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Abstract 

Overlapping of spike waveforms is a major problem in the detection and sorting of extracellularly 

recorded neural spikes because the original spike waveforms can become hidden and merged due to 

overlapping. Previous methods proposed for solving this problem include using a multitrode or 

placing a restriction on spike patterns. In the thesis, we proposed two methods to detect and sort 

arbitrarily overlapped spikes in order to help to obtain more accurate analyses of highly 

synchronized neural activity. 

First, we propose a fast sequential method that can robustly detect and sort arbitrarily overlapped 

spikes recorded with arbitrary types of electrodes. In our method, the probabilities of possible spike 

trains including ones with overlapping are evaluated by a sequential Bayesian inference based on 

probabilistic models of spike-train generation and extracellular voltage recording. We derived a 

computationally efficient sequential Bayesian inference algorithm based on these models that is used 

to calculate the probability of spike existence at each sampling time in real-time. In addition, the 

“look-ahead probability", the probability calculated with the data for a few sampling times ahead, 

results in more efficient calculation. We assessed the performance of our method with simulated 

neural signals and a real neural signal recorded from primary cortical neurons cultured on a 

multi-electrode array. Our results showed that our method could be applied in real-time and the delay 

was less than 10ms. Furthermore, the estimation accuracy was higher than that of a conventional 

spike sorting method, especially for signals with many overlapped spikes. 

Second, a method for simultaneous estimation of spike templates and timings of highly-overlapped 

spikes was proposed and the performance was assessed using simulated and real neural signals. In 

our method, the inference based on the hidden Markov model with the probabilistic penalty is 

efficiently calculated with the approximation. As the result, it was showed that our method could 

appropriately decompose the simulated and real signals containing complexly 

overlapped spikes. 

Last, we applied two methods in combination to various data and compared the traditional 

approach and the application without the combination. The strong and weak points of these two 

methods are complementary and the procedure using two methods in combination performed better 

than other methods and applying without combination. 
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Chapter 1  

Introduction 

 

1.1 Neurons and action potentials 

1.1.1 Morphology of neurons 
Neurons are electrically excitable cells that process and transmit information in the brain. The 

typical morphology of neurons is shown in Figure 1.1. A neuron has a soma and two types of 

protrusions, dendrites and axons, which have different shapes according to the types of neurons they 

belong to and their locations in the brain. An axon of a neuron is connected to the dendrites of other 

neurons through synapses, and neuronal excitation is transmitted through these synapses. Electrical 

excitation propagated through neuronal networks is the basis of information processing in the brain. 

 

Figure 1.1. Typical morphology of neurons. (Left) A Purkinje cell of the cerebellar cortex and (right) 

a pyramidal neuron of the neocortex. Each has an extensively branched, spiny apical dendrite, 

shorter basal dendrites, and a single axon emerging from the basal pole of the cell. This figure was 

reprinted, with permission, from Fundamental Neuroscience, Third Edition, Squire LR, Bloom FE, 

Spitzer NC, Darwin B, Lac S, Ghosh A, ⓒAcademic Press (2008). 
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1.1.2 Concentrations of ions and equilibrium potentials 

On the membranes of neurons, ion pumps that transport ions through the membranes in one 

direction produce differences between the intracellular and extracellular concentrations of potassium 

and sodium ions. The differences in the concentrations of ions result in differences in the potentials 

between the extracellular and intracellular space (the membrane potential). In this situation, ions 

move in the direction that cancels out the difference in the potential when ions can pass through the 

membranes. However, ions also move from a region with high concentration to a region with low 

concentration. Membrane potentials are strongly influenced by these movements of ions. In contrast, 

the ion concentrations are almost unchanged. Consequently, in some membrane potential, the two 

ion fluxes balance out, and there is no apparent current. This membrane potential is called the 

equilibrium potential. The equilibrium potential of each kind of ion is determined by the Nernst 

equation (Kandel et al., 2000): 

 

 

(1.1) 

where  is the membrane potential at which the ionic species is at equilibrium,  is the gas 

constant (8.315 ),  is the temperature in Kelvin,  is Faraday’s constant (96485 

),  is the valence of the ion, and  and  are the concentrations of the ion 

outside and inside the cell, respectively. At room temperature (25°C), the equilibrium potential for 

 is 

 

 

(1.2) 

and the equilibrium potential for  is 

 

 

(1.3) 

In the steady state, the multiple ion fluxes that pass through the membrane balance out, and the 

membrane potential is stabilized at the resting membrane potential determined by the Goldman 

equation (Kandel et al., 2000): 

 

 

(1.4) 

where PK, PNa, and PCl are the permeability of potassium ions, sodium ions, and chloride ions, 

respectively. 
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Figure 1.2. The sequential opening of voltage-gated Na+ and K+ channels generates the action 

potential. The shape of the action potential and the underlying conductance changes can be 

calculated from the properties of the voltage-gated Na+ and K+ channels. This figure was reprinted, 

with permission, from Principles of Neural Science, 4th edition, Kandel E, Schwartz J, Jessel T, ⓒ 

McGraw-Hill Medical (2000). 

 

1.1.3 Action potentials 
The electrical excitation of neurons result in a sharp change of the membrane potential, and this is 

called an action potential. The membrane potential is normally stabilized around -65mV (the resting 

membrane potential). When a neuron is excited, the membrane potential steeply rises to 

approximately 30 mV and then decreases to the resting membrane potential (Figure 1.2). After 

generation, action potentials travel through an axon and excite synapses to make other neurons 

generate neural spikes. 

Action potentials are generated by the opening and closing of ion channels on the membrane. On a 

neuron’s membrane, there are many ion channels through which only sodium ions or potassium ions 

can pass (Figure 1.3). These ion channels are normally closed, but they open when the membrane 

potential rises and the conductance of the membrane for the corresponding type of ion increases. 

After that, the ion channels are closed and inactivated for a short time (approximately 2 ms) after the 

opening of the ion channels, and this prevents the neuron from generating an action potential again 

(Figure 1.4). This is called the refractory period, and it is an important feature of a neuron that 

prevents the backward transmission of excitation. 
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Figure 1.3. Each ion channel is selective for Na+, K+, or Cl- and a population of ion channels can be 

represented by a battery in series with a conductor. Note the directions of poles of batteries, 

indicating a negative electromotive force for K+ and Cl- and a positive one for Na+. This figure was 

reprinted, with permission, from Principles of Neural Science, 4th edition, Kandel E, Schwartz J, 

Jessel T, ⓒ McGraw-Hill Medical (2000). 

 

These mechanisms of the changes in channel conductance and the membrane current are 

quantitatively described by the Hodgkin-Huxley equation (Dayan et al., 2005): 

 
 

(1.5) 

 

 

(1.6) 

 

 

(1.7) 

 

 

(1.8) 

 

 

(1.9) 

 
 

(1.10) 

 

 

(1.11) 

 
 

(1.12) 

 

 

(1.13) 

 

 

(1.14) 

where  is the membrane potential,  is the equilibrium potential of leak channels,  is the 

equilibrium potential of potassium channels,  is the equilibrium potential of sodium channels, 

 is the conductance of leak channels,  is the maximal conductance of potassium channels, 



5 

 

 

 

 

Figure 1.4. Illustration of the position of the activation and inactivation gates when the channel is at 

rest (1), when the sodium channels have been opened (2), and when the channels have been 

inactivated (3). It is the movement of the positive charge on the activation gate through the 

membrane electric field that generates the gating current. This figure was reprinted, with permission, 

from Principles of Neural Science, 4th edition, Kandel E, Schwartz J, Jessel T, ⓒ McGraw-Hill 

Medical (2000). 

 

 is the maximal conductance of potassium channels, and n, m, and h are the variables that 

represent the opening and closing of ion channels. The equivalent circuit is shown in Figure 1.5. 

At the resting membrane potential, the ion channels are closed, and the channel conductance is low. 

When the membrane potential rises, the ion channels open, and the channel conductance increases, 

which causes the membrane current to move towards the equilibrium potential. At first, the 

membrane potential rises towards the equilibrium potential of sodium ions (+55 mV) and then falls 

towards that of potassium ions (-75 mV) because the sodium channels open at a lower membrane 

potential than the potassium channels do. After that, the membrane potential returns to the steady 

state during the refractory period (Figure 1.2). 
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Figure 1.5. The equivalent circuit of Hodgkin-Huxley equation. Under steady state conditions the 

passive sodium and potassium currents are balanced by active sodium and potassium fluxes (  

and ) driven by the  pump. The lipid bilayer endows the membrane with electrical 

capacitance ( ). This figure was reprinted, with permission, from Principles of Neural Science, 4th 

edition, Kandel E, Schwartz J, Jessel T, ⓒ McGraw-Hill Medical (2000). 

 

 

Figure 1.6. The equivalent circuit of two neighboring compartments or segments (A and B) of an 

axon or dendrite shows the pathways for current spread in response to an input (injected current or 

increase in membrane conductance) at segment A. This figure was reprinted, with permission, from 

Fundamental Neuroscience, Third Edition, Squire LR, Bloom FE, Spitzer NC, Darwin B, Lac S, 

Ghosh A, ⓒAcademic Press (2008). 
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1.1.4 Cable theory 
The current generated at a point on the membrane affects other areas. The effects are described by 

cable theory, which is derived under the approximation of a neuron as a one-dimensional cable 

(Squire et al., 2008). Assuming a compartment model that discretizes the homogenous cable of  

diameter into a compartment of  length, the equivalent circuit can be modeled as shown in 

Figure 1.6. From Kirchhoff’s law, the following equation holds in this circuit: 

 

 

(1.15) 

where Vj and  are the membrane potential and the membrane current density at compartment j, 

respectively. The conductance of the membrane ( ) is proportional to the area of the membrane of 

the compartment ( ) because the cable is homogenous. However, the resistance in the cell ( ) is 

proportional to  and inversely proportional to the cross-sectional area . Consequently, we 

can define Cm and Ri as  and , and the following equation is 

derived: 

 

. 

(1.16) 

Taking the limit of , we can derive a continuous equation about the membrane potential  

and the membrane current  on the cable, as shown below: 

 

. 

(1.17) 

This equation is called the cable theory. Active currents described by the Hodgkin-Huxley equation 

and passive currents described by cable theory make a pair of a current sink and a current source on 

the membrane, as shown in Figure 1.7. A NEURON simulator (Hines, 1998) can simulate the 

dynamics of the membrane potential and the membrane current at each point in the structure of a 

neuron by using cable theory. 

 

1.1.5 Variety of electrophysiological properties 
It is known that there are several types of neurons that have different electrophysiological 

properties that generate action potentials (Squire et al., 2008). No uniform classification scheme has 

been formulated, but some characteristic patterns of activity can be found, as shown in Figure 1.8. 

The general classes of the characteristic patterns are elucidated below. 



8 

 

 

 

 Linear: Neurons that generate one spike at a time. The more prolonged and intense their 

depolarization, the more they generate action potentials. They are typical for brain stem and 

spinal cord motor neurons. 

 Regular firing: Neurons that produce trains of action potentials that show a tendency to slow 

down in frequency with time (spike frequency adaptation). Examples of such neurons are 

cortical and hippocampal pyramidal cells. 

 Bursting: Neurons that generate clusters of action potentials when the membrane is brought 

above the threshold. Examples of such neurons are thalamic relay neurons, inferior olivary 

neurons, and some types of cortical and hippocampal pyramidal cells. 

 Fast spiking: Neurons that generate short duration (<1ms) action potentials and that can 

discharge at high frequencies (>300 Hz). Such electrophysiological properties are often found 

in inhibitory neurons, such as interneurons in the cerebral cortex, thalamus, and hippocampus. 

Such variability is produced by multiple types of active conductance (Squire et al., 2008). For 

example, two distinct Na+ currents and five distinct K+ currents are shown in Table 1.1 and Table 1.2. 

Furthermore, four distinct Ca2+ currents and the current that conducts both Na+ and K+ are shown in 

Table 1.3 and Table 1.4. They are not modeled in the original Hodgkin-Huxley equation, but various 

distinctive activities of neurons are produced by them. Simulations of the Hodgkin-Huxley equation 

with different conductances can reproduce a variety of generated action potentials, as shown in 

Figure 1.9. 

Although these currents can dramatically change how action potentials are generated, all neurons 

have a refractory period because all of the action potentials are started by INat which is inactivated 

after the activation. However, it is known that the shapes of action potentials are not homogenous 

during bursting or tonic firing (Figure 1.8 and Figure 1.9). 

