
Automatic Sentence Generation for Images

via Key-phrase Estimation

using Large-Scale Captioned Images

（大規模な説明文つき画像を用いた
キーフレーズ推定に基づく画像説明文の自動生成）

牛久 祥孝



This thesis is dedicated to my late maternal grandfather, without
whose interesting talks about science and technology

I would not have written a Ph.D. thesis.



Acknowledgements

My heartfelt appreciation is extended to Prof. Tatsuya Harada, who
has supervised my research for six years. He has been extraordinarily
tolerant and supportive of my work. I have invariably been inspired
and motivated by his vision and strategy for research. The opportu-
nity to study under his distinguished direction has been a blessing.

I would particularly like to thank Prof. Yasuo Kuniyoshi, Director
of the Laboratory for Intelligent Systems and Informatics (ISI). In
April 2013, Prof. Harada set up the Machine Intelligence Laboratory
(MIL). Before the establishment of MIL, he and I worked in the ISI
Laboratory. Prof. Kuniyoshi has advised me not only about my work,
but also philosophy I should have. His great insight and philosophy
have been always helpful, suggesting future directions for my efforts.
I am proud of working in the ISI Laboratory for five years.

I would also like to express my gratitude to Prof. Kiyoharu Aizawa,
Prof. Masayuki Inaba, and Prof. Yoshihiko Nakamura for their many
constructive comments and discussions, which have been an invaluable
help in finishing my work.

The labmates in ISI and MIL gave me useful comments and persis-
tent help. Especially, advice and comments provided by Prof. Hideki
Nakayama and Dr. Asako Kanezaki have been of great help in my
Ph.D. work. Although I am only a Ph.D. student at MIL, I have many
friends who are Ph.D. students at other laboratories and at other uni-
versities. I received wide-ranging discussion and warm encouragement
from them using social networking services.

I owe an extremely important debt to my family for their moral and
financial support over these many years. Finally, I offer my special
thanks and love to Maika. Without her encouragement, this thesis
would not have materialized.



Abstract

With advances in information technology, the explosively increasing
multimedia environment has created demand for methods by which
computers can interpret multimedia contents on behalf of humans.
By virtue of such methods, we can use multimedia efficiently. For
example, we can seek desired data from vast amounts of multime-
dia information and understand their contents without viewing them.
Such a method would facilitate the use of robots in the real world and
help visually impaired people in the future.

Generic object recognition is a problem to ascertain the contents of
general images and videos. In the last decade, many researchers have
attacked this problem. After early studies using a small-scale dataset
to learn a few categories, generic object recognition has been divided
into several problems: (a) classifying not images but videos, (b) clas-
sifying images using large-scale datasets, and (c) associating images
with more than one label (annotation). For the past few years, more-
over, studies to explain multimedia not with several labels but with
a sentence including the relations among such labels have begun to
attract much attention.

Generating sentences to explain images and videos is the ultimate
goal of generic object recognition. Most methods examined in earlier
studies require semantic knowledge such as ⟨object, action, scene⟩.
Such labels with attributes should be labeled manually. Therefore,
collecting a large-scale dataset is difficult.

In this paper, we develop a methodology for sentence generation using
a dataset consisting only of pairs of an image and sentences because
numerous images or videos are associated with captions in general
web sites and sharing sites. To realize sentence generation using
only images and sentences, we examine a hypothesis: “Almost all
contents of an image are identifiable with a few descriptive phrases
(keyphrases). A sentential caption can be generated by connecting
these with an experimental grammar model”. Therefore, we present
the Multi-keyphrase Problem to estimate multiple keyphrases and to
generate a sentence.



Because keyphrases are combinations of various objects and events,
larger datasets are preferred. Scalability of the data amount is neces-
sary, as is accuracy of keyphrase estimation.

Consequently, we first specifically investigate large-scale visual classi-
fication. To learn labels using a large-scale dataset, online learning by
which each datum is loaded and learned one-by-one is useful. Never-
theless, no investigation or comparison of online learning methods for
visual recognition is reported in the literature. As described in this
paper, we select and fix state-of-the-art features and evaluate online
algorithms.

Next, we propose a method to generate a sentence by combining esti-
mated keyphrases using an experimental grammar model. Our pilot
study, conducted using only pairs of an image and sentences, demon-
strates that sentences can be generated without semantic knowledge,
which is difficult to collect manually. We also modify an existing
online learning method to annotate images according to results ob-
tained from our investigations of state-of-the-art methods. In exist-
ing works for image annotation, combinations of metric learning and
non-parametric approaches are mainstream. However, scalability re-
mains an open question for non-parametric approaches. The proposed
method achieves state-of-the-art performance and superior scalability
for image annotation problems.

As described above, the number of keyphrases is much larger than
that of single words. To train many classifiers efficiently, we use sub-
space learning to reduce the number of parameters for classifiers. In
the subspace, (a) all feature vectors associated with the same label
should be mapped as mutually close. Moreover, (b) classifiers for
each label should be learned in the subspace. Therefore, we propose a
novel learning method: Common Subspace for Model and Similarity
(CoSMoS).

Finally, we evaluated our methodology using three datasets, each con-
sisting of pairs of an image and a sentence. Experimental results
show that our system is more accurate than those presented in ear-
lier works. The scalability of our system and experimentally obtained
results show that the accuracy increases when the dataset increases.
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Chapter 1

Introduction

1.1 Background

Recently, the development and spread of information technology has increased the
amount of accessible multimedia such as images and videos. For efficient usage of
those resources, multimedia should be retrieved and understood easily by users.
Therefore, methods by which computers can interpret multimedia contents on
behalf of humans are necessary. Future methods must not only use the contents
of multimedia but also events and objects in the real world for interpretation
by computers and robots working in the real world, by systems helping vision
impaired people, and so on.

Consequently, object recognition and event recognition from multimedia have
been widely investigated in the last decade. Objects and events are recognized
by being labeled with the names of objects and events. However, the multimedia
contents cannot be understood completely with such labels. Of course, informa-
tion about locations is lost. More generally, relations among these objects and
events cannot be understood merely using independent labels. A simple example
is shown in Figure 1.1. Both images have the common labels of “white”, “blue”,
“sky”, and “airplane”. However, these labels cannot reflect the relations between
objects and colors. Additionally, spatial relations between “airplane” and “sky”
cannot be described.

Therefore, methods to associate multimedia (especially images) with a natu-
ral sentence are starting to be addressed widely. For the example presented in
Figure 1.1, the goal is to generate sentences such as “A white airplane is flying
in the blue sky.” and “A blue airplane is under the white sky.”

In 2010, Farhadi et al. published a landmark work [6] for describing images
with sentences. Images and sentences are manually labeled with a triplet of
⟨object, action, scene⟩. Therefore, relations between objects and events in images
are determined with these triplets. Subsequently the mappings from images to
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“white,” “blue,” “sky,” and “airplane” images ... ?

white airplane

blue sky

in

blue airplane

white sky

under

Figure 1.1: Two images might have the same labels, “white”, “blue”, “sky” and
“airplane”. However, the relations among these labels are ignored when using
only these labels.

triplets and from triplets to sentences are learned. Then images can be described
by estimating the triplet and retrieving a sentence associated with a triplet that
resembles the estimated triplet.

Most recent studies use multiplets. To define the spatial relation, the labels are
estimated for each element: object, action, scene, and proposition. A few works
attempt to describe videos with sentences using a multiplet. However, such an
approach to describe multimedia with sentences presents two problems. First, the
contents and their relations beyond the multiplet cannot be described. Secondly,
collecting numerous images with such well-organized multiplets is difficult.

A sufficient number of high-quality training samples with desired outputs is
generally needed. Therefore, consideration of preparing such a sufficient dataset
presents an important issue. Fundamentally, visual recognition from images and
videos has several problem settings depending on the form of recognition result.
At the same time, the type of training dataset changes according to the problem.
For example, Image Segmentation, which is a problem of assigning each pixel
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to each object in the input image, requires a dataset consisting of images and
pixel-wise segments about the objects in each image. Such data are difficult to
collect in large amounts. Therefore, improving the accuracy of segmentation is
also difficult. Associating an input image with a single label (Classification) or
with multiple labels (Annotation) requires only pairs of an image and labels.
Using a large amount of labeled images from general web pages and multimedia-
sharing sites such as Flickr and YouTube, datasets for Image Classification and
Annotation can be collected in large amounts. As a result, these problems can
be assessed and resolved rapidly.

What can we collect in large numbers for describing multimedia with natural
sentences? The answer is web data. General web sites and sharing sites have
numerous images and videos associated with captions.

1.2 Objective

We develop a system to generate natural sentences for images using a dataset
consisting only of pairs of images and sentences.

To realize sentence generation using only images and sentences, first we present
a hypothesis: Almost all contents of an image are identifiable with a few descrip-
tive phrases (keyphrases). A sentential caption can be generated by connecting
these with an experimental grammar model.

Secondly, we tackle a problem to estimate multiple keyphrases as an Image
Annotation problem, where images are associated with multiple labels. In other
words, keyphrases are represented as labels consisting of a set of words. Recent
studies of large scale Image Classification adopt online learning for linear classifi-
cation. In an online learning scheme, each training sample is classified repeatedly
with the classifiers at the time. Then some are updated if a mistake occurs.
For reading one training sample at a time, online learning is suitable for a large
dataset. Although various learning methods for linear classification have also been
proposed in the machine learning literature, they have rarely been evaluated for
visual recognition. As described herein, we present guidelines via investigations
of state-of-the-art online learning methods of linear classifiers. After the investi-
gation, we propose several online learning methods for keyphrase estimation. Our
methods achieve state-of-the-art performance and superior scalability to that of
existing methods for Image Annotation.

Finally, we develop a method to generate a natural sentence from estimated
keyphrases and a grammar model. Natural Language Generation (NLG) is an
open problem for Natural Language Processing. Existing works for generating
sentences for images are grouped into two major categories: (i) reuse of existing
sentences in the dataset and (ii) usage of a template consisting of subjects, verbs,
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and prepositions. For sentence generation with a template, each part of speech is
definable because those works use multiplet consisting of such as object, action,
scene, and preposition. Therefore, both approaches lack flexibility of descriptions
for each image. Instead, we propose a novel method by solving sentence gener-
ation as a graph search problem based on our intuition that a sentence can be
generated by combining the estimated keyphrases using a grammar model.

The contributions of this thesis are summarized as follows:

• Proposal of the keyphrase approach to realize sentence generation for images
using a dataset consisting only of images and sentences.

• Study investigating state-of-the-art algorithms for large-scale visual recog-
nition and evaluating those algorithms in unified experimental settings.

• Development of a learning method for keyphrase estimation and annotation
with scalability and accuracy.

1.3 Structure of the Thesis

In this thesis, we aim to develop a system to generate a sentence that explains the
contents of images. First, we investigate state-of-the-art online learning methods
for large-scale visual recognition. Secondly, we develop a basic pipeline to gen-
erate a sentence via keyphrase estimation. Thirdly, we propose a novel method
to estimate keyphrases accurately. Finally, we conduct experiments to generate
sentences using a dataset consisting of image and sentence pairs.

This thesis is organized as follows: we have already described the background
and the objective of this thesis in Chapter 1. Chapter 2 describes related works,
especially works to associate images with sentences. Works for visual recognition
such as classification and annotation are also related to this thesis. In Chapter 3,
we provide novel guidelines for large-scale visual recognition by application of
state-of-the-art online learning methods. This knowledge affords a useful clue to
development of a keyphrase estimation algorithm. Our particular methodology
of sentence generation via keyphrase estimation is proposed in Chapter 4. First,
we train keyphrases using pairs of an image and sentences. Secondly, for an
input image, keyphrases are estimated. A sentence is generated by combining
the keyphrases using a grammar model. Additionally, this chapter modifies an
existing online learning method. Although the existing method is developed for
classification, we devote attention to the fact that each image has several labels
for annotation problems. Chapter 5 proposes a novel online learning method to
learn numerous keyphrases. The proposed method learns a subspace in which
(a) image features associated with the same keyphrase mutually approach and
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(b) a linear weight vector to classify that keyphrase is obtainable. Experimental
results obtained using several de-facto standard datasets for Image Annotation
show that the proposed method is useful to associate images with several labels.
In Chapter 6, we evaluated our methodology using three datasets consisting of
pairs of an image and a sentence. Experimental results demonstrate that our
system is more accurate than previous works. Finally, Chapter 7 concludes this
thesis and describes future works.
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Chapter 2

Methods to Describe Multimedia
with Natural Language

Recent works for image recognition have advanced by virtue of machine transla-
tion. Whereas traditional works for machine translation are based on manually
organized rules, statistical machine translation using a large bilingual corpus has
become the mainstream from the close of the 20th century [7]. Because knowledge
of statistical machine translation is brought to image recognition [8], where rule-
based approaches were also mainstream, methods based on statistical learning
continue to gain mainstream acceptance.

Recognizing contents in images and videos is divisible into several groups
according to the form of output. Because enormously various and numerous
approaches are conducted for those problem settings, it is difficult to describe all
of them. Therefore, this thesis first presents efforts for Image Classification and
Annotation, where the whole input image is associated with one or more labels.
Secondly we describe recent challenges using output sentences to explain images.

2.1 Generic Object Recognition

As described in Chapter 1, studies using computers to recognize contents of im-
ages or videos have been widely undertaken. Moreover, wide variation prevails
in the type of target object and in the form of output. Figure 2.1 presents a
variation of the visual recognition problem.

First, targets to be recognized are divisible into two groups: objects and
events. Although a few works attempt to detect events from still images, event
recognition is performed mainly with videos. Video features such as optical flow
and image features from each frame of the video are extracted first. Then these
features are trained and recognized as usual object recognition.
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If the targets are objects, then problems are divided depending on whether
the objects are specific objects (e.g. Boeing 787 and iPhone) or generic objects
(e.g. an airplane and a car). In mainstream studies for specific object recognition,
interest points in the images are detected first. Secondly, descriptors represent-
ing pixels surrounding these interest points are extracted. The input image is
recognized by matching its descriptors to all descriptors in the dataset. Most
approaches for generic object recognition also extract descriptors. The differ-
ence from specific object recognition is that the descriptors are extracted from
pixels surrounding not interesting points but fine grid-points because descriptors
around all grid points include information related to the background of the ob-
ject. Generic object recognition uses such background because relation between
the object and its background is stronger than that for specific object recognition.
However, some challenges for recent generic object recognition have been under-
taken to recognize fine-grained objects such as dogs of 200 kinds, whereas usual
generic object recognition consider all dogs as one class: “dog”. Consequently,
the difference between specific and generic becomes continuous.

Moreover, when a certain object is recognized, the types of the output are
divided depending on whether (a) the fact that the input image includes the ob-
ject is reported (classification and annotation), (b) a bounding box is output for
that object (detection), or (c) the region of the object is partitioned (segmenta-
tion). The difference between classification and detection is that the input image
is associated with a single label or more than one label. As described in Chap-
ter 1, the cost to collect datasets to train and evaluate systems influences the
dataset size. Statistical approaches for visual recognition require sufficient data
in proportion to the number of target objects and events. For labeling the whole
image, collecting images associated with labels from the web is possible. As a re-
sult, whereas detection and segmentation are performed using hundred-thousands
and thousands of images at most, respectively, classification and annotation are
performed using millions or billions of images.

In this thesis, we discuss methods to associate images with labels or sen-
tences. As described above, these methods cannot clarify the regions of recog-
nized objects. However, object detection uses such labeling to reduce the object
candidates because scanning detectors for objects of all kinds takes much time.

Video recognition uses a similar approach to that of image recognition. For
example, most works in an international competition, TRECVID [9], where many
tasks for videos such as event detection and indexing based on contents are ad-
dressed, are based on pipelines for image recognition.

Therefore, discussion of image recognition by labeling images contributes most
settings for visual recognition.
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Figure 2.1: Variations of image understanding.

2.1.1 Datasets

With progress of visual recognition methods, the size of datasets used for visual
recognition also increases. As pioneering datasets, Caltech 101 [10] for Image
Classification and Corel 5k [8] for Image Annotation are widely used. Caltech
101, consisting of 101 object categories and one background category, includes
about 9000 images downloaded using Google image search. Because all images are
rotated and organized manually, Caltech 101 is easy to learn. Corel 5k, a subset
of an image library provided by Corel, has about 5000 images for 260 categories.
Each image has around 3.4 labels. Additionally, as a similar problem to that
of Image Classification, there is another problem called Scene Classification. Be-
cause the pipelines used are mutually similar, we equate Scene Classification with
Image Classification. For this problem, LSP15 [11], consisting of 15 scene cate-
gories, is a widely known dataset. Caltech 256 [12], consisting of 256 categories
and around 30k varied images, is available for image classification. For image
annotation, ESP Game [13] and IAPR-TC12 [14] are used as datasets consisting
of around 20k images and around 250 categories.

Recently, several larger-scale datasets collected from the web are being used.
NUS-WIDE [15] includes 5000 labels and 200k images collected from Flickr. Tor-
ralba et al. [16] collected 80 million images using image search engines. Using
reduced-size images directly as image features, performance improvements over
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several tasks such as Image Classification are reported. Wang et al. [17] orga-
nized a huge dataset called ARISTA, which consists of 2 billion images from the
web. The authors devote their attention to images that closely resemble input
images and insist that the so-called “near-duplicate” images are useful for Image
Annotation.

Because labeled images from the web tend to have much label noise, the
methodologies used for visual recognition using those images must be noise-
tolerant. Therefore, Deng et al. [18] first collect images from the web with
the queries based on a thesaurus called WordNet [19]. Then noisy images are re-
moved using crowdsourcing, Amazon Mechanical Turk. As a result, their dataset,
called ImageNet has 10 million images for 20k categories. Clowdsourcing is also
used to organize the dataset called SUN [20] for scene classification. There are
100k images for 900 scenes in this dataset.

ImageNet seems to present no problem related to relevance between images
and associated labels because this dataset is organized manually. In fact, however,
not all labels are relevant to their images because of the difficulty in controlling
workers having various backgrounds in crowdsourcing and because of the fact
that usual images have more than one object and event. Indeed, the interna-
tional competition called ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) uses a subset consisting of 1.2 million images for 1000 objects and
evaluates performance using not the top-1 label but the top-5 labels estimated
by participants.

2.1.2 Feature extraction

This subsection describes advances in feature extraction from images. The pop-
ular pipelines consist of descriptor extraction from thousands of local patches in
images and aggregation of the local descriptors into one vector as a representa-
tion for each image. The traditional method is Bag of Visual Words (BoVW)
[21], which generates a codebook with k-means clustering among descriptors ex-
tracted from images. By assigning each descriptor to a codeword in the obtained
codebook, a histogram of assigned codewords can be extracted as an image fea-
ture vector. Although the means to define the number of codewords is uncertain,
experimental reports show powerful performances for visual recognition.

However, because BoVW is a kind of vector quantization of local descrip-
tors, a large amount of information is lost during quantization. To overcome
the loss of information, nonlinear classification is adopted for visual recognition
using small-scale dataset such as Caltech 101. The popular approach is a com-
bination of Spatial Pyramid Match (SPM) Kernel [11] and Kernel SVM. With
SPM, BoVW histograms are generated respectively over partitioned image. To
use Kernel SVM, histogram intersection is used to calculate the kernel function
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between BoVW+SPM vectors. Moreover, Multiple Kernel Learning [22, 23],
which combines multiple kernel functions such as SPM Kernel, can achieve bet-
ter performance than that with single kernel. However, because Kernel SVM
requires O(N3) time complexity and O(N2) space complexity with respect to all
N training samples, the problem of scalability persists.

Recently, various methods to aggregate local descriptors into a vector with
less information loss are proposed. These features achieve powerful classification
performance even with linear classifiers. The pipeline using BoVW and SPM is
divisible into three steps: 1) extracting local descriptors, 2) coding each local
descriptor, and 3) pooling all coded descriptors in the same region of an image.
BoVW is a method to code each local descriptor by assigning the descriptor to
one codeword. The original SPM can be interpreted as average pooling where
coded descriptors in the same region are simply summed (averaged). ScSPM [24]
uses L1-norm regularization for coding to assign each local descriptor to a few
codewords. For pooling, [24] presents max pooling where the aggregated feature
vector is generated by choosing the maximum value for each codeword. [24, 25]
report that the combination of ScSPM and linear SVM achieves surprisingly good
classification performance.

BoVW can be regarded as a probability density estimation of a Gaussian mix-
ture model in the space where local descriptors distribute. [26] presents Super-
Vector (SV) coding as an extension of BoVW. Because SV approximates each
neighborhood of each codeword using linear function, SV approximates a prob-
ability density better than BoVW. Moreover, by considering BoVW as a gen-
erative model, [27] proposes Fisher Vector (FV) to aggregates local descriptors
into a more discriminative vector using Fisher Kernel. FV uses first-order and
second-order statistics of the distribution of local descriptors, whereas BoVW
uses 0th-order statistics. [28] improves Fisher Vector using L2 Normalization,
Power Normalization, and Spatial Pyramid Matching. Nowadays FV is a stan-
dard approach to the large-scale image recognition.

2.1.3 Classification and Annotation

As described in the last subsection, linear classifiers achieve state-of-the-art per-
formance for large-scale classification. In existing works for image annotation,
however, non-parametric approaches [29, 30, 31, 32, 33] are mainstream. With
such approaches, an input image is annotated with the labels of images which
are located near the input image according to a certain metric. Although multi-
keyphrase estimation using such an approach is conceivable, the complexity for
calculating the distances between the input image and all N training samples is
O(N). Therefore, the execution time increases with the number of training sam-
ples. Moreover, the state-of-the-art methods [31, 32, 33] require the complexity
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to be within O(N) ∼ O(N2) for metric learning. Therefore, scalability remains
an open question for non-parametric approaches.

