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Preface

In classical computational problems such as optimization problems and search problems,

we are given entire input at one time, and we then compute a solution for the problem.

However, in many practical applications such as routing in communications network, job

allocation, and stock trading, we need to choose an action in each step based the current

information without knowing the full information which will be completely obtained in

the future. Such a problem is called an online problem and an algorithm for the problem

is called an online algorithm. In contrast, a problem with full information on the input is

called an offline problem and an algorithm for the problem is called an offline algorithm.

Online algorithms are a natural topic of interest in many fields such as information science,

operations research, economics, and learning theory.

Since an online algorithm is forced to make decisions without knowing the entire input,

they may later turn out not to be optimal. The quality of an online algorithm is measured

by the competitive ratio, which is the worst ratio between its performance and an optimal

offline algorithm’s performance.

The main topic of this thesis is online knapsack problem, i.e., online version of the

knapsack problem. The knapsack problem is one of the most fundamental problems in

the field of combinatorial optimization and has a lot of applications in the real world.

The knapsack problem is that: given a set of items with values and sizes, we are asked

to maximize the total value of selected items in the knapsack satisfying the capacity

constraint.

In the online setting of the knapsack problem, the information of the input (i.e., the

items) is given gradually, i.e., after a decision is made on the current item, the next item

is given. The decisions we have made are irrevocable, i.e., once a decision has been made,

it cannot be changed.

In particular, we focus on removable version, i.e., when an item is put into the knap-

sack, some items in the knapsack are removed if the sum of the sizes of the item and the

total size in the current knapsack exceeds the capacity of the knapsack. It may need some

cost to remove some items. Removable online problem with removal cost is studied under

the name of buyback problem. The problem is motivated by the following real scenario

in selling advertisements online. A seller allocates a limited inventory to a sequence of

potential buyers. The buyers arrive sequentially, submit bids at their arrival time, and

the seller must immediately decide to sell or not for their bid. The seller can cancel earlier

allocation decision with some cost. Examples of cancellation costs are compensatory pay-

ment, paperwork cost, and shipping charge. Compensatory payment is usually constant



ii Preface

rate of the value of canceled bids. On the other hand, paperwork cost and shipping charge

usually do not depend on bids values but the number of cancellations.

In this thesis, we provide algorithms for these online problems and conduct competitive

analysis. One of the main results of this thesis is on the buyback problem under an

unweighted knapsack constraint, where the knapsack problem is called unweighted if the

value of each item is proportional to its size. We provide an optimal competitive algorithm

for the problem.

Moreover, we introduce optimal composition ordering problem. The input is a set of

real-valued functions fi and a real number c. In maximum total order setting, our goal is

to find a composition ordering which maximizes the value of composite function of c. We

present a polynomial time algorithm for the problem when all the functions are monotone

increasing and linear. We also prove that the problem is NP-hard even if the functions

are monotone increasing, convex, and at most 2-piece piecewise linear.
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Chapter 1

Introduction

In classical computational problems such as optimization problems and search problems,

we are given entire input at one time and we then compute a solution for the problem.

However, in many practical applications such as routing in communications network, job

allocation, and stock trading, we need to choose an action in each step based the current

information without knowing the full information which will be completely obtained in

the future. Such a problem is called an online problem and an algorithm for the problem

is called an online algorithm. In contrast, a problem with full information on the input is

called an offline problem and an algorithm for the problem is called an offline algorithm.

Online algorithms are a natural topic of interest in many fields such as information science,

operations research, economics, and learning theory. We describe a few examples of the

online problems.

Ski rental problem (e.g. [16,51,52,78]): Suppose that we will go skiing several times.

We can either buy skis and then use them forever, or rent them. Renting skis costs $1

per day and buying skis costs $B. We must decide whether to rent or buy skis each time

without knowing how many times we will go skiing.

If we know in advance how many times we will go skiing, we can choose the optimal

strategy. If we will go skiing for more than B times, the best strategy is to buy skis at the

first time. On the other hand, if we will go skiing for less than B times, the best strategy

is to rent skis every time.

This problem is a fundamental one and has a lot of applications. For example, consider

a stream of packets arrive at a destination and are required by the TCP protocol to be

acknowledged upon arrival. We can use a single acknowledgment packet to simultaneously

acknowledge multiple outstanding packets. Thus we can reduce the overhead of the ac-

knowledgments by waiting over time. On the other hand, delaying acknowledgments too

much can interfere with the TCP’s congestion control mechanisms. Therefore we should

not allow the latency of acknowledgments to increase too much. This problem can be seen

as a generalization of the ski rental problem.

Online Scheduling (e.g. [4, 34]): Suppose that we have N machines. We have a

sequence of jobs, which arrive one by one and we must allocate each job to a machine

immediately without knowing the future jobs. The goal is, for example, minimizing the

maximum load on any machine or minimizing total completion time.
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Paging problem (e.g. [13,68,79]): Suppose that we have a two-level memory system

consisting of a small fast memory and a large slow memory. We have a sequence of

requests, each of which specifies a page in the memory system. Requests arrive one by

one, and the request is served if the corresponding page is in the fast memory. If the page

is not in the fast memory, a page fault occurs. Then a page must be removed from the

fast memory and the corresponding page must be loaded from the slow memory to the

fast memory. The goal is minimizing the number of page faults incurred on the request

sequence.

This is an important problem to implement computer operating system. For paging,

the random access memory is the small fast memory and the hard-disk drive is the large

slow memory. For caching, the CPU cache is the small fast memory and the random

access memory is the large slow memory.

k-server problem (e.g. [9, 27, 61, 65]): Suppose that we have k mobile servers, which

are located in a metric space. We have a sequence of requests, each of which specifies a

point in the space. Requests arrive one by one and we must immediately determine which

server to move to the requested point each time, without knowing the future requests.

The goal is minimizing the total moving distance of the servers.

The paging problem is the k-server problem when the metric is uniform (all distances are

1) where the servers represent the small fast memory. Another example is that consider

a customer support sending technicians to customers when they have trouble with their

equipment. If the cost is the total wait time, this problem is the k-server problem when

the distance of the metric is the required time where the servers represent the technicians.

Since an online algorithm is forced to make decisions without knowing the entire inputs,

they may later turn out not to be optimal. The quality of an online algorithm is usually

measured by the competitive ratio, which is the worst ratio between the cost of the solution

obtained by the online algorithm and the optimal cost.

We can find the roots of online problems in classical combinatorial optimization and

in the analysis of data structures. For example, Graham in 1966 [34] analyzed a greedy

online algorithm for the problem of scheduling jobs on identical processors. He analyzed

how the ordering of jobs effects on the performance of the greedy algorithm. The other

example can be found in the amortized analysis on data structures, such as self-balancing

binary trees [59,80,83], Fibonacci heap [29,60], and disjoint-set data structure [28,82,84].

The concept of the competitive ratio was introduced by Sleator and Tarjan in 1985 [79]

as a kind of approximation ratio, and the term “competitive” is introduced by Karlin,

Manasse, Rudolph, and Sleator in 1988 [53]. Evaluating a performance by using a ratio

is one of the standard way to analyze algorithms or mechanisms in the field of computer

science. For instance, the approximation ratio for approximation problems, the optimal

robustness factor for robust optimization problems, and the price of anarchy and the price

of stability in the algorithmic game theory. The approximation ratio measures price of

limited computational resources (see [85, 89]). The optimal robustness factor measures

price of uncertain inputs and environments e.g., real-time computing environments with

uncertain run-time availability (see [42, 50, 69]). The price of anarchy and the price of
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stability measure how the efficiency of a system degrades due to selfish behavior of its

agents (see [1, 62,74]).

In this thesis, we consider the online version of knapsack problem and buyback problems

described below. For the other online problems, refer to a survey paper and books [14,

46,72].

In the next section we describe the problems addressed in this thesis. We first present

the online knapsack problems. Next we provide the buyback problems. Lastly, we intro-

duce optimal composition ordering problems. In Section 1.2, we outline the contributions

of this thesis.

1.1 Problems Addressed in This Thesis

1.1.1 Online Knapsack Problems

The knapsack problem is one of the most fundamental problems in the field of combinato-

rial optimization and has a lot of applications in the real world (see [58]). The (classical)

knapsack problem is that: given a set of items ei (i = 1, 2, . . . , n) with values v(ei) and

sizes s(ei), we are asked to maximize the total value of selected items in the knapsack

that satisfies the capacity constraint. The ratio v(ei)/s(ei) is called the efficiency of item

ei. Throughout this thesis, we assume that the capacity of knapsack is 1. Therefore,

the knapsack problem can be represented as the following integer linear programming

problem:

maximize
∑n

i=1 v(ei)xi

s.t.
∑n

i=1 s(ei)xi ≤ 1,

xi ∈ {0, 1} (∀i ∈ {1, 2, . . . , n}).

It is well-known that the knapsack problem is NP-hard [54] but admits a fully poly-

nomial time approximation scheme (FPTAS) [45]. There are several pseudo-polynomial

time algorithms using dynamic programming [10, 77]. Ito, Kiyoshima, and Yoshida [47]

presented a constant-time randomized approximation algorithm by using weighted sam-

pling. For other results of the knapsack problem such as approximation algorithms and

heuristic algorithms, refer to papers and books such as [44,57,58,60,67,85].

In the online setting of knapsack problem, i) the information of the input (i.e., the

items) is given gradually, i.e., after a decision is made on the current item, the next item

is given; ii) the decisions we have made are irrevocable, i.e., once a decision has been

made, it cannot be changed. Given the ith item ei, which has a value v(ei) and a size

s(ei), we either accept ei (i.e., put ei into the knapsack) or reject it. In the removable

setting, when ei is put into the knapsack, we can remove some items in the knapsack with

no cost to make room for ei. Our goal is to maximize the profit, i.e., the sum of the values

of items in the last knapsack.
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An online knapsack problem was first studied on average case analysis by Marchetti-

Spaccamela and Vercellis [66]. They proposed a linear-time algorithm with O(log3/2 n)

expected competitive difference, under the condition that the capacity of the knapsack

grows proportionally to the number of items n. Lueker [64] improved the expected com-

petitive difference to O(log n) under a fairly general condition on the distribution.

On the worst case analysis, Marchetti-Spaccamela and Vercellis [66] showed that the

online knapsack problem has no constant competitive ratio. Buchbinder and Naor [16]

presented an O(log(U/L))-competitive algorithm based on a general online primal-dual

framework when the efficiency v(ei)/s(ei) of each item ei is in a known range [L,U ], and

each size s(ei) is assumed to be much smaller than the capacity of the knapsack. They

also showed an Ω(log(U/L)) lower bound for the competitive ratio for the case. Zhou,

Chakrabarty, and Lukose [91] showed Ω(log(U/L)) is also a lower bound for the random-

ized case, which implies that the online knapsack problem has no constant randomized

competitive ratio.

Iwama and Taketomi [48] studied the removable online knapsack problem. They ob-

tained a (1 +
√
5)/2 ≈ 1.618-competitive algorithm for the unweighted online knapsack

when the removable condition is allowed, where the knapsack problem is called unweighted

if the value of each item is proportional to its size, i.e., all items have the same efficiency.

They also showed that this is the best possible by providing a lower bound (1+
√
5)/2 for

the case. We remark that the problem has unbounded competitive ratio, if at least one of

the removal and unweighted conditions is not satisfied [48, 49]. For the randomized and

general weighted case, Babaioff, Hartline, and Kleinberg [6] provided a lower bound 5/4.

There are several previous works on the removable online problems. Han and Makino

[41] considered the online knapsack with limited cuts, i.e., the removable online knapsack

problem with the condition that item are allowed to be cut at most k (≥ 1) times. Han

and Makino [40] studied the removable online minimization knapsack problem and they

provide the optimal competitive ratio. Han, Iwama, and Zhang [36] considered removable

version of online square packing.

Removable online problem with removal cost is studied under the name of buyback

problem. We describe the removable online knapsack problem with removal cost in the

next subsection.

1.1.2 Buyback Problems

The buyback problem was first defined and studied by Babaioff, Hartline, and Kleinberg [5]

and Constantin, Feldman, Muthukrishnan, and Pál [23]. The problem is motivated by

the following real scenario in selling advertisements online. A seller allocates a limited

inventory to a sequence of potential buyers. The buyers arrive sequentially, submit bids at

their arrival time, and the seller must immediately decide to sell or not for their bid. The

seller can cancel earlier allocation decision with some cost. Examples of cancellation costs

are compensatory payment, paperwork cost, and shipping charge. Compensatory payment

is usually proportional to the value of canceled items. On the other hand, paperwork cost

and shipping charge usually do not depend on the value of items but on the number of
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items.

More formally, the input for the buyback problem is a sequence of elements e1, e2, . . . , en,

each of which has a weight w(ei). Let (E = {e1, . . . , en}, I) be an independence system,

i.e., I is a family of subsets of E, and if J ⊆ I ∈ I then J ∈ I. Then we want to find an

independent set with maximum total weight. Given the ith element ei, we either accept

ei or reject it with no cost where the set of accepted elements must be independent. When

we accept an element ei, we can cancel some of the previously accepted elements with

some cost. Let Bi be the set of selected elements at the end of the ith round. Then

Bi ⊆ Bi−1 ∪ {ei} and Bi ∈ I. An algorithm must run based only on the weights w(ei)

(1 ≤ i ≤ k) and the feasibility of subsets T ⊆ {e1, . . . , ek}. Our goal is to maximize the

profit, i.e., the sum of the weights of elements accepted (and not canceled) minus the total

cancellation cost occurred.

In this thesis we consider two types of cancellation costs: proportional cost and unit

cost. Let B = Bn be the final set held by an algorithm and R = (
∪

iBi) \B be the set of

elements canceled. In the proportional cost model, the utility of the algorithm is defined

as
∑

e∈B w(e) − f ·
∑

e∈R w(e) where f > 0 is a fixed given constant called the buyback

factor. In the unit cost model, the utility of the algorithm is defined as
∑

e∈B w(e)−c · |R|
where c > 0 is a fixed cost for each element.

The buyback problem with proportional cost was studied in [2, 3, 5, 6, 12, 23]. Babaioff

et al. [5] and Constantin et al. [23] showed that the problem is 1 + 2f + 2
√
f(1 + f)

competitive for the single element constraint. Babaioff et al. [5] also showed that the

problem has a competitive ratio 1+2f+2
√
f(1 + f) for a matroid constraint. Ashwinku-

mar [2] extended their results and showed that the buyback problem with the constraint

of k matroid intersection is k(1 + f)(1 +
√
1− 1

k(1+f) )
2 competitive. Babaioff et al. [5, 6]

also studied the buyback problem with the weighted knapsack constraint. They showed

that if the largest element is of size at most γ, where 0 < γ < 1/2, then the competi-

tive ratio is 1 + 2f + 2
√
f(1 + f) with respect to the optimum solution for the knapsack

problem with capacity (1−2γ). They also proposed a randomized 3(1+2f+2
√
f(1 + f))-

competitive algorithm for this problem. Ashwinkumar and Kleinberg [3] showed that the

buyback problem for a matroid constraint is randomized −W ( −1
e(1+f) ) competitive against

an oblivious adversary. Here W denote Lambert’s W function, defined as the inverse of

the function f(x) = zez. Since Lambert’s W function is multivalued, we restrict to the

case where W ( −1
e(1+f) ) ≤ −1.

1.1.3 Optimal Composition Ordering Problems

We introduce optimal composition ordering problems. The input is n real functions

f1, . . . , fn : R → R and a constant c ∈ R. We consider two settings: total composi-

tion and partial composition setting. The maximum total composition ordering problem

is to compute a permutation σ : [n] → [n] which maximizes fσ(n) ◦ fσ(n−1) ◦ · · · ◦ fσ(1)(c).
where [n] = {1, . . . , n}, and the maximum partial composition ordering problem is to

compute a permutation σ : [n] → [n] and a nonnegative integer k (0 ≤ k ≤ n) which
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maximize fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(c). We similarly consider the minimization problems.

For example, if the input is ((f1(x) = 2x− 6, f2(x) =
1
2x+ 2, f3(x) = x+ 2), c = 2),

the optimal value for the maximum total composition ordering problem is f1 ◦f3 ◦f2(c) =
f1(f3(f2(c))) = f1(f3(c/2 + 2)) = f1(c/2 + 4) = c+ 2 = 4.

Considering composition ordering is a natural and fundamental problem. In fact, the

composition ordering problems include single machine time-dependent scheduling prob-

lems and a kind of secretary problem as follows.

Time-dependent scheduling

Some machine scheduling problems with time-dependent processing times, time-dependent

scheduling [22,32] can be represented as the optimal composition ordering problems. Given

the start time t0 = 0, and a set of jobs Ji (i = 1, . . . , n) with a ready time ri, a deadline

di, and processing time pi : R → R, consider the single machine scheduling problem to

minimize the makespan. while trying to minimize the makespan. Here the makespan

denotes the time when all the jobs have finished processing. We assume that the machine

can handle one job at a time and preemption is not allowed.

Different from the classical setting, the processing time pi is not constant, which de-

pends on the starting time of job Ji. The models have studied to consider learning and

deteriorating effects. Here each pi is assumed to satisfy pi(t) ≤ s+ pi(t+ s) for any t ≥ t0

and s ≥ 0, since we can earlier finish processing the job Ji if it is earlier started processing.

For simplicity, let we first consider the case in which each job has neither the ready

time ri nor the deadline di. Define fi(t) := t+pi(t) for i ∈ [n], and consider the minimum

total composition ordering problem. Note that job Ji has been finished processing at time

fi(t) if it is started processing at time t. This implies that fσ(n) ◦ fσ(n−1) ◦ · · · ◦ fσ(1)(c)
denotes the makespan of the scheduling problem when we fix the ordering σ.

More generally, even if job Ji has both the ready time ri, and the deadline di (di ≥ ri),

the problem can be reduced to the minimum total composition ordering problem defined

as c = t0 and

fi(t) =


ri + pi(ri) (t ≤ ri),

t+ pi(t) (ri < t, t+ pi(t) ≤ di),

∞ (di < t+ pi(t)).

There exist many models of time-dependent scheduling problem as a restriction of

functions pi(t) such as linear deterioration and linear shortening models.

In the linear deterioration model, the job processing times are restricted to be increasing

linear functions that satisfy pi(t) = ait + bi with two positive constants ai, bi > 0. ai

and bi are respectively called the deterioration rate and the basic processing time of job

Ji. Gawiejnowicz and Pankowska [33], Gupta and Gupta [35], Tanaev et al. [81], and

Wajs [87] obtained the result that time-dependent scheduling problem of this model is

solvable in O(n logn) time by scheduling jobs in the nonincreasing ordering of ratios bi/ai.

Monsheiov [71] considered the proportional deterioration model, i.e., bi = 0 (∀i ∈ [n]), and
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he showed the makespan is constant, i.e., does not depend on processing ordering. Cheng

and Ding [19] provided an O(n5)-time algorithm for the model pi(t) = at+ bi (a, bi > 0)

with deadline di.

Another model is called the linear shortening model introduced by Ho et al. [43]. In this

model, the job processing times are restricted to be nonincreasing linear functions that

satisfy pi(t) = −ait+ bi with two constants 1 > ai > 0, bi > 0 and aj (
∑n

i=1 bi − bj) < bj .

They showed that the time-dependent scheduling problem of this model is also solvable

in O(n log n) time by scheduling jobs in the nonincreasing ordering of ratios bi/ai.

Hardness results for time-dependent scheduling are as follows. Gawiejnowicz [31] showed

that the problem of the proportional deterioration model with the ready time and the

deadline is strongly NP-hard. Cheng and Ding [19] presented that the linear deterioration

model with deadline is strongly NP-hard. Cheng and Ding [18] showed relationships

between the linear deterioration model with the deadlines and the linear shortening model

with the ready times, and the linear deterioration model with the ready times and the

linear shortening model with deadlines. They also showed both the linear deterioration

model with ready times and the linear shortening model with deadlines are strongly NP-

hard.

The current status on the time complexity of the single-machine time-dependent

scheduling problem are summarized in Table 1.1.

Table. 1.1. The current status on time complexity of single-machine time-dependent
scheduling problem.

Model Complexity References

pj = bjt
† O(n) [71]

pj = aj + bjt
∗† O(n log n) [33,35,81,87]

pj = aj − bjt
∗‡ O(n log n) [43]

pj = a+ bjt, bj ∈ {B1, B2}, dj ∗† O(n log n) [20]

pj = aj + bj max{t− t0, 0} ∗† O(n log n) [17]

pj = aj + f(t) ∗⋆ O(n log n) [70]

pj = aj + bt, dj
∗† O(n5) [19]

pj = aj − bt, rj
∗‡ O(n6 log n) [18]

pj = aj + bt, rj
∗† NP-hard [18]

pj = 1 + bjt, dj
∗† NP-hard [20]

pj = 1− bjt, dj
∗‡ NP-hard [20]

pj = max{aj − bjt, aj − bjT} ∗‡ NP-hard [21]

pj = bjt, rj ∈ {R1, R2}, dj ∈ {D1, D2} † NP-hard [31]

pj = bjt, rj , dj
† Strongly NP-hard [31]

pj = aj + bjt, rj
∗† Strongly NP-hard [18]

∗ aj > 0, † bj > 0, ‡ 1 > bj > 0, ⋆ f(t) : R+ → R+, nondecreasing function,
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Free-order Secretary problem

Another application of the optimal composition ordering problems is the free-order secre-

tary problem, which is closely related to the full-information secretary problem [26], knap-

sack and matroid secretary problems [7, 8, 75] and stochastic knapsack problems [24, 25].

Imagine an administrator willing to hire the best secretary out of n applicants for the po-

sition. Each applicant i has a nonnegative independent random variable Xi as his value.

Here X1, . . . , Xn are not necessarily the same probability distribution, and assume that

the administrator knows the probability distributions of the random variables in advance.

The applicants are interviewed one-by-one. A decision on each particular applicant is to

be made immediately after the interview. Once rejected, the applicant cannot be hired.

After the interview of applicant i, the administrator can observe the value Xi. The ob-

jective is to find the optimal strategy, i.e., find the interview ordering and the stopping

rule to maximize the expected value.

Let fi(x) = E[max{Xi, x}]. Then, by backward induction, the optimal value for an

order (permutation) σ : [n] → [n] is fσ(n) ◦ · · · ◦ fσ(1)(0).
Thus this problem is reduced to the maximum total and partial composition ordering

problems of ((fi)i∈[n], 0). Furthermore, if Xi is a k-valued random variable with possible

values {a1i , . . . , aki } (a1i ≥ · · · ≥ aki > 0), and with probability that the variable takes the

value aji is pji (j = 1, . . . , k), then we have the following (k + 1)-piece piecewise linear

function:

fi(x) =

k∑
j=1

pji max{aji , x}

=



x
(
x ≥ a1i

)
,

...∑l
j=1 p

j
ia

j
i +

∑k
j=l+1 p

j
ix

(
ali ≥ x ≥ al+1

i

)
,

...∑k
j=1 p

j
ia

j
i

(
aki ≥ x

)
=

k
max
l=0


l∑

j=1

pjia
j
i +

k∑
j=l+1

pjix

 .

1.2 Contribution of This Thesis

The main results in this thesis are summarized as follows.
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Table. 1.2. The current status on competitive ratios for online knapsack problems under
convex functions, where our results are written in bold letters.

f(x) linear convex specific properties

upper bound 1+
√
5

2 [48] 5
3
[Theorem 5.15] 1+

√
5

2
[Theorem 5.16]

lower bound 1+
√
5

2 [48] 1+
√

5
2

[Theorem 5.18] 1+
√

5
2

[Theorem 5.18]

1.2.1 Online Knapsack Problem

We consider randomized algorithms for online knapsack problem and deterministic algo-

rithm for online knapsack problem under convex functions.

Randomized Algorithms for Online Knapsack Problem

We study the worst case analysis of randomized algorithms for online knapsack problems

against an oblivious adversary.

We first provide a randomized 2-competitive algorithm for the unweighted non-

removable online knapsack problem, and show that it is the best possible.

For the unweighted removable case, we propose a randomized 10/7-competitive algo-

rithm. Our algorithm divides all the items into three groups: small, medium and large.

If a large item comes, our algorithm accepts it and cancels all the items in the knapsack.

Otherwise the algorithm first handles medium items, then applies a greedy algorithm for

the small items. For medium items, it randomly selects the one among two determin-

istic subroutines. We also show that there exists no randomized online algorithm with

competitive ratio less than 5/4 for the unweighted removable case.

For the general removable case, we present a simple randomized 2-competitive algo-

rithm, which is an extension of the famous 2-approximation greedy algorithm for the

offline knapsack problem. As a lower bound, we show that there exists no randomized

online algorithm with competitive ratio less than 1+1/e for the general weight removable

online knapsack problem.

Online Knapsack Problem under Convex Functions

We consider an online knapsack problem under a convex size-value function, i.e., the larger

item has a higher efficiency. We first give a greedy online algorithm with a competitive

ratio 2. Then we propose an improved online algorithm with a competitive ratio 5/3. We

also prove that when the convex function has a specific property, our improved online

algorithm is (1 +
√
5)/2-competitive, which is optimal. Finally, we prove that the lower

bound of this problem is (1 +
√
5)/2. We summarize the current status on competitive

ratios for the online knapsack problem in Table 1.2, where our results are written in bold

letters.
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1.2.2 Buyback Problem

We consider proportional cost and unit cost models for the buyback problem.

Proportional Cost Buyback Problem

We study proportional cost buyback problem with the single element constraint, a matroid

constraint, or the unweighted knapsack constraint. Let f > 0 be a buyback factor, i.e.,

cancellation cost of an element ei is f · w(ei).
For the single element and the matroid cases, we consider the problem with upper and

lower bounds of weights, i.e., each element ei has a weight such that l ≤ w(ei) ≤ u.

We construct an optimal online algorithm and prove that this is the best possible. The

competitive ratio is ν(l, u, f) which is described in Chapter 6.

For the unweighted knapsack case, we deal with the problem with lower bounds of

weights, i.e., each element ei has a weight such that l ≤ w(ei) ≤ 1. We also construct

an optimal online algorithm for the case and prove that this is the best possible. The

competitive ratio is ζ(l, f). See Chapter 6 for details. The main ideas of the algorithm

are: i) it rejects elements (with no cost) many times, but in at most one round, it removes

some elements from the knapsack. ii) some elements are removed from the knapsack, only

when the total value in the resulting knapsack gets high enough to guarantee the optimal

competitive ratio.

Unit Cost Buyback Problem

We study unit cost buyback problem with a matroid constraint, or the unweighted knap-

sack constraint. Let c > 0 be the cancellation cost of each element.

For the matroid case, we consider the problem with upper and lower bounds of weights,

i.e., each element ei has a weight such that l ≤ w(ei) ≤ u. We construct an optimal online

algorithm and prove that this is the best possible. The competitive ratio is λ(l, u, c) which

is described in Chapter 7.

For the unweighted knapsack case, we deal with the problem with lower bounds of

weights, i.e., each element ei has a weight such that l ≤ w(ei) ≤ 1. The competitive ratio

is µ(l, c). See Chapter 7 for details. The main ideas of the algorithm are the same as the

ones for the proportional cost model.

We summarize current status on competitive ratios for removable online knapsack prob-

lems in Table 1.3 and for buyback problems in Table 1.4, where our results are written in

bold letters.

1.2.3 Optimal Composition Ordering Problems

We first show that the the maximum total composition ordering problem and the mini-

mum total composition ordering problem are mutually reducible to one another, and the

maximum partial composition ordering problem and the minimum partial composition

ordering problem are also mutually reducible. Thus, we only consider the maximum total
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Table. 1.3. The current status on competitive ratios for buyback problem, where our
results are written in bold letters.

unweighted general

lower bound upper bound lower bound upper bound

non-removable
det. ∞ [48] ∞ [66]

rand. 2 [Thm. 4.1, 4.2] ∞ [91]

no cost
det. 1+

√
5

2 [48] ∞ [49]

rand.

5/4

[Thm. 4.8]

10/7

[Thm. 4.6]

1+ 1
e

[Thm. 4.13]
2

[Thm. 4.10]

prop. cost det. ζ(l, f) [Thm. 6.21, 6.29] ∞ [49]

unit cost det. µ(l, c) [Thm. 7.20, 7.28] ∞ [49]

Table. 1.4. The current status on competitive ratios for buyback problems with upper
and lower bounds of weights, i.e., each element ei has weight l ≤ w(ei) ≤ u,
where our results are written in bold letters.

single element,
matroid

unweighted
knapsack

prop.
cost

1 + 2f + 2
√
f(1 + f) [5, 7, 23] (l = 0, u = ∞)

ν(l, u, f) [Thm. 6.18, 6.19, and 6.20] ζ(l, f) [Thm. 6.21, 6.29]
unit
cost λ(l, u, c) [Thm. 7.7 and 7.9] µ(l, c) [Thm. 7.20, 7.28]

composition ordering problem and the maximum partial composition ordering problem.

In addition, we show that the maximum partial composition ordering problem and the

minimum partial composition ordering problem are respectively reducible to the maxi-

mum total composition ordering problem and the minimum total composition ordering

problem.

We present a polynomial time algorithm for the maximum total composition ordering

problem and the maximum partial composition ordering problem when the functions are

monotone increasing and linear. Thus, we can solve time-dependent scheduling problem

with both linear shortening and linear deterioration jobs in polynomial time.

We also propose a polynomial time algorithm for the maximum partial composition

ordering problem when the functions are piecewise increasing, i.e., fi(x) = max{aix +

bi, ci} (ai > 0). This result implies a polynomial time algorithm for two-valued free-order

secretary problem.

For negative results, we prove that the optimal composition ordering problems are NP-

hard even if the functions are monotone increasing, convex (concave), and at most 2-piece

piecewise linear.

We summarize the current status on the time complexity for the maximum total com-

position ordering problem in Table 1.5.
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Table. 1.5. The current status on the time complexity of the maximum total composi-
tion ordering problem.

Functions Complexity Reference

fi(x) = aix (ai > 1) O(n) [71]

fi(x) =

{
ax− bi (x ≥ −di)
−∞ (x < −di)

(a > 1, bi > 0) O(n5) [19]

fi(x) = aix− bi (ai > 1, bi > 0) O(n log n) [33,35,81,87]

fi(x) = aix− bi (1 > ai ≥ 0, bi > 0) O(n log n) [43]

fi(x) = min{ax− bi,−ri} (a > 1, bi > 0) NP-hard [18]

fi(x) =

{
aix− 1 (x ≥ −di)
−∞ (x < −di)

(ai > 1) NP-hard [20]

fi(x) =

{
aix− 1 (x ≥ −di)
−∞ (x < −di)

(1 > ai > 0) NP-hard [20]

fi(x) =


aiti − bi (x > ti)

aix− bi (ti ≥ x ≥ si)

−∞ (x < si)

SNP-hard [31]

fi(x) = min{aix+ bi, ci} (ai > 1) SNP-hard [18]

fi(x) = aix+ bi (ai ≥ 0) O(n log n) [Theorem 8.21]

fi(x) = max{x, aix+ bi} (ai ≥ 0) O(n log n) [Theorem 8.15]

fi(x) = max{x, aix+ bi, ci} (ai ≥ 0) O(n2) [Theorem 8.19]

fi(x) = max{a1ix+ b1i , a
2
ix+ b2i } (a1i , a

2
i > 0) NP-hard [Theorem 8.31]

fi(x) = max{x,min{a1ix+ b1i , a
2
ix+ b2i }} (a1i , a

2
i > 0) NP-hard [Theorem 8.29]

1.3 Organization of This Thesis

This thesis is organized as follows. Our results are presented in Chapters 4–8.

In Chapter 2, we give preliminaries which will be used in the rest of the thesis. In

Section 2.2, we show a formal definition and properties of matroid. In Section 2.3, we

formally define the online problems as request answer games [11]. In Chapter 3, we present

previously known results for the online knapsack problem. Section 3.1 gives results in

Marchetti-Spaccamela and Vercellis [66]. Section 3.2 describes the results in Iwama and

Taketomi [48]. Section 3.3 provides results in Zhou, Chakrabarty, and Lukose [91]. Section

3.4 presents results in Iwama and Zhang [49]. In Chapter 4, we consider randomized

algorithms for online knapsack problem. In Chapter 5, we study an online knapsack

problem under a convex size-value function. In Chapters 6 and 7, we treat the buyback

problem. Chapters 6 and 7 discuss the proportional and the unit cost cases. In Chapter 8,

we consider the optimal composition ordering problems. Finally, we conclude this thesis

by summarizing the obtained results and discussing open problems in Chapter 9.

Let us mention here the relation between our publications and the contents of this

thesis. The results in Chapter 4 are given in [38], and those in Chapter 5 are presented
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in [39]. The results in Chapter 6 and 7 are based on [37] and the results in Chapter 7 are

due to [55]. The results in Chapter 8 are given in [56].
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Chapter 2

Preliminaries

2.1 Notations

Throughout this thesis, we will use the following symbols and notations:

Z+ the set of all nonnegative integers.

Z++ the set of all positive integers.

R the set of all real numbers.

R+ the set of all nonnegative real numbers.

[n] the set of the first n positive integers, i.e., {1, 2, . . . , n}.

f ◦ g the composition of functions f and g, i.e., f ◦ g(x) := f(g(x)) for any x.

z̄ complex conjugate of the complex number z.

arg(z) argument of the complex number z ̸= 0 (−π < arg(z) ≤ π).