 

Table 1.1. Types of Na+ currents (Squire et al., 2008). 

INat “transient”, inactivated after activation, modeled in the classical Hodgkin-Huxley equation 

INap “persistent”, not inactivated after activation, changing responsiveness of neurons 

 

Table 1.2. Types of K+ currents (Squire et al., 2008). 

IK not inactivated after activation, modeled in the classical Hodgkin-Huxley equation 

IC voltage- and Ca2+-dependent current 

IA inactivated after activation, controlling the rate of generation of action potentials 

IM modulated by the activation of neurotransmitter receptors (e.g. acetylcholine) 

IAHP voltage- and Ca2+-dependent current, producing after-hyper-polarization 
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Table 1.3. Types of Ca2+ currents (Squire et al., 2008). 

IL “long-lasting”, high-threshold, not inactivated after activation 

IT “transient”, low-threshold, inactivated after activation, producing bursting 

IN “neither”, high-threshold, inactivated after activation 

IP “Purkinje”, high-threshold, not inactivated after activation 

 

Table 1.4. The current conducted by Na+ and K+ (Squire et al., 2008). 

Ih Activated by hyperpolarization, related to rhythmic oscillations 

 

Figure 1.7. The voltage response in a passive neuronal process decays with distance due to electronic 

conduction. Current injected into a neuronal process by a microelectrode follows the path of least 

resistance to the return electrode in the extracellular fluid (A). The thickness of the arrows represents 

membrane current density at any point along the process. Under these conditions the change in Vm 

decays exponentially with distance from the site of current injection (B). The distance at whichΔVm 

has decayed to 37% of its value at the point of current injection defines the length constant, . This 

figure was reprinted, with permission, from Principles of Neural Science, 4th edition, Kandel E, 

Schwartz J, Jessel T, ⓒ McGraw-Hill Medical (2000). 
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Figure 1.8. Neurons in the mammalian brain exhibit widely varying electrophysiological properties. 

(A) Intracellular injection of a depolarizing current pulse in a cortical pyramidal cell results in a train 

of action potentials that slow down in frequency. This pattern of activity is known as “regular fi 

ring.” (B) Some cortical cells generated bursts of three or more action potentials, even when 

depolarized only for a short period of time. (C) Cerebellar Purkinje cells generate high-frequency 

trains of action potentials in their cell bodies that are disrupted by the generation of Ca2+ spikes in 

their dendrites. These cells can also generate “plateau potentials” from the persistent activation of 

Na+ conductances (arrowheads). Thalamic relay cells may generate action potentials either as bursts 

(D) or as tonic trains of action potentials (E) due to the presence of a large low-threshold Ca2+ 

current. (F) Medial habenular cells generate action potentials at a steady and slow rate in a 

“pacemaker” fashion. This figure was reprinted, with permission, from Fundamental Neuroscience, 

Third Edition, Squire LR, Bloom FE, Spitzer NC, Darwin B, Lac S, Ghosh A, ⓒAcademic Press 

(2008). 



11 

 

 

 

 

 

 

Figure 1.9. Simulation of the effects of the addition of various ionic currents to the pattern of activity 

generated by neurons in the mammalian central nervous system. (A) The repetitive impulse response 

of the classical Hodgkin–Huxley model (voltage recordings above, current traces below). With only 

INa and IK, the neuron generates a train of five action potentials in response to depolarization. 

Addition of IC (B) enhances action potential repolarization. Addition of IA (C) delays the onset of 

action potential generation. Addition of IM (D) decreases the ability of the cell to generate a train of 

action potentials. Addition of IAHP (E) slows the firing rate and generates a slow 

after-hyperpolarization. Finally, addition of the transient Ca2+ current IT results in two states of 

action potential firing: (F) burst firing at −85 mV and (G) tonic firing at −60 mV. This figure was 

reprinted, with permission, from Fundamental Neuroscience, Third Edition, Squire LR, Bloom FE, 

Spitzer NC, Darwin B, Lac S, Ghosh A, ⓒAcademic Press (2008). 
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1.2 Recording of neural activity 

1.2.1 Intracellular voltage recording 

As mentioned above, an action potential is an important phenomenon that realizes information 

processing in the brain. Therefore, electrophysiological measurements of action potentials have been 

a major approach used in neuroscience. The most reliable method for measuring action potentials is 

intracellular voltage recording, which is realized by the insertion of an electrode into a neuron or 

patch-clamp techniques that use electrodes in glass pipettes attached to the membrane of a neuron. 

This method has the advantage of a fine signal/noise ratio, as shown in Figure 1.10, and it enables 

the measurement of small changes in the membrane potential. Therefore, this method has been used 

to measure not only action potentials but also small changes in the membrane potential caused by 

synaptic transmissions (post synaptic potentials) (Lampl et al., 1999; Shu et al., 2003). However, this 

method requires delicate and time-consuming actions in order to measure from a neuron, and this 

makes multiunit recording difficult. Long-term recording is also difficult because the cell body is 

damaged by the recording. 

 

1.2.2 Extracellular voltage recording 

Multiunit and long-term recordings of action potentials can be realized easily by extracellular 

voltage recording, as shown in Figure 1.11. For example, Utah electrodes for recording in vivo 

(shown in Figure 1.12) and multi-electrode arrays (MEAs) for recording in vitro (shown in Figure 

1.13) have been developed for multi-unit and long-term recordings. They have been used in many 

applications, such as brain-machine interface systems (Donoghue, 2002; Lebedev and Nicolelis, 

2006), the recording of the development of cultured neuronal networks (Van et al., 2004; Steganga et 

al., 2008; Brewer et al., 2009; Ito et al., 2010), and research on the adaptation of neuronal networks 

to electrical stimulation (Ruaro et al., 2005; Chiappalone et al., 2008). However, this method has the 

disadvantage of a low signal/noise ratio. Although the change in the membrane voltage during action 

potential is approximately 100 mV, the voltage of the extracellularly recorded spikes is 

approximately 100 μV (Figure 1.10). 
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Figure 1. 10. Simultaneous extracellular recording in layer 5 and intracellular recording from a layer 

5 cell. Reprinted and modified from Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA. 

Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons, Journal of 

Neuroscience, Vol. 23, No. 32, pp. 10388-10401, Copyright (2003) Society for Neuroscience.  

 

 

Figure 1.11. The basic set-up for measuring and analyzing extracellular neural signals. Lewicki MS, 

Network: Computation in Neural Systems, 1998;9(4):53-78, ⓒ (1998), Informa Healthcare. 

Reproduced with permission of Informa Healthcare. 
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(a) 

 

(b) 

Fig. 1.12. (a) A scanning electron micrograph of a Utah electrode (silicon 100 electrode array). The 

center to center spacing between electrodes is 400 μm. (b) An enlarged view of a Utah electrode. © 

1991 IEEE. Reprinted, with permission, from Campbell PK, Jones KE, Huber RJ, Horch KW, 

Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an 

intracortical electrode array, IEEE Transactions on Biomedical Engineering, 1991. 
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Figure 1. 13. (a) The appearance of Multi-electrode array (MED545A; Alpha MED Scientific Inc.). 

(b) Cortical neurons cultured on MEA. Black squares are 50μm square electrodes. 

 

(a) 

(b) 
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Figure 1.14. An example of calcium imaging. (A) Confocal image of the CA3 region in an 

organotypically cultured rat entorhino-hippocampal slice bolus-loaded with Oregon green 488 

BAPTA-1. (B) Simultaneous monitoring of somatic calcium signal and loose-patch recording from 

the same neuron. Note that action potentials are mirrored in calcium transients. Reprinted from 

Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y, Watching neuronal circuit dynamics through 

functional multineuron calcium imaging (fMCI), Neuroscience Research, Vol.58, No. 3, pp.219-225,

ⓒ (2007), with permission from Elsevier. 

 

1.2.3 Optical imaging 

The excitation of neurons can also be observed optically with calcium ion fluorescent indicators 

(Takahashi et al., 2007) and voltage-sensitive dyes (Ferezou et al., 2006). For example, the 

concentration of calcium ions can be measured, as shown in Figure 1.14 (Takahashi et al., 2007). 

The estimation of spike timings from calcium signals has been realized (Vogelstein et al., 2009). The 

advantage of this method is the ability to record individually from a greater number of neurons than 

is possible with extracellular voltage recordings. However, a low signal/noise ratio, low time 

resolution, drug toxicity, and inapplicability to humans can be disadvantages. 
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1.3 Mechanisms of extracellular voltage recording 

1.3.1 Polarization of electric charges in the extracellular medium 
In the present thesis, we focus attention on extracellular voltage recording, which has many 

applications in neural engineering. In Section 1.2, we showed that the distributions of membrane 

currents during action potentials can be expressed by the Hodgkin-Huxley equation and cable theory. 

In this section, we discuss how the electric potential recorded at an extracellular electrode is 

determined from the distribution of the membrane currents. 

First, we discuss the polarization of electric charges in the extracellular medium. Assuming an 

initial charge distribution  in the homogeneous extracellular medium that has conductivity  

and permittivity  at t = 0, Gauss’s law 

 
 

(1.18) 

holds for an electric field  and charge distribution . Furthermore, charge conservation 

 

 

(1.19) 

and Ohm’s law 

 
 

(1.20) 

hold for current distribution . From these three equations, we can derive the differential equation: 

 

 

(1.21) 

The solution of this equation is 

 

 

(1.22) 

which has the time constant  and the charge distribution  becomes  =  after . 

Because  and  (Bedard et al., 2004),  is approximately s. 

Therefore, the electric field produced by the polarization of charges can be ignored when we 

consider action potentials that have a millisecond time scale. 

 

1.3.2 The extracellular potential produced by a single current source 
Next, we consider the potential produced by the current density distribution. We assume a current 

source with magnitude  in the homogeneous extracellular medium that has conductivity  and 

permittivity . In the homogenous field, the current outspreads along a sphere centered at the current 

source. The magnitude of the current density on the surface of the sphere of radius  centered on 
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the current source is  

 

 

(1.23) 

Ohm’s law implies a spherically symmetric electric field that has outward direction, and the 

magnitude is calculated as 

 

 

(1.24) 

Consequently, the electric potential at the point at distance  from the current source is  

 

 

(1.25) 

(Holt et al., 1998; Bedard et al., 2004; Gold et al., 2006). 

 

1.3.3 The relationship between the intracellular potential and the extracellular 

potential 
Assuming a single-compartment model and no input current, the Hodgkin-Huxley equation is  

 

 

(1.26) 

Therefore,  

 

. 

(1.27) 

Therefore, the extracellular voltage signal is proportional to the negative of the first derivative of the 

intracellular voltage signal, as shown in Figure 1.17(A). However, Henze et al. (2000) have reported 

experimental data that show that this approximation is true in the initial ascending phase of the 

action potential but it breaks up in the descending phase after the initial ascending phase (Figure 

1.15). One possible reason is that a whole cell cannot be approximated as a single compartment 

except in the initial phase of the action potential. An action potential that starts at one part of the 

membrane influences the rest areas by cable theory and propagates through the cell. After 

propagation, a single compartment is insufficient to describe the extracellular potential produced by 

the complicated distribution of membrane currents. 

 

1.3.4 The extracellular potential produced by distributed membrane currents 
When there are distributed active and passive membrane currents described by cable theory, the 

extracellular potential is calculated by summing the effects from multiple current sources. When N 

current sources exist and the i-th current source position is  and has the magnitude , the  
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Figure 1.15. Simultaneous intracellular and extracellular voltage recording of an action potential 

from a pyramidal cell in hippocampus CA1. Intracellularly-recorded signal corresponds to 

membrane potential. The dotted line superposed on extracellularly-recorded voltage signal is the 

negative of the first derivative of intracellularly-recorded voltage signal. Reprinted from Henze DA, 

Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G. Intracellular features predicted by 

extracellular recordings in the hippocampus in vivo, Journal of Neurophysiology Vol. 84, No. 1 pp. 

