asymptomatic transmissions and other

epidemiological variables. Ignoring such dependence structure could sometimes lead to

overestimating the effectiveness of public health interventions [35]. Second, we focused

on the basic reproduction number, and did not extend epidemiological insights into other

important quantities (e.g. growth rate of infections) [35,103]. Third, to keep the matter as

simple as possible, our arguments rested on homogeneously mixing assumptions. Fourth,

whereas our model rested on fixed compartment structures (Figure 5.1), the structure of

model ultimately depends on specific diseases and study objectives [112].

Considering that we were successful in gaining useful epidemiological insights into

future quantitative modeling by formulating the vaccination issue using an observable

model, it is suggested that more studies based on observable epidemiological variables

are conducted. Future studies can also tackle the issue of abovementioned dependence

between clinical illness and infectiousness based on an explicit model with both pieces of

information as variables and analyzing individual datasets with multiple dimensions.
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Figure 5.3. The effective reproduction number under vaccination practice. Effective re-
production numbers for the observable model and the unobservable model
are compared as a function of vaccine-induced reduction in symptomatic ill-
ness. To permit comparison, in the absence of vaccination practice, the
epidemic threshold values of the two models were assumed as identical.
Vaccination coverage is fixed at 50%. The solid line shows the reproduc-
tion number of the unobservable model under vaccination. The dashed line
shows the reproduction number of the observable model under vaccination.
Except the vaccine-induced reduction in symptomatic illness, all parameters
were fixed (see Table 5.1). For the unobservable model, relative infectious-
ness of asymptomatic individuals (compared to symptomatic individuals),
m (or w), was arbitrarily fixed at 0.5 for three diseases other than varicella
to which we assigned 0.7 (these particular values were arbitrarily chosen to
visually demonstrate the difference between two models).
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Chapter 6

Modeling the Obesity Epidemic

6.1 Introduction

6.1.1 Background

Obesity has become more and more widespread, increasingly recognized as one of the

biggest global health problems. According to the estimate of the World Health Organiza-

tion (WHO), the prevalence of obese individuals across the world was estimated at 9.8% in

2005 [138], and with a subsequent increase, an urgent preventive action has been deemed

essential. The public health need for obesity control is evident, because obesity serves as

one of the most important risk factors of various chronic diseases [136], including acute

coronary heart disease and other circulatory diseases, diabetes and several types of cancer

(e.g. colon cancer). Following the WHO’s declaration of the global epidemic of obesity

in 1997 [136], the World Health Assembly endorsed the Global Strategy on Diet, Physical

Activity and Health (DPAS) in 2004 aiming to improve the situation by intervening diet

and physical activity [137]. Accordingly, the member states of the WHO and other inter-

national partners have faced a need to construct and carry out obesity control programs.

As part of the control effort, various epidemiological studies have been conducted to assess

the effectiveness of each control program (i.e. through individual nutritional or physical

exercise programs). However, there have been little attempt to qualitatively and quan-

titatively compare the effectiveness of different types of control programs and optimize

obesity control program as a whole. In addition, very little epidemiological effort has been

made to understand the entire epidemiological dynamics of obesity and its control using

mathematical and theoretical approaches.

While actual interventions of dietary behaviours (e.g. avoiding excessive calorie intake)

and those against insufficient physical activities are implemented, Christakis and Fowler

[16] scientifically demonstrated that obesity can spread from person to person via a social

contact network. The epoch-making finding of the spread of non-infectious disease through

a social contact network was not only limited to obesity but also other health-related issues

such as smoking [17]. Statistical review of social network analysis took place elsewhere [18],

because the estimation problem of social network effects, including the use of dynamic
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models and statistical control of confounders, has been discussed [21,22]. The underlying

biological and social mechanisms of obesity epidemics have fascinated a broad range of

scientific audience.

Provided that non-negligible fraction of obesity is caused by person-to-person trans-

mission, the effectiveness of essential control programs against obesity epidemic would be

characterized by nonlinear dynamics with a correlated risk structure. That is, estimat-

ing the risk of obesity involves the issue of dependence in which the risk of obesity in a

single individual is determined not only by that particular individual but also by other

individuals in the same population unit (i.e. the so-called ”dependent happening”). In a

positive sense, the dependence implies that one could expect herd effect (or herd immu-

nity) by implementing public health interventions, which has been commonly seen in the

epidemiology of infectious diseases [9]. However, it also implies that the contagious effect

could lead to social problems including potential need to intervene friendship network and

social discrimination.