2.2 Challenge to Associate Multimedia with a

Caption

To generate sentences for images, ascertaining relations between labels is an im-
portant problem to be solved. Sadghi et al. [34] presents visual recognition with
“Visual Phrases”. For example, detecting “person riding horse” is performed by
decoding the results of object detection for each object such as person and horse.
However, the following problems exist: (i) binary classification is performed for
each phrase, and (ii) detection-based phrase estimation requires manually man-
aged datasets including bounding boxes.

Sentence generation from image contents was started by [35], which was pub-
lished in 2010. An input image was segmented for each object. Then each seg-
ment was homologized to a verbal expression. Finally, an output sentence was
generated using these expressions while maintaining correct grammar. Because
this approach requires numerous special datasets for each process, extension to
a dataset of various images is difficult. Another method [36] uses the geo tag of
an input image to retrieve related articles and to summarize them as a sentential
caption. This approach is useful for some contents such as landmarks.

Several datasets are used to evaluate generated sentences in recent works.
[37] use crowdsourcing by Amazon Mechanical Turk to collect two datasets: a
PASCAL Sentence dataset and a Flickr-8k dataset. In both datasets, each im-
age is described manually with around five sentences. IAPR-TC12 [14] consists
of 20,000 images with sentential descriptions and light annotations in English,
German, and so on. This dataset is used not only for Image Annotation but
also for Sentence Generation. The SBU dataset [38] is generated by collecting
1M images from the image sharing website, Flickr. Because the sentences in the
web are noisy, [39] presents the novel task called Image Caption Generalization
to eliminate the noisy description.

Some methods in the literature reuse the whole sentence associated with the
training image that is sought from an input image. In [6], all images are labeled
with a triplet: ⟨object, action, scene⟩. An image with the same labels estimated
from an input image is retrieved. In another method [38], images are labeled
according to their objects, stuff, people, and scenes from different datasets. Sim-
ilarity to estimated labels from an input image and matching of local descriptors
are used to search for similar images found among one million images. [40] adopts
Kernel CCA to associate existing sentences to input images using their original
dataset called Flickr-8k dataset [41]. To use a whole sentence directly, how-
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ever, vastly numerous images related to all combinations of image contents must
be used. Moreover, similar images must be retrieved exactly from such a huge
dataset.

Therefore, some works generate a new sentence using one or more templates.
In [4], images are explained sententially with respect to the objects’ names, num-
ber, and their spatial relations by learning objects, stuff, and attributes from
different datasets. [2] extended the concepts described earlier in [6] to generate a
new sentence learning not only ⟨object, action, and scene⟩, but also a preposition.
Whereas most works try to generate sentences from input images, [42] presents
a bit different problem: to generate a sentence from an already annotated input
image. Given labels corresponding to objects and attributes, a proper action and
their relations are estimated to generate a sentence.

However, the authors of [3, 43, 44] report that the use of a template to gener-
ate general sentences is suboptimal. [3, 43, 44] alternatively connect the result of
object detection using web-scale N-gram model [43] and their generating system
by gathering local subtrees for each detected object [3, 44]. Although new sen-
tences can be generated, [2, 4] requires datasets including multiples and [3, 43, 44]
requires an extra dataset for object detection.

Previous works described by Feng [45] and us [1] are most related to the
present thesis. Feng [45] used an annotation method to generate a sentence from
images. In [1], we also apply a method for image annotation, called Canonical
Contextual Distance (CCD) [46]. With CCD, distances in image feature space are
improved according to labels. [1] modified CCD to use not labels but sentences
associated with images. Then images that are similar to an input image are
sought; a sentence is generated from the phrases in the sentences associated with
those images. The pipeline of [1] is presented in Figure 2.2.

The weaknesses of these methods are the following. First, as one example,
[45] requires manual selection of labels, subject, actions, and adjectives. Fur-
thermore, although an output sentence is generated by connecting phrases, [45]
regards phrases as grammatical. Because parsing and word tagging are necessary
for grammatical phrase extraction, (i) additional training datasets for parsing and
tagging are also required and (ii) mistakes of these process adversely affect the
generated sentences. Secondly, the approach described in [1], from another per-
spective, estimates phrases to generate a sentence from similar images’ sentences.
However, (i) time spent on neighbor search increases linearly with the number
of training samples, and (ii) the absence of a grammar model might generate
unnatural sentences.
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Input: an image

Output: a sentence

a

C
urrent

candidates

A small white dog standing on a leash.

Similar images and captions
A small white dog standing, wearing some dog-clothing.
A small white dog wearing a flannel warmer.
A small white dog wearing a jacket looks up at the camera.
Small terrier wearing a patterned sweater.
The small dog is wearing a sweater and looking up at the camera.

A black dog standing in a grassy area.
A black lab looks on while standing in the dry brush.
A large, black, long-haired dog stands in a sunny field.
A long-haired dog stands in a grassy wooded area.
Long-haired black dog standing in grassy field.

A small gray dog on a leash.
a small terrier on leash
Furry gray dog on a leash.
The tiny dog notices something on his daily walk.
Young schnauzer on leash.

small white dog standing
in
on
at

Retrieving
training
samples

Reconstructing
training sample

captions

Figure 2.2: Methodology overview of [1].

2.3 Multi-Keyphrase Approach for Sentential De-

scription

In general terms, collecting a large amount of data from the web is a common
means to understand various images. What we can collect automatically are im-
ages associated not with semantically clear labels but with surrounding sentences
and uncontrolled words. Indeed, [38] collects a million pairs of an image and a
sentential caption from an image sharing website, Flickr, for sentence generation
from images.

As described in Section 2.1.3, various studies have specifically addressed image
classification and annotation using a large-scale dataset collected from the web.
Even though noisy textual information is common around the images on the web,
[47, 48] report that the surrounding text can improve similarity among images.
In [48], for example, articles and their images in New York Times are collected as
a dataset. The performance of similar image searching among these news images
is improved by combining similarities among the news articles.

Recent works attempt to describe videos [49, 50, 51, 52, 53] with sentences.
However, these approaches are also based on multiplets and object detection. To
generate sentences for videos, studies to generate sentences for images should be
undertaken using only pairs of an image and sentences.

Consequently, we strive to develop an approach to generate a new sentence
for input images using only pairs of an image and sentences. Our objective is to
generate a sentence such as “A man bites a white dog in his arms.” on the right
side of Figure 2.3 from the input image on the left side of Figure 2.3. Generally,
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man bites
white dog

his arms A man bites
a white dog
in his arms.

Keyphrases Output Sentence

+
Grammer

his armsin→
mana→

white doga→

Figure 2.3: Pipeline of the proposed framework. We first estimate some
keyphrases from an input image. Then a sentential caption is generated by spin-
ning them with an experimental grammar model.

given |wall| kinds of words, there are l|wall| sentences in which l is the length
of the sentences. Therefore, directly estimating one of l|wall| sentences for each
input image is impossible. However, once the combinations of a few words such as
“man-bites”, “white-dog”, “his-arms” are estimated, a sentence can be generated
using an experimental grammar model such as “in” appears frequently after “his
arms”, “a” appears frequently before “white dog” and after “bites”. Therefore,
we form the following hypothesis:

Hypothesis Almost all contents of an image are identifiable with a few de-
scriptive phrases (keyphrases). A sentential caption can be generated by
connecting these with an experimental grammar model.

Consequently, we presentMulti-keyphrase Problem to estimate keyphrases1 which
clarify the relations between contents in images. Additionally, keyphrases can
narrow the semantic gap between image contents and single words. For example,
to learn general “dog”, following dogs should be considered to be in the same class:
“white dog”, “black dog”, “running dog”, “sleeping dog”, and so on. Keyphrases
can distinguish those dogs by modifying the word “dog”.

From the viewpoint of Multi-keyphrase Problem, our previous work [1] es-
timates keyphrases by retrieving similar images using CCD. Some approaches
follow our first work [1] to generate sentences based on phrases, with [54, 55, 56]
also proposing a method to estimate several phrases for input images and to
generate a sentence by combining them.

However, [55, 56] present methods that entail several problems. First, because
[55, 56] adopt metric learning [57], their approaches are not scalable for the data
amount. Secondly, [55, 56] use a template to combine these phrases. As the
authors of [3, 43, 44] report, template usage is suboptimal to generate general
sentences.

1As described in this paper, a phrase means just a sequence of words. It has no other
grammatical meaning.
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The authors of [54] introduce integer linear programming instead of the solid
templates. Although [55, 56] estimate phrases directly from images, the esti-
mation in [54] is divisible into two steps. First, given an input image, several
visual recognition modules are applied to the input: object detection, scene clas-
sification, and background (e.g., grass, sky) recognition. Presuming that a dog
is detected in the input image, the authors retrieve a visually similar dog from
the dataset, and extract phrases with a parser from the associated sentence. The
problems of [54] are that they use organized datasets for each attribute and that
a similar image search would be naive to ascertain proper phrases because of
semantic gap. Additionally, even though [54] uses integer linear programming
instead of a solid template, the contents to be described in a sentence are fixed.

As described in this paper, we develop a scalable system to train the relations
between keyphrases and images. To estimate keyphrases and to obtain a grammar
model, we use only pairs of an image and sentences. Because manual collection
of datasets including semantic knowledge such as what is subject, action, and
scene is no longer required, we can adopt a large-scale dataset consisting only of
images and sentences.

During the last decade, numerous online learning methods for linear classifi-
cation have also been widely studied [58, 59, 60, 61, 62, 63, 64] to address vast
quantities of data which cannot be loaded on RAM at a time. Despite progress in
online learning methods, few evaluations of these methods have been reported for
large-scale visual recognition. Most online learning methods are evaluated using
synthetic datasets and natural language datasets such as document classification.
Therefore, before describing our particular pipeline to generate a sentence via
keyphrase estimation in Chapter 4, we investigate state-of-the-art online learning
methods over various image features using large-scale datasets in Chapter 3.
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Chapter 3

Investigation of Online Learning
Methods for Multiclass
Classification

As described in Chapter 2, we develop novel online learning algorigthms for
phrases. To learn numerous phrases, large datasets consisting of many labels
should be used. Therefore, we would like to start with investigation of multiclass
classification using large datasets.

Nowadays, for large-scale visual recognition, combinations of high-dimensional
features and linear classifiers are widely used. Numerous so-called mid-level fea-
tures have been developed and mutually compared on an experimental basis.
Although various learning methods for linear classification have also been pro-
posed in the machine learning and natural language processing literature, they
have rarely been evaluated for visual recognition.

In this chapter, we give guidelines via investigations of state-of-the-art online
learning methods of linear classifiers. Many methods have been evaluated using
toy data and natural language processing problems such as document classifi-
cation. Consequently, we gave those methods a unified interpretation from the
viewpoint of visual recognition. Results of controlled comparisons illustrate three
guidelines that not only help us develop novel algorithms but also changing the
pipeline for visual recognition.

3.1 Necessity to Investigate Existing Algorithms

By virtue of recent advances in computer science and because of the culture of
sharing of multimedia information such as photographs, vast quantities of la-
beled images have been used for visual recognition [64, 65, 66, 67]. Combinations
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of high-dimensional features and linear classifiers have been studied specifically.
Such high-dimensional features are generated from each image by pooling many
mid-level features. Each mid-level feature is coded from a local descriptor. Re-
cently, many techniques for coding and pooling have been proposed and compared
using well-known datasets[25, 68].

During the last decade, numerous online learning methods for linear classifi-
cation have also been widely studied [58, 59, 60, 61, 62, 63, 64] to address vast
quantities of data which cannot be loaded on RAM at a time. Given the t-th
training sample, xt ∈ Rd, associated with a label, yt ∈ Y = {y1, . . . , ym}, the
sample is classified with the present weight vector, µyi

t , as ŷt = argmaxyµ
y
t · xt.

Here, bias b is included in µt as µ
⊤
t ← [µ⊤

t , b] by redefining x⊤
t ← [x⊤

t , 1]. The
classifiers suffer from a loss when they misclassify a datum and get updated as
µt+1 = µt+τtxt, where τt determines the step size. Learning can be performed by
holding one datum. Therefore, online learning methods are appropriate for large-
scale problems. Additionally, state-of-the-art methods outperform batch learning
methods such as Support Vector Machine (SVM), as reported in [69, 70].

Despite progress in online learning methods, few evaluations of these methods
have been reported for large-scale visual recognition. Almost all approaches to
obtain linear classifiers have been online versions of SVM [58, 71, 72] with a one-
versus-the-rest (OVR) manner. Furthermore, the original SVM is not a multiclass
classifier. With OVR, we divide training samples into a positive class or a negative
class for each label. Then we train binary SVM for each label. When we use OVR,
however, the quantities of samples in the two classes (positive and negative) are
imbalanced. Moreover, learning with OVR takes more CPU time because OVR
might update many more weights than MUL in each step.

The newest learning method seems to perform best for large-scale visual recog-
nition. Nevertheless, this inference is not valid because most online learning
methods are evaluated using synthetic datasets and natural language datasets
such as document classification. In NLP, feature vectors are based on the Bag-
of-Words (BoW) model, in which each dimension in the feature vector for each
datum represents the presence of a certain word in the datum. In such cases,
feature vectors tend to be sparse. Consequently, many researchers devote atten-
tion to adaptive learning when the occurrence ratio of each dimension of feature
vectors differs. In visual recognition problems, however, feature vectors tend to
be much denser than those of NLP problems, as described later. Therefore, we
must evaluate state-of-the-art algorithms in large-scale visual recognition.

As described in this chapter, to give guidelines to choose learning methods
for large-scale visual recognition, we investigate state-of-the-art online learning
methods over various mid-level features using large-scale datasets.

The remainder of this chapter is organized as follows: Section 3.2 introduces
related works for large-scale visual recognition. In Section 3.3, we overview state-
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of-the-art algorithms from various perspectives. Qualitative and quantitative
discussions are given, respectively, in Section 3.4 and Section 3.5. From these
discussions, three guidelines in Figure 3.10 are obtained.

3.2 Related Works for Large-scale Classification

To achieve generic object recognition, large datasets are required because nu-
merous objects with various appearances must be assessed. For example, with
ImageNet [18], there are 14 million images for the 20,000 words in WordNet [19].
Therefore, scalability of the data amount is necessary.

For scalability, combinations of high-dimensional features and linear classifiers
have been widely studied [66, 67]. Mid-level features have been improved from
traditional Bag-of-Visual-Words (BoVW) models [21]. Although a BoVW vec-
tor for each descriptor has only one non-zero element, recent mid-level features
extract richer information: second-moment [28], first-moment [26, 73], and zero-
moment [24, 74, 75] with respect to between descriptors and code words. Those
features have been compared with common datasets. Some studies [25, 68] have
compared the conventional features in a unified evaluation setting.

Perceptron [63] has started the development of online learning algorithms for
linear classification. As described in Section 3.3, these algorithms are divisible
into two groups: first-order methods and second-order methods. Perceptron and
gradient-based online SVMs [58, 71, 72, 76] are first-order methods. Other first-
order methods [59, 77] can adjust the step size automatically. Recently, second-
order algorithms [60, 61, 62, 69, 70, 78, 79, 80] have been studied thoroughly
for adaptive updates for each dimension using second-order information. They
outperform batch SVM.

Although many proposals of mid-level features and their evaluations [25, 68]
exist, few works describe investigations of learning methods for linear classifiers.
In papers proposing the algorithms, the use of synthetic data and commonly
used ML/NLP datasets is typically described. Few reports have described their
evaluation. In [81], only first-order algorithms and the averaging technique are
evaluated. In [82], linear SVMs (including OVR and multiclass) have been investi-
gated for large-scale problems. In [83], a link between Perceptron and SGD-SVM
is discussed, but no quantitative comparison is included. Furthermore, evalua-
tions of these algorithms for visual recognition are rare. In [66, 84], some versions
of SGD-SVM are evaluated with ImageNet [18]. [84] also proposed a reweighting
OVR.
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3.3 Online Learning Algorithms

In this section, we introduce state-of-the-art online learning methods [58, 59,
60, 61, 62, 63] for linear classification. All update rules of the methods are
summarized in Table 3.1.

Fundamentally, each method has been proposed as learning for binary clas-
sification. Two commonly used techniques apply binary classifiers themselves to
multiclass problems. One is the one-versus-the-rest (OVR) technique described
in Section 3.1. The other is the one-versus-one (OVO) technique. With the OVO,
we train mC2 classifiers for all pairs of labels. We use the OVR because OVO
requires numerous classifiers for labels of many kinds.

An overview of binary learning is shown in Figure 3.1. In an online learning
scheme, t-th sample, xt, is classified with the t-th weights, µt, by checking the
sign of the inner product, xt · µt. Samples are permuted randomly for stable
learning because arranging samples in label order makes conversion slow. We can
verify the prediction by checking whether the margin, γt = yt(xt · µt), is greater
than zero or not because of the ground truth, yt = ±1. However, we seek to
enlarge the margin γt for stable classification. Therefore, we verify that γt > E,
where E ≥ 0.

We update µ using a step size αt as µt+1 = µt + αtytxt in first-order algo-
rithms. Recent second-order algorithms use Σt ∈ Rd×d as confidence information
for the dimensions where non-zero values frequently appear not to be updated
widely. We must learn d× d elements for each label if Σt is a full matrix. There-
fore, diagonal matrices are commonly used. In Figure 3.1 and Figure 3.2, diag(xt)
is a diagonal matrix having elements of xt as diagonal elements.

An overview of multiclass (MUL) learning is portrayed in Figure 3.2. Given
the sample, xt, and its label, yt, which now represents the label number, we
treat a violating label, y′t = argmaxy∈Y\yt µ

y
t · xt. Then we redefine the margin,

γt = µyt
t · xt − µ

y′t
t · xt, and check if γt > E.

For multiclass learning, we must learn µs and Σs comprehensively. However,
algorithms proposed for binary classification only handle a pair of one µ and
one Σ. Therefore, in accordance with [59], we combine all µy

t ∈ Rd and Σy
t ∈

Rd×d into one vector, M t ∈ Rdm, and one block-diagonal-matrix, St ∈ Rdm×dm,
respectively. Additionally, we replace xt with X t(yt) ∈ Rdm. X t(yt) and M t

consist of m sub-vectors, and St consists of m×m sub-matrices. The yt-th sub-
vector of X t(yt) is xt. The others are zero vectors. The yt-th vector of M t

and the yt-th main diagonal matrix of St are defined respectively as µyt
t and

Σyt
t . Learning can then be performed with these: X(y), M , and S, using each

algorithm. We can obtain the update rules for multiclass classifications through
the following replacement schemes in Table 3.1:
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Initialize µ0 = 0 and Σ0 = I
while classifiers are not converged do

for t = 1, 2, . . . , N do
Receive sample xt ∈ Rd.
Predict ŷt = sign(µt · xt).
Get true label yt and margin γt = yt(µt · xt).
if γt < E

Set µt+1 = µt + αtytΣtxt.
Set Σ−1

t+1 = Σ−1
t + βtdiag(xt)

2.
end if

end for
end while

Figure 3.1: Overview of learning binary classifiers.

• γt = yt(µt · xt) with γt = µyt
t · xt − µ

y′t
t · xt.

• vt = x⊤
t Σtxt with vt = x⊤

t (Σ
yt
t + Σ

y′t
t )xt.

• l(xt)
2 = ∥xt∥2 with l(xt)

2 = 2∥xt∥2.

Whether a classifier is for binary or for multiclass, the label for a sample xt

is predicted as ŷt = argmax
y

µy
t · xt.

3.3.1 Perceptron

Perceptron, which was proposed in [63] more than half a century ago, is a tradi-
tional algorithm for use as a linear classifier. Margin γt is simply expected to be
more than zero. Although the step size is also defined simply as one in [63], we
tune the fixed step size αt = C for better accuracy.

3.3.2 Stochastic Gradient Descent SVM

The objective function of the original SVM, which is batch learning, is:

µ = argmin
µ

1

2
∥µ∥2 +

N∑
n=1

αn max{0, 1− γn}, (3.1)

where N is the number of all training samples. This batch version of SVM
can be converted to online learning methods by introducing stochastic gradient
descent (SGD) [58, 71] or sub-gradient descent [72]. Pegasos [72] used a sub-
gradient of the object function with a subset of training samples. When the size
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Initialize µ0 = 0 and Σ0 = I
while classifiers are not converged do

for t = 1, 2, . . . , N do
Receive sample xt ∈ Rd.
Predict ŷt = argmaxy∈Y(µ

y
t · xt).

Get ...
true label yt,
violating label y′t = argmaxy ̸=yt(µ

y
t · xt),

and their margin γt = µyt
t · xt − µ

y′t
t · xt.

if γt < E
Set µyt

t+1 = µyt
t + αtΣ

yt
t xt.

Set µ
y′t
t+1 = µ

y′t
t − αtΣ

y′t
t xt.

Set (Σyt
t+1)

−1 = (Σyt
t )

−1 + βtdiag(xt)
2.

Set (Σ
y′t
t+1)

−1 = (Σ
y′t
t )

−1 + βtdiag(xt)
2.

end if
end for

end while

Figure 3.2: Overview of learning multiclass classifiers.

of this subset becomes one, the algorithm closely simulates the stochastic gradient
descent (SGD-SVM) [58, 71] as:

µt+1 = µt − αt∇(λ∥µ∥2 +max{0, 1− γt}), (3.2)

where λ is a hyperparameter that must be tuned manually. As described in [58],
there is also a second-order version of SGD using an approximation of the Hessian
for the objective function. In this chapter, first-order SGD is used because the
first-order version is commonly used for visual recognition [66, 84].