Re(z) real part of the complex number z.

2.2 Online Problem

In this section, we define an online problem as a request-answer game. Most of online

problems can be naturally modeled as the request answer game, which is introduced by

Ben-David, Borodin, Karp, Tardos, and Wigderson [11].

2.2.1 Request Answer Game

We view the online problem as a game between an online player and a malicious adversary.

The adversary construct an input and the online player construct an output one after the

other. The adversary try to construct the worst input for the online player based on the

knowledge of the behavior of the online player.

Definition 2.1 (Request Answer Game). A request-answer game (R,A, C) consists of a
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request set R, a sequence of finite nonempty answer set A1, A2, . . ., and a sequence of cost

functions C1, C2, . . . where Cn : Rn ×A1 × · · · ×An → R+ ∪ {∞}.

Definition 2.2 (Deterministic Online Algorithm). A deterministic online algorithm ALG

for the request-answer game (R,A, C) is a sequence of functions gi : Ri → Ai (i = 1, 2, . . . ).

Given an online algorithm ALG = {gi} and a request sequence σ = (r1, . . . , rn) ∈ Rn, the

output is an answer sequence

ALG [σ] = (a1, . . . , an) ∈ A1 × · · · ×An

where ai = gi(r1, . . . , ri) for i = 1, . . . , n. The cost incurred by ALG on σ, denoted by

ALG(σ) is defined as

ALG(σ) = Cn(σ,ALG [σ]).

The performance of an online algorithm is measured by its competitive ratio, the ratio

between its value and the optimal value for the worst request sequence. The competitive

ratio for online algorithms was introduced by Sleator and Tarjan in 1985 [79].

Definition 2.3 (Deterministic Competitive Ratio). Given a request sequence σ ∈ Rn,

the optimal offline cost on σ is defined as

OPT (σ) = max{Cn(σ, a) : a ∈ A1 × · · · ×An}.

An online algorithm ALG is deterministic ρ-competitive if

sup
σ∈A1×···×An

OPT (σ)

ALG(σ)
= ρ

where we define 0/0 = 1. We denote the competitive ratio ρ as RDET (ALG).

The value of the competitive ratio is at least 1 and smaller is better.

Next, we define a randomized online algorithm and its competitive ratio.

Definition 2.4 (Randomized Online Algorithm). A randomized online algorithm RALG

for the request-answer game (R,A, C) is a probability distribution over the set of all

deterministic online algorithms ALGx (we think of x as the random string that selects

the deterministic algorithm). Given a randomized online algorithm RALG and a request

sequence σ, the output and the cost incurred by RALG are random variables.

For randomized online algorithms, there are three different definitions of adversaries,

i.e., oblivious, adaptive-online, and adaptive-offline adversaries.

Definition 2.5 (Adversaries). An adversary is defined as a pair (Q,S), where Q is the

requesting component, and S is the serving component.

For oblivious adversary, the requesting component Q is a sequence of requests σ(Q) =

(r1, . . . , rdQ
) ∈ RdQ .
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In contrast, for adaptive adversary, the requesting component Q is a sequence of func-

tions qi : A1×· · ·×Ai−1 → R∪{STOP}, i = 1, 2, . . . , dQ. In particular, dQth function qdQ

only takes the value STOP. The index dQ is a constant which means the maximum num-

ber of requests of the adversary. For an adversary (Q,S) and a deterministic algorithm

ALG ,

Let σ(ALG , Q) = (r1, . . . , rn) be the request sequence, a(ALG , Q) = (a1, . . . , an) be

the answer sequence, and n = n(ALG , Q) be the length of the sequences for the adversary

(Q,S) and the deterministic algorithm ALG . Then qi(a1, . . . , ai−1) = ri for i = 1, . . . , n

and qn(a1, . . . , an) = STOP.

For offline adversary, the serving component S is a sequence of answer (a1, . . . , an) ∈
A1 × · · · ×An, where n = n(ALG , Q).

In contrast, for online adversary, the serving component S is a sequence of functions

pi : A1 × · · · × Ai−1 → Ai, i = 1, 2, . . . , dQ. We denote the answer sequence of S for a

deterministic algorithm ALG and an adversary (Q,S) by b(ALG , (Q,S)) ∈ A1×· · ·×An,

where n = n(ALG , Q).

Definition 2.6 (Randomized Competitive Ratio Against an Oblivious Adversary). A

randomized online algorithm RALG is randomized ρ-competitive against oblivious adver-

sary if

sup
(Q,S):Oblivious

Adversary

OPT (σ(Q))

Ex[ALGx(σ(Q))]
= ρ

where we define 0/0 = 1, and we abuse the notation Ex as the expectation with respect to

the distribution over the set {ALGx}, which defines RALG . We denote the competitive

ratio ρ as ROBL(RALG).

Definition 2.7 (Randomized Competitive Ratio Against an Adaptive Online Adversary).

A randomized online algorithm RALG is randomized ρ-competitive against adaptive on-

line adversary if

sup

(Q,S):
Adaptive
Online

Adversary

Ex[Cn(σ(ALGx, Q), b(ALGx, (Q,S)))]

Ex[ALGx(σ(ALGx, Q))]
= ρ

where we define 0/0 = 1. We denote the competitive ratio ρ as RAON (RALG).

Definition 2.8 (Randomized Competitive Ratio Against an Adaptive Offline Adversary).

A randomized online algorithm RALG is randomized ρ-competitive against adaptive of-

fline adversary if

sup

(Q,S):
Adaptive
Offline

Adversary

Ex[OPT (σ(ALGx, Q))]

Ex[ALGx(σ(ALGx, Q))]
= ρ

where we define 0/0 = 1. We denote the competitive ratio ρ as RAOFF (RALG).
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Let us denote by RDET the supremum of the deterministic competitive ratio for any

deterministic online algorithm, i.e, supALG RDET (ALG). Let ROBL, RAON , and RAOFF

respectively denote the supremum of the competitive ratios against the oblivious adver-

sary, the adaptive online adversary, and the adaptive offline adversary for any randomized

online algorithm.

2.2.2 Relating the Adversaries

In this section, we consider relationships between the adversaries. By the definitions of

the adversaries, we have the following Propositions.

Proposition 2.9. Given a request-answer game and a randomized online algorithm

RALG , we have

ROBL(RALG) ≤ RAON (RALG) ≤ RAOFF (RALG).

Proposition 2.10. Given a request-answer game, we have

ROBL ≤ RAON ≤ RAOFF ≤ RDET .

Ben-David et al. [11] provided more relationships as follows.

Theorem 2.11 (Ben-David et al. [11]). If there is a randomized algorithm that is α-

competitive against adaptive offline adversary, then there exists an α-competitive deter-

ministic algorithm.

This results implies RDET = RAOFF .

Theorem 2.12 (Ben-David et al. [11]). Suppose ALG is an α-competitive randomized

algorithm against adaptive online adversary, and there exists a β-competitive randomized

algorithm against oblivious adversary, then ALG is at least (αβ)-competitive against

adaptive offline adversary.

This results implies RAOFF ≤ ROBL · RAON .

2.2.3 Yao’s Principle

In this subsection, we study Yao’s principle, which is a game-theoretic technique to proving

lower bounds on the performance of randomized algorithms.

Let Sk := {x ∈ Rk :
∑k

i=1 xi = 1, x ≥ 0}.

Theorem 2.13 (von Neumann’s Minimax Theorem [86]). Let M be a real m×n matrix.

Then we have

max
p∈Sm

min
q∈Sn

pTMq = min
q∈Sn

max
p∈Sm

pTMq.

Let ek denote a unit vector with a 1 in the kth position and 0s elsewhere.
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Theorem 2.14 (Loomis’ Theorem [63]). Let M be a real m× n matrix, we have

max
p∈Sm

min
j∈[n]

pTMej = min
q∈Sn

max
i∈[m]

eTi Mq.

This theorem implies that for any p ∈ Sm

min
j∈[n]

pTMej ≤ min
q∈Sn

max
i∈[m]

eTi Mq.

Applying this inequality to the competitive ratio against the oblivious adversary, we have

the following theorem.

Theorem 2.15 (Yao’s principle [90]). Let G be any finite request answer game. Let

RALG be any online randomized algorithm forG, and let σ be any probability distribution

over request sequences σy. Then we have

ROBL(RALG) ≥ min
x

Ey[OPT (σy)]

Ey[ALGx(σy)]

where Ey is the expectation with respect to the distribution over the set {σy}.

2.3 Matroids

In this section, we show some basic properties of matroids, which is introduced by Whitney

in 1935 [88]. The concept of a matroid is a combinatorial abstraction of linear indepen-

dence in matrices.

A matroid is a set system (E, I), i.e. E is a finite set and I is a family of subsets of E,

with the following properties:

(I1) ∅ ∈ I,
(I2) J ⊆ I ∈ I ⇒ J ∈ I,
(I3) I, J ∈ I, |J | < |I| ⇒ ∃v ∈ I \ J such that J ∪ {v} ∈ I.

A set system only with the properties (I1) and (I2) is called independence system.

Given a matroid M = (E, I), a subset I of E is called independent set if I belongs to

I, and an inclusionwise maximal independent set is called a base.

The maximum size of an independent subset of T ⊆ E is called the rank of T , denoted

by r(T ) := max{|I| : I ∈ I, I ⊆ T}. If r(T ) = r(T ∪ {e}) for e ∈ E and T ⊆ E, we say

that T spans e. The set cl(T ) := {e ∈ E : T spans e} is called the closure of T .

2.3.1 Examples of Matroids

Here are some examples of matroids:

• Explicit Example. Let E = {1, 2, 3, 4} and I = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}.
Then the set system (E, I) is a matroid.
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• Uniform Matroids. Let E be a finite set and k be a nonnegative integer. Then

the set system Uk
n := (E, {I : I ⊆ E, |I| ≤ k}) is a matroid, that is called a

k-uniform matroid where n := |E|.

• Partition Matroids. Let Ei be finite sets and ki be nonnegative integers (i =

1, 2, . . . ,m). Then the set system (
∪

iEi, {
∪

i Ii : Ii ⊆ Ei, |Ii| ≤ ki}) is a matroid,

that is called a partition matroid.

• Linear Matroids. Let A be an m× n matrix. Let E = {1, 2, . . . , n} and I be the

set of all subsets I of E such that the columns of A with index in I are linearly

independent. Then (E, I) is a matroid, that is called a linear matroid.

• Graphic Matroids. Let G = (V,E) be an undirected graph, and I be the set of

all subsets I of E such that I is a forest in the graph G. Then (E, I) is a matroid,

that is called a graphic matroid.

• Transversal Matroid. Let G = (U, V,E) be a bipartite graph, and I be the set of

all subsets I of U such that I is sets of endpoints of matchings of the graph. Then

(U, I) is a matroid that is called a transversal matroid.

2.3.2 Greedy Algorithms

One important property of matroids is that the greedy algorithm works for them.

Let (E, I) be a matroid and each element e ∈ E has a nonnegative weight w(e). Then

we can find the maximum weight independent set I ∈ I with Algorithm 1.

Algorithm 1 Matroid Greedy Algorithm

1: sort E = {e1, e2, . . . , en} such that w(e1) ≥ w(e2) ≥ · · · ≥ w(en).
2: initialize I0 := ∅.
3: for i = 1 to n do
4: if Ii−1 ∪ {ei} ∈ I then Ii := Ii−1 ∪ {ei}.
5: end for
6: return In

Theorem 2.16 (Oxley [76] Lemma 1.8.3). Algorithm 1 outputs a maximum weight in-

dependent set.

In this thesis, we use another greedy algorithm.

Theorem 2.17. Algorithm 2 outputs a maximum weight independent set.

Proof. For T ⊆ E and θ ≥ 0, let

T (θ) = {t ∈ T : w(t) > θ} and clθ(T ) = cl(T (θ)).

We first prove that clθ(Ik) = clθ({e1, . . . , ek}) for any θ ≥ 0 and 1 ≤ k ≤ n.

Since Ik ⊆ {e1, . . . , ek}, it holds that clθ(Ik) ⊆ clθ({e1, . . . , ek}).
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Algorithm 2 Matroid Greedy Algorithm without Sorting

1: let E = {e1, e2, . . . , en}
2: initialize I0 := ∅.
3: for i = 1 to n do
4: if Ii−1 ∪ {ei} ∈ I then Ii := Ii−1 ∪ {ei}.
5: else let ej be the smallest element such that Ii−1 ∪ {ei} \ {ej} ∈ I
6: if w(ei) > w(ej) then Ii := Ii−1 ∪ {ei} \ {ej}
7: end for
8: return In

We prove clθ(Ik) ⊇ clθ({e1, . . . , ek}) by induction. clθ(I1) = clθ({e1}) is obvious. As-

sume that clθ(Ik) ⊇ clθ({e1, . . . , ek}). Then it is sufficient to prove that clθ(Ik+1) ⊇
clθ({e1, . . . , ek, ek+1}). If w(ek+1) ≤ θ, then {e1, . . . , ek}(θ) = {e1, . . . , ek, ek+1}(θ) and

Ik(θ) = Ik+1(θ). Thus clθ(Ik+1) ⊇ clθ({e1, . . . , ek, ek+1}) holds. We then consider the case

w(ek+1) > θ. If Ik+1 = Ik, then ek+1 ∈ clθ(Ik) and clθ(Ik+1) ⊇ clθ({e1, . . . , ek, ek+1}). On

the other hand, if Ik+1 = Ik ∪ {ek+1} \ {e′}, then w(e′) ≤ θ and e′ ̸∈ clθ({e1, . . . , ek+1}),
or w(e′) > θ and e′ ∈ clθ(Ik+1). Therefore clθ(Ik+1) ⊇ clθ({e1, . . . , ek, ek+1}).
Let the output In = {b1, . . . , bk} such that w(b1) ≥ · · · ≥ w(bk) and let a maximum

weight independent set OPT = {b∗1, . . . , b∗k} such that w(b∗1) ≥ · · · ≥ w(b∗k).

We prove In is a maximum weight independent set by contradiction. Assume that In is

not a maximum weight independent set. Let l be the smallest integer such that w(bl) <

w(b∗l ). I ′ = {b1, b2, . . . , bl−1} and OPT ′ = {b∗1, b∗2, . . . , b∗l }. There exists an element b∗j
(1 ≤ j ≤ l) such that I ′ ∪ {b∗j} ∈ I. This contradicts clw(bl)(In) = clw(bl)({e1, . . . , en})
since b∗j ̸∈ cl(I ′) = clw(bl)(In).
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Chapter 3

Online Knapsack Problems

In this chapter we study deterministic algorithms for online knapsack problem. We con-

sider four cases, depending on whether unweighted or general weight, and removable or

non-removable.

3.1 Unweighted Non-removable Online Knapsack

Problem

Marchetti-Spaccamela and Vercellis [66] showed that the competitive ratio of the un-

weighted non-removable online knapsack problem is infinite.

Theorem 3.1 (Marchetti-Spaccamela and Vercellis [66,91]). There exists no deterministic

online algorithm with constant competitive ratio for the unweighted non-removable online

knapsack problem.

Proof. Let (s, v) denote an item whose size and value are s and v, respectively. Let A

denote an online algorithm chosen arbitrarily. We consider two sequences of input items:

(1, ε), (3.1)

(1, ε), (1, 1) (3.2)

where ε is a sufficiently small positive number.

If A rejects the first item, the competitive ratio becomes infinite for the input sequence

(3.1). Otherwise, A accepts the first item, and the competitive ratio approaches infinite

for the input sequence (3.2) as ε→ 0.

3.2 Unweighted Removable Online Knapsack

Problem

Iwama and Taketomi [48] studied the unweighted removable online knapsack problem.

They obtained a (1 +
√
5)/2 ≈ 1.618-competitive algorithm for this problem, and showed

that this is the best possible by providing a lower bound (1 +
√
5)/2.
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Let ei be the item given in the ith round. Let Bi be the set of selected items by their

Algorithm 3 at the end of the ith round. We denote by s(Bi) the total size of items in

Bi. Algorithm 3 partitions all the items into three groups, small, medium and large where

an item e is called small, medium, and large if s(e) ≤ (3 −
√
5)/2, (3 −

√
5)/2 < s(e) <

(
√
5− 1)/2, and s(e) ≥ (

√
5− 1)/2, respectively. Let S, M , and L respectively denote the

sets of small, medium, and large items (see Figure 3.1).

Figure 3.1. Item partition for Algorithm 3.

Their algorithm is briefly described as follows. If a large item comes, the algorithm

keeps it in the knapsack (by removing all the items we have chosen), since it ensures

(1+
√
5)/2-competitivity of the algorithm. Otherwise, the algorithm chooses the medium

items from the smallest to the largest, and the small items from the largest to the smallest.

Algorithm 3 Iwama and Taketomi [48]

1: B0 := ∅
2: for each item ei in order of arrival do

3: if s(Bi−1) ≥
√
5−1
2 then

4: Bi := Bi−1

5: else
6: choose the largest L-item from Bi−1 ∪ {ei}.
7: choose the M -items among Bi−1 ∪ {ei} from the smallest to the largest.
8: choose the S-items among Bi−1 ∪ {ei} from the largest to the smallest.
9: end if

10: end for

Theorem 3.2 (Iwama and Taketomi [48]). Algorithm 3 is (1+
√
5)/2-competitive for the

unweighted removable online knapsack problem.

Proof. Let OPT be the (offline) optimal value for the problem. If the condition in the

line 3 of Algorithm 3 is satisfied in some round, then the competitive ratio is at most

1
√
5−1
2

=
1 +

√
5

2

since the optimal value is at most 1. Thus we assume that the condition in the line 3 of

Algorithm 3. is not satisfied before some large item arrives.

If a large item arrives, the algorithm keeps a large item, which implies s(Bn) ≥ (
√
5−

1)/2.

Assume that no large item arrives. We then consider the following three cases.
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Case 1: A small item is removed by Algorithm 3. Let Algorithm 3 removes some small

items in ith round, and a removed small item be ej . Then we have s(Bi) + s(ej) > 1 and

s(Bi) > 1− s(ej) ≥ 1− 3−
√
5

2
=

√
5− 1

2
.

Case 2: The sum of the sizes of two smallest medium items is at most 1. In this case,

the algorithm keeps two medium items in some round i, which implies

s(Bi) > 2 · 3−
√
5

2
= 3−

√
5 >

√
5− 1

2
.

Case 3: Otherwise, i.e., no small item is removed by Algorithm 3 and the sum of sizes

of any two medium items is larger than 1. If no medium item arrives, it is easy to see

OPT = s(Bn) and the competitive ratio is 1. Otherwise, let m∗ and m∗ respectively be

the largest and smallest medium items and let s be the sum of sizes of all small items in

the input sequence. Then the competitive ratio is

OPT

s(Bn)
≤ s(m∗) + s

s(m∗) + s
≤ max

{
s(m∗)

s(m∗)
, 1

}
≤ 1 +

√
5

2
.

Theorem 3.3 (Iwama and Taketomi [48]). There exists no deterministic online algorithm

with competitive ratio less than (1+
√
5)/2 for the unweighted removable online knapsack

problem.

Proof. We consider the following two input sequences:

3−
√
5

2
,

√
5− 1

2
+ ε, (3.3)

3−
√
5

2
,

√
5− 1

2
+ ε,

√
5− 1

2
(3.4)

where we identify the items with their size (value) and ε is a sufficiently small positive

number. We note that the first and the second items do not in the knapsack together.

Let A denote an online algorithm chosen arbitrarily. At the end of second round, if A

keeps the first item, then the competitive ratio is

√
5−1
2

3−
√
5

2

=
1 +

√
5

2

for the input sequence (3.3). Otherwise, i.e., A keeps the second item at the end of the

second round, and the competitive ratio is at least

1
√
5−1
2 + ε

→ 1 +
√
5

2
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as ε→ 0 for the input sequence (3.4).

3.3 General Non-removable Online Knapsack

Problem

The competitive ratio of the general non-removable online knapsack problem is also infinite

by Theorem 3.1. On the other hand, Zhou, Chakrabarty, and Lukose [91] presented

ln(Ue/L)-competitive algorithm when the size of each item is very small and the efficiency

of each item is bounded by two positive constants L and U .

Let ei be the item given in the ith round. We denote by Bi the set of selected items by

Algorithm 4 at the end of the ith round. Let s(Bi) and v(Bi) respectively be the total

size and value of items in Bi. Let Ψ(z) = (Ue/L)z(L/e).

Algorithm 4 Zhou et al. [91]

1: B0 := ∅
2: for each item ei in order of arrival do
3: if s(Bi) + s(ei) ≤ 1 and v(ei)/s(ei) ≥ Ψ(s(Bi−1)) then Bi := Bi−1 ∪ {ei}
4: else Bi := Bi−1

5: end for

Theorem 3.4 (Zhou et al. [91]). Algorithm 4 is ln(Ue/L)-competitive for the general

non-removable online knapsack problem when the size of each item is very small and the

efficiency of each item is lower and upper bounded by two positive constants L and U .

Proof. Let OPT be an optimal (offline) solution, and let S =
∑

e∈(Bn∩OPT) s(e) and

V =
∑

e∈(Bn∩OPT) v(e). Since Bn contains every item with value Ψ(s(Bn)), we have

v(OPT ) ≤ V +Ψ(s(Bn))(1−W ).

As each item ej picked by the algorithm have efficiency at least Ψ(zj) where zj =

w(Bj−1), we have

V ≥
∑

ej∈Bn∩OPT

Ψ(zj)w(ej),

v(Bn \OPT ) ≥
∑

ej∈Bn\OPT

Ψ(zj)w(ej).

Thus we have

v(OPT )

v(Bn)
≤ V +Ψ(s(Bn))(1−W )

V + v(Bn \OPT )

≤
∑

ej∈Bn∩OPT Ψ(zj)w(ej) + Ψ(s(Bn))(1−W )∑
ej∈Bn∩OPT Ψ(zj)w(ej) + v(Bn \OPT )
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≤ Ψ(s(Bn))W +Ψ(s(Bn))(1−W )∑
ej∈Bn∩OPT Ψ(zj)w(ej) +

∑
ej∈Bn\OPT Ψ(zj)w(ej)

≤ Ψ(s(Bn))∑
ej∈Bn

Ψ(zj)w(ej)
.

Based on the assumption that the sizes are very small, we have

∑
ej∈Bn

Ψ(zj)w(ej) ≈
∫ s(Bn)

0

max{L, Ψ(z)}dz

=

∫ 1
ln(Ue/L)

0

Ldz +

∫ s(Bn)

1
ln(Ue/L)

Ψ(z)dz

=
L

ln(Ue/L)
+
L

e

(Ue/L)s(Bn) − (Ue/L)
1

ln(Ue/L)

ln(Ue/L)

=
L

e

(Ue/L)s(Bn)

ln(Ue/L)
=

Ψ(s(Bn))

ln(Ue/L)
.

Therefore, the competitive ratio is

v(OPT )

v(Bn)
≤ ln(Ue/L).

Zhou et al. [91] also showed that the competitive ratio in Theorem 3.4 is tight.

Theorem 3.5 (Zhou et al. [91]). There exists no online algorithm with competitive ratio

ln(Ue/L) for the general non-removable online knapsack problem when the size of each

item is very small and the efficiency of each item is lower and upper bounded by two

positive constants L and U .

Proof. Let η be a sufficiently small positive number and let n be a sufficiently large positive

integer. Let k be a largest integer such that (1+ η)k ≤ U/L, i.e., k = ⌊ ln(U/L)
ln(1+η) ⌋. Let (s, v)

denote an item whose size and value are s and v, respectively. For a nonnegative integer

i (0 ≤ i ≤ k), we consider the following sequences with n(i+ 1) items:

(1/n, (1 + η)0L/n), . . . , (1/n, (1 + η)0L/n)︸ ︷︷ ︸
n items

,

(1/n, (1 + η)1L/n), . . . , (1/n, (1 + η)1L/n)︸ ︷︷ ︸
n items

,

...

(1/n, (1 + η)iL/n), . . . , (1/n, (1 + η)iL/n)︸ ︷︷ ︸
n items

. (3.5)

Let A denote an online algorithm chosen arbitrarily. We specify the algorithm by the

vector (f0, f1, . . . , fk), where fi is the number of item with (1/n, (1+η)iL/n) that A picks.
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By the knapsack constraint, we have
∑k

i=0 fi ≤ n.

Let OPT i be the optimal value, and Ai be the value by A for the input sequence (3.5).

Then the competitive ratio is

max
0≤i≤n

OPT i

Ai
= max

0≤i≤n

(1 + η)iL∑i
j=0(1 + η)jLfj/n

=
n

min0≤i≤n

∑i
j=0(1 + η)j−ifj

≥ ((k + 1)η + 1)n∑k
i=0((1 + η)i−kfk + η

∑i
j=0(1 + η)j−ifj)

=
((k + 1)η + 1)n∑k

j=0((1 + η)j−kfk + η
∑k

i=j(1 + η)j−ifj)

=
((k + 1)η + 1)n∑k

j=0((1 + η)j−kfk + η 1−(1+η)−k+i−1

1−(1+η)−1 fj)

=
((k + 1)η + 1)n∑k

j=0(1 + η)fj

≥ (k + 1)η + 1

1 + η

≥ (ln(U/L)/ ln(1 + η))η + 1

1 + η
→ ln(U/L) + 1 = ln(Ue/L).

3.4 General Removable Online Knapsack Problem

Iwama and Zhang [49] showed that we cannot get constant competitive algorithm for the

unweighted version of the removable online knapsack problem.

Theorem 3.6 (Iwama and Zhang [49]). There exists no deterministic online algorithm

with constant competitive ratio for the general removable online knapsack problem.

Proof. Let (s, v) denote an item whose size and value are s and v, respectively. Let A

denote an online algorithm chosen arbitrarily. For a positive integer n, our adversary

requests the sequence of items

(1, 1),

(
1

n2
,
1

n

)
, . . . ,

(
1

n2
,
1

n

)
until A rejects or removes the first item or rejects n2 items.

We first note that algorithm A must take the first item, since otherwise the competitive

ratio of A becomes infinity.

If A removes the first item, the competitive ratio is at least n. Otherwise, i.e., A rejects
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all the items (1/n2, 1/n), the competitive ratio is at least

(1/n) · n2

1
= n.

Therefore, the competitive ratio is greater than any integer.
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Chapter 4

Randomized Algorithms for

Online Knapsack Problems

In this chapter we study randomized algorithms for online knapsack problem. We consider

four cases, depending on whether unweighted or general weight, and removable or non-

removable.

4.1 Unweighted Non-removable Online Knapsack

Problem

In this section we study the non-removable version of the unweighted online knapsack

problem. We show that the problem is randomized 2-competitive against oblivious adver-

sary.

4.1.1 An Optimal Online Algorithm

In order to show the upper bound, we construct the following algorithm called TwoBins.

Algorithm TwoBins virtually keeps two bins, and puts items into either of the bins if

possible. The algorithm outputs the items contained in the one of the two bins, which is

randomly chosen in advance.

Let ei be the item given in the ith round. Define by Bi the set of selected items at the

end of the ith round by Algorithm TwoBins. For r = 1, 2, define by Br
i the set of selected

items at the end of the ith round in bin r. Then our algorithm TwoBins is represented

as Algorithm 5.

Theorem 4.1. Algorithm TwoBins is 2-competitive for the unweighted online knapsack

problem.

Proof. Let T be a set of items, and OPT (T ) be the (offline) optimal value for T . If s(T ) ≤
1, then we have s(B1

n) = OPT (T ) = s(T ) and s(B2
n) = 0, where s(A) =

∑
e∈A s(e) for

A ⊆ T . Thus the competitive ratio is OPT (T )/(s(B1
n) + s(B2

n))/2) = 2. Otherwise (i.e.,

s(T ) > 1), we have s(B1
n) + s(B2

n) > 1, which immediately implies that the competitive
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Algorithm 5 TwoBins

1: B0, B
1
0 , B

2
0 := ∅

2: choose r uniformly at random from {1, 2}
3: for each item ei in order of arrival do
4: if s(B1

i ) + s(ei) ≤ 1 then B1
i := B1

i−1 ∪ {ei}, B2
i := B2

i−1

5: else if s(B2
i ) + s(ei) ≤ 1 then B1

i := B1
i−1, B

2
i := B2

i−1 ∪ {ei}
6: else B1

i := B1
i−1, B

2
i := B2

i−1

7: if r = 1 then Bi := B1
i

8: if r = 2 then Bi := B2
i

9: end for

ratio is

OPT (T )
s(B1

n)+s(B2
n)

2

< 2.

Then the algorithm is at most 2-competitive. Moreover, by considering the case in which

s(T ) ≤ 1, we can conclude that the algorithm is at least 2-competitive.

4.1.2 Tight Lower Bound

We next show that the ratio in Theorem 4.1 is tight.

Theorem 4.2. There exists no randomized online algorithm with competitive ratio less

than 2 for the unweighted online knapsack problem.

Proof. We use Yao’s principle (Theorem 2.15). We construct the following family of input

distributions parametrized by a positive integer n.

For a given n, the probability distribution of the input sequence is as follows:

1

2
+ ε,

1

2
+
ε

2
, . . . ,

1

2
+
ε

k
,
1

2
− ε

k
with probability 1/n (k = 1, . . . , n), (4.1)

where we identify the items by their sizes (i.e., values), and ε is a sufficiently small positive

number. Then, we note that the optimal expected profit is 1 since the optimal profit of

each sequence is ( 12 + ε
k ) + ( 12 − ε

k ) = 1.

For a positive integer l, let A denote an deterministic online algorithm that accepts the

lth item (i.e., the item with size 1
2 + ε

l ) if it is contained in the input sequence. Then

Algorithm A rejects all the items with size 1
2 + ε

i for positive integer i ̸= l. We can see

that the expected profit of Algorithm A is at most

1

2
· l − 1

n
+ 1 · 1

n
+

(
1

2
+
ε

l

)
· n− l

n
≤
(
1

2
+ ε

)
· n+ 1

n
.

Therefore, the competitive ratio is at least

1(
1
2 + ε

)
· n+1

n

,
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which goes to 2 as n and ε respectively approach to ∞ and 0.

4.2 Unweighted Removable Online Knapsack

Problem

In this section, we consider removable knapsack problem when the value of each item is

equal to its size.

4.2.1 A Randomized Online Algorithm

In this subsection, we propose a randomized 10/7-competitive online algorithm for un-

weighted removable online knapsack problem. Recall that the problem is deterministic
1+

√
5

2 -competitive, and hence it does not admit deterministic 10/7-competitive algorithm.

For example, consider two input sequences (0.69, 0.4) and (0.69, 0.4, 0.6), where we iden-

tify items with size (i.e., (0.69, 0.4) denotes that input sequence consists of two items such

that the first and the second items respectively have size 0.69 and 0.4). Then in order to

obtain deterministic 10/7-competitive algorithm, we must reject 0.4 for the input sequence

(0.69, 0.4), since 0.69/0.4 > 10/7 and moreover, we must reject 0.69 for the input sequence

(0.69, 0.4, 0.6), since (0.6 + 0.4)/0.69 > 10/7. They are impossible for any deterministic

algorithm. On the other hand, our (randomized) algorithm randomly chooses the one

among two deterministic algorithms, where the one rejects 0.4 and the other rejects 0.69.

Our algorithm partitions all the items into three groups, small, medium and large where

an item e is called small, medium, and large if s(e) ≤ 0.3, 0.3 < s(e) < 0.7, and s(e) ≥ 0.7,

respectively. Let S, M , and L respectively denote the sets of small, medium, and large

items. M is further partitioned into four subsetsMi for 1 ≤ i ≤ 4, whereM1,M2,M3, and

M4 respectively denote the set of the items e with size 0.3 < s(e) ≤ 0.4, 0.4 < s(e) ≤ 0.5,

0.5 < s(e) < 0.6, and 0.6 ≤ s(e) < 0.7 (see Figure 4.1). An item e is also called an

Mi-item if e ∈Mi.

Figure 4.1. Item partition for our randomized 10/7-competitive online algorithm.

Our algorithm UROK is briefly described as follows. If a large item comes, UROK

keeps it in the knapsack (by removing all the items we have chosen), since it ensures 10/7-

competitivity of the algorithm. Otherwise, we simulate two deterministic subroutines

UROK1 and UROK2, where we keep the items in the knapsack by following the one of

UROK1 and UROK2 chosen randomly in advance. Both subroutines first handle medium

items (differently) and then choose small items from the largest to the smallest.

Subroutine UROK1 first chooses the smallestM4-item if it exists. Otherwise, it chooses
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the smallestM3-item. It then chooses the other items from the largest to the smallest. On

the other hand, Subroutine UROK2 keeps a set of items I with sufficiently large profit,

namely, if either (i) I satisfies 0.9 ≤ s(I) ≤ 1 or (ii) someM4-item has already come and I

satisfies 0.8 ≤ s(I) ≤ 1. Otherwise, UROK2 first chooses the smallest M2- and M1-items

and then choose the medium items from the smallest to the largest, and the small items

from the largest to the smallest in the current knapsack.

Let ei be the item given in the ith round. Define by Bi the set of selected items at the

end of the ith round by Algorithm UROK. For r = 1, 2, define by Br
i the set of selected

items at the end of the ith round by Subroutine UROKr. Let fi denote a flag such that

fi = 1 if some M4-item has come by the end of the ith round, and fi = 0, otherwise.

Then our algorithm UROK is represented as follows.