The present study aims to describe an obesity epidemic by employing a simple math-

ematical model that accounts for both social contagion and non-contagious hazards of

obesity, thereby comparing the effectiveness of different types of interventions. Using a

simplistic model with randomly mixing assumption, we intend to explore the most effec-

tive intervention in a qualitative manner and identify epidemiological data gaps that have

prevented us from explicitly evaluating and comparing the effectiveness of various obesity

control programs.

6.2 Materials and Methods

6.2.1 A Model for the Social Contagion of Obesity

Considering that obesity is caused by both contagious and non-contagious routes, we de-

scribe the epidemiological process of becoming and recovering from obesity as a function

of time. Despite the fact that the spread of obesity is believed to occur on a complex

social network [16,18], here we exploit a model that describes the epidemiological process

of obesity in a randomly mixing population, because the present study intends to clarify

the implications of person-to-person transmission of obesity for public health control in

a rudimentary fashion and identify fundamental data gaps that have to be urgently ad-

dressed in empirical observations. To describe the time-dependence of the risk of obesity,

we use the ordinary differential equations (ODE) that capture the population dynamics of

obesity. Referring to the simplest version of the most classical epidemiological model for

directly-transmitted infectious diseases [2, 68], we describe the time-evolution of suscepti-

ble (never-obese), infectious (obese) and recovered (ex-obese) individuals as a function of

time t, namely, S(t), I(t) and R(t) as follows:
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dS
dt = µN − [βI(t) + ϵ]S(t)− µS(t),

dI
dt = [βI(t) + ϵ]S(t) + σ[βI(t) + ϵ]R(t)− (µ+ γ)S(t),

dR
dt = γI(t)− σ[βI(t) + ϵ]R(t)− µR(t),

(6.1)

where N represents the total population size, assumed to be a constant over time for the

sake of our exposition of epidemiological data gaps, that is, N = S(t) + I(t) + R(t) for

any t, µ is the birth and death rate of human host, β is the transmission coefficient, ϵ is

the hazard of obesity due to non-contagious reasons, γ is the natural recovery rate, and

σ is the relative risk of weight regain among ex-obese individuals which typically takes a

value greater than 1 due to high risk of coming back to the obese state [134]. It should

be noted that the system (6.1) assumes that ex-obese is not contagious. All of these

three equations describe the background birth and death of the host using the rate, µ.

Otherwise all terms are associated with acquirement of or recovery from obesity. Among

never-obese individuals, λ(t) = βI(t) + ϵ is the hazard rate of obesity on a whole (or,

is frequently referred to as the ”force of infection” in infectious disease epidemiology) at

which they experience obesity for the first time. Among ex-obese individuals, the hazard is

σ times greater than that among never-obese individuals. The natural recovery of obesity

occurs at the rate, γ. It should be noted that the force of infection, λ(t) is modelled in

an additive manner, i.e., expressed as a sum of two hazards, one through the contagious

route λ1 = βI(t) and the other via the non-contagious route λ2 = ϵ, the latter of which

is determined by many factors including genetics and lifestyle including dietary habit.

For simplicity, we consider a situation in which λ2 is constant. By employing the additive

model for the force of infection, it is assumed that the contagious and non-contagious risks

are independent from each other. However, considering that the social contagion should

eventually influence dietary behaviour and physical activity to achieve a ”transmission of

obesity” in real life, it should be more natural to account for the dependence between

β and ϵ (see Discussion). When we numerically solve the system (6.1), we consider an

initial condition with S(0) = N . Solving equations, d(S, I,R)/dt = 0 and analysing the

linearized equations, we find an asymptotically stable equilibrium point, (S∗, I∗, R∗) to

which all the trajectories of the system converge so that the parameter sensitivity and the

age-specific risk in the equilibrium can be examined.