The most important problem is to design step size αt. A usual technique
[58, 71] states that αt = 1/λ(t + t0) with another hyperparameter t0. The other
[83, 84] is to define that αt = C where 1≫ C > 0.

Another problem is related to regularization. We should tune the parameter
λ. One empirical definition is λ = 1/N where N is the data amount. Using a
naive implementation, we must regularize all classifiers whether 1−γt > 0 or not.
One well known approach is to divide µt into ltrt, where lt is the L2 norm of µt

and rt is normalized vector of µt. Consequently, regularization can be performed
by multiplying lt by (1− αtλ). However, [83] obviates regularization by defining
λ = 0. Instead, the authors use early stopping, which is stopping training using
a validation dataset. This version of SGD-SVM is the same as a variation of
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Perceptron called Margin Perceptron [85]. Indeed, [84] uses fixed step size αt = C
and discards regularization for large-scale datasets. Experimental results in [84]
show that SGD-SVM without regularization (Margin Perceptron) achieves similar
or superior performance to that of SGD-SVM with L2 regularization.

3.3.3 Passive–Aggressive

The largest benefit of Passive–Aggressive (PA) [59] is that the update coefficient
is calculated analytically according to the loss. Here, we sought to decrease the
hinge loss, 1− γt and not to change the weight radically:

µt+1 = argmin
µ

1

2
∥µ− µt∥2 s.t. 1− γt = 0. (3.3)

The equation presented above is the objective function of PA. Objective functions
of all other algorithms explained later are also defined as a form of each update.

This problem is solvable analytically with ease. An important shortcoming is
that µt+1 always classifies xt as yt, whether yt is correct or not. It is impossible to
design large datasets that include no label noise. In [59], therefore, aggressiveness
parameter C is introduced to soften the condition:

µt+1 = argmin
µ

1

2
∥µ− µt∥2 + C(1− γt). (3.4)

This version is called PA-I [59]. Another version, PA-II, uses the squared hinge
loss, C(1 − γt)

2, in the second term. According to [59], the accuracies of PA-I
and PA-II are mutually close. For these analyses, we used PA-I as PA.

3.3.4 Confidence-Weighted

The main difference between Confidence-Weighted (CW) [70] and PA is that CW
has the confidence weight Σ, a diagonal d× d matrix. If a classifier learns about
a certain dimension of feature vectors many times, then the classifier must be
more confident about that dimension. In other words, the classifier is expected
to update less confident dimensions larger. Such an adaptive update makes con-
vergence faster than the first-order algorithms.

Therefore, CW considers weights as a normal distribution, N(µ,Σ). We ex-
pect that the (t+1)-th weight from N(µt+1,Σt+1) can classify xt correctly with a
fixed probability, η. This condition is expressed as γt ≥ ϕ

√
vt, where vt = x⊤

t Σtxt,
and ϕ = Φ−1(η). Φ is the cumulative function of the normal distribution.

To preserve the current classifiers, Kullback–Leibler divergence is used instead
of the squared L2 norm, ∥µ− µt∥2, in PA. Consequently, the objective function
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is the following:

(µt+1,Σt+1) = argmin
µ,Σ

DKL (N(µ,Σ)∥N(µt,Σt)) ,

s.t. ϕ
√
vt − γt = 0. (3.5)

In [70], the solution was approximated, whereas exact updates for binary and
multiclass classifications were proposed, respectively, in [60] and [69].

3.3.5 Adaptive Regularization of Weight

The salient shortcoming of CW is its poor adaptability to label noise. Therefore,
Adaptive Regularization of Weight (AROW) [61] introduces the squared hinge
loss as:

(µt+1,Σt+1)= argmin
µ,Σ

DKL (N(µ,Σ)∥N(µt,Σt))

+C(1− γt)2 + Cx⊤
t Σxt, (3.6)

where C is a constant parameter to be tuned.1 The third term aims to converge
classifiers faster. To improve the mistake bounds, New AROW (NAROW) [80]
tunes C automatically at each step.

3.3.6 Gaussian Herding

Gaussian Herding (NHERD) [62] is a modified version of PA for second-order
algorithms. As is true also for CW and AROW, weights in HERD are expressed
with normal distributions, N(µ,Σ). Additionally, the t-th update is defined as
a linear transformation of the distributions with matrices At. As a result, we
obtained the objective function as shown below.

(µt+1, At)= argmin
µ,A

1

2
(µ− µt)

⊤Σ−1
t (µ− µt)

+
1

2
Tr
(
(A− I)⊤Σ−1

t (A− I)Σt

)
+C(1− γt)2 +

C

2
x⊤
t AΣtA

⊤xt. (3.7)

1In [61], C is expressed as 1
2r , where r is also a parameter to be tuned. Here, we use C for

unified description.
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3.3.7 Soft Confidence-Weighted

Soft Confidence-Weighted (SCW) [86] solves the problem of CWs poor adapt-
ability to label noise by softening the condition according to the manipulation in
PA [59]:

(µt+1,Σt+1)= argmin
µ,Σ

DKL (N(µ,Σ)∥N(µt,Σt))

+C

(
ϕ
√

x⊤
t Σtxt −mt

)
. (3.8)

The difference between Equation 3.5 and Equation 3.8 is the same as the difference
between Equation 3.3 and Equation 3.4; the condition is added to the equation
with aggressiveness parameter C. Therefore, there are two versions of SCW:
SCW-I and SCW-II. For this study, we used SCW-I as SCW.

As described in Section 3.3, diagonal matrices are commonly used to update
Σ. As summarized in [62], several methods exist to approximate Σ as a diagonal
matrix. Herein, we employ project version, in which the approximation is per-
formed by comparing only the diagonal elements in the update equation using
the inverse of full matrix Σ. By comparing the diagonal elements in the update
equation using the not-inversed matrix Σ, drop version can also be derived. Al-
though the project version is reported to be slightly better than the others for
CW, AROW and NHERD [62], SCW is originally proposed in the drop form only.
For efficient comparison of the update rule, we derive the project version of SCW
and introduce it in Table 3.1. In our experiments, we compared both the drop
version and project version, which revealed no significant difference among them.
Therefore, we show the results of drop version according to the original report
[86]. The drop form of update for Σ is:

Σyt
t+1 = Σyt

t − β′
tΣtxtx

⊤
t Σ

⊤
t , (3.9)

Σ
y′t
t+1 = Σ

y′t
t − β′

tΣtxtx
⊤
t Σ

⊤
t , (3.10)

where β′
t = αtϕ/(

√
ut + vtαtϕ), and ut = (−αtvtϕ +

√
α2
t v

2
t ϕ

2 + 4vt)
2/4. Other

variables, vt, ϕ, and αt, are already defined in Table 3.1.
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3.4 Common Qualitative Issues

Update rules of all learning methods are presented in Table 3.1. Again, it is
noteworthy that objective functions of PA, CW, AROW, NHERD, and SCW are
already shown in their subsections. These algorithms are designed using a form
of each update, whereas batch SVM is designed using a total loss. In this section,
we investigate two common issues.

3.4.1 OVR vs. MUL

Two common choices of OVR are e-OVR, for which the number of negative
samples is the same as the number of positive samples, and u-OVR, for which
all samples in other classes are selected as negative samples. In [84], reweighting
samples for OVR (w-OVR) is proposed. In each iteration,1 the number of negative
samples is limited with respect to the number of positive samples.

[84] experimentally compared MUL and OVR using SGD-SVM. As a result,
MUL outperformed e-OVR and u-OVR and w-OVR outperformed multiclass
SGD-SVM. Authentically, OVR is easily parallelized because a classifier for each
label can be learned independently. However, MUL can also be parallelized easily
as described in [87]. In general, more accurate classifiers with less CPU time for
learning are preferred. Herein, we compare these OVRs and MUL using state-of-
the-art online learning methods.

3.4.2 Averaging

With most algorithms, training samples that are learned later strongly influ-
ence the classifiers. In [88], the weighted sum of µ1...T is proposed for testing.
Particularly, averaging them as µ̄ = 1

T
(µ1 + µ2 + · · ·+ µT ) greatly facilitates

conversion. The authors of [88] insist that averaging is an approximation of a
second-order algorithm. Indeed, averaged (first-order) SGD is proved to be an
approximation of Newton-like second-order SGD.

In [66], averaging SGD SVM outperforms SGD SVM for visual recognition.
However, averaging weights using other state-of-the-art online learning methods
are rarely evaluated for visual recognition.

When averaging the classifiers, summing all m weights in each step is time
consuming. Therefore, only the summations of updates ∆ are memorized.

∆t+1(µ
yt) = ∆t(µ

yt) + tαtytΣ
yt
t xt, (binary){

∆t+1(µ
yt) = ∆t(µ

yt) + tαtΣ
yt
t xt,

∆t+1(µ
y′t) = ∆t(µ

y′t)− tαtΣ
y′t
t xt.

(multiclass)
(3.11)

1Here iteration means learning through all T samples.
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Then µ̄ = µT − 1
T
∆T (µ). Using this approach, we can avoid summing all weights

in each step. Weights are averaged only in the last iteration.

3.5 Experiments on ImageNet

In this section, we present both full results and their highlights. For general
evaluation, various subsets of ImageNet[18] are used: (1) the dataset of ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2010 and (2) the subset of
ILSVRC 2012 dataset1. Both ILSVRC 2010 and 2012 datasets include 1.2 million
training images, 50,000 validation images, and 150,000 testing images for different
sets of 1000 classes.

Parameters of online learning methods are tuned using each group of val-
idation data as follows: Cs in Perceptron, SGD-SVM, PA, CW, AROW, and
NHERD are determined by selecting the best one from {2−4, 2−2, 20, 22, 24}, ηs in
CW is determined by selecting from {0.5, 0.6, . . . , 0.9}. C and η in SCW are de-
termined as explained above. Fundamentally, the numbers of iterations are tuned
up to 10 for the best accuracy. All evaluations are repeated five times. Herein,
we present the results obtained using the mean and the standard deviation.

3.5.1 ILSVRC 2010 Dataset

We use the whole ILSVRC 2010 dataset. To train the classifiers, 1.2M training
samples are used after the parameter tuning using 50,000 validation samples.
Accuracies are evaluated using 150,000 test samples.

For this dataset, SIFT [89] descriptor and Fisher Vector (FV) [28] are used.
We extract each descriptor from a regular grid with step size 6 pixels at multiple
patch sizes: 16 × 16, 25 × 25, 36 × 36, 49 × 49, and 64 × 64. As a result, tens
of thousands of descriptors are extracted for each image. For FV, according to
[84], we reduce the dimensions of SIFT to 64 using PCA, and obtain a Gaussian
Mixture Model (GMM) with 16 components.

3.5.2 ILSVRC 2012 Dataset

ILSVRC 2012 also has test samples, but the ground truth is not provided. There-
fore, also for efficiency, we extract a subset. For each class, 100 images are ex-
tracted from training data. 5000 validation samples are used for validation. The
rest are used for testing.

1http://www.image-net.org/download
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We use four local descriptors: SIFT [89], Local Binary Pattern (LBP) [90],
GIST [91], and CSIFT [92], and three mid-level features: BoVW, Locality-
constrained Linear Coding (LLC) [74], and FV [28]. The size of patch and the
grid width are the same as SIFT from ILSVRC 2010. Our main contribution is
to compare online learning algorithms. Comparison with these mid-level features
are done in [68], although we also contribute sowmewhat by comparing them
using various local descriptors.

LBP [90] is extracted from 2×2 cells in each patch. From each cell, a histogram
of 256 bins of local patterns is extracted. Combinations of LBP and gradient
based descriptor, such as SIFT, are shown to be effective for large-scale visual
recognition [66]. GIST [91] is extracted from 4 × 4 cells in each patch. From
each cell, responses from 20 Gabor filters are extracted on R, G, and B channels.
Usually, GIST is used for a global feature. This report is the first describing the
use of GIST as a local descriptor for mid-level features. CSIFT, one variation of
color SIFTs, is a 384-dimensional descriptor that has been shown to perform best
for visual recognition in [92].

Each mid-level feature is generated from each descriptor. For FV, we reduce
the dimensions of descriptors to 64 using PCA, and obtain a GMM with 256
components. For BoVW and LLC, we learn 2048 codewords using k-means.
BoVW and LLC are calculated respectively over 1 × 1, 2 × 2, and 3 × 1 cells
according to Spatial Pyramid Matching [11]. Additionally, we reduce the memory
usage with Product Quantization [73] according to [67]. We divide mid-level
features into each of eight dimension vectors, and generate 256 clusters using
k-means. All FVs of training samples are quantized and approximated with the
centroids of each cluster when learning.

3.5.3 Result 1: Accuracies of not Averaged Classifiers

To compare all algorithms explained in Section 3.3, we first use ILSVRC 2010
dataset. In Figure 3.3 the accuracies of all algorithms without averaging are
shown1. We also evaluate the algorithms using 100k samples extracted in the
same way as the ILSVRC 2012 subset. As shown in Figure 3.3, we found the
same trend both in the 1.2M images and in the 100k images: The second-order
algorithms (right four algorithms in Figure 3.3) tend to outperform first-order
algorithms.

To increase the reliability of our evaluations, we assess all algorithms using
the ILSVRC 2012 subset. Moreover, we investigate 12 combinations of local
descriptors and mid-level features including SIFT+FV. Figure 3.4 represents the

1In [84], the accuracy of SIFT+FV with the same parameter is around 25%. The accuracies
in Figure 3.3 are slightly different, probably because of the difference of SIFT extraction and
GMM training.
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Figure 3.3: Comparison using ILSVRC 2010 1.2M dataset with SIFT+FV. White
bars show performance using a 100k subset of ILSVRC 2010.
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Figure 3.4: Comparison using ILSVRC 2012 subset. Each bar represents the
mean accuracy among mid-level features from four descriptors. For example, the
accuracy using FVs is the mean of the accuracies using SIFT+FV, LBP+FV,
GIST+FV and CSIFT+FV.

accuracies of all algorithms for each mid-level feature. All accuracies for each
combination of a local descriptor and a mid-level feature is reported in Table 3.3.
In Figure 3.4, to compare the algorithms easily, we average four accuracies from
the same mid-level features generated from four descriptors. Again, we can find
the superiority of the second-order algorithms. Particularly CW performs best
on nine combinations among all 12 combinations of descriptors and mid-level
features. AROW and SCW perform best on the three remaining combinations.

3.5.4 Result 2: Averaging Does Boost All

When we compare all algorithms without averaging, the second-order algorithms
simply seem to outperform the first-order algorithms. However, Figure 3.5 shows
that averaging dramatically eliminates the difference of accuracies. The accu-
racies of second-order algorithms are also boosted, as shown numerically in Ta-
ble 3.2.

For a comparison of several datasets, we again evaluate the algorithms with
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one shows the accuracy without averaging for easy reference.
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Figure 3.6: Comparison using ILSVRC 2012 subset. Each bar represents the
mean accuracy among mid-level features from four descriptors.

averaging on the ILSVRC 2012 subset. To compare the algorithms easily, Fig-
ure 3.6 shows the accuracies of all algorithms with averaging for each mid-level
feature. All results are shown in Table 3.4. These results show four facts that are
little noted in the literature, although averaging itself is a well-known technique.
First, second-order algorithms are also boosted for all combinations. Secondly,
when averaging is used, SCW performs best instead of CW with many combi-
nations of mid-level features and descriptors. Thirdly, however, the differences
among all algorithms are narrowed again. Consequently, first-order algorithms
such as Perceptron, SGD-SVM, and PA achieve comparable performance using
several combinations including the result obtained using ILSVRC 2010 dataset.
Here, the first guideline is concluded: Perceptron can compete against the latest
algorithms, but only when averaging is used.

The next question is whether the averaging just hastens the convergence.
Online learning algorithms are evaluated in 10 iterations. Therefore, we also stop
learning earlier than in the tenth iteration in almost all experiments. To do justice
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Figure 3.7: Comparison about averaging.

to this inquiry, we continue learning until the 50th iteration on the ILSVRC 2010
dataset.

Figure 3.7 depicts the convergence of SGD-SVM and SCW. The accuracies
are evaluated not using training data but using test data. After some iterations,
both averaged and not-averaged classifiers seem to reduce their performance on
test data, which is true mainly because of an overfit to the training data. Further-
more, the best accuracy of the averaged classifier is better than the not-averaged
classifiers, even with many iterations. Averaging not only accelerates the opti-
mization but also improves the generalization accuracy. Therefore, we propose
the second guideline: averaging is necessary for any algorithm.

31



T
ab

le
3.
2:

A
cc
u
ra
cy
(%

)
co
m
p
ar
is
on

of
IL
S
V
R
C
20
10

u
si
n
g
S
IF
T
+
F
V
.

P
er
ce
p
tr
on

S
G
D
-S
V
M

P
A

C
W

A
R
O
W

N
H
E
R
D

S
C
W

w
/o

av
er
ag
in
g
13
.7
1
±

0.
06

17
.4
9
±

0.
34

18
.1
6
±

0.
17

18
.4
4
±

0.
07

19
.8
6
±

0.
03

20
.0
5
±

0.
12

21
.9
0
±

0.
05

w
/
av
er
ag
in
g

23
.8
9
±

0.
03

24
.9
2
±

0.
01

24
.4
4
±

0.
02

22
.6
9
±

0.
05

23
.3
7
±

0.
03

23
.1
2
±

0.
02

23
.0
9
±

0.
04

T
ab

le
3.
3:

A
cc
u
ra
cy

(%
)
co
m
p
ar
is
on

on
IL
S
V
R
C

20
12

w
it
ho
u
t
av
er
ag
in
g .

T
h
e
b
es
t
ac
cu
ra
cy

is
h
ig
h
li
gh

te
d
fo
r
ea
ch

m
id
-l
ev
el

fe
at
u
re
.

F
ea
tu
re
s

P
er
ce
p
tr
on

S
G
D
-S
V
M

P
A

C
W

A
R
O
W

N
H
E
R
D

S
C
W

F
V

S
IF
T

17
.3
0
±

0.
34

17
.0
5
±

0.
44

18
.7
2
±

0.
19

2
0
.2
2
±

0
.1
0

20
.1
0
±

0.
16

19
.6
7
±

0.
20

20
.1
4
±

0.
23

L
B
P

12
.6
1
±

0.
25

12
.6
0
±

0.
05

13
.4
4
±

0.
37

14
.6
5
±

0.
17

15
.9
8
±

0.
15

15
.5
2
±

0.
22

1
6
.1
2
±

0
.1
1

G
IS
T

16
.0
8
±

0.
26

15
.7
0
±

0.
35

17
.2
2
±

0.
20

18
.3
9
±

0.
15

1
8
.5
6
±

0
.2
4

18
.4
6
±

0.
21

18
.4
5
±

0.
23

C
S
IF
T

15
.3
0
±

0.
21

15
.0
4
±

0.
51

16
.7
5
±

0.
30

18
.2
4
±

0.
21

1
8
.2
8
±

0
.2
2

18
.0
2
±

0.
18

18
.0
1
±

0.
19

L
L
C

S
IF
T

9.
30
±

0.
79

9.
01
±

0.
60

8.
63
±

0.
67

1
2
.8
1
±

0
.1
9

11
.8
4
±

0.
56

12
.0
6
±

0.
22

12
.1
2
±

0.
27

L
B
P

6.
52
±

0.
63

6.
37
±

0.
36

6.
07
±

0.
39

8
.9
8
±

0
.5
0

8.
61
±

0.
30

8.
43
±

0.
19

8.
41
±

0.
49

G
IS
T

10
.1
8
±

0.
64

9.
74
±

0.
36

9.
96
±

0.
30

1
3
.1
3
±

0
.2
1

12
.4
1
±

0.
22

12
.4
8
±

0.
51

12
.7
8
±

0.
24

C
S
IF
T

6.
18
±

1.
05

6.
02
±

0.
20

6.
08
±

0.
49

9
.3
5
±

0
.3
4

9.
03
±

0.
18

8.
77
±

0.
28

8.
78
±

0.
56

B
oV

W

S
IF
T

8.
04
±

0.
28

7.
89
±

0.
17

7.
56
±

0.
19

1
0
.7
8
±

0
.1
7

10
.2
7
±

0.
14

10
.2
0
±

0.
17

10
.5
0
±

0.
15

L
B
P

4.
75
±

0.
21

4.
70
±

0.
29

4.
48
±

0.
16

6
.5
6
±

0
.1
2

6.
14
±

0.
23

6.
01
±

0.
14

6.
48
±

0.
14

G
IS
T

4.
48
±

0.
12

4.
32
±

0.
22

4.
17
±

0.
19

6
.7
6
±

0
.1
4

6.
22
±

0.
17

5.
98
±

0.
08

6.
28
±

0.
06

C
S
IF
T

8.
89
±

0.
29

8.
87
±

0.
34

8.
52
±

0.
10

1
0
.9
3
±

0
.1
3

10
.8
7
±

0.
17

10
.7
2
±

0.
24

10
.9
2
±

0.
11

32



T
ab

le
3.
4:

A
cc
u
ra
cy

(%
)
co
m
p
ar
is
on

on
IL
S
V
R
C

20
12

w
it
h
av
er
ag
in
g.

T
h
e
b
es
t
ac
cu
ra
cy

fo
r
ea
ch

m
id
-l
ev
el

fe
at
u
re

is
h
ig
h
li
gh

te
d
.