Algorithm 6 UROK

1: B0, B
1
0 , B

2
0 := ∅, f0 := 0

2: choose r uniformly at random from {1, 2}
3: for each item ei in order of arrival do
4: if ei in L then
5: choose it by canceling all the items in the knapsack, and stop handling the future

items.
6: end if
7: if ei ∈M4 then
8: fi := 1
9: else

10: fi := fi−1

11: end if
12: simulate two subroutines UROK1(fi, B

1
i−1, ei) and UROK2(fi, B

2
i−1, ei);

13: if r = 1 then Bi := B1
i

14: if r = 2 then Bi := B2
i

15: if the expected profit (s(B1
i )+s(B

2
i ))/2 is at least 0.7 then stop handling the future

items.
16: end for

Algorithm 7 UROK1

1: if fi = 0 then choose the smallest M3-item from B1
i−1 ∪ {ei};

2: else (i.e., fi = 1): choose the smallest M4-item from B1
i−1 ∪ {ei}.

3: choose the items among B1
i−1 ∪ {ei} from the largest to the smallest.

Let T = {e1, . . . , en} be a set of items. For any integer i with i ≤ n, let Ti denote the

set of items which are given before the end of the ith round (i.e., Ti = {e1, . . . , ei}). For

the set of T , let ms
j be the smallest Mj-item in T , and let mf

j be the first Mj-item in

T . We denote by Ak(T ) and E[A(T )] the profit by UROKk (k = 1, 2), and the expected

profit by UROK for T .

Lemma 4.3. For a set of items T , we have E[A(T )] ≥ 0.7 if one of the following conditions

holds.
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Algorithm 8 UROK2

1: if fi = 0 and B2
i−1 ∪ {ei} contains a set of items I with 0.9 ≤ s(I) ≤ 1 then

2: B2
i := I

3: else if fi = 1 and B2
i−1 ∪ {ei} contains a set of items I with 0.8 ≤ s(I) ≤ 1 then

4: B2
i := I

5: else
6: choose the smallest M2-item from B2

i−1 ∪ {ei}.
7: choose the smallest M1-item from B2

i−1 ∪ {ei}.
8: choose the rest of medium items among B2

i−1∪{ei} from the smallest to the largest.

9: choose the small items among B2
i−1 ∪ {ei} from the largest to the smallest.

10: end if

(a) T contains a large item.

(b) fi = 1 and A2(Ti) ≥ 0.8 hold in an ith round.

(c) fi = 0 and A2(Ti) ≥ 0.9 hold in an ith round.

(d) T contains an M1-item and an M3-item.

(e) T contains an M1-item and an M4-item, and s(ms
1) + s(ms

4) ≤ 1.

(f) T contains an M2-item and an M3-item, and s(ms
2) + s(ms

3) ≤ 1.

(g) T contains at least two M2-items.

Proof. (a) Assume that the condition in line 15 of Algorithm UROK is not satisfied before

some large item arrives, since otherwise E[A(T )] ≥ 0.7 clearly holds. Then UROK keeps

a large item, which implies E[A(T )] ≥ 0.7.

(b) Assume that the condition in line 4 or 15 of Algorithm UROK is not satisfied before

the ith round. By fi = 1, B1
i contains an M4-item, which implies A1(Ti) ≥ 0.6. Since

E[A(Ti)] = (0.6 + 0.8)/2 = 0.7, E[A(T )] is again at least 0.7.

(c) Assume that the condition in line 4 or 15 of Algorithm UROK is not satisfied before

the ith round. We claim that A1(Ti) ≥ 0.5. This implies E[A(Ti)] ≥ (0.5 + 0.9)/2 = 0.7,

and hence we have E[A(T )] ≥ 0.7 by line 15 in Algorithm UROK. If Ti contains an M3-

item, B1
i contains an M3-item by fi = 0. Thus we have A1(Ti) ≥ 0.5. On the other hand,

if Ti contains noM3-item, then Ti contains at least twoM1- orM2-items by A2(Ti) ≥ 0.9.

Thus B1
i also contains at least two M1- or M2-items, and A1(Ti) ≥ 0.3 + 0.3 > 0.5.

(d) We assume without loss of generality that neither (a), (b), nor (c) in Lemma 4.3 holds

for an item set T . By the definition ofM1 andM3, any pair of anM1-item and anM3-item

can be put together in the knapsack. Let us assume that the first M1-item mf
1 arrives in

the ith round. We consider the following two cases.

Case 1: The first M3-item mf
3 arrives before the ith round. Assume that the condition

in line 15 of Algorithm A is not satisfied before the ith round.

Case 1.1: Assume first that mf
4 arrives earlier than mf

1 . Then B1
i contains an M4-item

ek and B2
i contains mf

1 and an item el with s(el) > 0.4, since mf
3 is contained in Ti. If



36 Chapter 4 Randomized Algorithms for Online Knapsack Problems

s(ek) + s(mf
1 ) ≤ 1, then B1

i contains both ek and mf
1 . Thus we have

E[A(Ti)] ≥
(s(ek) + s(mf

1 )) + (s(mf
1 ) + s(el))

2

>
(0.6 + 0.3) + (0.3 + 0.4)

2
= 0.8,

and hence E[A(T )] ≥ 0.7.

On the other hand, if s(ek) + s(mf
1 ) > 1, then we have

E[A(Ti)] ≥
s(ek) + (s(mf

1 ) + s(el))

2
>

1 + 0.4

2
= 0.7,

which again implies E[A(T )] ≥ 0.7.

Case 1.2: Assume that there exists no M4-item in Ti. Then B
1
i contains an M3-item ej

and a medium item ek, and B
2
i contains mf

1 and a medium item el with s(el) > 0.4. Thus

we have,

E[A(Ti)] ≥
(s(ej) + s(ek)) + (s(mf

1 ) + s(el))

2

>
(0.5 + 0.3) + (0.3 + 0.4)

2
= 0.75,

and hence E[A(T )] ≥ 0.7.

Case 2: The first M3-item mf
3 arrives in the i′th round with i′ > i. Assume that the

condition in line 15 of Algorithm UROK is not satisfied before the i′th round.

Note that there exists no M4-item in Ti′ . If this is not the case, then B2
i′−1 ∪ {ei′}

contains some M1-items and ei′ = mf
3 , which implies that it contains an item set I with

0.8 ≤ s(I) ≤ 1. Since fi′ = 1, (b) in the lemma holds, which contradicts the assumption.

We next claim that at most one M2-item comes before the i′th round. Assume that

two M2-items come before the i′th round. Then just after the (i′ − 1)st round, UROK1

keeps two M2-items, while UROK2 keeps an M1-item and an M2-item. Thus we have

E[A(Ti′−1)] ≥ 0.8+0.7
2 = 0.75, which is a contradiction.

We thus consider the case in which at most oneM2-item comes before the i′th round. In

the i′th round, Subroutine UROK1 chooses mf
3 and someM1- orM2-item (i.e., A1(Ti′) >

0.5 + 0.3 = 0.8). On the other hand, Subroutine UROK2 chooses at least one M1-item

and another medium item (i.e., A2(Ti′) > 0.3 + 0.3 = 0.6). Therefore E[A(Ti′)] > 0.7,

implying that E[A(T )] ≥ 0.7.

(e) Assuming that the expected profit by UROK is less than 0.7 before handling two

items ms
1 and ms

4. We prove that the expected profit by UROK becomes at least 0.7

after handling ms
1 and ms

4. We also assume that neither (a), (b), (c), nor (d) in the lemma

holds for T .

Case 1: The smallest M1-item ms
1 arrives before the smallest M4-item ms

4 arrives. Let

ms
4 come in the ith round. Then fi = 1, and B2

i−1 ∪ {ei} contains ms
1 and ms

4, which

implies that UROK2 keeps an item set I with 0.9 ≤ s(I) ≤ 1. This implies (b) in the
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lemma, a contradiction.

Case 2: The smallest M4-item ms
4 arrives before the smallest M1-item ms

1 arrives. Let

ms
1 come in the jth round. Then in the jth round, UROK1 chooses ms

4 and an M1-item,

i.e., A1(Tj) > 0.6 + 0.3 = 0.9. On the other hand, UROK2 chooses at least two medium

items, i.e., A2(Tj) > 0.3+0.3 = 0.6. Thus we have E[A(Tj)] > (0.9+0.6)/2 = 0.75, which

implies E[A(T )] ≥ 0.7.

(f) Assuming that no (a)–(e) holds for T and that the expected profit by UROK is less

than 0.7. Let ms
2 and ms

3 respectively arrive in the ith and jth rounds.

If i < j, then B2
j−1 ∪ {ej} contains ms

2 and ms
3, which implies A2(Tj) ≥ 0.9. and which

contradicts the assumption on (b) or (c). Thus we have j < i.

Case 1: mf
4 arrives before the ith round. Then B1

i contains an M4-item, while B2
i

contains ms
2 and an item which is either M2-item or ms

3 since no M1-item is contained in

T by (d). This implies E[A(Ti)] > (0.6 + 0.8)/2 = 0.7, and we have E[A(T )] ≥ 0.7.

Case 2: NoM4-item arrives before the ith round. Then B1
i contains ms

3 and anM2-item,

while B2
i contains ms

2 and an item which is either ms
3 or M2-item since no M1-item is

contained in T by (d). This implies E[A(Ti)] > ((0.5 + 0.4) + (0.4 + 0.4)))/2 = 0.85, and

we have E[A(T )] ≥ 0.7.

(g) Let ei and ej denote the first twoM2-item in T with i < j. Assume that E[A(Tk)] < 0.7

for k < j and no (a)–(f) holds for T . We then consider the following two cases.

Case 1: No M3- or M4-item arrives before the jth round. Then B1
j contains ei and ej ,

while B2
j contains two medium items, at least one of which is an M2-item. Thus we have

E[A(Tj)] > ((0.4 + 0.4) + (0.3 + 0.4))/2 = 0.75.

Case 2: mf
3 or mf

4 arrives before the jth round. Note that mf
4 does not arrives before

the jth round, since otherwise we have fj = 1 and B2
j−1 ∪ {ej} contains two M2-items,

which implies that it contains an item set I with 0.8 ≤ s(I) ≤ 1. This implies that (b)

holds in the jth round, which is a contradiction. Thus B1
j contains some M3-item, say ek,

and B2
j contains ei and ej , since T contains no M1-item by (d). Since s(ek) + s(ei) > 1

by (f), we have

E[A(Tj)] ≥
s(ek) + (s(ei) + s(ej))

2
>

1 + 0.4

2
= 0.7,

and hence E[A(T )] ≥ 0.7.

Let OPT (T ) be an optimal (offline) solution for T .

Lemma 4.4. If there exists no small item in T , then s(OPT (T ))/E[A(T )] ≤ 10/7.

Proof. Assume that E[A(Ti)] < 0.7 holds for any i, and no condition in Lemma 4.3 holds.

By the condition of this lemma and (a) in Lemma 4.3, T contains no large or small item

(i.e., it contains only medium items). This implies |OPT (T )| ≤ 3, since every medium

item has size at least 0.3. We then separately show the lemma.

Case 1: |OPT (T )| = 3. Then all are M1-items. If T contains no M2-item, then A2

chooses three M1-items in some round i, which implies A2(Ti) > 0.9, a contradiction of
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(b) or (c). Thus T contains an M2-item, and hence we have A2(Ti) = s(ms
1) + s(ms

2) for

some i. If fi = 1, then

E[A(Ti)] ≥
s(ms

4) + (s(ms
1) + s(ms

2))

2
>

1 + 0.4

2
= 0.7,

since A1(Ti) ≥ s(ms
4) and s(m

s
1) + s(ms

4) > 1 by (e) in Lemma 4.3. On the other hand, if

fi = 0, then A1(Ti) ≥ s(ms
1) + s(ms

2), since T contains no M3-item by (d) in Lemma 4.3.

Thus we again have E[A(Ti)] ≥ s(ms
1) + s(ms

2) ≥ 0.7. Therefore, |OPT (T )| ≤ 2 holds.

Case 2: |OPT (T )| = 1. Suppose that OPT (T ) > 0.5, i.e., T contains M3- or M4-item.

Then A1 chooses M3- or M4-item ek, while A2 chooses at least one medium item el. Note

that s(ek)+ s(el) ≥ 1 holds, since otherwise we have s(OPT (T )) > 0.7, which contradicts

OPT (T ) ≤ 0.7 and |OPT (T )| = 1. This together with s(OPT ) < 0.7 implies

E[A(T )] ≥ s(ek) + s(el)

2
>

1

2
>
s(OPT (T ))

1.4
>

7

10
· s(OPT (T )).

On the other hand, if s(OPT (T )) ≤ 0.5, then T consists of exactly one M1- or M2-

item, since otherwise we have s(OPT (T )) > 0.5, a contradiction. This clearly implies

A1(T ) = A2(T ) = s(OPT (T )), and hence we have E[A(T )] = s(OPT (T )).

Case 3: |OPT (T )| = 2. Let OPT (T ) = {ek, el} with s(ek) ≥ s(el). We note that ek is

an M1- or M2-item, which follows from (d), (e), and (f) in Lemma 4.3. It follows from

(g) in Lemma 4.3, el is an M1-item. This also implies that T contains no M3-item by (d)

in Lemma 4.3. Thus, UROK2 chooses ms
1 and another M1- or M2-item, and hence we

have A2(T ) ≥ s(ms
1) + 0.3.

Suppose that T contains an M4-item. Then it holds that A1(T ) ≥ s(ms
4). Therefore,

we have

s(OPT (T ))

E[A(T )]
=
s(ek) + s(el)
A1(T )+A2(T )

2

≤ 0.4 + 0.5
s(ms

4)+(s(ms
1)+0.3)

2

<
1.8

1.3
≤ 10

7
,

since s(ms
1) + s(ms

4) > 1 holds by Lemma 4.3 (e).

On the other hand, if T contains no M4-item, then we have A1(T ) = s(OPT (T )) and

A2(T ) ≥ 0.6, implying that

s(OPT (T ))

E[A(T )]
=

s(OPT (T ))
s(OPT(T ))+0.6

2

≤ 2

1.6
≤ 10

7
,

since s(OPT (T )) ≤ 1.

Lemma 4.5. Even if there exists some small items in T , we have s(OPT (T ))/E[A(T )] ≤
10/7.

Proof. Assume that E[A(Ti)] < 0.7 holds for any i, and no condition in Lemma 4.3 holds.

Let T̂i be the subset of Ti removing all the small items, and let si be the total value of

small items in Ti.
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If Subroutines UROK1 and UROK2 choose all the small items in T , then we have

s(OPT (T ))

E[A(T )]
≤ s(OPT (T̂n)) + sn

A1(T̂n)+sn+A2(T̂n)+sn
2

=
s(OPT (T̂n)) + sn
A1(T̂n)+A2(T̂n)

2 + sn

≤ max

{
s(OPT (T̂n))
A1(T̂n)+A2(T̂n)

2

, 1

}
=
s(OPT (T̂n))

E[s(A(T̂n))]
≤ 10

7
.

by Lemma 4.4 and Tn = T . On the other hand, if T contains no medium item, then we

have

s(OPT (T ))

E[A(T )]
≤ min{1, sn}

min{0.7,sn}+min{0.7,sn}
2

≤ 10

7
.

Therefore, we consider the case that there are some medium items in T and at least one

small item in T is rejected by UROK1 or UROK2.

Let k be the first round that some small items are rejected by UROK1 or UROK2. If

both subroutines reject some small items in the kth round, then we have A1(Tk), A2(Tk) ≥
0.7, and E[A(Tk)] ≥ 0.7, a contradiction. Thus we can assume exactly one of Subroutines

UROK1 and UROK2 rejects some small items in the kth round.

Suppose that A1(T̂k) and A2(T̂k) are at least 0.4. Let a be the largest small item

rejected by UROK1 or UROK2 in round k. For i, i′ ∈ {1, 2} (i ̸= i′), let Ai reject a, i.e.,

s(a) + Ai(Tk) > 1, and let Ai′ keep a, i.e., Ai′(Tk) ≥ s(a) + Ai′(T̂k) ≥ s(a) + 0.4. Then

we have

E[A(Tk)] =
A1(Tk) +A2(Tk)

2
≥ s(a) + 0.4 +Ai(Tk)

2
> 0.7,

and hence E[A(T )] ≥ 0.7.

Thus, we remain to consider the following two cases.

Case 1: A1(T̂k) < 0.4. In this case, T̂k consists of exactly one M1-item, and B1
i = B2

i

for any i ≤ k. This is a contradiction with the fact that one rejects a small item and the

other does not.

Case 2: A2(T̂k) < 0.4. In this case, Tk contains exactly one M1-item, and no M2- or

M3-item. We claim that Tk contains some M4-items, since otherwise B1
i = B2

i for any

i ≤ k, a contradiction.

Let m1 and m4 respectively be the smallest M1- and M4-items in T̂k. We have 0.6 ≤
A1(T̂k) < 0.7 since A1(T̂k) = s(m4). We also have that SubroutineUROK1 rejects a in the

kth round. Since A1(T̂k) < 0.7 implies A1(T̂k)+ s(a) < 1, B1
k contains another small item

b, which has size at least s(a) as A1 chooses small items from the largest to the smallest,

i.e., s(b) ≥ s(a). The total size of small items in B1
k is at least max{0.3 − s(a), s(b)} ≥

max{0.3− s(a), s(a)} ≥ 0.15 as s(a) ≤ s(b) ≤ 0.3, and the total size of small items in B2
k

is at least 0.3 since A1(T̂k) < 0.7. Thus we have

E[A(Tk)] ≥
A1(Tk) +A2(Tk)

2
≥ (s(m4) + 0.15) + (s(m1) + 0.3)

2
>

1.45

2
> 0.7,
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since m1 +m4 > 1 holds by Lemma 4.3 (e), and hence E[A(T )] ≥ 0.7.

Therefore we have the following theorem.

Theorem 4.6. Algorithm A is 10/7-competitive for the unweighted removable online

knapsack problem.

Proof. By Lemmas 4.4 and 4.5, Algorithm A is at most 10/7-competitive.

Moreover, for the input sequence n = 3, s(e1) = 0.7, and s(e2) = s(e3) = 0.5, the

optimal profit is 1 and the profit by UROK is 0.7. Thus we can conclude that Algorithm

UROK is at least 10/7-competitive.

Before concluding this subsection, we remark that Algorithm UROK can be executed

in polynomial time.

Proposition 4.7. The conditions in the first and the third lines of Subroutine UROK2

can be checked in linear time.

Proof. We shall show that B ⊆ B2
i−1 ∪ {ei} such that t ≤ s(B) ≤ 1 for t = 0.8 or 0.9

can be computed in O(|B2
i−1|) time. Let Bl = {e ∈ B2

i−1 ∪ {ei} : s(e) > 1 − t} and

Bs = {e ∈ B2
i−1 ∪ {ei} : s(e) ≤ 1 − t}. Note that |Bl| ≤ 10, since s(B2

i−1) ≤ 1 and

s(e) > 0.1 for all e ∈ Bl. We claim that the existence of the above B is equivalent to

the one of a subset C of Bl such that s(C) ≤ 1 and s(C) + s(Bs) ≥ t. If we have such

a B, let C = {e ∈ B : s(e) > 1 − t}. Then this C satisfies s(C) ≤ s(B) ≤ 1 and

s(C)+s(Bs) ≥ s(B) ≥ t. On the other hand, if such a C exists, then there exists a subset

D of Bs such that t ≤ s(C)+ s(D) ≤ 1, since e ∈ Bs satisfies s(e) ≤ 1− t. This prove the

claim.

We note that we have at most 210 possible C’s and for each C, D can be computed in

linear time by adding items in D to C one by one in an arbitrary order. This completes

the proof.

4.2.2 Lower Bound

Babaioff et al. [6] provided a lower bound 5/4 for the randomized competitive ratio of the

general weight removable online knapsack problem. In this subsection, we show that 5/4

is also a lower bound even for the unweighted case. The proof is based on Yao’s principle.

We consider the following input distribution:2/3 + ε, 1/3, 2/3 (with probability 1/2),

2/3 + ε, 1/3, (with probability 1/2)
(4.2)

where we identify the items with their size (value) and ε is a sufficiently small positive

number.

Theorem 4.8. There exists no randomized online algorithm with competitive ratio less

than 5/4 for the unweighted removable online knapsack problem.
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Proof. We consider the input distribution in (4.2). Then, the optimal expected profit is

1 · 1
2 +

(
2
3 + ε

)
· 1
2 = 5

6 + ε
2 .

Let A be a deterministic online algorithm. If A rejects the second item, the expected

profit is at most 2/3+ ε. Otherwise (i.e., A takes the second item after removing the first

item), the expected profit is at most 1 · 1
2 + 1

3 · 1
2 = 2

3 .

Therefore, the competitive ratio is at least (5/6+ ε/2)/(2/3+ ε) which approaches 5/4

as ε→ 0.

4.3 General Non-Removable Online Knapsack

Problem

In this section, we show there exists no randomized online algorithm with constant com-

petitive ratio for the general removable online knapsack problem.

4.3.1 Lower Bound

Theorem 4.9. There exists no randomized online algorithm with constant competitive

ratio for the general non-removable online knapsack problem.

Proof. We use Yao’s principle (Theorem 2.15). We give a family of input distributions

parametrized by a natural number n. Let (s, v) denote an item whose size and value are

s and v, respectively. For a given n, the input sequence is

(1, 21), (1, 22), (1, 23), . . . , (1, 2k) (4.3)

with probability pk = 1/2k for k = 1, 2, . . . , n and pk = 1/2n for k = n + 1. Then, the

optimal expected profit is

n+1∑
k=1

2k · pk =
n∑

k=1

2k · 1

2k
+ 2n+1 · 1

2n
= n+ 2.

For an online deterministic algorithm A chosen arbitrarily, let l be the first item that A

accepts. Then, the expected profit of the algorithm A is

0 ·
l−1∑
k=1

pk + 2l ·
n+1∑
k=l

pk = 2l · 1

2l−1
= 2.

Therefore, the competitive ratio for the general non-removable case is at least (n+2)/2.

4.4 General Removable Online Knapsack Problem

In this section, we consider the general removable online knapsack problem.
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4.4.1 A Randomized Online Algorithm

We propose a randomized 2-competitive algorithm for the removable online knapsack

problem. Our algorithm can be regarded as randomized and online implementation of

the well-known 2-approximation algorithm [58] for offline problem, which makes use of

algorithms MAX and GREEDY as follows.

Algorithm 9 MAX

1: B0 := ∅
2: for each item ei in order of arrival do
3: Bi := argmax{v(e) : e ∈ Bi−1 ∪ {ei}}
4: end for

Algorithm 10 GREEDY

1: B0 := ∅
2: for each item ei in order of arrival do

3: Let Bi−1 ∪ {ei} = {b1, . . . , bk} s.t. v(b1)
s(b1)

≥ v(b2)
s(b2)

≥ · · · ≥ v(bk)
s(bk)

4: Bi := ∅
5: for j = 1 to k do
6: if s(Bi) + s(bj) ≤ 1 then Bi := Bi ∪ {bj}
7: end for
8: end for

In the algorithms, let ei be the item given in the ith round, and let Bi be the set of

selected items at the end of the ith round. We denote by s(Bi) the total size of items in

Bi.

For a set of items T = {e1, e2, . . . , en}, let OPT (T ) denote the optimal (offline) profit,

and letMAX (T ) andGREEDY (T ) respectively denote the profits obtained by Algorithms

MAX and GREEDY .

Theorem 4.10. The algorithm that runs MAX and GREEDY uniformly at random is

at most 2-competitive.

Proof. By the definitions of Algorithms MAX and GREEDY , we have OPT (T ) ≤
MAX (T ) + GREEDY (T ), since the optimal profit of the (integral) knapsack prob-

lem is at most the one of the fractional knapsack problem, which is again at most

MAX (T ) +GREEDY (T ). Therefore, the competitive ratio is at most

OPT (T )
MAX (T )+GREEDY (T )

2

≤ 2.
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4.4.2 Lower Bound

Before discussing the lower bound for the competitive ratio of the problem, we show that

the algorithm in Theorem 4.10 is in fact 2-competitive.

Proposition 4.11. For any positive number ε (< 1), there exists an input sequence that

simultaneously ensures that both Algorithms MAX and GREEDY are at least (2 − ε)-

competitive

Proof. Let (s, v) denote an item whose size and value are s and v, respectively. Consider

the sequence of items

(1, 1),

(
1

2
+

1

2n
, 1− 2

n

)
,

(
1

2n
,
1

n

)
,

(
1

2n
,
1

n

)
, . . . ,

(
1

2n
,
1

n

)
︸ ︷︷ ︸

n items

,

where n is a positive integer greater than 3/ε. Then the optimal solution consists of the

second item and n− 1 items of ( 1
2n ,

1
n ), which implies that the optimal profit is (2− 3/n).

We note that Algorithms MAX and GREEDY respectively output the first item and n

items of ( 1
2n ,

1
n ). This implies that the profits of both algorithms are 1. Therefore, the

competitive ratio of Algorithms MAX and GREEDY is at least 2−3/n
1 ≥ 2− ε.

By combining Proposition 4.11 with Theorem 4.10, we have the following corollary.

Corollary 4.12. The algorithm that runs MAX and GREEDY uniformly at random is

2-competitive.

Next we prove the lower bound 1+1/e on the competitive ratio of the general removable

online knapsack problem by using Yao’s principle [90]. We consider the following family of

input distributions parametrized by a positive integer n. Let (s, v) denote an item whose

size and value are s and v, respectively. For a given n, the probabilistic distribution of

the input sequence is

(1, 1), (1/n2, 1/n), . . . , (1/n2, 1/n)︸ ︷︷ ︸
k items

with probability pk (k = 1, 2, . . . , n2) (4.4)

where pk = 1−e−1/n

1−e−n · e−(k−1)/n.

Theorem 4.13. There exists no randomized online algorithm with competitive ratio less

than 1 + 1/e for the removable online knapsack problem.

Proof. We consider the input distribution given in (4.4). Then we have the optimal

expected profit

n∑
k=1

1 · pk +

n2∑
k=n+1

k

n
· pk
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=
1− e−1/n

1− e−n

 n∑
k=1

e−(k−1)/n +
n2∑

k=n+1

k

n
· e−(k−1)/n


=

1− e−1/n

1− e−n
· n

 1

n

n∑
k=1

e−(k−1)/n +
1

n

n2∑
k=n+1

k

n
· e−(k−1)/n


≥ 1− e−1/n

1− e−n
· n

 n∑
k=1

∫ k/n

(k−1)/n

e−tdt+
n2∑

k=n+1

∫ k/n

(k−1)/n

te−tdt


=

1− e−1/n

1− e−n
· n
(∫ 1

0

e−tdt+

∫ n

1

te−tdt

)
.

Let A be a deterministic algorithm for the online knapsack problem. Then it is not

difficult to see that A takes the first item (1, 1) to have the constant competitive ratio.

Let l denote the number of items ( 1
n2 ,

1
n ) that A rejects before item (1, 1) is canceled.

Then, the expected profit of the algorithm A is at most

l∑
k=1

pk +
n2∑

k=l+1

k − l

n
· pk

=
1− e−1/n

1− e−n

 l∑
k=1

e−(k−1)/n +

n2∑
k=l+1

k − l

n
· e−(k−1)/n


=

1− e−1/n

1− e−n
· ne2/n

 1

n

l∑
k=1

e−(k+1)/n +
1

n

n2∑
k=l+1

k − l

n
· e−(k+1)/n


≤ 1− e−1/n

1− e−n
· ne2/n

 l∑
k=1

∫ k/n

(k−1)/n

e−tdt+
n2∑

k=l+1

∫ (k+1)/n

k/n

(
t− l

n

)
· e−tdt


=

1− e−1/n

1− e−n
· ne2/n

(∫ l/n

0

e−tdt+

∫ (n2+1)/n

(l+1)/n

(
t− l

n

)
· e−tdt

)

≤ 1− e−1/n

1− e−n
· ne2/n

(∫ l/n

0

e−tdt+

∫ ∞

l/n

(
t− l

n

)
· e−tdt

)

=
1− e−1/n

1− e−n
· ne2/n.

Therefore, by using Yao’s principle, the competitive ratio is at least

1−e−1/n

1−e−n · n
(∫ 1

0
e−tdt+

∫ n

1
t · e−tdt

)
1−e−1/n

1−e−n · ne2/n

= e−2/n ·
(∫ 1

0

e−tdt+

∫ n

1

t · e−tdt

)
→
(∫ 1

0

e−tdt+

∫ ∞

1

t · e−tdt

)
= 1 + 1/e (n→ ∞)
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for any randomized online algorithm.
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Chapter 5

Online Knapsack Problem

under Convex Functions

In this chapter, we consider the online knapsack problem with a convex function. We first

propose a simple greedy online algorithm, in which the larger item has a higher priority.

We prove that the online algorithm is 2-competitive. Observe that the optimal value for

the problem with a convex function can be estimated by the largest item in the input.

Using this fact, we improve the greedy online algorithm by the following approach: i)

divide all the items into three groups, large, medium and small, ii) for large and small

items, we select them in the way: the largest the first, iii) for medium items, we select

them in the way: the smallest the first. We prove that the improved algorithm is 5/3-

competitive. Another result is that: if the convex function has a specific property, the

improved online algorithm is (1 +
√
5)/2-competitive, which extends the result in Iwama

and Taketomi [48]. For example, for any 1 ≤ c ≤ 1.3884, the function f(x) = xc satisfies

the property. Finally, we prove that the lower bound for the problem is (1 +
√
5)/2.

5.1 Knapsack Problem under Convex Function

Knapsack Problem with Convex Function: The input is a unit size of knapsack and

a set of items associated with a size-value function f(·), where function f(·) is convex.

The output is to select a subset of items to maximize the total value of all the selected

items without exceeding the capacity of the knapsack.

Online Knapsack Problem under Convex Function: In this chapter, we study an

online knapsack problem under a convex size-value function. The capacity of the knapsack

and the function f(·) are known before packing. The word “Online” means that i) items

are given one by one over time, i.e., after a decision is made on the current item, then

the next one is known, ii) in order to accept a new item, it is allowed to remove old items

in the knapsack. During selection, in order to accept a new item, some old items are

allowed to be discarded or removed. The objective of the online knapsack is the same as

the offline version, i.e., to maximize the value under the capacity constraint. Let f(·) be
the convex function, i.e., for each item with size x, its value is f(x). Here we require the
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convex function to satisfy two conditions: i) f(0) = 0, ii) f(x) > 0 for any 0 < x ≤ 1.

Next, we outline several properties of a convex function [15]. If f(·) is convex, then for

any 0 ≤ θ ≤ 1

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), (5.1)

by the definition of the convex, we have

f(x1) + f(y1) ≥ f(x2) + f(y2), (5.2)

where x1+y1 = x2+y2 and x1 ≥ x2 ≥ y2 ≥ y1. By the above properties, it is not difficult

to prove the following two Lemmas [15].

Lemma 5.1. Given a convex function f(·), if f(0) = 0, then f(x)/x is nondecreasing for

all x > 0.

Proof. For any x1 ≥ x2 > 0, if we can prove that

f(x1)

x1
≥ f(x2)

x2
,

then it is done. By equation (5.1), setting θ = x2/x1, x = x1 and y = 0, we have

x2
x1
f(x1) +

x1 − x2
x1

f(0) ≥ f(x2) ⇒ x2
x1
f(x1) ≥ f(x2),

since f(0) = 0. Hence we have this lemma.

Lemma 5.2. Given real numbers x1, x2, . . . , xn,
∑n

i=1 f(xi) ≤ f (
∑n

i=1 xi).

Proof. By Lemma 5.1, for any 1 ≤ j ≤ n, we have f(xj) ≤ xj ·
f(

∑n
i=1 xi)∑n
i=1 xi

. Hence

n∑
j=1

f(xj) ≤
n∑

j=1

xj ·
f (
∑n

i=1 xi)∑n
i=1 xi

= f

(
n∑

i=1

xi

)
.

Lemma 5.3. Given a convex function f(·) with f(0) = 0, if f(x) > 0 for any x > 0, then

f(·) is a monotonically increasing function.

Proof. For any x1 > x2, if x2 = 0, then f(x1) > 0 = f(x2), else x2 > 0, by Lemma 5.1,

f(x1) ≥ x1

x2
· f(x2) > f(x2).

By Lemmas 5.2 and 5.3, we have the convexity of the value function induces that the

largest item has the best ratio of the value to the size. Then we have the following lemma.

Lemma 5.4. Consider the knapsack problem under the value function f(·). If the largest
size in the input is α ≥ 0.5, then the optimal value is at most f(α) + f(1− α).

Proof. Let x1, x2, . . . , xn be the sizes of items in an optimal solution such that x1 ≥
x2 ≥ · · · ≥ xn, where n is the number of the items in the optimal solution. Then
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OPT =
∑n

i=1 f(xi). The claim holds if
∑n

i=1 xi ≤ α by Lemma 5.2. So, we assume there

exists an integer k such that

k∑
i=1

xi ≤ α and
k+1∑
i=1

xi > α.

Since
∑n

i=1 xi ≤ 1, we have
∑n

i=k+2 xi < 1− α. By Lemma 5.2, we have

k∑
i=1

f(xi) ≤ f

(
k∑

i=1

xi

)
and

n∑
i=k+2

f(xi) ≤ f

(
n∑

i=k+2

xi

)
.