6.2.2 Lifetime Risk of Obesity: Age-dependence

Although the present study focuses on temporal dynamics of obesity epidemic, here we con-

sider the age-dependent dynamics rather than time-evolution, ignoring time-dependency

and measuring only the age-specific risk of obesity in an endemic equilibrium. The age-

dependency is specifically considered here, because (i) the most typical epidemiological

measurement of obesity at an individual level may be the risk of obesity or associated dis-

ease by a certain age (or throughout the course of life), and (ii) we intend to understand
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the fundamental epidemiological dynamics of obesity using the model (6.1) as it has direct

implication for age-dependent risk of obesity [2].

For simplicity, here we consider an equilibrium state, (S∗, I∗, R∗) with some constant

prevalence of obesity. To describe the age-specific risk in a stationary state, we consider

variables X(a) Y (a) and Z(a), representing the numbers of never-obese, obese and ex-

obese individuals at age a, respectively. The dynamics is described as follows:

dX
da = −λ∗X(a),

dY
da = λX(a) + σλ∗Z(a)− (µ+ γ)Y (a),

dZ
da = −(σλ∗ + µ)Z(a) + γY (a),

(6.2)

where λ∗ represents the force of infection which combined both contagious and non-

contagious hazards at an equilibrium. The total population size of age a is Nc(a) =

X(a) + Y (a) + Z(a). Due to exponentially distributed life-expectancy of human host,

Nc(a) is parameterized as

Nc(a) = Nc(0) exp(−µa), (6.3)

which has been conventionally employed in epidemiology for exploring the age distribution

of infected individuals in an endemic equilibrium (Chapter 4 of [2]). Since the total

population size remains constant over time, we have

N =

∫ ∞

0
Nc(0) exp(−µa)da =

Nc(0)

µ
. (6.4)

In other words, Nc(0) can be equated to µN . Since new-borns are assumed as never-

obese, we have an initial condition (X,Y, Z) = (Nc(0), 0, 0) and X(a) is then written

as

X(a) = Nc(0) exp{−(λ∗ + µ)a}. (6.5)

We define the life-time risk as a probability of not remaining in the never-obese state

throughout the course of life, which is calculated by using the probability to remain never-

obese by age a, x(a) = X(a)/Nc(0). The cumulative risk by age a, q(a), is computed

as

q(a) =

∫ a

0
λ∗x(s)ds =

λ∗

λ∗ + µ
[1− exp{−(λ∗ + µ)a}]. (6.6)

As a→∞, q(a) takes λ∗/(λ∗ + µ). This indicates that, the larger the prevalence, the

larger the life-time risk to experience obesity at least once during the course of life. Accord-

ingly, hereafter we use the equilibrium prevalence, calculated from time-dependent system

(6.1), as an epidemiological outcome measure to assess and compare the effectiveness of

different interventions.
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Description Notation Baseline value Reference

Population size N 100,000 assumed
Average life expectancy at birth 1/µ 69.4 (years) [138]
Transmission coefficient of obesity β 2.96× 10−7 (per year) [134]
Non-contagious hazard of obesity ϵ 0.012 (per year) [58]
Relative hazard of obesity among ex-obese σ 8 [134]
Average duration of obesity 1/γ 35.8 (years) [58]

Table 6.1. The parameters shown above were used for baseline scenario. During univari-
ate sensitivity analysis, these parameters were also used except for a single
parameter that was varied.

6.2.3 Parameter Setting

For the exposition of the epidemiological dynamics using time-dependent model, we pa-

rameterize model 6.1 referring to published empirical data. Table 6.1 summarizes the pa-

rameter values. We consider a hypothetical population with a population size N=100,000

which experiences random mixing, with the life expectancy at birth, 1/µ=69.4 years, cal-

culated as the weighted average of country-specific life expectancies [138], which is broadly

consistent with those in Southeast Asian countries (e.g. Laos at 62.8 years, Indonesia at

71.6 years and Vietnam at 72.4 years). The relative risk of weight regain among ex-obese

individuals, σ is set at 8.0 according to literature [134]. The average duration of obesity,

1/γ and non-contagious hazard of obesity, ϵ are estimated at 35.8 years and 0.012 per year,

respectively, based on the dataset from Framingham Heart Study [58]. The transmission

coefficient, β is also explicitly estimated from an empirical dataset. Since our model in

continuous time is not consistent with empirically observed risk on a static network [127],

and because the other data from a social network were sampled from a non-stationary

process with non-linear dynamics [58], the dataset for estimating β in the present study

was derived from a confined household setting. The empirically observed household sec-

ondary attack proportion, SAP, has ranged from 0.14 to 0.28 for a short period of time

as compared with the life expectancy at birth (e.g. for 4-28 years) [134]. Based on a

generalized stochastic epidemic model in the confined setting [110, 127], the SAP with a

single index case is translated to the basic reproduction number, R0 by

SAP =
R0

R0 +m
, (6.7)

where m represents the number of susceptible-and-exposed individuals in the household.