390-400, ⓒ (2000) American Physiological Society. 
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Figure 1.16. Recording and simulation of extracellular recording of action potentials from two 

different neurons. A: (Left) Extracellular action potentials in the transverse section containing the 

soma and the tip of the electrode track (dotted line). (Right) Extracellular action potentials in the 

transverse section containing the tip of electrode track (dotted line), about 5μm caudal to the soma 

and apical trunk (the z-axis is the axis perpendicular to the plane of the section). B: Comparison of 

extracellular recording (strongest channel of the tetrode) and simulation at the estimated electrode 

position. C: (Right) Comparison of the average intracellular recording with the simulated spike in 

the proximal apical trunk. (Left) Comparison of intracellular recording and the simulation in the 

apical trunk approximately 120 m from the soma. Reprinted from Gold C, Henze DA, Koch C, 

Buzsaki G. On the origin of the extracellular action potential waveform: a modeling study, Journal of 

Neurophysiology Vol. 95, No.5, pp. 3113-3128, ⓒ (2006) American Physiological Society. 

 

electric potential at  is calculated from the superposition principle: 

 

. 

(1.28) 

For a linear single current source having length , the potential is 

 

 

(1.29) 
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Figure 1.17. Frequency-filtered extracellular field potentials in a conductance-based model. (A) 

Membrane potential of a single-compartment model containing voltage-dependent sodium and 

potassium conductances and a glutamatergic synaptic conductance. The glutamatergic synapse was 

stimulated at t ¼ 5 ms (m) and evoked an action potential. (B) Total membrane current generated by 

this model. Negative currents correspond to sodium and glutamatergic conductances (inward 

currents), whereas positive currents correspond to potassium conductances (outward currents). (C) 

Power spectrum of the total current shown in B. (D) Impedance at 500 mm from the current source 

assuming a radial profile of conductivity and permittivity. (E) Extracellular potential calculated at 

various distances from the source (5, 100, 500, and 1000 mm). The frequency filtering properties can 

be seen by comparing the negative and positive deflections of the extracellular potential. The fast 

negative deflection almost disappeared at 1000 mm whereas the slow positive deflection was still 

present. The inset in E (Overlay) shows the traces at 5 and 1000 mm overlaid. Reprinted from  

Bedard C, Kroger H, Destexhe A, Modeling extracellular field potentials and the frequency-filtering 

properties of extracellular space, Biophysical Journal, Vol.86, No. 3, pp.1829-1842, Copyright 

(2004), with permission from Elsevier. 
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at the point where the radial distance from the line is , the longitudinal distance from the end of the 

line is , and the distance from the start of the line is . Gold et al. (2006) have simulated 

spike shapes recorded at various points in extracellular medium around a neuron with this equation 

and the NEURON simulator and they were able to obtain good approximations of actual 

measurements (Figure 1.16). 

However, we cannot ignore the effects of inhomogenous permittivity and conductivity that are 

observed in many areas in the brain. In such conditions, Bedard et al. (2004) have shown that the 

impedance of the extracellular medium shows low-pass filtering characteristics [Figure 1.17(D)] and 

that more high-frequency contents are reduced with distance between the neuron and the recording 

point [Figure 1.17(E)]. 

As described above, extracellularly recorded spike shapes show a variety of amplitudes and shapes 

affected by a number of factors, including the structure of the neurons and the neurites, distribution 

of the membrane currents, position of the extracellular electrode, and inhomogeneity of extracellular 

medium. 

 

1.4 Signal processing for neural spikes 

1.4.1 Extraction of neural activity from extracellular voltage signals 

In the present thesis, we discuss the methods used to extract neural activity from extracellular 

neural signals. Two types of neural activities are normally recorded by extracellular voltage 

recording: the local field potential (LFP) and spikes. 

LFP is the low-frequency signal that mainly reflects synchronous postsynaptic potentials in the 

broad area around an electrode (B´edard et al., 2004; Buszaki et al., 2012). LFP is often analyzed in 

time-frequency representation with a Fourier analysis or wavelet analysis (Heldman et al., 2006; 

Slutzky et al., 2011; Zhang et al., 2011). 

Spikes are also important components. They are high-frequency transient signals produced by the 

action potentials of the neurons around the electrode. However, as mentioned in Sections 1.2 and 1.3, 

the voltage of extracellularly recorded spikes is so low that their shapes are strongly distorted by 

external noise. Furthermore, spikes generated from several neurons are often recorded with an 

electrode (multiunit recording). Because of these two reasons, techniques that extract single-unit 

spike trains from multiunit extracellular recordings have been a major subject of research. 

 

1.4.2 Spike detection and sorting 

The detection and classification of neural spikes in order to extract spike trains of each single 

neuron from multiunit extracellular voltage recordings, which is often referred to as spike detection 
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and spike sorting, are basic techniques used in neural engineering and neuroscience (Lewicki, 1998; 

Brown et al. 2004). 

Spike sorting has been typically based on the assumption that spike shapes recorded from the same 

neuron are similar and that spikes recorded from different neurons have different waveforms (an 

example is shown in Figure 1.18). As shown in Sections 1.2 and 1.3, spikes from a neuron have 

similar shapes in the same structure of the neuron and with the same position of the recording 

electrode, except for bursting neurons or other neurons that have special firing properties. 

Conversely, different spike shapes are obtained from different neurons with different structures and 

different distances to the electrode. Therefore, if we want to obtain the spike trains of each single 

neuron recorded from multiunit recordings, we have to detect spike shapes and classify them into 

groups. There are a large number of methods that detect and sort spikes by using feature quantities 

extracted from spike waveforms. For example, methods that use the height of spikes (Maccione et al., 

2009), principal component analyses (Lewicki et al., 1998), and wavelet transforms (Hulata et al., 

2002; Quian Quiroga et al., 2004) have been proposed. These methods often have lower 

computational costs than the direct computation of spike waveforms because of the reduced 

dimension of the processed data. 

For off-line use, spike sorting can be interpreted as an estimation problem of the unique spike shape 

(spike templates) and spike timings that correspond to each neuron. In many previous spike-sorting 

methods, spikes in the recorded signal were extracted by detecting voltage signals that exceeded a 

predefined threshold, and the extracted waveforms were classified by some clustering method to 

obtain the spike templates and spike timings (Yang and Shamma, 1988; Shoham et al., 2003; Quian 

Quiroga et al., 2004; Thakur et al., 2007; Kim and McNames, 2007; Takekawa et al., 2010). 

Furthermore, robust and computationally efficient real-time spike sorting methods are required for 

applications such as brain-machine interfaces (Donoghue, 2002; Lebedev and Nicolelis, 2006; Sato 

et al., 2007) and real-time experimental feedback systems (Bakkum et al., 2008). Many previous 

real-time spike sorting systems have been constructed with two phases, a pre-processing phase to 

obtain spike templates and a real-time template-matching phase (Yang and Shamma, 1988; Thakur et 

al., 2007; Kim and McNames, 2007). In the pre-processing phase, spike waveforms are collected by 

detecting voltage signals that exceed a predefined threshold, and the mean spike shape 

corresponding to each neuron is obtained for use as a template by using a clustering method off-line. 

Then, in the real-time template-matching phase, spikes detected on the basis of the threshold are 

matched to those templates. 
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Figure 1.18. (a) Typical spike waveforms recorded by extracellular multi-unit recordings. (b) The 

plot of first and second principal component scores. Lines indicate the decision boundaries for 

nearest-neighbor clustering and + symbols indicate the cluster centers. In spike sorting, three clusters 

are considered to be spikes from different neurons. Lewicki MS, Network: Computation in Neural 

Systems, 1998;9(4):53-78, ⓒ(1998), Informa Healthcare. Reproduced with permission of Informa 

Healthcare. 

(a) 

(b) 
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Figure 1. 19. Example of simulated spike overlapping. We assumed that three spike waveforms from 

three neurons were recorded and that these three waveforms appeared independently in the recording 

signal. However, the last one in the black circle is the waveform made by the overlap of the three 

spike waveforms. This waveform was interpreted as a single spike and incorrectly sorted by using 

the conventional template-matching method. (a) - (c) Signal generated by each neuron. (d) Recorded 

signal without noise (sum of signals generated from three neurons). (e) Recorded signal with noise. 

Only this signal could be obtained by extracellular voltage recording. 

(d) 

(a) 

(c) 

(b) 

(e) 
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1.4.3 Issues in spike detection and sorting 

Several issues in spike detection and sorting have been targets of interest for a long time. Here we 

discuss the issues raised by Lewicki (1998). 

First, the shapes of spikes can be nonstationary. This makes it impossible to classify spikes by their 

shapes. The long-term changes caused by the drifts of electrodes and the short-term changes caused 

by burst firing are often problematic. 

A second problem is intractable noise. For example, nonstationary background noise makes it 

difficult to determine the threshold for detect spikes. In addition, artifact noises with spike-like 

shapes often cause detection errors. 

Last, if more than two spikes overlap, it is difficult to detect and sort spikes by their shapes. The 

typical methods used for spike detection and sorting have trouble handling overlapping spikes: that 

is, they cannot properly classify more than two spikes that occur simultaneously and merge into a 

complex waveform (Lewicki et al., 1998; Brown et al., 2004). An example of an overlap is shown in 

Figure 1.19. Many spikes are overlapped when the spikes are distributed densely and synchronously. 

Dense and synchronous spiking has been a frequent phenomenon found in bursting over a neuronal 

network (Wagenaar et al., 2006), responses evoked by electrical stimuli (Suzuki et al., 2007), and so 

on. The errors in spike detection and sorting caused by overlaps are non-negligible because they can 

produce invalid analysis results, such as spurious correlations between pairs of neurons, as has been 

shown by Bar-Gad et al. (2001). This thesis focuses on this issue. 

 

1.4.4 Previous studies dealing with spike overlaps 

Various methods have been proposed for dealing with the problem of overlaps in spike sorting. A 

method that use independent component analysis (Takahashi et al., 2003a, 2003b; Takahashi and 

Sakurai, 2003) and another that use an optimal filter (Franke et al., 2010) have been shown to 

perform fairly well, even for signals containing overlaps. However, these methods can be applied 

only to signals recorded with a multitrode, which has multichannel electrodes at a single recording 

point. Although these electrodes can be used to obtain spatial information about recorded spikes, 

they are unsuitable when interfaces are needed with as many neurons as possible from a large area 

because the number of recording points is limited to the number of measurement resources (i.e., 

amplifiers, filters, and analog/digital converters). For example, Utah electrodes for recording in vivo 

(Campbell et al., 1991; Donoghue, 2002; Lebedev and Nicolelis, 2006) and multi-electrode arrays 

(MEAs) for recording in vitro (Bakkum et al., 2008), both of which are sparse electrode arrays, have 

been used in many applications. For such electrodes, a method that uses the k-d tree data structure 

(Lewicki, 1994) is available. However, implementing such a method requires the preparation of a 
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limited number of overlapping waveform patterns before real-time template matching, and thus, 

patterns detected without matching prepared patterns cannot be treated. An off-line method based on 

a hidden Markov model (Herbst et al., 2008) also has a limitation of a number of overlapping 

patterns. 

Methods for decomposing electromyographic signals (Stashuk 2001, McGill 2002, Ge et al., 2010) 

can be applied to neural spikes. These methods can process the data recorded with a single electrode, 

and they have been shown to be robust against overlaps. The method by Ge et al. has the particular 

advantage of placing no restriction on the number of spikes in each overlap. However, this method 

also has limitations. First, it does not have the capability of the fast and sequential estimation needed 

for real-time use, and none have achieved the fast and sequential detection and classification of 

arbitrarily overlapping spikes recorded with arbitrary types of electrodes. Second, the regularity of 

the interspike interval is assumed in the method. However, this is an unrealistic assumption for most 

neurons in the brain. 

 

1.5 Scope and contributions 

As shown in Section 1.4, spike detection and sorting algorithms are generally classified into two 

types, the ones that estimate spike templates and spike timings from the recorded signal offline (e.g., 

spike detection by threshold and applying clustering algorithms) and the ones that detect spikes in 

real-time with given spike templates (e.g., spike detection by threshold and classifying detected 

spike shapes into the prepared spike template with the least mean square error). The previous 

spike-sorting methods of both types that deal with spike overlaps have undesirable limitations on 

spike patterns, the choice of electrodes, or the allowed number of spikes in an overlap. We focus on 

this problem and propose two methods based on Bayesian statistics in the present thesis. One is for 

off-line use and can be used to estimate unknown spike templates and spike timings simultaneously 

from the recorded signal and the other is for real-time spike detection and sorting by using given 

spike templates. Both methods can detect and sort spikes robustly in complex overlaps of arbitrary 

numbers of spikes without restrictions of the choice of electrodes and spike patterns. The aim of 

these methods is to help in the analysis of highly synchronized and overlapping neural activities 

recorded in extracellular voltage recording, which has been unmanageable in neuroscience research 

and in applications in neural engineering, such as the brain-machine interface. 