F
ea
tu
re
s

P
er
ce
p
tr
on

S
G
D
-S
V
M

P
A

C
W

A
R
O
W

N
H
E
R
D

S
C
W

F
V

S
IF
T

19
.8
3
±

0.
22

20
.4
3
±

0.
14

20
.2
4
±

0.
19

20
.2
1
±

0.
09

20
.4
2
±

0.
07

20
.1
3
±

0.
28

2
0
.5
2
±

0
.1
0

L
B
P

14
.9
7
±

0.
27

15
.4
1
±

0.
09

15
.3
7
±

0.
29

15
.1
1
±

0.
09

16
.1
9
±

0.
13

15
.7
7
±

0.
14

1
6
.4
3
±

0
.0
6

G
IS
T

18
.1
5
±

0.
12

18
.6
5
±

0.
08

18
.6
0
±

0.
07

18
.4
7
±

0.
13

18
.6
8
±

0.
14

18
.5
2
±

0.
13

1
8
.7
0
±

0
.1
7

C
S
IF
T

18
.2
4
±

0.
15

18
.3
4
±

0.
31

18
.2
8
±

0.
25

18
.3
9
±

0.
21

18
.4
4
±

0.
12

18
.3
9
±

0.
04

1
8
.4
5
±

0
.0
8

L
L
C

S
IF
T

16
.2
8
±

0.
16

16
.4
5
±

0.
26

16
.8
5
±

0.
34

17
.1
8
±

0.
18

17
.3
4
±

0.
29

17
.3
2
±

0.
21

1
7
.3
5
±

0
.1
8

L
B
P

12
.0
6
±

0.
21

12
.3
2
±

0.
12

1
2
.3
6
±

0
.2
1

12
.0
0
±

0.
16

12
.3
4
±

0.
22

12
.3
0
±

0.
11

1
2
.3
6
±

0
.1
6

G
IS
T

15
.1
0
±

0.
13

1
5
.4
4
±

0
.2
8

15
.1
6
±

0.
20

14
.6
9
±

0.
11

14
.9
1
±

0.
28

15
.0
8
±

0.
14

15
.2
6
±

0.
05

C
S
IF
T

12
.8
8
±

0.
26

12
.7
0
±

0.
27

13
.7
8
±

0.
11

14
.5
0
±

0.
22

1
4
.5
0
±

0
.1
6

14
.4
9
±

0.
12

14
.4
5
±

0.
18

B
oV

W

S
IF
T

10
.5
4
±

0.
19

10
.6
3
±

0.
14

10
.3
4
±

0.
27

11
.1
4
±

0.
12

10
.9
5
±

0.
13

11
.0
3
±

0.
19

1
1
.2
6
±

0
.1
1

L
B
P

6.
83
±

0.
26

6.
86
±

0.
08

6.
72
±

0.
26

6.
91
±

0.
16

6.
77
±

0.
07

6.
87
±

0.
12

6
.9
4
±

0
.1
7

G
IS
T

6.
34
±

0.
06

6.
36
±

0.
21

6.
16
±

0.
23

6
.9
6
±

0
.0
4

6.
81
±

0.
22

6.
69
±

0.
06

6.
78
±

0.
18

C
S
IF
T

11
.9
1
±

0.
18

1
2
.0
6
±

0
.1
6

11
.6
5
±

0.
12

11
.5
7
±

0.
16

11
.7
7
±

0.
21

12
.0
0
±

0.
20

12
.0
2
±

0.
12

33



0 0.5e4 1e4 1.5e4
Elapsed time (s)

0

5

10

15

20

25

A
cc

ur
ac

y 
(%

)

Perceptron,
SGD-SVM, u-OVR
SCW, u-OVR

u-OVR
SGD-SVM, MUL
SCW,

Perceptron, MUL

MUL

Figure 3.8: Comparison of MUL and OVRs. Dashed lines and solid lines respec-
tively show u-OVR and MUL.

3.5.5 Result 3: MUL vs. OVRs

In Figure 3.9, the relation between elapsed time for learning and accuracy using
MUL and all OVRs on SIFT+FV of ILSVRC 2012 is shown. The numerical
comparison using their best scores is shown in Table 3.5 and Table 3.5.

Figure 3.8 shows the highlights of Figure 3.9 for Perceptron, SGD-SVM, and
SCW. First, Perceptron shortly begins to overfit with OVRs. Secondly, especially
for second-order algorithms, MUL can converge faster than OVR, mainly because
updating the weights becomes the rate-limiting step. Prediction with current
weights is rate-limiting for first-order algorithms. Therefore, we propose the third
guideline: investigate multiclass learning first.
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1. Perceptron can compete against the latest algorithms.

• Provided that the second guideline is observed.

2. Averaging is necessary for any algorithm.

• First-order algorithms without averaging cannot compete against
second-order algorithms.
• When averaging is used, the accuracies of all algorithms become
mutually very close.
• Averaging accelerates not only first-order algorithms but also
second-order algorithms.

3. Investigate multiclass learning first.

• Both one-versus-the-rest learning and multiclass learning achieve
similar accuracy.
• However, one-versus-the-rest takes much longer CPU time to con-
verge than multiclass does.

Figure 3.10: Three guidelines for online learning for large-scale visual recognition.

3.5.6 Summarized Guidelines

To realize generic object recognition, large amounts of data are required. Consid-
ering scalability, combinations of mid-level features and online learning for linear
classifiers are suitable for large-scale visual recognition.

As described in this chapter, we gave qualitative and quantitative comparisons
of these online learning algorithms. To date, no report has described a study in-
vestigating state-of-the-art algorithms for visual recognition or a study evaluating
those algorithms in unified experimental settings. When these algorithms were
proposed, toy data and the NLP dataset were used for evaluation. Comparison
using conventional settings for visual recognition must be conducted. Finally,
this chapter presents three guidelines based on results of image classification, as
described in Figure 3.10.
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Chapter 4

Multi-Keyphrase Problem and
Sentence Generation

As described in this paper, we attack a novel problem, the “multi-keyphrase prob-
lem”, to address this goal. We hypothesize that image contents can be described
with multi-keyphrases, and that a natural sentence can be generated by connect-
ing multi-keyphrases with an experimental grammar model. Existing methods
require semantic knowledge such as labels of objects, actions, and scenes. Using
these methods, we must strive to prepare a highly organized dataset. Therefore,
we propose a novel online learning method for multi-keyphrase estimation. The
proposed framework, although simple and scalable, can generate sentences from
images with no semantic knowledge. Moreover, the proposed method for multi-
keyphrase estimation is applicable to Image Annotation. It achieves state-of-the-
art performance. Our experiment using only images and texts demonstrates that
the proposed framework is useful for sentence generation from images.

4.1 Multi-Keyphrase Estimation as an Annota-

tion Problem

Almost all reported methods [2, 3, 4, 6, 6, 38, 40, 42, 43, 44, 54] rely on as-
sumptions of well-controlled semantic knowledge, objects, actions, scenes, and so
on. However, using these methods, it is necessary to manage the label set for
each attribute and to associate the labels to each image manually. Consequently,
the dataset tends to be small. Moreover, it tends to lack coverage to generate
sentences from various images.

In general terms, collecting a large amount of data from the web is a common
means to retrieve and process various images. What can be collected automati-
cally are images associated not with semantically clear labels but with surround-
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ing sentences and uncontrolled words. Indeed, [38] collects a million pairs of an
image and a sentential caption from the web for sentence generation from images.

As described in this paper, we present a novel problem, the Multi-keyphrase
Problem, for sentence generation from images. We seek to learn the relation
between keyphrases and images from pairs of an image and a sentence, and to
obtain a grammar model from all pairs. Consequently, a proposed framework
is extendable for sentence generation from large-scale images because a sentence
can be generated with no semantic knowledge such as an object, action, or scene.

Given an input image I, np keyphrases are estimated. We define the i-th
keyphrase Ki as:

Ki = {wKi
1 , . . . , wKi

nw
}, (i = 1, . . . , np), (4.1)

where w represents a word. As the first step for multi-keyphrase problem, we
regard different word sequences as independent labels. Consequently, as a sub-
problem, a multi-keyphrase problem comes down to Image Annotation.

In existing works related to Image Annotation, combinations of metric learn-
ing and non-parametric approaches are mainstream.

With non-parametric approaches, an input image is annotated with the labels
of images located near the input image according to a certain metric. Although
multi-keyphrase estimation using such an approach is conceivable, the complexity
for calculating the distances between the input image and all N training samples
is O(N). Therefore, the execution time increases with the number of training
samples.

Moreover, the state-of-the-art methods require the complexity to be within
O(N) − −O(N2) for metric learning. Therefore, scalability remains an open
question for non-parametric approaches.

To annotate images efficiently, lower time complexity and higher accuracy are
required. Therefore, learning one classifier for each keyphrase is apparently a
good approach. We need only match a feature of an input image to all classifiers.
Therefore, the time for keyphrase estimation is O(1) (independent of N). Al-
though some existing works propose such classifier-based methods [93, 94, 95, 96],
their accuracy is inferior to those of non-parametric approaches.

As described in this chapter, we interpret a classifier-based approach as in-
ferior to a non-parametric approach because the learning methods for classifiers
are unsuitable for multi-label problems. Existing works mostly use binary classi-
fication such as SVM with a one-vs.-the-rest manner. The classifier for a label is
obtained by regarding images associated with the label as positive samples and
the rest images as negative samples. Furthermore, labels are output according to
the scores from the binary classifiers. Nevertheless, no guarantee exists that the
output of SVMs for different classifiers will have appropriate scales.
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Therefore, we modify existing learning methods for a multi-keyphrase problem
in which each image is associated with more than one label. The proposed method
is formulated by improving online multiclass learning so that more than one label
for a training sample is useful efficiently. This method, which is applicable not
only to multi-keyphrase estimation but also to Image Annotation, achieves state-
of-the-art performance on some benchmark datasets.

The remainder of this chapter is organized as follows: Section 4.2 describes re-
lated works. Section 4.3 presents the proposed framework and a practical method
for estimating multi-keyphrase. Section 4.4 shows that our method obtains state-
of-the-art accuracy on the datasets for Image Annotation.

4.2 Related Methods for Annotation

This section introduces related works for Image Annotation, a subproblem of the
presented multi-keyphrase problem.

A non-parametric approach using training labels of neighbor samples for an-
notation, is undertaken in [29].

Recently, almost all existing works have adopted widely various image fea-
tures. Joint Equal Contribution (JEC) [30] uses color histograms and wavelets,
and computes the distances from an input image and all training samples with a
proper metric. For example, χ2 distance is ideal for histograms, and L1 distance
is ideal for the wavelets. All distances are normalized and are simply summed
up to search for neighbor samples. Although simple, [30] achieved state-of-the-
art performance in 2008 when the method was proposed. TagProp [31] uses 15
features such as Gist [91], Bag-of-Features representation of SIFT [89], and color
histograms. TagProp learns the proper weight of each distance to obtain the
best performance, whereas JEC simply adds those distances. Moreover, TagProp
learns the weight for each label in neighbor samples because minor labels that
are rarely associated with images are not often used for annotation. TagProp
applies the logistic discriminant model to learn the weight of labels. Therefore,
TagProp, proposed in 2009, is recorded as showing state-of-the-art performance
on several benchmark datasets up to 2012. In 2011, [97] 43 proposed features
from foreground and background were inferred according to saliency, and now
are used along with TagProp. In some cases, [97] yields slightly superior per-
formance to that of TagProp. In [46], Canonical Contextual Distance (CCD)
is proposed. With CCD, low-dimensional space is computed using probabilis-
tic canonical correlation analysis with image features and label features so that
correlations between image features and label features might be largest. Conse-
quently, distances between image features are improved by virtue of similarities
among labels; the CCD performance is comparable to that of TagProp [32].
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However, the more important problem with a non-parametric approach is
the computational cost. As described in Section 4.1, calculating all distances
between an input image and all training samples is necessary for annotation.
Therefore, the time used for annotation increases linearly with the data amount.
Regarding the computational cost for the learning metric, JEC is constant to the
data amount because it needs only feature extraction. TagProp and CCD require
all distances between training samples for metric learning. Although they make
efforts so that learning can be performed only with distances among all samples
and a part of all samples, the number of a part of all samples will increase when
the whole dataset increases. Consequently, they lack scalability as the training
time increases to become more than linear to the data amount.

To realize scalability, the usage of a linear classifier appears to be a promising
method. When each image has only a single label, the problem of estimating the
label is designated as Image Classification. In this area, as pipeline alternatives
to Bag-of-Features of SIFT and Kernel SVM, richer image representation than
Bag-or-Features and linear SVM is actively pursued [28, 74]. With these image
representations, feature extraction and learning for classification can be done
linearly to the data amount. Moreover, the time for label estimation is constant
to the data amount.

However, existing work using SVM for annotation is inferior to JEC proposed
in the same year.

Binary classification with SVM is inappropriate for multiclass settings such
as annotation. As described in Section 4.1, in the one-vs.-the-rest technique, all
samples are divided into positive or negative for each class. However, it renders
positive and negative samples as highly imbalanced, and no guarantee exists that
the output of SVMs for different classifiers will have appropriate scales.

Recent studies of large-scale Image Classification adopt online learning for
linear classification as described in Chapter 1. Indeed, Weston [64] proposes an
online learning method for Image Annotation. The authors devote their attention
to developing an algorithm that fits on a laptop. Although various approximations
are included, their method outperforms the approximated nearest neighbor and
binary PA.

As described in Chapter 1, we have three guidelines for large-scale Image
Classification:

In this chapter, therefore, we propose a novel learning method for training
samples with multiple labels by generalizing Passive–Aggressive (PA) [59] to
achieve state-of-the-art accuracy and scalability. The method is called Passive–
Aggressive with Averaged Pairwise Loss (PAAPL). Moreover, other online algo-
rithms of multi-classification Passive–Aggressive (PA) [59], and Normal distribu-
tion HERDing (NHERD) [62]–are investigated.
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4.3 Sentence Generation with Multi-keyphrase

Estimation

In this section, we first describe the means to extract the keyphrases to be learned.
Secondly we describe the methods used to estimate keyphrases. Finally, we ex-
plain the method used for spinning keyphrases into one sentence.

4.3.1 Multi-keyphrase Extraction

Learning with noisy keyphrases that are unrelated to images degrades the accu-
racy of multi-keyphrase estimation. Therefore, we investigate a filter to extract
keyphrases from each sentence of an image. We want to select phrases that are
(i) related to the image contents and that (ii) appear in many sentences. Conse-
quently, we investigate two filters.

Local TF-IDF filter. We regard the typicality of each phrase as a clue
to how the phrase relates to the image’s contents. For example, some phrases
such as “is a” and “this is” appear frequently though the phrases, but they are
apparently irrelevant to the contents. Conversely, “living room” and “black dog”
are expected to be typical phrases. Therefore, we regard phrases that appear
many times in the sentence (high Term Frequency) and which rarely appear in
other sentences (Inverse Document Frequency) as typical. Therefore, top-nk TF-
IDF [98] valued phrases are extracted.

Global DF filter. With local TF-IDF filter, overly rare phrases are unsuit-
able for classifier learning because small samples for a phrase might engender low
accuracy. Here we make much of the sample size for each keyphrase to learn it
stably. We extract phrases only according to bounds of nd, the number of samples
in which each phrase appears.

4.3.2 Methods of Multi-keyphrase Learning

Whichever filter we use, some noisy phrases exist in extracted keyphrases. To
learn the classifiers for each keyphrase from various images, requirements are
not only the compatibility of scalability for the data amount and accuracy for
keyphrase estimation, but also the tolerability of noise.

Given the t-th training sample xt ∈ Rd associated with a label set Yt, a
subset of Y = {1, . . . , ny}, it is classified with the present weight vector µyi

t

(i = 1, . . . , ny)
1 as:

ŷt = argmax
yi

µyi
t · xt. (4.2)

1Here, the bias b is included in µt as µ
⊤
t ← [µ⊤

t , b] by redefining x⊤
t ← [x⊤

t , 1]
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If necessary, multiple labels are estimated in score order.
Multi-labeling for one sample is applicable by defining ny > 1. Here, hinge-

loss ℓ is given as:

ℓ(µrt
t ,µ

st
t ; (xt, Yt))

=

{
0 µrt

t · xt − µst
t · xt ≥ 1

1− (µrt
t · xt − µst

t · xt) otherwise
, (4.3)

where rt = argmin
r∈Yt

µr
t · xt and st = argmax

s/∈Yt

µs
t · xt.

In this chapter, we use Passive–Aggressive (PA) and NHERD as baseline
methods. Although both are explained in Chapter 3, we describe the formulation
of PA because our proposed method is based on PA.

4.3.2.1 Passive–Aggressive

PA is an online learning method for binary and multiclass classification, regres-
sion, uniclass estimation, and structure estimation. The salient benefit of PA is
that the update coefficient is analytically calculated according to the loss. In
contrast, SGD based methods and traditional perceptron require design of the
coefficient.

Here we seek to decrease the hinge-loss of multi-classification and not to
change the weight radically. Consequently, we obtain the following formulation.

µrt
t+1,µ

st
t+1

= argmin
µrt ,µrt

||µrt − µrt
t ||2 + ||µst − µst

t ||2 + Cξ, (4.4)

s.t. ℓ(µrt ,µst ; (xt, Yt)) ≤ ξ and ξ ≥ 0. (4.5)

Therein, ξ denotes a slack variable representing the bound of the loss. C signifies
a parameter to reduce the negative influence of noisy labels. It can be derived
using Lagrange’s method of undetermined multipliers. Therefore we obtain:

µrt
t+1 = µrt

t + τt · xt, µ
st
t+1 = µst

t − τt · xt, (4.6)

τt = min{C, ℓ(µrt
t ,µ

st
t ; (xt, Yt))/(2||xt||2)}. (4.7)

This PA is called PA-I in [59]. NHERD has a generalized form of PA-II. PA
and SGD-SVM have a closed form. Indeed, PA for binary classification and SGD-
SVM without L2 regularization have the same update rule. Differences between
SGD-SVM and PA-I here are (1) binary or multi-class, (2) regularization form,
and (3) the number of parameter to be tuned. Consequently, not only SGD-SVM
but also PA can be regarded as online learning for SVM.
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4.3.2.2 Passive–Aggressive with Averaged Pairwise Loss

Both PA and NHERD are online learning methods for classification, but they
present no problem if a sample is associated with multiple labels. Indeed, the
Passive–Aggressive Model for Image Retrieval (PAMIR) [99] is proposed by ap-
plication of PA to image retrieval.

However, they treat only one relevant label and one irrelevant label. Appar-
ently, classifiers of some labels are not well updated. That convergence becomes
delayed.

Therefore, we propose a novel online learning algorithm for which multiple
labels are attached to one sample. As discussed in Section 4.2, general online
learning methods consist of two steps: classification of the t-th sample, and update
of the t-th classifiers. Given the d-dimensional weight vectors µ for all ny labels,
the complexity for classification of a sample is O(dny), whereas the complexity for
update of a classifier is O(d). If we update all classifiers with given labels Yt, then
its complexity becomes O(d|Yt|). In Image Annotation and especially sentence
generation, we can assume ny ≫ |Yt|. Therefore, because classification is the
rate-controlling step, total computation time remains much the same whether we
update one classifier or |Yt| classifiers. Figure 4.1 shows the conceptual difference
between hinge-loss and the loss used in the proposed method. Consequently,
the proposed PAAPL achieves efficiency by averaging all pairwise losses between
relevant and irrelevant labels.

1. Given a t-th image, define label set Ȳt of ny labels by selecting highly scored
and irrelevant labels.

2. Randomly select one relevant label rt from Yt and one irrelevant label st
from Ȳt.

3. Based on a hinge-loss between rt and st, 1 − (µrt
t · xt − µst

t · xt), update
classifiers according to PA.

Additionally, we investigate a way to reduce the complexity O(dny) for the
classification step. In [64], the approximation of a loss function by the random
selection of labels is an important step for online learning when using less powerful
computers. Although random selection might miss incorrectly classified labels at
a higher rate, it was verified experimentally that correct classifiers are obtainable
eventually. Therefore, we also adopted random selection.

1. Randomly select one relevant label rt from Yt.
2. Define irrelevant label st with random selection from Yt and compute the

hinge-loss 1−(µrt
t ·xt−µst

t ·xt). Continue selecting st until the loss becomes
positive.

3. If the hinge-loss becomes positive, update classifiers for rt and st according
to PA; otherwise proceed to the next training sample.
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Figure 4.1: Comparison of hinge-loss and averaged pairwise loss.

4.3.3 From Multi-keyphrases to a Sentence

Generated sentences for an input image It are expected to include many keyphrases
and must be grammatically correct. We can solve a sentence-generation problem
by minimizing the sum of costs: phrase cost ϕp(w1, . . . , wn), and length cost ϕl(l).
The optimization problem is:

{w1, . . . , wl} = argmin
w1,...,wl

ϕl(l) + λp
∑

ϕp(w1, . . . , wn), (4.8)

where λp is weight parameter for phrase cost. This problem can be regarded as
integer programming, but the length cost complicates this problem. Therefore,
we investigated the effects of relaxation using multi-stack beam search modified
in [1]. Beam searching saves some high rank candidate sentences in one stack.
The stacks are divided according to the length of the generated sentence. The
highest-ranked sentence wedged between two edge-of-sentences (EOS), which is a
special word representing the edge of a sentence, is chosen as the output. If there
are too few contents compared to the target length, keyphrases are expended
quickly, leading a large increase in grammar cost and ultimately shortening the
generated sentences. Consequently, short sentences are generated for images with
little content.

The remainder of this section presents a description of the details of the cost
terms/functions.