In similar epidemic systems, R0 is mathematically derived from a linearlized system (i.e.

nearby disease-free equilibrium) as defined elsewhere [27], but unfortunately, disease-free

equilibrium is always unstable for the system (6.1) except for ϵ=0 (i.e. except for the case

without non-contagious hazard of obesity). Only for now, we use this special case, i.e.,

R0 = βN/(γ+µ), that can only be true and theoretically derived when the non-contagious

hazard of obesity is assumed as zero (which is a reasonable assumption for the empirical
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data based on observation for a short period of time [134]). Assuming that m=3 and SAP

ranged from 0.135 to 0.254, the transmission coefficient, β in our scenario analysis ranges

from 1.99 × 10−7 to 4.33 × 10−7. The mid-point of estimates, i.e., 2.96 × 10−7 is used as

the baseline value.

6.2.4 Computational Scenarios

First, we solve the system (6.1) numerically to understand the time-dependent dynamics of

never-obese, obese and ex-obese individuals. Second, we explore the impact of hazard pa-

rameters (i.e. hazards for contagious and non-contagious routes) and recovery parameters

on the equilibrium prevalence of obesity. Third, to assess and compare the effectiveness

of different control programs of obesity, we investigate the sensitivity of the equilibrium

prevalence on the shift of parameters that determine the effectiveness of each program.

When exploring the effectiveness of interventions, we use two different types of classifica-

tion of control programs: (i) we consider varying only one parameter for each sensitivity

analysis, and (ii) we consider varying a combination of parameters. For the latter, varying

a combination of parameters that influence the risk of obesity among never-obese individ-

uals is hereafter referred to as the primary prevention, and varying the other combination

of interventions that influence the risk of obesity among obese and ex-obese individuals

is referred to as the secondary prevention. It should be noted that the term ”secondary

prevention” is used here to represent the intervention that happens after experiencing

illness (i.e. obesity) at least once. We measure the effectiveness of control programs by

examining the impact of relative change in either (i) or (ii) on the equilibrium prevalence

value.

6.3 Results

6.3.1 Baseline Dynamics of Obesity

Using aforementioned mathematical model (6.1), we consider the time evolution of preva-

lence (Figure 6.1A). As mentioned above, it should be noted that the initial condition

(S(0), I(0), R(0)) = (N, 0, 0) is set to demonstrate that obesity-free equilibrium is unsta-

ble and the dynamics surely causes an epidemic with an initial fuel from non-contagious

hazard. As time goes by, the prevalence converges to a stationary value. According to

the baseline setting in Table 6.1, it takes approximately 200 years to reach to an equilib-

rium state and the prevalence in our baseline setting is calculated at 60.8%. Although the

prevalence estimate is higher than the empirically reported value, the obesity in real world

is still growing, and on the technical side, the high value has resulted from exponentially

distributed survival. Figure 6.1B shows the age distribution of S, I and R as a function of

age a, using system (6.2) with the equilibrium prevalence and assuming that all new-borns

are never-obese. The risk of obesity at a given age a (calculated as the ”risk at birth”)

hits a peak at the age of 37.0 years, but subsequently decreases due to natural mortality.
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Figure 6.1. Baseline dynamics of an obesity epidemic. (A) Time-dependent and (B) age-
dependent epidemiological trajectories are shown. A. The time evolution of
the numbers of never-obese, obese and ex-obese individuals. As time goes
by, the prevalence of obesity converges to an equilibrium level. B. Age-
specific risk of obesity in a stationary state. The vertical axis represents the
risk (or probability) of age a at birth (and thus, it should be noted that the
proportions do not sum up to 1 due to natural mortality).