 

1.6 Organization 

 The present thesis deals with the detection and sorting of complexly overlapped neural spikes 
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recorded by extracellular voltage recording. For this purpose, this thesis proposes two methods. In 

Chapter 2, a method for the fast and sequential detection of arbitrarily overlapping spikes in 

real-time processing is proposed and the performance is assessed with simulated and real neural 

signals. In Chapter 3, a method for the simultaneous estimation of spike templates and timings of 

highly overlapped spikes is proposed and the performance is assessed with simulated and real neural 

signals. In Chapter 4, we apply the two methods to various signals in combination in order to solve 

the weak points of the two methods complementarily. Chapter 5 summarizes the results and 

contributions of the thesis and discusses future research directions. 

In the present thesis, all processing was programmed in C++ and performed on a standard laptop 

computer with no special parallel computing. 
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Chapter 2  

Real-time Detection and Sorting of 

Overlapped Neural Spikes 

 

2.1 Overview 

 In this chapter, we present a method for fast and sequential detection of arbitrarily overlapping 

spikes, which are inevitable in the real-time template-matching phase, by using a computationally 

efficient model-based sequential Bayesian inference algorithm. In our approach, multi-unit recording 

and spike-train generation are modeled and probabilities of possible spike trains are estimated based 

on the models.  

As shown in Chapter 1, various shapes of spikes are recorded in the extracellular recording, which 

are influenced by various complex conditions such as the structure and the type of the neuron, the 

position of the neuron and the electrode, and inhomogenous properties of the extracellular medium. 

It is difficult to derive the general function which represents all possible spike shapes in the 

condition that we cannot know such informations preliminarily, which is usual in many applications. 

Therefore, to enable our method to be used in general conditions, we applied no restrictions on spike 

shapes and we assume that the waveform of length M which repeatedly appears in the recorded 

signal is neural spikes. That is, we ignored conditions which can change spike shapes in a signal (e.g. 

bursting neurons, moving of neurons and electrodes). It is the same assumption with previous 

researches shown in Chapter 1. However, unlike most previous approaches, spike shapes in the 

recorded signal can be superposed and summed in our models, so arbitrary overlaps are considered 

in the estimation. Furthermore, we take the same approach to the spike-train generation which 

corresponds to the generation of action potentials. We assumed the random firing processes of 

neurons which are independent of each other and affected only by the refractory period which is the 

general property of neurons. It becomes a kind of inhomogenous Poisson process (Dayan et al., 

2005). By using these models and sequential Bayesian inference, we evaluate the probability of each 

possible spike train and obtain the spike train with the highest probability. Since the number of spike 

trains for which probabilities are to be evaluated in the inference is too large to calculate, we censor 

the candidates with low probability to limit the number of candidates to be evaluated at the next 
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sampling time. Furthermore, the use of the “look-ahead probability,” the probability based on 

considering the data for a few sampling times ahead, leads to more efficient calculation due to the 

faster elimination of candidates. 

 We assessed the performance of our method with simulated neural signals and a real neural signal 

recorded from primary rat cortical neurons cultured on the MEA. In the experiment with simulated 

signals, we assessed the capability of the real-time processing and the validity of the estimation by 

our method by comparing its computational time and error rates with those of a conventional 

real-time template-matching method for various conditions. In the experiment with the real neural 

signal, in which we could not know the correct spike train, we showed that our method could 

appropriately decompose complexly overlapped spikes by reconstructing the signal from estimated 

spike trains and templates. 

 

2.2 Methods 

2.2.1 Models of spike-train generation and multi-unit recording 

We derived two probabilistic models for spike-train generation and multi-unit extracellular voltage 

recording. These models were constructed to be able to generate overlapping spikes. 

 First, the generation of spikes from the neurons recorded at each sampling time is modeled as a 

multinomial distribution with a refractory period. Supposing the recorded signal contained N spike 

waveforms recorded from N neurons, we defined  as a spike train variable that takes 

 when neuron  starts to generate spikes at sampling time  and 0 otherwise. At 

every sampling time, neurons that had generated a spike in the previous M samples are assumed to 

be in a refractory period, and the probability for each neuron to generate a spike is assumed to be 

zero. The set of such neurons can be written as . The 

neurons that had not generated a spike in the previous M samples are assumed to be able to generate 

a spike, and the probability for each neuron to generate a spike at each sampling time is assumed to 

be . The set of such neurons can be written as . 

Under these assumptions, the probability of non-spiking is  (  is the number of elements 

in ) and the probabilistic spike-train generation model can be written as 

 

. 

(2.1) 

Second, recorded signal  is modeled by using the spike train , the spike template 
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for the neuron   and additive Gaussian noise with standard deviation . 

The probabilistic recording model can be written as  

 

. 

(2.2) 

 

2.2.2 Sequential Bayesian inference 

Probability , the assumed estimated probability of spike existence, is calculated 

at every sampling time on the basis of sequential Bayesian inference. First, the conditional joint 

distributions of  and  given  are derived from 

 (probabilities of spike trains obtained at previous sampling time) and 

the probabilistic models given above. 

  

 

(2.3) 

The marginal likelihood of  given previous data  is calculated, and the posterior 

probabilities of spike trains  are obtained by normalizing 

 by the likelihood. 

 

 

(2.4) 

 

 

(2.5) 

The estimated probabilities of spike existence are obtained by marginalizing out . 

 

 

(2.6) 

Finally,  is obtained by marginalizing out  (the oldest sample in 

spike trains). It is carried over to the next sampling time and used as  

in equation (2.3). 

 

 

(2.7) 

 

2.2.3 Approximation of probabilities to reduce computational cost 

Computational cost is reduced by eliminating the instances of  that have a 

probability lower than threshold  at each sampling time and calculating the probabilities of only 

the remaining instances. This process can be interpreted as the approximation of low probabilities to 

zero. With this approximation, we avoid the evaluation of  for all 
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instances, which is computationally expensive and prevents real-time application. 

Computational cost is further reduced by the use of the look-ahead probability to eliminate 

candidates. In the estimation procedure, the waveform peaks usually correspond to the biggest 

difference between spike templates including the zero-filled one corresponding to n = 0 (no spikes). 

This difference leads to an imbalance in probabilities between candidates and triggers the 

elimination of many candidates. Therefore, the look-ahead evaluation of spike template peaks 

reduces the number of candidates. The  last recorded data samples are buffered and “look-ahead 

probability”  is calculated: 

 
 

(2.8) 

 

 

(2.9) 

 

 

(2.10) 

where 

 

 

(2.11) 

The instances  that have a probability lower than  are eliminated at each 

sampling time. 

In equation (2.11), the effects of the spikes generated at  are ignored in 

the evaluation of the probability of . However, this approximation does not cause inappropriate 

candidate eliminations because the amplitude of the waveform is low enough immediately after 

spike generation. 

The value of  should be equal to or lower than the position of the highest peaks to achieve the 

purpose of look-ahead elimination. That is, if the peaks in the spike templates are at ,  

should be set to 2 or lower. If  is set to a larger value, the look-ahead probability will be evaluated 

ignoring the most important features in the spike waveforms and thus cause inappropriate candidate 

eliminations. 

 

2.2.4 Algorithms 

Making use of these approximations, we derived an updating algorithm that is processed at every 

sampling time. At sampling time , a new datum  is recorded, and equation (2.3) is evaluated 

for the instances by using buffered datum , as shown below (the variables and functions used in 

the pseudo codes in this section are defined in Table 2.1). 
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Table 2.1: Definitions of variables and functions used in pseudo codes in this section. 

Name Definition 

X 2D array containing instances of spike trains considered at  

current sampling time ( ). 

Xprev 2D array containing instances of spike trains estimated at 

previous sampling time ( , ). 

P 1D array containing probabilities of elements in X 

( , ). 

Pprev 1D array containing probabilities of elements in Xprev 

( , ). 

Pahead 1D array containing look-ahead probabilities of elements in 

Xprev. 

C Number of elements in X. 

Cprev Number of elements in Xprev. 

Likelihood Likelihood of  ( ). 

Result 1D array containing estimated probabilities of spike 

existence ( ). 

Tmp Temporary variable. 

GenModel(spike_train) Function that returns probability of spike train calculated 

with model of spike-train generation ( ). 

RecModel(data, spike_train) Function that returns probability of data for given spike train 

calculated with recording model ( ). 

LookaheadModel(data, spike_train) Function that returns look-ahead probability of data for 

given spike train calculated with the model of look-ahead 

probability ( ). 
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Next, equations (2.4) and (2.5) are evaluated. 

 

The estimated result is obtained by evaluation of equation (2.6). 

 

Equation (2.7) is then evaluated to obtain the information to be used at the next sampling 



35 

 

 

 

 

Spike trains with low probabilities are eliminated. 

 

If look-ahead elimination is enabled (L>0), further elimination of spike trains by look-ahead 

elimination is performed at the end of the processing at each sampling time. 
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Xprev and Pprev are carried over to the next sampling time, and algorithm 1 is processed again with 

a newly recorded datum. 

 

2.3 Experiments 

2.3.1 Assessment of computational efficiency and error rates with simulated 

signals 

To assess the computational efficiency and estimation accuracy of our method, we compared its 

computational time, spike detection error rate with those of a conventional real-time spike detection 

method. We used signals simulated under various firing rates (corresponding to overlap frequency) 

and noise levels. As the conventional real-time spike detection method, we used a method that 

detects spikes with a threshold that is four times the standard deviation of the noise level ( ) and 

that classifies spike waveforms into spike templates on the basis of minimum distance. 

The assessment was performed with sixty seconds of simulated signals containing the five spike 

shapes shown in Figure 2.2 with additive white Gaussian noise. The five spikes shapes are manually 

created mimicking different amplitudes (around +/- 100μV) and shapes (mono-phasic and bi-phasic 

pulses of the length 1.5 ms) of spikes found in actual recordings and simulations of cortical neurons 

as shown in Figure 1.9, 1.10. 

The standard deviation of noise (σ) was 15 or 30 μV, and the sampling rate ( ) was 10 kHz. We 

assumed that the generation of spikes from each neuron followed an independent Poisson process 

and set the expected number of spikes for one neuron (firing rate; ) in 1 s to 1, 5, 10, 50, or 100. 

In this experiment, 1, 5, and 10 Hz were used as relatively low firing rates, and 50 and 100 Hz were 

chosen as relatively high firing rates. Signals simulated under the various conditions are shown in 
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Figure 2.3. 

Obviously, the higher firing rates were expected to generate more overlapping spikes, so the change 

in performance due to overlaps could be evaluated in this experiment. The content rate of overlapped 

spikes can be theoretically estimated for various firing rates. First, the probability of 

non-overlapping spike generation is calculated as the probability of no further spike generation in  

samples after a spike has been generated. The probability of spike generation at a sampling time is 

 (ignoring the effect of the refractory period) and the probability of no further spike generation at 

a sampling time is  if there are  neurons that can fire. In the  samples after a neuron 

has fired, there are  neurons that can generate spikes. Consequently, the probability of 

non-overlapping spike generation is 

 

 

(2.12) 

Overlaps occur when spikes are generated in M samples after previous spikes. And when no spikes 

are generated in M samples, a series of overlapping is terminated. The probability of  neurons 

generating more than one spike in M samples is . Thus, the probability of 

generating overlaps containing  spikes ( ) after a spike has occurred is 

 

 

(2.13) 

This equation corresponds to equation (2.12) for . The number of spikes in the overlaps of  

spikes is  

 

 

(2.14) 

 

Table 2.2. Estimated content rates of overlapped spikes in simulation. Each column corresponds to 

number of spikes in one sequence of overlaps, and each row corresponds to firing rate used in 

simulation. 