4.3.3.1 Phrase Cost

The phrase cost is calculated with two probability functions. Given a phrase
{w1, . . . , wn}, the phrase is evaluated with the keyphrase probability Pk(w1, . . . , wn|It)
if the phrase is an estimated keyphrase K for the input image It. Otherwise, the
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phrase is evaluated with grammar probability Pg(wng |w1, . . . , wng−1).

ϕp(w1, . . . , wn) ={
− logPk(w1, . . . , wn|It) {w1, . . . , wl} ∈ K

− logPg(wn|w1, . . . , wn−1) otherwise
. (4.9)

For grammar probability, we investigate a well-known N-gram model that uses
statistical frequency Pg(wn;w1, . . . , wn−1) to estimate a word wn after a word
sequence {w1, . . . , wn−1}. The N-gram model is a common method for natural
language processing (e.g., statistical machine translation).

Alternatively, the combination of two probabilities such as ϕp = − logPk −
λg logg Pg with a weight parameter λg is plausible. As described in this pa-
per, however, we simply encourage the maximal use of keyphrases by defining
Pk(w1, . . . , wn|It) = 1 to investigate the influence of keyphrase estimation on the
accuracy of generated sentences.

4.3.3.2 Length Cost

Using the phrase cost alone tends to generate sentences that are too short be-
cause the cost sum increases concomitantly with sentence length. Therefore, we
introduce the following length cost with the target length l0 = 10 + 2 EOS as:

ϕl(l) = − logPl(l), (4.10)

where Pl ∝ N(l0, σ0), and σ0 represents the strictness of length.

4.4 Evaluation of Multi-keyphrase Estimation

In this section, we evaluate the proposed method for multi-keyphrase estima-
tion. Particularly, we investigate performances of Image Annotation using three
benchmark datasets.

4.4.1 Experiment Setting

We use the following three de-facto standard datasets. As described in [31], Corel
5k is easy to learn. What must be done is comparison of the performance on more
than one dataset.

Corel 5k. Corel 5k [8] consists of about 4500 training samples and 500 test
samples. Each training sample is associated with 3.4 labels, on average, from 260
labels.
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ESP Game. ESP Game [13] has about 60,000 images that are manually
annotated through a game. Existing works for annotation [30, 31] select about
20,000 images. Each image is associated with 4.7 labels, on average, from 268
labels.

IAPR-TC12. IAPR-TC12 [14] is released for image retrieval between several
languages. Existing works for annotation [30, 31] select about 20,000 images.
Each training sample is associated with 5.7 labels, on average, from 291 labels.

As an image feature, we use Fisher Vector (FV) [28] from SIFT [89]. We
extracted SIFT descriptor from a regular grid with step size of 6 pixels at multiple
scales: 16 × 16, 25 × 25, 36 × 36, 49 × 49, and 64 × 64. Then we reduce the
dimensions to 64 using PCA, and obtain a Gaussian Mixture Model (GMM)
with 256 components. Then FV is calculated respectively over 1× 1, 2× 2, and
3× 1 cells.

As ESP Game and IAPR-TC12 has many data, we reduce the memory usage
with Product Quantization (PQ) according to [67]. We divide FV into each of
eight dimension vectors, and generate 256 clusters using k-means method. All
FVs of training samples are quantized with those clusters, and approximated with
the centroids of each cluster when learning with the training sample.

For a fair comparison of annotation method, we also use 15 features provided
in the paper of TagProp [31]. To combine different features, we independently
learn the classifiers for each feature at first, and estimate labels for test samples
with the sum of the scores from classifiers of each feature.

We evaluate the performance for annotation with the following three indica-
tors. Given a sample, we define the number a as correctly estimated labels, b as
correct labels, and c as estimated labels.

Precision (P). The ratio of correctly estimated labels to estimated labels,
i.e., P = a/c.

Recall (R). The ratio of correctly estimated labels to correct labels i.e.,
R = b/c.

F-measure (F). Because a tradeoff exists between Precision and Recall, we
use the harmonic average:

F =
2× P × R

P + R
=

2ab

(a+ b)c
. (4.11)

Following existing works, we fix c = 5. Additionally, we multiply all indicators
by 100, i.e., 0 ≤ P ,R,F ≤ 100.

4.4.2 Experiment Result on Benchmark Datasets

We present the result of annotation with Corel 5k in Table 4.1. TagProp43 [97]
represents the integration of 43 features proposed in [97] and metric learning
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Table 4.1: Comparison of performance in terms of P , R, and F on Corel 5K.
P R F

JEC [30] 27 32 29
Matrix Factorization [93] 29 29 29

TagProp [31] 33 42 37
CCD [32] 36 41 38

TagProp43 [97] 35 41 37
PAAPL on 15 features 40 57 47

PAAPL on FV 44 62 51

GMM PCA−SIFT

40
44
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52 SPM level

Dimension of FV (dim. / 32768)

PAAPL
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Figure 4.2: Comparison between PAAPL and TagProp with lower dimensional
FVs.

with TagProp. PAAPL on 15 features uses 15 features provided in the paper of
TagProp [31]1. As shown in Table 4.1, we outperform existing works. Even if
TagProp’s 15 features are used, the performance of PAAPL is superior to that of
TagProp.

Moreover, the combination of proposed PAAPL and FV achieves the best
F -measure of 51. However, the combination of FV and TagProp is not re-
ported. Moreover, high-dimensional features are incompatible with neighbor
search. Therefore, we reduce the dimensions of FV in the following manner
and compare the performance of PAAPL and TagProp.

SPM level. Reduce the SPM cells from 1× 1 + 2× 2 + 3× 1 (262144 dim.)
to 1× 1 + 2× 2 (163840 dim.), and to 1× 1 (32768 dim.).

GMM component. Reduce the components of GMM from 256 (262144
dim.) to 128 (131072 dim.), to 64 (65536 dim.), and to 32 (32768 dim.).

PCA-SIFT dimension. Reduce the dimensions with PCA from 64 (262144
dim.) to 32 (131072 dim.), to 16 (65536 dim.), and to 8 (32768 dim.).

1Features and codes of TagProp are provided on http://lear.inrialpes.fr/pubs/2009/GMVS09/.
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Figure 4.3: Convergence comparison conducted among online learning methods.

A comparison of results is shown in Figure 4.2. First, the combination of
FV and TagProp is also superior to existing results on Corel 5k. Secondly, SPM
does not affect the performance on Corel 5k because FV for whole image itself
has sufficient isolation for this dataset. Thirdly, FV with 32 dim. PCA-SIFT is
better than full FV for TagProp. Finally, with all FVs, PAAPL outperformed
TagProp.

Next we compare the respective convergence speeds of PAAPL, PA, and
NHERD. All methods are implemented using MATLAB. Figure 4.3 shows the
performance at every iteration. The proposed PAAPL obtains good performance
with few iterations. Such a trend will become pronounced in multi-keyphrase es-
timation using many more labels. Indeed, such a result is obtained in Section 4.5.

We present comparison results of ESP Game and IAPR-TC12 in Table 4.2.
Results show that PAAPL is comparable to existing methods on IAPR-TC12 and
that it outperforms them on ESP Game. The computational time for learning
is proportional to the data amount. That for annotation is constant in relation
to the data amount. Because the proposed method achieves a better score than
TagProp does, the scalability of which is a problem, PAAPL is shown to be
competitive.

4.5 Experiment and Discussion of Sentence Gen-

eration

In this section, PASCAL Sentence [6] is used for experimentation. It has 20
categories, each with 50 images. Each image has about five captions of around
10 words each. This dataset is generated using cloudsourcing in [37]. We split
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Table 4.2: Comparison of performance in terms of P , R, and F on ESP Game
and IAPR-TC12.

ESP Game IAPR-TC12
P R F P R F

JEC [30] 22 25 23 28 29 28
TagProp [31] 39 27 32 46 35 40
CCD [32] 36 24 29 44 29 35

TagProp43 [97] 43 23 30 - - -
PAAPL on 15 features 32 35 33 40 38 39

PAAPL on FV 36 40 38 38 36 37

Table 4.3: Statistics of all phrases and filtered phrases with local TF-IDF. The
upper side of each cell presents the number of training samples including at least
one keyphrase. The lower side presents the number of keyphrases.

Local TF-IDF All
top-1 top-3 top-5 top-7 top-9 ∞
900 900 900 900 900 900
764.6 1983.6 3117.0 4504.2 6111.0 15443.2

the dataset into training data and test data according to [1]: 45 pairs of an image
and a text per category are chosen as training samples. All splits are defined
randomly five times. Then the scores are averaged.

We regard to [1], which also uses only PASCAL Sentence, as a baseline. There-
fore, we extract the same features and perform the same dimension reduction as a
preprocess. As an image feature for the shape information, we extracted a SIFT
descriptor from a regular grid with step size 6 pixels at 16× 16 scale. Then LLC
with 1024 codewords is calculated respectively over 1× 1, 2× 2, and 4× 4 cells.
For the texture information, we extract HLAC [100], Gist [91], and LBP [90].

Additionally, as [1] does, we extract word TF-IDF vectors as text features
and reduce the dimension of image feature with Canonical Contextual Distance
(CCD) [46]. Because CCD is a name for a metric, we refer to compressed features
as Canonical Contextual Coordinate (C3). Keyphrases are estimated through
neighbor search in this space in [1]. Therefore, we refer to [1] as C3+knn.

We extract two-word sequences as keyphrases and learn the classification by
PA, NHERD, and PAAPL with 10 iterations on C3. Then keyphrases are con-
nected with the grammar model consisting of a bigram and trigram. We adopt
standard back-off smoothing because the training samples are too few to esti-
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Table 4.4: Statistics of filtered phrases with global DF. The upper side of each
cell presents the number of training samples include at least one keyphrase. The
lower side presents the number of keyphrases.

Bound
Upper

300 200 100
L
ow

er

5

900.0 900.0 900.0
1226.6 1221.8 1207.8

10
900.0 900.0 899.6
500.6 495.8 481.8

50

889.0 863.6 694.6
43.4 38.6 24.6

Table 4.5: Accuracy of multi-keyphrase estimation and of generated sentence for
each method.

P R F BLEU NIST

C3+knn (baseline) 2.6 0.6 1.0 3.59±0.82 2.03±0.04
C3+knn+N-gram 2.6 0.6 1.0 3.68±0.67 2.01±0.03
C3+PA+N-gram 6.4 1.5 2.5 4.90±1.50 2.31±0.20

C3+NHERD+N-gram 6.4 1.5 2.4 4.99±1.07 2.20±0.21
C3+PAAPL+N-gram (proposed) 20.2 4.9 7.8 6.15±2.07 2.34±0.11
FV+PAAPL+N-gram (proposed) 26.9 6.4 10.4 7.52±1.89 2.65±0.18

mate an N-gram accurately. We define λp = 0.05, and estimate five keyphrases.
Alternatively, we extract FV with the same protocol in Section 4.4 and generate
sentences through multi-keyphrase learning.

Keyphrases are extracted according to the filter described in Section 4.3. The
statistics of the number of keyphrases and usable training samples are presented
in Table 4.3 and Table 4.4: for statistics with no filter and local TF-IDF filter, and
for the statistics with global DF filter, respectively. The number of top phrases to
be used, nk, is defined 1, 3, 5, 7, or 9. The bounds of nd, the number of samples
where each phrase appears are defined so that the number of samples for each
phrase might be ensured and so that overfrequent (and meaningless) phrases such
as “is-a” might be eliminated.
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4.5.1 Examples of Generated Sentences

Figure 4.4 presents some examples of generated sentences. As shown, sentences
can be generated using as many keyphrases as the method can. We can learn
keyphrases about spatial relations (e.g., “in front”) because we extract features
using Spatial Pyramid and grid cells and preserve spatial information. More-
over, words that do not appear in the keyphrases are useful in interpolated from
keyphrases found using the N-gram model.

4.5.2 Automatic Evaluation

Automatic evaluation for generated sentence is important and difficult. Some
studies [2, 4, 6, 35, 38, 42, 43, 54, 55, 56] evaluate systems that assess sentences
using humans instead of automatic evaluation. However, it is extremely difficult
to compare the performance without automatic evaluation. Automatic evalu-
ation is difficult mainly because of the large variety of representations for one
image. Even if each image has one correct sentential caption, as do other bench-
mark datasets for other image recognition, processing word order variation and
synonyms appropriately is difficult.

Some works [4, 36, 38] use automatic evaluations for statistical machine trans-
lation. In addition, for statistical machine translation, evaluation adopting word
order variation and synonyms is ideal. Evaluation methods such as BLEU [101]
and NIST [102] subsume that various reference translations are associated with
one test datum. The translation output is evaluated in terms of the degree to
which word sequences are common in output and references. Consequently, be-
cause word order variation and synonyms are partly adopted, correlation between
automatic evaluations and human evaluations exists. [4] shows low correlation
between BLEU and human evaluation, but this is true because references of the
types in PASCAL Sentence and their Baby Talk differ greatly: PASCAL Sen-
tence describes the main content of each image, whereas Baby Talk describes all
objects’ names, numbers, and their local relations.

Therefore, we use BLEU and NIST for evaluation1 with the default order of
N-grams for BLEU (up to 4-gram) and NIST (up to 5-gram). Using multiple
evaluations, the performance comparison is more reliable.

1Particularly we use the evaluation tool provided by NIST
(http://www.itl.nist.gov/iad/mig/tools/).
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Figure 4.4: Examples of estimated keyphrases and generated sentences. The first
row depicts successful examples. The second row have partly correct examples
thanks to appropriate keyphrases. The last row includes humorous mistakes.
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Figure 4.5: Frequencies of the word gaps between grammatically related words.

4.5.3 Discussion about Keyphrase Extraction

In this subsection, we discuss the definition of the keyphrases and how to extract
them from the experimentally obtained results.

In this chapter, we define keyphrases as sequences of two continuous words.
However, it is not clear that sequences of two continuous words have the most
relations among objects, actions, and attributes in the input images.

Therefore, we first investigate whether the most relations in the sentences are
included in two continuous words or not. Particularly, we parse all sentences
in PASCAL Sentence dataset using Stanford Parser [103]. The frequencies of
the word gaps between grammatically related words are shown in Figure 4.5.
About half of the relations between two words are extracted from two continuous
words. Table 4.6 shows the relations which frequently occur in two continuous
words. We also find that the relations extracted from two discontinuous words
include many “prep ∗” relations. For example, relation “prep in” is found from
“airplane in flight”. Although “airplane” and “flight” are distant from each other,
these three words can be restored by estimating two keyphrases, “airplane in”
and “in flight”. Consequently, “prep ∗” relations can also be represented by two
continuous words. Over half of the relations are included in two continuous words.
Therefore, we use these continuous words to extract the relations.
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The performance of multi-keyphrase estimation and accuracy of generated
sentence of all compared methods including the baseline is shown in Table 4.5.
For a fair comparison to the baseline, we show the results when using all phrases
as keyphrases. PA and NHERD are superior to knn in terms of multi-keyphrase
estimation, but PAAPL clearly outperforms other methods because the conver-
gence of PA and NHERD with normal hinge-loss becomes much delayed in the
situation where one image has multiple phrases. For the accuracy of generated
sentences, PAAPL achieves the best score. Merely applying a grammar model to
baseline [1] does not affect the accuracy. Although PA and NHERD outperform
knn in terms of keyphrase estimation, the accuracy of the generated sentence
does not increase greatly.

In this chapter, we use filters based on frequencies only. The objective to
filter phrases according to their frequencies is to eliminate overly frequent (and
meaningless) phrases such as “is-a”. Therefore, we would like to eliminate all
meaningless phrases.

Figure 4.6 shows the result of PAAPL with FV and each keyphrase filter. As
it is shown, global DF filter with 300 ≥ nd ≥ 10 yields the best performance.
Although the accuracy increases with larger nk of local TF-IDF filter, Table 4.3
and Table 4.4 show that the number of keyphrases from local TF-IDF filter with
nk = 9 is much larger than that from global DF filter with 300 ≥ nd ≥ 10. It
can be said that a phrase should be regarded as a keyphrase when the sample
numbers which contain the phrase are greater than the lower bound.

What are meaningless phrases? Indeed, “is-a” is a meaningless phrase. Ac-
tually, this is not because “is-a” is overly frequent but because “is-a” consists of
an auxiliary verb and an article. Therefore, meaningless phrases are apparently
found by considering whether each word in the phrase is meaningless or not. For
example, the following word classes can be regarded as senseless.

1. articles (a/an/the)

2. prepositions (about/in/upon)

3. auxiliary verbs (be/do/have)

4. pronouns (it/this/I)

5. numericals (one/two/three)

6. interrogatives (who/where/when)

Additionally, other meaningless words exist such as abstract verbs (come/have/take).
Although new words are born every year, the meaningless words described here
are apparently senseless and will be so for a long time.
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Figure 4.6: Accuracy of generated sentences with each filter for keyphrase extrac-
tion.

In the literature on Information Retrieval, such meaningless words are called
stop words and are defined for each retrieval system. Therefore, we present
another filter, Stop Word Filter (SWF), based on the rate of stop words. Partic-
ularly, phrases are discarded if more than half of words in the phrases are stop
words. In Chapter 6, we evaluate the effect of this filter.

Although the proposed method achieves the best result, the performance still
must be improved mainly because the keyphrases are large compared to the num-
ber of training samples. In [43], manually generated sentences for images achieve
BLEU 1 of almost 50. Low accuracy of multi-keyphrase estimation harms the
eventual performance of generated sentences.

The simplest means to cope with the shortage of training samples is collecting
a larger dataset. The proposed method is applicable for a large dataset. There-
fore, the accuracy of generated sentences will be improved when numerous data
consisting of pairs of an image and a sentence are collected.

Another problem for the keyphrase approach using PAAPL is that O(dny)
parameters are necessary for learning all classifiers, which would require not only
too much space complexity but also produce a shortage of training samples.
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4.6 Summary of Proposed Approach for Senten-

tial Description

In this chapter, we propose a novel approach to generate sentences from images.
We present Multi-keyphrase Problem to estimate keyphrases and to generate a
sentence by connecting the keyphrases using a grammar model. Our method
merely requires pairs of an image and an associated sentence. Manual preparation
of semantic knowledge such as subjects, actions, and scenes is not necessary.

Because we consider different word sequences as independent phrases, the
multi-keyphrase problem is reduced to Image Annotation. Therefore, we propose
novel online learning called PAAPL for training samples with multiple labels.

Experimental results demonstrate that sentences can be generated with the
proposed framework. The accuracy of generated sentences is better than that
of the existing work. Moreover, the proposed PAAPL method is superior in
terms of scalability and performance on Image Annotation. However, its accuracy
remains low, mainly because there are many more keyphrases than labels in usual
annotation datasets. These numerous keyphrases require too many parameters
for classifiers. Therefore, the space complexity would be a problem. Our next
work is therefore the development of a learning method to learn many labels more
correctly with fewer parameters.
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Chapter 5

CoSMoS: Common Subspace for
Model and Similarity

Image Annotation is a widely confronted problem of associating input images with
multiple labels. To estimate keyphrases for images, many more labels should be
learned because keyphrases are combinations of labels. This chapter introduces
a subspace in which (a) all feature vectors associated with the same label should
be mapped as mutually close and (b) classifiers for each label are learned. To
learn such a subspace, we propose a novel online learning method called Common
Subspace for Model and Similarity (CoSMoS).

To learn linear classifiers, most methods can be grouped into two approaches:
model-based methods such as SVM to learn linear weight vectors and similarity-
based methods to learn metric in the feature space. This method can be regarded
as a combination of both methods.

Experimental results obtained using three de-facto standard datasets for Im-
age Annotation show that the proposed method achieves state-of-the-art perfor-
mance and superior scalability.

5.1 Subspace for Image Recognition

As described in Chapter 4, methods for Image Annotation are divisible into two
groups: (a) non-parametric approaches by which an input image is annotated
with the labels of images located near the input image according to a certain
metric and (b) classification approaches with which each classifier for each label
scores how relevant the input image is to each label. For Image Annotation,
non-parametric approaches are mainstream. In Chapter 4, we modify Passive
Aggressive (PA) [59], which is an existing online learning method for multiclass
classification, by devoting attention to the fact that each datum has more than
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one label. The proposed method, Passive–Aggressive with Averaged Pairwise
Loss (PAAPL), achieves state-of-the-art performance and scalability with the
benchmark datasets for Image Annotation.

The most important problem to learn a large amount of labels such as keyphrases
is that we should treat a large amount of parameters for classifiers. Learning
methods for linear weights including PAAPL require d-dimensional weight vec-
tors for all ny labels. This problem is not confined to model-based methods.
State-of-the-art methods for similarity-based annotation such as TagProp [31]
and 2PKNN [33] require distance functions for each label. Because overly numer-
ous parameters create the need for a huge training dataset, accuracy of keyphrase
estimation would suffer.

A useful technique to reduce a large number of parameters is the use of
subspace learning methods including traditional Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). Web Scale Annotation by Im-
age Embedding (WSABIE) [64] approximates linear classifiers using a low-rank
matrix. One version of Large Scale Metric Learning (LSML) [104, 105] uses mean
vector for each class (Class Mean) to classify the input datum by searching for
the nearest Class Mean. In fact, LSML obtains a subspace in which all vectors
belonging to the same class come close to their mean. LDA and its variation,
Canonical Correlation Analysis (CCA), can be regarded as similar methods in
the sense that a subspace where feature vectors associated with the same label
come mutually close is learned. Generally speaking, CCA can maximize the cor-
relation between image features and labels in the latent space. Indeed, Canonical
Contextual Distance (CCD) [32] uses the nature of CCA for Image Annotation.