Then

f

(
k∑

i=1

xi

)
+ f(xk+1) + f

(
n∑

i=k+2

xi

)
≤ f(α) + f

(
k+1∑
i=1

xi − α

)
+ f

(
n∑

i=k+2

xi

)
≤ f(α) + f(1− α),

where the last inequality holds by Lemma 5.2. Hence we have
∑n

i=1 f(xi) ≤ f(α)+ f(1−
α).

5.2 A Simple Online Algorithm

In this section, we first give a simple greedy online algorithm and prove that it is 2-

competitive. By Lemma 5.1, when the convex function passes through the origin, we

have the efficiency (the value divided by the size) is a nondecreasing function with respect

to the size. Then the idea of the greedy algorithm is that the larger item has a higher

priority, i.e., when a new large item arrives, if necessary, remove the smallest item first

until the new item can be accommodated.

Online algorithm ALG1: when a new item m is given, our online algorithm works as

below:

(a) Sort all the items in the knapsack including item m in nonincreasing order of sizes.

(b) Remove the smallest one until the total size of items in the knapsack is at most 1.

Let ALG1(t) and OPT (t) be the values by online algorithm ALG1 and an optimal

algorithm after time step t ≥ 1 respectively. Let β(t) be the value of the largest item in

all the discarded items at or before time t.

Lemma 5.5. For any time step t ≥ 1, we have OPT (t) ≤ ALG1(t) + β(t).

Proof. Let xi be the ith largest item in the input after time t, where 1 ≤ i ≤ t. If∑t
i=1 s(xi) ≤ 1, then our online algorithm does not need to discard any item, i.e.,

OPT (t) = ALG1(t). Otherwise, there exists an integer k < t such that
∑k

i=1 s(xi) ≤
1 <

∑k+1
i=1 s(xi). By Lemma 5.1, the larger item has a higher efficiency. Then the optimal
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value of the fractional Knapsack problem is

k∑
i=1

f(s(xi)) +
1−

∑k
i=1 s(xi)

s(xk+1)
f(s(xk+1)) ≤

k+1∑
i=1

f(s(xi)).

Since the optimal value is bounded from above by the fractional optimal value, we have

OPT (t) ≤
k+1∑
i=1

f(s(xi)).

In our online algorithm, the discarding policy used is the smaller the first, thus all the

largest k items are kept in the knapsack, i.e., ALG1(t) =
∑k

i=1 f(s(xi)). Since β(t) is the

(k + 1)th largest item, we have OPT (t) ≤
∑k+1

i=1 f(s(xi)) = ALG1(t) + β(t).

It is not difficult to see that ALG1(t) ≥ β(t), then by Lemma 5.5, we have the following

theorem and lemma.

Theorem 5.6. The online algorithm ALG1 is 2-competitive.

Lemma 5.7. If the largest item has size at most 1/k, where k is a positive integer,

algorithm ALG1 is k+1
k -competitive.

5.3 Improved Upper Bounds

In this section, we first observe that the optimal value can be estimated by the maximal

size of items in the input and the size-value function f(·). Then combining with some

techniques, we improve the greedy algorithm and prove that its competitive ratio is 5/3.

We then prove that the improved algorithm is optimal with respect to the competitive

ratio if the size-value convex function satisfies a certain condition.

Definition 5.8. θ-point: given two variables 0.5 < x ≤ 1 and θ > 1, a convex function

f(·), if
f(x)

f(1− x)
= θ,

then x is θ-point of function f(·).

Lemma 5.9. Given θ > 1 and a convex function f(·) with domain [0, 1], if f(0) = 0 and

f(x) > 0 for any x > 0, then θ-point x0 of f(·) exists in
(
0.5, θ

1+θ

]
and is unique.

Proof. Define a new function F (x) for x ∈ [0, 1] as below, where θ > 1:

F (x) = f(x)− θf(1− x).

A convex function must be continuous, so f(x) and F (x) are continuous. And we have

F

(
θ

1 + θ

)
= f

(
θ

1 + θ

)
− θf

(
1

1 + θ

)
≥ 0,
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where the last inequality holds by Lemma 5.1. And F (0.5) = f(0.5) − θf(0.5) < 0 since

f(x) > 0 for any x > 0 and θ > 1. We know function F (x) is continuous, then there exists

x in
(
0.5, θ

1+θ

]
such that F (x) = 0, i.e., x0 ∈

(
0.5, θ

1+θ

]
.

By Lemma 5.3, functions f(x) and −f(1−x) are monotonically increasing. Then F (x)

is also monotonically increasing. Hence there is a unique solution for F (x) = 0 in interval(
0.5, θ

1+θ

]
.

5.3.1 An Improved Online Algorithm

Observe that if all the items are very large then it will be good enough to have the largest

one in the knapsack; if all the items are very small, then it will be good enough to call

the greedy algorithm. To have a good competitive ratio, the point is how to handle the

medium item. Our strategies are: i) divide items into three groups, large, medium and

small, ii) for large and small items, the larger item has a higher priority, iii) for medium

items, the smaller item has a higher priority. Combining with some techniques to estimate

the optimal value, we propose a refined online algorithm in this subsection.

Let θ = 1.5. Define a θ-point x0 as below:

f(x0)

f(1− x0)
= 1.5.

Grouping: we divide the interval [0, 1] into three sub-intervals,

I0 = [x0, 1], I1 = [1− x0, x0), I2 = [0, 1− x0).

By Lemma 5.9, x0 exists and is unique. Given an item with size s, if s ∈ Ii, then the item

belongs to type-i, where 0 ≤ i ≤ 2.

Online algorithm ALG2: when a new item m is given, our algorithm works as below:

1. s(m) ∈ I0: accept the largest item in the knapsack including the current item,

discard all the others.

2. s(m) ∈ I1:

(a) If the total value in the knapsack is at least f(x0), then discard m.

(b) Else if there is an item q with s(q) ∈ I1 in the knapsack,

(i) If s(q) + s(m) ≤ 1 then accept items q and m, discard all the others.

(ii) Else accept the smaller one of the two items, discard the larger one.

(c) Else accept item m, if necessary, discard items in a way: the smallest the first.

3. s(m) ∈ I2:

(a) If the total value in the knapsack is at least f(x0) then discard item m.

(b) Else call the greedy algorithm ALG1 to handle item m, i.e., if necessary use

the policy of the smallest the first to discard items.

Pattern: define a pattern of packing in the knapsack as a vector v = {v0, v1, v2} of three
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components, where vi is the number of type-i items in the knapsack, where 0 ≤ i ≤ 2. It

is not difficult to see the following results by referring to Steps 1., 2.(a), 3.(a) of our online

algorithm.

Observation 5.10. If some type-0 items have been given, the largest one must be ac-

cepted.

Observation 5.11. If the packing pattern is one of (1, 0, 0), (0, 2, ∗), where ∗ denotes

any feasible integer, then the total value in the knapsack is at least f(x0).

Observation 5.12. Once the total value by our online algorithm is at least f(x0) at the

current time step, then it never goes down below f(x0) in the future.

Observation 5.13. If the execution passes through Step 2.(b)(ii) at time t, we have the

following results:

• the largest item has size less than x0;

• the minimal type-1 item is selected in the knapsack;

• in the input, there is only one type-1 item or any two type-1 items cannot be packed

together;

• the largest type-2 item must be packed if it exists.

Before proving the main result: our algorithm is 5/3-competitive, we need the following

lemma first.

Lemma 5.14. Assume in the input any two type-1 items cannot be packed together in

the knapsack. Let γi be the ith largest type-2 item, where i ≥ 1. Let β1 be the largest

item, which is type-1 item. If s(β1) +
∑k

i=1 s(γi) ≥ 1, where k is the number of type-2

item in the input, then the optimal value is at most f(s(β1)) + f(
∑k

i=1 s(γi)).

Proof. Define a set O = {β1, γ1, . . . , γk}. Let O∗ be the set of items in an optimal solution.

By the assumption, there is at most one type-1 item in O∗. Observe that i) the larger

item has a larger efficiency by Lemma 5.1; ii) s(β1) +
∑k

i=1 s(γi) ≥ 1 and γi is the ith

largest type-2 item in the input. We claim the average efficiency in O is not less than the

one in O∗.

Hence we have f(O∗) ≤ f(O) = f(s(β1)) + f
(∑k

i=1 s(γi)
)
.

Analysis: let ALG(t) and OPT (t) be the values by our online algorithm and an optimal

algorithm after time step t ≥ 1 respectively. Next we prove that for any integer t ≥ 1,
OPT (t)
ALG(t) ≤ 5/3, i.e., the online algorithm is 5/3-competitive. We use induction to prove the

result, namely, at some time t0 ≥ 1, for any input, if we have OPT (t0) ≤ 5/3 · ALG(t0),

we need to prove the claim still holds for the next time step.

Theorem 5.15. The online algorithm ALG2 is 5/3-competitive.

Proof. It is not difficult to see that, After the first time step, we have OPT (1) = ALG(1),

we have OPT (1)
ALG(1) ≤ 5/3. Assume OPT (t0)

ALG(t0)
≤ 5/3 holds for any time step t0 ≥ 1. Next we

prove that OPT (t1)
ALG(t1)

≤ 5/3, where t1 is the next time step.
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Let m be the item given at time t1 and s(m) be its size. Consider the execution route

when item m is processed. There are two cases: i) no items are discarded after time

step t1; ii) some items are discarded after time step t1. For each case, we prove that
OPT (t1)
ALG(t1)

≤ 5/3 holds.

Case 1: It is not difficult to see that ALG(t1) = ALG(t0) + f(s(m)) and OPT (t1) ≤
OPT (t0) + f(s(m)). By the assumption OPT (t0)

ALG(t0)
≤ 5/3, we have OPT (t1)

ALG(t1)
≤ 5/3.

Case 2: Let α be the size of the largest item in the input. There are two subcases.

Case 2.1: α ≥ x0. By Observation 5.10 the item α must have been selected in the

knapsack. Then ALG(t1) = f(α). By Lemma 5.4, we have

OPT (t1)

ALG(t1)
≤ f(α) + f(1− α)

f(α)
≤ 5

3
,

where the last inequality holds from f(1−α)
f(α) ≤ f(1−x0)

f(x0)
= 2

3 .

Case 2.2: α < x0. According to the step that item m passes through, we have the

following four subcases. For i ≥ 1, let γi be the ith largest type-2 item in the input.

Assume that items γ1, γ2, . . . , γk−1, γk are selected in the knapsack just after time t1,

where k ≥ 0 is the maximal index.

Case 2.2.1: the execution for item m passes through one of Steps 2.(a), 2.(b)(i) or

3.(a). by Observations 5.11 and 5.12, ALG(t1) ≥ f(x0). By Lemma 5.4, OPT (t1) ≤
f(x0) + f(1− x0). Hence

OPT (t1)
ALG(t1)

≤ 5
3 .

Case 2.2.2: the execution for item m passes through Step 2.(b)(ii). There is only one

type-1 item in the knapsack. We rename it as m. Let β1 be the largest item of type-

1. Remember that index k is the maximal index such that items γ1, γ2, . . . , γk−1, γk are

selected in the knapsack just after time t1. There are three cases on k.

Case 2.2.2.1: k = 0. By Observation 5.13 iv), there is no type-2 item given so far,

otherwise item γ1 has been selected in the knapsack. We have ALG(t1) = f(s(m))

and OPT (t1) = f(s(β1)). Since both items m and β1 are type-1, we have OPT (t1) ≤
1.5ALG(t1).

Case 2.2.2.2: k = 1. By Observation 5.13 iv), item γ1 must be accepted in the knapsack.

If there is only one type-2 item in the input, then by Observation 5.13 iii), we have

ALG(t1) = f(s(m)) + f(s(γ1)), and OPT (t1) ≤ f(s(β1)) + f(s(γ1)).

Hence we have OPT (t1)
ALG(t1)

< f(s(β1))
f(s(m)) ≤ 1.5. Else s(γ2) > 0, due to the fact that there is no

space in the knapsack for item γ2, we have x0 + s(γ1) + s(γ2) > 1. Due to s(γ1) ≥ s(γ2),

2s(γ1) > 1− x0. (5.3)
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If f(s(γ1)) ≥ f(1−x0)
2 then we have

ALG(t1) ≥ f(s(m)) + f(s(γ1)) ≥
3

2
· f(1− x0) = f(x0) (by definition of x0)

=
3

5
· (f(x0) + f(1− x0)) >

OPT (t1)

5/3
,

where the last inequality holds from that OPT (t1) ≤ f(x0) + f(1− x0) by Lemma 5.4.

Else we have f(s(γ1)) <
f(1−x0)

2 . By Observation 5.13 iii), there is at most one type-1

item in the optimal solution. By Lemma 5.14, OPT (t1) ≤ f(x0) + 2f(s(γ1)). Then

OPT (t1)

ALG(t1)
≤ f(x0) + 2f(s(γ1))

f(1− x0) + f(s(γ1))
≤ 1.5 + 2 · 0.5

1 + 0.5
=

5

3
.

Case 2.2.2.3: k ≥ 2. Then ALG(t1) = f(s(m))+
∑k

i=1 f(s(γi)), by Lemma 5.14 we have

OPT (t1) ≤ f(s(β1)) +

k+1∑
i=1

f(s(γi)),

where s(γk+1) = 0 if item γk+1 does not exist. We also know

f(s(β1)) ≥ f(s(m)) ≥ f(s(γ1)) ≥ · · · ≥ f(s(γk+1)).

For k ≥ 2, it is not difficult to see that OPT (t1) ≤ max{1.5, k+1
k }ALG(t1) = 1.5·ALG(t1).

Hence, after Step 2.(b)(ii), we have OPT (t1) ≤ 5/3 ·ALG(t1).

Case 2.2.3: the execution for item m passes through Step 2.(c). Before item m is arrived,

there is no type-1 or type-0 item, and the total value is less than f(x0). Item m is the

unique type-1 item in the input and it is the largest item given so far. Thus all the

discarded items must be type-2. Then by the similar arguments used in Case 2.2.2, we

have

OPT (t1)

ALG(t1)
≤
f(s(m)) +

∑k+1
i=1 f(s(γi))

f(s(m)) +
∑k

i=1 f(s(γi))
≤ 1+

f(s(rk+1))

f(s(m)) +
∑k

i=1 f(s(γi))
≤ 1+

1

k + 1
≤ 1.5.

Case 2.2.4: the execution for item m passes through Step 3.(b). Then the total value

is less than f(x0). If there is a type-1 item in the knapsack at time t1, by the similar

arguments used in Case 2.2.2, we have OPT (t1)
ALG(t1)

≤ 5
3 . Else there are no type-1 or 0 items

given before t1, all the items given so far are type-2. If no type-2 item has been discarded,

then OPT (t1) = ALG(t1). Else k ≥ 2 since s(γ1) ≤ (1 − x0) < 1/2. By Lemma 5.7, we

have OPT (t1) ≤ k+1
k ALG(t1) ≤ 1.5 ·ALG(t1).
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5.3.2 Applications of Algorithm ALG2

Redefine x0 in algorithm ALG2 as below:
f(x0)

f(1−x0)
= q, where q = 1+

√
5

2 is the golden ratio.

In this subsection, we prove that if the convex function f(·) has the following property:

f
(x0
2

)
≥ f(x0)

q2
,

then the competitive ratio can be improved to q. For example, for any 1 ≤ c ≤ 1.3884,

function f(x) = xc satisfies the above property.

Theorem 5.16. Given a convex function f(·) with f(0) = 0, after redefining x0 in ALG2

such that f(x0)
f(1−x0)

= q, if f
(
x0

2

)
≥ f(x0)

q2 , then algorithm ALG2 is q-competitive.

Proof. Main ideas: we will use the same approach in Theorem 5.15 to prove this result.

First assume that OPT (t0)
ALG(t0)

≤ q for a time step t0 ≥ 1, then we prove that OPT (t1)
ALG(t1)

≤ q,

where t1 is the next time step of t0. Just by redefining x0 such that f(x0)
f(1−x0)

= q, and

following the proof in Theorem 5.15, observe that OPT (t1)
ALG(t1)

≤ q holds in Cases 2.1, 2.2.1,

2.2.2.1, 2.2.2.3, 2.2.3. We also find that if OPT (t1)
ALG(t1)

≤ q holds in Case 2.2.2.2, then it also

holds in Case 2.2.4. To prove this theorem, we only need to prove that OPT (t1)
ALG(t1)

≤ q holds

in Case 2.2.2.2, where the second largest type-2 item γ2 is discarded or removed, and the

largest item in the input is at most x0.

Next we prove that after item γ2 is discarded, then the total value by ALG2 is at least

f(x0).

In Case 2.2.2.2, there is a type-1 item in the knapsack, say m. And the largest type-2

item γ1 is also selected in the knapsack. Since item γ2 cannot fit together with items m

and γ1, we have

2s(γ1) > 1− s(m). (5.4)

By Lemma 5.9, we have x0 ≤ 1
q ≤ 0.619 ≤ 2

3 . Then

3x0 < 2 ⇒ 1− x0 > 2x0 − 1 ⇒ s(m) ≥ 1− x0 > 2x0 − 1. (5.5)

Then

f(s(m)) + f(s(γ1)) > f(s(m)) + f( 1−s(m)
2 ) by (5.4)

≥ f(1− x0) + f(s(m)/2 + x0 − 1/2) by (5.5) and (5.2)

≥ f(1− x0) + f(x0/2) by (x0 + s(m) ≥ 1)

≥ f(x0)
q + f(x0)

q2 = f(x0).

Since the size of the largest item is at most x0, by Lemma 5.4, the optimal value is at

most f(x0) + f(1− x0), hence
OPT (t1)
ALG(t1)

≤ q holds.
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Lemma 5.17. For any 1 ≤ c ≤ log2 q
2 ≈ 1.3884, if f(x) = xc, then the competitive ratio

of algorithm ALG2 is (1 +
√
5)/2.

Proof. After defining x0 as the root of equation f(x)
f(1−x) = q for x > 1

2 , it is not difficult to

see that
f(

x0
2 )

f(x0)
= 2−c ≥ 1

q2 .

5.4 Lower Bound

In this section, we prove that the lower bound of the competitive ratio is (1 +
√
5)/2 for

any convex function f(·). In [48] Iwama and Taketomi first proved that the lower bound

of the competitive ratio is (1+
√
5)/2 for function f(x) = x. Here we generalize their idea

for any convex function f(·).
The main ideas are below: the adversary gives the first two items, one is large and one

is small, but the two items cannot be accepted together, we have to make a decision which

one we need to select; if the smaller one is selected then the adversary stops the input,

else the adversary gives the third item which is a large item and can be accepted together

with the smaller item in the knapsack, and stops the input. For each case, we can prove

the competitive ratio cannot be smaller than (1 +
√
5)/2 for any online algorithm.

Theorem 5.18. Assume f(0) = 0. There is no online algorithm with competitive ratio

strictly less than (1 +
√
5)/2.

Proof. Assume there exists an online algorithm A with competitive ratio r < (1 +
√
5)/2.

Next we construct an input L and prove that OPT (L)
A(L) > r, i.e., the assume is wrong, there

is no algorithm with a competitive ratio strictly less than (1 +
√
5)/2.

Define x0 as the root of equation f(x)
f(1−x) = q for x > 1

2 . By Lemma 5.9, we know x0

exists and is unique. The first two items have size x0 + ϵ and 1 − x0, where ϵ > 0 is

sufficiently small and satisfies the condition

f(x0) + f(1− x0)

f(x0 + ϵ)
> r.

Observe that 1 ≤ r < q and f(x0)+f(1−x0)
f(x0)

= q and f(x0)+f(1−x0)
f(1) ≤ 1. Then following the

similar approach used in Lemma 5.9, we can prove that such ϵ > 0 must exist. After the

second time step, there is at most one item selected in the knapsack. If the item with size

1− x0 is selected, then we stop the input and have

OPT (L)

A(L)
≥ f(x0 + ϵ)

f(1− x0)
≥ q > r.

Else the item with size x0 + ϵ is selected, then the third item with size x0 is given and we

stop the input. In this case, we have OPT (L) = f(x0)+f(1−x0) and ALG(L) ≤ f(x0+ϵ).

Therefore we have
OPT (L)

A(L)
≥ f(x0) + f(1− x0)

f(x0 + ϵ)
> r.
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Hence, an online algorithm with a competitive ratio strictly less than (1 +
√
5)/2 does

not exist.
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Chapter 6

Proportional Cost Buyback

Problem

In this chapter, we study the proportional cost buyback problem with the single element

constraint, a matroid constraint, or the unweighted knapsack constraint. In this model,

the removal cost of each element ei is proportional to its value, i.e., it is f · w(ei), where
w(ei) denotes the value of ei and f > 0 is a fixed constant, called buyback factor.

We first provide a
(
1 + 2f + 2

√
f(1 + f)

)
-competitive algorithm for the single element

case presented by Babaioff et al. [5] and Constantin et al. [23]. Next, we consider the

single element and the matroid cases with upper and lower bounds of weights, i.e., each

element ei has a weight such that l ≤ w(ei) ≤ u where 0 < l < u. Lastly, we deal with

the unweighted knapsack case with lower bounds of weights, i.e. each element ei has a

weight such that l ≤ w(ei) ≤ 1 where 0 ≤ l < 1.

6.1 Single Element Case

Babaioff et al. [5] and Constantin et al. [23] presented a
(
1 + 2f + 2

√
f(1 + f)

)
-

competitive simple algorithm for the single element case. The algorithm accepts the

first element, and for the rest of the elements, it removes the currently accepted

element and accepts the arriving element if the value of the new element is more than

(1+f+
√
f(1 + f)) times the value of the old element. Then the algorithm is represented

as follows.

Algorithm 11 Babaioff et al. [5] and Constantin et al. [23]

1: B0 := ∅
2: for all elements ei, in order of arrival, do
3: if Bi−1 = ∅ then Bi := {ei}
4: else let {ej} = Bi−1

5: if w(ei) > (1 + f +
√
f(1 + f)) · w(ej) then Bi := {ei}

6: else Bi := Bi−1

7: end for
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Theorem 6.1 (Babaioff et al. [5] and Constantin et al. [23]). Algorithm 11 is(
1 + 2f + 2

√
f(1 + f)

)
-competitive for the proportional cost buyback problem with the

single element constraint.

6.2 Single Element Case with Upper and Lower

Bounds of Weights

In this section we show the competitive ratio for the proportional cost buyback problem

is ν(l, u, f) when each element ei has weight l ≤ w(ei) ≤ u.

We show that the proportional cost buyback problem has the competitive ratio ν(l, u, f)

as defined below when the constraint is the single element constraint or a matroid con-

straint. Let ϕρ(n) satisfy the following recurrence relation

ϕρ(n) =

l, (n = 1)

ρ(ϕρ(n− 1)− f ·
∑n−2

i=1 ϕρ(i)) (n = 2, 3, . . . ).
(6.1)

Thus we haveϕ(1) = l, ϕ(2) = lρ,

ϕρ(n+ 1)− (ρ+ 1)ϕρ(n) + ρ(1 + f)ϕρ(n− 1) = 0 (n = 2, 3, . . . ).
(6.2)

Then ν(l, u, f) is the smallest value 1 < ρ < 1 + 2f + 2
√
f(1 + f) which satisfies

ϕρ(nρ) = u where nρ = min{n ∈ Z++ : ϕρ(n) ≥ ϕρ(n+ 1)}.

For example, the competitive ratio ν(l, u, f) for (l, u) = (0.5, 1.0) and (u, f) = (1.0, 0.2)

are given in Figure 6.1. The existence of nρ and ν(l, u, f) are proved in the next subsection.
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Figure 6.1. The competitive ratio ν(l, u, f) for (l, u) = (0.5, 1.0) and (u, f) = (1.0, 0.2).
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6.2.1 Properties of ν(l, u, f)

Let

αρ =
ρ+ 1 + i

√
−(ρ+ 1)2 + 4(1 + f)ρ

2
and ᾱρ =

ρ+ 1− i
√
−(ρ+ 1)2 + 4(1 + f)ρ

2
,

and let r∞ = 1 + 2f + 2
√
f(1 + f).

Lemma 6.2. For 1 < ρ < r∞, it holds that

ϕρ(n) =
αn−1
ρ (ρ− ᾱρ)− ᾱρ

n−1(ρ− αρ)

αρ − ᾱρ
l = Re

(
2 · ρ− ᾱρ

αρ − ᾱρ
· αn−1

ρ

)
l.

Proof. Since αρ + ᾱρ = ρ+ 1 and αρᾱρ = ρ(1 + f), we have

ϕρ(n+ 1)− αρϕρ(n) = ᾱρ(ϕρ(n+ 1)− αρϕρ(n)),

ϕρ(n+ 1)− ᾱρϕρ(n) = αρ(ϕρ(n+ 1)− ᾱρϕρ(n)).

Thus we have

ϕρ(n+ 1)− αρϕρ(n) = ᾱn−1
ρ (ϕρ(2)− αρϕρ(1)) = ᾱρ

n−1(ρ− αρ)l,

ϕρ(n+ 1)− ᾱρϕρ(n) = αn−1
ρ (ϕρ(2)− ᾱρϕρ(1)) = αn−1

ρ (ρ− ᾱρ)l

and we get

ϕρ(n) =
αn−1
ρ (ρ− ᾱρ)− ᾱρ

n−1(ρ− αρ)

αρ − ᾱρ

=

{
αn−1
ρ (ρ− ᾱρ)

αρ − ᾱρ
+
αn−1
ρ (ρ− ᾱρ)

αρ − ᾱρ

}
l

= Re

(
2 · ρ− ᾱρ

αρ − ᾱρ
· αn−1

ρ

)
l.

Lemma 6.3. For ρ = r∞, it holds that

ϕρ(n) = (1 + nf + n
√
f(1 + f)) · (1 + f +

√
f(1 + f))n−2 · l.

Proof. By (6.1), we have

ϕρ(n+ 1)− 2

(
1 + r∞

2

)
ϕ(n) +

(
1 + r∞

2

)2

ϕ(n− 1) = 0,

ϕρ(n+ 1)− 1 + r∞
2

ϕ(n) =
1 + r∞

2

(
ϕρ(n)−

1 + r∞
2

ϕ(n− 1)

)
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for n = 2, 3, . . .. Thus we have

ϕρ(n+ 1)− 1 + r∞
2

ϕ(n) =

(
1 + r∞

2

)n−1(
ϕρ(2)−

1 + r∞
2

ϕ(1)

)
=

(
1 + r∞

2

)n−1(
r∞ − 1

2

)
l,

and we obtain(
2

1 + r∞

)n+1

ϕρ(n+ 1)−
(

2

1 + r∞

)n

ϕρ(n) =

(
2

1 + r∞

)2(
r∞ − 1

2

)
l,(

2

1 + r∞

)n

ϕρ(n) =

(
2

1 + r∞

)
ϕρ(1) + (n− 1)

(
2

1 + r∞

)2(
r∞ − 1

2

)
l,

ϕρ(n) =

(
1 + r∞

2
+ (n− 1)

r∞ − 1

2

)(
1 + r∞

2

)n−2

l

=

(
1 +

n(r∞ − 1)

2

)(
1 + r∞

2

)n−2

l

= (1 + nf + n
√
f(1 + f)) · (1 + f +

√
f(1 + f))n−2 · l.

Lemma 6.4. For 1 < ρ < r∞, argαρ is continuous and monotone decreasing.

Proof. argαρ is monotone decreasing since

tan(argαρ) =

√
−(ρ+ 1)2 + 4(1 + f)ρ

ρ+ 1
=

√
−ρ2 + (2 + 4f)ρ− 1

ρ2 + 2ρ+ 1

=

√
4(1 + f)ρ

ρ2 + 2ρ+ 1
− 1 =

√
4(1 + f)

ρ+ 1
ρ + 2

− 1

and ρ+ 1
ρ is monotone increasing for ρ ≥ 1.

Let βρ = 2 · ρ−ᾱρ

αρ−ᾱρ
= 1− ρ−1√

−(ρ+1)2+4(1+f)ρ
i.

Lemma 6.5. arg(βρ(αρ − 1)) is monotone decreasing for 1 < ρ < r∞.

Proof.

βρ(αρ − 1) = 2 · ρ− ᾱρ

αρ − ᾱρ
· (αρ − 1)

=
(ρ− 1 +

√
−(ρ+ 1)2 + 4(1 + f)ρi)(ρ− 1 +

√
−(ρ+ 1)2 + 4(1 + f)ρi)

2
√

−(ρ+ 1)2 + 4(1 + f)ρi

=
(ρ− 1)2 + (ρ+ 1)2 − 4(1 + f)ρ+ 2(ρ− 1)

√
−(ρ+ 1)2 + 4(1 + f)ρi

2
√
−(ρ+ 1)2 + 4(1 + f)ρi

= (ρ− 1)− ρ2 − 2(1 + f)ρ+ 1√
−(ρ+ 1)2 + 4(1 + f)ρ

i.
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Thus,

tan arg(βρ(αρ − 1)) = − ρ2 − 2(1 + f)ρ+ 1

(ρ− 1)
√
−(ρ+ 1)2 + 4(1 + f)ρ

,

and

d

dρ
tan arg(βρ(αρ − 1)) = − 4f2ρ(ρ+ 1)

(ρ− 1)2(−(ρ+ 1)2 + 4(1 + f)ρ)3/2
.

Therefore, arg(βρ(αρ − 1)) is continuous and monotone decreasing.

Lemma 6.6. If ϕρ0(1) < ϕρ0(2) < · · · < ϕρ0(n) for some positive integer n and 1 < ρ0 <

r∞, then ϕρ(1) < ϕρ(2) < · · · < ϕρ(n) for ρ0 < ρ < r∞.

Proof. By the definitions of αρ and βρ, we have −π/2 < arg(βρ(αρ − 1)) < π/2 and 0 <

arg(αρ) < π/2 for ρ0 < ρ < r∞. Since ϕρ0(k+1)−ϕρ0(k) = Re
(
βρ0(αρ0 − 1) · αk−1

ρ0

)
l > 0

for any k = 1, . . . , n − 1, we have −π/2 < arg(βρ(αρ − 1) · αk−1
ρ ) < π/2. Thus, we have

−π/2 < arg(βρ(αρ − 1) · αk−1
ρ ) < π/2 by Lemmas 6.4 and 6.5. This implies ϕρ(1) <

ϕρ(2) < · · · < ϕρ(n).

Lemma 6.7.

√
−(ρ+1)2+4(1+f)ρ

(ρ+1) is monotone decreasing for 1 < ρ < r∞.

Proof. It holds by

√
−(ρ+ 1)2 + 4(1 + f)ρ

(ρ+ 1)
=

√
−(ρ+ 1)2 + 4(1 + f)ρ

(ρ+ 1)2

=

√
−ρ2 + (2 + 4f)ρ− 1

ρ2 + 2ρ+ 1

=

√
4(1 + f)ρ

ρ2 + 2ρ+ 1
− 1

=

√
4(1 + f)ρ

ρ+ 1/ρ+ 2
− 1

and by ρ+ 1/ρ is monotone increasing for ρ > 1.

Lemma 6.8. For 1 < ρ < r∞, arg(βρ) is continuous and monotone decreasing.

Proof. It holds by

tan(arg βρ) = −
√
−(ρ+ 1)2 + 4(1 + f)ρ

ρ− 1

= −

√
−(ρ+ 1)2 + 4(1 + f)ρ

(ρ− 1)2

= −

√
−ρ2 + (2 + 4f)ρ− 1

ρ2 − 2ρ+ 1
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= −

√
4fρ

ρ2 − 2ρ+ 1
− 1

= −

√
4f

ρ+ 1/ρ− 2
− 1

and by ρ+ 1/ρ is monotone increasing for ρ > 1.

Definition 6.9. For n = 1, 2, . . ., let

rn = max{ρ : ϕρ(n) = ϕρ(n+ 1)}

= max{ρ : arg(βρ(αρ − 1) · αn−1
ρ ) = π/2}.

Lemma 6.10. 1 = r1 < r2 < · · · < rn < · · · < r∞.

Proof. We have r1 = 1, as ϕρ(1) = l and ϕρ(2) = ρl. We have r1 < r2 < · · · < rn < · · ·,
since arg(βρ ·αn−1

ρ ) is monotone decreasing by Lemmas 6.4 and 6.5 As ϕr∞(1) < ϕr∞(2) <

· · · and ϕρ(1), ϕρ(2), . . . are continuous, we have rn < r∞.

Definition 6.11.

nρ = min{n ∈ Z++ : ϕρ(n) ≥ ϕρ(n+ 1)}.

Lemma 6.12. If rk < ρ ≤ rk+1, then nρ = k.

Proof. It holds by Lemmas 6.6 and 6.10.

Lemma 6.13. ϕρ(nρ) is continuous for 1 < ρ < 1 + 2f + 2
√
f(1 + f).

Proof. By Lemma 6.12, ϕρ(nρ) is continuous for rk < ρ ≤ rk+1 since ϕρ(n) is continuous

for each k. Moreover, it holds that

lim
ρ→rk+0

ϕρ(nρ) = ϕrk(k + 1) = ϕrk(k) = ϕrk(nrk).

Thus, ϕρ(nρ) is continuous for 1 < ρ < 1 + 2f + 2
√
f(1 + f).

Lemma 6.14. limρ→r∞−0 ϕρ(nρ) = ∞.

Proof. It holds that

lim
ρ→r∞−0

ϕρ(nρ) ≥ lim
ρ→r∞−0

ϕρ(k) = ϕr∞(k)

since ϕρ(1), ϕρ(2), . . . are continuous. Thus limρ→r∞−0 ϕρ(nρ) = ∞ as limk→∞ ϕr∞(k) =

∞.
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Lemma 6.15. There exists the smallest value 1 < ρ < 1+2f+2
√
f(1 + f) which satisfies

ϕρ(nρ) = u.