Sampling rate non-overlap 2 spikes 3 spikes 4 spikes 5 spikes 

1Hz 99% 1.1 % 6.9×10-3 % 2.6×10-6 % 4.6×10-8 % 

5Hz 95% 5.3 % 0.17 % 3.1×10-3 % 2.7×10-5 % 

10Hz 90% 9.8 % 0.62 % 2.3×10-2 % 4.1×10-4 % 

50Hz 58% 31 % 9.3 % 1.8 % 0.16 % 

100Hz 35% 35 % 21 % 8.0 % 1.6 % 
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Figure 2.2. Five spike shapes used in assessment. Each template was assumed to correspond to 

spikes from one neuron. Mono-phasic waveforms (Neurons 1, 2, 3) and bi-phasic waveforms 

(Neurons 4, 5) were prepared. 
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Figure 2.3. Parts of signals simulated under various conditions. Firing rate was 1, 5, 10, 50, or 100 

Hz. Overlap frequency increased with firing rate. Standard deviation of noise ( ) was set to 15 or 30 

μV. 
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The content rate of spikes in the overlaps of  spikes can be estimated by normalizing equation 

(2.14) by the total number of spikes. The content rates of overlapped spikes for various firing rates 

can be estimated by using equation (2.14). The estimated rates are shown in Table 2.2, and the ones 

measured from the simulated signals are shown in Table 2.3. 

We applied the conventional method and our method with look-ahead elimination ( ) and 

without it ( ) to simulated signals and counted the number of false positives (FPs), false 

negatives (FNs) and true positives (TPs) occurring in the spike detection and calculated the positive 

error rate (PER), the negative error rate (NER), and the total error rate (TER). 

 

 

(2.15) 

 

 

(2.16) 

 

 

(2.17) 

 

We recorded the computational time for processing the data at each sampling time. Our method was 

applied with ,  and spikes were detected when 

 exceeded 0.5 for . The setting of the threshold was heuristically 

chosen for the best performance and was not changed over the course of the experiment. 

Additionally, we evaluated the effect of the setting of  by applying our method with look-ahead 

elimination to signals simulated for various firing rates (σ=15μV) and comparing the error rates for 

. 

 

 

Table 2.3. Content rates of overlapped spikes measured from simulated signals. Each column 

corresponds to number of spikes in one sequence of overlaps, and each row corresponds to firing 

rate used in simulation. 

Sampling rate non-overlap 2 spikes 3 spikes 4 spikes 5 spikes 

1Hz 98% 2.3 % 0 % 0 % 0 % 

5Hz 93% 6.4 % 0.42 % 0 % 0 % 

10Hz 88% 11 % 0.84 % 0.14 % 0 % 

50Hz 55% 31 % 10.4 % 2.5 % 0.92 % 

100Hz 31% 33 % 20 % 9.4 % 7.0 % 
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2.3.2 Assessments with the real neural signal 

With the real neural signal, we assessed whether our method could appropriately decompose 

overlapped spikes by reconstructing the signal from estimated spike trains and templates. We used a 

signal recorded from neurons cultured on the MEA (the signal was shown in Figure 2.4). Details of 

cell culture and recording methods are written in Appendix A. 

Intrinsically bursting neurons, which is outside the scope of our methods, are contained in cortical 

neurons. However, Baltz et al.(2011) showed that they were found only in cultures younger than 

3week in vitro and activities of those neurons were not recorded after that. Therefore, it is assumed 

that spikes from bursting neurons are not recorded from cultured neurons used in the experiment. 

In the pre-processing phase, we detected and collected spike waveforms exceeding the threshold 

(4σ) from the recorded data. We then obtained spike templates by clustering these spike waveforms 

by using density-based spatial clustering of applications with noise (DBSCAN), a clustering method 

robust to outliers (Ester et al., 1996). By using these templates, we applied the conventional 

template-matching method and our method with look-ahead elimination to a part of the signal 

(shown in Figure 4) and reconstructed the signal from the estimated spike trains and spike templates 

by using the recording model (equation (2.2)). The parameter settings for our method were 

, and spikes were detected when 

 exceeded 0.5 for . 

In all the experiments, the standard deviation of noise  was estimated by the equation below, in 

accordance with previous studies (Quian Quiroga et al., 2004; Kim and McNames, 2007). 

 

 

(2.18) 

 

 

Figure 2.4. Part of signal recorded from primary cortical neurons cultured on MEA. Many complex 

spike waveforms were expected to be produced by spike overlaps. 
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2.4 Results 

2.4.1 Computational efficiency and error rates for simulated signals 

Figure 2.5 (a) shows the positive error rate (PER) of the estimation for signals simulated under 

various conditions. Under all conditions, the error rate of our method, both with and without 

look-ahead elimination, was lower than that of the conventional method. The difference was 

significant especially under the high noise condition (σ=30 μV), except for the high error rate of all 

methods for the 1 Hz firing rate. Under the low noise condition (σ=15 μV), the higher firing rates led 

to higher error rates and a big difference in results between the conventional method and our method, 

with and without look-ahead elimination. There was little difference in the results of our method 

between with and without look-ahead elimination. 

Figure 2.5 (b) shows the negative error rate (NER) of the estimation for signals simulated under 

various conditions. The tendencies were basically the same as for the PER; however, the differences 

in the error rate between the conventional method and our method, with and without look-ahead 

elimination, were higher than those for the PER; and the error rate for rate = 1Hz and σ = 30 μV was 

low. 

 Figure 2.5 (c) shows the total error rate (TER) of the estimation for signals simulated under various 

conditions. The error rates of our method with and without look-ahead elimination were almost the 

same and were lower than those of the conventional method for all conditions, reflecting the PER 

and NER results. Moreover, the differences increased with the firing rate and noise level. 

 For all these metrics under the various conditions, our method, with and without look-ahead 

elimination, performed better than the conventional method. It performed especially better for the 

high firing rates, which produced many overlaps (see Table 2.2 and Table 2.3). These results show 

the robustness of our method for treating overlaps. They also show that the conventional method is 

sensitive to high noise whereas the performance of our method is negligibly impaired by high noise 

and that the look-ahead elimination did not impair the performance of our method. 

 Figure 2.5 (d) shows the computational time of the estimation from the signal simulated in various 

conditions by the three methods. In contrast to error rates, the computational time of our method, 

with and without look-ahead, was higher than the conventional method in all conditions and the 

differences were bigger under high firing rates and higher noise. However, the worst time (our 

method without look-ahead for the 100Hz firing rate and σ=30μV) was shorter than the length of the 

data (60s). Besides, we showed that the look-ahead strategy reduced the computational time of our 

method to less than half the time of our method without look-ahead. 

 We evaluated the delays of our method with look-ahead elimination in a real-time application on 
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the basis of the computational time at each sampling point or each short-time window (Figure 2.6). 

For a firing rate of 100 Hz and a σ of 15 μV (Figure 2.6 (a)) and for a firing rate of 50 Hz and a σ of 

30 μV (Figure 2.6 (b)), real-time processing without delay (meaning that all the processing at a 

sampling point completes within the sampling interval) is possible because the computational time 

was less than the sampling interval at all sampling points. On the other hand, for a firing rate of 100 

Hz and a σ of 30μV (Figure 2.6 (c)), real-time processing without delay was impossible because 

there were some sampling points where the computational time was longer than the sampling 

interval. However, the computational time for 10ms bins (each bin contained 100 sampling points) 

was less than 10ms for all bins, meaning that real-time processing with < 10 ms delay is possible. 

Figure 2.7 shows the error rates for our method with different settings of  for signals simulated 

under various conditions. All the settings of  resulted in comparable performance for the lower 

firing rates. In contrast, for the higher firing rates, a higher value of  resulted in better 

performance. 

 

2.4.2 Assessments with the real neural signal 

Figure 2.8 shows clusters and spike templates created by DBSCAN from spike waveforms in the 

signal recorded from cultured neurons. Eight different spike templates were obtained. 

Figure 2.9 shows spike trains estimated from the signal shown in Figure 5 by using the 

conventional method and our method with look-ahead elimination and Figure 2.10 shows the 

estimated spike waveforms and the signal reconstructed from the estimated spike trains and spike 

templates. The number of spikes was estimated to be 12 by the conventional method (Figures 2.9 (a) 

and 2.10 (b)), and the accuracy of reconstruction was low (Figure 2.10 (c)). In contrast, the number 

of spikes was estimated to be 26 by our method, and closely generated spikes were separately 

detected (Figure 2.9 (b) and Figure 2.10 (d)). Moreover, the signal was correctly reconstructed from 

the estimated spike trains (Figure 2.10 (e)). These results mean that our method can appropriately 

decompose overlapped spikes, which could not be done by the conventional method. This enabled 

the detection of 14 spikes miss 

 

2.5 Discussion 

The results of our assessment showed that the performance of the conventional real-time 

template-matching method we used was seriously impaired by frequent overlaps caused by relatively 

high firing rates. These overlaps mainly caused negative errors because the NER values (Figure 2.5 

(b)) under the lower noise conditions were almost the same as the value of the estimated content rate 

of spike overlaps shown in Table 1. Such negative errors were found in the assessment with the real  
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 Figure 2.5. Error rates and computational time in spike detection and sorting of simulated signals 

by using conventional method and our method. Under all conditions, the error rate of our method 

was lower than that of the conventional method. The difference was particularly big for higher firing 

rates and higher noise level. The performance of our method was basically the same between with 

and without look-ahead elimination. The longest computational time (our method without 

look-ahead elimination for rate = 1 Hz rate and σ = 30 μV) was shorter than the signal length (60s). 

Look-ahead elimination reduced the computational time of our method to less than half. (a) Positive 

error rate (PER). (b) Negative error rate (NER). (c) Total error rate (TER). (d) Computational time. 
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Figure 2.6. Computational time of our method at each sampling point. Red lines indicate sampling 

interval of each sampling step or each bin. (a) Computational time at each sampling point in 

processing of simulated signal with σ = 15 μV and firing rate = 100 Hz. Sampling interval was 

0.0001 s and computational time was shorter than that at every sampling time, indicating that 

real-time processing without delay is possible. (b) Computational time at each sampling point in 

processing of simulated signal with σ = 30μV and firing rate = 50 Hz. Sampling interval was 0.0001 

s and computational time was shorter than that at every sampling time, indicating that real-time 

processing without delay is possible. (c) Computational time at each sampling point in processing of 

simulated signal with σ = 30 μV and firing rate = 100 Hz. Sampling interval was 0.0001 s, and there 

were sampling points where the computational time was longer than that, indicating that real-time 

processing without delay is impossible. (d) Computational time for each 10 ms bin (100 sampling 

points per a bin) in processing of simulated signal with σ = 30 μV and firing rate = 100 Hz. Interval 

between bins was 0.01 s and computational time was shorter than that for every bin, indicating that 

real-time processing with < 10 ms delay is possible 

 

 

neural signal. Many spikes were missed by the conventional method, and the signal could not be 

correctly reconstructed from the estimated spike train. While these negative errors can also be 

reduced by using previously proposed spike sorting methods for overlapped spikes (Lewicki, 1994; 

Herbst et al., 2008), those methods have limitations on the number of overlaps, and they miss 

complexly overlapped spikes (more than three or four spikes are overlapped). Therefore, the NER  
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Figure 2.7. Error rates in spike detection and sorting of simulated signals for various firing rates by 

using our method with look-ahead elimination, when  was set to . 

All the settings of  resulted in comparable performance for lower firing rates. In contrast, for 

higher firing rates, a higher  resulted in better performance. 

 

 

with these methods is higher than the sum of the content rates of spike overlaps including more than 

three spikes, as shown in Table 1. The NER with our method is lower due to the decomposition of 

the arbitrary number of spike overlaps, which is one of the advantages of our method. 

The error rates of our method, with and without look-ahead elimination, were lower than those of 

the conventional method not only for a large number of overlaps but also for a higher noise level. 