This thesis presents assessment of methods to learn a distance function (or a
similarity function) so that the feature vectors having the same label would come
as mutually close as similarity-based methods. At the same time, we refer to
methods to learn linear weights for each label as model-based methods. Their
illustrations are shown in Figure 5.1. It is noteworthy that (a) non-parametric ap-
proaches and (b) classification approaches are distinguished by the form of recog-
nition. They are not respectively synonymous with similarity-based methods
and model-based methods, which are distinguished by the form of learning. For
example, both CCD and LSML are similarity-based learning methods, although
CCD and LSML respectively use a non-parametric approach and a classification
approach for annotation.

A problem of model-based subspace learning such as WSABIE is that the
constraints of the subspace are not defined clearly. However, similarity-based
subspace learning methods have a constraint that the feature vectors with the
same label would come close mutually. However, similarity-based methods can-
not obtain clear rules to classify input data in the subspace. With LSML, which
obtains a subspace where the feature vectors with the same label would come
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(a) Subspace for Similarity

(b) Subspace for Model

(c) Integrated Subspace

Figure 5.1: Simple overview of subspace learning. Now we would like to obtain
one-dimensional subspace (black line) given training samples in two-dimensional
feature space. The blue line orthogonal to each subspace is the decision plane
between the green triangle class and purple rectangle class. Two crossed circles
are the mean of each class.
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close to their Class Mean, input data are classified according to the nearest Class
Means. Therefore, if the distribution for each label is biased, such a classification
rule would misclassify the input data.

Therefore, in this chapter, we introduce a combined form of subspace learning
methods. We would like to obtain a subspace in which (a) all feature vectors
associated with the same label should be mapped as mutually close and (b)
classifiers for each label are learned. The proposed method, called Common
Subspace for Model and Similarity (CoSMoS) annotates images using not only
similarities to Class Means but also linear weight vectors in the subspace. By
incorporating model-based learning and similarity-based learning, stable and
accurate annotation can be achieved.

5.2 Related Subspace Learning Methods

In fact, WSABIE [64] aims to achieve Image Annotation using limited compu-
tation. Subspace is introduced to make their memory usage fit for a laptop in
the ideal case. WSABIE estimates a label ŷ for the feature vector xt of an input
datum as:

ŷ = argmax yδ
y⊤M⊤Sxt, (5.1)

where S,M ∈ RD×d respectively denote a projection matrix to the subspace and
linear classifiers. The i-th column vector is the classifier µyi ∈ RD for label yi.
δy ∈ Rny is a binary vector the y-th element of which is one and the others are
zero. The names of some variables here differ from those presented in [64] for
reasons of consistency. WSABIE also introduces Weighted Approximate-Rank
Pairwise Loss, an approximation of Ordered Weighted Pairwise Classification
Loss [106]. This loss function can weigh lower-ranked positive labels heavily.
By adopting stochastic gradient descent, subspace S and linear weights M are
learned.

LSML [104, 105] combine the means (Class Mean) of feature vectors belonging
to the same class and similarity learning. The classification rule of LSML is the
following.

ŷ = argmax yx̃
y⊤S⊤Sxt − by. (5.2)

Therein, by is a bias for label y. In [105], x̃y can be chosen from (i) all training
samples (i.e., non-parametric approach), (ii) single Class Mean for each label, or
(iii) multiple Class Means for each label. This thesis presents discussion mainly
of (ii) single Class Mean for each label because we specifically examine linear
classification.
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The authors of [104, 105] report that LSML is related to WSABIE. Particu-
larly, x̃y⊤S⊤ in LSML corresponds to δy⊤M⊤ in WSABIE. The LSML method
uses logistic loss, which means that all labels y ̸∈ Yt not attached to t-th fea-
ture xt should be scored as zero. However, this loss function might be too strict
because some labels are not attached but are relevant to the image.

Canonical Contextual Distance (CCD) [32, 46, 107] is a method for Image
Annotation based on a probabilistic interpretation of CCA (PCCA) [108]. Given
image feature vector x ∈ Rd and the feature vector of associated labels y ∈ Rny

as a binary vector the y-th element of which is one and the others are zero, then
because inner products between two label vectors represents the co-occurrence
of labels, binary representation for labels is reasonable. Actually, PCCA ob-
tains latent variables by considering both similarities among image features and
similarities among label features. First, probabilistic distributions among im-
age features, label features, and latent variables are defined using Gaussians as
described below.

z ∼ N(0, ID), min{d, ny} ≥ D ≥ 1, (5.3)

x|z ∼ N(Mxz +mx,Ψx),Mx ∈ Rd×D, Ψx ⪰ 0, (5.4)

y|z ∼ N(Myz +my,Ψy),My ∈ Rny×D, Ψy ⪰ 0. (5.5)

In actuality, as [108] proves, the solutions of maximum likelihood estimation of
these models are identical to the solutions of CCA. Therefore, posteriori distribu-
tion to latent variables is based on input images as follows. Define the distribution
of the latent variable z when only an image feature vector x is given as p(z|x).
Similarly, define the distribution of z when both an image feature x and a la-
bel feature y are given as p(z|x,y). These distributions are also Gaussians, the
means and the variances of which can be derived analytically as presented below.

ẑx = E(z|x) =M⊤
x A

⊤(x−mx), (5.6)

Φ̂x = var(z|x) = I −MxM
⊤
x , (5.7)

ẑxy = E(z|x,y) =(
Mx

My

)T (
(I − Λ2)−1 −(I − Λ2)−1Λ
−(I − Λ2)−1Λ (I − Λ2)−1

)(
AT (x− x̄)
BT (y − ȳ)

)
, (5.8)

Φ̂xy = var(z|x,y) = I−(
Mx

My

)T (
(I − Λ2)−1 −(I − Λ2)−1Λ
−(I − Λ2)−1Λ (I − Λ2)−1

)(
Mx

My

)
, (5.9)

Therein, x̄ and ȳ respectively signify means of all image feature vectors x and
all label feature vectors y. A and B are projection matrices, and Λ is a diagonal
matrix with the first D canonical correlations on its diagonal components. D
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represents the subspace dimension, called canonical space. These matrices are
calculable using plain CCA as the solutions of generalized eigenvalue problems
as:

CxxC
−1
yy CyxA = CxxAΛ

2 (A⊤CxxA = ID), (5.10)

CyxC
−1
xx CxyA = CyyBΛ2 (B⊤CyyB = ID), (5.11)

where C =

(
Cxx Cxy

Cyx Cyy

)
is a covariance matrix of training samples. Mx,My ∈

RD×D are matrices such that MxM
⊤
y = Λ. CCD uses diagonal matrices as:

Mx = Λβ, My = Λ1−β (0 < β < 1). (5.12)

To learn a latent space, both image feature vectors and the label feature mutually
interact as a supervisory signal. As a result, the obtained subspace represents
both images and labels efficiently. β is a hyperparameter to balance the contri-
butions of the images and the labels to estimate the latent variables.

Canonical Contextual Distance (CCD) is a distance function between the
probabilistic distributions introduce above. [107] presents 1-view CCD (CCD1)
and 2-view CCD (CCD2). Whereas CCD1 uses p(z|x) to calculate the distances,
CCD2 uses p(z|x,y). Therefore, CCD2 considers both similarities among image
feature vectors and similarities among label feature vectors. This chapter presents
a description of CCD2 as a more related method.

As described above, each sample can be represented as a Gaussian in the
latent space. Therefore, we use Kullback–Leibler (KL) divergence to calculate
the distances among these distributions. Given an input image feature xq and
training samples (xt,yt), their distance is calculable as KL divergence as:

KL (p(z|xq)||p(z|xt,yt)) =
1

2
log
|Φxy|
|Φx|

− D

2

+
1

2
tr
(
Φ−1

xyΦx

)
+ (ẑq − ẑt)

⊤ Φ−1
x (ẑq − ẑt) . (5.13)

Because the first three terms are constant values, CCD is defined as a Euclidean
distance as:

CCD ((xi,yi),xq) = |rq − rt|2 , (5.14)

where rq = Φ
−1/2
xy ẑxq and rt = Φ

−1/2
xy ẑxiyi respectively represent coordinates of an

input image and training samples in the latent space. In [32], the authors show
experimentally that CCA has better annotation performance than PCA, Partial
Least Squares (PLS), and plain CCA.
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However, CCD entails several problems. The first is complexity of CCA. Al-
though the complexity is independent of the sample size N , solving CCA requires
O(d3) complexity for the dimension d of the image feature vector. Moreover, the
stability of CCA must be considered. If Cxx or Cyy is semidefinite, then inverting
these matrices causes instability. One solution is to add a regularization term.
Particularly by redefining Cxx as Cxx + γI, image feature vectors have a bit of
white noise. However, we should tune a hyperparameter γ > 0. The other solu-
tion is adopting PCA as a preprocess. By reducing the dimensions of the image
feature vector, dimensions for which the variances are small are ignored. More-
over, dimension reduction contributes to the complexity of CCA. However, the
dimension reduced by PCA is also a hyperparameter to be tuned. Finally, maxi-
mizing correlation between image features and label features is not equivalent to
maximizing the annotation performance. Correlation maximization merely im-
proves annotation performance indirectly by making image feature vectors with
the same label come mutually close.

Additionally, although CCD has complexity that is independent of the sample
size N , [32] uses Kernel PCA with a subset of training samples as a preprocess
to improve similarities among image features to achieve comparable performance
to that of TagProp [31]. Consequently, the learning has complexity of at least
O(N).

Here, we consider annotation using a Class Mean like LSML. Given Class
Means of image feature vectors and label feature vectors for the label y as x̃y and
ỹy, respectively, then the CCD between Class Means and input image feature is:

CCD ((x̃y, ỹy),xq) = |rq − rt|2 , (5.15)

= x̃y⊤S⊤Sxq + ỹy⊤M⊤Sxq − by, (5.16)

where S and M are projection matrices derived from CCD, and by is a scalar
representing the bias for the label y. Therefore, the input image is classified
according to the sum of (a) similarity between Class Mean and the input image
feature xq and (b) inner product of the input image feature and linear weight
classifier for each class in the subspace. By designing a proper loss function
based on this classification rule, we can learn a subspace in which (a) all feature
vectors associated with the same label should be mapped as mutually close and
(b) classifiers for each label are learned.

5.3 Methodology

This section presents a description of the proposed method: Commons for simi-
larity and Model (CoSMoS). We define a classification rule according to the sum
of (a) similarity between the Class Mean and the input image feature and (b)
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inner product of the input image feature and linear weight classifier for each
class in the subspace. We optimize this classification by introducing the averaged
pairwise loss and averaged stochastic gradient descent.

5.3.1 Classification Rule and Objective Function

In this subsection, we develop CoSMoS as an online learning method. Given
t-th image feature xt ∈ Rd associated with a set of label Yt ⊂ Y, where Y is a
set of all labels and ny is the number of all labels. We define the label feature
vector y ∈ Rny as a binary vector, the i-th element of which is one if the image
is associated with yi, otherwise zero. Let us define Class Means of image feature
vectors and label feature vectors for label y as x̃y and ỹy, respectively. The
classification rule is defined as presented below.

ŷ = argmax
y

x̃y⊤S⊤Sxq + ỹy⊤M⊤Sxq − by. (5.17)

By introducing U ≡
(
S M

)
, this rule becomes:

ŷ = argmax
y

θy(xt) ≡ argmax
y

(
x̃y

ỹy

)⊤

U⊤
t Ut

(
xt

0

)
− by. (5.18)

Most works for multiclass classification [59, 62] use pairwise loss ℓ ≡ 1 −
minc∈Yt s

y(xt) + maxc ̸∈Yt s
y(xt). As described in Chapter 4. However, using all

labels attached to one image would fasten the convergence of learning. Therefore,
we introduce Averaged Pairwise Loss also for CoSMoS.

ℓt((St,Mt, bt); (xt, Yt)) ≡ 1− 1

|St|
∑
c∈St

sy(xt) +
1

|S ′
t|
∑
c∈S′

t

sy(xt), (5.19)

Therein, b ∈ R|Y| is a vector of bias, the i-th element of which is the bias of
the label yi. Additionally, the members of St ⊂ Yt and S

′
t ⊂ Y/Yt are chosen as

explained below.

1. Pick up y ∈ Yt with the minimum score θy.

2. Pick up y′ /∈ Yt with the maximum score θy
′
.

3. If θy < θy
′
+ 1, then (i) add y and y′ respectively to St and S

′
t, (ii) remove

y and y′ from Yt, and (iii) go back to the first step. Otherwise, the current
St and S

′
t are fixed.
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For a simple formulation, we use gt ∈ Rny and define the i-th element gt,i as:

gt,i =


1/|St| yi ∈ St

−1/|S ′
t| yi ∈ S ′

t

0 otherwise

. (5.20)

Now (5.19) can be rewritten as:

ℓt((St,Mt, bt); (xt, Yt)) = 1− g⊤
t

((
X̃

Ỹ

)⊤

U⊤
t Ut

(
xt

0

)
− bt

)
, (5.21)

where X̃ and Ỹ are matrices consisting of Class Means, the i-th column vector
of which corresponds to the Class Mean x̃yi and ỹyi for the label yi. Conse-
quently, the objective function L(U, b) we would like to minimize is determined
as a following cumulative loss.

L(U, b) =
T∑
t=1

(
1− g⊤

((
X̃

Ỹ

)⊤

U⊤U

(
x
0

)
− b

))
. (5.22)

To minimize the objective function, we adopt averaged stochastic gradient
descent. Update rules for the matrix Ut and the bias bt are defined using learning
rate ηt as:

Ut+1 = Ut

(
Id+ny + ηt

(
xt

0

)
g⊤
t

(
X̃

Ỹ

)⊤

+ ηt

(
X̃

Ỹ

)
gt

(
xt

0

)⊤
)
, (5.23)

bt+1 = bt − ηtgt. (5.24)

As described in [64, 109], U is initialized randomly with mean 0 and standard
deviation 1/

√
d+ ny.

5.4 Experiments for Image Annotation

To evaluate CoSMoS, this section reports the result of Image Annotation using
three de-facto standard datasets as performed in Chapter 4.

5.4.1 Dataset

We use three datasets: Corel 5k, ESP Game, and IAPR-TC12 as used in Chap-
ter 4.
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Corel 5k. Corel 5k [8] consists of about 5000 images for 260 labels. The dataset
is divided into 4500 training samples and 500 testing samples. Each image
has around 3.4 labels.

ESP Game. ESP Game [13] has 60,000 images collected via an online game
where players label images as other players do. Existing works [31, 32, 33,
96, 110] examining Image Annotation use around 20,000 images for 268
labels. Each image has around 4.7 labels.

IAPR-TC12. IAPR-TC12 [14] is provided for research of image retrieval us-
ing multilingual labels and sentences. Existing works [31, 32, 33, 96, 110]
assessing Image Annotation use 20,000 images for 291 labels. Each image
has around 5.7 labels.

To make a fair comparison, we use the image features of 15 types provided
by TagProp [31]. There are seven global image features: GIST [91] and color
histograms in RGB, HSV, and LAB. Three color histograms are extracted not
only from the whole image but also from three horizontal regions of the image
and concatenated. The other eight features are the Bag-of-Visual-Words (BoVW)
model using SIFT [89] and hue descriptors according to [111]. Each descriptor is
extracted from regular grid cells or from interest points. These BoVW are also
extracted from the whole image or from three horizontal regions. These features
are widely used to evaluate annotation methods [30, 31, 32, 96, 110].

Parameter ηt of learning methods WSABIE, LSML, CMM and its variations
are tuned by selecting the best one from {2−3, 2−4, . . . , 2−7}. To combine different
features, in this paper, we learn the models for each feature independently first.
Later we estimate labels for test samples with the sum of the scores from classifiers
of respective features.

Following existing works, we estimate five labels for each test sample. We
evaluate the performance for annotation using the following three indicators:

Precision (P) The ratio of correctly estimated labels to estimated labels.
Recall (R) The ratio of correctly estimated labels to correct labels.
F-measure (F) The harmonic average of Precision and Recall.

5.4.2 Comparison to State-of-the-art Methods

First, we compared CMM to the existing state-of-the-art-methods on three datasets.
To elicit the best performance of CMM, we determined the dimension D of sub-
space four times as large as the number of labels in each dataset.

Table 5.1 presents comparisons to state-of-the-art methods using three visual
annotation datasets. As described before, CoSMoS is related to CCD [32], which
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Table 5.1: Comparison of annotation performances among state-of-the-art meth-
ods.
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R 0.25 0.32 0.42 0.41 0.46 0.57 0.42 0.58
F 0.25 0.29 0.37 0.38 0.45 0.47 0.36 0.48

E
S
P

P 0.18 0.22 0.39 0.36 0.53 0.32 0.33 0.35
R 0.19 0.25 0.27 0.24 0.27 0.35 0.32 0.39
F 0.19 0.23 0.32 0.29 0.36 0.33 0.33 0.37
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P
R P 0.24 0.28 0.46 0.44 0.54 0.40 0.47 0.42

R 0.23 0.29 0.35 0.29 0.37 0.38 0.29 0.40
F 0.24 0.29 0.40 0.35 0.44 0.39 0.36 0.41

uses a probabilistic interpretation of CCA [108]. Although 2PKNN [33] and
PAAPL [110] are superior to CCD, CoSMoS can also achieve state-of-the-art
performance. TagProp and 2PKNN consists of similarity-learning and non-
parametric annotation. These methods require O(N2) complexity for learning
and O(N) complexity for annotation against sample size N .

Particularly, CMM outperforms PAAPL for all evaluations on all datasets. In
addition, CMM outperforms 2PKNN for recall on all datasets. Again, a tradeoff
prevails between precision and recall. CMM outperforms 2PKNN for the F -
measure, which is a kind of average of recall and precision, on Corel and ESP.
The features used for 2PKNN in [33] are not exactly the same as the features
used in other works [30, 31, 32, 96, 110].

5.4.3 Comparison to Subspace Learning Methods

As described in Section 5.3, CoSMoS is related not only to CCD [32, 46, 107] but
also to LSML [104, 105] and WSABIE [64, 109]. Because LSML and WSABIE
are not evaluated on these datasets, we implement and evaluate them using Corel
5k.

Additionally, although LSML and WSABIE are closely related to CoSMoS,
there are several differences. To investigate which factor of CoSMoS contributes,
we also implement and evaluate the following variations of CoSMoS.
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Table 5.2: Comparison of annotation performances among subspace learning
methods produced using Corel 5k.

Method P R F
WSABIE 0.39 0.55 0.45
LSML 0.36 0.51 0.42

CoSMoS with Regularization 0.34 0.49 0.40
CoSMoS w/o Model 0.41 0.58 0.48

CoSMoS w/o Similarity 0.41 0.58 0.48
CoSMoS 0.41 0.58 0.48

CoSMoS w/o Model To ascertain the effect of integrating subspaces for model
and similarity, we discard the model from CoSMoS: linear weight M is
eliminated. The classification rule ŷ = argmax y x̃yS⊤

t Stxt − by is exactly
the same as LSML. Projection matrix St is learned as:

St+1 = St(Id + ηtxtg
⊤
t X̃

⊤ + ηtX̃gtx
⊤
t ). (5.25)

CoSMoS w/o Similarity Next we eliminate the part of similarity to Class
Mean x̃y. In other words, we use a classification as ŷ = argmax y ỹ

yM⊤
t Stxt−

by. If we also eliminate the bias term, then this is identical to the classifi-
cation rule of WSABIE. Projection matrices St and Mt are updated as:

St+1 = St + ηtMtytg
⊤
t Ỹ

⊤, (5.26)

Mt+1 = Wt + ηtPtxtg
⊤
t Ỹ

⊤. (5.27)

CoSMoS with Regularization Form The original CoSMoS discards the reg-
ularization form from the objective function. If a squared Frobenius-norm
for U and a squared L2 norm for b are introduced, a new objective function
L′ is defined as:

L′(U, b) =
λ

2
∥U∥2F +

λ

2
∥b∥22 + L(U, b). (5.28)

Therefore, we can achieve regularization by subtracting ηtλUt and ηtλbt in
t-th step. In the experiments, we determined λ = 1/N , where N is the
number of training samples.

Table 5.2 shows annotation performance obtained using Corel 5k. WSABIE
and LSML are slightly inferior to CoSMoS. Additionally, CoSMoS with regular-
ization reduces the accuracy of the original CoSMoS. However, both CoSMoS
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Figure 5.2: Comparison among CoSMoS variations using 16-dimensional sub-
space.
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Figure 5.3: Comparison among CoSMoS variations using 1024-dimensional sub-
space.

w/o Model and CoSMoS w/o Similarity achieve similar performance to that of
the original CoSMoS.

(a) Should the combinations of subspace where all feature vectors are associ-
ated with the same label be mapped as mutually close? (b) Are the learned clas-
sifiers for each label meaningless? Figure 5.2 and Figure 5.3 show the convergence
of CoSMoS and its variations with ηt = {2−3, 2−4, . . . , 2−7} and D = 16, 1024.
The top and the bottom of each bar respectively represent the minimum and the
maximum performance with ηt = {2−3, 2−4, . . . , 2−7} in each iteration. Lines are
shown by connecting their averaged performance.

First, CoSMoS is superior to its variations in terms of the convergence speed.
CoSMoS converges markedly faster than the CoSMoS w/o Model. This differ-
ence becomes larger when the dimension of the subspace is large. In the high-
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dimensional subspace, CoSMoS w/o Similarity converges more slowly than the
original CoSMoS. In low-dimensional subspace, CoSMoS w/o Similarity begins
to reduce the annotation performance.