6.3.2 Hazard of and Recovery from Obesity

Obviously, the contents, subjects and objectives of many available interventions differ by

control programs. Theoretically speaking, there are two types of interventions that be-

long to the primary prevention, i.e. the intervention on social contact and the preventing

weight gain among never-obese individuals, each influencing the transmission coefficient β

and non-contagious hazard ϵ, respectively. The intervention of social contact is intended

to prevent person-to-person transmission by suppressing obesity contagion. The practical

feasibility of such an intervention is subject to discussion, but in the present study the

intervention is theoretically considered as resembling contact tracing of directly transmit-

ted infectious diseases [71, 88]. Preventing weight gain among never-obese individuals is

to control the diet and enhance physical activities, including the specification of nutrients

and restriction of calorie intake [118]. Figure 6.2A shows the role of β and ϵ in regulating

the prevalence of obesity. Overall, the lower the transmission coefficient ϵ is, the lower the

prevalence would be. However, the equilibrium prevalence appears to be very sensitive

to β, and abruptly varies at some value of β depending on the non-contagious hazard ϵ.

For instance, when ϵ was set as equal to 0, one could theoretically expect an eventual

eradication of obesity by controlling obesity contagion, and in such an instance, a disease-

free equilibrium could occur. In this case, the model also appears to yield a backward

bifurcation of prevalence, indicating the absence of simple threshold governed by β. That

is, due to the presence of re-infection, the model can find an endemic equilibrium even for

R0 < 1, indicating a difficulty in controlling obesity in the presence of person-to-person
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transmission. There are two types of interventions that belong to the secondary preven-

tion, i.e. the dietary control program among obese individuals and the follow-up program

of ex-obese individuals, each influencing on the duration of obesity 1/γ and the relative

hazard among ex-obese σ, respectively. The dietary restriction in this context is targeted

on obese individuals only [84], and the follow-up program is to encourage ex-obese indi-

viduals not to be overweight again [124]; ex-obese individuals are known to be more prone

to obesity than never-obese individuals [36]. Figure 6.2B shows the role of 1/γ and σ in

regulating the prevalence of obesity. Overall, the shorter the duration of obesity 1/γ is, the

lower the equilibrium prevalence would be. Unlike Figure 6.2A, the prevalence does not

abruptly vary with σ. Varying σ to lower or greater values led the prevalence of obesity

to be less sensitive to 1/γ.

Figure 6.2. Sensitivity of the prevalence of obesity to the parameters determining the
hazard and the recovery. Equilibrium prevalence is computed by varying
a single parameter, i.e., the transmission rate for panel A and the mean
recovery rate for panel B. A. The bold line shows the baseline result, varying
only the transmission coefficient β. The other lines represent the scenarios
in which ϵ is varied to the 0%, 10% and 1000% relative to the baseline value
(from the horizontal axis to the top, the lines represent 0, 10 and 1000%,
respectively). B. The bold line shows the equilibrium prevalence of obesity
using baseline parameter values other than the average duration of obesity,
1/γ. Two other lines represent the scenarios in which σ is varied to 10%
(bottom) and 1000% (top), respectively, relative to the baseline value.

6.3.3 Comparison of Intervention Effectiveness

When we compare the effectiveness of multiple control programs, interventions that vary

only a single parameter of model (1) are separately examined from those varying a combi-

nation of multiple parameters. For the combination of multiple parameters, the primary

and secondary preventions are separately grouped for comparison due to practical consis-

tency in the grouping. Since the system (6.1) focused on the intrinsic dynamics without

any interventions, here we specifically show the way that extrinsic factors influence the
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growth of obesity. As a parameter governing the primary prevention α, we assume that

both contagious and non-contagious hazards are equally reduced by the factor α as follows:

dS
dt = µN − α[βI(t) + ϵ]S(t)− µS(t),

dI
dt = α[βI(t) + ϵ]S(t) + σ[βI(t) + ϵ]R(t)− (µ+ γ)S(t),

dR
dt = γI(t)− σ[βI(t) + ϵ]R(t)− µR(t).

(6.8)

It should be noted that only the hazards among never-obese individuals are reduced.