One of the reasons for this difference is the use of the voltage threshold to detect spikes in the 

conventional method. As Herbst et al. (2008) noted, spike detection with a voltage threshold tends to 

generate detection errors. The high standard deviation of noise increases the frequency of spike 

detection failure due to the creation of both positive errors (noise exceeding the threshold) and 

negative errors (spikes below the threshold). Our method is also affected by noise, but detection 

without a voltage threshold makes our method more robust to higher noise levels. In addition, if the 

voltage exceeds the threshold at an incorrect position in a spike waveform, the extracted waveform 

and the spike template will be misaligned (some misalignment is evident in Figure 2.8), possibly 

causing the sorting to fail. The use of a voltage threshold often causes errors, especially for high 

noise levels and many spike overlaps. 
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Figure 2.8. Clusters of spike waveforms (colored lines) and spike templates (black lines) extracted 

from neural signal recorded from cortical neurons cultured on MEA by using DBSCAN. Eight 

different spike templates were obtained. Colors were determined arbitrarily and do not correspond to 

those in other figures. 
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Figure 2.9. Spike trains estimated from signal (shon in Figure 5) recorded from cultured primary 

cortical neurons by using conventional method and our method with look-ahead elimination. A 

greater number of spikes was estimated by using our method because overlapped spikes missed by 

the conventional method were detected by our method. (a) Estimation by using conventional 

method: 12 spikes were detected. (b) Estimation by using our method: 26 spikes were detected. 
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Figure 2.10. Original shape of neural signal (shown in Figure 2.5) recorded from primary cortical 

neurons cultured on MEA, spike waveforms detected by conventional method and our method with 

look-ahead elimination, and signal reconstructed from detected spike waveforms. A greater number 

of spikes was estimated by our method because overlapping spikes missed by conventional method 

were detected by our method. Moreover, the signal reconstructed by our method was closer to the 

original signal than that reconstructed by the conventional method, which means the estimation 

accuracy of our method is better. (a) Original shape of neural signal recorded from primary cortical 

neurons cultured on MEA. (b) Spike waveforms detected by conventional method (colors were 

determined arbitrarily and do not correspond to those in other figures). (c) Signal reconstructed from 

spike templates and spike trains estimated by the conventional method. (d) Spike waveforms 

detected by our method. (e) The signal reconstructed from spike templates and spike trains estimated 

by our method (colors were determined arbitrarily and do not correspond to those in other figures). 

 

 

The unnaturally high PER for our method with and without look-ahead elimination at 1 Hz and σ = 

30 μV (Figure 2.5 (a)) was also caused by the effect of a high noise level. If the standard deviation of 

noise is high, noise which could not be distinguished from spikes (artifact noise) is created. The 

detection of artifact noise was interpreted as a positive error, and a lower firing rate made the 

denominator smaller in the PER calculation. Consequently, with our methods (with and without 

look-ahead elimination), only the PER was unnaturally high in this condition. This phenomenon is 

inevitable in spike detection and sorting with spike templates. Moreover, our method suffered false 

detections due to artifact noise with a spike-like shape. The reason for the high PER with the 

conventional method for 1 Hz and σ = 15 μV is attributed to the same cause. In contrast, the PER 

with our method was low under the same conditions. This means that the standard deviation of noise 

that produced these positive errors was higher with our method than that with the conventional one. 

Our finding that the computational time of our method was shorter than the signal length under all 

assessed conditions (especially with look-ahead elimination) and that there was no delay in the 

processing at each sampling points under almost all conditions show that our method is suitable for 

real-time application. Though the higher firing rates and higher noise levels caused relatively high 

computational cost and a < 10 ms delay, this delay will not cause the system to fail because the firing 

rates of most neurons depend on the internal state of the neuronal network and on the external inputs 

(Brown et al, 2004) and firing with a high frequency is often an instantaneous phenomenon. 

Moreover, for brain-machine interface applications having a < 100 ms delay (Lebedev et al., 2005), 

the < 10 ms delay will not significantly degrade total performance. 

In contrast to our method, a nearly constant time was needed for the conventional method under 
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various conditions. It is natural that the computational cost increases with the number of spikes to be 

computed, and the constant computational time was due to the high NER. This means that many 

overlapped spikes were detected as a single spike, and many spikes needing to be computed were 

missed. 

 Another reason for increased computational cost is the larger number of spike templates, which 

leads to a larger number of spike train candidates. Furthermore, the existence of more candidates 

reduces the probability for each candidate and causes a larger number of candidates to be eliminated. 

Therefore, the computational cost will not increase like the cost of the Baum-Welch algorithm, 

which has a cost of . 

The experimental results (Figure 2.7) indicated that our algorithm showed better performance when 

 was set to the high value. However, unrealistic values of  should be avoided. For example, 

 means the 5000 Hz firing rate for the experimental conditions in this paper and such an 

unrealistic setting causes invalid estimation. Consequently,  should be determined around the 

maximum firing rate which can appear in recorded signals. 

One expansion of our method is the non-parametric Bayesian approach, which assumes the 

Dirichlet prior for the spiking probabilities and integrates out parameters in the posterior distribution 

(Rasmussen, 2000; Gasthaus et al., 2008; Wood and Black, 2008). Though this approach enables 

estimation independent of parameters like , the resulting performance improvement would be 

slight because the experimental results indicated that using the optimally tuned  resulted in good 

performance under various conditions, so  did not have to be individually tuned for each datum 

and each neuron. 

Though our method can robustly detect and sort spikes under various conditions, it has some 

limitations. First, the simultaneous generation of spikes by more than two neurons in one sampling 

time is not considered in our model. While this limitation does not exclude most of the overlaps and 

is looser than that for previous methods (Lewicki, 1994; Herbst et al., 2008), a few non-modeled 

overlaps still remain. Second, the shapes of the spikes are assumed to be fixed in our model though 

spike waveforms can change due to bursting or electrode drift (Lewicki, 1998). This change could be 

modeled like Calabrese and Paninski (2011) did, but doing so would increase the computational cost. 

Finally, our method does not work properly if invalid spike templates are generated in the 

pre-processing phase. Though spike templates could be extracted from non-overlapped spikes in the 

work reported here, if there are only a few non-overlapped spikes and the extraction of spike 

templates is impossible, the procedure will not work correctly. The possible extension of our method 

is to the on-line generation of spike templates without the conventional pre-processing process; 

however, that requires the method which can accommodate the change of the number of neurons in 

analyses based on estimated spike trains. 
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2.6 Summary of the chapter 

In this chapter, we proposed the fast sequential method that can robustly detect and sort arbitrarily 

overlapped spikes recorded with arbitrary types of electrodes. We constructed probabilistic models 

of the extracellular voltage recording and spike generation, which can generate overlapped spikes. 

We derived a computationally efficient sequential Bayesian inference algorithm based on these 

models that is used to calculate the probability of spike existence at each sampling time. Assessment 

of the feasibility of our method with simulated neural signals and a real neural signal showed that 

our method can robustly detect and sort complexly overlapped spikes. Our method with look-ahead 

elimination was demonstrated to be suitable for real-time application as it has a delay of less than < 

10 ms even under the worst case conditions. 

The contents of this section was partly published in 

Tatsuya Haga, Osamu Fukayama, Yuzo Takayama, Takayuki Hoshino, Kunihiko Mabuchi, 

``Efficient Sequential Bayesian Inference Method for Real-time Detection and Sorting of 

Overlapped Neural Spikes,'' Journal of Neuroscience Methods, Vol. 219, Issue 1, pp. 92-103, 2013. 

 

 



53 

 

 

 

 

Chapter 3  

Simultaneous Inference of 

Templates and Timings of Highly 

Overlapped Neural Spikes 

 

3.1 Overview 

In Chapter 2, we have developed the algorithm to detect and sort overlapped spikes in real-time with 

given spike templates. In the experiment, we extracted spike templates from the signal by the 

traditional approach that uses the threshold and the clustering algorithm. However, overlaps can 

degrade the estimation of spike templates. Especially if we only have the short data which contains 

many overlaps (e.g. recording of bursts or responses to external stimuli), each single template cannot 

be extracted by the traditional approach. If we know either spike templates or spike timings, we can 

calculate the other by the method in Chapter 2 or signal averaging. However, spike overlaps make it 

difficult to identify not only spike templates but also spike timings. 

In this chapter, we attempted to develop a spike sorting method to estimate spike templates and spike 

timings simultaneously from the signal containing arbitrarily overlapped spikes. Extracellular 

recordings and generation of spikes were modeled under the same assumption and approximation 

made in Chapter 2. The model becomes a kind of the hidden Markov model (HMM) and spike 

templates and spike timings were simultaneously estimated by α-β algorithm and 

Expectation-Maximization (EM) algorithm. However, if overlaps of arbitrary numbers of spikes are 

allowed in the estimation of spike templates, over-decomposition of a non-overlapped spike 

waveform into many tiny spike-like waveforms which are obtained as spike templates can occur 

because that is the best way to fit the model to the data. To avoid that undesirable decomposition, we 

imposed the probabilistic penalty on the number of overlaps in the model. Computational cost of 

estimation was reduced by approximating low probabilities to zero, which is the same approximation 

as Chapter 2. These implementation enable us to remove the restriction of the number of spikes in an 

overlap without the problem of high computational cost and over-decomposition of spikes. We 
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applied our method to simulated neural signals and recordings from cortical neurons cultured on 

MEA and confirmed that our method could robustly estimate appropriate templates and timings of 

complexly overlapped spikes. 

 

3.2 Methods 

3.2.1 The model of extracellular voltage recordings 

We assumed that T time samples of the recorded signal   contain spikes 

generated by N neurons with additive Gaussian noise with variance σ, and the vector 

 was defined as the waveform of the spike generated by neuron n. 

Furthermore,  was defined as the number of the neuron which started to 

generate a spike at each time samples (if there is no spike, ). Based on these assumptions, we 

had the recording model with the spike train vector  : 

 

(3.1) 

 

3.2.2 The model of spike trains 

We also derived the model of the spike train . We assumed  followed the multinomial 

distribution and the probability for a neuron to fire was determined with the parameters  and  

. We also took into account the refractory period, to be more precise, once a neuron 

fired, it cannot fire again in M time samples. Furthermore, in our model, the probability for a neuron 

to fire was reduced in M time samples after another neuron fired. This assumption made our method 

avoid decomposing the signal to too many overlapped spikes.  

After all, the model was 

 

(3.2) 

 
(3.3) 

 

(3.4) 

 

(3.5) 
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Figure 3.1. The schematic view of the model of spike trains. When a neuron generates a spike, the 

neuron cannot generate spikes (the refractory period) and probabilities for other neurons to generate 

spikes are lessened (the probabilistic penalty to avoid too much decomposition of a spike) in a 

certain period of time. 

 

 

 was Dirac’s delta and  was the weighting coefficient preventing over-decomposition. 

The schematic view of the model is shown in Figure 3.1. 

 

3.2.3 Estimation of hidden variables and parameters 

Expectation-Maximization (EM) algorithm (Bishop, 2006) was used to estimate parameters in 

above-mentioned model. EM algorithm can estimate model parameters in the presence of hidden 

variables by repeating two steps, E-step and M-step. The schematic view of EM algorithm is shown 

in Figure 3.2. 

In E-step, probability distributions of hidden variables , 

 were estimated under fixed model parameters by α-β algorithm 

(Bishop, 2006). The schematic view of α-β algorithm is shown in Figure 3.3. In this algorithm, 

alpha-messages were recursively estimated as 
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Figure 3.2. Schematic view of expectation-maximization algorithm. Probabilistic distributions of 

hidden variables at every sampling time and maximum-likelihood parameters are alternately 

estimated. The likelihood function monotonically increases in each update and the convergence to 

local optima is warranted. 

 

 

Figure 3.3. Schematic view of α-β algorithm. Firstly, alpha messages are sequentially calculated for 

datum at every sampling time in the forward direction from the start to the end, by using the alpha 

message at previous sampling time. Secondly, alpha messages are sequentially calculated for datum 

at every sampling time in the backward direction from the end to the start. Finally, at every sampling 

time, probabilistic distributions of hidden variables ( , ). are calculated from the 

alpha message and the beta message. 

 

 

 

(3.6) 

 

(3.7) 

 

(3.8) 



57 

 

 

 

 

(3.9) 

After that, beta-messages  were recursively estimated as 

 
(3.10) 

 

(3.11) 

 and  were calculated from alpha-messages and beta-messages. 

 
(3.12) 

 
(3.13) 

In M-step, model parameters were updated to maximize the expected value of the complete data 

log-likelihood (Q-function): 

 
 

(3.14) 

 Details of derivation is provided in Appendix B.  and   were updated as  

 

(3.14) 

 

 

 (3.15) 

 was updated by solving following equation: 

 
(3.16) 

 
(3.17) 

 

(3.18) 

 

 

(3.19) 
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σ was updated as 

 

(3.20) 

The number of neurons N was chosen by minimizing Bayesian information criterion (BIC) (Bishop, 

2006).  

 
(3.21) 

 

(3.22) 

These procedure needed too high computational cost because of high dimensionality of . To 

reduce the computational cost,  smaller than a given threshold pth was approximated by zero 

and we calculated all the probabilities for only , nonzero instances of .  was the 

number of nonzero instances at sampling time . 