Proof. The statement holds by Lemmas 6.13 and 6.14, and ϕ1(n1) = l.

We define ϕ(n) as

ϕ(n) = ϕν(l,u,f)(n)

and n∗ as

n∗ = min{n ∈ Z++ : ϕ(n) ≥ ϕ(n+ 1)}.

Remark 6.16. For any 0 < l < u, we have ν(l, u, f) = ν(1, u/l, f).

Remark 6.17. For the case without upper and lower bounds of weights (u/l → ∞), the

competitive ratio is 1 + 2f + 2
√
f(1 + f).

6.2.2 An Optimal Online Algorithm

In this subsection, we show the following algorithm is ν(l, u, f)-competitive for the buyback

problem with proportional cancellation cost when the constraint is the single element

constraint. In the algorithms, let ei be the element given in the ith round, and let Bi be

the set of selected elements at the end of the ith round. We denote by w(Bi) the total

value of elements in Bi.

Algorithm 12 Single Element Case

1: B0 := ∅, k0 := 0
2: for all elements ei, in order of arrival, do
3: if Bi−1 = ∅ then Bi := {ei}, ki := 1

4: else if w(ei) >
ϕ(ki−1+1)
ϕ(ki−1)

w(Bi−1) then Bi := {ei}, ki := ki−1 + 1

5: else Bi := Bi−1, ki := ki−1

6: end for

Theorem 6.18. The online Algorithm 12 is ν(l, u, f)-competitive for the unit cost buy-

back problem with the single element constraint.

Proof. Let OPT denote the optimal solution for the offline problem whose input sequence

is e1, . . . , en and R be the elements canceled by the algorithm. If w(OPT ) = l, the

competitive ratio is 1. Otherwise, let R = {r1, r2, . . . , rkn−1} and Bn = {rkn} subject

to w(r1) < w(r2) < · · · < w(rkn−1) < w(rkn). Then it holds that kn < n∗, w(ri+1) >
ϕ(i+1)
ϕ(i) ·w(ri) for i = 1, 2, . . . , kn − 1, and w(OPT ) ≤ ϕ(kn+1)

ϕ(kn)
·w(rkn). Therefore, we have

w(ri) <
ϕ(i)

ϕ(i+ 1)
· ϕ(i+ 1)

ϕ(i+ 2)
· · · · · ϕ(kn − 1)

ϕ(kn)
· w(rkn) =

ϕ(i)

ϕ(kn)
· w(rkn)
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and the competitive ratio is at most

w(OPT )

w(Bn)− f · w(R)
≤

ϕ(kn+1)
ϕ(kn)

· w(rkn)

w(rkn)− f ·
∑kn−1

i=1
ϕ(i)
ϕ(kn)

· w(rkn)

=
ϕ(kn + 1)

ϕ(kn)− f ·
∑kn−1

i=1 ϕ(i)
= ν(l, u, f).

6.2.3 Lower Bound

In this subsection, we show ν(l, u, f) is also a lower bound for the competitive ratio of the

problem.

Theorem 6.19. There exists no online algorithm with competitive ratio less than

ν(l, u, f) for the unit cost buyback problem with the single element constraint.

Proof. Let A denote an online algorithm chosen arbitrarily. Our adversary requests the

sequence of elements whose weights are

ϕ(1), ϕ(2), . . . , ϕ(n∗), (6.3)

until A rejects some element in (6.3).

If A rejects the element with weight ϕ(1), then the competitive ratio of A becomes

infinite. On the other hand, if A rejects the element with weight ϕ(k) for some k > 1, A

cancels k − 1 elements with weights ϕ(1), ϕ(2), . . . , ϕ(k − 1) and the competitive ratio is

at least

ϕ(k + 1)

ϕ(k)− f ·
∑k−1

i=1 ϕ(i)
= ν(l, u, f). (6.4)

Finally, if A accepts all the elements in (6.3), then the competitive ratio is at least

ϕ(n∗)

ϕ(n∗)− f ·
∑n∗−1

i=1 ϕ(i)
=

ϕ(n∗)

ϕ(n∗ + 1)
· ν(l, u, f) ≥ ν(l, u, f).

6.3 Matroid Case with Upper and Lower Bound of

Weights

In this section, we consider the matroid case with upper and lower bound of weight,

where the constraint I is an arbitrary independence family of matroid M = (E, I) and

each element ei has weight l ≤ w(ei) ≤ u.
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6.3.1 An Optimal Online Algorithm

We show the competitive ratio for this problem is also ν(l, u, c) by proving the following al-

gorithm is ν(l, u, c)-competitive. Lower bound for the single element case (Theorem 6.19)

is applicable since single element constraint is uniform matroid of rank 1 constraint. There-

fore, we only prove upper bound, i.e., the following algorithm is ν(l, u, c)-competitive. In

the algorithms, let ei be the element given in the ith round, and let Bi be the set of

selected elements at the end of the ith round. We denote by w(Bi) the total value of

elements in Bi.

Algorithm 13 Matroid Case

1: B0 := ∅
2: for all elements ei, in order of arrival, do
3: if Bi−1 ∪ {ei} ∈ I then Bi := Bi−1 ∪ {ei}, ki := 1

4: else let ej be the element with smallest value
ϕ(kj+1)
ϕ(kj)

·w(ej) such that Bi−1∪{ei}\
{ej} ∈ I

5: if w(ei) >
ϕ(kj+1)
ϕ(kj)

· w(ej) then Bi := Bi−1 ∪ {ei} \ {ej}, ki := kj + 1

6: else Bi := Bi−1 and ki := 0
7: end for

Theorem 6.20. The online Algorithm 13 is ν(l, u, f)-competitive.

Proof. Let OPT denote an optimal solution for the offline problem whose input sequence

is e1, . . . , en, and let Bn = {eb1 , eb2 , . . . , ebh}. If each element ei has a weight

w′(ei) =


ϕ(ki+1)
ϕ(ki)

· w(ei) (ki ≥ 1),

w(ei) (ki = 0)

then Bn is a maximum-weight base of the matroid M since Algorithm 13 can be seen as a

matroid greedy algorithm (Algorithm 2) for the weight. Thus w(OPT ) ≤
∑h

i=1 w
′(ebi) =∑h

i=1

ϕ(kbi
+1)

ϕ(kbi
) w(ebi) since w

′(ei) ≥ w(ei) for each element ei.

Let R be the elements canceled by the algorithm. Then the competitive ratio is at most

w(OPT )

w(Bn)− f · w(R)
≤

∑h
i=1

ϕ(kbi
+1)

ϕ(kbi
) · w(ebi)∑h

i=1

(
w(ebi)− f ·

∑kbi
−1

j=1
ϕ(j)

ϕ(kbi
) · w(ebi)

)
≤ h

max
i=1

ϕ(kbi
+1)

ϕ(kbi
) · w(ebi)

w(ebi)− f ·
∑kbi

−1

j=1
ϕ(j)

ϕ(kbi
) · w(ebi)

=
h

max
i=1

ϕ(kbi + 1)

ϕ(kbi)− f ·
∑kbi

−1

j=1 ϕ(j)
= ν(l, u, f).
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6.4 Unweighted Knapsack Case with Lower Bound of

Weights

For the unweighted knapsack case, let 1 > l > 0 be a lower bound of weight of each

element. We show that the online unweighted knapsack problem with unit cancellation

cost has the competitive ratio ζ(l, f) (see Figure 6.2):

ζ(l, f) =



ν(l, 1, f) (l > 1/2, f < (1− l)/l),

2 (l = 1/2, 1/4 ≤ f ≤ 1),√
9f2+8f+8+3f

2 (l = 1/2, 0 < f ≤ 1/4),

2 (0 ≤ l < 1/2, 0 < f ≤ max{1/2, 4l−1
2l }),

1+f+
√

f2+2f+5

2 (0 ≤ l ≤ 1/3, 1/2 ≤ f ≤ l2−3l+1
l(1−l) ),

fl+
√

f2l2+4l

2l (max{ l2−3l+1
l(1−l) ,

4l−1
2l } ≤ f ≤ 1−l

l ),

1/l (f ≥ (1− l)/l).

(6.5)

Figure 6.2. The areas of the competitive ratio ζ(l, f).

For example, the competitive ratios ζ(l, f) for l = 0, 0.4, 0.5, 0.8, and f =

0.25, 0.5, 0.8, 1.2, are given in Figure 6.3 and 6.4.

6.4.1 Optimal Online Algorithms

In this subsection, we show the upper bound of the competitive ratio for the problem.

Theorem 6.21. There exists a ζ(l, f)-competitive algorithm for the proportional cost
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Figure 6.3. The competitive ratio ζ(l, f) for l = 0, 0.4, 0.5, 0.8.
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Figure 6.4. The competitive ratio ζ(l, f) for f = 0.25, 0.5, 0.8, 1.2.
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buyback problem with the unweighted knapsack constraint.

We consider four cases; the case f ≥ 1−l
l in Theorem 6.22, the case l > 1/2 in Theorem

6.23, the case l = 1/2 and 0 < f < 1 in Theorem 6.24, and the remaining case l < 1/2

and f < 1−l
l in Theorem 6.27.

Theorem 6.22. There exists a 1/l-competitive algorithm for the proportional cost buy-

back problem with the unweighted knapsack constraint.

Proof. Consider an online algorithm which takes the first element e1 and rejects the re-

maining elements. Since w(e1) ≥ l and the optimal value of the offline problem is at most

1, the competitive ratio is at most 1/l.

Theorem 6.23. There exists a ν(l, 1, c)-competitive algorithm for the unit cost buyback

problem with the unweighted knapsack constraint if l > 1/2.

Proof. This follows from Theorem 6.18 since we can hold only one element in the knapsack.

For l = 1/2 and 0 < f < 1/4, we use the following algorithm. Let ei be the element

given in the ith round. Define by Bi the set of selected elements at the end of ith round,

and by w(Bi) the total weight in Bi.

Algorithm 14 Removal at most Twice

1: B0 := ∅, k := 0
2: for all elements ei, in order of arrival, do
3: if w(Bi−1) + w(ei) ≤ 1 then
4: Bi := Bi−1 ∪ {ei}
5: if w(Bi) ≥

√
9f2+8f+8−3f

4(1+f) and k = 0 then STOP

6: else if k = 1 then STOP

7: else if w(ei) ≥
√

9f2+8f+8−f

4 then Bi := {ei} and STOP
8: else if w(ei) = 1/2 then Bi := {ei} and k := 1
9: else Bi := Bi−1

10: end for

Here STOP denotes that the algorithm rejects the elements after this round.

Theorem 6.24. The online Algorithm 14 is

√
9f2+8f+8+3f

2 -competitive for the propor-

tional cost buyback problem with the unweighted knapsack constraint if l = 1/2 and

0 < f < 1/4.

Proof. If the algorithm stops at the fifth line, then the competitive ratio is at most

1√
9f2+8f+8−3f

4(1+f)

=

√
9f2 + 8f + 8 + 3f

2

since the algorithm has never removed elements.
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If the algorithm stops at the sixth line, then the competitive ratio is at most

1

1− f ·
√

9f2+8f+8−3f

4(1+f)

≤ 1
√

9f2+8f+8−f

4 − f ·
(√

9f2+8f+8−3f

4(1+f) + 1
2

)
=

√
9f2 + 8f + 8 + 3f

2

since it removes at most one elements with size smaller than

√
9f2+8f+8+3f

4(1+f) and it keeps

two elements with size 1/2.

If the algorithm stops at the seventh line, then the competitive ratio is at most

1
√

9f2+8f+8−f

4 − f ·
(√

9f2+8f+8−3f

4(1+f) + 1
2

) =

√
9f2 + 8f + 8 + 3f

2

since it removes at most two elements with size 1/2 and smaller than

√
f2−2f+2−f

2 .

If the algorithm has never stopped (at the fifth or sixth or seventh line), then the

competitive ratio is at most

√
9f2+8f+8−f

4

1
2 − f ·

(√
9f2+8f+8−3f

4(1+f) + 1
2

) =

√
9f2 + 8f + 8 + 3f

2

since it removes at most one element and the offline optimal value is at most

√
9f2+8f+8−f

4 .

In the rest of this subsection, we would like to show Algorithm 15 is ζ(l, f)-competitive

for f < 1−l
l and l < 1/2. The main ideas of the algorithm are: i) it rejects elements

(with no cost) many times, but in at most one round, it removes some elements from the

knapsack. ii) some elements are removed from the knapsack, only when the total value in

the resulting knapsack gets high enough to guarantee the optimal competitive ratio.

Let ei be the element given in the ith round. Define by Bi−1 the set of elements in the

knapsack at the beginning of ith round, and by w(Bi−1) the total weight in Bi−1.

Lemma 6.25. If w(Bi−1)+w(ei) > 1 and some B′
i−1 ⊆ Bi−1 satisfies ζ(l, f) ·w(Bi−1) <

w(B′
i−1)+w(ei) ≤ 1, then the sixth line of Algorithm 15 is executed in the ith round, for

f ≤ 1
l − 1 and l < 1/2.

Proof. We consider the following cases.

Case 1.: f ≤ max{ l3−3l+1
l(1−l) , 1/2}. Since w(Bi−1) + w(ei) > 1 and ζ(l, f) · w(Bi−1) <

w(B′
i−1) + w(ei), we obtain

1

ζ(l, f)
+ f · (w(Bi−1)− w(B′

i−1))
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Algorithm 15

1: B0 = ∅
2: for all elements ei, in order of arrival, do
3: if w(Bi−1) + w(ei) ≤ 1 then
4: Bi := Bi−1 ∪ {ei}
5: if w(Bi) ≥ 1/ζ(l, f) then STOP
6: else if ∃B′

i−1 ⊆ Bi−1 s.t. 1
ζ(l,f) + f · (w(Bi−1)−w(B′

i−1)) < w(B′
i−1) +w(ei) ≤ 1

then Bi := B′
i−1 ∪ {ei} and STOP

7: else Bi := Bi−1

8: end for

Here STOP denotes that the algorithm rejects the elements after this round.

<
w(Bi−1) + w(ei)

ζ(l, f)
+ f · (w(Bi−1)− w(B′

i−1))

<
1 + fζ(l, f)− fζ2(l, f)

ζ2(l, f)
w(B′

i−1) +
1 + fζ(l, f) + ζ(l, f)

ζ2(l, f)
w(ei).

As ζ2(l, f) ≥ 1 + (1 + f)ζ(l, f) by the definition of ζ(l, f), we have

1 + fζ(l, f)− fζ2(l, f)

ζ2(l, f)
≤ 1 + fζ(l, f)− fζ2(l, f)

1 + fζ(l, f) + ζ(l, f)
< 1 and

1 + fζ(l, f) + ζ(l, f)

ζ2(l, f)
≤ 1.

Case 2.: 1/2 ≤ f ≤ 4l−1
2l and 1/3 ≤ l < 1/2. Since ζ(l, f) · w(Bi−1) < w(B′

i−1) + w(ei),

w(Bi−1) ≥ l and ζ(l, f) = 2 we obtain

1

ζ(l, f)
+ f · (w(Bi−1)− w(B′

i−1))

=
1

2
+ f · (w(Bi−1)− w(B′

i−1))

≤
w(B′

i−1) + w(ei)

4l
+ f ·

(
w(B′

i−1) + w(ei)

2
− w(B′

i−1)

)
=

(
1

4l
− f

2

)
w(Bi−1′) +

(
1

4l
+
f

2

)
w(ei).

As f ≤ 4l−1
2l , we have

1

4l
− f

2
≤ 1

4l
+
f

2
≤ 1.

Case 3.: max{ l2−3l+1
l(1−l) ,

4l−1
2l } ≤ f ≤ 1

l − 1. Since ζ(l, f) ·w(Bi−1) < w(B′
i−1) +w(ei) and

w(Bi−1) ≥ l, we obtain

1

ζ(l, f)
+ f · (w(Bi−1)− w(B′

i−1))

≤
w(B′

i−1) + w(ei)

l · ζ2(l, f)
+ f ·

(
w(B′

i−1) + w(ei)

ζ(l, f)
− w(B′

i−1)

)
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=

(
1 + l · f · ζ(l, f)
l · ζ2(l, f)

− f

)
w(Bi−1′) +

(
1 + l · f · ζ(l, f)
l · ζ2(l, f)

)
w(ei).

As ζ2(l, f) = 1 + l · f · ζ(l, f) by the definition of ζ(l, f), we have

1 + l · f · ζ(l, f)
l · ζ2(l, f)

− f ≤ 1 + l · f · ζ(l, f)
l · ζ2(l, f)

= 1

Let OPT denote an optimal solution for the offline problem whose input sequence is

e1, . . . , ei.

Lemma 6.26. If w(Bi) < 1/ζ(l, f) then we have |OPT \Bi| ≤ 1.

Proof. Bi contains all the elements smaller than 1/2 seen so far, since w(Bi) < 1/ζ(l, f) ≤
1/2. Any element u ∈ OPT \ Bi has size greater than 1 − 1/ζ(l, f) ≥ 1/2. Therefore,

|OPT \Bi| ≤ 1 holds by w(OPT ) ≤ 1.

Theorem 6.27. The online Algorithm 15 is ζ(l, f)-competitive.

Proof. Suppose that the sixth line is executed in round k. Then it holds that 1
ζ(l,f) + f ·

(w(Bk−1) − w(B′
k−1)) < w(B′

k−1) + w(ek) = w(Bk). Since w(Bi) = w(Bk) holds for all

i ≥ k, we have

w(OPT )

w(Bi)− f · (w(Bk−1)− w(B′
k−1))

≤ 1

w(Bk)− f · (w(Bk−1)− w(B′
k−1))

< ζ(l, f).

We next assume that the sixth line has never been executed. If w(Bi) ≥ 1/ζ(l, f), we

have the competitive ratio w(OPT )/w(Bi) ≤ 1/w(Bi) ≤ ζ(l, f). On the other hand, if

w(Bi) < 1/ζ(l, f), |OPT \ Bi| = 0 or 1 holds by Lemma 6.26. If |OPT \ Bi| = 0, we

obtain the competitive ratio 1. Otherwise (i.e., OPT \Bi = {el} for some l), Lemma 6.25

implies that ζ(l, f) · w(Bl−1) ≥ w(B′
l−1) + w(el) for B′

l−1 = OPT ∩ Bl−1. Therefore we

obtain

w(OPT )

w(Bi)
≤
w(B′

l−1) + w(el) + w(Bi \Bl−1)

w(Bl−1) + w(Bi \Bl−1)

≤ max

{
w(B′

l−1) + w(el)

w(Bl−1)
,
w(Bi \Bl−1)

w(Bi \Bl−1)

}
≤ ζ(l, f).

Before concluding this section, we remark that the condition in the sixth line can be

checked efficiently.

Proposition 6.28. We can check the condition in the sixth line in O(|Bi−1| + 2ζ
2(l,f))

time.

Proof. Let x = 1
1+f

(
1

ζ(l,f) + fw(Bi−1)− w(ei)
)
and y = 1−w(ei). Our goal is to decide

whether there exists B′
i−1 ⊆ Bi−1 such that x < w(B′

i−1) ≤ y in O(|Bi−1|+2ζ
2(l,f)) time.
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As w(Bi−1) < 1/ζ(l, f), w(ei) ≤ 1, and ζ2(l, f) ≥ (1 + f)ζ(l, f) + 1 by the definition of

ζ(l, f), we get

y − x = 1− 1

ζ(l, f)(1 + f)
− f

1 + f
(w(ei) + w(Bi−1))

> 1− 1

ζ(l, f)(1 + f)
− f

1 + f
(1 +

1

ζ(l, f)
)

=
ζ(l, f)− 1− f

ζ(l, f)(1 + f)
≥ ζ(l, f)

ζ2(l, f)− 1
− 1

ζ(l, f)
=

1

ζ3(l, f)− ζ(l, f)
≥ 1

ζ3(l, f)
. (6.6)

Let Bi−1 = {b1, b2, . . . , bm} satisfy w(b1) ≥ · · · ≥ w(bk) ≥ y − x > w(bk+1) ≥
· · · ≥ w(bm). Then we claim the existence of B′

i−1 is equivalent to the existence of

A ⊆ {b1, b2, . . . , bk} such that x −
∑m

i=k+1 w(bi) < w(A) ≤ y. If such an A exists,

then B′
i−1 = A ∪ {bk+1, . . . , bl} satisfies the conditions, where l = min{l ≥ k + 1 :

w(A) +
∑l

i=k+1 w(bi) > x}. If there exists B′
i−1 such that x < w(B′

i−1) ≤ y, then

A = B′
i−1 \ {bk+1, . . . , bm} satisfies x−

∑m
i=k+1 w(bi) < w(A) ≤ y.

Therefore we need to check the condition x −
∑m

i=k+1 w(bi) < w(A) ≤ y for at most

2k < 2ζ
2(l,f) subsets, since k ≤ w(Bi−1)/(y − x) < ζ2(l, f) holds by w(Bi−1) < 1/ζ(l, f)

and y − x > 1/ζ3(l, f). Thus we can check the condition in the sixth line in O(|Bi−1| +
2ζ

2(l,f)).

6.4.2 Lower Bound

In this subsection, we show a lower bound of the competitive ratio ζ(f, l) for the problem.

Theorem 6.29. There exists no online algorithm with a competitive ratio less than ζ(l, f)

for the proportional cost buyback problem with the unweighted knapsack constraint.

We consider five cases; the case f ≥ 1−l
l in Theorem 6.30, the case l > 1/2 in Theorem

6.31, the case l = 1/2 and 0 < f < 1/4 in Theorem 6.32, the case l = 1/2 and 1/4 ≤ f < 1

in Theorem 6.33, and the remaining case l < 1/2 and f < 1−l
l . For the case l < 1/2 and

f < 1−l
l , we consider three subcases; the case f ≤ max{ 1

2 ,
4l−1
2l } in Theorem 6.34, the

case max{ l2−3l+1
l(1−l) ,

4l−1
2l } ≤ f ≤ 1−l

l in Theorem 6.35, and the case 1
2 ≤ f ≤ l2−3l+1

l(1−l) in

Theorem 6.36.

Theorem 6.30. If f ≥ 1−l
l , there exists no online algorithm with a competitive ratio

less than 1/l for the proportional cost buyback problem with the unweighted knapsack

constraint.

Proof. For an online algorithmA chosen arbitrarily, our adversary first requests an element

with weight l. If A does not accept it, the adversary stops the input sequence. Otherwise,

it next requests an element with weight 1 and stops the input sequence. It is clear that

A must take the first element, since otherwise the competitive ratio becomes infinite. If

A rejects the second element, then we have the competitive ratio 1/l. Otherwise (i.e.,

A accepts the second element by removing the first element), the competitive ratio is

1/(1− f · l) ≥ 1/l since f ≥ 1−l
l .
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Theorem 6.31. If l > 1/2, there exists no online algorithm with a competitive ratio less

than ν(l, 1, f) for the proportional cost buyback problem with the unweighted knapsack

constraint.

Proof. This follows from Theorem 6.19 since we can hold only one element in the knapsack.

Theorem 6.32. If l = 1/2 and 0 < f < 1/4 there exists no online algorithm with a

competitive ratio less than √
9f2 + 8f + 8 + 3f

2

for the proportional cost buyback problem with the unweighted knapsack constraint.

Proof. Let A denote an online algorithm chosen arbitrarily. Our adversary (see Figure

6.5) requests the sequence of elements whose weights are√
9f2 + 8f + 8− 3f

4(1 + f)
,
1

2
,

√
9f2 + 8f + 8− f

4
,
1

2
(6.7)

until A rejects some element in (6.7). Note that the weights are in a range [1/2, 1] for

0 < f < 1/4. If A rejects the second element with weight 1/2, then the adversary requests

an element with weight 1/2 and stops the input sequence. On the other hand, if it rejects

another element, the adversary stops the input sequence.

We first note that algorithm A must take the first element, since otherwise the com-

petitive ratio of A becomes infinite. After the first round, A always keeps exactly one

element in the knapsack, since all the elements in (6.7) have weight at least 1/2 (i.e., a

half of the knapsack capacity) and the elements with weight 1/2 are requested only when

A keeps an element greater than 1
2 . This implies that A removes the old element from

the knapsack to accept a new element. If A rejects the second element, the competitive

ratio is at least

1√
9f2+8f+8−3f

4(1+f)

=

√
9f2 + 8f + 8 + 3f

2
.

If A rejects the third element, the competitive ratio is at least

√
9f2+8f+8

4

1
2 − f ·

√
9f2+8f+8−3f

4(1+f)

=

√
9f2 + 8f + 8 + 3f

2
.

If A rejects the fourth element, the competitive ratio is at least

1
√

9f2+8f+8−f

4 − f ·
(√

9f2+8f+8−3f

4(1+f) + 1
2

) =

√
9f2 + 8f + 8 + 3f

2
.
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Finally, if A rejects no element in (6.7), then its profit is at most 1/2 and the competitive

ratio is at least

2 ≥
√
9f2 + 8f + 8 + 3f

2

by f < 1/4 since the optimal value for this case is 1.

√
9f2+8f+8−3f

4(1+f)

accept // 1

2
reject

%%JJJJJJJJJJJJJJ

accept //
√

9f2+8f+8−f

4

accept //

reject

%%KKKKKKKKKKKKK

1

2

1

2
STOP

Figure 6.5. The adversary for Theorem 6.32.

Theorem 6.33. If l = 1/2 and 1/4 ≤ f < 1 there exists no online algorithm with a com-

petitive ratio less than 2 for the proportional cost buyback problem with the unweighted

knapsack constraint.

Proof. Let A denote an online algorithm chosen arbitrarily. For a sufficiently small ε (> 0),

our adversary (see Figure 6.6) requests the sequence of elements whose weights are

1

2
+ ε,

1

2
, min

{
1,

1

2
+ f

}
,
1

2
(6.8)

until A rejects some element in (6.8). If A rejects the second element with weight 1/2,

then the adversary requests an element with weight 1/2 and stops the input sequence. On

the other hand, if it rejects another element, the adversary stops the input sequence.

We first note that algorithm A must take the first element, since otherwise the com-

petitive ratio of A becomes infinite. After the first round, A always keeps exactly one

element in the knapsack, since all the elements in (6.8) have weight at least 1/2 (i.e., a

half of the knapsack capacity) and the elements with weight 1/2 are requested only when

A keeps an element greater than 1
2 . This implies that A removes the old element from

the knapsack to accept a new element. If A rejects the second element, the competitive

ratio is at least

1
1
2 + ε

→ 2

as ε→ 0. If A rejects the third element, the competitive ratio is at least

min{1, 12 + f}
1
2 − f ·

(
1
2 + ε

) ≥ min{2, 1 + 2f}
1− f

≥ 2
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by f ≥ 1/4. If A rejects the fourth element, the competitive ratio is at least

1

min
{
1, 12 + f

}
− f · ( 12 + ε+ 1

2 )
≥ 1

1
2 + f − f

= 2.

Finally, if A rejects no element in (6.8), then its profit is at most 1/2 and the competitive

ratio is at least 2 since the optimal value for this case is 1.

1
2 + ε

accept // 1

2
reject

%%KKKKKKKKKKKKKKK
accept // min

{
1, 12 + f

} accept //

reject

%%LLLLLLLLLLLLLL
1

2

1

2
STOP

Figure 6.6. The adversary for Theorem 6.33.

Theorem 6.34. If l < 1/2, there exists no online algorithm with a competitive ratio

less than 2 for the proportional cost buyback problem with the unweighted knapsack

constraint.

Proof. Let A denote an online algorithm chosen arbitrarily. For a sufficiently small ε (> 0),

our adversary (see Figure 6.7) requests the sequence of elements whose weights are

1

2
+ ε,

1

2
+
ε

2
, . . . ,

1

2
+

ε

⌈1/f⌉+ 1
, (6.9)

until A rejects some element in (6.9). If A rejects the element with weight 1
2 + ε, then

the adversary stops the input sequence. On the other hand, if it rejects the element with

weight 1
2 + ε

k for some k > 1, then the adversary requests an element with weight 1
2 − ε

k

and stops the input sequence.

We first note that algorithm A must take the first element, since otherwise the com-

petitive ratio of A becomes infinite. After the first round, A always keeps exactly one

element in the knapsack, since all the elements in (6.9) have weight larger than 1
2 (i.e.,

a half of the knapsack capacity) and for any j < k we have ( 12 + ε
j ) + ( 12 − ε

k ) is larger

than 1. This implies that A removes the old element from the knapsack to accept a new

element. If A rejects 1
2 + ε

k for some k > 1, the competitive ratio is at least 1/
(
1
2 + ε

)
,

which approaches 2 as ε→ 0. Finally, if A rejects no element in (6.9), then its profit is

1

2
+

ε

⌈1/f⌉+ 1
− f ·

⌈1/f⌉∑
i=1

(
1

2
+
ε

i

)
≤ 1

2
+ ε− f · 1

f
· 1
2
= ε

while the optimal profit for the offline problem is 1
2 + ε, which completes the proof.
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1
2 + ε

accept // 1
2 + ε

2

reject

%%KKKKKKKKKK

accept // 1
2 + ε

3

accept //

reject

$$HHHHHHHHH

accept //

reject

##HHHHHHHHHHH
1
2 + ε

⌈1/f⌉+1

1
2 − ε

2
1
2 − ε

3
1
2 − ε

⌈1/f⌉

Figure 6.7. The adversary for Theorem 6.34.

Theorem 6.35. If max{ l2−3l+1
l(1−l) ,

4l−1
2l } < f ≤ 1−l

l (0 ≤ l ≤ 1/2) there exists no online

algorithm with a competitive ratio less than

fl +
√
f2l2 + 4l

2l

for the proportional cost buyback problem with the unweighted knapsack constraint.

Proof. Let A denote an online algorithm chosen arbitrarily, and let

y =
fl +

√
f2l2 + 4l

2
.

As l2−3l+1
l(l−1) < f and 0 ≤ l ≤ 1/2, we have y + l > 1 and y ≥ l. Our adversary (see Figure

6.8) requests the following sequence of elements

l, y, 1 (6.10)

until A rejects some element in (6.10), and if A rejects the element then the adversary

immediately stops the input sequence.

Note that A must accept the first element l, since otherwise the competitive ratio

becomes infinite. If A rejects the second element, then the competitive ratio is at least

y

l
=
fl +

√
f2l2 + 4l

2l

If A takes the second element y (and removes the first element), the competitive ratio is

at least

1

y − f · l
=
fl +

√
f2l2 + 4l

2l

since y − f · l ≥ 1− f · (l + y) by f > max{ l2−3l+1
l(1−l) ,

4l−1
2l } ≥ −3l+

√
l2+8l

4l .

Theorem 6.36. If 1/2 ≤ f ≤ l2−3l+1
l(1−l) and 0 ≤ l ≤ 1/3 there exists no online algorithm
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l
accept // y

reject

$$IIIIIIIII
accept // 1

STOP

Figure 6.8. The adversary for Theorem 6.35.

with a competitive ratio less than

1 + f +
√
f2 + 2f + 5

2

for the proportional cost buyback problem with the unweighted knapsack constraint.

Proof. Let A denote an online algorithm chosen arbitrarily, and let

x =
3 + f −

√
f2 + 2f + 5

2(1 + f)
.

As 1/2 ≤ f ≤ l2−3l+1
l(1−l) , it holds that l ≤ x ≤ 1/3. For a sufficiently small ε (> 0), our

adversary (see Figure 6.9) requests the following sequence of elements

x, 1− x+ ε, 1− x, (6.11)

until A rejects some element in (6.11), and if A rejects the element then the adversary

immediately stops the input sequence.

Note that A must accept the first element x, since otherwise the competitive ratio

becomes infinite. If A rejects the second element, then the competitive ratio is at least

1− x+ ε

x
≥ 1− x

x
=

1 + f +
√
f2 + 2f + 5

2
.

If A takes the second element 1− x+ ε (and removes the first element), the competitive

ratio is at least

1

1− x+ ε− f · x
→ 1

1− x− f · x
=

1 + f +
√
f2 + 2f + 5

2

as ε→ 0.

x
accept // 1− x+ ε

reject

''NNNNNNNNNNN
accept // 1− x

STOP

Figure 6.9. The adversary for Theorem 6.36.
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Chapter 7

Unit Cost Buyback Problem

In this chapter, we study the unit cost buyback problem with a matroid constraint, or

the unweighted knapsack constraint. In this model, the removal cost of each element is a

fixed constant c > 0.

We first consider the matroid case with upper and lower bounds of weights, i.e. each

element ei has a weight such that l ≤ w(ei) ≤ u. Next, we deal with the unweighted

knapsack case with lower bounds of weights, i.e. each element ei has a weight such that

l ≤ w(ei) ≤ 1.