In addition, there is a possibility that an assumed marginal independence between β

and ϵ could lead to an overestimation of the effectiveness of primary prevention (because

the reduction of prevalence with an identical α in the presence of dependence can be

greater than that we show here). Similarly, we consider the secondary prevention which

includes the dietary restriction among obese individuals and the follow-up program among

those experienced obesity at least once in combination. Supposing that the associated

intervention programs are enhanced by a factor κ, we modelled the secondary prevention

as follows:

dS
dt = µN − [βI(t) + ϵ]S(t)− µS(t),

dI
dt = [βI(t) + ϵ]S(t) + κσ[βI(t) + ϵ]R(t)− (µ+ γ

κ)S(t),

dR
dt = γ

κI(t)− κσ[βI(t) + ϵ]R(t)− µR(t).

(6.9)

It should be noted that the follow-up program reduced the overall hazard of re-infection

(including those arising from social contagion and lifestyle), because the follow-up program

does not specify the way of regaining weight among ex-obese individuals and is primarily

intended to reduce susceptibility of ex-obese individuals toward re-infection.

Figure 6.3 shows the sensitivity of prevalence to independent variations in each pa-

rameter. While panels A and C show the results of univariate sensitivity, panels B and

D are the results from varying two parameters in combination. Panels A and B employ

1.99 × 10−7 per year as the transmission coefficient β which is the lowest in range, while

Panels C and D adopted the highest value 4.33× 10−7 per year. When β is small, Figure

6.3A demonstrates that preventing weight gain among never-obese individuals, ϵ, is most

effective and influential. Dietary restriction among obese individuals, 1/γ, appeared to be

the second most effective option. Namely, as long as β remains very small, and thus, the

transmission of obesity cannot be maintained in the host population via person-to-person

transmission routes, an intervention program that aims to reduce the non-contagious haz-

ard would be the most effective strategy, and moreover, quickly removing obese individuals

by the control program would be expected to reduce obesity effectively. Combined inter-

ventions are compared in Figure 6.3B. The effectiveness of reducing overall hazards of

obesity among never-obese individuals would be similar to that of targeting obese and



70 Chapter 6 Modeling the Obesity Epidemic

ex-obese individuals. In addition, increasing α would be more influential to elevate the

prevalence than increasing κ.

However, when the transmission coefficient is set to be very high so that the trans-

mission of obesity can be maintained through social contagion, preventing weight gain

among never-obese individuals, ϵ, appears to be the least effective. Rather, promoting

the dietary restriction (1/γ) and implementing the follow-up program (σ) would be more

effective in reducing the prevalence of obesity. In a certain range, intervening β is the

most influential parameter in reducing the prevalence, while in reality it might be difficult

to directly reduce obesity contagion by a control program. When a combination of two

control strategies can be selected, the primary and secondary preventions yielded similar

population impacts and the superiority of the effectiveness depends on the strength of the

interventions at an individual level.

6.4 Discussion

In the present study, we investigated epidemiological models that describe the obesity

epidemic, spreading via social contact and acquired due to non-contagious reasons. We

assessed and compared the effectiveness of different types of intervention programs which

aim to reduce the risk of obesity. As the most important practical finding, we identified

that the optimal choice of intervention programs considerably varies with the transmission

coefficient of obesity, β. When β is small, the transmission cannot be maintained by social

contagion alone. In such an instance, our model has suggested that preventing weight

gain among never-obese individuals would be the most effective option, although it should

be remembered that our approach adopted marginal independence between β and ϵ, and

the effectiveness of primary prevention might have been overestimated. When β is large

enough to sustain the transmission of obesity through the person-to-person route, dietary

restriction among obese individuals could potentially be the most effective. In other words,

depending on the transmissibility of obesity, the effectiveness of reducing obesity hazards

would greatly vary, and thus, the population impact of each program would be dependent

on the transmission dynamics of obesity. When a combination of interventions can be

selected, the primary prevention is likely more influential than the secondary prevention

for a small effect size, but on the whole primary and secondary preventions yielded similar

population impacts. Despite the dependence of optimal interventions on β, it should

be noted that the transmission potential of obesity in community setting has yet to be

explicitly estimated.