 

3.3 Experiments 

3.3.1 Assessments with simulated signals 

We assessed the performance of our method by applying it to the -second simulated signal 

containing a lot of complex overlaps of spikes (shown in Figure 3.1). In simulation, spike shapes 

shown in Fig. 3.2 (a) were present in the signal whenever indicated by the timings shown in Figure 

3.3 (a). The signal was additionally corrupted by adding Gaussian noise. The standard deviation of 

noise was 15 μV and the sampling rate was 10 kHz. We applied our method by setting the parameter 

values to  and detected spikes when the probability of 

spiking exceeded the value of 0.5. 

 

3.3.2 Assessments with the real neural signal 

We also assessed our method with the eight-second signal recorded from neurons cultured on the 

Multi-Electrode Array (MEA). The signal used in the assessment (shown in Fig. 3.4 (a)) was recorded 

in the same condition with the signal used in Chapter 2. Details of cell culture and recording methods 

are shown in Appendix A. We applied our method to the signal with the setting of parameters same as 

the simulation experiment. 
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Figure 3. 4. A part of the simulated signal and spike waveforms contained in the signal. Almost all 

spikes were overlapped and there were complex overlaps of more than three neurons. (a) Simulated 

signal. (b) Spike waveforms contained in the signal.  

 

3.4 Results 

3.4.1 Assessments using simulated signals 

As the result, all the spike templates were appropriately estimated as shown in Figure 3.2 (b) and 

complexly overlapped spikes shown in Fig. 3.1 were all detected. However, 2 positive errors and 25 

negative errors were found as shown in Fig. 3.3 (b) (The number of spikes in simulation (Fig. 3.3 

(a)) was 302). Note that the numbering of neurons was arbitrary and not same between simulation 

and in estimation. 

 

3.4.2 Assessments using the real neural signal 

As the result, eight spike templates were created as shown in Fig. 4(d) and the spike timings were 

estimated as shown in Fig. 3.4(b). In Fig. 3.4(b), more than three or four spikes were superimposed at the 

same position, which means complex overlaps were decomposed. We reconstructed the signal from 

estimated timings and templates by the recording model and obtained the signal similar with the original 

(Fig. 3.4(c)). It means that the decomposition of complexly overlapped spikes was appropriate. 
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Figure 3. 2. Five spike templates used in the simulation and spike templates estimated by our method. 

(a) Spike templates used in the simulation. (b) spike templates estimated by our method 
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Figure 3. 3. Spike timings used in the simulation and spike timings estimated by our method. (a) 

Spike timings used in the simulation. (b) spike timings estimated by our method 
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Figure 3. 4. The result of estimation from the signal recorded from cultured cortical neurons by our 

method. Eight templates and spike timings for eight neurons were obtained. (a) The signal used in 

the experiment. (b) Spike timings estimated by our method. (d) Eight spike templates estimated by 

our method. 

(a) 

(c) 

(b) 
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Figure 3. 5. The result of estimation from the signal recorded from cultured cortical neurons by our 

method. These figures show enlarged view of a part of the signal shown in Figure 3.4 (a). Complexly 

overlapped spikes could be decomposed and the original signal could be appropriately reconstructed 

from estimated templates and spike timings. (a) Enlarged plot of a part of the signal shown in Figure 

3.4 (a). (b) Spike waveforms detected from the signal by our method. (c) The signal reconstructed 

from estimated templates and timings. 

 

3.5 Discussion 

 In the assessments with simulated signals, all the spike templates were appropriately estimated as 

shown in Figure 3.2 (b). However, 2 positive errors and 25 negative errors were found, as shown in 
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Figure 3.3 (b) (The number of spikes in simulation (Fig. 3.3 (a)) was 302). One of reasons of these 

non-negligible negative errors was canceling out of positive and negative spikes. In the worst case, if 

two spikes that have the same shape and reversed polarities are simultaneously recorded in an 

electrode, they will be canceled out and nothing will appear in the recorded signal. Even if timings 

or spike shapes are slightly different, it is possible that levels of spikes are dropped to the same level 

with noise. It makes spike detection impossible. Another reason is the weak probabilistic penalty on 

spike overlaps. It prevents a spike is decomposed to many overlapped small spikes, on the other 

hand, it can be interruption if decomposition to a large number of spikes is appropriate. Whether a 

spike is decomposed or not is determined by the trade-off of the increase of BIC by the increased 

number of templates and the decrease of BIC by improved fitting of the model to data. In the 

assessment, the main reason is the former. (For example, highly overlapped spikes shown in Fig. 3.1 

were all decomposed in appropriate level). 

 We used BIC to determine the number of spike templates in this chapter. Other choices are Akaike 

information criterion (AIC) (Bishop, 2006), non-parametric Bayesian approach (Rasmussen, 2000; 

Gasthaus et al., 2008; Wood and Black, 2008), and so on. We also tested them and checked that BIC 

gives the highest performance. However, the optimality of BIC was checked only for our 

environment and data. Furthermore, we can obtain only the optimal model that fits data and we 

cannot prove it is the answer if we use blind data. We should test some criteria for new environments 

or data and the one which optimizes the performance of the system should be chosen. 

In the assessment, long computational time was required for the estimation. Approximately an hour 

was required to complete the estimation from 8-second real neural signal shown in Figure 3.4 (a). 

Spike detection and sorting is just the pre-processing of further analyses in many cases, thus long 

computational time makes users to hesitate to use the method. We present the strategy that reduces 

the computational time in Chapter 4, but further improvements are required. Otherwise creating 

templates in parallel with real-time spike detection can improve usability. 

In spite of weaknesses mentioned above, the method proposed in this chapter can detect and sort 

spikes in a case that almost all spikes are complexly overlapped, which have been impossible by 

previous techniques. However, for these uses, the change of spike shapes by bursting should be 

modeled. It is the same remaining problem with the method in Chapter 2. 

 

3.6 Summary of the chapter 

In this chapter, we developed the method to estimate the spike templates and timings from signals 

containing overlaps of arbitrary numbers of spikes. In our method, the inference based on HMM with 

the probabilistic penalty is efficiently calculated with the approximation. We assessed the 
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performance of the method and showed that it could appropriately decompose the simulated and real 

signals containing complexly overlapped spikes. 

The contents in this section was partly published in 

Tatsuya Haga, Yuzo Takayama, Kunihiko Mabuchi, “Estimation of Templates and Timings of Spikes 

in Extracellular Voltage Signals Containing Overlaps of the Arbitrary Number of Spikes”, 35th 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, 

Japan, Jul. 2013 
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Chapter 4  

Combination of the two methods 

 

4.1 Overview 

In the previous chapters, we presented the two types of detection and sorting methods of complexly 

overlapped neural spikes recorded by extracellular voltage recording. In Chapter 2, we proposed the 

fast sequential method that can detect and sort arbitrarily overlapped spikes in real-time. In Chapter 

3, the off-line method for the simultaneous estimation of spike templates and the timings of highly 

overlapped spikes was proposed. The two methods have the same strong point in that they are robust 

to overlaps, but their weak points are different. The real-time method (in Chapter 2) can process 

quickly in order to realize real-time computation, but it cannot create spike templates by itself and 

requires appropriate spike templates to be prepared. In contrast, the off-line method (in Chapter 3) 

can extract appropriate spike templates from highly overlapped signals, but it requires a high 

computational cost and cannot be used for lengthy data or real-time applications. These two methods 

have complementary characteristics, and their application in combination solves the weak points of 

the two methods. To detect spikes from lengthy data without spike templates or in real-time 

applications, it is recommended that the off-line method is applied to clipped data with a short length 

in order to extract appropriate spike templates and that, subsequently, the real-time method is applied 

to lengthy data or real-time applications. This procedure will improve performance without long 

computational time. In this chapter, we applied the two methods to the various data in combination 

in order to investigate whether the approach increases the performance of the estimation. 

 

4.2 Experiments 

We assessed our methods when used in combination with 5-s signals recorded from neurons 

cultured on the Multi-electrode array. The signal used in the assessment was recorded in the same 

conditions as the signal used in Chapter 2 and Chapter 3. The details of the cell culture and recording 

methods are shown in Appendix A. We obtained three single-channel signals, one from the culture at 



67 

 

 

 

100 days in vitro (signal A) and two from the culture at 45 days in vitro (signal B, C). We cut out 

three 5-s segments from each signal. Consequently, we obtained nine 5-s segments from three 

signals, and each was named A1, A2, A3, B1, B2, B3, C1, C2, and C3 (shown in Figure 4.1). 

First, we applied the off-line method presented in Chapter 3 to the 5-s segments in order to extract 

the spike templates. The setting of the parameters was the same as those for the experiment in 

Chapter 3. In consequence, three sets of spike templates were estimated for each single-channel 

signal. The set that had the largest number of spike templates in each signal was chosen for the next 

procedure. 

Next, we applied the real-time method presented in Chapter 2 in order to detect and sort the spikes. 

The setting of the parameters was the same as those for the experiment in Chapter 2. This can be 

applied to the entire signal, but we only show the estimated results in the short length. 

 In order to compare the estimation performance, we also applied the procedure used in Chapter 2 

and Chapter 3. The first one was the traditional approach, that is, creating spike templates by 

applying DBSCAN clustering to the spikes detected from the entire signal (not the 5-s segments) 

with thresholding and real-time detection and sorting with thresholding and the least-mean-square 

with templates created by DBSCAN. The second one was the approach tested in Chapter 2. That is, 

creating spike templates by applying DBSCAN clustering to the spikes detected with thresholdiing 

from the entire signal and the real-time detection and sorting with the real-time method presented in 

Chapter 2 with templates created by DBSCAN. 

 

4.3 Results 

The spike templates extracted from the entire signal by DBSCAN clustering and the three sets of 

spike templates extracted from the 5-s segments by our off-line method are shown in Figures 4.2-4.5. 

Similar waveforms were extracted for the same signal, and basically, the number of spike templates 

extracted by our method were larger than that with DBSCAN. Spike templates extracted from A2, 

B3, and C2 were chosen for the next procedure. Furthermore, there was a tendency that the duration 

of the spike templates of signal A was longer than that for signal B and signal C. 

With the extracted spike templates, three types of spike detection and sorting were applied: 

threshold and least mean square with spike templates extracted by DBSCAN (DB + TLMS), our 

real-time method with spike templates extracted by DBSCAN (DB + BAYES), and our real-time 

method with spike templates extracted by our off-line method (BAYES + BAYES). The estimated 

results and the signals reconstructed from them (same as Chapter 2) for parts of the signals in the 5-s 

segments are shown in Figures 4.6–4.14. Overlapped spikes ignored by DB + TLMS were detected 

by DB + BAYES and BAYES + BAYES, therefore, the reconstructed signals of DB + BAYES and  
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A1 

 

A2 

 

A3 

 

B1 

 

B2 

 

B3 

 

C1 

 

C2 

 

C3 

Figure 4.1. Nine 5-s segments clipped 

from three single-channel signals recorded 

from the neurons cultured on MEAs. A1, 

A2, and A3 were clipped from signal A 

(100 days in vitro). B1, B2, B3 and C1, 

C2, C3 were clipped from signal B, signal 

C (both were 45 days in vitro), 

respectively. Bursts over the neuronal 

network and highly synchronized spiking 

were observed in these signals. 
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(a) 

 

(b) 

 

(c) 

Figure 4.2. The spike templates extracted with DBSCAN clustering (a) from signal A. 

(b) from signal B. (c) from signal C. 
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(a) 

 

(b) 

 

(c) 

Figure 4.3. The spike templates extracted with our off-line method (a) from segment A1. 

(b) from segment A2. (c) from segment A3. 
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(a) 

 

(b) 

 

(c) 

Figure 4.4. The spike templates extracted with our off-line method (a) from segment B1. 

(b) from segment B2. (c) from segment B3. 
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(a) 

 

(b) 

 

(c) 

Figure 4.5. The spike templates extracted with our off-line method (a) from segment C1. 