7.1 Matroid Case with Upper and Lower Bound of

Weights

In this section, we consider the matroid case with upper and lower bound of weights,

where the constraint I is an arbitrary independence family of matroid and each element

ei has weight l ≤ w(ei) ≤ u. We assume 0 < l < u < ∞. We show that this problem has

the competitive ratio λ(l, u, c) as defined below:

Let ψρ(n) satisfy a recurrence relationψρ(1) = l,

ψρ(n+ 1) = ρ(ψρ(n)− (n− 1)c) (n = 1, 2, . . . )
(7.1)

and an explicit expression of ψρ(n) is

ψρ(n) =
cρ

ρ− 1
n−

(
cρ

(ρ− 1)2
− l

)
ρn−1 − cρ(ρ− 2)

(ρ− 1)2
. (7.2)

Then λ(l, u, c) is the unique value ρ ≥ 1 which satisfies maxn ψρ(n) = u (the uniqueness

is shown in later). For example, the competitive ratios λ(l, u, c) for (l, u) = (0.5, 1.0) and

(u, c) = (1.0, 0.05) are given in Figure 7.1.



82 Chapter 7 Unit Cost Buyback Problem

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1

co
m

pe
tit

iv
e 

ra
tio

c

λ(0.5,1.0,c)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.2 0.4 0.6 0.8 1

c
o

m
p

e
ti
ti
v
e

ra
ti
o

l

λ( , 1. 0, 0. 05)l

Figure 7.1. The competitive ratio λ(l, u, c) for (l, u) = (0.5, 1.0) and (u, c) = (1.0, 0.05).

7.1.1 Properties of λ(l, u, c)

We first show some properties about ψρ(n) in (7.1), and the uniqueness of maxn ψρ(n) = u.

Proposition 7.1. If ρ ≥ 1 + c+
√
c2+4lc
2l , then ψρ(n) approaches infinity as n→ ∞.

Proof. If ρ ≥ 1 + c+
√
c2+4lc
2l , then l(ρ− 1)2 − ρc ≥ 0. Therefore ψρ(n) → ∞ as n→ ∞ by

(7.2).

Proposition 7.2. If 1 < ρ < 1 + c+
√
c2+4lc
2l , then ψρ(n+ 2)− 2ψρ(n+ 1) + ψρ(n) < 0.

Proof. We have

ψρ(n+ 2)− 2ψρ(n+ 1) + ψρ(n) =
{
l(ρ− 1)2 − ρc

}
ρn−1 < 0.

Proposition 7.3. maxn ψρ(n) is strictly monotone increasing for 1 ≤ ρ < 1+ c+
√
c2+4lc
2l .

Proof. It is sufficient to prove ψρ1(n) < ψρ2(n) for 1 < ρ1 < ρ2 < 1 + c+
√
c2+4lc
2l , n > 1,

and ψρ1(n) > 0, by Proposition 7.2. We prove by induction on n. The base case ψρ1(2) =

ρ1 · l < ρ2 · l = ψρ2(2) is obvious. We assume ψρ1(n) < ψρ2(n) and ψρ1(n+ 1) > 0. Then,

we have

0 < ψρ1(n+ 1) = ρ1(ψρ1(n)− (n− 1)c)

< ρ1(ψρ2(n)− (n− 1)c) < ρ2(ψρ2(n)− (n− 1)c) = ψρ2(n+ 1).

Proposition 7.4. The value ρ ≥ 1 which satisfies maxn ψρ(n) = u is unique.

Proof. By Propositions 7.1 and 7.3, maxn ψρ(n) = u is unique for ρ (see Figure 7.2).

We define ψ(n) as ψλ(l,u,c)(n) and n
∗ as argmaxn ψ(n).

Remark 7.5. For any positive number t, we have λ(l, u, c) = λ(l/t, u/t, c/t).
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Figure 7.2. Uniqueness of ρ ≥ 1 such that maxn ψρ(n) = u.

Remark 7.6. For the case without upper bound of weights, we have λ(l,∞, c) =

limu→∞ λ(l, u, c) = 1 + c+
√
c2+4lc
2l .

7.1.2 An Optimal Online Algorithm

In this subsection, we show Algorithm 16 is λ(l, u, c)-competitive for the problem. Let ei

be the element given in the ith round. Define by Bi the set of selected elements at the

end of ith round, and by w(Bi) the total weight in Bi.

We partition the range [l, u] into the intervals

I1 = [t(1), t(2)], I2 = (t(2), t(3)], I3 = (t(3), t(4)], . . . , In∗−1 = (t(n∗−1), t(n∗)],

and let ind(e) be the index of the interval e belongs to, i.e., w(e) ∈ Iind(e).

Algorithm 16 Matroid Case

1: B0 := ∅
2: for all elements ei, in order of arrival, do
3: if Bi−1 ∪ {ei} ∈ I then Bi := Bi−1 ∪ {ei}
4: else let e′i be the element of smallest value such that Bi−1 ∪ {ei} \ {e′i} ∈ I
5: if ind(ei) > ind(e′i) then Bi := Bi−1 ∪ {ei} \ {e′i}
6: else Bi := Bi−1

7: end for

Theorem 7.7. The online Algorithm 16 is λ(l, u, c)-competitive for the unit cost buyback

problem with the unweighted knapsack constraint.

Proof. Let OPT denote an optimal solution for the offline problem whose input sequence

is e1, . . . , en. It is easy to see, OPT and Bn are bases of M . Moreover, if each element

ei has a weight ψ(ind(ei)), Bn is a maximum-weight base of matroid M since Algorithm
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16 is a matroid greedy algorithm (Algorithm 2) for the weight. Therefore, there is a

perfect matching {(b∗i , bi)}i=1,...,h such that ind(b∗i ) = ind(bi) (i = 1, 2, . . . , h) for OPT =

{b∗1, b∗2, . . . , b∗h} and Bn = {b1, b2, . . . , bh}.
For each i, let ki be ind(bi). Then, w(b

∗
i ) ≤ ψ(ki+1), w(bi) ≥ ψ(ki), and the algorithm

cancels at most
∑h

i=1(ki − 1) elements. Therefore, the competitive ratio is at most

w(OPT )

w(Bn)−
∑h

i=1(ki − 1)c
=

∑h
i=1 w(b

∗
i )∑h

i=1(w(bi)− (ki − 1)c)
≤ max

i

w(b∗i )

w(bi)− (ki − 1)c

≤ max
i

ψ(ki + 1)

ψ(ki)− (ki − 1)c
= λ(l, u, c).

Remark 7.8. If l and u are not known to the algorithm in advance, we can get

λ(l,∞, c)-competitive algorithm by modifying the definition of ind(e) to partition the

range [minj≤i w(ej),∞].

7.1.3 Lower Bound

In this subsection, we show λ(l, u, c) is also a lower bound for the competitive ratio of the

problem for the single element case. This lower bound is applicable for the the general

matroid case since the single element case is a special case of it, i.e., the uniform matroid

of rank 1.

Theorem 7.9. There exists no online algorithm with competitive ratio less than λ(l, u, c)

for the single element case.

Proof. Let A denote an online algorithm chosen arbitrarily. Our adversary requests the

sequence of elements whose weights are

ψ(1), ψ(2), . . . , ψ(n∗), (7.3)

until A rejects some element in (7.3).

If A rejects the element with weight ψ(1), then the competitive ratio of A becomes

infinite. On the other hand, if A rejects the element with weight ψ(k+1) for some k ≥ 1,

A cancels k − 1 elements and the competitive ratio is at least

ψ(k + 1)

ψ(k)− (k − 1)c
= λ(l, u, c).

Finally, if A accepts all the elements in (7.3), then the competitive ratio is at least

ψ(n∗)

ψ(n∗)− (n∗ − 1)c
=

ψ(n∗)

ψ(n∗ + 1)
· λ(l, u, c) ≥ λ(l, u, c).
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7.2 Unweighted Knapsack Constraint with Lower

Bound of Weights

In this section, we consider the unweighted knapsack constraint of capacity 1 case with

upper and lower bound of weight, where the constraint I = {I :
∑

i∈I w(ei) ≤ 1} and

each element ei has weight l ≤ w(ei) ≤ 1.

We show that the online unweighted knapsack problem with unit cancellation cost has

the competitive ratio µ(l, c) in (7.4). Namely, we construct µ(l, c)-competitive algorithms

for the problem and prove that they are the best possible. Let Sk = {(l, c) : k ≤ (1−l)2

l+c−lc <

k + 1} (k = 1, 2, . . . ) and Sk,1, Sk,2, Sk,3, Sk,4 (Sk =
∪4

i=1 Sk,i) be

Sk,1 =
{
(l, c) ∈ Sk : c < min

{
2k−1

2k(2k+1) , 2l −
1

2(k+1)

}}
,

Sk,2 =
{
(l, c) ∈ Sk : c ≥ 2k−1

2k(2k+1) , η(k) > ξ(k + 1), l + c < 1
k+1

}
∪
{
(l, c) ∈ Sk : c ≥ 2k−1

2k(2k+1) , η(k) >
1

(k+1)l , l + c ≥ 1
k+1

}
,

Sk,3 =
{
(l, c) ∈ Sk : 1

(k+1)l ≥ η(k), l + c ≥ 1
k+1

}
,

Sk,4 =
{
(l, c) ∈ Sk : c ≥ 2k−1

2k(2k+1) , ξ(k + 1) ≥ η(k), l + c < 1
k+1

}
(see Figures 7.3, 7.4) where

η(k) =
k(c+ 1) +

√
k2(1− c)2 + 4k

2k(1− kc)
and ξ(k) =

kc+
√
k2c2 + 4kl

2kl
.

Points Pk, Qk in Figure 7.4 are

Pk =

(√
k

k + 1
−

k

k + 1
, 1−

√
k

k + 1

)
and Qk =

(
4k2 + 2k − 1

4k(k + 1)(2k + 1)
,

2k − 1

2k(2k + 1)

)
.

Let S0,1 = {(l, c) : (1−l)2

l+c−lc < 1, l < 1
2 , c < 2l − 1

2}, and let S0,4 = {(l, c) : (1−l)2

l+c−lc <

1, l + c < 1, c ≥ 2l − 1
2}.

Then µ(l, c) is defined as

µ(l, c) =



1
l (l + c ≥ 1),

λ(l, 1, c) (l > 1
2 , l + c < 1),

2c+
√
4c2−4c+2
1−2c (l = 1/2, 1/8 > c > 0),

2 (l = 1
2 ,

1
8 ≤ c < 1

2 ),

2 ((l, c) ∈ Sk,1, k = 0, 1, 2, . . . ),

η(k) ((l, c) ∈ Sk,2, k = 1, 2, 3, . . . ),

1
(k+1)l ((l, c) ∈ Sk,3, k = 1, 2, 3, . . . ),

ξ(k + 1) ((l, c) ∈ Sk,4, k = 0, 1, 2, . . . ).

(7.4)
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Figure 7.3. The areas of the competitive ratio µ(l, c).

Figure 7.4. The areas Sk,1, Sk,2, Sk,3, Sk,4.
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For example, the competitive ratios µ(l, c) for l = 1/2 and l = c are given in Figure 7.5.
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Figure 7.5. The competitive ratio µ(l, c) for l = 1/2 and l = c.

7.2.1 Properties of µ(l, c)

We start with several definitions and propositions needed later.

Definition 7.10. We define xk, yk as follows:

xk =
k + 2− kc−

√
k2(1− c)2 + 4k

2
, yk =

kc+
√
k2c2 + 4kl

2
.

Proposition 7.11. We have,

1

1− xk − kc
=

1− xk
kxk

= η(k),
1

yk − kc
=
yk
kl

= ξ(k).

Proof. We can get the results by simple calculations.

Proposition 7.12. Let k = ⌊ (1−l)2

l+c−lc⌋ and l, c satisfies l < 1
2 , l + c < 1. Then we have

µ(l, c) = max {η(k), ξ(k + 1), 2} ≥ 1

(k + 2)l
.

Proof. If l + c ≥ 1
k+1 , then µ(l, c) ≥

1
(k+1)l ≥

1
(k+2)l . Otherwise, l + c < 1

k+1 , we have

µ(l, c) ≥ ξ(k + 1) ≥ 1− l

(k + 1)l
= max

{
1− l

(k + 1)l
,
l

l

}
≥ 1

(k + 2)l
.

Proposition 7.13. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1. Then we have,

η(α) ≤ 2 ⇐⇒ c ≤ 2α− 1

2α(2α+ 1)
,

for α ∈ {1, 2, . . . , k}.

Proof. We can get the result by simple calculations.
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Proposition 7.14. For natural number n,

f(n) =
2n− 1

2n(2n+ 1)

is monotone decreasing.

Proof. We have

f(n+ 1)− f(n) =
2n+ 1

2(n+ 1)(2n+ 3)
− 2n− 1

2n(2n+ 1)

= − 4n2 − 3

2n(n+ 1)(2n+ 1)(2n+ 3)
< 0.

Proposition 7.15. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1 and l, c satisfies l < 1
2 , l+ c < 1. Then we have

η(k) ≤ 2 ⇒ η(α) ≤ 2.

for α ∈ {1, 2, . . . , k}.

Proof. By Propositions 7.13, 7.14,

η(k) ≤ 2 ⇐⇒ c ≤ 2k − 1

2k(2k + 1)
=⇒ c ≤ 2α− 1

2α(2α+ 1)
⇐⇒ η(α) ≤ 2.

Proposition 7.16. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1 and l, c satisfies l < 1
2 , l + c < 1. Then for any

positive integer α ∈ {1, 2, . . . , k}, we have

η(k) > 2 =⇒ η(k) ≥ η(α).

Proof. Since

xα =
α+ 2− αc−

√
α2(1− c)2 + 4α

2
⇐⇒ α =

(1− xα)
2

xα + (1− xα)c
,

we have

η(α) =
1− xα
αxα

=
1

1− xα
+

c

xα
.

In addition, for α ≥ β, we have

xα =
α(1− c) + 2−

√
α2(1− c)2 + 4α

2

=
2(1− αc)

α(1− c) + 2 +
√
α2(1− c) + 4α
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≤ 2(1− βc)

β(1− c) + 2 +
√
β2(1− c) + 4β

= xβ .

Let

g(x) =
1

1− x
+
c

x
.

Then, we have

g′(x) =
1

(1− x)2
− c

x2
=

((1 +
√
c)x−

√
c)((1−

√
c)x+

√
c)

x2(1− x)2

and it implies maxα∈{1,2,...,k} η(α) = max{η(1), η(k)}.
It is sufficient to prove η(1) < η(2) for η(k) > 2, η(1) > 2, and k ≥ 2. Since η(1) > 2

implies c > 1/6 by Proposition 7.13 and c < 1/2 by k ≥ 2, we obtain

(6c− 1)(1− c){(4c− 5)2 + 63} > 0,

⇐⇒
c+ 1 +

√
(1− c)2 + 4

2(1− c)
<

2(c+ 1) +
√

4(1− 1/2)2 + 8

4(1− 2c)
,

=⇒
c+ 1 +

√
(1− c)2 + 4

2(1− c)
<

2(c+ 1) +
√

4(1− c)2 + 8

4(1− 2c)
,

⇐⇒ η(1) < η(2).

Proposition 7.17. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1. Then we have

max{ max
α∈{1,2,...,k}

η(α), 2} = max{η(k), 2}.

Proof. This proposition follows by Propositions 7.15 and 7.16.

Proposition 7.18. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1. Then for any natural number α ∈ {1, 2, . . . , k}
and real x ∈ (0, 1− αc), it holds that

min

{
1

1− x− αc
,
1− x

αx

}
≤ η(α) ≤ µ(l, c).

Proof. Since 1
1−x−αc and 1−x

αx are respectively monotone increasing and decreasing in

x, the first inequality holds by Proposition 7.11. The second inequality is obtained by

Proposition 7.17 and the definition of µ(l, c).

Proposition 7.19. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1 and l, c satisfies l+ c < 1
k+1 . Then for any real

y ∈ ((k + 1)c, 1], it holds that

min

{
1

y − (k + 1)c
,

y

(k + 1)c

}
≤ ξ(k + 1) ≤ µ(l, c).
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Proof. Since 1
y−(k+1)c and y

(k+1)c are respectively monotone decreasing and increasing in

y, the first inequality holds by Proposition 7.11. The second inequality follows from the

definition of µ(l, c).

7.2.2 Optimal Online Algorithms

In this subsection, we show that µ(l, c) is an upper bound for the competitive ratio of the

problem.

Theorem 7.20. There exists a µ(l, c)-competitive algorithm for the unit cost buyback

problem with the unweighted knapsack constraint.

We consider 4 cases; the case l + c ≥ 1 or l = 1/2 and c ≥ 1/8 in Theorem 7.21, the

case l > 1/2 in Theorem 7.22, the case l = 1/2 and 1/8 > c > 0 in Theorem 7.23, and the

remaining case l + c < 1 and l < 1/2 in Theorem 7.26.

Theorem 7.21. There exists a 1/l-competitive algorithm for the unit cost buyback prob-

lem with the unweighted knapsack constraint.

Proof. Consider an online algorithm which takes the first element e1 and rejects the re-

maining elements. Since w(e1) ≥ l and the optimal value of the offline problem is at most

1, the competitive ratio is at most 1/l.

Theorem 7.22. There exists a λ(l, 1, c)-competitive algorithm for the unit cost buyback

problem with the unweighted knapsack constraint if l > 1/2.

Proof. This follows from Theorem 7.8 since we can hold only one element in the knapsack.

For l = 1/2 and 0 < c < 1/8, we use the following algorithm. Let ei be the element

given in the ith round. Define by Bi the set of selected elements at the end of ith round,

and by w(Bi) the total weight in Bi.

Algorithm 17 Removal at most Twice

1: B0 := ∅
2: for all elements ei, in order of arrival, do

3: if w(Bi−1) + w(ei) ≤ 1 then Bi := Bi−1 ∪ {ei} and if w(Bi) ≥
√
4c2−4c+2

2 then
STOP

4: else if w(ei) ≥ c+
√
4c2−4c+2

2 then Bi := {ei} and STOP
5: else if w(ei) = 1/2 then Bi := {ei}
6: else Bi := Bi−1

7: end for

Here STOP denotes that the algorithm rejects the elements after this round.

Theorem 7.23. The online Algorithm 17 is 2c+
√
4c2−4c+2
1−2c -competitive for the unit cost

buyback problem with the unweighted knapsack constraint if l = 1/2 and 1/8 > c > 0.
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Proof. If the algorithm stops at the third line, the competitive ratio is at most

1
√
4c2−4c+2

2 − c
=

2√
4c2 − 4c+ 2− 2c

=
2c+

√
4c2 − 4c+ 2

1− 2c

since it removes at most one element. If the algorithm stops at the fourth line, the

competitive ratio is at most

1

c+
√
4c2−4c+2

2 − 2c
=

2√
4c2 − 4c+ 2− 2c

=
2c+

√
4c2 − 4c+ 2

1− 2c

since it removes at most two elements.

If the algorithm has never stopped at the third or fourth line, the competitive ratio is

at most
c+

√
4c2−4c+2

2
1
2 − c

=
2c+

√
4c2 − 4c+ 2

1− 2c

since it removes at most one element and the offline optimal value is at most c+
√
4c2−4c+2

2 .

In the rest of this subsection, we would like to show the following Algorithm 18 is µ(l, c)-

competitive for l + c < 1 and l < 1/2. The main ideas of the algorithm are: i) it rejects

elements (with no cost) many times, but in at most one round, it removes some elements

from the knapsack. ii) some elements are removed from the knapsack, only when the total

value in the resulting knapsack gets high enough to guarantee the optimal competitive

ratio.

Algorithm 18 Removal at most Once

1: B0 := ∅, l0 := 1/2
2: for all elements ei, in order of arrival, do
3: if w(e1) ≥ 1/2 then Bi := {e1} and STOP
4: li := min{w(ei), li−1}
5: if w(Bi−1) + w(ei) ≤ 1 then Bi := Bi−1 ∪ {ei} and if w(Bi) ≥ 1/µ(li, c) then

STOP
6: else if ∃B′

i−1 ⊆ Bi−1 s.t. 1
µ(li,c)

+ |Bi−1 \ B′
i−1|c ≤ w(B′

i−1) + w(ei) ≤ 1 then

Bi := B′
i−1 ∪ {ei} and STOP

7: else Bi := Bi−1

8: end for

Here STOP denotes that the algorithm rejects the elements after this round.

Lemma 7.24. If w(Bi−1)+w(ei) > 1 and some B′
i−1 ⊆ Bi−1 satisfies µ(li, c) ·w(Bi−1) <

w(B′
i−1) + w(ei) ≤ 1, then the fourth line is executed in the ith round.

Proof. We assume B′
i−1 is maximal for w(B′

i−1) + w(ei) ≤ 1. Let k = ⌊ (1−li)
2

li+c−lic
⌋ and

α = |Bi−1 \B′
i−1|, 1− x = y = w(B′

i−1) + w(ei).
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As µ(li, c) · w(Bi−1) < w(B′
i−1) + w(ei) ≤ 1,

µ(li, c) <
w(B′

i−1) + w(ei)

w(Bi−1)
=

w(B′
i−1) + w(ei)

w(B′
i−1) + w(Bi−1 \B′

i−1)
≤
w(B′

i−1) + w(ei)

w(Bi−1 \B′
i−1)

.

Since w(Bi−1 \ B′
i−1) ≥ αli and w(Bi−1 \ B′

i−1) ≥ αx as B′
i−1 is maximal, we have

µ(li, c) <
1−x
αx , µ(li, c) <

y
αli

.

For the cardinality of Bi−1, we have |Bi−1| ≤ k + 1, since |Bi−1| ≥ k + 2 implies
1

w(Bi−1)
≤ 1

(k+2)li
≤ µ(li, c) by Proposition 7.12.

If α ≤ k, then we have 1
w(B′

i−1)+w(ei)−α·c = 1
1−x−α·c ≤ η(α) ≤ µ(li, c) by Proposition

7.18 and µ(li, c) <
1−x
αx . On the other hand, if α = k+1, then we have |Bi−1| = k+1 and

we can assume li + c < 1
k+1 since li + c ≥ 1

k+1 implies 1
w(Bi−1)

≤ 1
(k+1)li

≤ µ(li, c) which

contradicts the assumption. Therefore, we obtain 1
w(B′

i−1)+w(ei)−α·c = 1
y−α·c ≤ ξ(k+1) ≤

µ(li, c) by Proposition 7.19 and µ(li, c) <
y
αli

.

Let OPT i denote an optimal solution for the offline problem whose input sequence is

e1, . . . , ei.

Lemma 7.25. If w(Bi) < 1/µ(li, c) then we have |OPT i \Bi| ≤ 1.

Proof. Bi contains all the elements smaller than 1/2, since w(Bi) < 1/µ(li, c) ≤ 1/2.

Any element e ∈ OPT i \ Bi has weight greater than 1 − 1/µ(li, c) ≥ 1/2. Therefore,

|OPT i \Bi| ≤ 1 holds by w(OPT i) ≤ 1.

Theorem 7.26. The online Algorithm 18 is µ(l, c)-competitive for the unit cost buyback

problem with the unweighted knapsack constraint if l < 1/2.

Proof. If w(e1) ≥ 1/2, then w(Bi) = w(e1) ≥ 1/2, and the competitive ratio is at most

1/w(Bi) ≤ 2 ≤ µ(l, c). Thus, we assume w(e1) < 1/2.

Suppose that the fourth line is executed in round k. Then it holds that 1
µ(lk,c)

+ |Bk−1 \
B′

k−1|c ≤ w(B′
k−1) + w(ek) = w(Bk). Since w(Bi) = w(Bk) holds for all i ≥ k, we have

w(OPT i)

w(Bi)− |Bk−1 \B′
k−1|c

≤ 1

w(B′
k−1) + w(ek)− |Bk−1 \B′

k−1|c
<µ(lk, c) ≤ µ(l, c).

We next assume that the fourth line has never been executed. If w(Bi) ≥ 1/µ(li, c), we

have the competitive ratio w(OPT i)/w(Bi) ≤ 1/w(Bi) ≤ µ(li, c) ≤ µ(l, c). On the other

hand, if w(Bi) < 1/µ(li, c), |OPT \Bi| = 0 or 1 holds by Lemma 7.25. If |OPT i \Bi| = 0,

we obtain the competitive ratio 1. Otherwise, i.e., OPT i \Bi = {ek} for some k, Lemma

7.24 implies that µ(lk, c)·w(Bk−1) ≥ w(B′
k−1)+w(ek) for B

′
k−1 = OPT i∩Bk−1. Therefore

we obtain,

w(OPT i)

w(Bi)
≤ w(Bk−1 ∩OPT i) + w(ek) + w(Bi \Bk−1)

w(Bk−1) + w(Bi \Bk−1)

≤ max

{
w(Bk−1 ∩OPT i) + w(ek)

w(Bk−1)
, 1

}
=
w(B′

k−1) + w(ek)

w(Bk−1)
≤ µ(lk, c) ≤ µ(l, c).
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Remark 7.27. We can almost always get µ(l, c)-competitive algorithm even if l is not

known in advance. If w(e1) ≥ 1/2, Algorithm 16 for l = w(e1) and u = 1 is λ(l, 1, c)-

competitive for l > 1/2 and 2-competitive for l ≤ 1/2. Note that, µ(l, c) = λ(l, 1, c) for

l > 1/2 and µ(l, c) ≤ 2 for l < 1/2. If w(e1) < 1/2, Algorithm 18 is µ(l, c)-competitive.

7.2.3 Lower Bound

In this subsection, we show that µ(l, c) is also a lower bound for the competitive ratio of

the problem.

Theorem 7.28. There exists no online algorithm with a competitive ratio less than µ(l, c)

for the unit cost buyback problem with the unweighted knapsack constraint..

We consider four cases; the case l + c ≥ 1 in Theorem 7.29, the case l > 1/2 in

Theorem 7.30, the case l = 1/2 in Theorem 7.31, and the remaining case l < 1/2 and

l + c < 1. For the case l < 1/2 and l + c < 1, we consider four subcases; the case

(l, c) ∈ Sk,1 (k = 0, 1, 2, . . . ) in Theorem 7.32, the case (l, c) ∈ Sk,2 (k = 1, 2, 3, . . . ) in

Theorem 7.33, the case (l, c) ∈ Sk,3 (k = 1, 2, 3, . . . ) in Theorem 7.34, the case (l, c) ∈ Sk,4

(k = 0, 1, 2, . . . ) in Theorem 7.35.

Theorem 7.29. If l + c ≥ 1, there exists no online algorithm with a competitive ratio

less than 1/l for the problem.

Proof. For an online algorithmA chosen arbitrarily, our adversary first requests an element

with weight l. If A does not accept it, the adversary stops the input sequence. Otherwise,

it next requests an element with weight 1 and stops the input sequence. It is clear that

A must take the first element, since otherwise the competitive ratio becomes infinite. If

A rejects the second element, then we have the competitive ratio 1/l. Otherwise (i.e.,

A accepts the second element by removing the first element), the competitive ratio is

1/(1− c) ≥ 1/l, since l + c ≥ 1.

Theorem 7.30. If l > 1/2, there exists no online algorithm with a competitive ratio less

than λ(l, 1, c) for the problem.

Proof. This follows from Theorem 7.9 since we can hold only one element in the knapsack.

Theorem 7.31. If l = 1/2 and 0 < c < 1/2, there exists no online algorithm with a

competitive ratio less than

min

{
2c+

√
4c2 − 4c+ 2

1− 2c
, 2

}
=

 2c+
√
4c2−4c+2
1−2c (0 < c < 1/8),

2 (1/8 ≤ c < 1/2)

for the problem.
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Proof. Let A denote an online algorithm chosen arbitrarily. For a sufficiently small ε (> 0),

our adversary (see Figure 7.6) requests the sequence of elements whose weights are

1

2
+ ε,

1

2
,
2c+

√
4c2 − 4c+ 2

2
,
1

2
(7.5)

until A rejects some element in (7.5). If A rejects the second element with weight 1
2 , then

the adversary requests an element with weight 1
2 and stops the input sequence. On the

other hand, if it rejects another element, the adversary stops the input sequence.

We first note that algorithm A must take the first element, since otherwise the competi-

tive ratio of A becomes infinite. After the first round, A always keeps exactly one element

in the knapsack, since all the elements in (7.5) have weight at least 1
2 (i.e., a half of the

knapsack capacity) and the elements with weight 1
2 are requested only when A keeps an

element greater than 1
2 .

This implies that A removes the old element from the knapsack to accept a new ele-

ment. If A rejects the second element, the competitive ratio is at least 1/
(
1
2 + ε

)
, which

approaches 2 as ε→ 0. If A rejects the third element, the competitive ratio is at least

2c+
√
4c2−4c+2
2

1
2 − c

=
2c+

√
4c2 − 4c+ 2

1− 2c
.

If A rejects the fourth element, the competitive ratio is at least

1
2c+

√
4c2−4c+2
2 − 2c

=
2c+

√
4c2 − 4c+ 2

1− 2c
.

Finally, if A rejects no element in (7.5), then its profit is max{0, 12−3c} and the competitive

ratio is at least 1/max{0, 1/2− 3c}, which is at least 2c+
√
4c2−4c+2
1−2c .

1

2
+ ε

accept // 1

2
reject

$$JJJJJJJJJJJJJJ

accept // 2c+
√
4c2−4c+2
2

accept //

reject

%%KKKKKKKKKKKKK

1

2

1

2
STOP

Figure 7.6. The adversary for Theorem 7.31.

Theorem 7.32. If l < 1/2, there exists no online algorithm with a competitive ratio less

than 2 for the problem.

Proof. Let A denote an online algorithm chosen arbitrarily. For a sufficiently small ε (> 0),

our adversary (see Figure 7.7) requests the sequence of elements whose weights are

1

2
+ ε,

1

2
+
ε

2
, . . . ,

1

2
+

ε

⌈1/c⌉+ 1
, (7.6)
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until A rejects some element in (7.6). If A rejects the element with weight 1
2 + ε, then

the adversary stops the input sequence. On the other hand, if it rejects the element with

weight 1
2 + ε

k for some k > 1, then the adversary requests an element with weight 1
2 − ε

k

and stops the input sequence.

We first note that algorithm A must take the first element, since otherwise the com-

petitive ratio of A becomes infinite. After the first round, A always keeps exactly one

element in the knapsack, since all the elements in (7.6) have weight larger than 1
2 (i.e.,

a half of the knapsack capacity) and for any j < k we have ( 12 + ε
j ) + ( 12 − ε

k ) is larger

than 1. This implies that A removes the old element from the knapsack to accept a new

element. If A rejects 1
2 + ε

k for some k > 1, the competitive ratio is at least 1/
(
1
2 + ε

)
,

which approaches 2 as ε→ 0. Finally, if A rejects no element in (7.6), then its profit is

1

2
+

ε

⌈1/c⌉+ 1
− c · ⌈1/c⌉ ≤ 1

2
+

1

2
− 1 = 0

while the optimal profit for the offline problem is 1
2 + ε, which completes the proof.

1
2 + ε

accept // 1
2 + ε

2

reject

%%KKKKKKKKKK

accept // 1
2 + ε

3

accept //

reject

$$HHHHHHHHH

accept //

reject

##HHHHHHHHHHH
1
2 + ε

⌈1/c⌉+1

1
2 − ε

2
1
2 − ε

3
1
2 − ε

⌈1/c⌉

Figure 7.7. The adversary for Theorem 7.32.

Theorem 7.33. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1 and assume that l + c ≥ 1/(k + 1). Then there

exists no online algorithm with competitive ratio less than 1/((k + 1)l) for the unit cost

buyback problem with the unweighted knapsack constraint.

Proof. Let A denote an online algorithm chosen arbitrarily. Then our adversary (see

Figure 7.8) keeps requesting the elements with weight l until A accepts k+ 1 elements or

rejects ⌈1/l⌉ elements. If A rejects ⌈1/l⌉ elements before accepting k + 1 elements, the

adversary stops the input sequence (a). Otherwise (i.e., A accepts k + 1 elements), the

adversary requests an element with weight 1 and the adversary stops the input sequence

(b).

In the case of (a), the competitive ratio is at least 1−l
kl ≥ 1

(k+1)l , where the last equal-

ity follows from Proposition 7.11. In the case of (b), the competitive ratio is at least

min
{

1
(k+1)l ,

1
1−(k+1)c

}
≥ 1

(k+1)l since l + c ≥ 1
k+1 .

Theorem 7.34. Let k = ⌊ (1−l)2

l+c−lc⌋ ≥ 1. Then there exists no online algorithm with

competitive ratio less than η(k) for the unit cost buyback problem with the unweighted

knapsack constraint.
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l, l, . . . , l

reject ⌈1/l⌉ elements

''NNNNNNNNNNN
accept k+1 elements // 1 (b)

STOP (a)

Figure 7.8. The adversary for Theorem 7.33.

Proof. For an online algorithm A chosen arbitrarily, our adversary (see Figure 7.9) keeps

requesting the elements with weight xk until A accepts k elements or rejects ⌈1/xk⌉
elements. If A rejects ⌈1/xk⌉ elements before accepting k elements, the adversary stops

the input sequence (a). Otherwise (i.e., A accepts k elements), then the adversary next

requests an element with weight 1−xk+ ε where ε is a sufficiently small positive number;

if A rejects it, the adversary stops the input sequence (b), and otherwise, the adversary

next requests an element with weight 1− xk and stops the input sequence (c). Note that

all the elements have weight at least l, since l2

1+lc−l ≤ 1 ≤ k ≤ (1−l)2

l+c−lc implies xk ≥ l and

1− xk ≥ l.