Since WHO has addressed DPAS, emphasizing the importance of diet and physical

activity as two main factors that determine the risk of obesity [137], the worldwide effort

of obesity control has started, conducting and evaluating various programs. As we have

shown using a simplistic model, the social contagion of obesity must be a key concern for

public health for decision-making, because the design of effective control programs requires



6.4 Discussion 71

us to capture and understand the population dynamics of obesity in an explicit manner,

and moreover, empirically quantify the transmissibility of obesity. As the most important

data gap, we have identified that the transmission potential of obesity contagion has to

be estimated, as it drastically varies the optimal choice of interventions. To estimate the

contagious hazard of obesity, household-based prospective cohort study of susceptible and

recovered individuals is desirable, because not only the transmissibility within households

but also the relevance of the transmission potential to the natural history of obesity can be

measurable. Nevertheless, it should be noted that the threshold property, R0 is unlikely

to be maintained in the obesity model due to non-contagious risk and re-infection.

Whereas we have shown that primary and secondary preventions yielded similar re-

ductions in the equilibrium prevalence of obesity in a certain parameter space, it should

be remembered that the primary and secondary preventions require different types and

amounts of effort, not sharing an identical effect size. Considering that the length of

obese period could influence the risk of later health outcomes (e.g. diabetes), the primary

prevention may better be more advantageous in reducing the devastating outcomes. Ad-

dressing the associated life-course issues including an assessment of economic impact is

the subject for future studies.

Despite our key finding in identifying the transmissibility as the most influential com-

ponent to determine the optimal interventions, there are five issues that are regarded as

limitation or should be cautiously interpreted. First, while obesity contagion on a social

contact network has been empirically studied in literature [36, 50, 66], we have employed

a homogeneously mixing assumption for mathematical convenience and to identify key

parameter of obesity dynamics without ambiguity [112]. Of course, using empirically ob-

served network data would permit us to describe more realistic situations [58]. Considering

that the threshold level of obesity epidemic likely differs in heterogeneous contact networks,

future studies should quantify the transmissibility of obesity on an explicit contact net-

work and identify the corresponding appropriate way of public health control. Second,

the natural history of obesity, including the duration of obesity and frequency of recur-

rence, is largely unknown [117]. Due to shortage of information, we have had to ignore

age-dependent heterogeneity, e.g. differential calorie consumptions by age [89]. Third, an

equilibrium prevalence of our model is calculated as high as 60.8%, which is greater than

currently observed prevalence [138]. However, the prevalence in the present day has yet

to reach the stable level, and has been in increasing trend [58], and thus, we believe that

our exercise has not been far from reality even by using a simplistic model. Fourth, we

did not take into account the cost to be compared across different intervention programs.

Identification of optimal programs would require an explicit analysis of cost-benefit and

cost-effectiveness aspects. Lastly, on the technical side, further work could explore the use

of alternative modelling approaches, e.g. conditional risk model with stochastic depen-

dence structure, which could avoid overestimating the effectiveness of primary prevention.
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Despite these limitations due mainly to simplifications of our modelling exercise, a

number of advantages in our study should be noted. First, we took into account the

relative hazard of obesity among ex-obese individuals, while an earlier study that shares

a similar scopes with our study ignored the elevated risk of weight regain among ex-obese

individuals [58]. Rather than focusing on network heterogeneity, our study has intended

to examine the impact of nonlinear transmission with complex natural history on the

optimal choice of interventions [50,87]. Second, due to simple model structure, our model

has remained to be analytically tractable, and thus, a variety of different epidemiological

measures, including life-time risk of obesity-related diseases, can be additionally derived.

For instance, one can easily extend our concept to account for the delay or a fraction of

obese individuals in developing a chronic disease later in life. Using a convolution of the

time delay function from obesity to a heart attack, f(s) of length s and the risk of once

becoming obese by age a, 1 − x(a), with a scaling factor (i.e. the overall risk) of heart

attack p, one can describe the risk of heart attack as a function of age as

w(a) = p

∫ ∞

0
f(s)(1− x(a− s))ds, (6.10)

although the use of 1 − x(a) is subject to discussion (e.g. rather, one may prefer to use

individual history of being obese). Such modelling exercise can potentially enable us to de-

scribe the long-term and secondary impact of obesity control in reducing closely associated

diseases or deaths at a population level, while explicitly accounting for nonlinearity in the

spread and control of obesity. Third, a little more complex natural history may better be

incorporated into the model. For instance, non-contagious hazard was assumed as a fixed

value in the present study, but in reality the hazard may depend on age which reflects not

only the physiological age-dependence but also the history of escape from obesity. Not

only obesity but also other behavioural contagion can be analysed using similar modelling

approaches [57]. Despite numerous future tasks, we believe that we have successfully sim-

plified the population dynamics of obesity, identifying the importance of quantifying the

transmission potential to determine public health control programs in the future.