(b) from segment C2. (c) from segment C3. 
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Figure 4.6. The estimated results for the part of the signal in segment A1. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The Reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES+BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4.7. The estimated results for the part of the signal in segment A2. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4.8. The estimated results for the part of the signal in segment A3. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4.9. The estimated results for the part of the signal in segment B1. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signals for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4.10. The estimated results for the part of the signal in segment B2. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4. 11. The estimated results for the part of the signal in segment B3. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4.12. The estimated results for the part of the signal in segment C1. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4.13. The estimated results for the part of the signal in segment C2. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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Figure 4.14. The estimated results for the part of the signal in segment C3. Note that 

different colors in spike trains mean different neurons. (a) The original signal. (b) The 

reconstructed signal for DB + TLMS. (c) The spike trains estimated with DB + BAYES. 

(d) The reconstructed signal for DB + BAYES. (e) The spike trains estimated with 

BAYES + BAYES. (f) The reconstructed signal for BAYES + BAYES. 
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BAYES + BAYES were generally more similar to the original signal than those of DB + TLMS, 

which suggested better estimation with our real-time method. However, the estimation of DB + 

BAYES showed a few obviously invalid results like those in Figures 4.6-4.8 (c) (d), and BAYES + 

BAYES performed better than DB + BAYES for the rest area. 

 

4.4 Discussion 

We obtained a larger number of spike templates with our off-line method than with the traditional 

approach with thresholding and DBSCAN clustering. Furthermore, spike detection with the spike 

templates created by our off-line method performed better than that with the spike templates created 

by the traditional approach. These results implied that the traditional approach missed necessary 

spike templates that can be detected with our off-line method, even though the traditional approach 

used the whole signal and our off-line method used only 5-s segments. This is one of the merits of 

our off-line methods to extract spike templates from the signals of short lengths containing bursts in 

contrast to clustering algorithms that usually require large data sets. This is realized by the 

decomposition of overlaps and the processing without thresholds in voltage. As we explained in 

Chapter 2, detection by thresholds often causes invalid results. It also affects the estimation by DB + 

TLMS in which many spikes are ignored or classified into invalid templates. 

However, the number and shapes of the spike templates estimated by our off-line methods differed 

between segments from the same signal. One of the reasons for this was that some spike templates 

were not contained in the short segments clipped from the signal. If a neuron is not activated for 

several seconds, it is possible that the spike template for the neuron is not contained in a clipped 

signal. Nevertheless, applying our off-line method to the entire signal is difficult because of the high 

computational cost. One reasonable strategy to avoid the problem is the parallel computing of 

several short signals clipped with different timings and to compare the estimated results to determine 

the spike templates. This will reduce the misses of spike templates and the invalid estimations 

caused by overdecomposition and artifact noises. 

The detection and sorting of the long signal should be processed by our real-time method presented 

in Chapter 2. However, as can be seen in the experimental results of DB + BAYES, invalid spike 

templates can cause obviously invalid estimations. This is one of the reasons to apply two methods 

in combination. 

In the experiment, we observed that the spike templates of signal A had a longer duration than those 

of signal B and signal C. One possible reason for this is different electrophysiological properties of 

the recorded neurons. As we showed in Section 1.2, regular firing neurons usually have longer 

durations than fast spiking neurons. However, it is unlikely that all of the neurons recorded in an 
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electrode have the same properties. Another possibility is the inhomogeneity of the extracellular 

medium. The more days in vitro, the more developed are the cultured neuronal networks and glial 

cells. They produce an inhomogeneity of conductivity and permittivity in the extracellular 

environment, which provides low-pass filtering properties to the extracellular medium (Bedard et al., 

2004). How the durations of spikes are changed should be investigated additionally because it is 

important to determine the appropriate duration of spikes with the setting parameters. 

 

4.5 Summary of the chapter 

In this chapter, we applied two methods in combination to various data and compared it with the 

traditional approach and the application without the combination. In the experimental results, we 

obtained a larger number of spike templates with our off-line methods than with the clustering 

approach, and using the spike templates extracted by our off-line methods improved the performance 

of the estimation with our real-time method. Additionally, our real-time method enabled applications 

to lengthy data, and this could not be realized with our off-line method. This implied that the two 

methods have a complementary relationship and that applying the two methods in combination is a 

reasonable approach. 
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Chapter 5  

Conclusion 

 

5.1 Summary of the thesis 

The present thesis dealt with the detection and sorting of complexly overlapped neural spikes 

recorded with extracellular voltage recording. For this purpose, this thesis proposed two methods. 

In Chapter 2, we proposed a fast sequential method that can robustly detect and sort arbitrarily 

overlapped spikes recorded with arbitrary types of electrodes. In our method, the probabilities of 

possible spike trains, including ones with overlapping spikes, are evaluated by a sequential Bayesian 

inference based on probabilistic models of spike-train generation and extracellular voltage recording. 

In order to reduce the high computational cost inherent in an exhaustive evaluation, candidates with 

low probabilities are considered to be impossible candidates and are censored at every sampling time 

in order to limit the number of candidates in the next evaluation. In addition, the data for a few 

sampling times ahead is considered and used to calculate the look-ahead probability, which results in 

more efficient calculation due to the faster elimination of candidates. These efforts reduce the 

computational time enough to enable real-time computation without impairing performance. We 

assessed the performance of our method with simulated neural signals and a real neural signal 

recorded from primary cortical neurons cultured on a multi-electrode array. Our results showed that 

our method could be applied in real-time and that the delay was less than 10 ms. The estimation 

accuracy was higher than that of a conventional spike sorting method, especially for signals with 

many overlapped spikes. 

In Chapter 3, a method for the simultaneous estimation of spike templates and the timings of highly 

overlapped spikes was proposed. In our method, the inference based on HMM with the probabilistic 

penalty is efficiently calculated with the approximation. The performance of the method was 

assessed with simulated and real neural signals. The results showed that our method could 

appropriately decompose the simulated and real signals containing complexly overlapped spikes. 

In Chapter 4, we discussed that The strong and weak points of these two methods were 

complementary and compared the performance of the two methods in combination with the 
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traditional approach and the application without the combination. In the experimental results, we 

obtained a larger number of spike templates with our off-line methods than with the clustering 

approach, and using the spike templates extracted by our off-line methods improved the performance 

of the estimation with our real-time method. Additionally, our real-time method enabled applications 

to lengthy data, and this could not be realized with our off-line method. This implied that the two 

methods have a complementary relationship and that applying the two methods in combination is a 

reasonable approach. 

These methods showed good performance in spike detection and sorting under many complex 

overlaps. Our methods will help to obtain more accurate analyses of highly synchronized neural 

activity. 

 

5.2 Future research directions 

5.2.1  Real-time creation of spike templates and acceleration of computation 

In Chapter 2, we discussed the real-time creation of spike templates in parallel with spike detection 

as one of a number of possible extensions. This can be realized by the reorganization of the learning 

procedure of the spike templates in Chapter 3 in a forward sequential manner and by adding it to the 

algorithm in Chapter 2. This cannot improve the computational time for the complete estimation of 

all of the spike templates and timings, but it can provide an incomplete and modest estimation in 

real-time before the complete estimation, which takes a long time. 

 

5.2.2  Handling long-term changes of spike templates caused by drifts of 

electrodes 

In both methods, long-term changes of spike templates caused by the drift of electrodes (Lewicki, 

1998) still remain an unsolved issue. Modeling the changes with the Gauss-Markov process and 

estimating spike shapes as the hidden variable at every sampling time (Calabrese and Paninski, 

2011) can solve the problem. However, implementing it would increase the computational cost.  

 

5.2.3  Handling short-term changes of spike templates caused by bursting 

The short-term changes in spike shapes caused by bursting (Lewicki, 1998) are also a remaining 

problem. This can be solved by adding a mathematical model about those changes to the proposed 

method. However, to the best of our knowledge, no simple model has been proposed for the changes 

in short-term spike shapes. Therefore, the properties of the change in spike shapes by bursting must 

be studied quantitatively in order to realize the improvement. 
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5.2.4 Handling artifact noises 

Artifact noises that have spike-like transient shapes also have been a major problem in spike 

detection and sorting, especially in recordings from free-moving animals. Our methods have the 

potential to avoid detecting these noises. In our methods, the likelihood, which is the probability of 

the data given the model, is calculated every time. This factor shows how well the model explains 

the data, and therefore, data that exhibit a low likelihood are estimated to be outliers. This approach 

can be applied to not only the removal of artifact noises but also the detection of new spike 

templates. 

 

5.2.5 Application to connectivity analysis 

If we add the regression of other neurons’ spike trains to the parameters of a neuron’s 

inhomogenous Poisson process, we can take into account the correlations between the activities of 

neurons (Dayan et al., 2005). Of course, we can apply analysis methods after spike detection and 

sorting, but such a model could improve the estimation accuracy of spike detection and sorting if 

there are strong correlations between the spike trains of different neurons. 
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Appendix A 

Cell Culture and recording methods 

 
Cortical tissues were isolated from Wister rat embryos (on embryonic day 18) and dissociated by 

digestion with 0.1% trypsin-EDTA (Gibco Inc.) in calcium- and magnesium-free Hanks’ balanced 

salt solution (Sigma Diagnosis Inc.). The dissociated cells were plated on MEA substrates coated 

with polyethylenimine at a density of 1.7  103 cells/mm2. The MEA substrate used in the 

experiment was MED545A (Alpha MED Scientific Inc.). It had 8  8 indium–tin–oxide (ITO) 

electrodes coated with platinum black and 4 electrodes for reference. Each electrode was 50μm 

square and the distance between electrodes was 450μm. The culture medium consisted of Dulbecco’s 

modified eagle’s medium (Gibco Inc.), 5% fetal bovine serum, 5% horse serum, 2.5μm/mL insulin 

and 5-40 U/mL penicillin streptomycin. The cultures were maintained in an incubator with 5% CO2 

at 37 oC and in a water-saturated atmosphere. Half of the medium was exchanged twice a week. 

Difference of potential between each recording electrode and reference electrodes were measured 

and 64-channel signals were obtained. The signals were amplified 1000 times and filtered to cut 

frequencies under 100 Hz with the MED 64 Amplifier (Alpha MED Scientific Inc.). Amplified 

signals were recorded on PC after conversion to digital data (2 byte integer) within the range of ±

0.5V by using two 32-channel A/D boards (PCI6071E, National Instruments Inc.) and comedi (A/D 

driver for Linux). We recorded signals for 10 minutes from 2 samples after 100 days in vitro and 45 

days in vitro respectively. We used one or two channels chosen from 64 channels. The sampling rate 

was 10 kHz. The block diagram of the recording system is shown in Fig. A. 1 and setup is shown in 

Fig. A. 2. 

 The experiment was done in accordance with the University of Tokyo's guidelines 

regarding animal research. 

 

 

Figure A. 1. Block diagram of the recording system. 
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Figure A. 2. Setup of the recording system. 
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Appendix B 

Derivation of equations to update 

parameters in M-step 

 
In this appendix, model parameters that maximizes Q function under given probabilistic 

distributions of hidden variables γ(zt), ξ(zt-1 , zt) in Chapter 3 is derived. Q function is 

 

 

(B.1) 

We define  and  as  

 

 

(B.2) 
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(B.3) 

and derive π that maximizes  and μ, σ that maximizes  respectively.  is maximized by 

Lagrange’s method of undetermined multipliers. 

 

 

(B.4) 

 

 

(B.5) 

 

 

(B.6) 

 

 

(B.7) 

  (B.8) 

 

 

(B.9) 

 

 

(B.10) 

Here we defined q0, q1, rk as shown below. 
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(B.11) 

 

 

(B.12) 

 

 

(B.13) 

By summing πk for  and using  we can derive 

 

 

(B.14) 

and  

 

. 

(B.15) 

By substituting this formula to  

 

and by using 

  (B.16) 

 

 

(B.17) 

 
 

(B.18) 

, the solution of this quadratic equation is derived as 

 

. 

(B.19) 

Under constraints  and , 

 
 

(B.20) 

 

 

(B.21) 

Therefore π0 which maximizes  in  is specified. 

 

 

(B.22) 

 can be calculated from  using the equation (B.15). 
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Next, we derive  that maximizes . 

 

 

(B.23) 

 

 

(B.24) 

 

 

(B.25) 

Matrix representation of this equation is  

 
 

(B.26) 

 
 

(B.27) 

 

  (B.28) 

 

 

(B.29) 

 can be obtained by solving equation (B.26).  

 that maximizes  under given  is 

 

 

(B.30) 

 

 

(B.31) 
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 As described above, we could obtain equation (B.15) and equation (B. 22) to update , equation 

(B.26) to update , and equation (B.31) to update . 

 