Moreover, in comparison to the original CoSMos, the performance of the vari-
ations of CoSMoS varies widely when the learning rate η changes. Especially,
CoSMoS w/o Similarity is sensitive to the learning rate in a high-dimensional
subspace. The original CoSMoS is less sensitive to the learning rate especially in
the high-dimensional subspace. As described in Chapter 3, learning rate /eta is a
hyperparameter to be tuned. By combining the constraint from similarity-based
learning and linear weight vectors from model-based learning, CoSMoS realizes
a stable subspace learning method.

5.5 Towards Sentential Description for Images

In this chapter, we propose novel online learning using subspace for annotating
images with numerous labels. Particularly we introduce a subspace in which (a)
all feature vectors associated with the same label should be mapped as mutually
close and (b) classifiers for each label are learned. To learn such subspace, we
propose a novel online learning method called Common Subspace for Model and
Similarity (CoSMoS). This method can be regarded as a combination of model-
based methods such as SVM to learn linear weight vectors and similarity-based
methods to learn metric in the feature space. We also report that Canonical Con-
textual Distance (CCD) [107] implicitly optimizes the subspace in a similar policy.
By introducing Averaged Pairwise Loss and averaged stochastic gradient descent,
we explicitly optimize the subspace and achieve state-of-the-art performance and
scalability in benchmark datasets for Image Annotation.

As described in Chapter 4, to estimate keyphrases as an Image Annotation
problem, consideration for a large amount of keyphrases is necessary. CoSMoS not
only reduces the number of parameters by introducing subspace: it also achieves
high accuracy for Image Annotation. Moreover, the learning is stable in relation
to the learning rate. The next chapter reports the results of sentence generation
using a combination of CoSMoS and sentence generation described in Chapter 4.
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Chapter 6

Evaluation of Sentential
Description for Images

We evaluated our methodology using three datasets: PASCAL Sentence, IAPR-
TC12, and SBU. PASCAL Sentence consists of 1000 pairs of an image and around
5.0 sentences. IAPR-TC12 consists of 19,963 pairs of an image and around 1.8
sentences. Both datasets are compiled manually and described. SBU consists of
1M pairs of an image and a sentence. These images and sentences are collected
from Flickr. When we train our system and test the performance, these datasets
are respectively divided into training and testing images. We use the same criteria
to divide them and repeat it five times.

As described in Section 4.5.2, we use BLEU [101] and NIST [102] for automatic
evaluation for generated sentence. “BLEU x” means that the cumulative product
of N-gram match rate is used from unigram to x-gram. Similarly, “NIST x” means
that the cumulative sum of N-gram match rate is used from unigram to x-gram,
which is the standard setup for NIST. Both BLEU and NIST have length penalties
to make a fair evaluation of all sentences including overly short sentences. The
ceiling on BLEU is one because this score is a kind of match rate. Because NIST
weighs rear expressions, the ceiling is unclear.

We use the Fisher Vector (FV) [28] with SIFT [89]. We extract a SIFT
descriptor from a regular grid with step size 6 pixels at multiple scales: 16× 16,
25 × 25, 36 × 36, 49 × 49, and 64 × 64. Then the dimensions are reduced to 64
using PCA.

For PASCAL Sentence and IAPR-TC12, we obtain a Gaussian mixture model
with 256 components. Then FV is calculated respectively over 1× 1, 2× 2, and
3× 1 cells.

For SBU, because this is a large-scale dataset, we obtain a Gaussian mixture
model with 16 components to make all FVs fit for the memory space. Then FV
is calculated respectively over the whole image without SPM.
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Table 6.1: Statistics of datasets. IAPR-TC has 20,000 images, but 37 images
are not associated with sentences. For PASCAL Sentence, we extract not only
keyphrases with SWF but also keyphrases as described in Chapter 4.

Dataset # of images
# of sentence
per image

sentence
length

# of keyphrases
per sentence

PASCAL Sentence 1,000 5.00 ± 0.06 9.79 ± 1.99
2.53 ± 1.21
(4.01 ± 1.49)

IAPR-TC12 19,963 1.76 ± 0.84 15.36 ± 6.79 5.31 ± 3.26
SBU 981,450 1.00 ± 0.01 12.02 ± 5.93 3.45 ± 2.76

Keyphrases are extracted from phrases consisting of two continuous words.
For PASCAL Sentence, as described in Chapter 4, keyphrases associated with not
fewer than 10 images are extracted. Therefore, we extract keyphrases occurring
at the same frequency from IAPR-TC12 and SBU As described in Section 4.5.3,
we also investigate another filter to discard phrases for which more than half
of the words are meaningless. To estimate keyphrases, we train CoSMoS with
128-dimensional subspace in 10 iterations. The learning rate η is determined by
selection from {2−3, 2−4, 2−5, 2−6}.

Sentences are generated using top-ten scored keyphrases for each image. From
the experimentally obtained results in Chapter 4, the parameters described in Sec-
tion 4.3.3 are fixed as follows. Statistics of these datasets are shown in Table 6.1.
Because the SBU dataset itself contains not images but URLs of images, we down-
load 981,450 existing images. The coefficient λp = 0.001 for phrase cost. Because
sentences in PASCAL Sentence consist of 10 words on average, the desired length
l0 = 10 and the length strictness σ0 = 0.1. We use bigrams and trigrams extracted
from each dataset as grammar knowledge. Our modified multi-stack beam search
is performed by preserving the top-five scored candidates in each stack.

For evaluation, every dataset is divided into training and testing samples. For
each dataset, we follow the same experimental setup used in most previous works.
Both PASCAL Sentence and IAPR-TC12 are divided into 90% training samples
and 10% testing samples. For SBU, 500 testing images are extracted randomly.
For each dataset, we repeat the division five times.
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BabyTalk: This is a picture of three persons, one bottle and one 
diningtable. The first rusty person is beside the second person. The rusty 
bottle is near the first rusty person, and within the colorful diningtable. 
The second person is by the third rusty person. The colorful diningtable is 
near the first rusty person, and near the second person, and near the third 
rusty person.

Ours: Group of people sitting at a table with a 
dinner.

Corpus-Guided: Three people are showing the 
bottle on the street.
Midge: People with a bottle at the table.

Figure 6.1: Qualitative comparison. A common input image is shown in the upper
left. We compare our result with Corpus-Guided [2], Midge [3], and BabyTalk
[4].

6.1 PASCAL Sentence

Figure 6.2 presents some good examples of generated sentences. As shown,
keyphrases estimated correctly contribute to the generation of appropriate sen-
tences. However, as the bottom one in Figure 6.2, even if a few keyphrases
(“decker bus” and “a bus”) are incorrect, our method based on the modified
multi-stack beam search automatically selects keyphrases to the greatest extent
possible. As a result, such incorrect keyphrases are ignored and a sentence “A
living room with a view of a television.” is generated.

Figure 6.3 presents some partially incorrect examples. Generally, two groups
of mistakes exist: grammatical and semantical. For example, for the first image
in Figure 6.3, the estimated keyphrases are appropriate. However, the connection
of those keyphrases is not correct in grammar. As a typical mistake, there are two
keyphrases “a sheep” and “sheep standing” in the generated sentence. Usage of
both keyphrases leads to a somewhat strange sentence. One solution is to discard
phrases resembling the phrases already used in the sentence being generated. For
example, in the generated sentence for the middle image in Figure 6.3, “the blue
sky” and “the air” are overlapping. Therefore, it is necessary to discard not only
phrases including the same word but also phrases including similar words.

Qualitative comparison to previous works is presented in Figure 6.1. The sen-
tences generated by existing works are selected from results presented in those
papers. Corpus-Guided [2] incorrectly describes that the input image is taken on
the street. The sentence of Midge [3] is the best in these sentences from existing
works. However, particularly addressing a bottle rather than a dinner is a bit
strange for this image. The sentence of BabyTalk [4] is generally long and re-
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Table 6.2: Automatic evaluation for output sentences using PASCAL Sentence
dataset. Scores in parentheses are computed by matching synonyms.

BLEU 1 BLEU 2 BLEU 3 BLEU 4 NIST 5
Kulkarni et al. [4] 0.25 (0.30) - - - -
Yang et al. [2] (0.41) (0.13) (0.03) - -

Verma et al. [56] 0.36 (0.43) - - - -
Gupta et al. [55] (0.54) (0.23) (0.07) - -

FV+PAAPL+naive filter [110] - - - 0.07 2.65
FV+CoSMoS+naive filter 0.53 0.32 0.19 0.11 3.37

FV+CoSMoS+SWF 0.56 0.33 0.19 0.11 3.45

dundant. Most objects founded in the picture are described as “rusty”. Whereas
other works generate incorrect or verbose sentences, our system generates a proper
sentence.

Qualitative comparison with a single input is insufficient. Therefore, we also
compared the accuracy of generated sentence using automatic evaluation. Ta-
ble 6.2 shows a quantitative comparison. Scores in parentheses are computed
by matching synonyms. In general, matching not only the same word but also
its synonyms stretches the score. The table also shows that our framework can
generate more-accurate sentences.

We also compared our method with several from earlier studies. The first is
the accuracy using the exactly same pipeline in Chapter 4. The second score
is obtained by estimating keyphrases not with PAAPL but with CoSMoS. Con-
sequently, CoSMoS can estimate keyphrases more accurately than PAAPL. The
third is obtained by filtering phrases including too many meaningless words de-
scribed in Section 4.5.3. Usage of Stop Word Filter (SWF) contributes to BLEU
1/2 and NIST 5, which is natural because eliminating meaningless phrases from
keyphrase contributes directly to the matching rate of unigrams and bigrams.
Therefore, we use SWF for Keyphrase extraction in the following experiments.
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Input Image Estimated
Keyphrases

Generated Sentence
&

Ground Truth

a group
group of
of people
people sitting
a living

A living room with a group of people sitting.
Four Asian young people sitting in a den or living room.
Group of kids sitting on brown couch together.
The girls watch highlights of the Laker game.
Three girls are sitting on a couch and smiling next to one sitting on the floor.
Three young teenagers sitting on a couch with another sitting on the floor.

A beautiful lake surrounded by trees with two small boats on the beach.
A boat is shown in the foreground of a river-side scene, with mountains and 
trees in the background.
A small watercraft at the edge of a lake.
The great outdoors with blue water, evergreen trees, and heavy clouds.
Two boats docked on a lakeside.

A grassy field in front of a body of water.
airplane is
a grassy
grass in
a field
grassy field

A family sitting down for dinner.
Three people posing at the dinner table.
three people sitting at a table with food and wine 
Three people sitting at dinner table smiling at camera.
Two elderly women sit at a dinner table with a man.

Group of people sitting at a table with a dinner.a group
of people
group of
people sitting
the table

a desk
desk with
computer and
a computer
table with

An office cube has a desktop computer, a cluttered desk, and a blue office 
chair.
An office workstation with personal belongings.
Office desk with computer monitor on.
Office space with desktop computer and blue office chair.
The office has computer on the table and other miscellaneous items.

Table with a desk with a computer and a chair.

room with
decker bus
a room
desk with
a bus

A television and entertainment center.
A wide screen TV in a green entertainment center.
A wide screen TV sits in a living room.
Entertainment center with TV and picture frames.
The entertainment center of the living room includes a TV, plants, and several
baskets.

A living room with a view of a television.

Figure 6.2: Good examples of estimated keyphrases and generated sentences
for the PASCAL Sentence dataset. The first column shows input images. The
second column shows estimated keyphrases for each input image. The third
column shows the generated sentence at the top and ground truth in the dataset
at the bottom. Red-colored words in generated sentences derive from estimated
keyphrases.
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Input Image Estimated
Keyphrases

Generated Sentence
&

Ground Truth

the sheep
sheep in
field of
the grass
a sheep

A sheep in grassy field of sheep standing on grass.
A sheep
A sheep standing angst wild flowers and grasses.
A white sheep standing on a field next to wild flowers
The white sheep is standing next to the plant.
Two lambs stand on a grassy hill.

A large white "Victory Liner" bus with red and yellow trim is in a parking lot.
A side view of a passenger bus.
A Victory Liner bus is white with red and gold stripes.
A white tour bus with red, orange and yellow stripes.
The bus has a red, orange and yellow design on it.

E1 bus is parked near a white bus parked.bus parked
is parked
white bulldog
parked in
parked on

A D-ERFW-6 in flight.
An army green plane flying in the sky.
An old fighter plane flying with German military markings.
A small green and yellow plane in the sky.
A WWII fighter plane with its landing gear down.

Airplane is flying in the blue sky above the air.the sky
is flying
blue shopping
flying in
airplane is

horse grazing
horse whose
grass in
a horse
brown horned

A brown horse and a tan calf in a pasture.
A brown horse standing near a fowl in a grassy paddock.
Adult horse and foal standing in middle of grass arena.
Two horses are grazing in a field.
Two horses in fenced in field.

Brown horse with a horse in a field with trees.

living room
room with
woman with
and woman
holding a

A woman has a bird on her shoulder, and another bird on her head
A woman with a bird on her head and a bird on her shoulder.
A women sitting at a dining table with two small birds sitting on her.
A young Asian woman sitting at a kitchen table with a bird on her head and 
another on her shoulder.
Two birds are perched on a woman sitting in a kitchen.

A buddy holding a woman with a living room.

Figure 6.3: Partially incorrect examples of estimated keyphrases and generated
sentences for the PASCAL Sentence dataset. The first column shows input im-
ages. The second column has estimated keyphrases for each input image. The
third column shows the generated sentence at the top and ground truth in the
dataset at the bottom. Red-colored words in generated sentences come from
estimated keyphrases.
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Table 6.3: Automatic evaluation for output sentences using IAPR-TC12 dataset.
Scores in parentheses are computed by matching synonyms.

Method
BLEU NIST

1 2 3 4 5
Gupta et al. [55] 0.15 (0.21) 0.06 (0.07) 0.01 (0.01) - -

Ours 0.60 0.40 0.28 0.20 3.73

6.2 IAPR-TC12

Figure 6.4 presents some examples of generated sentences for the IAPR-TC12
dataset. Three images at the top are regarded as correct examples, although the
other two images in the bottom are regarded as incorrect.

Table 6.3 presents a quantitative comparison. The table also shows that our
framework can generate more accurate sentences. We achieve state-of-the-art
performance over these datasets.

As described in this thesis, the PASCAL Sentence dataset is generated using
PASCAL VOC dataset, where objectives of 20 kinds are treated. Each image in
PASCAL Sentence is associated with about five sentences. As used in evalua-
tion for Image Annotation, IAPR-TC12 has 291 labels. Although each image in
IAPR-TC12 is associated only with 1.8 sentences, we find that the performance
is comparable to those using PASCAL Sentence. The relations between images
and keyphrases are apparently learned by CoSMoS.

6.3 SBU

Figure 6.5 presents some examples of generated sentences for the SBU dataset.
Three images in the top are regarded as correct examples, whereas the other
two images in the bottom are regarded as incorrect. Although there are many
noisy descriptions as [39] tries to generalize them, the results show that our
methodology to generate sentences for images can generate sentences from a large-
scale dataset collected from the web.

Table 6.4 presents a quantitative comparison. These experimentally obtained
results show the superiority of our framework. However, the scores are inferior to
scores obtained using PASCAL Sentence and IAPR-TC12. There are mainly two
reasons. First, the SBU dataset with 1M images naturally handles many more
contents than the other datasets with at most thousands of images. Secondly,
because testing images are also images in SBU, the sentences are sometimes
improper for ground truth.
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Input Image Estimated
Keyphrases

Generated Sentence
&

Ground Truth

Dark brown mountains in front of a grey and
brown.
A man is standing in front of a wall made of large, grey bricks with two small 
windows.

made of
in front
a grey
front of
grey-brown stones

a dark-skinned
wearing a
a white
a red
in front

A dark-skinned, dark-haired boy with a big smile wearing a red cap and a dark 
blue anorak.
Short grass in background.

A dark-skinned boy wearing a grey sky in front.

the background
a brown
landscape with
a flat
brown monument

A gravel road through a dry and bald plateau.
There are mountains in the distant background.

Green trees and a flat landscape with  a brown
mountains.

the background
mountain range
mountains in
range in
snow-covered summit

A steep, grey canyon in the middle of a green valley with trees and houses, and 
a brownish, bald mountain in the background.

A green trees and brown mountain range in 
the background.

the background
tourists are
are standing
are sitting
the middle

People are looking at rocks in the middle of a desert landscape.

Tourists are standing on the middle of a flat desert.

Figure 6.4: Examples of estimated keyphrases and generated sentences for the
IAPR-TC12 dataset. The first column presents input images. The second column
has estimated keyphrases for each input image. The third column shows the
generated sentence at the top and ground truth in the dataset at the bottom.
Red-colored words in generated sentences come from estimated keyphrases. Three
images in the top are regarded as correct examples, whereas the other two images
in the bottom are regarded as incorrect.
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Table 6.4: Automatic evaluation for output sentences using SBU dataset. Scores
in parentheses are computed by matching synonyms.

Method
BLEU NIST

1 2 3 4 5
Ordonez et al. [38] 0.13 - - - -

Kuznetsova et al. [54] 0.11 (0.11) - - - -
Ours 0.20 0.09 0.04 0.02 1.15

As described in Chapter 1, our objective is to generate sentences using only
pairs of an image and sentences collected from the web. Actually, we find that
web images and their sentences are useful for training our system. However, using
those pairs is inappropriate for automatic evaluation for generated sentences.
Automatic evaluation should be performed using human-generated references.
Therefore, we evaluate the ability to generate sentences for images in PASCAL
Sentence dataset after learning the pairs in the SBU dataset later.

6.4 Discussion

In this section, we first compare our performance to human-generated sentences.
Secondly, we evaluate our method to generate sentences from estimated keyphrases
by introducing oracle keyphrase estimation. Thirdly, we apply the system trained
on SBU to PASCAL Sentence. Simultaneously, we investigate the increase of per-
formance by enlarging a dataset.

6.4.1 Evaluating human-generated sentences

We have evaluated our methodology using automatic evaluation. The results
show that our system is superior to other works. They use external datasets for
special problems for visual recognition such as object detection, scene recogni-
tion, and action detection. Such datasets should be compiled according to one
aspect. Therefore, automatic collection from the web is difficult. In other words,
collecting images and extracting only those words representing its scene or action
is a difficult problem. Our methods use only pairs of an image and sentences.
Such data can be collected easily from the web. In fact, we can generate sentences
using SBU dataset, which is collected from Flickr.

However, it remains unknown whether our system can generate sentences
perfectly or not. Although the upper bound of BLEU is one, even humans are
unable to generate a new sentence scoring one with BLEU unless exactly the
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Input Image Estimated
Keyphrases

Generated Sentence
&

Ground Truth

blue sky
clock tower
blue in
sky EOS
tower in

stained glass
glass window
window in
in St.
the church

the corner
the door
house EOS
place EOS
door to

an old
a house
the middle
house on
old house

the mountain
the sun
the summit
a photo
took a

Clock tower in the city of the blue sky.
The clock tower at Sydney Uni against a perfect blue sky.

Stained glass window in the church in St. 
Vitus Cathedral.
Stained glass window in Notre Dame.

Took a photo of the mountain in the sun sets.
Sunrise over the mountains on the way home on the coach.

An old house on a house in the middle.
Found this old passenger train coach in LaSalle IL.

In the corner of the door to the second floor.
Photo class. The assignment was 'Identity'. Anyway, these are some
books on the shelf in my room.

Figure 6.5: Examples of estimated keyphrases and generated sentences for the
SBU dataset. The first column shows input images. The second column has
estimated keyphrases for each input image. The third column shows the generated
sentence at the top and ground truth in the dataset at the bottom. Red-colored
words in generated sentences derive from estimated keyphrases. Three images at
the top are regarded as correct examples, although the other two images at the
bottom are regarded as incorrect.
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Table 6.5: Automatic evaluation for human-generated sentences using a PASCAL
Sentence dataset. Scores in parentheses are computed by matching synonyms.

BLEU 1 BLEU 2 BLEU 3 BLEU 4 NIST 5

Human
[4, 43] 0.50 - - - -
[42] 0.64 (0.66) 0.42 (0.44) 0.24 (0.26) - -
Ours 0.64 0.43 0.31 0.23 6.27

Computer Ours 0.56 0.33 0.19 0.11 3.45

same sentence is rewritten.
Therefore, we evaluate human-generated sentences on the dataset. Particu-

larly we evaluate the sentences in PASCAL Sentence in a leave-one-out manner.
Table 6.5 shows the performance of human-generated sentences on PASCAL

dataset. Two existing reports describe human-generated sentences. The perfor-
mance we obtain is similar to that described in [42]. In comparison to human-
generated sentences, the generated sentences from our system can use sufficient
vocabularies because our BLEU 1 score is comparable to that produced by hu-
mans. However, shortage of BLEU 4 reflects that the connection of these vocab-
ularies must be improved.

6.4.2 Oracle keyphrase estimation

As described in this thesis, our methodology consists of two steps: keyphrase
estimation from input images and sentence generation from those keyphrases.
Both are challenging problems. Therefore, we would like to evaluate not only
CoSMoS but also the modified multi-stack beam search and the cost functions.

Therefore, we generate sentences “oracle” keyphrases extracted from the ground
truth sentences. For example shown in Figure 6.6, in the usual problem setting
of sentence generation for images, a sentence is generated from the input image
at the left side. Here, we evaluate our sentence generation system by generating
a sentence from correct keyphrases that exist in the ground truth.

Table 6.6 presents the result of sentence generation from oracle keyphrases.
Table 6.5 and Table 6.6 show that our sentences generated from oracle keyphrases
and reference sentences are more mutually similar than a human-generated sen-
tence and another sentence generated by humans.