In the case of (a), we have the competitive ratio at least 1−xk

(k−1)xk
> 1−xk

kxk
= η(k), where

the last equality follows from Proposition 7.11. In the case of (b), the competitive ratio

is at least 1−xk+ε
kxk

> 1−xk

kxk
= η(k) by Proposition 7.11. Finally, in the case of (c), the

competitive ratio is at least 1
1−xk+ε−kc . Proposition 7.11 implies that this approaches

η(k) (= 1
1−xk−kc ) as (ε→ 0).

xk, xk, . . . , xk

reject ⌈1/xk⌉ elements

((PPPPPPPPPPPPP
accept k elements // 1− xk + ε

reject

((PPPPPPPPPPPPP
accept // 1− xk (c)

STOP (a) STOP (b)

Figure 7.9. The adversary for Theorem 7.34.

Theorem 7.35. Let k = ⌊ (1−l)2

l+c−lc⌋ and assume that l + c < 1/(k + 1) and l < 1/2. Then

there exists no online algorithm with competitive ratio less than ξ(k+1) for the unit cost

buyback problem with the unweighted knapsack constraint.

Proof. Let A denote an online algorithm chosen arbitrarily. Then our adversary (see

Figure 7.10) keeps requesting the elements with weight l until A accepts k + 1 elements

or rejects ⌈1/l⌉ elements. If A rejects ⌈1/l⌉ elements before accepting k+ 1 elements, the

adversary stops the input sequence (a). Otherwise (i.e., A accepts k + 1 elements), the

adversary requests an element with weight yk+1 =
(k+1)c+

√
(k+1)2c2+4(k+1)l

2 which is at

least 1− l; if A rejects it, the adversary stops the input sequence (b), and otherwise, the

adversary requests an element with weight 1− l and stops the input sequence (c).

In the case of (a), the competitive ratio is at least 1−l
kl ≥ 1

(k+1)l ≥ yk+1

(k+1)l = ξ(k + 1),
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where the last equality follows from Proposition 7.11. In the case of (b), the competitive

ratio is yk+1

(k+1)l = ξ(k + 1) by Proposition 7.11. Finally, in the case of (c), the competitive

ratio is at least 1
yk+1−(k+1)c = ξ(k + 1), which again follows from Proposition 7.11.

l, l, . . . , l

reject ⌈1/l⌉ elements

''NNNNNNNNNNN
accept k+1 elements // yk+1

reject

&&MMMMMMMMMMM
accept // 1− l (c)

STOP (a) STOP (b)

Figure 7.10. The adversary for Theorem 7.35.
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Chapter 8

Optimal Composition Ordering

Problems

In this chapter, we study the optimal composition ordering problems.

We first show that the the maximum total composition ordering problem and the min-

imum total composition ordering problem are mutually reducible to one another, and

the maximum partial composition ordering problem and the minimum partial composi-

tion ordering problem are also mutually reducible. Thus, we only consider the maximum

total and partial composition ordering problems. In addition, we show that the maxi-

mum and minimum partial composition ordering problems are respectively reducible to

the maximum and minimum total composition ordering problems.

We present polynomial time algorithms for the maximum total composition problem

and the maximum partial composition problem when the input functions are monotone

increasing and linear. Thus, we can solve time-dependent scheduling problem with both

linear shortening and linear deterioration jobs in polynomial time.

We also propose a polynomial time algorithm for the maximum partial composition

problem when the input functions are piecewise increasing, i.e., fi(x) = max{aix+ bi, ci}
(ai > 0). This result implies a polynomial time algorithm for two-valued free-order secre-

tary problem.

For negative results, we prove that the optimal composition ordering problems are NP-

hard even if the input functions are monotone increasing, convex (concave), and at most

2-piece piecewise linear.

8.1 Properties of Function Composition

In this section, we prepare some definitions and propositions for the composition of linear

functions.

We first show relationships between the maximum total composition ordering problem

and the minimum total composition ordering problem, and the maximum partial compo-

sition ordering problem and the minimum partial composition ordering problem.

Lemma 8.1. Let c be a real, and for i = 1, . . . , n, let fi : R → R be real functions. For
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i = 1, . . . , n, let f̃i(x) := −fi(−x). Then we have the following two statements.

(a) A permutation σ : [n] → [n] is optimal for the maximum total composition ordering

problem ((fi)i∈[n], c) if and only if it is optimal for the maximum total composition

ordering problem ((f̃i)i∈[n],−c).
(b) A pair of a permutation σ : [n] → [n] and a integer 0 ≤ k ≤ n is optimal for

the maximum partial composition ordering problem ((fi)i∈[n], c) if and only if it is

optimal for the maximum partial composition ordering problem ((f̃i)i∈[n],−c).

Proof. For any permutation σ and an integer 0 ≤ k ≤ n, we have

fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(c) = −f̃σ(k) ◦ f̃σ(k−1) ◦ · · · ◦ f̃σ(1)(−c),

and hence the statements hold.

We next show relationships between the maximum total and partial composition order-

ing problems, and the minimum total and partial composition ordering problems.

Lemma 8.2. Let c be a real, and for i = 1, . . . , n, let fi : R → R be real functions. For

i = 1, . . . , n, let f i(x) := max{fi(x), x}. Then we have the following two statements.

(a) A pair of a permutation σ : [n] → [n] and a integer 0 ≤ k ≤ n is optimal for the

maximum partial composition ordering problem ((fi)i∈[n], c) if the permutation σ

is optimal for the maximum total composition ordering problem ((f i)i∈[n],−c).
(b) A permutation σ : [n] → [n] is optimal for the maximum total composition ordering

problem ((f i)i∈[n], c) if the pair of following permutation τ and nonnegative integer

k is optimal for the maximum partial composition ordering problem ((fi)i∈[n], c):

{τ(1), . . . , τ(k)} = {σ(i) : fσ(i) ◦ · · · ◦ fσ(1)(c) > fσ(i−1) ◦ · · · ◦ fσ(1)(c)}

where σ−1(τ(1)) < · · · < σ−1(τ(k)).

Proof. (a) If a pair of a permutation σ and a nonnegative number k is optimal for the

maximum partial composition ordering problem ((fi)i∈[n], c), then σ is also optimal for

the maximum total composition ordering problem ((f i)i∈[n], c) since we have

fσ(k) ◦ · · · ◦ fσ(1)(c) ≤ fσ(k) ◦ · · · ◦ fσ(1)(c) ≤ fσ(n) ◦ · · · ◦ fσ(1)(c)

by f(x) ≥ x and f(x) ≥ f(x).

(b) Let σ : [n] → [n] be a permutation and a pair of τ and k be defined as the statement.

If σ is optimal for the maximum total composition ordering problem ((f i)i∈[n], c), then

the pair of τ and k is optimal for the maximum partial composition ordering problem

((fi)i∈[n], c) since we have

fτ(k) ◦ · · · ◦ fτ(1)(c) = fτ(k) ◦ · · · ◦ fτ(1)(c) = fσ(n) ◦ · · · ◦ fσ(1)(c)
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by the definition of τ .

Let c be a real, and for i = 1, . . . , n, let fi : R → R be real functions. For i =

1, . . . , n, let f i(x) := max{fi(x), x}. By Lemma 8.2, the optimal value for the maximum

total composition ordering problem ((f i)i∈[n], c) coincides with the optimal value for the

maximum partial composition ordering problem ((fi)i∈[n], c).

Definition 8.3. For two functions f, g : R → R, we define f ≼ g (resp., f ≃ g) as

f ◦ g(x) ≤ g ◦ f(x) (resp., f ◦ g(x) = g ◦ f(x)) for any x, and f ≺ g as f ≼ g and f ̸≃ g.

Note that the relation ≼ is not comparable in general. For example, let f1(x) =

max{2x, 3x} and f2(x) = max{2x−1, 3x+1}. Then we have f1◦f2(0) = 3 > 1 = f2◦f1(0)
and f1 ◦ f2(−2) = −10 < −9 = f2 ◦ f1(−2). On the other hand, the relation ≼
is comparable for linear functions or 2-piece piecewise linear functions with the form

max{ax + b, x}, but it does not satisfy antisymmetry or transitivity. For example, let

f1(x) = 4x and f2(x) = x/2 (resp. f1(x) = max{4x, x} and f2 = max{x/2, x}). Then we

have f1 ◦ f2(x) = f2 ◦ f1(x) = 2x (resp. f1 ◦ f2(x) = f2 ◦ f1(x) = max{2x, x}). Further-
more, let g1(x) = 2x+1, g2(x) = 2x− 1, and g3(x) = x/2 (resp. g1(x) = max{2x+1, x},
g2(x) = max{2x− 1, x}, and g3(x) = max{x/2, x}). Then we have g1 ≺ g2, g2 ≺ g3, and

g3 ≺ g1 (resp. g1 ≺ g2, g2 ≺ g3, and g3 ≺ g1).

From the definition, we have the following easy but useful lemma.

Lemma 8.4. Let f1, . . . , fn be monotone nondecreasing functions. If fi ≼ fi+1, then it

holds that

fn ◦ · · · ◦ fi+2 ◦ fi+1 ◦ fi ◦ fi−1 ◦ · · · ◦ f1(x)

≥ fn ◦ · · · ◦ fi+2 ◦ fi ◦ fi+1 ◦ fi−1 ◦ · · · ◦ f1(x)

for any x.

The lemma intuitively implies that composing fi earlier than fj is better to maximize

the composition if all functions are nondecreasing and fi ≼ fj .

Next, for a linear function f , we define γ as the solution of the equation f(x) = x.

Definition 8.5. For a linear function f(x) = ax+ b ((a, b) ̸= (1, 0)), we define

γ(f) =


b

1−a (a ̸= 1),

+∞ (a = 1 and b < 0),

−∞ (a = 1 and b > 0).

We prove several lemmas for γ needed later.

Lemma 8.6. For any real c and non-identity linear function f(x) = ax+b ((a, b) ̸= (1, 0)),

the followings hold:

(a) if a > 1, then f(c) > c⇔ γ(f) < c, f(c) < c⇔ γ(f) > c, and f(c) = c⇔ γ(f) = c,

(b) if a < 1, then f(c) > c⇔ γ(f) > c, f(c) < c⇔ γ(f) < c, and f(c) = c⇔ γ(f) = c,
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(c) if a = 1, then f(c) > c⇔ γ(f) = −∞, f(c) < c⇔ γ(f) = ∞.

Proof. (a) Since f(x) − x is a monotone increasing function for a > 1, and f(γ(f)) =

γ(f), we have the lemma.

(b) Since f(x) − x is a monotone decreasing function for a < 1, and f(γ(f)) = γ(f),

we have the lemma.

(c) This statement directly holds by the definition of γ.

Definition 8.7. For a non-identity linear function f(x) = ax+ b, let

δ(f) =

+1 (a ≥ 1),

−1 (a < 1).

Lemma 8.8. For non-identity linear functions fi(x) = aix+ bi and fj(x) = ajx+ bj , the

following statements hold:

(a) if γ(fi) = γ(fj), then we have γ(fi) = γ(fj) = γ(fj ◦ fi),
(b) if δ(fi) = δ(fj) = 1 and γ(fi) ≤ γ(fj), then we have γ(fi) ≤ γ(fj ◦ fi) ≤ γ(fj),

(c) if δ(fi) = δ(fj) = −1 and γ(fi) ≤ γ(fj), then we have γ(fi) ≤ γ(fj ◦ fi) ≤ γ(fj),

(d) if δ(fi) = −1, δ(fj) = 1, ai·aj ≥ 1 and γ(fi) ≥ γ(fj), then we have γ(fj◦fi) ≤ γ(fj),

(e) if δ(fi) = −1, δ(fj) = 1, ai·aj < 1 and γ(fi) ≥ γ(fj), then we have γ(fj◦fi) ≥ γ(fi),

(f) if δ(fi) = 1, δ(fj) = −1, ai·aj ≥ 1 and γ(fi) ≥ γ(fj), then we have γ(fj◦fi) ≥ γ(fi),

(g) if δ(fi) = 1, δ(fj) = −1, ai·aj < 1 and γ(fi) ≥ γ(fj), then we have γ(fj◦fi) ≤ γ(fj),

where we allow to write +∞ ≤ +∞, −∞ ≤ +∞, and −∞ ≤ −∞ for a = 1.

Proof. (a) Let d = γ(fi) = γ(fj). If d = ∞, then ai = aj = 1 and bi, bj < 0. Thus

γ(fj ◦ fi) = γ(x + bi + bj) = ∞. If d = −∞, then ai = aj = 1 and bi, bj > 0.

Thus γ(fj ◦ fi) = γ(x + bi + bj) = −∞. Otherwise, i.e., ai, aj ̸= 1, we have

fi(x) = ai(x−d)+d and fj(x) = aj(x−d)+d. Therefore, fj ◦fi(x) = aiaj(x−d)+d
and γ(fj ◦ fi) = d.

(b) By (a) and (c) in Lemma 8.6 and γ(fi) ≤ γ(fj), we have

fj ◦ fi(γ(fi)) = fj(γ(fi)) ≤ γ(fi), (8.1)

fj ◦ fi(γ(fj)) ≥ fj(γ(fj)) = γ(fj). (8.2)

Therefore, we obtain γ(fi) ≤ γ(fj ◦ fi) ≤ γ(fj) where the first inequality holds by

(8.1) and by (a) and (c) in Lemma 8.6, and the second inequality holds by (8.2)

and by (a) and (c) in Lemma 8.6,

(c) By (b) in Lemma 8.6 and γ(fi) ≤ γ(fj), we have

fj ◦ fi(γ(fi)) = fj(γ(fi)) ≥ γ(fi), (8.3)

fj ◦ fi(γ(fj)) ≤ fj(γ(fj)) = γ(fj). (8.4)



8.1 Properties of Function Composition 103

Therefore, we obtain γ(fi) ≤ γ(fj ◦ fi) ≤ γ(fj) where the first inequality holds by

(8.3) and by (b) in Lemma 8.6, and the second inequality holds by (8.4) and by (b)

in Lemma 8.6.

(d) By (b) in Lemma 8.6 and γ(fi) ≥ γ(fj), we have

fj ◦ fi(γ(fj)) ≥ fj(γ(fj)) = γ(fj).

Therefore, we obtain γ(fj ◦ fi) ≤ γ(fj) by (a) and (c) in Lemma 8.6.

(e) By (a) and (c) in Lemma 8.6 and γ(fi) ≥ γ(fj), we have

fj ◦ fi(γ(fi)) = fj(γ(fi)) ≥ γ(fi).

Therefore, we obtain γ(fj ◦ fi) ≥ γ(fj) by (b) in Lemma 8.6.

(f) By (b) in Lemma 8.6 and γ(fi) ≥ γ(fj), we have

fj ◦ fi(γ(fi)) = fj(γ(fi)) ≤ γ(fi).

Therefore, we obtain γ(fj ◦ fi) ≥ γ(fi) by (a) and (c) in Lemma 8.6.

(g) By (a) and (c) Lemma 8.6 and γ(fi) ≥ γ(fj), we have

fj ◦ fi(γ(fj)) ≤ fj(γ(fj)) = γ(fj).

Therefore, we obtain γ(fj ◦ fi) ≤ γ(fj). by (b) in Lemma 8.6.

Lemma 8.9. For (non-identity) linear functions fi(x) = aix + bi and fj(x) = ajx + bj ,

the followings hold:

(a) if ai, aj = 1, then fi ≃ fj ,

(b) if δ(fi) = δ(fj) = 1 and ai · aj > 1, then fi ≼ fj ⇔ γ(fi) ≤ γ(fj) and fi ≃ fj ⇔
γ(fi) = γ(fj),

(c) if δ(fi) = δ(fj) = −1, then fi ≼ fj ⇔ γ(fi) ≤ γ(fj) and fi ≃ fj ⇔ γ(fi) = γ(fj),

(d) if δ(fi) = 1, δ(fj) = −1, then fi ≼ fj ⇔ γ(fi) ≥ γ(fj) and fi ≃ fj ⇔ γ(fi) = γ(fj).

Proof. We use the following condition:

fi ≼ fj ⇐⇒ fi ◦ fj(x) ≤ fj ◦ fi(x) (∀x)

⇐⇒ ai(ajx+ bj) + bi ≤ aj(aix+ bi) + bj (∀x)

⇐⇒ bi(1− aj) ≥ bj(1− ai). (8.5)

(a) It holds since fi ◦ fj(x) = x+ bi + bj = fj ◦ fi(x).
(b) If ai, aj > 1, the lemma holds since the equation (8.5) ⇔ bi

1−ai
≥ bj

1−aj
⇔ γ(fi) ≤

γ(fj). If ai > 1 and aj = 1, the lemma holds since the equation (8.5) ⇔ 0 ≥ bj(ai−
1) ⇔ bj < 0 ⇔ γ(fj) = ∞ ⇔ γ(fi) ≤ γ(fj). Otherwise (i.e., ai = 1 and aj > 1), we

have the equation (8.5) ⇔ bi(aj −1) ≥ 0 ⇔ bi > 0 ⇔ γ(fi) = −∞ ⇔ γ(fi) ≤ γ(fj).
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(c) The lemma holds since the equation (8.5) ⇔ bi
1−ai

≥ bj
1−aj

⇔ γ(fi) ≤ γ(fj).

(d) If ai > 1, the lemma holds since the equation (8.5) ⇔ bi
1−ai

≤ bj
1−aj

⇔ γ(fi) ≥ γ(fj).

On the other hand, if ai = 1, then fi ≼ fj ⇔ bi(aj − 1) ≥ 0 ⇔ bi < 0 ⇔ γ(fi) =

+∞ ⇔ γ(fi) ≥ γ(fj), and fi ≽ fj ⇔ bi(aj − 1) ≤ 0 ⇔ bi > 0 ⇔ γ(fi) = −∞ ⇔
γ(fi) ≤ γ(fj).

By this lemma, the relation ≼ is total preorder (i.e., it satisfies transitivity and no pair

of functions is incomparable) for the case δ(f1) = · · · = δ(fn). Thus the permutation

σ : [n] → [n] such that γ(fσ(1)) ≤ · · · ≤ γ(fσ(n)) is optimal for the case. This result

matches the results in the time-dependent scheduling problem of the linear deterioration

model (when δ(f1) = · · · = δ(fn) = 1) and the linear shortening model (when δ(f1) =

· · · = δ(fn) = −1).

Lastly, we show some propositions for the optimal composition ordering problem of

linear functions.

Lemma 8.10. Let c be real, and for i = 1, . . . , n, let fi(x) = aix + bi. Then, for any

permutation σ : [n] → [n] and integer 0 ≤ k ≤ n, we have

fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(c) =

 k∏
j=1

aj

 c+
k∑

i=1

 k∏
j=i+1

aσ(j)

 bσ(i).

Proof. We can get the results by simple calculations.

Lemma 8.11. Let c be a real, and for i = 1, . . . , n, let fi : R → R be real functions. For

i = 1, . . . , n and a real d, define f̌(x) := f(x − d) + d. Then a permutation σ : [n] → [n]

is optimal for the maximum total composition ordering problem ((fi)i∈[n], c) if and only

if it is optimal for the maximum total composition ordering problem ((f̌i)i∈[n], c− d).

Proof. For any i, j, we have

f̌i ◦ f̌j(x) = fi(fj(x− d) + d− d) + d = fi ◦ fj(x− d) + d.

Therefore, we have

f̌σ(n) ◦ f̌σ(n−1) ◦ · · · ◦ f̌σ(1)(c) = fσ(n) ◦ fσ(n−1) ◦ · · · ◦ fσ(1)(c− d) + d

and this implies the statement.

Lemma 8.12. Let c be a real, and for i = 1, . . . , n, let fi(x) = aix+bi be linear functions.

Then a permutation σ : [n] → [n] is optimal for the maximum total composition order-

ing problem ((fi)i∈[n], c) if and only if it is optimal for the maximum total composition

ordering problem ((fi)i∈[n], 0).
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Proof. By Lemma 8.10, we have

fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(c) =

 k∏
j=1

aj

 c+

k∑
i=1

 k∏
j=i+1

aσ(j)

 bσ(i).

and this implies the statement.

Lemma 8.13. Let c be a real, and for i = 1, . . . , n, let fi(x) = aix + bi be monotone

increasing linear functions (ai > 0). For i = 1, . . . , n, define f̂i(x) := −f−1
i (−x) =

1
ai
x+ bi

ai
, Then a permutation σ : [n] → [n] is optimal for the maximum total composition

ordering problem ((fi)i∈[n], c) if and only if the reverse permutation of σ, i.e., τ(i) =

σ(n − i + 1) for i ∈ [n] is the optimal for the maximum total composition ordering

problem ((f̂i)i∈[n], c).

Proof. By Lemma 8.12, it is sufficient to prove the case c = 0. Then we have

f̂σ(n) ◦ f̂σ(n−1) ◦ · · · ◦ f̂σ(1)(0) =

 n∏
j=1

1

aσ(j)

 c+
n∑

i=1

 n∏
j=i+1

1

aσ(j)

 bσ(i)

=

 n∏
j=1

1

aσ(j)

 n∑
i=1

 i∏
j=1

aσ(j)

 bσ(i)

=

 n∏
j=1

1

aσ(j)

 fσ(1) ◦ fσ(2) ◦ · · · ◦ fσ(n)(0)

and this implies the statement.

Lemma 8.14. Let c be a real, and for i = 1, . . . , n, let fi(x) = aix+bi be linear functions.

Let σ be a permutation of [n]. Then dk = fσ(k−1) ◦ · · · ◦ fσ(1) ◦ fσ(n) ◦ · · · ◦ fσ(k)(0) and
dk+1 = fσ(k) ◦ · · · ◦ fσ(1) ◦ fσ(n) ◦ · · · ◦ fσ(k+1)(0) satisfies dk+1 = aσ(k) · dk − bσ(k) · (a− 1)

where a =
∏n

i=1 ai.

Proof. We can get the result by simple calculations.

8.2 Maximum Partial Composition Ordering

Problem

In this section we consider the maximum partial composition ordering problem ((fi)i∈[n], c)

for monotone nondecreasing linear functions fi(x) = aix+ bi (ai ≥ 0). By Lemma 8.2, we

consider the maximum partial composition ordering problem ((f i)i∈[n], c) for monotone

nondecreasing linear functions f i(x) = max{aix+ bi, x} (ai ≥ 0).

Without loss of generality, we assume there are no i such that fi(x) = x for all x.

Let I− := {i : δ(fi) = −1} and I+ := {i : δ(fi) = 1}. We show that a permutation

σ : [n] → [n] which satisfies I− = {σ(1), . . . , σ(k)} and I+ = {σ(k + 1), . . . , σ(n)} such
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that γ(fσ(1)) ≤ · · · ≤ γ(fσ(k)) and γ(fσ(k+1)) ≤ · · · ≤ γ(fσ(n)) is optimal for the problem.

Then our algorithm is represented as Algorithm 19, and the time complexity is O(n log n)

by using an efficient sorting algorithm such as merge sort. In the comparison model, the

time complexity O(n log n) is essentially the best possible.

Theorem 8.15. The maximum total composition ordering problem ((fi)i∈[n], c) for mono-

tone nondecreasing linear functions fi(x) = aix+bi (ai ≥ 0) is solvable in O(n logn) time.

Theorem 8.16. The maximum total composition ordering problem ((f i)i∈[n], c) for

monotone nondecreasing piecewise linear functions f i(x) = max{aix + bi, x} (ai ≥ 0)

is solvable in O(n log n) time.

Algorithm 19 Maximum Partial Composition

1: I− := {i : δ(fi) = −1}, I+ := {i : δ(fi) = 1}
2: sort I− and I+ according to the order induced by γ(fi)

let I− = {σ(1), . . . , σ(k)}, I+ = {σ(k + 1), . . . , σ(n)} such that γ(fσ(1)) ≤ · · · ≤
γ(fσ(k)), γ(fσ(k+1)) ≤ · · · ≤ γ(fσ(n)).

3: s := c, p := 1, q := n, τ := the identity permutation of [n]
4: for i = 1 to n do
5: if fσ(i)(s) > s then s := fσ(i)(s), τ(τ

−1(σ(i))) := τ(p), τ(p) := σ(i), p := p+ 1
6: else τ(q) := σ(i), q := q − 1
7: end for
8: return τ and q

We use the following lemma to show the theorems.

Lemma 8.17. For (non-identity) monotone nondecreasing linear functions fi(x) = aix+

bi and fj(x) = ajx+ bj (ai, aj ≥ 0), and function f i(x) = max{aix+ bi, x} and f j(x) =

max{ajx+ bj , x}, the followings hold:

(a) if δ(fi) = δ(fj) = 1 and γ(fi) ≤ γ(fj), then f i ≼ f j ,

(b) if δ(fi) = δ(fj) = −1 and γ(fi) ≤ γ(fj), then f i ≼ f j ,

(c) if δ(fi) = −1, δ(fj) = 1, and γ(fi) ≤ γ(fj), then f i ≃ f j .

(d) if δ(fi) = 1, δ(fj) = −1, 0 ≤ aj < 1, and γ(fi) ≤ γ(fj), then f i ≽ f j ,

Proof. (a) We prove that f j ◦ f i(x) ≥ f i ◦ f j(x) holds for any x. We consider three cases,

i.e., x < γ(fi), γ(fi) ≤ x ≤ γ(fj), and γ(fj) < x (see Figure 8.1(a)).

Case 1: x < γ(fi). We have f i ◦ f j(x) = f i(x) = x and f j ◦ f i(x) = f j(x) = x by

x < γ(fi) ≤ γ(fj). Thus we obtain f j ◦ f i(x) ≥ f i ◦ f j(x).

Case 2: γ(fi) ≤ x ≤ γ(fj). We have f i ◦f j(x) = f i(x) = fi(x) and f j ◦f i(x) = f j(fi(x))

by γ(fi) ≤ x ≤ γ(fj). Thus we obtain f j ◦ f i(x) ≥ f i ◦ f j(x) since f j(y) ≥ y for any y.

Case 3: γ(fj) < x. We have f i ◦ f j(x) = f i(fj(x)) = fi(fj(x)) by γ(fi) ≤ γ(fj) < x ≤
fj(x), and f j ◦ f i(x) = f j(fi(x)) = fj(fi(x)) by γ(fi) ≤ γ(fj) < x ≤ fi(x). Thus we

obtain f j ◦ f i(x) ≥ f i ◦ f j(x) by (b) in Lemma 8.9.

(b) We prove that f j ◦ f i(x) ≥ f i ◦ f j(x) holds for any x. We consider four cases, i.e.,
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x < f−1
j (γ(fi)), f

−1
j (γ(fi)) ≤ x < γ(fi), γ(fi) ≤ x < γ(fj), and γ(fj) ≤ x, where we

define f−1
j (γ(fi)) = −∞ (see Figure 8.1(b)).

Case 1: x < f−1
j (γ(fi)). We have f i ◦ f j(x) = f i(fj(x)) = fi(fj(x)) by x ≤ fj(x) ≤

γ(fi) ≤ γ(fj), and f j ◦f i(x) = f j(fi(x)) = fj(fi(x)) by x ≤ fi(x) ≤ γ(fi) ≤ γ(fj). Thus,

we obtain f j ◦ f i(x) ≥ f i ◦ f j(x) by (c) in Lemma 8.9.

Case 2: f−1
j (γ(fi)) ≤ x < γ(fi). We have f i ◦ f j(x) = f i(fj(x)) = fj(x) and f j ◦

f i(x) = f j(fi(x)) = fj(fi(x)) by x ≤ fi(x) ≤ γ(fi) ≤ fj(x) ≤ γ(fj). Thus, we obtain

f j ◦ f i(x) ≥ f i ◦ f j(x) since fi(x) ≥ x and fj is monotone nondecreasing.

Case 3: γ(fi) ≤ x < γ(fj). We have f i ◦ f j(x) = f i(fj(x)) = fj(x) and f j ◦ f i(x) =

f j(x) = fj(x) by γ(fi) ≤ x ≤ fj(x) < γ(fj). Thus, we obtain f j ◦ f i(x) ≥ f i ◦ f j(x).

Case 4: γ(fj) ≤ x. We have f i ◦ f j(x) = f i(x) = x and f j ◦ f i(x) = f j(x) = x by

γ(fi) ≤ γ(fj) ≤ x. Thus, we obtain f j ◦ f i(x) ≥ f i ◦ f j(x).

(c) We prove that f j ◦ f i(x) = f i ◦ f j(x) holds for any x. We consider three cases, i.e.,

x < γ(fi), γ(fi) ≤ x < γ(fj), and γ(fj) ≤ x (see Figure 8.1(c)).

Case 1: x < γ(fi). We have f i ◦f j(x) = f i(x) = fi(x) and f j ◦f i(x) = f j(fi(x)) = fi(x)

by x ≤ fi(x) ≤ γ(fi) ≤ γ(fj). Thus, we obtain f j ◦ f i(x) = f i ◦ f j(x).

Case 2: γ(fi) ≤ x < γ(fj). We have f i ◦ f j(x) = f i(x) = x and f j ◦ f i(x) = f j(x) = x

by γ(fi) ≤ x < γ(fj). Thus, we obtain f j ◦ f i(x) = f i ◦ f j(x).

Case 3: γ(fj) ≤ x. We have f i◦f j(x) = f i(fj(x)) = fj(x) and f j ◦f i(x) = f j(x) = fj(x)

by γ(fi) ≤ γ(fj) ≤ x ≤ fj(x). Thus, we obtain f j ◦ f i(x) = f i ◦ f j(x).

(d) We prove that f j ◦ f i(x) ≤ f i ◦ f j(x) holds for any x. We consider four cases, i.e.,

x < γ(fi), γ(fi) ≤ x < f−1
i (γ(fj)), f

−1
i (γ(fj)) ≤ x < γ(fj), and γ(fj) ≤ x (see Figure

8.1(d)).

Case 1: x < γ(fi). We have f i ◦ f j(x) = f i(fj(x)) and f j ◦ f i(x) = f j(x) = fj(x) by

x < γ(fi) ≤ γ(fj). Thus, we obtain f j ◦ f i(x) ≥ f i ◦ f j(x) since f i(y) ≥ y for any y.

Case 2: γ(fi) ≤ x < f−1
i (γ(fj)). We have f i ◦ f j(x) = f i(fj(x)) = fi(fj(x)) by γ(fi) ≤

x ≤ fj(x) ≤ γ(fj), and f j ◦ f i(x) = f j(fi(x)) = fj(fi(x)) by γ(fi) ≤ x ≤ fi(x) ≤ γ(fj).

Thus, we obtain f j ◦ f i(x) ≥ f i ◦ f j(x) by (d) in Lemma 8.9.

Case 3: f−1
i (γ(fj)) ≤ x < γ(fj). We have f i ◦ f j(x) = f i(fj(x)) = fi(fj(x)) by

γ(fi) ≤ f−1
i (γ(fj)) ≤ x ≤ fj(x) ≤ γ(fj) and f j ◦ f i(x) = f j(fi(x)) = fi(x) by γ(fi) ≤

f−1
i (γ(fj)) ≤ x ≤ γ(fj) ≤ fi(x). Thus, we obtain f j ◦ f i(x) ≥ f i ◦ f j(x) since fj(x) ≥ x

and fi is monotone nondecreasing.

Case 4: γ(fj) ≤ x. We have f i◦f j(x) = f i(fj(x)) = fj(x) and f j ◦f i(x) = f j(x) = fj(x)

by γ(fi) ≤ γ(fj) ≤ x ≤ fj(x). Thus, we obtain f j ◦ f i(x) ≥ f i ◦ f j(x).

By Lemma 8.9, we have Theorem 8.15 as follows.
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(a) ai, aj ≥ 1, γ(fi) ≤ γ(fj) (b) 0 ≤ ai, aj < 1, γ(fi) ≤ γ(fj)

(c) 0 ≤ ai < 1, aj ≥ 1, γ(fi) ≤ γ(fj) (d) ai ≥ 1, 0 ≤ aj < 1, γ(fi) ≤ γ(fj)

Figure 8.1. Typical situations for the functions f i and f j .

Proof for Theorem 8.15. Without loss of generality, we can assume δ(f1) = · · · = δ(fk) =

−1, δ(fk+1) = · · · = δ(fn) = 1, and γ(f1) ≤ · · · ≤ γ(fk), γ(fk+1) ≤ · · · ≤ γ(fn). Let

σ be the optimal solution with the minimum inversion number for the maximum total

composition ordering problem ((f i)i∈[n], c). Then we show σ is the identity permutation

by contradiction. Let σ(l) > σ(l + 1). Then a permutation

τ(i) =


σ(i) (i ̸= l, l + 1),

l + 1 (i = l),

l (i = l + 1)

is also optimal solution for the problem by Lemma 8.9. Moreover, τ has smaller inversion

number, which contradicts the assumption that σ(k) > σ(k + 1). Therefore, σ is the

identity permutation and Algorithm 19 outputs the optimal solution.

Moreover, we have the following proposition.



8.2 Maximum Partial Composition Ordering Problem 109

Proposition 8.18. The optimal value for the maximum partial composition ordering

problem ((fi)i∈[n], c) where fi(x) = aix + bi (ai ≥ 0) is at most (n + 1)-piece piecewise

linear for c.

Proof. By Lemma 8.2, the optimal value for the maximum partial composition ordering

problem ((fi)i∈[n], c) is

fσ(n) ◦ fσ(n−1) ◦ · · · ◦ fσ(1)(c) (8.6)

for some permutation σ.