The optimal choice of interventions against obesity varies by the transmission poten-

tial of obesity from person to person. To attain appropriate assessment and comparison

of different types of public health control programs of obesity, it is critical that the epi-

demiological dynamics of obesity, especially the transmission potential, is quantified in

advance.
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Figure 6.3. Sensitivity of the prevalence of obesity to different control programs. Effec-
tiveness of interventions is measured by equilibrium prevalence as a func-
tion of relative reduction in certain parameters. A&C. The prevalence when
single parameters (ϵ, β, 1/γ and σ) are independently varied. B&D. Com-
parison between the primary prevention (reducing α) and the secondary
prevention (reducing κ). The baseline value of β is set to be low in panels
A and B (1.99 ×10−7 per year), while panels C and D shows the case when
β is set at high (4.33 ×10−7 per year).
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Chapter 7

Conclusion

In this thesis, I have attempted to resolve several issues in public health by focusing on

the data generating process to explain observations obtained from limited data.

In Chapter 1, I demonstrated the importance of the mathematical modeling in the con-

text of infectious disease epidemiology, while giving a brief account of the recent progress

made in the development of modeling techniques. The data generating process that ex-

plains observations from passive data collection can be roughly divided into two parts:

the transmission process and the observation process. Therefore, to address public health

issues surrounding infectious disease, this process must be captured precisely in the model.

In Chapters 2 and 3, I attempted to address public health issues using only limited

passive data by constructing a model reflecting the data generating process. In Chapter 2,

I proposed an estimation method to jointly infer the CFR and the exponential growth rate

in the early phase of an influenza epidemic, in which we can only determine the number

of confirmed cases and deaths at most. I then constructed the corresponding epidemic

and observational models. In a realistic setting, 2-3 months is required to compare the

estimated CFR with the pre-specified CFR value, as defined by the US Pandemic Severity

Index, for example.

In Chapter 3, I proposed a modeling method to estimate vaccine efficacy against

measles by jointly quantifying the parameters governing the temporal dynamics of a

measles outbreak, such as R0. This proposed method is based solely on epidemiologi-

cal surveillance data with partial information on vaccination history. The results suggest

that it is necessary to undertake (re-)vaccination of the population aged 519 years to

prevent any further measles outbreaks in Japan.

In Chapters 4 and 5, I attempted to show the importance of the model building to

describe the data generating process. In Chapter 4, I focused on factors influencing the

transmission process; assortativity in particular. I discussed the use of chance-adjusted

agreement coefficients to measure the assortativity of contacts and transmission of infec-

tious diseases. I have shown that p, as expressed in the preferential mixing formulation,

corresponds closely to Newman’s assortativity coefficient (or Cohen’s kappa). I explicitly

distinguished transmission assortativity from contact assortativity, given that the former
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captures not only the heterogeneity of contacts, but also many other intrinsic and extrin-

sic factors characterizing the frequency of within- and between-group transmission. In

Chapter 5, in which I compared models for observable (symptom-based) and unobservable

(contagiousness-dependent) outcomes, I emphasized that it is essential to use a model

formulation appropriate to the public health issue in question―including those relating

to vaccination interventions. My evaluation of the validity of incorporating the effect of a

vaccine against clinical disease in epidemiological models has shown that an explicit model

formulation would also aid in clarifying the underlying assumptions that tend to be hidden

in commonly encountered model structures.

Finally, I applied this infectious disease model to other non-communicable health con-

ditions. In Chapter 6, I investigated epidemiological models to describe the obesity epi-

demic, which can be considered to spread via social contacts while being acquired non-

communicably. I demonstrated that the optimal choice of intervention is highly sensitive

to the intensity of infection.

Unfortunately, it was not within the scope of this thesis to cover all the issues sur-

rounding infectious disease modeling. However, I believe this thesis contributes to our

understanding of infectious disease and its results are of significant value for informing

public health policymaking and practice for preventing the emergence, or re-emergence,

of infectious disease.
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