This experiment is related to [42], where sentences are generated from pairs
of an image and labels for objects and attributes. Therefore, our sentences from
oracle keyphrases are more accurate because the oracle keyphrases inform us not
only of objects and attributes but also their relations.
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(i) Usual evaluation setting

(ii) Special setting with oracle keyphrases

People are looking at rocks in the middle of a desert landscape.

Image Human-generated Sentence (Ground Truth)

? People are looking at rocks in the middle of a desert landscape.

? People are looking at rocks in the middle of a desert landscape.

looking at
at rocks
rocks in
desert landscape

Figure 6.6: Rough illustration of evaluation for sentence generation from oracle
keyphrases.

Table 6.6: Automatic evaluation for output sentences from oracle keyphrases and
estimated keyphrases. We use PASCAL Sentence and IAPR-TC12 because both
have human-generated sentences.

Dataset
BLEU NIST

1 2 3 4 5

PASCAL Sentence

CoSMoS 0.56 0.33 0.19 0.11 3.45
Gupta et al. [42] 0.74 0.55 0.35 - -

Oracle 0.82 0.71 0.56 0.42 7.64
Upper bound 1 1 1 1 (15.1)

IAPR-TC12

CoSMoS 0.60 0.40 0.28 0.20 3.73
Gupta et al. [42] 0.33 0.18 0.07 - -

Oracle 0.74 0.61 0.48 0.37 6.26
Upper bound 1 1 1 1 -
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Learned using SBU
It is a picture of the boat in the water.

Learned using PASCAL Sentence
A boat with trees in the ocean with a river.

Figure 6.7: Comparison of two sentences generated by learning different datasets.
The one at the top is generated after learning SBU dataset consisting of 1M web
images, the other at the bottom is generated after learning PASCAL Sentence
consisting of 1K well-organized images.

6.4.3 Describing PASCAL Sentence using SBU

We generate sentences for images of PASCAL Sentence after learning pairs of an
image and a sentence of SBU. The objective of this experiment is to investigate (i)
if we can generate sentences using not manually organized data but automatically
collected web data, and (ii) the impact of dataset size of SBU.

First, we train our system using about 1M images from SBU and generate
sentences for 100 PASCAL Sentence images. One example is shown in Figure 6.7.
Even if the dataset is not manually organized, we can generate a sentence using
numerous images compiled from the web. Secondly, we reduce the number of
images from SBU and generate sentences similarly. Particularly we use 1K, 10K,
100K, and about 1M images.

Figure 6.8 and Figure 6.9 respectively present examples of sentences gener-
ated using a varying number of SBU datasets respectively for PASCAL Sentence
images and for SBU images. All sentences are generated using the same gram-
mar model extracted from 1M sentences in SBU. Therefore, the improvement of
these sentences derives from the improvement of keyphrase estimation. These
results demonstrate that sentences can be improved when the number of images
is increased.

Figure 6.10 and Figure 6.11 respectively show BLEU and NIST scores up to
the full-size dataset. Although the BLEU scores obtained using SBU are inferior
to that using PASCAL Sentence itself, the scores are still higher than those of
several existing works. Moreover, as this figure shows, increasing the dataset
improves especially NIST score. Because NIST emphasizes less frequent N-grams
and NIST improvement also mean that our system comes to learn less frequent
keyphrases when the number of images is increased.
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1K
10K
100K
1M

Input Image
# of

Images Generated Sentence

Is a train station in the lake in the small.
All the lake in the water is a shot.
View of the lake in the water in a boat.
It is a picture of the boat in the water.

1K

10K
100K

1M

Building a 5D2 from a bar in the evening
sky.

Fienile master bedroom window in the house
in my office.

To my desk in the box in the little girl.

Desk in the kitchen table in the wall.

Figure 6.8: Examples of sentences generated for PASCAL Sentence images using
a varying number of SBU datasets.
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Input Image
# of

Images Generated Sentence

1K
10K
100K

1M An office building near the roof of the
building.

Like the backfground of our house in the
bottom.

On the 13h floor in the beach at the park.
Hat in the roof of the castle in the tower.

Edge of the water in a shot in the
background.

Is a stone wall in the reflection of the water.

On the house in the other side of the grass.
Water in arugut river in 003b this is the sun.

Stained glass window in the church in St.
Vitus Cathedral.

Stained glass in the tower of the church in St.

Stained glass window in aanbouw cofferdam
for a field.
Window in the ossuary glass windows in St.
Louis Missouri.

Loved the contrast of a picture of my favorite
tree.
Of a bird on a tree in the blue sky.

Through the bubban covered in a tree in my
office.

The best=est dog in a little girl in the water.

1K
10K
100K
1M

1K

10K

100K
1M

1K
10K

100K

1M

Figure 6.9: Examples of sentences generated for SBU images using a varying
number of SBU datasets.
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Figure 6.10: Impact of the dataset size evaluated using the BLEU score.
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Figure 6.11: Impact of the dataset size evaluated using the NIST score.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Generating sentences to explain images is an ultimate goal of generic object recog-
nition. Most existing works require semantic knowledge such as ⟨object, action,
scene⟩. Such labels with attributes should be labeled manually. Therefore, com-
piling a large-scale dataset is difficult. In this thesis, we develop a system to
generate sentences for images using only pairs of an image and sentences. To
realize sentence generation using only images and sentences, we present a Multi-
keyphrase Problem to estimate keyphrases and to generate a sentence by connect-
ing the keyphrases using a grammar model.

Guidelines of Online Learning Methods for Large Scale Vi-
sual Recognition (Chapter 3)

As described herein, we gave qualitative and quantitative comparisons of these
online learning algorithms. To date, no report has described a study investigating
state-of-the-art algorithms for visual recognition or a study evaluating those al-
gorithms in unified experimental settings. When these algorithms were proposed,
toy data and the NLP dataset were used for evaluation. Comparison using con-
ventional settings for visual recognition must be conducted. Finally, this chapter
presents three guidelines based on results of image classification as the following.

1. Perceptron can compete against the latest algorithms.

• Provided that the second guideline is observed.

2. Averaging is necessary for any algorithm.

• First-order algorithms w/o averaging cannot compete against second-
order algorithms.
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• When averaging is used, the accuracies of all algorithms mutually con-
verge.
• Averaging accelerates not only first-order algorithms, but also second-
order algorithms.

3. Investigate multiclass learning first.

• Both one-versus-the-rest learning and multiclass learning achieve sim-
ilar accuracy.
• However, one-versus-the-rest takes much longer CPU time to converge
than multiclass does.

Sentence Generation via Keyphrase Estimation (Chapter 4)

Existing methods to describe images sententially require semantic knowledge such
as labels of an object, action, or scene. Using these methods, we must strive to
prepare a highly organized dataset.

In this chapter, we propose a novel approach to generate sentences from im-
ages. We presentMulti-keyphrase Problem to estimate keyphrases and to generate
a sentence by connecting the keyphrases using a grammar model. Our method
requires only pairs of an image and an associated sentence. Manual preparation of
semantic knowledge such as subjects, actions, and scenes is not necessary. There-
fore, we propose a novel online learning method for multi-keyphrase estimation:
Passive–Aggressive with Averaged Pairwise Loss (PAAPL).

The proposed framework, although simple and scalable, can generate sen-
tences from images with no semantic knowledge. Experimental results demon-
strate that sentences can be generated using the proposed framework. The ac-
curacy of generated sentences is better than that of existing methods. Moreover,
PAAPL, which is proposed for multi-keyphrase estimation, which is applicable to
image annotation, is superior in terms of scalability and performance on image
annotation.

However, its accuracy remains low, mainly because there are many more
keyphrases than labels in usual annotation datasets. These many keyphrases
require too many parameters for classifiers. Therefore, the space complexity
presents a problem. Our next work is therefore, the development of a learning
method to learn many labels more correctly with fewer parameters.

CoSMoS: Common Subspace for Model and Similarity (Chap-
ter 5)

This chapter presents a novel subspace method that simultaneously (1) narrows
a semantic gap by learning a subspace where images with the same label become
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close mutually, and (2) learns models as linear weight vectors in the subspace for
each label.

The proposed method can be regarded as the integration of two approaches:
model learning such as SVM using a linear weight, and similarity learning
among images. Learning the mapping via classification loss enables CoSMoS to
weight according to the performances from model and similarity for each class.

We also report that Canonical Contextual Distance (CCD) [107] implicitly
optimizes the subspace in a similar policy. By introducing Averaged Pairwise
Loss and averaged stochastic gradient descent, we explicitly optimize the subspace
and achieve state-of-the-art performance and scalability in benchmark datasets
for image annotation.

Experimental results for three datasets for image annotation show that the
proposed CoSMoS achieves state-of-the-art performance.

Evaluation of Sentential Description for Images (Chapter 6)

We evaluated our methodology using three datasets: PASCAL Sentence, IAPR-
TC12, and SBU. The results show that our system can generate sentences more
accurately than the other works. The other works use external datasets for special
problems for visual recognition such as object detection, scene recognition, and
action detection. Our methods use only pairs of an image and sentences. Such
data can be collected easily from the web. Our system can generate appropriate
sentences for images using the SBU dataset consisting of 1M images, which is
collected from Flickr. The scalability of our system and experimentally obtained
results with varying size of dataset show that the accuracy increases when the
dataset increases.

7.2 Unsolved Problems and Future Works

In this thesis, we present the Multi-keyphrase Problem to generate sentences for
images. From a thorough comparison of online learning methods for large-scale
visual classification, we propose a novel online learning method for keyphrase es-
timation. This method is shown to be capable of learning many labels accurately.

Because keyphrase estimation is a bottleneck to generate sentences, the pro-
posal of CoSMoS in this thesis contributes greatly to the performance of the
generated sentences. Therefore, our future works will address the following top-
ics.
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Discontinuous Keyphrases

Our objective of the use of keyphrases is learning not only objects, actions, and
attributes but also their relations. For simplicity, continuous phrases are used as
keyphrases, which is reasonable because the order of words represents relations
among English words. A continuous phrase naturally represents the relations
among the words in the phrase. However, some distantly positioned words are
inferred as representing important relations.

For example, as described in Chapter 2, our objective is to generate a sentence
such as “A man bites a white dog in his arms.” from keyphrases such as “man-
bites”, “white-dog”, and “his-arms”. Actually, continuous phrases can treat these
relations. However, relations such as “bites—dog” cannot be extracted. Although
we can manage to extract the relation by introducing four-word phrases such as
“bites a white dog”, the use of such long phrases is difficult because the number
of phrases would be too large and because the frequency of long phrases would
be too low to train classifiers.

Therefore, one avenue of future work is the investigation of discontinuous
keyphrases. Such a tide is also happened in literature of Natural Language Pro-
cessing. [112] proposes phrase-based machine translation. Their “phrases” also
represent a sequence of words and extraction from a parallel corpus. Afterward,
[113] proposed hierarchical phrase-based translation and achieved superior per-
formance. The hierarchical structures of sentences are not linguistically syntax-
based. As [113] reports, hierarchical phrases are extracted from a parallel corpus
instead of extraction of syntax structures as in truly syntax-based translation
[114]. Moreover, [115] proposes a non-hierarchical approach to extract discontin-
uous phrases.

The greatest problem hindering extraction of discontinuous keyphrases is that
the input structure differs greatly from that of output. In machine translation,
both input and output are sentences, i.e., sequences of symbols. In sentence
generation from images, only output is a sequence of symbols whereas input is a
2D array of real numbers, i.e., pixels. Therefore, finding the alignment between
pixels and discontinuous phrases is difficult. Without such an alignment, we
should consider all combinations among all words.

A possible solution to introduce discontinuous keyphrases is a top-down def-
inition of keyphrases based on parts of speech such as “(Noun)–(Verb)”. As
extracted in [54, 55, 56], we can extract phrases using a parser. With these dis-
continuous keyphrases, we should formulate a novel search method to connect
these keyphrases.
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More Sophisticated Sentence Generation from Keyphrases

As the experimentally obtained results in Chapter 6 demonstrate, sentence gen-
eration from estimated keyphrases must be improved.

One solution is the use of more sophisticated grammar model. By collecting
more sentences from an external dataset, it is possible to generate a more stable
grammar model. The reason we extract a grammar model from only each dataset
is that we would like to evaluate the performance using only each dataset with
no external data for fair comparison.

When discontinuous keyphrases are extracted as described in the last subsec-
tion, the proposed multi-stack beam search should be modified further to treat
those keyphrases as in [115].

Additionally, as shown in Figure 6.3, resolving redundant expression such
as “A sheep in a grassy field of sheep standing on grass.” is preferred. The
proposed beam search encourages the use of estimated keyphrases. Improved
search should not only encourage the use of some words but also discourage the
inclusion of some words overlapping the sentence that is generated. One naive
solution is consideration of all synonyms as one word. Because all synonyms such
as “Mac Air” and “ultrabook” cannot be organized manually, however, the use of
an existing synonym dictionary is suboptimal. Moreover, overlapping expressions
are not limited to synonyms. For example, the use of too many verbs in a sentence
and the use of too many words modifying the same word should be avoided.

Toward Sentence Generation for Individual Users

Generally, sentences for one image should vary among individual users. Our
future work should address adaptation to individuals. To adapt sentences to each
user, users should input some feedback to the system. For usability, adapting with
a slight amount of feedback is preferred. We believe that our keyphrase estimation
with CoSMoS is suitable for learning with a small amount of feedback. Such
adaptation is necessary for the true goal of interpreting objects and events in the
real world for life-log systems and robots working in our dwelling environment.
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valet. Simplemkl. Journal of Machine Learning Research, 9:2491–2521,
2008. 10

[24] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial
pyramid matching using sparse coding for image classification. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 1794–1801, 2009. 10, 18

[25] Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce. Learning
mid-level features for recognition. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 2559–2566, 2010. 10, 17,
18

[26] Xi Zhou, Kai Yu, Tong Zhang, and Thomas S. Huang. Image classification
using super-vector coding of local image descriptors. In Proceedings of
European Conference on Computer Vision, pages 141–154, 2010. 10, 18

96



REFERENCES

[27] Florent Perronnin and Christopher Dance. Fisher kernels on visual vocab-
ularies for image categorization. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2007. 10

[28] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the
fisher kernel for large-scale image classification. In Proceedings of European
Conference on Computer Vision, pages 143–156, 2010. 10, 18, 27, 28, 41,
47, 73

[29] Jiwoon Jeon, Victor Lavrenko, and Raghavan Manmatha. Automatic image
annotation and retrieval using cross-media relevance models categories and
subject descriptors. In Proceedings of ACM SIGIR Conference on Research
and Development in Informaion Retrieval, pages 119–126, 2003. 10, 40

[30] Ameesh Makadia, Vladimir Pavlovic, and Sanjiv Kumar. A new baselines
for image annotation. In Proceedings of European Conference on Computer
Vision, pages 88–105, 2008. 10, 40, 47, 48, 50, 68, 69

[31] Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia
Schmid. Tagprop: Discriminative metric learning in nearest neighbor mod-
els for image auto-annotation. In Proceedings of IEEE International Con-
ference on Computer Vision, pages 309–316, 2009. 10, 40, 46, 47, 48, 50,
60, 65, 68, 69

[32] Hideki Nakayama. Linear Distance Metric Learning for Large-scale Generic
Image Recognition. PhD thesis, The University of Tokyo, 2011. 10, 40, 48,
50, 60, 63, 64, 65, 68, 69

[33] Yashaswi Verma and C. V. Jawahar. Image annotation using metric learn-
ing in semantic neighbourhoods. In Proceedings of European Conference on
Computer Vision, pages 836–849, 2012. 10, 60, 68, 69

[34] Mohammad Amin Sadeghi and Ali Farhadi. Recognition using visual
phrases. In Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1745–1752, 2011. 11

[35] Benjamin Z. Yao, Xiong Yang, Liang Lin, Mun Wai Lee, and Song-Chun
Zhu. I2t: Image parsing to text description. Proceedings of the IEEE,
98(8):1485–1508, 2010. 11, 52

[36] Ahmet Aker and Robert Gaizauskas. Generating image descriptions using
dependency relational patterns. In Proceedings of Annual Meeting of the
Association for Computational Linguistics, number July, pages 1250–1258,
2010. 11, 52

97



REFERENCES

[37] Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier.
Collecting image annotations using amazon’s mechanical turk. In Proceed-
ings of NAACL HLT Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk, number June, pages 139–147, 2010. 11, 49

[38] Vicente Ordonez, Girish Kulkarni, and Tamara L Berg. Im2text: Describ-
ing images using 1 million captioned photographs. In Advances in Neural
Information Processing Systems, pages 1–9, 2011. 11, 13, 38, 39, 52, 81

[39] Polina Kuznetsova, Vicente Ordonez, Alexander Berg, Tamara Berg, Yejin
Choi, and Stony Brook. Generalizing image captions for image-text parallel
corpus. In Proceedings of Annual Meeting of the Association for Computa-
tional Linguistics, 2013. 11, 79

[40] Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image de-
scription as a ranking task: Data, models and evaluation metrics. Journal
of Artificial Intelligence Research, 47:853–899, 2013. 11, 38

[41] Micah Hodosh, Peter Young, Cyrus Rashtchian, and Julia Hockenmaier.
Cross-caption coreference resolution for automatic image understanding.
In Proceedings of Conference on Computational Natural Language Learning,
number July, pages 162–171, 2010. 11

[42] Ankush Gupta and Prashanth Mannem. From image annotation to image
description. In Proceedings of International Conference on Neural Informa-
tion Processing, pages 1–8, 2012. 12, 38, 52, 83, 84

[43] Siming Li, Girish Kulkarni, Tamara L. Berg, Alexander C. Berg, and Yejin
Choi. Composing simple image descriptions using web-scale n-grams. In
Proceedings of Conference on Computational Natural Language Learning,
2011. 12, 14, 38, 52, 57, 83

[44] Margaret Mitchell, Xufeng Han, and Jeff Hayes. Midge: Generating descrip-
tions of images. In Proceedings of International Natural Language Genera-
tion Conference, number May, pages 131–133, 2012. 12, 14, 38

[45] Yansong Feng and Mirella Lapata. How many words is a picture worth?
automatic caption generation for news images. In Proceedings of Annual
Meeting of the Association for Computational Linguistics, 2010. 12

[46] Hideki Nakayama, Tatsuya Harada, and Yasuo Kuniyoshi. Evaluation of
dimensionality reduction methods for image auto-annotation. In Proceed-
ings of British Machine Vision Conference, pages 94.1–94.12, 2010. 12, 40,
50, 63, 69

98



REFERENCES

[47] Matthew B. Blaschko and Christoph H. Lampert. Correlational spectral
clustering. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008. 13

[48] Yoshitaka Ushiku, Tatsuya Harada, and Yasuo Kuniyoshi. Improving image
similarity measures for image browsing and retrieval through latent space
learning between images and long texts. In Proceedings of International
Conference on Image Processing, pages 2365–2368, 2010. 13

[49] Andrei Barbu, Alexander Bridge, Zachary Burchill, Dan Coroian, Sven
Dickinson, Sanja Fidler, Aaron Michaux, Sam Mussman, Siddharth
Narayanaswamy, Dhaval Salvi, Lara Schmidt, Jiangnan Shangguan, Jef-
frey Mark Siskind, Jarrell Waggoner, Song Wang, Jinlian Wei, Yifan Yin,
and Zhiqi Zhang. Video in sentences out. In Proceedings of Conference on
Uncertainty in Artificial Intelligence, pages 102–112, 2012. 13

[50] Duo Ding, Florian Metze, Shourabh Rawat, Peter F. Schulam, and Susanne
Burger. Generating natural language summaries for multimedia. In Pro-
ceedings of International Natural Language Generation Conference, pages
128–130, 2012. 13

[51] Haonan Yu and Jeffrey Mark Siskind. Grounded language learning from
video described with sentences. In Proceedings of Annual Meeting of the
Association for Computational Linguistics, pages 53–63, 2013. 13

[52] Pradipto Das, Chenliang Xu, Richard F. Doell, and Jason J. Corso. A
thousand frames in just a few words: Lingual description of videos through
latent topics and sparse object stitching. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2013. 13

[53] Niveda Krishnamoorthy, Girish Malkarnenkar, Raymond Mooney, Kate
Saenko, and Sergio Guadarrama. Generating natural-language video de-
scriptions using text-mined knowledge. In Proceedings of NAACL HLT
Workshop on Vision and Language, number June, pages 10–19, 2013. 13

[54] Polina Kuznetsova, Vicente Ordonez, Alexander C. Berg, Tamara L. Berg,
and Yejin Choi. Collective generation of natural image descriptions. In
Proceedings of Annual Meeting of the Association for Computational Lin-
guistics, pages 359–368, 2012. 14, 15, 38, 52, 81, 92

[55] Ankush Gupta, Yashaswi Verma, and C. V. Jawahar. Choosing linguistics
over vision to describe images. In Proceedings of AAAI Conference on
Artificial Intelligence, 2012. 14, 15, 52, 76, 79, 92

99



REFERENCES

[56] Yashaswi Verma, Ankush Gupta, Prashanth Mannem, and C.V. Jawahar.
Generating image descriptions using semantic similarities in the output
space. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition Workshop on Language for Vision, pages 288–293, 2013. 14,
15, 52, 76, 92

[57] Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance metric
learning for large margin nearest neighbor classification. In Advances in
Neural Information Processing Systems, 2006. 14
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[71] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In
Advances in Neural Information Processing Systems, 2007. 17, 18, 20, 21

[72] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Pri-
mal estimated sub-gradient solver for svm. In Proceedings of International
Conference on Machine Learning, pages 807–814, 2007. 17, 18, 20
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