Assume that there exists a point xk such that

fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(xk) = fσ(n−1) ◦ · · · ◦ fσ(1)(xk). (8.7)

Then we have

fσ(n) ◦ . . . ◦ fσ(k+1) ◦ fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x)

=

fσ(n) ◦ · · · ◦ fσ(k+1) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x) (x ≥ xk)

fσ(n) ◦ · · · ◦ fσ(k+1) ◦ fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x) (x < xk)

if ak < 1 and

fσ(n) ◦ . . . ◦ fσ(k+1) ◦ fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x)

=

fσ(n) ◦ · · · ◦ fσ(k+1) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x) (x < xk)

fσ(n) ◦ · · · ◦ fσ(k+1) ◦ fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x) (x ≥ xk)

if ak > 1 since f1, . . . , fn are monotone nondecreasing functions.

On the other hand, if there exists no such a point xk, then we have

fσ(n) ◦ . . . ◦ fσ(k+1) ◦ fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x)

= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x)

or

fσ(n) ◦ . . . ◦ fσ(k+1) ◦ fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x)

= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ fσ(k) ◦ fσ(k−1) ◦ · · · ◦ fσ(1)(x).

Thus, the statement holds.

Furthermore, we can solve the maximum partial composition ordering problem

((gi)i∈[n], c) for gi(x) = max{aix+ bi, ci} (ai ≥ 0) in polynomial time.

Theorem 8.19. The maximum partial composition ordering problem ((gi)i∈[n], c) for
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gi(x) = max{aix+ bi, ci} (ai ≥ 0) is solvable in O(n2) time.

Proof. Let gi(x) = max{aix+bi, ci, x} and hi(x) = aix+bi. We first claim that there exists

an optimal solution σ∗ for the maximum total composition ordering problem ((gi)i∈[n], c)

such that at most one i satisfies gσ∗(i−1) ◦ · · · ◦ gσ∗(1)(c) < ci. Let i∗ be the largest i

such that gσ∗(i−1) ◦ · · · ◦ gσ∗(1)(c) < ci. Then it holds ci < ci∗ for any i < i∗ since

ci ≤ gσ∗(i) ◦ · · · ◦ gσ∗(1)(0) ≤ gσ∗(i∗−1) ◦ · · · ◦ gσ∗(1)(c) < ci∗ . Thus we have

gσ∗(n) ◦ · · · ◦ gσ∗(1)(c) = gσ∗(n) ◦ · · · ◦ gσ∗(i∗)(c)

≤ gσ∗(i∗−1) ◦ · · · ◦ gσ∗(1) ◦ gσ∗(n) ◦ · · · ◦ gσ∗(i∗)(c).

Therefore, the maximum value of the maximum partial composition ordering problem

((gi)i∈[n], c) is the maximum value of the maximum partial composition ordering problem

of ((hi)i∈[n]\{k}, fk(c)) for some k ∈ [n]. Thus we can solve the problem using Algorithm

19, n times. Moreover, it is easy to see that the time complexity is O(n2) since we need

sorting only one time for the line 2 in Algorithm 19.

By Lemma 8.2, the following theorem also holds.

Theorem 8.20. The maximum total composition ordering problem ((gi)i∈[n], c) for

gi(x) = max{aix+ bi, ci, x} (ai ≥ 0) is solvable in O(n2) time.

8.3 Maximum Total Composition Ordering Problem

In this section we consider the maximum total composition ordering problem ((fi)i∈[n], c)

for monotone nondecreasing linear functions fi(x) = aix + bi (ai ≥ 0). We propose an

O(n logn) time algorithm for this problem.

Without loss of generality, we assume there are no i such that fi(x) = x for all x.

Let I− := {i : δ(fi) = −1} and I+ := {i : δ(fi) = 1}, and let σ : [n] → [n] be a

permutation which satisfies I− = {σ(1), . . . , σ(k)} and I+ = {σ(k + 1), . . . , σ(n)} such

that γ(fσ(1)) ≤ · · · ≤ γ(fσ(k)) and γ(fσ(k+1)) ≤ · · · ≤ γ(fσ(n)). We prove that there

exists an optimal solution with the form (σ(t), σ(t+ 1), . . . , σ(n), σ(1), σ(2), . . . , σ(t− 1))

for some t. Then our algorithm is represented as Algorithm 20. Throughout this section,

we denote γ(fi) briefly by γi.

Theorem 8.21. The maximum total composition ordering problem for monotone non-

decreasing linear functions is solvable in O(n log n) time.

We show some lemmas to prove the theorem.

Lemma 8.22. For monotone nondecreasing linear functions fi(x) = aix + bi, fj(x) =

ajx + bj , fk(x) = akx + bk and fl(x) = alx + bl, if δ(fi) = −δ(fj) = δ(fk) = −δ(fl) = 1

and γi ≥ γj ≥ γk ≥ γl, then we have

fl ◦ fk ◦ fj ◦ fi(x) ≤ max{fl ◦ fi ◦ fk ◦ fj(x), fk ◦ fj ◦ fl ◦ fi(x)} (∀x).
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Algorithm 20 Maximum Total Composition

1: I− := {i : δ(fi) = −1}, I+ := {i : δ(fi) = 1}
2: sort I− and I+ according to the order induced by γi

let I− = {σ(1), . . . , σ(k)}, I+ = {σ(k+1), . . . , σ(n)} such that γσ(1) ≤ · · · ≤ γσ(k) and
γσ(k+1) ≤ · · · ≤ γσ(n).

3: s := bσ(n) + aσ(n)(bσ(n−1) + aσ(n−1)(· · · (bσ(2) + aσ(2)(bσ(1))) · · · ))
4: s∗ := s, t := 1
5: a :=

∏n
i=1 ai

6: for i = 1 to n− 1 do
7: s := aσ(i) · s− bσ(i) · (a− 1)
8: if s > s∗ then s∗ := s, t := i+ 1
9: end for

10: return (σ(t), σ(t+ 1), . . . , σ(n), σ(1), σ(2), . . . , σ(t− 1))

Proof. Let g(x) = fk ◦ fj(x). If aj · ak ≥ 1, then γ(g) ≤ γk ≤ γi holds by (d) in

Lemma 8.8, and g ◦ fi(x) ≤ fi ◦ g(x) holds by (a) and (b) in Lemma 8.9. Thus we have

fl ◦ fk ◦ fj ◦ fi(x) ≤ fl ◦ fi ◦ fk ◦ fj(x).
On the other hand, if aj · ak < 1, then γ(g) ≥ γj ≥ γl holds by (e) in Lemma 8.8,

and fl ◦ g(x) ≤ g ◦ fl(x) holds by (c) in Lemma 8.9. Thus we have fl ◦ fk ◦ fj ◦ fi(x) ≤
fk ◦ fj ◦ fl ◦ fi(x).

Lemma 8.23. For monotone nondecreasing linear functions fi(x) = aix + bi, fj(x) =

ajx + bj , fk(x) = akx + bk and fl(x) = alx + bl, if −δ(fi) = δ(fj) = −δ(fk) = δ(fl) = 1

and γi ≥ γj ≥ γk ≥ γl, then we have

fl ◦ fk ◦ fj ◦ fi(x) ≤ max{fl ◦ fi ◦ fk ◦ fj(x), fk ◦ fj ◦ fl ◦ fi(x)} (∀x).

Proof. Let g(x) = fk ◦ fj(x). If aj · ak ≥ 1, then γ(g) ≥ γj ≥ γl holds by (f) in

Lemma 8.8, and fl ◦ g(x) ≤ g ◦ fl(x) by (a) and (b) in Lemma 8.9. Thus we have

fl ◦ fk ◦ fj ◦ fi(x) ≤ fk ◦ fj ◦ fl ◦ fi(x).
On the other hand, if aj · ak < 1, then γ(g) ≤ γk ≤ γi holds by (g) in Lemma 8.8,

and g ◦ fi(x) ≤ fi ◦ g(x) holds by (c) in Lemma 8.9. Thus we have fl ◦ fk ◦ fj ◦ fi(x) ≤
fl ◦ fi ◦ fk ◦ fj(x).

Lemma 8.24. There exists an optimal permutation σ∗ for the maximum total compo-

sition ordering problem ((fi)i∈[n], c) such that at most 2 integers 1 ≤ i ≤ n − 1 satisfies

δ(fσ∗(i)) · δ(fσ∗(i+1)) = −1.

Proof. Let σ∗ be the optimal permutation with the minimum cardinality of {i ∈ [n− 1] :

δ(fσ∗(i)) ·δ(fσ∗(i+1)) = −1}. Assume that |{i ∈ [n−1] : δ(fσ∗(i)) ·δ(fσ∗(i+1)) = −1}| > 2,

and let i1, i2, i3 be the three smallest elements of it, and i4 be the fourth smallest element

of it if exists or n if the cardinality is three.

Let g1(x) = fσ∗(i1) ◦ · · · ◦ fσ∗(1)(x), g2(x) = fσ∗(i2) ◦ · · · ◦ fσ∗(i1+1)(x), g3(x) = fσ∗(i3) ◦
· · · ◦ fσ∗(i2+1)(x), and g4(x) = fσ∗(i4) ◦ · · · ◦ fσ∗(i3+1)(x). Then it is easy to see that

δ(g1) = −δ(g2) = δ(g3) = −δσ∗(g4).

We claim that γ(g1) ≥ γ(g2) ≥ γ(g3) ≥ γ(g4). Assume that γ(gi) < γ(gi+1) for some
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i ∈ {1, 2, 3}. Then gi+1 ◦ gi(x) ≥ gi ◦ gi+1(x) holds and which contradicts the assumption

of minimality,

Therefore we have

fσ∗(n) ◦ · · · ◦ fσ∗(1)(x) = fσ∗(n) ◦ · · · ◦ fσ∗(i4+1) ◦ g4 ◦ g3 ◦ g2 ◦ g1(x)

≤ max

fσ
∗(n) ◦ · · · ◦ fσ∗(i4+1) ◦ g4 ◦ g1 ◦ g3 ◦ g2(x),

fσ∗(n) ◦ · · · ◦ fσ∗(i4+1) ◦ g3 ◦ g2 ◦ g4 ◦ g1(x)


by Lemmas 8.22 and 8.23. This contradicts the assumption of minimality, and hence the

lemma holds.

Lemma 8.25. For monotone nondecreasing linear functions fi(x) = aix + bi, fj(x) =

ajx + bj and fk(x) = akx + bk, if δ(fi) = −δ(fj) = δ(fk) = 1, ai · aj · ak ≥ 1 and

γi ≥ γj ≥ γk, then we have

fk ◦ fj ◦ fi(x) ≤ max{fj ◦ fi ◦ fk(x), fi ◦ fk ◦ fj(x)} (∀x).

Proof. If aj · ak ≥ 1, then γ(fk ◦ fj) ≤ γk ≤ γi by (d) in Lemma 8.8, and it implies

fk ◦ fj ◦ fi(x) ≤ fi ◦ fk ◦ fj(x) by (b) in Lemma 8.9. If aj · ak < 1 and γ(fk ◦ fj) ≥ γi,

then fk ◦ fj ◦ fi(x) ≤ fi ◦ fk ◦ fj(x) by (d) in Lemma 8.9.

If ai · aj ≥ 1, then γ(fj ◦ fi) ≥ γi ≥ γk by (f) in Lemma 8.8, and it implies fk ◦ fj ◦
fi(x) ≤ fj ◦ fi ◦ fk(x) by (b) in Lemma 8.9. If ai · aj < 1 and γ(fj ◦ fi) ≤ γk, then

fk ◦ fj ◦ fi(x) ≤ fj ◦ fi ◦ fk(x) by (d) in Lemma 8.9.

Otherwise, we have aj ·ak < 1, ai ·aj < 1, γ(fk ◦fj) < γi, and γ(fj ◦fi) > γk．Then we

have γ((fk ◦fj)◦fi) ≥ γi by (f) in Lemma 8.8, and γ(fk ◦ (fj ◦fi)) ≤ γk by (d) in Lemma

8.8 since ai ·aj ·ak ≥ 1. Therefore γi = γj = γk, and which contradicts γ(fk ◦fj) < γi.

Lemma 8.26. For monotone nondecreasing linear functions fi(x) = aix + bi, fj(x) =

ajx + bj and fk(x) = akx + bk, if −δ(fi) = δ(fj) = −δ(fk) = 1, ai · aj · ak < 1 and

γi ≥ γj ≥ γk, then we have

fk ◦ fj ◦ fi(x) ≤ max{fj ◦ fi ◦ fk(x), fi ◦ fk ◦ fj(x)} (∀x).

Proof. If aj · ak ≥ 1 and γ(fk ◦ fj) ≥ γi, then fk ◦ fj ◦ fi(x) ≤ fi ◦ fk ◦ fj(x) by (d) in

Lemma 8.9. If aj · ak < 1, then γ(fk ◦ fj) ≤ γk ≤ γi by (g) in Lemma 8.8, and it implies

fk ◦ fj ◦ fi(x) ≤ fi ◦ fk ◦ fj(x) by Lemma 8.9.

If ai · aj ≥ 1 and γ(fj ◦ fi) ≤ γk, then fk ◦ fj ◦ fi(x) ≤ fj ◦ fi ◦ fk(x) by (d) in

Lemma 8.9. If ai · aj < 1, then γ(fj ◦ fi) ≥ γi ≥ γk by (e) in Lemma 8.8, and it implies

fk ◦ fj ◦ fi(x) ≤ fj ◦ fi ◦ fk(x) by (c) in Lemma 8.9.

Otherwise, we have aj ·ak ≥ 1, ai ·aj ≥ 1, γ(fk ◦ fj) < γi, and γ(fj ◦ fi) > γk. Then we

have γ((fk ◦fj)◦fi) ≥ γi by (e) in Lemma 8.8, and γ(fk ◦ (fj ◦fi)) ≤ γk by (g) in Lemma

8.8 since ai ·aj ·ak < 1. Therefore γi = γj = γk and which contradicts γ(fk ◦fj) < γi.
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Lemma 8.27. If
∏n

i=1 ai ≥ 1, there exists an optimal permutation σ∗ and two integers s, t

(0 ≤ s ≤ t ≤ n) such that δ(fσ∗(1)) = · · · = δ(fσ∗(s)) = δ(fσ∗(t+1)) = · · · = δ(fσ∗(n)) = −1

and δ(fσ∗(s+1)) = · · · = δ(fσ∗(t)) = 1. Furthermore, it holds that γσ∗(1) ≤ · · · ≤ γσ∗(s),

γσ∗(s+1) ≤ · · · ≤ γσ∗(t), and γσ∗(t+1) ≤ · · · ≤ γσ∗(n). Especially 0 < s ≤ t < n, it holds

that γσ∗(1) ≥ γσ∗(n).

Proof. By Lemma 8.24, there is an optimal permutation σ and two integers s, t (0 ≤ s ≤
t ≤ n) such that δ(fσ(1)) = · · · = δ(fσ(s)) = δ(fσ(t+1)) = · · · = δ(fσ(n)) = −δ(fσ(s+1)) =

· · · = −δ(fσ(t)). By Lemma 8.9, we can assume

γσ(1) ≤ · · · ≤ γσ(s), γσ(s+1) ≤ · · · ≤ γσ(t), γσ(t+1) ≤ · · · ≤ γσ(n).

It is sufficient to consider for 0 < s ≤ t < n since σ satisfies the conditions of this lemma

for s = 0 or t = n. We have two cases.

Case 1: δ(fσ(s+1)) = · · · = δ(fσ(t)) = +1. Let g(x) = fσ(n−1) ◦ · · · ◦ fσ(2). Then we have

γ(fσ(1)) ≥ γ(g) ≥ γ(fσ(n)) by Lemma 8.9 and optimality of σ since δ(fσ(1)) = δ(g) =

δ(fσ(n)) = +1.

Case 2: δ(fσ(s+1)) = · · · = δ(fσ(t)) = −1. Let h1(x) = fσ(s)◦· · ·◦fσ(1), h2(x) = fσ(t)◦· · ·◦
fσ(s+1) and h3(x) = fσ(n)◦· · ·◦fσ(t+1). If γ(h1) < γ(h2), then h3◦h2◦h1(x) ≤ h3◦h1◦h2(x)
by (d) in Lemma 8.9. If γ(h2) < γ(h3), then h3 ◦ h2 ◦ h1(x) ≤ h2 ◦ h3 ◦ h1(x) by (d) in

Lemma 8.9. Otherwise, γ(h1) ≥ γ(h2) ≥ γ(h3), we have

h3 ◦ h2 ◦ h1(x) ≤ max{h2 ◦ h1 ◦ h3(x), h1 ◦ h3 ◦ h2(x)}

by Lemma 8.25. Therefore, we can modify σ as we desired.

Lemma 8.28. If
∏n

i=1 ai < 1, there exists an optimal permutation σ∗ and two integers s, t

(0 ≤ s ≤ t ≤ n) such that δ(fσ∗(1)) = · · · = δ(fσ∗(s)) = δ(fσ∗(t+1)) = · · · = δ(fσ∗(n)) = 1

and δ(fσ∗(s+1)) = · · · = δ(fσ∗(t)) = −1. Furthermore, it holds that γσ∗(1) ≤ · · · ≤ γσ∗(s),

γσ∗(t+1) ≤ · · · ≤ γσ∗(n). Especially 0 < s ≤ t < n, it holds that γσ∗(1) ≥ γσ∗(n).

Proof. By Lemma 8.24, there is an optimal permutation σ and two integers s, t (0 ≤ s ≤
t ≤ n) such that δ(fσ(1)) = · · · = δ(fσ(s)) = δ(fσ(t+1)) = · · · = δ(fσ(n)) = −δ(fσ(s+1)) =

· · · = −δ(fσ(t)). By Lemma 8.9, we can assume

γσ(1) ≤ · · · ≤ γσ(s), γσ(s+1) ≤ · · · ≤ γσ(t), γσ(t+1) ≤ · · · ≤ γσ(n).

It is sufficient to consider for 0 < s ≤ t < n since σ satisfies the conditions of this lemma

for s = 0 or t = n. We have two cases.

Case 1: δ(fσ(s+1)) = · · · = δ(fσ(t)) = −1. Let g(x) = fσ(n−1) ◦ · · · ◦ fσ(2). Then we have

γ(fσ(1)) ≥ γ(g) ≥ γ(fσ(n)) by Lemma 8.9 and optimality of σ since δ(fσ(1)) = δ(g) =

δ(fσ(n)) = −1.

Case 2: δ(fσ(s+1)) = · · · = δ(fσ(t)) = +1. Let h1(x) = fσ(s)◦· · ·◦fσ(1), h2(x) = fσ(t)◦· · ·◦
fσ(s+1) and h3(x) = fσ(n)◦· · ·◦fσ(t+1). If γ(h1) < γ(h2), then h3◦h2◦h1(x) ≤ h3◦h1◦h2(x)
by (d) in Lemma 8.9. If γ(h2) < γ(h3), then h3 ◦ h2 ◦ h1(x) ≤ h2 ◦ h3 ◦ h1(x) by (d) in
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Lemma 8.9. Otherwise, γ(h1) ≥ γ(h2) ≥ γ(h3), we have

h3 ◦ h2 ◦ h1(x) ≤ max{h2 ◦ h1 ◦ h3(x), h1 ◦ h3 ◦ h2(x)}

by Lemma 8.26. Therefore, we can modify σ as we desired.

By Lemmas 8.27, 8.28, and 8.14, we have Theorem 8.21.

8.4 Negative Results

In this section, we show the maximum total composition ordering problem and the max-

imum partial composition ordering problem are NP-hard for monotone increasing non-

linear functions.

We first mention that the maximum total composition ordering problem ((fi)i∈[n], c) for

monotone increasing concave 2-piece piecewise linear functions fi(x) = min{aix + bi, ci}
(ai > 1) is strongly NP-hard by a result in Cheng and Ding [18]. They provided that

the time dependent scheduling problem is strongly NP-hard when the processing time

of ith job is pi(t) = a′it + b′i (a′i > 0) and it has a ready time ri. Thus the minimum

total composition ordering problem ((fi)i∈[n], t0) for fi(t) = max{ri + pi(ri), t+ pi(t)} is

strongly NP-hard and the maximum total composition ordering problem ((fi)i∈[n],−t0)
for fi(t) = min{−ri − pi(ri), t− pi(−t)} is strongly NP-hard by Lemma 8.1.

We use the following NP-complete problems (see [30,73]).

PARTITION: given a set positive integers a1, . . . , an ∈ Z++,
∑

i∈[n] ai = 2T , does there

exist a subset I ⊆ [n] such that
∑

i∈I ai = T?

PRODUCTPARTITION: given a set of positive integers a1, . . . , an ∈ Z++,
∏

i∈[n] ai = T 2,

does there exist a subset I ⊆ [n] such that
∏

i∈I ai = T?

8.4.1 Monotone Increasing Concave at most 2-piece Piecewise

Linear Functions

As we mentioned in the beginning of this section, the maximum total composition ordering

problem for monotone increasing concave 2-piece piecewise linear functions is strongly NP-

hard. In this subsection, we prove the maximum total composition ordering problem for

the functions is NP-hard.

Theorem 8.29. the maximum partial composition ordering problem ((fi)i∈[n], c) is NP-

hard for monotone increasing concave at most 2-piece piecewise linear functions, i.e.,

fi(x) = min{a1ix+ b1i , a
2
ix+ b2i } (a1i , a

2
i > 0).

Proof. We show that PARTITION can be reduced to the maximum total composition or-

dering problem and the maximum partial composition ordering problem for monotone

increasing concave at most 2-piece piecewise linear functions. Suppose we are given a

PARTITION instance a1, . . . , an ∈ Z++ and
∏

i∈[n] ai = 2T . We construct n + 1 functions
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as follows:

f0(x) = min

{
2x,

1

2
x+

3

2
T

}
,

fi(x) = x+ ai (i ∈ [n]).

We show that the optimal value of the maximum total composition ordering problem (and

the maximum partial composition ordering problem) ((fi)
n
i=0, 0) is at least 3T if and only

if the original instance of PARTITION is an yes-instance. Note that, the maximum partial

composition is attained in total composition since fi(x) ≥ x for all i and 0 ≤ x ≤ 3T .

Thus it is sufficient to show only the maximum total composition ordering problem is

NP-hard.

Suppose a1, . . . , an ∈ Z++ is an yes-instance, so let σ : [n] → [n] be a permutation such

that I = {σ(1), . . . , σ(k)} is a solution, i.e.,
∑

i∈I ai = T . Then we have

fσ(n) ◦ · · · ◦fσ(k+1) ◦ f0 ◦ fσ(k) ◦ · · · ◦ fσ(1)(0)

= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0(T )

= fσ(n) ◦ · · · ◦ fσ(k+1)(2T ) = 3T.

Conversely, if fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0 ◦ fσ(k) ◦ · · · ◦ fσ(1)(0) ≥ 3T for some permutation

σ, let q =
∑k

i=1 ai. Note that 2T − q =
∑n

i=k+1 aσ(i). Then we have

fσ(n) ◦ · · · ◦fσ(k+1) ◦ f0 ◦ fσ(k) ◦ · · · ◦ fσ(1)(0)

= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0(q)

= fσ(n) ◦ · · · ◦ fσ(k+1)

(
min

{
2q,

1

2
q +

3

2
T

})
= min

{
2q,

1

2
q +

3

2
T

}
+ 2T − q

= min

{
q, − 1

2
q +

3

2
T

}
+ 2T.

Therefore, the value of the composition is at least 3T only when q = T .

By Lemma 8.2, the following theorem also holds.

Theorem 8.30. The maximum partial composition ordering problem ((fi)i∈[n], c) is NP-

hard for fi(x) = max{x,min{a1ix+ b1i , a
2
ix+ b2i }}.

8.4.2 Monotone Increasing Convex at most 2-piece Piecewise Lin-

ear Functions

Theorem 8.31. Both the maximum total and partial composition ordering problems

((fi)i∈[n], c) are NP-hard for monotone increasing convex at most 2-piece piecewise linear

functions, i.e., fi(x) = max{a1ix+ b1i , a
2
ix+ b2i } (a1i , a

2
i > 0).
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Proof. We show that PRODUCTPARTITION can be reduced to the maximum total com-

position ordering problem and the maximum partial composition ordering problem for

monotone increasing convex at most 2-piece piecewise linear functions. Suppose we are

given a PRODUCTPARTITION instance a1, . . . , an ∈ Z++ and
∏

i∈[n] ai = T 2. We construct

n+ 1 functions as follows:

f0(x) = x+ 2T,

fi(x) = max

{
1

ai
(x− T 2) + T 2, ai(x− T 2) + T 2

}
(i ∈ [n]).

We show that the optimal value of the maximum partial composition ordering problem

((fi)
n
i=0, 0) is at least 2T

2 if and only if the original instance of PRODUCTPARTITION is an

yes-instance. Note that, the maximum partial composition is attained in total composition

since fi(x) ≥ x for all i. Thus it is sufficient to prove only that the maximum total

composition ordering problem for the functions is NP-hard.

Suppose a1, . . . , an ∈ Z++ is an yes-instance, so let σ : [n] → [n] be a permutation such

that I = {σ(1), . . . , σ(k)} is a solution, i.e.,
∏

i∈I ai = T 2. Then we have

fσ(n) ◦ · · · ◦fσ(k+1) ◦ f0 ◦ fσ(k) ◦ · · · ◦ fσ(1)(0)

= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0

(
1∏k

i=1 aσ(i)
(−T 2) + T 2

)
= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0(T 2 − T )

= fσ(n) ◦ · · · ◦ fσ(k+1)(T
2 + T )

=

(
n∏

i=k+1

aσ(i)

)
(T 2 + T − T 2) + T 2 = 2T 2.

Conversely, if fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0 ◦ fσ(k) ◦ · · · ◦ fσ(1)(0) ≥ 2T 2 for some permutation

σ, let p = 1∏k
i=1 aσ(i)

. Note that pT 2 =
∏n

i=k+1 aσ(i). Then we have

fσ(n) ◦ · · · ◦fσ(k+1) ◦ f0 ◦ fσ(k) ◦ · · · ◦ fσ(1)(0)

= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0

(
1∏k

i=1 aσ(i)
(−T 2) + T 2

)
= fσ(n) ◦ · · · ◦ fσ(k+1) ◦ f0(p(−T 2) + T 2)

= fσ(n) ◦ · · · ◦ fσ(k+1)(T
2(1− p) + 2T )

≤

(
n∏

i=k+1

aσ(i)

)
(T 2(1− p) + 2T − T 2) + T 2

= −T 4

(
p− 1

T

)2

+ 2T 2,

and that equality holds if and only if T 2(1− p) + 2T ≥ T 2, i.e., p ≤ 2/T . Therefore, the

value of the composition is at least 2T 2 only when p = 1/T .
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By Lemma 8.2, the following theorem also holds.

Theorem 8.32. The maximum total composition ordering problem ((fi)i∈[n], c) is NP-

hard for fi(x) = max{x, a1ix+ b1i , a
2
ix+ b2i }.
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Chapter 9

Conclusion

9.1 Summary

In this thesis, we have studied the competitive ratios for several variants of the online

knapsack problem and related problems, and the time complexities for the optimal com-

position ordering problems.

In Chapter 4, we have given good competitive randomized algorithms for removable

and non-removable online knapsack problems.

In Chapter 5, we have given 1+
√
5

2 -competitive algorithm for online knapsack problem

under convex functions with specific properties. This competitive ratio coincides with the

competitive ratio of the unweighted removable online knapsack problem.

In Chapter 6, we have presented optimal competitive algorithms for the proportional

cost buyback problem. We have extended results by Babaioff et al. [5] and Constantin

et al. [23] for the single element and the matroid cases to the case when each element

has upper and lower bounds of weights. We have also presented an optimal competitive

algorithm when the unweighted knapsack constraint with lower bound of weights.

In Chapter 7, we have proposed optimal competitive algorithms for the unit cost buy-

back problem when the constraint is a matroid constraint or the unweighted knapsack

constraint.

In Chapter 8, we have introduced the optimal composition ordering problem and pro-

vided time complexities for the problem. We have showed that the maximum total com-

position ordering problem and the minimum total composition ordering problem are mu-

tually reducible to one another, and the maximum partial composition ordering problem

and the minimum partial composition ordering problem are also mutually reducible. We

have presented a polynomial time algorithm for the maximum total composition ordering

problem and the maximum partial composition ordering problem when the functions are

monotone increasing and linear. We have also proposed polynomial time algorithm for the

maximum partial composition ordering problem when the functions are piecewise increas-

ing, i.e., fi(x) = max{aix + bi, ci} (ai ≥ 0). Moreover, we have proved that the optimal

composition ordering problem is NP-hard even if the functions are monotone increasing,

convex (concave), and at most 2-piece piecewise linear.
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9.2 Open Problems

One important question is whether our algorithms and analysis for buyback problem can

be extended to the more general case of packing problem, e.g., the online packing problem.

The online packing problem introduced by Buchbinder and Naor [16] is described as

follows. Let us consider the following an integer programming formulation of a packing

problem:

maximize
∑n

i=1 bixi

s.t.
∑n

i=1 ai,jxi ≤ ci, (∀j ∈ [m]).

xi ≥ 0, (∀i ∈ [n]).

The values ci (i ∈ [n]) are known in advance, but the profit function and the exact packing

constraints are not known in advance. In the ith round, a new variable xi is introduced

to the algorithm, along with its set of coefficients ai,j (j ∈ [m]) and bi. The algorithm

can only increase the value of a variable xi in the round in which it is given and cannot

change the values of any previously given variables. The goal is to find a feasible solution

that maximizes the objective function. Buchbinder and Naor [16] solved this problem

with online primal dual method.

In a removable setting, the algorithm can also reduce the value of variables xk (k < i)

in the ith round. In a buyback setting, the algorithm can reduce the value of variables

xk (k < i) with some cost in the ith round. These problems are generalizations of the

removable online knapsack problem or the buyback problem. Thus, another question is

whether the primal dual method can be extended for this problem.

There are many open problems related to the optimal composition ordering problems.

For example, it is unknown whether or not the minimum total composition ordering prob-

lem for monotone decreasing linear functions can be solved in polynomial time. To give

pseudo-polynomial time algorithm or approximation algorithm for monotone increasing

piecewise linear functions is also open.
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garden. The price of stability for network design with fair cost allocation. SIAM

Journal on Computing, 38(4):1602–1623, 2008.

[2] B. V. Ashwinkumar. Buyback problem - approximate matroid intersection with

cancellation costs. In Automata, Language and Programming, volume 6755, pages

379–390. Springer, 2011.

[3] B. V. Ashwinkumar and R. Kleinberg. Randomized online algorithms for the buyback

problem. In Internet and Network Economics, volume 5929, pages 529–536. Springer,

2009.

[4] Y. Azar. On-line load balancing. In Online Algorithms, volume 1442 of Lecture Notes

in Computer Science, pages 178–195. Springer, 1998.

[5] M. Babaioff, J. D. Hartline, and R. D. Kleinberg. Selling banner ads: Online algo-

rithms with buyback. In Proceedings of the 4th Workshop on Ad Auctions, 2008.

[6] M. Babaioff, J. D. Hartline, and R. D. Kleinberg. Selling ad campaigns: Online algo-

rithms with cancellations. In Proceedings of the 10th ACM Conference on Electronic

Commerce, pages 61–70, 2009.

[7] M. Babaioff, N. Immorlica, D. Kempe, R. Kleinberg, M. Babaioff, N. Immorlica,

D. Kempe, and R. Kleinberg. A knapsack secretary problem with applications. Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-

niques, pages 16–28, 2007.

[8] M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and

online mechanisms. In Proceedings of the eighteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 434–443, 2007.

[9] N. Bansal, N. Buchbinder, A. Madry, and J. Naor. A polylogarithmic-competitive

algorithm for the k-server problem. In Proceedings of IEEE 52nd Annual Symposium

on Foundations of Computer Science, pages 267–276, 2011.

[10] R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[11] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the power

of randomization in on-line algorithms. Algorithmica, 11(1):2–14, 1994.

[12] E. Biyalogorsky, Z. Carmon, G. E. Fruchter, and E. Gerstner. Research note: Over-

selling with opportunistic cancellations. Marketing Science, 18(4):605–610, 1999.

[13] L. A. Blady. A study of replacement algorithms for virtual storage computers. IBM

Systems Journal, 5:78–101, 1966.

[14] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-



122 References

bridge University Press, 1998.

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

[16] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing

problems. In Proceedings of the 13th Annual European Symposium, pages 689–701,

2005.

[17] J.-Y. Cai, P. Cai, and Y. Zhu. On a scheduling problem of time deteriorating jobs.

Journal of Complexity, 14(2):190–209, 1998.

[18] T. C. E. Cheng and Q. Ding. The complexity of scheduling starting time dependent

tasks with release times. Information Processing Letters, 65(2):75–79, 1998.

[19] T. C. E. Cheng and Q. Ding. Single machine scheduling with deadlines and increasing

rates of processing times. Acta Informatica, 36(9-10):673–692, 2000.

[20] T. C. E. Cheng and Q. Ding. Scheduling start time dependent tasks with deadlines

and identical initial processing times on a single machine. Computers & Operations

Research, 30(1):51–62, 2003.

[21] T. C. E. Cheng, Q. Ding, M. Y. Kovalyov, A. Bachman, and A. Janiak. Scheduling

jobs with piecewise linear decreasing processing times. Naval Research Logistics,

50(6):531–554, 2003.

[22] T. C. E. Cheng, Q. Ding, and B. Lin. A concise survey of scheduling with time-

dependent processing times. European Journal of Operational Research, 152(1):1–13,

2004.

[23] F. Constantin, J. Feldman, S. Muthukrishnan, and M. Pál. An online mechanism

for ad slot reservations with cancellations. In Proceedings of the twentieth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 1265–1274, 2009.
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